
Developer Guide

Amazon Braket

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Braket Developer Guide

Amazon Braket: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Braket Developer Guide

Table of Contents

What is Amazon Braket? ... 1
How it works ... 3

Amazon Braket quantum task flow ... 4
Third-party data processing .. 5

Amazon Braket terms and concepts ... 5
AWS terminology and tips for Amazon Braket ... 9

Cost tracking and saving .. 10
Near real-time cost tracking ... 11
Best practices for cost savings ... 13

API references and repos .. 14
Core repositories ... 15
Plugins ... 15

Supported regions and devices ... 16
Regions and endpoints .. 19

Getting started .. 22
Enable Amazon Braket .. 22

Prerequisites ... 23
Steps to enable Amazon Braket .. 23

Create an Amazon Braket notebook instance .. 24
(Advanced) Create a Braket notebook using CloudFormation .. 26

Step 1: Create a SageMaker AI lifecycle configuration script .. 27
Step 2: Create the IAM role assumed by Amazon SageMaker AI .. 27
Step 3: Create a SageMaker AI notebook instance with the prefix amazon-braket- 29

Build ... 30
Building your first circuit .. 30

Building your first quantum algorithms .. 35
Constructing circuits in the SDK .. 35
Inspecting the circuit ... 46
List of result types ... 48

Getting Expert advice .. 52
(Advanced) Getting started with Amazon Braket Hybrid Jobs ... 53

What is a Hybrid Job? .. 54
When to use Amazon Braket Hybrid Jobs ... 54
Inputs, outputs, environmental variables, and helper functions ... 55

iii

Amazon Braket Developer Guide

Define the environment for your algorithm script .. 58
Using hyperparameters .. 60

(Advanced) Run your circuits with OpenQASM 3.0 ... 62
What is OpenQASM 3.0? ... 63
When to use OpenQASM 3.0 ... 64
How OpenQASM 3.0 works .. 64
Prerequisites ... 64
What OpenQASM features does Braket support? .. 64
Create and submit an example OpenQASM 3.0 quantum task ... 70
Support for OpenQASM on different Braket devices .. 73
Simulate noise ... 83
Qubit rewiring ... 85
Verbatim compilation ... 85
The Braket console ... 86
Additional resources ... 86
Computing gradients ... 86
Measuring specific qubits .. 87

(Advanced) Explore Experimental Capabilities ... 88
Access to local detuning on QuEra Aquila .. 89
Access to tall geometries on QuEra Aquila ... 91
Access to tight geometries on QuEra Aquila .. 92

(Advanced) Pulse control on Amazon Braket ... 93
Frames ... 94
Ports ... 94
Waveforms .. 95
Roles of frames and ports .. 96
Working with Hello Pulse ... 97
Accessing native gates using pulses ... 101

(Advanced) Analog Hamiltonian Simulation .. 103
Hello AHS: Run your first Analog Hamiltonian Simulation .. 103
Submit an analog program using QuEra Aquila .. 117

(Advanced) Working with AWS Boto3 ... 136
Turn on the Amazon Braket Boto3 client .. 137
Configure AWS CLI profiles for Boto3 and the Braket SDK ... 140

Test ... 143
Submitting quantum tasks to simulators ... 143

iv

Amazon Braket Developer Guide

Local state vector simulator (braket_sv) ... 144
Local density matrix simulator (braket_dm) ... 145
Local AHS simulator (braket_ahs) ... 146
State vector simulator (SV1) .. 146
Density matrix simulator (DM1) .. 147
Tensor network simulator (TN1) ... 148
About embedded simulators .. 149
Compare simulators ... 150
Example quantum tasks on Amazon Braket ... 154
Testing a quantum task with the local simulator .. 159
Quantum task batching .. 161

(Advanced) Working with Amazon Braket Hybrid Jobs ... 163
Running your local code as a hybrid job ... 164
Running a hybrid job with Amazon Braket Hybrid Jobs ... 172
Create your first Hybrid Job ... 174
Saving your job results .. 184
Saving and restarting hybrid jobs using checkpoints ... 185
Building and debugging a hybrid job with local mode .. 187

Run ... 189
Submitting quantum tasks to QPUs .. 190

IonQ ... 191
IQM .. 192
Rigetti .. 192
QuEra ... 193
Example: Submitting a quantum task to a QPU .. 193
Inspecting compiled circuits ... 197

When will my quantum task run? .. 197
QPU availability windows and status ... 198
Queue visibility ... 198
Set up email or SMS notifications .. 200

(Advanced) Managing your Amazon Braket Hybrid Job .. 200
Configure the hybrid job instance to run your script .. 201
How to cancel a Hybrid Job ... 204
Using parametric compilation to speed up Hybrid Jobs .. 205
Use PennyLane with Amazon Braket ... 207
Bring your own container (BYOC) ... 221

v

Amazon Braket Developer Guide

Using CUDA-Q with Amazon Braket ... 229
Interact with hybrid jobs directly using the API .. 233

(Advanced) Working with reservations .. 236
How to create a reservation .. 237
Running quantum tasks during a reservation .. 238
Running hybrid jobs during a reservation ... 242
What happens at the end of your reservation ... 243
Cancel or reschedule an existing reservation ... 244

(Advanced) Error mitigation techniques ... 244
Error mitigation techniques on IonQ devices ... 244

Troubleshooting ... 247
AccessDeniedException ... 247
An error occurred (ValidationException) when calling the CreateQuantumTask operation 247
An SDK feature does not work ... 248
Hybrid job fails due to ServiceQuotaExceededException .. 248
Components stopped working in notebook instance .. 249
Troubleshooting OpenQASM ... 249

Include statement error .. 250
Non-contiguous qubits error .. 250
Mixing physical qubits with virtual qubits error .. 251
Requesting result types and measuring qubits in the same program error 251
Classical and qubit register limits exceeded error ... 251
Box not preceded by a verbatim pragma error .. 252
Verbatim boxes missing native gates error ... 252
Verbatim boxes missing physical qubits error .. 252
The verbatim pragma is missing "braket" error ... 253
Single qubits cannot be indexed error .. 253
The physical qubits in a two qubit gate are not connected error .. 253
Local simulator support warning .. 254

Security .. 255
Shared responsibility for security ... 256
Data protection .. 256
Data retention .. 257
Managing access to Amazon Braket .. 257

Amazon Braket resources .. 258
Notebooks and roles .. 258

vi

Amazon Braket Developer Guide

About the AmazonBraketFullAccess policy ... 259
About the AmazonBraketJobsExecutionPolicy policy ... 265
Restrict user access to certain devices ... 268
Amazon Braket updates to AWS managed policies .. 269
Restrict user access to certain notebook instances ... 270
Restrict user access to certain S3 buckets .. 271

Service-linked role ... 272
Service-linked role permissions for Amazon Braket .. 273

Compliance validation .. 274
Infrastructure Security .. 275
Third Party Security .. 276
VPC endpoints (PrivateLink) .. 277

Considerations for Amazon Braket VPC endpoints ... 277
Set up Braket and PrivateLink ... 278
Additional information about creating an endpoint ... 279
Control access with Amazon VPC endpoint policies ... 279

Logging and monitoring ... 281
Tracking quantum tasks from the Amazon Braket SDK .. 282
Monitoring quantum tasks through the Amazon Braket console .. 284
Tagging resources .. 286

Using tags .. 287
Supported resources for tagging in Amazon Braket ... 287
Tagging with the Amazon Braket API .. 288
Tagging restrictions .. 288
Managing tags in Amazon Braket ... 288
Example of AWS CLI tagging in Amazon Braket .. 290

Monitoring your quantum tasks with EventBridge ... 291
Monitor quantum task status with EventBridge .. 291
Example Amazon Braket EventBridge event .. 292

Monitoring your metrics with CloudWatch .. 294
Amazon Braket metrics and dimensions ... 294

Logging your quantum tasks with CloudTrail .. 295
Amazon Braket information in CloudTrail ... 295
Understanding Amazon Braket log file entries .. 296

(Advanced) Logging ... 298
Quotas .. 302

vii

Amazon Braket Developer Guide

Additional quotas and limits ... 347
Document history .. 348

viii

Amazon Braket Developer Guide

What is Amazon Braket?

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

Amazon Braket is a fully managed AWS service that helps researchers, scientists, and developers
get started with quantum computing. Quantum computing has the potential to solve
computational problems that are beyond the reach of classical computers because it harnesses the
laws of quantum mechanics to process information in new ways.

Gaining access to quantum computing hardware can be expensive and inconvenient. Limited access
makes it difficult to run algorithms, optimize designs, evaluate the current state of the technology,
and plan for when to invest your resources for maximum benefit. Braket helps you overcome these
challenges.

Braket offers a single point of access to a variety of quantum computing technologies. With Braket,
you can:

• Explore and design quantum and hybrid algorithms.

• Test algorithms on different quantum circuit simulators.

• Run algorithms on different types of quantum computers.

• Create proof of concept applications.

Defining quantum problems and programming quantum computers to solve them requires a new
set of skills. To help you gain these skills, Braket offers different environments to simulate and run
your quantum algorithms. You can find the approach that best suits your requirements and get
started quickly with a set of example environments called notebooks.

Braket development has three stages :

• Build - Braket provides fully managed Jupyter notebook environments that make it easy to get
started. Braket notebooks are pre-installed with sample algorithms, resources, and developer
tools, including the Amazon Braket SDK. With the Amazon Braket SDK, you can build quantum

1

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://docs.aws.amazon.com/braket/latest/developerguide/braket-build.html

Amazon Braket Developer Guide

algorithms and then test and run them on different quantum computers and simulators by
changing a single line of code.

• Test - Braket provides access to fully managed, high-performance quantum circuit simulators.
You can test and validate your circuits. Braket handles all the underlying software components
and Amazon Elastic Compute Cloud (Amazon EC2) clusters to take away the burden of simulating
quantum circuits on classical high performance computing (HPC) infrastructure.

• Run - Braket provides secure, on-demand access to different types of quantum computers. You
have access to gate-based quantum computers from IonQ, IQM, and Rigetti, as well as an Analog
Hamiltonian Simulator from QuEra. You also have no upfront commitment, and no need to
procure access through individual providers.

About quantum computing and Braket

Quantum computing is in its early developmental stage. It’s important to understand that
no universal, fault-tolerant quantum computer exists at present. Therefore, certain types of
quantum hardware are better suited for each use case and it’s crucial to have access to a variety of
computing hardware. Braket offers a variety of hardware through third-party providers.

Existing quantum hardware is limited due to noise, which introduces errors. The industry is in the
Noisy Intermediate Scale Quantum (NISQ) era. In the NISQ era, quantum computing devices are
too noisy to sustain pure quantum algorithms, such as Shor’s algorithm or Grover’s algorithm. Until
better quantum error correction is available, the most practical quantum computing requires the
combination of classical (traditional) computing resources with quantum computers to create
hybrid algorithms. Braket helps you work with hybrid quantum algorithms.

In hybrid quantum algorithms, quantum processing units (QPUs) are used as co-processors for
CPUs, thus speeding up specific calculations in a classical algorithm. These algorithms utilize
iterative processing, in which computation moves between classical and quantum computers. For
example, current applications of quantum computing in chemistry, optimization, and machine
learning are based on variational quantum algorithms, which are a type of hybrid quantum
algorithm. In variational quantum algorithms, classical optimization routines adjust the parameters
of a parameterized quantum circuit iteratively, much in the same way the weights of a neural
network are adjusted iteratively based on the error in a machine learning training set. Braket offers
access to the PennyLane open source software library, which assists you with variational quantum
algorithms.

Quantum computing is gaining traction for computations in four main areas:

2

https://docs.aws.amazon.com/braket/latest/developerguide/braket-test.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-using.html

Amazon Braket Developer Guide

• Number theory — including factoring and cryptography (for example, Shor’s algorithm is a
primary quantum method for number theory computations)

• Optimization — including constraint satisfaction, solving linear systems, and machine learning

• Oracular computing — including search, hidden subgroups, and order finding (for example,
Grover’s algorithm is a primary quantum method for oracular computations)

• Simulation — including direct simulation, knot invariants, and quantum approximate
optimization algorithm (QAOA) applications

Applications for these categories of computations can be found in financial services, biotechnology,
manufacturing, and pharmaceuticals, to name a few. Braket offers capabilities and example
notebooks that can already be applied to many proof of concept problems in addition to certain
practical problems.

In this section:

• How Amazon Braket works

• Amazon Braket terms and concepts

• Cost tracking and saving

• API references and repos for Amazon Braket

• Amazon Braket supported regions and devices

How Amazon Braket works

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

Amazon Braket provides on-demand access to quantum computing devices, including on-demand
circuit simulators and different types of QPUs. In Amazon Braket, the atomic request to a device
is a quantum task. For gate-based QC devices, this request includes the quantum circuit (including
the measurement instructions and number of shots) and other request metadata. For Analog
Hamiltonian Simulators, the quantum task contains the physical layout of the quantum register
and the time- and space-dependence of the manipulating fields.

How it works 3

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path

Amazon Braket Developer Guide

Braket Direct is a program expanding how you can explore quantum computing on AWS,
accelerating research and innovation. You can reserve dedicated capacity on various quantum
devices, engage directly with quantum computing specialists, and have early access to next-
generation capabilities, including the latest trapped-ion device from IonQ, Forte.

In this section, we are going to learn about the high-level flow of running quantum tasks on
Amazon Braket.

In this section:

• Amazon Braket quantum task flow

• Third-party data processing

Amazon Braket quantum task flow

With Jupyter notebooks, you can conveniently define, submit, and monitor your quantum tasks
from the Amazon Braket Console or using the Amazon Braket SDK. You can build your quantum
circuits directly in the SDK. However, for Analog Hamiltonian Simulators, you define the register
layout and the controlling fields. After your quantum task is defined, you can choose a device
to run it on and submit it to the Amazon Braket API (2). Depending on the device you chose, the

Amazon Braket quantum task flow 4

https://us-west-1.console.aws.amazon.com/console/home?region=us-west-1#
https://github.com/aws/amazon-braket-sdk-python

Amazon Braket Developer Guide

quantum task is queued until the device becomes available and the task is sent to the QPU or
simulator for implementation (3). Amazon Braket gives you access to different types of QPUs
(IonQ, IQM, QuEra, Rigetti), three on-demand simulators (SV1, DM1, TN1), two local simulators,
and one embedded simulator. To learn more, see Amazon Braket supported devices.

After processing your quantum task, Amazon Braket returns the results to an Amazon S3 bucket,
where the data is stored in your AWS account (4). At the same time, the SDK polls for the results
in the background and loads them into the Jupyter notebook at quantum task completion. You
can also view and manage your quantum tasks on the Quantum Tasks page in the Amazon Braket
console or by using the GetQuantumTask operation of the Amazon Braket API.

Amazon Braket is integrated with AWS Identity and Access Management (IAM), Amazon
CloudWatch, AWS CloudTrail and Amazon EventBridge for user access management, monitoring
and logging as well as for event based processing (5).

Third-party data processing

Quantum tasks that are submitted to a QPU device are processed on quantum computers located
in facilities operated by third party providers. To learn more about security and third-party
processing in Amazon Braket, see Security of Amazon Braket Hardware Providers.

Amazon Braket terms and concepts

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

The following terms and concepts are used in Braket:

 Analog Hamiltonian Simulation

Analog Hamiltonian Simulation (AHS) is a distinct quantum computing paradigm for direct
simulation of time-dependent quantum dynamics of many-body systems. In AHS, users directly
specify a time-dependent Hamiltonian and the quantum computer is tuned in such a way
that it directly emulates the continuous time evolution under this Hamiltonian. AHS devices

Third-party data processing 5

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path

Amazon Braket Developer Guide

are typically special-purpose devices and not universal quantum computers like gate-based
devices. They are limited to a class of Hamiltonians they can simulate. However, since these
Hamiltonians are naturally implemented on the device, AHS does not suffer from the overhead
required to formulate algorithms as circuits and implement gate operations.

 Braket

We named the Braket service after the bra-ket notation, a standard notation in quantum
mechanics. It was introduced by Paul Dirac in 1939 to describe the state of quantum systems,
and it is also known as the Dirac notation.

 Braket Direct

With Braket Direct, you can reserve dedicated access to different quantum devices of your
choice, connect with quantum computing specialists to receive guidance for your workload, and
gain early access to next-generation capabilities, such as new quantum devices with limited
availability.

 Braket hybrid job

Amazon Braket has a feature called Amazon Braket Hybrid Jobs that provides fully managed
executions of hybrid algorithms. A Braket hybrid job consists of three components:

1. The definition of your algorithm, which can be provided as a script, Python module, or
Docker container.

2. The hybrid job instance, based on Amazon EC2, on which to run your algorithm. The default is
an ml.m5.xlarge instance.

3. The quantum device on which to run the quantum tasks that are part of your algorithm. A
single hybrid job typically contains a collection of many quantum tasks.

 Device

In Amazon Braket, a device is a backend that can run quantum tasks. A device can be a QPU or a
quantum circuit simulator. To learn more, see Amazon Braket supported devices.

 Error mitigation

Error mitigation involves running multiple physical circuits and combining their measurements
to give an improved result. For more information, see Error mitigation techniques.

 Gate-based quantum computing

In gate-based quantum computing (QC), also called circuit-based QC, computations are broken
down into elementary operations (gates). Certain sets of gates are universal, meaning that

Amazon Braket terms and concepts 6

https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation

Amazon Braket Developer Guide

every computation can be expressed as a finite sequence of those gates. Gates are the building
blocks of quantum circuits and are analogous to the logic gates of classical digital circuits.

 Gateshot limit

A gateshot limit refers to the total gate count per shot (the sum of all gate types) and shot
count per task. Mathematically, the gateshot limit can be expressed as:

Gateshot limit = (Gate count per shot) * (Shot count per task)

 Hamiltonian

The quantum dynamics of a physical system are determined by its Hamiltonian, which encodes
all information about the interactions between constituents of the system and the effects of
exogenous driving forces. The Hamiltonian of an N-qubit system is commonly represented as a
2N by 2N matrix of complex numbers on classical machines. By running an Analog Hamiltonian
Simulation on a quantum device, you can avoid these exponential resource requirements.

 Pulse

A pulse is a transient physical signal transmitted to the qubits. It is described by a waveform
played in a frame that serves as a support for the carrier signal and is bound to the hardware
channel or port. Customers can design their own pulses by providing the analog envelope that
modulates the high-frequency sinusoidal carrier signal. The frame is uniquely described by a
frequency and a phase that are often chosen to be on resonance with the energy separation
between the energy levels for |0⟩ and |1⟩ of the qubit. Gates are thus enacted as pulses with a
predetermined shape and calibrated parameters such as its amplitude, frequency and duration.
Use cases that are not covered by template waveforms will be enabled through custom
waveforms which will be specified at the single sample resolution by providing a list of values
separated by a fixed, physical cycle-time.

 Quantum circuit

A quantum circuit is the instruction set that defines a computation on a gate-based
quantum computer. A quantum circuit is a sequence of quantum gates, which are reversible
transformations on a qubit register, together with measurement instructions.

 Quantum circuit simulator

A quantum circuit simulator is a computer program that runs on classical computers and
calculates the measurement outcomes of a quantum circuit. For general circuits, the resource
requirements of a quantum simulation grow exponentially with the number of qubits to

Amazon Braket terms and concepts 7

Amazon Braket Developer Guide

simulate. Braket provides access to both managed (accessed through the Braket API) and local
(part of the Amazon Braket SDK) quantum circuit simulators.

 Quantum computer

A quantum computer is a physical device that uses quantum-mechanical phenomena, such as
superposition and entanglement, to perform computations. There are different paradigms to
quantum computing (QC), such as gate-based QC.

 Quantum processing unit (QPU)

A QPU is a physical quantum computing device that can run on a quantum task. QPUs can be
based on different QC paradigms, such as gate-based QC. To learn more, see Amazon Braket
supported devices.

 QPU native gates

QPU native gates can be directly mapped to control pulses by the QPU control system. Native
gates can be run on the QPU device without further compilation. Subset of QPU supported
gates. You can find the native gates of a device on the Devices page in the Amazon Braket
console and through the Braket SDK.

 QPU supported gates

QPU supported gates are the gates accepted by the QPU device. These gates might not be able
to directly run on the QPU, meaning that they might need to be decomposed into native gates.
You can find the supported gates of a device on the Devices page in the Amazon Braket console
and through the Amazon Braket SDK.

 Quantum task

In Braket, a quantum task is the atomic request to a device. For gate-based QC devices, this
includes the quantum circuit (including the measurement instructions and number of shots) and
other request metadata. You can create quantum tasks through the Amazon Braket SDK or by
using the CreateQuantumTask API operation directly. After you create a quantum task, it will
be queued until the requested device becomes available. You can view your quantum tasks on
the Quantum Tasks page of the Amazon Braket console or by using the GetQuantumTask or
SearchQuantumTasks API operations.

 Qubit

The basic unit of information in a quantum computer is called a qubit (quantum bit), much
like a bit in classical computing. A qubit is a two-level quantum system that can be realized
by different physical implementations, such as superconducting circuits or individual ions and

Amazon Braket terms and concepts 8

Amazon Braket Developer Guide

atoms. Other qubit types are based on photons, electronic or nuclear spins, or more exotic
quantum systems.

 Queue depth

Queue depth refers to the number of quantum tasks and hybrid jobs queued for a particular
device. A device’s quantum task and hybrid job queue count are accessible through the Braket
Software Development Kit (SDK) or Amazon Braket Management Console.

1. Task queue depth refers to the total number of quantum tasks currently waiting to run in
normal priority.

2. Priority task queue depth refers to the total number of submitted quantum tasks waiting to
run through Amazon Braket Hybrid Jobs. These tasks get priority over standalone tasks once
a hybrid job starts.

3. Hybrid jobs queue depth refers to the total number of hybrid jobs currently queued on a
device. Quantum tasks submitted as part of a hybrid job have priority, and are aggregated in
the Priority Task Queue.

 Queue position

Queue position refers to the current position of your quantum task or hybrid job within a
respective device queue. It can be obtained for quantum tasks or hybrid jobs through the Braket
Software Development Kit (SDK) or Amazon Braket Management Console.

 Shots

Since quantum computing is inherently probabilistic, any circuit needs to be evaluated multiple
times to get an accurate result. A single circuit execution and measurement is called a shot. The
number of shots (repeated executions) for a circuit is chosen based on the desired accuracy for
the result.

AWS terminology and tips for Amazon Braket

 IAM policies

An IAM policy is a document that allows or denies permissions to AWS services and resources.
IAM policies enable you to customize users' levels of access to resources. For example, you can
allow users access to all of the Amazon S3 buckets within your AWS account, or only a specific
bucket.

• Best practice: Follow the security principle of least privilege when granting permissions. By
following this principle, you help to prevent users or roles from having more permissions than

AWS terminology and tips for Amazon Braket 9

Amazon Braket Developer Guide

needed to perform their quantum tasks. For example, if an employee needs access to only a
specific bucket, specify the bucket in the IAM policy instead of granting the employee access
to all of the buckets in your AWS account.

 IAM roles

An IAM role is an identity that you can assume to gain temporary access to permissions. Before
a user, application, or service can assume an IAM role, they must be granted permissions to
switch to the role. When someone assumes an IAM role, they abandon all previous permissions
that they had under a previous role and assume the permissions of the new role.

• Best practice: IAM roles are ideal for situations in which access to services or resources needs
to be granted temporarily, instead of long-term.

 Amazon S3 bucket

Amazon Simple Storage Service (Amazon S3) is an AWS service that lets you store data as
objects in buckets. Amazon S3 buckets offer unlimited storage space. The maximum size for
an object in an Amazon S3 bucket is 5 TB. You can upload any type of file data to an Amazon
S3 bucket, such as images, videos, text files, backup files, media files for a website, archived
documents, and your Braket quantum task results.

• Best practice: You can set permissions to control access to your S3 bucket. For more
information, see Bucket policies in the Amazon S3 documentation.

Cost tracking and saving

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

With Amazon Braket, you have access to quantum computing resources on demand without
upfront commitment. You pay only for what you use. To learn more about pricing, please visit our
pricing page.

In this section:

• Near real-time cost tracking

Cost tracking and saving 10

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-policies.html
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://aws.amazon.com/braket/pricing/

Amazon Braket Developer Guide

• Best practices for cost savings

Near real-time cost tracking

The Braket SDK offers you the option to add a near real-time cost tracking to your quantum
workloads. Each of our example notebooks includes cost tracking code to provide you with a
maximum cost estimate on Braket’s quantum processing units (QPUs) and on-demand simulators.
Maximum cost estimates will be shown in USD and are not inclusive of any credits or discounts.

Note

Charges shown are estimates based on your Amazon Braket simulator and quantum
processing unit (QPU) task usage. Estimated charges shown may differ from your actual
charges. Estimated charges do not factor in any discounts or credits and you may
experience additional charges based on your use of other services such as Amazon Elastic
Compute Cloud (Amazon EC2).

Cost tracking for SV1

In order to demonstrate how the cost tracking function can be used, we will be constructing a Bell
State circuit and running it on our SV1 simulator. Begin by importing the Braket SDK modules,
defining a Bell State and adding the Tracker() function to our circuit:

#import any required modules
from braket.aws import AwsDevice
from braket.circuits import Circuit
from braket.tracking import Tracker

#create our bell circuit
circ = Circuit().h(0).cnot(0,1)
device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")
with Tracker() as tracker:
 task = device.run(circ, shots=1000).result()

#Your results
print(task.measurement_counts)

Counter({'00': 500, '11': 500})

Near real-time cost tracking 11

Amazon Braket Developer Guide

When you run your Notebook, you can expect the following output for your Bell State simulation.
The tracker function will show you the number of shots sent, quantum tasks completed, the
execution duration, the billed execution duration, and your maximum cost in USD. Your execution
time may vary for each simulation.

import datetime

tracker.quantum_tasks_statistics()
{'arn:aws:braket:::device/quantum-simulator/amazon/sv1':
 {'shots': 1000,
 'tasks': {'COMPLETED': 1},
 'execution_duration': datetime.timedelta(microseconds=4000),
 'billed_execution_duration': datetime.timedelta(seconds=3)}}

tracker.simulator_tasks_cost()

Decimal('0.0037500000')

Using the cost tracker to set maximum costs

You can use the cost tracker to set maximum costs on a program. You may have a maximum
threshold for how much you want to spend on a given program. In this way, you can use the cost
tracker to build out cost control logic in your execution code. The following example takes the
same circuit on a Rigetti QPU and limits the cost to 1 USD. The cost to run one iteration of the
circuit in our code is 0.30 USD. We have set the logic to repeat the iterations until the total cost
exceeds 1 USD; hence, the code snippet will run three times until the next iteration exceeds 1 USD.
Generally, a program would continue to iterate until it reaches your desired maximum cost, in this
case - three iterations.

device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3")
with Tracker() as tracker:
 while tracker.qpu_tasks_cost() < 1:
 result = device.run(circ, shots=200).result()
print(tracker.quantum_tasks_statistics())
print(tracker.qpu_tasks_cost(), "USD")

{'arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3': {'shots': 600, 'tasks':
 {'COMPLETED': 3}}}
0.9000000000 USD

Near real-time cost tracking 12

Amazon Braket Developer Guide

Note

The cost tracker will not track duration for failed TN1 quantum tasks. During a TN1
simulation, if your rehearsal completes, but the contraction step fails, your rehearsal charge
will not be shown in the cost tracker.

Best practices for cost savings

Consider the following best practices for using Amazon Braket. Save time, minimize costs, and
avoid common errors.

Verify with simulators

• Verify your circuits using a simulator before you run it on a QPU, so you can fine-tune your circuit
without incurring charges for QPU usage.

• Although the results from running the circuit on a simulator may not be identical to the results
from running the circuit on a QPU, you can identify coding errors or configuration issues using a
simulator.

Restrict user access to certain devices

• You can set up restrictions that keep unauthorized users from submitting quantum tasks on
certain devices. The recommended method for restricting access is with AWS IAM. For more
information about how to do that, see Restrict access.

• We recommend that you do not use your admin account as a way to give or restrict user access
to Amazon Braket devices.

Set billing alarms

• You can set a billing alarm to notify you when your bill reaches a preset limit. The recommended
way to set up an alarm is through AWS Budgets. You can set custom budgets and receive alerts
when your costs or usage may exceed your budgeted amount. Information is available at AWS
Budgets.

Test TN1 quantum tasks with low shot counts

Best practices for cost savings 13

https://docs.aws.amazon.com/braket/latest/developerguide/braket-manage-access.html#restrict-access
https://aws.amazon.com/aws-cost-management/aws-budgets/
https://aws.amazon.com/aws-cost-management/aws-budgets/

Amazon Braket Developer Guide

• Simulators cost less than QPUs, but certain simulators can be expensive if quantum tasks are run
with high shot counts. We recommend that you test your TN1 tasks with a low shot count. Shot
count does not affect the cost for SV1 and local simulator tasks.

Check all Regions for quantum tasks

• The console displays quantum tasks only for your current AWS Region. When looking for billable
quantum tasks that have been submitted, be sure to check all Regions.

• You can view a list of devices and their associated Regions on the Supported Devices
documentation page.

API references and repos for Amazon Braket

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

Amazon Braket provides APIs, SDKs, and a command line interface that you can use to create and
manage notebook instances and train and deploy models.

• Amazon Braket Python SDK (Recommended)

• Amazon Braket API Reference

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for GoAPI Reference

• AWS SDK for Java

• AWS SDK for JavaScript

• AWS SDK for PHP

• AWS SDK for Python (Boto)

• AWS SDK for Ruby

API references and repos 14

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://amazon-braket-sdk-python.readthedocs.io/en/latest/#
https://docs.aws.amazon.com/braket/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/braket/index.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Braket/NBraket.html
https://sdk.amazonaws.com/cpp/api/LATEST/namespace_aws_1_1_braket.html
https://docs.aws.amazon.com/sdk-for-go/api/service/braket/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/braket/package-summary.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Braket.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.Braket.BraketClient.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/braket.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/Braket.html

Amazon Braket Developer Guide

You can also get code examples from the Amazon Braket Tutorials GitHub repository.

• Braket Tutorials GitHub

Core repositories

The following displays a list of core repositories that contain key packages that are used for Braket:

• Braket Python SDK - Use the Braket Python SDK to set up your code on Jupyter notebooks in the
Python programming language. After your Jupyter notebooks are set up, you can run your code
on Braket devices and simulators

• Braket Schemas - The contract between the Braket SDK and the Braket service.

• Braket Default Simulator - All our local quantum simulators for Braket (state vector and density
matrix).

Plugins

Then there are the various plugins that are used along with various devices and programming
tools. These include Braket supported plugins as well as plugins that are supported by third parties
as shown below.

Amazon Braket supported:

• Amazon Braket algorithm library - A catalog of pre-built quantum algorithms written in Python.
Run them as they are or use them as a starting point to build more complex algorithms.

• Braket-PennyLane plugin - Use PennyLane as the QML framework on Braket.

Third-party (Braket team monitors and contributes):

• Qiskit-Braket provider - Use the Qiskit SDK to access Braket resources.

• Braket-Julia SDK - (EXPERIMENTAL) A Julia native version of the Braket SDK

Core repositories 15

https://github.com/aws/amazon-braket-examples
https://github.com/aws/amazon-braket-sdk-python
https://github.com/aws/amazon-braket-schemas-python
https://github.com/aws/amazon-braket-default-simulator-python
https://github.com/aws-samples/amazon-braket-algorithm-library
https://github.com/aws/amazon-braket-pennylane-plugin-python
https://github.com/qiskit-community/qiskit-braket-provider
https://github.com/awslabs/Braket.jl

Amazon Braket Developer Guide

Amazon Braket supported regions and devices

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

In Amazon Braket, a device represents a QPU or simulator that you can call to run quantum tasks.
Amazon Braket provides access to QPU devices from IonQ, IQM, QuEra, and Rigetti, three on-
demand simulators, three local simulators, and one embedded simulator. For all devices, you
can find further device properties, such as device topology, calibration data, and native gate
sets, on the Devices tab of the Amazon Braket console or by means of the GetDevice API.
When constructing a circuit with the simulators, Amazon Braket currently requires that you use
contiguous qubits or indices. If you are working with the Amazon Braket SDK, you have access to
device properties as shown in the following code example.

from braket.aws import AwsDevice
from braket.devices import LocalSimulator

device = AwsDevice('arn:aws:braket:::device/quantum-simulator/amazon/sv1')
 #SV1
device = LocalSimulator()
 #Local State Vector Simulator
device = LocalSimulator("default")
 #Local State Vector Simulator
device = LocalSimulator(backend="default")
 #Local State Vector Simulator
device = LocalSimulator(backend="braket_sv")
 #Local State Vector Simulator
device = LocalSimulator(backend="braket_dm")
 #Local Density Matrix Simulator
device = LocalSimulator(backend="braket_ahs")
 #Local Analog Hamiltonian Simulation
device = AwsDevice('arn:aws:braket:::device/quantum-simulator/amazon/tn1')
 #TN1
device = AwsDevice('arn:aws:braket:::device/quantum-simulator/amazon/dm1')
 #DM1

Supported regions and devices 16

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path

Amazon Braket Developer Guide

device = AwsDevice('arn:aws:braket:us-east-1::device/qpu/ionq/Aria-1')
 #IonQ Aria-1
device = AwsDevice('arn:aws:braket:us-east-1::device/qpu/ionq/Aria-2')
 #IonQ Aria-2
device = AwsDevice('arn:aws:braket:us-east-1::device/qpu/ionq/Forte-1')
 #IonQ Forte-1
device = AwsDevice('arn:aws:braket:us-east-1::device/qpu/ionq/Forte-Enterprise-1')
 #IonQ Forte-Enterprise-1
device = AwsDevice('arn:aws:braket:eu-north-1::device/qpu/iqm/Garnet')
 #IQM Garnet
device = AwsDevice('arn:aws:braket:us-east-1::device/qpu/quera/Aquila')
 #QuEra Aquila
device = AwsDevice('arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3')
 #Rigetti Ankaa-3

get device properties
device.properties

Supported quantum hardware providers

• IonQ

• IQM

• QuEra Computing

• Rigetti

Supported simulators

• Local state vector simulator (braket_sv) ('Default Simulator')

• Local density matrix simulator (braket_dm)

• Local AHS simulator

• State vector simulator (SV1)

• Density matrix simulator (DM1)

• Tensor network simulator (TN1)

• PennyLane’s Lightning Simulators

Choose the best simulator for your quantum task

• Compare simulators

Supported regions and devices 17

Amazon Braket Developer Guide

Amazon Braket devices

Provider Device Name Paradigm Type Device ARN Region

IonQ Aria-1 gate-
based

QPU arn:aws:braket:us-
east-1::device/qpu/
ionq/Aria-1

us-east-1

IonQ Aria-2 gate-
based

QPU arn:aws:braket:us-
east-1::device/qpu/
ionq/Aria-2

us-east-1

IonQ Forte-1 gate-
based

QPU arn:aws:braket:us-
east-1::device/qpu/
ionq/Forte-1

us-east-1

IonQ Forte-Enterprise-1 gate-
based

QPU arn:aws:braket:us-
east-1::device/qpu
/ionq/Forte-Enterp
rise-1

us-east-1

IQM Garnet gate-
based

QPU arn:aws:braket:eu-
north-1::device/qpu/
iqm/Garnet

eu-
north-1

QuEra Aquila Analog
Hamiltoni
an
Simulatio
n

QPU arn:aws:braket:us-
east-1::device/qpu/
quera/Aquila

us-east-1

Rigetti Ankaa-3 gate-
based

QPU arn:aws:braket:us-
west-1::device/qpu/
rigetti/Ankaa-3

us-
west-1

AWS braket_sv gate-
based

Local
simulator

N/A (local simulator
in Braket SDK)

N/A

Supported regions and devices 18

Amazon Braket Developer Guide

Provider Device Name Paradigm Type Device ARN Region

AWS braket_dm gate-
based

Local
simulator

N/A (local simulator
in Braket SDK)

N/A

AWS SV1 gate-
based

On-
demand
simulator

arn:aws:braket:::d
evice/quantum-simu
lator/amazon/sv1

us-east-1
, us-
west-1
, us-
west-2
, eu-
west-2

AWS DM1 gate-
based

On-
demand
simulator

arn:aws:braket:::d
evice/quantum-simu
lator/amazon/dm1

us-east-1
, us-
west-1
, us-
west-2
, eu-
west-2

AWS TN1 gate-
based

On-
demand
simulator

arn:aws:braket:::d
evice/quantum-simu
lator/amazon/tn1

us-east-1
, us-
west-2,
and eu-
west-2

To view additional details about the QPUs you can use with Amazon Braket, see Amazon Braket
Hardware Providers.

Amazon Braket regions and endpoints

Amazon Braket is available in the following AWS Regions:

Regions and endpoints 19

https://aws.amazon.com/braket/quantum-computers/
https://aws.amazon.com/braket/quantum-computers/

Amazon Braket Developer Guide

Region availability of Amazon Braket

Region name Region Braket endpoints QPUs & Simulators

US East (N. Virginia) us-east-1 braket.us-east-1.a
mazonaws.com (IPv4
only)

braket.us-east-1.a
pi.aws (Dual stack)

IonQ, QuEra, SV1,
DM1, TN1

US West (N. Californi
a)

us-west-1 braket.us-west-1.a
mazonaws.com (IPv4
only)

braket.us-west-1.a
pi.aws (Dual stack)

Rigetti, SV1, DM1

US West 2 (Oregon) us-west-2 braket.us-west-2.a
mazonaws.com (IPv4
only)

braket.us-west-2.a
pi.aws (Dual stack)

SV1, DM1, TN1

EU North 1 (Stockhol
m)

eu-north-1 braket.eu-north-1.
amazonaws.com
(IPv4 only)

braket.eu-north-1.
api.aws (Dual stack)

IQM

EU West 2 (London) eu-west-2 braket.eu-west-2.a
mazonaws.com (IPv4
only)

braket.eu-west-2.a
pi.aws (Dual stack)

SV1, DM1, TN1

Regions and endpoints 20

Amazon Braket Developer Guide

Quantum tasks that run on a QPU device can be viewed in the Amazon Braket console in the
Region of that device. If you are using the Amazon Braket SDK, you can submit quantum tasks to
any QPU device, regardless of the Region in which you are working. The SDK automatically creates
a session to the Region for the QPU specified.

Note

The Amazon Braket SDK currently does not support IPv6-only networks.

For general information about how AWS works with Regions and endpoints, see AWS service
endpoints in the AWS General Reference.

Regions and endpoints 21

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Braket Developer Guide

Getting started with Amazon Braket

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

After you have followed the instructions in Enable Amazon Braket , you can get started with
Amazon Braket.

The steps to get started include:

• Enable Amazon Braket

• Create an Amazon Braket notebook instance

• Create a Braket notebook instance using AWS CloudFormation

Enable Amazon Braket

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

You can enable Amazon Braket in your account through the AWS console.

In this section:

• Prerequisites

• Steps to enable Amazon Braket

Enable Amazon Braket 22

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
http://console.aws.amazon.com/

Amazon Braket Developer Guide

Prerequisites

To enable and run Amazon Braket, you must have a user or role with permission to initiate Amazon
Braket actions. These permissions are included in the AmazonBraketFullAccess IAM policy
(arn:aws:iam::aws:policy/AmazonBraketFullAccess).

Note

If you are an administrator:
To give other users access to Amazon Braket, grant users permissions by attaching the
AmazonBraketFullAccess policy or by attaching a custom policy that you create. To learn
more about the permissions necessary to use Amazon Braket, see Managing access to
Amazon Braket .

Steps to enable Amazon Braket

1. Sign in to the Amazon Braket console with your AWS account.

2. Open the Amazon Braket console.

3. From the Braket landing page, click Get Started to be taken to the Service Dashboard page.
The alert at the top of your service dashboard will walk you through the following three steps:

a. Creating service-linked roles (SLR)

b. Enabling access to third-party quantum computers

c. Creating a new Jupyter notebook instance

In order to use third-party quantum devices, you need to agree to certain conditions regarding data
transfer between yourself, AWS, and those devices. The terms and conditions of this agreement are
provided on the General tab of the Permissions and settings page in the Amazon Braket console.

Note

Quantum devices that don’t involve any third-parties, such as the Braket local simulators
or on-demand simulators, can be used without agreeing to the Enable third-party devices
agreement.
Accepting these terms to enable use of third-party devices only needs to be done once per
account if you are accessing third-party hardware.

Prerequisites 23

https://console.aws.amazon.com/braket/

Amazon Braket Developer Guide

Create an Amazon Braket notebook instance

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

Amazon Braket provides fully managed Jupyter notebooks to get you started. The Amazon Braket
notebook instances are based on Amazon SageMaker AI notebook instances. The following steps
outline how to create a new notebook instance for new and existing customers.

New Amazon Braket customers:

1. Open the Amazon Braket console and navigate to the Dashboard page in the left pane.

2. Click Get Started on the Welcome to Amazon Braket modal in the center of your dashboard
page. Provide a notebook name to create a default Jupyter notebook.

a. It may take several minutes to create your notebook.

b. Your notebook will be listed on the Notebooks page with a status of Pending.

c. When your notebook instance is ready to use, the status changes to InService.

d. Refresh the page to display the updated status for the notebook.

Existing Amazon Braket customers:

1. Open the Amazon Braket console and select Notebooks in the left pane.

2. Select Create notebook instance.

a. If you have zero notebooks, select the Standard setup to create a default Jupyter notebook.

3. Enter a Notebook instance name, using only alphanumeric and hyphen characters, and select
your preferred Visual Mode.

4. Enable or disable the Notebook inactivity manager for your notebook.

a. If enabled, select the desired idle duration time before the notebook is reset. When a
notebook is reset, the compute charges stop incurring, but the storage charges will continue.

b. To check how much idle time remains for your notebook instance, navigate to the command
bar, select the Braket tab, and then the Inactivity Manager tab.

Create an Amazon Braket notebook instance 24

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html
https://console.aws.amazon.com/braket/home
https://console.aws.amazon.com/braket/home

Amazon Braket Developer Guide

Note

To save your work, integrate your SageMaker AI notebook instance with a Git repository.
Alternately, move your work outside of the /Braket Algorithms and /Braket
Examples folders so they are not overwritten by the notebook instance restarting.

5. (Optional) With Advanced setup, you can create a notebook with access permissions, additional
configurations, and network access settings:

a. In Notebook configuration choose your instance type.

i. The standard, cost-effective instance type, ml.t3.medium is chosen by default. To learn
more about instance pricing, see Amazon SageMaker AI pricing.

b. To associate a public Github repository with your notebook instance, click on the Git
repository dropdown and select Clone a public git repository from url from the Repository
dropdown menu. Enter the URL of the repo in the Git repository URL text bar.

c. In Access permissions, configure any optional IAM roles, root access, and encryption keys.

d. In Network access, configure custom network and access settings for your Jupyter Notebook
instance.

6. Review your settings, and set any tags to identify your notebook instance. Click Launch.

Note

View and manage your Amazon Braket notebook instances in the Amazon Braket and
Amazon SageMaker AI consoles. Additional Amazon Braket notebook settings are available
through the SageMaker console.

If you are working in the Amazon Braket console within AWS the Amazon Braket SDK and plugins
are preloaded in the notebooks you created. To run on your own machine, install the SDK and
plugins when you run the command pip install amazon-braket-sdk or when you run the
command pip install amazon-braket-pennylane-plugin for PennyLane plugins.

Create an Amazon Braket notebook instance 25

https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://aws.amazon.com/sagemaker/pricing/
https://console.aws.amazon.com/sagemaker/

Amazon Braket Developer Guide

Create a Braket notebook instance using AWS CloudFormation

Tip

Learn the foundations of quantum computing with AWS! Enroll in the Amazon Braket
Digital Learning Plan and earn your own Digital badge after completing a series of learning
courses and a digital assessment.

You can use AWS CloudFormation to manage your Amazon Braket notebook instances. Braket
notebook instances are built on Amazon SageMaker AI. With CloudFormation, you can provision a
notebook instance with a template file that describes the intended configuration. The template file
is written in JSON or YAML format. You can create, update, and delete instances in an orderly and
repeatable fashion. You may find this useful when you manage multiple Braket notebook instances
in your AWS account.

After you create a CloudFormation template for a Braket notebook, you use AWS CloudFormation
to deploy the resource. For more information, see Creating a stack on the AWS CloudFormation
console in the AWS CloudFormation user guide.

To create a Braket notebook instance using CloudFormation, you perform these three steps:

1. Create a SageMaker AI lifecycle configuration script.

2. Create an AWS Identity and Access Management (IAM) role to be assumed by SageMaker AI.

3. Create a SageMaker AI notebook instance with the prefix amazon-braket-

You can reuse the lifecycle configuration for all of the Braket notebooks that you create. You can
also reuse the IAM role for the Braket notebooks that you assign the same execution permissions.

In this section:

• Step 1: Create a SageMaker AI lifecycle configuration script

• Step 2: Create the IAM role assumed by Amazon SageMaker AI

• Step 3: Create a SageMaker AI notebook instance with the prefix amazon-braket-

(Advanced) Create a Braket notebook using CloudFormation 26

https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://explore.skillbuilder.aws/learn/public/learning_plan/view/1986/amazon-braket-badge-knowledge-badge-readiness-path
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html

Amazon Braket Developer Guide

Step 1: Create a SageMaker AI lifecycle configuration script

Use the following template to create a SageMaker AI lifecycle configuration script. The script
customizes a SageMaker AI notebook instance for Braket. For configuration options for the lifecycle
CloudFormation resource, see AWS::SageMaker::NotebookInstanceLifecycleConfig in the AWS
CloudFormation user guide.

BraketNotebookInstanceLifecycleConfig:
 Type: "AWS::SageMaker::NotebookInstanceLifecycleConfig"
 Properties:
 NotebookInstanceLifecycleConfigName: BraketLifecycleConfig-${AWS::StackName}
 OnStart:
 - Content:
 Fn::Base64: |
 #!/usr/bin/env bash
 sudo -u ec2-user -i #EOS
 curl -o braket-notebook-lcc.zip https://d3ded4lzb1lnme.cloudfront.net/
notebook/braket-notebook-lcc.zip
 unzip braket-notebook-lcc.zip
 ./install.sh
 EOS

 exit 0

Step 2: Create the IAM role assumed by Amazon SageMaker AI

When you use a Braket notebook instance, SageMaker AI performs operations on your behalf. For
example, suppose you run a Braket notebook using a circuit on a supported device. Within the
notebook instance, SageMaker AI runs the operation on Braket for you. The notebook execution
role defines the exact operations that SageMaker AI is permitted to execute on your behalf. For
more information, see SageMaker AI roles in the Amazon SageMaker AI developer guide.

Use the following example to create a Braket notebook execution role with the required
permissions. You can modify the policies according to your needs.

Note

Make sure that the role has permission for the s3:ListBucket and
s3:GetObjectoperations on Amazon S3 buckets prefixed with braketnotebookcdk-".

Step 1: Create a SageMaker AI lifecycle configuration script 27

https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-notebookinstancelifecycleconfig.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html

Amazon Braket Developer Guide

The lifecycle configuration script requires these permissions to copy the Braket notebook
installation script.

ExecutionRole:
 Type: "AWS::IAM::Role"
 Properties:
 RoleName: !Sub AmazonBraketNotebookRole-${AWS::StackName}
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Effect: "Allow"
 Principal:
 Service:
 - "sagemaker.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/service-role/"
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/AmazonBraketFullAccess
 Policies:
 -
 PolicyName: "AmazonBraketNotebookPolicy"
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow
 Action:
 - s3:GetObject
 - s3:PutObject
 - s3:ListBucket
 Resource:
 - arn:aws:s3:::amazon-braket-*
 - arn:aws:s3:::braketnotebookcdk-*
 - Effect: "Allow"
 Action:
 - "logs:CreateLogStream"
 - "logs:PutLogEvents"
 - "logs:CreateLogGroup"
 - "logs:DescribeLogStreams"
 Resource:
 - !Sub "arn:aws:logs:*:${AWS::AccountId}:log-group:/aws/sagemaker/*"

Step 2: Create the IAM role assumed by Amazon SageMaker AI 28

Amazon Braket Developer Guide

 - Effect: "Allow"
 Action:
 - braket:*
 Resource: "*"

Step 3: Create a SageMaker AI notebook instance with the prefix
amazon-braket-

Use the SageMaker AI lifecycle script and the IAM role created in step 1 and step 2 to create a
SageMaker AI notebook instance. The notebook instance is customized for Braket and can be
accessed with the Amazon Braket console. For more information about configuration options for
this CloudFormation resource, see AWS::SageMaker::NotebookInstance in the AWS CloudFormation
user guide.

BraketNotebook:
 Type: AWS::SageMaker::NotebookInstance
 Properties:
 InstanceType: ml.t3.medium
 NotebookInstanceName: !Sub amazon-braket-notebook-${AWS::StackName}
 RoleArn: !GetAtt ExecutionRole.Arn
 VolumeSizeInGB: 30
 LifecycleConfigName: !GetAtt
 BraketNotebookInstanceLifecycleConfig.NotebookInstanceLifecycleConfigName

Step 3: Create a SageMaker AI notebook instance with the prefix amazon-braket- 29

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-notebookinstance.html

Amazon Braket Developer Guide

Building your quantum tasks with Amazon Braket

Braket provides fully managed Jupyter notebook environments that make it easy to get started.
Braket notebooks are pre-installed with sample algorithms, resources, and developer tools,
including the Amazon Braket SDK. With the Amazon Braket SDK, you can build quantum
algorithms and then test and run them on different quantum computers and simulators by
changing a single line of code.

In this section:

• Building your first circuit

• Getting Expert advice

• Getting started with Amazon Braket Hybrid Jobs

• Run your circuits with OpenQASM 3.0

• Explore Experimental Capabilities

• Pulse control on Amazon Braket

• Analog Hamiltonian Simulation

• Working with AWS Boto3

Building your first circuit

After your notebook instance has launched, open the instance with a standard Jupyter interface by
choosing the notebook you just created.

Amazon Braket notebook instances are pre-installed with the Amazon Braket SDK and all its
dependencies. Start by creating a new notebook with conda_braket kernel.

Building your first circuit 30

Amazon Braket Developer Guide

You can start with a simple “Hello, world!” example. First, construct a circuit that prepares a Bell
state, and then run that circuit on different devices to obtain the results.

Begin by importing the Amazon Braket SDK modules and defining a simple Bell State circuit.

import boto3
from braket.aws import AwsDevice
from braket.devices import LocalSimulator
from braket.circuits import Circuit

create the circuit
bell = Circuit().h(0).cnot(0, 1)

You can visualize the circuit with this command:

print(bell)

Run your circuit on the local simulator

Building your first circuit 31

Amazon Braket Developer Guide

Next, choose the quantum device on which to run the circuit. The Amazon Braket SDK comes with
a local simulator for rapid prototyping and testing. We recommend using the local simulator for
smaller circuits, which can be up to 25 qubits (depending on your local hardware).

Here’s how to instantiate the local simulator:

instantiate the local simulator
local_sim = LocalSimulator()

and run the circuit:

run the circuit
result = local_sim.run(bell, shots=1000).result()
counts = result.measurement_counts
print(counts)

You should see a result something like this:

Counter({'11': 503, '00': 497})

The specific Bell state you have prepared is an equal superposition of |00⟩ and |11⟩, and you’ll
find a roughly equal (up to shot noise) distribution of 00 and 11 as measurement outcomes, as
expected.

Run your circuit on an on-demand simulator

Amazon Braket also provides access to an on-demand, high-performance simulator, SV1, for
running larger circuits. SV1 is an on-demand state-vector simulator that allows for simulation
of quantum circuits of up to 34 qubits. You can find more information on SV1 in the Supported
Devices section and in the AWS console. When running quantum tasks on SV1 (and on TN1 or
any QPU), the results of your quantum task are stored in an S3 bucket in your account. If you
do not specify a bucket, the Braket SDK creates a default bucket amazon-braket-{region}-
{accountID} for you. To learn more, see Managing access to Amazon Braket .

Note

Fill in your actual, existing bucket name where the following example shows amzn-s3-
demo-bucket as your bucket name. Bucket names for Amazon Braket always begin

Building your first circuit 32

Amazon Braket Developer Guide

with amazon-braket- followed by other identifying characters you add. If you need
information on how to set up an S3 bucket, see Getting started with Amazon S3.

get the account ID
aws_account_id = boto3.client("sts").get_caller_identity()["Account"]
the name of the bucket
my_bucket = "amzn-s3-demo-bucket"
the name of the folder in the bucket
my_prefix = "simulation-output"
s3_folder = (my_bucket, my_prefix)

To run a circuit on SV1, you must provide the location of the S3 bucket you previously selected as a
positional argument in the .run() call.

choose the cloud-based on-demand simulator to run your circuit
device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")

run the circuit
task = device.run(bell, s3_folder, shots=100)
display the results
print(task.result().measurement_counts)

The Amazon Braket console provides further information about your quantum task. Navigate to
the Quantum Tasks tab in the console and your quantum task should be on the top of the list.
Alternatively, you can search for your quantum task using the unique quantum task ID or other
criteria.

Note

After 90 days, Amazon Braket automatically removes all quantum task IDs and other
metadata associated with your quantum tasks. For more information, see Data retention.

Running on a QPU

With Amazon Braket, you can run the previous quantum circuit example on a physical quantum
computer by just changing a single line of code. Amazon Braket provides access to QPU devices
from IonQ, IQM, QuEra, and Rigetti. You can find information about the different devices and

Building your first circuit 33

https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://docs.aws.amazon.com/braket/latest/developerguide/security.html#braket-data-retention

Amazon Braket Developer Guide

availability windows in the Supported Devices section, and in the AWS console under the Devices
tab. The following example shows how to instantiate an IQM device.

choose the IQM hardware to run your circuit
device = AwsDevice("arn:aws:braket:eu-north-1::device/qpu/iqm/Garnet")

Or choose an IonQ device with this code:

choose the Ionq device to run your circuit
device = AwsDevice("arn:aws:braket:us-east-1::device/qpu/ionq/Aria-1")

After selecting a device and before running your workload, you can query device queue depth
with the following code to determine the number of quantum tasks or hybrid jobs. Additionally,
customers can view device specific queue depths on the Devices page of the Amazon Braket
Management Console.

Print your queue depth
print(device.queue_depth().quantum_tasks)
returns the number of quantum tasks queued on the device
{<QueueType.NORMAL: 'Normal'>: '0', <QueueType.PRIORITY: 'Priority'>: '0'}

print(device.queue_depth().jobs)
'2' # returns the number of hybrid jobs queued on the device

When you run your task, the Amazon Braket SDK polls for a result (with a default timeout of 5
days). You can change this default by modifying the poll_timeout_seconds parameter in the
the .run() command as shown in the example that follows. Keep in mind that if your polling
timeout is too short, results may not be returned within the polling time, such as when a QPU
is unavailable and a local timeout error is returned. You can restart the polling by calling the
task.result() function.

define quantum task with 1 day polling timeout
task = device.run(bell, s3_folder, poll_timeout_seconds=24*60*60)
print(task.result().measurement_counts)

Additionally, after submitting your quantum task or hybrid job, you can call the
queue_position() function to check your queue position.

print(task.queue_position().queue_position)
Return the number of quantum tasks queued ahead of you

Building your first circuit 34

Amazon Braket Developer Guide

'2'

Building your first quantum algorithms

The Amazon Braket algorithm library is a catalog of pre-built quantum algorithms written in
Python. You can run these algorithms as they are or use them as a starting point to build more
complex algorithms. You can access the algorithm library from the Braket console. You can also
access the Braket algorithm library on Github: https://github.com/aws-samples/amazon-braket-
algorithm-library.

The Braket console provides a description of each available algorithm in the algorithm library.
Choose a GitHub link to see the details of each algorithm, or choose Open notebook to open or
create a notebook that contains all of the available algorithms. If you choose the notebook option,
you can then find the Braket algorithm library in the root folder of your notebook.

Constructing circuits in the SDK

This section provides examples of defining a circuit, viewing available gates, extending a circuit,
and viewing gates that each device supports. It also contains instructions on how to manually
allocate qubits, instruct the compiler to run your circuits exactly as defined, and build noisy circuits
with a noise simulator.

You can also work at the pulse level in Braket for various gates with certain QPUs. For more
information, see Pulse Control on Amazon Braket.

