
Developer guide

Agent Workspace

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Agent Workspace Developer guide

Agent Workspace: Developer guide

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Agent Workspace Developer guide

Table of Contents

What is the Amazon Connect agent workspace? ... 1
Are you a first-time Amazon Connect agent workspace user? .. 1
How applications are loaded in the agent workspace .. 1
Recommendations and best practices ... 3

Ensuring that apps can only be embedded in the Amazon Connect agent workspace 3
Using multiple domains within an app .. 3
Initializing Streams ... 4
Accessibility ... 4
Theming and styling ... 5

Working with 3P apps ... 6
Prerequisites for 3P apps .. 6

IAM role required .. 7
Create your application ... 7

Install the Amazon Connect SDK ... 8
Using Connect SDK without package manager .. 9
Initialize the Amazon Connect SDK in your application ... 20
Events and requests ... 21
Application authentication .. 21
Integrate with agent data ... 22
Integrate with contact data .. 24
Lifecycle events ... 26
Apply a theme ... 27

Test your application locally .. 28
Creating an application and associating to your instance .. 29

Test with a deployed version of your application ... 30
Error handling ... 30
Troubleshooting .. 31

Events .. 31
Requests .. 31

Building 3P services .. 32
What is a third-party (3P) service? ... 32
Why use a 3P service? ... 32
Common use cases .. 32
When to use each option ... 33

iii

Agent Workspace Developer guide

Using 3P applications .. 33
Using 3P services .. 33

Agent workspace startup process ... 33
Create a service .. 35

Service setup .. 35
AWS console setup ... 37

Implementation patterns .. 38
Launching app on startup .. 39
Contact event listening ... 39
Authentication popup .. 41

Best practices .. 46
Service creation management ... 46
Authentication ... 46
Service coordination ... 46

Integrating AWS-managed apps ... 47
Amazon Connect Streams .. 47
AWS-managed applications ... 47
Amazon Connect SDK ... 47
AppManager .. 47
Integration architecture .. 48
Implementation guide ... 48

Prerequisites ... 49
Step 1: Install packages .. 49
Step 2: Add AppManager plugin ... 49
Step 3: Embed page ... 50
Step 4: Launch application ... 50
Step 5: Build and deploy .. 51

Retrieve available applications .. 51
Application lifecycle management ... 52

Managing lifecycle .. 52
Handle lifecycle events .. 53

Advanced configuration .. 54
Prevent duplicates .. 54
Dynamic launch ... 54
Attach metadata ... 54
Support Global Resiliency ... 55

iv

Agent Workspace Developer guide

Dynamic application management ... 55
Iframe container component .. 56
Application container component ... 56

Troubleshooting .. 57
Application launch failures ... 58
Not appearing in catalog .. 58

Connect SDK API reference ... 60
Activity .. 60

onExpirationWarning() .. 61
offExpirationWarningCleared() .. 62
offSessionExtensionError() ... 62
onExpirationWarning() .. 63
onExpirationWarningCleared() .. 63
onSessionExtensionError() ... 64
sendActivity() ... 64

Agent ... 65
getARN() .. 66
getChannelConcurrency() ... 67
getExtension() .. 67
getName() ... 68
getRoutingProfile() .. 68
getState() .. 69
listAvailabilityStates() ... 70
listQuickConnects() ... 71
offEnabledChannelListChanged() ... 72
offRoutingProfileChanged() .. 73
onEnabledChannelListChanged() ... 73
onRoutingProfileChanged() ... 74
setAvailabilityState() ... 74
setAvailabilityStateByName() .. 76
setOffline() .. 77
onStateChanged() ... 78
offStateChanged() ... 79

AppController .. 79
closeApp() ... 80
focusApp() ... 81

v

Agent Workspace Developer guide

getApp() .. 82
getAppCatalog() ... 84
getAppConfig() ... 85
getApps() ... 86
launchApp() .. 88

Contact ... 90
accept() .. 93
addParticipant() ... 94
clear() ... 95
onCleared() ... 96
offCleared() ... 97
onConnected() .. 97
offConnected() ... 98
disconnectParticipant() ... 98
engagePreviewContact() .. 99
getAttribute() ... 100
getAttributes() ... 101
getChannelType() .. 101
getContact() ... 103
getInitialContactId() .. 104
getParticipant() ... 104
getParticipantState() .. 105
getPreviewConfiguration() .. 106
getQueue() ... 108
getQueueTimestamp() .. 108
getStateDuration() .. 109
isPreviewMode() .. 109
listContacts() .. 110
listParticipants() ... 111
onMissed() .. 112
offMissed() .. 113
offIncoming() ... 113
onIncoming() .. 114
onParticipantAdded() ... 115
offParticipantAdded() ... 116
onParticipantDisconnected() .. 117

vi

Agent Workspace Developer guide

offParticipantDisconnected() .. 118
onParticipantStateChanged() ... 119
onStartingAcw() .. 120
offStartingAcw() .. 121
transfer() ... 122

Email ... 123
onAcceptedEmail() .. 124
offAcceptedEmail() ... 125
createDraftEmail() ... 125
onDraftEmailCreated() ... 127
offDraftEmailCreated() ... 128
getEmailData() ... 128
getEmailThread() ... 132
sendEmail() ... 135

File ... 138
batchGetAttachedFileMetadata() ... 139
completeAttachedFileUpload() .. 142
deleteAttachedFile() ... 143
getAttachedFileUrl() ... 144
startAttachedFileUpload() ... 146

MessageTemplate ... 149
getContent() ... 150
isEnabled() .. 153
searchMessageTemplates() ... 153

QuickResponses .. 156
isEnabled() .. 158
searchQuickResponses() .. 158

User ... 162
getLanguage() .. 163
onLanguageChanged() ... 164
offLanguageChanged() .. 165

Voice ... 165
canResumeParticipant() ... 167
canResumeSelf() .. 168
conferenceParticipants() .. 169
createOutboundCall() ... 170

vii

Agent Workspace Developer guide

getInitialCustomerPhoneNumber() ... 171
getOutboundCallPermission() .. 172
holdParticipant() ... 172
getVoiceEnhancementMode() ... 173
getVoiceEnhancementPaths() ... 173
isParticipantOnHold() ... 174
listDialableCountries() .. 175
offCanResumeParticipantChanged() ... 176
offCanResumeSelfChanged() .. 176
offParticipantHold() .. 177
offParticipantResume() .. 178
offSelfHold() .. 179
offSelfResume() ... 179
offVoiceEnhancementModeChanged() ... 180
onCanResumeParticipantChanged() .. 181
onCanResumeSelfChanged() .. 182
onParticipantHold() .. 182
onParticipantResume() ... 183
onSelfHold() ... 184
onSelfResume() ... 185
onVoiceEnhancementModeChanged() .. 186
resumeParticipant() .. 187
setVoiceEnhancementMode() ... 187

Document history .. 189

viii

Agent Workspace Developer guide

What is the Amazon Connect agent workspace?

Amazon Connect agent workspace is a single, intuitive application that provides your agents with
all of the tools and step-by-step guidance they need to resolve issues efficiently, improve customer
experiences, and onboard faster. Contact center agents might be required to use more than seven
applications to manage each customer interaction, digging through various tools to process simple
requests, and frustrating customers on hold. Amazon Connect agent workspace integrates all of
your agent tools on one screen. You can customize the agent workspace to present agents with
step-by-step guidance to resolve customer issues faster.

Topics

• Are you a first-time Amazon Connect agent workspace user?

• How applications are loaded in Amazon Connect Agent Workspace

• Recommendations and best practices for Amazon Connect Agent Workspace

Are you a first-time Amazon Connect agent workspace user?

If you are a first-time user of Amazon Connect agent workspace, we recommend that you begin by
reading the following sections:

• Customize the Amazon Connect agent workspace

• Third-party applications (3P apps) in the Amazon Connect agent workspace

• Working with third-party applications in the Amazon Connect Agent Workspace

How applications are loaded in Amazon Connect Agent
Workspace

The agent workspace allows users to handle multiple contacts concurrently. They will have only
one contact selected at a time though, and the agent workspace will update the experience based
on the channel (call, chat, or task) of the contact and the applications opened for that contact.
When a user switches to another contact, the set of application tabs are updated to what the user
was doing last when they were on the previous contact.

Are you a first-time Amazon Connect agent workspace user? 1

https://docs.aws.amazon.com/connect/latest/adminguide/agent-workspace.html
https://docs.aws.amazon.com/connect/latest/adminguide/3P-apps.html

Agent Workspace Developer guide

An application can be opened by the user selecting the app launcher icon in the top right hand
corner of the main agent workspace and select an application from the list. This will load your
app in a new application tab for the contact the user has active at that time, or the idle state if
the user doesn’t have any active contacts. There will be new iframe created for each contact an
application is opened with. That iframe will exist until the application tab is closed, for example, a
user clicking on the x on the tab or the contact closing. At which point, the app will go through the
destroy lifecycle process which gives apps a chance to clean up any resources before the iframe is
unmounted from the DOM. The iframe will be hidden when a user selects another tab on the same
contact or switches to another contact. This means that at any one time there can be multiple
instances, for example, iframes, of the same application running for different contacts.

The agent workspace has a Content Security Policy (CSP) that only allows specific domains to be
framed by setting frame-src. The domains configured in the AccessUrl and those added to Approved
Origins will be included in the agent workspace’s CSP. Ensure that all domains that your app uses
for top level pages are included between AccessUrl and Approved Origins.

How applications are loaded in the agent workspace 2

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-src

Agent Workspace Developer guide

Events and data shared with an instance of an application will be for the contact the application is
opened under and the other applications opened on the same contact. Events or data will not be
shared between apps on different contacts.

Recommendations and best practices for Amazon Connect
Agent Workspace

Use the following recommendations and best practices to optimize applications in the Amazon
Connect agent workspace.

Topics

• Ensuring that apps can only be embedded in the Amazon Connect agent workspace

• Using multiple domains within an app

• Initializing Streams

• Accessibility

• Theming and styling

Ensuring that apps can only be embedded in the Amazon Connect
agent workspace

It is recommended that apps correctly set the Content Security Policy header with frame-ancestors
to only allow Amazon Connect instances.

Content-Security-Policy: frame-ancestors https://*.awsapps.com https://
*.my.connect.aws;

Using multiple domains within an app

Apps that use multiple domains, such as those supporting login flows, must add additional
domains to the approved origins list on the application configuration. Both the domain specified
in the AccessUrl and any additional domains added to the Approved Origins will be incorporated
into the Content Security Policy for the agent workspace, allowing iframe integration for these
domains.

Recommendations and best practices 3

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors

Agent Workspace Developer guide

Initializing Streams

Initializing the CCP via Streams, even if hidden, is not supported in third-party applications. You
must instead use contact and agent events when they are available.

Accessibility

The best practice is for your application to meet accessibility guidelines such as WCAG AA 2.1. The
following are some examples of automated and manual tests that you can conduct to ensure that
your app meets these guidelines.

Automated accessibility testing tools

1. axe: an open-source accessibility testing engine that can be integrated into your development
workflow. It provides automated testing of web pages and applications for accessibility issues
based on WCAG 2.1 standards.

2. Pa11y: a command-line interface that allows you to automate accessibility testing of web
pages. It can be integrated into your continuous integration (CI) process to catch accessibility
issues early in the development cycle.

3. Lighthouse: an open-source, automated tool for improving the quality of web pages. It
includes an accessibility audit feature that can identify common accessibility issues and
provide suggestions for improvement.

4. WAVE: a suite of evaluation tools that help authors make their web content more accessible to
individuals with disabilities. It provides a browser extension and an online tool for automated
accessibility testing.

Manual accessibility testing tools

1. Screen Readers: Use screen readers such as NVDA (NonVisual Desktop Access), JAWS (Job
Access With Speech), and VoiceOver to manually test how users with visual impairments
interact with your application.

2. Keyboard Navigation: Test the application using only a keyboard for navigation to ensure that
all interactive elements, such as links and form controls, can be accessed and used without a
mouse.

3. Color Contrast Checkers: Manual assessment of color contrast using tools like WebAIM's
Contrast Checker to ensure that text and graphical elements have sufficient contrast for
readability.

Initializing Streams 4

https://www.w3.org/TR/WCAG21/

Agent Workspace Developer guide

4. User Testing: Conduct manual accessibility testing with users who have disabilities to gain
insights into how they interact with your application and to identify any barriers they may
encounter. By using a combination of automated and manual tools, you can provide a
comprehensive picture of your application's accessibility compliance. When documenting the
testing process, be sure to include details about the tools used, the specific tests performed,
and the results obtained to demonstrate your commitment to accessibility.

Theming and styling

The Amazon Connect SDK includes a standard Amazon Connect theme. We recommend that you
use the theming package on top of Cloudscape, such that third-party applications match the
overall look and feel of the Amazon Connect agent workspace.

Theming and styling 5

https://github.com/amazon-connect/AmazonConnectSDK

Agent Workspace Developer guide

Working with third-party applications in the Amazon
Connect Agent Workspace

With Amazon Connect agent workspace, you have the option to use first-party applications, such
as Customer Profiles, Cases, Wisdom, and features such as step-by-step guides. With support for
third-party applications (3P apps), you can unite your contact center software, built by yourself or
by partners in one place. For example, you can integrate your proprietary reservation system or a
vendor-provided metrics dashboard, into the Amazon Connect agent workspace.

The following topics describe key concepts and procedures for developing applications for the
Amazon Connect agent workspace.

Topics

• Prerequisites for developing third-party applications for Amazon Connect Agent Workspace

• Create your application for Amazon Connect Agent Workspace

• Test your application for Amazon Connect Agent Workspace locally

• Test a deployed version of your application for Amazon Connect Agent Workspace

• Handle application errors in Amazon Connect Agent Workspace

• Troubleshoot application setup in Amazon Connect Agent Workspace

Prerequisites for developing third-party applications for
Amazon Connect Agent Workspace

To develop and test an application for use in Amazon Connect agent workspace, you must have the
following:

• An Amazon Connect instance

• An IAM user that has the proper permissions for creating an application and associating it with
the instance. For more information on the required user permissions, see the IAM role required
for creating applications in Amazon Connect Agent Workspace

• An Amazon Connect user in that instance that has permissions to update security profiles

Topics

Prerequisites for 3P apps 6

Agent Workspace Developer guide

• IAM role required for creating applications in Amazon Connect Agent Workspace

IAM role required for creating applications in Amazon Connect Agent
Workspace

On top of the AmazonConnect_FullAccess IAM policy, users need the following IAM
permissions for creating an app and associating it with an Amazon Connect instance.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Action": [
 "app-integrations:CreateApplication",
 "app-integrations:GetApplication",
 "iam:GetRolePolicy",
 "iam:PutRolePolicy",
 "iam:DeleteRolePolicy"
],
 "Resource": "arn:aws:app-integrations:us-
east-1:111122223333:application/*",
 "Effect": "Allow"
 }
]
}

Create your application for Amazon Connect Agent Workspace

An application is a website that can be loaded from an HTTPS URL into an iframe in the Amazon
Connect agent workspace. It can be built using any frontend framework and hosted anywhere as
long as it can be loaded by the user’s browser and supports being embedded. In addition to being
accessible by the user, the application must integrate the Amazon Connect SDK to establish secure
communication between the application and the agent workspace allowing the application to
receive events and data from the workspace.

Topics

IAM role required 7

https://github.com/amazon-connect/AmazonConnectSDK

Agent Workspace Developer guide

• Install the Amazon Connect SDK for developing applications for Amazon Connect Agent
Workspace

• Using the Amazon Connect SDK without a package manager

• Initialize the Amazon Connect SDK in your application for Amazon Connect Agent Workspace

• Events and requests in Amazon Connect Agent Workspace

• Authentication for applications in Amazon Connect Agent Workspace

• Integrate application with Amazon Connect Agent Workspace agent data

• Integrate application with Amazon Connect Agent Workspace contact data

• Application lifecycle events in Amazon Connect Agent Workspace

• Apply a theme to your application in Amazon Connect Agent Workspace

Install the Amazon Connect SDK for developing applications for
Amazon Connect Agent Workspace

To develop applications for the Amazon Connect agent workspace you must first install the
Amazon Connect SDK.

The Amazon Connect Amazon Connect SDK can be installed from NPM. The Aamzon Connect SDK is
made up of a set of modules that can be installed as separate packages, meaning that you should
only pull in the packages that you need.

The app package provides core application features like logging, error handling, secure messaging,
and lifecycle events, and must be installed by all applications at a minimum to integrate into the
workspace.

Install from NPM

Install the app package from NPM by installing @amazon-connect/app.

% npm install --save @amazon-connect/app

Note

If you do not use NPM, refer to Using Amazon Connect SDK without pacakage manager

Install the Amazon Connect SDK 8

https://github.com/amazon-connect/AmazonConnectSDK
https://docs.aws.amazon.com/agentworkspace/latest/devguide/sdk-without-package-manager.html

Agent Workspace Developer guide

Using the Amazon Connect SDK without a package manager

This guide is intended for developers building Amazon Connect integrations who do not use npm,
webpack, or other JavaScript package managers and bundlers in their web applications. This
includes developers building custom StreamsJS-based contact center interfaces or third-party
applications that run within the Amazon Connect Agent Workspace.

Amazon Connect recommends using a package manager such as npm and a bundler such as
webpack or Vite for SDK integration. These tools provide dependency management, automatic
updates, tree-shaking, and a streamlined development workflow. If you choose not to use these
tools, this guide describes an alternative approach.

The Amazon Connect SDK is distributed as npm packages. These packages use Node.js-style
module resolution and cannot be loaded directly in a browser using a <script> tag. If your
development environment does not include a package manager or bundler, you must create a
prebuilt script file that bundles the SDK packages into a browser-compatible format.

Your responsibility

When working without a package manager, it becomes your responsibility to:

1. Set up a one-time build environment to create the bundle

2. Select the specific SDK packages your application requires

3. Build and maintain the bundled script file

4. Update the bundle when SDK versions change

Why a bundle is required

SDK packages use ES module imports like import { ContactClient } from "@amazon-
connect/contact". Browsers cannot resolve these package specifiers directly. A bundler resolves
these imports, combines the code, and produces a single file the browser can execute.

Exposing the SDK as a global

When using <script> tags, there is no module system to share code between files. The bundle
must attach the SDK to a global variable (such as window.AmazonConnectSDK) so your
application scripts can access it. This is different from npm-based projects where you import
directly from packages.

Using Connect SDK without package manager 9

Agent Workspace Developer guide

Available packages

The SDK consists of multiple packages. Select only the packages your application needs. Examples
include:

Package Purpose

@amazon-connect/core Core SDK functionality and provider types

@amazon-connect/co
ntact

ContactClient for contact operations

@amazon-connect/em
ail

EmailClient for email channel operations

@amazon-connect/app App initialization for third-party applications

@amazon-connect/app-
manager

Plugin for hosting Connect first-party apps (Cases, Step-by-S
tep Guides)

@amazon-connect/vo
ice

VoiceClient for voice channel operations

See the Amazon Connect SDK repository for the complete list of available packages.

Building the script file

This section provides step-by-step instructions for creating a browser-consumable bundle from the
SDK npm packages.

Prerequisites

The following prerequisites are required:

• Node.js 18 or later installed

• npm (comes with Node.js)

• A text editor

Using Connect SDK without package manager 10

https://github.com/amazon-connect/AmazonConnectSDK

Agent Workspace Developer guide

Step 1: Create the build project directory

Create a new directory to hold your build configuration. This directory will contain npm tooling but
the output bundle will be usable without npm.

mkdir connect-sdk-bundle
cd connect-sdk-bundle

Step 2: Initialize the npm project

npm init -y

Step 3: Install the SDK packages you need

For an email-based solution using EmailClient and ContactClient:

npm install @amazon-connect/core @amazon-connect/contact @amazon-connect/email

If you are building a third-party app (not embedded in StreamsJS), also install:

npm install @amazon-connect/app

If you are integrating with StreamsJS and want to host Connect first-party apps (such as Cases or
Step-by-Step Guides), also install:

npm install @amazon-connect/app-manager

Step 4: Install the bundler

Install esbuild, a fast JavaScript bundler:

npm install --save-dev esbuild

Using Connect SDK without package manager 11

Agent Workspace Developer guide

Step 5: Create the entry file

Create a file that imports the SDK modules you need and exposes them as a global:

mkdir src

For StreamsJS integration (src/entry-streams.js):

// Entry file for StreamsJS integration
import { ContactClient } from "@amazon-connect/contact";
import { EmailClient } from "@amazon-connect/email";

// Expose the SDK on the window object
window.AmazonConnectSDK = {
 ContactClient,
 EmailClient,
};

For StreamsJS with first-party apps (src/entry-streams-with-apps.js):

If you want to host Connect first-party apps like Cases or Step-by-Step Guides alongside the CCP,
include the app-manager plugin:

// Entry file for StreamsJS integration with 1P app support
import { ContactClient } from "@amazon-connect/contact";
import { EmailClient } from "@amazon-connect/email";
import { AppManagerPlugin } from "@amazon-connect/app-manager";

// Expose the SDK on the window object
window.AmazonConnectSDK = {
 AppManagerPlugin,
 ContactClient,
 EmailClient,
};

For third-party app (src/entry-app.js):

Using Connect SDK without package manager 12

Agent Workspace Developer guide

// Entry file for third-party app integration
import { AmazonConnectApp } from "@amazon-connect/app";
import { ContactClient } from "@amazon-connect/contact";
import { EmailClient } from "@amazon-connect/email";

// Expose the SDK on the window object
window.AmazonConnectSDK = {
 AmazonConnectApp,
 ContactClient,
 EmailClient,
};

Step 6: Add build scripts to package.json

Edit package.json to add build scripts:

{
 "name": "connect-sdk-bundle",
 "version": "1.0.0",
 "scripts": {
 "build:streams": "esbuild src/entry-streams.js --bundle --minify --sourcemap --
format=iife --target=es2020 --outfile=dist/connect-sdk-streams.bundle.js",
 "build:app": "esbuild src/entry-app.js --bundle --minify --sourcemap --format=iife
 --target=es2020 --outfile=dist/connect-sdk-app.bundle.js",
 "build": "npm run build:streams && npm run build:app"
 }
}

Step 7: Build the bundle

npm run build

This creates the following files in the dist/ directory:

• connect-sdk-streams.bundle.js - Bundle for StreamsJS integration

• connect-sdk-streams.bundle.js.map - Source map for debugging

• connect-sdk-app.bundle.js - Bundle for third-party apps

• connect-sdk-app.bundle.js.map - Source map for debugging

Using Connect SDK without package manager 13

Agent Workspace Developer guide

Step 8: Copy the bundle to your project

Copy the appropriate .js file (and optionally the .map file for debugging) to your static website's
assets folder:

cp dist/connect-sdk-streams.bundle.js /path/to/your/website/assets/vendor/
or
cp dist/connect-sdk-app.bundle.js /path/to/your/website/assets/vendor/

Complete build project structure

After completing all steps, your build project should look like this:

connect-sdk-bundle/
package.json
package-lock.json
node_modules/
src/
entry-streams.js
entry-app.js
dist/
 ### connect-sdk-streams.bundle.js
 ### connect-sdk-streams.bundle.js.map
 ### connect-sdk-app.bundle.js
 ### connect-sdk-app.bundle.js.map

Using the SDK with StreamsJS

This section explains how to use the prebuilt bundle in a solution that uses Amazon Connect
Streams (StreamsJS).

Prerequisites

The following prerequisites are required:

• The Amazon Connect Streams library loaded on your page

• The connect-sdk-streams.bundle.js file from the building section

Using Connect SDK without package manager 14

Agent Workspace Developer guide

HTML setup

<!DOCTYPE html>
<html>
 <head>
 <title>Connect StreamsJS with SDK</title>
 </head>
 <body>
 <div id="ccp-container" style="width: 400px; height: 600px;"></div>

 <!-- Load Amazon Connect Streams first -->
 <script src="https://your-domain.com/amazon-connect-streams.min.js"></script>

 <!-- Load the SDK bundle -->
 <script src="/assets/vendor/connect-sdk-streams.bundle.js"></script>

 <!-- Your application code -->
 <script src="/app.js"></script>
 </body>
</html>

JavaScript implementation

In your app.js file:

// Initialize the CCP
var ccpContainer = document.getElementById("ccp-container");

connect.core.initCCP(ccpContainer, {
 ccpUrl: "https://your-instance.my.connect.aws/ccp-v2/",
 loginPopup: true,
 loginPopupAutoClose: true,
});

// Get the SDK provider from Streams after CCP initializes
connect.core.onInitialized(function () {
 // Retrieve the provider from the Streams SDK client config
 var sdkConfig = connect.core.getSDKClientConfig();
 var provider = sdkConfig.provider;

 // Create the SDK clients using the provider

Using Connect SDK without package manager 15

Agent Workspace Developer guide

 var contactClient = new AmazonConnectSDK.ContactClient(provider);
 var emailClient = new AmazonConnectSDK.EmailClient(provider);

 // Example: Subscribe to contact lifecycle events
 contactClient.onIncoming(function (event) {
 console.log("Incoming contact:", event.contactId);
 });

 contactClient.onConnected(function (event) {
 console.log("Contact connected:", event.contactId);
 });

 contactClient.onCleared(function (event) {
 console.log("Contact cleared:", event.contactId);
 });
});

Hosting Connect first-party apps (optional)

If you want to host Connect first-party apps like Cases or Step-by-Step Guides alongside your
CCP, include the @amazon-connect/app-manager package in your bundle and apply the plugin
during CCP initialization:

connect.core.initCCP(ccpContainer, {
 ccpUrl: "https://your-instance.my.connect.aws/ccp-v2/",
 loginPopup: true,
 loginPopupAutoClose: true,
 // Apply the plugin to enable 1P app hosting
 plugins: AmazonConnectSDK.AppManagerPlugin,
});

Key points for StreamsJS integration

1. Load the Streams library before the SDK bundle

2. Retrieve the provider using connect.core.getSDKClientConfig().provider after CCP
initializes

3. Instantiate SDK clients with new AmazonConnectSDK.ContactClient(provider)

4. The AppManagerPlugin is only required if hosting Connect first-party apps

Using Connect SDK without package manager 16

Agent Workspace Developer guide

Using the SDK in a 3P app

This section explains how to use the prebuilt bundle in a third-party application that runs within
the Amazon Connect Agent Workspace.

