
Developer Guide

AWS AppSync Events

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS AppSync Events Developer Guide

AWS AppSync Events: Developer Guide

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS AppSync Events Developer Guide

Table of Contents

What is AWS AppSync Events? ... 1
AWS AppSync Events features ... 2
Pricing for AWS AppSync Events .. 3

Core concepts ... 4
API .. 4
Event .. 4
Channel ... 4
Channel namespace ... 4
Event handler .. 5
Data sources .. 5
Publishing ... 5
Subscribing ... 6

Getting started .. 7
Prerequisites .. 7

Sign up for an AWS account .. 7
Create a user with administrative access ... 8
Account credentials ... 9
Set up the AWS Command Line Interface ... 9

Creating an Event API ... 9
Step 1: Create an event API using the AWS AppSync console .. 10
Step 2: Publish and subscribe to receive your first event .. 10
Step 3: Use wildcards in your channel subscription .. 11
Step 4: Publish in batches .. 12

Using the Amplify client ... 12
Step 1: Create an event API ... 12
Step 2: Deploy a React app with Vite .. 13
Step 3: Configure the Amplify client .. 14
Step 4: Connect to a channel and receive messages .. 15
Step 5: Send a message from your app .. 18

Tutorials ... 20
Persist user messages with a DynamoDB table integration .. 20

Step 1: Create a DynamoDB-backed AWS AppSync GraphQL API .. 21
Step 2: Create an AWS AppSync Events API ... 24
Step 3: Test the AWS AppSync Events API .. 27

iii

AWS AppSync Events Developer Guide

Step 4: Retrieve your messages ... 28
Step 5: (Optional) Delete the resources you created .. 28

Create a wscat clone with with NodeJs and IAM auth ... 29
Before you begin .. 29
The tutorial .. 30

Publishing from a NodeJS Lambda function with IAM auth ... 38
Before you begin .. 38
Installing AWS CDK and creating up your project ... 38
Create your Lambda function .. 41
Deploy the stack ... 42
Subscribe and publish .. 42
Cleaning up .. 42

Channel namespaces ... 43
Event handlers .. 43

Overview ... 43
onPublish handler ... 44
onSubscribe handler ... 46
Error handling .. 47

Data source integrations ... 48
Overview ... 48
Handler structure .. 49
Using Lambda .. 52

Data sources ... 55
Supported data sources .. 55
Adding a data source .. 57

Creating an IAM trust policy for a data source .. 59
Authorizing and authenticating Event APIs ... 62

Authorization types ... 62
API_KEY authorization .. 63
AWS_LAMBDA authorization .. 64
AWS_IAM authorization .. 68
OPENID_CONNECT authorization ... 69
AMAZON_COGNITO_USER_POOLS authorization ... 71
Circumventing SigV4 and OIDC token authorization limitations ... 71

Publishing events .. 73
Publish events via HTTP ... 73

iv

AWS AppSync Events Developer Guide

Publish events via WebSocket ... 74
Event API WebSocket protocol ... 77

Handshake details to establish the WebSocket connection .. 80
Discovering the real-time endpoint from the Event API endpoint ... 81

Authorization formatting based on the AWS AppSync API authorization mode 82
API key subprotocol format .. 82
Amazon Cognito user pools and OpenID Connect (OIDC) subprotocol format 82
AWS Lambda subprotocol format ... 83
AWS Identity and Access Management (IAM) subprotocol format ... 83

Real-time WebSocket operations .. 86
Configuring message details .. 87
Disconnecting the WebSocket ... 91

Configuring custom domain names ... 92
Registering and configuring a domain name ... 92
Creating a custom domain name ... 93
Wildcard custom domain names .. 92

CloudWatch logging and monitoring ... 95
Setting up and configuring logging on an Event API ... 95

Manually creating an IAM role with CloudWatch Logs permissions ... 96
CloudWatch metrics ... 97

HTTP endpoint metrics .. 98
Handler metrics ... 99
Real-time endpoint metrics .. 99

Configuring CloudWatch Logs on Event APIs .. 104
Using token counts to optimize your requests .. 105

Using AWS WAF to protect APIs ... 107
Integrate an AppSync API with AWS WAF .. 107
Creating rules for a web ACL .. 109

Runtime reference ... 112
Runtime reference overview .. 112

Event handlers overview ... 43
Writing event handlers .. 113
Configuring utilities for the APPSYNC_JS runtime ... 118
Bundling, TypeScript, and source maps for the APPSYNC_JS runtime 121

Context reference .. 126
Accessing the context ... 126

v

AWS AppSync Events Developer Guide

Runtime features ... 132
Supported runtime features ... 132
Built-in utilities .. 139
Built-in modules ... 140
Runtime utilities .. 169

DynamoDB function reference .. 170
GetItem ... 172
PutItem ... 174
UpdateItem .. 176
DeleteItem .. 179
Query ... 181
Scan ... 184
BatchGetItem ... 187
BatchDeleteItem ... 190
BatchPutItem ... 192
TransactGetItems .. 193
TransactWriteItems ... 195
Type system (request mapping) .. 201
Type system (response mapping) .. 205
Filters ... 210
Condition expressions .. 211
Transaction condition expressions .. 213
Projections .. 215

OpenSearch Service function reference .. 216
Request ... 216
Response ... 217
operation field ... 218
path field ... 218
params field .. 219

Lambda function reference ... 221
Request object ... 221
Response object .. 222

EventBridge function reference .. 223
Request ... 216
Response ... 217
PutEvents fields ... 226

vi

AWS AppSync Events Developer Guide

HTTP function reference .. 227
Request ... 216
Method .. 228
ResourcePath ... 228
Params fields ... 229
Response ... 217

Amazon RDS function reference ... 230
SQL tagged template .. 230
Creating statements ... 231
Retrieving data .. 232
Utility functions .. 233

Amazon Bedrock function reference ... 233
Request object ... 233
Response object .. 240
Long running invocations ... 241
Type reference ... 241

Document History .. 248

vii

AWS AppSync Events Developer Guide

What is AWS AppSync Events?

AWS AppSync Events lets you create secure and performant serverless WebSocket APIs that
can broadcast real-time event data to millions of subscribers, without you having to manage
connections or resource scaling. With AWS AppSync Events, there is no API code required to get
started, so you can create production-ready real-time web and mobile experiences in minutes.

AWS AppSync Events further simplifies the management and scaling of real-time applications by
shifting tasks like message transformation and broadcast, publish and subscribe authentication,
and the creation of logs and metrics to AWS, while delivering reduced time to market, low latency,
enhanced security, and lower total costs.

With Event APIs, you can enable the following network communication types.

• Unicast

• Multicast

• Broadcast

• Batch publishing and messaging

This allows you to build the following types of interactive and collaborative experiences.

• Live chat and messaging

• Sports and score updates

• Real-time in-app alerts and notifications

• Live commenting and activity feeds

AWS AppSync Events simplifies real-time application development by providing the following
features.

• Automatic management of WebSocket connections and scaling

• Built-in support for broadcasting events to large numbers of subscribers

• Flexible event filtering and transformation capabilities

• Fine-grained authentication and authorization

• Seamless integration with other AWS services, data sources, and external systems for event-
driven architectures

1

AWS AppSync Events Developer Guide

Whether you're building a small prototype or a large-scale production application, AWS AppSync
Events enables you to incorporate real-time experiences using a fully managed and scalable
platform, so you can focus on your application logic instead of the undifferentiated heavy lifting of
managing infrastructure.

AWS AppSync Events features

WebSocket and HTTP Support

Clients can publish events over HTTP or WebSocket, and can subscribe to channels using
WebSockets.

Event APIs provide WebSocket endpoints that enable real-time and pub/sub capabilities.

Channel namespaces and channels

Events are published to channels, that are grouped under namespaces.

Namespaces allow you to define authentication and authorization rules and serverless functions
that apply to all channels within that namespace.

Namespace handlers

You can use the following two types of handlers to configure functions that run in response to
publish and subscribe actions.

• OnPublish - Runs when an event is published to a channel, allowing you to transform, filter,
and reject events.

• OnSubscribe - Runs when a client subscribes to a channel, allowing you to customize the
behavior or reject the subscription request.

Flexible authentication and authorization

Event APIs supports various authentication mechanisms (API key, IAM, Amazon Cognito, OIDC,
and Lambda authorizers) that can be configured at the API level and customized at the channel
namespace level.

Channel subscriptions

Clients receive events for channels they are subscribed to.

AWS AppSync Events features 2

AWS AppSync Events Developer Guide

Wildcard Channel Subscriptions

Clients can subscribe to a group of related channels using a wildcard syntax (e.g., "namespace/
channel/*"), allowing them to receive events from multiple channels without explicitly
subscribing to each one.

Scalable Event Broadcasting

The Event API automatically scales to handle large numbers of concurrent connections and can
efficiently broadcast events to all subscribed clients.

Integration with the AWS Ecosystem

AWS AppSync Events integrates with other AWS services like Amazon CloudWatch Logs,
CloudWatch metrics, and AWS WAF. You can easily implement event-driven architectures by
publishing directly from services like Amazon EventBridge, and AWS Lambda. Amazon Cognito
is directly supported as an authorization type. AWS AppSync Event APIs can be configured to
interact with multiple AWS data sources, enabling you to process and route events efficiently.

Pricing for AWS AppSync Events

When you use AWS AppSync Events, you pay only for what you use with no minimum fees or
mandatory service usage. For more information, see AWS AppSync pricing.

Pricing for AWS AppSync Events 3

https://aws.amazon.com/appsync/pricing/

AWS AppSync Events Developer Guide

AWS AppSync Events concepts

Before you get started, review the following topics to help you understand the fundamental
concepts of AWS AppSync Events.

API

An Event API provides real-time capabilities by enabling you to publish events over HTTP and
WebSocket, and subscribe to events over WebSockets. An Event API has one or more channel
namespaces that define the capabilities and behavior of channels that events can be addressed
to. To learn more about configuring an API, see Configuring authorization and authentication to
secure Event APIs and Configuring custom domain names for Event APIs.

Event

An event is a JSON-formatted unit of data that can be published to channels on your API and
received by clients that are interested in that channel. Events can contain any arbitrary data you
want to transmit in real-time, such as user actions, data updates, system notifications, or sensor
readings. Events are designed to be lightweight and efficient, with a maximum size of 240 KB per
event.

Channel

Channels are the routing mechanism for directing events from publishers to subscribers. You
can think of a channel as a "topic" or "subject" that represents a stream of related events. Clients
subscribe to channels in order to receive events published to those channels in real-time. Channels
are ephemeral and can be created on-demand.

Channel namespace

A channel namespace (or just namespace for short) provides a way to define the capabilities and
behaviors of the channels associated with it. Each namespace has a name. This name represents
the starting segment (the prefix) of a channel path. Any channel where the first segment in the
path matches the name of a namespace, belongs to that namespace. For example, any channel

API 4

AWS AppSync Events Developer Guide

with a first segment of default, such as /default/messages, /default/greetings, and
/default/inbox/user belongs to the namespace named default. To learn more about
namespaces, see Understanding channel namespaces.

Event handler

An event handler is a function defined in a namespace. An event handler is a custom function to
process published events before they are broadcast to subscribers. A event handler can also be
used to process subscription requests when clients try to subscribe to a channel. Handlers are
written in JavaScript and run on the AppSync_JS runtime. Handlers can be associated with data
sources to access external data or run custom business logic.

Data sources

Data sources are the resources that AWS AppSync Events can interact with to process, store,
or retrieve event data. AWS AppSync Events supports data sources that provide the following
capabilities:

• Storage solutions (DynamoDB, Amazon RDS) – Store event data and state.

• Compute resources (Lambda) – Process and transform events.

• AI/ML services (Amazon Bedrock) – Add intelligence to event processing.

• Search and analytics (OpenSearch) – Index and analyze event patterns.

• Event routing (EventBridge) – Connect with broader event architectures.

• External integration (HTTP endpoints) – Interact with external services.

Data sources can be associated with channel namespaces as integrations, and used by handlers to
access external data. AWS AppSync Events can combine multiple data sources within a single API,
enabling you to build sophisticated event processing workflows. Each event can interact with one
or more data sources based on your application's needs.

Publishing

Publishing is the act of sending a batch of events to your Event API. Published events can be
broadcasted to subscribed clients. Publish is done over HTTP or WebSocket.

Event handler 5

AWS AppSync Events Developer Guide

Subscribing

Subscribing is the act of listening for events on a specific channel or subset of channels over an
Event API WebSocket. Clients that subscribe can receive broadcast events in real-time. Clients can
establish multiple subscriptions over a single WebSocket.

Subscribing 6

AWS AppSync Events Developer Guide

Getting started with AWS AppSync Events

You can quickly get started with AWS AppSync Events by creating an AWS AppSync Event API and
accessing it from a client. The first tutorial in this section will guide you through creating your
first AWS AppSync Event API in the AWS AppSync console. Then you will learn to publish and
subscribe to your event. The second tutorial guides you through creating a React app with Vite and
an Amplify client. Then you will use this Amplify client to publish and subscribe messages.

Topics

• Prerequisites

• Creating an AWS AppSync Event API

• Getting started with the Amplify Events client

Prerequisites

Before you begin the getting started tutorials, confirm that you have completed the prerequisites
to get set up with an AWS account.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Prerequisites 7

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS AppSync Events Developer Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Create a user with administrative access 8

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com//singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com//singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com//singlesignon/latest/userguide/quick-start-default-idc.html

AWS AppSync Events Developer Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Account credentials

Although you can use your root user credentials to access AWS AppSync, we recommend that
you use an AWS Identity and Access Management (IAM) account instead. You can use the
AWSAppSyncAdministrator managed policy to grant your IAM account the correct permissions to
manage your AWS AppSync resources.

Set up the AWS Command Line Interface

You can use the AWS Command Line Interface (CLI) to manage your AWS AppSync resources. For
information about how to install and configure the AWS CLI, see Getting started with the AWS CLI
in the AWS Command Line Interface User Guide.

Creating an AWS AppSync Event API

AWS AppSync Events allows you to create Event APIs to enable real-time capabilities in your
applications. In this section, you create an API with a default channel namespace. You’ll then use
the AWS AppSync console to publish messages and subscribe to messages sent to channels in the
namespace.

In this tutorial you will complete the following tasks.

Topics

• Step 1: Create an event API using the AWS AppSync console

Account credentials 9

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com//singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com//singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/appsync/latest/devguide/security_iam_policy_list.html#security-iam-awsmanpol-AWSAppSyncAdministrator
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS AppSync Events Developer Guide

• Step 2: Publish and subscribe to receive your first event

• Step 3: Use wildcards in your channel subscription

• Step 4: Publish in batches

Step 1: Create an event API using the AWS AppSync console

1. Sign in to the AWS Management Console and open the AWS AppSync console.

2. On the AWS AppSync console service page, choose Create API, then choose Event API.

3. On the Create Event API page, in the API details section, do the following:

a. For API enter the name of your API.

b. (optional) Enter the contact name for the API.

4. Choose Create.

You have now created an Event API. The API is configured with API Key as an authorization mode
for connect, publish, and subscribe actions. A default channel namespace with the name “default”
has also been created.

To learn more about customizing authorization, see Configuring authorization and authentication
to secure Event APIs. To learn more about channel namespaces, see Understanding channel
namespaces

Step 2: Publish and subscribe to receive your first event

Use the following instructions to publish an event.

1. In the AWS AppSync console choose the Pub/Sub Editor tab for the Event API that you
created in step 1.

2. In the Publish section, for Channel enter default in the first text box and enter /messages
in the second text box.

3. In the code editor, enter the following JSON payload.

[{"message": "Hello world!"}]

4. Choose Publish.

5. The publisher logs table displays a response similar to the following to confirm success.

Step 1: Create an event API using the AWS AppSync console 10

https://console.aws.amazon.com/appsync/

AWS AppSync Events Developer Guide

{
 "failed": [],
 "successful": [
 {
 "identifier": "53287bee-ae0d-42e7-8a90-e9d2a49e4bd7",
 "index": 0
 }
]
}

Now use the following instructions to subscribe to recieve messages.

1. In the Subscribe section of the editor, choose Connect to connect to your WebSocket
endpoint.

2. For Channel, enter the name of the channel you want to subscribe to, /default/messages,
and then choose Subscribe.

3. In the code editor, choose Publish again. You should receive a new data event in the subscriber
logs table with the published event.

Step 3: Use wildcards in your channel subscription

You can specify a wildcard "*" at the end of a channel path to receive events published to all
channels that match. Use the following instructions to set up a wildcard channel subscription for
your Event API.

1. If you are still subscribed to the channel from step 2, choose Unsubscribe.

2. In the Subscribe section, for Channel enter /default/*.

3. In the code editor section, choose Publish again to send another event. You should receive a
new data event in the subscriber logs table

4. In the Publish section, change the Channel name to /default/greetings/tutorial.

5. Choose Publish. You receive the message in the Subscribe section

Step 3: Use wildcards in your channel subscription 11

AWS AppSync Events Developer Guide

Step 4: Publish in batches

You can publish events in batches of up to five. Subscribed clients receive each message
individually.

1. In the AWS AppSync console, continue in the Pub/Sub Editor tab using the Event API that you
were working with in step 3.

2. In the Publish section JSON code editor, enter the following:

[
 {"message": "Hello world!"},
 {"message": "Bonjour lemonde!"},
 "Hola Mundo!"
]

3. Choose Publish.

4. In the Subscribe log table, you receive 3 data events.

Getting started with the Amplify Events client

You can connect to your AWS AppSync Event API using any HTTP and WebSocket client, and you
can also use the Amplify client for JavaScript. This getting started tutorial guides you through
connecting to an Event API from a JavaScript React application.

In this tutorial you will complete the following tasks.

Topics

• Step 1: Create an event API

• Step 2: Deploy a React app with Vite

• Step 3: Configure the Amplify client

• Step 4: Connect to a channel and receive messages

• Step 5: Send a message from your app

Step 1: Create an event API

1. Sign in to the AWS Management Console and open the AWS AppSync console.

2. On the AWS AppSync console service page, choose Create API, then choose Event API.

Step 4: Publish in batches 12

https://console.aws.amazon.com/appsync/

AWS AppSync Events Developer Guide

3. On the Create Event API page, in the API details section, do the following:

a. For API enter the name of your API.

b. (optional) Enter the contact name for the API.

4. Choose Create.

You have now created an Event API. The API is configured with API Key as an authorization mode
for connect, publish, and subscribe actions. A default channel namespace with the name “default”
has also been created.

To learn more about customizing authorization, see Configuring authorization and authentication
to secure Event APIs. To learn more about channel namespaces, see Understanding channel
namespaces

Step 2: Deploy a React app with Vite

1. From your local work environment, run the following command in a terminal window to create
a new Vite app for React.

npm create vite@latest appsync-events-app -- --template react

2. Run the following command to switch to the appsync-events-app directory and install the
dependencies and the Amplify library.

cd appsync-events-app
npm install
npm install aws-amplify

3. Open a different terminal window and cd into your appsync-events-app directory. Run the
following command to start your sever in dev mode.

npm run dev

(Optional) Configure Tailwind CSS

You can set up Tailwind CSS to style your project.

1. Open a terminal window and run the following commands to install the dependencies.

Step 2: Deploy a React app with Vite 13

AWS AppSync Events Developer Guide

npm install -D tailwindcss postcss autoprefixer
npx tailwindcss init -p

2. Update the tailwind.config.js file with the following code.

/** @type {import('tailwindcss').Config} */
export default {
 content: [
 "./index.html",
 "./src/**/*.{js,ts,jsx,tsx}",
],
 theme: {
 extend: {},
 },
 plugins: [],
}

3. Set the content of ./src/index.css to the following.

@tailwind base;
@tailwind components;
@tailwind utilities;

4. Use the following command to start and restart your Vite app from the terminal where it is
currently running.

npm run dev

Step 3: Configure the Amplify client

1. Sign in to the AWS Management Console and open the AWS AppSync console.

2. Open the Integration tab for the Event API that you created in step 1.

3. Download your configuration file.

4. Save the amplify_outputs.json file in your project's src directory. Your configuration file
will look like the following.

{
 "API": {

Step 3: Configure the Amplify client 14

https://console.aws.amazon.com/appsync/

AWS AppSync Events Developer Guide

 "Events": {
 "endpoint": "https://abc1234567890.aws-appsync.us-west-2.amazonaws.com/
event",
 "region": "us-west-2",
 "defaultAuthMode": "apiKey",
 "apiKey": "da2-your-api-key-1234567890"
 }
 }
}

Important

You must set defaultAuthMode to apiKey and not API_KEY.

Step 4: Connect to a channel and receive messages

1. Update your App.jsx file with the following code.

import { useEffect, useState, useRef } from 'react'
import './App.css'

import { Amplify } from 'aws-amplify'
import { events } from 'aws-amplify/data'
import config from './amplify_outputs.json'

Amplify.configure(config)

export default function App() {
 const [messages, setMessages] = useState([])
 const [room, setRoom] = useState('')
 const counterRef = useRef(null)

 useEffect(() => {
 if (!room || !room.length) {
 return
 }
 let timeoutID
 const pr = events.connect(`/default/${room}`)
 pr.then((channel) => {
 channel.subscribe({
 next: (data) => {

Step 4: Connect to a channel and receive messages 15

AWS AppSync Events Developer Guide

 setMessages((messages) => [...messages, data.message])
 if (timeoutID) {
 clearTimeout(timeoutID);
 }
 counterRef.current?.classList.add('animate-bounce')
 timeoutID = setTimeout(() => {
 counterRef.current?.classList.remove('animate-bounce')
 }, 3000);
 },
 error: (value) => console.error(value),
 })
 })

 return () => {
 pr?.then((channel) => channel?.close())
 }
 }, [room])

 return (
 <div className='max-w-screen-md mx-auto'>
 <h2 className='my-4 p-4 font-semibold text-xl'>AppSync Events - Messages</h2>
 <button
 type="button"
 className='border rounded-md px-4 py-2 items-center text-sm font-medium
 transition-colors focus-visible:outline-none focus-visible:ring-1 focus-
visible:ring-ring disabled:pointer-events-none disabled:opacity-50 bg-sky-200
 shadow hover:bg-sky-200/90'
 onClick={() => {
 const room = prompt('Room:')
 if (room && room.length) {
 setMessages([])
 setRoom(room.trim().replace(/\W+/g, '-'))
 }
 }}
 >
 set room
 </button>
 <div className='my-4 border-b-2 border-sky-500 py-1 flex justify-between'>
 <div>
 {room ? (

 Currently in room: {room}

) : (

Step 4: Connect to a channel and receive messages 16

AWS AppSync Events Developer Guide

 Pick a room to get started
)}
 </div>
 <div className='flex items-center uppercase text-xs tracking-wider font-
semibold'>
 <div className='mr-2'>Messages count:</div>
 <span ref={counterRef} className='transition-all inline-flex
 items-center rounded-md bg-sky-100 px-2.5 py-0.5 text-xs font-medium text-
sky-900'>{messages.length}</div>
 </div>
 <section id="messages" className='space-y-2'>
 {messages.map((message, index) => (
 <div
 key={index}
 className='border-b py-1 flex justify-between px-2'
 ><div>
 {message}
 </div>
 <div> </div>
 </div>
))}
 </section>
 </div>
)
}

2. Open the app in your browser and choose the set room button to set the room to "greetings".

3. Open the AWS AppSync console, and go to the Pub/Sub Editor tab for your API.

4. Set your channel to /default/greetings. Choose the "default" namespace and set the rest
of the path to /greetings.

5. Paste the following into the editor to send the event.

[
 {
 "message": "hello world!"
 }
]

6. You should see the message in your app.

7. Choose the set room button again to select another room. Send another event in the Pub/Sub
Editor to the /default/greetings channel. You do not see that message in your app.

Step 4: Connect to a channel and receive messages 17

AWS AppSync Events Developer Guide

Step 5: Send a message from your app

1. Open your App component and add the following line of code at the top of the file.

const [message, setMessage] = useState('')

2. In the same file, locate the last section element and add the following code.

<section>
 <form
 disabled={!room}
 className='w-full flex justify-between mt-8'
 onSubmit={async (e) => {
 e.preventDefault()
 const event = { message }
 setMessage('')
 await events.post(`/default/${room}`, event)
 }}
 >
 <input
 type="text"
 name="message"
 placeholder="Message:"
 className='flex flex-1 rounded-md border border-input px-3
 py-1 h-9 text-sm shadow-sm transition-colors focus-visible:outline-none
 focus-visible:ring-1 focus-visible:ring-ring disabled:cursor-not-allowed
 disabled:opacity-50 bg-transparent'
 value={message}
 disabled={!room}
 onChange={(e) => setMessage(e.target.value)}
 />
 <button
 type="submit"
 className='ml-4 border rounded-md px-4 flex items-center text-sm font-
medium transition-colors focus-visible:outline-none focus-visible:ring-1 focus-
visible:ring-ring disabled:pointer-events-none disabled:opacity-50 bg-sky-200
 shadow hover:bg-sky-200/90'
 disabled={!room || !message || !message.length}>
 <svg xmlns="http://www.w3.org/2000/svg" className='size-4' width="24"
 height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" strokeWidth="2"
 strokeLinecap="round" strokeLinejoin="round"><path d="M14.536 21.686a.5.5 0 0
 0 .937-.024l6.5-19a.496.496 0 0 0-.635-.635l-19 6.5a.5.5 0 0 0-.024.937l7.93
 3.18a2 2 0 0 1 1.112 1.11z" /><path d="m21.854 2.147-10.94 10.939" /></svg>

Step 5: Send a message from your app 18

AWS AppSync Events Developer Guide

 </button>
 </form>
 </section>

3. You can now send a message to a room that you select, directly from your app.

Step 5: Send a message from your app 19

AWS AppSync Events Developer Guide

AWS AppSync Event API tutorials

To help you understand how AWS AppSync Events works, the following tutorials walk you through
common tasks and workflows.

Tutorials

• Persist user messages with a DynamoDB table integration using AppSyncJs

• Create a wscat clone using NodeJs and IAM auth using AppSyncJs

• Publishing from a NodeJS Lambda function with IAM auth using AppSyncJs

Persist user messages with a DynamoDB table integration using
AppSyncJs

In this tutorial, you'll learn how to create an AWS AppSync Events API that stores user messages
in a DynamoDB table as they are published and before they are broadcasted to connected users.
You'll create a simple messaging system where users can send messages and then later retrieve
their message history.

You will complete this tutorial using only the AWS Management Console. Before you begin,
complete the following set up prerequisites.

Sign up for an AWS account

If you are not already an AWS customer, you need to create an AWS account by following the
online instructions. Signing up enables you to access AWS AppSync and other AWS services that
you can use with your AWS AppSync GraphQL and Event APIs.

Understand how to access the AWS Management Console

The AWS AppSync console is available at https://console.aws.amazon.com/appsync.

Understand the AWS AppSync and DynamoDB services

For more information about DynamoDB, see What is Amazon DynamoDB in the Amazon
DynamoDB Developer Guide.

Persist user messages with a DynamoDB table integration 20

https://portal.aws.amazon.com/billing/signup#/start/email
https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

AWS AppSync Events Developer Guide

Step 1: Create a DynamoDB-backed AWS AppSync GraphQL API

In this step, you create an AWS AppSync GraphQL API along with the DynamoDB table to store the
messages.

Create a GraphQL API

1. Sign in to the AWS Management Console and open the AWS AppSync console at AWS AppSync
console.

2. On the AWS AppSync home page, choose Create API, then choose GraphQL API.

3. On the Select API type page, choose Design from scratch. Then choose Next.

4. In the Specify API details section, for API name, enter graphql-messages-api. Then
choose Next.

5. On the Specify GraphQL resources page, in the Create a GraphQL type section, choose
Create type backed by a DynamoDB table now.

6. In the Configure model information section, do the following:

a. For Model name, enter Message.

b. For Fields, do the following to add a channel field to your model:

i. Choose Add new field.

ii. For Name, enter channel.

iii. For Type, choose String.

iv. For Array, choose No.

v. For Required, choose Yes.

c. Do the following to add an id field to your model:

i. Choose Add new field.

ii. For Name, enter id.

iii. For Type, choose String.

iv. For Array, choose No.

v. For Required, choose Yes.

d. Do the following to add a user field to your model:

i. Choose Add new field.
Step 1: Create a DynamoDB-backed AWS AppSync GraphQL API 21

https://console.aws.amazon.com/appsync/
https://console.aws.amazon.com/appsync/

AWS AppSync Events Developer Guide

ii. For Name, enter user.

iii. For Type, choose String.

iv. For Array, choose No.

v. For Required, choose Yes.

e. Do the following to add a content field to your model:

i. Choose Add new field.

ii. For Name, enter content.

iii. For Type, choose String.

iv. For Array, choose No.

v. For Required, choose Yes.

f. Do the following to add a createdAt field to your model:

i. Choose Add new field.

ii. For Name, enter createdAt.

iii. For Type, choose DateTime.

iv. For Array, choose No.

v. For Required, choose Yes.

The following screenshot shows how your fields should be configured:

Step 1: Create a DynamoDB-backed AWS AppSync GraphQL API 22

AWS AppSync Events Developer Guide

7. In the Configure model table section, do the following:

a. For Table name enter tutorial-events-messages.

b. For Primary key, select user.

c. For Sort key, select id.

The following screenshot shows how your fields should be configured:

Step 1: Create a DynamoDB-backed AWS AppSync GraphQL API 23

AWS AppSync Events Developer Guide

8. Choose Next.

9. On the Review and create page, review your API details, and choose Create API.

The AWS AppSync console creates a DynamoDB table and an AWS AppSync GraphQL API to
query the table. Wait for the API creation process to complete before continuing to Step 2 of
this tutorial.

Step 2: Create an AWS AppSync Events API

In this step, you create the AWS AppSync Events API that you can use to publish messages. Other
clients will be able to subscribe to a channel on the API to receive messages.

Create the AWS AppSync Events API

1. In the left navigation menu, choose API to return to the APIs page.

2. In the API types section, choose Create Event API.

3. On the Create Event API page, in the API details section, for API name, enter events-
messages-api.

4. Choose Create.

The AWS AppSync console creates an Event API with API key authorization mode configured,
and a channel namespace called default.

Step 2: Create an AWS AppSync Events API 24

AWS AppSync Events Developer Guide

Next, create a data source for your DynamoDB table that you created in Step 1.

To create a data source for the DynamoDB table

1. Choose the Data sources tab.

2. Choose Create data source.

3. On the Create data source page, do the following:

a. For Name, enter messages.

b. For Data source type, choose Amazon DynamoDB.

c. The configuration automatically selects the current AWS Region.

d. For Table name, select tutorial-events-messages from the list.

4. Choose Create.

Now you can create your data source integration in your namespace.

To create a data source integration with a namespace

1. From your messages data source page, you need to return to the settings page for my-event-
api. You can either use your browser's back button or you can choose my-event-api from the
top menu in the console window. The following screenshot shows the location of the menu
with my-event-api circled.

Step 2: Create an AWS AppSync Events API 25

AWS AppSync Events Developer Guide

2. Choose the Namespaces tab, then choose the default namespace.

3. Choose Edit.

4. On the Edit default page, in the Handler section, choose Code with data source.

5. For Publish configuration, Data source name, choose messages. For Behavior, choose Code.

6. For Subscribe configuration, leave the Data source name blank.

7. In the code editor, enter the following code:

import { util } from '@aws-appsync/utils'
import * as ddb from '@aws-appsync/utils/dynamodb'

export const onPublish = {
 request(ctx) {
 const channel = ctx.info.channel.path
 const createdAt = util.time.nowISO8601()
 return ddb.batchPut({
 tables: {
 'tutorial-events-messages': ctx.events.map(({ payload }) => {
 return { channel, id: util.autoKsuid(), createdAt, ...payload }
 }),
 },
 })
 },

Step 2: Create an AWS AppSync Events API 26

AWS AppSync Events Developer Guide

 // simply forward the events for broadcast
 response: (ctx) => ctx.events
}

The code uses the ddb.batchPut function to save multiple events to the “tutorial-events-
messages” using a DynamoDB BatchWrite operation. It adds the channel path, creates an id,
and a timestamp before saving the items.

8. Choose Save to confirm your code changes.

Step 3: Test the AWS AppSync Events API

To test the API

1. From your default namespace page, you need to return to the settings page for my-event-api.
You can either use your browser's back button or you can choose my-event-api from the top
menu in the console window.

2. On the my-event-api page, choose the Pub/Sub Editor tab.

3. In the Subscrib section, choose Connect and Subscribe to the default/* channel.

4. In the Publish section, paste the following in the code editor:

{
 "user": "john",
 "content": "Hello, world!"
}

5. Choose Publish.

6. Update the content in the editor with the following:

[
 {
 "user": "sarah",
 "content": "Working on a fresh batch of cookies!"
 },
 {
 "user": "harry",
 "content": "Yum, can't wait!"
 }
]

Step 3: Test the AWS AppSync Events API 27

AWS AppSync Events Developer Guide

7. Choose Publish again. After each time you publish, the events are displayed in the Subscribe
table.

Step 4: Retrieve your messages

You can view your messages directly in the DynamoDB table. However, there is a simple process
for querying the data with GraphQL. This step demonstrates how to do this using your graphql-
messages-api AWS AppSync GraphQL API.

To query data with a GraphQL API

1. From your my-event-api Pub/Sub Editor page, you need to go to your graphql-messages-api.
In the left navigation, choose APIs. In the APIs section, choose graphql-messages-api.

2. In the left navigation menu, choose Queries.

3. On the Queries page, clear the contents of the editor and enter the following query.

query byChannel {
 queryMessagesByChannelIdIndex(channel: "/default/channel", first: 10) {
 items {
 channel
 id
 user
 content
 createdAt
 }
 }
}

4. Choose the orange Execute query button on the upper right. The query returns the first ten
items in your DynamoDB table.

Step 5: (Optional) Delete the resources you created

If you no longer need the resources that you created for this tutorial, you can delete them. This
step helps ensure that you aren't charged for resources that you aren't using.

You can delete all of the following resources directly in the AWS AppSync console:

• The AWS AppSync Events API my-event-api

Step 4: Retrieve your messages 28

AWS AppSync Events Developer Guide

• The AWS AppSync GraphQL API graphql-messages-api

• The DynamoDB table tutorial-events-messages

Create a wscat clone using NodeJs and IAM auth using
AppSyncJs

This tutorial shows you how to create a wscat clone that enables real-time messaging using AWS
AppSync Events with IAM authorization using Smithy libraries with TypeScript in NodeJS.

Before you begin

Make sure you have completed the prerequisites in the Getting Started topic. You will also need to
use the AWS CLI.

Your profile must have permissions to run the following actions. For more information about AWS
AppSync actions, see Actions, resources, and condition keys for AWSAWS AppSync.

• appsync:EventConnect - Grants permission to connect to an Event API

• appsync:EventPublish - Grants permission to publish events to a channel namespace

• appsync:EventSubscribe - Grants permission to subscribe to a channel namespace

You will also need to have NodeJS working in your environment. You need NodeJS version 22.14.0
or higher.

Note

You can download the latest version of NodeJs here or use a tool like Node Version
Manager (nvm).

Create a wscat clone with with NodeJs and IAM auth 29

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/Package/-smithy-signature-v4/
https://docs.aws.amazon.com/appsync/latest/eventapi/event-api-getting-started.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsappsync.html
https://nodejs.org/en
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm

AWS AppSync Events Developer Guide

The tutorial

Implementation steps

1. Create an Event API

To begin, create the Event API you will interact with. For more information, see Creating an
AWS AppSync Event API to create the Event API.

2. Configure authorization

Once created, sign into the AWS AppSync console and configure the IAM authorization in
Settings.

a. In the Authorization modes section, choose Add. On the next screen, choose AWS
Identity and Access Management (IAM), and choose Add to use IAM as an authorization
mode.

b. In the Authorization configuration section, choose Edit.

c. On the next page, add IAM authorization to the Connection authorization modes, the
default publish authorization modes, and the default subscribe authorization modes.
Choose Update to save your changes.

3. Start a new NodeJs project

In your terminal, create a new directory and initialize project:

mkdir eventscat
cd eventscat
npm init -y

4. Install TypeScript packages

Install the required TypeScript packages and bundle them using esbuild

npm install esbuild typescript
npm install -D @tsconfig/node20 @types/node

5. Create a new signer library for IAM

When using IAM as an authorization mode, you must sign your request using Sigv4. Create a
signer library handles that task. Start by installing the required packages.

