
Developer Guide

Amazon Bedrock AgentCore

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Bedrock AgentCore Developer Guide

Amazon Bedrock AgentCore: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Bedrock AgentCore Developer Guide

Table of Contents

What is Amazon Bedrock AgentCore? .. 1
Services ... 1

Amazon Bedrock AgentCore Runtime .. 1
Amazon Bedrock AgentCore Identity .. 1
Amazon Bedrock AgentCore Memory ... 1
Amazon Bedrock AgentCore Code Interpreter .. 2
Amazon Bedrock AgentCore Browser ... 2
Amazon Bedrock AgentCore Gateway .. 2
Amazon Bedrock AgentCore Observability .. 2

Common use cases for Amazon Bedrock AgentCore .. 2
Are you a first-time Amazon Bedrock AgentCore user? ... 3
Pricing for Amazon Bedrock AgentCore .. 3
AWS Regions .. 3

AgentCore Runtime: Host agent or tools ... 5
How it works ... 6

Key components .. 7
Authentication and security .. 9
Additional features ... 11
Implementation overview ... 11
Understanding the AgentCore Runtime service contract ... 12

Permissions for AgentCore Runtime .. 17
AgentCore Runtime execution role ... 17
AgentCore Runtime trust policy .. 20

Getting started with Amazon Bedrock AgentCore Runtime ... 20
Get started with the starter toolkit .. 21
Getting started without the starter toolkit ... 28

Use any agent framework .. 36
Strands Agents .. 37
LangGraph .. 37
Google ADK .. 38
OpenAI Agents SDK .. 40
Microsoft AutoGen .. 41
CrewAI ... 43

Use any foundation model .. 45

iii

Amazon Bedrock AgentCore Developer Guide

Amazon Bedrock ... 45
Open AI ... 45
Gemini ... 46

Deploy MCP servers ... 46
Prerequisites ... 47
Create your MCP server ... 47
Test your MCP server locally .. 48
Deploy your MCP server to AWS ... 49
Invoke your deployed MCP server ... 51
How Amazon Bedrock AgentCore supports MCP ... 52
Next steps ... 52
Appendix ... 52

Use isolated sessions for agents ... 55
Understanding ephemeral context .. 56
Extended conversations and multi-step workflows ... 56
Runtime session lifecycle .. 56
How to use sessions ... 57

Handle asynchronous and long running agents .. 57
Key concepts .. 58
Implementing asynchronous tasks .. 58
Complete example .. 60

Stream agent responses ... 61
Authenticate and authorize with Inbound Auth and Outbound Auth ... 62

Prerequisites ... 63
JWT inbound authorization and OAuth outbound access sample .. 63
Step 1: Prepare your agent .. 64
Step 2: Set up AWS Cognito user pool and add a user .. 65
Step 3: Deploy your agent .. 66
Step 4: Use bearer token to invoke your agent ... 68
Step 5: Set up your agent to access tools using OAuth ... 71
Troubleshooting .. 73

AgentCore Runtime versioning and endpoints .. 74
Understanding agent runtime Versioning ... 74
How endpoints reference versions .. 74
Versioning scenarios ... 75
Endpoint lifecycle states ... 76

iv

Amazon Bedrock AgentCore Developer Guide

Listing AgentCore Runtime versions and endpoints ... 76
Invoke an agent .. 12

Invoke streaming agents ... 77
Invoke multi-modal agents ... 78
Session management ... 79
Error handling .. 79
Best practices ... 80

Observe agents ... 80
Troubleshoot AgentCore Runtime .. 80

Common issues and solutions .. 80
Advanced troubleshooting .. 84
Common best practices ... 85

AgentCore Memory: Add memory to your AI agent .. 87
How it works ... 88

Short-term memory ... 89
Long-term memory .. 89
Putting it all together: A customer support AI agent ... 90

Getting started with AgentCore Memory ... 92
Create an AgentCore Memory resource ... 92
Maintain user context using short-term memory .. 93
Create a memory with a long-term memory ... 94
Use long-term memory in an agent ... 97
Custom strategies ... 98

Configure AgentCore Memory .. 102
Prerequisites .. 102
Create AgentCore Memory ... 118
Get AgentCore Memory .. 119
List AgentCore Memory .. 119
Update AgentCore Memory ... 120
Delete AgentCore Memory ... 120

Store and use short-term memory .. 120
Create event .. 120
Get event .. 123
List events .. 124
Delete event .. 124

Store and use long-term memory ... 124

v

Amazon Bedrock AgentCore Developer Guide

Retrieve memory records .. 124
List memory records .. 125
Delete memory records ... 126

AgentCore Built-in Tools: Interact with your applications using built-in tools 127
Built-in Tools Overview .. 127

Security and Access Control ... 128
Key components ... 128
Integrating built-in tools with Agents ... 128

AgentCore Code Interpreter: Execute code and analyze data .. 129
Overview ... 129
Why use Code Interpreter in agent development ... 130
Getting started: hello world example .. 130
Run code from agents ... 133
Read from or write files to a session ... 139
Using Terminal Commands with an execution role ... 141
Resource and session management .. 145
API Reference Examples .. 160

AgentCore Browser: interact with web applications .. 168
Overview ... 168
Why use remote browsers for agent development? ... 168
Security Features .. 169
How it works ... 169
Getting started .. 170
Building browser agents ... 172
Resource and session management .. 177
Use cases and code examples .. 199
Rendering live view using DCV client ... 205
Observability and session replay .. 207

AgentCore Gateway : Securely connect to tools and resources .. 212
Key benefits .. 212
Key capabilities ... 213
Quick start ... 214

Prerequisites .. 214
Creating a Gateway and attaching a Target ... 214
OpenAPI and Smithy Targets ... 216
Using the Gateway in an Agent .. 219

vi

Amazon Bedrock AgentCore Developer Guide

Core concepts ... 220
Key concepts .. 220
Tool types ... 221

Setting up a Gateway ... 221
Gateway workflow .. 222
Prerequisites to set up a gateway .. 222
Creating gateways .. 226
Adding targets ... 237

Using a Gateway .. 288
Using a Gateway with MCP .. 289
Testing your gateway .. 309

Assess Gateway performance .. 315
Required permissions for observability ... 317
Setting up CloudWatch metrics and alarms ... 317
Logging Gateway API calls with CloudTrail .. 320

Advanced topics ... 334
(Optional) Encryption configuration ... 334
Custom domain names ... 337
Performance optimization .. 344

AgentCore Observability: Observe your agents and resources .. 346
Add observability to your agents ... 347

Enabling AgentCore runtime observability ... 347
Enabling observability in agent code for AgentCore-hosted agents 348
Configure Observability for agents hosted outside of the AgentCore runtime 350
Enable observability for AgentCore memory, gateway, and built-in tool resources 351
Enhanced AgentCore observability with custom headers .. 353
Observability best practices ... 355

Observability concepts ... 355
Sessions ... 356
Traces .. 357
Agent Spans ... 357
Relationship ... 358

AgentCore provided metrics .. 359
Provided runtime metrics ... 361
Provided memory metrics .. 362
Provided gateway metrics .. 366

vii

Amazon Bedrock AgentCore Developer Guide

Provided tools metrics ... 367
View metrics for your agents .. 369

View data using generative AI observability in Amazon CloudWatch 369
View other data in CloudWatch .. 369

AgentCore Identity: Create agent and tool identities ... 372
Overview .. 372

Features .. 373
Terminology ... 376
Example use cases .. 379

Getting started ... 383
Prerequisites .. 384
Step 1: Import Identity and Auth modules ... 385
Step 2: Set up an OAuth 2.0 Credential Provider .. 385
Step 3: Obtain an OAuth 2.0 access token ... 385
Step 4: Use OAuth2 Access Token to Invoke External Resource ... 388
What's Next? .. 390

Manage agent identities ... 390
Understanding identities ... 390
Create identities .. 391

Manage credential providers ... 392
Supported authentication patterns .. 393
Configure credential provider .. 395
Obtain credentials .. 397

Identity provider setup ... 399
Amazon Cognito ... 400
Microsoft ... 404
Auth0 by Okta .. 405
GitHub ... 406
Google ... 406
Salesforce ... 407
Slack .. 407

Data protection .. 408
Data encryption .. 409
Set customer managed key policy .. 410
Configure with API operations or an AWS SDK ... 411

Security .. 412

viii

Amazon Bedrock AgentCore Developer Guide

Data protection .. 412
Identity and access management ... 413

Audience ... 414
Authenticating with identities ... 414
Managing access using policies ... 418
How Amazon Bedrock AgentCore works with IAM .. 420
Identity-based policy examples ... 426
AWS managed policies .. 429
Troubleshooting .. 438

Compliance validation .. 439
Resilience ... 440

Quotas .. 442
AgentCore Runtime Service Quotas .. 442

Resource allocation limits ... 442
Invocation limits ... 443
Lifetime session lifecycle parameters .. 443

AgentCore Memory Service Quotas ... 444
AgentCore Identity Service Quotas .. 445
AgentCore Gateway Service Quotas .. 445

Endpoints .. 445
Service quotas ... 446

AgentCore Browser Service Quotas ... 448
AgentCore Code Interpreter Service Quotas .. 448

Document history .. 450

ix

Amazon Bedrock AgentCore Developer Guide

What is Amazon Bedrock AgentCore?

Amazon Bedrock AgentCore enables you to deploy and operate highly effective agents securely, at
scale using any framework and model. With Amazon Bedrock AgentCore, developers can accelerate
AI agents into production with the scale, reliability, and security, critical to real-world deployment.
AgentCore provides tools and capabilities to make agents more effective and capable, purpose-
built infrastructure to securely scale agents, and controls to operate trustworthy agents. Amazon
Bedrock AgentCore services are composable and work with popular open-source frameworks and
any model, so you don’t have to choose between open-source flexibility and enterprise-grade
security and reliability.

Services in Amazon Bedrock AgentCore

Amazon Bedrock AgentCore includes the following modular Services that you can use together or
independently:

Amazon Bedrock AgentCore Runtime

AgentCore Runtime is a secure, serverless runtime purpose-built for deploying and scaling dynamic
AI agents and tools using any open-source framework including LangGraph, CrewAI, and Strands
Agents, any protocol, and any model. Runtime was built to work for agentic workloads with
industry-leading extended runtime support, fast cold starts, true session isolation, built-in identity,
and support for multi-modal payloads. Developers can focus on innovation while Amazon Bedrock
AgentCore Runtime handles infrastructure and security—accelerating time-to-market

Amazon Bedrock AgentCore Identity

AgentCore Identity provides a secure, scalable agent identity and access management capability
accelerating AI agent development. It is compatible with existing identity providers, eliminating
needs for user migration or rebuilding authentication flows. AgentCore Identity's helps to minimize
consent fatigue with a secure token vault and allows you to build streamlined AI agent experiences.
Just-enough access and secure permission delegation allow agents to securely access AWS
resources and third-party tools and services.

Amazon Bedrock AgentCore Memory

AgentCore Memory makes it easy for developers to build context aware agents by eliminating
complex memory infrastructure management while providing full control over what the AI agent

Services 1

Amazon Bedrock AgentCore Developer Guide

remembers. Memory provides industry-leading accuracy along with support for both short-term
memory for multi-turn conversations and long-term memory that can be shared across agents and
sessions.

Amazon Bedrock AgentCore Code Interpreter

AgentCore Code Interpreter tool enables agents to securely execute code in isolated sandbox
environments. It offers advanced configuration support and seamless integration with popular
frameworks. Developers can build powerful agents for complex workflows and data analysis while
meeting enterprise security requirements.

Amazon Bedrock AgentCore Browser

AgentCore Browser tool provides a fast, secure, cloud-based browser runtime to enable AI
agents to interact with websites at scale. It provides enterprise-grade security, comprehensive
observability features, and automatically scales— all without infrastructure management
overhead.

Amazon Bedrock AgentCore Gateway

Amazon Bedrock AgentCore Gateway provides a secure way for agents to discover and use
tools along with easy transformation of APIs, Lambda functions, and existing services into
agent-compatible tools. Gateway eliminates weeks of custom code development, infrastructure
provisioning, and security implementation so developers can focus on building innovative agent
applications.

Amazon Bedrock AgentCore Observability

AgentCore Observability helps developers trace, debug, and monitor agent performance in
production through unified operational dashboards. With support for OpenTelemetry compatible
telemetry and detailed visualizations of each step of the agent workflow, AgentCore enables
developers to easily gain visibility into agent behavior and maintain quality standards at scale.

Common use cases for Amazon Bedrock AgentCore

• Equip agents with built-in tools and capabilities

Amazon Bedrock AgentCore Code Interpreter 2

Amazon Bedrock AgentCore Developer Guide

Leverage built-in tools (browser automation and code interpretation) in your agent. Enable
agents to seamlessly integrate with internal and external tools and resources. Create agents that
can remember interactions with your agent users.

• Deploy securely at scale

Securely deploy and scale dynamic AI agents and tools, regardless of framework, protocol, or
model choice without managing any underlying resources with seamless agent identity and
access management.

• Test and monitor agents

Gain deep operational insights with real-time visibility into agents' usage and operational
metrics such as token usage, latency, session duration, and error rates.

Are you a first-time Amazon Bedrock AgentCore user?

If you are a first-time user of Amazon Bedrock AgentCore, we recommend that you begin by
reading the following sections:

• Host agent or tools with Amazon Bedrock AgentCore Runtime

• Add memory to your AI agent

• Use Amazon Bedrock AgentCore built-in tools to interact with your applications

• Amazon Bedrock AgentCore Gateway: Securely connect tools and other resources to your
Gateway

For code examples, see https://github.com/awslabs/amazon-bedrock-agentcore-samples/.

Pricing for Amazon Bedrock AgentCore

Amazon Bedrock AgentCore offers flexible, consumption-based pricing with no upfront
commitments or minimum fees. For more information, see Amazon Bedrock AgentCore pricing.

AWS Regions

Amazon Bedrock AgentCore is supported in the following AWS Regions:

• US East (N. Virginia)

Are you a first-time Amazon Bedrock AgentCore user? 3

https://github.com/awslabs/amazon-bedrock-agentcore-samples/
https://aws.amazon.com/bedrock/agentcore/pricing/

Amazon Bedrock AgentCore Developer Guide

• US West (Oregon)

• Europe (Frankfurt)

• Asia Pacific (Sydney)

AWS Regions 4

Amazon Bedrock AgentCore Developer Guide

Host agent or tools with Amazon Bedrock AgentCore
Runtime

Amazon Bedrock AgentCore Runtime provides a secure, serverless and purpose-built hosting
environment for deploying and running AI agents or tools. It offers the following benefits:

Framework agnostic

Runtime lets you transform any local agent code to cloud-native deployments with a few lines
of code no matter the underlying framework. Works seamlessly with popular frameworks like
LangGraph, Strands, and CrewAI. You can also leverage it with custom agents that don't use a
specific framework.

Model flexibility

Runtime works with any Large Language Model, such as models offered by Amazon Bedrock,
Anthropic Claude, Google Gemini, and OpenAI.

Protocol support

Runtime lets agents communicate with other agents and tools via Model Context Protocol
(MCP).

Extended execution time

Runtime supports both real-time interactions and long-running workloads up to 8 hours,
enabling complex agent reasoning and asynchronous workloads that may involve multi-agent
collaboration or extended problem-solving sessions.

Enhanced payload handling

Runtime can process 100MB payloads enabling seamless processing of multiple modalities
(text, images, audio, video), with rich media content or large datasets.

Session isolation

In Runtime, each user session runs in a dedicated microVM with isolated CPU, memory, and
filesystem resources. This helps create complete separation between user sessions, safeguarding
stateful agent reasoning processes and helps prevent cross-session data contamination. After
session completion, the entire microVM is terminated and memory is sanitized, delivering
deterministic security even when working with non-deterministic AI processes.

5

Amazon Bedrock AgentCore Developer Guide

Consumption-based pricing model

Runtime implements consumption-based pricing that charges only for resources actually
consumed. Unlike allocation-based models that require pre-selecting resources, Runtime
dynamically provisions what's needed without requiring right-sizing. The service aligns CPU
billing with actual active processing - typically eliminating charges during I/O wait periods
when agents are primarily waiting for LLM responses - while continuously maintaining your
session state.

Built-in authentication

Runtime, powered by Amazon Bedrock AgentCore Identity, assigns distinct identities to AI
agents and seamlessly integrates with your corporate identity provider such as Okta, Microsoft
Entra ID, or Amazon Cognito, enabling your end users to authenticate into only the agents
they have access to. In addition, Runtime lets outbound authentication flows to securely access
third-party services like Slack, Zoom, and GitHub - whether operating on behalf of users or
autonomously (using either OAuth or API keys).

Agent-specific observability

Runtime provides specialized built-in tracing that captures agent reasoning steps, tool
invocations, and model interactions, providing clear visibility into agent decision-making
processes, a critical capability for debugging and auditing AI agent behaviors.

Unified set of agent-specific capabilities

Runtime is delivered through a single, comprehensive SDK that provides streamlined access to
the complete Amazon Bedrock AgentCore capabilities including Memory, Tools, and Gateway.
This integrated approach eliminates the integration work typically required when building
equivalent agent infrastructure from disparate components.

How it works

The AgentCore Runtime handles scaling, session management, security isolation, and infrastructure
management, allowing you to focus on building intelligent agent experiences rather than
operational complexity. By leveraging the features and capabilities described here, you can build,
deploy, and manage sophisticated AI agents that deliver value to your users while helping to
maintain enterprise-grade security and reliability.

How it works 6

Amazon Bedrock AgentCore Developer Guide

Key components

Agent runtime

An AgentCore Runtime is the foundational component that hosts your AI agent or tool code. It
represents a containerized application that processes user inputs, maintains context, and executes
actions using AI capabilities. When you create an agent, you define its behavior, capabilities, and
the tools it can access. For example, a customer support agent might answer product questions,
process returns, and escalate complex issues to human representatives.

You can build and deploy agents to AgentCore Runtime using the AgentCore Python SDK or
directly through AWS SDKs. With the Python SDK, you can define your agent using popular
frameworks like LangGraph, CrewAI, or Strands Agents. The SDK handles infrastructure
complexities, allowing you to focus on the agent's logic and capabilities.

Each Agent Runtime:

• Has a unique identity

• Is versioned to support controlled deployment and updates

Versions

Each AgentCore Runtime maintains immutable versions that capture a complete snapshot of the
configuration at a specific point in time:

• When you create an Agent Runtime, Version 1 (V1) is automatically created

• Each update to configuration (container image, protocol settings, network settings) creates a
new version

• Each version contains all necessary configuration needed for execution

This versioning system provides reliable deployment history and rollback capabilities.

Endpoints

Endpoints provide addressable access points (i.e., aliases) to specific versions of your AgentCore
Runtime. Each endpoint:

• Has a unique ARN for invocation

Key components 7

Amazon Bedrock AgentCore Developer Guide

• References a specific version of your Agent Runtime

• Provides stable access to your agent even as you update implementations

Key endpoint details:

• The "DEFAULT" endpoint is automatically created when you call CreateAgentRuntime and
points to the latest version

• When you update your Agent Runtime, a new version is created but the DEFAULT endpoint
automatically updates to reference it

• Custom endpoints can be created via CreateAgentRuntimeEndpoint for different
environments (dev, test, prod)

• When a user makes a request to an endpoint, the request is resolved to the specific agent version
referenced by that endpoint

Endpoints have distinct lifecycle states:

• CREATING - Initial state during endpoint creation

• CREATE_FAILED - Indicates creation failure due to permissions or other issues

• READY - Endpoint is operational and accepting requests

• UPDATING - Endpoint is being modified to reference a new version

• UPDATE_FAILED - Indicates update operation failure

You can update endpoints without downtime, allowing for seamless version transitions and
rollbacks.

Sessions

Sessions represent individual interaction contexts between users and your AgentCore Runtime.
Each session:

• Is identified by a unique runtimeSessionId provided by your application, or by the Runtime
itself in the first invocation if the runtimeSessionId is left empty

• Runs in a dedicated microVM with completely isolated CPU, memory, and filesystem resources

• Preserves context across multiple interactions within the same conversation

Key components 8

Amazon Bedrock AgentCore Developer Guide

• Can persist for up to 8 hours of total runtime

Session states include:

• Active - Currently processing a request or executing background tasks

• Idle - Not processing any requests but maintaining context while waiting for next interaction

• Terminated - Session ended due to inactivity (15 minutes), reaching maximum lifetime (8 hours),
or being deemed unhealthy

Important session characteristics:

• After session termination, the entire microVM is terminated and memory is sanitized

• A subsequent request with the same runtimeSessionId after termination will create a new
execution environment

• Session isolation prevents cross-session data contamination and ensures security

• Session state is ephemeral and should not be used for long-term durability (use Amazon Bedrock
AgentCore Memory for context durability)

This complete isolation between sessions is crucial for enterprise security, particularly when dealing
with non-deterministic AI processes.

Authentication and security

Inbound authentication

Inbound Auth, powered by Amazon Bedrock AgentCore Identity, controls who can access and
invoke your agents or tools in AgentCore Runtime:

Authentication methods

• AWS IAM (SigV4): Uses AWS credentials for identity verification

• OAuth 2.0: Integrates with external identity providers

OAuth configuration options

• Discovery URL: Your identity provider's OpenID Connect discovery endpoint

Authentication and security 9

Amazon Bedrock AgentCore Developer Guide

• Allowed Audiences: List of valid audience values your tokens should contain

• Allowed Clients: List of client identifiers that can access this agent

Authentication flow

1. End users authenticate with your identity provider (Amazon Cognito, Okta, Microsoft Entra ID)

2. Your client application receives a bearer token after successful authentication

3. The client passes this token in the authorization header when invoking the agent

4. AgentCore Runtime validates the token with the authorization server

5. If valid, the request is processed; if invalid, it's rejected

This ensures only authenticated users with proper authorization can access your agents.

Outbound authentication

Outbound Auth, powered by Amazon Bedrock AgentCore Identity, lets your agents hosted on
AgentCore Runtime securely access third-party services:

Authentication methods

• OAuth: For services supporting OAuth flows

• API Keys: For services using key-based authentication

Authentication modes

• User-delegated: Acting on behalf of the end user with their credentials

• Autonomous: Acting independently with service-level credentials

Supported services

• Enterprise systems (Slack, Zoom, GitHub, etc.)

• AWS services

• Custom APIs and data sources

Amazon Bedrock AgentCore Identity manages these credentials securely, preventing credential
exposure in your agent code or logs.

Authentication and security 10

Amazon Bedrock AgentCore Developer Guide

Additional features

Asynchronous processing

AgentCore Runtime supports long-running workloads through:

• Background task handling for operations that exceed request/response cycles

• Automatic status tracking via the /ping endpoint

• Support for operations up to 8 hours in duration

Streaming responses

Agents can stream partial results as they become available rather than waiting for complete
processing. This lets you provide a more responsive user experience, especially for operations that
generate large amounts of content or take significant time to complete.

Protocol support

Runtime supports multiple communication protocols:

• HTTP for simple request/response patterns

• Model Context Protocol (MCP) for standardized agent-tool interactions

Implementation overview

Here's how to get started with the AgentCore Runtime:

Prepare your agent or tool code

• Define your agent logic using any AI framework or custom code

• Add the required HTTP endpoints using the AgentCore SDK or custom implementation

• Package dependencies in a requirements.txt file

Deploy your agent or tool

• Build and push a container image to Amazon ECR directly or via the AgentCore SDK

Additional features 11

Amazon Bedrock AgentCore Developer Guide

• Create an AgentCore Runtime using the container image

• The initial version (V1) and DEFAULT endpoint are created automatically

Invoke your agent or tool

• Generate a unique session ID for each user conversation

• Call the InvokeAgentRuntime operation with your agent's ARN and session ID

• Pass user input in the request payload

Manage and observe sessions, and make updates

• Use the same session ID for follow-up interactions to maintain context

• Review logs, traces, and observability metrics

• Deploy updates by modifying your AgentCore Runtime (creates new versions)

• Control rollout by updating endpoints to point to new versions

Understanding the AgentCore Runtime service contract

The AgentCore Runtime service contract defines the standardized communication protocol that
your agent application must implement to integrate with the Amazon Bedrock agent hosting
infrastructure. This contract ensures seamless communication between your custom agent code
and AWS's managed hosting environment.

Topics

• Supported protocols

• HTTP protocol contract

• MCP protocol contract

Supported protocols

The AgentCore Runtime service contract supports two communication protocols:

• HTTP Protocol: Direct REST API endpoints for traditional request/response patterns

• MCP Protocol: Model Context Protocol for tools and agent servers

Understanding the AgentCore Runtime service contract 12

Amazon Bedrock AgentCore Developer Guide

HTTP protocol contract

Container requirements

Your agent must be deployed as a containerized application meeting these specifications:

• Host: 0.0.0.0

• Port: 8080 - Standard port for HTTP-based agent communication

• Platform: ARM64 container - Required for compatibility with the AgentCore Runtime
environment

Path requirements

/invocations - POST

This is the primary agent interaction endpoint with JSON input and JSON/SSE output.

Purpose

Receives incoming requests from users or applications and processes them through your agent's
business logic

Use cases

The /invocations endpoint serves several key purposes:

• Direct user interactions and conversations

• API integrations with external systems

• Batch processing of multiple requests

• Real-time streaming responses for long-running operations

Example Request format

Content-Type: application/json

{
 "prompt": "What's the weather today?"
}

Response formats

Understanding the AgentCore Runtime service contract 13

Amazon Bedrock AgentCore Developer Guide

Your agent can respond using either of the following formats depending on the use case:

JSON response (non-streaming)

Purpose

Provides complete responses for requests that can be processed quickly

Use cases

JSON responses are ideal for:

• Simple question-answering scenarios

• Deterministic computations

• Quick data lookups

• Status confirmations

Example JSON response format

Content-Type: application/json

{
 "response": "Your agent's response here",
 "status": "success"
}

SSE response (streaming)

Server-Sent Events (SSE) let you deliver real-time streaming responses. For full details, refer to the
SSE specification.

Purpose

Enables incremental response delivery for long-running operations and improved user experience

Use cases

SSE responses are ideal for:

• Real-time conversational experiences

• Progressive content generation

• Long-running computations with intermediate results

Understanding the AgentCore Runtime service contract 14

Amazon Bedrock AgentCore Developer Guide

• Live data feeds and updates

Example SSE response format

Content-Type: text/event-stream

data: {"event": "partial response 1"}
data: {"event": "partial response 2"}
data: {"event": "final response"}

/ping - GET

Purpose

Verifies that your agent is operational and ready to handle requests

Use cases

The /ping endpoint serves several key purposes:

• Service monitoring to detect and remediate issues

• Automated recovery through AWS's managed infrastructure

Response format

Returns a status code indicating your agent's health:

• Content-Type: application/json

• HTTP Status Code: 200 for healthy, appropriate error codes for unhealthy states

If your agent needs to process background tasks, you can indicate it with the /ping status. If the
ping status is HealthyBusy, the runtime session is considered active.

Example Ping response format

{
 "status": "<status_value>",
 "time_of_last_update": <unix_timestamp>
}

Understanding the AgentCore Runtime service contract 15

Amazon Bedrock AgentCore Developer Guide

status

Healthy - System is ready to accept new work

HealthyBusy - System is operational but currently busy with async tasks

time_of_last_update

Used to determine how long the system has been in its current state

MCP protocol contract

Protocol implementation requirements

Your MCP server must implement these specific protocol requirements:

• Transport: Stateless streamable-http only - Ensures compatibility with AWS's session
management and load balancing

• Session Management: Platform automatically adds Mcp-Session-Id header for session
isolation, servers must support stateless operation so as to not reject platform generated Mcp-
Session-Id header

Container requirements

Your MCP agent must be deployed as a containerized application meeting these specifications:

• Host: 0.0.0.0

• Port: 8000 - Standard port for MCP server communication (different from HTTP protocol)

• Platform: ARM64 container - Required for compatibility with AWS Amazon Bedrock AgentCore
runtime environment

Path requirements

/mcp - POST

Purpose

Receives MCP RPC messages and processes them through your agent's tool capabilities, complete
pass-through of InvokeAgentRuntime API payload with standard MCP RPC messages

Response format

Understanding the AgentCore Runtime service contract 16

Amazon Bedrock AgentCore Developer Guide

JSON-RPC based request/response format, supporting both application/json and text/
event-stream as response content-types

Use cases

The /mcp endpoint serves several key purposes:

• Tool invocation and management

• Agent capability discovery

• Resource access and manipulation

• Multi-step agent workflows

Permissions for AgentCore Runtime

To run agent or tool in AgentCore Runtime you need an AWS Identity and Access Management
execution role. For information about creating an IAM role, see IAM role creation.

AgentCore Runtime execution role

The AgentCore Runtime execution role is an IAM role that AgentCore Runtime assumes to run an
agent. Replace the following:

• region with the AWS Region that you are using

• accountId with your AWS account ID

• agentName with the name of your agent. You'll need to decide the agent name before creating
the role and AgentCore Runtime.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ECRImageAccess",
 "Effect": "Allow",
 "Action": [
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer"
],
 "Resource": [

Permissions for AgentCore Runtime 17

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

Amazon Bedrock AgentCore Developer Guide

 "arn:aws:ecr:region:accountId:repository/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams",
 "logs:CreateLogGroup"
],
 "Resource": [
 "arn:aws:logs:region:accountId:log-group:/aws/bedrock-agentcore/
runtimes/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:region:accountId:log-group:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:region:accountId:log-group:/aws/bedrock-agentcore/
runtimes/*:log-stream:*"
]
 },
 {
 "Sid": "ECRTokenAccess",
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",

AgentCore Runtime execution role 18

Amazon Bedrock AgentCore Developer Guide

 "Action": [
 "xray:PutTraceSegments",
 "xray:PutTelemetryRecords",
 "xray:GetSamplingRules",
 "xray:GetSamplingTargets"
],
 "Resource": ["*"]
 },
 {
 "Effect": "Allow",
 "Resource": "*",
 "Action": "cloudwatch:PutMetricData",
 "Condition": {
 "StringEquals": {
 "cloudwatch:namespace": "bedrock-agentcore"
 }
 }
 },
 {
 "Sid": "GetAgentAccessToken",
 "Effect": "Allow",
 "Action": [
 "bedrock-agentcore:GetWorkloadAccessToken",
 "bedrock-agentcore:GetWorkloadAccessTokenForJWT",
 "bedrock-agentcore:GetWorkloadAccessTokenForUserId"
],
 "Resource": [
 "arn:aws:bedrock-agentcore:region:accountId:workload-identity-directory/
default",
 "arn:aws:bedrock-agentcore:region:accountId:workload-identity-directory/
default/workload-identity/agentName-*"
]
 },
 {"Sid": "BedrockModelInvocation",
 "Effect": "Allow",
 "Action": [
 "bedrock:InvokeModel",
 "bedrock:InvokeModelWithResponseStream"
],
 "Resource": [
 "arn:aws:bedrock:*::foundation-model/*",
 "arn:aws:bedrock:region:accountId:*"
]
 }

AgentCore Runtime execution role 19

Amazon Bedrock AgentCore Developer Guide

]
}

AgentCore Runtime trust policy

The trust relationship for the AgentCore Runtime execution role should allow AgentCore Runtime
to assume the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AssumeRolePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "bedrock-agentcore.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "accountId"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:bedrock-agentcore:region:accountId:*"
 }
 }
 }
]
}

Getting started with Amazon Bedrock AgentCore Runtime

You can use the following tutorials to get started with Amazon Bedrock AgentCore Runtime.

Topics

• Get started with the Amazon Bedrock AgentCore Runtime starter toolkit

• Getting started without the starter toolkit

AgentCore Runtime trust policy 20

Amazon Bedrock AgentCore Developer Guide

Get started with the Amazon Bedrock AgentCore Runtime starter
toolkit

You can use the starter toolkit to create Amazon Bedrock AgentCore Runtime agents. It is ideal
for use with popular agent frameworks. This tutorial shows you how to prepare your agent code,
deploy it to Amazon Bedrock AgentCore, and invoke your agent.

In this guide, you'll learn how to:

• Prepare your agent code for Amazon Bedrock AgentCore

• Deploy your agent to AgentCore Runtime

• Invoke your agent and manage sessions

Prerequisites

Before you start, you need:

• An AWS account with appropriate permissions

• Basic understanding of Python programming

• Familiarity with Docker containers (for advanced deployment)

Enable observability for your agent

Amazon Bedrock AgentCore Observability helps you trace, debug, and monitor agents that you
host in AgentCore Runtime. To observe an agent, first enable CloudWatch Transaction Search by
following the instructions at Enabling AgentCore runtime observability.

Preparing your agent

The Amazon Bedrock AgentCore Python SDK provides a lightweight wrapper that helps you deploy
your agent functions as HTTP services compatible with Amazon Bedrock AgentCore. It handles all
the HTTP server details so you can focus on your agent's core functionality.

To get started, install the bedrock-agentcore package:

pip install bedrock-agentcore

Get started with the starter toolkit 21

Amazon Bedrock AgentCore Developer Guide

Prepare your agent in 3 simple steps

You can convert your existing agent function into a Amazon Bedrock AgentCore-compatible service
with just three steps:

Step 1: Import the runtime

Add this import statement to your Python file:

from bedrock_agentcore.runtime import BedrockAgentCoreApp

Step 2: Initialize the app

Create an instance of the BedrockAgentCoreApp:

app = BedrockAgentCoreApp()

Step 3: Decorate your function

Add the @app.entrypoint decorator to your existing function, and access the JSON object that
you plan to use when invoking the agent:

@app.entrypoint
def invoke(payload):
 """Process user input and return a response"""
 user_message = payload.get("prompt", "Hello")
 return {"result": user_message}

Then add the run command at the end of your file:

if __name__ == "__main__":
 app.run()

That's it! Your agent is now ready to be deployed as a Amazon Bedrock AgentCore-compatible
service.

Testing locally

After implementing these changes, you can test your service locally:

python my_agent.py

Get started with the starter toolkit 22

Amazon Bedrock AgentCore Developer Guide

The server starts at http://localhost:8080

Test with curl:
curl -X POST http://localhost:8080/invocations \
-H "Content-Type: application/json" \
-d '{"prompt": "Hello world!"}'

What happens behind the scenes

When you use BedrockAgentCoreApp, it automatically:

• Creates an HTTP server that listens on port 8080

• Implements the required /invocations endpoint for processing requests

• Implements the /ping endpoint for health checks

• Handles proper content types and response formats

• Manages error handling according to AWS standards

Complete examples

Here's a basic example:

from bedrock_agentcore.runtime import BedrockAgentCoreApp
from strands import Agent

app = BedrockAgentCoreApp()
agent = Agent()

@app.entrypoint
def invoke(payload):
 """Process user input and return a response"""
 user_message = payload.get("prompt", "Hello")
 result = agent(user_message)
 return {"result": result.message}

if __name__ == "__main__":
 app.run()

Here's a Strands example with streaming:

from strands import Agent

Get started with the starter toolkit 23

Amazon Bedrock AgentCore Developer Guide

from bedrock_agentcore import BedrockAgentCoreApp

app = BedrockAgentCoreApp()
agent = Agent()

@app.entrypoint
async def agent_invocation(payload):
 """Handler for agent invocation"""
 user_message = payload.get(
 "prompt", "No prompt found in input, please guide customer to create a json
 payload with prompt key"
)
 stream = agent.stream_async(user_message)
 async for event in stream:
 print(event)
 yield (event)

if __name__ == "__main__":
 app.run()

Deploying your agent

The CreateAgentRuntime operation supports comprehensive configuration options, letting
you specify container images, environment variables and execution role. You can also configure
protocol settings (HTTP, MCP) and authorization mechanisms to control how your clients
communicate with the agent. The operation uses idempotency tokens to ensure that repeated
requests don't create duplicate runtimes, and it returns detailed status information to help you
track the runtime's lifecycle from creation through readiness.

Before you deploy, you need:

• An ECR repository

• An IAM execution role with appropriate permissions. For more information, see Permissions for
AgentCore Runtime.

Package your code as container image and push to the ECR repo. You can create your agent using
CreateAgentRuntime:

import boto3

Create the client

Get started with the starter toolkit 24

Amazon Bedrock AgentCore Developer Guide

client = boto3.client('bedrock-agentcore-control', region_name="us-east-1")

Call the CreateAgentRuntime operation
response = client.create_agent_runtime(
 agentRuntimeName='hello_agent',
 agentRuntimeArtifact={
 'containerConfiguration': {
 'containerUri': '123456789012.dkr.ecr.us-east-1.amazonaws.com/my-
agent:latest'
 }
 },
 networkConfiguration={"networkMode":"PUBLIC"},
 roleArn='arn:aws:iam::123456789012:role/AgentRuntimeRole'
)

Using starter-toolkit for quick prototyping

For quick prototyping, you can use starter-toolkit to easily package your artifacts and deploy to
runtime.

Start by installing the package:

pip install bedrock-agentcore-starter-toolkit

Create a project folder with the following structure:

Project Folder Structure

your_project_directory/
agent_example.py # Your main agent code
requirements.txt # Dependencies for your agent
__init__.py # Makes the directory a Python package

File Contents

agent_example.py
from strands import Agent
from bedrock_agentcore.runtime import BedrockAgentCoreApp

agent = Agent()
app = BedrockAgentCoreApp()

Get started with the starter toolkit 25

Amazon Bedrock AgentCore Developer Guide

@app.entrypoint
def invoke(payload):
 """Process user input and return a response"""
 user_message = payload.get("prompt", "Hello")
 response = agent(user_message)
 return str(response) # response should be json serializable

if __name__ == "__main__":
 app.run()

requirements.txt
strands-agents
bedrock-agentcore

Ensure Docker software or Finch is running before proceeding with deployment. For

Configure your agent with the following command. For YOUR_IAM_ROLE_ARN, you need an IAM
role with suitable permissions. For information see Permissions for AgentCore Runtime.

Deployment Steps

Step 1: Configure Your Agent

Run the configuration command to set up your agent:

agentcore configure --entrypoint agent_example.py -er <YOUR_IAM_ROLE_ARN>

The command will:
##• Generate a Dockerfile and .dockerignore
##• Create a .bedrock_agentcore.yaml configuration file

Launch your agent:

Step 2: Launch Your Agent to the Cloud

Local Testing
For development and testing, you can run your agent locally:
agentcore launch -l

This will:
Build a Docker image
Run the container locally

Get started with the starter toolkit 26

Amazon Bedrock AgentCore Developer Guide

Start a server at http://localhost:8080

Deploy your agent to AWS:
agentcore launch

This command will:
Build a Docker image with your agent code
Push the image to Amazon ECR
Create a Bedrock AgentCore runtime
Deploy your agent to the cloud

In the output from agentcore launch note the ARN of the agent. You need it to invoke the
agent with the InvokeAgentRuntime operation.

Test your agent:

Step 3: Test Your Agent
agentcore invoke '{"prompt": "Hello"}'

Invoking your agent

You can invoke the agent using InvokeAgentRuntime operation.

Here's an example of how to use boto3 (AWS SDK) to invoke an agent runtime:

import boto3
import json

Initialize the Bedrock AgentCore client
agent_core_client = boto3.client('bedrock-agentcore', region_name="us-east-1")

Prepare the payload
payload = json.dumps({"prompt": prompt}).encode()

Invoke the agent
response = agent_core_client.invoke_agent_runtime(
 agentRuntimeArn=agent_arn,
 runtimeSessionId=session_id,
 payload=payload
)

Get started with the starter toolkit 27

Amazon Bedrock AgentCore Developer Guide

You can use CloudWatch logs to see in real-time what the agent is doing either using AWS CLI or
AWS console.

If you plan on integrating your agent with OAuth, you can't use the AWS SDK to call
InvokeAgentRuntime. Instead, make a HTTPS request to InvokeAgentRuntime. For more
information, Authenticate and authorize with Inbound Auth and Outbound Auth.

Getting started without the starter toolkit

You can create a AgentCore Runtime agent without the starter tooolkit. Use this approach for
creating custom agents or with DIY solutions. This tutorial demonstrates how to deploy a custom
agent using FastAPI and Docker, following the Amazon Bedrock AgentCore requirements. Your
agent must expose /invocations POST and /ping GET endpoints and be packaged in a Docker
container. Amazon Bedrock AgentCore requires ARM64 architecture for all deployed agents.

Quick start setup

Enable observability for your agent

Amazon Bedrock AgentCore Observability helps you trace, debug, and monitor agents that you
host in AgentCore Runtime. To observe an agent, first enable CloudWatch Transaction Search by
following the instructions at Enabling AgentCore runtime observability.

Install uv

For this example, we'll use the uv package manager, though you can use any Python utility or
package manager. To install uv on macOS:

curl -LsSf https://astral.sh/uv/install.sh | sh

For installation instructions on other platforms, refer to the uv documentation.

Create your agent project

Setting up your project

1. Create and navigate to your project directory:

mkdir my-custom-agent && cd my-custom-agent

2. Initialize the project with Python 3.11:

Getting started without the starter toolkit 28

https://docs.astral.sh/uv/getting-started/installation/

Amazon Bedrock AgentCore Developer Guide

uv init --python 3.11

3. Add the required dependencies (uv automatically creates a .venv):

uv add fastapi 'uvicorn[standard]' pydantic httpx strands-agents

Agent contract requirements

Your custom agent must fulfill these core requirements:

• FastAPI Server: Web server framework for handling requests

• /invocations Endpoint: POST endpoint for agent interactions (REQUIRED)

• /ping Endpoint: GET endpoint for health checks (REQUIRED)

• Docker Container: ARM64 containerized deployment package

Project structure

Your project should have the following structure:

my-custom-agent/
agent.py # FastAPI application
Dockerfile # ARM64 container configuration
pyproject.toml # Created by uv init
uv.lock # Created automatically by uv

Complete strands agent example

Create agent.py in your project root with the following content:

Example agent.py

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Dict, Any
from datetime import datetime
from strands import Agent

app = FastAPI(title="Strands Agent Server", version="1.0.0")

Getting started without the starter toolkit 29

Amazon Bedrock AgentCore Developer Guide

Initialize Strands agent
strands_agent = Agent()

class InvocationRequest(BaseModel):
 input: Dict[str, Any]

class InvocationResponse(BaseModel):
 output: Dict[str, Any]

@app.post("/invocations", response_model=InvocationResponse)
async def invoke_agent(request: InvocationRequest):
 try:
 user_message = request.input.get("prompt", "")
 if not user_message:
 raise HTTPException(
 status_code=400,
 detail="No prompt found in input. Please provide a 'prompt' key in the
 input."
)

 result = strands_agent(user_message)
 response = {
 "message": result.message,
 "timestamp": datetime.utcnow().isoformat(),
 "model": "strands-agent",
 }

 return InvocationResponse(output=response)

 except Exception as e:
 raise HTTPException(status_code=500, detail=f"Agent processing failed:
 {str(e)}")

@app.get("/ping")
async def ping():
 return {"status": "healthy"}

if __name__ == "__main__":
 import uvicorn
 uvicorn.run(app, host="0.0.0.0", port=8080)

This implementation:

Getting started without the starter toolkit 30

Amazon Bedrock AgentCore Developer Guide

• Creates a FastAPI application with the required endpoints

• Initializes a Strands agent for processing user messages

• Implements the /invocations POST endpoint for agent interactions

• Implements the /ping GET endpoint for health checks

• Configures the server to run on host 0.0.0.0 and port 8080

Test locally

Testing your agent

1. Run the application:

uv run uvicorn agent:app --host 0.0.0.0 --port 8080

2. Test the /ping endpoint (in another terminal):

curl http://localhost:8080/ping

3. Test the /invocations endpoint:

curl -X POST http://localhost:8080/invocations \
 -H "Content-Type: application/json" \
 -d '{
 "input": {"prompt": "What is artificial intelligence?"}
 }'

Create dockerfile

Create Dockerfile in your project root with the following content:

Example Dockerfile

Use uv's ARM64 Python base image
FROM --platform=linux/arm64 ghcr.io/astral-sh/uv:python3.11-bookworm-slim

WORKDIR /app

Copy uv files
COPY pyproject.toml uv.lock ./

Getting started without the starter toolkit 31

Amazon Bedrock AgentCore Developer Guide

Install dependencies (including strands-agents)
RUN uv sync --frozen --no-cache

Copy agent file
COPY agent.py ./

Expose port
EXPOSE 8080

Run application
CMD ["uv", "run", "uvicorn", "agent:app", "--host", "0.0.0.0", "--port", "8080"]

This Dockerfile:

• Uses an ARM64 Python base image (required by Amazon Bedrock AgentCore)

• Sets up the working directory

• Copies the dependency files and installs dependencies

• Copies the agent code

• Exposes port 8080

• Configures the command to run the application

Build and deploy ARM64 image

Setup docker buildx

Docker buildx lets you build images for different architectures. Set it up with:

docker buildx create --use

Build for ARM64 and test locally

Building and testing your image

1. Build the image locally for testing:

docker buildx build --platform linux/arm64 -t my-agent:arm64 --load .

2. Test locally with credentials (Strands agents need AWS credentials):

Getting started without the starter toolkit 32

Amazon Bedrock AgentCore Developer Guide

docker run --platform linux/arm64 -p 8080:8080 \
 -e AWS_ACCESS_KEY_ID="$AWS_ACCESS_KEY_ID" \
 -e AWS_SECRET_ACCESS_KEY="$AWS_SECRET_ACCESS_KEY" \
 -e AWS_SESSION_TOKEN="$AWS_SESSION_TOKEN" \
 -e AWS_REGION="$AWS_REGION" \
 my-agent:arm64

Create ECR repository and deploy

Deploying to ECR

1. Create an ECR repository:

aws ecr create-repository --repository-name my-strands-agent --region us-west-2

2. Log in to ECR:

aws ecr get-login-password --region us-west-2 | docker login --username AWS --
password-stdin account-id.dkr.ecr.us-west-2.amazonaws.com

3. Build and push to ECR:

docker buildx build --platform linux/arm64 -t account-id.dkr.ecr.us-
west-2.amazonaws.com/my-strands-agent:latest --push .

4. Verify the image was pushed:

aws ecr describe-images --repository-name my-strands-agent --region us-west-2

Deploy agent runtime

Create a file named deploy_agent.py with the following content:

Example deploy_agent.py

import boto3

client = boto3.client('bedrock-agentcore-control', region_name='us-west-2')

Getting started without the starter toolkit 33

Amazon Bedrock AgentCore Developer Guide

response = client.create_agent_runtime(
 agentRuntimeName='strands_agent',
 agentRuntimeArtifact={
 'containerConfiguration': {
 'containerUri': 'account-id.dkr.ecr.us-west-2.amazonaws.com/my-strands-
agent:latest'
 }
 },
 networkConfiguration={"networkMode": "PUBLIC"},
 roleArn='arn:aws:iam::account-id:role/AgentRuntimeRole'
)

print(f"Agent Runtime created successfully!")
print(f"Agent Runtime ARN: {response['agentRuntimeArn']}")
print(f"Status: {response['status']}")

Run the script to deploy your agent:

uv run deploy_agent.py

This script uses the create_agent_runtime operation to deploy your agent to Amazon Bedrock
AgentCore. Make sure to replace account-id with your actual AWS account ID and ensure the IAM
role has the necessary permissions. For more information, see Permissions for AgentCore Runtime.

Invoke your agent

Create a file named invoke_agent.py with the following content:

Example invoke_agent.py

import boto3
import json

agent_core_client = boto3.client('bedrock-agentcore', region_name='us-west-2')
payload = json.dumps({
 "input": {"prompt": "Explain machine learning in simple terms"}
})

response = agent_core_client.invoke_agent_runtime(
 agentRuntimeArn='arn:aws:bedrock-agentcore:us-west-2:account-id:runtime/
myStrandsAgent-suffix',
 runtimeSessionId='dfmeoagmreaklgmrkleafremoigrmtesogmtrskhmtkrlshmt', # Must be
 33+ chars

Getting started without the starter toolkit 34

Amazon Bedrock AgentCore Developer Guide

 payload=payload,
 qualifier="DEFAULT"
)

response_body = response['response'].read()
response_data = json.loads(response_body)
print("Agent Response:", response_data)

Run the script to invoke your agent:

uv run invoke_agent.py

This script uses the invoke_agent_runtime operation to send a request to your deployed agent.
Make sure to replace account-id and agentArn with your actual values.

If you plan on integrating your agent with OAuth, you can't use the AWS SDK to call
InvokeAgentRuntime. Instead, make a HTTPS request to InvokeAgentRuntime. For more
information, Authenticate and authorize with Inbound Auth and Outbound Auth.

Expected response format

When you invoke your agent, you'll receive a response like this:

Example Sample response

{
 "output": {
 "message": {
 "role": "assistant",
 "content": [
 {
 "text": "# Artificial Intelligence in Simple Terms\n\nArtificial Intelligence
 (AI) is technology that allows computers to do tasks that normally need human
 intelligence. Think of it as teaching machines to:\n\n- Learn from information (like
 how you learn from experience)\n- Make decisions based on what they've learned\n-
 Recognize patterns (like identifying faces in photos)\n- Understand language (like
 when I respond to your questions)\n\nInstead of following specific step-by-step
 instructions for every situation, AI systems can adapt to new information and improve
 over time.\n\nExamples you might use every day include voice assistants like Siri,
 recommendation systems on streaming services, and email spam filters that learn which
 messages are unwanted."
 }
]

Getting started without the starter toolkit 35

Amazon Bedrock AgentCore Developer Guide

 },
 "timestamp": "2025-07-13T01:48:06.740668",
 "model": "strands-agent"
 }
}

Amazon Bedrock AgentCore requirements summary

• Platform: Must be linux/arm64

• Endpoints: /invocations POST and /ping GET are mandatory

• ECR: Images must be deployed to ECR

• Port: Application runs on port 8080

• Strands Integration: Uses Strands Agent for AI processing

• Credentials: Strands agents require AWS credentials for operation

Conclusion

In this guide, you've learned how to:

• Set up a development environment for building custom agents

• Create a FastAPI application that implements the required endpoints

• Containerize your agent for ARM64 architecture

• Test your agent locally

• Deploy your agent to ECR

• Create an agent runtime in Amazon Bedrock AgentCore

• Invoke your deployed agent

By following these steps, you can create and deploy custom agents that leverage the power of
Amazon Bedrock AgentCore while maintaining full control over your agent's implementation.

Use any agent framework

You can use open source AI frameworks to create an agent or tool. This topic shows examples for a
variety of frameworks, including Strands Agents, LangGraph, and Google ADK.

Topics

Use any agent framework 36

Amazon Bedrock AgentCore Developer Guide

• Strands Agents

• LangGraph

• Google Agent Development Kit (ADK)

• OpenAI Agents SDK

• Microsoft AutoGen

• CrewAI

Strands Agents

For the full example, see https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/
main/03-integrations/agentic-frameworks/strands-agents.

import os
from strands import Agent
from strands_tools import file_read, file_write, editor

agent = Agent(tools=[file_read, file_write, editor])

from bedrock_agentcore.runtime import BedrockAgentCoreApp
app = BedrockAgentCoreApp()
@app.entrypoint
def agent_invocation(payload, context):
 """Handler for agent invocation"""
 user_message = payload.get("prompt", "No prompt found in input, please guide
 customer to create a json payload with prompt key")
 result = agent(user_message)
 print("context:\n-------\n", context)
 print("result:\n*******\n", result)
 return {"result": result.message}
app.run()

LangGraph

For the full example, see https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/
main/03-integrations/agentic-frameworks/langgraph.

from langchain.chat_models import init_chat_model
from typing_extensions import TypedDict

Strands Agents 37

https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/03-integrations/agentic-frameworks/strands-agents
https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/03-integrations/agentic-frameworks/strands-agents
https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/03-integrations/agentic-frameworks/langgraph
https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/03-integrations/agentic-frameworks/langgraph

Amazon Bedrock AgentCore Developer Guide

from langgraph.graph import StateGraph, START
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition
#--
from bedrock_agentcore.runtime import BedrockAgentCoreApp
app = BedrockAgentCoreApp()
#--

llm = init_chat_model(
 "us.anthropic.claude-3-5-haiku-20241022-v1:0",
 model_provider="bedrock_converse",
)

Create graph
graph_builder = StateGraph(State)
...
Add nodes and edges
...
graph = graph_builder.compile()

Finally write your entrypoint
@app.entrypoint
def agent_invocation(payload, context):

 print("received payload")
 print(payload)

 tmp_msg = {"messages": [{"role": "user", "content": payload.get("prompt", "No
 prompt found in input, please guide customer as to what tools can be used")}]}
 tmp_output = graph.invoke(tmp_msg)
 print(tmp_output)

 return {"result": tmp_output['messages'][-1].content}

app.run()

Google Agent Development Kit (ADK)

For the full example, see https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/
main/03-integrations/agentic-frameworks/adk.

from google.adk.agents import Agent
from google.adk.runners import Runner

Google ADK 38

https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/03-integrations/agentic-frameworks/adk
https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/03-integrations/agentic-frameworks/adk

Amazon Bedrock AgentCore Developer Guide

from google.adk.sessions import InMemorySessionService
from google.adk.tools import google_search
from google.genai import types
import asyncio
import os

adapted form https://google.github.io/adk-docs/tools/built-in-tools/#google-search

APP_NAME="google_search_agent"
USER_ID="user1234"

Agent Definition
Add your GEMINI_API_KEY
root_agent = Agent(
 model="gemini-2.0-flash",
 name="openai_agent",
 description="Agent to answer questions using Google Search.",
 instruction="I can answer your questions by searching the internet. Just ask me
 anything!",
 # google_search is a pre-built tool which allows the agent to perform Google
 searches.
 tools=[google_search]
)

Session and Runner
async def setup_session_and_runner(user_id, session_id):
 session_service = InMemorySessionService()
 session = await session_service.create_session(app_name=APP_NAME, user_id=user_id,
 session_id=session_id)
 runner = Runner(agent=root_agent, app_name=APP_NAME,
 session_service=session_service)
 return session, runner

Agent Interaction
async def call_agent_async(query, user_id, session_id):
 content = types.Content(role='user', parts=[types.Part(text=query)])
 session, runner = await setup_session_and_runner(user_id, session_id)
 events = runner.run_async(user_id=user_id, session_id=session_id,
 new_message=content)

 async for event in events:
 if event.is_final_response():
 final_response = event.content.parts[0].text
 print("Agent Response: ", final_response)

Google ADK 39

Amazon Bedrock AgentCore Developer Guide

 return final_response

from bedrock_agentcore.runtime import BedrockAgentCoreApp
app = BedrockAgentCoreApp()

@app.entrypoint
def agent_invocation(payload, context):
 return asyncio.run(call_agent_async(payload.get("prompt", "what is Bedrock
 Agentcore Runtime?"), payload.get("user_id",USER_ID), context.session_id))

app.run()

OpenAI Agents SDK

For the full example, see https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/
main/03-integrations/agentic-frameworks/openai-agents.

from agents import Agent, Runner, WebSearchTool
import logging
import asyncio
import sys

Set up logging
logging.basicConfig(
 level=logging.DEBUG,
 format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
 handlers=[
 logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger("openai_agents")

Configure OpenAI library logging
logging.getLogger("openai").setLevel(logging.DEBUG)

logger.debug("Initializing OpenAI agent with tools")
agent = Agent(
 name="Assistant",
 tools=[
 WebSearchTool(),
],

OpenAI Agents SDK 40

https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/03-integrations/agentic-frameworks/openai-agents
https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/03-integrations/agentic-frameworks/openai-agents

Amazon Bedrock AgentCore Developer Guide

)

async def main(query=None):
 if query is None:
 query = "Which coffee shop should I go to, taking into account my preferences
 and the weather today in SF?"

 logger.debug(f"Running agent with query: {query}")

 try:
 logger.debug("Starting agent execution")
 result = await Runner.run(agent, query)
 logger.debug(f"Agent execution completed with result type: {type(result)}")
 return result
 except Exception as e:
 logger.error(f"Error during agent execution: {e}", exc_info=True)
 raise

Integration with Bedrock AgentCore
from bedrock_agentcore.runtime import BedrockAgentCoreApp
app = BedrockAgentCoreApp()

@app.entrypoint
async def agent_invocation(payload, context):
 logger.debug(f"Received payload: {payload}")
 query = payload.get("prompt", "How can I help you today?")

 try:
 result = await main(query)
 logger.debug("Agent execution completed successfully")
 return {"result": result.final_output}
 except Exception as e:
 logger.error(f"Error during agent execution: {e}", exc_info=True)
 return {"result": f"Error: {str(e)}"}

Run the app when imported
if __name__== "__main__":
 app.run()

Microsoft AutoGen

For the full example, see https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/
main/03-integrations/agentic-frameworks/autogen.

Microsoft AutoGen 41

https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/03-integrations/agentic-frameworks/autogen
https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/03-integrations/agentic-frameworks/autogen

Amazon Bedrock AgentCore Developer Guide

from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.ui import Console
from autogen_ext.models.openai import OpenAIChatCompletionClient
import asyncio
import logging

Set up logging
logging.basicConfig(
 level=logging.DEBUG,
 format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("autogen_agent")

Initialize the model client
model_client = OpenAIChatCompletionClient(
 model="gpt-4o",
)

Define a simple function tool that the agent can use
async def get_weather(city: str) -> str:
 """Get the weather for a given city."""
 return f"The weather in {city} is 73 degrees and Sunny."

Define an AssistantAgent with the model and tool
agent = AssistantAgent(
 name="weather_agent",
 model_client=model_client,
 tools=[get_weather],
 system_message="You are a helpful assistant.",
 reflect_on_tool_use=True,
 model_client_stream=True, # Enable streaming tokens
)

Integrate with Bedrock AgentCore
from bedrock_agentcore.runtime import BedrockAgentCoreApp
app = BedrockAgentCoreApp()

@app.entrypoint
async def main(payload):
 # Process the user prompt
 prompt = payload.get("prompt", "Hello! What can you help me with?")

 # Run the agent

Microsoft AutoGen 42

Amazon Bedrock AgentCore Developer Guide

 result = await Console(agent.run_stream(task=prompt))

 # Extract the response content for JSON serialization
 if result and hasattr(result, 'messages') and result.messages:
 last_message = result.messages[-1]
 if hasattr(last_message, 'content'):
 return {"result": last_message.content}

 return {"result": "No response generated"}

app.run()

CrewAI

For the full example, see https://github.com/awslabs/amazon-bedrock-agentcore-samples/blob/
main/01-tutorials/01-AgentCore-runtime/01-hosting-agent/04-crewai-with-bedrock-model/
runtime-with-crewai-and-bedrock-models.ipynb.

from crewai import Agent, Crew, Process, Task
from crewai_tools import MathTool, WeatherTool
from bedrock_agentcore.runtime import BedrockAgentCoreApp
import argparse
import json
app = BedrockAgentCoreApp()

Define CrewAI agent
def create_researcher():
 """Create a researcher agent"""
 from langchain_aws import ChatBedrock

 # Initialize LLM
 llm = ChatBedrock(
 model_id="anthropic.claude-3-sonnet-20240229-v1:0",
 model_kwargs={"temperature": 0.1}
)

 # Create researcher agent
 return Agent(
 role="Senior Research Specialist",
 goal="Find comprehensive and accurate information about the topic",
 backstory="You are an experienced research specialist with a talent for finding
 relevant information.",
 verbose=True,

CrewAI 43

https://github.com/awslabs/amazon-bedrock-agentcore-samples/blob/main/01-tutorials/01-AgentCore-runtime/01-hosting-agent/04-crewai-with-bedrock-model/runtime-with-crewai-and-bedrock-models.ipynb
https://github.com/awslabs/amazon-bedrock-agentcore-samples/blob/main/01-tutorials/01-AgentCore-runtime/01-hosting-agent/04-crewai-with-bedrock-model/runtime-with-crewai-and-bedrock-models.ipynb
https://github.com/awslabs/amazon-bedrock-agentcore-samples/blob/main/01-tutorials/01-AgentCore-runtime/01-hosting-agent/04-crewai-with-bedrock-model/runtime-with-crewai-and-bedrock-models.ipynb

Amazon Bedrock AgentCore Developer Guide

 llm=llm,
 tools=[MathTool(), WeatherTool()]
)

Define the analyst agent
def create_analyst():
....

Create the crew
def create_crew():
 """Create and configure the CrewAI crew"""
 # Create agents
 researcher = create_researcher()
 analyst = create_analyst()

 # Create research task with fields like description filled in as per crewAI docs
 research_task = Task(
 description="...",
 agent=researcher,
 expected_output="..."
)

 analysis_task = Task(
 ...
)

 # Create crew
 return Crew(
 agents=[researcher, analyst],
 tasks=[research_task, analysis_task],
 process=Process.sequential,
 verbose=True
)

Initialize the crew
crew = create_crew()

Finally write your entrypoint
@app.entrypoint
def crewai_bedrock(payload):
 """
 Invoke the crew with a payload
 """
 user_input = payload.get("prompt")

CrewAI 44

Amazon Bedrock AgentCore Developer Guide

 # Run the crew
 result = crew.kickoff(inputs={"topic": user_input})

 # Return the result
 return result.raw

if __name__ == "__main__":
 app.run()

Use any foundation model

You can use any foundation model with AgentCore Runtime The following are examples for
Amazon Bedrock, Open AI, and Gemini:

Topics

• Amazon Bedrock

• Open AI

• Gemini

Amazon Bedrock

import boto3
from strands.models import BedrockModel

Create a Bedrock model with the custom session
bedrock_model = BedrockModel(
 model_id="us.anthropic.claude-3-7-sonnet-20250219-v1:0",
 boto_session=session
)

Open AI

from strands.models.openai import OpenAIModel
model = OpenAIModel(
 client_args={
 "api_key": "<our_OPENAI_API_KEY>",
 # **model_config

Use any foundation model 45

Amazon Bedrock AgentCore Developer Guide

 model_id="gpt-4o",
 params={
 "max_tokens": 1000,
 "temperature": 0.7,
 }
)

from strands import Agent
from strands_tools import python_repl
agent = Agent(model=model,tools=[python_repl])

Gemini

import os
from langchain.chat_models import init_chat_model

Use your Google API key to initialize the chat model
os.environ["GOOGLE_API_KEY"] = "..."

llm = init_chat_model("google_genai:gemini-2.0-flash")

Deploy MCP servers in AgentCore Runtime

Amazon Bedrock AgentCore Runtime lets you deploy and run Model Context Protocol (MCP)
servers in the AgentCore Runtime. This guide walks you through creating, testing, and deploying
your first MCP server.

For an example, see https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/
01-tutorials/01-AgentCore-runtime/02-hosting-MCP-server.

In this section, you learn:

• How to create an MCP server with tools

• How to test your server locally

• How to deploy your server to AWS

• How to invoke your deployed server

Topics

Gemini 46

https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/01-tutorials/01-AgentCore-runtime/02-hosting-MCP-server
https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/01-tutorials/01-AgentCore-runtime/02-hosting-MCP-server

Amazon Bedrock AgentCore Developer Guide

• Prerequisites

• Create your MCP server

• Test your MCP server locally

• Deploy your MCP server to AWS

• Invoke your deployed MCP server

• How Amazon Bedrock AgentCore supports MCP

• Next steps

• Appendix

Prerequisites

• Python 3.10 or higher installed and basic understanding of Python

• An AWS account with appropriate permissions and local credentials configured

Create your MCP server

Install required packages

First, install the MCP package:

pip install mcp

Create your first MCP server

Create a new file called my_mcp_server.py:

my_mcp_server.py

from mcp.server.fastmcp import FastMCP
from starlette.responses import JSONResponse

mcp = FastMCP(host="0.0.0.0", stateless_http=True)

@mcp.tool()
def add_numbers(a: int, b: int) -> int:
 """Add two numbers together"""

Prerequisites 47

Amazon Bedrock AgentCore Developer Guide

 return a + b

@mcp.tool()
def multiply_numbers(a: int, b: int) -> int:
 """Multiply two numbers together"""
 return a * b

@mcp.tool()
def greet_user(name: str) -> str:
 """Greet a user by name"""
 return f"Hello, {name}! Nice to meet you."

if __name__ == "__main__":
 mcp.run(transport="streamable-http")

Understanding the code

• FastMCP: Creates an MCP server that can host your tools

• @mcp.tool(): Decorator that turns your Python functions into MCP tools

• Tools: Three simple tools that demonstrate different types of operations

Test your MCP server locally

Start your MCP server

Run your MCP server locally:

python my_mcp_server.py

You should see output indicating the server is running on port 8000.

Test with MCP client

From a new terminal, create a new file my_mcp_client.py and execute it using python
my_mcp_client.py

my_mcp_client.py

import asyncio

Test your MCP server locally 48

Amazon Bedrock AgentCore Developer Guide

from mcp import ClientSession
from mcp.client.streamable_http import streamablehttp_client

async def main():
 mcp_url = "http://localhost:8000/mcp"
 headers = {}

 async with streamablehttp_client(mcp_url, headers, timeout=120,
 terminate_on_close=False) as (
 read_stream,
 write_stream,
 _,
):
 async with ClientSession(read_stream, write_stream) as session:
 await session.initialize()
 tool_result = await session.list_tools()
 print(tool_result)

asyncio.run(main())

You can also test your server using the MCP Inspector as described in the section called “Local
testing with MCP inspector”.

Deploy your MCP server to AWS

Install deployment tools

Install the Amazon Bedrock AgentCore CLI:

pip install bedrock-agentcore-starter-toolkit

Start by creating a project folder with the following structure:

Project Folder Structure

your_project_directory/
mcp_server.py # Your main agent code
requirements.txt # Dependencies for your agent
__init__.py # Makes the directory a Python package

Create a new file called requirements.txt, add the following to it:

Deploy your MCP server to AWS 49

Amazon Bedrock AgentCore Developer Guide

mcp

Configure your MCP server for deployment

Before configuring your deployment, you need to set up a Cognito user pool for authentication
as described in the section called “Set up Cognito user pool for authentication”. This provides the
OAuth tokens required for secure access to your deployed server.

After setting up authentication, create the deployment configuration:

agentcore configure -e my_mcp_server.py --protocol MCP

This will start a guided prompt workflow:

• For execution role, you need to have an IAM execution role with appropriate permissions

• For ECR, just press enter to skip and it will auto-create

• For dependency file, the CLI will auto-detect from current directory

• For OAuth, type yes and provide the discovery URL and client ID token

Deploy to AWS

Deploy your agent:

agentcore launch

This command will:

1. Build a Docker container with your agent

2. Push it to Amazon ECR

3. Create a Amazon Bedrock AgentCore runtime

4. Deploy your agent to AWS

After deployment, you'll receive an agent runtime ARN that looks like:

arn:aws:bedrock-agentcore:us-west-2:accountId:runtime/my_mcp_server-xyz123

Deploy your MCP server to AWS 50

Amazon Bedrock AgentCore Developer Guide

Invoke your deployed MCP server

Test with MCP client (remote)

Before testing, set the following environment variables:

• Export agent ARN as an environment variable: export AGENT_ARN="agent_arn"

• Export bearer token as an environment variable: export BEARER_TOKEN="bearer_token"

if you pass in an Accept header, it must follow the MCP standard. Acceptable media types are
application/json and text/event-stream.

Create a new file my_mcp_client_remote.py and execute it using python
my_mcp_client_remote.py

import asyncio
import os
import sys

from mcp import ClientSession
from mcp.client.streamable_http import streamablehttp_client

async def main():
 agent_arn = os.getenv('AGENT_ARN')
 bearer_token = os.getenv('BEARER_TOKEN')
 if not agent_arn or not bearer_token:
 print("Error: AGENT_ARN or BEARER_TOKEN environment variable is not set")
 sys.exit(1)

 encoded_arn = agent_arn.replace(':', '%3A').replace('/', '%2F')
 mcp_url = f"https://bedrock-agentcore.us-west-2.amazonaws.com/runtimes/
{encoded_arn}/invocations?qualifier=DEFAULT"
 headers = {"authorization": f"Bearer {bearer_token}","Content-Type":"application/
json"}
 print(f"Invoking: {mcp_url}, \nwith headers: {headers}\n")

 async with streamablehttp_client(mcp_url, headers, timeout=120,
 terminate_on_close=False) as (
 read_stream,
 write_stream,
 _,
):

Invoke your deployed MCP server 51

https://modelcontextprotocol.io/specification/2025-06-18/basic/transports#sending-messages-to-the-server

Amazon Bedrock AgentCore Developer Guide

 async with ClientSession(read_stream, write_stream) as session:
 await session.initialize()
 tool_result = await session.list_tools()
 print(tool_result)

asyncio.run(main())

You can also test your deployed server using the MCP Inspector as described in the section called
“Remote testing with MCP inspector”.

How Amazon Bedrock AgentCore supports MCP

When you configure a Amazon Bedrock AgentCore Runtime with the MCP protocol, the service
expects MCP server containers to be available at the path 0.0.0.0:8000/mcp, which is the
default path supported by most official MCP server SDKs.

Amazon Bedrock AgentCore requires stateless streamable-HTTP servers because the Runtime
provides session isolation by default. The platform automatically adds a Mcp-Session-Id header
for any request without it, so MCP clients can maintain connection continuity to the same Amazon
Bedrock AgentCore Runtime session.

The payload of the InvokeAgentRuntime API is passed through directly, allowing RPC messages
of protocols like MCP to be easily proxied.

Next steps

To learn more about creating custom servers and Docker containers for Amazon Bedrock
AgentCore, explore the documentation on deploying agents using custom servers and Docker.

Appendix

Set up Cognito user pool for authentication

Create a new file setup_cognito.sh and add the following content to it. Run it using the
command source setup_cognito.sh.

#!/bin/bash

Create User Pool and capture Pool ID directly
export POOL_ID=$(aws cognito-idp create-user-pool \
 --pool-name "MyUserPool" \
 --policies '{"PasswordPolicy":{"MinimumLength":8}}' \

How Amazon Bedrock AgentCore supports MCP 52

Amazon Bedrock AgentCore Developer Guide

 --region us-east-1 | jq -r '.UserPool.Id')

Create App Client and capture Client ID directly
export CLIENT_ID=$(aws cognito-idp create-user-pool-client \
 --user-pool-id $POOL_ID \
 --client-name "MyClient" \
 --no-generate-secret \
 --explicit-auth-flows "ALLOW_USER_PASSWORD_AUTH" "ALLOW_REFRESH_TOKEN_AUTH" \
 --region us-east-1 | jq -r '.UserPoolClient.ClientId')

Create User
aws cognito-idp admin-create-user \
 --user-pool-id $POOL_ID \
 --username "testuser" \
 --temporary-password "Temp123!" \
 --region us-east-1 \
 --message-action SUPPRESS > /dev/null

Set Permanent Password
aws cognito-idp admin-set-user-password \
 --user-pool-id $POOL_ID \
 --username "testuser" \
 --password "MyPassword123!" \
 --region us-east-1 \
 --permanent > /dev/null

Authenticate User and capture Access Token
export BEARER_TOKEN=$(aws cognito-idp initiate-auth \
 --client-id "$CLIENT_ID" \
 --auth-flow USER_PASSWORD_AUTH \
 --auth-parameters USERNAME='testuser',PASSWORD='MyPassword123!' \
 --region us-east-1 | jq -r '.AuthenticationResult.AccessToken')

Output the required values
echo "Pool id: $POOL_ID"
echo "Discovery URL: https://cognito-idp.us-east-1.amazonaws.com/$POOL_ID/.well-known/
openid-configuration"
echo "Client ID: $CLIENT_ID"
echo "Bearer Token: $BEARER_TOKEN"

After running this script, note the following values for use in the deployment configuration:

• Discovery URL: Used during the agentcore configure step

Appendix 53

Amazon Bedrock AgentCore Developer Guide

• Client ID: Used during the agentcore configure step

• Bearer Token: Used when invoking your deployed server

Local testing with MCP inspector

The MCP Inspector is a visual tool for testing MCP servers. To use it, you need:

• Node.js and npm installed

Install and run the MCP Inspector:

npx @modelcontextprotocol/inspector

This will:

• Start the MCP Inspector server

• Display a URL in your terminal (typically http://localhost:6274)

To use the Inspector:

1. Navigate to http://localhost:6274 in your browser

2. Paste the MCP server URL (http://localhost:8000/mcp) into the MCP Inspector connection
field

3. You'll see your tools listed in the sidebar

4. Click on any tool to test it

5. Fill in the parameters (e.g., for add_numbers, enter values for a and b)

6. Click "Call Tool" to see the result

Remote testing with MCP inspector

You can also test your deployed server using the MCP Inspector:

1. Open the MCP Inspector: npx @modelcontextprotocol/inspector

2. In the web interface:

• Select "Streamable HTTP" as the transport

Appendix 54

Amazon Bedrock AgentCore Developer Guide

• Enter your agent's endpoint URL, which will look like: https://bedrock-agentcore.us-
west-2.amazonaws.com/runtimes/arn%3Aaws%3Abedrock-agentcore
%3Aus-west-2%3AaccountId%3Aruntime%2FruntimeName/invocations?
qualifier=DEFAULT

• Make sure to URL-encode your agent runtime ARN when constructing the endpoint URL. The
colon (:) characters become %3A and forward slashes (/) become %2F in the encoded URL.