Prerequisites

The following prerequisites are required:

• Your application is registered as a third-party app in Amazon Connect

• The connect-sdk-app.bundle.js file from the building section

HTML setup

<!DOCTYPE html>
<html>
 <head>
 <title>Connect Third-Party App</title>
 </head>
 <body>
 <div id="app-container"></div>

 <!-- Load the SDK bundle -->
 <script src="/assets/vendor/connect-sdk-app.bundle.js"></script>

 <!-- Your application code -->
 <script src="/app.js"></script>
 </body>
</html>

JavaScript implementation

In your app.js file:

// Initialize the third-party app - this must be called first
var initResult = AmazonConnectSDK.AmazonConnectApp.init({
 // Optional lifecycle callbacks
 onCreate: function (event) {
 console.log("App created");

Using Connect SDK without package manager 17

Agent Workspace Developer guide

 },
 onDestroy: function (event) {
 console.log("App destroyed");
 },
});

// Get the provider from the init result
var provider = initResult.provider;

// Create the SDK clients using the provider
var contactClient = new AmazonConnectSDK.ContactClient(provider);
var emailClient = new AmazonConnectSDK.EmailClient(provider);

// Example: Subscribe to contact lifecycle events
contactClient.onIncoming(function (event) {
 console.log("Incoming contact:", event.contactId);
});

contactClient.onConnected(function (event) {
 console.log("Contact connected:", event.contactId);
});

contactClient.onCleared(function (event) {
 console.log("Contact cleared:", event.contactId);
});

Key points for third-party apps

1. Call AmazonConnectSDK.AmazonConnectApp.init() before using any SDK functionality

2. The init() function returns an object containing the provider

3. Instantiate SDK clients with new AmazonConnectSDK.ContactClient(provider)

4. Lifecycle callbacks (onCreate, onDestroy) are optional but useful for managing app state

Updating the bundle

When a new version of the SDK is released:

1. Navigate to your build project directory

2. Update the SDK packages:

Using Connect SDK without package manager 18

Agent Workspace Developer guide

npm update @amazon-connect/core @amazon-connect/contact @amazon-connect/email

3. Rebuild the bundle:

npm run build

4. Copy the new bundle to your website

5. Test your application to verify compatibility

Troubleshooting

This section describes common issues and resolutions when using the SDK without a package
manager.

Bundle is too large

If the bundle size is a concern, ensure you only import the packages you need. Each additional
package increases bundle size.

"AmazonConnectSDK is not defined" error

Verify that the bundle script tag appears before your application script in the HTML, and that the
path to the bundle file is correct.

Provider is undefined

For StreamsJS: Ensure you are accessing the provider after connect.core.onInitialized()
fires.

For third-party apps: Ensure you call AmazonConnectSDK.AmazonConnectApp.init() and
capture its return value.

SDK methods not working

Verify you passed the provider when creating the clients. The provider establishes the
communication channel between your code and Amazon Connect.

Using Connect SDK without package manager 19

Agent Workspace Developer guide

Initialize the Amazon Connect SDK in your application for Amazon
Connect Agent Workspace

Initializing the Amazon Connect SDK in your app for the Amazon Connect agent workspace
requires calling init on the AmazonConnectApp module. This takes an onCreate and
onDestroy callback, which will be invoked once the app has successfully initialized in the agent
workspace and then when the agent workspace is going to destroy the iframe the app is running
in. These are two of the lifecycle events that your app can integrate with. See Application lifecycle
events in Amazon Connect Agent Workspace for details on the other app lifecycle events that your
app can hook into.

import { AmazonConnectApp } from "@amazon-connect/app";

const { provider } = AmazonConnectApp.init({
 onCreate: (event) => {
 const { appInstanceId } = event.context;
 console.log('App initialized: ', appInstanceId);
 },
 onDestroy: (event) => {
 console.log('App being destroyed');
 },
});

Note

Keep the reference to { provider } which is required to create clients to interact with
events and requests.

Doing a quick test locally by loading your app directly will produce an error message in the browser
dev tools console that the app was unable to establish a connection to the workspace. This will
happen when your app is correctly calling init when run outside of the workspace.

> App failed to connect to agent workspace in the allotted time

Initialize the Amazon Connect SDK in your application 20

https://github.com/amazon-connect/AmazonConnectSDK

Agent Workspace Developer guide

Events and requests in Amazon Connect Agent Workspace

App developers can easily create applications that seamlessly integrate into the agent workspace
experience in the Amazon Connect agent workspace with the event and request functionality
natively supported by Amazon Connect SDK. You can build an app by leveraging the Amazon
Connect SDK to subscribe to agent/contact events (invoking a particular handler when the event
occurs) and make requests to quickly retrieve agent/contact data.

This is the main module needed to integrate your app into the agent workspace and get exposure
to its agent/contact data and make your app responsive throughout the contact-handling lifecycle.

• Event

Refers to an asynchronous subscription-publication model, where the Amazon Connect SDK's
client allows the 3P app to subscribe a callback to-be-invoked when a specific event occurs,
such as an agent changing their state from Available to Offline. It then performs an application-
defined action using the event context when said event fires. If and when an event fires is
dependent on the event type. For more information, see the API Reference.

• Request

Refers to a request-reply model, where the Amazon Connect SDK's client allows the 3P app to
make requests on demand to retrieve data about the current contact or the logged-in agent.

Install from NPM

Install the contact package from NPM by installing @amazon-connect/contact.

% npm install --save @amazon-connect/contact

Authentication for applications in Amazon Connect Agent Workspace

Apps in the Amazon Connect agent workspace must provide their own authentication to their
users. It is recommended that apps use the same identity provider that the Amazon Connect
instance has been configured to use when it was created. This will make it so users only need to log
in once for both the agent workspace and their applications, since they both use the same single
sign on provider.

Events and requests 21

https://github.com/amazon-connect/AmazonConnectSDK
https://github.com/amazon-connect/AmazonConnectSDK
https://github.com/amazon-connect/AmazonConnectSDK
https://github.com/amazon-connect/AmazonConnectSDK
https://github.com/amazon-connect/AmazonConnectSDK

Agent Workspace Developer guide

Note

On Jul 22, 2024, Google announced that they no longer plan to deprecate third-party
cookies [1]. With this announcement, there will be no impact to third-party applications
embedded within Amazon Connect’s agent workspace, unless third-party application users
explicitly opt-in for deprecation. We advise third-party application developers to adopt the
third-party cookie deprecation impact prevention solutions below as a forward-looking
preventative measure.
If you have any questions or concerns, please contact AWS Support [2].
[1] https://privacysandbox.com/news/privacy-sandbox-update/
[2] https://aws.amazon.com/support
For more information, see the 3P admin guide.
Third-party cookie deprecation
We are aware of the Google Chrome Third-Party Cookies Deprecation (3PCD) that may
impact the third-party applications experience. If your application is embedded within the
Amazon Connect’s agent workspace in an iframe and uses cookie based Authentication/
Authorization, then your application is likely to be impacted by Third-Party Cookie
Deprecation. You can test if your user experience will be impacted by 3PCD by using the
following Test for Breakage guidance.
Here are the recommendations to ensure customers continue to have good experiences
when accessing your application within the Amazon Connect agent workspace with Google
Chrome.

• Temporary solution: Allow 3P cookie access here .

• Permanent solution: Refer to the guidance from Chrome to choose the best option
suitable for your application.

Integrate application with Amazon Connect Agent Workspace agent
data

To integrate your application with agent data from the Amazon Connect agent workspace,
instantiate the agent client as follows:

import { AgentClient } from "@amazon-connect/contact";

Integrate with agent data 22

https://privacysandbox.com/news/privacy-sandbox-update/
https://aws.amazon.com/support
https://docs.aws.amazon.com/connect/latest/adminguide/3P-apps-agent-workspace.html
https://developers.google.com/privacy-sandbox/3Pcd/prepare/test-for-breakage
https://support.google.com/chrome/a/answer/14439269?hl=en
https://developers.google.com/privacy-sandbox/3Pcd

Agent Workspace Developer guide

const agentClient = new AgentClient({ provider });

Note

You must first instantiate the AmazonConnectApp which initializes the default
AmazonConnectProvider and returns { provider } . This is the recommended option.

Alternatively, see the API reference to customize your client’s configuration.

Once the agent client is instantiated, you can use it to subscribe to events and make requests.

Example agent event

The code sample below subscribes a callback to the state change event topic. Whenever the agent’s
state is modified, the agent workspace will invoke your provided callback, passing in the event data
payload for your function to operate on. In this example, it logs the event data to the console.

import { AgentStateChanged } from "@amazon-connect/contact";

// A simple callback that just console logs the state change event data
// returned by the agent workspace whenever the logged-in agent's state changes
const handler = async (data: AgentStateChanged) => {
 console.log(data);
};

// Subscribe to the state change topic using the above handler
agentClient.onStateChanged(handler);

Example agent request

The following code sample submits a getARN request and then logs the returned data to the
console.

const arn = await agentClient.getARN();

console.log(`Got the arn value: ${arn}`);

Integrate with agent data 23

Agent Workspace Developer guide

The above agent event and request are non-exhaustive. For a full list of available agent events and
requests, see the API Reference.

Integrate application with Amazon Connect Agent Workspace contact
data

To integrate your application with contact data from the Amazon Connect agent workspace,
instantiate the contact client as follows:

import { ContactClient } from "@amazon-connect/contact";

const contactClient = new ContactClient({ provider });

Note

You must first instantiate the AmazonConnectApp which initializes the default
AmazonConnectProvider and returns { provider } . This is the recommended option.

Alternatively, see the API reference to customize your client’s configuration.

Once the contact client is instantiated, you can use it to subscribe to events and make requests.

Contact scope

All ContactClient methods include an optional contactId parameter. If no value is provided, the
client automatically defaults to the contact context from which the app was launched. Note that
this requires the app to be opened within a contact's context.

• Applications configured with Per Contact scope

For Per Contact scoped applications, the contactId of the current contact is provided in the
AppCreateEvent which is supplied in the onCreate callback.

Integrate with contact data 24

Agent Workspace Developer guide

const provider = AmazonConnectApp.init({

 onCreate: async (event: AppCreateEvent) => {
 // Check if scope is defined and has contactId before accessing it
 if (event.context.scope && "contactId" in event.context.scope) {
 let contactId = event.context.scope.contactId;
 console.log("App launched for the contactId", contactId);
 }
 },

 onDestroy: async (event: AppDestroyEvent) => {
 console.log("App destroyed:", event);
 },

});

• Applications configured with Cross Contact scope

Cross Contact scoped applications can retrieve the contactId by subscribing to any of the
contact events like onConnected or onIncomming

const handler: ContactIncomingHandler = async (data: ContactIncoming) => {
 console.log("Contact incoming occurred! " + data);
 let contactId = data.contactId;
};

contactClient.onIncoming(handler);

Example contact event

The following code sample subscribes a callback to the connected event topic. Whenever a contact
is connected to the agent, the agent workspace will invoke your provided callback, passing in the
event data payload for your function to operate on. In this example, it logs the event data to the
console.

import {
 ContactClient,

Integrate with contact data 25

Agent Workspace Developer guide

 ContactConnected,
 ContactConnectedHandler
} from "@amazon-connect/contact";

// A simple callback that just console logs the contact connected event data
// returned by the workspace whenever the current contact is connected
const handler: ContactConnectedHandler = async (data: ContactConnected) => {
 console.log(data);
};

// Subscribe to the contact connected topic using the above handler
contactClient.onConnected(handler, contactId);

Example contact request

The following code sample submits a getQueue request and then logs the returned data to the
console.

import { ContactClient } from "@amazon-connect/contact";

const queue = await contact.getQueue(contactId);

console.log(`Got the queue: ${queue}`);

The above contact event and request are non-exhaustive. For a full list of available contact events
and requests, see the API Reference.

Application lifecycle events in Amazon Connect Agent Workspace

There are lifecycle states that an app can move between from when the app is initially opened
to when it is closed in the Amazon Connect agent workspace. This includes the initialization
handshake that the app goes through with the agent workspace after it has loaded to establish
the communication channel between the two. There is another handshake between the agent
workspace and the application when the app will be shutdown. An application can hook into
onCreate and onDestroy when calling AmazonConnectApp.init().

The following section describe the create and destroy events in the Amazon Connect agent
workspace.

Lifecycle events 26

Agent Workspace Developer guide

Topics

• The create event in Amazon Connect Agent Workspace

• The destroy event in Amazon Connect Agent Workspace

The create event in Amazon Connect Agent Workspace

The create event in the Amazon Connect agent workspace results in the onCreate handler
passed into the AmazonConnectApp.init() to be invoked. Init should be called in an
application once it has successfully loaded and is ready to start handling events from the
workspace. The create event provides the appInstanceId and the appConfig .

• appInstanceId: The ID for this instance of the app provided by the workspace.

• appConfig: The application configuration being used by the instance for this app.

• contactScope: Provides the current contactId if the app is opened during an active contact.

The destroy event in Amazon Connect Agent Workspace

The destroy event in the Amazon Connect agent workspace will trigger the onDestroy callback
configured during AmazonConnectApp.init(). The application should use this event to clean up
resources and persist data. The agent workspace will wait for the application to respond that it has
completed clean up for a period of time.

Apply a theme to your application in Amazon Connect Agent
Workspace

The theme package defines and applies the Amazon Connect theme when developing with
Cloudscape for the Amazon Connect agent workspace.

Install from NPM

Install the theme package and Cloudscape global-styles from NPM by installing @amazon-
connect/theme and @cloudscape-design/global-styles.

% npm install -P @amazon-connect/theme
% npm install -P @cloudscape-design/global-styles

Apply a theme 27

https://cloudscape.design

Agent Workspace Developer guide

Usage

The theme package must be imported once at the entry point of the application.

import { applyConnectTheme } from "@amazon-connect/theme";

await applyConnectTheme(provider);

Note

You must first instantiate the AmazonConnectApp which initializes the default
AmazonConnectProvider and returns { provider } .

From then on Cloudscape components and design tokens can be used directly from Cloudscape.

// src/app.ts

import * as React from "react";
import Button from "@cloudscape-design/components/button";

export default () => {
 return <Button variant="primary">Button</Button>;
}

Test your application for Amazon Connect Agent Workspace
locally

Once you have a minimal version of the app that you want to use in the Amazon Connect agent
workspace with the Amazon Connect SDK that you want to test in the agent workspace, run your
app locally and create an application in the AWS console with an AccessUrl using the localhost
endpoint, like http://localhost:3000 .

Test your application locally 28

Agent Workspace Developer guide

Creating an application and associating to your instance

Note

Detailed steps for creating and managing applications can be found in the admin guide
under Third-party applications (3P apps) in the agent workspace (Preview).

1. Open the Amazon Connect console (https://console.aws.amazon.com/connect/).

2. Navigate to Third-party applications in the left hand panel.

3. Choose Add application.

4. Fill out the necessary required information:

a. Name: The name of the application is what will show up to agents in the app launcher in
the agent workspace.

b. Namespace: Namespace must be unique per application and, in the future, allow for
applications to support custom events. Once an app is created, its namespace cannot be
updated.

c. AccessUrl: Set to the localhost url for your application.

d. Permissions: A list of allowed functions that grants your application the ability to
subscribe to agent/contact events that occur in the agent workspace or make requests for
agent/contact data.

5. Select the Amazon Connect instance you are testing with to associate the app with that
instance.

6. Choose Add application to finish creating your app.

7. Log into your test instance as an admin user.

8. Navigate to Security profiles and select the Admin security profile.

9. Under Agent applications find your application and make sure the View permission is
selected.

• Open the agent application /agent-app-v2

10. Open your app by choosing the app launcher and selecting your application. Your app will be
opened in a new application tab.

Creating an application and associating to your instance 29

https://docs.aws.amazon.com/connect/latest/adminguide/3P-apps.html
https://console.aws.amazon.com/connect/

Agent Workspace Developer guide

After following these steps you will have your app loaded from your local machine into the
workspace. This will only work when loading the agent workspace on your local machine that has
the app running on it. If you want to be able to load your app from any browser / computer, then
you must deploy your app somewhere that is internet accessible.

Assuming the logging was included from the code snippet above, you should see the following in
the console log of your browser’s dev tools when you open your app in the workspace.

App initialized: 00420d405e

When your app is closed, for example, by closing the tab in the agent workspace, you should see
the following series of logs entries.

> App destroyed: begin
> App being destroyed
> App destroyed
> App destroyed: end

If you see these, then your app correctly integrates with the Amazon Connect Amazon Connect SDK
and the The create event in Amazon Connect Agent Workspace / The destroy event in Amazon
Connect Agent Workspacedestroy lifecycle events.

Test a deployed version of your application for Amazon
Connect Agent Workspace

When ready, deploy the app that you created for the Amazon Connect agent workspace to a place
that is internet accessible. Update your application configuration (or configure a new application)
to point to the deployed version of your application. A simple way to deploy your app assuming it
only has static assets is to host them on S3 and (optionally) use CloudFront.

Handle application errors in Amazon Connect Agent Workspace

Applications can communicate errors back to the Amazon Connect agent workspace by either
calling sendError or sendFatalError on the AmazonConnectApp object. The agent

Test with a deployed version of your application 30

https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteHosting.html
https://aws.amazon.com/blogs/networking-and-content-delivery/amazon-s3-amazon-cloudfront-a-match-made-in-the-cloud/

Agent Workspace Developer guide

workspace will shutdown an app if it sends a fatal error meaning that the app has reached an
unrecoverable state and isn’t functional. When an app sends a fatal error the agent workspace
won’t attempt to go through the destroy lifecycle handshake and will immediately remove the
iframe from the DOM. Apps should do any clean up required prior to sending fatal errors.

Troubleshoot application setup in Amazon Connect Agent
Workspace

You can use the Amazon Connect SDK's AppConfig object to retrieve data about your
applications’s setup in the Amazon Connect agent workspace, including its permissions. This
will allow you to inspect its state and determine which permissions were assigned to your app.
Accessing its permissions property will return a list of strings, each representing a permissions
that grants access to a set of events and requests. Performing an action, whether subscribing to an
event or making a request, will fail if your app does not have the corresponding permission that
grants the action. You may have to ask your account admin to assign the permissions required for
your app to function. To review the full list of permissions assignable to apps, please see the admin
guide.

Events

If your app uses the Amazon Connect SDK to subscribe to an event that it does not have permission
for, the agent workspace will throw an error with a message formatted like below.

App attempted to subscribe to topic without permission - Topic {"key":
<event_name>,"namespace":"aws.connect.contact"}`

Requests

If your app uses the Amazon Connect SDK to make a request that it does not have permission for,
the agent workspace will throw an error with a message formatted like below.

App does not have permission for this request

Troubleshooting 31

https://github.com/amazon-connect/AmazonConnectSDK
https://github.com/amazon-connect/AmazonConnectSDK
https://github.com/amazon-connect/AmazonConnectSDK

Agent Workspace Developer guide

Building third-party services in the Amazon Connect
Agent Workspace

What is a third-party (3P) service?

third-party (3P) services are headless applications that customers can build and integrate into
Amazon Connect agent workspace. Services begin running when the agent workspace loads and
remain active throughout the agent workspace session. They can perform various background tasks
and enhance the agent experience, such as:

• Listening to contact events: Services can monitor events like contact connection, disconnection,
or entering After Contact Work (ACW) state.

• Launching applications: Services can automatically open specific applications based on certain
triggers or conditions.

• Implementing custom authentication flows: Services can ensure users complete necessary
authentication processes for third-party applications as soon as the agent workspace starts.

Why use a third-party service?

third-party services allow you to implement background processes and automate tasks throughout
the agent workspace session. They provide powerful capabilities for establishing contact event
listeners, enabling custom authentication flows, and managing other agent workspace-wide
functionality.

Common use cases for 3P services

These are common use cases for third-party services:

• Automatically launch specific applications when an agent enters After Contact Work (ACW).

• Ensure critical applications are always running by automatically launching them during agent
workspace startup.

• Control application visibility by automatically bringing specific apps into focus based on contact
events or other triggers.

What is a third-party (3P) service? 32

Agent Workspace Developer guide

• Implement custom contact handling logic to determine what happens when agents accept or
leave contacts.

• Manage authentication flows that need to run when the agent workspace loads.

Understanding when to use each option

When to use a third-party application

Choose a third-party application when you need:

• Features that can be opened and closed during the agent's workflow

• Functionality that needs to be visible and directly interactive for the agent

When to use a third-party service

Choose a third-party service when you need:

• To implement agent workspace-wide event listeners and handlers

• Automatic background processes that should run throughout the agent workspace session

• To automate tasks that don't require direct agent interaction

• To control the behavior and state of other applications in the agent workspace

Agent workspace startup process

Third-party services follow this process in the Amazon Connect agent workspace:

When to use each option 33

Agent Workspace Developer guide

Agent workspace startup process 34

Agent Workspace Developer guide

1. Agent workspace startup: When an agent logs in and the agent workspace starts loading, all
configured services will begin their startup process.

a. The configured InitializationTimeout will be in effect until the third-party service has officially
connected to the agent workspace.

2. Agent workspace loading: The agent workspace will not fully load and become accessible to the
agent until all services have successfully connected.

3. Service startup: Once connected, the logic within the onCreate handler will begin to run.

4. Service runtime: Once created, services continue running for the remainder of the agent
workspace session.

Important

Services directly impact the agent workspace startup process. If any service fails to start
within its configured timeout, an error will be displayed which will prevent agents from
accessing the agent workspace.

Creating a third-party service

Third-party service setup

Following the instructions here to properly integrate your service with the agent workspace. First,
install the app package:

% npm install --save @amazon-connect/app

Note

If you do not use NPM, refer to Using Amazon Connect SDK without pacakage manager

Then, add the following initialization code to your app:

import { AmazonConnectService } from "@amazon-connect/app";

Create a service 35

https://docs.aws.amazon.com/agentworkspace/latest/devguide/sdk-without-package-manager.html

Agent Workspace Developer guide

const { provider } = AmazonConnectService.init({
 onCreate: (event) => {
 const { instanceId } = event.context;
 console.log('Service creation complete: ', instanceId);
 }
});

When building a third-party service:

1. Use AmazonConnectService from @amazon-connect/app to initialize your service

2. Complete all initialization within the timeout period (30 seconds)

a. This is a separate timeout from the initializationTimeout configured for the service

b. initializationTimeout is the time the agent workspace will wait for a service to successfully
connect, before onCreate is triggered

3. Handle initialization failures to prevent agent workspace loading issues

Here is an example of proper initialization with timeout handling:

import { AmazonConnectService } from "@amazon-connect/app";

export function initService() {
 AmazonConnectService.init({
 onCreate: async (event) => {
 // This is where you set up your service's functionality
 // Add all of your service setup code here - examples include:
 // - Set up event listeners
 // - Establish connections
 // - Load configurations
 // - etc.
 let timeoutId: NodeJS.Timeout;

 const INIT_TIMEOUT = 25000; // 25 seconds
 const { context } = event;
 const { instanceId } = event.context;
 const provider = context.getProvider();

 const cleanup = () => {
 if (timeoutId) {
 clearTimeout(timeoutId);

Service setup 36

Agent Workspace Developer guide

 }
 // Add any other cleanup logic here
 // For example: close connections, remove event listeners, etc.
 };

 try {
 // Create a promise that will reject after the timeout
 const timeoutPromise = new Promise((_, reject) => {
 timeoutId = setTimeout(() => {
 reject(new Error('Service creation timed out'));
 }, INIT_TIMEOUT);
 });

 // Race between your code and the timeout
 await Promise.race([
 executeServiceCode(),
 timeoutPromise
]);

 console.log('Service creation complete: ', instanceId);

 } catch (error) {
 console.error('Service creation failed:', error);
 // Send fatal error to terminate the service
 provider.sendFatalError('Service creation failed');
 } finally {
 cleanup();
 }
 }
 });
}

async function executeServiceCode() {
 // Your service implementation goes here
 console.log('Executing service code');
}

initService();

AWS console setup

Create a new third-party service by creating a third-party application with the following settings
either via APIs or in the AWS Console:

AWS console setup 37

Agent Workspace Developer guide

• isService set to true

• An app that is configured as a service will be started when the agent workspace is loaded and
will run hidden for the lifetime of the agent workspace. An application that runs as a service
in the agent workspace must be integrated with the app Amazon Connect SDK package. If
the service fails to start before the InitializationTimeout, then an error will be sent to agent
workspace causing the agent workspace to fail

• Set a InitializationTimeout in milliseconds up to 10000 (10 seconds)

• The InitializationTimeout parameter controls the maximum time allowed for the initial
handshake/connection between the service and the agent workspace. This is required to be set
for applications configured with isService to true.