The tutorial 30

https://docs.aws.amazon.com/appsync/latest/eventapi/create-event-api-tutorial.html
https://docs.aws.amazon.com/appsync/latest/eventapi/create-event-api-tutorial.html
https://esbuild.github.io/

AWS AppSync Events Developer Guide

npm i @aws-crypto/sha256-js \
 @aws-sdk/credential-providers \
 @smithy/protocol-http \
 @smithy/signature-v4

Create a new file: src/signer.ts with the following code

import { Sha256 } from '@aws-crypto/sha256-js'
import { fromNodeProviderChain } from '@aws-sdk/credential-providers'
import { HttpRequest } from '@smithy/protocol-http'
import { SignatureV4 } from '@smithy/signature-v4'

/** AppSync Events WebSocket sub-protocol identifier */
export const AWS_APPSYNC_EVENTS_SUBPROTOCOL = 'aws-appsync-event-ws'

/** Default headers required for AppSync Events API requests */
export const DEFAULT_HEADERS = {
 accept: 'application/json, text/javascript',
 'content-encoding': 'amz-1.0',
 'content-type': 'application/json; charset=UTF-8',
}

/**
 * Prepares signed material for a request
 * @param httpDomain - the Events API HTTP domain
 * @param region - the API region
 * @param body - the body to sign
 * @returns signed material for a request
 */
export async function sign(httpDomain: string, region: string, body: string) {
 const credentials = fromNodeProviderChain()

 const signer = new SignatureV4({
 credentials,
 service: 'appsync',
 region,
 sha256: Sha256,
 })

 const url = new URL(`https://${httpDomain}/event`)
 const httpRequest = new HttpRequest({
 method: 'POST',

The tutorial 31

AWS AppSync Events Developer Guide

 headers: { ...DEFAULT_HEADERS, host: url.hostname },
 body,
 hostname: url.hostname,
 path: url.pathname,
 })

 const signedReq = await signer.sign(httpRequest)
 return { host: signedReq.hostname, ...signedReq.headers }
}

/**
 * Get the HTTP domain and region or null if it cannot be identified
 * @param wsDomain - the websocket domain
 */
function getHttpDomain(wsDomain: string) {
 const pattern =
 /^\w{26}\.appsync-realtime-api.(\w{2}(?:(?:-\w{2,})+)-\d)\.amazonaws.com(?:
\.cn)?$/

 const match = wsDomain.match(pattern)
 if (match) {
 return {
 httpDomain: wsDomain.replace('appsync-realtime-api', 'appsync-api'),
 region: match[1],
 }
 }
 return null
}

/**
 * Transforms an object into a valid based64Url string
 * @param auth - header material
 */
function getAuthProtocol(auth: unknown): string {
 const based64UrlHeader = btoa(JSON.stringify(auth))
 .replace(/\+/g, '-') // Convert '+' to '-'
 .replace(/\//g, '_') // Convert '/' to '_'
 .replace(/=+$/, '') // Remove padding `=`
 return `header-${based64UrlHeader}`
}

/**
 * Gets the protocol array that authorizes connecting to an API
 * @param wsDomain -the WebSocket endpoint domain

The tutorial 32

AWS AppSync Events Developer Guide

 * @param region - the AWS region of the API
 * @returns
 */
export async function getAuthForConnect(wsDomain: string, region?: string) {
 const domain = getHttpDomain(wsDomain)
 if (!domain && !region) {
 throw new Error('Must provide region when using a custom domain')
 }
 const httpDomain = domain?.httpDomain ?? wsDomain
 const _region = domain?.region ?? region!
 const signed = await sign(httpDomain, _region, '{}')
 const protocol = getAuthProtocol(signed)
 return [AWS_APPSYNC_EVENTS_SUBPROTOCOL, protocol]
}

/**
 * Gets the authorization header for a websocket message
 * @param wsDomain -the WebSocket endpoint domain
 * @param body -the request to sign
 * @param region - the AWS region of the API
 * @returns
 */
export async function getAuthForMessage(wsDomain: string, body: unknown, region?:
 string) {
 const domain = getHttpDomain(wsDomain)
 if (!domain && !region) {
 throw new Error('Must provide region when using a custom domain')
 }
 const httpDomain = domain?.httpDomain ?? wsDomain
 const _region = domain?.region ?? region!
 return await sign(httpDomain, _region, JSON.stringify(body))
}

The signer uses fromNodeProviderChain to retrieve your local credentials and uses SigV4 to
sign the request headers and content.

6. Create your program

a. We recommend to you use the chalk library to provide some color on your terminal and
the commander library to define and parse your program command options.

npm install chalk commander

The tutorial 33

https://www.npmjs.com/package/chalk
https://www.npmjs.com/package/commander

AWS AppSync Events Developer Guide

b. Create the file src/eventscat.ts with the following code for your program.

import chalk from 'chalk'
import { program } from 'commander'
import EventEmitter from 'node:events'
import readline from 'node:readline'
import { getAuthForConnect, getAuthForMessage } from './signer'

/**
 * InputReader - processes console input.
 *
 * @extends EventEmitter
 */
class Console extends EventEmitter {
 stdin: NodeJS.ReadStream & { fd: 0 }
 stdout: NodeJS.WriteStream & { fd: 1 }
 stderr: NodeJS.WriteStream & { fd: 2 }
 readlineInterface: readline.Interface

 constructor() {
 super()

 this.stdin = process.stdin
 this.stdout = process.stdout
 this.stderr = process.stderr

 this.readlineInterface = readline.createInterface({
 input: process.stdin,
 output: process.stdout,
 })

 this.readlineInterface
 .on('line', (data) => {
 this.emit('line', data)
 })
 .on('close', () => {
 this.emit('close')
 })
 }

 prompt() {
 this.readlineInterface.prompt(true)
 }

The tutorial 34

AWS AppSync Events Developer Guide

 message(msg: string) {
 const payload = JSON.parse(msg)
 this.clear()
 if (payload.type === 'ka') {
 this.stdout.write(chalk.magenta('<ka>\n'))
 } else if (payload.type === 'data') {
 this.stdout.write(chalk.blue(`<
 ${JSON.stringify(JSON.parse(payload.event), null, 2)}\n`))
 } else {
 this.stdout.write(chalk.bgBlack.white(`* ${payload.type} *\n`))
 }
 this.prompt()
 }

 print(msg: any) {
 this.clear()
 this.stdout.write(msg + '\n')
 this.prompt()
 }

 clear() {
 this.stdout.write('\r\u001b[2K\u001b[3D')
 }
}

export async function main() {
 program
 .version('demo')
 .option('-r, --realtime <domain>', 'AppSync Events real-time domain')
 .option('-s, --subscribe <channel>', 'Channel to subscribe to')
 .option('-p, --publish [channel]', 'Channel to publish to')
 .parse(process.argv)

 const options = program.opts()
 if (!options.realtime || !options.subscribe) {
 return program.help()
 }

 const wsConsole = new Console()
 const domain = options.realtime
 const channel = options.subscribe

 const protocols = await getAuthForConnect(domain)

The tutorial 35

AWS AppSync Events Developer Guide

 const ws = new WebSocket(`wss://${domain}/event/realtime`, protocols)

 ws.onopen = async () => {
 ws.send(
 JSON.stringify({
 type: 'subscribe',
 id: crypto.randomUUID(),
 channel,
 authorization: await getAuthForMessage(domain, { channel }),
 }),
)
 wsConsole.print(chalk.green('Connected (press CTRL+C to quit)'))
 wsConsole.on('line', async (data: string) => {
 if (!data || !data.trim().length || !options.publish) {
 return wsConsole.prompt()
 }
 const channel = options.publish
 const events = [JSON.stringify(data.trim())]
 ws.send(
 JSON.stringify({
 type: 'publish',
 id: crypto.randomUUID(),
 channel,
 events,
 authorization: await getAuthForMessage(domain, { channel, events }),
 }),
)
 wsConsole.prompt()
 })
 }

 ws.onclose = (event) => {
 wsConsole.print(chalk.green(`Disconnected (code: ${event.code}, reason:
 "${event.reason}")`))
 wsConsole.clear()
 process.exit()
 }

 ws.onerror = (err) => {
 wsConsole.print(chalk.red(err))
 process.exit(-1)
 }

 ws.onmessage = (data) => wsConsole.message(data.data)

The tutorial 36

AWS AppSync Events Developer Guide

 wsConsole.on('close', () => {
 ws.close()
 process.exit()
 })
}

c. Specify the scripts property in package.json file.

...
 "scripts": {
 "build": "esbuild --platform=node --target=node20 --bundle --outfile=bin/
eventscat.js src/eventscat.ts"
 },
...

d. Build the code.

npm run build

e. Add the file bin/eventscat.

#!/usr/bin/env node

const { main } = require('./eventscat.js')
main()

Change the mode of the file to execute it

chmod +x bin/eventscat

7. Using the program

Test the implementation by connecting to your API. To do this, subscribe to /default/*
channel, and publish on the /default/iam channel. You can find the realtime domain of your
API in the Settings section of the AWS AppSync console under Realtime.

./bin/eventscat --realtime 1234567890.appsync-api.us-east-2.amazonaws.com \
--subscribe "/default/*" --publish "/default/iam"

The tutorial 37

AWS AppSync Events Developer Guide

Once the client is connected, you can start publishing messages simply by entering text and
pressing enter. You also start receiving messages published to your subscribe channel.

8. (Optional) Clean up

Once you are done with this tutorial, you can delete the API you created by going to the AWS
AppSync console, selecting the API and choosing Delete.

Publishing from a NodeJS Lambda function with IAM auth
using AppSyncJs

AWS AppSync Events allows you to create Event APIs to enable real-time capabilities in your
applications. In this tutorial, you use AWS CDK to create your API and a Lambda function that
publishes messages. You'll use IAM auth as the authorization mode to publish to your configured
channel.

Before you begin

To get started, make sure you have gone through the prerequisites. You will need an AWS account.
You will also work from the command line.

Installing AWS CDK and creating up your project

The AWS Cloud Development Kit (AWS CDK) (AWS CDK) is an open-source software development
framework for defining cloud infrastructure as code with modern programming languages and
deploying it through AWS CloudFormation.

From your terminal, install CDK.

npm install -g aws-cdk

Next, create a new folder for your application

Note

Be sure to use the exact name as AWS CDK uses the folder name to name your app.

Publishing from a NodeJS Lambda function with IAM auth 38

AWS AppSync Events Developer Guide

mkdir publish-from-lambda

From the publish-from-lambda directory, init a new app:

cd publish-from-lambda
cdk init app --language typescript

The AWS CDK CLI creates a AWS CDK app containing a single AWS CDK stack. You'll be using
TypeScript in this project, so install esbuild to bundle your code:

npm i -D esbuild@0

Now, update the lib/publish-from-lambda-stack.ts file with this code:

import * as cdk from 'aws-cdk-lib'
import * as appsync from 'aws-cdk-lib/aws-appsync'
import { Runtime } from 'aws-cdk-lib/aws-lambda'
import * as nodejs from 'aws-cdk-lib/aws-lambda-nodejs'
import type { Construct } from 'constructs'
import * as path from 'node:path'

export class PublishFromLambdaStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props)

 const { IAM, API_KEY } = appsync.AppSyncAuthorizationType
 const apiKeyProvider = { authorizationType: API_KEY }
 const iamProvider = { authorizationType: IAM }

 // 1. Create a new AppSync Events API
 const api = new appsync.EventApi(this, 'api', {
 apiName: 'messages-api',
 authorizationConfig: {
 authProviders: [apiKeyProvider, iamProvider],
 connectionAuthModeTypes: [API_KEY],
 defaultSubscribeAuthModeTypes: [API_KEY],
 defaultPublishAuthModeTypes: [IAM],
 },
 })

 // 2. Create a channel namespace called `messages`

Installing AWS CDK and creating up your project 39

AWS AppSync Events Developer Guide

 const ns = api.addChannelNamespace('messages')

 // 3. Create the Lambda function: publisher
 const publisher = new nodejs.NodejsFunction(this, 'publisher', {
 entry: path.join(__dirname, 'lambda', 'publisher.ts'),
 runtime: Runtime.NODEJS_22_X,
 timeout: cdk.Duration.minutes(1),
 bundling: { externalModules: ['@aws-sdk/*'] },
 environment: {
 NAMESPACE: 'messages',
 HTTP_ENDPOINT: api.httpDns,
 },
 })

 // 4. Grant publisher IAM permissions to publish messages to the namespace
 ns.grantPublish(publisher)

 // 5. Output the API ID and the function name
 new cdk.CfnOutput(this, 'apiId', { value: api.apiId })
 new cdk.CfnOutput(this, 'fnName', { value: publisher.functionName })
 }
}

Let's recap the stack implementation:

• You create a new AWS AppSync Events API called messages-api. With this API, you can connect
to the WebSocket endpoint and subscribe to a channel using an API Key. You can only publish to
a channel using IAM authorization.

• You create a name space called messages. This allows you to publish and subscribes to channel
paths like starting with /messages.

• You create a NodeJS Lambda function running on NODEJS_22. The function can run up
to 1 minute. You configure the environment variable and pass the API's http endpoint and
namespace.

• You grant the function permissions to publish to any channel in the namespace.

• Finally, you output the id of the API and the name of the function. This makes it easy to
reference them later, and find the resources in the console.

Installing AWS CDK and creating up your project 40

AWS AppSync Events Developer Guide

Create your Lambda function

Next, create you'll create a Lambda function that can publish events to the provided channel using
IAM authorization. To do so, you will use the ob-appsync-events-request library. This small library
implements a Request object that is signed with the available IAM credentials. You can review the
implementation on Github.

In your publish-from-lambda directory, create a new file publisher.ts in the lib/lambda
folder and install the library.

mkdir -p lib/lambda
touch lib/lambda/publisher.ts
npm i -D ob-appsync-events-request @types/aws-lambda

Update publisher.ts with the following code.

import type { Handler } from 'aws-lambda'
import { PublishRequest } from 'ob-appsync-events-request'

const ENV = process.env as {
 NAMESPACE: string
 HTTP_ENDPOINT: string
}

export const handler: Handler = async (event) => {
 const createdAt = new Date().toISOString()

 // Create a signed request
 const request = await PublishRequest.signed(
 `https://${ENV.HTTP_ENDPOINT}/event`,
 `${ENV.NAMESPACE}/lambda`,
 { message: 'Hello, world!', createdAt },
 { message: 'Bonjour le monde!', createdAt },
 { message: '¡Hola Mundo!', createdAt },
)

 // Send the request using fetch
 const response = await fetch(request)
 const result = await response.json()
 console.log(result)
 return result
}

Create your Lambda function 41

https://www.npmjs.com/package/ob-appsync-events-request
https://github.com/onlybakam/ob-appsync-events-request

AWS AppSync Events Developer Guide

When triggered, the Lambda function publishes 3 messages to the channel path /messages/
lambda. The request is signed using the function's IAM permissions. This is possible because you
granted the permissions to the function in your AWS CDK stack configuration!

Deploy the stack

You can deploy the stack at this point from your publish-from-lambda folder:

npm run cdk deploy

Review the prompts to proceed with the deployment, once done, you should see the output:

Outputs:
PublishFromLambdaStack.apiId = your_api_id
PublishFromLambdaStack.fnName = your_function_name

Subscribe and publish

Open the AWS AppSync console in the region you deployed your stack in. On the APIs page,
you can locate your API by pasting in your apiId value in the search bar under APIs. Select
your messages-api, then select Pub/Sub Editor. Scroll down to the Subscribe section, and choose
Connect. Under Channel, you choose messages, then choose Subscribe.

Back in your terminal, invoke the Lambda function with the AWS CLI, using the output fnName.

aws lambda invoke \
 --function-name "your_function_name" \
 --output text /dev/stdout

The function handler is executed, and in your AWS AppSync Events console, you receive the 3
messages!

Cleaning up

Once you are done with this tutorial, you can clean up your resources by running the command:

npm run cdk destroy

Deploy the stack 42

AWS AppSync Events Developer Guide

Understanding channel namespaces

Channel namespaces (or just namespaces for short) define the channels that are available on your
Event API, and the capabilities and behaviors of these channels. Channel namespaces provide a
scalable approach to managing large numbers of channels. Instead of configuring each channel
individually, developers can apply settings across an entire namespace.

Each namespace has a name. This name represents the starting segment (the prefix) of a channel
path. Any channel where the first segment in the path matches the name of a namespace, belongs
to that namespace. For example, any channel with a first segment of default, such as /default/
messages, /default/greetings, and /default/inbox/user belongs to the namespace
named default. A channel namespace is made up of a maximum of five segments.

In a sports-related Event API example, you could have namespaces such as basketball, soccer,
and baseball, with channels within each namespace such as basketball/games/1, soccer/
scores, and baseball/players.

You can only publish and subscribe to channels that belong to a defined namespace. However, a
channel is ephemeral and is created on-demand when a client needs to publish or subscribe to it.

When you define your Event API, you must configure the default authorization for connecting,
publishing and subscribing to an Event API. The publishing and subscribing authorization
configuration is automatically applied to all namespaces. You can override this configuration at the
namespace. To learn more about authorization, see Configuring authorization and authentication
to secure Event APIs.

Process real-time events with AWS AppSync event handlers

Topics

• Overview

• onPublish handler

• onSubscribe handler

• Error handling

Overview

AWS AppSync Event handlers let you run custom business logic on real-time events.

Event handlers 43

AWS AppSync Events Developer Guide

These JavaScript functions:

• Run on the AWS AppSync runtime

• Process published events

• Authorize subscription requests

This topic covers simple event handlers without data source integration. For information about
integrating with data sources like DynamoDB tables and Lambda functions, see the following
topics:

• Data source integrations

• Direct Lambda integrations

Note

Event handlers run after the incoming request is authorized through your configured
authorization mode.

onPublish handler

Use the onPublish handler to process and filter events before they reach subscribers. This handler
runs each time an event is published to a channel.

The handler uses this signature:

function onPublish(context: Context): OutgoingEvent[] | null

type Context = {
 events: IncomingEvent[]; // Array of events to process
 channel: string; // Channel the events were published to
 identity: Identity; // Information about the publisher
 info: {
 channel: {
 path: string; // Full channel path
 segments: string[]; // Path segments
 }
 }

onPublish handler 44

https://docs.aws.amazon.com/appsync/latest/eventapi/data-source-integrations.html
https://docs.aws.amazon.com/appsync/latest/eventapi/direct-lambda-integrations.html

AWS AppSync Events Developer Guide

 channelNamespace: {
 name: string
 }
 operation: 'SUBSCRIBE' | 'PUBLISH'
}

The handler receives a context object with:

• events - Array of events to process

• channel - Target channel name

• identity - Publisher information

For more information on the context object reference, see the Context Reference guide.

Common onPublish tasks

Forward all events

The default API behavior for the onPublish handler forwards all received events. The onPublish
function needs a context object as a parameter.

export function onPublish(ctx) {
 return ctx.events
}

Filter specific events

Filter out events and return only those matching specific criteria. In the following example, the
handler filters the events and only forwards those that have odds greater than 0.5.

export function onPublish(ctx) {
 return ctx.events.filter((event) => event.payload.odds > 0.5)
}

Transform events

Transform events by mapping them to a new shape. In the following example, the handler below
formats each event to include a timestamp and changes the message to upper case format.

import { util } from '@aws-appsync/utils'

onPublish handler 45

AWS AppSync Events Developer Guide

export function onPublish(ctx) {
 return ctx.events.map(event => ({
 id: event.id,
 payload: {
 ...event.payload,
 message: event.payload.message.toUpperCase(),
 timestamp: util.time.nowISO8601()
 }
 }))
}

Important rules for onPublish

• Avoid duplicate event IDs

• Events with an error property won't broadcast

• Null values in the returned array are ignored

• Returns an array of events or null

• Match each returned event ID to an incoming event

• Using an unknown event ID will result in an error

onSubscribe handler

Use the onSubscribe handler to authorize and process subscription requests before allowing
channel subscriptions. The handler in the following example runs when the client subscribes.

The handler uses this signature:

function onSubscribe(context: Context): void

For more information on the context object reference, see the Context Reference Guide.

Examples

Example Logging a subscription request

In the following example, a Amazon Cognito user pool authorization is used and the onSubscribe
handler logs a message when an admin user subscribes to a channel.

export function onSubscribe(ctx) {

onSubscribe handler 46

https://docs.aws.amazon.com/appsync/latest/eventapi/context-reference.html

AWS AppSync Events Developer Guide

 if (ctx.identity.groups.includes('admin')) {
 console.log(`Admin ${ctx.identity.sub} subscribed to ${ctx.channel}`)
 }
}

Example Reject a request

In the following example, a subscription request is rejected by calling util.unauthorized().
The onSubscribe handler restricts the Amazon Cognito user pool's authenticated users to their
own channel. Clients can only subscribe to channels that match the pattern /messages/inbox/
[username].

export function onSubscribe(ctx) {
 const requested = ctx.info.channel.path
 const allowed = `/messages/inbox/${ctx.identity.username}`

 if (requested !== allowed) {
 util.unauthorized()
 }
}

Error handling

Use error handling to manage invalid requests and provide meaningful feedback to users.
This toipic explains how to implement error handling for both HTTP endpoints and WebSocket
connections. To reject requests and return errors to publishers or subscribers, use the
utility.error function. When the publishing is done using the HTTP endpoint, it returns an
HTTP 403 response.

Note

• When publishing is done over an HTTP endpoint, it returns an HTTP 403 response.

• When publishing over WebSocket, it returns a publish_error message with the
provided message.

Examples

The following examples demonstrates how to return an error message.

Error handling 47

AWS AppSync Events Developer Guide

Example Validating required message properties

export function onPublish(ctx) {
 return ctx.events.map(event => {
 if (!event.payload.message) {
 event.error = "Message required"
 }
 return event
 })
}

Example Rejecting entire requests

export function onPublish(ctx) {
 util.error("Operation not allowed")
}

Data source integrations for AWS AppSync events

With AWS AppSync Events, you can create event handlers that run custom business logic on AWS
AppSync's JavaScript runtime. By configuring data source integrations, you can interact with
external systems like Lambdafunctions, DynamoDB tables, or Amazon RDS Aurora databases.

Topics

• Overview

• Handler structure

• Direct data source integrations using Lambda

Overview

You can integrate data sources in your channel namespaces to interact with DynamoDB tables and
Lambda functions. Each integration requires implementing request and response functions. This
topic explains how to configure and use data sources with event handlers.

For detailed information about data source configuration options, see Working with data sources
for AWS AppSync Event APIs.

Data source integrations 48

https://docs.aws.amazon.com/appsync/latest/eventapi/data-sources-chapter.html
https://docs.aws.amazon.com/appsync/latest/eventapi/data-sources-chapter.html

AWS AppSync Events Developer Guide

Handler structure

A handler that interacts with a data source has the following two functions:

• Request — Defines the payload sent to the data source

• Response — Defines the payload sent to the data source

Example Saving events to DynamoDB before broadcasting

The following example defines an onPublish handler that saves all published events to a
messages_table in DynamoDB before forwarding them to be broadcast.

import * as ddb from `@aws-appsync/utils/dynamodb`

const TABLE = 'messages_table'
export const onPublish = {
 request(ctx) {
 const channel = ctx.info.channel.path
 return ddb.batchPut({
 tables: {
 [TABLE]: ctx.events.map(({ id, payload }) => ({ channel, id, ...payload })),
 },
 })
 },
 response(ctx) {
 console.log(`Batch Put result:`, ctx.result.data[TABLE])
 return ctx.events
 }
}

Note

You must return the list of events you want broadcasted in the response function.

Example Forward all events after accessing it from the data source

import * as ddb from `@aws-appsync/utils/dynamodb`

const TABLE = 'messages_table'

Handler structure 49

AWS AppSync Events Developer Guide

export const onPublish = {
 request(ctx) {
 const channel = ctx.info.channel.path
 return ddb.batchPut({
 tables: {
 [TABLE]: ctx.events.map(({ id, payload }) => ({ channel, id, ...payload })),
 },
 })
 },
 response: (ctx) => ctx.events // forward all events
}

onSubscribe handler

Use the onSubscribe handler to process subscription requests.

Example Logging subscriptions to an RDS database

import { insert, createPgStatement as pg } from '@aws-appsync/utils/rds'

export const onSubscribe = {
 request(ctx) {
 const values = {
 channel: ctx.info.channel.path,
 identity: ctx.identity
 }
 return pg(insert({table: 'subs', values}))
 },
 response(ctx) {} // Required empty function
}

Note

You must provide a response function, which can be empty if no other action is required.

Example Granting access based on a channel path

import { select, createPgtatement as pg, toJsonObject } from '@aws-appsync/utils/rds';

export const onSubscribe = {

Handler structure 50

AWS AppSync Events Developer Guide

 request(ctx) {
 const values = {
 channel: ctx.info.channel.path,
 identity: ctx.identity
 }
 return pg(insert({
 select: 'subs',
 where: { channel: { eq: 'ALLOWED' }}
 }))
 },
 response(ctx){
 const { error, result } = ctx;
 if (error) {
 return util.error('db error')
 }
 const res = toJsonObject(result)[1][0];
 if (!res.length) {
 // did not find the item, subscription is not authorized
 util.unauthorized()
 }
 }
}

Example Skipping the data source

To skip the data source invocation at runtime use the runtime.earlyReturn utility. The
earlyReturn operation returns the provided payload and skips the response function.

import * as ddb from `@aws-appsync/utils/dynamodb`

export const onPublish = {
 request(ctx) {
 if (ctx.info.channel.segments.includes('private')) {
 // return early and do no execute the response.
 return runtime.earlyReturn(ctx.events)
 }
 const channel = ctx.info.channel.path
 const event = ctx.events[0]
 const key = { channel, id: event.payload.id }
 return ddb.put({ key, item: event.payload })
 },
 response: (ctx) => ctx.events // forward all events
}

Handler structure 51

AWS AppSync Events Developer Guide

Direct data source integrations using Lambda

AWS AppSync lets you integrate Lambda functions directly with your channel namespace without
writing additional handler code. Both publish and subscribe operations are supported through
Request/Response mode and event mode.

Note

Configuring your direct Lambda integration in event mode triggers your Lambda
aysncronously and does not wait for a reply. The result of the invocation does not impact
the rest of the onPublish or onSubscribe handling.

How it works

Your Lambda function receives a context object containing event information. The function then
passes a context object containing information for the events. The Lambda function can perform
the following operations.

• Filter and transform events for broadcasting

• Return error messages for failed processing

• Handle both publish and subscribe operations

Example Setting a Lambda configuration of a channel namespace in AWS CloudFormation

Set up a direct Lambda integration, configure handlerConfigs on your channel namespace using
AWS CloudFormation.

{
 "Type" : "AWS::AppSync::ChannelNamespace",
 "Properties" : {
 "ApiId" : "api-id-123",
 "Name" : "lambda-direct-ns",
 "HandlerConfigs" : {
 "OnPublish": {
 "Behavior": "DIRECT",
 "Integration": {
 "DataSourceName": "LAMBDA_FUNCTION_DS",
 "LambdaConfig": {

Using Lambda 52

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-appsync-channelnamespace.html

AWS AppSync Events Developer Guide

 "InvokeType": "REQUEST_RESPONSE"
 }
 }
 }
 }
 }
}

Example Setting a Lambda configuration of a channel namespace in the AWS Cloud
Development Kit (AWS CDK)

api.addChannelNamespace('lambda-direct-ns', {
 publishHandlerConfig: {
 dataSource: lambdaDataSource,
 direct: true,
 },
});

With this configuration, you do not need to provide code for your channel namespace. Your
Lambda function will be called for every onPublish event.

Example onPublish response format

onPublish handlers that are configured with the REQUEST_RESPONSE invocation type must
return a response payload with the following structure.

type LambdaAppSyncEventResponse = {
 events?: OutgoingEvent[], // array of outgoing events to broadcast
 error?: string //Optional error message if processing fails
}

Note

• If you use EVENT as the invocation type, your Lambda function is trigged asynchronously
and AWS AppSync does not wait for a response. AWS AppSync broadcasts the events as
usual.

• If you include an error message in the response when logging is enabled, AWS AppSync
Events logs the error message but doesn't return it to the publisher.

Using Lambda 53

AWS AppSync Events Developer Guide

Example onSubscribe response format

For onSubscribe handlers configured with REQUEST_RESPONSE invocation type, your Lambda
function must return one of the following.

• A payload containing an error message

• null to indicate a successful subscription

type LambdaAppSyncEventResponse = {
 error: string // Error message if subscription fails
} | null

Best practices

We recommend the following best practices for using direct Lambda integrations.

• Enable logging to track error messages.

• Ensure your Lambda function handles both success and error cases.

• Test your integration with various payload scenarios.

Powertools for Lambda

You can utilize the following Powertools for Lambda to efficiently write your Lambda function
handlers the following languages.

• TypeScript/Node.js

• Python

• .NET

Using Lambda 54

https://docs.powertools.aws.dev/lambda/typescript/latest/features/event-handler/appsync-events/
https://docs.powertools.aws.dev/lambda/python/latest/core/event_handler/appsync_events/
https://docs.powertools.aws.dev/lambda/dotnet/core/event_handler/appsync_events/

AWS AppSync Events Developer Guide

Working with data sources for AWS AppSync Event APIs

Data sources are resources in your AWS account that AWS AppSync Events can interact with. AWS
AppSync supports multiple data sources including AWS Lambda, Amazon DynamoDB, Amazon
Aurora Serverless, Amazon OpenSearch Service, and HTTP endpoints. An AWS AppSync Events API
can be configured to interact with multiple data sources, enabling you to process and route events
efficiently.

Once you have configured a data source, you can use it as an integration in your namespaces. This
allows you to interact with your data sources from your channel namespace handlers. For example,
you can save events to a DynamoDB table as they are published, before they are broadcast. You can
trigger a Lambda function asynchronously in response to a publish to start a processing job. You
can check user information in an Amazon RDS Aurora PostgreSQL table as clients try to subscribe
to a channel.

Topics

• Supported data sources

• Adding a data source

Supported data sources

AWS Lambda

Lambda functions are ideal for event processing in AWS AppSync Events. They execute in response
to triggers and process events (JSON documents containing event data). Lambda functions can
transform event data, perform business logic, or integrate with other AWS services. Lambda is
particularly useful when you need custom event processing logic or integration with external
services. In your channel namespace integrations, you can write code in your onPublish or
onSubscribe handlers to invoke your Lambda function. Alternately, you can configure a direct
integration without writing any code. AWS AppSync Events will directly call your Lambda function
with the request context.

Amazon DynamoDB

DynamoDB provides scalable storage for event-driven applications. The core component is the
table, which stores collections of data. Tables can store event data, application state, or any other

Supported data sources 55

AWS AppSync Events Developer Guide

structured information. Each entry in a table is stored as an item, containing multiple attributes
(fields). For example, an item might include attributes like eventId, timestamp, and payload.

DynamoDB is particularly effective for event storage and processing due to its high throughput and
low latency. AWS AppSync Events can interact with DynamoDB tables to store, retrieve, and modify
event data as needed.

Amazon RDS

Amazon RDS provides managed relational databases that can be used to store structured event
data or application state. You can use a database instance with your preferred DB engine, such
as PostgreSQL or MySQL, to maintain relational data that is relevant to your event processing
workflow.

Amazon RDS is particularly useful when you need to maintain relationships between different
types of events or when you need ACID compliance for your event data.

Amazon EventBridge

EventBridge complements AWS AppSync Events by providing event buses that can route events
between different services. An event bus receives events from event sources and processes them
based on rules. Each rule follows an event pattern that determines which events get routed to
which targets.

EventBridge integration allows AWS AppSync Events to participate in broader event-driven
architectures, either as a source or target of events.

Amazon OpenSearch Service

OpenSearch Service enables full-text search and analytics on your event data. You can create
nodes containing indices to store and search event information. Data is stored as JSON documents
within shards, enabling efficient searching and analysis of event data.

HTTP endpoints

HTTP endpoints can be used as data sources to integrate with external services or APIs. AWS
AppSync Events can send HTTP requests with event data and process the responses as part of
your event handling workflow. Each data source type has its own strengths and use cases in event-
driven architectures. You can combine multiple data sources within a single AWS AppSync Events
API to create sophisticated event processing workflows. You can also use an HTTP endpoint data
source to interact with any AWS service API.

Supported data sources 56

AWS AppSync Events Developer Guide

Amazon Bedrock

Amazon Bedrock enables AWS AppSync to integrate directly with foundation models for AI/ML
capabilities. Through this data source, you can incorporate generative AI features into your event
processing workflows without managing complex ML infrastructure. Amazon Bedrock provides
access to various foundation models from leading AI companies, including Anthropic, AI21 Labs,
Cohere, Meta, Stability AI, and Amazon.

Adding a data source

The following instructions describe how to add a data source to an Event API. To learn how to use
event handlers to interact with your data source, see Writing event handlers.

Console

1. Sign in to the AWS Management Console and open the AppSync console.

a. Choose your API in the Dashboard.

b. In the Sidebar, choose Data Sources.

2. Choose Create data source.

a. Give your data source a name. You can also give it a description, but that's optional.

b. Choose your Data source type.

c. For DynamoDB, you'll have to choose your Region, then the table in the Region. You
can dictate interaction rules with your table by choosing to make a new generic table
role or importing an existing role for the table. You can enable versioning, which can
automatically create versions of data for each request when multiple clients are trying
to update data at the same time. Versioning is used to keep and maintain multiple
variants of data for conflict detection and resolution purposes. You can also enable
automatic schema generation, which takes your data source and generates some of the
CRUD, List, and Query operations needed to access it in your schema.

For OpenSearch Service, you'll have to choose your Region, then the domain (cluster)
in the Region. You can dictate interaction rules with your domain by choosing to make
a new generic table role or importing an existing role for the table.

Adding a data source 57

https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html

AWS AppSync Events Developer Guide

For Lambda, you'll have to choose your Region, then the ARN of the Lambda function
in the Region. You can dictate interaction rules with your Lambda function by choosing
to make a new generic table role or importing an existing role for the table.

For HTTP, you'll have to enter your HTTP endpoint.

For EventBridge, you'll have to choose your Region, then the event bus in the Region.
You can dictate interaction rules with your event bus by choosing to make a new
generic table role or importing an existing role for the table.

For Amazon RDS, you'll have to choose your Region, then the secret store (username
and password), database name, and schema.

Note

If you're importing existing roles, they need a trust policy. For more
information, see the IAM trust policy.

3. Choose Create.

Note

Alternatively, if you're creating a DynamoDB data source, you can go to the Schema
page in the console, choose Create Resources at the top of the page, then fill out a
predefined model to convert into a table. In this option, you will fill out or import
the base type, configure the basic table data including the partition key, and review
the schema changes.

CLI

• Create your data source by running the create-data-source command.

You'll need to enter the following parameters for this command:

1. The api-id of your API.

2. The name of your table.

Adding a data source 58

https://docs.aws.amazon.com/cli/latest/reference/appsync/create-data-source.html

AWS AppSync Events Developer Guide

3. The type of data source. Depending on the data source type you choose, you might
need to enter a service-role-arn and a -config tag.

An example command will look like the following:

 aws appsync create-data-source --api-id abcdefghijklmnopqrstuvwxyz
 --name data_source_name --type data_source_type --service-role-arn
 arn:aws:iam::107289374856:role/role_name --[data_source_type]-config {params}

Creating an IAM trust policy for a data source

If you’re using an existing IAM role for your data source, you need to grant that role the
appropriate permissions to perform operations on your AWS resource, such as PutItem on an
Amazon DynamoDB table. You also need to modify the trust policy on that role to allow AWS
AppSync to use it for resource access as shown in the following example policy:

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

You can also add conditions to your trust policy to limit access to the data source as desired.
Currently, SourceArn and SourceAccount keys can be used in these conditions. For example, the
following policy limits access to your data source to the account 123456789012:

Creating an IAM trust policy for a data source 59

AWS AppSync Events Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
]
}

Alternatively, you can limit access to a data source to a specific API, such as abcdefghijklmnopq,
using the following policy:

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:appsync:us-west-2:123456789012:apis/
abcdefghijklmnopq"
 }
 }

Creating an IAM trust policy for a data source 60

AWS AppSync Events Developer Guide

 }
]
}

You can limit access to all AWS AppSync APIs from a specific region, such as us-east-1, using the
following policy:

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:appsync:us-east-1:123456789012:apis/*"
 }
 }
 }
]
}

Creating an IAM trust policy for a data source 61

AWS AppSync Events Developer Guide

Configuring authorization and authentication to secure
Event APIs

AWS AppSync Events offers the following authorization types to secure Event APIs: API keys,
Lambda, IAM, OpenID Connect, and Amazon Cognito user pools. Each option provides a different
method of security.

1. API Key authorization: A simple key-based security option, with keys generated by the AppSync
service.

2. Lambda authorization: Enables custom authorization logic, evaluated by an Lambda function .

3. IAM authorization: Utilizes AWS's signature version 4 signing process, allowing fine-grained
access control through IAM policies.

4. OpenID Connect authorization: Integrates with OIDC-compliant services for user
authentication.

5. Amazon Cognito user pools: Implements group-based access control using Amazon Cognitos
user management features.

Authorization types

There are five ways you can authorize applications to interact with your AWS AppSync Event API.
You specify which authorization type you use by specifying one of the following authorization type
values in your AWS AppSync API or AWS CLI call:

• API_KEY

For using API keys.

• AWS_LAMBDA

For using an AWS Lambda function.

• AWS_IAM

For using AWS Identity and Access Management permissions.

• OPENID_CONNECT

For using your OpenID Connect provider.

Authorization types 62

AWS AppSync Events Developer Guide

• AMAZON_COGNITO_USER_POOLS

For using an Amazon Cognito user pool.

When you define your API, you configure the authorization mode to connect to your Event API
WebSocket. You also configure the default authorization modes to use when publishing and
subscribing to messages. You can use different authorization modes for each configuration. For
example, you might want your publisher to use IAM authorization for a backend process running on
an Amazon EC2 instance, but you want your clients to use an API key to subscribe to messages.

Optionally, you can also configure the authorization mode to use for publishing and subscribing to
messages on a namespace. When defined, these settings override the default configuration on your
API. This enables you to have different settings for different namespaces on your API.

When you save changes to your API configuration, AWS AppSync starts to propagate the changes.
Until your configuration change is propagated, AWS AppSync continues to serve your content
from the previous configuration. After your configuration change is propagated, AWS AppSync
immediately starts to serve your content based on the new configuration. While AWS AppSync is
propagating your changes for an API, we can't determine whether the API is serving your content
based on the previous configuration or the new configuration.

To learn more about using authorization types in your WebSocket operations, see Understanding
the Event API WebSocket protocol.

To learn about publishing events using the HTTP or WebSocket endpoint, see Publishing events.