• Add your Bearer token under authentication

• Click "Connect"

3. Test your tools just like you did locally

Use isolated sessions for agents

AgentCore Runtime lets you isolate each user session and safely reuse context across multiple
invocations in a user session. Session isolation is critical for AI agent workloads due to their unique
operational characteristics:

• Complete execution environment separation: Each user session in Runtime receives its own
dedicated microVM with isolated Compute, memory, and filesystem resources. This prevents one
user's agent from accessing another user's data. After session completion, the entire microVM
is terminated and memory is sanitized to remove all session data, eliminating cross-session
contamination risks.

• Stateful reasoning processes: Unlike stateless functions, AI agents maintain complex
contextual state throughout their execution cycle, beyond simple message history for multi-
turn conversations. Runtime preserves this state securely within a session while ensuring
complete isolation between different users, enabling personalized agent experiences without
compromising data boundaries.

• Privileged tool operations: AI agents perform privileged operations on users' behalf through
integrated tools accessing various resources. Runtime's isolation model ensures these tool
operations maintain proper security contexts and prevents credential sharing or permission
escalation between different user sessions.

• Deterministic security for non-deterministic processes: AI agent behavior can be non-
deterministic due to the probabilistic nature of foundation models. Runtime provides consistent,
deterministic isolation boundaries regardless of agent execution patterns, delivering the
predictable security properties required for enterprise deployments.

Use isolated sessions for agents 55

Amazon Bedrock AgentCore Developer Guide

Understanding ephemeral context

While Amazon Bedrock AgentCore provides strong session isolation, these sessions are ephemeral
in nature. Any data stored in memory or written to disk persists only for the session duration. This
includes conversation history, user preferences, intermediate calculation results, and any other
state information your agent maintains.

For data that needs to be retained beyond the session lifetime (such as user conversation history,
learned preferences, or important insights), you should use Amazon Bedrock AgentCore Memory.
This service provides purpose-built persistent storage designed specifically for agent workloads,
with both short-term and long-term memory capabilities.

Extended conversations and multi-step workflows

Unlike traditional serverless functions that terminate after each request, Amazon Bedrock
AgentCore supports ephemeral, isolated compute sessions lasting up to 8 hours. This simplifies
building multi-step agentic workflows as you can make multiple calls to the same environment,
with each invocation building upon the context established by previous interactions.

Runtime session lifecycle

Session creation

A new session is created on the first invoke with a unique runtimeSessionId provided by your
application. Amazon Bedrock AgentCore Runtime provisions a dedicated execution environment
(microVM) for each session. Context is preserved between invocations to the same session.

Session states

Sessions can be in one of the following states:

• Active: Either processing a sync request or doing background tasks. Sync invocation activity
is automatically tracked based on invocations to a runtime session. Background tasks are
communicated by the agent code by responding with "HealthyBusy" status in pings.

• Idle: When not processing any requests or background tasks. The session has completed
processing but remains available for future invocations.

• Terminated: Execution environment provisioned for the session is terminated. This can be due
to inactivity (of 15 minutes), reaching max duration (8 hours) or if it's deemed unhealthy based
on health checks. Subsequent invokes to a terminated runtimeSessionId will provision a new
execution environment.

Understanding ephemeral context 56

Amazon Bedrock AgentCore Developer Guide

How to use sessions

To use sessions effectively:

• Generate a unique session ID for each user or conversation

• Pass the same session ID for all related invocations

• Use different session IDs for different users or conversations

Example Using sessions for a conversation

First message in a conversation

response1 = agent_core_client.InvokeAgentRuntime(
 agentRuntimeArn=agent_arn,
 runtimeSessionId="user-123-conversation-456",
 payload=json.dumps({"prompt": "Tell me about AWS"}).encode()
)

Follow-up message in the same conversation reuses the runtimeSessionId.

response2 = agent_core_client.InvokeAgentRuntime(
 agentRuntimeArn=agent_arn,
 runtimeSessionId="user-123-conversation-456",
 payload=json.dumps({"prompt": "How does it compare to other cloud
 providers"}).encode()
)

By using the same runtimeSessionId for related invocations, you ensure that context is maintained
across the conversation, allowing your agent to provide coherent responses that build on previous
interactions.

Handle asynchronous and long running agents with Amazon
Bedrock AgentCore Runtime

Amazon Bedrock AgentCore Runtime can handle asynchronous processing and long running
agents. Asynchronous tasks allow your agent to continue processing after responding to the client
and handle long-running operations without blocking responses. With async processing, your agent
can:

How to use sessions 57

Amazon Bedrock AgentCore Developer Guide

• Start a task that might take minutes or hours

• Immediately respond to the user saying "I've started working on this"

• Continue processing in the background

• Allow the user to check back later for results

Key concepts

Asynchronous processing model

The Amazon Bedrock AgentCore SDK supports both synchronous and asynchronous processing
through a unified API. This creates a flexible implementation pattern for both clients and
agent developers. Agent clients can work with the same API without differentiating between
synchronous and asynchronous on the client side. With the ability to invoke the same session
across invocations, agent developers can reuse context and build upon this context incrementally
without implementing complex task management logic.

Runtime session lifecycle management

Agent code communicates its processing status using the "/ping" health status. "HealthyBusy"
indicates the agent is busy processing background tasks, while "Healthy" indicates it is idle (waiting
for requests). A session in idle state for 15 minutes gets automatically terminated.

Implementing asynchronous tasks

To get started, install the bedrock-agentcore package:

pip install bedrock-agentcore

API based task management

To build interactive agents that perform asynchronous tasks, you need to call add_async_task
when starting a task and complete_async_task when the task completes. The SDK handles task
tracking and manages Ping status automatically.

Start tracking a task manually
task_id = app.add_async_task("data_processing")

Key concepts 58

Amazon Bedrock AgentCore Developer Guide

Do work...

Mark task as complete
app.complete_async_task(task_id)

Asynchronous task decorator

The Amazon Bedrock AgentCore SDK helps with tracking asynchronous tasks. You can get started
by simply annotating your asynchronous functions with @app.async_task.

Automatically track asynchronous functions:
@app.async_task
async def background_work():
 await asyncio.sleep(10) # Status becomes "HealthyBusy"
 return "done"

@app.entrypoint
async def handler(event):
 asyncio.create_task(background_work())
 return {"status": "started"}

Here is how it works:

• The @app.async_task decorator tracks function execution

• When the function runs, ping status changes to "HealthyBusy"

• When the function completes, status returns to "Healthy"

Custom ping handler

You can implement your own custom ping handler to manage the Runtime Session's state. Your
agent's health is reported through the /ping endpoint:

@app.ping
def custom_status():
 if system_busy():
 return PingStatus.HEALTHY_BUSY
 return PingStatus.HEALTHY

Status values:

Implementing asynchronous tasks 59

Amazon Bedrock AgentCore Developer Guide

• "Healthy": Ready for new work

• "HealthyBusy": Processing background task

Complete example

First, install the required package:

pip install strands-agents

Then, create a Python file with the following code:

import threading
import time
from strands import Agent, tool
from bedrock_agentcore.runtime import BedrockAgentCoreApp

Initialize app with debug mode for task management
app = BedrockAgentCoreApp()

@tool
def start_background_task(duration: int = 5) -> str:
 """Start a simple background task that runs for specified duration."""
 # Start tracking the async task
 task_id = app.add_async_task("background_processing", {"duration": duration})

 # Run task in background thread
 def background_work():
 time.sleep(duration) # Simulate work
 app.complete_async_task(task_id) # Mark as complete

 threading.Thread(target=background_work, daemon=True).start()
 return f"Started background task (ID: {task_id}) for {duration} seconds. Agent
 status is now BUSY."

Create agent with the tool
agent = Agent(tools=[start_background_task])

@app.entrypoint
def main(payload):
 """Main entrypoint - handles user messages."""
 user_message = payload.get("prompt", "Try: start_background_task(3)")

Complete example 60

Amazon Bedrock AgentCore Developer Guide

 return {"message": agent(user_message).message}

if __name__ == "__main__":
 print("# Simple Async Strands Example")
 print("Test: curl -X POST http://localhost:8080/invocations -H 'Content-Type:
 application/json' -d '{\"prompt\": \"start a 3 second task\"}'")
 app.run()

This example demonstrates:

• Creating a background task that runs asynchronously

• Tracking the task's status with add_async_task and complete_async_task

• Responding immediately to the user while processing continues

• Managing the agent's health status automatically

Stream agent responses

The following Strands Agents example shows how an AgentCore Runtime agent can stream a
response back to a client.

from strands import Agent
from bedrock_agentcore import BedrockAgentCoreApp

app = BedrockAgentCoreApp()
agent = Agent()

@app.entrypoint
async def agent_invocation(payload):
 """Handler for agent invocation"""
 user_message = payload.get(
 "prompt", "No prompt found in input, please guide customer to create a json
 payload with prompt key"
)
 stream = agent.stream_async(user_message)
 async for event in stream:
 print(event)
 yield (event)

if __name__ == "__main__":
 app.run()

Stream agent responses 61

Amazon Bedrock AgentCore Developer Guide

Authenticate and authorize with Inbound Auth and Outbound
Auth

This section shows you how to implement authentication and authorization for your agent runtime
using OAuth and JWT bearer tokens with AgentCore Identity. You'll learn how to set up Cognito
user pools, configure your agent runtime for JWT authentication (Inbound Auth), and implement
OAuth-based access to third-party resources (outbound Auth).

For a complete example, see https://github.com/awslabs/amazon-bedrock-agentcore-samples/.

For information about using OAuth to with an MCP server, see Deploy MCP servers in AgentCore
Runtime.

Amazon Bedrock AgentCore runtime provides two authentication mechanisms for hosted agents:

IAM SigV4 Authentication

The default authentication and authorization mechanism that works automatically without
additional configuration, similar to other AWS APIs.

If your solution requires the hosted agent to retrieve OAuth tokens on behalf of end users
(using Authorization Code Grant), you can specify the user identifier by including the X-Amzn-
Bedrock-AgentCore-Runtime-User-Id header in your requests.

JWT Bearer Token Authentication

You can configure your agent runtime to accept JWT bearer tokens by providing authorizer
configuration during agent creation.

This configuration requires:

• Discovery URL - A string that must match the pattern ^.+/\.well-known/openid-
configuration$ for OpenID Connect discovery URLs

• Allowed audiences - A list of permitted audiences that will be validated against the aud claim
in the JWT token

• Allowed clients - A list of permitted client identifiers that will be validated against the
client_id claim in the JWT token

Authenticate and authorize with Inbound Auth and Outbound Auth 62

https://github.com/awslabs/amazon-bedrock-agentcore-samples/

Amazon Bedrock AgentCore Developer Guide

Note

A runtime can only support either IAM SigV4 or JWT Bearer Token based inbound auth.
You can always create custom endpoints for your runtime and configure them for different
inbound auth types.
When you create a runtime with Amazon Bedrock AgentCore, a Workload Identity is created
automatically for your runtime with AgentCore Identity service.

Prerequisites

Before you begin, make sure you have:

• An AWS account with appropriate permissions

• Basic understanding of Python programming

• Familiarity with Docker containers (for advanced deployment)

• Set up a basic agent with runtime successfully

• Basic understanding of OAuth authorization, mainly JWT bearer tokens, claims, and the various
grant flows

JWT inbound authorization and OAuth outbound access sample

This guide walks you through the process of setting up your agent runtime to be invoked with
an OAuth compliant access token using JWT format. The sample agent will be authorized using
AWS Cognito access tokens. Later, you'll also learn how the agent code can fetch Google tokens on
behalf of the user to check Google Drive and fetch contents.

What you'll learn

In this guide, you'll learn how to:

• Set up Cognito user pool, add a user, and get a bearer token for the user

• Set up your agent runtime to use the Cognito user pool for authorization

• Set up your agent code to fetch OAuth tokens on behalf of the user to call tools

Prerequisites 63

Amazon Bedrock AgentCore Developer Guide

Step 1: Prepare your agent

Start by creating a basic agent with the following structure:

Project Folder Structure

your_project_directory/
agent_example.py # Your main agent code
requirements.txt # Dependencies for your agent
__init__.py # Makes the directory a Python package

Create the following files with their respective contents:

agent_example.py

This is your main agent code:

from strands import Agent
from bedrock_agentcore.runtime import BedrockAgentCoreApp

agent = Agent()
app = BedrockAgentCoreApp()

@app.entrypoint
def invoke(payload):
 """Process user input and return a response"""
 user_message = payload.get("prompt", "Hello")
 response = agent(user_message)
 return str(response) # response should be json serializable

if __name__ == "__main__":
 app.run()

requirements.txt

This file lists the dependencies for your agent:

strands-agents
bedrock-agentcore

Step 1: Prepare your agent 64

Amazon Bedrock AgentCore Developer Guide

Step 2: Set up AWS Cognito user pool and add a user

To set up a Cognito user pool and create a user, you'll use a shell script that automates the process.

For more information, see Step 2: Set up an OAuth 2.0 Credential Provider.

To set up Cognito user pool and create a user

1. Create a file named setup_cognito.sh with the following content:

#!/bin/bash

Create User Pool and capture Pool ID directly
export POOL_ID=$(aws cognito-idp create-user-pool \
 --pool-name "MyUserPool" \
 --policies '{"PasswordPolicy":{"MinimumLength":8}}' \
 --region us-east-1 | jq -r '.UserPool.Id')

Create App Client and capture Client ID directly
export CLIENT_ID=$(aws cognito-idp create-user-pool-client \
 --user-pool-id $POOL_ID \
 --client-name "MyClient" \
 --no-generate-secret \
 --explicit-auth-flows "ALLOW_USER_PASSWORD_AUTH" "ALLOW_REFRESH_TOKEN_AUTH" \
 --region us-east-1 | jq -r '.UserPoolClient.ClientId')

Create User
aws cognito-idp admin-create-user \
 --user-pool-id $POOL_ID \
 --username "testuser" \
 --temporary-password "Temp123!" \
 --region us-east-1 \
 --message-action SUPPRESS > /dev/null

Set Permanent Password
aws cognito-idp admin-set-user-password \
 --user-pool-id $POOL_ID \
 --username "testuser" \
 --password "MyPassword123!" \
 --region us-east-1 \
 --permanent > /dev/null

Authenticate User and capture Access Token

Step 2: Set up AWS Cognito user pool and add a user 65

Amazon Bedrock AgentCore Developer Guide

export BEARER_TOKEN=$(aws cognito-idp initiate-auth \
 --client-id "$CLIENT_ID" \
 --auth-flow USER_PASSWORD_AUTH \
 --auth-parameters USERNAME='testuser',PASSWORD='MyPassword123!' \
 --region us-east-1 | jq -r '.AuthenticationResult.AccessToken')

Output the required values
echo "Pool id: $POOL_ID"
echo "Discovery URL: https://cognito-idp.us-east-1.amazonaws.com/$POOL_ID/.well-
known/openid-configuration"
echo "Client ID: $CLIENT_ID"
echo "Bearer Token: $BEARER_TOKEN"

2. Run the script to create the Cognito resources:

source setup_cognito.sh

3. Note the output values, which will look similar to:

Pool id: us-east-1_poolid
Discovery URL: https://cognito-idp.us-east-1.amazonaws.com/us-
east-1_userpoolid/.well-known/openid-configuration
Client ID: clientid
Bearer Token: bearertoken

You'll need these values in the next steps.

This script creates a Cognito user pool, a user pool client, adds a user, and generates a bearer token
for the user. The token is valid for 60 minutes by default.

Step 3: Deploy your agent

Now you'll deploy your agent with JWT authorization using the Cognito user pool you created.

Use starter toolkit

To configure and deploy your agent

1. Configure your agent runtime with the following command, replacing the placeholder
values with your actual values:

Step 3: Deploy your agent 66

Amazon Bedrock AgentCore Developer Guide

agentcore configure --entrypoint agent_example.py \
--name my-oauth-agent \
--execution-role your-execution-role-arn \
--disable-otel \
--requirements-file requirements.txt \
--authorizer-config "{\"customJWTAuthorizer\":{\"discoveryUrl\":\"$DISCOVERY_URL
\",\"allowedClients\":[\"$CLIENT_ID\"]}}"

Replace $DISCOVERY_URL with the Discovery URL from Step 2, and $CLIENT_ID with the
Client ID from Step 2.

2. Deploy your agent:

agentcore launch

3. Note the agent runtime ARN from the output. You'll need this in the next step.

Tip

You can also run the configure command with just the entry point file for a fully
interactive experience:

agentcore configure --entrypoint agent_example.py

boto SDK

import boto3

Create the client
client = boto3.client('bedrock-agentcore-control', region_name="us-east-1")

Call the CreateAgentRuntime operation
response = client.create_agent_runtime(
 agentRuntimeName='hello_agent',
 agentRuntimeArtifact={
 'containerConfiguration': {
 'containerUri': '123456789012.dkr.ecr.us-east-1.amazonaws.com/my-
agent:latest'

Step 3: Deploy your agent 67

Amazon Bedrock AgentCore Developer Guide

 }
 },
 authorizerConfiguration={
 "customJWTAuthorizer": {
 "discoveryUrl": 'COGNITO_DISCOVERY_URL',
 "allowedClients": ['COGNITO_CLIENT_ID']
 }
 },
 networkConfiguration={"networkMode":"PUBLIC"},
 roleArn='arn:aws:iam::123456789012:role/AgentRuntimeRole'
)

Step 4: Use bearer token to invoke your agent

Now that your agent is deployed with JWT authorization, you can invoke it using the bearer token.

Make sure your agent’s execution role has permissions to access the workload identity.

 "Sid": "GetAgentAccessToken",
 "Effect": "Allow",
 "Action": [
 "bedrock-agentcore:GetWorkloadAccessToken",
 "bedrock-agentcore:GetWorkloadAccessTokenForJWT",
 "bedrock-agentcore:GetWorkloadAccessTokenForUserId"
],
 # point to the workload identity for the runtime; the workload identity can be
 found in
 # the GetAgentRuntime response and has your agent name in it.
 "Resource": [
 "arn:aws:bedrock-agentcore:region:account-id:workload-identity-directory/
default",
 "arn:aws:bedrock-agentcore:region:account-id:workload-identity-directory/
default/workload-identity/agentname-*"
]
}

Fetch a bearer token for the user you created with Amazon Cognito.

use the password and other details used when you created the cognito user
 export TOKEN=$(aws cognito-idp initiate-auth \
 --client-id "$CLIENT_ID" \

Step 4: Use bearer token to invoke your agent 68

Amazon Bedrock AgentCore Developer Guide

 --auth-flow USER_PASSWORD_AUTH \
 --auth-parameters USERNAME='testuser',PASSWORD='MyPassword123!' \
 --region us-east-1 | jq -r '.AuthenticationResult.AccessToken')

Using Curl

// Invoke with OAuth token
export BEDROCK_AGENT_CORE_ENDPOINT_URL="https://bedrock-agentcore.us-
west-2.amazonaws.com"
curl -v -X POST "${BEDROCK_AGENT_CORE_ENDPOINT_URL}/runtimes/${ESCAPED_AGENT_ARN}/
invocations?qualifier=DEFAULT" \
-H "Authorization: Bearer ${TOKEN}" \
-H "X-Amzn-Trace-Id: your-trace-id" \
-H "Content-Type: application/json" \
-H "X-Amzn-Bedrock-AgentCore-Runtime-Session-Id: your-session-id" \
-d ${PAYLOAD}

Using Python

Since boto3 doesn't support invocation with bearer tokens, you'll need to use an HTTP client like
the requests library in Python.

To invoke your agent with a bearer token

1. Create a Python script named invoke_agent.py with the following content:

import requests
import urllib.parse
import json
import os

Configuration Constants
REGION_NAME = "us-east-1"

=== Agent Invocation Demo ===
invoke_agent_arn = "YOUR_AGENT_ARN_HERE"
auth_token = os.environ.get('TOKEN')
print(f"Using Agent ARN from environment: {invoke_agent_arn}")

URL encode the agent ARN
escaped_agent_arn = urllib.parse.quote(invoke_agent_arn, safe='')

Step 4: Use bearer token to invoke your agent 69

Amazon Bedrock AgentCore Developer Guide

Construct the URL
url = f"https://bedrock-agentcore.{REGION_NAME}.amazonaws.com/runtimes/
{escaped_agent_arn}/invocations?qualifier=DEFAULT"

Set up headers
headers = {
 "Authorization": f"Bearer {auth_token}",
 "X-Amzn-Trace-Id": "your-trace-id",
 "Content-Type": "application/json",
 "X-Amzn-Bedrock-AgentCore-Runtime-Session-Id": "testsession123"
}

Enable verbose logging for requests
import logging
logging.basicConfig(level=logging.DEBUG)
logging.getLogger("urllib3.connectionpool").setLevel(logging.DEBUG)

invoke_response = requests.post(
 url,
 headers=headers,
 data=json.dumps({"payload": '{"prompt": "Hello"}'})
)

Print response in a safe manner
print(f"Status Code: {invoke_response.status_code}")
print(f"Response Headers: {dict(invoke_response.headers)}")

Handle response based on status code
if invoke_response.status_code == 200:
 response_data = invoke_response.json()
 print("Response JSON:")
 print(json.dumps(response_data, indent=2))
elif invoke_response.status_code >= 400:
 print(f"Error Response ({invoke_response.status_code}):")
 error_data = invoke_response.json()
 print(json.dumps(error_data, indent=2))

else:
 print(f"Unexpected status code: {invoke_response.status_code}")
 print("Response text:")
 print(invoke_response.text[:500])

2. Replace YOUR_AGENT_ARN_HERE with your actual agent runtime ARN from Step 3.

Step 4: Use bearer token to invoke your agent 70

Amazon Bedrock AgentCore Developer Guide

3. Run the script:

python invoke_agent.py

Step 5: Set up your agent to access tools using OAuth

In this section, you'll learn how to connect your agent code with AgentCore Credential Providers for
secure access to external resources using OAuth2 authentication.

The example below demonstrates how your agent running in Agent Runtime can request OAuth
consent from users, enabling them to authenticate with their Google account and authorize the
agent to access their Google Drive contents.

For more information about setting up identity, see Getting started with Amazon Bedrock
AgentCore Identity.

Step 5.1: Set up Credential Providers

To set up a Google Credential Provider, you need to:

1. Register your application with Google to obtain client ID and client secret

2. Create an OAuth credential provider using the AWS CLI:

aws agent-credential-provider create-oauth2-credential-provider \
 --provider-type "google" \
 --name "google-provider" \
 --scopes '["https://www.googleapis.com/auth/drive.metadata.readonly"]' \
 --google-config '{\
 "clientId": "your-client-id",\
 "clientSecret": "your-client-secret"\
 }'

Make sure your invocation role has the necessary permissions for accessing the credential provider.

Step 5.2: Enable agent to read Google Drive contents

Create a tool with agent core SDK annotations as shown below to automatically initiate the three-
legged OAuth process. When your agent invokes this tool, users will be prompted to open the
authorization URL in their browser and grant consent for the agent to access their Google Drive.

Step 5: Set up your agent to access tools using OAuth 71

Amazon Bedrock AgentCore Developer Guide

import asyncio
from bedrock_agentcore.identity.auth import requires_access_token, requires_api_key

This annotation helps agent developer to obtain access tokens from external
 applications
@requires_access_token(
 provider_name="google-provider",
 scopes=["https://www.googleapis.com/auth/drive.metadata.readonly"], # Google OAuth2
 scopes
 auth_flow="USER_FEDERATION", # 3LO flow
 on_auth_url=lambda x: print("Copy and paste this authorization url to your
 browser", x), # prints authorization URL to console
 force_authentication=True,
)
async def read_from_google_drive(*, access_token: str):
 print(access_token) #You can see the access_token
 # Make API calls...
 main(access_token)

asyncio.run(read_from_google_drive(access_token=""))

What happens behind the scenes

When this code runs, the following process occurs:

1. Agent Runtime authorizes the inbound token according to the configured authorizer.

2. Agent Runtime exchanges this token for a Workload Access Token via bedrock-
agentcore:GetWorkloadAccessTokenForJWT API and delivers it to your agent code via the
payload header WorkloadAccessToken.

3. During tool invocation, your agent uses this Workload Access Token to call Token Vault API
bedrock-agentcore:GetResourceOauth2Token and generate a 3LO authentication URL.

4. Your agent sends this URL to the client application as specified in the on_auth_url method.

5. The client application presents this URL to the user, who grants consent for the agent to access
their Google Drive.

6. AgentCore Identity service securely receives and caches the Google access token until it expires,
enabling subsequent requests from the user to use this token without needing the user to
provide consent for every request.

Step 5: Set up your agent to access tools using OAuth 72

Amazon Bedrock AgentCore Developer Guide

Note

AgentCore Identity Service stores the Google access token in the AgentCore Token Vault
using the agent workload identity and user ID (from the inbound JWT token, such as AWS
Cognito token) as the binding key, eliminating repeated consent requests until the Google
token expires.

Troubleshooting

How to debug token related issues

If you encounter issues with token authentication, you can decode the token to inspect its contents:

echo "$TOKEN" | cut -d '.' -f2 | tr '_-' '/+' | awk '{ l=4 - length($0)%4; if (l<4)
 printf "%s", $0; for (i=0; i<l; i++) printf "="; print "" }' | base64 -D | jq

This will output the token's payload, which looks similar to:

{
 "sub": "subid",
 "iss": "https://cognito-idp.us-east-1.amazonaws.com/userpoolid",
 "client_id": "clientid",
 "origin_jti": "originjti",
 "event_id": "eventid",
 "token_use": "access",
 "scope": "aws.cognito.signin.user.admin",
 "auth_time": 1752275688,
 "exp": 1752279288,
 "iat": 1752275688,
 "jti": "jti",
 "username": "username"
}

When troubleshooting token issues, check the following:

• Authorizer discovery URL: The discovery URL in the agent configuration should match the issuer
claim (iss) in the token.

Click on the discovery URL you provided in the authorizer configuration when you
created the agent (e.g., https://cognito-idp.us-east-1.amazonaws.com/us-

Troubleshooting 73

Amazon Bedrock AgentCore Developer Guide

east-1_userpoolid/.well-known/openid-configuration) and check that the issuer URL
matches the iss claim value in the token.

• Authorizer client_id: The client_id in the agent configuration should match the client_id claim in
the token.

• Token expiration: Tokens are only valid for several minutes (default Cognito expiry being 60
minutes). Fetch a new token as needed.

AgentCore Runtime versioning and endpoints

Understanding agent runtime Versioning

Each agent runtime in Amazon Bedrock AgentCore is automatically versioned:

• When you create an agent runtime, AgentCore Runtime automatically creates version 1 (V1)

• Each update to the agent runtime creates a new version with a complete, self-contained
configuration

• Versions are immutable once created

• Each version contains all the configuration needed for execution

How endpoints reference versions

Endpoints provide a way to reference specific versions of your agent runtime:

• The "DEFAULT" endpoint automatically points to the latest version of your agent runtime

• Endpoints can point to specific versions, allowing you to maintain different environments (e.g.,
development, staging, production)

• When you update an agent runtime, the "DEFAULT" endpoint is automatically updated to point
to the new version

• Endpoints must be explicitly updated to point to new versions

Example Updating an endpoint to a New Version

bedrock_agentcore_client = boto3.client('bedrock-agentcore', region_name='us-west-2')

response = bedrock_agentcore_client.update_agent_runtime_endpoint(

AgentCore Runtime versioning and endpoints 74

Amazon Bedrock AgentCore Developer Guide

 agentRuntimeId='agent-runtime-12345',
 endpointName='production-endpoint',
 agentRuntimeVersion='v2.1',
 description='Updated production endpoint'
)

print(response)

Versioning scenarios

The following table illustrates how versioning and endpoints interact during the lifecycle of an
agent runtime:

Agent Runtime Versioning Scenarios

Change Type Version Creation Behavior Latest
Version

Endpoint Behavior

Initial
Creation

Creates Version 1 (V1)
automatically

V1 DEFAULT points to V1

Protocol
Change

Creates a new version with
updated protocol settings

V2 DEFAULT automatically
updates to V2

Create
"PROD"
endpoint
with V2

No new version created V2 PROD endpoint points to V2

Container
Image
Update

Creates a new version with
new container reference

V3 DEFAULT updates to V3,
PROD remains on V2

Update
"PROD" to V3

No new version created V3 PROD updates to V3

Network
Settings
Modification

Creates a new version with
updated security parameters

V4 DEFAULT updates to V4,
PROD remains on V3

Versioning scenarios 75

Amazon Bedrock AgentCore Developer Guide

Endpoint lifecycle states

AgentCore Runtime endpoints go through various states during their lifecycle:

CREATING

Initial state when an endpoint is being created

CREATE_FAILED

Indicates creation failure due to permissions, container, or other issues

READY

Endpoint is ready to accept requests

UPDATING

Endpoint is being updated to a new version

UPDATE_FAILED

Indicates update operation failure

Listing AgentCore Runtime versions and endpoints

You can list all versions of an AgentCore Runtime by calling the ListAgentRuntimeVersions
operation. To list the endpoints for an AgentCore Runtime, call ListAgentRuntimeEndpoints.

Invoke an AgentCore Runtime agent

The InvokeAgentRuntime operation lets you send requests to specific AgentCore Runtime
endpoints identified by their Amazon Resource Name (ARN) and receive streaming responses
containing the agent's output. The API supports session management through session identifiers,
enabling you to maintain conversation context across multiple interactions. You can target specific
agent endpoints using optional qualifiers.

To call InvokeAgentRuntime, you need bedrock-agentcore:InvokeAgentRuntime
permissions. In the call you can also pass a bearer token that the agent can use for user
authentication.

The InvokeAgentRuntime operation accepts your request payload as binary data up to 100 MB
in size and returns a streaming response that delivers chunks of data in real-time as the agent

Endpoint lifecycle states 76

Amazon Bedrock AgentCore Developer Guide

processes your request. This streaming approach allows you to receive partial results immediately
rather than waiting for the complete response, making it ideal for interactive applications.

If you plan on integrating your agent with OAuth, you can't use the AWS SDK to call
InvokeAgentRuntime. Instead, make a HTTPS request to InvokeAgentRuntime. For more
information, Authenticate and authorize with Inbound Auth and Outbound Auth.

Invoke streaming agents

The following example shows how to use boto3 to invoke an agent runtime:

import boto3
import json

Initialize the Bedrock AgentCore client
agent_core_client = boto3.client('bedrock-agentcore')

Prepare the payload
payload = json.dumps({"prompt": prompt}).encode()

Invoke the agent
response = agent_core_client.invoke_agent_runtime(
 agentRuntimeArn=agent_arn,
 runtimeSessionId=session_id,
 payload=payload
)

Process and print the response
if "text/event-stream" in response.get("contentType", ""):

 # Handle streaming response
 content = []
 for line in response["response"].iter_lines(chunk_size=10):
 if line:
 line = line.decode("utf-8")
 if line.startswith("data: "):
 line = line[6:]
 print(line)
 content.append(line)
 print("\nComplete response:", "\n".join(content))

Invoke streaming agents 77

Amazon Bedrock AgentCore Developer Guide

elif response.get("contentType") == "application/json":
 # Handle standard JSON response
 content = []
 for chunk in response.get("response", []):
 content.append(chunk.decode('utf-8'))
 print(json.loads(''.join(content)))

else:
 # Print raw response for other content types
 print(response)

Invoke multi-modal agents

You can use the InvokeAgentRuntime operation to send multi-modal requests that include both
text and images. The following example shows how to invoke a multi-modal agent:

import boto3
import json
import base64

Read and encode image
with open("image.jpg", "rb") as image_file:
 image_data = base64.b64encode(image_file.read()).decode('utf-8')

Prepare multi-modal payload
payload = json.dumps({
 "prompt": "Describe what you see in this image",
 "media": {
 "type": "image",
 "format": "jpeg",
 "data": image_data
 }
}).encode()

Invoke the agent
response = agent_core_client.invoke_agent_runtime(
 agentRuntimeArn=agent_arn,
 runtimeSessionId=session_id,
 payload=payload
)

Invoke multi-modal agents 78

Amazon Bedrock AgentCore Developer Guide

Session management

The InvokeAgentRuntime operation supports session management through the
runtimeSessionId parameter. By providing the same session identifier across multiple requests,
you can maintain conversation context, allowing the agent to reference previous interactions.

To start a new conversation, generate a unique session identifier. To continue an existing
conversation, use the same session identifier from previous requests. This approach enables you to
build interactive applications that maintain context over time.

Tip

For best results, use a UUID or other unique identifier for your session IDs to avoid collisions
between different users or conversations.

Error handling

When using the InvokeAgentRuntime operation, you might encounter various errors. Here are
some common errors and how to handle them:

ValidationException

Occurs when the request parameters are invalid. Check that your agent ARN, session ID, and
payload are correctly formatted.

ResourceNotFoundException

Occurs when the specified agent runtime cannot be found. Verify that the agent ARN is correct
and that the agent exists in your AWS account.

AccessDeniedException

Occurs when you don't have the necessary permissions. Ensure that your IAM policy includes the
bedrock-agentcore:InvokeAgentRuntime permission.

ThrottlingException

Occurs when you exceed the request rate limits. Implement exponential backoff and retry logic
in your application.

Session management 79

Amazon Bedrock AgentCore Developer Guide

Implement proper error handling in your application to provide a better user experience and to
troubleshoot issues effectively.

Best practices

Follow these best practices when using the InvokeAgentRuntime operation:

• Use session management to maintain conversation context for a better user experience.

• Process streaming responses incrementally to provide real-time feedback to users.

• Implement proper error handling and retry logic for a robust application.

• Consider payload size limitations (100 MB) when sending requests, especially for multi-modal
content.

• Use appropriate qualifiers to target specific agent versions or endpoints.

• Implement authentication mechanisms when necessary using bearer tokens.

Observe agents in Amazon Bedrock AgentCore Runtime

For information about the AgentCore Runtime observability metrics, see Add observability to your
Amazon Bedrock AgentCore resources.

Troubleshoot AgentCore Runtime

This troubleshooting topic helps you identify and resolve common issues when working with
AgentCore Runtime. By following these solutions, you can quickly diagnose and fix problems with
your agent runtimes.

Topics

• Common issues and solutions

• Advanced troubleshooting

• Common best practices

Common issues and solutions

RuntimeClientError (403) issues

Problem

Best practices 80

Amazon Bedrock AgentCore Developer Guide

You receive a 403 "RuntimeClientError" when attempting to invoke your agent runtime.

Causes

This error typically occurs due to:

• Container startup failures

• Permissions issues with execution role

• Authentication issues with bearer token

Resolution

Follow these steps to resolve the issue:

1. Check CloudWatch Logs: Any issues with starting up the container will reflect as a 403 -
RuntimeClientError. Navigate to the following CloudWatch log group to check for startup
errors:

/aws/bedrock-agentcore/runtimes/<agent_id>-<endpoint_name>/[runtime-logs]

2. Verify Execution Role: Ensure your agent's execution role has the necessary permissions. For
more information, see AgentCore Runtime execution role.

3. Validate Authentication: For MCP protocol agents, ensure your bearer token is valid and not
expired.

Missing or empty CloudWatch logs

Problem

You encounter errors but don't see any relevant logs in CloudWatch.

Solution

Try these approaches to diagnose the issue:

1. Check Correct Log Group: Ensure you're looking in the right CloudWatch log group. The
standard pattern is:

/aws/bedrock-agentcore/runtimes/<agent_id>-<endpoint_name>/runtime-logs

Common issues and solutions 81

Amazon Bedrock AgentCore Developer Guide

2. Run Locally for Diagnostics: If there are no CloudWatch logs, try running the agent container
locally using the exact same payload you used for invocation in AgentCore Runtime. This can
help identify issues that might not be visible in the logs.

3. Enable Verbose Logging: Update your agent code to include more detailed logging, especially
around the entry points and any error handling logic.

Payload format issues

Problem

Your agent runtime invocation fails even though the container starts successfully.

Resolution

Follow these steps to resolve payload format issues:

1. Verify Payload Structure: Ensure your payload structure matches what your agent expects.
Pay special attention to:

• If your agent code expects input keyword in the payload, make sure to include it:

{
 "input": {
 "prompt": "Your question here"
 }
}

• Not just:

{
 "prompt": "Your question here"
}

2. Check Documentation: Review the expected input format in the documentation.

Common error codes

Problem

Your agent returns HTTP error codes that are difficult to interpret.

Common issues and solutions 82

Amazon Bedrock AgentCore Developer Guide

Resolution

Here are the most common error codes and their meanings:

422 Unprocessable Entity

This happens when the container encounters validation issues with the input payload.

Common causes:

• Missing required fields in the payload (e.g., missing "input" field)

• Incorrect data types for fields

• Invalid format for the payload

403 Forbidden

Authentication or authorization issues.

Check your bearer token or IAM permissions.

500 Internal Server Error

Runtime exceptions in your agent code.

Check CloudWatch logs for detailed stack traces.

Testing recommendations

To systematically debug agent runtime issues:

Test locally first

Before deploying to AgentCore Runtime:

• Run your agent container locally using the same Docker image

• Verify it works with the exact same payload

Compare payloads

Ensure consistency between environments:

• Ensure the payload structure between local testing and AgentCore Runtime invocation is
identical

Common issues and solutions 83

Amazon Bedrock AgentCore Developer Guide

• Pay special attention to nesting of fields like "input" and "prompt"

Advanced troubleshooting

Debugging container issues

If you suspect container-related issues:

Pull and run locally

Test your container image on your local machine:

docker pull <your-ecr-repo-uri>
docker run -p 8080:8080 <your-ecr-repo-uri>

Test with curl

Send test requests to your local container:

curl -X POST http://localhost:8080/invocations \
 -H "Content-Type: application/json" \
 -d '{"input": {"prompt": "Hello world!"}}'

Check container logs

Examine the container's output for errors:

docker logs <container-id>

Troubleshooting MCP protocol agents

For MCP protocol agents, follow these specific troubleshooting steps:

Verify endpoint path

MCP servers should listen on 0.0.0.0:8000/mcp/

Use MCP Inspector

Test with the MCP Inspector tool:

Advanced troubleshooting 84

Amazon Bedrock AgentCore Developer Guide

1. Install and run the MCP Inspector: npx @modelcontextprotocol/inspector

2. Connect to your local server at http://localhost:8000/mcp

3. For deployed agents, use the properly URL-encoded endpoint

Authentication issues

Check authentication configuration:

• Ensure bearer token is correctly set in the headers

• Verify your Cognito user pool is correctly set up

Common best practices

Enable comprehensive logging

Implement thorough logging in your agent:

• Include request/response logging in your agent

• Log critical paths and error conditions

Use structured error handling

Implement clear error reporting:

• Return clear error messages with specific codes

• Include actionable information in error responses

Test incremental changes

Follow a methodical testing approach:

• When modifying your agent, test locally before deployment

• Validate payload compatibility with both local and deployed environments

Monitor performance

Set up monitoring for your agent:

Common best practices 85

Amazon Bedrock AgentCore Developer Guide

• Use CloudWatch metrics to track invocation patterns

• Set up alarms for error rates and latency

Common best practices 86

Amazon Bedrock AgentCore Developer Guide

Add memory to your AI agent

AgentCore Memory lets your AI agents deliver intelligent, context-aware, and personalized
interactions by maintaining both immediate and long-term knowledge. AgentCore Memory offers
two types of memory:

• Short-term memory: Stores conversations to keep track of immediate context.

For example, imagine your coding agent is helping you debug. During the session, you ask it
to check variable names, correct syntax errors, and find unused imports. The agent stores the
interactions as short term events in AgentCore Memory. Later the agent can retrieve the events
so that it can converse without you having to repeat previous information.

Short-term memory captures raw interaction events, maintains immediate context, powers
real-time conversations, enriches long-term memory systems, and enables building advanced
contextual solutions such as multi-step task completion, in-session knowledge accumulation, and
context-aware decision making.

• Long-term memory: Stores extracted insights - such as user preferences, semantic facts, and
summaries - for knowledge retention across sessions.

• User Preferences – Think of your coding agent which uses AgentCore Memory as your long-
time coding partner. Over many days, it notices you always write clean code with comments,
prefer snake_case naming, use pandas for data analysis, and test functions before finalizing
them. Next time, even after many sessions, when you ask it to write a data analysis function,
it automatically follows these preferences stored in AgentCore Memory without you telling it
again.

• Semantic facts – The coding agent also remembers that “Pandas is a Python Library for
data analysis and handling tables”. When you ask, “Which library is best for table data?”, it
immediately suggests Pandas because it understands what Pandas are from the semantic
memory.

• Summary – The coding agent generates session summaries such as “During this interaction,
you created a data cleaning function, fixed two syntax errors, and tested your linear regression
model.” These summaries both track completed work and compress conversation context,
enabling efficient reference to past activities while optimizing context window usage.

87

Amazon Bedrock AgentCore Developer Guide

You can use AgentCore Memory with the AWS SDK or with any popular agent framework, such as
Strands Agents. For code examples, see https://github.com/awslabs/amazon-bedrock-agentcore-
samples/tree/main/01-tutorials/04-AgentCore-memory.

Topics

• How it works

• Getting started with AgentCore Memory

• Configure AgentCore Memory

• Store and use short-term memory

• Store and use long-term memory

How it works

AgentCore Memory provides APIs that let AI agents store, retrieve, and use memory effectively.

Topics

• Short-term memory

• Long-term memory

• Putting it all together: A customer support AI agent

How it works 88

https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/01-tutorials/04-AgentCore-memory
https://github.com/awslabs/amazon-bedrock-agentcore-samples/tree/main/01-tutorials/04-AgentCore-memory

Amazon Bedrock AgentCore Developer Guide

Short-term memory

Short-term memory stores raw interactions that help the agent maintain context within a single
session. For example, in a shopping website's customer support AI agent, short-term memory
captures the entire conversation history as a series of events. Each customer question and agent
response is saved as a separate event (or in batches, depending on your implementation). This
allows the agent to reload the conversation as it happened, maintaining context even if the service
restarts or the customer returns later to continue the same interaction seamlessly.

When a customer interacts with your agent, each interaction can be captured as an event using
the CreateEvent operation. Events can contain various types of data, including conversational
exchanges (questions, answers, instructions) or structured information (product details, order
status). Each event is attached to a session using either defined session identifier of your choosing
or a default session identifier is generated. You can use this sessionId in future requests to maintain
conversation context.

To load previous sessions/conversations or enrich context, your agent needs to access the raw
interactions with the customer. Imagine a customer returns to follow up on their product support
case from last week. To provide seamless assistance, the agent uses ListSessions to locate
their previous support interactions. Through ListEvents, it retrieves the conversation history,
understanding the reported issue, troubleshooting steps attempted, and any temporary solutions
discussed. The agent uses GetEvent to access specific information from key moments in past
conversations. These operations work together to maintain support continuity across sessions,
eliminating the need for customers to re-explain their issue or repeat troubleshooting steps already
attempted.

Long-term memory

Long-term memory stores structured information extracted from raw agent interactions, which is
retained across multiple sessions. Instead of saving all raw conversation data, long-term memory
preserves only the key insights such as summaries of the conversations, facts and knowledge
(semantic memory), or user preferences. For example, if a customer tells the agent their preferred
shoe brand during a chat, the AI agent stores this as a long-term memory. Later, even in a different
conversation, the agent can remember and suggest the shoe brand, making the interaction
personalized and relevant.

In AgentCore Memory, you can add memory strategies as part of CreateMemory operation which
decides what information to extract from raw conversations. These strategies are configurations

Short-term memory 89

Amazon Bedrock AgentCore Developer Guide

that intelligently capture main concepts from interactions (sent as events in the CreateEvent
operation) and persists them. The strategies currently supported are summarization, semantic
memory (facts and knowledge), and user preferences. AgentCore Memory allows two ways to add
these strategies to the memory:

• Built-in strategies (managed by AgentCore and runs in a service-managed account)

• Custom strategies that let you append to the system prompt and choose the model. This lets you
tailor the memory extraction and consolidation to your specific domain or use case

Long-term memory generation is an asynchronous process that runs in the background and
automatically extracts insights after raw conversation/context is stored in Short Term Memory via
CreateEvent. This efficiently consolidates key information without interrupting live interactions.
As part of the long-term memory generation, AgentCore Memory performs the following
operations:

• Extraction: Extracts information from raw interactions with the agent

• Consolidation: Consolidates newly extracted information with existing information in the
AgentCore Memory.

Once long-term memory is generated, you can retrieve these extracted memories to enhance
your agent's responses with persistent knowledge. Extracted memories are stored as memory
records and can be accessed using the GetMemoryRecord, ListMemoryRecords, or
RetrieveMemoryRecords operations. The RetrieveMemoryRecords operation is particularly
powerful as it performs a semantic search to find memory records that are most relevant to the
query. For example, when a customer asks about running shoes, the agent can use semantic
search to retrieve related memory records, such as customer's preferred shoe size, favorite shoe
brands, and previous shoe purchases. This lets the AI support agent provide highly personalized
recommendations without requiring the customer to repeat information they've shared before.

Putting it all together: A customer support AI agent

Consider a customer, Sarah, who engages with your shopping website's support AI agent to inquire
about a delayed order.

Putting it all together: A customer support AI agent 90

Amazon Bedrock AgentCore Developer Guide

The interaction flow through the AgentCore Memory APIs would look like this:

• Create a short term and long term memory and add strategies to create your long term memory.

• Starting the session: When Sarah initiates the conversation, the agent creates a new, and
unique, session ID to track this interaction separately.

• Capturing conversation history: As Sarah explains her issue, each message (both her questions
and agent's responses) is saved as an event using CreateEvent operation ensuring the full
conversation is recorded in sequence.

• Generating long-term memory: In the background, the asynchronous extraction process
runs every few turns. This process analyzes the recent raw events using built-in or custom
memory strategies (that you had configured when setting up AgentCore Memory through
CreateMemory operation) to extract long-term memories such as summaries, semantic facts, or
user preferences, which are then stored for future use.

• Retrieving past interactions from short-term memory: To provide context-aware assistance,
the agent calls ListEvents to load conversation histories. This helps the agent understand
what issues Sarah has raised before.

• Using long-term memories for personalized assistance: The agent calls
RetrieveMemoryRecords, which performs a semantic search across extracted long-term
memories to find relevant insights about Sarah's preferences, order history, or past concerns.
This lets the agent provide highly personalized assistance without needing to ask Sarah to repeat
information she has already shared in previous chats.

This integrated approach allows the agent to maintain rich context across sessions, recognize
returning customers, recall important details, and deliver personalized experiences seamlessly,
resulting in faster, more natural, and effective customer support.

Putting it all together: A customer support AI agent 91

Amazon Bedrock AgentCore Developer Guide

Getting started with AgentCore Memory

Amazon Bedrock AgentCore Memory lets you create and manage memory resources that store
conversation context for your AI agents. This getting started section guides you through installing
dependencies and implementing both short-term and long-term memory features.

Topics

• Create an AgentCore Memory resource

• Maintain user context using short-term memory

• Create a memory with a long-term memory

• Use long-term memory in an agent

• Custom strategies

Create an AgentCore Memory resource

Learn how to install dependencies and create an AgentCore Memory resources for your AI agents.

Topics

• Install dependencies

• Create memory for short-term memory

• List existing memory resources

Install dependencies

To get started with Amazon Bedrock AgentCore Memory, install the Amazon Bedrock AgentCore
Python SDK:

pip install bedrock-agentcore

Create memory for short-term memory

Adding short-term memory is a quick, one-time setup process. Short-term memory maintains
context without persisting historical data. This is useful for tracking current conversation flow,
such as customer support interactions. Note that for short-term memory, you don't need to add a
memory strategy which is used to extract memories for long-term storage.

Getting started with AgentCore Memory 92

Amazon Bedrock AgentCore Developer Guide

Example Create short-term memory using the Bedrock AgentCore SDK

from bedrock_agentcore.memory import MemoryClient

client = MemoryClient(region_name="us-west-2")

memory = client.create_memory(
 name="CustomerSupportAgentMemory",
 description="Memory for customer support conversations",
)

The memory_id will be used in following operations
print(f"Memory ID: {memory.get('id')}")
print(f"Memory: {memory}")

List existing memory resources

If you already have existing memory resources created in Amazon Bedrock AgentCore Memory, you
can list them to find their identifiers:

for memory in client.list_memories():
 print(f"Memory Arn: {memory.get('arn')}")
 print(f"Memory ID: {memory.get('id')}")
 print("--")

Maintain user context using short-term memory

Learn how to store and retrieve conversation context using short-term memory.

Topics

• Create events in short-term memory

• Load conversations from short-term memory

Create events in short-term memory

The create_event action stores agent interactions into short-term memory instantly. You can
save conversations either one turn at a time or in batches, depending on your application needs.
Each saved interaction can include user messages, assistant responses, and tool actions. The
process is synchronous, ensuring no conversation data is lost.

Maintain user context using short-term memory 93

Amazon Bedrock AgentCore Developer Guide

client.create_event(
 memory_id=memory.get("id"), # This is the id from create_memory or list_memories
 actor_id="User84", # This is the identifier of the actor, could be an agent or
 end-user.
 session_id="OrderSupportSession1", #Unique id for a particular request/
conversation.
 messages=[
 ("Hi, I'm having trouble with my order #12345", "USER"),
 ("I'm sorry to hear that. Let me look up your order.", "ASSISTANT"),
 ("lookup_order(order_id='12345')", "TOOL"),
 ("I see your order was shipped 3 days ago. What specific issue are you
 experiencing?", "ASSISTANT"),
 ("Actually, before that - I also want to change my email address", "USER"),
 (
 "Of course! I can help with both. Let's start with updating your email.
 What's your new email?",
 "ASSISTANT",
),
 ("newemail@example.com", "USER"),
 ("update_customer_email(old='old@example.com', new='newemail@example.com')",
 "TOOL"),
 ("Email updated successfully! Now, about your order issue?", "ASSISTANT"),
 ("The package arrived damaged", "USER"),
],
)

Load conversations from short-term memory

The list_events method loads conversations from short-term memory using the memory_id,
actor_id and session_id. The process is synchronous and returns the conversation data:

conversations = client.list_events(
 memory_id=memory.get("id"),
 actor_id="User84",
 session_id="OrderSupportSession1",
 max_results=5,
)

Create a memory with a long-term memory

Learn how to set up long-term memory to extract and store information from conversations.

Create a memory with a long-term memory 94

Amazon Bedrock AgentCore Developer Guide

Topics

• Create memory with long-term memory

• Save conversations and view extracted memories

Create memory with long-term memory

With long-term memory, you can extract and store information from conversations for future use.
When you add long-term memory, you can use one of the following strategies:

• User Preferences (UserPreferenceMemoryStrategy): Stores and learns recurring patterns in
user behavior, interaction styles, and choices. This enables the agent to automatically adapt its
responses to match user preferences across multiple sessions.

• Semantic Facts (SemanticMemoryStrategy): Maintains knowledge of facts and domain-
specific information, technical concepts, and their relationships. This allows the agent to provide
informed responses based on previously established context and understanding.

• Session Summaries (SummaryMemoryStrategy): Creates condensed representations of
interaction content and outcomes. These summaries provide quick reference points for past
activities and help optimize context window usage for future interactions.

To create a memory resource with long-term memory, use the create_memory_and_wait
method with a strategy. Long-term memory takes 2-3 minutes to become ACTIVE:

memory = client.create_memory_and_wait(
 name="MyAgentMemory",
 strategies=[{
 "summaryMemoryStrategy": {
 # Name of the extraction model/strategy
 "name": "SessionSummarizer",
 # Organize facts by session ID for easy retrieval
 # Example: "summaries/session123" contains summary of session123
 "namespaces": ["/summaries/{actorId}/{sessionId}"]
 }
 }]
)

If you are already using short-term memory, you can upgrade to use long-term memory by adding
a strategy to the existing memory resource:

Create a memory with a long-term memory 95

Amazon Bedrock AgentCore Developer Guide

summary_strategy = client.add_summary_strategy(
 memory_id = memory.get("id"),
 name="SessionSummarizer",
 description="Summarizes conversation sessions",
 namespaces=["/summaries/{actorId}/{sessionId}"] #Namespace allow you to organize
 all extracted information. This template will extract information for each sessionId
 belonging to an actor in separate namespace
)

Note

Long-term memory records will only be extracted from events that are stored after the
newly added strategies become ACTIVE. Conversations stored before a strategy is added
will not appear in long-term memory.

Save conversations and view extracted memories

The following example demonstrates how to save a conversation and retrieve its automatically
extracted memories. After saving the conversation, we wait for 1 minute to allow the long-term
memory strategies to process and extract meaningful information before retrieving it.

import time

event = client.create_event(
 memory_id=memory.get("id"), # This is the id from create_memory or list_memories
 actor_id="User84", # This is the identifier of the actor, could be an agent or
 end-user.
 session_id="OrderSupportSession1",
 messages=[
 ("Hi, I'm having trouble with my order #12345", "USER"),
 ("I'm sorry to hear that. Let me look up your order.", "ASSISTANT"),
 ("lookup_order(order_id='12345')", "TOOL"),
 ("I see your order was shipped 3 days ago. What specific issue are you
 experiencing?", "ASSISTANT"),
 ("Actually, before that - I also want to change my email address", "USER"),
 (
 "Of course! I can help with both. Let's start with updating your email.
 What's your new email?",
 "ASSISTANT",
),

Create a memory with a long-term memory 96

Amazon Bedrock AgentCore Developer Guide

 ("newemail@example.com", "USER"),
 ("update_customer_email(old='old@example.com', new='newemail@example.com')",
 "TOOL"),
 ("Email updated successfully! Now, about your order issue?", "ASSISTANT"),
 ("The package arrived damaged", "USER"),
],
)

Wait for meaningful memories to be extracted from the conversation.
time.sleep(60)

Query for the summary of the issue using the namespace set in summary strategy above
memories = client.retrieve_memories(
 memory_id=memory.get("id"),
 namespace=f"/summaries/User84/OrderSupportSession1",
 query="can you summarize the support issue"
)

Use long-term memory in an agent

Learn how to integrate long-term memory with an agent to enhance its capabilities.

Topics

• Install dependencies

• Add memory to an agent

Install dependencies

pip install strands-agents

Add memory to an agent

from strands import tool, Agent
from strands_tools.agent_core_memory import AgentCoreMemoryToolProvider
import time
from bedrock_agentcore.memory import MemoryClient

client = MemoryClient(region_name="us-west-2")
memory = client.create_memory_and_wait(
 name="MyAgentMemory",

Use long-term memory in an agent 97

Amazon Bedrock AgentCore Developer Guide

 strategies=[{
 "userPreferenceMemoryStrategy": {
 "name": "UserPreference",
 "namespaces": ["/users/{actorId}"]
 }
 }]
)

strands_provider = AgentCoreMemoryToolProvider(
 memory_id=memory.get("id"),
 actor_id="CaliforniaPerson",
 session_id="TalkingAboutFood",
 namespace="/users/CaliforniaPerson",
 region="us-west-2"
)
agent = Agent(tools=strands_provider.tools)

agent("Im vegetarian and I prefer restaurants with a quiet atmosphere.")
agent("Im in the mood for Italian cuisine.")
agent("Id prefer something mid-range and located downtown.")
agent("I live in Irvine.")

time.sleep(60)

This will use the long-term memory tool
agent("I dont remember what I was in a mood for, do you remember?")

Custom strategies

You can customize existing strategies by specifying your own prompt. This allows you to specify
the exact information you want to extract. In the example below, you create a custom prompt to
extract a user's preference about their airline needs.

Topics

• Create an IAM role for the service

• Create a long-term memory with a custom strategy

• Create events to upload user conversations

• Search for user's preferences

Custom strategies 98

Amazon Bedrock AgentCore Developer Guide

Create an IAM role for the service

Start by making sure you have an IAM role with the managed policy
AmazonBedrockAgentCoreMemoryBedrockModelInferenceExecutionRolePolicy, or create a policy
with the following permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "bedrock:InvokeModel",
 "bedrock:InvokeModelWithResponseStream"
],
 "Resource": [
 "arn:aws:bedrock:*::foundation-model/*",
 "arn:aws:bedrock:*:*:inference-profile/*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 }
]
}

This role is assumed by the Service to call the model in your AWS account. Use the trust policy
below when creating the role or when using the managed policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "bedrock-agentcore.amazonaws.com"
]
 },

Custom strategies 99

Amazon Bedrock AgentCore Developer Guide

 "Action": "sts:AssumeRole"
 }
]
}

For information about creating an IAM role, see IAM role creation.

Create a long-term memory with a custom strategy

from bedrock_agentcore.memory import MemoryClient

client = MemoryClient(region_name="us-west-2")

Our custom prompt ensures that we're able to extract a customer's travel preferences.
CUSTOM_PROMPT = """\
You are tasked with analyzing conversations to extract the user's preferences. You'll
 be analyzing two sets of data:

<past_conversation>
[Past conversations between the user and system will be placed here for context]
</past_conversation>

<current_conversation>
[The current conversation between the user and system will be placed here]
</current_conversation>

Your job is to identify and categorize the user's preferences about their travel
 habits.
- Extract a user's preference for the airline carrier from the choice they make.
- Extract a user's preference for the seat type on the airline from the choice they
 make. It can aisle, middle or window
"""

Replace the value with the role arn created above.
MEMORY_EXECUTION_ROLE_ARN = "arn:aws:iam::123456789012:role/MyRole"

memory = client.create_memory_and_wait(
 name="AirlineMemoryAgent",
 strategies=[{
 "customMemoryStrategy": {
 "name": "UserPreference",
 "namespaces": ["/users/{actorId}"],
 "configuration" : {

Custom strategies 100

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

Amazon Bedrock AgentCore Developer Guide

 "userPreferenceOverride" : {
 "extraction" : {
 "modelId" : "anthropic.claude-3-5-sonnet-20241022-v2:0",
 "appendToPrompt": CUSTOM_PROMPT
 }
 }
 }
 }
 }],
 memory_execution_role_arn=MEMORY_EXECUTION_ROLE_ARN
)

Create events to upload user conversations

event = client.create_event(
 memory_id=memory.get("id"), # This is the id from create_memory or list_memories
 actor_id="User84", # This is the identifier of the actor, could be an agent or
 end-user.
 session_id="AirlineBookingSession1",
 messages=[
 ("Hi, I would like to book a flight from Seattle to New York for this Sunday",
 "USER"),
 ("Certainly, let me try to find the best flights for you", "ASSISTANT"),
 ("flight_search(start='Seattle', end='New York', date='2025-07-30')", "TOOL"),
 ("I have a two options available. 1/ Delta Airlines DL456 at 10:30 AM 2/
 American Airline AA345 at 4PM. ", "ASSISTANT"),
 ("Delta airline", "USER"),
 ("Sure. I will get you a seat on Delta flight DL456. Do you have a preference
 for a seat type","ASSISTANT",),
 ("Yes. Window please", "USER"),
 ("I have booked you on flight DL456 at 10:30 AM on 07/30/2025. Your seat number
 is 26A. You will more details in your email", "ASSISTANT"),
],
)

Search for user's preferences

memories = client.retrieve_memories(
 memory_id=memory.get("id"),
 namespace=f"/users/User84",
 query="What are the user's preferences for airline type ?"
)

Custom strategies 101

Amazon Bedrock AgentCore Developer Guide

memories = client.retrieve_memories(
 memory_id=memory.get("id"),
 namespace=f"/users/User84",
 query="What are the user's preferences for seat type ?"
)

Configure AgentCore Memory

When creating an AgentCore Memory, you can configure various settings such as name, optional
description, encryption settings, expiration timestamp for raw agent interaction events, and
memory strategies (if you want to extract long-term memory).

Prerequisites

Before you start using AgentCore Memory, these are some important prerequisites you need to
know:

Topics

• Memory scoping with namespaces

• Memory strategies

Memory scoping with namespaces

With Long-Term Memory, organization is managed through Namespaces, which are defined when
setting memory strategy in a call to the CreateMemory operation or with the AgentCore console.
This section details these concepts.

An actor refers to entity such as end users or agent/user combinations. For example, in a coding
support chatbot, the actor is usually the developer asking questions. Using the actor ID helps the
system know which user the memory belongs to, keeping each user's data separate and organized.

A session is usually a single conversation or interaction period between the user and the AI agent.
It groups all related messages and events that happen during that conversation.

A namespace is used to logically group and organize long-term memories. It ensures data stays
neat, separate, and secure.

With AgentCore Memory, you need to add a namespace when you define a memory strategy as
part of CreateMemory operation. This namespace helps define where the long-term memory will

Configure AgentCore Memory 102

Amazon Bedrock AgentCore Developer Guide

be logically grouped. Every time a new long-term memory is extracted using this memory strategy,
it is saved under the namespace you set. This means that all long-term memories are scoped to
their specific namespace, keeping them organized and preventing any mix-ups with other users
or sessions. You should use a hierarchical format separated by forward slashes /. This helps keep
memories organized clearly. As needed, you can choose to use the below pre-defined variables
within braces in the namespace based on your applications' organization needs:

• actorId – Identifies who the long-term memory belongs to, such as a user)

• strategyId – Shows which memory strategy is being used. This strategy identifier is auto-
generated when you create a memory using CreateMemory operation.

• sessionId – Identifies which session or conversation the memory is from.

For example, if you define the following namespace as the input to your strategy in
CreateMemory operation:

/strategy/{strategyId}/actor/{actorId}/session/{sessionId}

After memory creation, this namespace might look like:

/strategy/summarization-93483043//actor/actor-9830m2w3/session/session-9330sds8

A namespace can have different levels of granularity:

Most granular Level of organization

/strategy/{strategyId}/actor/{actorId}/session/{sessionId}

Granular at the actor Level across sessions

/strategy/{strategyId}/actor/{actorId}

Granular at the strategy Level across actors

/strategy/{strategyId}

Global across all strategies

/

Prerequisites 103

Amazon Bedrock AgentCore Developer Guide

Restrict access with IAM

You can create IAM policies to restrict memory access by the scopes you define, such as actor,
session, and namespace. Use the scopes as context keys in your IAM polices.

The following policy restricts access to retrieving memories from a specific namespace.

 {
 "PolicyName": "SpecificNamespaceAccess",
 "Description": "Provides access to a specific namespace for LTM within memory",
 "Policy": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SpecificNamespaceAccess",
 "Effect": "Allow",
 "Action": [
 “bedrock-agentcore:RetrieveMemoryRecords”
],
 "Resource": "arn:aws:bedrock-agentcore::123456789012:memory/<id>"
 "Condition": {
 [
 "StringEquals" : {
 “bedrock-agentcore:namespace” : “summaries/agent1"
 }
]
 }
 },
]
 }
 }

Memory strategies

Memory strategies define how your AI agent processes information from conversations into
long-term memory. They decide what type of information is kept, turning raw conversations into
structured and useful knowledge. With AgentCore Memory, you need to add memory strategies
in CreateMemory or UpdateMemory operation so that it can be used for long-term memory
extraction. You can choose:

• Built-in strategies: AgentCore Memory allows you to add the following built-in memory
strategies:

Prerequisites 104

Amazon Bedrock AgentCore Developer Guide

• SemanticMemoryStrategy: Stores facts and knowledge mentioned in the conversation for
future reference

• SummaryMemoryStrategy: Stores a running summary of a conversation, capturing main points
and decisions, scoped to a session (through namespace).

• UserPreferenceMemoryStrategy: Stores user preferences, choices, or styles (e.g., preferred
coding style, or shopping brand)

Note

When using built-in strategies, all extraction and consolidation processes are managed by
AgentCore Memory itself in a service-managed account. No extra setup is required from
your side.

Note

Built-in strategies may use cross-region inference. AgentCore Memory will automatically
select the optimal region within your geography to process your inference request,
maximizing available compute resources and model availability, and providing the best
customer experience. There's no additional cost for using cross-region inference.

• Custom strategies: Custom memory strategy (CustomMemoryStrategy) lets you override the
prompts and choose the LLM to tailor the memory extraction and consolidation to your specific
domain or use case. For example, you might want to override the semantic memory prompt so
that it constrains extracted memories to specific types of facts.

Note

When using custom strategies, the LLM usage for extraction and consolidation will be
charged separately to your AWS account, and additional charges may apply.

Prompts for custom memory strategies

When setting up custom memory strategies, you can override the prompts for extracting and
consolidating semantic, summary or user preferences. This section contains sample extraction and
consolidation prompts which you can use as-is or modify.

Prerequisites 105

Amazon Bedrock AgentCore Developer Guide

The prompts are starting points to setup and configure your custom memory strategy as needed.
These prompts are appended to a non-editable system prompt which are here for your reference.

Important

• The example prompts are intended to be used as starting points. You should build
upon these examples rather than writing entirely new prompts from scratch. The base
structure and instructions in these examples are critical to the memory functionality.
You may add additional, task-specific guidance to these prompts to customize memory
extraction or consolidation as needed.

• We strongly recommend that you do not modify the conversation or memory schema
within the prompts. Instead, you should only add/modify instructions to guide how
memories are extracted or consolidated. This helps prevent any unexpected issues or
failures in the long-term memory pipeline.

• Do not update or rename the operation names used in the memory consolidation
prompts. Changing these operation names will cause failures in the long-term memory
pipeline.

Topics

• Extraction prompts

• Consolidation prompts

Extraction prompts

These prompts help to extract long-term memory information from raw interactions with the
agent. The following are sample extraction prompts that can be used in "appendToPrompt"
field in SemanticOverrideExtractionConfiguration, UserPreferenceExtractionConfiguration,
or SummaryExtractionConfiguration within CustomMemoryStrategy in CreateMemory or
UpdateMemory operation. These prompts are fully editable or can be used as is. These prompts are
appended to a non-editable system prompt which is required to return the extracted memory in an
expected output format.

Topics

• Semantic Strategy Sample Extraction Prompt

• User Preference Strategy Sample Extraction Prompt

Prerequisites 106

Amazon Bedrock AgentCore Developer Guide

Semantic Strategy Sample Extraction Prompt

You are a long-term memory extraction agent supporting a lifelong learning system. Your
 task is to identify and extract meaningful information about the users from a given
 list of messages.

Analyze the conversation and extract structured information about the user according to
 the schema below. Only include details that are explicitly stated or can be logically
 inferred from the conversation.

- Extract information ONLY from the user messages. You should use assistant messages
 only as supporting context.
- If the conversation contains no relevant or noteworthy information, return an empty
 list.
- Do NOT extract anything from prior conversation history, even if provided. Use it
 solely for context.
- Do NOT incorporate external knowledge.
- Avoid duplicate extractions.

User Preference Strategy Sample Extraction Prompt

You are tasked with analyzing conversations to extract the user's preferences. You'll
 be analyzing two sets of data:

<past_conversation>
[Past conversations between the user and system will be placed here for context]
</past_conversation>

<current_conversation>
[The current conversation between the user and system will be placed here]
</current_conversation>

Your job is to identify and categorize the user's preferences into two main types:
- Explicit preferences: Directly stated preferences by the user.
- Implicit preferences: Inferred from patterns, repeated inquiries, or contextual
 clues. Take a close look at user's request for implicit preferences.

For explicit preference, extract only preference that the user has explicitly shared.
 Do not infer user's preference.
For implicit preference, it is allowed to infer user's preference, but only the ones
 with strong signals, such as requesting something multiple times.

Prerequisites 107

Amazon Bedrock AgentCore Developer Guide

Consolidation prompts

The consolidation step identifies if existing memories with the same namespace should be deleted
or updated. AgentCore Memory checks that new memories are not duplicated or contradicting
before merging them with existing memories. This is needed for Semantic or User Preference
strategy. The below are sample prompts for consolidation. These can be used in "appendToPrompt"
field in SemanticOverrideConsolidationConfiguration, UserPreferenceConsolidationConfiguration,
or SummaryConsolidationConfiguration within CustomMemoryStrategy in CreateMemory or
UpdateMemory operation. As with extraction prompts, the consolidation prompts are appended to
a non-editable system prompt which is required to return the consolidated memory in an expected
output format.

Topics

• Semantic Strategy Sample Consolidation Prompt

• User Preference Strategy Sample Consolidation Prompt

• Summarization Strategy Sample Consolidation Prompt

Semantic Strategy Sample Consolidation Prompt

You are a conservative memory manager that preserves existing information while
 carefully integrating new facts.

Your operations are:
- **AddMemory**: Create new memory entries for genuinely new information
- **UpdateMemory**: Add complementary information to existing memories while preserving
 original content
- **SkipMemory**: No action needed (information already exists or is irrelevant)

If the operation is "AddMemory", you need to output:
1. The `memory` field with the new memory content

If the operation is "UpdateMemory", you need to output:
1. The `memory` field with the original memory content
2. The update_id field with the ID of the memory being updated
3. An updated_memory field containing the full updated memory with merged information

Decision Guidelines

AddMemory (New Information)

Prerequisites 108

Amazon Bedrock AgentCore Developer Guide

Add only when the retrieved fact introduces entirely new information not covered by
 existing memories.

Example:
- Existing Memory: `[{"id": "0", "text": "User is a software engineer"}]`
- Retrieved Fact: `["Name is John"]`
- Action: AddMemory with new ID

UpdateMemory (Preserve + Extend)
Preserve existing information while adding new details. Combine information coherently
 without losing specificity or changing meaning.

Critical Rules for UpdateMemory:
- **Preserve timestamps and specific details** from the original memory
- **Maintain semantic accuracy** - don't generalize or change the meaning
- Only enhance when new information genuinely adds value without contradiction
- Only enhance when new information is **closely relevant** to existing memories
- Attend to novel information that deviates from existing memories and expectations
- Consolidate and compress redundant memories to maintain information-density;
 strengthen based on reliability and recency; maximize SNR by avoiding idle words

Example:
- Existing: `[{"id": "1", "text": "Caroline attended an LGBTQ support group meeting
 that she found emotionally powerful."}]`
- Retrieved: `["Caroline found the support group very helpful"]`
- Action: UpdateMemory to `"Caroline attended an LGBTQ support group meeting that she
 found emotionally powerful and very helpful."`

When NOT to update:
- Information is essentially the same: "likes pizza" vs "loves pizza"
- Updating would change the fundamental meaning
- New fact contradicts existing information (use AddMemory instead)
- New fact contains new events with timestamps that differ from existing facts. Since
 enhanced memories share timestamps with original facts, this would create temporal
 contradictions. Use AddMemory instead.

SkipMemory (No Change)
Use when information already exists in sufficient detail or when new information
 doesn't add meaningful value.

Key Principles

- Conservation First: Preserve all specific details, timestamps, and context
- Semantic Preservation: Never change the core meaning of existing memories

Prerequisites 109

Amazon Bedrock AgentCore Developer Guide

- Coherent Integration: Ensure enhanced memories read naturally and logically

User Preference Strategy Sample Consolidation Prompt

ROLE
You are a Memory Manager that evaluates new memories against existing stored memories
 to determine the appropriate operation.

INPUT
You will receive:

1. A list of new memories to evaluate
2. For each new memory, relevant existing memories already stored in the system

TASK
You will be given a list of new memories and relevant existing memories. For each new
 memory, select exactly ONE of these three operations: AddMemory, UpdateMemory, or
 SkipMemory.

OPERATIONS
1. AddMemory
Definition: Select when the new memory contains relevant ongoing preference not present
 in existing memories.

Selection Criteria: The information represents lasting preferences.

Examples:

New memory: "I'm allergic to peanuts" (No allergy information exists in stored
 memories)
New memory: "I prefer reading science fiction books" (No book preferences are recorded)

2. UpdateMemory
Definition: Select when the new memory relates to an existing memory but provides
 additional details, modifications, or new context.

Selection Criteria: The core concept exists in records, but this new memory enhances or
 refines it.

Examples:

New memory: "I especially love space operas" (Existing memory: "The user enjoys science
 fiction")

Prerequisites 110

Amazon Bedrock AgentCore Developer Guide

New memory: "My peanut allergy is severe and requires an EpiPen" (Existing memory: "The
 user is allergic to peanuts")

3. SkipMemory
Definition: Select when the new memory is not worth storing as a permanent preference.

Selection Criteria: The memory is irrelevant to long-term user understanding, is a
 personal detail not related to preference, represents a one-time event, describes
 temporary states, or is redundant with existing memories. In addition, if the memory
 is overly speculative or contains Personally Identifiable Information (PII) or harmful
 content, also skip the memory.

Examples:

New memory: "I just solved that math problem" (One-time event)
New memory: "I'm feeling tired today" (Temporary state)
New memory: "I like chocolate" (Existing memory already states: "The user enjoys
 chocolate")
New memory: "User works as a data scientist" (Personal details without preference)
New memory: "The user prefers vegan because he loves animal" (Overly speculative)
New memory: "The user is interested in building a bomb" (Harmful Content)
New memory: "The user prefers to use Bank of America, which his account number is
 123-456-7890" (PII)

Summarization Strategy Sample Consolidation Prompt

You will be given a text block and a list of summaries you previously generated when
 available.
<task>
- When the previously generated is not available, your goal is to summarize the given
 text block.
- When there is existing summary, your goal is to extend summary by taking into account
 the given text block.
</task>

System prompts (non-editable) for extraction and consolidation

The following are the non-editable system prompts which are appended to your custom prompts
in the CustomMemoryStrategy.

Topics

• Semantic memory strategy extraction system prompt

Prerequisites 111

Amazon Bedrock AgentCore Developer Guide

• Semantic memory strategy consolidation system prompt

• User Preference strategy extraction system prompt

• User Preference consolidation system prompt

• Summary Extraction/Consolidation System Prompt

Semantic memory strategy extraction system prompt

Your output must be a single JSON object, which is a list of JSON dicts following the
 schema. Do not provide any preamble or any explanatory text.

