
Developer Guide

Amazon Elastic Container Service

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Elastic Container Service Developer Guide

Amazon Elastic Container Service: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Elastic Container Service Developer Guide

Table of Contents

What is Amazon ECS? .. 1
Terminology and components ... 1
Features .. 3
Provisioning .. 3
Pricing ... 4
Related services .. 4

Getting started .. 5
Set up .. 5

AWS Management Console ... 5
Sign up for an AWS account .. 6
Create a user with administrative access ... 6
Create a virtual private cloud ... 8
Create a security group ... 8
Create the credentials to connect to your EC2 instance ... 12
Install the AWS CLI ... 13
Next steps for using Amazon ECS ... 14

Creating a container image .. 14
Prerequisites ... 15
Create a Docker image .. 16
Push your image to Amazon Elastic Container Registry ... 19
Clean up .. 20
Next steps ... 20

Learn how to create a Linux task for the Fargate launch type ... 21
Prerequisites ... 21
Step 1: Create the cluster ... 22
Step 2: Create a task definition ... 23
Step 3: Create the service ... 24
Step 4: View your service .. 24
Step 5: Clean up ... 25

Learn how to create a Windows task for the Fargate launch type .. 25
Prerequisites ... 25
Step 1: Create a cluster ... 26
Step 2: Register a Windows task definition .. 27
Step 3: Create a service with your task definition ... 28

iii

Amazon Elastic Container Service Developer Guide

Step 4: View your service .. 29
Step 5: Clean Up ... 29

Learn how to create a Windows task for the EC2 launch type ... 30
Prerequisites ... 30
Step 1: Create a cluster ... 31
Step 2: Register a task definition .. 33
Step 3: Create a Service .. 34
Step 4: View your Service ... 34
Step 5: Clean Up ... 35

Using the AWS CDK ... 36
Step 1: Set up your AWS CDK project .. 37
Step 2: Use the AWS CDK to define a containerized web server on Fargate 39
Step 3: Test the web server ... 47
Step 4: Clean up ... 47
Next steps ... 47

Creating resources using the AWS Copilot CLI .. 48
Installing the AWS Copilot CLI ... 49
Deploying a sample Amazon ECS application using the AWS Copilot CLI 57

Amazon ECS with AWS CloudFormation ... 60
Example AWS CloudFormation templates .. 61

Task definitions ... 61
Clusters .. 73
Services ... 86
IAM roles for Amazon ECS ... 143

Creating Amazon ECS resources using the AWS CloudFormation console 146
Prerequisites .. 146
Step 1: Create a stack template .. 146
Step 2: Create a stack for Amazon ECS resources ... 152
Step 3: Verify ... 153
Step 4: Clean up resources ... 154

Creating Amazon ECS resources using AWS CLI commands for AWS CloudFormation 154
Prerequisites .. 154
Step 1: Create a stack ... 154
Step 2: Verify resource creation .. 161
Step 3: Clean up ... 162

Best practices ... 163

iv

Amazon Elastic Container Service Developer Guide

AWS Fargate ... 167
Walkthroughs .. 167
Capacity providers ... 168
Task definitions .. 168
Platform versions ... 168
Service load balancing .. 169
Usage metrics ... 169
Security considerations for when to use the Fargate launch type .. 169
Fargate security best practices ... 170

Use AWS KMS to encrypt ephemeral storage for Fargate ... 170
SYS_PTRACE capability for kernel syscall tracing with Fargate .. 170
Use Amazon GuardDuty with Fargate Runtime Monitoring .. 171
Fargate security considerations ... 171

Fargate platform versions .. 172
.. 172
Migrating to Linux platform version 1.4.0 .. 174
Linux Platform version change log ... 174
Linux platform version deprecation ... 177
Windows platform version change log .. 179

Windows containers on Fargate considerations for Amazon ECS .. 180
Fargate task ephemeral storage ... 181

Fargate Linux container platform versions ... 181
Fargate Windows container platform versions ... 182
Customer managed keys for AWS Fargate ephemeral storage ... 183

Task retirement and maintenance ... 195
Task retirement notice overview ... 197
Can I opt-out of task retirement? ... 200
Can I get task retirement notifications through other AWS services? 200
Can I change a task retirement after it is scheduled? .. 200
How does Amazon ECS handle tasks that are part of a service? .. 201
Can Amazon ECS automatically handle standalone tasks? .. 201
Prepare for AWS Fargate task retirement on Amazon ECS .. 201

AWS Fargate Regions .. 204
Linux containers on AWS Fargate ... 204
Windows containers on AWS Fargate .. 206

Architect your solution for Amazon ECS .. 209

v

Amazon Elastic Container Service Developer Guide

Capacity .. 210
Service endpoints ... 211
Networking .. 211
Feature access ... 212
IAM roles .. 213
Logging .. 213
Launch types ... 213

Fargate launch type ... 214
EC2 launch type .. 218
External launch type .. 221

Using dual-stack endpoints ... 222
Using dual-stack endpoints (AWS CLI) ... 223
Using dual-stack endpoints (AWS SDKs) ... 223
Using dual-stack endpoints from the REST API ... 224

Applications in shared subnets, Local Zones, and Wavelength Zones .. 225
Shared subnets .. 225
Local Zones .. 226
Wavelength Zones .. 227

Amazon Elastic Container Service on AWS Outposts ... 228
Considerations ... 228
Prerequisites .. 228
Overview of cluster creation on AWS Outposts ... 229

Optimize capacity and availability ... 231
Maximizing scaling speed ... 232
Handling demand shocks .. 234

Networking best practices ... 235
Connect applications to the internet ... 236
Best practices for receiving inbound connections to Amazon ECS ... 240
Best practices for connecting to AWS services .. 245
Best practices for connecting services ... 248
Best practices for networking services across AWS accounts and VPCs 253
AWS services for networking troubleshooting ... 254

Access features with account settings ... 255
Amazon Resource Names (ARNs) and IDs ... 256
ARN and resource ID format timeline .. 258
Container Insights .. 259

vi

Amazon Elastic Container Service Developer Guide

AWS Fargate Federal Information Processing Standard (FIPS-140) compliance 261
Tagging authorization ... 262
Tagging authorization timeline ... 263
AWS Fargate task retirement wait time .. 264
Increase Linux container instance network interfaces .. 265
Runtime Monitoring (Amazon GuardDuty integration) .. 266
Dual stack IPv6 VPC ... 266
Default log driver mode ... 267
Viewing account settings using the console ... 267
Modifying account settings .. 268
Reverting to the default account settings .. 269
Managing account settings using the AWS CLI .. 270

IAM roles for Amazon ECS ... 271
Task definitions ... 275

Task definition states .. 276
Amazon ECS resources that can block a deletion .. 277

Architect your application .. 278
Best practices for container images ... 279
Best practices for task sizes ... 281
Task networking for the EC2 launch type ... 282
Task networking for the Fargate launch type .. 294
Storage options for tasks ... 298
Managing container swap memory space ... 384
Task definition differences for the Fargate launch type ... 386
Task definition differences for EC2 instances running Windows .. 394

Creating a task definition using the console ... 395
JSON validation .. 395
AWS CloudFormation stacks .. 395
Procedure .. 396

Updating a task definition using the console .. 423
JSON validation .. 424
Procedure .. 424

Deregistering a task definition revision using the console ... 425
AWS CloudFormation stacks .. 395
Procedure .. 426

Deleting a task definition revision using the console .. 427

vii

Amazon Elastic Container Service Developer Guide

Amazon ECS resources that can block a deletion .. 277
Procedure .. 428

Task definition use cases .. 428
Task definitions for GPU workloads ... 429
Task definitions for video trancoding workloads ... 439
Task definitions for AWS Neuron machine learning workloads .. 452
Task definitions for deep learning instances .. 460
Task definitions for 64-bit ARM workloads .. 463
Send logs to CloudWatch ... 465
Send logs to an AWS service or AWS Partner .. 468
Using non-AWS container images ... 482
Restart individual containers in tasks .. 485
Pass sensitive data to a container .. 487

Task definition parameters for the Fargate launch type ... 510
Family .. 510
Launch types ... 511
Task role ... 511
Task execution role .. 511
Network mode .. 512
Runtime platform ... 513
Task size .. 514
Container definitions ... 517
Elastic Inference accelerator name ... 562
Proxy configuration .. 562
Volumes .. 564
Tags .. 571
Other task definition parameters ... 572

Task definition parameters for the EC2 launch type .. 574
Family .. 575
Launch types ... 575
Task role ... 576
Task execution role .. 576
Network mode .. 576
Runtime platform ... 578
Task size .. 579
Container definitions ... 580

viii

Amazon Elastic Container Service Developer Guide

Elastic Inference accelerator name ... 629
Task placement constraints .. 629
Proxy configuration .. 630
Volumes .. 632
Tags .. 639
Other task definition parameters ... 640

Task definition template .. 642
Example task definitions .. 653

Webserver ... 653
splunk log driver .. 655
fluentd log driver .. 656
gelf log driver ... 657
Workloads on external instances .. 657
Amazon ECR image and task definition IAM role .. 659
Entrypoint with command .. 659
Container dependency ... 660
Volumes in task definitions .. 662
Windows sample task definitions ... 662

Clusters ... 664
Capacity providers ... 665
Clusters for Fargate ... 666

Fargate Spot termination notices ... 668
Creating a cluster for the Fargate launch type .. 669

Capacity providers for the EC2 launch type .. 672
EC2 container instance security ... 674
Creating a cluster for the Amazon EC2 launch type ... 675
Cluster auto scaling ... 680
Amazon EC2 container instances .. 713

Clusters for the external launch type .. 849
Supported operating systems and system architectures ... 849
Considerations ... 850
Creating a cluster for the External launch type ... 854
Registering an external instance to an Amazon ECS cluster ... 856
Deregistering an external instance ... 862
Updating the AWS Systems Manager agent and Amazon ECS container agent 868

Updating a cluster ... 873

ix

Amazon Elastic Container Service Developer Guide

Deleting a cluster ... 874
Deregistering a container instance ... 875

Procedure .. 876
Container instance draining ... 877

Draining behavior for services ... 877
Draining behavior for standalone tasks ... 878
Procedure .. 879

Container agent .. 879
Lifecycle .. 880
Amazon ECS-optimized AMI ... 881
Additional information .. 881
Container agent configuration .. 881
Installing the Amazon ECS container agent ... 885
Container agent log configuration parameters .. 890
Configuring container instances for private Docker images .. 894
Clean up tasks and images .. 899

Schedule your containers .. 901
Compute options ... 903
Task lifecycle ... 904

Lifecycle states .. 905
How Amazon ECS places tasks on container instances .. 907

EC2 launch type .. 907
Fargate launch type ... 908
Use strategies to define task placement ... 908
Group related tasks .. 914
Define which container instances are used for tasks .. 915

Standalone tasks .. 925
Task workflow ... 926
Optimize task launch time ... 926
Running an application as a task .. 928
Using Amazon EventBridge Scheduler to schedule tasks .. 938
Stopping a task ... 945

Services .. 947
Daemon strategy .. 948
Replica strategy .. 950
Availability Zone rebalancing ... 951

x

Amazon Elastic Container Service Developer Guide

Creating a service ... 958
Update Amazon ECS service parameters .. 985
Updating a blue/green deployment .. 1009
Deleting a service ... 1010
Rolling update deployments .. 1011
Blue/green deployments .. 1044
External deployments ... 1064
Use load balancing to distribute service traffic ... 1072
Service auto scaling ... 1086
Interconnect services ... 1129
Task scale-in protection .. 1187
Fault injection with Amazon ECS and Fargate ... 1195
Migrate a service short ARN .. 1204
Service throttle logic ... 1209
Service definition parameters .. 1211
Service definition template .. 1238

Tagging resources .. 1246
How resources are tagged ... 1246
Tagging resources on creation .. 1249
Restrictions .. 1250
Amazon ECS-managed tags .. 1250
Use tags for billing ... 1251
Adding tags to resources ... 1252
Adding tags to a container instance ... 1254

External container instances .. 1256
Usage Reports .. 1256

Task-level cost and usage .. 1258
Monitoring ... 1260

Best practices for monitoring Amazon ECS ... 1261
Monitoring tools .. 1261

Automated Tools .. 1261
Manual Tools ... 1263

Monitor Amazon ECS using CloudWatch .. 1264
Considerations ... 1264
Recommended metrics .. 1265
Viewing Amazon ECS metrics .. 1266

xi

Amazon Elastic Container Service Developer Guide

Amazon ECS CloudWatch metrics .. 1267
AWS Fargate usage metrics ... 1294
Amazon ECS cluster reservation metrics ... 1295
Amazon ECS cluster utilization metrics ... 1297
Amazon ECS service utilization metrics ... 1299

Automate responses to Amazon ECS errors using EventBridge ... 1302
Amazon ECS events ... 1303
Handling events .. 1326

Monitor Amazon ECS containers using Container Insights with enhanced observability 1330
Determine task health using container health checks ... 1331

How task health is determined ... 1333
Health checks and agent disconnects .. 1334
View container health ... 1334

Monitor Amazon ECS container instance health ... 1335
Container instance-health issues .. 1336

Identify Amazon ECS optimization opportunities using application trace data 1336
Required IAM permissions for AWS Distro for OpenTelemetry integration with AWS X-
Ray ... 1336
Specifying the AWS Distro for OpenTelemetry sidecar for AWS X-Ray integration in your
task definition ... 1338

Correlate Amazon ECS application performance using application metrics 1339
Exporting application metrics to Amazon CloudWatch ... 1340
Exporting application metrics to Amazon Managed Service for Prometheus 1344

Log Amazon ECS API calls using AWS CloudTrail ... 1348
Amazon ECS management events in CloudTrail .. 1350
Amazon ECS event examples .. 1350

Monitor workloads using metadata ... 1352
Environment variables ... 1353
Container metadata file .. 1354
Task metadata available for Amazon ECS tasks on EC2 .. 1360
Task metadata available for tasks on Fargate ... 1403
Container introspection .. 1426

Identify unauthorized behavior using Runtime Monitoring ... 1428
How Runtime Monitoring works with Amazon ECS .. 1429
Considerations ... 1430
Resource utilization .. 1431

xii

Amazon Elastic Container Service Developer Guide

Runtime Monitoring for Fargate workloads ... 1431
Runtime Monitoring for EC2 workloads .. 1434
Troubleshooting Runtime Monitoring .. 1439

Monitor Amazon ECS containers with ECS Exec ... 1442
Considerations ... 1443
Prerequisites .. 1445
Architecture ... 1445
Using ECS Exec ... 1446
Logging using ECS Exec .. 1448
Using IAM policies to limit access to ECS Exec .. 1452

Compute Optimizer recommendations ... 1456
Task size recommendations for Fargate .. 1456

Troubleshooting ... 1457
Resolve stopped task errors .. 1460

Stopped task error messages updates ... 1460
Viewing stopped task errors .. 1465
Stopped tasks error messages .. 1467
Verifying task connectivity ... 1486

Viewing IAM role requests ... 1490
Viewing service event messages .. 1491

Amazon ECS service event messages .. 1492
Amazon ECS Availability Zone service rebalancing service event messages 1503

Troubleshooting service load balancers in Amazon ECS ... 1505
Troubleshooting service auto scaling in Amazon ECS ... 1507
Troubleshoot task definition invalid CPU or memory errors .. 1507
Viewing container agent logs ... 1509
Collecting container logs with Amazon ECS logs collector .. 1511
Agent introspection ... 1513
Docker diagnostics in Amazon ECS ... 1516

List Docker containers in Amazon ECS .. 1516
View Docker Logs in Amazon ECS .. 1517
Inspect Docker Containers in Amazon ECS ... 1518

Configuring verbose output from the Docker daemon in Amazon ECS 1519
Troubleshoot the Docker API error (500): devmapper in Amazon ECS 1520
Troubleshoot ECS Exec issues ... 1522

Verify using the Exec Checker ... 1522

xiii

Amazon Elastic Container Service Developer Guide

Error when calling execute-command ... 1522
Troubleshoot Amazon ECS Anywhere issues ... 1522

External instance registration issues .. 1523
External instance network issues .. 1524
Issues running tasks .. 1524

AWS Fargate throttling quotas ... 1524
Throttling the RunTask API in Fargate ... 1525
Adjusting rate quotas in Fargate .. 1526

Handle throttling issues ... 1526
Synchronous throttling ... 1526
Asynchronous throttling ... 1526
Monitor throttling .. 1527
Use CloudWatch to monitor throttling ... 1528

API failure reasons .. 1529
Security .. 1540

Identity and Access Management .. 1541
Audience ... 1541
Authenticating with identities ... 1542
Managing access using policies ... 1545
How Amazon Elastic Container Service works with IAM .. 1548
Identity-based policy examples ... 1559
AWS managed policies for Amazon ECS ... 1571
Using service-linked roles ... 1582
IAM roles for Amazon ECS ... 1586
Permissions required for the Amazon ECS console ... 1644
IAM permissions required for Amazon ECS service auto scaling .. 1652
Tag resources during creation ... 1654
Troubleshooting .. 1658
IAM best practices .. 1660

Logging and Monitoring .. 1663
Compliance validation .. 1665

Compliance and security best practices .. 1666
AWS Fargate FIPS-140 compliance .. 1668

AWS Fargate FIPS-140 Considerations .. 1668
Use FIPS on Fargate .. 1668
Use CloudTrail for Fargate FIPS-140 auditing .. 1669

xiv

Amazon Elastic Container Service Developer Guide

Infrastructure Security .. 1670
Interface VPC endpoints (AWS PrivateLink) ... 1671

Shared responsibility model .. 1678
Fargate launch type ... 1678
EC2 launch type ... 1679

Network security best practices ... 1680
Encryption in transit .. 1680
Task networking ... 1681
AWS PrivateLink and Amazon ECS ... 1682
Container agent settings .. 1683
Network security recommendations .. 1683

Task and container security best practices .. 1685
Create minimal or use distroless images .. 1685
Scan your images for vulnerabilities .. 1686
Remove special permissions from your images ... 1688
Create a set of curated images ... 1688
Scan application packages and libraries for vulnerabilities ... 1686
Perform static code analysis .. 1689
Run containers as a non-root user ... 1689
Use a read-only root file system .. 1689
Configure tasks with CPU and Memory limits (Amazon EC2) ... 1690
Use immutable tags with Amazon ECR ... 1690
Avoid running containers as privileged (Amazon EC2) ... 1690
Remove unnecessary Linux capabilities from the container ... 1691
Use a customer managed key (CMK) to encrypt images pushed to Amazon ECR 1691

Tutorials ... 1693
Creating a Linux task for the Fargate launch type with the AWS CLI ... 1695

Prerequisites .. 1696
Step 1: Create a Cluster .. 1697
Step 2: Register a Linux Task Definition ... 1698
Step 3: List Task Definitions .. 1699
Step 4: Create a Service ... 1699
Step 5: List Services .. 1700
Step 6: Describe the Running Service .. 1701
Step 7: Test ... 1703
Step 8: Clean Up .. 1707

xv

Amazon Elastic Container Service Developer Guide

Creating a Windows task for the Fargate launch type with the AWS CLI 1707
Prerequisites .. 1708
Step 1: Create a Cluster .. 1708
Step 2: Register a Windows Task Definition ... 1709
Step 3: List task definitions ... 1711
Step 4: Create a service .. 1711
Step 5: List services ... 1712
Step 6: Describe the Running Service .. 1712
Step 7: Clean Up .. 1714

Creating a task for the EC2 launch type with the AWS CLI .. 1715
Prerequisites .. 1716
Create a cluster ... 1716
Launch a container instance with the Amazon ECS AMI .. 1717
List container instances .. 1719
Describe your container instance .. 1720
Register a task definition ... 1723
List task definitions ... 1725
Create a service .. 1725
List services ... 1726
Describe the service ... 1726
Describe the running task .. 1727
Test the web server ... 1728
Clean up resources ... 1729

Configuring Amazon ECS to listen for CloudWatch Events events ... 1731
Prerequisite: Set up a test cluster .. 1731
Step 1: Create the Lambda function ... 1731
Step 2: Register an event rule ... 1732
Step 3: Create a task definition .. 1733
Step 4: Test your rule .. 1734

Sending Amazon Simple Notification Service alerts for task stopped events 1735
Prerequisite: Set up a test cluster .. 1735
Prerequisite: Configure permissions for Amazon SNS .. 1735
Step 1: Create and subscribe to an Amazon SNS topic .. 1735
Step 2: Register an event rule ... 1736
Step 3: Test your rule .. 1737

Concatenating multiline or stack-trace log messages ... 1738

xvi

Amazon Elastic Container Service Developer Guide

Required IAM permissions .. 1739
Determine when to use the multiline log setting ... 1740
Parse and concatenate options ... 1742

Deploying Fluent Bit on Windows containers ... 1761
Prerequisites .. 1763
Step 1: Create the IAM access roles ... 1764
Step 2: Create an Amazon ECS Windows container instance .. 1765
Step 3: Configure Fluent Bit .. 1766
Step 4: Register a Windows Fluent Bit task definition which routes the logs to
CloudWatch ... 1768
Step 5: Run the ecs-windows-fluent-bit task definition as an Amazon ECS service
using the daemon scheduling strategy ... 1770
Step 6: Register a Windows task definition which generates the logs 1771
Step 7: Run the windows-app-task task definition .. 1772
Step 8: Verify the logs on CloudWatch ... 1773
Step 9: Clean up ... 1774

Using gMSA for EC2 Linux containers ... 1775
Considerations ... 1775
Prerequisites .. 1776
Setup ... 1777
CredSpec file ... 1784

Using gMSA for Linux containers on Fargate .. 1785
Considerations ... 1785
Prerequisites .. 1786
Setup ... 1786
CredSpec file ... 1789

Using Windows containers with domainless gMSA using the AWS CLI 1791
Prerequisites .. 1792
Step 1: Create and configure the gMSA account on Active Directory Domain Services (AD
DS) ... 1793
Step 2: Upload Credentials to Secrets Manager .. 1795
Step 3: Modify your CredSpec JSON to include domainless gMSA information 1796
Step 4: Upload CredSpec to Amazon S3 ... 1797
Step 5: (Optional) Create an Amazon ECS cluster ... 1798
Step 6: Create an IAM role for container instances .. 1798
Step 7: Create a custom task execution role .. 1798

xvii

Amazon Elastic Container Service Developer Guide

Step 8: Create a task role for Amazon ECS Exec ... 1800
Step 9: Register a task definition ... 1801
Step 10: Register a Windows container instance .. 1803
Step 11: Verify the container instance .. 1803
Step 12: Run a Windows task ... 1805
Step 13: Verify the container has gMSA credentials .. 1805
Step 14: Clean up .. 1806
Debugging .. 1807

Learn how to use gMSAs for EC2 Windows containers ... 1808
Considerations ... 1809
Prerequisites .. 1810
Setup ... 1811

Using Image Builder to build customized Amazon ECS-optimized AMIs 1816
Using the image ARN with infrastructure as code (IaC) ... 1818
Using the image ARN with AWS CloudFormation ... 1820
Using the image ARN with Terraform ... 1821

Using AWS Deep Learning Containers .. 1822
Service quotas ... 1823

Managing your service quotas in the AWS Management Console .. 1823
Handle service quotas and API throttling limits ... 1825

Elastic Load Balancing .. 1826
Elastic network interfaces .. 1827
AWS Cloud Map .. 1829

Amazon ECS API reference ... 1830
Document history .. 1831

xviii

Amazon Elastic Container Service Developer Guide

What is Amazon Elastic Container Service?

Amazon Elastic Container Service (Amazon ECS) is a fully managed container orchestration service
that helps you easily deploy, manage, and scale containerized applications. As a fully managed
service, Amazon ECS comes with AWS configuration and operational best practices built-in. It's
integrated with both AWS tools, such as Amazon Elastic Container Registry, and third-party tools,
such as Docker. This integration makes it easier for teams to focus on building the applications, not
the environment. You can run and scale your container workloads across AWS Regions in the cloud,
and on-premises, without the complexity of managing a control plane.

Terminology and components

There are three layers in Amazon ECS:

• Capacity - The infrastructure where your containers run

• Controller - Deploy and manage your applications that run on the containers

• Provisioning - The tools that you can use to interface with the scheduler to deploy and manage
your applications and containers

The following diagram shows the Amazon ECS layers.

Terminology and components 1

Amazon Elastic Container Service Developer Guide

The capacity is the infrastructure where your containers run. The following is an overview of the
capacity options:

• Amazon EC2 instances in the AWS cloud

You choose the instance type, the number of instances, and manage the capacity.

• Serverless (AWS Fargate) in the AWS cloud

Fargate is a serverless, pay-as-you-go compute engine. With Fargate you don't need to manage
servers, handle capacity planning, or isolate container workloads for security.

• On-premises virtual machines (VM) or servers

Amazon ECS Anywhere provides support for registering an external instance such as an on-
premises server or virtual machine (VM), to your Amazon ECS cluster.

The Amazon ECS scheduler is the software that manages your applications.

Terminology and components 2

Amazon Elastic Container Service Developer Guide

Features

Amazon ECS provides the following high-level features:

Task definition

The blueprint for the application.

Cluster

The infrastructure your application runs on.

Task

An application such as a batch job that performs work, and then stops.

Service

A long running stateless application.

Account Setting

Allows access to features.

Cluster Auto Scaling

Amazon ECS manages the scaling of Amazon EC2 instances that are registered to your cluster.

Service Auto Scaling

Amazon ECS increases or decreases the desired number of tasks in your service automatically.

Provisioning

There are multiple options for provisioning Amazon ECS:

• AWS Management Console — Provides a web interface that you can use to access your Amazon
ECS resources.

• AWS Command Line Interface (AWS CLI) — Provides commands for a broad set of AWS services,
including Amazon ECS. It's supported on Windows, Mac, and Linux. For more information, see
AWS Command Line Interface.

• AWS SDKs — Provides language-specific APIs and takes care of many of the connection details.
These include calculating signatures, handling request retries, and error handling. For more
information, see AWS SDKs.

Features 3

https://aws.amazon.com/cli/
https://aws.amazon.com/developer/tools/#SDKs

Amazon Elastic Container Service Developer Guide

• AWS CDK — Provides an open-source software development framework that you can
use to model and provision your cloud application resources using familiar programming
languages. The AWS CDK provisions your resources in a safe, repeatable manner through AWS
CloudFormation.

Pricing

Amazon ECS pricing depends on the capacity option you choose for your containers.

• Amazon ECS pricing – Pricing information for Amazon ECS.

• AWS Fargate pricing – Pricing information for Fargate.

Related services

Services to use with Amazon ECS

You can use other AWS services to help you deploy yours tasks and services on Amazon ECS.

Amazon EC2 Auto Scaling

Helps ensure you have the correct number of Amazon EC2 instances available to handle the
load for your application.

Amazon CloudWatch

Monitor your services and tasks.

Amazon Elastic Container Registry

Store and manage container images.

Elastic Load Balancing

Automatically distribute incoming service traffic.

Amazon GuardDuty

Detect potentially unauthorized or malicious use of your container instances and workloads.

Pricing 4

https://aws.amazon.com/ecs/pricing
https://aws.amazon.com/fargate/pricing
https://docs.aws.amazon.com/autoscaling/
https://docs.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/ecr/
https://docs.aws.amazon.com/elasticloadbalancing/
https://docs.aws.amazon.com/guardduty/

Amazon Elastic Container Service Developer Guide

Learn how to create and use Amazon ECS resources

The following guides provide an introduction to the tools available to access Amazon ECS and
introductory procedures to run containers. Docker basics takes you through the basic steps to
create a Docker container image and upload it to an Amazon ECR private repository. The getting
started guides walk you through using the AWS Copilot command line interface and the AWS
Management Console to complete the common tasks to run your containers on Amazon ECS and
AWS Fargate.

Contents

• Set up to use Amazon ECS

• Creating a container image for use on Amazon ECS

• Learn how to create an Amazon ECS Linux task for the Fargate launch type

• Learn how to create an Amazon ECS Windows task for the Fargate launch type

• Learn how to create an Amazon ECS Windows task for the EC2 launch type

• Creating Amazon ECS resources using the AWS CDK

• Creating Amazon ECS resources using the AWS Copilot command line interface

Set up to use Amazon ECS

If you've already signed up for Amazon Web Services (AWS) and have been using Amazon Elastic
Compute Cloud (Amazon EC2), you are close to being able to use Amazon ECS. The set-up process
for the two services is similar. The following guide prepares you for launching your first Amazon
ECS cluster.

Complete the following tasks to get set up for Amazon ECS.

AWS Management Console

The AWS Management Console is a browser-based interface for managing Amazon ECS resources.
The console provides a visual overview of the service, making it easy to explore Amazon ECS
features and functions without needing to use additional tools. Many related tutorials and
walkthroughs are available that can guide you through use of the console.

For a tutorial that guides you through the console, see Learn how to create and use Amazon ECS
resources.

Set up 5

Amazon Elastic Container Service Developer Guide

When starting out, many customers prefer using the console because it provides instant visual
feedback on whether the actions they take succeed. AWS customers that are familiar with the AWS
Management Console, can easily manage related resources such as load balancers and Amazon EC2
instances.

Start with the AWS Management Console.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

Sign up for an AWS account 6

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial

Amazon Elastic Container Service Developer Guide

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create a user with administrative access 7

https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

Amazon Elastic Container Service Developer Guide

Create a virtual private cloud

You can use Amazon Virtual Private Cloud (Amazon VPC) to launch AWS resources into a virtual
network that you've defined. We strongly suggest that you launch your container instances in a
VPC.

If you have a default VPC, you can skip this section and move to the next task, Create a security
group. To determine whether you have a default VPC, see Work with your default VPC and default
subnets in the Amazon VPC User Guide. Otherwise, you can create a nondefault VPC in your account
using the steps below.

For information about how to create a VPC, see Create a VPC in the Amazon VPC User Guide, and
use the following table to determine what options to select.

Option Value

Resources to create VPC only

Name Optionally provide a name for
your VPC.

IPv4 CIDR block IPv4 CIDR manual input

The CIDR block size must
have a size between /16
and /28.

IPv6 CIDR block No IPv6 CIDR block

Tenancy Default

For more information about Amazon VPC, see What is Amazon VPC? in the Amazon VPC User Guide.

Create a security group

Security groups act as a firewall for associated container instances, controlling both inbound
and outbound traffic at the container instance level. You can add rules to a security group that
enable you to connect to your container instance from your IP address using SSH. You can also add

Create a virtual private cloud 8

https://docs.aws.amazon.com/vpc/latest/userguide/work-with-default-vpc.html#view-default-vpc
https://docs.aws.amazon.com/vpc/latest/userguide/work-with-default-vpc.html#view-default-vpc
https://docs.aws.amazon.com/vpc/latest/userguide/create-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/

Amazon Elastic Container Service Developer Guide

rules that allow inbound and outbound HTTP and HTTPS access from anywhere. Add any rules to
open ports that are required by your tasks. Container instances require external network access to
communicate with the Amazon ECS service endpoint.

If you plan to launch container instances in multiple Regions, you need to create a security group
in each Region. For more information, see Regions and Availability Zones in the Amazon EC2 User
Guide.

Tip

You need the public IP address of your local computer, which you can get using a service.
For example, we provide the following service: http://checkip.amazonaws.com/ or https://
checkip.amazonaws.com/. To locate another service that provides your IP address, use the
search phrase "what is my IP address." If you are connecting through an internet service
provider (ISP) or from behind a firewall without a static IP address, you must find out the
range of IP addresses used by client computers.

For information about how to create a security group, see Create a security group for your Amazon
EC2 instance in the Amazon EC2 User Guide and use the following table to determine what options
to select.

Option Value

Region The same Region in which you
created your key pair.

Name A name that is easy for you to
remember, such as ecs-insta
nces-default-cluster.

VPC The default VPC (marked with
"(default)" .

Note

If your account
supports Amazon EC2
Classic, select the VPC

Create a security group 9

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://checkip.amazonaws.com/
https://checkip.amazonaws.com/
https://checkip.amazonaws.com/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-security-group.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-security-group.html

Amazon Elastic Container Service Developer Guide

Option Value

that you created in
the previous task.

For information about the outbound rules to add for your use cases, see Security group rules for
different use cases in the Amazon EC2 User Guide.

Amazon ECS container instances do not require any inbound ports to be open. However, you might
want to add an SSH rule so you can log into the container instance and examine the tasks with
Docker commands. You can also add rules for HTTP and HTTPS if you want your container instance
to host a task that runs a web server. Container instances do require external network access to
communicate with the Amazon ECS service endpoint. Complete the following steps to add these
optional security group rules.

Add the following three inbound rules to your security group.For information about how to create
a security group, see Configure security group rules in the Amazon EC2 User Guide.

Option Value

HTTP rule Type: HTTP

Source: Anywhere
(0.0.0.0/0)

This option automatically
adds the 0.0.0.0/0 IPv4 CIDR
block as the source. This is
acceptable for a short time
in a test environment, but
it's unsafe in production
environments. In production,
authorize only a specific IP
address or range of addresses
to access your instance.

HTTPS rule Type: HTTPS

Create a security group 10

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules-reference.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules-reference.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/changing-security-group.html#add-remove-security-group-rules

Amazon Elastic Container Service Developer Guide

Option Value

Source: Anywhere
(0.0.0.0/0)

This is acceptable for a short
time in a test environment,
but it's unsafe in productio
n environments. In productio
n, authorize only a specific IP
address or range of addresses
to access your instance.

Create a security group 11

Amazon Elastic Container Service Developer Guide

Option Value

SSH rule Type: SSH

Source: Custom, specify the
public IP address of your
computer or network in
CIDR notation. To specify an
individual IP address in CIDR
notation, add the routing
prefix /32. For example, if
your IP address is 203.0.113
.25 , specify 203.0.113
.25/32 . If your company
allocates addresses from
a range, specify the entire
range, such as 203.0.113
.0/24 .

Important

For security reasons,
we don't recommend
that you allow
SSH access from
all IP addresses
(0.0.0.0/0) to
your instance, except
for testing purposes
and only for a short
 time.

Create the credentials to connect to your EC2 instance

For Amazon ECS, a key pair is only needed if you intend on using the EC2 launch type.

Create the credentials to connect to your EC2 instance 12

Amazon Elastic Container Service Developer Guide

AWS uses public-key cryptography to secure the login information for your instance. A Linux
instance, such as an Amazon ECS container instance, has no password to use for SSH access. You
use a key pair to log in to your instance securely. You specify the name of the key pair when you
launch your container instance, then provide the private key when you log in using SSH.

If you haven't created a key pair already, you can create one using the Amazon EC2 console. If you
plan to launch instances in multiple regions, you'll need to create a key pair in each region. For
more information about regions, see Regions and Availability Zones in the Amazon EC2 User Guide.

To create a key pair

• Use the Amazon EC2 console to create a key pair. For more information about creating a key
pair, see Create a key pair in the Amazon EC2 User Guide.

For information about how to connect to your instance, see Connect to your Linux instance in the
Amazon EC2 User Guide.

Install the AWS CLI

The AWS Management Console can be used to manage all operations manually with Amazon ECS.
However, you can install the AWS CLI on your local desktop or a developer box so that you can
build scripts that can automate common management tasks in Amazon ECS.

To use the AWS CLI with Amazon ECS, install the latest AWS CLI version. For information about
installing the AWS CLI or upgrading it to the latest version, see Installing or updating to the latest
version of the AWS CLI in the AWS Command Line Interface User Guide.

The AWS Command Line Interface (AWS CLI) is a unified tool that you can use to manage your AWS
services. With this one tool alone, you can both control multiple AWS services and automate these
services through scripts. The Amazon ECS commands in the AWS CLI are a reflection of the Amazon
ECS API.

The AWS CLI is suitable for customers who prefer and are used to scripting and interfacing with
a command line tool and know exactly which actions they want to perform on their Amazon ECS
resources. The AWS CLI is also helpful to customers who want to familiarize themselves with the
Amazon ECS APIs. Customers can use the AWS CLI to perform a number of operations on Amazon
ECS resources, including Create, Read, Update, and Delete operations, directly from the command
line interface.

Install the AWS CLI 13

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/create-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect-to-linux-instance.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon Elastic Container Service Developer Guide

Use the AWS CLI if you are or want to become familiar with the Amazon ECS APIs and
corresponding CLI commands and want to write automated scripts and perform specific actions on
Amazon ECS resources.

AWS also provides the command line tools AWS Tools for Windows PowerShell. For more
information, see the AWS Tools for Windows PowerShell User Guide.

Next steps for using Amazon ECS

After installing the AWS CLI, there are many different tools you can utilize as you continue to use
Amazon ECS. The following links explain what some of those tools are and give examples of how to
use them with Amazon ECS.

• Create your first container image with Docker and push it to Amazon ECR for use in your Amazon
ECS task definitions.

• Learn how to create an Amazon ECS Linux task for the Fargate launch type.

• Learn how to create an Amazon ECS Windows task for the Fargate launch type.

• Learn how to create an Amazon ECS Windows task for the EC2 launch type.

• Using your preferred programming language, define infrastructure or architecture as code with
the Creating Amazon ECS resources using the AWS CDK.

• Define and manage all AWS resources in your environment with automated deployment using
Using Amazon ECS with AWS CloudFormation.

• Use the complete Creating Amazon ECS resources using the AWS Copilot command line interface
end-to-end developer workflow to create, release, and operate container applications that
comply with AWS best practices for infrastructure.

Creating a container image for use on Amazon ECS

Amazon ECS uses Docker images in task definitions to launch containers. Docker is a technology
that provides the tools for you to build, run, test, and deploy distributed applications in containers.

Amazon ECS schedules containerized applications on to container instances or on to AWS Fargate.
Containerized applications are packaged as container images. This example creates a container
image for a web server.

You can create your first Docker image, and then push that image to Amazon ECR, which is a
container registry, for use in your Amazon ECS task definitions. This walkthrough assumes that you

Next steps for using Amazon ECS 14

https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-container-image.html

Amazon Elastic Container Service Developer Guide

possess a basic understanding of what Docker is and how it works. For more information about
Docker, see What is Docker? and the Docker documentation.

Prerequisites

Before you begin, ensure the following prerequisites are met.

• Ensure you have completed the Amazon ECR setup steps. For more information, see Moving an
image through its lifecycle in Amazon ECR in the Amazon Elastic Container Registry User Guide.

• Your user has the required IAM permissions to access and use the Amazon ECR service. For more
information, see Amazon ECR managed policies.

• You have Docker installed. For Docker installation steps for Amazon Linux 2023, see Installing
Docker on AL2023. For all other operating systems, see the Docker documentation at Docker
Desktop overview.

• You have the AWS CLI installed and configured. For more information, see Installing or updating
to the latest version of the AWS CLI in the AWS Command Line Interface User Guide.

If you don't have or need a local development environment and you prefer to use an Amazon EC2
instance to use Docker, we provide the following steps to launch an Amazon EC2 instance using
Amazon Linux 2023 and install Docker Engine and the Docker CLI.

Installing Docker on AL2023

Docker is available on many different operating systems, including most modern Linux
distributions, like Ubuntu, and even macOS and Windows. For more information about how to
install Docker on your particular operating system, go to the Docker installation guide.

You do not need a local development system to use Docker. If you are using Amazon EC2 already,
you can launch an Amazon Linux 2023 instance and install Docker to get started.

If you already have Docker installed, skip to Create a Docker image.

To install Docker on an Amazon EC2 instance using an Amazon Linux 2023 AMI

1. Launch an instance with the latest Amazon Linux 2023 AMI. For more information, see Launch
an EC2 instance using the launch instance wizard in the console in the Amazon EC2 User Guide.

2. Connect to your instance. For more information, see Connect to your EC2 instance in the
Amazon EC2 User Guide.

3. Update the installed packages and package cache on your instance.

Prerequisites 15

http://aws.amazon.com/docker/
https://docs.docker.com/get-started/docker-overview/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/security-iam-awsmanpol.html
https://docs.docker.com/desktop/
https://docs.docker.com/desktop/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/engine/installation/#installation
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance-wizard.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance-wizard.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect.html

Amazon Elastic Container Service Developer Guide

sudo yum update -y

4. Install the most recent Docker Community Edition package.

sudo yum install docker

5. Start the Docker service.

sudo service docker start

6. Add the ec2-user to the docker group so you can execute Docker commands without using
sudo.

sudo usermod -a -G docker ec2-user

7. Log out and log back in again to pick up the new docker group permissions. You can
accomplish this by closing your current SSH terminal window and reconnecting to your
instance in a new one. Your new SSH session will have the appropriate docker group
permissions.

8. Verify that the ec2-user can run Docker commands without sudo.

docker info

Note

In some cases, you may need to reboot your instance to provide permissions for the
ec2-user to access the Docker daemon. Try rebooting your instance if you see the
following error:

Cannot connect to the Docker daemon. Is the docker daemon running on this
 host?

Create a Docker image

Amazon ECS task definitions use container images to launch containers on the container instances
in your clusters. In this section, you create a Docker image of a simple web application, and test

Create a Docker image 16

Amazon Elastic Container Service Developer Guide

it on your local system or Amazon EC2 instance, and then push the image to the Amazon ECR
container registry so you can use it in an Amazon ECS task definition.

To create a Docker image of a simple web application

1. Create a file called Dockerfile. A Dockerfile is a manifest that describes the base image
to use for your Docker image and what you want installed and running on it. For more
information about Dockerfiles, go to the Dockerfile Reference.

touch Dockerfile

2. Edit the Dockerfile you just created and add the following content.

FROM public.ecr.aws/amazonlinux/amazonlinux:latest

Update installed packages and install Apache
RUN yum update -y && \
 yum install -y httpd

Write hello world message
RUN echo 'Hello World!' > /var/www/html/index.html

Configure Apache
RUN echo 'mkdir -p /var/run/httpd' >> /root/run_apache.sh && \
 echo 'mkdir -p /var/lock/httpd' >> /root/run_apache.sh && \
 echo '/usr/sbin/httpd -D FOREGROUND' >> /root/run_apache.sh && \
 chmod 755 /root/run_apache.sh

EXPOSE 80

CMD /root/run_apache.sh

This Dockerfile uses the public Amazon Linux 2023 image hosted on Amazon ECR Public.
The RUN instructions update the package caches, installs some software packages for the
web server, and then write the "Hello World!" content to the web servers document root. The
EXPOSE instruction means that port 80 on the container is the one that is listening, and the
CMD instruction starts the web server.

3. Build the Docker image from your Dockerfile.

Create a Docker image 17

https://docs.docker.com/reference/dockerfile/

Amazon Elastic Container Service Developer Guide

Note

Some versions of Docker may require the full path to your Dockerfile in the following
command, instead of the relative path shown below.
If you run the command an ARM based system, such as Apple Silicon, use the --
platform option "--platform linux/amd64".

docker build -t hello-world .

4. List your container image.

docker images --filter reference=hello-world

Output:

REPOSITORY TAG IMAGE ID CREATED
 SIZE
hello-world latest e9ffedc8c286 4 minutes ago
 194MB

5. Run the newly built image. The -p 80:80 option maps the exposed port 80 on the container
to port 80 on the host system.

docker run -t -i -p 80:80 hello-world

Note

Output from the Apache web server is displayed in the terminal window. You can
ignore the "Could not reliably determine the fully qualified domain
name" message.

6. Open a browser and point to the server that is running Docker and hosting your container.

• If you are using an EC2 instance, this is the Public DNS value for the server, which is the
same address you use to connect to the instance with SSH. Make sure that the security group
for your instance allows inbound traffic on port 80.

Create a Docker image 18

https://support.apple.com/en-gb/116943

Amazon Elastic Container Service Developer Guide

• If you are running Docker locally, point your browser to http://localhost/.

You should see a web page with your "Hello World!" statement.

7. Stop the Docker container by typing Ctrl + c.

Push your image to Amazon Elastic Container Registry

Amazon ECR is a managed AWS managed image registry service. You can use the Docker CLI to
push, pull, and manage images in your Amazon ECR repositories. For Amazon ECR product details,
featured customer case studies, and FAQs, see the Amazon Elastic Container Registry product detail
pages.

To tag your image and push it to Amazon ECR

1. Create an Amazon ECR repository to store your hello-world image. Note the
repositoryUri in the output.

Substitute region, with your AWS Region, for example, us-east-1.

aws ecr create-repository --repository-name hello-repository --region region

Output:

{
 "repository": {
 "registryId": "aws_account_id",
 "repositoryName": "hello-repository",
 "repositoryArn": "arn:aws:ecr:region:aws_account_id:repository/hello-
repository",
 "createdAt": 1505337806.0,
 "repositoryUri": "aws_account_id.dkr.ecr.region.amazonaws.com/hello-
repository"
 }
}

2. Tag the hello-world image with the repositoryUri value from the previous step.

docker tag hello-world aws_account_id.dkr.ecr.region.amazonaws.com/hello-repository

Push your image to Amazon Elastic Container Registry 19

http://localhost/
http://aws.amazon.com/ecr
http://aws.amazon.com/ecr

Amazon Elastic Container Service Developer Guide

3. Run the aws ecr get-login-password command. Specify the registry URI you want to
authenticate to. For more information, see Registry Authentication in the Amazon Elastic
Container Registry User Guide.

aws ecr get-login-password --region region | docker login --username AWS --
password-stdin aws_account_id.dkr.ecr.region.amazonaws.com

Output:

Login Succeeded

Important

If you receive an error, install or upgrade to the latest version of the AWS CLI. For more
information, see Installing or updating to the latest version of the AWS CLI in the AWS
Command Line Interface User Guide.

4. Push the image to Amazon ECR with the repositoryUri value from the earlier step.

docker push aws_account_id.dkr.ecr.region.amazonaws.com/hello-repository

Clean up

To continue on with creating an Amazon ECS task definition and launching a task with your
container image, skip to the Next steps. When you are done experimenting with your Amazon ECR
image, you can delete the repository so you are not charged for image storage.

aws ecr delete-repository --repository-name hello-repository --region region --force

Next steps

Your task definitions require a task execution role. For more information, see Amazon ECS task
execution IAM role.

After you have created and pushed your container image to Amazon ECR, you can use that image in
a task definition. For more information, see one of the following:

• the section called “Learn how to create a Linux task for the Fargate launch type”

Clean up 20

https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html#registry_auth
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon Elastic Container Service Developer Guide

• the section called “Learn how to create a Windows task for the Fargate launch type”

• Creating an Amazon ECS Linux task for the Fargate launch type with the AWS CLI

Learn how to create an Amazon ECS Linux task for the Fargate
launch type

Amazon Elastic Container Service (Amazon ECS) is a highly scalable, fast, container management
service that makes it easy to run, stop, and manage your containers. You can host your containers
on a serverless infrastructure that is managed by Amazon ECS by launching your services or tasks
on AWS Fargate. For more information on Fargate, see AWS Fargate for Amazon ECS.

Get started with Amazon ECS on AWS Fargate by using the Fargate launch type for your tasks in
the Regions where Amazon ECS supports AWS Fargate.

Complete the following steps to get started with Amazon ECS on AWS Fargate.

Prerequisites

Before you begin, complete the steps in Set up to use Amazon ECS and that your IAM user has the
permissions specified in the AdministratorAccess IAM policy example.

The console attempts to automatically create the task execution IAM role, which is required for
Fargate tasks. To ensure that the console is able to create this IAM role, one of the following must
be true:

• Your user has administrator access. For more information, see Set up to use Amazon ECS.

• Your user has the IAM permissions to create a service role. For more information, see Creating a
Role to Delegate Permissions to an AWS Service.

• A user with administrator access has manually created the task execution role so that it is
available on the account to be used. For more information, see Amazon ECS task execution IAM
role.

Important

The security group you select when creating a service with your task definition must have
port 80 open for inbound traffic. Add the following inbound rule to your security group.

Learn how to create a Linux task for the Fargate launch type 21

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Elastic Container Service Developer Guide

For information about how to create a security group, see Create a security group for your
Amazon EC2 instance in the Amazon EC2 User Guide.

• Type: HTTP

• Protocol: TCP

• Port range: 80

• Source: Anywhere (0.0.0.0/0)

Step 1: Create the cluster

Create a cluster that uses the default VPC.

Before you begin, assign the appropriate IAM permission. For more information, see the section
called “Amazon ECS cluster examples”.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose Create cluster.

5. Under Cluster configuration, for Cluster name, enter a unique name.

The name can contain up to 255 letters (uppercase and lowercase), numbers, and hyphens.

6. (Optional) To turn on Container Insights, expand Monitoring, and then turn on Use Container
Insights.

7. (Optional) To help identify your cluster, expand Tags, and then configure your tags.

[Add a tag] Choose Add tag and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

[Remove a tag] Choose Remove to the right of the tag’s Key and Value.

8. Choose Create.

Step 1: Create the cluster 22

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-security-group.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-security-group.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Step 2: Create a task definition

A task definition is like a blueprint for your application. Each time you launch a task in Amazon ECS,
you specify a task definition. The service then knows which Docker image to use for containers,
how many containers to use in the task, and the resource allocation for each container.

1. In the navigation pane, choose Task Definitions.

2. Choose Create new Task Definition, Create new revision with JSON.

3. Copy and paste the following example task definition into the box and then choose Save.

{
 "family": "sample-fargate",
 "networkMode": "awsvpc",
 "containerDefinitions": [
 {
 "name": "fargate-app",
 "image": "public.ecr.aws/docker/library/httpd:latest",
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp"
 }
],
 "essential": true,
 "entryPoint": [
 "sh",
 "-c"
],
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #333;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</
h1> <h2>Congratulations!</h2> <p>Your application is now running on a container in
 Amazon ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html &&
 httpd-foreground\""
]
 }
],
 "requiresCompatibilities": [
 "FARGATE"
],

Step 2: Create a task definition 23

Amazon Elastic Container Service Developer Guide

 "cpu": "256",
 "memory": "512"
}

4. Choose Create.

Step 3: Create the service

Create a service using the task definition.

1. In the navigation pane, choose Clusters, and then select the cluster you created in Step 1:
Create the cluster.

2. From the Services tab, choose Create.

3. Under Deployment configuration, specify how your application is deployed.

a. For Task definition, choose the task definition you created in Step 2: Create a task
definition.

b. For Service name, enter a name for your service.

c. For Desired tasks, enter 1.

4. Under Networking, you can create a new security group or choose an existing security group
for your task. Ensure that the security group you use has the inbound rule listed under
Prerequisites.

5. Choose Create.

Step 4: View your service

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. Choose the cluster where you ran the service.

4. In the Services tab, under Service name, choose the service you created in Step 3: Create the
service.

5. Choose the Tasks tab, and then choose the task in your service.

6. On the task page, in the Configuration section, under Public IP, choose Open address.

Step 3: Create the service 24

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Step 5: Clean up

When you are finished using an Amazon ECS cluster, you should clean up the resources associated
with it to avoid incurring charges for resources that you are not using.

Some Amazon ECS resources, such as tasks, services, clusters, and container instances, are cleaned
up using the Amazon ECS console. Other resources, such as Amazon EC2 instances, Elastic Load
Balancing load balancers, and Auto Scaling groups, must be cleaned up manually in the Amazon
EC2 console or by deleting the AWS CloudFormation stack that created them.

1. In the navigation pane, choose Clusters.

2. On the Clusters page, select the cluster you created for this tutorial.

3. Choose the Services tab.

4. Select the service, and then choose Delete.

5. At the confirmation prompt, enter delete and then choose Delete. Alternatively, you can use
the Force delete option to have Amazon ECS scale the service down on your behalf before
deleting it.

Wait until the service is deleted.

6. Choose Delete Cluster. At the confirmation prompt, enter delete cluster-name, and then
choose Delete. Deleting the cluster cleans up the associated resources that were created with
the cluster, including Auto Scaling groups, VPCs, or load balancers.

Learn how to create an Amazon ECS Windows task for the
Fargate launch type

Get started with Amazon ECS on AWS Fargate by using the Fargate launch type for your tasks in
the Regions where Amazon ECS supports AWS Fargate.

Complete the following steps to get started with Amazon ECS on AWS Fargate.

Prerequisites

Before you begin, complete the steps in Set up to use Amazon ECS and that your IAM user has the
permissions specified in the AdministratorAccess IAM policy example.

Step 5: Clean up 25

Amazon Elastic Container Service Developer Guide

The console attempts to automatically create the task execution IAM role, which is required for
Fargate tasks. To ensure that the console is able to create this IAM role, one of the following must
be true:

• Your user has administrator access. For more information, see Set up to use Amazon ECS.

• Your user has the IAM permissions to create a service role. For more information, see Creating a
Role to Delegate Permissions to an AWS Service.

• A user with administrator access has manually created the task execution role so that it is
available on the account to be used. For more information, see Amazon ECS task execution IAM
role.

Important

The security group you select when creating a service with your task definition must have
port 80 open for inbound traffic. Add the following inbound rule to your security group.
For information about how to create a security group, see Create a security group for your
Amazon EC2 instance in the Amazon EC2 User Guide.

• Type: HTTP

• Protocol: TCP

• Port range: 80

• Source: Anywhere (0.0.0.0/0)

Step 1: Create a cluster

You can create a new cluster called windows that uses the default VPC.

To create a cluster with the AWS Management Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose Create cluster.

5. Under Cluster configuration, for Cluster name, enter windows.

Step 1: Create a cluster 26

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-security-group.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-security-group.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

6. (Optional) To turn on Container Insights, expand Monitoring, and then turn on Use Container
Insights.

7. (Optional) To help identify your cluster, expand Tags, and then configure your tags.

[Add a tag] Choose Add tag and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

[Remove a tag] Choose Remove to the right of the tag’s Key and Value.

8. Choose Create.

Step 2: Register a Windows task definition

Before you can run Windows containers in your Amazon ECS cluster, you must register a task
definition. The following task definition example displays a simple webpage on port 8080 of a
container instance with the mcr.microsoft.com/windows/servercore/iis container image.

To register the sample task definition with the AWS Management Console

1. In the navigation pane, choose Task definitions.

2. Choose Create new task definition, Create new task definition with JSON.

3. Copy and paste the following example task definition into the box and then choose Save.

{
 "containerDefinitions": [
 {
 "command": ["New-Item -Path C:\\inetpub\\wwwroot\\index.html
 -Type file -Value '<html> <head> <title>Amazon ECS Sample App</title>
 <style>body {margin-top: 40px; background-color: #333;} </style> </head><body>
 <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in
 Amazon ECS.</p>'; C:\\ServiceMonitor.exe w3svc"],
 "entryPoint": [
 "powershell",
 "-Command"
],
 "essential": true,
 "cpu": 2048,

Step 2: Register a Windows task definition 27

Amazon Elastic Container Service Developer Guide

 "memory": 4096,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "name": "sample_windows_app",
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80,
 "protocol": "tcp"
 }
]
 }
],
 "memory": "4096",
 "cpu": "2048",
 "networkMode": "awsvpc",
 "family": "windows-simple-iis-2019-core",
 "executionRoleArn": "arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
 "runtimePlatform": {"operatingSystemFamily": "WINDOWS_SERVER_2019_CORE"},
 "requiresCompatibilities": ["FARGATE"]
}

4. Verify your information and choose Create.

Step 3: Create a service with your task definition

After you have registered your task definition, you can place tasks in your cluster with it. The
following procedure creates a service with your task definition and places one task in your cluster.

To create a service from your task definition with the console

1. In the navigation pane, choose Clusters, and then select the cluster you created in Step 1:
Create a cluster.

2. From the Services tab, choose Create.

3. Under Deployment configuration, specify how your application is deployed.

a. For Task definition, choose the task definition you created in Step 2: Register a Windows
task definition.

b. For Service name, enter a name for your service.

c. For Desired tasks, enter 1.

Step 3: Create a service with your task definition 28

Amazon Elastic Container Service Developer Guide

4. Under Networking, you can create a security group or choose an existing group. Ensure that
the security group you use has the inbound rule listed under Prerequisites.

5. Choose Create.

Step 4: View your service

After your service has launched a task into your cluster, you can view the service and open the IIS
test page in a browser to verify that the container is running.

Note

It can take up to 15 minutes for your container instance to download and extract the
Windows container base layers.

To view your service

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. Choose the cluster where you ran the service.

4. In the Services tab, under Service name, choose the service you created in Step 3: Create a
service with your task definition.

5. Choose the Tasks tab, and then choose the task in your service.

6. On the task page, in the Configuration section, under Public IP, choose Open address.

Step 5: Clean Up

When you are finished using an Amazon ECS cluster, you should clean up the resources associated
with it to avoid incurring charges for resources that you are not using.

Some Amazon ECS resources, such as tasks, services, clusters, and container instances, are cleaned
up using the Amazon ECS console. Other resources, such as Amazon EC2 instances, Elastic Load
Balancing load balancers, and Auto Scaling groups, must be cleaned up manually in the Amazon
EC2 console or by deleting the AWS CloudFormation stack that created them.

1. In the navigation pane, choose Clusters.

Step 4: View your service 29

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

2. On the Clusters page, select the cluster you created for this tutorial.

3. Choose the Services tab.

4. Select the service, and then choose Delete.

5. At the confirmation prompt, enter delete and then choose Delete.

Wait until the service is deleted.

6. Choose Delete Cluster. At the confirmation prompt, enter delete cluster-name, and then
choose Delete. Deleting the cluster cleans up the associated resources that were created with
the cluster, including Auto Scaling groups, VPCs, or load balancers.

Learn how to create an Amazon ECS Windows task for the EC2
launch type

Get started with Amazon ECS using the EC2 launch type by registering a task definition, creating a
cluster, and creating a service in the console.

Complete the following steps to get started with Amazon ECS using the EC2 launch type.

Prerequisites

Before you begin, complete the steps in Set up to use Amazon ECS and that your IAM user has the
permissions specified in the AdministratorAccess IAM policy example.

The console attempts to automatically create the task execution IAM role, which is required for
Fargate tasks. To ensure that the console is able to create this IAM role, one of the following must
be true:

• Your user has administrator access. For more information, see Set up to use Amazon ECS.

• Your user has the IAM permissions to create a service role. For more information, see Creating a
Role to Delegate Permissions to an AWS Service.

• A user with administrator access has manually created the task execution role so that it is
available on the account to be used. For more information, see Amazon ECS task execution IAM
role.

Learn how to create a Windows task for the EC2 launch type 30

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Elastic Container Service Developer Guide

Important

The security group you select when creating a service with your task definition must have
port 80 open for inbound traffic. Add the following inbound rule to your security group.
For information about how to create a security group, see Create a security group for your
Amazon EC2 instance in the Amazon EC2 User Guide.

• Type: HTTP

• Protocol: TCP

• Port range: 80

• Source: Anywhere (0.0.0.0/0)

Step 1: Create a cluster

An Amazon ECS cluster is a logical grouping of tasks, services, and container instances.

The following steps walk you through creating a cluster with one Amazon EC2 instance registered
to it which will enable us to run a task on it. If a specific field is not mentioned, leave the default
console values.

To create a new cluster (Amazon ECS console)

Before you begin, assign the appropriate IAM permission. For more information, see the section
called “Amazon ECS cluster examples”.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose Create cluster.

5. Under Cluster configuration, for Cluster name, enter a unique name.

The name can contain up to 255 letters (uppercase and lowercase), numbers, and hyphens.

6. (Optional) To change the VPC and subnets where your tasks and services launch, under
Networking, perform any of the following operations:

• To remove a subnet, under Subnets, choose X for each subnet that you want to remove.

Step 1: Create a cluster 31

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-security-group.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-security-group.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

• To change to a VPC other than the default VPC, under VPC, choose an existing VPC, and
then under Subnets, select each subnet.

7. To add Amazon EC2 instances to your cluster, expand Infrastructure, and then select Amazon
EC2 instances. Next, configure the Auto Scaling group which acts as the capacity provider:

a. To using an existing Auto Scaling group, from Auto Scaling group (ASG), select the group.

b. To create a Auto Scaling group, from Auto Scaling group (ASG), select Create new group,
and then provide the following details about the group:

• For Operating system/Architecture, choose the Amazon ECS-optimized AMI for the
Auto Scaling group instances.

• For EC2 instance type, choose the instance type for your workloads. For more
information about the different instance types, see Amazon EC2 Instances.

Managed scaling works best if your Auto Scaling group uses the same or similar instance
types.

• For SSH key pair, choose the pair that proves your identity when you connect to the
instance.

• For Capacity, enter the minimum number and the maximum number of instances to
launch in the Auto Scaling group. Amazon EC2 instances incur costs while they exist in
your AWS resources. For more information, see Amazon EC2 Pricing.

8. (Optional) To turn on Container Insights, expand Monitoring, and then turn on Use Container
Insights.

9. (Optional) To manage the cluster tags, expand Tags, and then perform one of the following
operations:

[Add a tag] Choose Add tag and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

[Remove a tag] Choose Remove to the right of the tag’s Key and Value.

10. Choose Create.

Step 1: Create a cluster 32

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/pricing/

Amazon Elastic Container Service Developer Guide

Step 2: Register a task definition

To register the sample task definition with the AWS Management Console

1. In the navigation pane, choose Task Definitions.

2. Choose Create new task definition, Create new task definition with JSON.

3. Copy and paste the following example task definition into the box, and then choose Save.

{
 "containerDefinitions": [
 {
 "command": ["New-Item -Path C:\\inetpub\\wwwroot\\index.html
 -Type file -Value '<html> <head> <title>Amazon ECS Sample App</title>
 <style>body {margin-top: 40px; background-color: #333;} </style> </head><body>
 <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in
 Amazon ECS.</p>'; C:\\ServiceMonitor.exe w3svc"],
 "entryPoint": [
 "powershell",
 "-Command"
],
 "essential": true,
 "cpu": 2048,
 "memory": 4096,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "name": "sample_windows_app",
 "portMappings": [
 {
 "hostPort": 443,
 "containerPort": 80,
 "protocol": "tcp"
 }
]
 }
],
 "memory": "4096",
 "cpu": "2048",
 "family": "windows-simple-iis-2019-core",
 "executionRoleArn": "arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
 "runtimePlatform": {"operatingSystemFamily": "WINDOWS_SERVER_2019_CORE"},
 "requiresCompatibilities": ["EC2"]

Step 2: Register a task definition 33

Amazon Elastic Container Service Developer Guide

}

4. Verify your information and choose Create.

Step 3: Create a Service

An Amazon ECS service helps you to run and maintain a specified number of instances of a task
definition simultaneously in an Amazon ECS cluster. If any of your tasks should fail or stop for any
reason, the Amazon ECS service scheduler launches another instance of your task definition to
replace it in order to maintain the desired number of tasks in the service. For more information on
services, see Amazon ECS services.

To create a service

1. In the navigation pane, choose Clusters.

2. Select the cluster you created in Step 1: Create a cluster.

3. On the Services tab, choose Create.

4. In the Environment section, do the following:

a. For Compute options, choose Launch type.

b. For Launch type, select EC2

5. In the Deployment configuration section, do the following:

a. For Family, choose the task definition you created in Step 2: Register a task definition.

b. For Service name, enter a name for your service.

c. For Desired tasks, enter 1.

6. Review the options and choose Create.

7. Choose View service to review your service.

Step 4: View your Service

The service is a web-based application so you can view its containers with a web browser.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. Choose the cluster where you ran the service.

Step 3: Create a Service 34

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

4. In the Services tab, under Service name, choose the service you created in Step 3: Create a
Service.

5. Choose the Tasks tab, and then choose the task in your service.

6. On the task page, in the Configuration section, under Public IP, choose Open address. The
screen shot below is the expected output.

Step 5: Clean Up

When you are finished using an Amazon ECS cluster, you should clean up the resources associated
with it to avoid incurring charges for resources that you are not using.

Some Amazon ECS resources, such as tasks, services, clusters, and container instances, are cleaned
up using the Amazon ECS console. Other resources, such as Amazon EC2 instances, Elastic Load
Balancing load balancers, and Auto Scaling groups, must be cleaned up manually in the Amazon
EC2 console or by deleting the AWS CloudFormation stack that created them.

1. In the navigation pane, choose Clusters.

2. On the Clusters page, select the cluster cluster you created for this tutorial.

3. Choose the Services tab.

4. Select the service, and then choose Delete.

5. At the confirmation prompt, enter delete and then choose Delete.

Wait until the service is deleted.

6. Choose Delete Cluster. At the confirmation prompt, enter delete cluster-name, and then
choose Delete. Deleting the cluster cleans up the associated resources that were created with
the cluster, including Auto Scaling groups, VPCs, or load balancers.

Step 5: Clean Up 35

Amazon Elastic Container Service Developer Guide

Creating Amazon ECS resources using the AWS CDK

The AWS Cloud Development Kit (AWS CDK) is an Infrastructure-as-Code (IAC) framework that you
can use to define AWS cloud infrastructure by using a programming language of your choosing.
To define your own cloud infrastructure, you first write an app (in one of the CDK's supported
languages) that contains one or more stacks. Then, you synthesize it to an AWS CloudFormation
template and deploy your resources to your AWS account. Follow the steps in this topic to deploy
a containerized web server with Amazon Elastic Container Service (Amazon ECS) and the AWS CDK
on Fargate.

The AWS Construct Library, included with the CDK, provides modules that you can use to model
the resources that AWS services provide. For popular services, the library provides curated
constructs with smart defaults and best practices. One of these modules, specifically aws-ecs-
patterns, provides high-level abstractions that you can use to define your containerized service
and all the necessary supporting resources in a few lines of code.

This topic uses the ApplicationLoadBalancedFargateService construct. This construct
deploys an Amazon ECS service on Fargate behind an application load balancer. The aws-ecs-
patterns module also includes constructs that use a network load balancer and run on Amazon
EC2.

Before starting this task, set up your AWS CDK development environment, and install the AWS CDK
by running the following command. For instructions on how to set up your AWS CDK development
environment, see Getting Started With the AWS CDK - Prerequisites.

npm install -g aws-cdk

Note

These instructions assume you are using AWS CDK v2.

Topics

• Step 1: Set up your AWS CDK project

• Step 2: Use the AWS CDK to define a containerized web server on Fargate

• Step 3: Test the web server

• Step 4: Clean up

Using the AWS CDK 36

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs_patterns-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs_patterns-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs_patterns.ApplicationLoadBalancedFargateService.html
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html#getting_started_prerequisites

Amazon Elastic Container Service Developer Guide

• Next steps

Step 1: Set up your AWS CDK project

Create a directory for your new AWS CDK app and initialize the project.

TypeScript

mkdir hello-ecs
cd hello-ecs
cdk init --language typescript

JavaScript

mkdir hello-ecs
cd hello-ecs
cdk init --language javascript

Python

mkdir hello-ecs
cd hello-ecs
cdk init --language python

After the project is started, activate the project's virtual environment and install the AWS CDK's
baseline dependencies.

source .venv/bin/activate
python -m pip install -r requirements.txt

Java

mkdir hello-ecs
cd hello-ecs
cdk init --language java

Import this Maven project to your Java IDE. For example, in Eclipse, use File > Import > Maven >
Existing Maven Projects.

Step 1: Set up your AWS CDK project 37

Amazon Elastic Container Service Developer Guide

C#

mkdir hello-ecs
cd hello-ecs
cdk init --language csharp

Go

mkdir hello-ecs
cd hello-ecs
cdk init --language go

Note

The AWS CDK application template uses the name of the project directory to generate
names for source files and classes. In this example, the directory is named hello-ecs. If
you use a different project directory name, your app won't match these instructions.

AWS CDK v2 includes stable constructs for all AWS services in a single package that's called aws-
cdk-lib. This package is installed as a dependency when you initialize the project. When working
with certain programming languages, the package is installed when you build the project for the
first time. This topic covers how to use an Amazon ECS Patterns construct, which provides high-
level abstractions for working with Amazon ECS. This module relies on Amazon ECS constructs and
other constructs to provision the resources that your Amazon ECS application needs.

The names that you use to import these libraries into your CDK application might differ slightly
depending on which programming language you use. For reference, the following are the names
that are used in each supported CDK programming language.

TypeScript

aws-cdk-lib/aws-ecs
aws-cdk-lib/aws-ecs-patterns

JavaScript

aws-cdk-lib/aws-ecs

Step 1: Set up your AWS CDK project 38

Amazon Elastic Container Service Developer Guide

aws-cdk-lib/aws-ecs-patterns

Python

aws_cdk.aws_ecs
aws_cdk.aws_ecs_patterns

Java

software.amazon.awscdk.services.ecs
software.amazon.awscdk.services.ecs.patterns

C#

Amazon.CDK.AWS.ECS
Amazon.CDK.AWS.ECS.Patterns

Go

github.com/aws/aws-cdk-go/awscdk/v2/awsecs
github.com/aws/aws-cdk-go/awscdk/v2/awsecspatterns

Step 2: Use the AWS CDK to define a containerized web server on
Fargate

Use the container image amazon-ecs-sample . This image contains a PHP web app that runs on
Ngingx.

In the AWS CDK project that you created, edit the file that contains the stack definition to resemble
one of the following examples.

Note

A stack is a unit of deployment. All resources must be in a stack, and all the resources
that are in a stack are deployed at the same time. If a resource fails to deploy, any other
resources that were already deployed are rolled back. An AWS CDK app can contain
multiple stacks, and resources in one stack can refer to resources in another stack.

Step 2: Use the AWS CDK to define a containerized web server on Fargate 39

https://gallery.ecr.aws/ecs-sample-image/amazon-ecs-sample

Amazon Elastic Container Service Developer Guide

TypeScript

Update lib/hello-ecs-stack.ts so that it resembles the following.

import * as cdk from 'aws-cdk-lib';
import { Construct } from 'constructs';
import * as ecs from 'aws-cdk-lib/aws-ecs';
import * as ecsp from 'aws-cdk-lib/aws-ecs-patterns';

export class HelloEcsStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 new ecsp.ApplicationLoadBalancedFargateService(this, 'MyWebServer', {
 taskImageOptions: {
 image: ecs.ContainerImage.fromRegistry('public.ecr.aws/ecs-sample-image/
amazon-ecs-sample:latest'),
 },
 publicLoadBalancer: true
 });
 }
}

JavaScript

Update lib/hello-ecs-stack.js so that it resembles the following.

const cdk = require('aws-cdk-lib');
const { Construct } = require('constructs');
const ecs = require('aws-cdk-lib/aws-ecs');
const ecsp = require('aws-cdk-lib/aws-ecs-patterns');

class HelloEcsStack extends cdk.Stack {
 constructor(scope = Construct, id = string, props = cdk.StackProps) {
 super(scope, id, props);

 new ecsp.ApplicationLoadBalancedFargateService(this, 'MyWebServer', {
 taskImageOptions: {
 image: ecs.ContainerImage.fromRegistry('amazon/amazon-ecs-sample'),
 },
 publicLoadBalancer: true
 });
 }

Step 2: Use the AWS CDK to define a containerized web server on Fargate 40

Amazon Elastic Container Service Developer Guide

}

module.exports = { HelloEcsStack }

Python

Update hello-ecs/hello_ecs_stack.py so that it resembles the following.

import aws_cdk as cdk
from constructs import Construct

import aws_cdk.aws_ecs as ecs
import aws_cdk.aws_ecs_patterns as ecsp

class HelloEcsStack(cdk.Stack):

 def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None:
 super().__init__(scope, construct_id, **kwargs)

 ecsp.ApplicationLoadBalancedFargateService(self, "MyWebServer",
 task_image_options=ecsp.ApplicationLoadBalancedTaskImageOptions(
 image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")),
 public_load_balancer=True
)

Java

Update src/main/java/com.myorg/HelloEcsStack.java so that it resembles the
following.

package com.myorg;

import software.constructs.Construct;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;

import software.amazon.awscdk.services.ecs.ContainerImage;
import
 software.amazon.awscdk.services.ecs.patterns.ApplicationLoadBalancedFargateService;
import
 software.amazon.awscdk.services.ecs.patterns.ApplicationLoadBalancedTaskImageOptions;

public class HelloEcsStack extends Stack {

Step 2: Use the AWS CDK to define a containerized web server on Fargate 41

Amazon Elastic Container Service Developer Guide

 public HelloEcsStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public HelloEcsStack(final Construct scope, final String id, final StackProps
 props) {
 super(scope, id, props);

 ApplicationLoadBalancedFargateService.Builder.create(this, "MyWebServer")
 .taskImageOptions(ApplicationLoadBalancedTaskImageOptions.builder()
 .image(ContainerImage.fromRegistry("amazon/amazon-ecs-sample"))
 .build())
 .publicLoadBalancer(true)
 .build();
 }
}

C#

Update src/HelloEcs/HelloEcsStack.cs so that it resembles the following.

using Amazon.CDK;
using Constructs;
using Amazon.CDK.AWS.ECS;
using Amazon.CDK.AWS.ECS.Patterns;
namespace HelloEcs
{
 public class HelloEcsStack : Stack
 {
 internal HelloEcsStack(Construct scope, string id, IStackProps props =
 null) : base(scope, id, props)
 {
 new ApplicationLoadBalancedFargateService(this, "MyWebServer",
 new ApplicationLoadBalancedFargateServiceProps
 {
 TaskImageOptions = new ApplicationLoadBalancedTaskImageOptions
 {
 Image = ContainerImage.FromRegistry("amazon/amazon-ecs-
sample")
 },
 PublicLoadBalancer = true
 });
 }
 }

Step 2: Use the AWS CDK to define a containerized web server on Fargate 42

Amazon Elastic Container Service Developer Guide

}

Go

Update hello-ecs.go so that it resembles the following.

package main

import (
 "github.com/aws/aws-cdk-go/awscdk/v2"
 // "github.com/aws/aws-cdk-go/awscdk/v2/awssqs"
 "github.com/aws/aws-cdk-go/awscdk/v2/awsecs"
 "github.com/aws/aws-cdk-go/awscdk/v2/awsecspatterns"
 "github.com/aws/constructs-go/constructs/v10"
 "github.com/aws/jsii-runtime-go"
)

type HelloEcsStackProps struct {
 awscdk.StackProps
}

func NewHelloEcsStack(scope constructs.Construct, id string, props
 *HelloEcsStackProps) awscdk.Stack {
 var sprops awscdk.StackProps
 if props != nil {
 sprops = props.StackProps
 }
 stack := awscdk.NewStack(scope, &id, &sprops)

 // The code that defines your stack goes here

 // example resource
 // queue := awssqs.NewQueue(stack, jsii.String("HelloEcsQueue"),
 &awssqs.QueueProps{
 // VisibilityTimeout: awscdk.Duration_Seconds(jsii.Number(300)),
 // })
 res := awsecspatterns.NewApplicationLoadBalancedFargateService(stack,
 jsii.String("MyWebServer"),
 &awsecspatterns.ApplicationLoadBalancedFargateServiceProps{
 TaskImageOptions: &awsecspatterns.ApplicationLoadBalancedTaskImageOptions{
 Image: awsecs.ContainerImage_FromRegistry(jsii.String("amazon/amazon-ecs-
sample"), &awsecs.RepositoryImageProps{}),
 },
 },

Step 2: Use the AWS CDK to define a containerized web server on Fargate 43

Amazon Elastic Container Service Developer Guide

)
 awscdk.NewCfnOutput(stack, jsii.String("LoadBalancerDNS"),
 &awscdk.CfnOutputProps{Value: res.LoadBalancer().LoadBalancerDnsName()})

 return stack
}

func main() {
 defer jsii.Close()

 app := awscdk.NewApp(nil)

 NewHelloEcsStack(app, "HelloEcsStack", &HelloEcsStackProps{
 awscdk.StackProps{
 Env: env(),
 },
 })

 app.Synth(nil)
}

// env determines the AWS environment (account+region) in which our stack is to
// be deployed. For more information see: https://docs.aws.amazon.com/cdk/latest/
guide/environments.html
func env() *awscdk.Environment {
 // If unspecified, this stack will be "environment-agnostic".
 // Account/Region-dependent features and context lookups will not work, but a
 // single synthesized template can be deployed anywhere.
 //---
 return nil

 // Uncomment if you know exactly what account and region you want to deploy
 // the stack to. This is the recommendation for production stacks.
 //---
 // return &awscdk.Environment{
 // Account: jsii.String("123456789012"),
 // Region: jsii.String("us-east-1"),
 // }

 // Uncomment to specialize this stack for the AWS Account and Region that are
 // implied by the current CLI configuration. This is recommended for dev
 // stacks.
 //---
 // return &awscdk.Environment{

Step 2: Use the AWS CDK to define a containerized web server on Fargate 44

Amazon Elastic Container Service Developer Guide

 // Account: jsii.String(os.Getenv("CDK_DEFAULT_ACCOUNT")),
 // Region: jsii.String(os.Getenv("CDK_DEFAULT_REGION")),
 // }
}

The preceding short snippet includes the following:

• The service's logical name: MyWebServer.

• The container image that was obtained from the Amazon ECR Public Gallery: amazon/amazon-
ecs-sample.

• Other relevant information, such as the fact that the load balancer has a public address and is
accessible from the Internet.

The AWS CDK will create all the resources that are required to deploy the web server including the
following resources. These resources were omitted in this example.

• Amazon ECS cluster

• Amazon VPC and Amazon EC2 instances

• Auto Scaling group

• Application Load Balancer

• IAM roles and policies

Some automatically provisioned resources are shared by all Amazon ECS services defined in the
stack.

Save the source file, then run the cdk synth command in your application's main directory.
The AWS CDK runs the app and synthesizes an AWS CloudFormation template from it, and then
displays the template. The template is an approximately 600-line YAML file. The beginning of the
file is shown here. Your template might differ from this example.

Resources:
 MyWebServerLB3B5FD3AB:
 Type: AWS::ElasticLoadBalancingV2::LoadBalancer
 Properties:
 LoadBalancerAttributes:

Step 2: Use the AWS CDK to define a containerized web server on Fargate 45

Amazon Elastic Container Service Developer Guide

 - Key: deletion_protection.enabled
 Value: "false"
 Scheme: internet-facing
 SecurityGroups:
 - Fn::GetAtt:
 - MyWebServerLBSecurityGroup01B285AA
 - GroupId
 Subnets:
 - Ref: EcsDefaultClusterMnL3mNNYNVpcPublicSubnet1Subnet3C273B99
 - Ref: EcsDefaultClusterMnL3mNNYNVpcPublicSubnet2Subnet95FF715A
 Type: application
 DependsOn:
 - EcsDefaultClusterMnL3mNNYNVpcPublicSubnet1DefaultRouteFF4E2178
 - EcsDefaultClusterMnL3mNNYNVpcPublicSubnet2DefaultRouteB1375520
 Metadata:
 aws:cdk:path: HelloEcsStack/MyWebServer/LB/Resource
 MyWebServerLBSecurityGroup01B285AA:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Automatically created Security Group for ELB
 HelloEcsStackMyWebServerLB06757F57
 SecurityGroupIngress:
 - CidrIp: 0.0.0.0/0
 Description: Allow from anyone on port 80
 FromPort: 80
 IpProtocol: tcp
 ToPort: 80
 VpcId:
 Ref: EcsDefaultClusterMnL3mNNYNVpc7788A521
 Metadata:
 aws:cdk:path: HelloEcsStack/MyWebServer/LB/SecurityGroup/Resource
and so on for another few hundred lines

To deploy the service in your AWS account, run the cdk deploy command in your application's
main directory. You're asked to approve the IAM policies that the AWS CDK generated.

The deployment takes several minutes during which the AWS CDK creates several resources. The
last few lines of the output from the deployment include the load balancer's public hostname and
your new web server's URL. They are as follows.

Outputs:
HelloEcsStack.MyWebServerLoadBalancerDNSXXXXXXX = Hello-MyWeb-ZZZZZZZZZZZZZ-
ZZZZZZZZZZ.us-west-2.elb.amazonaws.com

Step 2: Use the AWS CDK to define a containerized web server on Fargate 46

Amazon Elastic Container Service Developer Guide

HelloEcsStack.MyWebServerServiceURLYYYYYYYY = http://Hello-MyWeb-ZZZZZZZZZZZZZ-
ZZZZZZZZZZ.us-west-2.elb.amazonaws.com

Step 3: Test the web server

Copy the URL from the deployment output and paste it into your web browser. The following
welcome message from the web server is displayed.

Step 4: Clean up

After you're finished with the web server, end the service using the CDK by running the cdk
destroy command in your application's main directory. Doing this prevents you from incurring any
unintended charges in the future.

Next steps

To learn more about how to develop AWS infrastructure using the AWS CDK, see the AWS CDK
Developer Guide.

For information about writing AWS CDK apps in your language of choice, see the following:

TypeScript

Working with the AWS CDK in TypeScript

JavaScript

Working with the AWS CDK in JavaScript

Step 3: Test the web server 47

https://docs.aws.amazon.com/cdk/v2/guide/
https://docs.aws.amazon.com/cdk/v2/guide/
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-typescript.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-javascript.html

Amazon Elastic Container Service Developer Guide

Python

Working with the AWS CDK in Python

Java

Working with the AWS CDK in Java

C#

Working with the AWS CDK in C#

Go

Working with the AWS CDK in Go

For more information about the AWS Construct Library modules used in this topic, see the
following AWS CDK API Reference overviews.

• aws-ecs

• aws-ecs-patterns

Creating Amazon ECS resources using the AWS Copilot
command line interface

The AWS Copilot command line interface (CLI) commands simplify building, releasing, and
operating production-ready containerized applications on Amazon ECS from a local development
environment. The AWS Copilot CLI aligns with developer workflows that support modern
application best practices: from using infrastructure as code to creating a CI/CD pipeline
provisioned on behalf of a user. Use the AWS Copilot CLI as part of your everyday development and
testing cycle as an alternative to the AWS Management Console.

AWS Copilot currently supports Linux, macOS, and Windows systems. For more information about
the latest version of the AWS Copilot CLI, see Releases.

Note

The source code for the AWS Copilot CLI is available on GitHub. We recommend that you
submit issues and pull requests for changes that you would like to have included. However,
Amazon Web Services doesn't currently support running modified copies of AWS Copilot

Creating resources using the AWS Copilot CLI 48

https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-python.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-java.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-csharp.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-go.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs_patterns-readme.html
https://github.com/aws/copilot-cli/releases
https://github.com/aws/copilot-cli

Amazon Elastic Container Service Developer Guide

code. Report issues with AWS Copilot by connecting with us on Gitter or GitHub where you
can open issues, provide feedback, and report bugs.

Topics

• Installing the AWS Copilot CLI

• Deploying a sample Amazon ECS application using the AWS Copilot CLI

Additional documentation for the AWS Copilot CLI is available on the AWS Copilot website

Installing the AWS Copilot CLI

You can install the AWS Copilot CLI by using Homebrew or by manually downloading the binary
with the following steps.

Use Homebrew

The following command is used to install the AWS Copilot CLI on your macOS or Linux system
using Homebrew. Before installation, you should have Homebrew installed. For more information,
see Homebrew.

brew install aws/tap/copilot-cli

Download binary

As an alternative to Homebrew, you can manually install the AWS Copilot CLI on your macOS,
Windows, or Linux system. Use the following command for your operating system to download the
binary. The macOS and Linux examples also include commands that apply execute permissions to
the binary, and list the help menu to verify that the installation works.

macOS

For macOS:

sudo curl -Lo /usr/local/bin/copilot https://github.com/aws/copilot-cli/releases/
latest/download/copilot-darwin \
 && sudo chmod +x /usr/local/bin/copilot \
 && copilot --help

Installing the AWS Copilot CLI 49

https://app.gitter.im/%23/room/%23aws_copilot-cli:gitter.im
https://github.com/aws/copilot-cli
https://aws.github.io/copilot-cli/docs/overview/
https://brew.sh/

Amazon Elastic Container Service Developer Guide

For macOS ARM systems:

sudo curl -Lo /usr/local/bin/copilot https://github.com/aws/copilot-cli/releases/
latest/download/copilot-darwin-arm64 \
 && sudo chmod +x /usr/local/bin/copilot \
 && copilot --help

Linux

For Linux x86 (64-bit) systems:

sudo curl -Lo /usr/local/bin/copilot https://github.com/aws/copilot-cli/releases/
latest/download/copilot-linux \
 && sudo chmod +x /usr/local/bin/copilot \
 && copilot --help

For Linux ARM systems:

sudo curl -Lo /usr/local/bin/copilot https://github.com/aws/copilot-cli/releases/
latest/download/copilot-linux-arm64 \
 && sudo chmod +x /usr/local/bin/copilot \
 && copilot --help

Windows

Using Powershell, run the following command:

New-Item -Path 'C:\copilot' -ItemType directory; `
 Invoke-WebRequest -OutFile 'C:\copilot\copilot.exe' https://github.com/aws/
copilot-cli/releases/latest/download/copilot-windows.exe

(Optional) Verify the manually installed AWS Copilot CLI using PGP signatures

The AWS Copilot CLI executables are cryptographically signed using PGP signatures. The PGP
signatures can be used to verify the validity of the AWS Copilot CLI executable. Use the following
steps to verify the signatures using the GnuPG tool.

1. Download and install GnuPG. For more information, see the GnuPG website.

Installing the AWS Copilot CLI 50

https://www.gnupg.org

Amazon Elastic Container Service Developer Guide

macOS

We recommend using Homebrew. Install Homebrew using the instructions from their
website. For more information, see Homebrew. After Homebrew is installed, use the
following command from your macOS terminal.

brew install gnupg

Linux

Install gpg using the package manager on your flavor of Linux.

Windows

Download the Windows simple installer from the GnuPG website and install as an
Administrator. After you install GnuPG, close and reopen the Administrator PowerShell.

For more information, see GnuPG Download.

2. Verify the GnuPG path is added to your environment path.

macOS

echo $PATH

If you do not see the GnuPG path in the output, run the following command to add it to
the path.

PATH=$PATH:<path to GnuPG executable files>

Linux

echo $PATH

If you do not see the GnuPG path in the output, run the following command to add it to
the path.

export PATH=$PATH:<path to GnuPG executable files>

Installing the AWS Copilot CLI 51

https://brew.sh/
https://www.gnupg.org/download/index.html

Amazon Elastic Container Service Developer Guide

Windows

Write-Output $Env:PATH

If you do not see the GnuPG path in the output, run the following command to add it to
the path.

$Env:PATH += ";<path to GnuPG executable files>"

3. Create a local plain text file.

macOS

On the terminal, enter:

touch <public_key_filename.txt>

Open the file with TextEdit.

Linux

Create a text file in a text editor such as gedit. Save as public_key_filename.txt

Windows

Create a text file in a text editor such as Notepad. Save as public_key_filename.txt

4. Add the following contents of the Amazon ECS PGP public key and save the file.

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2

mQINBFq1SasBEADliGcT1NVJ1ydfN8DqebYYe9ne3dt6jqKFmKowLmm6LLGJe7HU
jGtqhCWRDkN+qPpHqdArRgDZAtn2pXY5fEipHgar4CP8QgRnRMO2fl74lmavr4Vg
7K/KH8VHlq2uRw32/B94XLEgRbGTMdWFdKuxoPCttBQaMj3LGn6Pe+6xVWRkChQu
BoQAhjBQ+bEm0kNy0LjNgjNlnL3UMAG56t8E3LANIgGgEnpNsB1UwfWluPoGZoTx
N+6pHBJrKIL/1v/ETU4FXpYw2zvhWNahxeNRnoYj3uycHkeliCrw4kj0+skizBgO
2K7oVX8Oc3j5+ZilhL/qDLXmUCb2az5cMM1mOoF8EKX5HaNuq1KfwJxqXE6NNIcO
lFTrT7QwD5fMNld3FanLgv/ZnIrsSaqJOL6zRSq8O4LN1OWBVbndExk2Kr+5kFxn
5lBPgfPgRj5hQ+KTHMa9Y8Z7yUc64BJiN6F9Nl7FJuSsfqbdkvRLsQRbcBG9qxX3
rJAEhieJzVMEUNl+EgeCkxj5xuSkNU7zw2c3hQZqEcrADLV+hvFJktOz9Gm6xzbq
lTnWWCz4xrIWtuEBA2qE+MlDheVd78a3gIsEaSTfQq0osYXaQbvlnSWOoc1y/5Zb

Installing the AWS Copilot CLI 52

Amazon Elastic Container Service Developer Guide

zizHTJIhLtUyls9WisP2s0emeHZicVMfW61EgPrJAiupgc7kyZvFt4YwfwARAQAB
tCRBbWF6b24gRUNTIDxlY3Mtc2VjdXJpdHlAYW1hem9uLmNvbT6JAhwEEAECAAYF
AlrjL0YACgkQHivRXs0TaQrg1g/+JppwPqHnlVPmv7lessB8I5UqZeD6p6uVpHd7
Bs3pcPp8BV7BdRbs3sPLt5bV1+rkqOlw+0gZ4Q/ue/YbWtOAt4qY0OcEo0HgcnaX
lsB827QIfZIVtGWMhuh94xzm/SJkvngml6KB3YJNnWP61A9qJ37/VbVVLzvcmazA
McWB4HUMNrhd0JgBCo0gIpqCbpJEvUc02Bjn23eEJsS9kC7OUAHyQkVnx4d9UzXF
4OoISF6hmQKIBoLnRrAlj5Qvs3GhvHQ0ThYq0Grk/KMJJX2CSqt7tWJ8gk1n3H3Y
SReRXJRnv7DsDDBwFgT6r5Q2HW1TBUvaoZy5hF6maD09nHcNnvBjqADzeT8Tr/Qu
bBCLzkNSYqqkpgtwv7seoD2P4n1giRvDAOEfMZpVkUr+C252IaH1HZFEz+TvBVQM
Y8OWWxmIJW+J6evjo3N1eO19UHv71jvoF8zljbI4bsL2c+QTJmOv7nRqzDQgCWyp
Id/v2dUVVTk1j9omuLBBwNJzQCB+72LcIzJhYmaP1HC4LcKQG+/f41exuItenatK
lEJQhYtyVXcBlh6Yn/wzNg2NWOwb3vqY/F7m6u9ixAwgtIMgPCDE4aJ86zrrXYFz
N2HqkTSQh77Z8KPKmyGopsmN/reMuilPdINb249nA0dzoN+nj+tTFOYCIaLaFyjs
Z0r1QAOJAjkEEwECACMFAlq1SasCGwMHCwkIBwMCAQYVCAIJCgsEFgIDAQIeAQIX
gAAKCRC86dmkLVF4T9iFEACEnkm1dNXsWUx34R3c0vamHrPxvfkyI1FlEUen8D1h
uX9xy6jCEROHWEp0rjGK4QDPgM93sWJ+s1UAKg214QRVzft0y9/DdR+twApA0fzy
uavIthGd6+03jAAo6udYDE+cZC3P7XBbDiYEWk4XAF9I1JjB8hTZUgvXBL046JhG
eM17+crgUyQeetkiOQemLbsbXQ40Bd9V7zf7XJraFd8VrwNUwNb+9KFtgAsc9rk+
YIT/PEf+YOPysgcxI4sTWghtyCulVnuGoskgDv4v73PALU0ieUrvvQVqWMRvhVx1
0X90J7cC1KOyhlEQQ1aFTgmQjmXexVTwIBm8LvysFK6YXM41KjOrlz3+6xBIm/qe
bFyLUnf4WoiuOplAaJhK9pRY+XEnGNxdtN4D26Kd0F+PLkm3Tr3Hy3b1Ok34FlGr
KVHUq1TZD7cvMnnNKEELTUcKX+1mV3an16nmAg/my1JSUt6BNK2rJpY1s/kkSGSE
XQ4zuF2IGCpvBFhYAlt5Un5zwqkwwQR3/n2kwAoDzonJcehDw/C/cGos5D0aIU7I
K2X2aTD3+pA7Mx3IMe2hqmYqRt9X42yF1PIEVRneBRJ3HDezAgJrNh0GQWRQkhIx
gz6/cTR+ekr5TptVszS9few2GpI5bCgBKBisZIssT89aw7mAKWut0Gcm4qM9/yK6
1bkCDQRatUmrARAAxNPvVwreJ2yAiFcUpdRlVhsuOgnxvs1QgsIw3H7+Pacr9Hpe
8uftYZqdC82KeSKhpHq7c8gMTMucIINtH25x9BCc73E33EjCL9Lqov1TL7+QkgHe
T+JIhZwdD8Mx2K+LVVVu/aWkNrfMuNwyDUciSI4D5QHa8T+F8fgN4OTpwYjirzel
5yoICMr9hVcbzDNv/ozKCxjx+XKgnFc3wrnDfJfntfDAT7ecwbUTL+viQKJ646s+
psiqXRYtVvYInEhLVrJ0aV6zHFoigE/Bils6/g7ru1Q6CEHqEw++APs5CcE8VzJu
WAGSVHZgun5Y9N4quR/M9Vm+IPMhTxrAg7rOvyRN9cAXfeSMf77I+XTifigNna8x
t/MOdjXr1fjF4pThEi5u6WsuRdFwjY2azEv3vevodTi4HoJReH6dFRa6y8c+UDgl
2iHiOKIpQqLbHEfQmHcDd2fix+AaJKMnPGNku9qCFEMbgSRJpXz6BfwnY1QuKE+I
R6jA0frUNt2jhiGG/F8RceXzohaaC/Cx7LUCUFWc0n7z32C9/Dtj7I1PMOacdZzz
bjJzRKO/ZDv+UN/c9dwAkllzAyPMwGBkUaY68EBstnIliW34aWm6IiHhxioVPKSp
VJfyiXPO0EXqujtHLAeChfjcns3I12YshT1dv2PafG53fp33ZdzeUgsBo+EAEQEA
AYkCHwQYAQIACQUCWrVJqwIbDAAKCRC86dmkLVF4T+ZdD/9x/8APzgNJF3o3STrF
jvnV1ycyhWYGAeBJiu7wjsNWwzMFOv15tLjB7AqeVxZn+WKDD/mIOQ45OZvnYZuy
X7DR0JszaH9wrYTxZLVruAu+t6UL0y/XQ4L1GZ9QR6+r+7t1Mvbfy7BlHbvX/gYt
Rwe/uwdibI0CagEzyX+2D3kTOlHO5XThbXaNf8AN8zha91Jt2Q2UR2X5T6JcwtMz
FBvZnl3LSmZyE0EQehS2iUurU4uWOpGppuqVnbi0jbCvCHKgDGrqZ0smKNAQng54
F365W3g8AfY48s8XQwzmcliowYX9bT8PZiEi0J4QmQh0aXkpqZyFefuWeOL2R94S
XKzr+gRh3BAULoqF+qK+IUMxTip9KTPNvYDpiC66yBiT6gFDji5Ca9pGpJXrC3xe
TXiKQ8DBWDhBPVPrruLIaenTtZEOsPc4I85yt5U9RoPTStcOr34s3w5yEaJagt6S

Installing the AWS Copilot CLI 53

Amazon Elastic Container Service Developer Guide

Gc5r9ysjkfH6+6rbi1ujxMgROSqtqr+RyB+V9A5/OgtNZc8llK6u4UoOCde8jUUW
vqWKvjJB/Kz3u4zaeNu2ZyyHaOqOuH+TETcW+jsY9IhbEzqN5yQYGi4pVmDkY5vu
lXbJnbqPKpRXgM9BecV9AMbPgbDq/5LnHJJXg+G8YQOgp4lR/hC1TEFdIp5wM8AK
CWsENyt2o1rjgMXiZOMF8A5oBLkCDQRatUuSARAAr77kj7j2QR2SZeOSlFBvV7oS
mFeSNnz9xZssqrsm6bTwSHM6YLDwc7Sdf2esDdyzONETwqrVCg+FxgL8hmo9hS4c
rR6tmrP0mOmptr+xLLsKcaP7ogIXsyZnrEAEsvW8PnfayoiPCdc3cMCR/lTnHFGA
7EuR/XLBmi7Qg9tByVYQ5Yj5wB9V4B2yeCt3XtzPqeLKvaxl7PNelaHGJQY/xo+m
V0bndxf9IY+4oFJ4blD32WqvyxESo7vW6WBh7oqv3Zbm0yQrr8a6mDBpqLkvWwNI
3kpJR974tg5o5LfDu1BeeyHWPSGm4U/G4JB+JIG1ADy+RmoWEt4BqTCZ/knnoGvw
D5sTCxbKdmuOmhGyTssoG+3OOcGYHV7pWYPhazKHMPm201xKCjH1RfzRULzGKjD+
yMLT1I3AXFmLmZJXikAOlvE3/wgMqCXscbycbLjLD/bXIuFWo3rzoezeXjgi/DJx
jKBAyBTYO5nMcth1O9oaFd9d0HbsOUDkIMnsgGBE766Piro6MHo0T0rXl07Tp4pI
rwuSOsc6XzCzdImj0Wc6axS/HeUKRXWdXJwno5awTwXKRJMXGfhCvSvbcbc2Wx+L
IKvmB7EB4K3fmjFFE67yolmiw2qRcUBfygtH3eL5XZU28MiCpue8Y8GKJoBAUyvf
KeM1rO8Jm3iRAc5a/D0AEQEAAYkEPgQYAQIACQUCWrVLkgIbAgIpCRC86dmkLVF4
T8FdIAQZAQIABgUCWrVLkgAKCRDePL1hra+LjtHYD/9MucxdFe6bXO1dQR4tKhhQ
P0LRqy6zlBY9ILCLowNdGZdqorogUiUymgn3VhEhVtxTOoHcN7qOuM01PNsRnOeS
EYjf8Xrb1clzkD6xULwmOclTb9bBxnBc/4PFvHAbZW3QzusaZniNgkuxt6BTfloS
Of4inq71kjmGK+TlzQ6mUMQUg228NUQC+a84EPqYyAeY1sgvgB7hJBhYL0QAxhcW
6m20Rd8iEc6HyzJ3yCOCsKip/nRWAbf0OvfHfRBp0+m0ZwnJM8cPRFjOqqzFpKH9
HpDmTrC4wKP1+TL52LyEqNh4yZitXmZNV7giSRIkk0eDSko+bFy6VbMzKUMkUJK3
D3eHFAMkujmbfJmSMTJOPGn5SB1HyjCZNx6bhIIbQyEUB9gKCmUFaqXKwKpF6rj0
iQXAJxLR/shZ5Rk96VxzOphUl7T90m/PnUEEPwq8KsBhnMRgxa0RFidDP+n9fgtv
HLmrOqX9zBCVXh0mdWYLrWvmzQFWzG7AoE55fkf8nAEPsalrCdtaNUBHRXA0OQxG
AHMOdJQQvBsmqMvuAdjkDWpFu5y0My5ddU+hiUzUyQLjL5Hhd5LOUDdewlZgIw1j
xrEAUzDKetnemM8GkHxDgg8koev5frmShJuce7vSjKpCNg3EIJSgqMOPFjJuLWtZ
vjHeDNbJy6uNL65ckJy6WhGjEADS2WAW1D6Tfekkc21SsIXk/LqEpLMR/0g5OUif
wcEN1rS9IJXBwIy8MelN9qr5KcKQLmfdfBNEyyceBhyVl0MDyHOKC+7PofMtkGBq
13QieRHv5GJ8LB3fclqHV8pwTTo3Bc8z2g0TjmUYAN/ixETdReDoKavWJYSE9yoM
aaJu279ioVTrwpECse0XkiRyKToTjwOb73CGkBZZpJyqux/rmCV/fp4ALdSW8zbz
FJVORaivhoWwzjpfQKhwcU9lABXi2UvVm14v0AfeI7oiJPSU1zM4fEny4oiIBXlR
zhFNih1UjIu82X16mTm3BwbIga/s1fnQRGzyhqUIMii+mWra23EwjChaxpvjjcUH
5ilLc5Zq781aCYRygYQw+hu5nFkOH1R+Z50Ubxjd/aqUfnGIAX7kPMD3Lof4KldD
Q8ppQriUvxVo+4nPV6rpTy/PyqCLWDjkguHpJsEFsMkwajrAz0QNSAU5CJ0G2Zu4
yxvYlumHCEl7nbFrm0vIiA75Sa8KnywTDsyZsu3XcOcf3g+g1xWTpjJqy2bYXlqz
9uDOWtArWHOis6bq8l9RE6xr1RBVXS6uqgQIZFBGyq66b0dIq4D2JdsUvgEMaHbc
e7tBfeB1CMBdA64e9Rq7bFR7Tvt8gasCZYlNr3lydh+dFHIEkH53HzQe6l88HEic
+0jVnLkCDQRa55wJARAAyLya2Lx6gyoWoJN1a6740q3o8e9d4KggQOfGMTCflmeq
ivuzgN+3DZHN+9ty2KxXMtn0mhHBerZdbNJyjMNT1gAgrhPNB4HtXBXum2wS57WK
DNmade914L7FWTPAWBG2Wn448OEHTqsClICXXWy9IICgclAEyIq0Yq5mAdTEgRJS
Z8t4GpwtDL9gNQyFXaWQmDmkAsCygQMvhAlmu9xOIzQG5CxSnZFk7zcuL60k14Z3
Cmt49k4T/7ZU8goWi8tt+rU78/IL3J/fF9+1civ1OwuUidgfPCSvOUW1JojsdCQA
L+RZJcoXq7lfOFj/eNjeOSstCTDPfTCL+kThE6E5neDtbQHBYkEX1BRiTedsV4+M
ucgiTrdQFWKf89G72xdv8ut9AYYQ2BbEYU+JAYhUH8rYYui2dHKJIgjNvJscuUWb

Installing the AWS Copilot CLI 54

Amazon Elastic Container Service Developer Guide

+QEqJIRleJRhrO+/CHgMs4fZAkWF1VFhKBkcKmEjLn1f7EJJUUW84ZhKXjO/AUPX
1CHsNjziRceuJCJYox1cwsoq6jTE50GiNzcIxTn9xUc0UMKFeggNAFys1K+TDTm3
Bzo8H5ucjCUEmUm9lhkGwqTZgOlRX5eqPX+JBoSaObqhgqCa5IPinKRa6MgoFPHK
6sYKqroYwBGgZm6Js5chpNchvJMs/3WXNOEVg0J3z3vP0DMhxqWm+r+n9zlW8qsA
EQEAAYkEPgQYAQgACQUCWuecCQIbAgIpCRC86dmkLVF4T8FdIAQZAQgABgUCWuec
CQAKCRBQ3szEcQ5hr+ykD/4tOLRHFHXuKUcxgGaubUcVtsFrwBKma1cYjqaPms8u
6Sk0wfGRI32G/GhOrp0Ts/MOkbObq6VLTh8N5Yc/53MEl8zQFw9Y5AmRoW4PZXER
ujs5s7p4oR7xHMihMjCCBn1bvrR+34YPfgzTcgLiOEFHYT8UTxwnGmXOvNkMM7md
xD3CV5q6VAte8WKBo/220II3fcQlc9r/oWX4kXXkb0v9hoGwKbDJ1tzqTPrp/xFt
yohqnvImpnlz+Q9zXmbrWYL9/g8VCmW/NN2gju2G3Lu/TlFUWIT4v/5OPK6TdeNb
VKJO4+S8bTayqSG9CML1S57KSgCo5HUhQWeSNHI+fpe5oX6FALPT9JLDce8OZz1i
cZZ0MELP37mOOQun0AlmHm/hVzf0f311PtbzcqWaE51tJvgUR/nZFo6Ta3O5Ezhs
3VlEJNQ1Ijf/6DH87SxvAoRIARCuZd0qxBcDK0avpFzUtbJd24lRA3WJpkEiMqKv
RDVZkE4b6TW61f0o+LaVfK6E8oLpixegS4fiqC16mFrOdyRk+RJJfIUyz0WTDVmt
g0U1CO1ezokMSqkJ7724pyjr2xf/r9/sC6aOJwB/lKgZkJfC6NqL7TlxVA31dUga
LEOvEJTTE4gl+tYtfsCDvALCtqL0jduSkUo+RXcBItmXhA+tShW0pbS2Rtx/ixua
KohVD/0R4QxiSwQmICNtm9mw9ydIl1yjYXX5a9x4wMJracNY/LBybJPFnZnT4dYR
z4XjqysDwvvYZByaWoIe3QxjX84V6MlI2IdAT/xImu8gbaCI8tmyfpIrLnPKiR9D
VFYfGBXuAX7+HgPPSFtrHQONCALxxzlbNpS+zxt9r0MiLgcLyspWxSdmoYGZ6nQP
RO5Nm/ZVS+u2imPCRzNUZEMa+dlE6kHx0rS0dPiuJ4O7NtPeYDKkoQtNagspsDvh
cK7CSqAiKMq06UBTxqlTSRkm62eOCtcs3p3OeHu5GRZF1uzTET0ZxYkaPgdrQknx
ozjP5mC7X+45lcCfmcVt94TFNL5HwEUVJpmOgmzILCI8yoDTWzloo+i+fPFsXX4f
kynhE83mSEcr5VHFYrTY3mQXGmNJ3bCLuc/jq7ysGq69xiKmTlUeXFm+aojcRO5i
zyShIRJZ0GZfuzDYFDbMV9amA/YQGygLw//zP5ju5SW26dNxlf3MdFQE5JJ86rn9
MgZ4gcpazHEVUsbZsgkLizRp9imUiH8ymLqAXnfRGlU/LpNSefnvDFTtEIRcpOHc
bhayG0bk51Bd4mioOXnIsKy4j63nJXA27x5EVVHQ1sYRN8Ny4Fdr2tMAmj2O+X+J
qX2yy/UX5nSPU492e2CdZ1UhoU0SRFY3bxKHKB7SDbVeav+K5g==
=Gi5D
-----END PGP PUBLIC KEY BLOCK-----

The details of the Amazon ECS PGP public key for reference:

Key ID: BCE9D9A42D51784F
Type: RSA
Size: 4096/4096
Expires: Never
User ID: Amazon ECS
Key fingerprint: F34C 3DDA E729 26B0 79BE AEC6 BCE9 D9A4 2D51 784F

5. Import the file with the Amazon ECS PGP public key with the following command in the
terminal.

Installing the AWS Copilot CLI 55

Amazon Elastic Container Service Developer Guide

gpg --import <public_key_filename.txt>

6. Download the AWS Copilot CLI signatures. The signatures are ASCII detached PGP signatures
stored in files with the extension .asc. The signatures file has the same name as its
corresponding executable, with .asc appended.

macOS

For macOS systems, run the following command.

sudo curl -Lo copilot.asc https://github.com/aws/copilot-cli/releases/latest/
download/copilot-darwin.asc

Linux

For Linux x86 (64-bit) systems, run the following command.

sudo curl -Lo copilot.asc https://github.com/aws/copilot-cli/releases/latest/
download/copilot-linux.asc

For Linux ARM systems, run the following command.

sudo curl -Lo copilot.asc https://github.com/aws/copilot-cli/releases/latest/
download/copilot-linux-arm64.asc

Windows

Using Powershell, run the following command.

Invoke-WebRequest -OutFile 'C:\copilot\copilot.asc' https://github.com/aws/
copilot-cli/releases/latest/download/copilot-windows.exe.asc

7. Verify the signature with the following command.

• For macOS and Linux systems:

gpg --verify copilot.asc /usr/local/bin/copilot

• For Windows systems:

Installing the AWS Copilot CLI 56

Amazon Elastic Container Service Developer Guide

gpg --verify 'C:\copilot\copilot.asc' 'C:\copilot\copilot.exe'

Expected output:

gpg: Signature made Tue Apr 3 13:29:30 2018 PDT
gpg: using RSA key DE3CBD61ADAF8B8E
gpg: Good signature from "Amazon ECS <ecs-security@amazon.com>" [unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: F34C 3DDA E729 26B0 79BE AEC6 BCE9 D9A4 2D51 784F
 Subkey fingerprint: EB3D F841 E2C9 212A 2BD4 2232 DE3C BD61 ADAF 8B8E

Important

The warning in the output is expected and is not problematic. It occurs because there is
not a chain of trust between your personal PGP key (if you have one) and the Amazon
ECS PGP key. For more information, see Web of trust.

8. For Windows installations, run the following command on Powershell to add AWS Copilot
directory to the path.

 $Env:PATH += ";<path to Copilot executable files>"

Deploying a sample Amazon ECS application using the AWS Copilot CLI

After installing the AWS Copilot CLI, you can follow these steps to deploy a sample app, verify the
deployment, and clean up resources.

Prerequisites

Before you begin, make sure that you meet the following prerequisites:

• Install and configure the AWS CLI. For more information, see AWS Command Line Interface.

• Run aws configure to set up a default profile that the AWS Copilot CLI will use to manage
your application and services.

• Install and run Docker. For more information, see Get started with Docker.

Deploying a sample Amazon ECS application using the AWS Copilot CLI 57

https://en.wikipedia.org/wiki/Web_of_trust
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://www.docker.com/get-started

Amazon Elastic Container Service Developer Guide

Deploy a sample Amazon ECS application using a single command

1. Deploy a sample web application that is cloned from a GitHub repository using the following
command. For more information about AWS Copilot init and its flags, see the AWS Copilot
documentation.

git clone https://github.com/aws-samples/aws-copilot-sample-service.git demo-app &&
 \
cd demo-app && \
copilot init --app demo \
 --name api \
 --type 'Load Balanced Web Service' \
 --dockerfile './Dockerfile' \
 --port 80 \
 --tag latest \
 --deploy

2. After the deployment is complete, the AWS Copilot CLI will return a URL that you can use to
verify the deployment. You can also use the following commands to verify the app's status.

• List all of your AWS Copilot applications.

copilot app ls

• Show information about the environments and services in your application.

copilot app show

• Show information about your environments.

copilot env ls

• Show information about the service, including endpoints, capacity and related resources.

copilot svc show

• List of all the services in an application.

copilot svc ls

• Show logs of a deployed service.

Deploying a sample Amazon ECS application using the AWS Copilot CLI 58

https://aws.github.io/copilot-cli/docs/commands/init/
https://aws.github.io/copilot-cli/docs/commands/init/

Amazon Elastic Container Service Developer Guide

copilot svc logs

• Show service status.

copilot svc status

3. When you're finished with this demo, run the following command to clean up associated
resources and avoid incurring charges for unused resources.

copilot app delete

Deploying a sample Amazon ECS application using the AWS Copilot CLI 59

Amazon Elastic Container Service Developer Guide

Using Amazon ECS with AWS CloudFormation

Amazon ECS is integrated with AWS CloudFormation, a service that you can use to model and
set up AWS resources with templates that you define. AWS CloudFormation uses templates that
are either a YAML or JSON formatted text file. Templates are like blueprints for the AWS resource
you want to create. When you create and submit a template, AWS CloudFormation creates a
stack. You manage the resources you defined in your template through the stack. When you
want to create, update, or delete a resource, you create, update, or delete the stack that was
created from that resource. When it comes to updating your stacks, you need to create a change
set first. Change sets show you what is impacted by the change before you make it. This keeps
you from deleting databases accidently by changing your database name, for example. For more
information on templates, stacks, and change sets, see How AWS CloudFormation works in the
AWS CloudFormation User Guide.

By using AWS CloudFormation, you can spend less time creating and managing your resources
and infrastructure. You can create a template that describes all the AWS resources that you want,
such as Amazon ECS clusters, task definitions, services. Then, AWS CloudFormation takes care of
provisioning and configuring those resources for you.

AWS CloudFormation also allows you to reuse your template to set up your Amazon ECS resources
in a consistent and repeatable manner. You describe your resources one time and then provision
the same resources again across multiple AWS accounts and AWS Regions.

AWS CloudFormation templates can be used with both the AWS Management Console or the AWS
Command Line Interface to create resources.

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

• AWS CloudFormation User Guide

• AWS CloudFormation Command Line Interface User Guide

Topics

• AWS CloudFormation example templates for Amazon ECS

• Creating Amazon ECS resources using the AWS CloudFormation console

• Creating Amazon ECS resources using AWS CLI commands for AWS CloudFormation

60

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-overview.html#cfn-concepts-stacks
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html

Amazon Elastic Container Service Developer Guide

AWS CloudFormation example templates for Amazon ECS

To provision and configure resources for Amazon ECS and related services, make sure that you're
familiar with AWS CloudFormation templates. For more information, see AWS CloudFormation
templates in the AWS CloudFormation User Guide. AWS CloudFormation templates are text files
in the JSON or YAML format that describe the resources that you want to provision in your AWS
CloudFormation stacks. If you're unfamiliar with either the JSON or YAML format, or both, you
can use AWS Infrastructure Composer to get started using AWS CloudFormation templates.
For more information, see Create templates visually with Infrastructure Composer in the AWS
CloudFormation User Guide.

You can create Amazon ECS clusters, task definitions, and services using AWS CloudFormation.
The following topics include templates that demonstrate how to create resources with
different configurations. You can create these resources with these templates by using the AWS
CloudFormation console or the AWS CLI. For more information about how to create resources using
the AWS CloudFormation console, see the AWS CloudFormation User Guide.

The following topics list example templates for Amazon ECS task definitions, clusters, and services.

Topics

• Task definitions

• Clusters

• Services

• IAM roles for Amazon ECS

Task definitions

A task definition is a blueprint for your application that describes the parameters and one or more
containers that form your application. The following are example AWS CloudFormation templates
for Amazon ECS task definitions. For more information about Amazon ECS task definitions, see
Amazon ECS task definitions.

Fargate Linux task definition

You can use the following template to create a sample Fargate Linux task.

Example AWS CloudFormation templates 61

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/infrastructure-composer-for-cloudformation.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.walkthrough.html

Amazon Elastic Container Service Developer Guide

JSON

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "ECS Task Definition with parameterized values",
 "Parameters": {
 "ContainerImage": {
 "Type": "String",
 "Default": "public.ecr.aws/docker/library/httpd:2.4",
 "Description": "The container image to use for the task"
 },
 "ContainerCpu": {
 "Type": "Number",
 "Default": 256,
 "Description": "The number of CPU units to reserve for the container",
 "AllowedValues": [256, 512, 1024, 2048, 4096]
 },
 "ContainerMemory": {
 "Type": "Number",
 "Default": 512,
 "Description": "The amount of memory (in MiB) to reserve for the container",
 "AllowedValues": [512, 1024, 2048, 3072, 4096, 5120, 6144, 7168, 8192]
 },
 "TaskFamily": {
 "Type": "String",
 "Default": "task-definition-cfn",
 "Description": "The name of the task definition family"
 },
 "ContainerName": {
 "Type": "String",
 "Default": "sample-fargate-app",
 "Description": "The name of the container"
 },
 "ContainerPort": {
 "Type": "Number",
 "Default": 80,
 "Description": "The port number on the container"
 },
 "HostPort": {
 "Type": "Number",
 "Default": 80,
 "Description": "The port number on the host"
 },
 "ExecutionRoleArn": {

Task definitions 62

Amazon Elastic Container Service Developer Guide

 "Type": "String",
 "Default": "arn:aws:iam::aws_account_id:role/ecsTaskExecutionRole",
 "Description": "The ARN of the task execution role"
 },
 "LogGroup": {
 "Type": "String",
 "Default": "/ecs/fargate-task-definition",
 "Description": "The CloudWatch log group for container logs"
 },
 "NetworkMode": {
 "Type": "String",
 "Default": "awsvpc",
 "Description": "The Docker networking mode to use",
 "AllowedValues": ["awsvpc", "bridge", "host", "none"]
 },
 "OperatingSystemFamily": {
 "Type": "String",
 "Default": "LINUX",
 "Description": "The operating system for the task",
 "AllowedValues": ["LINUX", "WINDOWS_SERVER_2019_FULL",
 "WINDOWS_SERVER_2019_CORE", "WINDOWS_SERVER_2022_FULL", "WINDOWS_SERVER_2022_CORE"]
 }
 },
 "Resources": {
 "ECSTaskDefinition": {
 "Type": "AWS::ECS::TaskDefinition",
 "Properties": {
 "ContainerDefinitions": [
 {
 "Command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample App</
title> <style>body {margin-top: 40px; background-color: #333;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</
h1> <h2>Congratulations!</h2> <p>Your application is now running on a container in
 Amazon ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html && -
foreground\""
],
 "EntryPoint": [
 "sh",
 "-c"
],
 "Essential": true,
 "Image": {"Ref": "ContainerImage"},
 "LogConfiguration": {

Task definitions 63

Amazon Elastic Container Service Developer Guide

 "LogDriver": "awslogs",
 "Options": {
 "mode": "non-blocking",
 "max-buffer-size": "25m",
 "awslogs-create-group": "true",
 "awslogs-group": {"Ref": "LogGroup"},
 "awslogs-region": {"Ref": "AWS::Region"},
 "awslogs-stream-prefix": "ecs"
 }
 },
 "Name": {"Ref": "ContainerName"},
 "PortMappings": [
 {
 "ContainerPort": {"Ref": "ContainerPort"},
 "HostPort": {"Ref": "HostPort"},
 "Protocol": "tcp"
 }
]
 }
],
 "Cpu": {"Ref": "ContainerCpu"},
 "ExecutionRoleArn": {"Ref": "ExecutionRoleArn"},
 "Family": {"Ref": "TaskFamily"},
 "Memory": {"Ref": "ContainerMemory"},
 "NetworkMode": {"Ref": "NetworkMode"},
 "RequiresCompatibilities": [
 "FARGATE"
],
 "RuntimePlatform": {
 "OperatingSystemFamily": {"Ref": "OperatingSystemFamily"}
 }
 }
 }
 },
 "Outputs": {
 "TaskDefinitionArn": {
 "Description": "The ARN of the created task definition",
 "Value": {"Ref": "ECSTaskDefinition"}
 }
 }
}

Task definitions 64

Amazon Elastic Container Service Developer Guide

YAML

AWSTemplateFormatVersion: 2010-09-09
Description: 'ECS Task Definition to deploy a sample app'
Parameters:
 ContainerImage:
 Type: String
 Default: 'public.ecr.aws/docker/library/httpd:2.4'
 Description: The container image to use for the task
 ContainerCpu:
 Type: Number
 Default: 256
 Description: The number of CPU units to reserve for the container
 AllowedValues: [256, 512, 1024, 2048, 4096]
 ContainerMemory:
 Type: Number
 Default: 512
 Description: The amount of memory (in MiB) to reserve for the container
 AllowedValues: [512, 1024, 2048, 3072, 4096, 5120, 6144, 7168, 8192]
 TaskFamily:
 Type: String
 Default: 'task-definition-cfn'
 Description: The name of the task definition family
 ContainerName:
 Type: String
 Default: 'sample-fargate-app'
 Description: The name of the container
 ContainerPort:
 Type: Number
 Default: 80
 Description: The port number on the container
 HostPort:
 Type: Number
 Default: 80
 Description: The port number on the host
 ExecutionRoleArn:
 Type: String
 Default: 'arn:aws:iam::111122223333:role/ecsTaskExecutionRole'
 Description: The ARN of the task execution role
 LogGroup:
 Type: String
 Default: '/ecs/fargate-task-definition'
 Description: The CloudWatch log group for container logs
 NetworkMode:

Task definitions 65

Amazon Elastic Container Service Developer Guide

 Type: String
 Default: 'awsvpc'
 Description: The Docker networking mode to use
 AllowedValues: ['awsvpc', 'bridge', 'host', 'none']
 OperatingSystemFamily:
 Type: String
 Default: 'LINUX'
 Description: The operating system for the task
 AllowedValues: ['LINUX', 'WINDOWS_SERVER_2019_FULL', 'WINDOWS_SERVER_2019_CORE',
 'WINDOWS_SERVER_2022_FULL', 'WINDOWS_SERVER_2022_CORE']
Resources:
 ECSTaskDefinition:
 Type: 'AWS::ECS::TaskDefinition'
 Properties:
 ContainerDefinitions:
 - Command:
 - >-
 /bin/sh -c "echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color:
 #333;} </style> </head><body> <div
 style=color:white;text-align:center> <h1>Amazon ECS Sample
 App</h1> <h2>Congratulations!</h2> <p>Your application is now
 running on a container in Amazon ECS.</p> </div></body></html>' >
 /usr/local/apache2/htdocs/index.html && httpd-foreground"
 EntryPoint:
 - sh
 - '-c'
 Essential: true
 Image: !Ref ContainerImage
 LogConfiguration:
 LogDriver: awslogs
 Options:
 mode: non-blocking
 max-buffer-size: 25m
 awslogs-create-group: 'true'
 awslogs-group: !Ref LogGroup
 awslogs-region: !Ref AWS::Region
 awslogs-stream-prefix: ecs
 Name: !Ref ContainerName
 PortMappings:
 - ContainerPort: !Ref ContainerPort
 HostPort: !Ref HostPort
 Protocol: tcp
 Cpu: !Ref ContainerCpu

Task definitions 66

Amazon Elastic Container Service Developer Guide

 ExecutionRoleArn: !Ref ExecutionRoleArn
 Family: !Ref TaskFamily
 Memory: !Ref ContainerMemory
 NetworkMode: !Ref NetworkMode
 RequiresCompatibilities:
 - FARGATE
 RuntimePlatform:
 OperatingSystemFamily: !Ref OperatingSystemFamily
Outputs:
 TaskDefinitionArn:
 Description: The ARN of the created task definition
 Value: !Ref ECSTaskDefinition

Amazon EFS task definition

You can use the following template to create a task that uses an Amazon EFS file system that
you created. For more information about using Amazon EFS volumes with Amazon ECS, see Use
Amazon EFS volumes with Amazon ECS.

JSON

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "Create a task definition for a web server with parameterized
 values.",
 "Parameters": {
 "ExecutionRoleArn": {
 "Type": "String",
 "Default": "arn:aws:iam::123456789012:role/ecsTaskExecutionRole",
 "Description": "The ARN of the task execution role"
 },
 "NetworkMode": {
 "Type": "String",
 "Default": "awsvpc",
 "Description": "The Docker networking mode to use",
 "AllowedValues": ["awsvpc", "bridge", "host", "none"]
 },
 "TaskFamily": {
 "Type": "String",
 "Default": "my-ecs-task",
 "Description": "The name of the task definition family"
 },

Task definitions 67

Amazon Elastic Container Service Developer Guide

 "ContainerCpu": {
 "Type": "String",
 "Default": "256",
 "Description": "The number of CPU units to reserve for the container",
 "AllowedValues": ["256", "512", "1024", "2048", "4096"]
 },
 "ContainerMemory": {
 "Type": "String",
 "Default": "512",
 "Description": "The amount of memory (in MiB) to reserve for the container",
 "AllowedValues": ["512", "1024", "2048", "3072", "4096", "5120", "6144",
 "7168", "8192"]
 },
 "ContainerName": {
 "Type": "String",
 "Default": "nginx",
 "Description": "The name of the container"
 },
 "ContainerImage": {
 "Type": "String",
 "Default": "public.ecr.aws/nginx/nginx:latest",
 "Description": "The container image to use for the task"
 },
 "ContainerPort": {
 "Type": "Number",
 "Default": 80,
 "Description": "The port number on the container"
 },
 "InitProcessEnabled": {
 "Type": "String",
 "Default": "true",
 "Description": "Whether to enable the init process inside the container",
 "AllowedValues": ["true", "false"]
 },
 "EfsVolumeName": {
 "Type": "String",
 "Default": "efs-volume",
 "Description": "The name of the EFS volume"
 },
 "EfsContainerPath": {
 "Type": "String",
 "Default": "/usr/share/nginx/html",
 "Description": "The path in the container where the EFS volume will be
 mounted"

Task definitions 68

Amazon Elastic Container Service Developer Guide

 },
 "LogGroup": {
 "Type": "String",
 "Default": "LogGroup",
 "Description": "The CloudWatch log group for container logs"
 },
 "LogStreamPrefix": {
 "Type": "String",
 "Default": "efs-task",
 "Description": "The prefix for the log stream"
 },
 "EfsFilesystemId": {
 "Type": "String",
 "Default": "fs-1234567890abcdef0",
 "Description": "The ID of the EFS filesystem"
 },
 "EfsRootDirectory": {
 "Type": "String",
 "Default": "/",
 "Description": "The root directory in the EFS filesystem"
 },
 "EfsTransitEncryption": {
 "Type": "String",
 "Default": "ENABLED",
 "Description": "Whether to enable transit encryption for EFS",
 "AllowedValues": ["ENABLED", "DISABLED"]
 }
 },
 "Resources": {
 "ECSTaskDefinition": {
 "Type": "AWS::ECS::TaskDefinition",
 "Properties": {
 "ExecutionRoleArn": {"Ref": "ExecutionRoleArn"},
 "NetworkMode": {"Ref": "NetworkMode"},
 "RequiresCompatibilities": ["FARGATE"],
 "Family": {"Ref": "TaskFamily"},
 "Cpu": {"Ref": "ContainerCpu"},
 "Memory": {"Ref": "ContainerMemory"},
 "ContainerDefinitions": [
 {
 "Name": {"Ref": "ContainerName"},
 "Image": {"Ref": "ContainerImage"},
 "Essential": true,
 "PortMappings": [

Task definitions 69

Amazon Elastic Container Service Developer Guide

 {
 "ContainerPort": {"Ref": "ContainerPort"},
 "Protocol": "tcp"
 }
],
 "LinuxParameters": {
 "InitProcessEnabled": {"Ref": "InitProcessEnabled"}
 },
 "MountPoints": [
 {
 "SourceVolume": {"Ref": "EfsVolumeName"},
 "ContainerPath": {"Ref": "EfsContainerPath"}
 }
],
 "LogConfiguration": {
 "LogDriver": "awslogs",
 "Options": {
 "mode": "non-blocking",
 "max-buffer-size": "25m",
 "awslogs-group": {"Ref": "LogGroup"},
 "awslogs-region": {"Ref": "AWS::Region"},
 "awslogs-create-group": "true",
 "awslogs-stream-prefix": {"Ref": "LogStreamPrefix"}
 }
 }
 }
],
 "Volumes": [
 {
 "Name": {"Ref": "EfsVolumeName"},
 "EFSVolumeConfiguration": {
 "FilesystemId": {"Ref": "EfsFilesystemId"},
 "RootDirectory": {"Ref": "EfsRootDirectory"},
 "TransitEncryption": {"Ref": "EfsTransitEncryption"}
 }
 }
]
 }
 }
 },
 "Outputs": {
 "TaskDefinitionArn": {
 "Description": "The ARN of the created task definition",
 "Value": {"Ref": "ECSTaskDefinition"}

Task definitions 70

Amazon Elastic Container Service Developer Guide

 }
 }
}

YAML

AWSTemplateFormatVersion: 2010-09-09
Description: Create a task definition for a web server with parameterized values.
Parameters:
 ExecutionRoleArn:
 Type: String
 Default: arn:aws:iam::123456789012:role/ecsTaskExecutionRole
 Description: The ARN of the task execution role
 NetworkMode:
 Type: String
 Default: awsvpc
 Description: The Docker networking mode to use
 AllowedValues: [awsvpc, bridge, host, none]
 TaskFamily:
 Type: String
 Default: my-ecs-task
 Description: The name of the task definition family
 ContainerCpu:
 Type: String
 Default: "256"
 Description: The number of CPU units to reserve for the container
 AllowedValues: ["256", "512", "1024", "2048", "4096"]
 ContainerMemory:
 Type: String
 Default: "512"
 Description: The amount of memory (in MiB) to reserve for the container
 AllowedValues: ["512", "1024", "2048", "3072", "4096", "5120", "6144", "7168",
 "8192"]
 ContainerName:
 Type: String
 Default: nginx
 Description: The name of the container
 ContainerImage:
 Type: String
 Default: public.ecr.aws/nginx/nginx:latest
 Description: The container image to use for the task
 ContainerPort:
 Type: Number

Task definitions 71

Amazon Elastic Container Service Developer Guide

 Default: 80
 Description: The port number on the container
 InitProcessEnabled:
 Type: String
 Default: "true"
 Description: Whether to enable the init process inside the container
 AllowedValues: ["true", "false"]
 EfsVolumeName:
 Type: String
 Default: efs-volume
 Description: The name of the EFS volume
 EfsContainerPath:
 Type: String
 Default: /usr/share/nginx/html
 Description: The path in the container where the EFS volume will be mounted
 LogGroup:
 Type: String
 Default: LogGroup
 Description: The CloudWatch log group for container logs
 LogStreamPrefix:
 Type: String
 Default: efs-task
 Description: The prefix for the log stream
 EfsFilesystemId:
 Type: String
 Default: fs-1234567890abcdef0
 Description: The ID of the EFS filesystem
 EfsRootDirectory:
 Type: String
 Default: /
 Description: The root directory in the EFS filesystem
 EfsTransitEncryption:
 Type: String
 Default: ENABLED
 Description: Whether to enable transit encryption for EFS
 AllowedValues: [ENABLED, DISABLED]
Resources:
 ECSTaskDefinition:
 Type: AWS::ECS::TaskDefinition
 Properties:
 ExecutionRoleArn: !Ref ExecutionRoleArn
 NetworkMode: !Ref NetworkMode
 RequiresCompatibilities:
 - FARGATE

Task definitions 72

Amazon Elastic Container Service Developer Guide

 Family: !Ref TaskFamily
 Cpu: !Ref ContainerCpu
 Memory: !Ref ContainerMemory
 ContainerDefinitions:
 - Name: !Ref ContainerName
 Image: !Ref ContainerImage
 Essential: true
 PortMappings:
 - ContainerPort: !Ref ContainerPort
 Protocol: tcp
 LinuxParameters:
 InitProcessEnabled: !Ref InitProcessEnabled
 MountPoints:
 - SourceVolume: !Ref EfsVolumeName
 ContainerPath: !Ref EfsContainerPath
 LogConfiguration:
 LogDriver: awslogs
 Options:
 mode: non-blocking
 max-buffer-size: 25m
 awslogs-group: !Ref LogGroup
 awslogs-region: !Ref AWS::Region
 awslogs-create-group: "true"
 awslogs-stream-prefix: !Ref LogStreamPrefix
 Volumes:
 - Name: !Ref EfsVolumeName
 EFSVolumeConfiguration:
 FilesystemId: !Ref EfsFilesystemId
 RootDirectory: !Ref EfsRootDirectory
 TransitEncryption: !Ref EfsTransitEncryption
Outputs:
 TaskDefinitionArn:
 Description: The ARN of the created task definition
 Value: !Ref ECSTaskDefinition

Clusters

An Amazon ECS cluster is a logical grouping of tasks or services. You can use the following
templates to create clusters with different configurations. For more information about Amazon ECS
clusters, see Amazon ECS clusters.

Clusters 73

Amazon Elastic Container Service Developer Guide

Create an empty cluster with default settings

You can use the following template to create an empty cluster with default settings.

JSON

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "ECSCluster": {
 "Type": "AWS::ECS::Cluster",
 "Properties": {
 "ClusterName": "MyEmptyCluster"
 }
 }
 }
}

YAML

AWSTemplateFormatVersion: 2010-09-09
Resources:
 ECSCluster:
 Type: 'AWS::ECS::Cluster'
 Properties:
 ClusterName: MyEmptyCluster

Create an empty cluster with managed storage encryption and enhanced
Container Insights

You can use the following template to create a cluster with cluster-level managed storage and
enhanced Container Insights enabled. Cluster-level encryption applies to Amazon ECS managed
data volumes such as Amazon EBS volumes. For more information about Amazon EBS encryption,
see Encrypt data stored in Amazon EBS volumes attached to Amazon ECS tasks. For more
information about using Container Insights with enchanced observability, see Monitor Amazon ECS
containers using Container Insights with enhanced observability.

JSON

{

Clusters 74

Amazon Elastic Container Service Developer Guide

 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "Cluster": {
 "Type": "AWS::ECS::Cluster",
 "Properties": {
 "ClusterName": "EncryptedEnhancedCluster",
 "ClusterSettings": [
 {
 "Name": "containerInsights",
 "Value": "enhanced"
 }
],
 "Configuration": {
 "ManagedStorageConfiguration": {
 "KmsKeyId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 }
 }
 }
 }
 }
}

YAML

AWSTemplateFormatVersion: 2010-09-09
Resources:
 Cluster:
 Type: AWS::ECS::Cluster
 Properties:
 ClusterName: EncryptedEnhancedCluster
 ClusterSettings:
 - Name: containerInsights
 Value: enhanced
 Configuration:
 ManagedStorageConfiguration:
 KmsKeyId: a1b2c3d4-5678-90ab-cdef-EXAMPLE11111

Create a cluster with the AL2023 Amazon ECS-Optimized-AMI

You can use the following template to create a cluster that uses a capacity provider that launches
AL2023 instances on Amazon EC2.

Clusters 75

Amazon Elastic Container Service Developer Guide

Important

For the latest AMI IDs, see Amazon ECS-optimized AMI in the Amazon Elastic Container
Service Developer Guide.