API_KEY authorization

API Keys allow unauthenticated clients to securely use your API. An API key is a hard-coded value
in your application that is generated by the AWS AppSync service. You can rotate API keys from the
AWS Management Console, the AWS CLI, or from the AWS AppSync API Reference.

API keys are configurable for up to 365 days, and you can extend an existing expiration date for up
to another 365 days from that day.

On the client, the API key is specified by the header x-api-key. For example, if your API_KEY is
ABC123, you can publish a message to a channel using the HTTP endpoint via curl as follows:

curl --location "https://YOUR_EVENT_API_ENDPOINT/event" \

API_KEY authorization 63

https://docs.aws.amazon.com/appsync/latest/APIReference/Welcome.html

AWS AppSync Events Developer Guide

--header 'Content-Type: application/json' \
--header "x-api-key:ABC123" \
--data '{
 "channel":"/news",
 "events":["\"Breaking news!\""]
}'

AWS_LAMBDA authorization

You can implement your own API authorization logic using an AWS Lambda function. When you
use Lambda functions for authorization, the following constraint applies.

• A Lambda function authorizer must not return more than 5MB of contextual data.

For example, if your authorization token is 'ABC123', you can publish via curl as follows:

curl --location "https://YOUR_EVENT_API_ENDPOINT/event" \
--header 'Content-Type: application/json' \
--header "Authorization:ABC123" \
--data '{
 "channel":"/news",
 "events":["\"Breaking news!\""]
}'

Lambda functions are called before connection, publish, and subscription attempts. When caching
is turned on, the return value of the function will be cached based on API ID, channel, operation
and the authentication token as applicable.

Note

For the connect operation (EVENT_CONNECT), caching is based on API ID, operation,
and the authentication token because the channel name will not be available during
the connect operation. Subscribe operation (EVENT_SUBSCRIBE) allows wildcards for
channel names, in which case the channel name is used as a literal string along with API ID,
operation, and the authentication token to cache Lambda function’s return value.

You can also specify a regular expression that validates authorization tokens before the function is
called. These regular expressions are used to validate that an authorization token is of the correct

AWS_LAMBDA authorization 64

AWS AppSync Events Developer Guide

format before your function is called. Any request using a token which does not match this regular
expression will be denied automatically.

Lambda functions used for authorization require a principal policy for appsync.amazonaws.com
to be applied on them to allow AWS AppSync to call them. This action is done automatically
in the AWS AppSync console; The AWS AppSync console does not remove the policy. For more
information on attaching policies to Lambda functions, see Working with resource-based IAM
policies in Lambda in the AWS Lambda Developer Guide.

The Lambda function you specify will receive an event with the following shape:

{
 "authorizationToken": "ExampleAUTHtoken123123123",
 "requestContext": {
 "apiId": "aaaaaa123123123example123",
 "accountId": "111122223333",
 "requestId": "f4081827-1111-4444-5555-5cf4695f339f",
 "operation": "EVENT_PUBLISH",
 "channelNamespaceName": "news",
 "channel": "/news/latest"
 },
 "requestHeaders": {
 "header": "value"
 }
}

The operation property indicates the operation that is being evaluated and can have the following
values:

• EVENT_CONNECT

Note

For the EVENT_CONNECT operation, the channelNamespaceName and channel
properties are not set and will be NULL.

• EVENT_SUBSCRIBE

• EVENT_PUBLISH

AWS_LAMBDA authorization 65

https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html#permissions-resource-serviceinvoke
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html#permissions-resource-serviceinvoke

AWS AppSync Events Developer Guide

The event object contains the headers that were sent in the request from the application client to
AWS AppSync.

The authorization function must return at least isAuthorized, a boolean indicating whether the
request is authorized to execute the operation on the Event API.

If this value is true, execution of the Event API continues. If this value is false, an
UnauthorizedException is raised.

Accepted keys

isAuthorized (boolean, required)

A boolean value indicating if the value in authorizationToken is authorized to execute the
operation on the Event API.

If this value is true, execution of the Event API continues. If this value is false, an
UnauthorizedException is raised

handlerContext (JSON object, optional)

A JSON object visible as $ctx.identity.handlerContext in your handlers. The object is a
map of strings. For example, if the following structure is returned by a Lambda authorizer:

{
 "isAuthorized":true
 "handlerContext": {
 "banana":"very yellow",
 "apple":"very green"
 }
}

The value of ctx.identity.handlerContext.apple in handlers will be very green. The
handlerContext object only supports key-value pairs. Nested keys are not supported.

Warning

The total size of this JSON object must not exceed 5MB.

AWS_LAMBDA authorization 66

AWS AppSync Events Developer Guide

ttlOverride (integer, optional)

The number of seconds that the response should be cached for. If no value is returned, the
value from the API is used. If this is 0, the response is not cached.

Lambda authorizers have a timeout of 10 seconds. We recommend designing functions to execute
in the shortest amount of time possible to scale the performance of your API.

Multiple AWS AppSync APIs can share a single authentication Lambda function. Cross-account
authorizer use is not supported.

The following example describes a Lambda function that demonstrates the various authentication
and failure states that a Lambda function can have when used as an AWS AppSync authorization
mechanism.

def handler(event, context):
 # This is the authorization token passed by the client
 token = event.get('authorizationToken')
 # If a lambda authorizer throws an exception, it will be treated as unauthorized.
 if 'Fail' in token:
 raise Exception('Purposefully thrown exception in Lambda Authorizer.')

 if 'Authorized' in token and 'ReturnContext' in token:
 return {
 'isAuthorized': True,
 'handlerContext': {
 'key': 'value'
 }
 }

 # Authorized with no context
 if 'Authorized' in token:
 return {
 'isAuthorized': True
 }

 # never cache response
 if 'NeverCache' in token:
 return {
 'isAuthorized': True,
 'ttlOverride': 0

AWS_LAMBDA authorization 67

AWS AppSync Events Developer Guide

 }

 # not authorized
 if 'Unauthorized' in token:
 return {
 'isAuthorized': False
 }

 # if nothing is returned, then the authorization fails.
 return {}

AWS_IAM authorization

This authorization type enforces the AWS signature version 4 signing process on your API. You can
associate AWS Identity and Access Management (IAM) access policies with this authorization type.
Your application can leverage this association by using an access key (which consists of an access
key ID and secret access key) or by using short-lived, temporary credentials provided by Amazon
Cognito Federated Identities.

Use the following example if you want an IAM role that has permission to perform all data
operations on an API.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appsync:EventConnect",
 "appsync:EventPublish",
 "appsync:EventSubscribe"
],
 "Resource": [
 "arn:aws:appsync:us-west-2:123456789012:apis/{APIID}/*"
]
 }
]

AWS_IAM authorization 68

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

AWS AppSync Events Developer Guide

}

Use the following example to restrict access to a specific API and a specific channel namespace.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appsync:EventConnect"
],
 "Resource": [
 "arn:aws:appsync:us-east-1:111122223333:apis/{APIID}"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "appsync:EventPublish",
 "appsync:EventSubscribe"
],
 "Resource": [
 "arn:aws:appsync:us-east-1:111122223333:apis/{APIID}/
channelNamespace/{NAME}"
]
 }
]
}

OPENID_CONNECT authorization

This authorization type enforces OpenID connect (OIDC) tokens provided by an OIDC-compliant
service. Your application can leverage users and privileges defined by your OIDC provider for
controlling access.

OPENID_CONNECT authorization 69

https://openid.net/specs/openid-connect-core-1_0.html

AWS AppSync Events Developer Guide

An Issuer URL is the only required configuration value that you provide to AWS AppSync
(for example, https://auth.example.com). This URL must be addressable over HTTPS.
AWS AppSync appends /.well-known/openid-configuration to the issuer URL and
locates the OpenID configuration at https://auth.example.com/.well-known/openid-
configuration per the OpenID Connect Discovery specification. It expects to retrieve an
RFC5785 compliant JSON document at this URL. This JSON document must contain a jwks_uri
key, which points to the JSON Web Key Set (JWKS) document with the signing keys. AWS AppSync
requires the JWKS to contain JSON fields of kty and kid.

AWS AppSync supports a wide range of signing algorithms.

Signing algorithms

RS256

RS384

RS512

PS256

PS384

PS512

HS256

HS384

HS512

ES256

ES384

ES512

We recommend that you use the RSA algorithms. Tokens issued by the provider must include the
time at which the token was issued (iat) and may include the time at which it was authenticated
(auth_time). You can provide TTL values for issued time (iatTTL) and authentication time

OPENID_CONNECT authorization 70

https://openid.net/specs/openid-connect-discovery-1_0.html
https://tools.ietf.org/html/rfc5785

AWS AppSync Events Developer Guide

(authTTL) in your OpenID Connect configuration for additional validation. If your provider
authorizes multiple applications, you can also provide a regular expression (clientId) that is used
to authorize by client ID. When the clientId is present in your OpenID Connect configuration,
AWS AppSync validates the claim by requiring the clientId to match with either the aud or azp
claim in the token.

To validate multiple client IDs use the pipeline operator (“|”) which is an “or” in regular expression.
For example, if your OIDC application has four clients with client IDs such as 0A1S2D, 1F4G9H,
1J6L4B, 6GS5MG, to validate only the first three client IDs, you would place 1F4G9H|1J6L4B|
6GS5MG in the client ID field.

AMAZON_COGNITO_USER_POOLS authorization

This authorization type enforces OIDC tokens provided by Amazon Cognito user pools. Your
application can leverage the users and groups in your handlers to apply custom business rules.

When using Amazon Cognito user pools, you can create groups that users belong to. This
information is encoded in a JWT token that your application sends to AWS AppSync in an
authorization header with each request.

curl --location "https://YOUR_EVENT_API_ENDPOINT/event" \
--header 'Content-Type: application/json' \
--header "Authorization:JWT_TOKEN" \
--data '{
 "channel":"/news",
 "events":["\"Breaking news!\""]
}'

Circumventing SigV4 and OIDC token authorization limitations

The following methods can be used to circumvent the issue of not being able to use your SigV4
signature or OIDC token as your Lambda authorization token when certain authorization modes are
enabled.

If you want to use the SigV4 signature as the Lambda authorization token when the AWS_IAM and
AWS_LAMBDA authorization modes are enabled for AWS AppSync's API, do the following:

• To create a new Lambda authorization token, add random suffixes and/or prefixes to the SigV4
signature.

AMAZON_COGNITO_USER_POOLS authorization 71

AWS AppSync Events Developer Guide

• To retrieve the original SigV4 signature, update your Lambda function by removing the random
prefixes and/or suffixes from the Lambda authorization token. Then, use the original SigV4
signature for authentication.

If you want to use the OIDC token as the Lambda authorization token when the OPENID_CONNECT
authorization mode or the AMAZON_COGNITO_USER_POOLS and AWS_LAMBDA authorization
modes are enabled for AWS AppSync's API, do the following:

• To create a new Lambda authorization token, add random suffixes and/or prefixes to the OIDC
token. The Lambda authorization token should not contain a Bearer scheme prefix.

• To retrieve the original OIDC token, update your Lambda function by removing the random
prefixes and/or suffixes from the Lambda authorization token. Then, use the original OIDC token
for authentication.

Circumventing SigV4 and OIDC token authorization limitations 72

AWS AppSync Events Developer Guide

Publishing events

AWS AppSync Events allows you to publish events via your API’s HTTP or WebSocket endpoint. Use
the topics in this chapter to understand the publishing steps and how to structure your HTTP or
WebSocket requests.

Topics

• Publish events via HTTP

• Publish events via WebSocket

Publish events via HTTP

AWS AppSync Events allows you to publish events via your API’s HTTP endpoint using a POST
operation. Publishing is the only supported action over the endpoint.

Publish steps

1. Send a POST request to the address: https://HTTP_DOMAIN/event.

2. Add the authorization header(s) required to authorize your request.

3. Specify the following in the request body:

• The channel that you are publishing to.

• The list of events you are publishing. You can publish up to 5 events in a batch.

Each specified event in your publish request must be a stringified valid JSON value.

Publish example

The following is an example of a request.

{
 "method": "POST",
 "headers": {
 "content-type": "application/json",
 "x-api-key": "da2-your-api-key"
 },
 "body": {

Publish events via HTTP 73

AWS AppSync Events Developer Guide

 "channel": "default/channel",
 "events": [
 "{\"event_1\":\"data_1\"}",
 "{\"event_2\":\"data_2\"}"
]
 }
}

You can use your Browser’s fetch API to publish the events. The following example
demonstrates this.

await fetch(`https://${HTTP_DOMAIN}/event`, {
 "method": "POST",
 "headers": {
 "content-type": "application/json",
 "x-api-key": "da2-your-api-key"
 },
 "body": {
 "channel": "default/channel",
 "events": [
 "{\"event_1\":\"data_1\"}",
 "{\"event_2\":\"data_2\"}"
]
 }
})

To learn more about the different authorization types that AWS AppSync Events supports, see
Configuring authorization and authentication to secure Event APIs.

Publish events via WebSocket

AWS AppSync Events allows you to publish events via your API’s WebSocket endpoint after you
connect to it.

Publish steps

1. Connect to your WebSocket endpoint: wss://WS_DOMAIN/event/realtime.

2. Send a publish message over the established WebSocket connection with the following
information:

• The authorization header(s) required to authorize your message.

Publish events via WebSocket 74

AWS AppSync Events Developer Guide

• The following message details:

• A unique ID for your message.

• The channel that you are publishing to.

• The list of events that you are publishing. You can publish a maximum of five events in a
batch.

Each specified event in your publish request must be a stringified valid JSON value.

Publish example

The following is an example of a request written in JavaScript that uses an API key for
authorization.

const message = {
 id: 'uniqueID', // Your unique id for this message.
 type: 'publish',
 channel: '/default/channel',
 events: [
 JSON.stringify({ message: "hello world" }),
 JSON.stringify({ number: 42 })
],
 authorization: { 'x-api-key': 'your key' },
}

You can use your browser’s WebSocket API to connect and publish the events. The following
simplified example uses an API key that sends the message. Notice that you don't need to subscribe
to any channel before publishing.

const HTTP_DOMAIN = 'your api HTTP domain '
const REALTIME_DOMAIN = 'api real-time domain'
const API_KEY = 'your api key'

const authorization = { 'x-api-key': API_KEY, host: HTTP_DOMAIN }

// construct the protocol header for the connection
function getAuthProtocol() {
 const header = btoa(JSON.stringify(authorization))
 .replace(/\+/g, '-') // Convert '+' to '-'
 .replace(/\//g, '_') // Convert '/' to '_'
 .replace(/=+$/, '') // Remove padding `=`

Publish events via WebSocket 75

AWS AppSync Events Developer Guide

 return `header-${header}`
}

const socket = await new Promise((resolve, reject) => {
 const socket = new WebSocket(`wss://${REALTIME_DOMAIN}/event/realtime`, [
 'aws-appsync-event-ws',
 getAuthProtocol(),
])
 socket.onopen = () => resolve(socket)
 socket.onclose = (event) => reject(new Error(event.reason))
 socket.onmessage = (event) => console.log(event)
})

// when the socket is connected, send the message
socket.send(JSON.stringify(message))

You receive an acknowledgement message for every publish. For more information, see
Understanding the Event API WebSocket protocol.

To learn more about the different authorization types that AWS AppSync Events supports, see
Configuring authorization and authentication to secure Event APIs.

Publish events via WebSocket 76

AWS AppSync Events Developer Guide

Understanding the Event API WebSocket protocol

AWS AppSync Events' WebSocket API allows a client to subscribe and receive events in real-time.
After the client is connected, the client can also publish to channels. Establishing a valid connection
and subscribing to receive events is a simple multi-step process.

First, a client establishes a WebSocket connection with the AWS real-time endpoint, sends a
connection initialization message, and waits for acknowledgment.

After a successful connection is established, the client registers subscriptions by sending a
“subscribe” message with a unique ID and a channel path of interest. AWS AppSync confirms
successful subscriptions with acknowledgment messages. The client then listens for subscription
events, which are triggered when a publisher publishes events that are broadcast by the service. To
maintain the connection, AWS AppSync sends periodic keep-alive messages.

When finished, the client unsubscribes by sending “unsubscribe” messages. This system supports
multiple subscriptions on a single WebSocket connection and accommodates various authorization
modes, including API keys, Amazon Cognito user pools, IAM, and Lambda.

The following diagram demonstrates the WebSocket protocol message flow between the
WebSocket client and the real-time endpoint.

WebSocket protocol overview

77

AWS AppSync Events Developer Guide

78

AWS AppSync Events Developer Guide

In the preceeding diagram, the following WebSocket steps occur in the message flow.

• A client establishes a WebSocket connection with the AWS AppSync real-time endpoint. If there
is a network error, the client should do a jittered exponential backoff. For more information, see
Exponential backoff and jitter on the AWS Architecture Blog.

• After successfully establishing the WebSocket connection, the client can optionally send a
connection_init message.

• The client waits for a connection_ack message from AWS AppSync. This message includes
a connectionTimeoutMs parameter, which is the maximum wait time in milliseconds for a
"ka" (keep-alive) message.

• AWS AppSync sends "ka" messages periodically. The client keeps track of the time that it received
each "ka" message. If the client doesn't receive a "ka" message within connectionTimeoutMs
milliseconds, the client should close the connection.

• The client registers the subscription by sending a subscribe message. A single WebSocket
connection supports multiple subscriptions, even if they are in different authorization modes.

• The client waits for AWS AppSync to send subscribe_success messages to confirm successful
subscriptions.

• The client listens for subscription events, which are sent after events are published to the
channel of interest.

• The client unregisters the subscription by sending an unsubscribe subscription message.

• At any time after connection, the client can publish a message by sending a publish message.
Subscribing to a channel is not required before publishing.

• The client receives a publish_success acknowledgement.

• After unregistering all subscriptions and checking that there are no messages transferring
through the WebSocket, the client can disconnect from the WebSocket connection.

79

https://aws.amazon.com/blogs//architecture/exponential-backoff-and-jitter/

AWS AppSync Events Developer Guide

Handshake details to establish the WebSocket connection

All interactions with the AWS AppSync real-time endpoint begin with establishing a WebSocket
connection. The connection remains open as long as the client remains connected, up to a
maximum of 24 hours. Connecting is an operation that requires authorization credentials to
complete the handshake. To connect and initiate a successful handshake with AWS AppSync, a
WebSocket client needs the following information:

• The AWS AppSync Events realtime and HTTP endpoints

• The authorization details

To authorize your WebSocket connection establishment, send the authorization information as a
WebSocket subprotocol. To do this, a client must wrap the appropriate authorization credentials in
a JSON object, encode the object in Base64URL format, and append the encoded header string in
the list of subprotocols.

The following JavaScript example converts an authorization object into a base64URL encoded
string.

/**
 * Encodes an object into Base64 URL format
 * @param {*} authorization - an object with the required authorization properties
 **/
function getBase64URLEncoded(authorization) {
 return btoa(JSON.stringify(authorization))
 .replace(/\+/g, '-') // Convert '+' to '-'
 .replace(/\//g, '_') // Convert '/' to '_'
 .replace(/=+$/, '') // Remove padding `=`
}

Next, this example creates the required subprotocol value.

function getAuthProtocol(authorization) {
 const header = getBase64URLEncoded(authorization)
 return `header-${header}`
}

The following example uses bash to create a header, and then uses wscat to connect. You must
specify aws-appsync-event-ws as one of the subprotocols.

Handshake details to establish the WebSocket connection 80

AWS AppSync Events Developer Guide

$ REALTIME_DOMAIN='example1234567890000.appsync-realtime-api.us-west-2.amazonaws.com'
$ HTTP_DOMAIN='example1234567890000.appsync-api.us-east-1.amazonaws.com'
$ API_KEY='da2-12345678901234567890123456'

$ header="{\"host\":\"$HTTP_DOMAIN\", \"x-api-key\":\"$API_KEY\"}"
$ header=`echo "$header" | base64 | tr '+/' '-_' | tr -d '\n='`
$ wscat -p 13 -s "header-$header" -s "aws-appsync-event-ws" -c "wss://$REALTIME_DOMAIN/
event/realtime"

Connected (press CTRL+C to quit)

Discovering the real-time endpoint from the Event API endpoint

AWS AppSync Event APIs are configured with two endpoints: a realtime endpoint and an HTTP
endpoint. You can retrieve your endpoint information by visiting your API’s Settings page in the
AWS Management Console or by running the AWS CLI command aws appsync get-api.

AWS AppSync Events HTTP endpoint

https://example1234567890000.appsync-api.us-east-1.amazonaws.com/event

AWS AppSync Events real-time endpoint

wss://example1234567890000.appsync-realtime-api.us-east-1.amazonaws.com/event/
realtime

Applications can connect to the HTTP endpoint (https://) using any HTTP client, and can connect
to the real-time endpoint (wss://) using any WebSocket client.

With custom domain names, you can interact with both endpoints using a single domain. For
example, if you configure api.example.com as your custom domain, you can interact with your
HTTP and real-time endpoints using the following URLs.

AWS AppSync Events HTTP endpoint

https://api.example.com/event

AWS AppSync Events real-time endpoint

wss://api.example.com/event/realtime

Discovering the real-time endpoint from the Event API endpoint 81

AWS AppSync Events Developer Guide

Authorization formatting based on the AWS AppSync API
authorization mode

The format of the authorization subprotocol varies depending on the AWS AppSync authorization
mode. AWS AppSync supports API key, Amazon Cognito user pools, OpenID Connect (OIDC), AWS
Lambda, and IAM authorization modes. The host field in the object refers to the AWS AppSync
Events HTTP endpoint, which is used to validate the connection even if the wss:// call is made
against the real-time endpoint.

Use the following sections to learn how to format the authorization subprotocol for the supported
authorization modes.

API key subprotocol format

Header content

• "host": <string>: The host for the AWS AppSync Events HTTP endpoint or your custom
domain name. Only required for connection authorization.

• "x-api-key": <string>: The API key configured for the AWS AppSync Event API.

Example

{
 "host":"example1234567890000.appsync-api.us-east-1.amazonaws.com",
 "x-api-key":"da2-12345678901234567890123456"
}

Amazon Cognito user pools and OpenID Connect (OIDC) subprotocol
format

Header content

• "host": <string>: The host for the AWS AppSync Events HTTP endpoint or your custom
domain name. Only required for connection authorization.

• "Authorization": <string>: A JWT ID token. The header can use a Bearer scheme.

Example

Authorization formatting based on the AWS AppSync API authorization mode 82

AWS AppSync Events Developer Guide

{

 "Authorization":"eyEXAMPLEiJjbG5xb3A5eW5MK09QYXIrMTJHWEFLSXBieU5WNHhsQjEXAMPLEnM2WldvPSIsImFsZyI6IlEXAMPLEn0.eyEXAMPLEiJhNmNmMjcwNy0xNjgxLTQ1NDItOWYxOC1lNjY0MTg2NjlkMzYiLCJldmVudF9pZCI6ImVkMzM5MmNkLWNjYTMtNGM2OC1hNDYyLTJlZGI3ZTNmY2FjZiIsInRva2VuX3VzZSI6ImFjY2VzcyIsInNjb3BlIjoiYXdzLmNvZ25pdG8uc2lnbmluLnVzZXIuYWRtaW4iLCJhdXRoX3RpbWUiOjE1Njk0NTc3MTgsImlzcyI6Imh0dHBzOlwvXC9jb2duaXRvLWlkcC5hcC1zb3V0aGVhc3QtMi5hbWF6b25hd3MuY29tXC9hcC1zb3V0aGVhc3QtMl83OHY0SVZibVAiLCJleHAiOjE1Njk0NjEzMjAsImlhdCI6MTU2OTQ1NzcyMCwianRpIjoiNTgzZjhmYmMtMzk2MS00YzA4LWJhZTAtYzQyY2IxMTM5NDY5IiwiY2xpZW50X2lkIjoiM3FlajVlMXZmMzd1N3RoZWw0dG91dDJkMWwiLCJ1c2VybmFtZSI6ImVsb3EXAMPLEn0.B4EXAMPLEFNpJ6ikVp7e6DRee95V6Qi-
zEE2DJH7sHOl2zxYi7f-SmEGoh2AD8emxQRYajByz-rE4Jh0QOymN2Ys-ZIkMpVBTPgu-
TMWDyOHhDUmUj2OP82yeZ3wlZAtr_gM4LzjXUXmI_K2yGjuXfXTaa1mvQEBG0mQfVd7SfwXB-
jcv4RYVi6j25qgow9Ew52ufurPqaK-3WAKG32KpV8J4-Wejq8t0c-
yA7sb8EnB551b7TU93uKRiVVK3E55Nk5ADPoam_WYE45i3s5qVAP_-InW75NUoOCGTsS8YWMfb6ecHYJ-1j-
bzA27zaT9VjctXn9byNFZmEXAMPLExw",
 "host":"example1234567890000.appsync-api.us-east-1.amazonaws.com"
}

AWS Lambda subprotocol format

Header content

• "host": <string>: The host for the AWS AppSync Events HTTP endpoint or your custom
domain name. Only required for connection authorization.

• "Authorization": <string>: A custom authorization token of your design.

Example

{

 "Authorization":"M0UzQzM1MkQtMkI0Ni00OTZCLUI1NkQtMUM0MTQ0QjVBRTczCkI1REEzRTIxLTk5NzItNDJENi1BQjMwLTFCNjRFNzQ2NzlCNQo=",
 "host":"example1234567890000.appsync-api.us-east-1.amazonaws.com"
}

AWS Identity and Access Management (IAM) subprotocol format

Header content

• "accept": "application/json, text/javascript": A constant string parameter.

• "content-encoding": "amz-1.0": A constant string parameter.

• "content-type": "application/json; charset=UTF-8": A constant string parameter.

• "host": <string>: This is the host for the AWS AppSync Events HTTP endpoint.

• "x-amz-date": <string>: The timestamp must be in UTC and in the following ISO 8601
format: YYYYMMDD'T'HHMMSS'Z'. For example, 20150830T123600Z is a valid timestamp.

AWS Lambda subprotocol format 83

AWS AppSync Events Developer Guide

Don't include milliseconds in the timestamp. For more information, see Elements of an AWS API
request signature in the IAM User Guide.

• "X-Amz-Security-Token": <string>: The AWS session token, which is required when using
temporary security credentials. For more information, see Use temporary credentials with AWS
resources in the IAM User Guide.

• "Authorization": <string>: Signature Version 4 (SigV4) signing information for the AWS
AppSync endpoint. For more information on the signing process, see Create a signed AWS API
request in the IAM User Guide.

The SigV4 signing HTTP request includes a canonical URL, which is the AWS AppSync HTTP
endpoint with /event appended. The service endpoint AWS Region is the same Region where
you're using the AWS AppSync API, and the service name is 'appsync'.

The HTTP request to sign to connect is the following.

{
 url: "https://example1234567890000.appsync-api.us-east-1.amazonaws.com/event",
 data: "{}",
 method: "POST",
 headers: {
 "accept": "application/json, text/javascript",
 "content-encoding": "amz-1.0",
 "content-type": "application/json; charset=UTF-8",
 "host": "example1234567890000.appsync-api.us-east-1.amazonaws.com",
 }
}

The following is the request to sign when sending a subscribe message. The channel name is
specified in the request.

{
 url: "https://example1234567890000.appsync-api.us-east-1.amazonaws.com/event",
 body: "{\"channel\":\"/your/channel/*\"}",
 method: "POST",
 headers: {
 "accept": "application/json, text/javascript",
 "content-encoding": "amz-1.0",
 "content-type": "application/json; charset=UTF-8",
 "host": "example1234567890000.appsync-api.us-east-1.amazonaws.com",
 }

AWS Identity and Access Management (IAM) subprotocol format 84

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv-signing-elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv-signing-elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv-create-signed-request.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv-create-signed-request.html

AWS AppSync Events Developer Guide

}

The following is the request to sign when publishing over WebSocket. The channel name and event
payload are specified in the request.

{
 url: "https://example1234567890000.appsync-api.us-east-1.amazonaws.com/event",
 body: "{\"channel\":\"/your/channel/*\",\"events\":[{\"event_1\":\"data_1\"},
{\"event_2\":\"data_2\"}]}",
 method: "POST",
 headers: {
 "accept": "application/json, text/javascript",
 "content-encoding": "amz-1.0",
 "content-type": "application/json; charset=UTF-8",
 "host": "example1234567890000.appsync-api.us-east-1.amazonaws.com",
 }
}

Authorization header example

{
 "accept": "application/json, text/javascript",
 "content-encoding": "amz-1.0",
 "content-type": "application/json; charset=UTF-8",
 "host": "example1234567890000.appsync-api.us-east-1.amazonaws.com",
 "x-amz-date": "20200401T001010Z",
 "X-Amz-Security-Token":
 "AgEXAMPLEZ2luX2VjEAoaDmFwLXNvdXRoZWFEXAMPLEcwRQIgAh97Cljq7wOPL8KsxP3YtDuyc/9hAj8PhJ7Fvf38SgoCIQDhJEXAMPLEPspioOztj
+
+pEagWCveZUjKEn0zyUhBEXAMPLEjj//////////8BEXAMPLExODk2NDgyNzg1NSIMo1mWnpESWUoYw4BkKqEFSrm3DXuL8w
+ZbVc4JKjDP4vUCKNR6Le9C9pZp9PsW0NoFy3vLBUdAXEXAMPLEOVG8feXfiEEA+1khgFK/
wEtwR+9zF7NaMMMse07wN2gG2tH0eKMEXAMPLEQX+sMbytQo8iepP9PZOzlZsSFb/
dP5Q8hk6YEXAMPLEYcKZsTkDAq2uKFQ8mYUVA9EtQnNRiFLEY83aKvG/tqLWNnGlSNVx7SMcfovkFDqQamm
+88y1OwwAEYK7qcoceX6Z7GGcaYuIfGpaX2MCCELeQvZ+8WxEgOnIfz7GYvsYNjLZSaRnV4G
+ILY1F0QNW64S9Nvj
+BwDg3ht2CrNvpwjVYlj9U3nmxE0UG5ne83LL5hhqMpm25kmL7enVgw2kQzmU2id4IKu0C/
WaoDRuO2F5zE63vJbxN8AYs7338+4B4HBb6BZ6OUgg96Q15RA41/
gIqxaVPxyTpDfTU5GfSLxocdYeniqqpFMtZG2n9d0u7GsQNcFkNcG3qDZm4tDo8tZbuym0a2VcF2E5hFEgXBa
+XLJCfXi/77OqAEjP0x7Qdk3B43p8KG/BaioP5RsV8zBGvH1zAgyPha2rN70/
tT13yrmPd5QYEfwzexjKrV4mWIuRg8NTHYSZJUaeyCwTom80VFUJXG
+GYTUyv5W22aBcnoRGiCiKEYTLOkgXecdKFTHmcIAejQ9Welr0a196Kq87w5KNMCkcCGFnwBNFLmfnbpNqT6rUBxxs3X5ntX9d8HVtSYINTsGXXMZCJ7fnbWajhg/
aox0FtHX21eF6qIGT8j1z+l2opU+ggwUgkhUUgCH2TfqBj+MLMVVvpgqJsPKt582caFKArIFIvO
+9QupxLnEH2hz04TMTfnU6bQC6z1buVe7h

AWS Identity and Access Management (IAM) subprotocol format 85

AWS AppSync Events Developer Guide

+tOLnh1YPFsLQ88anib/7TTC8k9DsBTq0ASe8R2GbSEsmO9qbbMwgEaYUhOKtGeyQsSJdhSk6XxXThrWL9EnwBCXDkICMqdntAxyyM9nWsZ4bL9JHqExgWUmfWChzPFAqn3F4y896UqHTZxlq3WGypn5HHcem2Hqf3IVxKH1inhqdVtkryEiTWrI7ZdjbqnqRbl
+WgtPtKOOweDlCaRs3R2qXcbNgVhleMk4IWnF8D1695AenU1LwHjOJLkCjxgNFiWAFEPH9aEXAMPLExA==",
 "Authorization": "AWS4-HMAC-SHA256 Credential=XXXXXXXXXXXXXXXXXXX/20200401/
us-east-1/appsync/aws4_request, SignedHeaders=accept;content-
encoding;content-type;host;x-amz-date;x-amz-security-token,
 Signature=83EXAMPLEbcc1fe3ee69f75cd5ebbf4cb4f150e4f99cec869f149c5EXAMPLEdc"
}

Real-time WebSocket operations

After initiating a successful WebSocket handshake with AWS AppSync, the client must send a
subsequent message to connect to AWS AppSync for different operations. The WebSocket API has
the following properties.

WebSocket API message properties

id

The client provided ID of the operation. This property is required and is used to correlate
response error and success messages. For subscriptions, this property must be unique for all
subscriptions within a connection. The property is a string and is limited to a maximum of 128
alphanumeric and special character (_,+,-) characters: /^[a-zA-Z0-9-_+]{1,128}$/.

type

The type of operation being performed. Supported client operations are subscribe, unsubscribe,
publish. The property is a string and must be one of the message types defined in the next
section, Configuring message details.

channel

The channel to subscribe to, or to publish events to. The property is a string made up of
one to five segments separated by a slash. Each segment is limited to 50 alphanumeric +
dash characters. The property is case sensitive. For example: channelNamespaceName or
channelNamespaceName/sub-segment-1/subSegment-2 /^\/?[A-Za-z0-9](?:[A-
Za-z0-9-]{0,48}[A-Za-z0-9])?(?:\/[A-Za-z0-9](?:[A-Za-z0-9-]{0,48}[A-Za-
z0-9])?){0,4}\/?$/

events

An array of events to be published. You can publish up to five events in a batch. Each specified
event in your publish request must be a stringified valid JSON value.

Real-time WebSocket operations 86

AWS AppSync Events Developer Guide

authorization

The authorization headers necessary to authorize the operation. For example, ApiKey will
contain x-api-key, while Amazon Cognito, OIDC, and Lambda will contain authorization.
IAM will contain host, x-amz-date, x-amz-security-token, and authorization. The
host header is required for IAM only.

Configuring message details

This section provides information about the syntax to use to configure the details for various
message types.

Connection init message

(Optional) After the client has established the WebSocket connection, the client sends an init
message to initiate the connection session.

{ "type": "connection_init" }

Connection acknowledge message

AWS AppSync responds with an “ack” message that contains a connection timeout value. If the
client doesn’t receive a keep-alive message within the connection timeout period, the client should
close the connection. The connection timeout period is 5 minutes.

{
 "type": "connection_ack",
 "connectionTimeoutMs": 300000
}

Keep-alive message

AWS AppSync periodically sends a keep-alive message to the client to maintain the connection.
If the client doesn’t receive a keep-alive message within the connection timeout period, the
client should close the connection. The keep-alive interval is 60 seconds. Clients do not need to
acknowledge these messages.

{ "type": "ka" }

Configuring message details 87

AWS AppSync Events Developer Guide

Subscribe message

After receiving a connection_ack message, the client can send a subscription registration
message to listen for events on a channel.

• “id” is the ID of the subscription. This ID must be unique per client connection otherwise AWS
AppSync returns an error message indicating the subscription message is duplicated.

• “channel” is the channel to which the subscribed client is listening. Any messages published to
this channel will be delivered to the subscribed client.

• “authorization” is an object containing the fields required for authorization. The authorization
object follows the same rules as the headers for connecting to the WebSocket.

{
 "type": "subscribe",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69",
 "channel": "/namespaceA/subB/subC",
 "authorization": {
 "x-api-key": "da2-12345678901234567890123456",
 "host": "example1234567890000.appsync-api.us-east-1.amazonaws.com"
 }
}

Subscription acknowledgment message

AWS AppSync acknowledges with a success message. “id” is the ID of the corresponding subscribe
operation that succeeded.

{
 "type": "subscribe_success",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69"
}

In case of an error, AWS AppSync sends a subscribe_error response.

{
 "type": "subscribe_error",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69",
 "errors": [
 {

Configuring message details 88

AWS AppSync Events Developer Guide

 "errorType": "SubscriptionProcessingError",
 "message": "There was an error processing the operation"
 }
]
}

Data message

When an event is published to a channel the client is subscribed to, the event is broadcast and
delivered in a data message. “id” is the ID of the corresponding subscription for the channel to
which the message was published.

{
 "type": "data",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69",
 "event": ["\"my event content\""]
}

In case of an error, such as a broadcasting error, an error can be received at the client:

{
 "type": "broadcast_error",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69",
 "errors": [
 {
 "errorType": "MessageProcessingError",
 "message": "There was an error processing the message"
 }
]
}

Unsubscribe message

When the client wants to stop listening to a subscribed channel, the client sends a message to
unregister the subscription. “id” is the ID of the corresponding subscription to which the client
wants to unregister.

{
 "type": "unsubscribe",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69"
}

Configuring message details 89

AWS AppSync Events Developer Guide

AWS AppSync acknowledges with a success message. “id” is the ID of the corresponding subscribe
operation that succeeded.

{
 "type": "unsubscribe_success",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69"
}

If an error occurs, an error message is sent back to the client

{
 "type": "unsubscribe_error",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69",
 "errors": [
 {
 "errorType": "UnknownOperationError",
 "message": "Unknown operation id ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69"
 }
]
}

Publish message

Once connected, the client can start publishing messages to channels. “id” is the ID of the
publish operation. “channel” is the channel to which the events are published. The events will be
delivered to all clients subscribed to the channel. “authorization” is an object containing the
fields required for authorization. The authorization object follows the same rules as the headers for
subscribing to the channel.

{
 "type": "publish",
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69",
 "channel": "/namespaceA/subB/subC",
 "events": ["{ \"msg\": \"Hello World!\" }"],
 "authorization": {
 "x-api-key": "da2-12345678901234567890123456",
 }
}

Publish success message

Configuring message details 90

AWS AppSync Events Developer Guide

The server acknowledges with a success message. “id” is the ID of the corresponding publish
operation that succeeded. “failed” is the list of events which were marked in error while
executing the publish handler.