Building your first quantum algorithms 35

https://github.com/aws-samples/amazon-braket-algorithm-library
https://github.com/aws-samples/amazon-braket-algorithm-library

Amazon Braket Developer Guide

In this section:

• Gates and circuits

• Partial measurement

• Manual qubit allocation

• Verbatim compilation

• Noise simulation

Gates and circuits

Quantum gates and circuits are defined in the braket.circuits class of the Amazon Braket
Python SDK. From the SDK, you can instantiate a new circuit object by calling Circuit().

Example: Define a circuit

The example starts by defining a sample circuit of four qubits (labelled q0, q1, q2, and q3)
consisting of standard, single-qubit Hadamard gates and two-qubit CNOT gates. You can visualize
this circuit by calling the print function as the following example shows.

import the circuit module
from braket.circuits import Circuit

define circuit with 4 qubits
my_circuit = Circuit().h(range(4)).cnot(control=0, target=2).cnot(control=1, target=3)
print(my_circuit)

T : |0| 1 |

q0 : -H-C---
 |
q1 : -H-|-C-
 | |
q2 : -H-X-|-
 |
q3 : -H---X-

T : |0| 1 |

Example: Define a parameterized circuit

Constructing circuits in the SDK 36

https://github.com/aws/amazon-braket-sdk-python/blob/main/src/braket/circuits/circuit.py

Amazon Braket Developer Guide

In this example, we define a circuit with gates that depend on free parameters. We can specify
the values of these parameters to create a new circuit, or, when submitting the circuit, to run as a
quantum task on certain devices.

from braket.circuits import Circuit, FreeParameter

#define a FreeParameter to represent the angle of a gate
alpha = FreeParameter("alpha")

#define a circuit with three qubits
my_circuit = Circuit().h(range(3)).cnot(control=0, target=2).rx(0, alpha).rx(1, alpha)
print(my_circuit)

You can create a new, non-parameterized circuit from a parametrized one by supplying either a
single float (which is the value all free parameters will take) or keyword arguments specifying
each parameter’s value to the circuit as follows.

my_fixed_circuit = my_circuit(1.2)
my_fixed_circuit = my_circuit(alpha=1.2)

Note that my_circuit is unmodified, so you can use it to instantiate many new circuits with fixed
parameter values.

Example: Modify gates in a circuit

The following example defines a circuit with gates that use control and power modifiers. You can
use these modifications to create new gates, such as the controlled Ry gate.

from braket.circuits import Circuit

Create a bell circuit with a controlled x gate
my_circuit = Circuit().h(0).x(control=0, target=1)

Add a multi-controlled Ry gate of angle .13
my_circuit.ry(angle=.13, target=2, control=(0, 1))

Add a 1/5 root of X gate
my_circuit.x(0, power=1/5)

print(my_circuit)

Constructing circuits in the SDK 37

Amazon Braket Developer Guide

Gate modifiers are supported only on the local simulator.

Example: See all available gates

The following example shows how to look at all the available gates in Amazon Braket.

from braket.circuits import Gate
print all available gates in Amazon Braket
gate_set = [attr for attr in dir(Gate) if attr[0].isupper()]
print(gate_set)

The output from this code lists all of the gates.

['CCNot', 'CNot', 'CPhaseShift', 'CPhaseShift00', 'CPhaseShift01', 'CPhaseShift10',
 'CSwap', 'CV', 'CY', 'CZ', 'ECR', 'GPi', 'GPi2', 'H', 'I', 'ISwap', 'MS', 'PSwap',
 'PhaseShift', 'PulseGate', 'Rx', 'Ry', 'Rz', 'S', 'Si', 'Swap', 'T', 'Ti', 'Unitary',
 'V', 'Vi', 'X', 'XX', 'XY', 'Y', 'YY', 'Z', 'ZZ']

Any of these gates can be appended to a circuit by calling the method for that type of circuit. For
example, you’d call circ.h(0), to add a Hadamard gate to the first qubit.

Note

Gates are appended in place, and the example that follows adds all of the gates listed in
the previous example to the same circuit.

circ = Circuit()
toffoli gate with q0, q1 the control qubits and q2 the target.
circ.ccnot(0, 1, 2)
cnot gate
circ.cnot(0, 1)
controlled-phase gate that phases the |11> state, cphaseshift(phi) =
 diag((1,1,1,exp(1j*phi))), where phi=0.15 in the examples below
circ.cphaseshift(0, 1, 0.15)
controlled-phase gate that phases the |00> state, cphaseshift00(phi) =
 diag([exp(1j*phi),1,1,1])
circ.cphaseshift00(0, 1, 0.15)
controlled-phase gate that phases the |01> state, cphaseshift01(phi) =
 diag([1,exp(1j*phi),1,1])
circ.cphaseshift01(0, 1, 0.15)

Constructing circuits in the SDK 38

Amazon Braket Developer Guide

controlled-phase gate that phases the |10> state, cphaseshift10(phi) =
 diag([1,1,exp(1j*phi),1])
circ.cphaseshift10(0, 1, 0.15)
controlled swap gate
circ.cswap(0, 1, 2)
swap gate
circ.swap(0,1)
phaseshift(phi)= diag([1,exp(1j*phi)])
circ.phaseshift(0,0.15)
controlled Y gate
circ.cy(0, 1)
controlled phase gate
circ.cz(0, 1)
Echoed cross-resonance gate applied to q0, q1
circ = Circuit().ecr(0,1)
X rotation with angle 0.15
circ.rx(0, 0.15)
Y rotation with angle 0.15
circ.ry(0, 0.15)
Z rotation with angle 0.15
circ.rz(0, 0.15)
Hadamard gates applied to q0, q1, q2
circ.h(range(3))
identity gates applied to q0, q1, q2
circ.i([0, 1, 2])
iswap gate, iswap = [[1,0,0,0],[0,0,1j,0],[0,1j,0,0],[0,0,0,1]]
circ.iswap(0, 1)
pswap gate, PSWAP(phi) = [[1,0,0,0],[0,0,exp(1j*phi),0],[0,exp(1j*phi),0,0],
[0,0,0,1]]
circ.pswap(0, 1, 0.15)
X gate applied to q1, q2
circ.x([1, 2])
Y gate applied to q1, q2
circ.y([1, 2])
Z gate applied to q1, q2
circ.z([1, 2])
S gate applied to q0, q1, q2
circ.s([0, 1, 2])
conjugate transpose of S gate applied to q0, q1
circ.si([0, 1])
T gate applied to q0, q1
circ.t([0, 1])
conjugate transpose of T gate applied to q0, q1
circ.ti([0, 1])

Constructing circuits in the SDK 39

Amazon Braket Developer Guide

square root of not gate applied to q0, q1, q2
circ.v([0, 1, 2])
conjugate transpose of square root of not gate applied to q0, q1, q2
circ.vi([0, 1, 2])
exp(-iXX theta/2)
circ.xx(0, 1, 0.15)
exp(i(XX+YY) theta/4), where theta=0.15 in the examples below
circ.xy(0, 1, 0.15)
exp(-iYY theta/2)
circ.yy(0, 1, 0.15)
exp(-iZZ theta/2)
circ.zz(0, 1, 0.15)
IonQ native gate GPi with angle 0.15 applied to q0
circ.gpi(0, 0.15)
IonQ native gate GPi2 with angle 0.15 applied to q0
circ.gpi2(0, 0.15)
IonQ native gate MS with angles 0.15, 0.15, 0.15 applied to q0, q1
circ.ms(0, 1, 0.15, 0.15, 0.15)

Apart from the pre-defined gate set, you also can apply self-defined unitary gates to the circuit.
These can be single-qubit gates (as shown in the following source code) or multi-qubit gates
applied to the qubits defined by the targets parameter.

import numpy as np
apply a general unitary
my_unitary = np.array([[0, 1],[1, 0]])
circ.unitary(matrix=my_unitary, targets=[0])

Example: Extend existing circuits

You can extend existing circuits by adding instructions. An Instruction is a quantum directive
that describes the quantum task to perform on a quantum device. Instruction operators include
objects of type Gate only.

import the Gate and Instruction modules
from braket.circuits import Gate, Instruction

add instructions directly.
circ = Circuit([Instruction(Gate.H(), 4), Instruction(Gate.CNot(), [4, 5])])

or with add_instruction/add functions
instr = Instruction(Gate.CNot(), [0, 1])

Constructing circuits in the SDK 40

Amazon Braket Developer Guide

circ.add_instruction(instr)
circ.add(instr)

specify where the circuit is appended
circ.add_instruction(instr, target=[3, 4])
circ.add_instruction(instr, target_mapping={0: 3, 1: 4})

print the instructions
print(circ.instructions)
if there are multiple instructions, you can print them in a for loop
for instr in circ.instructions:
 print(instr)

instructions can be copied
new_instr = instr.copy()
appoint the instruction to target
new_instr = instr.copy(target=[5])
new_instr = instr.copy(target_mapping={0: 5})

Example: View the gates that each device supports

Simulators support all gates in the Braket SDK, but QPU devices support a smaller subset. You can
find the supported gates of a device in the device properties. The following shows an example with
an IonQ device:

import the device module
from braket.aws import AwsDevice

device = AwsDevice("arn:aws:braket:us-east-1::device/qpu/ionq/Aria-1")

get device name
device_name = device.name
show supportedQuantumOperations (supported gates for a device)
device_operations = device.properties.dict()['action']['braket.ir.openqasm.program']
['supportedOperations']
print('Quantum Gates supported by {}:\n {}'.format(device_name, device_operations))

Quantum Gates supported by the Aria-1 device:
 ['x', 'y', 'z', 'rx', 'ry', 'rz', 'h', 'cnot', 's', 'si', 't', 'ti', 'v', 'vi', 'xx',
 'yy', 'zz', 'swap']

Constructing circuits in the SDK 41

Amazon Braket Developer Guide

Supported gates may need to be compiled into native gates before they can run on quantum
hardware. When you submit a circuit, Amazon Braket performs this compilation automatically.

Example: Programmatically retrieve the fidelity of native gates supported by a device

You can view the fidelity information on the Devices page of the Braket console. Sometimes it is
helpful to access the same information programmatically. The following code shows how to extract
the two qubit gate fidelity between two gates of a QPU.

import the device module
from braket.aws import AwsDevice

device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3")

#specify the qubits
a=10
b=11
edge_properties_entry =
 device.properties.standardized.twoQubitProperties['10-11'].twoQubitGateFidelity
gate_name = edge_properties_entry[0].gateName
fidelity = edge_properties_entry[0].fidelity
print(f"Fidelity of the {gate_name} gate between qubits {a} and {b}: {fidelity}")

Partial measurement

Following the previous examples, we have measured all the qubits in the quantum circuit. However,
it is possible to measure individual qubits or a subset of qubits.

Example: Measure a subset of qubits

In this example, we demonstrate a partial measurement by adding a measure instruction with the
target qubits to the end of the circuit.

Use the local state vector simulator
device = LocalSimulator()

Define an example bell circuit and measure qubit 0
circuit = Circuit().h(0).cnot(0, 1).measure(0)

Run the circuit
task = device.run(circuit, shots=10)

Get the results

Constructing circuits in the SDK 42

Amazon Braket Developer Guide

result = task.result()

Print the circuit and measured qubits
print(circuit)
print()
print("Measured qubits: ", result.measured_qubits)

Manual qubit allocation

When you run a quantum circuit on quantum computers from Rigetti, you can optionally use
manual qubit allocation to control which qubits are used for your algorithm. The Amazon Braket
Console and the Amazon Braket SDK help you to inspect the most recent calibration data of
your selected quantum processing unit (QPU) device, so you can select the best qubits for your
experiment.

Manual qubit allocation enables you to run circuits with greater accuracy and to investigate
individual qubit properties. Researchers and advanced users optimize their circuit design based on
the latest device calibration data and can obtain more accurate results.

The following example demonstrates how to allocate qubits explicitly.

circ = Circuit().h(0).cnot(0, 7) # Indices of actual qubits in the QPU
my_task = device.run(circ, s3_location, shots=100, disable_qubit_rewiring=True)

For more information, see the Amazon Braket examples on GitHub, or more specifically, this
notebook: Allocating Qubits on QPU Devices.

Verbatim compilation

When you run a quantum circuit on gate-based quantum computers you can direct the compiler
to run your circuits exactly as defined without any modifications. Using verbatim compilation, you
can specify either that an entire circuit be preserved precisely as specified or that only specific
parts of it be preserved (supported by Rigetti only). When developing algorithms for hardware
benchmarking or error mitigation protocols, you need have the option to exactly specify the gates
and circuit layouts that you’re running on the hardware. Verbatim compilation gives you direct
control over the compilation process by turning off certain optimization steps, thereby ensuring
that your circuits run exactly as designed.

Verbatim compilation is currently supported on the Rigetti, IonQ, and IQM devices and requires the
use of native gates. When using verbatim compilation, it is advisable to check the topology of the

Constructing circuits in the SDK 43

https://console.aws.amazon.com/braket/home
https://console.aws.amazon.com/braket/home
https://github.com/aws/amazon-braket-sdk-python
https://github.com/aws/amazon-braket-examples
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Allocating_Qubits_on_QPU_Devices.ipynb

Amazon Braket Developer Guide

device to ensure that gates are called on connected qubits and that the circuit uses the native gates
supported on the hardware. The following example shows how to programmatically access the list
of native gates supported by a device.

device.properties.paradigm.nativeGateSet

For Rigetti, qubit rewiring must be turned off by setting disableQubitRewiring=True for use
with verbatim compilation. If disableQubitRewiring=False is set when using verbatim boxes
in a compilation, the quantum circuit fails validation and does not run.

If verbatim compilation is enabled for a circuit and run on a QPU that does not support it, an
error is generated indicating that an unsupported operation has caused the task to fail. As more
quantum hardware natively support compiler functions, this feature will be expanded to include
these devices. Devices that support verbatim compilation include it as a supported operation when
queried with the following code.

from braket.aws import AwsDevice
from braket.device_schema.device_action_properties import DeviceActionType
device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3")
device.properties.action[DeviceActionType.OPENQASM].supportedPragmas

There is no additional cost associated with using verbatim compilation. You continue to be
charged for quantum tasks executed on Braket QPU devices, notebook instances, and on-demand
simulators based on current rates as specified on the Amazon Braket Pricing page. For more
information, see the Verbatim compilation example notebook.

Note

If you are using OpenQASM to write your circuits for the IonQ device, and you wish to
map your circuit directly to the physical qubits, you need to use the #pragma braket
verbatim as the disableQubitRewiring flag is completely ignored by OpenQASM.

Noise simulation

To instantiate the local noise simulator you can change the backend as follows.

device = LocalSimulator(backend="braket_dm")

Constructing circuits in the SDK 44

https://aws.amazon.com/braket/pricing/
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Verbatim_Compilation.ipynb

Amazon Braket Developer Guide

You can build noisy circuits in two ways:

1. Build the noisy circuit from the bottom up.

2. Take an existing, noise-free circuit and inject noise throughout.

The following example shows the approaches using a simple circuit with depolarizing noise and a
custom Kraus channel.

Bottom up approach
apply depolarizing noise to qubit 0 with probability of 0.1
circ = Circuit().x(0).x(1).depolarizing(0, probability=0.1)

create an arbitrary 2-qubit Kraus channel
E0 = scipy.stats.unitary_group.rvs(4) * np.sqrt(0.8)
E1 = scipy.stats.unitary_group.rvs(4) * np.sqrt(0.2)
K = [E0, E1]

apply a two-qubit Kraus channel to qubits 0 and 2
circ = circ.kraus([0,2], K)

Inject noise approach
define phase damping noise
noise = Noise.PhaseDamping(gamma=0.1)
the noise channel is applied to all the X gates in the circuit
circ = Circuit().x(0).y(1).cnot(0,2).x(1).z(2)
circ_noise = circ.copy()
circ_noise.apply_gate_noise(noise, target_gates = Gate.X)

Running a circuit is the same user experience as before, as shown in the following two examples.

Example 1

task = device.run(circ, s3_location)

Or

Example 2

task = device.run(circ_noise, s3_location)

Constructing circuits in the SDK 45

Amazon Braket Developer Guide

For more examples, see the Braket introductory noise simulator example

Inspecting the circuit

Quantum circuits in Amazon Braket have a pseudo-time concept called Moments. Each qubit can
experience a single gate per Moment. The purpose of Moments is to make circuits and their gates
easier to address and to provide a temporal structure.

Note

Moments generally do not correspond to the real time at which gates are executed on a
QPU.

The depth of a circuit is given by the total number of Moments in that circuit. You can view the
circuit depth calling the method circuit.depth as shown in the following example.

define a circuit with parametrized gates
circ = Circuit().rx(0, 0.15).ry(1, 0.2).cnot(0,2).zz(1, 3, 0.15).x(0)
print(circ)
print('Total circuit depth:', circ.depth)

T : | 0 | 1 |2|

q0 : -Rx(0.15)-C----------X-
 |
q1 : -Ry(0.2)--|-ZZ(0.15)---
 | |
q2 : ----------X-|----------
 |
q3 : ------------ZZ(0.15)---

T : | 0 | 1 |2|
Total circuit depth: 3

The total circuit depth of the circuit above is 3 (shown as moments 0, 1, and 2). You can check the
gate operation for each moment.

Moments functions as a dictionary of key-value pairs.

• The key is MomentsKey(), which contains pseudo-time and qubit information.

Inspecting the circuit 46

https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Simulating_Noise_On_Amazon_Braket.ipynb

Amazon Braket Developer Guide

• The value is assigned in the type of Instructions().

moments = circ.moments
for key, value in moments.items():
 print(key)
 print(value, "\n")

MomentsKey(time=0, qubits=QubitSet([Qubit(0)]))
Instruction('operator': Rx('angle': 0.15, 'qubit_count': 1), 'target':
 QubitSet([Qubit(0)]))

MomentsKey(time=0, qubits=QubitSet([Qubit(1)]))
Instruction('operator': Ry('angle': 0.2, 'qubit_count': 1), 'target':
 QubitSet([Qubit(1)]))

MomentsKey(time=1, qubits=QubitSet([Qubit(0), Qubit(2)]))
Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(0),
 Qubit(2)]))

MomentsKey(time=1, qubits=QubitSet([Qubit(1), Qubit(3)]))
Instruction('operator': ZZ('angle': 0.15, 'qubit_count': 2), 'target':
 QubitSet([Qubit(1), Qubit(3)]))

MomentsKey(time=2, qubits=QubitSet([Qubit(0)]))
Instruction('operator': X('qubit_count': 1), 'target': QubitSet([Qubit(0)]))

You can also add gates to a circuit through Moments.

new_circ = Circuit()
instructions = [Instruction(Gate.S(), 0),
 Instruction(Gate.CZ(), [1,0]),
 Instruction(Gate.H(), 1)
]
new_circ.moments.add(instructions)
print(new_circ)

T : |0|1|2|

q0 : -S-Z---
 |
q1 : ---C-H-

Inspecting the circuit 47

Amazon Braket Developer Guide

T : |0|1|2|

List of result types

Amazon Braket can return different types of results when a circuit is measured using ResultType.
A circuit can return the following types of results.

• AdjointGradient returns the gradient (vector derivative) of the expectation value of a
provided observable. This observable is acting on a provided target with respect to specified
parameters using the adjoint differentiation method. You can only use this method when
shots=0.

• Amplitude returns the amplitude of specified quantum states in the output wave function. It is
available on the SV1 and local simulators only.

• Expectation returns the expectation value of a given observable, which can be specified with
the Observable class introduced later in this chapter. The target qubits used to measure the
observable must be specified, and the number of specified targets must equal the number of
qubits on which the observable acts. If no targets are specified, the observable must operate
only on 1 qubit and it is applied to all qubits in parallel.

• Probability returns the probabilities of measuring computational basis states. If no targets
are specified, Probability returns the probability of measuring all basis states. If targets
are specified, only the marginal probabilities of the basis vectors on the specified qubits are
returned. Managed simulators and QPUs are limited to 15 qubits maximum, and local simulators
are limited to the system's memory size.

• Reduced density matrix returns a density matrix for a subsystem of specified target qubits
from a system of qubits. To limit the size of this result type, Braket limits the number of target
qubits to a maximum of 8.

• StateVector returns the full state vector. It is available on the local simulator.

• Sample returns the measurement counts of a specified target qubit set and observable. If no
targets are specified, the observable must operate only on 1 qubit and it is applied to all qubits
in parallel. If targets are specified, the number of specified targets must equal the number of
qubits on which the observable acts.

• Variance returns the variance (mean([x-mean(x)]2)) of the specified target qubit set and
observable as the requested result type. If no targets are specified, the observable must operate
only on 1 qubit and it is applied to all qubits in parallel. Otherwise, the number of targets
specified must equal the number of qubits to which the observable can be applied.

List of result types 48

Amazon Braket Developer Guide

The supported result types for different devices:

 Local
sim

SV1 DM1 TN1 Rigetti IonQ IQM

Adjoint
Gradient

N Y N N N N N

Amplitude Y Y N N N N N

Expectati
on

Y Y Y Y Y Y Y

Probabili
ty

Y Y Y N Y Y Y

Reduced
density
matrix

Y N Y N N N N

State
vector

Y N N N N N N

Sample Y Y Y Y Y Y Y

Variance Y Y Y Y Y Y Y

You can check the supported result types by examining the device properties, as shown in the
following example.

device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3")

print the result types supported by this device
for iter in
 device.properties.action['braket.ir.openqasm.program'].supportedResultTypes:
 print(iter)

name='Sample' observables=['x', 'y', 'z', 'h', 'i'] minShots=10 maxShots=50000
name='Expectation' observables=['x', 'y', 'z', 'h', 'i'] minShots=10 maxShots=50000

List of result types 49

Amazon Braket Developer Guide

name='Variance' observables=['x', 'y', 'z', 'h', 'i'] minShots=10 maxShots=50000
name='Probability' observables=None minShots=10 maxShots=50000

To call a ResultType, append it to a circuit, as shown in the following example.

from braket.circuits import Observable

circ = Circuit().h(0).cnot(0, 1).amplitude(state=["01", "10"])
circ.probability(target=[0, 1])
circ.probability(target=0)
circ.expectation(observable=Observable.Z(), target=0)
circ.sample(observable=Observable.X(), target=0)
circ.state_vector()
circ.variance(observable=Observable.Z(), target=0)

print one of the result types assigned to the circuit
print(circ.result_types[0])

Note

Some devices provide measurements (for instance Rigetti) as results and others provide
probabilities as results (for instance IonQ). The SDK provides a measurements property on
results, but for the devices that return probabilities, it is post-computed. Thus, devices like
those provided by IonQ have measurement results determined by probability since per shot
measurements are not returned. You can check if a result is post-computed by viewing the
measurements_copied_from_device on the result object as shown in this file.

Observables

Amazon Braket includes an Observable class, which can be used to specify an observable to be
measured.

You can apply at most one unique non-identity observable to each qubit. If you specify two or
more different non-identity observables to the same qubit, you see an error. For this purpose, each
factor of a tensor product counts as an individual observable, so it is permissible to have multiple
tensor products acting on the same qubit, provided that the factor acting on that qubit is the same.

You can also scale an observable and add observables (scaled or not). This creates a Sum which can
be used in the AdjointGradient result type.

List of result types 50

https://github.com/aws/amazon-braket-sdk-python/blob/ca5b08dada4839ca31c012ff50aa20b656fd1879/src/braket/tasks/gate_model_quantum_task_result.py#L70-L72

Amazon Braket Developer Guide

The Observable class includes the following observables.

Observable.I()
Observable.H()
Observable.X()
Observable.Y()
Observable.Z()

get the eigenvalues of the observable
print("Eigenvalue:", Observable.H().eigenvalues)
or whether to rotate the basis to be computational basis
print("Basis rotation gates:",Observable.H().basis_rotation_gates)

get the tensor product of observable for the multi-qubit case
tensor_product = Observable.Y() @ Observable.Z()
view the matrix form of an observable by using
print("The matrix form of the observable:\n",Observable.Z().to_matrix())
print("The matrix form of the tensor product:\n",tensor_product.to_matrix())

also factorize an observable in the tensor form
print("Factorize an observable:",tensor_product.factors)

self-define observables given it is a Hermitian
print("Self-defined Hermitian:",Observable.Hermitian(matrix=np.array([[0, 1],[1, 0]])))

print("Sum of other (scaled) observables:", 2.0 * Observable.X() @ Observable.X() + 4.0
 * Observable.Z() @ Observable.Z())

Eigenvalue: [1 -1]
Basis rotation gates: (Ry('angle': -0.7853981633974483, 'qubit_count': 1),)
The matrix form of the observable:
 [[1.+0.j 0.+0.j]
 [0.+0.j -1.+0.j]]
The matrix form of the tensor product:
 [[0.+0.j 0.+0.j 0.-1.j 0.-0.j]
 [0.+0.j -0.+0.j 0.-0.j 0.+1.j]
 [0.+1.j 0.+0.j 0.+0.j 0.+0.j]
 [0.+0.j -0.-1.j 0.+0.j -0.+0.j]]
Factorize an observable: (Y('qubit_count': 1), Z('qubit_count': 1))
Self-defined Hermitian: Hermitian('qubit_count': 1, 'matrix': [[0.+0.j 1.+0.j], [1.+0.j
 0.+0.j]])

List of result types 51

Amazon Braket Developer Guide

Sum of other (scaled) observables: Sum(TensorProduct(X('qubit_count': 1),
 X('qubit_count': 1)), TensorProduct(Z('qubit_count': 1), Z('qubit_count': 1)))

Parameters

Circuits may include free parameters, which you can be use in a “construct once - run many times”
manner and to compute gradients. Free parameters have a string-encoded name that you can use
to specify their values or to determine whether to differentiate with respect to them.

from braket.circuits import Circuit, FreeParameter, Observable
theta = FreeParameter("theta")
phi = FreeParameter("phi")
circ = Circuit().h(0).rx(0, phi).ry(0, phi).cnot(0, 1).xx(0, 1, theta)
circ.adjoint_gradient(observable=Observable.Z() @ Observable.Z(), target=[0, 1],
 parameters = ["phi", theta]

For the parameters you want to differentiate, specify them either by using their name (as a string)
or by direct reference. Note that computing the gradient using the AdjointGradient result type
is done with respect to the expectation value of the observable.

Note: If you have fixed the values of free parameters by passing them as arguments to the
parameterized circuit, running a circuit with AdjointGradient as a result type and parameters
specified will produce an error. This is because the parameters we are using to differentiate with are
no longer present. See the following example.

device.run(circ(0.2), shots=0) # will error, as no free parameters will be present
device.run(circ, shots=0, inputs={'phi'=0.2, 'theta'=0.2) # will succeed

Getting Expert advice

Connect with quantum computing experts directly in the Braket management console to get
additional guidance around your workloads.

To explore Expert advice options through Braket Direct, open the Braket console, choose Braket
Direct in the left pane, and navigate to the Expert advice section. The following Expert advice
options are available:

• Braket office hours: Braket office hours are 1:1 sessions, first come first-serve, and take place
every month. Each available office hour slot is 30 minutes and free of charge. Talking to Braket

Getting Expert advice 52

Amazon Braket Developer Guide

experts can help you get from ideation to execution faster by exploring use-case-to-device fit,
identifying options to best leverage Braket for your algorithm, and getting recommendations
for how to use certain Braket features like Amazon Braket Hybrid Jobs, Braket Pulse, or Analog
Hamiltonian Simulation.

• To sign up for Braket office hours, select Sign up and fill out contact information, workload
details, and your desired discussion topics.

• You will receive a calendar invitation to the next available slot through your email.

Note

For emergent issues or quick troubleshooting questions, we recommend reaching out
to AWS Support. For non-urgent questions, you can also use the AWS re:Post forum or
the Quantum Computing Stack Exchange, where you can browse previously answered
questions and ask new ones.

• Quantum hardware provider offerings: IonQ, QuEra, and Rigetti each provide professional
services offerings through AWS Marketplace.

• To explore their offerings, select Connect and browse their listings.

• To learn more about professional services offerings on the AWS Marketplace, see Professional
services products.

• Amazon Quantum Solutions Lab (QSL): The QSL is a collaborative research and professional
services team staffed with quantum computing experts who can help you effectively explore
quantum computing and assess the current performance of this technology.

• To contact the QSL, select Connect, and fill out contact information and use case details.

• The QSL team will reach out to you through email with next steps.

Getting started with Amazon Braket Hybrid Jobs

This section provides information on components and instructions about how to set up your hybrid
jobs in Amazon Braket.

You can access hybrid jobs in Braket using:

• The Amazon Braket Python SDK.

• The Amazon Braket console.

• The Amazon Braket API.

(Advanced) Getting started with Amazon Braket Hybrid Jobs 53

https://console.aws.amazon.com/support/home#/case/create?issueType=technical
https://repost.aws/tags/questions/TAhMWeHkpfSMSCxIFNqcqYog?view=all
https://quantumcomputing.stackexchange.com/questions/ask
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-proserv-products.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-proserv-products.html
https://github.com/aws/amazon-braket-sdk-python
https://console.aws.amazon.com/braket/home

Amazon Braket Developer Guide

In this section:

• What is a Hybrid Job?

• When to use Amazon Braket Hybrid Jobs

• Inputs, outputs, environmental variables, and helper functions

• Define the environment for your algorithm script

• Using hyperparameters

What is a Hybrid Job?

Amazon Braket Hybrid Jobs offers a way for you to run hybrid quantum-classical algorithms
requiring both classical AWS resources and quantum processing units (QPUs). Hybrid Jobs is
designed to spin up the requested classical resources, run your algorithm, and release the instances
after completion so you only pay for what you use.

Hybrid Jobs is ideal for long-running, iterative algorithms that involve the use of both classical
computing resources and quantum computing resources. With Hybrid Jobs, after submitting your
algorithm to run, Braket will run your algorithm in a scalable, containerized environment. Once the
algorithm has completed, you can then retrieve the results.

Additionally, quantum tasks that are created from a hybrid job benefit from higher priority
queueing to the target QPU device. This prioritization ensures that your quantum computations
are processed and ran ahead of other tasks waiting in the queue. This is particularly advantageous
for iterative hybrid algorithms, where the results of one quantum task depend on the outcomes
of prior quantum tasks. Examples of such algorithms include the Quantum Approximate
Optimization Algorithm (QAOA), variational quantum eigensolver, or quantum machine learning.
You can also monitor your algorithm progress in near-real time, enabling you to keep track of
costs, budget, or custom metrics such as training loss or expectation values.

When to use Amazon Braket Hybrid Jobs

Amazon Braket Hybrid Jobs enables you to run hybrid quantum-classical algorithms, such as the
Variational Quantum Eigensolver (VQE) and the Quantum Approximate Optimization Algorithm
(QAOA), that combine classical compute resources with quantum computing devices to optimize
the performance of today’s quantum systems. Amazon Braket Hybrid Jobs provides three main
benefits:

What is a Hybrid Job? 54

https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_quantum_algorithms/QAOA/QAOA_braket.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_quantum_algorithms/QAOA/QAOA_braket.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_quantum_algorithms/VQE_Chemistry/VQE_chemistry_braket.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs.ipynb

Amazon Braket Developer Guide

1. Performance: Amazon Braket Hybrid Jobs provides better performance than running hybrid
algorithms from your own environment. While your job is running, it has priority access to the
selected target QPU. Tasks from your job run ahead of other tasks queued on the device. This
results in shorter and more predictable runtimes for hybrid algorithms. Amazon Braket Hybrid
Jobs also supports parametric compilation. You can submit a circuit using free parameters and
Braket compiles the circuit once, without the need to recompile for subsequent parameter
updates to the same circuit, resulting in even faster runtimes.

2. Convenience: Amazon Braket Hybrid Jobs simplifies setting up and managing your compute
environment and keeping it running while your hybrid algorithm runs. You just provide your
algorithm script and select a quantum device (either a quantum processing unit or a simulator)
on which to run. Amazon Braket waits for the target device to become available, spins up the
classical resources, runs the workload in pre-built container environments, returns the results to
Amazon Simple Storage Service (Amazon S3), and releases the compute resources.

3. Metrics: Amazon Braket Hybrid Jobs provides on-the-fly insights into running algorithms and
delivers customizable algorithm metrics in near real-time to Amazon CloudWatch and the
Amazon Braket console so you can track the progress of your algorithms.

Inputs, outputs, environmental variables, and helper functions

In addition to the file or files that makes up your complete algorithm script, your hybrid job can
have additional inputs and outputs. When your hybrid job starts, Amazon Braket copies inputs
provided as part of the hybrid job creation into the container that runs the algorithm script. When
the hybrid job completes, all outputs defined during the algorithm are copied to the Amazon S3
location specified.

Note

Algorithm metrics are reported in real time and do not follow this output procedure.

Amazon Braket also provides several environment variables and helper functions to simplify the
interactions with container inputs and outputs.

This section explains the key concepts of the AwsQuantumJob.create function provided by the
Amazon Braket Python SDK and their mapping to the container file structure.

In this section:

Inputs, outputs, environmental variables, and helper functions 55

Amazon Braket Developer Guide

• Inputs

• Outputs

• Environmental variables

• Helper functions

Inputs

Input data: Input data can be provided to the hybrid algorithm by specifying the input data
file, which is set up as a dictionary, with the input_data argument. The user defines the
input_data argument within the AwsQuantumJob.create function in the SDK. This copies
the input data to to the container file system at the location given by the environment variable
"AMZN_BRAKET_INPUT_DIR". For a couple examples of how input data is used in a hybrid
algorithm, see the QAOA with Amazon Braket Hybrid Jobs and PennyLane and Quantum machine
learning in Amazon Braket Hybrid Jobs Jupyter notebooks.

Note

When the input data is large (>1GB), there will be a long wait time before the hybrid job is
submitted. This is due to the fact that the local input data will first be uploaded to an S3
bucket, then the S3 path will be added to the hybrid job request, and, finally, the hybrid job
request is submitted to Braket service.

Hyperparameters: If you pass in hyperparameters, they are available under the environment
variable "AMZN_BRAKET_HP_FILE".

Note

For more information about how to create hyperparameters and input data and then pass
this information to the hybrid job script, see the Use hyperparameters section and this
github page.

Checkpoints: To specify a job-arn whose checkpoint you want to use in a new hybrid job, use the
copy_checkpoints_from_job command. This command copies over the checkpoint data to the
checkpoint_configs3Uri of the new hybrid job, making it available at the path given by the

Inputs, outputs, environmental variables, and helper functions 56

https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/2_Using_PennyLane_with_Braket_Hybrid_Jobs/Using_PennyLane_with_Braket_Hybrid_Jobs.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/qcbm/qcbm.py

Amazon Braket Developer Guide

environment variable AMZN_BRAKET_CHECKPOINT_DIR while the job runs. The default is None,
meaning checkpoint data from another hybrid job will not be used in the new hybrid job.

Outputs

Quantum Tasks: Quantum task results are stored in the S3 location s3://amazon-braket-
<region>-<accountID>/jobs/<job-name>/tasks.

Job results: Everything that your algorithm script saves to the directory given by the environment
variable "AMZN_BRAKET_JOB_RESULTS_DIR" is copied to the S3 location specified in
output_data_config. If you don’t specify this value, it defaults to s3://amazon-braket-
<region>-<accountID>/jobs/<job-name>/<timestamp>/data. We provide the SDK helper
function save_job_result , which you can use to store results conveniently in the form of a
dictionary when called from your algorithm script.

Checkpoints: If you want to use checkpoints, you can save them in the directory given by the
environment variable "AMZN_BRAKET_CHECKPOINT_DIR". You can also use the SDK helper
function save_job_checkpoint instead.

Algorithm metrics: You can define algorithm metrics as part of your algorithm script that are
emitted to Amazon CloudWatch and displayed in real time in the Amazon Braket console while
your hybrid job is running. For an example of how to use algorithm metrics, see Use Amazon Braket
Hybrid Jobs to run a QAOA algorithm.

Environmental variables

Amazon Braket provides several environment variables to simplify the interactions with container
inputs and outputs. The folllowing code lists the environmental variables that Braket uses.

• AMZN_BRAKET_INPUT_DIR – The input data directory opt/braket/input/data.

• AMZN_BRAKET_JOB_RESULTS_DIR – The output directory opt/braket/model to write job results
to.

• AMZN_BRAKET_JOB_NAME – The name of the job.

• AMZN_BRAKET_CHECKPOINT_DIR – The checkpoint directory.

• AMZN_BRAKET_HP_FILE – The file containing the hyperparameters.

• AMZN_BRAKET_DEVICE_ARN – The device ARN (AWS Resource Name).

• AMZN_BRAKET_OUT_S3_BUCKET – The output Amazon S3 bucket, as specified in the
CreateJob request’s OutputDataConfig.

Inputs, outputs, environmental variables, and helper functions 57

Amazon Braket Developer Guide

• AMZN_BRAKET_SCRIPT_ENTRY_POINT – The entry point as specified in the CreateJob
request’s ScriptModeConfig.

• AMZN_BRAKET_SCRIPT_COMPRESSION_TYPE – The compression type as specified in the
CreateJob request’s ScriptModeConfig.

• AMZN_BRAKET_SCRIPT_S3_URI – The Amazon S3 location of the user’s script as specified in the
CreateJob request’s ScriptModeConfig.

• AMZN_BRAKET_TASK_RESULTS_S3_URI – The Amazon S3 location where the SDK would store
the quantum task results by default for the job.

• AMZN_BRAKET_JOB_RESULTS_S3_PATH – The Amazon S3 location where the job results would
be stored, as specified in CreateJob request’s OutputDataConfig.

• AMZN_BRAKET_JOB_TOKEN – The string that should be passed to CreateQuantumTask’s
jobToken parameter for quantum tasks created in the job container.

Helper functions

Amazon Braket provides several helper functions to simplify the interactions with container inputs
and outputs. These helper functions would be called from within the algorithm script that is used
to run your Hybrid Job. The following example demonstrates how to use them.

get_checkpoint_dir() # get the checkpoint directory
get_hyperparameters() # get the hyperparameters as strings
get_input_data_dir() # get the input data directory
get_job_device_arn() # get the device specified by the hybrid job
get_job_name() # get the name of the hybrid job.
get_results_dir() # get the path to a results directory
save_job_result() # save hybrid job results
save_job_checkpoint() # save a checkpoint
load_job_checkpoint() # load a previously saved checkpoint

Define the environment for your algorithm script

Amazon Braket supports three environments defined by containers for your algorithm script:

• A base container (the default, if no image_uri is specified)

• A container with Tensorflow and PennyLane

• A container with PyTorch and PennyLane

Define the environment for your algorithm script 58

Amazon Braket Developer Guide

The following table provides details about the containers and the libraries they include.

Amazon Braket containers

Type PennyLane with
TensorFlow

PennyLane with
PyTorch

Pennylane

Base 292282985366.dkr.e
cr.us-east-1.amazo
naws.com/amazon-
braket-tensorflow-jo
bs:latest

292282985366.dkr.e
cr.us-west-2.amazo
naws.com/amazon-br
aket-pytorch-jobs:latest

292282985366.dkr.ecr.us-
west-2.amazonaws.com/
amazon-braket-base-
jobs:latest

Inherited
Libraries

• awscli

• numpy

• pandas

• scipy

• awscli

• numpy

• pandas

• scipy

Additiona
l Libraries

• amazon-braket-defa
ult-simulator

• amazon-braket-penn
ylane-plugin

• amazon-braket-sche
mas

• amazon-braket-sdk

• ipykernel

• keras

• matplotlib

• networkx

• openbabel

• PennyLane

• protobuf

• psi4

• rsa

• amazon-braket-defa
ult-simulator

• amazon-braket-penn
ylane-plugin

• amazon-braket-sche
mas

• amazon-braket-sdk

• ipykernel

• keras

• matplotlib

• networkx

• openbabel

• PennyLane

• protobuf

• psi4

• rsa

• amazon-braket-default-
simulator

• amazon-braket-penn
ylane-plugin

• amazon-braket-schemas

• amazon-braket-sdk

• awscli

• boto3

• ipykernel

• matplotlib

• networkx

• numpy

• openbabel

• pandas

• PennyLane

• protobuf

• psi4

Define the environment for your algorithm script 59

Amazon Braket Developer Guide

Type PennyLane with
TensorFlow

PennyLane with
PyTorch

Pennylane

• PennyLane-Lightning-
gpu

• cuQuantum

• PennyLane-Lightning-
gpu

• cuQuantum

• rsa

• scipy

You can view and access the open source container definitions at aws/amazon-braket-containers.
Choose the container that best matches your use case. The container must be in the AWS Region
from which you invoke your hybrid job. You specify the container image when you create a hybrid
job by adding one of the following three arguments to your create(…) call in the hybrid job
script. You can install additional dependencies into the container you choose at runtime (at the
cost of startup or runtime) because the Amazon Braket containers have internet connectivity. The
following example is for the us-west-2 Region.

• Base image image_uri="292282985366.dkr.ecr.us-west-2.amazonaws.com/amazon-braket-base-
jobs:1.0-cpu-py39-ubuntu22.04"

• Tensorflow image image_uri="292282985366.dkr.ecr.us-east-1.amazonaws.com/amazon-
braket-tensorflow-jobs:2.11.0-gpu-py39-cu112-ubuntu20.04"

• PyTorch image image_uri="292282985366.dkr.ecr.us-west-2.amazonaws.com/amazon-braket-
pytorch-jobs:1.13.1-gpu-py39-cu117-ubuntu20.04"

The image-uris can also be retrieved using the retrieve_image() function in the Amazon
Braket SDK. The following example shows how to retrieve them from the us-west-2 AWS Region.

from braket.jobs.image_uris import retrieve_image, Framework

image_uri_base = retrieve_image(Framework.BASE, "us-west-2")
image_uri_tf = retrieve_image(Framework.PL_TENSORFLOW, "us-west-2")
image_uri_pytorch = retrieve_image(Framework.PL_PYTORCH, "us-west-2")

Using hyperparameters

You can define hyperparameters needed by your algorithm, such as the learning rate or step
size, when you create a hybrid job. Hyperparameter values are typically used to control various
aspects of the algorithm, and can often be tuned to optimize the algorithm’s performance. To use
hyperparameters in a Braket hybrid job, you need to specify their names and values explicitly as a

Using hyperparameters 60

https://github.com/aws/amazon-braket-containers

Amazon Braket Developer Guide

dictionary. Note that the values must be of the string datatype. You specify the hyperparameter
values that you want to test when searching for the optimal set of values. The first step to using
hyperparameters is to set up and define the hyperparameters as a dictionary, which can be seen in
the following code:

#defining the number of qubits used
n_qubits = 8
#defining the number of layers used
n_layers = 10
#defining the number of iterations used for your optimization algorithm
n_iterations = 10

hyperparams = {
 "n_qubits": n_qubits,
 "n_layers": n_layers,
 "n_iterations": n_iterations
}

You would then pass the hyperparameters defined in the code snippet given above to be used in
the algorithm of your choice with something that looks like the following:

import time
from braket.aws import AwsQuantumJob

#Name your job so that it can be later identified
job_name = f"qcbm-gaussian-training-{n_qubits}-{n_layers}-" + str(int(time.time()))

job = AwsQuantumJob.create(
 #Run this hybrid job on the SV1 simulator
 device="arn:aws:braket:::device/quantum-simulator/amazon/sv1",
 #The directory or single file containing the code to run.
 source_module="qcbm",
 #The main script or function the job will run.
 entry_point="qcbm.qcbm_job:main",
 #Set the job_name
 job_name=job_name,
 #Set the hyperparameters
 hyperparameters=hyperparams,
 #Define the file that contains the input data
 input_data="data.npy", # or input_data=s3_path
 # wait_until_complete=False,
)

Using hyperparameters 61

Amazon Braket Developer Guide

Note

In order to learn more about input data see the Inputs section.

The hyperparameters would then be loaded into the hybrid job script using the following code:

import json
import os

#Load the Hybrid Job hyperparameters
hp_file = os.environ["AMZN_BRAKET_HP_FILE"]
with open(hp_file, "r") as f:
 hyperparams = json.load(f)

Note

For more information about how to pass information like the input data and the device arn
to the hybrid job script, see this github page.

A couple guides that are very useful for learning about how to use hyperparameters are given by
the QAOA with Amazon Braket Hybrid Jobs and PennyLane and Quantum machine learning in
Amazon Braket Hybrid Jobs tutorials.

Run your circuits with OpenQASM 3.0

Amazon Braket now supports OpenQASM 3.0 for gate-based quantum devices and simulators. This
user guide provides information about the subset of OpenQASM 3.0 supported by Braket. Braket
customers now have the choice of submitting Braket circuits with the SDK or by directly providing
OpenQASM 3.0 strings to all gate-based devices with the Amazon Braket API and the Amazon
Braket Python SDK.

The topics in this guide walk you through various examples of how to complete the following
quantum tasks.

• Create and submit OpenQASM quantum tasks on different Braket devices

• Access the supported operations and result types

• Simulate noise with OpenQASM

(Advanced) Run your circuits with OpenQASM 3.0 62

https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/qcbm/qcbm.py
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/2_Using_PennyLane_with_Braket_Hybrid_Jobs/Using_PennyLane_with_Braket_Hybrid_Jobs.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs.ipynb
https://openqasm.com/
https://docs.aws.amazon.com/braket/latest/APIReference/Welcome.html
https://github.com/aws/amazon-braket-sdk-python
https://github.com/aws/amazon-braket-sdk-python

Amazon Braket Developer Guide

• Use verbatim compilation with OpenQASM

• Troubleshoot OpenQASM issues

This guide also provides an introduction to certain hardware-specific features that can be
implemented with OpenQASM 3.0 on Braket and links to further resources.

In this section:

• What is OpenQASM 3.0?

• When to use OpenQASM 3.0

• How OpenQASM 3.0 works

• Prerequisites

• What OpenQASM features does Braket support?

• Create and submit an example OpenQASM 3.0 quantum task

• Support for OpenQASM on different Braket devices

• Simulate noise with OpenQASM 3.0

• Qubit rewiring with OpenQASM 3.0

• Verbatim compilation with OpenQASM 3.0

• The Braket console

• Additional resources

• Computing gradients with OpenQASM 3.0

• Measuring specific qubits with OpenQASM 3.0

What is OpenQASM 3.0?

The Open Quantum Assembly Language (OpenQASM) is an intermediate representation for
quantum instructions. OpenQASM is an open-source framework and is widely used for the
specification of quantum programs for gate-based devices. With OpenQASM, users can program
the quantum gates and measurement operations that form the building blocks of quantum
computation. The previous version of OpenQASM (2.0) was used by a number of quantum
programming libraries to describe simple programs.

The new version of OpenQASM (3.0) extends the previous version to include more features, such
as pulse-level control, gate timing, and classical control flow to bridge the gap between end-user
interface and hardware description language. Details and specification on the current version 3.0

What is OpenQASM 3.0? 63

https://docs.aws.amazon.com/braket/latest/developerguide/braket-troubleshooting-openqasm.html
https://en.wikipedia.org/wiki/Intermediate_representation

Amazon Braket Developer Guide

are available on the GitHub OpenQASM 3.x Live Specification. OpenQASM’s future development
is governed by the OpenQASM 3.0 Technical Steering Committee, of which AWS is a member
alongside IBM, Microsoft, and the University of Innsbruck.

When to use OpenQASM 3.0

OpenQASM provides an expressive framework to specify quantum programs through low-level
controls that are not architecture specific, making it well suited as a representation across multiple
gate-based devices. The Braket support for OpenQASM furthers its adoption as a consistent
approach to developing gate-based quantum algorithms, reducing the need for users to learn and
maintain libraries in multiple frameworks.

If you have existing libraries of programs in OpenQASM 3.0, you can adapt them for use with
Braket rather than completely rewriting these circuits. Researchers and developers should also
benefit from an increasing number of available third-party libraries with support for algorithm
development in OpenQASM.

How OpenQASM 3.0 works

Support for OpenQASM 3.0 from Braket provides feature parity with the current Intermediate
Representation. This means that anything you can do today on hardware devices and on-demand
simulators with Braket, you can do with OpenQASM using the Braket API. You can run OpenQASM
3.0 programs by directly supplying OpenQASM strings to all gate-based devices in a manner that
is similar to how circuits are currently supplied to devices on Braket. Braket users can also integrate
third-party libraries that support OpenQASM 3.0. The rest of this guide details how to develop
OpenQASM representations for use with Braket.

Prerequisites

To use OpenQASM 3.0 on Amazon Braket, you must have version v1.8.0 of the Amazon Braket
Python Schemas and v1.17.0 or higher of the Amazon Braket Python SDK.

If you are a first time user of Amazon Braket, you need to enable Amazon Braket. For instructions,
see Enable Amazon Braket.

What OpenQASM features does Braket support?

The following section lists the OpenQASM 3.0 data types, statements, and pragma instructions
supported by Braket.

When to use OpenQASM 3.0 64

https://github.com/openqasm/openqasm
https://aws.amazon.com/blogs/quantum-computing/aws-joins-the-openqasm-3-0-technical-steering-committee/
https://github.com/aws/amazon-braket-schemas-python
https://github.com/aws/amazon-braket-schemas-python
https://github.com/aws/amazon-braket-sdk-python
https://docs.aws.amazon.com/braket/latest/developerguide/braket-enable-overview.html

Amazon Braket Developer Guide

In this section:

• Supported OpenQASM data types

• Supported OpenQASM statements

• Braket OpenQASM pragmas

• Advanced feature support for OpenQASM on the Local Simulator

• Supported operations and grammar with OpenPulse

Supported OpenQASM data types

The following OpenQASM data types are supported by Amazon Braket.

• Non-negative integers are used for (virtual and physical) qubit indices:

• cnot q[0], q[1];

• h $0;

• Floating-point numbers or constants may be used for gate rotation angles:

• rx(-0.314) $0;

• rx(pi/4) $0;

Note

pi is a built-in constant in OpenQASM and cannot be used as a parameter name.

• Arrays of complex numbers (with the OpenQASM im notation for imaginary part) are allowed in
result type pragmas for defining general hermitian observables and in unitary pragmas:

• #pragma braket unitary [[0, -1im], [1im, 0]] q[0]

• #pragma braket result expectation hermitian([[0, -1im], [1im, 0]]) q[0]

Supported OpenQASM statements

The following OpenQASM statements are supported by Amazon Braket.

• Header: OPENQASM 3;

• Classic bit declarations:

What OpenQASM features does Braket support? 65

Amazon Braket Developer Guide

• bit b1; (equivalently, creg b1;)

• bit[10] b2; (equivalently, creg b2[10];)

• Qubit declarations:

• qubit b1; (equivalently, qreg b1;)

• qubit[10] b2; (equivalently, qreg b2[10];)

• Indexing within arrays: q[0]

• Input: input float alpha;

• specification of physical qubits: $0

• Supported gates and operations on a device:

• h $0;

• iswap q[0], q[1];

Note

A device’s supported gates can be found in the device properties for OpenQASM actions; no
gate definitions are needed to use these gates.

• Verbatim box statements. Currently, we do not support box duration notation. Native gates and
physical qubits are required in verbatim boxes.

#pragma braket verbatim
box{
 rx(0.314) $0;
}

• Measurement and measurement assignment on qubits or a whole qubit register.

• measure $0;

• measure q;

• measure q[0];

• b = measure q;

• measure q # b;
What OpenQASM features does Braket support? 66

Amazon Braket Developer Guide

Braket OpenQASM pragmas

The following OpenQASM pragma instructions are supported by Amazon Braket.

• Noise pragmas

• #pragma braket noise bit_flip(0.2) q[0]

• #pragma braket noise phase_flip(0.1) q[0]

• #pragma braket noise pauli_channel

• Verbatim pragmas

• #pragma braket verbatim

• Result type pragmas

• Basis invariant result types:

• State vector: #pragma braket result state_vector

• Density matrix: #pragma braket result density_matrix

• Gradient computation pragmas:

• Adjoint gradient: #pragma braket result adjoint_gradient expectation(2.2 *
x[0] @ x[1]) all

• Z basis result types:

• Amplitude: #pragma braket result amplitude "01"

• Probability: #pragma braket result probability q[0], q[1]

• Basis rotated result types

• Expectation: #pragma braket result expectation x(q[0]) @ y([q1])

• Variance: #pragma braket result variance hermitian([[0, -1im], [1im,
0]]) $0

• Sample: #pragma braket result sample h($1)

Note

OpenQASM 3.0 is backwards compatible with OpenQASM 2.0, so programs written using
2.0 can run on Braket. However the features of OpenQASM 3.0 supported by Braket do
have some minor syntax differences, such as qreg vs creg and qubit vs bit. There are

What OpenQASM features does Braket support? 67

Amazon Braket Developer Guide

also differences in measurement syntax, and these need to be supported with their correct
syntax.

Advanced feature support for OpenQASM on the Local Simulator

The LocalSimulator supports advanced OpenQASM features which are not offered as part of
Braket’s QPU’s or on-demand simulators. The following list of features are only supported in the
LocalSimulator:

• Gate modifiers

• OpenQASM built-in gates

• Classical variables

• Classical operations

• Custom gates

• Classical control

• QASM files

• Subroutines

For examples of each advanced feature, see this sample notebook. For the full OpenQASM
specification, see the OpenQASM website.

Supported operations and grammar with OpenPulse

Supported OpenPulse Data Types

Cal blocks:

cal {
 ...
}

Defcal blocks:

// 1 qubit
defcal x $0 {

What OpenQASM features does Braket support? 68

https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Simulating_Advanced_OpenQASM_Programs_with_the_Local_Simulator.ipynb
https://openqasm.com/language/index.html

Amazon Braket Developer Guide

...
}

// 1 qubit w. input parameters as constants
defcal my_rx(pi) $0 {
...
}

// 1 qubit w. input parameters as free parameters
defcal my_rz(angle theta) $0 {
...
}

// 2 qubit (above gate args are also valid)
defcal cz $1, $0 {
...
}

Frames:

frame my_frame = newframe(port_0, 4.5e9, 0.0);

Waveforms:

// prebuilt
waveform my_waveform_1 = constant(1e-6, 1.0);

//arbitrary
waveform my_waveform_2 = {0.1 + 0.1im, 0.1 + 0.1im, 0.1, 0.1};

Custom Gate Calibration Example:

cal {
 waveform wf1 = constant(1e-6, 0.25);
}

defcal my_x $0 {
 play(wf1, q0_rf_frame);
}

defcal my_cz $1, $0 {
 barrier q0_q1_cz_frame, q0_rf_frame;

What OpenQASM features does Braket support? 69

Amazon Braket Developer Guide

 play(q0_q1_cz_frame, wf1);
 delay[300ns] q0_rf_frame
 shift_phase(q0_rf_frame, 4.366186381749424);
 delay[300ns] q0_rf_frame;
 shift_phase(q0_rf_frame.phase, 5.916747563126659);
 barrier q0_q1_cz_frame, q0_rf_frame;
 shift_phase(q0_q1_cz_frame, 2.183093190874712);
}

bit[2] ro;
my_x $0;
my_cz $1,$0;
c[0] = measure $0;

Arbitrary pulse example:

bit[2] ro;
cal {
 waveform wf1 = {0.1 + 0.1im, 0.1 + 0.1im, 0.1, 0.1};
 barrier q0_drive, q0_q1_cross_resonance;
 play(q0_q1_cross_resonance, wf1);
 delay[300ns] q0_drive;
 shift_phase(q0_drive, 4.366186381749424);
 delay[300dt] q0_drive;
 barrier q0_drive, q0_q1_cross_resonance;
 play(q0_q1_cross_resonance, wf1);
 ro[0] = capture_v0(r0_measure);
 ro[1] = capture_v0(r1_measure);
}

Create and submit an example OpenQASM 3.0 quantum task

You can use the Amazon Braket Python SDK, Boto3, or the AWS CLI to submit OpenQASM 3.0
quantum tasks to an Amazon Braket device.

In this section:

• An example OpenQASM 3.0 program

• Use the Python SDK to create OpenQASM 3.0 quantum tasks

• Use Boto3 to create OpenQASM 3.0 quantum tasks

• Use the AWS CLI to create OpenQASM 3.0 tasks

Create and submit an example OpenQASM 3.0 quantum task 70

Amazon Braket Developer Guide

An example OpenQASM 3.0 program

To create an OpenQASM 3.0 task, you can start with a simple OpenQASM 3.0 program (ghz.qasm)
that prepares a GHZ state as shown in the following example.