JSON

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "EC2 ECS cluster that starts out empty, with no EC2 instances
 yet. An ECS capacity provider automatically launches more EC2 instances as required
 on the fly when you request ECS to launch services or standalone tasks.",
 "Parameters": {
 "InstanceType": {
 "Type": "String",
 "Description": "EC2 instance type",
 "Default": "t2.medium",
 "AllowedValues": [
 "t1.micro",
 "t2.2xlarge",
 "t2.large",
 "t2.medium",
 "t2.micro",
 "t2.nano",
 "t2.small",
 "t2.xlarge",
 "t3.2xlarge",
 "t3.large",
 "t3.medium",
 "t3.micro",
 "t3.nano",
 "t3.small",
 "t3.xlarge"
]
 },
 "DesiredCapacity": {
 "Type": "Number",
 "Default": "0",
 "Description": "Number of EC2 instances to launch in your ECS cluster."
 },
 "MaxSize": {
 "Type": "Number",

Clusters 76

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html

Amazon Elastic Container Service Developer Guide

 "Default": "100",
 "Description": "Maximum number of EC2 instances that can be launched in
 your ECS cluster."
 },
 "ECSAMI": {
 "Description": "The Amazon Machine Image ID used for the cluster",
 "Type": "AWS::SSM::Parameter::Value<AWS::EC2::Image::Id>",
 "Default": "/aws/service/ecs/optimized-ami/amazon-linux-2023/
recommended/image_id"
 },
 "VpcId": {
 "Type": "AWS::EC2::VPC::Id",
 "Description": "VPC ID where the ECS cluster is launched",
 "Default": "vpc-1234567890abcdef0"
 },
 "SubnetIds": {
 "Type": "List<AWS::EC2::Subnet::Id>",
 "Description": "List of subnet IDs where the EC2 instances will be
 launched",
 "Default": "subnet-021345abcdef67890"
 }
 },
 "Resources": {
 "ECSCluster": {
 "Type": "AWS::ECS::Cluster",
 "Properties": {
 "ClusterSettings": [
 {
 "Name": "containerInsights",
 "Value": "enabled"
 }
]
 }
 },
 "ECSAutoScalingGroup": {
 "Type": "AWS::AutoScaling::AutoScalingGroup",
 "DependsOn": [
 "ECSCluster",
 "EC2Role"
],
 "Properties": {
 "VPCZoneIdentifier": {
 "Ref": "SubnetIds"
 },

Clusters 77

Amazon Elastic Container Service Developer Guide

 "LaunchTemplate": {
 "LaunchTemplateId": {
 "Ref": "ContainerInstances"
 },
 "Version": {
 "Fn::GetAtt": [
 "ContainerInstances",
 "LatestVersionNumber"
]
 }
 },
 "MinSize": 0,
 "MaxSize": {
 "Ref": "MaxSize"
 },
 "DesiredCapacity": {
 "Ref": "DesiredCapacity"
 },
 "NewInstancesProtectedFromScaleIn": true
 },
 "UpdatePolicy": {
 "AutoScalingReplacingUpdate": {
 "WillReplace": "true"
 }
 }
 },
 "ContainerInstances": {
 "Type": "AWS::EC2::LaunchTemplate",
 "Properties": {
 "LaunchTemplateName": "asg-launch-template-2",
 "LaunchTemplateData": {
 "ImageId": {
 "Ref": "ECSAMI"
 },
 "InstanceType": {
 "Ref": "InstanceType"
 },
 "IamInstanceProfile": {
 "Name": {
 "Ref": "EC2InstanceProfile"
 }
 },
 "SecurityGroupIds": [
 {

Clusters 78

Amazon Elastic Container Service Developer Guide

 "Ref": "ContainerHostSecurityGroup"
 }
],
 "UserData": {
 "Fn::Base64": {
 "Fn::Sub": "#!/bin/bash -xe\n echo ECS_CLUSTER=
${ECSCluster} >> /etc/ecs/ecs.config\n yum install -y aws-cfn-bootstrap\n /opt/aws/
bin/cfn-init -v --stack ${AWS::StackId} --resource ContainerInstances --configsets
 full_install --region ${AWS::Region} &\n"
 }
 },
 "MetadataOptions": {
 "HttpEndpoint": "enabled",
 "HttpTokens": "required"
 }
 }
 }
 },
 "EC2InstanceProfile": {
 "Type": "AWS::IAM::InstanceProfile",
 "Properties": {
 "Path": "/",
 "Roles": [
 {
 "Ref": "EC2Role"
 }
]
 }
 },
 "CapacityProvider": {
 "Type": "AWS::ECS::CapacityProvider",
 "Properties": {
 "AutoScalingGroupProvider": {
 "AutoScalingGroupArn": {
 "Ref": "ECSAutoScalingGroup"
 },
 "ManagedScaling": {
 "InstanceWarmupPeriod": 60,
 "MinimumScalingStepSize": 1,
 "MaximumScalingStepSize": 100,
 "Status": "ENABLED",
 "TargetCapacity": 100
 },
 "ManagedTerminationProtection": "ENABLED"

Clusters 79

Amazon Elastic Container Service Developer Guide

 }
 }
 },
 "CapacityProviderAssociation": {
 "Type": "AWS::ECS::ClusterCapacityProviderAssociations",
 "Properties": {
 "CapacityProviders": [
 {
 "Ref": "CapacityProvider"
 }
],
 "Cluster": {
 "Ref": "ECSCluster"
 },
 "DefaultCapacityProviderStrategy": [
 {
 "Base": 0,
 "CapacityProvider": {
 "Ref": "CapacityProvider"
 },
 "Weight": 1
 }
]
 }
 },
 "ContainerHostSecurityGroup": {
 "Type": "AWS::EC2::SecurityGroup",
 "Properties": {
 "GroupDescription": "Access to the EC2 hosts that run containers",
 "VpcId": {
 "Ref": "VpcId"
 }
 }
 },
 "EC2Role": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "ec2.amazonaws.com"

Clusters 80

Amazon Elastic Container Service Developer Guide

]
 },
 "Action": [
 "sts:AssumeRole"
]
 }
]
 },
 "Path": "/",
 "ManagedPolicyArns": [
 "arn:aws:iam::aws:policy/service-role/
AmazonEC2ContainerServiceforEC2Role",
 "arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore"
]
 }
 },
 "ECSTaskExecutionRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "ecs-tasks.amazonaws.com"
]
 },
 "Action": [
 "sts:AssumeRole"
],
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": {
 "Fn::Sub": "arn:${AWS::Partition}:ecs:
${AWS::Region}:${AWS::AccountId}:*"
 }
 },
 "StringEquals": {
 "aws:SourceAccount": {
 "Fn::Sub": "${AWS::AccountId}"
 }
 }
 }

Clusters 81

Amazon Elastic Container Service Developer Guide

 }
]
 },
 "Path": "/",
 "ManagedPolicyArns": [
 "arn:aws:iam::aws:policy/service-role/
AmazonECSTaskExecutionRolePolicy"
]
 }
 }
 },
 "Outputs": {
 "ClusterName": {
 "Description": "The ECS cluster into which to launch resources",
 "Value": "ECSCluster"
 },
 "ECSTaskExecutionRole": {
 "Description": "The role used to start up a task",
 "Value": "ECSTaskExecutionRole"
 },
 "CapacityProvider": {
 "Description": "The cluster capacity provider that the service should
 use to request capacity when it wants to start up a task",
 "Value": "CapacityProvider"
 }
 }
}

YAML

AWSTemplateFormatVersion: '2010-09-09'
Description: EC2 ECS cluster that starts out empty, with no EC2 instances yet. An
 ECS capacity provider automatically launches more EC2 instances as required on the
 fly when you request ECS to launch services or standalone tasks.
Parameters:
 InstanceType:
 Type: String
 Description: EC2 instance type
 Default: t2.medium
 AllowedValues:
 - t1.micro
 - t2.2xlarge
 - t2.large

Clusters 82

Amazon Elastic Container Service Developer Guide

 - t2.medium
 - t2.micro
 - t2.nano
 - t2.small
 - t2.xlarge
 - t3.2xlarge
 - t3.large
 - t3.medium
 - t3.micro
 - t3.nano
 - t3.small
 - t3.xlarge
 DesiredCapacity:
 Type: Number
 Default: '0'
 Description: Number of EC2 instances to launch in your ECS cluster.
 MaxSize:
 Type: Number
 Default: '100'
 Description: Maximum number of EC2 instances that can be launched in your ECS
 cluster.
 ECSAMI:
 Description: The Amazon Machine Image ID used for the cluster
 Type: AWS::SSM::Parameter::Value<AWS::EC2::Image::Id>
 Default: /aws/service/ecs/optimized-ami/amazon-linux-2023/recommended/image_id
 VpcId:
 Type: AWS::EC2::VPC::Id
 Description: VPC ID where the ECS cluster is launched
 Default: vpc-1234567890abcdef0
 SubnetIds:
 Type: List<AWS::EC2::Subnet::Id>
 Description: List of subnet IDs where the EC2 instances will be launched
 Default: subnet-021345abcdef67890
Resources:
 ECSCluster:
 Type: AWS::ECS::Cluster
 Properties:
 ClusterSettings:
 - Name: containerInsights
 Value: enabled
 ECSAutoScalingGroup:
 Type: AWS::AutoScaling::AutoScalingGroup
 DependsOn:
 - ECSCluster

Clusters 83

Amazon Elastic Container Service Developer Guide

 - EC2Role
 Properties:
 VPCZoneIdentifier: !Ref SubnetIds
 LaunchTemplate:
 LaunchTemplateId: !Ref ContainerInstances
 Version: !GetAtt ContainerInstances.LatestVersionNumber
 MinSize: 0
 MaxSize: !Ref MaxSize
 DesiredCapacity: !Ref DesiredCapacity
 NewInstancesProtectedFromScaleIn: true
 UpdatePolicy:
 AutoScalingReplacingUpdate:
 WillReplace: 'true'
 ContainerInstances:
 Type: AWS::EC2::LaunchTemplate
 Properties:
 LaunchTemplateName: asg-launch-template-2
 LaunchTemplateData:
 ImageId: !Ref ECSAMI
 InstanceType: !Ref InstanceType
 IamInstanceProfile:
 Name: !Ref EC2InstanceProfile
 SecurityGroupIds:
 - !Ref ContainerHostSecurityGroup
 UserData: !Base64
 Fn::Sub: |
 #!/bin/bash -xe
 echo ECS_CLUSTER=${ECSCluster} >> /etc/ecs/ecs.config
 yum install -y aws-cfn-bootstrap
 /opt/aws/bin/cfn-init -v --stack ${AWS::StackId} --resource
 ContainerInstances --configsets full_install --region ${AWS::Region} &
 MetadataOptions:
 HttpEndpoint: enabled
 HttpTokens: required
 EC2InstanceProfile:
 Type: AWS::IAM::InstanceProfile
 Properties:
 Path: /
 Roles:
 - !Ref EC2Role
 CapacityProvider:
 Type: AWS::ECS::CapacityProvider
 Properties:
 AutoScalingGroupProvider:

Clusters 84

Amazon Elastic Container Service Developer Guide

 AutoScalingGroupArn: !Ref ECSAutoScalingGroup
 ManagedScaling:
 InstanceWarmupPeriod: 60
 MinimumScalingStepSize: 1
 MaximumScalingStepSize: 100
 Status: ENABLED
 TargetCapacity: 100
 ManagedTerminationProtection: ENABLED
 CapacityProviderAssociation:
 Type: AWS::ECS::ClusterCapacityProviderAssociations
 Properties:
 CapacityProviders:
 - !Ref CapacityProvider
 Cluster: !Ref ECSCluster
 DefaultCapacityProviderStrategy:
 - Base: 0
 CapacityProvider: !Ref CapacityProvider
 Weight: 1
 ContainerHostSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Access to the EC2 hosts that run containers
 VpcId: !Ref VpcId
 EC2Role:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - ec2.amazonaws.com
 Action:
 - sts:AssumeRole
 Path: /
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/service-role/AmazonEC2ContainerServiceforEC2Role
 - arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore
 ECSTaskExecutionRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Statement:
 - Effect: Allow

Clusters 85

Amazon Elastic Container Service Developer Guide

 Principal:
 Service:
 - ecs-tasks.amazonaws.com
 Action:
 - sts:AssumeRole
 Condition:
 ArnLike:
 aws:SourceArn: !Sub arn:${AWS::Partition}:ecs:${AWS::Region}:
${AWS::AccountId}:*
 StringEquals:
 aws:SourceAccount: !Sub ${AWS::AccountId}
 Path: /
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy
Outputs:
 ClusterName:
 Description: The ECS cluster into which to launch resources
 Value: ECSCluster
 ECSTaskExecutionRole:
 Description: The role used to start up a task
 Value: ECSTaskExecutionRole
 CapacityProvider:
 Description: The cluster capacity provider that the service should use to
 request capacity when it wants to start up a task
 Value: CapacityProvider

Services

You can use an Amazon ECS service to run and maintain a specified number of instances of a task
definition simultaneously in an Amazon ECS cluster. If one of your tasks fails or stops, the Amazon
ECS service scheduler launches another instance of your task definition to replace it. This helps
maintain your desired number of tasks in the service. The following templates can be used to
deploy services. For more information about Amazon ECS services, see Amazon ECS services.

Deploy an application

The following template creates an Amazon ECS service that's named cfn-service that launches
and maintains the task defined by the task definition. The templates creates a cluster that's named
CFNCluster. The cluster contains a Linux Fargate task definition that sets up a web server. The
template also creates the necessary networking and logging resources. The template also create an

Services 86

Amazon Elastic Container Service Developer Guide

Amazon ECS task execution role. For more information about the task execution role, see Amazon
ECS task execution IAM role.

JSON

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "A template that deploys an application that is built on an
 Apache web server Docker image by creating an Amazon ECS cluster, task definition,
 and service. The template also creates networking and logging resources, and an
 Amazon ECS task execution role.",
 "Parameters": {
 "ClusterName": {
 "Type": "String",
 "Default": "CFNCluster",
 "Description": "Name of the ECS Cluster"
 },
 "TaskFamily": {
 "Type": "String",
 "Default": "task-definition-cfn",
 "Description": "Family name for the Task Definition"
 },
 "ServiceName": {
 "Type": "String",
 "Default": "cfn-service",
 "Description": "Name of the ECS Service"
 },
 "ContainerImage": {
 "Type": "String",
 "Default": "public.ecr.aws/docker/library/httpd:2.4",
 "Description": "Container image to use for the task"
 },
 "TaskCpu": {
 "Type": "Number",
 "Default": 256,
 "AllowedValues": [
 256,
 512,
 1024,
 2048,
 4096
],
 "Description": "CPU units for the task"

Services 87

Amazon Elastic Container Service Developer Guide

 },
 "TaskMemory": {
 "Type": "Number",
 "Default": 512,
 "AllowedValues": [
 512,
 1024,
 2048,
 4096,
 8192,
 16384
],
 "Description": "Memory (in MiB) for the task"
 },
 "DesiredCount": {
 "Type": "Number",
 "Default": 1,
 "Description": "Desired number of tasks to run"
 },
 "LogGroupName": {
 "Type": "String",
 "Default": "/ecs/fargate-task-definition",
 "Description": "CloudWatch Log Group name"
 },
 "VpcCidr": {
 "Type": "String",
 "Default": "10.0.0.0/16",
 "Description": "CIDR block for the VPC"
 },
 "PublicSubnet1Cidr": {
 "Type": "String",
 "Default": "10.0.0.0/24",
 "Description": "CIDR block for public subnet 1"
 },
 "PublicSubnet2Cidr": {
 "Type": "String",
 "Default": "10.0.1.0/24",
 "Description": "CIDR block for public subnet 2"
 }
 },
 "Resources": {
 "VPC": {
 "Type": "AWS::EC2::VPC",
 "Properties": {

Services 88

Amazon Elastic Container Service Developer Guide

 "CidrBlock": {
 "Ref": "VpcCidr"
 },
 "EnableDnsSupport": true,
 "EnableDnsHostnames": true,
 "Tags": [
 {
 "Key": "Name",
 "Value": {
 "Fn::Sub": "${AWS::StackName}-VPC"
 }
 }
]
 }
 },
 "InternetGateway": {
 "Type": "AWS::EC2::InternetGateway",
 "Properties": {
 "Tags": [
 {
 "Key": "Name",
 "Value": {
 "Fn::Sub": "${AWS::StackName}-IGW"
 }
 }
]
 }
 },
 "InternetGatewayAttachment": {
 "Type": "AWS::EC2::VPCGatewayAttachment",
 "Properties": {
 "InternetGatewayId": {
 "Ref": "InternetGateway"
 },
 "VpcId": {
 "Ref": "VPC"
 }
 }
 },
 "PublicSubnet1": {
 "Type": "AWS::EC2::Subnet",
 "Properties": {
 "VpcId": {
 "Ref": "VPC"

Services 89

Amazon Elastic Container Service Developer Guide

 },
 "AvailabilityZone": {
 "Fn::Select": [
 0,
 {
 "Fn::GetAZs": ""
 }
]
 },
 "CidrBlock": {
 "Ref": "PublicSubnet1Cidr"
 },
 "MapPublicIpOnLaunch": true,
 "Tags": [
 {
 "Key": "Name",
 "Value": {
 "Fn::Sub": "${AWS::StackName}-PublicSubnet1"
 }
 }
]
 }
 },
 "PublicSubnet2": {
 "Type": "AWS::EC2::Subnet",
 "Properties": {
 "VpcId": {
 "Ref": "VPC"
 },
 "AvailabilityZone": {
 "Fn::Select": [
 1,
 {
 "Fn::GetAZs": ""
 }
]
 },
 "CidrBlock": {
 "Ref": "PublicSubnet2Cidr"
 },
 "MapPublicIpOnLaunch": true,
 "Tags": [
 {
 "Key": "Name",

Services 90

Amazon Elastic Container Service Developer Guide

 "Value": {
 "Fn::Sub": "${AWS::StackName}-PublicSubnet2"
 }
 }
]
 }
 },
 "PublicRouteTable": {
 "Type": "AWS::EC2::RouteTable",
 "Properties": {
 "VpcId": {
 "Ref": "VPC"
 },
 "Tags": [
 {
 "Key": "Name",
 "Value": {
 "Fn::Sub": "${AWS::StackName}-PublicRouteTable"
 }
 }
]
 }
 },
 "DefaultPublicRoute": {
 "Type": "AWS::EC2::Route",
 "DependsOn": "InternetGatewayAttachment",
 "Properties": {
 "RouteTableId": {
 "Ref": "PublicRouteTable"
 },
 "DestinationCidrBlock": "0.0.0.0/0",
 "GatewayId": {
 "Ref": "InternetGateway"
 }
 }
 },
 "PublicSubnet1RouteTableAssociation": {
 "Type": "AWS::EC2::SubnetRouteTableAssociation",
 "Properties": {
 "RouteTableId": {
 "Ref": "PublicRouteTable"
 },
 "SubnetId": {
 "Ref": "PublicSubnet1"

Services 91

Amazon Elastic Container Service Developer Guide

 }
 }
 },
 "PublicSubnet2RouteTableAssociation": {
 "Type": "AWS::EC2::SubnetRouteTableAssociation",
 "Properties": {
 "RouteTableId": {
 "Ref": "PublicRouteTable"
 },
 "SubnetId": {
 "Ref": "PublicSubnet2"
 }
 }
 },
 "ECSSecurityGroup": {
 "Type": "AWS::EC2::SecurityGroup",
 "Properties": {
 "GroupDescription": "Security group for ECS tasks",
 "VpcId": {
 "Ref": "VPC"
 },
 "SecurityGroupIngress": [
 {
 "IpProtocol": "tcp",
 "FromPort": 80,
 "ToPort": 80,
 "CidrIp": "0.0.0.0/0"
 },
 {
 "IpProtocol": "tcp",
 "FromPort": 443,
 "ToPort": 443,
 "CidrIp": "0.0.0.0/0"
 }
]
 }
 },
 "ECSTaskExecutionRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {

Services 92

Amazon Elastic Container Service Developer Guide

 "Effect": "Allow",
 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "ManagedPolicyArns": [
 "arn:aws:iam::aws:policy/service-role/
AmazonECSTaskExecutionRolePolicy"
]
 }
 },
 "TaskLogGroup": {
 "Type": "AWS::Logs::LogGroup",
 "DeletionPolicy": "Retain",
 "UpdateReplacePolicy": "Retain",
 "Properties": {
 "LogGroupName": {
 "Ref": "LogGroupName"
 },
 "RetentionInDays": 30
 }
 },
 "ECSCluster": {
 "Type": "AWS::ECS::Cluster",
 "Properties": {
 "ClusterName": {
 "Ref": "ClusterName"
 }
 }
 },
 "ECSTaskDefinition": {
 "Type": "AWS::ECS::TaskDefinition",
 "Properties": {
 "ContainerDefinitions": [
 {
 "Command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #333;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</
h1> <h2>Congratulations!</h2> <p>Your application is now running on a container in

Services 93

Amazon Elastic Container Service Developer Guide

 Amazon ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html &&
 httpd-foreground\""
],
 "EntryPoint": [
 "sh",
 "-c"
],
 "Essential": true,
 "Image": {
 "Ref": "ContainerImage"
 },
 "LogConfiguration": {
 "LogDriver": "awslogs",
 "Options": {
 "mode": "non-blocking",
 "max-buffer-size": "25m",
 "awslogs-create-group": "true",
 "awslogs-group": {
 "Ref": "LogGroupName"
 },
 "awslogs-region": {
 "Ref": "AWS::Region"
 },
 "awslogs-stream-prefix": "ecs"
 }
 },
 "Name": "sample-fargate-app",
 "PortMappings": [
 {
 "ContainerPort": 80,
 "HostPort": 80,
 "Protocol": "tcp"
 }
]
 }
],
 "Cpu": {
 "Ref": "TaskCpu"
 },
 "ExecutionRoleArn": {
 "Fn::GetAtt": [
 "ECSTaskExecutionRole",
 "Arn"
]

Services 94

Amazon Elastic Container Service Developer Guide

 },
 "Family": {
 "Ref": "TaskFamily"
 },
 "Memory": {
 "Ref": "TaskMemory"
 },
 "NetworkMode": "awsvpc",
 "RequiresCompatibilities": [
 "FARGATE"
],
 "RuntimePlatform": {
 "OperatingSystemFamily": "LINUX"
 }
 }
 },
 "ECSService": {
 "Type": "AWS::ECS::Service",
 "DependsOn": [
 "PublicSubnet1RouteTableAssociation",
 "PublicSubnet2RouteTableAssociation"
],
 "Properties": {
 "ServiceName": {
 "Ref": "ServiceName"
 },
 "Cluster": {
 "Ref": "ECSCluster"
 },
 "DesiredCount": {
 "Ref": "DesiredCount"
 },
 "LaunchType": "FARGATE",
 "NetworkConfiguration": {
 "AwsvpcConfiguration": {
 "AssignPublicIp": "ENABLED",
 "SecurityGroups": [
 {
 "Ref": "ECSSecurityGroup"
 }
],
 "Subnets": [
 {
 "Ref": "PublicSubnet1"

Services 95

Amazon Elastic Container Service Developer Guide

 },
 {
 "Ref": "PublicSubnet2"
 }
]
 }
 },
 "TaskDefinition": {
 "Ref": "ECSTaskDefinition"
 }
 }
 }
 },
 "Outputs": {
 "ClusterName": {
 "Description": "The name of the ECS cluster",
 "Value": {
 "Ref": "ECSCluster"
 }
 },
 "TaskDefinitionArn": {
 "Description": "The ARN of the task definition",
 "Value": {
 "Ref": "ECSTaskDefinition"
 }
 },
 "ServiceName": {
 "Description": "The name of the ECS service",
 "Value": {
 "Ref": "ECSService"
 }
 },
 "VpcId": {
 "Description": "The ID of the VPC",
 "Value": {
 "Ref": "VPC"
 }
 },
 "PublicSubnet1": {
 "Description": "The ID of public subnet 1",
 "Value": {
 "Ref": "PublicSubnet1"
 }
 },

Services 96

Amazon Elastic Container Service Developer Guide

 "PublicSubnet2": {
 "Description": "The ID of public subnet 2",
 "Value": {
 "Ref": "PublicSubnet2"
 }
 },
 "SecurityGroup": {
 "Description": "The ID of the security group",
 "Value": {
 "Ref": "ECSSecurityGroup"
 }
 },
 "ExecutionRoleArn": {
 "Description": "The ARN of the task execution role",
 "Value": {
 "Fn::GetAtt": [
 "ECSTaskExecutionRole",
 "Arn"
]
 }
 }
 }
}

YAML

AWSTemplateFormatVersion: 2010-09-09
Description: A template that deploys an application that is built on an Apache
 web server Docker image by creating an Amazon ECS cluster, task definition, and
 service. The template also creates networking and logging resources, and an Amazon
 ECS task execution role.
Parameters:
 ClusterName:
 Type: String
 Default: CFNCluster
 Description: Name of the ECS Cluster
 TaskFamily:
 Type: String
 Default: task-definition-cfn
 Description: Family name for the Task Definition
 ServiceName:
 Type: String
 Default: cfn-service

Services 97

Amazon Elastic Container Service Developer Guide

 Description: Name of the ECS Service
 ContainerImage:
 Type: String
 Default: public.ecr.aws/docker/library/httpd:2.4
 Description: Container image to use for the task
 TaskCpu:
 Type: Number
 Default: 256
 AllowedValues: [256, 512, 1024, 2048, 4096]
 Description: CPU units for the task
 TaskMemory:
 Type: Number
 Default: 512
 AllowedValues: [512, 1024, 2048, 4096, 8192, 16384]
 Description: Memory (in MiB) for the task
 DesiredCount:
 Type: Number
 Default: 1
 Description: Desired number of tasks to run
 LogGroupName:
 Type: String
 Default: /ecs/fargate-task-definition
 Description: CloudWatch Log Group name
 VpcCidr:
 Type: String
 Default: 10.0.0.0/16
 Description: CIDR block for the VPC
 PublicSubnet1Cidr:
 Type: String
 Default: 10.0.0.0/24
 Description: CIDR block for public subnet 1
 PublicSubnet2Cidr:
 Type: String
 Default: 10.0.1.0/24
 Description: CIDR block for public subnet 2
Resources:
 # VPC and Networking Resources
 VPC:
 Type: AWS::EC2::VPC
 Properties:
 CidrBlock: !Ref VpcCidr
 EnableDnsSupport: true
 EnableDnsHostnames: true
 Tags:

Services 98

Amazon Elastic Container Service Developer Guide

 - Key: Name
 Value: !Sub ${AWS::StackName}-VPC
 InternetGateway:
 Type: AWS::EC2::InternetGateway
 Properties:
 Tags:
 - Key: Name
 Value: !Sub ${AWS::StackName}-IGW
 InternetGatewayAttachment:
 Type: AWS::EC2::VPCGatewayAttachment
 Properties:
 InternetGatewayId: !Ref InternetGateway
 VpcId: !Ref VPC
 PublicSubnet1:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select [0, !GetAZs '']
 CidrBlock: !Ref PublicSubnet1Cidr
 MapPublicIpOnLaunch: true
 Tags:
 - Key: Name
 Value: !Sub ${AWS::StackName}-PublicSubnet1
 PublicSubnet2:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select [1, !GetAZs '']
 CidrBlock: !Ref PublicSubnet2Cidr
 MapPublicIpOnLaunch: true
 Tags:
 - Key: Name
 Value: !Sub ${AWS::StackName}-PublicSubnet2
 PublicRouteTable:
 Type: AWS::EC2::RouteTable
 Properties:
 VpcId: !Ref VPC
 Tags:
 - Key: Name
 Value: !Sub ${AWS::StackName}-PublicRouteTable
 DefaultPublicRoute:
 Type: AWS::EC2::Route
 DependsOn: InternetGatewayAttachment
 Properties:

Services 99

Amazon Elastic Container Service Developer Guide

 RouteTableId: !Ref PublicRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 GatewayId: !Ref InternetGateway
 PublicSubnet1RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PublicRouteTable
 SubnetId: !Ref PublicSubnet1
 PublicSubnet2RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PublicRouteTable
 SubnetId: !Ref PublicSubnet2
 # Security Group
 ECSSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Security group for ECS tasks
 VpcId: !Ref VPC
 SecurityGroupIngress:
 - IpProtocol: tcp
 FromPort: 80
 ToPort: 80
 CidrIp: 0.0.0.0/0
 - IpProtocol: tcp
 FromPort: 443
 ToPort: 443
 CidrIp: 0.0.0.0/0

 # IAM Roles
 ECSTaskExecutionRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service: ecs-tasks.amazonaws.com
 Action: sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy
 # CloudWatch Logs
 TaskLogGroup:

Services 100

Amazon Elastic Container Service Developer Guide

 Type: AWS::Logs::LogGroup
 DeletionPolicy: Retain
 UpdateReplacePolicy: Retain
 Properties:
 LogGroupName: !Ref LogGroupName
 RetentionInDays: 30
 # ECS Resources
 ECSCluster:
 Type: AWS::ECS::Cluster
 Properties:
 ClusterName: !Ref ClusterName
 ECSTaskDefinition:
 Type: AWS::ECS::TaskDefinition
 Properties:
 ContainerDefinitions:
 - Command:
 - >-
 /bin/sh -c "echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color:
 #333;} </style> </head><body> <div
 style=color:white;text-align:center> <h1>Amazon ECS Sample
 App</h1> <h2>Congratulations!</h2> <p>Your application is now
 running on a container in Amazon ECS.</p> </div></body></html>' >
 /usr/local/apache2/htdocs/index.html && httpd-foreground"s
 EntryPoint:
 - sh
 - '-c'
 Essential: true
 Image: !Ref ContainerImage
 LogConfiguration:
 LogDriver: awslogs
 Options:
 mode: non-blocking
 max-buffer-size: 25m
 awslogs-create-group: 'true'
 awslogs-group: !Ref LogGroupName
 awslogs-region: !Ref 'AWS::Region'
 awslogs-stream-prefix: ecs
 Name: sample-fargate-app
 PortMappings:
 - ContainerPort: 80
 HostPort: 80
 Protocol: tcp
 Cpu: !Ref TaskCpu

Services 101

Amazon Elastic Container Service Developer Guide

 ExecutionRoleArn: !GetAtt ECSTaskExecutionRole.Arn
 Family: !Ref TaskFamily
 Memory: !Ref TaskMemory
 NetworkMode: awsvpc
 RequiresCompatibilities:
 - FARGATE
 RuntimePlatform:
 OperatingSystemFamily: LINUX
 ECSService:
 Type: AWS::ECS::Service
 DependsOn:
 - PublicSubnet1RouteTableAssociation
 - PublicSubnet2RouteTableAssociation
 Properties:
 ServiceName: !Ref ServiceName
 Cluster: !Ref ECSCluster
 DesiredCount: !Ref DesiredCount
 LaunchType: FARGATE
 NetworkConfiguration:
 AwsvpcConfiguration:
 AssignPublicIp: ENABLED
 SecurityGroups:
 - !Ref ECSSecurityGroup
 Subnets:
 - !Ref PublicSubnet1
 - !Ref PublicSubnet2
 TaskDefinition: !Ref ECSTaskDefinition
Outputs:
 ClusterName:
 Description: The name of the ECS cluster
 Value: !Ref ECSCluster
 TaskDefinitionArn:
 Description: The ARN of the task definition
 Value: !Ref ECSTaskDefinition
 ServiceName:
 Description: The name of the ECS service
 Value: !Ref ECSService
 VpcId:
 Description: The ID of the VPC
 Value: !Ref VPC
 PublicSubnet1:
 Description: The ID of public subnet 1
 Value: !Ref PublicSubnet1
 PublicSubnet2:

Services 102

Amazon Elastic Container Service Developer Guide

 Description: The ID of public subnet 2
 Value: !Ref PublicSubnet2
 SecurityGroup:
 Description: The ID of the security group
 Value: !Ref ECSSecurityGroup
 ExecutionRoleArn:
 Description: The ARN of the task execution role
 Value: !GetAtt ECSTaskExecutionRole.Arn

Deploy a service with ECS Exec enabled

You can use the following template to deploy a service with ECS Exec enabled. The service runs in
a cluster with a KMS key for encrypting ECS Exec sessions and a log configuration for redirecting
execute command session logs to an Amazon S3 bucket. For more information, see Monitor
Amazon ECS containers with ECS Exec.

JSON

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "ECS Cluster with Fargate Service and Task Definition and ECS
 Exec enabled.",
 "Parameters": {
 "ClusterName": {
 "Type": "String",
 "Default": "CFNCluster",
 "Description": "Name of the ECS Cluster"
 },
 "S3BucketName": {
 "Type": "String",
 "Default": "amzn-s3-demo-bucket",
 "Description": "S3 bucket for ECS execute command logs"
 },
 "KmsKeyId": {
 "Type": "String",
 "Default": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "Description": "KMS Key ID for ECS execute command encryption"
 },
 "ContainerImage": {
 "Type": "String",
 "Default": "public.ecr.aws/docker/library/httpd:2.4",
 "Description": "Container image to use for the task"

Services 103

Amazon Elastic Container Service Developer Guide

 },
 "ContainerCpu": {
 "Type": "Number",
 "Default": 256,
 "AllowedValues": [256, 512, 1024, 2048, 4096],
 "Description": "CPU units for the container (256 = 0.25 vCPU)"
 },
 "ContainerMemory": {
 "Type": "Number",
 "Default": 512,
 "AllowedValues": [512, 1024, 2048, 3072, 4096, 5120, 6144, 7168, 8192],
 "Description": "Memory for the container (in MiB)"
 },
 "DesiredCount": {
 "Type": "Number",
 "Default": 1,
 "Description": "Desired count of tasks in the service"
 },
 "SecurityGroups": {
 "Type": "List<AWS::EC2::SecurityGroup::Id>",
 "Description": "Security Group IDs for the ECS Service"
 },
 "Subnets": {
 "Type": "List<AWS::EC2::Subnet::Id>",
 "Description": "Subnet IDs for the ECS Service"
 },
 "ServiceName": {
 "Type": "String",
 "Default": "cfn-service",
 "Description": "Name of the ECS service"
 },
 "TaskFamily": {
 "Type": "String",
 "Default": "task-definition-cfn",
 "Description": "Family name for the task definition"
 },
 "TaskExecutionRoleArn": {
 "Type": "String",
 "Description": "ARN of an existing IAM role for ECS task execution",
 "Default": "arn:aws:iam::111122223333:role/ecsTaskExecutionRole"
 },
 "TaskRoleArn": {
 "Type": "String",
 "Description": "ARN of an existing IAM role for ECS tasks",

Services 104

Amazon Elastic Container Service Developer Guide

 "Default": "arn:aws:iam::111122223333:role/execTaskRole"
 }
 },
 "Resources": {
 "ECSCluster": {
 "Type": "AWS::ECS::Cluster",
 "Properties": {
 "ClusterName": {"Ref": "ClusterName"},
 "Configuration": {
 "ExecuteCommandConfiguration": {
 "Logging": "OVERRIDE",
 "LogConfiguration": {
 "S3BucketName": {"Ref": "S3BucketName"}
 },
 "KmsKeyId": {"Ref": "KmsKeyId"}
 }
 },
 "Tags": [
 {
 "Key": "Environment",
 "Value": {"Ref": "AWS::StackName"}
 }
]
 }
 },
 "ECSTaskDefinition": {
 "Type": "AWS::ECS::TaskDefinition",
 "Properties": {
 "ContainerDefinitions": [
 {
 "Command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS
 Sample App</title> <style>body {margin-top: 40px; background-color: #333;} </style>
 </head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</
h1> <h2>Congratulations!</h2> <p>Your application is now running on a container in
 Amazon ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html &&
 httpd-foreground\""
],
 "EntryPoint": [
 "sh",
 "-c"
],
 "Essential": true,
 "Image": {"Ref": "ContainerImage"},

Services 105

Amazon Elastic Container Service Developer Guide

 "LogConfiguration": {
 "LogDriver": "awslogs",
 "Options": {
 "mode": "non-blocking",
 "max-buffer-size": "25m",
 "awslogs-create-group": "true",
 "awslogs-group": {"Fn::Sub": "/ecs/
${AWS::StackName}"},
 "awslogs-region": {"Ref": "AWS::Region"},
 "awslogs-stream-prefix": "ecs"
 }
 },
 "Name": "sample-fargate-app",
 "PortMappings": [
 {
 "ContainerPort": 80,
 "HostPort": 80,
 "Protocol": "tcp"
 }
]
 }
],
 "Cpu": {"Ref": "ContainerCpu"},
 "ExecutionRoleArn": {"Ref": "TaskExecutionRoleArn"},
 "TaskRoleArn": {"Ref": "TaskRoleArn"},
 "Family": {"Ref": "TaskFamily"},
 "Memory": {"Ref": "ContainerMemory"},
 "NetworkMode": "awsvpc",
 "RequiresCompatibilities": [
 "FARGATE"
],
 "RuntimePlatform": {
 "OperatingSystemFamily": "LINUX"
 },
 "Tags": [
 {
 "Key": "Name",
 "Value": {"Fn::Sub": "${AWS::StackName}-TaskDefinition"}
 }
]
 }
 },
 "ECSService": {
 "Type": "AWS::ECS::Service",

Services 106

Amazon Elastic Container Service Developer Guide

 "Properties": {
 "ServiceName": {"Ref": "ServiceName"},
 "Cluster": {"Ref": "ECSCluster"},
 "DesiredCount": {"Ref": "DesiredCount"},
 "EnableExecuteCommand": true,
 "LaunchType": "FARGATE",
 "NetworkConfiguration": {
 "AwsvpcConfiguration": {
 "AssignPublicIp": "ENABLED",
 "SecurityGroups": {"Ref": "SecurityGroups"},
 "Subnets": {"Ref": "Subnets"}
 }
 },
 "TaskDefinition": {"Ref": "ECSTaskDefinition"},
 "Tags": [
 {
 "Key": "Name",
 "Value": {"Fn::Sub": "${AWS::StackName}-Service"}
 }
]
 }
 }
 },
 "Outputs": {
 "ClusterName": {
 "Description": "The name of the ECS cluster",
 "Value": {"Ref": "ECSCluster"}
 },
 "ServiceName": {
 "Description": "The name of the ECS service",
 "Value": {"Ref": "ServiceName"}
 },
 "TaskDefinitionArn": {
 "Description": "The ARN of the task definition",
 "Value": {"Ref": "ECSTaskDefinition"}
 },
 "ClusterArn": {
 "Description": "The ARN of the ECS cluster",
 "Value": {"Fn::GetAtt": ["ECSCluster", "Arn"]}
 },
 "StackName": {
 "Description": "The name of this stack",
 "Value": {"Ref": "AWS::StackName"}
 },

Services 107

Amazon Elastic Container Service Developer Guide

 "StackId": {
 "Description": "The unique identifier for this stack",
 "Value": {"Ref": "AWS::StackId"}
 },
 "Region": {
 "Description": "The AWS Region where the stack is deployed",
 "Value": {"Ref": "AWS::Region"}
 },
 "AccountId": {
 "Description": "The AWS Account ID",
 "Value": {"Ref": "AWS::AccountId"}
 }
 }
}

YAML

AWSTemplateFormatVersion: '2010-09-09'
Description: ECS Cluster with Fargate Service and Task Definition and ECS Exec
 enabled.
Parameters:
 ClusterName:
 Type: String
 Default: CFNCluster
 Description: Name of the ECS Cluster
 S3BucketName:
 Type: String
 Default: amzn-s3-demo-bucket
 Description: S3 bucket for ECS execute command logs
 KmsKeyId:
 Type: String
 Default: a1b2c3d4-5678-90ab-cdef-EXAMPLE11111
 Description: KMS Key ID for ECS execute command encryption
 ContainerImage:
 Type: String
 Default: public.ecr.aws/docker/library/httpd:2.4
 Description: Container image to use for the task
 ContainerCpu:
 Type: Number
 Default: 256
 AllowedValues: [256, 512, 1024, 2048, 4096]
 Description: CPU units for the container (256 = 0.25 vCPU)
 ContainerMemory:

Services 108

Amazon Elastic Container Service Developer Guide

 Type: Number
 Default: 512
 AllowedValues: [512, 1024, 2048, 3072, 4096, 5120, 6144, 7168, 8192]
 Description: Memory for the container (in MiB)
 DesiredCount:
 Type: Number
 Default: 1
 Description: Desired count of tasks in the service
 SecurityGroups:
 Type: List<AWS::EC2::SecurityGroup::Id>
 Description: Security Group IDs for the ECS Service
 Subnets:
 Type: List<AWS::EC2::Subnet::Id>
 Description: Subnet IDs for the ECS Service
 ServiceName:
 Type: String
 Default: cfn-service
 Description: Name of the ECS service
 TaskFamily:
 Type: String
 Default: task-definition-cfn
 Description: Family name for the task definition
 TaskExecutionRoleArn:
 Type: String
 Description: ARN of an existing IAM role for ECS task execution
 Default: 'arn:aws:iam::111122223333:role/ecsTaskExecutionRole'
 TaskRoleArn:
 Type: String
 Description: ARN of an existing IAM role for ECS tasks
 Default: 'arn:aws:iam::111122223333:role/execTaskRole'
Resources:
 ECSCluster:
 Type: AWS::ECS::Cluster
 Properties:
 ClusterName: !Ref ClusterName
 Configuration:
 ExecuteCommandConfiguration:
 Logging: OVERRIDE
 LogConfiguration:
 S3BucketName: !Ref S3BucketName
 KmsKeyId: !Ref KmsKeyId
 Tags:
 - Key: Environment
 Value: !Ref AWS::StackName

Services 109

Amazon Elastic Container Service Developer Guide

 ECSTaskDefinition:
 Type: AWS::ECS::TaskDefinition
 Properties:
 ContainerDefinitions:
 - Command:
 - >-
 /bin/sh -c "echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color:
 #333;} </style> </head><body> <div
 style=color:white;text-align:center> <h1>Amazon ECS Sample
 App</h1> <h2>Congratulations!</h2> <p>Your application is now
 running on a container in Amazon ECS.</p> </div></body></html>' >
 /usr/local/apache2/htdocs/index.html && httpd-foreground"
 EntryPoint:
 - sh
 - '-c'
 Essential: true
 Image: !Ref ContainerImage
 LogConfiguration:
 LogDriver: awslogs
 Options:
 mode: non-blocking
 max-buffer-size: 25m
 awslogs-create-group: 'true'
 awslogs-group: !Sub /ecs/${AWS::StackName}
 awslogs-region: !Ref AWS::Region
 awslogs-stream-prefix: ecs
 Name: sample-fargate-app
 PortMappings:
 - ContainerPort: 80
 HostPort: 80
 Protocol: tcp
 Cpu: !Ref ContainerCpu
 ExecutionRoleArn: !Ref TaskExecutionRoleArn
 TaskRoleArn: !Ref TaskRoleArn
 Family: !Ref TaskFamily
 Memory: !Ref ContainerMemory
 NetworkMode: awsvpc
 RequiresCompatibilities:
 - FARGATE
 RuntimePlatform:
 OperatingSystemFamily: LINUX
 Tags:
 - Key: Name

Services 110

Amazon Elastic Container Service Developer Guide

 Value: !Sub ${AWS::StackName}-TaskDefinition
 ECSService:
 Type: AWS::ECS::Service
 Properties:
 ServiceName: !Ref ServiceName
 Cluster: !Ref ECSCluster
 DesiredCount: !Ref DesiredCount
 EnableExecuteCommand: true
 LaunchType: FARGATE
 NetworkConfiguration:
 AwsvpcConfiguration:
 AssignPublicIp: ENABLED
 SecurityGroups: !Ref SecurityGroups
 Subnets: !Ref Subnets
 TaskDefinition: !Ref ECSTaskDefinition
 Tags:
 - Key: Name
 Value: !Sub ${AWS::StackName}-Service
Outputs:
 ClusterName:
 Description: The name of the ECS cluster
 Value: !Ref ECSCluster
 ServiceName:
 Description: The name of the ECS service
 Value: !Ref ServiceName
 TaskDefinitionArn:
 Description: The ARN of the task definition
 Value: !Ref ECSTaskDefinition
 ClusterArn:
 Description: The ARN of the ECS cluster
 Value: !GetAtt ECSCluster.Arn
 StackName:
 Description: The name of this stack
 Value: !Ref AWS::StackName
 StackId:
 Description: The unique identifier for this stack
 Value: !Ref AWS::StackId
 Region:
 Description: The AWS Region where the stack is deployed
 Value: !Ref AWS::Region
 AccountId:
 Description: The AWS Account ID
 Value: !Ref AWS::AccountId

Services 111

Amazon Elastic Container Service Developer Guide

Deploy service that uses Amazon VPC Lattice

You can use the following template to get started with creating an Amazon ECS service with VPC
Lattice. You may need to complete the following additional steps to set up VPC Lattice:

• Update your security group's inbound rules for VPC Lattice to allow the inbound rule vpc-
lattice prefix and to allow traffic on port 80.

• Associate VPC for the service to a VPC Lattice service network.

• Configure a private or public hosted zone with Amazon Route 53.

• Configure listeners and listener rules in a VPC Lattice service.

• Verify health check configurations of the target group.

For more information about using VPC Lattice with Amazon ECS, see Use Amazon VPC Lattice to
connect, observe, and secure your Amazon ECS services.

JSON

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "The template used to create an ECS Service with VPC Lattice.",
 "Parameters": {
 "ECSClusterName": {
 "Type": "String",
 "Default": "vpc-lattice-cluster"
 },
 "ECSServiceName": {
 "Type": "String",
 "Default": "vpc-lattice-service"
 },
 "SecurityGroupIDs": {
 "Type": "List<AWS::EC2::SecurityGroup::Id>",
 "Description": "Security Group IDs for the ECS Service"
 },
 "SubnetIDs": {
 "Type": "List<AWS::EC2::Subnet::Id>",
 "Description": "Subnet IDs for the ECS Service"
 },
 "VpcID": {
 "Type": "AWS::EC2::VPC::Id",
 "Description": "VPC ID for the resources"

Services 112

Amazon Elastic Container Service Developer Guide

 },
 "ContainerImage": {
 "Type": "String",
 "Default": "public.ecr.aws/docker/library/httpd:2.4",
 "Description": "Container image to use for the task"
 },
 "TaskCpu": {
 "Type": "Number",
 "Default": 256,
 "AllowedValues": [256, 512, 1024, 2048, 4096],
 "Description": "CPU units for the task"
 },
 "TaskMemory": {
 "Type": "Number",
 "Default": 512,
 "AllowedValues": [512, 1024, 2048, 4096, 8192, 16384],
 "Description": "Memory (in MiB) for the task"
 },
 "LogGroupName": {
 "Type": "String",
 "Default": "/ecs/vpc-lattice-task",
 "Description": "CloudWatch Log Group name"
 },
 "EnableContainerInsights": {
 "Type": "String",
 "Default": "enabled",
 "AllowedValues": ["enabled", "disabled"],
 "Description": "Enable or disable CloudWatch Container Insights for the cluster"
 }
 },
 "Resources": {
 "ECSCluster": {
 "Type": "AWS::ECS::Cluster",
 "Properties": {
 "ClusterName": {"Ref": "ECSClusterName"},
 "ClusterSettings": [
 {
 "Name": "containerInsights",
 "Value": {"Ref": "EnableContainerInsights"}
 }
],
 "Tags": [
 {
 "Key": "Name",

Services 113

Amazon Elastic Container Service Developer Guide

 "Value": {"Ref": "ECSClusterName"}
 }
]
 }
 },
 "ECSTaskExecutionRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "ManagedPolicyArns": [
 "arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy"
]
 }
 },
 "TaskLogGroup": {
 "Type": "AWS::Logs::LogGroup",
 "DeletionPolicy": "Retain",
 "UpdateReplacePolicy": "Retain",
 "Properties": {
 "LogGroupName": {"Ref": "LogGroupName"},
 "RetentionInDays": 30
 }
 },
 "VpcLatticeTaskDefinition": {
 "Type": "AWS::ECS::TaskDefinition",
 "Properties": {
 "ContainerDefinitions": [
 {
 "Command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample App</title>
 <style>body {margin-top: 40px; background-color: #333;} </style> </head><body>
 <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in

Services 114

Amazon Elastic Container Service Developer Guide

 Amazon ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html &&
 httpd-foreground\""
],
 "EntryPoint": [
 "sh",
 "-c"
],
 "Essential": true,
 "Image": {"Ref": "ContainerImage"},
 "LogConfiguration": {
 "LogDriver": "awslogs",
 "Options": {
 "mode": "non-blocking",
 "max-buffer-size": "25m",
 "awslogs-create-group": "true",
 "awslogs-group": {"Ref": "LogGroupName"},
 "awslogs-region": {"Ref": "AWS::Region"},
 "awslogs-stream-prefix": "ecs"
 }
 },
 "Name": "vpc-lattice-container",
 "PortMappings": [
 {
 "ContainerPort": 80,
 "HostPort": 80,
 "Protocol": "tcp",
 "Name": "vpc-lattice-port"
 }
]
 }
],
 "Cpu": {"Ref": "TaskCpu"},
 "ExecutionRoleArn": {"Fn::GetAtt": ["ECSTaskExecutionRole", "Arn"]},
 "Family": "vpc-lattice-task-definition",
 "Memory": {"Ref": "TaskMemory"},
 "NetworkMode": "awsvpc",
 "RequiresCompatibilities": [
 "FARGATE"
],
 "RuntimePlatform": {
 "OperatingSystemFamily": "LINUX"
 }
 }
 },

Services 115

Amazon Elastic Container Service Developer Guide

 "ECSService": {
 "Type": "AWS::ECS::Service",
 "Properties": {
 "Cluster": {"Ref": "ECSCluster"},
 "TaskDefinition": {"Ref": "VpcLatticeTaskDefinition"},
 "LaunchType": "FARGATE",
 "ServiceName": {"Ref": "ECSServiceName"},
 "SchedulingStrategy": "REPLICA",
 "DesiredCount": 2,
 "AvailabilityZoneRebalancing": "ENABLED",
 "NetworkConfiguration": {
 "AwsvpcConfiguration": {
 "AssignPublicIp": "ENABLED",
 "SecurityGroups": {
 "Ref": "SecurityGroupIDs"
 },
 "Subnets": {
 "Ref": "SubnetIDs"
 }
 }
 },
 "PlatformVersion": "LATEST",
 "VpcLatticeConfigurations": [
 {
 "RoleArn": "arn:aws:iam::111122223333:role/ecsInfrastructureRole",
 "PortName": "vpc-lattice-port",
 "TargetGroupArn": {
 "Ref": "TargetGroup1"
 }
 }
],
 "DeploymentConfiguration": {
 "DeploymentCircuitBreaker": {
 "Enable": true,
 "Rollback": true
 },
 "MaximumPercent": 200,
 "MinimumHealthyPercent": 100
 },
 "DeploymentController": {
 "Type": "ECS"
 },
 "ServiceConnectConfiguration": {
 "Enabled": false

Services 116

Amazon Elastic Container Service Developer Guide

 },
 "Tags": [],
 "EnableECSManagedTags": true
 }
 },
 "TargetGroup1": {
 "Type": "AWS::VpcLattice::TargetGroup",
 "Properties": {
 "Type": "IP",
 "Name": "first-target-group",
 "Config": {
 "Port": 80,
 "Protocol": "HTTP",
 "VpcIdentifier": {"Ref": "VpcID"},
 "HealthCheck": {
 "Enabled": true,
 "Path": "/"
 }
 },
 "Tags": [
 {
 "Key": "ecs-application-networking/ServiceName",
 "Value": {"Ref": "ECSServiceName"}
 },
 {
 "Key": "ecs-application-networking/ClusterName",
 "Value": {"Ref": "ECSClusterName"}
 },
 {
 "Key": "ecs-application-networking/TaskDefinition",
 "Value": {"Ref": "VpcLatticeTaskDefinition"}
 },
 {
 "Key": "ecs-application-networking/VpcId",
 "Value": {"Ref": "VpcID"}
 }
]
 }
 }
 },
 "Outputs": {
 "ClusterName": {
 "Description": "The cluster used to create the service.",
 "Value": {

Services 117

Amazon Elastic Container Service Developer Guide

 "Ref": "ECSCluster"
 }
 },
 "ClusterArn": {
 "Description": "The ARN of the ECS cluster",
 "Value": {
 "Fn::GetAtt": ["ECSCluster", "Arn"]
 }
 },
 "ECSService": {
 "Description": "The created service.",
 "Value": {
 "Ref": "ECSService"
 }
 },
 "TaskDefinitionArn": {
 "Description": "The ARN of the task definition",
 "Value": {
 "Ref": "VpcLatticeTaskDefinition"
 }
 }
 }
}

YAML

AWSTemplateFormatVersion: '2010-09-09'
Description: The template used to create an ECS Service with VPC Lattice.

Parameters:
 ECSClusterName:
 Type: String
 Default: vpc-lattice-cluster
 ECSServiceName:
 Type: String
 Default: vpc-lattice-service
 SecurityGroupIDs:
 Type: List<AWS::EC2::SecurityGroup::Id>
 Description: Security Group IDs for the ECS Service
 SubnetIDs:
 Type: List<AWS::EC2::Subnet::Id>
 Description: Subnet IDs for the ECS Service
 VpcID:

Services 118

Amazon Elastic Container Service Developer Guide

 Type: AWS::EC2::VPC::Id
 Description: VPC ID for the resources
 ContainerImage:
 Type: String
 Default: public.ecr.aws/docker/library/httpd:2.4
 Description: Container image to use for the task
 TaskCpu:
 Type: Number
 Default: 256
 AllowedValues: [256, 512, 1024, 2048, 4096]
 Description: CPU units for the task
 TaskMemory:
 Type: Number
 Default: 512
 AllowedValues: [512, 1024, 2048, 4096, 8192, 16384]
 Description: Memory (in MiB) for the task
 LogGroupName:
 Type: String
 Default: /ecs/vpc-lattice-task
 Description: CloudWatch Log Group name
 EnableContainerInsights:
 Type: String
 Default: 'enhanced'
 AllowedValues: ['enabled', 'disabled', 'enhanced']
 Description: Enable or disable CloudWatch Container Insights for the cluster

Resources:
 # ECS Cluster
 ECSCluster:
 Type: AWS::ECS::Cluster
 Properties:
 ClusterName: !Ref ECSClusterName
 ClusterSettings:
 - Name: containerInsights
 Value: !Ref EnableContainerInsights
 Tags:
 - Key: Name
 Value: !Ref ECSClusterName

 # IAM Roles
 ECSTaskExecutionRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:

Services 119

Amazon Elastic Container Service Developer Guide

 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service: ecs-tasks.amazonaws.com
 Action: sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy

 # CloudWatch Logs
 TaskLogGroup:
 Type: AWS::Logs::LogGroup
 DeletionPolicy: Retain
 UpdateReplacePolicy: Retain
 Properties:
 LogGroupName: !Ref LogGroupName
 RetentionInDays: 30

 # Task Definition
 VpcLatticeTaskDefinition:
 Type: AWS::ECS::TaskDefinition
 Properties:
 ContainerDefinitions:
 - Command:
 - >-
 /bin/sh -c "echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color:
 #333;} </style> </head><body> <div
 style=color:white;text-align:center> <h1>Amazon ECS Sample
 App</h1> <h2>Congratulations!</h2> <p>Your application is now
 running on a container in Amazon ECS.</p> </div></body></html>' >
 /usr/local/apache2/htdocs/index.html && httpd-foreground"
 EntryPoint:
 - sh
 - '-c'
 Essential: true
 Image: !Ref ContainerImage
 LogConfiguration:
 LogDriver: awslogs
 Options:
 mode: non-blocking
 max-buffer-size: 25m
 awslogs-create-group: 'true'
 awslogs-group: !Ref LogGroupName

Services 120

Amazon Elastic Container Service Developer Guide

 awslogs-region: !Ref 'AWS::Region'
 awslogs-stream-prefix: ecs
 Name: vpc-lattice-container
 PortMappings:
 - ContainerPort: 80
 HostPort: 80
 Protocol: tcp
 Name: vpc-lattice-port
 Cpu: !Ref TaskCpu
 ExecutionRoleArn: !GetAtt ECSTaskExecutionRole.Arn
 Family: vpc-lattice-task-definition
 Memory: !Ref TaskMemory
 NetworkMode: awsvpc
 RequiresCompatibilities:
 - FARGATE
 RuntimePlatform:
 OperatingSystemFamily: LINUX

 ECSService:
 Type: AWS::ECS::Service
 Properties:
 Cluster: !Ref ECSCluster
 TaskDefinition: !Ref VpcLatticeTaskDefinition
 LaunchType: FARGATE
 ServiceName: !Ref ECSServiceName
 SchedulingStrategy: REPLICA
 DesiredCount: 2
 AvailabilityZoneRebalancing: ENABLED
 NetworkConfiguration:
 AwsvpcConfiguration:
 AssignPublicIp: ENABLED
 SecurityGroups: !Ref SecurityGroupIDs
 Subnets: !Ref SubnetIDs
 PlatformVersion: LATEST
 VpcLatticeConfigurations:
 - RoleArn: arn:aws:iam::111122223333:role/ecsInfrastructureRole
 PortName: vpc-lattice-port
 TargetGroupArn: !Ref TargetGroup1
 DeploymentConfiguration:
 DeploymentCircuitBreaker:
 Enable: true
 Rollback: true
 MaximumPercent: 200
 MinimumHealthyPercent: 100

Services 121

Amazon Elastic Container Service Developer Guide

 DeploymentController:
 Type: ECS
 ServiceConnectConfiguration:
 Enabled: false
 Tags: []
 EnableECSManagedTags: true

 TargetGroup1:
 Type: AWS::VpcLattice::TargetGroup
 Properties:
 Type: IP
 Name: first-target-group
 Config:
 Port: 80
 Protocol: HTTP
 VpcIdentifier: !Ref VpcID
 HealthCheck:
 Enabled: true
 Path: /
 Tags:
 - Key: ecs-application-networking/ServiceName
 Value: !Ref ECSServiceName
 - Key: ecs-application-networking/ClusterName
 Value: !Ref ECSClusterName
 - Key: ecs-application-networking/TaskDefinition
 Value: !Ref VpcLatticeTaskDefinition
 - Key: ecs-application-networking/VpcId
 Value: !Ref VpcID

Outputs:
 ClusterName:
 Description: The cluster used to create the service.
 Value: !Ref ECSCluster
 ClusterArn:
 Description: The ARN of the ECS cluster
 Value: !GetAtt ECSCluster.Arn
 ECSService:
 Description: The created service.
 Value: !Ref ECSService
 TaskDefinitionArn:
 Description: The ARN of the task definition
 Value: !Ref VpcLatticeTaskDefinition

Services 122

Amazon Elastic Container Service Developer Guide

Deploy service with a volume configuration

The following template includes a volume configuration in the service definition. Amazon ECS
supports configuring the following data volumes by using a volume configuration at launch:
Amazon EBS volumes. For more information about Amazon EBS volumes, see Use Amazon EBS
volumes with Amazon ECS.

JSON

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "The template used to create an ECS Service that includes a
 volume configuration. The configuration is used to create Amazon EBS volumes for
 attachment to the tasks. One volume is attached per task.",
 "Parameters": {
 "ECSClusterName": {
 "Type": "String",
 "Default": "volume-config-cluster",
 "Description": "Name of the ECS cluster"
 },
 "SecurityGroupIDs": {
 "Type": "List<AWS::EC2::SecurityGroup::Id>",
 "Description": "Security Group IDs for the ECS Service"
 },
 "SubnetIDs": {
 "Type": "List<AWS::EC2::Subnet::Id>",
 "Description": "Subnet IDs for the ECS Service"
 },
 "InfrastructureRoleArn": {
 "Type": "String",
 "Description": "ARN of the IAM role that ECS will use to manage EBS volumes"
 },
 "ContainerImage": {
 "Type": "String",
 "Default": "public.ecr.aws/nginx/nginx:latest",
 "Description": "Container image to use for the task"
 },
 "TaskCpu": {
 "Type": "String",
 "Default": "2048",
 "Description": "CPU units for the task"
 },
 "TaskMemory": {

Services 123

Amazon Elastic Container Service Developer Guide

 "Type": "String",
 "Default": "4096",
 "Description": "Memory (in MiB) for the task"
 },
 "VolumeSize": {
 "Type": "String",
 "Default": "10",
 "Description": "Size of the EBS volume in GiB"
 },
 "VolumeType": {
 "Type": "String",
 "Default": "gp3",
 "AllowedValues": ["gp2", "gp3", "io1", "io2", "st1", "sc1", "standard"],
 "Description": "EBS volume type"
 },
 "VolumeIops": {
 "Type": "String",
 "Default": "3000",
 "Description": "IOPS for the EBS volume (required for io1, io2, and gp3)"
 },
 "VolumeThroughput": {
 "Type": "String",
 "Default": "125",
 "Description": "Throughput for the EBS volume (only for gp3)"
 },
 "FilesystemType": {
 "Type": "String",
 "Default": "xfs",
 "AllowedValues": ["xfs", "ext4"],
 "Description": "Filesystem type for the EBS volume"
 },
 "EnableContainerInsights": {
 "Type": "String",
 "Default": "enhanced",
 "AllowedValues": ["enabled", "disabled", "enhanced"],
 "Description": "Enable or disable CloudWatch Container Insights for the
 cluster"
 }
 },
 "Resources": {
 "ECSCluster": {
 "Type": "AWS::ECS::Cluster",
 "Properties": {
 "ClusterName": {"Ref": "ECSClusterName"},

Services 124

Amazon Elastic Container Service Developer Guide

 "ClusterSettings": [
 {
 "Name": "containerInsights",
 "Value": {"Ref": "EnableContainerInsights"}
 }
],
 "Tags": [
 {
 "Key": "Name",
 "Value": {"Ref": "ECSClusterName"}
 }
]
 }
 },
 "ECSTaskExecutionRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "ManagedPolicyArns": [
 "arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy"
]
 }
 },
 "EBSTaskDefinition": {
 "Type": "AWS::ECS::TaskDefinition",
 "Properties": {
 "Family": "ebs-task-attach-task-def",
 "ExecutionRoleArn": {"Fn::GetAtt": ["ECSTaskExecutionRole", "Arn"]},
 "NetworkMode": "awsvpc",
 "RequiresCompatibilities": [
 "EC2",
 "FARGATE"
],

Services 125

Amazon Elastic Container Service Developer Guide

 "Cpu": {"Ref": "TaskCpu"},
 "Memory": {"Ref": "TaskMemory"},
 "ContainerDefinitions": [
 {
 "Name": "nginx",
 "Image": {"Ref": "ContainerImage"},
 "Essential": true,
 "PortMappings": [
 {
 "Name": "nginx-80-tcp",
 "ContainerPort": 80,
 "HostPort": 80,
 "Protocol": "tcp",
 "AppProtocol": "http"
 }
],
 "MountPoints": [
 {
 "SourceVolume": "ebs-vol",
 "ContainerPath": "/foo-container-path",
 "ReadOnly": false
 }
]
 }
],
 "Volumes": [
 {
 "Name": "ebs-vol",
 "ConfiguredAtLaunch": true
 }
]
 }
 },
 "ECSService": {
 "Type": "AWS::ECS::Service",
 "Properties": {
 "Cluster": {"Ref": "ECSCluster"},
 "TaskDefinition": {"Ref": "EBSTaskDefinition"},
 "LaunchType": "FARGATE",
 "ServiceName": "ebs",
 "SchedulingStrategy": "REPLICA",
 "DesiredCount": 1,
 "NetworkConfiguration": {
 "AwsvpcConfiguration": {

Services 126

Amazon Elastic Container Service Developer Guide

 "AssignPublicIp": "ENABLED",
 "SecurityGroups": {"Ref": "SecurityGroupIDs"},
 "Subnets": {"Ref": "SubnetIDs"}
 }
 },
 "PlatformVersion": "LATEST",
 "DeploymentConfiguration": {
 "MaximumPercent": 200,
 "MinimumHealthyPercent": 100,
 "DeploymentCircuitBreaker": {
 "Enable": true,
 "Rollback": true
 }
 },
 "DeploymentController": {
 "Type": "ECS"
 },
 "Tags": [],
 "EnableECSManagedTags": true,
 "VolumeConfigurations": [
 {
 "Name": "ebs-vol",
 "ManagedEBSVolume": {
 "RoleArn": {"Ref": "InfrastructureRoleArn"},
 "VolumeType": {"Ref": "VolumeType"},
 "Iops": {"Ref": "VolumeIops"},
 "Throughput": {"Ref": "VolumeThroughput"},
 "SizeInGiB": {"Ref": "VolumeSize"},
 "FilesystemType": {"Ref": "FilesystemType"},
 "TagSpecifications": [
 {
 "ResourceType": "volume",
 "PropagateTags": "TASK_DEFINITION"
 }
]
 }
 }
]
 }
 }
 },
 "Outputs": {
 "ClusterName": {
 "Description": "The cluster used to create the service.",

Services 127

Amazon Elastic Container Service Developer Guide

 "Value": {"Ref": "ECSCluster"}
 },
 "ClusterArn": {
 "Description": "The ARN of the ECS cluster",
 "Value": {"Fn::GetAtt": ["ECSCluster", "Arn"]}
 },
 "ECSService": {
 "Description": "The created service.",
 "Value": {"Ref": "ECSService"}
 },
 "TaskDefinitionArn": {
 "Description": "The ARN of the task definition",
 "Value": {"Ref": "EBSTaskDefinition"}
 }
 }
}

YAML

AWSTemplateFormatVersion: 2010-09-09
Description: The template used to create an ECS Service that includes a volume
 configuration. The configuration is used to create Amazon EBS volumes for
 attachment to the tasks. One volume is attached per task.
Parameters:
 ECSClusterName:
 Type: String
 Default: volume-config-cluster
 Description: Name of the ECS cluster

 SecurityGroupIDs:
 Type: List<AWS::EC2::SecurityGroup::Id>
 Description: Security Group IDs for the ECS Service

 SubnetIDs:
 Type: List<AWS::EC2::Subnet::Id>
 Description: Subnet IDs for the ECS Service

 InfrastructureRoleArn:
 Type: String
 Description: ARN of the IAM role that ECS will use to manage EBS volumes

 ContainerImage:
 Type: String

Services 128

Amazon Elastic Container Service Developer Guide

 Default: public.ecr.aws/nginx/nginx:latest
 Description: Container image to use for the task

 TaskCpu:
 Type: String
 Default: "2048"
 Description: CPU units for the task

 TaskMemory:
 Type: String
 Default: "4096"
 Description: Memory (in MiB) for the task

 VolumeSize:
 Type: String
 Default: "10"
 Description: Size of the EBS volume in GiB

 VolumeType:
 Type: String
 Default: gp3
 AllowedValues: [gp2, gp3, io1, io2, st1, sc1, standard]
 Description: EBS volume type

 VolumeIops:
 Type: String
 Default: "3000"
 Description: IOPS for the EBS volume (required for io1, io2, and gp3)

 VolumeThroughput:
 Type: String
 Default: "125"
 Description: Throughput for the EBS volume (only for gp3)

 FilesystemType:
 Type: String
 Default: xfs
 AllowedValues: [xfs, ext4]
 Description: Filesystem type for the EBS volume

 EnableContainerInsights:
 Type: String
 Default: 'enhanced'
 AllowedValues: ['enabled', 'disabled', 'enhanced']

Services 129

Amazon Elastic Container Service Developer Guide

 Description: Enable or disable CloudWatch Container Insights for the cluster

Resources:
 # ECS Cluster
 ECSCluster:
 Type: AWS::ECS::Cluster
 Properties:
 ClusterName: !Ref ECSClusterName
 ClusterSettings:
 - Name: containerInsights
 Value: !Ref EnableContainerInsights
 Tags:
 - Key: Name
 Value: !Ref ECSClusterName

 # IAM Role for Task Execution
 ECSTaskExecutionRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service: ecs-tasks.amazonaws.com
 Action: sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy

 # Task Definition
 EBSTaskDefinition:
 Type: AWS::ECS::TaskDefinition
 Properties:
 Family: ebs-task-attach-task-def
 ExecutionRoleArn: !GetAtt ECSTaskExecutionRole.Arn
 NetworkMode: awsvpc
 RequiresCompatibilities:
 - EC2
 - FARGATE
 Cpu: !Ref TaskCpu
 Memory: !Ref TaskMemory
 ContainerDefinitions:
 - Name: nginx
 Image: !Ref ContainerImage

Services 130

Amazon Elastic Container Service Developer Guide

 Essential: true
 PortMappings:
 - Name: nginx-80-tcp
 ContainerPort: 80
 HostPort: 80
 Protocol: tcp
 AppProtocol: http
 MountPoints:
 - SourceVolume: ebs-vol
 ContainerPath: /foo-container-path
 ReadOnly: false
 Volumes:
 - Name: ebs-vol
 ConfiguredAtLaunch: true

 ECSService:
 Type: AWS::ECS::Service
 Properties:
 Cluster: !Ref ECSCluster
 TaskDefinition: !Ref EBSTaskDefinition
 LaunchType: FARGATE
 ServiceName: ebs
 SchedulingStrategy: REPLICA
 DesiredCount: 1
 NetworkConfiguration:
 AwsvpcConfiguration:
 AssignPublicIp: ENABLED
 SecurityGroups: !Ref SecurityGroupIDs
 Subnets: !Ref SubnetIDs
 PlatformVersion: LATEST
 DeploymentConfiguration:
 MaximumPercent: 200
 MinimumHealthyPercent: 100
 DeploymentCircuitBreaker:
 Enable: true
 Rollback: true
 DeploymentController:
 Type: ECS
 Tags: []
 EnableECSManagedTags: true
 VolumeConfigurations:
 - Name: ebs-vol
 ManagedEBSVolume:
 RoleArn: !Ref InfrastructureRoleArn

Services 131

Amazon Elastic Container Service Developer Guide

 VolumeType: !Ref VolumeType
 Iops: !Ref VolumeIops
 Throughput: !Ref VolumeThroughput
 SizeInGiB: !Ref VolumeSize
 FilesystemType: !Ref FilesystemType
 TagSpecifications:
 - ResourceType: volume
 PropagateTags: TASK_DEFINITION

Outputs:
 ClusterName:
 Description: The cluster used to create the service.
 Value: !Ref ECSCluster
 ClusterArn:
 Description: The ARN of the ECS cluster
 Value: !GetAtt ECSCluster.Arn
 ECSService:
 Description: The created service.
 Value: !Ref ECSService
 TaskDefinitionArn:
 Description: The ARN of the task definition
 Value: !Ref EBSTaskDefinition

Deploy service with capacity providers

The following template defines a service that uses the capacity provider to request AL2023
capacity to run on. Containers will be launched onto the AL2023 instances as they come online.

JSON

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "An example service that deploys in AWS VPC networking mode on
 EC2 capacity. Service uses a capacity provider to request EC2 instances to run
 on. Service runs with networking in private subnets, but still accessible to the
 internet via a load balancer hosted in public subnets.",
 "Parameters": {
 "VpcId": {
 "Type": "String",
 "Description": "The VPC that the service is running inside of"
 },
 "PublicSubnetIds": {

Services 132

Amazon Elastic Container Service Developer Guide

 "Type": "List<AWS::EC2::Subnet::Id>",
 "Description": "List of public subnet ID's to put the load balancer in"
 },
 "PrivateSubnetIds": {
 "Type": "List<AWS::EC2::Subnet::Id>",
 "Description": "List of private subnet ID's that the AWS VPC tasks are in"
 },
 "ClusterName": {
 "Type": "String",
 "Description": "The name of the ECS cluster into which to launch
 capacity."
 },
 "ECSTaskExecutionRole": {
 "Type": "String",
 "Description": "The role used to start up an ECS task"
 },
 "CapacityProvider": {
 "Type": "String",
 "Description": "The cluster capacity provider that the service should use
 to request capacity when it wants to start up a task"
 },
 "ServiceName": {
 "Type": "String",
 "Default": "web",
 "Description": "A name for the service"
 },
 "ImageUrl": {
 "Type": "String",
 "Default": "public.ecr.aws/docker/library/nginx:latest",
 "Description": "The url of a docker image that contains the application
 process that will handle the traffic for this service"
 },
 "ContainerCpu": {
 "Type": "Number",
 "Default": 256,
 "Description": "How much CPU to give the container. 1024 is 1 CPU"
 },
 "ContainerMemory": {
 "Type": "Number",
 "Default": 512,
 "Description": "How much memory in megabytes to give the container"
 },
 "ContainerPort": {
 "Type": "Number",

Services 133

Amazon Elastic Container Service Developer Guide

 "Default": 80,
 "Description": "What port that the application expects traffic on"
 },
 "DesiredCount": {
 "Type": "Number",
 "Default": 2,
 "Description": "How many copies of the service task to run"
 }
 },
 "Resources": {
 "TaskDefinition": {
 "Type": "AWS::ECS::TaskDefinition",
 "Properties": {
 "Family": {
 "Ref": "ServiceName"
 },
 "Cpu": {
 "Ref": "ContainerCpu"
 },
 "Memory": {
 "Ref": "ContainerMemory"
 },
 "NetworkMode": "awsvpc",
 "RequiresCompatibilities": [
 "EC2"
],
 "ExecutionRoleArn": {
 "Ref": "ECSTaskExecutionRole"
 },
 "ContainerDefinitions": [
 {
 "Name": {
 "Ref": "ServiceName"
 },
 "Cpu": {
 "Ref": "ContainerCpu"
 },
 "Memory": {
 "Ref": "ContainerMemory"
 },
 "Image": {
 "Ref": "ImageUrl"
 },
 "PortMappings": [

Services 134

Amazon Elastic Container Service Developer Guide

 {
 "ContainerPort": {
 "Ref": "ContainerPort"
 },
 "HostPort": {
 "Ref": "ContainerPort"
 }
 }
],
 "LogConfiguration": {
 "LogDriver": "awslogs",
 "Options": {
 "mode": "non-blocking",
 "max-buffer-size": "25m",
 "awslogs-group": {
 "Ref": "LogGroup"
 },
 "awslogs-region": {
 "Ref": "AWS::Region"
 },
 "awslogs-stream-prefix": {
 "Ref": "ServiceName"
 }
 }
 }
 }
]
 }
 },
 "Service": {
 "Type": "AWS::ECS::Service",
 "DependsOn": "PublicLoadBalancerListener",
 "Properties": {
 "ServiceName": {
 "Ref": "ServiceName"
 },
 "Cluster": {
 "Ref": "ClusterName"
 },
 "PlacementStrategies": [
 {
 "Field": "attribute:ecs.availability-zone",
 "Type": "spread"
 },

Services 135

Amazon Elastic Container Service Developer Guide

 {
 "Field": "cpu",
 "Type": "binpack"
 }
],
 "CapacityProviderStrategy": [
 {
 "Base": 0,
 "CapacityProvider": {
 "Ref": "CapacityProvider"
 },
 "Weight": 1
 }
],
 "NetworkConfiguration": {
 "AwsvpcConfiguration": {
 "SecurityGroups": [
 {
 "Ref": "ServiceSecurityGroup"
 }
],
 "Subnets": {
 "Ref": "PrivateSubnetIds"
 }
 }
 },
 "DeploymentConfiguration": {
 "MaximumPercent": 200,
 "MinimumHealthyPercent": 75
 },
 "DesiredCount": {
 "Ref": "DesiredCount"
 },
 "TaskDefinition": {
 "Ref": "TaskDefinition"
 },
 "LoadBalancers": [
 {
 "ContainerName": {
 "Ref": "ServiceName"
 },
 "ContainerPort": {
 "Ref": "ContainerPort"
 },

Services 136

Amazon Elastic Container Service Developer Guide

 "TargetGroupArn": {
 "Ref": "ServiceTargetGroup"
 }
 }
]
 }
 },
 "ServiceSecurityGroup": {
 "Type": "AWS::EC2::SecurityGroup",
 "Properties": {
 "GroupDescription": "Security group for service",
 "VpcId": {
 "Ref": "VpcId"
 }
 }
 },
 "ServiceTargetGroup": {
 "Type": "AWS::ElasticLoadBalancingV2::TargetGroup",
 "Properties": {
 "HealthCheckIntervalSeconds": 6,
 "HealthCheckPath": "/",
 "HealthCheckProtocol": "HTTP",
 "HealthCheckTimeoutSeconds": 5,
 "HealthyThresholdCount": 2,
 "TargetType": "ip",
 "Port": {
 "Ref": "ContainerPort"
 },
 "Protocol": "HTTP",
 "UnhealthyThresholdCount": 10,
 "VpcId": {
 "Ref": "VpcId"
 },
 "TargetGroupAttributes": [
 {
 "Key": "deregistration_delay.timeout_seconds",
 "Value": 0
 }
]
 }
 },
 "PublicLoadBalancerSG": {
 "Type": "AWS::EC2::SecurityGroup",
 "Properties": {

Services 137

Amazon Elastic Container Service Developer Guide

 "GroupDescription": "Access to the public facing load balancer",
 "VpcId": {
 "Ref": "VpcId"
 },
 "SecurityGroupIngress": [
 {
 "CidrIp": "0.0.0.0/0",
 "IpProtocol": -1
 }
]
 }
 },
 "PublicLoadBalancer": {
 "Type": "AWS::ElasticLoadBalancingV2::LoadBalancer",
 "Properties": {
 "Scheme": "internet-facing",
 "LoadBalancerAttributes": [
 {
 "Key": "idle_timeout.timeout_seconds",
 "Value": "30"
 }
],
 "Subnets": {
 "Ref": "PublicSubnetIds"
 },
 "SecurityGroups": [
 {
 "Ref": "PublicLoadBalancerSG"
 }
]
 }
 },
 "PublicLoadBalancerListener": {
 "Type": "AWS::ElasticLoadBalancingV2::Listener",
 "Properties": {
 "DefaultActions": [
 {
 "Type": "forward",
 "ForwardConfig": {
 "TargetGroups": [
 {
 "TargetGroupArn": {
 "Ref": "ServiceTargetGroup"
 },

Services 138

Amazon Elastic Container Service Developer Guide

 "Weight": 100
 }
]
 }
 }
],
 "LoadBalancerArn": {
 "Ref": "PublicLoadBalancer"
 },
 "Port": 80,
 "Protocol": "HTTP"
 }
 },
 "ServiceIngressfromLoadBalancer": {
 "Type": "AWS::EC2::SecurityGroupIngress",
 "Properties": {
 "Description": "Ingress from the public ALB",
 "GroupId": {
 "Ref": "ServiceSecurityGroup"
 },
 "IpProtocol": -1,
 "SourceSecurityGroupId": {
 "Ref": "PublicLoadBalancerSG"
 }
 }
 },
 "LogGroup": {
 "Type": "AWS::Logs::LogGroup"
 }
 }
}

YAML

AWSTemplateFormatVersion: '2010-09-09'
Description: >-
 An example service that deploys in AWS VPC networking mode on EC2 capacity.
 Service uses a capacity provider to request EC2 instances to run on. Service
 runs with networking in private subnets, but still accessible to the internet
 via a load balancer hosted in public subnets.
Parameters:
 VpcId:
 Type: String

Services 139

Amazon Elastic Container Service Developer Guide

 Description: The VPC that the service is running inside of
 PublicSubnetIds:
 Type: 'List<AWS::EC2::Subnet::Id>'
 Description: List of public subnet ID's to put the load balancer in
 PrivateSubnetIds:
 Type: 'List<AWS::EC2::Subnet::Id>'
 Description: List of private subnet ID's that the AWS VPC tasks are in
 ClusterName:
 Type: String
 Description: The name of the ECS cluster into which to launch capacity.
 ECSTaskExecutionRole:
 Type: String
 Description: The role used to start up an ECS task
 CapacityProvider:
 Type: String
 Description: >-
 The cluster capacity provider that the service should use to request
 capacity when it wants to start up a task
 ServiceName:
 Type: String
 Default: web
 Description: A name for the service
 ImageUrl:
 Type: String
 Default: 'public.ecr.aws/docker/library/nginx:latest'
 Description: >-
 The url of a docker image that contains the application process that will
 handle the traffic for this service
 ContainerCpu:
 Type: Number
 Default: 256
 Description: How much CPU to give the container. 1024 is 1 CPU
 ContainerMemory:
 Type: Number
 Default: 512
 Description: How much memory in megabytes to give the container
 ContainerPort:
 Type: Number
 Default: 80
 Description: What port that the application expects traffic on
 DesiredCount:
 Type: Number
 Default: 2
 Description: How many copies of the service task to run

Services 140

Amazon Elastic Container Service Developer Guide

Resources:
 TaskDefinition:
 Type: 'AWS::ECS::TaskDefinition'
 Properties:
 Family: !Ref ServiceName
 Cpu: !Ref ContainerCpu
 Memory: !Ref ContainerMemory
 NetworkMode: awsvpc
 RequiresCompatibilities:
 - EC2
 ExecutionRoleArn: !Ref ECSTaskExecutionRole
 ContainerDefinitions:
 - Name: !Ref ServiceName
 Cpu: !Ref ContainerCpu
 Memory: !Ref ContainerMemory
 Image: !Ref ImageUrl
 PortMappings:
 - ContainerPort: !Ref ContainerPort
 HostPort: !Ref ContainerPort
 LogConfiguration:
 LogDriver: awslogs
 Options:
 mode: non-blocking
 max-buffer-size: 25m
 awslogs-group: !Ref LogGroup
 awslogs-region: !Ref AWS::Region
 awslogs-stream-prefix: !Ref ServiceName
 Service:
 Type: AWS::ECS::Service
 DependsOn: PublicLoadBalancerListener
 Properties:
 ServiceName: !Ref ServiceName
 Cluster: !Ref ClusterName
 PlacementStrategies:
 - Field: 'attribute:ecs.availability-zone'
 Type: spread
 - Field: cpu
 Type: binpack
 CapacityProviderStrategy:
 - Base: 0
 CapacityProvider: !Ref CapacityProvider
 Weight: 1
 NetworkConfiguration:
 AwsvpcConfiguration:

Services 141

Amazon Elastic Container Service Developer Guide

 SecurityGroups:
 - !Ref ServiceSecurityGroup
 Subnets: !Ref PrivateSubnetIds
 DeploymentConfiguration:
 MaximumPercent: 200
 MinimumHealthyPercent: 75
 DesiredCount: !Ref DesiredCount
 TaskDefinition: !Ref TaskDefinition
 LoadBalancers:
 - ContainerName: !Ref ServiceName
 ContainerPort: !Ref ContainerPort
 TargetGroupArn: !Ref ServiceTargetGroup
 ServiceSecurityGroup:
 Type: 'AWS::EC2::SecurityGroup'
 Properties:
 GroupDescription: Security group for service
 VpcId: !Ref VpcId
 ServiceTargetGroup:
 Type: 'AWS::ElasticLoadBalancingV2::TargetGroup'
 Properties:
 HealthCheckIntervalSeconds: 6
 HealthCheckPath: /
 HealthCheckProtocol: HTTP
 HealthCheckTimeoutSeconds: 5
 HealthyThresholdCount: 2
 TargetType: ip
 Port: !Ref ContainerPort
 Protocol: HTTP
 UnhealthyThresholdCount: 10
 VpcId: !Ref VpcId
 TargetGroupAttributes:
 - Key: deregistration_delay.timeout_seconds
 Value: 0
 PublicLoadBalancerSG:
 Type: 'AWS::EC2::SecurityGroup'
 Properties:
 GroupDescription: Access to the public facing load balancer
 VpcId: !Ref VpcId
 SecurityGroupIngress:
 - CidrIp: 0.0.0.0/0
 IpProtocol: -1
 PublicLoadBalancer:
 Type: 'AWS::ElasticLoadBalancingV2::LoadBalancer'
 Properties:

Services 142

Amazon Elastic Container Service Developer Guide

 Scheme: internet-facing
 LoadBalancerAttributes:
 - Key: idle_timeout.timeout_seconds
 Value: '30'
 Subnets: !Ref PublicSubnetIds
 SecurityGroups:
 - !Ref PublicLoadBalancerSG
 PublicLoadBalancerListener:
 Type: 'AWS::ElasticLoadBalancingV2::Listener'
 Properties:
 DefaultActions:
 - Type: forward
 ForwardConfig:
 TargetGroups:
 - TargetGroupArn: !Ref ServiceTargetGroup
 Weight: 100
 LoadBalancerArn: !Ref PublicLoadBalancer
 Port: 80
 Protocol: HTTP
 ServiceIngressfromLoadBalancer:
 Type: 'AWS::EC2::SecurityGroupIngress'
 Properties:
 Description: Ingress from the public ALB
 GroupId: !Ref ServiceSecurityGroup
 IpProtocol: -1
 SourceSecurityGroupId: !Ref PublicLoadBalancerSG
 LogGroup:
 Type: 'AWS::Logs::LogGroup'

IAM roles for Amazon ECS

You can use AWS CloudFormation templates to create IAM roles for use with Amazon ECS. For
more information about IAM roles for Amazon ECS, see IAM roles for Amazon ECS.

Amazon ECS task execution role

The task execution role grants the Amazon ECS container and Fargate agents permission to make
AWS API calls on your behalf. The role is required depending on the requirements of your task. For
more information, see Amazon ECS task execution IAM role.

The following template can be used to create a simple task execution role that uses the
AmazonECSTaskExecutionRolePolicy managed policy.

IAM roles for Amazon ECS 143

Amazon Elastic Container Service Developer Guide

JSON

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "CloudFormation template for ECS Task Execution Role",
 "Resources": {
 "ECSTaskExecutionRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": ["ecs-tasks.amazonaws.com"]
 },
 "Action": ["sts:AssumeRole"],
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": {
 "Fn::Sub": "arn:aws:ecs:${AWS::Region}:${AWS::AccountId}:*"
 }
 },
 "StringEquals": {
 "aws:SourceAccount": {
 "Ref": "AWS::AccountId"
 }
 }
 }
 }
]
 },
 "Path": "/",
 "ManagedPolicyArns": [
 "arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy"
]
 }
 }
 },
 "Outputs": {
 "ECSTaskExecutionRoleARN": {
 "Description": "ARN of the ECS Task Execution Role",
 "Value": {
 "Fn::GetAtt": ["ECSTaskExecutionRole", "Arn"]

IAM roles for Amazon ECS 144

Amazon Elastic Container Service Developer Guide

 },
 "Export": {
 "Name": {
 "Fn::Sub": "${AWS::StackName}-ECSTaskExecutionRoleARN"
 }
 }
 },
 "ECSTaskExecutionRoleName": {
 "Description": "Name of the ECS Task Execution Role",
 "Value": {
 "Ref": "ECSTaskExecutionRole"
 },
 "Export": {
 "Name": {
 "Fn::Sub": "${AWS::StackName}-ECSTaskExecutionRoleName"
 }
 }
 }
 }
}

YAML

AWSTemplateFormatVersion: '2010-09-09'
Description: 'CloudFormation template for ECS Task Execution Role'
Resources:
 ECSTaskExecutionRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Statement:
 - Effect: Allow
 Principal:
 Service: [ecs-tasks.amazonaws.com]
 Action: ['sts:AssumeRole']
 Condition:
 ArnLike:
 aws:SourceArn: !Sub arn:aws:ecs:${AWS::Region}:${AWS::AccountId}:*
 StringEquals:
 aws:SourceAccount: !Ref AWS::AccountId
 Path: /
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy

IAM roles for Amazon ECS 145

Amazon Elastic Container Service Developer Guide

Outputs:
 ECSTaskExecutionRoleARN:
 Description: ARN of the ECS Task Execution Role
 Value: !GetAtt ECSTaskExecutionRole.Arn
 Export:
 Name: !Sub "${AWS::StackName}-ECSTaskExecutionRoleARN"
 ECSTaskExecutionRoleName:
 Description: Name of the ECS Task Execution Role
 Value: !Ref ECSTaskExecutionRole
 Export:
 Name: !Sub "${AWS::StackName}-ECSTaskExecutionRoleName"

Creating Amazon ECS resources using the AWS CloudFormation
console

One way to use Amazon ECS with AWS CloudFormation is through the AWS Management Console.
Here you can create your AWS CloudFormation stacks for Amazon ECS components like task
definitions, clusters, and services and deploy them directly from the console. The following tutorial
shows how you can use the AWS CloudFormation console to create an Amazon ECS service, task
definition, and cluster.

Prerequisites

This tutorial assumes that the following prerequisites have ben completed.

• The steps in Set up to use Amazon ECS have been completed.

• Your IAM user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

Step 1: Create a stack template

Use the following steps to create a AWS CloudFormation stack template for an Amazon ECS service
and other related resources.

1. Using a text editor of your choice, create a file called ecs-tutorial-template.yaml.

2. In the ecs-tutorial-template.yaml file, paste the following template and save the
changes.

Creating Amazon ECS resources using the AWS CloudFormation console 146

Amazon Elastic Container Service Developer Guide

AWSTemplateFormatVersion: 2010-09-09
Description: A template that deploys an application that is built on an Apache
 web server Docker image by creating an Amazon ECS cluster, task definition, and
 service. The template also creates networking and logging resources, and an Amazon
 ECS task execution role.
Parameters:
 ClusterName:
 Type: String
 Default: CFNCluster
 Description: Name of the ECS Cluster
 TaskFamily:
 Type: String
 Default: task-definition-cfn
 Description: Family name for the Task Definition
 ServiceName:
 Type: String
 Default: cfn-service
 Description: Name of the ECS Service
 ContainerImage:
 Type: String
 Default: public.ecr.aws/docker/library/httpd:2.4
 Description: Container image to use for the task
 TaskCpu:
 Type: Number
 Default: 256
 AllowedValues: [256, 512, 1024, 2048, 4096]
 Description: CPU units for the task
 TaskMemory:
 Type: Number
 Default: 512
 AllowedValues: [512, 1024, 2048, 4096, 8192, 16384]
 Description: Memory (in MiB) for the task
 DesiredCount:
 Type: Number
 Default: 1
 Description: Desired number of tasks to run
 LogGroupName:
 Type: String
 Default: /ecs/fargate-task-definition
 Description: CloudWatch Log Group name
 VpcCidr:
 Type: String
 Default: 10.0.0.0/16

Step 1: Create a stack template 147

Amazon Elastic Container Service Developer Guide

 Description: CIDR block for the VPC
 PublicSubnet1Cidr:
 Type: String
 Default: 10.0.0.0/24
 Description: CIDR block for public subnet 1
 PublicSubnet2Cidr:
 Type: String
 Default: 10.0.1.0/24
 Description: CIDR block for public subnet 2
Resources:
 # VPC and Networking Resources
 VPC:
 Type: AWS::EC2::VPC
 Properties:
 CidrBlock: !Ref VpcCidr
 EnableDnsSupport: true
 EnableDnsHostnames: true
 Tags:
 - Key: Name
 Value: !Sub ${AWS::StackName}-VPC
 InternetGateway:
 Type: AWS::EC2::InternetGateway
 Properties:
 Tags:
 - Key: Name
 Value: !Sub ${AWS::StackName}-IGW
 InternetGatewayAttachment:
 Type: AWS::EC2::VPCGatewayAttachment
 Properties:
 InternetGatewayId: !Ref InternetGateway
 VpcId: !Ref VPC
 PublicSubnet1:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select [0, !GetAZs '']
 CidrBlock: !Ref PublicSubnet1Cidr
 MapPublicIpOnLaunch: true
 Tags:
 - Key: Name
 Value: !Sub ${AWS::StackName}-PublicSubnet1
 PublicSubnet2:
 Type: AWS::EC2::Subnet
 Properties:

Step 1: Create a stack template 148

Amazon Elastic Container Service Developer Guide

 VpcId: !Ref VPC
 AvailabilityZone: !Select [1, !GetAZs '']
 CidrBlock: !Ref PublicSubnet2Cidr
 MapPublicIpOnLaunch: true
 Tags:
 - Key: Name
 Value: !Sub ${AWS::StackName}-PublicSubnet2
 PublicRouteTable:
 Type: AWS::EC2::RouteTable
 Properties:
 VpcId: !Ref VPC
 Tags:
 - Key: Name
 Value: !Sub ${AWS::StackName}-PublicRouteTable
 DefaultPublicRoute:
 Type: AWS::EC2::Route
 DependsOn: InternetGatewayAttachment
 Properties:
 RouteTableId: !Ref PublicRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 GatewayId: !Ref InternetGateway
 PublicSubnet1RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PublicRouteTable
 SubnetId: !Ref PublicSubnet1
 PublicSubnet2RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PublicRouteTable
 SubnetId: !Ref PublicSubnet2
 # Security Group
 ECSSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Security group for ECS tasks
 VpcId: !Ref VPC
 SecurityGroupIngress:
 - IpProtocol: tcp
 FromPort: 80
 ToPort: 80
 CidrIp: 0.0.0.0/0
 - IpProtocol: tcp
 FromPort: 443

Step 1: Create a stack template 149

Amazon Elastic Container Service Developer Guide

 ToPort: 443
 CidrIp: 0.0.0.0/0
 # IAM Roles
 ECSTaskExecutionRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service: ecs-tasks.amazonaws.com
 Action: sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy
 # CloudWatch Logs
 TaskLogGroup:
 Type: AWS::Logs::LogGroup
 DeletionPolicy: Retain
 UpdateReplacePolicy: Retain
 Properties:
 LogGroupName: !Ref LogGroupName
 RetentionInDays: 30
 # ECS Resources
 ECSCluster:
 Type: AWS::ECS::Cluster
 Properties:
 ClusterName: !Ref ClusterName
 ECSTaskDefinition:
 Type: AWS::ECS::TaskDefinition
 Properties:
 ContainerDefinitions:
 - Command:
 - >-
 /bin/sh -c "echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color:
 #333;} </style> </head><body> <div
 style=color:white;text-align:center> <h1>Amazon ECS Sample
 App</h1> <h2>Congratulations!</h2> <p>Your application is now
 running on a container in Amazon ECS.</p> </div></body></html>' >
 /usr/local/apache2/htdocs/index.html && httpd-foreground"s
 EntryPoint:
 - sh
 - '-c'

Step 1: Create a stack template 150

Amazon Elastic Container Service Developer Guide

 Essential: true
 Image: !Ref ContainerImage
 LogConfiguration:
 LogDriver: awslogs
 Options:
 mode: non-blocking
 max-buffer-size: 25m
 awslogs-create-group: 'true'
 awslogs-group: !Ref LogGroupName
 awslogs-region: !Ref 'AWS::Region'
 awslogs-stream-prefix: ecs
 Name: sample-fargate-app
 PortMappings:
 - ContainerPort: 80
 HostPort: 80
 Protocol: tcp
 Cpu: !Ref TaskCpu
 ExecutionRoleArn: !GetAtt ECSTaskExecutionRole.Arn
 Family: !Ref TaskFamily
 Memory: !Ref TaskMemory
 NetworkMode: awsvpc
 RequiresCompatibilities:
 - FARGATE
 RuntimePlatform:
 OperatingSystemFamily: LINUX
 ECSService:
 Type: AWS::ECS::Service
 DependsOn:
 - PublicSubnet1RouteTableAssociation
 - PublicSubnet2RouteTableAssociation
 Properties:
 ServiceName: !Ref ServiceName
 Cluster: !Ref ECSCluster
 DesiredCount: !Ref DesiredCount
 LaunchType: FARGATE
 NetworkConfiguration:
 AwsvpcConfiguration:
 AssignPublicIp: ENABLED
 SecurityGroups:
 - !Ref ECSSecurityGroup
 Subnets:
 - !Ref PublicSubnet1
 - !Ref PublicSubnet2
 TaskDefinition: !Ref ECSTaskDefinition

Step 1: Create a stack template 151

Amazon Elastic Container Service Developer Guide

Outputs:
 ClusterName:
 Description: The name of the ECS cluster
 Value: !Ref ECSCluster
 TaskDefinitionArn:
 Description: The ARN of the task definition
 Value: !Ref ECSTaskDefinition
 ServiceName:
 Description: The name of the ECS service
 Value: !Ref ECSService
 VpcId:
 Description: The ID of the VPC
 Value: !Ref VPC
 PublicSubnet1:
 Description: The ID of public subnet 1
 Value: !Ref PublicSubnet1
 PublicSubnet2:
 Description: The ID of public subnet 2
 Value: !Ref PublicSubnet2
 SecurityGroup:
 Description: The ID of the security group
 Value: !Ref ECSSecurityGroup
 ExecutionRoleArn:
 Description: The ARN of the task execution role
 Value: !GetAtt ECSTaskExecutionRole.Arn

Step 2: Create a stack for Amazon ECS resources

After creating a file for the template, you can follow these steps to create a stack with the
template by using the AWS CloudFormation console.

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at
https://console.aws.amazon.com/cloudformation.

2. On the Stacks page, in the top right corner, choose Create stack , and then choose with new
resources (standard).

3. Choose Choose an existing template.

4. Choose Upload a template file and then choose Choose file to pick the ecs-tutorial-
template file.

Step 2: Create a stack for Amazon ECS resources 152

https://console.aws.amazon.com/cloudformation/

Amazon Elastic Container Service Developer Guide

After the file is uploaded to an Amazon S3 bucket, you can choose View in Infrastructure
Composer to visualize the template in Infrastructure Composer. For more information about
AWS CloudFormation templates and Infrastructure Composer, see Create templates visually
with Infrastructure Composer in the AWS CloudFormation User Guide.

5. Choose Next.

6. On the Specify stack details page, under Stack name, provide the following name for the
stack: ecs-tutorial-stack. Leave all the values for parameters under Parameters as
defaults, and then choose Next.

7. On the Configure stack options page, under Capabilities, select the checkbox to acknowledge
AWS CloudFormation creating IAM resources. This acknowledgement is required to create
the Amazon ECS task execution role as defined in the template. Leave the other settings as
defaults and choose Next.

8. Review the stack details on the Review and create page and then choose Submit to initiate
stack creation.

Step 3: Verify

Use the following steps to verify the creation of Amazon ECS resources using the provided
template.

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at
https://console.aws.amazon.com/cloudformation.

2. On the Stacks page, choose ecs-tutorial-stack.

3. Choose the Events tab. If the event statuses say CREATE_IN_PROGRESS, wait until creation is
completed and the statuses change to CREATE_COMPLETE.

4. After event statuses flip to CREATE_COMPLETE, choose the Resources tab. You will see
resources with the Logical ID ECSCluster, ECSTaskDefinition, and ECSService
respectively.

5. To verify the creation of an Amazon ECS cluster, choose the Physical ID associated with
ECSCluster. You will be redirected to the Amazon ECS console where you can see the created
cluster called CFNCluster.

6. To verify the creation of an Amazon ECS service, choose the Physical ID associated with
ECSService. You will be redirected to the Amazon ECS console where you can see the service
called cfn-service that is created in the cluster cfnCluster.

Step 3: Verify 153

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/infrastructure-composer-for-cloudformation.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/infrastructure-composer-for-cloudformation.html
https://console.aws.amazon.com/cloudformation/

Amazon Elastic Container Service Developer Guide

7. To verify the creation of an Amazon ECS task definition, choose the Physical ID associated
with ECSTaskDefinition. You will be redirected to the Amazon ECS console where you can
see the task definition revision with the name task-definition-cfn.

Step 4: Clean up resources

To clean up resources and avoid incurring further costs, follow these steps.

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at
https://console.aws.amazon.com/cloudformation.

2. On the Stacks page, choose ecs-tutorial-stack.

3. Choose Delete.

4. When prompted for confirmation, choose Delete again.

5. Choose the Events tab. The Status for the ecs-tutorial-stack changes to
DELETE_IN_PROGRESS and then to DELETE_COMPLETE after the resources are deleted or
deregistered. The deletion takes a couple minutes.

6. Choose the Resources tab. You will now see a list of Logical ID with the Status updated to
DELETE_COMPLETE.

Creating Amazon ECS resources using AWS CLI commands for
AWS CloudFormation

The following tutorial shows how you can use the AWS CLI to create Amazon ECS resources with an
AWS CloudFormation template.

Prerequisites

• The steps in Set up to use Amazon ECS have been completed.

• Your IAM user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

Step 1: Create a stack

To create a stack using the AWS CLI, follow these steps.

Step 4: Clean up resources 154

https://console.aws.amazon.com/cloudformation/

Amazon Elastic Container Service Developer Guide

1. Using a text editor of your choice, create a file called ecs-tutorial-template.yaml.

2. In the ecs-tutorial-template.yaml file, paste the following template and save the
changes.

AWSTemplateFormatVersion: 2010-09-09
Description: A template that deploys an application that is built on an Apache
 web server Docker image by creating an Amazon ECS cluster, task definition, and
 service. The template also creates networking and logging resources, and an Amazon
 ECS task execution role.
Parameters:
 ClusterName:
 Type: String
 Default: CFNCluster
 Description: Name of the ECS Cluster
 TaskFamily:
 Type: String
 Default: task-definition-cfn
 Description: Family name for the Task Definition
 ServiceName:
 Type: String
 Default: cfn-service
 Description: Name of the ECS Service
 ContainerImage:
 Type: String
 Default: public.ecr.aws/docker/library/httpd:2.4
 Description: Container image to use for the task
 TaskCpu:
 Type: Number
 Default: 256
 AllowedValues: [256, 512, 1024, 2048, 4096]
 Description: CPU units for the task
 TaskMemory:
 Type: Number
 Default: 512
 AllowedValues: [512, 1024, 2048, 4096, 8192, 16384]
 Description: Memory (in MiB) for the task
 DesiredCount:
 Type: Number
 Default: 1
 Description: Desired number of tasks to run
 LogGroupName:
 Type: String
 Default: /ecs/fargate-task-definition

Step 1: Create a stack 155

Amazon Elastic Container Service Developer Guide

 Description: CloudWatch Log Group name
 VpcCidr:
 Type: String
 Default: 10.0.0.0/16
 Description: CIDR block for the VPC
 PublicSubnet1Cidr:
 Type: String
 Default: 10.0.0.0/24
 Description: CIDR block for public subnet 1
 PublicSubnet2Cidr:
 Type: String
 Default: 10.0.1.0/24
 Description: CIDR block for public subnet 2
Resources:
 # VPC and Networking Resources
 VPC:
 Type: AWS::EC2::VPC
 Properties:
 CidrBlock: !Ref VpcCidr
 EnableDnsSupport: true
 EnableDnsHostnames: true
 Tags:
 - Key: Name
 Value: !Sub ${AWS::StackName}-VPC
 InternetGateway:
 Type: AWS::EC2::InternetGateway
 Properties:
 Tags:
 - Key: Name
 Value: !Sub ${AWS::StackName}-IGW
 InternetGatewayAttachment:
 Type: AWS::EC2::VPCGatewayAttachment
 Properties:
 InternetGatewayId: !Ref InternetGateway
 VpcId: !Ref VPC
 PublicSubnet1:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select [0, !GetAZs '']
 CidrBlock: !Ref PublicSubnet1Cidr
 MapPublicIpOnLaunch: true
 Tags:
 - Key: Name

Step 1: Create a stack 156

Amazon Elastic Container Service Developer Guide

 Value: !Sub ${AWS::StackName}-PublicSubnet1
 PublicSubnet2:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref VPC
 AvailabilityZone: !Select [1, !GetAZs '']
 CidrBlock: !Ref PublicSubnet2Cidr
 MapPublicIpOnLaunch: true
 Tags:
 - Key: Name
 Value: !Sub ${AWS::StackName}-PublicSubnet2
 PublicRouteTable:
 Type: AWS::EC2::RouteTable
 Properties:
 VpcId: !Ref VPC
 Tags:
 - Key: Name
 Value: !Sub ${AWS::StackName}-PublicRouteTable
 DefaultPublicRoute:
 Type: AWS::EC2::Route
 DependsOn: InternetGatewayAttachment
 Properties:
 RouteTableId: !Ref PublicRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 GatewayId: !Ref InternetGateway
 PublicSubnet1RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PublicRouteTable
 SubnetId: !Ref PublicSubnet1
 PublicSubnet2RouteTableAssociation:
 Type: AWS::EC2::SubnetRouteTableAssociation
 Properties:
 RouteTableId: !Ref PublicRouteTable
 SubnetId: !Ref PublicSubnet2
 # Security Group
 ECSSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Security group for ECS tasks
 VpcId: !Ref VPC
 SecurityGroupIngress:
 - IpProtocol: tcp
 FromPort: 80

Step 1: Create a stack 157

Amazon Elastic Container Service Developer Guide

 ToPort: 80
 CidrIp: 0.0.0.0/0
 - IpProtocol: tcp
 FromPort: 443
 ToPort: 443
 CidrIp: 0.0.0.0/0
 # IAM Roles
 ECSTaskExecutionRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service: ecs-tasks.amazonaws.com
 Action: sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy
 # CloudWatch Logs
 TaskLogGroup:
 Type: AWS::Logs::LogGroup
 DeletionPolicy: Retain
 UpdateReplacePolicy: Retain
 Properties:
 LogGroupName: !Ref LogGroupName
 RetentionInDays: 30
 # ECS Resources
 ECSCluster:
 Type: AWS::ECS::Cluster
 Properties:
 ClusterName: !Ref ClusterName
 ECSTaskDefinition:
 Type: AWS::ECS::TaskDefinition
 Properties:
 ContainerDefinitions:
 - Command:
 - >-
 /bin/sh -c "echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color:
 #333;} </style> </head><body> <div
 style=color:white;text-align:center> <h1>Amazon ECS Sample
 App</h1> <h2>Congratulations!</h2> <p>Your application is now
 running on a container in Amazon ECS.</p> </div></body></html>' >

Step 1: Create a stack 158

Amazon Elastic Container Service Developer Guide

 /usr/local/apache2/htdocs/index.html && httpd-foreground"s
 EntryPoint:
 - sh
 - '-c'
 Essential: true
 Image: !Ref ContainerImage
 LogConfiguration:
 LogDriver: awslogs
 Options:
 mode: non-blocking
 max-buffer-size: 25m
 awslogs-create-group: 'true'
 awslogs-group: !Ref LogGroupName
 awslogs-region: !Ref 'AWS::Region'
 awslogs-stream-prefix: ecs
 Name: sample-fargate-app
 PortMappings:
 - ContainerPort: 80
 HostPort: 80
 Protocol: tcp
 Cpu: !Ref TaskCpu
 ExecutionRoleArn: !GetAtt ECSTaskExecutionRole.Arn
 Family: !Ref TaskFamily
 Memory: !Ref TaskMemory
 NetworkMode: awsvpc
 RequiresCompatibilities:
 - FARGATE
 RuntimePlatform:
 OperatingSystemFamily: LINUX
 ECSService:
 Type: AWS::ECS::Service
 DependsOn:
 - PublicSubnet1RouteTableAssociation
 - PublicSubnet2RouteTableAssociation
 Properties:
 ServiceName: !Ref ServiceName
 Cluster: !Ref ECSCluster
 DesiredCount: !Ref DesiredCount
 LaunchType: FARGATE
 NetworkConfiguration:
 AwsvpcConfiguration:
 AssignPublicIp: ENABLED
 SecurityGroups:
 - !Ref ECSSecurityGroup

Step 1: Create a stack 159

Amazon Elastic Container Service Developer Guide

 Subnets:
 - !Ref PublicSubnet1
 - !Ref PublicSubnet2
 TaskDefinition: !Ref ECSTaskDefinition
Outputs:
 ClusterName:
 Description: The name of the ECS cluster
 Value: !Ref ECSCluster
 TaskDefinitionArn:
 Description: The ARN of the task definition
 Value: !Ref ECSTaskDefinition
 ServiceName:
 Description: The name of the ECS service
 Value: !Ref ECSService
 VpcId:
 Description: The ID of the VPC
 Value: !Ref VPC
 PublicSubnet1:
 Description: The ID of public subnet 1
 Value: !Ref PublicSubnet1
 PublicSubnet2:
 Description: The ID of public subnet 2
 Value: !Ref PublicSubnet2
 SecurityGroup:
 Description: The ID of the security group
 Value: !Ref ECSSecurityGroup
 ExecutionRoleArn:
 Description: The ARN of the task execution role
 Value: !GetAtt ECSTaskExecutionRole.Arn

3. After creating a template file, use the following command to create a stack. The --
capabilities flag is required to create an Amazon ECS task execution role as specified in the
template. You can also specify the --parameters flag to customize the template parameters.

aws cloudformation create-stack \
 --stack-name ecs-stack \
 --template-body file://ecs-tutorial-template.yaml \
 --capabilities CAPABILITY_IAM

Step 1: Create a stack 160

Amazon Elastic Container Service Developer Guide

Step 2: Verify resource creation

To ensure that resources are created correctly, follow these steps. You can also check the Amazon
ECS console.

1. Run the following command to list all task definitions in an AWS Region.

aws ecs list-task-definitions

The command returns a list of task definition Amazon Resource Name (ARN)s. The ARN of the
task definition that you created using the template will be displayed in the following format.

{
 "taskDefinitionArns": [

 "arn:aws:ecs:aws-region:111122223333:task-definition/task-definition-
cfn:1",

]
}

2. Run the following command to list all clusters in an AWS Region.

aws ecs list-clusters

The command returns a list of cluster ARNs. The ARN of the cluster that you created using the
template will be displayed in the following format.

{
 "clusterArns": [

 "arn:aws:ecs:aws-region:111122223333:cluster/CFNCluster",

]
}

3. Run the following command to list all services in the cluster CFNCluster.

aws ecs list-services \
 --cluster CFNCluster

Step 2: Verify resource creation 161

Amazon Elastic Container Service Developer Guide

The command returns a list of service ARNs. The ARN of the service that you created using the
template will be displayed in the following format.

{
 "serviceArns": [
 "arn:aws:ecs:aws-region:111122223333:service/CFNCluster/cfn-service"
]
}

Step 3: Clean up

To clean up the resources you created, run the following command.

aws cloudformation delete-stack \
 --stack-name ecs-stack

The delete-stack command initiates deletion of the AWS CloudFormation stack that was
created in this tutorial, deleting all the resources in the stack. To verify deletion, you can repeat
the procedure in Step 2: Verify resource creation. The list of ARNs in the outputs will no longer
include a task definition called task-definition-cfn or a cluster called CFNCLuster. The
list-services call will fail.

Step 3: Clean up 162

Amazon Elastic Container Service Developer Guide

Amazon ECS best practices

You can use any of the following pages to learn the most important operational best practices for
Amazon ECS networking.

Best practice overview Learn more

Connect applications to the
internet

Connect Amazon ECS
applications to the internet

Receive inbound connectio
ns to Amazon ECS from the
internet.

Best practices for receiving
inbound connections to
Amazon ECS from the
internet

Connect Amazon ECS to other
AWS services within a VPC

Best practices for connecting
Amazon ECS to AWS services
from inside your VPC

Network services across AWS
accounts and VPCs

Best practices for networkin
g Amazon ECS services across
AWS accounts and VPCs

Troubleshoot network issues AWS services for Amazon ECS
networking troubleshooting

You can use any of the following pages to learn the most important operational best practices for
Fargate on Amazon ECS.

Best practice overview Learn more

Fargate security Fargate security best practices
in Amazon ECS

Fargate security considera
tions

Fargate security considera
tions for Amazon ECS

163

Amazon Elastic Container Service Developer Guide

Best practice overview Learn more

Linux containers on Fargate
container image pull behavior

Linux containers on Fargate
container image pull behavior
for Amazon ECS

Windows containers on
Fargate container image pull
behavior

Windows containers on
Fargate container image pull
behavior for Amazon ECS

Fargate task retirement Task retirement and
maintenance for AWS Fargate
on Amazon ECS

You can use any of the following pages to learn the most important operational best practices for
task definitions.

Best practice overview Learn more

Container images Best practices for Amazon
ECS container images

Task size Best practices for Amazon
ECS task sizes

Volume best practices Storage options for Amazon
ECS tasks

You can use any of the following pages to learn the most important operational best practices for
clusters and capacity.

Best practice overview Learn more

Fargate security Fargate security best practices
in Amazon ECS

164

Amazon Elastic Container Service Developer Guide

Best practice overview Learn more

EC2 container instance
security considerations

Amazon EC2 container
instance security considera
tions for Amazon ECS

Cluster auto scaling Optimize Amazon ECS cluster
auto scaling

You can use any of the following pages to learn the most important operational best practices for
tasks and services.

Best practice overview Learn more

Optimize task launch time Optimize Amazon ECS task
launch time

Service parameters Best practices for Amazon
ECS service parameters

Optimize load balancer health
check parameters

Optimize load balancer health
check parameters for Amazon
ECS

Optimize load balancer
connection draining
parameters

Optimize load balancer
connection draining
parameters for Amazon ECS

Optimize service auto scaling Optimize Amazon ECS service
auto scaling

You can use any of the following pages to learn the most important operational best practices for
security.

165

Amazon Elastic Container Service Developer Guide

Best practice overview Learn more

Network security Network security best
practices for Amazon ECS

Task and container security Amazon ECS task and
container security best
practices

166

Amazon Elastic Container Service Developer Guide

AWS Fargate for Amazon ECS

AWS Fargate is a technology that you can use with Amazon ECS to run containers without having
to manage servers or clusters of Amazon EC2 instances. With AWS Fargate, you no longer have to
provision, configure, or scale clusters of virtual machines to run containers. This removes the need
to choose server types, decide when to scale your clusters, or optimize cluster packing.

When you run your tasks and services with the Fargate launch type, you package your application
in containers, specify the CPU and memory requirements, define networking and IAM policies, and
launch the application. Each Fargate task has its own isolation boundary and does not share the
underlying kernel, CPU resources, memory resources, or elastic network interface with another
task. You configure your task definitions for Fargate by setting the requiresCompatibilities
task definition parameter to FARGATE. For more information, see Launch types.

Fargate offers platform versions for Amazon Linux 2 (platform version 1.3.0), Bottlerocket
operating system (platform version 1.4.0), and Microsoft Windows 2019 Server Full and Core
editions.Unless otherwise specified, the information on this page applies to all Fargate platforms.

This topic describes the different components of Fargate tasks and services, and calls out special
considerations for using Fargate with Amazon ECS.

For information about the Regions that support Linux containers on Fargate, see the section called
“Linux containers on AWS Fargate”.

For information about the Regions that support Windows containers on Fargate, see the section
called “Windows containers on AWS Fargate”.

Walkthroughs

For information about how to get started using the console, see:

• Learn how to create an Amazon ECS Linux task for the Fargate launch type

• Learn how to create an Amazon ECS Windows task for the Fargate launch type

For information about how to get started using the AWS CLI, see:

• Creating an Amazon ECS Linux task for the Fargate launch type with the AWS CLI

Walkthroughs 167

https://aws.amazon.com/containers/

Amazon Elastic Container Service Developer Guide

• Creating an Amazon ECS Windows task for the Fargate launch type with the AWS CLI

Capacity providers

The following capacity providers are available:

• Fargate

• Fargate Spot - Run interruption tolerant Amazon ECS tasks at a discounted rate compared to
the AWS Fargate price. Fargate Spot runs tasks on spare compute capacity. When AWS needs the
capacity back, your tasks will be interrupted with a two-minute warning. For more information,
see Amazon ECS clusters for Fargate.

Task definitions

Tasks that use the Fargate launch type don't support all of the Amazon ECS task definition
parameters that are available. Some parameters aren't supported at all, and others behave
differently for Fargate tasks. For more information, see Task CPU and memory.

Platform versions

AWS Fargate platform versions are used to refer to a specific runtime environment for Fargate
task infrastructure. It is a combination of the kernel and container runtime versions. You select
a platform version when you run a task or when you create a service to maintain a number of
identical tasks.

New revisions of platform versions are released as the runtime environment evolves, for example,
if there are kernel or operating system updates, new features, bug fixes, or security updates. A
Fargate platform version is updated by making a new platform version revision. Each task runs on
one platform version revision during its lifecycle. If you want to use the latest platform version
revision, then you must start a new task. A new task that runs on Fargate always runs on the
latest revision of a platform version, ensuring that tasks are always started on secure and patched
infrastructure.

If a security issue is found that affects an existing platform version, AWS creates a new patched
revision of the platform version and retires tasks running on the vulnerable revision. In some cases,
you may be notified that your tasks on Fargate have been scheduled for retirement. For more
information, see Task retirement and maintenance for AWS Fargate on Amazon ECS .

Capacity providers 168

Amazon Elastic Container Service Developer Guide

For more information see Fargate platform versions for Amazon ECS.

Service load balancing

Your Amazon ECS service on AWS Fargate can optionally be configured to use Elastic Load
Balancing to distribute traffic evenly across the tasks in your service.

Amazon ECS services on AWS Fargate support the Application Load Balancer, Network Load
Balancer, and load balancer types. Application Load Balancers are used to route HTTP/HTTPS (or
layer 7) traffic. Network Load Balancers are used to route TCP or UDP (or layer 4) traffic. For more
information, see Use load balancing to distribute Amazon ECS service traffic.

When you create a target group for these services, you must choose ip as the target type, not
instance. This is because tasks that use the awsvpc network mode are associated with an elastic
network interface, not an Amazon EC2 instance. For more information, see Use load balancing to
distribute Amazon ECS service traffic.

Using a Network Load Balancer to route UDP traffic to your Amazon ECS on AWS Fargate tasks is
only supported when using platform version 1.4 or later.

Usage metrics

You can use CloudWatch usage metrics to provide visibility into your accounts usage of resources.
Use these metrics to visualize your current service usage on CloudWatch graphs and dashboards.

AWS Fargate usage metrics correspond to AWS service quotas. You can configure alarms that alert
you when your usage approaches a service quota. For more information about AWS Fargate service
quotas, Amazon ECS endpoints and quotas in the Amazon Web Services General Reference..

For more information about AWS Fargate usage metrics, see AWS Fargate usage metrics.

Amazon ECS security considerations for when to use the
Fargate launch type

We recommend that customers looking for strong isolation for their tasks use Fargate. Fargate
runs each task in a hardware virtualization environment. This ensures that these containerized
workloads do not share network interfaces, Fargate ephemeral storage, CPU, or memory with other
tasks. For more information, see Security Overview of AWS Fargate.

Service load balancing 169

https://docs.aws.amazon.com/general/latest/gr/ecs-service.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/monitoring-fargate-usage.html
https://d1.awsstatic.com/whitepapers/AWS_Fargate_Security_Overview_Whitepaper.pdf

Amazon Elastic Container Service Developer Guide

Fargate security best practices in Amazon ECS

We recommend that you take into account the following best practices when you use AWS Fargate.
For additional guidance, see Security overview of AWS Fargate.

Use AWS KMS to encrypt ephemeral storage for Fargate

You should have your ephemeral storage encrypted by either AWS KMS or your own customer
managed keys. For tasks that are hosted on Fargate using platform version 1.4.0 or later, each
task receives 20 GiB of ephemeral storage. For more information, see customer managed key
(CMK). You can increase the total amount of ephemeral storage, up to a maximum of 200 GiB,
by specifying the ephemeralStorage parameter in your task definition. For such tasks that
were launched on May 28, 2020 or later, the ephemeral storage is encrypted with an AES-256
encryption algorithm using an encryption key managed by Fargate.

For more information, see Storage options for Amazon ECS tasks.

Example: Launching an task on Fargate platform version 1.4.0 with ephemeral storage
encryption

The following command will launch a task on Fargate platform version 1.4. Because this task
is launched as part of the cluster, it uses the 20 GiB of ephemeral storage that's automatically
encrypted.

aws ecs run-task --cluster clustername \
 --task-definition taskdefinition:version \
 --count 1
 --launch-type "FARGATE" \
 --platform-version 1.4.0 \
 --network-configuration
 "awsvpcConfiguration={subnets=[subnetid],securityGroups=[securitygroupid]}" \
 --region region

SYS_PTRACE capability for kernel syscall tracing with Fargate

The default configuration of Linux capabilities that are added or removed from your container are
provided by Docker.

Tasks that are launched on Fargate only support adding the SYS_PTRACE kernel capability.

The following video shows how to use this feature through the Sysdig Falco project.

Fargate security best practices 170

https://d1.awsstatic.com/whitepapers/AWS_Fargate_Security_Overview_Whitepaper.pdf
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-storage-encryption.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-storage-encryption.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_data_volumes.html
https://github.com/falcosecurity/falco

Amazon Elastic Container Service Developer Guide

#ContainersFromTheCouch - Troubleshooting your Fargate Task using SYS_PTRACE capability

The code discussed in the previous video can be found on GitHub here.

Use Amazon GuardDuty with Fargate Runtime Monitoring

Amazon GuardDuty is a threat detection service that helps protect your accounts, containers,
workloads, and the data within your AWS environment. Using machine learning (ML) models, and
anomaly and threat detection capabilities, GuardDuty continuously monitors different log sources
and runtime activity to identify and prioritize potential security risks and malicious activities in
your environment.

Runtime Monitoring in GuardDuty protects workloads running on Fargate by continuously
monitoring AWS log and networking activity to identify malicious or unauthorized behavior.
Runtime Monitoring uses a lightweight, fully managed GuardDuty security agent that analyzes on-
host behavior, such as file access, process execution, and network connections. This covers issues
including escalation of privileges, use of exposed credentials, or communication with malicious IP
addresses, domains, and the presence of malware on your Amazon EC2 instances and container
workloads. For more information, see GuardDuty Runtime Monitoring in the GuardDuty User Guide.

Fargate security considerations for Amazon ECS

Each task has a dedicated infrastructure capacity because Fargate runs each workload on an
isolated virtual environment. Workloads that run on Fargate do not share network interfaces,
ephemeral storage, CPU, or memory with other tasks. You can run multiple containers within a task
including application containers and sidecar containers, or simply sidecars. A sidecar is a container
that runs alongside an application container in an Amazon ECS task. While the application
container runs core application code, processes running in sidecars can augment the application.
Sidecars help you segregate application functions into dedicated containers, making it easier for
you to update parts of your application.

Containers that are part of the same task share resources for the Fargate launch type because
these containers will always run on the same host and share compute resources. These containers
also share the ephemeral storage provided by Fargate. Linux containers in a task share network
namespaces, including the IP address and network ports. Inside a task, containers that belong to
the task can inter-communicate over localhost.

The runtime environment in Fargate prevents you from using certain controller features that are
supported on EC2 instances. Consider the following when you architect workloads that run on
Fargate:

Use Amazon GuardDuty with Fargate Runtime Monitoring 171

https://www.youtube.com/embed/OYGKjmFeLqI
https://github.com/paavan98pm/ecs-fargate-pv1.4-falco
https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring.html

Amazon Elastic Container Service Developer Guide

• No privileged containers or access - Features such as privileged containers or access are currently
unavailable on Fargate. This will affect uses cases such as running Docker in Docker.

• Limited access to Linux capabilities - The environment in which containers run on Fargate is
locked down. Additional Linux capabilities, such as CAP_SYS_ADMIN and CAP_NET_ADMIN, are
restricted to prevent a privilege escalation. Fargate supports adding the CAP_SYS_PTRACE Linux
capability to tasks to allow observability and security tools deployed within the task to monitor
the containerized application.

• No access to the underlying host - Neither customers nor AWS operators can connect to a host
running customer workloads. You can use ECS exec to run commands in or get a shell to a
container running on Fargate. You can use ECS exec to help collect diagnostic information for
debugging. Fargate also prevents containers from accessing the underlying host’s resources, such
as the file system, devices, networking, and container runtime.

• Networking - You can use security groups and network ACLs to control inbound and outbound
traffic. Fargate tasks receive an IP address from the configured subnet in your VPC.

Fargate platform versions for Amazon ECS

AWS Fargate platform versions are used to refer to a specific runtime environment for Fargate
task infrastructure. It is a combination of the kernel and container runtime versions. You select
a platform version when you run a task or when you create a service to maintain a number of
identical tasks.

New revisions of platform versions are released as the runtime environment evolves, for example,
if there are kernel or operating system updates, new features, bug fixes, or security updates. A
Fargate platform version is updated by making a new platform version revision. Each task runs on
one platform version revision during its lifecycle. If you want to use the latest platform version
revision, then you must start a new task. A new task that runs on Fargate always runs on the
latest revision of a platform version, ensuring that tasks are always started on secure and patched
infrastructure.

If a security issue is found that affects an existing platform version, AWS creates a new patched
revision of the platform version and retires tasks running on the vulnerable revision. In some cases,
you may be notified that your tasks on Fargate have been scheduled for retirement. For more
information, see Task retirement and maintenance for AWS Fargate on Amazon ECS .

You specify the platform version when you run a task, or deploy a service.

Fargate platform versions 172

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#other_task_definition_params

Amazon Elastic Container Service Developer Guide

Consider the following when specifying a platform version:

• You can specify a a specific version number, for example 1.4.0, or LATEST.

The LATEST Linux platform version is 1.4.0.

The LATEST Windows platform version is 1.0.0 .

• If you want to update the platform version for a service, create a deployment. For example,
assume that you have a service that runs tasks on the Linux platform version 1.3.0. To change
the service to run tasks on the Linux platform version 1.4.0, you update your service and
specify a new platform version. Your tasks are redeployed with the latest platform version and
the latest platform version revision. For more information about deployments, see Amazon ECS
services.

• If your service is scaled up without updating the platform version, those tasks receive the
platform version that was specified on the service's current deployment. For example, assume
that you have a service that runs tasks on the Linux platform version 1.3.0. If you increase the
desired count of the service, the service scheduler starts the new tasks using the latest platform
version revision of platform version 1.3.0.

• New tasks always run on the latest revision of a platform version. This ensures tasks are always
on secured and patched infrastructure.

• The platform version numbers for Linux containers and Windows containers on Fargate are
independent. For example, the behavior, features, and software used in platform version 1.0.0
for Windows containers on Fargate aren't comparable to those of platform version 1.0.0 for
Linux containers on Fargate.

• The following applies to Fargate Windows platform versions.

Microsoft Windows Server container images must be created from a specific version of Windows
Server. You must select the same version of Windows Server in the platformFamily when you
run a task or create a service that matches the Windows Server container image. Additionally,
you can provide a matching operatingSystemFamily in the task definition to prevent tasks
from being run on the wrong Windows version. For more information, see Matching container
host version with container image versions on the Microsoft Learn website.

Fargate platform versions 173

https://learn.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/version-compatibility#matching-container-host-version-with-container-image-versions
https://learn.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/version-compatibility#matching-container-host-version-with-container-image-versions

Amazon Elastic Container Service Developer Guide

Migrating to Linux platform version 1.4.0 on Amazon ECS

Consider the following when migrating your Amazon ECS on Fargate tasks from platform version
1.0.0, 1.1.0, 1.2.0, or 1.3.0 to platform version 1.4.0. It is best practice to confirm your task
works properly on platform version 1.4.0 before you migrate the tasks.

• The network traffic behavior to and from tasks has been updated. Starting with platform version
1.4.0, all Amazon ECS on Fargate tasks receive a single elastic network interface (referred to as
the task ENI) and all network traffic flows through that ENI within your VPC. The traffic is visible
to you through your VPC flow logs. For more information see Amazon ECS task networking
options for the Fargate launch type.

• If you use interface VPC endpoints, consider the following.

• For container images hosted with Amazon ECR, you need the following endpoints. For more
information, see Amazon ECR interface VPC endpoints (AWS PrivateLink) in the Amazon Elastic
Container Registry User Guide.

• com.amazonaws.region.ecr.dkr Amazon ECR VPC endpoint

• com.amazonaws.region.ecr.api Amazon ECR VPC endpoint

• Amazon S3 gateway endpoint

• When your task definition references Secrets Manager secrets to retrieve sensitive data for
your containers, you must create the interface VPC endpoints for Secrets Manager. For more
information, see Using Secrets Manager with VPC Endpoints in the AWS Secrets Manager User
Guide.

• When your task definition references Systems Manager Parameter Store parameters to retrieve
sensitive data for your containers, you must create the interface VPC endpoints for Systems
Manager. For more information, see Improve the security of EC2 instances by using VPC
endpoints for Systems Manager in the AWS Systems Manager User Guide.

• The security group for the Elastic Network Interface (ENI) associated with your task needs the
security group rules to allow traffic between the task and the VPC endpoints.

Fargate Linux platform version change log

The following are the available Linux platform versions. For information about platform version
deprecation, see AWS Fargate Linux platform version deprecation.

Migrating to Linux platform version 1.4.0 174

https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-create-vpc.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-create-vpc.html

Amazon Elastic Container Service Developer Guide

1.4.0

The following is the changelog for platform version 1.4.0.

• Beginning on November 5, 2020, any new Amazon ECS task launched on Fargate using platform
version 1.4.0 will be able to use the following features:

• When using Secrets Manager to store sensitive data, you can inject a specific JSON key or
a specific version of a secret as an environment variable or in a log configuration. For more
information, see Pass sensitive data to an Amazon ECS container.

• Specify environment variables in bulk using the environmentFiles container definition
parameter. For more information, see Pass an individual environment variable to an Amazon
ECS container.

• Tasks run in a VPC and subnet enabled for IPv6 will be assigned both a private IPv4 address
and an IPv6 address. For more information, see Amazon ECS task networking options for the
Fargate launch type.

• The task metadata endpoint version 4 provides additional metadata about your task and
container including the task launch type, the Amazon Resource Name (ARN) of the container,
and the log driver and log driver options used. When querying the /stats endpoint you
also receive network rate stats for your containers. For more information, see Task metadata
endpoint version 4.

• Beginning on July 30, 2020, any new Amazon ECS task launched on Fargate using platform
version 1.4.0 will be able to route UDP traffic using a Network Load Balancer to their Amazon
ECS on Fargate tasks. For more information, see Use load balancing to distribute Amazon ECS
service traffic.

• Beginning on May 28, 2020, any new Amazon ECS task launched on Fargate using platform
version 1.4.0 will have its ephemeral storage encrypted with an AES-256 encryption algorithm
using an AWS owned encryption key. For more information, see Fargate task ephemeral storage
for Amazon ECS and Storage options for Amazon ECS tasks.

• Added support for using Amazon EFS file system volumes for persistent task storage. For more
information, see Use Amazon EFS volumes with Amazon ECS.

• The ephemeral task storage has been increased to a minimum of 20 GB for each task. For more
information, see Fargate task ephemeral storage for Amazon ECS.

• The network traffic behavior to and from tasks has been updated. Starting with platform version
1.4.0, all Fargate tasks receive a single elastic network interface (referred to as the task ENI) and
all network traffic flows through that ENI within your VPC and will be visible to you through

Linux Platform version change log 175

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-networking.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-networking.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint-v4-fargate.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint-v4-fargate.html

Amazon Elastic Container Service Developer Guide

your VPC flow logs. For more information about networking for the Amazon EC2 launch type,
see Amazon ECS task networking options for the EC2 launch type. For more information about
networking for the Fargate launch type, see Amazon ECS task networking options for the Fargate
launch type.

• Task ENIs add support for jumbo frames. Network interfaces are configured with a maximum
transmission unit (MTU), which is the size of the largest payload that fits within a single frame.
The larger the MTU, the more application payload can fit within a single frame, which reduces
per-frame overhead and increases efficiency. Supporting jumbo frames will reduce overhead
when the network path between your task and the destination supports jumbo frames, such as
all traffic that remains within your VPC.

• CloudWatch Container Insights will include network performance metrics for Fargate tasks. For
more information, see Monitor Amazon ECS containers using Container Insights with enhanced
observability.

• Added support for the task metadata endpoint version 4 which provides additional information
for your Fargate tasks, including network stats for the task and which Availability Zone the task
is running in. For more information, see Amazon ECS task metadata endpoint version 4 and
Amazon ECS task metadata endpoint version 4 for tasks on Fargate.

• Added support for the SYS_PTRACE Linux parameter in container definitions. For more
information, see Linux parameters.

• The Fargate container agent replaces the use of the Amazon ECS container agent for all Fargate
tasks. Usually, this change does not have an effect on how your tasks run.

• The container runtime is now using Containerd instead of Docker. Most likely, this change does
not have an effect on how your tasks run. You will notice that some error messages that originate
with the container runtime changes from mentioning Docker to more general errors. For more
information, see Amazon ECS stopped task error messages.

• Based on Amazon Linux 2.

1.3.0

The following is the changelog for platform version 1.3.0.

• Beginning on Sept 30, 2019, any new Fargate task that is launched supports the awsfirelens
log driver. Configure the FireLens for Amazon ECS to use task definition parameters to route logs
to an AWS service or AWS Partner Network (APN) destination for log storage and analytics. For
more information, see Send Amazon ECS logs to an AWS service or AWS Partner.

Linux Platform version change log 176

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/stopped-task-error-codes.html

Amazon Elastic Container Service Developer Guide

• Added task recycling for Fargate tasks, which is the process of refreshing tasks that are a part of
an Amazon ECS service. For more information, Task retirement and maintenance for AWS Fargate
on Amazon ECS.

• Beginning on March 27, 2019, any new Fargate task that is launched can use additional task
definition parameters that you use to define a proxy configuration, dependencies for container
startup and shutdown as well as a per-container start and stop timeout value. For more
information, see Proxy configuration, Container dependency, and Container timeouts.

• Beginning on April 2, 2019, any new Fargate task that is launched supports injecting sensitive
data into your containers by storing your sensitive data in either AWS Secrets Manager secrets or
AWS Systems Manager Parameter Store parameters and then referencing them in your container
definition. For more information, see Pass sensitive data to an Amazon ECS container.

• Beginning on May 1, 2019, any new Fargate task that is launched supports referencing sensitive
data in the log configuration of a container using the secretOptions container definition
parameter. For more information, see Pass sensitive data to an Amazon ECS container.

• Beginning on May 1, 2019, any new Fargate task that is launched supports the splunk log driver
in addition to the awslogs log driver. For more information, see Storage and logging.