{
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69",
 "type": "publish_success",
 "successful": [
 {
 "identifier": "221b6b3f-46fd-4ac1-a327-bd2623b7402e",
 "index": 0
 }
],
 "failed": []
}

If an error occurs, an error message is sent back to the client.

{
 "id": "ee849ef0-cf23-4cb8-9fcb-152ae4fd1e69",
 "type": "publish_error",
 "errors": [
 {
 "errorType": "An error type",
 "message": "A message"
 }
]
}

Disconnecting the WebSocket

Before disconnecting the WebSocket, to avoid data loss, the client should have the necessary
logic to check that no operation is currently in place through the WebSocket connection. All
subscriptions should be unregistered before disconnecting from the WebSocket.

Disconnecting the WebSocket 91

AWS AppSync Events Developer Guide

Configuring custom domain names for Event APIs

With AWS AppSync, you can use custom domain names to configure a single, memorable domain
that works for your Event APIs.

When you configure an AWS AppSync Event API, two endpoints are provisioned: An HTTP endpoint
and a real-time endpoint. These endpoints have the following format.

AWS AppSync Events HTTP endpoint

https://example1234567890000.appsync-api.us-east-1.amazonaws.com/event

AWS AppSync Events real-time endpoint

wss://example1234567890000.appsync-realtime-api.us-east-1.amazonaws.com/event/
realtime

With custom domain names, you can interact with both endpoints using a single domain. For
example, if you configure api.example.com as your custom domain, you can interact with both your
HTTP and real-time WebSocket endpoints using the following URLs.

AWS AppSync Events HTTP endpoint

https://api.example.com/event

AWS AppSync Events real-time endpoint

wss://api.example.com/event/realtime

Note

AWS AppSync APIs support only TLS 1.2 and TLS 1.3 for custom domain names.

Registering and configuring a domain name for an Event API

To set up custom domain names for your AWS AppSync APIs, you must have a registered internet
domain name. You can register an internet domain using Amazon Route 53 domain registration
or a third-party domain registrar of your choice. For more information about using Route 53, see
What is Amazon Route 53 in the Amazon Route 53 Developer Guide.

Registering and configuring a domain name 92

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html

AWS AppSync Events Developer Guide

An API's custom domain name can be the name of a subdomain or the root domain (also known
as the "zone apex") of a registered internet domain. After you create a custom domain name in
AWS AppSync, you must create or update your DNS provider's resource record to map to your API
endpoint. Without this mapping, API requests bound for the custom domain name cannot reach
AWS AppSync.

Creating a custom domain name in AWS AppSync

Creating a custom domain name for an AWS AppSync API sets up an Amazon CloudFront
distribution. You must set up a DNS record to map the custom domain name to the CloudFront
distribution domain name. This mapping is required to route API requests that are bound for the
custom domain name in AWS AppSync through the mapped CloudFront distribution.

You must also provide a certificate for the custom domain name. To set up the custom domain
name or to update its certificate, you must have permission to update CloudFront distributions
and describe the AWS Certificate Manager (ACM) certificate that you plan to use. To grant these
permissions, attach the following AWS Identity and Access Management (IAM) policy statement to
an IAM user, group, or role in your account.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AllowUpdateDistributionForAppSyncCustomDomainName",
 "Effect": "Allow",
 "Action": [
 "cloudfront:updateDistribution"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "AllowDescribeCertificateForAppSyncCustomDomainName",
 "Effect": "Allow",
 "Action": "acm:DescribeCertificate",
 "Resource": "arn:aws:acm:us-
east-1:111122223333:certificate/certificate_ID"

Creating a custom domain name 93

AWS AppSync Events Developer Guide

 }
]
}

AWS AppSync supports custom domain names by leveraging Server Name Indication (SNI) on the
CloudFront distribution. For more information about using custom domain names on a CloudFront
distribution, including the required certificate format and the maximum certificate key length, see
Using HTTPS with CloudFront in the Amazon CloudFront Developer Guide.

To set up a custom domain name as the API's hostname, the API owner must provide an SSL/TLS
certificate for the custom domain name. To provide a certificate, do one of the following.

• Request a new certificate in ACM, or import a certificate issued by a third-party certificate
authority into ACM in the US East (N. Virginia) (us-east-1) AWS Region. For more information
about ACM, see What is AWS Certificate Manager in the AWS Certificate Manager User Guide.

• Provide an IAM server certificate. For more information, see Manage server certificates in IAM in
the IAM User Guide.

Wildcard custom domain names in AWS AppSync

AWS AppSync supports wildcard custom domain names. To configure a wildcard custom domain
name, specify a wildcard character (*) as the first subdomain of a custom domain. This represents
all possible subdomains of the root domain. For example, the wildcard custom domain name
*.example.com results in subdomains such as a.example.com, b.example.com, and
c.example.com. All these subdomains route to the same domain.

To use a wildcard custom domain name in AWS AppSync, you must provide a certificate issued
by ACM containing a wildcard name that can protect several sites in the same domain. For more
information, see ACM certificate characteristics and limitations in the AWS Certificate Manager User
Guide.

Wildcard custom domain names 94

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https.html
https://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/acm/latest/userguide/acm-certificate-characteristics.html

AWS AppSync Events Developer Guide

Using CloudWatch to monitor and log Event API data

You can log and debug your Event API using CloudWatch metrics and CloudWatch logs. These tools
enable developers to monitor performance, troubleshoot issues, and optimize their AWS AppSync
API operations effectively.

CloudWatch metrics is a tool that provides a wide range of metrics to monitor API performance
and usage. These metrics fall into two main categories:

1. HTTP API Metrics for Publish: These include 4XXError and 5XXError for tracking client and
server errors, Latency for measuring response times, Requests for monitoring total API calls,
TokensConsumed for tracking resource usage, and Events related to metrics for tracking event
publishing performance.

2. Real-time Subscription Metrics: These metrics focus on WebSocket connections and
subscription activities. They include metrics for connection requests, successful connections,
subscription registrations, message publishing, and active connections and subscriptions.

CloudWatch Logs is a tool that enables logging capabilities for your Eent APIs. Logs can be set at
two levels of the API:

1. Request-level Logs: These capture overall request information, including HTTP headers,
operation summaries, and subscription registrations.

2. Handler-level Logs: These provide detailed information about handler evaluation, including
request and response mappings, and tracing information for each field.

You can configure logging, interpret log entries, and use log data for troubleshooting and
optimization. AWS AppSync provides various log types that provide insight into your API's behavior.

Setting up and configuring logging on an Event API

Us the following instruction to turn on automatic logging on a Event API using the AWS AppSync
console.

1. Sign in to the AWS Management Console and open the AppSync console.

2. On the APIs page, choose the name of an Event API.

Setting up and configuring logging on an Event API 95

https://console.aws.amazon.com/appsync/

AWS AppSync Events Developer Guide

3. On the API's homepage, in the navigation pane, choose Settings.

4. Under Logging, do the following:

a. Turn on Enable Logs.

b. (Optional) For Log level, choose your preferred field-level logging level (None, Error, or
All).

c. The procedure for adding a service role varies depending on whether you want to create a
new role or use an existing one.

• To create a new role:

• For Create or use an existing role, choose New role. This creates a new IAM role
that allows AWS AppSync to write logs to CloudWatch.

• To use an existing role:

i. Choose Existing role.

ii. In the service role list, select the ARN of an existing IAM role in your AWS account.

For information about the configuration of the IAM role, see Manually creating an
IAM role with CloudWatch Logs permissions.

5. Choose Save.

Manually creating an IAM role with CloudWatch Logs permissions

If you choose to use an existing IAM role, the role must grant AWS AppSync the required
permissions to write logs to CloudWatch. To configure this manually, you must provide a service
role ARN so that AWS AppSync can assume the role when writing the logs.

In the IAM console, create a new policy with the name
AWSAppSyncPushToCloudWatchLogsPolicy that has the following definition:

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Manually creating an IAM role with CloudWatch Logs permissions 96

https://console.aws.amazon.com/iam

AWS AppSync Events Developer Guide

 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

Next, create a new role with the name AWSAppSyncPushToCloudWatchLogsRole, and attach the
newly created policy to the role. Edit the trust relationship for this role to the following:

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "appsync.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Copy the role ARN and use it when setting up logging for an AWS AppSync Event API.

CloudWatch metrics

You can use CloudWatch metrics to monitor and provide alerts about specific events that can result
in HTTP status codes or from latency.

CloudWatch metrics 97

AWS AppSync Events Developer Guide

HTTP endpoint metrics

4XXError

Errors resulting from requests that are not valid due to an incorrect client configuration. For
example, these errors can occur when the request includes an incorrect JSON payload, when the
service is throttled, or when the authorization settings are misconfigured.

Unit: Count. Use the Sum statistic to get the total occurrences of these errors.

5XXError

Errors encountered during the execution of a request. This could also happen if AWS AppSyncc
encounters an issue during processing of a request.

Unit: Count. Use the Sum statistic to get the total occurrences of these errors.

Latency

The time between when AWS AppSync receives a request from a client and when it returns a
response to the client. This doesn’t include the network latency encountered for a response to
reach the end devices.

Unit: Millisecond. Use the Average statistic to evaluate expected latencies.

Requests

The number of requests that all APIs in your account have processed, by Region.

Unit: Count. The number of all requests processed in a particular Region.

TokensConsumed

Tokens are allocated to Requests based on the amount of resources (processing time and
memory used) that a Request consumes. Usually, each Request consumes one token.
However, a Request that consumes large amounts of resources is allocated additional tokens
as needed.

Unit: Count. The number of tokens allocated to requests processed in a particular Region.

HTTP endpoint metrics 98

AWS AppSync Events Developer Guide

Handler metrics

DroppedEvents

The count of input events filtered by a OnPublish handler.

Unit: Count.

FailedEvents

The count of input events that encountered error during processing.

Unit: Count.

SuccessfulEvents

The count of input events that were processed successfully and submitted for broadcast in the
OnPublish handler.

Unit: Count.

PublishedHandlerInvocations

The number of OnPublish handler invocations.

Unit: Count.

Real-time endpoint metrics

ConnectRequests

The number of WebSocket connection requests made to AWS AppSync, including both
successful and unsuccessful attempts.

Unit: Count. Use the Sum statistic to get the total number of connection requests.

ConnectSuccess

The number of successful WebSocket connections to AWS AppSync. It is possible to have
connections without subscriptions.

Unit: Count. Use the Sum statistic to get the total occurrences of the successful connections.

Handler metrics 99

AWS AppSync Events Developer Guide

ConnectClientError

The number of WebSocket connections that were rejected by AWS AppSync because of client-
side errors. This could imply that the service is throttled or that the authorization settings are
misconfigured.

Unit: Count. Use the Sum statistic to get the total occurrences of the client-side connection
errors.

ConnectServerError

The number of errors that originated from AWS AppSync while processing connections. This
usually happens when an unexpected server-side issue occurs.

Unit: Count. Use the Sum statistic to get the total occurrences of the server-side connection
errors.

DisconnectSuccess

The number of successful WebSocket disconnections from AWS AppSync.

Unit: Count. Use the Sum statistic to get the total occurrences of the successful disconnections.

DisconnectClientError

The number of client errors that originated from AWS AppSync while disconnecting WebSocket
connections.

Unit: Count. Use the Sum statistic to get the total occurrences of the disconnection errors.

DisconnectServerError

The number of server errors that originated from AWS AppSync while disconnecting WebSocket
connections.

Unit: Count. Use the Sum statistic to get the total occurrences of the disconnection errors.

SubscribeSuccess

The number of subscriptions that were successfully registered to AWS AppSync through
WebSocket. It's possible to have connections without subscriptions, but it's not possible to have
subscriptions without connections.

Unit: Count. Use the Sum statistic to get the total occurrences of the successful subscriptions.

Real-time endpoint metrics 100

AWS AppSync Events Developer Guide

SubscribeClientError

The number of subscriptions that were rejected by AWS AppSync because of client-side errors.
This can occur when a JSON payload is incorrect, the service is throttled, or the authorization
settings are misconfigured.

Unit: Count. Use the Sum statistic to get the total occurrences of the client-side subscription
errors.

SubscribeServerError

The number of errors that originated from AWS AppSync while processing subscriptions. This
usually happens when an unexpected server-side issue occurs.

Unit: Count. Use the Sum statistic to get the total occurrences of the server-side subscription
errors.

UnsubscribeSuccess

The number of unsubscribe requests that were successfully processed.

Unit: Count. Use the Sum statistic to get the total occurrences of the successful unsubscribe
requests.

UnsubscribeClientError

The number of unsubscribe requests that were rejected by AWS AppSync because of client-side
errors.

Unit: Count. Use the Sum statistic to get the total occurrences of the client-side unsubscribe
request errors.

UnsubscribeServerError

The number of errors that originated from AWS AppSync while processing unsubscribe requests.
This usually happens when an unexpected server-side issue occurs.

Unit: Count. Use the Sum statistic to get the total occurrences of the server-side unsubscribe
request errors.

BroadcastEventSuccess

The number of events that were successfully broadcast to subscribers.

Real-time endpoint metrics 101

AWS AppSync Events Developer Guide

Unit: Count. Use the Sum statistic to get the total of events that were successfully broadcast.

BroadcastEventClientError

The number of events that failed to broadcast because of client-side errors.

Unit: Count. Use the Sum statistic to get the total occurrences of the client-side broadcast
events errors

BroadcastEventServerError

The number of errors that originated from AWS AppSync while broadcasting events . This
usually happens when an unexpected server-side issue occurs.

Unit: Count. Use the Sum statistic to get the total occurrences of the server-side broadcast
errors.

BroadcastEventSize

The size of events broadcast.

Unit: Bytes.

ActiveConnections

The number of concurrent WebSocket connections from clients to AWS AppSync in 1 minute.

Unit: Count. Use the Sum statistic to get the total opened connections.

ActiveSubscriptions

The number of concurrent subscriptions from clients in 1 minute.

Unit: Count. Use the Sum statistic to get the total active subscriptions.

ConnectionDuration

The amount of time that the connection stays open.

Unit: Milliseconds. Use the Average statistic to evaluate connection duration.

InboundMessages

The number of inbound metered events. One metered event equals 5 kB of received event.

Unit: Count.

Real-time endpoint metrics 102

AWS AppSync Events Developer Guide

OutboundMessages

The number of metered messages successfully published. One metered message equals 5 kB of
delivered data.

Unit: Count. Use the Sum statistic to get the total number of successfully published metered
messages.

InboundMessageDelayed

The number of delayed inbound messages. Inbound messages can be delayed when either the
inbound message rate quota or outbound message rate quota is breached.

Unit: Count. Use the Sum statistic to get the total number of inbound messages that were
delayed.

InboundMessageDropped

The number of delayed inbound messages. Inbound messages can be delayed when either the
inbound message rate quota or outbound message rate quota is breached.

Unit: Count. Use the Sum statistic to get the total number of inbound messages that were
dropped.

SubscribeHandlerInvocations

The number of Subscribe handlers invoked.

Unit: Count.

PublishSuccess

The number of publish requests that were successfully sent on a WebSocket connection to AWS
AppSync.

Unit: Count. Use the Sum statistic to get the total number of publish requests that were
successfully sent.

PublishClientError

The number of publish requests that were rejected by AWS AppSync because of client-side
errors when sending publish requests on a WebSocket connection. This can occur when a JSON
payload is incorrect, the service is throttled, or the authorization settings are misconfigured.

Real-time endpoint metrics 103

AWS AppSync Events Developer Guide

Unit: Count. Use the Sum statistic to get the total occurrences of these errors.

PublishServerError

The number of publish requests that originated from AWS AppSync while processing publish
requests on a WebSocket connection. This is usually caused by an unexpected server-side issue.

Unit: Count. Use the Sum statistic to get the total occurrences of these errors.

Configuring CloudWatch Logs on Event APIs

You can configure two types of logging on any new or existing API: request-level logs and and
handler logs.

Request-level logs

When request-level logging is configured for an API, the following information is logged.

• The number of tokens consumed

• The request and response HTTP headers

• The overall operation summary

Handler logs

When handler logging is configured for an API, the following information is logged.

• Generated request mapping with source and arguments for each field

• The transformed response mapping for each field, which includes the data as a result of
resolving that field

• Tracing information for each field

If you turn on logging, AWS AppSync manages the CloudWatch Logs. The process includes creating
log groups and log streams, and reporting to the log streams with these logs.

When you turn on logging on an AWS AppSync API and make requests, AWS AppSync creates
a log group and log streams under the log group. The log group is named following the /aws/
appsync/apis/{api_id} format. Within each log group, the logs are further divided into log
streams. These are ordered by Last Event Time as logged data is reported.

Configuring CloudWatch Logs on Event APIs 104

AWS AppSync Events Developer Guide

Every log event is tagged with the x-amzn-RequestId of that request. This helps you filter log
events in CloudWatch to get all logged information about that request. You can get the RequestId
from the response headers of every AWS AppSync request.

The field-level logging is configured with the following log levels:

• None - No handler logs are captured.

• Error - Logs the following information only for the fields that are in error:

• The error section in the server response

• Handler errors and console.error logging from handlers

• The generated request/response functions that got resolved for error fields

• All - Logs the following information for all fields in the query:

• Custom logging from handlers

• The generated request/response functions that got resolved for each field

Using token counts to optimize your requests

Requests that consume less than or equal to 1,500 KB-seconds of memory and vCPU time are
allocated one token. Requests with resource consumption greater than 1,500 KB-seconds receive
additional tokens. For example, if a request consumes 3,350 KB-seconds, AWS AppSync allocates
three tokens (rounded up to the next integer value) to the request. By default, AWS AppSync
allocates a maximum of 5,000 or 10,000 request tokens per second to the APIs in your account,
depending upon the AWS Region in which it's deployed. If your APIs each use an average of two
tokens per second, you'll be limited to 2,500 or 5,000 requests per second, respectively. If you
need more tokens per second than the allotted amount, you can submit a request to increase the
default quota for the rate of request tokens. For more information, see AWS AppSync endpoints
and quotas in the AWS General Reference guide and Requesting a quota increase in the Service
Quotas User Guide.

A high per-request token count could indicate that there's an opportunity to optimize your
requests and improve the performance of your API. Factors that can increase your per-request
token count include:

• The complexity of your handlers

• The amount of data returned from your handlers

• Logging configuration, and the amount of custom logging in your handlers

Using token counts to optimize your requests 105

https://docs.aws.amazon.com/general/latest/gr/appsync.html#limits_appsync
https://docs.aws.amazon.com/general/latest/gr/appsync.html#limits_appsync
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

AWS AppSync Events Developer Guide

Note

In addition to AWS AppSync metrics and logs, clients can access the number of tokens
consumed in a request via the response header x-amzn-appsync-TokensConsumed.

Log size limits

By default, if logging has been enabled, AWS AppSync will send up to 1 MB of logs per request.

Using token counts to optimize your requests 106

AWS AppSync Events Developer Guide

Using AWS WAF to protect AWS AppSync Event APIs

AWS WAF is a web application firewall that helps protect web applications and APIs from attacks. It
allows you to configure a set of rules, called a web access control list (web ACL), that allow, block,
or monitor (count) web requests based on customizable web security rules and conditions that
you define. When you integrate your AWS AppSync API with AWS WAF, you gain more control and
visibility into the HTTP traffic accepted by your API. To learn more about AWS WAF, see How AWS
WAF Works in the AWS WAF Developer Guide.

You can use AWS WAF to protect your AppSync API from common web exploits, such as SQL
injection and cross-site scripting (XSS) attacks. These could affect API availability and performance,
compromise security, or consume excessive resources. For example, you can create rules to allow or
block requests from specified IP address ranges, requests from CIDR blocks, requests that originate
from a specific country or region, requests that contain malicious SQL code, or requests that
contain malicious script.

You can also create rules that match a specified string or a regular expression pattern in HTTP
headers, method, query string, URI, and the request body (limited to the first 8 KB). Additionally,
you can create rules to block attacks from specific user agents, bad bots, and content scrapers. For
example, you can use rate-based rules to specify the number of web requests that are allowed by
each client IP in a trailing, continuously updated, 5-minute period.

To learn more about the types of rules that are supported and additional AWS WAF features, see
the AWS WAF Developer Guide and the AWS WAF API Reference.

Important

AWS WAF is your first line of defense against web exploits. When AWS WAF is enabled on
an API, AWS WAF rules are evaluated before other access control features, such as API key
authorization, IAM policies, OIDC tokens, and Amazon Cognito user pools.

Integrate an AppSync API with AWS WAF

You can integrate an Appsync API with AWS WAF using the AWS Management Console, the AWS
CLI, AWS CloudFormation, or any other compatible client.

Integrate an AppSync API with AWS WAF 107

https://docs.aws.amazon.com/waf/latest/developerguide/how-aws-waf-works.html
https://docs.aws.amazon.com/waf/latest/developerguide/how-aws-waf-works.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-chapter.html
https://docs.aws.amazon.com/waf/latest/APIReference/API_Types_AWS_WAFV2.html

AWS AppSync Events Developer Guide

To integrate an AWS AppSync API with AWS WAF

1. Create an AWS WAF web ACL. For detailed steps using the AWS WAF Console, see Creating a
web ACL.

2. Define the rules for the web ACL. A rule or rules are defined in the process of creating the web
ACL. For information about how to structure rules, see AWS WAF rules. For examples of useful
rules you can define for your AWS AppSync API, see Creating rules for a web ACL.

3. Associate the web ACL with an AWS AppSync API. You can perform this step in the AWS WAF
Console or in the AppSync Console.

• To associate the web ACL with an AWS AppSync API in the AWS WAF Console, follow the
instructions for Associating or disassociating a Web ACL with an AWS resource in the AWS
WAF Developer Guide.

• To associate the web ACL with an AWS AppSync API in the AWS AppSync Console

a. Sign in to the AWS Management Console and open the AppSync Console.

b. Choose the API that you want to associate with a web ACL.

c. In the navigation pane, choose Settings.

d. In the Web application firewall section, turn on Enable AWS WAF.

e. In the Web ACL dropdown list, choose the name of the web ACL to associate with
your API.

f. Choose Save to associate the web ACL with your API.

Note

After you create a web ACL in the AWS WAF Console, it can take a few minutes for the new
web ACL to be available. If you do not see a newly created web ACL in the Web application
firewall menu, wait a few minutes and retry the steps to associate the web ACL with your
API.

Note

AWS WAF integration only supports the Connect operation for real-time endpoints. AWS
AppSync will respond with an error message for any connection blocked by AWS WAF.

Integrate an AppSync API with AWS WAF 108

https://console.aws.amazon.com/waf/
https://docs.aws.amazon.com/waf/latest/developerguide/web-acl-creating.html
https://docs.aws.amazon.com/waf/latest/developerguide/web-acl-creating.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-rules.html
https://console.aws.amazon.com/wafv2/
https://console.aws.amazon.com/wafv2/
https://console.aws.amazon.com/appsync/
https://docs.aws.amazon.com/waf/latest/developerguide/web-acl-associating-aws-resource.html
https://console.aws.amazon.com/appsync/

AWS AppSync Events Developer Guide

After you associate a web ACL with an AWS AppSync API, you will manage the web ACL using the
AWS WAF APIs. You do not need to re-associate the web ACL with your AWS AppSync API unless
you want to associate the AWS AppSync API with a different web ACL.

Creating rules for a web ACL

Rules define how to inspect web requests and what to do when a web request matches the
inspection criteria. Rules don't exist in AWS WAF on their own. You can access a rule by name in
a rule group or in the web ACL where it's defined. For more information, see AWS WAF rules. The
following examples demonstrate how to define and associate rules that are useful for protecting
an AppSync API.

Example web ACL rule to limit request body size

The following is an example of a rule that limits the body size of requests. This would be entered
into the Rule JSON editor when creating a web ACL in the AWS WAF Console.

{
 "Name": "BodySizeRule",
 "Priority": 1,
 "Action": {
 "Block": {}
 },
 "Statement": {
 "SizeConstraintStatement": {
 "ComparisonOperator": "GE",
 "FieldToMatch": {
 "Body": {}
 },
 "Size": 1024,
 "TextTransformations": [
 {
 "Priority": 0,
 "Type": "NONE"
 }
]
 }
 },
 "VisibilityConfig": {
 "CloudWatchMetricsEnabled": true,
 "MetricName": "BodySizeRule",
 "SampledRequestsEnabled": true

Creating rules for a web ACL 109

https://docs.aws.amazon.com/waf/latest/developerguide/waf-rules.html

AWS AppSync Events Developer Guide

 }
}

After you have created your web ACL using the preceding example rule, you must associate it with
your AppSync API. As an alternative to using the AWS Management Console, you can perform this
step in the AWS CLI by running the following command.

aws waf associate-web-acl --web-acl-id waf-web-acl-arn --resource-arn appsync-api-arn

It can take a few minutes for the changes to propagate, but after running this command, requests
that contain a body larger than 1024 bytes will be rejected by AWS AppSync.

Note

After you create a new web ACL in the AWS WAF Console, it can take a few minutes for
the web ACL to be available to associate with an API. If you run the CLI command and get
a WAFUnavailableEntityException error, wait a few minutes and retry running the
command.

Example web ACL rule to limit requests from a single IP address

The following is an example of a rule that throttles an AppSync API to 100 requests from a single
IP address. This would be entered into the Rule JSON editor when creating a web ACL with a rate-
based rule in the AWS WAF Console.

{
 "Name": "Throttle",
 "Priority": 0,
 "Action": {
 "Block": {}
 },
 "VisibilityConfig": {
 "SampledRequestsEnabled": true,
 "CloudWatchMetricsEnabled": true,
 "MetricName": "Throttle"
 },
 "Statement": {
 "RateBasedStatement": {
 "Limit": 100,

Creating rules for a web ACL 110

AWS AppSync Events Developer Guide

 "AggregateKeyType": "IP"
 }
 }
}

After you have created your web ACL using the preceding example rule, you must associate it with
your AppSync API. You can perform this step in the AWS CLI by running the following command.

aws waf associate-web-acl --web-acl-id waf-web-acl-arn --resource-arn appsync-api-arn

Creating rules for a web ACL 111

AWS AppSync Events Developer Guide

Event API runtime reference

The following sections contain the APPSYNC_JS runtime reference:

• Runtime reference overview — Learn more about how runtime data sources work in AWS
AppSync Events.

• Context reference — Learn more about the context object and how it's used in AWS AppSync
Events handlers.

• Runtime features — Learn more about supported runtime features.

• Runtime reference for DynamoDB — Learn more about how AWS AppSync Events handlers
interact with DynamoDB.

• Runtime reference for OpenSearch Service — Learn more about how AWS AppSync Events
handlers interact with Amazon OpenSearch Service.

• Runtime reference for Lambda — Learn more about how AWS AppSync Events API handlers
interact with AWS Lambda.

• Runtime reference for EventBridge — Learn more about how AWS AppSync Events API handlers
interact with Amazon EventBridge.

• Runtime reference for HTTP — Learn more about how AWS AppSync Events API handlers
interact with HTTP endpoints.

• Runtime reference for Amazon RDS — Learn more about how AWS AppSync Events API handlers
interact with Amazon Relational Database Service.

• Runtime reference for Amazon Bedrock — Learn more about how how AWS AppSync Events API
handlers interact with Amazon Bedrock.

AWS AppSync Event API runtime reference

AWS AppSync lets you respond to specific triggers that occur in the service with code that runs on
AWS AppSync's JavaScript runtime (APPSYNC_JS).

The AWS AppSync JavaScript runtime provides a subset of JavaScript libraries, utilities, and
features. For a complete list of features and functionality supported by the APPSYNC_JS runtime,
see Runtime features.

Topics

Runtime reference overview 112

AWS AppSync Events Developer Guide

• Event handlers overview

• Writing event handlers

• Configuring utilities for the APPSYNC_JS runtime

• Bundling, TypeScript, and source maps for the APPSYNC_JS runtime

Event handlers overview

An event handler is a function defined in a namespace that is invoked by specific triggers in
the system. Currently you can define onPublish and onSubscribe event handlers: handlers that
respond to events being published to a channel in the namespace, and handlers that respond
to subscription items on a channel in the namespace. An onPublish handler is called before
events are broadcast to subscribed clients, giving you a chance to transform the events first. An
onSubscribe handler is called as a client tries to subscribe, giving you the chance to accept or reject
the subscription attempt.

Event handlers are optional and are not required for your channel namespaces to be effective.

Writing event handlers

A handler is defined by a single function that doesn't interact with a data source, or is defined by
an object that implements a request and a response function to interact with one of your data
sources. When working with a Lambda function data source, AWS AppSync Events supports a
DIRECT integration that allows you to interact with your Lambda function without writing any
handler code.

You provide your code for the handlers using the namespace's code property. Essentially, you use
a "single file" to define all your handlers. In your code file, you identify your handler definitions by
exporting a function or object named onPublish or onSubscribe.

Handler with no data source integration

You can define a handler with no data source integration. In this case, the handler is defined as a
single function. In the following example, the onPublish handler shows the default behavior when
no handler is defined. It simply forwards the list of events.

export function onPublish(ctx) {
 return ctx.events
}

Event handlers overview 113

AWS AppSync Events Developer Guide

As an alternate example, this definition returns an empty list, which means that no event will be
broadcast to the subscribers.

export const onPublish = (ctx) => ([])

In this example, the handler only returns the list of published events, but adds the property msg to
the payload.

export function onPublish(ctx) {
 return ctx.events.map(({id, payload}) => {
 return {id: payload: {...payload, msg: "Hello!"}}
 })
}

Handler with a data source integration

You can define a handler with a data source integration. In this case, you define an object that
implements and request and a response function. The request function defines the payload
that is sent to invoke the data source while the response function receives the result of that
invocation. The list of events to broadcast is returned by the response function.

The following example defines an onPublish handler that saves all published events to a
messages_table before forwarding them to be broadcast. The onSubscribe handler doesn't
have a data source integration and is defined by a single function that simply logs a message.

import * as ddb from `@aws-appsync/utils/dynamodb`

const TABLE = 'messages_table'
export const onPublish = {
 request(ctx) {
 const channel = ctx.info.channel.path
 return ddb.batchPut({
 tables: {
 [TABLE]: ctx.events.map(({ id, payload }) => ({ channel, id, ...payload })),
 },
 })
 },
 response(ctx) {
 console.log(`Batch Put result:`, ctx.result.data[TABLE])
 return ctx.events
 },

Writing event handlers 114

AWS AppSync Events Developer Guide

}

export const onSubscribe = (ctx) => {
 console.debug(`Joined the chat: ${ctx.info.channel.path}`)
}

Skipping the data source

You might have situations where you need to skip the data source invocation at run time. You
can do this by using the runtime.earlyReturn utility. earlyReturn immediately returns the
provided payload and skips the response function.

import * as ddb from `@aws-appsync/utils/dynamodb`

const TABLE = 'messages_table'
export const onPublish = {
 request(ctx) {
 if (ctx.info.channel.segments.includes('private')) {
 // return early and do no execute the response.
 return runtime.earlyReturn(ctx.events)
 }
 const channel = ctx.info.channel.path
 return ddb.batchPut({
 tables: {
 [TABLE]: ctx.events.map(({ id, payload }) => ({ channel, id, ...payload })),
 },
 })
 },
 response(ctx) {
 return ctx.result.data[TABLE].map(({ id, ...payload }) => ({ id, payload }))
 },
}

Returning an error

During the execution of an event handler, you might need to return an error back to the publisher
or subscriber. Use the util.error function to do this. When publishing is done using the HTTP
endpoint, this returns an HTTP 403 response. When publishing over WebSocket, this returns a
publish_error message with the provided message. The following example demonstrates how
to return an error message.

export function onPublish(ctx) {

Writing event handlers 115

AWS AppSync Events Developer Guide

 util.error("Not possible!")
 return ctx.events
}

Unauthorizing a request

Your event handlers are always called after AWS AppSync has authorized the requests. However,
you can run additional business logic and unauthorize a request in your event handler using the
util.unauthorize function. When publishing over HTTP, this returns an HTTP 401 response.
Over WebSocket, this returns a publish_error message with an UnauthorizedException
error type. When trying to connect over WebSocket, you get a subscribe_error with an
Unauthorized error type.

export function onSubscribe(ctx) {
 if (somethingNotValid() === true) {
 util.unauthorized()
 }
}

function somethingNotValid() {
 // implement custom business logic
}

Direct Lambda integration

AWS AppSync lets you integrate Lambda functions directly with your channel namespace without
writing additional handler code. This integration supports both publish and subscribe operations
through Request/Response mode.

How it works

When AWS AppSync calls your Lambda function, it passes a context object containing event
information. Then, the Lambda function can perform the following operations:

• Filter and transform events for broadcasting

• Return error messages for failed processing

• Handle both publish and subscribe operations

Publish operation response format

Writing event handlers 116

AWS AppSync Events Developer Guide

For onPublish handlers, your Lambda function must return a response payload with the following
structure:

type LambdaAppSyncEventResponse = {
 /** Array of outgoing events to broadcast */
 events?: OutgoingEvent[],

 /** Optional error message if processing fails */
 error?: string
}

Note

If you include an error message in the response, AWS AppSync logs it (when logging is
enabled) but doesn't return it to the publisher.

Subscribe operation response

For onSubscribe handlers, your Lambda function must return one of the following:

• A payload containing an error message

• null to indicate a successful subscription

type LambdaAppSyncEventResponse = {
 /** Error message if subscription fails */
 error: string
} | null

Best practices

We recommend the following best practices for direct Lambda integrations:

• Enable logging to track error messages.

• Ensure your Lambda function handles both success and error cases.

• Test your integration with various payload scenarios.

Utilizing Powertools for Lambda

Writing event handlers 117

AWS AppSync Events Developer Guide

You can utilize Powertools for Lambda to efficiently write your Lambda function handlers. To learn
more, see the following Powertools for AWS Lambda documentation resources:

• TypeScript/Node.js — See https://docs.powertools.aws.dev/lambda/typescript/latest/features/
event-handler/appsync-events/ in the Powertools for AWS Lambda (TypeScript) documentation.

• Python — See https://docs.powertools.aws.dev/lambda/python/latest/core/event_handler/
appsync_events/ in the Powertools for AWS Lambda (Python) documentation.

• .NET — See https://docs.powertools.aws.dev/lambda/dotnet/core/event_handler/
appsync_events/ in the Powertools for AWS Lambda (.NET) documentation.

Configuring utilities for the APPSYNC_JS runtime

AWS AppSync provides the following two libraries that help you develop event handlers with the
APPSYNC_JS runtime:

• @aws-appsync/eslint-plugin - Catches and fixes problems quickly during development.

• @aws-appsync/utils - Provides type validation and autocompletion in code editors.

Configuring the eslint plugin

ESLint is a tool that statically analyzes your code to quickly find problems. You can run ESLint as
part of your continuous integration pipeline. @aws-appsync/eslint-plugin is an ESLint plugin
that catches invalid syntax in your code when leveraging the APPSYNC_JS runtime. The plugin
allows you to quickly get feedback about your code during development without having to push
your changes to the cloud.

@aws-appsync/eslint-plugin provides two rule sets that you can use during development.

"plugin:@aws-appsync/base" configures a base set of rules that you can leverage in your project.
The following table describes these rules.

Rule Description

no-async Async processes and promises are not
supported.

Configuring utilities for the APPSYNC_JS runtime 118

https://docs.powertools.aws.dev/lambda/typescript/latest/features/event-handler/appsync-events/
https://docs.powertools.aws.dev/lambda/typescript/latest/features/event-handler/appsync-events/
https://docs.powertools.aws.dev/lambda/python/latest/core/event_handler/appsync_events/
https://docs.powertools.aws.dev/lambda/python/latest/core/event_handler/appsync_events/
https://docs.powertools.aws.dev/lambda/dotnet/core/event_handler/appsync_events/
https://docs.powertools.aws.dev/lambda/dotnet/core/event_handler/appsync_events/
https://eslint.org/

AWS AppSync Events Developer Guide

Rule Description

no-await Async processes and promises are not
supported.

no-classes Classes are not supported.

no-for for is not supported (except for for-in and
for-of, which are supported)

no-continue continue is not supported.

no-generators Generators are not supported.

no-yield yield is not supported.

no-labels Labels are not supported.

no-this this keyword is not supported.

no-try Try/catch structure is not supported.

no-while While loops are not supported.

no-disallowed-unary-operators ++, --, and ~ unary operators are not allowed.

no-disallowed-binary-operators The instanceof operator is not allowed.

no-promise Async processes and promises are not
supported.

"plugin:@aws-appsync/recommended" provides some additional rules but also requires you to
add TypeScript configurations to your project.

Rule Description

no-recursion Recursive function calls are not allowed.

Configuring utilities for the APPSYNC_JS runtime 119

AWS AppSync Events Developer Guide

Rule Description

no-disallowed-methods Some methods are not allowed. See the
Runtime features for a full set of supported
 built-in functions.

no-function-passing Passing functions as function arguments to
functions is not allowed.

no-function-reassign Functions cannot be reassigned.

no-function-return Functions cannot be the return value of
functions.