// ghz.qasm
// Prepare a GHZ state
OPENQASM 3;

qubit[3] q;
bit[3] c;

h q[0];
cnot q[0], q[1];
cnot q[1], q[2];

c = measure q;

Use the Python SDK to create OpenQASM 3.0 quantum tasks

You can use the Amazon Braket Python SDK to submit this program to an Amazon Braket device
with the following code. Be sure to replace the example Amazon S3 bucket location “amzn-s3-
demo-bucket” with your own Amazon S3 bucket name.

with open("ghz.qasm", "r") as ghz:
 ghz_qasm_string = ghz.read()

import the device module
from braket.aws import AwsDevice
choose the Rigetti device
device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3")
from braket.ir.openqasm import Program

program = Program(source=ghz_qasm_string)
my_task = device.run(program)

You can also specify an optional s3 bucket location and number of shots,
 # if you so choose, when running the program
s3_location = ("amzn-s3-demo-bucket", "openqasm-tasks")
my_task = device.run(
 program,
 s3_location,

Create and submit an example OpenQASM 3.0 quantum task 71

https://en.wikipedia.org/wiki/Greenberger%E2%80%93Horne%E2%80%93Zeilinger_state
https://github.com/aws/amazon-braket-sdk-python

Amazon Braket Developer Guide

 shots=100,
)

Use Boto3 to create OpenQASM 3.0 quantum tasks

You can also use AWS Python SDK for Braket (Boto3) to create the quantum tasks using
OpenQASM 3.0 strings, as shown in the following example. The following code snippet references
ghz.qasm that prepares a GHZ state as shown above.

import boto3
import json

my_bucket = "amzn-s3-demo-bucket"
s3_prefix = "openqasm-tasks"

with open("ghz.qasm") as f:
 source = f.read()

action = {
 "braketSchemaHeader": {
 "name": "braket.ir.openqasm.program",
 "version": "1"
 },
 "source": source
}
device_parameters = {}
device_arn = "arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3"
shots = 100

braket_client = boto3.client('braket', region_name='us-west-1')
rsp = braket_client.create_quantum_task(
 action=json.dumps(
 action
),
 deviceParameters=json.dumps(
 device_parameters
),
 deviceArn=device_arn,
 shots=shots,
 outputS3Bucket=my_bucket,
 outputS3KeyPrefix=s3_prefix,
)

Create and submit an example OpenQASM 3.0 quantum task 72

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/braket.html
https://en.wikipedia.org/wiki/Greenberger%E2%80%93Horne%E2%80%93Zeilinger_state

Amazon Braket Developer Guide

Use the AWS CLI to create OpenQASM 3.0 tasks

The AWS Command Line Interface (CLI) can also be used to submit OpenQASM 3.0 programs, as
shown in the following example.

aws braket create-quantum-task \
 --region "us-west-1" \
 --device-arn "arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3" \
 --shots 100 \
 --output-s3-bucket "amzn-s3-demo-bucket" \
 --output-s3-key-prefix "openqasm-tasks" \
 --action '{
 "braketSchemaHeader": {
 "name": "braket.ir.openqasm.program",
 "version": "1"
 },
 "source": $(cat ghz.qasm)
 }'

Support for OpenQASM on different Braket devices

For devices supporting OpenQASM 3.0, the action field supports a new action through the
GetDevice response, as shown in the following example for the Rigetti and IonQ devices.

//OpenQASM as available with the Rigetti device capabilities
{
 "braketSchemaHeader": {
 "name": "braket.device_schema.rigetti.rigetti_device_capabilities",
 "version": "1"
 },
 "service": {...},
 "action": {
 "braket.ir.jaqcd.program": {...},
 "braket.ir.openqasm.program": {
 "actionType": "braket.ir.openqasm.program",
 "version": [
 "1"
],
 ….
 }
 }
}

Support for OpenQASM on different Braket devices 73

https://aws.amazon.com/cli/

Amazon Braket Developer Guide

//OpenQASM as available with the IonQ device capabilities
{
 "braketSchemaHeader": {
 "name": "braket.device_schema.ionq.ionq_device_capabilities",
 "version": "1"
 },
 "service": {...},
 "action": {
 "braket.ir.jaqcd.program": {...},
 "braket.ir.openqasm.program": {
 "actionType": "braket.ir.openqasm.program",
 "version": [
 "1"
],
 ….
 }
 }
}

For devices that support pulse control, the pulse field is displayed in the GetDevice response.
The following example show this pulse field for the Rigetti device.

// Rigetti
{
 "pulse": {
 "braketSchemaHeader": {
 "name": "braket.device_schema.pulse.pulse_device_action_properties",
 "version": "1"
 },
 "supportedQhpTemplateWaveforms": {
 "constant": {
 "functionName": "constant",
 "arguments": [
 {
 "name": "length",
 "type": "float",
 "optional": false
 },
 {
 "name": "iq",
 "type": "complex",
 "optional": false

Support for OpenQASM on different Braket devices 74

Amazon Braket Developer Guide

 }
]
 },
 ...
 },
 "ports": {
 "q0_ff": {
 "portId": "q0_ff",
 "direction": "tx",
 "portType": "ff",
 "dt": 1e-9,
 "centerFrequencies": [
 375000000
]
 },
 ...
 },
 "supportedFunctions": {
 "shift_phase": {
 "functionName": "shift_phase",
 "arguments": [
 {
 "name": "frame",
 "type": "frame",
 "optional": false
 },
 {
 "name": "phase",
 "type": "float",
 "optional": false
 }
]
 },
 ...
 },
 "frames": {
 "q0_q1_cphase_frame": {
 "frameId": "q0_q1_cphase_frame",
 "portId": "q0_ff",
 "frequency": 462475694.24460185,
 "centerFrequency": 375000000,
 "phase": 0,
 "associatedGate": "cphase",
 "qubitMappings": [

Support for OpenQASM on different Braket devices 75

Amazon Braket Developer Guide

 0,
 1
]
 },
 ...
 },
 "supportsLocalPulseElements": false,
 "supportsDynamicFrames": false,
 "supportsNonNativeGatesWithPulses": false,
 "validationParameters": {
 "MAX_SCALE": 4,
 "MAX_AMPLITUDE": 1,
 "PERMITTED_FREQUENCY_DIFFERENCE": 400000000
 }
 }
}

The preceding fields detail the following:

Ports:

Describes pre-made external (extern) device ports declared on the QPU in addition to the
associated properties of the given port. All ports listed in this structure are pre-declared as valid
identifiers within the OpenQASM 3.0 program submitted by the user. The additional properties for
a port include:

• Port id (portId)

• The port name declared as an identifier in OpenQASM 3.0.

• Direction (direction)

• The direction of the port. Drive ports transmit pulses (direction “tx”), while measurement ports
receive pulses (direction “rx”).

• Port type (portType)

• The type of action for which this port is responsible (for example, drive, capture, or ff - fast-
flux).

• Dt (dt)

• The time in seconds that represents a single sample time step on the given port.

• Qubit mappings (qubitMappings)

• The qubits associated with the given port.

Support for OpenQASM on different Braket devices 76

Amazon Braket Developer Guide

• Center frequencies (centerFrequencies)

• A list of the associated center frequencies for all pre-declared or user-defined frames on the
port. For more information, refer to Frames.

• QHP Specific Properties (qhpSpecificProperties)

• An optional map detailing existing properties about the port specific to the QHP.

Frames:

Describes pre-made external frames declared on the QPU as well as associated properties about
the frames. All frames listed in this structure are pre-declared as valid identifiers within the
OpenQASM 3.0 program submitted by the user. The additional properties for a frame include:

• Frame Id (frameId)

• The frame name declared as an identifier in OpenQASM 3.0.

• Port Id (portId)

• The associated hardware port for the frame.

• Frequency (frequency)

• The default initial frequency of the frame.

• Center Frequency (centerFrequency)

• The center of the frequency bandwidth for the frame. Typically, frames may only be adjusted
to a certain bandwidth around the center frequency. As a result, frequency adjustments should
stay within a given delta of the center frequency. You can find the bandwidth value in the
validation parameters.

• Phase (phase)

• The default initial phase of the frame.

• Associated Gate (associatedGate)

• The gates associated with the given frame.

• Qubit Mappings (qubitMappings)

• The qubits associated with the given frame.

• QHP Specific Properties (qhpSpecificProperties)

• An optional map detailing existing properties about the frame specific to the QHP.

SupportsDynamicFrames:

Support for OpenQASM on different Braket devices 77

Amazon Braket Developer Guide

Describes whether or not a frame can be declared in cal or defcal blocks through the OpenPulse
newframe function. If this is false, only frames listed in the frame structure may be used within the
program.

SupportedFunctions:

Describes the OpenPulse functions that are supported for the device in addition to the associated
arguments, argument types, and return types for the given functions. To see examples of using the
OpenPulse functions, see the OpenPulse specification. At this time, Braket supports:

• shift_phase

• Shifts the phase of a frame by a specified value

• set_phase

• Sets the phase of frame to the specified value

• swap_phases

• Swaps the phases between two frames.

• shift_frequency

• Shifts the frequency of a frame by a specified value

• set_frequency

• Sets the frequency of frame to the specified value

• play

• Schedules a waveform

• capture_v0

• Returns the value on a capture frame to a bit register

SupportedQhpTemplateWaveforms:

Describes the pre-built waveform functions available on the device and the associated arguments
and types. By default, Braket Pulse offers pre-built waveform routines on all devices, which are:

Constant

τ is the length of the waveform and iq is a complex number.
Support for OpenQASM on different Braket devices 78

https://openqasm.com/language/openpulse.html

Amazon Braket Developer Guide

def constant(length, iq)

Gaussian

τ is the length of the waveform, σ is the width of the Gaussian, and A is the amplitude. If setting
ZaE to True, the Gaussian is offset and rescaled such that it is equal to zero at the start and end of
the waveform, and reaches A at maximum.

def gaussian(length, sigma, amplitude=1, zero_at_edges=False)

DRAG Gaussian

τ is the length of the waveform, σ is the width of the gaussian, β is a free parameter, and A is the
amplitude. If setting ZaE to True, the Derivative Removal by Adiabatic Gate (DRAG) Gaussian
is offset and rescaled such that it is equal to zero at the start and end of the waveform, and the
real part reaches A at maximum. For more information about the DRAG waveform, see the paper
Simple Pulses for Elimination of Leakage in Weakly Nonlinear Qubits.

def drag_gaussian(length, sigma, beta, amplitude=1, zero_at_edges=False)

Erf Square

Support for OpenQASM on different Braket devices 79

https://doi.org/10.1103/PhysRevLett.103.110501

Amazon Braket Developer Guide

Where L is the length, W is the width of the waveform, σ defines how fast the edges rise and fall,
t1=(L−W)/2 and t22=(L+W)/2, A is the amplitude. If setting ZaE to True, the Gaussian is offset
and rescaled such that it is equal to zero at the start and end of the waveform, and reaches A at
maximum. The following equation is the rescaled version of the waveform.

Where a=erf(W/2σ)and b=erf(−t1/σ)/2+erf(t 2/σ)/2 .

def erf_square(length, width, sigma, amplitude=1, zero_at_edges=False)

SupportsLocalPulseElements:

Describes whether or not pulse elements, such as ports, frames, and waveforms may be defined
locally in defcal blocks. If the value is false, elements must be defined in cal blocks.

SupportsNonNativeGatesWithPulses:

Describes whether we can or cannot use non-native gates in combination with pulse programs.
For example, we can’t use a non-native gate like an H gate in a program without first defining the
gate through defcal for the used qubit. You can find the list of native gates nativeGateSet key
under the device capabilities.

ValidationParameters:

Describes pulse element validation boundaries, including:

• Maximum Scale / Maximum Amplitude values for waveforms (arbitrary and pre-built)

• Maximum frequency bandwidth from supplied center frequency in Hz

• Minimum pulse length/duration in seconds

• Maximum pulse length/duration in seconds

Supported Operations, Results and Result Types with OpenQASM

To find out which OpenQASM 3.0 features each device supports, you can refer to the
braket.ir.openqasm.program key in the action field on the device capabilities output. For
example, the following are the supported operations and result types available for the Braket State
Vector simulator SV1.

Support for OpenQASM on different Braket devices 80

Amazon Braket Developer Guide

...
 "action": {
 "braket.ir.jaqcd.program": {
 ...
 },
 "braket.ir.openqasm.program": {
 "version": [
 "1.0"
],
 "actionType": "braket.ir.openqasm.program",
 "supportedOperations": [
 "ccnot",
 "cnot",
 "cphaseshift",
 "cphaseshift00",
 "cphaseshift01",
 "cphaseshift10",
 "cswap",
 "cy",
 "cz",
 "h",
 "i",
 "iswap",
 "pswap",
 "phaseshift",
 "rx",
 "ry",
 "rz",
 "s",
 "si",
 "swap",
 "t",
 "ti",
 "v",
 "vi",
 "x",
 "xx",
 "xy",
 "y",
 "yy",
 "z",
 "zz"
],

Support for OpenQASM on different Braket devices 81

Amazon Braket Developer Guide

 "supportedPragmas": [
 "braket_unitary_matrix"
],
 "forbiddenPragmas": [],
 "maximumQubitArrays": 1,
 "maximumClassicalArrays": 1,
 "forbiddenArrayOperations": [
 "concatenation",
 "negativeIndex",
 "range",
 "rangeWithStep",
 "slicing",
 "selection"
],
 "requiresAllQubitsMeasurement": true,
 "supportsPhysicalQubits": false,
 "requiresContiguousQubitIndices": true,
 "disabledQubitRewiringSupported": false,
 "supportedResultTypes": [
 {
 "name": "Sample",
 "observables": [
 "x",
 "y",
 "z",
 "h",
 "i",
 "hermitian"
],
 "minShots": 1,
 "maxShots": 100000
 },
 {
 "name": "Expectation",
 "observables": [
 "x",
 "y",
 "z",
 "h",
 "i",
 "hermitian"
],
 "minShots": 0,
 "maxShots": 100000

Support for OpenQASM on different Braket devices 82

Amazon Braket Developer Guide

 },
 {
 "name": "Variance",
 "observables": [
 "x",
 "y",
 "z",
 "h",
 "i",
 "hermitian"
],
 "minShots": 0,
 "maxShots": 100000
 },
 {
 "name": "Probability",
 "minShots": 1,
 "maxShots": 100000
 },
 {
 "name": "Amplitude",
 "minShots": 0,
 "maxShots": 0
 }
 {
 "name": "AdjointGradient",
 "minShots": 0,
 "maxShots": 0
 }
]
 }
 },
...

Simulate noise with OpenQASM 3.0

To simulate noise with OpenQASM3, you use pragma instructions to add noise operators. For
example, to simulate the noisy version of the GHZ program provided previously, you can submit
the following OpenQASM program.

// ghz.qasm
// Prepare a GHZ state
OPENQASM 3;

Simulate noise 83

Amazon Braket Developer Guide

qubit[3] q;
bit[3] c;

h q[0];
#pragma braket noise depolarizing(0.75) q[0] cnot q[0], q[1];
#pragma braket noise depolarizing(0.75) q[0]
#pragma braket noise depolarizing(0.75) q[1] cnot q[1], q[2];
#pragma braket noise depolarizing(0.75) q[0]
#pragma braket noise depolarizing(0.75) q[1]

c = measure q;

Specifications for all supported pragma noise operators are provided in the following list.

#pragma braket noise bit_flip(<float in [0,1/2]>) <qubit>
#pragma braket noise phase_flip(<float in [0,1/2]>) <qubit>
#pragma braket noise pauli_channel(<float>, <float>, <float>) <qubit>
#pragma braket noise depolarizing(<float in [0,3/4]>) <qubit>
#pragma braket noise two_qubit_depolarizing(<float in [0,15/16]>) <qubit>, <qubit>
#pragma braket noise two_qubit_dephasing(<float in [0,3/4]>) <qubit>, <qubit>
#pragma braket noise amplitude_damping(<float in [0,1]>) <qubit>
#pragma braket noise generalized_amplitude_damping(<float in [0,1]> <float in [0,1]>)
 <qubit>
#pragma braket noise phase_damping(<float in [0,1]>) <qubit>
#pragma braket noise kraus([[<complex m0_00>,], ...], [[<complex m1_00>,], ...], ...)
 <qubit>[, <qubit>] // maximum of 2 qubits and maximum of 4 matrices for 1 qubit,
 16 for 2

Kraus operator

In order to generate a Kraus operator, you can iterate through a list of matrices, printing each
element of the matrix as a complex expression.

When using Kraus operators, remember the following:

• The number of qubits must not exceed 2. The current definition in the schemas sets this limit.

• The length of the argument list must be a multiple of 8. This means it must be composed only of
2x2 matrices.

• The total length does not exceed 22*num_qubits matrices. This means 4 matrices for 1 qubit and 16
for 2 qubits.

Simulate noise 84

https://github.com/aws/amazon-braket-sdk-python/blob/0d28a8fa89263daf5d88bc706e79200d8dc091a8/src/braket/circuits/noises.py#L811-L814)

Amazon Braket Developer Guide

• All supplied matrices are completely positive trace preserving (CPTP).

• The product of the Kraus operators with their transpose conjugates need to add up to an identity
matrix.

Qubit rewiring with OpenQASM 3.0

Amazon Braket supports the physical qubit notation within OpenQASM on Rigetti devices (to learn
more see this page). When using physical qubits with the naive rewiring strategy, ensure that the
qubits are connected on the selected device. Alternatively, if qubit registers are used instead, the
PARTIAL rewiring strategy is enabled by default on Rigetti devices.

// ghz.qasm
// Prepare a GHZ state
OPENQASM 3;

h $0;
cnot $0, $1;
cnot $1, $2;

measure $0;
measure $1;
measure $2;

Verbatim compilation with OpenQASM 3.0

When you run a quantum circuit on quantum computers provided by vendors such as Rigetti, and
IonQ, you can direct the compiler to run your circuits exactly as defined, without any modifications.
This feature is known as verbatim compilation. With Rigetti devices, you can specify precisely what
gets preserved—either an entire circuit or only specific parts of it. To preserve only specific parts
of a circuit, you will need to use native gates within the preserved regions. Currently, IonQ only
supports verbatim compilation for the entire circuit, so every instruction in the circuit needs to be
enclosed in a verbatim box.

With OpenQASM, you can explicitly specify a verbatim pragma around a box of code that is then
left untouched and not optimized by the low-level compilation routine of the hardware. The
following code example shows how to use the #pragma braket verbatim directive to achieve
this.

OPENQASM 3;

Qubit rewiring 85

https://github.com/aws/amazon-braket-sdk-python/blob/0d28a8fa89263daf5d88bc706e79200d8dc091a8/src/braket/circuits/quantum_operator_helpers.py#L94-L108
https://github.com/openqasm/openqasm/blob/main/source/language/types.rst
https://pyquil-docs.rigetti.com/en/v2.28.1/compiler.html#naive

Amazon Braket Developer Guide

bit[2] c;

#pragma braket verbatim
box{
 rx(0.314159) $0;
 rz(0.628318) $0, $1;
 cz $0, $1;
}

c[0] = measure $0;
c[1] = measure $1;

For more detailed information on the process of verbatim compilation, including examples and
best practices, see the Verbatim compilation sample notebook available in the amazon-braket-
examples github repository.

The Braket console

OpenQASM 3.0 tasks are available and can be managed within the Amazon Braket console. On the
console, you have the same experience submitting quantum tasks in OpenQASM 3.0 as you had
submitting existing quantum tasks.

Additional resources

OpenQASM is available in all Amazon Braket Regions.

For an example notebook for getting started with OpenQASM on Amazon Braket, see Braket
Tutorials GitHub.

Computing gradients with OpenQASM 3.0

Amazon Braket supports the computation of gradients on both on-demand and local simulators
when running in the shots=0 (exact) mode. This is achieved through the use of the adjoint
differentiation method. To specify the gradient you want to compute, you can provide the
appropriate pragma, as demonstrated in code in the following example.

OPENQASM 3.0;
input float alpha;

bit[2] b;

The Braket console 86

https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Verbatim_Compilation.ipynb
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Getting_Started_with_OpenQASM_on_Braket.ipynb
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Getting_Started_with_OpenQASM_on_Braket.ipynb

Amazon Braket Developer Guide

qubit[2] q;

h q[0];
h q[1];
rx(alpha) q[0];
rx(alpha) q[1];
b[0] = measure q[0];
b[1] = measure q[1];

#pragma braket result adjoint_gradient h(q[0]) @ i(q[1]) alpha

Instead of listing all the individual parameters explicitly, you can also specify the all keyword
within the pragma. This will compute the gradient with respect to all of the input parameters
listed, which can be a convenient option when the number of parameters is very large. In this case,
the pragma will look like the code in the following example.

#pragma braket result adjoint_gradient h(q[0]) @ i(q[1]) all

All observable types are supported in Amazon Braket's OpenQASM 3.0 implementation, including
individual operators, tensor products, Hermitian observables, and Sum observables. The specific
operator you want to use when computing gradients must be wrapped within the expectation()
function, and the qubits that each term of the observable acts upon must be explicitly specified.

Measuring specific qubits with OpenQASM 3.0

The local state vector simulator and local density matrix simulator provided by Amazon Braket
support the submission of OpenQASM programs where a subset of the circuit's qubits can be
selectively measured. This capability, often referred to as partial measurement, allows for more
targeted and efficient quantum computations. For example, in the following code snippet, you
can create a two-qubit circuit and choose to only measure the first qubit, while leaving the second
qubit unmeasured.

partial_measure_qasm = """
OPENQASM 3.0;
bit[1] b;
qubit[2] q;
h q[0];
cnot q[0], q[1];
b[0] = measure q[0];
"""

Measuring specific qubits 87

Amazon Braket Developer Guide

In this example, we have a quantum circuit with two qubits, q[0] and q[1], but we are only
interested in measuring the state of the first qubit. This is achieved by the line b[0] = measure
q[0], which measures the state of qubit[0] and stores the result in the classical bit b[0]. To run this
partial measurement scenario, we can run the following code on the local state vector simulator
provided by Amazon Braket.

from braket.devices import LocalSimulator

local_sim = LocalSimulator()
partial_measure_local_sim_task =
 local_sim.run(OpenQASMProgram(source=partial_measure_qasm), shots = 10)
partial_measure_local_sim_result = partial_measure_local_sim_task.result()
print(partial_measure_local_sim_result.measurement_counts)
print("Measured qubits: ", partial_measure_local_sim_result.measured_qubits)

You can check whether a device supports partial measurement by inspecting the
requiresAllQubitsMeasurement field in its action properties; if it is False, then partial
measurement is supported.

from braket.devices import Devices

AwsDevice(Devices.Rigetti.Ankaa3).properties.action['braket.ir.openqasm.program'].requiresAllQubitsMeasurement

Here, requiresAllQubitsMeasurement is False, which indicates that not all qubits must be
measured.

Explore Experimental Capabilities

To advance your research workloads, it is important to get access to new innovative capabilities.
With Braket Direct, you can request access to available experimental capabilities, such as new
quantum devices with limited availability, directly in the Braket console.

To request access to Experimental Capabilities:

1. Navigate to the Amazon Braket console and select Braket Direct in the left menu, and then
navigate to the Experimental Capabilities section.

2. Choose Get Access and fill out the requested information.

3. Provide details about the workload and where you plan to use this capability.

(Advanced) Explore Experimental Capabilities 88

Amazon Braket Developer Guide

In this section:

• Access to local detuning on QuEra Aquila

• Access to tall geometries on QuEra Aquila

• Access to tight geometries on QuEra Aquila

Access to local detuning on QuEra Aquila

Local detuning (LD) is a new, time-dependent control field with a customizable spatial pattern. The
LD field affects qubits according to a customizable spatial pattern, realizing different Hamiltonians
for different qubits beyond what the uniform driving field and the Rydberg-Rydberg interaction
can create.

Constraints: The spatial pattern of the local detuning field is customizable for each AHS
program, but it is constant over the course of a program. The time series of the local
detuning field must start and end at zero with all values being less than or equal to zero.
Additionally, the parameters of the local detuning field are limited by numerical constraints,
which can be viewed through the Braket SDK in the specific device properties section -
aquila_device.properties.paradigm.rydberg.rydbergLocal.

Limitations: When running quantum programs that use the local detuning field (even if its
magnitude is set to constant zero in the Hamiltonian), the device experiences faster decoherence
than the T2 time listed in the performance section of Aquila’s properties. When unnecessary, it is
best practice to omit the local detuning field from the Hamiltonian of the AHS program.

Access to local detuning on QuEra Aquila 89

Amazon Braket Developer Guide

Examples:

1. Simulating the effect of non-uniform longitudinal magnetic field in spin systems.

While the amplitude and phase of the driving field have the same effect on the qubits as the
transverse magnetic field on spins, the sum of the driving field’s detuning and the local detuning
produces the same effect on the qubits as the longitudinal field on spins. With the spatial
control over the local detuning field, more complex spin systems can be simulated.

2. Preparing non-equilibrium initial states.

The example notebook Simulating lattice gauge theory with Rydberg atoms shows how to
suppress the central atom of a 9-atom linear arrangement from being excited when annealing
the system towards the Z2 ordered phase. After the preparation step, the local detuning field
is ramped down, and the AHS program continues to simulate the time evolution of the system
starting from this particular non-equilibrium state.

3. Solving weighted optimization problems.

The example notebook Maximum weight independent set (MWIS) shows how to solve a MWIS
problem on Aquila. The local detuning field is used to define the weights on the nodes of the
unit disk graph, whose edges are realized by the Rybderg-blockage effect. Starting from the

Access to local detuning on QuEra Aquila 90

https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/analog_hamiltonian_simulation/07_Simulating_Lattice_Gauge_Theory_with_Rydberg_Atoms.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/analog_hamiltonian_simulation/08_Maximum_Weight_Independent_Set.ipynb

Amazon Braket Developer Guide

uniform ground state, and gradually ramping up the local detuning field makes the system
transition into the ground state of the MWIS Hamiltonian to find solutions to the problem.

Access to tall geometries on QuEra Aquila

The tall geometries feature allows you to specify geometries with increased height. With this
capability, the atom arrangements of your AHS programs can span an additional length in the y
direction beyond Aquila’s regular capabilities.

Constraints: The max height for tall geometries is 0.000128 m (128 um).

Limitations: When this experimental capability is enabled for your account, the capabilities
shown on the device properties page and the GetDevice call will continue to reflect the regular,
lower limit on the height. When an AHS program uses atom arrangements that go beyond the
regular capabilities, the filling error is expected to increase. You will find an elevated number of
unexpected 0s in the pre_sequence part of the task result, in turn, lowering the chance to get a
perfectly initialized arrangement. This effect is strongest in rows with many atoms.

Examples:

1. Bigger 1d and quasi-1d arrangements.

Access to tall geometries on QuEra Aquila 91

Amazon Braket Developer Guide

Atom chains and ladder-like arrangements can be extended to higher atom numbers. By
orienting the long direction parallel to y allows for programming longer instances of these
models.

2. More room for multiplexing the execution of tasks with small geometries.

The example notebook Parallel quantum tasks on Aquila shows how to make the most out
of the available area: by placing multiplexed copies of the geometry in question in one atom
arrangement. With the more available area, more copies can be placed.

Access to tight geometries on QuEra Aquila

The tight geometries feature allows you to specify geometries with shorter spacing between
neighboring rows. In an AHS program, atoms are arranged in rows, separated by a minimal vertical
spacing. The y coordinate of any two atom sites must be either zero (same row), or differ by more
than the minimal row spacing (different row). With the tight geometries capability, the minimal
row spacing is reduced, enabling the creation of tighter atom arrangements. While this extension
does not change the minimal Euclidean distance requirement between atoms, it allows the creation
of lattices where distant atoms occupy neighboring rows closer to each other, a notable example is
the triangle lattice.

Constraints: The minimal row spacing for tight geometries is 0.000002 m (2 um).

Limitations: When this experimental capability is enabled for your account, the capabilities shown
on the device properties page and the GetDevice call will continue to reflect the regular, lower
limit on the height. When an AHS program uses atom arrangements that go beyond the regular
capabilities, the filling error is expected to increase. Customers will find an elevated number of
unexpected 0s in the pre_sequence part of the task result, in turn, lowering the chance to get a
perfectly initialized arrangement. This effect is strongest in rows with many atoms.

Access to tight geometries on QuEra Aquila 92

https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/analog_hamiltonian_simulation/03_Parallel_tasks_on_Aquila.ipynb

Amazon Braket Developer Guide

Examples:

1. Non-rectangular lattices with small lattice constants.

Tighter row spacing allows the creation of lattices where the closest neighbor to some atoms are
in the diagonal direction. Notable examples are triangular, hexagonal, and Kagome lattices and
some quasi-crystals.

2. Tunable family of lattices.

In AHS programs, interactions are tuned by adjusting the distance between pairs of atoms.
Tighter row spacing allow tuning the interactions of different atom pairs relative to each other
with more freedom, since the angles and distances that define the atom structure are less
limited by the minimal row spacing constraint. A notable example is the family of Shastry-
Sutherland lattices with different bond lengths.

Pulse control on Amazon Braket

Pulses are the analog signals that control the qubits in a quantum computer. With certain devices
on Amazon Braket, you can access the pulse control feature to submit circuits using pulses. You can
access pulse control through the Braket SDK, using OpenQASM 3.0, or directly through the Braket
APIs. First, let’s introduce some key concepts for pulse control in Braket.

(Advanced) Pulse control on Amazon Braket 93

Amazon Braket Developer Guide

In this section:

• Frames

• Ports

• Waveforms

• Roles of frames and ports

• Working with Hello Pulse

• Accessing native gates using pulses

Frames

A frame is a software abstraction that acts as both a clock within the quantum program and a
phase. The clock time is incremented on each usage and a stateful carrier signal that is defined
by a frequency. When transmitting signals to the qubit, a frame determines the qubit’s carrier
frequency, phase offset, and the time at which the waveform envelope is emitted. In Braket Pulse,
constructing frames depends on the device, frequency, and phase. Depending on the device, you
can either choose a predefined frame or instantiate new frames by providing a port.

from braket.aws import AwsDevice
from braket.pulse import Frame, Port

predefined frame from a device
device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3")
drive_frame = device.frames["Transmon_5_charge_tx"]

create a custom frame
readout_frame = Frame(frame_id="r0_measure", port=Port("channel_0", dt=1e-9),
 frequency=5e9, phase=0)

Ports

A port is a software abstraction representing any input/output hardware component controlling
qubits. It helps hardware vendors provide an interface with which users can interact to manipulate
and observe qubits. Ports are characterized by a single string that represents the name of the
connector. This string also exposes a minimum time increment that specifies how finely we can
define the waveforms.

from braket.pulse import Port

Frames 94

Amazon Braket Developer Guide

Port0 = Port("channel_0", dt=1e-9)

Waveforms

A waveform is a time-dependent envelope that we can use to emit signals on an output port or
capture signals through an input port. You can specify your waveforms directly either through a
list of complex numbers or by using a waveform template to generate a list from the hardware
provider.

from braket.pulse import ArbitraryWaveform, ConstantWaveform
cst_wfm = ConstantWaveform(length=1e-7, iq=0.1)
arb_wf = ArbitraryWaveform(amplitudes=np.linspace(0, 100))

Braket Pulse provides a standard library of waveforms, including a constant waveform, a Gaussian
waveform, and a Derivative Removal by Adiabatic Gate (DRAG) waveform. You can retrieve the
waveform data through the sample function to draw the shape of the waveform as shown in the
following example.

gaussian_waveform = GaussianWaveform(1e-7, 25e-9, 0.1)
x = np.arange(0, gaussian_waveform.length, drive_frame.port.dt)
plt.plot(x, gaussian_waveform.sample(drive_frame.port.dt))

Waveforms 95

Amazon Braket Developer Guide

The preceding image depicts the Gaussian waveforms created from GaussianWaveform. We
chose a pulse length of 100 ns, a width of 25 ns, and an amplitude of 0.1 (arbitrary units). The
waveforms are centered in the pulse window. GaussianWaveform accepts a boolean argument
zero_at_edges (ZaE in the legend). When set to True, this argument offsets the Gaussian
waveform such that the points at t=0 and t=length are at zero and rescales its amplitude such
that the maximum value corresponds to the amplitude argument.

Now that we have covered the basic concepts for pulse-level access, next we’ll see how to construct
a circuit using gates and pulses.

Roles of frames and ports

This section describes the predefined frames and ports available for each device. We will also
briefly discuss the mechanisms involved when pulses are played on certain frames.

Rigetti frames

Rigetti devices support predefined frames that have their frequency and phase calibrated to be on
resonance with the associated qubit. The naming convention is q{i}[_q{j}]_{role}_frame
where {i} refers to the first qubit number, {j} refers to the second qubit number in case the
frame serves to activate a two-qubit interaction, and {role} refers to the role of the frame. The
roles are as follows:

• rf is the frame to drive the 0-1 transition of the qubit. Pulses are transmitted as microwave
transient signals of frequency and phase previously provided through the set and shift
functions. The time-dependent amplitude of the signal is given by the waveform played on the
frame. The frame plugs a single-qubit, off-diagonal interaction. For more information, see Krantz
et al. and Rahamim et al..

• rf_f12 is similar to rf and its parameters target the 1-2 transition.

• ro_rx is used to achieve dispersive readout of the qubit through a coupled coplanar waveguide.
The frequency, phase, and full set of parameters for the readout waveform are precalibrated. It
is currently used through the capture_v0, which does not require any argument besides the
frame identifier.

• ro_tx is for transmitting signals from the resonator. It is currently unused.

• cz is a frame calibrated to enable the two-qubit cz gate. As with all the frames associated with
an ff port, it turns on an entangling interaction through the flux line by modulating the tunable
qubit of the pair on resonance with its neighbor. For more information about the entangling
mechanism, see Reagor et al., Caldwell et al., and Didier et al..

Roles of frames and ports 96

https://pubs.aip.org/aip/apr/article/6/2/021318/570326/A-quantum-engineer-s-guide-to-superconducting
https://pubs.aip.org/aip/apr/article/6/2/021318/570326/A-quantum-engineer-s-guide-to-superconducting
https://pubs.aip.org/aip/apl/article-abstract/110/22/222602/34004/Double-sided-coaxial-circuit-QED-with-out-of-plane
https://www.science.org/doi/10.1126/sciadv.aao3603
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.10.034050
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.022330

Amazon Braket Developer Guide

• cphase is a frame calibrated to enable the two-qubit cphaseshift gate and is linked to an
ff port. For more information about the entangling mechanism, see the description for the cz
frame.

• xy is a frame calibrated to enable the two-qubit XY(θ) gates and is linked to an ff port. For more
information about the entangling mechanism and how to achieve XY gates, see the description
for the cz frame and Abrams et al..

As frames based on the ff port shift the frequency of the tunable qubit, all the other driving
frames related to the qubit will be dephased by an amount that is related to the amplitude and
the duration of the frequency shift. Consequently, you must compensate for this effect by adding a
corresponding phase shift to the frames of the neighboring qubits.

Ports

The Rigetti devices provide a list of ports that you can inspect through the device capabilities. Port
names follow the convention q{i}_{type} where {i} refers to the qubit number and {type}
refers to the type of the port. Note that not all of the qubits have a complete set of ports. The
types of ports are as follows:

• rf represents the main interface to drive the single-qubit transition. It is associated with the rf
and rf_f12 frames. It is capacitively coupled to the qubit, allowing microwave driving in the
gigahertz range.

• ro_tx serves to transmit signals to the readout resonator capacitively coupled to the qubit.
Readout signal delivery is multiplexed eight-fold by octagon.

• ro_rx serves to receive signals from the readout resonator coupled to the qubit.

• ff represents the fast-flux line inductively coupled to the qubit. We can use this to tune the
frequency of the transmon. Only qubits designed to be highly tunable have an ff port. This port
serves to activate qubit-qubit interaction as there is a static capacitive coupling between each
pair of neighboring transmons.

For more information about the architecture, see Valery et al..

Working with Hello Pulse

In this section, you will learn how to characterize and construct a single qubit gate directly using
pulse on a Rigetti device. Applying an electromagnetic field to a qubit leads to Rabi oscillation,
switching qubits between its 0 state and 1 state. With calibrated length and phase of the pulse, the

Working with Hello Pulse 97

https://www.nature.com/articles/s41928-020-00498-1#Abs1
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.3.020337

Amazon Braket Developer Guide

Rabi oscillation can calculate a single qubit gates. Here, we will determine the optimal pulse length
to measure a pi/2 pulse, an elementary block used to build more complex pulse sequences.

First, to build a pulse sequence, import the PulseSequence class.

from braket.aws import AwsDevice
from braket.circuits import FreeParameter
from braket.devices import Devices
from braket.pulse import PulseSequence, GaussianWaveform

import numpy as np

Next, instantiate a new Braket device using the Amazon Resource Name (ARN) of the QPU. The
following code block uses Rigetti Ankaa-3.

device = AwsDevice(Devices.Rigetti.Ankaa3)

The following pulse sequence includes two components: Playing a waveform and measuring a
qubit. Pulse sequence can usually be applied to frames. With some exceptions such as barrier and
delay, which can be applied to qubits. Before constructing the pulse sequence you must retrieve
the available frames. The drive frame is used for applying the pulse for Rabi oscillation, and the
readout frame is for measuring the qubit state. This example, uses the frames of qubit 25. For more
information about frames, see Roles of frames and ports.

drive_frame = device.frames["Transmon_25_charge_tx"]
readout_frame = device.frames["Transmon_25_readout_rx"]

Now, create the waveform that will play in the drive frame. The goal is to characterize the behavior
of the qubits for different pulse lengths. You will play a waveform with different lengths each
time. Instead of instantiating a new waveform each time, use the Braket-supported free parameter
in pulse sequence. You are able to create the waveform and the pulse sequence once with a free
parameters, and then run the same pulse sequence with different input values.

waveform = GaussianWaveform(FreeParameter("length"), FreeParameter("length") * 0.25,
 0.2, False)

Finally, put them together as a pulse sequence. In the pulse sequence, play plays the specified
waveform on the drive frame, and the capture_v0 measures the state from the readout frame.

Working with Hello Pulse 98

https://docs.aws.amazon.com/braket/latest/developerguide/braket-roles-frames-ports.html

Amazon Braket Developer Guide

pulse_sequence = (
 PulseSequence()
 .play(drive_frame, waveform)
 .capture_v0(readout_frame)
)

Scan across a range of pulse length and submit them to the QPU.

start_length=12e-9
end_length=2e-7
lengths = np.arange(start_length, end_length, 12e-9)

tasks = [
 device.run(pulse_sequence, shots=100, inputs={"length": length})
 for length in lengths
]

probability_of_zero = [
 task.result().measurement_counts['0']/N_shots
 for task in tasks
]

The statistics of the qubit measurement exhibits the oscillatory dynamics of the qubit that
oscillates between the 0 state and the 1 state. From the measurement data, you can extract the
Rabi frequency and fine tune the length of the pulse to implement a particular 1-qubit gate. For
example, from the data in figure below, the periodicity is about 154 ns. So a pi/2 rotation gate
would correspond to the pulse sequence with length=38.5ns.

Working with Hello Pulse 99

Amazon Braket Developer Guide

Hello Pulse using OpenPulse

OpenPulse is a language for specifying pulse-level control of a general quantum device and is part
of the OpenQASM 3.0 specification. Amazon Braket supports OpenPulse for directly programming
pulses using the OpenQASM 3.0 representation.

Braket uses OpenPulse as the underlying intermediate representation for expressing pulses in
native instructions. OpenPulse supports the addition of instruction calibrations in the form of
defcal (short for “define calibration”) declarations. With these declarations, you can specify an
implementation of a gate instruction within a lower-level control grammar.

You can view the OpenPulse program of a Braket PulseSequence using the following command.

print(pulse_sequence.to_ir())

You can also construct an OpenPulse program directly.

from braket.ir.openqasm import Program

Working with Hello Pulse 100

https://openqasm.com/language/openpulse.html

Amazon Braket Developer Guide

openpulse_script = """
OPENQASM 3.0;
cal {
 bit[1] psb;
 waveform my_waveform = gaussian(12.0ns, 3.0ns, 0.2, false);
 play(Transmon_25_charge_tx, my_waveform);
 psb[0] = capture_v0(Transmon_25_readout_rx);
}
"""

Create a Program object with your script. Then, submit the program to a QPU.

from braket.aws import AwsDevice
from braket.devices import Devices
from braket.ir.openqasm import Program

program = Program(source=openpulse_script)

device = AwsDevice(Devices.Rigetti.Ankaa3)
task = device.run(program, shots=100)

Accessing native gates using pulses

Researchers often need to know exactly how the native gates supported by a particular QPU
are implemented as pulses. Pulse sequences are carefully calibrated by hardware providers, but
accessing them provides researchers the opportunity to design better gates or explore protocols
for error mitigation such as zero noise extrapolation by stretching the pulses of specific gates.

Amazon Braket supports programmatic access to native gates from Rigetti.

import math
from braket.aws import AwsDevice
from braket.circuits import Circuit, GateCalibrations, QubitSet
from braket.circuits.gates import Rx

device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3")

calibrations = device.gate_calibrations
print(f"Downloaded {len(calibrations)} calibrations.")

Accessing native gates using pulses 101

Amazon Braket Developer Guide

Note

Hardware providers periodically calibrate the QPU, often more than once a day. The Braket
SDK enables you to obtain the latest gate calibrations.

device.refresh_gate_calibrations()

To retrieve a given native gate, such as the RX or XY gate, you need to pass the Gate object and
the qubits of interest. For example, you can inspect the pulse implementation of the RX(π/2)
applied on qubit 0.

rx_pi_2_q0 = (Rx(math.pi/2), QubitSet(0))

pulse_sequence_rx_pi_2_q0 = calibrations.pulse_sequences[rx_pi_2_q0]

You can create a filtered set of calibrations using the filter function. You pass a list of gates
or a list of QubitSet. The following code creates two sets that contain all of the calibrations for
RX(π/2) and for qubit 0.

rx_calibrations = calibrations.filter(gates=[Rx(math.pi/2)])
q0_calibrations = calibrations.filter(qubits=QubitSet([0])

Now you can provide or modify the action of native gates by attaching a custom calibration set. For
example, consider the following circuit.

bell_circuit = (
Circuit()
.rx(0,math.pi/2)
.rx(1,math.pi/2)
.iswap(0,1)
.rx(1,-math.pi/2)
)

You can run it with a custom gate calibration for the rx gate on qubit 0 by passing a dictionary
of PulseSequence objects to the gate_definitions keyword argument. You can construct a
dictionary from the attribute pulse_sequences of the GateCalibrations object. All gates not
specified are replaced with the quantum hardware provider's pulse calibration.

Accessing native gates using pulses 102

Amazon Braket Developer Guide

nb_shots = 50
custom_calibration = GateCalibrations({rx_pi_2_q0: pulse_sequence_rx_pi_2_q0})
task=device.run(bell_circuit, gate_definitions=custom_calibration.pulse_sequences,
 shots=nb_shots)

Analog Hamiltonian Simulation

Analog Hamiltonian Simulation (AHS) is an emerging paradigm in quantum computing that differs
significantly from the traditional quantum circuit model. Instead of a sequence of gates, where
each circuit acts only on a couple of qubits at a time. An AHS program is defined by the time-
dependent and space-dependent parameters of the Hamiltonian in question. The Hamiltonian of a
system encodes its energy levels and the effects of external forces, which together govern the time
evolution of its states. For an N-qubit systems, the Hamiltonian can be represented by a 2NX2N

square matrix of complex numbers.

Quantum devices capable of performing AHS are designed to closely approximate the time
evolution of a quantum system under a custom Hamiltonian by carefully tuning their internal
control parameters. Such as, adjusting the amplitude and detuning parameters of a coherent
driving field. The AHS paradigm is well-suited for simulating the static and dynamic properties of
quantum systems with many interacting particles, such as in condensed matter physics or quantum
chemistry. Purpose-built quantum processing units (QPUs), like the Aquila device from QuEra,
have been developed to leverage the power of AHS and tackle problems beyond the reach of
conventional digital quantum computing approaches in innovative ways.

In this section:

• Hello AHS: Run your first Analog Hamiltonian Simulation

• Submit an analog program using QuEra Aquila

Hello AHS: Run your first Analog Hamiltonian Simulation

This section provides information on running your first Analog Hamiltonian Simulation.

In this section:

• Interacting spin chain

• Arrangement

• Interaction

(Advanced) Analog Hamiltonian Simulation 103

https://en.wikipedia.org/wiki/Hamiltonian_simulation
https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)
https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)
https://aws.amazon.com/braket/quantum-computers/quera/

Amazon Braket Developer Guide

• Driving field

• AHS program

• Running on local simulator

• Analyzing simulator results

• Running on QuEra’s Aquila QPU

• Analyzing QPU results

• Next steps

Interacting spin chain

For a canonical example of a system of many interacting particles, let us consider a ring of eight
spins (each of which can be in “up” ∣↑# and “down” ∣↓# states). Albeit small, this model system
already exhibits a handful of interesting phenomena of naturally occurring magnetic materials. In
this example, we will show how to prepare a so-called anti-ferromagnetic order, where consecutive
spins point in opposite directions.

Hello AHS: Run your first Analog Hamiltonian Simulation 104

Amazon Braket Developer Guide

Arrangement

We will use one neutral atom to stand for each spin, and the “up” and “down” spin states will be
encoded in excited Rydberg state and ground state of the atoms, respectively. First, we create the
2-d arrangement. We can program the above ring of spins with the following code.

Hello AHS: Run your first Analog Hamiltonian Simulation 105

Amazon Braket Developer Guide

Prerequisites: You need to pip install the Braket SDK. (If you are using a Braket hosted notebook
instance, this SDK comes pre-installed with the notebooks.) To reproduce the plots, you also need
to separately install matplotlib with the shell command pip install matplotlib.

import numpy as np
 import matplotlib.pyplot as plt # required for plotting

 from braket.ahs.atom_arrangement import AtomArrangement

 a = 5.7e-6 # nearest-neighbor separation (in meters)

 register = AtomArrangement()
 register.add(np.array([0.5, 0.5 + 1/np.sqrt(2)]) * a)
 register.add(np.array([0.5 + 1/np.sqrt(2), 0.5]) * a)
 register.add(np.array([0.5 + 1/np.sqrt(2), - 0.5]) * a)
 register.add(np.array([0.5, - 0.5 - 1/np.sqrt(2)]) * a)
 register.add(np.array([-0.5, - 0.5 - 1/np.sqrt(2)]) * a)
 register.add(np.array([-0.5 - 1/np.sqrt(2), - 0.5]) * a)
 register.add(np.array([-0.5 - 1/np.sqrt(2), 0.5]) * a)
 register.add(np.array([-0.5, 0.5 + 1/np.sqrt(2)]) * a)

which we can also plot with

fig, ax = plt.subplots(1, 1, figsize=(7,7))
 xs, ys = [register.coordinate_list(dim) for dim in (0, 1)]
 ax.plot(xs, ys, 'r.', ms=15)
 for idx, (x, y) in enumerate(zip(xs, ys)):
 ax.text(x, y, f" {idx}", fontsize=12)
 plt.show() # this will show the plot below in an ipython or jupyter session

Hello AHS: Run your first Analog Hamiltonian Simulation 106

https://github.com/aws/amazon-braket-sdk-python#installing-the-amazon-braket-python-sdk

Amazon Braket Developer Guide

Interaction

To prepare the anti-ferromagnetic phase, we need to induce interactions between neighboring
spins. We use the van der Waals interaction for this, which is natively implemented by neutral atom
devices (such as the Aquila device from QuEra). Using the spin-representation, the Hamiltonian
term for this interaction can be expressed as a sum over all spin pairs (j,k).

Hello AHS: Run your first Analog Hamiltonian Simulation 107

https://en.wikipedia.org/wiki/Van_der_Waals_force

Amazon Braket Developer Guide

Here, nj =∣↑j⟩⟨#j∣ is an operator that takes the value of 1 only if spin j is in the “up” state, and 0
otherwise. The strength is Vj,k=C6/(dj,k)6, where C6 is the fixed coefficient, and dj,k is the Euclidean
distance between spins j and k. The immediate effect of this interaction term is that any state
where both spin j and spin k are “up” have elevated energy (by the amount Vj,k). By carefully
designing the rest of the AHS program, this interaction will prevent neighboring spins from both
being in the “up” state, an effect commonly known as "Rydberg blockade."

Driving field

At the beginning of the AHS program, all spins (by default) start in their “down” state, they are in
a so-called ferromagnetic phase. Keeping an eye on our goal to prepare the anti-ferromagnetic
phase, we specify a time-dependent coherent driving field that smoothly transitions the spins
from this state to a many-body state where the “up” states are preferred. The corresponding
Hamiltonian can be written as

where Ω(t),ϕ(t),Δ(t) are the time-dependent, global amplitude (aka Rabi frequency), phase, and
detuning of the driving field affecting all spins uniformly. Here S−,k=∣↓k⟩⟨#k∣and S+,k=(S−,k)†=∣↑k⟩⟨#k

∣ are the lowering and raising operators of spin k, respectively, and nk=∣↑k⟩⟨#k∣ is the same operator
as before. The Ω part of the driving field coherently couples the “down” and the “up” states of all
spins simultaneously, while the Δ part controls the energy reward for “up” states.

To program a smooth transition from the ferromagnetic phase to the anti-ferromagnetic phase, we
specify the driving field with the following code.

from braket.timings.time_series import TimeSeries
 from braket.ahs.driving_field import DrivingField

 # smooth transition from "down" to "up" state
 time_max = 4e-6 # seconds
 time_ramp = 1e-7 # seconds
 omega_max = 6300000.0 # rad / sec
 delta_start = -5 * omega_max

Hello AHS: Run your first Analog Hamiltonian Simulation 108

https://en.wikipedia.org/wiki/Rabi_frequency

Amazon Braket Developer Guide

 delta_end = 5 * omega_max

 omega = TimeSeries()
 omega.put(0.0, 0.0)
 omega.put(time_ramp, omega_max)
 omega.put(time_max - time_ramp, omega_max)
 omega.put(time_max, 0.0)

 delta = TimeSeries()
 delta.put(0.0, delta_start)
 delta.put(time_ramp, delta_start)
 delta.put(time_max - time_ramp, delta_end)
 delta.put(time_max, delta_end)

 phi = TimeSeries().put(0.0, 0.0).put(time_max, 0.0)

 drive = DrivingField(
 amplitude=omega,
 phase=phi,
 detuning=delta
)

We can visualize the time series of the driving field with the following script.

fig, axes = plt.subplots(3, 1, figsize=(12, 7), sharex=True)

 ax = axes[0]
 time_series = drive.amplitude.time_series
 ax.plot(time_series.times(), time_series.values(), '.-');
 ax.grid()
 ax.set_ylabel('Omega [rad/s]')

 ax = axes[1]
 time_series = drive.detuning.time_series
 ax.plot(time_series.times(), time_series.values(), '.-');
 ax.grid()
 ax.set_ylabel('Delta [rad/s]')

 ax = axes[2]
 time_series = drive.phase.time_series
 # Note: time series of phase is understood as a piecewise constant function
 ax.step(time_series.times(), time_series.values(), '.-', where='post');
 ax.set_ylabel('phi [rad]')

Hello AHS: Run your first Analog Hamiltonian Simulation 109

Amazon Braket Developer Guide

 ax.grid()
 ax.set_xlabel('time [s]')

 plt.show() # this will show the plot below in an ipython or jupyter session

AHS program

The register, the driving field, (and the implicit van der Waals interactions) make up the Analog
Hamiltonian Simulation program ahs_program.

from braket.ahs.analog_hamiltonian_simulation import AnalogHamiltonianSimulation

 ahs_program = AnalogHamiltonianSimulation(
 register=register,
 hamiltonian=drive
)

Running on local simulator

Since this example is small (less than 15 spins), before running it on an AHS-compatible QPU, we
can run it on the local AHS simulator which comes with the Braket SDK. Since the local simulator

Hello AHS: Run your first Analog Hamiltonian Simulation 110

Amazon Braket Developer Guide

is available for free with the Braket SDK, this is best practice to ensure that our code can correctly
execute.

Here, we can set the number of shots to a high value (say, 1 million) because the local simulator
tracks the time evolution of the quantum state and draws samples from the final state; hence,
increasing the number of shots, while increasing the total runtime only marginally.

from braket.devices import LocalSimulator
 device = LocalSimulator("braket_ahs")

 result_simulator = device.run(
 ahs_program,
 shots=1_000_000
).result() # takes about 5 seconds

Analyzing simulator results

We can aggregate the shot results with the following function that infers the state of each spin
(which may be “d” for “down”, “u” for “up”, or “e” for empty site), and counts how many times each
configuration occurred across the shots.

from collections import Counter

 def get_counts(result):
 """Aggregate state counts from AHS shot results

 A count of strings (of length = # of spins) are returned, where
 each character denotes the state of a spin (site):
 e: empty site
 u: up state spin
 d: down state spin

 Args:
 result
 (braket.tasks.analog_hamiltonian_simulation_quantum_task_result.AnalogHamiltonianSimulationQuantumTaskResult)

 Returns
 dict: number of times each state configuration is measured

 """
 state_counts = Counter()
 states = ['e', 'u', 'd']

Hello AHS: Run your first Analog Hamiltonian Simulation 111

Amazon Braket Developer Guide

 for shot in result.measurements:
 pre = shot.pre_sequence
 post = shot.post_sequence
 state_idx = np.array(pre) * (1 + np.array(post))
 state = "".join(map(lambda s_idx: states[s_idx], state_idx))
 state_counts.update((state,))
 return dict(state_counts)

 counts_simulator = get_counts(result_simulator) # takes about 5 seconds
 print(counts_simulator)

{'udududud': 330944, 'dudududu': 329576, 'dududdud': 38033, ...}

Here counts is a dictionary that counts the number of times each state configuration is observed
across the shots. We can also visualize them with the following code.

from collections import Counter

 def has_neighboring_up_states(state):
 if 'uu' in state:
 return True
 if state[0] == 'u' and state[-1] == 'u':
 return True
 return False

 def number_of_up_states(state):
 return Counter(state)['u']

 def plot_counts(counts):
 non_blockaded = []
 blockaded = []
 for state, count in counts.items():
 if not has_neighboring_up_states(state):
 collection = non_blockaded
 else:
 collection = blockaded
 collection.append((state, count, number_of_up_states(state)))

 blockaded.sort(key=lambda _: _[1], reverse=True)
 non_blockaded.sort(key=lambda _: _[1], reverse=True)

 for configurations, name in zip((non_blockaded,
 blockaded),

Hello AHS: Run your first Analog Hamiltonian Simulation 112

Amazon Braket Developer Guide

 ('no neighboring "up" states',
 'some neighboring "up" states')):
 plt.figure(figsize=(14, 3))
 plt.bar(range(len(configurations)), [item[1] for item in configurations])
 plt.xticks(range(len(configurations)))
 plt.gca().set_xticklabels([item[0] for item in configurations], rotation=90)
 plt.ylabel('shots')
 plt.grid(axis='y')
 plt.title(f'{name} configurations')
 plt.show()

 plot_counts(counts_simulator)

From the plots, we can read the following observations the verify that we successfully prepared the
anti-ferromagnetic phase.

1. Generally, non-blockaded states (where no two neighboring spins are in the “up” state) are more
common than states where at least one pair of neighboring spins are both in “up” states.

2. Generally, states with more "up" excitations are favored, unless the configuration is blockaded.

Hello AHS: Run your first Analog Hamiltonian Simulation 113

Amazon Braket Developer Guide

3. The most common states are indeed the perfect anti-ferromagnetic states "dudududu" and
"udududud".

4. The second most common states are the ones where there is only 3 “up” excitations with
consecutive separations of 1, 2, 2. This shows that the van der Waals interaction has an affect
(albeit much smaller) on next-nearest neighbors too.

Running on QuEra’s Aquila QPU

Prerequisites: Apart from pip installing the Braket SDK, if you are new to Amazon Braket, please
make sure that you have completed the necessary Get Started steps.

Note

If you are using a Braket hosted notebook instance, the Braket SDK comes pre-installed
with the instance.