• Beginning on July 9, 2019, any new Fargate tasks that is launched supports CloudWatch
Container Insights. For more information, see Monitor Amazon ECS containers using Container
Insights with enhanced observability.

• Beginning on December 3, 2019, the Fargate Spot capacity provider is supported. For more
information, see Amazon ECS clusters for Fargate.

• Based on Amazon Linux 2.

AWS Fargate Linux platform version deprecation

This page lists Linux platform versions that AWS Fargate has deprecated or have been scheduled
for deprecation. These platform versions remain available until the published deprecation date.

A force update date is provided for each platform version scheduled for deprecation. On the force
update date, any service using the LATEST platform version that is pointed to a platform version
that is scheduled for deprecation will be updated using the force new deployment option. When
the service is updated using the force new deployment option, all tasks running on a platform
version scheduled for deprecation are stopped and new tasks are launched using the platform
version that the LATEST tag points to at that time. Standalone tasks or services with an explicit
platform version set are not affected by the force update date.

Linux platform version deprecation 177

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-maintenance.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-maintenance.html

Amazon Elastic Container Service Developer Guide

We recommend updating your services standalone tasks to use the most recent platform version.
For more information on migrating to the most recent platform version, see Migrating to Linux
platform version 1.4.0 on Amazon ECS.

Once a platform version reaches the deprecation date, the platform version will no longer
be available for new tasks or services. Any standalone tasks or services which explicitly use a
deprecated platform version will continue using that platform version until the tasks are stopped.
After the deprecation date, a deprecated platform version will no longer receive any security
updates or bug fixes.

Platform version Force update date Deprecation date

1.0.0 October 26, 2020 December 14, 2020

1.1.0 October 26, 2020 December 14, 2020

1.2.0 October 26, 2020 December 14, 2020

For information about current platform versions, see Fargate platform versions for Amazon ECS.

Deprecated Fargate Linux versions change log

1.2.0

The following is the changelog for platform version 1.2.0.

Note

Platform version 1.2.0 is no longer available. For information about platform version
deprecation, see AWS Fargate Linux platform version deprecation.

• Added support for private registry authentication using AWS Secrets Manager. For more
information, see Using non-AWS container images in Amazon ECS.

1.1.0

The following is the changelog for platform version 1.1.0.

Linux platform version deprecation 178

Amazon Elastic Container Service Developer Guide

Note

Platform version 1.1.0 is no longer available. For information about platform version
deprecation, see AWS Fargate Linux platform version deprecation.

• Added support for the Amazon ECS task metadata endpoint. For more information, see Amazon
ECS task metadata available for tasks on Fargate.

• Added support for Docker health checks in container definitions. For more information, see
Health check.

• Added support for Amazon ECS service discovery. For more information, see Use service
discovery to connect Amazon ECS services with DNS names.

1.0.0

The following is the changelog for platform version 1.0.0.

Note

Platform version 1.0.0 is no longer available. For information about platform version
deprecation, see AWS Fargate Linux platform version deprecation.

• Based on Amazon Linux 2017.09.

• Initial release.

Fargate Windows platform version change log

The following are the available platform versions for Windows containers.

1.0.0

The following is the changelog for platform version 1.0.0.

• Initial release for support on the following Microsoft Windows Server operating systems:

• Windows Server 2019 Full

• Windows Server 2019 Core

Windows platform version change log 179

Amazon Elastic Container Service Developer Guide

• Windows Server 2022 Full

• Windows Server 2022 Core

Windows containers on Fargate considerations for Amazon ECS

The following are the differences and considerations to know when you run Windows containers on
AWS Fargate.

If you need to run tasks on Linux and Windows containers, then you need to create separate task
definitions for each operating system.

AWS handles the operating system license management, so you do not need any additional
Microsoft Windows Server licenses.

Windows containers on AWS Fargate supports the following operating systems:

• Windows Server 2019 Full

• Windows Server 2019 Core

• Windows Server 2022 Full

• Windows Server 2022 Core

Windows containers on AWS Fargate supports the awslogs driver. For more information, see the
section called “Send logs to CloudWatch ”.

The following features are not supported on Windows containers on Fargate:

• Amazon FSx

• ENI trunking

• gMSAs for Windows Containers

• App Mesh service and proxy integration for tasks

• Firelens log router integration for tasks

• EFS volumes

• EBS volumes

• The following task definition parameters:

• maxSwap

Windows containers on Fargate considerations for Amazon ECS 180

Amazon Elastic Container Service Developer Guide

• swappiness

• environmentFiles

• The Fargate Spot capacity provider

• Image volumes

The Dockerfile volume option is ignored. Instead, use bind mounts in your task definition. For
more information, see Use bind mounts with Amazon ECS.

• The task-level CPU and memory parameters are ignored for Windows containers. We recommend
specifying container-level resources for Windows containers.

• memory for task

• mermoryReservation on containers

• Restart policies on containers

Fargate task ephemeral storage for Amazon ECS

When provisioned, each Amazon ECS task hosted on Linux containers on AWS Fargate receives the
following ephemeral storage for bind mounts. This can be mounted and shared among containers
that use the volumes, mountPoints, and volumesFrom parameters in the task definition. This
isn't supported for Windows containers on AWS Fargate.

Fargate Linux container platform versions

Version 1.4.0 or later

By default, Amazon ECS tasks that are hosted on Fargate using platform version 1.4.0 or later
receive a minimum of 20 GiB of ephemeral storage. The total amount of ephemeral storage can
be increased, up to a maximum of 200 GiB. You can do this by specifying the ephemeralStorage
parameter in your task definition.

The pulled, compressed, and the uncompressed container image for the task is stored on the
ephemeral storage. To determine the total amount of ephemeral storage your task has to use,
you must subtract the amount of storage your container image uses from the total amount of
ephemeral storage your task is allocated.

For tasks that use platform version 1.4.0 or later that are launched on May 28, 2020 or later,
the ephemeral storage is encrypted with an AES-256 encryption algorithm. This algorithm uses

Fargate task ephemeral storage 181

Amazon Elastic Container Service Developer Guide

an AWS owned encryption key, or you can create your own customer managed key. For more
information, see Customer managed keys for AWS Fargate ephemeral storage.

For tasks that use platform version 1.4.0 or later that are launched on November 18, 2022
or later, the ephemeral storage usage is reported through the task metadata endpoint. Your
applications in your tasks can query the task metadata endpoint version 4 to get their ephemeral
storage reserved size and the amount used.

Additionally, the ephemeral storage reserved size and the amount used are sent to Amazon
CloudWatch Container Insights if you turn on Container Insights.

Note

Fargate reserves space on disk. It is only used by Fargate. You aren't billed for it. It isn't
shown in these metrics. However, you can see this additional storage in other tools such as
df.

Version 1.3.0 or earlier

For Amazon ECS on Fargate tasks that use platform version 1.3.0 or earlier, each task receives the
following ephemeral storage.

• 10 GB of Docker layer storage

Note

This amount includes both compressed and uncompressed container image artifacts.

• An additional 4 GB for volume mounts. This can be mounted and shared among containers that
use the volumes, mountPoints, and volumesFrom parameters in the task definition.

Fargate Windows container platform versions

Version 1.0.0 or later

By default, Amazon ECS tasks that are hosted on Fargate using platform version 1.0.0 or later
receive a minimum of 20 GiB of ephemeral storage. The total amount of ephemeral storage can

Fargate Windows container platform versions 182

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-storage-encryption.html

Amazon Elastic Container Service Developer Guide

be increased, up to a maximum of 200 GiB. You can do this by specifying the ephemeralStorage
parameter in your task definition.

The pulled, compressed, and the uncompressed container image for the task is stored on the
ephemeral storage. To determine the total amount of ephemeral storage that your task has to use,
you must subtract the amount of storage that your container image uses from the total amount of
ephemeral storage your task is allocated.

For more information, see Use bind mounts with Amazon ECS.

Customer managed keys for AWS Fargate ephemeral storage for
Amazon ECS

AWS Fargate supports customer managed keys to encrypt data for Amazon ECS tasks stored in
ephemeral storage to help regulation-sensitive customers meet their internal security policies.
Customers still get the serverless benefit of Fargate, while giving enhanced visibility on self-
managed storage encryption to compliance auditors. While Fargate has Fargate-managed
ephemeral storage encryption by default, customers can also use their own self-managed keys
when encrypting sensitive data like financial or health related information.

You can import your own keys into AWS KMS or create the keys in AWS KMS. These self-managed
keys are stored in AWS KMS and perform standard AWS KMS lifecycle actions such as rotate,
disable, and delete. You can audit key access and usage in CloudTrail logs.

By default, KMS key supports 50,000 grants per key. Fargate uses a single AWS KMS grant per
customer managed key task, so it supports up to 50,000 concurrent tasks for a key. If you want to
increase this number, you can ask for a limit increase, which is approved on a case-by-case basis.

Fargate doesn't charge anything extra for using customer managed keys. You're only charged the
standard price for using AWS KMS keys for storage and API requests.

Topics

• Create an encryption key for Fargate ephemeral storage for Amazon ECS

• Managing AWS KMS keys for Fargate ephemeral storage for Amazon ECS

Create an encryption key for Fargate ephemeral storage for Amazon ECS

Create a customer managed key to encrypt data stored on Fargate ephemeral storage.

Customer managed keys for AWS Fargate ephemeral storage 183

Amazon Elastic Container Service Developer Guide

Note

Fargate ephemeral storage encryption with customer managed keys isn't available for
Windows task clusters.
Fargate ephemeral storage encryption with customer managed keys isn't available on
platformVersions earlier than 1.4.0.
Fargate reserves space on an ephemeral storage that's only used by Fargate, and you're not
billed for the space. Allocation might differ from non-customer managed key tasks, but the
total space remains the same. You can view this change in tools like df.
Multi-Region keys are not supported for Fargate ephemeral storage.
KMS key aliases are not supported for Fargate ephemeral storage.

To create a customer managed key (CMK) to encrypt ephemeral storage for Fargate in AWS KMS,
follow these steps.

1. Navigate to the https://console.aws.amazon.com/kms.

2. Follow the instructions for Creating Keys in the AWS Key Management Service Developer
Guide.

3. When creating your AWS KMS key, make sure to provide Fargate service relevant AWS KMS
operation permissions in the key policies. The following API operations must be permitted in
the policy to use your customer managed key with your Amazon ECS cluster resources.

• kms:GenerateDataKeyWithoutPlainText ‐ Call
GenerateDataKeyWithoutPlainText to generate an encrypted data key from the
provided AWS KMS key.

• kms:CreateGrant ‐ Adds a grant to a customer managed key. Grants control access to a
specified AWS KMS key, which allows access to grant operations that Amazon ECS Fargate
requires. For more information about Using Grants, see the AWS Key Management Service
Developer Guide. This allows Amazon ECS Fargate to do the following:

• Call Decrypt to AWS KMS to get the encryption key to decrypt the ephemeral storage
data.

• Set up a retiring principal to allow the service to RetireGrant.

• kms:DescribeKey ‐ Provides the customer managed key details to allow Amazon ECS to
validate the key if it's symmetric and enabled.

Customer managed keys for AWS Fargate ephemeral storage 184

https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Elastic Container Service Developer Guide

The following example shows a AWS KMS key policy that you would apply to the target key for
encryption. To use the example policy statements, replace the user input placeholders
with your own information. As always, only configure the permissions that you need, but you'll
need to provide AWS KMS with permissions to at least one user to avoid errors.

{
 "Sid": "Allow generate data key access for Fargate tasks.",
 "Effect": "Allow",
 "Principal": { "Service":"fargate.amazonaws.com" },
 "Action": [
 "kms:GenerateDataKeyWithoutPlaintext"
],
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:aws:ecs:clusterAccount": [
 "customerAccountId"
],
 "kms:EncryptionContext:aws:ecs:clusterName": [
 "clusterName"
]
 }
 },
 "Resource": "*"
 },
 {
 "Sid": "Allow grant creation permission for Fargate tasks.",
 "Effect": "Allow",
 "Principal": { "Service":"fargate.amazonaws.com" },
 "Action": [
 "kms:CreateGrant"
],
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:aws:ecs:clusterAccount": [
 "customerAccountId"
],
 "kms:EncryptionContext:aws:ecs:clusterName": [
 "clusterName"
]
 },
 "ForAllValues:StringEquals": {

Customer managed keys for AWS Fargate ephemeral storage 185

Amazon Elastic Container Service Developer Guide

 "kms:GrantOperations": [
 "Decrypt"
]
 }
 },
 "Resource": "*"
 },
 {
 "Sid": "Allow describe key permission for cluster operator - CreateCluster
 and UpdateCluster.",
 "Effect": "Allow",
 "Principal": { "AWS":"arn:aws:iam::customerAccountId:role/customer-chosen-
role" },
 "Action": [
 "kms:DescribeKey"
],
 "Resource": "*"
 }

Fargate tasks use the aws:ecs:clusterAccount and aws:ecs:clusterName encryption
context keys for cryptographic operations with the key. Customers should add these
permissions to restrict access to a specific account and/or cluster. Use the cluster name and not
the ARN when you specify the cluster.

For more information, see Encryption context in the AWS KMS Developer Guide.

When creating or updating a cluster, you have the option to use the condition key
fargateEphemeralStorageKmsKeyId. This condition key allows customers to have more
granular control of the IAM policies. Updates to the fargateEphemeralStorageKmsKeyId
configuration only take effect on new service deployments.

The following is an example of allowing customers to grant permissions to only a specific set
of approved AWS KMS keys.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:CreateCluster",
 "ecs:UpdateCluster"

Customer managed keys for AWS Fargate ephemeral storage 186

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Elastic Container Service Developer Guide

],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ecs:fargate-ephemeral-storage-kms-key": "arn:aws:kms:us-
west-2:111122223333:key/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 }
 }
 }
]
}

Next is an example for denying attempts to remove AWS KMS keys that are already associated
with a cluster.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": [
 "ecs:CreateCluster",
 "ecs:UpdateCluster"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "ecs:fargate-ephemeral-storage-kms-key": "true"
 }
 }
 }
}

Customers can see if their unmanaged tasks or service tasks are encrypted using the key
by using the AWS CLI describe-tasks, describe-cluster, or describe-services
commands.

For more information, see Condition keys for AWS KMS in the AWS KMS Developer Guide.

AWS Management Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

Customer managed keys for AWS Fargate ephemeral storage 187

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

2. Choose Clusters in the left navigation and either Create cluster in the top right, or choose
an existing cluster. For an existing cluster, choose Update cluster in the top right.

3. Under the Encryption section of the workflow, you'll have the option to select your AWS
KMS key under Managed storage and Fargate ephemeral storage. You can also choose to
Create an AWS KMS key from here.

4. Choose Create once you finish creating your new cluster or Update, if you were updating
an existing one.

AWS CLI

The following is an example of creating a cluster and configuring your Fargate ephemeral
storage using the AWS CLI (replace the red values with your own):

aws ecs create-cluster --cluster clusterName \
--configuration '{"managedStorageConfiguration":
{"fargateEphemeralStorageKmsKeyId":"arn:aws:kms:us-
west-2:012345678901:key/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"}}'
{
 "cluster": {
 "clusterArn": "arn:aws:ecs:us-west-2:012345678901:cluster/clusterName",
 "clusterName": "clusterName",
 "configuration": {
 "managedStorageConfiguration": {
 "fargateEphemeralStorageKmsKeyId": "arn:aws:kms:us-
west-2:012345678901:key/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 }
 },
 "status": "ACTIVE",
 "registeredContainerInstancesCount": 0,
 "runningTasksCount": 0,
 "pendingTasksCount": 0,
 "activeServicesCount": 0,
 "statistics": [],
 "tags": [],
 "settings": [],
 "capacityProviders": [],
 "defaultCapacityProviderStrategy": []
 },
 "clusterCount": 5
}

Customer managed keys for AWS Fargate ephemeral storage 188

Amazon Elastic Container Service Developer Guide

AWS CloudFormation

The following is an example template of creating a cluster and configuring your Fargate
ephemeral storage using the AWS CloudFormation (replace the red values with your own):

AWSTemplateFormatVersion: 2010-09-09
Resources:
 MyCluster:
 Type: AWS::ECS::Cluster
 Properties:
 ClusterName: "clusterName"
 Configuration:
 ManagedStorageConfiguration:
 FargateEphemeralStorageKmsKeyId: "arn:aws:kms:us-
west-2:012345678901:key/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"

Managing AWS KMS keys for Fargate ephemeral storage for Amazon ECS

After creating or importing your AWS KMS key to encrypt your Fargate ephemeral storage, you
manage it the same way you would any other AWS KMS key.

Automatic rotation of AWS KMS keys

You can enable automatic key rotation or rotate them manually. Automatic key rotation rotates the
key for you yearly by generating new cryptographic material for the key. AWS KMS also saves all
previous versions of the cryptographic material, so you'll be able to decrypt any data that used the
earlier key versions. Any rotated material won't be deleted by AWS KMS until you delete the key.

Automatic key rotation is optional and can be enabled or disabled at any time.

Disabling or revoking AWS KMS keys

If you disable a customer managed key in AWS KMS, it doesn't have any impact on running tasks,
and they continue to function through their lifecycle. If a new task uses the disabled or revoked
key, the task fails since it can't access the key. You should set a CloudWatch alarm or similar to
make sure a disabled key is never needed to decrypt already encrypted data.

Deleting AWS KMS keys

Deleting keys should always be a last resort and should only be done if you're certain the deleted
key is never needed again. New tasks that try to use the deleted key will fail because they can't

Customer managed keys for AWS Fargate ephemeral storage 189

Amazon Elastic Container Service Developer Guide

access it. AWS KMS advises disabling a key instead of deleting it. If you feel it's necessary to delete
a key, we suggest disabling it first and setting a CloudWatch alarm to make sure it isn't needed. If
you do delete a key, AWS KMS supplies at least seven days to change your mind.

Auditing AWS KMS key access

You can use CloudTrail logs to audit access to your AWS KMS key. You're able to check the AWS
KMS operations CreateGrant, GenerateDataKeyWithoutPlaintext, and Decrypt. These
operations also show the aws:ecs:clusterAccount and aws:ecs:clusterName as part of the
EncryptionContext logged in CloudTrail.

The following are example CloudTrail events for GenerateDataKeyWithoutPlaintext,
GenerateDataKeyWithoutPlaintext (DryRun), CreateGrant, CreateGrant (DryRun),
and RetireGrant (replace the red values with your own).

GenerateDataKeyWithoutPlaintext

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "ec2-frontend-api.amazonaws.com"
 },
 "eventTime": "2024-04-23T18:08:13Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKeyWithoutPlaintext",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "ec2-frontend-api.amazonaws.com",
 "userAgent": "ec2-frontend-api.amazonaws.com",
 "requestParameters": {
 "numberOfBytes": 64,
 "keyId": "arn:aws:kms:us-west-2:account-id:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111",
 "encryptionContext": {
 "aws:ecs:clusterAccount": "account-id",
 "aws:ebs:id": "vol-xxxxxxx",
 "aws:ecs:clusterName": "cluster-name"
 }
 },
 "responseElements": null,
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE33333",

Customer managed keys for AWS Fargate ephemeral storage 190

Amazon Elastic Container Service Developer Guide

 "readOnly": true,
 "resources": [
 {
 "accountId": "AWS Internal",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:account-id:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "account-id",
 "sharedEventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
 "eventCategory": "Management"
}

GenerateDataKeyWithoutPlaintext (DryRun)

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "fargate.amazonaws.com"
 },
 "eventTime": "2024-04-23T18:08:11Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKeyWithoutPlaintext",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "fargate.amazonaws.com",
 "userAgent": "fargate.amazonaws.com",
 "errorCode": "DryRunOperationException",
 "errorMessage": "The request would have succeeded, but the DryRun option is
 set.",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-west-2:account-id:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111",
 "dryRun": true,
 "numberOfBytes": 64,
 "encryptionContext": {
 "aws:ecs:clusterAccount": "account-id",
 "aws:ecs:clusterName": "cluster-name"
 }
 },

Customer managed keys for AWS Fargate ephemeral storage 191

Amazon Elastic Container Service Developer Guide

 "responseElements": null,
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE33333",
 "readOnly": true,
 "resources": [
 {
 "accountId": "AWS Internal",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:account-id:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "account-id",
 "sharedEventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
 "eventCategory": "Management"
}

CreateGrant

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "ec2-frontend-api.amazonaws.com"
 },
 "eventTime": "2024-04-23T18:08:13Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateGrant",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "ec2-frontend-api.amazonaws.com",
 "userAgent": "ec2-frontend-api.amazonaws.com",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-west-2:account-id:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111",
 "granteePrincipal": "fargate.us-west-2.amazonaws.com",
 "operations": [
 "Decrypt"
],
 "constraints": {
 "encryptionContextSubset": {
 "aws:ecs:clusterAccount": "account-id",

Customer managed keys for AWS Fargate ephemeral storage 192

Amazon Elastic Container Service Developer Guide

 "aws:ebs:id": "vol-xxxx",
 "aws:ecs:clusterName": "cluster-name"
 }
 },
 "retiringPrincipal": "ec2.us-west-2.amazonaws.com"
 },
 "responseElements": {
 "grantId":
 "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",
 "keyId": "arn:aws:kms:us-west-2:account-id:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111"
 },
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE33333",
 "readOnly": false,
 "resources": [
 {
 "accountId": "AWS Internal",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:account-id:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "account-id",
 "sharedEventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
 "eventCategory": "Management"
}

CreateGrant (DryRun)

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "fargate.amazonaws.com"
 },
 "eventTime": "2024-04-23T18:08:11Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateGrant",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "fargate.amazonaws.com",

Customer managed keys for AWS Fargate ephemeral storage 193

Amazon Elastic Container Service Developer Guide

 "userAgent": "fargate.amazonaws.com",
 "errorCode": "DryRunOperationException",
 "errorMessage": "The request would have succeeded, but the DryRun option is
 set.",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-west-2:account-id:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111",
 "granteePrincipal": "fargate.us-west-2.amazonaws.com",
 "dryRun": true,
 "operations": [
 "Decrypt"
],
 "constraints": {
 "encryptionContextSubset": {
 "aws:ecs:clusterAccount": "account-id",
 "aws:ecs:clusterName": "cluster-name"
 }
 }
 },
 "responseElements": null,
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE33333",
 "readOnly": false,
 "resources": [
 {
 "accountId": "AWS Internal",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:account-id:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "account-id",
 "sharedEventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
 "eventCategory": "Management"
}

RetireGrant

{
 "eventVersion": "1.08",
 "userIdentity": {

Customer managed keys for AWS Fargate ephemeral storage 194

Amazon Elastic Container Service Developer Guide

 "type": "AWSService",
 "invokedBy": "AWS Internal"
 },
 "eventTime": "2024-04-20T18:37:38Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "RetireGrant",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "AWS Internal",
 "userAgent": "AWS Internal",
 "requestParameters": null,
 "responseElements": {
 "keyId": "arn:aws:kms:us-west-2:account-id:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111"
 },
 "additionalEventData": {
 "grantId":
 "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"
 },
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE33333",
 "readOnly": false,
 "resources": [
 {
 "accountId": "AWS Internal",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:account-id:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "account-id",
 "sharedEventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
 "eventCategory": "Management"
}

Task retirement and maintenance for AWS Fargate on Amazon
ECS

AWS is responsible for maintaining the underlying infrastructure for AWS Fargate. AWS determines
when a platform version revision needs to be replaced with a new revision for the infrastructure.

Task retirement and maintenance 195

Amazon Elastic Container Service Developer Guide

This is known as task retirement. AWS sends a task retirement notification when a platform version
revision is retired. We routinely update our supported platform versions to introduce a new revision
containing updates to the Fargate runtime software and underlying dependencies such as the
operating system and container runtime. After a newer revision is made available, we retire the
older revision in order to ensure all customer workloads run on the most up to date revision of the
Fargate platform version. When a revision is retired, all tasks running on that revision are stopped.

Amazon ECS tasks can be categorized as either service tasks or standalone tasks. Service tasks are
deployed as part of a service and controlled by the Amazon ECS schedule. For more information,
see Amazon ECS services. Standalone tasks are tasks started by the Amazon ECS RunTask API,
either directly or by an external scheduler such as scheduled tasks (which are started by Amazon
EventBridge), AWS Batch, or AWS Step Functions. You do not need to take any actions in response
to task retirement for your service tasks because the Amazon ECS scheduler automatically replaces
the tasks.

For standalone tasks, you may need to perform additional handling in response to task retirement.
For more information, see Can Amazon ECS automatically handle standalone tasks?.

For service tasks, you do not need to take any action to task retirement unless you want to
replace these tasks before AWS does. When the Amazon ECS scheduler stops the tasks, it uses
the maximumPercent and launches a new task in an attempt to maintain the desired count for
the service. To minimalize the impact of AWS Fargate task retirement, you should follow Amazon
ECS best practices when you deploy workloads. The default maximumPercent value for a service
using the REPLICA service scheduler is 200%. Therefore, when AWS Fargate starts retiring tasks,
Amazon ECS first schedules a new task, and then waits for it to be running, before retiring an old
task. When you set the maximumPercent value to 100%, Amazon ECS stops the task first, then
replaces it.

For standalone task retirement, AWS stops the task on or after the task retirement date. Amazon
ECS doesn’t launch a replacement task when a task is stopped. If you need these tasks to continue
to run, you need to stop the running tasks and launch a replacement task before the time indicated
in the notification. Therefore, we recommend that customers monitor the state of standalone tasks
and if required, implement logic to replace the stopped tasks.

When a task is stopped in any of the scenarios, you can run describe-tasks. The
stoppedReason in the response is ECS is performing maintenance on the underlying
infrastructure hosting the task.

Task retirement and maintenance 196

Amazon Elastic Container Service Developer Guide

Task maintenance applies when there is a new platform version revision needs to be replaced with
a new revision. If there is an issue with an underlying Fargate host, Amazon ECS replaces the host
without a task retirement notice.

Task retirement notice overview

When AWS marks a platform version revision as needing to be retired, we identify all of the tasks
that are running on that platform version revision in all Regions. We then send out one notification
per account per Region, highlighting the affected tasks or services and a date when the retirements
will start to take place.

The following illustration shows the lifecycle of a Fargate platform version revision from a new
revision launch to the platform revision retirement.

The following information provides details.

• After a new platform version revision is launched, all new tasks are scheduled on this revision.

• Existing tasks that have been scheduled and running remain on the revision they were originally
placed on for the duration of the task and aren't migrated to the new revision.

• New tasks, for example as part of an update to a service or Fargate task retirement, are placed
on to latest platform version revision available at the time of launch.

Task retirement notifications are sent through AWS Health Dashboard as well as through an email
to the registered email address and includes the following information:

• The task retirement date - The task is stopped on or after this date.

• For standalone tasks, the IDs of the tasks.

• For service tasks, the ID of the cluster where the service runs and the IDs of the service.

Task retirement notice overview 197

Amazon Elastic Container Service Developer Guide

• The next steps you need to take.

Typically, we send one notification each for service and standalone tasks in each AWS Region.
However, in certain cases you might receive more than one event for each task type, for example
when there are too many tasks to be retired that will surpass limits in our notification mechanisms.

You can identify tasks scheduled for retirement in the following ways:

• The AWS Health Dashboard

AWS Health notifications can be sent through Amazon EventBridge to archival storage such as
Amazon Simple Storage Service, take automated actions such as run an AWS Lambda function,
or other notification systems such as Amazon Simple Notification Service. For more information,
see Monitoring AWS Health events with Amazon EventBridge. For sample configuration to send
notifications to Amazon Chime, Slack, or Microsoft Teams, see the AWS Health Aware repository
on GitHub.

The following is a sample EventBridge event.

{
 "version": "0",
 "id": "3c268027-f43c-0171-7425-1d799EXAMPLE",
 "detail-type": "AWS Health Event",
 "source": "aws.health",
 "account": "123456789012",
 "time": "2023-08-16T23:18:51Z",
 "region": "us-east-1",
 "resources": [
 "cluster|service",
 "cluster|service"
],
 "detail": {
 "eventArn": "arn:aws:health:us-east-1::event/ECS/
AWS_ECS_TASK_PATCHING_RETIREMENT/AWS_ECS_TASK_PATCHING_RETIREMENT_test1",
 "service": "ECS",
 "eventScopeCode": "ACCOUNT_SPECIFIC",
 "communicationId":
 "7988399e2e6fb0b905ddc88e0e2de1fd17e4c9fa60349577446d95a18EXAMPLE",
 "lastUpdatedTime": "Wed, 16 Aug 2023 23:18:52 GMT",
 "eventRegion": "us-east-1",
 "eventTypeCode": "AWS_ECS_TASK_PATCHING_RETIREMENT",

Task retirement notice overview 198

https://docs.aws.amazon.com/health/latest/ug/cloudwatch-events-health.html
https://github.com/aws-samples/aws-health-aware

Amazon Elastic Container Service Developer Guide

 "eventTypeCategory": "scheduledChange",
 "startTime": "Wed, 16 Aug 2023 23:18:51 GMT",
 "endTime": "Fri, 18 Aug 2023 23:18:51 GMT",
 "eventDescription": [
 {
 "language": "en_US",
 "latestDescription": "\\nA software update has been deployed to
 Fargate which includes CVE patches or other critical patches. No action is required
 on your part. All new tasks launched automatically uses the latest software
 version. For existing tasks, your tasks need to be restarted in order for these
 updates to apply. Your tasks running as part of the following ECS Services will
 be automatically updated beginning Wed, 16 Aug 2023 23:18:51 GMT.\\n\\nAfter Wed,
 16 Aug 2023 23:18:51 GMT, the ECS scheduler will gradually replace these tasks,
 respecting the deployment settings for your service. Typically, services should
 see little to no interruption during the update and no action is required. When AWS
 stops tasks, AWS uses the minimum healthy percent (1) and launches a new task in
 an attempt to maintain the desired count for the service. By default, the minimum
 healthy percent of a service is 100 percent, so a new task is started first before
 a task is stopped. Service tasks are routinely replaced in the same way when
 you scale the service or deploy configuration changes or deploy task definition
 revisions. If you would like to control the timing of this restart you can update
 the service before Wed, 16 Aug 2023 23:18:51 GMT, by running the update-service
 command from the ECS command-line interface specifying force-new-deployment for
 services using Rolling update deployment type. For example:\\n\\n$ aws ecs update-
service -service service_name \\\n--cluster cluster_name -force-new-deployment\
\n\\nFor services using Blue/Green deployment type with AWS CodeDeploy:\\nPlease
 refer to create-deployment document (2) and create new deployment using same task
 definition revision.\\n\\nFor further details on ECS deployment types, please
 refer to ECS Deployment Developer Guide (1).\\nFor further details on Fargate's
 update process, please refer to the AWS Fargate User Guide (3).\\nIf you have
 any questions or concerns, please contact AWS Support (4).\\n\\n(1) https://
docs.aws.amazon.com/AmazonECS/latest/developerguide/deployment-types.html\\n(2)
 https://docs.aws.amazon.com/cli/latest/reference/deploy/create-deployment.html\\n(3)
 https://docs.aws.amazon.com/AmazonECS/latest/userguide/task-maintenance.html\\n(4)
 https://aws.amazon.com/support\\n\\nA list of your affected resources(s) can be
 found in the 'Affected resources' tab in the 'Cluster/ Service' format in the AWS
 Health Dashboard. \\n\\n"
 }
],
 "affectedEntities": [
 {
 "entityValue": "cluster|service"
 },
 {

Task retirement notice overview 199

Amazon Elastic Container Service Developer Guide

 "entityValue": "cluster|service"
 }
]
 }
}

• Email

An email is sent to the registered email for the AWS account ID.

For information about how to prepare for task retirement, see Prepare for AWS Fargate task
retirement on Amazon ECS .

Can I opt-out of task retirement?

No. As part of the AWS shared responsibility model, AWS is responsible for managing and
maintaining the underlying infrastructure for AWS Fargate. This includes performing periodic
platform updates to ensure security and stability. These updates are automatically applied by
AWS and are not something customers can opt-out of. This is a key benefit of using a AWS Fargate
compared to running your workloads on EC2 instances, the responsibility for maintaining the
underlying platform is handled by AWS. This model allows you to focus on your applications rather
than infrastructure maintenance. By automatically applying these platform updates, AWS is able
to keep the Fargate environment up-to-date and secure, without any action required from you as
the customer. This helps provide a reliable and secure containerized environment for running your
workloads on Fargate.

Can I get task retirement notifications through other AWS services?

AWS sends a task retirement notification to the AWS Health Dashboard and to the primary email
contact on the AWS account. The AWS Health Dashboard provides a number of integrations into
other AWS services, including EventBridge. You can use EventBridge to automate the visibility of
the notices (For example. forwarding the message to a ChatOps tool). For more information, see
Solution overview: Capturing task retirement notifications.

Can I change a task retirement after it is scheduled?

No. The schedule is based off the task retirement wait time which has a default of 7 days. If you
need more time, you can choose to configure the wait period to 14 days. For more information,
see Step 2: Capture task retirement notifications to alert teams and take actions. The change in

Can I opt-out of task retirement? 200

https://aws.amazon.com/blogs/containers/improving-operational-visibility-with-aws-fargate-task-retirement-notifications/

Amazon Elastic Container Service Developer Guide

this configuration applies to retirements that will be scheduled in the future. Currently scheduled
retirements are not impacted. If you have any further concerns, contact Support.

How does Amazon ECS handle tasks that are part of a service?

For service tasks, you do not need to take any action in response to task retirement unless you
want to replace these tasks before AWS does. When the Amazon ECS scheduler stops the tasks,
it uses the minimum healthy percent and launches a new task in an attempt to maintain the
desired count for the service. To minimalize the impact of Fargate task retirement, workloads
should be deployed following Amazon ECS best practices. For example, when deploying a stateless
application as an Amazon ECS service, such as a web or API server, customers should deploy
multiple task replicas and set the minimumHealthyPercent to 100%. By default, the minimum
healthy percent of a service is 100 percent. Therefore, when Fargate starts retiring tasks, Amazon
ECS first schedules a new task and waits for it to be running, before retiring an old task. Service
tasks are routinely replaced as part of task retirement in the same way when you scale the
service, deploy configuration changes, or deploy task definition revisions. To prepare for the task
retirement process, see Prepare for AWS Fargate task retirement on Amazon ECS .

Can Amazon ECS automatically handle standalone tasks?

No. AWS can't create a replacement task for standalone tasks which are started by RunTask,
scheduled tasks (for example through EventBridge Scheduler), AWS Batch, or AWS Step Functions.
Amazon ECS manages only tasks that are part of a service.

Prepare for AWS Fargate task retirement on Amazon ECS

In order to prepare for task retirement, perform the following operations:

1. Set the task retirement wait period.

2. Capture task retirement notifications to notify team members.

3. You can't control the exact timing of a task retirement, however, you can control the
replacement of tasks by updating the service with the force-deployment option.

Step 1: Set the task wait time

You can configure the time that Fargate starts the task retirement. For workloads that require
immediate application of the updates, choose the immediate setting (0). When you need more

How does Amazon ECS handle tasks that are part of a service? 201

Amazon Elastic Container Service Developer Guide

control, for example, when a task can only be stopped during a certain window, configure the 7 day
(7), or 14 day (14) option.

We recommend that you choose a shorter waiting period in order to pick up newer platform
versions revisions sooner.

Configure the wait period by running put-account-setting-default or
put-account-setting as the root user or an administrative user. Use the
fargateTaskRetirementWaitPeriod option for the name and the value option set to one of
the following values:

• 0 - AWS sends the notification, and immediately starts to retire the affected tasks.

• 7 - AWS sends the notification, and waits 7 calendar days before starting to retire the affected
tasks.

• 14 - AWS sends the notification, and waits 14 calendar days before starting to retire the affected
tasks.

The default is 7 days.

For more information, see, put-account-setting-default and put-account-setting in the Amazon
Elastic Container Service API Reference.

Step 2: Capture task retirement notifications to alert teams and take actions

When there is an upcoming task retirement, AWS sends a task retirement notification to the
AWS Health Dashboard, and to the primary email contact on the AWS account. The AWS Health
Dashboard provides a number of integrations into other AWS services, including Amazon
EventBridge. You can use EventBridge to build automations from a task retirement notification,
such as increasing the visibility of the upcoming retirement by forwarding the message to a
ChatOps tool. AWS Health Aware is a resource that shows the power of the AWS Health Dashboard
and how notifications can be distributed throughout an organization. You can forward a task
retirement notification to a chat application, such as Slack.

The following illustration shows the solution overview.

Prepare for AWS Fargate task retirement on Amazon ECS 202

https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting-default.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting.html

Amazon Elastic Container Service Developer Guide

The following information provides details.

• Fargate sends the task retirement notification to the AWS Health Dashboard.

• The AWS Health Dashboard sends mail to the primary email contact on the AWS account, and
notifies EventBridge.

• EventBridge has a rule that captures the retirement notification.

The rule looking for events with the Event Detail Type: "AWS Health Event" and the
Event Detail Type Code: "AWS_ECS_TASK_PATCHING_RETIREMENT"

• The rule triggers a Lambda function that forwards the information to Slack using a Slack
Incoming Webhook. For more information, see Incoming Webhooks.

For a code example, see Capturing AWS Fargate Task Retirement Notifications on Github.

Step 3: Control the replacement of tasks

You can't control the exact timing of a task retirement, however, you can define a wait time. If
you want control over replacing tasks at your own schedule, you can capture the task retirement
notice to first understand the task retirement date. You can then redeploy your service to
launch replacement tasks, and likewise replace any standalone tasks.For services that use rolling
deployment, you update the service using update-service with the force-deployment option
before the retirement start time.

The following update-service example uses the force-deployment option.

Prepare for AWS Fargate task retirement on Amazon ECS 203

https://slack.com/marketplace/A0F7XDUAZ-incoming-webhooks
https://github.com/aws-samples/capturing-aws-fargate-task-retirement-notifications/tree/main

Amazon Elastic Container Service Developer Guide

aws ecs update-service —-service service_name \
 --cluster cluster_name \
 --force-new-deployment

For services that use the blue/green deployment, you need to create a new deployment in AWS
CodeDeploy. For information about how to create the deployment, see create-deployment in the
AWS Command Line Interface Reference.

Supported Regions for Amazon ECS on AWS Fargate

You can use the following tables to verify the Region support for Linux containers on AWS Fargate
and Windows containers on AWS Fargate.

Linux containers on AWS Fargate

Amazon ECS Linux containers on AWS Fargate are supported in the following AWS Regions. The
supported Availability Zone IDs are noted when applicable.

Region Name Region

US East (Ohio) us-east-2

US East (N. Virginia) us-east-1

US West (N. California) us-west-1 (usw1-az1 & usw1-az3 only)

US West (Oregon) us-west-2

Canada (Central) ca-central-1

Canada West (Calgary) ca-west-1

Mexico (Central) mx-central-1

Africa (Cape Town) af-south-1

Asia Pacific (Hong Kong) ap-east-1

Asia Pacific (Mumbai) ap-south-1

AWS Fargate Regions 204

https://docs.aws.amazon.com/cli/latest/reference/deploy/create-deployment.html

Amazon Elastic Container Service Developer Guide

Region Name Region

Asia Pacific (Tokyo) ap-northeast-1 (apne1-az1 , apne1-az2 ,
& apne1-az4 only)

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Osaka) ap-northeast-3

Asia Pacific (Hyderabad) ap-south-2

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Thailand) ap-southeast-7

Asia Pacific (Jakarta) ap-southeast-3

Asia Pacific (Melbourne) ap-southeast-4

Asia Pacific (Malaysia) ap-southeast-5

Canada (Central) ca-central-1

Canada West (Calgary) ca-west-1

China (Beijing) cn-north-1 (cnn1-az1 & cnn1-az2 only)

China (Ningxia) cn-northwest-1

Europe (Frankfurt) eu-central-1

Europe (Zurich) eu-central-2

Europe (Ireland) eu-west-1

Europe (London) eu-west-2

Europe (Paris) eu-west-3

Europe (Milan) eu-south-1

Linux containers on AWS Fargate 205

Amazon Elastic Container Service Developer Guide

Region Name Region

Europe (Spain) eu-south-2

Europe (Stockholm) eu-north-1

South America (São Paulo) sa-east-1

Israel (Tel Aviv) il-central-1

Middle East (Bahrain) me-south-1

Middle East (UAE) me-central-1

AWS GovCloud (US-East) us-gov-east-1

AWS GovCloud (US-West) us-gov-west-1

Windows containers on AWS Fargate

Amazon ECS Windows containers on AWS Fargate are supported in the following AWS Regions. The
supported Availability Zone IDs are noted when applicable.

Region Name Region

US East (Ohio) us-east-2

US East (N. Virginia) us-east-1 (use1-az1, use1-az2, use1-az4,
use1-az5, & use1-az6only)

US West (N. California) us-west-1 (usw1-az1 & usw1-az3 only)

US West (Oregon) us-west-2

Africa (Cape Town) af-south-1

Asia Pacific (Hong Kong) ap-east-1

Asia Pacific (Mumbai) ap-south-1

Windows containers on AWS Fargate 206

Amazon Elastic Container Service Developer Guide

Region Name Region

Asia Pacific (Hyderabad) ap-south-2

Asia Pacific (Osaka) ap-northeast-3

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Melbourne) ap-southeast-4

Asia Pacific (Malaysia) ap-southeast-5

Asia Pacific (Tokyo) ap-northeast-1 (apne1-az1 , apne1-az2 ,
& apne1-az4 only)

Canada (Central) ca-central-1 (cac1-az1 & cac1-az2 only)

Canada West (Calgary) ca-west-1

China (Beijing) cn-north-1 (cnn1-az1 & cnn1-az2 only)

China (Ningxia) cn-northwest-1

Europe (Frankfurt) eu-central-1

Europe (Zurich) eu-central-2

Europe (Ireland) eu-west-1

Europe (London) eu-west-2

Europe (Paris) eu-west-3

Europe (Milan) eu-south-1

Europe (Spain) eu-south-2

Europe (Stockholm) eu-north-1

Windows containers on AWS Fargate 207

Amazon Elastic Container Service Developer Guide

Region Name Region

South America (São Paulo) sa-east-1

Israel (Tel Aviv) il-central-1

Middle East (UAE) me-central-1

Middle East (Bahrain) me-south-1

Windows containers on AWS Fargate 208

Amazon Elastic Container Service Developer Guide

Architect your solution for Amazon ECS

The following diagram shows the application lifecycle and how it works with the Amazon ECS
components.

You must architect your applications so that they can run on containers. A container is a
standardized unit of software development that holds everything that your software application
requires to run. This includes relevant code, runtime, system tools, and system libraries. Containers
are created from a read-only template that's called an image. Images are typically built from a
Dockerfile. A Dockerfile is a plaintext file that contains the instructions for building a container.
After they're built, these images are stored in a registry such as Amazon ECR where they can be
downloaded from.

After you create and store your image, you create an Amazon ECS task definition. A task definition
is a blueprint for your application. It is a text file in JSON format that describes the parameters and
one or more containers that form your application. For example, you can use it to specify the image
and parameters for the operating system, which containers to use, which ports to open for your

209

Amazon Elastic Container Service Developer Guide

application, and what data volumes to use with the containers in the task. The specific parameters
available for your task definition depend on the needs of your specific application.

After you define your task definition, you deploy it as either a service or a task on your cluster.
A cluster is a logical grouping of tasks or services that runs on the capacity infrastructure that is
registered to a cluster.

A task is the instantiation of a task definition within a cluster. You can run a standalone task, or you
can run a task as part of a service. You can use an Amazon ECS service to run and maintain your
desired number of tasks simultaneously in an Amazon ECS cluster. How it works is that, if any of
your tasks fail or stop for any reason, the Amazon ECS service scheduler launches another instance
based on your task definition. It does this to replace it and thereby maintain your desired number
of tasks in the service.

The container agent runs on each container instance within an Amazon ECS cluster. The agent
sends information about the current running tasks and resource utilization of your containers to
Amazon ECS. It starts and stops tasks whenever it receives a request from Amazon ECS.

After you deploy the task or service, you can use any of the following tools to monitor your
deployment and application:

• CloudWatch

• Runtime Monitoring

Capacity

The capacity is the infrastructure where your containers run. The following are the options:

• Amazon EC2 instances

• Serverless (AWS Fargate)

• On-premises virtual machines (VM) or servers

You specify the infrastructure when you create a cluster. You also specify the infrastructure type
when you register a task definition. The task definition refers to the infrastructure as the "launch
type". You also use the launch type when you run a standalone task or deploy a service. For
information about the launch type options, see Amazon ECS launch types.

Capacity 210

Amazon Elastic Container Service Developer Guide

Service endpoints

The service endpoint is the URL of the entry point for Amazon ECS that you use to connect to
the service programmatically using either Internet Protocol version 4 (IPv4) or Internet Protocol
version 6 (IPv6). By default, requests that you make to connect to Amazon ECS programmatically
use service endpoints that support only IPv4 requests. To connect programmatically with Amazon
ECS using either IPv4 or IPv6 requests, you can use a dual-stack endpoint. For information about
using a dual-stack endpoint, see Using Amazon ECS dual-stack endpoints.

Networking

AWS resources are created in subnets. When you use EC2 instances, Amazon ECS launches the
instances in the subnet that you specify when you create a cluster. Your tasks run in the instance
subnet. For Fargate or on-premises virtual machines, you specify the subnet when you run a task or
create a service.

Depending on your application, the subnet can be a private or public subnet and the subnet can be
in any of the following AWS resources:

• Availability Zones

• Local Zones

• Wavelength Zones

• AWS Regions

• AWS Outposts

For more information, see Amazon ECS applications in shared subnets, Local Zones, and
Wavelength Zones or Amazon Elastic Container Service on AWS Outposts.

You can have your application connect to the internet by using one of the following methods:

• A public subnet with an internet gateway

Use public subnets when you have public applications that require large amounts of bandwidth
or minimal latency. Applicable scenarios include video streaming and gaming services.

• A private subnet with a NAT gateway

Service endpoints 211

Amazon Elastic Container Service Developer Guide

Use private subnets when you want to protect your containers from direct external access.
Applicable scenarios include payment processing systems or containers storing user data and
passwords.

• AWS PrivateLink

Use AWS PrivateLink to have private connectivity between VPCs, AWS services, and your on-
premises networks without exposing your traffic to the public internet.

Feature access

You can use your Amazon ECS account settings to access the following features:

• Container Insights

CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs from your
containerized applications and microservices. The metrics include utilization for resources such as
CPU, memory, disk, and network.

• awsvpc trunking

For certain EC2 instances types, you can have additional network interfaces (ENIs) available on
newly launched container instances.

• Tagging authorization

Users must have permissions for actions that create a resource, such as ecsCreateCluster. If
tags are specified in the resource-creating action, AWS performs additional authorization on the
ecs:TagResource action to verify if users or roles have permissions to create tags.

• Fargate FIPS-140 compliance

Fargate supports the Federal Information Processing Standard (FIPS-140) which specifies the
security requirements for cryptographic modules that protect sensitive information. It is the
current United States and Canadian government standard, and is applicable to systems that are
required to be compliant with Federal Information Security Management Act (FISMA) or Federal
Risk and Authorization Management Program (FedRAMP).

• Fargate task retirement time changes

You can configure the wait period before Fargate tasks are retired for patching.

• Dual stack VPC

Feature access 212

Amazon Elastic Container Service Developer Guide

Allow tasks to communicate over IPv4, IPv6, or both.

• Amazon Resource Name (ARN) format

Certain features, such as tagging authorization, require a new Amazon Resource Name (ARN)
format.

For more information, see Access Amazon ECS features with account settings.

IAM roles

An IAM role is an IAM identity that you can create in your account that has specific permissions. In
Amazon ECS, you can create roles to grant permissions to Amazon ECS resource such as containers
or services.

Some Amazon ECS features require roles. For more information, see IAM roles for Amazon ECS.

Logging

Logging and monitoring are important aspects of maintaining the reliability, availability, and
performance of Amazon ECS workloads. The following options are available:

• Amazon CloudWatch logs - route logs to Amazon CloudWatch

• FireLens for Amazon ECS - route logs to an AWS service or AWS Partner Network destination
for log storage and analysis. The AWS Partner Network is a global community of partners that
leverages programs, expertise, and resources to build, market, and sell customer offerings.

Amazon ECS launch types

The task definition launch type defines what capacity the task can run on, for example AWS
Fargate.

After you choose the launch type, Amazon ECS verifies that the task definition parameters you
configure work with the launch type.

The following table describes the available launch types.

IAM roles 213

Amazon Elastic Container Service Developer Guide

Launch type Learn more

Fargate Fargate is a serverless,
pay-as-you-go compute
engine that lets you focus on
building applications without
managing servers.

Fargate launch type for
Amazon ECS

EC2 You choose the instance type,
the number of instances, and
manage the capacity.

EC2 launch type for Amazon
ECS

On-premises virtual machines
(VM) or servers

Amazon ECS Anywhere
provides support for registeri
ng an external instance such
as an on-premises server or
virtual machine (VM), to your
cluster.

External (Amazon ECS
Anywhere) launch type for
Amazon ECS

Fargate launch type for Amazon ECS

Fargate is a serverless, pay-as-you-go compute engine that lets you focus on building applications
without managing servers. When you choose Fargate, you don't need to manage an EC2
infrastructure. All you need to do is build your container image and define which cluster you want
to run your applications on. Fargate has native integration with AWS services including:

• Amazon VPC

• Auto Scaling

• Elastic Load Balancing

• IAM

• Secrets Manager

You have more control with Fargate than EC2 because you select the exact CPU and memory that
your application needs. Fargate handles scaling out your capacity, so you don't need to worry about
spikes in traffic. This means that there is less operational effort with Fargate.

Fargate launch type 214

Amazon Elastic Container Service Developer Guide

Fargate meets the standards for compliance programs including PCI, FIPS 140-3, FedRAMP, and
HIPAA. For more information see AWS Services in Scope by Compliance Program .

Fargate is suitable for the following workloads:

• Large workloads that require low operational overhead

• Small workloads that have occasional burst

• Tiny workloads

• Batch workloads

For information about the Regions that support Fargate, see the section called “AWS Fargate
Regions”.

The following diagram shows the general architecture.

Fargate launch type 215

https://aws.amazon.com/compliance/services-in-scope/

Amazon Elastic Container Service Developer Guide

For more information about Amazon ECS on Fargate, see AWS Fargate for Amazon ECS.

Fargate launch type 216

Amazon Elastic Container Service Developer Guide

Linux containers on Fargate container image pull behavior for Amazon ECS

Every Fargate task runs on its own single use, single tenant instance. When you run Linux
containers on Fargate, container images or container image layers are not cached on the instance.
Therefore, for each container image defined in the task, the whole container image needs to be
pulled from the container image registry for each Fargate task. The time it takes to pull the images
is directly correlated to the time taken to start an Fargate task.

Take the following into account to optimize the image pull time.

Container image proximity

To reduce the time it takes to download container images, locate the data as close to the
compute as possible. Pulling a container image over the internet or across AWS Regions might
impact the download time. We recommend that you store the container image in the same
Region where the task will run. If you store the container image in Amazon ECR, use a VPC
interface endpoint to further reduce the image pull time. For more information, see Amazon
ECR interface VPC endpoints (AWS PrivateLink) in the Amazon ECR User Guide.

Container image size reduction

The size of a container image directly impacts the download time. Reducing the size of the
container image or the number of container image layers, can reduce the time it takes for
an image to download. Lightweight base images (such as the minimal Amazon Linux 2023
container image) can be significantly smaller than those based on traditional operating system
base images. For more information about the minimal image, see AL2023 Minimal container
image in the Amazon Linux 2023 User Guide.

Alternative compression algorithms

Container image layers are often compressed when pushed to a container image registry.
Compressing the container image layer reduces the amount of data that has to be transferred
across the network and stored in the container image registry. After a container image layer
has been downloaded to an instance by the container runtime, that layer is decompressed.
The compression algorithm used and the amount of vCPUs available to the runtime impact
the time it takes to decompress the container image. On Fargate, you can increase the size
of the task or leverage the more performant zstd compression algorithm to reduce the time
taken for decompression. For more information, see zstd on GitHub. For information about
how to implement the images for Fargate, see Reducing AWS Fargate Startup Times with zstd
Compressed Container Images.

Fargate launch type 217

https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/linux/al2023/ug/minimal-container.html
https://docs.aws.amazon.com/linux/al2023/ug/minimal-container.html
https://github.com/facebook/zstd
https://aws.amazon.com/blogs/containers/reducing-aws-fargate-startup-times-with-zstd-compressed-container-images/
https://aws.amazon.com/blogs/containers/reducing-aws-fargate-startup-times-with-zstd-compressed-container-images/

Amazon Elastic Container Service Developer Guide

Lazy Loading container images

For large container images (> 250mb), it might be optimal to lazy load a container image rather
than downloading all of the container image. On Fargate, you can use Seekable OCI (SOCI) to
lazy load a container image from a container image registry. For more information, see soci-
snapshotter on GitHub and Lazy loading container images using Seekable OCI (SOCI).

Windows containers on Fargate container image pull behavior for Amazon ECS

Fargate Windows caches the most recent month's, and the previous month's, servercore base image
provided by Microsoft. These images match the KB/Build number patches updated each Patch
Tuesday. For example, on April 9, 2024, Microsoft released KB5036896 (17763.5696) for Windows
Server 2019. The previous month KB on March 12, 2024 was KB5035849 (17763.5576). So for
the platforms WINDOWS_SERVER_2019_CORE and WINDOWS_SERVER_2019_FULL the following
container images were cached::

• mcr.microsoft.com/windows/servercore:ltsc2019

• mcr.microsoft.com/windows/servercore:10.0.17763.5696

• mcr.microsoft.com/windows/servercore:10.0.17763.5576

Additionally, on April 9, 2024, Microsoft released KB5036909 (20348.2402) for Windows Server
2022. The previous month KB on March 12, 2024 was KB5035857 (20348.2340). So for the
platforms WINDOWS_SERVER_2022_CORE and WINDOWS_SERVER_2022_FULL the following
container images were cached:

• mcr.microsoft.com/windows/servercore:ltsc2022

• mcr.microsoft.com/windows/servercore:10.0.20348.2402

• mcr.microsoft.com/windows/servercore:10.0.20348.2340

EC2 launch type for Amazon ECS

The EC2 launch type is suitable for large workloads that must be price optimized.

When considering how to model task definitions and services using the EC2 launch type, we
recommend that you consider what processes must run together and how you might go about
scaling each component.

EC2 launch type 218

https://github.com/awslabs/soci-snapshotter
https://github.com/awslabs/soci-snapshotter
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-tasks-services.html#fargate-tasks-soci-images

Amazon Elastic Container Service Developer Guide

As an example, suppose that an application consists of the following components:

• A frontend service that displays information on a webpage

• A backend service that provides APIs for the frontend service

• A data store

For this example, create task definitions that group the containers that are used for a common
purpose together. Separate the different components into multiple and separate task definitions.
The following example cluster has three container instances that are running three front-end
service containers, two backend service containers, and one data store service container.

You can group related containers in a task definition, such as linked containers that must be run
together. For example, add a log streaming container to your front-end service and include it in the
same task definition.

After you have your task definitions, you can create services from them to maintain the availability
of your desired tasks. For more information, see Creating an Amazon ECS service using the console.
In your services, you can associate containers with Elastic Load Balancing load balancers. For
more information, see Use load balancing to distribute Amazon ECS service traffic. When your
application requirements change, you can update your services to scale the number of desired
tasks up or down. Or, you can update your services to deploy newer versions of the containers in
your tasks. For more information, see Updating an Amazon ECS service.

EC2 launch type 219

Amazon Elastic Container Service Developer Guide

Container image pull behavior for the EC2 and external launch types for Amazon
ECS

The time that it takes a container to start up varies, based on the underlying container image. For
example, a fatter image (full versions of Debian, Ubuntu, and Amazon1/2) might take longer to
start up because there are a more services that run in the containers compared to their respective
slim versions (Debian-slim, Ubuntu-slim, and Amazon-slim) or smaller base images (Alpine).

When the Amazon ECS agent starts a task, it pulls the Docker image from its remote registry, and
then caches a local copy. When you use a new image tag for each release of your application, this
behavior is unnecessary.

The ECS_IMAGE_PULL_BEHAVIOR agent parameter determines the image pull behavior. The
following options are available:

• ECS_IMAGE_PULL_BEHAVIOR: default

The image will be pulled remotely. If the pull fails, the cached image in the instance is used.

EC2 launch type 220

Amazon Elastic Container Service Developer Guide

• ECS_IMAGE_PULL_BEHAVIOR: always

The image will be pulled remotely. If the pull fails, the task fails.

To speed up deployment, set the Amazon ECS agent parameter to one of the following values:

• ECS_IMAGE_PULL_BEHAVIOR: once

The image is pulled remotely only if it wasn't pulled by a previous task on the same container
instance or if the cached image was removed by the automated image cleanup process.
Otherwise, the cached image on the instance is used. This ensures that no unnecessary image
pulls are attempted.

• ECS_IMAGE_PULL_BEHAVIOR: prefer-cached

The image is pulled remotely if there is no cached image. Otherwise, the cached image on the
instance is used. Automated image cleanup is turned off for the container to ensure that the
cached image isn't removed.

Setting the ECS_IMAGE_PULL_BEHAVIOR parameter to either of the preceding values can save
time because the Amazon ECS agent uses the existing downloaded image. For larger Docker
images, the download time might take 10-20 seconds to pull over the network.

External (Amazon ECS Anywhere) launch type for Amazon ECS

Amazon ECS Anywhere provides support for registering an external instance such as an on-
premises server or virtual machine (VM), to your Amazon ECS cluster. External instances are
optimized for running applications that generate outbound traffic or process data. If your
application requires inbound traffic, the lack of Elastic Load Balancing support makes running
these workloads less efficient. Amazon ECS added a new EXTERNAL launch type that you can use
to create services or run tasks on your external instances.

The following provides a high-level system architecture overview of Amazon ECS Anywhere. Your
on-premises server has both the Amazon ECS agent and the SSM agent installed.

External launch type 221

Amazon Elastic Container Service Developer Guide

For more information, see Amazon ECS clusters for the external launch type.

Using Amazon ECS dual-stack endpoints

Amazon ECS dual-stack endpoints support requests to Amazon ECS over Internet Protocol version
4 (IPv4) and Internet Protocol version 6 (IPv6). For a list of all Amazon ECS endpoints, see Amazon
ECS endpoints and quotas in the AWS General Reference.

When using the REST API, you directly access an Amazon ECS endpoint by using the endpoint name
(URI). Amazon ECS supports only regional dual-stack endpoint names, which means that you must
specify the region as part of the name.

Use the following naming convention for the dual-stack endpoint names: ecs.region.api.aws.

When using the AWS Command Line Interface (AWS CLI) and AWS SDKs, you can use a parameter
or a flag to change to a dual-stack endpoint. You can also specify the dual-stack endpoint directly
as an override of the Amazon ECS endpoint in the config file.

The following sections describe how to use dual-stack endpoints from the AWS CLI, the AWS SDKs,
and the REST API.

Topics

Using dual-stack endpoints 222

https://docs.aws.amazon.com/general/latest/gr/ecs-service.html
https://docs.aws.amazon.com/general/latest/gr/ecs-service.html

Amazon Elastic Container Service Developer Guide

• Using dual-stack endpoints from the AWS CLI

• Using dual-stack endpoints from the AWS SDKs

• Using dual-stack endpoints from the REST API

Using dual-stack endpoints from the AWS CLI

This section provides examples of AWS CLI commands used to make requests to a dual-stack
endpoint. For more information about installing the AWS CLI or updating to the latest version, see
Installing or updating to the latest version of the AWS CLI in the AWS Command Line Interface User
Guide for Version 2.

To use a dual-stack endpoint, you can set the configuration value use_dualstack_endpoint
to true in the config file for the AWS CLI to direct all Amazon ECS requests made by the ecs
AWS CLI command to the dual-stack endpoint for the specified region. You can specify the region
in the config file or in a command by using the --region option. For more information about
configuration files for the AWS CLI, see Configuration and credential file settings in the AWS CLI in
the AWS Command Line Interface User Guide for Version 2.

If you want to use a dual-stack endpoint for specific AWS CLI commands, you can use either of the
following methods:

• You can use the dual-stack endpoint per command by setting the --endpoint-url parameter
to https://ecs.aws-region.api.aws or http://ecs.aws-region.api.aws for any ecs
command.

The following example command lists all available clusters and uses the dual-stack endpoint for
the request.

$ aws ecs list-clusters --endpoint-url https://ecs.aws-region.api.aws

• You can set up separate profiles in your AWS Config file. For example, create one
profile that sets use_dualstack_endpoint to true and a profile that does not set
use_dualstack_endpoint. When you run a command, specify which profile you want to use,
depending upon whether or not you want to use the dual-stack endpoint.

Using dual-stack endpoints from the AWS SDKs

This section provides examples of how to access a dual-stack endpoint by using the AWS SDKs.

Using dual-stack endpoints (AWS CLI) 223

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

Amazon Elastic Container Service Developer Guide

AWS SDK for Java 2.x

The following example shows how to specify a dual-stack endpoint for the us-east-1 Region
using the AWS SDK for Java 2.x.

Region region = Region.US_EAST_1
EcsClient client =
 EcsClient.builder().region(region).dualstackEnabled(true).build();

AWS SDK for Go

The following example shows how to specify a dual-stack endpoint for the us-east-1 Region
using the AWS SDK for Go.

sess := session.Must(session.NewSession())
svc := ecs.New(sess, &aws.Config{
 Region: aws.String(endpoints.UsEast1RegionID),
 Endpoint: aws.String("https://ecs.us-east-1.api.aws")
})

For more information, see Dual-stack and FIPS endpoints in the AWS SDKs and Tools Reference
Guide.

Using dual-stack endpoints from the REST API

When using the REST API, you can directly access a dual-stack endpoint by specifying it in your
request. The following example uses the dual-stack endpoint to list all Amazon ECS clusters in the
us-east-1 Region.

POST / HTTP/1.1
Host: ecs.us-east-1.api.aws
Accept-Encoding: identity
Content-Length: 2
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListClusters
X-Amz-Date: 20150429T170621Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{}

Using dual-stack endpoints from the REST API 224

https://docs.aws.amazon.com/sdkref/latest/guide/feature-endpoints.html

Amazon Elastic Container Service Developer Guide

Amazon ECS applications in shared subnets, Local Zones, and
Wavelength Zones

Amazon ECS supports workloads that use Local Zones, Wavelength Zones, and AWS Outposts for
when low latency or local data processing is a requirement.

• You can use Local Zones as an extension of an AWS Region to place resources in multiple
locations closer to your end users.

• You can use Wavelength Zones to build applications that deliver ultra-low latencies to 5G devices
and end users. Wavelength deploys standard AWS compute and storage services to the edge of
telecommunication carriers' 5G networks.

• AWS Outposts brings native AWS services, infrastructure, and operating models to virtually any
data center, co-location space, or on-premises facility.

Important

Amazon ECS on AWS Fargate workloads aren't supported in Local Zones, Wavelength
Zones, or on AWS Outposts at this time.

For information about the differences between Local Zones, Wavelength Zones, and AWS
Outposts , see How should I think about when to use AWS Wavelength, AWS Local Zones, or AWS
Outposts for applications requiring low latency or local data processing in the AWS Wavelength
FAQs.

Shared subnets

You can use VPC sharing to share subnets with other AWS accounts within the same AWS
Organizations.

You can use shared VPCs for the EC2 launch type with the following considerations:

• The owner of the VPC subnet must share a subnet with a participant account before that account
can use it for Amazon ECS resources.

• You can't use the VPC default security group for your container instances because it belongs to
the owner. Additionally, participants can't launch instances using security groups that are owned
by other participants or the owner.

Applications in shared subnets, Local Zones, and Wavelength Zones 225

https://aws.amazon.com/wavelength/faqs/
https://aws.amazon.com/wavelength/faqs/

Amazon Elastic Container Service Developer Guide

• In a shared subnet, the participant and the owner separately controls the security groups within
each respective account. The subnet owner can see security groups that are created by the
participants but cannot perform any actions on them. If the subnet owner wants to remove
or modify these security groups, the participant that created the security group must take the
action.

• The shared VPC owner cannot view, update or delete a cluster that a participant creates in the
shared subnet. This is in addition to the VPC resources that each account has different access to.
For more information, see Responsibilities and permissions for owners and participants in the
Amazon VPC User Guide.

You can use shared VPCs for the Fargate launch type with the following considerations::

• The owner of the VPC subnet must share a subnet with a participant account before that account
can use it for Amazon ECS resources.

• You can't create a service or run a task using the default security group for the VPC because it
belongs to the owner. Additionally, participants can't create a service or run a task using security
groups that are owned by other participants or the owner.

• In a shared subnet, the participant and the owner separately controls the security groups within
each respective account. The subnet owner can see security groups that are created by the
participants but cannot perform any actions on them. If the subnet owner wants to remove
or modify these security groups, the participant that created the security group must take the
action.

• The shared VPC owner cannot view, update or delete a cluster that a participant creates in the
shared subnet. This is in addition to the VPC resources that each account has different access to.
For more information, see Responsibilities and permissions for owners and participants in the
Amazon VPC User Guide.

For more information about VPC subnet sharing, see Share your VPC with other accounts in the
Amazon VPC User Guide.

Local Zones

A Local Zone is an extension of an AWS Region in close geographic proximity to your users. Local
Zones have their own connections to the internet and support AWS Direct Connect. Resources
that are created in a Local Zone can serve local users with low-latency communications. For more
information, see AWS Local Zones.

Local Zones 226

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://aws.amazon.com/about-aws/global-infrastructure/localzones/

Amazon Elastic Container Service Developer Guide

A Local Zone is represented by a Region code followed by an identifier that indicates the location
(for example, us-west-2-lax-1a).

To use a Local Zone, you must opt in to the zone. After you opt in, you must create an Amazon VPC
and subnet in the Local Zone.

You can launch Amazon EC2 instances, Amazon FSx file servers, and Application Load Balancers to
use for your Amazon ECS clusters and tasks.

For more information, see What is AWS Local Zones? in the AWS Local Zones User Guide.

Wavelength Zones

You can use AWS Wavelength to build applications that deliver ultra-low latency to mobile devices
and end users. Wavelength deploys standard AWS compute and storage services to the edge of
telecommunication carriers' 5G networks. You can extend an Amazon Virtual Private Cloud to one
or more Wavelength Zones. Then, you can use AWS resources such as Amazon EC2 instances to run
applications that require ultra-low latency and a connection to AWS services in the Region.

A Wavelength Zone is an isolated Zone in the carrier location where the Wavelength infrastructure
is deployed. Wavelength Zones are tied to an AWS Region. A Wavelength Zone is a logical
extension of a Region, and is managed by the control plane in the Region.

A Wavelength Zone is represented by a Region code followed by an identifier that indicates the
Wavelength Zone (for example, us-east-1-wl1-bos-wlz-1).

To use a Wavelength Zone, you must opt in to the Zone. After you opt in, you must create an
Amazon VPC and subnet in the Wavelength Zone. Then, you can launch your Amazon EC2 instances
in the Zone to use for your Amazon ECS clusters and tasks.

For more information, see Get started with AWS Wavelength in the AWS Wavelength Developer
Guide.

Wavelength Zones aren't available in all AWS Regions. For information about the Regions that
support Wavelength Zones, see Available Wavelength Zones in the AWS Wavelength Developer
Guide.

Wavelength Zones 227

https://docs.aws.amazon.com/local-zones/latest/ug/what-is-aws-local-zones.html
https://docs.aws.amazon.com/wavelength/latest/developerguide/get-started-wavelength.html
https://docs.aws.amazon.com/wavelength/latest/developerguide/available-wavelength-zones.html

Amazon Elastic Container Service Developer Guide

Amazon Elastic Container Service on AWS Outposts

AWS Outposts enables native AWS services, infrastructure, and operating models in on-premises
facilities. In AWS Outposts environments, you can use the same AWS APIs, tools, and infrastructure
that you use in the AWS Cloud.

Amazon ECS on AWS Outposts is ideal for low-latency workloads that need to be run in close
proximity to on-premises data and applications.

For more information about AWS Outposts, see the AWS Outposts User Guide.

Considerations

The following are considerations of using Amazon ECS on AWS Outposts:

• Amazon Elastic Container Registry, AWS Identity and Access Management, and Network Load
Balancer run in the AWS Region, not on AWS Outposts. This will increase latencies between these
services and the containers.

• AWS Fargate is not available on AWS Outposts.

The following are network connectivity considerations for AWS Outposts:

• If network connectivity between your AWS Outposts and its AWS Region is lost, your clusters will
continue to run. However, you cannot create new clusters or take new actions on existing clusters
until connectivity is restored. In case of instance failures, the instance will not be automatically
replaced. The CloudWatch Logs agent will be unable to update logs and event data.

• We recommend that you provide reliable, highly available, and low latency connectivity between
your AWS Outposts and its AWS Region.

Prerequisites

The following are prerequisites for using Amazon ECS on AWS Outposts:

• You must have installed and configured an Outpost in your on-premises data center.

• You must have a reliable network connection between your Outpost and its AWS Region.

Amazon Elastic Container Service on AWS Outposts 228

https://docs.aws.amazon.com/outposts/latest/userguide/what-is-outposts.html

Amazon Elastic Container Service Developer Guide

Overview of cluster creation on AWS Outposts

The following is an overview of the configuration:

1. Create a role and policy with rights on AWS Outposts.

2. Create an IAM instance profile with rights on AWS Outposts.

3. Create a VPC, or use an existing one that is in the same Region as your AWS Outposts.

4. Create a subnet or use an existing one that is associated with the AWS Outposts.

This is the subnet where the container instances run.

5. Create a security group for the container instances in your cluster.

6. Create an Amazon ECS cluster.

7. Define the Amazon ECS container agent environment variables to launch the instance into the
cluster.

8. Run a container.

For detailed information about how to integrate Amazon ECS with AWS Outposts, see Extend
Amazon ECS across two AWS Outposts racks.

The following example creates an Amazon ECS cluster on an AWS Outposts.

1. Create a role and policy with rights on AWS Outposts.

The role-policy.json file is the policy document that contains the effect and actions for
resources. For information about the file format, see PutRolePolicy in the IAM API Reference

aws iam create-role –-role-name ecsRole \
 --assume-role-policy-document file://ecs-policy.json
aws iam put-role-policy --role-name ecsRole --policy-name ecsRolePolicy \
 --policy-document file://role-policy.json

2. Create an IAM instance profile with rights on AWS Outposts.

aws iam create-instance-profile --instance-profile-name outpost
aws iam add-role-to-instance-profile --instance-profile-name outpost \
 --role-name ecsRole

3. Create a VPC.

Overview of cluster creation on AWS Outposts 229

https://community.aws/content/2k5wK9P1oSC9I4ZzuSLWynsiJaa/extend-amazon-ecs-across-two-outposts-racks
https://community.aws/content/2k5wK9P1oSC9I4ZzuSLWynsiJaa/extend-amazon-ecs-across-two-outposts-racks
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html

Amazon Elastic Container Service Developer Guide

aws ec2 create-vpc --cidr-block 10.0.0.0/16

4. Create a subnet associated with your AWS Outposts.

aws ec2 create-subnet \
 --cidr-block 10.0.3.0/24 \
 --vpc-id vpc-xxxxxxxx \
 --outpost-arn arn:aws:outposts:us-west-2:123456789012:outpost/op-
xxxxxxxxxxxxxxxx \
 --availability-zone-id usw2-az1

5. Create a security group for the container instances, specifying the proper CIDR range for the
AWS Outposts. (This step is different for AWS Outposts.)

aws ec2 create-security-group --group-name MyOutpostSG
aws ec2 authorize-security-group-ingress --group-name MyOutpostSG --protocol tcp \
 --port 22 --cidr 10.0.3.0/24
aws ec2 authorize-security-group-ingress --group-name MyOutpostSG --protocol tcp \
 --port 80 --cidr 10.0.3.0/24

6. Create the Cluster.

7. Define the Amazon ECS container agent environment variables to launch the instance into the
cluster created in the previous step and define any tags you want to add to help identify the
cluster (for example, Outpost to indicate that the cluster is for an Outpost).

#! /bin/bash
cat << ‘EOF’ >> /etc/ecs/ecs.config
ECS_CLUSTER=MyCluster
ECS_IMAGE_PULL_BEHAVIOR=prefer-cached
ECS_CONTAINER_INSTANCE_TAGS={“environment”: ”Outpost”}
EOF

Note

In order to avoid delays caused by pulling container images from Amazon ECR in the
Region, use image caches. To do this, each time a task is run, configure the Amazon
ECS agent to default to using the cached image on the instance itself by setting
ECS_IMAGE_PULL_BEHAVIOR to prefer-cached.

Overview of cluster creation on AWS Outposts 230

Amazon Elastic Container Service Developer Guide

8. Create the container instance, specifying the VPC and subnet for the AWS Outposts where this
instance should run and an instance type that is available on the AWS Outposts. (This step is
different for AWS Outposts.)

The userdata.txt file contains the user data the instance can use to perform common
automated configuration tasks and even run scripts after the instance starts. For information
about the file for API calls, see Run commands on your Linux instance at launch in the Amazon
EC2 User Guide.

aws ec2 run-instances --count 1 --image-id ami-xxxxxxxx --instance-type c5.large \
 --key-name aws-outpost-key –-subnet-id subnet-xxxxxxxxxxxxxxxxx \
 --iam-instance-profile Name outpost --security-group-id sg-xxxxxx \
 --associate-public-ip-address --user-data file://userdata.txt

Note

This command is also used when adding additional instances to the cluster. Any
containers deployed in the cluster will be placed on that specific AWS Outposts.

Optimize Amazon ECS capacity and availability

Application availability is crucial for providing an error-free experience and for minimizing
application latency. Availability depends on having available resources that have enough capacity
to meet demand. AWS provides several mechanisms to manage availability. For applications hosted
on Amazon ECS, these include autoscaling and Availability Zones (AZs). Autoscaling manages the
number of tasks or instances based on metrics you define, while Availability Zones allow you to
host your application in isolated but geographically-close locations.

As with task sizes, capacity and availability present certain trade-offs you must consider. Ideally,
capacity would be perfectly aligned with demand. There would always be just enough capacity to
serve requests and process jobs to meet Service Level Objectives (SLOs) including a low latency and
error rate. Capacity would never be too high, leading to excessive cost; nor would it never be too
low, leading to high latency and error rates.

Autoscaling is a latent process. First, real-time metrics must be delivered to CloudWatch. Then,
they need to be aggregated for analysis, which can take up to several minutes depending on the
granularity of the metric. CloudWatch compares the metrics against alarm thresholds to identify a

Optimize capacity and availability 231

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html

Amazon Elastic Container Service Developer Guide

shortage or excess of resources. To prevent instability, configure alarms to require the set threshold
be crossed for a few minutes before the alarm goes off. It also takes time to provision new tasks
and to terminate tasks that are no longer needed.

Because of these potential delays in the system described, it's important that you maintain some
headroom by over-provisioning. Doing this can help accommodate short-term bursts in demand.
This also helps your application to service additional requests without reaching saturation. As
a good practice, you can set your scaling target between 60-80% of utilization. This helps your
application better handle bursts of extra demand while additional capacity is still in the process of
being provisioned.

Another reason we recommend that you over-provision is so that you can quickly respond to
Availability Zone failures. We recommend that production workloads be served from multiple
Availability Zones. This is because, if an Availability Zone failure occurs, your tasks that are running
in the remaining Availability Zones can still serve the demand. If your application runs in two
Availability Zones, you need to double your normal task count. This is so that you can provide
immediate capacity during any potential failure. If your application runs in three Availability Zones,
we recommend that you run 1.5 times your normal task count. That is, run three tasks for every
two that are needed for ordinary serving.

Maximizing scaling speed

Autoscaling is a reactive process that takes time to take effect. However, there are some ways to
help minimize the time that's needed to scale out.

Minimize image size. Larger images take longer to download from an image repository and
unpack. Therefore, keeping image sizes smaller reduces the amount of time that's needed for a
container to start. To reduce the image size, you can follow these specific recommendations:

• If you can build a static binary or use Golang, build your image FROM scratch and include only
your binary application in the resulting image.

• Use minimized base images from upstream distro vendors, such as Amazon Linux or Ubuntu.

• Don’t include any build artifacts in your final image. Using multi-stage builds can help with this.

• Compact RUN stages wherever possible. Each RUN stage creates a new image layer, leading to
an additional round trip to download the layer. A single RUN stage that has multiple commands
joined by && has fewer layers than one with multiple RUN stages.

Maximizing scaling speed 232

Amazon Elastic Container Service Developer Guide

• If you want to include data, such as ML inference data, in your final image, include only the data
that's needed to start up and begin serving traffic. If you fetch data on demand from Amazon S3
or other storage without impacting service, then store your data in those places instead.

Keep your images close. The higher the network latency, the longer it takes to download the
image. Host your images in a repository in the same Region that your workload is in. Amazon
ECR is a high-performance image repository that's available in every Region that Amazon ECS is
available in. Avoid traversing the internet or a VPN link to download container images. Hosting
your images in the same Region improves overall reliability. It mitigates the risk of network
connectivity issues and availability issues in a different Region. Alternatively, you can also
implement Amazon ECR cross-region replication to help with this.

Reduce load balancer health check thresholds. Load balancers perform health checks before
sending traffic to your application. The default health check configuration for a target group can
take 90 seconds or longer. During this, the load balancer checks the health status and receives
requests. Lowering the health check interval and threshold count can make your application accept
traffic quicker and reduce load on other tasks.

Consider cold-start performance. Some applications use runtimes such as Java perform Just-
In-Time (JIT) compilation. The compilation process at least as it starts can slow application
performance. A workaround is to rewrite the latency-critical parts of your workload in languages
that don't impose a cold-start performance penalty.

Use step scaling, not target-tracking scaling policies. There are several Application Auto Scaling
options for tasks. Target tracking is the easiest mode to use. With it, all you need to do is set a
target value for a metric, such as CPU average utilization. Then, the auto scaler automatically
manages the number of tasks that are needed to attain that value. With step scaling you can
more quickly react to changes in demand, because you define the specific thresholds for your
scaling metrics, and how many tasks to add or remove when the thresholds are crossed. And, more
importantly, you can react very quickly to changes in demand by minimizing the amount of time a
threshold alarm is in breach. For more information, see Service Auto Scaling.

If you use Amazon EC2 instances to provide cluster capacity, consider the following
recommendations:

Use larger Amazon EC2 instances and faster Amazon EBS volumes. You can improve image
download and preparation speeds by using a larger Amazon EC2 instance and faster Amazon
EBS volume. Within a given instance family, the network and Amazon EBS maximum throughput

Maximizing scaling speed 233

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-auto-scaling.html

Amazon Elastic Container Service Developer Guide

increases as the instance size increases (for example, from m5.xlarge to m5.2xlarge).
Additionally, you can also customize Amazon EBS volumes to increase their throughput and IOPS.
For example, if you use gp2 volumes, use larger volumes that offer more baseline throughput. If
you use gp3 volumes, specify throughput and IOPS when you create the volume.

Use bridge network mode for tasks running on Amazon EC2 instances. Tasks that use bridge
network mode on Amazon EC2 start faster than tasks that use the awsvpc network mode. When
awsvpc network mode is used, Amazon ECS attaches an elastic network interface (ENI) to the
instance before launching the task. This introduces additional latency. There are several tradeoffs
for using bridge networking though. These tasks don't get their own security group, and there are
some implications for load balancing. For more information, see Load balancer target groups in the
Elastic Load Balancing User Guide.

Handling demand shocks

Some applications experience sudden large shocks in demand. This happens for a variety of
reasons: a news event, big sale, media event, or some other event that goes viral and causes traffic
to quickly and significantly increase in a very short span of time. If unplanned, this can cause
demand to quickly outstrip available resources.

The best way to handle demand shocks is to anticipate them and plan accordingly. Because
autoscaling can take time, we recommend that you scale out your application before the demand
shock begins. For the best results, we recommend having a business plan that involves tight
collaboration between teams that use a shared calender. The team that's planning the event should
work closely with the team in charge of the application in advance. This gives that team enough
time to have a clear scheduling plan. They can schedule capacity to scale out before the event and
to scale in after the event. For more information, see Scheduled scaling in the Application Auto
Scaling User Guide.

If you have an Enterprise Support plan, be sure also to work with your Technical Account Manager
(TAM). Your TAM can verify your service quotas and ensure that any necessary quotas are raised
before the event begins. This way, you don't accidentally hit any service quotas. They can also help
you by pre warming services such as load balancers to make sure your event goes smoothly.

Handling unscheduled demand shocks is a more difficult problem. Unscheduled shocks, if large
enough in amplitude, can quickly cause demand to outstrip capacity. It can also outpace the ability
for autoscaling to react. The best way to prepare for unscheduled shocks is to over-provision
resources. You must have enough resources to handle maximum anticipated traffic demand at any
time.

Handling demand shocks 234

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html

Amazon Elastic Container Service Developer Guide

Maintaining maximum capacity in anticipation of unscheduled demand shocks can be costly. To
mitigate the cost impact, find a leading indicator metric or event that predicts a large demand
shock is imminent. If the metric or event reliably provides significant advance notice, begin the
scale-out process immediately when the event occurs or when the metric crosses the specific
threshold that you set.

If your application is prone to sudden unscheduled demand shocks, consider adding a high-
performance mode to your application that sacrifices non-critical functionality but retains crucial
functionality for a customer. For example, assume that your application can switch from generating
expensive customized responses to serving a static response page. In this scenario, you can increase
throughput significantly without scaling the application at all.

You can consider breaking apart monolithic services to better deal with demand shocks. If your
application is a monolithic service that's expensive to run and slow to scale, you might be able
to extract or rewrite performance-critical pieces and run them as separate services. These new
services then can be scaled independently from less-critical components. Having the flexibility to
scale out performance-critical functionality separately from other parts of your application can
both reduce the time it takes to add capacity and help conserve costs.

Amazon ECS networking best practices

Modern applications are typically built out of multiple distributed components that communicate
with each other. For example, a mobile or web application might communicate with an API
endpoint, and the API might be powered by multiple microservices that communicate over the
internet.

For information about the best practices for connection applications to the internet, see Connect
Amazon ECS applications to the internet.

For information about the best practices for receiving inbound connections to Amazon ECS
from the internet, see Best practices for receiving inbound connections to Amazon ECS from the
internet.

For information about the best practices for connecting Amazon ECS to other AWS services, see
Best practices for connecting Amazon ECS to AWS services from inside your VPC.

For information about the best practices for connecting services within a VPC, see Best practices
for connecting Amazon ECS services in a VPC.

Networking best practices 235

Amazon Elastic Container Service Developer Guide

For information about the best practices for networking services across AWS accounts and VPCs,
see Best practices for networking Amazon ECS services across AWS accounts and VPCs.

For information about the best practices for services to trobleshoot networking issues, see AWS
services for Amazon ECS networking troubleshooting.

Connect Amazon ECS applications to the internet

Most containerized applications have a least some components that need outbound access
to the internet. For example, the backend for a mobile app requires outbound access to push
notifications.

Amazon Virtual Private Cloud has two main methods for facilitating communication between your
VPC and the internet.

Connect applications to the internet 236

Amazon Elastic Container Service Developer Guide

Public subnet and internet gateway

When you use a public subnet that has a route to an internet gateway, your containerized
application can run on a host inside a VPC on a public subnet. The host that runs your container
is assigned a public IP address. This public IP address is routable from the internet. For more
information, see Internet gateways in the Amazon VPC User Guide.

This network architecture facilitates direct communication between the host that runs your
application and other hosts on the internet. The communication is bi-directional. This means that
not only can you establish an outbound connection to any other host on the internet, but other
hosts on the internet might also attempt to connect to your host. Therefore, you should pay close

Connect applications to the internet 237

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html

Amazon Elastic Container Service Developer Guide

attention to your security group and firewall rules. This ensures that other hosts on the internet
can’t open any connections that you don't want to be opened.

For example, if your application runs on Amazon EC2, make sure that port 22 for SSH access is not
open. Otherwise, your instance could receive constant SSH connection attempts from malicious
bots on the internet. These bots trawl through public IP addresses. After they find an open SSH
port, they attempt to brute-force passwords to try to access your instance. Because of this, many
organizations limit the usage of public subnets and prefer to have most, if not all, of their resources
inside of private subnets.

Using public subnets for networking is suitable for public applications that require large amounts
of bandwidth or minimal latency. Applicable use cases include video streaming and gaming
services.

This networking approach is supported both when you use Amazon ECS on Amazon EC2 and when
you use it on AWS Fargate.

• Amazon EC2 — You can launch EC2 instances on a public subnet. Amazon ECS uses these EC2
instances as cluster capacity, and any containers that are running on the instances can use the
underlying public IP address of the host for outbound networking. This applies to both the host
and bridge network modes. However, the awsvpc network mode doesn't provide task ENIs with
public IP addresses. Therefore, they can’t make direct use of an internet gateway.

• Fargate — When you create your Amazon ECS service, specify public subnets for the networking
configuration of your service, and use the Assign public IP address option. Each Fargate task is
networked in the public subnet, and has its own public IP address for direct communication with
the internet.

Connect applications to the internet 238

Amazon Elastic Container Service Developer Guide

Private subnet and NAT gateway

When you use a private subnet and a NAT gateway, you can run your containerized application on a
host that's in a private subnet. As such, this host has a private IP address that's routable inside your
VPC, but isn't routable from the internet. This means that other hosts inside the VPC can connect
to the host using its private IP address, but other hosts on the internet can't make any inbound
communications to the host.

With a private subnet, you can use a Network Address Translation (NAT) gateway to allow a
host inside a private subnet to connect to the internet. Hosts on the internet receive an inbound
connection that appears to be coming from the public IP address of the NAT gateway that's inside
a public subnet. The NAT gateway is responsible for serving as a bridge between the internet and
the private subnet. This configuration is often preferred for security reasons because it means that
your VPC is protected from direct access by attackers on the internet. For more information, see
NAT gateways in the Amazon VPC User Guide.

This private networking approach is suitable for scenarios where you want to protect your
containers from direct external access. Applicable scenarios include payment processing systems or

Connect applications to the internet 239

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon Elastic Container Service Developer Guide

containers storing user data and passwords. You're charged for creating and using a NAT gateway
in your account. NAT gateway hourly usage and data processing rates also apply. For redundancy
purposes, you should have a NAT gateway in each Availability Zone. This way, the loss in availability
of a single Availability Zone doesn't compromise your outbound connectivity. Because of this, if you
have a small workload, it might be more cost effective to use private subnets and NAT gateways.

This networking approach is supported both when using Amazon ECS on Amazon EC2 and when
using it on AWS Fargate.

• Amazon EC2 — You can launch EC2 instances on a private subnet. The containers that run on
these EC2 hosts use the underlying hosts networking, and outbound requests go through the
NAT gateway.

• Fargate — When you create your Amazon ECS service, specify private subnets for the networking
configuration of your service, and don't use the Assign public IP address option. Each Fargate
task is hosted in a private subnet. Its outbound traffic is routed through any NAT gateway that
you have associated with that private subnet.

Best practices for receiving inbound connections to Amazon ECS from
the internet

If you run a public service, you must accept inbound traffic from the internet. For example, your
public website must accept inbound HTTP requests from browsers. In such case, other hosts on the
internet must also initiate an inbound connection to the host of your application.

One approach to this problem is to launch your containers on hosts that are in a public subnet
with a public IP address. However, we don't recommend this for large-scale applications. For
these, a better approach is to have a scalable input layer that sits between the internet and your
application. For this approach, you can use any of the AWS services listed in this section as an
input.

Application Load Balancer

An Application Load Balancer functions at the application layer. It's the seventh layer of the Open
Systems Interconnection (OSI) model. This makes an Application Load Balancer suitable for public
HTTP services. If you have a website or an HTTP REST API, then an Application Load Balancer is a
suitable load balancer for this workload. For more information, see What is an Application Load
Balancer? in the User Guide for Application Load Balancers.

Best practices for receiving inbound connections to Amazon ECS 240

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html

Amazon Elastic Container Service Developer Guide

With this architecture, you create an Application Load Balancer in a public subnet so that it has a
public IP address and can receive inbound connections from the internet. When the Application
Load Balancer receives an inbound connection, or more specifically an HTTP request, it opens a
connection to the application using its private IP address. Then, it forwards the request over the
internal connection.

An Application Load Balancer has the following advantages.

• SSL/TLS termination — An Application Load Balancer can sustain secure HTTPS communication
and certificates for communications with clients. It can optionally terminate the SSL connection
at the load balancer level so that you don’t have to handle certificates in your own application.

• Advanced routing — An Application Load Balancer can have multiple DNS hostnames. It also has
advanced routing capabilities to send incoming HTTP requests to different destinations based on
metrics such as the hostname or the path of the request. This means that you can use a single
Application Load Balancer as the input for many different internal services, or even microservices
on different paths of a REST API.

• gRPC support and websockets — An Application Load Balancer can handle more than just HTTP.
It can also load balance gRPC and websocket based services, with HTTP/2 support.

• Security — An Application Load Balancer helps protect your application from malicious traffic. It
includes features such as HTTP de sync mitigations, and is integrated with AWS Web Application
Firewall (AWS WAF). AWS WAF can further filter out malicious traffic that might contain attack
patterns, such as SQL injection or cross-site scripting.

Best practices for receiving inbound connections to Amazon ECS 241

Amazon Elastic Container Service Developer Guide

Network Load Balancer

A Network Load Balancer functions at the fourth layer of the Open Systems Interconnection (OSI)
model. It's suitable for non-HTTP protocols or scenarios where end-to-end encryption is necessary,
but doesn’t have the same HTTP-specific features of an Application Load Balancer. Therefore, a
Network Load Balancer is best suited for applications that don’t use HTTP. For more information,
see What is a Network Load Balancer? in the User Guide for Network Load Balancers.

When a Network Load Balancer is used as an input, it functions similarly to an Application Load
Balancer. This is because it's created in a public subnet and has a public IP address that can be
accessed on the internet. The Network Load Balancer then opens a connection to the private IP
address of the host running your container, and sends the packets from the public side to the
private side.

Network Load Balancer features

Because the Network Load Balancer operates at a lower level of the networking stack, it doesn't
have the same set of features that Application Load Balancer does. However, it does have the
following important features.

Best practices for receiving inbound connections to Amazon ECS 242

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html

Amazon Elastic Container Service Developer Guide

• End-to-end encryption — Because a Network Load Balancer operates at the fourth layer of the
OSI model, it doesn't read the contents of packets. This makes it suitable for load balancing
communications that need end-to-end encryption.

• TLS encryption — In addition to end-to-end encryption, Network Load Balancer can also
terminate TLS connections. This way, your backend applications don’t have to implement their
own TLS.

• UDP support — Because a Network Load Balancer operates at the fourth layer of the OSI model,
it's suitable for non HTTP workloads and protocols other than TCP.

Closing connections

Because the Network Load Balancer does not observe the application protocol at the higher layers
of the OSI model, it cannot send closure messages to the clients in those protocols. Unlike the
Application Load Balancer, those connections need to be closed by the application or you can
configure the Network Load Balancer to close the fourth layer connections when a task is stopped
or replaced. See the connection termination setting for Network Load Balancer target groups in the
Network Load Balancer documentation.

Letting the Network Load Balancer close connections at the fourth layer can cause clients to
display undesired error messages, if the client does not handle them. See the Builders Library for
more information on recommended client configuration here.

The methods to close connections will vary by application, however one way is to ensure that the
Network Load Balancer target deregistration delay is longer than client connection timeout. The
client would timeout first and reconnect gracefully through the Network Load Balancer to the next
task while the old task slowly drains all of its clients. For more information about the Network Load
Balancer target deregistration delay, see the Network Load Balancer documentation.

Amazon API Gateway HTTP API

Amazon API Gateway is suitable for HTTP applications with sudden bursts in request volumes or
low request volumes. For more information, see What is Amazon API Gateway? in the API Gateway
Developer Guide.

Best practices for receiving inbound connections to Amazon ECS 243

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html#deregistration-delay
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html#deregistration-delay
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html

Amazon Elastic Container Service Developer Guide

The pricing model for both Application Load Balancer and Network Load Balancer include an
hourly price to keep the load balancers available for accepting incoming connections at all times. In
contrast, API Gateway charges for each request separately. This has the effect that, if no requests
come in, there are no charges. Under high traffic loads, an Application Load Balancer or Network
Load Balancer can handle a greater volume of requests at a cheaper per-request price than API
Gateway. However, if you have a low number of requests overall or have periods of low traffic, then
the cumulative price for using the API Gateway should be more cost effective than paying a hourly
charge to maintain a load balancer that's being underutilized. The API Gateway can also cache API
responses, which might result in lower backend request rates.

API Gateway functions which use a VPC link that allows the AWS managed service to connect to
hosts inside the private subnet of your VPC, using its private IP address. It can detect these private
IP addresses by looking at AWS Cloud Map service discovery records that are managed by Amazon
ECS Service Discovery.

API Gateway supports the following features.

• The API Gateway operation is similar to a load balancer, but has additional capabilities unique to
API management

• The API Gateway provides additional capabilities around client authorization, usage tiers, and
request/response modification. For more information, see Amazon API Gateway features.

• The API Gateway can support edge, regional, and private API gateway endpoints. Edge endpoints
are available through a managed CloudFront distribution. Regional and private endpoints are
both local to a Region.

Best practices for receiving inbound connections to Amazon ECS 244

https://aws.amazon.com/api-gateway/features/

Amazon Elastic Container Service Developer Guide

• SSL/TLS termination

• Routing different HTTP paths to different backend microservices

Besides the preceding features, API Gateway also supports using custom Lambda authorizers that
you can use to protect your API from unauthorized usage. For more information, see Field Notes:
Serverless Container-based APIs with Amazon ECS and Amazon API Gateway.

Best practices for connecting Amazon ECS to AWS services from inside
your VPC

For Amazon ECS to function properly, the Amazon ECS container agent that runs on each host
must communicate with the Amazon ECS control plane. If you're storing your container images
in Amazon ECR, the Amazon EC2 hosts must communicate to the Amazon ECR service endpoint,
and to Amazon S3, where the image layers are stored. If you use other AWS services for your
containerized application, such as persisting data stored in DynamoDB, double-check that these
services also have the necessary networking support.

NAT gateway

Using a NAT gateway is the easiest way to ensure that your Amazon ECS tasks can access other
AWS services. For more information about this approach, see Private subnet and NAT gateway.

Best practices for connecting to AWS services 245

https://aws.amazon.com/blogs/architecture/field-notes-serverless-container-based-apis-with-amazon-ecs-and-amazon-api-gateway/
https://aws.amazon.com/blogs/architecture/field-notes-serverless-container-based-apis-with-amazon-ecs-and-amazon-api-gateway/

Amazon Elastic Container Service Developer Guide

The following are the disadvantages to using this approach:

• You can't limit what destinations the NAT gateway can communicate with. You also can't limit
which destinations your backend tier can communicate to without disrupting all outbound
communications from your VPC.

• NAT gateways charge for every GB of data that passes through. If you use the NAT gateway for
any of the following operations, you're charged for every GB of bandwidth:

• Downloading large files from Amazon S3

• Doing a high volume of database queries to DynamoDB

• Pulling images from Amazon ECR

Additionally, NAT gateways support 5 Gbps of bandwidth and automatically scale up to 45
Gbps. If you route through a single NAT gateway, applications that require very high bandwidth
connections might encounter networking constraints. As a workaround, you can divide your
workload across multiple subnets and give each subnet its own NAT gateway.

Best practices for connecting to AWS services 246

Amazon Elastic Container Service Developer Guide

AWS PrivateLink

AWS PrivateLink provides private connectivity between VPCs, AWS services, and your on-premises
networks without exposing your traffic to the public internet.

A VPC endpoint allows private connections between your VPC and supported AWS services and
VPC endpoint services. Traffic between your VPC and the other service doesn't leave the Amazon
network. A VPC endpoint doesn't require an internet gateway, virtual private gateway, NAT device,
VPN connection, or AWS Direct Connect connection. Amazon EC2 instances in your VPC don't
require public IP addresses to communicate with resources in the service.

The following diagram shows how communication to AWS services works when you are using VPC
endpoints instead of an internet gateway. AWS PrivateLink provisions elastic network interfaces
(ENIs) inside of the subnet, and VPC routing rules are used to send any communication to the
service hostname through the ENI, directly to the destination AWS service. This traffic no longer
needs to use the NAT gateway or internet gateway.

The following are some of the common VPC endpoints that are used with the Amazon ECS service.

• Gateway endpoints for Amazon S3

• DynamoDB VPC endpoint

• Amazon ECS VPC endpoint

• Amazon ECR VPC endpoint

Best practices for connecting to AWS services 247

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-s3.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/vpc-endpoints-dynamodb.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html

Amazon Elastic Container Service Developer Guide

Many other AWS services support VPC endpoints. If you make heavy usage of any AWS service, you
should look up the specific documentation for that service and how to create a VPC endpoint for
that traffic.

Best practices for connecting Amazon ECS services in a VPC

Using Amazon ECS tasks in a VPC, you can split monolithic applications into separate parts that can
be deployed and scaled independently in a secure environment. This architecture is called service-
oriented architecture (SOA) or microservices. However, it can be challenging to make sure that all
of these parts, both in and outside of a VPC, can communicate with each other. There are several
approaches for facilitating communication, all with different advantages and disadvantages.

Using Service Connect

We recommend Service Connect, which provides Amazon ECS configuration for service discovery,
connectivity, and traffic monitoring. With Service Connect, your applications can use short names
and standard ports to connect to services in the same cluster, other clusters, including across VPCs
in the same Region. For more information, see Amazon ECS Service Connect.

When you use Service Connect, Amazon ECS manages all of the parts of service discovery: creating
the names that can be discovered, dynamically managing entries for each task as the tasks start
and stop, running an agent in each task that is configured to discover the names. Your application
can look up the names by using the standard functionality for DNS names and making connections.
If your application does this already, you don't need to modify your application to use Service
Connect.

Best practices for connecting services 248

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-connect.html

Amazon Elastic Container Service Developer Guide

Changes only happen during deployments

You provide the complete configuration inside each service and task definition. Amazon ECS
manages changes to this configuration in each service deployment, to ensure that all tasks in
a deployment behave in the same way. For example, a common problem with DNS as service
discovery is controlling a migration. If you change a DNS name to point to the new replacement IP
addresses, it might take the maximum TTL time before all the clients begin using the new service.
With Service Connect, the client deployment updates the configuration by replacing the client
tasks. You can configure the deployment circuit breaker and other deployment configuration to
affect Service Connect changes in the same way as any other deployment.

Using service discovery

Another approach for service-to-service communication is direct communication using service
discovery. In this approach, you can use the AWS Cloud Map service discovery integration with
Amazon ECS. Using service discovery, Amazon ECS syncs the list of launched tasks to AWS Cloud
Map, which maintains a DNS hostname that resolves to the internal IP addresses of one or more

Best practices for connecting services 249

Amazon Elastic Container Service Developer Guide

tasks from that particular service. Other services in the Amazon VPC can use this DNS hostname
to send traffic directly to another container using its internal IP address. For more information, see
Service discovery.

In the preceding diagram, there are three services. service-a-local has one container and
communicates with service-b-local, which has two containers. service-b-local must
also communicate with service-c-local, which has one container. Each container in all three
of these services can use the internal DNS names from AWS Cloud Map to find the internal IP
addresses of a container from the downstream service that it needs to communicate to.

This approach to service-to-service communication provides low latency. At first glance, it's also
simple as there are no extra components between the containers. Traffic travels directly from one
container to the other container.

This approach is suitable when using the awsvpc network mode, where each task has its own
unique IP address. Most software only supports the use of DNS A records, which resolve directly
to IP addresses. When using the awsvpc network mode, the IP address for each task are an A
record. However, if you're using bridge network mode, multiple containers could be sharing
the same IP address. Additionally, dynamic port mappings cause the containers to be randomly
assigned port numbers on that single IP address. At this point, an A record is no longer be enough

Best practices for connecting services 250

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-discovery.html

Amazon Elastic Container Service Developer Guide

for service discovery. You must also use an SRV record. This type of record can keep track of both
IP addresses and port numbers but requires that you configure applications appropriately. Some
prebuilt applications that you use might not support SRV records.

Another advantage of the awsvpc network mode is that you have a unique security group for each
service. You can configure this security group to allow incoming connections from only the specific
upstream services that need to talk to that service.

The main disadvantage of direct service-to-service communication using service discovery is that
you must implement extra logic to have retries and deal with connection failures. DNS records have
a time-to-live (TTL) period that controls how long they are cached for. It takes some time for the
DNS record to be updated and for the cache to expire so that your applications can pick up the
latest version of the DNS record. So, your application might end up resolving the DNS record to
point at another container that's no longer there. Your application needs to handle retries and have
logic to ignore bad backends.

Using an internal load balancer

Another approach to service-to-service communication is to use an internal load balancer. An
internal load balancer exists entirely inside of your VPC and is only accessible to services inside of
your VPC.

Best practices for connecting services 251

Amazon Elastic Container Service Developer Guide

The load balancer maintains high availability by deploying redundant resources into each subnet.
When a container from serviceA needs to communicate with a container from serviceB, it
opens a connection to the load balancer. The load balancer then opens a connection to a container
from service B. The load balancer serves as a centralized place for managing all connections
between each service.

If a container from serviceB stops, then the load balancer can remove that container from the
pool. The load balancer also does health checks against each downstream target in its pool and can
automatically remove bad targets from the pool until they become healthy again. The applications
no longer need to be aware of how many downstream containers there are. They just open their
connections to the load balancer.

This approach is advantageous to all network modes. The load balancer can keep track of task IP
addresses when using the awsvpc network mode, as well as more advanced combinations of IP
addresses and ports when using the bridge network mode. It evenly distributes traffic across all

Best practices for connecting services 252

Amazon Elastic Container Service Developer Guide

the IP address and port combinations, even if several containers are actually hosted on the same
Amazon EC2 instance, just on different ports.

The one disadvantage of this approach is cost. To be highly available, the load balancer needs to
have resources in each Availability Zone. This adds extra cost because of the overhead of paying for
the load balancer and for the amount of traffic that goes through the load balancer.

However, you can reduce overhead costs by having multiple services share a load balancer. This
is particularly suitable for REST services that use an Application Load Balancer. You can create
path-based routing rules that route traffic to different services. For example, /api/user/* might
route to a container that's part of the user service, whereas /api/order/* might route to the
associated order service. With this approach, you only pay for one Application Load Balancer, and
have one consistent URL for your API. However, you can split the traffic off to various microservices
on the backend.

Best practices for networking Amazon ECS services across AWS
accounts and VPCs

If you're part of an organization with multiple teams and divisions, you probably deploy services
independently into separate VPCs inside a shared AWS account or into VPCs that are associated
with multiple individual AWS accounts. No matter which way you deploy your services, we
recommend that you supplement your networking components to help route traffic between VPCs.
For this, several AWS services can be used to supplement your existing networking components.

• AWS Transit Gateway — You should consider this networking service first. This service serves
as a central hub for routing your connections between Amazon VPCs, AWS accounts, and on-
premises networks. For more information, see What is a transit gateway? in the Amazon VPC
Transit Gateways Guide.

• Amazon VPC and VPN support — You can use this service to create site-to-site VPN connections
for connecting on-premises networks to your VPC. For more information, see What is AWS Site-
to-Site VPN? in the AWS Site-to-Site VPN User Guide.

• Amazon VPC — You can use Amazon VPC peering to help you to connect multiple VPCs, either
in the same account, or across accounts. For more information, see What is VPC peering? in the
Amazon VPC Peering Guide.

• Shared VPCs — You can use a VPC and VPC subnets across multiple AWS accounts. For more
information, see Working with shared VPCs in the Amazon VPC User Guide.

Best practices for networking services across AWS accounts and VPCs 253

https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html

Amazon Elastic Container Service Developer Guide

AWS services for Amazon ECS networking troubleshooting

The following services and features can help you to gain insights about your network and service
configurations. You can use this information to troubleshoot networking issues and better optimize
your services.

CloudWatch Container Insights

CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs from your
containerized applications and microservices. Metrics include the utilization of resources such as
CPU, memory, disk, and network. They're available in CloudWatch automatic dashboards. For more
information, see Setting up Container Insights on Amazon ECS in the Amazon CloudWatch User
Guide.

AWS X-Ray

AWS X-Ray is a tracing service that you can use to collect information about the network requests
that your application makes. You can use the SDK to instrument your application and capture
timings and response codes of traffic between your services, and between your services and AWS
service endpoints. For more information, see What is AWS X-Ray in the AWS X-Ray Developer Guide.

You can also explore AWS X-Ray graphs of how your services network with each other. Or, use
them to explore aggregate statistics about how each service-to-service link is performing. Last, you
can dive deeper into any specific transaction to see how segments representing network calls are
associated with that particular transaction.

You can use these features to identify if there's a networking bottleneck or if a specific service
within your network isn't performing as expected.

VPC Flow Logs

You can use Amazon VPC flow logs to analyze network performance and debug connectivity issues.
With VPC flow logs enabled, you can capture a log of all the connections in your VPC. These include
connections to networking interfaces that are associated with Elastic Load Balancing, Amazon RDS,
NAT gateways, and other key AWS services that you might be using. For more information, see VPC
Flow Logs in the Amazon VPC User Guide.

Network tuning tips

There are a few settings that you can fine tune in order to improve your networking.

AWS services for networking troubleshooting 254

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/deploy-container-insights-ECS.html
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html

Amazon Elastic Container Service Developer Guide

nofile ulimit

If you expect your application to have high traffic and handle many concurrent connections, you
should take into account the system quota for the number of files allowed. When there are a lot
of network sockets open, each one must be represented by a file descriptor. If your file descriptor
quota is too low, it will limit your network sockets. This results in failed connections or errors. You
can update the container specific quota for the number of files in the Amazon ECS task definition.
If you're running on Amazon EC2 (instead of AWS Fargate), then you might also need to adjust
these quotas on your underlying Amazon EC2 instance.

sysctl net

Another category of tunable setting is the sysctl net settings. You should refer to the specific
settings for your Linux distribution of choice. Many of these settings adjust the size of read and
write buffers. This can help in some situations when running large-scale Amazon EC2 instances that
have a lot of containers on them.

Access Amazon ECS features with account settings

You can go into Amazon ECS account settings to opt in or out of specific features. For each AWS
Region, you can opt in to, or opt out of, each account setting at the account-level or for a specific
user or role.

You might want to opt in or out of specific features if any of the following is relevant to you:

• A user or role can opt in or opt out specific account settings for their individual account.

• A user or role can set the default opt-in or opt-out setting for all users on the account.

• The root user or a user with administrator privileges can opt in to, or opt out of, any specific role
or user on the account. If the account setting for the root user is changed, it sets the default for
all the users and roles that no individual account setting was selected for.

Note

Federated users assume the account setting of the root user and can't have explicit account
settings set for them separately.

Access features with account settings 255

Amazon Elastic Container Service Developer Guide

The following account settings are available. You must separately opt-in and opt-out to each
account setting.

Resource name Learn more

containerInsights Container Insights

serviceLongArnFormat

taskLongArnFormat

containerInstanceLongArnFormat

Amazon Resource Names (ARNs) and IDs

tagResourceAuthorization Tagging authorization

fargateFIPSMode AWS Fargate Federal Information Processing
Standard (FIPS-140) compliance

fargateTaskRetirementWaitPeriod AWS Fargate task retirement wait time

guardDutyActivate Runtime Monitoring (Amazon GuardDuty
integration)

dualStackIPv6 Dual stack IPv6 VPC

awsvpcTrunking Increase Linux container instance network
interfaces

defaultLogDriverMode Default log driver mode

Amazon Resource Names (ARNs) and IDs

When Amazon ECS resources are created, each resource is assigned a unique Amazon Resource
Name (ARN) and resource identifier (ID). If you use a command line tool or the Amazon ECS API to
work with Amazon ECS, resource ARNs or IDs are required for certain commands. For example, if
you use the stop-task AWS CLI command to stop a task, you must specify the task ARN or ID in the
command.

Amazon ECS introduced a new format for Amazon Resource Names (ARNs) and resource IDs for
Amazon ECS services, tasks, and container instances. The opt-in status for each resource type

Amazon Resource Names (ARNs) and IDs 256

https://docs.aws.amazon.com/cli/latest/reference/ecs/stop-task.html

Amazon Elastic Container Service Developer Guide

determines the Amazon Resource Name (ARN) format the resource uses. You must opt in to the
new ARN format to use features such as resource tagging for that resource type.

You can opt in to and opt out of the new Amazon Resource Name (ARN) and resource ID format on
a per-Region basis. Currently, any new account created is opted in by default.

You can opt in or opt out of the new Amazon Resource Name (ARN) and resource ID format at any
time. After you opt in, any new resources that you create use the new format.

Note

A resource ID doesn't change after it's created. Therefore, opting in or out of the new
format doesn't affect your existing resource IDs.

The following sections describe how ARN and resource ID formats are changing. For more
information about the transition to the new formats, see Amazon Elastic Container Service FAQ.

Amazon Resource Name (ARN) format

Some resources have a user-friendly name, such as a service named production. In other cases,
you must specify a resource using the Amazon Resource Name (ARN) format. The new ARN format
for Amazon ECS tasks, services, and container instances includes the cluster name. For information
about opting in to the new ARN format, see Modifying Amazon ECS account settings.

The following table shows both the current format and the new format for each resource type.

Resource type ARN

Container
instance

Current: arn:aws:ecs: region:aws_account_id :container-
instance/ container-instance-id

New: arn:aws:ecs: region:aws_account_id :container-instanc
e/ cluster-name /container-instance-id

Amazon ECS
service

Current: arn:aws:ecs: region:aws_account_id :service/
service-name

New: arn:aws:ecs: region:aws_account_id :service/ cluster-n
ame /service-name

Amazon Resource Names (ARNs) and IDs 257

https://aws.amazon.com/ecs/faqs/

Amazon Elastic Container Service Developer Guide

Resource type ARN

Amazon ECS
task

Current: arn:aws:ecs: region:aws_account_id :task/task-id

New: arn:aws:ecs: region:aws_account_id :task/cluster-n
ame /task-id

Resource ID length

A resource ID takes the form of a unique combination of letters and numbers. New resource ID
formats include shorter IDs for Amazon ECS tasks and container instances. The current resource
ID format is 36 characters long. The new IDs are in a 32-character format that doesn't include any
hyphens. For information about opting in to the new resource ID format, see Modifying Amazon
ECS account settings.

The default is enabled.

Only resources launched after opting in receive the new ARN and resource ID format. All existing
resources aren't affected. For Amazon ECS services and tasks to transition to the new ARN and
resource ID formats, you must recreate the service or task. To transition a container instance to
the new ARN and resource ID format, the container instance must be drained and a new container
instance must be launched and registered to the cluster.

Note

Tasks launched by an Amazon ECS service can only receive the new ARN and resource ID
format if the service was created on or after November 16, 2018, and the user who created
the service has opted in to the new format for tasks.

ARN and resource ID format timeline

The timeline for the opt-in and opt-out periods for the new Amazon Resource Name (ARN) and
resource ID format for Amazon ECS resources ended on April 1, 2021. By default, all accounts are
opted in to the new format. All new resources created receive the new format, and you can no
longer opt out.

ARN and resource ID format timeline 258

Amazon Elastic Container Service Developer Guide

Container Insights

On December 2, 2024, AWS released Container Insights with enhanced observability for Amazon
ECS. This version supports enhanced observability for Amazon ECS clusters using the Amazon EC2
and Fargate launch types. After you configure Container Insights with enhanced observability on
Amazon ECS, Container Insights auto-collects detailed infrastructure telemetry from cluster level
down to the container level in your environment and displays your data in dashboards that show
you a variety of metrics and dimensions. You can then use these out-of-the-box dashboards on the
Container Insights console to better understand your container health and performance, and to
mitigate issues faster by identifying anomalies.

We recommend that you use Container Insights with enhanced observability instead of Container
Insights because it provides detailed visibility in your container environment, reducing the mean
time to resolution. For more information, see Amazon ECS Container Insights with enhanced
observability metrics in the Amazon CloudWatch User Guide.

The default for the containerInsights account setting is disabled.

Container Insights with enhanced observability

Use the following command to turn on Container Insights with enhanced observability.

Set the containerInsights account setting to enhanced.

aws ecs put-account-setting --name containerInsights --value enhanced

Example output

{
 "setting": {
 "name": "containerInsights",
 "value": "enhanced",
 "principalArn": "arn:aws:iam::123456789012:johndoe",
 "type": user
 }
}

After you set this account setting, all new clusters automatically use Container Insights with
enhanced observability. Use the update-cluster-settings command to add Container Insights

Container Insights 259

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-enhanced-observability-metrics-ECS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-enhanced-observability-metrics-ECS.html

Amazon Elastic Container Service Developer Guide

with enhanced observability to an existing cluster, or to upgrade a cluster from Container Insights
to Container Insights with enhanced observability.

aws ecs update-cluster-settings --cluster cluster-name --settings
 name=containerInsights,value=enhanced

You can also use the console to configure Container Insights with enhanced observability. For more
information, see Modifying Amazon ECS account settings.

Container Insights

When you set the containerInsights account setting to enabled, all new clusters have
Container Insights enabled by default. You can modify existing clusters by using update-
cluster-settings.

To use Container Insights, set the containerInsights account setting to enabled. Use the
following command to turn on Container Insights.

aws ecs put-account-setting --name containerInsights --value enabled

Example output

{
 "setting": {
 "name": "containerInsights",
 "value": "enabled",
 "principalArn": "arn:aws:iam::123456789012:johndoe",
 "type": user
 }
}

When you set the containerInsights account setting to enabled, all new clusters have
Container Insights enabled by default. Use the update-cluster-settings command to add
Container Insights to an existing cluster.

aws ecs update-cluster-settings --cluster cluster-name --settings
 name=containerInsights,value=enabled

You can also use the console to configure Container Insights. For more inforation, see Modifying
Amazon ECS account settings.

Container Insights 260

Amazon Elastic Container Service Developer Guide

AWS Fargate Federal Information Processing Standard (FIPS-140)
compliance

Fargate supports the Federal Information Processing Standard (FIPS-140) which specifies the
security requirements for cryptographic modules that protect sensitive information. It is the
current United States and Canadian government standard, and is applicable to systems that are
required to be compliant with Federal Information Security Management Act (FISMA) or Federal
Risk and Authorization Management Program (FedRAMP).

The resource name is fargateFIPSMode.

The default is disabled.

You must turn on Federal Information Processing Standard (FIPS-140) compliance on Fargate. For
more information, see the section called “AWS Fargate FIPS-140 compliance”.

Important

The fargateFIPSMode account setting can only be changed using either the Amazon ECS
API or the AWS CLI. For more information, see Modifying Amazon ECS account settings.

Run put-account-setting-default with the fargateFIPSMode option set to enabled. For
more information, see, put-account-setting-default in the Amazon Elastic Container Service API
Reference.

• You can use the following command to turn on FIPS-140 compliance.

aws ecs put-account-setting-default --name fargateFIPSMode --value enabled

Example output

{
 "setting": {
 "name": "fargateFIPSMode",
 "value": "enabled",
 "principalArn": "arn:aws:iam::123456789012:root",
 "type": user
 }

AWS Fargate Federal Information Processing Standard (FIPS-140) compliance 261

https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting-default.html

Amazon Elastic Container Service Developer Guide

}

You can run list-account-settings to view the current FIPS-140 compliance status. Use the
effective-settings option to view the account level settings.

aws ecs list-account-settings --effective-settings

Tagging authorization

Amazon ECS is introducing tagging authorization for resource creation. Users must have tagging
permissions for actions that create the resource, such as ecsCreateCluster. When you create a
resource and specify tags for that resource, AWS performs additional authorization to verify that
there are permissions to create tags. Therefore, you must grant explicit permissions to use the
ecs:TagResource action. For more information, see the section called “Tag resources during
creation”.

In order to opt in to tagging authorization, run put-account-setting-default with the
tagResourceAuthorization option set to enable. For more information, see, put-account-
setting-default in the Amazon Elastic Container Service API Reference. You can run list-account-
settings to view the current tagging authorization status.

• You can use the following command to enable tagging authorization.

aws ecs put-account-setting-default --name tagResourceAuthorization --value on --
region region

Example output

{
 "setting": {
 "name": "tagResourceAuthorization",
 "value": "on",
 "principalArn": "arn:aws:iam::123456789012:root",
 "type": user
 }
}

Tagging authorization 262

https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting-default.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting-default.html

Amazon Elastic Container Service Developer Guide

After you enable tagging authorization, you must configure the appropriate permissions to allow
users to tag resources on creation. For more information, see the section called “Tag resources
during creation”.

You can run list-account-settings to view the current tagging authorization status. Use the
effective-settings option to view the account level settings.

aws ecs list-account-settings --effective-settings

Tagging authorization timeline

You can confirm whether tagging authorization is active by running list-account-settings
to view the tagResourceAuthorization value. When the value is on, it means that the tagging
authorization is in use. For more information, see, list-account-settings in the Amazon Elastic
Container Service API Reference.

The following are the important dates related to tagging authorization.

• April 18, 2023 – Tagging authorization is introduced. All new and existing accounts must opt in
to use the feature. You can opt in to start using tagging authorization. By opting in, you must
grant the appropriate permissions.

• February 9, 2024 - March 6, 2024 – All new accounts and non-impacted existing
accounts have tagging authorization on by default. You can enable or disable the
tagResourceAuthorization account setting to verify your IAM policy.

AWS has notified impacted accounts.

To disable the feature, run put-account-setting-default with the
tagResourceAuthorization option set to off.

• March 7, 2024 – If you have enabled tagging authorization, you can no longer disable the
account setting.

We recommend that you complete your IAM policy testing before this date.

• March 29, 2024 – All accounts use tagging authorization. The account-level setting will no longer
be available in the Amazon ECS console or AWS CLI.

Tagging authorization timeline 263

https://docs.aws.amazon.com/cli/latest/reference/ecs/list-account-settings.html

Amazon Elastic Container Service Developer Guide

AWS Fargate task retirement wait time

AWS sends out notifications when you have Fargate tasks running on a platform version revision
marked for retirement. For more information, see Task retirement and maintenance for AWS
Fargate on Amazon ECS .

AWS is responsible for patching and maintaining the underlying infrastructure for AWS Fargate.
When AWS determines that a security or infrastructure update is needed for an Amazon ECS task
hosted on Fargate, the tasks need to be stopped and new tasks launched to replace them. You can
configure the wait period before tasks are retired for patching. You have the option to retire the
task immediately, to wait 7 calendar days, or to wait 14 calendar days.

This setting is at the account-level.

You can configure the time that Fargate starts the task retirement. For workloads that require
immediate application of the updates, choose the immediate setting (0). When you need more
control, for example, when a task can only be stopped during a certain window, configure the 7 day
(7), or 14 day (14) option.

We recommend that you choose a shorter waiting period in order to pick up newer platform
versions revisions sooner.

Configure the wait period by running put-account-setting-default or
put-account-setting as the root user or an administrative user. Use the
fargateTaskRetirementWaitPeriod option for the name and the value option set to one of
the following values:

• 0 - AWS sends the notification, and immediately starts to retire the affected tasks.

• 7 - AWS sends the notification, and waits 7 calendar days before starting to retire the affected
tasks.

• 14 - AWS sends the notification, and waits 14 calendar days before starting to retire the affected
tasks.

The default is 7 days.

For more information, see, put-account-setting-default and put-account-setting in the Amazon
Elastic Container Service API Reference.

You can run the following command to set the wait period to 14 days.

AWS Fargate task retirement wait time 264

https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting-default.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting.html

Amazon Elastic Container Service Developer Guide

aws ecs put-account-setting-default --name fargateTaskRetirementWaitPeriod --value 14

Example output

{
 "setting": {
 "name": "fargateTaskRetirementWaitPeriod",
 "value": "14",
 "principalArn": "arn:aws:iam::123456789012:root",
 "type: user"
 }
}

You can run list-account-settings to view the current Fargate task retirement wait time. Use
the effective-settings option.

aws ecs list-account-settings --effective-settings

Increase Linux container instance network interfaces

Each Amazon ECS task that uses the awsvpc network mode receives its own elastic network
interface (ENI), which is attached to the container instance that hosts it. There is a default limit
to the number of network interfaces that can be attached to an Amazon EC2 instance, and the
primary network interface counts as one. For example, by default a c5.large instance may have
up to three ENIs attached to it. The primary network interface for the instance counts as one,
so you can attach an additional two ENIs to the instance. Because each task using the awsvpc
network mode requires an ENI, you can typically only run two such tasks on this instance type.

Amazon ECS supports launching container instances with increased ENI density using supported
Amazon EC2 instance types. When you use these instance types and turn on the awsvpcTrunking
account setting, additional ENIs are available on newly launched container instances. This
configuration allows you to place more tasks on each container instance.

For example, a c5.large instance with awsvpcTrunking has an increased ENI limit of twelve.
The container instance will have the primary network interface and Amazon ECS creates and
attaches a "trunk" network interface to the container instance. So this configuration allows you to
launch ten tasks on the container instance instead of the current two tasks.

Increase Linux container instance network interfaces 265

Amazon Elastic Container Service Developer Guide

Runtime Monitoring (Amazon GuardDuty integration)

Runtime Monitoring is an intelligent threat detection service that protects workloads running on
Fargate and EC2 container instances by continuously monitoring AWS log and networking activity
to identify malicious or unauthorized behavior.

The guardDutyActivate parameter is read-only in Amazon ECS and indicates whether Runtime
Monitoring is turned on or off by your security administrator in your Amazon ECS account.
GuardDuty controls this account setting on your behalf. For more information, see Protecting
Amazon ECS workloads with Runtime Monitoring.

You can run list-account-settings to view the current GuardDuty integration setting.

aws ecs list-account-settings

Example output

{
 "setting": {
 "name": "guardDutyActivate",
 "value": "on",
 "principalArn": "arn:aws:iam::123456789012:doej",
 "type": aws-managed"
 }
}

Dual stack IPv6 VPC

Amazon ECS supports providing tasks with an IPv6 address in addition to the primary private IPv4
address.

For tasks to receive an IPv6 address, the task must use the awsvpc network mode, must be
launched in a VPC configured for dual-stack mode, and the dualStackIPv6 account setting must
be enabled. For more information about other requirements, see Using a VPC in dual-stack mode
for the EC2 launch type and Using a VPC in dual-stack mode for the Fargate launch type.

Important

The dualStackIPv6 account setting can only be changed using either the Amazon ECS
API or the AWS CLI. For more information, see Modifying Amazon ECS account settings.

Runtime Monitoring (Amazon GuardDuty integration) 266

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-guard-duty-integration.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-guard-duty-integration.html

Amazon Elastic Container Service Developer Guide

If you had a running task using the awsvpc network mode in an IPv6 enabled subnet between the
dates of October 1, 2020 and November 2, 2020, the default dualStackIPv6 account setting
in the Region that the task was running in is disabled. If that condition isn't met, the default
dualStackIPv6 setting in the Region is enabled.

The default is disabled.

Default log driver mode

Amazon ECS supports setting a default delivery mode of log messages from a container to the
chosen log driver. The delivery mode affects application stability when the flow of logs from the
container to the log driver is interrupted.

The defaultLogDriverMode setting supports two values: blocking and non-blocking.
For more information about these delivery modes, see LogConfiguration in the Amazon Elastic
Container Service API Reference.

If you don't specify a delivery mode in your container definition's logConfiguration, the mode
you specify using this account setting will be used as the default.

The default delivery mode is non-blocking.

Note

On June 25, 2025, Amazon ECS changed the default log driver mode from blocking to
non-blocking to prioritize task availability over logging. To continue using the blocking
mode after this change, do one of the following:

• Set the mode option in your container definition's logConfiguration as blocking.

• Set the defaultLogDriverMode account setting to blocking.

To set a default log driver mode to blocking, you can run the following command.

aws ecs put-account-setting-default --name defaultLogDriverMode --value "blocking"

Viewing Amazon ECS account settings using the console

View your account settings in the console to see which features you have access to.

Default log driver mode 267

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LogConfiguration.html

Amazon Elastic Container Service Developer Guide

Important

The dualStackIPv6, fargateFIPSMode and the
fargateTaskRetirementWaitPeriod account settings can only be viewed or changed
using the AWS CLI.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation bar at the top, select the Region for which to view your account settings.

3. In the navigation page, choose Account Settings.

Modifying Amazon ECS account settings

Modify your account settings to access Amazon ECS features.

The guardDutyActivate parameter is read-only in Amazon ECS and indicates whether Runtime
Monitoring is turned on or off by your security administrator in your Amazon ECS account.
GuardDuty controls this account setting on your behalf. For more information, see Protecting
Amazon ECS workloads with Runtime Monitoring.

Important

The dualStackIPv6, fargateFIPSMode and the
fargateTaskRetirementWaitPeriod account settings can only be viewed or changed
using the AWS CLI.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation bar at the top, select the Region for which to view your account settings.

3. In the navigation page, choose Account Settings.

4. Choose Update.

5. (Optional) To increase or decrease the number of tasks that you can run in the awsvpc network
mode for each EC2 instance, under AWSVPC Trunking, select AWSVPC Trunking.

6. (Optional) To use, or stop using CloudWatch Container Insights by default for clusters, under
CloudWatch Container Insights observability, choose one of the following options:

Modifying account settings 268

https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-guard-duty-integration.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-guard-duty-integration.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

• To use Container Insights with enhanced observability, choose Container Insights with
enhanced observability.

• To use Container Insights, choose Container Insights.

• To stop using Container Insights, choose Turned off.

7. (Optional) To enable or disable tagging authorization, under Resource Tagging Authorization,
select or clear Resource Tagging Authorization.

8. (Optional) To configure a default log driver mode for when a log delivery mode isn't defined
in a container's logConfiguration, under Default log driver mode, choose one of the
following options:

• To set the default log driver mode as blocking, choose Blocking.

• To set the default log driver mode as non-blocking, choose Non-blocking.

9. Choose Save changes.

10. On the confirmation screen, choose Confirm to save the selection.

Next steps

If you turned on Container Insights with enhanced observability or Container Insights, you can
optionally update your existing clusters to use the feature. For more information, see Updating an
Amazon ECS cluster.

Reverting to the default Amazon ECS account settings

You can use the AWS Management Console to revert your Amazon ECS account settings to the
default.

The Revert to account default option is only available when your account settings are no longer
the default settings.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation bar at the top, select the Region for which to view your account settings.

3. In the navigation page, choose Account Settings.

4. Choose Update.

5. Choose Revert to account default.

6. On the confirmation screen, choose Confirm to save the selection.

Reverting to the default account settings 269

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Managing Amazon ECS account settings using the AWS CLI

You can manage your account settings using the Amazon ECS API, AWS CLI or SDKs. The
dualStackIPv6, fargateFIPSMode and the fargateTaskRetirementWaitPeriod account
settings can only be viewed or changed using those tools.

Note

You can use dual-stack service endpoints to interact with Amazon ECS from the AWS CLI,
SDKs, and the Amazon ECS API over both IPv4 and IPv6. For more information, see Using
Amazon ECS dual-stack endpoints.

For information about the available API actions for task definitions see Account setting actions in
the Amazon Elastic Container Service API Reference.

Use one of the following commands to modify the default account setting for all users or roles
on your account. These changes apply to the entire AWS account unless a user or role explicitly
overrides these settings for themselves.

• put-account-setting-default (AWS CLI)

aws ecs put-account-setting-default --name serviceLongArnFormat --value enabled --
region us-east-2

You can also use this command to modify other account settings. To do this, replace the name
parameter with the corresponding account setting.

• Write-ECSAccountSetting (AWS Tools for Windows PowerShell)

Write-ECSAccountSettingDefault -Name serviceLongArnFormat -Value enabled -Region us-
east-1 -Force

To modify the account settings for your user account (AWS CLI)

Use one of the following commands to modify the account settings for your user. If you’re using
these commands as the root user, changes apply to the entire AWS account unless a; user or role
explicitly overrides these settings for themselves.

Managing account settings using the AWS CLI 270

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/OperationList-query-account.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting-default.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Write-ECSAccountSetting.html

Amazon Elastic Container Service Developer Guide

• put-account-setting (AWS CLI)

aws ecs put-account-setting --name serviceLongArnFormat --value enabled --region us-
east-1

You can also use this command to modify other account settings. To do this, replace the name
parameter with the corresponding account setting.

• Write-ECSAccountSetting (AWS Tools for Windows PowerShell)

Write-ECSAccountSetting -Name serviceLongArnFormat -Value enabled -Force

To modify the account settings for a specific user or role (AWS CLI)

Use one of the following commands and specify the ARN of a user, role, or root user in the request
to modify the account settings for a specific user or role.

• put-account-setting (AWS CLI)

aws ecs put-account-setting --name serviceLongArnFormat --value enabled --principal-
arn arn:aws:iam::aws_account_id:user/principalName --region us-east-1

You can also use this command to modify other account settings. To do this, replace the name
parameter with the corresponding account setting.

• Write-ECSAccountSetting (AWS Tools for Windows PowerShell)

Write-ECSAccountSetting -Name serviceLongArnFormat -Value enabled -PrincipalArn
 arn:aws:iam::aws_account_id:user/principalName -Region us-east-1 -Force

IAM roles for Amazon ECS

An IAM role is an IAM identity that you can create in your account that has specific permissions. In
Amazon ECS, you can create roles to grant permissions to Amazon ECS resource such as containers
or services.

The roles Amazon ECS requires depend on the task definition launch type and the features that you
use. Use the following table to determine which IAM roles you need for Amazon ECS.

IAM roles for Amazon ECS 271

https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Write-ECSAccountSetting.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Write-ECSAccountSetting.html

Amazon Elastic Container Service Developer Guide

Role Definition When required More information

Task execution role This role allows
Amazon ECS to use
other AWS services
on your behalf.

Your task is hosted
on AWS Fargate or
on external instances
 and:

• pulls a container
image from an
Amazon ECR
private repository.

• pulls a container
image from an
Amazon ECR
private repositor
y in a different
account from the
account that runs
the task.

• sends container
logs to CloudWatc
h Logs using the
awslogs log
driver.

Your task is hosted on
either AWS Fargate
or Amazon EC2
instances and:

• uses private
registry authentic
ation.

• uses Runtime
Monitoring.

Amazon ECS task
execution IAM role

IAM roles for Amazon ECS 272

Amazon Elastic Container Service Developer Guide

Role Definition When required More information

• the task definition
references sensitive
data using Secrets
Manager secrets
or AWS Systems
Manager Parameter
Store parameters.

Task role This role allows your
application code (on
the container) to use
other AWS services.

Your application
accesses other AWS
services, such as
Amazon S3.

Amazon ECS task IAM
role

Container instance
role

This role allows your
EC2 instances or
external instances
to register with the
cluster.

Your task is hosted
on Amazon EC2
instances or an
external instance.

Amazon ECS
container instance
IAM role

Amazon ECS
Anywhere role

This role allows your
external instances to
access AWS APIs.

Your task is hosted on
external instances.

Amazon ECS
Anywhere IAM role

Amazon ECS
CodeDeploy role

This role allows
CodeDeploy to make
updates to your
services.

You use the
CodeDeploy blue/
green deploymen
t type to deploy
services.

Amazon ECS
CodeDeploy IAM Role

Amazon ECS
EventBridge role

This role allows
EventBridge to make
updates to your
services.

You use the EventBrid
ge rules and targets
to schedule your
tasks.

Amazon ECS
EventBridge IAM Role

IAM roles for Amazon ECS 273

Amazon Elastic Container Service Developer Guide

Role Definition When required More information

Amazon ECS infrastru
cture role

This role allows
Amazon ECS to
manage infrastru
cture resources in
your clusters.

• You want to
attach Amazon
EBS volumes to
your Fargate or
EC2 launch type
Amazon ECS tasks.
The infrastru
cture role allows
Amazon ECS to
manage Amazon
EBS volumes for
your tasks.

• You want to use
Transport Layer
Security (TLS) to
encrypt traffic
between your
Amazon ECS
Service Connect
services.

• You want to create
VPC Lattice target
groups.

Amazon ECS infrastru
cture IAM role

IAM roles for Amazon ECS 274

Amazon Elastic Container Service Developer Guide

Amazon ECS task definitions

A task definition is a blueprint for your application. It is a text file in JSON format that describes the
parameters and one or more containers that form your application.

The following are some of the parameters that you can specify in a task definition:

• The launch type to use, which determines the infrastructure that your tasks are hosted on

• The Docker image to use with each container in your task

• How much CPU and memory to use with each task or each container within a task

• The memory and CPU requirements

• The operating system of the container that the task runs on

• The Docker networking mode to use for the containers in your task

• The logging configuration to use for your tasks

• Whether the task continues to run if the container finishes or fails

• The command that the container runs when it's started

• Any data volumes that are used with the containers in the task

• The IAM role that your tasks use

For a complete list of task definition parameters, see Amazon ECS task definition parameters for
the Fargate launch type.