Service implementation patterns

third-party services can implement various patterns to extend the agent workspace functionality.
The following examples demonstrate some of our key Amazon Connect SDK capabilities:

Implementation patterns 38

Agent Workspace Developer guide

Launching an application on startup

import {
 AmazonConnectService,
 ServiceContext,
 ServiceCreatedEvent,
} from "@amazon-connect/app";
import { ContactClient } from "@amazon-connect/contact";

const provider = AmazonConnectService.init({
 onCreate: onCreateHandler,
});

const onCreateHandler = async (event: ServiceCreatedEvent) => {
 const context: ServiceContext = event.context;
 console.log(`${SDK_LOG_PREFIX} Service created: `, context.instanceId);
 await registerEventHandlers();

 const appName = 'TargetAppName';
 console.log(`Launching app in ACW`, { event: contactEvent, appName: appName });
 const appControllerClient = new AppControllerClient(context.getProvider());

 // Get list of all applications available to the agent
 const apps: AppConfig[] = await appControllerClient.getAppCatalog();

 // Find your application by name
 const appArn = apps.find(
 (app) => app.name === appName
)?.arn;

 if (!appArn) {
 throw new Error(`${appName} not found!`);
 }

 await appControllerClient.launchApp(appArn);
};

Contact event listening with application launching functionality

import {

Launching app on startup 39

Agent Workspace Developer guide

 AmazonConnectService,
 ServiceContext,
 ServiceCreatedEvent,
} from "@amazon-connect/app";
import { ContactClient } from "@amazon-connect/contact";

const provider = AmazonConnectService.init({
 onCreate: onCreateHandler,
});

const onCreateHandler = async (event: ServiceCreatedEvent) => {
 const context: ServiceContext = event.context;
 console.log(`${SDK_LOG_PREFIX} Service created: `, context.instanceId);
 await registerEventHandlers();
 return Promise.resolve();
};

async function registerEventHandlers() {
 const contactClient = new ContactClient(provider);

 // Listen for connected contacts
 contactClient.onConnected(async (contactEvent) => {
 console.log(`Contact connected!`, { event: contactEvent });
 });

 // Listen for contacts that have entered After Contact Work (ACW)
 contactClient.onStartingAcw(async (contactEvent) => {
 const appName = 'TargetAppName';
 console.log(`Launching app in ACW`, { event: contactEvent, appName: appName });
 const appControllerClient = new AppControllerClient(provider);

 // Get list of all applications available to the agent
 const apps: AppConfig[] = await appControllerClient.getAppCatalog();

 // Find your application by name
 const appArn = apps.find(
 (app) => app.name === appName
)?.arn;

 if (!appArn) {
 throw new Error(`${appName} not found!`);
 }

 await appControllerClient.launchApp(appArn);

Contact event listening 40

Agent Workspace Developer guide

 });

 // Listen for contacts that are cleared
 contactClient.onCleared(async (contactEvent) => {
 try {
 console.log(`Contact Cleared:`, { event: contactEvent, type:
 contactEvent.type });
 } catch (error) {
 console.error(`Error handling incoming contact:`, { event: contactEvent, error:
 error });
 }
 });

 // This is emitted when the service unsubscribes from the cleared event
 contactClient.offCleared(async (contactEvent) => {
 console.log(`Contact no longer in the incoming state`, { event: contactEvent });
 });
}

Authentication popup functionality

import { AmazonConnectService } from "@amazon-connect/app";
import { AppControllerClient } from "@amazon-connect/app-controller";
import { AppConfig } from "@amazon-connect/workspace-types";

interface IdpMessage {
 type: 'IDP_MESSAGE';
 payload: {
 message: string;
 timestamp: string;
 };
}

const SDK_LOG_PREFIX = '[TestService]';
const APP_NAME = 'TestApp'

const IDP_POPUP_CONFIG = {
 width: 600,
 height: 400,
 title: 'IDP Simulation'
};

Authentication popup 41

Agent Workspace Developer guide

let provider;

// Start the authentication service
export function initIDPService() {
 provider = AmazonConnectService.init({
 onCreate: onCreateHandler
 });
}

const onCreateHandler = async () => {
 console.log(`${SDK_LOG_PREFIX} Service running...`);

 try {
 // Start the authentication flow
 runIdpFlow();
 } catch(e) {
 // This reports an error in the auth flow but allows the service
 // to continue running.
 console.error(`${SDK_LOG_PREFIX} IDP flow failed:`, error);
 }

 console.log(`${SDK_LOG_PREFIX} Service creation complete`);
};

/**
 * Creates the IDP authentication popup
 * Returns a promise that resolves when authentication is complete
 * or rejects if authentication fails/times out
 */
export const initIdpSimulator = (): Promise<void> => {
 return new Promise((resolve, reject) => {

 // Clean up event listeners and timers
 const cleanup = () => {
 window.removeEventListener('message', handleIdpMessage);
 };

 // Handle messages received from the IDP popup
 const handleIdpMessage = async (event: MessageEvent<IdpMessage>) => {
 if (event.data.type === 'IDP_MESSAGE') {
 // Implementation for a successful authentication
 console.log(`${SDK_LOG_PREFIX} Message received from IDP:`,
 event.data.payload);

Authentication popup 42

Agent Workspace Developer guide

 try {
 // Launch the application after successful authentication
 await launchApp(APP_NAME);
 console.log(`${SDK_LOG_PREFIX} Successfully launched app`);
 resolve();
 } catch (error) {
 console.error(`${SDK_LOG_PREFIX} Failed to launch app:`, error);
 reject(error);
 } finally {
 cleanup();
 }
 }
 };

 // Open the authentication popup window
 const openIdpPopup = () => {
 // https://developer.mozilla.org/en-US/docs/Web/API/Window/open
 const popup = window.open('/popup.html', // URL to your authentication page
 IDP_POPUP_CONFIG.title,
 `width=${IDP_POPUP_CONFIG.width},height=${IDP_POPUP_CONFIG.height}`
);

 if (!popup) {
 cleanup();
 reject(new Error('Failed to open IDP popup'));
 return;
 }
 };

 // Listen for messages from the popup
 window.addEventListener('message', handleIdpMessage);

 // Open the popup
 openIdpPopup();
 });
};

/**
 * Manages the complete authentication flow
 * Handles errors and logging
 */
export const runIdpFlow = async () => {
 try {

Authentication popup 43

Agent Workspace Developer guide

 console.log(`${SDK_LOG_PREFIX} Starting IDP flow...`);
 await initIdpSimulator();
 console.log(`${SDK_LOG_PREFIX} IDP flow completed successfully`);
 } catch (error) {
 console.error(`${SDK_LOG_PREFIX} IDP flow failed!`, error);
 throw error;
 }
};

/**
 * Launches the specified application using the AppController
 * Verifies the app exists in the catalog before attempting to launch
 */
export async function launchApp(targetAppName: string) {
 const appControllerClient = new AppControllerClient(provider);

 // Get list of all applications available to the agent
 const apps: AppConfig[] = await appControllerClient.getAppCatalog();
 console.log(`${SDK_LOG_PREFIX} App Catalog: `, apps);

 // Find your application by name
 const testAppArn = apps.find(
 (app) => app.name === targetAppName
)?.arn;

 if (!testAppArn) {
 throw new Error(targetAppName + " not found!");
 }

 await appControllerClient.launchApp(testAppArn);
}

This is the HTML template for the authentication popup:

<!DOCTYPE html>
<html>
 <head>
 <title>IDP Simulation</title>
 <style>
 body {
 font-family: Arial, sans-serif;
 padding: 20px;

Authentication popup 44

Agent Workspace Developer guide

 background: #f5f5f5;
 }
 .container {
 background: white;
 padding: 20px;
 border-radius: 8px;
 box-shadow: 0 2px 10px rgba(0,0,0,0.1);
 }
 button {
 padding: 10px 20px;
 margin: 5px;
 border: none;
 border-radius: 4px;
 cursor: pointer;
 background: #007bff;
 color: white;
 }
 button:hover {
 background: #0056b3;
 }
 </style>
 </head>
 <body>
 <div class="container">
 <h2>IDP Simulation</h2>
 <p>Click the button below to simulate IDP authentication</p>
 <button id="authButton">Authenticate</button>
 </div>
 <script>
 // When authentication button is clicked, send success message
 // back to parent window
 document.getElementById('authButton').onclick = function() {
 window.opener.postMessage({
 type: 'IDP_MESSAGE',
 payload: {
 message: 'User authenticated via IDP',
 timestamp: new Date().toISOString()
 }
 }, '*');
 window.close();
 };
 </script>
 </body>

Authentication popup 45

Agent Workspace Developer guide

</html>

Best practices and recommendations

Service creation management

• Keep onCreate operations lightweight to ensure a reasonable loading time for Agents

• Use Promise timeouts for any external API calls during initialization to ensure fail-fast behavior

• Handle service errors gracefully

• Any uncaught error encountered during service initialization will be considered as a service
failure, which will prevent agents from accessing the workspace

Authentication

• Prompt for Authentication during agent workspace startup with a third-party service

• Begin authentication process without blocking service execution

• Centralize authentication prompting in your service to avoid redundant implementations in
your third-party applications

• Implement visual authentication interfaces (e.g., pop-ups) for agent interaction

• Set appropriate authentication timeouts to prevent infinite retry loops

• Ensure applications share the same origin as the third-party service

Service coordination

• Consolidate interdependent behaviors within a single service

• For example, any applications launched on the startup of the agent workspace should be done
by one service to ensure a consistent launch order for agents

Best practices 46

Agent Workspace Developer guide

Integrating AWS-managed applications with Amazon
Connect Streams

This guide demonstrates how to integrate AWS-managed applications with your existing
applications built using Amazon Connect Streams. This integration extends your custom agent
application with AWS-managed applications from the Amazon Connect agent workspace. By
embedding AWS-managed applications into your custom agent application, you can leverage their
features without additional development effort, while maintaining control over application access
through Security Profiles.

Amazon Connect Streams

Amazon Connect Streams is a JavaScript library that integrates the Contact Control Panel (CCP)
and other agent functionality into existing web applications. This library enables you to embed the
CCP user interface as well as handle agent and contact state events so that you can build a custom
agent application. See the Amazon Connect Streams documentation.

AWS-managed applications

Amazon Connect provides AWS-managed applications, such as Worklist that are accessible in the
Amazon Connect agent workspace.

Amazon Connect SDK

The Amazon Connect SDK is a collection of packages that helps you build applications applications
that interact with and extend Amazon Connect’s native functionality. See the Amazon Connect SDK
repository on GitHub. .

AppManager

AppManager provides APIs to discover, launch, and manage AWS-managed applications. It's
available within the Amazon Connect SDK @amazon-connect/app-manager package.

Amazon Connect Streams 47

https://github.com/amazon-connect/amazon-connect-streams/blob/master/Documentation.md
https://docs.aws.amazon.com/connect/latest/adminguide/worklist-app.html
https://docs.aws.amazon.com/connect/latest/adminguide/agent-workspace.html
https://github.com/amazon-connect/AmazonConnectSDK
https://github.com/amazon-connect/AmazonConnectSDK

Agent Workspace Developer guide

Integration architecture

The following diagram illustrates the components and integration flow for AWS-managed
applications using Streams and AppManager.

Application launch follows this sequence:

1. Your web application initializes the CCP with the AppManager plugin.

2. The launchApp method in AppManager is invoked with the application name or Amazon
Resource Name (ARN).

3. AppManager creates an AppHost object to manage the application instance.

4. An iframe element is provided to the AppHost.

5. AppManager configures the iframe with appropriate URL and security attributes.

6. The application loads and establishes secure communication.

Implementation guide

This section describes the steps to integrate AWS-managed applications using Streams and
AppManager. The Worklist AWS-managed application is used for demonstration purposes.

Integration architecture 48

https://docs.aws.amazon.com/connect/latest/adminguide/worklist-app.html

Agent Workspace Developer guide

Prerequisites

The following prerequisites are required:

• A working web application integrated with Amazon Connect Streams version 2.20 or above

• Security Profile permissions configured for the Worklist AWS-managed application

Step 1: Install required packages

Install the Amazon Connect AppManager package from npm into your web application:

npm install @amazon-connect/app-manager

Note

If you do not use NPM, refer to Using Amazon Connect SDK without pacakage manager

Step 2: Add the AppManager plugin in CCP initialization

Update the existing CCP initialization code to include the AppManager plugin.

Before:

import "@amzn/amazon-connect-streams";

const containerElement = document.getElementById("ccp-container");
connect.core.initCCP(containerElement, {
 ccpUrl: "https://<connect-instance-alias>.my.connect.aws/ccp-v2/",
 // Other initialization parameters
});

After:

import "@amzn/amazon-connect-streams";
import "@amazon-connect/app-manager";

Prerequisites 49

https://github.com/amazon-connect/amazon-connect-streams
https://docs.aws.amazon.com/connect/latest/adminguide/worklist-app.html
https://docs.aws.amazon.com/agentworkspace/latest/devguide/sdk-without-package-manager.html

Agent Workspace Developer guide

import { AppManagerPlugin } from "@amazon-connect/app-manager";

const containerElement = document.getElementById("ccp-container");
connect.core.initCCP(containerElement, {
 ccpUrl: "https://<connect-instance-alias>.my.connect.aws/ccp-v2/",
 // Other initialization parameters

 plugins: [AppManagerPlugin], // Enables AppManager
});

// Retrieve the provider for accessing AppManager
const provider = connect.core.getSDKClientConfig().provider;

Note

• The AppManager plugin is backward compatible and does not affect existing CCP
functionality.

• Replace <connect-instance-alias> with your Amazon Connect instance alias.

Step 3: Embed a page for AWS-managed application

Add an iframe element to the desired location for displaying the Worklist AWS-managed
application:

<iframe id="aws-app-iframe" height="1080px" width="1920px"/>

Important

AppManager configures the iframe source, do not manually set the src attribute in iframe.

Step 4: Launch AWS-managed application

Launch the Worklist AWS-managed application using the AppManager launchApp API:

Step 3: Embed page 50

Agent Workspace Developer guide

// Launch the Worklist AWS-managed application
const appHost = await provider.appManager.launchApp("Worklist");

// Retrieve the iframe element for displaying the Worklist AWS-managed application
const awsAppIframe = document.getElementById("aws-app-iframe");

// AppManager uses the iframe to render the AWS-managed application
appHost.setIFrame(awsAppIframe);

Step 5: Build and deploy

After you build and deploy your web application, verify that the Worklist application is loaded in
the iframe and available for usage.

Retrieve available applications

The getAppCatalog method retrieves applications available to the authenticated user.
AppManager filters the list based on the user's Security Profile permissions. Use this method to
verify if user has permission for the AWS-managed application prior to launching.

import { AppConfig } from "@amazon-connect/workspace-types";

// Retrieve applications filtered by Security Profile permissions
const applications: AppConfig[] = await appManager.getAppCatalog();

Application configuration properties:

Each AppConfig object contains the following properties:

• arn - Amazon Resource Name (ARN) that uniquely identifies the application

• name - Display name for the application

Note

This is not required if you know the name of the AWS-managed application that you want
to launch and the user is guaranteed to have access.

Step 5: Build and deploy 51

Agent Workspace Developer guide

Application lifecycle management

Application lifecycle management is essential when adding and removing applications throughout
a page's life. If you launch an application once at startup and keep it open, lifecycle management is
optional. However, if you launch and close apps as part of the user's workflow, then these lifecycle
states help you create a better user experience.

Managing application lifecycle

Application creation begins after an iframe is set in the AppHost. You can subscribe to AppHost's
onCreated event to control when the iframe appears to the user, though showing it during
application creation has no functional impact.

AppManager handles application state transitions throughout the lifecycle. To close an application,
invoke the destroy method on the AppHost object. The AppHost then emits lifecycle events
(onDestroying , onDestroyed). Your web application handles these events to update the user
interface accordingly.

The following table describes the application lifecycle states.

State Description

Created The application iframe is configured and secure communication
is established. The application is ready for use. This state occurs
immediately following successful launchApp() invocation.

Destroying Application cleanup is in progress. The application is no longer usable.
This state occurs after you invoke destroy() method.

Destroyed The application is fully destroyed. This state occurs up to 5 seconds
following the destroy() method invocation. The iframe can be
safely removed from the DOM.

Important

When destroying an application, do not remove it from the Document Object Model (DOM)
until the destruction process completes. You can hide it from users, but premature removal
from the DOM might interrupt critical cleanup processes such as flushing log buffers or

Application lifecycle management 52

Agent Workspace Developer guide

saving state. The onDestroyed event indicates when it's safe to completely remove the
application.

Application visibility states

When managing multiple applications, based on how you arrange them, some applications may
not be visible at any given time. When an application is temporarily hidden, it's recommended to
notify the application by invoking stop() on AppHost and then invoking start() when making
it visible again.

State Description

Started The application is visible and actively synchronizing data.

Stopped The application is not visible. Background operations are paused.

Handle lifecycle events

Implement application lifecycle event handlers to manage iframe visibility and cleanup operations:

// Handle destroying event
appHost.onDestroying((event) => {
 console.log(`Application ${appHost.config.name} is being destroyed`);

 // Hide the iframe as the application is no longer usable
 appIframe.style.display = "none";

 return Promise.resolve();
});

// Handle destroyed event
appHost.onDestroyed((event) => {
 console.log(`Application ${appHost.config.name} has been destroyed`);

 // Remove the iframe from the DOM
 appIframe.remove();

 return Promise.resolve();

Handle lifecycle events 53

Agent Workspace Developer guide

});

Advanced configuration

Prevent duplicate application instances

When you launch an application multiple times, AppManager creates multiple application instances
by default. You can use launch keys when starting applications to prevent multiple instances of the
same application.

const launchOptions: AppLaunchOptions = {
 launchKey: 'Worklist-singleton'
};

// Returns existing instance if launch key matches a running application
const appHost = await appManager.launchApp("Worklist", launchOptions);

The launch key is a caller-generated value that prevents duplicate instances. When an application
with a matching launch key is already running, AppManager returns the existing instance rather
than creating a new instance and triggers onAppHostFocused event. This event could be
leveraged to bring the application to focus when it's being launched again.

Dynamic application launch and management

AppManager provides onAppHostAdded and onAppHostRemoved notifications to indicate when
a new application is launched or destroyed. These events could be leveraged to dynamically create
and destroy iframes. For an example implementation, see the section called “Dynamic application
management” section below.

Attach metadata to appHost

If you are managing iframes dynamically and want the storage of any application specific UI
state or routing information in the AppHost, you can attach a custom JSON metadata at the
time of application launch. This metadata is accessible in all event callbacks for application state
management.

Advanced configuration 54

Agent Workspace Developer guide

const launchOptions: AppLaunchOptions = {
 appManagerData: {
 // Custom JSON data
 }
};

const appHost = await appManager.launchApp("Worklist", launchOptions);

// Access the metadata
console.log("AppManagerData attached to AppHost", appHost.appManagerData);

Support Global Resiliency

Amazon Connect Global Resiliency features provide automatic failover between AWS Regions.
When your Amazon Connect instance is configured for Global Resiliency, you should implement the
following handlers to ensure agent workspace responsiveness to failover events:

// Handle pending failover events
connect.globalResiliency?.onFailoverPending(() => {
 // Destroy all applications before failover
 appManager.clearAll();
});

// Handle completed failover events
connect.globalResiliency?.onFailoverCompleted(() => {
 // Re-launch necessary applications following failover
 // Implementation depends on your state management approach
});

See Set up Amazon Connect Global Resiliency in the Amazon Connect Administrator Guide.

Example implementation of dynamic application management
with React

The following example demonstrates how to dynamically manage AWS-managed applications
in a React application. This implementation uses onAppHostAdded and onAppHostRemoved
events to automatically update the user interface when applications are launched or destroyed.
This example demonstrates how to position applications one after the other vertically on a web
page.

Support Global Resiliency 55

https://docs.aws.amazon.com/connect/latest/adminguide/setup-connect-global-resiliency.html

Agent Workspace Developer guide

Iframe container component

const IFrameAppContainer: React.FC<{ appHost: AppHost }> = ({ appHost }) => {
 const iframeRef = useRef<HTMLIFrameElement>(null);

 useEffect(() => {
 const iframe = iframeRef.current;
 if (iframe) {
 (appHost as IFrameAppHost).setIFrame(iframe);
 }
 }, [appHost]);

 const handleClose = (): void => {
 void appHost.destroy();
 };

 return (
 <div className="app-container">
 <div className="app-header">
 <h2>{appHost.config.name}</h2>
 <button onClick={handleClose}> Close </button>
 </div>
 <iframe ref={iframeRef} className="app-iframe" title={appHost.config.name} />
 </div>
);
};

Application container component

const ApplicationContainer: React.FC<{provider: AmazonConnectProvider}>
 = ({provider}) => {

 const [activeApps, setActiveApps] = useState<Set<AppHost>>(new Set());

 useEffect(() => {
 const appManager = provider.appManager;

 // Handle new applications being added
 const handleAppHostAdded = ({appHost}: AppHostAdded): Promise<void> => {
 setActiveApps((prevApps) => new Set(prevApps).add(appHost));

Iframe container component 56

Agent Workspace Developer guide

 return Promise.resolve();
 };

 // Handle applications being removed
 const handleAppHostRemoved = ({appHost}: AppHostRemoved): Promise<void> => {
 setActiveApps((prevApps) => {
 const newApps = new Set(prevApps);
 newApps.delete(appHost);
 return newApps;
 });

 return Promise.resolve();
 };

 // Register event handlers
 appManager.onAppHostAdded(handleAppHostAdded);
 appManager.onAppHostRemoved(handleAppHostRemoved);

 return () => {
 // Un-register event handlers
 appManager.offAppHostAdded(handleAppHostAdded);
 appManager.offAppHostRemoved(handleAppHostRemoved);
 }

 }, [provider.appManager]);

 return (
 <div className="application-container">
 {Array.from(activeApps).map((appHost) => (
 <IFrameAppContainer key={appHost.instanceId} appHost={appHost} />
))}
 </div>
);
};

Troubleshooting

This section describes common issues and resolutions when integrating AWS-managed
applications.

Troubleshooting 57

Agent Workspace Developer guide

Application launch failures

Symptoms

Applications fail to launch, display error messages, or the iframe remains blank.

Possible causes and solutions

• CCP not initialized:

• Ensure the CCP is fully initialized before launching applications.

• Missing AppManager plugin:

• Verify that the AppManager plugin is properly configured during CCP initialization.

• connect.core.initCCP(container, {
 ccpUrl: instanceUrl,
 plugins: [AppManagerPlugin], // Required
});

• Security Profile permissions:

• Confirm the user has necessary Security Profile permissions to access the applications.

• Cross-origin issues:

• Verify that your domain is properly allowlisted in Amazon Connect.

• Check the browser console for Cross-Origin Resource Sharing (CORS) errors.

• Ensure third-party cookies are not blocked in the browser settings.

• Iframe configuration:

• Verify that iframes have the necessary permissions in allow and sandbox attributes.

• Allow AppManager to configure the iframe. Do not manually set the src attribute.

• Content Security Policy (CSP):

• Ensure CSP allows communication with Amazon Connect domains either via response headers
or meta tags in the HTML head.

Application not appearing in catalog

Symptoms

The getAppCatalog() method returns an empty array or does not include expected applications.

Application launch failures 58

https://docs.aws.amazon.com/connect/latest/adminguide/app-integration.html

Agent Workspace Developer guide

Possible causes and solutions

• Applications not enabled: Verify that the required applications are enabled in the Amazon
Connect instance.

• Security Profile permissions: Confirm that the user has necessary Security Profile permissions to
access the applications.

Not appearing in catalog 59

Agent Workspace Developer guide

Amazon Connect Agent Workspace API reference

This Amazon Connect agent workspace API reference enumerates the agent events, agent requests,
contact events, and contact requests that are supported by the Amazon Connect SDK.