To add the plugin to your project, follow the installation and usage steps at Getting Started with
ESLint. Then, install the plugin in your project using your project package manager (e.g., npm, yarn,
or pnpm):

$ npm install @aws-appsync/eslint-plugin

In your .eslintrc.{js,yml,json} file, add "plugin:@aws-appsync/base" or "plugin:@aws-
appsync/recommended" to the extends property. The snippet below is a basic sample
.eslintrc configuration for JavaScript:

{
 "extends": ["plugin:@aws-appsync/base"]
}

To use the "plugin:@aws-appsync/recommended" rule set, install the required dependency:

$ npm install -D @typescript-eslint/parser

Then, create an .eslintrc.js file:

{
 "parser": "@typescript-eslint/parser",
 "parserOptions": {
 "ecmaVersion": 2018,

Configuring utilities for the APPSYNC_JS runtime 120

https://eslint.org/docs/latest/user-guide/getting-started#installation-and-usage
https://eslint.org/docs/latest/user-guide/getting-started#installation-and-usage
https://www.npmjs.com/package/@aws-appsync/eslint-plugin

AWS AppSync Events Developer Guide

 "project": "./tsconfig.json"
 },
 "extends": ["plugin:@aws-appsync/recommended"]
}

Bundling, TypeScript, and source maps for the APPSYNC_JS runtime

TypeScript enhances AWS AppSync development by providing type safety and early error
detection. You can write TypeScript code locally and transpile it to JavaScript before using it
with the APPSYNC_JS runtime. The process starts with installing TypeScript and configuring
tsconfig.json for the APPSYNC_JS environment. You can then use bundling tools like esbuild to
compile and bundle the code.

You can leverage custom and external libraries in your handler and function code, as long as they
comply with APPSYNC_JS requirements. Bundling tools combine code into a single file for use in
AWS AppSync. Source maps can be included to aid debugging.

Leveraging libraries and bundling your code

In your handler code, you can leverage both custom and external libraries so long as they
comply with the APPSYNC_JS requirements. This makes it possible to reuse existing code in your
application. To make use of libraries that are defined by multiple files, you must use a bundling
tool, such as esbuild, to combine your code in a single file that can then be saved to your AWS
AppSync namespace handler code.

When bundling your code, keep the following in mind:

• APPSYNC_JS only supports ECMAScript modules (ESM).

• @aws-appsync/* modules are integrated into APPSYNC_JS and should not be bundled with
your code.

• The APPSYNC_JS runtime environment is similar to NodeJS in that code does not run in a
browser environment.

• You can include an optional source map. However, do not include the source content.

To learn more about source maps, see Using source maps.

For example, to bundle your handler code located at src/appsync/onPublish.js, you can use
the following esbuild CLI command:

Bundling, TypeScript, and source maps for the APPSYNC_JS runtime 121

https://esbuild.github.io/

AWS AppSync Events Developer Guide

$ esbuild --bundle \
--sourcemap=inline \
--sources-content=false \
--target=esnext \
--platform=node \
--format=esm \
--external:@aws-appsync/utils \
--outdir=out/appsync \
 src/appsync/onPublish.js

Building your code and working with TypeScript

TypeScript is a programming language developed by Microsoft that offers all of JavaScript’s
features along with the TypeScript typing system. You can use TypeScript to write type-safe code
and catch errors and bugs at build time before saving your code to AWS AppSync. The @aws-
appsync/utils package is fully typed.

The APPSYNC_JS runtime doesn't support TypeScript directly. You must first transpile your
TypeScript code to JavaScript code that the APPSYNC_JS runtime supports before saving
your code to AWS AppSync. You can use TypeScript to write your code in your local integrated
development environment (IDE), but note that you cannot create TypeScript code in the AWS
AppSync console.

To get started, make sure you have TypeScript installed in your project. Then, configure your
TypeScript transcompilation settings to work with the APPSYNC_JS runtime using TSConfig. Here’s
an example of a basic tsconfig.json file that you can use:

// tsconfig.json
{
 "compilerOptions": {
 "target": "esnext",
 "module": "esnext",
 "noEmit": true,
 "moduleResolution": "node",
 }
}

You can then use a bundling tool like esbuild to compile and bundle your code. For example,
given a project with your AWS AppSync code located at src/appsync, you can use the following
command to compile and bundle your code:

Bundling, TypeScript, and source maps for the APPSYNC_JS runtime 122

https://www.typescriptlang.org/
https://www.typescriptlang.org/download
https://www.typescriptlang.org/tsconfig

AWS AppSync Events Developer Guide

$ esbuild --bundle \
--sourcemap=inline \
--sources-content=false \
--target=esnext \
--platform=node \
--format=esm \
--external:@aws-appsync/utils \
--outdir=out/appsync \
 src/appsync/**/*.ts

Using generics in TypeScript

You can use generics with several of the provided types. For example, you can write a handler that
makes use of the √≈. In your IDE, type definitions and auto-complete hints will guide you into
properly using the available utilities.

import type { EventOnPublishContext, IncomingEvent, OutgoingEvent } from "@aws-appsync/
utils"
import * as ddb from '@aws-appsync/utils/dynamodb'

type Message = {
 id: string;
 text: string;
 owner: string;
 likes: number
}

type OnP<T = any> = {
 request: (ctx: EventOnPublishContext<T>) => unknown,
 response: (ctx: EventOnPublishContext<T>) => OutgoingEvent[] | IncomingEvent[]
}

export const onPublish: OnP<Message> = {
 request(ctx) {
 const msg = ctx.events[0]
 return ddb.update<Message>({
 key: { owner: msg.payload.owner, id: msg.payload.id },
 update: msg.payload,
 condition: { id: { attributeExists: true } }
 })
 },
 response: (ctx) => ctx.events

Bundling, TypeScript, and source maps for the APPSYNC_JS runtime 123

AWS AppSync Events Developer Guide

}

Linting your bundles

You can automatically lint your bundles by importing the esbuild-plugin-eslint plugin. You
can then enable it by providing a plugins value that enables eslint capabilities. Below is a snippet
that uses the esbuild JavaScript API in a file called build.mjs:

/* eslint-disable */
import { build } from 'esbuild'
import eslint from 'esbuild-plugin-eslint'
import glob from 'glob'
const files = await glob('src/**/*.ts')

await build({
 format: 'esm',
 target: 'esnext',
 platform: 'node',
 external: ['@aws-appsync/utils'],
 outdir: 'dist/',
 entryPoints: files,
 bundle: true,
 plugins: [eslint({ useEslintrc: true })],
})

Using source maps

You can provide an inline source map (sourcemap) with your JavaScript code. Source maps are
useful for when you bundle JavaScript or TypeScript code and want to see references to your input
source files in your logs and runtime JavaScript error messages.

Your sourcemap must appear at the end of your code. It is defined by a single comment line that
follows the following format:

//# sourceMappingURL=data:application/json;base64,<base64 encoded string>

The following is an example of a source map:

//# sourceMappingURL=data:application/
json;base64,ewogICJ2ZXJzaW9uIjogMywKICAic291cmNlcyI6IFsibGliLmpzIiwgImNvZGUuanMiXSwKICAibWFwcGluZ3MiOiAiO0FBQU8sU0FBUyxRQUFRO0FBQ3RCLFNBQU87QUFDVDs7O0FDRE8sU0FBUyxRQUFRLEtBQUs7QUFDM0IsU0FBTyxNQUFNO0FBQ2Y7IiwKICAibmFtZXMiOiBbXQp9Cg==

Bundling, TypeScript, and source maps for the APPSYNC_JS runtime 124

AWS AppSync Events Developer Guide

Source maps can be created with esbuild. The example below shows you how to use the esbuild
JavaScript API to include an inline source map when code is built and bundled:

import { build } from 'esbuild'
import eslint from 'esbuild-plugin-eslint'
import glob from 'glob'
const files = await glob('src/**/*.ts')

await build({
 sourcemap: 'inline',
 sourcesContent: false,

 format: 'esm',
 target: 'esnext',
 platform: 'node',
 external: ['@aws-appsync/utils'],
 outdir: 'dist/',
 entryPoints: files,
 bundle: true,
 plugins: [eslint({ useEslintrc: true })],
})

In the preceeding example, the sourcemap and sourcesContent options specify that a source
map should be added in line at the end of each build but should not include the source content. As
a convention, we recommend not including source content in your sourcemap. You can disable this
in esbuild by setting sources-content to false.

To illustrate how source maps work, review the following example in which handler code references
helper functions from a helper library. The code contains log statements in the handler code and in
the helper library:

./src/channelhandler.ts (your handler)

import { EventOnPublishContext } from "@aws-appsync/utils";
 import { mapper } from "./lib/mapper";

 exportfunction onPublish (ctx: EventOnPublishContext) {
 return ctx.events.map(mapper)
}

./lib/helper.ts (a helper file)

Bundling, TypeScript, and source maps for the APPSYNC_JS runtime 125

AWS AppSync Events Developer Guide

import { IncomingEvent, OutgoingEvent } from "@aws-appsync/utils";

export function mapper(event: IncomingEvent, index: number) {
 console.log(`-> mapping: event ${event.id}`)
 return {
 ...event,
 payload: { ...event.payload, mapped: true },
 error: index % 2 === 0 ? 'flip flop error' : null
 } as OutgoingEvent
}

When you build and bundle the handler file, your handler code will include an inline source map.
When your handler runs, entries will appear in the CloudWatch logs.

AWS AppSync Event API context reference

AWS AppSync defines a set of variables and functions for working with handlers. This topic
describes these functions and provides examples.

Accessing the context

The context argument of a request and response handler is an object that holds all of the
contextual information for your handler invocation. It has the following structure:

type Context = {
 identity?: Identity;
 result?: any;
 request: Request;
 info: EventsInfo;
 stash: any;
 error?: Error
 events?: IncomingEvent[];
}

Note

The context object is commonly referred to as ctx.

Each field in the context object is defined as follows:

Context reference 126

AWS AppSync Events Developer Guide

context fields

identity

An object that contains information about the caller. For more information about the structure
of this field, see Identity.

result

A container for the results of this handler when a data source is configured, available in the
response function of a namespace handler.

request

A container for the headers and information about the custom domain that was used.

info

An object that contains information about the operation on the channel namespace. For the
structure of this field, see Info.

stash

The stash is an object that is made available inside each handler. The same stash object lives
through a single handler evaluation. You can use the stash to pass arbitrary data across request
and response functions of your handlers.

You can add items to the stash as follows:

ctx.stash.newItem = { key: "something" }
Object.assign(ctx.stash, {key1: value1, key2: value})

You can remove items from the stash by modifying the following code:

delete ctx.stash.key

Identity

The identity section contains information about the caller. The shape of this section depends on
the authorization type of your AWS AppSync API. For more information about security options, see
Configuring authorization and authentication to secure Event APIs.

Accessing the context 127

AWS AppSync Events Developer Guide

API_KEY authorization

The identity field isn't populated.

AWS_LAMBDA authorization

The identity has the following form:

type AppSyncIdentityLambda = {
 handlerContext: any;
};

The identity contains the handlerContext key, containing the same handlerContext
content returned by the Lambda function authorizing the request.

AWS_IAM authorization

The identity has the following form:

type AppSyncIdentityIAM = {
 accountId: string;
 cognitoIdentityPoolId: string;
 cognitoIdentityId: string;
 sourceIp: string[];
 username: string;
 userArn: string;
 cognitoIdentityAuthType: string;
 cognitoIdentityAuthProvider: string;
};

AMAZON_COGNITO_USER_POOLS authorization

The identity has the following form:

type AppSyncIdentityCognito = {
 sourceIp: string[];
 username: string;
 groups: string[] | null;
 sub: string;
 issuer: string;
 claims: any;
 defaultAuthStrategy: string;
};

Accessing the context 128

AWS AppSync Events Developer Guide

Each field is defined as follows:

accountId

The AWS account ID of the caller.

claims

The claims that the user has.

cognitoIdentityAuthType

Either authenticated or unauthenticated based on the identity type.

cognitoIdentityAuthProvider

A comma-separated list of external identity provider information used in obtaining the
credentials used to sign the request.

cognitoIdentityId

The Amazon Cognito identity ID of the caller.

cognitoIdentityPoolId

The Amazon Cognito identity pool ID associated with the caller.

defaultAuthStrategy

The default authorization strategy for this caller (ALLOW or DENY).

issuer

The token issuer.

sourceIp

The source IP address of the caller that AWS AppSync receives. If the request doesn't include
the x-forwarded-for header, the source IP value contains only a single IP address from the
TCP connection. If the request includes a x-forwarded-for header, the source IP is a list of
IP addresses from the x-forwarded-for header, in addition to the IP address from the TCP
connection.

sub

The UUID of the authenticated user.

Accessing the context 129

AWS AppSync Events Developer Guide

user

The IAM user.

userArn

The Amazon Resource Name (ARN) of the IAM user.

username

The user name of the authenticated user. In the case of AMAZON_COGNITO_USER_POOLS
authorization, the value of username is the value of attribute cognito:username. In the case of
AWS_IAM authorization, the value of username is the value of the AWS user principal. If you're
using IAM authorization with credentials vended from Amazon Cognito identity pools, we
recommend that you use cognitoIdentityId.

Request property

The request property contains the headers that were sent with the request, and the custom
domain name if it was used.

Request headers

The headers sent in HTTP requests to your API.

AWS AppSync supports passing custom headers from clients and accessing them in your handlers
by using ctx.request.headers. You can then use the header values for actions such as inserting
data into a data source or authorization checks. You can use single or multiple request headers.

If you set a header of animal with a value of duck as in the following example:

curl --location "https://YOUR_EVENT_API_ENDPOINT/event" \
--header 'Content-Type: application/json' \
--header "x-api-key:ABC123" \
--header "animal:duck" \
--data '{ "channel":"/news", "events":["\"Breaking news!\""] }'

Then, this could then be accessed with ctx.request.headers.animal.

You can also pass multiple headers in a single request and access these in the handler. For example,
if the custom header is set with two values as follows:

Accessing the context 130

AWS AppSync Events Developer Guide

curl --location "https://YOUR_EVENT_API_ENDPOINT/event" \
--header 'Content-Type: application/json' \
--header "x-api-key:ABC123" \
--header "animal:duck" \
--header "animal:goose" \
--data '{ "channel":"/news", "events":["\"Breaking news!\""] }'

You could then access these as an array, such as ctx.request.headers.animal[1].

Note

AWS AppSync doesn't expose the cookie header in ctx.request.headers.

Access the request custom domain name

AWS AppSync supports configuring a custom domain that you can use to access your HTTP and
WebSocket real-time endpoints for your APIs. When making a request with a custom domain
name, you can get the domain name using ctx.request.domainName. When using the default
endpoint domain name, the value is null.

Info property

The info section contains information about the request made to your channel namespace. This
section has the following form:

type EventsInfo = {
 info: {
 channel: {
 path: string;
 segments: string[];
 }
 };
 channelNamespace: {
 name: string
 }
 operation: 'SUBSCRIBE' | 'PUBLISH'
}

Each field is defined as follows:

Accessing the context 131

AWS AppSync Events Developer Guide

info.channel.path

The channel path the operation is executed on, for example, /default/user/johm.

info.channel.segments

The segments of the channel path, for example, ['default', 'user', 'john'].

info.channelNamespace.name

The name of the channel namespace, for example, 'default'.

info.operation

The operation executed: PUBLISH or SUBSCRIBE.

Runtime features

The APPSYNC_JS runtime environment provides features and utilities to help you work with data,
and write functions and AWS AppSync Event API handlers. The topics in this section describe the
language features that are supported for AWS AppSync Event APIs.

Topics

• Supported runtime features

• Built-in utilities

• Built-in modules

• Runtime utilities

Supported runtime features

The APPSYNC_JS runtime supports the features described in the following sections.

Topics

• Core features

• Primitive objects

• Built-in objects and functions

• Globals

• Error types

Runtime features 132

AWS AppSync Events Developer Guide

Core features

The following core features are supported.

Types

The following types are supported:

• numbers

• strings

• booleans

• objects

• arrays

• functions

Operators

The following operators are supported:

• standard math operators (+, -, /, %, *, etc.)

• nullish coalescing operator (??)

• Optional chaining (?.)

• bitwise operators

• void and typeof operators

• spread operators (...)

The following operators are not supported:

• unary operators (++, --, and ~)

• in operator

Note

Use the Object.hasOwn operator to check if the specified property is in the specified
object.

Statements

The following statements are supported:

Supported runtime features 133

AWS AppSync Events Developer Guide

• const

• let

• var

• break

• else

• for-in

• for-of

• if

• return

• switch

• spread syntax

The following are not supported:

• catch

• continue

• do-while

• finally

• for(initialization; condition; afterthought)

Note

The exceptions are for-in and for-of expressions, which are supported.

• throw

• try

• while

• labeled statements

Literals

The following ES 6 template literals are supported:

• Multi-line strings

• Expression interpolation

• Nesting templates

Supported runtime features 134

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

AWS AppSync Events Developer Guide

Functions

The following function syntax is supported:

• Function declarations are supported.

• ES 6 arrow functions are supported.

• ES 6 rest parameter syntax is supported.

Primitive objects

The following primitive objects of ES and their functions are supported.

Object

The following objects are supported:

• Object.assign()

• Object.entries()

• Object.hasOwn()

• Object.keys()

• Object.values()

• delete

String

The following strings are supported:

• String.prototype.length()

• String.prototype.charAt()

• String.prototype.concat()

• String.prototype.endsWith()

• String.prototype.indexOf()

• String.prototype.lastIndexOf()

• String.raw()

• String.prototype.replace()

Note

Regular expressions are not supported.

Supported runtime features 135

AWS AppSync Events Developer Guide

However, Java-styled regular expression constructs are supported in the provided
parameter. For more information see Pattern.

• String.prototype.replaceAll()

Note

Regular expressions are not supported.
However, Java-styled regular expression constructs are supported in the provided
parameter. For more information see Pattern.

• String.prototype.slice()

• String.prototype.split()

• String.prototype.startsWith()

• String.prototype.toLowerCase()

• String.prototype.toUpperCase()

• String.prototype.trim()

• String.prototype.trimEnd()

• String.prototype.trimStart()

Number

The following numbers are supported:

• Number.isFinite

• Number.isNaN

Built-in objects and functions

The following functions and objects are supported.

Math

• Math.random()

• Math.min()

• Math.max()

• Math.round()

Supported runtime features 136

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

AWS AppSync Events Developer Guide

• Math.floor()

• Math.ceil()

Array

• Array.prototype.length

• Array.prototype.concat()

• Array.prototype.fill()

• Array.prototype.flat()

• Array.prototype.indexOf()

• Array.prototype.join()

• Array.prototype.lastIndexOf()

• Array.prototype.pop()

• Array.prototype.push()

• Array.prototype.reverse()

• Array.prototype.shift()

• Array.prototype.slice()

• Array.prototype.sort()

Note

Array.prototype.sort() doesn't support arguments.

• Array.prototype.splice()

• Array.prototype.unshift()

• Array.prototype.forEach()

• Array.prototype.map()

• Array.prototype.flatMap()

• Array.prototype.filter()

• Array.prototype.reduce()

• Array.prototype.reduceRight()

• Array.prototype.find()

• Array.prototype.some()

• Array.prototype.every()

Supported runtime features 137

AWS AppSync Events Developer Guide

• Array.prototype.findIndex()

• Array.prototype.findLast()

• Array.prototype.findLastIndex()

• delete

Console

The console object is available for debugging. During live query execution, console log/error
statements are sent to Amazon CloudWatch Logs (if logging is enabled). During code evaluation
with evaluateCode, log statements are returned in the command response.

• console.error()

• console.log()

Function

• The apply, bind, and call methods not are supported.

• Function constructors are not supported.

• Passing a function as an argument is not supported.

• Recursive function calls are not supported.

JSON

The following JSON methods are supported:

• JSON.parse()

Note

Returns a blank string if the parsed string is not valid JSON.

• JSON.stringify()

Promises

Async processes are not supported, and promises are not supported.

Note

Network and file system access is not supported within the APPSYNC_JS runtime in
AWS AppSync. AWS AppSync handles all I/O operations based on the requests made by
the AWS AppSync handler or AWS AppSync function.

Supported runtime features 138

AWS AppSync Events Developer Guide

Globals

The following global constants are supported:

• NaN

• Infinity

• undefined

• util

• extensions

• runtimeb

Error types

Throwing errors with throw is not supported. You can return an error by using util.error()
function. You can include an error in your handler response by using the util.appendError
function.

Built-in utilities

The util variable contains general utility methods to help you work with data. Unless otherwise
specified, all utilities use the UTF-8 character set.

Encoding utils

util.urlEncode(String)

Returns the input string as an application/x-www-form-urlencoded encoded string.

util.urlDecode(String)

Decodes an application/x-www-form-urlencoded encoded string back to its non-encoded
form.

util.base64Encode(string) : string

Encodes the input into a base64-encoded string.

util.base64Decode(string) : string

Decodes the data from a base64-encoded string.

Built-in utilities 139

AWS AppSync Events Developer Guide

Built-in modules

Modules are a part of the APPSYNC_JS runtime and provide utilities to help write functions and
Event API handlers. This section describes the DynamoDB and Amazon RDS module functions that
you can use to interact with these data sources.

Amazon DynamoDB built-in module

The DynamoDB module functions provide an enhanced experience when interacting with
DynamoDB data sources. You can make requests toward your DynamoDB data sources using the
functions and without adding type mapping.

Modules are imported using @aws-appsync/utils/dynamodb:

import * as ddb from '@aws-appsync/utils/dynamodb';

DynamoDB get() function

The DynamoDB get() function generates a DynamoDBGetItemRequest object to make a
GetItem request to DynamoDB.

Definition

get<T>(payload: GetInput): DynamoDBGetItemRequest

Example

The following example fetches an item from DynamoDB in a subscribe handler.

import { get } from '@aws-appsync/utils/dynamodb';

export const onSubscribe = {
 request(ctx) {
 return ddb.get({key: {
 path: ctx.info.channel.path,
 sub: ctx.identity.sub
 }})
 },
 response(ctx) {
 console.log('Got the item:', ctx.result)
 if (!ctx.result){
 console.error("No info about this user for this channel path.")

Built-in modules 140

AWS AppSync Events Developer Guide

 until.unauthorized()
 }
 }
}

DynamoDB query() function

The DynamoDB query() function generates a DynamoDBQueryRequest object to make a Query
request to DynamoDB.

Definition

query<T>(payload: QueryInput): DynamoDBQueryRequest

Example

The following example performs a query against a DynamoDB table.

import * as ddb from '@aws-appsync/utils/dynamodb'

export const onPublish = {
 request(ctx) {
 // Find all items from this channel that exist on this path
 return ddb.query<{ channel: string; path: string }>({
 query: {
 channel: { eq: ctx.info.channelNamespace.name },
 path: { beginsWith: ctx.info.channe.path },
 },
 projection: ['channel', 'path', 'msgId'],
 })
 },
 response(ctx) {
 // Broadcast items that have not been saved to the table
 const ids = ctx.result.items.map(({ msgId }) => msgId)
 return ctx.events.filter(({ payload: { msgId } }) => !ids.includes(msgId))
 },
}

DynamoDB scan() function

The DynamoDB scan() function generates a DynamoDBScanRequest object to make a Scan
request to DynamoDB.

Built-in modules 141

AWS AppSync Events Developer Guide

Definition

scan<T>(payload: ScanInput): DynamoDBScanRequest

Example

The following example scans all items in a DynamoDB table.

import * as ddb from '@aws-appsync/utils/dynamodb';

export const onPublish = {
 request(ctx){
 return ddb.scan({
 limit: 20,
 projection: ['channel', 'path', 'msgId'],
 filter: { status: { eq: 'ACTIVE' } }
 })
 },
 response: (ctx) => ctx.events
}

DynamoDB put() function

The DynamoDB put() function generates a DynamoDBPutItemRequest object to make a
PutItem request to DynamoDB.

Definition

put<T>(payload: PutInput): DynamoDBPutItemRequest

Example

The following example saves an event to a DynamoDB table in an OnPublish handler.

import * as ddb from '@aws-appsync/utils/dynamodb';

export const onPublish = {
 request(ctx) {
 const {id, payload: item} = ctx.events[0]
 return ddb.put({ key: {id}, item })
 },
 response: (ctx) => ctx.events

Built-in modules 142

AWS AppSync Events Developer Guide

}

DynamoDB remove() function

The DynamoDB remove() function generates a DynamoDBDeleteItemRequest object to make a
DeleteItem request to DynamoDB.

Definition

remove<T>(payload: RemoveInput): DynamoDBDeleteItemRequest

Example

This OnPublish handler deletes an item in a DynamoDB table and forwards an empty list. No
event is broadcast.

import * as ddb from '@aws-appsync/utils/dynamodb';

export const onPublish = {
 request(ctx) {
 const { id } = ctx.events[0]
 return ddb.remove({key: id});
 },
 response: (ctx) => ([])
}

DynamoDB update() function

The DynamoDB update() function generates a DynamoDBUpdateItemRequest object to make
an UpdateItem request to DynamoDB.

Definition

update<T>(payload: UpdateInput): DynamoDBUpdateItemRequest

Example

This OnPublish handler increases the account received item before it is broadcast.

import * as ddb from '@aws-appsync/utils/dynamodb';

export const onPublish = {

Built-in modules 143

AWS AppSync Events Developer Guide

 request(ctx) {
 const { id, payload } = ctx.events[0]
 return ddb.update({
 key: { id },
 condition: { version: { eq: payload.version } },
 update: { ...payload, version: ddb.operations.increment(1) },
 });
 },
 response: (ctx) => ctx.events
}

DynamoDB batchGet() function

The DynamoDB batchGet() function generates a DynamoDBBatchGetItemRequest object to
make an BatchGetItem request to retrieve multiple items from one or more DynamoDB tables.

Definition

batchGet<T>(payload: BatchGetInput): DynamoDBBatchGetItemRequest

Example

The following example retrieves multiple items from a DynamoDB table in a single request/

import * as ddb from '@aws-appsync/utils/dynamodb';

export const onPublish = {
 request(ctx) {
 return ddb.batchGet({
 tables: {
 users: {
 keys: ctx.events.map(e => ({id: e.payload.id})),
 projection: ['id', 'name', 'email']
 }
 }
 })
 },
 response(ctx) {
 const users = ctx.result.data.users.reduce((acc, cur) => {
 acc[cur.id] = cur
 }, {})
 return ctx.events.map(event => {
 return {

Built-in modules 144

AWS AppSync Events Developer Guide

 id: event.id,
 payload: {...event.payload, ...users[event.payload.id]}
 }
 })
 }
}

DynamoDB batchPut() function

The DynamoDB batchput() function generates a DynamoDBBatchPutItemRequest object to
make an BatchWriteItem request to put multiple items into one or more DynamoDB tables.

Definition

batchPut<T>(payload: BatchPutInput): DynamoDBBatchPutItemRequest

Example

The following example writes multiple items to a DynamoDB table in a single request.

import * as ddb from '@aws-appsync/utils/dynamodb';

export const onPublish = {
 request(ctx) {
 return ddb.batchPut({
 tables: {
 messages: ctx.events.map(({ id, payload }) => ({
 channel: ctx.info.channelNamespace.name,
 id,
 ...payload
 })),
 }
 });
 },
 response: (ctx) => ctx.events
}

DynamoDB batchDelete() function

The DynamoDB batchDelete() function generates a DynamoDBBatchDeleteItemRequest
object to make an BatchWriteItem request to delete multiple items from one or more
DynamoDB tables.

Built-in modules 145

AWS AppSync Events Developer Guide

Definition

batchDelete(payload: BatchDeleteInput): DynamoDBBatchDeleteItemRequest

Example

The following example deletes multiple items from a DynamoDB table in a single request.

import * as ddb from '@aws-appsync/utils/dynamodb';

export const onPublish = {
 request(ctx) {
 const name = ctx.info.channelNamespace.name
 return ddb.batchDelete({
 tables: {
 [name]: ctx.events.map(({ payload }) => ({ id: payload.id })),
 }
 });
 },
 response: (ctx) => ([])
}

DynamoDB transactGet() function

The DynamoDB transactGet() function generates a DynamoDBTransactGetItemsRequest
object to make an TransactGetItems request to retrieve multiple items with strong consistency
in a single atomic transaction.

Definition

transactGet(payload: TransactGetInput): DynamoDBTransactGetItemsRequest

Example

The following example retrieves multiple items in a single atomic transaction.

import * as ddb from '@aws-appsync/utils/dynamodb';

export const onPublish = {
 request(ctx) {
 return ddb.transactGet({
 items: ctx.events.map(event => ({

Built-in modules 146

AWS AppSync Events Developer Guide

 table: event.payload.table,
 key: { id: event.payload.id },
 projection: [...event.payload.fields]
 }))
 })
 },
 response(ctx) {
 items = ctx.result.items
 return ctx.events.map((event, i) => ({
 id: event.id,
 payload: { ...event.payload, ...items[i] }
 }))
 }
}

DynamoDB transactWrite() function

The DynamoDB transactWrite() function generates a
DynamoDBTransactWriteItemsRequest object to make an TransactWriteItems request to
perform multiple write operations in a single atomic transaction.

Definition

transactWrite(payload: TransactWriteInput): DynamoDBTransactWriteItemsRequest

Example

The following example performs multiple write operations in a single atomic transaction.

import * as ddb from '@aws-appsync/utils/dynamodb';

export const onPublish = {
 request(ctx) {
 const order = ctx.events[0]
 return ddb.transactWrite({
 items: [
 {
 putItem: {
 table: 'Orders',
 key: { id: order.payload.id },
 item: {
 status: 'PENDING',
 createdAt: util.time.toISOString(),

Built-in modules 147

AWS AppSync Events Developer Guide

 items: order.items.map(({ id }) => id)
 }
 }
 },
 ...(order.items.map(({ id, item }) => ({
 putItem: {
 table: 'Items',
 key: { orderId: order.payload.id, id },
 item
 }
 })))
]
 });
 },
 response: (ctx) => ctx.events
}

DynamoDB set utilities

The @aws-appsync/utils/dynamodb provides the following set utility functions that you can
use to work with string sets, number sets, and binary sets.

toStringSet

Converts a list of strings to the DynamoDB string set format.

toNumberSet

Converts a list of numbers to the DynamoDB string set format.

toBinarySet

Converts a list of binary to the DynamoDB string set format.

Example

The following example converts a list of strings to DynamoDB string set format.

import * as ddb from '@aws-appsync/utils/dynamodb';

export const onPublish = {
 request(ctx) {
 const { id, payload } = ctx.events[0]
 return ddb.update({

Built-in modules 148

AWS AppSync Events Developer Guide

 key: { id },
 update: {segments: ddb.toStringSet(ctx.info.channel.segments)},
 });
 },
 response: (ctx) => ctx.events
}

DynamoDB conditions and filters

You can use the following operators to create filters and conditions.

Operator Description Possible value types

eq Equal number, string, boolean

ne Not equal number, string, boolean

le Less than or equal number, string

lt Less than number, string

ge Greater than or equal number, string

gt Greater than number, string

contains Like string

notContains Not like string

beginsWith Starts with prefix string

between Between two values number, string

attributeExists The attribute is not null number, string, boolean

size checks the length of the
element

string

You can combine these operators with and, or, and not.

const condition = {

Built-in modules 149

AWS AppSync Events Developer Guide

 and: [
 { name: { eq: 'John Doe' }},
 { age: { between: [10, 30] }},
 {or: [
 {id :{ attributeExists: true}}
]}
]
}

DynamoDB operations

The DynamoDB operations object provides utility functions for common DynamoDB operations.
These utilities are particularly useful in update() function calls.

The following operations are available:

add(value)

A helper function that adds a a value to the item when updating DynamoDB.

remove()

A helper function that removes an attribute from an item when updating DynamoDB.

replace(value)

A helper function that replaces an existing attribute when updating an item in DynamoDB. This
is useful for when you want to update the entire object or sub-object in the attribute.

increment(amount)

A helper function that increments a numeric attribute by the specified amount when updating
DynamoDB.

decrement(amount)

A helper function that decrements a numeric attribute by the specified amount when updating
DynamoDB.

append(value)

A helper function that appends a value to a list attribute in DynamoDB.

prepend(value)

A helper function that prepends a value to a list attribute in DynamoDB.

Built-in modules 150

AWS AppSync Events Developer Guide

updateListItem(value, index)

A helper function that updates an item in a list.

Example

The following example demonstrates how to use various operations in an update request.

import * as ddb from '@aws-appsync/utils/dynamodb';

export const onPublish = {
request(ctx) {
 return ddb.update({
 key: { id },
 update: {
 counter: ddb.operations.increment(1),
 tags: ddb.operations.append(['things']),
 items: ddb.operations.add({key: 'value'}),
 oldField: ddb.operations.remove(),
 },
 });
}

export function response(ctx) {
 return ctx.result;
}

Inputs

Type GetInput<T>

GetInput<T>: {
 consistentRead?: boolean;
 key: DynamoDBKey<T>;
}

Type Declaration

• consistentRead?: boolean (optional)

An optional boolean to specify whether you want to perform a strongly consistent read with
DynamoDB.

Built-in modules 151

AWS AppSync Events Developer Guide

• key: DynamoDBKey<T> (required)

A required parameter that specifies the key of the item in DynamoDB. DynamoDB items may
have a single hash key or hash and sort keys.

Type PutInput<T>

PutInput<T>: {
 _version?: number;
 condition?: DynamoDBFilterObject<T> | null;
 customPartitionKey?: string;
 item: Partial<T>;
 key: DynamoDBKey<T>;
 populateIndexFields?: boolean;
}

Type Declaration

• _version?: number (optional)

• condition?: DynamoDBFilterObject<T> | null (optional)

When you put an object in a DynamoDB table, you can optionally specify a conditional
expression that controls whether the request should succeed or not based on the state of the
object already in DynamoDB before the operation is performed.

• customPartitionKey?: string (optional)

When enabled, this string value modifies the format of the ds_sk and ds_pk records used by
the delta sync table when versioning has been enabled. When enabled, the processing of the
populateIndexFields entry is also enabled.

• item: Partial<T> (required)

The rest of the attributes of the item to be placed into DynamoDB.

• key: DynamoDBKey<T> (required)

A required parameter that specifies the key of the item in DynamoDB on which the put will be
performed. DynamoDB items may have a single hash key or hash and sort keys.

• populateIndexFields?: boolean (optional)

A boolean value that, when enabled along with the customPartitionKey, creates new
entries for each record in the delta sync table, specifically in the gsi_ds_pk and gsi_ds_sk

Built-in modules 152

AWS AppSync Events Developer Guide

columns. For more information, see Conflict detection and sync in the AWS AppSync GraphQL
Developer Guide.

Type QueryInput<T>

QueryInput<T>: ScanInput<T> & {
 query: DynamoDBKeyCondition<Required<T>>;
}

Type Declaration

• query: DynamoDBKeyCondition<Required<T>> (required)

Specifies a key condition that describes items to query. For a given index, the condition for a
partition key should be an equality and the sort key a comparison or a beginsWith (when
it's a string). Only number and string types are supported for partition and sort keys.

Example

Take the User type below:

type User = {
 id: string;
 name: string;
 age: number;
 isVerified: boolean;
 friendsIds: string[]
}

The query can only include the following fields: id, name, and age:

const query: QueryInput<User> = {
 name: { eq: 'John' },
 age: { gt: 20 },
}

Type RemoveInput<T>

RemoveInput<T>: {
 _version?: number;
 condition?: DynamoDBFilterObject<T>;
 customPartitionKey?: string;

Built-in modules 153

https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html

AWS AppSync Events Developer Guide

 key: DynamoDBKey<T>;
 populateIndexFields?: boolean;
}

Type Declaration

• _version?: number (optional)

• condition?: DynamoDBFilterObject<T> (optional)

When you remove an object in DynamoDB, you can optionally specify a conditional
expression that controls whether the request should succeed or not based on the state of the
object already in DynamoDB before the operation is performed.

Example

The following example is a DeleteItem expression containing a condition that allows the
operation succeed only if the owner of the document matches the user making the request.

type Task = {
 id: string;
 title: string;
 description: string;
 owner: string;
 isComplete: boolean;
}
const condition: DynamoDBFilterObject<Task> = {
 owner: { eq: 'XXXXXXXXXXXXXXXX' },
}

remove<Task>({
 key: {
 id: 'XXXXXXXXXXXXXXXX',
 },
 condition,
});

• customPartitionKey?: string (optional)

When enabled, the customPartitionKey value modifies the format of the ds_sk and
ds_pk records used by the delta sync table when versioning has been enabled. When
enabled, the processing of the populateIndexFields entry is also enabled.

• key: DynamoDBKey<T> (required)

Built-in modules 154

AWS AppSync Events Developer Guide

A required parameter that specifies the key of the item in DynamoDB that is being removed.
DynamoDB items may have a single hash key or hash and sort keys.

Example

If a User only has the hash key with a user id, then the key would look like this:

type User = {
 id: number
 name: string
 age: number
 isVerified: boolean
}
const key: DynamoDBKey<User> = {
 id: 1,
}

If the table user has a hash key (id) and sort key (name), then the key would look like this:

type User = {
 id: number
 name: string
 age: number
 isVerified: boolean
 friendsIds: string[]
}

const key: DynamoDBKey<User> = {
 id: 1,
 name: 'XXXXXXXXXX',
}

• populateIndexFields?: boolean (optional)

A boolean value that, when enabled along with the customPartitionKey, creates new
entries for each record in the delta sync table, specifically in the gsi_ds_pk and gsi_ds_sk
columns.

Type ScanInput<T>

ScanInput<T>: {
 consistentRead?: boolean | null;

Built-in modules 155

AWS AppSync Events Developer Guide

 filter?: DynamoDBFilterObject<T> | null;
 index?: string | null;
 limit?: number | null;
 nextToken?: string | null;
 scanIndexForward?: boolean | null;
 segment?: number;
 select?: DynamoDBSelectAttributes;
 totalSegments?: number;
}

Type Declaration

• consistentRead?: boolean | null (optional)

An optional boolean to indicate consistent reads when querying DynamoDB. The default
value is false.

• filter?: DynamoDBFilterObject<T> | null (optional)

An optional filter to apply to the results after retrieving it from the table.