After you create a task definition, you can run the task definition as a task or a service.

• A task is the instantiation of a task definition within a cluster. After you create a task definition
for your application within Amazon ECS, you can specify the number of tasks to run on your
cluster.

• An Amazon ECS service runs and maintains your desired number of tasks simultaneously in an
Amazon ECS cluster. How it works is that, if any of your tasks fail or stop for any reason, the
Amazon ECS service scheduler launches another instance based on your task definition. It does
this to replace it and thereby maintain your desired number of tasks in the service.

Topics

• Amazon ECS task definition states

275

Amazon Elastic Container Service Developer Guide

• Architect your application for Amazon ECS

• Creating an Amazon ECS task definition using the console

• Updating an Amazon ECS task definition using the console

• Deregistering an Amazon ECS task definition revision using the console

• Deleting an Amazon ECS task definition revision using the console

• Amazon ECS task definition use cases

• Amazon ECS task definition parameters for the Fargate launch type

• Amazon ECS task definition parameters for the EC2 launch type

• Amazon ECS task definition template

• Example Amazon ECS task definitions

Amazon ECS task definition states

A task definition changes states when you create, deregister, or delete it. You can view the task
definition state in the console, or by using DescribeTaskDefinition.

The following are the possible states for a task definition:

ACTIVE

A task definition is ACTIVE after it is registered with Amazon ECS. You can use task definitions
in the ACTIVE state to run tasks, or create services.

INACTIVE

A task definition transitions from the ACTIVE state to the INACTIVE state when you
deregister a task definition. You can retrieve an INACTIVE task definition by calling
DescribeTaskDefinition. You cannot run new tasks or create new services with a task
definition in the INACTIVE state. There is no impact on existing services or tasks.

DELETE_IN_PROGRESS

A task definition transitions from the INACTIVE state to the DELETE_IN_PROGRESS
state after you submitted the task definition for deletion. After the task definition is in the
DELETE_IN_PROGRESS state, Amazon ECS periodically verifies that the target task definition
is not being referenced by any active tasks or deployments, and then deletes the task definition
permanently. You cannot run new tasks or create new services with a task definition in the

Task definition states 276

Amazon Elastic Container Service Developer Guide

DELETE_IN_PROGRESS state. A task definition can be submitted for deletion at any moment
without impacting existing tasks and services.

Task definitions that are in the DELETE_IN_PROGRESS state can be viewed in the console and
you can retrieve the task definition by calling DescribeTaskDefinition.

When you delete all INACTIVE task definition revisions, the task definition name is not
displayed in the console and not returned in the API. If a task definition revision is in the
DELETE_IN_PROGRESS state, the task definition name is displayed in the console and returned
in the API. The task definition name is retained by Amazon ECS and the revision is incremented
the next time you create a task definition with that name.

If you use AWS Config to manage your task definitions, AWS Config charges you for all task
definition registrations. You are only charged for deregistering the latest ACTIVE task definition.
There is no charge for deleting a task definition. For more information about pricing, see AWS
Config Pricing.

Amazon ECS resources that can block a deletion

A task definition deletion request will not complete when there are any Amazon ECS resources that
depend on the task definition revision. The following resources might prevent a task definition
from being deleted:

• Amazon ECS standalone tasks - The task definition is required in order for the task to remain
healthy.

• Amazon ECS service tasks - The task definition is required in order for the task to remain healthy.

• Amazon ECS service deployments and task sets - The task definition is required when a scaling
event is initiated for an Amazon ECS deployment or task set.

If your task definition remains in the DELETE_IN_PROGRESS state, you can use the console, or the
AWS CLI to identify, and then stop the resources which block the task definition deletion.

Task definition deletion after the blocked resource is removed

The following rules apply after you remove the resources that block the task definition deletion:

• Amazon ECS tasks - The task definition deletion can take up to 1 hour to complete after the task
is stopped.

Amazon ECS resources that can block a deletion 277

https://aws.amazon.com/config/pricing/
https://aws.amazon.com/config/pricing/

Amazon Elastic Container Service Developer Guide

• Amazon ECS service deployments and task sets - The task definition deletion can take up to 24
hours to complete after the deployment or task set is deleted.

Architect your application for Amazon ECS

You architect your application by creating a task definition for your application. The task definition
contains the parameters that define information about the application, including:

• The launch type to use, which determines the infrastructure that your tasks are hosted on.

When you use the EC2 launch type, you also choose the instance type. For some instance types,
such as GPU, you need to set additional parameters. For more information, see Amazon ECS task
definition use cases.

• The container image, which holds your application code and all the dependencies that your
application code requires to run.

• The networking mode to use for the containers in your task

The networking mode determines how your task communicates over the network.

For tasks that run on EC2 instance, there are multiple options, but we recommend that you use
the awsvpc network mode. The awsvpc network mode simplifies container networking, because
you have more control over how your applications communicate with each other and other
services within your VPCs.

For tasks that run on Fargate, you can only use the awsvpc network mode.

• The logging configuration to use for your tasks.

• Any data volumes that are used with the containers in the task.

For a complete list of task definition parameters, see Amazon ECS task definition parameters for
the Fargate launch type.

Use the following guidelines when you create your task definitions:

• Use each task definition family for only one business purpose.

If you group multiple types of application container together in the same task definition, you
can’t independently scale those containers. For example, it's unlikely that both a website and an
API require scaling out at the same rate. As traffic increases, there will be a different number of

Architect your application 278

Amazon Elastic Container Service Developer Guide

web containers required than API containers. If these two containers are being deployed in the
same task definition, every task runs the same number of web containers and API containers.

• Match each application version with a task definition revision within a task definition family.

Within a task definition family, consider each task definition revision as a point in time snapshot
of the settings for a particular container image. This is similar to how the container is a snapshot
of all the things that are needed to run a particular version of your application code.

Make sure that there's a one-to-one mapping between a version of application code, a container
image tag, and a task definition revision. A typical release process involves a git commit that gets
turned into a container image that's tagged with the git commit SHA. Then, that container image
tag gets its own Amazon ECS task definition revision. Last, the Amazon ECS service is updated to
tell it to deploy the new task definition revision.

• Use different IAM roles for each task definition family.

Define each task definition with its own IAM role. This recommendation should be done in
tandem with our recommendation for providing each business component its own task definition
family. By implementing both of these best practices, you can limit how much access each service
has to resources in your AWS account. For example, you can give your authentication service
access to connect to your passwords database. At the same time, you can also ensure that only
your order service has access to the credit card payment information.

Best practices for Amazon ECS container images

A container image is a set of instructions on how to build the container. A container image
holds your application code and all the dependencies that your application code requires to run.
Application dependencies include the source code packages that your application code relies on,
a language runtime for interpreted languages, and binary packages that your dynamically linked
code relies on.

Use the following guidelines when you design and build your container images:

• Make your container images complete by storing all application dependencies as static files
inside the container image.

If you change something in the container image, build a new container image with the changes.

• Run a single application process within a container.

Best practices for container images 279

Amazon Elastic Container Service Developer Guide

The container lifetime is as long as the application process runs. Amazon ECS replaces crashed
processes and determines where to launch the replacement process. A complete image makes
the overall deployment more resilient.

• Make your application handle SIGTERM.

When Amazon ECS stops a task, it first sends a SIGTERM signal to the task to notify the
application that it needs to finish and shut down. Amazon ECS then sends a SIGKILL message.
When applications ignore the SIGTERM, the Amazon ECS service must wait to send the SIGKILL
signal to terminate the process.

You need to identify how long it takes your application to complete its work, and ensure that
your applications handles the SIGTERM signal. The application's signal handling needs to
stop the application from taking new work and complete the work that is in-progress, or save
unfinished work to storage outside of the task when the work takes too long to complete.

• Configure containerized applications to write logs to stdout and stderr.

Decoupling log handling from your application code gives you flexibility to adjust log handling
at the infrastructure level. One example of this is to change your logging system. Instead of
modifying your services, and building and deploying a new container image, you can adjust the
settings.

• Use tags to version your container images.

Container images are stored in a container registry. Each image in a registry is identified by
a tag. There's a tag called latest. This tag functions as a pointer to the latest version of the
application container image, similar to the HEAD in a git repository. We recommend that you use
the latest tag only for testing purposes. As a best practice, tag container images with a unique
tag for each build. We recommend that you tag your images using the git SHA for the git commit
that was used to build the image.

You don’t need to build a container image for every commit. However, we recommend that you
build a new container image each time you release a particular code commit to the production
environment. We also recommend that you tag the image with a tag that corresponds to the git
commit of the code that's inside the image. If you tagged the image with the git commit, you can
more quickly find which version of the code the image is running.

We also recommend that you turn on immutable image tags in Amazon Elastic Container
Registry. With this setting, you can't change the container image that a tag points at. Instead

Best practices for container images 280

Amazon Elastic Container Service Developer Guide

Amazon ECR enforces that a new image must be uploaded to a new tag. For more information,
see Image tag mutability in the Amazon ECR User Guide.

When you architect your application to run on AWS Fargate, you must decide between deploying
multiple containers into the same task definition and deploying containers separately in multiple
task definitions. If the following conditions are required, we recommend deploying multiple
containers into the same task definition:

• Your containers share a common lifecycle (that is, they're launched and terminated together).

• Your containers must run on the same underlying host (that is, one container references the
other on a localhost port).

• Your containers share resources.

• Your containers share data volumes.

If these conditions aren't required, we recommend deploying containers separately in multiple task
definitions. This allows you to scale, provision, and deprovision the containers separately.

Best practices for Amazon ECS task sizes

Your container and task sizes are both essential for scaling and capacity planning. In Amazon ECS,
CPU and memory are two resource metrics used for capacity. CPU is measured in units of 1/1024
of a full vCPU (where 1024 units is equal to 1 whole vCPU). Memory is measured in megabytes. In
your task definition, you can configure resource reservations and limits.

When you configure a reservation, you're setting the minimum amount of resources that a task
requires. Your task receives at least the amount of resources requested. Your application might be
able to use more CPU or memory than the reservation that you declare. However, this is subject to
any limits that you also declared. Using more than the reservation amount is known as bursting.
In Amazon ECS, reservations are guaranteed. For example, if you use Amazon EC2 instances to
provide capacity, Amazon ECS doesn't place a task on an instance where the reservation can't be
fulfilled.

A limit is the maximum amount of CPU units or memory that your container or task can use.
Any attempt to use more CPU more than this limit results in throttling. Any attempt to use more
memory results in your container being stopped.

Choosing these values can be challenging. This is because the values that are the most well suited
for your application greatly depend on the resource requirements of your application. Load testing

Best practices for task sizes 281

https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-tag-mutability.html

Amazon Elastic Container Service Developer Guide

your application is the key to successful resource requirement planning and better understanding
your application's requirements.

Stateless applications

For stateless applications that scale horizontally, such as an application behind a load balancer,
we recommend that you first determine the amount of memory that your application consumes
when it serves requests. To do this, you can use traditional tools such as ps or top, or monitoring
solutions such as CloudWatch Container Insights.

When determining a CPU reservation, consider how you want to scale your application to meet
your business requirements. You can use smaller CPU reservations, such as 256 CPU units (or 1/4
vCPU), to scale out in a fine-grained way that minimizes cost. But, they might not scale fast enough
to meet significant spikes in demand. You can use larger CPU reservations to scale in and out more
quickly and therefore match demand spikes more quickly. However, larger CPU reservations are
more costly.

Other applications

For applications that don't scale horizontally, such as singleton workers or database servers,
available capacity and cost represent your most important considerations. You should choose the
amount of memory and CPU based on what load testing indicates you need to serve traffic to meet
your service-level objective. Amazon ECS ensures that the application is placed on a host that has
adequate capacity.

Amazon ECS task networking options for the EC2 launch type

The networking behavior of Amazon ECS tasks that are hosted on Amazon EC2 instances is
dependent on the network mode that's defined in the task definition. We recommend that you use
the awsvpc network mode unless you have a specific need to use a different network mode.

The following are the available network modes.

Network
mode

Linux
containers
on EC2

Windows
containers
on EC2

Description

awsvpc Yes Yes The task is allocated its own elastic network
interface (ENI) and a primary private IPv4

Task networking for the EC2 launch type 282

Amazon Elastic Container Service Developer Guide

Network
mode

Linux
containers
on EC2

Windows
containers
on EC2

Description

address. This gives the task the same
networking properties as Amazon EC2
instances.

bridge Yes No The task uses Docker's built-in virtual network
on Linux, which runs inside each Amazon
EC2 instance that hosts the task. The built-
in virtual network on Linux uses the bridge
Docker network driver. This is the default
network mode on Linux if a network mode
isn't specified in the task definition.

host Yes No The task uses the host's network which
bypasses Docker's built-in virtual network by
mapping container ports directly to the ENI of
the Amazon EC2 instance that hosts the task.
Dynamic port mappings can’t be used in this
network mode. A container in a task definitio
n that uses this mode must specify a specific
hostPort number. A port number on a host
can’t be used by multiple tasks. As a result,
you can’t run multiple tasks of the same task
definition on a single Amazon EC2 instance.

none Yes No The task has no external network connectivity.

default No Yes The task uses Docker's built-in virtual network
on Windows, which runs inside each Amazon
EC2 instance that hosts the task. The built-
in virtual network on Windows uses the nat
Docker network driver. This is the default
network mode on Windows if a network
mode isn't specified in the task definition.

Task networking for the EC2 launch type 283

Amazon Elastic Container Service Developer Guide

For more information about Docker networking on Linux, see Networking overview in the Docker
Documentation.

For more information about Docker networking on Windows, see Windows container networking in
the Microsoft Containers on Windows Documentation.

Allocate a network interface for an Amazon ECS task

The task networking features that are provided by the awsvpc network mode give Amazon ECS
tasks the same networking properties as Amazon EC2 instances. Using the awsvpc network
mode simplifies container networking, because you have more control over how your applications
communicate with each other and other services within your VPCs. The awsvpc network mode also
provides greater security for your containers by allowing you to use security groups and network
monitoring tools at a more granular level within your tasks. You can also use other Amazon EC2
networking features such as VPC Flow Logs to monitor traffic to and from your tasks. Additionally,
containers that belong to the same task can communicate over the localhost interface.

The task elastic network interface (ENI) is a fully managed feature of Amazon ECS. Amazon
ECS creates the ENI and attaches it to the host Amazon EC2 instance with the specified security
group. The task sends and receives network traffic over the ENI in the same way that Amazon EC2
instances do with their primary network interfaces. Each task ENI is assigned a private IPv4 address
by default. If your VPC is enabled for dual-stack mode and you use a subnet with an IPv6 CIDR
block, the task ENI will also receive an IPv6 address. Each task can only have one ENI.

These ENIs are visible in the Amazon EC2 console for your account. Your account can't detach or
modify the ENIs. This is to prevent accidental deletion of an ENI that is associated with a running
task. You can view the ENI attachment information for tasks in the Amazon ECS console or with the
DescribeTasks API operation. When the task stops or if the service is scaled down, the task ENI is
detached and deleted.

When you need increased ENI density, use the awsvpcTrunking account setting. Amazon ECS
also creates and attaches a "trunk" network interface for your container instance. The trunk
network is fully managed by Amazon ECS. The trunk ENI is deleted when you either terminate or
deregister your container instance from the Amazon ECS cluster. For more information about the
awsvpcTrunking account setting, see Prerequisites.

You specify awsvpc in the networkMode parameter of the task definition. For more information,
see Network mode.

Task networking for the EC2 launch type 284

https://docs.docker.com/engine/network/
https://learn.microsoft.com/en-us/virtualization/windowscontainers/container-networking/architecture
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeTasks.html

Amazon Elastic Container Service Developer Guide

Then, when you run a task or create a service, use the networkConfiguration parameter that
includes one or more subnets to place your tasks in and one or more security groups to attach
to an ENI. For more information, see Network configuration. The tasks are placed on compatible
Amazon EC2 instances in the same Availability Zones as those subnets, and the specified security
groups are associated with the ENI that's provisioned for the task.

Linux considerations

Consider the following when using the Linux operating system.

• If you use a p5.48xlarge instance in awsvpc mode, you can't run more than 1 task on the
instance.

• Tasks and services that use the awsvpc network mode require the Amazon ECS service-linked
role to provide Amazon ECS with the permissions to make calls to other AWS services on your
behalf. This role is created for you automatically when you create a cluster or if you create or
update a service, in the AWS Management Console. For more information, see Using service-
linked roles for Amazon ECS. You can also create the service-linked role with the following AWS
CLI command:

aws iam create-service-linked-role --aws-service-name ecs.amazonaws.com

• Your Amazon EC2 Linux instance requires version 1.15.0 or later of the container agent to run
tasks that use the awsvpc network mode. If you're using an Amazon ECS-optimized AMI, your
instance needs at least version 1.15.0-4 of the ecs-init package as well.

• Amazon ECS populates the hostname of the task with an Amazon-provided (internal) DNS
hostname when both the enableDnsHostnames and enableDnsSupport options are enabled
on your VPC. If these options aren't enabled, the DNS hostname of the task is set to a random
hostname. For more information about the DNS settings for a VPC, see Using DNS with Your VPC
in the Amazon VPC User Guide.

• Each Amazon ECS task that uses the awsvpc network mode receives its own elastic network
interface (ENI), which is attached to the Amazon EC2 instance that hosts it. There's a default
quota for the number of network interfaces that can be attached to an Amazon EC2 Linux
instance. The primary network interface counts as one toward that quota. For example, by
default, a c5.large instance might have only up to three ENIs that can be attached to it. The
primary network interface for the instance counts as one. You can attach an additional two ENIs
to the instance. Because each task that uses the awsvpc network mode requires an ENI, you can
typically only run two such tasks on this instance type. For more information about the default

Task networking for the EC2 launch type 285

https://docs.aws.amazon.com/cli/latest/reference/iam/create-service-linked-role.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html

Amazon Elastic Container Service Developer Guide

ENI limits for each instance type, see IP addresses per network interface per instance type in the
Amazon EC2 User Guide.

• Amazon ECS supports the launch of Amazon EC2 Linux instances that use supported instance
types with increased ENI density. When you opt in to the awsvpcTrunking account setting
and register Amazon EC2 Linux instances that use these instance types to your cluster, these
instances have higher ENI quota. Using these instances with this higher quota means that you
can place more tasks on each Amazon EC2 Linux instance. To use the increased ENI density
with the trunking feature, your Amazon EC2 instance must use version 1.28.1 or later of the
container agent. If you're using an Amazon ECS-optimized AMI, your instance also requires at
least version 1.28.1-2 of the ecs-init package. For more information about opting in to
the awsvpcTrunking account setting, see Access Amazon ECS features with account settings.
For more information about ENI trunking, see Increasing Amazon ECS Linux container instance
network interfaces.

• When hosting tasks that use the awsvpc network mode on Amazon EC2 Linux instances, your
task ENIs aren't given public IP addresses. To access the internet, tasks must be launched in a
private subnet that's configured to use a NAT gateway. For more information, see NAT gateways
in the Amazon VPC User Guide. Inbound network access must be from within a VPC that uses
the private IP address or routed through a load balancer from within the VPC. Tasks that are
launched within public subnets do not have access to the internet.

• Amazon ECS recognizes only the ENIs that it attaches to your Amazon EC2 Linux instances. If
you manually attached ENIs to your instances, Amazon ECS might attempt to add a task to an
instance that doesn't have enough network adapters. This can result in the task timing out and
moving to a deprovisioning status and then a stopped status. We recommend that you don't
attach ENIs to your instances manually.

• Amazon EC2 Linux instances must be registered with the ecs.capability.task-eni
capability to be considered for placement of tasks with the awsvpc network mode. Instances
running version 1.15.0-4 or later of ecs-init are registered with this attribute automatically.

• The ENIs that are created and attached to your Amazon EC2 Linux instances cannot be detached
manually or modified by your account. This is to prevent the accidental deletion of an ENI that is
associated with a running task. To release the ENIs for a task, stop the task.

• There is a limit of 16 subnets and 5 security groups that are able to be specified in the
awsVpcConfiguration when running a task or creating a service that uses the awsvpc
network mode. For more information, see AwsVpcConfiguration in the Amazon Elastic Container
Service API Reference.

Task networking for the EC2 launch type 286

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_AwsVpcConfiguration.html

Amazon Elastic Container Service Developer Guide

• When a task is started with the awsvpc network mode, the Amazon ECS container agent creates
an additional pause container for each task before starting the containers in the task definition.
It then configures the network namespace of the pause container by running the amazon-ecs-
cni-plugins CNI plugins. The agent then starts the rest of the containers in the task so that they
share the network stack of the pause container. This means that all containers in a task are
addressable by the IP addresses of the ENI, and they can communicate with each other over the
localhost interface.

• Services with tasks that use the awsvpc network mode only support Application Load Balancer
and Network Load Balancer. When you create any target groups for these services, you must
choose ip as the target type. Do not use instance. This is because tasks that use the awsvpc
network mode are associated with an ENI, not with an Amazon EC2 Linux instance. For more
information, see Use load balancing to distribute Amazon ECS service traffic.

• If your VPC is updated to change the DHCP options set it uses, you can't apply these changes
to existing tasks. Start new tasks with these changes applied to them, verify that they are
working correctly, and then stop the existing tasks in order to safely change these network
configurations.

Windows considerations

The following are considerations when you use the Windows operating system:

• Container instances using the Amazon ECS optimized Windows Server 2016 AMI can't host tasks
that use the awsvpc network mode. If you have a cluster that contains Amazon ECS optimized
Windows Server 2016 AMIs and Windows AMIs that support awsvpc network mode, tasks that
use awsvpc network mode aren't launched on the Windows 2016 Server instances. Rather,
they're launched on instances that support awsvpc network mode.

• Your Amazon EC2 Windows instance requires version 1.57.1 or later of the container agent to
use CloudWatch metrics for Windows containers that use the awsvpc network mode.

• Tasks and services that use the awsvpc network mode require the Amazon ECS service-linked
role to provide Amazon ECS with the permissions to make calls to other AWS services on your
behalf. This role is created for you automatically when you create a cluster, or if you create or
update a service, in the AWS Management Console. For more information, see Using service-
linked roles for Amazon ECS. You can also create the service-linked role with the following AWS
CLI command.

aws iam create-service-linked-role --aws-service-name ecs.amazonaws.com

Task networking for the EC2 launch type 287

https://github.com/aws/amazon-ecs-cni-plugins
https://github.com/aws/amazon-ecs-cni-plugins
https://docs.aws.amazon.com/cli/latest/reference/iam/create-service-linked-role.html

Amazon Elastic Container Service Developer Guide

• Your Amazon EC2 Windows instance requires version 1.54.0 or later of the container agent
to run tasks that use the awsvpc network mode. When you bootstrap the instance, you must
configure the options that are required for awsvpc network mode. For more information, see the
section called “Bootstrapping container instances”.

• Amazon ECS populates the hostname of the task with an Amazon provided (internal) DNS
hostname when both the enableDnsHostnames and enableDnsSupport options are
enabled on your VPC. If these options aren't enabled, the DNS hostname of the task is a random
hostname. For more information about the DNS settings for a VPC, see Using DNS with Your VPC
in the Amazon VPC User Guide.

• Each Amazon ECS task that uses the awsvpc network mode receives its own elastic network
interface (ENI), which is attached to the Amazon EC2 Windows instance that hosts it. There is
a default quota for the number of network interfaces that can be attached to an Amazon EC2
Windows instance. The primary network interface counts as one toward this quota. For example,
by default a c5.large instance might have only up to three ENIs attached to it. The primary
network interface for the instance counts as one of those. You can attach an additional two ENIs
to the instance. Because each task using the awsvpc network mode requires an ENI, you can
typically only run two such tasks on this instance type. For more information about the default
ENI limits for each instance type, see IP addresses per network interface per instance type in the
Amazon EC2 User Guide.

• When hosting tasks that use the awsvpc network mode on Amazon EC2 Windows instances,
your task ENIs aren't given public IP addresses. To access the internet, launch tasks in a private
subnet that's configured to use a NAT gateway. For more information, see NAT gateways in the
Amazon VPC User Guide. Inbound network access must be from within the VPC that is using
the private IP address or routed through a load balancer from within the VPC. Tasks that are
launched within public subnets don't have access to the internet.

• Amazon ECS recognizes only the ENIs that it has attached to your Amazon EC2 Windows
instance. If you manually attached ENIs to your instances, Amazon ECS might attempt to add a
task to an instance that doesn't have enough network adapters. This can result in the task timing
out and moving to a deprovisioning status and then a stopped status. We recommend that you
don't attach ENIs to your instances manually.

• Amazon EC2 Windows instances must be registered with the ecs.capability.task-eni
capability to be considered for placement of tasks with the awsvpc network mode.

• You can't manually modify or detach ENIs that are created and attached to your Amazon EC2
Windows instances. This is to prevent you from accidentally deleting an ENI that's associated
with a running task. To release the ENIs for a task, stop the task.

Task networking for the EC2 launch type 288

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon Elastic Container Service Developer Guide

• You can only specify up to 16 subnets and 5 security groups in awsVpcConfiguration when
you run a task or create a service that uses the awsvpc network mode. For more information, see
AwsVpcConfiguration in the Amazon Elastic Container Service API Reference.

• When a task is started with the awsvpc network mode, the Amazon ECS container agent creates
an additional pause container for each task before starting the containers in the task definition.
It then configures the network namespace of the pause container by running the amazon-ecs-
cni-plugins CNI plugins. The agent then starts the rest of the containers in the task so that they
share the network stack of the pause container. This means that all containers in a task are
addressable by the IP addresses of the ENI, and they can communicate with each other over the
localhost interface.

• Services with tasks that use the awsvpc network mode only support Application Load Balancer
and Network Load Balancer. When you create any target groups for these services, you must
choose ip as the target type, not instance. This is because tasks that use the awsvpc
network mode are associated with an ENI, not with an Amazon EC2 Windows instance. For more
information, see Use load balancing to distribute Amazon ECS service traffic.

• If your VPC is updated to change the DHCP options set it uses, you can't apply these changes
to existing tasks. Start new tasks with these changes applied to them, verify that they are
working correctly, and then stop the existing tasks in order to safely change these network
configurations.

• The following are not supported when you use awsvpc network mode in an EC2 Windows
configuration:

• Dual-stack configuration

• IPv6

• ENI trunking

Using a VPC in dual-stack mode

When using a VPC in dual-stack mode, your tasks can communicate over IPv4, or IPv6, or both.
IPv4 and IPv6 addresses are independent of each other. Therefore you must configure routing and
security in your VPC separately for IPv4 and IPv6. For more information about how to configure
your VPC for dual-stack mode, see Migrating to IPv6 in the Amazon VPC User Guide.

If you configured your VPC with an internet gateway or an outbound-only internet gateway, you
can use your VPC in dual-stack mode. By doing this, tasks that are assigned an IPv6 address can
access the internet through an internet gateway or an egress-only internet gateway. NAT gateways

Task networking for the EC2 launch type 289

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_AwsVpcConfiguration.html
https://github.com/aws/amazon-ecs-cni-plugins
https://github.com/aws/amazon-ecs-cni-plugins
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html

Amazon Elastic Container Service Developer Guide

are optional. For more information, see Internet gateways and Egress-only internet gateways in the
Amazon VPC User Guide.

Amazon ECS tasks are assigned an IPv6 address if the following conditions are met:

• The Amazon EC2 Linux instance that hosts the task is using version 1.45.0 or later of the
container agent. For information about how to check the agent version your instance is using,
and updating it if needed, see Updating the Amazon ECS container agent.

• The dualStackIPv6 account setting is enabled. For more information, see Access Amazon ECS
features with account settings.

• Your task is using the awsvpc network mode.

• Your VPC and subnet are configured for IPv6. The configuration includes the network interfaces
that are created in the specified subnet. For more information about how to configure your VPC
for dual-stack mode, see Migrating to IPv6 and Modify the IPv6 addressing attribute for your
subnet in the Amazon VPC User Guide.

Map Amazon ECS container ports to the EC2 instance network interface

The host network mode is only supported for Amazon ECS tasks hosted on Amazon EC2 instances.
It's not supported when using Amazon ECS on Fargate.

The host network mode is the most basic network mode that's supported in Amazon ECS. Using
host mode, the networking of the container is tied directly to the underlying host that's running
the container.

Task networking for the EC2 launch type 290

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/egress-only-internet-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-ipv6
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-ipv6

Amazon Elastic Container Service Developer Guide

Assume that you're running a Node.js container with an Express application that listens on port
3000 similar to the one illustrated in the preceding diagram. When the host network mode
is used, the container receives traffic on port 3000 using the IP address of the underlying host
Amazon EC2 instance. We do not recommend using this mode.

There are significant drawbacks to using this network mode. You can’t run more than a single
instantiation of a task on each host. This is because only the first task can bind to its required port
on the Amazon EC2 instance. There's also no way to remap a container port when it's using host
network mode. For example, if an application needs to listen on a particular port number, you can't
remap the port number directly. Instead, you must manage any port conflicts through changing
the application configuration.

There are also security implications when using the host network mode. This mode allows
containers to impersonate the host, and it allows containers to connect to private loopback
network services on the host.

Task networking for the EC2 launch type 291

Amazon Elastic Container Service Developer Guide

Use Docker's virtual network for Amazon ECS Linux tasks

The bridge network mode is only supported for Amazon ECS tasks hosted on Amazon EC2
instances.

With bridge mode, you're using a virtual network bridge to create a layer between the host and
the networking of the container. This way, you can create port mappings that remap a host port to
a container port. The mappings can be either static or dynamic.

With a static port mapping, you can explicitly define which host port you want to map to a
container port. Using the example above, port 80 on the host is being mapped to port 3000 on
the container. To communicate to the containerized application, you send traffic to port 80 to the
Amazon EC2 instance's IP address. From the containerized application’s perspective it sees that
inbound traffic on port 3000.

Task networking for the EC2 launch type 292

Amazon Elastic Container Service Developer Guide

If you only want to change the traffic port, then static port mappings is suitable. However, this
still has the same disadvantage as using the host network mode. You can't run more than a single
instantiation of a task on each host. This is because a static port mapping only allows a single
container to be mapped to port 80.

To solve this problem, consider using the bridge network mode with a dynamic port mapping as
shown in the following diagram.

By not specifying a host port in the port mapping, you can have Docker choose a random, unused
port from the ephemeral port range and assign it as the public host port for the container. For
example, the Node.js application listening on port 3000 on the container might be assigned a
random high number port such as 47760 on the Amazon EC2 host. Doing this means that you can
run multiple copies of that container on the host. Moreover, each container can be assigned its own
port on the host. Each copy of the container receives traffic on port 3000. However, clients that
send traffic to these containers use the randomly assigned host ports.

Amazon ECS helps you to keep track of the randomly assigned ports for each task. It does this by
automatically updating load balancer target groups and AWS Cloud Map service discovery to have
the list of task IP addresses and ports. This makes it easier to use services operating using bridge
mode with dynamic ports.

Task networking for the EC2 launch type 293

Amazon Elastic Container Service Developer Guide

However, one disadvantage of using the bridge network mode is that it's difficult to lock down
service to service communications. Because services might be assigned to any random, unused
port, it's necessary to open broad port ranges between hosts. However, it's not easy to create
specific rules so that a particular service can only communicate to one other specific service. The
services have no specific ports to use for security group networking rules.

Amazon ECS task networking options for the Fargate launch type

By default, every Amazon ECS task on Fargate is provided an elastic network interface (ENI) with
a primary private IP address. When using a public subnet, you can optionally assign a public IP
address to the task's ENI. If your VPC is configured for dual-stack mode and you use a subnet with
an IPv6 CIDR block, your task's ENI also receives an IPv6 address. A task can only have one ENI
that's associated with it at a time. Containers that belong to the same task can also communicate
over the localhost interface. For more information about VPCs and subnets, see How Amazon
VPC works in the Amazon VPC User Guide.

For a task on Fargate to pull a container image, the task must have a route to the internet. The
following describes how you can verify that your task has a route to the internet.

• When using a public subnet, you can assign a public IP address to the task ENI.

• When using a private subnet, the subnet can have a NAT gateway attached.

• When using container images that are hosted in Amazon ECR, you can configure Amazon ECR to
use an interface VPC endpoint and the image pull occurs over the task's private IPv4 address. For
more information, see Amazon ECR interface VPC endpoints (AWS PrivateLink) in the Amazon
Elastic Container Registry User Guide.

Because each task gets its own ENI, you can use networking features such as VPC Flow Logs, which
you can use to monitor traffic to and from your tasks. For more information, see VPC Flow Logs in
the Amazon VPC User Guide.

You can also take advantage of AWS PrivateLink. You can configure a VPC interface endpoint so
that you can access Amazon ECS APIs through private IP addresses. AWS PrivateLink restricts all
network traffic between your VPC and Amazon ECS to the Amazon network. You don't need an
internet gateway, a NAT device, or a virtual private gateway. For more information, see Amazon
ECS interface VPC endpoints (AWS PrivateLink).

For examples of how to use the NetworkConfiguration resource with AWS CloudFormation, see
the section called “Example AWS CloudFormation templates”.

Task networking for the Fargate launch type 294

https://docs.aws.amazon.com/vpc/latest/userguide/how-it-works.html
https://docs.aws.amazon.com/vpc/latest/userguide/how-it-works.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html

Amazon Elastic Container Service Developer Guide

The ENIs that are created are fully managed by AWS Fargate. Moreover, there's an associated IAM
policy that's used to grant permissions for Fargate. For tasks using Fargate platform version 1.4.0
or later, the task receives a single ENI (referred to as the task ENI) and all network traffic flows
through that ENI within your VPC. This traffic is recorded in your VPC flow logs. For tasks that use
Fargate platform version 1.3.0 and earlier, in addition to the task ENI, the task also receives a
separate Fargate owned ENI, which is used for some network traffic that isn't visible in the VPC
flow logs. The following table describes the network traffic behavior and the required IAM policy
for each platform version.

Action Traffic flow with
Linux platform
version 1.3.0
and earlier

Traffic flow with
Linux platform
version 1.4.0

Traffic flow
with Windows
platform
version 1.0.0

IAM permission

Retrieving
Amazon ECR
login credentials

Fargate owned
ENI

Task ENI Task ENI Task execution
IAM role

Image pull Task ENI Task ENI Task ENI Task execution
IAM role

Sending logs
through a log
driver

Task ENI Task ENI Task ENI Task execution
IAM role

Sending logs
through FireLens
for Amazon ECS

Task ENI Task ENI Task ENI Task IAM role

Retrieving
secrets from
Secrets Manager
or Systems
Manager

Fargate owned
ENI

Task ENI Task ENI Task execution
IAM role

Amazon EFS file
system traffic

Not available Task ENI Task ENI Task IAM role

Task networking for the Fargate launch type 295

Amazon Elastic Container Service Developer Guide

Action Traffic flow with
Linux platform
version 1.3.0
and earlier

Traffic flow with
Linux platform
version 1.4.0

Traffic flow
with Windows
platform
version 1.0.0

IAM permission

Application
traffic

Task ENI Task ENI Task ENI Task IAM role

Considerations

Consider the following when using task networking.

• The Amazon ECS service-linked role is required to provide Amazon ECS with the permissions
to make calls to other AWS services on your behalf. This role is created for you when you
create a cluster or if you create or update a service in the AWS Management Console. For more
information, see Using service-linked roles for Amazon ECS. You can also create the service-
linked role using the following AWS CLI command.

aws iam create-service-linked-role --aws-service-name ecs.amazonaws.com

• Amazon ECS populates the hostname of the task with an Amazon provided DNS hostname when
both the enableDnsHostnames and enableDnsSupport options are enabled on your VPC. If
these options aren't enabled, the DNS hostname of the task is set to a random hostname. For
more information about the DNS settings for a VPC, see Using DNS with Your VPC in the Amazon
VPC User Guide.

• You can only specify up to 16 subnets and 5 security groups for awsVpcConfiguration.
For more information, see AwsVpcConfiguration in the Amazon Elastic Container Service API
Reference.

• You can't manually detach or modify the ENIs that are created and attached by Fargate. This is
to prevent the accidental deletion of an ENI that's associated with a running task. To release the
ENIs for a task, stop the task.

• If a VPC subnet is updated to change the DHCP options set it uses, you can't also apply these
changes to existing tasks that use the VPC. Start new tasks, which will receive the new setting
to smoothly migrate while testing the new change and then stop the old ones, if no rollback is
required.

Task networking for the Fargate launch type 296

https://docs.aws.amazon.com/cli/latest/reference/iam/create-service-linked-role.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_AwsVpcConfiguration.html

Amazon Elastic Container Service Developer Guide

• The following applies to tasks run on Fargate platform version 1.4.0 or later for Linux or 1.0.0
for Windows. Tasks launched in dual-stack subnets receive an IPv4 address and an IPv6 address.

• For tasks that use platform version 1.4.0 or later for Linux or 1.0.0 for Windows, the task ENIs
support jumbo frames. Network interfaces are configured with a maximum transmission unit
(MTU), which is the size of the largest payload that fits within a single frame. The larger the MTU,
the more application payload can fit within a single frame, which reduces per-frame overhead
and increases efficiency. Supporting jumbo frames reduces overhead when the network path
between your task and the destination supports jumbo frames.

• Services with tasks that use the Fargate launch type only support Application Load Balancer
and Network Load Balancer. Classic Load Balancer isn't supported. When you create any target
groups, you must choose ip as the target type, not instance. For more information, see Use
load balancing to distribute Amazon ECS service traffic.

Using a VPC in dual-stack mode

When using a VPC in dual-stack mode, your tasks can communicate over IPv4 or IPv6, or both. IPv4
and IPv6 addresses are independent of each other and you must configure routing and security in
your VPC separately for IPv4 and IPv6. For more information about configuring your VPC for dual-
stack mode, see Migrating to IPv6 in the Amazon VPC User Guide.

If the following conditions are met, Amazon ECS tasks on Fargate are assigned an IPv6 address:

• Your Amazon ECS dualStackIPv6 account setting is turned on (enabled) for the IAM principal
launching your tasks in the Region you're launching your tasks in. This setting can only be
modified using the API or AWS CLI. You have the option to turn this setting on for a specific IAM
principal on your account or for your entire account by setting your account default setting. For
more information, see Access Amazon ECS features with account settings.

• Your VPC and subnet are enabled for IPv6. For more information about how to configure your
VPC for dual-stack mode, see Migrating to IPv6 in the Amazon VPC User Guide.

• Your subnet is enabled for auto-assigning IPv6 addresses. For more information about how to
configure your subnet, see Modify the IPv6 addressing attribute for your subnet in the Amazon
VPC User Guide.

• The task or service uses Fargate platform version 1.4.0 or later for Linux.

If you configure your VPC with an internet gateway or an outbound-only internet gateway, Amazon
ECS tasks on Fargate that are assigned an IPv6 address can access the internet. NAT gateways

Task networking for the Fargate launch type 297

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html
https://docs.aws.amazon.com/vpc/latest/userguide/modify-subnets.html

Amazon Elastic Container Service Developer Guide

aren't needed. For more information, see Internet gateways and Egress-only internet gateways in
the Amazon VPC User Guide.

Storage options for Amazon ECS tasks

Amazon ECS provides you with flexible, cost effective, and easy-to-use data storage options
depending on your needs. Amazon ECS supports the following data volume options for containers:

Data volume Supported
launch types

Supported
operating
systems

Storage
persistence

Use cases

Amazon Elastic
Block Store
(Amazon EBS)

Fargate, Amazon
EC2

Linux Can be persisted
when attached
to a standalone
task. Ephemeral
when attached
to a task
maintained by a
service.

Amazon EBS
volumes provide
cost-effective,
durable, high-
performance
block storage
for data-inte
nsive container
ized workloads
. Common use
cases include
transactional
workloads such
as databases,
virtual desktops
and root
volumes, and
throughpu
t intensive
workloads such
as log processin
g and ETL
workloads. For
more informati
on, see Use

Storage options for tasks 298

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/egress-only-internet-gateway.html

Amazon Elastic Container Service Developer Guide

Data volume Supported
launch types

Supported
operating
systems

Storage
persistence

Use cases

Amazon EBS
volumes with
Amazon ECS.

Storage options for tasks 299

Amazon Elastic Container Service Developer Guide

Data volume Supported
launch types

Supported
operating
systems

Storage
persistence

Use cases

Amazon Elastic
File System
(Amazon EFS)

Fargate, Amazon
EC2

Linux Persistent Amazon EFS
volumes provide
simple, scalable,
and persisten
t shared file
storage for
use with your
Amazon ECS
tasks that grows
and shrinks
automatically
as you add and
remove files.
Amazon EFS
volumes support
concurrency
and are useful
for container
ized applicati
ons that scale
horizontally and
need storage
functionalities
like low latency,
high throughpu
t, and read-afte
r-write consisten
cy. Common use
cases include
workloads
such as data
analytics,

Storage options for tasks 300

Amazon Elastic Container Service Developer Guide

Data volume Supported
launch types

Supported
operating
systems

Storage
persistence

Use cases

media processin
g, content
managemen
t, and web
serving. For
more informati
on, see Use
Amazon EFS
volumes with
Amazon ECS.

Storage options for tasks 301

Amazon Elastic Container Service Developer Guide

Data volume Supported
launch types

Supported
operating
systems

Storage
persistence

Use cases

Amazon FSx for
Windows File
Server

Amazon EC2 Windows Persistent FSx for Windows
File Server
volumes provide
fully managed
Windows file
servers that
you can use
to provision
your Windows
tasks that
need persisten
t, distribut
ed, shared,
and static
file storage.
Common
use cases
include .NET
applications that
might require
local folders
as persisten
t storage to
save applicati
on outputs.
Amazon FSx for
Windows File
Server offers a
local folder in
the container
which allows
for multiple

Storage options for tasks 302

Amazon Elastic Container Service Developer Guide

Data volume Supported
launch types

Supported
operating
systems

Storage
persistence

Use cases

containers to
read-write on
the same file
system that's
backed by a SMB
Share. For more
information,
see Use FSx for
Windows File
Server volumes
with Amazon
ECS.

Storage options for tasks 303

Amazon Elastic Container Service Developer Guide

Data volume Supported
launch types

Supported
operating
systems

Storage
persistence

Use cases

Docker volumes Amazon EC2 Windows, Linux Persistent Docker volumes
are a feature
of the Docker
container
runtime that
allow container
s to persist data
by mounting a
directory from
the file system
of the host.
Docker volume
drivers (also
referred to as
plugins) are used
to integrate
container
volumes with
external storage
systems. Docker
volumes can
be managed
by third-par
ty drivers or
by the built in
local driver.
Common use
cases for Docker
volumes include
providing
persistent data
volumes or

Storage options for tasks 304

Amazon Elastic Container Service Developer Guide

Data volume Supported
launch types

Supported
operating
systems

Storage
persistence

Use cases

sharing volumes
at different
locations
on different
containers
on the same
container
instance. For
more informati
on, see Use
Docker volumes
with Amazon
ECS.

Storage options for tasks 305

Amazon Elastic Container Service Developer Guide

Data volume Supported
launch types

Supported
operating
systems

Storage
persistence

Use cases

Bind mounts Fargate, Amazon
EC2

Windows, Linux Ephemeral Bind mounts
consist of a file
or directory on
the host, such
as an Amazon
EC2 instance or
AWS Fargate,
that is mounted
onto a container
. Common
use cases for
bind mounts
include sharing
a volume from a
source container
with other
containers in the
same task, or
mounting a host
volume or an
empty volume
in one or more
containers. For
more informati
on, see Use bind
mounts with
Amazon ECS.

Storage options for tasks 306

Amazon Elastic Container Service Developer Guide

Use Amazon EBS volumes with Amazon ECS

Amazon Elastic Block Store (Amazon EBS) volumes provide highly available, cost-effective, durable,
high-performance block storage for data-intensive workloads. Amazon EBS volumes can be used
with Amazon ECS tasks for high throughput and transaction-intensive applications.

During standalone task launch, you can provide the configuration that will be used to attach one
EBS volume to the task. During service creation or update, you can provide the configuration that
will be used to attach one EBS volume per task to each task managed by the Amazon ECS service.

By providing volume configuration at launch time rather than in the task definition, you create task
definitions that aren't constrained to a specific data volume type or specific EBS volume settings.
You can then reuse your task definitions across different runtime environments. For example, you
can provide more throughput during deployment for your production workloads than your pre-
prod environments.

Amazon EBS volumes that are attached to Amazon ECS tasks are managed by Amazon ECS on
your behalf. The volumes can be encrypted with AWS Key Management Service (AWS KMS) keys
to protect your data. You can either configure new, empty volumes for attachment, or you can use
snapshots to load data from existing volumes. When you use snapshots to configure volumes, you
can specify a volumeInitializationRate, in MiB/s, at which data is fetched from the snapshot
to create volumes that are fully initialized in a predictable amount of time. For more information
about volume initialization, see Initialize Amazon EBS volumes in the Amazon EBS User Guide. For
more information about configuring Amazon EBS volumes, see Defer volume configuration to
launch time in an Amazon ECS task definition and Specify Amazon EBS volume configuration at
Amazon ECS deployment.

To monitor your volume's performance, you can also use Amazon CloudWatch metrics. For more
information about Amazon ECS metrics for Amazon EBS volumes, see Amazon ECS CloudWatch
metrics and Amazon ECS Container Insights metrics.

Attaching an Amazon EBS volume to a task is supported in all commercial and China AWS Regions
that support Amazon ECS.

For more information about Amazon EBS volumes, see Amazon EBS volumes in the Amazon EBS
User Guide.

Supported operating systems and launch types

The following table provides the supported operating system and launch type configurations.

Storage options for tasks 307

https://docs.aws.amazon.com/ebs/latest/userguide/initalize-volume.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-ECS.html
https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html?icmpid=docs_homepage_addtlrcs#region
https://docs.aws.amazon.com/ebs/latest/userguide/ebs-volumes.html

Amazon Elastic Container Service Developer Guide

Launch type Linux Windows

Fargate Amazon EBS volumes are
supported on platform
version 1.4.0 or later (Linux).
For more information, see
Fargate platform versions for
Amazon ECS.

Not supported

EC2 Tasks hosted on Nitro-based
Linux instances with Amazon
ECS-optimized Amazon
Machine Images (AMIs). For
more information about
instance types, see Instance
types in the Amazon EC2 User
Guide.

Amazon EBS volumes are
supported on ECS-optim
ized AMI 20231219 or later.
For more information, see
Retrieving Amazon ECS-
Optimized AMI metadata.

Tasks hosted on Nitro-based
Linux instances with Amazon
ECS-optimized Amazon
Machine Images (AMIs). For
more information about
instance types, see Instance
types in the Amazon EC2 User
Guide.

Amazon EBS volumes are
supported on ECS-optim
ized AMI 20241017 or later.
For more information, see
Retrieving Amazon ECS-
Optimized Windows AMI
metadata.

Considerations

Consider the following when using Amazon EBS volumes:

• You can't configure Amazon EBS volumes for attachment to Fargate launch type Amazon ECS
tasks in the use1-az3 Availability Zone.

• The magnetic (standard) Amazon EBS volume type is not supported for tasks hosted on
Fargate. For more information about Amazon EBS volume types, see Amazon EBS volumes in the
Amazon EC2 User Guide.

Storage options for tasks 308

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/retrieve-ecs-optimized_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/retrieve-ecs-optimized_AMI.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/retrieve-ecs-optimized_windows_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/retrieve-ecs-optimized_windows_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/retrieve-ecs-optimized_windows_AMI.html
https://docs.aws.amazon.com/ebs/latest/userguide/ebs-volume-types.html

Amazon Elastic Container Service Developer Guide

• An Amazon ECS infrastructure IAM role is required when creating a service or a standalone
task that is configuring a volume at deployment. You can attach the AWS managed
AmazonECSInfrastructureRolePolicyForVolumes IAM policy to the role, or you can use
the managed policy as a guide to create and attach your own policy with permissions that meet
your specific needs. For more information, see Amazon ECS infrastructure IAM role.

• You can attach at most one Amazon EBS volume to each Amazon ECS task, and it must be a new
volume. You can't attach an existing Amazon EBS volume to a task. However, you can configure a
new Amazon EBS volume at deployment using the snapshot of an existing volume.

• You can configure Amazon EBS volumes at deployment only for services that use the rolling
update deployment type and the Replica scheduling strategy.

• For a container in your task to write to the mounted Amazon EBS volume, you must run the
container as a root user.

• Amazon ECS automatically adds the reserved tags AmazonECSCreated and
AmazonECSManaged to the attached volume. If you remove these tags from the volume,
Amazon ECS won't be able to manage the volume on your behalf. For more information about
tagging Amazon EBS volumes, see Tagging Amazon EBS volumes. For more information about
tagging Amazon ECS resources, see Tagging your Amazon ECS resources.

• Provisioning volumes from a snapshot of an Amazon EBS volume that contains partitions isn't
supported.

• Volumes that are attached to tasks that are managed by a service aren't preserved and are
always deleted upon task termination.

• You can't configure Amazon EBS volumes for attachment to Amazon ECS tasks that are running
on AWS Outposts.

Defer volume configuration to launch time in an Amazon ECS task definition

To configure an Amazon EBS volume for attachment to your task, you must specify the
mount point configuration in your task definition and name the volume. You must also set
configuredAtLaunch to true because Amazon EBS volumes can't be configured for attachment
in the task definition. Instead, Amazon EBS volumes are configured for attachment during
deployment.

To register the task definition by using the AWS Command Line Interface (AWS CLI), save the
template as a JSON file, and then pass the file as an input for the register-task-definition
command.

Storage options for tasks 309

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specify-ebs-config.html#ebs-volume-tagging
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/register-task-definition.html

Amazon Elastic Container Service Developer Guide

To create and register a task definition using the AWS Management Console, see Creating an
Amazon ECS task definition using the console.

The following task definition shows the syntax for the mountPoints and volumes objects in
the task definition. For more information about task definition parameters, see Amazon ECS task
definition parameters for the Fargate launch type. To use this example, replace the user input
placeholders with your own information.

Linux

{
 "family": "mytaskdef",
 "containerDefinitions": [
 {
 "name": "nginx",
 "image": "public.ecr.aws/nginx/nginx:latest",
 "networkMode": "awsvpc",
 "portMappings": [
 {
 "name": "nginx-80-tcp",
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp",
 "appProtocol": "http"
 }
],
 "mountPoints": [
 {
 "sourceVolume": "myEBSVolume",
 "containerPath": "/mount/ebs",
 "readOnly": true
 }
]
 }
],
 "volumes": [
 {
 "name": "myEBSVolume",
 "configuredAtLaunch": true
 }
],
 "requiresCompatibilities": [
 "FARGATE", "EC2"

Storage options for tasks 310

Amazon Elastic Container Service Developer Guide

],
 "cpu": "1024",
 "memory": "3072",
 "networkMode": "awsvpc"
}

Windows

{
 "family": "mytaskdef",
 "memory": "4096",
 "cpu": "2048",
 "family": "windows-simple-iis-2019-core",
 "executionRoleArn": "arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
 "runtimePlatform": {"operatingSystemFamily": "WINDOWS_SERVER_2019_CORE"},
 "requiresCompatibilities": ["EC2"]
 "containerDefinitions": [
 {
 "command": ["New-Item -Path C:\\inetpub\\wwwroot\\index.html -Type file
 -Value '<html> <head> <title>Amazon ECS Sample App</title> <style>body {margin-top:
 40px; background-color: #333;} </style> </head><body> <div style=color:white;text-
align:center> <h1>Amazon ECS Sample App</h1> <h2>Congratulations!</h2> <p>Your
 application is now running on a container in Amazon ECS.</p>'; C:\\ServiceMonitor.exe
 w3svc"],
 "entryPoint": [
 "powershell",
 "-Command"
],
 "essential": true,
 "cpu": 2048,
 "memory": 4096,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "name": "sample_windows_app",
 "portMappings": [
 {
 "hostPort": 443,
 "containerPort": 80,
 "protocol": "tcp"
 }
],
 "mountPoints": [
 {

Storage options for tasks 311

Amazon Elastic Container Service Developer Guide

 "sourceVolume": "myEBSVolume",
 "containerPath": "drive:\ebs",
 "readOnly": true
 }
]
 }
],
 "volumes": [
 {
 "name": "myEBSVolume",
 "configuredAtLaunch": true
 }
],
 "requiresCompatibilities": [
 "FARGATE", "EC2"
],
 "cpu": "1024",
 "memory": "3072",
 "networkMode": "awsvpc"
}

mountPoints

Type: Object array

Required: No

The mount points for the data volumes in your container. This parameter maps to Volumes in
the create-container Docker API and the --volume option to docker run.

Windows containers can mount whole directories on the same drive as $env:ProgramData.
Windows containers cannot mount directories on a different drive, and mount points cannot be
used across drives. You must specify mount points to attach an Amazon EBS volume directly to
an Amazon ECS task.

sourceVolume

Type: String

Required: Yes, when mountPoints are used

The name of the volume to mount.

Storage options for tasks 312

Amazon Elastic Container Service Developer Guide

containerPath

Type: String

Required: Yes, when mountPoints are used

The path in the container where the volume will be mounted.

readOnly

Type: Boolean

Required: No

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume. The default value is false.

For tasks that run on EC2 instances running the Windows operating system, leave the value
as the default of false.

name

Type: String

Required: No

The name of the volume. Up to 255 letters (uppercase and lowercase), numbers, hyphens (-),
and underscores (_) are allowed. This name is referenced in the sourceVolume parameter of
the container definition mountPoints object.

configuredAtLaunch

Type: Boolean

Required: Yes, when you want to use attach an EBS volume directly to a task.

Specifies whether a volume is configurable at launch. When set to true, you can configure
the volume when you run a standalone task, or when you create or update a service. When set
to false, you won't be able to provide another volume configuration in the task definition.
This parameter must be provided and set to true to configure an Amazon EBS volume for
attachment to a task.

Storage options for tasks 313

Amazon Elastic Container Service Developer Guide

Encrypt data stored in Amazon EBS volumes attached to Amazon ECS tasks

You can use AWS Key Management Service (AWS KMS) to make and manage cryptographic keys
that protect your data. Amazon EBS volumes are encrypted at rest by using AWS KMS keys. The
following types of data are encrypted:

• Data stored at rest on the volume

• Disk I/O

• Snapshots created from the volume

• New volumes created from encrypted snapshots

Amazon EBS volumes that are attached to tasks can be encrypted by using either a default AWS
managed key with the alias alias/aws/ebs, or a symmetric customer managed key specified in
the volume configuration. Default AWS managed keys are unique to each AWS account per AWS
Region and are created automatically. To create a symmetric customer managed key, follow the
steps in Creating symmetric encryption KMS keys in the AWS KMS Developer Guide.

You can configure Amazon EBS encryption by default so that all new volumes created and attached
to a task in a specific AWS Region are encrypted by using the KMS key that you specify for your
account. For more information about Amazon EBS encryption and encryption by default, see
Amazon EBS encryption in the Amazon EBS User Guide.

You can also set up Amazon ECS cluster-level encryption for Amazon ECS managed storage
when you create or update a cluster. Cluster-level encryption can be used to encrypt all Amazon
EBS volumes attached to tasks running in a specific cluster by using the KMS key specified at
the cluster level. For more information about configuring encryption at the cluster level, see
ManagedStorageConfiguration in the Amazon ECS API reference.

You can configure any combination of these keys. The order of precedence of KMS keys is as
follows:

1. The KMS key specified in the volume configuration. When you specify a KMS key in the volume
configuration, it overrides the Amazon EBS default and any KMS key that is specified at the
cluster level.

2. The KMS key specified at the cluster level. When you specify a KMS key for cluster-level
encryption of Amazon ECS managed storage, it overrides Amazon EBS default encryption but
does not override any KMS key that is specified in the volume configuration.

Storage options for tasks 314

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/ebs/latest/userguide/ebs-encryption.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ManagedStorageConfiguration.html

Amazon Elastic Container Service Developer Guide

3. Amazon EBS default encryption. Default encryption applies when you don't specify either
a cluster-level KMS key or a key in the volume configuration. If you enable Amazon EBS
encryption by default, the default is the KMS key you specify for encryption by default.
Otherwise, the default is the AWS managed key with the alias alias/aws/ebs.

Note

If you set encrypted to false in your volume configuration, specify no cluster-
level KMS key, and enable Amazon EBS encryption by default, the volume will still be
encrypted with the key specified for Amazon EBS encryption by default.

Customer managed KMS key policy

To encrypt an EBS volume that's attached to your task by using a customer managed key, you must
configure your KMS key policy to ensure that the IAM role that you use for volume configuration
has the necessary permissions to use the key. The key policy must include the kms:CreateGrant
and kms:GenerateDataKey* permissions. The kms:ReEncryptTo and kms:ReEncryptFrom
permissions are necessary for encrypting volumes that are created using snapshots. If you
want to configure and encrypt only new, empty volumes for attachment, you can exclude the
kms:ReEncryptTo and kms:ReEncryptFrom permissions.

The following JSON snippet shows key policy statements that you can attach to your KMS key
policy. Using these statements will provide access for Amazon ECS to use the key for encrypting the
EBS volume. To use the example policy statements, replace the user input placeholders with
your own information. As always, only configure the permissions that you need.

{
 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::111122223333:role/ecsInfrastructureRole" },
 "Action": "kms:DescribeKey",
 "Resource":"*"
 },
 {
 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::111122223333:role/ecsInfrastructureRole" },
 "Action": [
 "kms:GenerateDataKey*",
 "kms:ReEncryptTo",
 "kms:ReEncryptFrom"

Storage options for tasks 315

Amazon Elastic Container Service Developer Guide

],
 "Resource":"*",
 "Condition": {
 "StringEquals": {
 "kms:CallerAccount": "aws_account_id",
 "kms:ViaService": "ec2.region.amazonaws.com"
 },
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContextKeys": "aws:ebs:id"
 }
 }
 },
 {
 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::111122223333:role/ecsInfrastructureRole" },
 "Action": "kms:CreateGrant",
 "Resource":"*",
 "Condition": {
 "StringEquals": {
 "kms:CallerAccount": "aws_account_id",
 "kms:ViaService": "ec2.region.amazonaws.com"
 },
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContextKeys": "aws:ebs:id"
 },
 "Bool": {
 "kms:GrantIsForAWSResource": true
 }
 }
 }

For more information about key policies and permissions, see Key policies in AWS KMS and AWS
KMS permissions in the AWS KMS Developer Guide. For troubleshooting EBS volume attachment
issues related to key permissions, see Troubleshooting Amazon EBS volume attachments to
Amazon ECS tasks .

Specify Amazon EBS volume configuration at Amazon ECS deployment

After you register a task definition with the configuredAtLaunch parameter set to true, you
can configure an Amazon EBS volume at deployment when you run a standalone task, or when you
create or update a service.

Storage options for tasks 316

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html
https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html

Amazon Elastic Container Service Developer Guide

To configure a volume, you can use the Amazon ECS APIs, or you can pass a JSON file as input for
the following AWS CLI commands:

• run-task to run a standalone ECS task.

• start-task to run a standalone ECS task in a specific container instance. This command is not
applicable for Fargate launch type tasks.

• create-service to create a new ECS service.

• update-service to update an existing service.

Note

For a container in your task to write to the mounted Amazon EBS volume, you must run the
container as a root user.

You can also configure an Amazon EBS volume by using the AWS Management Console. For more
information, see Running an application as an Amazon ECS task, Creating an Amazon ECS service
using the console, and Updating an Amazon ECS service.

The following JSON snippet shows all the parameters of an Amazon EBS volume that can be
configured at deployment. To use these parameters for volume configuration, replace the user
input placeholders with your own information. For more information about these parameters,
see Volume configurations.

"volumeConfigurations": [
 {
 "name": "ebs-volume",
 "managedEBSVolume": {
 "encrypted": true,
 "kmsKeyId": "arn:aws:kms:us-
east-1:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "volumeType": "gp3",
 "sizeInGiB": 10,
 "snapshotId": "snap-12345",
 "volumeInitializationRate":100,
 "iops": 3000,
 "throughput": 125,
 "tagSpecifications": [
 {

Storage options for tasks 317

https://docs.aws.amazon.com/cli/latest/reference/ecs/run-task.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/start-task.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-service.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html#sd-volumeConfigurations

Amazon Elastic Container Service Developer Guide

 "resourceType": "volume",
 "tags": [
 {
 "key": "key1",
 "value": "value1"
 }
],
 "propagateTags": "NONE"
 }
],
 "roleArn": "arn:aws:iam::1111222333:role/ecsInfrastructureRole",
 "terminationPolicy": {
 "deleteOnTermination": true//can't be configured for service-
managed tasks, always true
 },
 "filesystemType": "ext4"
 }
 }
]

Important

Ensure that the volumeName you specify in the configuration is the same as the
volumeName you specify in your task definition.

For information about checking the status of volume attachment, see Troubleshooting Amazon
EBS volume attachments to Amazon ECS tasks . For information about the Amazon ECS
infrastructure AWS Identity and Access Management (IAM) role necessary for EBS volume
attachment, see Amazon ECS infrastructure IAM role.

The following are JSON snippet examples that show the configuration of Amazon EBS volumes.
These examples can be used by saving the snippets in JSON files and passing the files as
parameters (using the --cli-input-json file://filename parameter) for AWS CLI
commands. Replace the user input placeholders with your own information.

Configure a volume for a standalone task

The following snippet shows the syntax for configuring Amazon EBS volumes for attachment to a
standalone task. The following JSON snippet shows the syntax for configuring the volumeType,

Storage options for tasks 318

Amazon Elastic Container Service Developer Guide

sizeInGiB, encrypted, and kmsKeyId settings. The configuration specified in the JSON file is
used to create and attach an EBS volume to the standalone task.

{
 "cluster": "mycluster",
 "taskDefinition": "mytaskdef",
 "volumeConfigurations": [
 {
 "name": "datadir",
 "managedEBSVolume": {
 "volumeType": "gp3",
 "sizeInGiB": 100,
 "roleArn":"arn:aws:iam::1111222333:role/ecsInfrastructureRole",
 "encrypted": true,
 "kmsKeyId":
 "arn:aws:kms:region:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
 }
]
}

Configure a volume at service creation

The following snippet shows the syntax for configuring Amazon EBS volumes for attachment
to tasks managed by a service. The volumes are sourced from the snapshot specified using the
snapshotId parameter at a rate of 200 MiB/s. The configuration specified in the JSON file is used
to create and attach an EBS volume to each task managed by the service.

{
 "cluster": "mycluster",
 "taskDefinition": "mytaskdef",
 "serviceName": "mysvc",
 "desiredCount": 2,
 "volumeConfigurations": [
 {
 "name": "myEbsVolume",
 "managedEBSVolume": {
 "roleArn":"arn:aws:iam::1111222333:role/ecsInfrastructureRole",
 "snapshotId": "snap-12345",
 "volumeInitializationRate": 200
 }
 }

Storage options for tasks 319

Amazon Elastic Container Service Developer Guide

]
}

Configure a volume at service update

The following JSON snippet shows the syntax for updating a service that previously did not
have Amazon EBS volumes configured for attachment to tasks. You must provide the ARN of a
task definition revision with configuredAtLaunch set to true. The following JSON snippet
shows the syntax for configuring the volumeType, sizeInGiB, throughput, and iops, and
filesystemType settings. This configuration is used to create and attach an EBS volume to each
task managed by the service.

{
 "cluster": "mycluster",
 "taskDefinition": "mytaskdef",
 "service": "mysvc",
 "desiredCount": 2,
 "volumeConfigurations": [
 {
 "name": "myEbsVolume",
 "managedEBSVolume": {
 "roleArn":"arn:aws:iam::1111222333:role/ecsInfrastructureRole",
 "volumeType": "gp3",
 "sizeInGiB": 100,
 "iops": 3000,
 "throughput": 125,
 "filesystemType": "ext4"
 }
 }
]
}

Configure a service to no longer utilize Amazon EBS volumes

The following JSON snippet shows the syntax for updating a service to no longer utilize Amazon
EBS volumes. You must provide the ARN of a task definition with configuredAtLaunch set to
false, or a task definition without the configuredAtLaunch parameter. You must also provide
an empty volumeConfigurations object.

{
 "cluster": "mycluster",

Storage options for tasks 320

Amazon Elastic Container Service Developer Guide

 "taskDefinition": "mytaskdef",
 "service": "mysvc",
 "desiredCount": 2,
 "volumeConfigurations": []
}

Termination policy for Amazon EBS volumes

When an Amazon ECS task terminates, Amazon ECS uses the deleteOnTermination value to
determine whether the Amazon EBS volume that's associated with the terminated task should
be deleted. By default, EBS volumes that are attached to tasks are deleted when the task is
terminated. For standalone tasks, you can change this setting to instead preserve the volume upon
task termination.

Note

Volumes that are attached to tasks that are managed by a service are not preserved and are
always deleted upon task termination.

Tag Amazon EBS volumes

You can tag Amazon EBS volumes by using the tagSpecifications object. Using the object,
you can provide your own tags and set propagation of tags from the task definition or the service,
depending on whether the volume is attached to a standalone task or a task in a service. The
maximum number of tags that can be attached to a volume is 50.

Important

Amazon ECS automatically attaches the AmazonECSCreated and AmazonECSManaged
reserved tags to an Amazon EBS volume. This means you can control the attachment of
a maximum of 48 additional tags to a volume. These additional tags can be user-defined,
ECS-managed, or propagated tags.

If you want to add Amazon ECS-managed tags to your volume, you must set
enableECSManagedTags to true in your UpdateService, CreateService,RunTask
or StartTask call. If you turn on Amazon ECS-managed tags, Amazon ECS will tag the
volume automatically with cluster and service information (aws:ecs:clusterName and

Storage options for tasks 321

Amazon Elastic Container Service Developer Guide

aws:ecs:serviceName). For more information about tagging Amazon ECS resources, see Tagging
your Amazon ECS resources.

The following JSON snippet shows the syntax for tagging each Amazon EBS volume that is
attached to each task in a service with a user-defined tag. To use this example for creating a
service, replace the user input placeholders with your own information.

{
 "cluster": "mycluster",
 "taskDefinition": "mytaskdef",
 "serviceName": "mysvc",
 "desiredCount": 2,
 "enableECSManagedTags": true,
 "volumeConfigurations": [
 {
 "name": "datadir",
 "managedEBSVolume": {
 "volumeType": "gp3",
 "sizeInGiB": 100,
 "tagSpecifications": [
 {
 "resourceType": "volume",
 "tags": [
 {
 "key": "key1",
 "value": "value1"
 }
],
 "propagateTags": "NONE"
 }
],
 "roleArn":"arn:aws:iam:1111222333:role/ecsInfrastructureRole",
 "encrypted": true,
 "kmsKeyId":
 "arn:aws:kms:region:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
 }
]
}

Storage options for tasks 322

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html

Amazon Elastic Container Service Developer Guide

Important

You must specify a volume resource type to tag Amazon EBS volumes.

Performance of Amazon EBS volumes for Fargate on-demand tasks

The baseline Amazon EBS volume IOPS and throughput available for a Fargate on-demand task
depends on the total CPU units you request for the task. If you request 0.25, 0.5, or 1 virtual
CPU unit (vCPU) for your Fargate task, we recommend that you configure a General Purpose SSD
volume (gp2 or gp3) or a Hard Disk Drive (HDD) volume (st1 or sc1). If you request more than 1
vCPU for your Fargate task, the following baseline performance limits apply to an Amazon EBS
volume attached to the task. You may temporarily get higher EBS performance than the following
limits. However, we recommend that you plan your workload based on these limits.

CPU units requested
(in vCPUs)

Baseline Amazon
EBS IOPS(16 KiB I/
O)

Baseline Amazon
EBS Throughput (in
MiBps, 128 KiB I/O)

Baseline bandwidth
(in Mbps)

2 3,000 75 360

4 5,000 120 1,150

8 10,000 250 2,300

16 15,000 500 4,500

Note

When you configure an Amazon EBS volume for attachment to a Fargate task, the Amazon
EBS performance limit for the Fargate task is shared between the task's ephemeral storage
and the attached volume.

Performance of Amazon EBS volumes for EC2 tasks

Amazon EBS provides volume types, which differ in performance characteristics and price, so
that you can tailor your storage performance and cost to the needs of your applications. For

Storage options for tasks 323

Amazon Elastic Container Service Developer Guide

information about performance, including IOPS per volume and throughput per volume, see
Amazon EBS volume types in the Amazon Elastic Block Store User Guide.

Troubleshooting Amazon EBS volume attachments to Amazon ECS tasks

You might need to troubleshoot or verify the attachment of Amazon EBS volumes to Amazon ECS
tasks.

Check volume attachment status

You can use the AWS Management Console to view the status of an Amazon EBS volume's
attachment to an Amazon ECS task. If the task starts and the attachment fails, you'll also see a
status reason that you can use to troubleshoot. The created volume will be deleted and the task
will be stopped. For more information about status reasons, see Status reasons for Amazon EBS
volume attachment to Amazon ECS tasks.

To view a volume's attachment status and status reason using the console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, choose the cluster that your task is running in. The cluster's details page
appears.

3. On the cluster's details page, choose the Tasks tab.

4. Choose the task that you want to view the volume attachment status for. You might need to
use Filter desired status and choose Stopped if the task you want to examine has stopped.

5. On the task's details page, choose the Volumes tab. You will be able to see the attachment
status of the Amazon EBS volume under Attachment status. If the volume fails to attach
to the task, you can choose the status under Attachment status to display the cause of the
failure.

You can also view a task's volume attachment status and associated status reason by using the
DescribeTasks API.

Service and task failures

You might encounter service or task failures that aren't specific to Amazon EBS volumes that can
affect volume attachment. For more information, see

• Service event messages

Storage options for tasks 324

https://docs.aws.amazon.com/ebs/latest/userguide/ebs-volume-types.html
https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeTasks.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-event-messages.html

Amazon Elastic Container Service Developer Guide

• Stopped task error codes

• API failure reasons

Status reasons for Amazon EBS volume attachment to Amazon ECS tasks

Use the following reference to fix issues that you might encounter in the form of status reasons
in the AWS Management Console when you configure Amazon EBS volumes for attachment to
Amazon ECS tasks. For more information on locating these status reasons in the console, see Check
volume attachment status.

ECS was unable to assume the configured ECS Infrastructure Role
'arn:aws:iam::111122223333:role/ecsInfrastructureRole'. Please verify that the role being
passed has the proper trust relationship with Amazon ECS

This status reason appears in the following scenarios.

• You provide an IAM role without the necessary trust policy attached. Amazon ECS can't
access the Amazon ECS infrastructure IAM role that you provide if the role doesn't have
the necessary trust policy. The task can get stuck in the DEPROVISIONING state. For more
information about the necessary trust policy, see Amazon ECS infrastructure IAM role.

• Your IAM user doesn't have permission to pass the Amazon ECS infrastructure role to Amazon
ECS. The task can get stuck in the DEPROVISIONING state. To avoid this problem, you
can attach the PassRole permission to your user. For more information, see Amazon ECS
infrastructure IAM role.

• Your IAM role doesn't have the necessary permissions for Amazon EBS volume attachment.
The task can get stuck in the DEPROVISIONING state. For more information about the
specific permissions necessary for attaching Amazon EBS volumes to tasks, see Amazon ECS
infrastructure IAM role.

Note

You may also see this error message due to a delay in role propagation. If retrying
to use the role after waiting for a few minutes doesn't fix the issue, you might have
misconfigured the trust policy for the role.

Storage options for tasks 325

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/stopped-task-error-codes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/api_failures_messages.html

Amazon Elastic Container Service Developer Guide

ECS failed to set up the EBS volume. Encountered IdempotentParameterMismatch"; "The client
token you have provided is associated with a resource that is already deleted. Please use a different
client token."

The following AWS KMS key scenarios can lead to an IdempotentParameterMismatch
message appearing:

• You specify a KMS key ARN, ID, or alias that isn't valid. In this scenario, the task might appear
to launch successfully, but the task eventually fails because AWS authenticates the KMS key
asynchronously. For more information, see Amazon EBS encryption in the Amazon EC2 User
Guide.

• You provide a customer managed key that lacks the permissions that allow the Amazon ECS
infrastructure IAM role to use the key for encryption. To avoid key-policy permission issues,
see the example AWS KMS key policy in Data encryption for Amazon EBS volumes.

You can set up Amazon EventBridge to send Amazon EBS volume events and Amazon ECS
task state change events to a target, such as Amazon CloudWatch groups. You can then use
these events to identify the specific customer managed key related issue that affected volume
attachment. For more information, see

• How can I create a CloudWatch log group to use as a target for an EventBridge rule? on AWS
re:Post.

• Task state change events.

• Amazon EventBridge events for Amazon EBS in the Amazon EBS User Guide.

ECS timed out while configuring the EBS volume attachment to your Task.

The following file system format scenarios result in this message.

• The file system format that you specify during configuration isn't compatible with the task's
operating system.

• You configure an Amazon EBS volume to be created from a snapshot, and the snapshot's file
system format isn't compatible with the task's operating system. For volumes created from
a snapshot, you must specify the same filesystem type that the volume was using when the
snapshot was created.

You can utilize the Amazon ECS container agent logs to troubleshoot this message for Amazon
EC2 launch type tasks. For more information, see Amazon ECS log file locations and Amazon
ECS log collector.

Storage options for tasks 326

https://docs.aws.amazon.com/ebs/latest/userguide/ebs-encryption.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html#ebs-kms-encryption
https://repost.aws/knowledge-center/cloudwatch-log-group-eventbridge
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_cwe_events.html#ecs_task_events
https://docs.aws.amazon.com/ebs/latest/userguide/ebs-cloud-watch-events.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RuntimePlatform.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RuntimePlatform.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/logs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-logs-collector.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-logs-collector.html

Amazon Elastic Container Service Developer Guide

Use Amazon EFS volumes with Amazon ECS

Amazon Elastic File System (Amazon EFS) provides simple, scalable file storage for use with your
Amazon ECS tasks. With Amazon EFS, storage capacity is elastic. It grows and shrinks automatically
as you add and remove files. Your applications can have the storage they need and when they need
it.

You can use Amazon EFS file systems with Amazon ECS to export file system data across your
fleet of container instances. That way, your tasks have access to the same persistent storage, no
matter the instance on which they land. Your task definitions must reference volume mounts on
the container instance to use the file system.

For a tutorial, see Configuring Amazon EFS file systems for Amazon ECS using the console.

Considerations

Consider the following when using Amazon EFS volumes:

• For tasks that use the EC2 launch type, Amazon EFS file system support was added as a public
preview with Amazon ECS-optimized AMI version 20191212 with container agent version
1.35.0. However, Amazon EFS file system support entered general availability with Amazon
ECS-optimized AMI version 20200319 with container agent version 1.38.0, which contained the
Amazon EFS access point and IAM authorization features. We recommend that you use Amazon
ECS-optimized AMI version 20200319 or later to use these features. For more information, see
Amazon ECS-optimized Linux AMIs.

Note

If you create your own AMI, you must use container agent 1.38.0 or later, ecs-init
version 1.38.0-1 or later, and run the following commands on your Amazon EC2 instance
to enable the Amazon ECS volume plugin. The commands are dependent on whether
you're using Amazon Linux 2 or Amazon Linux as your base image.
Amazon Linux 2

yum install amazon-efs-utils
systemctl enable --now amazon-ecs-volume-plugin

Amazon Linux

yum install amazon-efs-utils

Storage options for tasks 327

Amazon Elastic Container Service Developer Guide

sudo shutdown -r now

• For tasks that are hosted on Fargate, Amazon EFS file systems are supported on platform version
1.4.0 or later (Linux). For more information, see Fargate platform versions for Amazon ECS.

• When using Amazon EFS volumes for tasks that are hosted on Fargate, Fargate creates a
supervisor container that's responsible for managing the Amazon EFS volume. The supervisor
container uses a small amount of the task's memory and CPU. The supervisor container is visible
when querying the task metadata version 4 endpoint. Additionally, it is visible in CloudWatch
Container Insights as the container name aws-fargate-supervisor. For more information
when using the Amazon EC2 launch type, see Amazon ECS task metadata endpoint version 4. For
more information when using the Fargate launch type, see Amazon ECS task metadata endpoint
version 4 for tasks on Fargate.

• Using Amazon EFS volumes or specifying an EFSVolumeConfiguration isn't supported on
external instances.

• We recommend that you set the ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION parameter in
the agent configuration file to a value that is less than the default (about 1 hour). This change
helps prevent EFS mount credential expiration and allows for cleanup of mounts that are not in
use. For more information, see Amazon ECS container agent configuration.

Use Amazon EFS access points

Amazon EFS access points are application-specific entry points into an EFS file system for
managing application access to shared datasets. For more information about Amazon EFS access
points and how to control access to them, see Working with Amazon EFS Access Points in the
Amazon Elastic File System User Guide.

Access points can enforce a user identity, including the user's POSIX groups, for all file system
requests that are made through the access point. Access points can also enforce a different root
directory for the file system. This is so that clients can only access data in the specified directory or
its subdirectories.

Note

When creating an EFS access point, specify a path on the file system to serve as the root
directory. When referencing the EFS file system with an access point ID in your Amazon ECS

Storage options for tasks 328

https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html

Amazon Elastic Container Service Developer Guide

task definition, the root directory must either be omitted or set to /, which enforces the
path set on the EFS access point.

You can use an Amazon ECS task IAM role to enforce that specific applications use a specific access
point. By combining IAM policies with access points, you can provide secure access to specific
datasets for your applications. For more information about how to use task IAM roles, see Amazon
ECS task IAM role.

Best practices for using Amazon EFS volumes with Amazon ECS

Make note of the following best practice recommendations when you use Amazon EFS with
Amazon ECS.

Security and access controls for Amazon EFS volumes

Amazon EFS offers access control features that you can use to ensure that the data stored in an
Amazon EFS file system is secure and accessible only from applications that need it. You can secure
data by enabling encryption at rest and in-transit. For more information, see Data encryption in
Amazon EFS in the Amazon Elastic File System User Guide.

In addition to data encryption, you can also use Amazon EFS to restrict access to a file system.
There are three ways to implement access control in EFS.

• Security groups—With Amazon EFS mount targets, you can configure a security group that's
used to permit and deny network traffic. You can configure the security group attached to
Amazon EFS to permit NFS traffic (port 2049) from the security group that's attached to your
Amazon ECS instances or, when using the awsvpc network mode, the Amazon ECS task.

• IAM—You can restrict access to an Amazon EFS file system using IAM. When configured, Amazon
ECS tasks require an IAM role for file system access to mount an EFS file system. For more
information, see Using IAM to control file system data access in the Amazon Elastic File System
User Guide.

IAM policies can also enforce predefined conditions such as requiring a client to use TLS when
connecting to an Amazon EFS file system. For more information, see Amazon EFS condition keys
for clients in the Amazon Elastic File System User Guide.

• Amazon EFS access points—Amazon EFS access points are application-specific entry points into
an Amazon EFS file system. You can use access points to enforce a user identity, including the

Storage options for tasks 329

https://docs.aws.amazon.com/efs/latest/ug/encryption.html
https://docs.aws.amazon.com/efs/latest/ug/encryption.html
https://docs.aws.amazon.com/efs/latest/ug/iam-access-control-nfs-efs.html
https://docs.aws.amazon.com/efs/latest/ug/iam-access-control-nfs-efs.html#efs-condition-keys-for-nfs
https://docs.aws.amazon.com/efs/latest/ug/iam-access-control-nfs-efs.html#efs-condition-keys-for-nfs

Amazon Elastic Container Service Developer Guide

user's POSIX groups, for all file system requests that are made through the access point. Access
points can also enforce a different root directory for the file system. This is so that clients can
only access data in the specified directory or its sub-directories.

IAM policies

You can use IAM policies to control the access to the Amazon EFS file system.

You can specify the following actions for clients accessing a file system using a file system policy.

Action Description

elasticfilesystem:ClientMount Provides read-only access to a file system.

elasticfilesystem:ClientWrite Provides write permissions on a file system.

elasticfilesystem:ClientRoo
tAccess

Provides use of the root user when accessing a
file system.

You need to specify each action in a policy. The policies can be defined in the following ways:

• Client-based - Attach the policy to the task role

Set the IAM authorization option when you create the task definition.

• Resource-based - Attach the policy to Amazon EFS file system

If the resource-based policy does not exist, by default at file system creation access is granted to
all principals (*).

When you set the IAM authorization option, we merge the the policy associated with the task
role and the Amazon EFS resource-based. The IAM authorization option passes the task identity
(the task role) with the policy to Amazon EFS. This allows the Amazon EFS resource-based policy
to have context for the IAM user or role specified in the policy. If you do not set the option, the
Amazon EFS resource-level policy identifies the IAM user as ”anonymous".

Consider implementing all three access controls on an Amazon EFS file system for maximum
security. For example, you can configure the security group attached to an Amazon EFS mount
point to only permit ingress NFS traffic from a security group that's associated with your container

Storage options for tasks 330

Amazon Elastic Container Service Developer Guide

instance or Amazon ECS task. Additionally, you can configure Amazon EFS to require an IAM role to
access the file system, even if the connection originates from a permitted security group. Last, you
can use Amazon EFS access points to enforce POSIX user permissions and specify root directories
for applications.

The following task definition snippet shows how to mount an Amazon EFS file system using an
access point.

"volumes": [
 {
 "efsVolumeConfiguration": {
 "fileSystemId": "fs-1234",
 "authorizationConfig": {
 "accessPointId": "fsap-1234",
 "iam": "ENABLED"
 },
 "transitEncryption": "ENABLED",
 "rootDirectory": ""
 },
 "name": "my-filesystem"
 }
]

Amazon EFS volume performance

Amazon EFS offers two performance modes: General Purpose and Max I/O. General Purpose
is suitable for latency-sensitive applications such as content management systems and CI/CD
tools. In contrast, Max I/O file systems are suitable for workloads such as data analytics, media
processing, and machine learning. These workloads need to perform parallel operations from
hundreds or even thousands of containers and require the highest possible aggregate throughput
and IOPS. For more information, see Amazon EFS performance modes in the Amazon Elastic File
System User Guide.

Some latency sensitive workloads require both the higher I/O levels that are provided by Max I/
O performance mode and the lower latency that are provided by General Purpose performance
mode. For this type of workload, we recommend creating multiple General Purpose performance
mode file systems. That way, you can spread your application workload across all these file
systems, as long as the workload and applications can support it.

Storage options for tasks 331

https://docs.aws.amazon.com/efs/latest/ug/performance.html#performancemodes

Amazon Elastic Container Service Developer Guide

Amazon EFS volume throughput

All Amazon EFS file systems have an associated metered throughput that's determined by either
the amount of provisioned throughput for file systems using Provisioned Throughput or the amount
of data stored in the EFS Standard or One Zone storage class for file systems using Bursting
Throughput. For more information, see Understanding metered throughput in the Amazon Elastic
File System User Guide.

The default throughput mode for Amazon EFS file systems is bursting mode. With bursting mode,
the throughput that's available to a file system scales in or out as a file system grows. Because
file-based workloads typically spike, requiring high levels of throughput for periods of time and
lower levels of throughput the rest of the time, Amazon EFS is designed to burst to allow high
throughput levels for periods of time. Additionally, because many workloads are read-heavy, read
operations are metered at a 1:3 ratio to other NFS operations (like write).

All Amazon EFS file systems deliver a consistent baseline performance of 50 MB/s for each TB of
Amazon EFS Standard or Amazon EFS One Zone storage. All file systems (regardless of size) can
burst to 100 MB/s. File systems with more than 1TB of EFS Standard or EFS One Zone storage can
burst to 100 MB/s for each TB. Because read operations are metered at a 1:3 ratio, you can drive up
to 300 MiBs/s for each TiB of read throughput. As you add data to your file system, the maximum
throughput that's available to the file system scales linearly and automatically with your storage
in the Amazon EFS Standard storage class. If you need more throughput than you can achieve with
your amount of data stored, you can configure Provisioned Throughput to the specific amount your
workload requires.

File system throughput is shared across all Amazon EC2 instances connected to a file system. For
example, a 1TB file system that can burst to 100 MB/s of throughput can drive 100 MB/s from
a single Amazon EC2 instance can each drive 10 MB/s. For more information, see Amazon EFS
performance in the Amazon Elastic File System User Guide.

Optimizing cost for Amazon EFS volumes

Amazon EFS simplifies scaling storage for you. Amazon EFS file systems grow automatically as you
add more data. Especially with Amazon EFS Bursting Throughput mode, throughput on Amazon
EFS scales as the size of your file system in the standard storage class grows. To improve the
throughput without paying an additional cost for provisioned throughput on an EFS file system,
you can share an Amazon EFS file system with multiple applications. Using Amazon EFS access
points, you can implement storage isolation in shared Amazon EFS file systems. By doing so, even

Storage options for tasks 332

https://docs.aws.amazon.com/efs/latest/ug/performance.html#read-write-throughput
https://docs.aws.amazon.com/efs/latest/ug/performance.html
https://docs.aws.amazon.com/efs/latest/ug/performance.html

Amazon Elastic Container Service Developer Guide

though the applications still share the same file system, they can't access data unless you authorize
it.

As your data grows, Amazon EFS helps you automatically move infrequently accessed files to a
lower storage class. The Amazon EFS Standard-Infrequent Access (IA) storage class reduces storage
costs for files that aren't accessed every day. It does this without sacrificing the high availability,
high durability, elasticity, and the POSIX file system access that Amazon EFS provides. For more
information, see EFS storage classes in the Amazon Elastic File System User Guide.

Consider using Amazon EFS lifecycle policies to automatically save money by moving infrequently
accessed files to Amazon EFS IA storage. For more information, see Amazon EFS lifecycle
management in the Amazon Elastic File System User Guide.

When creating an Amazon EFS file system, you can choose if Amazon EFS replicates your data
across multiple Availability Zones (Standard) or stores your data redundantly within a single
Availability Zone. The Amazon EFS One Zone storage class can reduce storage costs by a significant
margin compared to Amazon EFS Standard storage classes. Consider using Amazon EFS One Zone
storage class for workloads that don't require multi-AZ resilience. You can further reduce the cost
of Amazon EFS One Zone storage by moving infrequently accessed files to Amazon EFS One Zone-
Infrequent Access. For more information, see Amazon EFS Infrequent Access.

Amazon EFS volume data protection

Amazon EFS stores your data redundantly across multiple Availability Zones for file systems
using Standard storage classes. If you select Amazon EFS One Zone storage classes, your data
is redundantly stored within a single Availability Zone. Additionally, Amazon EFS is designed to
provide 99.999999999% (11 9’s) of durability over a given year.

As with any environment, it's a best practice to have a backup and to build safeguards against
accidental deletion. For Amazon EFS data, that best practice includes a functioning, regularly
tested backup using AWS Backup. File systems using Amazon EFS One Zone storage classes are
configured to automatically back up files by default at file system creation unless you choose to
disable this functionality. For more information, see Backing up EFS file systems in the Amazon
Elastic File System User Guide.

Specify an Amazon EFS file system in an Amazon ECS task definition

To use Amazon EFS file system volumes for your containers, you must specify the volume and
mount point configurations in your task definition. The following task definition JSON snippet
shows the syntax for the volumes and mountPoints objects for a container.

Storage options for tasks 333

https://docs.aws.amazon.com/efs/latest/ug/features.html
https://docs.aws.amazon.com/efs/latest/ug/lifecycle-management-efs.html
https://docs.aws.amazon.com/efs/latest/ug/lifecycle-management-efs.html
https://aws.amazon.com/efs/features/infrequent-access/
https://docs.aws.amazon.com/efs/latest/ug/awsbackup.html

Amazon Elastic Container Service Developer Guide

{
 "containerDefinitions": [
 {
 "name": "container-using-efs",
 "image": "public.ecr.aws/amazonlinux/amazonlinux:latest",
 "entryPoint": [
 "sh",
 "-c"
],
 "command": [
 "ls -la /mount/efs"
],
 "mountPoints": [
 {
 "sourceVolume": "myEfsVolume",
 "containerPath": "/mount/efs",
 "readOnly": true
 }
]
 }
],
 "volumes": [
 {
 "name": "myEfsVolume",
 "efsVolumeConfiguration": {
 "fileSystemId": "fs-1234",
 "rootDirectory": "/path/to/my/data",
 "transitEncryption": "ENABLED",
 "transitEncryptionPort": integer,
 "authorizationConfig": {
 "accessPointId": "fsap-1234",
 "iam": "ENABLED"
 }
 }
 }
]
}

efsVolumeConfiguration

Type: Object

Required: No

Storage options for tasks 334

Amazon Elastic Container Service Developer Guide

This parameter is specified when using Amazon EFS volumes.

fileSystemId

Type: String

Required: Yes

The Amazon EFS file system ID to use.

rootDirectory

Type: String

Required: No

The directory within the Amazon EFS file system to mount as the root directory inside the
host. If this parameter is omitted, the root of the Amazon EFS volume is used. Specifying /
has the same effect as omitting this parameter.

Important

If an EFS access point is specified in the authorizationConfig, the root directory
parameter must either be omitted or set to /, which enforces the path set on the EFS
access point.

transitEncryption

Type: String

Valid values: ENABLED | DISABLED

Required: No

Specifies whether to enable encryption for Amazon EFS data in transit between the Amazon
ECS host and the Amazon EFS server. If Amazon EFS IAM authorization is used, transit
encryption must be enabled. If this parameter is omitted, the default value of DISABLED is
used. For more information, see Encrypting Data in Transit in the Amazon Elastic File System
User Guide.

transitEncryptionPort

Type: Integer

Storage options for tasks 335

https://docs.aws.amazon.com/efs/latest/ug/encryption-in-transit.html

Amazon Elastic Container Service Developer Guide

Required: No

The port to use when sending encrypted data between the Amazon ECS host and the
Amazon EFS server. If you don't specify a transit encryption port, it uses the port selection
strategy that the Amazon EFS mount helper uses. For more information, see EFS Mount
Helper in the Amazon Elastic File System User Guide.

authorizationConfig

Type: Object

Required: No

The authorization configuration details for the Amazon EFS file system.

accessPointId

Type: String

Required: No

The access point ID to use. If an access point is specified, the root directory value in the
efsVolumeConfiguration must either be omitted or set to /, which enforces the path
set on the EFS access point. If an access point is used, transit encryption must be enabled
in the EFSVolumeConfiguration. For more information, see Working with Amazon
EFS Access Points in the Amazon Elastic File System User Guide.

iam

Type: String

Valid values: ENABLED | DISABLED

Required: No

Specifies whether to use the Amazon ECS task IAM role defined in a task definition when
mounting the Amazon EFS file system. If enabled, transit encryption must be enabled
in the EFSVolumeConfiguration. If this parameter is omitted, the default value of
DISABLED is used. For more information, see IAM Roles for Tasks.

Configuring Amazon EFS file systems for Amazon ECS using the console

Learn how to use Amazon Elastic File System (Amazon EFS) file systems with Amazon ECS.

Storage options for tasks 336

https://docs.aws.amazon.com/efs/latest/ug/efs-mount-helper.html
https://docs.aws.amazon.com/efs/latest/ug/efs-mount-helper.html
https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html
https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

Amazon Elastic Container Service Developer Guide

Step 1: Create an Amazon ECS cluster

Use the following steps to create an Amazon ECS cluster.

To create a new cluster (Amazon ECS console)

Before you begin, assign the appropriate IAM permission. For more information, see the section
called “Amazon ECS cluster examples”.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose Create cluster.

5. Under Cluster configuration, for Cluster name, enter EFS-tutorial for the cluster name.

6. (Optional) To change the VPC and subnets where your tasks and services launch, under
Networking, perform any of the following operations:

• To remove a subnet, under Subnets, choose X for each subnet that you want to remove.

• To change to a VPC other than the default VPC, under VPC, choose an existing VPC, and
then under Subnets, select each subnet.

7. To add Amazon EC2 instances to your cluster, expand Infrastructure, and then select Amazon
EC2 instances. Next, configure the Auto Scaling group which acts as the capacity provider:

• To create a Auto Scaling group, from Auto Scaling group (ASG), select Create new group,
and then provide the following details about the group:

• For Operating system/Architecture, choose Amazon Linux 2.

• For EC2 instance type, choose t2.micro.

For SSH key pair, choose the pair that proves your identity when you connect to the
instance.

• For Capacity, enter 1.

8. Choose Create.

Storage options for tasks 337

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Step 2: Create a security group for Amazon EC2 instances and the Amazon EFS file system

In this step, you create a security group for your Amazon EC2 instances that allows inbound
network traffic on port 80 and your Amazon EFS file system that allows inbound access from your
container instances.

Create a security group for your Amazon EC2 instances with the following options:

• Security group name - a unique name for your security group.

• VPC - the VPC that you identified earlier for your cluster.

• Inbound rule

• Type - HTTP

• Source - 0.0.0.0/0.

Create a security group for your Amazon EFS file system with the following options:

• Security group name - a unique name for your security group. For example, EFS-access-for-
sg-dc025fa2.

• VPC - the VPC that you identified earlier for your cluster.

• Inbound rule

• Type - NFS

• Source - Custom with the ID of the security group you created for your instances.

For information about how to create a security group, see Create a security group for your Amazon
EC2 instance in the Amazon EC2 User Guide.

Step 3: Create an Amazon EFS file system

In this step, you create an Amazon EFS file system.

To create an Amazon EFS file system for Amazon ECS tasks.

1. Open the Amazon Elastic File System console at https://console.aws.amazon.com/efs/.

2. Choose Create file system.

3. Enter a name for your file system and then choose the VPC that your container instances are
hosted in. By default, each subnet in the specified VPC receives a mount target that uses the
default security group for that VPC. Then, choose Customize.

Storage options for tasks 338

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-security-group.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-security-group.html
https://console.aws.amazon.com/efs/

Amazon Elastic Container Service Developer Guide

Note

This tutorial assumes that your Amazon EFS file system, Amazon ECS cluster, container
instances, and tasks are in the same VPC. For more information about mounting a file
system from a different VPC, see Walkthrough: Mount a file system from a different
VPC in the Amazon EFS User Guide.

4. On the File system settings page, configure optional settings and then under Performance
settings, choose the Bursting throughput mode for your file system. After you have
configured settings, select Next.

a. (Optional) Add tags for your file system. For example, you could specify a unique name for
the file system by entering that name in the Value column next to the Name key.

b. (Optional) Enable lifecycle management to save money on infrequently accessed storage.
For more information, see EFS Lifecycle Management in the Amazon Elastic File System
User Guide.

c. (Optional) Enable encryption. Select the check box to enable encryption of your Amazon
EFS file system at rest.

5. On the Network access page, under Mount targets, replace the existing security group
configuration for every availability zone with the security group you created for the file system
in Step 2: Create a security group for Amazon EC2 instances and the Amazon EFS file system
and then choose Next.

6. You do not need to configure File system policy for this tutorial, so you can skip the section by
choosing Next.

7. Review your file system options and choose Create to complete the process.

8. From the File systems screen, record the File system ID. In the next step, you will reference
this value in your Amazon ECS task definition.

Step 4: Add content to the Amazon EFS file system

In this step, you mount the Amazon EFS file system to an Amazon EC2 instance and add content to
it. This is for testing purposes in this tutorial, to illustrate the persistent nature of the data. When
using this feature you would normally have your application or another method of writing data to
your Amazon EFS file system.

Storage options for tasks 339

https://docs.aws.amazon.com/efs/latest/ug/efs-different-vpc.html
https://docs.aws.amazon.com/efs/latest/ug/efs-different-vpc.html
https://docs.aws.amazon.com/efs/latest/ug/lifecycle-management-efs.html

Amazon Elastic Container Service Developer Guide

To create an Amazon EC2 instance and mount the Amazon EFS file system

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Launch Instance.

3. Under Application and OS Images (Amazon Machine Image), select the Amazon Linux 2 AMI
(HVM).

4. Under Instance type, keep the default instance type, t2.micro.

5. Under Key pair (login), select a key pair for SSH access to the instance.

6. Under Network settings, select the VPC that you specified for your Amazon EFS file system
and Amazon ECS cluster. Select a subnet and the instance security group created in Step 2:
Create a security group for Amazon EC2 instances and the Amazon EFS file system. Configure
the instance's security group. Ensure that Auto-assign public IP is enabled.

7. Under Configure storage, choose the Edit button for file systems and then choose EFS. Select
the file system you created in Step 3: Create an Amazon EFS file system. You can optionally
change the mount point or leave the default value.

Important

Your must select a subnet before you can add a file system to the instance.

8. Clear the Automatically create and attach security groups. Leave the other check box
selected. Choose Add shared file system.

9. Under Advanced Details, ensure that the user data script is populated automatically with the
Amazon EFS file system mounting steps.

10. Under Summary, ensure the Number of instances is 1. Choose Launch instance.

11. On the Launch an instance page, choose View all instances to see the status of your
instances. Initially, the Instance state status is PENDING. After the state changes to RUNNING
and the instance passes all status checks, the instance is ready for use.

Now, you connect to the Amazon EC2 instance and add content to the Amazon EFS file system.

To connect to the Amazon EC2 instance and add content to the Amazon EFS file system

1. SSH to the Amazon EC2 instance you created. For more information, see Connect to your Linux
instance using SSH in the Amazon EC2 User Guide.

Storage options for tasks 340

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect-to-linux-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect-to-linux-instance.html

Amazon Elastic Container Service Developer Guide

2. From the terminal window, run the df -T command to verify that the Amazon EFS file system is
mounted. In the following output, we have highlighted the Amazon EFS file system mount.

$ df -T
Filesystem Type 1K-blocks Used Available Use% Mounted on
devtmpfs devtmpfs 485468 0 485468 0% /dev
tmpfs tmpfs 503480 0 503480 0% /dev/shm
tmpfs tmpfs 503480 424 503056 1% /run
tmpfs tmpfs 503480 0 503480 0% /sys/fs/
cgroup
/dev/xvda1 xfs 8376300 1310952 7065348 16% /
127.0.0.1:/ nfs4 9007199254739968 0 9007199254739968 0% /mnt/efs/fs1
tmpfs tmpfs 100700 0 100700 0% /run/
user/1000

3. Navigate to the directory that the Amazon EFS file system is mounted at. In the example
above, that is /mnt/efs/fs1.

4. Create a file named index.html with the following content:

<html>
 <body>
 <h1>It Works!</h1>
 <p>You are using an Amazon EFS file system for persistent container
 storage.</p>
 </body>
</html>

Step 5: Create a task definition

The following task definition creates a data volume named efs-html. The nginx container
mounts the host data volume at the NGINX root, /usr/share/nginx/html.

To create a new task definition using the Amazon ECS console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. Choose Create new task definition, Create new task definition with JSON.

4. In the JSON editor box, copy and paste the following JSON text, replacing the fileSystemId
with the ID of your Amazon EFS file system.

Storage options for tasks 341

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

{
 "containerDefinitions": [
 {
 "memory": 128,
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80,
 "protocol": "tcp"
 }
],
 "essential": true,
 "mountPoints": [
 {
 "containerPath": "/usr/share/nginx/html",
 "sourceVolume": "efs-html"
 }
],
 "name": "nginx",
 "image": "public.ecr.aws/docker/library/nginx:latest"
 }
],
 "volumes": [
 {
 "name": "efs-html",
 "efsVolumeConfiguration": {
 "fileSystemId": "fs-1324abcd",
 "transitEncryption": "ENABLED"
 }
 }
],
 "family": "efs-tutorial",
 "executionRoleArn":"arn:aws:iam::111122223333:role/ecsTaskExecutionRole"
}

Note

You can add the following permissions to your Amazon ECS task execution IAM role to
allow the Amazon ECS agent to locate and mount an Amazon EFS file system to a task
at startup.

Storage options for tasks 342

Amazon Elastic Container Service Developer Guide

• elasticfilesystem:ClientMount

• elasticfilesystem:ClientWrite

• elasticfilesystem:DescribeMountTargets

• elasticfilesystem:DescribeFileSystems

5. Choose Create.

Step 6: Run a task and view the results

Now that your Amazon EFS file system is created and there is web content for the NGINX container
to serve, you can run a task using the task definition that you created. The NGINX web server
serves your simple HTML page. If you update the content in your Amazon EFS file system, those
changes are propagated to any containers that have also mounted that file system.

The task runs in the subnet that you defined for the cluster.

To run a task and view the results using the console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, select the cluster to run the standalone task in.

Determine the resource from where you launch the service.

To start a service from Steps

Clusters a. On the Clusters page,
select the cluster to
create the service in.

b. From the Tasks tab,
choose Run new task.

Launch type a. On the Task page, choose
the task definition.

b. If there is more than
one revision, select the
revision.

Storage options for tasks 343

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

To start a service from Steps

c. Choose Create, Run task.

3. (Optional) Choose how your scheduled task is distributed across your cluster infrastructure.
Expand Compute configuration, and then do the following:

Distribution method Steps

Launch type a. In the Compute options
section, select Launch
type.

b. For Launch type, choose
EC2.

4. For Application type, choose Task.

5. For Task definition, choose the efs-tutorial task definition that you created earlier .

6. For Desired tasks, enter 1.

7. Choose Create.

8. On the Cluster page, choose Infrastructure.

9. Under Container Instances, choose the container instance to connect to.

10. On the Container Instance page, under Networking, record the Public IP for your instance.

11. Open a browser and enter the public IP address. You should see the following message:

It works!
You are using an Amazon EFS file system for persistent container storage.

Note

If you do not see the message, make sure that the security group for your container
instance allows inbound network traffic on port 80 and the security group for your file
system allows inbound access from the container instance.

Storage options for tasks 344

Amazon Elastic Container Service Developer Guide

Use FSx for Windows File Server volumes with Amazon ECS

FSx for Windows File Server provides fully managed Windows file servers, that are backed by a
Windows file system. When using FSx for Windows File Server together with ECS, you can provision
your Windows tasks with persistent, distributed, shared, static file storage. For more information,
see What Is FSx for Windows File Server?.

Note

EC2 instances that use the Amazon ECS-Optimized Windows Server 2016 Full AMI do not
support FSx for Windows File Server ECS task volumes.
You can't use FSx for Windows File Server volumes in a Windows containers on Fargate
configuration. Instead, you can modify containers to mount them on startup.

You can use FSx for Windows File Server to deploy Windows workloads that require access to
shared external storage, highly-available Regional storage, or high-throughput storage. You can
mount one or more FSx for Windows File Server file system volumes to an Amazon ECS container
that runs on an Amazon ECS Windows instance. You can share FSx for Windows File Server file
system volumes between multiple Amazon ECS containers within a single Amazon ECS task.

To enable the use of FSx for Windows File Server with ECS, include the FSx for Windows File Server
file system ID and the related information in a task definition. This is in the following example task
definition JSON snippet. Before you create and run a task definition, you need the following.

• An ECS Windows EC2 instance that's joined to a valid domain. It can be hosted by an AWS
Directory Service for Microsoft Active Directory, on-premises Active Directory or self-hosted
Active Directory on Amazon EC2.

• An AWS Secrets Manager secret or Systems Manager parameter that contains the credentials
that are used to join the Active Directory domain and attach the FSx for Windows File Server file
system. The credential values are the name and password credentials that you entered when
creating the Active Directory.

For a related tutorial, see Learn how to configure FSx for Windows File Server file systems for
Amazon ECS.

Considerations

Consider the following when using FSx for Windows File Server volumes:

Storage options for tasks 345

https://docs.aws.amazon.com/fsx/latest/WindowsGuide/what-is.html
https://aws.amazon.com/blogs/containers/use-smb-storage-with-windows-containers-on-aws-fargate/
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html

Amazon Elastic Container Service Developer Guide

• FSx for Windows File Server with Amazon ECS only supports Windows Amazon EC2 instances.
Linux Amazon EC2 instances aren't supported.

• FSx for Windows File Server with Amazon ECS doesn't support AWS Fargate.

• FSx for Windows File Server with Amazon ECS with awsvpc network mode requires version
1.54.0 or later of the container agent.

• The maximum number of drive letters that can be used for an Amazon ECS task is 23. Each task
with an FSx for Windows File Server volume gets a drive letter assigned to it.

• By default, task resource cleanup time is three hours after the task ended. Even if
no tasks use it, a file mapping that's created by a task persists for three hours. The
default cleanup time can be configured by using the Amazon ECS environment variable
ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION. For more information, see Amazon ECS
container agent configuration.

• Tasks typically only run in the same VPC as the FSx for Windows File Server file system. However,
it's possible to have cross-VPC support if there's an established network connectivity between
the Amazon ECS cluster VPC and the FSx for Windows File Server file-system through VPC
peering.

• You control access to an FSx for Windows File Server file system at the network level by
configuring the VPC security groups. Only tasks that are hosted on EC2 instances joined to the
Active Directory domain with correctly configured Active Directory security groups can access the
FSx for Windows File Server file-share. If the security groups are misconfigured, Amazon ECS fails
to launch the task with the following error message: unable to mount file system fs-
id.”

• FSx for Windows File Server is integrated with AWS Identity and Access Management (IAM)
to control the actions that your IAM users and groups can take on specific FSx for Windows
File Server resources. With client authorization, customers can define IAM roles that allow or
deny access to specific FSx for Windows File Server file systems, optionally require read-only
access, and optionally allow or disallow root access to the file system from the client. For more
information, see Security in the Amazon FSx Windows User Guide.

Best practices for using FSx for Windows File Server with Amazon ECS

Make note of the following best practice recommendations when you use FSx for Windows File
Server with Amazon ECS.

Storage options for tasks 346

https://docs.aws.amazon.com/fsx/latest/WindowsGuide/security.html

Amazon Elastic Container Service Developer Guide

Security and access controls for FSx for Windows File Server

FSx for Windows File Server offers the following access control features that you can use to ensure
that the data stored in an FSx for Windows File Server file system is secure and accessible only
from applications that need it.

Data encryption for FSx for Windows File Server volumes

FSx for Windows File Server supports two forms of encryption for file systems. They are encryption
of data in transit and encryption at rest. Encryption of data in transit is supported on file shares
that are mapped on a container instance that supports SMB protocol 3.0 or newer. Encryption
of data at rest is automatically enabled when creating an Amazon FSx file system. Amazon FSx
automatically encrypts data in transit using SMB encryption as you access your file system without
the need for you to modify your applications. For more information, see Data encryption in
Amazon FSx in the Amazon FSx for Windows File Server User Guide.

Use Windows ACLs for folder level access control

The Windows Amazon EC2 instance access Amazon FSx file shares using Active Directory
credentials. It uses standard Windows access control lists (ACLs) for fine-grained file-level and
folder-level access control. You can create multiple credentials, each one for a specific folder within
the share which maps to a specific task.

In the following example, the task has access to the folder App01 using a credential saved in
Secrets Manager. Its Amazon Resource Name (ARN) is 1234.

"rootDirectory": "\\path\\to\\my\\data\App01",
"credentialsParameter": "arn-1234",
"domain": "corp.fullyqualified.com",

In another example, a task has access to the folder App02 using a credential saved in the Secrets
Manager. Its ARN is 6789.

"rootDirectory": "\\path\\to\\my\\data\App02",
"credentialsParameter": "arn-6789",
"domain": "corp.fullyqualified.com",

Storage options for tasks 347

https://docs.aws.amazon.com/fsx/latest/WindowsGuide/encryption.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/encryption.html

Amazon Elastic Container Service Developer Guide

Specify an FSx for Windows File Server file system in an Amazon ECS task definition

To use FSx for Windows File Server file system volumes for your containers, specify the volume
and mount point configurations in your task definition. The following task definition JSON snippet
shows the syntax for the volumes and mountPoints objects for a container.

{
 "containerDefinitions": [
 {
 "entryPoint": [
 "powershell",
 "-Command"
],
 "portMappings": [],
 "command": ["New-Item -Path C:\\fsx-windows-dir\\index.html -ItemType file
 -Value '<html> <head> <title>Amazon ECS Sample App</title> <style>body {margin-top:
 40px; background-color: #333;} </style> </head><body> <div style=color:white;text-
align:center> <h1>Amazon ECS Sample App</h1> <h2>It Works!</h2> <p>You are using Amazon
 FSx for Windows File Server file system for persistent container storage.</p>' -
Force"],
 "cpu": 512,
 "memory": 256,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "essential": false,
 "name": "container1",
 "mountPoints": [
 {
 "sourceVolume": "fsx-windows-dir",
 "containerPath": "C:\\fsx-windows-dir",
 "readOnly": false
 }
]
 },
 {
 "entryPoint": [
 "powershell",
 "-Command"
],
 "portMappings": [
 {
 "hostPort": 443,
 "protocol": "tcp",

Storage options for tasks 348

Amazon Elastic Container Service Developer Guide

 "containerPort": 80
 }
],
 "command": ["Remove-Item -Recurse C:\\inetpub\\wwwroot* -Force; Start-
Sleep -Seconds 120; Move-Item -Path C:\\fsx-windows-dir\\index.html -Destination C:\
\inetpub\\wwwroot\\index.html -Force; C:\\ServiceMonitor.exe w3svc"],
 "mountPoints": [
 {
 "sourceVolume": "fsx-windows-dir",
 "containerPath": "C:\\fsx-windows-dir",
 "readOnly": false
 }
],
 "cpu": 512,
 "memory": 256,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "essential": true,
 "name": "container2"
 }
],
 "family": "fsx-windows",
 "executionRoleArn": "arn:aws:iam::111122223333:role/ecsTaskExecutionRole",
 "volumes": [
 {
 "name": "fsx-windows-dir",
 "fsxWindowsFileServerVolumeConfiguration": {
 "fileSystemId": "fs-0eeb5730b2EXAMPLE",
 "authorizationConfig": {
 "domain": "example.com",
 "credentialsParameter": "arn:arn-1234"
 },
 "rootDirectory": "share"
 }
 }
]
}

FSxWindowsFileServerVolumeConfiguration

Type: Object

Required: No

Storage options for tasks 349

Amazon Elastic Container Service Developer Guide

This parameter is specified when you're using FSx for Windows File Server file system for task
storage.

fileSystemId

Type: String

Required: Yes

The FSx for Windows File Server file system ID to use.

rootDirectory

Type: String

Required: Yes

The directory within the FSx for Windows File Server file system to mount as the root
directory inside the host.

authorizationConfig

credentialsParameter

Type: String

Required: Yes

The authorization credential options:

• Amazon Resource Name (ARN) of an Secrets Manager secret.

• Amazon Resource Name (ARN) of an Systems Manager parameter.

domain

Type: String

Required: Yes

A fully qualified domain name that's hosted by an AWS Directory Service for Microsoft
Active Directory (AWS Managed Microsoft AD) directory or a self-hosted EC2 Active
Directory.

Methods for storing FSx for Windows File Server volume credentials

There are two different methods of storing credentials for use with the credentials parameter.

Storage options for tasks 350

https://docs.aws.amazon.com/fsx/latest/WindowsGuide/what-is.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/integration-ps-secretsmanager.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html

Amazon Elastic Container Service Developer Guide

• AWS Secrets Manager secret

This credential can be created in the AWS Secrets Manager console by using the Other
type of secret category. You add a row for each key/value pair, username/admin and
password/password.

• Systems Manager parameter

This credential can be created in the Systems Manager parameter console by entering text in the
form that's in the following example code snippet.

{
 "username": "admin",
 "password": "password"
}

The credentialsParameter in the task definition
FSxWindowsFileServerVolumeConfiguration parameter holds either the secret ARN or the
Systems Manager parameter ARN. For more information, see What is AWS Secrets Manager in the
Secrets Manager User Guide and Systems Manager Parameter Store from the Systems Manager User
Guide.

Learn how to configure FSx for Windows File Server file systems for Amazon ECS

Learn how to launch an Amazon ECS-Optimized Windows instance that hosts an FSx for Windows
File Server file system and containers that can access the file system. To do this, you first create
an AWS Directory Service AWS Managed Microsoft Active Directory. Then, you create an FSx for
Windows File Server File Server file system and cluster with an Amazon EC2 instance and a task
definition. You configure the task definition for your containers to use the FSx for Windows File
Server file system. Finally, you test the file system.

It takes 20 to 45 minutes each time you launch or delete either the Active Directory or the FSx
for Windows File Server file system. Be prepared to reserve at least 90 minutes to complete the
tutorial or complete the tutorial over a few sessions.

Prerequisites for the tutorial

• An administrative user. See Set up to use Amazon ECS.

Storage options for tasks 351

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

Amazon Elastic Container Service Developer Guide

• (Optional) A PEM key pair for connecting to your EC2 Windows instance through RDP access. For
information about how to create key pairs, see Amazon EC2 key pairs and Amazon EC2 instances
in the Amazon EC2 User Guide.

• A VPC with at least one public and one private subnet, and one security group. You can use your
default VPC. You don't need a NAT gateway or device. AWS Directory Service doesn't support
Network Address Translation (NAT) with Active Directory. For this to work, the Active Directory,
FSx for Windows File Server file system, ECS Cluster, and EC2 instance must be located within
your VPC. For more information regarding VPCs and Active Directories, see Create a VPC and
Prerequisites for creating an AWS Managed Microsoft AD.

• The IAM ecsInstanceRole and ecsTaskExecutionRole permissions are associated with your
account. These service-linked roles allow services to make API calls and access containers,
secrets, directories, and file servers on your behalf.

Step 1: Create IAM access roles

Create a cluster with the AWS Management Console.

1. See Amazon ECS container instance IAM role to check whether you have an ecsInstanceRole
and to see how you can create one if you don't have one.

2. We recommend that role policies are customized for minimum permissions in an actual
production environment. For the purpose of working through this tutorial, verify that the
following AWS managed policy is attached to your ecsInstanceRole. Attach the policy if it is
not already attached.

• AmazonEC2ContainerServiceforEC2Role

• AmazonSSMManagedInstanceCore

• AmazonSSMDirectoryServiceAccess

To attach AWS managed policies.

a. Open the IAM console.

b. In the navigation pane, choose Roles.

c. Choose an AWS managed role.

d. Choose Permissions, Attach policies.

e. To narrow the available policies to attach, use Filter.

Storage options for tasks 352

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/vpc/latest/userguide/create-vpc.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html#ms_ad_getting_started_prereqs
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

f. Select the appropriate policy and choose Attach policy.

3. See Amazon ECS task execution IAM role to check whether you have an ecsTaskExecutionRole
and to see how you can create one if you don't have one.

We recommend that role policies are customized for minimum permissions in an actual
production environment. For the purpose of working through this tutorial, verify that the
following AWS managed policies are attached to your ecsTaskExecutionRole. Attach the
policies if they are not already attached. Use the procedure given in the preceding section to
attach the AWS managed policies.

• SecretsManagerReadWrite

• AmazonFSxReadOnlyAccess

• AmazonSSMReadOnlyAccess

• AmazonECSTaskExecutionRolePolicy

Step 2: Create Windows Active Directory (AD)

1. Follow the steps described in Creating your AWS Managed Microsoft AD in the AWS Directory
Service Administration Guide. Use the VPC you have designated for this tutorial. On Step 3 of
Creating your AWS Managed Microsoft AD, save the user name and admin password for use in
a following step. Also, note the fully qualified directory DNS name for future steps. You can
complete the following step while the Active Directory is being created.

2. Create an AWS Secrets Manager secret to use in the following steps. For more information, see
Get started with Secrets Manager in the AWS Secrets Manager User Guide.

a. Open the Secrets Manager console.

b. Click Store a new secret.

c. Select Other type of secrets.

d. For Secret key/value, in the first row, create a key username with value admin. Click on +
Add row.

e. In the new row, create a key password. For value, type in the password you entered in
Step 3 of Create Your AWS Managed AD Directory.

f. Click on the Next button.

g. Provide a secret name and description. Click Next.

h. Click Next. Click Store.
Storage options for tasks 353

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html#ms_ad_getting_started_create_directory
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html#get-started
https://console.aws.amazon.com/secretsmanager/

Amazon Elastic Container Service Developer Guide

i. From the list of Secrets page, click on the secret you have just created.

j. Save the ARN of the new secret for use in the following steps.

k. You can proceed to the next step while your Active Directory is being created.

Step 3: Verify and update your security group

In this step, you verify and update the rules for the security group that you're using. For this, you
can use the default security group that was created for your VPC.

Verify and update security group.

You need to create or edit your security group to send data from and to the ports, which are
described in Amazon VPC Security Groups in the FSx for Windows File Server User Guide. You can
do this by creating the security group inbound rule shown in the first row of the following table
of inbound rules. This rule allows inbound traffic from network interfaces (and their associated
instances) that are assigned to the security group. All of the cloud resources you create are within
the same VPC and attached to the same security group. Therefore, this rule allows traffic to be
sent to and from the FSx for Windows File Server file system, Active Directory, and ECS instance as
required. The other inbound rules allow traffic to serve the website and RDP access for connecting
to your ECS instance.

The following table shows which security group inbound rules are required for this tutorial.

Type Protocol Port range Source

All traffic All All sg-securi
tygroup

HTTPS TCP 443 0.0.0.0/0

RDP TCP 3389 your laptop IP
address

The following table shows which security group outbound rules are required for this tutorial.

Storage options for tasks 354

https://docs.aws.amazon.com/fsx/latest/WindowsGuide/limit-access-security-groups.html#fsx-vpc-security-groups

Amazon Elastic Container Service Developer Guide

Type Protocol Port range Destination

All traffic All All 0.0.0.0/0

1. Open the EC2 console and select Security Groups from the left-hand menu.

2. From the list of security groups now displayed, select check the check-box to the left of the
security group that you are using for this tutorial.

Your security group details are displayed.

3. Edit the inbound and outbound rules by selecting the Inbound rules or Outbound rules tabs
and choosing the Edit inbound rules or Edit outbound rules buttons. Edit the rules to match
those displayed in the preceding tables. After you create your EC2 instance later on in this
tutorial, edit the inbound rule RDP source with the public IP address of your EC2 instance as
described in Connect to your Windows instance using RDP from the Amazon EC2 User Guide.

Step 4: Create an FSx for Windows File Server file system

After your security group is verified and updated and your Active Directory is created and is in the
active status, create the FSx for Windows File Server file system in the same VPC as your Active
Directory. Use the following steps to create an FSx for Windows File Server file system for your
Windows tasks.

Create your first file system.

1. Open the Amazon FSx console.

2. On the dashboard, choose Create file system to start the file system creation wizard.

3. On the Select file system type page, choose FSx for Windows File Server, and then choose
Next. The Create file system page appears.

4. In the File system details section, provide a name for your file system. Naming your file
systems makes it easier to find and manage your them. You can use up to 256 Unicode
characters. Allowed characters are letters, numbers, spaces, and the special characters plus
sign (+). minus sign (-), equal sign (=), period (.), underscore (_), colon (:), and forward slash (/).

5. For Deployment type choose Single-AZ to deploy a file system that is deployed in a single
Availability Zone. Single-AZ 2 is the latest generation of single Availability Zone file systems,
and it supports SSD and HDD storage.

Storage options for tasks 355

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connecting_to_windows_instance.html
https://console.aws.amazon.com/fsx/

Amazon Elastic Container Service Developer Guide

6. For Storage type, choose HDD.

7. For Storage capacity, enter the minimum storage capacity.

8. Keep Throughput capacity at its default setting.

9. In the Network & security section, choose the same Amazon VPC that you chose for your AWS
Directory Service directory.

10. For VPC Security Groups, choose the security group that you verified in Step 3: Verify and
update your security group.

11. For Windows authentication, choose AWS Managed Microsoft Active Directory, and then
choose your AWS Directory Service directory from the list.

12. For Encryption, keep the default Encryption key setting of aws/fsx (default).

13. Keep the default settings for Maintenance preferences.

14. Click on the Next button.

15. Review the file system configuration shown on the Create file system page. For your reference,
note which file system settings you can modify after file system is created. Choose Create file
system.

16. Note the file system ID. You will need to use it in a later step.

You can go on to the next steps to create a cluster and EC2 instance while the FSx for Windows
File Server file system is being created.

Step 5: Create an Amazon ECS cluster

Create a cluster using the Amazon ECS console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose Create cluster.

5. Under Cluster configuration, for Cluster name, enter windows-fsx-cluster.

6. Expand Infrastructure, clear AWS Fargate (serverless) and then select Amazon EC2 instances.

• To create a Auto Scaling group, from Auto Scaling group (ASG), select Create new group,
and then provide the following details about the group:

• For Operating system/Architecture, choose Windows Server 2019 Core.

Storage options for tasks 356

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

• For EC2 instance type, choose t2.medium or t2.micro.

7. Choose Create.

Step 6: Create an Amazon ECS optimized Amazon EC2 instance

Create an Amazon ECS Windows container instance.

To create an Amazon ECS instance

1. Use the aws ssm get-parameters command to retrieve the AMI name for the Region that
hosts your VPC. For more information, see Retrieving Amazon ECS-Optimized AMI metadata.

2. Use the Amazon EC2 console to launch the instance.

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

b. From the navigation bar, select the Region to use.

c. From the EC2 Dashboard, choose Launch instance.

d. For Name, enter a unique name.

e. For Application and OS Images (Amazon Machine Image), in the search field, enter the
AMI name that you retrieved.

f. For Instance type, choose t2.medium or t2.micro.

g. For Key pair (login), choose a key pair. If you don't specify a key pair, you

h. Under Network settings, for VPC and Subnet, choose your VPC and a public subnet.

i. Under Network settings, for Security group, choose an existing security group, or create
a new one. Ensure that the security group you choose has the inbound and outbound rules
defined in Prerequisites for the tutorial

j. Under Network settings, for Auto-assign Public IP, select Enable.

k. Expand Advanced details, and then for Domain join directory, select the ID of the Active
Directory that you created. This option domain joins your AD when the EC2 instance is
launched.

l. Under Advanced details, for IAM instance profile , choose ecsInstanceRole.

m. Configure your Amazon ECS container instance with the following user data. Under
Advanced Details, paste the following script into the User data field, replacing
cluster_name with the name of your cluster.

<powershell>

Storage options for tasks 357

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/retrieve-ecs-optimized_windows_AMI.html
https://console.aws.amazon.com/ec2/

Amazon Elastic Container Service Developer Guide

Initialize-ECSAgent -Cluster windows-fsx-cluster -EnableTaskIAMRole
</powershell>

n. When you are ready, select the acknowledgment field, and then choose Launch Instances.

o. A confirmation page lets you know that your instance is launching. Choose View Instances
to close the confirmation page and return to the console.

3. Open the console at https://console.aws.amazon.com/ecs/v2.

4. In the navigation pane, choose Clusters, and then choose windows-fsx-cluster.

5. Choose the Infrastructure tab and verify that your instance has been registered in the
windows-fsx-cluster cluster.

Step 7: Register a Windows task definition

Before you can run Windows containers in your Amazon ECS cluster, you must register a task
definition. The following task definition example displays a simple web page. The task launches
two containers that have access to the FSx file system. The first container writes an HTML file to
the file system. The second container downloads the HTML file from the file system and serves the
webpage.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. Choose Create new task definition, Create new task definition with JSON.

4. In the JSON editor box, replace the values for your task execution role and the details about
your FSx file system and then choose Save.

{
 "containerDefinitions": [
 {
 "entryPoint": [
 "powershell",
 "-Command"
],
 "portMappings": [],
 "command": ["New-Item -Path C:\\fsx-windows-dir\\index.html -ItemType
 file -Value '<html> <head> <title>Amazon ECS Sample App</title> <style>body
 {margin-top: 40px; background-color: #333;} </style> </head><body> <div
 style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1> <h2>It
 Works!</h2> <p>You are using Amazon FSx for Windows File Server file system for
 persistent container storage.</p>' -Force"],

Storage options for tasks 358

https://console.aws.amazon.com/ecs/v2
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

 "cpu": 512,
 "memory": 256,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "essential": false,
 "name": "container1",
 "mountPoints": [
 {
 "sourceVolume": "fsx-windows-dir",
 "containerPath": "C:\\fsx-windows-dir",
 "readOnly": false
 }
]
 },
 {
 "entryPoint": [
 "powershell",
 "-Command"
],
 "portMappings": [
 {
 "hostPort": 443,
 "protocol": "tcp",
 "containerPort": 80
 }
],
 "command": ["Remove-Item -Recurse C:\\inetpub\\wwwroot* -Force;
 Start-Sleep -Seconds 120; Move-Item -Path C:\\fsx-windows-dir\\index.html -
Destination C:\\inetpub\\wwwroot\\index.html -Force; C:\\ServiceMonitor.exe
 w3svc"],
 "mountPoints": [
 {
 "sourceVolume": "fsx-windows-dir",
 "containerPath": "C:\\fsx-windows-dir",
 "readOnly": false
 }
],
 "cpu": 512,
 "memory": 256,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "essential": true,
 "name": "container2"
 }

Storage options for tasks 359

Amazon Elastic Container Service Developer Guide

],
 "family": "fsx-windows",
 "executionRoleArn": "arn:aws:iam::111122223333:role/ecsTaskExecutionRole",
 "volumes": [
 {
 "name": "fsx-windows-dir",
 "fsxWindowsFileServerVolumeConfiguration": {
 "fileSystemId": "fs-0eeb5730b2EXAMPLE",
 "authorizationConfig": {
 "domain": "example.com",
 "credentialsParameter": "arn:arn-1234"
 },
 "rootDirectory": "share"
 }
 }
]
}

Step 8: Run a task and view the results

Before running the task, verify that the status of your FSx for Windows File Server file system is
Available. After it is available, you can run a task using the task definition that you created. The
task starts out by creating containers that shuffle an HTML file between them using the file system.
After the shuffle, a web server serves the simple HTML page.

Note

You might not be able to connect to the website from within a VPN.

Run a task and view the results with the Amazon ECS console.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters, and then choose windows-fsx-cluster .

3. Choose the Tasks tab, and then choose Run new task.

4. For Launch Type, choose EC2.

5. Under Deployment configuration, for Task Definition, choose the fsx-windows, and then
choose Create.

6. When your task status is RUNNING, choose the task ID.

Storage options for tasks 360

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

7. Under Containers, when the container1 status is STOPPED, select container2 to view the
container's details.

8. Under Container details for container2, select Network bindings and then click on the
external IP address that is associated with the container. Your browser will open and display
the following message.

Amazon ECS Sample App
It Works!
You are using Amazon FSx for Windows File Server file system for persistent
 container storage.

Note

It may take a few minutes for the message to be displayed. If you don't see this
message after a few minutes, check that you aren't running in a VPN and make sure
that the security group for your container instance allows inbound network HTTP
traffic on port 443.

Step 9: Clean up

Note

It takes 20 to 45 minutes to delete the FSx for Windows File Server file system or the AD.
You must wait until the FSx for Windows File Server file system delete operations are
complete before starting the AD delete operations.

Delete FSx for Windows File Server file system.

1. Open the Amazon FSx console

2. Choose the radio button to the left of the FSx for Windows File Server file system that you just
created.

3. Choose Actions.

4. Select Delete file system.

Storage options for tasks 361

https://console.aws.amazon.com/fsx/

Amazon Elastic Container Service Developer Guide

Delete AD.

1. Open the AWS Directory Service console.

2. Choose the radio button to the left of the AD you just created.

3. Choose Actions.

4. Select Delete directory.

Delete the cluster.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters, and then choose fsx-windows-cluster .

3. Choose Delete cluster.

4. Enter the phrase and then choose Delete.

Terminate EC2 instance.

1. Open the Amazon EC2 console.

2. From the left-hand menu, select Instances.

3. Check the box to the left of the EC2 instance you created.

4. Click the Instance state, Terminate instance.

Delete secret.

1. Open the Secrets Manager console.

2. Select the secret you created for this walk through.

3. Click Actions.

4. Select Delete secret.

Use Docker volumes with Amazon ECS

When using Docker volumes, the built-in local driver or a third-party volume driver can be used.
Docker volumes are managed by Docker and a directory is created in /var/lib/docker/volumes
on the container instance that contains the volume data.

Storage options for tasks 362

https://console.aws.amazon.com/directoryservicev2/
https://console.aws.amazon.com/ecs/v2
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/secretsmanager/

Amazon Elastic Container Service Developer Guide

To use Docker volumes, specify a dockerVolumeConfiguration in your task definition. For more
information, see Volumes in the Docker documentation.

Some common use cases for Docker volumes are the following:

• To provide persistent data volumes for use with containers

• To share a defined data volume at different locations on different containers on the same
container instance

• To define an empty, nonpersistent data volume and mount it on multiple containers within the
same task

• To provide a data volume to your task that's managed by a third-party driver

Considerations for using Docker volumes

Consider the following when using Docker volumes:

• Docker volumes are only supported when using the EC2 launch type or external instances.

• Windows containers only support the use of the local driver.

• If a third-party driver is used, make sure it's installed and active on the container instance before
the container agent is started. If the third-party driver isn't active before the agent is started, you
can restart the container agent using one of the following commands:

• For the Amazon ECS-optimized Amazon Linux 2 AMI:

sudo systemctl restart ecs

• For the Amazon ECS-optimized Amazon Linux AMI:

sudo stop ecs && sudo start ecs

For information about how to specify a Docker volume in a task definition, see Specify a Docker
volume in an Amazon ECS task definition.

Specify a Docker volume in an Amazon ECS task definition

Before your containers can use data volumes, you must specify the volume and mount point
configurations in your task definition. This section describes the volume configuration for a

Storage options for tasks 363

https://docs.docker.com/engine/storage/volumes/

Amazon Elastic Container Service Developer Guide

container. For tasks that use a Docker volume, specify a dockerVolumeConfiguration. For tasks
that use a bind mount host volume, specify a host and optional sourcePath.

The following task definition JSON shows the syntax for the volumes and mountPoints objects
for a container.

{
 "containerDefinitions": [
 {
 "mountPoints": [
 {
 "sourceVolume": "string",
 "containerPath": "/path/to/mount_volume",
 "readOnly": boolean
 }
]
 }
],
 "volumes": [
 {
 "name": "string",
 "dockerVolumeConfiguration": {
 "scope": "string",
 "autoprovision": boolean,
 "driver": "string",
 "driverOpts": {
 "key": "value"
 },
 "labels": {
 "key": "value"
 }
 }
 }
]
}

name

Type: String

Required: No

Storage options for tasks 364

Amazon Elastic Container Service Developer Guide

The name of the volume. Up to 255 letters (uppercase and lowercase), numbers, hyphens (-),
and underscores (_) are allowed. This name is referenced in the sourceVolume parameter of
the container definition mountPoints object.

dockerVolumeConfiguration

Type: DockerVolumeConfiguration Object

Required: No

This parameter is specified when using Docker volumes. Docker volumes are supported only
when running tasks on EC2 instances. Windows containers support only the use of the local
driver. To use bind mounts, specify a host instead.

scope

Type: String

Valid Values: task | shared

Required: No

The scope for the Docker volume, which determines its lifecycle. Docker volumes that are
scoped to a task are automatically provisioned when the task starts and destroyed when
the task stops. Docker volumes that are scoped as shared persist after the task stops.

autoprovision

Type: Boolean

Default value: false

Required: No

If this value is true, the Docker volume is created if it doesn't already exist. This field is used
only if the scope is shared. If the scope is task, then this parameter must be omitted.

driver

Type: String

Required: No

The Docker volume driver to use. The driver value must match the driver name provided by
Docker because this name is used for task placement. If the driver was installed by using the

Storage options for tasks 365

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DockerVolumeConfiguration.html

Amazon Elastic Container Service Developer Guide

Docker plugin CLI, use docker plugin ls to retrieve the driver name from your container
instance. If the driver was installed by using another method, use Docker plugin discovery to
retrieve the driver name.

driverOpts

Type: String

Required: No

A map of Docker driver-specific options to pass through. This parameter maps to
DriverOpts in the Create a volume section of Docker.

labels

Type: String

Required: No

Custom metadata to add to your Docker volume.

mountPoints

Type: Object array

Required: No

The mount points for the data volumes in your container. This parameter maps to Volumes in
the create-container Docker API and the --volume option to docker run.

Windows containers can mount whole directories on the same drive as $env:ProgramData.
Windows containers cannot mount directories on a different drive, and mount points cannot be
used across drives. You must specify mount points to attach an Amazon EBS volume directly to
an Amazon ECS task.

sourceVolume

Type: String

Required: Yes, when mountPoints are used

The name of the volume to mount.

containerPath

Type: String

Storage options for tasks 366

Amazon Elastic Container Service Developer Guide

Required: Yes, when mountPoints are used

The path in the container where the volume will be mounted.

readOnly

Type: Boolean

Required: No

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume. The default value is false.

For tasks that run on EC2 instances running the Windows operating system, leave the value
as the default of false.

Docker volume examples for Amazon ECS

The following examples show how to provide ephemeral storage for a container and how to
provide a shared volume for multiple conatiners, and how to provide NFS persistent storage for a
container.

To provide ephemeral storage for a container using a Docker volume

In this example, a container uses an empty data volume that is disposed of after the task is
finished. One example use case is that you might have a container that needs to access some
scratch file storage location during a task. This task can be achieved using a Docker volume.