Contents

• Amazon Connect Agent Workspace Activity API

• Amazon Connect Agent Workspace Agent API

• Amazon Connect Agent Workspace AppController API

• Amazon Connect Agent Workspace Contact API

• Amazon Connect Agent Workspace Email API

• Amazon Connect Agent Workspace File API

• Amazon Connect Agent Workspace Message Template API

• Amazon Connect Agent Workspace Quick Responses API

• Amazon Connect Agent Workspace User API

• Amazon Connect Agent Workspace Voice API

Amazon Connect Agent Workspace Activity API

The Amazon Connect SDK provides a SessionExpirationWarningClient which serves as an
interface that your app in the Amazon Connect agent workspace can use to subscribe to events
related to session expiration due to inactivity and to signal the Amazon Connect that the agent is
active.

The SessionExpirationWarningClient accepts an optional constructor argument,
ConnectClientConfig which itself is defined as:

export type ConnectClientConfig = {
 context?: ModuleContext;
 provider?: AmazonConnectProvider;
};

If you do not provide a value for this config, then the client will default to using the
AmazonConnectProvider set in the global provider scope. You can also manually configure this
using setGlobalProvider.

Activity 60

https://github.com/amazon-connect/AmazonConnectSDK

Agent Workspace Developer guide

You can instantiate the client as follows:

import { SessionExpirationWarningClient } from "@amazon-connect/activity";

const sessionExpirationWarningClient = new SessionExpirationWarningClient();

Note

You must first instantiate the AmazonConnectApp which initializes the default
AmazonConnectProvider and returns { provider } . This is the recommended option.

Alternatively, you can provide a constructor argument:

import { SessionExpirationWarningClient } from "@amazon-connect/activity";

const sessionExpirationWarningClient = new SessionExpirationWarningClient({
 context: sampleContext,
 provider: sampleProvider
});

The following sections describe the API calls for working with the SessionExpirationWarning API.

Contents

• Unsubscribe a callback function from the expiration warning event

• Unsubscribe a callback function from the expiration warning cleared event

• Unsubscribe a callback function from the session extension error event

• Subscribe to session expiration warning event in Amazon Connect Agent Workspace

• Subscribe to expiration warning cleared event in Amazon Connect Agent Workspace

• Subscribe to session extension errors in Amazon Connect Agent Workspace

• Inform Amazon Connect that the agent is active

Unsubscribe a callback function from the expiration warning event

Unsubscribes a callback function from the expiration warning event that is triggered when the
agent is nearing expiration due to inactivity.

onExpirationWarning() 61

Agent Workspace Developer guide

Signature

offExpirationWarning(handler: ExpirationWarningHandler);

Usage

sessionExpirationWarningClient.offExpirationWarning(handler);

Unsubscribe a callback function from the expiration warning cleared
event

Unsubscribes a callback function from the expiration warning cleared event that is triggered when
the expiration warning is dismissed due to the agent choosing to stay logged in.

Signature

offExpirationWarningCleared(handler: ExpirationWarningClearedHandler);

Usage

sessionExpirationWarningClient.offExpirationWarningCleared(handler);

Unsubscribe a callback function from the session extension error event

Unsubscribes a callback function from the session extension error event that is triggered when the
agent's session fails to update.

Signature

offSessionExtensionError(handler: SessionExtensionErrorHandler);

Usage

sessionExpirationWarningClient.offSessionExtensionError(handler);

offExpirationWarningCleared() 62

Agent Workspace Developer guide

Subscribe to session expiration warning event in Amazon Connect
Agent Workspace

Subscribes a callback function to be invoked whenever the agent's session is about to expire due to
inactivity.

Signature

onExpirationWarning(handler: ExpirationWarningHandler);

Usage

const handler: ExpirationWarningHandler = (data: SessionExpirationInformation) => {
 console.log("Agent's session expiring at:", data);
}

sessionExpirationWarningClient.onExpirationWarning(handler);

// SessionExpirationInformation Structure
{
 expiration: number;
}

Subscribe to expiration warning cleared event in Amazon Connect
Agent Workspace

Subscribes a callback function to be invoked when the agent has acknowledged the expiration
warning and chooses to update their session.

Signature

onExpirationWarningCleared(handler: ExpirationWarningClearedHandler);

Usage

const handler: ExpirationWarningClearedHandler = () => {
 console.log("My session was extended after I was warned!");
}

sessionExpirationWarningClient.onExpirationWarningCleared(handler);

onExpirationWarning() 63

Agent Workspace Developer guide

Subscribe to session extension errors in Amazon Connect Agent
Workspace

Subscribes a callback function to be invoked when an attempt to extend the agent's session fails.

Signature

onSessionExtensionError(handler: SessionExtensionErrorHandler);

Usage

const handler: SessionExtensionErrorHandler = (details: SessionExtensionErrorData) => {
 console.log("Failed to extend my session!", details);
}

sessionExpirationWarningClient.onSessionExtensionError(handler);

// SessionExtensionErrorData Structure
{
 isWarningActive: boolean;
 errorDetails: Record<string, unknown>;
}

Inform Amazon Connect that the agent is active

Sends a signal to the Amazon Connect indicating that the agent is active and should not be logged
out. It takes a provider as a parameter.

Signature

sendActivity(provider): void

Usage

import { sendActivity } from '@amazon-connect/activity';

const handleActivity = () => {
 sendActivity(sampleProvider);
};

onSessionExtensionError() 64

Agent Workspace Developer guide

window.addEventListener("click", handleActivity);

Amazon Connect Agent Workspace Agent API

The Amazon Connect SDK provides an AgentClient which serves as an interface that your app in
the Amazon Connect agent workspace can use to subscribe to agent events and make agent data
requests.

The AgentClient accepts an optional constructor argument, ConnectClientConfig which
itself is defined as:

export type ConnectClientConfig = {
 context?: ModuleContext;
 provider?: AmazonConnectProvider;
};

If you do not provide a value for this config, then the client will default to using the
AmazonConnectProvider set in the global provider scope. You can also manually configure this
using setGlobalProvider.

You can instantiate the agent client as follows:

import { AgentClient } from "@amazon-connect/contact";

const agentClient = new AgentClient({ provider });

Note

You must first instantiate the AmazonConnectApp which initializes the default
AmazonConnectProvider and returns { provider } . This is the recommended option.

Alternatively, providing a constructor argument:

import { AgentClient } from "@amazon-connect/contact";

Agent 65

Agent Workspace Developer guide

const agentClient = new AgentClient({
 context: sampleContext,
 provider: sampleProvider
});

The following sections describe API calls for working with the Agent API.

Contents

• Get the ARN of the agent in Amazon Connect Agent Workspace

• Get the limit of contacts for the agent in Amazon Connect Agent Workspace

• Get the extension of the agent in Amazon Connect Agent Workspace

• Get the name of the agent in Amazon Connect Agent Workspace

• Get the routing profile of the agent in Amazon Connect Agent Workspace

• Get the current state of the agent in Amazon Connect Agent Workspace

• Get all the availability states configured for the current agent in Amazon Connect Agent
Workspace

• Get the list of Quick Connect endpoints associated with a given queue in Amazon Connect Agent
Workspace

• Unsubscribe from agent enabled channel list changes in Amazon Connect Agent Workspace

• Unsubscribe from agent routing profile changes in Amazon Connect Agent Workspace

• Subscribe to agent enabled channel list changes in Amazon Connect Agent Workspace

• Subscribe to agent routing profile changes in Amazon Connect Agent Workspace

• Set the agent state with the given agent state ARN in Amazon Connect Agent Workspace

• Set the agent state with the given agent state name in Amazon Connect Agent Workspace

• Sets the agent state to Offline in Amazon Connect Agent Workspace

• Subscribe a callback function when an Amazon Connect Agent Workspace agent state changes

• Unsubscribe a callback function when an Amazon Connect Agent Workspace agent state changes

Get the ARN of the agent in Amazon Connect Agent Workspace

Returns the Amazon Resource Name(ARN) of the user that's currently logged in to the Amazon
Connect agent workspace.

getARN() 66

Agent Workspace Developer guide

async getARN(): Promise<string>

Permissions required:

User.Details.View

Get the limit of contacts for the agent in Amazon Connect Agent
Workspace

Returns a map of ChannelType-to-number indicating how many concurrent contacts can an
Amazon Connect agent workspace agent have on a given channel. 0 represents a disabled channel.

async getChannelConcurrency(): Promise<AgentChannelConcurrencyMap>

Permissions required:

User.Configuration.View

Get the extension of the agent in Amazon Connect Agent Workspace

Returns phone number of the agent currently logged in to the Amazon Connect agent workspace.
This is the phone number that is dialed by the Amazon Connect to connect calls to the agent for
incoming and outgoing calls if soft phone is not enabled.

async getExtension(): Promise<string | null>

Permissions required:

getChannelConcurrency() 67

Agent Workspace Developer guide

User.Configuration.View

Get the name of the agent in Amazon Connect Agent Workspace

Returns the name of the user that's currently logged in to the Amazon Connect agent workspace.

async getName(): Promise<string>

Permissions required:

User.Details.View

Get the routing profile of the agent in Amazon Connect Agent
Workspace

Returns the routing profile of the agent currently logged in to the Amazon Connect agent
workspace. The routing profile contains the following fields:

• channelConcurrencyMap: See agent.Get the limit of contacts for the agent in Amazon
Connect Agent Workspace for more info.

• defaultOutboundQueue: The default queue which should be associated with outbound
contacts. See queues for details on properties.

• name: The name of the routing profile.

• queues: The queues contained in the routing profile. Each queue object has the following
properties:

• name: The name of the queue.

• queueARN: The ARN of the queue.

• queueId: Alias for queueARN.

• routingProfileARN: The routing profile ARN.

• routingProfileId: Alias for routingProfileARN.

getName() 68

Agent Workspace Developer guide

async getRoutingProfile(): Promise<AgentRoutingProfile>

Permissions required:

User.Configuration.View

Get the current state of the agent in Amazon Connect Agent Workspace

Returns the Amazon Connect agent workspace agent's current AgentState object indicating their
availability state type. This object contains the following fields:

• agentStateARN: The agent's current state ARN.

• name: The name of the agent's current availability state.

• startTimestamp: A Date object that indicates when the state was set.

• type: The agent's current availability state type, as per the AgentStateType enumeration.
The different values are as follows:

• routable

• not_routable

• after_call_work

• system

• error

• offline

async getState(): Promise<AgentState>

Permissions required:

User.Status.View

getState() 69

Agent Workspace Developer guide

Get all the availability states configured for the current agent in
Amazon Connect Agent Workspace

Get all the availability states configured for the current agent.

Signature

listAvailabilityStates(): Promise<AgentState[]>

Usage

const availabilityStates: AgentState[] = await agentClient.listAvailabilityStates();

Output - AgentState

Parameter Type Description

agentStateARN string Amazon Reference Number of
agent state

type string It could be "routable" |
"not_routable" | "after_ca
ll_work" | "system" | "error" |
"offline"

name string Name of the agent state like
Available or Offline

startTimestamp Date A Date object that indicates
when the state was set.

Permissions required:

listAvailabilityStates() 70

Agent Workspace Developer guide

User.Configuration.View

Get the list of Quick Connect endpoints associated with a given queue
in Amazon Connect Agent Workspace

Get the list of Quick Connect endpoints associated with the given queue(s). Optionally you can pass
in a parameter to override the default max-results value of 500.

Signature

listQuickConnects(
 queueARNs: QueueARN | QueueARN[],
 options?: ListQuickConnectsOptions,
): Promise<ListQuickConnectsResult>

Usage

const routingProfile: AgentRoutingProfile = await agentClient.getRoutingProfile();
const quickConnects: ListQuickConnectsResult = await
 agentClient.listQuickConnects(routingProfile.queues[0].queueARN);

Input

Parameter Type Description

queueARNs Required string | string[] One or more Queue ARNs for
which the Queue Connects
need to be retrieved

options.maxResults number The maximum number of
results to return per page.
The default value is 500

options.nextToken string The token for the next set
of results. Use the value

listQuickConnects() 71

Agent Workspace Developer guide

Parameter Type Description

returned in the previous
response in the next request
to retrieve the next set of
results.

Output - ListQuickConnectsResult

Parameter Type Description

quickConnects QuickConnect[] Its either AgentQuickConnect
or QueueQuickConnect or
PhoneNumberQuickConnect
which contains endpointA
RN and name. Additionally
PhoneNumberQuickConnect
contains phoneNumber

nextToken string If there are additional results,
this is the token for the next
set of results.

Permissions required:

User.Configuration.View

Unsubscribe from agent enabled channel list changes in Amazon
Connect Agent Workspace

Unsubscribes from EnabledChannelListChanged event.

Signature

offEnabledChannelListChanged() 72

Agent Workspace Developer guide

offEnabledChannelListChanged(handler: EnabledChannelListChangedHandler): void

Unsubscribe from agent routing profile changes in Amazon Connect
Agent Workspace

Unsubscribes from RoutingProfileChanged event.

Signature

offRoutingProfileChanged(handler: RoutingProfileChangedHandler): void

Subscribe to agent enabled channel list changes in Amazon Connect
Agent Workspace

Creates a subscription for EnabledChannelListChanged event. This gets triggered when an Agent's
enabled channels get updated.

Signature

const handler: EnabledChannelListChangedHandler = async (data:
 EnabledChannelListChanged) => {
 console.log("Agent channel list change occurred! " + data);
};

agentClient.onEnabledChannelListChanged(handler);

// EnabledChannelListChanged Structure
{
 enabledChannels: AgentRoutingProfileChannelTypes[];
 previous?: {
 enabledChannels: AgentRoutingProfileChannelTypes[];
 };
}

Permissions required:

*

offRoutingProfileChanged() 73

Agent Workspace Developer guide

Subscribe to agent routing profile changes in Amazon Connect Agent
Workspace

Creates a subscription for RoutingProfileChanged event. This gets triggered when an Agent's
routing profile gets updated.

Signature

const handler: RoutingProfileChangedHandler = async (data: AgentRoutingProfileChanged)
 => {
 console.log("Agent routing profile change occurred! " + data);
};

agentClient.onRoutingProfileChanged(handler);

// AgentRoutingProfileChanged Structure
{
 routingProfile: AgentRoutingProfile;
 previous?: {
 routingProfile: AgentRoutingProfile;
 };
}

Permissions required:

*

Set the agent state with the given agent state ARN in Amazon Connect
Agent Workspace

Set the agent state with the given agent state ARN. By default, the promise resolves after the
agent state is set in the backend. The response status is either updated or queued based on the
current agent state.

Signature

 setAvailabilityState(
 agentStateARN: string,

onRoutingProfileChanged() 74

Agent Workspace Developer guide

): Promise<SetAvailabilityStateResult>

Usage

const availabilityStates: AgentState[] = await agentClient.listAvailabilityStates();
const availabilityStateResult:SetAvailabilityStateResult = await
 agentClient.setAvailabilityState(availabilityStates[0].agentStateARN);

Input

Parameter Type Description

agentStateARN Required string The ARN of the agent state

Output - SetAvailabilityStateResult

Parameter Type Description

status string The status will be updated or
queued depending on if the
agent is currently handling an
active contact.

current AgentState Reperesents the current state
of the agent.

next AgentState It'll be the target state if
the agent is handling active
contact. Applicable when the
status is queued.

Permissions required:

User.Configuration.Edit

setAvailabilityState() 75

Agent Workspace Developer guide

Set the agent state with the given agent state name in Amazon Connect
Agent Workspace

Sets the agent state with the given agent state name. The promise resolves after the agent state is
set in the backend. The response status is either updated or queued based on the current agent
state.

Signature

setAvailabilityStateByName(
 agentStateName: string,
): Promise<SetAvailabilityStateResult>

Usage

const availabilityStateResult: SetAvailabilityStateResult = await
 agentClient.setAvailabilityStateByName('Available');

Input

Parameter Type Description

agentStateName Required string The name of the agent state

Output - SetAvailabilityStateResult

Parameter Type Description

status string The status will be "updated"
or "queued" depends on if the
agent is currently handling an
active contact.

current AgentState Reperesents the current state
of the agent.

setAvailabilityStateByName() 76

Agent Workspace Developer guide

Parameter Type Description

next AgentState It'll be the target state if
the agent is handling active
contact. Applicable when the
status is queued

Permissions required:

User.Configuration.Edit

Sets the agent state to Offline in Amazon Connect Agent Workspace

Sets the agent state to Offline. The promise resolves after the agent state is set in the backend.

Signature

 setOffline(): Promise<SetAvailabilityStateResult>

Usage

const availabilityStateResult: SetAvailabilityStateResult = await
 agentClient.setOffline();

Output - SetAvailabilityStateResult

Parameter Type Description

status string The status will be updated or
queued depending on if the
agent is currently handling an
active contact.

current AgentState Represents the current state
of the agent.

setOffline() 77

Agent Workspace Developer guide

Parameter Type Description

next AgentState It'll be the target state if
the agent is handling active
contact. Applicable when the
status is queued.

Permissions required:

User.Configuration.Edit

Subscribe a callback function when an Amazon Connect Agent
Workspace agent state changes

Subscribes a callback function to-be-invoked whenever an agent state changed event occurs in the
Amazon Connect agent workspace.

Signature

onStateChanged(handler: AgentStateChangedHandler)

Usage

const handler: AgentStateChangedHandler = async (data: AgentStateChangedEventData) => {
 console.log("Agent state change occurred! " + data);
};

agentClient.onStateChanged(handler);

// AgentStateChangedEventData Structure
{
 state: string;
 previous: {
 state: string;
 };

onStateChanged() 78

Agent Workspace Developer guide

}

Permissions required:

User.Status.View

Unsubscribe a callback function when an Amazon Connect Agent
Workspace agent state changes

Unsubscribes the callback function from the agent stated change event in the Amazon Connect
agent workspace.

Signature

offStateChanged(handler: AgentStateChangedHandler)

Usage

agentClient.offStateChanged(handler);

Amazon Connect Agent Workspace AppController API

The Amazon Connect SDK provides an AppControllerClient to control applications in the
Amazon Connect agent workspace.

The AppControllerClient accepts an optional argument, ConnectClientConfig which
itself is defined as:

export type ConnectClientConfig = {
 context?: ModuleContext;

offStateChanged() 79

Agent Workspace Developer guide

 provider?: AmazonConnectProvider;
};

If you do not provide a value for this config, then the client will default to using the
AmazonConnectProvider set in the global provider scope. You can also manually configure this
using setGlobalProvider.

You can instantiate the AppControllerClient as follows:

import { AppControllerClient } from "@amazon-connect/app-controller";

const appControllerClient = new AppControllerClient({ provider });

The following sections describe API calls for working with the App Controller API.

Contents

• Close an application in Amazon Connect Agent Workspace

• Focus an application in Amazon Connect Agent Workspace

• Get application information in Amazon Connect Agent Workspace

• Get the application catalog in Amazon Connect Agent Workspace

• Get the application configuration in Amazon Connect Agent Workspace

• Get all active application information in Amazon Connect Agent Workspace

• Launch an application in Amazon Connect Agent Workspace

Close an application in Amazon Connect Agent Workspace

Closes the application for the given application instance ID in the Amazon Connect agent
workspace.

Signature

closeApp(instanceId: string): Promise<void>

Usage

closeApp() 80

Agent Workspace Developer guide

await appControllerClient.closeApp(appInstanceId);

Input

Parameter Type Description

appInstanceId Required string The instance ID of the
application

Permissions required:

*

Focus an application in Amazon Connect Agent Workspace

Brings the application into focus in the Amazon Connect agent workspace for the given application
instance ID.

Signature

focusApp(instanceId: string): Promise<AppFocusResult>

Usage

const applicationFocusResult: AppFocusResult = await
 appControllerClient.focusApp(appInstanceId);

Input

Parameter Type Description

appInstanceId Required string The instance ID of the
application

focusApp() 81

Agent Workspace Developer guide

Output - AppFocusResult

Parameter Type Description

instanceId string The AmazonResourceName
(ARN) of the application

result "queued" | "completed" |
"failed"

Indicates if the request is
queued, completed or failed

Permissions required:

*

Get application information in Amazon Connect Agent Workspace

Returns the application information for the given application instance ID in the Amazon Connect
agent workspace.

Signature

getApp(instanceId: string): Promise<AppInfo>

Usage

const applicationInfo: AppInfo = await appControllerClient.getApp(appInstanceId);

Input

Parameter Type Description

appInstanceId Required string The instance ID of the
application

getApp() 82

Agent Workspace Developer guide

Output - AppInfo

Parameter Type Description

instanceId string Unique ID of the application
instance

config Config The configuration of the
application

startTime Date Time when the application is
launched

state AppState Current state of the applicati
on

appCreateOrder number Sequentially incremented
counter upon new application
launches

accessUrl string Access URL of the application

parameters AppParameters | undefined Key value pair of parameters
passed to the application

launchKey string A unique id to avoid duplicate
application being launched
with multiple invocation of
launchApp API

scope ContactScope | IdleScope Indicates if the applicati
on is launched with idle i.e
when there are no contacts
or launched during an active
contact

Permissions required:

getApp() 83

Agent Workspace Developer guide

*

Get the application catalog in Amazon Connect Agent Workspace

Returns all the applications that are available in the Amazon Connect agent workspace for the
current logged-in user.

Signature

getAppCatalog(): Promise<AppConfig[]>

Usage

const applications: AppConfig[] = await appControllerClient.getAppCatalog();

Output - AppConfig

Parameter Type Description

arn string The AmazonResourceName
(ARN) of the application

namespace string The immutable application
namespace used at the time
of registration

id string The unique identifier of the
application

name string Name of the application

description string Description of the application

accessUrl string URL to access the application

initializationTimeout number The maximum time allowed
in milliseconds to establish

getAppCatalog() 84

Agent Workspace Developer guide

Parameter Type Description

a connection with the
workspace

contactHandling.scope PER_CONTACT | CROSS_CON
TACTS

Indicates whether the
application refreshes for each
contact

Permissions required:

*

Get the application configuration in Amazon Connect Agent Workspace

Returns the application configuration for the given application ARN in the Amazon Connect agent
workspace.

Signature

getAppConfig(appArn: string): Promise<AppConfig>

Usage

const applicationConfig: AppConfig = await appControllerClient.getAppConfig(arn);

Input

Parameter Type Description

arn Required string The ARN of the application

Output - AppConfig

getAppConfig() 85

Agent Workspace Developer guide

Parameter Type Description

arn string The AmazonResourceName
(ARN) of the application

namespace string The immutable application
namespace used at the time
of registration

id string The unique identifier of the
application

name string Name of the application

description string Description of the application

accessUrl string URL to access the application

initializationTimeout number The maximum time allowed
to establish a connection with
the workspace

contactHandling.scope PER_CONTACT | CROSS_CON
TACTS

Indicates whether the
application refreshes for each
contact

Permissions required:

*

Get all active application information in Amazon Connect Agent
Workspace

Returns the application information for all active application instances in the Amazon Connect
agent workspace.

Signature

getApps() 86

Agent Workspace Developer guide

getApps(): Promise<AppInfo[]>

Usage

const applicationInfo: AppInfo[] = await appControllerClient.getApps();

Output - AppInfo

Parameter Type Description

instanceId string Unique ID of the application
instance

config Config The configuration of the
application

startTime Date Time when the application is
launched

state AppState Current state of the applicati
on

appCreateOrder number Sequentially incremented
counter upon new application
launches

accessUrl string Access URL of the application

parameters AppParameters | undefined Key value pair of parameters
passed to the application

launchKey string A unique id to avoid duplicate
application being launched
with multiple invocation of
launchApp API

getApps() 87

Agent Workspace Developer guide

Parameter Type Description

scope ContactScope | IdleScope Indicates if the applicati
on is launched with idle i.e
when there are no contacts
or launched during an active
contact

Permissions required:

*

Launch an application in Amazon Connect Agent Workspace

Launch the application in the agent workspace for the given application ARN or name. It supports
optional launch options to fine tune the launch behavior.

Signature

launchApp(arnOrName: string, options?: AppLaunchOptions): Promise<AppInfo>

Usage

const applicationsConfig: AppConfig[] = await appControllerClient.getAppCatalog();
const appInfo: AppInfo = await
 appControllerClient.launchApp(applicationsConfig[0].arn);

Input

Parameter Type Description

arnOrName Required string The ARN or name of the
application

launchApp() 88

Agent Workspace Developer guide

Parameter Type Description

options.parameters AppParameters Key value pair of parameters
passed to the application

options.launchKey string A unique id to avoid duplicate
application being launched
with multiple invocation of
launchApp API

options.openInBackground boolean If set to true, the application
won't be set to focus after its
launched

options.scope ContactScope | IdleScope Indicates if the applicati
on is launched with idle i.e
when there are no contacts
or launched during an active
contact

Output - AppInfo

Parameter Type Description

instanceId string Unique ID of the application
instance

config Config The configuration of the
application

startTime Date Time when the application is
launched

state AppState Current state of the applicati
on

launchApp() 89

Agent Workspace Developer guide

Parameter Type Description

appCreateOrder number Sequentially incremented
counter upon new application
launches

accessUrl string Access URL of the application

parameters AppParameters | undefined Key value pair of parameters
passed to the application

launchKey string A unique id to avoid duplicate
application being launched
with multiple invocation of
launchApp API

scope ContactScope | IdleScope Indicates if the applicati
on is launched with idle i.e
when there are no contacts
or launched during an active
contact

Permissions required:

*

Amazon Connect Agent Workspace Contact API

The Amazon Connect SDK provides an ContactClient which serves as an interface that your app
in the Amazon Connect agent workspace can use to subscribe to contact events and make contact
data requests.