• index?: string | null (optional)

An optional name of the index to scan.

• limit?: number | null (optional)

An optional max number of results to return.

• nextToken?: string | null (optional)

An optional pagination token to continue a previous query. This would have been obtained
from a previous query.

• scanIndexForward?: boolean | null (optional)

An optional boolean to indicate whether the query is performed in ascending or descending
order. By default, this value is set to true.

• segment?: number (optional)

• select?: DynamoDBSelectAttributes (optional)

Attributes to return from DynamoDB. By default, the AWS AppSync DynamoDB resolver only
returns attributes that are projected into the index. The supported values are:

• ALL_ATTRIBUTES

Built-in modules 156

AWS AppSync Events Developer Guide

Returns all the item attributes from the specified table or index. If you query a local
secondary index, DynamoDB fetches the entire item from the parent table for each
matching item in the index. If the index is configured to project all item attributes, all of
the data can be obtained from the local secondary index and no fetching is required.

• ALL_PROJECTED_ATTRIBUTES

Returns all attributes that have been projected into the index. If the index is configured to
project all attributes, this return value is equivalent to specifying ALL_ATTRIBUTES.

• SPECIFIC_ATTRIBUTES

Returns only the attributes listed in ProjectionExpression. This return value is
equivalent to specifying ProjectionExpression without specifying any value for
AttributesToGet.

• totalSegments?: number (optional)

Type DynamoDBSyncInput<T>

DynamoDBSyncInput<T>: {
 basePartitionKey?: string;
 deltaIndexName?: string;
 filter?: DynamoDBFilterObject<T> | null;
 lastSync?: number;
 limit?: number | null;
 nextToken?: string | null;
}

Type Declaration

• basePartitionKey?: string (optional)

The partition key of the base table to be used when performing a Sync operation. This field
allows a Sync operation to be performed when the table utilizes a custom partition key.

• deltaIndexName?: string (optional)

The index used for the Sync operation. This index is required to enable a Sync operation on
the whole delta store table when the table uses a custom partition key. The Sync operation
will be performed on the GSI (created on gsi_ds_pk and gsi_ds_sk).

• filter?: DynamoDBFilterObject<T> | null (optional)

Built-in modules 157

AWS AppSync Events Developer Guide

An optional filter to apply to the results after retrieving it from the table.

• lastSync?: number (optional)

The moment, in epoch milliseconds, at which the last successful Sync operation started. If
specified, only items that have changed after lastSync are returned. This field should only
be populated after retrieving all pages from an initial Sync operation. If omitted, results from
the base table will be returned. Otherwise, results from the delta table will be returned.

• limit?: number | null (optional)

An optional maximum number of items to evaluate at a single time. If omitted, the default
limit will be set to 100 items. The maximum value for this field is 1000 items.

• nextToken?: string | null (optional)

Type DynamoDBUpdateInput<T>

DynamoDBUpdateInput<T>: {
 _version?: number;
 condition?: DynamoDBFilterObject<T>;
 customPartitionKey?: string;
 key: DynamoDBKey<T>;
 populateIndexFields?: boolean;
 update: DynamoDBUpdateObject<T>;
}

Type Declaration

• _version?: number (optional)

• condition?: DynamoDBFilterObject<T> (optional)

When you update an object in DynamoDB, you can optionally specify a conditional expression
that controls whether the request should succeed or not based on the state of the object
already in DynamoDB before the operation is performed.

• customPartitionKey?: string (optional)

When enabled, the customPartitionKey value modifies the format of the ds_sk and
ds_pk records used by the delta sync table when versioning has been enabled. When
enabled, the processing of the populateIndexFields entry is also enabled.

• key: DynamoDBKey<T> (required)

Built-in modules 158

AWS AppSync Events Developer Guide

A required parameter that specifies the key of the item in DynamoDB that is being updated.
DynamoDB items may have a single hash key or hash and sort keys.

• populateIndexFields?: boolean (optional)

A boolean value that, when enabled along with the customPartitionKey, creates new
entries for each record in the delta sync table, specifically in the gsi_ds_pk and gsi_ds_sk
columns.

• update: DynamoDBUpdateObject<T>

An object that specifies the attributes to be updated along with the new values for them. The
update object can be used with add, remove, replace, increment, decrement, append,
prepend, updateListItem.

Amazon RDS module functions

Amazon RDS module functions provide an enhanced experience when interacting with databases
configured with the Amazon RDS Data API. The module is imported using @aws-appsync/utils/
rds:

import * as rds from '@aws-appsync/utils/rds';

Functions can also be imported individually. For instance, the import below uses sql:

import { sql } from '@aws-appsync/utils/rds';

Select

The select utility creates a SELECT statement to query your relational database.

Basic use

In its basic form, you can specify the table you want to query.

import { select, createPgStatement } from '@aws-appsync/utils/rds';

export const onPublish = {
 request(ctx) {
 // Generates statement:
 // "SELECT * FROM "persons"

Built-in modules 159

AWS AppSync Events Developer Guide

 return createPgStatement(select({table: 'persons'}));
 }
}

You can also specify the schema in your table identifier:.

import { select, createPgStatement } from '@aws-appsync/utils/rds';

export const onPublish = {
 request(ctx) {
 // Generates statement:
 // SELECT * FROM "private"."persons"
 return createPgStatement(select({table: 'private.persons'}));
 }
}

Specifying columns

You can specify columns with the columns property. If this isn't set to a value, it defaults to *.

export const onPublish = {
 request(ctx) {
 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name']
 }));
 }
}

You can also specify a column's table.

export const onPublish = {
 request(ctx) {
 // Generates statement:
 // SELECT "id", "persons"."name"
 // FROM "persons"
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'persons.name']

Built-in modules 160

AWS AppSync Events Developer Guide

 }));
 }
}

Limits and offsets

You can apply limit and offset to the query.

export const onPublish = {
 request(ctx) {
 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 // LIMIT :limit
 // OFFSET :offset
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 limit: 10,
 offset: 40
 }));
 }
}

Order By

You can sort your results with the orderBy property. Provide an array of objects specifying the
column and an optional dir property.

export const onPublish = {
 request(ctx) {
 // Generates statement:
 // SELECT "id", "name" FROM "persons"
 // ORDER BY "name", "id" DESC
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 orderBy: [{column: 'name'}, {column: 'id', dir: 'DESC'}]
 }));
 }
}

Filters

Built-in modules 161

AWS AppSync Events Developer Guide

You can build filters by using the special condition object.

export const onPublish = {
 request(ctx) {
 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 // WHERE "name" = :NAME
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 where: {name: {eq: 'Stephane'}}
 }));
 }
}

You can also combine filters.

export const onPublish = {
 request(ctx) {
 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 // WHERE "name" = :NAME and "id" > :ID
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 where: {name: {eq: 'Stephane'}, id: {gt: 10}}
 }));
 }
}

You can create OR statements.

export const onPublish = {
 request(ctx) {
 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 // WHERE "name" = :NAME OR "id" > :ID
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],

Built-in modules 162

AWS AppSync Events Developer Guide

 where: { or: [
 { name: { eq: 'Stephane' } },
 { id: { gt: 10 } }
]}
 }));
 }
}

You can negate a condition with not.

export const onPublish = {
 request(ctx) {
 // Generates statement:
 // SELECT "id", "name"
 // FROM "persons"
 // WHERE NOT ("name" = :NAME AND "id" > :ID)
 return createPgStatement(select({
 table: 'persons',
 columns: ['id', 'name'],
 where: { not: [
 { name: { eq: 'Stephane' } },
 { id: { gt: 10 } }
]}
 }));
 }
}

You can also use the following operators to compare values:

Operator Description Possible value types

eq Equal number, string, boolean

ne Not equal number, string, boolean

le Less than or equal number, string

lt Less than number, string

ge Greater than or equal number, string

gt Greater than number, string

Built-in modules 163

AWS AppSync Events Developer Guide

contains Like string

notContains Not like string

beginsWith Starts with prefix string

between Between two values number, string

attributeExists The attribute is not null number, string, boolean

size checks the length of the
element

string

Insert

The insert utility provides a straightforward way of inserting single row items in your database
with the INSERT operation.

Single item insertions

To insert an item, specify the table and then pass in your object of values. The object keys are
mapped to your table columns. Columns names are automatically escaped, and values are sent to
the database using the variable map.

import { insert, createMySQLStatement } from '@aws-appsync/utils/rds';

export const onPublish = {
 request(ctx) {
 const { input: values } = ctx.args;
 const insertStatement = insert({ table: 'persons', values });

 // Generates statement:
 // INSERT INTO `persons`(`name`)
 // VALUES(:NAME)
 return createMySQLStatement(insertStatement);
 }
}

MySQL use case

You can combine an insert followed by a select to retrieve your inserted row.

Built-in modules 164

AWS AppSync Events Developer Guide

import { insert, select, createMySQLStatement } from '@aws-appsync/utils/rds';

export const onPublish = {
 request(ctx) {
 const { input: values } = ctx.args;
 const insertStatement = insert({ table: 'persons', values });
 const selectStatement = select({
 table: 'persons',
 columns: '*',
 where: { id: { eq: values.id } },
 limit: 1,
 });

 // Generates statement:
 // INSERT INTO `persons`(`name`)
 // VALUES(:NAME)
 // and
 // SELECT *
 // FROM `persons`
 // WHERE `id` = :ID
 return createMySQLStatement(insertStatement, selectStatement);
 }
}

Postgres use case

With Postgres, you can use returning to obtain data from the row that you inserted. It accepts *
or an array of column names:

import { insert, createPgStatement } from '@aws-appsync/utils/rds';

export const onPublish = {
 request(ctx) {
 const { input: values } = ctx.args;
 const insertStatement = insert({
 table: 'persons',
 values,
 returning: '*'
 });

 // Generates statement:
 // INSERT INTO "persons"("name")
 // VALUES(:NAME)

Built-in modules 165

https://www.postgresql.org/docs/current/dml-returning.html

AWS AppSync Events Developer Guide

 // RETURNING *
 return createPgStatement(insertStatement);
 }
}

Update

The update utility allows you to update existing rows. You can use the condition object to apply
changes to the specified columns in all the rows that satisfy the condition. For example, let's
presume that we have a schema that allows us to make this mutation. The following example
updates the name of Person with the id value of 3 but only if we've known them (known_since)
since the year 2000.

mutation Update {
 updatePerson(
 input: {id: 3, name: "Jon"},
 condition: {known_since: {ge: "2000"}}
) {
 id
 name
 }
}

Our update handler looks like the following:

import { update, createPgStatement } from '@aws-appsync/utils/rds';

export const onPublish = {
 request(ctx) {
 const { input: { id, ...values }, condition } = ctx.args;
 const where = {
 ...condition,
 id: { eq: id },
 };
 const updateStatement = update({
 table: 'persons',
 values,
 where,
 returning: ['id', 'name'],
 });

 // Generates statement:

Built-in modules 166

AWS AppSync Events Developer Guide

 // UPDATE "persons"
 // SET "name" = :NAME, "birthday" = :BDAY, "country" = :COUNTRY
 // WHERE "id" = :ID
 // RETURNING "id", "name"
 return createPgStatement(updateStatement);
 }
}

We can add a check to our condition to make sure that only the row that has the primary key id
equal to 3 is updated. Similarly, for Postgres inserts, you can use returning to return the
modified data.

Remove

The remove utility allows you to delete existing rows. You can use the condition object on all rows
that satisfy the condition. Note that delete is a reserved keyword in JavaScript. Use remove
instead.

import { remove, createPgStatement } from '@aws-appsync/utils/rds';

export const onPublish = {
 request(ctx) {
 const { input: { id }, condition } = ctx.args;
 const where = { ...condition, id: { eq: id } };
 const deleteStatement = remove({
 table: 'persons',
 where,
 returning: ['id', 'name'],
 });

 // Generates statement:
 // DELETE "persons"
 // WHERE "id" = :ID
 // RETURNING "id", "name"
 return createPgStatement(deleteStatement);
 }
}

Casting

In some cases, you might require more specificity about the correct object type to use in your
statement. You can use the provided type hints to specify the type of your parameters. AWS

Built-in modules 167

AWS AppSync Events Developer Guide

AppSync supports the same type hints as the Data API. You can cast your parameters by using the
typeHint functions from the AWS AppSync rds module.

The following example allows you to send an array as a value that is casted as a JSON object. We
use the -> operator to retrieve the element at the index 2 in the JSON array.

import { sql, createPgStatement, toJsonObject, typeHint } from '@aws-appsync/utils/
rds';

export const onPublish = {
 request(ctx) {
 const arr = ctx.args.list_of_ids
 const statement = sql`select ${typeHint.JSON(arr)}->2 as value`
 return createPgStatement(statement)
 }
}

Casting is also useful when handling and comparing DATE, TIME, and TIMESTAMP:

import { select, createPgStatement, typeHint } from '@aws-appsync/utils/rds';

export const onPublish = {
 request(ctx) {
 const when = ctx.args.when
 const statement = select({
 table: 'persons',
 where: { createdAt : { gt: typeHint.DATETIME(when) } }
 })
 return createPgStatement(statement)
 }
}

The following example demonstrates how to send the current date and time.

import { sql, createPgStatement, typeHint } from '@aws-appsync/utils/rds';

export const onPublish = {
 request(ctx) {
 const now = util.time.nowFormatted('YYYY-MM-dd HH:mm:ss')
 return createPgStatement(sql`select ${typeHint.TIMESTAMP(now)}`)
 }
}

Built-in modules 168

https://docs.aws.amazon.com//rdsdataservice/latest/APIReference/API_SqlParameter.html#rdsdtataservice-Type-SqlParameter-typeHint

AWS AppSync Events Developer Guide

Available type hints

• typeHint.DATE — The corresponding parameter is sent as an object of the DATE type to the
database. The accepted format is YYYY-MM-DD.

• typeHint.DECIMAL — The corresponding parameter is sent as an object of the DECIMAL type
to the database.

• typeHint.JSON — The corresponding parameter is sent as an object of the JSON type to the
database.

• typeHint.TIME — The corresponding string parameter value is sent as an object of the TIME
type to the database. The accepted format is HH:MM:SS[.FFF].

• typeHint.TIMESTAMP — The corresponding string parameter value is sent as an object of the
TIMESTAMP type to the database. The accepted format is YYYY-MM-DD HH:MM:SS[.FFF].

• typeHint.UUID — The corresponding string parameter value is sent as an object of the UUID
type to the database.

Runtime utilities

The runtime library provides utilities to control or modify the runtime properties of your handlers
and functions.

Invoking the following function stops the execution of the current handler (AWS AppSync Events
API) and returns the specified object as the result.

runtime.earlyReturn(obj?: unknown): never

When this function is called in an AWS AppSync Events handler, the data source and response
function are skipped.

import * as ddb from '@aws-appsync/utils/dynamodb';

export const onPublish = {
 request(ctx) {
 if (condition === true) {
 return runtime.earlyReturn(ctx.events)
 }
 // never executed if `condition` is true
 return ddb.batchPut({
 tables: {
 messages: ctx.events.map(({ id, payload }) => ({

Runtime utilities 169

AWS AppSync Events Developer Guide

 channel: ctx.info.channelNamespace.name,
 id,
 ...payload
 })),
 }
 });
 },
 // never called if `condition` was true
 response: (ctx) => ctx.events
}

AWS AppSync JavaScript function reference for DynamoDB

The Amazon DynamoDB functions allow you to use JavaScript to store and retrieve data in existing
Amazon DynamoDB tables in your account. This section describes the request and response
handlers for supported DynamoDB operations.

• GetItem — The GetItem request lets you tell the DynamoDB function to make a GetItem request
to DynamoDB, and enables you to specify the key of the item in DynamoDB and whether to use a
consistent read.

• PutItem — The PutItem request lets you tell the DynamoDB function to make a PutItem request
to DynamoDB, and enables you to specify the key of the item in DynamoDB, the full contents of
the item (composed of key and attributeValues), and conditions for the operation to succeed.

• UpdateItem — The UpdateItem request enables you to tell the DynamoDB function to make a
UpdateItem request to DynamoDB and allows you to specify the key of the item in DynamoDB,
an update expression describing how to update the item in DynamoDB, and conditions for the
operation to succeed.

• DeleteItem — The DeleteItem request lets you tell the DynamoDB function to make a DeleteItem
request to DynamoDB, and enables you to specify the key of the item in DynamoDB and
conditions for the operation to succeed.

• Query — The Query request object lets you tell the handler to make a Query request to
DynamoDB, and enables you to specify the key expression, which index to use, additional
filters, how many items to return, whether to use consistent reads, query direction (forward or
backward), and pagination tokens.

• Scan — The Scan request lets you tell the DynamoDB function to make a Scan request to
DynamoDB, and enables you to specify a filter to exclude results, which index to use, how many
items to return, whether to use consistent reads, pagination tokens, and parallel scans.

DynamoDB function reference 170

AWS AppSync Events Developer Guide

• BatchGetItem — The BatchGetItem request object lets you tell the DynamoDB function to make
a BatchGetItem request to DynamoDB to retrieve multiple items, potentially across multiple
tables. For this request object, you must specify the table names to retrieve the items from and
the keys of the items to retrieve from each table.

• BatchDeleteItem — The BatchDeleteItem request object lets you tell the DynamoDB function
to make a BatchWriteItem request to DynamoDB to delete multiple items, potentially across
multiple tables. For this request object, you must specify the table names to delete the items
from and the keys of the items to delete from each table.

• BatchPutItem — The BatchPutItem request object lets you tell the DynamoDB function to make
a BatchWriteItem request to DynamoDB to put multiple items, potentially across multiple tables.
For this request object, you must specify the table names to put the items in and the full items to
put in each table.

• TransactGetItems — The TransactGetItems request object lets you to tell the DynamoDB
function to make a TransactGetItems request to DynamoDB to retrieve multiple items,
potentially across multiple tables. For this request object, you must specify the table name of
each request item to retrieve the item from and the key of each request item to retrieve from
each table.

• TransactWriteItems — The TransactWriteItems request object lets you tell the DynamoDB
function to make a TransactWriteItems request to DynamoDB to write multiple items, potentially
to multiple tables. For this request object, you must specify the destination table name of each
request item, the operation of each request item to perform, and the key of each request item to
write.

• Type system (request mapping) — Learn more about how DynamoDB typing is integrated into
AWS AppSync requests.

• Type system (response mapping) — Learn more about how DynamoDB types are converted
automatically to JSON in a response payload.

• Filters — Learn more about filters for query and scan operations.

• Condition expressions — Learn more about condition expressions for PutItem, UpdateItem, and
DeleteItem operations.

• Transaction condition expressions — Learn more about condition expressions for
TransactWriteItems operations.

• Projections — Learn more about how to specify attributes in read operations.

DynamoDB function reference 171

AWS AppSync Events Developer Guide

GetItem

Note

We recommend using the DynamoDB built-in module to generate your request. For more
information, see Amazon DynamoDB built-in module.

The GetItem request lets you tell the AWS AppSync DynamoDB function to make a GetItem
request to DynamoDB, and enables you to specify:

• The key of the item in DynamoDB

• Whether to use a consistent read or not

The GetItem request has the following structure:

type DynamoDBGetItem = {
 operation: 'GetItem';
 key: { [key: string]: any };
 consistentRead?: ConsistentRead;
 projection?: {
 expression: string;
 expressionNames?: { [key: string]: string };
 };
};

The TypeScript definition above shows all available fields for the request. While you can construct
this request manually, using the DynamoDB built-in module is the recommended approach for
generating accurate and efficient requests.

GetItem fields

operation

The DynamoDB operation to perform. To perform the GetItem DynamoDB operation, this
must be set to GetItem. This value is required.

GetItem 172

AWS AppSync Events Developer Guide

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key
and sort key, depending on the table structure. For more information about how to specify a
“typed value”, see Type system (request mapping). This value is required.

consistentRead

Whether or not to perform a strongly consistent read with DynamoDB. This is optional, and
defaults to false.

projection

A projection that's used to specify the attributes to return from the DynamoDB operation. For
more information about projections, see Projections. This field is optional.

For more information about DynamoDB type conversion, see Type system (response mapping).

Examples

export const onPublish = {
 request: (ctx) => ({
 operation : "GetItem",
 key : util.dynamodb.toMapValues({
 channel: ctx.info.channelNamespace.name,
 id: ctx.events[0].payload.id}),
 consistentRead : true
 }),
 response(ctx) {
 return [{
 id: ctx.event[0].id,
 payload: ctx.result
 }]
 }
}

The following example demonstrates DynamoDB utils.

import * as ddb from '@aws-appsync/utils/dynamodb'
export const onPublish = {
 request: (ctx) => ddb.get({
 key: {

GetItem 173

AWS AppSync Events Developer Guide

 channel: ctx.info.channelNamespace.name,
 id: ctx.events[0].payload.id
 },
 consistentRead: true
 }),
 response(ctx) {
 return [{
 id: ctx.event[0].id,
 payload: ctx.result
 }]
 }
}

For more information about the DynamoDB GetItem API, see the DynamoDB API documentation.

PutItem

Note

We recommend using the DynamoDB built-in module to generate your request. For more
information, see Amazon DynamoDB built-in module.

The PutItem request enables you to create or replace items in DynamoDB through AWS AppSync.
The request specifies the following:

• Item Key: The unique identifier for the DynamoDB item

• Item Contents: The complete item data, including both the key and attributeValues

• Operation Conditions (optional): Rules that must be met for the operation to proceed

The PutItem request has the following structure:

type DynamoDBPutItemRequest = {
 operation: 'PutItem';
 key: { [key: string]: any };
 attributeValues: { [key: string]: any};
 condition?: ConditionCheckExpression;
 customPartitionKey?: string;
 populateIndexFields?: boolean;
 _version?: number;

PutItem 174

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html

AWS AppSync Events Developer Guide

};

The TypeScript definition above shows all available fields for the request. While you can construct
this request manually, we recommend using the DynamoDB built-in module for generating
accurate and efficient requests.

PutItem fields

operation

The DynamoDB operation to perform. To perform the PutItem DynamoDB operation, this
must be set to PutItem. This value is required.

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key
and sort key, depending on the table structure. For more information about how to specify a
“typed value”, see Type system (request mapping). This value is required.

attributeValues

The rest of the attributes of the item to be put into DynamoDB. For more information about
how to specify a “typed value”, see Type system (request mapping). This field is optional.

condition

A condition to determine if the request should succeed or not, based on the state of the object
already in DynamoDB. If no condition is specified, the PutItem request overwrites any existing
entry for that item. For more information about conditions, see Condition expressions. This
value is optional.

_version

A numeric value that represents the latest known version of an item. This value is optional. This
field is used for Conflict Detection and is only supported on versioned data sources.

customPartitionKey

When enabled, this string value modifies the format of the ds_sk and ds_pk records used
by the delta sync table when versioning has been enabled (for more information, see Conflict
detection and sync in the AWS AppSync Developer Guide). When enabled, the processing of the
populateIndexFields entry is also enabled. This field is optional.

PutItem 175

https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html

AWS AppSync Events Developer Guide

Not supported in AWS AppSync Events

populateIndexFields

A boolean value that, when enabled along with the customPartitionKey, creates new
entries for each record in the delta sync table, specifically in the gsi_ds_pk and gsi_ds_sk
columns. For more information, see Conflict detection and sync in the AWS AppSync Developer
Guide. This field is optional.

The item written to DynamoDB is automatically converted to JSON primitive types and is
available in the context result (context.result).

For more information about DynamoDB type conversion, see Type system (response mapping).

For more information about the DynamoDB PutItem API, see the DynamoDB API documentation.

UpdateItem

Note

We recommend using the DynamoDB built-in module to generate your request. For more
information, see Amazon DynamoDB built-in module.

The UpdateItem request enables you to modify existing items in DynamoDB through AWS
AppSync. The request specifies the following:

• Item Key: The unique identifier for the DynamoDB item to update

• Item Expression: Describes how to modify the item in DynamoDB

• Operation Conditions (optional): Rules that must be met for the update to proceed

The UpdateItem request has the following structure:

type DynamoDBUpdateItemRequest = {
 operation: 'UpdateItem';
 key: { [key: string]: any };
 update: {
 expression: string;

UpdateItem 176

https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

AWS AppSync Events Developer Guide

 expressionNames?: { [key: string]: string };
 expressionValues?: { [key: string]: any };
 };
 condition?: ConditionCheckExpression;
 customPartitionKey?: string;
 populateIndexFields?: boolean;
 _version?: number;
};

The TypeScript definition above shows all available fields for the request. While you can construct
this request manually, we recommend using the DynamoDB built-in module for generating
accurate and efficient requests.

UpdateItem fields

operation

The DynamoDB operation to perform. To perform the UpdateItem DynamoDB operation, this
must be set to UpdateItem. This value is required.

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key
and sort key, depending on the table structure. For more information about specifying a “typed
value”, see Type system (request mapping). This value is required.

update

The update section lets you specify an update expression that describes how to update the
item in DynamoDB. For more information about how to write update expressions, see the
DynamoDB UpdateExpressions documentation. This section is required.

The update section has three components:

expression

The update expression. This value is required.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression, and the value must be
a string corresponding to the attribute name of the item in DynamoDB. This field is optional,

UpdateItem 177

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html

AWS AppSync Events Developer Guide

and should only be populated with substitutions for expression attribute name placeholders
used in the expression.

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs.
The key corresponds to a value placeholder used in the expression, and the value must
be a typed value. For more information about how to specify a “typed value”, see Type
system (request mapping). This must be specified. This field is optional, and should only
be populated with substitutions for expression attribute value placeholders used in the
expression.

condition

A condition to determine if the request should succeed or not, based on the state of the object
already in DynamoDB. If no condition is specified, the UpdateItem request updates the existing
entry regardless of its current state. For more information about conditions, see Condition
expressions. This value is optional.

_version

A numeric value that represents the latest known version of an item. This value is optional. This
field is used for Conflict Detection and is only supported on versioned data sources.

Not supported in AWS AppSync Events

customPartitionKey

When enabled, this string value modifies the format of the ds_sk and ds_pk records used
by the delta sync table when versioning has been enabled (for more information, see Conflict
detection and sync in the AWS AppSync Developer Guide). When enabled, the processing of the
populateIndexFields entry is also enabled. This field is optional.

Not supported in AWS AppSync Events

populateIndexFields

A boolean value that, when enabled along with the customPartitionKey, creates new
entries for each record in the delta sync table, specifically in the gsi_ds_pk and gsi_ds_sk
columns. For more information, see Conflict detection and sync in the AWS AppSync Developer
Guide. This field is optional.

Not supported in AWS AppSync Events

UpdateItem 178

https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html

AWS AppSync Events Developer Guide

DeleteItem

Note

We recommend using the DynamoDB built-in module to generate your request. For more
information, see Amazon DynamoDB built-in module.

The DeleteItem request enables you to delete an item in a DynamoDB table. The request
specifies the following:

• The key of the item in DynamoDB

• Conditions for the operation to succeed

The DeleteItem request has the following structure:

type DynamoDBDeleteItemRequest = {
 operation: 'DeleteItem';
 key: { [key: string]: any };
 condition?: ConditionCheckExpression;
 customPartitionKey?: string;
 populateIndexFields?: boolean;
 _version?: number;
};

The TypeScript definition above shows all available fields for the request. While you can construct
this request manually, we recommend using the DynamoDB built-in module for generating
accurate and efficient requests.

DeleteItem fields

operation

The DynamoDB operation to perform. To perform the DeleteItem DynamoDB operation, this
must be set to DeleteItem. This value is required.

DeleteItem 179

AWS AppSync Events Developer Guide

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key
and sort key, depending on the table structure. For more information about specifying a “typed
value”, see Type system (request mapping). This value is required.

condition

A condition to determine if the request should succeed or not, based on the state of the
object already in DynamoDB. If no condition is specified, the DeleteItem request deletes
an item regardless of its current state. For more information about conditions, see Condition
expressions. This value is optional.

_version

A numeric value that represents the latest known version of an item. This value is optional. This
field is used for Conflict Detection and is only supported on versioned data sources.

Not supported in AWS AppSync Events

customPartitionKey

When enabled, this string value modifies the format of the ds_sk and ds_pk records used
by the delta sync table when versioning has been enabled (for more information, see Conflict
detection and sync in the AWS AppSync Developer Guide). When enabled, the processing of the
populateIndexFields entry is also enabled. This field is optional.

Not supported in AWS AppSync Events

populateIndexFields

A boolean value that, when enabled along with the customPartitionKey, creates new
entries for each record in the delta sync table, specifically in the gsi_ds_pk and gsi_ds_sk
columns. For more information, see Conflict detection and sync in the AWS AppSync Developer
Guide. This field is optional.

Not supported in AWS AppSync Events

For more information about the DynamoDB DeleteItem API, see the DynamoDB API
documentation.

DeleteItem 180

https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html

AWS AppSync Events Developer Guide

Query

Note

We recommend using the DynamoDB built-in module to generate your request. For more
information, see Amazon DynamoDB built-in module.

The Query request enables you to efficiently select all items in a DynamoDB table that match a key
condition. The request specifies the following:

• Key expression

• Which index to use

• Any additional filter

• How many items to return

• Whether to use consistent reads

• Query direction (forward or backward)

• Pagination token

The Query request object has the following structure:

type DynamoDBQueryRequest = {
 operation: 'Query';
 query: {
 expression: string;
 expressionNames?: { [key: string]: string };
 expressionValues?: { [key: string]: any };
 };
 index?: string;
 nextToken?: string;
 limit?: number;
 scanIndexForward?: boolean;
 consistentRead?: boolean;
 select?: 'ALL_ATTRIBUTES' | 'ALL_PROJECTED_ATTRIBUTES' | 'SPECIFIC_ATTRIBUTES';
 filter?: {
 expression: string;
 expressionNames?: { [key: string]: string };
 expressionValues?: { [key: string]: any };
 };

Query 181

AWS AppSync Events Developer Guide

 projection?: {
 expression: string;
 expressionNames?: { [key: string]: string };
 };
};

The TypeScript definition above shows all available fields for the request. While you can construct
this request manually, we recommend using the DynamoDB built-in module for generating
accurate and efficient requests.

Query fields

operation

The DynamoDB operation to perform. To perform the Query DynamoDB operation, this must
be set to Query. This value is required.

query

The query section lets you specify a key condition expression that describes which items to
retrieve from DynamoDB. For more information about how to write key condition expressions,
see the DynamoDB KeyConditions documentation . This section must be specified.

expression

The query expression. This field must be specified.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression, and the value must be
a string corresponding to the attribute name of the item in DynamoDB. This field is optional,
and should only be populated with substitutions for expression attribute name placeholders
used in the expression.

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs.
The key corresponds to a value placeholder used in the expression, and the value must
be a typed value. For more information about how to specify a “typed value”, see Type
system (request mapping). This value is required. This field is optional, and should only
be populated with substitutions for expression attribute value placeholders used in the
expression.

Query 182

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.KeyConditions.html

AWS AppSync Events Developer Guide

filter

An additional filter that can be used to filter the results from DynamoDB before they are
returned. For more information about filters, see Filters. This field is optional.

index

The name of the index to query. The DynamoDB query operation allows you to scan on Local
Secondary Indexes and Global Secondary Indexes in addition to the primary key index for a
hash key. If specified, this tells DynamoDB to query the specified index. If omitted, the primary
key index is queried.

nextToken

The pagination token to continue a previous query. This would have been obtained from a
previous query. This field is optional.

limit

The maximum number of items to evaluate (not necessarily the number of matching items).
This field is optional.

scanIndexForward

A boolean indicating whether to query forwards or backwards. This field is optional, and
defaults to true.

consistentRead

A boolean indicating whether to use consistent reads when querying DynamoDB. This field is
optional, and defaults to false.

select

By default, the AWS AppSync DynamoDB resolver only returns attributes that are projected
into the index. If more attributes are required, you can set this field. This field is optional. The
supported values are:

ALL_ATTRIBUTES

Returns all of the item attributes from the specified table or index. If you query a local
secondary index, DynamoDB fetches the entire item from the parent table for each
matching item in the index. If the index is configured to project all item attributes, all of the
data can be obtained from the local secondary index and no fetching is required.

Query 183

AWS AppSync Events Developer Guide

ALL_PROJECTED_ATTRIBUTES

Allowed only when querying an index. Retrieves all attributes that have been projected into
the index. If the index is configured to project all attributes, this return value is equivalent to
specifying ALL_ATTRIBUTES.

SPECIFIC_ATTRIBUTES

Returns only the attributes listed in the projection's expression. This return value is
equivalent to specifying the projection's expression without specifying any value for
Select.

projection

A projection that's used to specify the attributes to return from the DynamoDB operation. For
more information about projections, see Projections. This field is optional.

For more information about the DynamoDB Query API, see the DynamoDB API documentation.

Scan

Note

We recommend using the DynamoDB built-in module to generate your request. For more
information, see Amazon DynamoDB built-in module.

The Scan request scans for items across a DynamoDB table. The request specifies the following:

• A filter to exclude results

• Which index to use

• How many items to return

• Whether to use consistent reads

• Pagination token

• Parallel scans

The Scan request object has the following structure:

type DynamoDBScanRequest = {

Scan 184

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html

AWS AppSync Events Developer Guide

 operation: 'Scan';
 index?: string;
 limit?: number;
 consistentRead?: boolean;
 nextToken?: string;
 totalSegments?: number;
 segment?: number;
 filter?: {
 expression: string;
 expressionNames?: { [key: string]: string };
 expressionValues?: { [key: string]: any };
 };
 projection?: {
 expression: string;
 expressionNames?: { [key: string]: string };
 };
};

The TypeScript definition above shows all available fields for the request. While you can construct
this request manually, we recommend using the DynamoDB built-in module for generating
accurate and efficient requests.

Scan fields

operation

The DynamoDB operation to perform. To perform the Scan DynamoDB operation, this must be
set to Scan. This value is required.

filter

A filter that can be used to filter the results from DynamoDB before they are returned. For more
information about filters, see Filters. This field is optional.

index

The name of the index to query. The DynamoDB query operation allows you to scan on Local
Secondary Indexes and Global Secondary Indexes in addition to the primary key index for a
hash key. If specified, this tells DynamoDB to query the specified index. If omitted, the primary
key index is queried.

limit

The maximum number of items to evaluate at a single time. This field is optional.

Scan 185

AWS AppSync Events Developer Guide

consistentRead

A Boolean that indicates whether to use consistent reads when querying DynamoDB. This field
is optional, and defaults to false.

nextToken

The pagination token to continue a previous query. This would have been obtained from a
previous query. This field is optional.

select

By default, the AWS AppSync DynamoDB function only returns whatever attributes are
projected into the index. If more attributes are required, then this field can be set. This field is
optional. The supported values are:

ALL_ATTRIBUTES

Returns all of the item attributes from the specified table or index. If you query a local
secondary index, DynamoDB fetches the entire item from the parent table for each
matching item in the index. If the index is configured to project all item attributes, all of the
data can be obtained from the local secondary index and no fetching is required.

ALL_PROJECTED_ATTRIBUTES

Allowed only when querying an index. Retrieves all attributes that have been projected into
the index. If the index is configured to project all attributes, this return value is equivalent to
specifying ALL_ATTRIBUTES.

SPECIFIC_ATTRIBUTES

Returns only the attributes listed in the projection's expression. This return value is
equivalent to specifying the projection's expression without specifying any value for
Select.

totalSegments

The number of segments to partition the table by when performing a parallel scan. This field is
optional, but must be specified if segment is specified.

segment

The table segment in this operation when performing a parallel scan. This field is optional, but
must be specified if totalSegments is specified.

Scan 186

AWS AppSync Events Developer Guide

projection

A projection that's used to specify the attributes to return from the DynamoDB operation. For
more information about projections, see Projections. This field is optional.

The results have the following structure:

{
 items = [...],
 nextToken = "a pagination token",
 scannedCount = 10
}

The fields are defined as follows:

items

A list containing the items returned by the DynamoDB scan.

nextToken

If there might be more results, nextToken contains a pagination token that you can use in
another request. AWS AppSync encrypts and obfuscates the pagination token returned from
DynamoDB. This prevents your table data from being inadvertently leaked to the caller. Also,
these pagination tokens can’t be used across different functions.

scannedCount

The number of items that were retrieved by DynamoDB before a filter expression (if present)
was applied.

For more information about the DynamoDB Scan API, see the DynamoDB API documentation.

BatchGetItem

Note

We recommend using the DynamoDB built-in module to generate your request. For more
information, see Amazon DynamoDB built-in module.

BatchGetItem 187

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Scan.html

AWS AppSync Events Developer Guide

The BatchGetItem request object enables you to retrieve multiple items, potentially across
multiple DynamoDB tables. For this request object, you must specify the following:

• The names of the table to retrieve the items from

• The keys of the items to retrieve from each table

The DynamoDB BatchGetItem limits apply and no condition expression can be provided.

The BatchGetItem request object has the following structure:

type DynamoDBBatchGetItemRequest = {
 operation: 'BatchGetItem';
 tables: {
 [tableName: string]: {
 keys: { [key: string]: any }[];
 consistentRead?: boolean;
 projection?: {
 expression: string;
 expressionNames?: { [key: string]: string };
 };
 };
 };
};

The TypeScript definition above shows all available fields for the request. While you can construct
this request manually, we recommend using the DynamoDB built-in module for generating
accurate and efficient requests.

BatchGetItem fields

operation

The DynamoDB operation to perform. To perform the BatchGetItem DynamoDB operation,
this must be set to BatchGetItem. This value is required.

tables

The DynamoDB tables to retrieve the items from. The value is a map where table names are
specified as the keys of the map. At least one table must be provided. This tables value is
required.