1. In the task definition volumes section, define a data volume with name and
DockerVolumeConfiguration values. In this example, we specify the scope as task so the
volume is deleted after the task stops and use the built-in local driver.

"volumes": [
 {
 "name": "scratch",
 "dockerVolumeConfiguration" : {
 "scope": "task",
 "driver": "local",
 "labels": {
 "scratch": "space"
 }
 }

Storage options for tasks 367

Amazon Elastic Container Service Developer Guide

 }
]

2. In the containerDefinitions section, define a container with mountPoints values that
reference the name of the defined volume and the containerPath value to mount the
volume at on the container.

"containerDefinitions": [
 {
 "name": "container-1",
 "mountPoints": [
 {
 "sourceVolume": "scratch",
 "containerPath": "/var/scratch"
 }
]
 }
]

To provide persistent storage for multiple containers using a Docker volume

In this example, you want a shared volume for multiple containers to use and you want it to persist
after any single task that use it stopped. The built-in local driver is being used. This is so the
volume is still tied to the lifecycle of the container instance.

1. In the task definition volumes section, define a data volume with name and
DockerVolumeConfiguration values. In this example, specify a shared scope so the
volume persists, set autoprovision to true. This is so that the volume is created for use. Then,
also use the built-in local driver.

"volumes": [
 {
 "name": "database",
 "dockerVolumeConfiguration" : {
 "scope": "shared",
 "autoprovision": true,
 "driver": "local",
 "labels": {
 "database": "database_name"
 }
 }

Storage options for tasks 368

Amazon Elastic Container Service Developer Guide

 }
]

2. In the containerDefinitions section, define a container with mountPoints values that
reference the name of the defined volume and the containerPath value to mount the
volume at on the container.

"containerDefinitions": [
 {
 "name": "container-1",
 "mountPoints": [
 {
 "sourceVolume": "database",
 "containerPath": "/var/database"
 }
]
 },
 {
 "name": "container-2",
 "mountPoints": [
 {
 "sourceVolume": "database",
 "containerPath": "/var/database"
 }
]
 }
]

To provide NFS persistent storage for a container using a Docker volume

In this example, a container uses an NFS data volume that is automatically mounted when the
task starts and unmounted when the task stops. This uses the Docker built-in local driver. One
example use case is that you might have a local NFS storage and need to access it from an ECS
Anywhere task. This can be achieved using a Docker volume with NFS driver option.

1. In the task definition volumes section, define a data volume with name and
DockerVolumeConfiguration values. In this example, specify a task scope so the volume
is unmounted after the task stops. Use the local driver and configure the driverOpts
with the type, device, and o options accordingly. Replace NFS_SERVER with the NFS server
endpoint.

Storage options for tasks 369

Amazon Elastic Container Service Developer Guide

"volumes": [
 {
 "name": "NFS",
 "dockerVolumeConfiguration" : {
 "scope": "task",
 "driver": "local",
 "driverOpts": {
 "type": "nfs",
 "device": "$NFS_SERVER:/mnt/nfs",
 "o": "addr=$NFS_SERVER"
 }
 }
 }
]

2. In the containerDefinitions section, define a container with mountPoints values that
reference the name of the defined volume and the containerPath value to mount the
volume on the container.

"containerDefinitions": [
 {
 "name": "container-1",
 "mountPoints": [
 {
 "sourceVolume": "NFS",
 "containerPath": "/var/nfsmount"
 }
]
 }
]

Use bind mounts with Amazon ECS

With bind mounts, a file or directory on a host, such as an Amazon EC2 instance, is mounted into a
container. Bind mounts are supported for tasks that are hosted on both Fargate and Amazon EC2
instances. Bind mounts are tied to the lifecycle of the container that uses them. After all of the
containers that use a bind mount are stopped, such as when a task is stopped, the data is removed.
For tasks that are hosted on Amazon EC2 instances, the data can be tied to the lifecycle of the host

Storage options for tasks 370

Amazon Elastic Container Service Developer Guide

Amazon EC2 instance by specifying a host and optional sourcePath value in your task definition.
For more information, see Bind mounts in the Docker documentation.

The following are common use cases for bind mounts.

• To provide an empty data volume to mount in one or more containers.

• To mount a host data volume in one or more containers.

• To share a data volume from a source container with other containers in the same task.

• To expose a path and its contents from a Dockerfile to one or more containers.

Considerations when using bind mounts

When using bind mounts, consider the following.

• By default, tasks that are hosted on AWS Fargate using platform version 1.4.0 or later (Linux)
or 1.0.0 or later (Windows) receive a minimum of 20 GiB of ephemeral storage for bind mounts.
You can increase the total amount of ephemeral storage up to a maximum of 200 GiB by
specifying the ephemeralStorage parameter in your task definition.

• To expose files from a Dockerfile to a data volume when a task is run, the Amazon ECS data
plane looks for a VOLUME directive. If the absolute path that's specified in the VOLUME directive
is the same as the containerPath that's specified in the task definition, the data in the VOLUME
directive path is copied to the data volume. In the following Dockerfile example, a file that's
named examplefile in the /var/log/exported directory is written to the host and then
mounted inside the container.

FROM public.ecr.aws/amazonlinux/amazonlinux:latest
RUN mkdir -p /var/log/exported
RUN touch /var/log/exported/examplefile
VOLUME ["/var/log/exported"]

By default, the volume permissions are set to 0755 and the owner as root. You can customize
these permissions in the Dockerfile. The following example defines the owner of the directory as
node.

FROM public.ecr.aws/amazonlinux/amazonlinux:latest
RUN yum install -y shadow-utils && yum clean all
RUN useradd node
RUN mkdir -p /var/log/exported && chown node:node /var/log/exported

Storage options for tasks 371

https://docs.docker.com/engine/storage/bind-mounts/

Amazon Elastic Container Service Developer Guide

RUN touch /var/log/exported/examplefile
USER node
VOLUME ["/var/log/exported"]

• For tasks that are hosted on Amazon EC2 instances, when a host and sourcePath value aren't
specified, the Docker daemon manages the bind mount for you. When no containers reference
this bind mount, the Amazon ECS container agent task cleanup service eventually deletes it.
By default, this happens three hours after the container exits. However, you can configure this
duration with the ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION agent variable. For more
information, see Amazon ECS container agent configuration. If you need this data to persist
beyond the lifecycle of the container, specify a sourcePath value for the bind mount.

Specify a bind mount in an Amazon ECS task definition

For Amazon ECS tasks that are hosted on either Fargate or Amazon EC2 instances, the
following task definition JSON snippet shows the syntax for the volumes, mountPoints, and
ephemeralStorage objects for a task definition.

{
 "family": "",
 ...
 "containerDefinitions" : [
 {
 "mountPoints" : [
 {
 "containerPath" : "/path/to/mount_volume",
 "sourceVolume" : "string"
 }
],
 "name" : "string"
 }
],
 ...
 "volumes" : [
 {
 "name" : "string"
 }
],
 "ephemeralStorage": {
 "sizeInGiB": integer
 }

Storage options for tasks 372

Amazon Elastic Container Service Developer Guide

}

For Amazon ECS tasks that are hosted on Amazon EC2 instances, you can use the optional host
parameter and a sourcePath when specifying the task volume details. When it's specified, it ties
the bind mount to the lifecycle of the task rather than the container.

"volumes" : [
 {
 "host" : {
 "sourcePath" : "string"
 },
 "name" : "string"
 }
]

The following describes each task definition parameter in more detail.

name

Type: String

Required: No

The name of the volume. Up to 255 letters (uppercase and lowercase), numbers, hyphens (-),
and underscores (_) are allowed. This name is referenced in the sourceVolume parameter of
the container definition mountPoints object.

host

Required: No

The host parameter is used to tie the lifecycle of the bind mount to the host Amazon EC2
instance, rather than the task, and where it is stored. If the host parameter is empty, then the
Docker daemon assigns a host path for your data volume, but the data is not guaranteed to
persist after the containers associated with it stop running.

Windows containers can mount whole directories on the same drive as $env:ProgramData.

Note

The sourcePath parameter is supported only when using tasks that are hosted on
Amazon EC2 instances.

Storage options for tasks 373

Amazon Elastic Container Service Developer Guide

sourcePath

Type: String

Required: No

When the host parameter is used, specify a sourcePath to declare the path on the host
Amazon EC2 instance that is presented to the container. If this parameter is empty, then the
Docker daemon assigns a host path for you. If the host parameter contains a sourcePath
file location, then the data volume persists at the specified location on the host Amazon EC2
instance until you delete it manually. If the sourcePath value does not exist on the host
Amazon EC2 instance, the Docker daemon creates it. If the location does exist, the contents
of the source path folder are exported.

mountPoints

Type: Object array

Required: No

The mount points for the data volumes in your container. This parameter maps to Volumes in
the create-container Docker API and the --volume option to docker run.

Windows containers can mount whole directories on the same drive as $env:ProgramData.
Windows containers cannot mount directories on a different drive, and mount points cannot be
used across drives. You must specify mount points to attach an Amazon EBS volume directly to
an Amazon ECS task.

sourceVolume

Type: String

Required: Yes, when mountPoints are used

The name of the volume to mount.

containerPath

Type: String

Required: Yes, when mountPoints are used

The path in the container where the volume will be mounted.

Storage options for tasks 374

Amazon Elastic Container Service Developer Guide

readOnly

Type: Boolean

Required: No

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume. The default value is false.

For tasks that run on EC2 instances running the Windows operating system, leave the value
as the default of false.

ephemeralStorage

Type: Object

Required: No

The amount of ephemeral storage to allocate for the task. This parameter is used to expand the
total amount of ephemeral storage available, beyond the default amount, for tasks hosted on
AWS Fargate using platform version 1.4.0 or later (Linux) or 1.0.0 or later (Windows).

You can use the Copilot CLI, CloudFormation, the AWS SDK or the CLI to specify ephemeral
storage for a bind mount.

Bind mount examples for Amazon ECS

The following examples cover the common use cases for using a bind mount for your containers.

To allocate an increased amount of ephemeral storage space for a Fargate task

For Amazon ECS tasks that are hosted on Fargate using platform version 1.4.0 or later (Linux)
or 1.0.0 (Windows), you can allocate more than the default amount of ephemeral storage for
the containers in your task to use. This example can be incorporated into the other examples to
allocate more ephemeral storage for your Fargate tasks.

• In the task definition, define an ephemeralStorage object. The sizeInGiB must be an
integer between the values of 21 and 200 and is expressed in GiB.

"ephemeralStorage": {
 "sizeInGiB": integer
}

Storage options for tasks 375

Amazon Elastic Container Service Developer Guide

To provide an empty data volume for one or more containers

In some cases, you want to provide the containers in a task some scratch space. For example, you
might have two database containers that need to access the same scratch file storage location
during a task. This can be achieved using a bind mount.

1. In the task definition volumes section, define a bind mount with the name
database_scratch.

 "volumes": [
 {
 "name": "database_scratch"
 }
]

2. In the containerDefinitions section, create the database container definitions. This is so
that they mount the volume.

"containerDefinitions": [
 {
 "name": "database1",
 "image": "my-repo/database",
 "cpu": 100,
 "memory": 100,
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "database_scratch",
 "containerPath": "/var/scratch"
 }
]
 },
 {
 "name": "database2",
 "image": "my-repo/database",
 "cpu": 100,
 "memory": 100,
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "database_scratch",
 "containerPath": "/var/scratch"
 }

Storage options for tasks 376

Amazon Elastic Container Service Developer Guide

]
 }
]

To expose a path and its contents in a Dockerfile to a container

In this example, you have a Dockerfile that writes data that you want to mount inside a container.
This example works for tasks that are hosted on Fargate or Amazon EC2 instances.

1. Create a Dockerfile. The following example uses the public Amazon Linux 2 container image
and creates a file that's named examplefile in the /var/log/exported directory that we
want to mount inside the container. The VOLUME directive should specify an absolute path.

FROM public.ecr.aws/amazonlinux/amazonlinux:latest
RUN mkdir -p /var/log/exported
RUN touch /var/log/exported/examplefile
VOLUME ["/var/log/exported"]

By default, the volume permissions are set to 0755 and the owner as root. These permissions
can be changed in the Dockerfile. In the following example, the owner of the /var/log/
exported directory is set to node.

FROM public.ecr.aws/amazonlinux/amazonlinux:latest
RUN yum install -y shadow-utils && yum clean all
RUN useradd node
RUN mkdir -p /var/log/exported && chown node:node /var/log/exported
USER node
RUN touch /var/log/exported/examplefile
VOLUME ["/var/log/exported"]

2. In the task definition volumes section, define a volume with the name application_logs.

 "volumes": [
 {
 "name": "application_logs"
 }
]

Storage options for tasks 377

Amazon Elastic Container Service Developer Guide

3. In the containerDefinitions section, create the application container definitions. This is
so they mount the storage. The containerPath value must match the absolute path that's
specified in the VOLUME directive from the Dockerfile.

 "containerDefinitions": [
 {
 "name": "application1",
 "image": "my-repo/application",
 "cpu": 100,
 "memory": 100,
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "application_logs",
 "containerPath": "/var/log/exported"
 }
]
 },
 {
 "name": "application2",
 "image": "my-repo/application",
 "cpu": 100,
 "memory": 100,
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "application_logs",
 "containerPath": "/var/log/exported"
 }
]
 }
]

To provide an empty data volume for a container that's tied to the lifecycle of the host Amazon
EC2 instance

For tasks that are hosted on Amazon EC2 instances, you can use bind mounts and have the data
tied to the lifecycle of the host Amazon EC2 instance. You can do this by using the host parameter
and specifying a sourcePath value. Any files that exist at the sourcePath are presented to the
containers at the containerPath value. Any files that are written to the containerPath value
are written to the sourcePath value on the host Amazon EC2 instance.

Storage options for tasks 378

Amazon Elastic Container Service Developer Guide

Important

Amazon ECS doesn't sync your storage across Amazon EC2 instances. Tasks that use
persistent storage can be placed on any Amazon EC2 instance in your cluster that has
available capacity. If your tasks require persistent storage after stopping and restarting,
always specify the same Amazon EC2 instance at task launch time with the AWS CLI start-
task command. You can also use Amazon EFS volumes for persistent storage. For more
information, see Use Amazon EFS volumes with Amazon ECS.

1. In the task definition volumes section, define a bind mount with name and sourcePath
values. In the following example, the host Amazon EC2 instance contains data at /ecs/
webdata that you want to mount inside the container.

 "volumes": [
 {
 "name": "webdata",
 "host": {
 "sourcePath": "/ecs/webdata"
 }
 }
]

2. In the containerDefinitions section, define a container with a mountPoints value that
references the name of the bind mount and the containerPath value to mount the bind
mount at on the container.

 "containerDefinitions": [
 {
 "name": "web",
 "image": "public.ecr.aws/docker/library/nginx:latest",
 "cpu": 99,
 "memory": 100,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "essential": true,
 "mountPoints": [

Storage options for tasks 379

https://docs.aws.amazon.com/cli/latest/reference/ecs/start-task.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/start-task.html

Amazon Elastic Container Service Developer Guide

 {
 "sourceVolume": "webdata",
 "containerPath": "/usr/share/nginx/html"
 }
]
 }
]

To mount a defined volume on multiple containers at different locations

You can define a data volume in a task definition and mount that volume at different locations
on different containers. For example, your host container has a website data folder at /data/
webroot. You might want to mount that data volume as read-only on two different web servers
that have different document roots.

1. In the task definition volumes section, define a data volume with the name webroot and the
source path /data/webroot.

 "volumes": [
 {
 "name": "webroot",
 "host": {
 "sourcePath": "/data/webroot"
 }
 }
]

2. In the containerDefinitions section, define a container for each web server with
mountPoints values that associate the webroot volume with the containerPath value
pointing to the document root for that container.

 "containerDefinitions": [
 {
 "name": "web-server-1",
 "image": "my-repo/ubuntu-apache",
 "cpu": 100,
 "memory": 100,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80

Storage options for tasks 380

Amazon Elastic Container Service Developer Guide

 }
],
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "webroot",
 "containerPath": "/var/www/html",
 "readOnly": true
 }
]
 },
 {
 "name": "web-server-2",
 "image": "my-repo/sles11-apache",
 "cpu": 100,
 "memory": 100,
 "portMappings": [
 {
 "containerPort": 8080,
 "hostPort": 8080
 }
],
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "webroot",
 "containerPath": "/srv/www/htdocs",
 "readOnly": true
 }
]
 }
]

To mount volumes from another container using volumesFrom

For tasks hosted on Amazon EC2 instances, you can define one or more volumes on a container,
and then use the volumesFrom parameter in a different container definition within the same task
to mount all of the volumes from the sourceContainer at their originally defined mount points.
The volumesFrom parameter applies to volumes defined in the task definition, and those that are
built into the image with a Dockerfile.

Storage options for tasks 381

Amazon Elastic Container Service Developer Guide

1. (Optional) To share a volume that is built into an image, use the VOLUME instruction in the
Dockerfile. The following example Dockerfile uses an httpd image, and then adds a volume
and mounts it at dockerfile_volume in the Apache document root. It is the folder used by
the httpd web server.

FROM httpd
VOLUME ["/usr/local/apache2/htdocs/dockerfile_volume"]

You can build an image with this Dockerfile and push it to a repository, such as Docker Hub,
and use it in your task definition. The example my-repo/httpd_dockerfile_volume image
that's used in the following steps was built with the preceding Dockerfile.

2. Create a task definition that defines your other volumes and mount points for the containers.
In this example volumes section, you create an empty volume called empty, which the Docker
daemon manages. There's also a host volume defined that's called host_etc. It exports the /
etc folder on the host container instance.

{
 "family": "test-volumes-from",
 "volumes": [
 {
 "name": "empty",
 "host": {}
 },
 {
 "name": "host_etc",
 "host": {
 "sourcePath": "/etc"
 }
 }
],

In the container definitions section, create a container that mounts the volumes defined
earlier. In this example, the web container mounts the empty and host_etc volumes. This is
the container that uses the image built with a volume in the Dockerfile.

"containerDefinitions": [
 {
 "name": "web",
 "image": "my-repo/httpd_dockerfile_volume",

Storage options for tasks 382

Amazon Elastic Container Service Developer Guide

 "cpu": 100,
 "memory": 500,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "mountPoints": [
 {
 "sourceVolume": "empty",
 "containerPath": "/usr/local/apache2/htdocs/empty_volume"
 },
 {
 "sourceVolume": "host_etc",
 "containerPath": "/usr/local/apache2/htdocs/host_etc"
 }
],
 "essential": true
 },

Create another container that uses volumesFrom to mount all of the volumes that are
associated with the web container. All of the volumes on the web container are likewise
mounted on the busybox container. This includes the volume that's specified in the Dockerfile
that was used to build the my-repo/httpd_dockerfile_volume image.

 {
 "name": "busybox",
 "image": "busybox",
 "volumesFrom": [
 {
 "sourceContainer": "web"
 }
],
 "cpu": 100,
 "memory": 500,
 "entryPoint": [
 "sh",
 "-c"
],
 "command": [

Storage options for tasks 383

Amazon Elastic Container Service Developer Guide

 "echo $(date) > /usr/local/apache2/htdocs/empty_volume/date && echo $(date)
 > /usr/local/apache2/htdocs/host_etc/date && echo $(date) > /usr/local/apache2/
htdocs/dockerfile_volume/date"
],
 "essential": false
 }
]
}

When this task is run, the two containers mount the volumes, and the command in the
busybox container writes the date and time to a file. This file is called date in each of the
volume folders. The folders are then visible at the website displayed by the web container.

Note

Because the busybox container runs a quick command and then exits, it must be set as
"essential": false in the container definition. Otherwise, it stops the entire task
when it exits.

Managing container swap memory space on Amazon ECS

With Amazon ECS, you can control the usage of swap memory space on your Linux-based Amazon
EC2 instances at the container level. Using a per-container swap configuration, each container
within a task definition can have swap enabled or disabled. For those that have it enabled, the
maximum amount of swap space that's used can be limited. For example, latency-critical containers
can have swap disabled. In contrast, containers with high transient memory demands can have
swap turned on to reduce the chances of out-of-memory errors when the container is under load.

The swap configuration for a container is managed by the following container definition
parameters.

maxSwap

The total amount of swap memory (in MiB) a container can use. This parameter is translated to
the --memory-swap option to docker run where the value is the sum of the container memory
plus the maxSwap value.

If a maxSwap value of 0 is specified, the container doesn't use swap. Accepted values are 0
or any positive integer. If the maxSwap parameter is omitted, the container uses the swap

Managing container swap memory space 384

Amazon Elastic Container Service Developer Guide

configuration for the container instance that it's running on. A maxSwap value must be set for
the swappiness parameter to be used.

swappiness

You can use this to tune a container's memory swappiness behavior. A swappiness value of
0 causes swapping to not occur unless required. A swappiness value of 100 causes pages
to be swapped aggressively. Accepted values are whole numbers between 0 and 100. If the
swappiness parameter isn't specified, a default value of 60 is used. If a value isn't specified
for maxSwap, this parameter is ignored. This parameter maps to the --memory-swappiness
option to docker run.

In the following example, the JSON syntax is provided.

"containerDefinitions": [{
 ...
 "linuxParameters": {
 "maxSwap": integer,
 "swappiness": integer
 },
 ...
}]

Considerations

Consider the following when you use a per-container swap configuration.

• Swap space must be enabled and allocated on the Amazon EC2 instance hosting your tasks for
the containers to use. By default, the Amazon ECS optimized AMIs do not have swap enabled.
You must enable swap on the instance to use this feature. For more information, see Instance
Store Swap Volumes in the Amazon EC2 User Guide or How do I allocate memory to work as swap
space in an Amazon EC2 instance?.

• The swap space container definition parameters are only supported for task definitions that
specify the EC2 launch type. These parameters are not supported for task definitions intended
only for Amazon ECS on Fargate use.

• This feature is only supported for Linux containers. Windows containers are not supported
currently.

Managing container swap memory space 385

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-store-swap-volumes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-store-swap-volumes.html
https://repost.aws/knowledge-center/ec2-memory-swap-file
https://repost.aws/knowledge-center/ec2-memory-swap-file

Amazon Elastic Container Service Developer Guide

• If the maxSwap and swappiness container definition parameters are omitted from a task
definition, each container has a default swappiness value of 60. Moreover, the total swap usage
is limited to two times the memory of the container.

• If you're using tasks on Amazon Linux 2023 the swappiness parameter isn't supported.

Amazon ECS task definition differences for the Fargate launch type

In order to use Fargate, you must configure your task definion to use the Fargate launch type.
There are additional considerations when using Fargate.

Task definition parameters

Tasks that use the Fargate launch type don't support all of the Amazon ECS task definition
parameters that are available. Some parameters aren't supported at all, and others behave
differently for Fargate tasks.

The following task definition parameters are not valid in Fargate tasks:

• disableNetworking

• dnsSearchDomains

• dnsServers

• dockerSecurityOptions

• extraHosts

• gpu

• ipcMode

• links

• placementConstraints

• privileged

• maxSwap

• swappiness

The following task definition parameters are valid in Fargate tasks, but have limitations that should
be noted:

Task definition differences for the Fargate launch type 386

Amazon Elastic Container Service Developer Guide

• linuxParameters – When specifying Linux-specific options that are applied to the container,
for capabilities the only capability you can add is CAP_SYS_PTRACE. The devices,
sharedMemorySize, and tmpfs parameters are not supported. For more information, see Linux
parameters.

• volumes – Fargate tasks only support bind mount host volumes, so the
dockerVolumeConfiguration parameter is not supported. For more information, see
Volumes.

• cpu - For Windows containers on AWS Fargate, the value cannot be less than 1 vCPU.

• networkConfiguration - Fargate tasks always use the awsvpc network mode.

To ensure that your task definition validates for use with Fargate, you can specify the following
when you register the task definition:

• In the AWS Management Console, for the Requires Compatibilities field, specify FARGATE.

• In the AWS CLI, specify the --requires-compatibilities option.

• In the Amazon ECS API, specify the requiresCompatibilities flag.

Operating Systems and architectures

When you configure a task and container definition for AWS Fargate, you must specify the
Operating System that the container runs. The following Operating Systems are supported for
AWS Fargate:

• Amazon Linux 2

Note

Linux containers use only the kernel and kernel configuration from the host Operating
System. For example, the kernel configuration includes the sysctl system controls.
A Linux container image can be made from a base image that contains the files and
programs from any Linux distribution. If the CPU architecture matches, you can run
containers from any Linux container image on any Operating System.

• Windows Server 2019 Full

• Windows Server 2019 Core

• Windows Server 2022 Full

Task definition differences for the Fargate launch type 387

Amazon Elastic Container Service Developer Guide

• Windows Server 2022 Core

When you run Windows containers on AWS Fargate, you must have the X86_64 CPU architecture.

When you run Linux containers on AWS Fargate, you can use the X86_64 CPU architecture, or the
ARM64 architecture for your ARM-based applications. For more information, see the section called
“Task definitions for 64-bit ARM workloads”.

Task CPU and memory

Amazon ECS task definitions for AWS Fargate require that you specify CPU and memory at the
task level. Most use cases are satisfied by only specifying these resources at the task level. The
table below shows the valid combinations of task-level CPU and memory. You can specify memory
values in the task definition as a string in MiB or GB. For example, you can specify a memory value
either as 3072 in MiB or 3 GB in GB. You can specify CPU values in the JSON file as a string in CPU
units or virtual CPUs (vCPUs). For example, you can specify a CPU value either as 1024 in CPU units
or 1 vCPU in vCPUs.

CPU value Memory value Operating systems
supported for AWS Fargate

256 (.25 vCPU) 512 MiB, 1 GB, 2 GB Linux

512 (.5 vCPU) 1 GB, 2 GB, 3 GB, 4 GB Linux

1024 (1 vCPU) 2 GB, 3 GB, 4 GB, 5 GB, 6 GB,
7 GB, 8 GB

Linux, Windows

2048 (2 vCPU) Between 4 GB and 16 GB in 1
GB increments

Linux, Windows

4096 (4 vCPU) Between 8 GB and 30 GB in 1
GB increments

Linux, Windows

8192 (8 vCPU) Between 16 GB and 60 GB in
4 GB increments

Linux

Task definition differences for the Fargate launch type 388

Amazon Elastic Container Service Developer Guide

CPU value Memory value Operating systems
supported for AWS Fargate

Note

This option requires
Linux platform 1.4.0
or later.

16384 (16vCPU)

Note

This option requires
Linux platform 1.4.0
or later.

Between 32 GB and 120 GB in
8 GB increments

Linux

Task networking

Amazon ECS tasks for AWS Fargate require the awsvpc network mode, which provides each task
with an elastic network interface. When you run a task or create a service with this network mode,
you must specify one or more subnets to attach the network interface and one or more security
groups to apply to the network interface.

If you are using public subnets, decide whether to provide a public IP address for the network
interface. For a Fargate task in a public subnet to pull container images, a public IP address needs
to be assigned to the task's elastic network interface, with a route to the internet or a NAT gateway
that can route requests to the internet. For a Fargate task in a private subnet to pull container
images, you need a NAT gateway in the subnet to route requests to the internet. When you
host your container images in Amazon ECR, you can configure Amazon ECR to use an interface
VPC endpoint. In this case, the task's private IPv4 address is used for the image pull. For more
information about Amazon ECR interface endpoints, see Amazon ECR interface VPC endpoints
(AWS PrivateLink) in the Amazon Elastic Container Registry User Guide.

The following is an example of the networkConfiguration section for a Fargate service:

"networkConfiguration": {

Task definition differences for the Fargate launch type 389

https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html

Amazon Elastic Container Service Developer Guide

 "awsvpcConfiguration": {
 "assignPublicIp": "ENABLED",
 "securityGroups": ["sg-12345678"],
 "subnets": ["subnet-12345678"]
 }
}

Task resource limits

Amazon ECS task definitions for Linux containers on AWS Fargate support the ulimits parameter
to define the resource limits to set for a container.

Amazon ECS task definitions for Windows on AWS Fargate do not support the ulimits parameter
to define the resource limits to set for a container.

Amazon ECS tasks hosted on Fargate use the default resource limit values set by the operating
system with the exception of the nofile resource limit parameter. The nofile resource limit sets
a restriction on the number of open files that a container can use. On Fargate, the default nofile
soft limit is 65535 and hard limit is 65535. You can set the values of both limits up to 1048576.

The following is an example task definition snippet that shows how to define a custom nofile
limit that has been doubled:

"ulimits": [
 {
 "name": "nofile",
 "softLimit": 2048,
 "hardLimit": 8192
 }
]

For more information on the other resource limits that can be adjusted, see Resource limits.

Logging

Event logging

Amazon ECS logs the actions that it takes to EventBridge. You can use Amazon ECS events for
EventBridge to receive near real-time notifications regarding the current state of your Amazon ECS
clusters, services, and tasks. Additionally, you can automate actions to respond to these events. For
more information, see Automate responses to Amazon ECS errors using EventBridge.

Task definition differences for the Fargate launch type 390

Amazon Elastic Container Service Developer Guide

Task lifecycle logging

Tasks that run on Fargate publish timestamps to track the task through the states of the task
lifecycle. You can see the timestamps in the task details in the AWS Management Console and
by describing the task in the AWS CLI and SDKs. For example, you can use the timestamps to
evaluate how much time the task spent downloading the container images and decide if you
should optimize the container image size, or use Seekable OCI indexes. For more information about
container image practices, see Best practices for Amazon ECS container images.

Application logging

Amazon ECS task definitions for AWS Fargate support the awslogs, splunk, and awsfirelens
log drivers for the log configuration.

The awslogs log driver configures your Fargate tasks to send log information to Amazon
CloudWatch Logs. The following shows a snippet of a task definition where the awslogs log driver
is configured:

"logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group" : "/ecs/fargate-task-definition",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
}

For more information about using the awslogs log driver in a task definition to send your
container logs to CloudWatch Logs, see Send Amazon ECS logs to CloudWatch .

For more information about the awsfirelens log driver in a task definition, see Send Amazon
ECS logs to an AWS service or AWS Partner.

For more information about using the splunk log driver in a task definition, see splunk log driver.

Task storage

For Amazon ECS tasks hosted on Fargate, the following storage types are supported:

• Amazon EBS volumes provide cost-effective, durable, high-performance block storage for data-
intensive containerized workloads. For more information, see Use Amazon EBS volumes with
Amazon ECS.

Task definition differences for the Fargate launch type 391

Amazon Elastic Container Service Developer Guide

• Amazon EFS volumes for persistent storage. For more information, see Use Amazon EFS volumes
with Amazon ECS.

• Bind mounts for ephemeral storage. For more information, see Use bind mounts with Amazon
ECS.

Lazy loading container images using Seekable OCI (SOCI)

Amazon ECS tasks on Fargate that use Linux platform version 1.4.0 can use Seekable OCI (SOCI)
to help start tasks faster. With SOCI, containers only spend a few seconds on the image pull before
they can start, providing time for environment setup and application instantiation while the image
is downloaded in the background. This is called lazy loading. When Fargate starts an Amazon ECS
task, Fargate automatically detects if a SOCI index exists for an image in the task and starts the
container without waiting for the entire image to be downloaded.

For containers that run without SOCI indexes, container images are downloaded completely before
the container is started. This behavior is the same on all other platform versions of Fargate and on
the Amazon ECS-optimized AMI on Amazon EC2 instances.

Seekable OCI indexes

Seekable OCI (SOCI) is an open source technology developed by AWS that can launch containers
faster by lazily loading the container image. SOCI works by creating an index (SOCI Index) of the
files within an existing container image. This index helps to launch containers faster, providing
the capability to extract an individual file from a container image before downloading the entire
image. The SOCI index must be stored as an artifact in the same repository as the image within
the container registry. You should only use SOCI indices from trusted sources, as the index is the
authoritative source for the contents of the image. For more information, see Introducing Seekable
OCI for lazy loading container images.

Considerations

If you want Fargate to use a SOCI index to lazily load container images in a task, consider the
following:

• Only tasks that run on Linux platform version 1.4.0 can use SOCI indexes. Tasks that run
Windows containers on Fargate aren't supported.

• Tasks that run on X86_64 or ARM64 CPU architecture are supported.

Task definition differences for the Fargate launch type 392

https://aws.amazon.com/about-aws/whats-new/2022/09/introducing-seekable-oci-lazy-loading-container-images/
https://aws.amazon.com/about-aws/whats-new/2022/09/introducing-seekable-oci-lazy-loading-container-images/

Amazon Elastic Container Service Developer Guide

• Container images in the task definition must have SOCI indexes in the same container registry as
the image.

• Container images in the task definition must be stored in a compatible image registry. The
following lists the compatible registries:

• Amazon ECR private registries.

• Only container images that use gzip compression or are not compressed are supported.
Container images that use zstd compression aren't supported.

• We recommend that you try lazy loading with container images greater than 250 MiB
compressed in size. You are less likely to see a reduction in the time to load smaller images.

• Because lazy loading can change how long your tasks take to start, you might need to change
various timeouts like the health check grace period for Elastic Load Balancing.

• If you want to prevent a container image from being lazy loaded, delete the SOCI index from the
container registry. If a container image in the task doesn't meet one of the considerations, that
container image is downloaded by the default method.

Creating a Seekable OCI index

For a container image to be lazy loaded it needs a SOCI index (a metadata file) created and stored
in the container image repository along side the container image. To create and push a SOCI
index you can use the open source soci-snapshotter CLI tool on GitHub. Or, you can deploy the
CloudFormation AWS SOCI Index Builder. This is a serverless solution that automatically creates
and pushes a SOCI index when a container image is pushed to Amazon ECR. For more information
about the solution and the installation steps, see CloudFormation AWS SOCI Index Builder on
GitHub. The CloudFormation AWS SOCI Index Builder is a way to automate getting started with
SOCI, while the open source soci tool has more flexibility around index generation and the ability
to integrate index generation in your continuous integration and continuous delivery (CI/CD)
pipelines.

Note

For the SOCI index to be created for an image, the image must exist in the containerd
image store on the computer running soci-snapshotter. If the image is in the Docker
image store, the image can't be found.

Verifying that a task used lazy loading

Task definition differences for the Fargate launch type 393

https://github.com/awslabs/soci-snapshotter
https://aws-ia.github.io/cfn-ecr-aws-soci-index-builder/

Amazon Elastic Container Service Developer Guide

To verify that a task was lazily loaded using SOCI, check the task metadata endpoint from
inside the task. When you query the task metadata endpoint version 4, there is a Snapshotter
field in the default path for the container that you are querying from. Additionally, there are
Snapshotter fields for each container in the /task path. The default value for this field is
overlayfs, and this field is set to soci if SOCI is used. .

Amazon ECS task definition differences for EC2 instances running
Windows

Tasks that run on EC2 Windows instances don't support all of the Amazon ECS task definition
parameters that are available. Some parameters aren't supported at all, and others behave
differently.

The following task definition parameters aren't supported for Amazon EC2 Windows task
definitions:

• containerDefinitions

• disableNetworking

• dnsServers

• dnsSearchDomains

• extraHosts

• links

• linuxParameters

• privileged

• readonlyRootFilesystem

• user

• ulimits

• volumes

• dockerVolumeConfiguration

• cpu

We recommend specifying container-level CPU for Windows containers.

• memory

We recommend specifying container-level memory for Windows containers.

Task definition differences for EC2 instances running Windows 394

Amazon Elastic Container Service Developer Guide

• proxyConfiguration

• ipcMode

• pidMode

• taskRoleArn

The IAM roles for tasks on EC2 Windows instances features requires additional configuration,
but much of this configuration is similar to configuring IAM roles for tasks on Linux container
instances. For more information see the section called “ Amazon EC2 Windows instance
additional configuration”.

Creating an Amazon ECS task definition using the console

You create a task definition so that you can define the application that you run as a task or service.

When you create a task definition for the external launch type, you need to create the task
definition using JSON editor and set the requireCapabilities parameter to EXTERNAL.

You can create a task definition by using the console experience, or by specifying a JSON file.

JSON validation

The Amazon ECS console JSON editor validates the following in the JSON file:

• The file is a valid JSON file.

• The file doesn't contain any extraneous keys.

• The file contains the familyName parameter.

• There is at least one entry under containerDefinitions.

AWS CloudFormation stacks

The following behavior applies to task definitions that were created in the new Amazon ECS
console before January 12, 2023.

When you create a task definition, the Amazon ECS console automatically creates a
CloudFormation stack that has a name that begins with ECS-Console-V2-TaskDefinition-.
If you used the AWS CLI or an AWS SDK to deregister the task definition, then you must

Creating a task definition using the console 395

Amazon Elastic Container Service Developer Guide

manually delete the task definition stack. For more information, see Deleting a stack in the AWS
CloudFormation User Guide.

Task definitions created after January 12, 2023, do not have a CloudFormation stack automatically
created for them.

Procedure

Amazon ECS console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. On the Create new task definition menu, choose Create new task definition.

4. For Task definition family, specify a unique name for the task definition.

5. For Launch type, choose the application environment. The console default is AWS Fargate
(which is serverless). Amazon ECS uses this value to perform validation to ensure that the
task definition parameters are valid for the infrastructure type.

6. For Operating system/Architecture, choose the operating system and CPU architecture for
the task.

To run your task on a 64-bit ARM architecture, choose Linux/ARM64. For more information,
see the section called “Runtime platform”.

To run your AWS Fargate tasks on Windows containers, choose a supported Windows
operating system. For more information, see the section called “Operating Systems and
architectures”.

7. For Task size, choose the CPU and memory values to reserve for the task. The CPU value is
specified as vCPUs and memory is specified as GB.

For tasks hosted on Fargate, the following table shows the valid CPU and memory
combinations.

CPU value Memory value Operating systems
supported for AWS
Fargate

256 (.25 vCPU) 512 MiB, 1 GB, 2 GB Linux

Procedure 396

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

CPU value Memory value Operating systems
supported for AWS
Fargate

512 (.5 vCPU) 1 GB, 2 GB, 3 GB, 4 GB Linux

1024 (1 vCPU) 2 GB, 3 GB, 4 GB, 5 GB, 6
GB, 7 GB, 8 GB

Linux, Windows

2048 (2 vCPU) Between 4 GB and 16 GB in
1 GB increments

Linux, Windows

4096 (4 vCPU) Between 8 GB and 30 GB in
1 GB increments

Linux, Windows

8192 (8 vCPU)

Note

This option requires
Linux platform
1.4.0 or later.

Between 16 GB and 60 GB
in 4 GB increments

Linux

16384 (16vCPU)

Note

This option requires
Linux platform
1.4.0 or later.

Between 32 GB and 120 GB
in 8 GB increments

Linux

For tasks that use the EC2 or external launch type, the supported task CPU values are
between 128 CPU units (0.125 vCPUs) and 196608 CPU units (192 vCPUs).

To specify the memory value in GB, enter GB after the value. For example, to set the
Memory value to 3GB, enter 3GB.

Procedure 397

Amazon Elastic Container Service Developer Guide

Note

Task-level CPU and memory parameters are ignored for Windows containers.

8. For Network mode, choose the network mode to use. The default is awsvpc mode. For
more information, see Amazon ECS task networking.

If you choose bridge, under Port mappings, for Host port, enter the port number on the
container instance to reserve for your container.

9. (Optional) Expand the Task roles section to configure the AWS Identity and Access
Management (IAM) roles for the task:

a. For Task role, choose the IAM role to assign to the task. A task IAM role provides
permissions for the containers in a task to call AWS API operations.

b. For Task execution role, choose the role.

For information about when to use a task execution role, see the section called “Task
execution IAM role”. If you don't need the role, choose None.

10. (Optional) Expand the Task placement section to add placement contraints. Task
placement constraints allow you to filter the container instances used for the placement of
your tasks using built-in or custom attributes.

11. (Optional) Expand the Fault injection section to enable fault injection. Fault injection lets
you test how your application responds to certain impairment scenarios.

12. For each container to define in your task definition, complete the following steps.

a. For Name, enter a name for the container.

b. For Image URI, enter the image to use to start a container. Images in the Amazon
ECR Public Gallery registry can be specified by using the Amazon ECR Public registry
name only. For example, if public.ecr.aws/ecs/amazon-ecs-agent:latest
is specified, the Amazon Linux container hosted on the Amazon ECR Public Gallery
is used. For all other repositories, specify the repository by using either the
repository-url/image:tag or repository-url/image@digest formats.

c. If your image is in a private registry outside of Amazon ECR, under Private registry,
turn on Private registry authentication. Then, in Secrets Manager ARN or name,
enter the Amazon Resource Name (ARN) of the secret.

Procedure 398

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html

Amazon Elastic Container Service Developer Guide

d. For Essential container, if your task definition has two or more containers defined, you
can specify whether the container should be considered essential. When a container
is marked as Essential, if that container stops, then the task is stopped. Each task
definition must contain at least one essential container.

e. A port mapping allows the container to access ports on the host to send or receive
traffic. Under Port mappings, do one of the following:

• When you use the awsvpc network mode, for Container port and Protocol, choose
the port mapping to use for the container.

• When you use the bridge network mode, for Container port and Protocol, choose
the port mapping to use for the container.

Choose Add more port mappings to specify additional container port mappings.

f. To give the container read-only access to its root file system, for Read only root file
system, select Read only.

g. (Optional) To define the container-level CPU, GPU, and memory limits that are
different from task-level values, under Resource allocation limits, do the following:

• For CPU, enter the number of CPU units that the Amazon ECS container agent
reserves for the container.

• For GPU, enter the number of GPU units for the container instance.

An Amazon EC2 instance with GPU support has 1 GPU unit for every GPU. For more
information, see the section called “Task definitions for GPU workloads”.

• For Memory hard limit, enter the amount of memory, in GB, to present to the
container. If the container attempts to exceed the hard limit, the container stops.

• The Docker 20.10.0 or later daemon reserves a minimum of 6 mebibytes (MiB) of
memory for a container, so don't specify fewer than 6 MiB of memory for your
containers.

The Docker 19.03.13-ce or earlier daemon reserves a minimum of 4 MiB of memory
for a container, so don't specify fewer than 4 MiB of memory for your containers.

• For Memory soft limit, enter the soft limit (in GB) of memory to reserve for the
container.

Procedure 399

Amazon Elastic Container Service Developer Guide

When system memory is under contention, Docker attempts to keep the container
memory to this soft limit. If you don't specify task-level memory, you must specify
a non-zero integer for one or both of Memory hard limit and Memory soft limit. If
you specify both, Memory hard limit must be greater than Memory soft limit.

This feature is not supported on Windows containers.

h. (Optional) Expand the Environment variables section to specify environment variables
to inject into the container. You can specify environment variables either individually
by using key-value pairs or in bulk by specifying an environment variable file that's
hosted in an Amazon S3 bucket. For information about how to format an environment
variable file, see Pass an individual environment variable to an Amazon ECS container.

When you specify an environment variable for secret storage, for Key, enter the secret
name. Then for ValueFrom, enter the full ARN of the Systems Manager Parameter
Store secret or Secrets Manager secret

i. (Optional) Select the Use log collection option to specify a log configuration. For
each available log driver, there are log driver options to specify. The default option
sends container logs to Amazon CloudWatch Logs. The other log driver options are
configured by using AWS FireLens. For more information, see Send Amazon ECS logs to
an AWS service or AWS Partner.

The following describes each container log destination in more detail.

• Amazon CloudWatch – Configure the task to send container logs to CloudWatch
Logs. The default log driver options are provided, which create a CloudWatch log
group on your behalf. To specify a different log group name, change the driver
option values.

• Export logs to Splunk – Configure the task to send container logs to the Splunk
driver that sends the logs to a remote service. You must enter the URL to your
Splunk web service. The Splunk token is specified as a secret option because it can
be treated as sensitive data.

• Export logs to Amazon Data Firehose – Configure the task to send container logs to
Firehose. The default log driver options are provided, which sends log to an Firehose
delivery stream. To specify a different delivery stream name, change the driver
option values.

Procedure 400

Amazon Elastic Container Service Developer Guide

• Export logs to Amazon Kinesis Data Streams – Configure the task to send container
logs to Kinesis Data Streams. The default log driver options are provided, which send
logs to a Kinesis Data Streams stream. To specify a different stream name, change
the driver option values.

• Export logs to Amazon OpenSearch Service – Configure the task to send container
logs to an OpenSearch Service domain. The log driver options must be provided.

• Export logs to Amazon S3 – Configure the task to send container logs to an Amazon
S3 bucket. The default log driver options are provided, but you must specify a valid
Amazon S3 bucket name.

j. (Optional) Configure additional container parameters.

Procedure 401

Amazon Elastic Container Service Developer Guide

To configure this option Do this

Restart policy

These options define a
restart policy to restart a
container when it exits.

Expand Restart policy,
and then configure the fo
llowing items:

•
To enable a restart
policy for the co
ntainer, turn on Enable
Restart policy.

•
For Ignored exit codes,
 specify a comma-
separated list of
integer container exit
codes. If the container
exits with any of the
specified exit codes,
Amazon ECS will not
try to restart the
container. If nothing is
specified, Amazon ECS
will not ignore any exit
codes.

•
For Attempt reset
period, specify an
integer period of time,
 in seconds, that the
container must run for
before a restart can be
attempted in the event
of an exit. Amazon
ECS can attempt to
restart a container only

Procedure 402

Amazon Elastic Container Service Developer Guide

To configure this option Do this

once every Attempt
reset period seconds.
If nothing is specified
, the container must
run for 300 seconds
before a restart can be
attempted.

Procedure 403

Amazon Elastic Container Service Developer Guide

To configure this option Do this

HealthCheck

These are the commands
that determine if a
 container is healthy.
For more information,
see Determine Amazon
ECS task health using
container health checks.

Expand HealthCheck,
 and then configure the
following items:

•
For Command, enter a
 comma-separated list
of commands. You can
start the commands
with CMD to run the
 command arguments
directly, or CMD-SHELL

 to run the command
with the container's
default shell. If neither
is specified, CMD is
used.

•
For Interval, enter the
 number of seconds
between each health
check. The valid values
are between 5 and 30.

•
For Timeout, enter
the period of time
(in seconds) to wait
for a health check
to succeed before it's
considered a failure.
 The valid values are
between 2 and 60.

•
For Start period, enter
 the period of time (in

Procedure 404

Amazon Elastic Container Service Developer Guide

To configure this option Do this

seconds) to wait for a
 container to bootstrap
before the health
check commands run.
The valid values are
between 0 and 300.

•
For Retries, enter the
 number of times to
retry the health check
commands when there
is a failure. The valid
values are between 1
and 10.

Startup dependency
 ordering

This option defines
dependencies for co
ntainer startup and
shutdown. A container
can contain multiple
dependencies.

Expand Startup
dependency ordering,
and then configure the fo
llowing:

a.
Choose Add container
 dependency.

b.
For Container, choose
 the container.

c.
For Condition, choose
 the startup dependenc
y condition.

To add an additional
dependency, choose Add
container dependency.

Procedure 405

Amazon Elastic Container Service Developer Guide

To configure this option Do this

Container timeouts

These options determine
 when to start and stop a
container.

Expand Container timeo
uts, and then configure
the following:

•
To configure the time
to wait before giving
 up on resolving
dependencies for a
container, for Start
timeout, enter the nu
mber of seconds.

•
To configure the time
to wait before the co
ntainer is stopped if it
doesn't exit normally
 on its own, for Stop
timeout, enter the
number of seconds.

Procedure 406

Amazon Elastic Container Service Developer Guide

To configure this option Do this

Container network
 settings

These options determine
whether to use networkin
g within a container.

Expand Container
network settings, and
then configure the fo
llowing:

•
To disable container
networking, select
 Turn off networking.

•
To configure DNS
server IP addresses
that are presented to
the container, in DNS
 servers, enter the IP
address of each server
on a separate line.

•
To configure DNS
domains to search
 non-fully-qualifi
ed host names that
are presented to the
container, in DNS
search domains, enter
each domain on a sepa
rate line.

The pattern is ̂ [a-
zA-Z0-9-.]{0,2
53}[a-zA-Z0-9]$.

•
To configure the
container host name,
in Host name, enter

Procedure 407

Amazon Elastic Container Service Developer Guide

To configure this option Do this

the container goat
name.

•
To add hostnames and
IP address mappings
 that are appended
to the /etc/hosts
 file on the container
, choose Add extra
 host, and then for
 Hostname and IP add
ress, enter the host
name and IP address.

Procedure 408

Amazon Elastic Container Service Developer Guide

To configure this option Do this

Docker configuration

These override the values
in the Dockerfile.

Expand Docker configur
ation, and then configure
the following items:

•
For Command,
enter an executable
command for a
container.

This parameter
maps to Cmd in the
Create a container
 section of the Docker
Remote API and the
 COMMAND option to
docker run . This
parameter overrides
the CMD instruction in a
Dockerfile.

•
For Entry point, enter
the Docker ENTRYPOIN
T that is passed to the
container.

This parameter maps
to Entrypoint in
the Create a container
 section of the Do
cker Remote API
and the --entrypo
int option to
docker run . This
parameter overrides

Procedure 409

https://docs.docker.com/reference/api/engine/version/v1.38/#tag/Container/operation/ContainerCreate
https://docs.docker.com/reference/api/engine/version/v1.38/#tag/Container/operation/ContainerCreate
https://docs.docker.com/engine/reference/builder/#workdir
https://docs.docker.com/reference/api/engine/version/v1.38/#tag/Container/operation/ContainerCreate
https://docs.docker.com/reference/api/engine/version/v1.38/#tag/Container/operation/ContainerCreate

Amazon Elastic Container Service Developer Guide

To configure this option Do this

the ENTRYPOIN
T instruction in a
Dockerfile.

•
For Working directory,
enter the directory that
the container will run
 any entry point and
command instructions
provided.

This parameter maps
to WorkingDir in
the Create a container
 section of the Docker
Remote API and the
 --workdir option to
docker run . This
parameter overrides
the WORKDIR instructi
on in a Dockerfile.

Procedure 410

https://docs.docker.com/engine/reference/builder/#workdir
https://docs.docker.com/reference/api/engine/version/v1.38/#tag/Container/operation/ContainerCreate
https://docs.docker.com/reference/api/engine/version/v1.38/#tag/Container/operation/ContainerCreate
https://docs.docker.com/engine/reference/builder/#workdir

Amazon Elastic Container Service Developer Guide

To configure this option Do this

Resource limits (Ulimits)

These values overwrite
the default resource
quota setting for the
operating system.

This parameter maps to
Ulimits in the Create a
container section of the
 Docker Remote API and
the --ulimit option to
docker run.

Expand Resource limits
 (ulimits), and then c
hoose Add ulimit. For
 Limit name, choose the
limit. Then, for Soft
limit and Hard limit,
enter the values.

To add additional ulimits,
 choose Add ulimit.

Docker labels

This option adds
metadata to your
container.

This parameter maps to
Labels in the Create a
container section of the
 Docker Remote API and
the --label option to
docker run.

Expand Docker labels,
choose Add key value
pair, and then enter the
 Key and Value.

To add additional Docker
 labels, choose Add key
value pair.

k. (Optional) Choose Add more containers to add additional containers to the task
definition.

13. (Optional) The Storage section is used to expand the amount of ephemeral storage for
tasks hosted on Fargate. You can also use this section to add a data volume configuration
for the task.

• To expand the available ephemeral storage beyond the default value of 20 gibibytes
(GiB) for your Fargate tasks, for Amount, enter a value up to 200 GiB.

Procedure 411

https://docs.docker.com/reference/api/engine/version/v1.38/#operation/ContainerCreate
https://docs.docker.com/reference/api/engine/version/v1.38/#operation/ContainerCreate
https://docs.docker.com/reference/api/engine/version/v1.38/
https://docs.docker.com/reference/cli/docker/container/run/
https://docs.docker.com/reference/api/engine/version/v1.38/#operation/ContainerCreate
https://docs.docker.com/reference/api/engine/version/v1.38/#operation/ContainerCreate
https://docs.docker.com/reference/api/engine/version/v1.38/
https://docs.docker.com/reference/cli/docker/container/run/

Amazon Elastic Container Service Developer Guide

14. (Optional) To add a data volume configuration for the task definition, choose Add volume,
and then follow these steps.

a. For Volume name, enter a name for the data volume. The data volume name is used
when creating a container mount point.

b. For Volume configuration, select whether you want to configure your volume when
creating the task definition or during deployment.

Note

Volumes that can be configured when creating a task definition include
Bind mount, Docker, Amazon EFS, and Amazon FSx for Windows File Server.
Volumes that can be configured at deployment when running a task, or when
creating or updating a service include Amazon EBS.

c. For Volume type, select a volume type compatible with the configuration type that
you selected, and then configure the volume type.

Procedure 412

Amazon Elastic Container Service Developer Guide

Volume type Steps

Bind mount a.
Choose Add mount
point, and then
configure the following:

•
For Container, choose
 the container for the
mount point.

•
For Source volume,
 choose the data
volume to mount to
the container.

•
For Container path,
 enter the path on the
container to mount
the volume.

•
For Read only, select
 whether the container
has read-only access
to the volume.

b.
To add additional mount
points, Add mount
point.

Procedure 413

Amazon Elastic Container Service Developer Guide

Volume type Steps

EFS
a.

For File system ID, choo
se the Amazon EFS file
system ID.

b.
(Optional) For Root
 directory, enter the
directory within the
Amazon EFS file system
to mount as the root d
irectory inside the host.
If this parameter is omi
tted, the root of the
Amazon EFS volume is
 used.

If you plan to use an EFS
access point, leave this
field blank.

c.
(Optional) For Access
 point, choose the access
point ID to use.

d.
(Optional) To encrypt
the data between the
 Amazon EFS file system
and the Amazon ECS
host or to use the ta
sk execution role when
mounting the volume,
 choose Advanced
 configurations, and
then configure the fo
llowing:

Procedure 414

Amazon Elastic Container Service Developer Guide

Volume type Steps

•
To encrypt the data
between the Amazon
EFS file system and
the Amazon ECS
host, select Transit
encryption, and then
 for Port, enter the
port to use when
sending encrypted
data between the
Amazon ECS host
and the Amazon
EFS server. If you
don't specify a tran
sit encryption port,
it uses the port s
election strategy
that the Amazon EFS
mount helper uses.
For more information,
see EFS Mount Helper
in the Amazon Elastic
File System User Guide.

•
To use the Amazon
ECS task IAM role
defined in a task
definition when
mounting the Amazon
EFS file system, select
IAM authorization.

e.

Procedure 415

https://docs.aws.amazon.com/efs/latest/ug/efs-mount-helper.html

Amazon Elastic Container Service Developer Guide

Volume type Steps

Choose Add mount
point, and then
configure the following:

•
For Container, choose
 the container for the
mount point.

•
For Source volume,
 choose the data
volume to mount to
the container.

•
For Container path,
 enter the path on the
container to mount
the volume.

•
For Read only, select
 whether the container
has read-only access
to the volume.

f.
To add additional mount
points, Add mount
point.

Procedure 416

Amazon Elastic Container Service Developer Guide

Volume type Steps

Docker a.
For Driver, enter the Do
cker volume configura
tion. Windows container
s support only the use of
the local driver. To use
bind mounts, specify a
host.

b.
For Scope, choose the
 volume lifecycle.

•
To have the lifecycle
last when the task
 starts and stops,
choose Task.

•
To have the volume
persist after the task s
tops, choose Shared.

c.
Choose Add mount
point, and then
configure the following:

•
For Container, choose
 the container for the
mount point.

•
For Source volume,
 choose the data
volume to mount to
the container.

•

Procedure 417

Amazon Elastic Container Service Developer Guide

Volume type Steps

For Container path,
 enter the path on the
container to mount
the volume.

•
For Read only, select
 whether the container
has read-only access
to the volume.

d.
To add additional mount
points, Add mount
point.

Procedure 418

Amazon Elastic Container Service Developer Guide

Volume type Steps

FSx for Windows File
Server a.

For File system ID, choo
se the FSx for Windows
File Server file system
ID.

b.
For Root directory, ente
r the directory, enter the
directory within the FSx
for Windows File Server
file system to mount as
the root directory inside
the host.

c.
For Credential para
meter, choose how the
credentials are stored.

•
To use AWS Secrets
Manager, enter the
Amazon Resource
Name (ARN) of a Secr
ets Manager secret.

•
To use AWS Systems
Manager, enter the
Amazon Resource
Name (ARN) of a
 Systems Manager
parameter.

d.
For Domain, enter the
 fully qualified domain
name that's hosted
by an AWS Directory

Procedure 419

Amazon Elastic Container Service Developer Guide

Volume type Steps

Service for Microsoft
Active Directory (AWS
Managed Microsoft
AD) directory or a self
-hosted EC2 Active
Directory.

e.
Choose Add mount
point, and then
configure the following:

•
For Container, choose
 the container for the
mount point.

•
For Source volume,
 choose the data
volume to mount to
the container.

•
For Container path,
 enter the path on the
container to mount
the volume.

•
For Read only, select
 whether the container
has read-only access
to the volume.

f.
To add additional mount
points, Add mount
point.

Procedure 420

Amazon Elastic Container Service Developer Guide

Volume type Steps

Amazon EBS a.
Choose Add mount
point, and then
configure the following:

•
For Container, choose
 the container for the
mount point.

•
For Source volume,
 choose the data
volume to mount to
the container.

•
For Container path,
 enter the path on the
container to mount
the volume.

•
For Read only, select
 whether the container
has read-only access
to the volume.

b.
To add additional mount
points, Add mount
point.

15. To add a volume from another container, choose Add volume from, and then configure the
following:

• For Container, choose the container.

• For Source, choose the container which has the volume you want to mount.

• For Read only, select whether the container has read-only access to the volume.

Procedure 421

Amazon Elastic Container Service Developer Guide

16. (Optional) To configure your application trace and metric collection settings by using
the AWS Distro for OpenTelemetry integration, expand Monitoring, and then select Use
metric collection to collect and send metrics for your tasks to either Amazon CloudWatch
or Amazon Managed Service for Prometheus. When this option is selected, Amazon ECS
creates an AWS Distro for OpenTelemetry container sidecar that is preconfigured to send
the application metrics. For more information, see Correlate Amazon ECS application
performance using application metrics.

a. When Amazon CloudWatch is selected, your custom application metrics are routed
to CloudWatch as custom metrics. For more information, see Exporting application
metrics to Amazon CloudWatch.

Important

When exporting application metrics to Amazon CloudWatch, your task
definition requires a task IAM role with the required permissions. For more
information, see Required IAM permissions for AWS Distro for OpenTelemetry
integration with Amazon CloudWatch.

b. When you select Amazon Managed Service for Prometheus (Prometheus libraries
instrumentation), your task-level CPU, memory, network, and storage metrics
and your custom application metrics are routed to Amazon Managed Service for
Prometheus. For Workspace remote write endpoint, enter the remote write endpoint
URL for your Prometheus workspace. For Scraping target, enter the host and port
the AWS Distro for OpenTelemetry collector can use to scrape for metrics data. For
more information, see Exporting application metrics to Amazon Managed Service for
Prometheus.

Important

When exporting application metrics to Amazon Managed Service for
Prometheus, your task definition requires a task IAM role with the required
permissions. For more information, see Required IAM permissions for AWS
Distro for OpenTelemetry integration with Amazon Managed Service for
Prometheus.

c. When you select Amazon Managed Service for Prometheus (OpenTelemetry
instrumentation), your task-level CPU, memory, network, and storage metrics

Procedure 422

Amazon Elastic Container Service Developer Guide

and your custom application metrics are routed to Amazon Managed Service for
Prometheus. For Workspace remote write endpoint, enter the remote write endpoint
URL for your Prometheus workspace. For more information, see Exporting application
metrics to Amazon Managed Service for Prometheus.

Important

When exporting application metrics to Amazon Managed Service for
Prometheus, your task definition requires a task IAM role with the required
permissions. For more information, see Required IAM permissions for AWS
Distro for OpenTelemetry integration with Amazon Managed Service for
Prometheus.

17. (Optional) Expand the Tags section to add tags, as key-value pairs, to the task definition.

• [Add a tag] Choose Add tag, and then do the following:

• For Key, enter the key name.

• For Value, enter the key value.

• [Remove a tag] Next to the tag, choose Remove tag.

18. Choose Create to register the task definition.

Amazon ECS console JSON editor

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. On the Create new task definition menu, choose Create new task definition with JSON.

4. In the JSON editor box, edit your JSON file,

The JSON must pass the validation checks specified in the section called “JSON validation”.

5. Choose Create.

Updating an Amazon ECS task definition using the console

A task definition revision is a copy of the current task definition with the new parameter values
replacing the existing ones. All parameters that you do not modify are in the new revision.

Updating a task definition using the console 423

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

To update a task definition, create a task definition revision. If the task definition is used in a
service, you must update that service to use the updated task definition.

When you create a revision, you can modify the following container properties and environment
properties.

• Container image URI

• Port mappings

• Environment variables

• Task size

• Container size

• Task role

• Task execution role

• Volumes and container mount points

• Private registry

JSON validation

The Amazon ECS console JSON editor validates the following in the JSON file:

• The file is a valid JSON file

• The file does not contain any extraneous keys

• The file contains the familyName parameter

• There is at least one entry under containerDefinitions

Procedure

Amazon ECS console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, choose the Region that contains your task definition.

3. In the navigation pane, choose Task definitions.

4. Choose the task definition.

JSON validation 424

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

5. Select the task definition revision, and then choose Create new revision, Create new
revision.

6. On the Create new task definition revision page, make changes. For example, to change
the existing container definitions (such as the container image, memory limits, or port
mappings), select the container, and then make the changes.

7. Verify the information, and then choose Update.

8. If your task definition is used in a service, update your service with the updated task
definition. For more information, see Updating an Amazon ECS service.

Amazon ECS console JSON editor

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. Choose Create new revision, Create new revision with JSON.

4. In the JSON editor box, edit your JSON file,

The JSON must pass the validation checks specified in the section called “JSON validation”.

5. Choose Create.

Deregistering an Amazon ECS task definition revision using the
console

You can deregister the task definition revision so that it no longer displays in your
ListTaskDefinition API calls or in the console when you want to run a task or update a service.

When you deregister a task definition revision, it is immediately marked as INACTIVE. Existing
tasks and services that reference an INACTIVE task definition revision continue to run without
disruption. Existing services that reference an INACTIVE task definition revision can still scale up or
down by modifying the service's desired count.

You can't use an INACTIVE task definition revision to run new tasks or create new services. You
also can't update an existing service to reference an INACTIVE task definition revision (even
though there may be up to a 10-minute window following deregistration where these restrictions
have not yet taken effect).

Deregistering a task definition revision using the console 425

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Note

When you deregister all revisions in a task family, the task definition family is moved to
the INACTIVE list. Adding a new revision of an INACTIVE task definition moves the task
definition family back to the ACTIVE list.
At this time, INACTIVE task definition revisions remain discoverable in your account
indefinitely. However, this behavior is subject to change in the future. Therefore, you
should not rely on INACTIVE task definition revisions persisting beyond the lifecycle of any
associated tasks and services.

AWS CloudFormation stacks

The following behavior applies to task definitions that were created in the new Amazon ECS
console before January 12, 2023.

When you create a task definition, the Amazon ECS console automatically creates a
CloudFormation stack that has a name that begins with ECS-Console-V2-TaskDefinition-.
If you used the AWS CLI or an AWS SDK to deregister the task definition, then you must
manually delete the task definition stack. For more information, see Deleting a stack in the AWS
CloudFormation User Guide.

Task definitions created after January 12, 2023, do not have a CloudFormation stack automatically
created for them.

Procedure

To deregister a new task definition (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, choose the region that contains your task definition.

3. In the navigation pane, choose Task definitions.

4. On the Task definitions page, choose the task definition family that contains one or more
revisions that you want to deregister.

5. On the task definition Name page, select the revisions to delete, and then choose Actions,
Deregister.

6. Verify the information in the Deregister window, and then choose Deregister to finish.

AWS CloudFormation stacks 426

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Deleting an Amazon ECS task definition revision using the
console

When no longer need a specific task definition revision in Amazon ECS, you can delete the task
definition revision.

When you delete a task definition revision, it immediately transitions from the INACTIVE to
DELETE_IN_PROGRESS. Existing tasks and services that reference a DELETE_IN_PROGRESS task
definition revision continue to run without disruption.

You can't use a DELETE_IN_PROGRESS task definition revision to run new tasks or create new
services. You also can't update an existing service to reference a DELETE_IN_PROGRESS task
definition revision.

When you delete all INACTIVE task definition revisions, the task definition name is not
displayed in the console and not returned in the API. If a task definition revision is in the
DELETE_IN_PROGRESS state, the task definition name is displayed in the console and returned in
the API. The task definition name is retained by Amazon ECS and the revision is incremented the
next time you create a task definition with that name.

Amazon ECS resources that can block a deletion

A task definition deletion request will not complete when there are any Amazon ECS resources that
depend on the task definition revision. The following resources might prevent a task definition
from being deleted:

• Amazon ECS standalone tasks - The task definition is required in order for the task to remain
healthy.

• Amazon ECS service tasks - The task definition is required in order for the task to remain healthy.

• Amazon ECS service deployments and task sets - The task definition is required when a scaling
event is initiated for an Amazon ECS deployment or task set.

If your task definition remains in the DELETE_IN_PROGRESS state, you can use the console, or the
AWS CLI to identify, and then stop the resources which block the task definition deletion.

Task definition deletion after the blocked resource is removed

The following rules apply after you remove the resources that block the task definition deletion:

Deleting a task definition revision using the console 427

Amazon Elastic Container Service Developer Guide

• Amazon ECS tasks - The task definition deletion can take up to 1 hour to complete after the task
is stopped.

• Amazon ECS service deployments and task sets - The task definition deletion can take up to 24
hours to complete after the deployment or task set is deleted.

Procedure

To delete task definitions (Amazon ECS console)

You must deregister a task definition revision before you delete it. For more information, see the
section called “Deregistering a task definition revision using the console”.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, choose the region that contains your task definition.

3. In the navigation pane, choose Task definitions.

4. On the Task definitions page, choose the task definition family that contains one or more
revisions that you want to delete.

5. On the Task definition name page, select the revisions to delete, and then choose Actions,
Delete.

If Delete is unavailable, you must deregister the task definition.

6. Verify the information in the Delete confirmation box, and then choose Delete to finish.

Amazon ECS task definition use cases

Learn more about how to write task definitions for various AWS services and features.

Depending on your workload, there are certain task definition parameters that need to be set.
Also for the EC2 launch type, you have to choose specific instances that are engineered for the
workload.

Topics

• Amazon ECS task definitions for GPU workloads

• Amazon ECS task definitions for video transcoding workloads

• Amazon ECS task definitions for AWS Neuron machine learning workloads

• Amazon ECS task definitions for deep learning instances

Procedure 428

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

• Amazon ECS task definitions for 64-bit ARM workloads

• Send Amazon ECS logs to CloudWatch

• Send Amazon ECS logs to an AWS service or AWS Partner

• Using non-AWS container images in Amazon ECS

• Restart individual containers in Amazon ECS tasks with container restart policies

• Pass sensitive data to an Amazon ECS container

Amazon ECS task definitions for GPU workloads

Amazon ECS supports workloads that use GPUs, when you create clusters with container instances
that support GPUs. Amazon EC2 GPU-based container instances that use the p2, p3, p5, g3, g4,
and g5 instance types provide access to NVIDIA GPUs. For more information, see Linux Accelerated
Computing Instances in the Amazon EC2 Instance Types guide.

Amazon ECS provides a GPU-optimized AMI that comes with pre-configured NVIDIA kernel drivers
and a Docker GPU runtime. For more information, see Amazon ECS-optimized Linux AMIs.

You can designate a number of GPUs in your task definition for task placement consideration at a
container level. Amazon ECS schedules to available container instances that support GPUs and pin
physical GPUs to proper containers for optimal performance.

The following Amazon EC2 GPU-based instance types are supported. For more information, see
Amazon EC2 P2 Instances, Amazon EC2 P3 Instances, Amazon EC2 P4d Instances, Amazon EC2
P5 Instances, Amazon EC2 G3 Instances, Amazon EC2 G4 Instances, Amazon EC2 G5 Instances,
Amazon EC2 G6 Instances, and Amazon EC2 G6e Instances.

Instance type GPUs GPU memory
(GiB)

vCPUs Memory (GiB)

p3.2xlarge 1 16 8 61

p3.8xlarge 4 64 32 244

p3.16xlarge 8 128 64 488

p3dn.24xlarge 8 256 96 768

p4d.24xlarge 8 320 96 1152

Task definitions for GPU workloads 429

https://docs.aws.amazon.com/ec2/latest/instancetypes/ac.html
https://docs.aws.amazon.com/ec2/latest/instancetypes/ac.html
https://aws.amazon.com/ec2/instance-types/p2/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/p5/
https://aws.amazon.com/ec2/instance-types/p5/
https://aws.amazon.com/ec2/instance-types/g3/
https://aws.amazon.com/ec2/instance-types/g4/
https://aws.amazon.com/ec2/instance-types/g5/
https://aws.amazon.com/ec2/instance-types/g6/
https://aws.amazon.com/ec2/instance-types/g6e/

Amazon Elastic Container Service Developer Guide

Instance type GPUs GPU memory
(GiB)

vCPUs Memory (GiB)

p5.48xlarge 8 640 192 2048

g3s.xlarge 1 8 4 30.5

g3.4xlarge 1 8 16 122

g3.8xlarge 2 16 32 244

g3.16xlarge 4 32 64 488

g4dn.xlarge 1 16 4 16

g4dn.2xlarge 1 16 8 32

g4dn.4xlarge 1 16 16 64

g4dn.8xlarge 1 16 32 128

g4dn.12xlarge 4 64 48 192

g4dn.16xlarge 1 16 64 256

g5.xlarge 1 24 4 16

g5.2xlarge 1 24 8 32

g5.4xlarge 1 24 16 64

g5.8xlarge 1 24 32 128

g5.16xlarge 1 24 64 256

g5.12xlarge 4 96 48 192

g5.24xlarge 4 96 96 384

g5.48xlarge 8 192 192 768

g6.xlarge 1 24 4 16

Task definitions for GPU workloads 430

Amazon Elastic Container Service Developer Guide

Instance type GPUs GPU memory
(GiB)

vCPUs Memory (GiB)

g6.2xlarge 1 24 8 32

g6.4xlarge 1 24 16 64

g6.8xlarge 1 24 32 128

g6.16.xlarge 1 24 64 256

g6.12xlarge 4 96 48 192

g6.24xlarge 4 96 96 384

g6.48xlarge 8 192 192 768

g6.metal 8 192 192 768

gr6.4xlarge 1 24 16 128

g6e.xlarge 1 48 4 32

g6e.2xlarge 1 48 8 64

g6e.4xlarge 1 48 16 128

g6e.8xlarge 1 48 32 256

g6e16.xlarge 1 48 64 512

g6e12.xlarge 4 192 48 384

g6e24.xlarge 4 192 96 768

g6e48.xlarge 8 384 192 1536

gr6.8xlarge 1 24 32 256

You can retrieve the Amazon Machine Image (AMI) ID for Amazon ECS-optimized AMIs by querying
the AWS Systems Manager Parameter Store API. Using this parameter, you don't need to manually

Task definitions for GPU workloads 431

Amazon Elastic Container Service Developer Guide

look up Amazon ECS-optimized AMI IDs. For more information about the Systems Manager
Parameter Store API, see GetParameter. The user that you use must have the ssm:GetParameter
IAM permission to retrieve the Amazon ECS-optimized AMI metadata.

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/gpu/
recommended --region us-east-1

Considerations

Note

The support for g2 instance family type has been deprecated.
The p2 instance family type is only supported on versions earlier than 20230912 of the
Amazon ECS GPU-optimized AMI. If you need to continue to use p2 instances, see What to
do if you need a P2 instance.
In-place updates of the NVIDIA/CUDA drivers on both these instance family types will cause
potential GPU workload failures.

We recommend that you consider the following before you begin working with GPUs on Amazon
ECS.

• Your clusters can contain a mix of GPU and non-GPU container instances.

• You can run GPU workloads on external instances. When registering an external instance with
your cluster, ensure the --enable-gpu flag is included on the installation script. For more
information, see Registering an external instance to an Amazon ECS cluster.

• You must set ECS_ENABLE_GPU_SUPPORT to true in your agent configuration file. For more
information, see the section called “Container agent configuration”.

• When running a task or creating a service, you can use instance type attributes when you
configure task placement constraints to determine the container instances the task is to be
launched on. By doing this, you can more effectively use your resources. For more information,
see How Amazon ECS places tasks on container instances.

The following example launches a task on a g4dn.xlarge container instance in your default
cluster.

aws ecs run-task --cluster default --task-definition ecs-gpu-task-def \

Task definitions for GPU workloads 432

https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameter.html

Amazon Elastic Container Service Developer Guide

 --placement-constraints type=memberOf,expression="attribute:ecs.instance-type ==
 g4dn.xlarge" --region us-east-2

• For each container that has a GPU resource requirement that's specified in the container
definition, Amazon ECS sets the container runtime to be the NVIDIA container runtime.

• The NVIDIA container runtime requires some environment variables to be set in the container
to function properly. For a list of these environment variables, see Specialized Configurations
with Docker. Amazon ECS sets the NVIDIA_VISIBLE_DEVICES environment variable value to
be a list of the GPU device IDs that Amazon ECS assigns to the container. For the other required
environment variables, Amazon ECS doesn't set them. So, make sure that your container image
sets them or they're set in the container definition.

• The p5 instance type family is supported on version 20230929 and later of the Amazon ECS
GPU-optimized AMI.

• The g4 instance type family is supported on version 20230913 and later of the Amazon ECS
GPU-optimized AMI. For more information, see Amazon ECS-optimized Linux AMIs. It's not
supported in the Create Cluster workflow in the Amazon ECS console. To use these instance
types, you must either use the Amazon EC2 console, AWS CLI, or API and manually register the
instances to your cluster.

• The p4d.24xlarge instance type only works with CUDA 11 or later.

• The Amazon ECS GPU-optimized AMI has IPv6 enabled, which causes issues when using yum. This
can be resolved by configuring yum to use IPv4 with the following command.

echo "ip_resolve=4" >> /etc/yum.conf

• When you build a container image that doesn't use the NVIDIA/CUDA base images, you must set
the NVIDIA_DRIVER_CAPABILITIES container runtime variable to one of the following values:

• utility,compute

• all

For information about how to set the variable, see Controlling the NVIDIA Container Runtime on
the NVIDIA website.

• GPUs are not supported on Windows containers.

Task definitions for GPU workloads 433

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html?highlight=environment%20variable
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html?highlight=environment%20variable
https://sarus.readthedocs.io/en/stable/user/custom-cuda-images.html#controlling-the-nvidia-container-runtime

Amazon Elastic Container Service Developer Guide

Launch a GPU container instance for Amazon ECS

To use a GPU instance on Amazon ECS, you need to create a launch template, a user data file, and
launch the instance.

You can then run a task that uses a task definition configured for GPU.

Use a launch template

You can create a launch template.

• Create a launch template that uses the Amazon ECS-optimized GPU AMI ID For the AMI. For
information about how to create a launch template, see Create a new launch template using
parameters you define in the Amazon EC2 User Guide.

Use the AMI ID from the previous step for the Amazon Machine image. For information
about how to specify the AMI ID with the Systems Manager parameter, see Specify a Systems
Manager parameter in a launch template in the Amazon EC2 User Guide.

Add the following to the User data in the launch template. Replace cluster-name with the
name of your cluster.

#!/bin/bash
echo ECS_CLUSTER=cluster-name >> /etc/ecs/ecs.config;
echo ECS_ENABLE_GPU_SUPPORT=true >> /etc/ecs/ecs.config

Use the AWS CLI

You can use the AWS CLI to launch the container instance.

1. Create a file that's called userdata.toml. This file is used for the instance user data. Replace
cluster-name with the name of your cluster.

#!/bin/bash
echo ECS_CLUSTER=cluster-name >> /etc/ecs/ecs.config;
echo ECS_ENABLE_GPU_SUPPORT=true >> /etc/ecs/ecs.config

2. Run the following command to get the GPU AMI ID. You use this in the following step.

Task definitions for GPU workloads 434

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/create-launch-template.html#create-launch-template-define-parameters
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/create-launch-template.html#create-launch-template-define-parameters
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/create-launch-template.html#use-an-ssm-parameter-instead-of-an-ami-id
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/create-launch-template.html#use-an-ssm-parameter-instead-of-an-ami-id

Amazon Elastic Container Service Developer Guide

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/gpu/
recommended --region us-east-1

3. Run the following command to launch the GPU instance. Remember to replace the following
parameters:

• Replace subnet with the ID of the private or public subnet that your instance will launch in.

• Replace gpu_ami with the AMI ID from the previous step.

• Replace t3.large with the instance type that you want to use.

• Replace region with the Region code.

aws ec2 run-instances --key-name ecs-gpu-example \
 --subnet-id subnet \
 --image-id gpu_ami \
 --instance-type t3.large \
 --region region \
 --tag-specifications 'ResourceType=instance,Tags=[{Key=GPU,Value=example}]' \
 --user-data file://userdata.toml \
 --iam-instance-profile Name=ecsInstanceRole

4. Run the following command to verify that the container instance is registered to the cluster.
When you run this command, remember to replace the following parameters:

• Replace cluster with your cluster name.

• Replace region with your Region code.

aws ecs list-container-instances --cluster cluster-name --region region

Specifying GPUs in an Amazon ECS task definition

To use the GPUs on a container instance and the Docker GPU runtime, make sure that you
designate the number of GPUs your container requires in the task definition. As containers that
support GPUs are placed, the Amazon ECS container agent pins the desired number of physical
GPUs to the appropriate container. The number of GPUs reserved for all containers in a task cannot
exceed the number of available GPUs on the container instance the task is launched on. For more
information, see Creating an Amazon ECS task definition using the console.

Task definitions for GPU workloads 435

Amazon Elastic Container Service Developer Guide

Important

If your GPU requirements aren't specified in the task definition, the task uses the default
Docker runtime.

The following shows the JSON format for the GPU requirements in a task definition:

{
 "containerDefinitions": [
 {
 ...
 "resourceRequirements" : [
 {
 "type" : "GPU",
 "value" : "2"
 }
],
 },
...
}

The following example demonstrates the syntax for a Docker container that specifies a GPU
requirement. This container uses two GPUs, runs the nvidia-smi utility, and then exits.

{
 "containerDefinitions": [
 {
 "memory": 80,
 "essential": true,
 "name": "gpu",
 "image": "nvidia/cuda:11.0.3-base",
 "resourceRequirements": [
 {
 "type":"GPU",
 "value": "2"
 }
],
 "command": [
 "sh",
 "-c",
 "nvidia-smi"

Task definitions for GPU workloads 436

Amazon Elastic Container Service Developer Guide

],
 "cpu": 100
 }
],
 "family": "example-ecs-gpu"
}

Share GPUs

When you want to share GPUs, you need to configure the following.

1. Remove GPU resource requirements from your task definitions so that Amazon ECS does not
reserve any GPUs that should be shared.

2. Add the following user data to your instances when you want to share GPUs. This will make
nvidia the default Docker container runtime on the container instance so that all Amazon ECS
containers can use the GPUs. For more information see Run commands when you launch an
EC2 instance with user data input in the Amazon EC2 User Guide.

const userData = ec2.UserData.forLinux();
 userData.addCommands(
 'sudo rm /etc/sysconfig/docker',
 'echo DAEMON_MAXFILES=1048576 | sudo tee -a /etc/sysconfig/docker',
 'echo OPTIONS="--default-ulimit nofile=32768:65536 --default-runtime nvidia" |
 sudo tee -a /etc/sysconfig/docker',
 'echo DAEMON_PIDFILE_TIMEOUT=10 | sudo tee -a /etc/sysconfig/docker',
 'sudo systemctl restart docker',
);

3. Set the NVIDIA_VISIBLE_DEVICES environment variable on your container. You can do this
by specifying the environment variable in your task definition. For information on the valid
values, see GPU Enumeration on the NVIDIA documentation site.

What to do if you need a P2 instance

If you need to use P2 instance, you can use one of the following options to continue using the
instances.

You must modify the instance user data for both options. For more information see Run commands
when you launch an EC2 instance with user data input in the Amazon EC2 User Guide.

Use the last supported GPU-optimized AMI

Task definitions for GPU workloads 437

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html#gpu-enumeration
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html

Amazon Elastic Container Service Developer Guide

You can use the 20230906 version of the GPU-optimized AMI, and add the following to the
instance user data.

Replace cluster-name with the name of your cluster.

#!/bin/bash
echo "exclude=*nvidia* *cuda*" >> /etc/yum.conf
echo "ECS_CLUSTER=cluster-name" >> /etc/ecs/ecs.config

Use the latest GPU-optimized AMI, and update the user data

You can add the following to the instance user data. This uninstalls the Nvidia 535/Cuda12.2
drivers, and then installs the Nvidia 470/Cuda11.4 drivers and fixes the version.

#!/bin/bash
yum remove -y cuda-toolkit* nvidia-driver-latest-dkms*
tmpfile=$(mktemp)
cat >$tmpfile <<EOF
[amzn2-nvidia]
name=Amazon Linux 2 Nvidia repository
mirrorlist=\$awsproto://\$amazonlinux.\$awsregion.\$awsdomain/\$releasever/amzn2-
nvidia/latest/\$basearch/mirror.list
priority=20
gpgcheck=1
gpgkey=https://developer.download.nvidia.com/compute/cuda/repos/rhel7/
x86_64/7fa2af80.pub
enabled=1
exclude=libglvnd-*
EOF

mv $tmpfile /etc/yum.repos.d/amzn2-nvidia-tmp.repo
yum install -y system-release-nvidia cuda-toolkit-11-4 nvidia-driver-latest-
dkms-470.182.03
yum install -y libnvidia-container-1.4.0 libnvidia-container-tools-1.4.0 nvidia-
container-runtime-hook-1.4.0 docker-runtime-nvidia-1

echo "exclude=*nvidia* *cuda*" >> /etc/yum.conf
nvidia-smi

Create your own P2 compatible GPU-optimized AMI

You can create your own custom Amazon ECS GPU-optimized AMI that is compatible with P2
instances, and then launch P2 instances using the AMI.

Task definitions for GPU workloads 438

Amazon Elastic Container Service Developer Guide

1. Run the following command to clone the amazon-ecs-ami repo.

git clone https://github.com/aws/amazon-ecs-ami

2. Set the required Amazon ECS agent and source Amazon Linux AMI versions in
release.auto.pkrvars.hcl or overrides.auto.pkrvars.hcl.

3. Run the following command to build a private P2 compatible EC2 AMI.

Replace region with the Region with the instance Region .

REGION=region make al2keplergpu

4. Use the AMI with the following instance user data to connect to the Amazon ECS cluster.

Replace cluster-name with the name of your cluster.

#!/bin/bash
echo "ECS_CLUSTER=cluster-name" >> /etc/ecs/ecs.config

Amazon ECS task definitions for video transcoding workloads

To use video transcoding workloads on Amazon ECS, register Amazon EC2 VT1 instances. After you
registered these instances, you can run live and pre-rendered video transcoding workloads as tasks
on Amazon ECS. Amazon EC2 VT1 instances use Xilinx U30 media transcoding cards to accelerate
live and pre-rendered video transcoding workloads.

Note

For instructions on how to run video transcoding workloads in containers other than
Amazon ECS, see the Xilinx documentation.

Considerations

Before you begin deploying VT1 on Amazon ECS, consider the following:

• Your clusters can contain a mix of VT1 and non-VT1 instances.

• You need a Linux application that uses Xilinx U30 media transcoding cards with accelerated AVC
(H.264) and HEVC (H.265) codecs.

Task definitions for video trancoding workloads 439

https://aws.amazon.com/ec2/instance-types/vt1/
https://xilinx.github.io/video-sdk/v1.5/container_setup.html#working-with-docker-vt1

Amazon Elastic Container Service Developer Guide

Important

Applications that use other codecs might not have improved performance on VT1
instances.

• Only one transcoding task can run on a U30 card. Each card has two devices that are associated
with it. You can run as many transcoding tasks as there are cards for each of your VT1 instance.

• When creating a service or running a standalone task, you can use instance type attributes when
configuring task placement constraints. This ensures that the task is launched on the container
instance that you specify. Doing so helps ensure that you use your resources effectively and that
your tasks for video transcoding workloads are on your VT1 instances. For more information, see
How Amazon ECS places tasks on container instances.

In the following example, a task is run on a vt1.3xlarge instance on your default cluster.

aws ecs run-task \
 --cluster default \
 --task-definition vt1-3xlarge-xffmpeg-processor \
 --placement-constraints type=memberOf,expression="attribute:ecs.instance-type ==
 vt1.3xlarge"

• You configure a container to use the specific U30 card available on the host container instance.
You can do this by using the linuxParameters parameter and specifying the device details. For
more information, see Task definition requirements.

Using a VT1 AMI

You have two options for running an AMI on Amazon EC2 for Amazon ECS container instances. The
first option is to use the Xilinx official AMI on the AWS Marketplace. The second option is to build
your own AMI from the sample repository.

• Xilinx offers AMIs on the AWS Marketplace.

• Amazon ECS provides a sample repository that you can use to build an AMI for video transcoding
workloads. This AMI comes with Xilinx U30 drivers. You can find the repository that contains
Packer scripts on GitHub. For more information about Packer, see the Packer documentation.

Task definitions for video trancoding workloads 440

https://aws.amazon.com/marketplace/pp/prodview-phvk6d4mq3hh6
https://github.com/aws-samples/aws-vt-baseami-pipeline
https://developer.hashicorp.com/packer/docs

Amazon Elastic Container Service Developer Guide

Task definition requirements

To run video transcoding containers on Amazon ECS, your task definition must contain a video
transcoding application that uses the accelerated H.264/AVC and H.265/HEVC codecs. You can
build a container image by following the steps on the Xilinx GitHub.

The task definition must be specific to the instance type. The instance types are 3xlarge, 6xlarge,
and 24xlarge. You must configure a container to use specific Xilinx U30 devices that are available
on the host container instance. You can do so using the linuxParameters parameter. The
following table details the cards and device SoCs that are specific to each instance type.

Instance
Type

vCPUs RAM (GiB) U30
accelerator
cards

Addressable
XCU30 SoC
devices

Device Paths

vt1.3xlarge 12 24 1 2 /dev/dri/
renderD12
8 ,/dev/
dri/
renderD12
9

vt1.6xlarge 24 48 2 4 /dev/dri/
renderD12
8 ,/dev/
dri/
renderD12
9 ,/dev/
dri/
renderD13
0 ,/dev/
dri/
renderD13
1

vt1.24xlarge 96 182 8 16 /dev/dri/
renderD12
8 ,/dev/

Task definitions for video trancoding workloads 441

https://xilinx.github.io/video-sdk/v1.5/container_setup.html#creating-a-docker-image-for-vt1-usage

Amazon Elastic Container Service Developer Guide

Instance
Type

vCPUs RAM (GiB) U30
accelerator
cards

Addressable
XCU30 SoC
devices

Device Paths

dri/
renderD12
9 ,/dev/
dri/
renderD13
0 ,/dev/
dri/
renderD13
1 ,/dev/
dri/
renderD13
2 ,/dev/
dri/
renderD13
3 ,/dev/
dri/
renderD13
4 ,/dev/
dri/
renderD13
5 ,/dev/
dri/
renderD13
6 ,/dev/
dri/
renderD13
7 ,/dev/
dri/
renderD13
8 ,/dev/
dri/
renderD13

Task definitions for video trancoding workloads 442

Amazon Elastic Container Service Developer Guide

Instance
Type

vCPUs RAM (GiB) U30
accelerator
cards

Addressable
XCU30 SoC
devices

Device Paths

9 ,/dev/
dri/
renderD14
0 ,/dev/
dri/
renderD14
1 ,/dev/
dri/
renderD14
2 ,/dev/
dri/
renderD14
3

Important

If the task definition lists devices that the EC2 instance doesn't have, the task fails to
run. When the task fails, the following error message appears in the stoppedReason:
CannotStartContainerError: Error response from daemon: error
gathering device information while adding custom device "/dev/dri/
renderD130": no such file or directory.

Specifying video transcoding in an Amazon ECS task definition

In the following example, the syntax that's used for a task definition of a Linux container on
Amazon EC2 is provided. This task definition is for container images that are built following the
procedure that's provided in the Xilinx documentation. If you use this example, replace image with
your own image, and copy your video files into the instance in the /home/ec2-user directory.

Task definitions for video trancoding workloads 443

https://xilinx.github.io/video-sdk/v1.5/container_setup.html#creating-a-docker-image-for-vt1-usage

Amazon Elastic Container Service Developer Guide

vt1.3xlarge

1. Create a text file that's named vt1-3xlarge-ffmpeg-linux.json with the following
content.

{
 "family": "vt1-3xlarge-xffmpeg-processor",
 "requiresCompatibilities": ["EC2"],
 "placementConstraints": [
 {
 "type": "memberOf",
 "expression": "attribute:ecs.os-type == linux"
 },
 {
 "type": "memberOf",
 "expression": "attribute:ecs.instance-type == vt1.3xlarge"
 }
],
 "containerDefinitions": [
 {
 "entryPoint": [
 "/bin/bash",
 "-c"
],
 "command": ["/video/ecs_ffmpeg_wrapper.sh"],
 "linuxParameters": {
 "devices": [
 {
 "containerPath": "/dev/dri/renderD128",
 "hostPath": "/dev/dri/renderD128",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD129",
 "hostPath": "/dev/dri/renderD129",
 "permissions": [
 "read",
 "write"
]
 }

Task definitions for video trancoding workloads 444

Amazon Elastic Container Service Developer Guide

]
 },
 "mountPoints": [
 {
 "containerPath": "/video",
 "sourceVolume": "video_file"
 }
],
 "cpu": 0,
 "memory": 12000,
 "image": "0123456789012.dkr.ecr.us-west-2.amazonaws.com/aws/xilinx-
xffmpeg",
 "essential": true,
 "name": "xilinix-xffmpeg"
 }
],
 "volumes": [
 {
 "name": "video_file",
 "host": {"sourcePath": "/home/ec2-user"}
 }
]
}

2. Register the task definition.

aws ecs register-task-definition --family vt1-3xlarge-xffmpeg-processor --cli-
input-json file://vt1-3xlarge-xffmpeg-linux.json --region us-east-1

vt1.6xlarge

1. Create a text file that's named vt1-6xlarge-ffmpeg-linux.json with the following
content.

{
 "family": "vt1-6xlarge-xffmpeg-processor",
 "requiresCompatibilities": ["EC2"],
 "placementConstraints": [
 {
 "type": "memberOf",
 "expression": "attribute:ecs.os-type == linux"
 },

Task definitions for video trancoding workloads 445

Amazon Elastic Container Service Developer Guide

 {
 "type": "memberOf",
 "expression": "attribute:ecs.instance-type == vt1.6xlarge"
 }
],
 "containerDefinitions": [
 {
 "entryPoint": [
 "/bin/bash",
 "-c"
],
 "command": ["/video/ecs_ffmpeg_wrapper.sh"],
 "linuxParameters": {
 "devices": [
 {
 "containerPath": "/dev/dri/renderD128",
 "hostPath": "/dev/dri/renderD128",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD129",
 "hostPath": "/dev/dri/renderD129",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD130",
 "hostPath": "/dev/dri/renderD130",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD131",
 "hostPath": "/dev/dri/renderD131",
 "permissions": [
 "read",
 "write"

Task definitions for video trancoding workloads 446

Amazon Elastic Container Service Developer Guide

]
 }
]
 },
 "mountPoints": [
 {
 "containerPath": "/video",
 "sourceVolume": "video_file"
 }
],
 "cpu": 0,
 "memory": 12000,
 "image": "0123456789012.dkr.ecr.us-west-2.amazonaws.com/aws/xilinx-
xffmpeg",
 "essential": true,
 "name": "xilinix-xffmpeg"
 }
],
 "volumes": [
 {
 "name": "video_file",
 "host": {"sourcePath": "/home/ec2-user"}
 }
]
}

2. Register the task definition.

aws ecs register-task-definition --family vt1-6xlarge-xffmpeg-processor --cli-
input-json file://vt1-6xlarge-xffmpeg-linux.json --region us-east-1

vt1.24xlarge

1. Create a text file that's named vt1-24xlarge-ffmpeg-linux.json with the following
content.

{
 "family": "vt1-24xlarge-xffmpeg-processor",
 "requiresCompatibilities": ["EC2"],
 "placementConstraints": [
 {
 "type": "memberOf",

Task definitions for video trancoding workloads 447

Amazon Elastic Container Service Developer Guide

 "expression": "attribute:ecs.os-type == linux"
 },
 {
 "type": "memberOf",
 "expression": "attribute:ecs.instance-type == vt1.24xlarge"
 }
],
 "containerDefinitions": [
 {
 "entryPoint": [
 "/bin/bash",
 "-c"
],
 "command": ["/video/ecs_ffmpeg_wrapper.sh"],
 "linuxParameters": {
 "devices": [
 {
 "containerPath": "/dev/dri/renderD128",
 "hostPath": "/dev/dri/renderD128",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD129",
 "hostPath": "/dev/dri/renderD129",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD130",
 "hostPath": "/dev/dri/renderD130",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD131",
 "hostPath": "/dev/dri/renderD131",
 "permissions": [

Task definitions for video trancoding workloads 448

Amazon Elastic Container Service Developer Guide

 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD132",
 "hostPath": "/dev/dri/renderD132",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD133",
 "hostPath": "/dev/dri/renderD133",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD134",
 "hostPath": "/dev/dri/renderD134",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD135",
 "hostPath": "/dev/dri/renderD135",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD136",
 "hostPath": "/dev/dri/renderD136",
 "permissions": [
 "read",
 "write"
]
 },

Task definitions for video trancoding workloads 449

Amazon Elastic Container Service Developer Guide

 {
 "containerPath": "/dev/dri/renderD137",
 "hostPath": "/dev/dri/renderD137",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD138",
 "hostPath": "/dev/dri/renderD138",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD139",
 "hostPath": "/dev/dri/renderD139",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD140",
 "hostPath": "/dev/dri/renderD140",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD141",
 "hostPath": "/dev/dri/renderD141",
 "permissions": [
 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD142",
 "hostPath": "/dev/dri/renderD142",
 "permissions": [

Task definitions for video trancoding workloads 450

Amazon Elastic Container Service Developer Guide

 "read",
 "write"
]
 },
 {
 "containerPath": "/dev/dri/renderD143",
 "hostPath": "/dev/dri/renderD143",
 "permissions": [
 "read",
 "write"
]
 }
]
 },
 "mountPoints": [
 {
 "containerPath": "/video",
 "sourceVolume": "video_file"
 }
],
 "cpu": 0,
 "memory": 12000,
 "image": "0123456789012.dkr.ecr.us-west-2.amazonaws.com/aws/xilinx-
xffmpeg",
 "essential": true,
 "name": "xilinix-xffmpeg"
 }
],
 "volumes": [
 {
 "name": "video_file",
 "host": {"sourcePath": "/home/ec2-user"}
 }
]
}

2. Register the task definition.

aws ecs register-task-definition --family vt1-24xlarge-xffmpeg-processor --cli-
input-json file://vt1-24xlarge-xffmpeg-linux.json --region us-east-1

Task definitions for video trancoding workloads 451

Amazon Elastic Container Service Developer Guide

Amazon ECS task definitions for AWS Neuron machine learning
workloads

You can register Amazon EC2 Trn1, Amazon EC2 Inf1, and Amazon EC2 Inf2 instances to your
clusters for machine learning workloads.

Amazon EC2 Trn1 instances are powered by AWS Trainium chips. These instances provide
high performance and low cost training for machine learning in the cloud. You can train a
machine learning inference model using a machine learning framework with AWS Neuron on
a Trn1 instance. Then, you can run the model on a Inf1 instance, or an Inf2 instance to use the
acceleration of the AWS Inferentia chips.

The Amazon EC2 Inf1 instances and Inf2 instances are powered by AWS Inferentia chips They
provide high performance and lowest cost inference in the cloud.

Machine learning models are deployed to containers using AWS Neuron, which is a specialized
Software Developer Kit (SDK). The SDK consists of a compiler, runtime, and profiling tools that
optimize the machine learning performance of AWS machine learning chips. AWS Neuron supports
popular machine learning frameworks such as TensorFlow, PyTorch, and Apache MXNet.

Considerations

Before you begin deploying Neuron on Amazon ECS, consider the following:

• Your clusters can contain a mix of Trn1, Inf1, Inf2 and other instances.

• You need a Linux application in a container that uses a machine learning framework that
supports AWS Neuron.

Important

Applications that use other frameworks might not have improved performance on Trn1,
Inf1, and Inf2 instances.

• Only one inference or inference-training task can run on each AWS Trainium or AWS Inferentia
chip. For Inf1, each chip has 4 NeuronCores. For Trn1 and Inf2 each chip has 2 NeuronCores. You
can run as many tasks as there are chips for each of your Trn1, Inf1, and Inf2 instances.

• When creating a service or running a standalone task, you can use instance type attributes
when you configure task placement constraints. This ensures that the task is launched on the

Task definitions for AWS Neuron machine learning workloads 452

https://aws.amazon.com/ec2/instance-types/trn1/
https://aws.amazon.com/ec2/instance-types/inf1/
https://aws.amazon.com/ec2/instance-types/inf2/
https://aws.amazon.com/ai/machine-learning/trainium/
https://aws.amazon.com/ai/machine-learning/inferentia/
https://aws.amazon.com/ai/machine-learning/neuron/
https://aws.amazon.com/ai/machine-learning/trainium/
https://aws.amazon.com/ai/machine-learning/inferentia/

Amazon Elastic Container Service Developer Guide

container instance that you specify. Doing so can help you optimize overall resource utilization
and ensure that tasks for inference workloads are on your Trn1, Inf1, and Inf2 instances. For
more information, see How Amazon ECS places tasks on container instances.

In the following example, a task is run on an Inf1.xlarge instance on your default cluster.

aws ecs run-task \
 --cluster default \
 --task-definition ecs-inference-task-def \
 --placement-constraints type=memberOf,expression="attribute:ecs.instance-type ==
 Inf1.xlarge"

• Neuron resource requirements can't be defined in a task definition. Instead, you configure a
container to use specific AWS Trainium or AWS Inferentia chips available on the host container
instance. Do this by using the linuxParameters parameter and specifying the device details.
For more information, see Task definition requirements.

Use the Amazon ECS-optimized Amazon Linux 2023 (Neuron) AMI

Amazon ECS provides an Amazon ECS optimized AMI that's based on Amazon Linux 2023 for AWS
Trainium and AWS Inferentia workloads. It comes with the AWS Neuron drivers and runtime for
Docker. This AMI makes running machine learning inference workloads easier on Amazon ECS.

We recommend using the Amazon ECS-optimized Amazon Linux 2023 (Neuron) AMI when
launching your Amazon EC2 Trn1, Inf1, and Inf2 instances.

You can retrieve the current Amazon ECS-optimized Amazon Linux 2023 (Neuron) AMI using the
AWS CLI with the following command.

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2023/neuron/
recommended

The Amazon ECS-optimized Amazon Linux 2023 (Neuron) AMI is supported in the following
Regions:

• US East (N. Virginia)

• US East (Ohio)

• US West (N. California)

• US West (Oregon)

Task definitions for AWS Neuron machine learning workloads 453

Amazon Elastic Container Service Developer Guide

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Tokyo)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Paris)

• Europe (Stockholm)

• South America (São Paulo)

Use the Amazon ECS optimized Amazon Linux 2 (Neuron) AMI

Amazon ECS provides an Amazon ECS optimized AMI that's based on Amazon Linux 2 for AWS
Trainium and AWS Inferentia workloads. It comes with the AWS Neuron drivers and runtime for
Docker. This AMI makes running machine learning inference workloads easier on Amazon ECS.

We recommend using the Amazon ECS optimized Amazon Linux 2 (Neuron) AMI when launching
your Amazon EC2 Trn1, Inf1, and Inf2 instances.

You can retrieve the current Amazon ECS optimized Amazon Linux 2 (Neuron) AMI using the AWS
CLI with the following command.

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/inf/
recommended

The Amazon ECS optimized Amazon Linux 2 (Neuron) AMI is supported in the following Regions:

• US East (N. Virginia)

• US East (Ohio)

• US West (N. California)

• US West (Oregon)

Task definitions for AWS Neuron machine learning workloads 454

Amazon Elastic Container Service Developer Guide

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Tokyo)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Paris)

• Europe (Stockholm)

• South America (São Paulo)

Task definition requirements

To deploy Neuron on Amazon ECS, your task definition must contain the container definition
for a pre-built container serving the inference model for TensorFlow. It's provided by AWS Deep
Learning Containers. This container contains the AWS Neuron runtime and the TensorFlow Serving
application. At startup, this container fetches your model from Amazon S3, launches Neuron
TensorFlow Serving with the saved model, and waits for prediction requests. In the following
example, the container image has TensorFlow 1.15 and Ubuntu 18.04. A complete list of pre-built
Deep Learning Containers optimized for Neuron is maintained on GitHub. For more information,
see Using AWS Neuron TensorFlow Serving.

763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-inference-neuron:1.15.4-neuron-
py37-ubuntu18.04

Alternatively, you can build your own Neuron sidecar container image. For more information, see
Tutorial: Neuron TensorFlow Serving in the AWS Deep Learning AMIs Developer Guide.

The task definition must be specific to a single instance type. You must configure a container to use
specific AWS Trainium or AWS Inferentia devices that are available on the host container instance.
You can do so using the linuxParameters parameter. The following table details the chips that
are specific to each instance type.

Task definitions for AWS Neuron machine learning workloads 455

https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-tf-neuron-serving.html
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/frameworks/tensorflow/tensorflow-neuron/tutorials/tutorials-tensorflow-utilizing-neuron-capabilities.rst

Amazon Elastic Container Service Developer Guide

Instance Type vCPUs RAM (GiB) AWS ML
accelerator
chips

Device Paths

trn1.2xlarge 8 32 1 /dev/neur
on0

trn1.32xlarge 128 512 16 /dev/neur
on0 , /dev/
neuron1 , /
dev/neuron2 ,
/dev/neur
on3 , /dev/
neuron4 , /
dev/neuron5 ,
/dev/neur
on6 , /dev/
neuron7 , /
dev/neuron8 ,
/dev/neur
on9 , /dev/
neuron10 ,
/dev/neur
on11 , /dev/
neuron12 ,
/dev/neur
on13 , /dev/
neuron14 ,
/dev/neur
on15

inf1.xlarge 4 8 1 /dev/neur
on0

inf1.2xlarge 8 16 1 /dev/neur
on0

Task definitions for AWS Neuron machine learning workloads 456

Amazon Elastic Container Service Developer Guide

Instance Type vCPUs RAM (GiB) AWS ML
accelerator
chips

Device Paths

inf1.6xlarge 24 48 4 /dev/neur
on0 , /dev/
neuron1 , /
dev/neuron2 ,
/dev/neur
on3

inf1.24xlarge 96 192 16 /dev/neur
on0 , /dev/
neuron1 , /
dev/neuron2 ,
/dev/neur
on3 , /dev/
neuron4 , /
dev/neuron5 ,
/dev/neur
on6 , /dev/
neuron7 , /
dev/neuron8 ,
/dev/neur
on9 , /dev/
neuron10 ,
/dev/neur
on11 , /dev/
neuron12 ,
/dev/neur
on13 , /dev/
neuron14 ,
/dev/neur
on15

Task definitions for AWS Neuron machine learning workloads 457

Amazon Elastic Container Service Developer Guide

Instance Type vCPUs RAM (GiB) AWS ML
accelerator
chips

Device Paths

inf2.xlarge 8 16 1 /dev/neur
on0

inf2.8xlarge 32 64 1 /dev/neur
on0

inf2.24xlarge 96 384 6 /dev/neur
on0 , /dev/
neuron1 , /
dev/neuron2 ,
/dev/neur
on3 , /dev/
neuron4 , /
dev/neuron5 ,

inf2.48xlarge 192 768 12 /dev/neur
on0 , /dev/
neuron1 , /
dev/neuron2 ,
/dev/neur
on3 , /dev/
neuron4 , /
dev/neuron5 ,
/dev/neur
on6 , /dev/
neuron7 , /
dev/neuron8 ,
/dev/neur
on9 , /dev/
neuron10 ,
/dev/neur
on11

Task definitions for AWS Neuron machine learning workloads 458

Amazon Elastic Container Service Developer Guide

Specifying AWS Neuron machine learning in an Amazon ECS task definition

The following is an example Linux task definition for inf1.xlarge, displaying the syntax to use.

{
 "family": "ecs-neuron",
 "requiresCompatibilities": ["EC2"],
 "placementConstraints": [
 {
 "type": "memberOf",
 "expression": "attribute:ecs.os-type == linux"
 },
 {
 "type": "memberOf",
 "expression": "attribute:ecs.instance-type == inf1.xlarge"
 }
],
 "executionRoleArn": "${YOUR_EXECUTION_ROLE}",
 "containerDefinitions": [
 {
 "entryPoint": [
 "/usr/local/bin/entrypoint.sh",
 "--port=8500",
 "--rest_api_port=9000",
 "--model_name=resnet50_neuron",
 "--model_base_path=s3://amzn-s3-demo-bucket/resnet50_neuron/"
],
 "portMappings": [
 {
 "hostPort": 8500,
 "protocol": "tcp",
 "containerPort": 8500
 },
 {
 "hostPort": 8501,
 "protocol": "tcp",
 "containerPort": 8501
 },
 {
 "hostPort": 0,
 "protocol": "tcp",
 "containerPort": 80
 }
],

Task definitions for AWS Neuron machine learning workloads 459

Amazon Elastic Container Service Developer Guide

 "linuxParameters": {
 "devices": [
 {
 "containerPath": "/dev/neuron0",
 "hostPath": "/dev/neuron0",
 "permissions": [
 "read",
 "write"
]
 }
],
 "capabilities": {
 "add": [
 "IPC_LOCK"
]
 }
 },
 "cpu": 0,
 "memoryReservation": 1000,
 "image": "763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-
inference-neuron:1.15.4-neuron-py37-ubuntu18.04",
 "essential": true,
 "name": "resnet50"
 }
]
}

Amazon ECS task definitions for deep learning instances

To use deep learning workloads on Amazon ECS, register Amazon EC2 DL1 instances to your
clusters. Amazon EC2 DL1 instances are powered by Gaudi accelerators from Habana Labs (an Intel
company). Use the Habana SynapseAI SDK to connect to the Habana Gaudi accelerators. The SDK
supports the popular machine learning frameworks, TensorFlow and PyTorch.

Considerations

Before you begin deploying DL1 on Amazon ECS, consider the following:

• Your clusters can contain a mix of DL1 and non-DL1 instances.

• When creating a service or running a standalone task, you can use instance type attributes
specifically when you configure task placement constraints to ensure that your task is launched
on the container instance that you specify. Doing so ensures that your resources are used

Task definitions for deep learning instances 460

https://aws.amazon.com/ec2/instance-types/dl1/

Amazon Elastic Container Service Developer Guide

effectively and that your tasks for deep learning workloads are on your DL1 instances. For more
information, see How Amazon ECS places tasks on container instances.

The following example runs a task on a dl1.24xlarge instance on your default cluster.

aws ecs run-task \
 --cluster default \
 --task-definition ecs-dl1-task-def \
 --placement-constraints type=memberOf,expression="attribute:ecs.instance-type ==
 dl1.24xlarge"

Using a DL1 AMI

You have three options for running an AMI on Amazon EC2 DL1 instances for Amazon ECS:

• AWS Marketplace AMIs that are provided by Habana here.

• Habana Deep Learning AMIs that are provided by Amazon Web Services. Because it's not
included, you need to install the Amazon ECS container agent separately.

• Use Packer to build a custom AMI that's provided by the GitHub repo. For more information, see
the Packer documentation.

Specifying deep learning in an Amazon ECS task definition

To run Habana Gaudi accelerated deep learning containers on Amazon ECS, your task definition
must contain the container definition for a pre-built container that serves the deep learning
model for TensorFlow or PyTorch using Habana SynapseAI that's provided by AWS Deep Learning
Containers.

The following container image has TensorFlow 2.7.0 and Ubuntu 20.04. A complete list of pre-built
Deep Learning Containers that's optimized for the Habana Gaudi accelerators is maintained on
GitHub. For more information, see Habana Training Containers.

763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-training-habana:2.7.0-hpu-py38-
synapseai1.2.0-ubuntu20.04

The following is an example task definition for Linux containers on Amazon EC2, displaying the
syntax to use. This example uses an image containing the Habana Labs System Management

Task definitions for deep learning instances 461

https://aws.amazon.com/marketplace/pp/prodview-h24gzbgqu75zq
https://github.com/aws-samples/aws-habana-baseami-pipeline
https://developer.hashicorp.com/packer/docs
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#habana-training-containers

Amazon Elastic Container Service Developer Guide

Interface Tool (HL-SMI) found here: vault.habana.ai/gaudi-docker/1.1.0/ubuntu20.04/
habanalabs/tensorflow-installer-tf-cpu-2.6.0:1.1.0-614

{
 "family": "dl-test",
 "requiresCompatibilities": ["EC2"],
 "placementConstraints": [
 {
 "type": "memberOf",
 "expression": "attribute:ecs.os-type == linux"
 },
 {
 "type": "memberOf",
 "expression": "attribute:ecs.instance-type == dl1.24xlarge"
 }
],
 "networkMode": "host",
 "cpu": "10240",
 "memory": "1024",
 "containerDefinitions": [
 {
 "entryPoint": [
 "sh",
 "-c"
],
 "command": ["hl-smi"],
 "cpu": 8192,
 "environment": [
 {
 "name": "HABANA_VISIBLE_DEVICES",
 "value": "all"
 }
],
 "image": "vault.habana.ai/gaudi-docker/1.1.0/ubuntu20.04/habanalabs/
tensorflow-installer-tf-cpu-2.6.0:1.1.0-614",
 "essential": true,
 "name": "tensorflow-installer-tf-hpu"
 }
]
}

Task definitions for deep learning instances 462

Amazon Elastic Container Service Developer Guide

Amazon ECS task definitions for 64-bit ARM workloads

Amazon ECS supports using 64-bit ARM applications. You can run your applications on the
platform that's powered by AWS Graviton Processors. It's suitable for a wide variety of workloads.
This includes workloads such as application servers, micro-services, high-performance computing,
CPU-based machine learning inference, video encoding, electronic design automation, gaming,
open-source databases, and in-memory caches.

Considerations

Before you begin deploying task definitions that use the 64-bit ARM architecture, consider the
following:

• The applications can use the Fargate or EC2 launch types.

• The applications can only use the Linux operating system.

• For the Fargate type, the applications must use Fargate platform version 1.4.0 or later .

• The applications can use Fluent Bit or CloudWatch for monitoring.

• For the Fargate launch type, the following AWS Regions do not support 64-bit ARM workloads:

• US East (N. Virginia), the use1-az3 Availability Zone

• For the Amazon EC2 launch type, see the following to verify that the Region that you're in
supports the instance type you want to use:

• Amazon EC2 M6g Instances

• Amazon EC2 T4g Instances

• Amazon EC2 C6g Instances

• Amazon EC2 R6gd Instances

• Amazon EC2 X2gd Instances

You can also use the Amazon EC2 describe-instance-type-offerings command with a
filter to view the instance offering for your Region.

aws ec2 describe-instance-type-offerings --filters Name=instance-
type,Values=instance-type --region region

The following example checks for the M6 instance type availability in the US East (N. Virginia)
(us-east-1) Region.

Task definitions for 64-bit ARM workloads 463

https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/instance-types/m6
https://aws.amazon.com/ec2/instance-types/t4/
https://aws.amazon.com/ec2/instance-types/c6g/
https://aws.amazon.com/ec2/instance-types/r6/
https://aws.amazon.com/ec2/instance-types/x2/

Amazon Elastic Container Service Developer Guide

aws ec2 describe-instance-type-offerings --filters "Name=instance-type,Values=m6*" --
region us-east-1

For more information, see describe-instance-type-offerings in the Amazon EC2 Command Line
Reference.

Specifying the ARM architecture in an Amazon ECS task definition

To use the ARM architecture, specify ARM64 for the cpuArchitecture task definition parameter.

In the following example, the ARM architecture is specified in a task definition. It's in JSON format.

{
 "runtimePlatform": {
 "operatingSystemFamily": "LINUX",
 "cpuArchitecture": "ARM64"
 },
...
}

In the following example, a task definition for the ARM architecture displays "hello world."

{
 "family": "arm64-testapp",
 "networkMode": "awsvpc",
 "containerDefinitions": [
 {
 "name": "arm-container",
 "image": "public.ecr.aws/docker/library/busybox:latest",
 "cpu": 100,
 "memory": 100,
 "essential": true,
 "command": ["echo hello world"],
 "entryPoint": ["sh", "-c"]
 }
],
 "requiresCompatibilities": ["EC2"],
 "cpu": "256",
 "memory": "512",
 "runtimePlatform": {

Task definitions for 64-bit ARM workloads 464

https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-instance-type-offerings.html

Amazon Elastic Container Service Developer Guide

 "operatingSystemFamily": "LINUX",
 "cpuArchitecture": "ARM64"
 },
 "executionRoleArn": "arn:aws:iam::123456789012:role/ecsTaskExecutionRole"
}

Send Amazon ECS logs to CloudWatch

You can configure the containers in your tasks to send log information to CloudWatch Logs. If
you're using the Fargate launch type for your tasks, you can view the logs from your containers.
If you're using the EC2 launch type, you can view different logs from your containers in one
convenient location, and it prevents your container logs from taking up disk space on your
container instances.

Note

The type of information that is logged by the containers in your task depends mostly on
their ENTRYPOINT command. By default, the logs that are captured show the command
output that you typically might see in an interactive terminal if you ran the container
locally, which are the STDOUT and STDERR I/O streams. The awslogs log driver simply
passes these logs from Docker to CloudWatch Logs. For more information about how
Docker logs are processed, including alternative ways to capture different file data or
streams, see View logs for a container or service in the Docker documentation.

To send system logs from your Amazon ECS container instances to CloudWatch Logs, see
Monitoring Log Files and CloudWatch Logs quotas in the Amazon CloudWatch Logs User Guide.

Fargate launch type

If you're using the Fargate launch type for your tasks, you need to add the required
logConfiguration parameters to your task definition to turn on the awslogs log driver. For
more information, see Example Amazon ECS task definition: Route logs to CloudWatch.

For Windows container on Fargate, perform one of the following options when any of your task
definition parameters have special characters such as, & \ < > ^ |:

• Add an escape (\) with double quotes around the entire parameter string

Example

Send logs to CloudWatch 465

https://docs.docker.com/engine/logging/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html

Amazon Elastic Container Service Developer Guide

"awslogs-multiline-pattern": "\"^[|DEBUG|INFO|WARNING|ERROR\"",

• Add an escape (^) character around each special character

Example

"awslogs-multiline-pattern": "^^[^|DEBUG^|INFO^|WARNING^|ERROR",

EC2 launch type

If you're using the EC2 launch type for your tasks and want to turn on the awslogs log driver,
your Amazon ECS container instances require at least version 1.9.0 of the container agent. For
information about how to check your agent version and updating to the latest version, see
Updating the Amazon ECS container agent.

Note

You must use either an Amazon ECS-optimized AMI or a custom AMI with at least version
1.9.0-1 of the ecs-init package. When using a custom AMI, you must specify that the
awslogs logging driver is available on the Amazon EC2 instance when you start the agent
by using the following environment variable in your docker run statement or environment
variable file.

ECS_AVAILABLE_LOGGING_DRIVERS=["json-file","awslogs"]

Your Amazon ECS container instances also require logs:CreateLogStream and
logs:PutLogEvents permission on the IAM role that you can launch your container
instances with. If you created your Amazon ECS container instance role before awslogs
log driver support was enabled in Amazon ECS, you might need to add this permission. The
ecsTaskExecutionRole is used when it's assigned to the task and likely contains the correct
permissions. For information about the task execution role, see Amazon ECS task execution IAM
role. If your container instances use the managed IAM policy for container instances, your container
instances likely have the correct permissions. For information about the managed IAM policy for
container instances, see Amazon ECS container instance IAM role.

Send logs to CloudWatch 466

Amazon Elastic Container Service Developer Guide

Example Amazon ECS task definition: Route logs to CloudWatch

Before your containers can send logs to CloudWatch, you must specify the awslogs log driver for
containers in your task definition. For more information about the log parameters, see Storage and
logging

The task definition JSON that follows has a logConfiguration object specified for each
container. One is for the WordPress container that sends logs to a log group called awslogs-
wordpress. The other is for a MySQL container that sends logs to a log group that's called
awslogs-mysql. Both containers use the awslogs-example log stream prefix.

{
 "containerDefinitions": [
 {
 "name": "wordpress",
 "links": [
 "mysql"
],
 "image": "public.ecr.aws/docker/library/wordpress:latest",
 "essential": true,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-create-group": "true",
 "awslogs-group": "awslogs-wordpress",
 "awslogs-region": "us-west-2",
 "awslogs-stream-prefix": "awslogs-example"
 }
 },
 "memory": 500,
 "cpu": 10
 },
 {
 "environment": [
 {
 "name": "MYSQL_ROOT_PASSWORD",
 "value": "password"

Send logs to CloudWatch 467

Amazon Elastic Container Service Developer Guide

 }
],
 "name": "mysql",
 "image": "public.ecr.aws/docker/library/mysql:latest",
 "cpu": 10,
 "memory": 500,
 "essential": true,
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-create-group": "true",
 "awslogs-group": "awslogs-mysql",
 "awslogs-region": "us-west-2",
 "awslogs-stream-prefix": "awslogs-example",
 "mode": "non-blocking",
 "max-buffer-size": "25m"
 }
 }
 }
],
 "family": "awslogs-example"
}

Next steps

• You can optionally set a retention policy for the log group by using the CloudWatch AWS CLI
or API. For more information, see put-retention-policy in the AWS Command Line Interface
Reference.

• After you have registered a task definition with the awslogs log driver in a container definition
log configuration, you can run a task or create a service with that task definition to start sending
logs to CloudWatch Logs. For more information, see Running an application as an Amazon ECS
task and Creating an Amazon ECS service using the console.

Send Amazon ECS logs to an AWS service or AWS Partner

You can use FireLens for Amazon ECS to use task definition parameters to route logs to an AWS
service or AWS Partner Network (APN) destination for log storage and analytics. The AWS Partner
Network is a global community of partners that leverages programs, expertise, and resources to
build, market, and sell customer offerings. For more information see AWS Partner. FireLens works

Send logs to an AWS service or AWS Partner 468

https://docs.aws.amazon.com/cli/latest/reference/logs/put-retention-policy.html
https://aws.amazon.com/partners/work-with-partners/

Amazon Elastic Container Service Developer Guide

with Fluentd and Fluent Bit. We provide the AWS for Fluent Bit image or you can use your own
Fluentd or Fluent Bit image.

By default, Amazon ECS configures the container dependency so that the Firelens container starts
before any container that uses it. The Firelens container also stops after all containers that use it
stop.

Consider the following when using FireLens for Amazon ECS:

• We recommend that you add my_service_ to the log container name so that you can easily
distinguish container names in the console.

• Amazon ECS adds a start container order dependency between the application containers and
the FireLens container by default. When you specify a container order between the application
containers and the FireLens container, then the default start container order is overridden.

• FireLens for Amazon ECS is supported for tasks that are hosted on both AWS Fargate on Linux
and Amazon EC2 on Linux. Windows containers don't support FireLens.

For information about how to configure centralized logging for Windows containers, see
Centralized logging for Windows containers on Amazon ECS using Fluent Bit.

• You can use AWS CloudFormation templates to configure FireLens for Amazon ECS. For more
information, see AWS::ECS::TaskDefinition FirelensConfiguration in the AWS CloudFormation User
Guide

• FireLens listens on port 24224, so to ensure that the FireLens log router isn't reachable outside
of the task, you must not allow inbound traffic on port 24224 in the security group your task
uses. For tasks that use the awsvpc network mode, this is the security group associated with the
task. For tasks using the host network mode, this is the security group that's associated with
the Amazon EC2 instance hosting the task. For tasks that use the bridge network mode, don't
create any port mappings that use port 24224.

• For tasks that use the bridge network mode, the container with the FireLens configuration
must start before any application containers that rely on it start. To control the start order of
your containers, use dependency conditions in your task definition. For more information, see
Container dependency.

Send logs to an AWS service or AWS Partner 469

https://www.fluentd.org/
https://fluentbit.io/
https://aws.amazon.com/blogs/containers/centralized-logging-for-windows-containers-on-amazon-ecs-using-fluent-bit/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ecs-taskdefinition-firelensconfiguration.html

Amazon Elastic Container Service Developer Guide

Note

If you use dependency condition parameters in container definitions with a FireLens
configuration, ensure that each container has a START or HEALTHY condition
requirement.

• By default, FireLens adds the cluster and task definition name and the Amazon Resource Name
(ARN) of the cluster as metadata keys to your stdout/stderr container logs. The following is an
example of the metadata format.

"ecs_cluster": "cluster-name",
"ecs_task_arn": "arn:aws:ecs:region:111122223333:task/cluster-
name/f2ad7dba413f45ddb4EXAMPLE",
"ecs_task_definition": "task-def-name:revision",

If you do not want the metadata in your logs, set enable-ecs-log-metadata to false in the
firelensConfiguration section of the task definition.

"firelensConfiguration":{
 "type":"fluentbit",
 "options":{
 "enable-ecs-log-metadata":"false",
 "config-file-type":"file",
 "config-file-value":"/extra.conf"
}

To use this feature, you must create an IAM role for your tasks that provides the permissions
necessary to use any AWS services that the tasks require. For example, if a container is routing logs
to Firehose, the task requires permission to call the firehose:PutRecordBatch API. For more
information, see Adding and Removing IAM Identity Permissions in the IAM User Guide.

Your task might also require the Amazon ECS task execution role under the following conditions.
For more information, see Amazon ECS task execution IAM role.

• If your task is hosted on Fargate and you are pulling container images from Amazon ECR or
referencing sensitive data from AWS Secrets Manager in your log configuration, then you must
include the task execution IAM role.

Send logs to an AWS service or AWS Partner 470

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

• When you use a custom configuration file that's hosted in Amazon S3, your task execution IAM
role must include the s3:GetObject permission.

For information about how to use multiple configuration files with Amazon ECS, including files that
you host or files in Amazon S3, see Init process for Fluent Bit on ECS, multi-config support.

For information about example configurations, see Example Amazon ECS task definition: Route
logs to FireLens

Configuring Amazon ECS logs for high throughput

When you create a task definition, you can specify the number of log lines that are buffered in
memory by specifying the value in the log-driver-buffer-limit. For more information, see
Fluentd logging driver in the Docker documentation.

Use this option when there's high throughput, because Docker might run out of buffer memory and
discard buffer messages, so it can add new messages.

Consider the following when using FireLens for Amazon ECS with the buffer limit option:

• This option is supported on the Amazon EC2 launch type and the Fargate launch type with
platform version 1.4.0 or later.

• The option is only valid when logDriver is set to awsfirelens.

• The default buffer limit is 1048576 log lines.

• The buffer limit must be greater than or equal to 0 and less than 536870912 log lines.

• The maximum amount of memory used for this buffer is the product of the size of each log line
and the size of the buffer. For example, if the application’s log lines are on average 2 KiB, a buffer
limit of 4096 would use at most 8 MiB. The total amount of memory allocated at the task level
should be greater than the amount of memory that's allocated for all the containers in addition
to the log driver memory buffer.

When the awsfirelens log driver is specified in a task definition, the Amazon ECS container
agent injects the following environment variables into the container:

FLUENT_HOST

The IP address that's assigned to the FireLens container.

Send logs to an AWS service or AWS Partner 471

https://github.com/aws/aws-for-fluent-bit/tree/mainline/use_cases/init-process-for-fluent-bit
https://docs.docker.com/engine/logging/drivers/fluentd/

Amazon Elastic Container Service Developer Guide

Note

If you're using the EC2 launch type with the bridge network mode, the FLUENT_HOST
environment variable in your application container can become inaccurate
after a restart of the FireLens log router container (the container with the
firelensConfiguration object in its container definition). This is because
FLUENT_HOST is a dynamic IP address and can change after a restart. Logging directly
from the application container to the FLUENT_HOST IP address can start failing after
the address changes. For more information about restarting individual containers, see
Restart individual containers in Amazon ECS tasks with container restart policies.

FLUENT_PORT

The port that the Fluent Forward protocol is listening on.

You can use the FLUENT_HOST and FLUENT_PORT environment variables to log directly to the
log router from code instead of going through stdout. For more information, see fluent-logger-
golang on GitHub.

The following shows the syntax for specifying the log-driver-buffer-limit. Replace
my_service_ with the name of your service:

{
 "containerDefinitions": [
 {
 "name": "my_service_log_router",
 "image": "public.ecr.aws/aws-observability/aws-for-fluent-bit:stable",
 "cpu": 0,
 "memoryReservation": 51,
 "portMappings": [],
 "essential": true,
 "environment": [],
 "mountPoints": [],
 "volumesFrom": [],
 "user": "0",
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/ecs-aws-firelens-sidecar-container",

Send logs to an AWS service or AWS Partner 472

https://github.com/fluent/fluent-logger-golang
https://github.com/fluent/fluent-logger-golang

Amazon Elastic Container Service Developer Guide

 "mode": "non-blocking",
 "awslogs-create-group": "true",
 "max-buffer-size": "25m",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "firelens"
 },
 "secretOptions": []
 },
 "systemControls": [],
 "firelensConfiguration": {
 "type": "fluentbit"
 }
 },
 {
 "essential": true,
 "image": "public.ecr.aws/docker/library/httpd:latest",
 "name": "app",
 "logConfiguration": {
 "logDriver": "awsfirelens",
 "options": {
 "Name": "firehose",
 "region": "us-west-2",
 "delivery_stream": "my-stream",
 "log-driver-buffer-limit": "51200"
 }
 },
 "dependsOn": [
 {
 "containerName": "log_router",
 "condition": "START"
 }
],
 "memoryReservation": 100
 }
]
}

AWS for Fluent Bit image repositories for Amazon ECS

AWS provides a Fluent Bit image with plugins for both CloudWatch Logs and Firehose. We
recommend using Fluent Bit as your log router because it has a lower resource utilization rate than
Fluentd. For more information, see CloudWatch Logs for Fluent Bit and Amazon Kinesis Firehose
for Fluent Bit.

Send logs to an AWS service or AWS Partner 473

https://github.com/aws/amazon-cloudwatch-logs-for-fluent-bit
https://github.com/aws/amazon-kinesis-firehose-for-fluent-bit
https://github.com/aws/amazon-kinesis-firehose-for-fluent-bit

Amazon Elastic Container Service Developer Guide

The AWS for Fluent Bit image is available on Amazon ECR on both the Amazon ECR Public Gallery
and in an Amazon ECR repository in most AWS Regions for high availability.

Amazon ECR Public Gallery

The AWS for Fluent Bit image is available on the Amazon ECR Public Gallery. This is the
recommended location to download the AWS for Fluent Bit image because it's a public repository
and available to be used from all AWS Regions. For more information, see aws-for-fluent-bit on the
Amazon ECR Public Gallery.

Linux

The AWS for Fluent Bit image in the Amazon ECR Public Gallery supports Amazon Linux operating
system with the ARM 64, or x86-64 architecture.

You can pull the AWS for Fluent Bit image from the Amazon ECR Public Gallery by specifying the
repository URL with the desired image tag. The available image tags can be found on the Image
tags tab on the Amazon ECR Public Gallery.

The following shows the syntax to use for the Docker CLI.

docker pull public.ecr.aws/aws-observability/aws-for-fluent-bit:tag

For example, you can pull the latest stable AWS for Fluent Bit image using this Docker CLI
command.

docker pull public.ecr.aws/aws-observability/aws-for-fluent-bit:stable

Note

Unauthenticated pulls are allowed, but have a lower rate limit than authenticated pulls. To
authenticate using your AWS account before pulling, use the following command.

aws ecr-public get-login-password --region us-east-1 | docker login --username
 AWS --password-stdin public.ecr.aws

Send logs to an AWS service or AWS Partner 474

https://gallery.ecr.aws/aws-observability/aws-for-fluent-bit

Amazon Elastic Container Service Developer Guide

Windows

The AWS for Fluent Bit image in the Amazon ECR Public Gallery supports the AMD64 architecture
with the following operating systems:

• Windows Server 2022 Full

• Windows Server 2022 Core

• Windows Server 2019 Full

• Windows Server 2019 Core

Windows containers that are on AWS Fargate don't support FireLens.

You can pull the AWS for Fluent Bit image from the Amazon ECR Public Gallery by specifying the
repository URL with the desired image tag. The available image tags can be found on the Image
tags tab on the Amazon ECR Public Gallery.

The following shows the syntax to use for the Docker CLI.

docker pull public.ecr.aws/aws-observability/aws-for-fluent-bit:tag

For example, you can pull the newest stable AWS for Fluent Bit image using this Docker CLI
command.

docker pull public.ecr.aws/aws-observability/aws-for-fluent-bit:windowsservercore-
stable

Note

Unauthenticated pulls are allowed, but have a lower rate limit than authenticated pulls. To
authenticate using your AWS account before pulling, use the following command.

aws ecr-public get-login-password --region us-east-1 | docker login --username
 AWS --password-stdin public.ecr.aws

Send logs to an AWS service or AWS Partner 475

Amazon Elastic Container Service Developer Guide

Amazon ECR

The AWS for Fluent Bit image is available on Amazon ECR for high availability. These images are
available in most AWS Regions, including AWS GovCloud (US).

Linux

The latest stable AWS for Fluent Bit image URI can be retrieved using the following command.

aws ssm get-parameters \
 --names /aws/service/aws-for-fluent-bit/stable \
 --region us-east-1

All versions of the AWS for Fluent Bit image can be listed using the following command to query
the Systems Manager Parameter Store parameter.

aws ssm get-parameters-by-path \
 --path /aws/service/aws-for-fluent-bit \
 --region us-east-1

The newest stable AWS for Fluent Bit image can be referenced in an AWS CloudFormation template
by referencing the Systems Manager parameter store name. The following is an example:

Parameters:
 FireLensImage:
 Description: Fluent Bit image for the FireLens Container
 Type: AWS::SSM::Parameter::Value<String>
 Default: /aws/service/aws-for-fluent-bit/stable

Windows

The latest stable AWS for Fluent Bit image URI can be retrieved using the following command.

aws ssm get-parameters \
 --names /aws/service/aws-for-fluent-bit/windowsservercore-stable \
 --region us-east-1

All versions of the AWS for Fluent Bit image can be listed using the following command to query
the Systems Manager Parameter Store parameter.

aws ssm get-parameters-by-path \

Send logs to an AWS service or AWS Partner 476

Amazon Elastic Container Service Developer Guide

 --path /aws/service/aws-for-fluent-bit/windowsservercore \
 --region us-east-1

The latest stable AWS for Fluent Bit image can be referenced in an AWS CloudFormation template
by referencing the Systems Manager parameter store name. The following is an example:

Parameters:
 FireLensImage:
 Description: Fluent Bit image for the FireLens Container
 Type: AWS::SSM::Parameter::Value<String>
 Default: /aws/service/aws-for-fluent-bit/windowsservercore-stable

Example Amazon ECS task definition: Route logs to FireLens

To use custom log routing with FireLens, you must specify the following in your task definition:

• A log router container that contains a FireLens configuration. We recommend that the container
be marked as essential.

• One or more application containers that contain a log configuration specifying the
awsfirelens log driver.

• A task IAM role Amazon Resource Name (ARN) that contains the permissions needed for the task
to route the logs.

When creating a new task definition using the AWS Management Console, there is a FireLens
integration section that makes it easy to add a log router container. For more information, see
Creating an Amazon ECS task definition using the console.

Amazon ECS converts the log configuration and generates the Fluentd or Fluent Bit output
configuration. The output configuration is mounted in the log routing container at /fluent-bit/
etc/fluent-bit.conf for Fluent Bit and /fluentd/etc/fluent.conf for Fluentd.

Important

FireLens listens on port 24224. Therefore, to ensure that the FireLens log router isn't
reachable outside of the task, you must not allow ingress traffic on port 24224 in the
security group your task uses. For tasks that use the awsvpc network mode, this is the
security group that's associated with the task. For tasks that use the host network mode,
this is the security group that's associated with the Amazon EC2 instance hosting the task.

Send logs to an AWS service or AWS Partner 477

Amazon Elastic Container Service Developer Guide

For tasks that use the bridge network mode, don't create any port mappings that use port
24224.

By default, Amazon ECS adds additional fields in your log entries that help identify the source of
the logs.

• ecs_cluster – The name of the cluster that the task is part of.

• ecs_task_arn – The full Amazon Resource Name (ARN) of the task that the container is part of.

• ecs_task_definition – The task definition name and revision that the task is using.

• ec2_instance_id – The Amazon EC2 instance ID that the container is hosted on. This field is
only valid for tasks using the EC2 launch type.