The ContactClient accepts an optional constructor argument, ConnectClientConfig which
itself is defined as:

Contact 90

Agent Workspace Developer guide

 export type ConnectClientConfig = {
 context?: ModuleContext;
 provider?: AmazonConnectProvider;
 };

If you do not provide a value for this config, then the client will default to using the
AmazonConnectProvider set in the global provider scope. You can also manually configure this
using setGlobalProvider.

You can instantiate the agent client as follows:

 import { ContactClient } from "@amazon-connect/contact";
 const contactClient = new ContactClient({ provider });

Note

You must first instantiate the AmazonConnectApp which initializes the default
AmazonConnectProvider and returns { provider } . This is the recommended option.

Alternatively, providing a constructor argument:

 import { ContactClient } from "@amazon-connect/contact";

 const contactClient = new ContactClient({
 context: sampleContext,
 provider: sampleProvider
 });

The following sections describe API calls for working with the Contact API.

Contents

• Accept the incoming contact for the given contactId in Amazon Connect Agent Workspace

• Add another participant to a contact in Amazon Connect Agent Workspace

Contact 91

Agent Workspace Developer guide

• Clears the contact for the given contactId in Amazon Connect Agent Workspace

• Creates a subscription whenever a contact cleared event occurs in Amazon Connect Agent
Workspace

• Unsubscribes the callback function from the contact cleared event in Amazon Connect Agent
Workspace

• Subscribe a callback function when an Amazon Connect Agent Workspace contact is connected

• Unsubscribe a callback function when an Amazon Connect Agent Workspace contact is
connected

• Disconnect a participant from a contact in Amazon Connect Agent Workspace

• Engage the preview contact for the given contactId in Amazon Connect Agent Workspace

• Get specific attributes for a contact in Amazon Connect Agent Workspace

• Get the attributes of a contact in Amazon Connect Agent Workspace

• Get the type of contact in Amazon Connect Agent Workspace

• Get detailed contact information in Amazon Connect Agent Workspace

• Get the initial ID of the contact in Amazon Connect Agent Workspace

• Get specific participant information in Amazon Connect Agent Workspace

• Get participant state in Amazon Connect Agent Workspace

• Get preview configuration for the given contactId in Amazon Connect Agent Workspace

• Get the queue of the contact in Amazon Connect Agent Workspace

• Get the timestamp of the contact in Amazon Connect Agent Workspace

• Get the duration of the contact state in Amazon Connect Agent Workspace

• Check if contact is in preview mode in Amazon Connect Agent Workspace

• List all contacts for the current agent in Amazon Connect Agent Workspace

• List all participants for a contact in Amazon Connect Agent Workspace

• Subscribe a callback function when an Amazon Connect Agent Workspace contact is missed

• Unsubscribe a callback function when an Amazon Connect Agent Workspace contact is missed

• Unsubscribe from incoming contact events in Amazon Connect Agent Workspace

• Subscribe to incoming contact events in Amazon Connect Agent Workspace

• Subscribe to participant added events in Amazon Connect Agent Workspace

Contact 92

Agent Workspace Developer guide

• Unsubscribe from participant added events in Amazon Connect Agent Workspace

• Subscribe to participant disconnected events in Amazon Connect Agent Workspace

• Unsubscribe from participant disconnected events in Amazon Connect Agent Workspace

• Subscribe to participant state change events in Amazon Connect Agent Workspace

• Subscribe a callback function when an Amazon Connect Agent Workspace contact starts ACW

• Unsubscribe a callback function when an Amazon Connect Agent Workspace contact starts ACW

• Transfer a contact to another agent in Amazon Connect Agent Workspace

Accept the incoming contact for the given contactId in Amazon Connect
Agent Workspace

Accept the incoming contact for the given contactId.

Signature

accept(contactId: string): Promise<void>

Usage

await contactClient.accept(contactId);

Input

Parameter Type Description

contactId Required string The id of the contact to which
a participant needs to be
added.

Permissions required:

accept() 93

Agent Workspace Developer guide

Contact.Details.Edit

Add another participant to a contact in Amazon Connect Agent
Workspace

Add another participant to the contact. Multi-party only works for Voice at this time. For Voice, the
existing participants will be put on hold when a new participant is added.

Signature

addParticipant(
 contactId: string,
 quickConnect: QuickConnect,
): Promise<AddParticipantResult>

Usage

const routingProfile: AgentRoutingProfile = await agentClient.getRoutingProfile();
const quickConnectResult: ListQuickConnectsResult = await
 agentClient.listQuickConnects(routingProfile.queues[0].queueARN);
const quickConnect: QuickConnect = quickConnectResult.quickConnects[1];
const addParticipantResult: AddParticipantResult = await
 contactClient.addParticipant(contactId, quickConnect);

Input

Parameter Type Description

contactId Required string The id of the contact to which
a participant needs to be
added.

quickConnect Required QuickConnect Its either AgentQuickConnect
or QueueQuickConnect or
PhoneNumberQuickConnect
which contains endpointA

addParticipant() 94

Agent Workspace Developer guide

Parameter Type Description

RN and name. Additionally
PhoneNumberQuickConnect
contains phoneNumber

Output - AddParticipantResult

Parameter Type Description

participantId string The id of the newly added
participant

Permissions required:

Contact.Details.Edit

Clears the contact for the given contactId in Amazon Connect Agent
Workspace

Clears the contact for the given contactId.

Signature

clear(contactId: string): Promise<void>

Usage

await contactClient.clear(contactId);

Input

clear() 95

Agent Workspace Developer guide

Parameter Type Description

contactId Required string The id of the contact to which
a participant needs to be
added.

Permissions required:

Contact.Details.Edit

Creates a subscription whenever a contact cleared event occurs in
Amazon Connect Agent Workspace

It creates a subscription whenever a contact cleared event occurs in Amazon Connect agent
workspace. If no contact ID is provided, then it uses the context of the current contact that the 3P
app was opened on.

Signature

onCleared(handler: ContactClearedHandler, contactId?: string)

Usage

const handler: ContactClearedHandler = async (data: ContactCleared) => {
 console.log("Contact cleared occurred! " + data);
};

contactClient.onCleared(handler);

// ContactCleared Structure
{
 contactId: string;
}

Permissions required:

Contact.Details.View

onCleared() 96

Agent Workspace Developer guide

Unsubscribes the callback function from the contact cleared event in
Amazon Connect Agent Workspace

Unsubscribes the callback function from the contact cleared event in Amazon Connect agent
workspace.

Signature

 offCleared(handler: ContactClearedHandler, contactId?: string)

Usage

 contactClient.offCleared(handler);

Subscribe a callback function when an Amazon Connect Agent
Workspace contact is connected

Subscribes a callback function to-be-invoked whenever a contact Connected event occurs in the
Amazon Connect agent workspace. If no contact ID is provided, then it uses the context of the
current contact that the 3P app was opened on.

Signature

onConnected(handler: ContactConnectedHandler, contactId?: string)

Usage

const handler: ContactConnectedHandler = async (data: ContactConnected) => {
 console.log("Contact Connected occurred! " + data);
};

offCleared() 97

Agent Workspace Developer guide

contactClient.onConnected(handler);

// ContactConnected Structure
{
 contactId: string;
}

Permissions required:

Contact.Details.View

Unsubscribe a callback function when an Amazon Connect Agent
Workspace contact is connected

Unsubscribes the callback function from Connected event in the Amazon Connect agent
workspace.

Signature

offConnected(handler: ContactConnectedHandler)

Usage

contactClient.offConnected(handler);

Disconnect a participant from a contact in Amazon Connect Agent
Workspace

Disconnects a specific participant from the contact.

Signature

offConnected() 98

Agent Workspace Developer guide

disconnectParticipant(participantId: string): Promise<void>

Usage

await contactClient.disconnectParticipant("participant-456");
console.log("Participant disconnected");

Input

Parameter Type Description

participantId Required string The unique identifier for the
participant to disconnect

Permissions required:

*

Engage the preview contact for the given contactId in Amazon Connect
Agent Workspace

When an agent is previewing a preview contact, this API will actually initiate the outbound dial to
the end customer, ending the preview experience.

Signature

engagePreviewContact(contactId: string): Promise<AddParticipantResult>

Usage

engagePreviewContact() 99

Agent Workspace Developer guide

const addParticipantResult: AddParticipantResult = await
 contactClient.engagePreviewContact(contactId);

Input

Parameter Type Description

contactId Required string The id of the contact which is
being previewed by the agent
to which a participant needs
to be added.

Output - AddParticipantResult

Parameter Type Description

participantId string The id of the newly added
participant

Permissions required:

*

Get specific attributes for a contact in Amazon Connect Agent
Workspace

Returns the requested attribute associated with the contact in the Amazon Connect agent
workspace.

async getAttribute(
 contactId: string,
 attribute: string,
): Promise<string | undefined>

getAttribute() 100

Agent Workspace Developer guide

Permissions required:

Contact.Attributes.View

Get the attributes of a contact in Amazon Connect Agent Workspace

Returns a map of the attributes associated with the contact in the Amazon Connect Agent
Workspace. Each value in the map has the following shape: { name: string, value:
string }.

// example { "foo": { "name": "foo", "value": "bar" } }

getAttributes(
 contactId: string,
 attributes: ContactAttributeFilter,
): Promise<Record<string, string>>

ContactAttributeFilter is either string[] of attributes or '*'

Permissions required:

Contact.Attributes.View

Get the type of contact in Amazon Connect Agent Workspace

Get the type of the contact in Amazon Connect agent workspace. This indicates what type of media
is carried over the connections of the contact.

getAttributes() 101

Agent Workspace Developer guide

Signature

 getChannelType(contactId: string): Promise<ContactChannelType>

Usage

const contactType: ContactChannelType = await contactClient.getChannelType(contactId);

Input

Parameter Type Description

contactId Required string The id of the contact to which
a participant needs to be
added.

Output - ContactChannelType

Parameter Type Description

type string The possible values are
voice, queue_cal
lback, chat, task,
email

subtype string For the types voice &
queue_callback , it will
be connect:Telephony |
connect:WebRTC .

For the type chat, it will
be connect:Chat |
connect:SMS | connect:A
pple | connect:Guide .

getChannelType() 102

Agent Workspace Developer guide

Parameter Type Description

For the type task, it will be
connect:Task .

For the type email, it will be
connect:Email .

Permissions required:

Contact.Details.View

Get detailed contact information in Amazon Connect Agent Workspace

Retrieves detailed information for a specific contact by its ID.

Signature

getContact(contactId: string): Promise<ContactData>

Usage

const contactData = await contactClient.getContact("contact-123");
console.log(`Contact type: ${contactData.type}`);
console.log(`Queue: ${contactData.queue.name}`);

Input

Parameter Type Description

contactId Required string The unique identifier for the
contact

getContact() 103

Agent Workspace Developer guide

Output - ContactData

The ContactData interface includes:

• contactId: string - Unique identifier for the contact

• type: ContactType - Type of contact (voice, chat, task)

• subtype: string - Subtype providing additional classification

• initialContactId?: string - Initial contact ID for transferred contacts

• queue: Queue - Queue information

Permissions required:

*

Get the initial ID of the contact in Amazon Connect Agent Workspace

Returns the original (initial) contact id from which this contact was transferred in the Amazon
Connect agent workspace, or none if this is not an internal Connect transfer. This is typically
a contact owned by another agent, thus this agent will not be able to manipulate it. It is for
reference and association purposes only, and can be used to share data between transferred
contacts externally if it is linked by originalContactId.

async getInitialContactId(contactId: string): Promise<string | undefined>

Permissions required:

Contact.Details.View

Get specific participant information in Amazon Connect Agent
Workspace

Retrieves information for a specific participant.

getInitialContactId() 104

Agent Workspace Developer guide

Signature

getParticipant(participantId: string): Promise<ParticipantData>

Usage

const participant = await contactClient.getParticipant("participant-456");
console.log(`Participant type: ${participant.type.value}`);
console.log(`Is initial: ${participant.isInitial}`);

Input

Parameter Type Description

participantId Required string The unique identifier for the
participant

Output - ParticipantData

Returns a ParticipantData object with participant details.

Permissions required:

*

Get participant state in Amazon Connect Agent Workspace

Retrieves the current state of a specific participant.

Signature

getParticipantState(participantId: string): Promise<ParticipantState>

getParticipantState() 105

Agent Workspace Developer guide

Usage

const state = await contactClient.getParticipantState("participant-456");
if (state.value === "connected") {
 console.log("Participant is connected");
} else if (state.value === "hold") {
 console.log("Participant is on hold");
}

Input

Parameter Type Description

participantId Required string The unique identifier for the
participant

Output - ParticipantState

The ParticipantState type can be:

• { value: ParticipantStateType } where ParticipantStateType includes: connecting, connected,
hold, disconnected, rejected, silent_monitor, barge

• { value: "other"; actual: string } for unknown states

Permissions required:

*

Get preview configuration for the given contactId in Amazon Connect
Agent Workspace

This gets configuration information related to the preview experience.

getPreviewConfiguration() 106

Agent Workspace Developer guide

Signature

getPreviewConfiguration(contactId: string): Promise<GetPreviewConfigurationResponse>

Usage

const isPreview = await contactClient.isPreviewMode(contactId);
if (isPreview) {
 const {autoDialTimeout, canDiscardPreview} = await
 contactClient.getPreviewConfiguration(contactId);
}

Input

Parameter Type Description

contactId Required string The id of the contact which is
in preview.

Output - GetPreviewConfigurationResponse

Parameter Type Description

autoDialTimeout number The number of seconds the
agent has to preview the
contact before the auto-dial
triggers.

canDiscardPreview boolean Whether the agent has
permission to discard the
contact during preview. Use
this to control whether the
agent should be presented

getPreviewConfiguration() 107

Agent Workspace Developer guide

Parameter Type Description

 the option to discard the
contact without dialing the
end customer.

Permissions required:

*

Get the queue of the contact in Amazon Connect Agent Workspace

Returns the queue associated with the contact in the Amazon Connect agent workspace. The
Queue object has the following fields:

• name: The name of the queue.

• queueARN: The ARN of the queue.

• queueId: Alias for queueARN.

async getQueue(contactId: string): Promise<Queue>

Permissions required:

Contact.Details.View

Get the timestamp of the contact in Amazon Connect Agent Workspace

Returns a Date object with the timestamp associated with when the contact was placed in the
queue in the Amazon Connect agent workspace.

getQueue() 108

Agent Workspace Developer guide

async getQueueTimestamp(contactId: string): Promise<Date | undefined>

Permissions required:

Contact.Details.View

Get the duration of the contact state in Amazon Connect Agent
Workspace

Returns the duration of the contact state in milliseconds relative to local time, in the Amazon
Connect agent workspace. This takes into account time skew between the JS client and the Amazon
Connect backend servers.

async getStateDuration(contactId: string): Promise<number>

Permissions required:

Contact.Details.View

Check if contact is in preview mode in Amazon Connect Agent
Workspace

Returns whether the contact is being previewed. During this time, calling engagePreviewContact
will trigger the outbound dial to the end customer and end preview mode.

Signature

isPreviewMode(contactId: string): Promise<boolean>

getStateDuration() 109

Agent Workspace Developer guide

Usage

const isPreviewMode = await contactClient.isPreviewMode(currentContactId);

Input

Parameter Type Description

contactId Required string The id of the contact.

Permissions required:

*

List all contacts for the current agent in Amazon Connect Agent
Workspace

Lists all contacts for the current agent.

Signature

listContacts(): Promise<ListContactsResult>

Usage

const contacts = await contactClient.listContacts();
console.log(`Active contacts: ${contacts.length}`);
contacts.forEach((contact) => {
 console.log(`Contact ${contact.contactId}: ${contact.type}`);
});

listContacts() 110

Agent Workspace Developer guide

Output - ListContactsResult

Returns an array of contact data objects (currently typed as CoreContactData[]).

Permissions required:

*

List all participants for a contact in Amazon Connect Agent Workspace

Retrieves all participants associated with a specific contact.

Signature

listParticipants(contactId: string): Promise<ParticipantData[]>

Usage

const participants = await contactClient.listParticipants("contact-123");
participants.forEach((p) => {
 console.log(`Participant ${p.participantId}: ${p.type.value}`);
 if (p.isSelf) {
 console.log("This is the current user");
 }
});

Input

Parameter Type Description

contactId Required string The unique identifier for the
contact

Output - ParticipantData[]

listParticipants() 111

Agent Workspace Developer guide

The ParticipantData interface includes:

• participantId: string - Unique identifier for the participant

• contactId: string - Contact this participant belongs to

• type: ParticipantType - Type of participant (agent, outbound, inbound, monitoring, other)

• isInitial: boolean - Whether this is the initial participant

• isSelf: boolean - Whether this participant is associated with the current user

Permissions required:

*

Subscribe a callback function when an Amazon Connect Agent
Workspace contact is missed

Subscribes a callback function to-be-invoked whenever a contact missed event occurs in the
Amazon Connect agent workspace. If no contact ID is provided, then it uses the context of the
current contact that the 3P app was opened on.

Signature

onMissed(handler: ContactMissedHandler, contactId?: string)

Usage

const handler: ContactMissedHandler = async (data: ContactMissed) => {
 console.log("Contact missed occurred! " + data);
};

contactClient.onMissed(handler);

// ContactMissed Structure

onMissed() 112

Agent Workspace Developer guide

{
 contactId: string;
}

Permissions required:

Contact.Details.View

Unsubscribe a callback function when an Amazon Connect Agent
Workspace contact is missed

Unsubscribes the callback function from the contact missed event.

Signature

offMissed(handler: ContactMissedHandler, contactId?: string)

Usage

contactClient.offMissed(handler);

Unsubscribe from incoming contact events in Amazon Connect Agent
Workspace

Unsubscribes the callback function from the contact incoming event in Amazon Connect agent
workspace.

Signature

offIncoming(handler: ContactIncomingHandler, contactId?: string): void

offMissed() 113

Agent Workspace Developer guide

Usage

contactClient.offIncoming(handler);

Subscribe to incoming contact events in Amazon Connect Agent
Workspace

Creates a subscription whenever a new incoming event occurs in the Amazon Connect agent
workspace.

Signature

onIncoming(handler: ContactIncomingHandler, contactId?: string): void

Usage

const handler: ContactIncomingHandler = async (data: ContactIncoming) => {
 console.log("Contact incoming occurred! " + data);
};

contactClient.onIncoming(handler);

// ContactIncoming Structure
{
 contactId: string;
 initialContactId: string | undefined;
 type: ContactChannelType["type"];
 subtype: ContactChannelType["subtype"];
}

Permissions required:

onIncoming() 114

Agent Workspace Developer guide

*

Subscribe to participant added events in Amazon Connect Agent
Workspace

Subscribes to participant added events. This event fires when a new participant joins a contact.

Signature

onParticipantAdded(handler: ParticipantAddedHandler, contactId?: string): void

Usage

const handleParticipantAdded = (event) => {
 console.log(`New participant added: ${event.participant.participantId}`);
 console.log(`Type: ${event.participant.type.value}`);
};

// Subscribe to all contacts
contactClient.onParticipantAdded(handleParticipantAdded);

// Or subscribe to a specific contact
contactClient.onParticipantAdded(handleParticipantAdded, "contact-123");

Input

Parameter Type Description

handler Required ParticipantAddedHandler Event handler function to call
when participants are added

contactId string Optional contact ID to filter
events for a specific contact

Event Structure - ParticipantAdded

onParticipantAdded() 115

Agent Workspace Developer guide

The handler receives a ParticipantAdded event with:

• participant: ParticipantData - The participant that was added

Permissions required:

*

Unsubscribe from participant added events in Amazon Connect Agent
Workspace

Unsubscribes from participant added events.

Signature

offParticipantAdded(handler: ParticipantAddedHandler, contactId?: string): void

Usage

contactClient.offParticipantAdded(handleParticipantAdded);

Input

Parameter Type Description

handler Required ParticipantAddedHandler Event handler function to
remove

contactId string Optional contact ID to
unsubscribe from specific
contact events

offParticipantAdded() 116

Agent Workspace Developer guide

Subscribe to participant disconnected events in Amazon Connect Agent
Workspace

Subscribes to participant disconnected events. This event fires when a participant leaves or is
removed from a contact.

Signature

onParticipantDisconnected(handler: ParticipantDisconnectedHandler, contactId?: string):
 void

Usage

const handleParticipantDisconnected = (event) => {
 console.log(`Participant disconnected: ${event.participant.participantId}`);
};

contactClient.onParticipantDisconnected(
 handleParticipantDisconnected,
 "contact-123"
);

Input

Parameter Type Description

handler Required ParticipantDisconnectedHand
ler

Event handler function to call
when participants disconnect

contactId string Optional contact ID to filter
events for a specific contact

Event Structure - ParticipantDisconnected

The handler receives a ParticipantDisconnected event with:

onParticipantDisconnected() 117

Agent Workspace Developer guide

• participant: ParticipantData - The participant that was disconnected

Permissions required:

Contact.Details.View

Unsubscribe from participant disconnected events in Amazon Connect
Agent Workspace

Unsubscribes from participant disconnected events.

Signature

offParticipantDisconnected(handler: ParticipantDisconnectedHandler, contactId?:
 string): void

Usage

contactClient.offParticipantDisconnected(handleParticipantDisconnected);

Input

Parameter Type Description

handler Required ParticipantDisconnectedHand
ler

Event handler function to
remove

contactId string Optional contact ID to
unsubscribe from specific
contact events

offParticipantDisconnected() 118

Agent Workspace Developer guide

Subscribe to participant state change events in Amazon Connect Agent
Workspace

Subscribes to participant state change events. This event fires when a participant's state changes
(e.g., from connecting to connected, or to hold).

Signature

onParticipantStateChanged(handler: ParticipantStateChangedHandler, participantId?:
 string): void

Usage

 const handleStateChanged = (event) => {
 console.log(
 `Participant ${event.participantId} state changed to: ${event.state.value}`
);

 if (event.state.value === "connected") {
 console.log("Participant is now connected");
 } else if (event.state.value === "hold") {
 console.log("Participant is now on hold");
 }
 };

 // Subscribe to all participants
 contactClient.onParticipantStateChanged(handleStateChanged);

 // Or subscribe to a specific participant
 contactClient.onParticipantStateChanged(handleStateChanged, "participant-456");

Input

onParticipantStateChanged() 119

Agent Workspace Developer guide

Parameter Type Description

handler Required ParticipantStateCh
angedHandler

Event handler function to
call when participant states
change

participantId string Optional participant ID to
filter events for a specific
participant

Event Structure - ParticipantStateChanged

The handler receives a ParticipantStateChanged event with:

• participantId: string - The ID of the participant whose state changed

• state: ParticipantState - The new state of the participant

Permissions required:

Contact.Details.View

Subscribe a callback function when an Amazon Connect Agent
Workspace contact starts ACW

Subscribes a callback function to-be-invoked whenever a contact StartingAcw event occurs in the
Amazon Connect agent workspace. If no contact ID is provided, then it uses the context of the
current contact that the 3P app was opened on.

Signature

onStartingAcw(handler: ContactStartingAcwHandler, contactId?: string)

Usage

onStartingAcw() 120

Agent Workspace Developer guide

const handler: ContactStartingAcwHandler = async (data: ContactStartingAcw) => {
 console.log("Contact StartingAcw occurred! " + data);
};

contactClient.onStartingAcw(handler);

// ContactStartingAcw Structure
{
 contactId: string;
}

Permissions required:

Contact.Details.View

Unsubscribe a callback function when an Amazon Connect Agent
Workspace contact starts ACW

Unsubscribes the callback function from the contact StartingAcw event in the Amazon Connect
agent workspace.

Signature

offStartingAcw(handler: ContactStartingAcwHandler, contactId?: string)

Usage

contactClient.offStartingAcw(handler);

offStartingAcw() 121

Agent Workspace Developer guide

Transfer a contact to another agent in Amazon Connect Agent
Workspace

Performs a cold transfer by transferring the given contact to another agent using a quick connect
and disconnecting from the contact. The quick connect type has to be either agent or queue.
Supports voice, chat, task, and email channels.

Signature

 transfer(
 contactId: string,
 quickConnect: AgentQuickConnect | QueueQuickConnect,
): Promise<void>

Usage

const routingProfile: AgentRoutingProfile = await agentClient.getRoutingProfile();
const quickConnectResult: ListQuickConnectsResult = await
 agentClient.listQuickConnects(routingProfile.queues[0].queueARN);
const quickConnect: QuickConnect = quickConnectResult.quickConnects[1];
await contactClient.transfer(contactId, quickConnect);

Input

Parameter Type Description

contactId Required string The id of the contact to which
a participant needs to be
added.

quickConnect Required QuickConnect Its either AgentQuickConnect
or QueueQuickConnect

Permissions required:

Contact.Details.Edit

transfer() 122

Agent Workspace Developer guide

Amazon Connect Agent Workspace Email API

The Amazon Connect SDK provides an EmailClient which serves as an interface that your app
can use to subscribe to email contact events and make email contact requests.