BatchGetItem 188

AWS AppSync Events Developer Guide

keys

List of DynamoDB keys representing the primary key of the items to retrieve. DynamoDB
items may have a single hash key, or a hash key and sort key, depending on the table
structure. For more information about how to specify a “typed value”, see Type system
(request mapping).

consistentRead

Whether to use a consistent read when executing a GetItem operation. This value is optional
and defaults to false.

projection

A projection that's used to specify the attributes to return from the DynamoDB operation.
For more information about projections, see Projections. This field is optional.

Things to remember:

• If an item has not been retrieved from the table, a null element appears in the data block for
that table.

• Invocation results are sorted per table, based on the order in which they were provided inside the
request object.

• Each Get command inside a BatchGetItem is atomic, however, a batch can be partially
processed. If a batch is partially processed due to an error, the unprocessed keys are returned as
part of the invocation result inside the unprocessedKeys block.

• BatchGetItem is limited to 100 keys.

Response structure

type Response = {
 data: {
 [tableName: string]: {[key: string]: any}[]
 }
 unprocessedKeys: {
 [tableName: string]: {[key: string]: string}[]
 }
}

BatchGetItem 189

AWS AppSync Events Developer Guide

BatchDeleteItem

Note

We recommend using the DynamoDB built-in module to generate your request. For more
information, see Amazon DynamoDB built-in module.

The BatchDeleteItem request deletes multiple items, potentially across multiple tables using a
BatchWriteItem request. The request specifies the following:

• The names of the tables to delete the items from

• The keys of the items to delete from each table

The DynamoDB BatchWriteItem limits apply and no condition expression can be provided.

The BatchDeleteItem request object has the following structure:

type DynamoDBBatchDeleteItemRequest = {
 operation: 'BatchDeleteItem';
 tables: {
 [tableName: string]: { [key: string]: any }[];
 };
};

The TypeScript definition above shows all available fields for the request. While you can construct
this request manually, we recommend using the DynamoDB built-in module for generating
accurate and efficient requests.

BatchDeleteItem fields

operation

The DynamoDB operation to perform. To perform the BatchDeleteItem DynamoDB
operation, this must be set to BatchDeleteItem. This value is required.

tables

The DynamoDB tables to delete the items from. Each table is a list of DynamoDB keys
representing the primary key of the items to delete. DynamoDB items may have a single hash

BatchDeleteItem 190

AWS AppSync Events Developer Guide

key, or a hash key and sort key, depending on the table structure. For more information about
how to specify a “typed value”, see Type system (request mapping). At least one table must be
provided. The tables value is required.

Things to remember:

• Contrary to the DeleteItem operation, the fully deleted item isn’t returned in the response.
Only the passed key is returned.

• If an item has not been deleted from the table, a null element appears in the data block for that
table.

• Invocation results are sorted per table, based on the order in which they were provided inside the
request object.

• Each Delete command inside a BatchDeleteItem is atomic. However a batch can be partially
processed. If a batch is partially processed due to an error, the unprocessed keys are returned as
part of the invocation result inside the unprocessedKeys block.

• BatchDeleteItem is limited to 25 keys.

• This operation is not supported when used with conflict detection. Using both at the same time
may result in an error.

Response structure (in ctx.result)

type Response = {
 data: {
 [tableName: string]: {[key: string]: any}[]
 }
 unprocessedKeys: {
 [tableName: string]: {[key: string]: any}[]
 }
}

The ctx.error contains details about the error. The keys data, unprocessedKeys, and each table
key that was provided in the function request object are guaranteed to be present in the invocation
result. Items that have been deleted are present in the data block. Items that haven’t been
processed are marked as null inside the data block and are placed inside the unprocessedKeys
block.

BatchDeleteItem 191

AWS AppSync Events Developer Guide

BatchPutItem

Note

We recommend using the DynamoDB built-in module to generate your request. For more
information, see Amazon DynamoDB built-in module.

The BatchPutItem request enables you to put multiple items, potentially across multiple
DynamoDB tables using a BatchWriteItem request. The request specifies the following:

• The names of the tables to put the items in

• The full list of items to put in each table

The DynamoDB BatchWriteItem limits apply and no condition expression can be provided.

The BatchPutItem request object has the following structure:

type DynamoDBBatchPutItemRequest = {
 operation: 'BatchPutItem';
 tables: {
 [tableName: string]: { [key: string]: any}[];
 };
};

The TypeScript definition above shows all available fields for the request. While you can construct
this request manually, we recommend using the DynamoDB built-in module for generating
accurate and efficient requests.

BatchPutItem fields

operation

The DynamoDB operation to perform. To perform the BatchPutItem DynamoDB operation,
this must be set to BatchPutItem. This value is required.

tables

The DynamoDB tables to put the items in. Each table entry represents a list of DynamoDB items
to insert for this specific table. At least one table must be provided. This value is required.

BatchPutItem 192

AWS AppSync Events Developer Guide

Things to remember:

• The fully inserted items are returned in the response, if successful.

• If an item hasn’t been inserted in the table, a null element is displayed in the data block for that
table.

• The inserted items are sorted per table, based on the order in which they were provided inside
the request object.

• Each Put command inside a BatchPutItem is atomic, however, a batch can be partially
processed. If a batch is partially processed due to an error, the unprocessed keys are returned as
part of the invocation result inside the unprocessedKeys block.

• BatchPutItem is limited to 25 items.

• This operation is not supported when used with conflict detection. Using both at the same time
may result in an error.

Response structure (in ctx.result)

type Response = {
 data: {
 [tableName: string]: {[key: string]: any}[]
 }
 unprocessedItems: {
 [tableName: string]: {[key: string]: any}[]
 }
}

The ctx.error contains details about the error. The keys data, unprocessedItems, and each table
key that was provided in the request object are guaranteed to be present in the invocation result.
Items that have been inserted are in the data block. Items that haven’t been processed are marked
as null inside the data block and are placed inside the unprocessedItems block.

TransactGetItems

Note

We recommend using the DynamoDB built-in module to generate your request. For more
information, see Amazon DynamoDB built-in module.

TransactGetItems 193

AWS AppSync Events Developer Guide

The TransactGetItems request object retrieves multiple items, potentially across multiple
DynamoDB tables in a single transaction. The request specifies the following:

• The names of the tables to retrieve each item from

• The key of each request item to retrieve from each table

The DynamoDB TransactGetItems limits apply and no condition expression can be provided.

The TransactGetItems request object has the following structure:

type DynamoDBTransactGetItemsRequest = {
 operation: 'TransactGetItems';
 transactItems: { table: string; key: { [key: string]: any }; projection?:
 { expression: string; expressionNames?: { [key: string]: string }; }[];
 };
};

The TypeScript definition above shows all available fields for the request. While you can construct
this request manually, we recommend using the DynamoDB built-in module for generating
accurate and efficient requests.

TransactGetItems fields

operation

The DynamoDB operation to perform. To perform the TransactGetItems DynamoDB
operation, this must be set to TransactGetItems. This value is required.

transactItems

The request items to include. The value is an array of request items. At least one request item
must be provided. This transactItems value is required.

table

The DynamoDB table to retrieve the item from. The value is a string of the table name. This
table value is required.

key

The DynamoDB key representing the primary key of the item to retrieve. DynamoDB items
may have a single hash key, or a hash key and sort key, depending on the table structure. For
more information about how to specify a “typed value”, see Type system (request mapping).

TransactGetItems 194

AWS AppSync Events Developer Guide

projection

A projection that's used to specify the attributes to return from the DynamoDB operation.
For more information about projections, see Projections. This field is optional.

Things to remember:

• If a transaction succeeds, the order of retrieved items in the items block will be the same as the
order of request items.

• Transactions are performed in an all-or-nothing way. If any request item causes an error, the
whole transaction will not be performed and error details will be returned.

• A request item being unable to be retrieved is not an error. Instead, a null element appears in the
items block in the corresponding position.

• If the error of a transaction is TransactionCanceledException, the cancellationReasons block
will be populated. The order of cancellation reasons in cancellationReasons block will be the
same as the order of request items.

• TransactGetItems is limited to 100 request items.

Response structure (in ctx.result)

type Response = {
 items?: ({[key: string]: any} | null)[];
 cancellationReasons?: {
 type: string;
 message: string;
 }[]
}

The ctx.error contains details about the error. The keys items and cancellationReasons are
guaranteed to be present in ctx.result.

TransactWriteItems

Note

We recommend using the DynamoDB built-in module to generate your request. For more
information, see Amazon DynamoDB built-in module.

TransactWriteItems 195

AWS AppSync Events Developer Guide

The TransactWriteItems request writes multiple items, potentially to multiple DynamoDB
tables. The request specifies the following:

• The destination table name of each request item

• The operation to perform for each request item. There are four types of operations that are
supported: PutItem, UpdateItem, DeleteItem, and ConditionCheck

• The key of each request item to write

The DynamoDB TransactWriteItems limits apply.

The TransactWriteItems request object has the following structure:

type DynamoDBTransactWriteItemsRequest = {
 operation: 'TransactWriteItems';
 transactItems: TransactItem[];
};
type TransactItem =
 | TransactWritePutItem
 | TransactWriteUpdateItem
 | TransactWriteDeleteItem
 | TransactWriteConditionCheckItem;
type TransactWritePutItem = {
 table: string;
 operation: 'PutItem';
 key: { [key: string]: any };
 attributeValues: { [key: string]: string};
 condition?: TransactConditionCheckExpression;
};
type TransactWriteUpdateItem = {
 table: string;
 operation: 'UpdateItem';
 key: { [key: string]: any };
 update: DynamoDBExpression;
 condition?: TransactConditionCheckExpression;
};
type TransactWriteDeleteItem = {
 table: string;
 operation: 'DeleteItem';
 key: { [key: string]: any };
 condition?: TransactConditionCheckExpression;
};
type TransactWriteConditionCheckItem = {

TransactWriteItems 196

AWS AppSync Events Developer Guide

 table: string;
 operation: 'ConditionCheck';
 key: { [key: string]: any };
 condition?: TransactConditionCheckExpression;
};
type TransactConditionCheckExpression = {
 expression: string;
 expressionNames?: { [key: string]: string};
 expressionValues?: { [key: string]: any};
 returnValuesOnConditionCheckFailure: boolean;
};

The TypeScript definition above shows all available fields for the request. While you can construct
this request manually, we recommend using the DynamoDB built-in module for generating
accurate and efficient requests.

TransactWriteItems fields

The fields are defined as follows:

operation

The DynamoDB operation to perform. To perform the TransactWriteItems DynamoDB
operation, this must be set to TransactWriteItems. This value is required.

transactItems

The request items to include. The value is an array of request items. At least one request
item must be provided. This transactItems value is required.

For PutItem, the fields are defined as follows:

table

The destination DynamoDB table. The value is a string of the table name. This table
value is required.

operation

The DynamoDB operation to perform. To perform the PutItem DynamoDB operation,
this must be set to PutItem. This value is required.

key

The DynamoDB key representing the primary key of the item to put. DynamoDB items
may have a single hash key, or a hash key and sort key, depending on the table structure.

TransactWriteItems 197

AWS AppSync Events Developer Guide

For more information about how to specify a “typed value”, see Type system (request
mapping). This value is required.

attributeValues

The rest of the attributes of the item to be put into DynamoDB. For more information
about how to specify a “typed value”, see Type system (request mapping). This field is
optional.

condition

A condition to determine if the request should succeed or not, based on the state of the
object already in DynamoDB. If no condition is specified, the PutItem request overwrites
any existing entry for that item. You can specify whether to retrieve the existing item
back when condition check fails. For more information about transactional conditions,
see Transaction condition expressions. This value is optional.

For UpdateItem, the fields are defined as follows:

table

The DynamoDB table to update. The value is a string of the table name. This table value
is required.

operation

The DynamoDB operation to perform. To perform the UpdateItem DynamoDB
operation, this must be set to UpdateItem. This value is required.

key

The DynamoDB key representing the primary key of the item to update. DynamoDB
items may have a single hash key, or a hash key and sort key, depending on the table
structure. For more information about how to specify a “typed value”, see Type system
(request mapping). This value is required.

update

The update section lets you specify an update expression that describes how to update
the item in DynamoDB. For more information about how to write update expressions, see
the DynamoDB UpdateExpressions documentation. This section is required.

condition

A condition to determine if the request should succeed or not, based on the state of
the object already in DynamoDB. If no condition is specified, the UpdateItem request

TransactWriteItems 198

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html

AWS AppSync Events Developer Guide

updates the existing entry regardless of its current state. You can specify whether to
retrieve the existing item back when condition check fails. For more information about
transactional conditions, see Transaction condition expressions. This value is optional.

For DeleteItem, the fields are defined as follows:

table

The DynamoDB table in which to delete the item. The value is a string of the table name.
This table value is required.

operation

The DynamoDB operation to perform. To perform the DeleteItem DynamoDB
operation, this must be set to DeleteItem. This value is required.

key

The DynamoDB key representing the primary key of the item to delete. DynamoDB items
may have a single hash key, or a hash key and sort key, depending on the table structure.
For more information about how to specify a “typed value”, see Type system (request
mapping). This value is required.

condition

A condition to determine if the request should succeed or not, based on the state of
the object already in DynamoDB. If no condition is specified, the DeleteItem request
deletes an item regardless of its current state. You can specify whether to retrieve the
existing item back when condition check fails. For more information about transactional
conditions, see Transaction condition expressions. This value is optional.

For ConditionCheck, the fields are defined as follows:

table

The DynamoDB table in which to check the condition. The value is a string of the table
name. This table value is required.

operation

The DynamoDB operation to perform. To perform the ConditionCheck DynamoDB
operation, this must be set to ConditionCheck. This value is required.

TransactWriteItems 199

AWS AppSync Events Developer Guide

key

The DynamoDB key representing the primary key of the item to condition check.
DynamoDB items may have a single hash key, or a hash key and sort key, depending on
the table structure. For more information about how to specify a “typed value”, see Type
system (request mapping). This value is required.

condition

A condition to determine if the request should succeed or not, based on the state of the
object already in DynamoDB. You can specify whether to retrieve the existing item back
when condition check fails. For more information about transactional conditions, see
Transaction condition expressions. This value is required.

Things to remember:

• Only keys of request items are returned in the response, if successful. The order of keys will be
the same as the order of request items.

• Transactions are performed in an all-or-nothing way. If any request item causes an error, the
whole transaction will not be performed and error details will be returned.

• No two request items can target the same item. Otherwise they will cause
TransactionCanceledException error.

• If the error of a transaction is TransactionCanceledException, the cancellationReasons
block will be populated. If a request item’s condition check fails and you did not specify
returnValuesOnConditionCheckFailure to be false, the item existing in the table will be
retrieved and stored in item at the corresponding position of cancellationReasons block.

• TransactWriteItems is limited to 100 request items.

• This operation is not supported when used with conflict detection. Using both at the same time
may result in an error.

Response structure (in ctx.result)

type Responser = {
 keys?: {[key: string]: string}[];
 cancellationReasons?: {
 item?: { [key: string]: any };
 type: string;
 message;

TransactWriteItems 200

AWS AppSync Events Developer Guide

 }
}

The ctx.error contains details about the error. The keys keys and cancellationReasons are
guaranteed to be present in ctx.result.

Type system (request mapping)

When using the AWS AppSync DynamoDB function to call your DynamoDB tables, you must specify
your data using the DynamoDB type notation. For more information about DynamoDB data types,
see the DynamoDB Data type descriptors and Data types documentation.

Note

You don't have to use DynamoDB type notation when using the DynamoDB built-in
module. For more information, see Amazon DynamoDB built-in module.

A DynamoDB value is represented by a JSON object containing a single key-value pair. The key
specifies the DynamoDB type, and the value specifies the value itself. In the following example, the
key S denotes that the value is a string, and the value identifier is the string value itself.

{ "S" : "identifier" }

The JSON object can't have more than one key-value pair. If more than one key-value pair is
specified, the request object isn’t parsed.

A DynamoDB value is used anywhere in a request object where you need to specify a value.
Some places where you need to do this include: key and attributeValue sections, and the
expressionValues section of expression sections. In the following example, the DynamoDB
String value identifier is being assigned to the id field in a key section (perhaps in a GetItem
request object).

"key" : {
 "id" : { "S" : "identifier" }
}

Supported Types

Type system (request mapping) 201

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html#Programming.LowLevelAPI.DataTypeDescriptors
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes

AWS AppSync Events Developer Guide

AWS AppSync supports the following DynamoDB scalar, document, and set types:

String type S

A single string value. A DynamoDB String value is denoted by:

{ "S" : "some string" }

An example usage is:

"key" : {
 "id" : { "S" : "some string" }
}

String set type SS

A set of string values. A DynamoDB String Set value is denoted by:

{ "SS" : ["first value", "second value", ...] }

An example usage is:

"attributeValues" : {
 "phoneNumbers" : { "SS" : ["+1 555 123 4567", "+1 555 234 5678"] }
}

Number type N

A single numeric value. A DynamoDB Number value is denoted by:

{ "N" : 1234 }

An example usage is:

"expressionValues" : {
 ":expectedVersion" : { "N" : 1 }
}

Number set type NS

A set of number values. A DynamoDB Number Set value is denoted by:

Type system (request mapping) 202

AWS AppSync Events Developer Guide

{ "NS" : [1, 2.3, 4 ...] }

An example usage is:

"attributeValues" : {
 "sensorReadings" : { "NS" : [67.8, 12.2, 70] }
}

Binary type B

A binary value. A DynamoDB Binary value is denoted by:

{ "B" : "SGVsbG8sIFdvcmxkIQo=" }

Note that the value is actually a string, where the string is the base64-encoded representation
of the binary data. AWS AppSync decodes this string back into its binary value before sending
it to DynamoDB. AWS AppSync uses the base64 decoding scheme as defined by RFC 2045: any
character that isn’t in the base64 alphabet is ignored.

An example usage is:

"attributeValues" : {
 "binaryMessage" : { "B" : "SGVsbG8sIFdvcmxkIQo=" }
}

Binary set type BS

A set of binary values. A DynamoDB Binary Set value is denoted by:

{ "BS" : ["SGVsbG8sIFdvcmxkIQo=", "SG93IGFyZSB5b3U/Cg==" ...] }

Note that the value is actually a string, where the string is the base64-encoded representation
of the binary data. AWS AppSync decodes this string back into its binary value before sending
it to DynamoDB. AWS AppSync uses the base64 decoding scheme as defined by RFC 2045: any
character that is not in the base64 alphabet is ignored.

An example usage is:

"attributeValues" : {

Type system (request mapping) 203

AWS AppSync Events Developer Guide

 "binaryMessages" : { "BS" : ["SGVsbG8sIFdvcmxkIQo=", "SG93IGFyZSB5b3U/Cg=="] }
}

Boolean type BOOL

A Boolean value. A DynamoDB Boolean value is denoted by:

{ "BOOL" : true }

Note that only true and false are valid values.

An example usage is:

"attributeValues" : {
 "orderComplete" : { "BOOL" : false }
}

List type L

A list of any other supported DynamoDB value. A DynamoDB List value is denoted by:

{ "L" : [...] }

Note that the value is a compound value, where the list can contain zero or more of any
supported DynamoDB value (including other lists). The list can also contain a mix of different
types.

An example usage is:

{ "L" : [
 { "S" : "A string value" },
 { "N" : 1 },
 { "SS" : ["Another string value", "Even more string values!"] }
]
}

Map type M

Representing an unordered collection of key-value pairs of other supported DynamoDB values.
A DynamoDB Map value is denoted by:

Type system (request mapping) 204

AWS AppSync Events Developer Guide

{ "M" : { ... } }

Note that a map can contain zero or more key-value pairs. The key must be a string, and the
value can be any supported DynamoDB value (including other maps). The map can also contain
a mix of different types.

An example usage is:

{ "M" : {
 "someString" : { "S" : "A string value" },
 "someNumber" : { "N" : 1 },
 "stringSet" : { "SS" : ["Another string value", "Even more string
 values!"] }
 }
}

Null type NULL

A null value. A DynamoDB Null value is denoted by:

{ "NULL" : null }

An example usage is:

"attributeValues" : {
 "phoneNumbers" : { "NULL" : null }
}

For more information about each type, see the DynamoDB documentation .

Type system (response mapping)

When receiving a response from DynamoDB, AWS AppSync automatically converts it into JSON
primitive types. Each attribute in DynamoDB is decoded and returned in the response handler's
context.

For example, if DynamoDB returns the following:

{

Type system (response mapping) 205

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html

AWS AppSync Events Developer Guide

 "id" : { "S" : "1234" },
 "name" : { "S" : "Nadia" },
 "age" : { "N" : 25 }
}

When the result is returned from your handler, AWS AppSync converts it into a JSON types as:

{
 "id" : "1234",
 "name" : "Nadia",
 "age" : 25
}

This section explains how AWS AppSync converts the following DynamoDB scalar, document, and
set types:

String type S

A single string value. A DynamoDB String value is returned as a string.

For example, if DynamoDB returned the following DynamoDB String value:

{ "S" : "some string" }

AWS AppSync converts it to a string:

"some string"

String set type SS

A set of string values. A DynamoDB String Set value is returned as a list of strings.

For example, if DynamoDB returned the following DynamoDB String Set value:

{ "SS" : ["first value", "second value", ...] }

AWS AppSync converts it to a list of strings:

["+1 555 123 4567", "+1 555 234 5678"]

Type system (response mapping) 206

AWS AppSync Events Developer Guide

Number type N

A single numeric value. A DynamoDB Number value is returned as a number.

For example, if DynamoDB returned the following DynamoDB Number value:

{ "N" : 1234 }

AWS AppSync converts it to a number:

1234

Number set type NS

A set of number values. A DynamoDB Number Set value is returned as a list of numbers.

For example, if DynamoDB returned the following DynamoDB Number Set value:

{ "NS" : [67.8, 12.2, 70] }

AWS AppSync converts it to a list of numbers:

[67.8, 12.2, 70]

Binary type B

A binary value. A DynamoDB Binary value is returned as a string containing the base64
representation of that value.

For example, if DynamoDB returned the following DynamoDB Binary value:

{ "B" : "SGVsbG8sIFdvcmxkIQo=" }

AWS AppSync converts it to a string containing the base64 representation of the value:

"SGVsbG8sIFdvcmxkIQo="

Note that the binary data is encoded in the base64 encoding scheme as specified in RFC 4648
and RFC 2045.

Type system (response mapping) 207

https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc2045

AWS AppSync Events Developer Guide

Binary set type BS

A set of binary values. A DynamoDB Binary Set value is returned as a list of strings containing
the base64 representation of the values.

For example, if DynamoDB returned the following DynamoDB Binary Set value:

{ "BS" : ["SGVsbG8sIFdvcmxkIQo=", "SG93IGFyZSB5b3U/Cg==" ...] }

AWS AppSync converts it to a list of strings containing the base64 representation of the values:

["SGVsbG8sIFdvcmxkIQo=", "SG93IGFyZSB5b3U/Cg==" ...]

Note that the binary data is encoded in the base64 encoding scheme as specified in RFC 4648
and RFC 2045.

Boolean type BOOL

A Boolean value. A DynamoDB Boolean value is returned as a Boolean.

For example, if DynamoDB returned the following DynamoDB Boolean value:

{ "BOOL" : true }

AWS AppSync converts it to a Boolean:

true

List type L

A list of any other supported DynamoDB value. A DynamoDB List value is returned as a list of
values, where each inner value is also converted.

For example, if DynamoDB returned the following DynamoDB List value:

{ "L" : [
 { "S" : "A string value" },
 { "N" : 1 },
 { "SS" : ["Another string value", "Even more string values!"] }
]

Type system (response mapping) 208

https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc2045

AWS AppSync Events Developer Guide

}

AWS AppSync converts it to a list of converted values:

["A string value", 1, ["Another string value", "Even more string values!"]]

Map type M

A key/value collection of any other supported DynamoDB value. A DynamoDB Map value is
returned as a JSON object, where each key/value is also converted.

For example, if DynamoDB returned the following DynamoDB Map value:

{ "M" : {
 "someString" : { "S" : "A string value" },
 "someNumber" : { "N" : 1 },
 "stringSet" : { "SS" : ["Another string value", "Even more string
 values!"] }
 }
}

AWS AppSync converts it to a JSON object:

{
 "someString" : "A string value",
 "someNumber" : 1,
 "stringSet" : ["Another string value", "Even more string values!"]
}

Null type NULL

A null value.

For example, if DynamoDB returned the following DynamoDB Null value:

{ "NULL" : null }

AWS AppSync converts it to a null:

null

Type system (response mapping) 209

AWS AppSync Events Developer Guide

Filters

Note

We recommend using the DynamoDB built-in module to generate your request. For more
information, see Amazon DynamoDB built-in module.

When querying objects in DynamoDB using the Query and Scan operations, you can optionally
specify a filter that evaluates the results and returns only the desired values.

The filter property of a Query or Scan request has the following structure:

type DynamoDBExpression = {
 expression: string;
 expressionNames?: { [key: string]: string};
 expressionValues?: { [key: string]: any};
};

The fields are defined as follows:

expression

The query expression. For more information about how to write filter expressions, see the
DynamoDB QueryFilter and DynamoDB ScanFilter documentation. This field must be specified.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression. The value must be a
string that corresponds to the attribute name of the item in DynamoDB. This field is optional,
and should only be populated with substitutions for expression attribute name placeholders
used in the expression.

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs.
The key corresponds to a value placeholder used in the expression, and the value must be
a typed value. For more information about how to specify a “typed value”, see Type system
(request mapping). This must be specified. This field is optional, and should only be populated
with substitutions for expression attribute value placeholders used in the expression.

Filters 210

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.QueryFilter.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.ScanFilter.html

AWS AppSync Events Developer Guide

Example

The following example is a filter section for a request, where entries retrieved from DynamoDB are
only returned if the title starts with the title argument.

Here we use the util.transform.toDynamoDBFilterExpression to automatically create a
filter from an object:

const filter = util.transform.toDynamoDBFilterExpression({
 title: { beginsWith: 'far away' },
});

const request = {};
request.filter = JSON.parse(filter);

This generates the following filter:

{
 "filter": {
 "expression": "(begins_with(#title,:title_beginsWith))",
 "expressionNames": { "#title": "title" },
 "expressionValues": {
 ":title_beginsWith": { "S": "far away" }
 }
 }
}

Condition expressions

When you mutate objects in DynamoDB by using the PutItem, UpdateItem, and DeleteItem
DynamoDB operations, you can optionally specify a condition expression that controls whether the
request should succeed or not, based on the state of the object already in DynamoDB before the
operation is performed.

While you can construct requests manually, we recommend using the DynamoDB built-in module
to generate accurate and efficient requests. In the following examples, we use the built-in module
to generate requests with conditions.

The AWS AppSync DynamoDB function allows a condition expression to be specified in PutItem,
UpdateItem, and DeleteItem request objects, and also a strategy to follow if the condition fails
and the object was not updated.

Condition expressions 211

AWS AppSync Events Developer Guide

Example 1

The following PutItem request object doesn’t have a condition expression. As a result, it puts an
item in DynamoDB even if an item with the same key already exists, which overwrites the existing
item.

import { util } from '@aws-appsync/utils';
import * as ddb from '@aws-appsync/utils/dynamodb';

export const onPublish = {
 request(ctx) {
 const {id, payload: item} = ctx.events[0]
 return ddb.put({ key: { id }, item })
 },
 response: (ctx) => ctx.events
}

Example 2

The following PutItem object does have a condition expression that allows the operation to
succeed only if an item with the same key does not exist in DynamoDB.

import { util } from '@aws-appsync/utils';
import * as ddb from '@aws-appsync/utils/dynamodb';

export const onPublish = {
 request(ctx) {
 const {id, payload: item} = ctx.events[0]
 return ddb.put({
 key: { id },
 item,
 condition: {id: {attributeExists: false}}
 })
 },
 response: (ctx) => ctx.events
}

For more information about DynamoDB conditions expressions, see the DynamoDB
ConditionExpressions documentation .

Condition expressions 212

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html

AWS AppSync Events Developer Guide

Specifying a condition

The PutItem, UpdateItem, and DeleteItem request objects all allow an optional condition
section to be specified. If omitted, no condition check is made. If specified, the condition must be
true for the operation to succeed.

The built-in module functions create a condition object that has the following structure.

type ConditionCheckExpression = {
 expression: string;
 expressionNames?: { [key: string]: string};
 expressionValues?: { [key: string]: any};
};

The following fields specify the condition:

expression

The update expression itself. For more information about how to write condition expressions,
see the DynamoDB ConditionExpressions documentation . This field must be specified.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression, and the value must be a
string corresponding to the attribute name of the item in DynamoDB. This field is optional, and
should only be populated with substitutions for expression attribute name placeholders used in
the expression.

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs. The
key corresponds to a value placeholder used in the expression, and the value must be a typed
value. For more information about how to specify a “typed value”, see Type system (request
mapping). This must be specified. This field is optional, and should only be populated with
substitutions for expression attribute value placeholders used in the expression.

Transaction condition expressions

Transaction condition expressions are available in requests of all four types of operations in
TransactWriteItems, namely, PutItem, DeleteItem, UpdateItem, and ConditionCheck.

Transaction condition expressions 213

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html

AWS AppSync Events Developer Guide

For PutItem, DeleteItem, and UpdateItem, the transaction condition expression is optional. For
ConditionCheck, the transaction condition expression is required.

Example 1

The following transactional DeleteItem function request handler does not have a condition
expression. As a result, it deletes the item in DynamoDB.

export const onPublish = {
 request(ctx) {
 const table = "events"
 return ddb.transactWrite({
 items: ctx.events.map(({ payload }) => ({
 deleteItem: { table, key: { id: payload.id } }
 }))
 })
 },
 response: (ctx) => ctx.events
}

Example 2

The following transactional DeleteItem function request handler does have a transaction
condition expression that allows the operation succeed only if the author of that post equals a
certain name.

export const onPublish = {
 request(ctx) {
 return ddb.remove({
 items: ctx.events.map(({ payload }) => ({
 deleteItem: {
 table: 'events',
 key: { id: payload.id },
 condition: { owner: { eq: payload.owner } }
 }
 }))
 })
 },
 response: (ctx) => ctx.events
}

Transaction condition expressions 214

AWS AppSync Events Developer Guide

If the condition check fails, it will cause TransactionCanceledException and the error detail
will be returned in ctx.result.cancellationReasons.

Projections

When reading objects in DynamoDB using the GetItem, Scan, Query, BatchGetItem, and
TransactGetItems operations, you can optionally specify a projection that identifies the
attributes that you want. The projection property has the following structure, which is similar to
filters:

type DynamoDBExpression = {
 expression: string;
 expressionNames?: { [key: string]: string}
};

The fields are defined as follows:

expression

The projection expression, which is a string. To retrieve a single attribute, specify its name. For
multiple attributes, the names must be comma-separated values. For more information on
writing projection expressions, see the DynamoDB projection expressions documentation. This
field is required.

expressionNames

The substitutions for expression attribute name placeholders in the form of key-value pairs.
The key corresponds to a name placeholder used in the expression. The value must be a
string that corresponds to the attribute name of the item in DynamoDB. This field is optional
and should only be populated with substitutions for expression attribute name placeholders
used in the expression. For more information about expressionNames, see the DynamoDB
documentation.

Example 1

The following example is a projection section for a JavaScript function in which only the attributes
author and id are returned from DynamoDB.

projection : {

Projections 215

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ProjectionExpressions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html

AWS AppSync Events Developer Guide

 expression : "#author, id",
 expressionNames : {
 "#author" : "author"
 }
}

Example 2

The following example demonstrates that when you use the built-in DynamoDB module, you can
simply pass an array for your projection.

export const onPublish = {
 request(ctx) {
 return ddb.batchGet({
 tables: {
 users: {
 keys: ctx.events.map(e => ({id: e.payload.id})),
 projection: ['id', 'name', 'email', 'nested.field']
 }
 }
 })
 },
 response: (ctx) => ctx.events
}

AWS AppSync JavaScript function reference for Amazon
OpenSearch Service

The AWS AppSync integration for Amazon OpenSearch Service enables you to store and retrieve
data in existing OpenSearch Service domains in your account. This handler works by allowing
you to create OpenSearch Service requests, and then map the OpenSearch Service response back
to your application. This section describes the function request and response handlers for the
supported OpenSearch Service operations.

Request

Most OpenSearch Service request objects have a common structure where just a few pieces change.
The following example runs a search against an OpenSearch Service domain, where documents are
of type post and are indexed under id. The search parameters are defined in the body section,

OpenSearch Service function reference 216

AWS AppSync Events Developer Guide

with many of the common query clauses being defined in the query field. This example will search
for documents containing "Nadia", or "Bailey", or both, in the author field of a document:

export const onPublish = {
 request(ctx) {
 return {
 operation: 'GET',
 path: '/id/post/_search',
 params: {
 headers: {},
 queryString: {},
 body: {
 from: 0,
 size: 50,
 query: {
 bool: {
 should: [
 { match: { author: 'Nadia' } },
 { match: { author: 'Bailey' } },
],
 },
 },
 },
 },
 };
 }
}

Response

As with other data sources, OpenSearch Service sends a response to AWS AppSync that needs to be
processed. .

Most applications are looking for the _source field from an OpenSearch Service response.
Because you can do searches to return either an individual document or a list of documents, there
are two common response patterns used in OpenSearch Service.

List of Results

export const onPublish = {
 response(ctx) {
 const entries = [];

Response 217

AWS AppSync Events Developer Guide

 for (const entry of ctx.result.hits.hits) {
 entries.push(entry['_source']);
 }
 }
}

Individual Item

export const onPublish = {
 response(ctx) {
 const result = ctx.result['_source']
 }
}

operation field

Note

This applies only to the Request handler.

HTTP method or verb (GET, POST, PUT, HEAD or DELETE) that AWS AppSync sends to the
OpenSearch Service domain. Both the key and the value must be a string.

"operation" : "PUT"

path field

Note

This applies only to the Request handler.

The search path for an OpenSearch Service request from AWS AppSync. This forms a URL for the
operation’s HTTP verb. Both the key and the value must be strings.

"path" : "/indexname/type"

"path" : "/indexname/type/_search"

operation field 218

AWS AppSync Events Developer Guide

When the request handler is evaluated, this path is sent as part of the HTTP request, including the
OpenSearch Service domain. For example, the previous example might translate to:

GET https://opensearch-domain-name.REGION.es.amazonaws.com/indexname/type/_search

params field

Note

This applies only to the Request handler.

Used to specify what action your search performs, most commonly by setting the query value
inside of the body. However, there are several other capabilities that can be configured, such as the
formatting of responses.

• headers

The header information, as key-value pairs. Both the key and the value must be strings. For
example:

"headers" : {
 "Content-Type" : "application/json"
}

Note

AWS AppSync currently supports only JSON as a Content-Type.

• queryString

Key-value pairs that specify common options, such as code formatting for JSON responses. Both
the key and the value must be a string. For example, if you want to get pretty-formatted JSON,
you would use:

"queryString" : {
 "pretty" : "true"
}

params field 219

AWS AppSync Events Developer Guide

• body

This is the main part of your request, allowing AWS AppSync to craft a well-formed search
request to your OpenSearch Service domain. The key must be a string comprised of an object. A
couple of demonstrations are shown below.

Example 1

Return all documents with a city matching “seattle”:

export const onSubscribe = {
 request(ctx) {
 return {
 operation: 'GET',
 path: '/id/post/_search',
 params: {
 headers: {},
 queryString: {},
 body: { from: 0, size: 50, query: { match: { city: 'seattle' } } },
 },
 };
 }
}

Example 2

Return all documents matching “washington” as the city or the state:

export const onSubscribe = {
 request(ctx) {
 return {
 operation: 'GET',
 path: '/id/post/_search',
 params: {
 headers: {},
 queryString: {},
 body: {
 from: 0,
 size: 50,
 query: {
 multi_match: { query: 'washington', fields: ['city', 'state'] },
 },

params field 220

AWS AppSync Events Developer Guide

 },
 },
 };
 }
}

AWS AppSync JavaScript function reference for Lambda

You can use AWS AppSync integration for AWS Lambda to invoke Lambda functions located in
your account. You can shape your request payloads and the response from your Lambda functions
before returning them to your clients. You can also specify the type of operation to perform in your
request object. This section describes the requests for the supported Lambda operations.

Request object

The Lambda request object handles fields related to your Lambda function:

export type LambdaRequest = {
 operation: 'Invoke';
 invocationType?: 'RequestResponse' | 'Event';
 payload: unknown;
};

The following example uses an invoke operation with its payload data being a field, along with its
arguments from the context:

export const onPublish = {
 request(ctx) {
 return {
 operation: 'Invoke',
 payload: { field: 'getPost', arguments: ctx.args },
 };
 }
}

Operation

When doing an Invoke, the resolved request matches the input payload of the Lambda function.
The following example modifies the previous example:

export const onPublish = {

Lambda function reference 221

AWS AppSync Events Developer Guide

 request(ctx) {
 return {
 operation: 'Invoke',
 payload: ctx // send the entire context to the Lambda function
 };
 }
}

Payload

The payload field is a container used to pass any data to the Lambda function. The payload field
is optional.

Invocation type

The Lambda data source allows you to define two invocation types: RequestResponse and
Event. The invocation types are synonymous with the invocation types defined in the Lambda
API. The RequestResponse invocation type lets AWS AppSync call your Lambda function
synchronously to wait for a response. The Event invocation allows you to invoke your Lambda
function asynchronously. For more information on how Lambda handles Event invocation type
requests, see Asynchronous invocation. The invocationType field is optional. If this field is not
included in the request, AWS AppSync will default to the RequestResponse invocation type.