With all dependencies installed, we can connect to the Aquila QPU.

from braket.aws import AwsDevice

 aquila_qpu = AwsDevice("arn:aws:braket:us-east-1::device/qpu/quera/Aquila")

To make our AHS program suitable for the QuEra machine, we need to round all values to
comply with the levels of precision allowed by the Aquila QPU. (These requirements are governed
by the device parameters with “Resolution” in their name. We can see them by executing
aquila_qpu.properties.dict() in a notebook. For more details of capabilities and
requirements of Aquila, see the Introduction to Aquila notebook.) We can do this by calling the
discretize method.

discretized_ahs_program = ahs_program.discretize(aquila_qpu)

Now we can run the program (running only 100 shots for now) on the Aquila QPU.

Hello AHS: Run your first Analog Hamiltonian Simulation 114

https://github.com/aws/amazon-braket-sdk-python#installing-the-amazon-braket-python-sdk
https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started.html
https://github.com/aws/amazon-braket-examples/blob/main/examples/analog_hamiltonian_simulation/01_Introduction_to_Aquila.ipynb

Amazon Braket Developer Guide

Note

Running this program on the Aquila processor will incur a cost. The Amazon Braket SDK
includes a Cost Tracker that enables customers to set cost limits as well as track their costs
in near real-time.

task = aquila_qpu.run(discretized_ahs_program, shots=100)

 metadata = task.metadata()
 task_arn = metadata['quantumTaskArn']
 task_status = metadata['status']

 print(f"ARN: {task_arn}")
 print(f"status: {task_status}")

task ARN: arn:aws:braket:us-east-1:123456789012:quantum-task/12345678-90ab-
cdef-1234-567890abcdef
 task status: CREATED

Due to the large variance of how long a quantum task may take to run (depending on availability
windows and QPU utilization), it is a good idea to note down the quantum task ARN, so we can
check its status at a later time with the following code snippet.

Optionally, in a new python session

 from braket.aws import AwsQuantumTask

 SAVED_TASK_ARN = "arn:aws:braket:us-east-1:123456789012:quantum-task/12345678-90ab-
cdef-1234-567890abcdef"

 task = AwsQuantumTask(arn=SAVED_TASK_ARN)
 metadata = task.metadata()
 task_arn = metadata['quantumTaskArn']
 task_status = metadata['status']

 print(f"ARN: {task_arn}")
 print(f"status: {task_status}")

[Output]

Hello AHS: Run your first Analog Hamiltonian Simulation 115

https://aws.amazon.com/blogs/quantum-computing/managing-the-cost-of-your-experiments-in-amazon-braket/

Amazon Braket Developer Guide

 task ARN: arn:aws:braket:us-east-1:123456789012:quantum-task/12345678-90ab-
cdef-1234-567890abcdef
 task status: COMPLETED

Once the status is COMPLETED (which can also be checked from the quantum tasks page of the
Amazon Braket console), we can query the results with:

result_aquila = task.result()

Analyzing QPU results

Using the same get_counts functions as before, we can compute the counts:

counts_aquila = get_counts(result_aquila)
 print(counts_aquila)

[Output]
 {'udududud': 24, 'dudududu': 17, 'dududdud': 3, ...}

and plot them with plot_counts:

plot_counts(counts_aquila)

Hello AHS: Run your first Analog Hamiltonian Simulation 116

https://us-east-1.console.aws.amazon.com/braket/home?region=us-east-1#/tasks

Amazon Braket Developer Guide

Note that a small fraction of shots have empty sites (marked with “e”). This is due to a 1—2% per
atom preparation imperfections of the Aquila QPU. Apart from this, the results match with the
simulation within the expected statistical fluctuation due to small number of shots.

Next steps

Congratulations, you have now run your first AHS workload on Amazon Braket using the local AHS
simulator and the Aquila QPU.

To learn more about Rydberg physics, Analog Hamiltonian Simulation and the Aquila device, refer
to our example notebooks.

Submit an analog program using QuEra Aquila

This page provides a comprehensive documentation about the capabilities of the Aquila machine
from QuEra. Details covered here are the following: 1) The parameterized Hamiltonian simulated
by Aquila, 2) AHS program parameters, 3) AHS result content, 4) Aquila capabilities parameter. We
suggest using Ctrl+F text search to find parameters relevant to your questions.

Submit an analog program using QuEra Aquila 117

https://github.com/aws/amazon-braket-examples/tree/main/examples/analog_hamiltonian_simulation

Amazon Braket Developer Guide

In this section:

• Hamiltonian

• Braket AHS program schema

• Braket AHS task result schema

• QuEra device properties schema

Hamiltonian

The Aquila machine from QuEra simulates the following (time-dependent) Hamiltonian natively:

Note

Access to local detuning is an Experimental capability and is available by request through
Braket Direct.

where

• Hdrive,k(t)=(1/2 Ω(t)e
iϕ(t)

S−,k + 1/2 Ω(t)e
−iϕ(t)

 S+,k) + (−Δglobal(t)nk),

• Ω(t) is the time-dependent, global driving amplitude (aka Rabi frequency), in units of (rad / s)

• ϕ(t) is the time-dependent, global phase, measured in radians

• S−,k and S+,k are the spin lowering and raising operators of atom k (in the basis |#⟩=|g⟩, |#⟩=|r⟩,
they are S−=|g⟩⟨r|, S+=(S−)†=|r⟩⟨g|)

• Δglobal(t) is the time-dependent, global detuning

• nk is the projection operator on the Rydberg state of atom k (i.e. n=|r⟩⟨r|)

• Hlocal detuning,k(t)=-Δlocal(t)hknk

• Δlocal(t) is the time-dependent factor of the local frequency shift, in units of (rad / s)

• hk is the site-dependent factor, a dimensionless number between 0.0 and 1.0

• Vvdw,k,l=C6/(dk,l)
6nknl,

• C6 is the van der Waals coefficient, in units of (rad / s) * (m)^6

• dk,l is the Euclidean distance between atom k and l, measured in meters.

Submit an analog program using QuEra Aquila 118

https://docs.aws.amazon.com/braket/latest/developerguide/braket-experimental-capabilities.html

Amazon Braket Developer Guide

Users have control over the following parameters through the Braket AHS program schema.

• 2-d atom arrangement (xk and yk coordinates of each atom k, in units of um), which controls the
pairwise atomic distances dk,l with k,l=1,2,…N

• Ω(t), the time-dependent, global Rabi frequency, in units of (rad / s)

• ϕ(t), the time-dependent, global phase, in units of (rad)

• Δglobal(t), the time-dependent, global detuning, in units of (rad / s)

• Δlocal(t), the time-dependent (global) factor of the magnitude of local detuning, in units of (rad /
s)

• hk, the (static) site-dependent factor of the magnitude of local detuning, a dimensionless
number between 0.0 and 1.0

Note

The user cannot control which levels are involved (i.e. S−,S+, n operators are fixed) nor the
strength of the Rydberg-Rydberg interaction coefficient (C6).

Braket AHS program schema

braket.ir.ahs.program_v1.Program object (example)

Note

If the local detuning feature is not enabled for your account, use localDetuning=[] in
the following example.

Program(
 braketSchemaHeader=BraketSchemaHeader(
 name='braket.ir.ahs.program',
 version='1'
),
 setup=Setup(
 ahs_register=AtomArrangement(
 sites=[
 [Decimal('0'), Decimal('0')],
 [Decimal('0'), Decimal('4e-6')],

Submit an analog program using QuEra Aquila 119

https://docs.aws.amazon.com/braket/latest/developerguide/braket-experimental-capabilities.html#braket-access-local-detuning

Amazon Braket Developer Guide

 [Decimal('4e-6'), Decimal('0')]
],
 filling=[1, 1, 1]
)
),
 hamiltonian=Hamiltonian(
 drivingFields=[
 DrivingField(
 amplitude=PhysicalField(
 time_series=TimeSeries(
 values=[Decimal('0'), Decimal('15700000.0'),
 Decimal('15700000.0'), Decimal('0')],
 times=[Decimal('0'), Decimal('0.000001'), Decimal('0.000002'),
 Decimal('0.000003')]
),
 pattern='uniform'
),
 phase=PhysicalField(
 time_series=TimeSeries(
 values=[Decimal('0'), Decimal('0')],
 times=[Decimal('0'), Decimal('0.000003')]
),
 pattern='uniform'
),
 detuning=PhysicalField(
 time_series=TimeSeries(
 values=[Decimal('-54000000.0'), Decimal('54000000.0')],
 times=[Decimal('0'), Decimal('0.000003')]
),
 pattern='uniform'
)
)
],
 localDetuning=[
 LocalDetuning(
 magnitude=PhysicalField(
 times_series=TimeSeries(
 values=[Decimal('0'), Decimal('25000000.0'),
 Decimal('25000000.0'), Decimal('0')],
 times=[Decimal('0'), Decimal('0.000001'), Decimal('0.000002'),
 Decimal('0.000003')]
),
 pattern=Pattern([Decimal('0.8'), Decimal('1.0'), Decimal('0.9')])
)

Submit an analog program using QuEra Aquila 120

Amazon Braket Developer Guide

)
]
)
)

JSON (example)

Note

If the local detuning feature is not enabled for your account, use "localDetuning": []
in the following example.

{
 "braketSchemaHeader": {
 "name": "braket.ir.ahs.program",
 "version": "1"
 },
 "setup": {
 "ahs_register": {
 "sites": [
 [0E-7, 0E-7],
 [0E-7, 4E-6],
 [4E-6, 0E-7]
],
 "filling": [1, 1, 1]
 }
 },
 "hamiltonian": {
 "drivingFields": [
 {
 "amplitude": {
 "time_series": {
 "values": [0.0, 15700000.0, 15700000.0, 0.0],
 "times": [0E-9, 0.000001000, 0.000002000, 0.000003000]
 },
 "pattern": "uniform"
 },
 "phase": {
 "time_series": {
 "values": [0E-7, 0E-7],
 "times": [0E-9, 0.000003000]

Submit an analog program using QuEra Aquila 121

https://docs.aws.amazon.com/braket/latest/developerguide/braket-experimental-capabilities.html#braket-access-local-detuning

Amazon Braket Developer Guide

 },
 "pattern": "uniform"
 },
 "detuning": {
 "time_series": {
 "values": [-54000000.0, 54000000.0],
 "times": [0E-9, 0.000003000]
 },
 "pattern": "uniform"
 }
 }
],
 "localDetuning": [
 {
 "magnitude": {
 "time_series": {
 "values": [0.0, 25000000.0, 25000000.0, 0.0],
 "times": [0E-9, 0.000001000, 0.000002000, 0.000003000]
 },
 "pattern": [0.8, 1.0, 0.9]
 }
 }
]
 }
}

Main fields

Program field type description

setup.ahs_register.sites List[List[Decimal]] List of 2-d
coordinates where
the tweezers trap
atoms

setup.ahs_register.filling List[int] Marks atoms that
occupy the trap
sites with 1, and
empty sites with 0

Submit an analog program using QuEra Aquila 122

Amazon Braket Developer Guide

Program field type description

hamiltonian.drivingFields[].amplitude.time_se
ries.times

List[Decimal] time points of
driving amplitude,
Omega(t)

hamiltonian.drivingFields[].amplitude.time_se
ries.values

List[Decimal] values of driving
amplitude,
Omega(t)

hamiltonian.drivingFields[].amplitude.pattern str spatial pattern of
driving amplitude,
Omega(t); must be
'uniform'

hamiltonian.drivingFields[].phase.time_series.times List[Decimal] time points of
driving phase,
phi(t)

hamiltonian.drivingFields[].phase.time_series.values List[Decimal] values of driving
phase, phi(t)

hamiltonian.drivingFields[].phase.pattern str spatial pattern
of driving phase,
phi(t); must be
'uniform'

hamiltonian.drivingFields[].detuning.time_ser
ies.times

List[Decimal] time points of
driving detuning,
Delta_global(t)

hamiltonian.drivingFields[].detuning.time_ser
ies.values

List[Decimal] values of driving
detuning,
Delta_global(t)

hamiltonian.drivingFields[].detuning.pattern str spatial pattern of
driving detuning,
Delta_global(t);
must be 'uniform'

Submit an analog program using QuEra Aquila 123

Amazon Braket Developer Guide

Program field type description

hamiltonian.localDetuning[].magnitude.time_se
ries.times

List[Decimal] time points of
the time-depe
ndent factor of
the local detuning
magnitude,
Delta_local(t)

hamiltonian.localDetuning[].magnitude.time_se
ries.values

List[Decimal] values of the
time-dependent
factor of the
local detuning
magnitude,
Delta_local(t)

hamiltonian.localDetuning[].magnitude.pattern List[Decimal] site-dependent
factor of the
local detuning
magnitude, h_k
(values correspon
ds to sites in
setup.ahs_register
.sites)

Metadata fields

Program field type description

braketSchemaHeader.name str name of the schema; must be 'braket.i
r.ahs.program'

braketSchemaHeader.version str version of the schema

Submit an analog program using QuEra Aquila 124

Amazon Braket Developer Guide

Braket AHS task result schema

braket.tasks.analog_hamiltonian_simulation_quantum_task_result.AnalogHamiltonianSimulationQuantumTaskResult
(example)

AnalogHamiltonianSimulationQuantumTaskResult(
 task_metadata=TaskMetadata(
 braketSchemaHeader=BraketSchemaHeader(
 name='braket.task_result.task_metadata',
 version='1'
),
 id='arn:aws:braket:us-east-1:123456789012:quantum-task/12345678-90ab-
cdef-1234-567890abcdef',
 shots=2,
 deviceId='arn:aws:braket:us-east-1::device/qpu/quera/Aquila',
 deviceParameters=None,
 createdAt='2022-10-25T20:59:10.788Z',
 endedAt='2022-10-25T21:00:58.218Z',
 status='COMPLETED',
 failureReason=None
),
 measurements=[
 ShotResult(
 status=<AnalogHamiltonianSimulationShotStatus.SUCCESS: 'Success'>,

 pre_sequence=array([1, 1, 1, 1]),
 post_sequence=array([0, 1, 1, 1])
),

 ShotResult(
 status=<AnalogHamiltonianSimulationShotStatus.SUCCESS: 'Success'>,

 pre_sequence=array([1, 1, 0, 1]),
 post_sequence=array([1, 0, 0, 0])
)
]
)

JSON (example)

{
 "braketSchemaHeader": {
 "name": "braket.task_result.analog_hamiltonian_simulation_task_result",

Submit an analog program using QuEra Aquila 125

Amazon Braket Developer Guide

 "version": "1"
 },
 "taskMetadata": {
 "braketSchemaHeader": {
 "name": "braket.task_result.task_metadata",
 "version": "1"
 },
 "id": "arn:aws:braket:us-east-1:123456789012:quantum-task/12345678-90ab-
cdef-1234-567890abcdef",
 "shots": 2,
 "deviceId": "arn:aws:braket:us-east-1::device/qpu/quera/Aquila",

 "createdAt": "2022-10-25T20:59:10.788Z",
 "endedAt": "2022-10-25T21:00:58.218Z",
 "status": "COMPLETED"

 },
 "measurements": [
 {
 "shotMetadata": {"shotStatus": "Success"},
 "shotResult": {
 "preSequence": [1, 1, 1, 1],
 "postSequence": [0, 1, 1, 1]
 }
 },
 {
 "shotMetadata": {"shotStatus": "Success"},
 "shotResult": {
 "preSequence": [1, 1, 0, 1],
 "postSequence": [1, 0, 0, 0]
 }
 }
],
 "additionalMetadata": {
 "action": {...}
 "queraMetadata": {
 "braketSchemaHeader": {
 "name": "braket.task_result.quera_metadata",
 "version": "1"
 },
 "numSuccessfulShots": 100
 }
 }

Submit an analog program using QuEra Aquila 126

Amazon Braket Developer Guide

}

Main fields

Task result field type description

measurements[].shotResult.preSequence List[int] Pre-sequence measurement bits
(one for each atomic site) for
each shot: 0 if site is empty, 1 if
site is filled, measured before the
sequences of pulses that run the
quantum evolution

measurements[].shotResult.postSequence List[int] Post-sequence measurement
bits for each shot: 0 if atom is in
Rydberg state or site is empty,
1 if atom is in ground state,
measured at the end of the
sequences of pulses that run the
quantum evolution

Metadata fields

Task result field type description

braketSchemaHeader.name str name of the
schema; must
be 'braket.t
ask_resul
t.analog_
hamiltoni
an_simula
tion_task
_result'

braketSchemaHeader.version str version of the
schema

Submit an analog program using QuEra Aquila 127

Amazon Braket Developer Guide

Task result field type description

taskMetadata.braketSchemaHeader.name str name of the
schema; must
be ‘braket.t
ask_resul
t.task_me
tadata'

taskMetadata.braketSchemaHeader.vers
ion

str version of the
schema

taskMetadata.id str The ID of
the quantum
task. For AWS
quantum
tasks, this is
the quantum
task ARN.

taskMetadata.shots int The number of
shots for the
quantum task

taskMetadata.shots.deviceId str The ID of the
device on
which the
quantum task
ran. For AWS
devices, this
is the device
ARN.

Submit an analog program using QuEra Aquila 128

Amazon Braket Developer Guide

Task result field type description

taskMetadata.shots.createdAt str The timestamp
of creation;
the format
must be in
ISO-8601/
RFC3339
string format
YYYY-MM-D
DTHH:mm:s
s.sssZ. Default
is None.

taskMetadata.shots.endedAt str The timestamp
of when the
quantum
task ended;
the format
must be in
ISO-8601/
RFC3339
string format
YYYY-MM-D
DTHH:mm:s
s.sssZ. Default
is None.

taskMetadata.shots.status str The status of
the quantum
task (CREATED,
QUEUED,
RUNNING,
COMPLETED
, FAILED).
Default is
None.

Submit an analog program using QuEra Aquila 129

Amazon Braket Developer Guide

Task result field type description

taskMetadata.shots.failureReason str The failure
reason of the
quantum task.
Default is
None.

additionalMetadata.action braket.ir.ahs.program_v1.Pr
ogram

(See the
Braket AHS
program
schema
section)

additionalMetadata.action.braketSche
maHeader.queraMetadata.name

str name of the
schema; must
be 'braket.t
ask_resul
t.quera_m
etadata'

additionalMetadata.action.braketSche
maHeader.queraMetadata.version

str version of the
schema

additionalMetadata.action.numSuccess
fulShots

int number of
completel
y successful
shots; must
be equal to
the requested
 number of
shots

Submit an analog program using QuEra Aquila 130

Amazon Braket Developer Guide

Task result field type description

measurements[].shotMetadata.shotStatus int The status
of the shot,
(Success,
Partial success,
Failure); must
be "Success"

QuEra device properties schema

braket.device_schema.quera.quera_device_capabilities_v1.QueraDeviceCapabilities (example)

QueraDeviceCapabilities(
 service=DeviceServiceProperties(
 braketSchemaHeader=BraketSchemaHeader(
 name='braket.device_schema.device_service_properties',
 version='1'
),
 executionWindows=[
 DeviceExecutionWindow(
 executionDay=<ExecutionDay.MONDAY: 'Monday'>,
 windowStartHour=datetime.time(1, 0),
 windowEndHour=datetime.time(23, 59, 59)
),
 DeviceExecutionWindow(
 executionDay=<ExecutionDay.TUESDAY: 'Tuesday'>,
 windowStartHour=datetime.time(0, 0),
 windowEndHour=datetime.time(12, 0)
),
 DeviceExecutionWindow(
 executionDay=<ExecutionDay.WEDNESDAY: 'Wednesday'>,
 windowStartHour=datetime.time(0, 0),
 windowEndHour=datetime.time(12, 0)
),
 DeviceExecutionWindow(
 executionDay=<ExecutionDay.FRIDAY: 'Friday'>,
 windowStartHour=datetime.time(0, 0),
 windowEndHour=datetime.time(23, 59, 59)
),
 DeviceExecutionWindow(

Submit an analog program using QuEra Aquila 131

Amazon Braket Developer Guide

 executionDay=<ExecutionDay.SATURDAY: 'Saturday'>,
 windowStartHour=datetime.time(0, 0),
 windowEndHour=datetime.time(23, 59, 59)
),
 DeviceExecutionWindow(
 executionDay=<ExecutionDay.SUNDAY: 'Sunday'>,
 windowStartHour=datetime.time(0, 0),
 windowEndHour=datetime.time(12, 0)
)
],
 shotsRange=(1, 1000),
 deviceCost=DeviceCost(
 price=0.01,
 unit='shot'
),
 deviceDocumentation=
 DeviceDocumentation(
 imageUrl='https://
a.b.cdn.console.awsstatic.com/59534b58c709fc239521ef866db9ea3f1aba73ad3ebcf60c23914ad8c5c5c878/
a6cfc6fca26cf1c2e1c6.png',
 summary='Analog quantum processor based on neutral atom arrays',
 externalDocumentationUrl='https://www.quera.com/aquila'
),
 deviceLocation='Boston, USA',
 updatedAt=datetime.datetime(2024, 1, 22, 12, 0,
 tzinfo=datetime.timezone.utc),
 getTaskPollIntervalMillis=None
),
 action={
 <DeviceActionType.AHS: 'braket.ir.ahs.program'>: DeviceActionProperties(
 version=['1'],
 actionType=<DeviceActionType.AHS: 'braket.ir.ahs.program'>
)
 },
 deviceParameters={},
 braketSchemaHeader=BraketSchemaHeader(
 name='braket.device_schema.quera.quera_device_capabilities',
 version='1'
),
 paradigm=QueraAhsParadigmProperties(
 ...
 # See https://github.com/amazon-braket/amazon-braket-schemas-python/blob/main/
src/braket/device_schema/quera/quera_ahs_paradigm_properties_v1.py
 ...

Submit an analog program using QuEra Aquila 132

Amazon Braket Developer Guide

)
)

JSON (example)

{
 "service": {
 "braketSchemaHeader": {
 "name": "braket.device_schema.device_service_properties",
 "version": "1"
 },
 "executionWindows": [
 {
 "executionDay": "Monday",
 "windowStartHour": "01:00:00",
 "windowEndHour": "23:59:59"
 },
 {
 "executionDay": "Tuesday",
 "windowStartHour": "00:00:00",
 "windowEndHour": "12:00:00"
 },
 {
 "executionDay": "Wednesday",
 "windowStartHour": "00:00:00",
 "windowEndHour": "12:00:00"
 },
 {
 "executionDay": "Friday",
 "windowStartHour": "00:00:00",
 "windowEndHour": "23:59:59"
 },
 {
 "executionDay": "Saturday",
 "windowStartHour": "00:00:00",
 "windowEndHour": "23:59:59"
 },
 {
 "executionDay": "Sunday",
 "windowStartHour": "00:00:00",
 "windowEndHour": "12:00:00"
 }
],

Submit an analog program using QuEra Aquila 133

Amazon Braket Developer Guide

 "shotsRange": [
 1,
 1000
],
 "deviceCost": {
 "price": 0.01,
 "unit": "shot"
 },
 "deviceDocumentation": {
 "imageUrl": "https://
a.b.cdn.console.awsstatic.com/59534b58c709fc239521ef866db9ea3f1aba73ad3ebcf60c23914ad8c5c5c878/
a6cfc6fca26cf1c2e1c6.png",
 "summary": "Analog quantum processor based on neutral atom arrays",
 "externalDocumentationUrl": "https://www.quera.com/aquila"
 },
 "deviceLocation": "Boston, USA",
 "updatedAt": "2024-01-22T12:00:00+00:00"
 },
 "action": {
 "braket.ir.ahs.program": {
 "version": [
 "1"
],
 "actionType": "braket.ir.ahs.program"
 }
 },
 "deviceParameters": {},
 "braketSchemaHeader": {
 "name": "braket.device_schema.quera.quera_device_capabilities",
 "version": "1"
 },
 "paradigm": {
 ...
 # See Aquila device page > "Calibration" tab > "JSON" page
 ...
 }
}

Submit an analog program using QuEra Aquila 134

Amazon Braket Developer Guide

Service properties fields

Service properties field type description

service.executionWindows[].executionDay ExecutionDay Days of the execution
window; must be
'Everyday', 'Weekdays
', 'Weekend', 'Monday',
'Tuesday', 'Wednesda
y', Thursday', 'Friday',
 'Saturday' or 'Sunday'

service.executionWindows[].windowStartHour datetime.time UTC 24-hour format of the
time when the execution
window starts

service.executionWindows[].windowEndHour datetime.time UTC 24-hour format of the
time when the execution
window ends

service.qpu_capabilities.service.shotsRange Tuple[int, int] Minimum and maximum
number of shots for the
device

service.qpu_capabilities.service.deviceCost.p
rice

float Price of the device in
terms of US dollars

service.qpu_capabilities.service.deviceCost.u
nit

str unit for charging the price,
e.g: 'minute', 'hour', 'shot',
'task'

Metadata fields

Metadata field type description

action[].version str version of the AHS
program schema

Submit an analog program using QuEra Aquila 135

Amazon Braket Developer Guide

Metadata field type description

action[].actionType ActionType AHS program schema
name; must be
'braket.ir.ahs.pro
gram'

service.braketSchemaHeader.name str name of the schema;
must be 'braket.d
evice_schema.devic
e_service_properties'

service.braketSchemaHeader.version str version of the schema

service.deviceDocumentation.imageUrl str URL for the image of
the device

service.deviceDocumentation.summary str brief description on
the device

service.deviceDocumentation.externalDocumenta
tionUrl

str external documenta
tion URL

service.deviceLocation str geographic location
fo the device

service.updatedAt datetime time when the device
properties were last
updated

Working with AWS Boto3

Boto3 is the AWS SDK for Python. With Boto3, Python developers can create, configure, and
manage AWS services, such as Amazon Braket. Boto3 provides an object-oriented API, as well as
low-level access to Amazon Braket.

Follow the instructions in the Boto3 Quickstart guide to learn how to install and configure Boto3.

(Advanced) Working with AWS Boto3 136

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html

Amazon Braket Developer Guide

Boto3 provides the core functionality that works along with the Amazon Braket Python SDK to
help you configure and run your quantum tasks. Python customers always need to install Boto3,
because that is the core implementation. If you want to make use of additional helper methods,
you also need to install the Amazon Braket SDK.

For example, when you call CreateQuantumTask, the Amazon Braket SDK submits the request to
Boto3, which then calls the AWS API.

In this section:

• Turn on the Amazon Braket Boto3 client

• Configure AWS CLI profiles for Boto3 and the Braket SDK

Turn on the Amazon Braket Boto3 client

To use Boto3 with Amazon Braket, you must import Boto3 and then define a client that you use to
connect to the Amazon Braket API. In the following example, the Boto3 client is named braket.

import boto3
import botocore

braket = boto3.client("braket")

Note

Braket supports IPv6. If you are using an IPv6-only network or wish to ensure your
workload uses IPv6 traffic, use the dual-stack endpoints as outlined in the Dual-stack and
FIPS endpoints guide.

Now that you have a braket client established, you can make requests and process responses
from the Amazon Braket service. You can get more detail on request and response data in the API
Reference.

The following examples show how to work with devices and quantum tasks.

• Search for devices

• Retrieve a device

• Create a quantum task

Turn on the Amazon Braket Boto3 client 137

https://docs.aws.amazon.com/vpc/latest/userguide/aws-ipv6-support.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-endpoints.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-endpoints.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/braket.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/braket.html

Amazon Braket Developer Guide

• Retrieve a quantum task

• Search for quantum tasks

• Cancel quantum task

Search for devices

• search_devices(**kwargs)

Search for devices using the specified filters.

Pass search filters and optional parameters when sending the
request and capture the response
response = braket.search_devices(filters=[{
 'name': 'deviceArn',
 'values': ['arn:aws:braket:::device/quantum-simulator/amazon/sv1']
}], maxResults=10)

print(f"Found {len(response['devices'])} devices")

for i in range(len(response['devices'])):
 device = response['devices'][i]
 print(device['deviceArn'])

Retrieve a device

• get_device(deviceArn)

Retrieve the devices available in Amazon Braket.

Pass the device ARN when sending the request and capture the repsonse
response = braket.get_device(deviceArn='arn:aws:braket:::device/quantum-simulator/
amazon/sv1')

print(f"Device {response['deviceName']} is {response['deviceStatus']}")

Create a quantum task

• create_quantum_task(**kwargs)

Turn on the Amazon Braket Boto3 client 138

Amazon Braket Developer Guide

Create a quantum task.

Create parameters to pass into create_quantum_task()
kwargs = {
 # Create a Bell pair
 'action': '{"braketSchemaHeader": {"name": "braket.ir.jaqcd.program", "version":
 "1"}, "results": [], "basis_rotation_instructions": [], "instructions": [{"type": "h",
 "target": 0}, {"type": "cnot", "control": 0, "target": 1}]}',
 # Specify the SV1 Device ARN
 'deviceArn': 'arn:aws:braket:::device/quantum-simulator/amazon/sv1',
 # Specify 2 qubits for the Bell pair
 'deviceParameters': '{"braketSchemaHeader": {"name":
 "braket.device_schema.simulators.gate_model_simulator_device_parameters",
 "version": "1"}, "paradigmParameters": {"braketSchemaHeader": {"name":
 "braket.device_schema.gate_model_parameters", "version": "1"}, "qubitCount": 2}}',
 # Specify where results should be placed when the quantum task completes.
 # You must ensure the S3 Bucket exists before calling create_quantum_task()
 'outputS3Bucket': 'amazon-braket-examples',
 'outputS3KeyPrefix': 'boto-examples',
 # Specify number of shots for the quantum task
 'shots': 100
}

Send the request and capture the response
response = braket.create_quantum_task(**kwargs)

print(f"Quantum task {response['quantumTaskArn']} created")

Retrieve a quantum task

• get_quantum_task(quantumTaskArn)

Retrieve the specified quantum task.

Pass the quantum task ARN when sending the request and capture the response
response = braket.get_quantum_task(quantumTaskArn='arn:aws:braket:us-
west-1:123456789012:quantum-task/ce78c429-cef5-45f2-88da-123456789012')

print(response['status'])

Turn on the Amazon Braket Boto3 client 139

Amazon Braket Developer Guide

Search for quantum tasks

• search_quantum_tasks(**kwargs)

Search for quantum tasks that match the specified filter values.

Pass search filters and optional parameters when sending the
request and capture the response
response = braket.search_quantum_tasks(filters=[{
 'name': 'deviceArn',
 'operator': 'EQUAL',
 'values': ['arn:aws:braket:::device/quantum-simulator/amazon/sv1']
}], maxResults=25)

print(f"Found {len(response['quantumTasks'])} quantum tasks")

for n in range(len(response['quantumTasks'])):
 task = response['quantumTasks'][n]
 print(f"Quantum task {task['quantumTaskArn']} for {task['deviceArn']} is
 {task['status']}")

Cancel quantum task

• cancel_quantum_task(quantumTaskArn)

Cancel the specified quantum task.

Pass the quantum task ARN when sending the request and capture the response
response = braket.cancel_quantum_task(quantumTaskArn='arn:aws:braket:us-
west-1:123456789012:quantum-task/ce78c429-cef5-45f2-88da-123456789012')

print(f"Quantum task {response['quantumTaskArn']} is {response['cancellationStatus']}")

Configure AWS CLI profiles for Boto3 and the Braket SDK

The Amazon Braket SDK relies upon the default AWS CLI credentials, unless you explicitly specify
otherwise. We recommend that you keep the default when you run on a managed Amazon Braket
notebook because you must provide an IAM role that has permissions to launch the notebook
instance.

Configure AWS CLI profiles for Boto3 and the Braket SDK 140

Amazon Braket Developer Guide

Optionally, if you run your code locally (on an Amazon EC2 instance, for example), you can
establish named AWS CLI profiles. You can give each profile a different permission set, rather than
regularly overwriting the default profile.

This section provides a brief explanation of how to configure such a CLI profile and how to
incorporate that profile into Amazon Braket so that API calls are made with the permissions from
that profile.

In this section:

• Step 1: Configure a local AWS CLI profile

• Step 2: Establish a Boto3 session object

• Step 3: Incorporate the Boto3 session into the Braket AwsSession

Step 1: Configure a local AWS CLI profile

It is beyond the scope of this document to explain how to create a user and how to configure a
non-default profile. For information on these topics, see:

• Getting started

• Configuring the AWS CLI to use AWS IAM Identity Center

To use Amazon Braket, you must provide this user — and the associated CLI profile— with the
necessary Braket permissions. For instance, you can attach the AmazonBraketFullAccess policy.

Step 2: Establish a Boto3 session object

In order to establish a Boto3 session object, utilize the following code example.

from boto3 import Session

Insert CLI profile name here
boto_sess = Session(profile_name=`profile`)

Configure AWS CLI profiles for Boto3 and the Braket SDK 141

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html

Amazon Braket Developer Guide

Note

If the expected API calls have Region-based restrictions that are not aligned with your
profile default Region, you can specify a Region for the Boto3 session as shown in the
following example.

Insert CLI profile name _and_ region
boto_sess = Session(profile_name=`profile`, region_name=`region`)

For the argument designated as region, substitute a value that corresponds to one of the AWS
Regions in which Amazon Braket is available such as us-east-1, us-west-1, and so forth.

Step 3: Incorporate the Boto3 session into the Braket AwsSession

The following example shows how to initialize a Boto3 Braket session and instantiate a device in
that session.

from braket.aws import AwsSession, AwsDevice

Initialize Braket session with Boto3 Session credentials
aws_session = AwsSession(boto_session=boto_sess)

Instantiate any Braket QPU device with the previously initiated AwsSession
sim_arn = 'arn:aws:braket:::device/quantum-simulator/amazon/sv1'
device = AwsDevice(sim_arn, aws_session=aws_session)

After this setup is complete, you can submit quantum tasks to that instantiated AwsDevice object
(by calling the device.run(…) command for example). All API calls made by that device can
leverage the IAM credentials associated with the CLI profile that you previously designated as
profile.

Configure AWS CLI profiles for Boto3 and the Braket SDK 142

Amazon Braket Developer Guide

Testing your quantum tasks with Amazon Braket

Amazon Braket provides a variety of high-performance quantum circuit simulators to help you
test and validate your quantum algorithms before running them on actual quantum hardware.
These simulators handle the complex underlying software and infrastructure, and Amazon Elastic
Compute Cloud (Amazon EC2) clusters to take away the burden of simulating quantum circuits on
classical high performance computing (HPC) infrastructure. These resources allow you to focus on
developing and optimizing your quantum applications.

With Braket's simulators, you can thoroughly test your quantum circuits and algorithms without
the constraints and limitations of physical quantum devices. This enables you to explore a wide
range of quantum computing concepts, from basic quantum gates and circuits to more advanced
quantum algorithms and error mitigation techniques.

The Braket SDK makes it easy to submit your quantum tasks to the simulators, allowing you to
control the simulation parameters, such as the number of shots and the noise model, to better
understand the behavior of your quantum algorithms. You can also leverage Amazon Braket Hybrid
Job capabilities to combine classical and quantum computing elements, further expanding the
scope of your testing and validation.

By thoroughly testing your quantum tasks on Braket's simulators, you can gain valuable insights,
refine your algorithms, and ensure their correctness before deploying them on real quantum
hardware. This helps to reduce development time, minimize errors, and ultimately accelerate your
progress in the field of quantum computing.

In this section:

• Submitting quantum tasks to simulators

• Working with Amazon Braket Hybrid Jobs

Submitting quantum tasks to simulators

Amazon Braket provides access to several simulators that can test your quantum tasks. You can
submit quantum tasks individually or you can set up quantum task batching.

Simulators

• Density matrix simulator, DM1 : arn:aws:braket:::device/quantum-simulator/
amazon/dm1

Submitting quantum tasks to simulators 143

https://docs.aws.amazon.com/braket/latest/developerguide/braket-batching-tasks.html

Amazon Braket Developer Guide

• State vector simulator, SV1 : arn:aws:braket:::device/quantum-simulator/amazon/
sv1

• Tensor network simulator, TN1 : arn:aws:braket:::device/quantum-simulator/
amazon/tn1

• The local simulator : LocalSimulator()

Note

You can cancel quantum tasks in the CREATED state for QPUs and on-demand simulators.
You can cancel quantum tasks in the QUEUED state on a best-effort basis for on-demand
simulators and QPUs. Note that QPU QUEUED quantum tasks are unlikely to be cancelled
successfully during QPU availability windows.

In this section:

• Local state vector simulator (braket_sv)

• Local density matrix simulator (braket_dm)

• Local AHS simulator (braket_ahs)

• State vector simulator (SV1)

• Density matrix simulator (DM1)

• Tensor network simulator (TN1)

• About embedded simulators

• Compare Amazon Braket simulators

• Example quantum tasks on Amazon Braket

• Testing a quantum task with the local simulator

• Quantum task batching

Local state vector simulator (braket_sv)

The local state vector simulator (braket_sv) is part of the Amazon Braket SDK that runs
locally in your environment. It is well-suited for rapid prototyping on small circuits (up to 25
qubits) depending on the hardware specifications of your Braket notebook instance or your local
environment.

Local state vector simulator (braket_sv) 144

Amazon Braket Developer Guide

The local simulator supports all gates in the Amazon Braket SDK, but QPU devices support a
smaller subset. You can find the supported gates of a device in the device properties.

Note

The local simulator supports advanced OpenQASM features which may not be supported
on QPU devices or other simulators. For more information on supported features, see the
examples provided in the OpenQASM Local Simulator notebook.

For more information about how to work with simulators, see the Amazon Braket examples.

Local density matrix simulator (braket_dm)

The local density matrix simulator (braket_dm) is part of the Amazon Braket SDK that runs locally
in your environment. It is well-suited for rapid prototyping on small circuits with noise (up to 12
qubits) depending on the hardware specifications of your Braket notebook instance or your local
environment.

You can build common noisy circuits from the ground up using gate noise operations such as bit-
flip and depolarizing error. You can also apply noise operations to specific qubits and gates of
existing circuits that are intended to run both with and without noise.

The braket_dm local simulator can provide the following results, given the specified number of
shots:

• Reduced density matrix: Shots = 0

Note

The local simulator supports advanced OpenQASM features, which may not be supported
on QPU devices or other simulators. For more information about supported features, see
the examples provided in the OpenQASM Local Simulator notebook.

To learn more about the local density matrix simulator, see the Braket introductory noise simulator
example.

Local density matrix simulator (braket_dm) 145

https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Simulating_Advanced_OpenQASM_Programs_with_the_Local_Simulator.ipynb
https://github.com/aws/amazon-braket-examples/blob/main/examples/getting_started/1_Running_quantum_circuits_on_simulators/1_Running_quantum_circuits_on_simulators.ipynb
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Simulating_Advanced_OpenQASM_Programs_with_the_Local_Simulator.ipynb
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Simulating_Noise_On_Amazon_Braket.ipynb
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Simulating_Noise_On_Amazon_Braket.ipynb

Amazon Braket Developer Guide

Local AHS simulator (braket_ahs)

The local AHS (Analog Hamiltonian Simulation) simulator (braket_ahs) is part of the Amazon
Braket SDK that runs locally in your environment. It can be used to simulate results from an AHS
program. It is well-suited for prototyping on small registers (up to 10-12 atoms) depending on the
hardware specifications of your Braket notebook instance or your local environment.

The local simulator supports AHS programs with one uniform driving field, one (non-uniform)
shifting field, and arbitrary atom arrangements. For details, please refer to the Braket AHS class
and the Braket AHS program schema.

To learn more about the local AHS simulator, see the Hello AHS: Run your first Analog Hamiltonian
Simulation page and the Analog Hamiltonian Simulation example notebooks.

State vector simulator (SV1)

SV1 is an on-demand, high-performance, universal state vector simulator. It can simulate circuits
of up to 34 qubits. You can expect a 34-qubit, dense, and square circuit (circuit depth = 34) to take
approximately 1–2 hours to complete, depending on the type of gates used and other factors.
Circuits with all-to-all gates are well suited for SV1. It returns results in forms such as a full state
vector or an array of amplitudes.

SV1 has a maximum runtime of 6 hours. It has a default of 35 concurrent quantum tasks, and a
maximum of 100 (50 in us-west-1 and eu-west-2) concurrent quantum tasks.

SV1 results

SV1 can provide the following results, given the specified number of shots:

• Sample: Shots > 0

• Expectation: Shots >= 0

• Variance: Shots >= 0

• Probability: Shots > 0

• Amplitude: Shots = 0

• Adjoint Gradient: Shots = 0

For more about results, see Result types.

Local AHS simulator (braket_ahs) 146

https://github.com/aws/amazon-braket-sdk-python/blob/main/src/braket/ahs/analog_hamiltonian_simulation.py#L29
https://github.com/aws/amazon-braket-schemas-python/blob/main/src/braket/ir/ahs/program_v1.py
https://github.com/aws/amazon-braket-examples/tree/main/examples/analog_hamiltonian_simulation
https://docs.aws.amazon.com/braket/latest/developerguide/braket-result-types.html

Amazon Braket Developer Guide

SV1 is always available, it runs your circuits on demand, and it can run multiple circuits in parallel.
The runtime scales linearly with the number of operations and exponentially with the number
of qubits. The number of shots has a small impact on the runtime. To learn more, visit Compare
simulators.

Simulators support all gates in the Braket SDK, but QPU devices support a smaller subset. You can
find the supported gates of a device in the device properties.

Density matrix simulator (DM1)

DM1 is an on-demand, high-performance, density matrix simulator. It can simulate circuits of up to
17 qubits.

DM1 has a maximum runtime of 6 hours, a default of 35 concurrent quantum tasks, and a
maximum of 50 concurrent quantum tasks.

DM1 results

DM1 can provide the following results, given the specified number of shots:

• Sample: Shots > 0

• Expectation: Shots >= 0

• Variance: Shots >= 0

• Probability: Shots > 0

• Reduced density matrix: Shots = 0, up to max 8 qubits

For more information about results, see Result types.

DM1 is always available, it runs your circuits on demand, and it can run multiple circuits in parallel.
The runtime scales linearly with the number of operations and exponentially with the number
of qubits. The number of shots has a small impact on the runtime. To learn more, see Compare
simulators.

Noise gates and limitations

AmplitudeDamping
 Probability has to be within [0,1]
BitFlip

Density matrix simulator (DM1) 147

https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#choose-a-simulator
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#choose-a-simulator
https://docs.aws.amazon.com/braket/latest/developerguide/braket-result-types.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#choose-a-simulator
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#choose-a-simulator

Amazon Braket Developer Guide

 Probability has to be within [0,0.5]
Depolarizing
 Probability has to be within [0,0.75]
GeneralizedAmplitudeDamping
 Probability has to be within [0,1]
PauliChannel
 The sum of the probabilities has to be within [0,1]
Kraus
 At most 2 qubits
 At most 4 (16) Kraus matrices for 1 (2) qubit
PhaseDamping
 Probability has to be within [0,1]
PhaseFlip
 Probability has to be within [0,0.5]
TwoQubitDephasing
 Probability has to be within [0,0.75]
TwoQubitDepolarizing
 Probability has to be within [0,0.9375]

Tensor network simulator (TN1)

TN1 is an on-demand, high-performance, tensor network simulator. TN1 can simulate certain
circuit types with up to 50 qubits and a circuit depth of 1,000 or smaller. TN1 is particularly
powerful for sparse circuits, circuits with local gates, and other circuits with special structure, such
as quantum Fourier transform (QFT) circuits. TN1 operates in two phases. First, the rehearsal phase
attempts to identify an efficient computational path for your circuit, so TN1 can estimate the
runtime of the next stage, which is called the contraction phase. If the estimated contraction time
exceeds the TN1 simulation runtime limit, TN1 does not attempt contraction.

TN1 has a runtime limit of 6 hours. It is limited to a maximum of 10 (5 in eu-west-2) concurrent
quantum tasks.

TN1 results

The contraction phase consists of a series of matrix multiplications. The series of multiplications
continues until a result is reached or until it is determined that a result cannot be reached.

Note: Shots must be > 0.

Result types include:

• Sample

Tensor network simulator (TN1) 148

Amazon Braket Developer Guide

• Expectation

• Variance

For more about results, see Result types.

TN1 is always available, it runs your circuits on demand, and it can run multiple circuits in parallel.
To learn more, see Compare simulators.

Simulators support all gates in the Braket SDK, but QPU devices support a smaller subset. You can
find the supported gates of a device in the device properties.

Visit the Amazon Braket GitHub repository for a TN1 example notebook to help you get started
with TN1.

Best practices for working with TN1

• Avoid all-to-all circuits.

• Test a new circuit or class of circuits with a small number of shots, to learn the circuit’s
"hardness" for TN1.

• Split large shot simulations over multiple quantum tasks.

About embedded simulators

Embedded simulators operate by having the simulation embedded directly within the algorithm
code. Also, it is contained within the same container and runs the simulation directly on the
hybrid job instance. This approach is useful for removing bottlenecks typically associated with
communicating between the simulation and a remote device. By keeping all computations in a
single, cohesive environment, embedded simulators can greatly reduce memory requirements
and decrease the number of circuit executions needed to achieve a target result. This can lead
to substantial performance improvements, often by a factor of ten or more, as compared to
traditional setups that rely on remote simulation. For more information about how embedded
simulators enhance performance and enable streamlined hybrid jobs, refer to the Run a hybrid job
with Amazon Braket Hybrid Jobs documentation page.

PennyLane’s lightning simulators

You can use PennyLane’s lightning simulators as embedded simulators on Braket. With
PennyLane’s lightning simulators, you can leverage advanced gradient computation methods, such

About embedded simulators 149

https://docs.aws.amazon.com/braket/latest/developerguide/braket-result-types.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#choose-a-simulator
https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Using_the_tensor_network_simulator_TN1.ipynb
https://docs.aws.amazon.com/braket/latest/developerguide/braket-jobs-works.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-jobs-works.html

Amazon Braket Developer Guide

as adjoint differentiation, to evaluate gradients faster. The lightning.qubit simulator is available as
a device through Braket NBIs and as an embedded simulator, whereas the lightning.gpu simulator
needs to be run as an embedded simulator with a GPU instance. See the Embedded simulators in
Braket Hybrid Jobs notebook for an example of using lightning.gpu.

Compare Amazon Braket simulators

This section helps you select the Amazon Braket simulator that’s best suited for your quantum task,
by describing some concepts, limitations, and use cases.

Choosing between local simulators and on-demand simulators (SV1, TN1, DM1)

The performance of local simulators depends on the hardware that hosts the local environment,
such as a Braket notebook instance, used to run your simulator. On-demand simulators run in the
AWS cloud and are designed to scale beyond typical local environments. On-demand simulators
are optimized for larger circuits, but add some latency overhead per quantum task or batch of
quantum tasks. This can imply a trade-off if many quantum tasks are involved. Given these general
performance characteristics, the following guidance can help you choose how to run simulations,
including ones with noise.

For simulations:

• When employing fewer than 18 qubits, use a local simulator.

• When employing 18–24 qubits, choose a simulator based on the workload.

• When employing more than 24 qubits, use an on-demand simulator.

For noise simulations:

• When employing fewer than 9 qubits, use a local simulator.

• When employing 9–12 qubits, choose a simulator based on the workload.

• When employing more than 12 qubits, use DM1.

What is a state vector simulator?

SV1 is a universal state vector simulator. It stores the full wave function of the quantum state
and sequentially applies gate operations to the state. It stores all possibilities, even the extremely
unlikely ones. The SV1 simulator’s run time for a quantum task increases linearly with the number
of gates in the circuit.

Compare simulators 150

https://docs.pennylane.ai/en/stable/introduction/interfaces.html#simulation-based-differentiation
https://docs.pennylane.ai/projects/lightning/en/stable/lightning_qubit/device.html
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/4_Embedded_simulators_in_Braket_Hybrid_Jobs/Embedded_simulators_in_Braket_Hybrid_Jobs.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/4_Embedded_simulators_in_Braket_Hybrid_Jobs/Embedded_simulators_in_Braket_Hybrid_Jobs.ipynb

Amazon Braket Developer Guide

What is a density matrix simulator?

DM1 simulates quantum circuits with noise. It stores the full density matrix of the system and
sequentially applies the gates and noise operations of the circuit. The final density matrix contains
complete information about the quantum state after the circuit runs. The runtime generally scales
linearly with the number of operations and exponentially with the number of qubits.

What is a tensor network simulator?

TN1 encodes quantum circuits into a structured graph.

• The nodes of the graph consist of quantum gates, or qubits.

• The edges of the graph represent connections between gates.

As a result of this structure, TN1 can find simulated solutions for relatively large and complex
quantum circuits.

TN1 requires two phases

Typically, TN1 operates in a two-phase approach to simulating quantum computation.

• The rehearsal phase: In this phase, TN1 comes up with a way to traverse the graph in an efficient
manner, which involves visiting every node so that you can obtain the measurement you desire.
As a customer, you do not see this phase because TN1 performs both phases together for you.
It completes the first phase and determines whether to perform the second phase on its own
based on practical constraints. You have no input into that decision after the simulation has
begun.

• The contraction phase: This phase is analogous to the execution phase of a computation in a
classical computer. The phase consists of a series of matrix multiplications. The order of these
multiplications has a great effect on the difficulty of the computation. Therefore, the rehearsal
phase is accomplished first in order to find the most effective computation paths across the
graph. After it finds the contraction path during the rehearsal phase, TN1 contracts together the
gates of your circuit to produce the results of the simulation.

TN1 graphs are analogous to a map

Metaphorically, you can compare the underlying TN1 graph to the streets of a city. In a city with
a planned grid, it is easy to find a route to your destination using a map. In a city with unplanned

Compare simulators 151

Amazon Braket Developer Guide

streets, duplicate street names, and so forth, it can be difficult to find a route to your destination
by looking at a map.

If TN1 did not perform the rehearsal phase, it would be like walking around the streets of the city
to find your destination, instead of looking at a map first. It can really pay off in terms of walking
time to spend more time looking at the map. Similarly, the rehearsal phase provides valuable
information.

You might say that the TN1 has a certain “awareness” of the structure of the underlying circuit that
it traverses. It gains this awareness during the rehearsal phase.

Types of problems best suited for each of these types of simulators

SV1 is well-suited for any class of problems that rely primarily on having a certain number of
qubits and gates. Generally, the time required grows linearly with the number of gates, while it
does not depend on the number of shots. SV1 is generally faster than TN1 for circuits under 28
qubits.

SV1 can be slower for higher qubit numbers because it actually simulates all possibilities, even the
extremely unlikely ones. It has no way to determine which outcomes are likely. Thus, for a 30-qubit
evaluation, SV1 must calculate 2^30 configurations. The limit of 34 qubits for the Amazon Braket
SV1 simulator is a practical constraint due to memory and storage limitations. You can think of it
like this: Each time you add a qubit to SV1, the problem becomes twice as hard.

For many classes of problems, TN1 can evaluate much larger circuits in realistic time than SV1
because TN1 takes advantage of the structure of the graph. It essentially tracks the evolution
of solutions from its starting place and it retains only the configurations that contribute to an
efficient traversal. Put another way, it saves the configurations to create an ordering of matrix
multiplication that results in a simpler evaluation process.

For TN1, the number of qubits and gates matters, but the structure of the graph matters a
lot more. For example, TN1 is very good at evaluating circuits (graphs) in which the gates are
short-range (that is, each qubit is connected by gates only to its nearest neighbour qubits), and
circuits (graphs) in which the connections (or gates) have similar range. A typical range for TN1 is
having each qubit talk only to other qubits that are 5 qubits away. If most of the structure can be
decomposed into simpler relationships such as these, which can be represented in more, smaller, or
more uniform matrices, TN1 performs the evaluation easily.

Limitations of TN1

Compare simulators 152

Amazon Braket Developer Guide

TN1 can be slower than SV1 depending on the graph’s structural complexity. For certain graphs,
TN1 terminates the simulation after the rehearsal stage, and shows a status of FAILED, for either
of these two reasons:

• Cannot find a path — If the graph is too complex, it is too difficult to find a good traversal path
and the simulator gives up on the computation. TN1 cannot perform the contraction. You may
see an error message similar to this one: No viable contraction path found.

• Contraction stage is too difficult — In some graphs, TN1 can find a traversal path, but it is very
long and extremely time-consuming to evaluate. In this case, the contraction is so expensive
that the cost would be prohibitive and instead, TN1 exits after the rehearsal phase. You may see
an error message similar to this one: Predicted runtime based on best contraction
path found exceeds TN1 limit.

Note

You are billed for the rehearsal stage of TN1 even if contraction is not performed and you
see a FAILED status.

The predicted runtime also depends on the shot count. In worst-case scenarios, TN1 contraction
time depends linearly on the shot count. The circuit may be contractable with fewer shots. For
example, you might submit a quantum task with 100 shots, which TN1 decides is uncontractable,
but if you resubmit with only 10, the contraction proceeds. In this situation, to attain 100 samples,
you could submit 10 quantum tasks of 10 shots for the same circuit and combine the results in the
end.

As a best practice, we recommend that you always test your circuit or circuit class with a few shots
(for example, 10) to find out how hard your circuit is for TN1, before you proceed with a higher
number of shots.

Note

The series of multiplications that forms the contraction phase begins with small, NxN
matrices. For example, a 2-qubit gate requires a 4x4 matrix. The intermediate matrices
required during a contraction that is adjudged to be too difficult are gigantic. Such a
computation would require days to complete. That’s why Amazon Braket does not attempt
extremely complex contractions.

Compare simulators 153

Amazon Braket Developer Guide

Concurrency

All Braket simulators give you the ability to run multiple circuits concurrently. Concurrency limits
vary by simulator and region. For more information on concurrency limits, see the Quotas page.

Example quantum tasks on Amazon Braket

This section walks through the stages of running an example quantum task, from selecting the
device to viewing the result. As a best practice for Amazon Braket, we recommend that you begin
by running the circuit on a simulator, such as SV1.

In this section:

• Specify the device

• Submit an example quantum task

• Submit a parametrized task

• Specify shots

• Poll for results

• View the example results

Specify the device

First, select and specify the device for your quantum task. This example shows how to choose the
simulator, SV1.

choose the on-demand simulator to run the circuit
from braket.aws import AwsDevice
device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")

You can view some of the properties of this device as follows:

print (device.name)
for iter in device.properties.action['braket.ir.jaqcd.program']:
 print(iter)

SV1
('version', ['1.0', '1.1'])

Example quantum tasks on Amazon Braket 154

https://docs.aws.amazon.com/braket/latest/developerguide/braket-quotas.html

Amazon Braket Developer Guide

('actionType', <DeviceActionType.JAQCD: 'braket.ir.jaqcd.program'>)
('supportedOperations', ['ccnot', 'cnot', 'cphaseshift', 'cphaseshift00',
 'cphaseshift01', 'cphaseshift10', 'cswap', 'cy', 'cz', 'h', 'i', 'iswap', 'pswap',
 'phaseshift', 'rx', 'ry', 'rz', 's', 'si', 'swap', 't', 'ti', 'unitary', 'v', 'vi',
 'x', 'xx', 'xy', 'y', 'yy', 'z', 'zz'])
('supportedResultTypes', [ResultType(name='Sample', observables=['x', 'y', 'z', 'h',
 'i', 'hermitian'], minShots=1, maxShots=100000), ResultType(name='Expectation',
 observables=['x', 'y', 'z', 'h', 'i', 'hermitian'], minShots=0, maxShots=100000),
 ResultType(name='Variance', observables=['x', 'y', 'z', 'h', 'i', 'hermitian'],
 minShots=0, maxShots=100000), ResultType(name='Probability', observables=None,
 minShots=1, maxShots=100000), ResultType(name='Amplitude', observables=None,
 minShots=0, maxShots=0)])

Submit an example quantum task

Submit an example quantum task to run on the on-demand simulator.

create a circuit with a result type
circ = Circuit().rx(0, 1).ry(1, 0.2).cnot(0,2).variance(observable=Observable.Z(),
 target=0)
add another result type
circ.probability(target=[0, 2])

set up S3 bucket (where results are stored)
my_bucket = "amzn-s3-demo-bucket" # the name of the bucket
my_prefix = "your-folder-name" # the name of the folder in the bucket
s3_location = (my_bucket, my_prefix)

submit the quantum task to run
my_task = device.run(circ, s3_location, shots=1000, poll_timeout_seconds = 100,
 poll_interval_seconds = 10)
the positional argument for the S3 bucket is optional if you want to specify a bucket
 other than the default

get results of the quantum task
result = my_task.result()

The device.run() command creates a quantum task through the CreateQuantumTask
API. After a short initialization time, the quantum task is queued until capacity exists to run
the quantum task on a device. In this case, the device is SV1. After the device completes the
computation, Amazon Braket writes the results to the Amazon S3 location specified in the call. The
positional argument s3_location is required for all devices except the local simulator.