The EmailClient accepts an optional constructor argument, ConnectClientConfig which
itself is defined as:

export type ConnectClientConfig = {
 context?: ModuleContext;
 provider?: AmazonConnectProvider;
};

If you do not provide a value for this config, then the client will default to using the
AmazonConnectProvider set in the global provider scope. You can also manually configure this
using setGlobalProvider.

You can instantiate the agent client as follows:

import { EmailClient } from "@amazon-connect/email";

const emailClient = new EmailClient({ provider });

Note

You must first instantiate the AmazonConnectApp which initializes the default
AmazonConnectProvider and returns { provider } . This is the recommended option.

Alternatively, providing a constructor argument:

import { EmailClient } from "@amazon-connect/email";

const emailClient = new EmailClient({
 context: sampleContext,

Email 123

Agent Workspace Developer guide

 provider: sampleProvider
});

Note

Third-party applications must be configured with Cross Contact scope in order to utilize the
EmailClient APIs, and * permission is required.

The following sections describe API calls for working with the Email API.

Contents

• Subscribe to accepted email notifications in Amazon Connect Agent Workspace

• Unsubscribe from accepted email notifications in Amazon Connect Agent Workspace

• Create a draft email contact in Amazon Connect Agent Workspace

• Subscribe to draft email creation notifications in Amazon Connect Agent Workspace

• Unsubscribe from draft email creation notifications in Amazon Connect Agent Workspace

• Get the metadata for an email contact in Amazon Connect Agent Workspace

• Get a list of email contacts in an email contact's tree in Amazon Connect Agent Workspace

• Send a draft email contact in Amazon Connect Agent Workspace

Subscribe to accepted email notifications in Amazon Connect Agent
Workspace

Subscribes a callback function to-be-invoked whenever an inbound email contact has been
accepted.

Signature

onAcceptedEmail(handler: SubscriptionHandler<EmailContactId> contactId?: string): void

Usage

onAcceptedEmail() 124

Agent Workspace Developer guide

const handler: SubscriptionHandler<EmailContactId> = async (emailContact:
 EmailContactId) => {
 const { contactId } = emailContact;
 console.log(`Accepted Email Contact with Id: ${contactId}`);
}

emailClient.onAcceptedEmail(handler);

// EmailContactId Structure
{
 contactId: string;
}

Unsubscribe from accepted email notifications in Amazon Connect
Agent Workspace

Unsubscribes a callback function from the event that is fired when an inbound email contact is
accepted.

Signature

offAcceptedEmail(handler: SubscriptionHandler<EmailContactId>, contactId?: string):
 void

Usage

emailClient.offAcceptedEmail(handler);

Create a draft email contact in Amazon Connect Agent Workspace

Creates a draft outbound email contact; can either be an agent initiated outbound draft email or
an agent reply draft email. Upon successful draft creation, the email contact will be in connected
state. Returns an object that includes:

• contactId: string: The contact id of the newly created draft email contact

Signature

createDraftEmail(contactCreation: CreateDraftEmailContact): Promise<EmailContactId>

offAcceptedEmail() 125

Agent Workspace Developer guide

CreateDraftEmailContact Properties

Parameter Type Description

initiationMethod "AGENT_REPLY" |
"OUTBOUND"

"OUTBOUND" indicates that
this draft email is the start
of a new email conversation;
"AGENT_REPLY" indicates that
this draft email is being sent
in response to an incoming
email contact

relatedContactId string The id of the contact that
is the reason for creating
the new draft email; this
is required when initiatio
nMethod="AGENT_REPLY"
and should be the contact id
of the email that this email is
being sent in response to.

expiryDurationInMinutes number Length of time before an
unsent contact expires;
Minimum is 1 minute,
Maximum is 1 week; Default is
12 hours.

attributes Record<string, string> A custom key-value pair
using an attribute map.
The attributes are standard
Amazon Connect attributes,
and can be accessed in flows
just like any other contact
attributes.

references Record<string, { type: string;
value: string; }>

Well-formed data on a
contact, used by agents to
complete a contact request.

createDraftEmail() 126

Agent Workspace Developer guide

Usage for Agent Initiated Outbound

const contact: EmailContactId = await emailClient.createDraftEmail({
 initiationMethod: "OUTBOUND",
});

const { contactId } = contact;

Usage for Agent Reply

const acceptedInboundEmailContactId = "exampleContactId";

const contact: EmailContactId = await emailClient.createDraftEmail({
 initiationMethod: "AGENT_REPLY",
 relatedContactId: acceptedInboundEmailContactId,
});

const { contactId } = contact;

Subscribe to draft email creation notifications in Amazon Connect
Agent Workspace

Subscribes a callback function to-be-invoked whenever a draft email contact has been created.

Signature

onDraftEmailCreated(handler: SubscriptionHandler<EmailContactId>, contactId?: string):
 void

Usage

const handler: SubscriptionHandler<EmailContactId> = async (emailContact:
 EmailContactId) => {
 const { contactId } = emailContact;
 console.log(`Draft Email Contact Created with Id: ${contactId}`);
}

emailClient.onDraftEmailCreated(handler);

onDraftEmailCreated() 127

Agent Workspace Developer guide

// EmailContactId Structure
{
 contactId: string;
}

Unsubscribe from draft email creation notifications in Amazon Connect
Agent Workspace

Unsubscribes a callback function from the event that is fired when a draft email contact is created.

Signature

offDraftEmailCreated(handler: SubscriptionHandler<EmailContactId>, contactId?: string):
 void

Usage

emailClient.offDraftEmailCreated(handler);

Get the metadata for an email contact in Amazon Connect Agent
Workspace

Returns the metadata for an email contact id while handling an active contact. The activeContactId
is the id of the email contact the agent is actively viewing while contactId is the id of the email
contact whose metadata should be retrieved.

Signature

getEmailData({ contactId, activeContactId }: { contactId: string; activeContactId:
 string; }): Promise<EmailContact>

Output - EmailContact Properties

Parameter Type Description

contactId string The id of the email contact

contactArn string The ARN of the email contact

offDraftEmailCreated() 128

Agent Workspace Developer guide

Parameter Type Description

contactAssociationId string The root contactId which is
used as a unique identifier for
all subsequent contacts in a
contact tree. Use this value
with the EmailClient.getEma
ilThread api.

relatedContactId string This contact is in response
or related to the specified
related contact.

initialContactId string If this contact is related to
other contacts, this is the id
of the initial contact.

subject string The subject of the email

from EmailAddress An object that includes the
from email address; this value
could be undefined when the
email contact has not been
sent.

to EmailAddress[] An array of objects, each
including an email address
the email contact was sent to

cc EmailAddress[] An array of objects, each
including an email address
that was carbon copied on the
email contact

getEmailData() 129

Agent Workspace Developer guide

Parameter Type Description

deliveredTo EmailAddress An object that includes the
email address associated
with Amazon Connect that
received this message; this
is only applicable when
direction=INBOUND.

direction "INBOUND" | "OUTBOUND" INBOUND means the email
contact was delivered
to Amazon Connect;
OUTBOUND means the email
contact is from Amazon
Connect

bodyLocation EmailArtifactLocation An object that includes the
id and associated resource
ARN of the file that the email
contact's body is stored in;
this value could be undefined
when the email contact has
not been sent.

attachmentLocations EmailArtifactLocation[] An array of objects, each
including the id and associate
d resource ARN, of files that
have been attached to the
email contact

EmailAddress Properties

Parameter Type Description

emailAddress string The email address

getEmailData() 130

Agent Workspace Developer guide

Parameter Type Description

displayName string The name that is displayed
inside the recipient's mailbox

EmailArtifactLocation Properties

Parameter Type Description

fileId string The id of the attached file

associatedResourceArn string The Amazon Connect
resource to which the
attached file is related to

Usage

const activeContactId: string = "exampleActiveContactId"; // The contact the agent is
 actively handling
const contactId: string = "contactIdToDescribe"; // The email contact id whose metadata
 should be retrieved

const emailMetadata: EmailContact = await emailClient.getEmailData({ contactId,
 activeContactId });

// Get the body of the email through the File Client
const bodyLocation = emailMetadata.bodyLocation;
if (bodyLocation) {
 const body: DownloadableAttachment = await fileClient.getAttachedFileUrl({
 attachment: bodyLocation,
 activeContactId,
 });

 const { downloadUrl } = body;
 const response: Response = await fetch(downloadUrl, { method: "GET" });
 const bodyContent: string = (await response.json()).messageContent;
}

getEmailData() 131

Agent Workspace Developer guide

Note

The EmailContact object will contain bodyLocation and attachmentLocations, both of
which will require use of the FileClient's getAttachedFileUrl to get the relevant data for
those objects.

Get a list of email contacts in an email contact's tree in Amazon
Connect Agent Workspace

Returns an array of EmailThreadContact objects (for the provided contactAssociationId) that
represent that contact's email thread. The contactAssociationId is the root contact id which is used
as a unique identifier for all subsequent contacts in a contact tree. Returns an object that includes:

• contacts: EmailThreadContact[]: an array of EmailThreadContact objects, each an email
contact in the thread

• nextToken?: string: The token for the next set of results; use the value returned in the
previous response in the next request to retrieve the next set of results

Signature

getEmailThread(getEmailThreadParams: GetEmailThreadParams): Promise<{ contacts:
 EmailThreadContact[]; nextToken?: string; }>

EmailThreadContact Properties

Parameter Type Description

contactId string The id of the email contact

contactArn string The ARN of the email contact

previousContactId string If this contact is not the first
contact, this is the ID of the
previous contact.

getEmailThread() 132

Agent Workspace Developer guide

Parameter Type Description

initialContactId string If this contact is related to
other contacts, this is the ID
of the initial contact.

relatedContactId string The contactId that is related
to this contact.

initiationMethod string Indicates how the contact was
initiated; Supported values:
"INBOUND" ,"OUTBOUN
D", "AGENT_REPLY", or
"TRANSFER"

initiationTimestamp Date The date and time this
contact was initiated, in UTC
time.

disconnectTimestamp Date | undefined The date and time that the
customer endpoint disconnec
ted from the current contact,
in UTC time. In transfer
scenarios, the Disconnec
tTimestamp of the previous
contact indicates the date
and time when that contact
ended.

GetEmailThreadParams Properties

Parameter Type Description

contactAssociationId string The contact association id to
get the thread for.

getEmailThread() 133

Agent Workspace Developer guide

Parameter Type Description

maxResults number The max number of email
threads to return; Default
is 100. Minimum value of 1.
Maximum value of 100.

nextToken string The token for the next set
of results. Use the value
returned in the previous
response in the next request
to retrieve the next set of
results.

Usage

const inboundEmailData = await emailClient.getEmailData({
 contactId: sampleContactId, // The inbound email contact you've accepted (or is
 still connecting)
 activeContactId: sampleContactId, // The email contact you're actively working; in
 this example, its the same as the accepted inbound email
});

const emailThreadContacts = await emailClient.getEmailThread({
 contactAssociationId: inboundEmailData.contactAssociationId,
});

// OPTIONAL: Filter out contacts that have been transferred to avoid displaying
 duplicated email content
const previousContactIdsSet = new Set(
 emailThreadContacts
 .map(emailThreadContact => emailThreadContact.previousContactId)
 .filter(Boolean)
);

const filteredEmailContactsInEmailThread = emailThreadContacts.filter(emailContact =>
 emailContact.contactId === sampleContactId ||
 !previousContactIdsSet.includes(emailContact.contactId)
);

getEmailThread() 134

Agent Workspace Developer guide

Note

Each time an email contact is transferred, a new contact ID is created with initiationMethod
=== 'TRANSFER' and its previousContactId is the contact id before the transfer. You may
optionally filter out these transferred contacts to avoid duplicate content when rendering
the email thread.

Send a draft email contact in Amazon Connect Agent Workspace

Sends both agent initiated and agent reply draft email contacts. Upon successfully sending the
email, the contact will transition to ENDED state.

Signature

sendEmail(emailContact: DraftEmailContact): Promise<void>

DraftEmailContact Properties

Parameter Type Description

to EmailAddress[] An array of destination
email addresses; max length
supported is 1

emailContent EmailContent The content of the email

from EmailAddress The email contact will be sent
from this email address; if no
from address is provided in
the request, the queue MUST
have a default email address
specified in the Outbound
email configuration

cc EmailAddress[] Additional recipients to
receive a carbon copy of the

sendEmail() 135

Agent Workspace Developer guide

Parameter Type Description

email; Max length supported
is 10

contactId string The id of the draft email
contact

EmailAddress Properties

Parameter Type Description

emailAddress string The email address

displayName string The name that is displayed
inside the recipient's mailbox

EmailContent Properties

Parameter Type Description

subject string The email contact's subject

body string The body/content of the
email, either in plain text or
HTML

bodyType "text/plain" | "text/html" The body type of the email;
can either be "text/plain" or
"text/html"

Error Handling

When sending draft emails, agents may encounter issues. The @amazon-connect/email library
provides methods to handle common errors:

sendEmail() 136

Agent Workspace Developer guide

• isOutboundEmailAddressNotConfiguredError(): Handle errors when the routing profile's
default outbound queue does not have a default outbound email address and the sendEmail()
request does not include a from address.

• isEmailBodySizeExceededError(): Handle errors when the size of the email body exceeds
the limit.

• isTotalEmailSizeExceededError(): Handle errors when the total size of the email (email
body and all attachments) exceeds the limit.

Usage

import {
 isOutboundEmailAddressNotConfiguredError,
 isEmailBodySizeExceededError,
 isTotalEmailSizeExceededError,
} from "@amazon-connect/email";

/* ... */

const toEmailAddress = {
 emailAddress: sampleRecipientAddress,
};

const emailContent = {
 subject: "Hello!",
 body: "Thank you!",
 bodyType: "text/plain",
}

const draftContact = {
 to: [toEmailAddress]
 emailContent,
 contactId: draftContactId, // This is the contact ID of the draft contact created via
 createDraftEmail()
};

try {
 await emailClient.sendEmail(draftContact);
} catch (e) {
 if (isOutboundEmailAddressNotConfiguredError(e)) {

sendEmail() 137

Agent Workspace Developer guide

 // Handle error when the routing profile's default outbound queue does not have a
 default
 // outbound email address and the request to `sendEmail` does not include a `from`
 address.
 } else if (isEmailBodySizeExceededError(e)) {
 // Handle error when the size of the email body exceeds the limit
 } else if (isTotalEmailSizeExceededError(e)) {
 // Handle error when total size of the email (email body and all attachments)
 exceeds the limit
 }
}

Amazon Connect Agent Workspace File API

The Amazon Connect SDK provides a FileClient which serves as an interface that you can use to
make file requests to upload, retrieve, and delete attached files.

The FileClient accepts an optional constructor argument, ConnectClientConfig which
itself is defined as:

export type ConnectClientConfig = {
 context?: ModuleContext;
 provider?: AmazonConnectProvider;
};

If you do not provide a value for this config, then the client will default to using the
AmazonConnectProvider set in the global provider scope. You can also manually configure this
using setGlobalProvider.

You can instantiate the agent client as follows:

import { FileClient } from "@amazon-connect/file";

const fileClient = new FileClient({ provider });

File 138

Agent Workspace Developer guide

Note

You must first instantiate the AmazonConnectApp which initializes the default
AmazonConnectProvider and returns { provider } . This is the recommended option.

Alternatively, providing a constructor argument:

import { FileClient } from "@amazon-connect/file";

const fileClient = new FileClient({
 context: sampleContext,
 provider: sampleProvider
});

Note

Third-party applications must be configured with * permission in order to utilize the
FileClient APIs.

The following sections describe API calls for working with the File API.

Contents

• Get metadata about multiple attached files in Amazon Connect Agent Workspace

• Confirm that an attached file has been uploaded in Amazon Connect Agent Workspace

• Delete an attached file in Amazon Connect Agent Workspace

• Get a pre-signed S3 URL to download an approved attached file in Amazon Connect Agent
Workspace

• Start uploading a file to Amazon Connect Agent Workspace

Get metadata about multiple attached files in Amazon Connect Agent
Workspace

Get metadata about multiple attached files on an associated resource while handling an
active contact. The activeContactId is the id of the contact the agent is actively viewing. Each

batchGetAttachedFileMetadata() 139

Agent Workspace Developer guide

attached file provided in the input list must be associated with the associatedResourceArn in the
RelatedAttachments request object.

Signature

batchGetAttachedFileMetadata({ relatedAttachments, activeContactId }:
 { relatedAttachments: RelatedAttachments; activeContactId: string; }):
 Promise<BatchGetAttachedFileMetadataResponse>

BatchGetAttachedFileMetadataResponse Properties

Parameter Type Description

files AttachmentMetadata[] Array of file metadata
objects that were successfully
retrieved

errors AttachmentError[] Array of errors of attached
files that could not be
retrieved

AttachmentMetadata Properties

Parameter Type Description

associatedResourceArn string Amazon Connect ARN of
the resource that the file
is attached to. Could be a
Connect Email Contact ARN
or a Connect Case ARN

fileId string The unique identifier of the
attached file resource

fileArn string The unique identifier of the
attached file resource (ARN).

batchGetAttachedFileMetadata() 140

Agent Workspace Developer guide

Parameter Type Description

fileName string A case-sensitive name of the
attached file being uploaded.

fileStatus FileStatus The current status of the
attached file. Supported
values: "APPROVED",
"REJECTED", "PROCESSING",
"FAILED"

fileSizeInBytes number The size of the attached file in
bytes.

creationTime string The time of Creation of
the file resource as an ISO
timestamp. It's specified
in ISO 8601 format: yyyy-
MM-ddThh:mm:ss.SSSZ.
For example, 2024-05-0
3T02:41:28.172Z.

AttachmentError Properties

Parameter Type Description

errorCode string Status code describing the
failure

errorMessage string Why the attached file couldn't
be retrieved

fileId string The unique identifier of the
attached file resource

RelatedAttachments Properties

batchGetAttachedFileMetadata() 141

Agent Workspace Developer guide

Parameter Type Description

associatedResourceArn string Amazon Connect ARN of
the resource that the file
is attached to. Could be a
Connect Email Contact ARN
or a Connect Case ARN

fileIds string[] The unique identifiers of the
attached file resources

Usage

const relatedAttachments: RelatedAttachments = {
 fileIds: [sampleFileId1, sampleFileId2],
 associatedResourceArn: sampleAssociatedResourceArn,
};

const response: BatchGetAttachedFileMetadataResponse = await
 fileClient.batchGetAttachedFileMetadata({
 relatedAttachments,
 activeContactId: sampleActiveContactId, // The contact the agent is actively handling
});

const { files, errors } = response;

// Add logic to handle response

Confirm that an attached file has been uploaded in Amazon Connect
Agent Workspace

Allows you to confirm that the attachment has been uploaded using the pre-signed URL provided
in the startAttachedFileUpload API. The request accepts an Attachment object, which has the
following properties:

• associatedResourceArn: string: Amazon Connect ARN of the resource that the file is
attached to. Could be a Connect Email Contact ARN or a Connect Case ARN

completeAttachedFileUpload() 142

Agent Workspace Developer guide

• fileId: string: ID in Connect's File record

Signature

completeAttachedFileUpload(attachment: Attachment): Promise<void>

Usage

/* Logic with startAttachedFileUplaod and uploading attachment to pre-signed URL */

/* ... */

await fileClient.completeAttachedFileUpload({
 associatedResourceArn: sampleAssociatedResourceArn, // Get this from the response
 from `startAttachedFileUpload`
 fileId: sampleFileId // Get this from the response from `startAttachedFileUpload`
});

Delete an attached file in Amazon Connect Agent Workspace

Deletes an attached file along with the underlying S3 Object. The attached file is permanently
deleted if S3 bucket versioning is not enabled. The request accepts an Attachment object, which
has the following properties:

• associatedResourceArn: string: Amazon Connect ARN of the resource that the file is
attached to. Could be a Connect Email Contact ARN or a Connect Case ARN

• fileId: string: ID in Connect's File record

Signature

deleteAttachedFile(data: Attachment): Promise<void>

Usage

await fileClient.deleteAttachedFile({
 associatedResourceArn: sampleAssociatedResourceArn, // Get this from the response
 from `startAttachedFileUpload`

deleteAttachedFile() 143

Agent Workspace Developer guide

 fileId: sampleFileId // Get this from the response from `startAttachedFileUpload`
});

Get a pre-signed S3 URL to download an approved attached file in
Amazon Connect Agent Workspace

Returns a pre-signed URL to download an approved attached file while handling an active contact.
The activeContactId is the id of the contact the agent is actively viewing. This API also returns
metadata about the attached file and it will only return a downloadUrl if the status of the attached
file is APPROVED.

Signature

getAttachedFileUrl({ attachment, activeContactId }: { attachment: Attachment;
 activeContactId: string; }): Promise<DownloadableAttachment>

DownloadableAttachment Properties

Parameter Type Description

associatedResourceArn string Amazon Connect ARN of
the resource that the file
is attached to. Could be a
Connect Email Contact ARN
or a Connect Case ARN

fileId string The unique identifier of the
attached file resource.

downloadUrl string A pre-signed URL that should
be used to download the
attached file.

fileArn string The unique identifier of the
attached file resource (ARN).

fileName string A case-sensitive name of the
attached file being uploaded.

getAttachedFileUrl() 144

Agent Workspace Developer guide

Parameter Type Description

fileStatus FileStatus The current status of the
attached file. Supported
values: "APPROVED",
"REJECTED", "PROCESSING",
"FAILED"

fileSizeInBytes number The size of the attached file in
bytes.

creationTime string The time of Creation of
the file resource as an ISO
timestamp. It's specified
in ISO 8601 format: yyyy-
MM-ddThh:mm:ss.SSSZ.
For example, 2024-05-0
3T02:41:28.172Z.

Attachment Properties

Parameter Type Description

associatedResourceArn string Amazon Connect ARN of
the resource that the file
is attached to. Could be a
Connect Email Contact ARN
or a Connect Case ARN

fileId string The unique identifier of the
attached file resource.

Usage

const downloadableAttachment = await fileClient.getAttachedFileUrl({
 attachment: {

getAttachedFileUrl() 145

Agent Workspace Developer guide

 associatedResourceArn: sampleAssociatedResourceArn,
 fileId: sampleFileId,
 },
 activeContactId: sampleActiveContactId, // The contact the agent is actively handling
});

const { downloadUrl } = downloadableAttachment;
const response: Response = await fetch(downloadUrl, { method: "GET" });

Start uploading a file to Amazon Connect Agent Workspace

Provides a pre-signed Amazon S3 URL in response to upload a new attached file.

Signature

startAttachedFileUpload(data: NewAttachment): Promise<UploadableAttachment>

UploadableAttachment Properties

Parameter Type Description

associatedResourceArn string Amazon Connect ARN of
the resource that the file
is attached to. Could be a
Connect Email Contact ARN
or a Connect Case ARN

fileId string ID in Connect's File record

uploadUrl string A pre-signed S3 URL that
should be used for uploading
the attached file.

uploadHeaders Record<string, string> A map of headers that should
be provided in the request
when uploading the attached
file.

uploadMethod "PUT" The upload request must be a
PUT.

startAttachedFileUpload() 146

Agent Workspace Developer guide

Parameter Type Description

fileStatus FileStatus The current status of the
attached file. Supported
values: "APPROVED",
"REJECTED", "PROCESSING",
"FAILED"

NewAttachment Properties

Parameter Type Description

associatedResourceArn string Amazon Connect ARN of
the resource that the file is
attached to. This could be a
Connect Email Contact ARN
or a Connect Case ARN

fileName string A case-sensitive name of
the attached file being
uploaded. Minimum length
of 1; Maximum length of 256.
Supported pattern: ^\P{C}*$

fileSizeInBytes number The size of the attached file in
bytes. Minimum value of 1.

fileUseCaseType "ATTACHMENT" The use case for the file. Must
be "ATTACHMENT"

Error Handling

When beginning the process to upload attached files, agents may encounter issues. The @amazon-
connect/file library provides methods to handle common errors:

• isInvalidFileNameError(): Handle errors when the name of the file is not valid

• isInvalidFileTypeError(): Handle errors when the file type is not supported

startAttachedFileUpload() 147

Agent Workspace Developer guide

• isInvalidFileSizeError(): Handle errors when the size of the file is invalid

• isTotalFileSizeExceededError(): Handle errors when the total size of all files (being
uploaded) exceeds the limit.

• isTotalFileCountExceededError(): Handle errors when the total number of files (being
uploaded) exceeds the limit.