For any invocationType field, the resolved request matches the input payload of the Lambda
function. The following example modifies the previous example:

export const onPublish = {
 request(ctx) {
 return {
 operation: 'Invoke',
 invocationType: 'Event',
 payload: ctx
 };
 }
}

Response object

As with other data sources, your Lambda function sends a response to AWS AppSync that must
be processed. The result of the Lambda function is contained in the context result property
(context.result).

Response object 222

https://docs.aws.amazon.com//lambda/latest/api/API_Invoke.html
https://docs.aws.amazon.com//lambda/latest/api/API_Invoke.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html

AWS AppSync Events Developer Guide

If the shape of your Lambda function response matches the expected output, you can forward the
response using the following function response handler:

export const onPublish = {
 respone(ctx) {
 console.log(`the response: ${ctx.result}`)
 return ctx.events
 }
}

There are no required fields or shape restrictions that apply to the response object.

AWS AppSync JavaScript function reference for EventBridge
data source

The AWS AppSync integration for Amazon EventBridge data source allows you to send custom
events to the EventBridge bus.

Request

The request handler allows you to send multiple custom events to an EventBridge event bus:

export const onPublish = {
 request(ctx) {
 return {
 "operation" : "PutEvents",
 "events" : ctx.events.map(e => ({
 source: ctx.info.channel.path,
 detail: {payload: e.payload},
 detailType: ctx.info.channelNamespace.name,
 }))
 }
 }
}

An EventBridge PutEvents request has the following type definition:

type PutEventsRequest = {
 operation: 'PutEvents'

EventBridge function reference 223

AWS AppSync Events Developer Guide

 events: {
 source: string
 detail: { [key: string]: any }
 detailType: string
 resources?: string[]
 time?: string // RFC3339 Timestamp format
 }[]
}

Response

If the PutEvents operation is successful, the response from EventBridge is included in the
ctx.result:

export function response(ctx) {
 if(ctx.error)
 util.error(ctx.error.message, ctx.error.type, ctx.result)
 else
 return ctx.result
}

Errors that occur while performing PutEvents operations such as InternalExceptions
or Timeouts will appear in ctx.error. For a list of EventBridge's common errors, see the
EventBridge common error reference.

The result will have the following type definition:

type PutEventsResult = {
 Entries: {
 ErrorCode: string
 ErrorMessage: string
 EventId: string
 }[]
 FailedEntryCount: number
}

• Entries

The ingested event results, both successful and unsuccessful. If the ingestion was successful,
the entry has the EventID in it. Otherwise, you can use the ErrorCode and ErrorMessage to
identify the problem with the entry.

Response 224

https://docs.aws.amazon.com/eventbridge/latest/APIReference/CommonErrors.html

AWS AppSync Events Developer Guide

For each record, the index of the response element is the same as the index in the request array.

• FailedEntryCount

The number of failed entries. This value is represented as an integer.

For more information about the response of PutEvents, see PutEvents.

Example sample response 1

The following example is a PutEvents operation with two successful events:

{
 "Entries" : [
 {
 "EventId": "11710aed-b79e-4468-a20b-bb3c0c3b4860"
 },
 {
 "EventId": "d804d26a-88db-4b66-9eaf-9a11c708ae82"
 }
],
 "FailedEntryCount" : 0
}

Example sample response 2

The following example is a PutEvents operation with three events, two successes and one fail:

{
 "Entries" : [
 {
 "EventId": "11710aed-b79e-4468-a20b-bb3c0c3b4860"
 },
 {
 "EventId": "d804d26a-88db-4b66-9eaf-9a11c708ae82"
 },
 {
 "ErrorCode" : "SampleErrorCode",
 "ErrorMessage" : "Sample Error Message"
 }
],
 "FailedEntryCount" : 1

Response 225

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html#API_PutEvents_ResponseElements

AWS AppSync Events Developer Guide

}

PutEvents fields

PutEvents contains the following mapping template fields:

• Version

Common to all request mapping templates, the version field defines the version that the
template uses. This field is required. The value 2018-05-29 is the only version supported for the
EventBridge mapping templates.

• Operation

The only supported operation is PutEvents. This operation allows you to add custom events to
your event bus.

• Events

An array of events that will be added to the event bus. This array should have an allocation of 1 -
10 items.

The Event object has the following fields:

• "source": A string that defines the source of the event.

• "detail": A JSON object that you can use to attach information about the event. This field
can be an empty map ({ }).

• "detailType: A string that identifies the type of event.

• "resources": A JSON array of strings that identifies resources involved in the event. This
field can be an empty array.

• "time": The event timestamp provided as a string. This should follow the RFC3339 timestamp
format.

The following are examples of valid Event objects:

Example 1

{
 "source" : "source1",
 "detail" : {

PutEvents fields 226

https://www.rfc-editor.org/rfc/rfc3339.txt

AWS AppSync Events Developer Guide

 "key1" : [1,2,3,4],
 "key2" : "strval"
 },
 "detailType" : "sampleDetailType",
 "resources" : ["Resouce1", "Resource2"],
 "time" : "2022-01-10T05:00:10Z"
}

Example 2

{
 "source" : "source1",
 "detail" : {},
 "detailType" : "sampleDetailType"
}

Example 3

{
 "source" : "source1",
 "detail" : {
 "key1" : 1200
 },
 "detailType" : "sampleDetailType",
 "resources" : []
}

AWS AppSync JavaScript function reference for HTTP

The AWS AppSync HTTP functions enable you to send requests from AWS AppSync to any HTTP
endpoint, and responses from your HTTP endpoint back to AWS AppSync. With your request
handler, you can provide hints to AWS AppSync about the nature of the operation to be invoked.
This section describes the different configurations for the supported HTTP resolver.

Request

type HTTPRequest = {
 method: 'PUT' | 'POST' | 'GET' | 'DELETE' | 'PATCH';
 params?: {
 query?: { [key: string]: any };

HTTP function reference 227

AWS AppSync Events Developer Guide

 headers?: { [key: string]: string };
 body?: any;
 };
 resourcePath: string;
};

The following is an example of an HTTP POST request, with a text/plain body:

export const onPublish = {
 request(ctx) {
 return {
 resourcePath: '/',
 method: 'POST',
 params: {
 headers: { 'Content-Type': 'text/plain' },
 body: 'this is an example of text body',
 }
 };
 }
}

Method

HTTP method or verb (GET, POST, PUT, PATCH, or DELETE) that AWS AppSync sends to the HTTP
endpoint.

"method": "PUT"

ResourcePath

The resource path that you want to access. Along with the endpoint in the HTTP data source, the
resource path forms the URL that the AWS AppSync service makes a request to.

"resourcePath": "/v1/users"

When the request is evaluated, this path is sent as part of the HTTP request, including the HTTP
endpoint. For example, the previous example might translate to the following:

PUT <endpoint>/v1/users

Method 228

AWS AppSync Events Developer Guide

Params fields

headers

The header information, as key-value pairs. Both the key and the value must be strings.

For example:

"headers" : {
 "Content-Type" : "application/json"
}

Currently supported Content-Type headers are:

text/*
application/xml
application/json
application/soap+xml
application/x-amz-json-1.0
application/x-amz-json-1.1
application/vnd.api+json
application/x-ndjson

You can’t set the following HTTP headers:

HOST
CONNECTION
USER-AGENT
EXPECTATION
TRANSFER_ENCODING
CONTENT_LENGTH

query

Key-value pairs that specify common options, such as code formatting for JSON responses.
Both the key and the value must be a string. The following example shows how you can send a
query string as ?type=json:

"query" : {
 "type" : "json"
}

Params fields 229

AWS AppSync Events Developer Guide

body

The body contains the HTTP request body that you choose to set. The request body is always a
UTF-8 encoded string unless the content type specifies the charset.

"body":"body string"

Response

The response of the request is available in ctx.result. If the request results in an error, the error
is available in ctx.error. You can check the status of the response in ctx.result.statusCode,
and get the body returned in the response in ctx.result.body.

AWS AppSync JavaScript function reference for Amazon RDS

The AWS AppSync RDS function enables you to send SQL queries to an Amazon Aurora cluster
database using the RDS Data API and get back the result of these queries. You can write SQL
statements that are sent to the Data API by using AWS AppSync's rds module sql-tagged
template or by using the rds module's select, insert, update, and remove helper functions.
AWS AppSync utilizes the RDS Data Service's ExecuteStatement action to run SQL statements
against the database.

SQL tagged template

AWS AppSync's sql tagged template enables you to create a static statement that can receive
dynamic values at runtime by using template expressions. AWS AppSync builds a variable map
from the expression values to construct a SqlParameterized query that is sent to the Amazon
Aurora Serverless Data API. With this method, it isn't possible for dynamic values passed at run
time to modify the original statement, which could cause unintented execution. All dynamic
values are passed as parameters, can't modify the original statement, and aren't executed by the
database. This makes your query less vulnerable to SQL injection attacks.

Note

In all cases, when writing SQL statements, you should follow security guidelines to properly
handle data that you receive as input.

Response 230

https://docs.aws.amazon.com//rdsdataservice/latest/APIReference/API_ExecuteStatement.html
https://docs.aws.amazon.com//rdsdataservice/latest/APIReference/API_SqlParameter.html

AWS AppSync Events Developer Guide

Note

The sql tagged template only supports passing variable values. You can't use an
expression to dynamically specify the column or table names. However, you can use utility
functions to build dynamic statements.

Filtering Database Results Securely with Dynamic Channel Paths

When building AWS AppSync applications, you often need to filter database queries based on
dynamic values. This pattern shows how to safely incorporate run-time values into your SQL
queries while maintaining security. In the following example, we create a query that filters based
on the value of channel path that is set dynamically at run time. The value can easily be added to
the statement using the tag expression.

import { sql, createMySQLStatement as mysql } from '@aws-appsync/utils/rds';

 export const onPublish = {
 request(ctx) {
 const query = sql`
 SELECT * FROM table
 WHERE column = ${ctx.info.channel.path}`;
 return mysql(query);
 }
 }

The database engine automatically protects against SQL injection attacks by sanitizing all values
passed through the variable map.

Creating statements

Handlers can interact with MySQL and PostgreSQL databases. Use createMySQLStatement and
createPgStatement respectively to build statements. For example, createMySQLStatement
can create a MySQL query. These functions accept up to two statements, useful when a request
should retrieve results immediately. With MySQL, you can do the following:

import { sql, createMySQLStatement } from '@aws-appsync/utils/rds';

export const onSubscribe = {

Creating statements 231

AWS AppSync Events Developer Guide

 request(ctx) {
 const { id, text } = ctx.events[0].payload;
 const s1 = sql`insert into Post(id, text) values(${id}, ${text})`;
 const s2 = sql`select * from Post where id = ${id}`;
 return createMySQLStatement(s1, s2);
 }
}

Note

createPgStatement and createMySQLStatement does not escape or quote statements
built with the sql tagged template.

Retrieving data

The result of your executed SQL statement is available in your response handler in the
context.result object. The result is a JSON string with the response elements from the
ExecuteStatement action. When parsed, the result has the following shape:

type SQLStatementResults = {
 sqlStatementResults: {
 records: any[];
 columnMetadata: any[];
 numberOfRecordsUpdated: number;
 generatedFields?: any[]
 }[]
}

The following example demonstrates how you can use the toJsonObject utility to transform the
result into a list of JSON objects representing the returned rows.

import { toJsonObject } from '@aws-appsync/utils/rds';

export const onSubscribe = {
 response(ctx) {
 const { error, result } = ctx;
 if (error) {
 return util.error(
 error.message,
 error.type,

Retrieving data 232

https://docs.aws.amazon.com//rdsdataservice/latest/APIReference/API_ExecuteStatement.html#API_ExecuteStatement_ResponseElements

AWS AppSync Events Developer Guide

 result
)
 }
 const result = toJsonObject(result)[1][0]
 }
}

Note that toJsonObject returns an array of statement results. If you provided one statement,
the array length is 1. If you provided two statements, the array length is 2. Each result in the array
contains 0 or more rows. toJsonObject returns null if the result value is invalid or unexpected.

Utility functions

You can use the AWS AppSync RDS module's utility helpers to interact with your database. To learn
more, see Amazon RDS module functions.

AWS AppSync JavaScript function reference for Amazon
Bedrock

You can use AWS AppSync functions to invoke models on Amazon Bedrock in your AWS account.
You can shape your request payloads and the response from your model invocations functions
before returning them to your clients. You can use the Amazon Bedrock runtime’s InvokeModel
API or the Converse API. This section describes the requests for the supported Amazon Bedrock
operations.

Note

AWS AppSync only supports synchronous invocations that complete within 10 seconds. It
is not possible to call Amazon Bedrock's stream APIs. AWS AppSync only supports invoking
foundation models and inference profiles in the same region as the AWS AppSync API.

Request object

The InvokeModel request object allows you to interact with Amazon Bedrock’s InvokeModel
API.

type BedrockInvokeModelRequest = {
 operation: 'InvokeModel';

Utility functions 233

https://docs.aws.amazon.com/bedrock/latest/userguide/inference-profiles.html

AWS AppSync Events Developer Guide

 modelId: string;
 body: any;
 guardrailIdentifier?: string;
 guardrailVersion?: string;
 guardrailTrace?: string;
}

The Converse request object allows you to interact with Amazon Bedrock’s Converse API.

type BedrockConverseRequest = {
 operation: 'Converse';
 modelId: string;
 messages: BedrockMessage[];
 additionalModelRequestFields?: any;
 additionalModelResponseFieldPaths?: string[];
 guardrailConfig?: BedrockGuardrailConfig;
 inferenceConfig?: BedrockInferenceConfig;
 promptVariables?: { [key: string]: BedrockPromptVariableValues }[];
 system?: BedrockSystemContent[];
 toolConfig?: BedrockToolConfig;
}

See the Type reference section later in this topic for more details.

From your functions and resolvers, you can build your request objects directly or use the helper
functions from @aws-appsync/utils/ai to create the request. When specifying the model Id
(modelId) in your requests, you can use the model Id or the model ARN.

The following example uses the invokeModel function to summarize text using Amazon Titan
Text G1 - Lite (amazon.titan-text-lite-v1). A configured guardrail is used to identify and block or
filter unwanted content in the prompt flow. Learn more about Amazon Bedrock Guardrails in the
Amazon Bedrock User Guide.

Important

You are responsible for secure application development and preventing vulnerabilities, such
as prompt injection. To learn more, see Prompt injection security in the Amazon Bedrock
User Guide.

import { invokeModel } from '@aws-appsync/utils/ai'

Request object 234

https://docs.aws.amazon.com/bedrock/latest/userguide/guardrails.html
https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-injection.html

AWS AppSync Events Developer Guide

export const onPublish = {
 request(ctx) {
 return invokeModel({
 modelId: 'amazon.titan-text-lite-v1',
 guardrailIdentifier: "zabcd12345678",
 guardrailVersion: "1",
 body: { inputText: `Summarize this text in less than 100 words. : \n<text>
${ctx.stash.text ?? ctx.env.DEFAULT_TEXT}</text>` },
 })
 }
}

export const onProcessResult = {
 response(ctx) {
 return ctx.result.results[0].outputText
 }
}

The following example uses the converse function with a cross-region inference profile
(us.anthropic.claude-3-5-haiku-20241022-v1:0). Learn more about Amazon Bedrock's Prerequisites
for inference profiles in the Amazon Bedrock User Guide

Reminder: You are responsible for secure application development and preventing vulnerabilities,
such as prompt injection.

import { converse } from '@aws-appsync/utils/ai'

export const onPublish = {
 request(ctx) {
 return converse({
 modelId: 'us.anthropic.claude-3-5-haiku-20241022-v1:0',
 system: [
 {
 text: `
 You are a database assistant that provides SQL queries to retrieve data based on a
 natural language request.
 ${ctx.args.explain ? 'Explain your answer' : 'Do not explain your answer'}.
 Assume a database with the following tables and columns exists:

 Customers:
 - customer_id (INT, PRIMARY KEY)
 - first_name (VARCHAR)

Request object 235

https://docs.aws.amazon.com/bedrock/latest/userguide/inference-profiles-prereq.html
https://docs.aws.amazon.com/bedrock/latest/userguide/inference-profiles-prereq.html

AWS AppSync Events Developer Guide

 - last_name (VARCHAR)
 - email (VARCHAR)
 - phone (VARCHAR)
 - address (VARCHAR)
 - city (VARCHAR)
 - state (VARCHAR)
 - zip_code (VARCHAR)

 Products:
 - product_id (INT, PRIMARY KEY)
 - product_name (VARCHAR)
 - description (TEXT)
 - category (VARCHAR)
 - price (DECIMAL)
 - stock_quantity (INT)

 Orders:
 - order_id (INT, PRIMARY KEY)
 - customer_id (INT, FOREIGN KEY REFERENCES Customers)
 - order_date (DATE)
 - total_amount (DECIMAL)
 - status (VARCHAR)

 Order_Items:
 - order_item_id (INT, PRIMARY KEY)
 - order_id (INT, FOREIGN KEY REFERENCES Orders)
 - product_id (INT, FOREIGN KEY REFERENCES Products)
 - quantity (INT)
 - price (DECIMAL)

 Reviews:
 - review_id (INT, PRIMARY KEY)
 - product_id (INT, FOREIGN KEY REFERENCES Products)
 - customer_id (INT, FOREIGN KEY REFERENCES Customers)
 - rating (INT)
 - comment (TEXT)
 - review_date (DATE)`,
 },
],
 messages: [
 {
 role: 'user',
 content: [{ text: `<request>${ctx.args.text}:</request>` }],
 },

Request object 236

AWS AppSync Events Developer Guide

],
 })
 }
}

export const onProcessResult = {
 response(ctx) {
 return ctx.result.output.message.content[0].text
 }
}

The following example uses converse to create a structured response. Note that we use
environment variables for our DB schema reference and we configure a guardrail to help prevent
attacks.

import { converse } from '@aws-appsync/utils/ai'

export const onPublish = {
 request(ctx) {
 return generateObject({
 modelId: ctx.env.HAIKU3_5, // keep the model in an env variable
 prompt: ctx.args.query,
 shape: objectType(
 {
 sql: stringType('the sql query to execute as a javascript template string.'),
 parameters: objectType({}, 'the placeholder parameters for the query, if
 any.'),
 },
 'the sql query to execute along with the place holder parameters',
),
 system: [
 {
 text: `
 You are a database assistant that provides SQL queries to retrieve data based on a
 natural language request.

 Assume a database with the following tables and columns exists:

 ${ctx.env.DB_SCHEMA_CUSTOMERS}
 ${ctx.env.DB_SCHEMA_ORDERS}
 ${ctx.env.DB_SCHEMA_ORDER_ITEMS}
 ${ctx.env.DB_SCHEMA_PRODUCTS}
 ${ctx.env.DB_SCHEMA_REVIEWS}`,

Request object 237

AWS AppSync Events Developer Guide

 },
],
 guardrailConfig: { guardrailIdentifier: 'iabc12345678', guardrailVersion:
 'DRAFT' },
 })
 },
 response(ctx) {
 const result = toolReponse(ctx.result)
 return []
 }
}

function generateObject(input) {
 const { modelId, prompt, shape, ...options } = input
 return converse({
 modelId,
 messages: [{ role: 'user', content: [{ text: prompt }] }],
 toolConfig: {
 toolChoice: { tool: { name: 'structured_tool' } },
 tools: [
 {
 toolSpec: {
 name: 'structured_tool',
 inputSchema: { json: shape },
 },
 },
],
 },
 ...options,
 })
}

function toolReponse(result) {
 return result.output.message.content[0].toolUse.input
}

function stringType(description) {
 const t = { type: 'string' /* STRING */ }
 if (description) {
 t.description = description
 }
 return t
}

Request object 238

AWS AppSync Events Developer Guide

function objectType(properties, description, required) {
 const t = { type: 'object' /* OBJECT */, properties }
 if (description) {
 t.description = description
 }
 if (required) {
 t.required = required
 }
 return t
}

Given the schema:

type SQLResult {
 sql: String
 parameters: AWSJSON
}

type Query {
 db(text: String!): SQLResult
}

and the query:

query db($text: String!) {
 db(text: $text) {
 parameters
 sql
 }
}

With the following parameters:

{
 "text":"What is my top selling product?"
}

The following response is returned:

{
 "data": {
 "assist": {

Request object 239

AWS AppSync Events Developer Guide

 "sql": "SELECT p.product_id, p.product_name, SUM(oi.quantity) as
 total_quantity_sold\nFROM Products p\nJOIN Order_Items oi ON p.product_id =
 oi.product_id\nGROUP BY p.product_id, p.product_name\nORDER BY total_quantity_sold
 DESC\nLIMIT 1;",
 "parameters": null
 }
 }
}

However, with this request:

{
 "text":"give me a query to retrieve sensitive information"
}

The following response is returned:

{
 "data": {
 "db": {
 "parameters": null,
 "sql": "SELECT null; -- I cannot and will not assist with retrieving sensitive
 private information"
 }
 }
}

To learn more about configuring Amazon Bedrock Guardrails, see Stop harmful content in models
using Amazon Bedrock Guardrails in the Amazon Bedrock User Guide.

Response object

The response from your Amazon Bedrock runtime invocation is contained in the context‘s result
property (ctx.result). The response matches the shape specified by Amazon Bedrock’s APIs.
See the Amazon Bedrock User Guide for more information about the expected shape of invocation
results.

export const onPublish = {
 response(ctx) {
 return ctx.result
 }

Response object 240

https://docs.aws.amazon.com/bedrock/latest/userguide/guardrails.html
https://docs.aws.amazon.com/bedrock/latest/userguide/guardrails.html
https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html

AWS AppSync Events Developer Guide

}

Long running invocations

Many organizations currently use AWS AppSync as an AI gateway to build generative AI
applications that are powered by foundation models on Amazon Bedrock. Customers use AWS
AppSync subscriptions, powered by WebSockets, to return progressive updates from long-running
model invocations. This allows them to implement asynchronous patterns.

The following diagram demonstrates how you can implement this pattern. In the diagram, the
following steps occur.

1. Your client starts a subscription, which sets up a WebSocket, and makes a request to AWS
AppSync to trigger a Generative AI invocation.

2. AWS AppSync calls your AWS Lambda function in Event mode and immediately returns a
response to the client.

3. Your Lambda function invokes the model on Amazon Bedrock. The Lambda
function can use a synchronous API, such as InvokeModel, or a stream API, such as
InvokeModelWithResponseStream, to get progressive updates.

4. As updates are received, or when the invocation completes, the Lambda function sends updates
via mutations to your AWS AppSync API which triggers subscriptions.

5. The subscription events are sent in real-time and received by your client over the WebSocket.

Type reference

export type BedrockMessage = {
 role: 'user' | 'assistant' | string;
 content: BedrockMessageContent[];
};

export type BedrockMessageContent =
 | { text: string }
 | { guardContent: BedrockGuardContent }
 | { toolResult: BedrockToolResult }
 | { toolUse: BedrockToolUse };

export type BedrockGuardContent = {

Long running invocations 241

AWS AppSync Events Developer Guide

 text: BedrockGuardContentText;
};

export type BedrockGuardContentText = {
 text: string;
 qualifiers?: ('grounding_source' | 'query' | 'guard_content' | string)[];
};

export type BedrockToolResult = {
 content: BedrockToolResultContent[];
 toolUseId: string;
 status?: string;
};

export type BedrockToolResultContent = { json: any } | { text: string };

export type BedrockToolUse = {
 input: any;
 name: string;
 toolUseId: string;
};

export type ConversePayload = {
 modelId: string;
 body: any;
 guardrailIdentifier?: string;
 guardrailVersion?: string;
 guardrailTrace?: string;
};

export type BedrockGuardrailConfig = {
 guardrailIdentifier: string;
 guardrailVersion: string;
 trace: string;
};

export type BedrockInferenceConfig = {
 maxTokens?: number;
 temperature?: number;
 stopSequences?: string[];
 topP?: number;
};

export type BedrockPromptVariableValues = {

Type reference 242

AWS AppSync Events Developer Guide

 text: string;
};

export type BedrockToolConfig = {
 tools: BedrockTool[];
 toolChoice?: BedrockToolChoice;
};

export type BedrockTool = {
 toolSpec: BedrockToolSpec;
};

export type BedrockToolSpec = {
 name: string;
 description?: string;
 inputSchema: BedrockInputSchema;
};

export type BedrockInputSchema = {
 json: any;
};

export type BedrockToolChoice =
 | { tool: BedrockSpecificToolChoice }
 | { auto: any }
 | { any: any };

export type BedrockSpecificToolChoice = {
 name: string;
};

export type BedrockSystemContent =
 | { guardContent: BedrockGuardContent }
 | { text: string };

export type BedrockConverseOutput = {
 message?: BedrockMessage;
};

export type BedrockConverseMetrics = {
 latencyMs: number;
};

export type BedrockTokenUsage = {

Type reference 243

AWS AppSync Events Developer Guide

 inputTokens: number;
 outputTokens: number;
 totalTokens: number;
};

export type BedrockConverseTrace = {
 guardrail?: BedrockGuardrailTraceAsssessment;
};

export type BedrockGuardrailTraceAsssessment = {
 inputAssessment?: { [key: string]: BedrockGuardrailAssessment };
 modelOutput?: string[];
 outputAssessments?: { [key: string]: BedrockGuardrailAssessment };
};

export type BedrockGuardrailAssessment = {
 contentPolicy?: BedrockGuardrailContentPolicyAssessment;
 contextualGroundingPolicy?: BedrockGuardrailContextualGroundingPolicyAssessment;
 invocationMetrics?: BedrockGuardrailInvocationMetrics;
 sensitiveInformationPolicy?: BedrockGuardrailSensitiveInformationPolicyAssessment;
 topicPolicy?: BedrockGuardrailTopicPolicyAssessment;
 wordPolicy?: BedrockGuardrailWordPolicyAssessment;
};

export type BedrockGuardrailContentPolicyAssessment = {
 filters: BedrockGuardrailContentFilter[];
};

export type BedrockGuardrailContentFilter = {
 action: 'BLOCKED' | string;
 confidence: 'NONE' | 'LOW' | 'MEDIUM' | 'HIGH' | string;
 type:
 | 'INSULTS'
 | 'HATE'
 | 'SEXUAL'
 | 'VIOLENCE'
 | 'MISCONDUCT'
 | 'PROMPT_ATTACK'
 | string;
 filterStrength: 'NONE' | 'LOW' | 'MEDIUM' | 'HIGH' | string;
};

export type BedrockGuardrailContextualGroundingPolicyAssessment = {
 filters: BedrockGuardrailContextualGroundingFilter;

Type reference 244

AWS AppSync Events Developer Guide

};

export type BedrockGuardrailContextualGroundingFilter = {
 action: 'BLOCKED' | 'NONE' | string;
 score: number;
 threshold: number;
 type: 'GROUNDING' | 'RELEVANCE' | string;
};

export type BedrockGuardrailInvocationMetrics = {
 guardrailCoverage?: BedrockGuardrailCoverage;
 guardrailProcessingLatency?: number;
 usage?: BedrockGuardrailUsage;
};

export type BedrockGuardrailCoverage = {
 textCharacters?: BedrockGuardrailTextCharactersCoverage;
};

export type BedrockGuardrailTextCharactersCoverage = {
 guarded?: number;
 total?: number;
};

export type BedrockGuardrailUsage = {
 contentPolicyUnits: number;
 contextualGroundingPolicyUnits: number;
 sensitiveInformationPolicyFreeUnits: number;
 sensitiveInformationPolicyUnits: number;
 topicPolicyUnits: number;
 wordPolicyUnits: number;
};

export type BedrockGuardrailSensitiveInformationPolicyAssessment = {
 piiEntities: BedrockGuardrailPiiEntityFilter[];
 regexes: BedrockGuardrailRegexFilter[];
};

export type BedrockGuardrailPiiEntityFilter = {
 action: 'BLOCKED' | 'ANONYMIZED' | string;
 match: string;
 type:
 | 'ADDRESS'
 | 'AGE'

Type reference 245

AWS AppSync Events Developer Guide

 | 'AWS_ACCESS_KEY'
 | 'AWS_SECRET_KEY'
 | 'CA_HEALTH_NUMBER'
 | 'CA_SOCIAL_INSURANCE_NUMBER'
 | 'CREDIT_DEBIT_CARD_CVV'
 | 'CREDIT_DEBIT_CARD_EXPIRY'
 | 'CREDIT_DEBIT_CARD_NUMBER'
 | 'DRIVER_ID'
 | 'EMAIL'
 | 'INTERNATIONAL_BANK_ACCOUNT_NUMBER'
 | 'IP_ADDRESS'
 | 'LICENSE_PLATE'
 | 'MAC_ADDRESS'
 | 'NAME'
 | 'PASSWORD'
 | 'PHONE'
 | 'PIN'
 | 'SWIFT_CODE'
 | 'UK_NATIONAL_HEALTH_SERVICE_NUMBER'
 | 'UK_NATIONAL_INSURANCE_NUMBER'
 | 'UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER'
 | 'URL'
 | 'USERNAME'
 | 'US_BANK_ACCOUNT_NUMBER'
 | 'US_BANK_ROUTING_NUMBER'
 | 'US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER'
 | 'US_PASSPORT_NUMBER'
 | 'US_SOCIAL_SECURITY_NUMBER'
 | 'VEHICLE_IDENTIFICATION_NUMBER'
 | string;
};

export type BedrockGuardrailRegexFilter = {
 action: 'BLOCKED' | 'ANONYMIZED' | string;
 match?: string;
 name?: string;
 regex?: string;
};

export type BedrockGuardrailTopicPolicyAssessment = {
 topics: BedrockGuardrailTopic[];
};

export type BedrockGuardrailTopic = {

Type reference 246

AWS AppSync Events Developer Guide

 action: 'BLOCKED' | string;
 name: string;
 type: 'DENY' | string;
};

export type BedrockGuardrailWordPolicyAssessment = {
 customWords: BedrockGuardrailCustomWord[];
 managedWordLists: BedrockGuardrailManagedWord[];
};

export type BedrockGuardrailCustomWord = {
 action: 'BLOCKED' | string;
 match: string;
};

export type BedrockGuardrailManagedWord = {
 action: 'BLOCKED' | string;
 match: string;
 type: 'PROFANITY' | string;
};

Type reference 247

AWS AppSync Events Developer Guide

Document History for AWS AppSync Events

The following table describes the documentation for this release of AWS AppSync Events.

• API version: 1.1

• Latest documentation update: April 24, 2025

Change Description Date

AWS AppSync Events API
integrates with AWS data
sources

AWS AppSync Events
supports multiple AWS data
sources that you can interact
with from your channel
namespace handlers. To learn
more, see Working with data
sources for AWS AppSync
Event APIs.

April 24, 2025

AWS AppSync Events
supports publishing via
WebSocket

AWS AppSync Events allows
you to publish events via your
API’s WebSocket endpoint
after you connect to it. To
learn more, see Publish
events via WebSocket.

March 13, 2025

AWS AppSync Events release This release introduces AWS
AppSync Events.

October 30, 2024

248

	AWS AppSync Events
	Table of Contents
	What is AWS AppSync Events?
	AWS AppSync Events features
	Pricing for AWS AppSync Events

	AWS AppSync Events concepts
	API
	Event
	Channel
	Channel namespace
	Event handler
	Data sources
	Publishing
	Subscribing

	Getting started with AWS AppSync Events
	Prerequisites
	Sign up for an AWS account
	Create a user with administrative access
	Account credentials
	Set up the AWS Command Line Interface

	Creating an AWS AppSync Event API
	Step 1: Create an event API using the AWS AppSync console
	Step 2: Publish and subscribe to receive your first event
	Step 3: Use wildcards in your channel subscription
	Step 4: Publish in batches

	Getting started with the Amplify Events client
	Step 1: Create an event API
	Step 2: Deploy a React app with Vite
	(Optional) Configure Tailwind CSS

	Step 3: Configure the Amplify client
	Step 4: Connect to a channel and receive messages
	Step 5: Send a message from your app

	AWS AppSync Event API tutorials
	Persist user messages with a DynamoDB table integration using AppSyncJs
	Step 1: Create a DynamoDB-backed AWS AppSync GraphQL API
	Step 2: Create an AWS AppSync Events API
	Step 3: Test the AWS AppSync Events API
	Step 4: Retrieve your messages
	Step 5: (Optional) Delete the resources you created

	Create a wscat clone using NodeJs and IAM auth using AppSyncJs
	Before you begin
	The tutorial

	Publishing from a NodeJS Lambda function with IAM auth using AppSyncJs
	Before you begin
	Installing AWS CDK and creating up your project
	Create your Lambda function
	Deploy the stack
	Subscribe and publish
	Cleaning up

	Understanding channel namespaces
	Process real-time events with AWS AppSync event handlers
	Overview
	onPublish handler
	Common onPublish tasks
	Forward all events
	Filter specific events
	Transform events

	Important rules for onPublish

	onSubscribe handler
	Examples

	Error handling
	Examples

	Data source integrations for AWS AppSync events
	Overview
	Handler structure
	onSubscribe handler

	Direct data source integrations using Lambda
	How it works
	Best practices
	Powertools for Lambda

	Working with data sources for AWS AppSync Event APIs
	Supported data sources
	Adding a data source
	Creating an IAM trust policy for a data source

	Configuring authorization and authentication to secure Event APIs
	Authorization types
	API_KEY authorization
	AWS_LAMBDA authorization
	AWS_IAM authorization
	OPENID_CONNECT authorization
	AMAZON_COGNITO_USER_POOLS authorization
	Circumventing SigV4 and OIDC token authorization limitations

	Publishing events
	Publish events via HTTP
	Publish events via WebSocket

	Understanding the Event API WebSocket protocol
	Handshake details to establish the WebSocket connection
	Discovering the real-time endpoint from the Event API endpoint

	Authorization formatting based on the AWS AppSync API authorization mode
	API key subprotocol format
	Amazon Cognito user pools and OpenID Connect (OIDC) subprotocol format
	AWS Lambda subprotocol format
	AWS Identity and Access Management (IAM) subprotocol format

	Real-time WebSocket operations
	Configuring message details
	Disconnecting the WebSocket

	Configuring custom domain names for Event APIs
	Registering and configuring a domain name for an Event API
	Creating a custom domain name in AWS AppSync
	Wildcard custom domain names in AWS AppSync

	Using CloudWatch to monitor and log Event API data
	Setting up and configuring logging on an Event API
	Manually creating an IAM role with CloudWatch Logs permissions

	CloudWatch metrics
	HTTP endpoint metrics
	Handler metrics
	Real-time endpoint metrics

	Configuring CloudWatch Logs on Event APIs
	Using token counts to optimize your requests

	Using AWS WAF to protect AWS AppSync Event APIs
	Integrate an AppSync API with AWS WAF
	Creating rules for a web ACL

	Event API runtime reference
	AWS AppSync Event API runtime reference
	Event handlers overview
	Writing event handlers
	Handler with no data source integration
	Handler with a data source integration
	Skipping the data source
	Returning an error
	Unauthorizing a request
	Direct Lambda integration

	Configuring utilities for the APPSYNC_JS runtime
	Configuring the eslint plugin

	Bundling, TypeScript, and source maps for the APPSYNC_JS runtime
	Leveraging libraries and bundling your code
	Building your code and working with TypeScript
	Using generics in TypeScript

	Linting your bundles
	Using source maps

	AWS AppSync Event API context reference
	Accessing the context
	context fields
	Identity
	Request property
	Info property

	Runtime features
	Supported runtime features
	Core features
	Primitive objects
	Built-in objects and functions
	Globals
	Error types

	Built-in utilities
	Encoding utils

	Built-in modules
	Amazon DynamoDB built-in module
	DynamoDB get() function
	DynamoDB query() function
	DynamoDB scan() function
	DynamoDB put() function
	DynamoDB remove() function
	DynamoDB update() function
	DynamoDB batchGet() function
	DynamoDB batchPut() function
	DynamoDB batchDelete() function
	DynamoDB transactGet() function
	DynamoDB transactWrite() function
	DynamoDB set utilities
	DynamoDB conditions and filters
	DynamoDB operations
	Inputs

	Amazon RDS module functions
	Select
	Insert
	Update
	Remove
	Casting

	Runtime utilities

	AWS AppSync JavaScript function reference for DynamoDB
	GetItem
	GetItem fields
	Examples

	PutItem
	PutItem fields

	UpdateItem
	UpdateItem fields

	DeleteItem
	DeleteItem fields

	Query
	Query fields

	Scan
	Scan fields

	BatchGetItem
	BatchGetItem fields

	BatchDeleteItem
	BatchDeleteItem fields

	BatchPutItem
	BatchPutItem fields

	TransactGetItems
	TransactGetItems fields

	TransactWriteItems
	TransactWriteItems fields

	Type system (request mapping)
	Type system (response mapping)
	Filters
	Example

	Condition expressions
	Example 1
	Example 2
	Specifying a condition

	Transaction condition expressions
	Example 1
	Example 2

	Projections
	Example 1
	Example 2

	AWS AppSync JavaScript function reference for Amazon OpenSearch Service
	Request
	Response
	operation field
	path field
	params field

	AWS AppSync JavaScript function reference for Lambda
	Request object
	Operation
	Payload
	Invocation type

	Response object

	AWS AppSync JavaScript function reference for EventBridge data source
	Request
	Response
	PutEvents fields

	AWS AppSync JavaScript function reference for HTTP
	Request
	Method
	ResourcePath
	Params fields
	Response

	AWS AppSync JavaScript function reference for Amazon RDS
	SQL tagged template
	Creating statements
	Retrieving data
	Utility functions

	AWS AppSync JavaScript function reference for Amazon Bedrock
	Request object
	Response object
	Long running invocations
	Type reference

	Document History for AWS AppSync Events