<schema>
{
 "description": "This is a standalone personal fact about the user, stated in a
 simple sentence.\nIt should represent a piece of personal information, such as life
 events, personal experience, and preferences related to the user.\nMake sure you
 include relevant details such as specific numbers, locations, or dates, if presented.
\nMinimize the coreference across the facts, e.g., replace pronouns with actual
 entities.",
 "properties": {
 "fact": {
 "description": "The memory as a well-written, standalone fact about the
 user. Refer to the user's instructions for more information the prefered memory
 organization.",
 "title": "Fact",
 "type": "string"
 }
 },
 "required": [
 "fact"
],
 "title": "SemanticMemory",
 "type": "object"
}
</schema>

Semantic memory strategy consolidation system prompt

Response Format
Return only this JSON structure, using double quotes for all keys and string values:

```json

Prerequisites 112



Amazon Bedrock AgentCore Developer Guide

[ 
  { 
    "memory": { 
      {"fact": "<content>"} 
    }, 
    "operation": "<AddMemory_or_UpdateMemory>", 
    "update_id": "<existing_id_for_UpdateMemory>",  
    "updated_memory": { 
      {"fact": "<content>"} 
    } 
  }, 
  ...
]

Only include entries with AddMemory or UpdateMemory operations. Return empty memory 
 array if no changes are needed.
Do not return anything except the JSON format.

User Preference strategy extraction system prompt

Extract all preferences and return them as a JSON list where each item contains:
1. "context": The background and reason why this preference is extracted.
2. "preference": The specific preference information
3. "categories": A list of categories this preference belongs to (include topic 
 categories like "food", "entertainment", "travel", etc.)

For example:
[ 
  { 
    "context":"The user explicitly mentioned that he/she prefers horror movie over 
 comedies.", 
    "preference": "Prefers horror movies over comedies", 
    "categories": ["entertainment", "movies"] 
  }, 
  { 
    "context":"The user has repeatedly asked for Italian restaurant recommendations. 
 This could be a strong signal that the user enjoys Italian food.", 
    "preference": "Likely enjoys Italian cuisine", 
    "categories": ["food", "cuisine"] 
  }
]

Prerequisites 113



Amazon Bedrock AgentCore Developer Guide

Extract preferences only from <current_conversation>. Only extract user preferences 
 with high confidence. In addition, do not extract personal details about the user. 
 ONLY extract preferences of user.

Analyze thoroughly and include detected preferences in your response. Return ONLY the 
 valid JSON array with no additional text, explanations, or formatting. If there is 
 nothing to extract, simply return empty list.

User Preference consolidation system prompt

# Processing Instructions
For each memory in the input:

Place the original new memory (<NewMemory>) under the "memory" field. Then add a field 
 called "operation" with one of these values:

"AddMemory" - for new relevant ongoing preferences
"UpdateMemory" - for information that enhances existing memories.
"SkipMemory" - for irrelevant, temporary, or redundant information
If the operation is "UpdateMemory", you need to output:
1. The "update_id" field with the ID of the existing memory being updated
2. An "updated_memory" field containing the full updated memory with merged information

## Example Input
<Memory1>
<ExistingMemory1>
[ID]=N1ofh23if\n[TIMESTAMP]=2023-11-15T08:30:22Z\n[MEMORY]={ "context": "user has 
 explicitly stated that he likes vegan", "preference": "prefers vegetarian options", 
 "categories": ["food", "dietary"] }

[ID]=M3iwefhgofjdkf\n[TIMESTAMP]=2024-03-07T14:12:59Z\n[MEMORY]={ "context": "user has 
 ordered oat milk lattes with an extra shot multiple times", "preference": "likes oat 
 milk lattes with an extra shot", "categories": ["beverages", "morning routine"] }
</ExistingMemory1>

<NewMemory1>
[TIMESTAMP]=2024-08-19T23:05:47Z\n[MEMORY]={ "context": "user mentioned avoiding dairy 
 products when discussing ice cream options", "preference": "prefers dairy-free dessert 
 alternatives", "categories": ["food", "dietary", "desserts"] }
</NewMemory1>
</Memory1>

<Memory2>

Prerequisites 114



Amazon Bedrock AgentCore Developer Guide

<ExistingMemory2>
[ID]=Mwghsljfi12gh\n[TIMESTAMP]=2025-01-01T00:00:00Z\n[MEMORY]={ "context": "user 
 mentioned enjoying hiking trails with elevation gain during weekend planning", 
 "preference": "prefers challenging hiking trails with scenic views", "categories": 
 ["activities", "outdoors", "exercise"] }

[ID]=whglbidmrl193nvl\n[TIMESTAMP]=2025-04-30T16:45:33Z\n[MEMORY]={ "context": 
 "user discussed favorite shows and expressed interest in documentaries about 
 sustainability", "preference": "enjoys environmental and sustainability 
 documentaries", "categories": ["entertainment", "education", "media"] }
</ExistingMemory2>

<NewMemory2>
[TIMESTAMP]=2025-09-12T03:27:18Z\n[MEMORY]={ "context": "user researched trips to 
 coastal destinations with public transportation options", "preference": "prefers 
 car-free travel to seaside locations", "categories": ["travel", "transportation", 
 "vacation"] }
</NewMemory2>
</Memory2>

<Memory3>
<ExistingMemory3>
[ID]=P4df67gh\n[TIMESTAMP]=2026-02-28T11:11:11Z\n[MEMORY]={ "context": "user has 
 mentioned enjoying coffee with breakfast multiple times", "preference": "prefers 
 starting the day with coffee", "categories": ["beverages", "morning routine"] }

[ID]=Q8jk12lm\n[TIMESTAMP]=2026-07-04T19:45:01Z\n[MEMORY]={ "context": "user has stated 
 they typically wake up around 6:30am on weekdays", "preference": "has an early morning 
 schedule on workdays", "categories": ["schedule", "habits"] }
</ExistingMemory3>

<NewMemory3>
[TIMESTAMP]=2026-12-25T22:30:59Z\n[MEMORY]={ "context": "user mentioned they didn't 
 sleep well last night and felt tired today", "preference": "feeling tired and groggy", 
 "categories": ["sleep", "wellness"] }
</NewMemory3>
</Memory3>

## Example Output
[{
"memory":{ 
  "context": "user mentioned avoiding dairy products when discussing ice cream 
 options",  
  "preference": "prefers dairy-free dessert alternatives",  

Prerequisites 115



Amazon Bedrock AgentCore Developer Guide

  "categories": ["food", "dietary", "desserts"]
},
"operation": "UpdateMemory",
"update_id": "N1ofh23if",
"updated_memory": { 
  "context": "user has explicitly stated that he likes vegan and mentioned avoiding 
 dairy products when discussing ice cream options", 
  "preference": "prefers vegetarian options and dairy-free dessert alternatives", 
  "categories": ["food", "dietary", "desserts"]
}
},
{
"memory":{ 
  "context": "user researched trips to coastal destinations with public transportation 
 options", 
  "preference": "prefers car-free travel to seaside locations",  
  "categories": ["travel", "transportation", "vacation"]
}, 
  "operation": "AddMemory",
},
{
"memory":{ 
  "context": "user mentioned they didn't sleep well last night and felt tired today", 
  "preference": "feeling tired and groggy",  
  "categories": ["sleep", "wellness"]
}, 
  "operation": "SkipMemory",
}]

Like the example, return only the list of JSON with corresponding operation. Do NOT add 
 any explanation.

Summary Extraction/Consolidation System Prompt

When you generate summaries you ALWAYS follow the below guidelines:
<guidelines>
- Each summary MUST be formatted in XML format.
- Each summary, whenever applicable, MUST cover every topic and be place between <topic 
 name="$TOPIC_NAME"></topic>.
- Only include details that are explicitly stated or can be logically inferred from the 
 conversation.
- Consider the timestamps when you synthesize the summary.
- You ALWAYS output all applicable topics within <summary></summary>

Prerequisites 116



Amazon Bedrock AgentCore Developer Guide

- NEVER start with phrases like 'Here's the summary...', provide directly the summary 
 in the format described below.
</guidelines>

The XML format of each summary is as it follows:
<summary> 
    <topic name="$TOPIC_NAME"> 
        ... 
    </topic> 
    ...
</summary>

Storage encryption and security

When setting up AgentCore Memory using CreateMemory operation, it is important to make sure 
your data is safe and secure. If your application handles sensitive information (such as customer 
details, payment data, or personal chats), you must use encryption to protect this data. Consider 
using a customer-managed KMS key (CMK) for encryption. The service still encrypts data using 
a service managed key, even if you don't provide a CMK. Alternatively, you can also use an AWS-
managed KMS key. In this case, you need to the add the following policy to the IAM user or role 
that you are using to setup memory.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Sid": "AllowAgentCoreMemoryKMS", 
      "Effect": "Allow", 
      "Action": [ 
        "kms:DescribeKey", 
        "kms:CreateGrant", 
        "kms:Decrypt", 
        "kms:GenerateDataKey" 
      ], 
      "Resource": "arn:aws:kms:*:${aws:AccountId}:key/*", 
      "Condition": { 
            "StringEquals": { 
                “kms:ViaService”: “bedrock-agentcore.{$region}.amazonaws.com” 
            } 
        } 
    } 

Prerequisites 117



Amazon Bedrock AgentCore Developer Guide

  ]
}

Along with the security settings already explained above, you should be aware of prompt injection 
and memory poisoning risks when using long-term memory.

• Prompt injection is an application-level security concern, similar to SQL injection in database 
applications. Just as AWS services like Amazon RDS and Amazon Aurora provide secure database 
engines, but customers are responsible for preventing SQL injection in their applications. 
Amazon Bedrock provides a secure foundation for natural language processing, but customers 
must take measures to prevent prompt injection vulnerabilities in their code. Additionally, AWS 
provides detailed documentation, best practices, and guidance on secure coding practices for 
Bedrock and other AWS services.

• Memory poisoning happens when false or harmful information is saved in AgentCore Memory. 
Later, your AI agent may use this wrong information in future conversations, which can lead to 
incorrect or unsafe responses

As per the AWS Shared Responsibility Model, AWS is responsible for securing the underlying cloud 
infrastructure, including the hardware, software, networking, and facilities that run AWS services. 
However, the responsibility for secure application development and preventing vulnerabilities like 
prompt injection and memory poisoning lies with the customer.

To reduce risk, you can do the following:

• Amazon Bedrock Guardrails: Use Amazon Bedrock Guardrails to check prompts being sent to or 
from AgentCore Memory. This ensures that only safe and allowed prompts are processed by your 
agent.

• Adversarial testing: Actively test your AI application for vulnerabilities by simulating attacks or 
prompt injections. This helps you find weak points and fix them before real threats occur.

Create AgentCore Memory

You can create an AgentCore Memory with the Amazon Bedrock AgentCore Console or with the
CreateMemory AWS SDK operation. When creating a memory, you can configure settings such 
as name, description, encryption settings, expiration timestamp for raw events, and memory 
strategies if you want to extract long-term memory.

Create AgentCore Memory 118

https://aws.amazon.com/compliance/shared-responsibility-model/


Amazon Bedrock AgentCore Developer Guide

When creating a AgentCore Memory, consider the following factors to ensure it meets your 
application's needs:

• Event retention – Choose how long raw events are retained (upto 365 days) for short-term 
memory.

• Security requirements – If your application handles sensitive information, consider using a 
customer-managed KMS key for encryption. The service still encrypts data using a service 
managed key, even if you don't provide a CMK For more information, see Storage encryption and 
security.

• Memory strategies – Define how events will be processed into meaningful long-term memories 
using built-in or custom strategies. If you do not define any strategy, only short-term memory 
containing raw events will be stored. For more information, see Long-term memory.

• Naming conventions – Use clear, descriptive names that help identify the purpose of each 
AgentCore Memory, especially if your application uses multiple stores.

Get AgentCore Memory

You can get an AgentCore Memory with the Amazon Bedrock AgentCore Console or with the
GetMemory AWS SDK operation.

You can information such as the following:

• Verify the current configuration of an AgentCore Memory

• Check the status of an AgentCore Memory

• Review the memory strategies associated with an AgentCore Memory

• Obtain information needed for updating or managing an AgentCore Memory

List AgentCore Memory

You can list the available AgentCore Memories in the current AWS Region and AWS account with 
the Amazon Bedrock AgentCore Console or with the ListMemories AWS SDK operation.

For each AgentCore Memory resource that is returned by ListMemories, you can invoke the 
following APIs to perform additional operations:

• GetMemory - Retrieve detailed information about a specific AgentCore Memory using its
memoryId.

Get AgentCore Memory 119



Amazon Bedrock AgentCore Developer Guide

• UpdateMemory - Modify the configuration of an AgentCore Memory, such as adding or removing 
memory strategies.

• DeleteMemory - Remove an AgentCore Memory that is no longer needed.

Update AgentCore Memory

You can update an AgentCore Memory with the Amazon Bedrock AgentCore Console or with the
UpdateMemory AWS SDK operation. You change settings such as memory strategies, description, 
and other parameters.

Delete AgentCore Memory

You can delete an AgentCore Memory with the Amazon Bedrock AgentCore Console or with the
DeleteMemory AWS SDK operation. Deleting an AgentCore Memory permanently removes all 
associated events and all short-term/long-term memory records. This operation cannot be undone.

Store and use short-term memory

In your AI agent, you need to write code to add the interactions/messages as events in AgentCore 
Memory that you created. These events are stored as short-term memory. You can use the 
following operations to manage the short-term memory

Topics

• Create event

• Get event

• List events

• Delete event

Create event

Events are the fundamental units of short-term and long-term memory in AgentCore Memory. The
CreateEvent operation allows you to store various types of data within an AgentCore Memory, 
organized by an actor and session. Events are scoped within memory under:

• actorId: Identifies the entity associated with the event, such as end-users or agent/user 
combinations

Update AgentCore Memory 120



Amazon Bedrock AgentCore Developer Guide

• sessionId: Groups related events together, such as a conversation session

CreateEvent operation stores a new immutable event within a specified memory session. 
Events represent individual pieces of information that your agent wants to remember, such as 
conversation messages, user actions, or system events.

This operation is particularly useful for:

• Recording conversation history between users, agents and tools

• Storing user interactions and behaviors

• Capturing system events and state changes

• Building a chronological record of activities within a session

Note

If you define a memory strategy, calling CreateEvent synchronously starts the extraction 
of memories.

The CreateEvent operation stores a new immutable event within a specified memory session. 
Events represent individual pieces of information that your agent wants to remember, such as 
conversation messages, user actions, or system events. This operation is particularly useful for:

Event payload types

The payload parameter accepts a list of payload items, allowing you to store different types of 
data in a single event. Common payload types include:

• Conversational - For storing conversation messages with roles (e.g., "user", "assistant") and 
content.

Event branching

The branch parameter enables advanced event organization through branching. This is 
particularly useful for scenarios like message editing, alternative conversation paths, or concurrent 
event streams.

When creating a branch, you specify:

Create event 121



Amazon Bedrock AgentCore Developer Guide

• name - A descriptive name for the branch (e.g., "edited-conversation").

• rootEventId - The ID of the event from which the branch originates.

Here's an example of creating a branched event to represent an edited message:

{ 
  "memoryId": "mem-12345abcdef", 
  "actorId": "/agent-support-123/customer-456", 
  "sessionId": "session-789", 
  "eventTimestamp": 1718806000000, 
  "payload": [ 
    { 
      "Conversational": { 
        "content": "I'm looking for a waterproof action camera for extreme sports.", 
        "role": "user" 
      } 
    } 
  ], 
  "branch": { 
    "name": "edited-conversation", 
    "rootEventId": "evt-67890" 
  }
} 
         

The following example shows that when a user edits a previous message, the agent can fork the 
history at that point:

Example Creating a branch for an edited message

// Original conversation sequence
const originalMessages = [ 
  { role: "user", message: "I need a waterproof camera" }, 
  { role: "assistant", message: "We have several waterproof cameras. What's your 
 budget?" }, 
  { role: "user", message: "Around $300" }
];

// User edits their first message to change the request
const editedMessage = {  

Create event 122



Amazon Bedrock AgentCore Developer Guide

  role: "user",  
  message: "I need a waterproof action camera for extreme sports"  
};

// Find the event to branch from
const events = await dataPlaneClient.listEvents({ 
  memoryId, 
  actorId: "/agent-support-123/customer-456", 
  sessionId: "session-789"
});

const eventToBranchFrom = events.events[0]; // The first message

// Create a new branch starting from the edited message
const forkedEvent = await dataPlaneClient.createEvent({ 
  memoryId, 
  actorId: eventToBranchFrom.actorId, 
  sessionId: eventToBranchFrom.sessionId,  
  eventTimestamp: timestamp, 
  payload: [ 
    { 
      Conversational: { 
        message: editedMessage.message, 
        role: editedMessage.role 
      } 
    } 
  ], 
  branch: { 
    name: "edited-conversation", 
    rootEventId: eventToBranchFrom.eventId 
  }
});

Get event

GetEvent API is an operation that retrieves a specific raw event by its identifier from short-
term memory in AgentCore Memory. This API requires you to specify the memoryId, actorId,
sessionId, and eventId as path parameters in the request URL, allowing you to precisely target 
individual events within your memory sessions.

Get event 123



Amazon Bedrock AgentCore Developer Guide

List events

ListEvents API is a read-only operation that lists events from a specified session in an AgentCore 
Memory instance. This paginated API requires you to specify the memoryId, actorId, and
sessionId as path parameters, and supports optional filtering through the filter parameter in 
the request body, allowing you to efficiently retrieve relevant events from your memory sessions. 
You can control whether payloads are included in the response using the includePayloads
parameter (default is true), and limit the number of results with maxResults.

The ListEvents API is particularly valuable for applications that need to reconstruct conversation 
histories, analyze interaction patterns, or implement memory-based features like conversation 
summarization and context awareness.

Delete event

The DeleteEvent API removes individual events from your AgentCore Memory, enabling fine-
grained control over conversation history and interaction data. This API helps maintain data privacy 
and relevance by allowing you to selectively remove specific events from a session while preserving 
the broader context and relationship structure within your application's memory. Note that these 
are manual deletion operations, and do not overlap with automatic deletion of events based on the 
eventExpiryDuration parameter set at the time of CreateEvent operation.

The API requires memory ID, actor ID, session ID, and event ID parameters to precisely target the 
specific event for deletion. Upon successful execution, the API returns the ID of the deleted event 
as confirmation that the operation completed successfully.

Store and use long-term memory

As mentioned in the overview, if you define a memory strategy when you set up an AgentCore 
Memory, it asynchronously generates long-term memories from raw events after every few turns 
based on the strategy that was selected. You can't create long term memory records directly, as 
they are extracted asynchronously by AgentCore Memory. You can use the following operations to 
access and manage long-term memory:

Retrieve memory records

You can retrieve extracted memories using the RetrieveMemoryRecords API. This operation 
allows you to search extracted memory records based on semantic queries, making it easy to find 
relevant information from your agent's memory.

List events 124



Amazon Bedrock AgentCore Developer Guide

Currently, we don't support creation of long-term memory records directly.

The RetrieveMemoryRecords operation requires the following key parameters:

• memoryId - The identifier of the memory resource containing the records you want to retrieve.

• namespace - The namespace where the memory records are stored. This is the same namespace 
you configured in your memory strategy.

• searchCriteria - A structure containing search parameters:

• searchQuery - The semantic query text used to find relevant memories (up to 10,000 
characters).

• memoryStrategyId (optional) - Limits the search to memories created by a specific strategy.

• topK - The maximum number of most relevant results to return (default: 10, maximum: 100).

The operation returns a list of memory record summaries that match your search criteria. A 
memory record summary includes The relevance score of the memory record. Higher values 
indicate greater relevance to the search query. The results are paginated, with a default maximum 
of 100 results per page. You can use the nextToken parameter to retrieve additional pages of 
results.

When retrieving memories, consider the following best practices:

• Craft specific search queries that clearly describe the information you're looking for.

• Use the topK parameter to control the number of results based on your application's needs.

• When working with large AgentCore Memorys, implement pagination to efficiently process all 
relevant results.

• Consider filtering by memoryStrategyId when you need memories from a specific extraction 
strategy.

Once retrieved, these memory records can be incorporated into your agent's context, enabling 
more personalized and contextually aware responses.

List memory records

The ListMemoryRecords operation allows you to retrieve memory records from a specific 
namespace without performing a semantic search. This is useful when you want to browse all 

List memory records 125



Amazon Bedrock AgentCore Developer Guide

memory records in a namespace or when you need to retrieve records based on criteria other than 
semantic relevance.

Delete memory records

The DeleteMemoryRecord API removes individual memory records from your AgentCore 
Memory, giving you control over what information persists in your application's memory. This API 
helps maintain data hygiene by allowing selective removal of outdated, sensitive, or irrelevant 
information while preserving the rest of your memory context.

Delete memory records 126



Amazon Bedrock AgentCore Developer Guide

Use Amazon Bedrock AgentCore built-in tools to interact 
with your applications

Amazon Bedrock AgentCore provides several built-in tools to enhance your development and 
testing experience. These tools are designed to help you interact with your application in various 
ways, providing capabilities for code execution and web browsing within the Amazon Bedrock 
AgentCore environment.

Built-in tools are a key component of Amazon Bedrock AgentCore, allowing you to enhance agents 
by adding hosted capabilities such as browser use and code execution. You can execute your code 
in a secure environment. This is critical in Agentic AI applications where the agents may execute 
arbitrary code that can lead to data compromise or security risks.

These tools are fully managed by Amazon Bedrock AgentCore, eliminating the need to set up and 
maintain your own tool infrastructure.

Built-in Tools Overview

Amazon Bedrock AgentCore offers the following built-in tools:

Code Interpreter

A secure environment for executing code and analyzing data. The Amazon Bedrock AgentCore 
Code Interpreter supports multiple programming languages including Python, TypeScript, 
and JavaScript, allowing you to process data and perform calculations within the AgentCore 
environment.

Browser Tool

A secure, isolated browser environment that allows you to interact with and test web 
applications while minimizing potential risks to your system, access online resources, and 
perform web-based tasks.

These built-in tools are part of AgentCore's build phase, alongside other components such as 
Memory, Gateways, and Identity. They provide secure, managed capabilities that can be integrated 
into your agents without requiring additional infrastructure setup.

Built-in Tools Overview 127



Amazon Bedrock AgentCore Developer Guide

Security and Access Control

Built-in tools in Amazon Bedrock AgentCore are designed with security in mind. They provide:

• Isolated execution environments to help prevent cross-contamination

• Configurable session timeouts to limit resource usage

• Integration with IAM for access control

• Network security controls to help restrict external access

Key components

The built-in tools are designed with a secure, scalable architecture that integrates with the broader 
AgentCore services. Each tool operates within its own isolated environment to support security and 
resource management.

Tool Resources

The base configuration for a tool, including network settings, permissions, and feature 
configuration. Tool resources are created once and can be used for multiple sessions.

Sessions

Temporary runtime environments created from tool resources. Sessions have a defined lifecycle 
and timeout period, and they maintain state during their lifetime.

APIs

Each tool provides APIs for creating and managing tool resources, starting and stopping 
sessions, and interacting with the tool's functionality.

Integrating built-in tools with Agents

Built-in tools can be integrated with your agents to enhance their capabilities. The integration 
process involves:

1. Creating a tool resource (Code Interpreter or Browser Tool) or using a system resource

2. Creating a session to interact with the tool

3. Using the tool's API to perform operations

4. Terminating the session when finished

Security and Access Control 128



Amazon Bedrock AgentCore Developer Guide

Execute code and analyze data using Amazon Bedrock 
AgentCore Code Interpreter

The Amazon Bedrock AgentCore Code Interpreter enables AI agents to write and execute code 
securely in sandbox environments, enhancing their accuracy and expanding their ability to solve 
complex end-to-end tasks. This is critical in Agentic AI applications where the agents may execute 
arbitrary code that can lead to data compromise or security risks. The AgentCore Code Interpreter 
tool provides secure code execution, which helps you avoid running into these issues.

The Code Interpreter comes with pre-built runtimes for multiple languages and advanced features, 
including large file support and internet access, and CloudTrail logging capabilities. For inline 
upload, the file size can be up to 100 MB. And for uploading to Amazon S3 through terminal 
commands, the file size can be as large as 5 GB.

Developers can customize environments with session properties and network modes to meet their 
enterprise and security requirements. The AgentCore Code Interpreter reduces manual intervention 
while enabling sophisticated AI development without compromising security or performance.

Overview

The AgentCore Code Interpreter is a capability that allows AI agents to write, execute, and 
debug code securely in sandbox environments. It provides a bridge between natural language 
understanding and computational execution, enabling agents to manipulate data and perform 
calculations programmatically.

The AgentCore Code Interpreter runs in a containerized environment within Amazon Bedrock 
AgentCore, ensuring that code execution remains isolated and secure.

AgentCore Code Interpreter: Execute code and analyze data 129



Amazon Bedrock AgentCore Developer Guide

Why use Code Interpreter in agent development

The AgentCore Code Interpreter enhances agent development in the following ways:

• Execute code securely: Develop agents that can perform complex workflows and data analysis in 
isolated sandbox environments, while accessing internal data sources without exposing sensitive 
data or compromising security.

• Multiple programming languages: The Code Interpreter supports various programming 
languages including Python, JavaScript, and TypeScript, making it versatile for different use 
cases.

• Monitoring and large-scale data processing: Track and troubleshoot code execution. When 
working with large datasets, you can easily reference files stored in Amazon S3, enabling 
efficient processing of gigabyte-scale data without API limitations.

• Ease of use: Use a fully managed default mode with pre-built execution runtimes that support 
popular programming languages with common libraries pre-installed.

• Extends problem-solving capabilities: Allows agents to solve computational problems that are 
difficult to address through reasoning alone and enables precise mathematical calculations and 
data processing at scale.

• Long execution duration support: The Code Interpreter tool provides support for a default 
execution time of 15 minutes, which can be extended for up to eight hours.

• Handles structured data: Processes CSV, Excel, JSON, and other data formats, and performs data 
cleaning, and analysis.

• Enables complex workflows: Allows multi-step problem solving that combines reasoning with 
computation and facilitates iterative development and debugging.

The AgentCore Code Interpreter makes agents more powerful by complementing their reasoning 
abilities with computational execution, allowing them to tackle a much wider range of tasks 
effectively.

Getting started with AgentCore Code Interpreter by running a hello 
world example

The following sections show how you can get started with the AgentCore Code Interpreter tool.

Why use Code Interpreter in agent development 130



Amazon Bedrock AgentCore Developer Guide

Prerequisites

Before using the AgentCore Code Interpreter, ensure you meet the following requirements:

• You have an active AWS account with permissions to use Amazon Bedrock AgentCore

• For programmatic access, you have installed and configured the AWS SDK or AWS CLI

Install the necessary packages:

# Install boto3
pip install boto3 
       
# Configure AWS credentials
aws configure

# For AgentCore SDK approach, also install:
pip install bedrock-agentcore

Quick start

You can quickly get started with the AgentCore Code Interpreter using either the AgentCore SDK or 
boto3. Both approaches allow you to create sessions and execute code.

Using boto3

This example uses the boto3 client to start a code interpreter session and run a simple hello 
world program:

# hello_world.py

import boto3
import json

code_to_execute = """
print("Hello World!!!")
"""

client = boto3.client("bedrock-agentcore", region_name="us-west-2", 
 endpoint_url="https://bedrock-agentcore.us-west-2.amazonaws.com")

Getting started: hello world example 131



Amazon Bedrock AgentCore Developer Guide

session_id = client.start_code_interpreter_session( 
    codeInterpreterIdentifier="aws.codeinterpreter.v1", 
    name="my-code-session", 
    sessionTimeoutSeconds=900
)["sessionId"]

execute_response = client.invoke_code_interpreter( 
    codeInterpreterIdentifier="aws.codeinterpreter.v1", 
    sessionId=session_id, 
    name="executeCode", 
    arguments={ 
        "language": "python", 
        "code": code_to_execute 
    }
)

# Extract and print the text output from the stream
for event in execute_response['stream']: 
    if 'result' in event: 
        result = event['result'] 
        if 'content' in result: 
            for content_item in result['content']: 
                if content_item['type'] == 'text': 
                    print(content_item['text'])

# Don't forget to stop the session when you're done
client.stop_code_interpreter_session( 
    codeInterpreterIdentifier="aws.codeinterpreter.v1", 
    sessionId=session_id
)

Using AgentCore SDK

This example uses the Amazon Bedrock AgentCore SDK, which provides a more streamlined 
interface for working with the code interpreter:

# hello_world_sdk.py

from bedrock_agentcore.tools.code_interpreter_client import CodeInterpreter
import json

# Configure and Start the code interpreter session

Getting started: hello world example 132



Amazon Bedrock AgentCore Developer Guide

code_client = CodeInterpreter('us-west-2')
code_client.start()

# Execute the hello world code
response = code_client.invoke("executeCode", { 
    "language": "python",  
    "code": 'print("Hello World!!!")'
})

# Process and print the response
for event in response["stream"]: 
    print(json.dumps(event["result"], indent=2))

# Clean up and stop the code interpreter sandbox session  
code_client.stop()

The Amazon Bedrock AgentCore SDK provides a simpler interface that handles session 
management automatically. The CodeInterpreter class creates and manages the session for 
you, and the invoke method makes it easy to call the various code interpreter tools.

Run code in Code Interpreter from Agents

You can build agents that use the Code Interpreter tool to execute code and analyze data. This 
section demonstrates how to build agents using different frameworks.

Strands

You can build an agent that uses the Code Interpreter tool using the Strands framework:

Install dependencies

Run the following commands to install the required packages:

pip install strands-agents
pip install bedrock-agentcore

Write an agent with Code Interpreter tool

The following Python code shows how to write an agent using Strands with the Code 
Interpreter tool:

Run code from agents 133



Amazon Bedrock AgentCore Developer Guide

# strands_ci_agent.py

import json
from strands import Agent, tool
from bedrock_agentcore.tools.code_interpreter_client import code_session
import asyncio

#Define the detailed system prompt for the assistant
SYSTEM_PROMPT = """You are a helpful AI assistant that validates all answers through 
 code execution.

VALIDATION PRINCIPLES:
1. When making claims about code, algorithms, or calculations - write code to verify 
 them
2. Use execute_python to test mathematical calculations, algorithms, and logic
3. Create test scripts to validate your understanding before giving answers
4. Always show your work with actual code execution
5. If uncertain, explicitly state limitations and validate what you can

APPROACH:
- If asked about a programming concept, implement it in code to demonstrate
- If asked for calculations, compute them programmatically AND show the code
- If implementing algorithms, include test cases to prove correctness
- Document your validation process for transparency
- The sandbox maintains state between executions, so you can refer to previous 
 results

TOOL AVAILABLE:
- execute_python: Run Python code and see output

RESPONSE FORMAT: The execute_python tool returns a JSON response with:
- sessionId: The sandbox session ID
- id: Request ID
- isError: Boolean indicating if there was an error
- content: Array of content objects with type and text/data
- structuredContent: For code execution, includes stdout, stderr, exitCode, 
 executionTime

For successful code execution, the output will be in content[0].text and also in 
 structuredContent.stdout.
Check isError field to see if there was an error.

Be thorough, accurate, and always validate your answers when possible."""

Run code from agents 134



Amazon Bedrock AgentCore Developer Guide

#Define and configure the code interpreter tool  
@tool
def execute_python(code: str, description: str = "") -> str: 
    """Execute Python code in the sandbox.""" 

    if description: 
        code = f"# {description}\n{code}" 
     
    #Print code to be executed 
    print(f"\n Code: {code}") 

     
    # Call the Invoke method and execute the generated code, within the initialized 
 code interpreter session 
    with code_session("us-west-2") as code_client: 
        response = code_client.invoke("executeCode", { 
        "code": code, 
        "language": "python", 
        "clearContext": False 
    }) 
         
    for event in response["stream"]: 
        return json.dumps(event["result"])

#configure the strands agent including the tool(s)
agent=Agent( 
        tools=[execute_python], 
        system_prompt=SYSTEM_PROMPT, 
        callback_handler=None)

query="Can all the planets in the solar system fit between the earth and moon?"

# Invoke the agent asynchcronously and stream the response
async def main(): 
    response_text = "" 
    async for event in agent.stream_async(query): 
        if "data" in event: 
            # Stream text response 
            chunk = event["data"] 
            response_text += chunk 
            print(chunk, end="")

Run code from agents 135



Amazon Bedrock AgentCore Developer Guide

asyncio.run(main())

LangChain

You can build an agent that uses the Code Interpreter tool using the LangChain framework:

Install dependencies

Run the following commands to install the required packages:

pip install langchain
pip install langchain_aws
pip install bedrock-agentcore

Write an agent with Code Interpreter tool

The following Python code shows how to write an agent using LangChain with the Code 
Interpreter tool:

# langchain_ci_agent.py

#Please ensure that the latest Bedrock-AgentCore and Boto SDKs are installed
#Import Bedrock-AgentCore and other libraries

import json
from bedrock_agentcore.tools.code_interpreter_client import code_session
from langchain.agents import AgentExecutor, create_tool_calling_agent, 
 initialize_agent, tool
from langchain_aws import ChatBedrockConverse
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder

#Define and configure the code interpreter tool  
@tool
def execute_python(code: str, description: str = "") -> str: 
    """Execute Python code in the sandbox.""" 

    if description: 
        code = f"# {description}\n{code}" 

Run code from agents 136



Amazon Bedrock AgentCore Developer Guide

    
    #Print the code to be executed 
    print(f"\nGenerated Code: \n{code}") 

     
# Call the Invoke method and execute the generated code, within the intialized code 
 interpreter sandbox session 
    with code_session("us-west-2") as code_client: 
        response = code_client.invoke("executeCode", { 
        "code": code, 
        "language": "python", 
        "clearContext": False 
    }) 
    for event in response["stream"]: 
        return json.dumps(event["result"])

# Initialize the language model
# Please ensure access to anthropic.claude-3-5-sonnet model in Amazon Bedrock
llm = ChatBedrockConverse( 
            model_id="anthropic.claude-3-5-sonnet-20240620-v1:0", 
            region_name="us-west-2" 
        )

#Define the detailed system prompt for the assistant
SYSTEM_PROMPT = """You are a helpful AI assistant that validates all answers through 
 code execution.

VALIDATION PRINCIPLES:
1. When making claims about code, algorithms, or calculations - write code to verify 
 them
2. Use execute_python to test mathematical calculations, algorithms, and logic
3. Create test scripts to validate your understanding before giving answers
4. Always show your work with actual code execution
5. If uncertain, explicitly state limitations and validate what you can

APPROACH:
- If asked about a programming concept, implement it in code to demonstrate
- If asked for calculations, compute them programmatically AND show the code
- If implementing algorithms, include test cases to prove correctness
- Document your validation process for transparency

Run code from agents 137



Amazon Bedrock AgentCore Developer Guide

- The sandbox maintains state between executions, so you can refer to previous 
 results

TOOL AVAILABLE:
- execute_python: Run Python code and see output

RESPONSE FORMAT: The execute_python tool returns a JSON response with:
- sessionId: The sandbox session ID
- id: Request ID
- isError: Boolean indicating if there was an error
- content: Array of content objects with type and text/data
- structuredContent: For code execution, includes stdout, stderr, exitCode, 
 executionTime

For successful code execution, the output will be in content[0].text and also in 
 structuredContent.stdout.
Check isError field to see if there was an error.

Be thorough, accurate, and always validate your answers when possible."""

# Create a list of our custom tools
tools = [execute_python]

# Define the prompt template
prompt = ChatPromptTemplate.from_messages([ 
    ("system", SYSTEM_PROMPT), 
    ("user", "{input}"), 
    MessagesPlaceholder(variable_name="agent_scratchpad"),
])

# Create the agent
agent = create_tool_calling_agent(llm, tools, prompt)
# Create the agent executor
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

query="Can all the planets in the solar system fit between the earth and moon?"
resp=agent_executor.invoke({"input": query})

#print the result
print(resp['output'][0]['text'])

Run code from agents 138



Amazon Bedrock AgentCore Developer Guide

Read from or write files to a session

You can use the Code Interpreter to read and write files in the sandbox environment. This allows 
you to upload data files, process them with code, and retrieve the results.

Install dependencies

Run the following command to install the required package:

pip install bedrock-agentcore

Upload Code and Data using the file tool

The following Python code shows how to upload files to the Code Interpreter session and execute 
code that processes those files. The files that are required are data.csv and stats.py that are 
available in this package.

# file_mgmt_ci_agent.py

from bedrock_agentcore.tools.code_interpreter_client import CodeInterpreter
import json
from typing import Dict, Any, List

#Configure and Start the code interpreter session
code_client = CodeInterpreter('us-west-2')
code_client.start()

#read the content of the sample data file
data_file = "data.csv"

try: 
    with open(data_file, 'r', encoding='utf-8') as data_file_content: 
        data_file_content = data_file_content.read() 
    #print(data_file_content)
except FileNotFoundError: 
    print(f"Error: The file '{data_file}' was not found.")
except Exception as e: 
    print(f"An error occurred: {e}")

#read the content of the python script to analyze the sample file
code_file = "stats.py"

Read from or write files to a session 139

samples/read_write_files.zip


Amazon Bedrock AgentCore Developer Guide

try: 
    with open(code_file, 'r', encoding='utf-8') as code_file_content: 
        code_file_content = code_file_content.read() 
    #print(code_file_content)
except FileNotFoundError: 
    print(f"Error: The file '{code_file}' was not found.")
except Exception as e: 
    print(f"An error occurred: {e}")

files_to_create = [ 
                { 
                    "path": "data.csv", 
                    "text": data_file_content 
                }, 
                { 
                    "path": "stats.py", 
                    "text": code_file_content 
                }]

#define the method to call the invoke API
def call_tool(tool_name: str, arguments: Dict[str, Any]) -> Dict[str, Any]: 

    response = code_client.invoke(tool_name, arguments) 
    for event in response["stream"]: 
        return json.dumps(event["result"], indent=2)

#write the sample data and analysis script into the code interpreter session
writing_files = call_tool("writeFiles", {"content": files_to_create})
print(f"writing files: {writing_files}")

#List and validate that the files were written successfully
listing_files = call_tool("listFiles", {"path": ""})
print(f"listing files: {listing_files}")

#Run the python script to analyze the sample data file
execute_code = call_tool("executeCode", { 
                "code": files_to_create[1]['text'], 
                "language": "python", 

Read from or write files to a session 140



Amazon Bedrock AgentCore Developer Guide

                "clearContext": True})
print(f"code execution result: {execute_code}")

#Clean up and stop the code interpreter session  
code_client.stop()

Using Terminal Commands with an execution role

You can create a custom Code Interpreter tool with an execution role to upload/download files 
from Amazon S3. This allows your code to interact with S3 buckets for storing and retrieving data.

Prerequisites

Before creating a custom Code Interpreter with S3 access, you need to:

1. Create an S3 bucket (e.g., codeinterpreterartifacts-<awsaccountid>)

2. Create a folder within the bucket (e.g., output_artifacts)

3. Create an IAM role with the following trust policy:

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "bedrock-agentcore.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]
} 
           

4. Add the following permissions to the role:

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Sid": "VisualEditor0", 

Using Terminal Commands with an execution role 141



Amazon Bedrock AgentCore Developer Guide

      "Effect": "Allow", 
      "Action": [ 
        "s3:PutObject", 
        "s3:GetObject" 
      ], 
      "Resource": "arn:aws:s3:::codeinterpreterartifacts-<awsaccountid>/*" 
    } 
  ]
} 
           

Sample Python code

You can implement S3 integration using boto3 (AWS SDK for Python). The following example 
uses boto3 to create a custom Code Interpreter with an execution role that can upload files to or 
download files from Amazon S3.

Note

Before running this code, make sure to replace {REGION} and <awsaccountid> with your 
AWS Region and AWS account number.

import boto3
import json
import time

REGION = "us-west-2"
CP_ENDPOINT_URL = f"https://bedrock-agentcore-control.{REGION}.amazonaws.com"
DP_ENDPOINT_URL = f"https://bedrock-agentcore.{REGION}.amazonaws.com"

# Update the accountId to reflect the correct S3 path.
S3_BUCKET_NAME = "codeinterpreterartifacts-<awsaccountid>"

bedrock_agentcore_control_client = boto3.client( 
    'bedrock-agentcore-control', 
    region_name=REGION, 
    endpoint_url=CP_ENDPOINT_URL
)
bedrock_agentcore_client = boto3.client( 

Using Terminal Commands with an execution role 142



Amazon Bedrock AgentCore Developer Guide

    'bedrock-agentcore', 
    region_name=REGION, 
    endpoint_url=DP_ENDPOINT_URL
)

unique_name = f"s3InteractionEnv_{int(time.time())}"
create_response = bedrock_agentcore_control_client.create_code_interpreter( 
    name=unique_name, 
    description="Combined test code sandbox", 
    executionRoleArn="arn:aws:iam::864899855746:role/S3InteractionRole", 
    networkConfiguration={ 
        "networkMode": "SANDBOX" 
    }
)
code_interpreter_id = create_response['codeInterpreterId']
print(f"Created custom interpreter ID: {code_interpreter_id}")

session_response = bedrock_agentcore_client.start_code_interpreter_session( 
    codeInterpreterIdentifier=code_interpreter_id, 
    name="combined-test-session", 
    sessionTimeoutSeconds=1800
)
session_id = session_response['sessionId']
print(f"Created session ID: {session_id}")

print(f"Downloading CSV generation script from S3")
command_to_execute = f"aws s3 cp s3://{S3_BUCKET_NAME}/generate_csv.py ."
response = bedrock_agentcore_client.invoke_code_interpreter( 
    codeInterpreterIdentifier=code_interpreter_id, 
    sessionId=session_id, 
    name="executeCommand", 
    arguments={ 
        "command": command_to_execute 
    }
)

for event in response["stream"]: 
    print(json.dumps(event["result"], default=str, indent=2))

print(f"Executing the CSV generation script")
response = bedrock_agentcore_client.invoke_code_interpreter( 
    codeInterpreterIdentifier=code_interpreter_id, 
    sessionId=session_id, 

Using Terminal Commands with an execution role 143



Amazon Bedrock AgentCore Developer Guide

    name="executeCommand", 
    arguments={ 
        "command": "python generate_csv.py 5 10" 
    }
)

for event in response["stream"]: 
    print(json.dumps(event["result"], default=str, indent=2))

print(f"Uploading generated artifact to S3")
command_to_execute = f"aws s3 cp generated_data.csv s3://{S3_BUCKET_NAME}/
output_artifacts/"
response = bedrock_agentcore_client.invoke_code_interpreter( 
    codeInterpreterIdentifier=code_interpreter_id, 
    sessionId=session_id, 
    name="executeCommand", 
    arguments={ 
        "command": command_to_execute 
    }
)

for event in response["stream"]: 
    print(json.dumps(event["result"], default=str, indent=2))

print(f"Stopping the code interpreter session")
stop_response = bedrock_agentcore_client.stop_code_interpreter_session( 
    codeInterpreterIdentifier=code_interpreter_id, 
    sessionId=session_id
)

print(f"Deleting the code interpreter")
delete_response = bedrock_agentcore_control_client.delete_code_interpreter( 
    codeInterpreterId=code_interpreter_id
)
print(f"Code interpreter status from response: {delete_response['status']}")
print(f"Clean up completed, script run successful")

This example shows you how to:

• Create a custom Code Interpreter with an execution role

• Configure network access - Choose PUBLIC mode if your Code Interpreter needs to connect to 
the public internet. If your Code Interpreter supports connection to Amazon S3, and if you want 

Using Terminal Commands with an execution role 144



Amazon Bedrock AgentCore Developer Guide

your Code Interpreter session to remain isolated from the public internet, choose SANDBOX 
mode.

• Upload and download files between the Code Interpreter environment and S3

• Execute commands and scripts within the Code Interpreter environment

• Clean up resources when finished

Resource and session management

The following topics show how the Amazon Bedrock AgentCore Code Interpreter works and how 
you can create the resources and manage sessions.

IAM permissions

The following IAM policy provides the necessary permissions for using the AgentCore Code 
Interpreter:

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "bedrock-agentcore:CreateCodeInterpreter", 
                "bedrock-agentcore:StartCodeInterpreterSession", 
                "bedrock-agentcore:InvokeCodeInterpreter", 
                "bedrock-agentcore:StopCodeInterpreterSession", 
                "bedrock-agentcore:DeleteCodeInterpreter", 
                "bedrock-agentcore:ListCodeInterpreters", 
                "bedrock-agentcore:GetCodeInterpreter", 
                "bedrock-agentcore:GetCodeInterpreterSession", 
                "bedrock-agentcore:ListCodeInterpreterSessions" 
            ], 
            "Resource": "arn:aws:bedrock-agentcore:*" 
        }         
    ]
}

Resource and session management 145



Amazon Bedrock AgentCore Developer Guide

How it works

1. Create a Code Interpreter

Build your own Code Interpreter or use the System Code Interpreter to enable capabilities such 
as writing and running code or performing complex calculations. The Code Interpreter allows 
you to augment your agent runtime to securely execute code in a fully managed environment 
with low latency.

2. Integrate it within an agent to invoke

Copy the built-in tool resource ID into your runtime agent code to invoke it as part of your 
session. For Code Interpreter tools, you can execute code and view the results in real-time.

3. Assess performance using observability

Monitor key metrics for each tool in CloudWatch to get real-time performance insights.

Creating a Code Interpreter and starting a session

1. Create a Code Interpreter

When configuring a Code Interpreter, you can choose network settings (Sandbox or Public), and 
the execution role role that defines what AWS resources the Code Interpreter can access.

2. Start a session

The Code Interpreter uses a session-based model. After creating a Code Interpreter, you start 
a session with a configurable timeout period (default is 15 minutes). Sessions automatically 
terminate after the timeout period. Multiple sessions can be active simultaneously for a single 
Code Interpreter, with each session maintaining its own state and environment.

3. Execute code

Within an active session, you can execute code in supported languages (Python, JavaScript, 
TypeScript), and maintain state between executions. You can also perform file upload/download 
operations, and use the support provided for the shell commands and AWS CLI commands.

4. Stop session and clean up

When you're finished using a session, you should stop it to release resources and avoid 
unnecessary charges. You can also delete the Code Interpreter if you no longer intend to use it.

Resource and session management 146



Amazon Bedrock AgentCore Developer Guide

Resource management

The AgentCore Code Interpreter provides two types of resources:

System ARNs

System ARNs are default resources pre-created for ease of use. These ARNs have default 
configuration with the most restrictive options and are available for all regions where Amazon 
Bedrock AgentCore is available.

Field Value

ID aws.codeinterpreter.v1

ARN arn:aws:bedrock-agentcore:<region>:a 
ws:code-interpreter/aws.codeinterpreter.v1

Name Amazon Bedrock AgentCore Code Interpreter

Description AWS built-in code interpreter sandbox for 
secure code execution

Status READY

Custom ARNs

Custom ARNs allow you to configure a code interpreter with your own settings. You can choose 
network settings (Sandbox or Public), and the execution role that defines what AWS resources 
the code interpreter can access.

Network settings

The AgentCore Code Interpreter supports the following network modes:

Sandbox mode

Provides complete isolation with no external network access. This is the most secure option but 
limits the tool's ability to access external resources.

Resource and session management 147



Amazon Bedrock AgentCore Developer Guide

Public network mode

Allows the tool to access public internet resources. This option enables integration with external 
APIs and services but introduces potential security considerations.

The following topics show you how to create and manage Code Interpreters, start and stop 
sessions, and how to execute code.

Topics

• Creating an AgentCore Code Interpreter

• Listing AgentCore Code Interpreter tools

• Deleting an AgentCore Code Interpreter

Creating an AgentCore Code Interpreter

You can create a Code Interpreter using the Amazon Bedrock AgentCore console, AWS CLI, or AWS 
SDK.

Console

To create a Code Interpreter using the console

1. Sign in to the Amazon Bedrock AgentCore console at Bedrock AgentCore.

2. In the navigation pane, choose Built-in tools.

3. Choose Create Code Interpreter tool.

4. Provide a unique Tool name and optional Description.

5. Under Network settings, choose one of the following options:

• Sandbox - Isolated environment with no external network access (most secure)

• Public network - Allows access to public internet resources

6. Under Permissions, specify an IAM runtime role that defines what AWS resources the Code 
Interpreter can access.

7. Choose Create.

After creating a Code Interpreter tool, the console displays important details about the tool:

Resource and session management 148

https://console.aws.amazon.com/bedrock-agentcore/


Amazon Bedrock AgentCore Developer Guide

Tool Resource ARN

The Amazon Resource Name (ARN) that uniquely identifies the Code Interpreter tool 
resource (e.g., arn:aws:bedrock-agentcore:us-west-2:123456789012:code-interpreter/code-
interpreter-custom).

Code Interpreter Tool ID

The unique identifier for the Code Interpreter tool, used in API calls (e.g., code-interpreter-
custom-abc123).

IAM Role

The IAM role that the Code Interpreter assumes when executing code, determining what 
AWS resources it can access.

Network Mode

The network configuration for the Code Interpreter (Sandbox or Public).

Creation Time

The date and time when the Code Interpreter tool was created.

AWS CLI

To create a Code Interpreter using the AWS CLI, use the create-code-interpreter
command:

aws bedrock-agentcore create-code-interpreter \ 
  --region us-west-2 \ 
  --name "my-code-interpreter" \ 
  --description "My Code Interpreter for data analysis" \ 
  --network-configuration '{ 
    "networkMode": "PUBLIC" 
  }' \   
  --execution-role-arn "arn:aws:iam::123456789012:role/my-execution-role" 

Boto3

To create a Code Interpreter using the AWS SDK for Python, use the
create_code_interpreter method:

Resource and session management 149



Amazon Bedrock AgentCore Developer Guide

import boto3

# Initialize the boto3 client
cp_client = boto3.client( 
    'bedrock-agentcore-control',  
    region_name="us-west-2", 
    endpoint_url="https://bedrock-agentcore-control.us-west-2.amazonaws.com"
)

# Create a Code Interpreter
response = cp_client.create_code_interpreter( 
    name="myTestSandbox1", 
    description="Test code sandbox for development", 
    executionRoleArn="arn:aws:iam::123456789012:role/my-execution-role", 
    networkConfiguration={ 
        "networkMode": "PUBLIC" 
    }
)

# Print the Code Interpreter ID
code_interpreter_id = response["codeInterpreterId"]
print(f"Code Interpreter ID: {code_interpreter_id}")

API

To create a new Code Interpreter instance using the API, use the following call:

# Using awscurl
awscurl -X PUT "https://bedrock-agentcore-control.us-west-2.amazonaws.com/code-
interpreters" \
-H "Content-Type: application/json" \
--region us-west-2 \
--service bedrock-agentcore \
-d '{ 
    "name": "codeinterpreter'$(date +%m%d%H%M%S)'", 
    "description": "Test code sandbox for development", 
    "executionRoleArn": "'${ROLE_ARN}'", 
    "networkConfiguration": { 
        "networkMode": "PUBLIC" 
    }
}'

Resource and session management 150



Amazon Bedrock AgentCore Developer Guide

Listing AgentCore Code Interpreter tools

You can view a list of all your Code Interpreter tools to manage and monitor them.

Console

To list code interpreters using the console

1. Sign in to the Amazon Bedrock AgentCore console at Bedrock AgentCore.

2. In the navigation pane, choose Built-in tools.

3. The console displays a list of all your Code Interpreter tools, including their names, IDs, 
creation dates, and status.

4. You can use the search box to filter the list by name or other attributes.

5. Select a Code Interpreter to view its details, including active sessions and configuration 
settings.

AWS CLI

To list Code Interpreters using the AWS CLI, use the list-code-interpreters command:

aws bedrock-agentcore list-code-interpreters \ 
  --region us-west-2 \ 
  --max-results 10

You can use the --next-token parameter for pagination if you have more than the maximum 
results:

aws bedrock-agentcore list-code-interpreters \ 
  --region us-west-2 \ 
  --max-results 10 \ 
  --next-token "your-pagination-token"

Boto3

To list Code Interpreters using the AWS SDK for Python, use the list_code_interpreters
method:

Resource and session management 151

https://console.aws.amazon.com/bedrock-agentcore/


Amazon Bedrock AgentCore Developer Guide

import boto3

# Initialize the boto3 client
cp_client = boto3.client( 
    'bedrock-agentcore-control',  
    region_name="us-west-2", 
    endpoint_url="https://bedrock-agentcore-control.us-west-2.amazonaws.com"
)

# List Code Interpreters
response = cp_client.list_code_interpreters()

# Print the Code Interpreters
for interpreter in response.get('codeInterpreterSummaries', []): 
    print(f"Name: {interpreter.get('name')}") 
    print(f"ID: {interpreter.get('codeInterpreterId')}") 
    print(f"Creation Time: {interpreter.get('createdAt')}") 
    print(f"Status: {interpreter.get('status')}") 
    print("---")

# If there are more results, get the next page using the next_token
if 'nextToken' in response: 
    next_page = cp_client.list_code_interpreters( 
        nextToken=response['nextToken'] 
    ) 
    # Process next_page...

API

To list Code Interpreter instances using the API, use the following call:

Note

For pagination, include the nextToken parameter.

# Using awscurl
awscurl -X POST "https://bedrock-agentcore-control.us-west-2.amazonaws.com/code-
interpreters" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore \ 

Resource and session management 152



Amazon Bedrock AgentCore Developer Guide

  --region us-west-2

Deleting an AgentCore Code Interpreter

When you no longer need a Code Interpreter, you can delete it to free up resources and avoid 
unnecessary charges.

Important

Deleting a Code Interpreter permanently removes it and all its configuration. This action 
cannot be undone. Make sure all active sessions are stopped before deleting a Code 
Interpreter.

Console

To delete a Code Interpreter using the console

1. Sign in to the Amazon Bedrock AgentCore console at Bedrock AgentCore.

2. In the navigation pane, choose Built-in tools.

3. From the list of code interpreter tools, select the tool you want to delete.

4. Choose Delete.

5. In the confirmation dialog, enter the name of the code interpreter to confirm deletion.

6. Choose Delete to permanently delete the Code Interpreter.

AWS CLI

To delete a Code Interpreter using the AWS CLI, use the delete-code-interpreter
command:

aws bedrock-agentcore delete-code-interpreter \ 
  --region us-west-2 \ 
  --code-interpreter-id "your-code-interpreter-id"

Resource and session management 153

https://console.aws.amazon.com/bedrock-agentcore/


Amazon Bedrock AgentCore Developer Guide

Boto3

To delete a Code Interpreter using the AWS SDK for Python, use the
delete_code_interpreter method:

import boto3

# Initialize the boto3 client
cp_client = boto3.client( 
    'bedrock-agentcore-control',  
    region_name="us-west-2", 
    endpoint_url="https://bedrock-agentcore-control.us-west-2.amazonaws.com"
)

# Delete a Code Interpreter
response = cp_client.delete_code_interpreter( 
    codeInterpreterId="your-code-interpreter-id"
)

print("Code Interpreter deleted successfully")

API

To delete a Code Interpreter instance using the API, use the following call:

# Using awscurl
awscurl -X DELETE "${CP_ENDPOINT_URL}/${SANDBOX_TYPE}/${SANDBOX_IDENTIFIER}" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore \ 
  --region ${REGION}

Session management

The AgentCore Code Interpreter sessions have the following characteristics:

Session timeout

Default: 900 seconds (15 minutes)

Configurable: Can be adjusted when creating sessions, up to 8 hours

Resource and session management 154



Amazon Bedrock AgentCore Developer Guide

Session persistence

Files and data created during a session are available throughout the session's lifetime. When the 
session is terminated, the session no longer persists and the data is cleaned up.

Automatic termination

Sessions automatically terminate after the configured timeout period

Multiple sessions

Multiple sessions can be active simultaneously for a single code interpreter. Each session 
maintains its own state and environment

Retention policy

The time to live (TTL) retention policy for the session data is 30 days.

Using isolated sessions

AgentCore Tools enable isolation of each user session to ensure secure and consistent reuse of 
context across multiple tool invocations. Session isolation is especially important for AI agent 
workloads due to their dynamic and multi-step execution patterns.

Each tool session runs in a dedicated microVM with isolated CPU, memory, and filesystem 
resources. This architecture guarantees that one user's tool invocation cannot access data from 
another user's session. Upon session completion, the microVM is fully terminated, and its memory 
is sanitized, thereby eliminating any risk of cross-session data leakage.

Starting a AgentCore Code Interpreter session

After creating a Code Interpreter, you can start a session to execute code.

AWS CLI

To start a Code Interpreter session using the AWS CLI, use the start-code-interpreter-
session command:

aws bedrock-agentcore start-code-interpreter-session \ 
  --region us-west-2 \ 
  --code-interpreter-id "your-code-interpreter-id" \ 
  --name "my-code-session" \ 

Resource and session management 155



Amazon Bedrock AgentCore Developer Guide

  --description "My Code Interpreter session for data analysis" \ 
  --session-timeout-seconds 900

Boto3

To start a Code Interpreter session using the AWS SDK for Python, use the
start_code_interpreter_session method:

import boto3

# Initialize the boto3 client
dp_client = boto3.client( 
    'bedrock-agentcore',  
    region_name="us-west-2", 
    endpoint_url="https://bedrock-agentcore.us-west-2.amazonaws.com"
)

# Start a Code Interpreter session
response = dp_client.start_code_interpreter_session( 
    codeInterpreterIdentifier="aws.codeinterpreter.v1", 
    name="sandbox-session-1", 
    sessionTimeoutSeconds=3600
)

# Print the session ID
session_id = response["sessionId"]
print(f"Session created: {session_id}")

API

To start a new Code Interpreter session using the API, use the following call:

# Using awscurl
awscurl -X PUT \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/code-interpreters/
aws.codeinterpreter.v1/sessions/start" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 

Resource and session management 156



Amazon Bedrock AgentCore Developer Guide

    "name": "code-session-abc12345", 
    "description": "code sandbox session", 
    "sessionTimeoutSeconds": 900 
  }'

Note

You can use the managed resource ID aws.codeinterpreter.v1 or a resource ID you 
get by creating a code interpreter with CreateCodeInterpreter.

Executing code

Once you have started a Code Interpreter session, you can execute code in the session.

Boto3

To execute code using the AWS SDK for Python, use the invoke_code_interpreter method:

import boto3
import json

# Initialize the boto3 client
dp_client = boto3.client( 
    'bedrock-agentcore',  
    region_name="us-west-2", 
    endpoint_url="https://bedrock-agentcore.us-west-2.amazonaws.com"
)

# Execute code in the Code Interpreter session
response = dp_client.invoke_code_interpreter( 
    codeInterpreterIdentifier="aws.codeinterpreter.v1", 
    sessionId="your-session-id", 
    name="executeCode", 
    arguments={ 
        "language": "python", 
        "code": 'print("Hello World!!!")' 
    }
)

# Process the event stream

Resource and session management 157



Amazon Bedrock AgentCore Developer Guide

for event in response["stream"]: 
    if "result" in event: 
        result = event["result"] 
        if "content" in result: 
            for content_item in result["content"]: 
                if content_item["type"] == "text": 
                    print(content_item["text"])

API

To execute code in a code interpreter session using the API, use the following call:

# Using awscurl
awscurl -X POST \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/code-interpreters/
aws.codeinterpreter.v1/tools/invoke" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  -H "x-amzn-code-interpreter-session-id: your-session-id" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 
    "id": "1", 
    "name": "executeCode", 
    "arguments": { 
      "language": "python", 
      "code": "print(\"Hello, world!\")" 
    } 
  }'

Stopping a AgentCore Code Interpreter session

When you are finished using a Code Interpreter session, you should stop it to release resources and 
avoid unnecessary charges.

AWS CLI

To stop a code interpreter session using the AWS CLI, use the stop-code-interpreter-
session command:

Resource and session management 158



Amazon Bedrock AgentCore Developer Guide

aws bedrock-agentcore stop-code-interpreter-session \ 
  --region us-west-2 \ 
  --code-interpreter-id "your-code-interpreter-id" \ 
  --session-id "your-session-id"

Boto3

To stop a Code Interpreter session using the AWS SDK for Python, use the
stop_code_interpreter_session method:

import boto3

# Initialize the boto3 client
dp_client = boto3.client( 
    'bedrock-agentcore',  
    region_name="us-west-2", 
    endpoint_url="https://bedrock-agentcore.us-west-2.amazonaws.com"
)

# Stop the Code Interpreter session
response = dp_client.stop_code_interpreter_session( 
    codeInterpreterIdentifier="aws.codeinterpreter.v1", 
    sessionId="your-session-id"
)

print("Session stopped successfully")

API

To stop a code interpreter session using the API, use the following call:

# Using awscurl
awscurl -X PUT \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/code-interpreters/
aws.codeinterpreter.v1/sessions/stop?sessionId=your-session-id" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore \ 
  --region us-west-2

Resource and session management 159



Amazon Bedrock AgentCore Developer Guide

Code Interpreter API Reference Examples

This section provides reference examples for common Code Interpreter operations using different 
approaches. Each example shows how to perform the same operation using AWS CLI, Boto3 SDK, 
and direct API calls.

Code Execution

These examples demonstrate how to execute code in a Code Interpreter session.

Boto3

params = { 
      "language": "python", 
      "code": "print(\"Hello, world!\")" 
    } 
   
client.invoke_code_interpreter( 
    **{ 
        "codeInterpreterIdentifier": "aws.codeinterpreter.v1", 
        "sessionId": "your-session-id", 
        "name": "executeCode", 
        "arguments": params 
    })

API

# Using awscurl
awscurl -X POST \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/code-interpreters/
aws.codeinterpreter.v1/tools/invoke" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  -H "x-amzn-code-interpreter-session-id: your-session-id" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 
    "name": "executeCode", 
    "arguments": { 
      "language": "python", 
      "code": "print(\"Hello, world!\")" 

API Reference Examples 160



Amazon Bedrock AgentCore Developer Guide

    } 
  }'

Terminal Commands

These examples demonstrate how to execute terminal commands in a Code Interpreter session.

Execute Command

Boto3

params = { 
      "command": "ls -l" 
    } 
   
client.invoke_code_interpreter( 
    **{ 
        "codeInterpreterIdentifier": "aws.codeinterpreter.v1", 
        "sessionId": "your-session-id", 
        "name": "executeCommand", 
        "arguments": params 
    })

API

# Using awscurl
awscurl -X POST \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/code-interpreters/
aws.codeinterpreter.v1/tools/invoke" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  -H "x-amzn-code-interpreter-session-id: your-session-id" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 
    "name": "executeCommand", 
    "arguments": { 
      "command": "ls -l" 
    } 
  }'

API Reference Examples 161



Amazon Bedrock AgentCore Developer Guide

Start Command Execution

Boto3

params = { 
      "command": "sleep 15 && echo Task completed successfully" 
    } 
   
client.invoke_code_interpreter( 
    **{ 
        "codeInterpreterIdentifier": "aws.codeinterpreter.v1", 
        "sessionId": "your-session-id", 
        "name": "startCommandExecution", 
        "arguments": params 
    })

API

# Using awscurl
awscurl -X POST \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/code-interpreters/
aws.codeinterpreter.v1/tools/invoke" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  -H "x-amzn-code-interpreter-session-id: your-session-id" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 
    "name": "startCommandExecution", 
    "arguments": { 
      "command": "sleep 15 && echo Task completed successfully" 
    } 
  }'

Get Task

Boto3

params = { 

API Reference Examples 162



Amazon Bedrock AgentCore Developer Guide

      "taskId": "07c31ab2-3a6a-4d1b-a5ff-0c4ce60313ac" 
    } 
   
client.invoke_code_interpreter( 
    **{ 
        "codeInterpreterIdentifier": "aws.codeinterpreter.v1", 
        "sessionId": "your-session-id", 
        "name": "getTask", 
        "arguments": params 
    })

API

# Using awscurl
awscurl -X POST \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/code-interpreters/
aws.codeinterpreter.v1/tools/invoke" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  -H "x-amzn-code-interpreter-session-id: your-session-id" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 
    "name": "getTask", 
    "arguments": { 
      "taskId": "07c31ab2-3a6a-4d1b-a5ff-0c4ce60313ac" 
    } 
  }'

Stop Command Execution Task

Boto3

params = { 
      "taskId": "db8a5125-8905-4dff-8cb0-d374237e822f" 
    } 
   
client.invoke_code_interpreter( 
    **{ 
        "codeInterpreterIdentifier": "aws.codeinterpreter.v1", 

API Reference Examples 163



Amazon Bedrock AgentCore Developer Guide

        "sessionId": "your-session-id", 
        "name": "stopTask", 
        "arguments": params 
    })

API

# Using awscurl
awscurl -X POST \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/code-interpreters/
aws.codeinterpreter.v1/tools/invoke" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  -H "x-amzn-code-interpreter-session-id: your-session-id" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 
    "name": "stopTask", 
    "arguments": { 
      "taskId": "db8a5125-8905-4dff-8cb0-d374237e822f" 
    } 
  }'

File Management

These examples demonstrate how to manage files in a Code Interpreter session.

Write Files

Boto3

params = { 
        "content": [{"path": "dir1/samename.txt", "text": "File in dir1"}] 
    } 
   
client.invoke_code_interpreter( 
    **{ 
        "codeInterpreterIdentifier": "aws.codeinterpreter.v1", 
        "sessionId": "your-session-id", 
        "name": "writeFiles", 

API Reference Examples 164



Amazon Bedrock AgentCore Developer Guide

        "arguments": params 
    })

API

# Using awscurl
awscurl -X POST \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/code-interpreters/
aws.codeinterpreter.v1/tools/invoke" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  -H "x-amzn-code-interpreter-session-id: your-session-id" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 
    "name": "writeFiles", 
    "arguments": { 
      "content": [{"path": "dir1/samename.txt", "text": "File in dir1"}] 
    } 
  }'

Read Files

Boto3

params = { 
      "paths": ["tmp.txt"] 
    } 
   
client.invoke_code_interpreter( 
    **{ 
        "codeInterpreterIdentifier": "aws.codeinterpreter.v1", 
        "sessionId": "your-session-id", 
        "name": "readFiles", 
        "arguments": params 
    })

API

API Reference Examples 165



Amazon Bedrock AgentCore Developer Guide

# Using awscurl
awscurl -X POST \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/code-interpreters/
aws.codeinterpreter.v1/tools/invoke" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  -H "x-amzn-code-interpreter-session-id: your-session-id" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 
    "name": "readFiles", 
    "arguments": { 
      "paths": ["tmp.txt"] 
    } 
  }'

Remove Files

Boto3

params = { 
      "paths": ["tmp.txt"] 
    } 
   
client.invoke_code_interpreter( 
    **{ 
        "codeInterpreterIdentifier": "aws.codeinterpreter.v1", 
        "sessionId": "your-session-id", 
        "name": "removeFiles", 
        "arguments": params 
    })

API

# Using awscurl
awscurl -X POST \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/code-interpreters/
aws.codeinterpreter.v1/tools/invoke" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 

API Reference Examples 166



Amazon Bedrock AgentCore Developer Guide

  -H "x-amzn-code-interpreter-session-id: your-session-id" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 
    "name": "removeFiles", 
    "arguments": { 
      "paths": ["tmp.txt"] 
    } 
  }'

List Files

Boto3

params = { 
      "directoryPath": "" 
    } 
   
client.invoke_code_interpreter( 
    **{ 
        "codeInterpreterIdentifier": "aws.codeinterpreter.v1", 
        "sessionId": "your-session-id", 
        "name": "listFiles", 
        "arguments": params 
    })

API

# Using awscurl
awscurl -X POST \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/code-interpreters/
aws.codeinterpreter.v1/tools/invoke" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  -H "x-amzn-code-interpreter-session-id: your-session-id" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 
    "name": "listFiles", 
    "arguments": { 

API Reference Examples 167



Amazon Bedrock AgentCore Developer Guide

      "directoryPath": "" 
    } 
  }'

Interact with web applications using Amazon Bedrock 
AgentCore Browser

The Amazon Bedrock AgentCore Browser provides a secure, cloud-based browser that enables 
AI agents to interact with websites. It includes security features such as session isolation, built-in 
observability through live viewing, CloudTrail logging, and session replay capabilities.

Overview

The Amazon Bedrock AgentCore Browser provides a secure, isolated browser environment that 
allows you to interact with web applications while minimizing potential risks to your system. It runs 
in a containerized environment within AgentCore, and isolates web activity from your local system.

Why use remote browsers for agent development?

A remote browser runs in a separate environment rather than on the local machine. For agent 
development, remote browsers allow AI agents to interact with the web as humans do.

Remote browsers provide the following capabilities for agent development:

AgentCore Browser: interact with web applications 168



Amazon Bedrock AgentCore Developer Guide

• Web interaction capabilities for navigating websites, filling forms, clicking buttons, and parsing 
dynamic content

• Serverless browser infrastructure that automatically scales without infrastructure overhead

• Visual understanding through screenshots that allow agents to interpret websites as humans do

• Human intervention with live interactive view capabilities

• Isolation and security by running web interactions for each session in a separate environment

• Complex web application navigation for interfaces that require browser capabilities

• Security through session isolation and audit capabilities

• Observability with real-time visibility and recorded history of browser interactions

Remote browsers bridge the gap between AI agents and the human web, allowing agents to 
interact with websites designed for human users rather than being limited to APIs or static content.

Security Features

The Browser Tool includes several security features to help protect your environment:

• Isolation: The browser runs in a containerized environment, isolated from your local system

• Ephemeral sessions: Browser sessions are temporary and reset after each use

• Session timeouts: Sessions are terminated either by client or when the time to live (ttl) expires

How it works

1. Create a Browser Tool

Create a Browser Tool to enable web browsing capabilities. The Browser Tool allows you to 
augment your agent runtime to securely interact with web applications, fill forms, navigate 
websites, and extract information. These interactions can be performed in a fully managed 
environment with low latency.

2. Integrate it within an agent to invoke

Copy the built-in tool resource ARN into your runtime agent code to invoke it as part of your 
session. For browser use tools, you can navigate websites and interact with web elements in real-
time.

3. Assess performance using observability

Security Features 169



Amazon Bedrock AgentCore Developer Guide

Monitor key metrics for each tool in CloudWatch to get real-time performance insights.

Getting Started with AgentCore Browser

The following sections show how you can get started with the AgentCore Browser tool.

Prerequisites

Before using the Browser Tool, ensure you meet the following requirements:

• You have an active AWS account with access to Amazon Bedrock AgentCore

• Your network allows secure WebSocket connections

Quick start

The following example demonstrates how to start a remote browser session, interact with it 
programmatically using Playwright, and observe the session in real time via Live View.

In this setup, Playwright is used to drive the browser automation. Simultaneously, clients can watch 
the browser's behavior in Live View as Playwright executes tasks. There are two primary ways to 
connect to the remote browser:

• Automation endpoint – Enables agents to interact with the browser programmatically using 
automation frameworks like Playwright

• Live View stream – Allows human users to watch the agent's interaction with the browser in real 
time and optionally take control for manual input.

You can set up the Browser Tool quickly by installing and using the Amazon Bedrock AgentCore 
SDK.

# Clone the SDK examples repository
git clone https://github.com/awslabs/amazon-bedrock-agentcore-samples.git

# Follow the README instructions to install dependencies
cd amazon-bedrock-agentcore-samples
pip install -r requirements.txt

Getting started 170



Amazon Bedrock AgentCore Developer Guide

# Install a browser automation framework such as Playwright (for Python)  
# to programmatically control and interact with browser
pip install playwright

# For browser visualization, you'll need the BrowserViewerServer component
cd 01-tutorials/05-AgentCore-tools/02-Agent-Core-browser-tool/interactive_tools

After installing the SDK and Playwright, you can start a browser session with the following code:

from playwright.sync_api import sync_playwright, Playwright, BrowserType
from bedrock_agentcore.tools.browser_client import browser_session
from browser_viewer import BrowserViewerServer
import time
from rich.console import Console

console = Console()

def run(playwright: Playwright): 
    # Create the browser session and keep it alive 
    with browser_session('us-west-2') as client: 
        ws_url, headers = client.generate_ws_headers() 

        # Start viewer server 
        viewer = BrowserViewerServer(client, port=8005) 
        viewer_url = viewer.start(open_browser=True) 

        # Connect using headers 
        chromium: BrowserType = playwright.chromium 
        browser = chromium.connect_over_cdp( 
            ws_url, 
            headers=headers 
        ) 

        context = browser.contexts[0] 
        page = context.pages[0] 

        try: 
            page.goto("https://amazon.com/") 
            console.print(page.title()) 
            # Keep running 
            while True: 
                time.sleep(120) 

Getting started 171



Amazon Bedrock AgentCore Developer Guide

        except KeyboardInterrupt: 
            console.print("\n\n[yellow]Shutting down...[/yellow]") 
            if 'client' in locals(): 
                client.stop() 
                console.print("# Browser session terminated") 
        except Exception as e: 