Example quantum tasks on Amazon Braket 155

Amazon Braket Developer Guide

Note

The Braket quantum task action is limited to 3MB in size.

Submit a parametrized task

Amazon Braket on-demand and local simulators and QPUs also support specifying values of free
parameters at task submission. You can do this by using the inputs argument to device.run(),
as shown in the following example. The inputs must be a dictionary of string-float pairs, where
the keys are the parameter names.

Parametric compilation can improve the performance of executing parametric circuits on certain
QPUs. When submitting a parametric circuit as a quantum task to a supported QPU, Braket will
compile the circuit once, and cache the result. There is no recompilation for subsequent parameter
updates to the same circuit, resulting in faster runtimes for tasks that use the same circuit. Braket
automatically uses the updated calibration data from the hardware provider when compiling your
circuit to ensure the highest quality results.

Note

Parametric compilation is supported on all superconducting, gate-based QPUs from Rigetti
Computing with the exception of pulse level programs.

from braket.circuits import Circuit, FreeParameter, Observable

create the free parameters
alpha = FreeParameter('alpha')
beta = FreeParameter('beta')

create a circuit with a result type
circ = Circuit().rx(0, alpha).ry(1, alpha).cnot(0,2).xx(0, 2, beta)
circ.variance(observable=Observable.Z(), target=0)
add another result type
circ.probability(target=[0, 2])
submit the quantum task to run
my_task = device.run(circ, inputs={'alpha': 0.1, 'beta':0.2})

Example quantum tasks on Amazon Braket 156

Amazon Braket Developer Guide

Specify shots

The shots argument refers to the number of desired measurement shots. Simulators such as SV1
support two simulation modes.

• For shots = 0, the simulator performs an exact simulation, returning the true values for all result
types. (Not available on TN1.)

• For non-zero values of shots, the simulator samples from the output distribution to emulate the
shot noise of real QPUs. QPU devices only allow shots > 0.

For information about the maximum number of shots per quantum task, please refer to Braket
Quotas.

Poll for results

When executing my_task.result(), the SDK begins polling for a result with the parameters you
define upon quantum task creation:

• poll_timeout_seconds is the number of seconds to poll the quantum task before it times out
when running the quantum task on the on-demand simulator and or QPU devices. The default
value is 432,000 seconds, which is 5 days.

• Note: For QPU devices such as Rigetti and IonQ, we recommend that you allow a few days.
If your polling timeout is too short, results may not be returned within the polling time. For
example, when a QPU is unavailable, a local timeout error is returned.

• poll_interval_seconds is the frequency with which the quantum task is polled. It specifies
how often you call the Braket API to get the status when the quantum task is run on the on-
demand simulator and on QPU devices. The default value is 1 second.

This asynchronous execution facilitates the interaction with QPU devices that are not always
available. For example, a device could be unavailable during a regular maintenance window.

The returned result contains a range of metadata associated with the quantum task. You can check
the measurement result with the following commands:

print('Measurement results:\n',result.measurements)
print('Counts for collapsed states:\n',result.measurement_counts)
print('Probabilities for collapsed states:\n',result.measurement_probabilities)

Example quantum tasks on Amazon Braket 157

Amazon Braket Developer Guide

Measurement results:
 [[1 0 1]
 [0 0 0]
 [1 0 1]
 ...
 [0 0 0]
 [0 0 0]
 [0 0 0]]
Counts for collapsed states:
 Counter({'000': 761, '101': 226, '010': 10, '111': 3})
Probabilities for collapsed states:
 {'101': 0.226, '000': 0.761, '111': 0.003, '010': 0.01}

View the example results

Because you’ve also specified the ResultType, you can view the returned results. The result types
appear in the order in which they were added to the circuit.

print('Result types include:\n', result.result_types)
print('Variance=',result.values[0])
print('Probability=',result.values[1])

you can plot the result and do some analysis
import matplotlib.pyplot as plt
plt.bar(result.measurement_counts.keys(), result.measurement_counts.values());
plt.xlabel('bitstrings');
plt.ylabel('counts');

Result types include:
 [ResultTypeValue(type={'observable': ['z'], 'targets': [0], 'type': 'variance'},
 value=0.7062359999999999), ResultTypeValue(type={'targets': [0, 2], 'type':
 'probability'}, value=array([0.771, 0. , 0. , 0.229]))]
Variance= 0.7062359999999999
Probability= [0.771 0. 0. 0.229]

Example quantum tasks on Amazon Braket 158

Amazon Braket Developer Guide

Testing a quantum task with the local simulator

You can send quantum tasks directly to a local simulator for rapid prototyping and testing. This
simulator runs in your local environment, so you do not need to specify an Amazon S3 location.
The results are computed directly in your session. To run a quantum task on the local simulator,
you must only specify the shots parameter.

Note

The execution speed and maximum number of qubits the local simulator can process
depends on the Amazon Braket notebook instance type, or on your local hardware
specifications.

The following commands are all identical and instantiate the state vector (noise free) local
simulator.

import the LocalSimulator module
from braket.devices import LocalSimulator
the following are identical commands

Testing a quantum task with the local simulator 159

Amazon Braket Developer Guide

device = LocalSimulator()
device = LocalSimulator("default")
device = LocalSimulator(backend="default")
device = LocalSimulator(backend="braket_sv")

Then run a quantum task with the following.

my_task = device.run(circ, shots=1000)

To instantiate the local density matrix (noise) simulator customers change the backend as follows.

import the LocalSimulator module
from braket.devices import LocalSimulator
device = LocalSimulator(backend="braket_dm")

Measuring specific qubits on the local simulator

The local state vector simulator and local density matrix simulator support running circuits where a
subset of the circuit's qubits can be measured, which is often called partial measurement.

For example, in the following code you can create a two-qubit circuit and only measure the first
qubit by adding a measure instruction with the target qubits to the end of the circuit.

Import the LocalSimulator module
from braket.devices import LocalSimulator

Use the local simulator device
device = LocalSimulator()

Define a bell circuit and only measure
circuit = Circuit().h(0).cnot(0, 1).measure(0)

Run the circuit
task = device.run(circuit, shots=10)

Get the results
result = task.result()

Print the measurement counts for qubit 0
print(result.measurement_counts)

Testing a quantum task with the local simulator 160

Amazon Braket Developer Guide

Quantum task batching

Quantum task batching is available on every Amazon Braket device, except the local simulator.
Batching is especially useful for quantum tasks you run on the on-demand simulators (TN1 or SV1)
because they can process multiple quantum tasks in parallel. To help you set up various quantum
tasks, Amazon Braket provides example notebooks.

Batching allows you to launch quantum tasks in parallel. For example, if you wish to make
a calculation that requires 10 quantum tasks and the circuits in those quantum tasks are
independent of each other, it is a good idea to use batching. That way, you don’t have to wait for
one quantum task to be complete before another task begins.

The following example shows how to run a batch of quantum tasks:

circuits = [bell for _ in range(5)]
batch = device.run_batch(circuits, s3_folder, shots=100)
print(batch.results()[0].measurement_counts) # The result of the first quantum task in
 the batch

For more information, see the Amazon Braket examples on GitHub or Quantum task batching,
which has more specific information about batching.

In this section:

• About quantum task batching and costs

• Quantum task batching and PennyLane

• Task batching and parametrized circuits

About quantum task batching and costs

A few caveats to keep in mind regarding quantum task batching and billing costs:

• By default, quantum task batching retries all time out or fail quantum tasks 3 times.

• A batch of long running quantum tasks, such as 34 qubits for SV1, can incur large costs. Be
sure to double check the run_batch assignment values carefully before you start a batch of
quantum tasks. We do not recommend using TN1 with run_batch.

• TN1 can incur costs for failed rehearsal phase tasks (see the TN1 description for more
information). Automatic retries can add to the cost and so we recommend setting the number of
'max_retries' on batching to 0 when using TN1 (see Quantum Task Batching, Line 186).

Quantum task batching 161

https://github.com/aws/amazon-braket-examples
https://github.com/aws/amazon-braket-examples
https://github.com/aws/amazon-braket-sdk-python/blob/main/src/braket/aws/aws_quantum_task_batch.py
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#braket-simulator-tn1
https://github.com/aws/amazon-braket-sdk-python/blob/4c7c3b28e5a17b8f0cddf94377b7734fcbe2ebfc/src/braket/aws/aws_quantum_task_batch.py#L186

Amazon Braket Developer Guide

Quantum task batching and PennyLane

Take advantage of batching when you’re using PennyLane on Amazon Braket by setting parallel
= True when you instantiate an Amazon Braket device, as shown in the following example.

device = qml.device("braket.aws.qubit",device_arn="arn:aws:braket:::device/quantum-
simulator/amazon/sv1",wires=wires,s3_destination_folder=s3_folder,parallel=True,)

For more information about batching with PennyLane, see Parallelized optimization of quantum
circuits.

Task batching and parametrized circuits

When submitting a quantum task batch that contains parametrized circuits, you can either
provide an inputs dictionary, which is used for all quantum tasks in the batch, or a list of
input dictionaries, in which case the i-th dictionary is paired with the i-th task, as shown in the
following example.

from braket.circuits import Circuit, FreeParameter, Observable
from braket.aws import AwsQuantumTaskBatch

create the free parameters
alpha = FreeParameter('alpha')
beta = FreeParameter('beta')

create two circuits
circ_a = Circuit().rx(0, alpha).ry(1, alpha).cnot(0,2).xx(0, 2, beta)
circ_a.variance(observable=Observable.Z(), target=0)

circ_b = Circuit().rx(0, alpha).rz(1, alpha).cnot(0,2).zz(0, 2, beta)
circ_b.expectation(observable=Observable.Z(), target=2)

use the same inputs for both circuits in one batch

tasks = device.run_batch([circ_a, circ_b], inputs={'alpha': 0.1, 'beta':0.2})

or provide each task its own set of inputs

inputs_list = [{'alpha': 0.3,'beta':0.1}, {'alpha': 0.1,'beta':0.4}]

tasks = device.run_batch([circ_a, circ_b], inputs=inputs_list)

Quantum task batching 162

https://github.com/aws/amazon-braket-examples/blob/main/examples/pennylane/1_Parallelized_optimization_of_quantum_circuits/1_Parallelized_optimization_of_quantum_circuits.ipynb
https://github.com/aws/amazon-braket-examples/blob/main/examples/pennylane/1_Parallelized_optimization_of_quantum_circuits/1_Parallelized_optimization_of_quantum_circuits.ipynb

Amazon Braket Developer Guide

You can also prepare a list of input dictionaries for a single parametric circuit and submit them as a
quantum task batch. If there is N input dictionaries in the list, the batch contains N quantum task.
The i-th quantum task corresponds to the circuit executed with i-th input dictionary.

from braket.circuits import Circuit, FreeParameter

create a parametric circuit
circ = Circuit().rx(0, FreeParameter('alpha'))

provide a list of inputs to execute with the circuit
inputs_list = [{'alpha': 0.1}, {'alpha': 0.2}, {'alpha': 0.3}]

tasks = device.run_batch(circ, inputs=inputs_list)

Working with Amazon Braket Hybrid Jobs

This section provides instructions about the basics of creating and running hybrid jobs in Amazon
Braket.

You can access hybrid jobs in Braket using:

• The Amazon Braket Python SDK.

• The Amazon Braket console.

• The Amazon Braket API.

In this section:

• Running your local code as a hybrid job

• Running a hybrid job with Amazon Braket Hybrid Jobs

• Create your first Hybrid Job

• Saving your job results

• Saving and restarting hybrid jobs using checkpoints

• Building and debugging a hybrid job with local mode

(Advanced) Working with Amazon Braket Hybrid Jobs 163

https://github.com/aws/amazon-braket-sdk-python
https://console.aws.amazon.com/braket/home

Amazon Braket Developer Guide

Running your local code as a hybrid job

Amazon Braket Hybrid Jobs provides a fully managed orchestration of hybrid quantum-classical
algorithms, combining Amazon EC2 compute resources with Amazon Braket Quantum Processing
Unit (QPU) access. Quantum tasks created in a hybrid job have priority queueing over individual
quantum tasks so that your algorithms won't be interrupted by fluctuations in the quantum task
queue. Each QPU maintains a separate hybrid jobs queue, ensuring that only one hybrid job can
run at any given time.

In this section:

• Create a hybrid job from local Python code

• Install additional Python packages and source code

• Save and load data into a hybrid job instance

• Best practices for hybrid job decorators

Create a hybrid job from local Python code

You can run your local Python code as an Amazon Braket Hybrid Job. You can do this by annotating
your code with an @hybrid_job decorator, as shown in the following code example. For custom
environments, you can opt to use a custom container from Amazon Elastic Container Registry
(ECR).

Note

Only Python 3.10 is supported by default.

You can use the @hybrid_job decorator to annotate a function. Braket transforms the code
inside the decorator into a Braket hybrid job algorithm script. The hybrid job then invokes the
function inside the decorator on an Amazon EC2 instance. You can monitor the progress of the job
with job.state() or with the Braket console. The following code example shows how to run a
sequence of five states on the State Vector Simulator (SV1) device.

from braket.aws import AwsDevice
from braket.circuits import Circuit, FreeParameter, Observable
from braket.devices import Devices

Running your local code as a hybrid job 164

Amazon Braket Developer Guide

from braket.jobs.hybrid_job import hybrid_job
from braket.jobs.metrics import log_metric

device_arn = Devices.Amazon.SV1

@hybrid_job(device=device_arn) # choose priority device
def run_hybrid_job(num_tasks=1):
 device = AwsDevice(device_arn) # declare AwsDevice within the hybrid job

 # create a parametric circuit
 circ = Circuit()
 circ.rx(0, FreeParameter("theta"))
 circ.cnot(0, 1)
 circ.expectation(observable=Observable.X(), target=0)

 theta = 0.0 # initial parameter

 for i in range(num_tasks):
 task = device.run(circ, shots=100, inputs={"theta": theta}) # input parameters
 exp_val = task.result().values[0]

 theta += exp_val # modify the parameter (possibly gradient descent)

 log_metric(metric_name="exp_val", value=exp_val, iteration_number=i)

 return {"final_theta": theta, "final_exp_val": exp_val}

You create the hybrid job by invoking the function as you would normal Python functions.
However, the decorator function returns the hybrid job handle rather than the result of the
function. To retrieve the results after it has completed, use job.result().

job = run_hybrid_job(num_tasks=1)
result = job.result()

The device argument in the @hybrid_job decorator specifies the device that the hybrid job has
priority access to - in this case, the SV1 simulator. To get QPU priority, you must ensure that the
device ARN used within the function matches that specified in the decorator. For convenience,
you can use the helper function get_job_device_arn() to capture the device ARN declared in
@hybrid_job.

Running your local code as a hybrid job 165

Amazon Braket Developer Guide

Note

Each hybrid job has at least a one minute startup time since it creates a containerized
environment on Amazon EC2. So for very short workloads, such as a single circuit or a
batch of circuits, it may suffice for you to use quantum tasks.

Hyperparameters

The run_hybrid_job() function takes the argument num_tasks to control the number of
quantum tasks created. The hybrid job automatically captures this as a hyperparameter.

Note

Hyperparameters are displayed in the Braket console as strings, that are limited to 2500
characters.

Metrics and logging

Within the run_hybrid_job() function, metrics from iterative algorithms are recorded with
log_metrics. Metrics are automatically plotted in the Braket console page under the hybrid job
tab. You can use metrics to track the quantum task costs in near-real time during the hybrid job run
with the Braket cost tracker. The example above uses the metric name “probability” that records
the first probability from the result type.

Retrieving results

After the hybrid job has completed, you use job.result() to retrieve the hybrid jobs results.
Any objects in the return statement are automatically captured by Braket. Note that the objects
returned by the function must be a tuple with each element being serializable. For example, the
following code shows a working, and a failing example.

@hybrid_job(device=Devices.Amazon.SV1)
def passing():
 np_array = np.random.rand(5)
 return np_array # serializable

@hybrid_job(device=Devices.Amazon.SV1)

Running your local code as a hybrid job 166

Amazon Braket Developer Guide

def failing():
 return MyObject() # not serializable

Job name

By default, the name for this hybrid job is inferred from the function name. You may also specify a
custom name up to 50 characters long. For example, in the following code the job name is "my-job-
name".

@hybrid_job(device=Devices.Amazon.SV1, job_name="my-job-name")
def function():
 pass

Local mode

Local jobs are be created by adding the argument local=True to the decorator. This runs the
hybrid job in a containerized environment on your local compute environment, such as your laptop.
Local jobs do not have priority queueing for quantum tasks. For advanced cases such as multi-node
or MPI, local jobs may have access to the required Braket environment variables. The following
code creates a local hybrid job with the device as the SV1 simulator.

@hybrid_job(device=Devices.Amazon.SV1, local=True)
def run_hybrid_job(num_tasks = 1):
 return ...

All other hybrid job options are supported. For a list of options see the
braket.jobs.quantum_job_creation module.

Install additional Python packages and source code

You can customize your runtime environment to use your preferred Python packages. You can use
either a requirements.txt file, a list of package names, or bring your own container (BYOC). To
customize a runtime environment using a requirements.txt file, refer to the following code
example.

@hybrid_job(device=Devices.Amazon.SV1, dependencies="requirements.txt")
def run_hybrid_job(num_tasks = 1):
 return ...

Running your local code as a hybrid job 167

https://amazon-braket-sdk-python.readthedocs.io/en/stable/_apidoc/braket.jobs.quantum_job_creation.html

Amazon Braket Developer Guide

For example, the requirements.txt file may include other packages to install.

qiskit
pennylane >= 0.31
mitiq == 0.29

Alternatively, you may supply the package names as a Python list as follows.

@hybrid_job(device=Devices.Amazon.SV1, dependencies=["qiskit", "pennylane>=0.31",
 "mitiq==0.29"])
def run_hybrid_job(num_tasks = 1):
 return ...

Additional source code can be specified either as a list of modules, or a single module as in the
following code example.

@hybrid_job(device=Devices.Amazon.SV1, include_modules=["my_module1", "my_module2"])
def run_hybrid_job(num_tasks = 1):
 return ...

Save and load data into a hybrid job instance

Specifying input training data

When you create a hybrid job, you may provide an input training datasets by specifying an Amazon
Simple Storage Service (Amazon S3) bucket. You may also specify a local path, then Braket
automatically uploads the data to Amazon S3 at s3://<default_bucket_name>/jobs/
<job_name>/<timestamp>/data/<channel_name> . If you specify a local path, the channel
name defaults to “input”. The following code shows a numpy file from the local path data/
file.npy.

@hybrid_job(device=Devices.Amazon.SV1, input_data="data/file.npy")
def run_hybrid_job(num_tasks = 1):
 data = np.load("data/file.npy")
 return ...

For S3, you must use the get_input_data_dir() helper funciton.

s3_path = "s3://amazon-braket-us-west-1-961591465522/job-data/file.npy"

Running your local code as a hybrid job 168

Amazon Braket Developer Guide

@hybrid_job(device=None, input_data=s3_path)
def job_s3_input():
 np.load(get_input_data_dir() + "/file.npy")

@hybrid_job(device=None, input_data={"channel": s3_path})
def job_s3_input_channel():
 np.load(get_input_data_dir("channel") + "/file.npy")

You can specify multiple input data sources by providing a dictionary of channel values and S3 URIs
or local paths.

input_data = {
 "input": "data/file.npy",
 "input_2": "s3://amzn-s3-demo-bucket/data.json"
}

@hybrid_job(device=None, input_data=input_data)
def multiple_input_job():
 np.load(get_input_data_dir("input") + "/file.npy")
 np.load(get_input_data_dir("input_2") + "/data.json")

Note

When the input data is large (>1GB), there is a long wait time before the job is created. This
is due to the local input data when it is first uploaded to an S3 bucket, then the S3 path is
added to the job request. Finally, the job request is submitted to the Braket service.

Saving results to S3

To save results not included in the return statement of the decorated function, you must append
the correct directory to all file writing operations. The following example, shows saving a numpy
array and a matplotlib figure.

@hybrid_job(device=Devices.Amazon.SV1)
def run_hybrid_job(num_tasks = 1):
 result = np.random.rand(5)

Running your local code as a hybrid job 169

Amazon Braket Developer Guide

 # save a numpy array
 np.save("result.npy", result)

 # save a matplotlib figure
 plt.plot(result)
 plt.savefig("fig.png")
 return ...

All results are compressed into a file named model.tar.gz. You can download the results with
the Python function job.result() , or by navigating to the results folder from the hybrid job
page in the Braket management console.

Saving and resuming from checkpoints

For long-running hybrid jobs, its recommended to periodically save the intermediate state of
the algorithm. You can use the built-in save_job_checkpoint() helper function, or save files
to the AMZN_BRAKET_JOB_RESULTS_DIR path. The later is available with the helper function
get_job_results_dir().

The following is a minimal working example for saving and loading checkpoints with a hybrid job
decorator:

from braket.jobs import save_job_checkpoint, load_job_checkpoint, hybrid_job

@hybrid_job(device=None, wait_until_complete=True)
def function():
 save_job_checkpoint({"a": 1})

job = function()
job_name = job.name
job_arn = job.arn

@hybrid_job(device=None, wait_until_complete=True, copy_checkpoints_from_job=job_arn)
def continued_function():
 load_job_checkpoint(job_name)

continued_job = continued_function()

In the first hybrid job, save_job_checkpoint() is called with a dictionary containing the
data we want to save. By default, every value must be serializable as text. For checkpointing
more complex Python objects, such as numpy arrays, you can set data_format =

Running your local code as a hybrid job 170

Amazon Braket Developer Guide

PersistedJobDataFormat.PICKLED_V4. This code creates and overwrites a checkpoint file with
default name <jobname>.json in your hybrid job artifacts under a subfolder called "checkpoints".

To create a new hybrid job to continue from the checkpoint, we need to pass
copy_checkpoints_from_job=job_arn where job_arn is the hybrid job ARN of the previous
job. Then we use load_job_checkpoint(job_name) to load from the checkpoint.

Best practices for hybrid job decorators

Embrace asynchronicity

Hybrid jobs created with the decorator annotation are asynchronous - they run once the classical
and quantum resources are available. You monitor the progress of the algorithm using the Braket
Management Console or Amazon CloudWatch. When you submit your algorithm to run, Braket
runs your algorithm in a scalable containerized environment and results are retrieved when the
algorithm is complete.

Run iterative variational algorithms

Hybrid jobs gives you the tools to run iterative quantum-classical algorithms. For purely quantum
problems, use quantum tasks or a batch of quantum tasks. The priority access to certain QPUs is
most beneficial for long-running variational algorithms requiring multiple iterative calls to the
QPUs with classical processing in between.

Debug using local mode

Before you run a hybrid job on a QPU, its recommended to first run on the simulator SV1 to
confirm it runs as expected. For small scale tests, you can run with local mode for rapid iteration
and debugging.

Improve reproducibility with Bring your own container (BYOC)

Create a reproducible experiment by encapsulating your software and its dependencies within a
containerized environment. By packaging all your code, dependencies, and settings in a container,
you prevent potential conflicts and versioning issues.

Multi-instance distributed simulators

To run a large number of circuits, consider using built-in MPI support to run local simulators on
multiple instances within a single hybrid job. For more information, see embedded simulators.

Running your local code as a hybrid job 171

Amazon Braket Developer Guide

Use parametric circuits

Parametric circuits that you submit from a hybrid job are automatically compiled on certain QPUs
using parametric compilation to improve the runtimes of your algorithms.

Checkpoint periodically

For long-running hybrid jobs, its recommended to periodically save the intermediate state of the
algorithm.

For further examples, use cases, and best-practices, see Amazon Braket examples GitHub.

Running a hybrid job with Amazon Braket Hybrid Jobs

To run a hybrid job with Amazon Braket Hybrid Jobs, you first need to define your algorithm.
You can define it by writing the algorithm script and, optionally, other dependency files using the
Amazon Braket Python SDK or PennyLane. If you want to use other (open source or proprietary)
libraries, you can define your own custom container image using Docker, which includes these
libraries. For more information, see Bring your own container (BYOC).

In either case, next you create a hybrid job using the Amazon Braket API, where you provide your
algorithm script or container, select the target quantum device the hybrid job is to use, and then
choose from a variety of optional settings. The default values provided for these optional settings
work for the majority of use cases. For the target device to run your Hybrid Job, you have a choice
between a QPU, an on-demand simulator (such as SV1, DM1 or TN1), or the classical hybrid job
instance itself. With an on-demand simulator or QPU, your hybrid jobs container makes API calls to
a remote device. With the embedded simulators, the simulator is embedded in the same container
as your algorithm script. The lightning simulators from PennyLane are embedded with the default
pre-built hybrid jobs container for you to use. If you run your code using an embedded PennyLane
simulator or a custom simulator, you can specify an instance type as well as how many instances
you wish to use. Refer to the Amazon Braket Pricing page for the costs associated with each choice.

Running a hybrid job with Amazon Braket Hybrid Jobs 172

https://github.com/amazon-braket/amazon-braket-examples
https://github.com/aws/amazon-braket-sdk-python
https://pennylane.ai
https://github.com/PennyLaneAI/pennylane-lightning
https://aws.amazon.com/braket/pricing/

Amazon Braket Developer Guide

If your target device is an on-demand or embedded simulator, Amazon Braket starts running the
hybrid job right away. It spins up the hybrid job instance (you can customize the instance type in
the API call), runs your algorithm, writes the results to Amazon S3, and releases your resources.
This release of resources ensures that you only pay for what you use.

The total number of concurrent hybrid jobs per quantum processing unit (QPU) is restricted. Today,
only one hybrid job can run on a QPU at any given time. Queues are used to control the number of
hybrid jobs allowed to run so as not to exceed the limit allowed. If your target device is a QPU, your
hybrid job first enters the job queue of the selected QPU. Amazon Braket spins up the hybrid job
instance needed and runs your hybrid job on the device. For the duration of your algorithm, your
hybrid job has priority access, meaning that quantum tasks from your hybrid job run ahead of other
Braket quantum tasks queued up on the device, provided the job quantum tasks are submitted
to the QPU once every few minutes. Once your hybrid job is complete, resources are released,
meaning you only pay for what you use.

Note

Devices are regional and your hybrid job runs in the same AWS Region as your primary
device.

In both the simulator and QPU target scenarios, you have the option to define custom algorithm
metrics, such as the energy of your Hamiltonian, as part of your algorithm. These metrics are

Running a hybrid job with Amazon Braket Hybrid Jobs 173

Amazon Braket Developer Guide

automatically reported to Amazon CloudWatch and from there, they display in near real-time in
the Amazon Braket console.

Note

If you wish to use a GPU based instance, be sure to use one of the GPU-based simulators
available with the embedded simulators on Braket (for example, lightning.gpu). If you
choose one of the CPU-based embedded simulators (for example, lightning.qubit, or
braket:default-simulator), the GPU will not be used and you may incur unnecessary
costs.

Create your first Hybrid Job

This section shows you how to create a Hybrid Job using a Python script. Alternatively, to create
a hybrid job from local Python code, such as your preferred integrated development environment
(IDE) or a Braket notebook, see Running your local code as a hybrid job.

In this section:

• Set permissions

• Create and run

• Monitor results

Set permissions

Before you run your first hybrid job, you must ensure that you have sufficient permissions to
proceed with this task. To determine that you have the correct permissions, select Permissions
from the menu on left side of the Braket Console. The Permissions management for Amazon
Braket page helps you verify whether one of your existing roles has permissions that are sufficient
to run your hybrid job or guides you through the creation of a default role that can be used to run
your hybrid job if you do not already have such a role.

Create your first Hybrid Job 174

Amazon Braket Developer Guide

To verify that you have roles with sufficient permissions to run a hybrid job, select the Verify
existing role button. If you do, you get a message that the roles were found. To see the names of
the roles and their role ARNs, select the Show roles button.

Create your first Hybrid Job 175

Amazon Braket Developer Guide

If you do not have a role with sufficient permissions to run a hybrid job, you get a message that
no such role was found. Select the Create default role button to obtain a role with sufficient
permissions.

Create your first Hybrid Job 176

Amazon Braket Developer Guide

If the role was created successfully, you get a message confirming this.

Create your first Hybrid Job 177

Amazon Braket Developer Guide

If you do not have permissions to make this inquiry, you will be denied access. In this case, contact
your internal AWS administrator.

Create and run

Once you have a role with permissions to run a hybrid job, you are ready to proceed. The key piece
of your first Braket hybrid job is the algorithm script. It defines the algorithm you want to run and
contains the classical logic and quantum tasks that are part of your algorithm. In addition to your
algorithm script, you can provide other dependency files. The algorithm script together with its
dependencies is called the source module. The entry point defines the first file or function to run in
your source module when the hybrid job starts.

Create your first Hybrid Job 178

Amazon Braket Developer Guide

First, consider the following basic example of an algorithm script that creates five bell states and
prints the corresponding measurement results.

import os

from braket.aws import AwsDevice
from braket.circuits import Circuit

def start_here():

 print("Test job started!")

 # Use the device declared in the job script
 device = AwsDevice(os.environ["AMZN_BRAKET_DEVICE_ARN"])

 bell = Circuit().h(0).cnot(0, 1)
 for count in range(5):
 task = device.run(bell, shots=100)
 print(task.result().measurement_counts)

 print("Test job completed!")

Create your first Hybrid Job 179

Amazon Braket Developer Guide

Save this file with the name algorithm_script.py in your current working directory on your Braket
notebook or local environment. The algorithm_script.py file has start_here() as the planned
entry point.

Next, create a Python file or Python notebook in the same directory as the algorithm_script.py file.
This script kicks off the hybrid job and handles any asynchronous processing, such as printing the
status or key outcomes that we are interested in. At a minimum, this script needs to specify your
hybrid job script and your primary device.

Note

For more information about how to create a Braket notebook or upload a file, such as the
algorithm_script.py file, in the same directory as the notebooks, see Run your first circuit
using the Amazon Braket Python SDK

For this basic first case, you target a simulator. Whichever type of quantum device you target, a
simulator or an actual quantum processing unit (QPU), the device you specify with device in the
following script is used to schedule the hybrid job and is available to the algorithm scripts as the
environment variable AMZN_BRAKET_DEVICE_ARN.

Note

You can only use devices that are available in the AWS Region of your hybrid job. The
Amazon Braket SDK auto selects this AWS Region. For example, a hybrid job in us-east-1
can use IonQ, SV1, DM1, and TN1 devices, but not Rigetti devices.

If you choose a quantum computer instead of a simulator, Braket schedules your hybrid jobs to run
all of their quantum tasks with priority access.

from braket.aws import AwsQuantumJob
from braket.devices import Devices

job = AwsQuantumJob.create(
 Devices.Amazon.SV1,
 source_module="algorithm_script.py",
 entry_point="algorithm_script:start_here",
 wait_until_complete=True

Create your first Hybrid Job 180

Amazon Braket Developer Guide

)

The parameter wait_until_complete=True sets a verbose mode so that your job prints output
from the actual job as it’s running. You should see an output similar to the following example.

job = AwsQuantumJob.create(
 Devices.Amazon.SV1,
 source_module="algorithm_script.py",
 entry_point="algorithm_script:start_here",
 wait_until_complete=True,
)
Initializing Braket Job: arn:aws:braket:us-west-2:<accountid>:job/<UUID>
...
.
.
.

Completed 36.1 KiB/36.1 KiB (692.1 KiB/s) with 1 file(s) remaining#015download:
 s3://braket-external-assets-preview-us-west-2/HybridJobsAccess/models/
braket-2019-09-01.normal.json to ../../braket/additional_lib/original/
braket-2019-09-01.normal.json
Running Code As Process
Test job started!!!!!
Counter({'00': 55, '11': 45})
Counter({'11': 59, '00': 41})
Counter({'00': 55, '11': 45})
Counter({'00': 58, '11': 42})
Counter({'00': 55, '11': 45})
Test job completed!!!!!
Code Run Finished
2021-09-17 21:48:05,544 sagemaker-training-toolkit INFO Reporting training SUCCESS

Note

You can also use your custom-made module with the AwsQuantumJob.create method by
passing its location (either the path to a local directory or file, or an S3 URI of a tar.gz file).
For a working example, see Parallelize_training_for_QML.ipynb file in the hybrid jobs folder
in the Amazon Braket examples Github repo.

Create your first Hybrid Job 181

https://amazon-braket-sdk-python.readthedocs.io/en/latest/_apidoc/braket.aws.aws_quantum_job.html#braket.aws.aws_quantum_job.AwsQuantumJob.create
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/5_Parallelize_training_for_QML/Parallelize_training_for_QML.ipynb
https://github.com/amazon-braket/amazon-braket-examples/tree/main

Amazon Braket Developer Guide

Monitor results

Alternatively, you can access the log output from Amazon CloudWatch. To do this, go to the Log
groups tab on the left menu of the job detail page, select the log group aws/braket/jobs, and
then choose the log stream that contains the job name. In the example above, this is braket-
job-default-1631915042705/algo-1-1631915190.

You can also view the status of the hybrid job in the console by selecting the Hybrid Jobs page and
then choose Settings.

Create your first Hybrid Job 182

Amazon Braket Developer Guide

Your hybrid job produces some artifacts in Amazon S3 while it runs. The default S3 bucket name
is amazon-braket-<region>-<accountid> and the content is in the jobs/<jobname>/
<timestamp> directory. You can configure the S3 locations where these artifacts are stored by
specifying a different code_location when the hybrid job is created with the Braket Python SDK.

Note

This S3 bucket must be located in the same AWS Region as your job script.

The jobs/<jobname>/<timestamp> directory contains a subfolder with the output from the
entry point script in a model.tar.gz file. There is also a directory called script that contains
your algorithm script artifacts in a source.tar.gz file. The results from your actual quantum
tasks are in the directory named jobs/<jobname>/tasks.

Create your first Hybrid Job 183

Amazon Braket Developer Guide

Saving your job results

You can save the results generated by the algorithm script so that they are available from the
hybrid job object in the hybrid job script as well as from the output folder in Amazon S3 (in a tar-
zipped file named model.tar.gz).

The output must be saved in a file using a JavaScript Object Notation (JSON) format. If the data
can not be readily serialized to text, as in the case of a numpy array, you could pass in an option
to serialize using a pickled data format. See the braket.jobs.data_persistence module for more
details.

To save the results of the hybrid jobs, you add the following lines commented with #ADD to the
algorithm script.

from braket.aws import AwsDevice
from braket.circuits import Circuit
from braket.jobs import save_job_result #ADD

def start_here():

 print("Test job started!!!!!")

 device = AwsDevice(os.environ['AMZN_BRAKET_DEVICE_ARN'])

 results = [] #ADD

 bell = Circuit().h(0).cnot(0, 1)
 for count in range(5):
 task = device.run(bell, shots=100)
 print(task.result().measurement_counts)
 results.append(task.result().measurement_counts) #ADD

 save_job_result({ "measurement_counts": results }) #ADD

 print("Test job completed!!!!!")

You can then display the results of the job from your job script by appending the line
print(job.result()) commented with #ADD.

import time
from braket.aws import AwsQuantumJob

Saving your job results 184

https://amazon-braket-sdk-python.readthedocs.io/en/latest/_apidoc/braket.jobs.data_persistence.html#braket.jobs.data_persistence.save_job_result

Amazon Braket Developer Guide

job = AwsQuantumJob.create(
 source_module="algorithm_script.py",
 entry_point="algorithm_script:start_here",
 device_arn="arn:aws:braket:::device/quantum-simulator/amazon/sv1",
)

print(job.arn)
while job.state() not in AwsQuantumJob.TERMINAL_STATES:
 print(job.state())
 time.sleep(10)

print(job.state())
print(job.result()) #ADD

In this example, we have removed wait_until_complete=True to suppress verbose output.
You can add it back in for debugging. When you run this hybrid job, it outputs the identifier and
the job-arn, followed by the state of the hybrid job every 10 seconds until the hybrid job is
COMPLETED, after which it shows you the results of the bell circuit. See the following example.

arn:aws:braket:us-west-2:111122223333:job/braket-job-default-1234567890123
INITIALIZED
RUNNING
RUNNING
RUNNING
RUNNING
RUNNING
RUNNING
RUNNING
RUNNING
RUNNING
RUNNING
...
RUNNING
RUNNING
COMPLETED
{'measurement_counts': [{'11': 53, '00': 47},..., {'00': 51, '11': 49}]}

Saving and restarting hybrid jobs using checkpoints

You can save intermediate iterations of your hybrid jobs using checkpoints. In the algorithm script
example from the previous section, you would add the following lines commented with #ADD to
create checkpoint files.

Saving and restarting hybrid jobs using checkpoints 185

Amazon Braket Developer Guide

from braket.aws import AwsDevice
from braket.circuits import Circuit
from braket.jobs import save_job_checkpoint #ADD
import os

def start_here():

 print("Test job starts!!!!!")

 device = AwsDevice(os.environ["AMZN_BRAKET_DEVICE_ARN"])

 #ADD the following code
 job_name = os.environ["AMZN_BRAKET_JOB_NAME"]
 save_job_checkpoint(
 checkpoint_data={"data": f"data for checkpoint from {job_name}"},
 checkpoint_file_suffix="checkpoint-1",
) #End of ADD

 bell = Circuit().h(0).cnot(0, 1)
 for count in range(5):
 task = device.run(bell, shots=100)
 print(task.result().measurement_counts)

 print("Test hybrid job completed!!!!!")

When you run the hybrid job, it creates the file <jobname>-checkpoint-1.json in your hybrid job
artifacts in the checkpoints directory with a default /opt/jobs/checkpoints path. The hybrid
job script remains unchanged unless you want to change this default path.

If you want to load a hybrid job from a checkpoint generated by a previous hybrid job, the
algorithm script uses from braket.jobs import load_job_checkpoint. The logic to load in
your algorithm script is as follows.

checkpoint_1 = load_job_checkpoint(
 "previous_job_name",
 checkpoint_file_suffix="checkpoint-1",
)

After loading this checkpoint, you can continue your logic based on the content loaded to
checkpoint-1.

Saving and restarting hybrid jobs using checkpoints 186

Amazon Braket Developer Guide

Note

The checkpoint_file_suffix must match the suffix previously specified when creating the
checkpoint.

Your orchestration script needs to specify the job-arn from the previous hybrid job with the line
commented with #ADD.

job = AwsQuantumJob.create(
 source_module="source_dir",
 entry_point="source_dir.algorithm_script:start_here",
 device_arn="arn:aws:braket:::device/quantum-simulator/amazon/sv1",
 copy_checkpoints_from_job="<previous-job-ARN>", #ADD
)

Building and debugging a hybrid job with local mode

When you are building a new hybrid algorithm, local mode helps you to debug and test your
algorithm script. Local mode is a feature that allows you to run code you plan to use in Amazon
Braket Hybrid Jobs, but without needing Braket to manage the infrastructure for running the
hybrid job. Instead, run hybrid jobs locally on your Amazon Braket Notebook instance or on a
preferred client, such as a laptop or desktop computer.

In local mode, you can still send quantum tasks to actual devices, but you do not get the
performance benefits when running against an actual Quantum processing unit (QPU) while in
local mode.

To use local mode, modify AwsQuantumJob to LocalQuantumJob wherever it occurs inside of
your program. For instance, to run the example from Create your first hybrid job, edit the hybrid
job script in the code as follows.

from braket.jobs.local import LocalQuantumJob

job = LocalQuantumJob.create(
 device="arn:aws:braket:::device/quantum-simulator/amazon/sv1",
 source_module="algorithm_script.py",
 entry_point="algorithm_script:start_here",
)

Building and debugging a hybrid job with local mode 187

Amazon Braket Developer Guide

Note

Docker, which is already pre-installed in the Amazon Braket notebooks, needs to be
installed in your local environment to use this feature. Instructions for installing Docker
can be found on the Get Docker page. In addition, not all parameters are supported in local
mode.

Building and debugging a hybrid job with local mode 188

https://docs.docker.com/get-started/get-docker/

Amazon Braket Developer Guide

Running your quantum tasks with Amazon Braket

Braket provides secure, on-demand access to different types of quantum computers. You have
access to gate-based quantum computers from IonQ, IQM, and Rigetti, as well as an Analog
Hamiltonian Simulator from QuEra. You also have no upfront commitment, and no need to procure
access through individual providers.

• The Amazon Braket Console provides device information and status to help you create, manage,
and monitor your resources and quantum tasks.

• Submit and run quantum tasks through the Amazon Braket Python SDK, as well as through the
console. The SDK is accessible through preconfigured Amazon Braket notebooks.

• The Amazon Braket API is accessible through the Amazon Braket Python SDK and notebooks.
You can make calls directly to the API if you’re building applications that work with quantum
computing programmatically.

The examples throughout this section demonstrate how you can work with the Amazon Braket API
directly using the Amazon Braket Python SDK along with the AWS Python SDK for Braket (Boto3).

More about the Amazon Braket Python SDK

To work with the Amazon Braket Python SDK, first install the AWS Python SDK for Braket (Boto3)
so that you can communicate with the AWS API. You can think of the Amazon Braket Python SDK
as a convenient wrapper around Boto3 for quantum customers.

• Boto3 contains interfaces you need to tap into the AWS API. (Note that Boto3 is a large Python
SDK that talks to the AWS API. Most AWS services support a Boto3 interface.)

• The Amazon Braket Python SDK contains software modules for circuits, gates, devices, result
types, and other parts of a quantum task. Each time you create a program, you import the
modules you need for that quantum task.

• The Amazon Braket Python SDK is accessible through notebooks, which are pre-loaded with all
of the modules and dependencies you need for running quantum tasks.

• You can import modules from the Amazon Braket Python SDK into any Python script if you do
not wish to work with notebooks.

After you’ve installed Boto3, an overview of steps for creating a quantum task through the Amazon
Braket Python SDK resembles the following:

189

https://console.aws.amazon.com/braket/home
https://github.com/aws/amazon-braket-sdk-python
https://docs.aws.amazon.com/braket/latest/APIReference/Welcome.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/braket.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html

Amazon Braket Developer Guide

1. (Optionally) Open your notebook.

2. Import the SDK modules you need for your circuits.

3. Specify a QPU or simulator.

4. Instantiate the circuit.

5. Run the circuit.

6. Collect the results.

The examples in this section show details of each step.

For more examples, see the Amazon Braket Examples repository on GitHub.

In this section:

• Submitting quantum tasks to QPUs

• When will my quantum task run?

• Managing your Amazon Braket Hybrid Job

• Working with reservations

• Error mitigation techniques

Submitting quantum tasks to QPUs

Amazon Braket provides access to several devices that can run quantum tasks. You can submit
quantum tasks individually or you can set up quantum task batching.

QPUs

You can submit quantum tasks to QPUs at any time, but the task runs within certain availability
windows that are displayed on the Devices page of the Amazon Braket console. You can retrieve
the results of the quantum task with the quantum task ID, which is introduced in the next section.

• IonQ Aria-1 : arn:aws:braket:us-east-1::device/qpu/ionq/Aria-1

• IonQ Aria-2 : arn:aws:braket:us-east-1::device/qpu/ionq/Aria-2

• IonQ Forte-1 : arn:aws:braket:us-east-1::device/qpu/ionq/Forte-1

• IonQ Forte-Enterprise-1 : arn:aws:braket:us-east-1::device/qpu/ionq/Forte-
Enterprise-1

Submitting quantum tasks to QPUs 190

https://github.com/aws/amazon-braket-examples
https://docs.aws.amazon.com/braket/latest/developerguide/braket-batching-tasks.html

Amazon Braket Developer Guide

• IQM Garnet : arn:aws:braket:eu-north-1::device/qpu/iqm/Garnet

• QuEra Aquila : arn:aws:braket:us-east-1::device/qpu/quera/Aquila

• Rigetti Ankaa-3 : arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3

Note

You can cancel quantum tasks in the CREATED state for QPUs and on-demand simulators.
You can cancel quantum tasks in the QUEUED state on a best-effort basis for on-demand
simulators and QPUs. Note that QPU QUEUED quantum tasks are unlikely to be cancelled
successfully during QPU availability windows.

In this section:

• IonQ

• IQM

• Rigetti

• QuEra

• Example: Submitting a quantum task to a QPU

• Inspecting compiled circuits

IonQ

IonQ offers gate-based QPUs based on ion trap technology. IonQ’s trapped ion QPUs are built on
a chain of trapped 171Yb+ ions that are spatially confined by means of a microfabricated surface
electrode trap within a vacuum chamber.

IonQ devices support the following quantum gates.

'x', 'y', 'z', 'rx', 'ry', 'rz', 'h', 'cnot', 's', 'si', 't', 'ti', 'v', 'vi', 'xx',
 'yy', 'zz', 'swap'

With verbatim compilation, the IonQ QPUs support the following native gates.

'gpi', 'gpi2', 'ms'

IonQ 191

Amazon Braket Developer Guide

If you only specify two phase parameters when using the native MS gate, a fully- entangling MS
gate runs. A fully-entangling MS gate always performs a π/2 rotation. To specify a different angle
and run a partially-entangling MS gate, you specify the desired angle by adding a third parameter.
For more information, see the braket.circuits.gate module.

These native gates can only be used with verbatim compilation. To learn more about verbatim
compilation, see Verbatim Compilation.

IQM

IQM quantum processors are universal and gate-model devices based on superconducting
transmon qubits. The IQM Garnet device is a 20-qubit device with a square lattice topology.

The IQM devices support the following quantum gates.

"ccnot", "cnot", "cphaseshift", "cphaseshift00", "cphaseshift01", "cphaseshift10",
 "cswap", "swap", "iswap", "pswap", "ecr", "cy", "cz", "xy", "xx", "yy", "zz", "h",
 "i", "phaseshift", "rx", "ry", "rz", "s", "si", "t", "ti", "v", "vi", "x", "y", "z"

With verbatim compilation, the IQM devices support the following native gates.

'cz', 'prx'

Rigetti

Rigetti quantum processors are universal, gate-model machines based on all-tunable
superconducting qubits.

• The Ankaa-3 system is an 84-qubit device that utilizes scalable multi-chip technology.

The Rigetti device supports the following quantum gates.

'cz', 'xy', 'ccnot', 'cnot', 'cphaseshift', 'cphaseshift00', 'cphaseshift01',
 'cphaseshift10', 'cswap', 'h', 'i', 'iswap', 'phaseshift', 'pswap', 'rx', 'ry', 'rz',
 's', 'si', 'swap', 't', 'ti', 'x', 'y', 'z'

With verbatim compilation, Ankaa-3 supports the following native gates.

IQM 192

https://amazon-braket-sdk-python.readthedocs.io/en/latest/_apidoc/braket.circuits.gate.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-constructing-circuit.html#verbatim-compilation

Amazon Braket Developer Guide

'rx', 'rz', 'iswap'

Rigetti superconducting quantum processors can run the 'rx' gate with only the angles of ±π/2 or
±π.

Pulse-level control is available on the Rigetti devices, which support a set of predefined frames of
the following types for the Ankaa-3 system.

`flux_tx`, `charge_tx`, `readout_rx`, `readout_tx`

For more information about these frames, see Roles of frames and ports.

QuEra

QuEra offers neutral-atom based devices that can run Analog Hamiltonian Simulation (AHS)
quantum tasks. These special-purpose devices faithfully reproduce the time-dependent quantum
dynamics of hundreds of simultaneously interacting qubits.

One can program these devices in the paradigm of Analog Hamiltonian Simulation by prescribing
the layout of the qubit register and the temporal and spatial dependence of the manipulating
fields. Amazon Braket provides utilities to construct such programs through the AHS module of the
python SDK, braket.ahs.

For more information, see the Analog Hamiltonian Simulation example notebooks or the Submit
an analog program using QuEra’s Aquila page.

Example: Submitting a quantum task to a QPU

Amazon Braket allows you to run a quantum circuit on a QPU device. The following example shows
how to submit a quantum task to Rigetti or IonQ devices.

Choose the Rigetti Ankaa-3 device, then look at the associated connectivity graph

import the QPU module
from braket.aws import AwsDevice
choose the Rigetti device
device = AwsDevice("arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3")

take a look at the device connectivity graph

QuEra 193

https://github.com/aws/amazon-braket-examples/tree/main/examples/analog_hamiltonian_simulation

Amazon Braket Developer Guide

device.properties.dict()['paradigm']['connectivity']

{'fullyConnected': False,
 'connectivityGraph': {'0': ['1', '7'],
 '1': ['0', '2', '8'],
 '2': ['1', '3', '9'],
 '3': ['2', '4', '10'],
 '4': ['3', '5', '11'],
 '5': ['4', '6', '12'],
 '6': ['5', '13'],
 '7': ['0', '8', '14'],
 '8': ['1', '7', '9', '15'],
 '9': ['2', '8', '10', '16'],
 '10': ['3', '9', '11', '17'],
 '11': ['4', '10', '12', '18'],
 '12': ['5', '11', '13', '19'],
 '13': ['6', '12', '20'],
 '14': ['7', '15', '21'],
 '15': ['8', '14', '22'],
 '16': ['9', '17', '23'],
 '17': ['10', '16', '18', '24'],
 '18': ['11', '17', '19', '25'],
 '19': ['12', '18', '20', '26'],
 '20': ['13', '19', '27'],
 '21': ['14', '22', '28'],
 '22': ['15', '21', '23', '29'],
 '23': ['16', '22', '24', '30'],
 '24': ['17', '23', '25', '31'],
 '25': ['18', '24', '26', '32'],
 '26': ['19', '25', '33'],
 '27': ['20', '34'],
 '28': ['21', '29', '35'],
 '29': ['22', '28', '30', '36'],
 '30': ['23', '29', '31', '37'],
 '31': ['24', '30', '32', '38'],
 '32': ['25', '31', '33', '39'],
 '33': ['26', '32', '34', '40'],
 '34': ['27', '33', '41'],
 '35': ['28', '36', '42'],
 '36': ['29', '35', '37', '43'],
 '37': ['30', '36', '38', '44'],
 '38': ['31', '37', '39', '45'],
 '39': ['32', '38', '40', '46'],

Example: Submitting a quantum task to a QPU 194

Amazon Braket Developer Guide

 '40': ['33', '39', '41', '47'],
 '41': ['34', '40', '48'],
 '42': ['35', '43', '49'],
 '43': ['36', '42', '44', '50'],
 '44': ['37', '43', '45', '51'],
 '45': ['38', '44', '46', '52'],
 '46': ['39', '45', '47', '53'],
 '47': ['40', '46', '48', '54'],
 '48': ['41', '47', '55'],
 '49': ['42', '56'],
 '50': ['43', '51', '57'],
 '51': ['44', '50', '52', '58'],
 '52': ['45', '51', '53', '59'],
 '53': ['46', '52', '54'],
 '54': ['47', '53', '55', '61'],
 '55': ['48', '54', '62'],
 '56': ['49', '57', '63'],
 '57': ['50', '56', '58', '64'],
 '58': ['51', '57', '59', '65'],
 '59': ['52', '58', '60', '66'],
 '60': ['59'],
 '61': ['54', '62', '68'],
 '62': ['55', '61', '69'],
 '63': ['56', '64', '70'],
 '64': ['57', '63', '65', '71'],
 '65': ['58', '64', '66', '72'],
 '66': ['59', '65', '67'],
 '67': ['66', '68'],
 '68': ['61', '67', '69', '75'],
 '69': ['62', '68', '76'],
 '70': ['63', '71', '77'],
 '71': ['64', '70', '72', '78'],
 '72': ['65', '71', '73', '79'],
 '73': ['72', '80'],
 '75': ['68', '76', '82'],
 '76': ['69', '75', '83'],
 '77': ['70', '78'],
 '78': ['71', '77', '79'],
 '79': ['72', '78', '80'],
 '80': ['73', '79', '81'],
 '81': ['80', '82'],
 '82': ['75', '81', '83'],
 '83': ['76', '82']}}

Example: Submitting a quantum task to a QPU 195

Amazon Braket Developer Guide

The preceding dictionary connectivityGraph lists the neighboring qubits for each qubit in the
Rigetti device.

Choose the IonQ Aria-1 device

For the IonQ Aria-1 device, the connectivityGraph is empty, as shown in the following example,
because the device offers all-to-all connectivity. Therefore, a detailed connectivityGraph is not
needed.

or choose the IonQ Aria-1 device
device = AwsDevice("arn:aws:braket:us-east-1::device/qpu/ionq/Aria-1")

take a look at the device connectivity graph
device.properties.dict()['paradigm']['connectivity']

{'fullyConnected': True, 'connectivityGraph': {}}

As shown in the following example, you have the option to adjust the shots (default=1000), the
poll_timeout_seconds (default = 432000 = 5 days), the poll_interval_seconds (default
= 1), and the location of the S3 bucket (s3_location) where your results will be stored if you
choose to specify a location other than the default bucket.

my_task = device.run(circ, s3_location = 'amazon-braket-my-folder', shots=100,
 poll_timeout_seconds = 100, poll_interval_seconds = 10)

The IonQ and Rigetti devices compile the provided circuit into their respective native gate sets
automatically, and they map the abstract qubit indices to physical qubits on the respective QPU.

Note

QPU devices have limited capacity. You can expect longer wait times when capacity is
reached.

Amazon Braket can run QPU quantum tasks within certain availability windows, but you can still
submit quantum tasks any time (24/7) because all corresponding data and metadata are stored
reliably in the appropriate S3 bucket. As shown in the next section, you can recover your quantum
task using AwsQuantumTask and your unique quantum task ID.

Example: Submitting a quantum task to a QPU 196

Amazon Braket Developer Guide

Inspecting compiled circuits

When a quantum circuit needs to be run on a hardware device, such as a quantum processing unit
(QPU), the circuit must first be compiled into an acceptable format that the device can understand
and process. For example, transpiling the high-level quantum circuit down to the specific native
gates supported by the target QPU hardware. Inspecting the actual compiled output of the
quantum circuit can be extremely useful for debugging and optimization purposes. This knowledge
can help identify potential issues, bottlenecks, or opportunities for improving the performance
and efficiency of the quantum application. You can view and analyze the compiled output of your
quantum circuits for both Rigetti and IQM quantum computing devices using the code provided
below.

task = AwsQuantumTask(arn=task_id, aws_session=session)
After the task has finished running
task_result = task.result()
compiled_circuit = task_result.get_compiled_circuit()

Note

Currently, viewing the compiled circuit output for IonQ devices is not supported.

When will my quantum task run?

When you submit a circuit, Amazon Braket sends it to the device you specify. Quantum Processing
Unit (QPU) and on-demand simulator quantum tasks are queued and processed in the order they
are received. The time required to process your quantum task after you submit it varies depending
on the number and complexity of tasks submitted by other Amazon Braket customers and the
availability of the QPU selected.

In this section:

• QPU availability windows and status

• Queue visibility

• Set up email or SMS notifications

Inspecting compiled circuits 197

Amazon Braket Developer Guide

QPU availability windows and status

QPU availability varies from device to device.

In the Devices page of the Amazon Braket console, you can see the current and upcoming
availability windows and device status. Additionally, each device page shows individual queue
depths for quantum tasks and hybrid jobs.

A device is considered offline if is not available to customers, regardless of availability window. For
example, it could be offline due to scheduled maintenance, upgrades, or operational issues.

Queue visibility

Before submitting a quantum task or hybrid job, you can view how many quantum tasks or hybrid
jobs are in front of you by checking device queue depth.

Queue depth

Queue depth refers to the number of quantum tasks and hybrid jobs queued for a particular
device. A device’s quantum task and hybrid job queue count are accessible through the Braket
Software Development Kit (SDK) or Amazon Braket Management Console.

1. Task queue depth refers to the total number of quantum tasks currently waiting to run in normal
priority.

2. Priority task queue depth refers to the total number of submitted quantum tasks waiting to run
through Amazon Braket Hybrid Jobs. These tasks run before standalone tasks.

3. Hybrid jobs queue depth refers to the total number of hybrid jobs currently queued on a device.
Quantum tasks submitted as part of a hybrid job have priority, and are aggregated in the Priority
Task Queue.