You can set the enable-ecs-log-metadata to false if you do not want the metadata.

The following task definition example defines a log router container that uses Fluent Bit to route
its logs to CloudWatch Logs. It also defines an application container that uses a log configuration
to route logs to Amazon Data Firehose and sets the memory that's used to buffer events to the 2
MiB.

Note

For more example task definitions, see Amazon ECS FireLens examples on GitHub.

{
 "family": "firelens-example-firehose",
 "taskRoleArn": "arn:aws:iam::123456789012:role/ecs_task_iam_role",
 "containerDefinitions": [
 {
 "name": "log_router",
 "image": "public.ecr.aws/aws-observability/aws-for-fluent-bit:stable",
 "cpu": 0,
 "memoryReservation": 51,
 "portMappings": [],
 "essential": true,
 "environment": [],
 "mountPoints": [],
 "volumesFrom": [],

Send logs to an AWS service or AWS Partner 478

https://github.com/aws-samples/amazon-ecs-firelens-examples

Amazon Elastic Container Service Developer Guide

 "user": "0",
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/ecs-aws-firelens-sidecar-container",
 "mode": "non-blocking",
 "awslogs-create-group": "true",
 "max-buffer-size": "25m",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "firelens"
 },
 "secretOptions": []
 },
 "systemControls": [],
 "firelensConfiguration": {
 "type": "fluentbit"
 }
 },
 {
 "essential": true,
 "image": "public.ecr.aws/docker/library/httpd:latest",
 "name": "app",
 "logConfiguration": {
 "logDriver": "awsfirelens",
 "options": {
 "Name": "firehose",
 "region": "us-west-2",
 "delivery_stream": "my-stream",
 "log-driver-buffer-limit": "2097152"
 }
 },
 "memoryReservation": 100
 }
]
}

The key-value pairs specified as options in the logConfiguration object are used to generate
the Fluentd or Fluent Bit output configuration. The following is a code example from a Fluent Bit
output definition.

[OUTPUT]
 Name firehose
 Match app-firelens*

Send logs to an AWS service or AWS Partner 479

Amazon Elastic Container Service Developer Guide

 region us-west-2
 delivery_stream my-stream

Note

FireLens manages the match configuration. You do not specify the match configuration in
your task definition.

Use a custom configuration file

You can specify a custom configuration file. The configuration file format is the native format for
the log router that you're using. For more information, see Fluentd Config File Syntax and YAML
Configuration.

In your custom configuration file, for tasks using the bridge or awsvpc network mode, don't set a
Fluentd or Fluent Bit forward input over TCP because FireLens adds it to the input configuration.

Your FireLens configuration must contain the following options to specify a custom configuration
file:

config-file-type

The source location of the custom configuration file. The available options are s3 or file.

Note

Tasks that are hosted on AWS Fargate only support the file configuration file type.

config-file-value

The source for the custom configuration file. If the s3 config file type is used, the config file
value is the full ARN of the Amazon S3 bucket and file. If the file config file type is used, the
config file value is the full path of the configuration file that exists either in the container image
or on a volume that's mounted in the container.

Send logs to an AWS service or AWS Partner 480

https://docs.fluentd.org/configuration/config-file
https://docs.fluentbit.io/manual/administration/configuring-fluent-bit/yaml
https://docs.fluentbit.io/manual/administration/configuring-fluent-bit/yaml

Amazon Elastic Container Service Developer Guide

Important

When using a custom configuration file, you must specify a different path than the
one FireLens uses. Amazon ECS reserves the /fluent-bit/etc/fluent-bit.conf
filepath for Fluent Bit and /fluentd/etc/fluent.conf for Fluentd.

The following example shows the syntax required when specifying a custom configuration.

Important

To specify a custom configuration file that's hosted in Amazon S3, ensure you have created
a task execution IAM role with the proper permissions.

The following shows the syntax required when specifying a custom configuration.

{
 "containerDefinitions": [
 {
 "essential": true,
 "image": "906394416424.dkr.ecr.us-west-2.amazonaws.com/aws-for-fluent-
bit:stable",
 "name": "log_router",
 "firelensConfiguration": {
 "type": "fluentbit",
 "options": {
 "config-file-type": "s3 | file",
 "config-file-value": "arn:aws:s3:::amzn-s3-demo-bucket/fluent.conf
 | filepath"
 }
 }
 }
]
}

Note

Tasks hosted on AWS Fargate only support the file configuration file type.

Send logs to an AWS service or AWS Partner 481

Amazon Elastic Container Service Developer Guide

Using non-AWS container images in Amazon ECS

Use private registry to store your credentials in AWS Secrets Manager, and then reference them
in your task definition. This provides a way to reference container images that exist in private
registries outside of AWS that require authentication in your task definitions. This feature is
supported by tasks hosted on Fargate, Amazon EC2 instances, and external instances using Amazon
ECS Anywhere.

Important

If your task definition references an image that's stored in Amazon ECR, this topic doesn't
apply. For more information, see Using Amazon ECR Images with Amazon ECS in the
Amazon Elastic Container Registry User Guide.

For tasks hosted on Amazon EC2 instances, this feature requires version 1.19.0 or later of the
container agent. However, we recommend using the latest container agent version. For information
about how to check your agent version and update to the latest version, see Updating the Amazon
ECS container agent.

For tasks hosted on Fargate, this feature requires platform version 1.2.0 or later. For information,
see Fargate platform versions for Amazon ECS.

Within your container definition, specify the repositoryCredentials object with the details
of the secret that you created. The referenced secret can be from a different AWS Region or a
different account than the task using it.

Note

When using the Amazon ECS API, AWS CLI, or AWS SDK, if the secret exists in the same
AWS Region as the task that you're launching then you can use either the full ARN or name
of the secret. If the secret exists in a different account, the full ARN of the secret must be
specified. When using the AWS Management Console, the full ARN of the secret must be
specified always.

The following is a snippet of a task definition that shows the required parameters:

Substitute the following parameters:

Using non-AWS container images 482

https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_on_ECS.html

Amazon Elastic Container Service Developer Guide

• private-repo with the private repository host name

• private-image with the image name

• arn:aws:secretsmanager:region:aws_account_id:secret:secret_name with the
secret Amazon Resource Name (ARN)

"containerDefinitions": [
 {
 "image": "private-repo/private-image",
 "repositoryCredentials": {
 "credentialsParameter":
 "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name"
 }
 }
]

Note

Another method of enabling private registry authentication uses Amazon ECS container
agent environment variables to authenticate to private registries. This method is
only supported for tasks hosted on Amazon EC2 instances. For more information, see
Configuring Amazon ECS container instances for private Docker images .

To use private registry

1. The task definition must have a task execution role. This allows the container agent to pull the
container image. For more information, see Amazon ECS task execution IAM role.

Private registry authentication allows your Amazon ECS tasks to pull container images
from private registries outside of AWS (such as Docker Hub, Quay.io, or your own private
registry) that require authentication credentials. This feature uses Secrets Manager to securely
store your registry credentials, which are then referenced in your task definition using the
repositoryCredentials parameter.

For more information about configuring private registry authentication, see Using non-AWS
container images in Amazon ECS.

Using non-AWS container images 483

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html

Amazon Elastic Container Service Developer Guide

To provide access to the secrets that contain your private registry credentials, add the
following permissions as an inline policy to the task execution role. For more information, see
Adding and Removing IAM Policies.

• secretsmanager:GetSecretValue—Required to retrieve the private registry credentials
from Secrets Manager.

• kms:Decrypt—Required only if your secret uses a custom KMS key and not the default key.
The Amazon Resource Name (ARN) for your custom key must be added as a resource.

The following is an example inline policy that adds the permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "secretsmanager:GetSecretValue"
],
 "Resource": [

 "arn:aws:secretsmanager:<region>:<aws_account_id>:secret:secret_name",
 "arn:aws:kms:<region>:<aws_account_id>:key/key_id"
]
 }
]
}

2. Use AWS Secrets Manager to create a secret for your private registry credentials. For
information about how to create a secret, see Create an AWS Secrets Manager secret in the
AWS Secrets Manager User Guide.

Enter your private registry credentials using the following format:

{
 "username" : "privateRegistryUsername",
 "password" : "privateRegistryPassword"
}

Using non-AWS container images 484

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Elastic Container Service Developer Guide

3. Register a task definition. For more information, see the section called “Creating a task
definition using the console”.

Restart individual containers in Amazon ECS tasks with container
restart policies

You can enable a restart policy for each essential and non-essential container defined in your task
definition, to overcome transient failures faster and maintain task availability. When you enable a
restart policy for a container, Amazon ECS can restart the container if it exits, without needing to
replace the task.

Restart policies are not enabled for containers by default. When you enable a restart policy for a
container, you can specify exit codes that the container will not be restarted on. These can be exit
codes that indicate success, like exit code 0, that don't require a restart. You can also specify how
long a container must run succesfully before a restart can be attempted. For more information
about these parameters, see Restart policy. For an example task definition that specifies these
values, see Specifying a container restart policy in an Amazon ECS task definition.

You can use the Amazon ECS task metadata endpoint or CloudWatch Container Insights to monitor
the number of times a container has restarted. For more information about the task metadata
endpoint, see Amazon ECS task metadata endpoint version 4 and Amazon ECS task metadata
endpoint version 4 for tasks on Fargate. For more information about Container Insights metrics for
Amazon ECS, see Amazon ECS Container Insights metrics in the Amazon CloudWatch User Guide.

Container restart policies are supported by tasks hosted on Fargate, Amazon EC2 instances, and
external instances using Amazon ECS Anywhere.

Considerations

Consider the following before enabling a restart policy for your container:

• Restart policies aren't supported for Windows containers on Fargate.

• For tasks hosted on Amazon EC2 instances, this feature requires version 1.86.0 or later of
the container agent. However, we recommend using the latest container agent version. For
information about how to check your agent version and update to the latest version, see
Updating the Amazon ECS container agent.

• For tasks hosted on Fargate, this feature requires platform version 1.4.0 or later. For
information, see Fargate platform versions for Amazon ECS.

Restart individual containers in tasks 485

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-ECS.html

Amazon Elastic Container Service Developer Guide

• If you're using the EC2 launch type with the bridge network mode, the FLUENT_HOST
environment variable in your application container can become inaccurate after a restart of the
FireLens log router container (the container with the firelensConfiguration object in its
container definition). This is because FLUENT_HOST is a dynamic IP address and can change
after a restart. Logging directly from the application container to the FLUENT_HOST IP address
can start failing after the address changes. For more information about FLUENT_HOST, see
Configuring Amazon ECS logs for high throughput.

• The Amazon ECS agent handles the container restart policies. If for some unexpected reason the
Amazon ECS agent fails or is no longer running, the container won't be restarted.

• The restart attempt period defined in your policy determines the period of time (in seconds) that
the container must run for before Amazon ECS restarts a container.

Specifying a container restart policy in an Amazon ECS task definition

To specify a restart policy for a container in a task definition, within the container definition,
specify the restartPolicy object. For more information about the restartPolicy object, see
Restart policy.

The following is a task definition using the Linux containers on Fargate launch type that sets up
a web server. The container definition includes the restartPolicy object, with enabled set to
true to enable a restart policy for the container. The container must run for 180 seconds before it
can be restarted and will not be restarted if it exits with the exit code 0, which indicates success.

{
 "containerDefinitions": [
 {
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample App</title>
 <style>body {margin-top: 40px; background-color: #333;} </style> </head><body>
 <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in Amazon
 ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html && httpd-
foreground\""
],
 "entryPoint": ["sh", "-c"],
 "essential": true,
 "image": "public.ecr.aws/docker/library/httpd:2.4",
 "logConfiguration": {
 "logDriver": "awslogs",

Restart individual containers in tasks 486

Amazon Elastic Container Service Developer Guide

 "options": {
 "awslogs-group": "/ecs/fargate-task-definition",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "name": "sample-fargate-app",
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp"
 }
],
 "restartPolicy": {
 "enabled": true,
 "ignoredExitCodes": [0],
 "restartAttemptPeriod": 180
 }
 }
],
 "cpu": "256",
 "executionRoleArn": "arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
 "family": "fargate-task-definition",
 "memory": "512",
 "networkMode": "awsvpc",
 "runtimePlatform": {
 "operatingSystemFamily": "LINUX"
 },
 "requiresCompatibilities": ["FARGATE"]
}

After you have registered a task definition with the restartPolicy object in a container
definition, you can run a task or create a service with that task definition. For more information,
see Running an application as an Amazon ECS task and Creating an Amazon ECS service using the
console.

Pass sensitive data to an Amazon ECS container

You can safely pass sensitive data, such as credentials to a database, into your container.

Secrets, such as API keys and database credentials, are frequently used by applications to gain
access other systems. They often consist of a username and password, a certificate, or API key.

Pass sensitive data to a container 487

Amazon Elastic Container Service Developer Guide

Access to these secrets should be restricted to specific IAM principals that are using IAM and
injected into containers at runtime.

Secrets can be seamlessly injected into containers from AWS Secrets Manager and Amazon EC2
Systems Manager Parameter Store. These secrets can be referenced in your task as any of the
following.

1. They're referenced as environment variables that use the secrets container definition
parameter.

2. They're referenced as secretOptions if your logging platform requires authentication. For
more information, see logging configuration options.

3. They're referenced as secrets pulled by images that use the repositoryCredentials
container definition parameter if the registry where the container is being pulled from requires
authentication. Use this method when pulling images from Amazon ECR Public Gallery. For more
information, see Private registry authentication for tasks.

We recommend that you do the following when setting up secrets management.

Use AWS Secrets Manager or AWS Systems Manager Parameter Store for storing
secret materials

You should securely store API keys, database credentials, and other secret materials in Secrets
Manager or as an encrypted parameter in Systems Manager Parameter Store. These services are
similar because they're both managed key-value stores that use AWS KMS to encrypt sensitive
data. Secrets Manager, however, also includes the ability to automatically rotate secrets, generate
random secrets, and share secrets across accounts. To utilize these features, use Secrets Manager.
Otherwise, use encrypted parameters in Systems Manager Parameter Store.

Important

If your secret changes, you must force a new deployment or launch a new task to retrieve
the latest secret value. For more information, see the following topics:

• Tasks - Stop the task, and then start it. For more information, see Stopping an Amazon
ECS task and Running an application as an Amazon ECS task.

• Service - Update the service and use the force new deployment option. For more
information, see Updating an Amazon ECS service.

Pass sensitive data to a container 488

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LogConfiguration.html#API_LogConfiguration_Contents
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html

Amazon Elastic Container Service Developer Guide

Retrieve data from an encrypted Amazon S3 bucket

You should store secrets in an encrypted Amazon S3 bucket and use task roles to restrict access to
those secrets. This prevents the values of environment variables from inadvertently leaking in logs
and getting revealed when running docker inspect. When you do this, your application must be
written to read the secret from the Amazon S3 bucket. For instructions, see Setting default server-
side encryption behavior for Amazon S3 buckets.

Mount the secret to a volume using a sidecar container

Because there's an elevated risk of data leakage with environment variables, you should run a
sidecar container that reads your secrets from AWS Secrets Manager and write them to a shared
volume. This container can run and exit before the application container by using Amazon ECS
container ordering. When you do this, the application container subsequently mounts the volume
where the secret was written. Like the Amazon S3 bucket method, your application must be written
to read the secret from the shared volume. Because the volume is scoped to the task, the volume is
automatically deleted after the task stops. For an example, see the task-def.json project.

On Amazon EC2, the volume that the secret is written to can be encrypted with a AWS KMS
customer managed key. On AWS Fargate, volume storage is automatically encrypted using a
service managed key.

Pass an individual environment variable to an Amazon ECS container

Important

We recommend storing your sensitive data in either AWS Secrets Manager secrets or AWS
Systems Manager Parameter Store parameters. For more information, see Pass sensitive
data to an Amazon ECS container.
Environment variables specified in the task definition are readable by all users and roles
that are allowed the DescribeTaskDefinition action for the task definition.

You can pass environment variables to your containers in the following ways:

• Individually using the environment container definition parameter. This maps to the --env
option to docker container run.

Pass sensitive data to a container 489

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ContainerDependency.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ContainerDependency.html
https://github.com/aws-samples/aws-secret-sidecar-injector/blob/master/ecs-task-def/task-def.json
https://docs.docker.com/reference/cli/docker/container/run/

Amazon Elastic Container Service Developer Guide

• In bulk, using the environmentFiles container definition parameter to list one or more files
that contain the environment variables. The file must be hosted in Amazon S3. This maps to the
--env-file option to docker run.

The following is a snippet of a task definition showing how to specify individual environment
variables.

{
 "family": "",
 "containerDefinitions": [
 {
 "name": "",
 "image": "",
 ...
 "environment": [
 {
 "name": "variable",
 "value": "value"
 }
],
 ...
 }
],
 ...
}

Pass environment variables to an Amazon ECS container

Important

We recommend storing your sensitive data in either AWS Secrets Manager secrets or AWS
Systems Manager Parameter Store parameters. For more information, see Pass sensitive
data to an Amazon ECS container.
Environment variable files are objects in Amazon S3 and all Amazon S3 security
considerations apply.
You can't use the environmentFiles parameter on Windows containers and Windows
containers on Fargate.

Pass sensitive data to a container 490

https://docs.docker.com/reference/cli/docker/container/run/

Amazon Elastic Container Service Developer Guide

You can create an environment variable file and store it in Amazon S3 to pass environment
variables to your container.

By specifying environment variables in a file, you can bulk inject environment variables. Within
your container definition, specify the environmentFiles object with a list of Amazon S3 buckets
containing your environment variable files.

Amazon ECS doesn't enforce a size limit on the environment variables, but a large environment
variables file might fill up the disk space. Each task that uses an environment variables file causes a
copy of the file to be downloaded to disk. Amazon ECS removes the file as part of the task cleanup.

For information about the supported environment variables, see Advanced container definition
parameters- Environment.

Consider the following when specifying an environment variable file in a container definition.

• For Amazon ECS tasks on Amazon EC2, your container instances require that the container agent
is version 1.39.0 or later to use this feature. For information about how to check your agent
version and update to the latest version, see Updating the Amazon ECS container agent.

• For Amazon ECS tasks on AWS Fargate, your tasks must use platform version 1.4.0 or later
(Linux) to use this feature. For more information, see Fargate platform versions for Amazon ECS.

Verify that the variable is supported for the operating system platform. For more information,
see the section called “Container definitions” and the section called “Other task definition
parameters”.

• The file must use the .env file extension and UTF-8 encoding.

• The task execution role is required to use this feature with the additional permissions for Amazon
S3. This allows the container agent to pull the environment variable file from Amazon S3. For
more information, see Amazon ECS task execution IAM role.

• There is a limit of 10 files per task definition.

• Each line in an environment file must contain an environment variable in VARIABLE=VALUE
format. Spaces or quotation marks are included as part of the values for Amazon ECS files.
Lines beginning with # are treated as comments and are ignored. For more information about
the environment variable file syntax, see Set environment variables (-e, --env, --env-file) in the
Docker documentation.

The following is the appropriate syntax.

Pass sensitive data to a container 491

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definition_environment
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definition_environment
https://docs.docker.com/reference/cli/docker/container/run/#env

Amazon Elastic Container Service Developer Guide

#This is a comment and will be ignored
VARIABLE=VALUE
ENVIRONMENT=PRODUCTION

• If there are environment variables specified using the environment parameter in a container
definition, they take precedence over the variables contained within an environment file.

• If multiple environment files are specified and they contain the same variable, they're processed
in order of entry. This means that the first value of the variable is used and subsequent values of
duplicate variables are ignored. We recommend that you use unique variable names.

• If an environment file is specified as a container override, it's used. Moreover, any other
environment files that are specified in the container definition is ignored.

• The following rules apply to the Fargate launch type:

• The file is handled similar to a native Docker env-file.

• Container definitions that reference environment variables that are blank and stored in
Amazon S3 do not appear in the container.

• There is no support for shell escape handling.

• The container entry point interperts the VARIABLE values.

Example

The following is a snippet of a task definition showing how to specify an environment variable file.

{
 "family": "",
 "containerDefinitions": [
 {
 "name": "",
 "image": "",
 ...
 "environmentFiles": [
 {
 "value": "arn:aws:s3:::amzn-s3-demo-
bucket/envfile_object_name.env",
 "type": "s3"
 }
],
 ...
 }

Pass sensitive data to a container 492

Amazon Elastic Container Service Developer Guide

],
 ...
}

Pass Secrets Manager secrets programmatically in Amazon ECS

Instead of hardcoding sensitive information in plain text in your application, you can use Secrets
Manager to store the sensitive data.

We recommend this method of retrieving sensitive data because if the Secrets Manager secret is
subsequently updated, the application automatically retrieves the latest version of the secret.

Create a secret in Secrets Manager. After you create a Secrets Manager secret, update your
application code to retrieve the secret.

Review the following considerations before securing sensitive data in Secrets Manager.

• Only secrets that store text data, which are secrets created with the SecretString parameter
of the CreateSecret API, are supported. Secrets that store binary data, which are secrets created
with the SecretBinary parameter of the CreateSecret API are not supported.

• Use interface VPC endpoints to enhance security controls. You must create the interface VPC
endpoints for Secrets Manager. For information about the VPC endpoint, see Create VPC
endpoints in the AWS Secrets Manager User Guide.

• The VPC your task uses must use DNS resolution.

• Your task definition must use a task role with the additional permissions for Secrets Manager. For
more information, see Amazon ECS task IAM role.

Create the Secrets Manager secret

You can use the Secrets Manager console to create a secret for your sensitive data. For information
about how to create secrets, see Create an AWS Secrets Manager secret in the AWS Secrets Manager
User Guide.

Update your application to programmatically retrieve Secrets Manager secrets

You can retrieve secrets with a call to the Secrets Manager APIs directly from your application.
For information, see Retrieve secrets from AWS Secrets Manager in the AWS Secrets Manager User
Guide.

Pass sensitive data to a container 493

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/setup-create-vpc.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/setup-create-vpc.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets.html

Amazon Elastic Container Service Developer Guide

To retrieve the sensitive data stored in the AWS Secrets Manager, see Code examples for AWS
Secrets Manager using AWS SDKs in the AWS SDK Code Examples Code Library.

Pass Systems Manager Parameter Store secrets programmatically in Amazon ECS

Systems Manager Parameter Store provides secure storage and management of secrets. You can
store data such as passwords, database strings, EC2 instance IDs and AMI IDs, and license codes as
parameter values, instead of hardcoding this information in your application. You can store values
as plain text or encrypted data.

We recommend this method of retrieving sensitive data because if the Systems Manager Parameter
Store parameter is subsequently updated, the application automatically retrieves the latest version.

Review the following considerations before securing sensitive data in Systems Manager Parameter
Store.

• Only secrets that store text data are supported. Secrets that store binary data are not supported.

• Use interface VPC endpoints to enhance security controls.

• The VPC your task uses must use DNS resolution.

• For tasks that use the EC2 launch type, you must use the Amazon ECS agent configuration
variable ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE=true to use this feature. You can
add it to the /etc/ecs/ecs.config file during container instance creation or you can add it
to an existing instance and then restart the ECS agent. For more information, see Amazon ECS
container agent configuration.

• Your task definition must use a task role with the additional permissions for Systems Manager
Parameter Store. For more information, see Amazon ECS task IAM role.

Create the parameter

You can use the Systems Manager console to create a Systems Manager Parameter Store parameter
for your sensitive data. For more information, see Create a Systems Manager parameter (console)
or Create a Systems Manager parameter (AWS CLI) in the AWS Systems Manager User Guide.

Update your application to programmatically retrieve Systems Manager Parameter Store
secrets

To retrieve the sensitive data stored in the Systems Manager Parameter Store parameter, see Code
examples for Systems Manager using AWS SDKs in the AWS SDK Code Examples Code Library.

Pass sensitive data to a container 494

https://docs.aws.amazon.com/code-library/latest/ug/secrets-manager_code_examples.html
https://docs.aws.amazon.com/code-library/latest/ug/secrets-manager_code_examples.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/parameter-create-console.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/param-create-cli.html
https://docs.aws.amazon.com/code-library/latest/ug/ssm_code_examples.html
https://docs.aws.amazon.com/code-library/latest/ug/ssm_code_examples.html

Amazon Elastic Container Service Developer Guide

Pass Secrets Manager secrets through Amazon ECS environment variables

When you inject a secret as an environment variable, you can specify the full contents of a secret,
a specific JSON key within a secret. This helps you control the sensitive data exposed to your
container. For more information about secret versioning, see What's in a Secrets Manager secret? in
the AWS Secrets Manager User Guide.

The following should be considered when using an environment variable to inject a Secrets
Manager secret into a container.

• Sensitive data is injected into your container when the container is initially started. If the secret is
subsequently updated or rotated, the container will not receive the updated value automatically.
You must either launch a new task or if your task is part of a service you can update the service
and use the Force new deployment option to force the service to launch a fresh task.

• Applications that run on the container and container logs and debugging tools have access to the
environment variables.

• For Amazon ECS tasks on AWS Fargate, consider the following:

• To inject the full content of a secret as an environment variable or in a log configuration, you
must use platform version 1.3.0 or later. For information, see Fargate platform versions for
Amazon ECS.

• To inject a specific JSON key or version of a secret as an environment variable or in a log
configuration, you must use platform version 1.4.0 or later (Linux) or 1.0.0 (Windows). For
information, see Fargate platform versions for Amazon ECS.

• For Amazon ECS tasks on EC2, the following should be considered:

• To inject a secret using a specific JSON key or version of a secret, your container instance must
have version 1.37.0 or later of the container agent. However, we recommend using the latest
container agent version. For information about checking your agent version and updating to
the latest version, see Updating the Amazon ECS container agent.

To inject the full contents of a secret as an environment variable or to inject a secret in a log
configuration, your container instance must have version 1.22.0 or later of the container
agent.

• Use interface VPC endpoints to enhance security controls and connect to Secrets Manager
through a private subnet. You must create the interface VPC endpoints for Secrets Manager. For
information about the VPC endpoint, see Create VPC endpoints in the AWS Secrets Manager User

Pass sensitive data to a container 495

https://docs.aws.amazon.com/secretsmanager/latest/userguide/whats-in-a-secret.html#term_version
https://docs.aws.amazon.com/secretsmanager/latest/userguide/setup-create-vpc.html

Amazon Elastic Container Service Developer Guide

Guide. For more information about using Secrets Manager and Amazon VPC, see How to connect
to Secrets Manager service within a Amazon VPC.

• For Windows tasks that are configured to use the awslogs logging driver, you must also set the
ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE environment variable on your container
instance. Use the following syntax:

<powershell>
[Environment]::SetEnvironmentVariable("ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE",
 $TRUE, "Machine")
Initialize-ECSAgent -Cluster <cluster name> -EnableTaskIAMRole -LoggingDrivers
 '["json-file","awslogs"]'
</powershell>

• Your task definition must use a task execution role with the additional permissions for Secrets
Manager. For more information, see Amazon ECS task execution IAM role.

Create the AWS Secrets Manager secret

You can use the Secrets Manager console to create a secret for your sensitive data. For more
information, see Create an AWS Secrets Manager secret in the AWS Secrets Manager User Guide.

Add the environment variable to the container definition

Within your container definition, you can specify the following:

• The secrets object containing the name of the environment variable to set in the container

• The Amazon Resource Name (ARN) of the Secrets Manager secret

• Additional parameters that contain the sensitive data to present to the container

The following example shows the full syntax that must be specified for the Secrets Manager secret.

arn:aws:secretsmanager:region:aws_account_id:secret:secret-name:json-key:version-
stage:version-id

The following section describes the additional parameters. These parameters are optional, but
if you do not use them, you must include the colons : to use the default values. Examples are
provided below for more context.

Pass sensitive data to a container 496

https://aws.amazon.com/blogs/security/how-to-connect-to-aws-secrets-manager-service-within-a-virtual-private-cloud/
https://aws.amazon.com/blogs/security/how-to-connect-to-aws-secrets-manager-service-within-a-virtual-private-cloud/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Elastic Container Service Developer Guide

json-key

Specifies the name of the key in a key-value pair with the value that you want to set as the
environment variable value. Only values in JSON format are supported. If you do not specify a
JSON key, then the full contents of the secret is used.

version-stage

Specifies the staging label of the version of a secret that you want to use. If a version staging
label is specified, you cannot specify a version ID. If no version stage is specified, the default
behavior is to retrieve the secret with the AWSCURRENT staging label.

Staging labels are used to keep track of different versions of a secret when they are either
updated or rotated. Each version of a secret has one or more staging labels and an ID.

version-id

Specifies the unique identifier of the version of a secret that you want to use. If a version ID is
specified, you cannot specify a version staging label. If no version ID is specified, the default
behavior is to retrieve the secret with the AWSCURRENT staging label.

Version IDs are used to keep track of different versions of a secret when they are either updated
or rotated. Each version of a secret has an ID. For more information, see Key Terms and
Concepts for AWS Secrets Manager in the AWS Secrets Manager User Guide.

Example container definitions

The following examples show ways in which you can reference Secrets Manager secrets in your
container definitions.

Example referencing a full secret

The following is a snippet of a task definition showing the format when referencing the full text of
a Secrets Manager secret.

{
 "containerDefinitions": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name-
AbCdEf"
 }]
 }]

Pass sensitive data to a container 497

https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html#term_secret
https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html#term_secret

Amazon Elastic Container Service Developer Guide

}

To access the value of this secret from within the container you would need to call the
$environment_variable_name.

Example referencing full secrets

The following is a snippet of a task definition showing the format when referencing the full text of
multiple Secrets Manager secrets.

{
 "containerDefinitions": [{
 "secrets": [
 {
 "name": "environment_variable_name1",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name-
AbCdEf"
 },
 {
 "name": "environment_variable_name2",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name-
abcdef"
 },
 {
 "name": "environment_variable_name3",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name-
ABCDEF"
 }
]
 }]
}

To access the value of this secret from within the container you would need to call
the $environment_variable_name1, $environment_variable_name2, and
$environment_variable_name13.

Example referencing a specific key within a secret

The following shows an example output from a get-secret-value command that displays the
contents of a secret along with the version staging label and version ID associated with it.

{

Pass sensitive data to a container 498

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html

Amazon Elastic Container Service Developer Guide

 "ARN": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-AbCdEf",
 "Name": "appauthexample",
 "VersionId": "871d9eca-18aa-46a9-8785-981ddEXAMPLE",
 "SecretString": "{\"username1\":\"password1\",\"username2\":\"password2\",
\"username3\":\"password3\"}",
 "VersionStages": [
 "AWSCURRENT"
],
 "CreatedDate": 1581968848.921
}

Reference a specific key from the previous output in a container definition by specifying the key
name at the end of the ARN.

{
 "containerDefinitions": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-
AbCdEf:username1::"
 }]
 }]
}

Example referencing a specific secret version

The following shows an example output from a describe-secret command that displays the
unencrypted contents of a secret along with the metadata for all versions of the secret.

{
 "ARN": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-AbCdEf",
 "Name": "appauthexample",
 "Description": "Example of a secret containing application authorization data.",
 "RotationEnabled": false,
 "LastChangedDate": 1581968848.926,
 "LastAccessedDate": 1581897600.0,
 "Tags": [],
 "VersionIdsToStages": {
 "871d9eca-18aa-46a9-8785-981ddEXAMPLE": [
 "AWSCURRENT"
],
 "9d4cb84b-ad69-40c0-a0ab-cead3EXAMPLE": [
 "AWSPREVIOUS"

Pass sensitive data to a container 499

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/describe-secret.html

Amazon Elastic Container Service Developer Guide

]
 }
}

Reference a specific version staging label from the previous output in a container definition by
specifying the key name at the end of the ARN.

{
 "containerDefinitions": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-
AbCdEf::AWSPREVIOUS:"
 }]
 }]
}

Reference a specific version ID from the previous output in a container definition by specifying the
key name at the end of the ARN.

{
 "containerDefinitions": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-
AbCdEf:::9d4cb84b-ad69-40c0-a0ab-cead3EXAMPLE"
 }]
 }]
}

Example referencing a specific key and version staging label of a secret

The following shows how to reference both a specific key within a secret and a specific version
staging label.

{
 "containerDefinitions": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-
AbCdEf:username1:AWSPREVIOUS:"
 }]

Pass sensitive data to a container 500

Amazon Elastic Container Service Developer Guide

 }]
}

To specify a specific key and version ID, use the following syntax.

{
 "containerDefinitions": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-
AbCdEf:username1::9d4cb84b-ad69-40c0-a0ab-cead3EXAMPLE"
 }]
 }]
}

For information about how to create a task definition with the secret specified in an environment
variable, see Creating an Amazon ECS task definition using the console.

Pass Systems Manager parameters through Amazon ECS environment variables

Amazon ECS allows you to inject sensitive data into your containers by storing your sensitive data
in AWS Systems Manager Parameter Store parameters and then referencing them in your container
definition.

Consider the following when using an environment variable to inject a Systems Manager secret into
a container.

• Sensitive data is injected into your container when the container is initially started. If the secret is
subsequently updated or rotated, the container will not receive the updated value automatically.
You must either launch a new task or if your task is part of a service you can update the service
and use the Force new deployment option to force the service to launch a fresh task.

• For Amazon ECS tasks on AWS Fargate, the following should be considered:

• To inject the full content of a secret as an environment variable or in a log configuration, you
must use platform version 1.3.0 or later. For information, see Fargate platform versions for
Amazon ECS.

• To inject a specific JSON key or version of a secret as an environment variable or in a log
configuration, you must use platform version 1.4.0 or later (Linux) or 1.0.0 (Windows). For
information, see Fargate platform versions for Amazon ECS.

• For Amazon ECS tasks on EC2, the following should be considered:

Pass sensitive data to a container 501

Amazon Elastic Container Service Developer Guide

• To inject a secret using a specific JSON key or version of a secret, your container instance must
have version 1.37.0 or later of the container agent. However, we recommend using the latest
container agent version. For information about checking your agent version and updating to
the latest version, see Updating the Amazon ECS container agent.

To inject the full contents of a secret as an environment variable or to inject a secret in a log
configuration, your container instance must have version 1.22.0 or later of the container
agent.

• Use interface VPC endpoints to enhance security controls. You must create the interface VPC
endpoints for Systems Manager. For information about the VPC endpoint, see Improve the
security of EC2 instances by using VPC endpoints for Systems Manager in the AWS Systems
Manager User Guide.

• Your task definition must use a task execution role with the additional permissions for Systems
Manager Parameter Store. For more information, see Amazon ECS task execution IAM role.

• For Windows tasks that are configured to use the awslogs logging driver, you must also set the
ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE environment variable on your container
instance. Use the following syntax:

<powershell>
[Environment]::SetEnvironmentVariable("ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE",
 $TRUE, "Machine")
Initialize-ECSAgent -Cluster <cluster name> -EnableTaskIAMRole -LoggingDrivers
 '["json-file","awslogs"]'
</powershell>

Create the Systems Manager parameter

You can use the Systems Manager console to create a Systems Manager Parameter Store parameter
for your sensitive data. For more information, see Create a Systems Manager parameter (console)
or Create a Systems Manager parameter (AWS CLI) in the AWS Systems Manager User Guide.

Add the environment variable to the container definition

Within your container definition in the task definition, specify secrets with the name of the
environment variable to set in the container and the full ARN of the Systems Manager Parameter
Store parameter containing the sensitive data to present to the container. For more information,
see secrets.

Pass sensitive data to a container 502

https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-create-vpc.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-create-vpc.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/parameter-create-console.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/param-create-cli.html

Amazon Elastic Container Service Developer Guide

The following is a snippet of a task definition showing the format when referencing a Systems
Manager Parameter Store parameter. If the Systems Manager Parameter Store parameter exists in
the same Region as the task you are launching, then you can use either the full ARN or name of the
parameter. If the parameter exists in a different Region, then specify the full ARN.

{
 "containerDefinitions": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:ssm:region:aws_account_id:parameter/parameter_name"
 }]
 }]
}

For information about how to create a task definition with the secret specified in an environment
variable, see Creating an Amazon ECS task definition using the console.

Update your application to programmatically retrieve Systems Manager Parameter Store
secrets

To retrieve the sensitive data stored in the Systems Manager Parameter Store parameter, see Code
examples for Systems Manager using AWS SDKs in the AWS SDK Code Examples Code Library.

Pass secrets for Amazon ECS logging configuration

You can use the secretOptions parameter in logConfiguration to pass sensitive data used
for logging.

You can store the secret in Secrets Manager or Systems Manager.

Use Secrets Manager

Within your container definition, when specifying a logConfiguration you can specify
secretOptions with the name of the log driver option to set in the container and the full ARN
of the Secrets Manager secret containing the sensitive data to present to the container. For more
information about creating secrets, see Create an AWS Secrets Manager.

The following is a snippet of a task definition showing the format when referencing an Secrets
Manager secret.

{

Pass sensitive data to a container 503

https://docs.aws.amazon.com/code-library/latest/ug/ssm_code_examples.html
https://docs.aws.amazon.com/code-library/latest/ug/ssm_code_examples.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Elastic Container Service Developer Guide

 "containerDefinitions": [{
 "logConfiguration": [{
 "logDriver": "splunk",
 "options": {
 "splunk-url": "https://your_splunk_instance:8088"
 },
 "secretOptions": [{
 "name": "splunk-token",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name-
AbCdEf"
 }]
 }]
 }]
}

Add the environment variable to the container definition

Within your container definition, specify secrets with the name of the environment variable
to set in the container and the full ARN of the Systems Manager Parameter Store parameter
containing the sensitive data to present to the container. For more information, see secrets.

The following is a snippet of a task definition showing the format when referencing a Systems
Manager Parameter Store parameter. If the Systems Manager Parameter Store parameter exists in
the same Region as the task you are launching, then you can use either the full ARN or name of the
parameter. If the parameter exists in a different Region, then specify the full ARN.

{
 "containerDefinitions": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:ssm:region:aws_account_id:parameter/parameter_name"
 }]
 }]
}

For information about how to create a task definition with the secret specified in an environment
variable, see Creating an Amazon ECS task definition using the console.

Use Systems Manager

You can inject sensitive data in a log configuration. Within your container definition, when
specifying a logConfiguration you can specify secretOptions with the name of the log driver

Pass sensitive data to a container 504

Amazon Elastic Container Service Developer Guide

option to set in the container and the full ARN of the Systems Manager Parameter Store parameter
containing the sensitive data to present to the container.

Important

If the Systems Manager Parameter Store parameter exists in the same Region as the task
you are launching, then you can use either the full ARN or name of the parameter. If the
parameter exists in a different Region, then specify the full ARN.

The following is a snippet of a task definition showing the format when referencing a Systems
Manager Parameter Store parameter.

{
 "containerDefinitions": [{
 "logConfiguration": [{
 "logDriver": "fluentd",
 "options": {
 "tag": "fluentd demo"
 },
 "secretOptions": [{
 "name": "fluentd-address",
 "valueFrom": "arn:aws:ssm:region:aws_account_id:parameter:/parameter_name"
 }]
 }]
 }]
}

Specifying sensitive data using Secrets Manager secrets in Amazon ECS

Amazon ECS allows you to inject sensitive data into your containers by storing your sensitive data
in AWS Secrets Manager secrets and then referencing them in your container definition. For more
information, see Pass sensitive data to an Amazon ECS container.

Learn how to create an Secrets Manager secret, reference the secret in an Amazon ECS task
definition, and then verify it worked by querying the environment variable inside a container
showing the contents of the secret.

Prerequisites

This tutorial assumes that the following prerequisites have been completed:

Pass sensitive data to a container 505

Amazon Elastic Container Service Developer Guide

• The steps in Set up to use Amazon ECS have been completed.

• Your user has the required IAM permissions to create the Secrets Manager and Amazon ECS
resources.

Step 1: Create an Secrets Manager secret

You can use the Secrets Manager console to create a secret for your sensitive data. In this tutorial
we will be creating a basic secret for storing a username and password to reference later in a
container. For more information, see Create an AWS Secrets Manager secret in the AWS Secrets
Manager User Guide.

The key/value pairs to be stored in this secret is the environment variable value in your container
at the end of the tutorial.

Save the Secret ARN to reference in your task execution IAM policy and task definition in later
steps.

Step 2: Add the secrets permissions to the task execution role

In order for Amazon ECS to retrieve the sensitive data from your Secrets Manager secret, you
must have the secrets permissions for the task execution role. For more information, see Secrets
Manager or Systems Manager permissions.

Step 3: Create a task definition

You can use the Amazon ECS console to create a task definition that references a Secrets Manager
secret.

To create a task definition that specifies a secret

Use the IAM console to update your task execution role with the required permissions.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. Choose Create new task definition, Create new task definition with JSON.

4. In the JSON editor box, enter the following task definition JSON text, ensuring that you specify
the full ARN of the Secrets Manager secret you created in step 1 and the task execution role
you updated in step 2. Choose Save.

Pass sensitive data to a container 506

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

5. {
 "executionRoleArn": "arn:aws:iam::aws_account_id:role/ecsTaskExecutionRole",
 "containerDefinitions": [
 {
 "entryPoint": [
 "sh",
 "-c"
],
 "portMappings": [
 {
 "hostPort": 80,
 "protocol": "tcp",
 "containerPort": 80
 }
],
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #333;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</
h1> <h2>Congratulations!</h2> <p>Your application is now running on a container in
 Amazon ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html &&
 httpd-foreground\""
],
 "cpu": 10,
 "secrets": [
 {
 "valueFrom":
 "arn:aws:secretsmanager:region:aws_account_id:secret:username_value",
 "name": "username_value"
 }
],
 "memory": 300,
 "image": "public.ecr.aws/docker/library/httpd:2.4",
 "essential": true,
 "name": "ecs-secrets-container"
 }
],
 "family": "ecs-secrets-tutorial"
}

6. Choose Create.

Pass sensitive data to a container 507

Amazon Elastic Container Service Developer Guide

Step 4: Create a cluster

You can use the Amazon ECS console to create a cluster containing a container instance to run the
task on. If you have an existing cluster with at least one container instance registered to it with the
available resources to run one instance of the task definition created for this tutorial you can skip
to the next step.

For this tutorial we will be creating a cluster with one t2.micro container instance using the
Amazon ECS-optimized Amazon Linux 2 AMI.

For information about how to create a cluster for the EC2 launch type, see the section called
“Creating a cluster for the Amazon EC2 launch type”.

Step 5: Run a task

You can use the Amazon ECS console to run a task using the task definition you created. For this
tutorial we will be running a task using the EC2 launch type, using the cluster we created in the
previous step.

For information about how to run a task, see the section called “Running an application as a task”.

Step 6: Verify

You can verify all of the steps were completed successfully and the environment variable was
created properly in your container using the following steps.

To verify that the environment variable was created

1. Find the public IP or DNS address for your container instance.

a. Open the console at https://console.aws.amazon.com/ecs/v2.

b. In the navigation pane, choose Clusters, and then choose the cluster you created.

c. Choose Infrastructure, and then choose the container instance.

d. Record the Public IP or Public DNS for your instance.

2. If you are using a macOS or Linux computer, connect to your instance with the following
command, substituting the path to your private key and the public address for your instance:

$ ssh -i /path/to/my-key-pair.pem ec2-user@ec2-198-51-100-1.compute-1.amazonaws.com

Pass sensitive data to a container 508

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

For more information about using a Windows computer, see Connect to your Linux instance
using PuTTY in the Amazon EC2 User Guide.

Important

For more information about any issues while connecting to your instance, see
Troubleshooting Connecting to Your Instance in the Amazon EC2 User Guide.

3. List the containers running on the instance. Note the container ID for ecs-secrets-
tutorial container.

docker ps

4. Connect to the ecs-secrets-tutorial container using the container ID from the output of
the previous step.

docker exec -it container_ID /bin/bash

5. Use the echo command to print the value of the environment variable.

echo $username_value

If the tutorial was successful, you should see the following output:

password_value

Note

Alternatively, you can list all environment variables in your container using the env (or
printenv) command.

Step 7: Clean up

When you are finished with this tutorial, you should clean up the associated resources to avoid
incurring charges for unused resources.

Pass sensitive data to a container 509

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect-linux-inst-from-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect-linux-inst-from-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html

Amazon Elastic Container Service Developer Guide

To clean up the resources

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the cluster.

4. Choose Delete Cluster.

5. In the confirmation box, enter delete cluster name, and then choose Delete.

6. Open the IAM console at https://console.aws.amazon.com/iam/.

7. In the navigation pane, choose Roles.

8. Search the list of roles for ecsTaskExecutionRole and select it.

9. Choose Permissions, then choose the X next to ECSSecretsTutorial. Choose Remove.

10. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

11. Select the username_value secret you created and choose Actions, Delete secret.

Amazon ECS task definition parameters for the Fargate launch
type

Task definitions are split into separate parts: the task family, the AWS Identity and Access
Management (IAM) task role, the network mode, container definitions, volumes, and launch types.
The family and container definitions are required in a task definition. In contrast, task role, network
mode, volumes, and launch type are optional.

You can use these parameters in a JSON file to configure your task definition.

The following are more detailed descriptions for each task definition parameter for the Fargate
launch type.

Family

family

Type: String

Required: Yes

When you register a task definition, you give it a family, which is similar to a name for multiple
versions of the task definition, specified with a revision number. The first task definition that's

Task definition parameters for the Fargate launch type 510

https://console.aws.amazon.com/ecs/v2
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/secretsmanager/

Amazon Elastic Container Service Developer Guide

registered into a particular family is given a revision of 1, and any task definitions registered
after that are given a sequential revision number.

Launch types

When you register a task definition, you can specify a launch type that Amazon ECS should validate
the task definition against. If the task definition doesn't validate against the compatibilities
specified, a client exception is returned. For more information, see Amazon ECS launch types.

The following parameter is allowed in a task definition.

requiresCompatibilities

Type: String array

Required: No

Valid Values: FARGATE

The launch type to validate the task definition against. This initiates a check to ensure that all
of the parameters that are used in the task definition meet the requirements of the launch type.

Task role

taskRoleArn

Type: String

Required: No

When you register a task definition, you can provide a task role for an IAM role that allows the
containers in the task permission to call the AWS APIs that are specified in its associated policies
on your behalf. For more information, see Amazon ECS task IAM role.

Task execution role

executionRoleArn

Type: String

Launch types 511

Amazon Elastic Container Service Developer Guide

Required: Conditional

The Amazon Resource Name (ARN) of the task execution role that grants the Amazon ECS
container agent permission to make AWS API calls on your behalf.

Note

The task execution IAM role is required depending on the requirements of your task. For
more information, see Amazon ECS task execution IAM role.

Network mode

networkMode

Type: String

Required: Yes

The Docker networking mode to use for the containers in the task. For Amazon ECS tasks
hosted on Fargate, the awsvpc network mode is required.

If the network mode is set to none, the task's containers don't have external connectivity and
port mappings can't be specified in the container definition.

When the network mode is awsvpc, the task is allocated an elastic network interface, and
you must specify a NetworkConfiguration when you create a service or run a task with
the task definition. For more information, see Amazon ECS task networking options for the
Fargate launch type. The awsvpc network mode offers the highest networking performance
for containers because they use the Amazon EC2 network stack. Exposed container ports are
mapped directly to the attached elastic network interface port. Because of this, you can't use
dynamic host port mappings.

The awsvpc network mode offers the highest networking performance for containers because
they use the Amazon EC2 network stack. With the awsvpc network modes, exposed container
ports are mapped directly to the attached elastic network interface port.

Because of this, you can't use dynamic host port mappings.

The awsvpc network mode is required.

Network mode 512

Amazon Elastic Container Service Developer Guide

Runtime platform

operatingSystemFamily

Type: String

Required: Conditional

Default: LINUX

This parameter is required for Amazon ECS tasks that are hosted on Fargate.

When you register a task definition, you specify the operating system family.

The valid values are LINUX, WINDOWS_SERVER_2025_FULL, WINDOWS_SERVER_2025_CORE,
WINDOWS_SERVER_2022_FULL, WINDOWS_SERVER_2022_CORE,
WINDOWS_SERVER_2019_FULL, and WINDOWS_SERVER_2019_CORE.

All task definitions that are used in a service must have the same value for this parameter.

When a task definition is part of a service, this value must match the service platformFamily
value.

cpuArchitecture

Type: String

Required: Conditional

Default: X86_64

If the parameter is left as null, the default value is automatically assigned upon the initiation
of a task hosted on Fargate.

When you register a task definition, you specify the CPU architecture. The valid values are
X86_64 and ARM64.

All task definitions that are used in a service must have the same value for this parameter.

When you have Linux tasks, you can set the value to ARM64. For more information, see the
section called “Task definitions for 64-bit ARM workloads”.

Runtime platform 513

Amazon Elastic Container Service Developer Guide

Task size

When you register a task definition, you can specify the total CPU and memory used for the task.
This is separate from the cpu and memory values at the container definition level. For tasks that
are hosted on Fargate (both Linux and Windows), these fields are required and there are specific
values for both cpu and memory that are supported.

The following parameter is allowed in a task definition:

cpu

Type: String

Required: Yes

Note

Task-level CPU and memory parameters are required and used to determine the
instance type and size that tasks run on. For Windows tasks, these values aren’t
enforced at runtime, because Windows doesn't have a native mechanism that can
easily enforce collective resource limits on a group of containers. If you want to enforce
resource limits, we recommend using the container-level resources for Windows
containers.

The hard limit of CPU units to present for the task. You can specify CPU values in the JSON file
as a string in CPU units or virtual CPUs (vCPUs). For example, you can specify a CPU value either
as 1024 in CPU units or 1 vCPU in vCPUs. When the task definition is registered, a vCPU value
is converted to an integer indicating the CPU units.

This field is required and you must use one of the following values, which determines your
range of supported values for the memory parameter. The table below shows the valid
combinations of task-level CPU and memory.

CPU value Memory value Operating systems
supported for AWS Fargate

256 (.25 vCPU) 512 MiB, 1 GB, 2 GB Linux

Task size 514

Amazon Elastic Container Service Developer Guide

CPU value Memory value Operating systems
supported for AWS Fargate

512 (.5 vCPU) 1 GB, 2 GB, 3 GB, 4 GB Linux

1024 (1 vCPU) 2 GB, 3 GB, 4 GB, 5 GB, 6 GB,
7 GB, 8 GB

Linux, Windows

2048 (2 vCPU) Between 4 GB and 16 GB in
1 GB increments

Linux, Windows

4096 (4 vCPU) Between 8 GB and 30 GB in
1 GB increments

Linux, Windows

8192 (8 vCPU)

Note

This option requires
Linux platform
1.4.0 or later.

Between 16 GB and 60 GB in
4 GB increments

Linux

16384 (16vCPU)

Note

This option requires
Linux platform
1.4.0 or later.

Between 32 GB and 120 GB
in 8 GB increments

Linux

memory

Type: String

Required: Yes

Task size 515

Amazon Elastic Container Service Developer Guide

Note

Task-level CPU and memory parameters are required and used to determine the
instance type and size that tasks run on. For Windows tasks, these values aren’t
enforced at runtime, because Windows doesn't have a native mechanism that can
easily enforce collective resource limits on a group of containers. If you want to enforce
resource limits, we recommend using the container-level resources for Windows
containers.

The hard limit of memory to present to the task. You can specify memory values in the task
definition as a string in mebibytes (MiB) or gigabytes (GB). For example, you can specify a
memory value either as 3072 in MiB or 3 GBin GB. When the task definition is registered, a GB
value is converted to an integer indicating the MiB.

This field is required and you must use one of the following values, which determines your
range of supported values for the cpu parameter:

Memory value (in MiB, with
approximate equivalent
value in GB)

CPU value Operating systems
supported for Fargate

512 (0.5 GB), 1024 (1 GB),
2048 (2 GB)

256 (.25 vCPU) Linux

1024 (1 GB), 2048 (2 GB),
3072 (3 GB), 4096 (4 GB)

512 (.5 vCPU) Linux

2048 (2 GB), 3072 (3 GB),
4096 (4GB), 5120 (5 GB),
6144 (6 GB), 7168 (7 GB),
8192 (8 GB)

1024 (1 vCPU) Linux, Windows

Between 4096 (4 GB) and
16384 (16 GB) in increments
of 1024 (1 GB)

2048 (2 vCPU) Linux, Windows

Task size 516

Amazon Elastic Container Service Developer Guide

Memory value (in MiB, with
approximate equivalent
value in GB)

CPU value Operating systems
supported for Fargate

Between 8192 (8 GB) and
30720 (30 GB) in increments
of 1024 (1 GB)

4096 (4 vCPU) Linux, Windows

Between 16 GB and 60 GB in
4 GB increments

Note

This option requires
Linux platform
1.4.0 or later.

8192 (8 vCPU) Linux

Between 32 GB and 120 GB
in 8 GB increments

Note

This option requires
Linux platform
1.4.0 or later.

16384 (16vCPU) Linux

Container definitions

When you register a task definition, you must specify a list of container definitions that are passed
to the Docker daemon on a container instance. The following parameters are allowed in a container
definition.

Topics

• Standard container definition parameters

• Advanced container definition parameters

• Other container definition parameters

Container definitions 517

Amazon Elastic Container Service Developer Guide

Standard container definition parameters

The following task definition parameters are either required or used in most container definitions.

Topics

• Name

• Image

• Memory

• Port mappings

• Private Repository Credentials

Name

name

Type: String

Required: Yes

The name of a container. Up to 255 letters (uppercase and lowercase), numbers, hyphens, and
underscores are allowed. If you're linking multiple containers in a task definition, the name
of one container can be entered in the links of another container. This is to connect the
containers.

Image

image

Type: String

Required: Yes

The image used to start a container. This string is passed directly to the Docker daemon. By
default, images in the Docker Hub registry are available. You can also specify other repositories
with either repository-url/image:tag or repository-url/image@digest. Up to 255
letters (uppercase and lowercase), numbers, hyphens, underscores, colons, periods, forward
slashes, and number signs are allowed. This parameter maps to Image in the docker create-
container command and the IMAGE parameter of the docker run command.

Container definitions 518

Amazon Elastic Container Service Developer Guide

• When a new task starts, the Amazon ECS container agent pulls the latest version of the
specified image and tag for the container to use. However, subsequent updates to a
repository image aren't propagated to already running tasks.

• Whenyou don't specify a tag or digest in the image path in the task definition, the Amazon
ECS container agent pulls the latest version of the specified image.

• However, subsequent updates to a repository image aren't propagated to already running
tasks.

• Images in private registries are supported. For more information, see Using non-AWS
container images in Amazon ECS.

• Images in Amazon ECR repositories can be specified by using either the full registry/
repository:tag or registry/repository@digest naming convention (for
example, aws_account_id.dkr.ecr.region.amazonaws.com/my-web-
app:latest or aws_account_id.dkr.ecr.region.amazonaws.com/my-web-
app@sha256:94afd1f2e64d908bc90dbca0035a5b567EXAMPLE).

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or
mongo).

• Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent).

• Images in other online repositories are qualified further by a domain name (for example,
quay.io/assemblyline/ubuntu).

versionConsistency

Type: String

Valid values: enabled|disabled

Required: No

Specifies whether Amazon ECS will resolve the container image tag provided in the container
definition to an image digest. By default, this behavior is enabled. If you set the value for a
container as disabled, Amazon ECS will not resolve the container image tag to a digest and
will use the original image URI specified in the container definition for deployment. For more
information about container image resolution, see Container image resolution.

Container definitions 519

Amazon Elastic Container Service Developer Guide

Memory

memory

Type: Integer

Required: No

The amount (in MiB) of memory to present to the container. If your container attempts to
exceed the memory specified here, the container is killed. The total amount of memory
reserved for all containers within a task must be lower than the task memory value, if one is
specified. This parameter maps to Memory in the docker create-container command and the --
memory option to docker run.

The Docker 20.10.0 or later daemon reserves a minimum of 6 MiB of memory for a container.
So, don't specify less than 6 MiB of memory for your containers.

The Docker 19.03.13-ce or earlier daemon reserves a minimum of 4 MiB of memory for a
container. So, don't specify less than 4 MiB of memory for your containers.

Note

If you're trying to maximize your resource utilization by providing your tasks as much
memory as possible for a particular instance type, see Reserving Amazon ECS Linux
container instance memory.

memoryReservation

Type: Integer

Required: No

The soft limit (in MiB) of memory to reserve for the container. When system memory is under
contention, Docker attempts to keep the container memory to this soft limit. However, your
container can use more memory when needed. The container can use up to the hard limit
that's specified with the memory parameter (if applicable) or all of the available memory on the
container instance, whichever comes first. This parameter maps to MemoryReservation in the
docker create-container command and the --memory-reservation option to docker run.

Container definitions 520

Amazon Elastic Container Service Developer Guide

If a task-level memory value isn't specified, you must specify a non-zero integer for one or both
of memory or memoryReservation in a container definition. If you specify both, memory must
be greater than memoryReservation. If you specify memoryReservation, then that value is
subtracted from the available memory resources for the container instance that the container is
placed on. Otherwise, the value of memory is used.

For example, suppose that your container normally uses 128 MiB of memory, but occasionally
bursts to 256 MiB of memory for short periods of time. You can set a memoryReservation of
128 MiB, and a memory hard limit of 300 MiB. This configuration allows the container to only
reserve 128 MiB of memory from the remaining resources on the container instance. At the
same time, this configuration also allows the container to use more memory resources when
needed.

Note

This parameter isn't supported for Windows containers.

The Docker 20.10.0 or later daemon reserves a minimum of 6 MiB of memory for a container.
So, don't specify less than 6 MiB of memory for your containers.

The Docker 19.03.13-ce or earlier daemon reserves a minimum of 4 MiB of memory for a
container. So, don't specify less than 4 MiB of memory for your containers.

Note

If you're trying to maximize your resource utilization by providing your tasks as much
memory as possible for a particular instance type, see Reserving Amazon ECS Linux
container instance memory.

Port mappings

portMappings

Type: Object array

Required: No

Container definitions 521

Amazon Elastic Container Service Developer Guide

Port mappings expose your container's network ports to the outside world. this allows clients to
access your application. It's also used for inter-container communication within the same task.

For task definitions that use the awsvpc network mode, only specify the containerPort. The
hostPort is always ignored, and the container port is automatically mapped to a random high-
numbered port on the host.

Port mappings on Windows use the NetNAT gateway address rather than localhost. There's
no loopback for port mappings on Windows, so you can't access a container's mapped port from
the host itself.

Most fields of this parameter (including containerPort, hostPort, protocol) map to
PortBindings in thedocker create-container command and the --publish option to docker
run. If the network mode of a task definition is set to host, host ports must either be undefined
or match the container port in the port mapping.

Note

After a task reaches the RUNNING status, manual and automatic host and container port
assignments are visible in the following locations:

• Console: The Network Bindings section of a container description for a selected task.

• AWS CLI: The networkBindings section of the describe-tasks command output.

• API: The DescribeTasks response.

• Metadata: The task metadata endpoint.

appProtocol

Type: String

Required: No

The application protocol that's used for the port mapping. This parameter only applies
to Service Connect. We recommend that you set this parameter to be consistent with the
protocol that your application uses. If you set this parameter, Amazon ECS adds protocol-
specific connection handling to the service connect proxy. If you set this parameter, Amazon
ECS adds protocol-specific telemetry in the Amazon ECS console and CloudWatch.

Container definitions 522

Amazon Elastic Container Service Developer Guide

If you don't set a value for this parameter, then TCP is used. However, Amazon ECS doesn't
add protocol-specific telemetry for TCP.

For more information, see the section called “ Service Connect”.

Valid protocol values: "http" | "http2" | "grpc"

containerPort

Type: Integer

Required: Yes, when portMappings are used

The port number on the container that's bound to the user-specified or automatically
assigned host port.

For tasks that use the awsvpc network mode, you use containerPort to specify the
exposed ports.

For Windows containers on Fargate, you can't use port 3150 for the containerPort. This is
because it's reserved.

containerPortRange

Type: String

Required: No

The port number range on the container that's bound to the dynamically mapped host port
range.

You can only set this parameter by using the register-task-definition API. The option
is available in the portMappings parameter. For more information, see register-task-
definition in the AWS Command Line Interface Reference.

The following rules apply when you specify a containerPortRange:

• You must use the awsvpc network mode.

• This parameter is available for both the Linux and Windows operating systems.

• The container instance must have at least version 1.67.0 of the container agent and at
least version 1.67.0-1 of the ecs-init package.

Container definitions 523

https://docs.aws.amazon.com/cli/latest/reference/ecs/register-task-definition.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/register-task-definition.html

Amazon Elastic Container Service Developer Guide

• You can specify a maximum of 100 port ranges for each container.

• You don't specify a hostPortRange. The value of the hostPortRange is set as follows:

• For containers in a task with the awsvpc network mode, the hostPort is set to the
same value as the containerPort. This is a static mapping strategy.

• The containerPortRange valid values are between 1 and 65535.

• A port can only be included in one port mapping for each container.

• You can't specify overlapping port ranges.

• The first port in the range must be less than last port in the range.

• Docker recommends that you turn off the docker-proxy in the Docker daemon config file
when you have a large number of ports.

For more information, see Issue #11185 on GitHub.

For information about how to turn off the docker-proxy in the Docker daemon config file,
see Docker daemon in the Amazon ECS Developer Guide.

You can call DescribeTasks to view the hostPortRange, which are the host ports that are
bound to the container ports.

The port ranges aren't included in the Amazon ECS task events, which are sent to
EventBridge. For more information, see the section called “Automate responses to Amazon
ECS errors using EventBridge”.

hostPortRange

Type: String

Required: No

The port number range on the host that's used with the network binding. This is assigned by
Docker and delivered by the Amazon ECS agent.

hostPort

Type: Integer

Required: No

The port number on the container instance to reserve for your container.

Container definitions 524

https://github.com/moby/moby/issues/11185
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/bootstrap_container_instance.html#bootstrap_docker_daemon
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeTasks.html

Amazon Elastic Container Service Developer Guide

The hostPort can either be kept blank or be the same value as containerPort.

The default ephemeral port range Docker version 1.6.0 and later is listed on the instance
under /proc/sys/net/ipv4/ip_local_port_range. If this kernel parameter is
unavailable, the default ephemeral port range from 49153–65535 is used. Don't attempt
to specify a host port in the ephemeral port range. This is because these are reserved for
automatic assignment. In general, ports under 32768 are outside of the ephemeral port
range.

The default reserved ports are 22 for SSH, the Docker ports 2375 and 2376, and the
Amazon ECS container agent ports 51678-51680. Any host port that was previously user-
specified for a running task is also reserved while the task is running. After a task stops, the
host port is released. The current reserved ports are displayed in the remainingResources
of describe-container-instances output. A container instance might have up to 100 reserved
ports at a time, including the default reserved ports. Automatically assigned ports don't
count toward the 100 reserved ports quota.

name

Type: String

Required: No, required for Service Connect and VPC Lattice to be configured in a service

The name that's used for the port mapping. This parameter only applies to Service Connect
and VPC Lattice. This parameter is the name that you use in the Service Connect and VPC
Lattice configuration of a service.

For more information, see Use Service Connect to connect Amazon ECS services with short
names.

In the following example, both of the required fields for Service Connect and VPC Lattice are
used.

"portMappings": [
 {
 "name": string,
 "containerPort": integer
 }
]

Container definitions 525

Amazon Elastic Container Service Developer Guide

protocol

Type: String

Required: No

The protocol that's used for the port mapping. Valid values are tcp and udp. The default is
tcp.

Important

Only tcp is supported for Service Connect. Remember that tcp is implied if this
field isn't set.

If you're specifying a host port, use the following syntax.

"portMappings": [
 {
 "containerPort": integer,
 "hostPort": integer
 }
 ...
]

If you want an automatically assigned host port, use the following syntax.

"portMappings": [
 {
 "containerPort": integer
 }
 ...
]

Private Repository Credentials

repositoryCredentials

Type: RepositoryCredentials object

Required: No

Container definitions 526

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RepositoryCredentials.html

Amazon Elastic Container Service Developer Guide

The repository credentials for private registry authentication.

For more information, see Using non-AWS container images in Amazon ECS.

credentialsParameter

Type: String

Required: Yes, when repositoryCredentials are used

The Amazon Resource Name (ARN) of the secret containing the private repository
credentials.

For more information, see Using non-AWS container images in Amazon ECS.

Note

When you use the Amazon ECS API, AWS CLI, or AWS SDKs, if the secret exists in the
same Region as the task that you're launching then you can use either the full ARN
or the name of the secret. When you use the AWS Management Console, you must
specify the full ARN of the secret.

The following is a snippet of a task definition that shows the required parameters:

"containerDefinitions": [
 {
 "image": "private-repo/private-image",
 "repositoryCredentials": {
 "credentialsParameter":
 "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name"
 }
 }
]

Advanced container definition parameters

The following advanced container definition parameters provide extended capabilities to the
docker run command that's used to launch containers on your Amazon ECS container instances.

Container definitions 527

Amazon Elastic Container Service Developer Guide

Topics

• Restart policy

• Health check

• Environment

• Network settings

• Storage and logging

• Security

• Resource limits

• Docker labels

Restart policy

restartPolicy

The container restart policy and associated configuration parameters. When you set up a
restart policy for a container, Amazon ECS can restart the container without needing to replace
the task. For more information, see Restart individual containers in Amazon ECS tasks with
container restart policies.

enabled

Type: Boolean

Required: Yes

Specifies whether a restart policy is enabled for the container.

ignoredExitCodes

Type: Integer array

Required: No

A list of exit codes that Amazon ECS will ignore and not attempt a restart on. You can
specify a maximum of 50 container exit codes. By default, Amazon ECS does not ignore any
exit codes.

restartAttemptPeriod

Type: Integer

Container definitions 528

Amazon Elastic Container Service Developer Guide

Required: No

A period of time (in seconds) that the container must run for before a restart can be
attempted. A container can be restarted only once every restartAttemptPeriod
seconds. If a container isn't able to run for this time period and exits early, it will not be
restarted. You can set a minimum restartAttemptPeriod of 60 seconds and a maximum
restartAttemptPeriod of 1800 seconds. By default, a container must run for 300
seconds before it can be restarted.

Health check

healthCheck

The container health check command and the associated configuration parameters for the
container. For more information, see Determine Amazon ECS task health using container health
checks.

command

A string array that represents the command that the container runs to determine if it's
healthy. The string array can start with CMD to run the command arguments directly, or CMD-
SHELL to run the command with the container's default shell. If neither is specified, CMD is
used.

When registering a task definition in the AWS Management Console, use a comma separated
list of commands. These commands are converted to a string after the task definition is
created. An example input for a health check is the following.

CMD-SHELL, curl -f http://localhost/ || exit 1

When registering a task definition using the AWS Management Console JSON panel, the
AWS CLI, or the APIs, enclose the list of commands in brackets. An example input for a
health check is the following.

["CMD-SHELL", "curl -f http://localhost/ || exit 1"]

An exit code of 0, with no stderr output, indicates success, and a non-zero exit code
indicates failure.

Container definitions 529

Amazon Elastic Container Service Developer Guide

interval

The period of time (in seconds) between each health check. You can specify between 5 and
300 seconds. The default value is 30 seconds.

timeout

The period of time (in seconds) to wait for a health check to succeed before it's considered a
failure. You can specify between 2 and 60 seconds. The default value is 5 seconds.

retries

The number of times to retry a failed health check before the container is considered
unhealthy. You can specify between 1 and 10 retries. The default value is three retries.

startPeriod

The optional grace period to provide containers time to bootstrap in before failed health
checks count towards the maximum number of retries. You can specify a value between 0
and 300 seconds. By default, startPeriod is disabled.

If a health check succeeds within the startPeriod, then the container is considered
healthy and any subsequent failures count toward the maximum number of retries.

Environment

cpu

Type: Integer

Required: No

The number of cpu units the Amazon ECS container agent reserves for the container. On Linux,
this parameter maps to CpuShares in the Create a container section.

This field is optional for tasks that use the Fargate launch type. The total amount of CPU
reserved for all the containers that are within a task must be lower than the task-level cpu
value.

Linux containers share unallocated CPU units with other containers on the container instance
with the same ratio as their allocated amount. For example, assume that you run a single-
container task on a single-core instance type with 512 CPU units specified for that container.

Container definitions 530

https://docs.docker.com/reference/api/engine/version/v1.38/#operation/ContainerCreate

Amazon Elastic Container Service Developer Guide

Moreover, that task is the only task running on the container instance. In this example, the
container can use the full 1,024 CPU unit share at any given time. However, assume then that
you launched another copy of the same task on that container instance. Each task is guaranteed
a minimum of 512 CPU units when needed. Similarly, if the other container isn't using the
remaining CPU, each container can float to higher CPU usage. However, if both tasks were
100% active all of the time, they are limited to 512 CPU units.

On Linux container instances, the Docker daemon on the container instance uses the CPU value
to calculate the relative CPU share ratios for running containers. The minimum valid CPU share
value that the Linux kernel allows is 2, and the maximum valid CPU share value that the Linux
kernel allows is 262144. However, the CPU parameter isn't required, and you can use CPU
values below two and above 262144 in your container definitions. For CPU values below two
(including null) and above 262144, the behavior varies based on your Amazon ECS container
agent version:

On Windows container instances, the CPU quota is enforced as an absolute quota. Windows
containers only have access to the specified amount of CPU that's defined in the task definition.
A null or zero CPU value is passed to Docker as 0. Windows then interprets this value as 1% of
one CPU.

For more examples, see How Amazon ECS manages CPU and memory resources.

gpu

This parameter isn't supported for containers that are hosted on Fargate.

Type: ResourceRequirement object

Required: No

The number of physical GPUs that the Amazon ECS container agent reserves for the container.
The number of GPUs reserved for all containers in a task must not exceed the number of
available GPUs on the container instance the task is launched on. For more information, see
Amazon ECS task definitions for GPU workloads.

Elastic Inference accelerator

This parameter isn't supported for containers that are hosted on Fargate.

Type: ResourceRequirement object

Required: No

Container definitions 531

https://aws.amazon.com/blogs/containers/how-amazon-ecs-manages-cpu-and-memory-resources/
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ResourceRequirement.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ResourceRequirement.html

Amazon Elastic Container Service Developer Guide

For the InferenceAccelerator type, the value matches the deviceName for an
InferenceAccelerator specified in a task definition. For more information, see the section
called “Elastic Inference accelerator name”.

essential

Type: Boolean

Required: No

Suppose that the essential parameter of a container is marked as true, and that container
fails or stops for any reason. Then, all other containers that are part of the task are stopped.
If the essential parameter of a container is marked as false, then its failure doesn't affect
the rest of the containers in a task. If this parameter is omitted, a container is assumed to be
essential.

All tasks must have at least one essential container. Suppose that you have an application that's
composed of multiple containers. Then, group containers that are used for a common purpose
into components, and separate the different components into multiple task definitions. For
more information, see Architect your application for Amazon ECS.

"essential": true|false

entryPoint

Important

Early versions of the Amazon ECS container agent don't properly handle entryPoint
parameters. If you have problems using entryPoint, update your container agent or
enter your commands and arguments as command array items instead.

Type: String array

Required: No

The entry point that's passed to the container.

"entryPoint": ["string", ...]

Container definitions 532

Amazon Elastic Container Service Developer Guide

command

Type: String array

Required: No

The command that's passed to the container. This parameter maps to Cmd in the create-
container command and the COMMAND parameter to docker run. If there are multiple arguments,
make sure that each argument is a separated string in the array.

"command": ["string", ...]

workingDirectory

Type: String

Required: No

The working directory to run commands inside the container in. This parameter maps to
WorkingDir in the Create a container section of the Docker Remote API and the --workdir
option to docker run.

"workingDirectory": "string"

environmentFiles

This isn't available for Windows containers on Fargate.

Type: Object array

Required: No

A list of files containing the environment variables to pass to a container. This parameter maps
to the --env-file option to the docker run command.

You can specify up to 10 environment files. The file must have a .env file extension. Each line
in an environment file contains an environment variable in VARIABLE=VALUE format. Lines that
start with # are treated as comments and are ignored.

If there are individual environment variables specified in the container definition, they take
precedence over the variables contained within an environment file. If multiple environment
files are specified that contain the same variable, they're processed from the top down. We

Container definitions 533

https://docs.docker.com/reference/api/engine/version/v1.38/#operation/ContainerCreate
https://docs.docker.com/reference/api/engine/version/v1.38/
https://docs.docker.com/reference/cli/docker/container/run/

Amazon Elastic Container Service Developer Guide

recommend that you use unique variable names. For more information, see Pass an individual
environment variable to an Amazon ECS container.

value

Type: String

Required: Yes

The Amazon Resource Name (ARN) of the Amazon S3 object containing the environment
variable file.

type

Type: String

Required: Yes

The file type to use. The only supported value is s3.

environment

Type: Object array

Required: No

The environment variables to pass to a container. This parameter maps to Env in the docker
create-container command and the --env option to the docker run command.

Important

We do not recommend using plaintext environment variables for sensitive information,
such as credential data.

name

Type: String

Required: Yes, when environment is used

The name of the environment variable.

value

Type: String

Container definitions 534

Amazon Elastic Container Service Developer Guide

Required: Yes, when environment is used

The value of the environment variable.

"environment" : [
 { "name" : "string", "value" : "string" },
 { "name" : "string", "value" : "string" }
]

secrets

Type: Object array

Required: No

An object that represents the secret to expose to your container. For more information, see Pass
sensitive data to an Amazon ECS container.

name

Type: String

Required: Yes

The value to set as the environment variable on the container.

valueFrom

Type: String

Required: Yes

The secret to expose to the container. The supported values are either the full Amazon
Resource Name (ARN) of the AWS Secrets Manager secret or the full ARN of the parameter in
the AWS Systems Manager Parameter Store.

Note

If the Systems Manager Parameter Store parameter or Secrets Manager parameter
exists in the same AWS Region as the task that you're launching, you can use either
the full ARN or name of the secret. If the parameter exists in a different Region, then
the full ARN must be specified.

Container definitions 535

Amazon Elastic Container Service Developer Guide

"secrets": [
 {
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:ssm:region:aws_account_id:parameter/parameter_name"
 }
]

Network settings

disableNetworking

This parameter is not supported for tasks running on Fargate.

Type: Boolean

Required: No

When this parameter is true, networking is off within the container.

The default is false.

"disableNetworking": true|false

links

This parameter isn't supported for tasks using the awsvpc network mode.

Type: String array

Required: No

The link parameter allows containers to communicate with each other without the need for
port mappings. This parameter is only supported if the network mode of a task definition is set
to bridge. The name:internalName construct is analogous to name:alias in Docker links.
Up to 255 letters (uppercase and lowercase), numbers, hyphens, and underscores are allowed..

Important

Containers that are collocated on the same container instance might communicate with
each other without requiring links or host port mappings. The network isolation on a
container instance is controlled by security groups and VPC settings.

Container definitions 536

Amazon Elastic Container Service Developer Guide

"links": ["name:internalName", ...]

hostname

Type: String

Required: No

The hostname to use for your container. This parameter maps to Hostname in the docker
create-container and the --hostname option to docker run.

Note

If you're using the awsvpc network mode, the hostname parameter isn't supported.

"hostname": "string"

dnsServers

This is not supported for tasks running on Fargate.

Type: String array

Required: No

A list of DNS servers that are presented to the container.

"dnsServers": ["string", ...]

extraHosts

This parameter isn't supported for tasks that use the awsvpc network mode.

Type: Object array

Required: No

A list of hostnames and IP address mappings to append to the /etc/hosts file on the
container.

Container definitions 537

Amazon Elastic Container Service Developer Guide

This parameter maps to ExtraHosts in the docker create-container command and the --add-
host option to docker run.

"extraHosts": [
 {
 "hostname": "string",
 "ipAddress": "string"
 }
 ...
]

hostname

Type: String

Required: Yes, when extraHosts are used

The hostname to use in the /etc/hosts entry.

ipAddress

Type: String

Required: Yes, when extraHosts are used

The IP address to use in the /etc/hosts entry.

Storage and logging

readonlyRootFilesystem

Type: Boolean

Required: No

When this parameter is true, the container is given read-only access to its root file system. This
parameter maps to ReadonlyRootfs in the docker create-container command the --read-
only option to docker run.

Note

This parameter is not supported for Windows containers.

Container definitions 538

Amazon Elastic Container Service Developer Guide

The default is false.

"readonlyRootFilesystem": true|false

mountPoints

Type: Object array

Required: No

The mount points for the data volumes in your container. This parameter maps to Volumes in
the create-container Docker API and the --volume option to docker run.

Windows containers can mount whole directories on the same drive as $env:ProgramData.
Windows containers cannot mount directories on a different drive, and mount points cannot be
used across drives. You must specify mount points to attach an Amazon EBS volume directly to
an Amazon ECS task.

sourceVolume

Type: String

Required: Yes, when mountPoints are used

The name of the volume to mount.

containerPath

Type: String

Required: Yes, when mountPoints are used

The path in the container where the volume will be mounted.

readOnly

Type: Boolean

Required: No

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume. The default value is false.

For tasks that run on EC2 instances running the Windows operating system, leave the value
as the default of false.

Container definitions 539

Amazon Elastic Container Service Developer Guide

volumesFrom

Type: Object array

Required: No

Data volumes to mount from another container. This parameter maps to VolumesFrom in the
docker create-container command and the --volumes-from option to docker run.

sourceContainer

Type: String

Required: Yes, when volumesFrom is used

The name of the container to mount volumes from.

readOnly

Type: Boolean

Required: No

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume. The default value is false.

"volumesFrom": [
 {
 "sourceContainer": "string",
 "readOnly": true|false
 }
]

logConfiguration

Type: LogConfiguration Object

Required: No

The log configuration specification for the container.

For example task definitions that use a log configuration, see Example Amazon ECS task
definitions.

Container definitions 540

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LogConfiguration.html

Amazon Elastic Container Service Developer Guide

This parameter maps to LogConfig in the docker create-container command and the --
log-driver option to docker run. By default, containers use the same logging driver that
the Docker daemon uses. However, the container might use a different logging driver than the
Docker daemon by specifying a log driver with this parameter in the container definition. To use
a different logging driver for a container, the log system must be configured properly on the
container instance (or on a different log server for remote logging options).

Consider the following when specifying a log configuration for your containers:

• Amazon ECS supports a subset of the logging drivers that are available to the Docker
daemon. Additional log drivers might be available in future releases of the Amazon ECS
container agent.

• This parameter requires version 1.18 or later of the Docker Remote API on your container
instance.

• You must install any additional software outside of the task. For example, the Fluentd output
aggregators or a remote host running Logstash to send Gelf logs to.

"logConfiguration": {
 "logDriver": "awslogs","fluentd","gelf","json-
file","journald","splunk","syslog","awsfirelens",
 "options": {"string": "string"
 ...},
 "secretOptions": [{
 "name": "string",
 "valueFrom": "string"
 }]
}

logDriver

Type: String

Valid values: "awslogs","fluentd","gelf","json-
file","journald","splunk","syslog","awsfirelens"

Required: Yes, when logConfiguration is used

The log driver to use for the container. By default, the valid values that are listed earlier are
log drivers that the Amazon ECS container agent can communicate with.

The supported log drivers are awslogs, splunk, and awsfirelens.

Container definitions 541

Amazon Elastic Container Service Developer Guide

For more information about how to use the awslogs log driver in task definitions to send
your container logs to CloudWatch Logs, see Send Amazon ECS logs to CloudWatch .

For more information about using the awsfirelens log driver, see Custom Log Routing.

Note

If you have a custom driver that isn't listed, you can fork the Amazon ECS container
agent project that's available on GitHub and customize it to work with that driver.
We encourage you to submit pull requests for changes that you want to have
included. However, we don't currently support running modified copies of this
software.

This parameter requires version 1.18 of the Docker Remote API or greater on your container
instance.

options

Type: String to string map

Required: No

The key/value map of configuration options to send to the log driver.

The options you can specify depend on the log driver. Some of the options you can specify
when you use the awslogs router to route logs to Amazon CloudWatch include the
following:

awslogs-create-group

Required: No

Specify whether you want the log group to be created automatically. If this option isn't
specified, it defaults to false.

Note

Your IAM policy must include the logs:CreateLogGroup permission before you
attempt to use awslogs-create-group.

Container definitions 542

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_firelens.html
https://github.com/aws/amazon-ecs-agent

Amazon Elastic Container Service Developer Guide

awslogs-region

Required: Yes

Specify the AWS Region that the awslogs log driver is to send your Docker logs to. You
can choose to send all of your logs from clusters in different Regions to a single region
in CloudWatch Logs. This is so that they're all visible in one location. Otherwise, you can
separate them by Region for more granularity. Make sure that the specified log group
exists in the Region that you specify with this option.

awslogs-group

Required: Yes

Make sure to specify a log group that the awslogs log driver sends its log streams to.

awslogs-stream-prefix

Required: Yes

Use the awslogs-stream-prefix option to associate a log stream with the specified
prefix, the container name, and the ID of the Amazon ECS task that the container belongs
to. If you specify a prefix with this option, then the log stream takes the following
format.

prefix-name/container-name/ecs-task-id

If you don't specify a prefix with this option, then the log stream is named after the
container ID that's assigned by the Docker daemon on the container instance. Because it's
difficult to trace logs back to the container that sent them with just the Docker container
ID (which is only available on the container instance), we recommend that you specify a
prefix with this option.

For Amazon ECS services, you can use the service name as the prefix. Doing so, you can
trace log streams to the service that the container belongs to, the name of the container
that sent them, and the ID of the task that the container belongs to.

You must specify a stream-prefix for your logs to have your logs appear in the Log pane
when using the Amazon ECS console.

awslogs-datetime-format

Required: No

Container definitions 543

Amazon Elastic Container Service Developer Guide

This option defines a multiline start pattern in Python strftime format. A log message
consists of a line that matches the pattern and any following lines that don’t match the
pattern. The matched line is the delimiter between log messages.

One example of a use case for using this format is for parsing output such as a stack
dump, which might otherwise be logged in multiple entries. The correct pattern allows it
to be captured in a single entry.

For more information, see awslogs-datetime-format.

You cannot configure both the awslogs-datetime-format and awslogs-
multiline-pattern options.

Note

Multiline logging performs regular expression parsing and matching of all log
messages. This might have a negative impact on logging performance.

awslogs-multiline-pattern

Required: No

This option defines a multiline start pattern that uses a regular expression. A log
message consists of a line that matches the pattern and any following lines that don’t
match the pattern. The matched line is the delimiter between log messages.

For more information, see awslogs-multiline-pattern.

This option is ignored if awslogs-datetime-format is also configured.

You cannot configure both the awslogs-datetime-format and awslogs-
multiline-pattern options.

Note

Multiline logging performs regular expression parsing and matching of all log
messages. This might have a negative impact on logging performance.

The following options apply to all supported log drivers.

Container definitions 544

https://docs.docker.com/engine/logging/drivers/awslogs/#awslogs-datetime-format
https://docs.docker.com/engine/logging/drivers/awslogs/#awslogs-multiline-pattern

Amazon Elastic Container Service Developer Guide

mode

Required: No

Valid values: non-blocking | blocking

This option defines the delivery mode of log messages from the container to the log
driver specified using logDriver. The delivery mode you choose affects application
availability when the flow of logs from the container is interrupted.

If you use the blocking mode and the flow of logs is interrupted, calls from container
code to write to the stdout and stderr streams will block. The logging thread of the
application will block as a result. This may cause the application to become unresponsive
and lead to container healthcheck failure.

If you use the non-blocking mode, the container's logs are instead stored in an in-
memory intermediate buffer configured with the max-buffer-size option. This
prevents the application from becoming unresponsive when logs cannot be sent. We
recommend using this mode if you want to ensure service availability and are okay with
some log loss. For more information, see Preventing log loss with non-blocking mode in
the awslogs container log driver.

You can set a default mode for all containers in a specific AWS Region by using the
defaultLogDriverMode account setting. If you don't specify the mode option in the
logConfiguration or configure the account setting, Amazon ECS will default to non-
blocking mode. For more information about the account setting, see Default log driver
mode.

When non-blocking mode is used, the max-buffer-size log option controls the
size of the buffer that's used for intermediate message storage. Make sure to specify an
adequate buffer size based on your application. The total amount of memory allocated
at the task level should be greater than the amount of memory that's allocated for all
the containers in addition to the log driver memory buffer.

Note

On June 25, 2025, Amazon ECS changed the default log driver mode from
blocking to non-blocking to prioritize task availability over logging. To
continue using the blocking mode after this change, do one of the following:

Container definitions 545

https://aws.amazon.com/blogs/containers/preventing-log-loss-with-non-blocking-mode-in-the-awslogs-container-log-driver/
https://aws.amazon.com/blogs/containers/preventing-log-loss-with-non-blocking-mode-in-the-awslogs-container-log-driver/

Amazon Elastic Container Service Developer Guide

• Set the mode option in your container definition's logConfiguration as
blocking.

• Set the defaultLogDriverMode account setting to blocking.

max-buffer-size

Required: No

Default value: 1m

When non-blocking mode is used, the max-buffer-size log option controls the
size of the buffer that's used for intermediate message storage. Make sure to specify an
adequate buffer size based on your application. When the buffer fills up, further logs
cannot be stored. Logs that cannot be stored are lost.

To route logs using the splunk log router, you need to specify a splunk-token and a
splunk-url.

When you use the awsfirelens log router to route logs to an AWS service or AWS Partner
Network destination for log storage and analytics, you can set the log-driver-buffer-
limit option to limit the number of events that are buffered in memory, before being
sent to the log router container. It can help to resolve potential log loss issue because high
throughput might result in memory running out for the buffer inside of Docker. For more
information, see the section called “Configuring logs for high throughput”.

Other options you can specify when using awsfirelens to route logs depend on the
destination. When you export logs to Amazon Data Firehose, you can specify the AWS
Region with region and a name for the log stream with delivery_stream.

When you export logs to Amazon Kinesis Data Streams, you can specify an AWS Region with
region and a data stream name with stream.

When you export logs to Amazon OpenSearch Service, you can specify options like Name,
Host (OpenSearch Service endpoint without protocol), Port, Index, Type, Aws_auth,
Aws_region, Suppress_Type_Name, and tls.

When you export logs to Amazon S3, you can specify the bucket using the bucket
option. You can also specify region, total_file_size, upload_timeout, and
use_put_object as options.

Container definitions 546

Amazon Elastic Container Service Developer Guide

This parameter requires version 1.19 of the Docker Remote API or greater on your container
instance.

secretOptions

Type: Object array

Required: No

An object that represents the secret to pass to the log configuration. Secrets that are used
in log configuration can include an authentication token, certificate, or encryption key. For
more information, see Pass sensitive data to an Amazon ECS container.

name

Type: String

Required: Yes

The value to set as the environment variable on the container.

valueFrom

Type: String

Required: Yes

The secret to expose to the log configuration of the container.

"logConfiguration": {
 "logDriver": "splunk",
 "options": {
 "splunk-url": "https://cloud.splunk.com:8080",
 "splunk-token": "...",
 "tag": "...",
 ...
 },
 "secretOptions": [{
 "name": "splunk-token",
 "valueFrom": "/ecs/logconfig/splunkcred"
 }]
}

firelensConfiguration

Type: FirelensConfiguration Object

Container definitions 547

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_FirelensConfiguration.html

Amazon Elastic Container Service Developer Guide

Required: No

The FireLens configuration for the container. This is used to specify and configure a log router
for container logs. For more information, see Send Amazon ECS logs to an AWS service or AWS
Partner.

{
 "firelensConfiguration": {
 "type": "fluentd",
 "options": {
 "KeyName": ""
 }
 }
}

options

Type: String to string map

Required: No

The key/value map of options to use when configuring the log router. This field is
optional and can be used to specify a custom configuration file or to add additional
metadata, such as the task, task definition, cluster, and container instance details to
the log event. If specified, the syntax to use is "options":{"enable-ecs-log-
metadata":"true|false","config-file-type:"s3|file","config-file-
value":"arn:aws:s3:::amzn-s3-demo-bucket/fluent.conf|filepath"}. For
more information, see Example Amazon ECS task definition: Route logs to FireLens.

type

Type: String

Required: Yes

The log router to use. The valid values are fluentd or fluentbit.

Security

For more information about container security, see Amazon ECS task and container security best
practices.

Container definitions 548

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-tasks-containers.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-tasks-containers.html

Amazon Elastic Container Service Developer Guide

credentialSpecs

Type: String array

Required: No

A list of ARNs in SSM or Amazon S3 to a credential spec (CredSpec) file that configures the
container for Active Directory authentication. We recommend that you use this parameter
instead of the dockerSecurityOptions. The maximum number of ARNs is 1.

There are two formats for each ARN.

credentialspecdomainless:MyARN

You use credentialspecdomainless:MyARN to provide a CredSpec with an additional
section for a secret in Secrets Manager. You provide the login credentials to the domain in
the secret.

Each task that runs on any container instance can join different domains.

You can use this format without joining the container instance to a domain.

credentialspec:MyARN

You use credentialspec:MyARN to provide a CredSpec for a single domain.

You must join the container instance to the domain before you start any tasks that use this
task definition.

In both formats, replace MyARN with the ARN in SSM or Amazon S3.

The credspec must provide a ARN in Secrets Manager for a secret containing the username,
password, and the domain to connect to. For better security, the instance isn't joined to
the domain for domainless authentication. Other applications on the instance can't use the
domainless credentials. You can use this parameter to run tasks on the same instance, even it
the tasks need to join different domains. For more information, see Using gMSAs for Windows
Containers and Using gMSAs for Linux Containers.

user

Type: String

Required: No

Container definitions 549

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/linux-gmsa.html

Amazon Elastic Container Service Developer Guide

The user to use inside the container. This parameter maps to User in the docker create-
container command and the --user option to docker run.

Important

When running tasks that use the host network mode, don't run containers using the
root user (UID 0). As a security best practice, always use a non-root user.

You can specify the user using the following formats. If specifying a UID or GID, you must
specify it as a positive integer.

• user

• user:group

• uid

• uid:gid

• user:gid

• uid:group

Note

This parameter is not supported for Windows containers.

"user": "string"

Resource limits

ulimits

Type: Object array

Required: No

A list of ulimit values to define for a container. This value overwrites the default resource
quota setting for the operating system. This parameter maps to Ulimits in the docker create-
container command and the --ulimit option to docker run.

Container definitions 550

Amazon Elastic Container Service Developer Guide

Amazon ECS tasks hosted on Fargate use the default resource limit values set by the operating
system with the exception of the nofile resource limit parameter. The nofile resource limit
sets a restriction on the number of open files that a container can use. On Fargate, the default
nofile soft limit is 65535 and hard limit is 65535. You can set the values of both limits up to
1048576. For more information, see Task resource limits.

This parameter requires version 1.18 of the Docker Remote API or greater on your container
instance.

Note

This parameter is not supported for Windows containers.

"ulimits": [
 {
 "name":
 "core"|"cpu"|"data"|"fsize"|"locks"|"memlock"|"msgqueue"|"nice"|"nofile"|"nproc"|"rss"|"rtprio"|"rttime"|"sigpending"|"stack",
 "softLimit": integer,
 "hardLimit": integer
 }
 ...
]

name

Type: String

Valid values: "core" | "cpu" | "data" | "fsize" | "locks" | "memlock" |
"msgqueue" | "nice" | "nofile" | "nproc" | "rss" | "rtprio" | "rttime"
| "sigpending" | "stack"

Required: Yes, when ulimits are used

The type of the ulimit.

hardLimit

Type: Integer

Required: Yes, when ulimits are used

Container definitions 551

Amazon Elastic Container Service Developer Guide

The hard limit for the ulimit type. The value can be specified in bytes, seconds, or as a
count, depending on the type of the ulimit.

softLimit

Type: Integer

Required: Yes, when ulimits are used

The soft limit for the ulimit type. The value can be specified in bytes, seconds, or as a
count, depending on the type of the ulimit.

Docker labels

dockerLabels

Type: String to string map

Required: No

A key/value map of labels to add to the container. This parameter maps to Labels in the
docker create-container command and the --label option to docker run.

This parameter requires version 1.18 of the Docker Remote API or greater on your container
instance.

"dockerLabels": {"string": "string"
 ...}

Other container definition parameters

The following container definition parameters can be used when registering task definitions in the
Amazon ECS console by using the Configure via JSON option. For more information, see Creating
an Amazon ECS task definition using the console.

Topics

• Linux parameters

• Container dependency

• Container timeouts

Container definitions 552

Amazon Elastic Container Service Developer Guide

• System controls

• Interactive

• Pseudo terminal

Linux parameters

linuxParameters

Type: LinuxParameters object

Required: No

Linux-specific options that are applied to the container, such as KernelCapabilities.

Note

This parameter isn't supported for Windows containers.

"linuxParameters": {
 "capabilities": {
 "add": ["string", ...],
 "drop": ["string", ...]
 }
 }

capabilities

Type: KernelCapabilities object

Required: No

The Linux capabilities for the container that are dropped from the default configuration
provided by Docker. For more information about these Linux capabilities, see the
capabilities(7) Linux manual page.

add

Type: String array

Valid values: "SYS_PTRACE"

Container definitions 553

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LinuxParameters.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_KernelCapabilities.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_KernelCapabilities.html
http://man7.org/linux/man-pages/man7/capabilities.7.html

Amazon Elastic Container Service Developer Guide

Required: No

The Linux capabilities for the container to add to the default configuration that's
provided by Docker. This parameter maps to CapAdd in the docker create-container
command and the --cap-add option to docker run.

drop

Type: String array

Valid values: "ALL" | "AUDIT_CONTROL" | "AUDIT_WRITE" | "BLOCK_SUSPEND"
| "CHOWN" | "DAC_OVERRIDE" | "DAC_READ_SEARCH" | "FOWNER"
| "FSETID" | "IPC_LOCK" | "IPC_OWNER" | "KILL" | "LEASE" |
"LINUX_IMMUTABLE" | "MAC_ADMIN" | "MAC_OVERRIDE" | "MKNOD" |
"NET_ADMIN" | "NET_BIND_SERVICE" | "NET_BROADCAST" | "NET_RAW"
| "SETFCAP" | "SETGID" | "SETPCAP" | "SETUID" | "SYS_ADMIN" |
"SYS_BOOT" | "SYS_CHROOT" | "SYS_MODULE" | "SYS_NICE" | "SYS_PACCT"
| "SYS_PTRACE" | "SYS_RAWIO" | "SYS_RESOURCE" | "SYS_TIME" |
"SYS_TTY_CONFIG" | "SYSLOG" | "WAKE_ALARM"

Required: No

The Linux capabilities for the container to remove from the default configuration that's
provided by Docker. This parameter maps to CapDrop in the docker create-container
command and the --cap-drop option to docker run.

devices

Any host devices to expose to the container. This parameter maps to Devices in the docker
create-container command and the --device option to docker run.

Note

The devices parameter isn't supported when you use the Fargate launch type.

Type: Array of Device objects

Required: No

hostPath

The path for the device on the host container instance.

Container definitions 554

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Device.html

Amazon Elastic Container Service Developer Guide

Type: String

Required: Yes

containerPath

The path inside the container to expose the host device at.

Type: String

Required: No

permissions

The explicit permissions to provide to the container for the device. By default, the
container has permissions for read, write, and mknod on the device.

Type: Array of strings

Valid Values: read | write | mknod

initProcessEnabled

Run an init process inside the container that forwards signals and reaps processes. This
parameter maps to the --init option to docker run.

This parameter requires version 1.25 of the Docker Remote API or greater on your container
instance.

maxSwap

This is not supported for tasks running on Fargate.

The total amount of swap memory (in MiB) a container can use. This parameter is translated
to the --memory-swap option to docker run where the value is the sum of the container
memory plus the maxSwap value.

If a maxSwap value of 0 is specified, the container doesn't use swap. Accepted values are 0
or any positive integer. If the maxSwap parameter is omitted, the container uses the swap
configuration for the container instance that it's running on. A maxSwap value must be set
for the swappiness parameter to be used.

sharedMemorySize

The value for the size (in MiB) of the /dev/shm volume. This parameter maps to the --shm-
size option to docker run.

Container definitions 555

Amazon Elastic Container Service Developer Guide

Note

If you're using tasks that use the Fargate launch type, the sharedMemorySize
parameter isn't supported.

Type: Integer

tmpfs

The container path, mount options, and maximum size (in MiB) of the tmpfs mount. This
parameter maps to the --tmpfs option to docker run.

Note

If you're using tasks that use the Fargate launch type, the tmpfs parameter isn't
supported.

Type: Array of Tmpfs objects

Required: No

containerPath

The absolute file path where the tmpfs volume is to be mounted.

Type: String

Required: Yes

mountOptions

The list of tmpfs volume mount options.

Type: Array of strings

Required: No

Valid Values: "defaults" | "ro" | "rw" | "suid" | "nosuid" | "dev"
| "nodev" | "exec" | "noexec" | "sync" | "async" | "dirsync" |
"remount" | "mand" | "nomand" | "atime" | "noatime" | "diratime"
| "nodiratime" | "bind" | "rbind" | "unbindable" | "runbindable" |
"private" | "rprivate" | "shared" | "rshared" | "slave" | "rslave"

Container definitions 556

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Tmpfs.html

Amazon Elastic Container Service Developer Guide

| "relatime" | "norelatime" | "strictatime" | "nostrictatime" |
"mode" | "uid" | "gid" | "nr_inodes" | "nr_blocks" | "mpol"

size

The maximum size (in MiB) of the tmpfs volume.

Type: Integer

Required: Yes

Container dependency

dependsOn

Type: Array of ContainerDependency objects

Required: No

The dependencies defined for container startup and shutdown. A container can contain multiple
dependencies. When a dependency is defined for container startup, for container shutdown it is
reversed. For an example, see Container dependency.

Note

If a container doesn't meet a dependency constraint or times out before meeting the
constraint, Amazon ECS doesn't progress dependent containers to their next state.

This parameter requires that the task or service uses platform version 1.3.0 or later (Linux) or
1.0.0 (Windows).

"dependsOn": [
 {
 "containerName": "string",
 "condition": "string"
 }
]

containerName

Type: String

Container definitions 557

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ContainerDependency.html

Amazon Elastic Container Service Developer Guide

Required: Yes

The container name that must meet the specified condition.

condition

Type: String

Required: Yes

The dependency condition of the container. The following are the available conditions and
their behavior:

• START – This condition emulates the behavior of links and volumes today. The condition
validates that a dependent container is started before permitting other containers to
start.

• COMPLETE – This condition validates that a dependent container runs to completion (exits)
before permitting other containers to start. This can be useful for non-essential containers
that run a script and then exit. This condition can't be set on an essential container.

• SUCCESS – This condition is the same as COMPLETE, but it also requires that the container
exits with a zero status. This condition can't be set on an essential container.

• HEALTHY – This condition validates that the dependent container passes its container
health check before permitting other containers to start. This requires that the dependent
container has health checks configured in the task definition. This condition is confirmed
only at task startup.

Container timeouts

startTimeout

Type: Integer

Required: No

Example values: 120

Time duration (in seconds) to wait before giving up on resolving dependencies for a container.

For example, you specify two containers in a task definition with containerA having a
dependency on containerB reaching a COMPLETE, SUCCESS, or HEALTHY status. If a
startTimeout value is specified for containerB and it doesn't reach the desired status
within that time, then containerA doesn't start.

Container definitions 558

Amazon Elastic Container Service Developer Guide

Note

If a container doesn't meet a dependency constraint or times out before meeting the
constraint, Amazon ECS doesn't progress dependent containers to their next state.

This parameter requires that the task or service uses platform version 1.3.0 or later (Linux).
The maximum value is 120 seconds.

stopTimeout

Type: Integer

Required: No

Example values: 120

Time duration (in seconds) to wait before the container is forcefully killed if it doesn't exit
normally on its own.

This parameter requires that the task or service uses platform version 1.3.0 or later (Linux). If
the parameter isn't specified, then the default value of 30 seconds is used. The maximum value
is 120 seconds.

System controls

systemControls

Type: SystemControl object

Required: No

A list of namespace kernel parameters to set in the container. This parameter maps to Sysctls
in the docker create-container commandand the --sysctl option to docker run. For example,
you can configure net.ipv4.tcp_keepalive_time setting to maintain longer lived
connections.

We don't recommend that you specify network-related systemControls parameters for
multiple containers in a single task that also uses either the awsvpc or host network mode.
Doing this has the following disadvantages:

Container definitions 559

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_SystemControl.html

Amazon Elastic Container Service Developer Guide

• If you set systemControls for any container, it applies to all containers in the task. If you
set different systemControls for multiple containers in a single task, the container that's
started last determines which systemControls take effect.

If you're setting an IPC resource namespace to use for the containers in the task, the following
conditions apply to your system controls. For more information, see IPC mode.

• For tasks that use the host IPC mode, IPC namespace systemControls aren't supported.

• For tasks that use the task IPC mode, IPC namespace systemControls values apply to all
containers within a task.

Note

This parameter is not supported for Windows containers.

Note

This parameter is only supported for tasks that are hosted on AWS Fargate if the tasks
are using platform version 1.4.0 or later (Linux). This isn't supported for Windows
containers on Fargate.

"systemControls": [
 {
 "namespace":"string",
 "value":"string"
 }
]

namespace

Type: String

Required: No

The namespace kernel parameter to set a value for.

Valid IPC namespace values: "kernel.msgmax" | "kernel.msgmnb" |
"kernel.msgmni" | "kernel.sem" | "kernel.shmall" | "kernel.shmmax"

Container definitions 560

Amazon Elastic Container Service Developer Guide

| "kernel.shmmni" | "kernel.shm_rmid_forced", and Sysctls that start with
"fs.mqueue.*"

Valid network namespace values: Sysctls that start with "net.*". On Fargate, only
namespaced Sysctls that exist within the container are accepted.

All of these values are supported by Fargate.

value

Type: String

Required: No

The value for the namespace kernel parameter that's specified in namespace.

Interactive

interactive

Type: Boolean

Required: No

When this parameter is true, you can deploy containerized applications that require stdin
or a tty to be allocated. This parameter maps to OpenStdin in the docker create-container
command and the --interactive option to docker run.

The default is false.

Pseudo terminal

pseudoTerminal

Type: Boolean

Required: No

When this parameter is true, a TTY is allocated. This parameter maps to Tty in the docker
create-container command and the --tty option to docker run.

The default is false.

Container definitions 561

Amazon Elastic Container Service Developer Guide

Elastic Inference accelerator name

The Elastic Inference accelerator resource requirement for your task definition.

Note

Amazon Elastic Inference (EI) is no longer available to customers.

The following parameters are allowed in a task definition:

deviceName

Type: String

Required: Yes

The Elastic Inference accelerator device name. The deviceName must also be referenced in a
container definition see Elastic Inference accelerator.

deviceType

Type: String

Required: Yes

The Elastic Inference accelerator to use.

Proxy configuration

proxyConfiguration

Type: ProxyConfiguration object

Required: No

The configuration details for the App Mesh proxy.

Note

This parameter is not supported for Windows containers.

Elastic Inference accelerator name 562

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ProxyConfiguration.html

Amazon Elastic Container Service Developer Guide

"proxyConfiguration": {
 "type": "APPMESH",
 "containerName": "string",
 "properties": [
 {
 "name": "string",
 "value": "string"
 }
]
}

type

Type: String

Value values: APPMESH

Required: No

The proxy type. The only supported value is APPMESH.

containerName

Type: String

Required: Yes

The name of the container that serves as the App Mesh proxy.

properties

Type: Array of KeyValuePair objects

Required: No

The set of network configuration parameters to provide the Container Network Interface
(CNI) plugin, specified as key-value pairs.

• IgnoredUID – (Required) The user ID (UID) of the proxy container as defined by the user
parameter in a container definition. This is used to ensure the proxy ignores its own traffic.
If IgnoredGID is specified, this field can be empty.

• IgnoredGID – (Required) The group ID (GID) of the proxy container as defined by the
user parameter in a container definition. This is used to ensure the proxy ignores its own
traffic. If IgnoredUID is specified, this field can be empty.

Proxy configuration 563

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_KeyValuePair.html

Amazon Elastic Container Service Developer Guide

• AppPorts – (Required) The list of ports that the application uses. Network traffic to these
ports is forwarded to the ProxyIngressPort and ProxyEgressPort.

• ProxyIngressPort – (Required) Specifies the port that incoming traffic to the
AppPorts is directed to.

• ProxyEgressPort – (Required) Specifies the port that outgoing traffic from the
AppPorts is directed to.

• EgressIgnoredPorts – (Required) The outbound traffic going to these specified ports is
ignored and not redirected to the ProxyEgressPort. It can be an empty list.

• EgressIgnoredIPs – (Required) The outbound traffic going to these specified IP
addresses is ignored and not redirected to the ProxyEgressPort. It can be an empty list.

name

Type: String

Required: No

The name of the key-value pair.

value

Type: String

Required: No

The value of the key-value pair.

Volumes

When you register a task definition, you can optionally specify a list of volumes to be passed to
the Docker daemon on a container instance, which then becomes available for access by other
containers on the same container instance.

The following are the types of data volumes that can be used:

• Amazon EBS volumes — Provides cost-effective, durable, high-performance block storage for
data intensive containerized workloads. You can attach 1 Amazon EBS volume per Amazon
ECS task when running a standalone task, or when creating or updating a service. Amazon EBS
volumes are supported for Linux tasks hosted on Fargate. For more information, see Use Amazon
EBS volumes with Amazon ECS.

Volumes 564

Amazon Elastic Container Service Developer Guide

• Amazon EFS volumes — Provides simple, scalable, and persistent file storage for use with
your Amazon ECS tasks. With Amazon EFS, storage capacity is elastic. It grows and shrinks
automatically as you add and remove files. Your applications can have the storage that they need
and when they need it. Amazon EFS volumes are supported for tasks that are hosted on Fargate.
For more information, see Use Amazon EFS volumes with Amazon ECS.

• FSx for Windows File Server volumes — Provides fully managed Microsoft Windows file servers.
These file servers are backed by a Windows file system. When using FSx for Windows File Server
together with Amazon ECS, you can provision your Windows tasks with persistent, distributed,
shared, and static file storage. For more information, see Use FSx for Windows File Server
volumes with Amazon ECS.

Windows containers on Fargate do not support this option.

• Bind mounts – A file or directory on the host machine that is mounted into a container. Bind
mount host volumes are supported when running tasks. To use bind mount host volumes,
specify a host and optional sourcePath value in your task definition.

For more information, see Storage options for Amazon ECS tasks.

The following parameters are allowed in a container definition.

name

Type: String

Required: No

The name of the volume. Up to 255 letters (uppercase and lowercase), numbers, hyphens (-),
and underscores (_) are allowed. This name is referenced in the sourceVolume parameter of
the container definition mountPoints object.

host

Required: No

The host parameter is used to tie the lifecycle of the bind mount to the host Amazon EC2
instance, rather than the task, and where it is stored. If the host parameter is empty, then the
Docker daemon assigns a host path for your data volume, but the data is not guaranteed to
persist after the containers associated with it stop running.

Windows containers can mount whole directories on the same drive as $env:ProgramData.

Volumes 565

Amazon Elastic Container Service Developer Guide

Note

The sourcePath parameter is supported only when using tasks that are hosted on
Amazon EC2 instances.

sourcePath

Type: String

Required: No

When the host parameter is used, specify a sourcePath to declare the path on the host
Amazon EC2 instance that is presented to the container. If this parameter is empty, then the
Docker daemon assigns a host path for you. If the host parameter contains a sourcePath
file location, then the data volume persists at the specified location on the host Amazon EC2
instance until you delete it manually. If the sourcePath value does not exist on the host
Amazon EC2 instance, the Docker daemon creates it. If the location does exist, the contents
of the source path folder are exported.

configuredAtLaunch

Type: Boolean

Required: No

Specifies whether a volume is configurable at launch. When set to true, you can configure
the volume when running a standalone task, or when creating or updating a service. When
set to true, you won't be able to provide another volume configuration in the task definition.
This parameter must be set to true to configure an Amazon EBS volume for attachment to
a task. Setting configuredAtLaunch to true and deferring volume configuration to the
launch phase allows you to create task definitions that aren't constrained to a volume type
or to specific volume settings. Doing this makes your task definition reusable across different
execution environments. For more information, see Amazon EBS volumes.

dockerVolumeConfiguration

Type: DockerVolumeConfiguration Object

Required: No

Volumes 566

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DockerVolumeConfiguration.html

Amazon Elastic Container Service Developer Guide

This parameter is specified when using Docker volumes. Docker volumes are supported only
when running tasks on EC2 instances. Windows containers support only the use of the local
driver. To use bind mounts, specify a host instead.

scope

Type: String

Valid Values: task | shared

Required: No

The scope for the Docker volume, which determines its lifecycle. Docker volumes that are
scoped to a task are automatically provisioned when the task starts and destroyed when
the task stops. Docker volumes that are scoped as shared persist after the task stops.

autoprovision

Type: Boolean

Default value: false

Required: No

If this value is true, the Docker volume is created if it doesn't already exist. This field is used
only if the scope is shared. If the scope is task, then this parameter must be omitted.

driver

Type: String

Required: No

The Docker volume driver to use. The driver value must match the driver name provided by
Docker because this name is used for task placement. If the driver was installed by using the
Docker plugin CLI, use docker plugin ls to retrieve the driver name from your container
instance. If the driver was installed by using another method, use Docker plugin discovery to
retrieve the driver name.

driverOpts

Type: String

Required: No

Volumes 567

Amazon Elastic Container Service Developer Guide

A map of Docker driver-specific options to pass through. This parameter maps to
DriverOpts in the Create a volume section of Docker.

labels

Type: String

Required: No

Custom metadata to add to your Docker volume.

efsVolumeConfiguration

Type: EFSVolumeConfiguration Object

Required: No

This parameter is specified when using Amazon EFS volumes.

fileSystemId

Type: String

Required: Yes

The Amazon EFS file system ID to use.

rootDirectory

Type: String

Required: No

The directory within the Amazon EFS file system to mount as the root directory inside
the host. If this parameter is omitted, the root of the Amazon EFS volume will be used.
Specifying / has the same effect as omitting this parameter.

Important

If an EFS access point is specified in the authorizationConfig, the root directory
parameter must either be omitted or set to /, which will enforce the path set on the
EFS access point.

Volumes 568

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_EFSVolumeConfiguration.html

Amazon Elastic Container Service Developer Guide

transitEncryption

Type: String

Valid values: ENABLED | DISABLED

Required: No

Specifies whether to enable encryption for Amazon EFS data in transit between the Amazon
ECS host and the Amazon EFS server. If Amazon EFS IAM authorization is used, transit
encryption must be enabled. If this parameter is omitted, the default value of DISABLED is
used. For more information, see Encrypting Data in Transit in the Amazon Elastic File System
User Guide.

transitEncryptionPort

Type: Integer

Required: No

The port to use when sending encrypted data between the Amazon ECS host and the
Amazon EFS server. If you don't specify a transit encryption port, the task will use the port
selection strategy that the Amazon EFS mount helper uses. For more information, see EFS
Mount Helper in the Amazon Elastic File System User Guide.

authorizationConfig

Type: EFSAuthorizationConfig Object

Required: No

The authorization configuration details for the Amazon EFS file system.

accessPointId

Type: String

Required: No

The access point ID to use. If an access point is specified, the root directory value in the
efsVolumeConfiguration must either be omitted or set to /, which will enforce the
path set on the EFS access point. If an access point is used, transit encryption must be
enabled in the EFSVolumeConfiguration. For more information, see Working with
Amazon EFS Access Points in the Amazon Elastic File System User Guide.

Volumes 569

https://docs.aws.amazon.com/efs/latest/ug/encryption-in-transit.html
https://docs.aws.amazon.com/efs/latest/ug/efs-mount-helper.html
https://docs.aws.amazon.com/efs/latest/ug/efs-mount-helper.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_EFSAuthorizationConfig.html
https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html
https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html

Amazon Elastic Container Service Developer Guide

iam

Type: String

Valid values: ENABLED | DISABLED

Required: No

Specifies whether to use the Amazon ECS task IAM role that's defined in a task definition
when mounting the Amazon EFS file system. If enabled, transit encryption must be
enabled in the EFSVolumeConfiguration. If this parameter is omitted, the default
value of DISABLED is used. For more information, see IAM Roles for Tasks.

FSxWindowsFileServerVolumeConfiguration

Type: FSxWindowsFileServerVolumeConfiguration Object

Required: Yes

This parameter is specified when you're using an Amazon FSx for Windows File Server file
system for task storage.

fileSystemId

Type: String

Required: Yes

The FSx for Windows File Server file system ID to use.

rootDirectory

Type: String

Required: Yes

The directory within the FSx for Windows File Server file system to mount as the root
directory inside the host.

authorizationConfig

credentialsParameter

Type: String

Required: Yes

Volumes 570

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_FSxWindowsFileServerVolumeConfiguration.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/what-is.html

Amazon Elastic Container Service Developer Guide

The authorization credential options.

options:

• Amazon Resource Name (ARN) of an AWS Secrets Manager secret.

• ARN of an AWS Systems Manager parameter.

domain

Type: String

Required: Yes

A fully qualified domain name hosted by an AWS Directory Service for Microsoft Active
Directory (AWS Managed Microsoft AD) directory or a self-hosted EC2 Active Directory.

Tags

When you register a task definition, you can optionally specify metadata tags that are applied to
the task definition. Tags help you categorize and organize your task definition. Each tag consists of
a key and an optional value. You define both of them. For more information, see Tagging Amazon
ECS resources.

Important

Don't add personally identifiable information or other confidential or sensitive information
in tags. Tags are accessible to many AWS services, including billing. Tags aren't intended to
be used for private or sensitive data.

The following parameters are allowed in a tag object.

key

Type: String

Required: No

One part of a key-value pair that make up a tag. A key is a general label that acts like a category
for more specific tag values.

Tags 571

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/integration-ps-secretsmanager.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html

Amazon Elastic Container Service Developer Guide

value

Type: String

Required: No

The optional part of a key-value pair that make up a tag. A value acts as a descriptor within a
tag category (key).

Other task definition parameters

The following task definition parameters can be used when registering task definitions in the
Amazon ECS console by using the Configure via JSON option. For more information, see Creating
an Amazon ECS task definition using the console.

Topics

• Ephemeral storage

• IPC mode

• PID mode

• Fault injection

Ephemeral storage

ephemeralStorage

Type: EphemeralStorage object

Required: No

The amount of ephemeral storage (in GB) to allocate for the task. This parameter is used to
expand the total amount of ephemeral storage available, beyond the default amount, for tasks
that are hosted on AWS Fargate. For more information, see the section called “Bind mounts”.

Note

This parameter is only supported on platform version 1.4.0 or later (Linux) or 1.0.0
or later (Windows).

Other task definition parameters 572

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_EphemeralStorage.html

Amazon Elastic Container Service Developer Guide

IPC mode

ipcMode

This is not supported for tasks running on Fargate.

Type: String

Required: No

The IPC resource namespace to use for the containers in the task. The valid values are host,
task, or none. If host is specified, then all the containers that are within the tasks that
specified the host IPC mode on the same container instance share the same IPC resources
with the host Amazon EC2 instance. If task is specified, all the containers that are within the
specified task share the same IPC resources. If none is specified, then IPC resources within
the containers of a task are private and not shared with other containers in a task or on the
container instance. If no value is specified, then the IPC resource namespace sharing depends on
the Docker daemon setting on the container instance.

If the host IPC mode is used, there's a heightened risk of undesired IPC namespace exposure.

If you're setting namespaced kernel parameters that use systemControls for the containers
in the task, the following applies to your IPC resource namespace.

• For tasks that use the host IPC mode, IPC namespace that's related systemControls aren't
supported.

• For tasks that use the task IPC mode, systemControls that relate to the IPC namespace
apply to all containers within a task.

Note

This parameter is not supported for Windows containers or tasks using the Fargate launch
type.

PID mode

pidMode

Type: String

Other task definition parameters 573

Amazon Elastic Container Service Developer Guide

Valid Values: host | task

Required: No

The process namespace to use for the containers in the task. The valid values are host or task.
On Linux containers, the only valid value is task. For example, monitoring sidecars might need
pidMode to access information about other containers running in the same task.

If task is specified, all containers within the specified task share the same process namespace.

If no value is specified, the default is a private namespace for each container.

Note

This parameter is only supported for tasks that are hosted on AWS Fargate if the tasks are
using platform version 1.4.0 or later (Linux). This isn't supported for Windows containers
on Fargate.

Fault injection

enableFaultInjection

Type: Boolean

Valid Values: true | false

Required: No

If this parameter is set to true, in a task's payload, Amazon ECS and Fargate accept fault
injection requests from the task’s containers. By default, this parameter is set to false.

Amazon ECS task definition parameters for the EC2 launch type

Task definitions are split into separate parts: the task family, the AWS Identity and Access
Management (IAM) task role, the network mode, container definitions, volumes, task placement
constraints, and launch types. The family and container definitions are required in a task definition.
In contrast, task role, network mode, volumes, task placement constraints, and launch type are
optional.

Task definition parameters for the EC2 launch type 574

Amazon Elastic Container Service Developer Guide

You can use these parameters in a JSON file to configure your task definition.

The following are more detailed descriptions for each task definition parameter for the EC2 launch
type.

Family

family

Type: String

Required: Yes

When you register a task definition, you give it a family, which is similar to a name for multiple
versions of the task definition, specified with a revision number. The first task definition that's
registered into a particular family is given a revision of 1, and any task definitions registered
after that are given a sequential revision number.

Launch types

When you register a task definition, you can specify a launch type that Amazon ECS should validate
the task definition against. If the task definition doesn't validate against the compatibilities
specified, a client exception is returned. For more information, see Amazon ECS launch types.

The following parameter is allowed in a task definition.

requiresCompatibilities

Type: String array

Required: No

Valid Values: EC2

The launch type to validate the task definition against. This initiates a check to ensure that all
of the parameters that are used in the task definition meet the requirements of the launch type.

Family 575

Amazon Elastic Container Service Developer Guide

Task role

taskRoleArn

Type: String

Required: No

When you register a task definition, you can provide a task role for an IAM role that allows the
containers in the task permission to call the AWS APIs that are specified in its associated policies
on your behalf. For more information, see Amazon ECS task IAM role.

When you launch the Amazon ECS-optimized Windows Server AMI, IAM roles for tasks on
Windows require that the -EnableTaskIAMRole option is set. Your containers must also run
some configuration code to use the feature. For more information, see Amazon EC2 Windows
instance additional configuration.

Task execution role

executionRoleArn

Type: String

Required: Conditional

The Amazon Resource Name (ARN) of the task execution role that grants the Amazon ECS
container agent permission to make AWS API calls on your behalf.

Note

The task execution IAM role is required depending on the requirements of your task. For
more information, see Amazon ECS task execution IAM role.

Network mode

networkMode

Type: String

Required: No

Task role 576

Amazon Elastic Container Service Developer Guide

The Docker networking mode to use for the containers in the task. For Amazon ECS tasks that
are hosted on Amazon EC2 Linux instances, the valid values are none, bridge, awsvpc, and
host. If no network mode is specified, the default network mode is bridge. For Amazon ECS
tasks hosted on Amazon EC2 Windows instances, the valid values are default, and awsvpc. If
no network mode is specified, the default network mode is used.

If the network mode is set to none, the task's containers don't have external connectivity and
port mappings can't be specified in the container definition.

If the network mode is bridge, the task uses Docker's built-in virtual network on Linux, which
runs inside each Amazon EC2 instance that hosts the task. The built-in virtual network on Linux
uses the bridge Docker network driver.

If the network mode is host, the task uses the host's network which bypasses Docker's built-
in virtual network by mapping container ports directly to the ENI of the Amazon EC2 instance
that hosts the task. Dynamic port mappings can’t be used in this network mode. A container in
a task definition that uses this mode must specify a specific hostPort number. A port number
on a host can’t be used by multiple tasks. As a result, you can’t run multiple tasks of the same
task definition on a single Amazon EC2 instance.

Important

When running tasks that use the host network mode, do not run containers using the
root user (UID 0) for better security. As a security best practice, always use a non-root
user.

If the network mode is awsvpc, the task is allocated an elastic network interface, and you
must specify a NetworkConfiguration when you create a service or run a task with the task
definition. For more information, see Amazon ECS task networking options for the EC2 launch
type.

If the network mode is default, the task uses Docker's built-in virtual network on Windows,
which runs inside each Amazon EC2 instance that hosts the task. The built-in virtual network on
Windows uses the nat Docker network driver.

The host and awsvpc network modes offer the highest networking performance for containers
because they use the Amazon EC2 network stack. With the host and awsvpc network modes,
exposed container ports are mapped directly to the corresponding host port (for the host

Network mode 577

Amazon Elastic Container Service Developer Guide

network mode) or the attached elastic network interface port (for the awsvpc network mode).
Because of this, you can't use dynamic host port mappings.

The allowable network mode depends on the underlying EC2 instance's operating system. If
Linux, any network mode can be used. If Windows, the default, and awsvpc modes can be
used.

Runtime platform

operatingSystemFamily

Type: String

Required: Conditional

Default: LINUX

When you register a task definition, you specify the operating system family.

The valid values are LINUX, WINDOWS_SERVER_2025_FULL, WINDOWS_SERVER_2025_CORE,
WINDOWS_SERVER_2022_CORE, WINDOWS_SERVER_2022_FULL,
WINDOWS_SERVER_2019_FULL, and WINDOWS_SERVER_2019_CORE,
WINDOWS_SERVER_2016_FULL, WINDOWS_SERVER_2004_CORE, and
WINDOWS_SERVER_20H2_CORE.

All task definitions that are used in a service must have the same value for this parameter.

When a task definition is part of a service, this value must match the service platformFamily
value.

cpuArchitecture

Type: String

Required: Conditional

Default: X86_64

When you register a task definition, you specify the CPU architecture. The valid values are
X86_64 and ARM64.

All task definitions that are used in a service must have the same value for this parameter.

Runtime platform 578

Amazon Elastic Container Service Developer Guide

When you have Linux tasks, you can set the value to ARM64. For more information, see the
section called “Task definitions for 64-bit ARM workloads”.

Task size

When you register a task definition, you can specify the total CPU and memory used for the task.
This is separate from the cpu and memory values at the container definition level. For tasks that
are hosted on Amazon EC2 instances, these fields are optional.

Note

Task-level CPU and memory parameters are ignored for Windows containers. We
recommend specifying container-level resources for Windows containers.

cpu

Type: String

Required: Conditional

Note

This parameter is not supported for Windows containers.

The hard limit of CPU units to present for the task. You can specify CPU values in the JSON file
as a string in CPU units or virtual CPUs (vCPUs). For example, you can specify a CPU value either
as 1024 in CPU units or 1 vCPU in vCPUs. When the task definition is registered, a vCPU value
is converted to an integer indicating the CPU units.

This field is optional. If your cluster doesn't have any registered container instances with the
requested CPU units available, the task fails. Supported values are between 0.125 vCPUs and
192 vCPUs.

memory

Type: String

Task size 579

Amazon Elastic Container Service Developer Guide

Required: Conditional

Note

This parameter is not supported for Windows containers.

The hard limit of memory to present to the task. You can specify memory values in the task
definition as a string in mebibytes (MiB) or gigabytes (GB). For example, you can specify a
memory value either as 3072 in MiB or 3 GBin GB. When the task definition is registered, a GB
value is converted to an integer indicating the MiB.

This field is optional and any value can be used. If a task-level memory value is specified,
then the container-level memory value is optional. If your cluster doesn't have any registered
container instances with the requested memory available, the task fails. You can maximize
your resource utilization by providing your tasks as much memory as possible for a particular
instance type. For more information, see Reserving Amazon ECS Linux container instance
memory.

Container definitions

When you register a task definition, you must specify a list of container definitions that are passed
to the Docker daemon on a container instance. The following parameters are allowed in a container
definition.

Topics

• Standard container definition parameters

• Advanced container definition parameters

• Other container definition parameters

Standard container definition parameters

The following task definition parameters are either required or used in most container definitions.

Topics

• Name

Container definitions 580

Amazon Elastic Container Service Developer Guide

• Image

• Memory

• Port mappings

• Private Repository Credentials

Name

name

Type: String

Required: Yes

The name of a container. Up to 255 letters (uppercase and lowercase), numbers, hyphens, and
underscores are allowed. If you're linking multiple containers in a task definition, the name
of one container can be entered in the links of another container. This is to connect the
containers.

Image

image

Type: String

Required: Yes

The image used to start a container. This string is passed directly to the Docker daemon. By
default, images in the Docker Hub registry are available. You can also specify other repositories
with either repository-url/image:tag or repository-url/image@digest. Up to 255
letters (uppercase and lowercase), numbers, hyphens, underscores, colons, periods, forward
slashes, and number signs are allowed. This parameter maps to Image in the docker create-
container command and the IMAGE parameter of the docker run command.

• When a new task starts, the Amazon ECS container agent pulls the latest version of the
specified image and tag for the container to use. However, subsequent updates to a
repository image aren't propagated to already running tasks.

• Whenyou don't specify a tag or digest in the image path in the task definition, the Amazon
ECS container agent pulls the latest version of the specified image.

Container definitions 581

Amazon Elastic Container Service Developer Guide

• However, subsequent updates to a repository image aren't propagated to already running
tasks.

• Images in private registries are supported. For more information, see Using non-AWS
container images in Amazon ECS.

• Images in Amazon ECR repositories can be specified by using either the full registry/
repository:tag or registry/repository@digest naming convention (for
example, aws_account_id.dkr.ecr.region.amazonaws.com/my-web-
app:latest or aws_account_id.dkr.ecr.region.amazonaws.com/my-web-
app@sha256:94afd1f2e64d908bc90dbca0035a5b567EXAMPLE).

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or
mongo).

• Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent).

• Images in other online repositories are qualified further by a domain name (for example,
quay.io/assemblyline/ubuntu).

versionConsistency

Type: String

Valid values: enabled|disabled

Required: No

Specifies whether Amazon ECS will resolve the container image tag provided in the container
definition to an image digest. By default, this behavior is enabled. If you set the value for a
container as disabled, Amazon ECS will not resolve the container image tag to a digest and
will use the original image URI specified in the container definition for deployment. For more
information about container image resolution, see Container image resolution.

Memory

memory

Type: Integer

Required: No

Container definitions 582

Amazon Elastic Container Service Developer Guide

The amount (in MiB) of memory to present to the container. If your container attempts to
exceed the memory specified here, the container is killed. The total amount of memory
reserved for all containers within a task must be lower than the task memory value, if one is
specified. This parameter maps to Memory in the docker create-container command and the --
memory option to docker run.

You must specify either a task-level memory value or a container-level memory value. If you
specify both a container-level memory and memoryReservation value, the memory value
must be greater than the memoryReservation value. If you specify memoryReservation,
then that value is subtracted from the available memory resources for the container instance
that the container is placed on. Otherwise, the value of memory is used.

The Docker 20.10.0 or later daemon reserves a minimum of 6 MiB of memory for a container.
So, don't specify less than 6 MiB of memory for your containers.

The Docker 19.03.13-ce or earlier daemon reserves a minimum of 4 MiB of memory for a
container. So, don't specify less than 4 MiB of memory for your containers.

Note

If you're trying to maximize your resource utilization by providing your tasks as much
memory as possible for a particular instance type, see Reserving Amazon ECS Linux
container instance memory.

memoryReservation

Type: Integer

Required: No

The soft limit (in MiB) of memory to reserve for the container. When system memory is under
contention, Docker attempts to keep the container memory to this soft limit. However, your
container can use more memory when needed. The container can use up to the hard limit
that's specified with the memory parameter (if applicable) or all of the available memory on the
container instance, whichever comes first. This parameter maps to MemoryReservation in the
docker create-container command and the --memory-reservation option to docker run.

If a task-level memory value isn't specified, you must specify a non-zero integer for one or both
of memory or memoryReservation in a container definition. If you specify both, memory must

Container definitions 583

Amazon Elastic Container Service Developer Guide

be greater than memoryReservation. If you specify memoryReservation, then that value is
subtracted from the available memory resources for the container instance that the container is
placed on. Otherwise, the value of memory is used.

For example, suppose that your container normally uses 128 MiB of memory, but occasionally
bursts to 256 MiB of memory for short periods of time. You can set a memoryReservation of
128 MiB, and a memory hard limit of 300 MiB. This configuration allows the container to only
reserve 128 MiB of memory from the remaining resources on the container instance. At the
same time, this configuration also allows the container to use more memory resources when
needed.

Note

This parameter isn't supported for Windows containers.

The Docker 20.10.0 or later daemon reserves a minimum of 6 MiB of memory for a container.
So, don't specify less than 6 MiB of memory for your containers.

The Docker 19.03.13-ce or earlier daemon reserves a minimum of 4 MiB of memory for a
container. So, don't specify less than 4 MiB of memory for your containers.

Note

If you're trying to maximize your resource utilization by providing your tasks as much
memory as possible for a particular instance type, see Reserving Amazon ECS Linux
container instance memory.

Port mappings

portMappings

Type: Object array

Required: No

Port mappings expose your container's network ports to the outside world. this allows clients to
access your application. It's also used for inter-container communication within the same task.

Container definitions 584

Amazon Elastic Container Service Developer Guide

For task definitions that use the awsvpc network mode, only specify the containerPort. The
hostPort is always ignored, and the container port is automatically mapped to a random high-
numbered port on the host.

Port mappings on Windows use the NetNAT gateway address rather than localhost. There's
no loopback for port mappings on Windows, so you can't access a container's mapped port from
the host itself.

Most fields of this parameter (including containerPort, hostPort, protocol) map to
PortBindings in thedocker create-container command and the --publish option to docker
run. If the network mode of a task definition is set to host, host ports must either be undefined
or match the container port in the port mapping.

Note

After a task reaches the RUNNING status, manual and automatic host and container port
assignments are visible in the following locations:

• Console: The Network Bindings section of a container description for a selected task.

• AWS CLI: The networkBindings section of the describe-tasks command output.

• API: The DescribeTasks response.

• Metadata: The task metadata endpoint.

appProtocol

Type: String

Required: No

The application protocol that's used for the port mapping. This parameter only applies
to Service Connect. We recommend that you set this parameter to be consistent with the
protocol that your application uses. If you set this parameter, Amazon ECS adds protocol-
specific connection handling to the service connect proxy. If you set this parameter, Amazon
ECS adds protocol-specific telemetry in the Amazon ECS console and CloudWatch.

If you don't set a value for this parameter, then TCP is used. However, Amazon ECS doesn't
add protocol-specific telemetry for TCP.

For more information, see the section called “ Service Connect”.

Container definitions 585

Amazon Elastic Container Service Developer Guide

Valid protocol values: "http" | "http2" | "grpc"

containerPort

Type: Integer

Required: Yes, when portMappings are used

The port number on the container that's bound to the user-specified or automatically
assigned host port.

For tasks that use the awsvpc network mode, you use containerPort to specify the
exposed ports.

Suppose that you're using containers in a task with the EC2 launch type and you specify a
container port and not a host port. Then, your container automatically receives a host port
in the ephemeral port range. For more information, see hostPort. Port mappings that are
automatically assigned in this way don't count toward the 100 reserved ports quota of a
container instance.

containerPortRange

Type: String

Required: No

The port number range on the container that's bound to the dynamically mapped host port
range.

You can only set this parameter by using the register-task-definition API. The option
is available in the portMappings parameter. For more information, see register-task-
definition in the AWS Command Line Interface Reference.

The following rules apply when you specify a containerPortRange:

• You must use either the bridge network mode or the awsvpc network mode.

• This parameter is available for both the Linux and Windows operating systems.

• The container instance must have at least version 1.67.0 of the container agent and at
least version 1.67.0-1 of the ecs-init package.

• You can specify a maximum of 100 port ranges for each container.

Container definitions 586

https://docs.aws.amazon.com/cli/latest/reference/ecs/register-task-definition.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/register-task-definition.html

Amazon Elastic Container Service Developer Guide

• You don't specify a hostPortRange. The value of the hostPortRange is set as follows:

• For containers in a task with the awsvpc network mode, the hostPort is set to the
same value as the containerPort. This is a static mapping strategy.

• For containers in a task with the bridge network mode, the Amazon ECS agent finds
open host ports from the default ephemeral range and passes it to docker to bind them
to the container ports.

• The containerPortRange valid values are between 1 and 65535.

• A port can only be included in one port mapping for each container.

• You can't specify overlapping port ranges.

• The first port in the range must be less than last port in the range.

• Docker recommends that you turn off the docker-proxy in the Docker daemon config file
when you have a large number of ports.

For more information, see Issue #11185 on GitHub.

For information about how to turn off the docker-proxy in the Docker daemon config file,
see Docker daemon in the Amazon ECS Developer Guide.

You can call DescribeTasks to view the hostPortRange, which are the host ports that are
bound to the container ports.