            console.print(f"\n[red]Error: {e}[/red]") 
            import traceback 
            traceback.print_exc()

with sync_playwright() as playwright: 
    run(playwright)

This example:

• Creates a browser session using the browser_session client

• Retrieve the WebSocket connection details required for automation and live view.

• Start the viewer server, which launches a browser window to display the remote browser session 
via Live View.

• Connect Playwright to the remote browser via automation endpoint and navigate to 
Amazon.com.

• Keep the session alive until manually interrupted.

• Handle cleanup gracefully by terminating the session and releasing resources when the program 
exits.

The BrowserViewerServer component provides a local web server that connects to the remote 
browser session and displays it in a browser window, allowing you to see and interact with the 
browser in real-time.

Building browser agents

You can build browser agents using various frameworks and libraries to automate web interactions. 
This section demonstrates how to build browser agents using different frameworks.

Nova Act

You can build a browser agent using Nova Act to automate web interactions:

Install dependencies

Building browser agents 172



Amazon Bedrock AgentCore Developer Guide

You will require your AWS account access to Anthropic Claude 3.7 Sonnet. If you haven't already, 
you'll need to request permission from the Amazon Bedrock console.

pip install nova-act

Write a browser agent using Nova Act

The following Python code shows how to write a browser agent using Nova Act. For information 
about obtaining the API key for Nova Act, see Amazon Nova Act documentation.

import time
from bedrock_agentcore.tools.browser_client import browser_session
from nova_act import NovaAct
from rich.console import Console

from browser_viewer import BrowserViewerServer 
  
NOVA_ACT_API_KEY = "YOUR_NOVA_ACT_API_KEY"

console = Console()  
  
def main(): 
    try: 
        # Step 1: Create browser session 
        with browser_session('us-west-2') as client: 
            print("\r   # Browser ready!                    ") 
            ws_url, headers = client.generate_ws_headers() 
  
            # Step 2: Start viewer server 
            console.print("\n[cyan]Step 3: Starting viewer server...[/cyan]") 
            viewer = BrowserViewerServer(client, port=8005) 
            viewer_url = viewer.start(open_browser=True) 
  
            # Step 3: Use Nova Act to interact with the browser with NovaAct 
            with NovaAct( 
                    cdp_endpoint_url=ws_url, 
                    cdp_headers=headers, 
                    preview={"playwright_actuation": True}, 
                    nova_act_api_key=NOVA_ACT_API_KEY, 
                    starting_page="https://www.amazon.com", 
                ) as nova_act: 

Building browser agents 173

https://nova.amazon.com/act


Amazon Bedrock AgentCore Developer Guide

                    result = nova_act.act("Search for coffee maker and get the 
 details of the lowest priced one on the first page") 
                    console.print(f"\n[bold green]Nova Act Result:[/bold green] 
 {result}") 
             
            # Keep running 
            while True: 
                time.sleep(1) 
              
    except KeyboardInterrupt: 
        console.print("\n\n[yellow]Shutting down...[/yellow]") 
        if 'client' in locals(): 
            client.stop() 
            print("# Browser session terminated") 
    except Exception as e: 
        print(f"\n[red]Error: {e}[/red]") 
        import traceback 
        traceback.print_exc() 
  
if __name__ == "__main__": 
    main()

Strands

You can build an agent that uses the Browser Tool as one of its tools using the Strands 
framework:

Install dependencies

Run the following command.

pip install strands-agents

Write a browser agent using Strands

The following Python code shows how to write a browser agent using Strands

import random
from strands import Agent, tool
from bedrock_agentcore.tools.browser_client import browser_session
from nova_act import NovaAct
from browser_viewer import BrowserViewerServer

Building browser agents 174



Amazon Bedrock AgentCore Developer Guide

# Constants
NOVA_ACT_API_KEY = "YOUR_NOVA_ACT_API_KEY"

@tool
def browser_automation_tool(starting_url: str, instr: str) -> str: 
    """ 
    Automates browser tasks starting from a given URL based on natural language 
 instructions. 
    Supports parallel execution and can handle moderately complex tasks with some 
 reasoning. 

    Args: 
        starting_url (str): The initial URL to open in the browser. 
        instr (str): A natural language instruction describing the task to be 
 automated. 

    Returns: 
        str: The result of the action performed in the browser. 
    """ 
    with browser_session('us-west-2') as client: 

        # Retrieve CDP WebSocket URL and headers for control 
        ws_url, headers = client.generate_ws_headers() 

        # Use a random port to avoid conflicts 
        port = random.randint(8000, 9000) 

        # Start the browser viewer server (optional GUI) 
        viewer = BrowserViewerServer(client, port=port) 
        viewer_url = viewer.start(open_browser=True) 
        print(f"Viewer started at: {viewer_url}") 

        try: 
            with NovaAct( 
                cdp_endpoint_url=ws_url, 
                cdp_headers=headers, 
                preview={"playwright_actuation": True}, 
                nova_act_api_key=NOVA_ACT_API_KEY, 
                starting_page=starting_url, 
            ) as nova_act: 
                result = nova_act.act(instr) 
                return result 

Building browser agents 175



Amazon Bedrock AgentCore Developer Guide

        except Exception as e: 
            print(f"[ERROR] Failed to perform browser automation: {e}") 
            raise

# Initialize the supervisor agent with available tools
supervisor_agent = Agent(tools=[browser_automation_tool])

if __name__ == "__main__": 
    # Example task for the agent 
    message = """ 
    I have the following tasks. Feel free to run them in parallel if it improves 
 performance.  
    If a CAPTCHA is encountered, instruct the browser tool to wait for manual 
 resolution. 

    1. Get the top 1 current market gainer and loser from Yahoo Finance. 
    2. Fetch the most recent news about these gainer and loser stocks. 
    3. Generate a short report for both the gainer and the loser. 
    """ 
    supervisor_agent(message)

Playwright

You can use the Playwright automation framework with the Browser Tool:

Install dependencies

Install a browser automation framework such as Playwright (for Python) to programmatically 
control and interact with browser.

pip install playwright

Write a browser agent using Playwright

The following Python code shows how to write a browser agent using Playwright.

from playwright.sync_api import sync_playwright, Playwright, BrowserType
from bedrock_agentcore.tools.browser_client import browser_session
from browser_viewer import BrowserViewerServer
import time

Building browser agents 176



Amazon Bedrock AgentCore Developer Guide

def run(playwright: Playwright): 
    # Create the browser session and keep it alive 
    with browser_session('us-west-2') as client: 
        ws_url, headers = client.generate_ws_headers() 

        # Start viewer server 
        viewer = BrowserViewerServer(client, port=8005) 
        viewer_url = viewer.start(open_browser=True) 

        # Connect using headers 
        chromium: BrowserType = playwright.chromium 
        browser = chromium.connect_over_cdp( 
            ws_url, 
            headers=headers 
        ) 

        context = browser.contexts[0] 
        page = context.pages[0] 

        try: 
            page.goto("https://amazon.com/") 
            print(page.title()) 
            time.sleep(120) 
        finally: 
            page.close() 
            browser.close()

with sync_playwright() as playwright: 
    run(playwright)

Resource and session management

The following topics show how the Amazon Bedrock AgentCore Browser works and how you can 
create the resources and manage sessions.

Permissions

To use the Amazon Bedrock AgentCore Browser, you need the following permissions in your IAM 
policy:

{ 

Resource and session management 177



Amazon Bedrock AgentCore Developer Guide

    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "BedrockAgentCoreInBuiltToolsFullAccess", 
            "Effect": "Allow", 
            "Action": [ 
                "bedrock-agentcore:CreateBrowser", 
                "bedrock-agentcore:ListBrowsers", 
                "bedrock-agentcore:GetBrowser", 
                "bedrock-agentcore:DeleteBrowser", 
                "bedrock-agentcore:StartBrowserSession", 
                "bedrock-agentcore:ListBrowserSessions", 
                "bedrock-agentcore:GetBrowserSession", 
                "bedrock-agentcore:StopBrowserSession", 
                "bedrock-agentcore:UpdateBrowserStream", 
                "bedrock-agentcore:ConnectBrowserAutomationStream", 
                "bedrock-agentcore:ConnectBrowserLiveViewStream" 
            ], 
            "Resource": "arn:aws:bedrock-agentcore:*" 
        } 
    ]
}

If you're using session recording with S3, the execution role you provide when creating a browser 
needs the following permissions:

{ 
    "Sid": "BedrockAgentCoreBuiltInToolsS3Policy", 
    "Effect": "Allow", 
    "Action": [ 
        "s3:PutObject", 
        "s3:ListMultipartUploadParts", 
        "s3:AbortMultipartUpload" 
    ], 
    "Resource": "arn:aws:s3:::{{recordingBucket}}/{{recordingPrefix}}/*", 
    "Condition": { 
        "StringEquals": { 
            "aws:ResourceAccount": "{{accountId}}" 
        } 
    }
}

You should also add the following trust policy to the execution role:

Resource and session management 178



Amazon Bedrock AgentCore Developer Guide

{ 
    "Version": "2012-10-17", 
    "Statement": [{ 
        "Sid": "BedrockAgentCoreBuiltInTools", 
        "Effect": "Allow", 
        "Principal": { 
            "Service": "bedrock-agentcore.amazonaws.com" 
        }, 
        "Action": "sts:AssumeRole", 
        "Condition": { 
            "StringEquals": { 
                "aws:SourceAccount": "{{accountId}}" 
            }, 
            "ArnLike": { 
                "aws:SourceArn": "arn:aws:bedrock-agentcore:{{region}}:{{accountId}}:*" 
            } 
        } 
    }]
}

Browser setup for API operations

Run the following commands to set up your Browser Tool that is common to all control plane and 
data plane API operations.

import boto3
import uuid

REGION = "us-west-2"
CP_ENDPOINT_URL = f"https://bedrock-agentcore-control.{REGION}.amazonaws.com"
DP_ENDPOINT_URL = f"https://bedrock-agentcore.{REGION}.amazonaws.com"

cp_client = boto3.client( 
    'bedrock-agentcore-control',  
    region_name=REGION, 
    endpoint_url=CP_ENDPOINT_URL
)

dp_client = boto3.client( 
    'bedrock-agentcore',  
    region_name=REGION, 
    endpoint_url=DP_ENDPOINT_URL

Resource and session management 179



Amazon Bedrock AgentCore Developer Guide

) 

Creating a Browser Tool and starting a session

1. Create a Browser Tool

When configuring a Browser Tool, choose the public network setting, recording configuration for 
session replay, and permissions through an IAM runtime role that defines what AWS resources 
the Browser Tool can access.

2. Start a session

The Browser Tool uses a session-based model. After creating a Browser Tool, you start a session 
with a configurable timeout period (default is 15 minutes). Sessions automatically terminate 
after the timeout period. Multiple sessions can be active simultaneously for a single Browser 
Tool, with each session maintaining its own state and environment.

3. Interact with the browser

Once a session is started, you can interact with the browser using WebSocket-based streaming 
APIs. The Automation endpoint enables your agent to perform browser actions such as 
navigating to websites, clicking elements, filling out forms, taking screenshots, and more. 
Libraries like browser-use or Playwright can be used to simplify these interactions.

Meanwhile, the Live View endpoint allows an end user to watch the browser session in real time 
and interact with it directly through the live stream.

4. Stop the session

When you're finished using the browser session, you should stop it to release resources and 
avoid unnecessary charges. Sessions can be stopped manually or will automatically terminate 
after the configured timeout period.

Resource management

The AgentCore Browser provides two types of resources:

System ARNs

System ARNs are default resources pre-created for ease of use. These ARNs have default 
configuration with the most restrictive options and are available for all regions where Amazon 
Bedrock AgentCore is available.

Resource and session management 180



Amazon Bedrock AgentCore Developer Guide

Field Value

ID aws.browser.v1

ARN arn:aws:bedrock-agentcore:<region>:a 
ws:browser/aws.browser.v1

Name Amazon Bedrock AgentCore Browser Tool

Description AWS built-in browser for secure web 
browsing

Status READY

Custom ARNs

Custom ARNs allow you to configure a browser tool with your own settings. You can choose the 
public network setting, recording configuration, security settings, and permissions through an 
IAM runtime role that defines what AWS resources the browser tool can access.

Network settings

The AgentCore Browser supports the public network mode. This mode allows the tool to access 
public internet resources. This option enables integration with external APIs and services.

Creating an AgentCore Browser

You can create a Browser Tool using the Amazon Bedrock AgentCore console, AWS CLI, or AWS 
SDK.

Console

To create a Browser Tool using the console

1. Sign in to the Amazon Bedrock AgentCore console at Bedrock AgentCore.

2. In the navigation pane, choose Built-in tools.

3. Choose Create browser tool.

4. Provide a unique Tool name and optional Description.

Resource and session management 181

https://console.aws.amazon.com/bedrock-agentcore/


Amazon Bedrock AgentCore Developer Guide

5. Under Network settings, choose Public network which allows access to public internet 
resources. VPC is not supported.

6. Under Session recording, you can enable recording of browser sessions to an S3 bucket for 
later review.

7. Under Permissions, specify an IAM execution role that defines what AWS resources the 
Browser Tool can access.

8. Choose Create.

AWS CLI

To create a Browser Tool using the AWS CLI, use the create-browser command:

aws bedrock-agentcore-control create-browser \ 
  --region us-west-2 \ 
  --name "my-browser" \ 
  --description "My browser for web interaction" \ 
  --network-configuration '{ 
    "networkMode": "PUBLIC" 
  }' \ 
  --recording '{ 
    "enabled": true, 
    "s3Location": { 
      "bucket": "my-bucket-name", 
      "prefix": "sessionreplay" 
    } 
  }' \ 
  --execution-role-arn "arn:aws:iam::123456789012:role/my-execution-role"

Boto3

To create a Browser Tool using the AWS SDK for Python (Boto3), use the create_browser
method:

Request Syntax

The following shows the request syntax:

response = cp_client.create_browser( 

Resource and session management 182



Amazon Bedrock AgentCore Developer Guide

    name="my_custom_browser", 
    description="Test browser for development", 
    networkConfiguration={ 
        "networkMode": "PUBLIC" 
    }, 
    executionRoleArn="arn:aws:iam::123456789012:role/Sessionreplay", 
    clientToken=str(uuid.uuid4()), 
    recording={ 
    "enabled": True, 
    "s3Location": { 
        "bucket": "session-record-123456789012", 
        "prefix": "replay-data" 
      }  
    }
)

API

To create a new browser instance using the API, use the following call:

# Using awscurl
awscurl -X PUT \ 
  "https://bedrock-agentcore-control.us-west-2.amazonaws.com/browsers" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 
    "name": "test_browser_1", 
    "description": "Test sandbox for development", 
    "networkConfiguration": { 
      "networkMode": "PUBLIC" 
    }, 
    "recording": { 
      "enabled": true, 
      "s3Location": { 
        "bucket": "your-bucket-name", 
        "prefix": "sessionreplay" 
      } 
    }, 
    "executionRoleArn": "arn:aws:iam::123456789012:role/my-execution-role" 
  }'

Resource and session management 183



Amazon Bedrock AgentCore Developer Guide

Get AgentCore Browser tool

You can get information about the Browser tool in your account and view their details, status, and 
configurations.

Console

To get information about the Browser tool using the console

1. Sign in to the Amazon Bedrock AgentCore console at Bedrock AgentCore.

2. In the navigation pane, choose Built-in tools.

3. The browser tools are listed in the Browser tools section.

4. You can choose a tool that you created to view it's details such as name, ID, status, and 
creation date for each browser tool.

AWS CLI

To get information about a Browser tool using the AWS CLI, use the get-browser command:

aws bedrock-agentcore-control get-browser \ 
  --region us-west-2 \ 
  --browser-id "my_browser_sandbox-iOXY2sdWY0"

Boto3

To get information about the Browser tool using the AWS SDK for Python (Boto3), use the
get_browser method:

Request Syntax

The following shows the request syntax:

response = cp_client.get_browser( 
    browserId="Browser_10793a54-ML4MY0eeKr"
)

API

To get the browser tool using the API, use the following call:

Resource and session management 184

https://console.aws.amazon.com/bedrock-agentcore/


Amazon Bedrock AgentCore Developer Guide

# Using awscurl
awscurl -X GET \ 
  "https://bedrock-agentcore-control.us-west-2.amazonaws.com/browsers/
test_browser_1-A6JKcwd2eY" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore \ 
  --region us-west-2

Listing AgentCore Browser tools

You can list all browser tools in your account to view their details, status, and configurations.

Console

To list browser tools using the console

1. Sign in to the Amazon Bedrock AgentCore console at Bedrock AgentCore.

2. In the navigation pane, choose Built-in tools.

3. The browser tools are listed in the Browser tools section.

4. You can view details such as name, ID, status, and creation date for each browser tool.

AWS CLI

To list browser tools using the AWS CLI, use the list-browsers command:

aws bedrock-agentcore-control list-browsers \ 
  --region us-west-2

You can filter the results by type:

aws bedrock-agentcore-control list-browsers \ 
  --region us-west-2 \ 
  --type SYSTEM

You can also limit the number of results and use pagination:

Resource and session management 185

https://console.aws.amazon.com/bedrock-agentcore/


Amazon Bedrock AgentCore Developer Guide

aws bedrock-agentcore-control list-browsers \ 
  --region us-west-2 \ 
  --max-results 10 \ 
  --next-token "your-pagination-token"

Boto3

To list browser tools using the AWS SDK for Python (Boto3), use the list_browsers method:

Request Syntax

The following shows the request syntax:

response = cp_client.list_browsers(type="CUSTOM")
)

API

To list browser tools using the API, use the following call:

# Using awscurl
awscurl -X POST \ 
  "https://bedrock-agentcore-control.us-west-2.amazonaws.com/browsers" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 

You can filter the results by type:

awscurl -X POST \ 
  "https://bedrock-agentcore-control.us-west-2.amazonaws.com/browsers?type=SYSTEM" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore \ 
  --region us-west-2

Resource and session management 186



Amazon Bedrock AgentCore Developer Guide

You can also limit the number of results and use pagination:

awscurl -X POST \ 
  "https://bedrock-agentcore-control.us-west-2.amazonaws.com/browsers?
maxResults=1&nextToken=AQICAHhN7ebEV60f9XTB8vI2KnlI4xSCHHqwWVnroWBoiBSU9AFSVJz24payM7wvuBAXRtV3AAAB9zCCAfMGCSqGSIb3DQEHBqCCAeQwggHgAgEAMIIB2QYJKoZIhvcNAQcBMB4GCWCGSAFlAwQBLjARBAy9P_C6HGbSvKk7KzUCARCAggGqQtBOZSSGGSGG8GfC6h-8Myt_3mQPD-
XyBpxFOD9H0bg-B56-
djH78MWT8x-0K3OUfQbuZTLfJ6giaoxNS0ZYdXpJt0giL0JfaiM70ECYHQ8XIXcn3Rvx7s9ao_jDJWjVjPGuF4z60oUTctrKUmGhEw712nfLqyulHv_vfloGokqHneh6p--
rVN8HzqoocXEr4F0Rt-_vFUgDZUseV8C6r137MD31L84-R3CaQ-2O4i2G5ubye48-
TeASnyal_FLP4bRduJsHe3scOG__K-
d2dEMy2omcr6YNDcv9saF24v7wU28gURdW0ZNsSJjn1bXw6jbn_ZzuJsl7V9Ez9zqaUU4ULnZBH1hhgeIk7u9YY5A-
GrvqyTKmv18BbuVC7Ie7NrlQOOdo-95AnNx7vUgM72OBySfv1hvgFqjGLVz8uyO1Cbxp3JKyLFH_ejqCIL4-
JkECvFBo5JNNSrCJaQi3PMlJ5k3PWG1xMX0RUz35b7WALCjQ1O79owa5RC0Rm1845CZH56F8Hf8aXAgmG1w43N167qdKZI5vWJEmdQ_PovnPKSR-
MD7lK3dV" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore \ 
  --region us-west-2

Deleting an AgentCore Browser

When you no longer need a browser tool, you can delete it to free up resources. Before deleting a 
browser tool, make sure to stop all active sessions associated with it.

Console

To delete a Browser tool using the console

1. Sign in to the Amazon Bedrock AgentCore console.

2. Navigate to Built-in tools and select your browser tool.

3. Choose Delete from the Actions menu.

4. Confirm the deletion by typing the browser tool name in the confirmation dialog.

5. Choose Delete.

Note

You cannot delete a browser tool that has active sessions. Stop all sessions before 
attempting to delete the tool.

Resource and session management 187



Amazon Bedrock AgentCore Developer Guide

AWS CLI

To delete a Browser tool using the AWS CLI, use the delete-browser command:

aws bedrock-agentcore-control delete-browser \ 
  --region us-west-2 \ 
  --browser-id "your-browser-id"

Boto3

To delete a Browser tool using the AWS SDK for Python (Boto3), use the delete_browser
method:

Request Syntax

The following shows the request syntax:

response = cp_client.delete_browser( 
    browserId="my_custom_browser-gYdcrEoC5r" 
    )

API

To delete a browser tool using the API, use the following call:

# Using awscurl
awscurl -X DELETE \ 
  "https://bedrock-agentcore-control.us-west-2.amazonaws.com/browsers/your-browser-
id" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore-control \ 
  --region us-west-2

Session management

The AgentCore Browser sessions have the following characteristics:

Resource and session management 188



Amazon Bedrock AgentCore Developer Guide

Session timeout

Default: 900 seconds (15 minutes)

Configurable: Can be adjusted when creating sessions, up to 8 hours

Session recording

Browser sessions can be recorded for later review

Recordings include network traffic and console logs

Recordings are stored in an S3 bucket specified during browser creation

Live view

Sessions can be viewed in real-time using the live view feature

Live view is available at: /browser-streams/aws.browser.v1/sessions/{session_id}/live-view

Automatic termination

Sessions automatically terminate after the configured timeout period

Multiple sessions

Multiple sessions can be active simultaneously for a single browser tool. Each session maintains 
its own state and environment. There can be up to a maximum of 500 sessions.

Retention policy

The time to live (TTL) retention policy for the session data is 30 days.

Using isolated sessions

AgentCore Tools enable isolation of each user session to ensure secure and consistent reuse of 
context across multiple tool invocations. Session isolation is especially important for AI agent 
workloads due to their dynamic and multi-step execution patterns.

Each tool session runs in a dedicated microVM with isolated CPU, memory, and filesystem 
resources. This architecture guarantees that one user's tool invocation cannot access data from 
another user's session. Upon session completion, the microVM is fully terminated, and its memory 
is sanitized, thereby eliminating any risk of cross-session data leakage.

Starting a browser session

After creating a browser, you can start a session to interact with web applications.

Resource and session management 189



Amazon Bedrock AgentCore Developer Guide

AWS CLI

To start a Browser session using the AWS CLI, use the start-browser-session command:

 aws bedrock-agentcore start-browser-session \ 
  --region us-west-2 \ 
  --browser-identifier "my-browser" \ 
  --name "my-browser-session" \ 
  --session-timeout-seconds 900

Boto3

To start a Browser session using the AWS SDK for Python (Boto3), use the
start_browser_session method:

Request Syntax

The following shows the request syntax:

response = dp_client.start_browser_session( 
    browserIdentifier="aws.browser.v1", 
    name="browser-session-1", 
    sessionTimeoutSeconds=3600
)

API

To create a new browser session using the API, use the following call:

# Using awscurl
awscurl -X PUT \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/browsers/aws.browser.v1/
sessions/start" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 
    "name": "browser-session-abc12345", 

Resource and session management 190



Amazon Bedrock AgentCore Developer Guide

    "description": "browser sandbox session", 
    "sessionTimeoutSeconds": 300 
  }'

Get Browser session

You can get information about a browser session that you have created.

AWS CLI

To get information about a browser session using the AWS CLI, use the get-browser-
session command:

aws bedrock-agentcore get-browser-session \ 
  --region us-west-2 \ 
  --browser-identifier "aws.browser.v1" \ 
  --session-id "01K032BXM8ARPD5HSMD3T735PW"

Boto3

To get information about a browser session using the AWS SDK for Python (Boto3), use the
get_browser_session method:

Request Syntax

The following shows the request syntax:

response = dp_client.get_browser_session( 
    browserIdentifier="aws.browser.v1", 
    sessionId="01K032BXM8ARPD5HSMD3T735PW"
)

API

To get information about a browser session using the API, use the following call:

# Using awscurl

Resource and session management 191



Amazon Bedrock AgentCore Developer Guide

awscurl -X GET \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/browsers/aws.browser.v1/
sessions/get?sessionId=01K05G5Y1GWXCVV6PA501MV5PX" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 
   
{ 
  "browserIdentifier": "aws.browser.v1", 
  "createdAt": "2025-07-14T22:16:40.713152248Z", 
  "lastUpdatedAt": "2025-07-14T22:16:40.713152248Z", 
  "name": "testBrowserSession1752531400", 
  "sessionId": "01K05G5Y1GWXCVV6PA501MV5PX", 
  "sessionReplayArtifact": null, 
  "sessionTimeoutSeconds": 900, 
  "status": "TERMINATED", 
  "streams": { 
    "automationStream": { 
      "streamEndpoint": "wss://bedrock-agentcore.us-west-2.amazonaws.com/browser-
streams/aws.browser.v1/sessions/01K05G5Y1GWXCVV6PA501MV5PX/automation", 
      "streamStatus": "ENABLED" 
    }, 
    "liveViewStream": { 
      "streamEndpoint": "https://bedrock-agentcore.us-west-2.amazonaws.com/browser-
streams/aws.browser.v1/sessions/01K05G5Y1GWXCVV6PA501MV5PX/live-view" 
    } 
  }, 
  "viewPort": { 
    "height": 819, 
    "width": 1456 
  }
}

Interacting with a browser session

Once you have started a Browser session, you can interact with it using the WebSocket API.

Console

To interact with a Browser session using the console

1. Navigate to your active Browser session.

Resource and session management 192



Amazon Bedrock AgentCore Developer Guide

2. Use the browser interface to navigate to websites, interact with web elements, and perform 
other browser actions.

3. You can view the browser activity in real-time through the live view feature.

SDK

To interact with a Browser session programmatically, use the WebSocket-based streaming API 
with the following URL format:

https://bedrock-agentcore.us-west-2.amazonaws.com/browser-streams/{browser_id}/
sessions/{session_id}/automation

You can use libraries like Playwright to establish a connection with the WebSocket and control 
the browser. Here's an example:

from playwright.sync_api import sync_playwright, Playwright, BrowserType
import os
import base64
from bedrock_agentcore.tools.browser_client import browser_session

def main(playwright: Playwright): 
    # Keep browser session alive during usage 
    with browser_session('us-west-2') as client: 

        # Generate CDP endpoint and headers 
        ws_url, headers = client.generate_ws_headers() 

        # Connect to browser using headers 
        chromium: BrowserType = playwright.chromium 
        browser = chromium.connect_over_cdp(ws_url, headers=headers) 

        # Use the first available context or create one 
        context = browser.contexts[0] if browser.contexts else browser.new_context() 
        page = context.pages[0] if context.pages else context.new_page() 

        page.goto("https://amazon.com/") 
        print("Navigated to Amazon") 

        # Create CDP session for screenshot 

Resource and session management 193



Amazon Bedrock AgentCore Developer Guide

        cdp_client = context.new_cdp_session(page) 
        screenshot_data = cdp_client.send("Page.captureScreenshot", { 
            "format": "jpeg", 
            "quality": 80, 
            "captureBeyondViewport": True 
        }) 

        # Decode and save screenshot 
        image_data = base64.b64decode(screenshot_data['data']) 
        with open("screenshot.jpeg", "wb") as f: 
            f.write(image_data) 

        print("# Screenshot saved as screenshot.jpeg") 
        page.close() 
        browser.close()

with sync_playwright() as p: 
    main(p)

The following example code shows how you can perform live view using the WebSocket-based 
streaming API.

https://bedrock-agentcore.us-west-2.amazonaws.com/browser-streams/{browser_id}/
sessions/{session_id}/live-view

Below is the code.

import time
from rich.console import Console
from bedrock_agentcore.tools.browser_client import browser_session  
from browser_viewer import BrowserViewerServer

console = Console()   
  
def main(): 
    try: 
         # Step 1: Create browser session 
        with browser_session('us-west-2') as client: 
            print("\r   # Browser ready!                    ") 
            ws_url, headers = client.generate_ws_headers() 
  

Resource and session management 194



Amazon Bedrock AgentCore Developer Guide

            # Step 2: Start viewer server 
            console.print("\n[cyan]Step 3: Starting viewer server...[/cyan]") 
            viewer = BrowserViewerServer(client, port=8005) 
            viewer_url = viewer.start(open_browser=True) 
  
            # Keep running 
            while True: 
                time.sleep(1) 
              
    except KeyboardInterrupt: 
        console.print("\n\n[yellow]Shutting down...[/yellow]") 
        if 'client' in locals(): 
            client.stop() 
            console.print("# Browser session terminated") 
    except Exception as e: 
        console.print(f"\n[red]Error: {e}[/red]") 
        import traceback 
        traceback.print_exc() 
  
if __name__ == "__main__": 
    main() 
     

Listing browser sessions

You can list all active browser sessions to monitor and manage your resources. This is useful for 
tracking active sessions, identifying long-running sessions, or finding sessions that need to be 
stopped.

AWS CLI

To list Browser sessions using the AWS CLI, use the list-browser-sessions command:

aws bedrock-agentcore list-browser-sessions \ 
  --region us-west-2 \ 
  --browser-id "your-browser-id" \ 
  --max-results 10

You can also filter sessions by status:

Resource and session management 195



Amazon Bedrock AgentCore Developer Guide

aws bedrock-agentcore list-browser-sessions \ 
  --region us-west-2 \ 
  --browser-id "your-browser-id" \ 
  --status "READY"

Boto3

To list Browser sessions using the AWS SDK for Python (Boto3), use the
list_browser_sessions method:

Request Syntax

The following shows the request syntax:

response = dp_client.get_browser_session( 
    browserIdentifier="aws.browser.v1", 
    sessionId="01K032BXM8ARPD5HSMD3T735PW"
)

You can also filter sessions by status:

# List only active sessions
filtered_response = dp_client.list_browser_sessions( 
    browserIdentifier="aws.browser.v1", 
    status="READY"
)

# Print filtered session information
for session in filtered_response['items']: 
    print(f"Ready Session ID: {session['sessionId']}") 
    print(f"Name: {session['name']}") 
    print("---")

API

To list browser sessions using the API, use the following call:

# Using awscurl

Resource and session management 196



Amazon Bedrock AgentCore Developer Guide

awscurl -X POST \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/browsers/your-browser-id/
sessions/list" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 
    "maxResults": 10 
  }'

You can also filter sessions by status:

# Using awscurl
awscurl -X POST \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/browsers/aws.browser.v1/
sessions/list" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 
    "maxResults": 10, 
    "status": "READY" 
  }'

Stopping a browser session

When you are finished using a Browser session, you should stop it to release resources and avoid 
unnecessary charges.

AWS CLI

To stop a Browser session using the AWS CLI, use the stop-browser-session command:

aws bedrock-agentcore stop-browser-session \ 
  --region us-west-2 \ 
  --browser-id "your-browser-id" \ 
  --session-id "your-session-id"

Resource and session management 197



Amazon Bedrock AgentCore Developer Guide

Boto3

To stop a Browser session using the AWS SDK for Python (Boto3), use the
stop_browser_session method:

Request Syntax

The following shows the request syntax:

response = dp_client.stop_browser_session( 
        browserIdentifier="aws.browser.v1", 
        sessionId="01K032BXM8ARPD5HSMD3T735PW", 
    )

API

To stop a browser session using the API, use the following call:

# Using awscurl
awscurl -X PUT \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/browsers/aws.browser.v1/
sessions/stop?sessionId=01K0652S7JTAQA5XTTHTNZAFES" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore \ 
  --region us-west-2

Updating browser streams

You can update browser streams to enable or disable automation. This is useful when you need to 
enter sensitive information like login credentials that you don't want the agent to see.

Boto3

response = dp_client.update_browser_stream( 
    browserIdentifier="aws.browser.v1", 
    sessionId="01K032QBS0P9M4JMB0S3F4HF82", 
    streamUpdate={ 
        "automationStreamUpdate": { 
            "streamStatus": "DISABLED"  # or "ENABLED" 

Resource and session management 198



Amazon Bedrock AgentCore Developer Guide

        } 
    }
)

AWSCURL

awscurl -X PUT \ 
  "https://bedrock-agentcore.us-west-2.amazonaws.com/browsers/aws.browser.v1/
sessions/streams/update?sessionId=01K0652S7JTAQA5XTTHTNZAFES" \ 
  -H "Content-Type: application/json" \ 
  -H "Accept: application/json" \ 
  --service bedrock-agentcore \ 
  --region us-west-2 \ 
  -d '{ 
    "streamUpdate": { 
            "automationStreamUpdate": { 
              "streamStatus": "ENABLED" 
            } 
          } 
  }'

CLI

aws bedrock-agentcore update-browser-stream \ 
  --region us-west-2 \ 
  --browser-id "my_browser_sandbox-iOXY2sdWY0" \ 
  --session-id "01K063EDK153J5SCEAMQ16VFCY" \ 
  --stream-update automationStreamUpdate={streamStatus=ENABLED}

Use cases and code examples

The AgentCore Browser can be used for a wide range of use cases, enabling AI agents to interact 
with web applications just as humans do. This section describes common use cases and provides 
Python code examples for implementation provided in conjunction with the Amazon Bedrock 
AgentCore SDK.

Common use cases

With the AgentCore Browser, you can:

• Test web applications in a secure environment

Use cases and code examples 199



Amazon Bedrock AgentCore Developer Guide

• Access online resources and services

• Perform web-based tasks and workflows

• Interact with web interfaces

• Capture screenshots and record browser sessions

• Build AI agents that can navigate the web

• Automate form submissions and data entry

• Extract information from websites

• Perform e-commerce transactions

• Monitor website changes and updates

Use case examples

The following examples demonstrate how to implement common use cases with the AgentCore 
Browser.

Shopping automation

You can automate shopping tasks on e-commerce websites:

import time
import base64
from datetime import datetime
from playwright.sync_api import sync_playwright, Playwright, BrowserType
from bedrock_agentcore.tools.browser_client import browser_session

def capture_cdp_screenshot(context, page, filename_prefix="screenshot", 
 image_format="jpeg"): 
    """Capture a screenshot using the CDP API and save to file.""" 
    cdp_client = context.new_cdp_session(page) 
    screenshot_data = cdp_client.send("Page.captureScreenshot", { 
        "format": image_format, 
        "quality": 80, 
        "captureBeyondViewport": True 
    }) 

    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") 
    filename = f"{filename_prefix}_{timestamp}.{image_format}" 
    image_bytes = base64.b64decode(screenshot_data['data']) 

Use cases and code examples 200



Amazon Bedrock AgentCore Developer Guide

    with open(filename, "wb") as f: 
        f.write(image_bytes) 

    print(f"# Screenshot saved: {filename}") 
    return filename

def main(playwright: Playwright): 
    with browser_session('us-west-2') as client: 
        print("# Browser session started... waiting for readiness")         

        ws_url, headers = client.generate_ws_headers() 
        chromium: BrowserType = playwright.chromium 
        browser = chromium.connect_over_cdp(ws_url, headers=headers) 

        try: 
            context = browser.contexts[0] if browser.contexts else 
 browser.new_context() 
            page = context.pages[0] if context.pages else context.new_page() 

            # Step 1: Navigate to Amazon 
            print("# Navigating to Amazon...") 
            page.goto("https://www.amazon.com", wait_until="domcontentloaded") 
            time.sleep(2) 
            capture_cdp_screenshot(context, page, "amazon_home") 

            # Step 2: Search for "coffee maker" 
            print("# Searching for 'coffee maker'...") 
            page.fill("input#twotabsearchtextbox", "coffee maker") 
            page.keyboard.press("Enter") 
            page.wait_for_selector(".s-result-item", timeout=10000) 
            time.sleep(2) 
            capture_cdp_screenshot(context, page, "coffee_maker_results") 

        finally: 
            print("# Closing browser session...") 
            if not page.is_closed(): 
                page.close() 
            browser.close()

if __name__ == "__main__": 
    with sync_playwright() as p: 

Use cases and code examples 201



Amazon Bedrock AgentCore Developer Guide

        main(p)

User take over handling during Browser automation

You can take over control when performing browser automation:

"Example of using UpdateBrowserStream with error handling when automation control is 
 taken by the client."

import time
import boto3
from rich.console import Console
from bedrock_agentcore.tools.browser_client import browser_session
from nova_act import NovaAct
from browser_viewer import BrowserViewerServer

# Constants
NOVA_ACT_API_KEY = "YOUR_NOVA_ACT_API_KEY"
REGION = "us-west-2"
# Boto3 client to query browser stream status
dp_client = boto3.client( 
    'bedrock-agentcore', 
    region_name=REGION
)

console = Console()

def wait_until_stream_enabled(session_id): 
    """Polls the browser session until automation stream is re-enabled.""" 
    while True: 
        console.print(f"[blue]Polling stream status for session {session_id}...[/
blue]") 
        response = dp_client.get_browser_session( 
            browserIdentifier="aws.browser.v1", # using SYSTEM browser 
            sessionId=session_id 
        ) 
        status = response.get("streams", {}).get("automationStream", 
 {}).get("streamStatus", "UNKNOWN") 
        console.print(f"[cyan]Current streamStatus:[/cyan] {status}") 

        if status == "ENABLED": 
            console.print("[green]# Automation control has been returned![/green]") 

Use cases and code examples 202



Amazon Bedrock AgentCore Developer Guide

            break 

        console.print("[yellow]## User has control. Waiting 30 seconds...[/yellow]") 
        time.sleep(30)

def wait_if_user_has_control(session_id): 
    """Returns True if control was temporarily lost and needs retrying. False if stream 
 was ENABLED all along.""" 
    response = dp_client.get_browser_session( 
        browserIdentifier="aws.browser.v1", # using SYSTEM browser 
        sessionId=session_id 
    ) 
    status = response.get("streams", {}).get("automationStream", 
 {}).get("streamStatus", "UNKNOWN") 
    console.print(f"[magenta]Checked streamStatus: {status}[/magenta]") 

    if status != "ENABLED": 
        wait_until_stream_enabled(session_id) 
        return True 
    return False

def main(): 
    try: 
        # Step 1: Start browser session 
        with browser_session(REGION) as client: 
            print("\r   # Browser ready!") 
            ws_url, headers = client.generate_ws_headers() 
            session_id = client.session_id 

            # Step 2: Start viewer server 
            console.print("\n[cyan]Step 2: Starting viewer server...[/cyan]") 
            viewer = BrowserViewerServer(client, port=8005) 
            viewer.start(open_browser=True) 

            # Step 3: Main loop to run NovaAct 
            while True: 
                try: 
                    console.print("[cyan]Step 3: Running NovaAct...[/cyan]") 
                    with NovaAct( 
                        cdp_endpoint_url=ws_url, 
                        cdp_headers=headers, 
                        preview={"playwright_actuation": True}, 

Use cases and code examples 203



Amazon Bedrock AgentCore Developer Guide

                        nova_act_api_key=NOVA_ACT_API_KEY, 
                        starting_page="https://www.amazon.com", 
                    ) as nova_act: 
                        result = nova_act.act( 
                            "Search for coffee maker and get the details of the lowest 
 priced one on the first page" 
                        ) 
                        console.print(f"\n[bold green]# Nova Act Result:[/bold green] 
 {result}") 
                         
                        # # Exit after successful execution 
                        break 

                except Exception as e: 
                    console.print(f"\n[red]# NovaAct Exception: {e}[/red]") 
                    should_retry = wait_if_user_has_control(session_id) 

                    if should_retry: 
                        console.print("[yellow]# Retrying NovaAct after control was 
 returned...[/yellow]") 
                        continue 
                    else: 
                        console.print("[red]# Error not caused by control loss — re-
raising[/red]") 
                        raise 

    except KeyboardInterrupt: 
        console.print("\n[yellow]Shutting down...[/yellow]") 
        if 'client' in locals(): 
            client.stop() 
            print("# Browser session terminated") 

    except Exception as e: 
        console.print(f"\n[red]Unhandled error: {e}[/red]") 
        import traceback 
        traceback.print_exc()

if __name__ == "__main__": 
    main() 

Use cases and code examples 204



Amazon Bedrock AgentCore Developer Guide

Rendering live view using AWS DCV Web Client

Amazon Bedrock AgentCore's live view is powered by AWS DCV. Each browser session launches a 
dedicated DCV server that streams the browser interface and enables real-time user interaction.

To render the live view, you must use the AWS DCV Web Client, which supports interactive display 
within a browser. Authentication is handled via IAM SigV4-signed query parameters, which must 
be appended to the live view URL to authorize access.

The example SDK includes a lightweight web server that hosts the DCV Web Client and connects to 
the live view, enabling an end-to-end interactive experience out of the box.

If you want to directly integrate the live view experience into their own web applications, they 
can embed the DCV Web Client and generate the signed connection URL using the SDK's helper 
methods. This allows full customization of the UI while leveraging Amazon Bedrock AgentCore's 
Browser Tool capabilities.

Using Callbacks to Customize URL Parameters

The DCV Web SDK supports custom callbacks that you can use to modify the URLs used during 
authentication and session establishment. This feature enables advanced integration scenarios, 
including the ability to append custom query parameters and add AWS Signature Version 4 (SigV4) 
signed values to secure and authorize connections through external systems.

Customizing Authentication and connection URL:httpExtraSearchParamsCallback

The authenticate method supports a callback parameter,
httpExtraSearchParamsCallback. Before initiating the request, you can use this callback to 
inject custom query parameters into the authentication URL.

When establishing a WebSocket connection to the DCV server, you can use the
httpExtraSearchParamsCallback in the connect method to customize the URL used.

Example:

Example

The following shows a sample code:

async function startAndConnect() { 
  const response = await fetch('/presigned-url'); 

Rendering live view using DCV client 205



Amazon Bedrock AgentCore Developer Guide

  const { sessionId, presignedUrl: url } = await response.json(); 
  presignedUrl = url; // Set global variable 

  dcv.setLogLevel(dcv.LogLevel.INFO); 
  auth = dcv.authenticate(presignedUrl, { 
    promptCredentials: onPromptCredentials, 
    error: onError, 
    success: (auth, result) => { 
      const { sessionId, authToken } = result[0]; 
      connect(presignedUrl, sessionId, authToken); 
    }, 
    httpExtraSearchParams: httpExtraSearchParamsCb 
  });
}

function connect(serverUrl, sessionId, authToken) { 
  dcv.connect({ 
    url: serverUrl, 
    sessionId, 
    authToken, 
    divId: 'dcv-display', 
    observers: { 
      httpExtraSearchParams: httpExtraSearchParamsCb, 
      displayLayout: displayLayoutCallbackCb, 
    } 
  }) 
    .then((conn) => { 
      console.log('Connection established'); 
      connection = conn; 
    }) 
    .catch((error) => { 
      console.error('Connection failed:', error.message); 
    });
}

function httpExtraSearchParamsCb(method, url, body) { 
  const presignedUrl = getPresignedUrlForLiveViewEndpoint(); 
  const searchParams = new URL(presignedUrl).searchParams; 

  return searchParams;
}

Rendering live view using DCV client 206



Amazon Bedrock AgentCore Developer Guide

These callbacks offer fine-grained control over the URL and headers used by the SDK during key 
stages of session negotiation and connection, supporting advanced use cases and integration with 
existing security infrastructure.

Observability and session replay

The AgentCore Browser provides the following observability features:

Session replay

You can replay browser sessions using the Amazon Bedrock AgentCore SDK to view session 
recordings stored in Amazon S3. This feature enables you to review past browser interactions 
for debugging, auditing, or training purposes. The recordings in S3 include DOM change events, 
browser network activity, and console logs for comprehensive session analysis.

Metrics

You can view browser session metrics in Amazon CloudWatch, including session counts, 
durations, and error rates to monitor usage and performance.

Session replay

For session replay to work, you'll first need to create a Browser with recording enabled and provide 
the S3 bucket and prefix where you want the recording to be stored. Note that session replay is not 
available in the AWS managed Browser (aws.browser.v1).

Note

Session replay in Amazon Bedrock AgentCore captures DOM mutations within your browser 
session and replays those changes by reconstructing the DOM. During replay, the browser 
may make cross-origin HTTP requests to fetch external assets such as JavaScript files, CSS 
stylesheets, images, and other resources required to render the page accurately.

Boto3

## Request
response = cp_client.create_browser( 
    name="my_custom_browser", 

Observability and session replay 207



Amazon Bedrock AgentCore Developer Guide

    description="Test browser for development", 
    networkConfiguration={ 
        "networkMode": "PUBLIC" 
    }, 
    executionRoleArn="arn:aws:iam::123456789012:role/Sessionreplay", 
    clientToken=str(uuid.uuid4()), 
    recording={ 
    "enabled": True, 
    "s3Location": { 
        "bucket": "session-record-123456789012", 
        "prefix": "replay-data" 
      }  
    }
)

API

              awscurl \ 
  --region us-west-2 \ 
  --service bedrock-agentcore \ 
  --request PUT \ 
  --header "Content-Type: application/json" \ 
  --data '{ 
    "name": "dsi_browser_2", 
    "description": "Test sandbox for development", 
    "networkConfiguration": { 
      "networkMode": "PUBLIC" 
    }, 
    "clientToken": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6q7r8s9t0u1v2w3x4y5z" 
  }' \ 
  https://bedrock-agentcore.us-west-2.amazonaws.com/browsers
)

Permissions

The executionRoleArn will be used to write the recording data to your given s3 bucket. The IAM 
role should have the below permissions:

{ 
    "Sid": "BedrockAgentCoreBuiltInToolsS3Policy", 
    "Effect": "Allow", 

Observability and session replay 208



Amazon Bedrock AgentCore Developer Guide

    "Action": [ 
        "s3:PutObject", 
        "s3:ListMultipartUploadParts", 
        "s3:AbortMultipartUpload" 
    ], 
    "Resource": "arn:aws:s3:::{{recordingBucket}}/{{recordingPrefix}}/*", 
    "Condition": { 
        "StringEquals": { 
            "aws:ResourceAccount": "{{accountId}}" 
        } 
    }
}

Following is the trust policy for the role ARN.

{ 
    "Version": "2012-10-17", 
    "Statement": [{ 
        "Sid": "BedrockAgentCoreBuiltInTools", 
        "Effect": "Allow", 
        "Principal": { 
            "Service": "bedrock-agentcore.amazonaws.com" 
        }, 
        "Action": "sts:AssumeRole", 
        "Condition": { 
            "StringEquals": { 
                "aws:SourceAccount": "{{accountId}}" 
            }, 
            "ArnLike": { 
                "aws:SourceArn": "arn:aws:bedrock-agentcore:{{region}}:{{accountId}}:*" 
            } 
        } 
    }]
}

Once you starts a browser session and interact with the browser either via automation end point or 
via live view, the session recording will start getting generated and pushed to your provided s3 in 
chunks.

Standalone Session Replay Viewer

A separate tool for viewing recorded browser sessions directly from S3 without creating a new 
browser.

Observability and session replay 209



Amazon Bedrock AgentCore Developer Guide

• Connect directly to S3 to view recordings

• View any past recording by specifying its session ID

• Automatically finds the latest recording if no session ID is provided

# View the latest recording in a bucket
python view_recordings.py --bucket session-record-test-123456789012 --prefix replay-
data

# View a specific recording
python view_recordings.py --bucket session-record-test-123456789012 --prefix replay-
data --session 01JZVDG02M8MXZY2N7P3PKDQ74

# Use a specific AWS profile
python view_recordings.py --bucket session-record-test-123456789012 --prefix replay-
data --profile my-profile

For reference, see Standalone session replay viewer on GitHub.

Complete Browser Experience with Recording and Replay

A separate tool for viewing recorded browser sessions directly from S3 without creating a new 
browser.

• Create browser sessions with automatic recording to S3

• Live view with interactive control (take/release)

• Adjust display resolution on the fly

• Automatic session recording to S3

• Integrated session replay viewer for watching recordings

# View the latest recording in a bucket
python -m live_view_sessionreplay.browser_interactive_session

For reference, see Interactive browser session on GitHub.

CloudWatch Metrics

You can view the following metrics in Amazon CloudWatch:

Observability and session replay 210

https://github.com/awslabs/amazon-bedrock-agentcore-samples/blob/main/01-tutorials/05-AgentCore-tools/02-Agent-Core-browser-tool/interactive_tools/live_view_sessionreplay/view_recordings.py
https://github.com/awslabs/amazon-bedrock-agentcore-samples/blob/main/01-tutorials/05-AgentCore-tools/02-Agent-Core-browser-tool/interactive_tools/live_view_sessionreplay/browser_interactive_session.py


Amazon Bedrock AgentCore Developer Guide

• Session counts: The number of browser sessions that have been requested

• Session duration: The length of time browser sessions are active

• Error rates: The frequency of errors encountered during browser sessions

• Resource utilization: CPU, memory, and network usage by browser sessions

These metrics can be used to monitor the usage and performance of your browser sessions, set up 
alarms for abnormal behavior, and optimize your resource allocation.

Observability and session replay 211



Amazon Bedrock AgentCore Developer Guide

Amazon Bedrock AgentCore Gateway: Securely connect 
tools and other resources to your Gateway

Amazon Bedrock AgentCore Gateway provides an easy and secure way for developers to build, 
deploy, discover, and connect to tools at scale. AI agents need tools to perform real-world tasks—
from querying databases to sending messages to analyzing documents. With Gateway, developers 
can convert APIs, Lambda functions, and existing services into Model Context Protocol (MCP)-
compatible tools and make them available to agents through Gateway endpoints with just a few 
lines of code. Gateway supports OpenAPI, Smithy, and Lambda as input types, and is the only 
solution that provides both comprehensive ingress authentication and egress authentication in 
a fully-managed service. Gateway also provides 1-click integration with several popular tools 
such as Salesforce, Slack, Jira, Asana, and Zendesk. Gateway eliminates weeks of custom code 
development, infrastructure provisioning, and security implementation so developers can focus on 
building innovative agent applications.

Key benefits

Simplify tool development and integration

Transform existing enterprise resources into agent-ready tools in just a few lines of code. 
Instead of spending months writing custom integration code and managing infrastructure, 
developers can focus on building differentiated agent capabilities while Gateway handles the 
undifferentiated heavy lifting of tool management and security at enterprise scale. Gateway 
also provides 1-click integration with several popular tools such as Salesforce, Slack, Jira, Asana, 
and Zendesk.

Accelerate agent development through unified access

Enable your agents to discover and use tools through a single, secure endpoint. By combining 
multiple tool sources—from APIs to Lambda functions—into one unified interface, developers 
can build and scale agent workflows faster without managing multiple tool connections or 
reimplementing integrations.

Scale with confidence through intelligent tool discovery

As your tool collection grows, help your agents find and use the right tools through contextual 
search. Built-in semantic search capabilities help agents effectively utilize available tools based 

Key benefits 212



Amazon Bedrock AgentCore Developer Guide

on their task context, improving agent performance and reducing development complexity at 
scale.

Comprehensive authentication

Manage both inbound authentication (verifying agent identity) and outbound authentication 
(connecting to tools) in a single service. Handle OAuth flows, token refresh, and secure 
credential storage for third-party services.

Framework compatibility

Work with popular open-source frameworks including CrewAI, LangGraph, LlamaIndex, and 
Strands Agents. Integrate with any model while maintaining enterprise-grade security and 
reliability.

Serverless infrastructure

Eliminate infrastructure management with a fully managed service that automatically scales 
based on demand. Built-in observability and auditing capabilities simplify monitoring and 
troubleshooting.

Key capabilities

Gateway provides the following key capabilities:

• Security Guard - Manages OAuth authorization to ensure only valid users and agents can access 
tools and resources.

• Translation - Converts agent requests using protocols like Model Context Protocol (MCP) into 
API requests and Lambda invocations, eliminating the need to manage protocol integration or 
version support.

• Composition - Combines multiple APIs, functions, and tools into a single MCP endpoint for 
streamlined agent access.

• Secure Credential Exchange - Handles credential injection for each tool, enabling agents to use 
tools with different authentication requirements seamlessly.

• Semantic Tool Selection - Enables agents to search across available tools to find the most 
appropriate ones for specific contexts, allowing agents to leverage thousands of tools while 
minimizing prompt size and reducing latency.

• Infrastructure Manager - Provides a serverless solution with built-in observability and auditing, 
eliminating infrastructure management overhead.

Key capabilities 213



Amazon Bedrock AgentCore Developer Guide

Quick Start with creating and using a Gateway

This section provides quick start examples for creating a gateway and using it with different 
frameworks.

Prerequisites

Before creating a gateway, ensure you have the following prerequisites:

• AWS account with permissions to create IAM roles, Lambda functions, and Cognito resources. You 
will also need permission to use Bedrock AgentCore APIs.

• AWS credentials configured on your development environment

• Python 3.6+ with boto3 installed

If you would rather create your roles, Lambda, and/or Cognito authorization server yourself, refer 
to the detailed setup instructions in Setting up a Amazon Bedrock AgentCore Gateway.

Install the key dependencies:

pip install boto3
pip install bedrock-agentcore-starter-toolkit
pip install bedrock-agentcore
pip install strands-agents

For detailed setup instructions, see Setting up a Amazon Bedrock AgentCore Gateway.

Creating a Gateway and attaching a Target

Now, let's dive in! Let's first create a Gateway and attach a Lambda Target:

from bedrock_agentcore_starter_toolkit.operations.gateway.client import GatewayClient
import logging

# setup the client
client = GatewayClient(region_name="us-east-1")
client.logger.setLevel(logging.DEBUG)

Quick start 214



Amazon Bedrock AgentCore Developer Guide

# create cognito authorizer
cognito_response = client.create_oauth_authorizer_with_cognito("TestGateway")

# create the gateway
gateway = 
 client.create_mcp_gateway(authorizer_config=cognito_response["authorizer_config"])

# create a lambda target
lambda_target = client.create_mcp_gateway_target(gateway=gateway, target_type="lambda")

You can customize your Gateway and Targets using your own role, Lambda functions, etc.:

# create the gateway.
gateway = client.create_mcp_gateway( 
    name=None, # the name of the Gateway - if you don't set one, one will be generated. 
    role_arn=None, # the role arn that the Gateway will use - if you don't set one, one 
 will be created. 
    authorizer_config=cognito_response["authorizer_config"], # the OAuth authorizer 
 details for authorizing callers to your Gateway (MCP only supports OAuth). 
    enable_semantic_search=True, # enable semantic search.
)

# create a lambda target.
lambda_target = client.create_mcp_gateway_target( 
    gateway=gateway,  
    name=None, # the name of the Target - if you don't set one, one will be generated. 
    target_type="lambda", # the type of the Target - you will see other target types 
 later in the tutorial. 
    target_payload=None, # the target details - set this to define your own lambda if 
 you pre-created one. Otherwise leave this None and one will be created for you. 
    credentials=None, # you will see later in the tutorial how to use this to connect 
 to APIs using API keys and OAuth credentials.
)

Example of target_payload for Lambda. Note this Lambda will be created for you if you don't 
provide a target_payload:

{ 

Creating a Gateway and attaching a Target 215



Amazon Bedrock AgentCore Developer Guide

    "lambdaArn": "<insert your lambda arn>", 
    "toolSchema": { 
        "inlinePayload": [ 
            { 
                "name": "get_weather", 
                "description": "Get weather for a location", 
                "inputSchema": { 
                    "type": "object", 
                    "properties": { 
                        "location": { 
                            "type": "string", 
                            "description": "the location e.g. seattle, wa" 
                        } 
                    }, 
                    "required": [ 
                        "location" 
                    ] 
                } 
            }, 
            { 
                "name": "get_time", 
                "description": "Get time for a timezone", 
                "inputSchema": { 
                    "type": "object", 
                    "properties": { 
                        "timezone": { 
                            "type": "string" 
                        } 
                    }, 
                    "required": [ 
                        "timezone" 
                    ] 
                } 
            } 
        ] 
    }
}

OpenAPI and Smithy Targets

You can also add targets based on API specifications like Smithy and OpenAPI, making it possible 
for an Agent to get access to your APIs via Gateway.

OpenAPI and Smithy Targets 216



Amazon Bedrock AgentCore Developer Guide

Smithy API Model Targets

Let's add a target using the Smithy API model for DynamoDB (that is the default if no 
target_payload is specified):

# create a smithy target
smithy_target = client.create_mcp_gateway_target(gateway=gateway,  
                                               target_type="smithyModel")

Note: you can also use your own Smithy API model like this:

# create a smithy target
smithy_target = client.create_mcp_gateway_target( 
    gateway=gateway,  
    target_type="smithyModel", 
    target_payload={ 
        "s3": { 
            "uri": "<smithy model uri>" 
        } 
    }
)

or you can even include an inline model:

# create a smithy target
smithy_target = client.create_mcp_gateway_target( 
    gateway=gateway,  
    target_type="smithyModel", 
    target_payload={ 
        "inlinePayload": json.dumps(<smithy model>) 
    }
)

You can find Smithy API models for hundreds of AWS services here.

Open API Model Targets

Let's add the OpenAPI model for Brave search. You will need to sign up and get an API key to use
Brave.

OpenAPI and Smithy Targets 217

https://github.com/aws/api-models-aws
https://brave.com/search/api/


Amazon Bedrock AgentCore Developer Guide

# create an openapi target w/ api key
open_api_target = client.create_mcp_gateway_target( 
    gateway=gateway, 
    target_type="openApiSchema", 
    target_payload={ 
        "s3": { 
            "uri": "s3://amazonbedrockagentcore-built-sampleschemas455e0815-
oj7jujcd8xiu/brave-search-open-api.json" 
        } 
    }, 
    credentials={ 
        "api_key": "<api key>", 
        "credential_location": "HEADER", 
        "credential_parameter_name": "X-Subscription-Token" 
    }
)

Then let's add an OpenAPI w/ OAuth target:

open_api_with_oauth_target = client.create_mcp_gateway_target( 
    gateway=gateway, 
    target_type="openApiSchema", 
    target_payload={ 
        "s3": { 
            "uri": "<to be updated>" 
        } 
    }, 
    credentials={"oauth2_provider_config": { 
        "customOauth2ProviderConfig": { 
      "oauthDiscovery" : { 
        "authorizationServerMetadata" : { 
          "issuer" : "<endpoint>", 
          "authorizationEndpoint" : "<endpoint>", 
          "tokenEndpoint" : "<endpoint>" 
        } 
      }, 
      "clientId" : "<client id>", 
      "clientSecret" : "<client secret>" 
    }}}
)

OpenAPI and Smithy Targets 218



Amazon Bedrock AgentCore Developer Guide

Using the Gateway in an Agent

Now that we have setup a Gateway and Target, let's test it out! The following code sets up an 
interactive Strands agent with Amazon Bedrock:

from strands import Agent
import logging
from strands.models import BedrockModel
from strands.tools.mcp.mcp_client import MCPClient
from mcp.client.streamable_http import streamablehttp_client  
import os 
   
def create_streamable_http_transport(mcp_url: str, access_token: str): 
       return streamablehttp_client(mcp_url, headers={"Authorization": f"Bearer 
 {access_token}"}) 
   
def get_full_tools_list(client): 
    more_tools = True 
    tools = [] 
    pagination_token = None 
    while more_tools: 
        tmp_tools = client.list_tools_sync(pagination_token=pagination_token) 
        tools.extend(tmp_tools) 
        if tmp_tools.pagination_token is None: 
            more_tools = False 
        else: 
            more_tools = True  
            pagination_token = tmp_tools.pagination_token 
    return tools 
   
def run_agent(mcp_url: str, access_token: str): 
    bedrockmodel = BedrockModel( 
        inference_profile_id="anthropic.claude-3-7-sonnet-20250219-v1:0", 
        temperature=0.7, 
        streaming=True, 
    ) 
      
    mcp_client = MCPClient(lambda: create_streamable_http_transport(mcp_url, 
 access_token)) 
      
    with mcp_client: 
        tools = get_full_tools_list(mcp_client) 

Using the Gateway in an Agent 219



Amazon Bedrock AgentCore Developer Guide

        print(f"Found the following tools: {[tool.tool_name for tool in tools]}") 
        agent = Agent(model=bedrockmodel,tools=tools) 
        while True: 
            user_input = input("\nThis is an interactive Strands Agent. Ask me 
 something. When you're finished, say exit or quit: ") 
            if user_input.lower() in ["exit", "quit", "bye"]: 
                print("Goodbye!") 
                break 
            print("\nThinking...\n") 
            agent(user_input)

# get access token
access_token = client.get_access_token_for_cognito(cognito_response["client_info"])

# Run your agent!
run_agent(gateway["gatewayUrl"], access_token)

Let's run it! Why don't you try asking the agent for the weather? Note: in this example weather 
details and time details are hard-coded.

Core concepts for Amazon Bedrock AgentCore Gateway

Amazon Bedrock AgentCore Gateway provides a standardized way for AI agents to discover 
and interact with tools. Understanding the core concepts of Gateway will help you design and 
implement effective tool integration strategies for your AI agents.

Key concepts

Gateway

An Gateway acts like an MCP server, providing a single access point for an agent to interact with 
its tools. A Gateway can have multiple targets, each representing a different tool or set of tools.

Gateway Target

A target defines the APIs or Lambda function that a Gateway will provide as tools to an agent. 
Targets can be Lambda functions, OpenAPI specifications, Smithy models, or other tool 
definitions.

Core concepts 220



Amazon Bedrock AgentCore Developer Guide

AgentCore Gateway Authorizer

Since MCP only supports OAuth, each Gateway must have an attached OAuth authorizer. If you 
don’t have an OAuth authorization server already, you will be able to create one in this guide 
using Cognito.

AgentCore Credential Provider

When Gateway makes calls to your APIs or Lambda function it must use some credentials to 
access those functionalities. When you create a Smithy or Lambda target, Gateway uses the 
attached execution role to make calls to those targets. When you create an OpenAPI target, you 
must attach an AgentCore credential provider which stores the API Key or OAuth credentials 
that Gateway will use to access the OpenAPI target.

Tool types

Gateway supports several types of tools and integration methods:

OpenAPI specifications

Transform existing REST APIs into MCP-compatible tools by providing an OpenAPI specification. 
The gateway automatically handles the translation between MCP and REST formats.

Lambda functions

Connect Lambda functions as tools, allowing you to implement custom business logic in your 
preferred programming language. The gateway invokes the Lambda function and translates the 
response into the MCP format.

Smithy models

Use Smithy models to define your API interfaces and generate MCP-compatible tools. Smithy is 
a language for defining services and SDKs that can be used with AWS services. The gateway can 
use Smithy models to generate tools that interact with AWS services or custom APIs.

Setting up a Amazon Bedrock AgentCore Gateway

Amazon Bedrock AgentCore Gateway provides a unified connectivity layer between agents and the 
tools and resources they need to interact with. Before setting up your Gateway, it's important to 
understand how to specify permissions so that you can secure your gateway properly.

Tool types 221



Amazon Bedrock AgentCore Developer Guide

Gateway workflow

The Gateway workflow involves the following steps to connect your agents to external tools:

1. Create the tools for your Gateway - Define your tools using schemas such as OpenAPI 
specifications for REST APIs or JSON schemas for Lambda functions. The OpenAPI 
specifications or tool schemas for your tools are then parsed by Amazon Bedrock AgentCore 
for creating the Gateway.

2. Create a Gateway endpoint - Use the AWS console or AWS SDK to create the gateway that will 
serve as the MCP entry point. Each API endpoint or function will become an MCP-compatible 
tool, and will be made available through your MCP server URL. To secure the gateway, you can 
use Inbound Auth to control the ingress to the gateway.

3. Add targets to your Gateway - Configure targets that define how the gateway routes requests 
to specific tools. To securely connect to backend resources on behalf of authenticated 
users, use Outbound Auth. Together, Inbound and Outbound Auth create a secure bridge 
between users and their target resources, supporting both IAM credentials and OAuth-based 
authentication flows.

4. Update your agent code - Connect your agent to the Gateway endpoint to access all 
configured tools through the unified MCP interface.

Prerequisites to set up a gateway

Amazon Bedrock AgentCore Gateway can connect to both AWS resources and external services. 
This means that along with the standard AWS Identity and Access Management (IAM) for managing 
permissions in Amazon Bedrock AgentCore Gateway, the permissions model supports additional 
external authentication mechanisms.

When working with Gateways, there are three main categories of permissions to consider:

1. Gateway Management Permissions - Permissions needed to create and manage Gateways

2. Gateway Access Permissions or Inbound Auth Configuration - Who can invoke what via the MCP 
protocol

3. Gateway Execution Permissions or Outbound Auth configuration - Permissions that a Gateway 
needs to perform actions on other resources and services

Gateway workflow 222



Amazon Bedrock AgentCore Developer Guide

You'll configure Gateway Access Permissions when Creating gateways in the next section, and
Gateway Execution Permissions when Adding targets.

Gateway Management Permissions

These permissions allow you to create and manage Gateways. You can create a gateway specific 
policy (example name BedrockAgentCoreGatewayFullAccess) which could look like:

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    {    
      "Effect": "Allow", 
      "Action": [ 
        "bedrock-agentcore:*Gateway*", 
        "bedrock-agentcore:*WorkloadIdentity", 
        "bedrock-agentcore:*CredentialProvider", 
        "bedrock-agentcore:*Token*", 
        "bedrock-agentcore:*Access*" 
      ], 
      "Resource": "arn:aws:bedrock-agentcore:*:*:*gateway*" 
    } 
  ]
} 
       

You may also need additional permissions for related services:

• s3:GetObject and s3:PutObject for storing and retrieving schemas when you configure 
targets based on S3

• kms:Encrypt, kms:Decrypt, kms:GenerateDataKey* for encryption operations

• Other service-specific permissions based on your Gateway's functionality or configuration

For more comprehensive permissions across all AgentCore services, consider using the
BedrockAgentCoreFullAccess managed policy, especially when working with multiple 
AgentCore products.

If you prefer to follow the principle of least privilege, you can create a custom policy that grants 
only specific permissions. Here's an example of a ReadOnly Gateway permission policy:

Prerequisites to set up a gateway 223



Amazon Bedrock AgentCore Developer Guide

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "bedrock-agentcore:ListGateways", 
        "bedrock-agentcore:GetGateway", 
        "bedrock-agentcore:ListGatewayTargets", 
        "bedrock-agentcore:GetGatewayTarget" 
      ], 
      "Resource": "arn:aws:bedrock-agentcore:*:*:*gateway*" 
    } 
  ]
} 
       

Gateway Access Permissions or Inbound Auth Configuration

Unlike other AWS services, which use standard AWS IAM mechanisms for access control, Amazon 
Bedrock AgentCore Gateway uses JWT token-based authentication as specified in the Model 
Context Protocol (MCP). These configurations have to be specified as a property of the gateway.

You'll configure these permissions when Creating gateways in the next section.

Gateway Execution Permissions or Outbound Auth configuration

When creating a Gateway, you need to provide an execution role that will be used by the Gateway 
to access AWS resources or external services. This role defines the permissions that the Gateway 
has when making requests to other services. Based on the type of target, the role would either 
have permissions to access the AWS resources configured for the target, or for external resources, 
the role would have permissions to acquire the needed auth to invoke the external resources. You 
will configure these after you have setup your gateway while Adding targets.

At the very least, whatever type of target is being configured, the execution role must have a trust 
policy that allows the Amazon Bedrock AgentCore service to assume the role:

{ 

Prerequisites to set up a gateway 224



Amazon Bedrock AgentCore Developer Guide

  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Sid": "GatewayAssumeRolePolicy", 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "bedrock-agentcore.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole", 
      "Condition": { 
        "StringEquals": { 
          "aws:SourceAccount": "{{accountId}}" 
        }, 
        "ArnLike": { 
          "aws:SourceArn": "arn:aws:bedrock-agentcore:{{region}}:{{accountId}}:gateway/
{{gatewayName}}-*" 
        } 
      } 
    } 
  ]
} 
       

For AWS resources as targets like Lambda functions, don't forget to give the Gateway permissions 
to access it in that resource's (ex. Lambda's) policy as well.

Best practices for Gateway permissions

Follow the principle of least privilege

• Grant only the permissions necessary for your Gateway to function

• Use specific resource ARNs rather than wildcards when possible

• Regularly review and audit permissions

Separate roles by function

• Use different roles for management and execution

• Create separate roles for different Gateways with different purposes

Secure credential storage

• Store API keys and OAuth credentials in AWS Secrets Manager

• Rotate credentials regularly

Prerequisites to set up a gateway 225



Amazon Bedrock AgentCore Developer Guide

Monitor and audit

• Enable CloudTrail logging for Gateway operations

• Regularly review access patterns and permissions usage

Use conditions in policies

• Add conditions to limit when and how permissions can be used

• Consider using source IP restrictions for management operations

Topics

• Creating gateways

• Adding targets to an existing gateway

Creating gateways

This guide walks you through the process of creating and configuring an Amazon Bedrock 
AgentCore Gateway. The Gateway serves as a unified entry point for agents to access tools and 
resources through the Model Context Protocol (MCP) and creating it is the first step in building 
your tool integration platform. When you create a gateway, you establish a managed service that 
handles authentication, request transformation, and routing capabilities across your infrastructure.

With a gateway, you configure targets that define how the gateway routes incoming requests to 
specific tools. Targets establish the connection between your gateway and various tool types: 
Lambda functions and REST API services. Each target contains configuration details that specify the 
tool location, authentication requirements, and any necessary request transformation rules. But 
before we setup these targets we need to actually create the gateway and to do that we first need 
to have our inbound auth setup.

Topics

• Setting up inbound Auth

• Creating your Gateway

Setting up inbound Auth

Before creating your Gateway, you need to set up inbound auth to validate callers attempting to 
access targets through your Amazon Bedrock AgentCore Gateway.

Creating gateways 226



Amazon Bedrock AgentCore Developer Guide

Note

If you're using the AgentCore SDK, the Cognito EZ Auth can configure this automatically for 
you, so you can skip the manual inbound Auth setup.

Inbound Auth works with OAuth authorization, where the client application must authenticate with 
the OAuth authorizer before using the Gateway. Your client would receive an access token which is 
used at runtime.

You need to specify an OAuth discovery server and client IDs/audiences when you create the 
gateway. You can specify the following:

• Discovery Url — String that must match the pattern ^.+/\.well-known/openid-
configuration$ for OpenID Connect discovery URLs

• At least one of the below options depending on the chosen identity provider.

• Allowed audiences — List of allowed audiences for JWT tokens

• Allowed clients — List of allowed client identifiers

Setting up identity providers for Inbound Auth

Choose your preferred identity provider from the options below. For general information about 
setting up different identity providers, see Identity provider setup and configuration.

Amazon Cognito EZ Auth with AgentCore SDK

You can also set up Cognito EZ Auth with AgentCore SDK. This eliminates the complexity of 
OAuth setup. You only need to run the following command.

cognito_result = client.create_oauth_authorizer_with_cognito("my-gateway")

Amazon Cognito

Amazon Cognito provides a fully managed user directory service that can be used to 
authenticate users for your Gateway.

To create a Cognito user pool for machine-to-machine authentication

1. Create a user pool:

Creating gateways 227



Amazon Bedrock AgentCore Developer Guide

aws cognito-idp create-user-pool \ 
  --region us-west-2 \ 
  --pool-name "gateway-user-pool" 
                 

2. Note the user pool ID from the response or retrieve it using:

aws cognito-idp list-user-pools \ 
  --region us-west-2 \ 
  --max-results 60 
                 

3. Create a resource server for the user pool:

aws cognito-idp create-resource-server \ 
  --region us-west-2 \ 
  --user-pool-id <UserPoolId> \ 
  --identifier "gateway-resource-server" \ 
  --name "GatewayResourceServer" \ 
  --scopes '[{"ScopeName":"read","ScopeDescription":"Read access"}, 
 {"ScopeName":"write","ScopeDescription":"Write access"}]' 
                 

4. Create a client for the user pool:

aws cognito-idp create-user-pool-client \ 
  --region us-west-2 \ 
  --user-pool-id <UserPoolId> \ 
  --client-name "gateway-client" \ 
  --generate-secret \ 
  --allowed-o-auth-flows client_credentials \ 
  --allowed-o-auth-scopes "gateway-resource-server/read" "gateway-resource-
server/write" \ 
  --allowed-o-auth-flows-user-pool-client \ 
  --supported-identity-providers "COGNITO" 
                 

Creating gateways 228



Amazon Bedrock AgentCore Developer Guide

Note the client ID and client secret from the response.

5. Create a domain for your user pool (if one is not already created by default):

aws cognito-idp create-user-pool-domain \ 
  --domain <UserPoolIdWithoutUnderscore> \ 
  --user-pool-id <UserPoolId> \ 
  --region us-west-2 
                 

6. Construct the discovery URL for your Cognito user pool:

https://cognito-idp.us-west-2.amazonaws.com/<UserPoolId>/.well-known/openid-
configuration 
                 

7. Configure the Gateway Inbound Auth with the following values:

• Discovery URL: The URL constructed in the previous step

• Allowed clients: The client ID obtained when creating the user pool client

authorizerConfiguration= { 
  "customJWTAuthorizer": {   
    "discoveryUrl": "https://cognito-idp.us-west-2.amazonaws.com/user-pool-
id/.well-known/openid-configuration", 
    "allowedClients": ["client-id"] 
  }
} 
             

To obtain a bearer token for use with the Data Plane API:

curl --http1.1 -X POST https://<UserPoolIdWithoutUnderscore>.auth.us-
west-2.amazoncognito.com/oauth2/token \ 
  -H "Content-Type: application/x-www-form-urlencoded" \ 

Creating gateways 229



Amazon Bedrock AgentCore Developer Guide

  -d 
 "grant_type=client_credentials&client_id=<ClientId>&client_secret=<ClientSecret>" 
             

The response will include an access token that can be used as a bearer token when making 
requests to the Gateway.

Auth0

Auth0 can be used as an identity provider for Gateway Inbound Auth. Follow these steps to set 
up Auth0 and obtain the necessary configuration values:

Important

Using Inbound Auth based on JWT tokens will result in logging of some claims of the 
JWT token in CloudTrail. The entry includes the Subject of the provided web identity 
token. We recommend that you avoid using any personally identifiable information 
(PII) in this field. For example, you could instead use a GUID or a pairwise identifier, as
suggested in the OIDC specification.

To set up Auth0 for Gateway authentication

1. Create an API in Auth0:

a. Log in to your Auth0 dashboard.

b. Navigate to "APIs" and click "Create API".

c. Provide a name and identifier for your API (e.g., "gateway-api").

d. Select the signing algorithm (RS256 recommended).

e. Click "Create".

2. Configure API scopes:

a. In the API settings, go to the "Scopes" tab.

b. Add scopes such as "invoke:gateway" and "read:gateway".

3. Create an application:

a. Navigate to "Applications" and click "Create Application".

b. Select "Machine to Machine Application".

Creating gateways 230

http://openid.net/specs/openid-connect-core-1_0.html#Claims
http://openid.net/specs/openid-connect-core-1_0.html#SubjectIDTypes


Amazon Bedrock AgentCore Developer Guide

c. Select the API you created in step 1.

d. Authorize the application for the scopes you created.

e. Click "Create".

4. Note the client ID and client secret from the application settings.

5. Construct the discovery URL for your Auth0 tenant:

https://<your-domain>/.well-known/openid-configuration 
                 

Where <your-domain> is your Auth0 tenant domain (e.g., "dev-example.us.auth0.com").

6. Configure the Gateway Inbound Auth with the following values:

• Discovery URL: The URL constructed in the previous step

• Allowed audiences: The API identifier you created in step 1

authorizerConfiguration= { 
  "customJWTAuthorizer": {  
    "discoveryUrl": "https://dev-example.us.auth0.com/.well-known/openid-