Customers wishing to view queue depth through the Braket SDK can modify the following code
snippet to get the queue position of their quantum task or hybrid job:

device = AwsDevice("arn:aws:braket:us-east-1::device/qpu/ionq/Aria-1")

returns the number of quantum tasks queued on the device
print(device.queue_depth().quantum_tasks)
{<QueueType.NORMAL: 'Normal'>: '0', <QueueType.PRIORITY: 'Priority'>: '0'}

QPU availability windows and status 198

Amazon Braket Developer Guide

returns the number of hybrid jobs queued on the device
print(device.queue_depth().jobs)
'3'

Submitting a quantum task or hybrid job to a QPU may result in your workload being in a QUEUED
state. Amazon Braket provides customers visibility into their quantum task and hybrid job queue
position.

Queue position

Queue position refers to the current position of your quantum task or hybrid job within a
respective device queue. It can be obtained for quantum tasks or hybrid jobs through the Braket
Software Development Kit (SDK) or Amazon Braket Management Console.

Customers wishing to view queue position through the Braket SDK can modify the following code
snippet to get the queue position of their quantum task or hybrid job:

choose the device to run your circuit
device = AwsDevice("arn:aws:braket:eu-north-1::device/qpu/iqm/Garnet")

#execute the circuit
task = device.run(bell, s3_folder, shots=100)

retrieve the queue position information
print(task.queue_position().queue_position)

Returns the number of Quantum Tasks queued ahead of you
'2'

from braket.aws import AwsQuantumJob

job = AwsQuantumJob.create(
 "arn:aws:braket:eu-north-1::device/qpu/iqm/Garnet",
 source_module="algorithm_script.py",
 entry_point="algorithm_script:start_here",
 wait_until_complete=False
)

Queue visibility 199

Amazon Braket Developer Guide

retrieve the queue position information
print(job.queue_position().queue_position)
'3' # returns the number of hybrid jobs queued ahead of you

Set up email or SMS notifications

Amazon Braket sends events to Amazon EventBridge when the availability of a QPU changes or
when the state of your quantum task changes. Follow these steps to receive device and quantum
task status change notifications by email or SMS message:

1. Create an Amazon SNS topic and a subscription to email or SMS. Availability of email or SMS
depends on your Region. For more information, see Getting started with Amazon SNS and
Sending SMS messages.

2. Create a rule in EventBridge that triggers the notifications to your SNS topic. For more
information, see Monitoring Amazon Braket with Amazon EventBridge.

(Optional) Set up SNS notifications

You can set up notifications through the Amazon Simple Notification Service (SNS) so that you
receive an alert when your Amazon Braket quantum task is complete. Active notifications are useful
if you expect a long wait time; for example, when you submit a large quantum task or when you
submit a quantum task outside of a device’s availability window. If you do not want to wait for the
quantum task to complete, you can set up an SNS notification.

An Amazon Braket notebook walks you through the setup steps. For more information, see
the Amazon Braket examples on GitHub and, specifically, the example notebook for setting up
notifications.

Managing your Amazon Braket Hybrid Job

This section provides instructions about how to manage hybrid jobs in Amazon Braket.

You can access hybrid jobs in Braket using:

• The Amazon Braket Python SDK.

• The Amazon Braket console.

• The Amazon Braket API.

Set up email or SMS notifications 200

https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html
https://docs.aws.amazon.com/sns/latest/dg/sns-mobile-phone-number-as-subscriber.html
https://github.com/aws/amazon-braket-examples
https://github.com/aws/amazon-braket-examples/tree/main/examples/braket_features
https://github.com/aws/amazon-braket-examples/tree/main/examples/braket_features
https://github.com/aws/amazon-braket-sdk-python
https://console.aws.amazon.com/braket/home

Amazon Braket Developer Guide

In this section:

• Configure the hybrid job instance to run your script

• How to cancel a Hybrid Job

• Using parametric compilation to speed up Hybrid Jobs

• Use PennyLane with Amazon Braket

• Bring your own container (BYOC)

• Using CUDA-Q with Amazon Braket

• Interact with hybrid jobs directly using the API

Configure the hybrid job instance to run your script

Depending on your algorithm, you may have different requirements. By default, Amazon
Braket runs your algorithm script on an ml.t3.medium instance. However, you can customize
this instance type when you create a hybrid job using the following import and configuration
argument.

from braket.jobs.config import InstanceConfig

job = AwsQuantumJob.create(
 ...
 instance_config=InstanceConfig(instanceType="ml.p3.8xlarge"), # Use NVIDIA Tesla
 V100 instance with 4 GPUs.
 ...
),

If you are running an embedded simulation and have specified a local device in the device
configuration, you will be able to additionally request more than one instance in the
InstanceConfig by specifying the instanceCount and setting it to be greater than one. The
upper limit is 5. For instance, you can choose 3 instances as follows.

from braket.jobs.config import InstanceConfig
job = AwsQuantumJob.create(
 ...
 instance_config=InstanceConfig(instanceType="ml.p3.8xlarge", instanceCount=3), #
 Use 3 NVIDIA Tesla V100
 ...

Configure the hybrid job instance to run your script 201

Amazon Braket Developer Guide

),

When you use multiple instances, consider distributing your hybrid job using the data parallel
feature. See the following example notebook for more details on how-to see this Parallelize
training for QML example.

The following three tables list the available instance types and specs for standard, high
performance, and GPU accelerated instances.

Note

To view the default classical compute instance quotas for Hybrid Jobs, see the Amazon
Braket Quotas page.

Standard Instances vCPU Memory (GiB)

ml.t3.medium (default) 2 4

ml.t3.large 2 8

ml.t3.xlarge 4 16

ml.t3.2xlarge 8 32

ml.m5.xlarge 4 16

ml.m5.2xlarge 8 32

ml.m5.4xlarge 16 64

ml.m5.12xlarge 48 192

ml.m5.24xlarge 96 384

High performance Instances vCPU Memory (GiB)

ml.c5.xlarge 4 8

Configure the hybrid job instance to run your script 202

https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/5_Parallelize_training_for_QML/Parallelize_training_for_QML.ipynb
https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/hybrid_jobs/5_Parallelize_training_for_QML/Parallelize_training_for_QML.ipynb

Amazon Braket Developer Guide

High performance Instances vCPU Memory (GiB)

ml.c5.2xlarge 8 16

ml.c5.4xlarge 16 32

ml.c5.9xlarge 36 72

ml.c5.18xlarge 72 144

GPU accelerated
Instances

GPUs vCPU Memory (GiB) GPU Memory
(GiB)

ml.p3.2xlarge 1 8 61 16

ml.p3.8xlarge 4 32 244 64

ml.p3.16xlarge 8 64 488 128

Note

p3 instances are not available in us-west-1. If your hybrid job is unable to provision
requested ML compute capacity, use another Region.

Each instance uses a default configuration of data storage (SSD) of 30 GB. But you can adjust the
storage in the same way that you configure the instanceType. The following example shows how
to increase the total storage to 50 GB.

from braket.jobs.config import InstanceConfig

job = AwsQuantumJob.create(
 ...
 instance_config=InstanceConfig(
 instanceType="ml.p3.8xlarge",
 volumeSizeInGb=50,
),
 ...

Configure the hybrid job instance to run your script 203

Amazon Braket Developer Guide

),

Configure the default bucket in AwsSession

Utilizing your own AwsSession instance provides you with enhanced flexibility, such as
the ability to specify a custom location for your default Amazon S3 bucket. By default, an
AwsSession has a pre-configured Amazon S3 bucket location of f"amazon-braket-{id}-
{region}". However, you have the option to override the default Amazon S3 bucket location
when creating an AwsSession. Users can optionally pass in an AwsSession object into the
AwsQuantumJob.create() method, by providing the aws_session parameter as demonstrated
in the following code example.

aws_session = AwsSession(default_bucket="amzn-s3-demo-bucket")

then you can use that AwsSession when creating a hybrid job
job = AwsQuantumJob.create(
 ...
 aws_session=aws_session
)

How to cancel a Hybrid Job

You may need to cancel a hybrid job in a non-terminal state. This can be done either in the console
or with code.

To cancel your hybrid job in the console, select the hybrid job to cancel from the Hybrid Jobs page
and then select Cancel hybrid job from the Actions dropdown menu.

To confirm the cancellation, enter cancel into the input field when prompted and then select OK.

How to cancel a Hybrid Job 204

Amazon Braket Developer Guide

To cancel your hybrid job using code from the Braket Python SDK, use the job_arn to identify the
hybrid job and then call the cancel command on it as shown in following code.

job = AwsQuantumJob(arn=job_arn)
job.cancel()

The cancel command terminates the classical hybrid job container immediately and does a best
effort to cancel all of the related quantum tasks that are still in a non-terminal state.

Using parametric compilation to speed up Hybrid Jobs

Amazon Braket supports parametric compilation on certain QPUs. This enables you to reduce
the overhead associated with the computationally expensive compilation step by compiling a
circuit only once and not for every iteration in your hybrid algorithm. This can improve runtimes
dramatically for Hybrid Jobs, since you avoid the need to recompile your circuit at each step.
Just submit parametrized circuits to one of our supported QPUs as a Braket Hybrid Job. For long
running hybrid jobs, Braket automatically uses the updated calibration data from the hardware
provider when compiling your circuit to ensure the highest quality results.

To create a parametric circuit, you first need to provide parameters as inputs in your algorithm
script. In this example, we use a small parametric circuit and ignore any classical processing

Using parametric compilation to speed up Hybrid Jobs 205

Amazon Braket Developer Guide

between each iteration. For typical workloads, you would submit many circuits in batch and
perform classical processing such as updating the parameters in each iteration.

import os

from braket.aws import AwsDevice
from braket.circuits import Circuit, FreeParameter

def start_here():

 print("Test job started.")

 # Use the device declared in the job script
 device = AwsDevice(os.environ["AMZN_BRAKET_DEVICE_ARN"])

 circuit = Circuit().rx(0, FreeParameter("theta"))
 parameter_list = [0.1, 0.2, 0.3]

 for parameter in parameter_list:
 result = device.run(circuit, shots=1000, inputs={"theta": parameter})

 print("Test job completed.")

You can submit the algorithm script to run as a Hybrid Job with the following job script. When
running the Hybrid Job on a QPU that supports parametric compilation, the circuit is compiled
only on the first run. In following runs, the compiled circuit is reused, increasing the runtime
performance of the Hybrid Job without any additional lines of code.

from braket.aws import AwsQuantumJob

job = AwsQuantumJob.create(
 device=device_arn,
 source_module="algorithm_script.py",
)

Note

Parametric compilation is supported on all superconducting, gate-based QPUs from Rigetti
Computing with the exception of pulse level programs.

Using parametric compilation to speed up Hybrid Jobs 206

Amazon Braket Developer Guide

Use PennyLane with Amazon Braket

Hybrid algorithms are algorithms that contain both classical and quantum instructions. The
classical instructions are ran on classical hardware (an EC2 instance or your laptop), and the
quantum instructions are ran either on a simulator or on a quantum computer. We recommend
that you run hybrid algorithms using the Hybrid Jobs feature. For more information, see When to
use Amazon Braket Jobs.

Amazon Braket enables you to set up and run hybrid quantum algorithms with the assistance of
the Amazon Braket PennyLane plugin, or with the Amazon Braket Python SDK and example
notebook repositories. Amazon Braket example notebooks, based on the SDK, enable you to set
up and run certain hybrid algorithms without the PennyLane plugin. However, we recommend
PennyLane because it provides a richer experience.

About hybrid quantum algorithms

Hybrid quantum algorithms are important to the industry today because contemporary quantum
computing devices generally produce noise, and therefore, errors. Every quantum gate added to
a computation increases the chance of adding noise; therefore, long-running algorithms can be
overwhelmed by noise, which results in faulty computation.

Pure quantum algorithms such as Shor’s (Quantum Phase Estimation example) or Grover’s (Grover’s
example) require thousands, or millions, of operations. For this reason, they can be impractical
for existing quantum devices, which are generally referred to as noisy intermediate-scale quantum
(NISQ) devices.

In hybrid quantum algorithms, quantum processing units (QPUs) work as co-processors for classic
CPUs, specifically to speed up certain calculations in a classical algorithm. Circuit executions
become much shorter, within reach of the capabilities of today’s devices.

In this section:

• Amazon Braket with PennyLane

• Hybrid algorithms in Amazon Braket example notebooks

• Hybrid algorithms with embedded PennyLane simulators

• Adjoint gradient on PennyLane with Amazon Braket simulators

• Using Hybrid Jobs and PennyLane to run a QAOA algorithm

• Run hybrid workloads with PennyLane embedded simulators

Use PennyLane with Amazon Braket 207

https://github.com/amazon-braket/amazon-braket-examples/tree/main/examples/advanced_circuits_algorithms/Quantum_Phase_Estimation
https://github.com/aws/amazon-braket-examples/tree/main/examples/advanced_circuits_algorithms/Grover
https://github.com/aws/amazon-braket-examples/tree/main/examples/advanced_circuits_algorithms/Grover

Amazon Braket Developer Guide

Amazon Braket with PennyLane

Amazon Braket provides support for PennyLane, an open-source software framework built around
the concept of quantum differentiable programming. You can use this framework to train quantum
circuits in the same way that you would train a neural network to find solutions for computational
problems in quantum chemistry, quantum machine learning, and optimization.

The PennyLane library provides interfaces to familiar machine learning tools, including PyTorch
and TensorFlow, to make training quantum circuits quick and intuitive.

• The PennyLane Library -– PennyLane is pre-installed in Amazon Braket notebooks. For access
to Amazon Braket devices from PennyLane, open a notebook and import the PennyLane library
with the following command.

import pennylane as qml

Tutorial notebooks help you get started quickly. Alternatively, you can use PennyLane on Amazon
Braket from an IDE of your choice.

• The Amazon Braket PennyLane plugin — To use your own IDE, you can install the Amazon
Braket PennyLane plugin manually. The plugin connects PennyLane with the Amazon Braket
Python SDK, so you can run circuits in PennyLane on Amazon Braket devices. To install the the
PennyLane plugin, use the following command.

pip install amazon-braket-pennylane-plugin

The following example demonstrates how to set up access to Amazon Braket devices in PennyLane:

to use SV1
import pennylane as qml
sv1 = qml.device("braket.aws.qubit", device_arn="arn:aws:braket:::device/quantum-
simulator/amazon/sv1", wires=2)

to run a circuit:
@qml.qnode(sv1)
def circuit(x):
 qml.RZ(x, wires=0)
 qml.CNOT(wires=[0,1])

Use PennyLane with Amazon Braket 208

https://pennylane.ai
https://github.com/aws/amazon-braket-sdk-python
https://github.com/aws/amazon-braket-sdk-python

Amazon Braket Developer Guide

 qml.RY(x, wires=1)
 return qml.expval(qml.PauliZ(1))

result = circuit(0.543)

#To use the local sim:
local = qml.device("braket.local.qubit", wires=2)

For tutorial examples and more information about PennyLane, see the Amazon Braket examples
repository.

The Amazon Braket PennyLane plugin enables you to switch between Amazon Braket QPU and
embedded simulator devices in PennyLane with a single line of code. It offers two Amazon Braket
quantum devices to work with PennyLane:

• braket.aws.qubit for running with the Amazon Braket service’s quantum devices, including
QPUs and simulators

• braket.local.qubit for running with the Amazon Braket SDK’s local simulator

The Amazon Braket PennyLane plugin is open source. You can install it from the PennyLane Plugin
GitHub repository.

For more information about PennyLane, see the documentation on the PennyLane website.

Hybrid algorithms in Amazon Braket example notebooks

Amazon Braket does provide a variety of example notebooks that do not rely on the PennyLane
plugin for running hybrid algorithms. You can get started with any of these Amazon Braket
hybrid example notebooks that illustrate variational methods, such as the Quantum Approximate
Optimization Algorithm (QAOA) or Variational Quantum Eigensolver (VQE).

The Amazon Braket example notebooks rely on the Amazon Braket Python SDK. The SDK provides
a framework to interact with quantum computing hardware devices through Amazon Braket. It
is an open source library that is designed to assist you with the quantum portion of your hybrid
workflow.

You can explore Amazon Braket further with our example notebooks.

Use PennyLane with Amazon Braket 209

https://github.com/aws/amazon-braket-examples/tree/main/examples/pennylane
https://github.com/aws/amazon-braket-examples/tree/main/examples/pennylane
https://github.com/aws/amazon-braket-pennylane-plugin-python
https://github.com/aws/amazon-braket-pennylane-plugin-python
https://pennylane.ai
https://github.com/aws/amazon-braket-examples/tree/main/examples/hybrid_quantum_algorithms
https://github.com/aws/amazon-braket-examples/tree/main/examples/hybrid_quantum_algorithms
https://github.com/aws/amazon-braket-sdk-python
https://github.com/aws/amazon-braket-examples

Amazon Braket Developer Guide

Hybrid algorithms with embedded PennyLane simulators

Amazon Braket Hybrid Jobs now comes with high performance CPU- and GPU-based embedded
simulators from PennyLane. This family of embedded simulators can be embedded directly within
your hybrid jobs container and includes the fast state-vector lightning.qubit simulator, the
lightning.gpu simulator accelerated using NVIDIA’s cuQuantum library, and others. These
embedded simulators are ideally suited for variational algorithms such as quantum machine
learning that can benefit from advanced methods such as the adjoint differentiation method. You
can run these embedded simulators on one or multiple CPU or GPU instances.

With Hybrid Jobs, you can now run your variational algorithm code using a combination of a
classical co-processor and a QPU, an Amazon Braket on-demand simulator such as SV1, or directly
using the embedded simulator from PennyLane.

The embedded simulator is already available with the Hybrid Jobs container, you simply need to
decorate your main Python function with the @hybrid_job decorator. To use the PennyLane
lightning.gpu simulator, you also need to specify a GPU instance in the InstanceConfig as
shown in the following code snippet:

import pennylane as qml
from braket.jobs import hybrid_job
from braket.jobs.config import InstanceConfig

@hybrid_job(device="local:pennylane/lightning.gpu",
 instance_config=InstanceConfig(instanceType="ml.p3.8xlarge"))
def function(wires):
 dev = qml.device("lightning.gpu", wires=wires)
 ...

Refer to the example notebook to get started with using a PennyLane embedded simulator with
Hybrid Jobs.

Adjoint gradient on PennyLane with Amazon Braket simulators

With the PennyLane plugin for Amazon Braket, you can compute gradients using the adjoint
differentiation method when running on the local state vector simulator or SV1.

Note: To use the adjoint differentiation method, you must specify diff_method='device' in
your qnode, and not diff_method='adjoint'. See the following example.

Use PennyLane with Amazon Braket 210

https://github.com/PennyLaneAI/pennylane-lightning
https://developer.nvidia.com/cuquantum-sdk
https://docs.pennylane.ai/en/stable/introduction/interfaces.html#simulation-based-differentiation
https://github.com/aws/amazon-braket-examples/blob/main/examples/hybrid_jobs/4_Embedded_simulators_in_Braket_Hybrid_Jobs/Embedded_simulators_in_Braket_Hybrid_Jobs.ipynb

Amazon Braket Developer Guide

device_arn = "arn:aws:braket:::device/quantum-simulator/amazon/sv1"
dev = qml.device("braket.aws.qubit", wires=wires, shots=0, device_arn=device_arn)

@qml.qnode(dev, diff_method="device")
def cost_function(params):
 circuit(params)
 return qml.expval(cost_h)

gradient = qml.grad(circuit)
initial_gradient = gradient(params0)

Note

Currently, PennyLane will compute grouping indices for QAOA Hamiltonians and use
them to split the Hamiltonian into multiple expectation values. If you want to use
SV1’s adjoint differentiation capability when running QAOA from PennyLane, you
will need reconstruct the cost Hamiltonian by removing the grouping indices, like so:
cost_h, mixer_h = qml.qaoa.max_clique(g, constrained=False) cost_h =
qml.Hamiltonian(cost_h.coeffs, cost_h.ops)

Using Hybrid Jobs and PennyLane to run a QAOA algorithm

In this section, you will use what you have learned to write an actual hybrid program using
PennyLane with parametric compilation. You use the algorithm script to address a Quantum
Approximate Optimization Algorithm (QAOA) problem. The program creates a cost function
corresponding to a classical Max Cut optimization problem, specifies a parametrized quantum
circuit, and uses a simple gradient descent method to optimize the parameters so that
the cost function is minimized. In this example, we generate the problem graph in the
algorithm script for simplicity, but for more typical use cases the best practice is to provide the
problem specification through a dedicated channel in the input data configuration. The flag
parametrize_differentiable defaults to True so you automatically get the benefits of
improved runtime performance from parametric compilation on supported QPUs.

import os
import json
import time

from braket.jobs import save_job_result

Use PennyLane with Amazon Braket 211

Amazon Braket Developer Guide

from braket.jobs.metrics import log_metric

import networkx as nx
import pennylane as qml
from pennylane import numpy as np
from matplotlib import pyplot as plt

def init_pl_device(device_arn, num_nodes, shots, max_parallel):
 return qml.device(
 "braket.aws.qubit",
 device_arn=device_arn,
 wires=num_nodes,
 shots=shots,
 # Set s3_destination_folder=None to output task results to a default folder
 s3_destination_folder=None,
 parallel=True,
 max_parallel=max_parallel,
 parametrize_differentiable=True, # This flag is True by default.
)

def start_here():
 input_dir = os.environ["AMZN_BRAKET_INPUT_DIR"]
 output_dir = os.environ["AMZN_BRAKET_JOB_RESULTS_DIR"]
 job_name = os.environ["AMZN_BRAKET_JOB_NAME"]
 checkpoint_dir = os.environ["AMZN_BRAKET_CHECKPOINT_DIR"]
 hp_file = os.environ["AMZN_BRAKET_HP_FILE"]
 device_arn = os.environ["AMZN_BRAKET_DEVICE_ARN"]

 # Read the hyperparameters
 with open(hp_file, "r") as f:
 hyperparams = json.load(f)

 p = int(hyperparams["p"])
 seed = int(hyperparams["seed"])
 max_parallel = int(hyperparams["max_parallel"])
 num_iterations = int(hyperparams["num_iterations"])
 stepsize = float(hyperparams["stepsize"])
 shots = int(hyperparams["shots"])

 # Generate random graph
 num_nodes = 6
 num_edges = 8
 graph_seed = 1967
 g = nx.gnm_random_graph(num_nodes, num_edges, seed=graph_seed)

Use PennyLane with Amazon Braket 212

Amazon Braket Developer Guide

 # Output figure to file
 positions = nx.spring_layout(g, seed=seed)
 nx.draw(g, with_labels=True, pos=positions, node_size=600)
 plt.savefig(f"{output_dir}/graph.png")

 # Set up the QAOA problem
 cost_h, mixer_h = qml.qaoa.maxcut(g)

 def qaoa_layer(gamma, alpha):
 qml.qaoa.cost_layer(gamma, cost_h)
 qml.qaoa.mixer_layer(alpha, mixer_h)

 def circuit(params, **kwargs):
 for i in range(num_nodes):
 qml.Hadamard(wires=i)
 qml.layer(qaoa_layer, p, params[0], params[1])

 dev = init_pl_device(device_arn, num_nodes, shots, max_parallel)

 np.random.seed(seed)
 cost_function = qml.ExpvalCost(circuit, cost_h, dev, optimize=True)
 params = 0.01 * np.random.uniform(size=[2, p])

 optimizer = qml.GradientDescentOptimizer(stepsize=stepsize)
 print("Optimization start")

 for iteration in range(num_iterations):
 t0 = time.time()

 # Evaluates the cost, then does a gradient step to new params
 params, cost_before = optimizer.step_and_cost(cost_function, params)
 # Convert cost_before to a float so it's easier to handle
 cost_before = float(cost_before)

 t1 = time.time()

 if iteration == 0:
 print("Initial cost:", cost_before)
 else:
 print(f"Cost at step {iteration}:", cost_before)

 # Log the current loss as a metric
 log_metric(

Use PennyLane with Amazon Braket 213

Amazon Braket Developer Guide

 metric_name="Cost",
 value=cost_before,
 iteration_number=iteration,
)

 print(f"Completed iteration {iteration + 1}")
 print(f"Time to complete iteration: {t1 - t0} seconds")

 final_cost = float(cost_function(params))
 log_metric(
 metric_name="Cost",
 value=final_cost,
 iteration_number=num_iterations,
)

 # We're done with the hybrid job, so save the result.
 # This will be returned in job.result()
 save_job_result({"params": params.numpy().tolist(), "cost": final_cost})

Note

Parametric compilation is supported on all superconducting, gate-based QPUs from Rigetti
Computing with the exception of pulse level programs.

Run hybrid workloads with PennyLane embedded simulators

Lets look at how you can use embedded simulators from PennyLane on Amazon Braket Hybrid Jobs
to run hybrid workloads. Pennylane’s GPU-based embedded simulator, lightning.gpu, uses the
Nvidia cuQuantum library to accelerate circuit simulations. The embedded GPU simulator is pre-
configured in all of the Braket job containers that users can use out of the box. In this page, we
show you how to use lightning.gpu to speed up your hybrid workloads.

Using lightning.gpu for QAOA workloads

Consider the Quantum Approximate Optimization Algorithm (QAOA) examples from this notebook.
To select an embedded simulator, you specify the device argument to be a string of the form:
"local:<provider>/<simulator_name>". For example, you would set "local:pennylane/
lightning.gpu" for lightning.gpu. The device string you give to the Hybrid Job when you
launch is passed to the job as the environment variable "AMZN_BRAKET_DEVICE_ARN".

Use PennyLane with Amazon Braket 214

https://developer.nvidia.com/cuquantum-sdk
https://github.com/amazon-braket/amazon-braket-containers
https://github.com/amazon-braket/amazon-braket-examples/tree/main/examples/hybrid_jobs/2_Using_PennyLane_with_Braket_Hybrid_Jobs

Amazon Braket Developer Guide

device_string = os.environ["AMZN_BRAKET_DEVICE_ARN"]
prefix, device_name = device_string.split("/")
device = qml.device(simulator_name, wires=n_wires)

In this page, let’s compare the two embedded PennyLane state vector simulators
lightning.qubit (which is CPU-based) and lightning.gpu (which is GPU-based). You’ll need
to provide the simulators with some custom gate decompositions in order to compute various
gradients.

Now you’re ready to prepare the hybrid job launching script. You’ll run the QAOA algorithm using
two instance types: m5.2xlarge and p3.2xlarge. The m5.2xlarge instance type is comparable
to a standard developer laptop. The p3.2xlarge is an accelerated computing instance that has a
single NVIDIA Volta GPU with 16GB of memory.

The hyperparameters for all your hybrid jobs will be the same. All you need to do to try out
different instances and simulators is change two lines as follows.

Specify device that the hybrid job will primarily be targeting
device = "local:pennylane/lightning.qubit"
Run on a CPU based instance with about as much power as a laptop
instance_config = InstanceConfig(instanceType='ml.m5.2xlarge')

or:

Specify device that the hybrid job will primarily be targeting
device = "local:pennylane/lightning.gpu"
Run on an inexpensive GPU based instance
instance_config = InstanceConfig(instanceType='ml.p3.2xlarge')

Note

If you specify the instance_config as using a GPU-based instance, but choose the
device to be the embedded CPU-based simulator (lightning.qubit), the GPU will not
be used. Make sure to use the embedded GPU-based simulator if you wish to target the
GPU!

Use PennyLane with Amazon Braket 215

Amazon Braket Developer Guide

First, you can create two hybrid jobs and solve Max-Cut with QAOA on a graph with 18 vertices.
This translates to an 18-qubit circuit—relatively small and feasible to run quickly on your laptop or
the m5.2xlarge instance.

num_nodes = 18
num_edges = 24
seed = 1967

graph = nx.gnm_random_graph(num_nodes, num_edges, seed=seed)

And similarly for the p3 job
m5_job = AwsQuantumJob.create(
 device=device,
 source_module="qaoa_source",
 job_name="qaoa-m5-" + str(int(time.time())),
 image_uri=image_uri,
 # Relative to the source_module
 entry_point="qaoa_source.qaoa_algorithm_script",
 copy_checkpoints_from_job=None,
 instance_config=instance_config,
 # general parameters
 hyperparameters=hyperparameters,
 input_data={"input-graph": input_file_path},
 wait_until_complete=True,
)

The mean iteration time for the m5.2xlarge instance is about 25 seconds, while for the
p3.2xlarge instance it’s about 12 seconds. For this 18-qubit workflow, the GPU instance gives
us a 2x speedup. If you look at the Amazon Braket Hybrid Jobs pricing page, you can see that the
cost per minute for an m5.2xlarge instance is $0.00768, while for the p3.2xlarge instance it’s
$0.06375. To run for 5 total iterations, as you did here, would cost $0.016 using the CPU instance
or $0.06375 using the GPU instance — both pretty inexpensive!

Now let’s make the problem harder, and try solving a Max-Cut problem on a 24-vertex graph,
which will translate to 24 qubits. Run the hybrid jobs again on the same two instances and
compare the cost.

Note

You’ll see that the time to run this hybrid job on the CPU instance may be about five hours!

Use PennyLane with Amazon Braket 216

https://aws.amazon.com/braket/pricing/

Amazon Braket Developer Guide

num_nodes = 24
num_edges = 36
seed = 1967

graph = nx.gnm_random_graph(num_nodes, num_edges, seed=seed)

And similarly for the p3 job
m5_big_job = AwsQuantumJob.create(
 device=device,
 source_module="qaoa_source",
 job_name="qaoa-m5-big-" + str(int(time.time())),
 image_uri=image_uri,
 # Relative to the source_module
 entry_point="qaoa_source.qaoa_algorithm_script",
 copy_checkpoints_from_job=None,
 instance_config=instance_config,
 # general parameters
 hyperparameters=hyperparameters,
 input_data={"input-graph": input_file_path},
 wait_until_complete=True,
)

The mean iteration time for the m5.2xlarge instance is roughly an hour, while for the
p3.2xlarge instance it’s roughly two minutes. For this larger problem, the GPU instance is an
order of magnitude faster! All you had to do to benefit from this speedup was to change two lines
of code, swapping out the instance type and the local simulator used. To run for 5 total iterations,
as was done here, would cost about $2.27072 using the CPU instance or about $0.775625 using
the GPU instance. The CPU usage is not only more expensive, but also takes more time to run.
Accelerating this workflow with a GPU instance available on AWS, using PennyLane’s embedded
simulator backed by NVIDIA CuQuantum, allows you to run workflows with intermediate qubit
counts (between 20 and 30) for less total cost and in less time. This means you can experiment
with quantum computing even for problems that are too big to run quickly on your laptop or a
similarly-sized instance.

Quantum machine learning and data parallelism

If your workload type is quantum machine learning (QML) that trains on datasets, you can further
accelerate your workload using data parallelism. In QML, the model contains one or more quantum
circuits. The model may or may not also contain classical neural nets. When training the model
with the dataset, the parameters in the model are updated to minimize the loss function. A loss

Use PennyLane with Amazon Braket 217

Amazon Braket Developer Guide

function is usually defined for a single data point, and the total loss for the average loss over the
whole dataset. In QML, the losses are usually computed in serial before averaging to total loss for
gradient computations. This procedure is time consuming, especially when there are hundreds of
data points.

Because the loss from one data point does not depend on other data points, the losses can be
evaluated in parallel! Losses and gradients associated with different data points can be evaluated
at the same time. This is known as data parallelism. With SageMaker’s distributed data parallel
library, Amazon Braket Hybrid Jobs make it easier for you to leverage data parallelism to accelerate
your training.

Consider the following QML workload for data parallelism which uses the Sonar dataset dataset
from the well-known UCI repository as an example for binary classification. The Sonar dataset
have 208 data points each with 60 features that are collected from sonar signals bouncing off
materials. Each data points is either labeled as "M" for mines or "R" for rocks. Our QML model
consists of an input layer, a quantum circuit as a hidden layer, and an output layer. The input and
output layers are classical neural nets implemented in PyTorch. The quantum circuit is integrated
with the PyTorch neural nets using PennyLane’s qml.qnn module. See our example notebooks
for more detail about the workload. Like the QAOA example above, you can harness the power of
GPU by using embedded GPU-based simulators like PennyLane’s lightning.gpu to improve the
performance over embedded CPU-based simulators.

To create a hybrid job, you can call AwsQuantumJob.create and specify the algorithm script,
device, and other configurations through its keyword arguments.

instance_config = InstanceConfig(instanceType='ml.p3.2xlarge')

hyperparameters={"nwires": "10",
 "ndata": "32",
 ...
}

job = AwsQuantumJob.create(
 device="local:pennylane/lightning.gpu",
 source_module="qml_source",
 entry_point="qml_source.train_single",
 hyperparameters=hyperparameters,
 instance_config=instance_config,
 ...
)

Use PennyLane with Amazon Braket 218

https://archive.ics.uci.edu/dataset/151/connectionist+bench+sonar+mines+vs+rocks
https://github.com/aws/amazon-braket-examples

Amazon Braket Developer Guide

In order to use data parallelism, you need to modify few lines of code in the algorithm script
for the SageMaker distributed library to correctly parallelize the training. First, you import the
smdistributed package which does most of the heavy-lifting for distributing your workloads
across multiple GPUs and multiple instances. This package is preconfigured in the Braket PyTorch
and TensorFlow containers. The dist module tells our algorithm script what the total number of
GPUs for the training (world_size) is as well as the rank and local_rank of a GPU core. rank is
the absolute index of a GPU across all instances, while local_rank is the index of a GPU within an
instance. For example, if there are four instances each with eight GPUs allocated for the training,
the rank ranges from 0 to 31 and the local_rank ranges from 0 to 7.

import smdistributed.dataparallel.torch.distributed as dist

dp_info = {
 "world_size": dist.get_world_size(),
 "rank": dist.get_rank(),
 "local_rank": dist.get_local_rank(),
}
batch_size //= dp_info["world_size"] // 8
batch_size = max(batch_size, 1)

Next, you define a DistributedSampler according to the world_size and rank and then pass
it into the data loader. This sampler avoids GPUs accessing the same slice of a dataset.

train_sampler = torch.utils.data.distributed.DistributedSampler(
 train_dataset,
 num_replicas=dp_info["world_size"],
 rank=dp_info["rank"]
)
train_loader = torch.utils.data.DataLoader(
 train_dataset,
 batch_size=batch_size,
 shuffle=False,
 num_workers=0,
 pin_memory=True,
 sampler=train_sampler,
)

Next, you use the DistributedDataParallel class to enable data parallelism.

from smdistributed.dataparallel.torch.parallel.distributed import
 DistributedDataParallel as DDP

Use PennyLane with Amazon Braket 219

Amazon Braket Developer Guide

model = DressedQNN(qc_dev).to(device)
model = DDP(model)
torch.cuda.set_device(dp_info["local_rank"])
model.cuda(dp_info["local_rank"])

The above are the changes you need to use data parallelism. In QML, you often want to save
results and print training progress. If each GPU runs the saving and printing command, the log will
be flooded with the repeated information and the results will overwrite each other. To avoid this,
you can only save and print from the GPU that has rank 0.

if dp_info["rank"]==0:
 print('elapsed time: ', elapsed)
 torch.save(model.state_dict(), f"{output_dir}/test_local.pt")
 save_job_result({"last loss": loss_before})

Amazon Braket Hybrid Jobs supports ml.p3.16xlarge instance types for the SageMaker
distributed data parallel library. You configure the instance type through the InstanceConfig
argument in Hybrid Jobs. For the SageMaker distributed data parallel library to know
that data parallelism is enabled, you need to add two additional hyperparameters,
"sagemaker_distributed_dataparallel_enabled" setting to "true" and
"sagemaker_instance_type" setting to the instance type you are using. These two
hyperparameters are used by smdistributed package. Your algorithm script does not need
to explicitly use them. In Amazon Braket SDK, it provides a convenient keyword argument
distribution. With distribution="data_parallel" in hybrid job creation, the Amazon
Braket SDK automatically inserts the two hyperparameters for you. If you use the Amazon Braket
API, you need to include these two hyperparameters.

With the instance and data parallelism configured, you can now submit your hybrid job. There
are 8 GPUs in a ml.p3.16xlarge instance. When you set instanceCount=1 , the workload is
distributed across the 8 GPUs in the instance. When you set instanceCount greater than one,
the workload is distributed across GPUs available in all instances. When using multiple instances,
each instance incurs a charge based on how much time you use it. For example, when you use four
instances, the billable time is four times the run time per instance because there are four instances
running your workloads at the same time.

instance_config = InstanceConfig(instanceType='ml.p3.16xlarge',
 instanceCount=1,
)

Use PennyLane with Amazon Braket 220

Amazon Braket Developer Guide

hyperparameters={"nwires": "10",
 "ndata": "32",
 ...,
}

job = AwsQuantumJob.create(
 device="local:pennylane/lightning.gpu",
 source_module="qml_source",
 entry_point="qml_source.train_dp",
 hyperparameters=hyperparameters,
 instance_config=instance_config,
 distribution="data_parallel",
 ...
)

Note

In the above hybrid job creation, train_dp.py is the modified algorithm script for using
data parallelism. Keep in mind that data parallelism only works correctly when you modify
your algorithm script according to the above section. If the data parallelism option is
enabled without a correctly modified algorithm script, the hybrid job may throw errors, or
each GPU may repeatedly process the same data slice, which is inefficient.

Let’s compare the run time and cost in an example where when train a model with a 26-qubit
quantum circuit for the binary classification problem mentioned above. The ml.p3.16xlarge
instance used in this example costs $0.4692 per minute. Without data parallelism, it takes the
simulator about 45 minutes to train the model for 1 epoch (i.e., over 208 data points) and it costs
about $20. With data parallelism across 1 instance and 4 instances, it only takes 6 minutes and
1.5 minutes respectively, which translates to roughly $2.8 for both. By using data parallelism
across 4 instances, you not only improve the run time by 30x, but also reduce costs by an order of
magnitude!

Bring your own container (BYOC)

Amazon Braket Hybrid Jobs provides three pre-built containers for running code in different
environments. If one of these containers supports your use case, you only have to provide your
algorithm script when you create a hybrid job. Minor missing dependencies can be added from your
algorithm script or from a requirements.txt file using pip.

Bring your own container (BYOC) 221

Amazon Braket Developer Guide

If none of these containers support your use case, or if you wish to expand on them, Braket Hybrid
Jobs supports running hybrid jobs with your own custom Docker container image, or bring your
own container (BYOC). But before we dive in, let’s make sure it’s actually the right feature for your
use case.

In this section:

• When is bringing my own container the right decision?

• Recipe for bringing your own container

• Running Braket hybrid jobs in your own container

When is bringing my own container the right decision?

Bringing your own container (BYOC) to Braket Hybrid Jobs offers the flexibility to use your own
software by installing it in a packaged environment. Depending on your specific needs, there may
be ways to achieve the same flexibility without having to go through the full BYOC Docker build -
Amazon ECR upload - custom image URI cycle.

Note

BYOC may not be the right choice if you want to add a small number of additional Python
packages (generally fewer than 10) which are publicly available. For example, if you're using
PyPi.

In this case, you can use one of the pre-built Braket images, and then include a
requirements.txt file in your source directory at the job submission. The file is automatically
read, and pip will install the packages with the specified versions as normal. If you're installing
a large number of packages, the runtime of your jobs may be substantially increased. Check the
Python and, if applicable, CUDA version of the prebuilt container you want to use to test if your
software will work.

BYOC is necessary when you want to use a non-Python language (like C++ or Rust) for your job
script, or if you want to use a Python version not available through the Braket pre-built containers.
It’s also a good choice if:

• You're using software with a license key, and you need to authenticate that key against a
licensing server to run the software. With BYOC, you can embed the license key in your Docker
image and include code to authenticate it.

Bring your own container (BYOC) 222

Amazon Braket Developer Guide

• You're using software that isn’t publicly available. For example, the software is hosted on a
private GitLab or GitHub repository that you need a particular SSH key to access.

• You need to install a large suite of software that isn’t packaged in the Braket provided
containers. BYOC will allow you to eliminate long startup times for your hybrid jobs containers
due to software installation.

BYOC also enables you to make your custom SDK or algorithm available to customers by building
a Docker container with your software and making it available to your users. You can do this by
setting appropriate permissions in Amazon ECR.

Note

You must comply with all applicable software licenses.

Recipe for bringing your own container

In this section, we provide a step-by-step guide of what you’ll need to bring your own container
(BYOC) to Braket Hybrid Jobs — the scripts, files, and steps to combine them in order to get up and
running with your custom Docker images. We provide recipes for two common cases:

1. Install additional software in a Docker image and use only Python algorithm scripts in your jobs.

2. Use algorithm scripts written in a non-Python language with Hybrid Jobs, or a CPU architecture
besides x86.

Defining the container entry script is more complex for case 2.

When Braket runs your Hybrid Job, it launches the requested number and type of Amazon EC2
instances, then runs the Docker image specified by the image URI input to job creation on them.
When using the BYOC feature, you specify an image URI hosted in a private Amazon ECR repository
that you have Read access to. Braket Hybrid Jobs uses that custom image to run the job.

The specific components you need to build a Docker image that can be used with Hybrid Jobs.
If you’re unfamiliar with writing and building Dockerfiles, we suggest you refer to the
Dockerfile documentation and the Amazon ECR CLI documentation as needed while you read these
instructions.

Here’s an overview of what you’ll need:

Bring your own container (BYOC) 223

https://docs.aws.amazon.com/AmazonECR/latest/userguide/Repositories.html
https://docs.docker.com/reference/dockerfile/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html

Amazon Braket Developer Guide

• A base image for your Dockerfile

• (Optional) A modified container entry point script

• Install needed software and container script with Dockerfile

A base image for your Dockerfile

If you are using Python and want to install software on top of what’s provided in the Braket
provided containers, an option for a base image is one of the Braket container images, hosted in
our GitHub repo and on Amazon ECR. You will need to authenticate to Amazon ECR to pull the
image and build on top of it. For example, the first line of your BYOC Docker file could be: FROM
[IMAGE_URI_HERE]

Next, fill out the rest of the Dockerfile to install and set up the software that you want to add to
the container. The pre-built Braket images will already contain the appropriate container entry
point script, so you don’t need to worry about including that.

If you want to use a non-Python language, such as C++, Rust, or Julia, or if you want to build an
image for a non-x86 CPU architecture, like ARM, you may need to build on top of a barebones
public image. You can find many such images at the Amazon Elastic Container Registry Public
Gallery. Make sure you choose one that is appropriate for the CPU architecture, and if necessary,
the GPU you want to use.

(Optional) A modified container entry point script

Note

If you're only adding additional software to a pre-built Braket image, you can skip this
section.

To run non-Python code as part of your hybrid job, you’ll need to modify the Python script which
defines the container entry point. For example, the braket_container.py python script on
the Amazon Braket Github . This is the script the images pre-built by Braket use to launch your
algorithm script and set appropriate environment variables. The container entry point script itself
must be in Python, but can launch non-Python scripts. In the pre-built example, you can see that
Python algorithm scripts are launched either as a Python subprocess or as a fully new process. By
modifying this logic, you can enable the entry point script to launch non-Python algorithm scripts.

Bring your own container (BYOC) 224

https://github.com/amazon-braket/amazon-braket-containers
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html#cli-authenticate-registry
https://gallery.ecr.aws/
https://gallery.ecr.aws/
https://github.com/amazon-braket/amazon-braket-containers/blob/main/src/braket_container.py
https://github.com/amazon-braket/amazon-braket-containers/blob/main/src/braket_container.py
https://github.com/amazon-braket/amazon-braket-containers/blob/main/src/braket_container.py#L274
https://github.com/amazon-braket/amazon-braket-containers/blob/main/src/braket_container.py#L257

Amazon Braket Developer Guide

For example, you could modify thekick_off_customer_script() function to launch Rust
processes dependent on the file extension ending.

You can also choose to write a completely new braket_container.py. It should copy input
data, source archives, and other necessary files from Amazon S3 into the container, and define the
appropriate environment variables.

Install needed software and container script with Dockerfile

Note

If you use a pre-built Braket image as your Docker base image, the container script is
already present.

If you created a modified container script in the previous step, you'll need to copy it into the
container and define the environment variable SAGEMAKER_PROGRAM to braket_container.py,
or what you have named your new container entry point script.

The following is an example of a Dockerfile that allows you to use Julia on GPU-accelerated
Jobs instances:

FROM nvidia/cuda:12.2.0-devel-ubuntu22.04

 ARG DEBIAN_FRONTEND=noninteractive
 ARG JULIA_RELEASE=1.8
 ARG JULIA_VERSION=1.8.3

 ARG PYTHON=python3.11
 ARG PYTHON_PIP=python3-pip
 ARG PIP=pip

 ARG JULIA_URL = https://julialang-s3.julialang.org/bin/linux/x64/${JULIA_RELEASE}/
 ARG TAR_NAME = julia-${JULIA_VERSION}-linux-x86_64.tar.gz

 ARG PYTHON_PKGS = # list your Python packages and versions here

Bring your own container (BYOC) 225

https://github.com/amazon-braket/amazon-braket-containers/blob/main/src/braket_container.py#L139

Amazon Braket Developer Guide

 RUN curl -s -L ${JULIA_URL}/${TAR_NAME} | tar -C /usr/local -x -z --strip-components=1
 -f -

 RUN apt-get update \

 && apt-get install -y --no-install-recommends \

 build-essential \

 tzdata \

 openssh-client \

 openssh-server \

 ca-certificates \

 curl \

 git \

 libtemplate-perl \

 libssl1.1 \

 openssl \

 unzip \

 wget \

 zlib1g-dev \

 ${PYTHON_PIP} \

 ${PYTHON}-dev \

 RUN ${PIP} install --no-cache --upgrade ${PYTHON_PKGS}

Bring your own container (BYOC) 226

Amazon Braket Developer Guide

 RUN ${PIP} install --no-cache --upgrade sagemaker-training==4.1.3

 # Add EFA and SMDDP to LD library path
 ENV LD_LIBRARY_PATH="/opt/conda/lib/python${PYTHON_SHORT_VERSION}/site-packages/
smdistributed/dataparallel/lib:$LD_LIBRARY_PATH"
 ENV LD_LIBRARY_PATH=/opt/amazon/efa/lib/:$LD_LIBRARY_PATH

 # Julia specific installation instructions
 COPY Project.toml /usr/local/share/julia/environments/v${JULIA_RELEASE}/
 RUN JULIA_DEPOT_PATH=/usr/local/share/julia \

 julia -e 'using Pkg; Pkg.instantiate(); Pkg.API.precompile()'
 # generate the device runtime library for all known and supported devices
 RUN JULIA_DEPOT_PATH=/usr/local/share/julia \

 julia -e 'using CUDA; CUDA.precompile_runtime()'

 # Open source compliance scripts
 RUN HOME_DIR=/root \

 && curl -o ${HOME_DIR}/oss_compliance.zip https://aws-dlinfra-
utilities.s3.amazonaws.com/oss_compliance.zip \

 && unzip ${HOME_DIR}/oss_compliance.zip -d ${HOME_DIR}/ \

 && cp ${HOME_DIR}/oss_compliance/test/testOSSCompliance /usr/local/bin/
testOSSCompliance \

 && chmod +x /usr/local/bin/testOSSCompliance \

 && chmod +x ${HOME_DIR}/oss_compliance/generate_oss_compliance.sh \

 && ${HOME_DIR}/oss_compliance/generate_oss_compliance.sh ${HOME_DIR} ${PYTHON} \

 && rm -rf ${HOME_DIR}/oss_compliance*

 # Copying the container entry point script
 COPY braket_container.py /opt/ml/code/braket_container.py
 ENV SAGEMAKER_PROGRAM braket_container.py

Bring your own container (BYOC) 227

Amazon Braket Developer Guide

This example, downloads and runs scripts provided by AWS to ensure compliance with all relevant
Open-Source licenses. For example, by properly attributing any installed code governed by an MIT
license.

If you need to include non-public code, for instance code that is hosted in a private GitHub or
GitLab repository, do not embed SSH keys in the Docker image to access it. Instead, use Docker
Compose when you build to allow Docker to access SSH on the host machine it is built on. For more
information, see the Securely using SSH keys in Docker to access private Github repositories guide.

Building and uploading your Docker image

With a properly defined Dockerfile, you are now ready to follow the steps to create a private
Amazon ECR repository, if one does not already exist. You can also build, tag, and upload your
container image to the repository.

You are ready to build, tag, and push the image. See the Docker build documentation for a full
explanation of options to docker build and some examples.

For the sample file defined above, you could run:

aws ecr get-login-password --region ${your_region} | docker login --username AWS --
password-stdin ${aws_account_id}.dkr.ecr.${your_region}.amazonaws.com
 docker build -t braket-julia .
 docker tag braket-julia:latest ${aws_account_id}.dkr.ecr.${your_region}.amazonaws.com/
braket-julia:latest
 docker push ${aws_account_id}.dkr.ecr.${your_region}.amazonaws.com/braket-julia:latest

Assigning appropriate Amazon ECR permissions

Braket Hybrid Jobs Docker images must be hosted in private Amazon ECR repositories. By default,
a private Amazon ECR repo does not provide read access to the Braket Hybrid Jobs IAM role or
to any other users that want to use your image, such as a collaborator or student. You must set a
repository policy in order to grant the appropriate permissions. In general, only give permission
to those specific users and IAM roles you want to access your images, rather than allowing anyone
with the image URI to pull them.

Running Braket hybrid jobs in your own container

To create a hybrid job with your own container, call AwsQuantumJob.create() with the
argument image_uri specified. You can use a QPU, an on-demand simulator, or run your code

Bring your own container (BYOC) 228

https://www.fastruby.io/blog/docker/docker-ssh-keys.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://docs.docker.com/reference/cli/docker/buildx/build/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html

Amazon Braket Developer Guide

locally on the classical processor available with Braket Hybrid Jobs. We recommend testing your
code out on a simulator like SV1, DM1, or TN1 before running on a real QPU.

To run your code on the classical processor, specify the instanceType and the instanceCount
you use by updating the InstanceConfig. Note that if you specify an instance_count > 1, you
need to make sure that your code can run across multiple hosts. The upper limit for the number of
instances you can choose is 5. For example:

job = AwsQuantumJob.create(
 source_module="source_dir",
 entry_point="source_dir.algorithm_script:start_here",
 image_uri="111122223333.dkr.ecr.us-west-2.amazonaws.com/my-byoc-container:latest",
 instance_config=InstanceConfig(instanceType="ml.p3.8xlarge", instanceCount=3),
 device="local:braket/braket.local.qubit",
 # ...)

Note

Use the device ARN to track the simulator you used as hybrid job metadata. Acceptable
values must follow the format device = "local:<provider>/<simulator_name>".
Remember that <provider> and <simulator_name> must consist only of letters,
numbers, _, -, and . . The string is limited to 256 characters.
If you plan to use BYOC and you're not using the Braket SDK to create quantum tasks, you
should pass the value of the environmental variable AMZN_BRAKET_JOB_TOKEN to the
jobToken parameter in the CreateQuantumTask request. If you don't, the quantum tasks
don't get priority and are billed as regular standalone quantum tasks.

Using CUDA-Q with Amazon Braket

NVIDIA’s CUDA-Q is a software library designed for programming hybrid quantum algorithms that
combine CPUs, GPUs, and Quantum processing units (QPUs). It provides a unified programming
model, allowing developers to express both classical and quantum instructions within a single
program, streamlining workflows. CUDA-Q accelerates quantum program simulation and runtime
with its built-in CPU and GPU simulators.

Using CUDA-Q on Amazon Braket Hybrid Jobs offers a flexible, on-demand computing
environment. Computational instances run only for the duration of your workload, ensuring you
pay only for what you use. Amazon Braket Hybrid Jobs also provides a scalable experience. Users

Using CUDA-Q with Amazon Braket 229

Amazon Braket Developer Guide

can start with smaller instances for prototyping and testing, then scale up to larger instances
capable of handling greater workloads for full experiments.

Amazon Braket Hybrid Jobs support GPUs that are essential for maximizing CUDA-Q’s potential.
GPUs significantly speed up quantum program simulations compared to CPU-based simulators,
especially when working with high qubit count circuits. Parallelization becomes straightforward
when using CUDA-Q on Amazon Braket Hybrid Jobs. Hybrid Jobs simplifies the distribution of
circuit sampling and observable evaluations across multiple computational nodes. This seamless
parallelization of CUDA-Q workloads allows users to focus more on developing their workloads
rather than setting up infrastructure for large-scale experiments.

To get started, see the CUDA-Q starter example on the Amazon Braket examples Github to create a
job container that supports CUDA-Q through bring your own container (BYOC). Make sure that you
have the appropriate IAM permissions to build and publish your CUDA-Q container to an Amazon
ECR repo.

The following code snippet is a hello-world example for running a CUDA-Q program with
Amazon Braket Hybrid Jobs.

image_uri = "<ecr-image-uri>"

@hybrid_job(device='local:nvidia/qpp-cpu', image_uri=image_uri)
def hello_quantum():
 import cudaq

 # define the backend
 device=get_job_device_arn()
 cudaq.set_target(device.split('/')[-1])

 # define the Bell circuit
 kernel = cudaq.make_kernel()
 qubits = kernel.qalloc(2)
 kernel.h(qubits[0])
 kernel.cx(qubits[0], qubits[1])

 # sample the Bell circuit
 result = cudaq.sample(kernel, shots_count=1000)
 measurement_probabilities = dict(result.items())

 return measurement_probabilities

Using CUDA-Q with Amazon Braket 230

https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/nvidia_cuda_q/0_hello_cudaq_jobs.ipynb

Amazon Braket Developer Guide

The above example simulates a Bell circuit on a CPU simulator. This example runs locally on
your laptop or Braket Jupyter notebook. Because of the local=True setting, when you run this
script, a container will start in your local environment to run the CUDA-Q program for testing and
debugging. After you finish testing, you can remove the local=True flag and run your job AWS.
To learn more, see Getting started with Amazon Braket Hybrid Jobs.

If your workloads have a high qubit count, a large number of circuits or a large number
of iterations, you can use more powerful CPU computing resources by specifying the
instance_config setting. The following code snippet shows how to configure the
instance_config setting in the hybrid_job decorator. For more information about supported
instance types, see Configure the hybrid job instance to run your script. For a list of instance types,
see Amazon EC2 Instance types.

@hybrid_job(
 device="local:nvidia/qpp-cpu",
 image_uri=image_uri,
 instance_config=InstanceConfig(instanceType="ml.c5.2xlarge"),
)
def my_job_script():
 ...

For more demanding workloads, you can run your workloads on a CUDA-Q GPU simulator. To
enable a GPU simulator, use the backend name nvidia. The nvidia backend operates as a CUDA-
Q GPU simulator. Next, select an Amazon EC2 instance type that supports an NVIDIA GPU. The
following code snippet shows the GPU-configured hybrid_job decorator.

@hybrid_job(
 device="local:nvidia/nvidia",
 image_uri=image_uri,
 instance_config=InstanceConfig(instanceType="ml.p3.2xlarge"),
)
def my_job_script():
 ...

Amazon Braket Hybrid Jobs supports parallel GPU simulations with CUDA-Q. You can parallelize
the evaluation of multiple observables or multiple circuits to boost the performance of your
workload. To parallelize multiple observables, make the following changes to your algorithm script.

Using CUDA-Q with Amazon Braket 231

https://docs.aws.amazon.com/braket/latest/developerguide/braket-build-jobs.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-jobs-configure-job-instance-for-script.html
https://aws.amazon.com/ec2/instance-types/

Amazon Braket Developer Guide

Set the mgpu option of the nvidia backend. This is required to parallelize the observables. The
parallelization uses MPI for communication between GPUs, so MPI needs to be initialized before
the execution and finalized after it.

Next, specify the execution mode by setting execution=cudaq.parallel.mpi. The following
code snippet shows these changes.

cudaq.set_target("nvidia", option="mqpu")
cudaq.mpi.initialize()
result = cudaq.observe(
 kernel, hamiltonian, shots_count=n_shots, execution=cudaq.parallel.mpi
)
cudaq.mpi.finalize()

In the hybrid_job decorator specify an instance type that hosts multiple GPUs as shown in the
following code snippet.

@hybrid_job(
 device="local:nvidia/nvidia-mqpu",
 instance_config=InstanceConfig(instanceType="ml.p3.8xlarge", instanceCount=1),
 image_uri=image_uri,
)
def parallel_observables_gpu_job(sagemaker_mpi_enabled=True):
 ...

The parallel simulations notebook in the Amazon Braket examples Github provide end-to-end
examples that demonstrate how to run quantum program simulations on GPU backends and
perform parallel simulations of observables and circuit batches.