Usage

import {
 isInvalidFileNameError,
 isInvalidFileTypeError,
 isInvalidFileSizeError,
 isTotalFileSizeExceededError,
 isTotalFileCountExceededError
} from "@amazon-connect/file";

/* ... */

const newAttachment: NewAttachment = {
 associatedResourceArn: sampleAssociatedResourceArn, // This could be an email contact
 ARN or case ARN that you are uploading the attached file to
 fileName: sampleFileName,
 fileSizeInBytes: sampleFileSizeInBytes,
 fileUseCaseType: "ATTACHMENT"
};

let uploadableAttachment: UploadableAttachment;
try {
 uploadableAttachment = await fileClient.startAttachedFileUpload(newAttachment);
} catch (e) {
 if (isInvalidFileNameError(e)) {
 // Handle InvalidFileName error
 } else if (isInvalidFileTypeError(e)) {
 // Handle InvalidFileType error
 } else if (isInvalidFileSizeError(e)) {
 // Handle InvalidFileSize error
 } else if (isTotalFileSizeExceededError(e)) {
 // Handle TotalFileSizeExceeded error
 } else if (isTotalFileCountExceededError(e)) {
 // Handle TotalFileCountExceeded error

startAttachedFileUpload() 148

Agent Workspace Developer guide

 }
}

// Assuming startAttachedFileUpload succeeded, we upload the attached file to the pre-
signed S3 URL
const { uploadUrl, uploadHeaders, uploadMethod } = uploadableAttachment;

await fetch(uploadUrl, {
 method: uploadMethod,
 headers: uploadHeaders,
 body: file, // This is the file you're uploading
});

Amazon Connect Agent Workspace Message Template API

The Amazon Connect SDK provides a MessageTemplateClient which serves as an interface
that you can use to make requests to search and get content from your Amazon Connect Message
Template Knowledge Base.

The MessageTemplateClient accepts an optional constructor argument,
ConnectClientConfig which itself is defined as:

export type ConnectClientConfig = {
 context?: ModuleContext;
 provider?: AmazonConnectProvider;
};

If you do not provide a value for this config, then the client will default to using the
AmazonConnectProvider set in the global provider scope. You can also manually configure this
using setGlobalProvider.

You can instantiate the agent client as follows:

import { MessageTemplateClient } from "@amazon-connect/message-template";

const messageTemplateClient = new MessageTemplateClient({ provider });

MessageTemplate 149

Agent Workspace Developer guide

Note

You must first instantiate the AmazonConnectApp which initializes the default
AmazonConnectProvider and returns { provider } . This is the recommended option.

Alternatively, providing a constructor argument:

import { MessageTemplateClient } from "@amazon-connect/message-template";

const messageTemplateClient = new MessageTemplateClient({
 context: sampleContext,
 provider: sampleProvider
});

Note

Third-party applications must be configured with * permission in order to utilize the
MessageTemplateClient APIs.

The following sections describe API calls for working with the MessageTemplate API.

Contents

• Get content of a message template in Amazon Connect Agent Workspace

• Determine if the Message Template feature is enabled in Amazon Connect Agent Workspace

• Retrieve message templates that match a search query in Amazon Connect Agent Workspace

Get content of a message template in Amazon Connect Agent
Workspace

Gets the content of a message template. This includes plaintext or html content of the body of
the message template as a string, the subject of the message template, and attachments if they
are configured on the message template. Attributes in the message template will be filled if they
are system attributes, agent attributes, or custom attributes set up in the contact flow. More

getContent() 150

Agent Workspace Developer guide

information on the attributes can be found here: https://docs.aws.amazon.com/connect/latest/
adminguide/personalize-templates.html

Signature

getContent(messageTemplateId: string, contactId: string):
 Promise<MessageTemplateContent>

messageTemplateId

The messageTemplateId can be either the ID or the ARN of a message template

• Passing in the ARN returned by searchMessageTemplates is recommended here, since this will
get the content of the active version of the message template.

• Passing in the ID will return the content of the latest version of the message template. A qualifier
can be appended to the messageTemplateId to get the content of a different version of the
message template.

More information on qualifiers can be found here:

https://docs.aws.amazon.com/connect/latest/APIReference/API_amazon-q-
connect_GetMessageTemplate.html

More information on versioning can be found here:

https://docs.aws.amazon.com/connect/latest/adminguide/about-version-message-templates.html

contactId

The current contact to add the message template to. This is used to populate attributes in the
message template

MessageTemplateContent Properties

Parameter Type Description

subject string Message subject populated in
the template

body MessageTemplateBody Message body content
populated in the template.

getContent() 151

https://docs.aws.amazon.com/connect/latest/adminguide/personalize-templates.html
https://docs.aws.amazon.com/connect/latest/adminguide/personalize-templates.html
https://docs.aws.amazon.com/connect/latest/APIReference/API_amazon-q-connect_GetMessageTemplate.html
https://docs.aws.amazon.com/connect/latest/APIReference/API_amazon-q-connect_GetMessageTemplate.html
https://docs.aws.amazon.com/connect/latest/adminguide/about-version-message-templates.html

Agent Workspace Developer guide

Parameter Type Description

This can include plainText or
html or both

attachments MessageTemplateAtt
achment[]

Attachments populated in the
template

attributesNotInterpolated string[] List of attributes that were
not automatically populated
in the message template. If
all attributes were automatic
ally populated, this list will be
empty

MessageTemplateBody Properties

Parameter Type Description

plainText string Plain text content of the
message template as a string.
It is possible for both the
plain text and html to be
populated, or for only the
plain text or html content to
be populated

html string HTML content of the message
template as a string

MessageTemplateAttachment Properties

Parameter Type Description

fileName string Name of the attachment

fileId string ID of the attachment

getContent() 152

Agent Workspace Developer guide

Parameter Type Description

downloadUrl string URL to download the
attachment from

Determine if the Message Template feature is enabled in Amazon
Connect Agent Workspace

Returns the MessageTemplateEnabledState object, which indicates if the message template feature
is enabled for the Connect instance. The Message Template feature is considered enabled if there
is a knowledge base for message templates configured for the instance. The object contains the
following fields:

• isEnabled: A boolean indicating if the feature is enabled

• knowledgeBaseId: The id of the Message Template Knowledge Base (if the feature is enabled)

Signature

isEnabled(): Promise<MessageTemplateEnabledState>

Retrieve message templates that match a search query in Amazon
Connect Agent Workspace

Returns the SearchMessageTemplatesResponse object, which contains the matching
message templates and a token to retrieve the next page of results, if available. The
SearchMessageTemplatesParams object is used to configure the search, allowing you to filter by
various criteria, as well as specify the channels and pagination options. If no filter text is provided,
all active message templates for the agent's routing profile and the channel(s) specified are
returned.

Signature

searchMessageTemplates(request: SearchMessageTemplatesParams):
 Promise<SearchMessageTemplatesResponse>

SearchMessageTemplatesResponse Properties

isEnabled() 153

Agent Workspace Developer guide

Parameter Type Description

messageTemplate MessageTemplate[] List of message templates
matching the search criteria
specified in the request

nextToken string The token for the next set
of results. Use the value
returned in the previous
response in the next request
to retrieve the next set of
results.

MessageTemplate Properties

Parameter Type Description

messageTemplateArn string The ARN of the message
template. This contains the
active version qualifier at the
end of the ARN

messageTemplateId string The ID of the message
template. This does NOT
contain a qualifier with
the version of the message
template.

name string Name of the message
template

description string Description of the message
template

SearchMessageTemplatesParams Properties

searchMessageTemplates() 154

Agent Workspace Developer guide

Parameter Type Description

channels MessageTemplateChannel[] The channel(s) to return
message templates for. If
the list is empty, no message
templates will be returned.
Supported values: "EMAIL"

queries MessageTemplateQue
ryField[]

Queries are used to filter the
returned message templates
by name or description.
Leaving the queries empty
will return all message
templates associated with the
agent's routing profile

maxResults number Maximum number of message
templates to return

nextToken string The token for the next set
of results. Use the value
returned in the previous
response in the next request
to retrieve the next set of
results.

MessageTemplateQueryField Properties

Parameter Type Description

name "name" | "description" The message templates will
be filtered by the values
matching the text in the
name field provided

searchMessageTemplates() 155

Agent Workspace Developer guide

Parameter Type Description

values string[] The values of the attribute to
query the message templates
 by

priority "HIGH" | "MEDIUM" | "LOW" The importance of the
attribute field when calculati
ng query result relevancy
scores. The value set for
this parameter affects the
ordering of search results.

allowFuzziness boolean Whether the query expects
only exact matches on the
attribute field values. The
results of the query will only
include exact matches if this
parameter is set to false.

operator "CONTAINS" | "CONTAINS
_AND_PREFIX"

Include all templates that
contain the values or only
templates that contain the
values as the prefix.

Amazon Connect Agent Workspace Quick Responses API

The Amazon Connect SDK provides a QuickResponsesClient which serves as an interface that
you can use to make requests to search your Amazon Connect Quick Responses Knowledge Base.

The QuickResponsesClient accepts an optional constructor argument,
ConnectClientConfig which itself is defined as:

export type ConnectClientConfig = {
 context?: ModuleContext;
 provider?: AmazonConnectProvider;
};

QuickResponses 156

Agent Workspace Developer guide

If you do not provide a value for this config, then the client will default to using the
AmazonConnectProvider set in the global provider scope. You can also manually configure this
using setGlobalProvider.

You can instantiate the agent client as follows:

import { QuickResponsesClient } from "@amazon-connect/quick-responses";

const quickResponsesClient = new QuickResponsesClient({ provider });

Note

You must first instantiate the AmazonConnectApp which initializes the default
AmazonConnectProvider and returns { provider } . This is the recommended option.

Alternatively, providing a constructor argument:

import { QuickResponsesClient } from "@amazon-connect/quick-responses";

const quickResponsesClient = new QuickResponsesClient({
 context: sampleContext,
 provider: sampleProvider
});

Note

Third-party applications must be configured with * permission in order to utilize the
QuickResponsesClient APIs.

The following sections describe API calls for working with the QuickResponses API.

Contents

• Determine if the Quick Responses feature is enabled in Amazon Connect Agent Workspace

• Retrieve quick responses that match a search query in Amazon Connect Agent Workspace

QuickResponses 157

Agent Workspace Developer guide

Determine if the Quick Responses feature is enabled in Amazon
Connect Agent Workspace

Returns the QuickResponsesEnabledState object, which indicates if the quick responses feature is
enabled for the Connect instance. Quick responses is considered enabled if there is a knowledge
base for quick responses configured for the instance. The object contains the following fields:

• isEnabled: A boolean indicating if the feature is enabled

• knowledgeBaseId: The id of the Quick Responses Knowledge Base (if the feature is enabled)

Signature

isEnabled(): Promise<QuickResponsesEnabledState>

Retrieve quick responses that match a search query in Amazon Connect
Agent Workspace

Returns the SearchQuickResponsesResult object, which contains the matching quick
response results and a token to retrieve the next page of results, if available. The
SearchQuickResponsesRequest object is used to configure the search, allowing you to filter by
various criteria, as well as specify the channels, user-defined contact attributes, and pagination
options. If no queries are provided, the method will return all quick responses associated with the
agent's routing profile.

Signature

searchQuickResponses(queryRequest: SearchQuickResponsesRequest):
 Promise<SearchQuickResponsesResult>

SearchQuickResponsesResult Properties

Parameter Type Description

results QuickResponsesSear
chResultData[]

The results of the quick
responses search

isEnabled() 158

Agent Workspace Developer guide

Parameter Type Description

nextToken string The token for the next set
of results. Use the value
returned in the previous
response in the next request
to retrieve the next set of
results.

QuickResponsesSearchResultData Properties

Parameter Type Description

contents QuickResponseContents The contents of the quick
response.

knowledgeBaseId string The identifier of the
knowledge base.

name string The name of the quick
response.

quickResponseArn string The Amazon Resource Name
(ARN) of the quick response.

quickResponseId string The identifier of the quick
response.

description string The description of the quick
response.

shortcutKey string The shortcut key of the quick
response. The value should be
unique across the knowledge
base.

attributesNotInterpolated string[] The user defined contact
attributes that are not

searchQuickResponses() 159

Agent Workspace Developer guide

Parameter Type Description

resolved when the search
result is returned.

QuickResponseContents Properties

Parameter Type Description

markdown string The content of the quick
response stored in markdown

plainText string The content of the quick
response stored in plain text

SearchQuickResponsesRequest Properties

Parameter Type Description

queries QuickResponsesQuery[] Query used to filter quick
responses; if no queries are
provided, the client will return
all quick responses associate
d with the agent's routing
profile.

channels QuickResponseChannel[] The channels to filter the
request by. Supported values:
"Chat" or "Email"

attributes Record<string, string> The user-defined Amazon
Connect contact attributes
to be resolved when search
results are returned.

searchQuickResponses() 160

Agent Workspace Developer guide

Parameter Type Description

debounceMS number The default value is set to
250ms; set it to 0 to disable
debounced input change

maxResults number The number of results to be
returned. Minimum value of
1. Maximum value of 100.

nextToken string The token for the next set
of results. Use the value
returned in the previous
response in the next request
to retrieve the next set of
results.

QuickResponsesQuery Properties

Parameter Type Description

name QuickResponsesQuer
yFieldName

The name of the attribute to
query the quick responses by.
Supported values: "content"
, "name", "description", or
"shortcutKey"

values string[] The values of the attribute to
query the quick responses by.

operator QuickResponsesQuer
yOperator

The operator to use
for matching attribute
field values in the query.
Supported values: "CONTAINS
" or "CONTAINS_AND_PREFIX"

searchQuickResponses() 161

Agent Workspace Developer guide

Parameter Type Description

priority QuickResponsesQueryPriority The importance of the
attribute field when calculati
ng query result relevancy
scores. The value set for
this parameter affects the
ordering of search results.
Supported values: "HIGH",
"MEDIUM", or "LOW"

allowFuzziness boolean Whether the query expects
only exact matches on the
attribute field values. The
results of the query will only
include exact matches if this
parameter is set to false.

Amazon Connect Agent Workspace User API

The Amazon Connect SDK provides an SettingsClient which serves as an interface that your
app in Amazon Connect Agent Workspace can use to make data requests on user settings.

The SettingsClient accepts an optional constructor argument, ConnectClientConfig which
itself is defined as:

 export type ConnectClientConfig = {
 context?: ModuleContext;
 provider?: AmazonConnectProvider;
 };

If you do not provide a value for this config, then the client will default to using the
AmazonConnectProvider set in the global provider scope. You can also manually configure this
using setGlobalProvider.

You can instantiate the agent client as follows:

User 162

Agent Workspace Developer guide

 import { SettingsClient } from "@amazon-connect/user";
 const settingsClient = new SettingsClient({ provider });

Note

You must first instantiate the AmazonConnectApp which initializes the default
AmazonConnectProvider and returns { provider } . This is the recommended option.

Alternatively, providing a constructor argument:

 import { SettingsClient } from "@amazon-connect/user";

 const settingsClient = new SettingsClient({
 context: sampleContext,
 provider: sampleProvider
 });

The following sections describe API calls for working with the User API.

Contents

• Get the language of a user in Amazon Connect Agent Workspace

• Subscribe a callback function when an Amazon Connect Agent Workspace user changes
languages

• Unsubscribe a callback function when an Amazon Connect Agent Workspace user changes
languages

Get the language of a user in Amazon Connect Agent Workspace

Returns the language setting for the current user in the Amazon Connect Agent Workspace.

async getLanguage(): Promise<Locale | null>

getLanguage() 163

Agent Workspace Developer guide

Permissions required:

User.Configuration.View

Subscribe a callback function when an Amazon Connect Agent
Workspace user changes languages

Subscribes a callback function to-be-invoked whenever a user LanguageChanged event occurs in
the Amazon Connect Agent Workspace.

Signature

onLanguageChanged(handler: UserLanguageChangedHandler)

Usage

const handler: UserLanguageChangedHandler = async (data: UserLanguageChanged) => {
 console.log("User LanguageChange occurred! " + data);
};

settingsClient.onLanguageChanged(handler);

// UserLanguageChanged Structure
{
 language: string;
 previous: {
 language: string;
 };
}

Permissions required:

User.Configuration.View

onLanguageChanged() 164

Agent Workspace Developer guide

Unsubscribe a callback function when an Amazon Connect Agent
Workspace user changes languages

Unsubscribes the callback function from LanguageChanged event in the Amazon Connect Agent
Workspace.

Signature

offLanguageChanged(handler: UserLanguageChangedHandler)

Usage

settingsClient.offLanguageChanged(handler);

Amazon Connect Agent Workspace Voice API

The Amazon Connect SDK provides an VoiceClient which serves as an interface that your app in
the Amazon Connect agent workspace can use to make data requests on voice contact.

The VoiceClient accepts an optional constructor argument, ConnectClientConfig which
itself is defined as:

export type ConnectClientConfig = {
 context?: ModuleContext;
 provider?: AmazonConnectProvider;
};

If you do not provide a value for this config, then the client will default to using the
AmazonConnectProvider set in the global provider scope. You can also manually configure this
using setGlobalProvider.

offLanguageChanged() 165

Agent Workspace Developer guide

You can instantiate the agent client as follows:

import { VoiceClient } from "@amazon-connect/voice";

const voiceClient = new VoiceClient({ provider });

Note

You must first instantiate the AmazonConnectApp which initializes the default
AmazonConnectProvider and returns { provider } . This is the recommended option.

Alternatively, providing a constructor argument:

import { VoiceClient } from "@amazon-connect/voice";

const voiceClient = new VoiceClient({
 context: sampleContext,
 provider: sampleProvider
});

Note

Third-party applications must be configured with * permission in order to utilize the
VoiceClient APIs.

The following sections describe API calls for working with the Voice API.

Contents

• Check if a participant can be resumed from hold in Amazon Connect Agent Workspace

• Check if the current user can be resumed from hold in Amazon Connect Agent Workspace

• Conference all participants on a contact in Amazon Connect Agent Workspace

• Create an outbound call to phone number in Amazon Connect Agent Workspace

Voice 166

Agent Workspace Developer guide

• Gets the phone number of the initial customer connection in Amazon Connect Agent Workspace

• Gets the outbound call permission configured for the agent in Amazon Connect Agent
Workspace

• Place a participant on hold in Amazon Connect Agent Workspace

• Get the voice enhancement mode in Amazon Connect Agent Workspace

• Get voice enhancement model paths in Amazon Connect Agent Workspace

• Check if a participant is on hold in Amazon Connect Agent Workspace

• Get a list of dialable countries in Amazon Connect Agent Workspace

• Unsubscribe from participant resume capability change events in Amazon Connect Agent
Workspace

• Unsubscribe from self resume capability change events in Amazon Connect Agent Workspace

• Unsubscribe from participant hold events in Amazon Connect Agent Workspace

• Unsubscribe from participant resume events in Amazon Connect Agent Workspace

• Unsubscribe from self hold events in Amazon Connect Agent Workspace

• Unsubscribe from self resume events in Amazon Connect Agent Workspace

• Unsubscribe from voice enhancement mode change events in Amazon Connect Agent Workspace

• Subscribe to participant resume capability change events in Amazon Connect Agent Workspace

• Subscribe to self resume capability change events in Amazon Connect Agent Workspace

• Subscribe to participant hold events in Amazon Connect Agent Workspace

• Subscribe to participant resume events in Amazon Connect Agent Workspace

• Subscribe to self hold events in Amazon Connect Agent Workspace

• Subscribe to self resume events in Amazon Connect Agent Workspace

• Subscribe to voice enhancement mode change events in Amazon Connect Agent Workspace

• Resume a participant from hold in Amazon Connect Agent Workspace

• Set the voice enhancement mode in Amazon Connect Agent Workspace

Check if a participant can be resumed from hold in Amazon Connect
Agent Workspace

Checks whether a specific participant can be resumed from hold.

canResumeParticipant() 167

Agent Workspace Developer guide

Signature

canResumeParticipant(participantId: string): Promise<boolean>

Usage

const canResume = await voiceClient.canResumeParticipant("participant-456");
if (canResume) {
 await voiceClient.resumeParticipant("participant-456");
}

Input

Parameter Type Description

participantId Required string The unique identifier for the
participant

Output

Returns a Promise that resolves to a boolean: true if the participant can be resumed, false
otherwise

Check if the current user can be resumed from hold in Amazon Connect
Agent Workspace

Checks whether the current user's participant can be resumed from hold for a specific contact.

Signature

canResumeSelf(contactId: string): Promise<boolean>

Usage

const canResume = await voiceClient.canResumeSelf("contact-123");
if (canResume) {
 // Resume logic here

canResumeSelf() 168

Agent Workspace Developer guide

}

Input

Parameter Type Description

contactId Required string The unique identifier for the
contact

Output

Returns a Promise that resolves to a boolean: true if the current user can be resumed, false
otherwise

Conference all participants on a contact in Amazon Connect Agent
Workspace

Conferences all participants on a contact together, removing any hold states and enabling all
participants to communicate with each other.

Signature

conferenceParticipants(contactId: string): Promise<void>

Usage

await voiceClient.conferenceParticipants("contact-123");
console.log("All participants are now conferenced");

Input

Parameter Type Description

contactId Required string The unique identifier for the
contact

conferenceParticipants() 169

Agent Workspace Developer guide

Create an outbound call to phone number in Amazon Connect Agent
Workspace

Creates an outbound call to the given phone number and returns the contactId. It takes an optional
parameter queueARN which specifies the outbound queue associated with the call, if omitted the
default outbound queue defined in the agent's routing profile will be used.

Signature

 createOutboundCall(
 phoneNumber: string,
 options?: CreateOutboundCallOptions,
): Promise<CreateOutboundCallResult>

Usage

const outboundCallResult:CreateOutboundCallResult = await
 voiceClient.createOutboundCall("+18005550100");

Input

Parameter Type Description

phoneNumber Required string The phone number specified
in E.164 format

options.queueARN string It specifies the outbound
queue associated with the
call, if omitted the default
outbound queue defined in
the agent's routing profile will
be used.

options.relatedContactId string Optional parameter to supply
related contactId

createOutboundCall() 170

Agent Workspace Developer guide

Output - CreateOutboundCallResult

Parameter Type Description

contactId string The contactId of the created
outbound call.

Permissions required:

Contact.Details.Edit

Gets the phone number of the initial customer connection in Amazon
Connect Agent Workspace

Gets the phone number of the initial customer connection. Applicable only for voice contacts.

Signature

getInitialCustomerPhoneNumber(contactId: string): Promise<string>

Usage

const initialCustomerPhoneNumber: string = await
 voiceClient.getInitialCustomerPhoneNumber(contactId);

Input

Parameter Type Description

contactId Required string The id of the contact for
which the data is requested.

Permissions required:

getInitialCustomerPhoneNumber() 171

Agent Workspace Developer guide

Contact.CustomerDetails.View

Gets the outbound call permission configured for the agent in Amazon
Connect Agent Workspace

Gets true if the agent has the security profile permission for making outbound calls, false
otherwise.

Signature

getOutboundCallPermission(): Promise<boolean>

Usage

const outboundCallPermission: boolean = await voiceClient.getOutboundCallPermission();

Permissions required:

User.Configuration.View

Place a participant on hold in Amazon Connect Agent Workspace

Places a specific participant on hold.

Signature

holdParticipant(participantId: string): Promise<void>

Usage

await voiceClient.holdParticipant("participant-456");
console.log("Participant is now on hold");

Input

getOutboundCallPermission() 172

Agent Workspace Developer guide

Parameter Type Description

participantId Required string The unique identifier for the
participant to place on hold

Get the voice enhancement mode in Amazon Connect Agent Workspace

Gets the voice enhancement mode of the user that's currently logged in to Amazon Connect agent
workspace. The voice enhancement mode can have the following values:

• VOICE_ISOLATION: it suppresses background noise and isolates the agent's voice. This mode
should only be enabled if the agent uses a wired headsets.

• NOISE_SUPPRESSION: it suppresses the background noise. We recommend using this mode with
any type of headset.

• NONE: no voice enhancement applies.

Signature

async getVoiceEnhancementMode(): Promise<VoiceEnhancementMode>

Usage

const voiceEnhancementMode: VoiceEnhancementMode = await
 voiceClient.getVoiceEnhancementMode();

Permissions required:

*

Get voice enhancement model paths in Amazon Connect Agent
Workspace

Returns the voice enhancements models static assets URL paths.

Signature

getVoiceEnhancementMode() 173

Agent Workspace Developer guide

async getVoiceEnhancementPaths(): Promise<VoiceEnhancementPaths>

Usage

voiceClient.getVoiceEnhancementPaths();

// VoiceEnhancementPaths structure
interface VoiceEnhancementPaths {
 processors: string;
 workers: string;
 wasm: string;
 models: string;
}

Permissions required:

*

Check if a participant is on hold in Amazon Connect Agent Workspace

Checks whether a specific participant is currently on hold.

Signature

isParticipantOnHold(participantId: string): Promise<boolean>

Usage

const isOnHold = await voiceClient.isParticipantOnHold("participant-456");
if (isOnHold) {
 console.log("Participant is on hold");
} else {
 console.log("Participant is active");
}

Input

isParticipantOnHold() 174

Agent Workspace Developer guide

Parameter Type Description

participantId Required string The unique identifier for the
participant

Output

Returns a Promise that resolves to a boolean: true if the participant is on hold, false otherwise

Get a list of dialable countries in Amazon Connect Agent Workspace

Get a list of DialableCountry that contains the country code and calling code that the Amazon
Connect instance is allowed to make calls to.