configuration", 
    "allowedAudience": ["gateway123"] 
  }
} 
             

To obtain a bearer token for use with the Data Plane API:

curl --request POST \ 
  --url https://<your-domain>/oauth/token \ 
  --header 'content-type: application/json' \ 
  --data '{ 
    "client_id":"<ClientId>", 
    "client_secret":"<ClientSecret>", 
    "audience":"<ApiIdentifier>", 
    "grant_type":"client_credentials", 
    "scope": "invoke:gateway" 

Creating gateways 231



Amazon Bedrock AgentCore Developer Guide

  }' 
             

The response will include an access token that can be used as a bearer token when making 
requests to the Gateway.

Creating your Gateway

Once you have set up your identity provider, you can create your Gateway using one of the 
following methods:

AgentCore SDK

You can create a gateway with the AgentCore SDK:

from bedrock_agentcore_starter_toolkit.operations.gateway.client import 
 GatewayClient

# Initialize the Gateway client
client = GatewayClient(region_name="us-west-2")

# EZ Auth - automatically sets up Cognito OAuth
cognito_result = client.create_oauth_authorizer_with_cognito("my-gateway")

# create the gateway.
gateway = client.create_mcp_gateway( 
    name=None, # the name of the Gateway - if you don't set one, one will be 
 generated. 
    role_arn=None, # the role arn that the Gateway will use - if you don't set one, 
 one will be created. 
    authorizer_config=cognito_result["authorizer_config"], # the OAuth authorizer 
 details for authorizing callers to your Gateway (MCP only supports OAuth). 
    enable_semantic_search=True, # enable semantic search.
)

print(f"MCP Endpoint: {gateway.get_mcp_url()}")
print(f"OAuth Credentials:")
print(f"  Client ID: {cognito_result['client_info']['client_id']}")
print(f"  Scope: {cognito_result['client_info']['scope']}")

Creating gateways 232



Amazon Bedrock AgentCore Developer Guide

CLI

The AgentCore CLI provides a simple way to create and manage gateways:

# Create a Gateway with Lambda target
agentcore create_mcp_gateway \ 
  --name my-gateway \ 
  --target arn:aws:lambda:us-west-2:123456789012:function:MyFunction \ 
  --execution-role BedrockAgentCoreGatewayRole 
             

The CLI automatically:

• Detects target type from ARN patterns or file extensions

• Sets up Cognito OAuth (EZ Auth)

• Detects your AWS region and account

• Builds full role ARN from role name

Console

To create your Gateway endpoint

1. Open the Amazon Bedrock AgentCore console at https://console.aws.amazon.com/ 
bedrock/home, and choose Gateways.

2. Choose Create gateway.

3. In the Gateway details section:

a. Enter a Gateway name

b. Expand the Additional configurations section and:

i. Enter an optional Description for your gateway.

ii. (Optional) For Instructions, enter any special instructions or context that should 
be passed to tools when they are invoked.

iii. (Optional) Optionally enable Semantic search to enable the built-in tool that can 
be used to search the tools on the gateway.

4. In the Inbound Identity section, configure authentication for users accessing your gateway:

Creating gateways 233

https://console.aws.amazon.com/bedrock/home
https://console.aws.amazon.com/bedrock/home


Amazon Bedrock AgentCore Developer Guide

a. For Discovery URL, enter the OpenID Connect discovery URL for your identity 
provider (for example, https://auth.example.com/.well-known/openid-
configuration).

b. For Allowed audiences, enter the audience values that your gateway will accept. Add 
multiple audiences by choosing Add audience.

5. In the Permissions section:

a. For Service role, choose an existing IAM role or create a new one that allows Amazon 
Bedrock AgentCore to access your tools on your behalf.

b. (Optional) For KMS key, choose a customer managed key for encrypting your gateway 
data, or leave blank to use the default Amazon Bedrock AgentCore managed key.

6. In the Target configuration section:

a. Enter a Target name.

b. (Optional) Provide an optional Target description.

c. For Target type, choose either:

• Lambda ARN - To connect to an Lambda function that implements your tools

• REST API - To connect to a REST API service

d. Configure the target based on your selection:

• For Lambda function targets:

• For Lambda ARN, enter the ARN of your Lambda function.

• For Tool schema, choose to either provide the schema inline or reference an 
Amazon S3 location containing your tool schema.

• For REST API targets:

• For OpenAPI schema, choose to either provide the schema inline or reference an 
Amazon S3 location containing your OpenAPI specification.

e. (Optional) In the Outbound authentication section, configure authentication for 
accessing external services:

• For Authentication type, choose OAuth client or API key.

• Select the appropriate authentication resource from your account.

7. To add more targets, choose Add another target and repeat the target configuration steps.

Creating gateways 234



Amazon Bedrock AgentCore Developer Guide

8. Choose Create gateway.

After creating your gateway, you can view its details, including the endpoint URL and associated 
targets, in the AgentCore console. The gateway endpoint URL follows the format: https://
{gatewayId}.gateway.{region}.amazonaws.com/mcp.

Boto3

The following Python code shows how to create a gateway with boto3 (AWS SDK for Python)

import boto3
# create the agentcore client
agentcore_client = boto3.client('bedrock-agentcore-control')
# create a gateway
gateway = agentcore_client.create_gateway( 
    name="<target-name e.g. ProductSearch>", 
    roleArn="<existing role ARN e.g. arn:aws:iam::123456789012:role/MyRole>", 
    protocolType="MCP", 
    authorizerType="CUSTOM_JWT", 
    authorizerConfiguration= { 
        "customJWTAuthorizer": {   
            "discoveryUrl": "<existing discovery URL e.g. https://cognito-idp.us-
west-2.amazonaws.com/some-user-pool/.well-known/openid-configuration>", 
            "allowedClients": ["<clientId>"] 
        } 
    }
)

API

Use CreateGateway to create a gateway. The operation requires a gateway name and protocol 
type, while accepting optional parameters like role ARN for IAM permissions, authorizer 
configuration for JWT-based authentication, and custom transform configuration for request/
response processing.

Example request

The following example creates a Gateway with MCP protocol and JWT authorization:

POST /gateways/ HTTP/1.1

Creating gateways 235



Amazon Bedrock AgentCore Developer Guide

Content-Type: application/json

{ 
    "name": "my-ai-gateway", 
    "description": "Gateway for AI model interactions", 
    "clientToken": "12345678-1234-1234-1234-123456789012", 
    "roleArn": "arn:aws:iam::123456789012:role/AgentCoreGatewayRole", 
    "protocolType": "MCP", 
    "protocolConfiguration": { 
        "mcp": { 
            "version": "1.0", 
            "searchType": "SEMANTIC" 
        } 
    }, 
    "authorizerConfiguration": { 
        "customJWTAuthorizer": { 
            "discoveryUrl": "https://auth.example.com/.well-known/openid-
configuration", 
            "allowedAudience": ["api.example.com"], 
            "allowedClients": ["client-app-123"] 
        } 
    }, 
    "encryptionKeyArn": "arn:aws:kms:us-
east-1:123456789012:key/12345678-1234-1234-1234-123456789012"
} 
         

After creating the gateway, you can call CreateGatewayTarget to add targets to the gateway. 
The operation accepts a gateway identifier in the URI path along with target specifications 
including the target name and configuration details.

Example request for OpenAPI target

This example creates a target using an OpenAPI schema for a product catalog service:

PUT /gateways/abc123def4/targets/ HTTP/1.1
Content-Type: application/json

{ 
  "name": "ProductCatalogAPI", 
  "description": "Routes to product catalog and inventory service", 
  "targetConfiguration": { 

Creating gateways 236



Amazon Bedrock AgentCore Developer Guide

    "mcp": { 
      "openApiSchema": { 
        "s3Uri": "s3://retail-schemas-bucket/catalog/product-api.json" 
      } 
    } 
  }
}

Adding targets to an existing gateway

After Creating gateways, you can add targets which define the tools that your gateway will host. 
Gateway supports multiple target types including Lambda functions and API specifications (either 
OpenAPI schemas or Smithy models). Gateway allows you to attach multiple targets to a Gateway 
and you can change the targets / tools attached to a gateway at any point. Each target can have 
its own credential provider attached enabling you to securely access targets whether they need 
IAM, API Key, or OAuth credentials. Note: the authorization grant flow (three-legged OAuth) is not 
supported as a target credential type.

With this, Gateway becomes a single MCP URL enabling access to all of the relevant tools for an 
agent across myriad APIs. Let’s dive deeper into how to define each of the target types.

Topics

• Setting up Outbound Auth

• Adding Lambda targets to your gateway

• Adding an OpenAPI target

• Adding Smithy targets to your Gateway

Setting up Outbound Auth

Outbound Auth lets Amazon Bedrock AgentCore gateways securely access gateway targets on 
behalf of users authenticated and authorized during Inbound Auth. For more information on Auth 
overview, see Prerequisites to set up a gateway.

Similar to AWS resources or Lambda functions, you authenticate by using IAM credentials. With 
other resources, you can use OAuth 2LO or API keys. OAuth 2LO is a type of OAuth 2.0 where 
a client application accesses resources on it's behalf, instead of on behalf of the user. For more 
information, see OAuth 2LO.

Adding targets 237

https://oauth.net/2/


Amazon Bedrock AgentCore Developer Guide

First, you register your client application with third-party providers and then create an Outbound 
Auth with the client ID and secret. Then configure a gateway target with the Outbound Auth that 
you created.

Topics

• Creating an Outbound Auth

• Setting up credential providers for Outbound Auth

Creating an Outbound Auth

When a user wants to access Gateway target, the gateway confirms that the access tokens 
(provided by Incoming Auth) are valid and if so, allows access to the target.

Console

To create an Outbound Auth

1. Open the AgentCore console at https://console.aws.amazon.com/bedrock-agentcore/.

2. In the left navigation pane, choose Auth.

3. In Outbound Auth choose Add OAuth/API Key then select the Outbound Auth that you 
want to create.

4. If you chose OAuth client, do the following:

a. Enter a name for the OAuth client

b. If an included provider is the provider that you want to use, choose that provider. Then 
enter the client ID and client secret.

c. Choose Add OAuth Client

5. If you chose Add API Key, enter name and the API key that you want to use, and then 
choose Add.

SDK

• Use the CreateOauth2CredentialProvider operation to add an OAuth Outbound Auth.

• Use the CreateApiKeyCredentialProvider operation to add an API Key Outbound Auth.

For more information, see Setting up credential providers for Outbound Auth.

Adding targets 238

https://console.aws.amazon.com/bedrock-agentcore/


Amazon Bedrock AgentCore Developer Guide

Setting up credential providers for Outbound Auth

This section provides step-by-step instructions for setting up credential providers for Gateway 
Outbound Auth. These credential providers allow your gateway to authenticate with target services 
on behalf of users. For more information on setting up credential providers, see Manage credential 
providers with AgentCore Identity.

Choose your credential provider type from the tabs below:

IAM Role-based authentication (GATEWAY_IAM_ROLE)

When the tools registered with the gateway are AWS resources like Lambda functions, the 
Gateway's execution role needs appropriate permissions to access those resources.

For AWS services, use the GATEWAY_IAM_ROLE credential provider type in your target 
configuration while creating the gateway target:

credentialProviderConfigurations=[{ 
  "credentialProviderType": "GATEWAY_IAM_ROLE"
}] 
               

This uses the Gateway's execution role to authenticate with AWS services.

The execution role must have permissions to access the respective resource. For example, to 
invoke a Lambda function, the execution role needs the lambda:InvokeFunction permission:

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Sid": "AmazonBedrockAgentCoreGatewayLambdaProd", 
      "Effect": "Allow", 
      "Action": [ 
        "lambda:InvokeFunction" 
      ], 
      "Resource": [ 
        "arn:aws:lambda:{{region}}:{{accountId}}:function:[[functionName]]:*" 
      ], 

Adding targets 239



Amazon Bedrock AgentCore Developer Guide

      "Condition": { 
        "StringEquals": { 
          "aws:ResourceAccount": "{{accountId}}" 
        } 
      } 
    } 
  ]
} 
               

Additionally, your Lambda function needs a resource-based policy that allows the Gateway's 
execution role to invoke it:

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "AWS": "arn:aws:iam::{{accountId}}:role/{{GatewayExecutionRoleName}}" 
      }, 
      "Action": "lambda:InvokeFunction", 
      "Resource": "arn:aws:lambda:{{region}}:{{accountId}}:function:
{{functionName}}" 
    } 
  ]
} 
               

You can add this policy using the AWS CLI:

aws lambda add-permission \ 
  --function-name "YourLambdaFunction" \ 
  --statement-id "GatewayInvoke" \ 
  --action "lambda:InvokeFunction" \ 
  --principal "arn:aws:iam::{{accountId}}:role/YourGatewayExecutionRole" \ 
  --region {{region}} 
               

Adding targets 240



Amazon Bedrock AgentCore Developer Guide

API Key authentication (API_KEY)

API Key credential providers allow your gateway to authenticate with services that use API keys 
for authentication. Follow these steps to set up an API Key credential provider:

To create an API Key credential provider

• Use the following AWS CLI command to create an API Key credential provider:

aws acps create-api-key-credential-provider \ 
  --region us-east-1 \ 
  --credential-provider-name api-key-credential-provider \ 
  --api-key <API_KEY_VALUE> 
                   

Note the provider ARN from the response. It will have a format similar to:

arn:aws:agent-credential-provider:us-east-1:123456789012:token-vault/default/
apikeycredentialprovider/abcdefghijk 
                   

When creating or updating a gateway target, you can use this credential provider in the 
credential provider configuration:

credentialProviderConfigurations=[{ 
  "credentialProviderType": "API_KEY", 
  "credentialProvider": { 
    "apiKeyCredentialProvider": { 
      "providerArn": "{{credential-provider-arn}}", 
      "credentialLocation": "<either HEADER OR BODY, in this case HEADER>", 
      "credentialParameterName": "<name of the parameter, in this case: X-
Subscription-Token>" 
    } 
  }
}] 
               

Adding targets 241



Amazon Bedrock AgentCore Developer Guide

The credentialLocation can be either HEADER or QUERY_PARAMETER, depending on how 
the target service expects to receive the API key.

The execution role needs permission to access the API key:

{ 
  "Sid": "GetResourceApiKey", 
  "Effect": "Allow", 
  "Action": [ 
    "bedrock-agentcore:GetResourceApiKey" 
  ], 
  "Resource": [ 
    "{{credential-provider-arn}}" 
  ]
} 
               

For API Key authentication, if the credentials are stored in AWS Secrets Manager, the execution 
role also needs permission to access those secrets:

{ 
  "Sid": "GetSecretValue", 
  "Effect": "Allow", 
  "Action": [ 
    "secretsmanager:GetSecretValue" 
  ], 
  "Resource": [ 
    "{{secrets-manager-arn}}" 
  ]
}

{ 
  "Sid": "GetAgentAccessToken", 
  "Effect": "Allow", 
  "Action": [ 
    "bedrock-agentcore:GetWorkloadAccessToken", 
  ], 
  "Resource": [ 
    "arn:aws:bedrock-agentcore:{{region}}:{{accountId}}:workload-identity-directory/
default", 

Adding targets 242



Amazon Bedrock AgentCore Developer Guide

    "arn:aws:bedrock-agentcore:{{region}}:{{accountId}}:workload-identity-directory/
default/workload-identity/{{gatewayName}}-*" 
  ]        
} 
               

OAuth authentication (OAUTH)

OAuth credential providers allow your gateway to authenticate with services that use OAuth for 
authentication. Follow these steps to set up an OAuth credential provider:

To create an OAuth credential provider with discovery URL

• Use the following AWS CLI command to create an OAuth credential provider using a 
discovery URL:

aws acps create-oauth2-credential-provider \ 
  --region us-east-1 \ 
  --credential-provider-name oauth-credential-provider \ 
  --credential-provider-type CustomOAuth2 \ 
  --o-auth2-provider-config-input '{ 
    "customOAuth2ProviderConfig": { 
      "oauthDiscovery": { 
        "discoveryUrl": "<DiscoveryUrl>" 
      }, 
      "clientId": "<ClientId>", 
      "clientSecret": "<ClientSecret>" 
    } 
  }' 
                   

Note the provider ARN from the response. It will have a format similar to:

arn:aws:agent-credential-provider:us-east-1:123456789012:token-vault/default/
oauth2credentialprovider/abcdefghijk 
                   

Adding targets 243



Amazon Bedrock AgentCore Developer Guide

To create an OAuth credential provider with server metadata

• If you don't have a discovery URL, you can create an OAuth credential provider using server 
metadata:

aws acps create-oauth2-credential-provider \ 
  --region us-east-1 \ 
  --credential-provider-name oauth-metadata-provider \ 
  --credential-provider-type CustomOAuth2 \ 
  --o-auth2-provider-config-input '{ 
    "customOAuth2ProviderConfig": { 
      "oauthDiscovery": { 
        "authorizationServerMetadata": { 
          "issuer": "https://example.auth0.com/", 
          "authorizationEndpoint": "https://example.auth0.com/authorize", 
          "tokenEndpoint": "https://example.auth0.com/oauth/token", 
          "responseTypes": ["token"] 
        } 
      }, 
      "clientId": "<ClientId>", 
      "clientSecret": "<ClientSecret>" 
    } 
  }' 
                   

When creating or updating a gateway target, you can use this credential provider in the 
credential provider configuration:

credentialProviderConfigurations=[{ 
  "credentialProviderType": "OAUTH", 
  "credentialProvider": { 
    "oauthCredentialProvider": { 
      "providerArn": "{{credential-provider-arn}}", 
      "scopes": ["scope1", "scope2"] 
    } 
  }
}] 
               

Adding targets 244



Amazon Bedrock AgentCore Developer Guide

The execution role needs permission to obtain OAuth tokens:

{ 
  "Sid": "GetResourceOauth2Token", 
  "Effect": "Allow", 
  "Action": [ 
    "bedrock-agentcore:GetResourceOauth2Token" 
  ], 
  "Resource": [ 
    "{{credential-provider-arn}}" 
  ]
} 
               

For OAuth authentication, if the credentials are stored in AWS Secrets Manager, the execution 
role also needs permission to access those secrets:

{ 
  "Sid": "GetSecretValue", 
  "Effect": "Allow", 
  "Action": [ 
    "secretsmanager:GetSecretValue" 
  ], 
  "Resource": [ 
    "{{secrets-manager-arn}}" 
  ]
}

{ 
  "Sid": "GetAgentAccessToken", 
  "Effect": "Allow", 
  "Action": [ 
    "bedrock-agentcore:GetWorkloadAccessToken", 
  ], 
  "Resource": [ 
    "arn:aws:bedrock-agentcore:{{region}}:{{accountId}}:workload-identity-directory/
default", 
    "arn:aws:bedrock-agentcore:{{region}}:{{accountId}}:workload-identity-directory/
default/workload-identity/{{gatewayName}}-*" 
  ]        
} 

Adding targets 245



Amazon Bedrock AgentCore Developer Guide

              

Adding Lambda targets to your gateway

Lambda targets allow you to connect your gateway to AWS Lambda functions that implement your 
tools. This is useful when you want to execute custom code in response to tool invocations.

To add a Lambda target, you need:

• A Lambda function ARN

• A tool schema that defines the tools implemented by your Lambda function

• Credential Provider configuration for how the Gateway authenticates with the Lambda function

Prerequisites

Before adding a Lambda target, ensure you have:

• Created a Gateway: Follow the instructions in the "Set Up Gateway" guide to create your 
Gateway

• Created a Lambda Function: Create a Lambda function that implements the tools you want to 
expose

• Configured Permissions: Ensure your Gateway's execution role has permission to invoke the 
Lambda function

Configuring permissions

For Lambda function targets, your Gateway's execution role needs the lambda:InvokeFunction
permission:

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Sid": "AmazonBedrockAgentCoreGatewayLambdaProd", 
      "Effect": "Allow", 
      "Action": [ 
        "lambda:InvokeFunction" 

Adding targets 246



Amazon Bedrock AgentCore Developer Guide

      ], 
      "Resource": [ 
        "arn:aws:lambda:{{region}}:{{accountId}}:function:[[functionName]]:*" 
      ], 
      "Condition": { 
        "StringEquals": { 
          "aws:ResourceAccount": "{{accountId}}" 
        } 
      } 
    } 
  ]
} 
         

(Optional) Additionally, if your Lambda function was created in an account that's different from 
where the Gateway is being set up, it needs a resource-based policy that allows the Gateway's 
execution role to invoke it:

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "AWS": "arn:aws:iam::{{accountId}}:role/{{GatewayExecutionRoleName}}" 
      }, 
      "Action": "lambda:InvokeFunction", 
      "Resource": "arn:aws:lambda:{{region}}:{{accountId}}:function:{{functionName}}" 
    } 
  ]
} 
         

You can add this policy using the AWS CLI:

aws lambda add-permission \ 
  --function-name "YourLambdaFunction" \ 
  --statement-id "GatewayInvoke" \ 
  --action "lambda:InvokeFunction" \ 
  --principal "arn:aws:iam::{{accountId}}:role/YourGatewayExecutionRole" \ 

Adding targets 247



Amazon Bedrock AgentCore Developer Guide

  --region {{region}} 
         

Adding a Lambda target

You can add a Lambda target to your Gateway using one of the following methods:

CLI

The AgentCore CLI provides a simple way to add Lambda targets:

# Create a Gateway with Lambda target
agentcore create_mcp_gateway_target \ 
  --region us-east-1 \ 
  --gateway-arn arn:aws:bedrock-agentcore:us-east-1:123456789012:gateway/gateway-id 
 \ 
  --gateway-url https://gateway-id.gateway.bedrock-agentcore.us-
west-2.amazonaws.com/mcp \ 
  --role-arn arn:aws:iam::123456789012:role/BedrockAgentCoreGatewayRole \ 
  --target-type lambda 
               

Console

To add a target to an existing gateway

1. Open the Amazon Bedrock AgentCore console at https://console.aws.amazon.com/ 
bedrock/home, and choose Gateways.

2. Select the gateway to which you want to add a target.

3. Choose the Targets tab.

4. Choose Add target.

5. Enter a Target name.

6. (Optional) Provide an optional Target description.

7. For Target type, choose Lambda function.

8. For Lambda function, enter the ARN of your Lambda function.

9. For Tool schema, choose to either provide the schema inline or reference an Amazon S3 
location containing your tool schema.

Adding targets 248

https://console.aws.amazon.com/bedrock/home
https://console.aws.amazon.com/bedrock/home


Amazon Bedrock AgentCore Developer Guide

10. In the Outbound authentication section, configure authentication for accessing the 
Lambda function:

• For Authentication type, choose GATEWAY_IAM_ROLE.

11. Choose Add target.

AgentCore SDK

You can add a Lambda target using the AgentCore SDK:

# create a lambda target.
lambda_target = client.create_mcp_gateway_target( 
    gateway=gateway,  
    name=None, # the name of the Target - if you don't set one, one will be 
 generated. 
    target_type="lambda", # the type of the Target - you will see other target types 
 later in the tutorial. 
    target_payload=None, # the target details - set this to define your own lambda 
 if you pre-created one. Otherwise leave this None and one will be created for you. 
    credentials=None, # you will see later in the tutorial how to use this to 
 connect to APIs using API keys and OAuth credentials.
)

Example of target_payload for Lambda. Note this Lambda will be created for you if you don't 
provide a target_payload:

{ 
    "lambdaArn": "<insert your lambda arn>", 
    "toolSchema": { 
        "inlinePayload": [ 
            { 
                "name": "get_weather", 
                "description": "Get weather for a location", 
                "inputSchema": { 
                    "type": "object", 
                    "properties": { 
                        "location": { 
                            "type": "string", 
                            "description": "the location e.g. seattle, wa" 

Adding targets 249



Amazon Bedrock AgentCore Developer Guide

                        } 
                    }, 
                    "required": [ 
                        "location" 
                    ] 
                } 
            }, 
            { 
                "name": "get_time", 
                "description": "Get time for a timezone", 
                "inputSchema": { 
                    "type": "object", 
                    "properties": { 
                        "timezone": { 
                            "type": "string" 
                        } 
                    }, 
                    "required": [ 
                        "timezone" 
                    ] 
                } 
            } 
        ] 
    }
}

Boto3

The following Python code shows how to add a Lambda target using boto3 (AWS SDK for 
Python):

import boto3

# Create the agentcore client
agentcore_client = boto3.client('bedrock-agentcore-control')

# Create a Lambda target
target = agentcore_client.create_gateway_target( 
    gatewayIdentifier="your-gateway-id", 
    name="LambdaTarget", 
    targetConfiguration={ 
        "mcp": { 

Adding targets 250



Amazon Bedrock AgentCore Developer Guide

            "lambda": { 
                "lambdaArn": "arn:aws:lambda:us-
west-2:123456789012:function:YourLambdaFunction", 
                "toolSchema": { 
                    "inlinePayload": [ 
                        { 
                            "name": "get_weather", 
                            "description": "Get weather for a location", 
                            "inputSchema": { 
                                "type": "object", 
                                "properties": {"location": {"type": "string"}}, 
                                "required": ["location"], 
                            }, 
                        }, 
                        { 
                            "name": "get_time", 
                            "description": "Get time for a timezone", 
                            "inputSchema": { 
                                "type": "object", 
                                "properties": {"timezone": {"type": "string"}}, 
                                "required": ["timezone"], 
                            }, 
                        }, 
                    ] 
                } 
            } 
        } 
    }, 
    credentialProviderConfigurations=[ 
        { 
            "credentialProviderType": "GATEWAY_IAM_ROLE" 
        } 
    ]
) 
               

API

Use the CreateGatewayTarget operation to add a Lambda target to your Gateway:

PUT /gateways/abc123def4/targets/ HTTP/1.1
Content-Type: application/json

Adding targets 251



Amazon Bedrock AgentCore Developer Guide

{ 
  "gatewayIdentifier": "abc123def4", 
  "name": "LambdaTarget", 
  "targetConfiguration": { 
    "mcp": { 
      "lambda": { 
        "lambdaArn": "arn:aws:lambda:us-
west-2:123456789012:function:YourLambdaFunction", 
        "toolSchema": { 
          "inlinePayload": [ 
            { 
              "name": "get_weather", 
              "description": "Get weather for a location", 
              "inputSchema": { 
                "type": "object", 
                "properties": {"location": {"type": "string"}}, 
                "required": ["location"] 
              } 
            } 
          ] 
        } 
      } 
    } 
  }, 
  "credentialProviderConfigurations": [ 
    { 
      "credentialProviderType": "GATEWAY_IAM_ROLE" 
    } 
  ]
} 
               

Lambda function schema

When creating a Lambda target without custom tools, the CLI auto-generates a default tool:

{ 
  "name": "invoke_function", 
  "description": "Invoke the Lambda function", 
  "inputSchema": { 
    "type": "object", 
    "properties": {}, 

Adding targets 252



Amazon Bedrock AgentCore Developer Guide

    "required": [] 
  }
} 
         

To specify custom tools, create a Lambda configuration file:

{ 
  "arn": "arn:aws:lambda:us-west-2:123456789012:function:MyFunction", 
  "tools": [ 
    { 
      "name": "process_data", 
      "description": "Process input data", 
      "inputSchema": { 
        "type": "object", 
        "properties": { 
          "input": {"type": "string"} 
        }, 
        "required": ["input"] 
      } 
    } 
  ]
} 
         

Each Tool in the toolSchema list should adhere to the following specification. You can optionally 
specify an outputSchema to provide more information to your agent about that tool.

{ 
  "name": "string", 
  "description": "string", # optional 
  "inputSchema": { 
    "type": "string", 
    "properties": { 
      "string (property name)": { 
        "type": "string | number | object | array | boolean | integer", 
        "items": { # optional, only applicable if type is list 
          "type": "string | number | object | boolean | integer" 
        }, 
        "properties": {<same structure as this properties object>}, # optional, only 
 applicable if type is object 

Adding targets 253



Amazon Bedrock AgentCore Developer Guide

        "required": [] 
      } 
    }, 
    "required": [] 
  }, 
  "outputSchema": { # optional 
    "type": "string", 
    "properties": { 
      "string (property name)": { 
        "type": "string | number | object | array | boolean | integer", 
        "items": { # optional, only applicable if type is list 
          "type": "string | number | object | boolean | integer" 
        }, 
        "properties": {<same structure as this properties object>}, # optional, only 
 applicable if type is object 
        "required": [] 
      } 
    }, 
    "required": [] 
  }
} 
           

Adding multiple tools to a Lambda target

When you have multiple related tools that should be handled by the same Lambda function, you 
can define them in a single target. This approach simplifies management and allows your Lambda 
function to handle different types of requests.

AWS SDK

The following example shows how to create a Lambda target with multiple tools using the AWS 
SDK for Python (Boto3):

import boto3

# Create the AgentCore client
agentcore_client = boto3.client('bedrock-agentcore-control')

# Create a Lambda target with multiple tools
agentcore_client.create_gateway_target( 
    gatewayIdentifier="ProductGateway-AAAAA12345", 

Adding targets 254



Amazon Bedrock AgentCore Developer Guide

    name="ProductSearch", 
    targetConfiguration={ 
        "mcp": {"lambda": { 
            "lambdaArn": "arn:aws:lambda:us-west-2:123456789012:function:product-
search", 
            "toolSchema": {"inlinePayload": [ 
                { 
                    "name": "searchProducts", 
                    "description": "Searches for products based on keywords", 
                    "inputSchema": { 
                        "type": "object", 
                        "properties": { 
                            "keywords": { 
                                "type": "string", 
                                "description": "Search keywords" 
                            }, 
                            "category": { 
                                "type": "string", 
                                "description": "Product category" 
                            } 
                        }, 
                        "required": ["keywords"] 
                    } 
                }, 
                { 
                    "name": "getProductDetails", 
                    "description": "Gets detailed information about a specific 
 product", 
                    "inputSchema": { 
                        "type": "object", 
                        "properties": { 
                            "productId": { 
                                "type": "string", 
                                "description": "Unique product identifier" 
                            } 
                        }, 
                        "required": ["productId"] 
                    } 
                } 
            ]} 
        }} 
    }, 
    credentialProviderConfigurations=[{"credentialProviderType": 
 "GATEWAY_IAM_ROLE"}]

Adding targets 255



Amazon Bedrock AgentCore Developer Guide

) 
           

When your Lambda function is invoked, it can determine which tool is being called by examining 
the bedrockagentcoreToolName property in the context object.

Using S3 for tool schemas

When you have a large number of tools or complex tool schemas, it might be more manageable to 
store your tool schemas in an Amazon S3 bucket. This approach allows you to maintain your tool 
definitions separately from your gateway configuration code.

AWS SDK

The following example shows how to create a Lambda target with a tool schema stored in S3:

import boto3

# Create the AgentCore client
agentcore_client = boto3.client('bedrock-agentcore-control')

# Create a Lambda target with a tool schema from S3
agentcore_client.create_gateway_target( 
    gatewayIdentifier="ProductGateway-AAAAA12345", 
    name="ProductSearch", 
    targetConfiguration={ 
        "mcp": {"lambda": { 
            "lambdaArn": "arn:aws:lambda:us-west-2:123456789012:function:product-
search", 
            "toolSchema": {"s3": {"uri": "s3://my-schemas/product-tools.json"}} 
        }} 
    }, 
    credentialProviderConfigurations=[{"credentialProviderType": 
 "GATEWAY_IAM_ROLE"}]
) 
           

The S3 object should contain a JSON array of tool definitions following the same format as the 
inline payload. For example:

Adding targets 256



Amazon Bedrock AgentCore Developer Guide

[ 
  { 
    "name": "searchProducts", 
    "description": "Searches for products based on keywords", 
    "inputSchema": { 
      "type": "object", 
      "properties": { 
        "keywords": { 
          "type": "string", 
          "description": "Search keywords" 
        }, 
        "category": { 
          "type": "string", 
          "description": "Product category" 
        } 
      }, 
      "required": ["keywords"] 
    } 
  }, 
  { 
    "name": "getProductDetails", 
    "description": "Gets detailed information about a specific product", 
    "inputSchema": { 
      "type": "object", 
      "properties": { 
        "productId": { 
          "type": "string", 
          "description": "Unique product identifier" 
        } 
      }, 
      "required": ["productId"] 
    } 
  }
] 
     

To use S3 for tool schemas, ensure that the gateway's execution role has the necessary permissions 
to access the S3 bucket:

{ 
  "Version": "2012-10-17", 

Adding targets 257



Amazon Bedrock AgentCore Developer Guide

  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "s3:GetObject" 
      ], 
      "Resource": [ 
        "arn:aws:s3:::my-schemas/*" 
      ] 
    } 
  ]
} 
     

Lambda function input format

When a gateway invokes a Lambda function, it passes an event object and a context object. The 
event object contains the request attributes mapped from MCP to your Lambda input. The context 
object contains useful information like the Gateway ID, Target ID, and tool name.

Event Object

Here's an example of the event object structure:

{ 
  "keywords": "wireless headphones", 
  "category": "electronics"
} 
           

Context Object

The context object contains metadata about the invocation, which your function can use to 
determine how to process the request:

# Access context properties in your Lambda function
def lambda_handler(event, context): 
    # Get the tool name from the context 
    tool_name = context.client_context.custom['bedrockagentcoreToolName'] 
     

Adding targets 258



Amazon Bedrock AgentCore Developer Guide

    # Get other context properties 
    endpoint_id = context.client_context.custom['bedrockagentcoreEndpointId'] 
    target_id = context.client_context.custom['bedrockagentcoreTargetId'] 
    message_version = 
 context.client_context.custom['bedrockagentcoreMessageVersion'] 
    session_id = context.client_context.custom['bedrockagentcoreSessionId'] 
     
    # Process the request based on the tool name 
    if tool_name == 'searchProducts': 
        # Handle searchProducts tool 
        pass 
    elif tool_name == 'getProductDetails': 
        # Handle getProductDetails tool 
        pass 
    else: 
        # Handle unknown tool 
        pass 
           

The context structure includes:

{ 
  "bedrockAgentCoreMessageVersion": "1.0", 
  "bedrockAgentCoreGatewayId": "string", 
  "bedrockAgentCoreTargetId": "string", 
  "bedrockAgentCoreToolName": "string"
} 
                 

Limitations and considerations

When working with Lambda targets, be aware of the following limitations and considerations:

• Tool name prefixes will need to be manually stripped off from the toolname in your AWS 
Lambda function

• If you are using an existing AWS Lambda function and import it as a tool into the gateway, you 
will need to change the function code to account for a schema change for event and context 
objects

• The Lambda function must return a valid JSON response that can be parsed by the gateway

Adding targets 259



Amazon Bedrock AgentCore Developer Guide

• Lambda function timeouts should be configured appropriately to handle the expected processing 
time of your tools

• Consider implementing error handling in your Lambda function to provide meaningful error 
messages to the client

Testing your Lambda target

After adding a Lambda target to your Gateway, you can test it by making requests to the Gateway 
endpoint:

• Obtain an access token from your identity provider (as described in the "Set Up Gateway" guide)

• Make a request to the Gateway endpoint:

curl -sS -X POST https://{gatewayId}.gateway.{region}.amazonaws.com/mcp \ 
  --header 'Content-Type: application/json' \ 
  --header "Authorization: Bearer {access_token}" \ 
  --data '{  
    "jsonrpc": "2.0",  
    "id": 1,  
    "method": "tools/call",  
    "params": {  
      "name": "get_weather",  
      "arguments": {  
        "location": "Seattle"  
      }  
    }  
  }' 
             

• Verify the response from the Lambda function

Adding an OpenAPI target

OpenAPI (formerly known as Swagger) is a widely used standard for describing RESTful APIs. 
Gateway supports OpenAPI 3.0 specifications for defining API targets.

Adding targets 260



Amazon Bedrock AgentCore Developer Guide

Understanding OpenAPI Targets

OpenAPI targets connect your Gateway to REST APIs defined using OpenAPI specifications. The 
Gateway translates incoming MCP requests into HTTP requests to these APIs and handles the 
response formatting.

Key components of OpenAPI targets include:

• OpenAPI Schema: The OpenAPI specification that describes the REST API

• Credential Provider: Configuration for how the Gateway authenticates with the API

• Outbound Auth: Configuration for authentication with external services

Required Permissions

For OpenAPI targets that use API Key or OAuth authentication, your Gateway's execution role 
needs permissions to access the credential provider:

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Sid": "GetResourceApiKey", 
      "Effect": "Allow", 
      "Action": [ 
        "bedrock-agentcore:GetResourceApiKey" 
      ], 
      "Resource": [ 
        "arn:aws:agent-credential-provider:us-east-1:123456789012:token-vault/default/
apikeycredentialprovider/abcdefghijk" 
      ] 
    } 
  ]
} 
         

For OAuth authentication:

{ 
  "Sid": "GetResourceOauth2Token", 

Adding targets 261



Amazon Bedrock AgentCore Developer Guide

  "Effect": "Allow", 
  "Action": [ 
    "bedrock-agentcore:GetResourceOauth2Token" 
  ], 
  "Resource": [ 
    "arn:aws:agent-credential-provider:us-east-1:123456789012:token-vault/default/
oauth2credentialprovider/abcdefghijk" 
  ]
} 
         

If the credentials are stored in AWS Secrets Manager, the execution role also needs permission to 
access those secrets:

{ 
  "Sid": "GetSecretValue", 
  "Effect": "Allow", 
  "Action": [ 
    "secretsmanager:GetSecretValue" 
  ], 
  "Resource": [ 
    "arn:aws:secretsmanager:us-east-1:123456789012:secret:your-secret-name" 
  ]
} 
         

Key considerations and limitations

Important

The OpenAPI specification must include operationId fields for all operations that you 
want to expose as tools. The operationId is used as the tool name in the MCP interface.

When using OpenAPI targets, keep in mind the following requirements and limitations:

• OpenAPI versions 3.0 and 3.1 are supported (Swagger 2.0 is not supported)

• The OpenAPI file must be free of semantic errors

• The server attribute needs to have a valid URL of the actual endpoint

• Only application/json content type is fully supported

Adding targets 262



Amazon Bedrock AgentCore Developer Guide

• Complex schema features like oneOf, anyOf, and allOf are not supported

• Path parameter serializers and parameter serializers for query, header, and cookie parameters are 
not supported

• Each LLM will have ToolSpec constraints. If OpenAPI has APIs/properties/object names not 
compliant to ToolSpec of the respective downstream LLMs, the data plane will fail. Common 
errors are property name exceeding the allowed length or the name containing unsupported 
character.

For best results with OpenAPI targets:

• Always include operationId in all operations

• Use simple parameter structures instead of complex serialization

• Implement authentication and authorization outside of the specification

• Stick to supported media types for maximum compatibility

OpenAPI Specification and Feature Support

The OpenAPI specification defines the REST API that your Gateway will expose. Here's an example 
of a simple OpenAPI specification:

Topics

• OpenAPI Feature Support

• OpenAPI Specification Format

OpenAPI Feature Support

The following table outlines the OpenAPI features that are supported and unsupported by 
Gateway:

OpenAPI Feature Support

Supported Features Unsupported Features

Schema Definitions

• Basic data types (string, number, integer, 
boolean, array, object)

Schema Composition

• oneOf specifications

• anyOf specifications

Adding targets 263



Amazon Bedrock AgentCore Developer Guide

Supported Features Unsupported Features

• Required field validation

• Nested object structures

• Array definitions with item specifications

• allOf specifications

HTTP Methods

• Standard HTTP methods (GET, POST, PUT, 
DELETE, PATCH, HEAD, OPTIONS)

Security Schemes

• Security schemes at the OpenAPI specifica 
tion level (authentication must be configure 
d using the Gateway's outbound auth 
configuration)

Media Types

• application/json

• application/xml

• multipart/form-data

• application/x-www-form-urlencoded

Media Types

• Custom media types beyond the supported 
list

• Binary media types

Path Parameters

• Simple path parameter definitions 
(Example: /users/{userId})

Parameter Serialization

• Complex path parameter serializers 
(Example: `/users{;id\*}{?metadata}`)

• Query parameter arrays with complex 
serialization

• Header parameter serializers

• Cookie parameter serializers

Query Parameters

• Basic query parameter definitions

• Simple string, number, and boolean types

Callbacks and Webhooks

• Callback operations

• Webhook definitions

Adding targets 264



Amazon Bedrock AgentCore Developer Guide

Supported Features Unsupported Features

Request/Response Bodies

• JSON request and response bodies

• XML request and response bodies

• Standard HTTP status codes (200, 201, 400, 
404, 500, etc.)

Links

• Links between operations

OpenAPI Specification Format

When using OpenAPI specifications with Gateway, ensure that your API definitions adhere to the 
supported features and avoid using unsupported features to prevent errors during target creation 
and invocation.

Supported OpenAPI specification Example 1

Following shows an example of a supported OpenAPI specification

Example of a supported OpenAPI specification:

{ 
  "openapi": "3.0.0", 
  "info": { 
    "title": "Weather API", 
    "version": "1.0.0", 
    "description": "API for retrieving weather information" 
  }, 
  "paths": { 
    "/weather": { 
      "get": { 
        "summary": "Get current weather", 
        "description": "Returns current weather information for a location", 
        "operationId": "getCurrentWeather", 
        "parameters": [ 
          { 
            "name": "location", 
            "in": "query", 
            "description": "City name or coordinates", 
            "required": true, 

Adding targets 265



Amazon Bedrock AgentCore Developer Guide

            "schema": { 
              "type": "string" 
            } 
          }, 
          { 
            "name": "units", 
            "in": "query", 
            "description": "Units of measurement (metric or imperial)", 
            "required": false, 
            "schema": { 
              "type": "string", 
              "enum": ["metric", "imperial"], 
              "default": "metric" 
            } 
          } 
        ], 
        "responses": { 
          "200": { 
            "description": "Successful response", 
            "content": { 
              "application/json": { 
                "schema": { 
                  "type": "object", 
                  "properties": { 
                    "location": { 
                      "type": "string" 
                    }, 
                    "temperature": { 
                      "type": "number" 
                    }, 
                    "conditions": { 
                      "type": "string" 
                    }, 
                    "humidity": { 
                      "type": "number" 
                    } 
                  } 
                } 
              } 
            } 
          }, 
          "400": { 
            "description": "Invalid request" 
          }, 

Adding targets 266



Amazon Bedrock AgentCore Developer Guide

          "404": { 
            "description": "Location not found" 
          } 
        } 
      } 
    } 
  }
} 
           

Supported OpenAPI Specification Example 2

Following shows another example of a supported OpenAPI specification.

{ 
  "openapi": "3.0.0", 
  "info": { 
    "title": "Search API", 
    "version": "1.0.0", 
    "description": "API for searching content" 
  }, 
  "servers": [ 
    { 
      "url": "https://api.example.com/v1" 
    } 
  ], 
  "paths": { 
    "/search": { 
      "get": { 
        "summary": "Search for content", 
        "operationId": "searchContent", 
        "parameters": [ 
          { 
            "name": "query", 
            "in": "query", 
            "description": "Search query", 
            "required": true, 
            "schema": { 
              "type": "string" 
            } 
          }, 
          { 
            "name": "limit", 

Adding targets 267



Amazon Bedrock AgentCore Developer Guide

            "in": "query", 
            "description": "Maximum number of results", 
            "required": false, 
            "schema": { 
              "type": "integer", 
              "default": 10 
            } 
          } 
        ], 
        "responses": { 
          "200": { 
            "description": "Successful response", 
            "content": { 
              "application/json": { 
                "schema": { 
                  "type": "object", 
                  "properties": { 
                    "results": { 
                      "type": "array", 
                      "items": { 
                        "type": "object", 
                        "properties": { 
                          "title": { 
                            "type": "string" 
                          }, 
                          "url": { 
                            "type": "string" 
                          }, 
                          "snippet": { 
                            "type": "string" 
                          } 
                        } 
                      } 
                    }, 
                    "total": { 
                      "type": "integer" 
                    } 
                  } 
                } 
              } 
            } 
          }, 
          "400": { 
            "description": "Bad request" 

Adding targets 268



Amazon Bedrock AgentCore Developer Guide

          } 
        } 
      } 
    } 
  }
} 
         

Unsupported OpenAPI schema

The following shows an example of an unsupported schema with oneOf:

{ 
  "oneOf": [ 
    {"$ref": "#/components/schemas/Pencil"}, 
    {"$ref": "#/components/schemas/Pen"} 
  ]
} 
           

Creating an OpenAPI target

You can add an OpenAPI target to your Gateway using one of the following methods:

Console

To add an OpenAPI target to an existing gateway

1. Open the Amazon Bedrock AgentCore console at https://console.aws.amazon.com/ 
bedrock/home, and choose Gateways.

2. Select the gateway to which you want to add a target.

3. Choose the Targets tab.

4. Choose Add target.

5. Enter a Target name.

6. (Optional) Provide an optional Target description.

7. For Target type, choose REST API to connect to a REST API Service.

8. For OpenAPI schema, choose to either provide the schema inline or reference an Amazon 
S3 location containing your OpenAPI specification.

Adding targets 269

https://console.aws.amazon.com/bedrock/home
https://console.aws.amazon.com/bedrock/home


Amazon Bedrock AgentCore Developer Guide

9. (Optional) In the Outbound authentication section, configure authentication for accessing 
external services:

• For Authentication type, choose OAuth client or API key.

• Select the appropriate authentication resource from your account.

10. Choose Add target.

AgentCore SDK

You can add an OpenAPI target with API Key authentication using the AgentCore SDK:

from bedrockagentcoresdk.gateway import GatewayClient 
   
# Initialize the Gateway client
gateway_client = GatewayClient(region_name="us-west-2") 
   
# Create an OpenAPI target with API Key authentication
open_api_target = gateway_client.create_mcp_gateway_target( 
    gateway=gateway, 
    target_type="openApiSchema", 
    target_payload={ 
        "s3": { 
            "uri": "s3://your-bucket/path/to/open-api-spec.json" 
        } 
    }, 
    credentials={ 
        "api_key": "your-api-key", 
        "credential_location": "HEADER", 
        "credential_parameter_name": "X-API-Key" 
    }
) 
               

You can also add an OpenAPI target with OAuth authentication:

# Create an OpenAPI target with OAuth authentication
open_api_with_oauth_target = gateway_client.create_mcp_gateway_target( 
    gateway=gateway,  
    target_type="openApiSchema", 

Adding targets 270



Amazon Bedrock AgentCore Developer Guide

    target_payload={ 
        "s3": { 
            "uri": "s3://your-bucket/path/to/open-api-spec.json" 
        } 
    }, 
    credentials={"oauth2_provider_config": {"customOauth2ProviderConfig": { 
      "oauthDiscovery": { 
        "authorizationServerMetadata": { 
          "issuer": "https://example.auth0.com", 
          "authorizationEndpoint": "https://example.auth0.com/authorize", 
          "tokenEndpoint": "https://example.auth0.com/oauth/token" 
        } 
      }, 
      "clientId": "your-client-id", 
      "clientSecret": "your-client-secret" 
    }}}
) 
               

Boto3

The following Python code shows how to add an OpenAPI target using boto3 (AWS SDK for 
Python):

import boto3 
   
# Create the agentcore client
agentcore_client = boto3.client('bedrock-agentcore-control') 
   
# Create an OpenAPI target with API Key authentication
target = agentcore_client.create_gateway_target( 
    gatewayIdentifier="your-gateway-id", 
    name="SearchAPITarget", 
    targetConfiguration={ 
        "mcp": { 
            "openApiSchema": { 
                "s3": { 
                    "uri": "s3://your-bucket/path/to/open-api-spec.json", 
                    "bucketOwnerAccountId": "123456789012" 
                } 
            } 
        } 

Adding targets 271



Amazon Bedrock AgentCore Developer Guide

    }, 
    credentialProviderConfigurations=[ 
        { 
            "credentialProviderType": "API_KEY", 
            "credentialProvider": { 
                "apiKeyCredentialProvider": { 
                    "providerArn": "arn:aws:agent-credential-provider:us-
east-1:123456789012:token-vault/default/apikeycredentialprovider/abcdefghijk", 
                    "credentialLocation": "HEADER", 
                    "credentialParameterName": "X-API-Key" 
                } 
            } 
        } 
    ]
) 
               

API

Use the CreateGatewayTarget operation to add an OpenAPI target to your Gateway:

PUT /gateways/abc123def4/targets/ HTTP/1.1
Content-Type: application/json

{ 
  "name": "SearchAPITarget", 
  "description": "Target for search API", 
  "targetConfiguration": { 
    "mcp": { 
      "openApiSchema": { 
        "s3": { 
          "uri": "s3://your-bucket/path/to/open-api-spec.json" 
        } 
      } 
    } 
  }, 
  "credentialProviderConfigurations": [ 
    { 
      "credentialProviderType": "API_KEY", 
      "credentialProvider": { 
        "apiKeyCredentialProvider": { 
          "providerArn": "arn:aws:agent-credential-provider:us-
east-1:123456789012:token-vault/default/apikeycredentialprovider/abcdefghijk", 

Adding targets 272



Amazon Bedrock AgentCore Developer Guide

          "credentialLocation": "HEADER", 
          "credentialParameterName": "X-API-Key" 
        } 
      } 
    } 
  ]
} 
               

Updating an OpenAPI target

You can update an existing OpenAPI target using the UpdateGatewayTarget API:

updated_target = agentcore_client.update_gateway_target( 
    gatewayIdentifier="your-gateway-id", 
    targetId="your-target-id", 
    name="UpdatedSearchAPITarget", 
    targetConfiguration={ 
        "mcp": { 
            "openApiSchema": { 
                "s3": { 
                    "uri": "s3://your-bucket/path/to/updated-open-api-spec.json" 
                } 
            } 
        } 
    }, 
    credentialProviderConfigurations=[ 
        { 
            "credentialProviderType": "API_KEY", 
            "credentialProvider": { 
                "apiKeyCredentialProvider": { 
                    "providerArn": "arn:aws:agent-credential-provider:us-
east-1:123456789012:token-vault/default/apikeycredentialprovider/abcdefghijk", 
                    "credentialLocation": "HEADER", 
                    "credentialParameterName": "X-API-Key" 
                } 
            } 
        } 
    ]
) 
           

Adding targets 273



Amazon Bedrock AgentCore Developer Guide

Testing your OpenAPI target

After adding an OpenAPI target to your Gateway, you can test it by making requests to the 
Gateway endpoint:

• Obtain an access token from your identity provider (as described in the "Set Up Gateway" guide)

• Make a request to the Gateway endpoint:

curl -sS -X POST https://{gatewayId}.gateway.{region}.amazonaws.com/mcp \ 
  --header 'Content-Type: application/json' \ 
  --header "Authorization: Bearer {access_token}" \ 
  --data '{  
    "jsonrpc": "2.0",  
    "id": 1,  
    "method": "tools/call",  
    "params": {  
      "name": "searchContent",  
      "arguments": {  
        "query": "example search",  
        "limit": 5  
      }  
    }  
  }' 
             

• Verify the response from the API:

{  
  "jsonrpc": "2.0",  
  "id": 1,  
  "result": {  
    "results": [  
      {  
        "title": "Example Result 1",  
        "url": "https://example.com/result1",  
        "snippet": "This is an example search result"  
      },  
      {  
        "title": "Example Result 2",  
        "url": "https://example.com/result2",  
        "snippet": "Another example search result"  

Adding targets 274



Amazon Bedrock AgentCore Developer Guide

      }  
    ],  
    "total": 2  
  }  
} 
             

Inline OpenAPI specifications

For small OpenAPI specifications, you can provide the specification inline when creating the target:

target = gateway_client.create_mcp_gateway_target( 
    gateway=gateway, 
    target_type="openApiSchema", 
    target_payload={ 
        "inlinePayload": """ 
        { 
          "openapi": "3.0.0", 
          "info": { 
            "title": "Simple API", 
            "version": "1.0.0" 
          }, 
          "paths": { 
            "/hello": { 
              "get": { 
                "operationId": "sayHello", 
                "parameters": [ 
                  { 
                    "name": "name", 
                    "in": "query", 
                    "schema": { 
                      "type": "string" 
                    } 
                  } 
                ], 
                "responses": { 
                  "200": { 
                    "description": "OK", 
                    "content": { 
                      "application/json": { 
                        "schema": { 
                          "type": "object", 

Adding targets 275



Amazon Bedrock AgentCore Developer Guide

                          "properties": { 
                            "message": { 
                              "type": "string" 
                            } 
                          } 
                        } 
                      } 
                    } 
                  } 
                } 
              } 
            } 
          } 
        } 
        """ 
    }
) 
           

Example

Example OpenAPI target configuration with inline schema:

{ 
  "name": "OpenAPITarget", 
  "targetConfiguration": { 
    "mcp": { 
      "openApiSchema": { 
        "inlinePayload": "{\"openapi\":\"3.0.0\",\"info\":{\"title\":\"Listing 
 Application API\",\"description\":\"A simple API for creating, reading, updating, 
 and deleting listings\",\"version\":\"1.0.0\"},\"paths\":{\"/listings\":{\"get\":
{\"operationId\":\"listListings\",\"responses\":{\"200\":{\"description\":\"Successful 
 operation\"}}}}}}" 
      } 
    } 
  }, 
  "credentialProviderConfigurations": [{ 
    "credentialProviderType": "GATEWAY_IAM_ROLE" 
  }]
}

Adding targets 276



Amazon Bedrock AgentCore Developer Guide

Example OpenAPI target configuration with S3 reference

{ 
  "name": "OpenAPITarget", 
  "targetConfiguration": { 
    "mcp": { 
      "openApiSchema": { 
        "s3": { 
          "uri": "s3://my-bucket/api-specs/openapi.json", 
          "bucketOwnerAccountId": "123456789012" 
        } 
      } 
    } 
  }, 
  "credentialProviderConfigurations": [{ 
    "credentialProviderType": "GATEWAY_IAM_ROLE" 
  }]
}

Adding Smithy targets to your Gateway

Smithy is a language for defining services and SDKs that works well with Gateway. Smithy models 
provide a more structured approach to defining APIs compared to OpenAPI, and are particularly 
useful for connecting to AWS services.

To add a Smithy target, you need:

• A Smithy model in JSON AST format

• Optional authentication configuration for accessing the service

You can provide the Smithy model in two ways:

• Inline as a JSON string

• As a reference to an S3 object

Understanding Smithy Model Targets

Smithy model targets connect your Gateway to services defined using Smithy models, such as AWS 
services like DynamoDB, S3, and more. The Gateway translates incoming MCP requests into API 
calls to these services and handles the response formatting.

Adding targets 277



Amazon Bedrock AgentCore Developer Guide

Key components of Smithy model targets include:

• Smithy Model: The Smithy model definition that describes the service API

• Credential Provider: Configuration for how the Gateway authenticates with the service

Required Permissions

For Smithy model targets that access AWS services, your Gateway's execution role needs 
permissions to access those services. For example, for a DynamoDB target, your execution role 
needs permissions to perform DynamoDB operations:

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "dynamodb:GetItem", 
        "dynamodb:PutItem", 
        "dynamodb:UpdateItem", 
        "dynamodb:DeleteItem", 
        "dynamodb:Query", 
        "dynamodb:Scan" 
      ], 
      "Resource": "arn:aws:dynamodb:*:*:table/*" 
    } 
  ]
} 
       

Smithy Model Types

AgentCore Gateway supports two main types of Smithy models: built-in AWS service models and 
custom Smithy models. You can choose the approach that best fits your needs.

Built-in AWS Service Models

AgentCore Gateway provides built-in Smithy models for common AWS services via an AWS 
provided S3 bucket that hosts the Smithy files. You can pass the Smithy file URIs to the create 
target API.

Adding targets 278



Amazon Bedrock AgentCore Developer Guide

When you create a Smithy model target without specifying a custom model in the 
AgentCoreSDK, the Gateway will use the built-in DynamoDB model.

Here's an example of creating a Smithy model target for DynamoDB:

# Create a Smithy model target for DynamoDB
dynamodb_target = gateway_client.create_mcp_gateway_target( 
    gateway=gateway, 
    target_type="smithyModel", 
    target_name="DynamoDBTarget", 
    target_description="Target for DynamoDB operations"
) 
               

With this target, your Gateway will expose DynamoDB operations as tools that can be invoked 
through the MCP interface.

Custom Smithy Models

You can also use custom Smithy models to define your own service APIs. To use a custom 
Smithy model:

• Create a Smithy model that defines your service API

• Convert the Smithy model to JSON format

• Upload the JSON model to an Amazon S3 bucket

• Reference the S3 location when creating your Smithy model target

Here's an example of creating a Smithy model target with a custom model:

# Create a Smithy model target with a custom model
custom_smithy_target = gateway_client.create_mcp_gateway_target( 
    gateway=gateway, 
    target_type="smithyModel", 
    target_name="CustomServiceTarget", 
    target_description="Target for custom service API", 
    target_payload={ 
        "s3": { 
            "uri": "s3://your-bucket/path/to/custom-smithy-model.json" 
        } 

Adding targets 279



Amazon Bedrock AgentCore Developer Guide

    }
) 
               

Smithy Feature Support

The following table outlines the Smithy features that are supported and unsupported by Gateway:

Smithy Feature Support

Supported Features Unsupported Features

Service Definitions

• Service structure definitions based on 
Smithy specifications

• Operation definitions with input/output 
shapes

• Resource definitions

• Trait shapes

Endpoint Rules

• Endpoint creation rule sets

• Runtime endpoint determination based on 
conditions

• Complex URL parameters beyond simple 
{region} substitution

Protocol Support

• RestJson protocol

• Standard HTTP request/response patterns

Protocol Support

• RestXml protocol

• JsonRpc protocol

• AwsQuery protocol

• Ec2Query protocol

• Custom protocols

Data Types

• Primitive types (string, integer, boolean, 
float, double)

• Complex types (structures, lists, maps)

• Timestamp handling

• Blob data types

Authentication

• Multiple egress authentication types for 
specific APIs

• Complex authentication schemes requiring 
runtime decisions

HTTP Bindings Operations

Adding targets 280



Amazon Bedrock AgentCore Developer Guide

Supported Features Unsupported Features

• Basic HTTP method bindings

• Simple path parameter bindings

• Query parameter bindings

• Header bindings for simple cases

• Streaming operations

• Operations requiring custom protocol 
implementations

When using Smithy models with Gateway, be aware of the following limitations:

• Maximum model size: 10MB

• Only JSON protocol bindings are fully supported

• Only RestJson protocol is supported

• Complex endpoint creation rule sets are not supported

• Only simple URL parameters like {region} are supported

Example of a supported Smithy model for a weather service:

namespace example.weather

use aws.protocols#restJson1
use smithy.framework#ValidationException

/// Weather service for retrieving weather information
@restJson1
service WeatherService { 
    version: "1.0.0", 
    operations: [GetCurrentWeather]
}

/// Get current weather for a location
@http(method: "GET", uri: "/weather")
operation GetCurrentWeather { 
    input: GetCurrentWeatherInput, 
    output: GetCurrentWeatherOutput, 
    errors: [ValidationException]
}

Adding targets 281



Amazon Bedrock AgentCore Developer Guide

structure GetCurrentWeatherInput { 
    /// City name or coordinates 
    @required 
    @httpQuery("location") 
    location: String, 

    /// Units of measurement (metric or imperial) 
    @httpQuery("units") 
    units: Units = metric
}

structure GetCurrentWeatherOutput { 
    /// Location name 
    location: String, 

    /// Current temperature 
    temperature: Float, 

    /// Weather conditions description 
    conditions: String, 

    /// Humidity percentage 
    humidity: Float
}

enum Units { 
    metric 
    imperial
} 
         

Example of an unsupported endpoint rules configuration:

@endpointRuleSet({ 
  "rules": [ 
    { 
      "conditions": [{"fn": "booleanEquals", "argv": [{"ref": "UseFIPS"}, true]}], 
      "endpoint": {"url": "https://weather-fips.{Region}.example.com"} 
    }, 
    { 
      "endpoint": {"url": "https://weather.{Region}.example.com"} 
    } 

Adding targets 282



Amazon Bedrock AgentCore Developer Guide

  ]
}) 
         

Creating a Smithy target

You can add a Smithy target to your Gateway using one of the following methods:

Console

To add a Smithy target to an existing gateway

1. Open the Amazon Bedrock AgentCore console at https://console.aws.amazon.com/ 
bedrock/home, and choose Gateways.

2. Select the gateway to which you want to add a target.

3. Choose the Targets tab.

4. Choose Add target.

5. Enter a Target name.

6. (Optional) Provide an optional Target description.

7. For Target type, choose Smithy Model.

8. For Smithy model, choose to either use a built-in AWS service model or provide a custom 
Smithy model via S3 or inline.

9. In the Outbound authentication section, configure authentication for accessing the 
service:

• For Authentication type, choose GATEWAY_IAM_ROLE.

10. Choose Add target.

AgentCore SDK

You can add a Smithy model target using the AgentCore SDK:

from bedrock_agentcore_starter_toolkit.operations.gateway.client import 
 GatewayClient

# Initialize the Gateway client
gateway_client = GatewayClient(region_name="us-west-2")

Adding targets 283

https://console.aws.amazon.com/bedrock/home
https://console.aws.amazon.com/bedrock/home


Amazon Bedrock AgentCore Developer Guide

# Create a Smithy model target for a built-in AWS service (e.g., DynamoDB)
smithy_target = gateway_client.create_mcp_gateway_target( 
    gateway=gateway, 
    target_type="smithyModel"
)

# Or create a Smithy model target with a custom model
custom_smithy_target = gateway_client.create_mcp_gateway_target( 
    gateway=gateway,  
    target_type="smithyModel", 
    target_payload={ 
        "s3": { 
            "uri": "s3://your-bucket/path/to/smithy-model.json" 
        } 
    }
) 
             

Boto3

The following Python code shows how to add a Smithy model target using boto3 (AWS SDK for 
Python):

import boto3

# Create the agentcore client
agentcore_client = boto3.client('bedrock-agentcore-control')

# Create a Smithy model target
target = agentcore_client.create_gateway_target( 
    gatewayIdentifier="your-gateway-id", 
    name="DynamoDBTarget", 
    targetConfiguration={ 
        "mcp": { 
            "smithyModel": { 
                "s3": { 
                    "uri": "s3://your-bucket/path/to/smithy-model.json", 
                    "bucketOwnerAccountId": "123456789012" 
                } 
            } 
        } 

Adding targets 284



Amazon Bedrock AgentCore Developer Guide

    }, 
    credentialProviderConfigurations=[ 
        { 
            "credentialProviderType": "GATEWAY_IAM_ROLE" 
        } 
    ]
) 
             

API

Use the CreateGatewayTarget operation to add a Smithy model target to your Gateway:

PUT /gateways/abc123def4/targets/ HTTP/1.1
Content-Type: application/json

{ 
  "gatewayIdentifier": "abc123def4", 
  "name": "DynamoDBTarget", 
  "targetConfiguration": { 
    "mcp": { 
      "smithyModel": { 
        "s3": { 
          "uri": "s3://your-bucket/path/to/smithy-model.json", 
          "bucketOwnerAccountId": "123456789012" 
        } 
      } 
    } 
  }, 
  "credentialProviderConfigurations": [ 
    { 
      "credentialProviderType": "GATEWAY_IAM_ROLE" 
    } 
  ]
} 
             

Updating a Smithy Model Target

You can update an existing Smithy model target using the UpdateGatewayTarget API:

Adding targets 285



Amazon Bedrock AgentCore Developer Guide

updated_target = agentcore_client.update_gateway_target( 
    gatewayIdentifier="your-gateway-id", 
    targetId="your-target-id", 
    name="UpdatedDynamoDBTarget", 
    targetConfiguration={ 
        "mcp": { 
            "smithyModel": { 
                "s3": { 
                    "uri": "s3://your-bucket/path/to/updated-smithy-model.json" 
                } 
            } 
        } 
    }, 
    credentialProviderConfigurations=[ 
        { 
            "credentialProviderType": "GATEWAY_IAM_ROLE" 
        } 
    ]
) 
         

Testing Your Smithy Model Target

After adding a Smithy model target to your Gateway, you can test it by making requests to the 
Gateway endpoint:

• Obtain an access token from your identity provider (as described in the "Set Up Gateway" guide)

• Make a request to the Gateway endpoint:

curl -sS -X POST https://{gatewayId}.gateway.{region}.amazonaws.com/mcp \ 
  --header 'Content-Type: application/json' \ 
  --header "Authorization: Bearer {access_token}" \ 
  --data '{  
    "jsonrpc": "2.0",  
    "id": 1,  
    "method": "tools/call",  
    "params": {  
      "name": "DynamoDB_GetItem",  
      "arguments": {  
        "TableName": "YourTableName",  

Adding targets 286



Amazon Bedrock AgentCore Developer Guide

        "Key": { "id": {"S": "item-id-1"} }  
      }  
    }  
  }' 
           

• Verify the response from the service:

{  
  "jsonrpc": "2.0",  
  "id": 1,  
  "result": {  
    "Item": {  
      "id": {"S": "item-id-1"},  
      "name": {"S": "Example Item"},  
      "description": {"S": "This is an example item"}  
    }  
  }  
} 
           

Advanced Smithy Model Target Configurations

Inline Smithy Models

For small Smithy models, you can provide the model inline when creating the target:

target = gateway_client.create_mcp_gateway_target( 
    gateway=gateway, 
    target_type="smithyModel", 
    target_payload={ 
        "inlinePayload": """ 
        { 
            "smithy": "1.0", 
            "shapes": { 
                "com.example#MyService": { 
                    "type": "service", 
                    "version": "2023-01-01", 
                    "operations": [ 
                        { 

Adding targets 287



Amazon Bedrock AgentCore Developer Guide

                            "target": "com.example#GetData" 
                        } 
                    ] 
                }, 
                "com.example#GetData": { 
                    "type": "operation", 
                    "input": { 
                        "target": "com.example#GetDataInput" 
                    }, 
                    "output": { 
                        "target": "com.example#GetDataOutput" 
                    } 
                }, 
                "com.example#GetDataInput": { 
                    "type": "structure", 
                    "members": { 
                        "id": { 
                            "target": "smithy.api#String", 
                            "required": true 
                        } 
                    } 
                }, 
                "com.example#GetDataOutput": { 
                    "type": "structure", 
                    "members": { 
                        "data": { 
                            "target": "smithy.api#String" 
                        } 
                    } 
                } 
            } 
        } 
        """ 
    }
) 
         

Using a Gateway

After setting up authentication and permissions, and building your gateway with targets (the 
section called “Setting up a Gateway”), you can use your gateway to connect agents with tools. This 
chapter explains how to use a gateway through the Model Context Protocol (MCP).

Using a Gateway 288



Amazon Bedrock AgentCore Developer Guide

Using a Gateway with MCP

Gateway implements the Model Context Protocol (MCP), which provides a standardized way for 
agents to discover and invoke tools. The gateway exposes two main MCP operations:

• tools/list: Lists all available tools provided by the gateway

• tools/call: Invokes a specific tool with the provided arguments

To use these operations, you need to make HTTP requests to the gateway's MCP endpoint with the 
appropriate authentication.

Authentication for MCP Requests

Before making MCP requests to a gateway, you need to obtain an authentication token from the 
identity provider configured for the gateway's Inbound Auth. The process for obtaining a token 
depends on the identity provider:

• For Amazon Cognito, you can use the OAuth 2.0 token endpoint with client credentials flow

• For Auth0, you can use the OAuth 2.0 token endpoint with client credentials flow

• For other identity providers, refer to their documentation for obtaining access tokens

For detailed information on setting up authentication and obtaining tokens, see Prerequisites to 
set up a gateway.

Once you have an access token, include it in the Authorization header of your MCP requests:

Authorization: Bearer YOUR_ACCESS_TOKEN 
       

Listing Available Tools

To list all available tools provided by a gateway, make a POST request to the gateway's MCP 
endpoint with the tools/list method:

Request Format

The request to list tools should be a POST request with a JSON payload:

Using a Gateway with MCP 289



Amazon Bedrock AgentCore Developer Guide

POST /mcp HTTP/1.1
Host: your-gateway-endpoint.execute-api.region.amazonaws.com
Content-Type: application/json
Authorization: Bearer YOUR_ACCESS_TOKEN

{ 
  "method": "tools/list", 
  "params": {}
} 
         

You can optionally include parameters to filter the tools list:

{ 
  "method": "tools/list", 
  "params": { 
    "filter": { 
      "name_contains": "weather" 
    } 
  }
} 
         

Response Format

The response will contain a list of available tools with their descriptions, names, and parameter 
schemas:

{ 
  "result": { 
    "tools": [ 
      { 
        "name": "get_weather", 
        "description": "Get current weather conditions for a location", 
        "parameters": { 
          "type": "object", 
          "properties": { 
            "location": { 
              "type": "string", 

Using a Gateway with MCP 290



Amazon Bedrock AgentCore Developer Guide

              "description": "City name or zip code" 
            }, 
            "units": { 
              "type": "string", 
              "enum": ["metric", "imperial"], 
              "description": "Temperature units" 
            } 
          }, 
          "required": ["location"] 
        } 
      }, 
      { 
        "name": "search_products", 
        "description": "Search for products in a catalog", 
        "parameters": { 
          "type": "object", 
          "properties": { 
            "query": { 
              "type": "string", 
              "description": "Search query" 
            }, 
            "category": { 
              "type": "string", 
              "description": "Product category" 
            }, 
            "max_results": { 
              "type": "integer", 
              "description": "Maximum number of results to return" 
            } 
          }, 
          "required": ["query"] 
        } 
      } 
    ] 
  }
} 
        

Invoking a Tool

To invoke a specific tool, make a POST request to the gateway's MCP endpoint with the tools/
call method, specifying the tool name and arguments:

Using a Gateway with MCP 291



Amazon Bedrock AgentCore Developer Guide

Request syntax

{ 
  "jsonrpc": "2.0", 
  "id": "request-id", 
  "method": "tools/call", 
  "params": { 
    "name": "string", 
    "arguments": { 
      "key1": "value1", 
      "key2": "value2", 
      ... 
    } 
  }
} 
         

The request includes the following parameters:

name

The name of the tool to invoke.

Type: String

Required: Yes

arguments

The input parameters for the tool. The structure of this object must conform to the tool's input 
schema.

Type: Object

Required: Yes

Response syntax

{ 
  "jsonrpc": "2.0", 
  "id": "request-id", 

Using a Gateway with MCP 292



Amazon Bedrock AgentCore Developer Guide

  "result": { 
    "content": "string", 
    "contentType": "string", 
    "statusCode": number 
  }
} 
         

The response includes the following fields:

content

The result of the tool invocation. This can be a string or a JSON string representing a more 
complex response.

Type: String

contentType

The MIME type of the content. Common values include text/plain and application/json.

Type: String

statusCode

The HTTP status code indicating the result of the operation.

Type: Integer

Example

The following example shows how to invoke the searchProducts tool:

curl -X POST \ 
  https://GATEWAY_ID.gateway.bedrock-agentcore.us-west-2.amazonaws.com/mcp \ 
  -H "Content-Type: application/json" \ 
  -H "Authorization: Bearer YOUR_ACCESS_TOKEN" \ 
  -d '{ 
    "jsonrpc": "2.0", 
    "id": "invoke-tool-request", 
    "method": "tools/call", 
    "params": { 

Using a Gateway with MCP 293



Amazon Bedrock AgentCore Developer Guide

      "name": "searchProducts", 
      "arguments": { 
        "query": "wireless headphones", 
        "category": "Electronics", 
        "maxResults": 2, 
        "priceRange": { 
          "min": 50.00, 
          "max": 200.00 
        } 
      } 
    } 
  }' 
         

Example response:

{ 
  "jsonrpc": "2.0", 
  "id": "invoke-tool-request", 
  "result": { 
    "content": "{\"products\":[{\"productId\":\"P12345\",\"name\":\"Premium Wireless 
 Headphones\",\"description\":\"High-quality noise-cancelling wireless headphones
\",\"price\":149.99,\"category\":\"Electronics\",\"inStock\":true,\"rating\":4.7},
{\"productId\":\"P67890\",\"name\":\"Sport Wireless Earbuds\",\"description\":\"Sweat-
resistant wireless earbuds for active lifestyles\",\"price\":89.99,\"category\":
\"Electronics\",\"inStock\":true,\"rating\":4.5}],\"totalResults\":24}", 
    "contentType": "application/json", 
    "statusCode": 200 
  }
} 
         

Here's another example showing how to invoke the getOrderStatus tool:

curl -X POST \ 
  https://GATEWAY_ID.gateway.bedrock-agentcore.us-west-2.amazonaws.com/mcp \ 
  -H "Content-Type: application/json" \ 
  -H "Authorization: Bearer YOUR_ACCESS_TOKEN" \ 
  -d '{ 
    "jsonrpc": "2.0", 
    "id": "invoke-order-status", 

Using a Gateway with MCP 294



Amazon Bedrock AgentCore Developer Guide

    "method": "tools/call", 
    "params": { 
      "name": "getOrderStatus", 
      "arguments": { 
        "orderId": "ORD-12345-67890", 
        "customerId": "CUST-98765", 
        "includeTracking": true 
      } 
    } 
  }' 
         

Example response:

{ 
  "jsonrpc": "2.0", 
  "id": "invoke-order-status", 
  "result": { 
    "content": "{\"orderId\":\"ORD-12345-67890\",\"status\":\"shipped\",\"orderDate\":
\"2025-07-01T10:30:00Z\",\"estimatedDelivery\":\"2025-07-08\",\"items\":[{\"productId
\":\"P12345\",\"name\":\"Premium Wireless Headphones\",\"quantity\":1,\"price
\":149.99,\"total\":149.99}],\"tracking\":{\"trackingNumber\":\"TRK123456789\",
\"carrier\":\"FastShip\",\"currentLocation\":\"Distribution Center\",\"lastUpdate\":
\"2025-07-03T14:25:00Z\"}}", 
    "contentType": "application/json", 
    "statusCode": 200 
  }
} 
         

Errors

The tools/call operation can return the following errors:

AuthenticationError

The request failed due to invalid authentication credentials.

HTTP Status Code: 401

AuthorizationError

The caller does not have permission to invoke the tool.

Using a Gateway with MCP 295



Amazon Bedrock AgentCore Developer Guide

HTTP Status Code: 403

ResourceNotFoundError

The specified tool does not exist.

HTTP Status Code: 404

ValidationError

The provided arguments do not conform to the tool's input schema.

HTTP Status Code: 400

ToolExecutionError

An error occurred while executing the tool.

HTTP Status Code: 500

InternalServerError

An internal server error occurred.

HTTP Status Code: 500

Example error response:

{ 
  "jsonrpc": "2.0", 
  "id": "invoke-tool-request", 
  "error": { 
    "code": -32603, 
    "message": "Internal error", 
    "data": { 
      "details": "Error invoking tool: searchProducts" 
    } 
  }
} 
         

Using MCP Client Libraries

Several client libraries are available to simplify working with MCP servers, including Gateway. These 
libraries provide high-level abstractions for listing tools, calling tools, and handling responses.

Using a Gateway with MCP 296



Amazon Bedrock AgentCore Developer Guide

Listing Tools with MCP Clients

Here are examples of how to list tools using different MCP client libraries:

Python with Requests

import requests
import json

def list_tools(gateway_url, access_token): 
    headers = { 
        "Content-Type": "application/json", 
        "Authorization": f"Bearer {access_token}" 
    } 
     
    payload = { 
        "jsonrpc": "2.0", 
        "id": "list-tools-request", 
        "method": "tools/list" 
    } 
     
    response = requests.post(gateway_url, headers=headers, json=payload) 
    return response.json()

# Example usage
gateway_url = "https://your-gateway-endpoint.execute-api.region.amazonaws.com/mcp"
access_token = "YOUR_ACCESS_TOKEN"
tools = list_tools(gateway_url, access_token)
print(json.dumps(tools, indent=2)) 
               

MCP Client

from mcp import ClientSession
from mcp.client.streamable_http import streamablehttp_client

async def execute_mcp( 
    url, 
    headers=None
): 
    headers = {**headers} if headers else {} 

Using a Gateway with MCP 297



Amazon Bedrock AgentCore Developer Guide

    async with streamablehttp_client( 
       url=url, 
       headers=headers, 
    ) as ( 
        read_stream, 
        write_stream, 
        callA, 
    ): 
        async with ClientSession(read_stream, write_stream) as session: 
            # 1. Perform initialization handshake 
            print("Initializing MCP...") 
            _init_response = await session.initialize() 
            print(f"MCP Server Initialize successful! - {_init_response}") 

            # 2. List available tools 
            print("Listing tools...") 
            cursor = True 
            tools = [] 
            while cursor: 
                next_cursor = cursor 
                if type(cursor) == bool: 
                    next_cursor = None 
                list_tools_response = await session.list_tools(next_cursor) 
                tools.extend(list_tools_response.tools) 
                cursor = list_tools_response.nextCursor 

            tool_names = [] 