Running your workloads on quantum computers

After completing simulator testing, you can transition to running experiments on QPUs. Just switch
the target to an Amazon Braket QPU, such as the IQM, IonQ, or Rigetti devices. The following code
snippet illustrates how to set the target to the IQM Garnet device. For a list of available QPUs, see
the Amazon Braket Console.

device_arn = "arn:aws:braket:eu-north-1::device/qpu/iqm/Garnet"
cudaq.set_target("braket", machine=device_arn)

Using CUDA-Q with Amazon Braket 232

https://github.com/amazon-braket/amazon-braket-examples/blob/main/examples/nvidia_cuda_q/2_parallel_simulations.ipynb
https://us-west-1.console.aws.amazon.com/braket/home?region=us-west-1#/dashboard

Amazon Braket Developer Guide

For more information about Amazon Braket Hybrid Jobs, see Working with Amazon Braket Hybrid
Jobs in the developer guide. To learn more about CUDA-Q, see the CUDA-Q documentation.

Interact with hybrid jobs directly using the API

You can access and interact with Amazon Braket Hybrid Jobs directly using the API. However,
defaults and convenience methods are not available when using the API directly.

Note

We strongly recommend that you interact with Amazon Braket Hybrid Jobs using the
Amazon Braket Python SDK. It offers convenient defaults and protections that help your
hybrid jobs run successfully.

This topic covers the basics of using the API. If you choose to use the API, keep in mind that this
approach can be more complex and be prepared for several iterations to get your hybrid job to run.

To use the API, your account should have a role with the AmazonBraketFullAccess managed
policy.

Note

For more information on how to obtain a role with the AmazonBraketFullAccess
managed policy, see the Enable Amazon Braket page.

Additionally, you need an execution role. This role will be passed to the service. You can create
the role using the Amazon Braket console. Use the Execution roles tab on the Permissions and
settings page to create a default role for hybrid jobs.

The CreateJob API requires that you specify all the required parameters for the hybrid job. To use
Python, compress your algorithm script files to a tar bundle, such as an input.tar.gz file, and run the
following script. Update the parts of the code within angled brackets (<>) to match your account
information and entry point that specify the path, file, and method where your hybrid job starts.

from braket.aws import AwsDevice, AwsSession
import boto3
from datetime import datetime

Interact with hybrid jobs directly using the API 233

https://docs.aws.amazon.com/braket/latest/developerguide/braket-test-jobs.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-test-jobs.html
https://nvidia.github.io/cuda-quantum/latest/index.html
https://github.com/aws/amazon-braket-sdk-python

Amazon Braket Developer Guide

s3_client = boto3.client("s3")
client = boto3.client("braket")

project_name = "job-test"
job_name = project_name + "-" + datetime.strftime(datetime.now(), "%Y%m%d%H%M%S")
bucket = "amazon-braket-<your_bucket>"
s3_prefix = job_name

job_script = "input.tar.gz"
job_object = f"{s3_prefix}/script/{job_script}"
s3_client.upload_file(job_script, bucket, job_object)

input_data = "inputdata.csv"
input_object = f"{s3_prefix}/input/{input_data}"
s3_client.upload_file(input_data, bucket, input_object)

job = client.create_job(
 jobName=job_name,
 roleArn="arn:aws:iam::<your_account>:role/service-role/
AmazonBraketJobsExecutionRole", # https://docs.aws.amazon.com/braket/latest/
developerguide/braket-manage-access.html#about-amazonbraketjobsexecution
 algorithmSpecification={
 "scriptModeConfig": {
 "entryPoint": "<your_execution_module>:<your_execution_method>",
 "containerImage": {"uri": "292282985366.dkr.ecr.us-west-1.amazonaws.com/
amazon-braket-base-jobs:1.0-cpu-py37-ubuntu18.04"}, # Change to the specific region
 you are using
 "s3Uri": f"s3://{bucket}/{job_object}",
 "compressionType": "GZIP"
 }
 },
 inputDataConfig=[
 {
 "channelName": "hellothere",
 "compressionType": "NONE",
 "dataSource": {
 "s3DataSource": {
 "s3Uri": f"s3://{bucket}/{s3_prefix}/input",
 "s3DataType": "S3_PREFIX"
 }
 }
 }
],
 outputDataConfig={

Interact with hybrid jobs directly using the API 234

Amazon Braket Developer Guide

 "s3Path": f"s3://{bucket}/{s3_prefix}/output"
 },
 instanceConfig={
 "instanceType": "ml.m5.large",
 "instanceCount": 1,
 "volumeSizeInGb": 1
 },
 checkpointConfig={
 "s3Uri": f"s3://{bucket}/{s3_prefix}/checkpoints",
 "localPath": "/opt/omega/checkpoints"
 },
 deviceConfig={
 "priorityAccess": {
 "devices": [
 "arn:aws:braket:us-west-1::device/qpu/rigetti/Ankaa-3"
]
 }
 },
 hyperParameters={
 "hyperparameter key you wish to pass": "<hyperparameter value you wish to
 pass>",
 },
 stoppingCondition={
 "maxRuntimeInSeconds": 1200,
 "maximumTaskLimit": 10
 },
)

Once you create your hybrid job, you can access the hybrid job details through the GetJob API or
the console. To get the hybrid job details from the Python session in which you ran the createJob
code as in the previous example, use the following Python command.

getJob = client.get_job(jobArn=job["jobArn"])

To cancel a hybrid job, call the CancelJob API with the Amazon Resource Name of the job
('JobArn').

cancelJob = client.cancel_job(jobArn=job["jobArn"])

You can specify checkpoints as part of the createJob API using the checkpointConfig
parameter.

Interact with hybrid jobs directly using the API 235

Amazon Braket Developer Guide

 checkpointConfig = {
 "localPath" : "/opt/omega/checkpoints",
 "s3Uri": f"s3://{bucket}/{s3_prefix}/checkpoints"
 },

Note

The localPath of checkpointConfig cannot start with any of the following reserved
paths: /opt/ml, /opt/braket, /tmp, or /usr/local/nvidia.

Working with reservations

Reservations give you exclusive access to the quantum device of your choice. You can schedule
a reservation at your convenience, so you know exactly when your workload starts and ends
execution. Reservations are available in 1-hour increments and can be cancelled up to 48 hours in
advance, at no additional charge. You can choose to queue quantum tasks and hybrid jobs for an
upcoming reservation in advance, or submit workloads during your reservation.

The cost of dedicated device access is based on the duration of your reservation, regardless of how
many quantum tasks and hybrid jobs you run on the Quantum Processing Unit (QPU).

The following quantum computers are available for reservations:

• IonQ’s Aria and Forte

• Rigetti's Ankaa-3

• IQM’s Garnet

• QuEra’s Aquila

Note

When using a direct reservation with an IonQ device, there is no gateshot limit, and a
minimum of 500 shots for Error mitigation tasks.

When to use a reservation

(Advanced) Working with reservations 236

https://docs.aws.amazon.com/braket/latest/developerguide/braket-error-mitigation.html

Amazon Braket Developer Guide

Leveraging dedicated device access with reservations provides you with the convenience and
predictability of knowing exactly when your quantum workload starts and ends execution.
Compared to submitting tasks and hybrid jobs on-demand, you do not have wait in a queue with
other customer tasks. Because you have exclusive access to the device during your reservation, only
your workloads run on the device for the entirety of the reservation.

We recommend using on-demand access for the design and prototyping phase of your research,
enabling quick and cost-efficient iteration of your algorithms. Once you are ready to produce final
experiment results, consider scheduling a device reservation at your convenience to ensure that you
can meet project or publication deadlines. We also recommend using reservations when you desire
task execution during specific times, such as when you're running a live demo or workshop on a
quantum computer.

In this section:

• How to create a reservation

• Running quantum tasks during a reservation

• Running hybrid jobs during a reservation

• What happens at the end of your reservation

• Cancel or reschedule an existing reservation

How to create a reservation

To create a reservation, contact the Braket team by following these steps:

1. Open the Amazon Braket console.

2. Choose Braket Direct in the left pane, and then in the Reservations section, choose Reserve
device .

3. Select the Device that you would like to reserve.

4. Provide your contact information including Name and Email. Be sure to provide a valid email
address that you regularly check.

5. Under Tell us about your workload, provide any details about the workload to run using your
reservation. For example, desired reservation length, relevant constraints, or desired schedule.

6. If you are interested in connecting with a Braket expert for a reservation prep session after your
reservation is confirmed, optionally select I’m interested in a prep session.

How to create a reservation 237

Amazon Braket Developer Guide

You can also contact us to create a reservation by following these steps:

1. Open the Amazon Braket console.

2. Choose Devices in the left pane and choose the device that you would like to reserve.

3. In the Summary section, choose Reserve device.

4. Follow steps 4-6 in the previous procedure.

After you submit the form, you receive an email from the Braket team with the next steps to create
your reservation. Once your reservation is confirmed, you will receive the reservation ARN through
your email.

Note

Your reservation is only confirmed once you receive the reservation ARN.

Reservations are available in minimum 1-hour increments and certain devices might have
additional reservation length constraints (including minimum and maximum reservation
durations). The Braket team shares any relevant information with you prior to confirming the
reservation.

If you indicated interest in a reservation prep session, the Braket team will contact you through
your email to arrange a 30-minute session with a Braket expert.

Running quantum tasks during a reservation

After obtaining a valid reservation ARN from Create a reservation, you can create quantum tasks to
run during the reservation. These tasks remain in the QUEUED state until your reservation begins.

Note

Reservations are AWS account and device-specific. Only the AWS account that created the
reservation can use your reservation ARN.

Running quantum tasks during a reservation 238

https://docs.aws.amazon.com/braket/latest/developerguide/braket-reservations.html#braket-create-a-reservation

Amazon Braket Developer Guide

Note

There is no queue visibility for tasks and jobs submitted with a reservation ARN because
only your tasks run during your reservation.

You can create quantum tasks using Python SDKs such as Braket, Qiskit, PennyLane, or directly
with boto3 (Working with Boto3). To use reservations, you must have version v1.79.0 or higher
of the Amazon Braket Python SDK. You can update to the latest Braket SDK, Qiskit provider and
PennyLane plugin with the following code.

pip install --upgrade amazon-braket-sdk amazon-braket-pennylane-plugin qiskit-braket-
provider

Run tasks with the DirectReservation context manager

The recommended way to run a task within your scheduled reservation is to use the
DirectReservation context manager. By specifying your target device and reservation ARN,
the context manager ensures that all tasks created within the Python with statement are run with
exclusive access to the device.

First, define a quantum circuit and the device. Then use the reservation context and run the task.

from braket.aws import AwsDevice, DirectReservation
from braket.circuits import Circuit
from braket.devices import Devices

bell = Circuit().h(0).cnot(0, 1)
device = AwsDevice(Devices.IonQ.Aria1)

run the circuit in a reservation
with DirectReservation(device, reservation_arn="<my_reservation_arn>"):
 task = device.run(bell, shots=100)

You can create quantum tasks in a reservation using PennyLane and Qiskit plugins, as long as the
DirectReservation context is active while creating quantum tasks. For example, with the Qiskit-
Braket provider, you can run tasks as follows.

from braket.devices import Devices

Running quantum tasks during a reservation 239

https://docs.aws.amazon.com/braket/latest/developerguide/braket-references.html
https://github.com/qiskit-community/qiskit-braket-provider
https://github.com/amazon-braket/amazon-braket-pennylane-plugin-python
https://docs.aws.amazon.com/braket/latest/developerguide/braket-using-boto3.html
https://github.com/amazon-braket/amazon-braket-sdk-python/releases/tag/v1.79.0
https://github.com/amazon-braket/amazon-braket-sdk-python

Amazon Braket Developer Guide

from braket.aws import DirectReservation
from qiskit import QuantumCircuit
from qiskit_braket_provider import BraketProvider

qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)

aria = BraketProvider().get_backend("Aria 1")

run the circuit in a reservation
with DirectReservation(Devices.IonQ.Aria1, reservation_arn="<my_reservation_arn>"):
 aria_task = aria.run(qc, shots=10)

Similarly, the following code runs a circuit during a reservation using the Braket-PennyLane plugin.

from braket.devices import Devices
from braket.aws import DirectReservation
import pennylane as qml

dev = qml.device("braket.aws.qubit", device_arn=Devices.IonQ.Aria1.value, wires=2,
 shots=10)

@qml.qnode(dev)
def bell_state():
 qml.Hadamard(wires=0)
 qml.CNOT(wires=[0, 1])
 return qml.probs(wires=[0, 1])

run the circuit in a reservation
with DirectReservation(Devices.IonQ.Aria1, reservation_arn="<my_reservation_arn>"):
 probs = bell_state()

Manually setting the reservation context

Alternatively, you can manually set the reservation context with the following code.

set reservation context
reservation = DirectReservation(device, reservation_arn="<my_reservation_arn>").start()

run circuit during reservation

Running quantum tasks during a reservation 240

Amazon Braket Developer Guide

task = device.run(bell, shots=100)

This is ideal for Jupyter notebooks where the context can be run in the first cell and all subsequent
tasks will run in the reservation.

Note

The cell containing the .start() call should only be run once.

To switch back to the on-demand mode: Restart the Jupyter notebook, or call the following to
change the context back to on-demand mode.

reservation.stop() # unset reservation context

Note

Reservations have a scheduled start and end time (see Create a reservation). The
reservation.start() and reservation.stop() methods do not begin or terminate
a reservation. These are methods to modify all subsequent quantum tasks to run during
the reservation. These methods have no effect on the scheduled reservation time.

Explicitly pass the reservation ARN when creating task

Another way to create tasks during a reservation is to explicitly pass the reservation ARN when
calling device.run().

task = device.run(bell, shots=100, reservation_arn="<my_reservation_arn>")

This method directly associates the quantum task with the reservation ARN, ensuring it runs during
the reserved period. For this option, add the reservation ARN to each task you plan to run during
a reservation. Additionally, check that tasks created in Qiskit or PennyLane are using the correct
reservation ARN. Due to these additional considerations, the prior two ways are recommended.

When directly using boto3, pass the reservation ARN as an association when creating a task.

import boto3

Running quantum tasks during a reservation 241

https://docs.aws.amazon.com/braket/latest/developerguide/braket-reservations.html#braket-create-a-reservation

Amazon Braket Developer Guide

braket_client = boto3.client("braket")

kwargs["associations"] = [
 {
 "arn": "<my_reservation_arn>",
 "type": "RESERVATION_TIME_WINDOW_ARN",
 }
]

response = braket_client.create_quantum_task(**kwargs)

Running hybrid jobs during a reservation

Once you have a Python function to run as a hybrid job, you can run the hybrid job in a reservation
by passing the reservation_arn keyword argument. All the tasks within the hybrid job use the
reservation ARN. Importantly, the hybrid job with reservation_arn only spins up the classical
compute once your reservation starts.

Note

A hybrid job running during a reservation only successfully runs quantum tasks on the
reserved device. Attempting to use a different on-demand Braket device will result in an
error. If you need to run tasks on both an on-demand simulator and the reserved device
within the same hybrid job, use DirectReservation instead.

The following code demonstrates how to run a hybrid job during a reservation.

from braket.aws import AwsDevice
from braket.devices import Devices
from braket.jobs import get_job_device_arn, hybrid_job

@hybrid_job(device=Devices.IonQ.Aria1, reservation_arn="<my_reservation_arn>")
def example_hybrid_job():
 # declare AwsDevice within the hybrid job
 device = AwsDevice(get_job_device_arn())
 bell = Circuit().h(0).cnot(0, 1)

 task = device.run(bell, shots=10)

Running hybrid jobs during a reservation 242

Amazon Braket Developer Guide

For hybrid jobs that use a Python script (see the section on Creating your first Hybrid Job in the
developer guide), you can run them within the reservation by passing the reservation_arn
keyword argument when creating the job.

from braket.aws import AwsQuantumJob
from braket.devices import Devices

job = AwsQuantumJob.create(
 Devices.IonQ.Aria1,
 source_module="algorithm_script.py",
 entry_point="algorithm_script:start_here",
 reservation_arn="<my_reservation_arn>"
)

What happens at the end of your reservation

After your reservation ends, you no longer have dedicated access to the device. Any remaining
workloads that are queued with this reservation are automatically canceled.

Note

Any job that was in RUNNING status when the reservation ends is canceled. We recommend
using checkpoints to save and restart jobs at your convenience.

An ongoing reservation, such as after reservation start and before reservation end, can't be
extended because each reservation represents standalone dedicated device access. For example,
two back-to-back reservations are considered separate and any pending tasks from the first
reservation are automatically canceled. They do not resume in the second reservation.

Note

Reservations represent dedicated device access for your AWS account. Even if the device
remains idle, no other customers can use it. Therefore, you are charged for the length of
the reserved time, regardless of the utilized time.

What happens at the end of your reservation 243

https://docs.aws.amazon.com/braket/latest/developerguide/braket-jobs-first.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-jobs-checkpoints.html

Amazon Braket Developer Guide

Cancel or reschedule an existing reservation

You can cancel your reservation no less than 48 hours before the scheduled reservation start
time. To cancel, respond to the reservation confirmation email you received with your cancellation
request.

To reschedule, you have to cancel your existing reservation, and then create a new one.

Error mitigation techniques

Quantum error mitigation is a set of techniques aimed at reducing the effects of errors in quantum
computers.

Quantum devices are subject to environmental noise that degrades the quality of computations
performed. While fault-tolerant quantum computing promises a solution to this problem, current
quantum devices are limited by the number of qubits and relatively high error rates. To combat this
in the near-term, researchers are investigating methods to improve the accuracy of noisy quantum
computation. This approach, known as quantum error mitigation, involves using various techniques
to extract the best signal from noisy measurement data.

In this section:

• Error mitigation techniques on IonQ devices

Error mitigation techniques on IonQ devices

Error mitigation involves running multiple physical circuits and combining their measurements to
give an improved result.

Note

For all IonQ's devices: When using an on-demand model, there is a 1 Million gateshot limit,
and a minimum of 2500 shots for Error mitigation tasks. For a direct reservation, there is no
gateshot limit, and a minimum of 500 shots for Error mitigation tasks.

Debiasing

IonQ devices features an error mitigation method called debiasing.

Cancel or reschedule an existing reservation 244

https://docs.aws.amazon.com/braket/latest/developerguide/braket-error-mitigation.html

Amazon Braket Developer Guide

Debiasing maps a circuit into multiple variants that act on different qubit permutations or with
different gate decompositions. This reduces the effect of systematic errors such as gate over-
rotations or a single faulty qubit by using different implementations of a circuit that could
otherwise bias measurement results. This comes at the expense of extra overhead to calibrate
multiple qubits and gates.

For more information on debiasing, see Enhancing quantum computer performance through
symmetrization.

Note

Using debiasing requires a minimum of 2500 shots.

You can run a quantum task with debiasing on an IonQ device using the following code:

from braket.aws import AwsDevice
from braket.circuits import Circuit
from braket.error_mitigation import Debias

choose an IonQ device
device = AwsDevice("arn:aws:braket:us-east-1::device/qpu/ionq/Aria-1")
circuit = Circuit().h(0).cnot(0, 1)

task = device.run(circuit, shots=2500, device_parameters={"errorMitigation": Debias()})

result = task.result()
print(result.measurement_counts)
>>> {"00": 1245, "01": 5, "10": 10 "11": 1240} # result from debiasing

When the quantum task is complete, you can see the measurement probabilities and any result
types from the quantum task. The measurement probabilities and counts from all variants are
aggregated into a single distribution. Any result types specified in the circuit, such as expectation
values, are computed using the aggregate measurement counts.

Sharpening

You can also access measurement probabilities computed with a different post-processing strategy
called sharpening. Sharpening compares the results of each variant and discards inconsistent
shots, favoring the most likely measurement outcome across variants. For more information, see
Enhancing quantum computer performance through symmetrization.

Error mitigation techniques on IonQ devices 245

https://arxiv.org/abs/2301.07233
https://arxiv.org/abs/2301.07233
https://arxiv.org/abs/2301.07233

Amazon Braket Developer Guide

Importantly, sharpening assumes the form of the output distribution to be sparse with few high-
probability states and many zero-probability states. It may distort the probability distribution if
this assumption is not valid.

You can access the probabilities from a sharpened distribution in the additional_metadata
field on the GateModelTaskResult in the Braket Python SDK. Note that sharpening does not
return the measurement counts, but instead returns a re-normalized probability distribution. The
following code snippet shows how to access the distribution after sharpening.

print(result.additional_metadata.ionqMetadata.sharpenedProbabilities)
>>> {"00": 0.51, "11": 0.549} # sharpened probabilities

Error mitigation techniques on IonQ devices 246

Amazon Braket Developer Guide

Troubleshooting Amazon Braket

Use the troubleshooting information and solutions in this section to help resolve issues with
Amazon Braket.

In this section:

• AccessDeniedException

• An error occurred (ValidationException) when calling the CreateQuantumTask operation

• An SDK feature does not work

• Hybrid job fails due to ServiceQuotaExceededException

• Components stopped working in notebook instance

• Troubleshooting OpenQASM

AccessDeniedException

If you receive an AccessDeniedException when enabling or using Braket, you are likely attempting
to enable or use Braket in a region where your restricted role does not have access.

In such cases, you should contact your internal AWS administrator to understand which of the
following conditions apply:

• If there are role restrictions preventing access to a region.

• If the role you are attempting to use is permitted to use Braket.

If your role does not have access to a given region when using Braket, then you will be unable to
use devices in that particular region.

An error occurred (ValidationException) when calling the
CreateQuantumTask operation

If you receive an error similar to: An error occurred (ValidationException) when
calling the CreateQuantumTask operation: Caller doesn’t have access to
amazon-braket-… Check that you are referring to an existing s3_folder. Braket does not auto
create new Amazon S3 buckets and prefixes for you.

AccessDeniedException 247

Amazon Braket Developer Guide

If you are accessing the API directly and receiving an error similar to: Failed to create
quantum task: Caller doesn’t have access to s3://MY_BUCKET Check that you are
not including s3:// in the Amazon S3 bucket path.

An SDK feature does not work

Your Python version must be 3.9 or above. For Amazon Braket Hybrid Jobs, we recommend Python
3.10.

Verify your SDK and schemas are up-to-date. To update the SDK from the notebook or your python
editor, run the following command:

pip install amazon-braket-sdk --upgrade --upgrade-strategy eager

To update the schemas, run the following command:

pip install amazon-braket-schemas --upgrade

If you are accessing Amazon Braket from your own client, verify your AWS Region is set to a region
supported by Amazon Braket.

Hybrid job fails due to ServiceQuotaExceededException

A hybrid job running quantum tasks against the Amazon Braket simulators can fail to be created if
you exceed the concurrent quantum task limit for the simulator device you are targeting. For more
information on the service limits, see the Quotas topic.

If you are running concurrent tasks against a simulator device in multiple hybrid jobs from your
account, you could encounter this error.

To see the number of concurrent quantum tasks against a specific simulator device, use the
search-quantum-tasks API, as shown in the following code example.

DEVICE_ARN=arn:aws:braket:::device/quantum-simulator/amazon/sv1
task_list=""
for status_value in "CREATED" "QUEUED" "RUNNING" "CANCELLING"; do
 tasks=$(aws braket search-quantum-tasks --filters
 name=status,operator=EQUAL,values=${status_value}

An SDK feature does not work 248

https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#braket-regions

Amazon Braket Developer Guide

 name=deviceArn,operator=EQUAL,values=$DEVICE_ARN --max-results 100 --query
 'quantumTasks[*].quantumTaskArn' --output text)
 task_list="$task_list $tasks"
done;
echo "$task_list" | tr -s ' \t' '[\n*]' | sort | uniq

You can also view the created quantum tasks against a device using Amazon CloudWatch metrics:
Braket > By Device.

To avoid running into these errors:

1. Request a service quota increase for the number of concurrent quantum tasks for the simulator
device. This is only applicable to the SV1 device.

2. Handle ServiceQuotaExceeded exceptions in your code and retry.

Components stopped working in notebook instance

If some components of your notebook stop working, try the following:

1. Download any notebooks you created or modified to a local drive.

2. Stop your notebook instance.

3. Delete your notebook instance.

4. Create new notebook instance with a different name.

5. Upload the notebooks to the new instance.

Troubleshooting OpenQASM

This section provides troubleshooting pointers that might be useful when encountering errors
using OpenQASM 3.0.

In this section:

• Include statement error

• Non-contiguous qubits error

• Mixing physical qubits with virtual qubits error

• Requesting result types and measuring qubits in the same program error

• Classical and qubit register limits exceeded error

Components stopped working in notebook instance 249

Amazon Braket Developer Guide

• Box not preceded by a verbatim pragma error

• Verbatim boxes missing native gates error

• Verbatim boxes missing physical qubits error

• The verbatim pragma is missing "braket" error

• Single qubits cannot be indexed error

• The physical qubits in a two qubit gate are not connected error

• Local simulator support warning

Include statement error

Braket currently doesn’t have a standard gate library file to be included in OpenQASM programs.
For example, the following example raises a parser error.

OPENQASM 3;
include "standardlib.inc";

This code generates the error message: No terminal matches '"' in the current parser
context, at line 2 col 17.

Non-contiguous qubits error

Using non-contiguous qubits on devices that requiresContiguousQubitIndices be set to
true in the device capability result in an error.

When running quantum tasks on simulators and IonQ, the following program triggers the error.

OPENQASM 3;

qubit[4] q;

h q[0];
cnot q[0], q[2];
cnot q[0], q[3];

This code generates the error message: Device requires contiguous qubits. Qubit
register q has unused qubits q[1], q[4].

Include statement error 250

Amazon Braket Developer Guide

Mixing physical qubits with virtual qubits error

Mixing physical qubits with virtual qubits in the same program is not allowed and results in an
error. The following code generates the error.

OPENQASM 3;

qubit[2] q;
cnot q[0], $1;

This code generates the error message: [line 4] mixes physical qubits and qubits
registers.

Requesting result types and measuring qubits in the same program
error

Requesting result types and that qubits are explicitly measured in the same program results in an
error. The following code generates the error.

OPENQASM 3;

qubit[2] q;

h q[0];
cnot q[0], q[1];
measure q;

#pragma braket result expectation x(q[0]) @ z(q[1])

This code generates the error message: Qubits should not be explicitly measured when
result types are requested.

Classical and qubit register limits exceeded error

Only one classical register and one qubit register are allowed. The following code generates the
error.

OPENQASM 3;

Mixing physical qubits with virtual qubits error 251

Amazon Braket Developer Guide

qubit[2] q0;
qubit[2] q1;

This code generates the error message: [line 4] cannot declare a qubit register.
Only 1 qubit register is supported.

Box not preceded by a verbatim pragma error

All boxes must be preceded by a verbatim pragma. The following code generates the error.

box{
rx(0.5) $0;
}

This code generates the error message: In verbatim boxes, native gates are required.
x is not a device native gate.

Verbatim boxes missing native gates error

Verbatim boxes should have native gates and physical qubits. The following code generates the
native gates error.

#pragma braket verbatim
box{
x $0;
}

This code generates the error message: In verbatim boxes, native gates are required.
x is not a device native gate.

Verbatim boxes missing physical qubits error

Verbatim boxes must have physical qubits. The following code generates the missing physical
qubits error.

qubit[2] q;

#pragma braket verbatim
box{
rx(0.1) q[0];

Box not preceded by a verbatim pragma error 252

Amazon Braket Developer Guide

}

This code generates the error message: Physical qubits are required in verbatim box.

The verbatim pragma is missing "braket" error

You must include “braket” in the verbatim pragma. The following code generates the error.

#pragma braket verbatim // Correct
#pragma verbatim // wrong

This code generates the error message: You must include “braket” in the verbatim
pragma

Single qubits cannot be indexed error

Single qubits cannot be indexed. The following code generates the error.

OPENQASM 3;

qubit q;
h q[0];

This code generates the error: [line 4] single qubit cannot be indexed.

However, single qubit arrays can be indexed as follows:

OPENQASM 3;

qubit[1] q;
h q[0]; // This is valid

The physical qubits in a two qubit gate are not connected error

To use physical qubits, first confirm that the device uses physical qubits by checking
device.properties.action[DeviceActionType.OPENQASM].supportPhysicalQubits
and then verify the connectivity graph by checking
device.properties.paradigm.connectivity.connectivityGraph or
device.properties.paradigm.connectivity.fullyConnected.

The verbatim pragma is missing "braket" error 253

Amazon Braket Developer Guide

OPENQASM 3;

cnot $0, $14;

This code generates the error message: [line 3] has disconnected qubits 0 and 14

Local simulator support warning

The LocalSimulator supports advanced features in OpenQASM that may not be available on
QPUs or on-demand simulators. If your program contains language features specific only to the
LocalSimulator, as seen in the following example, you will receive a warning.

qasm_string = """
qubit[2] q;

h q[0];
ctrl @ x q[0], q[1];
"""
qasm_program = Program(source=qasm_string)

This code generates the warning: `This program uses OpenQASM language features only
supported in the LocalSimulator. Some of these features may not be supported on QPUs or on-
demand simulators.

For more information on supported OpenQASM features, explore the page Advanced feature
support for OpenQASM on the Local Simulator.

Local simulator support warning 254

Amazon Braket Developer Guide

Security in Amazon Braket

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon Braket,
see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Braket. The following topics show you how to configure Braket to meet your security and
compliance objectives. You also learn how to use other AWS services that help you to monitor and
secure your Braket resources.

In this section:

• Shared responsibility for security

• Data protection

• Data retention

• Managing access to Amazon Braket

• Amazon Braket service-linked role

• Compliance validation for Amazon Braket

• Infrastructure Security in Amazon Braket

• Security of Amazon Braket Hardware Providers

• Amazon VPC endpoints for Amazon Braket

255

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Braket Developer Guide

Shared responsibility for security

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon Braket,
see AWS Services in Scope by Compliance Program.

• Security in the cloud – You are responsible for maintaining control over your content that
is hosted on this AWS infrastructure. This content includes the security configuration and
management tasks for the AWS services that you use.

Data protection

The AWS shared responsibility model applies to data protection in Amazon Braket. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

Shared responsibility for security 256

http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/programs/
http://aws.amazon.com/compliance/programs/
http://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html

Amazon Braket Developer Guide

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Amazon Braket or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Data retention

After 90 days, Amazon Braket automatically removes all quantum task IDs and other metadata
associated with your quantum tasks. As a result of this data retention policy, these tasks and results
are no longer retrievable by search from the Amazon Braket console, although they remain stored
in your S3 bucket.

If you need access to historical quantum tasks and results that are stored in your S3 bucket
for longer than 90 days, you must keep a separate record of your task ID and other metadata
associated with that data. Be sure to save the information prior to 90 days. You can use that saved
information to retrieve the historical data.

Managing access to Amazon Braket

This chapter describes the permissions that are required to run Amazon Braket, or to restrict the
access of specific users and roles. You can grant (or deny) the required permissions to any user or
role in your account. To do so, attach the appropriate Amazon Braket policy to that user or role in
your account as described in the following sections.

As a prerequisite, you must enable Amazon Braket. To enable Braket, be sure to sign in as a user or
role that has (1) administrator permissions or (2) is assigned the AmazonBraketFullAccess policy
and has permissions to create Amazon Simple Storage Service (Amazon S3) buckets.

In this section:

Data retention 257

https://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/braket/latest/developerguide/braket-enable-overview.html

Amazon Braket Developer Guide

• Amazon Braket resources

• Notebooks and roles

• About the AmazonBraketFullAccess policy

• About the AmazonBraketJobsExecutionPolicy policy

• Restrict user access to certain devices

• Amazon Braket updates to AWS managed policies

• Restrict user access to certain notebook instances

• Restrict user access to certain S3 buckets

Amazon Braket resources

Braket creates one type of resource: the quantum-task resource. The AWS Resource Name (ARN) for
this resource type is as follows:

• Resource Name: AWS::Service::Braket

• ARN Regex: arn:${Partition}:braket:${Region}:${Account}:quantum-task/${RandomId}

Notebooks and roles

You can use the noteboook resource type in Braket. A notebook is an Amazon SageMaker AI
resource that Braket is able to share. To use a notebook with Braket, you must specify an IAM role
with a name that begins with AmazonBraketServiceSageMakerNotebook.

To create a notebook, you must use a role with admin permissions or that has the following inline
policy attached to it.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:CreateRole",
 "Resource": "arn:aws:iam::*:role/service-role/
AmazonBraketServiceSageMakerNotebookRole*"
 },
 {

Amazon Braket resources 258

Amazon Braket Developer Guide

 "Effect": "Allow",
 "Action": "iam:CreatePolicy",
 "Resource": [
 "arn:aws:iam::*:policy/service-role/
AmazonBraketServiceSageMakerNotebookAccess*",
 "arn:aws:iam::*:policy/service-role/
AmazonBraketServiceSageMakerNotebookRole*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iam:AttachRolePolicy",
 "Resource": "arn:aws:iam::*:role/service-role/
AmazonBraketServiceSageMakerNotebookRole*",
 "Condition": {
 "StringLike": {
 "iam:PolicyARN": [
 "arn:aws:iam::aws:policy/AmazonBraketFullAccess",
 "arn:aws:iam::*:policy/service-role/
AmazonBraketServiceSageMakerNotebookAccess*",
 "arn:aws:iam::*:policy/service-role/
AmazonBraketServiceSageMakerNotebookRole*"
]
 }
 }
 }
]
}

To create the role, follow the steps given in the Create a notebook page or have your administrator
create it for you. Ensure that the AmazonBraketFullAccess policy is attached.

After you’ve created the role, you can reuse that role for all notebooks you launch in the future.

About the AmazonBraketFullAccess policy

The AmazonBraketFullAccess policy grants permissions for Amazon Braket operations, including
permissions for these tasks:

• Download containers from Amazon Elastic Container Registry – To read and download
container images that are used for the Amazon Braket Hybrid Jobs feature. The containers must
conform to the format "arn:aws:ecr:::repository/amazon-braket".

About the AmazonBraketFullAccess policy 259

https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started-create-notebook.html

Amazon Braket Developer Guide

• Keep AWS CloudTrail logs – For all describe, get, and list actions in addition to starting and
stopping queries, testing metrics filters, and filtering log events. The AWS CloudTrail log file
contains a record of all Amazon Braket API activity that occurs in your account.

• Utilize roles to control resources – To create a service-linked role in your account. The service-
linked role has access to AWS resources on your behalf. It can be used only by the Amazon Braket
service. Also, to pass in IAM roles to the Amazon Braket CreateJob API and to create a role and
attach a policy scoped to AmazonBraketFullAccess to the role.

• Create log groups, log events, and query log groups in order to maintain usage log files for
your account – To create, store, and view logging information about Amazon Braket usage in
your account. Query metrics on hybrid jobs log groups. Encompass the proper Braket path and
allow putting log data. Put metric data in CloudWatch.

• Create and store data in Amazon S3 buckets, and list all buckets – To create S3 buckets, list the
S3 buckets in your account, and put objects into and get objects from any bucket in your account
whose name begins with amazon-braket-. These permissions are required for Braket to put files
containing results from processed quantum tasks into the bucket and to retrieve them from the
bucket.

• Pass IAM roles – To pass in IAM roles to the CreateJob API.

• Amazon SageMaker AI Notebook – To create and manage SageMaker notebook instances
scoped to the resource from "arn:aws:sagemaker:::notebook-instance/amazon-braket-".

• Validate service quotas – To create SageMaker AI notebooks and Amazon Braket Hybrid jobs,
your resource counts cannot exceed quotas for your account.

• View product pricing – Review and plan quantum hardware costs before submitting your
workloads.

Policy contents

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "s3:CreateBucket",

About the AmazonBraketFullAccess policy 260

Amazon Braket Developer Guide

 "s3:PutBucketPublicAccessBlock",
 "s3:PutBucketPolicy"
],
 "Resource": "arn:aws:s3:::amazon-braket-*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "servicequotas:GetServiceQuota",
 "cloudwatch:GetMetricData",
 "pricing:GetProducts"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability"
],
 "Resource": "arn:aws:ecr:*:*:repository/amazon-braket*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:Describe*",
 "logs:Get*",
 "logs:List*",
 "logs:StartQuery",
 "logs:StopQuery",

About the AmazonBraketFullAccess policy 261

Amazon Braket Developer Guide

 "logs:TestMetricFilter",
 "logs:FilterLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/braket*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:ListRoles",
 "iam:ListRolePolicies",
 "iam:GetRole",
 "iam:GetRolePolicy",
 "iam:ListAttachedRolePolicies"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListNotebookInstances"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedNotebookInstanceUrl",
 "sagemaker:CreateNotebookInstance",
 "sagemaker:DeleteNotebookInstance",
 "sagemaker:DescribeNotebookInstance",
 "sagemaker:StartNotebookInstance",
 "sagemaker:StopNotebookInstance",
 "sagemaker:UpdateNotebookInstance",
 "sagemaker:ListTags",
 "sagemaker:AddTags",
 "sagemaker:DeleteTags"
],
 "Resource": "arn:aws:sagemaker:*:*:notebook-instance/amazon-braket-*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeNotebookInstanceLifecycleConfig",
 "sagemaker:CreateNotebookInstanceLifecycleConfig",

About the AmazonBraketFullAccess policy 262

Amazon Braket Developer Guide

 "sagemaker:DeleteNotebookInstanceLifecycleConfig",
 "sagemaker:ListNotebookInstanceLifecycleConfigs",
 "sagemaker:UpdateNotebookInstanceLifecycleConfig"
],
 "Resource": "arn:aws:sagemaker:*:*:notebook-instance-lifecycle-config/
amazon-braket-*"
 },
 {
 "Effect": "Allow",
 "Action": "braket:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/braket.amazonaws.com/
AWSServiceRoleForAmazonBraket*",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "braket.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::*:role/service-role/
AmazonBraketServiceSageMakerNotebookRole*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "sagemaker.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],

About the AmazonBraketFullAccess policy 263

Amazon Braket Developer Guide

 "Resource": "arn:aws:iam::*:role/service-role/
AmazonBraketJobsExecutionRole*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "braket.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:GetQueryResults"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:CreateLogStream",
 "logs:CreateLogGroup"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/braket*"
 },
 {
 "Effect": "Allow",
 "Action": "cloudwatch:PutMetricData",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "cloudwatch:namespace": "/aws/braket"
 }
 }
 }
]
}

About the AmazonBraketFullAccess policy 264

Amazon Braket Developer Guide

About the AmazonBraketJobsExecutionPolicy policy

The AmazonBraketJobsExecutionPolicy policy grants permissions for execution roles used in
Amazon Braket Hybrid Jobs as follows:

• Download containers from Amazon Elastic Container Registry - Permissions to read and
download container images that are used for the Amazon Braket Hybrid Jobs feature. Containers
must conform to the format "arn:aws:ecr:*:*:repository/amazon-braket*".

• Create log groups and log events and query log groups in order to maintain usage log files
for your account – Create, store, and view logging information about Amazon Braket usage in
your account. Query metrics on hybrid jobs log groups. Encompass the proper Braket path and
allow putting log data. Put metric data in CloudWatch.

• Store data in Amazon S3 buckets – List the S3 buckets in your account, put objects into and
get objects from any bucket in your account that starts with amazon-braket- in its name. These
permissions are required for Braket to put files containing results from processed quantum tasks
into the bucket, and to retrieve them from the bucket.

• Pass IAM roles – Passing in IAM roles to the CreateJob API. Roles must conform to the format
arn:aws:iam::*:role/service-role/AmazonBraketJobsExecutionRole*.

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "s3:CreateBucket",
 "s3:PutBucketPublicAccessBlock",
 "s3:PutBucketPolicy"
],
 "Resource": "arn:aws:s3:::amazon-braket-*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability"

About the AmazonBraketJobsExecutionPolicy policy 265

Amazon Braket Developer Guide

],
 "Resource": "arn:aws:ecr:*:*:repository/amazon-braket*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "braket:CancelJob",
 "braket:CancelQuantumTask",
 "braket:CreateJob",
 "braket:CreateQuantumTask",
 "braket:GetDevice",
 "braket:GetJob",
 "braket:GetQuantumTask",
 "braket:SearchDevices",
 "braket:SearchJobs",
 "braket:SearchQuantumTasks",
 "braket:ListTagsForResource",
 "braket:TagResource",
 "braket:UntagResource"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::*:role/service-role/AmazonBraketJobsExecutionRole*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "braket.amazonaws.com"
]
 }
 }
 },
 {

About the AmazonBraketJobsExecutionPolicy policy 266

Amazon Braket Developer Guide

 "Effect": "Allow",
 "Action": [
 "iam:ListRoles"
],
 "Resource": "arn:aws:iam::*:role/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:GetQueryResults"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:GetLogEvents",
 "logs:DescribeLogStreams",
 "logs:StartQuery",
 "logs:StopQuery"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/braket*"
 },
 {
 "Effect": "Allow",
 "Action": "cloudwatch:PutMetricData",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "cloudwatch:namespace": "/aws/braket"
 }
 }
 }
]
}

About the AmazonBraketJobsExecutionPolicy policy 267

Amazon Braket Developer Guide

Restrict user access to certain devices

To restrict user access for certain Braket devices, you can add a deny permissions policy to a specific
IAM role.

The following actions can be restricted:

• CreateQuantumTask - to deny quantum task creation on specified devices.

• CreateJob - to deny hybrid job creation on specified devices.

• GetDevice - to deny getting details of specified devices.

The following example restricts access to all QPUs for the AWS account 123456789012.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "braket:CreateQuantumTask",
 "braket:CreateJob",
 "braket:GetDevice"
],
 "Resource": [
 "arn:aws:braket:*:*:device/qpu/*"
],
 "Condition": {
 "StringEquals": {
 "aws:PrincipalAccount": "123456789012"
 }
 }
 }
]
}

Note

Exclude the braket:GetDevice Action from the policy to enable a user's Read access to
the device properties such as device availability, calibration data, and pricing via the Braket
console.

Restrict user access to certain devices 268

Amazon Braket Developer Guide

To adapt this code, substitute the Amazon Resource Number (ARN) of the restricted device for the
string shown in the previous example. This string provides the Resource value. In Braket, a device
represents a QPU or simulator that you can call to run quantum tasks. The devices available are
listed on the Devices page. There are two schemas used to specify access to these devices:

• arn:aws:braket:<region>:*:device/qpu/<provider>/<device_id>

• arn:aws:braket:<region>:*:device/quantum-simulator/<provider>/<device_id>

Here are examples for various types of device access

• To select all QPUs across all regions: arn:aws:braket:*:*:device/qpu/*

• To select all QPUs in the us-west-2 region ONLY: arn:aws:braket:us-west-2:*:device/
qpu/*

• Equivalently, to select all QPUs in the us-west-2 region ONLY (since devices are a service
resource, not a customer resource): arn:aws:braket:us-west-2:*:device/qpu/*

• To restrict access to all on-demand simulator devices: arn:aws:braket:*:*:device/
quantum-simulator/*

• To restrict access to devices from a certain provider (for example, to Rigetti QPU devices):
arn:aws:braket:*:*:device/qpu/rigetti/*

• To restrict access to the TN1 device: arn:aws:braket:*:*:device/quantum-simulator/
amazon/tn1

• To restrict access to all Create actions: braket:Create*

Amazon Braket updates to AWS managed policies

The following table provides details about updates to AWS managed policies for Braket since this
service began tracking these changes.

Change Description Date

AmazonBraketFullAccess - Full access
policy for Braket

Added the "pricing:GetProduc
ts" action.

April 14, 2025

Amazon Braket updates to AWS managed policies 269

https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html

Amazon Braket Developer Guide

Change Description Date

AmazonBraketFullAccess - Full access
policy for Braket

Added the "aws:ResourceAccou
nt": "${aws:PrincipalAccount}"
condition scope to S3 actions.

March 3, 2025

AmazonBraketFullAccess - Full access
policy for Braket

Added the servicequotas:GetS
erviceQuota and cloudwatc
h:GetMetricData actions to
be included in the AmazonBra
ketFullAccess policy.

.

March 24, 2023

AmazonBraketFullAccess - Full access
policy for Braket

Braket adjusted iam:PassRole
permissions for AmazonBra
ketFullAccess to include the
service-role/ path.

November 29,
2021

AmazonBraketJobsExecutionPolicy
- Hybrid jobs execution policy for
Amazon Braket Hybrid Jobs

Braket updated the hybrid jobs
execution role ARN to include
the service-role/ path.

November 29,
2021

Braket started tracking changes Braket started tracking changes
for its AWS managed policies.

November 29,
2021

Restrict user access to certain notebook instances

To restrict access for certain users to specific Braket notebook instances, you can add a deny
permissions policy to a specific role, user, or group.

The following example uses policy variables to efficiently restrict permissions to start, stop, and
access specific notebook instances in the AWS account 123456789012, which is named according
to the user who should have access (for example, user Alice would have access to a notebook
instance named amazon-braket-Alice).

{
 "Version": "2012-10-17",

Restrict user access to certain notebook instances 270

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html

Amazon Braket Developer Guide

 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateNotebookInstance",
 "sagemaker:DeleteNotebookInstance",
 "sagemaker:UpdateNotebookInstance",
 "sagemaker:CreateNotebookInstanceLifecycleConfig",
 "sagemaker:DeleteNotebookInstanceLifecycleConfig",
 "sagemaker:UpdateNotebookInstanceLifecycleConfig"
],
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "sagemaker:DescribeNotebookInstance",
 "sagemaker:StartNotebookInstance",
 "sagemaker:StopNotebookInstance",
],
 "NotResource": [
 "arn:aws:sagemaker:*:123456789012:notebook-instance/amazon-braket-
${aws:username}"
]
 },
 {
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreatePresignedNotebookInstanceUrl"
],
 "NotResource": [
 "arn:aws:sagemaker:*:123456789012:notebook-instance/amazon-braket-
${aws:username}*"
]
 }
]
}

Restrict user access to certain S3 buckets

To restrict access for certain users to specific Amazon S3 buckets, you can add a deny policy to a
specific role, user, or group.

Restrict user access to certain S3 buckets 271

Amazon Braket Developer Guide

The following example restricts permissions to retrieve and place objects into a specific S3 bucket
(arn:aws:s3:::amazon-braket-us-east-1-123456789012-Alice) and also restricts the
listing of those objects.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "s3:ListBucket"
],
 "NotResource": [
 "arn:aws:s3:::amazon-braket-us-east-1-123456789012-Alice"
]
 },
 {
 "Effect": "Deny",
 "Action": [
 "s3:GetObject"
],
 "NotResource": [
 "arn:aws:s3:::amazon-braket-us-east-1-123456789012-Alice/*"
]
 }
]
}

To restrict access to the bucket for a certain notebook instance, you can add the preceding policy to
the notebook execution role.

Amazon Braket service-linked role

When you enable Amazon Braket, a service-linked role is created in your account.

A service-linked role is a unique type of IAM role that, in this case, is linked directly to Amazon
Braket. The Amazon Braket service-linked role is predefined to include all the permissions that
Braket requires when calling other AWS services on your behalf.

A service-linked role makes setting up Amazon Braket easier because you don’t have to add the
necessary permissions manually. Amazon Braket defines the permissions of its service-linked

Service-linked role 272

Amazon Braket Developer Guide

roles. Unless you change these definitions, only Amazon Braket can assume its roles. The defined
permissions include the trust policy and the permissions policy. The permissions policy cannot be
attached to any other IAM entity.

The service-linked role that Amazon Braket sets up is part of the AWS Identity and Access
Management (IAM) service-linked roles capability. For information about other AWS services that
support service-linked roles, see AWS Services That Work with IAM and look for the services that
have Yes in the Service-Linked Role column. Choose a Yes with a link to view the service-linked
role documentation for that service.

In this section:

• Service-linked role permissions for Amazon Braket

Service-linked role permissions for Amazon Braket

Amazon Braket uses the AWSServiceRoleForAmazonBraket service-linked role that trusts the
braket.amazonaws.com entity to assume the role.

You must configure permissions to allow an IAM entity (such as a group or role) to create, edit, or
delete a service-linked role. For more information, see Service-Linked Role Permissions.

The service-linked role in Amazon Braket is granted the following permissions by default:

• Amazon S3 – permissions to list the buckets in your account, and put objects into and get
objects from any bucket in your account with a name that starts with amazon-braket-.

• Amazon CloudWatch Logs – permissions to list and create log groups, create the associated log
streams, and put events into the log group created for Amazon Braket.

The following policy is attached to the AWSServiceRoleForAmazonBraket service-linked role:

{"Version": "2012-10-17",
 "Statement": [
 {"Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket"
],
 "Resource": "arn:aws:s3:::amazon-braket*"

Service-linked role permissions for Amazon Braket 273

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create-service-linked-role.html#service-linked-role-permissions

Amazon Braket Developer Guide

 },
 {"Effect": "Allow",
 "Action": [
 "logs:Describe*",
 "logs:Get*",
 "logs:List*",
 "logs:StartQuery",
 "logs:StopQuery",
 "logs:TestMetricFilter",
 "logs:FilterLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/braket/*"
 },
 {"Effect": "Allow",
 "Action": "braket:*",
 "Resource": "*"
 },
 {"Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/braket.amazonaws.com/
AWSServiceRoleForAmazonBraket*",
 "Condition": {"StringEquals": {"iam:AWSServiceName": "braket.amazonaws.com"
 }
 }
 }
]
}

Compliance validation for Amazon Braket

Note

AWS compliance reports don't cover QPUs from third-party hardware providers who can
choose to go through their own independent audits.

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

Compliance validation 274

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/

Amazon Braket Developer Guide

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security Compliance & Governance – These solution implementation guides discuss architectural
considerations and provide steps for deploying security and compliance features.

• HIPAA Eligible Services Reference – Lists HIPAA eligible services. Not all AWS services are HIPAA
eligible.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Infrastructure Security in Amazon Braket

As a managed service, Amazon Braket is protected by AWS global network security. For information
about AWS security services and how AWS protects infrastructure, see AWS Cloud Security. To

Infrastructure Security 275

https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/solutions/security/security-compliance-governance/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/security/

Amazon Braket Developer Guide

design your AWS environment using the best practices for infrastructure security, see Infrastructure
Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Amazon Braket through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

You can call these API operations from any network location, but Braket does support resource-
based access policies, which can include restrictions based on the source IP address. You can also
use Braket policies to control access from specific Amazon Virtual Private Cloud (Amazon VPC)
endpoints or specific VPCs. Effectively, this isolates network access to a given Braket resource from
only the specific VPC within the AWS network.

Security of Amazon Braket Hardware Providers

QPUs on Amazon Braket are hosted by third-party hardware providers. When you run your
quantum task on a QPU, Amazon Braket uses the DeviceARN as an identifier when sending the
circuit to the specified QPU for processing.

If you use Amazon Braket for access to quantum computing hardware operated by one of the third-
party hardware providers, your circuit and its associated data are processed by hardware providers
outside of facilities operated by AWS. Information about the physical location and AWS Region
where each QPU is available can be found in the Device Details section of the Amazon Braket
console.

Your content is anonymized. Only the content necessary to process the circuit is sent to third
parties. AWS account information is not transmitted to third parties.

All data is encrypted at rest and in transit. Data is decrypted for processing only. Amazon Braket
third-party providers are not permitted to store or use your content for purposes other than

Third Party Security 276

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html

Amazon Braket Developer Guide

processing your circuit. Once the circuit completes, the results are returned to Amazon Braket and
stored in your S3 bucket.

The security of Amazon Braket third-party quantum hardware providers is audited periodically, to
ensure that standards of network security, access control, data protection, and physical security are
met.

Amazon VPC endpoints for Amazon Braket

You can establish a private connection between your VPC and Amazon Braket by creating an
interface VPC endpoint. Interface endpoints are powered by AWS PrivateLink, a technology that
enables access to Braket APIs without an internet gateway, NAT device, VPN connection, or AWS
Direct Connect connection. Instances in your VPC don’t need public IP addresses to communicate
with Braket APIs.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your subnets.

With AWS PrivateLink, traffic between your VPC and Braket does not leave the Amazon network,
which increases the security of data that you share with cloud-based applications, because it
reduces your data’s exposure to the public internet. For more information, see Access an AWS
service using an interface VPC endpoint in the Amazon VPC User Guide.

In this section:

• Considerations for Amazon Braket VPC endpoints

• Set up Braket and PrivateLink

• Additional information about creating an endpoint

• Control access with Amazon VPC endpoint policies

Considerations for Amazon Braket VPC endpoints

Before you set up an interface VPC endpoint for Braket, ensure that you review Interface endpoint
prerequisites in the Amazon VPC User Guide.

Braket supports making calls to all of its API actions from your VPC.

By default, full access to Braket is allowed through the VPC endpoint. You can control access if you
specify VPC endpoint policies. For more information, see Control access to VPC endpoints using
endpoint policies in the Amazon VPC User Guide.

VPC endpoints (PrivateLink) 277

https://aws.amazon.com/privatelink/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#prerequisites-interface-endpoints
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#prerequisites-interface-endpoints
https://docs.aws.amazon.com/braket/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

Amazon Braket Developer Guide

Set up Braket and PrivateLink

To use AWS PrivateLink with Amazon Braket, you must create an Amazon Virtual Private Cloud
(Amazon VPC) endpoint as an interface, and then connect to the endpoint through the Amazon
Braket API service.

Here are the general steps of this process, which are explained in detail in later sections.

• Configure and launch an Amazon VPC to host your AWS resources. If you already have a VPC, you
can skip this step.

• Create an Amazon VPC endpoint for Braket

• Connect and run Braket quantum tasks through your endpoint

Step 1: Launch an Amazon VPC if needed

Remember that you can skip this step if your account already has a VPC in operation.

A VPC controls your network settings, such as the IP address range, subnets, route tables, and
network gateways. Essentially, you are launching your AWS resources in a custom virtual network.
For more information about VPCs, see the Amazon VPC User Guide.

Open the Amazon VPC console and create a new VPC with subnets, security groups, and network
gateways.

Step 2: Create an interface VPC endpoint for Braket

You can create a VPC endpoint for the Braket service using either the Amazon VPC console or the
AWS Command Line Interface (AWS CLI). For more information, see Create a VPC endpoint in the
Amazon VPC User Guide.

To create a VPC endpoint in the console, open the Amazon VPC console, open the Endpoints page,
and proceed to create the new endpoint. Make note of the endpoint ID for later reference. It is
required as part of the —endpoint-url flag when you are making certain calls to the Braket API.

Create the VPC endpoint for Braket using the following service name:

• com.amazonaws.substitute_your_region.braket

For more information, see Access an AWS service using an interface VPC endpoint in the Amazon
VPC User Guide.

Set up Braket and PrivateLink 278

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html

Amazon Braket Developer Guide

Step 3: Connect and run Braket quantum tasks through your endpoint

After you have created a VPC endpoint, you can run CLI commands that include the endpoint-
url parameter to specify interface endpoints to the API or runtime, such as the following example:

aws braket search-quantum-tasks --endpoint-url
 VPC_Endpoint_ID.braket.substituteYourRegionHere.vpce.amazonaws.com

If you enable private DNS hostnames for your VPC endpoint, you don’t need to specify the
endpoint as a URL in your CLI commands. Instead, the Amazon Braket API DNS hostname, which
the CLI and Braket SDK use by default, resolves to your VPC endpoint. It has the form shown in the
following example:

https://braket.substituteYourRegionHere.amazonaws.com

The blog post called Direct access to Amazon SageMaker AI notebooks from Amazon VPC by using
an AWS PrivateLink endpoint provides an example of how to set up an endpoint to make secure
connections to SageMaker notebooks, which are similar to Amazon Braket notebooks.

If you’re following the steps in the blog post, remember to substitute the name Amazon Braket
for Amazon SageMaker AI. For Service Name enter com.amazonaws.us-east-1.braket or
substitute your correct AWS Region name into that string, if your Region is not us-east-1.

Additional information about creating an endpoint

• For information about how to create a VPC with private subnets, see Create a VPC with private
subnets.

• For information about creating and configuring an endpoint using the Amazon VPC console or
the AWS CLI, see Create a VPC endpoint in the Amazon VPC User Guide.

• For information about creating and configuring an endpoint using AWS CloudFormation, see the
AWS::EC2::VPCEndpoint resource in the AWS CloudFormation User Guide.