The port ranges aren't included in the Amazon ECS task events, which are sent to
EventBridge. For more information, see the section called “Automate responses to Amazon
ECS errors using EventBridge”.

hostPortRange

Type: String

Required: No

The port number range on the host that's used with the network binding. This is assigned by
Docker and delivered by the Amazon ECS agent.

hostPort

Type: Integer

Required: No

Container definitions 587

https://github.com/moby/moby/issues/11185
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/bootstrap_container_instance.html#bootstrap_docker_daemon
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeTasks.html

Amazon Elastic Container Service Developer Guide

The port number on the container instance to reserve for your container.

You can specify a non-reserved host port for your container port mapping. This is referred to
as static host port mapping. Or, you can omit the hostPort (or set it to 0) while specifying
a containerPort. Your container automatically receives a port in the ephemeral port
range for your container instance operating system and Docker version. This is referred to as
dynamic host port mapping.

The default ephemeral port range Docker version 1.6.0 and later is listed on the instance
under /proc/sys/net/ipv4/ip_local_port_range. If this kernel parameter is
unavailable, the default ephemeral port range from 49153–65535 is used. Don't attempt
to specify a host port in the ephemeral port range. This is because these are reserved for
automatic assignment. In general, ports under 32768 are outside of the ephemeral port
range.

The default reserved ports are 22 for SSH, the Docker ports 2375 and 2376, and the
Amazon ECS container agent ports 51678-51680. Any host port that was previously user-
specified for a running task is also reserved while the task is running. After a task stops, the
host port is released. The current reserved ports are displayed in the remainingResources
of the describe-container-instances output. A container instance might have up to 100
reserved ports at a time, including the default reserved ports. Automatically assigned ports
don't count toward the 100 reserved ports quota.

name

Type: String

Required: No, required for Service Connect and VPC Lattice to be configured in a service

The name that's used for the port mapping. This parameter only applies to Service Connect
and VPC Lattice. This parameter is the name that you use in the Service Connect and VPC
Lattice configuration of a service.

For more information, see Use Service Connect to connect Amazon ECS services with short
names.

In the following example, both of the required fields for Service Connect and VPC Lattice are
used.

Container definitions 588

Amazon Elastic Container Service Developer Guide

"portMappings": [
 {
 "name": string,
 "containerPort": integer
 }
]

protocol

Type: String

Required: No

The protocol that's used for the port mapping. Valid values are tcp and udp. The default is
tcp.

Important

Only tcp is supported for Service Connect. Remember that tcp is implied if this
field isn't set.

Important

UDP support is only available on container instances that were launched with version
1.2.0 of the Amazon ECS container agent (such as the amzn-ami-2015.03.c-
amazon-ecs-optimized AMI) or later, or with container agents that have been
updated to version 1.3.0 or later. To update your container agent to the latest
version, see Updating the Amazon ECS container agent.

If you're specifying a host port, use the following syntax.

"portMappings": [
 {
 "containerPort": integer,
 "hostPort": integer
 }
 ...

Container definitions 589

Amazon Elastic Container Service Developer Guide

]

If you want an automatically assigned host port, use the following syntax.

"portMappings": [
 {
 "containerPort": integer
 }
 ...
]

Private Repository Credentials

repositoryCredentials

Type: RepositoryCredentials object

Required: No

The repository credentials for private registry authentication.

For more information, see Using non-AWS container images in Amazon ECS.

credentialsParameter

Type: String

Required: Yes, when repositoryCredentials are used

The Amazon Resource Name (ARN) of the secret containing the private repository
credentials.

For more information, see Using non-AWS container images in Amazon ECS.

Note

When you use the Amazon ECS API, AWS CLI, or AWS SDKs, if the secret exists in the
same Region as the task that you're launching then you can use either the full ARN
or the name of the secret. When you use the AWS Management Console, you must
specify the full ARN of the secret.

Container definitions 590

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RepositoryCredentials.html

Amazon Elastic Container Service Developer Guide

The following is a snippet of a task definition that shows the required parameters:

"containerDefinitions": [
 {
 "image": "private-repo/private-image",
 "repositoryCredentials": {
 "credentialsParameter":
 "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name"
 }
 }
]

Advanced container definition parameters

The following advanced container definition parameters provide extended capabilities to the
docker run command that's used to launch containers on your Amazon ECS container instances.

Topics

• Restart policy

• Health check

• Environment

• Network settings

• Storage and logging

• Security

• Resource limits

• Docker labels

Restart policy

restartPolicy

The container restart policy and associated configuration parameters. When you set up a
restart policy for a container, Amazon ECS can restart the container without needing to replace
the task. For more information, see Restart individual containers in Amazon ECS tasks with
container restart policies.

Container definitions 591

Amazon Elastic Container Service Developer Guide

enabled

Type: Boolean

Required: Yes

Specifies whether a restart policy is enabled for the container.

ignoredExitCodes

Type: Integer array

Required: No

A list of exit codes that Amazon ECS will ignore and not attempt a restart on. You can
specify a maximum of 50 container exit codes. By default, Amazon ECS does not ignore any
exit codes.

restartAttemptPeriod

Type: Integer

Required: No

A period of time (in seconds) that the container must run for before a restart can be
attempted. A container can be restarted only once every restartAttemptPeriod
seconds. If a container isn't able to run for this time period and exits early, it will not be
restarted. You can set a minimum restartAttemptPeriod of 60 seconds and a maximum
restartAttemptPeriod of 1800 seconds. By default, a container must run for 300
seconds before it can be restarted.

Health check

healthCheck

The container health check command and the associated configuration parameters for the
container. For more information, see Determine Amazon ECS task health using container health
checks.

command

A string array that represents the command that the container runs to determine if it's
healthy. The string array can start with CMD to run the command arguments directly, or CMD-

Container definitions 592

Amazon Elastic Container Service Developer Guide

SHELL to run the command with the container's default shell. If neither is specified, CMD is
used.

When registering a task definition in the AWS Management Console, use a comma separated
list of commands. These commands are converted to a string after the task definition is
created. An example input for a health check is the following.

CMD-SHELL, curl -f http://localhost/ || exit 1

When registering a task definition using the AWS Management Console JSON panel, the
AWS CLI, or the APIs, enclose the list of commands in brackets. An example input for a
health check is the following.

["CMD-SHELL", "curl -f http://localhost/ || exit 1"]

An exit code of 0, with no stderr output, indicates success, and a non-zero exit code
indicates failure.

interval

The period of time (in seconds) between each health check. You can specify between 5 and
300 seconds. The default value is 30 seconds.

timeout

The period of time (in seconds) to wait for a health check to succeed before it's considered a
failure. You can specify between 2 and 60 seconds. The default value is 5 seconds.

retries

The number of times to retry a failed health check before the container is considered
unhealthy. You can specify between 1 and 10 retries. The default value is three retries.

startPeriod

The optional grace period to provide containers time to bootstrap in before failed health
checks count towards the maximum number of retries. You can specify between 0 and 300
seconds. By default, startPeriod is disabled.

If a health check succeeds within the startPeriod, then the container is considered
healthy and any subsequent failures count toward the maximum number of retries.

Container definitions 593

Amazon Elastic Container Service Developer Guide

Environment

cpu

Type: Integer

Required: No

The number of cpu units the Amazon ECS container agent reserves for the container. On Linux,
this parameter maps to CpuShares in the Create a container section.

Note

You can determine the number of CPU units that are available to each Amazon EC2
instance type. To do this, multiply the number of vCPUs listed for that instance type on
the Amazon EC2 Instances detail page by 1,024.

Linux containers share unallocated CPU units with other containers on the container instance
with the same ratio as their allocated amount. For example, assume that you run a single-
container task on a single-core instance type with 512 CPU units specified for that container.
Moreover, that task is the only task running on the container instance. In this example, the
container can use the full 1,024 CPU unit share at any given time. However, assume then that
you launched another copy of the same task on that container instance. Each task is guaranteed
a minimum of 512 CPU units when needed. Similarly, if the other container isn't using the
remaining CPU, each container can float to higher CPU usage. However, if both tasks were
100% active all of the time, they are limited to 512 CPU units.

On Linux container instances, the Docker daemon on the container instance uses the CPU value
to calculate the relative CPU share ratios for running containers. The minimum valid CPU share
value that the Linux kernel allows is 2, and the maximum valid CPU share value that the Linux
kernel allows is 262144. However, the CPU parameter isn't required, and you can use CPU
values below two and above 262144 in your container definitions. For CPU values below two
(including null) and above 262144, the behavior varies based on your Amazon ECS container
agent version:

• Agent versions <= 1.1.0: Null and zero CPU values are passed to Docker as 0. Docker then
converts this value to 1,024 CPU shares. CPU values of one are passed to Docker as one,
which the Linux kernel converts to two CPU shares.

Container definitions 594

https://docs.docker.com/reference/api/engine/version/v1.38/#operation/ContainerCreate
http://aws.amazon.com/ec2/instance-types/

Amazon Elastic Container Service Developer Guide

• Agent versions >= 1.2.0: Null, zero, and CPU values of one are passed to Docker as two CPU
shares.

• Agent versions >= 1.84.0: CPU values greater than 256 vCPU are passed to Docker as 256,
which is equivalent to 262144 CPU shares.

On Windows container instances, the CPU quota is enforced as an absolute quota. Windows
containers only have access to the specified amount of CPU that's defined in the task definition.
A null or zero CPU value is passed to Docker as 0. Windows then interprets this value as 1% of
one CPU.

For more examples, see How Amazon ECS manages CPU and memory resources.

gpu

Type: ResourceRequirement object

Required: No

The number of physical GPUs that the Amazon ECS container agent reserves for the container.
The number of GPUs reserved for all containers in a task must not exceed the number of
available GPUs on the container instance the task is launched on. For more information, see
Amazon ECS task definitions for GPU workloads.

Note

This parameter isn't supported for Windows containers.

Elastic Inference accelerator

Type: ResourceRequirement object

Required: No

For the InferenceAccelerator type, the value matches the deviceName for an
InferenceAccelerator specified in a task definition. For more information, see the section
called “Elastic Inference accelerator name”.

Note

This parameter isn't supported for Windows containers.

Container definitions 595

https://aws.amazon.com/blogs/containers/how-amazon-ecs-manages-cpu-and-memory-resources/
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ResourceRequirement.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ResourceRequirement.html

Amazon Elastic Container Service Developer Guide

essential

Type: Boolean

Required: No

Suppose that the essential parameter of a container is marked as true, and that container
fails or stops for any reason. Then, all other containers that are part of the task are stopped.
If the essential parameter of a container is marked as false, then its failure doesn't affect
the rest of the containers in a task. If this parameter is omitted, a container is assumed to be
essential.

All tasks must have at least one essential container. Suppose that you have an application that's
composed of multiple containers. Then, group containers that are used for a common purpose
into components, and separate the different components into multiple task definitions. For
more information, see Architect your application for Amazon ECS.

"essential": true|false

entryPoint

Important

Early versions of the Amazon ECS container agent don't properly handle entryPoint
parameters. If you have problems using entryPoint, update your container agent or
enter your commands and arguments as command array items instead.

Type: String array

Required: No

The entry point that's passed to the container.

"entryPoint": ["string", ...]

command

Type: String array

Container definitions 596

Amazon Elastic Container Service Developer Guide

Required: No

The command that's passed to the container. This parameter maps to Cmd in the create-
container command and the COMMAND parameter to docker run. If there are multiple arguments,
make sure that each argument is a separated string in the array.

"command": ["string", ...]

workingDirectory

Type: String

Required: No

The working directory to run commands inside the container in. This parameter maps to
WorkingDir in the Create a container section of the Docker Remote API and the --workdir
option to docker run.

"workingDirectory": "string"

environmentFiles

Type: Object array

Required: No

A list of files containing the environment variables to pass to a container. This parameter maps
to the --env-file option to the docker run command.

When FIPS is enabled, bucket names that have periods (.) (for example, amzn-s3-demo-
bucket1.name.example) aren't supported. Having periods (.) in the bucket name prevents the
task from starting because the agent can't pull the environment variable file from Amazon S3.

This isn't available for Windows containers.

You can specify up to 10 environment files. The file must have a .env file extension. Each line
in an environment file contains an environment variable in VARIABLE=VALUE format. Lines that
start with # are treated as comments and are ignored.

If there are individual environment variables specified in the container definition, they take
precedence over the variables contained within an environment file. If multiple environment

Container definitions 597

https://docs.docker.com/reference/api/engine/version/v1.38/#operation/ContainerCreate
https://docs.docker.com/reference/api/engine/version/v1.38/
https://docs.docker.com/reference/cli/docker/container/run/

Amazon Elastic Container Service Developer Guide

files are specified that contain the same variable, they're processed from the top down. We
recommend that you use unique variable names. For more information, see Pass an individual
environment variable to an Amazon ECS container.

value

Type: String

Required: Yes

The Amazon Resource Name (ARN) of the Amazon S3 object containing the environment
variable file.

type

Type: String

Required: Yes

The file type to use. The only supported value is s3.

environment

Type: Object array

Required: No

The environment variables to pass to a container. This parameter maps to Env in the docker
create-container command and the --env option to the docker run command.

Important

We do not recommend using plaintext environment variables for sensitive information,
such as credential data.

name

Type: String

Required: Yes, when environment is used

The name of the environment variable.

Container definitions 598

Amazon Elastic Container Service Developer Guide

value

Type: String

Required: Yes, when environment is used

The value of the environment variable.

"environment" : [
 { "name" : "string", "value" : "string" },
 { "name" : "string", "value" : "string" }
]

secrets

Type: Object array

Required: No

An object that represents the secret to expose to your container. For more information, see Pass
sensitive data to an Amazon ECS container.

name

Type: String

Required: Yes

The value to set as the environment variable on the container.

valueFrom

Type: String

Required: Yes

The secret to expose to the container. The supported values are either the full Amazon
Resource Name (ARN) of the AWS Secrets Manager secret or the full ARN of the parameter in
the AWS Systems Manager Parameter Store.

Note

If the Systems Manager Parameter Store parameter or Secrets Manager parameter
exists in the same AWS Region as the task that you're launching, you can use either

Container definitions 599

Amazon Elastic Container Service Developer Guide

the full ARN or name of the secret. If the parameter exists in a different Region, then
the full ARN must be specified.

"secrets": [
 {
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:ssm:region:aws_account_id:parameter/parameter_name"
 }
]

Network settings

disableNetworking

Type: Boolean

Required: No

When this parameter is true, networking is off within the container.

Note

This parameter isn't supported for Windows containers or tasks using the awsvpc
network mode.

The default is false.

"disableNetworking": true|false

links

Type: String array

Required: No

The link parameter allows containers to communicate with each other without the need for
port mappings. This parameter is only supported if the network mode of a task definition is set

Container definitions 600

Amazon Elastic Container Service Developer Guide

to bridge. The name:internalName construct is analogous to name:alias in Docker links.
Up to 255 letters (uppercase and lowercase), numbers, hyphens, and underscores are allowed..

Note

This parameter isn't supported for Windows containers or tasks using the awsvpc
network mode.

Important

Containers that are collocated on the same container instance might communicate with
each other without requiring links or host port mappings. The network isolation on a
container instance is controlled by security groups and VPC settings.

"links": ["name:internalName", ...]

hostname

Type: String

Required: No

The hostname to use for your container. This parameter maps to Hostname in the docker
create-container and the --hostname option to docker run.

Note

If you're using the awsvpc network mode, the hostname parameter isn't supported.

"hostname": "string"

dnsServers

Type: String array

Required: No

Container definitions 601

Amazon Elastic Container Service Developer Guide

A list of DNS servers that are presented to the container.

Note

This parameter isn't supported for Windows containers or tasks using the awsvpc
network mode.

"dnsServers": ["string", ...]

dnsSearchDomains

Type: String array

Required: No

Pattern: ^[a-zA-Z0-9-.]{0,253}[a-zA-Z0-9]$

A list of DNS search domains that are presented to the container. This parameter maps to
DnsSearch in the docker create-container command the --dns-search option to docker run.

Note

This parameter isn't supported for Windows containers or tasks that use the awsvpc
network mode.

"dnsSearchDomains": ["string", ...]

extraHosts

Type: Object array

Required: No

A list of hostnames and IP address mappings to append to the /etc/hosts file on the
container.

This parameter maps to ExtraHosts in the docker create-container command and the --add-
host option to docker run.

Container definitions 602

Amazon Elastic Container Service Developer Guide

Note

This parameter isn't supported for Windows containers or tasks that use the awsvpc
network mode.

"extraHosts": [
 {
 "hostname": "string",
 "ipAddress": "string"
 }
 ...
]

hostname

Type: String

Required: Yes, when extraHosts are used

The hostname to use in the /etc/hosts entry.

ipAddress

Type: String

Required: Yes, when extraHosts are used

The IP address to use in the /etc/hosts entry.

Storage and logging

readonlyRootFilesystem

Type: Boolean

Required: No

When this parameter is true, the container is given read-only access to its root file system. This
parameter maps to ReadonlyRootfs in the docker create-container command the --read-
only option to docker run.

Container definitions 603

Amazon Elastic Container Service Developer Guide

Note

This parameter is not supported for Windows containers.

The default is false.

"readonlyRootFilesystem": true|false

mountPoints

Type: Object array

Required: No

The mount points for the data volumes in your container. This parameter maps to Volumes in
the create-container Docker API and the --volume option to docker run.

Windows containers can mount whole directories on the same drive as $env:ProgramData.
Windows containers cannot mount directories on a different drive, and mount points cannot be
used across drives. You must specify mount points to attach an Amazon EBS volume directly to
an Amazon ECS task.

sourceVolume

Type: String

Required: Yes, when mountPoints are used

The name of the volume to mount.

containerPath

Type: String

Required: Yes, when mountPoints are used

The path in the container where the volume will be mounted.

readOnly

Type: Boolean

Required: No

Container definitions 604

Amazon Elastic Container Service Developer Guide

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume. The default value is false.

For tasks that run the Windows operating system, leave the value as the default of false.

volumesFrom

Type: Object array

Required: No

Data volumes to mount from another container. This parameter maps to VolumesFrom in the
docker create-container command and the --volumes-from option to docker run.

sourceContainer

Type: String

Required: Yes, when volumesFrom is used

The name of the container to mount volumes from.

readOnly

Type: Boolean

Required: No

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume. The default value is false.

"volumesFrom": [
 {
 "sourceContainer": "string",
 "readOnly": true|false
 }
]

logConfiguration

Type: LogConfiguration Object

Required: No

The log configuration specification for the container.

Container definitions 605

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LogConfiguration.html

Amazon Elastic Container Service Developer Guide

For example task definitions that use a log configuration, see Example Amazon ECS task
definitions.

This parameter maps to LogConfig in the docker create-container command and the --
log-driver option to docker run. By default, containers use the same logging driver that
the Docker daemon uses. However, the container might use a different logging driver than the
Docker daemon by specifying a log driver with this parameter in the container definition. To use
a different logging driver for a container, the log system must be configured properly on the
container instance (or on a different log server for remote logging options).

Consider the following when specifying a log configuration for your containers:

• Amazon ECS supports a subset of the logging drivers that are available to the Docker
daemon. Additional log drivers might be available in future releases of the Amazon ECS
container agent.

• This parameter requires version 1.18 or later of the Docker Remote API on your container
instance.

• The Amazon ECS container agent that runs on a container instance must register the logging
drivers that are available on that instance with the ECS_AVAILABLE_LOGGING_DRIVERS
environment variable before containers that are placed on that instance can use these log
configuration options. For more information, see Amazon ECS container agent configuration.

"logConfiguration": {
 "logDriver": "awslogs","fluentd","gelf","json-
file","journald","splunk","syslog","awsfirelens",
 "options": {"string": "string"
 ...},
 "secretOptions": [{
 "name": "string",
 "valueFrom": "string"
 }]
}

logDriver

Type: String

Valid values: "awslogs","fluentd","gelf","json-
file","journald","splunk","syslog","awsfirelens"

Required: Yes, when logConfiguration is used

Container definitions 606

Amazon Elastic Container Service Developer Guide

The log driver to use for the container. By default, the valid values that are listed earlier are
log drivers that the Amazon ECS container agent can communicate with.

The supported log drivers are awslogs, fluentd, gelf, json-file, journald, syslog,
splunk, and awsfirelens.

For more information about how to use the awslogs log driver in task definitions to send
your container logs to CloudWatch Logs, see Send Amazon ECS logs to CloudWatch .

For more information about using the awsfirelens log driver, see Custom Log Routing.

Note

If you have a custom driver that isn't listed, you can fork the Amazon ECS container
agent project that's available on GitHub and customize it to work with that driver.
We encourage you to submit pull requests for changes that you want to have
included. However, we don't currently support running modified copies of this
software.

This parameter requires version 1.18 of the Docker Remote API or greater on your container
instance.

options

Type: String to string map

Required: No

The key/value map of configuration options to send to the log driver.

The options you can specify depend on the log driver. Some of the options you can specify
when you use the awslogs router to route logs to Amazon CloudWatch include the
following:

awslogs-create-group

Required: No

Specify whether you want the log group to be created automatically. If this option isn't
specified, it defaults to false.

Container definitions 607

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_firelens.html
https://github.com/aws/amazon-ecs-agent

Amazon Elastic Container Service Developer Guide

Note

Your IAM policy must include the logs:CreateLogGroup permission before you
attempt to use awslogs-create-group.

awslogs-region

Required: Yes

Specify the AWS Region that the awslogs log driver is to send your Docker logs to. You
can choose to send all of your logs from clusters in different Regions to a single region
in CloudWatch Logs. This is so that they're all visible in one location. Otherwise, you can
separate them by Region for more granularity. Make sure that the specified log group
exists in the Region that you specify with this option.

awslogs-group

Required: Yes

Make sure to specify a log group that the awslogs log driver sends its log streams to.

awslogs-stream-prefix

Required: Optional

Use the awslogs-stream-prefix option to associate a log stream with the specified
prefix, the container name, and the ID of the Amazon ECS task that the container belongs
to. If you specify a prefix with this option, then the log stream takes the following
format.

prefix-name/container-name/ecs-task-id

If you don't specify a prefix with this option, then the log stream is named after the
container ID that's assigned by the Docker daemon on the container instance. Because it's
difficult to trace logs back to the container that sent them with just the Docker container
ID (which is only available on the container instance), we recommend that you specify a
prefix with this option.

For Amazon ECS services, you can use the service name as the prefix. Doing so, you can
trace log streams to the service that the container belongs to, the name of the container
that sent them, and the ID of the task that the container belongs to.

Container definitions 608

Amazon Elastic Container Service Developer Guide

You must specify a stream-prefix for your logs to have your logs appear in the Log pane
when using the Amazon ECS console.

awslogs-datetime-format

Required: No

This option defines a multiline start pattern in Python strftime format. A log message
consists of a line that matches the pattern and any following lines that don’t match the
pattern. The matched line is the delimiter between log messages.

One example of a use case for using this format is for parsing output such as a stack
dump, which might otherwise be logged in multiple entries. The correct pattern allows it
to be captured in a single entry.

For more information, see awslogs-datetime-format.

You cannot configure both the awslogs-datetime-format and awslogs-
multiline-pattern options.

Note

Multiline logging performs regular expression parsing and matching of all log
messages. This might have a negative impact on logging performance.

awslogs-multiline-pattern

Required: No

This option defines a multiline start pattern that uses a regular expression. A log
message consists of a line that matches the pattern and any following lines that don’t
match the pattern. The matched line is the delimiter between log messages.

For more information, see awslogs-multiline-pattern.

This option is ignored if awslogs-datetime-format is also configured.

You cannot configure both the awslogs-datetime-format and awslogs-
multiline-pattern options.

Container definitions 609

https://docs.docker.com/engine/logging/drivers/awslogs/#awslogs-datetime-format
https://docs.docker.com/engine/logging/drivers/awslogs/#awslogs-multiline-pattern

Amazon Elastic Container Service Developer Guide

Note

Multiline logging performs regular expression parsing and matching of all log
messages. This might have a negative impact on logging performance.

The following options apply to all supported log drivers.

mode

Required: No

Valid values: non-blocking | blocking

This option defines the delivery mode of log messages from the container to the log
driver specified using logDriver. The delivery mode you choose affects application
availability when the flow of logs from the container is interrupted.

If you use the blocking mode and the flow of logs is interrupted, calls from container
code to write to the stdout and stderr streams will block. The logging thread of the
application will block as a result. This may cause the application to become unresponsive
and lead to container healthcheck failure.

If you use the non-blocking mode, the container's logs are instead stored in an in-
memory intermediate buffer configured with the max-buffer-size option. This
prevents the application from becoming unresponsive when logs cannot be sent. We
recommend using this mode if you want to ensure service availability and are okay with
some log loss. For more information, see Preventing log loss with non-blocking mode in
the awslogs container log driver.

You can set a default mode for all containers in a specific AWS Region by using the
defaultLogDriverMode account setting. If you don't specify the mode option in the
logConfiguration or configure the account setting, Amazon ECS will default to non-
blocking mode. For more information about the account setting, see Default log driver
mode.

When non-blocking mode is used, the max-buffer-size log option controls the
size of the buffer that's used for intermediate message storage. Make sure to specify an
adequate buffer size based on your application. The total amount of memory allocated

Container definitions 610

https://aws.amazon.com/blogs/containers/preventing-log-loss-with-non-blocking-mode-in-the-awslogs-container-log-driver/
https://aws.amazon.com/blogs/containers/preventing-log-loss-with-non-blocking-mode-in-the-awslogs-container-log-driver/

Amazon Elastic Container Service Developer Guide

at the task level should be greater than the amount of memory that's allocated for all
the containers in addition to the log driver memory buffer.

Note

On June 25, 2025, Amazon ECS changed the default log driver mode from
blocking to non-blocking to prioritize task availability over logging. To
continue using the blocking mode after this change, do one of the following:

• Set the mode option in your container definition's logConfiguration as
blocking.

• Set the defaultLogDriverMode account setting to blocking.

max-buffer-size

Required: No

Default value: 10 m

When non-blocking mode is used, the max-buffer-size log option controls the
size of the buffer that's used for intermediate message storage. Make sure to specify an
adequate buffer size based on your application. When the buffer fills up, further logs
cannot be stored. Logs that cannot be stored are lost.

To route logs using the splunk log router, you need to specify a splunk-token and a
splunk-url.

When you use the awsfirelens log router to route logs to an AWS service or AWS Partner
Network destination for log storage and analytics, you can set the log-driver-buffer-
limit option to limit the number of events that are buffered in memory, before being
sent to the log router container. It can help to resolve potential log loss issue because high
throughput might result in memory running out for the buffer inside of Docker. For more
information, see the section called “Configuring logs for high throughput”.

Other options you can specify when using awsfirelens to route logs depend on the
destination. When you export logs to Amazon Data Firehose, you can specify the AWS
Region with region and a name for the log stream with delivery_stream.

When you export logs to Amazon Kinesis Data Streams, you can specify an AWS Region with
region and a data stream name with stream.

Container definitions 611

Amazon Elastic Container Service Developer Guide

When you export logs to Amazon OpenSearch Service, you can specify options like Name,
Host (OpenSearch Service endpoint without protocol), Port, Index, Type, Aws_auth,
Aws_region, Suppress_Type_Name, and tls.

When you export logs to Amazon S3, you can specify the bucket using the bucket
option. You can also specify region, total_file_size, upload_timeout, and
use_put_object as options.

This parameter requires version 1.19 of the Docker Remote API or greater on your container
instance.

secretOptions

Type: Object array

Required: No

An object that represents the secret to pass to the log configuration. Secrets that are used
in log configuration can include an authentication token, certificate, or encryption key. For
more information, see Pass sensitive data to an Amazon ECS container.

name

Type: String

Required: Yes

The value to set as the environment variable on the container.

valueFrom

Type: String

Required: Yes

The secret to expose to the log configuration of the container.

"logConfiguration": {
 "logDriver": "splunk",
 "options": {
 "splunk-url": "https://cloud.splunk.com:8080",
 "splunk-token": "...",
 "tag": "...",
 ...
 },

Container definitions 612

Amazon Elastic Container Service Developer Guide

 "secretOptions": [{
 "name": "splunk-token",
 "valueFrom": "/ecs/logconfig/splunkcred"
 }]
}

firelensConfiguration

Type: FirelensConfiguration Object

Required: No

The FireLens configuration for the container. This is used to specify and configure a log router
for container logs. For more information, see Send Amazon ECS logs to an AWS service or AWS
Partner.

{
 "firelensConfiguration": {
 "type": "fluentd",
 "options": {
 "KeyName": ""
 }
 }
}

options

Type: String to string map

Required: No

The key/value map of options to use when configuring the log router. This field is
optional and can be used to specify a custom configuration file or to add additional
metadata, such as the task, task definition, cluster, and container instance details to
the log event. If specified, the syntax to use is "options":{"enable-ecs-log-
metadata":"true|false","config-file-type:"s3|file","config-file-
value":"arn:aws:s3:::amzn-s3-demo-bucket/fluent.conf|filepath"}. For
more information, see Example Amazon ECS task definition: Route logs to FireLens.

type

Type: String

Container definitions 613

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_FirelensConfiguration.html

Amazon Elastic Container Service Developer Guide

Required: Yes

The log router to use. The valid values are fluentd or fluentbit.

Security

For more information about container security, see Amazon ECS task and container security best
practices.

credentialSpecs

Type: String array

Required: No

A list of ARNs in SSM or Amazon S3 to a credential spec (CredSpec) file that configures the
container for Active Directory authentication. We recommend that you use this parameter
instead of the dockerSecurityOptions. The maximum number of ARNs is 1.

There are two formats for each ARN.

credentialspecdomainless:MyARN

You use credentialspecdomainless:MyARN to provide a CredSpec with an additional
section for a secret in Secrets Manager. You provide the login credentials to the domain in
the secret.

Each task that runs on any container instance can join different domains.

You can use this format without joining the container instance to a domain.

credentialspec:MyARN

You use credentialspec:MyARN to provide a CredSpec for a single domain.

You must join the container instance to the domain before you start any tasks that use this
task definition.

In both formats, replace MyARN with the ARN in SSM or Amazon S3.

The credspec must provide a ARN in Secrets Manager for a secret containing the username,
password, and the domain to connect to. For better security, the instance isn't joined to
the domain for domainless authentication. Other applications on the instance can't use the

Container definitions 614

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-tasks-containers.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-tasks-containers.html

Amazon Elastic Container Service Developer Guide

domainless credentials. You can use this parameter to run tasks on the same instance, even it
the tasks need to join different domains. For more information, see Using gMSAs for Windows
Containers and Using gMSAs for Linux Containers.

privileged

Type: Boolean

Required: No

When this parameter is true, the container is given elevated privileges on the host container
instance (similar to the root user). We recommend against running containers with
privileged. In most cases, you can specify the exact privileges that you need by using the
specific parameters instead of using privileged.

This parameter maps to Privileged in the docker create-container command and the --
privileged option to docker run.

Note

This parameter is not supported for Windows containers or tasks using the Fargate
launch type.

The default is false.

"privileged": true|false

user

Type: String

Required: No

The user to use inside the container. This parameter maps to User in the docker create-
container command and the --user option to docker run.

Important

When running tasks that use the host network mode, don't run containers using the
root user (UID 0). As a security best practice, always use a non-root user.

Container definitions 615

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/linux-gmsa.html

Amazon Elastic Container Service Developer Guide

You can specify the user using the following formats. If specifying a UID or GID, you must
specify it as a positive integer.

• user

• user:group

• uid

• uid:gid

• user:gid

• uid:group

Note

This parameter is not supported for Windows containers.

"user": "string"

dockerSecurityOptions

Type: String array

Valid values: "no-new-privileges" | "apparmor:PROFILE" | "label:value" |
"credentialspec:CredentialSpecFilePath"

Required: No

A list of strings to provide custom configuration for multiple security systems.

For Linux tasks, this parameter can be used to reference custom labels for SELinux and
AppArmor multi-level security systems.

This parameter can be used to reference a credential spec file that configures a container for
Active Directory authentication. For more information, see Learn how to use gMSAs for EC2
Windows containers for Amazon ECS and Using gMSA for EC2 Linux containers on Amazon ECS.

This parameter maps to SecurityOpt in the docker create-container command and the --
security-opt option to docker run.

"dockerSecurityOptions": ["string", ...]

Container definitions 616

Amazon Elastic Container Service Developer Guide

Note

The Amazon ECS container agent that run on a container instance must register with
the ECS_SELINUX_CAPABLE=true or ECS_APPARMOR_CAPABLE=true environment
variables before containers that are placed on that instance can use these security
options. For more information, see Amazon ECS container agent configuration.

Resource limits

ulimits

Type: Object array

Required: No

A list of ulimit values to define for a container. This value overwrites the default resource
quota setting for the operating system. This parameter maps to Ulimits in the docker create-
container command and the --ulimit option to docker run.

This parameter requires version 1.18 of the Docker Remote API or greater on your container
instance.

Note

This parameter is not supported for Windows containers.

"ulimits": [
 {
 "name":
 "core"|"cpu"|"data"|"fsize"|"locks"|"memlock"|"msgqueue"|"nice"|"nofile"|"nproc"|"rss"|"rtprio"|"rttime"|"sigpending"|"stack",
 "softLimit": integer,
 "hardLimit": integer
 }
 ...
]

name

Type: String

Container definitions 617

Amazon Elastic Container Service Developer Guide

Valid values: "core" | "cpu" | "data" | "fsize" | "locks" | "memlock" |
"msgqueue" | "nice" | "nofile" | "nproc" | "rss" | "rtprio" | "rttime"
| "sigpending" | "stack"

Required: Yes, when ulimits are used

The type of the ulimit.

hardLimit

Type: Integer

Required: Yes, when ulimits are used

The hard limit for the ulimit type. The value can be specified in bytes, seconds, or as a
count, depending on the type of the ulimit.

softLimit

Type: Integer

Required: Yes, when ulimits are used

The soft limit for the ulimit type. The value can be specified in bytes, seconds, or as a
count, depending on the type of the ulimit.

Docker labels

dockerLabels

Type: String to string map

Required: No

A key/value map of labels to add to the container. This parameter maps to Labels in the
docker create-container command and the --label option to docker run.

This parameter requires version 1.18 of the Docker Remote API or greater on your container
instance.

"dockerLabels": {"string": "string"

Container definitions 618

Amazon Elastic Container Service Developer Guide

 ...}

Other container definition parameters

The following container definition parameters can be used when registering task definitions in the
Amazon ECS console by using the Configure via JSON option. For more information, see Creating
an Amazon ECS task definition using the console.

Topics

• Linux parameters

• Container dependency

• Container timeouts

• System controls

• Interactive

• Pseudo terminal

Linux parameters

linuxParameters

Type: LinuxParameters object

Required: No

Linux-specific options that are applied to the container, such as KernelCapabilities.

Note

This parameter isn't supported for Windows containers.

"linuxParameters": {
 "capabilities": {
 "add": ["string", ...],
 "drop": ["string", ...]
 }
 }

Container definitions 619

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LinuxParameters.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_KernelCapabilities.html

Amazon Elastic Container Service Developer Guide

capabilities

Type: KernelCapabilities object

Required: No

The Linux capabilities for the container that are added to or dropped from the default
configuration provided by Docker. For more information about these Linux capabilities, see
the capabilities(7) Linux manual page.

add

Type: String array

Valid values: "ALL" | "AUDIT_CONTROL" | "AUDIT_READ" | "AUDIT_WRITE" |
"BLOCK_SUSPEND" | "CHOWN" | "DAC_OVERRIDE" | "DAC_READ_SEARCH" |
"FOWNER" | "FSETID" | "IPC_LOCK" | "IPC_OWNER" | "KILL" | "LEASE"
| "LINUX_IMMUTABLE" | "MAC_ADMIN" | "MAC_OVERRIDE" | "MKNOD" |
"NET_ADMIN" | "NET_BIND_SERVICE" | "NET_BROADCAST" | "NET_RAW"
| "SETFCAP" | "SETGID" | "SETPCAP" | "SETUID" | "SYS_ADMIN" |
"SYS_BOOT" | "SYS_CHROOT" | "SYS_MODULE" | "SYS_NICE" | "SYS_PACCT"
| "SYS_PTRACE" | "SYS_RAWIO" | "SYS_RESOURCE" | "SYS_TIME" |
"SYS_TTY_CONFIG" | "SYSLOG" | "WAKE_ALARM"

Required: No

The Linux capabilities for the container to add to the default configuration provided by
Docker. This parameter maps to CapAdd in the docker create-container command and
the --cap-add option to docker run.

add

Type: String array

Valid values: "SYS_PTRACE"

Required: No

The Linux capabilities for the container to add to the default configuration that's
provided by Docker. This parameter maps to CapAdd in the docker create-container
command and the --cap-add option to docker run.

Container definitions 620

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_KernelCapabilities_ec2.html
http://man7.org/linux/man-pages/man7/capabilities.7.html

Amazon Elastic Container Service Developer Guide

drop

Type: String array

Valid values: "ALL" | "AUDIT_CONTROL" | "AUDIT_WRITE" | "BLOCK_SUSPEND"
| "CHOWN" | "DAC_OVERRIDE" | "DAC_READ_SEARCH" | "FOWNER"
| "FSETID" | "IPC_LOCK" | "IPC_OWNER" | "KILL" | "LEASE" |
"LINUX_IMMUTABLE" | "MAC_ADMIN" | "MAC_OVERRIDE" | "MKNOD" |
"NET_ADMIN" | "NET_BIND_SERVICE" | "NET_BROADCAST" | "NET_RAW"
| "SETFCAP" | "SETGID" | "SETPCAP" | "SETUID" | "SYS_ADMIN" |
"SYS_BOOT" | "SYS_CHROOT" | "SYS_MODULE" | "SYS_NICE" | "SYS_PACCT"
| "SYS_PTRACE" | "SYS_RAWIO" | "SYS_RESOURCE" | "SYS_TIME" |
"SYS_TTY_CONFIG" | "SYSLOG" | "WAKE_ALARM"

Required: No

The Linux capabilities for the container to remove from the default configuration that's
provided by Docker. This parameter maps to CapDrop in the docker create-container
command and the --cap-drop option to docker run.

devices

Any host devices to expose to the container. This parameter maps to Devices in the docker
create-container command and the --device option to docker run.

Type: Array of Device objects

Required: No

hostPath

The path for the device on the host container instance.

Type: String

Required: Yes

containerPath

The path inside the container to expose the host device at.

Type: String

Required: No

Container definitions 621

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Device.html

Amazon Elastic Container Service Developer Guide

permissions

The explicit permissions to provide to the container for the device. By default, the
container has permissions for read, write, and mknod on the device.

Type: Array of strings

Valid Values: read | write | mknod

initProcessEnabled

Run an init process inside the container that forwards signals and reaps processes. This
parameter maps to the --init option to docker run.

This parameter requires version 1.25 of the Docker Remote API or greater on your container
instance.

maxSwap

The total amount of swap memory (in MiB) a container can use. This parameter is translated
to the --memory-swap option to docker run where the value is the sum of the container
memory plus the maxSwap value.

If a maxSwap value of 0 is specified, the container doesn't use swap. Accepted values are 0
or any positive integer. If the maxSwap parameter is omitted, the container uses the swap
configuration for the container instance that it's running on. A maxSwap value must be set
for the swappiness parameter to be used.

sharedMemorySize

The value for the size (in MiB) of the /dev/shm volume. This parameter maps to the --shm-
size option to docker run.

Type: Integer

swappiness

You can use this parameter to tune a container's memory swappiness behavior. A
swappiness value of 0 prevents swapping from happening unless required. A swappiness
value of 100 causes pages to be swapped frequently. Accepted values are whole numbers
between 0 and 100. If you don't specify a value, the default value of 60 is used. Moreover, if
you don't specify a value for maxSwap, then this parameter is ignored. This parameter maps
to the --memory-swappiness option to docker run.

Container definitions 622

Amazon Elastic Container Service Developer Guide

Note

If you're using tasks on Amazon Linux 2023 the swappiness parameter isn't
supported.

tmpfs

The container path, mount options, and maximum size (in MiB) of the tmpfs mount. This
parameter maps to the --tmpfs option to docker run.

Type: Array of Tmpfs objects

Required: No

containerPath

The absolute file path where the tmpfs volume is to be mounted.

Type: String

Required: Yes

mountOptions

The list of tmpfs volume mount options.

Type: Array of strings

Required: No

Valid Values: "defaults" | "ro" | "rw" | "suid" | "nosuid" | "dev"
| "nodev" | "exec" | "noexec" | "sync" | "async" | "dirsync" |
"remount" | "mand" | "nomand" | "atime" | "noatime" | "diratime"
| "nodiratime" | "bind" | "rbind" | "unbindable" | "runbindable" |
"private" | "rprivate" | "shared" | "rshared" | "slave" | "rslave"
| "relatime" | "norelatime" | "strictatime" | "nostrictatime" |
"mode" | "uid" | "gid" | "nr_inodes" | "nr_blocks" | "mpol"

size

The maximum size (in MiB) of the tmpfs volume.

Type: Integer

Container definitions 623

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Tmpfs.html

Amazon Elastic Container Service Developer Guide

Required: Yes

Container dependency

dependsOn

Type: Array of ContainerDependency objects

Required: No

The dependencies defined for container startup and shutdown. A container can contain multiple
dependencies. When a dependency is defined for container startup, for container shutdown it is
reversed. For an example, see Container dependency.

Note

If a container doesn't meet a dependency constraint or times out before meeting the
constraint, Amazon ECS doesn't progress dependent containers to their next state.

The instances require at least version 1.26.0 of the container agent to enable container
dependencies. However, we recommend using the latest container agent version. For
information about checking your agent version and updating to the latest version, see Updating
the Amazon ECS container agent. If you're using an Amazon ECS-optimized Amazon Linux AMI,
your instance needs at least version 1.26.0-1 of the ecs-init package. If your container
instances are launched from version 20190301 or later, they contain the required versions of
the container agent and ecs-init. For more information, see Amazon ECS-optimized Linux
AMIs.

"dependsOn": [
 {
 "containerName": "string",
 "condition": "string"
 }
]

containerName

Type: String

Container definitions 624

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ContainerDependency.html

Amazon Elastic Container Service Developer Guide

Required: Yes

The container name that must meet the specified condition.

condition

Type: String

Required: Yes

The dependency condition of the container. The following are the available conditions and
their behavior:

• START – This condition emulates the behavior of links and volumes today. The condition
validates that a dependent container is started before permitting other containers to
start.

• COMPLETE – This condition validates that a dependent container runs to completion (exits)
before permitting other containers to start. This can be useful for non-essential containers
that run a script and then exit. This condition can't be set on an essential container.

• SUCCESS – This condition is the same as COMPLETE, but it also requires that the container
exits with a zero status. This condition can't be set on an essential container.

• HEALTHY – This condition validates that the dependent container passes its container
health check before permitting other containers to start. This requires that the dependent
container has health checks configured in the task definition. This condition is confirmed
only at task startup.

Container timeouts

startTimeout

Type: Integer

Required: No

Example values: 120

Time duration (in seconds) to wait before giving up on resolving dependencies for a container.

For example, you specify two containers in a task definition with containerA having a
dependency on containerB reaching a COMPLETE, SUCCESS, or HEALTHY status. If a

Container definitions 625

Amazon Elastic Container Service Developer Guide

startTimeout value is specified for containerB and it doesn't reach the desired status
within that time, then containerA doesn't start.

Note

If a container doesn't meet a dependency constraint or times out before meeting the
constraint, Amazon ECS doesn't progress dependent containers to their next state.

The maximum value is 120 seconds.

stopTimeout

Type: Integer

Required: No

Example values: 120

Time duration (in seconds) to wait before the container is forcefully killed if it doesn't exit
normally on its own.

If the stopTimeout parameter isn't specified, the value set for the Amazon ECS container
agent configuration variable ECS_CONTAINER_STOP_TIMEOUT is used. If neither the
stopTimeout parameter or the ECS_CONTAINER_STOP_TIMEOUT agent configuration
variable is set, the default values of 30 seconds for Linux containers and 30 seconds on
Windows containers are used. Container instances require at least version 1.26.0 of the
container agent to enable a container stop timeout value. However, we recommend using the
latest container agent version. For information about how to check your agent version and
update to the latest version, see Updating the Amazon ECS container agent. If you're using an
Amazon ECS-optimized Amazon Linux AMI, your instance needs at least version 1.26.0-1 of the
ecs-init package. If your container instances are launched from version 20190301 or later,
they contain the required versions of the container agent and ecs-init. For more information,
see Amazon ECS-optimized Linux AMIs.

System controls

systemControls

Type: SystemControl object

Container definitions 626

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_SystemControl.html

Amazon Elastic Container Service Developer Guide

Required: No

A list of namespace kernel parameters to set in the container. This parameter maps to Sysctls
in the docker create-container commandand the --sysctl option to docker run. For example,
you can configure net.ipv4.tcp_keepalive_time setting to maintain longer lived
connections.

We don't recommend that you specify network-related systemControls parameters for
multiple containers in a single task that also uses either the awsvpc or host network mode.
Doing this has the following disadvantages:

• For tasks that use the awsvpc network mode, if you set systemControls for any
container, it applies to all containers in the task. If you set different systemControls
for multiple containers in a single task, the container that's started last determines which
systemControls take effect.

• For tasks that use the host network mode, the network namespace systemControls aren't
supported.

If you're setting an IPC resource namespace to use for the containers in the task, the following
conditions apply to your system controls. For more information, see IPC mode.

• For tasks that use the host IPC mode, IPC namespace systemControls aren't supported.

• For tasks that use the task IPC mode, IPC namespace systemControls values apply to all
containers within a task.

Note

This parameter is not supported for Windows containers.

"systemControls": [
 {
 "namespace":"string",
 "value":"string"
 }
]

namespace

Type: String

Container definitions 627

Amazon Elastic Container Service Developer Guide

Required: No

The namespace kernel parameter to set a value for.

Valid IPC namespace values: "kernel.msgmax" | "kernel.msgmnb" |
"kernel.msgmni" | "kernel.sem" | "kernel.shmall" | "kernel.shmmax"
| "kernel.shmmni" | "kernel.shm_rmid_forced", and Sysctls that start with
"fs.mqueue.*"

Valid network namespace values: Sysctls that start with "net.*"

value

Type: String

Required: No

The value for the namespace kernel parameter that's specified in namespace.

Interactive

interactive

Type: Boolean

Required: No

When this parameter is true, you can deploy containerized applications that require stdin
or a tty to be allocated. This parameter maps to OpenStdin in the docker create-container
command and the --interactive option to docker run.

The default is false.

Pseudo terminal

pseudoTerminal

Type: Boolean

Required: No

When this parameter is true, a TTY is allocated. This parameter maps to Tty in the docker
create-container command and the --tty option to docker run.

Container definitions 628

Amazon Elastic Container Service Developer Guide

The default is false.

Elastic Inference accelerator name

The Elastic Inference accelerator resource requirement for your task definition.

Note

Amazon Elastic Inference (EI) is no longer available to customers.

The following parameters are allowed in a task definition:

deviceName

Type: String

Required: Yes

The Elastic Inference accelerator device name. The deviceName must also be referenced in a
container definition see Elastic Inference accelerator.

deviceType

Type: String

Required: Yes

The Elastic Inference accelerator to use.

Task placement constraints

When you register a task definition, you can provide task placement constraints that customize
how Amazon ECS places tasks.

You can use constraints to place tasks based on Availability Zone, instance type, or custom
attributes. For more information, see Define which container instances Amazon ECS uses for tasks.

The following parameters are allowed in a container definition:

Elastic Inference accelerator name 629

Amazon Elastic Container Service Developer Guide

expression

Type: String

Required: No

A cluster query language expression to apply to the constraint. For more information, see
Create expressions to define container instances for Amazon ECS tasks.

type

Type: String

Required: Yes

The type of constraint. Use memberOf to restrict the selection to a group of valid candidates.

Proxy configuration

proxyConfiguration

Type: ProxyConfiguration object

Required: No

The configuration details for the App Mesh proxy.

For tasks that use the EC2 launch type, the container instances require at least version 1.26.0 of
the container agent and at least version 1.26.0-1 of the ecs-init package to enable a proxy
configuration. If your container instances are launched from the Amazon ECS-optimized AMI
version 20190301 or later, then they contain the required versions of the container agent and
ecs-init. For more information, see Amazon ECS-optimized Linux AMIs.

Note

This parameter is not supported for Windows containers.

"proxyConfiguration": {
 "type": "APPMESH",
 "containerName": "string",
 "properties": [

Proxy configuration 630

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ProxyConfiguration.html

Amazon Elastic Container Service Developer Guide

 {
 "name": "string",
 "value": "string"
 }
]
}

type

Type: String

Value values: APPMESH

Required: No

The proxy type. The only supported value is APPMESH.

containerName

Type: String

Required: Yes

The name of the container that serves as the App Mesh proxy.

properties

Type: Array of KeyValuePair objects

Required: No

The set of network configuration parameters to provide the Container Network Interface
(CNI) plugin, specified as key-value pairs.

• IgnoredUID – (Required) The user ID (UID) of the proxy container as defined by the user
parameter in a container definition. This is used to ensure the proxy ignores its own traffic.
If IgnoredGID is specified, this field can be empty.

• IgnoredGID – (Required) The group ID (GID) of the proxy container as defined by the
user parameter in a container definition. This is used to ensure the proxy ignores its own
traffic. If IgnoredUID is specified, this field can be empty.

• AppPorts – (Required) The list of ports that the application uses. Network traffic to these
ports is forwarded to the ProxyIngressPort and ProxyEgressPort.

• ProxyIngressPort – (Required) Specifies the port that incoming traffic to the
AppPorts is directed to.

Proxy configuration 631

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_KeyValuePair.html

Amazon Elastic Container Service Developer Guide

• ProxyEgressPort – (Required) Specifies the port that outgoing traffic from the
AppPorts is directed to.

• EgressIgnoredPorts – (Required) The outbound traffic going to these specified ports is
ignored and not redirected to the ProxyEgressPort. It can be an empty list.

• EgressIgnoredIPs – (Required) The outbound traffic going to these specified IP
addresses is ignored and not redirected to the ProxyEgressPort. It can be an empty list.

name

Type: String

Required: No

The name of the key-value pair.

value

Type: String

Required: No

The value of the key-value pair.

Volumes

When you register a task definition, you can optionally specify a list of volumes to be passed to
the Docker daemon on a container instance, which then becomes available for access by other
containers on the same container instance.

The following are the types of data volumes that can be used:

• Amazon EBS volumes — Provides cost-effective, durable, high-performance block storage for
data intensive containerized workloads. You can attach 1 Amazon EBS volume per Amazon
ECS task when running a standalone task, or when creating or updating a service. Amazon EBS
volumes are supported for Linux tasks. For more information, see Use Amazon EBS volumes with
Amazon ECS.

• Amazon EFS volumes — Provides simple, scalable, and persistent file storage for use with
your Amazon ECS tasks. With Amazon EFS, storage capacity is elastic. It grows and shrinks
automatically as you add and remove files. Your applications can have the storage that they
need and when they need it. Amazon EFS volumes are supported. For more information, see Use
Amazon EFS volumes with Amazon ECS.

Volumes 632

Amazon Elastic Container Service Developer Guide

• FSx for Windows File Server volumes — Provides fully managed Microsoft Windows file servers.
These file servers are backed by a Windows file system. When using FSx for Windows File Server
together with Amazon ECS, you can provision your Windows tasks with persistent, distributed,
shared, and static file storage. For more information, see Use FSx for Windows File Server
volumes with Amazon ECS.

Windows containers on Fargate do not support this option.

• Docker volumes – A Docker-managed volume that is created under /var/lib/docker/
volumes on the host Amazon EC2 instance. Docker volume drivers (also referred to as plugins)
are used to integrate the volumes with external storage systems, such as Amazon EBS. The
built-in local volume driver or a third-party volume driver can be used. Docker volumes are
supported only when running tasks on Amazon EC2 instances. Windows containers support only
the use of the local driver. To use Docker volumes, specify a dockerVolumeConfiguration
in your task definition.

• Bind mounts – A file or directory on the host machine that is mounted into a container. Bind
mount host volumes are supported. To use bind mount host volumes, specify a host and
optional sourcePath value in your task definition.

For more information, see Storage options for Amazon ECS tasks.

The following parameters are allowed in a container definition.

name

Type: String

Required: No

The name of the volume. Up to 255 letters (uppercase and lowercase), numbers, hyphens (-),
and underscores (_) are allowed. This name is referenced in the sourceVolume parameter of
the container definition mountPoints object.

host

Required: No

The host parameter is used to tie the lifecycle of the bind mount to the host Amazon EC2
instance, rather than the task, and where it is stored. If the host parameter is empty, then the
Docker daemon assigns a host path for your data volume, but the data is not guaranteed to
persist after the containers associated with it stop running.

Volumes 633

Amazon Elastic Container Service Developer Guide

Windows containers can mount whole directories on the same drive as $env:ProgramData.

Note

The sourcePath parameter is supported only when using tasks that are hosted on
Amazon EC2 instances.

sourcePath

Type: String

Required: No

When the host parameter is used, specify a sourcePath to declare the path on the host
Amazon EC2 instance that is presented to the container. If this parameter is empty, then the
Docker daemon assigns a host path for you. If the host parameter contains a sourcePath
file location, then the data volume persists at the specified location on the host Amazon EC2
instance until you delete it manually. If the sourcePath value does not exist on the host
Amazon EC2 instance, the Docker daemon creates it. If the location does exist, the contents
of the source path folder are exported.

configuredAtLaunch

Type: Boolean

Required: No

Specifies whether a volume is configurable at launch. When set to true, you can configure
the volume when running a standalone task, or when creating or updating a service. When
set to true, you won't be able to provide another volume configuration in the task definition.
This parameter must be set to true to configure an Amazon EBS volume for attachment to
a task. Setting configuredAtLaunch to true and deferring volume configuration to the
launch phase allows you to create task definitions that aren't constrained to a volume type
or to specific volume settings. Doing this makes your task definition reusable across different
execution environments. For more information, see Amazon EBS volumes.

dockerVolumeConfiguration

Type: DockerVolumeConfiguration Object

Volumes 634

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DockerVolumeConfiguration.html

Amazon Elastic Container Service Developer Guide

Required: No

This parameter is specified when using Docker volumes. Docker volumes are supported only
when running tasks on EC2 instances. Windows containers support only the use of the local
driver. To use bind mounts, specify a host instead.

scope

Type: String

Valid Values: task | shared

Required: No

The scope for the Docker volume, which determines its lifecycle. Docker volumes that are
scoped to a task are automatically provisioned when the task starts and destroyed when
the task stops. Docker volumes that are scoped as shared persist after the task stops.

autoprovision

Type: Boolean

Default value: false

Required: No

If this value is true, the Docker volume is created if it doesn't already exist. This field is used
only if the scope is shared. If the scope is task, then this parameter must be omitted.

driver

Type: String

Required: No

The Docker volume driver to use. The driver value must match the driver name provided by
Docker because this name is used for task placement. If the driver was installed by using the
Docker plugin CLI, use docker plugin ls to retrieve the driver name from your container
instance. If the driver was installed by using another method, use Docker plugin discovery to
retrieve the driver name.

driverOpts

Type: String

Volumes 635

Amazon Elastic Container Service Developer Guide

Required: No

A map of Docker driver-specific options to pass through. This parameter maps to
DriverOpts in the Create a volume section of Docker.

labels

Type: String

Required: No

Custom metadata to add to your Docker volume.

efsVolumeConfiguration

Type: EFSVolumeConfiguration Object

Required: No

This parameter is specified when using Amazon EFS volumes.

fileSystemId

Type: String

Required: Yes

The Amazon EFS file system ID to use.

rootDirectory

Type: String

Required: No

The directory within the Amazon EFS file system to mount as the root directory inside
the host. If this parameter is omitted, the root of the Amazon EFS volume will be used.
Specifying / has the same effect as omitting this parameter.

Important

If an EFS access point is specified in the authorizationConfig, the root directory
parameter must either be omitted or set to /, which will enforce the path set on the
EFS access point.

Volumes 636

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_EFSVolumeConfiguration.html

Amazon Elastic Container Service Developer Guide

transitEncryption

Type: String

Valid values: ENABLED | DISABLED

Required: No

Specifies whether to enable encryption for Amazon EFS data in transit between the Amazon
ECS host and the Amazon EFS server. If Amazon EFS IAM authorization is used, transit
encryption must be enabled. If this parameter is omitted, the default value of DISABLED is
used. For more information, see Encrypting Data in Transit in the Amazon Elastic File System
User Guide.

transitEncryptionPort

Type: Integer

Required: No

The port to use when sending encrypted data between the Amazon ECS host and the
Amazon EFS server. If you don't specify a transit encryption port, the task will use the port
selection strategy that the Amazon EFS mount helper uses. For more information, see EFS
Mount Helper in the Amazon Elastic File System User Guide.

authorizationConfig

Type: EFSAuthorizationConfig Object

Required: No

The authorization configuration details for the Amazon EFS file system.

accessPointId

Type: String

Required: No

The access point ID to use. If an access point is specified, the root directory value in the
efsVolumeConfiguration must either be omitted or set to /, which will enforce the
path set on the EFS access point. If an access point is used, transit encryption must be
enabled in the EFSVolumeConfiguration. For more information, see Working with
Amazon EFS Access Points in the Amazon Elastic File System User Guide.

Volumes 637

https://docs.aws.amazon.com/efs/latest/ug/encryption-in-transit.html
https://docs.aws.amazon.com/efs/latest/ug/efs-mount-helper.html
https://docs.aws.amazon.com/efs/latest/ug/efs-mount-helper.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_EFSAuthorizationConfig.html
https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html
https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html

Amazon Elastic Container Service Developer Guide

iam

Type: String

Valid values: ENABLED | DISABLED

Required: No

Specifies whether to use the Amazon ECS task IAM role that's defined in a task definition
when mounting the Amazon EFS file system. If enabled, transit encryption must be
enabled in the EFSVolumeConfiguration. If this parameter is omitted, the default
value of DISABLED is used. For more information, see IAM Roles for Tasks.

FSxWindowsFileServerVolumeConfiguration

Type: FSxWindowsFileServerVolumeConfiguration Object

Required: Yes

This parameter is specified when you're using an Amazon FSx for Windows File Server file
system for task storage.

fileSystemId

Type: String

Required: Yes

The FSx for Windows File Server file system ID to use.

rootDirectory

Type: String

Required: Yes

The directory within the FSx for Windows File Server file system to mount as the root
directory inside the host.

authorizationConfig

credentialsParameter

Type: String

Required: Yes

The authorization credential options.

Volumes 638

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_FSxWindowsFileServerVolumeConfiguration.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/what-is.html

Amazon Elastic Container Service Developer Guide

options:

• Amazon Resource Name (ARN) of an AWS Secrets Manager secret.

• ARN of an AWS Systems Manager parameter.

domain

Type: String

Required: Yes

A fully qualified domain name hosted by an AWS Directory Service for Microsoft Active
Directory (AWS Managed Microsoft AD) directory or a self-hosted EC2 Active Directory.

Tags

When you register a task definition, you can optionally specify metadata tags that are applied to
the task definition. Tags help you categorize and organize your task definition. Each tag consists of
a key and an optional value. You define both of them. For more information, see Tagging Amazon
ECS resources.

Important

Don't add personally identifiable information or other confidential or sensitive information
in tags. Tags are accessible to many AWS services, including billing. Tags aren't intended to
be used for private or sensitive data.

The following parameters are allowed in a tag object.

key

Type: String

Required: No

One part of a key-value pair that make up a tag. A key is a general label that acts like a category
for more specific tag values.

value

Type: String

Tags 639

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/integration-ps-secretsmanager.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html

Amazon Elastic Container Service Developer Guide

Required: No

The optional part of a key-value pair that make up a tag. A value acts as a descriptor within a
tag category (key).

Other task definition parameters

The following task definition parameters can be used when registering task definitions in the
Amazon ECS console by using the Configure via JSON option. For more information, see Creating
an Amazon ECS task definition using the console.

Topics

• IPC mode

• PID mode

• Fault injection

IPC mode

ipcMode

Type: String

Required: No

The IPC resource namespace to use for the containers in the task. The valid values are host,
task, or none. If host is specified, then all the containers that are within the tasks that
specified the host IPC mode on the same container instance share the same IPC resources
with the host Amazon EC2 instance. If task is specified, all the containers that are within the
specified task share the same IPC resources. If none is specified, then IPC resources within
the containers of a task are private and not shared with other containers in a task or on the
container instance. If no value is specified, then the IPC resource namespace sharing depends on
the Docker daemon setting on the container instance.

If the host IPC mode is used, there's a heightened risk of undesired IPC namespace exposure.

If you're setting namespaced kernel parameters that use systemControls for the containers
in the task, the following applies to your IPC resource namespace.

Other task definition parameters 640

Amazon Elastic Container Service Developer Guide

• For tasks that use the host IPC mode, IPC namespace that's related systemControls aren't
supported.

• For tasks that use the task IPC mode, systemControls that relate to the IPC namespace
apply to all containers within a task.

PID mode

pidMode

Type: String

Valid Values: host | task

Required: No

The process namespace to use for the containers in the task. The valid values are host or task.
For example, monitoring sidecars might need pidMode to access information about other
containers running in the same task.

If host is specified, all containers within the tasks that specified the host PID mode on the
same container instance share the same process namespace with the host Amazon EC2 instance.

If task is specified, all containers within the specified task share the same process namespace.

If no value is specified, the default is a private namespace for each container.

If the host PID mode is used, there's a heightened risk of undesired process namespace
exposure.

Note

This parameter is not supported for Windows containers.

Fault injection

enableFaultInjection

Type: Boolean

Valid Values: true | false

Other task definition parameters 641

Amazon Elastic Container Service Developer Guide

Required: No

If this parameter is set to true, in a task's payload, Amazon ECS accepts fault injection requests
from the task’s containers. By default, this parameter is set to false.

Amazon ECS task definition template

An empty task definition template is shown as follows. You can use this template to create your
task definition, which can then be pasted into the console JSON input area or saved to a file and
used with the AWS CLI --cli-input-json option. For more information, see Amazon ECS task
definition parameters for the Fargate launch type.

Amazon EC2 launch type template

{
 "family": "",
 "taskRoleArn": "",
 "executionRoleArn": "",
 "networkMode": "none",
 "containerDefinitions": [
 {
 "name": "",
 "image": "",
 "repositoryCredentials": {
 "credentialsParameter": ""
 },
 "cpu": 0,
 "memory": 0,
 "memoryReservation": 0,
 "links": [""],
 "portMappings": [
 {
 "containerPort": 0,
 "hostPort": 0,
 "protocol": "tcp"
 }
],
 "restartPolicy": {
 "enabled": true,
 "ignoredExitCodes": [0],
 "restartAttemptPeriod": 180
 },

Task definition template 642

Amazon Elastic Container Service Developer Guide

 "essential": true,
 "entryPoint": [""],
 "command": [""],
 "environment": [
 {
 "name": "",
 "value": ""
 }
],
 "environmentFiles": [
 {
 "value": "",
 "type": "s3"
 }
],
 "mountPoints": [
 {
 "sourceVolume": "",
 "containerPath": "",
 "readOnly": true
 }
],
 "volumesFrom": [
 {
 "sourceContainer": "",
 "readOnly": true
 }
],
 "linuxParameters": {
 "capabilities": {
 "add": [""],
 "drop": [""]
 },
 "devices": [
 {
 "hostPath": "",
 "containerPath": "",
 "permissions": ["read"]
 }
],
 "initProcessEnabled": true,
 "sharedMemorySize": 0,
 "tmpfs": [
 {

Task definition template 643

Amazon Elastic Container Service Developer Guide

 "containerPath": "",
 "size": 0,
 "mountOptions": [""]
 }
],
 "maxSwap": 0,
 "swappiness": 0
 },
 "secrets": [
 {
 "name": "",
 "valueFrom": ""
 }
],
 "dependsOn": [
 {
 "containerName": "",
 "condition": "COMPLETE"
 }
],
 "startTimeout": 0,
 "stopTimeout": 0,
 "hostname": "",
 "user": "",
 "workingDirectory": "",
 "disableNetworking": true,
 "privileged": true,
 "readonlyRootFilesystem": true,
 "dnsServers": [""],
 "dnsSearchDomains": [""],
 "extraHosts": [
 {
 "hostname": "",
 "ipAddress": ""
 }
],
 "dockerSecurityOptions": [""],
 "interactive": true,
 "pseudoTerminal": true,
 "dockerLabels": {
 "KeyName": ""
 },
 "ulimits": [
 {

Task definition template 644

Amazon Elastic Container Service Developer Guide

 "name": "nofile",
 "softLimit": 0,
 "hardLimit": 0
 }
],
 "logConfiguration": {
 "logDriver": "splunk",
 "options": {
 "KeyName": ""
 },
 "secretOptions": [
 {
 "name": "",
 "valueFrom": ""
 }
]
 },
 "healthCheck": {
 "command": [""],
 "interval": 0,
 "timeout": 0,
 "retries": 0,
 "startPeriod": 0
 },
 "systemControls": [
 {
 "namespace": "",
 "value": ""
 }
],
 "resourceRequirements": [
 {
 "value": "",
 "type": "InferenceAccelerator"
 }
],
 "firelensConfiguration": {
 "type": "fluentbit",
 "options": {
 "KeyName": ""
 }
 }
 }
],

Task definition template 645

Amazon Elastic Container Service Developer Guide

 "volumes": [
 {
 "name": "",
 "host": {
 "sourcePath": ""
 },
 "configuredAtLaunch": true,
 "dockerVolumeConfiguration": {
 "scope": "shared",
 "autoprovision": true,
 "driver": "",
 "driverOpts": {
 "KeyName": ""
 },
 "labels": {
 "KeyName": ""
 }
 },
 "efsVolumeConfiguration": {
 "fileSystemId": "",
 "rootDirectory": "",
 "transitEncryption": "DISABLED",
 "transitEncryptionPort": 0,
 "authorizationConfig": {
 "accessPointId": "",
 "iam": "ENABLED"
 }
 },
 "fsxWindowsFileServerVolumeConfiguration": {
 "fileSystemId": "",
 "rootDirectory": "",
 "authorizationConfig": {
 "credentialsParameter": "",
 "domain": ""
 }
 }
 }
],
 "placementConstraints": [
 {
 "type": "memberOf",
 "expression": ""
 }
],

Task definition template 646

Amazon Elastic Container Service Developer Guide

 "requiresCompatibilities": ["EC2"],
 "cpu": "",
 "memory": "",
 "tags": [
 {
 "key": "",
 "value": ""
 }
],
 "pidMode": "task",
 "ipcMode": "task",
 "proxyConfiguration": {
 "type": "APPMESH",
 "containerName": "",
 "properties": [
 {
 "name": "",
 "value": ""
 }
]
 },
 "inferenceAccelerators": [
 {
 "deviceName": "",
 "deviceType": ""
 }
],
 "ephemeralStorage": {
 "sizeInGiB": 0
 },
 "runtimePlatform": {
 "cpuArchitecture": "X86_64",
 "operatingSystemFamily": "WINDOWS_SERVER_20H2_CORE"
 }
}

Fargate launch type template

Important

For the Fargate launch type, you must include the operatingSystemFamily parameter
with one of the following values:

Task definition template 647

Amazon Elastic Container Service Developer Guide

• LINUX

• WINDOWS_SERVER_2019_FULL

• WINDOWS_SERVER_2019_CORE

• WINDOWS_SERVER_2022_FULL

• WINDOWS_SERVER_2022_CORE

{
 "family": "",
 "runtimePlatform": {"operatingSystemFamily": ""},
 "taskRoleArn": "",
 "executionRoleArn": "",
 "networkMode": "awsvpc",
 "platformFamily": "",
 "containerDefinitions": [
 {
 "name": "",
 "image": "",
 "repositoryCredentials": {"credentialsParameter": ""},
 "cpu": 0,
 "memory": 0,
 "memoryReservation": 0,
 "links": [""],
 "portMappings": [
 {
 "containerPort": 0,
 "hostPort": 0,
 "protocol": "tcp"
 }
],
 "essential": true,
 "entryPoint": [""],
 "command": [""],
 "environment": [
 {
 "name": "",
 "value": ""
 }
],

Task definition template 648

Amazon Elastic Container Service Developer Guide

 "environmentFiles": [
 {
 "value": "",
 "type": "s3"
 }
],
 "mountPoints": [
 {
 "sourceVolume": "",
 "containerPath": "",
 "readOnly": true
 }
],
 "volumesFrom": [
 {
 "sourceContainer": "",
 "readOnly": true
 }
],
 "linuxParameters": {
 "capabilities": {
 "add": [""],
 "drop": [""]
 },
 "devices": [
 {
 "hostPath": "",
 "containerPath": "",
 "permissions": ["read"]
 }
],
 "initProcessEnabled": true,
 "sharedMemorySize": 0,
 "tmpfs": [
 {
 "containerPath": "",
 "size": 0,
 "mountOptions": [""]
 }
],
 "maxSwap": 0,
 "swappiness": 0
 },
 "secrets": [

Task definition template 649

Amazon Elastic Container Service Developer Guide

 {
 "name": "",
 "valueFrom": ""
 }
],
 "dependsOn": [
 {
 "containerName": "",
 "condition": "HEALTHY"
 }
],
 "startTimeout": 0,
 "stopTimeout": 0,
 "hostname": "",
 "user": "",
 "workingDirectory": "",
 "disableNetworking": true,
 "privileged": true,
 "readonlyRootFilesystem": true,
 "dnsServers": [""],
 "dnsSearchDomains": [""],
 "extraHosts": [
 {
 "hostname": "",
 "ipAddress": ""
 }
],
 "dockerSecurityOptions": [""],
 "interactive": true,
 "pseudoTerminal": true,
 "dockerLabels": {"KeyName": ""},
 "ulimits": [
 {
 "name": "msgqueue",
 "softLimit": 0,
 "hardLimit": 0
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {"KeyName": ""},
 "secretOptions": [
 {
 "name": "",

Task definition template 650

Amazon Elastic Container Service Developer Guide

 "valueFrom": ""
 }
]
 },
 "healthCheck": {
 "command": [""],
 "interval": 0,
 "timeout": 0,
 "retries": 0,
 "startPeriod": 0
 },
 "systemControls": [
 {
 "namespace": "",
 "value": ""
 }
],
 "resourceRequirements": [
 {
 "value": "",
 "type": "GPU"
 }
],
 "firelensConfiguration": {
 "type": "fluentd",
 "options": {"KeyName": ""}
 }
 }
],
 "volumes": [
 {
 "name": "",
 "host": {"sourcePath": ""},
 "configuredAtLaunch":true,
 "dockerVolumeConfiguration": {
 "scope": "task",
 "autoprovision": true,
 "driver": "",
 "driverOpts": {"KeyName": ""},
 "labels": {"KeyName": ""}
 },
 "efsVolumeConfiguration": {
 "fileSystemId": "",
 "rootDirectory": "",

Task definition template 651

Amazon Elastic Container Service Developer Guide

 "transitEncryption": "ENABLED",
 "transitEncryptionPort": 0,
 "authorizationConfig": {
 "accessPointId": "",
 "iam": "ENABLED"
 }
 }
 }
],
 "requiresCompatibilities": ["FARGATE"],
 "cpu": "",
 "memory": "",
 "tags": [
 {
 "key": "",
 "value": ""
 }
],
 "ephemeralStorage": {"sizeInGiB": 0},
 "pidMode": "task",
 "ipcMode": "none",
 "proxyConfiguration": {
 "type": "APPMESH",
 "containerName": "",
 "properties": [
 {
 "name": "",
 "value": ""
 }
]
 },
 "inferenceAccelerators": [
 {
 "deviceName": "",
 "deviceType": ""
 }
]
}

You can generate this task definition template using the following AWS CLI command.

aws ecs register-task-definition --generate-cli-skeleton

Task definition template 652

Amazon Elastic Container Service Developer Guide

Example Amazon ECS task definitions

You can copy the examples and snippets to start creating your own task definitions.

You can copy the examples, and then paste them when you use the Configure via JSON option in
the console. Make sure to customize the examples, such as using your account ID. You can include
the snippets in your task definition JSON. For more information, see Creating an Amazon ECS task
definition using the console and Amazon ECS task definition parameters for the Fargate launch
type.

For more task definition examples, see AWS Sample Task Definitions on GitHub.

Topics

• Webserver

• splunk log driver

• fluentd log driver

• gelf log driver

• Workloads on external instances

• Amazon ECR image and task definition IAM role

• Entrypoint with command

• Container dependency

• Volumes in task definitions

• Windows sample task definitions

Webserver

The following is an example task definition using the Linux containers on Fargate launch type that
sets up a web server:

{
 "containerDefinitions": [
 {
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample App</
title> <style>body {margin-top: 40px; background-color: #333;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>

Example task definitions 653

https://github.com/aws-samples/aws-containers-task-definitions

Amazon Elastic Container Service Developer Guide

 <h2>Congratulations!</h2> <p>Your application is now running on a container in Amazon
 ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html && httpd-
foreground\""
],
 "entryPoint": [
 "sh",
 "-c"
],
 "essential": true,
 "image": "public.ecr.aws/docker/library/httpd:2.4",
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group" : "/ecs/fargate-task-definition",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "name": "sample-fargate-app",
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp"
 }
]
 }
],
 "cpu": "256",
 "executionRoleArn": "arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
 "family": "fargate-task-definition",
 "memory": "512",
 "networkMode": "awsvpc",
 "runtimePlatform": {
 "operatingSystemFamily": "LINUX"
 },
 "requiresCompatibilities": [
 "FARGATE"
]
}

The following is an example task definition using the Windows containers on Fargate launch type
that sets up a web server:

Webserver 654

Amazon Elastic Container Service Developer Guide

{
 "containerDefinitions": [
 {
 "command": ["New-Item -Path C:\\inetpub\\wwwroot\\index.html -Type file
 -Value '<html> <head> <title>Amazon ECS Sample App</title> <style>body {margin-top:
 40px; background-color: #333;} </style> </head><body> <div style=color:white;text-
align:center> <h1>Amazon ECS Sample App</h1> <h2>Congratulations!</h2> <p>Your
 application is now running on a container in Amazon ECS.</p>'; C:\\ServiceMonitor.exe
 w3svc"],
 "entryPoint": [
 "powershell",
 "-Command"
],
 "essential": true,
 "cpu": 2048,
 "memory": 4096,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "name": "sample_windows_app",
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80,
 "protocol": "tcp"
 }
]
 }
],
 "memory": "4096",
 "cpu": "2048",
 "networkMode": "awsvpc",
 "family": "windows-simple-iis-2019-core",
 "executionRoleArn": "arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
 "runtimePlatform": {"operatingSystemFamily": "WINDOWS_SERVER_2019_CORE"},
 "requiresCompatibilities": ["FARGATE"]
}

splunk log driver

The following snippet demonstrates how to use the splunk log driver in a task definition that
sends the logs to a remote service. The Splunk token parameter is specified as a secret option

splunk log driver 655

Amazon Elastic Container Service Developer Guide

because it can be treated as sensitive data. For more information, see Pass sensitive data to an
Amazon ECS container.

"containerDefinitions": [{
 "logConfiguration": {
 "logDriver": "splunk",
 "options": {
 "splunk-url": "https://cloud.splunk.com:8080",
 "tag": "tag_name",
 },
 "secretOptions": [{
 "name": "splunk-token",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:splunk-token-
KnrBkD"
}],

fluentd log driver

The following snippet demonstrates how to use the fluentd log driver in a task definition that
sends the logs to a remote service. The fluentd-address value is specified as a secret option as
it may be treated as sensitive data. For more information, see Pass sensitive data to an Amazon ECS
container.

"containerDefinitions": [{
 "logConfiguration": {
 "logDriver": "fluentd",
 "options": {
 "tag": "fluentd demo"
 },
 "secretOptions": [{
 "name": "fluentd-address",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:fluentd-address-
KnrBkD"
 }]
 },
 "entryPoint": [],
 "portMappings": [{
 "hostPort": 80,
 "protocol": "tcp",
 "containerPort": 80
 },
 {

fluentd log driver 656

Amazon Elastic Container Service Developer Guide

 "hostPort": 24224,
 "protocol": "tcp",
 "containerPort": 24224
 }]
}],

gelf log driver

The following snippet demonstrates how to use the gelf log driver in a task definition that sends
the logs to a remote host running Logstash that takes Gelf logs as an input. For more information,
see logConfiguration.

"containerDefinitions": [{
 "logConfiguration": {
 "logDriver": "gelf",
 "options": {
 "gelf-address": "udp://logstash-service-address:5000",
 "tag": "gelf task demo"
 }
 },
 "entryPoint": [],
 "portMappings": [{
 "hostPort": 5000,
 "protocol": "udp",
 "containerPort": 5000
 },
 {
 "hostPort": 5000,
 "protocol": "tcp",
 "containerPort": 5000
 }
]
}],

Workloads on external instances

When registering an Amazon ECS task definition, use the requiresCompatibilities parameter
and specify EXTERNAL which validates that the task definition is compatible to use when running
Amazon ECS workloads on your external instances. If you use the console for registering a task
definition, you must use the JSON editor. For more information, see Creating an Amazon ECS task
definition using the console.

gelf log driver 657

Amazon Elastic Container Service Developer Guide

Important

If your tasks require a task execution IAM role, make sure that it's specified in the task
definition.

When you deploy your workload, use the EXTERNAL launch type when creating your service or
running your standalone task.

The following is an example task definition.

Linux

{
 "requiresCompatibilities": [
 "EXTERNAL"
],
 "containerDefinitions": [{
 "name": "nginx",
 "image": "public.ecr.aws/nginx/nginx:latest",
 "memory": 256,
 "cpu": 256,
 "essential": true,
 "portMappings": [{
 "containerPort": 80,
 "hostPort": 8080,
 "protocol": "tcp"
 }]
 }],
 "networkMode": "bridge",
 "family": "nginx"
}

Windows

{
 "requiresCompatibilities": [
 "EXTERNAL"
],
 "containerDefinitions": [{
 "name": "windows-container",
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-ltsc2019",

Workloads on external instances 658

Amazon Elastic Container Service Developer Guide

 "memory": 256,
 "cpu": 512,
 "essential": true,
 "portMappings": [{
 "containerPort": 80,
 "hostPort": 8080,
 "protocol": "tcp"
 }]
 }],
 "networkMode": "bridge",
 "family": "windows-container"
}

Amazon ECR image and task definition IAM role

The following snippet uses an Amazon ECR image called aws-nodejs-sample with the v1
tag from the 123456789012.dkr.ecr.us-west-2.amazonaws.com registry. The container
in this task inherits IAM permissions from the arn:aws:iam::123456789012:role/
AmazonECSTaskS3BucketRole role. For more information, see Amazon ECS task IAM role.

{
 "containerDefinitions": [
 {
 "name": "sample-app",
 "image": "123456789012.dkr.ecr.us-west-2.amazonaws.com/aws-nodejs-
sample:v1",
 "memory": 200,
 "cpu": 10,
 "essential": true
 }
],
 "family": "example_task_3",
 "taskRoleArn": "arn:aws:iam::123456789012:role/AmazonECSTaskS3BucketRole"
}

Entrypoint with command

The following snippet demonstrates the syntax for a Docker container that uses an entry point and
a command argument. This container pings example.com four times and then exits.

{

Amazon ECR image and task definition IAM role 659

Amazon Elastic Container Service Developer Guide

 "containerDefinitions": [
 {
 "memory": 32,
 "essential": true,
 "entryPoint": ["ping"],
 "name": "alpine_ping",
 "readonlyRootFilesystem": true,
 "image": "alpine:3.4",
 "command": [
 "-c",
 "4",
 "example.com"
],
 "cpu": 16
 }
],
 "family": "example_task_2"
}

Container dependency

This snippet demonstrates the syntax for a task definition with multiple containers where container
dependency is specified. In the following task definition, the envoy container must reach a healthy
status, determined by the required container health check parameters, before the app container
will start. For more information, see Container dependency.

{
 "family": "appmesh-gateway",
 "runtimePlatform": {
 "operatingSystemFamily": "LINUX"
 },
 "proxyConfiguration":{
 "type": "APPMESH",
 "containerName": "envoy",
 "properties": [
 {
 "name": "IgnoredUID",
 "value": "1337"
 },
 {
 "name": "ProxyIngressPort",
 "value": "15000"
 },

Container dependency 660

Amazon Elastic Container Service Developer Guide

 {
 "name": "ProxyEgressPort",
 "value": "15001"
 },
 {
 "name": "AppPorts",
 "value": "9080"
 },
 {
 "name": "EgressIgnoredIPs",
 "value": "169.254.170.2,169.254.169.254"
 }
]
 },
 "containerDefinitions": [
 {
 "name": "app",
 "image": "application_image",
 "portMappings": [
 {
 "containerPort": 9080,
 "hostPort": 9080,
 "protocol": "tcp"
 }
],
 "essential": true,
 "dependsOn": [
 {
 "containerName": "envoy",
 "condition": "HEALTHY"
 }
]
 },
 {
 "name": "envoy",
 "image": "840364872350.dkr.ecr.region-code.amazonaws.com/aws-appmesh-
envoy:v1.15.1.0-prod",
 "essential": true,
 "environment": [
 {
 "name": "APPMESH_VIRTUAL_NODE_NAME",
 "value": "mesh/meshName/virtualNode/virtualNodeName"
 },
 {

Container dependency 661

Amazon Elastic Container Service Developer Guide

 "name": "ENVOY_LOG_LEVEL",
 "value": "info"
 }
],
 "healthCheck": {
 "command": [
 "CMD-SHELL",
 "echo hello"
],
 "interval": 5,
 "timeout": 2,
 "retries": 3
 }
 }
],
 "executionRoleArn": "arn:aws:iam::123456789012:role/ecsTaskExecutionRole",
 "networkMode": "awsvpc"
}

Volumes in task definitions

Use the following to understand how to specify volumes in tasks.

• For information about how to configure an Amazon EBS volume, see Specify Amazon EBS
volume configuration at Amazon ECS deployment.

• For information about how to configure an Amazon EFS volume, see Configuring Amazon EFS
file systems for Amazon ECS using the console.

• For information about how to configure a FSx for Windows File Server volume, see Learn how to
configure FSx for Windows File Server file systems for Amazon ECS.

• For information about how to configure a Docker volume, see Docker volume examples for
Amazon ECS.

• For information about how to configure a bind mount, see Bind mount examples for Amazon
ECS.

Windows sample task definitions

The following is a sample task definition to help you get started with Windows containers on
Amazon ECS.

Volumes in task definitions 662

Amazon Elastic Container Service Developer Guide

Example Amazon ECS Console Sample Application for Windows

The following task definition is the Amazon ECS console sample application that is produced in
the first-run wizard for Amazon ECS; it has been ported to use the microsoft/iis Windows
container image.

{
 "family": "windows-simple-iis",
 "containerDefinitions": [
 {
 "name": "windows_sample_app",
 "image": "mcr.microsoft.com/windows/servercore/iis",
 "cpu": 1024,
 "entryPoint":["powershell", "-Command"],
 "command":["New-Item -Path C:\\inetpub\\wwwroot\\index.html -Type file -
Value '<html> <head> <title>Amazon ECS Sample App</title> <style>body {margin-top:
 40px; background-color: #333;} </style> </head><body> <div style=color:white;text-
align:center> <h1>Amazon ECS Sample App</h1> <h2>Congratulations!</h2> <p>Your
 application is now running on a container in Amazon ECS.</p>'; C:\\ServiceMonitor.exe
 w3svc"],
 "portMappings": [
 {
 "protocol": "tcp",
 "containerPort": 80
 }
],
 "memory": 1024,
 "essential": true
 }
],
 "networkMode": "awsvpc",
 "memory": "1024",
 "cpu": "1024"
}

Windows sample task definitions 663

Amazon Elastic Container Service Developer Guide

Amazon ECS clusters

An Amazon ECS cluster is a logical grouping of tasks or services. In addition to tasks and services, a
cluster consists of the following resources:

• The infrastructure capacity which can be a combination of the following:

• Amazon EC2 instances in the AWS cloud

• Serverless (AWS Fargate) in the AWS cloud

• On-premises virtual machines (VM) or servers

• The network (VPC and subnet) where your tasks and services run

When you use Amazon EC2 instances for the capacity, the subnet can be in Availability Zones,
Local Zones, Wavelength Zones or AWS Outposts.

• An optional namespace

The namespace is used for service-to-service communication with Service Connect.

• A monitoring option

CloudWatch Container Insights comes at an additional cost and is a fully managed service. It
automatically collects, aggregates, and summarizes Amazon ECS metrics and logs.

The following are general concepts about Amazon ECS clusters.

• You create clusters to separate your resources.

• Clusters are AWS Region specific.

• Clusters can be in any of the following states.

ACTIVE

The cluster is ready to accept tasks and, if applicable, you can register container instances
with the cluster.

PROVISIONING

The cluster has capacity providers associated with it and the resources needed for the
capacity provider are being created.

664

Amazon Elastic Container Service Developer Guide

DEPROVISIONING

The cluster has capacity providers associated with it and the resources needed for the
capacity provider are being deleted.

FAILED

The cluster has capacity providers associated with it and the resources needed for the
capacity provider have failed to create.

INACTIVE

The cluster has been deleted. Clusters with an INACTIVE status may remain discoverable in
your account for a period of time. This behavior is subject to change in the future, so make
sure you do not rely on INACTIVE clusters persisting.

• You can use different instance types for the EC2 launch type or Auto Scaling group capacity
providers. An instance can only be registered to one cluster at a time.

• You can restrict access to clusters by creating custom IAM policies. For information, see Amazon
ECS cluster examples section in Identity-based policy examples for Amazon Elastic Container
Service.

• You can use Service Auto Scaling to scale Fargate tasks. For more information, see Automatically
scale your Amazon ECS service.

• You can configure a default Service Connect namespace for a cluster. After you set a default
Service Connect namespace, any new services created in the cluster can be added as client
services in the namespace by turning on Service Connect. No additional configuration is required.
For more information, see Use Service Connect to connect Amazon ECS services with short
names.

Capacity providers

Amazon ECS capacity providers manage the scaling of infrastructure for tasks in your clusters. Each
cluster can have one or more capacity providers and an optional capacity provider strategy. You can
assign a default capacity provider strategy to the cluster. The capacity provider strategy determines
how the tasks are spread across the cluster's capacity providers. When you run a standalone task
or create a service, you either use the cluster's default capacity provider strategy or a capacity
provider strategy that overrides the default one.The cluster's default capacity provider strategy
only applies when you don't specify a launch type, or capacity provider strategy for your task or
service. If you provide either of these parameters, the default strategy isn't used.

Capacity providers 665

Amazon Elastic Container Service Developer Guide

For Fargate, you do not need to create or manage the capacity. You just need to associate any of
the following pre-defined capacity providers with the cluster:

• Fargate

• Fargate Spot

When you use EC2 instances for your capacity, you use Auto Scaling group to manage the EC2
instances. Auto Scaling helps ensure that you have the correct number of EC2 instances available to
handle the application load.

A cluster can contain a mix of tasks that are hosted on AWS Fargate, Amazon EC2 instances, or
external instances. Tasks can run on Fargate or EC2 infrastructure as a launch type or a capacity
provider strategy. If you use EC2 as a launch type, Amazon ECS doesn't track and scale the capacity
of Amazon EC2 Auto Scaling groups. For more information about launch types, see Amazon ECS
launch types.

A cluster can contain a mix of both Auto Scaling group capacity providers and Fargate capacity
providers. A capacity provider strategy can only contain Auto Scaling group capacity providers or
Fargate capacity providers.

Amazon ECS clusters for Fargate

Amazon ECS capacity providers manage the scaling of infrastructure for tasks in your clusters.
Each cluster can have one or more capacity providers and an optional capacity provider strategy.
The capacity provider strategy determines how the tasks are spread across the cluster's capacity
providers. When you run a standalone task or create a service, you either use the cluster's default
capacity provider strategy or a capacity provider strategy that overrides the default one.

When you run your tasks on AWS Fargate, you do not need to create or manage the capacity. You
just need to associate any of the following pre-defined capacity providers with the cluster:

• Fargate

• Fargate Spot

With Amazon ECS on AWS Fargate capacity providers, you can use both Fargate and Fargate Spot
capacity with your Amazon ECS tasks.

Clusters for Fargate 666

Amazon Elastic Container Service Developer Guide

With Fargate Spot, you can run interruption tolerant Amazon ECS tasks at a rate that's discounted
compared to the Fargate price. Fargate Spot runs tasks on spare compute capacity. When AWS
needs the capacity back, your tasks are interrupted with a two-minute warning.

When tasks that use the Fargate and Fargate Spot capacity providers are stopped, the task state
change event is sent to Amazon EventBridge. The stopped reason describes the cause. For more
information, see Amazon ECS task state change events.

A cluster can contain a mix of Fargate and Auto Scaling group capacity providers. However, a
capacity provider strategy can only contain either Fargate or Auto Scaling group capacity providers,
but not both. For more information, see Auto Scaling Group Capacity Providers.

Consider the following when using capacity providers:

• You must associate a capacity provider with a cluster before you associate it with the capacity
provider strategy.

• You can specify a maximum of 20 capacity providers for a capacity provider strategy.

• You can't update a service using an Auto Scaling group capacity provider to use a Fargate
capacity provider. The opposite is also the case.

• In a capacity provider strategy, if no weight value is specified for a capacity provider in the
console, then the default value of 1 is used. If using the API or AWS CLI, the default value of 0 is
used.

• When multiple capacity providers are specified within a capacity provider strategy, at least one of
the capacity providers must have a weight value that's greater than zero. Any capacity providers
with a weight of zero aren't used to place tasks. If you specify multiple capacity providers in a
strategy with all the same weight of zero, then any RunTask or CreateService actions using
the capacity provider strategy fail.

• In a capacity provider strategy, only one capacity provider can have a defined base value. If no
base value is specified, the default value of zero is used.

• A cluster can contain a mix of both Auto Scaling group capacity providers and Fargate capacity
providers. However, a capacity provider strategy can only contain Auto Scaling group or Fargate
capacity providers, but not both.

• A cluster can contain a mix of services and standalone tasks that use both capacity providers and
launch types. A service can be updated to use a capacity provider strategy rather than a launch
type. However, you must force a new deployment when doing so.

Clusters for Fargate 667

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-auto-scaling.html#asg-capacity-providers

Amazon Elastic Container Service Developer Guide

Fargate Spot termination notices

During periods of extremely high demand, Fargate Spot capacity might be unavailable. This can
cause Fargate Spot tasks to be delayed. When this happens, Amazon ECS services retry launching
tasks until the required capacity becomes available. Fargate doesn't replace Spot capacity with on-
demand capacity.

When tasks using Fargate Spot capacity are stopped due to a Spot interruption, a two-minute
warning is sent before a task is stopped. The warning is sent as a task state change event to
Amazon EventBridge and as a SIGTERM signal to the running task. If you use Fargate Spot as
part of a service, then in this scenario the service scheduler receives the interruption signal and
attempts to launch additional tasks on Fargate Spot if there's capacity available. A service with only
one task is interrupted until capacity is available. For more information about a graceful shutdown,
see Graceful shutdowns with ECS .

To ensure that your containers exit gracefully before the task stops, you can configure the
following:

• A stopTimeout value of 120 seconds or less can be specified in the container definition that
the task is using. The default stopTimeout value is 30 seconds. You can specify a longer
stopTimeout value to give yourself more time between the moment that the task state change
event is received and the point in time when the container is forcefully stopped. For more
information, see Container timeouts.

• The SIGTERM signal must be received from within the container to perform any cleanup actions.
Failure to process this signal results in the task receiving a SIGKILL signal after the configured
stopTimeout and may result in data loss or corruption.

The following is a snippet of a task state change event. This snippet displays the stopped reason
and stop code for a Fargate Spot interruption.

{
 "version": "0",
 "id": "9bcdac79-b31f-4d3d-9410-fbd727c29fab",
 "detail-type": "ECS Task State Change",
 "source": "aws.ecs",
 "account": "111122223333",
 "resources": [
 "arn:aws:ecs:us-east-1:111122223333:task/b99d40b3-5176-4f71-9a52-9dbd6f1cebef"
],

Fargate Spot termination notices 668

https://aws.amazon.com/blogs/containers/graceful-shutdowns-with-ecs/

Amazon Elastic Container Service Developer Guide

 "detail": {
 "clusterArn": "arn:aws:ecs:us-east-1:111122223333:cluster/default",
 "createdAt": "2016-12-06T16:41:05.702Z",
 "desiredStatus": "STOPPED",
 "lastStatus": "RUNNING",
 "stoppedReason": "Your Spot Task was interrupted.",
 "stopCode": "SpotInterruption",
 "taskArn": "arn:aws:ecs:us-east-1:111122223333:task/
b99d40b3-5176-4f71-9a52-9dbd6fEXAMPLE",
 ...
 }
}

The following is an event pattern that's used to create an EventBridge rule for Amazon ECS task
state change events. You can optionally specify a cluster in the detail field. Doing so means that
you will receive task state change events for that cluster. For more information about creating an
EventBridge rule, see Getting started with Amazon EventBridge in the Amazon EventBridge User
Guide.

{
 "source": [
 "aws.ecs"
],
 "detail-type": [
 "ECS Task State Change"
],
 "detail": {
 "clusterArn": [
 "arn:aws:ecs:us-west-2:111122223333:cluster/default"
]
 }
}

Creating an Amazon ECS cluster for the Fargate launch type

You create a cluster to define the infrastructure your tasks and services run on.

Before you begin, be sure that you've completed the steps in Set up to use Amazon ECS and assign
the appropriate IAM permission. For more information, see the section called “Amazon ECS cluster
examples”. The Amazon ECS console creates the resources that are needed by an Amazon ECS
cluster by creating a AWS CloudFormation stack.

Creating a cluster for the Fargate launch type 669

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html

Amazon Elastic Container Service Developer Guide

The console automatically associates the Fargate and Fargate Spot capacity providers with the
cluster.

You can modify the following options:

• Add a namespace to the cluster.

A namespace allows services that you create in the cluster can connect to the other services
in the namespace without additional configuration. For more information, see Interconnect
Amazon ECS services.

• Turn on Container Insights with enhanced observability, or Container Insights .

CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs from
your containerized applications and microservices. Container Insights also provides diagnostic
information, such as container restart failures, that you use to isolate issues and resolve them
quickly. For more information, see the section called “Monitor Amazon ECS containers using
Container Insights with enhanced observability”.

On December 2, 2024, AWS released Container Insights with enhanced observability for
Amazon ECS. This version supports enhanced observability for Amazon ECS clusters using the
Amazon EC2 and Fargate launch types. After you configure Container Insights with enhanced
observability on Amazon ECS, Container Insights auto-collects detailed infrastructure telemetry
from the cluster level down to the container level in your environment and displays your data
in dashboards that show you a variety of metrics and dimensions. You can then use these out-
of-the-box dashboards on the Container Insights console to better understand your container
health and performance, and to mitigate issues faster by identifying anomalies.

We recommend that you use Container Insights with enhanced observability instead of Container
Insights because it provides detailed visibility in your container environment, reducing the mean
time to resolution.

• Add tags to help you identify your cluster.

• Assign a AWS KMS key for your managed storage. For information about how to create a key, see
Create a KMS key in the AWS Key Management Service User Guide.

• Assign a AWS KMS key for your Fargate ephemeral storage. For information about how to create
a key, see Create a KMS key in the AWS Key Management Service User Guide.

Creating a cluster for the Fargate launch type 670

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

Amazon Elastic Container Service Developer Guide

Procedure

To create a new cluster (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose Create cluster.

5. Under Cluster configuration, configure the following:

• For Cluster name, enter a unique name.

The name can contain up to 255 letters (uppercase and lowercase), numbers, and hyphens.

• (Optional) To have the namespace used for Service Connect be different from the cluster
name, for Namespace, enter a unique name.

6. (Optional) Use Container Insights, expand Monitoring, and then choose one of the following
options:

• To use the recommended Container Insights with enhanced observability, choose Container
Insights with enhanced observability.

• To use Container Insights, choose Container Insights.

7. (Optional), Under Encryption, you can configure the following:

• Encrypt your data on Fargate ephemeral storage. Under Encryption, for Fargate ephemeral
storage, enter the ARN of the AWS KMS key you want to use to encrypt the Fargate
ephemeral storage data.

• Encrypt the data on managed storage. Under Encryption, for Managed storage, enter the
ARN of the AWS KMS key you want to use to encrypt the managed storage data.

8. (Optional) To help identify your cluster, expand Tags, and then configure your tags.

[Add a tag] Choose Add tag and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

[Remove a tag] Choose Remove to the right of the tag’s Key and Value.
Creating a cluster for the Fargate launch type 671

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

9. Choose Create.

Next steps

After you create the cluster, you can create task definitions for your applications and then run them
as standalone tasks, or as part of a service. For more information, see the following:

• Amazon ECS task definitions

• Running an application as an Amazon ECS task

• Creating an Amazon ECS service using the console

Amazon ECS capacity providers for the EC2 launch type

When you use Amazon EC2 instances for your capacity, you use Auto Scaling groups to manage
the Amazon EC2 instances registered to their clusters. Auto Scaling helps ensure that you have the
correct number of Amazon EC2 instances available to handle the application load.

You can use the managed scaling feature to have Amazon ECS manage the scale-in and scale-
out actions of the Auto Scaling group, or you can manage the scaling actions yourself. For more
information, see Automatically manage Amazon ECS capacity with cluster auto scaling.

We recommend that you create a new empty Auto Scaling group. If you use an existing Auto
Scaling group, any Amazon EC2 instances that are associated with the group that were already
running and registered to an Amazon ECS cluster before the Auto Scaling group being used
to create a capacity provider might not be properly registered with the capacity provider.
This might cause issues when using the capacity provider in a capacity provider strategy. Use
DescribeContainerInstances to confirm whether a container instance is associated with a
capacity provider or not.

Note

To create an empty Auto Scaling group, set the desired count to zero. After you created the
capacity provider and associated it with a cluster, you can then scale it out.
When you use the Amazon ECS console, Amazon ECS creates an Amazon EC2 launch
template and Auto Scaling group on your behalf as part of the AWS CloudFormation stack.
They are prefixed with EC2ContainerService-<ClusterName>. You can use the Auto
Scaling group as a capacity provider for that cluster.

Capacity providers for the EC2 launch type 672

Amazon Elastic Container Service Developer Guide

We recommend you use managed instance draining to allow for graceful termination of
Amazon EC2 instances that won't disrupt your workloads. This feature is on by default. For more
information, see Safely stop Amazon ECS workloads running on EC2 instances

Consider the following when using Auto Scaling group capacity providers in the console:

• An Auto Scaling group must have a MaxSize greater than zero to scale out.

• The Auto Scaling group can't have instance weighting settings.

• If the Auto Scaling group can't scale out to accommodate the number of tasks run, the tasks fails
to transition beyond the PROVISIONING state.

• Don't modify the scaling policy resource associated with your Auto Scaling groups that are
managed by capacity providers.

• If managed scaling is turned on when you create a capacity provider, the Auto Scaling group
desired count can be set to 0. When managed scaling is turned on, Amazon ECS manages the
scale-in and scale-out actions of the Auto Scaling group.

• You must associate capacity provider with a cluster before you associate it with the capacity
provider strategy.

• You can specify a maximum of 20 capacity providers for a capacity provider strategy.

• You can't update a service using an Auto Scaling group capacity provider to use a Fargate
capacity provider. The opposite is also the case.

• In a capacity provider strategy, if no weight value is specified for a capacity provider in the
console, then the default value of 1 is used. If using the API or AWS CLI, the default value of 0 is
used.

• When multiple capacity providers are specified within a capacity provider strategy, at least one of
the capacity providers must have a weight value that's greater than zero. Any capacity providers
with a weight of zero aren't used to place tasks. If you specify multiple capacity providers in a
strategy with all the same weight of zero, then any RunTask or CreateService actions using
the capacity provider strategy fail.

• In a capacity provider strategy, only one capacity provider can have a defined base value. If no
base value is specified, the default value of zero is used.

• A cluster can contain a mix of both Auto Scaling group capacity providers and Fargate capacity
providers. However, a capacity provider strategy can only contain Auto Scaling group or Fargate
capacity providers, but not both.

Capacity providers for the EC2 launch type 673

Amazon Elastic Container Service Developer Guide

• A cluster can contain a mix of services and standalone tasks that use both capacity providers and
launch types. A service can be updated to use a capacity provider strategy rather than a launch
type. However, you must force a new deployment when doing so.

• Amazon ECS supports Amazon EC2 Auto Scaling warm pools. A warm pool is a group of pre-
initialized Amazon EC2 instances ready to be placed into service. Whenever your application
needs to scale out, Amazon EC2 Auto Scaling uses the pre-initialized instances from the warm
pool rather than launching cold instances. This allows for any final initialization process to run
before the instance is placed into service. For more information, see Configuring pre-initialized
instances for your Amazon ECS Auto Scaling group.

For more information about creating an Amazon EC2 Auto Scaling launch template, see Auto
Scaling launch templates in the Amazon EC2 Auto Scaling User Guide. For more information about
creating an Amazon EC2 Auto Scaling group, see Auto Scaling groups in the Amazon EC2 Auto
Scaling User Guide.

Amazon EC2 container instance security considerations for Amazon ECS

You should consider a single container instance and its access within your threat model. For
example, a single affected task might be able to leverage the IAM permissions of a non-infected
task on the same instance.

We recommend that you use the following to help prevent this:

• Do not use administrator privileges when running your tasks.

• Assign a task role with least-privileged access to your tasks.

The container agent automatically creates a token with a unique credential ID which are used to
access Amazon ECS resources.

• To prevent containers run by tasks that use the awsvpc network mode from accessing the
credential information supplied to the Amazon EC2 instance profile, while still allowing the
permissions that are provided by the task role set the ECS_AWSVPC_BLOCK_IMDS agent
configuration variable to true in the agent configuration file and restart the agent.

• Use Amazon GuardDuty Runtime Monitoring to detect threats for clusters and containers within
your AWS environment. Runtime Monitoring uses a GuardDuty security agent that adds runtime
visibility into individual Amazon ECS workloads, for example, file access, process execution,
and network connections. For more information, see GuardDuty Runtime Monitoring in the
GuardDuty User Guide.

EC2 container instance security 674

https://docs.aws.amazon.com/autoscaling/ec2/userguide/launch-templates.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/launch-templates.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html
https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring.html

Amazon Elastic Container Service Developer Guide

Creating an Amazon ECS cluster for the Amazon EC2 launch type

You create a cluster to define the infrastructure your tasks and services run on.

Before you begin, be sure that you've completed the steps in Set up to use Amazon ECS and assign
the appropriate IAM permission. For more information, see the section called “Amazon ECS cluster
examples”. The Amazon ECS console provides a simple way to create the resources that are needed
by an Amazon ECS cluster by creating a AWS CloudFormation stack.

To make the cluster creation process as easy as possible, the console has default selections for
many choices which we describe below. There are also help panels available for most of the
sections in the console which provide further context.

You can register Amazon EC2 instances when you create the cluster or register additional instances
with the cluster after it has been created.

You can modify the following default options:

• Change the subnets where your instances launch

• Change the security groups used to control traffic to the container instances

• Add a namespace to the cluster.

A namespace allows services that you create in the cluster can connect to the other services
in the namespace without additional configuration. For more information, see Interconnect
Amazon ECS services.

• Turn on Container Insights with enhanced observability, or Container Insights .

CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs from
your containerized applications and microservices. Container Insights also provides diagnostic
information, such as container restart failures, that you use to isolate issues and resolve them
quickly. For more information, see the section called “Monitor Amazon ECS containers using
Container Insights with enhanced observability”.

On December 2, 2024, AWS released Container Insights with enhanced observability for
Amazon ECS. This version supports enhanced observability for Amazon ECS clusters using the
Amazon EC2 and Fargate launch types. After you configure Container Insights with enhanced
observability on Amazon ECS, Container Insights auto-collects detailed infrastructure telemetry
from the cluster level down to the container level in your environment and displays your data
in dashboards that show you a variety of metrics and dimensions. You can then use these out-

Creating a cluster for the Amazon EC2 launch type 675

Amazon Elastic Container Service Developer Guide

of-the-box dashboards on the Container Insights console to better understand your container
health and performance, and to mitigate issues faster by identifying anomalies.

We recommend that you use Container Insights with enhanced observability instead of Container
Insights because it provides detailed visibility in your container environment, reducing the mean
time to resolution.

• Assign a AWS KMS key for your managed storage. For information about how to create a key, see
Create a KMS key in the AWS Key Management Service User Guide.

• Assign a AWS KMS key for your Fargate ephemeral storage. For information about how to create
a key, see Create a KMS key in the AWS Key Management Service User Guide.

• Add tags to help you identify your cluster.

Auto Scaling group options

When you use Amazon EC2 instances, you must specify an Auto Scaling group to manage the
infrastructure that your tasks and services run on.

When you choose to create a new Auto Scaling group, it is automatically configured for the
following behavior:

• Amazon ECS manages the scale-in and scale-out actions of the Auto Scaling group.

• Amazon ECS will not prevent Amazon EC2 instances that contain tasks and that are in an Auto
Scaling group from being terminated during a scale-in action. For more information, see Instance
Protection in the AWS Auto Scaling User Guide.

You configure the following Auto Scaling group properties which determine the type and number
of instances to launch for the group:

• The Amazon ECS-optimized AMI.

• The instance type.

• The SSH key pair that proves your identity when you connect to the instance. For information
about how to create SSH keys, see Amazon EC2 key pairs and Linux instances in the Amazon EC2
User Guide.

• The minimum number of instances to launch for the Auto Scaling group.

• The maximum number of instances that are started for the Auto Scaling group.

Creating a cluster for the Amazon EC2 launch type 676

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-instance-termination.html#instance-protection
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-instance-termination.html#instance-protection
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Amazon Elastic Container Service Developer Guide

In order for the group to scale out, the maximum must be greater than 0.

Amazon ECS creates an Amazon EC2 Auto Scaling launch template and Auto Scaling group on your
behalf as part of the AWS CloudFormation stack. The values that you specified for the AMI, the
instance types, and the SSH key pair are part of the launch template. The templates are prefixed
with EC2ContainerService-<ClusterName>, which makes them easy to identify. The Auto
Scaling groups are prefixed with <ClusterName>-ECS-Infra-ECSAutoScalingGroup.

Instances launched for the Auto Scaling group use the launch template.

Networking options

By default instances are launched into the default subnets for the Region. The security groups,
which control the traffic to your container instances, currently associated with the subnets are
used. You can changed the subnets and security groups for the instances.

You can choose an existing subnet. You can either use an existing security group, or create a new
one, When you create a new security group, you need to specify at least one inbound rule.

The inbound rules determine what traffic can reach your container instances and include the
following properties:

• The protocol to allow

• The range of ports to allow

• The inbound traffic (source)

To allow inbound traffic from a specific address or CIDR block, use Custom for Source with the
allowed CIDR.

To allow inbound traffic from all destinations, use Anywhere for Source. This automatically adds
the 0.0.0.0/0 IPv4 CIDR block and ::/0 IPv6 CIDR block.

To allow inbound traffic from your local computer, use Source group for Source. This automatically
adds the current IP address of your local computer as the allowed source.

To create a new cluster (Amazon ECS console)

Before you begin, assign the appropriate IAM permission. For more information, see the section
called “Amazon ECS cluster examples”.

Creating a cluster for the Amazon EC2 launch type 677

Amazon Elastic Container Service Developer Guide

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose Create cluster.

5. Under Cluster configuration, configure the following:

• For Cluster name, enter a unique name.

The name can contain up to 255 letters (uppercase and lowercase), numbers, and hyphens.

• (Optional) To have the namespace used for Service Connect be different from the cluster
name, for Namespace, enter a unique name.

6. Add Amazon EC2 instances to your cluster, expand Infrastructure and then select Amazon EC2
instances.

Next, configure the Auto Scaling group which acts as the capacity provider:

a. To using an existing Auto Scaling group, from Auto Scaling group (ASG), select the group.

b. To create a Auto Scaling group, from Auto Scaling group (ASG), select Create new group,
and then provide the following details about the group:

• For Provisioning model, choose whether to use On-demand instances or Spot
Instances.

• If you choose to use Spot Instances, for Allocation Strategy, choose what Spot capacity
pools (instance types and Availability Zones) are used for the instances.

For most workloads, you can choose Price capacity optimized.

For more information, see Allocation strategies for Spot Instances in the Amazon EC2
User Guide.

• For Container instance Amazon Machine Image (AMI), choose the Amazon ECS-
optimized AMI for the Auto Scaling group instances.

• For EC2 instance type, choose the instance type for your workloads.

Managed scaling works best if your Auto Scaling group uses the same or similar instance
types.

• For EC2 instance role, choose an existing container instance role, or you can create a
new one.

Creating a cluster for the Amazon EC2 launch type 678

https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-fleet-allocation-strategy.html

Amazon Elastic Container Service Developer Guide

For more information, see Amazon ECS container instance IAM role.

• For Capacity, enter the minimum number and the maximum number of instances to
launch in the Auto Scaling group.

• For SSH key pair, choose the pair that proves your identity when you connect to the
instance.

• To allow for larger image and storage, for Root EBS volume size, enter the value in GiB.

7. (Optional) To change the VPC and subnets, under Networking for Amazon EC2 instances,
perform any of the following operations:

• To remove a subnet, under Subnets, choose X for each subnet that you want to remove.

• To change to a VPC other than the default VPC, under VPC, choose an existing VPC, and
then under Subnets, choose the subnets.

• Choose the security groups. Under Security group, choose one of the following options:

• To use an existing security group, choose Use an existing security group, and then choose
the security group.

• To create a security group, choose Create a new security group. Then, choose Add rule
for each inbound rule.

For information about inbound rules, see Networking options.

• To automatically assign public IP addresses to your Amazon EC2 container instances, for
Auto-assign public IP, choose one of the following options:

• Use subnet setting – Assign a public IP address to the instances when the subnet that the
instances launch in are a public subnet.

• Turn on – Assign a public IP address to the instances.

8. (Optional) Use Container Insights, expand Monitoring, and then choose one of the following
options:

• To use the recommended Container Insights with enhanced observability, choose Container
Insights with enhanced observability.

• To use Container Insights, choose Container Insights.

9. (Optional)

If you use Runtime Monitoring with the manual option and you want to have this cluster
monitored by GuardDuty, choose Add tag and do the following:

Creating a cluster for the Amazon EC2 launch type 679

Amazon Elastic Container Service Developer Guide

• For Key, enter guardDutyRuntimeMonitoringManaged

• For Value, enter true.

10. (Optional) Encrypt the data on managed storage. Under Encryption, for Managed storage,
enter the ARN of the AWS KMS key you want to use to encrypt the managed storage data.

11. (Optional) To manage the cluster tags, expand Tags, and then perform one of the following
operations:

[Add a tag] Choose Add tag and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

[Remove a tag] Choose Remove to the right of the tag’s Key and Value.

12. Choose Create.

Next steps

After you create the cluster, you can create task definitions for your applications and then run them
as standalone tasks, or as part of a service. For more information, see the following:

• Amazon ECS task definitions

• Running an application as an Amazon ECS task

• Creating an Amazon ECS service using the console

Automatically manage Amazon ECS capacity with cluster auto scaling

Amazon ECS can manage the scaling of Amazon EC2 instances that are registered to your cluster.
This is referred to as Amazon ECS cluster auto scaling. You turn on managed scaling when you
create the Amazon ECS Auto Scaling group capacity provider. Then, you set a target percentage
(the targetCapacity) for the instance utilization in this Auto Scaling group. Amazon ECS creates
two custom CloudWatch metrics and a target tracking scaling policy for your Auto Scaling group.
Amazon ECS then manages the scale-in and scale-out actions based on the resource utilization that
your tasks use.

Cluster auto scaling 680

Amazon Elastic Container Service Developer Guide

For each Auto Scaling group capacity provider that's associated with a cluster, Amazon ECS creates
and manages the following resources:

• A low metric value CloudWatch alarm

• A high metric value CloudWatch alarm

• A target tracking scaling policy

Note

Amazon ECS creates the target tracking scaling policy and attaches it to the Auto
Scaling group. To update the target tracking scaling policy, update the capacity provider
managed scaling settings, rather than updating the scaling policy directly.

When you turn off managed scaling or disassociate the capacity provider from a cluster, Amazon
ECS removes both CloudWatch metrics and the target tracking scaling policy resources.

Amazon ECS uses the following metrics to determine what actions to take:

CapacityProviderReservation

The percent of container instances in use for a specific capacity provider. Amazon ECS generates
this metric.

Amazon ECS sets the CapacityProviderReservation value to a number between 0-100.
Amazon ECS uses the following formula to represent the ratio of how much capacity remains
in the Auto Scaling group. Then, Amazon ECS publishes the metric to CloudWatch. For more
information about how the metric is calculated, see Deep Dive on Amazon ECS Cluster Auto
Scaling.

CapacityProviderReservation = (number of instances needed) / (number of running
 instances) x 100

DesiredCapacity

The amount of capacity for the Auto Scaling group. This metric isn't published to CloudWatch.

Cluster auto scaling 681

https://aws.amazon.com/blogs/containers/deep-dive-on-amazon-ecs-cluster-auto-scaling/
https://aws.amazon.com/blogs/containers/deep-dive-on-amazon-ecs-cluster-auto-scaling/

Amazon Elastic Container Service Developer Guide

Amazon ECS publishes the CapacityProviderReservation metric to CloudWatch in the AWS/
ECS/ManagedScaling namespace. The CapacityProviderReservation metric causes one of
the following actions to occur:

The CapacityProviderReservation value equals targetCapacity

The Auto Scaling group doesn't need to scale in or scale out. The target utilization percentage
has been reached.

The CapacityProviderReservation value is greater than targetCapacity

There are more tasks using a higher percentage of the capacity than your targetCapacity
percentage. The increased value of the CapacityProviderReservation metric causes the
associated CloudWatch alarm to act. This alarm updates the DesiredCapacity value for the
Auto Scaling group. The Auto Scaling group uses this value to launch EC2 instances, and then
register them with the cluster.

When the targetCapacity is the default value of 100 %, the new tasks are in the PENDING
state during the scale-out because there is no available capacity on the instances to run the
tasks. After the new instances register with ECS, these tasks will start on the new instances.

The CapacityProviderReservation value is less than targetCapacity

There are less tasks using a lower percentage of the capacity than your targetCapacity
percentage and there is at least one instance that can be terminated. The decreased value of
the CapacityProviderReservation metric causes the associated CloudWatch alarm to act.
This alarm updates the DesiredCapacity value for the Auto Scaling group. The Auto Scaling
group uses this value to terminate EC2 container instances, and then deregister them from the
cluster.

The Auto Scaling group follows the group termination policy to determine which instances it
terminates first during scale-in events. Additionally it avoids instances with the instance scale-
in protection setting turned on. Cluster auto scaling can manage which instances have the
instance scale-in protection setting if you turn on managed termination protection. For more
information about managed termination protection, see Control the instances Amazon ECS
terminates. For more information about how Auto Scaling groups terminate instances, see
Control which Auto Scaling instances terminate during scale in in the Amazon EC2 Auto Scaling
User Guide.

Consider the following when using cluster auto scaling:

Cluster auto scaling 682

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-instance-protection.html

Amazon Elastic Container Service Developer Guide

• Don't change or manage the desired capacity for the Auto Scaling group that's associated with a
capacity provider with any scaling policies other than the one Amazon ECS manages.

• When Amazon ECS scales out from 0 instances, it automatically launches 2 instances.

• Amazon ECS uses the AWSServiceRoleForECS service-linked IAM role for the permissions that
it requires to call AWS Auto Scaling on your behalf. For more information, see Using service-
linked roles for Amazon ECS.

• When using capacity providers with Auto Scaling groups, the user, group, or role that creates
the capacity providers requires the autoscaling:CreateOrUpdateTags permission. This is
because Amazon ECS adds a tag to the Auto Scaling group when it associates it with the capacity
provider.

Important

Make sure any tooling that you use doesn't remove the AmazonECSManaged tag from
the Auto Scaling group. If this tag is removed, Amazon ECS can't manage the scaling.

• Cluster auto scaling doesn't modify the MinimumCapacity or MaximumCapacity for the group.
For the group to scale out, the value for MaximumCapacity must be greater than zero.

• When Auto Scaling (managed scaling) is turned on, a capacity provider can only be connected to
one cluster at the same time. If your capacity provider has managed scaling turned off, you can
associate it with multiple clusters.

• When managed scaling is turned off, the capacity provider doesn't scale in or scale out. You can
use a capacity provider strategy to balance your tasks between capacity providers.

• The binpack strategy is the most efficient strategy in terms of capacity.

• When the target capacity is less than 100%, the placement strategy needs to use the binpack
strategy must have a higher order than the spread strategy. This prevents the capacity provider
from scaling out until each task has a dedicated instance or the limit is reached.

Turn on cluster auto scaling

You can turn on cluster auto scaling by using the Console or the AWS CLI.

When you create a cluster for the EC2 launch type using the console, Amazon ECS creates an Auto
Scaling group on your behalf and sets the target capacity. For more information, see Creating an
Amazon ECS cluster for the Amazon EC2 launch type.

Cluster auto scaling 683

Amazon Elastic Container Service Developer Guide

You can also create an Auto Scaling group, and then assign it to a cluster. For more information,
see Updating an Amazon ECS capacity provider.

When you use the AWS CLI, after you create the cluster

1. Before you create the capacity provider, you need to create an Auto Scaling group. For more
information, see Auto Scaling groups in the Amazon EC2 Auto Scaling User Guide.

2. Use put-cluster-capacity-providers to modify the cluster capacity provider. For more
information, see Turning on Amazon ECS cluster auto scaling.

Optimize Amazon ECS cluster auto scaling

Customers who run Amazon ECS on Amazon EC2 can take advantage of cluster auto scaling
to manage the scaling of Amazon EC2 Auto Scaling groups. With cluster auto scaling, you can
configure Amazon ECS to scale your Auto Scaling group automatically, and just focus on running
your tasks. Amazon ECS ensures the Auto Scaling group scales in and out as needed with no further
intervention required. Amazon ECS capacity providers are used to manage the infrastructure
in your cluster by ensuring there are enough container instances to meet the demands of your
application. To learn how cluster auto scaling works under the hood, see Deep Dive on Amazon ECS
Cluster Auto Scaling.

Cluster auto scaling relies on a CloudWatch based integration with Auto Scaling group for adjusting
cluster capacity. Therefore it has inherent latency associated with

• Publishing the CloudWatch metrics,

• The time taken for the metric CapacityProviderReservation to breach CloudWatch alarms
(both high and low)

• The time taken by a newly launched Amazon EC2 instance to warm-up. You can take the
following actions to make cluster auto scaling more responsive for faster deployments:

Capacity provider step scaling sizes

Amazon ECS capacity providers will grow/shrink the container instances to meet the demands of
your application. The minimum number of instances that Amazon ECS will launch is set to 1 by
default. This may add additional time to your deployments, if several instances are required for
placing your pending tasks. You can increase the minimumScalingStepSize via the Amazon ECS
API to increase the minimum number of instances that Amazon ECS scales in or out at a time. A

Cluster auto scaling 684

https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html
https://aws.amazon.com/blogs/containers/deep-dive-on-amazon-ecs-cluster-auto-scaling/
https://aws.amazon.com/blogs/containers/deep-dive-on-amazon-ecs-cluster-auto-scaling/
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ManagedScaling.html

Amazon Elastic Container Service Developer Guide

maximumScalingStepSize that is too low can limit how many container instances are scaled in
or out at a time, which can slow down your deployments.

Note

This configuration is currently only available via the CreateCapacityProvider or
UpdateCapacityProvider APIs.

Instance warm-up period

The instance warm-up period is the period of time after which a newly launched Amazon EC2
instance can contribute to CloudWatch metrics for the Auto Scaling group. After the specified
warm-up period expires, the instance is counted toward the aggregated metrics of the Auto Scaling
group, and cluster auto scaling proceeds with its next iteration of calculations to estimate the
number instances required.

The default value for instanceWarmupPeriod is 300 seconds, which you can configure to a
lower value via the CreateCapacityProvider or UpdateCapacityProvider APIs for more
responsive scaling. We recommend that you set the value to greater than 60 seconds so that you
can avoid over-provisioning.

Spare capacity

If your capacity provider has no container instances available for placing tasks, then it needs to
increase (scale out) cluster capacity by launching Amazon EC2 instances on the fly, and wait for
them to boot up before it can launch containers on them. This can significantly lower the task
launch rate. You have two options here.

In this case, having spare Amazon EC2 capacity already launched and ready to run tasks will
increase the effective task launch rate. You can use the Target Capacity configuration to
indicate that you wish to maintain spare capacity in your clusters. For example, by setting Target
Capacity at 80%, you indicate that your cluster needs 20% spare capacity at all times. This spare
capacity can allow any standalone tasks to be immediately launched, ensuring task launches are
not throttled. The trade-off for this approach is potential increased costs of keeping spare cluster
capacity.

An alternate approach you can consider is adding headroom to your service, not to the capacity
provider. This means that instead of reducing Target Capacity configuration to launch spare
capacity, you can increase the number of replicas in your service by modifying the target tracking

Cluster auto scaling 685

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ManagedScaling.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateCapacityProvider.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateCapacityProvider.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ManagedScaling.html#ECS-Type-ManagedScaling-instanceWarmupPeriod
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateCapacityProvider.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateCapacityProvider.html

Amazon Elastic Container Service Developer Guide

scaling metric or the step scaling thresholds of the service auto scaling. Note that this approach
will only be helpful for spiky workloads, but won't have an effect when you’re deploying new
services and going from 0 to N tasks for the first time. For more information about the related
scaling policies, see Target Tracking Scaling Policies or Step Scaling Policies in the Amazon Elastic
Container Service Developer Guide.

Amazon ECS managed scaling behavior

When you have Auto Scaling group capacity providers that use managed scaling, Amazon ECS
estimates the optimal number of instances to add to your cluster and uses the value to determine
how many instances to request or release.

Managed scale-out behavior

Amazon ECS selects a capacity provider for each task by following the capacity provider strategy
from the service, standalone task, or the cluster default. Amazon ECS follows the rest of these
steps for a single capacity provider.

Tasks without a capacity provider strategy are ignored by capacity providers. A pending task that
doesn't have a capacity provider strategy won't cause any capacity provider to scale out. Tasks or
services can't set a capacity provider strategy if that task or service sets a launch type.

The following describes the scale-out behavior in more detail.

• Group all of the provisioning tasks for this capacity provider so that each group has the same
exact resource requirements.

• When you use multiple instance types in an Auto Scaling group, the instance types in the Auto
Scaling group are sorted by their parameters. These parameters include vCPU, memory, elastic
network interfaces (ENIs), ports, and GPUs. The smallest and the largest instance types for
each parameter are selected. For more information about how to choose the instance type, see
Amazon EC2 container instances for Amazon ECS.

Important

If a group of tasks have resource requirements that are greater than the smallest instance
type in the Auto Scaling group, then that group of tasks can’t run with this capacity
provider. The capacity provider doesn’t scale the Auto Scaling group. The tasks remain in
the PROVISIONING state.
To prevent tasks from staying in the PROVISIONING state, we recommend that you
create separate Auto Scaling groups and capacity providers for different minimum

Cluster auto scaling 686

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-autoscaling-targettracking.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-autoscaling-stepscaling.html

Amazon Elastic Container Service Developer Guide

resource requirements. When you run tasks or create services, only add capacity
providers to the capacity provider strategy that can run the task on the smallest instance
type in the Auto Scaling group. For other parameters, you can use placement constraints

• For each group of tasks, Amazon ECS calculates the number of instances that are required to
run the unplaced tasks. This calculation uses a binpack strategy. This strategy accounts for
the vCPU, memory, elastic network interfaces (ENI), ports, and GPUs requirements of the tasks.
It also accounts for the resource availability of the Amazon EC2 instances. The values for the
largest instance types are treated as the maximum calculated instance count. The values for the
smallest instance type are used as protection. If the smallest instance type can't run at least one
instance of the task, the calculation considers the task as not compatible. As a result, the task
is excluded from scale-out calculation. When all the tasks aren't compatible with the smallest
instance type, cluster auto scaling stops and the CapacityProviderReservation value
remains at the targetCapacity value.

• Amazon ECS publishes the CapacityProviderReservation metric to CloudWatch with
respect to the minimumScalingStepSize if either of the following is the case.

• The maximum calculated instance count is less than the minimum scaling step size.

• The lower value of either the maximumScalingStepSize or the maximum calculated
instance count.

• CloudWatch alarms use the CapacityProviderReservation metric for capacity providers.
When the CapacityProviderReservation metric is greater than the targetCapacity
value, alarms also increase the DesiredCapacity of the Auto Scaling group. The
targetCapacity value is a capacity provider setting that's sent to the CloudWatch alarm
during the cluster auto scaling activation phase.

The default targetCapacity is 100%.

• The Auto Scaling group launches additional EC2 instances. To prevent over-provisioning,
Auto Scaling makes sure that recently launched EC2 instance capacity is stabilized before
it launches new instances. Auto Scaling checks if all existing instances have passed the
instanceWarmupPeriod (now minus the instance launch time). The scale-out is blocked for
instances that are within the instanceWarmupPeriod.

The default number of seconds for a newly launched instance to warm up is 300.

For more information, see Deep dive on Amazon ECS cluster auto scaling.

Cluster auto scaling 687

https://aws.amazon.com/blogs/containers/deep-dive-on-amazon-ecs-cluster-auto-scaling/

Amazon Elastic Container Service Developer Guide

Scale-out considerations

Consider the following for the scale-out process:

• Although there are multiple placement constraints, we recommend that you only use the
distinctInstance task placement constraint. This prevents the scale-out process from
stopping because you're using a placement constraint that's not compatible with the sampled
instances.

• Managed scaling works best if your Auto Scaling group uses the same or similar instance types.

• When a scale-out process is required and there are no currently running container instances,
Amazon ECS always scales-out to two instances initially, and then performs additional scale-out
or scale-in processes. Any additional scale-out waits for the instance warmup period. For scale-
in processes, Amazon ECS waits 15 minutes after a scale-out process before starting scale-in
processes at all times.

• The second scale-out step needs to wait until the instanceWarmupPeriod expires,
which might affect the overall scale limit. If you need to reduce this time, make sure that
instanceWarmupPeriod is large enough for the EC2 instance to launch and start the Amazon
ECS agent (which prevents over provisioning).

• Cluster auto scaling supports Launch Configuration, Launch Templates, and multiple instance
types in the capacity provider Auto Scaling group. You can also use attribute-based instance type
selection without multiple instances types.

• When using an Auto Scaling group with On-Demand instances and multiple instance types or
Spot Instances, place the larger instance types higher in the priority list and don't specify a
weight. Specifying a weight isn't supported at this time. For more information, see Auto Scaling
groups with multiple instance types in the AWS Auto Scaling User Guide.

• Amazon ECS then launch either the minimumScalingStepSize, if the maximum calculated
instance count is less than the minimum scaling step size, or the lower of either the
maximumScalingStepSize or the maximum calculated instance count value.

• If an Amazon ECS service or run-task launches a task and the capacity provider container
instances don't have enough resources to start the task, then Amazon ECS limits the number of
tasks with this status for each cluster and prevents any tasks from exceeding this limit. For more
information, see Service quotas.

Cluster auto scaling 688

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-mixed-instances-groups.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-mixed-instances-groups.html

Amazon Elastic Container Service Developer Guide

Managed scale-in behavior

Amazon ECS monitors container instances for each capacity provider within a cluster. When a
container instance isn't running any tasks, the container instance is considered empty and Amazon
ECS starts the scale-in process.

CloudWatch scale-in alarms require 15 data points (15 minutes) before the scale-in process for the
Auto Scaling group starts. After the scale-in process starts until Amazon ECS needs to reduce the
number of registered container instances, the Auto Scaling group sets the DesireCapacity value
to be greater than one instance and less than 50% each minute.

When Amazon ECS requests a scale-out (when CapacityProviderReservation is greater than
100) while a scale-in process is in progress, the scale-in process is stopped and starts from the
beginning if required.

The following describes the scale-in behavior in more detail:

1. Amazon ECS calculates the number of container instances that are empty. A container instance is
considered empty even when daemon tasks are running.

2. Amazon ECS sets the CapacityProviderReservation value to a number between 0-100 that
uses the following formula to represent the ratio of how big the Auto Scaling group needs to
be relative to how big it actually is, expressed as a percentage. Then, Amazon ECS publishes the
metric to CloudWatch. For more information about how the metric is calculated, see Deep Dive
on Amazon ECS Cluster Auto Scaling

CapacityProviderReservation = (number of instances needed) / (number of running
 instances) x 100

3. The CapacityProviderReservation metric generates a CloudWatch alarm. This alarm
updates the DesiredCapacity value for the Auto Scaling group. Then, one of the following
actions occurs:

• If you don't use capacity provider managed termination, the Auto Scaling group selects EC2
instances using the Auto Scaling group termination policy and terminates the instances until
the number of EC2 instances reaches the DesiredCapacity. The container instances are
then deregistered from the cluster.

• If all the container instances use managed termination protection, Amazon ECS removes the
scale-in protection on the container instances that are empty. The Auto Scaling group will
then be able to terminate the EC2 instances. The container instances are then deregistered
from the cluster.

Cluster auto scaling 689

https://aws.amazon.com/blogs/containers/deep-dive-on-amazon-ecs-cluster-auto-scaling/
https://aws.amazon.com/blogs/containers/deep-dive-on-amazon-ecs-cluster-auto-scaling/

Amazon Elastic Container Service Developer Guide

Control the instances Amazon ECS terminates

Important

You must turn on Auto Scaling instance scale-in protection on the Auto Scaling group to use
the managed termination protection feature of cluster auto scaling.

Managed termination protection allows cluster auto scaling to control which instances are
terminated. When you used managed termination protection, Amazon ECS only terminates EC2
instances that don't have any running Amazon ECS tasks. Tasks that are run by a service that uses
the DAEMON scheduling strategy are ignored and an instance can be terminated by cluster auto
scaling even when the instance is running these tasks. This is because all of the instances in the
cluster are running these tasks.

Amazon ECS first turns on the instance scale-in protection option for the EC2 instances in the
Auto Scaling group. Then, Amazon ECS places the tasks on the instances. When all non-daemon
tasks are stopped on an instance, Amazon ECS initiates the scale-in process and turns off scale-in
protection for the EC2 instance. The Auto Scaling group can then terminate the instance.

Auto Scaling instance scale-in protection controls which EC2 instances can be terminated by Auto
Scaling. Instances with the scale-in feature turned on can't be terminated during the scale-in
process. For more information about Auto Scaling instance scale-in protection, see Using instance
scale-in protection in the Amazon EC2 Auto Scaling User Guide.

You can set the targetCapacity percentage so that you have spare capacity. This helps future
tasks launch more quickly because the Auto Scaling group does not have to launch more instances.
Amazon ECS uses the target capacity value to manage the CloudWatch metric that the service
creates. Amazon ECS manages the CloudWatch metric. The Auto Scaling group is treated as a
steady state so that no scaling action is required. The values can be from 0-100%. For example, to
configure Amazon ECS to keep 10% free capacity on top of that used by Amazon ECS tasks, set the
target capacity value to 90%. Consider the following when setting the targetCapacity value on
a capacity provider.

• A targetCapacity value of less than 100% represents the amount of free capacity (Amazon
EC2 instances) that need to be present in the cluster. Free capacity means that there are no
running tasks.

Cluster auto scaling 690

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-instance-protection.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-instance-protection.html

Amazon Elastic Container Service Developer Guide

• Placement constraints such as Availability Zones, without additional binpack forces Amazon
ECS to eventually run one task for each instance, which might not be the desired behavior.

You must turn on Auto Scaling instance scale-in protection on the Auto Scaling group to use
managed termination protection. If you don't turn on scale-in protection, then turning on managed
termination protection can lead to undesirable behavior. For example, you may have instances
stuck in draining state. For more information, see Using instance scale-in protection in the Amazon
EC2 Auto Scaling User Guide.

When you use termination protection with a capacity provider, don't perform any manual actions,
like detaching the instance, on the Auto Scaling group associated with the capacity provider.
Manual actions can break the scale-in operation of the capacity provider. If you detach an instance
from the Auto Scaling group, you need to also deregister the detached instance from the Amazon
ECS cluster.

Updating managed termination protection for Amazon ECS capacity providers

When you use managed termination protection, you need to update the setting for existing
capacity providers.