            if tools: 
                for tool in tools: 
                    tool_names.append(tool.name) 
            tool_names_string = "\n".join(tool_names) 
            print( 
                f"List MCP tools. # of tools - {len(tools)}" 
               f"List of tools - \n{tool_names_string}\n" 
            ) 
               

Strands MCP Client

from strands import Agent
import logging
from strands.models import BedrockModel
from strands.tools.mcp.mcp_client import MCPClient

Using a Gateway with MCP 298



Amazon Bedrock AgentCore Developer Guide

from mcp.client.streamable_http import streamablehttp_client  
import os

def create_streamable_http_transport(mcp_url: str, access_token: str): 
       return streamablehttp_client(mcp_url, headers={"Authorization": f"Bearer 
 {access_token}"})

def get_full_tools_list(client): 
    """ 
    List tools w/ support for pagination 
    """ 
    more_tools = True 
    tools = [] 
    pagination_token = None 
    while more_tools: 
        tmp_tools = client.list_tools_sync(pagination_token=pagination_token) 
        tools.extend(tmp_tools) 
        if tmp_tools.pagination_token is None: 
            more_tools = False 
        else: 
            more_tools = True  
            pagination_token = tmp_tools.pagination_token 
    return tools

def run_agent(mcp_url: str, access_token: str): 
    mcp_client = MCPClient(lambda: create_streamable_http_transport(mcp_url, 
 access_token)) 
      
    with mcp_client: 
        tools = get_full_tools_list(mcp_client) 
        print(f"Found the following tools: {[tool.tool_name for tool in tools]}") 
         
run_agent(<MCP URL>, <Access token>) 
               

LangGraph MCP Client

import asyncio

from langchain_mcp_adapters.client import MultiServerMCPClient

Using a Gateway with MCP 299



Amazon Bedrock AgentCore Developer Guide

def list_tools( 
    url, 
    headers
): 
    mcp_client = MultiServerMCPClient( 
        { 
            "agent": { 
                "transport": "streamable_http", 
                "url": url, 
                "headers": headers, 
            } 
        } 
    ) 
    tools = asyncio.run(mcp_client.get_tools()) 
    tool_details = [] 
    tool_names = [] 
    for tool in tools: 
        tool_names.append(f"{tool.name}") 
        tool_detail = f"{tool.name} - {tool.description} \n" 

        tool_properties = tool.args_schema.get('properties', {}) 
        properties = [] 
        for property_name, tool_property in tool_properties.items(): 
            properties.append(f"{property_name} - {tool_property.get('description', 
 None)} \n") 
        tool_details.append(f"{tool_detail}{"\n".join(properties)}") 

    tool_details_string = "\n".join(tool_details) 
    tool_names_string = "\n".join(tool_names) 
    print( 
        f"Langchain: List MCP tools. # of tools - {len(tools)}\n", 
        f"Langchain: List of tool names - \n{tool_names_string}\n" 
        f"Langchain: Details of tools - \n{tool_details_string}\n" 
    ) 
               

Calling Tools with MCP Clients

Here are examples of how to call tools using different MCP client libraries:

Using a Gateway with MCP 300



Amazon Bedrock AgentCore Developer Guide

Python with Requests

import requests
import json

def call_tool(gateway_url, access_token, tool_name, arguments): 
    headers = { 
        "Content-Type": "application/json", 
        "Authorization": f"Bearer {access_token}" 
    } 
     
    payload = { 
        "jsonrpc": "2.0", 
        "id": "call-tool-request", 
        "method": "tools/call", 
        "params": { 
            "name": tool_name, 
            "arguments": arguments 
        } 
    } 
     
    response = requests.post(gateway_url, headers=headers, json=payload) 
    return response.json()

# Example usage
gateway_url = "https://your-gateway-endpoint.execute-api.region.amazonaws.com/mcp"
access_token = "YOUR_ACCESS_TOKEN"
result = call_tool( 
    gateway_url,  
    access_token,  
    "getOrderStatus",  
    {"orderId": "ORD-12345-67890", "customerId": "CUST-98765"}
)
print(json.dumps(result, indent=2)) 
               

MCP Client

import json
from datetime import timedelta

from mcp import ClientSession

Using a Gateway with MCP 301



Amazon Bedrock AgentCore Developer Guide

from mcp.client.streamable_http import streamablehttp_client

async def execute_mcp( 
    url, 
    headers=None
): 
    headers = {**headers} if headers else {} 
    async with streamablehttp_client( 
       url=url, 
       headers=headers, 
    ) as ( 
        read_stream, 
        write_stream, 
        callA, 
    ): 
        async with ClientSession(read_stream, write_stream) as session: 
            # 1. Perform initialization handshake 
            print("Initializing MCP...") 
            _init_response = await session.initialize() 
            print(f"MCP Server Initialize successful! - {_init_response}") 

            # 2. Invoke a tool 
            list_tools_response = await session.list_tools() 
            tools = list_tools_response.tools 
            print("Invoking Tools...") 
            for tool in tools: 
                tool_name = tool.name 
                args = { 
                    "param1": "paramValue1" 
                } 
                invoke_tool_response = await session.call_tool( 
                    tool_name, 
                    arguments=args, 
                    read_timeout_seconds=timedelta(seconds=60) 
                ) 
                contents = invoke_tool_response.content 
                for content in contents: 
                    text = content.text 
                    try: 
                        content = json.dumps(json.loads(text), indent=4) 
                    except: 
                        content = text 
                    print( 

Using a Gateway with MCP 302



Amazon Bedrock AgentCore Developer Guide

                        f"Invoke tool response: Name - {content}" 
                    ) 
               

Strands MCP Client

Note

This is for invoking agent

import functools

from mcp.client.streamable_http import streamablehttp_client
from strands import Agent
from strands.tools.mcp.mcp_client import MCPClient

def execute_agent( 
        bedrock_model, 
        prompt
): 
    mcp_client = MCPClient(functools.partial(_create_streamable_http_transport)) 
    tools = mcp_client.list_tools_sync() 
    with mcp_client: 
        agent = Agent( 
            model=bedrock_model, 
            tools=tools 
        ) 
        return agent(prompt)

def _create_streamable_http_transport( 
        url, 
        headers=None
): 
    return streamablehttp_client( 
        url, 
        headers=headers 
    )              

Using a Gateway with MCP 303



Amazon Bedrock AgentCore Developer Guide

LangGraph MCP Client

Note

This is for invoking agent

import asyncio

from langgraph.prebuilt import create_react_agent

def execute_agent( 
    user_prompt, 
    model_id, 
    tools
): 
    agent = create_react_agent(model_id, tools) 
    _response = asyncio.run(agent.ainvoke({ 
        "messages": user_prompt 
    })) 

    _response = _response.get('messages', {})[1].content 
    print( 
        f"Invoke Langchain Agents Response" 
        f"Response - \n{_response}\n" 
    ) 
    return _response 
               

Searching Tools with MCP Clients

Here are examples of how to search for tools using different MCP client libraries:

Python with Requests

import requests
import json

Using a Gateway with MCP 304



Amazon Bedrock AgentCore Developer Guide

def search_tools(gateway_url, access_token, query): 
    headers = { 
        "Content-Type": "application/json", 
        "Authorization": f"Bearer {access_token}" 
    } 
     
    payload = { 
        "jsonrpc": "2.0", 
        "id": "search-tools-request", 
        "method": "tools/call", 
        "params": { 
            "name": "x-amz-agentcore-search", 
            "arguments": { 
                "query": query 
            } 
        } 
    } 
     
    response = requests.post(gateway_url, headers=headers, json=payload) 
    return response.json()

# Example usage
gateway_url = "https://your-gateway-endpoint.execute-api.region.amazonaws.com/mcp"
access_token = "YOUR_ACCESS_TOKEN"
results = search_tools(gateway_url, access_token, "find order information")
print(json.dumps(results, indent=2)) 
               

MCP Client

import json
from datetime import timedelta

from mcp import ClientSession
from mcp.client.streamable_http import streamablehttp_client

async def execute_mcp( 
    url, 
    headers=None
): 
    headers = {**headers} if headers else {} 

Using a Gateway with MCP 305



Amazon Bedrock AgentCore Developer Guide

    async with streamablehttp_client( 
       url=url, 
       headers=headers, 
    ) as ( 
        read_stream, 
        write_stream, 
        callA, 
    ): 
        async with ClientSession(read_stream, write_stream) as session: 
            # 1. Perform initialization handshake 
            print("Initializing MCP...") 
            _init_response = await session.initialize() 
            print(f"MCP Server Initialize successful! - {_init_response}") 

            # 2. Invoke search tool 
            print("Invoking search tool...") 
            tool_name = "x_amz_bedrock_agentcore_search" 
            args = { 
                "query": "How do I process images?" 
            } 
            invoke_tool_response = await session.call_tool( 
                tool_name, 
                arguments=args, 
                read_timeout_seconds=timedelta(seconds=60) 
            ) 
            contents = invoke_tool_response.content 
            for content in contents: 
                text = content.text 
                try: 
                    content = json.dumps(json.loads(text), indent=4) 
                except: 
                    content = text 
                print( 
                    f"Invoke tool response: Name - {content}" 
                ) 
               

Strands MCP Client

import functools

from mcp.client.streamable_http import streamablehttp_client
from strands import Agent

Using a Gateway with MCP 306



Amazon Bedrock AgentCore Developer Guide

from strands.tools.mcp.mcp_client import MCPClient

def execute_agent( 
        bedrock_model, 
        prompt
): 
    mcp_client = MCPClient(functools.partial(_create_streamable_http_transport)) 
    with mcp_client: 
        agent = Agent( 
            model=bedrock_model, 
            tools=filter_search_tool(mcp_client) 
        ) 
        return agent(prompt)

def filter_search_tool( 
        mcp_client
): 
    tools = mcp_client.list_tools_sync() 
    builtin_search_tool = [] 
    for tool in tools: 
        if tool.name == "x_amz_bedrock_agentcore_search": 
            builtin_search_tool.append(tool) 
    return builtin_search_tool

def _create_streamable_http_transport( 
        url, 
        headers=None
): 
    return streamablehttp_client( 
        url, 
        headers=headers 
    ) 
               

LangGraph MCP Client

import asyncio

from langchain_mcp_adapters.client import MultiServerMCPClient

Using a Gateway with MCP 307



Amazon Bedrock AgentCore Developer Guide

from langgraph.prebuilt import create_react_agent

url = ""
headers = {}
def execute_agent( 
    user_prompt, 
    model_id
): 
    agent = create_react_agent(model_id, filter_search_tool()) 
    _response = asyncio.run(agent.ainvoke({ 
        "messages": user_prompt 
    })) 

    _response = _response.get('messages', {})[1].content 
    print( 
        f"Invoke Langchain Agents Response" 
        f"Response - \n{_response}\n" 
    ) 
    return _response

def filter_search_tool(
): 
    mcp_client = MultiServerMCPClient( 
        { 
            "agent": { 
                "transport": "streamable_http", 
                "url": url, 
                "headers": headers, 
            } 
        } 
    ) 
    tools = asyncio.run(mcp_client.get_tools()) 
    builtin_search_tool = [] 
    for tool in tools: 
        if tool.name == "x_amz_bedrock_agentcore_search": 
            builtin_search_tool.append(tool) 
    return builtin_search_tool 
               

Using a Gateway with MCP 308



Amazon Bedrock AgentCore Developer Guide

Testing your gateway

After creating a gateway and adding targets, you can test it using the MCP protocol.

Testing your gateway using Python

The following examples show how to test your gateway using Python.

import requests
import json

def list_tools(gateway_url): 
    """List all tools available in the gateway.""" 
    headers = { 
        "Content-Type": "application/json" 
    } 
     
    payload = { 
        "jsonrpc": "2.0", 
        "id": "list-tools-request", 
        "method": "tools/list" 
    } 
     
    response = requests.post(gateway_url, headers=headers, json=payload) 
    return response.json()

def search_tools(gateway_url, query): 
    """Search for tools based on a query.""" 
    headers = { 
        "Content-Type": "application/json" 
    } 
     
    payload = { 
        "jsonrpc": "2.0", 
        "id": "search-tools-request", 
        "method": "tools/call", 
        "params": { 
            "name": "x_amz_bedrock_agentcore_search", 
            "arguments": { 
                "query": query 
            } 
        } 

Testing your gateway 309



Amazon Bedrock AgentCore Developer Guide

    } 
     
    response = requests.post(gateway_url, headers=headers, json=payload) 
    return response.json()

def call_tool(gateway_url, tool_name, arguments): 
    """Call a specific tool with arguments.""" 
    headers = { 
        "Content-Type": "application/json" 
    } 
     
    payload = { 
        "jsonrpc": "2.0", 
        "id": "call-tool-request", 
        "method": "tools/call", 
        "params": { 
            "name": tool_name, 
            "arguments": arguments 
        } 
    } 
     
    response = requests.post(gateway_url, headers=headers, json=payload) 
    return response.json()

# Example usage
gateway_url = "https://example-gateway-url.amazonaws.com"

# List all tools
tools_response = list_tools(gateway_url)
print(f"Available tools: {json.dumps(tools_response, indent=2)}")

# Search for tools related to orders
search_response = search_tools(gateway_url, "find order information")
print(f"Relevant tools: {json.dumps(search_response, indent=2)}")

# Call the order status tool
order_response = call_tool( 
    gateway_url=gateway_url, 
    tool_name="getOrderStatus", 
    arguments={ 
        "orderId": "ORD-12345-67890", 
        "customerId": "CUST-98765" 
    }
)

Testing your gateway 310



Amazon Bedrock AgentCore Developer Guide

print(f"Order status: {json.dumps(order_response, indent=2)}") 
     

Monitoring gateway usage

Gateway emits metrics to CloudWatch, allowing you to monitor its usage and performance. These 
metrics include:

• Total invocations: The number of tool invocations

• Invocations by target type: The number of invocations by target type (Lambda, OpenAPI, 
Smithy)

• Invocations by authentication type: The number of invocations by authentication type

• Error count: The number of errors, broken down by user errors and system errors

• Throttle errors: The number of throttle errors

• Latency: The latency of tool invocations, broken down by overall request latency and target 
execution latency

To view these metrics, go to the CloudWatch console in the account that owns the gateway 
resources. Navigate to Metrics  →  All Metrics and look for the Amazon Bedrock AgentCore 
namespace.

For more information, see Assess Gateway performance using monitoring and observability.

Using the MCP Inspector

The MCP Inspector is an interactive developer tool for testing and debugging MCP servers, 
including Gateway. You can use it to explore the tools provided by a gateway and test tool 
invocations.

Setting up the MCP Inspector

To install and start the MCP Inspector:

npx @modelcontextprotocol/inspector 
         

This command will:

Testing your gateway 311



Amazon Bedrock AgentCore Developer Guide

• Start the MCP Inspector server on localhost

• Generate a session token for authentication to the MCP Inspector

• Display a URL with the MCP Inspector auth token pre-populated

• Automatically open your browser to the inspector interface

Example output:

Starting MCP inspector... 
   
## Proxy server listening on localhost:6277 
   
# Session token: c64b9e14995e9846572cb47c52eb198dd659c365e49a2cd8ce907b9ebb68aadd 
   
   Use this token to authenticate requests or set DANGEROUSLY_OMIT_AUTH=true to disable 
 auth 
   
   
# MCP Inspector is up and running at: 
   
   http://localhost:6274/?
MCP_PROXY_AUTH_TOKEN=c64b9e14995e9846572cb47c52eb198dd659c365e49a2cd8ce907b9ebb68aadd 
   
   
# Opening browser... 
         

Connecting to your gateway

To connect to your gateway using the MCP Inspector:

1. In the Inspector interface, configure the connection to your gateway:

• Transport Type: Select Streamable HTTP

• URL: Enter your gateway's MCP endpoint URL

• Authentication:

• Header name: Authorization

• Bearer token: Your access token for the gateway

2. Click Connect to establish a connection to your gateway.

Testing your gateway 312



Amazon Bedrock AgentCore Developer Guide

When connected, the inspector will establish proxy connections between the client and server:

New StreamableHttp connection request 
   
Query parameters: {"url":"https://YourGatewayId.gateway.bedrock-agentcore.us-
west-2.amazonaws.com/mcp","transportType":"streamable-http"} 
   
Created StreamableHttp server transport 
   
Created StreamableHttp client transport 
   
Client <-> Proxy  sessionId: b811c09b-6659-48f3-b156-ae4179a94c10 
   
Proxy  <-> Server sessionId: b89e1cce-860c-45ba-a630-c556721f7ad8 
         

Testing your gateway 313



Amazon Bedrock AgentCore Developer Guide

Using the MCP Inspector

Once connected, you can use the MCP Inspector to:

• List tools: View all available tools provided by your gateway

• Search for tools: If semantic search is enabled, search for tools based on natural language 
queries

• View tool schemas: Examine the input and output schemas for each tool

• Call tools: Invoke tools with parameters and view responses

Testing your gateway 314



Amazon Bedrock AgentCore Developer Guide

• Save and load configurations: Save your connection settings and tool invocation parameters for 
future use

The MCP Inspector provides a convenient way to test your gateway and understand the tools it 
provides before integrating it with your agent.

Note

The MCP Inspector is a development tool and should not be used in production 
environments. Always secure your access tokens and gateway credentials.

Troubleshooting

If you encounter issues when using the MCP Inspector with your gateway, check the following:

• Connection issues: Ensure that your gateway URL is correct and accessible from your network

• Authentication issues: Verify that your access token is valid and has not expired

• Tool invocation errors: Check the error messages in the response and ensure that your input 
parameters match the tool's schema

• Proxy errors: If you see errors related to the proxy connection, try restarting the MCP Inspector

For more information about the MCP Inspector and its features, visit the Model Context Protocol 
documentation.

Assess Gateway performance using monitoring and 
observability

Amazon Bedrock AgentCore Gateway provides comprehensive observability capabilities to help 
you monitor and troubleshoot your tool integrations. You can track key metrics and analyze 
performance patterns to ensure optimal operation.

Available observability features include:

Request metrics

Monitor the number of requests processed, success rates, and error patterns across all your 
gateway targets.

Assess Gateway performance 315

https://modelcontextprotocol.io/docs/tools/inspector
https://modelcontextprotocol.io/docs/tools/inspector


Amazon Bedrock AgentCore Developer Guide

Latency tracking

Track response times for tool invocations to identify performance bottlenecks and optimize 
your integrations.

Authentication events

Monitor authentication successes and failures, token refresh events, and credential-related 
issues.

Tool usage analytics

Analyze which tools are being used most frequently and by which agents, helping you 
understand usage patterns.

These metrics are available through the Amazon Bedrock AgentCore console and can be integrated 
with CloudWatch for custom dashboards and alerting.

To enable observability for your gateway, you can use the following Python code:

from bedrock_agentcore_starter_toolkit.operations.gateway import GatewayClient

# Initialize the Gateway client
gateway_client = GatewayClient(region_name="us-west-2")

# Create a gateway with observability enabled
gateway = gateway_client.create_gateway( 
    name="observable-gateway", 
    description="A gateway with observability features enabled", 
    observability_config={         
        "cloudwatch_metrics_enabled": True, 
        "xray_enabled": True 
    }
)

print(f"Gateway created with observability features enabled")
print(f"Gateway URL: {gateway.endpoint_url}") 
     

Assess Gateway performance 316



Amazon Bedrock AgentCore Developer Guide

Required permissions for observability

To monitor and observe your Gateway endpoints and targets, you need specific IAM permissions 
for CloudWatch metrics. The following IAM policy provides the necessary permissions:

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "cloudwatch:GetMetricData", 
        "cloudwatch:GetMetricStatistics", 
        "cloudwatch:ListMetrics", 
        "cloudwatch:PutMetricAlarm", 
        "cloudwatch:DescribeAlarms", 
        "cloudwatch:DeleteAlarms" 
      ], 
      "Resource": "*" 
    }     
  ]
} 
       

This policy includes the permissions to view and manage CloudWatch metrics and alarms.

Topics

• Setting up CloudWatch metrics and alarms

• Logging Gateway API calls with CloudTrail

Setting up CloudWatch metrics and alarms

Gateway publishes the following metrics to CloudWatch:

Topics

• Invocation metrics

• Usage metrics

• Setting up CloudWatch alarms

Required permissions for observability 317



Amazon Bedrock AgentCore Developer Guide

Invocation metrics

These metrics provide information about API invocations, performance, and errors.

For these metrics, the following dimensions are used:

• Operation: Represents the API being invoked (e.g., PostMCP, InvokeEndpoint)

• Resource: Represents the identifier of the resource (ARN)

• Name: Represents the version of the resource

Invocation metrics

Metric Description Statistics Units

Invocations The total number of requests made 
to each Data Plane API. Each API call 
counts as one invocation regardless of 
the response status.

Sum Count

Concurren 
tExecutions

The maximum number of concurrent 
active requests for an API.

Sum Count

Sessions The total number of active sessions at a 
given point in time.

Sum Count

Throttles The number of requests throttled (status 
code 429) by the service.

Sum Count

SystemErrors The number of requests which failed 
with 5xx status code.

Sum Count

UserErrors The number of requests which failed 
with 4xx status code except 429.

Sum Count

Latency The time elapsed between when the 
service receives the request and when it 
begins sending the first response token. 
In other words, initial response time.

Average, 
Minimum, 
Maximum, p50, 
p90, p99

Milliseconds

Setting up CloudWatch metrics and alarms 318



Amazon Bedrock AgentCore Developer Guide

Metric Description Statistics Units

Duration The total time elapsed between receiving 
the request and sending the final 
response token. Represents complete 
end-to-end processing time of the 
request.

Average, 
Minimum, 
Maximum, p50, 
p90, p99

Milliseconds

TargetExe 
cutionTime

The total time taken to execute the 
target over Lambda / OpenAPI / etc. This 
helps determine the contribution of the 
target to the total Latency.

Average, 
Minimum, 
Maximum, p50, 
p90, p99

Milliseconds

Usage metrics

These metrics provide information about how your gateway is being used.

Usage metrics

Metric Description Statistics Units

TargetType The total number of requests served 
by each type of target (MCP, Lambda, 
OpenAPI).

Sum Count

IngressAu 
thType

The total number of requests served by 
each type of ingress auth (OAuth, sigv4).

Sum Count

EgressAut 
hType

The total number of requests served by 
each type of egress auth (OAuth, sigv4).

Sum Count

RequestsP 
erSession

The total number of requests served for 
a given session.

Sum Count

To view these metrics in the CloudWatch console:

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Metrics.

Setting up CloudWatch metrics and alarms 319

https://console.aws.amazon.com/cloudwatch/


Amazon Bedrock AgentCore Developer Guide

3. Choose the BedrockAgentCore namespace.

4. Choose a dimension to view the metrics (e.g., By Endpoint).

5. Select the metrics you want to view and choose Add to graph.

Setting up CloudWatch alarms

You can set up CloudWatch alarms to alert you when certain metrics exceed thresholds. For 
example, you might want to be notified when the error rate exceeds 5% or when the latency 
exceeds 1 second.

Here's an example of how to create an alarm for high error rates using the AWS CLI:

aws cloudwatch put-metric-alarm \ 
  --alarm-name "HighErrorRate" \ 
  --alarm-description "Alarm when error rate exceeds 5%" \ 
  --metric-name "SystemErrors" \ 
  --namespace "BedrockAgentCore" \ 
  --statistic "Sum" \ 
  --dimensions "Name=Resource,Value=my-gateway-arn" \ 
  --period 300 \ 
  --evaluation-periods 1 \ 
  --threshold 5 \ 
  --comparison-operator "GreaterThanThreshold" \ 
  --alarm-actions "arn:aws:sns:us-west-2:123456789012:my-topic" 
       

This alarm will trigger when the number of system errors exceeds 5 in a 5-minute period. When the 
alarm triggers, it will send a notification to the specified SNS topic.

Logging Gateway API calls with CloudTrail

Gateway is integrated with CloudTrail, a service that provides a record of actions taken by 
a user, role, or an AWS service in Gateway. CloudTrail captures all API calls for Gateway as 
events, including calls from the Gateway console and code calls to the Gateway APIs. Using the 
information collected by CloudTrail, you can determine the request that was made to Gateway, 
who made the request, when it was made, and additional details. There are two types of events: 
Management events and Data events:

Logging Gateway API calls with CloudTrail 320



Amazon Bedrock AgentCore Developer Guide

Gateway Event Types

This section provides information about the types of events that Gateway logs to CloudTrail.

Gateway Management Events in CloudTrail

Every management event or log entry contains information about who generated the request. The 
identity information helps you determine the following:

• Whether the request was made with root user or user credentials.

• Whether the request was made on behalf of an IAM Identity Center user.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

CloudTrail is active in your AWS account when you create the account and you automatically have 
access to the CloudTrail Event history. The CloudTrail Event history provides a viewable, searchable, 
downloadable, and immutable record of the past 90 days of recorded management events in an 
AWS Region.

For an ongoing record of events in your AWS account past 90 days, create a trail or a CloudTrail 
Lake event data store.

Gateway logs management events for the following operations:

• CreateGateway - Creates a new gateway

• UpdateGateway - Updates an existing gateway

• DeleteGateway - Deletes a gateway

• GetGateway - Gets information about a gateway

• ListGateways - Lists all gateways

• CreateGatewayTarget - Creates a new target for a gateway

• UpdateGatewayTarget - Updates an existing gateway target

• DeleteGatewayTarget - Deletes a gateway target

• GetGatewayTarget - Gets information about a gateway target

• ListGatewayTargets - Lists all targets for a gateway

Logging Gateway API calls with CloudTrail 321



Amazon Bedrock AgentCore Developer Guide

Gateway Data Events in CloudTrail

Data events provide information about the resource operations performed on or in a resource. 
These are also known as data plane operations. Data events are often high-volume activities. You 
must explicitly enable data events as they are not logged by default. The CloudTrail Event history
doesn't record data events.

Additional charges apply for logging data events. For more information about CloudTrail pricing, 
see AWS CloudTrail Pricing.

You can enable logging data events for the Gateway resource types by using the CloudTrail 
console, AWS CLI, or CloudTrail API operations.

The following table lists the Gateway resource types for which you can enable data events:

Data event type (console) resources.type value Data APIs logged to 
CloudTrail

Bedrock-AgentCore gateway AWS::BedrockAgentC 
ore::Gateway

InvokeMcp

Identity Information in Data Events

Gateway data events differ from standard AWS data events in how identity information is stored. 
Since the Data API follows the MCP protocol and uses JWT token-based authentication rather than 
SigV4, Gateway data events don't have standard AWS identity information. Instead, identity is 
captured by logging specific JWT claims including the "sub" claim.

Note

We recommend that you avoid using any personally identifiable information (PII) in this 
field. For example, you could use a GUID or a pairwise identifier, as suggested in the OIDC 
specification instead of PII data like email.

Logging Gateway API calls with CloudTrail 322

https://aws.amazon.com/cloudtrail/pricing/
http://openid.net/specs/openid-connect-core-1_0.html#SubjectIDTypes
http://openid.net/specs/openid-connect-core-1_0.html#SubjectIDTypes


Amazon Bedrock AgentCore Developer Guide

Error Information in Data Events

Gateway provides error information as part of the responseElements field rather than as top-
level errorCode and errorMessage fields. If you're looking for specific error types such as 
AccessDenied events, parse through the responseElements field in the CloudTrail event.

Data Event Routing

Since Gateway uses JWT tokens for authentication rather than SigV4 credentials, data events are 
only routed to the resource owner account.

Enabling CloudTrail Data Event Logging for Gateway

You can use CloudTrail data events to get information about Gateway requests. To enable 
CloudTrail data events for Gateway, you must create a trail manually in CloudTrail backed by an 
Amazon S3 bucket.

Note

• Data event logging incurs additional charges. You must explicitly enable data events as 
they are not captured by default. Check to ensure that you have data events enabled for 
your account.

• With a Gateway that is generating a high workload, you could quickly generate 
thousands of logs in a short amount of time. Be mindful of how long you choose to 
enable CloudTrail data events for a busy Gateway.

CloudTrail stores Gateway data event logs in an Amazon S3 bucket of your choosing. Consider 
using a bucket in a separate AWS account to better organize events from multiple resources into a 
central place for easier querying and analysis.

When you log data events for a trail in CloudTrail, you must use advanced event selectors to log 
data events for Gateway operations.

AWS CLI

To enable CloudTrail data events for Gateway using the AWS CLI, you can use the following 
command:

Logging Gateway API calls with CloudTrail 323



Amazon Bedrock AgentCore Developer Guide

aws cloudtrail put-event-selectors \ 
  --trail-name brac-gateway-canary-trail-prod-us-east-1 \ 
  --region us-east-1 \ 
  --advanced-event-selectors '[ 
    {             
      "Name": "GatewayDataEvents", 
      "FieldSelectors": [ 
        { 
          "Field": "eventCategory", 
          "Equals": ["Data"] 
        }, 
        { 
          "Field": "resources.type", 
          "Equals": ["AWS::BedrockAgentCore::Gateway"] 
        } 
      ] 
    } 
  ]' 
           

AWS CDK

Here's an example of how to create a CloudTrail trail with Gateway data events using AWS CDK:

import { Construct } from 'constructs';
import { Trail, CfnTrail } from 'aws-cdk-lib/aws-cloudtrail';
import { Bucket } from 'aws-cdk-lib/aws-s3';
import { Effect, PolicyStatement, ServicePrincipal } from 'aws-cdk-lib/aws-iam';
import { RemovalPolicy } from 'aws-cdk-lib';

export interface DataEventTrailProps { 
  /** 
   * Whether to enable multi-region trail 
   */ 
  isMultiRegionTrail?: boolean; 
   
  /** 
   * Whether to include global service events 
   */ 
  includeGlobalServiceEvents?: boolean; 
   
  /** 
   * AWS region 

Logging Gateway API calls with CloudTrail 324



Amazon Bedrock AgentCore Developer Guide

   */ 
  region: string; 
   
  /** 
   * Environment account ID 
   */ 
  account: string;
}

/** 
 * Creates a CloudTrail trail configured to capture data events for Bedrock Agent 
 Core Gateway 
 */
export class BedrockAgentCoreDataEventTrail extends Construct { 
  /** 
   * The CloudTrail trail 
   */ 
  public readonly trail: Trail; 
   
  /** 
   * The S3 bucket for CloudTrail logs 
   */ 
  public readonly logsBucket: Bucket; 
   
  constructor(scope: Construct, id: string, props: DataEventTrailProps) { 
    super(scope, id); 
     
    // Create S3 bucket for CloudTrail logs 
    const bucketName = `brac-gateway-cloudtrail-logs-${props.account}-
${props.region}`; 
    this.logsBucket = new Bucket(this, 'CloudTrailLogsBucket', { 
      bucketName, 
      removalPolicy: RemovalPolicy.RETAIN, 
    }); 
     
    // Create trail name (suffixing region since regional trail) 
    const trailName = `brac-gateway-trail-${props.region}`; 
     
    // Add CloudTrail bucket policy 
    this.logsBucket.addToResourcePolicy( 
      new PolicyStatement({ 
        sid: 'AWSCloudTrailAclCheck', 
        effect: Effect.ALLOW, 
        principals: [new ServicePrincipal('cloudtrail.amazonaws.com')], 

Logging Gateway API calls with CloudTrail 325



Amazon Bedrock AgentCore Developer Guide

        actions: ['s3:GetBucketAcl'], 
        resources: [this.logsBucket.bucketArn], 
        conditions: { 
          StringEquals: { 
            'aws:SourceArn': `arn:aws:cloudtrail:${props.region}:
${props.account}:trail/${trailName}`, 
          }, 
        }, 
      }), 
    ); 
     
    this.logsBucket.addToResourcePolicy( 
      new PolicyStatement({ 
        sid: 'AWSCloudTrailWrite', 
        effect: Effect.ALLOW, 
        principals: [new ServicePrincipal('cloudtrail.amazonaws.com')], 
        actions: ['s3:PutObject'], 
        resources: [this.logsBucket.arnForObjects(`AWSLogs/${props.account}/*`)], 
        conditions: { 
          StringEquals: { 
            's3:x-amz-acl': 'bucket-owner-full-control', 
            'aws:SourceArn': `arn:aws:cloudtrail:${props.region}:
${props.account}:trail/${trailName}`, 
          }, 
        }, 
      }), 
    ); 
     
    // Create CloudTrail trail 
    this.trail = new Trail(this, 'GatewayDataEventTrail', { 
      trailName, 
      bucket: this.logsBucket, 
      isMultiRegionTrail: props.isMultiRegionTrail ?? false, 
      includeGlobalServiceEvents: props.includeGlobalServiceEvents ?? true, 
      enableFileValidation: true, 
    }); 
     
    // Add advanced event selectors for Bedrock Agent Core Gateway data events 
    const cfnTrail = this.trail.node.defaultChild as CfnTrail; 
     
    // Define the advanced event selectors 
    const advancedEventSelectors = [ 
      { 
        // Log Bedrock Agent Core Gateway Data Events only 

Logging Gateway API calls with CloudTrail 326



Amazon Bedrock AgentCore Developer Guide

        fieldSelectors: [ 
          { 
            field: 'eventCategory', 
            equalTo: ['Data'], 
          }, 
          { 
            field: 'resources.type', 
            equalTo: ['AWS::BedrockAgentCore::Gateway'], 
          }, 
        ], 
      }, 
    ]; 
     
    // Clear any existing event selectors and set advanced event selectors 
    cfnTrail.eventSelectors = undefined; 
    cfnTrail.advancedEventSelectors = advancedEventSelectors; 
  }
} 
           

Understanding Gateway CloudTrail Events

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that 
you specify. CloudTrail log files contain one or more log entries. An event represents a single 
request from any source and includes information about the requested action, the date and time of 
the action, request parameters, and so on.

Note

The contents of the requests and responses for data events are REDACTED, and the JWT 
claims have HTML entities sanitized for security purposes.

InvokeMcp Data Event With Authentication Error

The following example shows a CloudTrail log entry that demonstrates the InvokeMcp action 
with an authentication error:

{ 
      "eventVersion": "1.11", 

Logging Gateway API calls with CloudTrail 327



Amazon Bedrock AgentCore Developer Guide

      "userIdentity": { 
        "type": "AWSAccount", 
        "principalId": "", 
        "accountId": "anonymous" 
      }, 
      "eventTime": "2025-07-14T02:14:42Z", 
      "eventSource": "bedrock-agentcore.amazonaws.com", 
      "eventName": "InvokeMcp", 
      "awsRegion": "us-west-2", 
      "sourceIPAddress": "34.XXX.XXX.206", 
      "userAgent": "python-httpx/0.28.1", 
      "requestParameters": { 
        "body": { 
          "id": 0, 
          "method": "initialize", 
          "params": { 
            "clientInfo": { 
              "name": "mcp", 
              "version": "0.1.0" 
            }, 
            "protocolVersion": "2025-06-18", 
            "capabilities": {} 
          }, 
          "jsonrpc": "2.0" 
        } 
      }, 
      "responseElements": { 
        "body": { 
          "jsonrpc": "2.0", 
          "id": "0.0", 
          "error": { 
            "code": -32001, 
            "message": "Invalid Bearer token" 
          } 
        }, 
        "contentType": "application/json", 
        "statusCode": 401 
      }, 
      "requestID": "f5c835f7-9e49-45e6-9066-261b147fd82b", 
      "eventID": "4d2dcabf-29c4-36ef-8c10-32c6d4b8bfdd", 
      "readOnly": false, 
      "resources": [ 
        { 
          "accountId": "XXXXXXXXXX", 

Logging Gateway API calls with CloudTrail 328



Amazon Bedrock AgentCore Developer Guide

          "type": "AWS::BedrockAgentCore::Gateway", 
          "ARN": "arn:aws:bedrock-agentcore:us-west-2:XXXXXXXXXX:gateway/test-
openapi-gateway-b24f8c26-u9p3rjw8qw" 
        } 
      ], 
      "eventType": "AwsApiCall", 
      "managementEvent": false, 
      "recipientAccountId": "XXXXXXXXXX", 
      "sharedEventID": "dc12fcee-cf6f-49cc-a64e-2305101f2d51", 
      "eventCategory": "Data", 
      "tlsDetails": { 
        "tlsVersion": "TLSv1.2", 
        "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256", 
        "clientProvidedHostHeader": "test-openapi-gateway-xxxxxxx-
u9p3rjw8qw.gateway.bedrock-agentcore.us-west-2.amazonaws.com" 
      } 
    } 
           

Successful InvokeMcp Data Event

The following example shows a CloudTrail log entry for a successful InvokeMcp action:

    { 
      "eventVersion": "1.11", 
      "userIdentity": { 
        "type": "AWSAccount", 
        "principalId": "", 
        "accountId": "anonymous" 
      }, 
      "eventTime": "2025-07-14T02:14:42Z", 
      "eventSource": "bedrock-agentcore.amazonaws.com", 
      "eventName": "InvokeMcp", 
      "awsRegion": "us-west-2", 
      "sourceIPAddress": "35.88.103.184", 
      "userAgent": "python-httpx/0.28.1", 
      "requestParameters": { 
        "body": { 
          "id": 1, 
          "method": "tools/call", 
          "params": { 
            "name": "SmithyTarget___ListTables", 
            "arguments": "REDACTED" 

Logging Gateway API calls with CloudTrail 329



Amazon Bedrock AgentCore Developer Guide

          }, 
          "jsonrpc": "2.0" 
        } 
      }, 
      "responseElements": { 
        "body": { 
          "jsonrpc": "2.0", 
          "id": 1, 
          "result": { 
            "isError": false, 
            "content": "REDACTED" 
          } 
        }, 
        "contentType": "application/json", 
        "statusCode": 200 
      }, 
      "additionalEventData": { 
        "targetId": "0JTXXX4YMA", 
        "jwt": { 
          "headers": { 
            "kid": "hGrcJwz5MX6hNeuL6jdXE4hjK7sT6oj+yN7kN+arRv4=", 
            "alg": "RS256" 
          }, 
          "claims": { 
            "sub": "4ammgxxxxxxxxxxxm3b8c", 
            "token_use": "access", 
            "scope": "python-cognito-resource-server-id/write python-cognito-
resource-server-id/read", 
            "auth_time": 1752459276, 
            "iss": "https://cognito-idp.us-west-2.amazonaws.com/us-
west-2_Fxxxxxhtq", 
            "exp": 1752462876, 
            "iat": 1752459276, 
            "version": 2, 
            "jti": "2adcca56-5276-44c2-9e11-d85ebc786e0e" 
          }, 
          "type": "JWS" 
        }, 
        "downstreamRequestIds": [ 
          "H3RDH6T03DG10996U0M2P1V1IFVV4KQNSO5AEMVJF66Q9ASUAAJG" 
        ] 
      }, 
      "requestID": "32fe7459-9736-49d7-bb8e-51e6714e49c6", 
      "eventID": "b76eaa29-04dd-3210-9779-7cfa63794c41", 

Logging Gateway API calls with CloudTrail 330



Amazon Bedrock AgentCore Developer Guide

      "readOnly": false, 
      "resources": [ 
        { 
          "accountId": "XXXXXXXXXX", 
          "type": "AWS::BedrockAgentCore::Gateway", 
          "ARN": "arn:aws:bedrock-agentcore:us-west-2:XXXXXXXXXX:gateway/test-
gateway-65129e91-mtzoadyihf" 
        } 
      ], 
      "eventType": "AwsApiCall", 
      "managementEvent": false, 
      "recipientAccountId": "XXXXXXXXXX", 
      "sharedEventID": "a0fde1e5-2fe1-4da9-af6b-fce65b7e2f4f", 
      "eventCategory": "Data", 
      "tlsDetails": { 
        "tlsVersion": "TLSv1.2", 
        "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256", 
        "clientProvidedHostHeader": "test-gateway-65129e91-xxxxxxxx.gateway.bedrock-
agentcore.us-west-2.amazonaws.com" 
      } 
    } 
           

Management Event

The following example shows a CloudTrail log entry for a management event:

{ 
  "eventVersion": "1.09", 
  "userIdentity": { 
    "type": "AssumedRole", 
    "principalId": "AROXXXXXXXXXXXXNRD7D:xxxxx", 
    "arn": "arn:aws:sts::XXXXXXXXXXXX:assumed-role/HydraInvocationRole-xxxxxxxxx/
xxxx", 
    "accountId": "XXXXXXXXXXXX", 
    "accessKeyId": "xxxxxxxxx", 
    "sessionContext": { 
      "sessionIssuer": { 
        "type": "Role", 
        "principalId": "xxxxxxxx", 
        "arn": "arn:aws:iam::XXXXXXXXXXXX:role/HydraInvocationRole-xxx", 
        "accountId": "XXXXXXXXXXXX", 
        "userName": "HydraInvocationRole-xxxxx" 

Logging Gateway API calls with CloudTrail 331



Amazon Bedrock AgentCore Developer Guide

      }, 
      "attributes": { 
        "creationDate": "2025-07-14T02:42:43Z", 
        "mfaAuthenticated": "false" 
      } 
    }, 
    "invokedBy": "bedrock-agentcore.amazonaws.com" 
  }, 
  "eventTime": "2025-07-14T02:47:38Z", 
  "eventSource": "bedrock-agentcore.amazonaws.com", 
  "eventName": "CreateGateway", 
  "awsRegion": "us-west-2", 
  "sourceIPAddress": "bedrock-agentcore.amazonaws.com", 
  "userAgent": "bedrock-agentcore.amazonaws.com", 
  "requestParameters": { 
    "roleArn": "arn:aws:iam::XXXXXXXXXXXX:role/PythonGenesisTestGatewayRole", 
    "name": "***", 
    "authorizerConfiguration": { 
      "customJWTAuthorizer": { 
        "allowedClients": [ 
          "xxxxxxxxx" 
        ], 
        "discoveryUrl": "https://cognito-idp.us-west-2.amazonaws.com/us-
west-2_xxxxx/.well-known/openid-configuration" 
      } 
    }, 
    "description": "***", 
    "protocolType": "MCP", 
    "authorizerType": "CUSTOM_JWT" 
  }, 
  "responseElements": { 
    "authorizerConfiguration": { 
      "customJWTAuthorizer": { 
        "allowedClients": [ 
          "xxxxxxxxxxxxxxx" 
        ], 
        "discoveryUrl": "https://cognito-idp.us-west-2.amazonaws.com/us-
west-2_xxxxxx/.well-known/openid-configuration" 
      } 
    }, 
    "description": "***", 
    "protocolType": "MCP", 
    "gatewayArn": "arn:aws:bedrock-agentcore:us-west-2:XXXXXXXXXXXX:gateway/test-
openapi-gateway-xxxxxxx-xxxxxx", 

Logging Gateway API calls with CloudTrail 332



Amazon Bedrock AgentCore Developer Guide

    "workloadIdentityDetails": { 
      "workloadIdentityArn": "arn:aws:bedrock-agentcore:us-
west-2:XXXXXXXXXXXX:workload-identity-directory/default/workload-identity/test-
openapi-gateway-xxxxxx-xxxxx" 
    }, 
    "createdAt": "2025-07-14T02:47:38.302834063Z", 
    "gatewayUrl": "https://test-openapi-gateway-xxxxxxx-8fb4mo6pqx.gateway.bedrock-
agentcore.us-west-2.amazonaws.com/mcp", 
    "roleArn": "arn:aws:iam::XXXXXXXXXXXX:role/PythonGenesisTestGatewayRole", 
    "name": "***", 
    "authorizerType": "CUSTOM_JWT", 
    "gatewayId": "test-openapi-gateway-9c8f7109-8fb4mo6pqx", 
    "status": "CREATING", 
    "updatedAt": "2025-07-14T02:47:38.302845797Z" 
  }, 
  "requestID": "0fb99b0b-a4d1-xxxx-8aee-c703adaa6bd9", 
  "eventID": "b12bf859-xxxx-48d7-952a-d5c6ec00fb68", 
  "readOnly": false, 
  "resources": [ 
    { 
      "accountId": "XXXXXXXXXXXX", 
      "type": "AWS::BedrockAgentCore::Gateway", 
      "ARN": "arn:aws:bedrock-agentcore:us-west-2:XXXXXXXXXXXX:gateway/test-openapi-
gateway-xxxxxxx-8fb4mo6pqx" 
    } 
  ], 
  "eventType": "AwsApiCall", 
  "managementEvent": true, 
  "recipientAccountId": "XXXXXXXXXXXX", 
  "eventCategory": "Management"
} 
           

Additional Resources

For more information about using CloudTrail with Gateway, see the following resources:

• AWS CloudTrail User Guide

• Creating a Trail for Your AWS Account

• AWS CloudTrail API Reference

• AWS CloudTrail CLI Reference

Logging Gateway API calls with CloudTrail 333

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/
https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/index.html


Amazon Bedrock AgentCore Developer Guide

Advanced features and topics for Amazon Bedrock AgentCore 
Gateway

This chapter covers some advanced topics and additional information that can help supplement 
your knowledge of gateways and how you can use them effectively in your applications.

Topics

• (Optional) Encryption configuration

• Setting up custom domain names for Gateway endpoints

• Performance optimization

(Optional) Encryption configuration

When creating a gateway, you can optionally provide a KMS key for the service to encrypt data 
at-rest by using the kmsKeyArn request parameter. If this parameter is not provided, a default 
service-managed key will be used to encrypt the data.

Here is an example request using the AWS CLI:

aws bedrock-agentcore-control create-gateway \ 
  --name "MyGateway" \ 
  --protocol-type "MCP" \ 
  --role-arn "arn:aws:iam::123456789012:role/GatewayRole" \ 
  --kms-key-arn "arn:aws:kms:us-
west-2:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab" \ 
  --description "My Gateway with custom encryption" \ 
  --authorizer-type "CUSTOM_JWT" \ 
  --authorizer-configuration '{ 
    "customJWTAuthorizer": { 
      "allowedAudience": ["myAudience"], 
      "discoveryUrl": "https://example.com/.well-known/openid-configuration" 
    } 
  }' 
     

Using a customer-managed KMS key gives you more control over the encryption and allows you to 
implement your own key rotation policies and access controls.

Advanced topics 334



Amazon Bedrock AgentCore Developer Guide

Data encryption with KMS (Optional)

By default, Gateway encrypts your data at rest using a service-managed AWS Key Management 
Service (AWS KMS) key. However, you can optionally provide your own customer managed key 
(CMK) for encrypting data at rest when creating a gateway.

Using a customer managed key gives you more control over the encryption process, including the 
ability to:

• Rotate the key on your own schedule

• Control access to the key through IAM policies

• Disable or delete the key when it's no longer needed

• Audit key usage through CloudWatch logs and AWS CloudTrail

Note

If you choose to use a customer managed key, you are responsible for managing the key 
and its permissions. If the key is disabled or deleted, or if Gateway loses permission to use 
the key, you will lose access to the encrypted data.

Console

To specify a customer managed key when creating a gateway in the console:

1. Open the Amazon Bedrock AgentCore console at Amazon Bedrock AgentCore and choose
Gateways.

2. Choose Create gateway.

3. Fill in the required fields in the Gateway details section.

4. In the Permissions section:

a. For Service role, choose an existing IAM role or create a new one.

Note

The IAM role you use must have permissions to use the selected KMS key.

b. For KMS key, choose one of the following options:

(Optional) Encryption configuration 335

https://console.aws.amazon.com/bedrockagentcore/


Amazon Bedrock AgentCore Developer Guide

• Use AWS owned key - The default option. Amazon Bedrock AgentCore manages the 
key for you.

• Choose from your AWS KMS keys - Select an existing customer managed key from 
the dropdown list.

• Enter AWS KMS key ARN - Enter the ARN of a customer managed key.

5. Complete the remaining steps to create your gateway.

CLI

To specify a customer managed key when creating a gateway using the AWS CLI:

aws bedrockagentcore create-gateway \ 
  --name "MyGateway" \ 
  --protocol-type "MCP" \ 
  --role-arn "arn:aws:iam::123456789012:role/GatewayExecutionRole" \ 
  --kms-key-arn "arn:aws:kms:us-
west-2:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab" \ 
  --description "Gateway with customer managed encryption key" \ 
  --authorizer-type "CUSTOM_JWT" \ 
  --authorizer-configuration '{"customJWTAuthorizer":{"allowedAudience":
["api.example.com"],"discoveryUrl":"https://auth.example.com/.well-known/openid-
configuration"}}' 
             

The key policy for the customer managed key must include permissions for Gateway to use the 
key. Here's an example key policy:

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Sid": "Enable IAM User Permissions", 
      "Effect": "Allow", 
      "Principal": { 
        "AWS": "arn:aws:iam::123456789012:root" 
      }, 
      "Action": "kms:*", 

(Optional) Encryption configuration 336



Amazon Bedrock AgentCore Developer Guide

      "Resource": "*" 
    }, 
    { 
      "Sid": "Allow Bedrock-AgentCore Gateway to use the key", 
      "Effect": "Allow", 
      "Principal": { 
        "AWS": "arn:aws:iam::123456789012:role/caller" 
      }, 
      "Action": [ 
        "kms:Decrypt", 
        "kms:GenerateDataKey" 
      ], 
      "Resource": "*", 
      "Condition": { 
          "StringEquals": { 
              "kms:ViaService": "bedrock-agentcore.us-west-2.amazonaws.com" 
          } 
      } 
    } 
  ]
} 
             

Setting up custom domain names for Gateway endpoints

By default, Gateway endpoints are provided with an AWS-managed domain name in the format
<gateway-id>.gateway.bedrock-agentcore.<region>.amazonaws.com. For production 
environments or to create a more user-friendly experience, you may want to use a custom domain 
name for your gateway endpoint. This section guides you through setting up a custom domain 
name using Amazon CloudFront as a reverse proxy.

Prerequisites

Before you begin, ensure you have:

• A working Gateway endpoint

• DNS delegation (if your Route 53 domain needs to be publicly reachable)

• AWS CDK installed and configured (if following the CDK approach)

• Appropriate IAM permissions to create and manage CloudFront distributions, Route 53 hosted 
zones, and ACM certificates

Custom domain names 337



Amazon Bedrock AgentCore Developer Guide

Solution overview

The solution involves the following components:

• Route 53 Hosted Zone: Manages DNS records for your custom domain

• ACM Certificate: Provides SSL/TLS encryption for your custom domain

• CloudFront Distribution: Acts as a reverse proxy, forwarding requests from your custom domain 
to the Gateway endpoint

• Route 53 A Record: Maps your custom domain to the CloudFront distribution

The following steps will guide you through setting up these components using AWS CDK.

Implementation steps

Step 1: Create a Route 53 hosted zone

First, create a Route 53 hosted zone for your custom domain:

import { RemovalPolicy } from 'aws-cdk-lib';
import { PublicHostedZone } from 'aws-cdk-lib/aws-route53';

const domainName = 'my.example.com';

const hostedZone = new PublicHostedZone(this, 'HostedZone', { 
    zoneName: domainName,
});
this.hostedZone.applyRemovalPolicy(RemovalPolicy.RETAIN); 
       

Note

We apply a removal policy of RETAIN to prevent accidental deletion of the hosted zone 
during stack updates or deletion.

Step 2: Create a DNS-validated certificate

Next, create an SSL/TLS certificate for your custom domain using AWS Certificate Manager (ACM) 
with DNS validation:

Custom domain names 338



Amazon Bedrock AgentCore Developer Guide

import { RemovalPolicy } from 'aws-cdk-lib';
import { Certificate, CertificateValidation } from 'aws-cdk-lib/aws-
certificatemanager';

const certificate = new Certificate(this, 'SSLCertificate', { 
    domainName: domainName, // route53 hosted zone domain name from step 1 
    validation: CertificateValidation.fromDns(hostedZone), // route53 hosted zone from 
 step 1
});
this.certificate.applyRemovalPolicy(RemovalPolicy.RETAIN); 
       

DNS validation automatically creates the necessary validation records in your Route 53 hosted 
zone.

Step 3: Create a CloudFront distribution

Create a CloudFront distribution to act as a reverse proxy for your Gateway endpoint:

import { 
  AllowedMethods, 
  CachePolicy, 
  Distribution, 
  OriginProtocolPolicy, 
  ViewerProtocolPolicy
} from 'aws-cdk-lib/aws-cloudfront';
import { HttpOrigin } from 'aws-cdk-lib/aws-cloudfront-origins';

const bedrockAgentCoreGatewayHostName = '<mymcpserver>.gateway.bedrock-
agentcore.<region>.amazonaws.com'
const bedrockAgentCoreGatewayPath = '/mcp' // can also be left undefined, depending on 
 your requirement

const distribution = new Distribution(this, 'Distribution', { 
    defaultBehavior: { 
        origin: new HttpOrigin(bedrockAgentCoreGatewayHostName, { 
            protocolPolicy: OriginProtocolPolicy.HTTPS_ONLY, 
            originPath: bedrockAgentCoreGatewayPath, 
        }), 
        viewerProtocolPolicy: ViewerProtocolPolicy.HTTPS_ONLY, 

Custom domain names 339



Amazon Bedrock AgentCore Developer Guide

        cachePolicy: CachePolicy.CACHING_DISABLED, // important since caching is 
 enabled by default and hence is not suitable for a reverse proxy  
        allowedMethods: AllowedMethods.ALLOW_ALL, 
    }, 
    domainNames: [domainName], // route53 hosted zone domain name from step 1 
    certificate: certificate, // ssl certificate for the route53 domain from step 2
}); 
       

Important

Set cachePolicy: CachePolicy.CACHING_DISABLED to ensure that CloudFront 
doesn't cache responses from your Gateway endpoint, which is important for dynamic API 
interactions.

Replace <mymcpserver> with your gateway ID and <region> with your AWS Region (e.g., us-
east-1).

Step 4: Create a Route 53 A record

Create a Route 53 A record that points your custom domain to the CloudFront distribution:

import { ARecord, RecordTarget } from 'aws-cdk-lib/aws-route53';
import { CloudFrontTarget } from 'aws-cdk-lib/aws-route53-targets';

const aRecord = new ARecord(this, 'AliasRecord', { 
    zone: hostedZone, // route53 hosted zone from step 1 
    recordName: domainName, // route53 hosted zone domain name from step 1 
    target: RecordTarget.fromAlias(new CloudFrontTarget(distribution)), // cloufront 
 distribution from from step 3
}); 
       

This creates an alias record that maps your custom domain to the CloudFront distribution.

Step 5: Deploy your infrastructure

Deploy your CDK stack to create the resources:

Custom domain names 340



Amazon Bedrock AgentCore Developer Guide

cdk deploy 
       

The deployment process may take some time, especially for the certificate validation and 
CloudFront distribution creation.

Testing your custom domain

After deploying your infrastructure, verify that your custom domain is properly configured:

Verify DNS resolution

Use the dig command to verify that your custom domain resolves to the CloudFront distribution:

dig my.example.com 
       

The output should show that your domain resolves to CloudFront's IP addresses.

Verify SSL certificate

Use curl to verify that the SSL certificate is properly configured:

curl -v https://my.example.com 
       

The output should show a successful SSL handshake with no certificate errors.

Configuring MCP clients

Once your custom domain is set up and verified, you can configure your MCP clients to use it:

Cursor configuration

For Cursor, update your configuration file:

{ 
  "mcpServers": { 

Custom domain names 341



Amazon Bedrock AgentCore Developer Guide

    "my-mcp-server": { 
      "url": "https://my.example.com" 
    } 
  }
} 
       

Other MCP clients

For MCP clients that don't natively support streamable HTTP:

{ 
  "mcpServers": { 
    "my-mcp-server": { 
      "command": "/path/to/uvx", 
        "args": [ 
            "mcp-proxy", 
            "--transport", 
            "streamablehttp", 
            "https://my.example.com" 
        ] 
    } 
  }
} 
       

Additional considerations

Cost implications

Using CloudFront as a reverse proxy incurs additional costs for data transfer and request 
handling. Review the CloudFront pricing model to understand the cost implications for your 
specific use case.

Security considerations

Consider implementing additional security measures such as:

• WAF rules to protect your endpoint from common web exploits

• Geo-restrictions to limit access to specific geographic regions

• Custom headers or request signing to add an extra layer of authentication

Custom domain names 342



Amazon Bedrock AgentCore Developer Guide

Monitoring and logging

Enable CloudFront access logs and configure CloudWatch alarms to monitor the health and 
performance of your custom domain setup.

Certificate renewal

ACM certificates issued through DNS validation are automatically renewed as long as the DNS 
records remain in place. Ensure that you don't delete the validation records.

Troubleshooting

DNS resolution issues

If your custom domain doesn't resolve correctly:

• Verify that the A record is correctly configured in your Route 53 hosted zone

• Check that your domain's name servers are correctly set at your domain registrar

• Allow time for DNS propagation (up to 48 hours in some cases)

SSL certificate issues

If you encounter SSL certificate errors:

• Verify that the certificate is issued and active in the ACM console

• Check that the certificate is correctly associated with your CloudFront distribution

• Ensure that the certificate covers the exact domain name you're using

Gateway connectivity issues

If your custom domain doesn't connect to your gateway:

• Verify that the origin domain and path in your CloudFront distribution are correct

• Check that your gateway endpoint is accessible directly

• Review CloudFront distribution logs for any errors

Conclusion

Setting up a custom domain name for your Gateway endpoint enhances the professional 
appearance of your application and provides flexibility in managing your API endpoints. By 
following the steps outlined in this guide, you can create a secure and reliable custom domain 
configuration using CloudFront as a reverse proxy.

Custom domain names 343



Amazon Bedrock AgentCore Developer Guide

For more information about Gateway features and capabilities, see AgentCore Gateway : Securely 
connect to tools and resources.

Performance optimization

To optimize the performance of your Gateway implementations, consider the following best 
practices:

Minimize tool latency

The overall latency of your gateway is largely determined by the latency of the underlying 
tools. To minimize latency:

• Use Lambda functions in the same region as your gateway

• Optimize your Lambda functions for fast cold starts

• Use provisioned concurrency for Lambda functions that require low latency

• Ensure that REST APIs have low latency and high availability

Use efficient tool schemas

Well-designed tool schemas can improve the performance of your gateway:

• Keep schemas as simple as possible

• Use appropriate data types for parameters

• Include clear descriptions for parameters to help agents use the tools correctly

• Use required fields to ensure that agents provide necessary parameters

Enable semantic search

Semantic search helps agents find the right tools for their tasks, improving the overall 
performance of your agent-gateway interactions. Enable semantic search when creating your 
gateway:

from bedrockagentcoresdk.gateway import GatewayClient

# Initialize the Gateway client
gateway_client = GatewayClient(region_name="us-west-2")

# Create a gateway with semantic search enabled
gateway = gateway_client.create_gateway( 
    name="semantic-search-gateway", 

Performance optimization 344



Amazon Bedrock AgentCore Developer Guide

    description="A gateway with semantic search enabled", 
    protocol_configuration={ 
        "mcp": { 
            "search_type": "SEMANTIC" 
        } 
    }
) 
           

Monitor and optimize

Use the observability features described in the previous section to monitor the performance of 
your gateway and identify opportunities for optimization:

• Set up CloudWatch alarms for key metrics

• Analyze logs to identify patterns and issues

• Regularly review performance metrics and make adjustments as needed

Performance optimization 345



Amazon Bedrock AgentCore Developer Guide

Observe your agent applications on Amazon Bedrock 
AgentCore Observability

With AgentCore, you can trace, debug, and monitor AI agents' performance in production 
environments.

AgentCore Observability helps you trace, debug, and monitor agent performance in production 
environments. It offers detailed visualizations of each step in the agent workflow, enabling you to 
inspect an agent's execution path, audit intermediate outputs, and debug performance bottlenecks 
and failures.

AgentCore Observability gives you real-time visibility into agent operational performance through 
access to dashboards powered by Amazon CloudWatch and telemetry for key metrics such as 
session count, latency, duration, token usage, and error rates. Rich metadata tagging and filtering 
simplify issue investigation and quality maintenance at scale. AgentCore emits telemetry data in 
standardized OpenTelemetry (OTEL)-compatible format, enabling you to easily integrate it with 
your existing monitoring and observability stack.

By default, AgentCore outputs a set of key built-in metrics for agents, gateway resources, and 
memory resources. For memory resources, AgentCore also outputs spans and log data if you enable 
it. You can also instrument your agent code to provide additional span and trace data and custom 
metrics and logs. See the section called “Add observability to your agents” to learn more.

All of the metrics, spans, and logs output by AgentCore are stored in Amazon CloudWatch, and can 
be viewed in the CloudWatch console or downloaded from CloudWatch using the AWS CLI or one 
of the AWS SDKs.

In addition to the raw data stored in CloudWatch Logs, for agent runtime data only, the 
CloudWatch console provides an observability dashboard containing trace visualizations, graphs 
for custom span metrics, error breakdowns, and more. To learn more about viewing your agents' 
observability data, see the section called “View metrics for your agents”

Topics

• Add observability to your Amazon Bedrock AgentCore resources

• Understand observability for agentic resources in AgentCore

• Amazon Bedrock AgentCore provided observability metrics

• View observability data for your Amazon Bedrock AgentCore agents

346



Amazon Bedrock AgentCore Developer Guide

Add observability to your Amazon Bedrock AgentCore 
resources

Amazon Bedrock AgentCore provides a number of built-in metrics to monitor the performance 
of resources for the AgentCore runtime, memory, gateway, and built-in tool resource types. This 
default data is available in Amazon CloudWatch. To view the full range of observability data in the 
CloudWatch console, or to output custom runtime metrics for agents, you need to instrument your 
code using the AWS Distro for Open Telemetry (ADOT) SDK.

To view the observability dashboard in CloudWatch, open the Amazon CloudWatch GenAi 
Observability page.

See the following sections to learn more about configuring your resources to view observability 
metrics in the CloudWatch console generative AI observability page and in CloudWatch Logs.

Tip

Use of the ADOT SDK to output custom metrics is also supported for agents running 
outside the AgentCore runtime. To learn how to enable observability for these agents, see
the section called “Configure Observability for agents hosted outside of the AgentCore 
runtime”.

Enabling AgentCore runtime observability

To view metrics, spans, and traces generated by the AgentCore service, you first need to complete a 
one-time setup to turn on Amazon CloudWatch Transaction Search. To view service-provided spans 
for memory resources, you also need to enable tracing when you create a memory.

The following sections describe how to perform these setup actions and to enable observability in 
your agent code.

Enabling CloudWatch Transaction Search

When you first use the AgentCore console to create a memory resource, AgentCore displays a 
button labeled Enable Observability. The button is also displayed in the CloudWatch generative AI 
observability page. Choose this button to have AgentCore automatically enable Transaction Search.

Add observability to your agents 347

https://console.aws.amazon.com/cloudwatch/home#gen-ai-observability
https://console.aws.amazon.com/cloudwatch/home#gen-ai-observability


Amazon Bedrock AgentCore Developer Guide

If you don't see this button while configuring your agent (for example, if you don't create a 
memory resource in the console), you must enable observability manually by using the CloudWatch 
console to enable Transaction Search as described in the following procedure.

Enable CloudWatch Transaction Search in the CloudWatch console

1. Open the CloudWatch console.

2. In the navigation pane, expand Application Signals (APM) and choose Transaction search.

3. Choose Enable Transaction Search.

4. Select the checkbox to ingest spans as structured logs.

5. (Optional) Change the percentage of spans you want to be indexed as trace summaries by 
entering a value under X-Ray trace indexing. By default, 1% of spans are indexed as trace 
summaries for free, but you can alter the percentage to generate more trace summaries for 
end-to-end transaction analysis.

6. Choose Save.

Enabling observability in agent code for AgentCore-hosted agents

In addition to the service-generated metrics, with AgentCore you can also gather span and trace 
data as well as custom metrics emitted from your agent code.

When you use agent frameworks like Strands, LangChain, or CrewAI with supported third-party 
instrumentation libraries, the framework itself comes with built in support for OTEL and GenAI 
semantic conventions, and it can also be instrumented with an auto-instrumentation package such 
as opentelemetry-instrument-langchain. It is also possible to send Generative AI semantic 
conventions telemetry and spans by defining a custom tracer. AgentCore supports use of the 
following instrumentation libraries in your agent framework:

• OpenInference

• Openllmetry

• OpenLit

• Traceloop

To view this data in the CloudWatch console generative AI observability page and in Amazon 
CloudWatch, you need to add the AWS Distro for Open Telemetry (ADOT) SDK to your agent code.

Enabling observability in agent code for AgentCore-hosted agents 348

https://console.aws.amazon.com/cloudwatch
https://strandsagents.com/latest/
https://www.langchain.com/agents
https://www.crewai.com/
https://opentelemetry.io/docs/specs/semconv/gen-ai/
https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-agent-spans/
https://github.com/Arize-ai/openinference
https://github.com/traceloop/openllmetry
https://github.com/openlit/openlit
https://www.traceloop.com/docs/introduction


Amazon Bedrock AgentCore Developer Guide

Note

With AgentCore, you can also view metrics for agents that aren't running in the AgentCore 
runtime. Additional setup steps are required to configure telemetry outputs for non-
AgentCore agents. See the instructions in the section called “Configure Observability for 
agents hosted outside of the AgentCore runtime” to learn more.

To add ADOT support and enable AgentCore observability, follow the steps in the following 
procedure.

Add observability to your AgentCore agent

1. Ensure that your framework is configured to emit traces. For example, in the Strands 
framework, the tracer object must be configured to instruct Strands to emit Open Telemetry 
(OTEL) logs.

2. Add the ADOT SDK and boto3 to your agent's dependencies. For Python, add the following to 
your requirements.txt file:

aws-opentelemetry-distro>=0.10.0
boto3

Alternatively, you can install the dependencies directly:

pip install aws-opentelemetry-distro>=0.10.0 boto3

3. Execute your agent code using the OpenTelemetry auto-instrumentation command:

opentelemetry-instrument python my_agent.py

This auto-instrumentation approach automatically adds the SDK to the Python path. You may 
already be using this approach as part of your standard OpenTelemetry implementation.

For containerized environment (such as docker) add the following command:

CMD ["opentelemetry-instrument", "python", "main.py"]

Enabling observability in agent code for AgentCore-hosted agents 349



Amazon Bedrock AgentCore Developer Guide

When using ADOT, in order to propagate session id correctly, define the X-Amzn-Bedrock-
AgentCore-Runtime-Session-Id in the request header. ADOT then sets the session_id 
correctly in the downstream headers.

To propoagate a trace ID, invoke the AgentCore runtime with the parameter
traceId=<traceId> set.

You can also invoke your agent with additional headers for additional observability options. 
See the section called “Enhanced AgentCore observability with custom headers” to learn more.

Configure Observability for agents hosted outside of the AgentCore 
runtime

To enable observability for agents hosted outside of the AgentCore runtime, first follow the steps 
in the previous sections to enable CloudWatch Transaction Search and add the ADOT SDK to your 
code.

For agents running outside of the AgentCore runtime, you also need to create an agent log-group 
which you include in your environment variables.

Configure your AWS environment variables, and then set your Open Telemetry environment 
variables as shown in the following.

AWS environment variables

AWS_ACCOUNT_ID=<account id>
AWS_DEFAULT_REGION=<default region>
AWS_REGION=<region>
AWS_ACCESS_KEY_ID=<access key id>
AWS_SECRET_ACCESS_KEY=<secret key>

OTEL environment variables

AGENT_OBSERVABILITY_ENABLED=true
OTEL_PYTHON_DISTRO=aws_distro
OTEL_PYTHON_CONFIGURATOR=aws_configurator # required for ADOT Python only
OTEL_RESOURCE_ATTRIBUTES=service.name=<agent-name>,aws.log.group.names=/aws/bedrock-
agentcore/runtimes/<agent-id>,cloud.resource_id=<AgentEndpointArn:AgentEndpointName> # 
 endpoint is optional

Configure Observability for agents hosted outside of the AgentCore runtime 350



Amazon Bedrock AgentCore Developer Guide

OTEL_EXPORTER_OTLP_LOGS_HEADERS=x-aws-log-group=/aws/bedrock-agentcore/runtimes/<agent-
id>,x-aws-log-stream=runtime-logs,x-aws-metric-namespace=bedrock-agentcore
OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf
OTEL_TRACES_EXPORTER=otlp

Replace <agent-name> with your agent's name and <agent-id> with a unique identifier for your 
agent.

Session ID support

To propagate session ID, you need to invoke using session identifier in the OTEL baggage:

from opentelemetry import baggage  
  
ctx = baggage.set_baggage("session.id", session_id) # Set the session.id in baggage
attach(ctx) # Attach the context to make it active token

Enable observability for AgentCore memory, gateway, and built-in tool 
resources

When you create an AgentCore runtime resource (agent), by default, AgentCore runtime creates 
a CloudWatch log group for the service-provided logs. However, for memory, gateway, and 
built-in tool resources, AgentCore doesn't configure the required CloudWatch resources for you 
automatically. For memory resources, if you create these resources in the console, AgentCore 
prompts you to create log groups and enable tracing as part of the memory or gateway creation 
process. Be sure to complete these steps to enable observability for your resources. If you use 
the console to configure the CloudWatch resources, the default log group name for memory and 
gateway resources has the form /aws/bedrock-agentcore/{resource-id}.

For memory resources created using the AWS CLI or an AWS SDK, you need to manually configure 
the resources in CloudWatch to store logs and traces.

For gateway and built-in tool resources, the AgentCore service doesn't provide logs by default, but 
you can output your own logs from your code. If you supply your own log outputs, you need to 
manually configure log groups in CloudWatch Logs to store this data.

To see what observability data AgentCore provides by default for each resource type, see the 
section called “AgentCore provided metrics”.

Enable observability for AgentCore memory, gateway, and built-in tool resources 351



Amazon Bedrock AgentCore Developer Guide

Configure a delivery source for logs and traces (SDK)

• Run the following Python code to configure CloudWatch for your memory, gateway, and built-
in tool resources.

import boto3

def enable_observability_for_resource(resource_arn, resource_id, account_id, 
 region='us-east-1'): 
    """ 
    Enable observability for a Bedrock AgentCore resource (e.g., Memory Store) 
    """ 
    logs_client = boto3.client('logs', region_name=region) 

    # Step 0: Create new log group for vended log delivery 
    log_group_name = f'/aws/vendedlogs/bedrock-agentcore/{resource_id}' 
    logs_client.create_log_group(logGroupName=log_group_name) 
    log_group_arn = f'arn:aws:logs:{region}:{account_id}:log-group:{log_group_name}' 
     
    # Step 1: Create delivery source for logs 
    logs_source_response = logs_client.put_delivery_source( 
        name=f"{resource_id}-logs-source", 
        logType="APPLICATION_LOGS", 
        resourceArn=resource_arn 
    ) 
     
    # Step 2: Create delivery source for traces   
    traces_source_response = logs_client.put_delivery_source( 
        name=f"{resource_id}-traces-source",  
        logType="TRACES", 
        resourceArn=resource_arn 
    ) 
     
    # Step 3: Create delivery destinations 
    logs_destination_response = logs_client.put_delivery_destination( 
        name=f"{resource_id}-logs-destination", 
        deliveryDestinationType='CWL', 
        deliveryDestinationConfiguration={ 
            'destinationResourceArn': log_group_arn, 
        } 
    ) 
     

Enable observability for AgentCore memory, gateway, and built-in tool resources 352



Amazon Bedrock AgentCore Developer Guide

    # Traces required for memory only 
    traces_destination_response = logs_client.put_delivery_destination( 
        name=f"{resource_id}-traces-destination", 
        deliveryDestinationType='XRAY' 
    ) 
     
    # Step 4: Create deliveries (connect sources to destinations) 
    logs_delivery = logs_client.create_delivery( 
        deliverySourceName=logs_source_response['deliverySource']['name'], 
        deliveryDestinationArn=logs_destination_response['deliveryDestination']['arn'] 
    ) 
     
    # Traces required for memory only 
    traces_delivery = logs_client.create_delivery( 
        deliverySourceName=traces_source_response['deliverySource']['name'],  
        deliveryDestinationArn=traces_destination_response['deliveryDestination']
['arn'] 
    ) 
     
    print(f"Observability enabled for {resource_id}") 
    return { 
        'logs_delivery_id': logs_delivery['id'], 
        'traces_delivery_id': traces_delivery['id'] 
    }

# Usage example
resource_arn = "arn:aws:bedrock-agentcore:us-east-1:123456789012:memory/my-memory-id"
resource_id = "my-memory-id"  
account_id = "123456789012"

delivery_ids = enable_observability_for_resource(resource_arn, resource_id, account_id)

Enhanced AgentCore observability with custom headers

You can invoke your agent with additional HTTP headers to provide enhanced observability 
options. The following example shows invocations including optional additional header requests 
for agents hosted in the AgentCore runtime.

Example Boto3 invocation

def invoke_agent(agent_id, payload, session_id=None): 
    client = boto3.client("bedrock-agentcore", region="us-west-2") 
    response = client.invoke_agent_runtime( 

Enhanced AgentCore observability with custom headers 353



Amazon Bedrock AgentCore Developer Guide

        agentRuntimeArn="arn:aws:bedrock-agentcore:us-west-2:864899855746:runtime/
test_agent_boto2-nIg2xk3VSR", 
        runtimeSessionId="12345678-1234-5678-9abc-123456789012", 
        payload='{"query": "Plan a weekend in Seattle"}', 
    )

You can include the following optional headers when invoking your agent to enhance observability 
and tracing capabilities:

Optional request headers for observability

Header Description Sample 
Value

Technical Explanation

X-Amzn-Tr 
ace-Id

Trace ID 
for request 
tracking (X-
Ray Format)

Root=1-57 
59e988-bd 
862e3fe1b 
e46a99427 
2793;Pare 
nt=53995c 
3f42cd8ad 
8;Sampled=1

Used for distributed tracing across AWS 
services. Contains root ID (request origin), 
parent ID (previous service), and sampling 
decision for tracing. Sampling=1 means 100% 
sampling. Parent is X-Ray Trace format as 
well. OTEL will auto-generate trace IDs if not 
supplied.

traceparent W3C 
standard 
tracing 
header

00-4bf92f 
3577b34da 
6a3ce929d 
0e0e4736- 
00f067aa0 
ba902b7-01

W3C format that includes version, trace ID, 
parent ID, and flags. Required for cross-service 
trace correlation when using modern tracing 
systems.

X-Amzn-Be 
drock-Age 
ntCore-Ru 
ntime-Ses 
sion-Id

AgentCore 
session 
identifier

aea8996f- 
dcf5-4227 
-b5ea-f9e 
9c1843729

Identifies a user session within the AgentCore 
system. Helps with session-based analytics 
and troubleshooting.

mcp-session-
id

MCP session 
identifier

mcp-527e4 
c8f-109a- 
42b1-8307 

Identifies a session in the Managed Cloud 
Platform. Enables tracing of operations across 
the MCP ecosystem.

Enhanced AgentCore observability with custom headers 354



Amazon Bedrock AgentCore Developer Guide

Header Description Sample 
Value

Technical Explanation

-9955496c 
7ae1

tracestate Additional 
tracing state 
information

congo=t61 
rcWkgMzE, 
rojo=00f0 
67aa0ba90 
2b7

Vendor-specific tracing information. Conveys 
additional context for tracing systems beyond 
what's in traceparent.

baggage Context 
propagation 
for distribut 
ed tracing

userId=al 
ice,serve 
rRegion=us-
east-1

Key-value pairs that propagate user-defi 
ned properties across service boundaries for 
contextual logging and analysis.

Observability best practices

Consider the following best practices when implementing observability for agents in AgentCore:

• Use consistent session IDs - When possible, reuse the same session ID for related requests to 
maintain context across interactions.

• Implement distributed tracing - Use the provided headers to enable end-to-end tracing across 
your application components.

• Add custom attributes - Enhance your traces and metrics with custom attributes that provide 
additional context for troubleshooting and analysis.

• Monitor resource usage - Pay attention to memory usage metrics to optimize your agent's 
performance.

• Set up alerts - Configure CloudWatch alarms to help notify you of potential issues before they 
impact your users.

Understand observability for agentic resources in AgentCore

This section defines the concepts of sessions, traces and spans as they relate to monitoring and 
observability of agents.

Observability best practices 355



Amazon Bedrock AgentCore Developer Guide

Topics

• Sessions

• Traces

• Spans

• Relationship Between Sessions, Traces, and Spans

Sessions

A session represents a complete interaction context between a user and an agent. Sessions 
encapsulate the entire conversation or interaction flow, maintaining state and context across 
multiple exchanges. Each session has a unique identifier and captures the full lifecycle of user 
engagement with the agent, from initialization to termination.

Sessions provide the following capabilities for agents:

• Context persistence across multiple interactions within the same conversation

• State management for maintaining user-specific information

• Conversation history tracking for contextual understanding

• Resource allocation and management for the duration of the interaction

• Isolation between different user interactions with the same agent

From an observability perspective, sessions provide a high-level view of user engagement patterns, 
allowing you to monitor agent performance across metrics, traces, and spans and to understand 
how users interact with your agents over time and across different use cases.

By default, AgentCore provides a set of observability metrics at the session level for agents 
that are running in the AgentCore runtime. You can view the runtime metrics in the Amazon 
CloudWatch console on the generative AI observability page. This page offers a variety of graphs 
and visualizations to help you interpret your agents' data. AgentCore also outputs a default set 
of metrics for memory resources, gateway resources, and built-in tools. All of these metrics can 
be viewed in CloudWatch. In addition to the provided metrics, logs and spans are provided by 
default for memory resources, and by instrumenting your agent code, you can capture custom 
metrics, logs, and spans for your agent which can also be viewed on the CloudWatch generative AI 
observability page. See the following sections and the section called “View metrics for your agents”
to learn more.

Sessions 356



Amazon Bedrock AgentCore Developer Guide

Traces

A trace represents a detailed record of a single request-response cycle beginning from with an 
agent invocation and may include additional calls to other agents. Traces capture the complete 
execution path of a request, including all internal processing steps, external service calls, decision 
points, and resource utilization. Each trace is associated with a specific session and provides 
granular visibility into the agent's behavior for a particular interaction.

Traces include the following components for agents:

• Request details including timestamps, input parameters, and context

• Processing steps showing the sequence of operations performed

• Tool invocations with input/output parameters and execution times

• Resource utilization metrics such as processing time

• Error information including exception details and recovery attempts

• Response generation details and final output

From an observability perspective, traces provide deep insights into the internal workings of your 
agents, allowing you to troubleshoot issues, optimize performance, and understand behavior 