Signature

listDialableCountries(): Promise<DialableCountry[]>

Usage

const dialableCountries:DialableCountry[] = await voiceClient.listDialableCountries();

Output - DialableCountry

Parameter Type Description

countryCode string The ISO country code

callingCode string The calling code for the
country

label string The name of the country

Permissions required:

listDialableCountries() 175

Agent Workspace Developer guide

User.Configuration.View

Unsubscribe from participant resume capability change events in
Amazon Connect Agent Workspace

Unsubscribes from participant capability change events.

Signature

offCanResumeParticipantChanged(
 handler: CanResumeParticipantChangedHandler,
 participantId?: string
): void

Usage

voiceClient.offCanResumeParticipantChanged(handleCanResumeChanged);

Input

Parameter Type Description

handler Required CanResumeParticipa
ntChangedHandler

Event handler function to
remove

participantId string Optional participant ID to
unsubscribe from specific
participant events

Unsubscribe from self resume capability change events in Amazon
Connect Agent Workspace

Unsubscribes from capability change events for the current user.

Signature

offCanResumeParticipantChanged() 176

Agent Workspace Developer guide

offCanResumeSelfChanged(
 handler: CanResumeParticipantChangedHandler,
 contactId?: string
): void

Usage

voiceClient.offCanResumeSelfChanged(handleCanResumeSelfChanged);

Input

Parameter Type Description

handler Required CanResumeParticipa
ntChangedHandler

Event handler function to
remove

contactId string Optional contact ID to
unsubscribe from specific
contact events

Unsubscribe from participant hold events in Amazon Connect Agent
Workspace

Unsubscribes from participant hold events.

Signature

offParticipantHold(
 handler: ParticipantHoldHandler,
 participantId?: string
): void

Usage

voiceClient.offParticipantHold(handleParticipantHold);

Input

offParticipantHold() 177

Agent Workspace Developer guide

Parameter Type Description

handler Required ParticipantHoldHandler Event handler function to
remove

participantId string Optional participant ID to
unsubscribe from specific
participant events

Unsubscribe from participant resume events in Amazon Connect Agent
Workspace

Unsubscribes from participant resume events.

Signature

offParticipantResume(
 handler: ParticipantResumeHandler,
 participantId?: string
): void

Usage

voiceClient.offParticipantResume(handleParticipantResume);

Input

Parameter Type Description

handler Required ParticipantResumeHandler Event handler function to
remove

participantId string Optional participant ID to
unsubscribe from specific
participant events

offParticipantResume() 178

Agent Workspace Developer guide

Unsubscribe from self hold events in Amazon Connect Agent
Workspace

Unsubscribes from self hold events.

Signature

offSelfHold(
 handler: ParticipantHoldHandler,
 contactId?: string
): void

Usage

voiceClient.offSelfHold(handleSelfHold);

Input

Parameter Type Description

handler Required ParticipantHoldHandler Event handler function to
remove

contactId string Optional contact ID to
unsubscribe from specific
contact events

Unsubscribe from self resume events in Amazon Connect Agent
Workspace

Unsubscribes from self resume events.

Signature

offSelfResume(
 handler: ParticipantResumeHandler,
 contactId?: string

offSelfHold() 179

Agent Workspace Developer guide

): void

Usage

voiceClient.offSelfResume(handleSelfResume);

Input

Parameter Type Description

handler Required ParticipantResumeHandler Event handler function to
remove

contactId string Optional contact ID to
unsubscribe from specific
contact events

Unsubscribe from voice enhancement mode change events in Amazon
Connect Agent Workspace

Unsubscribes a callback function registered for voice enhancements mode changed event.

Signature

offVoiceEnhancementModeChanged(handler: VoiceEnhancementModeChangedHandler)

Usage

const handler: VoiceEnhancementModeChangedHandler = async (data:
 VoiceEnhancementModeChanged) => {
 console.log("User VoiceEnhancementMode changed! " + data);
}

// subscribe a callback for mode change
voiceClient.onVoiceEnhancementModeChanged(handler);

// unsubsribes a callback for mode change
voiceClient.offVoiceEnhancementModeChanged(handler);

offVoiceEnhancementModeChanged() 180

Agent Workspace Developer guide

Permissions required:

*

Subscribe to participant resume capability change events in Amazon
Connect Agent Workspace

Subscribes to events when a participant's capability to be resumed from hold changes.

Signature

onCanResumeParticipantChanged(
 handler: CanResumeParticipantChangedHandler,
 participantId?: string
): void

Usage

const handleCanResumeChanged = (event) => {
 console.log(`Participant ${event.participantId} resume capability:
 ${event.canResumeConnection}`);
 if (event.canResumeConnection) {
 // Enable resume button for this participant
 } else {
 // Disable resume button for this participant
 }
};
voiceClient.onCanResumeParticipantChanged(handleCanResumeChanged, "participant-456");

Input

Parameter Type Description

handler Required CanResumeParticipa
ntChangedHandler

Event handler function to call
when the capability changes

participantId string Optional participant ID to
filter events for a specific
participant

onCanResumeParticipantChanged() 181

Agent Workspace Developer guide

Subscribe to self resume capability change events in Amazon Connect
Agent Workspace

Subscribes to events when the current user's capability to be resumed from hold changes.

Signature

onCanResumeSelfChanged(
 handler: CanResumeParticipantChangedHandler,
 contactId?: string
): void

Usage

const handleCanResumeSelfChanged = (event) => {
 if (event.canResumeConnection) {
 console.log("You can now be resumed from hold");
 // Enable resume button in UI
 } else {
 console.log("You cannot be resumed at this time");
 // Disable resume button in UI
 }
};
voiceClient.onCanResumeSelfChanged(handleCanResumeSelfChanged, "contact-123");

Input

Parameter Type Description

handler Required CanResumeParticipa
ntChangedHandler

Event handler function to call
when the capability changes

contactId string Optional contact ID to filter
events for a specific contact

Subscribe to participant hold events in Amazon Connect Agent
Workspace

Subscribes to events when any participant is put on hold.

onCanResumeSelfChanged() 182

Agent Workspace Developer guide

Signature

onParticipantHold(
 handler: ParticipantHoldHandler,
 participantId?: string
): void

Usage

const handleParticipantHold = (event) => {
 console.log(`Participant ${event.participantId} is now on hold`);
 console.log(`Contact: ${event.contactId}`);
};
// Subscribe to all participants
voiceClient.onParticipantHold(handleParticipantHold);
// Or subscribe to a specific participant
voiceClient.onParticipantHold(handleParticipantHold, "participant-456");

Input

Parameter Type Description

handler Required ParticipantHoldHandler Event handler function to call
when participants are put on
hold

participantId string Optional participant ID to
filter events for a specific
participant

Subscribe to participant resume events in Amazon Connect Agent
Workspace

Subscribes to events when any participant is taken off hold.

Signature

onParticipantResume(

onParticipantResume() 183

Agent Workspace Developer guide

 handler: ParticipantResumeHandler,
 participantId?: string
): void

Usage

const handleParticipantResume = (event) => {
 console.log(`Participant ${event.participantId} has been resumed`);
};
voiceClient.onParticipantResume(handleParticipantResume, "participant-456");

Input

Parameter Type Description

handler Required ParticipantResumeHandler Event handler function to call
when participants are taken
off hold

participantId string Optional participant ID to
filter events for a specific
participant

Subscribe to self hold events in Amazon Connect Agent Workspace

Subscribes to events when the current user's participant is put on hold.

Signature

onSelfHold(
 handler: ParticipantHoldHandler,
 contactId?: string
): void

Usage

const handleSelfHold = (event) => {
 console.log("You have been put on hold");

onSelfHold() 184

Agent Workspace Developer guide

 console.log(`Contact: ${event.contactId}`);
};
// Subscribe to all contacts
voiceClient.onSelfHold(handleSelfHold);
// Or subscribe to a specific contact
voiceClient.onSelfHold(handleSelfHold, "contact-123");

Input

Parameter Type Description

handler Required ParticipantHoldHandler Event handler function to
call when the current user's
participant is put on hold

contactId string Optional contact ID to filter
events for a specific contact

Subscribe to self resume events in Amazon Connect Agent Workspace

Subscribes to events when the current user's participant is taken off hold.

Signature

onSelfResume(
 handler: ParticipantResumeHandler,
 contactId?: string
): void

Usage

const handleSelfResume = (event) => {
 console.log("You have been resumed from hold");
};
voiceClient.onSelfResume(handleSelfResume, "contact-123");

Input

onSelfResume() 185

Agent Workspace Developer guide

Parameter Type Description

handler Required ParticipantResumeHandler Event handler function to
call when the current user's
participant is taken off hold

contactId string Optional contact ID to filter
events for a specific contact

Subscribe to voice enhancement mode change events in Amazon
Connect Agent Workspace

Subscribes a callback function whenever voice enhancements mode is changed in user's profile.

Signature

onVoiceEnhancementModeChanged(handler: VoiceEnhancementModeChangedHandler)

Usage

const handler: VoiceEnhancementModeChangedHandler = async (data:
 VoiceEnhancementModeChanged) => {
 console.log("User VoiceEnhancementMode changed! " + data);
}

voiceClient.onVoiceEnhancementModeChanged(handler);

// VoiceEnhancementModeChanged structure
{
 voiceEnhancementMode: string
 previous: {
 voiceEnhancementMode: string
 }
}

Permissions required:

*

onVoiceEnhancementModeChanged() 186

Agent Workspace Developer guide

Resume a participant from hold in Amazon Connect Agent Workspace

Resumes a specific participant from hold.

Signature

resumeParticipant(participantId: string): Promise<void>

Usage

await voiceClient.resumeParticipant("participant-456");
console.log("Participant has been resumed");

Input

Parameter Type Description

participantId Required string The unique identifier for the
participant to resume

Set the voice enhancement mode in Amazon Connect Agent Workspace

Sets the voice enhancement mode of the user that's currently logged in to Amazon Connect agent
workspace. The voice enhancement mode can have the following values:

• VOICE_ISOLATION: it suppresses background noise and isolates the agent's voice. This mode
should only be enabled if the agent uses a wired headsets.

• NOISE_SUPPRESSION: it suppresses the background noise. We recommend using this mode with
any type of headset.

• NONE: no voice enhancement applies.

Signature

async setVoiceEnhancementMode(voiceEnhancementMode: VoiceEnhancementMode):
 Promise<void>

Usage

resumeParticipant() 187

Agent Workspace Developer guide

await voiceClient.setVoiceEnhancementMode(VoiceEnhancementMode.NOISE_SUPPRESSION);

Input

Parameter Type Description

voiceEnhancementMode
Required

VoiceEnhancementMode The mode to set on the user.
Values accepted: VOICE_ISO
LATION , NOISE_SUP
PRESSION , NONE

Permissions required:

*

setVoiceEnhancementMode() 188

Agent Workspace Developer guide

Document history for the Agent Workspace developer
guide

The following table describes the documentation releases for agent workspace.

Change Description Date

Integration of AWS-managed
applications and additional
APIs

Amazon Connect agent
workspace introduces support
for integrating AWS-manag
ed applications with existing
applications built using
Streams. For details, see
Building third-party services.

December 22, 2025

Enhanced third-party
capabilities and new
AppController API

Amazon Connect agent
workspace introduces support
for third-party services
and a new App Controlle
r API. Third-party services
are headless applications
that run in the backgroun
d of the agent workspace,
enabling automated tasks
and enhanced workflows
. The App Controller API
allows developers to manage
third-party applications
programmatically. For details,
see Building third-party
services and App Controller
API.

July 25, 2025

API version 1.0.5 API version 1.0.5 released.
For more information, see
the Amazon Connect agent

April 24, 2025

189

https://docs.aws.amazon.com/agentworkspace/latest/devguide/building-3P-services.html
https://docs.aws.amazon.com/agentworkspace/latest/devguide/building-3P-services.html
https://docs.aws.amazon.com/agentworkspace/latest/devguide/building-3P-services.html
https://docs.aws.amazon.com/agentworkspace/latest/devguide/api-reference-3P-apps-app-controller.html
https://docs.aws.amazon.com/agentworkspace/latest/devguide/api-reference-3P-apps-app-controller.html
https://docs.aws.amazon.com/agentworkspace/latest/devguide/api-reference-3P-apps-events-and-requests.html

Agent Workspace Developer guide

workspace API reference for
third-party applications.

Initial release Initial release of the agent
workspace developer guide

October 27, 2023

190

https://docs.aws.amazon.com/agentworkspace/latest/devguide/api-reference-3P-apps-events-and-requests.html
https://docs.aws.amazon.com/agentworkspace/latest/devguide/api-reference-3P-apps-events-and-requests.html

	Agent Workspace
	Table of Contents
	What is the Amazon Connect agent workspace?
	Are you a first-time Amazon Connect agent workspace user?
	How applications are loaded in Amazon Connect Agent Workspace
	Recommendations and best practices for Amazon Connect Agent Workspace
	Ensuring that apps can only be embedded in the Amazon Connect agent workspace
	Using multiple domains within an app
	Initializing Streams
	Accessibility
	Theming and styling

	Working with third-party applications in the Amazon Connect Agent Workspace
	Prerequisites for developing third-party applications for Amazon Connect Agent Workspace
	IAM role required for creating applications in Amazon Connect Agent Workspace

	Create your application for Amazon Connect Agent Workspace
	Install the Amazon Connect SDK for developing applications for Amazon Connect Agent Workspace
	Using the Amazon Connect SDK without a package manager
	Your responsibility
	Why a bundle is required
	Exposing the SDK as a global
	Available packages
	Building the script file
	Prerequisites
	Step 1: Create the build project directory
	Step 2: Initialize the npm project
	Step 3: Install the SDK packages you need
	Step 4: Install the bundler
	Step 5: Create the entry file
	Step 6: Add build scripts to package.json
	Step 7: Build the bundle
	Step 8: Copy the bundle to your project
	Complete build project structure

	Using the SDK with StreamsJS
	Prerequisites
	HTML setup
	JavaScript implementation
	Hosting Connect first-party apps (optional)
	Key points for StreamsJS integration

	Using the SDK in a 3P app
	Prerequisites
	HTML setup
	JavaScript implementation
	Key points for third-party apps

	Updating the bundle
	Troubleshooting
	Bundle is too large
	"AmazonConnectSDK is not defined" error
	Provider is undefined
	SDK methods not working

	Initialize the Amazon Connect SDK in your application for Amazon Connect Agent Workspace
	Events and requests in Amazon Connect Agent Workspace
	Authentication for applications in Amazon Connect Agent Workspace
	Integrate application with Amazon Connect Agent Workspace agent data
	Example agent event
	Example agent request

	Integrate application with Amazon Connect Agent Workspace contact data
	Contact scope
	Example contact event
	Example contact request

	Application lifecycle events in Amazon Connect Agent Workspace
	The create event in Amazon Connect Agent Workspace
	The destroy event in Amazon Connect Agent Workspace

	Apply a theme to your application in Amazon Connect Agent Workspace

	Test your application for Amazon Connect Agent Workspace locally
	Creating an application and associating to your instance

	Test a deployed version of your application for Amazon Connect Agent Workspace
	Handle application errors in Amazon Connect Agent Workspace
	Troubleshoot application setup in Amazon Connect Agent Workspace
	Events
	Requests

	Building third-party services in the Amazon Connect Agent Workspace
	What is a third-party (3P) service?
	Why use a third-party service?
	Common use cases for 3P services
	Understanding when to use each option
	When to use a third-party application
	When to use a third-party service

	Agent workspace startup process
	Creating a third-party service
	Third-party service setup
	AWS console setup

	Service implementation patterns
	Launching an application on startup
	Contact event listening with application launching functionality
	Authentication popup functionality

	Best practices and recommendations
	Service creation management
	Authentication
	Service coordination

	Integrating AWS-managed applications with Amazon Connect Streams
	Amazon Connect Streams
	AWS-managed applications
	Amazon Connect SDK
	AppManager
	Integration architecture
	Implementation guide
	Prerequisites
	Step 1: Install required packages
	Step 2: Add the AppManager plugin in CCP initialization
	Step 3: Embed a page for AWS-managed application
	Step 4: Launch AWS-managed application
	Step 5: Build and deploy

	Retrieve available applications
	Application lifecycle management
	Managing application lifecycle
	Handle lifecycle events

	Advanced configuration
	Prevent duplicate application instances
	Dynamic application launch and management
	Attach metadata to appHost
	Support Global Resiliency

	Example implementation of dynamic application management with React
	Iframe container component
	Application container component

	Troubleshooting
	Application launch failures
	Application not appearing in catalog

	Amazon Connect Agent Workspace API reference
	Amazon Connect Agent Workspace Activity API
	Unsubscribe a callback function from the expiration warning event
	Unsubscribe a callback function from the expiration warning cleared event
	Unsubscribe a callback function from the session extension error event
	Subscribe to session expiration warning event in Amazon Connect Agent Workspace
	Subscribe to expiration warning cleared event in Amazon Connect Agent Workspace
	Subscribe to session extension errors in Amazon Connect Agent Workspace
	Inform Amazon Connect that the agent is active

	Amazon Connect Agent Workspace Agent API
	Get the ARN of the agent in Amazon Connect Agent Workspace
	Get the limit of contacts for the agent in Amazon Connect Agent Workspace
	Get the extension of the agent in Amazon Connect Agent Workspace
	Get the name of the agent in Amazon Connect Agent Workspace
	Get the routing profile of the agent in Amazon Connect Agent Workspace
	Get the current state of the agent in Amazon Connect Agent Workspace
	Get all the availability states configured for the current agent in Amazon Connect Agent Workspace
	Get the list of Quick Connect endpoints associated with a given queue in Amazon Connect Agent Workspace
	Unsubscribe from agent enabled channel list changes in Amazon Connect Agent Workspace
	Unsubscribe from agent routing profile changes in Amazon Connect Agent Workspace
	Subscribe to agent enabled channel list changes in Amazon Connect Agent Workspace
	Subscribe to agent routing profile changes in Amazon Connect Agent Workspace
	Set the agent state with the given agent state ARN in Amazon Connect Agent Workspace
	Set the agent state with the given agent state name in Amazon Connect Agent Workspace
	Sets the agent state to Offline in Amazon Connect Agent Workspace
	Subscribe a callback function when an Amazon Connect Agent Workspace agent state changes
	Unsubscribe a callback function when an Amazon Connect Agent Workspace agent state changes

	Amazon Connect Agent Workspace AppController API
	Close an application in Amazon Connect Agent Workspace
	Focus an application in Amazon Connect Agent Workspace
	Get application information in Amazon Connect Agent Workspace
	Get the application catalog in Amazon Connect Agent Workspace
	Get the application configuration in Amazon Connect Agent Workspace
	Get all active application information in Amazon Connect Agent Workspace
	Launch an application in Amazon Connect Agent Workspace

	Amazon Connect Agent Workspace Contact API
	Accept the incoming contact for the given contactId in Amazon Connect Agent Workspace
	Add another participant to a contact in Amazon Connect Agent Workspace
	Clears the contact for the given contactId in Amazon Connect Agent Workspace
	Creates a subscription whenever a contact cleared event occurs in Amazon Connect Agent Workspace
	Unsubscribes the callback function from the contact cleared event in Amazon Connect Agent Workspace
	Subscribe a callback function when an Amazon Connect Agent Workspace contact is connected
	Unsubscribe a callback function when an Amazon Connect Agent Workspace contact is connected
	Disconnect a participant from a contact in Amazon Connect Agent Workspace
	Engage the preview contact for the given contactId in Amazon Connect Agent Workspace
	Get specific attributes for a contact in Amazon Connect Agent Workspace
	Get the attributes of a contact in Amazon Connect Agent Workspace
	Get the type of contact in Amazon Connect Agent Workspace
	Get detailed contact information in Amazon Connect Agent Workspace
	Get the initial ID of the contact in Amazon Connect Agent Workspace
	Get specific participant information in Amazon Connect Agent Workspace
	Get participant state in Amazon Connect Agent Workspace
	Get preview configuration for the given contactId in Amazon Connect Agent Workspace
	Get the queue of the contact in Amazon Connect Agent Workspace
	Get the timestamp of the contact in Amazon Connect Agent Workspace
	Get the duration of the contact state in Amazon Connect Agent Workspace
	Check if contact is in preview mode in Amazon Connect Agent Workspace
	List all contacts for the current agent in Amazon Connect Agent Workspace
	List all participants for a contact in Amazon Connect Agent Workspace
	Subscribe a callback function when an Amazon Connect Agent Workspace contact is missed
	Unsubscribe a callback function when an Amazon Connect Agent Workspace contact is missed
	Unsubscribe from incoming contact events in Amazon Connect Agent Workspace
	Subscribe to incoming contact events in Amazon Connect Agent Workspace
	Subscribe to participant added events in Amazon Connect Agent Workspace
	Unsubscribe from participant added events in Amazon Connect Agent Workspace
	Subscribe to participant disconnected events in Amazon Connect Agent Workspace
	Unsubscribe from participant disconnected events in Amazon Connect Agent Workspace
	Subscribe to participant state change events in Amazon Connect Agent Workspace
	Subscribe a callback function when an Amazon Connect Agent Workspace contact starts ACW
	Unsubscribe a callback function when an Amazon Connect Agent Workspace contact starts ACW
	Transfer a contact to another agent in Amazon Connect Agent Workspace

	Amazon Connect Agent Workspace Email API
	Subscribe to accepted email notifications in Amazon Connect Agent Workspace
	Unsubscribe from accepted email notifications in Amazon Connect Agent Workspace
	Create a draft email contact in Amazon Connect Agent Workspace
	Subscribe to draft email creation notifications in Amazon Connect Agent Workspace
	Unsubscribe from draft email creation notifications in Amazon Connect Agent Workspace
	Get the metadata for an email contact in Amazon Connect Agent Workspace
	Get a list of email contacts in an email contact's tree in Amazon Connect Agent Workspace
	Send a draft email contact in Amazon Connect Agent Workspace

	Amazon Connect Agent Workspace File API
	Get metadata about multiple attached files in Amazon Connect Agent Workspace
	Confirm that an attached file has been uploaded in Amazon Connect Agent Workspace
	Delete an attached file in Amazon Connect Agent Workspace
	Get a pre-signed S3 URL to download an approved attached file in Amazon Connect Agent Workspace
	Start uploading a file to Amazon Connect Agent Workspace

	Amazon Connect Agent Workspace Message Template API
	Get content of a message template in Amazon Connect Agent Workspace
	Determine if the Message Template feature is enabled in Amazon Connect Agent Workspace
	Retrieve message templates that match a search query in Amazon Connect Agent Workspace

	Amazon Connect Agent Workspace Quick Responses API
	Determine if the Quick Responses feature is enabled in Amazon Connect Agent Workspace
	Retrieve quick responses that match a search query in Amazon Connect Agent Workspace

	Amazon Connect Agent Workspace User API
	Get the language of a user in Amazon Connect Agent Workspace
	Subscribe a callback function when an Amazon Connect Agent Workspace user changes languages
	Unsubscribe a callback function when an Amazon Connect Agent Workspace user changes languages

	Amazon Connect Agent Workspace Voice API
	Check if a participant can be resumed from hold in Amazon Connect Agent Workspace
	Check if the current user can be resumed from hold in Amazon Connect Agent Workspace
	Conference all participants on a contact in Amazon Connect Agent Workspace
	Create an outbound call to phone number in Amazon Connect Agent Workspace
	Gets the phone number of the initial customer connection in Amazon Connect Agent Workspace
	Gets the outbound call permission configured for the agent in Amazon Connect Agent Workspace
	Place a participant on hold in Amazon Connect Agent Workspace
	Get the voice enhancement mode in Amazon Connect Agent Workspace
	Get voice enhancement model paths in Amazon Connect Agent Workspace
	Check if a participant is on hold in Amazon Connect Agent Workspace
	Get a list of dialable countries in Amazon Connect Agent Workspace
	Unsubscribe from participant resume capability change events in Amazon Connect Agent Workspace
	Unsubscribe from self resume capability change events in Amazon Connect Agent Workspace
	Unsubscribe from participant hold events in Amazon Connect Agent Workspace
	Unsubscribe from participant resume events in Amazon Connect Agent Workspace
	Unsubscribe from self hold events in Amazon Connect Agent Workspace
	Unsubscribe from self resume events in Amazon Connect Agent Workspace
	Unsubscribe from voice enhancement mode change events in Amazon Connect Agent Workspace
	Subscribe to participant resume capability change events in Amazon Connect Agent Workspace
	Subscribe to self resume capability change events in Amazon Connect Agent Workspace
	Subscribe to participant hold events in Amazon Connect Agent Workspace
	Subscribe to participant resume events in Amazon Connect Agent Workspace
	Subscribe to self hold events in Amazon Connect Agent Workspace
	Subscribe to self resume events in Amazon Connect Agent Workspace
	Subscribe to voice enhancement mode change events in Amazon Connect Agent Workspace
	Resume a participant from hold in Amazon Connect Agent Workspace
	Set the voice enhancement mode in Amazon Connect Agent Workspace

	Document history for the Agent Workspace developer guide