Control access with Amazon VPC endpoint policies

To control connectivity access to Amazon Braket, you can attach an AWS Identity and Access
Management (IAM) endpoint policy to your Amazon VPC endpoint. The policy specifies the
following information:

Additional information about creating an endpoint 279

https://aws.amazon.com/blogs/machine-learning/securing-all-amazon-sagemaker-api-calls-with-aws-privatelink/
https://aws.amazon.com/blogs/machine-learning/securing-all-amazon-sagemaker-api-calls-with-aws-privatelink/
https://docs.aws.amazon.com/batch/latest/userguide/create-public-private-vpc.html
https://docs.aws.amazon.com/batch/latest/userguide/create-public-private-vpc.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpcendpoint.html

Amazon Braket Developer Guide

• The principal (user or role) that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Control access to VPC endpoints using endpoint policies in the Amazon
VPC User Guide.

Example: VPC endpoint policy for Braket actions

The following example shows an endpoint policy for Braket. When attached to an endpoint, this
policy grants access to the listed Braket actions for all principals on all resources.

{
 "Statement":[
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 “braket:action-1",
 “braket:action-2",
 “braket:action-3”
],
 "Resource":"*"
 }
]
}

You can create complex IAM rules by attaching multiple endpoint policies. For more information
and examples, see:

• Amazon Virtual Private Cloud Endpoint Policies for Step Functions

• Creating Granular IAM Permissions for Non-Admin Users

• Control access to VPC endpoints using endpoint policies

Control access with Amazon VPC endpoint policies 280

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/step-functions/latest/dg/vpc-endpoints.html#vpc-iam
https://docs.aws.amazon.com/step-functions/latest/dg/concept-create-iam-advanced.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

Amazon Braket Developer Guide

Logging and monitoring

After you submit a quantum task through the Amazon Braket service, you can closely monitor the
status and progression of that task through the Amazon Braket SDK and console. This provides you
with a centralized interface to track the implementation of your workloads, identify any potential
bottlenecks or issues, and take appropriate actions to optimize the performance and reliability
of your quantum applications. When the quantum task completes, Braket saves the results in
your specified Amazon S3 location. Completion time for quantum tasks can vary, especially for
those running on quantum processing unit (QPU) devices. This is largely due to the length of the
execution queue, as quantum hardware resources are shared among multiple users.

List of status types:

• CREATED – Amazon Braket received your quantum task.

• QUEUED – Amazon Braket processed your quantum task and it is now waiting to run on the
device.

• RUNNING – Your quantum task is running on a QPU or on-demand simulator.

• COMPLETED – Your quantum task finished running on the QPU or on-demand simulator.

• FAILED – Your quantum task attempted to run and failed. Depending on the reason your
quantum task failed, try submitting your quantum task again.

• CANCELLED – You cancelled the quantum task. The quantum task did not run.

In this section:

• Tracking quantum tasks from the Amazon Braket SDK

• Monitoring quantum tasks through the Amazon Braket console

• Tagging Amazon Braket resources

• Monitoring your quantum tasks with EventBridge

• Monitoring your metrics with CloudWatch

• Logging your quantum tasks with CloudTrail

• Advanced logging with Amazon Braket

281

Amazon Braket Developer Guide

Tracking quantum tasks from the Amazon Braket SDK

The command device.run(…) defines a quantum task with a unique quantum task ID. You can
query and track the status with task.state() as shown in the following example.

Note: task = device.run() is an asynchronous operation, which means that you can keep
working while the system processes your quantum task in the background.

Retrieve a result

When you call task.result(), the SDK begins polling Amazon Braket to see whether the
quantum task is complete. The SDK uses the polling parameters you defined in .run(). After
the quantum task is complete, the SDK retrieves the result from the S3 bucket and returns it as a
QuantumTaskResult object.

create a circuit, specify the device and run the circuit
circ = Circuit().rx(0, 0.15).ry(1, 0.2).cnot(0,2)
device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")
task = device.run(circ, s3_location, shots=1000)

get ID and status of submitted task
task_id = task.id
status = task.state()
print('ID of task:', task_id)
print('Status of task:', status)
wait for job to complete
while status != 'COMPLETED':
 status = task.state()
 print('Status:', status)

ID of task:
arn:aws:braket:us-west-2:123412341234:quantum-task/b68ae94b-1547-4d1d-aa92-1500b82c300d
Status of task: QUEUED
Status: QUEUED
Status: QUEUED
Status: QUEUED
Status: QUEUED
Status: QUEUED
Status: QUEUED
Status: QUEUED
Status: RUNNING
Status: RUNNING

Tracking quantum tasks from the Amazon Braket SDK 282

Amazon Braket Developer Guide

Status: COMPLETED

Cancel a quantum task

To cancel a quantum task, call the cancel() method, as shown in the following example.

cancel quantum task
task.cancel()
status = task.state()
print('Status of task:', status)

Status of task: CANCELLING

Check the metadata

You can check the metadata of the finished quantum task, as shown in the following example.

get the metadata of the quantum task
metadata = task.metadata()
example of metadata
shots = metadata['shots']
date = metadata['ResponseMetadata']['HTTPHeaders']['date']
print example metadata
print("{} shots taken on {}.".format(shots, date))

print name of the s3 bucket where the result is saved
results_bucket = metadata['outputS3Bucket']
print('Bucket where results are stored:', results_bucket)
print the s3 object key (folder name)
results_object_key = metadata['outputS3Directory']
print('S3 object key:', results_object_key)

the entire look-up string of the saved result data
look_up = 's3://'+results_bucket+'/'+results_object_key
print('S3 URI:', look_up)

1000 shots taken on Wed, 05 Aug 2020 14:44:22 GMT.
Bucket where results are stored: amazon-braket-123412341234
S3 object key: simulation-output/b68ae94b-1547-4d1d-aa92-1500b82c300d
S3 URI: s3://amazon-braket-123412341234/simulation-output/b68ae94b-1547-4d1d-
aa92-1500b82c300d

Tracking quantum tasks from the Amazon Braket SDK 283

Amazon Braket Developer Guide

Retrieve a quantum task or result

If your kernel dies after you submit the quantum task or if you close your notebook or computer,
you can reconstruct the task object with its unique ARN (quantum task ID). Then you can call
task.result() to get the result from the S3 bucket where it is stored.

from braket.aws import AwsSession, AwsQuantumTask

restore task with unique arn
task_load = AwsQuantumTask(arn=task_id)
retrieve the result of the task
result = task_load.result()

Monitoring quantum tasks through the Amazon Braket console

Amazon Braket offers a convenient way of monitoring the quantum task through the Amazon
Braket console. All submitted quantum tasks are listed in the Quantum Tasks field as shown in the
following figure. This service is Region-specific, which means that you can only view those quantum
tasks created in the specific AWS Region.

You can search for particular quantum tasks through the navigation bar. The search can be based
on Quantum Task ARN (ID), status, device, and creation time. The options appear automatically
when you select the navigation bar, as shown in the following example.

Monitoring quantum tasks through the Amazon Braket console 284

https://console.aws.amazon.com/braket/home
https://console.aws.amazon.com/braket/home

Amazon Braket Developer Guide

The following image shows an example of searching for a quantum task based on its unique
quantum task ID, which can be obtained by calling task.id.

Additionally, seen in the figure below, the status of a quantum task can be monitored while it is
in a QUEUED state. Clicking on the quantum task ID shows the details page. This page displays the
dynamic queue position for your quantum task relative to the device it will process on.

Monitoring quantum tasks through the Amazon Braket console 285

Amazon Braket Developer Guide

Quantum tasks submitted as part of a hybrid job will have priority when in queue. Quantum tasks
submitted outside of a hybrid job will have normal queuing priority.

Customers wishing to query the Braket SDK, can obtain their quantum task and hybrid job queue
positions programmatically. For more information see the When will my task run page.

Tagging Amazon Braket resources

A tag is a custom attribute label that you assign or that AWS assigns to an AWS resource. A tag
is metadata that tells more about your resource. Each tag consists of a key and a value. Together
these are known as key-value pairs. For tags that you assign, you define the key and value.

In the Amazon Braket console, you can navigate to a quantum task or a notebook and view the list
of tags associated with it. You can add a tag, remove a tag, or modify a tag. You can tag a quantum
task or notebook upon creation, and then manage associated tags through the console, AWS CLI,
or API.

More about AWS and tags

• For general information on tagging, including naming and usage conventions, see What is Tag
Editor? in the Tagging AWS Resources and Tag Editor User Guide.

• For information about restrictions on tagging, see Tag naming limits and requirements in the
Tagging AWS Resources and Tag Editor User Guide.

• For best practices and tagging strategies, see Best Practices for Tagging AWS Resources.

• For a list of services that support using tags, see the Resource Groups Tagging API Reference.

The following sections provide more specific information about tags for Amazon Braket.

In this section:

• Using tags

• Supported resources for tagging in Amazon Braket

• Tagging with the Amazon Braket API

• Tagging restrictions

• Managing tags in Amazon Braket

• Example of AWS CLI tagging in Amazon Braket

Tagging resources 286

https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#id_tags_naming_best_practices
https://docs.aws.amazon.com/whitepapers/latest/tagging-best-practices/tagging-best-practices.html
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/overview.html

Amazon Braket Developer Guide

Using tags

Tags can organize your resources into categories that are useful to you. For example, you can assign
a "Department" tag to specify the department that owns this resource.

Each tag has two parts:

• A tag key (for example, CostCenter, Environment, or Project). Tag keys are case sensitive.

• An optional field known as a tag value (for example, 111122223333 or Production). Omitting the
tag value is the same as using an empty string. Like tag keys, tag values are case sensitive.

Tags help you do the following things:

• Identify and organize your AWS resources. Many AWS services support tagging, so you can
assign the same tag to resources from different services to indicate that the resources are
related.

• Track your AWS costs. You activate these tags on the AWS Billing and Cost Management
dashboard. AWS uses the tags to categorize your costs and deliver a monthly cost allocation
report to you. For more information, see Use cost allocation tags in the AWS Billing and Cost
Management User Guide.

• Control access to your AWS resources. For more information, see Controlling access using tags.

Supported resources for tagging in Amazon Braket

The following resource type in Amazon Braket supports tagging:

• quantum-task resource

• Resource Name: AWS::Service::Braket

• ARN Regex: arn:${Partition}:braket:${Region}:${Account}:quantum-task/
${RandomId}

Note: You can apply and manage tags for your Amazon Braket notebooks in the Amazon Braket
console, by using the console to navigate to the notebook resource, although the notebooks
actually are Amazon SageMaker AI resources. For more information, see Notebook Instance
Metadata in the SageMaker documentation.

Using tags 287

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-manage-access.html#resources
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-metadata.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-metadata.html

Amazon Braket Developer Guide

Tagging with the Amazon Braket API

• If you’re using the Amazon Braket API to set up tags on a resource, call the TagResourceAPI.

aws braket tag-resource --resource-arn $YOUR_TASK_ARN --tags {\"city\":
\"Seattle\"}

• To remove tags from a resource, call the UntagResourceAPI.

aws braket list-tags-for-resource --resource-arn $YOUR_TASK_ARN

• To list all tags that are attached to a particular resource, call the ListTagsForResourceAPI.

aws braket tag-resource --resource-arn $YOUR_TASK_ARN --tag-keys "[\"city
\",\"state\"]"

Tagging restrictions

The following basic restrictions apply to tags on Amazon Braket resources:

• Maximum number of tags that you can assign to a resource: 50

• Maximum key length: 128 Unicode characters

• Maximum value length: 256 Unicode characters

• Valid characters for key and value: a-z, A-Z, 0-9, space, and these characters: _ . : / =
+ - and @

• Keys and values are case sensitive.

• Don’t use aws as a prefix for keys; it’s reserved for AWS use.

Managing tags in Amazon Braket

You set tags as properties on a resource. You can view, add, modify, list, and delete tags through
the Amazon Braket console, the Amazon Braket API, or the AWS CLI. For more information, see the
Amazon Braket API reference.

In this section:

• Adding tags

Tagging with the Amazon Braket API 288

https://docs.aws.amazon.com/braket/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/braket/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/braket/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/braket/latest/APIReference/Welcome.html

Amazon Braket Developer Guide

• Viewing tags

• Editing tags

• Removing tags

Adding tags

You can add tags to taggable resources at the following times:

• When you create the resource: Use the console, or include the Tags parameter with the Create
operation in the AWS API.

• After you create the resource: Use the console to navigate to the quantum task or notebook
resource, or call the TagResource operation in the AWS API.

To add tags to a resource when you create it, you also need permission to create a resource of the
specified type.

Viewing tags

You can view the tags on any of the taggable resources in Amazon Braket by using the console
to navigate to the task or notebook resource, or by calling the AWS ListTagsForResource API
operation.

You can use the following AWS API command to view tags on a resource:

• AWS API: ListTagsForResource

Editing tags

You can edit tags by using the console to navigate to the quantum task or notebook resource or
you can use the following command to modify the value for a tag attached to a taggable resource.
When you specify a tag key that already exists, the value for that key is overwritten:

• AWS API: TagResource

Managing tags in Amazon Braket 289

https://docs.aws.amazon.com/braket/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/braket/latest/APIReference/API_Operations.html

Amazon Braket Developer Guide

Removing tags

You can remove tags from a resource by specifying the keys to remove, by using the console
to navigate to the quantum task or notebook resource, or when calling the UntagResource
operation.

• AWS API: UntagResource

Example of AWS CLI tagging in Amazon Braket

When you are working with the AWS Command Line Interface (AWS CLI) to interact with Amazon
Braket, the following code is an example command that demonstrates how to create a tag that
applies to a quantum task you create. In this example, the task is being executed on the SV1
quantum simulator with parameter settings specified for the Rigetti quantum processing unit
(QPU). It is imporant that inside the example command the tag is specified at the very end,
after all of the other required parameters. In this case, the tag has a Key of state and Value of
Washington. These tags could be used to help categorize or identify this particular quantum task.

aws braket create-quantum-task --action /
"{\"braketSchemaHeader\": {\"name\": \"braket.ir.jaqcd.program\", /
 \"version\": \"1\"}, /
 \"instructions\": [{\"angle\": 0.15, \"target\": 0, \"type\": \"rz\"}], /
 \"results\": null, /
 \"basis_rotation_instructions\": null}" /
 --device-arn "arn:aws:braket:::device/quantum-simulator/amazon/sv1" /
 --output-s3-bucket "my-example-braket-bucket-name" /
 --output-s3-key-prefix "my-example-username" /
 --shots 100 /
 --device-parameters /
 "{\"braketSchemaHeader\": /
 {\"name\": \"braket.device_schema.rigetti.rigetti_device_parameters\", /
 \"version\": \"1\"}, \"paradigmParameters\": /
 {\"braketSchemaHeader\": /
 {\"name\": \"braket.device_schema.gate_model_parameters\", /
 \"version\": \"1\"}, /
 \"qubitCount\": 2}}" /
 --tags {\"state\":\”Washington\"}

This example demonstrates how you can apply tags to your quantum tasks when running them
through the AWS CLI, which is helpful for organizing and tracking your Braket resources.

Example of AWS CLI tagging in Amazon Braket 290

Amazon Braket Developer Guide

Monitoring your quantum tasks with EventBridge

Amazon EventBridge monitors status change events in Amazon Braket quantum tasks. Events from
Amazon Braket are delivered to EventBridge, almost in real time. You can write simple rules that
indicate which events interest you, including automated actions to take when an event matches a
rule. Automatic actions that can be triggered include these:

• Invoking an AWS Lambda function

• Activating an AWS Step Functions state machine

• Notifying an Amazon SNS topic

EventBridge monitors these Amazon Braket status change events:

• The state of qauntum task changes

Amazon Braket guarantees delivery of quantum task status change events. These events are
delivered at least once, but possibly out of order.

For more information, see the Events in Amazon EventBridge.

In this section:

• Monitor quantum task status with EventBridge

• Example Amazon Braket EventBridge event

Monitor quantum task status with EventBridge

With EventBridge, you can create rules that define actions to take when Amazon Braket sends
notification of a status change regarding a Braket quantum task. For example, you can create a rule
that sends you an email message each time the status of a quantum task changes.

1. Log in to AWS using an account that has permissions to use EventBridge and Amazon Braket.

2. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

3. Using the following values, create an EventBridge rule:

• For Rule type, choose Rule with an event pattern.

• For Event source, choose Other.

Monitoring your quantum tasks with EventBridge 291

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://console.aws.amazon.com/events/

Amazon Braket Developer Guide

• In the Event pattern section, choose Custom patterns (JSON editor), and then paste the
following event pattern into the text area:

{
 "source": [
 "aws.braket"
],
 "detail-type": [
 "Braket Task State Change"
]
}

To capture all events from Amazon Braket, exclude the detail-type section as shown in the
following code:

{
 "source": [
 "aws.braket"
]
}

• For Target types, choose AWS service, and for Select a target, choose a target such as an
Amazon SNS topic or AWS Lambda function. The target is triggered when a quantum task
state change event is received from Amazon Braket.

For example, use an Amazon Simple Notification Service (SNS) topic to send an email or
text message when an event occurs. To do that, first create an Amazon SNS topic using the
Amazon SNS console. To learn more, see Using Amazon SNS for user notifications.

For details about creating rules, see Creating Amazon EventBridge rules that react to events.

Example Amazon Braket EventBridge event

For information on the fields for an Amazon Braket Quantum Task Status Change event, see Events
in Amazon EventBridge.

The following attributes appear in the JSON "detail" field.

• quantumTaskArn (str): The quantum task for which this event was generated.

• status (Optional[str]): The status to which the quantum task transitioned.

Example Amazon Braket EventBridge event 292

https://docs.aws.amazon.com/sns/latest/dg/sns-user-notifications.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html

Amazon Braket Developer Guide

• deviceArn (str): The device specified by the user for which this quantum task was created.

• shots (int): The number of shots requested by the user.

• outputS3Bucket (str): The output bucket specified by the user.

• outputS3Directory (str): The output key prefix specified by the user.

• createdAt (str): The quantum task creation time as an ISO-8601 string.

• endedAt (Optional[str]): The time at which the quantum task reached a terminal state. This
field is present only when the quantum task has transitioned to a terminal state.

The following JSON code shows an example of an Amazon Braket Quantum Task Status Change
event.

{
 "version":"0",
 "id":"6101452d-8caf-062b-6dbc-ceb5421334c5",
 "detail-type":"Braket Task State Change",
 "source":"aws.braket",
 "account":"012345678901",
 "time":"2021-10-28T01:17:45Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:braket:us-east-1:012345678901:quantum-task/834b21ed-77a7-4b36-a90c-
c776afc9a71e"
],
 "detail":{
 "quantumTaskArn":"arn:aws:braket:us-east-1:012345678901:quantum-
task/834b21ed-77a7-4b36-a90c-c776afc9a71e",
 "status":"COMPLETED",
 "deviceArn":"arn:aws:braket:::device/quantum-simulator/amazon/sv1",
 "shots":"100",
 "outputS3Bucket":"amazon-braket-0260a8bc871e",
 "outputS3Directory":"sns-testing/834b21ed-77a7-4b36-a90c-c776afc9a71e",
 "createdAt":"2021-10-28T01:17:42.898Z",
 "eventName":"MODIFY",
 "endedAt":"2021-10-28T01:17:44.735Z"
 }
}

Example Amazon Braket EventBridge event 293

Amazon Braket Developer Guide

Monitoring your metrics with CloudWatch

You can monitor Amazon Braket using Amazon CloudWatch, which collects raw data and processes
it into readable, near real-time metrics. You view historical information generated up to 15 months
ago or search metrics that have been updated in the last 2 weeks in the Amazon CloudWatch
console to gain a better perspective on how Amazon Braket is performing. To learn more, see Using
CloudWatch metrics.

Note

You can view the CloudWatch log streams for Amazon Braket notebooks by navigating to
the Notebook detail page on the Amazon SageMaker AI console. Additional Amazon Braket
notebook settings are available through the SageMaker console.

In this section:

• Amazon Braket metrics and dimensions

Amazon Braket metrics and dimensions

Metrics are the fundamental concept in CloudWatch. A metric represents a time-ordered set of data
points that are published to CloudWatch. Every metric is characterized by a set of dimensions. To
learn more about metrics dimensions in CloudWatch, see CloudWatch dimensions.

Amazon Braket sends the following metric data, specific to Amazon Braket, into the Amazon
CloudWatch metrics:

Quantum Task Metrics

Metrics are available if quantum tasks exist. They are displayed under AWS/Braket/By Device in
the CloudWatch console.

Metric Description

Count Number of quantum tasks.

Latency This metric is emitted when a quantum task
has completed. It represents the total time

Monitoring your metrics with CloudWatch 294

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Dimension

Amazon Braket Developer Guide

Metric Description

from quantum task initialization to completio
n.

Dimensions for Quantum Task Metrics

The quantum task metrics are published with a dimension based on the deviceArn parameter,
which has the form arn:aws:braket:::device/xxx.

Logging your quantum tasks with CloudTrail

Amazon Braket is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service in Amazon Braket. CloudTrail captures all API calls for Amazon
Braket as events. The calls captured include calls from the Amazon Braket console and code calls
to the Amazon Braket operations. If you create a trail, you can enable continuous delivery of
CloudTrail events to an Amazon S3 bucket, including events for Amazon Braket. If you do not
configure a trail, you can still view the most recent events in the CloudTrail console in Event
history. Using the information collected by CloudTrail, you can determine the request that was
made to Amazon Braket, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

In this section:

• Amazon Braket information in CloudTrail

• Understanding Amazon Braket log file entries

Amazon Braket information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Amazon Braket, that activity is recorded in a CloudTrail event along with other AWS service events
in Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon Braket, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when

Logging your quantum tasks with CloudTrail 295

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon Braket Developer Guide

you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All Amazon Braket actions are logged by CloudTrail. For example, calls to the GetQuantumTask or
GetDevice actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding Amazon Braket log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they don’t appear in any specific order.

The following example is a log entry for the GetQuantumTask action, which gets the details of a
quantum task.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "foobar",

Understanding Amazon Braket log file entries 296

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Braket Developer Guide

 "arn": "foobar",
 "accountId": "foobar",
 "accessKeyId": "foobar",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "foobar",
 "arn": "foobar",
 "accountId": "foobar",
 "userName": "foobar"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-08-07T00:56:57Z"
 }
 }
 },
 "eventTime": "2020-08-07T01:00:08Z",
 "eventSource": "braket.amazonaws.com",
 "eventName": "GetQuantumTask",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "foobar",
 "userAgent": "aws-cli/1.18.110 Python/3.6.10
 Linux/4.9.184-0.1.ac.235.83.329.metal1.x86_64 botocore/1.17.33",
 "requestParameters": {
 "quantumTaskArn": "foobar"
 },
 "responseElements": null,
 "requestID": "20e8000c-29b8-4137-9cbc-af77d1dd12f7",
 "eventID": "4a2fdb22-a73d-414a-b30f-c0797c088f7c",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "recipientAccountId": "foobar"
}

The following shows a log entry for the GetDevice action, which returns the details of a device
event.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",

Understanding Amazon Braket log file entries 297

Amazon Braket Developer Guide

 "principalId": "foobar",
 "arn": "foobar",
 "accountId": "foobar",
 "accessKeyId": "foobar",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "foobar",
 "arn": "foobar",
 "accountId": "foobar",
 "userName": "foobar"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-08-07T00:46:29Z"
 }
 }
 },
 "eventTime": "2020-08-07T00:46:32Z",
 "eventSource": "braket.amazonaws.com",
 "eventName": "GetDevice",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "foobar",
 "userAgent": "Boto3/1.14.33 Python/3.7.6 Linux/4.14.158-129.185.amzn2.x86_64 exec-
env/AWS_ECS_FARGATE Botocore/1.17.33",
 "errorCode": "404",
 "requestParameters": {
 "deviceArn": "foobar"
 },
 "responseElements": null,
 "requestID": "c614858b-4dcf-43bd-83c9-bcf9f17f522e",
 "eventID": "9642512a-478b-4e7b-9f34-75ba5a3408eb",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "recipientAccountId": "foobar"
}

Advanced logging with Amazon Braket

You can record the whole task-processing process using a logger. These advanced logging
techniques allow you to see the background polling and create a record for later debugging.

(Advanced) Logging 298

Amazon Braket Developer Guide

To use the logger, we recommend changing the poll_timeout_seconds and
poll_interval_seconds parameters, so that a quantum task can be long-running and the
quantum task status is logged continuously, with results saved to a file. You can transfer this code
to a Python script instead of a Jupyter notebook, so that the script can run as a process in the
background.

Configure the logger

First, configure the logger so that all logs are written into a text file automatically, as shown in the
following example lines.

import the module
import logging
from datetime import datetime

set filename for logs
log_file = 'device_logs-'+datetime.strftime(datetime.now(), '%Y%m%d%H%M%S')+'.txt'
print('Task info will be logged in:', log_file)

create new logger object
logger = logging.getLogger("newLogger")

configure to log to file device_logs.txt in the appending mode
logger.addHandler(logging.FileHandler(filename=log_file, mode='a'))

add to file all log messages with level DEBUG or above
logger.setLevel(logging.DEBUG)

Task info will be logged in: device_logs-20200803203309.txt

Create and run the circuit

Now you can create a circuit, submit it to a device to run, and see what happens as shown in this
example.

define circuit
circ_log = Circuit().rx(0, 0.15).ry(1, 0.2).rz(2, 0.25).h(3).cnot(control=0,
 target=2).zz(1, 3, 0.15).x(4)
print(circ_log)
define backend
device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")

(Advanced) Logging 299

Amazon Braket Developer Guide

define what info to log
logger.info(
 device.run(circ_log, s3_location,
 poll_timeout_seconds=1200, poll_interval_seconds=0.25, logger=logger,
 shots=1000)
 .result().measurement_counts
)

Check the log file

You can check what is written into the file by entering the following command.

print logs
! cat {log_file}

Task arn:aws:braket:us-west-2:123412341234:quantum-
task/5088ec6c-89cf-4338-9750-9f5bb12a0dc4: start polling for completion
Task arn:aws:braket:us-west-2:123412341234:quantum-
task/5088ec6c-89cf-4338-9750-9f5bb12a0dc4: task status CREATED
Task arn:aws:braket:us-west-2:123412341234:quantum-
task/5088ec6c-89cf-4338-9750-9f5bb12a0dc4: task status CREATED
Task arn:aws:braket:us-west-2:123412341234:quantum-
task/5088ec6c-89cf-4338-9750-9f5bb12a0dc4: task status QUEUED
Task arn:aws:braket:us-west-2:123412341234:quantum-
task/5088ec6c-89cf-4338-9750-9f5bb12a0dc4: task status RUNNING
Task arn:aws:braket:us-west-2:123412341234:quantum-
task/5088ec6c-89cf-4338-9750-9f5bb12a0dc4: task status RUNNING
Task arn:aws:braket:us-west-2:123412341234:quantum-
task/5088ec6c-89cf-4338-9750-9f5bb12a0dc4: task status COMPLETED
Counter({'00001': 493, '00011': 493, '01001': 5, '10111': 4, '01011': 3, '10101': 2})

Get the ARN from the log file

From the log file output that’s returned, as shown in the previous example, you can obtain the ARN
information. With the ARN ID, you can retrieve the result of the completed quantum task.

parse log file for arn
with open(log_file) as openfile:
 for line in openfile:
 for part in line.split():
 if "arn:" in part:
 arn = part

(Advanced) Logging 300

Amazon Braket Developer Guide

 break
remove final semicolon in logs
arn = arn[:-1]

with this arn you can restore again task from unique arn
task_load = AwsQuantumTask(arn=arn, aws_session=AwsSession())

get results of task
result = task_load.result()

(Advanced) Logging 301

Amazon Braket Developer Guide

Amazon Braket Quotas

The following table lists the service quotas for Amazon Braket. Service quotas, also referred to as
limits, are the maximum number of service resources or operations for your AWS account.

Some quotas can be increased. For more information, see AWS service quotas.

• Burst rate quotas cannot be increased.

• The maximum rate increase for adjustable quotas (except burst rate, which cannot be adjusted)
is 2X the specified default rate limit. For example, a default quota of 60 can be adjusted to a
maximum of 120.

• The adjustable quota for concurrent SV1 (DM1) quantum tasks allows a maximum of 60 per AWS
Region.

• The maximum allowed number of compute instances for a hybrid job is 1, and the quotas are
adjustable.

Resource Description Limits Adjustable

Rate of API requests The maximum
number of requests
per second that
you can send in this
account in the current
Region.

140 Yes

Burst rate of API
requests

The maximum
number of additiona
l requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

600 No

Rate of CreateQua
ntumTask requests

The maximum
number of
CreateQua

20 Yes

302

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Braket Developer Guide

Resource Description Limits Adjustable

ntumTask requests
you can send per
second in this
account per Region.

Burst rate of
CreateQua
ntumTask requests

The maximum
number of additiona
l CreateQua
ntumTask requests
per second (RPS) that
you can send in one
burst in this account
in the current Region.

40 No

Rate of SearchQua
ntumTasks
requests

The maximum
number of
SearchQua
ntumTasks
requests you can
send per second
in this account per
Region.

5 Yes

Burst rate of
SearchQua
ntumTasks
requests

The maximum
number of additiona
l SearchQua
ntumTasks
requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

50 No

303

Amazon Braket Developer Guide

Resource Description Limits Adjustable

Rate of GetQuantu
mTask requests

The maximum
number of
GetQuantumTask
requests you can
send per second
in this account per
Region.

100 Yes

Burst rate of
GetQuantumTask
requests

The maximum
number of additiona
l GetQuantumTask
requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

500 No

Rate of CancelQua
ntumTask requests

The maximum
number of
CancelQua
ntumTask requests
you can send per
second in this
account per Region.

2 Yes

Burst rate of
CancelQua
ntumTask requests

The maximum
number of additiona
l CancelQua
ntumTask requests
per second (RPS) that
you can send in one
burst in this account
in the current Region.

20 No

304

Amazon Braket Developer Guide

Resource Description Limits Adjustable

Rate of GetDevice
requests

The maximum
number of
GetDevice
requests you can
send per second
in this account per
Region.

5 Yes

Burst rate of
GetDevice
requests

The maximum
number of additiona
l GetDevice
requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

50 No

Rate of SearchDev
ices requests

The maximum
number of
SearchDevices
requests you can
send per second
in this account per
Region.

5 Yes

Burst rate of
SearchDevices
requests

The maximum
number of additiona
l SearchDevices
requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

50 No

305

Amazon Braket Developer Guide

Resource Description Limits Adjustable

Rate of CreateJob
requests

The maximum
number of
CreateJob
requests you can
send per second
in this account per
Region.

1 Yes

Burst rate of
CreateJob
requests

The maximum
number of additiona
l CreateJob
requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

5 No

Rate of SearchJob
requests

The maximum
number of
SearchJob
requests you can
send per second
in this account per
Region.

5 Yes

Burst rate of
SearchJob
requests

The maximum
number of additiona
l SearchJob
requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

50 No

306

Amazon Braket Developer Guide

Resource Description Limits Adjustable

Rate of GetJob
requests

The maximum
number of GetJob
requests you can
send per second
in this account per
Region.

5 Yes

Burst rate of GetJob
requests

The maximum
number of additional
GetJob requests per
second (RPS) that you
can send in one burst
in this account in the
current Region.

25 No

Rate of CancelJob
requests

The maximum
number of
CancelJob
requests you can
send per second
in this account per
Region.

2 Yes

Burst rate of
CancelJob
requests

The maximum
number of additiona
l CancelJob
requests per second
(RPS) that you can
send in one burst in
this account in the
current Region.

5 No

307

Amazon Braket Developer Guide

Resource Description Limits Adjustable

Number of concurren
t SV1 quantum tasks

The maximum
number of concurren
t quantum tasks
running on the state
vector simulator
 (SV1) in the current
Region.

100 us-east-1,

50 us-west-1,

100 us-west-2,

50 eu-west-2

No

Number of concurren
t DM1 quantum
tasks

The maximum
number of concurren
t quantum tasks
running on the
density matrix
simulator (DM1) in
the current Region.

100 us-east-1,

50 us-west-1,

100 us-west-2,

50 eu-west-2

No

Number of concurren
t TN1 quantum
tasks

The maximum
number of concurren
t quantum tasks
running on the tensor
network simulator
(TN1) in the current
Region.

10 us-east-1,

10 us-west-2,

5 eu-west-2,

Yes

Number of concurren
t hybrid jobs

The maximum
number of concurren
t hybrid jobs in the
current Region.

3 Yes

Hybrid jobs runtime
limit

The maximum
amount of time in
days that a hybrid job
can run.

5 No

308

Amazon Braket Developer Guide

The following are the default classical compute instance quotas for Hybrid Jobs. To raise these
quotas, please contact Support. Additionally, the available regions are specified for each instance.

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c4.xla
rge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c4.xla
rge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes No

Maximum
number
of
instances
of
ml.c4.2xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c4.2xl
arge
allowed
for all
Amazon
Braket

5 Yes Yes Yes Yes Yes No

309

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Hybrid
Jobs
in this
account
and
region.

Maximum
number
of
instances
of
ml.c4.4xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c4.4xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes No

310

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c4.8xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c4.8xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes No No

311

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5.xla
rge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5.xla
rge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes Yes

312

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5.2xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5.2xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes Yes

313

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5.4xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5.4xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

1 Yes Yes Yes Yes Yes Yes

314

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5.9xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5.9xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

1 Yes Yes Yes Yes Yes Yes

315

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5.18x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5.18x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

316

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5n.xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5n.xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes No No

317

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5n.2x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5n.2x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes No No

318

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5n.4x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5n.4x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes No No

319

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5n.9x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5n.9x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes No No

320

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.c5n.18
xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.c5n.18
xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes No No

321

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.g4dn.x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.g4dn.x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

322

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.g4dn.2
xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.g4dn.2
xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

323

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.g4dn.4
xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.g4dn.4
xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

324

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.g4dn.8
xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.g4dn.8
xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

325

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.g4dn.1
2xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.g4dn.1
2xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

326

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.g4dn.1
6xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.g4dn.1
6xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

327

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m4.xla
rge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m4.xla
rge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes No

328

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m4.2xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m4.2xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes No

329

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m4.4xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m4.4xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

2 Yes Yes Yes Yes Yes No

330

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m4.10x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m4.10x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes No

331

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m4.16x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m4.16x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes No

332

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m5.lar
ge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m5.lar
ge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes Yes

333

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m5.xla
rge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m5.xla
rge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes Yes

334

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m5.2xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m5.2xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes Yes

335

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m5.4xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m5.4xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

5 Yes Yes Yes Yes Yes Yes

336

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m5.12x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m5.12x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

337

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.m5.24x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.m5.24x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes Yes Yes Yes Yes

338

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p2.xla
rge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p2.xla
rge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes No No

339

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p2.8xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p2.8xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes No No

340

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p2.16x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p2.16x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes No No

341

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p3.2xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p3.2xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes No No

342

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p4d.24
xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p4d.24
xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes No No

343

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p3dn.2
4xlarge
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p3dn.2
4xlarge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes No No

344

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p3.8xl
arge for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p3.8xl
arge
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes Yes No

345

Amazon Braket Developer Guide

Resource Descripti
on

Limits Adjustabl
e

us-
east-1

us-
west-1

us-
west-2

eu-
west-2

eu-
north-1

Maximum
number
of
instances
of
ml.p3.16x
large
for
hybrid
jobs

The
maximum
number
of
instances
of type
ml.p3.16x
large
allowed
for all
Amazon
Braket
Hybrid
Jobs
in this
account
and
region.

0 Yes Yes No Yes Yes No

Requesting limit updates

If you receive a ServiceQuotaExceeded exception for an instance type and do not have sufficient
instances available for it, you may request a limit increase from the Service Quotas page in the
AWS console and search for Amazon Braket under AWS Services.

Note

If your hybrid job is unable to provision requested ML compute capacity, use another
region. In addition, if you do not see an instance in the table, it is not available for Hybrid
Jobs.

346

https://console.aws.amazon.com/servicequotas/home/

Amazon Braket Developer Guide

Additional quotas and limits

• The Amazon Braket quantum task action is limited to 3MB in size.

• For SV1, the maximum running duration is 3 hours for circuits up to 31 qubits, and 11 hours for
circuits over 31 qubits.

• The maximum number of shots per task allowed for SV1, DM1, and Rigetti devices is 50,000.

• The maximum number of shots per task allowed for TN1 is 1000.

• For all IonQ's devices: When using an on-demand model, there is a 1 Million gateshot limit, and
a minimum of 2500 shots for Error mitigation tasks. For a direct reservation, there is no gateshot
limit, and a minimum of 500 shots for Error mitigation tasks.

• For QuEra's Aquila device, the maximum is 1,000 shots per task.

• For IQM's Garnet device, the maximum is 20,000 shots per task.

• For TN1 and the QPU devices, shots per task must be > 0.

Additional quotas and limits 347

https://docs.aws.amazon.com/braket/latest/developerguide/braket-error-mitigation.html

Amazon Braket Developer Guide

Document history for the Amazon Braket Developer
Guide

The following table describes the documentation for this release of Amazon Braket.

• API version: April 28, 2022

• Latest API Reference update: December 15, 2023

• Latest documentation update: April 14, 2025

Change Description Date

Improve AmazonBra
ketFullAccess access to
device pricing

Update AmazonBra
ketFullAccess include
pricing:GetProducts
to display hardware costs on
the console.

April 14, 2025

New device Forte-Ent
erprise-1

Added support for the IonQ
Forte-Enterprise-1 device. An
36 quibit device that utilizes
trapped ion technology.

March 17, 2025

Improved S3 conditions
permissions

To improve security,
AmazonBraketFullAc
cess now only provides
s3:* actions to the
aws:PrincipalAccount .
This restricts access to the
requester's own buckets only.

March 7, 2025

New device Rigetti Ankaa-3 Added support for the Rigetti
Ankaa-3 device. An 84 quibit
device that utilizes scalable
multi-chip technology.

January 14, 2025

348

Amazon Braket Developer Guide

Rigetti Ankaa-2 device
retirement

Removed support for the
Rigetti Ankaa-2 device.

January 14, 2025

Support for IPv6 traffic Amazon Braket now supports
IPv6 traffic using the
dualstack endpoint braket.
{region}.api.aws .

December 12, 2024

Support for NVIDIA’s CUDA-Q
on Amazon Braket

Customers can now run
quantum programs using
NVIDIA’s CUDA-Q developer
framework on Amazon
Braket.

December 6, 2024

IonQ Forte-1 device is readily
available

IonQ Forte-1 device is no
longer reservation-only and
now readily availble to our
customers.

November 22, 2024

Rigetti Aspen-M-3 device
retirement

Removed support for the
Rigetti Aspen-M-3 device.

September 27, 2024

IonQ Harmony device
retirement

Removed support for the
IonQ Harmony device.

August 29, 2024

New device Rigetti Ankaa-2 Added support for the Rigetti
Ankaa-2 device. An 84 quibit
device that utilizes scalable
multi-chip technology.

August 26, 2024

Developer guide reorganiz
ation

The new developer guide
takes the existing Build, Test,
Run customer journey and
guides users along this path
with Amazon Braket.

August 23, 2024

OQC Lucy device retirement Removed support for the
OQC Lucy device.

June 28, 2024

349

https://docs.aws.amazon.com/braket/latest/developerguide/braket-using-cuda-q.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-using-cuda-q.html

Amazon Braket Developer Guide

New device IQM Garnet and
region Europe North 1

Added support for the IQM
Garnet device. A 20-qubit
device with a square lattice
topology. Expanded Braket
supported regions to Europe
North 1 (Stockholm).

May 22, 2024

Local detuning released Experimental capabilities now
include the local detuning
feature of QuEra’s Aquila
QPU.

April 11, 2024

Notebook inactivity manager
released

When creating a notebook
instance, enable the inactivit
y manager and set an idle
duration time to automatic
ally reset the Braket notebook
instance.

March 27, 2024

Table of contents rework Reorganized the Amazon
Braket table of contents
to abide by the AWS style
guide requirements and
improve the flow of content
for customer experience.

December 12, 2023

Braket direct released Added support for Braket
direct features, including:

• Working with reservations

• Getting Expert advice

• Explore Experimental
Capabilities

November 27, 2023

350

https://docs.aws.amazon.com/braket/latest/developerguide/braket-submit-tasks.html#braket-qpu-partner-iqm
https://docs.aws.amazon.com/braket/latest/developerguide/braket-submit-tasks.html#braket-qpu-partner-iqm
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#braket-regions
https://docs.aws.amazon.com/braket/latest/developerguide/braket-experimental-capabilities.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started-create-notebook.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started-create-notebook.html

Amazon Braket Developer Guide

Updated Create an Amazon
Braket notebook instance

Updated the documentation
to add information to create
a notebook instance for new
and existing Amazon Braket
customers.

November 27, 2023

Updated Bring your own
container (BYOC)

Updated the documentation
to add information about
when to BYOC, the recipe to
BYOC, and running Braket
Hybrid Jobs on the container.

October 18, 2023

Hybrid jobs decorator
released

Added Running your local
code as a hybrid job page.
Contains examples:

• Create a hybrid job from
local Python code

• Install additional Python
packages and source code

• Save and load data into a
hybrid job instance

• Best practices for hybrid job
decorators

October 16, 2023

Added Queue visibility Updated the Developer's
Guide documentation to
include queue depth and
queue position.

Updated the API documneta
tion to reflect new API
changes for queue visibility.

September 25, 2023

351

Amazon Braket Developer Guide

Standardize naming in
documentation

Updated the documenta
tion to change any instances
of "job" to "hybrid job" and
"task" to "quantum task"

September 11, 2023

New device IonQ Aria 2 Added support for the IonQ
Aria 2 device

September 8, 2023

Updated Native Gates Updated the documentation
to add information about
programmatic access to
native gates from Rigetti.

August 16, 2023

Xanadu departure Updated the documentation
to remove all Xanadu devices

June 2, 2023

New device IonQ Aria Added support for the IonQ
Aria device

May 16, 2023

Retired Rigetti device Discontinued support for
Rigetti Aspen-M-2

May 2, 2023

Updated AmazonBra
ketFullAccess policy
information

Updated the script that
defines the contents of
the AmazonBraketFullAc
cess policy to include
the servicequotas:GetS
erviceQuota and cloudwatc
h:GetMetricData actions as
well as information about
limitations with respect to
quotas.

April 19, 2023

Guided Journeys launch Changed the documentation
to reflect the more up to date
and simplified method for
Braket onboarding.

April 5, 2023

352

Amazon Braket Developer Guide

New device Rigetti Aspen-M-3 Added support for the Rigetti
Aspen-M-3 device

January 17, 2023

New adjoint gradient feature Added information about
the adjoint gradient feature
offered by SV1

December 7, 2022

New algorithm library feature Added information about
the Braket algorithm library,
which provides a catalog of
pre-built quantum algorithms

November 28, 2022

D-Wave departure Updated the documentation
to accommodate the removal
of all D-Wave devices

November 17, 2022

New device QuEra Aquila Added support for the QuEra
Aquila device

October 31, 2022

Support for Braket Pulse Added support for Braket
Pulse, which allows for pulse
control to be used on Rigetti
and OQC devices

October 20, 2022

Support for IonQ native gates Added support for the native
gate set offered by the IonQ
device

September 13, 2022

New instance quotas Updated the default classical
compute instance quotas
associated with Hybrid Jobs

August 22, 2022

New service dashboard Updated console screensho
ts to include the service
dashboard

August 17, 2022

New device Rigetti Aspen-M-2 Added support for the Rigetti
Aspen-M-2 device

August 12, 2022

353

Amazon Braket Developer Guide

New OpenQASM features Added OpenQASM features
support for the local
simulators (braket_sv and
braket_dm)

August 4, 2022

New cost tracking procedures Added how to get near-real
time maximum cost estimates
for simulators and hardware
workloads

July 18, 2022

New Xanadu Borealis device Added support for the
Xanadu Borealis device

June 2, 2022

New onboarding simplific
ation procedures

Added information on how
the new and simplified
onboarding procedures work

May 16, 2022

New device D-Wave
Advantage_system6.1

Added support for the D-
Wave Advantage_system6.1
device

May 12, 2022

Support for embedded
simulators

Added how to run embedded
simulations with hybrid
jobs and how to use the
PennyLane lightning
simulator

May 4, 2022

AmazonBraketFullAccess -
Full access policy for Amazon
Braket

Added s3:ListAllMyBuckets
permissions to allow users to
view and inspect the buckets
created and used for Amazon
Braket

March 31, 2022

Support for OpenQASM Added OpenQASM 3.0
support for gate-base
d quantum devices and
simulators

March 7, 2022

354

Amazon Braket Developer Guide

New Quantum Hardware
Provider, Oxford Quantum
Circuits and new region, eu-
west-2

Added support for OQC and
eu-west-2

February 28, 2022

New Rigetti device Added support for Rigetti
Aspen M-1

February 15, 2022

New resource limits Increased the maximum
number of concurrent DM1
and SV1 tasks from 55 to 100

January 5, 2022

New Rigetti device Added support for Rigetti
Aspen-11

December 20, 2021

Retired Rigetti device Discontinued support for
Rigetti Aspen-10 device

December 20, 2021

New result type Reduced density matrix result
type supported by local
density matrix simulator and
DM1 devices

December 20, 2021

Updated policy description Amazon Braket updated
the role ARN to include
the servicerole/ path.
For information on policy
updates, see the Amazon
Braket updates to AWS
managed policies table.

November 29, 2021

Amazon Braket Jobs User guide for Amazon Braket
Hybrid Jobs and API added

November 29, 2021

New Rigetti device Added support for Rigetti
Aspen-10

November 20, 2021

355

Amazon Braket Developer Guide

Retired D-Wave device Discontinued support for
D-Wave QPU, Advantage
_system1

November 4, 2021

New D-Wave device Added support for an
additional D-Wave QPU,
Advantage_system4

October 5, 2021

New noise simulators Added support for a Density
matrix simulator (DM1), which
can simulate circuits of up to
17 qubits and a local noise
simulator braket_dm

May 25, 2021

PennyLane support Added support for PennyLane
on Amazon Braket

December 8, 2020

New simulator Added support for a Tensor
Network Simulator (TN1),
which allows larger circuits

December 8, 2020

Task batching Braket supports customer
task batching

November 24, 2020

Manual qubit allocation Braket supports manual qubit
allocation on the Rigetti
device

November 24, 2020

Adjustable quotas Braket supports self-service
adjustable quotas for your
task resources

October 30, 2020

Support for PrivateLink You can set up private VPC
endpoints for your Braket
jobs

October 30, 2020

Support for tags Braket supports API-based
tags for the quantum-task
resource

October 30, 2020

356

Amazon Braket Developer Guide

New D-Wave device Added support for an
additional D-Wave QPU,
Advantage_system1

September 29, 2020

Initial release Initial release of the Amazon
Braket documentation

August 12, 2020

357

	Amazon Braket
	Table of Contents
	What is Amazon Braket?
	How Amazon Braket works
	Amazon Braket quantum task flow
	Third-party data processing

	Amazon Braket terms and concepts
	AWS terminology and tips for Amazon Braket

	Cost tracking and saving
	Near real-time cost tracking
	Best practices for cost savings

	API references and repos for Amazon Braket
	Core repositories
	Plugins

	Amazon Braket supported regions and devices
	Amazon Braket regions and endpoints

	Getting started with Amazon Braket
	Enable Amazon Braket
	Prerequisites
	Steps to enable Amazon Braket

	Create an Amazon Braket notebook instance
	Create a Braket notebook instance using AWS CloudFormation
	Step 1: Create a SageMaker AI lifecycle configuration script
	Step 2: Create the IAM role assumed by Amazon SageMaker AI
	Step 3: Create a SageMaker AI notebook instance with the prefix amazon-braket-

	Building your quantum tasks with Amazon Braket
	Building your first circuit
	Building your first quantum algorithms
	Constructing circuits in the SDK
	Gates and circuits
	Partial measurement
	Manual qubit allocation
	Verbatim compilation
	Noise simulation

	Inspecting the circuit
	List of result types

	Getting Expert advice
	Getting started with Amazon Braket Hybrid Jobs
	What is a Hybrid Job?
	When to use Amazon Braket Hybrid Jobs
	Inputs, outputs, environmental variables, and helper functions
	Inputs
	Outputs
	Environmental variables
	Helper functions

	Define the environment for your algorithm script
	Using hyperparameters

	Run your circuits with OpenQASM 3.0
	What is OpenQASM 3.0?
	When to use OpenQASM 3.0
	How OpenQASM 3.0 works
	Prerequisites
	What OpenQASM features does Braket support?
	Supported OpenQASM data types
	Supported OpenQASM statements
	Braket OpenQASM pragmas
	Advanced feature support for OpenQASM on the Local Simulator
	Supported operations and grammar with OpenPulse

	Create and submit an example OpenQASM 3.0 quantum task
	An example OpenQASM 3.0 program
	Use the Python SDK to create OpenQASM 3.0 quantum tasks
	Use Boto3 to create OpenQASM 3.0 quantum tasks
	Use the AWS CLI to create OpenQASM 3.0 tasks

	Support for OpenQASM on different Braket devices
	Supported Operations, Results and Result Types with OpenQASM

	Simulate noise with OpenQASM 3.0
	Kraus operator

	Qubit rewiring with OpenQASM 3.0
	Verbatim compilation with OpenQASM 3.0
	The Braket console
	Additional resources
	Computing gradients with OpenQASM 3.0
	Measuring specific qubits with OpenQASM 3.0

	Explore Experimental Capabilities
	Access to local detuning on QuEra Aquila
	Access to tall geometries on QuEra Aquila
	Access to tight geometries on QuEra Aquila

	Pulse control on Amazon Braket
	Frames
	Ports
	Waveforms
	Roles of frames and ports
	Rigetti frames

	Working with Hello Pulse
	Hello Pulse using OpenPulse

	Accessing native gates using pulses

	Analog Hamiltonian Simulation
	Hello AHS: Run your first Analog Hamiltonian Simulation
	Interacting spin chain
	Arrangement
	Interaction
	Driving field
	AHS program
	Running on local simulator
	Analyzing simulator results
	Running on QuEra’s Aquila QPU
	Analyzing QPU results
	Next steps

	Submit an analog program using QuEra Aquila
	Hamiltonian
	Braket AHS program schema
	Braket AHS task result schema
	QuEra device properties schema

	Working with AWS Boto3
	Turn on the Amazon Braket Boto3 client
	Search for devices
	Retrieve a device
	Create a quantum task
	Retrieve a quantum task
	Search for quantum tasks
	Cancel quantum task

	Configure AWS CLI profiles for Boto3 and the Braket SDK
	Step 1: Configure a local AWS CLI profile
	Step 2: Establish a Boto3 session object
	Step 3: Incorporate the Boto3 session into the Braket AwsSession

	Testing your quantum tasks with Amazon Braket
	Submitting quantum tasks to simulators
	Local state vector simulator (braket_sv)
	Local density matrix simulator (braket_dm)
	Local AHS simulator (braket_ahs)
	State vector simulator (SV1)
	Density matrix simulator (DM1)
	Tensor network simulator (TN1)
	About embedded simulators
	PennyLane’s lightning simulators

	Compare Amazon Braket simulators
	Example quantum tasks on Amazon Braket
	Specify the device
	Submit an example quantum task
	Submit a parametrized task
	Specify shots
	Poll for results
	View the example results

	Testing a quantum task with the local simulator
	Measuring specific qubits on the local simulator

	Quantum task batching
	About quantum task batching and costs
	Quantum task batching and PennyLane
	Task batching and parametrized circuits

	Working with Amazon Braket Hybrid Jobs
	Running your local code as a hybrid job
	Create a hybrid job from local Python code
	Install additional Python packages and source code
	Save and load data into a hybrid job instance
	Best practices for hybrid job decorators

	Running a hybrid job with Amazon Braket Hybrid Jobs
	Create your first Hybrid Job
	Set permissions
	Create and run
	Monitor results

	Saving your job results
	Saving and restarting hybrid jobs using checkpoints
	Building and debugging a hybrid job with local mode

	Running your quantum tasks with Amazon Braket
	Submitting quantum tasks to QPUs
	IonQ
	IQM
	Rigetti
	QuEra
	Example: Submitting a quantum task to a QPU
	Inspecting compiled circuits

	When will my quantum task run?
	QPU availability windows and status
	Queue visibility
	Set up email or SMS notifications
	(Optional) Set up SNS notifications

	Managing your Amazon Braket Hybrid Job
	Configure the hybrid job instance to run your script
	Configure the default bucket in AwsSession

	How to cancel a Hybrid Job
	Using parametric compilation to speed up Hybrid Jobs
	Use PennyLane with Amazon Braket
	Amazon Braket with PennyLane
	Hybrid algorithms in Amazon Braket example notebooks
	Hybrid algorithms with embedded PennyLane simulators
	Adjoint gradient on PennyLane with Amazon Braket simulators
	Using Hybrid Jobs and PennyLane to run a QAOA algorithm
	Run hybrid workloads with PennyLane embedded simulators
	Using lightning.gpu for QAOA workloads
	Quantum machine learning and data parallelism

	Bring your own container (BYOC)
	When is bringing my own container the right decision?
	Recipe for bringing your own container
	A base image for your Dockerfile
	(Optional) A modified container entry point script
	Install needed software and container script with Dockerfile

	Running Braket hybrid jobs in your own container

	Using CUDA-Q with Amazon Braket
	Running your workloads on quantum computers

	Interact with hybrid jobs directly using the API

	Working with reservations
	How to create a reservation
	Running quantum tasks during a reservation
	Running hybrid jobs during a reservation
	What happens at the end of your reservation
	Cancel or reschedule an existing reservation

	Error mitigation techniques
	Error mitigation techniques on IonQ devices
	Debiasing
	Sharpening

	Troubleshooting Amazon Braket
	AccessDeniedException
	An error occurred (ValidationException) when calling the CreateQuantumTask operation
	An SDK feature does not work
	Hybrid job fails due to ServiceQuotaExceededException
	Components stopped working in notebook instance
	Troubleshooting OpenQASM
	Include statement error
	Non-contiguous qubits error
	Mixing physical qubits with virtual qubits error
	Requesting result types and measuring qubits in the same program error
	Classical and qubit register limits exceeded error
	Box not preceded by a verbatim pragma error
	Verbatim boxes missing native gates error
	Verbatim boxes missing physical qubits error
	The verbatim pragma is missing "braket" error
	Single qubits cannot be indexed error
	The physical qubits in a two qubit gate are not connected error
	Local simulator support warning

	Security in Amazon Braket
	Shared responsibility for security
	Data protection
	Data retention
	Managing access to Amazon Braket
	Amazon Braket resources
	Notebooks and roles
	About the AmazonBraketFullAccess policy
	Policy contents

	About the AmazonBraketJobsExecutionPolicy policy
	Restrict user access to certain devices
	Amazon Braket updates to AWS managed policies
	Restrict user access to certain notebook instances
	Restrict user access to certain S3 buckets

	Amazon Braket service-linked role
	Service-linked role permissions for Amazon Braket

	Compliance validation for Amazon Braket
	Infrastructure Security in Amazon Braket
	Security of Amazon Braket Hardware Providers
	Amazon VPC endpoints for Amazon Braket
	Considerations for Amazon Braket VPC endpoints
	Set up Braket and PrivateLink
	Step 1: Launch an Amazon VPC if needed
	Step 2: Create an interface VPC endpoint for Braket
	Step 3: Connect and run Braket quantum tasks through your endpoint

	Additional information about creating an endpoint
	Control access with Amazon VPC endpoint policies

	Logging and monitoring
	Tracking quantum tasks from the Amazon Braket SDK
	Monitoring quantum tasks through the Amazon Braket console
	Tagging Amazon Braket resources
	Using tags
	Supported resources for tagging in Amazon Braket
	Tagging with the Amazon Braket API
	Tagging restrictions
	Managing tags in Amazon Braket
	Adding tags
	Viewing tags
	Editing tags
	Removing tags

	Example of AWS CLI tagging in Amazon Braket

	Monitoring your quantum tasks with EventBridge
	Monitor quantum task status with EventBridge
	Example Amazon Braket EventBridge event

	Monitoring your metrics with CloudWatch
	Amazon Braket metrics and dimensions

	Logging your quantum tasks with CloudTrail
	Amazon Braket information in CloudTrail
	Understanding Amazon Braket log file entries

	Advanced logging with Amazon Braket

	Amazon Braket Quotas
	Additional quotas and limits

	Document history for the Amazon Braket Developer Guide