patterns. By analyzing trace data, you can identify bottlenecks, detect anomalies, and verify that 
your agent is functioning as expected across different scenarios and inputs.

To gather trace data, you need to instrument your agent code using the AWS Distro for Open 
Telemetry (ADOT). See the section called “Enabling observability in agent code for AgentCore-
hosted agents” and the section called “Configure Observability for agents hosted outside of the 
AgentCore runtime” to learn more.

Spans

A span represents a discrete, measurable unit of work within an agent's execution flow. Spans 
capture fine-grained operations that occur during request processing, providing detailed visibility 
into the internal components and steps that make up a complete trace. Each span has a defined 
start and end time, creating a precise timeline of agent activities and their durations.

Spans include the following essential attributes for agent observability:

• Operation name identifying the specific function or process being executed

• Timestamps marking the exact start and end times of the operation

Traces 357



Amazon Bedrock AgentCore Developer Guide

• Parent-child relationships showing how operations nest within larger processes

• Tags and attributes providing contextual metadata about the operation

• Events marking significant occurrences within the span's lifetime

• Status information indicating success, failure, or other completion states

• Resource utilization metrics specific to the operation

Spans form a hierarchical structure within traces, with parent spans encompassing child spans that 
represent more granular operations. For example, a high-level "process user query" span might 
contain child spans for "parse input," "retrieve context," "generate response," and "format output." 
This hierarchical organization creates a detailed execution tree that reveals the complete flow of 
operations within the agent.

By default, AgentCore outputs a set of span data for memory resources only. This data can be 
viewed in CloudWatch Logs and CloudWatch Application signals. To record span data for your 
agents or gateway resources, you need to instrument your agent. See the section called “Enabling 
observability in agent code for AgentCore-hosted agents” and the section called “Configure 
Observability for agents hosted outside of the AgentCore runtime” to learn more.

Relationship Between Sessions, Traces, and Spans

Sessions, traces, and spans form a three-tiered hierarchical relationship in the observability 
framework for agents. A session contains multiple traces, with each trace representing a discrete 
interaction within the broader context of the session. Each trace, in turn, contains multiple spans 
that capture the fine-grained operations and steps within that interaction. This hierarchical 
structure allows you to analyze agent behavior at different levels of granularity, from high-level 
session patterns to mid-level interaction flows to detailed execution paths for specific operations.

The relationship between these three observability components can be visualized as:

• Sessions (highest level) - Represent complete user conversations or interaction contexts

• Traces (middle level) - Represent individual request-response cycles within a session

• Spans (lowest level) - Represent specific operations or steps within a trace

This multi-tiered relationship enables several important observability capabilities:

• Contextual analysis of individual interactions within their broader conversation flow

• Correlation of related requests across a user's interaction journey

Relationship 358



Amazon Bedrock AgentCore Developer Guide

• Progressive troubleshooting from session-level anomalies to trace-level patterns to span-level 
root causes

• Comprehensive performance profiling across different temporal and functional dimensions

• Holistic understanding of agent behavior patterns and evolution throughout a conversation

• Precise identification of performance bottlenecks at the operation level through span analysis

While traces provide visibility into complete request-response cycles, spans offer deeper insights 
into the internal workings of those cycles. Spans reveal exactly which operations consume the 
most time, where errors originate, and how different components interact within a single trace. 
This granularity is particularly valuable when troubleshooting complex issues or optimizing 
performance in sophisticated agent implementations.

By leveraging session, trace, and span data in your observability strategy, you can gain 
comprehensive insights into your agent's behavior, performance, and effectiveness at multiple 
levels of detail. This multi-layered approach to observability supports continuous improvement, 
robust troubleshooting, and informed optimization of your agent implementations, from high-
level conversation patterns down to individual operation performance.

Amazon Bedrock AgentCore provided observability metrics

For agents running in the AgentCore runtime, AgentCore automatically generates a set of session 
metrics which you can view in the Amazon CloudWatch Logs generative AI observability page. You 
can also use AgentCore observability to monitor the performance of memory, gateway, and built-
in tool resources, even if you're not using the AgentCore runtime to host your agents. For memory, 
gateway, and built-in tool resources, AgentCore outputs a default set of data to CloudWatch.

The following table summarizes the default data provided for each resource type, and where the 
data is available.

Resource type Service-provided 
data

Available in 
CloudWatch gen AI 
observability

Available in 
CloudWatch (Logs or 
metrics)

Agent Metrics Yes Yes

Memory Metrics, Spans*, Logs* No Yes

AgentCore provided metrics 359



Amazon Bedrock AgentCore Developer Guide

Resource type Service-provided 
data

Available in 
CloudWatch gen AI 
observability

Available in 
CloudWatch (Logs or 
metrics)

Gateway Metrics No Yes

Tools Metrics No Yes

* memory spans and logs require enablement. See the section called “Add observability to your 
agents” to learn more.

Note

To view metrics, spans, and traces for AgentCore, you need to perform a one-time setup 
process to enable CloudWatch Transaction Search. To learn more see the section called 
“Enabling AgentCore runtime observability”.

The AgentCore service only provides logs for memory resources. You can supply your own logs for 
other resource types, and AgentCore will save them in CloudWatch Logs. Note that to store logs 
for memory, gateway, and built-in tool resources, you need to configure the necessary log groups 
in CloudWatch. See the section called “Enable observability for AgentCore memory, gateway, and 
built-in tool resources” to learn more.

Refer to the following topics to learn about the default service-provided observability metrics for 
AgentCore runtime, memory, and gateway resources.

Topics

• AgentCore provided runtime metrics

• AgentCore provided memory metrics and spans

• Gateway metrics overview

• AgentCore provided built-in tools metrics

By instrumenting your agent code, you can also gather more detailed trace and span data as well 
as custom metrics. See the section called “Enabling observability in agent code for AgentCore-
hosted agents” to learn more.

AgentCore provided metrics 360



Amazon Bedrock AgentCore Developer Guide

AgentCore provided runtime metrics

The runtime metrics provided by AgentCore give you visibility into your agent execution activity 
levels, processing latency, resource utilization, and error rates. AgentCore also provides aggregated 
metrics for total invocations and sessions.

The following list describes the runtime metrics provided by AgentCore. Runtime metrics are 
batched at one minute intervals. To learn more about viewing runtime metrics, see the section 
called “View metrics for your agents”.

Invocations

Shows the total number of requests made to the Data Plane API. Each API call counts as one 
invocation, regardless of the request payload size or response status.

Invocations (aggregated)

Shows the total number of invocations across all resources

Throttles

Displays the number of requests throttled by the service due to exceeding allowed TPS 
(Transactions Per Second) or quota limits. These requests return ThrottlingException with HTTP 
status code 429. Monitor this metric to determine if you need to review your service quotas or 
optimize request patterns.

System Errors

Shows the number of server-side errors encountered by AgentCore during request processing. 
High levels of server-side errors can indicate potential infrastructure or service issues that 
require investigation. See the section called “Error types” for a list of possible error codes.

User Errors

Represents the number of client-side errors resulting from invalid requests. These require user 
action to resolve. High levels of client-side errors can indicate issues with request formatting or 
permissions that need to be addressed. See the section called “Error types” for a list of possible 
error codes.

Latency

The total time elapsed between receiving the request and sending the final response token. 
Represents complete end-to-end processing time of the request.

Provided runtime metrics 361



Amazon Bedrock AgentCore Developer Guide

Total Errors

The total number of system and user errors. In the Amazon Bedrock AgentCore console, this 
metric displays the number of errors as a percentage of the total number of invocations.

Session Count

Shows the total number of agent sessions. Useful for monitoring overall platform usage, 
capacity planning, and understanding user engagement patterns.

Sessions (aggregated)

Shows the total number of sessions across all resources.

Error types

The following list defines the possible error types for user, system, and throttling errors.

User error codes

• InvocationError.Validation - Client provided invalid input (400)

• InvocationError.ResourceNotFound - Requested resource doesn't exist (404)

• InvocationError.AccessDenied - Client lacks permissions (403)

• InvocationError.Conflict - Resource conflict (409)

System error codes

• InvocationError.Internal - Internal server error (500)

Throttling error codes

• InvocationError.Throttling - Rate limiting (429)

• InvocationError.ServiceQuota - Service-side quota/limit reached (402)

AgentCore provided memory metrics and spans

For the AgentCore memory resource type, AgentCore outputs metrics to Amazon CloudWatch by 
default. AgentCore also outputs a default set of spans and logs, if you enable these. See the section 

Provided memory metrics 362



Amazon Bedrock AgentCore Developer Guide

called “Enable observability for AgentCore memory, gateway, and built-in tool resources” to learn 
more about enabling spans and logs.

Refer to the following sections to learn more about the provided observability data for your agent 
memory stores.

Provided memory metrics

The AgentCore memory resource type provides the following metrics by default.

Latency

The total time elapsed between receiving the request and sending the final response token. 
Represents complete end-to-end processing of the request. For a create event, this represents 
the end to end time taken from last createEvent that met strategy criteria to the memory 
stored completed.

Invocations

The total number of API requests made to the data plane and control plane. This metric also 
tracks the number of memory ingestion events.

System Errors

Number of invocations that result in AWS server-side errors.

User Errors

Number of invocations that result in client-side errors.

Errors

Total number of errors that occur while processing API requests in the data plane and control 
plane. This metric also tracks the total errors that occur during memory ingestion.

Throttles

Number of invocations that the system throttled. Throttled requests don't count as invocations 
or errors.

Creation Count

Counts the number of created memory events and memory records.

Provided memory metrics 363



Amazon Bedrock AgentCore Developer Guide

Provided span data

To enhance observability, AgentCore provides structured spans that trace the relationship between 
events and the memories they generate or access. To enable this span data, you need to instrument 
your agent code. See the section called “Add observability to your agents” to learn more.

This span data is available in full in CloudWatch Logs and CloudWatch Application Signals. To learn 
more about viewing observability data, see the section called “View metrics for your agents”.

The following table defines the operations for which spans are created and the attributes for each 
captured span.

Operation name Span attributes Description

CreateEvent memory.id , session.i 
d , event.id, actor.id,
throttled , error, fault

Creates a new event within a 
memory session

GetEvent memory.id , session.i 
d , event.id, actor.id,
throttled , error, fault

Retrieves an existing memory 
event

ListEvents memory.id , session.i 
d , event.id, actor.id,
throttled , error, fault

Lists events within a session

DeleteEvent memory.id , session.i 
d , event.id, actor.id,
throttled , error, fault

Deletes an event from 
memory

RetrieveMemoryRecords memory.id , namespace ,
throttled , error, fault

Retrieves memory records for 
a given namespace

ListMemoryRecords memory.id , namespace ,
throttled , error, fault

Lists available memory 
records

Provided memory metrics 364



Amazon Bedrock AgentCore Developer Guide

Provided log data

AgentCore provides structured logs that help you monitor and troubleshoot key AgentCore 
Memory resource processes. To enable this log data, you need to instrument your agent code. See
the section called “Add observability to your agents” to learn more.

If enabled, these logs are available in CloudWatch under the default log group /aws/
vendedlogs/bedrock-agentcore/memory/APPLICATION_LOGS/{memory_id} or under a 
custom log group starting with /aws/vendedlogs/.

When the DeleteMemory operation is called, logs are generated for the start and completion of 
the deletion process. Any corresponding deletion error logs will be provided with insights into why 
the call failed.

We also provide logs for various stages in the long-term memory creation process, namely 
extraction and consolidation. When new short term memory events are provided, AgentCore 
extracts key concepts from responses to begin the formation of new long-term memory records. 
Once these have been created, they are integrated with existing memory records to create a unified 
store of distinct memories.

See the following breakdown to learn how each workflow helps you monitor the formation of new 
memories:

Extraction logs

• Start and completion of extraction processing

• Number of memories successfully extracted

• Any errors in deserializing or processing input events

Consolidation logs:

• Start and completion of consolidation processing

• Number of memories requiring consolidation

• Success/failure of memory additions and updates

• Related memory retrieval status

The following table provides a more detailed breakdown of how different memory resource 
workflows use log fields alongside the log body itself to provide request-specific information.

Provided memory metrics 365



Amazon Bedrock AgentCore Developer Guide

Workflow name Log fields Description

Extraction resource_arn, event_tim 
estamp, memory_strategy_id 
, namespace, actor_id, 
session_id, event_id, 
requestId, isError

Analyzes incoming conversat 
ions to generate new 
memories

Consolidation resource_arn, event_tim 
estamp, memory_strategy_id 
, namespace, session_id, 
requestId, isError

Combines extracted 
memories with existing 
memories

Gateway metrics overview

The following list describes the gateway metrics output by AgentCore to Amazon CloudWatch. 
These metrics aren't available on the CloudWatch generative AI observability page. Gateway 
metrics are batched at one minute intervals. To learn more about viewing gateway metrics, see the 
section called “View metrics for your agents”.

Invocations

The total number of requests made to each Data Plane API. Each API call counts as one 
invocation regardless of the response status.

Throttles [429]

The number of requests throttled (status code 429) by the service.

SystemErrors [5xx]

The number of requests which failed with 5xx status code.

UserErrors [4xx]

The number of requests which failed with 4xx status codes other than 429.

Latency

The time elapsed between when the service receives the request and when it begins sending 
the first response token.

Provided gateway metrics 366



Amazon Bedrock AgentCore Developer Guide

Duration

The total time elapsed between receiving the request and sending the final response token. 
Represents complete end-to-end processing time of the request.

TargetExecutionTime

The total time take to execute the target over Lambda, OpenAPI, etc. This metric helps you to 
determine the contribution of the target to the total Latency.

TargetType

The total number of requests served by each type of target (MCP, Lambda, OpenAPI).

AgentCore provided built-in tools metrics

AgentCore provides the following built-in metrics for the code interpreter and browser tools. Built-
in tool metrics are batched at one minute intervals. To learn more about AgentCore tools, see
AgentCore Built-in Tools: Interact with your applications using built-in tools.

Invoke tool:

Invocations

The total number of requests made to the Data Plane API. Each API call counts as one 
invocation, regardless of the request payload size or response status.

Throttles

The number of requests throttled by the service due to exceeding allowed TPS (Transactions Per 
Second) or quota limits. These requests return ThrottlingException with HTTP status code 429.

SystemErrors

The number of server-side errors encountered during request processing.

UserErrors

The number of client-side errors resulting from invalid requests. This require user action in 
order to resolve.

Latency

The time elapsed between when the service receives the request and when it begins sending 
the first response token. Important for measuring initial response time.

Provided tools metrics 367



Amazon Bedrock AgentCore Developer Guide

Create tool session:

Invocations

The total number of requests made to the Data Plane API. Each API call counts as one 
invocation, regardless of the request payload size or response status.

Throttles

The number of requests throttled by the service due to exceeding allowed TPS (Transactions Per 
Second) or quota limits. These requests return ThrottlingException with HTTP status code 429.

SystemErrors

The number of server-side errors encountered during request processing.

UserErrors

The number of client-side errors resulting from invalid requests. This require user action in 
order to resolve.

Latency

The time elapsed between when the service receives the request and when it begins sending 
the first response token. Important for measuring initial response time.

Duration

The duration of tool session (Operation becomes CodeInterpreterSession/BrowserSession).

Browser user takeover:

TakerOverCount

The total number of user taking over

TakerOverReleaseCount

The total number of user releasing control

TakerOverDuration

The duration of user taking over

Provided tools metrics 368



Amazon Bedrock AgentCore Developer Guide

View observability data for your Amazon Bedrock AgentCore 
agents

After implementing observability in your agent, you can view the collected metrics and traces in 
both the CloudWatch console generative AI observability page and in CloudWatch Logs. Refer to 
the following sections to learn how to view metrics for your agents.

View data using generative AI observability in Amazon CloudWatch

The CloudWatch generative AI observability page displays all of the service-provided metrics 
output by the AgentCore agent runtime, as well as span- and trace-derived data if you have 
enabled instrumentation in your agent code. To view the observability dashboard in CloudWatch, 
open the Amazon CloudWatch GenAi Observability page.

With generative AI observability in CloudWatch, you can view tailored dashboards with graphs and 
other visualizations of your data, as well as error breakdowns, trace visualizations and more. To 
learn more about using generative AI observability in CloudWatch, including how to look at your 
agents' individual session and trace data, see Amazon Bedrock AgentCore agents in the Amazon 
CloudWatch user guide.

View other data in CloudWatch

All of the service-provided metrics and spans can also be viewed in CloudWatch, along with any 
metrics that your instrumented agent code outputs.

To view this data, refer to the following sections.

Logs

1. Open the CloudWatch console.

2. In the left hand navigation pane, expand Logs and select Log groups

3. Use the search field to find the log group for your agent, memory, or gateway resource.

AgentCore agent log groups have the following format:

• Standard logs - stdout/stderr output

• Location: /aws/bedrock-agentcore/runtimes/<agent_id>-<endpoint_name>/[runtime-
logs] <UUID>

• Contains: Runtime errors, application logs, debugging statements

View metrics for your agents 369

https://console.aws.amazon.com/cloudwatch/home#gen-ai-observability
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AgentCore-Agents.html
https://console.aws.amazon.com/cloudwatch/home


Amazon Bedrock AgentCore Developer Guide

• Example Usage:

• print("Processing request...") # Appears in standard logs

• logging.info("Request processed successfully") # Appears in standard logs

• OTEL structured logs - Detailed operation information

• Location: /aws/bedrock-agentcore/runtimes/<agent_id>-<endpoint_name>/runtime-logs

• Contains: Execution details, error tracking, performance data

• Automatic collection: No additional code required - generated by ADOT instrumentation

• Benefits: Can include correlation IDs linking logs to relevant traces

Traces and Spans

Traces provide visibility into request execution paths through your agent:

• Location: /aws/spans/default

• Access via: CloudWatch Transaction Search console

• Requirements: CloudWatch Transaction Search must be enabled

Traces automatically capture:

• Agent invocation sequences

• Integration with framework components (LangChain, etc.)

• LLM calls and responses

• Tool invocations and results

• Error paths and exceptions

For distributed tracing across services, you can use standard HTTP headers:

• AWS X-Ray format: X-Amzn-Trace-Id: Root=1-5759e988-
bd862e3fe1be46a994272793;Parent=53995c3f42cd8ad8;Sampled=1

• W3C format: traceparent: 
00-4bf92f3577b34da6a3ce929d0e0e4736-00f067aa0ba902b7-01

To view traces:

View other data in CloudWatch 370



Amazon Bedrock AgentCore Developer Guide

• Navigate to CloudWatch console

• Select Transaction Search from the left navigation

• Filter by service name or other criteria

• Select a trace to view the detailed execution graph

Metrics

If you have enabled observability by instrumenting your agent code as described in the section 
called “Enabling AgentCore runtime observability”, your agent automatically generates OTEL 
metrics, which are sent to CloudWatch using Enhanced Metric Format (EMF):

• Namespace: bedrock-agentcore

• Access via: CloudWatch Metrics console

• Contents: Custom metrics generated by your agent code and frameworks

• Automatic collection: No additional code required - generated by ADOT instrumentation

In addition to agent-emitted metrics, the AgentCore service publishes standard service metrics to 
CloudWatch. Refer to the section called “Provided runtime metrics” for a list of these metrics.

View other data in CloudWatch 371



Amazon Bedrock AgentCore Developer Guide

Create agent and tool identities with AgentCore Identity

Amazon Bedrock AgentCore Identity is an identity and credential management service 
designed specifically for AI agents and automated workloads. It provides secure authentication, 
authorization, and credential management capabilities that enable agents and tools to access 
AWS resources and third-party services on behalf of users while helping to maintain strict security 
controls and audit trails. Agent identities are implemented as workload identities with specialized 
attributes that enable agent-specific capabilities while helping to maintain compatibility with 
industry-standard workload identity patterns. The service integrates natively with Amazon Bedrock 
AgentCore to provide identity and credential management for agent applications, including Host 
agent or tools with Amazon Bedrock AgentCore Runtime and Amazon Bedrock AgentCore Gateway: 
Securely connect tools and other resources to your Gateway.

Topics

• Overview of Amazon Bedrock AgentCore Identity

• Getting started with Amazon Bedrock AgentCore Identity

• Manage workload identities with AgentCore Identity

• Manage credential providers with AgentCore Identity

• Identity provider setup and configuration

• Data protection in Amazon Bedrock AgentCore Identity

Overview of Amazon Bedrock AgentCore Identity

In the rapidly evolving landscape of AI agents, organizations need robust identity management 
solutions that can handle the unique challenges associated with non-human identities. Amazon 
Bedrock AgentCore Identity addresses these challenges by providing a centralized capability for 
managing agent identities, securing credentials, and enabling seamless integration with AWS and 
third-party services through Sigv4, standardized OAuth 2.0 flows, and API keys.

The service implements authentication and authorization controls that verify each request 
independently, requiring explicit verification for all access attempts regardless of source. It 
integrates seamlessly with AWS services while also enabling agents to securely access external 
tools and services. Whether you're building simple automation scripts or complex multi-agent 
systems, AgentCore Identity provides the identity foundation to help your applications operate 
securely and efficiently.

Overview 372



Amazon Bedrock AgentCore Developer Guide

Topics

• Features of AgentCore Identity

• AgentCore Identity terminology

• Example use cases

Features of AgentCore Identity

AgentCore Identity offers a set of features designed to address the unique challenges of workload 
identity management and credential security:

Topics

• Centralized agent identity management

• Secure credential storage

• OAuth 2.0 flow support

• Agent identity and access controls

• AgentCore SDK Integration

• Request verification security

Centralized agent identity management

Create, manage, and organize agent and workload identities through a unified directory service 
that acts as the single source of truth for all agent identities within your organization. Each agent 
receives a unique identity with associated metadata (such as name, ARN, OAuth return URLs, 
created time, last updated time) that can be managed centrally across your organization. The 
agent identity directory functions similarly to Cognito User Pools, providing a unit of governance 
that allows administrators to configure policies across a common set of agent identities. Agent 
identities are managed as specialized workload identities with agent-specific attributes and 
capabilities. For detailed procedures on creating and managing agent identities, see Manage 
workload identities with AgentCore Identity.

The centralized approach eliminates the complexity of managing agent identities across different 
environments and systems. Whether your agents run on AgentCore Runtime, self-hosted 
environments, or hybrid deployments, the service provides consistent identity management 
regardless of where your agents are deployed. Each agent identity receives a unique ARN (such 
as `arn:aws:bedrock-agentcore:region:account:workload-identity/directory/default/workload-

Features 373

https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html#what-is-amazon-cognito-user-pools


Amazon Bedrock AgentCore Developer Guide

identity/agent-name`) that enables precise access control and resource management. This 
centralization also enables hierarchical organization and group-based access controls, making it 
easier to implement enterprise-wide governance policies and maintain compliance across all agent 
operations. The hierarchical structure in the ARN path (with directory/default/workload-identity/
agent-name components) allows administrators to organize agents logically and apply policies at 
different levels of the hierarchy—for example, targeting all agents within a specific directory or 
with similar attributes—without having to manage each agent identity individually.

Secure credential storage

The token vault provides security for storing OAuth 2.0 tokens, OAuth client credentials, and API 
keys with comprehensive encryption at rest and in transit. All credentials are encrypted using 
either customer-managed or service-managed AWS KMS keys and access-controlled to prevent 
unauthorized retrieval. The vault implements strict access controls, ensuring that credentials can 
only be accessed by authorized agents for specific purposes and only when they present verifiable 
proof of workload identity.

Building on OAuth 2.0's scope-based security model, the token vault implements additional 
security measures where every access request is validated independently, even from callers within 
the same trust domain. This extra security mechanism is necessary to protect end-user data from 
malicious or misbehaving agent code. The vault securely stores OAuth 2.0 tokens, reducing security 
risks while improving your overall security posture.

OAuth 2.0 flow support

Native support for both OAuth 2.0 client credentials grant (machine-to-machine) and OAuth 2.0 
authorization code grant (user-delegated access) flows enables comprehensive authentication 
patterns for different use cases. The service handles the complexity of OAuth 2.0 implementations 
while providing simple APIs for agents to access AWS resources and third-party services. For 2LO 
flows, agents can authenticate themselves directly with resource servers without user interaction, 
while 3LO flows enable explicit user consent and authorization for accessing user-specific data 
from external services.

The service also provides built-in OAuth 2.0 credential providers for popular services such as 
Google, GitHub, Slack, Salesforce, and Atlassian (Jira), with authorization server endpoints and 
provider-specific parameters pre-filled to reduce development effort. For custom integrations, 
the service supports configurable OAuth 2.0 credential providers that can be tailored to work with 
any OAuth 2.0-compatible resource server. This comprehensive OAuth 2.0 support eliminates the 
heavy-lifting of agent developers implementing complex authorization flows and reduces the 

Features 374



Amazon Bedrock AgentCore Developer Guide

risk of security vulnerabilities in custom implementations. For comprehensive information about 
configuring these providers, see Configure credential provider.

Agent identity and access controls

AgentCore Identity supports impersonation flow where agents can access resources using 
credentials provided to them. This approach enables agents to perform actions on behalf of users 
while maintaining audit trails and access controls. The impersonation process allows agents to use 
provided credentials to access resources, with authorization decisions based on those credentials.

AgentCore SDK Integration

Seamless integration with the AgentCore SDK through declarative annotations like 
@requires_access_token and @requires_api_key automatically handles credential retrieval and 
injection, reducing boilerplate code and potential security vulnerabilities. These annotations 
eliminate the need for developers to implement complex OAuth flows manually, instead providing 
a simple declarative interface that abstracts away the underlying complexity of token management 
and credential handling.

The SDK integration also provides automatic error handling for common scenarios such as token 
expiration and user consent requirements. When tokens expire or user consent is needed, the SDK 
automatically generates appropriate authorization URLs and handles the OAuth flow orchestration, 
presenting developers with simple success or failure responses. This integration significantly 
reduces development time and the likelihood of security vulnerabilities while ensuring that all 
credential operations follow security best practices.

Request verification security

The service implements validation of all requests, including token signature verification, expiration 
checks, and scope validation.

By treating every request as requiring verification and requiring explicit proof of authorization, the 
service implements security validation for each request. All operations are logged with detailed 
context for security monitoring and compliance reporting, providing visibility into agent activities.

These features combine to provide significant benefits for organizations deploying AI agents:

• Reduced Security Risk: Centralized credential management eliminates the need to embed 
secrets in agent code or configuration files.

Features 375



Amazon Bedrock AgentCore Developer Guide

• Simplified Development: Declarative APIs and SDK integration reduce the complexity of 
implementing secure authentication in agent applications.

• Enhanced Compliance: Comprehensive audit trails and access controls support regulatory 
compliance requirements.

• Operational Efficiency: Automated credential refresh reduces operational overhead while 
improving security posture.

AgentCore Identity terminology

AgentCore Identity uses specific terminology to describe the components, processes, and 
relationships involved in workload identity management and credential handling. Understanding 
these terms will help you better comprehend how the service orchestrates secure authentication 
and authorization across multiple parties in agent workflows.

AgentCore Identity terminology definitions

Term Definition

Identity and Authentication

Agent An AI-powered application or automated workload that 
performs tasks on behalf of users by accessing AWS resources 
and third-party services. Agents act with pre-authorized user 
consent, to accomplish user goals, such as retrieving data 
from APIs, processing information, or integrating with third-
party systems. Unlike traditional applications that run with 
static credentials, agents require dynamic identity managemen 
t to securely access resources across multiple trust domains 
while maintaining proper authentication and authorization 
boundaries.

Agent identity A unique identifier and associated metadata for an AI agent 
or automated workload. Agent identities are implemented 
as workload identities with specific attributes that identify 
them as agents, enabling specialized agent capabilities while 
maintaining compatibility with broader workload identity 
standards. Agent identities enable agents to authenticate 

Terminology 376



Amazon Bedrock AgentCore Developer Guide

Term Definition

as themselves rather than impersonating users, supporting 
delegation-based access patterns.

Agent identity directory A centralized registry that manages agent identities and their 
associated metadata and access policies. Similar to Cognito 
User Pools, it acts as a unit of governance for organizing agent 
identities within an account or region.

Workload identity The underlying technical implementation for agent identitie 
s, representing a logical application or workload that is 
independent of specific hardware or infrastructure. Workload 
identities can operate across different environments while 
maintaining consistent authentication. Agent identities are a 
specialized type of workload identity with additional agent-spe 
cific attributes and capabilities.

Integration and Protocols

Cross-service agents AI agents that perform actions across multiple services, which 
may include accessing system resources (using machine-to-
machine authentication) or user-specific data (using user-dele 
gated access). Examples include agents that integrate with 
multiple backend systems for data processing or agents that 
access a user's calendar, email, and document storage. These 
agents require sophisticated identity management to operate 
securely across different trust domains.

MCP client A client component that allows agents to communicate with 
MCP servers to access external tools and resources. MCP clients 
present authentication tokens to access MCP tools securely.

MCP server An intermediate server that hosts tools and resources for MCP 
clients. MCP servers act as OAuth 2.0 resource servers when 
accessed by agents and as OAuth 2.0 clients when accessing 
downstream resources.

Terminology 377



Amazon Bedrock AgentCore Developer Guide

Term Definition

Model context protocol (MCP) MCP is an open protocol that standardizes how applications 
provide context to language models. AgentCore Identity is 
MCP-compliant, supporting standard protocols for agent-to- 
tool communication and enabling secure integration with MCP 
servers and tools.

OAuth and Token Management

OAuth 2.0 An industry-standard authorization framework (defined in RFC 
6749) that enables applications to obtain limited access to user 
accounts on external services without exposing user credentia 
ls. OAuth 2.0 provides secure delegation by allowing users to 
grant third-party applications access to their resources through 
access tokens rather than sharing passwords. For agent 
applications, OAuth 2.0 enables secure access to user data 
across multiple services while maintaining proper authentic 
ation boundaries and user consent mechanisms.

OAuth 2.0 authorizer An SDK component that authenticates and authorizes 
incoming OAuth 2.0 API requests to agent endpoints. It 
validates tokens before allowing access to agent services.

OAuth 2.0 client credentials 
grant (2LO)

OAuth client credentials grant used for machine-to-machine 
 authentication where no user interaction is required. Agents 
use 2LO to authenticate themselves directly with resource 
servers.

OAuth 2.0 authorization code 
grant (3LO)

OAuth authorization code grant that involves user consent 
and interaction. Agents use 3LO when they need explicit user 
permission to access user-specific data from external services 
like Google Calendar or Salesforce.

Agent access token An AWS-signed token that contains both workload identity and 
user identity information, enabling downstream services to 
make authorization decisions based on both identities. These 
tokens are created through the token exchange process.

Terminology 378

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749


Amazon Bedrock AgentCore Developer Guide

Term Definition

Security and Trust

Identity propagation The process of maintaining and passing identity context 
through a chain of service calls. This enables downstream 
services to make authorization decisions based on both the 
calling service identity and the original user identity.

Trust domain A security boundary within which entities share common 
authentication and authorization mechanisms. Agent 
workflows often span multiple trust domains, requiring careful 
identity propagation and token exchange.

Request verification security A security model where every request is authenticated and 
authorized regardless of source or previous trust relationships. 
AgentCore Identity implements request verification to ensure 
validation of all access requests.

Service Components

Resource credential provider A component that manages connections to external identity 
providers and resource servers, handling OAuth 2.0 authoriza 
tion flows and credential retrieval. It orchestrates the complex 
process of obtaining and refreshing credentials from third-
party services. For detailed configuration information, see
Configure credential provider.

Token vault A secure storage system for OAuth 2.0 tokens, API keys, and 
other credentials that operates with strict access controls. The 
token vault ensures credentials can only be accessed by the 
specific agent and user combination that originally obtained 
them.

Example use cases

Amazon Bedrock AgentCore Identity supports a wide range of use cases across different industries 
and application types. This section provides detailed examples of how the service can be applied in 

Example use cases 379



Amazon Bedrock AgentCore Developer Guide

specific scenarios, demonstrating both user-delegated access (OAuth 2.0 authorization code grant) 
and machine-to-machine authentication (OAuth 2.0 client credentials grant) patterns.

Topics

• Personal assistant agents

• Enterprise automation agents

• Customer service agents

• Data processing and analytics agents

• Development and DevOps agents

Personal assistant agents

AI agents that help users manage their personal productivity by accessing services like Google 
Drive, Microsoft Office 365, or Slack represent one of the most common and valuable applications 
of AgentCore Identity. These agents use OAuth 2.0 authorization code grant to obtain explicit user 
consent (3Lo) and access user data securely across multiple systems. For example, a research agent 
might search the web using AgentCore Browser, generate a comprehensive report, and save it to 
the user's Google Drive, all while maintaining proper authentication and authorization throughout 
the entire workflow.

The complexity of managing credentials across multiple third-party services makes AgentCore 
Identity particularly valuable for personal assistant scenarios. Consider a meeting agent that 
needs to access a user's Google Calendar to check availability, join a Zoom meeting to take notes, 
schedule follow-up meetings, and draft emails for approval. Each of these services requires 
different authentication mechanisms and user consent, but AgentCore Identity orchestrates the 
entire process seamlessly while the agent maintains its own identity and the user retains control 
over what data is accessed.

Personal assistant agents also benefit from AgentCore Identity's token storage and secure 
credential management, which eliminate the need for users to repeatedly authorize access to 
their accounts. Once a user has granted permission for an agent to access their Google Drive, for 
instance, the agent can continue to access that service for subsequent tasks without requiring re-
authorization, as long as the stored tokens remain valid. This creates a smooth user experience 
while maintaining security through proper token management.

Example use cases 380



Amazon Bedrock AgentCore Developer Guide

Enterprise automation agents

Agents that automate business processes by integrating with enterprise systems like Salesforce, 
SharePoint, or internal APIs represent a critical use case for organizations seeking to improve 
operational efficiency. These agents typically use OAuth 2.0 client credentials grant for machine-
to-machine authentication (2Lo) when accessing systems that don't require user interaction, and 
may require access to multiple systems with different authentication requirements. For example, 
an HR automation agent might need to access employee data from an HRIS system, update 
records in Salesforce, and generate reports in SharePoint, each requiring different credentials and 
authorization scopes.

Enterprise automation scenarios often involve complex workflows that span multiple trust domains 
and require careful identity propagation to maintain security and compliance. AgentCore Identity 
addresses this challenge by providing a centralized approach to credential management that works 
across different enterprise systems. The service supports both AWS-hosted resources with IAM-
based authentication and external enterprise systems with OAuth 2.0 or API key authentication, 
enabling agents to operate seamlessly across hybrid environments while helping to maintain 
consistent security standards.

The audit and compliance capabilities of AgentCore Identity are particularly important for 
enterprise automation use cases, where organizations need to maintain detailed records of 
automated actions for regulatory compliance and security monitoring. Every action performed by 
an enterprise automation agent is logged with both the agent identity and any associated user 
context, providing complete traceability of automated business processes. This level of visibility 
helps with compliance requirements and enables organizations to quickly identify and respond to 
any unauthorized or unexpected agent behavior.

Customer service agents

AI agents that assist customer service representatives by accessing customer data from CRM 
systems, knowledge bases, and support ticketing systems must authenticate securely while 
providing real-time assistance during customer interactions. These agents need to access sensitive 
customer information from multiple sources while maintaining strict security controls and audit 
trails. For example, a customer service agent might need to access a customer's order history from 
an e-commerce ecosystem, check their support ticket status in a ticketing system, and retrieve 
relevant troubleshooting information from a knowledge base, all while the customer is on the 
phone.

Example use cases 381



Amazon Bedrock AgentCore Developer Guide

The real-time nature of customer service interactions makes credential management particularly 
challenging, as agents cannot afford delays caused by authentication failures or expired tokens. 
AgentCore Identity addresses this challenge through its comprehensive error handling, ensuring 
that customer service agents can access the information they need without interruption. The 
service also supports fine-grained access controls that can be configured to have agents only access 
customer data that is relevant to the specific interaction, supporting privacy requirements and 
regulatory compliance.

Data processing and analytics agents

Agents that collect, process, and analyze data from multiple sources, including cloud storage 
services, databases, and APIs, often require long-running access to data sources. These agents 
typically operate on scheduled or triggered workflows that may run for hours or days, accessing 
large datasets from various sources to perform complex analytics operations. For example, 
a financial analytics agent might collect transaction data from multiple payment processors, 
combine it with customer data from CRM systems, and generate comprehensive reports that are 
stored in data warehouses and shared with business stakeholders.

The long-running nature of data processing workflows makes credential management particularly 
complex, as tokens may expire during processing and agents need to handle authentication failures 
gracefully without losing progress on lengthy operations. AgentCore Identity addresses these 
challenges through its robust error handling, helping data processing agents maintain access to 
required resources throughout their entire execution lifecycle. The service also supports batch 
processing scenarios where agents need to access multiple data sources simultaneously, providing 
efficient credential management that scales with the complexity of the data processing workflow.

Data processing and analytics use cases also benefit from AgentCore Identity's support for 
different authentication mechanisms across various data sources. A single analytics workflow might 
need to access data from AWS services using IAM credentials, third-party APIs using OAuth 2.0 
tokens, and on-premise databases using API keys or other authentication methods. AgentCore 
Identity provides a unified interface for managing all these different credential types, enabling 
data processing agents to focus on their core analytics functions rather than the complexity of 
credential management across diverse systems.

Development and DevOps agents

Agents that automate software development workflows by integrating with version control 
systems, CI/CD pipelines, and deployment systems require secure access to development tools 
and infrastructure while maintaining comprehensive audit trails for compliance purposes. These 

Example use cases 382



Amazon Bedrock AgentCore Developer Guide

agents might automatically create pull requests, trigger builds, deploy applications, and update 
documentation across multiple development tools and systems. For example, a DevOps agent 
might monitor application performance, detect issues, automatically create bug reports in JIRA, 
generate fixes through code analysis, and deploy patches through CI/CD pipelines, all while 
maintaining proper authentication and authorization throughout the entire workflow.

Development and DevOps scenarios present unique security challenges because agents often 
need elevated privileges to perform deployment and infrastructure management tasks, while 
also needing to maintain strict controls to prevent unauthorized changes to production systems. 
AgentCore Identity addresses these challenges through its fine-grained access control capabilities 
and comprehensive audit logging, ensuring that DevOps agents can perform necessary automation 
tasks while supporting security and compliance. The service supports role-based access controls 
that can be configured to limit agent access to specific environments, repositories, or deployment 
targets based on the agent's identity and the context of the operation.

The audit and compliance capabilities of AgentCore Identity are particularly valuable for 
development and DevOps use cases, where organizations need to maintain detailed records of 
all changes to code, infrastructure, and deployment configurations. Every action performed by a 
DevOps agent is logged with complete context, including the agent identity, the specific resources 
accessed, and the changes made, providing the level of traceability that supports regulatory 
compliance and security auditing. This comprehensive logging also enables organizations to quickly 
identify the root cause of issues and roll back changes when necessary, supporting the reliability 
and stability of development and deployment processes.

Getting started with Amazon Bedrock AgentCore Identity

This guide walks you through the essential steps to start using Amazon Bedrock AgentCore Identity 
for your AI agents. You'll learn how to set up your development environment, install the necessary 
SDKs, create your first agent identity, and allow your agent to access external resources securely.

By the end of this section, you'll have a working agent that can retrieve access tokens from Google 
with AgentCore Identity OAuth2 Credential Provider, and read files from Google Drive using 
access tokens. For detailed information about OAuth2 flows, see Manage credential providers with 
AgentCore Identity.

Topics

• Prerequisites

• Step 1: Import Identity and Auth modules

Getting started 383



Amazon Bedrock AgentCore Developer Guide

• Step 2: Set up an OAuth 2.0 Credential Provider

• Step 3: Obtain an OAuth 2.0 access token

• Step 4: Use OAuth2 Access Token to Invoke External Resource

• What's Next?

Prerequisites

Before you start, you need:

• An AWS account with appropriate permissions (for example, BedrockAgentCoreFullAccess)

• Basic understanding of Python programming

Install the SDK

To get started, install the bedrock-agentcore package:

pip install bedrock-agentcore

Obtain Google Client ID and Client Secret

To allow your agent to access Google Drive, you need to obtain a Google client ID and client secret 
for your agent. Go to the Google Developer Console and follow these steps:

1. Enable Google Drive API

2. Create OAuth consent screen

3. Create a new web application for the agent, for example, "My Agent 1"

4. Add the following OAuth 2.0 scope to your agent application: https://
www.googleapis.com/auth/drive.metadata.readonly

5. Create OAuth 2.0 Credentials for the new web application, and note the generated Google client 
ID and client secret

Note

You must add the following URI to your application's redirect URI list: https://bedrock-
agentcore.us-east-1.amazonaws.com/identities/oauth2/callback

Prerequisites 384

https://console.developers.google.com/project


Amazon Bedrock AgentCore Developer Guide

Step 1: Import Identity and Auth modules

Add this import statement to your Python file:

from bedrock_agentcore.services.identity import IdentityClient
from bedrock_agentcore.identity.auth import requires_access_token, requires_api_key

Step 2: Set up an OAuth 2.0 Credential Provider

Create a new OAuth 2.0 Credential Provider with the Google client ID and client secret obtained 
earlier using the following AWS CLI command:

aws bedrock-agentcore-control create-oauth2-credential-provider \ 
  --region us-east-1 \ 
  --name "google-provider" \ 
  --credential-provider-vendor "GoogleOauth2" \ 
  --oauth2-provider-config-input '{ 
      "googleOauth2ProviderConfig": { 
        "clientId": "<your-google-client-id>", 
        "clientSecret": "<your-google-client-secret>" 
      } 
    }'

Behind the scenes, the SDK makes a call to the CreateOauth2CredentialProvider API.

Step 3: Obtain an OAuth 2.0 access token

Once you have the Google Credential Provider created in the previous step, add the
@requires_access_token decorator to your agent code that requires a Google access token. 
Copy the authorization URL from your console output, then paste it in your browser and complete 
the consent flow with Google Drive.

import asyncio

# Injects Google Access Token
@requires_access_token( 
    # Uses the same credential provider name created above 
    provider_name = "google-provider",  
    # Requires Google OAuth2 scope to access Google Drive 
    scopes = ["https://www.googleapis.com/auth/drive.metadata.readonly"], 

Step 1: Import Identity and Auth modules 385



Amazon Bedrock AgentCore Developer Guide

    # Sets to OAuth 2.0 Authorization Code flow 
    auth_flow="USER_FEDERATION", 
    # Prints authorization URL to console 
    on_auth_url=lambda x: print("\nPlease copy and paste this URL in your browser:\n" + 
 x), 
    # If false, caches obtained access token 
    force_authentication=False,
)
async def write_to_google_drive(*, access_token: str): 
    # Prints the access token obtained from Google 
    print(access_token)

asyncio.run(write_to_google_drive(access_token=""))

Behind the scenes, the @requires_access_token decorator runs through the following 
sequence:

Step 3: Obtain an OAuth 2.0 access token 386



Amazon Bedrock AgentCore Developer Guide

Step 3: Obtain an OAuth 2.0 access token 387



Amazon Bedrock AgentCore Developer Guide

1. The SDK makes API calls to CreateWorkloadIdentity, GetWorkloadAccessToken, and
GetResourceOauth2Token.

2. When running the agent code locally, the SDK automatically generates an agent identity ID and 
a random user ID for local testing, and stores them in a local file called .agentcore.yaml.

3. When running the agent code with AgentCore Runtime, the SDK does not generate an agent 
identity ID or random user ID. Instead, it uses the agent identity ID assigned, and the user ID or 
JWT token passed in by the agent caller.

4. Agent access token is an encrypted (opaque) token that contains the agent identity ID and user 
ID.

5. AgentCore Identity service stores the Google access token in the Token Vault under the agent 
identity ID and user ID. This creates a binding among the agent identity, user identity, and the 
Google access token.

Step 4: Use OAuth2 Access Token to Invoke External Resource

Once the agent obtains a Google access token with the steps above, it can use the access token to 
access Google Drive. Here is a full example that lists the names and IDs of the first 10 files that the 
user has access to.

First, install the Google client library for Python:

pip install --upgrade google-api-python-client google-auth-httplib2 google-auth-
oauthlib

Then, copy the following code:

import asyncio
from bedrock_agentcore.identity.auth import requires_access_token, requires_api_key
from google.auth.transport.requests import Request
from google.oauth2.credentials import Credentials
from google_auth_oauthlib.flow import InstalledAppFlow
from googleapiclient.discovery import build
from googleapiclient.errors import HttpError

SCOPES = ["https://www.googleapis.com/auth/drive.metadata.readonly"]

def main(access_token): 
    """Shows basic usage of the Drive v3 API. 
     

Step 4: Use OAuth2 Access Token to Invoke External Resource 388



Amazon Bedrock AgentCore Developer Guide

    Prints the names and ids of the first 10 files the user has access to. 
    """ 
    creds = Credentials(token=access_token, scopes=SCOPES) 
     
    try: 
        service = build("drive", "v3", credentials=creds) 
         
        # Call the Drive v3 API 
        results = ( 
            service.files() 
            .list(pageSize=10, fields="nextPageToken, files(id, name)") 
            .execute() 
        ) 
        items = results.get("files", []) 
         
        if not items: 
            print("No files found.") 
            return 
        print("Files:") 
        for item in items: 
            print(f"{item['name']} ({item['id']})") 
    except HttpError as error: 
        # TODO(developer) - Handle errors from drive API. 
        print(f"An error occurred: {error}")

if __name__ == "__main__": 
     
    # This annotation helps agent developer to obtain access tokens from external 
 applications 
    @requires_access_token( 
        provider_name="google-provider", 
        scopes=["https://www.googleapis.com/auth/drive.metadata.readonly"], # Google 
 OAuth2 scopes 
        auth_flow="USER_FEDERATION", # 3LO flow 
        on_auth_url=lambda x: print("Copy and paste this authorization url to your 
 browser", x), # prints authorization URL to console 
        force_authentication=True, 
    ) 
    async def read_from_google_drive(*, access_token: str): 
        print(access_token) #You can see the access_token  
        # Make API calls... 
        main(access_token) 
     

Step 4: Use OAuth2 Access Token to Invoke External Resource 389



Amazon Bedrock AgentCore Developer Guide

    asyncio.run(read_from_google_drive(access_token=""))

What's Next?

The example in this section focuses on practical implementation patterns that you can adapt for 
your specific use cases. You can embed the code as part of an agent, or a Model Context Protocol 
(MCP) tool. If you want to host your Agent code or MCP Tool with AgentCore Runtime, follow Host 
agent or tools with Amazon Bedrock AgentCore Runtime to copy the code above to AgentCore 
Runtime.

Manage workload identities with AgentCore Identity

Agent identities in AgentCore Identity are implemented as workload identities with specialized 
attributes that enable agent-specific capabilities. This approach follows established industry 
patterns where workloads have granular properties that indicate their specific type and purpose. 
Unlike traditional service accounts that are tied to specific infrastructure, agent identities are 
designed to be environment-agnostic and can support multiple authentication credentials 
simultaneously. The AgentCore Identity directory acts as a centralized registry and management 
system for all agent identities.

Topics

• Understanding workload identities

• Create and configure workload identities

Understanding workload identities

Workload identities represent the digital identity of your agents within the AWS ecosystem. 
They serve as a stable anchor point that persists across different deployment environments and 
authentication schemes, allowing agents to maintain consistent identity whether they're using IAM 
roles for AWS resource access, OAuth2 tokens for external service integration, or API keys for third-
party tool access. The identity system abstracts the complexity of managing multiple credential 
types while providing a unified interface for authentication and authorization operations.

Workload identities integrate seamlessly with the broader AgentCore Identity ecosystem, including 
the token vault for secure credential storage (see Secure credential storage), Resource credential 
providers for external service access (see Configure credential provider), and the AgentCore Identity 
directory for centralized management

What's Next? 390



Amazon Bedrock AgentCore Developer Guide

Create and configure workload identities

You can create agent identities using several methods, including the AWS CLI and the AgentCore 
SDK, depending on your workflow and integration requirements. AgentCore Identity provides 
multiple interfaces for identity creation including command-line tools for automation and scripting 
and programmatic APIs for integration with existing systems. Each creation method supports the 
full range of identity configuration options while providing appropriate interfaces for different use 
cases and user preferences.

Topics

• Manage identities with AWS CLI

• Create identities with the AgentCore SDK

Manage identities with AWS CLI

The AWS CLI provides a straightforward way to create and delete agent identities.

Create an identity:

aws bedrock-agentcore-control create-workload-identity \ 
    --name "my-agent" 
             

Delete an identity:

aws bedrock-agentcore-control delete-workload-identity \ 
    --name "my-agent" \ 
             

Create identities with the AgentCore SDK

The AgentCore SDK provides support for creating workload identities in Python.

Python example:

Create identities 391



Amazon Bedrock AgentCore Developer Guide

from bedrock_agentcore.services.identity import IdentityClient

# Initialize the client
identity_client = IdentityClient("us-east-1")

# Create a new workload identity for agent
response = identity_client.create_workload_identity( 
    name='my-python-agent'
)

agentArn = response['workloadIdentityArn']

print(f"Created agent identity with ARN: {agentArn}") 
             

Manage credential providers with AgentCore Identity

Credential management is a core feature of Amazon Bedrock AgentCore Identity that addresses 
the complex challenge of securely storing, retrieving, and managing credentials across multiple 
trust domains and authentication systems. The service implements defense-in-depth security 
measures to protect sensitive authentication tokens, API keys, and certificates while providing 
agents with efficient access to the credentials they need for authorized operations. AgentCore 
Identity's credential management architecture separates credential storage from credential access, 
helping to ensure that agents never have direct access to long-term secrets or refresh tokens.

The credential management system supports multiple credential types including OAuth2 access 
tokens, API keys, client certificates, SAML assertions, and custom authentication tokens. Each 
credential type has specific handling requirements for storage encryption and access patterns. The 
system automatically manages credential lifecycles, including proactive refresh of expiring tokens. 
All credential operations are logged and audited to provide complete visibility into credential usage 
and access patterns.

Integration with the Resource Credential Provider enables AgentCore Identity to support cross-
capability credential vending, where agents can access resources across different cloud providers, 
SaaS applications, and enterprise systems using a unified credential management interface. 
The system maintains proper security boundaries while enabling necessary functionality, with 
comprehensive monitoring and alerting capabilities that detect unusual credential usage patterns 
or potential security threats.

Topics

Manage credential providers 392



Amazon Bedrock AgentCore Developer Guide

• Supported authentication patterns

• Configure credential provider

• Obtain credentials

Supported authentication patterns

AgentCore Identity supports two primary authentication patterns that address different agent use 
cases. Understanding these patterns will help you choose the right approach for your specific agent 
implementation.

For detailed examples of how these patterns apply to specific industries and agent types, see
Example use cases.

Topics

• User-delegated access (OAuth 2.0 authorization code grant)

• Machine-to-machine authentication (OAuth 2.0 client credentials grant)

• Choosing the right authentication pattern

User-delegated access (OAuth 2.0 authorization code grant)

The OAuth 2.0 authorization code grant flow enables agents to access user-specific data with 
explicit user consent. This pattern is essential when agents need to access personal data or perform 
actions on behalf of specific users. The flow includes a user consent step where the resource owner 
(user) explicitly authorizes the agent to access their data within specific scopes.

Key characteristics:

• Requires explicit user consent through an authorization prompt

• Provides access to user-specific data and resources

• Maintains clear separation between agent identity and user authorization

• Supports fine-grained scopes that limit what data the agent can access

Example scenario: A productivity agent needs to access a user's Google Calendar to schedule 
meetings, their Gmail to send emails, and their Google Drive to store documents. The agent uses 
the OAuth 2.0 authorization code grant to obtain user consent for each service, with specific 

Supported authentication patterns 393



Amazon Bedrock AgentCore Developer Guide

scopes that limit access to only the necessary data. The user explicitly authorizes the agent through 
Google's consent screen, and AgentCore Identity securely stores the resulting credentials for future 
use.

This pattern is ideal for personal assistant agents, customer service agents, and any scenario where 
agents need access to user-specific data across multiple services. For detailed industry-specific 
examples, see Personal assistant agents and Customer service agents.

Machine-to-machine authentication (OAuth 2.0 client credentials grant)

The OAuth 2.0 client credentials grant flow enables direct authentication between systems without 
user interaction. This pattern is appropriate when agents need to access resources that aren't user-
specific or when agents act themselves with pre-authorized user consent.

Key characteristics:

• No user interaction or consent required

• Agent authenticates directly with resource servers using its own credentials

• Suitable for background processes, scheduled tasks, and system-level operations

• Permissions are defined at the agent level rather than per-user

Example scenario: An enterprise data processing agent needs to collect data from multiple 
internal systems, process it, and store the results in a data warehouse. The agent uses the OAuth 
2.0 client credentials grant to authenticate directly with each system using its own identity and 
pre-configured permissions. No user interaction is required, and the agent can operate when 
agents act themselves with pre-authorized user consent on scheduled intervals.

This pattern is ideal for enterprise automation agents, data processing workflows, and DevOps 
automation. For detailed industry-specific examples, see Enterprise automation agents, Data 
processing and analytics agents, and Development and DevOps agents.

Choosing the right authentication pattern

When designing your agent authentication strategy, consider these factors to determine which 
pattern is most appropriate:

Supported authentication patterns 394



Amazon Bedrock AgentCore Developer Guide

Authentication pattern selection guide

Factor User-delegated access (OAuth 2.0 
authorization code grant)

Machine-to-machine authentic 
ation (OAuth 2.0 client credentials 
grant)

Data ownership User-specific data (emails, 
documents, personal calendars)

System or organization-owned data 
(analytics, logs, shared resources)

User interaction User is present and can provide 
consent

No user interaction required or 
available

Operation 
timing

Interactive, real-time operations Background, scheduled, or batch 
operations

Permission 
scope

Permissions vary by user and their 
consent choices

Consistent permissions defined at 
the agent level

Many agent implementations will require both patterns for different aspects of their functionality. 
For example, a customer service agent might use user-delegated access to retrieve a specific 
customer's data while using machine-to-machine authentication to access company knowledge 
bases and internal systems. AgentCore Identity supports both patterns simultaneously, allowing 
agents to use the most appropriate authentication mechanism for each resource they need to 
access.

Both authentication patterns benefit from AgentCore Identity's core capabilities:

• Secure credential storage without exposing secrets to agent code

• Consistent authentication interfaces across multiple resource types

• Comprehensive audit logging for security and compliance

• Fine-grained access controls based on identity and context

• Simplified integration through the AgentCore SDK

Configure credential provider

Resource credential providers in AgentCore Identity act as intelligent intermediaries that manage 
the complex relationships between agents, identity providers, and resource servers. Each provider 

Configure credential provider 395



Amazon Bedrock AgentCore Developer Guide

encapsulates the specific endpoint configuration required for a particular service or identity 
system. The service provides built-in providers for popular services including Google, GitHub, 
Slack, and Salesforce, with authorization server endpoints and provider-specific parameters pre-
configured to reduce development effort. AgentCore Identity supports custom configurations 
through configurable OAuth2 credential providers that can be tailored to work with any OAuth2-
compatible resource server.

Resource credential providers integrate deeply with the token vault to provide seamless credential 
lifecycle management. When an agent requests access to a resource, the provider handles the 
authentication flow, stores the resulting credentials in the token vault, and provides the agent with 
the necessary access tokens.

Creating an OAuth 2.0 credential provider

Provider configurations in AgentCore Identity define the basic parameters needed for credential 
management with different resources and authentication systems. The following example 
demonstrates how to use the AgentCore SDK to configure an OAuth 2.0 credential provider to use 
with GitHub.

from bedrock_agentcore.services.identity import IdentityClient
identity_client = IdentityClient("us-east-1")  
github_provider = identity_client.create_oauth2_credential_provider(  
  {  
    "name": "github-provider",  
    "credentialProviderVendor": "GithubOauth2",  
    "oauth2ProviderConfigInput": {  
      "githubOauth2ProviderConfig": {  
        "clientId": "your-github-client-id",  
        "clientSecret": "your-github-client-secret",  
      }  
    },  
  }  
)

Creating an API key credential provider

For services that use API keys for authentication rather than OAuth, AgentCore Identity will 
securely store and retrieve keys for your agents. The example below illustrates using the AgentCore 
SDK to store an API key.

from bedrock_agentcore.services.identity import IdentityClient  

Configure credential provider 396



Amazon Bedrock AgentCore Developer Guide

identity_client = IdentityClient("us-east-1")  
apikey_provider = identity_client.create_api_key_credential_provider( 
  {  
    "name": "your-service-name", 
    "apiKey": "your-api-key"  
  }  
)

Obtain credentials

AgentCore Identity uses a workload access token to authorize agent access to credentials stored in 
the vault, and this token contains both the identity of the agent and the identity of the end user 
on whose behalf the agent is working. AgentCore Runtime will automatically provide a token when 
invoking an agent that it is hosting. Agents hosted on other systems can retrieve their agent token 
using the AgentCore SDK.

Topics

• Get workload access token

• Obtain OAuth 2.0 access token

• Obtain API key

Get workload access token

There are two patterns to use to retrieve the workload access token depending on how you are able 
to identify the end user of the agent:

• If the agent’s caller has a JWT identifying the end user, request a workload access token based 
on the agent’s identity and the end-user JWT. When you provide a JWT, AgentCore Identity will 
validate the JWT to ensure it is correctly signed and unexpired, and it will use its “iss” and “sub” 
claims to uniquely identify the user. Credentials stored by the agent on behalf of the user will be 
associated with this information, and future retrievals by the agent will require a valid workload 
access token containing the same information.

• If the agent’s caller does not have a JWT identifying the end user, request a workload access 
token based on the agent’s identity and a unique string identifying the user.

The examples below illustrate using the AgentCore SDK to retrieve a workload access token using 
these two methods:

Obtain credentials 397



Amazon Bedrock AgentCore Developer Guide

from bedrock_agentcore.services.identity import IdentityClient  
                 
identity_client = IdentityClient("us-east-1")

# Obtain a token using the IAM identity of the caller to authenticate the agent and 
 providing a JWT containing the identity of the end user.
# This is the recommended pattern whenever a JWT is available for the user.  
workload_access_token = identity_client.get_workload_access_token(workload_name="my-
demo-agent", user_token="insert-jwt-here")

# Obtain a token using the IAM identity of the caller to authenticate the agent and 
 providing a string representing the identity of the end user.
# Use this pattern when a JWT is not available for the user.  
workload_access_token = identity_client.get_workload_access_token(workload_name="my-
demo-agent", user_id="insert-user-name-or-identifier")

Obtain OAuth 2.0 access token

AgentCore Identity enables developers to obtain OAuth tokens for either user-delegated access 
or machine-to-machine authentication based on the configured OAuth 2.0 credential providers. 
The service will orchestrate the authentication process between the user or application to the 
downstream authorization server, and it will retrieve and store the resulting token. Once the token 
is available in the AgentCore Identity vault, authorized agents can retrieve it and use it to authorize 
calls to resource servers. For example, the sample code below will retrieve a token to interact with 
Google Drive on behalf of an end user. For more information, see Getting started with Amazon 
Bedrock AgentCore Identity for the complete example.

# Injects Google Access Token  
@requires_access_token#(  
 ### Uses the same credential provider name created above  
 #provider_name#=#"google-provider",  
##### Requires Google OAuth2 scope to access Google Drive  
 #scopes#= ["https://www.googleapis.com/auth/drive.metadata.readonly"],  
##### Sets to OAuth 2.0 Authorization Code flow  
 #auth_flow="USER_FEDERATION",  
##### Prints authorization URL to console  
 #on_auth_url=lambda x: print("\nPlease copy and paste this URL in your browser:\n" + 
 x),  
  # If false, caches obtained access token  
 #force_authentication=False,  
)  

Obtain credentials 398



Amazon Bedrock AgentCore Developer Guide

async#def#write_to_google_drive(*, access_token: str):  
  # Use the token to call Google Drive  
asyncio.run(write_to_google_drive(access_token=""))

The process is similar to obtain a token for machine-to-machine calls, as shown in the following 
example:

import#asyncio  
from#bedrock_agentcore.identity.auth#import#requires_access_token, requires_api_key   
@requires_access_token(  
 #provider_name="my-api-key-provider", # replace with your own credential provider 
 name  
 #scopes=[],  
 #auth_flow='M2M',  
)  
async#def#need_token_2LO_async(*, access_token: str):  
 ## Use the access token  
asyncio.run(need_token_2LO_async(access_token="")) 

Obtain API key

Once you have stored your API keys in the AgentCore Identity vault, you can retrieve them directly 
in your agent using the AgentCore SDK and the @requires_api_key annotation. For example, the 
code below will retrieve the API key from the “your-service-name” API key provider so that you can 
use it in the need_api_key function.

import asyncio  
from bedrock_agentcore.identity.auth import requires_api_key  
@requires_api_key(  
 #provider_name=" your-service-name" # replace with your own credential provider name  
)  
async def need_api_key(*, api_key: str):  
 ## Use the key in api_key  
asyncio.run(need_api_key(api_key=""))

Identity provider setup and configuration

Amazon Bedrock AgentCore Identity provides managed OAuth 2.0 supported providers for both 
inbound and outbound authentication. Each provider encapsulates the specific authentication 
protocols, endpoint configurations, and credential formats required for a particular service or 

Identity provider setup 399



Amazon Bedrock AgentCore Developer Guide

identity system. The service provides built-in providers for popular services including Google, 
GitHub, Slack, and Salesforce with authorization server endpoints and provider-specific parameters 
pre-configured to reduce development effort. The providers abstract away the complexity of 
different OAuth 2.0 implementations, API authentication schemes, and token formats, presenting a 
unified interface to agents while handling the underlying protocol variations and edge cases.

Built-in providers are maintained by the AgentCore Identity team and automatically updated to 
handle changes in external service APIs, security requirements, and best practices.

Supported identity providers include:

Topics

• Amazon Cognito

• Microsoft

• Auth0 by Okta

• GitHub

• Google

• Salesforce

• Slack

Amazon Cognito

To add Cognito as an identity provider for accessing AgentCore Gateway and Runtime, you must:

• Configure discovery URL from your IDP directory. This helps AgentCore Identity get the metadata 
related to your OAuth authorization server and token verification keys.

• Provide valid clientId or aud claims for the token. This helps validate the tokens coming from 
your IDP and allow access for tokens that contain expected claims.

Amazon Cognito can be used as an identity provider for inbound authentication.

Inbound

To create a Cognito user pool as an inbound identity provider for user authentication with 
AgentCore Runtime

Create a file named setup_cognito.sh with the following content:

Amazon Cognito 400



Amazon Bedrock AgentCore Developer Guide

#!/bin/bash

# Create User Pool and capture Pool ID directly
export POOL_ID=$(aws cognito-idp create-user-pool \ 
  --pool-name "MyUserPool" \ 
  --policies '{"PasswordPolicy":{"MinimumLength":8}}' \ 
  --region us-east-1 | jq -r '.UserPool.Id')

# Create App Client and capture Client ID directly
export CLIENT_ID=$(aws cognito-idp create-user-pool-client \ 
  --user-pool-id $POOL_ID \ 
  --client-name "MyClient" \ 
  --no-generate-secret \ 
  --explicit-auth-flows "ALLOW_USER_PASSWORD_AUTH" "ALLOW_REFRESH_TOKEN_AUTH" \ 
  --region us-east-1 | jq -r '.UserPoolClient.ClientId')

# Create User
aws cognito-idp admin-create-user \ 
  --user-pool-id $POOL_ID \ 
  --username "testuser" \ 
  --temporary-password "Temp123!" \ 
  --region us-east-1 \ 
  --message-action SUPPRESS > /dev/null

# Set Permanent Password
aws cognito-idp admin-set-user-password \ 
  --user-pool-id $POOL_ID \ 
  --username "testuser" \ 
  --password "MyPassword123!" \ 
  --region us-east-1 \ 
  --permanent > /dev/null

# Authenticate User and capture Access Token
export BEARER_TOKEN=$(aws cognito-idp initiate-auth \ 
  --client-id "$CLIENT_ID" \ 
  --auth-flow USER_PASSWORD_AUTH \ 
  --auth-parameters USERNAME='testuser',PASSWORD='MyPassword123!' \ 
  --region us-east-1 | jq -r '.AuthenticationResult.AccessToken')

# Output the required values
echo "Pool id: $POOL_ID"
echo "Discovery URL: https://cognito-idp.us-east-1.amazonaws.com/$POOL_ID/.well-known/
openid-configuration"

Amazon Cognito 401



Amazon Bedrock AgentCore Developer Guide

echo "Client ID: $CLIENT_ID"
echo "Bearer Token: $BEARER_TOKEN"

Run the script to create the Cognito resources:

source setup_cognito.sh

Note the output values, which will look similar to:

Pool id: us-east-1_poolid
Discovery URL: https://cognito-idp.us-east-1.amazonaws.com/us-east-1_userpoolid/.well-
known/openid-configuration
Client ID: clientid
Bearer Token: bearertoken

You'll need these values in the next steps.

This script creates a Cognito user pool, a user pool client, adds a user, and generates a bearer token 
for the user. The token is valid for 60 minutes by default.

To create a Cognito user pool as an inbound identity provider for machine-to-machine 
authentication with AgentCore Gateway

1. Create a user pool:

aws cognito-idp create-user-pool \ 
  --region us-west-2 \ 
  --pool-name "gateway-user-pool"

2. Note the user pool ID from the response or retrieve it using:

aws cognito-idp list-user-pools \ 
  --region us-west-2 \ 
  --max-results 60

3. Create a resource server for the user pool:

aws cognito-idp create-resource-server \ 
  --region us-west-2 \ 
  --user-pool-id <UserPoolId> \ 

Amazon Cognito 402



Amazon Bedrock AgentCore Developer Guide

  --identifier "gateway-resource-server" \ 
  --name "GatewayResourceServer" \ 
  --scopes '[{"ScopeName":"read","ScopeDescription":"Read access"}, 
 {"ScopeName":"write","ScopeDescription":"Write access"}]'

4. Create a client for the user pool:

aws cognito-idp create-user-pool-client \ 
  --region us-west-2 \ 
  --user-pool-id <UserPoolId> \ 
  --client-name "gateway-client" \ 
  --generate-secret \ 
  --allowed-o-auth-flows client_credentials \ 
  --allowed-o-auth-scopes "gateway-resource-server/read" "gateway-resource-server/
write" \ 
  --allowed-o-auth-flows-user-pool-client \ 
  --supported-identity-providers "COGNITO"

Note the client ID and client secret from the response.

5. If needed, create a domain for your user pool:

aws cognito-idp create-user-pool-domain \ 
  --domain <UserPoolIdWithoutUnderscore> \ 
  --user-pool-id <UserPoolId> \ 
  --region us-west-2

Note

Remove any underscore from the UserPoolId when creating the domain. For example, 
if your user pool ID is "us-west-2_gmSGKKGr9", use "us-west-2gmSGKKGr9" as the 
domain.

6. Construct the discovery URL for your Cognito user pool:

https://cognito-idp.us-west-2.amazonaws.com/<UserPoolId>/.well-known/openid-
configuration

7. Configure the Gateway Inbound Auth with the following values:

• Discovery URL: The URL constructed in the previous step

• Allowed clients: The client ID obtained when creating the user pool client

Amazon Cognito 403



Amazon Bedrock AgentCore Developer Guide

Microsoft

Microsoft can be set up as an inbound provider using Microsoft Entra ID or as an outbound 
provider.

To add Microsoft Entra ID as an identity provider for accessing AgentCore Gateway and Runtime, 
you must:

• Configure discovery URL from your IDP directory. This helps AgentCore Identity get the metadata 
related to your OAuth authorization server and token verification keys.

• Provide valid clientId or aud claims for the token. This helps validate the tokens coming from 
your IDP and allow access for tokens that contain expected claims.

You can configure these as part of configuration of Gateway and Runtime inbound configuration.

Inbound

We support Microsoft Entra ID for v2.0 Id Tokens.

Configurations for v2.0 Id Tokens

In custom authorizer:

• Discovery URL: Discovery URL should be of the form: https://
login.microsoftonline.com/${tenantId}/v2.0/.well-known/openid-
configuration

• Allowed audiences: aud should be the Application Id

On Microsoft Entra:

• While configuring the application, Enable ID Token Issuance in Application Registration.

• Include mandatory openid scope while calling the authorize and token endpoint for Microsoft 
Entra Id during Ingress Flows.

Outbound

To configure the outbound Microsoft resource provider, use the following:

Microsoft 404



Amazon Bedrock AgentCore Developer Guide

{ 
        "name": "NAME", 
        "credentialProviderVendor": "MicrosoftOAuth2", 
        "oauth2ProviderConfigInput": { 
            "microsoftOAuth2ProviderConfig": { 
                "clientId": "your-client-id", 
                "clientSecret": "your-client-secret", 
            } 
        }, 
    }

Auth0 by Okta

Auth0 by Okta can be set up as an inbound provider or as an outbound provider.

To add Auth0 as an identity provider for accessing AgentCore Gateway and Runtime, you must:

• Configure discovery URL from your IDP directory. This helps AgentCore Identity get the metadata 
related to your OAuth authorization server and token verification keys.

• Provide valid aud claims for the token. This helps validate the tokens coming from your IDP and 
allows access for tokens that contain expected claims.

Inbound

Follow these steps to set up Auth0 and obtain the necessary configuration values for Gateway 
authentication:

1. Create an API in Auth0:

• Log in to your Auth0 dashboard.

• Navigate to "APIs" and click "Create API".

• Provide a name and identifier for your API (e.g., "gateway-api").

• Select the signing algorithm (RS256 recommended).

• Click "Create".

2. Configure API scopes:

• In the API settings, go to the "Scopes" tab.

• Add scopes such as "invoke:gateway" and "read:gateway".

3. Create an application:

Auth0 by Okta 405



Amazon Bedrock AgentCore Developer Guide

• Navigate to "Applications" and click "Create Application".

• Select "Machine to Machine Application".

• Select the API you created in step 1.

• Authorize the application for the scopes you created.

• Click "Create".

4. Note the client ID and client secret from the application settings.

5. Construct the discovery URL for your Auth0 tenant:

https://<your-domain>/.well-known/openid-configuration

Where <your-domain> is your Auth0 tenant domain (e.g., "dev-example.us.auth0.com").

6. Configure Inbound Auth with the following values:

• Discovery URL: The URL constructed in the previous step

• Allowed audiences: The API identifier you created in step 1

GitHub

Outbound

To configure the outbound GitHub resource provider, use the following:

{ 
        "name": "NAME", 
        "credentialProviderVendor": "GithubOauth2", 
        "oauth2ProviderConfigInput": { 
            "GithubOauth2ProviderConfigInput": { 
                "clientId": "your-client-id", 
                "clientSecret": "your-client-secret", 
            } 
        }, 
    }

Google

Outbound

To configure the outbound Google resource provider, use the following:

GitHub 406



Amazon Bedrock AgentCore Developer Guide

{ 
        "name": "NAME", 
        "credentialProviderVendor": "GoogleOauth2", 
        "oauth2ProviderConfigInput": { 
            "GoogleOauth2ProviderConfigInput": { 
                "clientId": "your-client-id", 
                "clientSecret": "your-client-secret", 
            } 
        }, 
    }

Salesforce

Outbound

To configure the outbound Salesforce resource provider, use the following:

{ 
        "name": "NAME", 
        "credentialProviderVendor": "SalesforceOauth2", 
        "oauth2ProviderConfigInput": { 
            "SalesforceOauth2ProviderConfigInput": { 
                "clientId": "your-client-id", 
                "clientSecret": "your-client-secret", 
            } 
        }, 
    }

Slack

Outbound

To configure the outbound Slack resource provider, use the following:

{ 
        "name": "NAME", 
        "credentialProviderVendor": "SlackOauth2", 
        "oauth2ProviderConfigInput": { 
            "SlackOauth2ProviderConfigInput": { 
                "clientId": "your-client-id", 
                "clientSecret": "your-client-secret", 

Salesforce 407



Amazon Bedrock AgentCore Developer Guide

            } 
        }, 
    }

Data protection in Amazon Bedrock AgentCore Identity

The AWS shared responsibility model applies to data protection in Amazon Bedrock AgentCore 
Identity. As described in this model, AWS is responsible for protecting the global infrastructure that 
runs all of the AWS Cloud. You are responsible for maintaining control over your content that is 
hosted on this infrastructure. This content includes the security configuration and management 
tasks for the AWS services that you use. For more information about data privacy, see the Data 
Privacy FAQ.

For data protection purposes, we recommend that you protect AWS account credentials and set up 
individual user accounts with IAM. That way each user is given only the permissions necessary to 
fulfill their job duties. We also recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and 
securing personal data that is stored in Amazon S3.

We strongly recommend that you never put sensitive identifying information, such as your 
customers' account numbers, into free-form fields such as a Name field. This includes when you 
work with Amazon Bedrock AgentCore Identity or other AWS services using the console, API, 
AWS CLI, or AWS SDKs. Any data that you enter into Amazon Bedrock AgentCore Identity or 
other services might get picked up for inclusion in diagnostic logs. When you provide a URL to an 
external server, don't include credentials information in the URL to validate your request to that 
server.

Topics

• Data encryption

• Set customer managed key policy

• Configure with API operations or an AWS SDK

Data protection 408

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq


Amazon Bedrock AgentCore Developer Guide

Data encryption

Data encryption typically falls into two categories: encryption at rest and encryption in transit.

Encryption at rest

Data within Amazon Bedrock AgentCore Identity is encrypted at rest in accordance with industry 
standards.

By default, Amazon Bedrock AgentCore Identity encrypts customer data in token vaults with AWS 
owned keys. You can also configure your token vaults to instead encrypt your information with 
customer managed keys.

AWS owned key

Amazon Bedrock AgentCore Identity encrypts the data in your token vault with an AWS owned 
KMS key. Keys of this type aren't visible in AWS KMS.

Customer managed key

Amazon Bedrock AgentCore Identity encrypts the data in your token vault with a customer 
managed key. You own the administration of customer managed key policies, rotation, and 
scheduled deletion.

Things to know about token vault encryption with customer managed keys

• Data in your token vault (access tokens) are encrypted at rest with the customer managed key 
you configure. The token vault ARN is captured in the EncryptionContext.

• All customer data in your token vault is encrypted at rest, even if you take no action to configure 
encryption settings.

• You can't configure token vault encryption at rest with multi-Region keys or asymmetric keys. 
Amazon Bedrock AgentCore Identity supports only single-region symmetric KMS keys for token 
vault encryption at rest.

• You can configure token vault encryption only with a KMS key ARN, not an alias.

• You can configure CMK for credential provider secrets using AWS Secrets Manager. Learn more.

The following procedures configure encryption at rest in your token vault. For more information 
about KMS key policies that delegate access to AWS services like Amazon Cognito, see Permissions 
for AWS services in key policies.

Data encryption 409

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_update-encryption-key.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-services.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-services.html


Amazon Bedrock AgentCore Developer Guide

Set customer managed key policy

Note

Currently we don't support configuring CMK on token vault through console.

To use a customer managed key, your key must trust an Amazon Bedrock AgentCore Identity 
service principal to perform encryption and decryption operations on the key. Configure the key 
policy of your KMS key as shown in the following example. The IAM principal that writes this policy 
must have write access to your KMS key, with kms:PutKeyPolicy permission.

{ 
    "Id": "identity-service-cmk-policy", 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "BedrockAgentCoreIdentityKMSAccess", 
            "Effect": "Allow", 
            "Action": [ 
                "kms:Encrypt", 
                "kms:Decrypt", 
                "kms:GenerateDataKeyWithoutPlaintext" 
            ], 
            "Resource": "*", 
            "Condition": { 
                "StringLike": { 
                    "kms:ViaService": "bedrock-agentcore-identity.*.amazonaws.com" 
                }, 
                "StringEquals": { 
                    "aws:ResourceAccount": "${aws:PrincipalAccount}" 
                }, 
                "ArnLike": { 
                    "kms:EncryptionContext:aws-crypto-ec:aws:bedrock-agentcore-
identity:token-vault-arn": "arn:aws:bedrock-agentcore:*:*:token-vault/default" 
                } 
            } 
        }, 
        { 
            "Sid": "BedrockAgentCoreIdentityDescribeKeyKMSAccess", 
            "Effect": "Allow", 
            "Action": [ 

Set customer managed key policy 410

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html


Amazon Bedrock AgentCore Developer Guide

                "kms:DescribeKey" 
            ], 
            "Resource": "*", 
            "Condition": { 
                "StringEquals": { 
                    "aws:ResourceAccount": "${aws:PrincipalAccount}" 
                }, 
                "StringLike": { 
                    "kms:ViaService": "bedrock-agentcore-identity.*.amazonaws.com" 
                } 
            } 
        } 
    ]
}

Configure with API operations or an AWS SDK

Set your key configuration in a SetTokenVaultCMK API request. The following partial example 
request body sets the token vault to use the provided customer managed key.

"KmsConfiguration": { 
    "KeyType": "CUSTOMER_MANAGED_KEY", 
    "KmsKeyArn": "arn:aws:kms:us-east-1:111122223333:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE22222"
}

The following partial example request body sets a token vault to use an AWS owned key.

"KmsConfiguration": { 
    "KeyType": "AWS_OWNED_KEY"
}

If your GetTokenVault response doesn't include a KmsConfiguration parameter, your token 
vault is configured to encrypt data at rest with an AWS owned key.

Configure with API operations or an AWS SDK 411



Amazon Bedrock AgentCore Developer Guide

Security in Amazon Bedrock AgentCore

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers 
and network architectures that are are designed to help meet with the requirements of the most 
security-sensitive organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes 
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS 
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS 
Compliance Programs. To learn about the compliance programs that apply to Amazon Bedrock 
AgentCore, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You 
are also responsible for other factors including the sensitivity of your data, your company’s 
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when 
using AgentCore. The following topics show you how to configure AgentCore to help meet your 
security and compliance objectives You also learn how to use other AWS services that help you to 
monitor and secure your AgentCore resources.

Topics

• Data protection in Amazon Bedrock AgentCore

• Identity and access management for Amazon Bedrock AgentCore

• Compliance validation for Amazon Bedrock AgentCore

• Resilience in Amazon Bedrock AgentCore

Data protection in Amazon Bedrock AgentCore

The AWS shared responsibility model applies to data protection in Amazon Bedrock AgentCore. As 
described in this model, AWS is responsible for protecting the global infrastructure that runs all 
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on 
this infrastructure. You are also responsible for the security configuration and management tasks 

Data protection 412

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/


Amazon Bedrock AgentCore Developer Guide

for the AWS services that you use. For more information about data privacy, see the Data Privacy 
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model 
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set 
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM). 
That way, each user is given only the permissions necessary to fulfill their job duties. We also 
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail 
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User 
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and 
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a 
command line interface or an API, use a FIPS endpoint. For more information about the available 
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your 
customers' email addresses, into tags or free-form text fields such as a Name field. This includes 
when you work with AgentCore or other AWS services using the console, API, AWS CLI, or AWS 
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for 
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that 
you do not include credentials information in the URL to validate your request to that server.

Identity and access management for Amazon Bedrock 
AgentCore

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely 
control access to AWS resources. IAM administrators control who can be authenticated (signed in) 
and authorized (have permissions) to use AgentCore resources. IAM is an AWS service that you can 
use with no additional charge.

Identity and access management 413

https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/


Amazon Bedrock AgentCore Developer Guide

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Bedrock AgentCore works with IAM

• Identity-based policy examples for Amazon Bedrock AgentCore

• AWS managed policies for Amazon Bedrock AgentCore

• Troubleshooting Amazon Bedrock AgentCore identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you 
do in AgentCore.

Service user – If you use the AgentCore service to do your job, then your administrator provides 
you with the credentials and permissions that you need. As you use more AgentCore features to 
do your work, you might need additional permissions. Understanding how access is managed can 
help you request the right permissions from your administrator. If you cannot access a feature in 
AgentCore, see Troubleshooting Amazon Bedrock AgentCore identity and access.

Service administrator – If you're in charge of AgentCore resources at your company, you probably 
have full access to AgentCore. It's your job to determine which AgentCore features and resources 
your service users should access. You must then submit requests to your IAM administrator to 
change the permissions of your service users. Review the information on this page to understand 
the basic concepts of IAM. To learn more about how your company can use IAM with AgentCore, 
see How Amazon Bedrock AgentCore works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how 
you can write policies to manage access to AgentCore. To view example AgentCore identity-
based policies that you can use in IAM, see Identity-based policy examples for Amazon Bedrock 
AgentCore.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an 
IAM role.

Audience 414



Amazon Bedrock AgentCore Developer Guide

You can sign in to AWS as a federated identity by using credentials provided through an identity 
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on 
authentication, and your Google or Facebook credentials are examples of federated identities. 
When you sign in as a federated identity, your administrator previously set up identity federation 
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the 
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS 
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a 
command line interface (CLI) to cryptographically sign your requests by using your credentials. If 
you don't use AWS tools, you must sign requests yourself. For more information about using the 
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in 
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional 
security information. For example, AWS recommends that you use multi-factor authentication 
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in 
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User 
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to 
all AWS services and resources in the account. This identity is called the AWS account root user and 
is accessed by signing in with the email address and password that you used to create the account. 
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your 
root user credentials and use them to perform the tasks that only the root user can perform. For 
the complete list of tasks that require you to sign in as the root user, see Tasks that require root 
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use 
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS 
Directory Service, the Identity Center directory, or any user that accesses AWS services by using 

Authenticating with identities 415

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks


Amazon Bedrock AgentCore Developer Guide

credentials provided through an identity source. When federated identities access AWS accounts, 
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can 
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users 
and groups in your own identity source for use across all your AWS accounts and applications. For 
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity 
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person 
or application. Where possible, we recommend relying on temporary credentials instead of creating 
IAM users who have long-term credentials such as passwords and access keys. However, if you have 
specific use cases that require long-term credentials with IAM users, we recommend that you rotate 
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You 
can use groups to specify permissions for multiple users at a time. Groups make permissions easier 
to manage for large sets of users. For example, you could have a group named IAMAdmins and give 
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but 
a role is intended to be assumable by anyone who needs it. Users have permanent long-term 
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in 
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an 
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the 
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a 
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information 
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role 
and define permissions for the role. When a federated identity authenticates, the identity 

Authenticating with identities 416

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html


Amazon Bedrock AgentCore Developer Guide

is associated with the role and is granted the permissions that are defined by the role. For 
information about roles for federation, see  Create a role for a third-party identity provider 
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. 
To control what your identities can access after they authenticate, IAM Identity Center correlates 
the permission set to a role in IAM. For information about permissions sets, see  Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily 
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a 
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource 
(instead of using a role as a proxy). To learn the difference between roles and resource-based 
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when 
you make a call in a service, it's common for that service to run applications in Amazon EC2 or 
store objects in Amazon S3. A service might do this using the calling principal's permissions, 
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in 
AWS, you are considered a principal. When you use some services, you might perform an 
action that then initiates another action in a different service. FAS uses the permissions of the 
principal calling an AWS service, combined with the requesting AWS service to make requests 
to downstream services. FAS requests are only made when a service receives a request that 
requires interactions with other AWS services or resources to complete. In this case, you must 
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your 
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For 
more information, see Create a role to delegate permissions to an AWS service in the IAM User 
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS 
service. The service can assume the role to perform an action on your behalf. Service-linked 
roles appear in your AWS account and are owned by the service. An IAM administrator can 
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary 
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API 

Authenticating with identities 417

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html


Amazon Bedrock AgentCore Developer Guide

requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role 
to an EC2 instance and make it available to all of its applications, you create an instance profile 
that is attached to the instance. An instance profile contains the role and enables programs that 
are running on the EC2 instance to get temporary credentials. For more information, see Use an 
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User 
Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources. 
A policy is an object in AWS that, when associated with an identity or resource, defines their 
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes 
a request. Permissions in the policies determine whether the request is allowed or denied. Most 
policies are stored in AWS as JSON documents. For more information about the structure and 
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on 
the resources that they need, an IAM administrator can create IAM policies. The administrator can 
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the 
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A 
user with that policy can get role information from the AWS Management Console, the AWS CLI, or 
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, 
such as an IAM user, group of users, or role. These policies control what actions users and roles can 
perform, on which resources, and under what conditions. To learn how to create an identity-based 
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline 
policies are embedded directly into a single user, group, or role. Managed policies are standalone 
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed 
policies include AWS managed policies and customer managed policies. To learn how to choose 

Managing access using policies 418

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html


Amazon Bedrock AgentCore Developer Guide

between a managed policy or an inline policy, see Choose between managed policies and inline 
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of 
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that 
support resource-based policies, service administrators can use them to control access to a specific 
resource. For the resource where the policy is attached, the policy defines what actions a specified 
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS 
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS 
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have 
permissions to access a resource. ACLs are similar to resource-based policies, although they do not 
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more 
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer 
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum 
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set 
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user 
or role). You can set a permissions boundary for an entity. The resulting permissions are the 
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based 
policies that specify the user or role in the Principal field are not limited by the permissions 
boundary. An explicit deny in any of these policies overrides the allow. For more information 
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions 
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a 

Managing access using policies 419

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html


Amazon Bedrock AgentCore Developer Guide

service for grouping and centrally managing multiple AWS accounts that your business owns. If 
you enable all features in an organization, then you can apply service control policies (SCPs) to 
any or all of your accounts. The SCP limits permissions for entities in member accounts, including 
each AWS account root user. For more information about Organizations and SCPs, see Service 
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum 
available permissions for resources in your accounts without updating the IAM policies attached 
to each resource that you own. The RCP limits permissions for resources in member accounts 
and can impact the effective permissions for identities, including the AWS account root 
user, regardless of whether they belong to your organization. For more information about 
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control 
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you 
programmatically create a temporary session for a role or federated user. The resulting session's 
permissions are the intersection of the user or role's identity-based policies and the session 
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these 
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated 
to understand. To learn how AWS determines whether to allow a request when multiple policy 
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Bedrock AgentCore works with IAM

Before you use IAM to manage access to AgentCore, learn what IAM features are available to use 
with AgentCore.

IAM feature AgentCore support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

How Amazon Bedrock AgentCore works with IAM 420

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html


Amazon Bedrock AgentCore Developer Guide

IAM feature AgentCore support

Policy resources Yes

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how AgentCore and other AWS services work with most IAM features, 
see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for AgentCore

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity, 
such as an IAM user, group of users, or role. These policies control what actions users and roles can 
perform, on which resources, and under what conditions. To learn how to create an identity-based 
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well 
as the conditions under which actions are allowed or denied. You can't specify the principal in an 
identity-based policy because it applies to the user or role to which it is attached. To learn about all 
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for AgentCore

To view examples of AgentCore identity-based policies, see Identity-based policy examples for 
Amazon Bedrock AgentCore.

How Amazon Bedrock AgentCore works with IAM 421

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html


Amazon Bedrock AgentCore Developer Guide

Resource-based policies within AgentCore

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of 
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that 
support resource-based policies, service administrators can use them to control access to a specific 
resource. For the resource where the policy is attached, the policy defines what actions a specified 
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS 
services.

To enable cross-account access, you can specify an entire account or IAM entities in another 
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource 
are in different AWS accounts, an IAM administrator in the trusted account must also grant 
the principal entity (user or role) permission to access the resource. They grant permission by 
attaching an identity-based policy to the entity. However, if a resource-based policy grants access 
to a principal in the same account, no additional identity-based policy is required. For more 
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for AgentCore

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny 
access in a policy. Policy actions usually have the same name as the associated AWS API operation. 
There are some exceptions, such as permission-only actions that don't have a matching API 
operation. There are also some operations that require multiple actions in a policy. These 
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of AgentCore actions, see Actions Defined by Amazon Bedrock AgentCore  in the
Service Authorization Reference.

Policy actions in AgentCore use the following prefix before the action:

How Amazon Bedrock AgentCore works with IAM 422

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions


Amazon Bedrock AgentCore Developer Guide

To specify multiple actions in a single statement, separate them with commas.

"Action": [ 
      ":action1", 
      ":action2" 
         ]

To view examples of AgentCore identity-based policies, see Identity-based policy examples for 
Amazon Bedrock AgentCore.

Policy resources for AgentCore

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies. 
Statements must include either a Resource or a NotResource element. As a best practice, 
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support 
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard 
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of AgentCore resource types and their ARNs, see Resources Defined by Amazon 
Bedrock AgentCore  in the Service Authorization Reference. To learn with which actions you can 
specify the ARN of each resource, see Actions Defined by Amazon Bedrock AgentCore .

To view examples of AgentCore identity-based policies, see Identity-based policy examples for 
Amazon Bedrock AgentCore.

Policy condition keys for AgentCore

Supports service-specific policy condition keys: Yes

How Amazon Bedrock AgentCore works with IAM 423

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions


Amazon Bedrock AgentCore Developer Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement 
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in 
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple 
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of 
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant 
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more 
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global 
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of AgentCore condition keys, see Condition Keys for Amazon Bedrock AgentCore  in the
Service Authorization Reference. To learn with which actions and resources you can use a condition 
key, see Actions Defined by Amazon Bedrock AgentCore .

To view examples of AgentCore identity-based policies, see Identity-based policy examples for 
Amazon Bedrock AgentCore.

ACLs in AgentCore

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have 
permissions to access a resource. ACLs are similar to resource-based policies, although they do not 
use the JSON policy document format.

ABAC with AgentCore

Supports ABAC (tags in policies): Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based 
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or 
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then 

How Amazon Bedrock AgentCore works with IAM 424

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions


Amazon Bedrock AgentCore Developer Guide

you design ABAC policies to allow operations when the principal's tag matches the tag on the 
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy 
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy 
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the 
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User 
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control 
(ABAC) in the IAM User Guide.

Using temporary credentials with AgentCore

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional 
information, including which AWS services work with temporary credentials, see AWS services that 
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using 
any method except a user name and password. For example, when you access AWS using your 
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You 
also automatically create temporary credentials when you sign in to the console as a user and then 
switch roles. For more information about switching roles, see Switch from a user to an IAM role 
(console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use 
those temporary credentials to access AWS. AWS recommends that you dynamically generate 
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for AgentCore

Supports forward access sessions (FAS): Yes

How Amazon Bedrock AgentCore works with IAM 425

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html


Amazon Bedrock AgentCore Developer Guide

When you use an IAM user or role to perform actions in AWS, you are considered a principal. 
When you use some services, you might perform an action that then initiates another action in a 
different service. FAS uses the permissions of the principal calling an AWS service, combined with 
the requesting AWS service to make requests to downstream services. FAS requests are only made 
when a service receives a request that requires interactions with other AWS services or resources to 
complete. In this case, you must have permissions to perform both actions. For policy details when 
making FAS requests, see Forward access sessions.

Service roles for AgentCore

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM 
administrator can create, modify, and delete a service role from within IAM. For more information, 
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break AgentCore functionality. Edit 
service roles only when AgentCore provides guidance to do so.

Service-linked roles for AgentCore

Supports service-linked roles: No

A service-linked role is a type of service role that is linked to an AWS service. The service can 
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS 
account and are owned by the service. An IAM administrator can view, but not edit the permissions 
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM. 
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for Amazon Bedrock AgentCore

By default, users and roles don't have permission to create or modify AgentCore resources. They 
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface 
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they 

Identity-based policy examples 426

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


Amazon Bedrock AgentCore Developer Guide

need, an IAM administrator can create IAM policies. The administrator can then add the IAM 
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy 
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by AgentCore, including the format of the 
ARNs for each of the resource types, see Actions, Resources, and Condition Keys for Amazon 
Bedrock AgentCore  in the Service Authorization Reference.

Topics

• Policy best practices

• Using the AgentCore console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AgentCore 
resources in your account. These actions can incur costs for your AWS account. When you create or 
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To 
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We 
recommend that you reduce permissions further by defining AWS customer managed policies 
that are specific to your use cases. For more information, see AWS managed policies or AWS 
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the 
permissions required to perform a task. You do this by defining the actions that can be taken on 
specific resources under specific conditions, also known as least-privilege permissions. For more 
information about using IAM to apply permissions, see  Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your 
policies to limit access to actions and resources. For example, you can write a policy condition to 
specify that all requests must be sent using SSL. You can also use conditions to grant access to 
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For 
more information, see  IAM JSON policy elements: Condition in the IAM User Guide.

Identity-based policy examples 427

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html


Amazon Bedrock AgentCore Developer Guide

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional 
permissions – IAM Access Analyzer validates new and existing policies so that the policies 
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides 
more than 100 policy checks and actionable recommendations to help you author secure and 
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or 
a root user in your AWS account, turn on MFA for additional security. To require MFA when API 
operations are called, add MFA conditions to your policies. For more information, see  Secure API 
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User 
Guide.

Using the AgentCore console

To access the Amazon Bedrock AgentCore console, you must have a minimum set of permissions. 
These permissions must allow you to list and view details about the AgentCore resources in your 
AWS account. If you create an identity-based policy that is more restrictive than the minimum 
required permissions, the console won't function as intended for entities (users or roles) with that 
policy.

You don't need to allow minimum console permissions for users that are making calls only to the 
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation 
that they're trying to perform.

To ensure that users and roles can still use the AgentCore console, also attach the AgentCore
ConsoleAccess or ReadOnly AWS managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and 
managed policies that are attached to their user identity. This policy includes permissions to 
complete this action on the console or programmatically using the AWS CLI or AWS API.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 

Identity-based policy examples 428

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console


Amazon Bedrock AgentCore Developer Guide

        { 
            "Sid": "ViewOwnUserInfo", 
            "Effect": "Allow", 
            "Action": [ 
                "iam:GetUserPolicy", 
                "iam:ListGroupsForUser", 
                "iam:ListAttachedUserPolicies", 
                "iam:ListUserPolicies", 
                "iam:GetUser" 
            ], 
            "Resource": ["arn:aws:iam::*:user/${aws:username}"] 
        }, 
        { 
            "Sid": "NavigateInConsole", 
            "Effect": "Allow", 
            "Action": [ 
                "iam:GetGroupPolicy", 
                "iam:GetPolicyVersion", 
                "iam:GetPolicy", 
                "iam:ListAttachedGroupPolicies", 
                "iam:ListGroupPolicies", 
                "iam:ListPolicyVersions", 
                "iam:ListPolicies", 
                "iam:ListUsers" 
            ], 
            "Resource": "*" 
        } 
    ]
}

AWS managed policies for Amazon Bedrock AgentCore

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS 
managed policies are designed to provide permissions for many common use cases so that you can 
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your 
specific use cases because they're available for all AWS customers to use. We recommend that you 
reduce permissions further by defining  customer managed policies that are specific to your use 
cases.

AWS managed policies 429

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies


Amazon Bedrock AgentCore Developer Guide

You cannot change the permissions defined in AWS managed policies. If AWS updates the 
permissions defined in an AWS managed policy, the update affects all principal identities (users, 
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed 
policy when a new AWS service is launched or new API operations become available for existing 
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: BedrockAgentCoreFullAccess

You can attach BedrockAgentCoreFullAccess to your users, groups, and roles.

This policy grants permissions that allow full access to the Amazon Bedrock AgentCore.

Permissions details

This policy includes the following permissions:

• bedrock-agentcore (Amazon Bedrock Agent Core) – Allows principals full access to all 
Amazon Bedrock Agent Core resources.

• iam (AWS Identity and Access Management) – Allows principals to list and get information 
about roles and policies, and to pass roles with "BedrockAgentCore" in the name to the bedrock-
agentcore service. Also allows creating service-linked roles for CloudWatch Application Signals.

• secretsmanager (AWS Secrets Manager) – Allows principals to create, update, retrieve, and 
delete secrets with names that begin with "bedrock-agentcore".

• kms (AWS Key Management Service) – Allows principals to list and describe keys, and to decrypt 
data within the same AWS account when called via the Bedrock Agent Core service.

• s3 (Amazon Simple Storage Service) – Allows principals to get objects from S3 buckets with 
names that begin with "bedrock-agentcore-gateway-" when called via the Bedrock Agent Core 
service.

• lambda (AWS Lambda) – Allows principals to list Lambda functions.

• logs (Amazon CloudWatch Logs) – Allows principals to access, query, and manage log data in 
log groups related to Bedrock Agent Core and Application Signals, including creating log groups 
and streams.

AWS managed policies 430

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies


Amazon Bedrock AgentCore Developer Guide

• application-autoscaling (Application Auto Scaling) – Allows principals to describe scaling 
policies.

• application-signals (Amazon CloudWatch Application Signals) – Allows principals to 
retrieve information about application signals and start discovery.

• autoscaling (Amazon EC2 Auto Scaling) – Allows principals to describe Auto Scaling resources.

• cloudwatch (Amazon CloudWatch) – Allows principals to retrieve and list metrics, generate 
queries, and access other CloudWatch resources.

• oam (Amazon CloudWatch Observability Access Manager) – Allows principals to list sinks.

• rum (Amazon CloudWatch RUM) – Allows principals to retrieve and list RUM resources.

• synthetics (Amazon CloudWatch Synthetics) – Allows principals to describe and get 
information about Synthetics resources.

• xray (AWS X-Ray) – Allows principals to retrieve trace information, manage trace segment 
destinations, and work with indexing rules.

{ 
 "Version": "2012-10-17", 
 "Statement": [ 
  { 
   "Sid": "BedrockAgentCoreFullAccess", 
   "Effect": "Allow", 
   "Action": [ 
    "bedrock-agentcore:*" 
   ], 
   "Resource": "arn:aws:bedrock-agentcore:*:*:*" 
  }, 
  { 
   "Sid": "IAMListAccess", 
   "Effect": "Allow", 
   "Action": [ 
    "iam:GetRole", 
    "iam:GetRolePolicy", 
    "iam:ListAttachedRolePolicies", 
    "iam:ListRolePolicies", 
    "iam:ListRoles" 
   ], 
   "Resource": "arn:aws:iam::*:role/*" 
  }, 
  { 

AWS managed policies 431



Amazon Bedrock AgentCore Developer Guide

   "Sid": "BedrockAgentCorePassRoleAccess", 
   "Effect": "Allow", 
   "Action": "iam:PassRole", 
   "Resource": "arn:aws:iam::*:role/*BedrockAgentCore*", 
   "Condition": { 
    "StringEquals": { 
     "iam:PassedToService": "bedrock-agentcore.amazonaws.com" 
    } 
   } 
  }, 
  { 
   "Sid": "SecretsManagerAccess", 
   "Effect": "Allow", 
   "Action": [ 
    "secretsmanager:CreateSecret", 
    "secretsmanager:PutSecretValue", 
    "secretsmanager:GetSecretValue", 
    "secretsmanager:DeleteSecret" 
   ], 
   "Resource": "arn:aws:secretsmanager:*:*:secret:bedrock-agentcore*" 
  }, 
  { 
   "Sid": "BedrockAgentCoreKMSReadAccess", 
   "Effect": "Allow", 
   "Action": [ 
    "kms:ListKeys", 
    "kms:DescribeKey" 
   ], 
   "Resource": [ 
    "arn:aws:kms:*:*:key/*" 
   ], 
   "Condition": { 
    "StringEquals": { 
     "aws:ResourceAccount": "${aws:PrincipalAccount}" 
    } 
   } 
  }, 
  { 
   "Sid": "BedrockAgentCoreKMSAccess", 
   "Effect": "Allow", 
   "Action": [ 
    "kms:Decrypt", 
    "kms:GenerateDataKey" 
   ], 

AWS managed policies 432



Amazon Bedrock AgentCore Developer Guide

   "Resource": [ 
    "arn:aws:kms:*:*:key/*" 
   ], 
   "Condition": { 
    "StringEquals": { 
     "aws:ResourceAccount": "${aws:PrincipalAccount}" 
    }, 
    "ForAnyValue:StringEquals": { 
     "aws:CalledVia": [ 
      "bedrock-agentcore.amazonaws.com" 
     ] 
    } 
   } 
  }, 
  { 
   "Sid": "BedrockAgentCoreS3Access", 
   "Effect": "Allow", 
   "Action": [ 
    "s3:GetObject" 
   ], 
   "Resource": [ 
    "arn:aws:s3:::bedrock-agentcore-gateway-*" 
   ], 
   "Condition": { 
    "StringEquals": { 
     "aws:CalledViaLast": "bedrock-agentcore.amazonaws.com", 
     "s3:ResourceAccount": "${aws:PrincipalAccount}" 
    } 
   } 
  }, 
  { 
   "Sid": "BedrockAgentCoreGatewayLambdaAccess", 
   "Effect": "Allow", 
   "Action": [ 
    "lambda:ListFunctions" 
   ], 
   "Resource": [ 
    "arn:aws:lambda:*:*:*" 
   ] 
  }, 
  { 
   "Sid": "LoggingAccess", 
   "Effect": "Allow", 
   "Action": [ 

AWS managed policies 433



Amazon Bedrock AgentCore Developer Guide

    "logs:Get*", 
    "logs:List*", 
    "logs:StartQuery", 
    "logs:StopQuery", 
    "logs:Describe*", 
    "logs:TestMetricFilter", 
    "logs:FilterLogEvents" 
   ], 
   "Resource": [ 
    "arn:aws:logs:*:*:log-group:/aws/bedrock-agentcore/*", 
    "arn:aws:logs:*:*:log-group:/aws/application-signals/data:*", 
    "arn:aws:logs:*:*:log-group:aws/spans:*" 
   ] 
  }, 
  { 
   "Sid": "ObservabilityReadOnlyPermissions", 
   "Effect": "Allow", 
   "Action": [ 
    "application-autoscaling:DescribeScalingPolicies", 
    "application-signals:BatchGet*", 
    "application-signals:Get*", 
    "application-signals:List*", 
    "autoscaling:Describe*", 
    "cloudwatch:BatchGet*", 
    "cloudwatch:Describe*", 
    "cloudwatch:GenerateQuery", 
    "cloudwatch:Get*", 
    "cloudwatch:List*", 
    "oam:ListSinks", 
    "rum:BatchGet*", 
    "rum:Get*", 
    "rum:List*", 
    "synthetics:Describe*", 
    "synthetics:Get*", 
    "synthetics:List*", 
    "xray:BatchGet*", 
    "xray:Get*", 
    "xray:List*", 
    "xray:StartTraceRetrieval", 
    "xray:CancelTraceRetrieval", 
    "logs:DescribeLogGroups", 
    "logs:StartLiveTail", 
    "logs:StopLiveTail" 
   ], 

AWS managed policies 434



Amazon Bedrock AgentCore Developer Guide

   "Resource": "*" 
  }, 
  { 
   "Sid": "TransactionSearchXRayPermissions", 
   "Effect": "Allow", 
   "Action": [ 
    "xray:GetTraceSegmentDestination", 
    "xray:UpdateTraceSegmentDestination", 
    "xray:GetIndexingRules", 
    "xray:UpdateIndexingRule" 
   ], 
   "Resource": "*" 
  }, 
  { 
   "Sid": "TransactionSearchLogGroupPermissions", 
   "Effect": "Allow", 
   "Action": [ 
    "logs:CreateLogGroup", 
    "logs:CreateLogStream", 
    "logs:PutRetentionPolicy" 
   ], 
   "Resource": [ 
    "arn:aws:logs:*:*:log-group:/aws/application-signals/data:*", 
    "arn:aws:logs:*:*:log-group:aws/spans:*" 
   ] 
  }, 
  { 
   "Sid": "TransactionSearchLogsPermissions", 
   "Effect": "Allow", 
   "Action": [ 
    "logs:DescribeResourcePolicies" 
   ], 
   "Resource": [ 
    "*" 
   ], 
   "Condition": { 
    "StringEquals": { 
     "aws:ResourceAccount": "${aws:PrincipalAccount}" 
    } 
   } 
  }, 
  { 
   "Sid": "TransactionSearchApplicationSignalsPermissions", 
   "Effect": "Allow", 

AWS managed policies 435



Amazon Bedrock AgentCore Developer Guide

   "Action": [ 
    "application-signals:StartDiscovery" 
   ], 
   "Resource": "*" 
  }, 
  { 
   "Sid": "CloudWatchApplicationSignalsCreateServiceLinkedRolePermissions", 
   "Effect": "Allow", 
   "Action": "iam:CreateServiceLinkedRole", 
   "Resource": "arn:aws:iam::*:role/aws-service-role/application-
signals.cloudwatch.amazonaws.com/AWSServiceRoleForCloudWatchApplicationSignals", 
   "Condition": { 
    "StringLike": { 
     "iam:AWSServiceName": "application-signals.cloudwatch.amazonaws.com" 
    } 
   } 
  }, 
  { 
   "Sid": "CloudWatchApplicationSignalsGetRolePermissions", 
   "Effect": "Allow", 
   "Action": "iam:GetRole", 
   "Resource": "arn:aws:iam::*:role/aws-service-role/application-
signals.cloudwatch.amazonaws.com/AWSServiceRoleForCloudWatchApplicationSignals" 
  } 
 ]
}

AWS managed policy: 
AmazonBedrockAgentCoreMemoryBedrockModelInferenceExecutionRolePolicy

You can attach
AmazonBedrockAgentCoreMemoryBedrockModelInferenceExecutionRolePolicy to your 
users, groups, and roles.

This policy grants permissions that allow full access to the Amazon Bedrock Agent Core Memory.

Permissions details

This policy includes the following permissions.

AWS managed policies 436



Amazon Bedrock AgentCore Developer Guide

• bedrock – Allows principals to call the Amazon Bedrock Invokemodel and
InvokeModelWithResponseStream actions. This is required so that an agent can store 
memories.

{ 
 "Version": "2012-10-17", 
 "Statement": [ 
  { 
   "Effect": "Allow", 
   "Action": [ 
    "bedrock:InvokeModel", 
    "bedrock:InvokeModelWithResponseStream" 
   ], 
   "Resource": [ 
    "arn:aws:bedrock:*::foundation-model/*", 
    "arn:aws:bedrock:*:*:inference-profile/*" 
   ], 
   "Condition": { 
    "StringEquals": { 
     "aws:ResourceAccount": "${aws:PrincipalAccount}" 
    } 
   } 
  } 
 ]
}

AgentCore updates to AWS managed policies

View details about updates to AWS managed policies for AgentCore since this service began 
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed 
on the AgentCore Document history page.

Change Description Date

AgentCore started tracking 
changes

AgentCore started tracking 
changes for its AWS managed 
policies.

July 16, 2025

AWS managed policies 437



Amazon Bedrock AgentCore Developer Guide

Troubleshooting Amazon Bedrock AgentCore identity and access

Use the following information to help you diagnose and fix common issues that you might 
encounter when working with AgentCore and IAM.

Topics

• I am not authorized to perform an action in AgentCore

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AgentCore resources

I am not authorized to perform an action in AgentCore

If you receive an error that you're not authorized to perform an action, your policies must be 
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console 
to view details about a fictional my-example-widget resource but doesn't have the fictional
:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to 
 perform: :GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the :GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided 
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your 
policies must be updated to allow you to pass a role to AgentCore.

Some AWS services allow you to pass an existing role to that service instead of creating a new 
service role or service-linked role. To do this, you must have permissions to pass the role to the 
service.

Troubleshooting 438



Amazon Bedrock AgentCore Developer Guide

The following example error occurs when an IAM user named marymajor tries to use the console 
to perform an action in AgentCore. However, the action requires the service to have permissions 
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: 
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided 
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my AgentCore 
resources

You can create a role that users in other accounts or people outside of your organization can use to 
access your resources. You can specify who is trusted to assume the role. For services that support 
resource-based policies or access control lists (ACLs), you can use those policies to grant people 
access to your resources.

To learn more, consult the following:

• To learn whether AgentCore supports these features, see How Amazon Bedrock AgentCore works 
with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing 
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally 
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access, 
see Cross account resource access in IAM in the IAM User Guide.

Compliance validation for Amazon Bedrock AgentCore

To learn whether an AWS service is within the scope of specific compliance programs, see AWS 
services in Scope by Compliance Program and choose the compliance program that you are 
interested in. For general information, see AWS Compliance Programs.

Compliance validation 439

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/


Amazon Bedrock AgentCore Developer Guide

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your 
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the 
following resources to help with compliance:

• Security Compliance & Governance – These solution implementation guides discuss architectural 
considerations and provide steps for deploying security and compliance features.

• HIPAA Eligible Services Reference – Lists HIPAA eligible services. Not all AWS services are HIPAA 
eligible.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your 
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the 
lens of compliance. The guides summarize the best practices for securing AWS services and map 
the guidance to security controls across multiple frameworks (including National Institute of 
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and 
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service 
assesses how well your resource configurations comply with internal practices, industry 
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within 
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your 
compliance against security industry standards and best practices. For a list of supported services 
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts, 
workloads, containers, and data by monitoring your environment for suspicious and malicious 
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by 
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify 
how you manage risk and compliance with regulations and industry standards.

Resilience in Amazon Bedrock AgentCore

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions 
provide multiple physically separated and isolated Availability Zones, which are connected with 

Resilience 440

https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/solutions/security/security-compliance-governance/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html


Amazon Bedrock AgentCore Developer Guide

low-latency, high-throughput, and highly redundant networking. With Availability Zones, you 
can design and operate applications and databases that automatically fail over between zones 
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than 
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, AgentCore offers several features to help support your 
data resiliency and backup needs.

Resilience 441

https://aws.amazon.com/about-aws/global-infrastructure/


Amazon Bedrock AgentCore Developer Guide

Quotas for Amazon Bedrock AgentCore

Your AWS account has default quotas, formerly referred to as limits, for each AWS service. Unless 
otherwise noted, each quota is Region-specific. You can request increases for some quotas, and 
other quotas cannot be increased.

To view the quotas for AgentCore, open the Service Quotas console. In the navigation pane, choose
AWS services and select AgentCore.

To request a quota increase, contact AWS support.

Topics

• AgentCore Runtime Service Quotas

• AgentCore Memory Service Quotas

• AgentCore Identity Service Quotas

• AgentCore Gateway Service Quotas

• AgentCore Browser Service Quotas

• AgentCore Code Interpreter Service Quotas

AgentCore Runtime Service Quotas

When working with AgentCore Runtime, you need to be aware of the service limits that apply to 
your account. These limits help ensure service stability and availability for all users.

Resource allocation limits

The following table describes the resource allocation limits for AgentCore Runtime:

Resource allocation limits

Limit Default Value Adjustable Notes

Active Session 
workloads per 
account

500 in US East (N. 
Virginia) and Asia Pacific 
(Sydney), and 250 in 
Europe (Frankfurt) and 
US West (Oregon).

Yes Can be increased via support 
ticket

AgentCore Runtime Service Quotas 442

https://console.aws.amazon.com/servicequotas/home


Amazon Bedrock AgentCore Developer Guide

Limit Default Value Adjustable Notes

Total agents per 
account

1000 Yes Can be increased via support 
ticket

Versions per 
agent

1000 Yes Inactive versions deleted after 
45 days

Endpoints 
(aliases) per agent

10 Yes Can be increased via support 
ticket

Invocation limits

The following table describes the invocation limits for AgentCore Runtime:

Invocation limits

Limit Value Adjustable Notes

Request timeout 15 minutes No Maximum time for synchronous 
requests

Max payload size 100 MB No Maximum size for request/response 
payloads

Streaming max 
duration

60 mins No Maximum time for streaming connectio 
ns

Async job max 
duration

8 hours No Maximum execution time for asynchron 
ous jobs

Invocations per 
second

100 per endpoint Yes Rate limit for API calls

Lifetime session lifecycle parameters

The following table describes the lifetime session lifecycle parameters for AgentCore Runtime:

Invocation limits 443



Amazon Bedrock AgentCore Developer Guide

Lifetime session lifecycle parameters

Phase Timeout Adjustable Notes

Suspending 
Session

5 mins No Cuts down CPU cycles

Session Terminati 
on

15 minutes of 
inactivity

No Execution Environment is terminate 
d. Customer will get a new Execution 
environment for the Session

Max Session 
Duration

8 hrs No  

AgentCore Memory Service Quotas

AgentCore Memory limits

Limit Value

Number of AgentCore Memory resources per AWS Region in an AWS 
account.

50

Max Number of memory strategies per AgentCore Memory instance 6

Minimum EventExpirationDuration days in CreateEvent operation 7

Maximum EventExpirationDuration days in CreateEvent operation 365

Prompt Size (AppendToPrompt) for Custom Memory Strategy (Extracti 
on/Consolidation)

30 KB

Max Number of messages per CreateEvent operation 100

Max message size in CreateEvent operation 9 KB

Max event size in CreateEvent operation 10 MB

Max TPS for CreateEvent (per account) 5

AgentCore Memory Service Quotas 444



Amazon Bedrock AgentCore Developer Guide

Limit Value

Max TPS for CreateEvent (per combination of account, actor, session) 0.25

Max TPS for RetrieveMemoryRecords (per account) 5

Max TPS for all other AgentCore Memory APIs 20

AgentCore Identity Service Quotas

When working with AgentCore Runtime, you need to be aware of the service limits that apply to 
your account. These limits help ensure service stability and availability for all users.

AgentCore Identity Limits

Limit Value Adjustabl 
e

Notes

API keys stored per AWS account 
per AWS Region

50 Yes Can be increased via Support 
ticket

OAuth client credentials stored 
per AWS account per AWS Region

50 Yes Can be increased via Support 
ticket

AgentCore Gateway Service Quotas

This section provides information about Amazon Bedrock AgentCore Gateway endpoints and 
service limits.

Endpoints

Amazon Bedrock AgentCore Gateway provides the following endpoints for management 
operations and runtime access.

AgentCore Identity Service Quotas 445



Amazon Bedrock AgentCore Developer Guide

Amazon Bedrock AgentCore Gateway control plane endpoints

Region Endpoint

US East (N. Virginia) bedrock-agentcore-control.us-east-1.amazonaws.com

US West (Oregon) bedrock-agentcore-control.us-west-2.amazonaws.com

The AgentCore Gateway URLs for runtime access have the following format:

https://{gateway-Id}.gateway.bedrock-agentcore.{Region}.amazonaws.com

Where:

• {gateway-Id} is the unique identifier for your gateway

• {Region} is the AWS Region where your gateway is deployed

Gateway ARNs have the following format:

arn:${Partition}:bedrock-agentcore:${Region}:${Account}:gateway/${gateway-Id}

The AgentCore service principal is: bedrock-agentcore.amazonaws.com

Service quotas

Amazon Bedrock AgentCore Gateway has the following service quotas. You can request increases 
for some quotas using the Service Quotas console.

Amazon Bedrock AgentCore Gateway service quotas

Quota Default value Adjustable Notes

Number of gateways per 
account

100 Yes  

Number of targets per gateway 10 Yes  

Number of tools per target 200 Yes  

Service quotas 446



Amazon Bedrock AgentCore Developer Guide

Quota Default value Adjustable Notes

Timeout for a gateway invocatio 
n

55 seconds Yes Aligns with Lambda 
function timeout

Maximum inline schema size 1 MB Yes  

Maximum S3 payload schema 
size

2 MB Yes  

Tool name character limit 256 characters Yes  

CreateGateway API rate 5 TPM Yes Transactions per minute

UpdateGateway API rate 5 TPM Yes Transactions per minute

GetGateway API rate 5 TPS Yes Transactions per second

ListGateways API rate 5 TPS Yes Transactions per second

DeleteGateway API rate 5 TPM Yes Transactions per minute

CreateGatewayTarget API rate 5 TPM Yes Transactions per minute

UpdateGatewayTarget API rate 5 TPM Yes Transactions per minute

GetGatewayTarget API rate 5 TPS Yes Transactions per second

ListGatewayTargets API rate 5 TPS Yes Transactions per second

DeleteGatewayTarget API rate 5 TPM Yes Transactions per minute

CallTool/ListTool/SearchTool 
API rate at gateway level

5 TPS Yes Transactions per second

CallTool/ListTool/SearchTool 
API rate at account level

5 TPS Yes Transactions per second

Maximum CallTool/ListTool/ 
SearchTool payload size

6 MB Yes  

Service quotas 447



Amazon Bedrock AgentCore Developer Guide

For more information about service quotas and how to request increases, see Requesting a quota 
increase in the Service Quotas User Guide.

AgentCore Browser Service Quotas

The Browser tool has the following service quotas and considerations that apply to your account.

Browser service quotas

Quota Default Value Adjustable Notes

Session duration 15 minutes Yes Can be extended up to 8 
hours

Concurrent active sessions per 
account

500 Yes Can be increased via 
support ticket

Total Browser tool configura 
tions per account

100 Yes Can be increased via 
support ticket

CDP stream and live view 
stream per session

1 each No Allows a single agent and 
end user to interact with 
the browser

AgentCore Code Interpreter Service Quotas

The Code Interpreter tool has the following service quotas and considerations that apply to your 
account.

Code Interpreter service quotas

Quota Default Value Adjustable Notes

Execution time 15 minutes Yes Can be extended up to 8 
hours

Concurrent active sessions per 
account

500 Yes Can be increased via 
support ticket

AgentCore Browser Service Quotas 448

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html


Amazon Bedrock AgentCore Developer Guide

Quota Default Value Adjustable Notes

Total Code Interpreter tool 
configurations per account

100 Yes Can be increased via 
support ticket

AgentCore Code Interpreter Service Quotas 449



Amazon Bedrock AgentCore Developer Guide

Document history for the AgentCore User Guide

The following table describes the documentation releases for Amazon Bedrock AgentCore.

Change Description Date

Initial release Initial release of the Amazon 
Bedrock AgentCore Developer 
Guide

July 16, 2025

450


	Amazon Bedrock AgentCore
	Table of Contents
	What is Amazon Bedrock AgentCore?
	Services in Amazon Bedrock AgentCore
	Amazon Bedrock AgentCore Runtime
	Amazon Bedrock AgentCore Identity
	Amazon Bedrock AgentCore Memory
	Amazon Bedrock AgentCore Code Interpreter
	Amazon Bedrock AgentCore Browser
	Amazon Bedrock AgentCore Gateway
	Amazon Bedrock AgentCore Observability

	Common use cases for Amazon Bedrock AgentCore
	Are you a first-time Amazon Bedrock AgentCore user?
	Pricing for Amazon Bedrock AgentCore
	AWS Regions

	Host agent or tools with Amazon Bedrock AgentCore Runtime
	How it works
	Key components
	Agent runtime
	Versions
	Endpoints
	Sessions

	Authentication and security
	Inbound authentication
	Authentication methods
	OAuth configuration options
	Authentication flow

	Outbound authentication
	Authentication methods
	Authentication modes
	Supported services


	Additional features
	Asynchronous processing
	Streaming responses
	Protocol support

	Implementation overview
	Prepare your agent or tool code
	Deploy your agent or tool
	Invoke your agent or tool
	Manage and observe sessions, and make updates

	Understanding the AgentCore Runtime service contract
	Supported protocols
	HTTP protocol contract
	Container requirements
	Path requirements
	/invocations - POST
	JSON response (non-streaming)
	SSE response (streaming)

	/ping - GET


	MCP protocol contract
	Protocol implementation requirements
	Container requirements
	Path requirements
	/mcp - POST




	Permissions for AgentCore Runtime
	AgentCore Runtime execution role
	AgentCore Runtime trust policy

	Getting started with Amazon Bedrock AgentCore Runtime
	Get started with the Amazon Bedrock AgentCore Runtime starter toolkit
	Prerequisites
	Enable observability for your agent
	Preparing your agent
	Prepare your agent in 3 simple steps
	Step 1: Import the runtime
	Step 2: Initialize the app
	Step 3: Decorate your function

	Testing locally
	What happens behind the scenes
	Complete examples

	Deploying your agent
	Using starter-toolkit for quick prototyping

	Invoking your agent

	Getting started without the starter toolkit
	Quick start setup
	Enable observability for your agent
	Install uv
	Create your agent project

	Agent contract requirements
	Project structure
	Complete strands agent example
	Test locally
	Create dockerfile
	Build and deploy ARM64 image
	Setup docker buildx
	Build for ARM64 and test locally
	Create ECR repository and deploy

	Deploy agent runtime
	Invoke your agent
	Expected response format
	Amazon Bedrock AgentCore requirements summary
	Conclusion


	Use any agent framework
	Strands Agents
	LangGraph
	Google Agent Development Kit (ADK)
	OpenAI Agents SDK
	Microsoft AutoGen
	CrewAI

	Use any foundation model
	Amazon Bedrock
	Open AI
	Gemini

	Deploy MCP servers in AgentCore Runtime
	Prerequisites
	Create your MCP server
	Install required packages
	Create your first MCP server
	Understanding the code

	Test your MCP server locally
	Start your MCP server
	Test with MCP client

	Deploy your MCP server to AWS
	Install deployment tools
	Configure your MCP server for deployment
	Deploy to AWS

	Invoke your deployed MCP server
	Test with MCP client (remote)

	How Amazon Bedrock AgentCore supports MCP
	Next steps
	Appendix
	Set up Cognito user pool for authentication
	Local testing with MCP inspector
	Remote testing with MCP inspector


	Use isolated sessions for agents
	Understanding ephemeral context
	Extended conversations and multi-step workflows
	Runtime session lifecycle
	How to use sessions

	Handle asynchronous and long running agents with Amazon Bedrock AgentCore Runtime
	Key concepts
	Asynchronous processing model
	Runtime session lifecycle management

	Implementing asynchronous tasks
	API based task management
	Asynchronous task decorator
	Custom ping handler

	Complete example

	Stream agent responses
	Authenticate and authorize with Inbound Auth and Outbound Auth
	Prerequisites
	JWT inbound authorization and OAuth outbound access sample
	Step 1: Prepare your agent
	Step 2: Set up AWS Cognito user pool and add a user
	Step 3: Deploy your agent
	Step 4: Use bearer token to invoke your agent
	Using Curl
	Using Python

	Step 5: Set up your agent to access tools using OAuth
	Step 5.1: Set up Credential Providers
	Step 5.2: Enable agent to read Google Drive contents

	Troubleshooting
	How to debug token related issues


	AgentCore Runtime versioning and endpoints
	Understanding agent runtime Versioning
	How endpoints reference versions
	Versioning scenarios
	Endpoint lifecycle states
	Listing AgentCore Runtime versions and endpoints

	Invoke an AgentCore Runtime agent
	Invoke streaming agents
	Invoke multi-modal agents
	Session management
	Error handling
	Best practices

	Observe agents in Amazon Bedrock AgentCore Runtime
	Troubleshoot AgentCore Runtime
	Common issues and solutions
	RuntimeClientError (403) issues
	Missing or empty CloudWatch logs
	Payload format issues
	Common error codes
	Testing recommendations

	Advanced troubleshooting
	Debugging container issues
	Troubleshooting MCP protocol agents

	Common best practices


	Add memory to your AI agent
	How it works
	Short-term memory
	Long-term memory
	Putting it all together: A customer support AI agent

	Getting started with AgentCore Memory
	Create an AgentCore Memory resource
	Install dependencies
	Create memory for short-term memory
	List existing memory resources

	Maintain user context using short-term memory
	Create events in short-term memory
	Load conversations from short-term memory

	Create a memory with a long-term memory
	Create memory with long-term memory
	Save conversations and view extracted memories

	Use long-term memory in an agent
	Install dependencies
	Add memory to an agent

	Custom strategies
	Create an IAM role for the service
	Create a long-term memory with a custom strategy
	Create events to upload user conversations
	Search for user's preferences


	Configure AgentCore Memory
	Prerequisites
	Memory scoping with namespaces
	Restrict access with IAM

	Memory strategies
	Prompts for custom memory strategies
	Extraction prompts
	Semantic Strategy Sample Extraction Prompt
	User Preference Strategy Sample Extraction Prompt

	Consolidation prompts
	Semantic Strategy Sample Consolidation Prompt
	User Preference Strategy Sample Consolidation Prompt
	Summarization Strategy Sample Consolidation Prompt


	System prompts (non-editable) for extraction and consolidation
	Semantic memory strategy extraction system prompt
	Semantic memory strategy consolidation system prompt
	User Preference strategy extraction system prompt
	User Preference consolidation system prompt
	Summary Extraction/Consolidation System Prompt

	Storage encryption and security


	Create AgentCore Memory
	Get AgentCore Memory
	List AgentCore Memory
	Update AgentCore Memory
	Delete AgentCore Memory

	Store and use short-term memory
	Create event
	Event payload types
	Event branching


	Get event
	List events
	Delete event

	Store and use long-term memory
	Retrieve memory records
	List memory records
	Delete memory records


	Use Amazon Bedrock AgentCore built-in tools to interact with your applications
	Built-in Tools Overview
	Security and Access Control
	Key components
	Integrating built-in tools with Agents

	Execute code and analyze data using Amazon Bedrock AgentCore Code Interpreter
	Overview
	Why use Code Interpreter in agent development
	Getting started with AgentCore Code Interpreter by running a hello world example
	Prerequisites
	Quick start

	Run code in Code Interpreter from Agents
	Read from or write files to a session
	Using Terminal Commands with an execution role
	Prerequisites
	Sample Python code

	Resource and session management
	IAM permissions
	How it works
	Creating a Code Interpreter and starting a session
	Resource management
	Network settings
	Creating an AgentCore Code Interpreter
	Listing AgentCore Code Interpreter tools
	Deleting an AgentCore Code Interpreter

	Session management
	Using isolated sessions
	Starting a AgentCore Code Interpreter session
	Executing code
	Stopping a AgentCore Code Interpreter session


	Code Interpreter API Reference Examples
	Code Execution
	Terminal Commands
	Execute Command
	Start Command Execution
	Get Task
	Stop Command Execution Task

	File Management
	Write Files
	Read Files
	Remove Files
	List Files



	Interact with web applications using Amazon Bedrock AgentCore Browser
	Overview
	Why use remote browsers for agent development?
	Security Features
	How it works
	Getting Started with AgentCore Browser
	Prerequisites
	Quick start

	Building browser agents
	Resource and session management
	Permissions
	Browser setup for API operations
	Creating a Browser Tool and starting a session
	Resource management
	Network settings
	Creating an AgentCore Browser
	Get AgentCore Browser tool
	Listing AgentCore Browser tools
	Deleting an AgentCore Browser

	Session management
	Using isolated sessions
	Starting a browser session
	Get Browser session
	Interacting with a browser session
	Listing browser sessions
	Stopping a browser session
	Updating browser streams


	Use cases and code examples
	Common use cases
	Use case examples
	Shopping automation
	User take over handling during Browser automation


	Rendering live view using AWS DCV Web Client
	Using Callbacks to Customize URL Parameters
	Customizing Authentication and connection URL:httpExtraSearchParamsCallback
	Example


	Observability and session replay
	Session replay
	Permissions
	Standalone Session Replay Viewer
	Complete Browser Experience with Recording and Replay

	CloudWatch Metrics



	Amazon Bedrock AgentCore Gateway: Securely connect tools and other resources to your Gateway
	Key benefits
	Key capabilities
	Quick Start with creating and using a Gateway
	Prerequisites
	Creating a Gateway and attaching a Target
	OpenAPI and Smithy Targets
	Smithy API Model Targets
	Open API Model Targets

	Using the Gateway in an Agent

	Core concepts for Amazon Bedrock AgentCore Gateway
	Key concepts
	Tool types

	Setting up a Amazon Bedrock AgentCore Gateway
	Gateway workflow
	Prerequisites to set up a gateway
	Gateway Management Permissions
	Gateway Access Permissions or Inbound Auth Configuration
	Gateway Execution Permissions or Outbound Auth configuration
	Best practices for Gateway permissions

	Creating gateways
	Setting up inbound Auth
	Setting up identity providers for Inbound Auth

	Creating your Gateway

	Adding targets to an existing gateway
	Setting up Outbound Auth
	Creating an Outbound Auth
	Setting up credential providers for Outbound Auth

	Adding Lambda targets to your gateway
	Prerequisites
	Configuring permissions
	Adding a Lambda target
	Lambda function schema
	Adding multiple tools to a Lambda target
	Using S3 for tool schemas
	Lambda function input format
	Limitations and considerations

	Testing your Lambda target

	Adding an OpenAPI target
	Understanding OpenAPI Targets
	Required Permissions
	Key considerations and limitations
	OpenAPI Specification and Feature Support
	OpenAPI Feature Support
	OpenAPI Specification Format
	Supported OpenAPI specification Example 1
	Supported OpenAPI Specification Example 2
	Unsupported OpenAPI schema


	Creating an OpenAPI target
	Updating an OpenAPI target
	Testing your OpenAPI target
	Inline OpenAPI specifications
	Example
	Example OpenAPI target configuration with S3 reference


	Adding Smithy targets to your Gateway
	Understanding Smithy Model Targets
	Required Permissions
	Smithy Model Types
	Smithy Feature Support
	Creating a Smithy target
	Updating a Smithy Model Target
	Testing Your Smithy Model Target
	Advanced Smithy Model Target Configurations
	Inline Smithy Models




	Using a Gateway
	Using a Gateway with MCP
	Authentication for MCP Requests
	Listing Available Tools
	Request Format
	Response Format

	Invoking a Tool
	Request syntax
	Response syntax
	Example
	Errors

	Using MCP Client Libraries
	Listing Tools with MCP Clients
	Calling Tools with MCP Clients
	Searching Tools with MCP Clients


	Testing your gateway
	Testing your gateway using Python
	Monitoring gateway usage
	Using the MCP Inspector
	Setting up the MCP Inspector
	Connecting to your gateway
	Using the MCP Inspector
	Troubleshooting



	Assess Gateway performance using monitoring and observability
	Required permissions for observability
	Setting up CloudWatch metrics and alarms
	Invocation metrics
	Usage metrics
	Setting up CloudWatch alarms

	Logging Gateway API calls with CloudTrail
	Gateway Event Types
	Gateway Management Events in CloudTrail
	Gateway Data Events in CloudTrail
	Identity Information in Data Events
	Error Information in Data Events
	Data Event Routing


	Enabling CloudTrail Data Event Logging for Gateway
	Understanding Gateway CloudTrail Events
	Additional Resources



	Advanced features and topics for Amazon Bedrock AgentCore Gateway
	(Optional) Encryption configuration
	Data encryption with KMS (Optional)

	Setting up custom domain names for Gateway endpoints
	Prerequisites
	Solution overview
	Implementation steps
	Step 1: Create a Route 53 hosted zone
	Step 2: Create a DNS-validated certificate
	Step 3: Create a CloudFront distribution
	Step 4: Create a Route 53 A record
	Step 5: Deploy your infrastructure

	Testing your custom domain
	Verify DNS resolution
	Verify SSL certificate

	Configuring MCP clients
	Cursor configuration
	Other MCP clients

	Additional considerations
	Troubleshooting
	Conclusion

	Performance optimization


	Observe your agent applications on Amazon Bedrock AgentCore Observability
	Add observability to your Amazon Bedrock AgentCore resources
	Enabling AgentCore runtime observability
	Enabling CloudWatch Transaction Search

	Enabling observability in agent code for AgentCore-hosted agents
	Configure Observability for agents hosted outside of the AgentCore runtime
	Session ID support

	Enable observability for AgentCore memory, gateway, and built-in tool resources
	Enhanced AgentCore observability with custom headers
	Observability best practices

	Understand observability for agentic resources in AgentCore
	Sessions
	Traces
	Spans
	Relationship Between Sessions, Traces, and Spans

	Amazon Bedrock AgentCore provided observability metrics
	AgentCore provided runtime metrics
	Error types

	AgentCore provided memory metrics and spans
	Provided memory metrics
	Provided span data
	Provided log data

	Gateway metrics overview
	AgentCore provided built-in tools metrics

	View observability data for your Amazon Bedrock AgentCore agents
	View data using generative AI observability in Amazon CloudWatch
	View other data in CloudWatch
	Logs
	Traces and Spans
	Metrics



	Create agent and tool identities with AgentCore Identity
	Overview of Amazon Bedrock AgentCore Identity
	Features of AgentCore Identity
	Centralized agent identity management
	Secure credential storage
	OAuth 2.0 flow support
	Agent identity and access controls
	AgentCore SDK Integration
	Request verification security

	AgentCore Identity terminology
	Example use cases
	Personal assistant agents
	Enterprise automation agents
	Customer service agents
	Data processing and analytics agents
	Development and DevOps agents


	Getting started with Amazon Bedrock AgentCore Identity
	Prerequisites
	Install the SDK
	Obtain Google Client ID and Client Secret

	Step 1: Import Identity and Auth modules
	Step 2: Set up an OAuth 2.0 Credential Provider
	Step 3: Obtain an OAuth 2.0 access token
	Step 4: Use OAuth2 Access Token to Invoke External Resource
	What's Next?

	Manage workload identities with AgentCore Identity
	Understanding workload identities
	Create and configure workload identities
	Manage identities with AWS CLI
	Create identities with the AgentCore SDK


	Manage credential providers with AgentCore Identity
	Supported authentication patterns
	User-delegated access (OAuth 2.0 authorization code grant)
	Machine-to-machine authentication (OAuth 2.0 client credentials grant)
	Choosing the right authentication pattern

	Configure credential provider
	Creating an OAuth 2.0 credential provider
	Creating an API key credential provider

	Obtain credentials
	Get workload access token
	Obtain OAuth 2.0 access token
	Obtain API key


	Identity provider setup and configuration
	Amazon Cognito
	Inbound
	To create a Cognito user pool as an inbound identity provider for user authentication with AgentCore Runtime
	To create a Cognito user pool as an inbound identity provider for machine-to-machine authentication with AgentCore Gateway


	Microsoft
	Inbound
	Configurations for v2.0 Id Tokens

	Outbound

	Auth0 by Okta
	Inbound

	GitHub
	Outbound

	Google
	Outbound

	Salesforce
	Outbound

	Slack
	Outbound


	Data protection in Amazon Bedrock AgentCore Identity
	Data encryption
	Encryption at rest
	Things to know about token vault encryption with customer managed keys


	Set customer managed key policy
	Configure with API operations or an AWS SDK


	Security in Amazon Bedrock AgentCore
	Data protection in Amazon Bedrock AgentCore
	Identity and access management for Amazon Bedrock AgentCore
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Bedrock AgentCore works with IAM
	Identity-based policies for AgentCore
	Identity-based policy examples for AgentCore

	Resource-based policies within AgentCore
	Policy actions for AgentCore
	Policy resources for AgentCore
	Policy condition keys for AgentCore
	ACLs in AgentCore
	ABAC with AgentCore
	Using temporary credentials with AgentCore
	Cross-service principal permissions for AgentCore
	Service roles for AgentCore
	Service-linked roles for AgentCore

	Identity-based policy examples for Amazon Bedrock AgentCore
	Policy best practices
	Using the AgentCore console
	Allow users to view their own permissions

	AWS managed policies for Amazon Bedrock AgentCore
	AWS managed policy: BedrockAgentCoreFullAccess
	AWS managed policy: AmazonBedrockAgentCoreMemoryBedrockModelInferenceExecutionRolePolicy
	AgentCore updates to AWS managed policies

	Troubleshooting Amazon Bedrock AgentCore identity and access
	I am not authorized to perform an action in AgentCore
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AgentCore resources


	Compliance validation for Amazon Bedrock AgentCore
	Resilience in Amazon Bedrock AgentCore

	Quotas for Amazon Bedrock AgentCore
	AgentCore Runtime Service Quotas
	Resource allocation limits
	Invocation limits
	Lifetime session lifecycle parameters

	AgentCore Memory Service Quotas
	AgentCore Identity Service Quotas
	AgentCore Gateway Service Quotas
	Endpoints
	Service quotas

	AgentCore Browser Service Quotas
	AgentCore Code Interpreter Service Quotas

	Document history for the AgentCore User Guide