Console

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/

2. In the navigation pane, choose Clusters.

3. Select the cluster that contains the capacity provider you want to update.

4. On the cluster page, select the Capacity Providers tab.

5. Select the capacity provider you want to update.

6. Choose Update to modify the capacity provider settings.

7. Under Auto Scaling group settings, toggle Managed termination protection to enable or
disable the feature.

8. Choose Update to save your changes.

AWS CLI

You can update a capacity provider's managed termination protection setting using the update-
capacity-provider command:

Cluster auto scaling 691

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-instance-protection.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/deregister_container_instance.html
https://console.aws.amazon.com/ecs/

Amazon Elastic Container Service Developer Guide

To enable managed termination protection:

aws ecs update-capacity-provider \
 --capacity-provider CapacityProviderName \
 --auto-scaling-group-provider
 "managedScaling={status=ENABLED,targetCapacity=70,minimumScalingStepSize=1,maximumScalingStepSize=10},managedTerminationProtection=ENABLED"

To disable managed termination protection:

aws ecs update-capacity-provider \
 --capacity-provider CapacityProviderName \
 --auto-scaling-group-provider
 "managedScaling={status=ENABLED,targetCapacity=70,minimumScalingStepSize=1,maximumScalingStepSize=10},managedTerminationProtection=DISABLED"

Note

It may take a few minutes for the changes to take effect across your cluster. When enabling
managed termination protection, instances that are already running tasks will be protected
from scale-in events. When disabling managed termination protection, the protection flag
will be removed from instances during the next ECS capacity provider management cycle.

Turning on Amazon ECS cluster auto scaling

You turn on cluster auto scaling so that Amazon ECS manages the scaling of Amazon EC2 instances
that are registered to your cluster.

If you want to use the console to turn on Cluster auto scaling, see see Creating a capacity provider
for Amazon ECS.

Before you begin, create an Auto Scaling group and a capacity provider. For more information, see
the section called “Capacity providers for the EC2 launch type”.

To turn on cluster auto scaling, you associate the capacity provider with the cluster, Then you turn
on cluster auto scaling.

1. Use the put-cluster-capacity-providers command to associate one or more capacity
providers with the cluster.

Cluster auto scaling 692

Amazon Elastic Container Service Developer Guide

To add the AWS Fargate capacity providers, include the FARGATE and FARGATE_SPOT capacity
providers in the request. For more information, see put-cluster-capacity-providers in
the AWS CLI Command Reference.

aws ecs put-cluster-capacity-providers \
 --cluster ClusterName \
 --capacity-providers CapacityProviderName FARGATE FARGATE_SPOT \
 --default-capacity-provider-strategy capacityProvider=CapacityProvider,weight=1

To add an Auto Scaling group for the EC2 launch type, include the Auto Scaling group name in
the request. For more information, see put-cluster-capacity-providers in the AWS CLI
Command Reference.

aws ecs put-cluster-capacity-providers \
 --cluster ClusterName \
 --capacity-providers CapacityProviderName \
 --default-capacity-provider-strategy capacityProvider=CapacityProvider,weight=1

2. Use the describe-clusters command to verify that the association was successful. For
more information, see describe-clusters in the AWS CLI Command Reference.

aws ecs describe-clusters \
 --cluster ClusterName \
 --include ATTACHMENTS

3. Use the update-capacity-provider command to turn on managed auto scaling for the
capacity provider. For more information, see update-capacity-provider in the AWS CLI
Command Reference.

aws ecs update-capacity-provider \
 --capacity-providers CapacityProviderName \
 --auto-scaling-group-provider managedScaling=ENABLED

Turning off Amazon ECS cluster auto scaling

You turn off cluster auto scaling when you need more granular control of the EC2 instances that
are registered to your cluster,

Cluster auto scaling 693

https://docs.aws.amazon.com/cli/latest/reference/ecs/put-cluster-capacity-providers.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-cluster-capacity-providers.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/describe-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-capacity-provider.html

Amazon Elastic Container Service Developer Guide

To turn off cluster auto scaling for a cluster, you can either disassociate the capacity provider with
managed scaling turned on from the cluster or update the capacity provider to turn off managed
scaling.

Disassociate the capacity provider

Use the following steps to disassociate a capacity provider with a cluster.

1. Use the put-cluster-capacity-providers command to disassociate the Auto Scaling
group capacity provider with the cluster. The cluster can keep the association with the AWS
Fargate capacity providers. For more information, see put-cluster-capacity-providers
in the AWS CLI Command Reference.

aws ecs put-cluster-capacity-providers \
 --cluster ClusterName \
 --capacity-providers FARGATE FARGATE_SPOT \
 --default-capacity-provider-strategy '[]'

Use the put-cluster-capacity-providers command to disassociate the Auto Scaling
group capacity provider with the cluster. For more information, see put-cluster-
capacity-providers in the AWS CLI Command Reference.

aws ecs put-cluster-capacity-providers \
 --cluster ClusterName \
 --capacity-providers [] \
 --default-capacity-provider-strategy '[]'

2. Use the describe-clusters command to verify that the disassociation was successful. For
more information, see describe-clusters in the AWS CLI Command Reference.

aws ecs describe-clusters \
 --cluster ClusterName \
 --include ATTACHMENTS

Turn off managed scaling for the capacity provider

Use the following steps to turn off managed scaling for the capacity provider.

Cluster auto scaling 694

https://docs.aws.amazon.com/cli/latest/reference/ecs/put-cluster-capacity-providers.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-cluster-capacity-providers.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-cluster-capacity-providers.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/describe-clusters.html

Amazon Elastic Container Service Developer Guide

• Use the update-capacity-provider command to turn off managed auto scaling for the
capacity provider. For more information, see update-capacity-provider in the AWS CLI
Command Reference.

aws ecs update-capacity-provider \
 --capacity-providers CapacityProviderName \
 --auto-scaling-group-provider managedScaling=DISABLED

Creating a capacity provider for Amazon ECS

After the cluster creation completes, you can create a new capacity provider (Auto Scaling group)
for the EC2 launch type.Capacity providers help to manage and scale your the infrastructure for
your applications.

Before you create the capacity provider, you need to create an Auto Scaling group. For more
information, see Auto Scaling groups in the Amazon EC2 Auto Scaling User Guide.

To create a capacity provider for the cluster (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the cluster.

4. On the Cluster : name page, choose Infrastructure, and then choose Create.

5. On the Create capacity providers page, configure the following options.

a. Under Basic details, for Capacity provider name, enter a unique capacity provider name.

b. Under Auto Scaling group, for Use an existing Auto Scaling group, choose the Auto
Scaling group.

c. (Optional) To configure a scaling policy, under Scaling policies, configure the following
options.

• To have Amazon ECS manage the scale-in and scale-out actions, select Turn on
managed scaling.

• To prevent EC2 instance with running Amazon ECS tasks from being terminated, select
Turn on scaling protection.

• For Set target capacity, enter the target value for the CloudWatch metric used in the
Amazon ECS-managed target tracking scaling policy.

Cluster auto scaling 695

https://docs.aws.amazon.com/cli/latest/reference/ecs/update-capacity-provider.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

6. Choose Create.

Updating an Amazon ECS capacity provider

When you use an Auto Scaling group as a capacity provider, you can modify the group's scaling
policy.

To update a capacity provider for the cluster (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the cluster.

4. On the Cluster : name page, choose Infrastructure, and then choose Update.

5. On the Create capacity providers page, configure the following options.

• Under Auto Scaling group, under Scaling policies, configure the following options.

• To have Amazon ECS manage the scale-in and scale-out actions, select Turn on
managed scaling.

• To prevent EC2 instances with running Amazon ECS tasks from being terminated, select
Turn on scaling protection.

• For Set target capacity, enter the target value for the CloudWatch metric used in the
Amazon ECS-managed target tracking scaling policy.

6. Choose Update.

Deleting an Amazon ECS capacity provider

If you are finished using an Auto Scaling group capacity provider, you can delete it. After the group
is deleted, the Auto Scaling group capacity provider transitions to the INACTIVE state. Capacity
providers with an INACTIVE status may remain discoverable in your account for a period of time.
However, this behavior is subject to change in the future, so you should not rely on INACTIVE
capacity providers persisting. Before the Auto Scaling group capacity provider is deleted, the
capacity provider must be removed from the capacity provider strategy from all services. You can
use the UpdateService API or the update service workflow in the Amazon ECS console to remove
a capacity provider from a service's capacity provider strategy. Use the Force new deployment

Cluster auto scaling 696

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

option to ensure that any tasks using the Amazon EC2 instance capacity provided by the capacity
provider are transitioned to use the capacity from the remaining capacity providers.

To delete a capacity provider for the cluster (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the cluster.

4. On the Cluster : name page, choose Infrastructure, the Auto Scaling group, and then choose
Delete.

5. In the confirmation box, enter delete Auto Scaling group name

6. Choose Delete.

Safely stop Amazon ECS workloads running on EC2 instances

Managed instance draining facilitates graceful termination of Amazon EC2 instances. This allows
your workloads to stop safely and be rescheduled to non-terminating instances. Infrastructure
maintenance and updates are performed without worrying about disruption to workloads. By
using managed instance draining, you simplify your infrastructure management workflows that
require replacement of Amazon EC2 instances while you ensure resilience and availability of your
applications.

Amazon ECS managed instance draining works with Auto Scaling group instance replacements.
Based on instance refresh and maximum instance lifetime, customers can ensure that they stay
compliant with the latest OS and security mandates for their capacity.

Managed instance draining can only be used with Amazon ECS capacity providers. You can turn on
managed instance draining when you create or update your Auto Scaling group capacity providers
using the Amazon ECS console, AWS CLI, or SDK.

The following events are covered by Amazon ECS managed instance draining.

• Auto Scaling group instance refresh ‐ Use instance refresh to perform rolling replacement of your
Amazon EC2 instances in your Auto Scaling group instead of manually doing it in batches. This
is useful when you need to replace a large number of instances. An instance refresh is initiated
through the Amazon EC2 console or the StartInstanceRefresh API. Make sure you select
Replace for Scale-in protection when calling StartInstanceRefresh if you're using managed
termination protection.

Cluster auto scaling 697

https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/autoscaling/ec2/userguide/asg-instance-refresh.html

Amazon Elastic Container Service Developer Guide

• Maximum instance lifetime ‐ You can define a maximum lifetime when it comes to replacing
Auto Scaling group instances. This is helpful for scheduling replacement instances based on
internal security policies or compliance.

• Auto Scaling group scale-in ‐ Based on scaling policies and scheduled scaling actions, Auto
Scaling group supports automatic scaling of instances. By using an Auto Scaling group as an
Amazon ECS capacity provider, you can scale-in Auto Scaling group instances when no tasks are
running in them.

• Auto Scaling group health checks ‐ Auto Scaling group supports many health checks to manage
termination of unhealthy instances.

• AWS CloudFormation stack updates ‐ You can add an UpdatePolicy attribute to your AWS
CloudFormation stack to perform rolling updates when group changes.

• Spot capacity rebalancing ‐ The Auto Scaling group tries to proactively replace Spot Instances
that have a higher risk of interruption based on Amazon EC2 capacity rebalance notice. The
Auto Scaling group terminates the old instance when the replacement is launched and healthy.
Amazon ECS managed instance draining drains the Spot Instance the same way it drains a non-
Spot Instance.

• Spot interruption ‐ Spot Instances are terminated with a two minute notice. Amazon ECS-
managed instance draining puts the instance in draining state in response.

Amazon EC2 Auto Scaling lifecycle hooks with managed instance draining

Auto Scaling group lifecycle hooks enable customer to create solutions that are triggered by
certain events in the instance lifecycle and perform a custom action when that certain event
occurs. An Auto Scaling group allows for up to 50 hooks. Multiple termination hooks can exist and
are performed in parallel, and Auto Scaling group waits for all hooks to finish before terminating
an instance.

In addition to the Amazon ECS-managed hook termination, you can also configure your own
lifecycle termination hooks. Lifecycle hooks have a default action, and we recommend setting
continue as the default to ensure other hooks, such as the Amazon ECS managed hook, aren't
impacted by any errors from custom hooks.

If you've already configured an Auto Scaling group termination lifecycle hook and also enabled
Amazon ECS managed instance draining, both lifecycle hooks are performed. The relative timings,
however, are not guaranteed. Lifecycle hooks have a default action setting to specify the
action to take when timeout elapses. In case of failures we recommend using continue as

Cluster auto scaling 698

https://docs.aws.amazon.com/autoscaling/ec2/userguide/asg-max-instance-lifetime.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-health-checks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-direct.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-capacity-rebalancing.html

Amazon Elastic Container Service Developer Guide

the default result in your custom hook. This ensures other hooks, particularly the Amazon ECS
managed hooks, aren't impacted by any errors in your custom lifecycle hook. The alternative result
of abandon causes all other hooks to be skipped and should be avoided. For more information
about Auto Scaling group lifecycle hooks see Amazon EC2 Auto Scaling lifecycle hooks in the
Amazon EC2 Auto Scaling User Guide.

Tasks and managed instance draining

Amazon ECS managed instance draining uses the existing draining feature found in container
instances. The container instance draining feature performs replacement and stops for replica tasks
that belong to an Amazon ECS service. A standalone task, like one invoked by RunTask, that is in
the PENDING or RUNNING state remain unaffected. You have to wait for these to either complete
or stop them manually. The container instance remains in the DRAINING state until either all tasks
are stopped or 48 hours has passed. Daemon tasks are the last to stop after all replica tasks have
stopped.

Managed instance draining and managed termination protection

Managed instance draining works even if managed termination is disabled. For information about
managed termination protection, see Control the instances Amazon ECS terminates.

The following table summarizes the behavior for different combinations of managed termination
and managed draining.

Managed termination Managed draining Outcome

Enabled Enabled Amazon
ECS
protects
Amazon
EC2
instances
that are
running
tasks from
being
terminate
d by scale-
in events.

Cluster auto scaling 699

https://docs.aws.amazon.com/autoscaling/ec2/userguide/lifecycle-hooks.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/container-instance-draining.html

Amazon Elastic Container Service Developer Guide

Managed termination Managed draining Outcome

Any
instances
undergoin
g terminati
on, such as
those that
don't have
terminati
on
protectio
n set, have
received
Spot
interrupt
ion, or are
forced by
instance
refresh are
gracefully
drained.

Cluster auto scaling 700

Amazon Elastic Container Service Developer Guide

Managed termination Managed draining Outcome

Disabled Enabled Amazon
ECS
doesn't
protect
Amazon
EC2
instances
running
tasks from
being
scaled-in.
However,
any
instances
that are
being
terminate
d are
gracefully
drained.

Cluster auto scaling 701

Amazon Elastic Container Service Developer Guide

Managed termination Managed draining Outcome

Enabled Disabled Amazon
ECS
protects
Amazon
EC2
instances
that are
running
tasks from
being
terminate
d by scale-
in events.
However,
instances
can
still get
terminate
d by Spot
interrupt
ion or
forced
instance
refresh,
or if they
aren't
running
any tasks.
Amazon
ECS
doesn't
perform
graceful
draining

Cluster auto scaling 702

Amazon Elastic Container Service Developer Guide

Managed termination Managed draining Outcome

for these
instances
, and
launches
replaceme
nt service
tasks after
they stop.

Disabled Disabled Amazon
EC2
instances
can be
scaled-
in or
terminate
d at any
time, even
if they are
running
Amazon
ECS tasks.
Amazon
ECS will
launch
replaceme
nt service
tasks after
they stop.

Managed instance draining and Spot Instance draining

With Spot Instance draining, you can set an environment variable
ECS_ENABLE_SPOT_INSTANCE_DRAINING on the Amazon ECS agent which enables Amazon
ECS to place an instance in the draining status in response to the two-minute Spot interruption.

Cluster auto scaling 703

Amazon Elastic Container Service Developer Guide

Amazon ECS managed instance draining facilitates graceful shutdown of Amazon EC2 instances
undergoing termination due to many reasons, not just Spot interruption. For instance, you can use
Amazon EC2 Auto Scaling capacity rebalancing to proactively replace Spot Instance at elevated
risk of interruption, and managed instance draining performs graceful shutdown of Spot Instance
being replaced. When you use managed instance draining, you don't need to enable Spot instance
draining separately, so ECS_ENABLE_SPOT_INSTANCE_DRAINING in Auto Scaling group user data
is redundant. For more information about Spot Instance draining, see Spot Instances.

How managed instance draining works with EventBridge

Amazon ECS managed instance draining events are published to Amazon EventBridge, and Amazon
ECS creates an EventBridge managed rule in your account’s default bus to support managed
instance draining. You can filter these events to other AWS services like Lambda, Amazon SNS, and
Amazon SQS to monitor and troubleshoot.

• Amazon EC2 Auto Scaling sends an event to EventBridge when a lifecycle hook is invoked.

• Spot interruption notices are published to EventBridge.

• Amazon ECS generates error messages that you can retrieve through the Amazon ECS console
and APIs.

• EventBridge has retry mechanisms built in as mitigations for temporary failures.

Configuring Amazon ECS capacity providers to safely shut down instances

You can turn on managed instance draining when you create or update your Auto Scaling group
capacity providers using the Amazon ECS console and AWS CLI.

Note

Managed instance draining is on by default when you create a capacity provider.

The following are examples using the AWS CLI for creating a capacity provider with managed
instance draining enabled and enabling managed instance draining for a cluster's existing capacity
provider.

Create a capacity provider with managed instance draining enabled

To create a capacity provider with managed instance draining enabled, use the create-
capacity-provider command. Set the managedDraining parameter to ENABLED.

Cluster auto scaling 704

Amazon Elastic Container Service Developer Guide

aws ecs create-capacity-provider \
--name capacity-provider \
--auto-scaling-group-provider '{
 "autoScalingGroupArn": "asg-arn",
 "managedScaling": {
 "status": "ENABLED",
 "targetCapacity": 100,
 "minimumScalingStepSize": 1,
 "maximumScalingStepSize": 1
 },
 "managedDraining": "ENABLED",
 "managedTerminationProtection": "ENABLED",
}'

Response:

{
 "capacityProvider": {
 "capacityProviderArn": "capacity-provider-arn",
 "name": "capacity-provider",
 "status": "ACTIVE",
 "autoScalingGroupProvider": {
 "autoScalingGroupArn": "asg-arn",
 "managedScaling": {
 "status": "ENABLED",
 "targetCapacity": 100,
 "minimumScalingStepSize": 1,
 "maximumScalingStepSize": 1
 },
 "managedTerminationProtection": "ENABLED"
 "managedDraining": "ENABLED"
 }
 }
}

Enable managed instance draining for a cluster's existing capacity provider

Enable managed instance draining for a cluster's existing capacity provider uses the update-
capacity-provider command. You see that managedDraining currently says DISABLED and
updateStatus says UPDATE_IN_PROGRESS.

aws ecs update-capacity-provider \

Cluster auto scaling 705

Amazon Elastic Container Service Developer Guide

--name cp-draining \
--auto-scaling-group-provider '{
 "managedDraining": "ENABLED"
}

Response:

{
 "capacityProvider": {
 "capacityProviderArn": "cp-draining-arn",
 "name": "cp-draining",
 "status": "ACTIVE",
 "autoScalingGroupProvider": {
 "autoScalingGroupArn": "asg-draining-arn",
 "managedScaling": {
 "status": "ENABLED",
 "targetCapacity": 100,
 "minimumScalingStepSize": 1,
 "maximumScalingStepSize": 1,
 "instanceWarmupPeriod": 300
 },
 "managedTerminationProtection": "DISABLED",
 "managedDraining": "DISABLED" // before update
 },
 "updateStatus": "UPDATE_IN_PROGRESS", // in progress and need describe again to
 find out the result
 "tags": [
]
 }
}

Use the describe-clusters command and include ATTACHMENTS. The status of the managed
instance draining attachment is PRECREATED, and the overall attachmentsStatus is UPDATING.

aws ecs describe-clusters --clusters cluster-name --include ATTACHMENTS

Response:

{
 "clusters": [
 {

Cluster auto scaling 706

Amazon Elastic Container Service Developer Guide

 ...

 "capacityProviders": [
 "cp-draining"
],
 "defaultCapacityProviderStrategy": [],
 "attachments": [
 # new precreated managed draining attachment
 {
 "id": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "type": "managed_draining",
 "status": "PRECREATED",
 "details": [
 {
 "name": "capacityProviderName",
 "value": "cp-draining"
 },
 {
 "name": "autoScalingLifecycleHookName",
 "value": "ecs-managed-draining-termination-hook"
 }
]
 },

 ...

],
 "attachmentsStatus": "UPDATING"
 }
],
 "failures": []
}

When the update is finished, use describe-capacity-providers, and you see
managedDraining is now ENABLED.

aws ecs describe-capacity-providers --capacity-providers cp-draining

Response:

{
 "capacityProviders": [
 {

Cluster auto scaling 707

Amazon Elastic Container Service Developer Guide

 "capacityProviderArn": "cp-draining-arn",
 "name": "cp-draining",
 "status": "ACTIVE",
 "autoScalingGroupProvider": {
 "autoScalingGroupArn": "asg-draning-arn",
 "managedScaling": {
 "status": "ENABLED",
 "targetCapacity": 100,
 "minimumScalingStepSize": 1,
 "maximumScalingStepSize": 1,
 "instanceWarmupPeriod": 300
 },
 "managedTerminationProtection": "DISABLED",
 "managedDraining": "ENABLED" // successfully update
 },
 "updateStatus": "UPDATE_COMPLETE",
 "tags": []
 }
]
}

Amazon ECS Managed instance draining troubleshooting

You might need to troubleshoot issues with managed instance draining. The following is an
example of an issue and resolution you may come across while using it.

Instances don't terminate after exceeding maximum instance lifetime when using auto scaling.

If your instances aren't terminating even after reaching and exceeding the maximum instance
lifetime while using an auto scaling group, it may be because they're protected from scale-in. You
can turn off managed termination and allow managed draining to handle instance recycling.

Creating resources for Amazon ECS cluster auto scaling using the AWS
Management Console

Learn how to create the resources for cluster auto scaling using the AWS Management Console.
Where resources require a name, we use the prefix ConsoleTutorial to ensure they all have
unique names and to make them easy to locate.

Topics

• Prerequisites

Cluster auto scaling 708

Amazon Elastic Container Service Developer Guide

• Step 1: Create an Amazon ECS cluster

• Step 2: Register a task definition

• Step 3: Run a task

• Step 4: Verify

• Step 5: Clean up

Prerequisites

This tutorial assumes that the following prerequisites have been completed:

• The steps in Set up to use Amazon ECS have been completed.

• Your IAM user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• The Amazon ECS container instance IAM role is created. For more information, see Amazon ECS
container instance IAM role.

• The Amazon ECS service-linked IAM role is created. For more information, see Using service-
linked roles for Amazon ECS.

• The Auto Scaling service-linked IAM role is created. For more information, see Service-Linked
Roles for Amazon EC2 Auto Scaling in the Amazon EC2 Auto Scaling User Guide.

• You have a VPC and security group created to use. For more information, see the section called
“Create a virtual private cloud”.

Step 1: Create an Amazon ECS cluster

Use the following steps to create an Amazon ECS cluster.

Amazon ECS creates an Amazon EC2 Auto Scaling launch template and Auto Scaling group on your
behalf as part of the AWS CloudFormation stack.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters, and then choose Create cluster.

3. Under Cluster configuration, for Cluster name, enter ConsoleTutorial-cluster.

4. Under Infrastructure, clear AWS Fargate (serverless), and then select Amazon EC2 instances.
Next, configure the Auto Scaling group which acts as the capacity provider.

Cluster auto scaling 709

https://docs.aws.amazon.com/autoscaling/ec2/userguide/autoscaling-service-linked-role.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/autoscaling-service-linked-role.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

• Under Auto Scaling group (ASG) . Select Create new ASG, and then provide the
following details about the group:

• For Operating system/Architecture, choose Amazon Linux 2.

• For EC2 instance type, choose t3.nano.

• For Capacity, enter the minimum number and the maximum number of instances to
launch in the Auto Scaling group.

5. (Optional) To manage the cluster tags, expand Tags, and then perform one of the following
operations:

[Add a tag] Choose Add tag and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

[Remove a tag] Choose Remove to the right of the tag’s Key and Value.

6. Choose Create.

Step 2: Register a task definition

Before you can run a task on your cluster, you must register a task definition. Task definitions are
lists of containers grouped together. The following example is a simple task definition that uses
an amazonlinux image from Docker Hub and simply sleeps. For more information about the
available task definition parameters, see Amazon ECS task definitions.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. Choose Create new task definition, Create new task definition with JSON.

4. In the JSON editor box, paste the following contents.

{
 "family": "ConsoleTutorial-taskdef",
 "containerDefinitions": [
 {
 "name": "sleep",
 "image": "public.ecr.aws/amazonlinux/amazonlinux:latest",

Cluster auto scaling 710

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

 "memory": 20,
 "essential": true,
 "command": [
 "sh",
 "-c",
 "sleep infinity"
]
 }
],
 "requiresCompatibilities": [
 "EC2"
]
}

5. Choose Create.

Step 3: Run a task

After you have registered a task definition for your account, you can run a task in the cluster. For
this tutorial, you run five instances of the ConsoleTutorial-taskdef task definition in your
ConsoleTutorial-cluster cluster.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, choose ConsoleTutorial-cluster.

3. Under Tasks, choose Run new task.

4. In the Environment section, under Compute options, choose Capacity provider strategy.

5. Under Deployment configuration, for Application type, choose Task.

6. Choose ConsoleTutorial-taskdef from the Family dropdown list.

7. Under Desired tasks, enter 5.

8. Choose Create.

Step 4: Verify

At this point in the tutorial, you should have a cluster with five tasks running and an Auto Scaling
group with a capacity provider. The capacity provider has Amazon ECS managed scaling enabled.

We can verify that everything is working properly by viewing the CloudWatch metrics, the Auto
Scaling group settings, and finally the Amazon ECS cluster task count.

Cluster auto scaling 711

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

To view the CloudWatch metrics for your cluster

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. On the navigation bar at the top of the screen, select the Region.

3. On the navigation pane, under Metrics, choose All metrics.

4. On the All metrics page, under the Browse tab, choose AWS/ECS/ManagedScaling.

5. Choose CapacityProviderName, ClusterName.

6. Select the check box that corresponds to the ConsoleTutorial-cluster ClusterName.

7. Under the Graphed metrics tab, change Period to 30 seconds and Statistic to Maximum.

The value displayed in the graph shows the target capacity value for the capacity provider. It
should begin at 100, which was the target capacity percent we set. You should see it scale up
to 200, which will trigger an alarm for the target tracking scaling policy. The alarm will then
trigger the Auto Scaling group to scale out.

Use the following steps to view your Auto Scaling group details to confirm that the scale-out
action occurred.

To verify the Auto Scaling group scaled out

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. On the navigation bar at the top of the screen, select the Region.

3. On the navigation pane, under Auto Scaling, choose Auto Scaling Groups.

4. Choose the ConsoleTutorial-cluster Auto Scaling group created in this tutorial. View the
value under Desired capacity and view the instances under the Instance management tab to
confirm your group scaled out to two instances.

Use the following steps to view your Amazon ECS cluster to confirm that the Amazon EC2 instances
were registered with the cluster and your tasks transitioned to a RUNNING status.

To verify the instances in the Auto Scaling group

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the ConsoleTutorial-cluster cluster.

Cluster auto scaling 712

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

4. On the Tasks tab, confirm you see five tasks in the RUNNING status.

Step 5: Clean up

When you have finished this tutorial, clean up the resources associated with it to avoid incurring
charges for resources that you aren't using. Deleting capacity providers and task definitions are not
supported, but there is no cost associated with these resources.

To clean up the tutorial resources

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose ConsoleTutorial-cluster.

4. On the ConsoleTutorial-cluster page, choose the Tasks tab, and then choose Stop, Stop all.

5. In the navigation pane, choose Clusters.

6. On the Clusters page, choose ConsoleTutorial-cluster.

7. In the upper-right of the page, choose Delete cluster.

8. In the confirmation box, enter delete ConsoleTutorial-cluster and choose Delete.

9. Delete the Auto Scaling groups using the following steps.

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

b. On the navigation bar at the top of the screen, select the Region.

c. On the navigation pane, under Auto Scaling, choose Auto Scaling Groups.

d. Select the ConsoleTutorial-cluster Auto Scaling group, then choose Actions.

e. From the Actions menu, choose Delete. Enter delete in the confirmation box and then
choose Delete.

Amazon EC2 container instances for Amazon ECS

An Amazon ECS container instance is an Amazon EC2 instance that run the Amazon ECS container
agent and is registered to a cluster. When you run tasks with Amazon ECS using the EC2 launch
type, External launch type or an Auto Scaling group capacity provider, your tasks are placed on
your active container instances. You are responsible for the container instance management and
maintenance.

Amazon EC2 container instances 713

https://console.aws.amazon.com/ecs/v2
https://console.aws.amazon.com/ec2/

Amazon Elastic Container Service Developer Guide

Although you can create your own Amazon EC2 instance AMI that meets the basic specifications
needed to run your containerized workloads on Amazon ECS, the Amazon ECS-optimized AMIs are
preconfigured and tested on Amazon ECS by AWS engineers. It is the simplest way for you to get
started and to get your containers running on AWS quickly.

When you create a cluster using the console, Amazon ECS creates a launch template for your
instances with the latest AMI associated with the selected operating system.

When you use AWS CloudFormation to create a cluster, the SSM parameter is part of the Amazon
EC2 launch template for the Auto Scaling group instances. You can configure the template to use
a dynamic Systems Manager parameter to determine what Amazon ECS Optimized AMI to deploy.
This parameter ensures that each time you deploy the stack it will check to see if there is available
update that needs to be applied to the EC2 instances. For an example of how to use the Systems
Manager parameter, see Create an Amazon ECS cluster with the Amazon ECS-optimized Amazon
Linux 2023 AMI in the AWS CloudFormation User Guide.

• Retrieving Amazon ECS-optimized Linux AMI metadata

• Retrieving Amazon ECS-optimized Bottlerocket AMI metadata

• Retrieving Amazon ECS-optimized Windows AMI metadata

You can choose from the instance types that are compatible with your application. With larger
instances, you can launch more tasks at the same time. With smaller instances, you can scale out in
a more fine-grained way to save costs. You don't need to choose a single Amazon EC2 instance type
that to fit all the applications in your cluster. Instead, you can create multiple Auto Scaling groups
where each group has a different instance type. Then, you can create an Amazon EC2 capacity
provider for each one of these groups.

Use the following guidelines to determine the instance family types and instance type to use:

• Eliminate the instance types or instance families that don't meet the specific requirements of
your application. For example, if your application requires a GPU, you can exclude any instance
types that don't have a GPU.

• Consider requirements including network throughput and storage.

• Consider the CPU and memory. As a general rule, the CPU and memory must be large enough to
hold at least one replica of the task that you want to run.

Amazon EC2 container instances 714

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-cluster.html#aws-resource-ecs-cluster--examples--Create_an_cluster_with_the_Amazon_Linux_2023_ECS-Optimized-AMI
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-cluster.html#aws-resource-ecs-cluster--examples--Create_an_cluster_with_the_Amazon_Linux_2023_ECS-Optimized-AMI

Amazon Elastic Container Service Developer Guide

Spot Instances

Spot capacity can provide significant cost savings over on-demand instances. Spot capacity is
excess capacity that's priced significantly lower than on-demand or reserved capacity. Spot capacity
is suitable for batch processing and machine-learning workloads, and development and staging
environments. More generally, it's suitable for any workload that tolerates temporary downtime.

Understand that the following consequences because Spot capacity might not be available all the
time.

• During periods of extremely high demand, Spot capacity might be unavailable. This can cause
Amazon EC2 Spot instance launches to be delayed. In these events, Amazon ECS services retry
launching tasks, and Amazon EC2 Auto Scaling groups also retry launching instances, until the
required capacity becomes available. Amazon EC2 doesn't replace Spot capacity with on-demand
capacity.

• When the overall demand for capacity increases, Spot Instances and tasks might be terminated
with only a two-minute warning. After the warning is sent, tasks should begin an orderly
shutdown if necessary before the instance is fully terminated. This helps minimize the possibility
of errors. For more information about a graceful shutdown, see Graceful shutdowns with ECS.

To help minimize Spot capacity shortages, consider the following recommendations:

• Use multiple Regions and Availability Zones - Spot capacity varies by Region and Availability
Zone. You can improve Spot availability by running your workloads in multiple Regions and
Availability Zones. If possible, specify subnets in all the Availability Zones in the Regions where
you run your tasks and instances.

• Use multiple Amazon EC2 instance types - When you use Mixed Instance Policies with Amazon
EC2 Auto Scaling, multiple instance types are launched into your Auto Scaling Group. This
ensures that a request for Spot capacity can be fulfilled when needed. To maximize reliability
and minimize complexity, use instance types with roughly the same amount of CPU and memory
in your Mixed Instances Policy. These instances can be from a different generation, or variants of
the same base instance type. Note that they might come with additional features that you might
not require. An example of such a list could include m4.large, m5.large, m5a.large, m5d.large,
m5n.large, m5dn.large, and m5ad.large. For more information, see Auto Scaling groups with
multiple instance types and purchase options in the Amazon EC2 Auto Scaling User Guide.

• Use the capacity-optimized Spot allocation strategy - With Amazon EC2 Spot, you can choose
between the capacity- and cost-optimized allocation strategies. If you choose the capacity-

Amazon EC2 container instances 715

https://aws.amazon.com/blogs/containers/graceful-shutdowns-with-ecs/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-mixed-instances-groups.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-mixed-instances-groups.html

Amazon Elastic Container Service Developer Guide

optimized strategy when launching a new instance, Amazon EC2 Spot selects the instance type
with the greatest availability in the selected Availability Zone. This helps reduce the possibility
that the instance is terminated soon after it launches.

For information about how to configure spot termination notices on your container instances, see:

• Configuring Amazon ECS Linux container instances to receive Spot Instance notices

• Configuring Amazon ECS Windows container instances to receive Spot Instance notices

Amazon ECS-optimized Linux AMIs

Amazon ECS provides the Amazon ECS-optimized AMIs that are preconfigured with the
requirements and recommendations to run your container workloads. We recommend that you
use the Amazon ECS-optimized Amazon Linux 2023 AMI for your Amazon EC2 instances unless
your application requires Amazon EC2 GPU-based instances, a specific operating system or a
Docker version that is not yet available in that AMI. For information about the Amazon Linux 2
and Amazon Linux 2023 instances, see Comparing Amazon Linux 2 and Amazon Linux 2023 in the
Amazon Linux 2023 User Guide. Launching your container instances from the most recent Amazon
ECS-Optimized AMI ensures that you receive the current security updates and container agent
version. For information about how to launch an instance, see Launching an Amazon ECS Linux
container instance.

When you create a cluster using the console, Amazon ECS creates a launch template for your
instances with the latest AMI associated with the selected operating system.

When you use AWS CloudFormation to create a cluster, the SSM parameter is part of the Amazon
EC2 launch template for the Auto Scaling group instances. You can configure the template to use
a dynamic Systems Manager parameter to determine what Amazon ECS Optimized AMI to deploy.
This parameter ensures that each time you deploy the stack it will check to see if there is available
update that needs to be applied to the EC2 instances. For an example of how to use the Systems
Manager parameter, see Create an Amazon ECS cluster with the Amazon ECS-optimized Amazon
Linux 2023 AMI in the AWS CloudFormation User Guide.

If you need to customize the Amazon ECS-optimized AMI, see Amazon ECS Optimized AMI Build
Recipes on GitHub.

Amazon EC2 container instances 716

https://docs.aws.amazon.com/linux/al2023/ug/compare-with-al2.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-cluster.html#aws-resource-ecs-cluster--examples--Create_an_cluster_with_the_Amazon_Linux_2023_ECS-Optimized-AMI
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-cluster.html#aws-resource-ecs-cluster--examples--Create_an_cluster_with_the_Amazon_Linux_2023_ECS-Optimized-AMI
https://github.com/aws/amazon-ecs-ami
https://github.com/aws/amazon-ecs-ami

Amazon Elastic Container Service Developer Guide

The Linux variants of the Amazon ECS-optimized AMI use the Amazon Linux 2 AMI as their base.
The Amazon Linux 2 AMI release notes are available as well. For more information, see Amazon
Linux 2 release notes.

We recommend that you use an AMI with Linux kernel 5.10 because Linux kernel 4.14 reached end-
of-life on January 10, 2024.

The following variants of the Amazon ECS-optimized AMI are available for your Amazon EC2
instances with the Amazon Linux 2023 operating system.

Operating system AMI Description Storage configura
tion

Amazon Linux 2023 Amazon ECS-optim
ized Amazon Linux
2023 AMI

Amazon Linux 2023
is the next generatio
n of Amazon Linux
from AWS. For most
cases, recommend
ed for launching
your Amazon
EC2 instances for
your Amazon ECS
workloads. For more
information, see
What is Amazon
Linux 2023 in the
Amazon Linux 2023
User Guide.

By default, the
Amazon ECS-optim
ized Amazon Linux
2023 AMI ships with
a single 30-GiB root
volume. You can
modify the 30-GiB
root volume size
at launch time to
increase the available
storage on your
container instance.
This storage is used
for the operating
system and for
Docker images and
metadata.

The default filesyste
m for the Amazon
ECS-optimized
Amazon Linux 2023
AMI is xfs, and
Docker uses the
overlay2 storage

Amazon EC2 container instances 717

https://docs.aws.amazon.com/AL2/latest/relnotes/relnotes-al2.html
https://docs.aws.amazon.com/AL2/latest/relnotes/relnotes-al2.html
https://docs.aws.amazon.com/linux/al2023/ug/what-is-amazon-linux.html
https://docs.aws.amazon.com/linux/al2023/ug/what-is-amazon-linux.html

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

driver. For more
information, see
Use the OverlayFS
storage driver in the
Docker documenta
tion.

Amazon EC2 container instances 718

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/
https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Amazon Linux 2023
(arm64)

Amazon ECS-optim
ized Amazon Linux
2023 (arm64) AMI

Based on Amazon
Linux 2023, this AMI
is recommended for
use when launching
 your Amazon EC2
instances, which
are powered by
Arm-based AWS
Graviton/Graviton 2/
Graviton 3/Gravito
n 4 Processors, for
your Amazon ECS
workloads. For more
information, see
Specifications for the
Amazon EC2 general
purpose instances
 in the Amazon EC2
Instance Types guide.

By default, the
Amazon ECS-optim
ized Amazon Linux
2023 AMI ships with
a single 30-GiB root
volume. You can
modify the 30-GiB
root volume size
at launch time to
increase the available
storage on your
container instance.
This storage is used
for the operating
system and for
Docker images and
metadata.

The default filesyste
m for the Amazon
ECS-optimized
Amazon Linux 2023
AMI is xfs, and
Docker uses the
overlay2 storage
driver. For more
information, see
Use the OverlayFS
storage driver in the
Docker documenta
tion.

Amazon EC2 container instances 719

https://docs.aws.amazon.com/ec2/latest/instancetypes/gp.html
https://docs.aws.amazon.com/ec2/latest/instancetypes/gp.html
https://docs.aws.amazon.com/ec2/latest/instancetypes/gp.html
https://docs.aws.amazon.com/ec2/latest/instancetypes/gp.html
https://docs.docker.com/engine/storage/drivers/overlayfs-driver/
https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Amazon Linux 2023
(Neuron)

Amazon ECS-optim
ized Amazon Linux
2023 AMI

Based on Amazon
Linux 2023, this
AMIis for Amazon
EC2 Inf1, Trn1 or
Inf2 instances. It
comes pre-configured
with AWS Inferenti
a and AWS Trainium
drivers and the AWS
Neuron runtime for
Docker which makes
running machine
learning inference
workloads easier on
Amazon ECS. For
more information,
see Amazon ECS task
definitions for AWS
Neuron machine
learning workloads.

The Amazon ECS-
optimized Amazon
Linux 2023 (Neuron)
AMI does not come
with the AWS CLI
preinstalled.

By default, the
Amazon ECS-optim
ized Amazon Linux
2023 AMI ships with
a single 30-GiB root
volume. You can
modify the 30-GiB
root volume size
at launch time to
increase the available
storage on your
container instance.
This storage is used
for the operating
system and for
Docker images and
metadata.

The default filesyste
m for the Amazon
ECS-optimized
Amazon Linux 2023
AMI is xfs, and
Docker uses the
overlay2 storage
driver. For more
information, see
Use the OverlayFS
storage driver in the
Docker documenta
tion.

Amazon EC2 container instances 720

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/
https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Amazon Linux 2023
GPU

Amazon ECS
optimized Amazon
Linux 2023 GPU AMI

Based on Amazon
Linux 2023, this AMI
is recommended for
use when launching
 your Amazon EC2
GPU-based instances
for your Amazon
ECS workloads. It
comes pre-confi
gured with NVIDIA
kernel drivers and a
Docker GPU runtime
which makes running
workloads that take
advantage of GPUs
on Amazon ECS. For
more information,
see Amazon ECS task
definitions for GPU
workloads.

By default, the
Amazon ECS-optim
ized Amazon Linux
2023 AMI ships with
a single 30-GiB root
volume. You can
modify the 30-GiB
root volume size
at launch time to
increase the available
storage on your
container instance.
This storage is used
for the operating
system and for
Docker images and
metadata.

The default filesyste
m for the Amazon
ECS-optimized
Amazon Linux 2023
AMI is xfs, and
Docker uses the
overlay2 storage
driver. For more
information, see
Use the OverlayFS
storage driver in the
Docker documenta
tion.

Amazon EC2 container instances 721

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/
https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

The following variants of the Amazon ECS-optimized AMI are available for your Amazon EC2
instances with the Amazon Linux 2 operating system.

Operating system AMI Description Storage configura
tion

Amazon Linux 2 Amazon ECS-optim
ized Amazon Linux 2
kernel 5.10 AMI

Based on Amazon
Linux 2, this AMI
is for use when
launching your
Amazon EC2
instances and you
want to use Linux
kernel 5.10 instead
of kernel 4.14 for
your Amazon ECS
workloads. The
Amazon ECS-optim
ized Amazon Linux 2
kernel 5.10 AMI does
not come with the
AWS CLI preinstalled.

By default, the
Amazon Linux 2-
based Amazon ECS-
optimized AMIs
(Amazon ECS-optim
ized Amazon Linux
2 AMI, Amazon ECS-
optimized Amazon
Linux 2 (arm64) AMI,
and Amazon ECS
GPU-optimized AMI)
ship with a single
30-GiB root volume.
You can modify the
30-GiB root volume
size at launch time to
increase the available
 storage on your
container instance.
This storage is used
for the operating
 system and for
Docker images and
metadata.

The default filesyste
m for the Amazon
ECS-optimized
Amazon Linux 2 AMI
is xfs, and Docker
uses the overlay2

Amazon EC2 container instances 722

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

storage driver. For
more informati
on, see Use the
OverlayFS storage
driver in the Docker
documentation.

Amazon EC2 container instances 723

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/
https://docs.docker.com/engine/storage/drivers/overlayfs-driver/
https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Amazon Linux 2 Amazon ECS-optim
ized Amazon Linux 2
AMI

This is for your
Amazon ECS
workloads. The
Amazon ECS-optim
ized Amazon Linux 2
AMI does not come
with the AWS CLI
preinstalled.

By default, the
Amazon Linux 2-
based Amazon ECS-
optimized AMIs
(Amazon ECS-optim
ized Amazon Linux
2 AMI, Amazon ECS-
optimized Amazon
Linux 2 (arm64) AMI,
and Amazon ECS
GPU-optimized AMI)
ship with a single
30-GiB root volume.
You can modify the
30-GiB root volume
size at launch time to
increase the available
 storage on your
container instance.
This storage is used
for the operating
 system and for
Docker images and
metadata.

The default filesyste
m for the Amazon
ECS-optimized
Amazon Linux 2 AMI
is xfs, and Docker
uses the overlay2
storage driver. For
more informati
on, see Use the

Amazon EC2 container instances 724

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

OverlayFS storage
driver in the Docker
documentation.

Amazon EC2 container instances 725

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/
https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Amazon Linux 2
(arm64)

Amazon ECS-optim
ized Amazon Linux 2
kernel 5.10 (arm64)
AMI

Based on Amazon
Linux 2, this AMI is
for your Amazon
EC2 instances, which
are powered by
Arm-based AWS
Graviton/Graviton 2/
Graviton 3/Gravito
n 4 Processors, and
you want to use Linux
kernel 5.10 instead
of Linux kernel 4.14
for your Amazon
ECS workloads. For
more information,
see Specifications for
Amazon EC2 general
purpose instances
 in the Amazon EC2
Instance Types guide.

The Amazon ECS-
optimized Amazon
Linux 2 (arm64) AMI
does not come with
the AWS CLI preinstal
led.

By default, the
Amazon Linux 2-
based Amazon ECS-
optimized AMIs
(Amazon ECS-optim
ized Amazon Linux
2 AMI, Amazon ECS-
optimized Amazon
Linux 2 (arm64) AMI,
and Amazon ECS
GPU-optimized AMI)
ship with a single
30-GiB root volume.
You can modify the
30-GiB root volume
size at launch time to
increase the available
 storage on your
container instance.
This storage is used
for the operating
 system and for
Docker images and
metadata.

The default filesyste
m for the Amazon
ECS-optimized
Amazon Linux 2 AMI
is xfs, and Docker
uses the overlay2
storage driver. For
more informati
on, see Use the

Amazon EC2 container instances 726

https://docs.aws.amazon.com/ec2/latest/instancetypes/gp.html
https://docs.aws.amazon.com/ec2/latest/instancetypes/gp.html
https://docs.aws.amazon.com/ec2/latest/instancetypes/gp.html
https://docs.aws.amazon.com/ec2/latest/instancetypes/gp.html
https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

OverlayFS storage
driver in the Docker
documentation.

Amazon EC2 container instances 727

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/
https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Amazon Linux 2
(arm64)

Amazon ECS-optim
ized Amazon Linux 2
(arm64) AMI

Based on Amazon
Linux 2, this AMI
is for use when
launching your
Amazon EC2
instances, which
are powered by
Arm-based AWS
Graviton/Graviton 2/
Graviton 3/Gravito
n 4 Processors, for
your Amazon ECS
workloads.

The Amazon ECS-
optimized Amazon
Linux 2 (arm64) AMI
does not come with
the AWS CLI preinstal
led.

By default, the
Amazon Linux 2-
based Amazon ECS-
optimized AMIs
(Amazon ECS-optim
ized Amazon Linux
2 AMI, Amazon ECS-
optimized Amazon
Linux 2 (arm64) AMI,
and Amazon ECS
GPU-optimized AMI)
ship with a single
30-GiB root volume.
You can modify the
30-GiB root volume
size at launch time to
increase the available
 storage on your
container instance.
This storage is used
for the operating
 system and for
Docker images and
metadata.

The default filesyste
m for the Amazon
ECS-optimized
Amazon Linux 2 AMI
is xfs, and Docker
uses the overlay2
storage driver. For
more informati
on, see Use the

Amazon EC2 container instances 728

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

OverlayFS storage
driver in the Docker
documentation.

Amazon EC2 container instances 729

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/
https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Amazon Linux 2
(GPU)

Amazon ECS GPU-
optimized kernel
5.10 AMI

Based on Amazon
Linux 2, this AMI is
recommended for
use when launching
your Amazon EC2
GPU-based instances
with Linux kernel
5.10 for your Amazon
ECS workloads. It
comes pre-confi
gured with NVIDIA
kernel drivers and a
Docker GPU runtime
which makes running
workloads that take
advantage of GPUs
on Amazon ECS. For
more information,
see Amazon ECS task
definitions for GPU
workloads.

By default, the
Amazon Linux 2-
based Amazon ECS-
optimized AMIs
(Amazon ECS-optim
ized Amazon Linux
2 AMI, Amazon ECS-
optimized Amazon
Linux 2 (arm64) AMI,
and Amazon ECS
GPU-optimized AMI)
ship with a single
30-GiB root volume.
You can modify the
30-GiB root volume
size at launch time to
increase the available
 storage on your
container instance.
This storage is used
for the operating
 system and for
Docker images and
metadata.

The default filesyste
m for the Amazon
ECS-optimized
Amazon Linux 2 AMI
is xfs, and Docker
uses the overlay2
storage driver. For
more informati
on, see Use the

Amazon EC2 container instances 730

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

OverlayFS storage
driver in the Docker
documentation.

Amazon EC2 container instances 731

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/
https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Amazon Linux 2
(GPU)

Amazon ECS GPU-
optimized AMI

Based on Amazon
Linux 2, this AMI is
recommended for
use when launching
your Amazon EC2
GPU-based instances
with Linux kernel
4.14 for your Amazon
ECS workloads. It
comes pre-confi
gured with NVIDIA
kernel drivers and a
Docker GPU runtime
which makes running
workloads that take
advantage of GPUs
on Amazon ECS. For
more information,
see Amazon ECS task
definitions for GPU
workloads.

By default, the
Amazon Linux 2-
based Amazon ECS-
optimized AMIs
(Amazon ECS-optim
ized Amazon Linux
2 AMI, Amazon ECS-
optimized Amazon
Linux 2 (arm64) AMI,
and Amazon ECS
GPU-optimized AMI)
ship with a single
30-GiB root volume.
You can modify the
30-GiB root volume
size at launch time to
increase the available
 storage on your
container instance.
This storage is used
for the operating
 system and for
Docker images and
metadata.

The default filesyste
m for the Amazon
ECS-optimized
Amazon Linux 2 AMI
is xfs, and Docker
uses the overlay2
storage driver. For
more informati
on, see Use the

Amazon EC2 container instances 732

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

OverlayFS storage
driver in the Docker
documentation.

Amazon EC2 container instances 733

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/
https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Amazon Linux 2
(Neuron)

Amazon ECS
optimized Amazon
Linux 2 (Neuron)
kernel 5.10 AMI

Based on Amazon
Linux 2, this AMI
is for Amazon EC2
Inf1, Trn1 or Inf2
instances. It comes
pre-configured with
AWS Inferentia with
Linux kernel 5.10
and AWS Trainium
drivers and the AWS
Neuron runtime for
Docker which makes
running machine
learning inference
workloads easier on
Amazon ECS. For
more information,
see Amazon ECS task
definitions for AWS
Neuron machine
learning workloads
. The Amazon ECS
optimized Amazon
Linux 2 (Neuron) AMI
does not come with
the AWS CLI preinstal
led.

By default, the
Amazon Linux 2-
based Amazon ECS-
optimized AMIs
(Amazon ECS-optim
ized Amazon Linux
2 AMI, Amazon ECS-
optimized Amazon
Linux 2 (arm64) AMI,
and Amazon ECS
GPU-optimized AMI)
ship with a single
30-GiB root volume.
You can modify the
30-GiB root volume
size at launch time to
increase the available
 storage on your
container instance.
This storage is used
for the operating
 system and for
Docker images and
metadata.

The default filesyste
m for the Amazon
ECS-optimized
Amazon Linux 2 AMI
is xfs, and Docker
uses the overlay2
storage driver. For
more informati
on, see Use the

Amazon EC2 container instances 734

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

OverlayFS storage
driver in the Docker
documentation.

Amazon EC2 container instances 735

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/
https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

Amazon Linux 2
(Neuron)

Amazon ECS
optimized Amazon
Linux 2 (Neuron)
AMI

Based on Amazon
Linux 2, this AMI
is for Amazon EC2
Inf1, Trn1 or Inf2
instances. It comes
pre-configured with
AWS Inferentia
and AWS Trainium
drivers and the AWS
Neuron runtime for
Docker which makes
running machine
learning inference
workloads easier on
Amazon ECS. For
more information,
see Amazon ECS task
definitions for AWS
Neuron machine
learning workloads
. The Amazon ECS
optimized Amazon
Linux 2 (Neuron) AMI
does not come with
the AWS CLI preinstal
led.

By default, the
Amazon Linux 2-
based Amazon ECS-
optimized AMIs
(Amazon ECS-optim
ized Amazon Linux
2 AMI, Amazon ECS-
optimized Amazon
Linux 2 (arm64) AMI,
and Amazon ECS
GPU-optimized AMI)
ship with a single
30-GiB root volume.
You can modify the
30-GiB root volume
size at launch time to
increase the available
 storage on your
container instance.
This storage is used
for the operating
 system and for
Docker images and
metadata.

The default filesyste
m for the Amazon
ECS-optimized
Amazon Linux 2 AMI
is xfs, and Docker
uses the overlay2
storage driver. For
more informati
on, see Use the

Amazon EC2 container instances 736

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/

Amazon Elastic Container Service Developer Guide

Operating system AMI Description Storage configura
tion

OverlayFS storage
driver in the Docker
documentation.

Amazon ECS provides a changelog for the Linux variant of the Amazon ECS-optimized AMI on
GitHub. For more information, see Changelog.

The Linux variants of the Amazon ECS-optimized AMI use the Amazon Linux 2 AMI or Amazon
Linux 2023 AMI as their base. You can retrieve the Amazon Linux 2 source AMI name or the Amazon
Linux 2023 AMI name for each variant by querying the Systems Manager Parameter Store API. For
more information, see Retrieving Amazon ECS-optimized Linux AMI metadata. The Amazon Linux
2 AMI release notes are available as well. For more information, see Amazon Linux 2 release notes.
The Amazon Linux 2023 release notes are available as well. For more information see, Amazon
Linux 2023 release notes.

The following pages provide additional information about the changes:

• Source AMI release notes on GitHub

• Docker Engine release notes in the Docker documentation

• NVIDIA Driver Documentation in the NVIDIA documentation

• Amazon ECS agent changelog on GitHub

The source code for the ecs-init application and the scripts and configuration for packaging
the agent are now part of the agent repository. For older versions of ecs-init and packaging,
see Amazon ecs-init changelog on GitHub

Applying security updates to the Amazon ECS-optimized AMI

The Amazon ECS-optimized AMIs based on Amazon Linux contain a customized version of
cloud-init. Cloud-init is a package that is used to bootstrap Linux images in a cloud computing
environment and perform desired actions when launching an instance. By default, all Amazon
ECS-optimized AMIs based on Amazon Linux released before June 12, 2024 have all "Critical" and
"Important" security updates applied upon instance launch.

Amazon EC2 container instances 737

https://docs.docker.com/engine/storage/drivers/overlayfs-driver/
https://docs.docker.com/engine/storage/drivers/overlayfs-driver/
https://github.com/aws/amazon-ecs-ami/blob/main/CHANGELOG.md
https://docs.aws.amazon.com/AL2/latest/relnotes/relnotes-al2.html
https://docs.aws.amazon.com/linux/al2023/release-notes/relnotes.html
https://docs.aws.amazon.com/linux/al2023/release-notes/relnotes.html
https://github.com/aws/amazon-ecs-ami/releases
https://docs.docker.com/engine/release-notes/
https://docs.nvidia.com/datacenter/tesla/index.html
https://github.com/aws/amazon-ecs-agent/blob/master/CHANGELOG.md
https://github.com/aws/amazon-ecs-init/blob/master/CHANGELOG.md

Amazon Elastic Container Service Developer Guide

Beginning with the June 12, 2024 releases of the Amazon ECS-optimized AMIs based on Amazon
Linux 2, the default behavior will no longer include updating packages at launch. Instead, we
recommend that you update to a new Amazon ECS-optimized AMI as releases are made available.
The Amazon ECS-optimized AMIs are released when there are available security updates or base
AMI changes. This will ensure you are receiving the latest package versions and security updates,
and that the package versions are immutable through instance launches. For more information on
retrieving the latest Amazon ECS-optimized AMI, see Retrieving Amazon ECS-optimized Linux AMI
metadata.

We recommend automating your environment to update to a new AMI as they are made available.
For information about the available options, see Amazon ECS enables easier EC2 capacity
management, with managed instance draining.

To continue applying "Critical" and "Important" security updates manually on an AMI version, you
can run the following command on your Amazon EC2 instance.

yum update --security

If you want to re-enable security updates at launch, you can add the following line to the #cloud-
config section of the cloud-init user data when launching your Amazon EC2 instance. For more
information, see Using cloud-init on Amazon Linux 2 in the Amazon Linux User Guide.

#cloud-config
repo_upgrade: security

Retrieving Amazon ECS-optimized Linux AMI metadata

You can programmatically retrieve the Amazon ECS-optimized AMI metadata. The metadata
includes the AMI name, Amazon ECS container agent version, and Amazon ECS runtime version
which includes the Docker version.

When you create a cluster using the console, Amazon ECS creates a launch template for your
instances with the latest AMI associated with the selected operating system.

When you use AWS CloudFormation to create a cluster, the SSM parameter is part of the Amazon
EC2 launch template for the Auto Scaling group instances. You can configure the template to use
a dynamic Systems Manager parameter to determine what Amazon ECS Optimized AMI to deploy.
This parameter ensures that each time you deploy the stack it will check to see if there is available
update that needs to be applied to the EC2 instances. For an example of how to use the Systems

Amazon EC2 container instances 738

https://aws.amazon.com/blogs/containers/amazon-ecs-enables-easier-ec2-capacity-management-with-managed-instance-draining/
https://aws.amazon.com/blogs/containers/amazon-ecs-enables-easier-ec2-capacity-management-with-managed-instance-draining/
https://docs.aws.amazon.com/linux/al2/ug/amazon-linux-cloud-init.html

Amazon Elastic Container Service Developer Guide

Manager parameter, see Create an Amazon ECS cluster with the Amazon ECS-optimized Amazon
Linux 2023 AMI in the AWS CloudFormation User Guide.

The AMI ID, image name, operating system, container agent version, source image name, and
runtime version for each variant of the Amazon ECS-optimized AMIs can be programmatically
retrieved by querying the Systems Manager Parameter Store API. For more information about the
Systems Manager Parameter Store API, see GetParameters and GetParametersByPath.

Note

Your administrative user must have the following IAM permissions to retrieve the
Amazon ECS-optimized AMI metadata. These permissions have been added to the
AmazonECS_FullAccess IAM policy.

• ssm:GetParameters

• ssm:GetParameter

• ssm:GetParametersByPath

Systems Manager Parameter Store parameter format

The following is the format of the parameter name for each Amazon ECS-optimized AMI variant.

Linux Amazon ECS-optimized AMIs

• Amazon Linux 2023 AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2023/<version>

• Amazon Linux 2023 (arm64) AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2023/arm64/<version>

• Amazon Linux 2023 (Neuron) AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2023/neuron/<version>

• Amazon Linux 2023 (GPU) AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2023/gpu/<version>

Amazon EC2 container instances 739

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-cluster.html#aws-resource-ecs-cluster--examples--Create_an_cluster_with_the_Amazon_Linux_2023_ECS-Optimized-AMI
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-cluster.html#aws-resource-ecs-cluster--examples--Create_an_cluster_with_the_Amazon_Linux_2023_ECS-Optimized-AMI
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameters.html
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParametersByPath.html

Amazon Elastic Container Service Developer Guide

Amazon Linux 2 AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/<version>

• Amazon Linux 2 kernel 5.10 AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/kernel-5.10/<version>

• Amazon Linux 2 (arm64) AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/arm64/<version>

• Amazon Linux 2 kernel 5.10 (arm64) AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/kernel-5.10/arm64/<version>

• Amazon ECS GPU-optimized kernel 5.10 AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/kernel-5.10/gpu/<version>

• Amazon Linux 2 (GPU) AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/<version>

• Amazon ECS optimized Amazon Linux 2 (Neuron) kernel 5.10 AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/kernel-5.10/inf/<version>

• Amazon Linux 2 (Neuron) AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/inf/<version>

The following parameter name format retrieves the image ID of the latest recommended Amazon
ECS-optimized Amazon Linux 2 AMI by using the sub-parameter image_id.

/aws/service/ecs/optimized-ami/amazon-linux-2/recommended/image_id

The following parameter name format retrieves the metadata of a specific Amazon ECS-optimized
AMI version by specifying the AMI name.

Amazon EC2 container instances 740

Amazon Elastic Container Service Developer Guide

• Amazon ECS-optimized Amazon Linux 2 AMI metadata:

/aws/service/ecs/optimized-ami/amazon-linux-2/amzn2-ami-ecs-hvm-2.0.20181112-x86_64-
ebs

Note

All versions of the Amazon ECS-optimized Amazon Linux 2 AMI are available for retrieval.
Only Amazon ECS-optimized AMI versions amzn-ami-2017.09.l-amazon-ecs-
optimized (Linux) and later can be retrieved.

Examples

The following examples show ways in which you can retrieve the metadata for each Amazon ECS-
optimized AMI variant.

Retrieving the metadata of the latest recommended Amazon ECS-optimized AMI

You can retrieve the latest recommended Amazon ECS-optimized AMI using the AWS CLI with the
following AWS CLI commands.

Linux Amazon ECS-optimized AMIs

• For the Amazon ECS-optimized Amazon Linux 2023 AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2023/
recommended --region us-east-1

• For the Amazon ECS-optimized Amazon Linux 2023 (arm64) AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2023/
arm64/recommended --region us-east-1

• For the Amazon ECS-optimized Amazon Linux 2023 (Neuron) AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2023/
neuron/recommended --region us-east-1

• For the Amazon ECS-optimized Amazon Linux 2023 GPU AMIs:

Amazon EC2 container instances 741

Amazon Elastic Container Service Developer Guide

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2023/gpu/
recommended --region us-east-1

• For the Amazon ECS-optimized Amazon Linux 2 kernel 5.10 AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/
kernel-5.10/recommended --region us-east-1

• For the Amazon ECS-optimized Amazon Linux 2 AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/
recommended --region us-east-1

• For the Amazon ECS-optimized Amazon Linux 2 kernel 5.10 (arm64) AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/
kernel-5.10/arm64/recommended --region us-east-1

• For the Amazon ECS-optimized Amazon Linux 2 (arm64) AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/arm64/
recommended --region us-east-1

• For the Amazon ECS GPU-optimized kernel 5.10 AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/
kernel-5.10/gpu/recommended --region us-east-1

• For the Amazon ECS GPU-optimized AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/gpu/
recommended --region us-east-1

• For the Amazon ECS optimized Amazon Linux 2 (Neuron) kernel 5.10 AMIs:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/
kernel-5.10/inf/recommended --region us-east-1

• For the Amazon ECS optimized Amazon Linux 2 (Neuron) AMIs:

Amazon EC2 container instances 742

Amazon Elastic Container Service Developer Guide

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/inf/
recommended --region us-east-1

Retrieving the image ID of the latest recommended Amazon ECS-optimized Amazon Linux 2023
AMI

You can retrieve the image ID of the latest recommended Amazon ECS-optimized Amazon Linux
2023 AMI ID by using the sub-parameter image_id.

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-
linux-2023/recommended/image_id --region us-east-1

To retrieve the image_id value only, you can query the specific parameter value; for example:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2023/
recommended/image_id --region us-east-1 --query "Parameters[0].Value"

Retrieving the metadata of a specific Amazon ECS-optimized Amazon Linux 2 AMI version

Retrieve the metadata of a specific Amazon ECS-optimized Amazon Linux AMI version using the
AWS CLI with the following AWS CLI command. Replace the AMI name with the name of the
Amazon ECS-optimized Amazon Linux AMI to retrieve.

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/amzn2-ami-
ecs-hvm-2.0.20200928-x86_64-ebs --region us-east-1

Retrieving the Amazon ECS-optimized Amazon Linux 2 kernel 5.10 AMI metadata using the
Systems Manager GetParametersByPath API

Retrieve the Amazon ECS-optimized Amazon Linux 2 AMI metadata with the Systems Manager
GetParametersByPath API using the AWS CLI with the following command.

aws ssm get-parameters-by-path --path /aws/service/ecs/optimized-ami/amazon-linux-2/
kernel-5.10/ --region us-east-1

Amazon EC2 container instances 743

Amazon Elastic Container Service Developer Guide

Retrieving the image ID of the latest recommended Amazon ECS-optimized Amazon Linux 2
kernel 5.10 AMI

You can retrieve the image ID of the latest recommended Amazon ECS-optimized Amazon Linux 2
kernel 5.10 AMI ID by using the sub-parameter image_id.

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/
kernel-5.10/recommended/image_id --region us-east-1

To retrieve the image_id value only, you can query the specific parameter value; for example:

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/
recommended/image_id --region us-east-1 --query "Parameters[0].Value"

Using the latest recommended Amazon ECS-optimized AMI in an AWS CloudFormation
template

You can reference the latest recommended Amazon ECS-optimized AMI in an AWS CloudFormation
template by referencing the Systems Manager parameter store name.

Linux example

Parameters:kernel-5.10
 LatestECSOptimizedAMI:
 Description: AMI ID
 Type: AWS::SSM::Parameter::Value<AWS::EC2::Image::Id>
 Default: /aws/service/ecs/optimized-ami/amazon-linux-2/kernel-5.10/recommended/
image_id

Amazon ECS-optimized Linux AMI build script

Amazon ECS has open-sourced the build scripts that are used to build the Linux variants of
the Amazon ECS-optimized AMI. These build scripts are now available on GitHub. For more
information, see amazon-ecs-ami on GitHub.

If you need to customize the Amazon ECS-optimized AMI , see Amazon ECS Optimized AMI Build
Recipies on GitHub.

The build scripts repository includes a HashiCorp packer template and build scripts to generate
each of the Linux variants of the Amazon ECS-optimized AMI. These scripts are the source of truth
for Amazon ECS-optimized AMI builds, so you can follow the GitHub repository to monitor changes

Amazon EC2 container instances 744

https://github.com/aws/amazon-ecs-ami
https://github.com/aws/amazon-ecs-ami
https://github.com/aws/amazon-ecs-ami
https://developer.hashicorp.com/packer/docs

Amazon Elastic Container Service Developer Guide

to our AMIs. For example, perhaps you want your own AMI to use the same version of Docker that
the Amazon ECS team uses for the official AMI.

For more information, see the Amazon ECS AMI repository at aws/amazon-ecs-ami on GitHub.

To build an Amazon ECS-optimized Linux AMI

1. Clone the aws/amazon-ecs-ami GitHub repo.

git clone https://github.com/aws/amazon-ecs-ami.git

2. Add an environment variable for the AWS Region to use when creating the AMI. Replace the
us-west-2 value with the Region to use.

export REGION=us-west-2

3. A Makefile is provided to build the AMI. From the root directory of the cloned repository,
use one of the following commands, corresponding to the Linux variant of the Amazon ECS-
optimized AMI you want to build.

• Amazon ECS-optimized Amazon Linux 2 AMI

make al2

• Amazon ECS-optimized Amazon Linux 2 (arm64) AMI

make al2arm

• Amazon ECS GPU-optimized AMI

make al2gpu

• Amazon ECS optimized Amazon Linux 2 (Neuron) AMI

make al2inf

• Amazon ECS-optimized Amazon Linux 2023 AMI

make al2023

• Amazon ECS-optimized Amazon Linux 2023 (arm64) AMI
Amazon EC2 container instances 745

https://github.com/aws/amazon-ecs-ami

Amazon Elastic Container Service Developer Guide

make al2023arm

• Amazon ECS optimized Amazon Linux 2023 (Neuron) AMI

make al2023neu

Amazon ECS-optimized Bottlerocket AMIs

Bottlerocket is a Linux based open-source operating system that is purpose built by AWS
for running containers on virtual machines or bare metal hosts. The Amazon ECS-optimized
Bottlerocket AMI is secure and only includes the minimum number of packages that's required
to run containers. This improves resource usage, reduces security attack surface, and helps lower
management overhead. The Bottlerocket AMI is also integrated with Amazon ECS to help reduce
the operational overhead involved in updating container instances in a cluster.

Bottlerocket differs from Amazon Linux in the following ways:

• Bottlerocket doesn't include a package manager, and its software can only be run as containers.
Updates to Bottlerocket are both applied and can be rolled back in a single step, which reduces
the likelihood of update errors.

• The primary mechanism to manage Bottlerocket hosts is with a container scheduler. Unlike
Amazon Linux, logging into individual Bottlerocket instances is intended to be an infrequent
operation for advanced debugging and troubleshooting purposes only.

For more information about Bottlerocket, see the documentation and releases on GitHub.

There are variants of the Amazon ECS-optimized Bottlerocket AMI for kernel 6.1 and kernel 5.10.

The following variants use kernel 6.1:

• aws-ecs-2

• aws-ecs-2-nvidia

The following variants use kernel 5.10:

• aws-ecs-1

• aws-ecs-1-nvidia

Amazon EC2 container instances 746

https://github.com/bottlerocket-os/bottlerocket/blob/develop/README.md
https://github.com/bottlerocket-os/bottlerocket/releases

Amazon Elastic Container Service Developer Guide

For more information about the aws-ecs-1-nvidia variant, see Announcing NVIDIA GPU
support for Bottlerocket on Amazon ECS.

Considerations

Consider the following when using a Bottlerocket AMI with Amazon ECS.

• Bottlerocket supports Amazon EC2 instances with x86_64 and arm64 processors. The
Bottlerocket AMI isn't recommended for use with Amazon EC2 instances with an Inferentia chip.

• Bottlerocket images don't include an SSH server or a shell. However, you can use out-of-band
management tools to gain SSH administrator access and perform bootstrapping. For more
information, see these sections in the bottlerocket README.md on GitHub:

• Exploration

• Admin container

• By default, Bottlerocket has a control container that's enabled. This container runs the AWS
Systems Manager agent that you can use to run commands or start shell sessions on Amazon
EC2 Bottlerocket instances. For more information, see Setting up Session Manager in the AWS
Systems Manager User Guide.

• Bottlerocket is optimized for container workloads and has a focus on security. Bottlerocket
doesn't include a package manager and is immutable. For information about the security
features and guidance, see Security Features and Security Guidance on GitHub.

• The awsvpc network mode is supported for Bottlerocket AMI version 1.1.0 or later.

• App Mesh in a task definition is supported for Bottlerocket AMI version 1.15.0 or later.

• The initProcessEnabled task definition parameter is supported for Bottlerocket AMI version
1.19.0 or later.

• The Bottlerocket AMIs also don't support the following services and features:

• ECS Anywhere

• Service Connect

• Amazon EFS in encrypted mode

• Amazon EFS in awsvpc network mode

• Elastic Inference Accelerator

Amazon EC2 container instances 747

https://aws.amazon.com/blogs/containers/announcing-nvidia-gpu-support-for-bottlerocket-on-amazon-ecs/
https://aws.amazon.com/blogs/containers/announcing-nvidia-gpu-support-for-bottlerocket-on-amazon-ecs/
https://github.com/bottlerocket-os/bottlerocket
https://github.com/bottlerocket-os/bottlerocket#exploration
https://github.com/bottlerocket-os/bottlerocket#admin-container
https://github.com/bottlerocket-os/bottlerocket-control-container
https://github.com/aws/amazon-ssm-agent
https://github.com/aws/amazon-ssm-agent
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started.html
https://github.com/bottlerocket-os/bottlerocket/blob/develop/SECURITY_FEATURES.md
https://github.com/bottlerocket-os/bottlerocket/blob/develop/SECURITY_GUIDANCE.md

Amazon Elastic Container Service Developer Guide

Retrieving Amazon ECS-optimized Bottlerocket AMI metadata

You can retrieve the Amazon Machine Image (AMI) ID for Amazon ECS-optimized AMIs by querying
the AWS Systems Manager Parameter Store API. Using this parameter, you don't need to manually
look up Amazon ECS-optimized AMI IDs. For more information about the Systems Manager
Parameter Store API, see GetParameter. The user that you use must have the ssm:GetParameter
IAM permission to retrieve the Amazon ECS-optimized AMI metadata.

aws-ecs-2 Bottlerocket AMI variant

You can retrieve the latest stable aws-ecs-2 Bottlerocket AMI variant by AWS Region and
architecture with the AWS CLI or the AWS Management Console.

• AWS CLI – You can retrieve the image ID of the latest recommended Amazon ECS-optimized
Bottlerocket AMI with the following AWS CLI command by using the subparameter image_id.
Replace the region with the Region code that you want the AMI ID for. For information about
the supported AWS Regions, see Finding an AMI on GitHub. To retrieve a version other than the
latest, replace latest with the version number.

• For the 64-bit (x86_64) architecture:

aws ssm get-parameter --region us-east-2 --name "/aws/service/bottlerocket/aws-
ecs-2/x86_64/latest/image_id" --query Parameter.Value --output text

• For the 64-bit Arm (arm64) architecture:

aws ssm get-parameter --region us-east-2 --name "/aws/service/bottlerocket/aws-
ecs-2/arm64/latest/image_id" --query Parameter.Value --output text

• AWS Management Console – You can query for the recommended Amazon ECS-optimized
AMI ID using a URL in the AWS Management Console. The URL opens the Amazon EC2 Systems
Manager console with the value of the ID for the parameter. In the following URL, replace
region with the Region code that you want the AMI ID for. For information about the supported
AWS Regions, see Finding an AMI on GitHub.

• For the 64-bit (x86_64) architecture:

https://console.aws.amazon.com/systems-manager/parameters/aws/service/bottlerocket/
aws-ecs-2/x86_64/latest/image_id/description?region=region#

• For the 64-bit Arm (arm64) architecture:

Amazon EC2 container instances 748

https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameter.html
https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami
https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami

Amazon Elastic Container Service Developer Guide

https://console.aws.amazon.com/systems-manager/parameters/aws/service/bottlerocket/
aws-ecs-2/arm64/latest/image_id/description?region=region#

aws-ecs-2-nvidia Bottlerocket AMI variant

You can retrieve the latest stable aws-ecs-2-nvdia Bottlerocket AMI variant by Region and
architecture with the AWS CLI or the AWS Management Console.

• AWS CLI – You can retrieve the image ID of the latest recommended Amazon ECS-optimized
Bottlerocket AMI with the following AWS CLI command by using the subparameter image_id.
Replace the region with the Region code that you want the AMI ID for. For information about
the supported AWS Regions, see Finding an AMI on GitHub. To retrieve a version other than the
latest, replace latest with the version number.

• For the 64-bit (x86_64) architecture:

aws ssm get-parameter --region us-east-1 --name "/aws/service/bottlerocket/aws-
ecs-2-nvidia/x86_64/latest/image_id" --query Parameter.Value --output text

• For the 64 bit Arm (arm64) architecture:

aws ssm get-parameter --region us-east-1 --name "/aws/service/bottlerocket/aws-
ecs-2-nvidia/arm64/latest/image_id" --query Parameter.Value --output text

• AWS Management Console – You can query for the recommended Amazon ECS optimized
AMI ID using a URL in the AWS Management Console. The URL opens the Amazon EC2 Systems
Manager console with the value of the ID for the parameter. In the following URL, replace
region with the Region code that you want the AMI ID for. For information about the supported
AWS Regions, see Finding an AMI on GitHub.

• For the 64 bit (x86_64) architecture:

https://regionconsole.aws.amazon.com/systems-manager/parameters/aws/service/
bottlerocket/aws-ecs-2-nvidia/x86_64/latest/image_id/description?region=region#

• For the 64 bit Arm (arm64) architecture:

https://regionconsole.aws.amazon.com/systems-manager/parameters/aws/service/
bottlerocket/aws-ecs-2-nvidia/arm64/latest/image_id/description?region=region#

Amazon EC2 container instances 749

https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami
https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami

Amazon Elastic Container Service Developer Guide

aws-ecs-1 Bottlerocket AMI variant

You can retrieve the latest stable aws-ecs-1 Bottlerocket AMI variant by AWS Region and
architecture with the AWS CLI or the AWS Management Console.

• AWS CLI – You can retrieve the image ID of the latest recommended Amazon ECS-optimized
Bottlerocket AMI with the following AWS CLI command by using the subparameter image_id.
Replace the region with the Region code that you want the AMI ID for. For information about
the supported AWS Regions, see Finding an AMI on GitHub. To retrieve a version other than the
latest, replace latest with the version number.

• For the 64-bit (x86_64) architecture:

aws ssm get-parameter --region us-east-1 --name "/aws/service/bottlerocket/aws-
ecs-1/x86_64/latest/image_id" --query Parameter.Value --output text

• For the 64-bit Arm (arm64) architecture:

aws ssm get-parameter --region us-east-1 --name "/aws/service/bottlerocket/aws-
ecs-1/arm64/latest/image_id" --query Parameter.Value --output text

• AWS Management Console – You can query for the recommended Amazon ECS-optimized
AMI ID using a URL in the AWS Management Console. The URL opens the Amazon EC2 Systems
Manager console with the value of the ID for the parameter. In the following URL, replace
region with the Region code that you want the AMI ID for. For information about the supported
AWS Regions, see Finding an AMI on GitHub.

• For the 64-bit (x86_64) architecture:

https://region.console.aws.amazon.com/systems-manager/parameters/aws/service/
bottlerocket/aws-ecs-1/x86_64/latest/image_id/description

• For the 64-bit Arm (arm64) architecture:

https://region.console.aws.amazon.com/systems-manager/parameters/aws/service/
bottlerocket/aws-ecs-1/arm64/latest/image_id/description

aws-ecs-1-nvidia Bottlerocket AMI variant

You can retrieve the latest stable aws-ecs-1-nvdia Bottlerocket AMI variant by Region and
architecture with the AWS CLI or the AWS Management Console.

Amazon EC2 container instances 750

https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami
https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami

Amazon Elastic Container Service Developer Guide

• AWS CLI – You can retrieve the image ID of the latest recommended Amazon ECS-optimized
Bottlerocket AMI with the following AWS CLI command by using the subparameter image_id.
Replace the region with the Region code that you want the AMI ID for. For information about
the supported AWS Regions, see Finding an AMI on GitHub. To retrieve a version other than the
latest, replace latest with the version number.

• For the 64-bit (x86_64) architecture:

aws ssm get-parameter --region us-east-1 --name "/aws/service/bottlerocket/aws-
ecs-1-nvidia/x86_64/latest/image_id" --query Parameter.Value --output text

• For the 64 bit Arm (arm64) architecture:

aws ssm get-parameter --region us-east-1 --name "/aws/service/bottlerocket/aws-
ecs-1-nvidia/arm64/latest/image_id" --query Parameter.Value --output text

• AWS Management Console – You can query for the recommended Amazon ECS optimized
AMI ID using a URL in the AWS Management Console. The URL opens the Amazon EC2 Systems
Manager console with the value of the ID for the parameter. In the following URL, replace
region with the Region code that you want the AMI ID for. For information about the supported
AWS Regions, see Finding an AMI on GitHub.

• For the 64 bit (x86_64) architecture:

https://console.aws.amazon.com/systems-manager/parameters/aws/service/bottlerocket/
aws-ecs-1-nvidia/x86_64/latest/image_id/description?region=region#

• For the 64 bit Arm (arm64) architecture:

https://console.aws.amazon.com/systems-manager/parameters/aws/service/bottlerocket/
aws-ecs-1-nvidia/arm64/latest/image_id/description?region=region#

Next steps

For a detailed tutorial on how to get started with the Bottlerocket operating system on
Amazon ECS, see Using a Bottlerocket AMI with Amazon ECS on GitHub and Getting started
withBottlerocket and Amazon ECS on the AWS blog site.

For information about how to launch a Bottlerocket instance, see Launching a Bottlerocket
instance for Amazon ECS

Amazon EC2 container instances 751

https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami
https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md#finding-an-ami
https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md
https://aws.amazon.com/blogs/containers/getting-started-with-bottlerocket-and-amazon-ecs/
https://aws.amazon.com/blogs/containers/getting-started-with-bottlerocket-and-amazon-ecs/

Amazon Elastic Container Service Developer Guide

Launching a Bottlerocket instance for Amazon ECS

You can launch a Bottlerocket instance so that you can run your container workloads.

You can use the AWS CLI to launch the Bottlerocket instance.

1. Create a file that's called userdata.toml. This file is used for the instance user data. Replace
cluster-name with the name of your cluster.

[settings.ecs]
cluster = "cluster-name"

2. Use one of the commands that are included in the section called “Retrieving Amazon ECS-
optimized Bottlerocket AMI metadata” to get the Bottlerocket AMI ID. You use this in the
following step.

3. Run the following command to launch the Bottlerocket instance. Remember to replace the
following parameters:

• Replace subnet with the ID of the private or public subnet that your instance will launch in.

• Replace bottlerocket_ami with the AMI ID from the previous step.

• Replace t3.large with the instance type that you want to use.

• Replace region with the Region code.

aws ec2 run-instances --key-name ecs-bottlerocket-example \
 --subnet-id subnet \
 --image-id bottlerocket_ami \
 --instance-type t3.large \
 --region region \
 --tag-specifications
 'ResourceType=instance,Tags=[{Key=bottlerocket,Value=example}]' \
 --user-data file://userdata.toml \
 --iam-instance-profile Name=ecsInstanceRole

4. Run the following command to verify that the container instance is registered to the cluster.
When you run this command, remember to replace the following parameters:

• Replace cluster with your cluster name.

• Replace region with your Region code.

Amazon EC2 container instances 752

Amazon Elastic Container Service Developer Guide

aws ecs list-container-instances --cluster cluster-name --region region

For a detailed walkthrough of how to get started with the Bottlerocket operating system on
Amazon ECS, see Using a Bottlerocket AMI with Amazon ECS on GitHub and Getting started with
Bottlerocket and Amazon ECS on the AWS blog site.

Amazon ECS Linux container instance management

When you use EC2 instances for your Amazon ECS workloads, you are responsible for maintaing
the instances

Management procedures

• Launching an Amazon ECS Linux container instance

• Bootstrapping Amazon ECS Linux container instances to pass data

• Configuring Amazon ECS Linux container instances to receive Spot Instance notices

• Running a script when you launch an Amazon ECS Linux container instance

• Increasing Amazon ECS Linux container instance network interfaces

• Reserving Amazon ECS Linux container instance memory

• Managing Amazon ECS container instances remotely using AWS Systems Manager

• Using an HTTP proxy for Amazon ECS Linux container instances

• Configuring pre-initialized instances for your Amazon ECS Auto Scaling group

• Updating the Amazon ECS container agent

Each Amazon ECS container agent version supports a different feature set and provides bug fixes
from previous versions. When possible, we always recommend using the latest version of the
Amazon ECS container agent. To update your container agent to the latest version, see Updating
the Amazon ECS container agent.

To see which features and enhancements are included with each agent release, see https://
github.com/aws/amazon-ecs-agent/releases.

Amazon EC2 container instances 753

https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md
https://aws.amazon.com/blogs/containers/getting-started-with-bottlerocket-and-amazon-ecs/
https://github.com/aws/amazon-ecs-agent/releases
https://github.com/aws/amazon-ecs-agent/releases

Amazon Elastic Container Service Developer Guide

Important

The minimum Docker version for reliable metrics is Docker version v20.10.13 and newer,
which is included in Amazon ECS-optimized AMI 20220607 and newer.
Amazon ECS agent versions 1.20.0 and newer have deprecated support for Docker
versions older than 18.01.0.

Launching an Amazon ECS Linux container instance

You can create Amazon ECS container instances using the Amazon EC2 console.

You can launch an instance by various methods including the Amazon EC2 console, AWS CLI, and
SDK. For information about the other methods for launching an instance, see Launch your instance
in the Amazon EC2 User Guide.

For more information about the launch wizard, see Launch an instance using the new launch
instance wizard in the Amazon EC2 User Guide.

Before you begin, complete the steps in Set up to use Amazon ECS.

You can use the new Amazon EC2 wizard to launch an instance. The launch instance wizard
specifies the launch parameters that are required for launching an instance.

Parameters for instance configuration

• Procedure

• Name and tags

• Application and OS Images (Amazon Machine Image)

• Instance type

• Key pair (login)

• Network settings

• Configure storage

• Advanced details

Procedure

Before you begin, complete the steps in Set up to use Amazon ECS.

Amazon EC2 container instances 754

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance-wizard.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance-wizard.html

Amazon Elastic Container Service Developer Guide

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation bar at the top of the screen, the current AWS Region is displayed (for
example, US East (Ohio)). Select a Region in which to launch the instance.

3. From the Amazon EC2 console dashboard, choose Launch instance.

Name and tags

The instance name is a tag, where the key is Name, and the value is the name that you specify. You
can tag the instance, the volumes, and elastic graphics. For Spot Instances, you can tag the Spot
Instance request only.

Specifying an instance name and additional tags is optional.

• For Name, enter a descriptive name for the instance. If you don't specify a name, the instance
can be identified by its ID, which is automatically generated when you launch the instance.

• To add additional tags, choose Add additional tags. Choose Add tag, and then enter a key and
value, and select the resource type to tag. Choose Add tag again for each additional tag to add.

Application and OS Images (Amazon Machine Image)

An Amazon Machine Image (AMI) contains the information required to create an instance. For
example, an AMI might contain the software that's required to act as a web server, such as Apache,
and your website.

Use the Search bar to find a suitable Amazon ECS-optimized AMI published by AWS.

1. Enter one of the following terms in the Search bar.

• ami-ecs

• The Value of an Amazon ECS-optimized AMI.

For the latest Amazon ECS-optimized AMIs and their values, see Linux Amazon ECS-optimized
AMI.

2. Press Enter.

3. On the Choose an Amazon Machine Image (AMI) page, select the AWS Marketplace AMIs tab.

4. From the left Refine results pane, select Amazon Web Services as the Publisher.

5. Choose Select on the row of the AMI that you want to use.

Amazon EC2 container instances 755

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#ecs-optimized-ami-linux
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#ecs-optimized-ami-linux

Amazon Elastic Container Service Developer Guide

Alternatively, choose Cancel (at top right) to return to the launch instance wizard without
choosing an AMI. A default AMI will be selected. Ensure that the AMI meets the requirements
outlined in Amazon ECS-optimized Linux AMIs.

Instance type

The instance type defines the hardware configuration and size of the instance. Larger instance
types have more CPU and memory. For more information, see Instance types.

• For Instance type, select the instance type for the instance.

The instance type that you select determines the resources available for your tasks to run on.

Key pair (login)

For Key pair name, choose an existing key pair, or choose Create new key pair to create a new one.

Important

If you choose the Proceed without key pair (Not recommended) option, you won't be
able to connect to the instance unless you choose an AMI that is configured to allow users
another way to log in.

Network settings

Configure the network settings, as necessary.

• Networking platform: Choose Virtual Private Cloud (VPC), and then specify the subnet in the
Network interfaces section.

• VPC: Select an existing VPC in which to create the security group.

• Subnet: You can launch an instance in a subnet associated with an Availability Zone, Local Zone,
Wavelength Zone, or Outpost.

To launch the instance in an Availability Zone, select the subnet in which to launch your instance.
To create a new subnet, choose Create new subnet to go to the Amazon VPC console. When you
are done, return to the launch instance wizard and choose the Refresh icon to load your subnet
in the list.

Amazon EC2 container instances 756

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

Amazon Elastic Container Service Developer Guide

To launch the instance in a Local Zone, select a subnet that you created in the Local Zone.

To launch an instance in an Outpost, select a subnet in a VPC that you associated with the
Outpost.

• Auto-assign Public IP: If your instance should be accessible from the internet, verify that the
Auto-assign Public IP field is set to Enable. If not, set this field to Disable.

Note

Container instances need access to communicate with the Amazon ECS service endpoint.
This can be through an interface VPC endpoint or through your container instances
having public IP addresses.
For more information about interface VPC endpoints, see Amazon ECS interface VPC
endpoints (AWS PrivateLink)
If you do not have an interface VPC endpoint configured and your container instances
do not have public IP addresses, then they must use network address translation (NAT)
to provide this access. For more information, see NAT gateways in the Amazon VPC User
Guide and Using an HTTP proxy for Amazon ECS Linux container instances in this guide.

• Firewall (security groups): Use a security group to define firewall rules for your container
instance. These rules specify which incoming network traffic is delivered to your container
instance. All other traffic is ignored.

• To select an existing security group, choose Select existing security group, and select the
security group that you created in Set up to use Amazon ECS.

Configure storage

The AMI you selected includes one or more volumes of storage, including the root volume. You can
specify additional volumes to attach to the instance.

You can use the Simple view.

• Storage type: Configure the storage for your container instance.

If you are using the Amazon ECS-optimized Amazon Linux 2 AMI, your instance has a single 30
GiB volume configured, which is shared between the operating system and Docker.

Amazon EC2 container instances 757

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon Elastic Container Service Developer Guide

If you are using the Amazon ECS-optimized AMI, your instance has two volumes configured. The
Root volume is for the operating system's use, and the second Amazon EBS volume (attached to
/dev/xvdcz) is for Docker's use.

You can optionally increase or decrease the volume sizes for your instance to meet your
application needs.

Advanced details

For Advanced details, expand the section to view the fields and specify any additional parameters
for the instance.

• Purchasing option: Choose Request Spot Instances to request Spot Instances. You also need to
set the other fields related to Spot Instances. For more information, see Spot Instance Requests.

Note

If you are using Spot Instances and see a Not available message, you may need to
choose a different instance type.

.

• IAM instance profile: Select your container instance IAM role. This is usually named
ecsInstanceRole.

Important

If you do not launch your container instance with the proper IAM permissions, your
Amazon ECS agent cannot connect to your cluster. For more information, see Amazon
ECS container instance IAM role.

• User data: Configure your Amazon ECS container instance with user data, such as the agent
environment variables from Amazon ECS container agent configuration. Amazon EC2 user
data scripts are executed only one time, when the instance is first launched. The following are
common examples of what user data is used for:

Amazon EC2 container instances 758

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-requests.html

Amazon Elastic Container Service Developer Guide

• By default, your container instance launches into your default cluster. To launch into a non-
default cluster, choose the Advanced Details list. Then, paste the following script into the User
data field, replacing your_cluster_name with the name of your cluster.

#!/bin/bash
echo ECS_CLUSTER=your_cluster_name >> /etc/ecs/ecs.config

• If you have an ecs.config file in Amazon S3 and have enabled Amazon S3 read-only access
to your container instance role, choose the Advanced Details list. Then, paste the following
script into the User data field, replacing your_bucket_name with the name of your bucket to
install the AWS CLI and write your configuration file at launch time.

Note

For more information about this configuration, see Storing Amazon ECS container
instance configuration in Amazon S3.

#!/bin/bash
yum install -y aws-cli
aws s3 cp s3://your_bucket_name/ecs.config /etc/ecs/ecs.config

• Specify tags for your container instance using the ECS_CONTAINER_INSTANCE_TAGS
configuration parameter. This creates tags that are associated with Amazon ECS only, they
cannot be listed using the Amazon EC2 API.

Important

If you launch your container instances using an Amazon EC2 Auto Scaling group, then
you should use the ECS_CONTAINER_INSTANCE_TAGS agent configuration parameter
to add tags. This is due to the way in which tags are added to Amazon EC2 instances
that are launched using Auto Scaling groups.

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=your_cluster_name
ECS_CONTAINER_INSTANCE_TAGS={"tag_key": "tag_value"}

Amazon EC2 container instances 759

Amazon Elastic Container Service Developer Guide

EOF

• Specify tags for your container instance and then use the
ECS_CONTAINER_INSTANCE_PROPAGATE_TAGS_FROM configuration parameter to propagate
them from Amazon EC2 to Amazon ECS

The following is an example of a user data script that would propagate the tags associated
with a container instance, as well as register the container instance with a cluster named
your_cluster_name:

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=your_cluster_name
ECS_CONTAINER_INSTANCE_PROPAGATE_TAGS_FROM=ec2_instance
EOF

For more information, see Bootstrapping Amazon ECS Linux container instances to pass data.

Bootstrapping Amazon ECS Linux container instances to pass data

When you launch an Amazon EC2 instance, you can pass user data to the EC2 instance. The data
can be used to perform common automated configuration tasks and even run scripts when
the instance boots. For Amazon ECS, the most common use cases for user data are to pass
configuration information to the Docker daemon and the Amazon ECS container agent.

You can pass multiple types of user data to Amazon EC2, including cloud boothooks, shell scripts,
and cloud-init directives. For more information about these and other format types, see the
Cloud-Init documentation.

To pass the user data when using the Amazon EC2 launch wizard, see Launching an Amazon ECS
Linux container instance.

You can configure the container instance to pass data in the container agent configuration or in the
Docker daemon configuration.

Amazon ECS container agent

The Linux variants of the Amazon ECS-optimized AMI look for agent configuration data in the /
etc/ecs/ecs.config file when the container agent starts. You can specify this configuration

Amazon EC2 container instances 760

https://cloudinit.readthedocs.io/en/latest/explanation/format.html

Amazon Elastic Container Service Developer Guide

data at launch with Amazon EC2 user data. For more information about available Amazon ECS
container agent configuration variables, see Amazon ECS container agent configuration.

To set only a single agent configuration variable, such as the cluster name, use echo to copy the
variable to the configuration file:

#!/bin/bash
echo "ECS_CLUSTER=MyCluster" >> /etc/ecs/ecs.config

If you have multiple variables to write to /etc/ecs/ecs.config, use the following heredoc
format. This format writes everything between the lines beginning with cat and EOF to the
configuration file.

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=MyCluster
ECS_ENGINE_AUTH_TYPE=docker
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":
{"username":"my_name","password":"my_password","email":"email@example.com"}}
ECS_LOGLEVEL=debug
ECS_WARM_POOLS_CHECK=true
EOF

To set custom instance attributes, set the ECS_INSTANCE_ATTRIBUTES environment variable.

#!/bin/bash
cat <<'EOF' >> ecs.config
ECS_INSTANCE_ATTRIBUTES={"envtype":"prod"}
EOF

Docker daemon

You can specify Docker daemon configuration information with Amazon EC2 user data. For more
information about configuration options, see the Docker daemon documentation.

Note

AWS doesn't support custom Docker configurations, because they can sometimes conflict
with future Amazon ECS changes or features without warning.

Amazon EC2 container instances 761

https://docs.docker.com/reference/cli/dockerd/

Amazon Elastic Container Service Developer Guide

In the example below, the custom options are added to the Docker daemon configuration file,
/etc/docker/daemon.json which is then specified in the user data when the instance is
launched.

#!/bin/bash
cat <<EOF >/etc/docker/daemon.json
{"debug": true}
EOF
systemctl restart docker --no-block

In the example below, the custom options are added to the Docker daemon configuration file,
/etc/docker/daemon.json which is then specified in the user data when the instance is
launched. This example shows how to disable the docker-proxy in the Docker daemon config file.

#!/bin/bash
cat <<EOF >/etc/docker/daemon.json
{"userland-proxy": false}
EOF
systemctl restart docker --no-block

Configuring Amazon ECS Linux container instances to receive Spot Instance notices

Amazon EC2 terminates, stops, or hibernates your Spot Instance when the Spot price exceeds the
maximum price for your request or capacity is no longer available. Amazon EC2 provides a Spot
Instance two-minute interruption notice for terminate and stop actions. It does not provide the
two-minute notice for the hibernate action. If Amazon ECS Spot Instance draining is turned onon
the instance, Amazon ECS receives the Spot Instance interruption notice and places the instance in
DRAINING status.

Important

Amazon ECS does not receive a notice from Amazon EC2 when instances are removed by
Auto Scaling Capacity Rebalancing. For more information, see Amazon EC2 Auto Scaling
Capacity Rebalancing.

When a container instance is set to DRAINING, Amazon ECS prevents new tasks from being
scheduled for placement on the container instance. Service tasks on the draining container

Amazon EC2 container instances 762

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-capacity-rebalancing.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-capacity-rebalancing.html

Amazon Elastic Container Service Developer Guide

instance that are in the PENDING state are stopped immediately. If there are container instances in
the cluster that are available, replacement service tasks are started on them.

Spot Instance draining is turned off by default.

You can turn on Spot Instance draining when you launch an instance. Add the following script into
the User data field. Replace MyCluster with the name of the cluster to register the container
instance to.

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=MyCluster
ECS_ENABLE_SPOT_INSTANCE_DRAINING=true
EOF

For more information, see Launching an Amazon ECS Linux container instance.

To turn on Spot Instance draining for an existing container instance

1. Connect to the Spot Instance over SSH.

2. Edit the /etc/ecs/ecs.config file and add the following:

ECS_ENABLE_SPOT_INSTANCE_DRAINING=true

3. Restart the ecs service.

• For the Amazon ECS-optimized Amazon Linux 2 AMI:

sudo systemctl restart ecs

4. (Optional) You can verify that the agent is running and see some information about your new
container instance by querying the agent introspection API operation. For more information,
see the section called “Container introspection”.

curl http://localhost:51678/v1/metadata

Running a script when you launch an Amazon ECS Linux container instance

You might need to run a specific container on every container instance to deal with operations or
security concerns such as monitoring, security, metrics, service discovery, or logging.

Amazon EC2 container instances 763

Amazon Elastic Container Service Developer Guide

To do this, you can configure your container instances to call the docker run command with the
user data script at launch, or in some init system such as Upstart or systemd. While this method
works, it has some disadvantages because Amazon ECS has no knowledge of the container and
cannot monitor the CPU, memory, ports, or any other resources used. To ensure that Amazon ECS
can properly account for all task resources, create a task definition for the container to run on your
container instances. Then, use Amazon ECS to place the task at launch time with Amazon EC2 user
data.

The Amazon EC2 user data script in the following procedure uses the Amazon ECS introspection
API to identify the container instance. Then, it uses the AWS CLI and the start-task command to
run a specified task on itself during startup.

To start a task at container instance launch time

1. Modify your ecsInstanceRole IAM role to add permissions for the StartTask API
operation. For more information, see Update permissions for a role in the AWS Identity and
Access Management User Guide.

2. Launch one or more container instances using the Amazon ECS-optimized Amazon Linux 2
AMI. Launch new container instances and use the following example script in the EC2 User
data. Replace your_cluster_name with the cluster for the container instance to register into
and my_task_def with the task definition to run on the instance at launch.

For more information, see Launching an Amazon ECS Linux container instance.

Note

The MIME multi-part content below uses a shell script to set configuration values and
install packages. It also uses a systemd job to start the task after the ecs service is
running and the introspection API is available.

Content-Type: multipart/mixed; boundary="==BOUNDARY=="
MIME-Version: 1.0

--==BOUNDARY==
Content-Type: text/x-shellscript; charset="us-ascii"

#!/bin/bash
Specify the cluster that the container instance should register into

Amazon EC2 container instances 764

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-role-permissions.html

Amazon Elastic Container Service Developer Guide

cluster=your_cluster_name

Write the cluster configuration variable to the ecs.config file
(add any other configuration variables here also)
echo ECS_CLUSTER=$cluster >> /etc/ecs/ecs.config

START_TASK_SCRIPT_FILE="/etc/ecs/ecs-start-task.sh"
cat <<- 'EOF' > ${START_TASK_SCRIPT_FILE}
 exec 2>>/var/log/ecs/ecs-start-task.log
 set -x

 # Install prerequisite tools
 yum install -y jq aws-cli

 # Wait for the ECS service to be responsive
 until curl -s http://localhost:51678/v1/metadata
 do
 sleep 1
 done

 # Grab the container instance ARN and AWS Region from instance metadata
 instance_arn=$(curl -s http://localhost:51678/v1/metadata | jq -r '.
 | .ContainerInstanceArn' | awk -F/ '{print $NF}')
 cluster=$(curl -s http://localhost:51678/v1/metadata | jq -r '. | .Cluster' | awk
 -F/ '{print $NF}')
 region=$(curl -s http://localhost:51678/v1/metadata | jq -r '.
 | .ContainerInstanceArn' | awk -F: '{print $4}')

 # Specify the task definition to run at launch
 task_definition=my_task_def

 # Run the AWS CLI start-task command to start your task on this container instance
 aws ecs start-task --cluster $cluster --task-definition $task_definition --
container-instances $instance_arn --started-by $instance_arn --region $region
EOF

Write systemd unit file
UNIT="ecs-start-task.service"
cat <<- EOF > /etc/systemd/system/${UNIT}
 [Unit]
 Description=ECS Start Task
 Requires=ecs.service
 After=ecs.service

Amazon EC2 container instances 765

Amazon Elastic Container Service Developer Guide

 [Service]
 Restart=on-failure
 RestartSec=30
 ExecStart=/usr/bin/bash ${START_TASK_SCRIPT_FILE}

 [Install]
 WantedBy=default.target
EOF

Enable our ecs.service dependent service with `--no-block` to prevent systemd
 deadlock
See https://github.com/aws/amazon-ecs-agent/issues/1707
systemctl enable --now --no-block "${UNIT}"
--==BOUNDARY==--

3. Verify that your container instances launch into the correct cluster and that your tasks have
started.

a. Open the console at https://console.aws.amazon.com/ecs/v2.

b. From the navigation bar, choose the Region that your cluster is in.

c. In the navigation pane, choose Clusters and select the cluster that hosts your container
instances.

d. On the Cluster page, choose Tasks, and then choose yor tasks.

Each container instance you launched should have your task running on it.

If you do not see your tasks, you can log in to your container instances with SSH and check
the /var/log/ecs/ecs-start-task.log file for debugging information.

Increasing Amazon ECS Linux container instance network interfaces

Note

This feature is not available on Fargate.

Each task that uses the awsvpc network mode receives its own elastic network interface (ENI),
which is attached to the container instance that hosts it. There is a default limit to the number
of network interfaces that can be attached to an Amazon EC2 instance, and the primary network
interface counts as one. For example, by default a c5.large instance may have up to three ENIs

Amazon EC2 container instances 766

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

attached to it. The primary network interface for the instance counts as one, so you can attach an
additional two ENIs to the instance. Because each task using the awsvpc network mode requires an
ENI, you can typically only run two such tasks on this instance type.

Amazon ECS supports launching container instances with increased ENI density using supported
Amazon EC2 instance types. When you use these instance types and turn on the awsvpcTrunking
account setting, additional ENIs are available on newly launched container instances. This
configuration allows you to place more tasks on each container instance. To use the console to turn
on the feature, see Modifying Amazon ECS account settings. To use the AWS CLI to turn on the
feature, see Managing Amazon ECS account settings using the AWS CLI.

For example, a c5.large instance with awsvpcTrunking has an increased ENI limit of twelve.
The container instance will have the primary network interface and Amazon ECS creates and
attaches a "trunk" network interface to the container instance. So this configuration allows you to
launch ten tasks on the container instance instead of the current two tasks.

The trunk network interface is fully managed by Amazon ECS and is deleted when you either
terminate or deregister your container instance from the cluster. For more information, see
Amazon ECS task networking options for the EC2 launch type.

Considerations

Consider the following when using the ENI trunking feature.

• Only Linux variants of the Amazon ECS-optimized AMI, or other Amazon Linux variants with
version 1.28.1 or later of the container agent and version 1.28.1-2 or later of the ecs-init
package, support the increased ENI limits. If you use the latest Linux variant of the Amazon ECS-
optimized AMI, these requirements will be met. Windows containers are not supported at this
time.

• Only new Amazon EC2 instances launched after enabling awsvpcTrunking receive the
increased ENI limits and the trunk network interface. Previously launched instances do not
receive these features regardless of the actions taken.

• Amazon EC2 instances must have resource-based IPv4 DNS requests turned off. To disable this
option, clear the Enable resource-based IPV4 (A record) DNS requests option when you create
a new instance in the Amazon EC2 console. To disable this option using the AWS CLI, use the
following command.

aws ec2 modify-private-dns-name-options --instance-id i-xxxxxxx --no-enable-resource-
name-dns-a-record --no-dry-run

Amazon EC2 container instances 767

Amazon Elastic Container Service Developer Guide

• Amazon EC2 instances in shared subnets are not supported. They will fail to register to a cluster
if they are used.

• Your tasks must use the awsvpc network mode and the EC2 launch type. Tasks using the Fargate
launch type always received a dedicated ENI regardless of how many are launched, so this
feature is not needed.

• Your tasks must be launched in the same Amazon VPC as your container instance. Your tasks will
fail to start with an attribute error if they are not within the same VPC.

• When launching a new container instance, the instance transitions to a REGISTERING status
while the trunk elastic network interface is provisioned for the instance. If the registration
fails, the instance transitions to a REGISTRATION_FAILED status. You can troubleshoot a
failed registration by describing the container instance to view the statusReason field which
describes the reason for the failure. The container instance then can be manually deregistered or
terminated. Once the container instance is successfully deregistered or terminated, Amazon ECS
will delete the trunk ENI.

Note

Amazon ECS emits container instance state change events which you can monitor for
instances that transition to a REGISTRATION_FAILED state. For more information, see
Amazon ECS container instance state change events.

• Once the container instance is terminated, the instance transitions to a DEREGISTERING status
while the trunk elastic network interface is deprovisioned. The instance then transitions to an
INACTIVE status.

• If a container instance in a public subnet with the increased ENI limits is stopped and then
restarted, the instance loses its public IP address, and the container agent loses its connection.

• When you enable awsvpcTrunking, container instances receive an additional ENI that uses the
VPC's default security group, and is managed by Amazon ECS.

A default VPC comes with a public subnet in each Availability Zone, an internet gateway, and
settings to enable DNS resolution. The subnet is a public subnet, because the main route table
sends the subnet's traffic that is destined for the internet to the internet gateway. You can make
a default subnet into a private subnet by removing the route from the destination 0.0.0.0/0 to
the internet gateway. However, if you do this, no container instance running in that subnet can
access the internet. You can add or delete security group rules to control the traffic into and out

Amazon EC2 container instances 768

Amazon Elastic Container Service Developer Guide

of your subnets. For more information, see Security group rules in the Amazon Virtual Private
Cloud User Guide.

Prerequisites

Before you launch a container instance with the increased ENI limits, the following prerequisites
must be completed.

• The service-linked role for Amazon ECS must be created. The Amazon ECS service-linked role
provides Amazon ECS with the permissions to make calls to other AWS services on your behalf.
This role is created for you automatically when you create a cluster, or if you create or update
a service in the AWS Management Console. For more information, see Using service-linked
roles for Amazon ECS. You can also create the service-linked role with the following AWS CLI
command.

aws iam create-service-linked-role --aws-service-name ecs.amazonaws.com

• Your account or container instance IAM role must enable the awsvpcTrunking account setting.
We recommend that you create 2 container instance roles (ecsInstanceRole). You can then
enable the awsvpcTrunking account setting for one role and use that role for tasks that require
ENI trunking. For information about the container instance role, see Amazon ECS container
instance IAM role.

After the prerequisites are met, you can launch a new container instance using one of the
supported Amazon EC2 instance types, and the instance will have the increased ENI limits. For
a list of supported instance types, see Supported instances for increased Amazon ECS container
network interfaces. The container instance must have version 1.28.1 or later of the container
agent and version 1.28.1-2 or later of the ecs-init package. If you use the latest Linux variant
of the Amazon ECS-optimized AMI, these requirements will be met. For more information, see
Launching an Amazon ECS Linux container instance.

Important

Amazon EC2 instances must have resource-based IPv4 DNS requests turned off. To disable
this option, ensure the Enable resource-based IPV4 (A record) DNS requests option is
deselected when creating a new instance using the Amazon EC2 console. To disable this
option using the AWS CLI, use the following command.

Amazon EC2 container instances 769

https://docs.aws.amazon.com/vpc/latest/userguide/security-group-rules.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-service-linked-role.html

Amazon Elastic Container Service Developer Guide

aws ec2 modify-private-dns-name-options --instance-id i-xxxxxxx --no-enable-
resource-name-dns-a-record --no-dry-run

To view your container instances with increased ENI limits with the AWS CLI

Each container instance has a default network interface, referred to as a trunk network interface.
Use the following command to list your container instances with increased ENI limits by querying
for the ecs.awsvpc-trunk-id attribute, which indicates it has a trunk network interface.

• list-attributes (AWS CLI)

aws ecs list-attributes \
 --target-type container-instance \
 --attribute-name ecs.awsvpc-trunk-id \
 --cluster cluster_name \
 --region us-east-1

• Get-ECSAttributeList (AWS Tools for Windows PowerShell)

Get-ECSAttributeList -TargetType container-instance -AttributeName ecs.awsvpc-trunk-
id -Region us-east-1

Supported instances for increased Amazon ECS container network interfaces

The following shows the supported Amazon EC2 instance types and how many tasks using the
awsvpc network mode can be launched on each instance type before and after enabling the
awsvpcTrunking account setting.

Important

Although other instance types are supported in the same instance family, the a1.metal,
c5.metal, c5a.8xlarge, c5ad.8xlarge, c5d.metal, m5.metal, p3dn.24xlarge,
r5.metal, r5.8xlarge, and r5d.metal instance types are not supported.
The c5n, d3, d3en, g3, g3s, g4dn, i3, i3en, inf1, m5dn, m5n, m5zn, mac1, r5b, r5n,
r5dn, u-12tb1, u-6tb1, u-9tb1, and z1d instance families are not supported.

Amazon EC2 container instances 770

https://docs.aws.amazon.com/cli/latest/reference/ecs/list-attributes.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Get-ECSAttributeList.html

Amazon Elastic Container Service Developer Guide

Topics

• General purpose

• Compute optimized

• Memory optimized

• Storage optimized

• Accelerated computing

• High performance computing

General purpose

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

a1.medium 1 10

a1.large 2 10

a1.xlarge 3 20

a1.2xlarge 3 40

a1.4xlarge 7 60

m5.large 2 10

m5.xlarge 3 20

m5.2xlarge 3 40

m5.4xlarge 7 60

m5.8xlarge 7 60

m5.12xlarge 7 60

m5.16xlarge 14 120

m5.24xlarge 14 120

Amazon EC2 container instances 771

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m5a.large 2 10

m5a.xlarge 3 20

m5a.2xlarge 3 40

m5a.4xlarge 7 60

m5a.8xlarge 7 60

m5a.12xlarge 7 60

m5a.16xlarge 14 120

m5a.24xlarge 14 120

m5ad.large 2 10

m5ad.xlarge 3 20

m5ad.2xlarge 3 40

m5ad.4xlarge 7 60

m5ad.8xlarge 7 60

m5ad.12xlarge 7 60

m5ad.16xlarge 14 120

m5ad.24xlarge 14 120

m5d.large 2 10

m5d.xlarge 3 20

m5d.2xlarge 3 40

m5d.4xlarge 7 60

Amazon EC2 container instances 772

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m5d.8xlarge 7 60

m5d.12xlarge 7 60

m5d.16xlarge 14 120

m5d.24xlarge 14 120

m5d.metal 14 120

m6a.large 2 10

m6a.xlarge 3 20

m6a.2xlarge 3 40

m6a.4xlarge 7 60

m6a.8xlarge 7 90

m6a.12xlarge 7 120

m6a.16xlarge 14 120

m6a.24xlarge 14 120

m6a.32xlarge 14 120

m6a.48xlarge 14 120

m6a.metal 14 120

m6g.medium 1 4

m6g.large 2 10

m6g.xlarge 3 20

m6g.2xlarge 3 40

Amazon EC2 container instances 773

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m6g.4xlarge 7 60

m6g.8xlarge 7 60

m6g.12xlarge 7 60

m6g.16xlarge 14 120

m6g.metal 14 120

m6gd.medium 1 4

m6gd.large 2 10

m6gd.xlarge 3 20

m6gd.2xlarge 3 40

m6gd.4xlarge 7 60

m6gd.8xlarge 7 60

m6gd.12xlarge 7 60

m6gd.16xlarge 14 120

m6gd.metal 14 120

m6i.large 2 10

m6i.xlarge 3 20

m6i.2xlarge 3 40

m6i.4xlarge 7 60

m6i.8xlarge 7 90

m6i.12xlarge 7 120

Amazon EC2 container instances 774

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m6i.16xlarge 14 120

m6i.24xlarge 14 120

m6i.32xlarge 14 120

m6i.metal 14 120

m6id.large 2 10

m6id.xlarge 3 20

m6id.2xlarge 3 40

m6id.4xlarge 7 60

m6id.8xlarge 7 90

m6id.12xlarge 7 120

m6id.16xlarge 14 120

m6id.24xlarge 14 120

m6id.32xlarge 14 120

m6id.metal 14 120

m6idn.large 2 10

m6idn.xlarge 3 20

m6idn.2xlarge 3 40

m6idn.4xlarge 7 60

m6idn.8xlarge 7 90

m6idn.12xlarge 7 120

Amazon EC2 container instances 775

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m6idn.16xlarge 14 120

m6idn.24xlarge 14 120

m6idn.32xlarge 15 120

m6idn.metal 15 120

m6in.large 2 10

m6in.xlarge 3 20

m6in.2xlarge 3 40

m6in.4xlarge 7 60

m6in.8xlarge 7 90

m6in.12xlarge 7 120

m6in.16xlarge 14 120

m6in.24xlarge 14 120

m6in.32xlarge 15 120

m6in.metal 15 120

m7a.medium 1 4

m7a.large 2 10

m7a.xlarge 3 20

m7a.2xlarge 3 40

m7a.4xlarge 7 60

m7a.8xlarge 7 90

Amazon EC2 container instances 776

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m7a.12xlarge 7 120

m7a.16xlarge 14 120

m7a.24xlarge 14 120

m7a.32xlarge 14 120

m7a.48xlarge 14 120

m7a.metal-48xl 14 120

m7g.medium 1 4

m7g.large 2 10

m7g.xlarge 3 20

m7g.2xlarge 3 40

m7g.4xlarge 7 60

m7g.8xlarge 7 60

m7g.12xlarge 7 60

m7g.16xlarge 14 120

m7g.metal 14 120

m7gd.medium 1 4

m7gd.large 2 10

m7gd.xlarge 3 20

m7gd.2xlarge 3 40

m7gd.4xlarge 7 60

Amazon EC2 container instances 777

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m7gd.8xlarge 7 60

m7gd.12xlarge 7 60

m7gd.16xlarge 14 120

m7gd.metal 14 120

m7i.large 2 10

m7i.xlarge 3 20

m7i.2xlarge 3 40

m7i.4xlarge 7 60

m7i.8xlarge 7 90

m7i.12xlarge 7 120

m7i.16xlarge 14 120

m7i.24xlarge 14 120

m7i.48xlarge 14 120

m7i.metal-24xl 14 120

m7i.metal-48xl 14 120

m7i-flex.large 2 4

m7i-flex.xlarge 3 10

m7i-flex.2xlarge 3 20

m7i-flex.4xlarge 7 40

m7i-flex.8xlarge 7 60

Amazon EC2 container instances 778

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m7i-flex.12xlarge 7 120

m7i-flex.16xlarge 14 120

m8g.medium 1 4

m8g.large 2 10

m8g.xlarge 3 20

m8g.2xlarge 3 40

m8g.4xlarge 7 60

m8g.8xlarge 7 60

m8g.12xlarge 7 60

m8g.16xlarge 14 120

m8g.24xlarge 14 120

m8g.48xlarge 14 120

m8g.metal-24xl 14 120

m8g.metal-48xl 14 120

m8gd.medium 1 4

m8gd.large 2 10

m8gd.xlarge 3 20

m8gd.2xlarge 3 40

m8gd.4xlarge 7 60

m8gd.8xlarge 7 60

Amazon EC2 container instances 779

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

m8gd.12xlarge 7 60

m8gd.16xlarge 14 120

m8gd.24xlarge 14 120

m8gd.48xlarge 14 120

m8gd.metal-24xl 14 120

m8gd.metal-48xl 14 120

mac2.metal 7 12

mac2-m1ultra.metal 7 12

mac2-m2.metal 7 12

mac2-m2pro.metal 7 12

Compute optimized

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c5.large 2 10

c5.xlarge 3 20

c5.2xlarge 3 40

c5.4xlarge 7 60

c5.9xlarge 7 60

c5.12xlarge 7 60

Amazon EC2 container instances 780

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c5.18xlarge 14 120

c5.24xlarge 14 120

c5a.large 2 10

c5a.xlarge 3 20

c5a.2xlarge 3 40

c5a.4xlarge 7 60

c5a.12xlarge 7 60

c5a.16xlarge 14 120

c5a.24xlarge 14 120

c5ad.large 2 10

c5ad.xlarge 3 20

c5ad.2xlarge 3 40

c5ad.4xlarge 7 60

c5ad.12xlarge 7 60

c5ad.16xlarge 14 120

c5ad.24xlarge 14 120

c5d.large 2 10

c5d.xlarge 3 20

c5d.2xlarge 3 40

c5d.4xlarge 7 60

Amazon EC2 container instances 781

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c5d.9xlarge 7 60

c5d.12xlarge 7 60

c5d.18xlarge 14 120

c5d.24xlarge 14 120

c6a.large 2 10

c6a.xlarge 3 20

c6a.2xlarge 3 40

c6a.4xlarge 7 60

c6a.8xlarge 7 90

c6a.12xlarge 7 120

c6a.16xlarge 14 120

c6a.24xlarge 14 120

c6a.32xlarge 14 120

c6a.48xlarge 14 120

c6a.metal 14 120

c6g.medium 1 4

c6g.large 2 10

c6g.xlarge 3 20

c6g.2xlarge 3 40

c6g.4xlarge 7 60

Amazon EC2 container instances 782

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c6g.8xlarge 7 60

c6g.12xlarge 7 60

c6g.16xlarge 14 120

c6g.metal 14 120

c6gd.medium 1 4

c6gd.large 2 10

c6gd.xlarge 3 20

c6gd.2xlarge 3 40

c6gd.4xlarge 7 60

c6gd.8xlarge 7 60

c6gd.12xlarge 7 60

c6gd.16xlarge 14 120

c6gd.metal 14 120

c6gn.medium 1 4

c6gn.large 2 10

c6gn.xlarge 3 20

c6gn.2xlarge 3 40

c6gn.4xlarge 7 60

c6gn.8xlarge 7 60

c6gn.12xlarge 7 60

Amazon EC2 container instances 783

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c6gn.16xlarge 14 120

c6i.large 2 10

c6i.xlarge 3 20

c6i.2xlarge 3 40

c6i.4xlarge 7 60

c6i.8xlarge 7 90

c6i.12xlarge 7 120

c6i.16xlarge 14 120

c6i.24xlarge 14 120

c6i.32xlarge 14 120

c6i.metal 14 120

c6id.large 2 10

c6id.xlarge 3 20

c6id.2xlarge 3 40

c6id.4xlarge 7 60

c6id.8xlarge 7 90

c6id.12xlarge 7 120

c6id.16xlarge 14 120

c6id.24xlarge 14 120

c6id.32xlarge 14 120

Amazon EC2 container instances 784

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c6id.metal 14 120

c6in.large 2 10

c6in.xlarge 3 20

c6in.2xlarge 3 40

c6in.4xlarge 7 60

c6in.8xlarge 7 90

c6in.12xlarge 7 120

c6in.16xlarge 14 120

c6in.24xlarge 14 120

c6in.32xlarge 15 120

c6in.metal 15 120

c7a.medium 1 4

c7a.large 2 10

c7a.xlarge 3 20

c7a.2xlarge 3 40

c7a.4xlarge 7 60

c7a.8xlarge 7 90

c7a.12xlarge 7 120

c7a.16xlarge 14 120

c7a.24xlarge 14 120

Amazon EC2 container instances 785

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c7a.32xlarge 14 120

c7a.48xlarge 14 120

c7a.metal-48xl 14 120

c7g.medium 1 4

c7g.large 2 10

c7g.xlarge 3 20

c7g.2xlarge 3 40

c7g.4xlarge 7 60

c7g.8xlarge 7 60

c7g.12xlarge 7 60

c7g.16xlarge 14 120

c7g.metal 14 120

c7gd.medium 1 4

c7gd.large 2 10

c7gd.xlarge 3 20

c7gd.2xlarge 3 40

c7gd.4xlarge 7 60

c7gd.8xlarge 7 60

c7gd.12xlarge 7 60

c7gd.16xlarge 14 120

Amazon EC2 container instances 786

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c7gd.metal 14 120

c7gn.medium 1 4

c7gn.large 2 10

c7gn.xlarge 3 20

c7gn.2xlarge 3 40

c7gn.4xlarge 7 60

c7gn.8xlarge 7 60

c7gn.12xlarge 7 60

c7gn.16xlarge 14 120

c7gn.metal 14 120

c7i.large 2 10

c7i.xlarge 3 20

c7i.2xlarge 3 40

c7i.4xlarge 7 60

c7i.8xlarge 7 90

c7i.12xlarge 7 120

c7i.16xlarge 14 120

c7i.24xlarge 14 120

c7i.48xlarge 14 120

c7i.metal-24xl 14 120

Amazon EC2 container instances 787

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c7i.metal-48xl 14 120

c7i-flex.large 2 4

c7i-flex.xlarge 3 10

c7i-flex.2xlarge 3 20

c7i-flex.4xlarge 7 40

c7i-flex.8xlarge 7 60

c7i-flex.12xlarge 7 120

c7i-flex.16xlarge 14 120

c8g.medium 1 4

c8g.large 2 10

c8g.xlarge 3 20

c8g.2xlarge 3 40

c8g.4xlarge 7 60

c8g.8xlarge 7 60

c8g.12xlarge 7 60

c8g.16xlarge 14 120

c8g.24xlarge 14 120

c8g.48xlarge 14 120

c8g.metal-24xl 14 120

c8g.metal-48xl 14 120

Amazon EC2 container instances 788

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

c8gd.medium 1 4

c8gd.large 2 10

c8gd.xlarge 3 20

c8gd.2xlarge 3 40

c8gd.4xlarge 7 60

c8gd.8xlarge 7 60

c8gd.12xlarge 7 60

c8gd.16xlarge 14 120

c8gd.24xlarge 14 120

c8gd.48xlarge 14 120

c8gd.metal-24xl 14 120

c8gd.metal-48xl 14 120

Memory optimized

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r5.large 2 10

r5.xlarge 3 20

r5.2xlarge 3 40

r5.4xlarge 7 60

Amazon EC2 container instances 789

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r5.12xlarge 7 60

r5.16xlarge 14 120

r5.24xlarge 14 120

r5a.large 2 10

r5a.xlarge 3 20

r5a.2xlarge 3 40

r5a.4xlarge 7 60

r5a.8xlarge 7 60

r5a.12xlarge 7 60

r5a.16xlarge 14 120

r5a.24xlarge 14 120

r5ad.large 2 10

r5ad.xlarge 3 20

r5ad.2xlarge 3 40

r5ad.4xlarge 7 60

r5ad.8xlarge 7 60

r5ad.12xlarge 7 60

r5ad.16xlarge 14 120

r5ad.24xlarge 14 120

r5b.16xlarge 14 120

Amazon EC2 container instances 790

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r5d.large 2 10

r5d.xlarge 3 20

r5d.2xlarge 3 40

r5d.4xlarge 7 60

r5d.8xlarge 7 60

r5d.12xlarge 7 60

r5d.16xlarge 14 120

r5d.24xlarge 14 120

r5dn.16xlarge 14 120

r6a.large 2 10

r6a.xlarge 3 20

r6a.2xlarge 3 40

r6a.4xlarge 7 60

r6a.8xlarge 7 90

r6a.12xlarge 7 120

r6a.16xlarge 14 120

r6a.24xlarge 14 120

r6a.32xlarge 14 120

r6a.48xlarge 14 120

r6a.metal 14 120

Amazon EC2 container instances 791

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r6g.medium 1 4

r6g.large 2 10

r6g.xlarge 3 20

r6g.2xlarge 3 40

r6g.4xlarge 7 60

r6g.8xlarge 7 60

r6g.12xlarge 7 60

r6g.16xlarge 14 120

r6g.metal 14 120

r6gd.medium 1 4

r6gd.large 2 10

r6gd.xlarge 3 20

r6gd.2xlarge 3 40

r6gd.4xlarge 7 60

r6gd.8xlarge 7 60

r6gd.12xlarge 7 60

r6gd.16xlarge 14 120

r6gd.metal 14 120

r6i.large 2 10

r6i.xlarge 3 20

Amazon EC2 container instances 792

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r6i.2xlarge 3 40

r6i.4xlarge 7 60

r6i.8xlarge 7 90

r6i.12xlarge 7 120

r6i.16xlarge 14 120

r6i.24xlarge 14 120

r6i.32xlarge 14 120

r6i.metal 14 120

r6idn.large 2 10

r6idn.xlarge 3 20

r6idn.2xlarge 3 40

r6idn.4xlarge 7 60

r6idn.8xlarge 7 90

r6idn.12xlarge 7 120

r6idn.16xlarge 14 120

r6idn.24xlarge 14 120

r6idn.32xlarge 15 120

r6idn.metal 15 120

r6in.large 2 10

r6in.xlarge 3 20

Amazon EC2 container instances 793

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r6in.2xlarge 3 40

r6in.4xlarge 7 60

r6in.8xlarge 7 90

r6in.12xlarge 7 120

r6in.16xlarge 14 120

r6in.24xlarge 14 120

r6in.32xlarge 15 120

r6in.metal 15 120

r6id.large 2 10

r6id.xlarge 3 20

r6id.2xlarge 3 40

r6id.4xlarge 7 60

r6id.8xlarge 7 90

r6id.12xlarge 7 120

r6id.16xlarge 14 120

r6id.24xlarge 14 120

r6id.32xlarge 14 120

r6id.metal 14 120

r7a.medium 1 4

r7a.large 2 10

Amazon EC2 container instances 794

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r7a.xlarge 3 20

r7a.2xlarge 3 40

r7a.4xlarge 7 60

r7a.8xlarge 7 90

r7a.12xlarge 7 120

r7a.16xlarge 14 120

r7a.24xlarge 14 120

r7a.32xlarge 14 120

r7a.48xlarge 14 120

r7a.metal-48xl 14 120

r7g.medium 1 4

r7g.large 2 10

r7g.xlarge 3 20

r7g.2xlarge 3 40

r7g.4xlarge 7 60

r7g.8xlarge 7 60

r7g.12xlarge 7 60

r7g.16xlarge 14 120

r7g.metal 14 120

r7gd.medium 1 4

Amazon EC2 container instances 795

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r7gd.large 2 10

r7gd.xlarge 3 20

r7gd.2xlarge 3 40

r7gd.4xlarge 7 60

r7gd.8xlarge 7 60

r7gd.12xlarge 7 60

r7gd.16xlarge 14 120

r7gd.metal 14 120

r7i.large 2 10

r7i.xlarge 3 20

r7i.2xlarge 3 40

r7i.4xlarge 7 60

r7i.8xlarge 7 90

r7i.12xlarge 7 120

r7i.16xlarge 14 120

r7i.24xlarge 14 120

r7i.48xlarge 14 120

r7i.metal-24xl 14 120

r7i.metal-48xl 14 120

r7iz.large 2 10

Amazon EC2 container instances 796

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r7iz.xlarge 3 20

r7iz.2xlarge 3 40

r7iz.4xlarge 7 60

r7iz.8xlarge 7 90

r7iz.12xlarge 7 120

r7iz.16xlarge 14 120

r7iz.32xlarge 14 120

r7iz.metal-16xl 14 120

r7iz.metal-32xl 14 120

r8g.medium 1 4

r8g.large 2 10

r8g.xlarge 3 20

r8g.2xlarge 3 40

r8g.4xlarge 7 60

r8g.8xlarge 7 60

r8g.12xlarge 7 60

r8g.16xlarge 14 120

r8g.24xlarge 14 120

r8g.48xlarge 14 120

r8g.metal-24xl 14 120

Amazon EC2 container instances 797

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

r8g.metal-48xl 14 120

r8gd.medium 1 4

r8gd.large 2 10

r8gd.xlarge 3 20

r8gd.2xlarge 3 40

r8gd.4xlarge 7 60

r8gd.8xlarge 7 60

r8gd.12xlarge 7 60

r8gd.16xlarge 14 120

r8gd.24xlarge 14 120

r8gd.48xlarge 14 120

r8gd.metal-24xl 14 120

r8gd.metal-48xl 14 120

u-3tb1.56xlarge 7 12

u-6tb1.56xlarge 14 12

u-18tb1.112xlarge 14 12

u-18tb1.metal 14 12

u-24tb1.112xlarge 14 12

u-24tb1.metal 14 12

u7i-6tb.112xlarge 14 120

Amazon EC2 container instances 798

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

u7i-8tb.112xlarge 14 120

u7i-12tb.224xlarge 14 120

u7in-16tb.224xlarge 15 120

u7in-24tb.224xlarge 15 120

u7in-32tb.224xlarge 15 120

u7inh-32tb.480xlarge 15 120

x2gd.medium 1 10

x2gd.large 2 10

x2gd.xlarge 3 20

x2gd.2xlarge 3 40

x2gd.4xlarge 7 60

x2gd.8xlarge 7 60

x2gd.12xlarge 7 60

x2gd.16xlarge 14 120

x2gd.metal 14 120

x2idn.16xlarge 14 120

x2idn.24xlarge 14 120

x2idn.32xlarge 14 120

x2idn.metal 14 120

x2iedn.xlarge 3 13

Amazon EC2 container instances 799

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

x2iedn.2xlarge 3 29

x2iedn.4xlarge 7 60

x2iedn.8xlarge 7 120

x2iedn.16xlarge 14 120

x2iedn.24xlarge 14 120

x2iedn.32xlarge 14 120

x2iedn.metal 14 120

x2iezn.2xlarge 3 64

x2iezn.4xlarge 7 120

x2iezn.6xlarge 7 120

x2iezn.8xlarge 7 120

x2iezn.12xlarge 14 120

x2iezn.metal 14 120

x8g.medium 1 4

x8g.large 2 10

x8g.xlarge 3 20

x8g.2xlarge 3 40

x8g.4xlarge 7 60

x8g.8xlarge 7 60

x8g.12xlarge 7 60

Amazon EC2 container instances 800

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

x8g.16xlarge 14 120

x8g.24xlarge 14 120

x8g.48xlarge 14 120

x8g.metal-24xl 14 120

x8g.metal-48xl 14 120

Storage optimized

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

i4g.large 2 10

i4g.xlarge 3 20

i4g.2xlarge 3 40

i4g.4xlarge 7 60

i4g.8xlarge 7 60

i4g.16xlarge 14 120

i4i.xlarge 3 8

i4i.2xlarge 3 28

i4i.4xlarge 7 58

i4i.8xlarge 7 118

i4i.12xlarge 7 118

Amazon EC2 container instances 801

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

i4i.16xlarge 14 248

i4i.24xlarge 14 118

i4i.32xlarge 14 498

i4i.metal 14 498

i7i.large 2 10

i7i.xlarge 3 20

i7i.2xlarge 3 40

i7i.4xlarge 7 60

i7i.8xlarge 7 90

i7i.12xlarge 7 90

i7i.16xlarge 14 120

i7i.24xlarge 14 120

i7i.48xlarge 14 120

i7i.metal-24xl 14 120

i7i.metal-48xl 14 120

i7ie.large 2 20

i7ie.xlarge 3 29

i7ie.2xlarge 3 29

i7ie.3xlarge 3 29

i7ie.6xlarge 7 60

Amazon EC2 container instances 802

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

i7ie.12xlarge 7 60

i7ie.18xlarge 14 120

i7ie.24xlarge 14 120

i7ie.48xlarge 14 120

i7ie.metal-24xl 14 120

i7ie.metal-48xl 14 120

i8g.large 2 10

i8g.xlarge 3 20

i8g.2xlarge 3 40

i8g.4xlarge 7 60

i8g.8xlarge 7 60

i8g.12xlarge 7 60

i8g.16xlarge 14 120

i8g.24xlarge 14 120

i8g.48xlarge 14 120

i8g.metal-24xl 14 120

im4gn.large 2 10

im4gn.xlarge 3 20

im4gn.2xlarge 3 40

im4gn.4xlarge 7 60

Amazon EC2 container instances 803

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

im4gn.8xlarge 7 60

im4gn.16xlarge 14 120

is4gen.medium 1 4

is4gen.large 2 10

is4gen.xlarge 3 20

is4gen.2xlarge 3 40

is4gen.4xlarge 7 60

is4gen.8xlarge 7 60

Accelerated computing

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

dl1.24xlarge 59 120

dl2q.24xlarge 14 120

f2.6xlarge 7 90

f2.12xlarge 7 120

f2.48xlarge 14 120

g4ad.xlarge 1 12

g4ad.2xlarge 1 12

g4ad.4xlarge 2 12

Amazon EC2 container instances 804

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

g4ad.8xlarge 3 12

g4ad.16xlarge 7 12

g5.xlarge 3 6

g5.2xlarge 3 19

g5.4xlarge 7 40

g5.8xlarge 7 90

g5.12xlarge 14 120

g5.16xlarge 7 120

g5.24xlarge 14 120

g5.48xlarge 6 120

g5g.xlarge 3 20

g5g.2xlarge 3 40

g5g.4xlarge 7 60

g5g.8xlarge 7 60

g5g.16xlarge 14 120

g5g.metal 14 120

g6.xlarge 3 20

g6.2xlarge 3 40

g6.4xlarge 7 60

g6.8xlarge 7 90

Amazon EC2 container instances 805

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

g6.12xlarge 7 120

g6.16xlarge 14 120

g6.24xlarge 14 120

g6.48xlarge 14 120

g6e.xlarge 3 20

g6e.2xlarge 3 40

g6e.4xlarge 7 60

g6e.8xlarge 7 90

g6e.12xlarge 9 120

g6e.16xlarge 14 120

g6e.24xlarge 19 120

g6e.48xlarge 39 120

gr6.4xlarge 7 60

gr6.8xlarge 7 90

inf2.xlarge 3 20

inf2.8xlarge 7 90

inf2.24xlarge 14 120

inf2.48xlarge 14 120

p4d.24xlarge 59 120

p4de.24xlarge 59 120

Amazon EC2 container instances 806

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

p5.48xlarge 63 242

p5e.48xlarge 63 242

p5en.48xlarge 63 242

p6-b200.48xlarge 31 242

trn1.2xlarge 3 19

trn1.32xlarge 39 120

trn1n.32xlarge 79 242

trn2.48xlarge 31 242

trn2u.48xlarge 31 242

vt1.3xlarge 3 40

vt1.6xlarge 7 60

vt1.24xlarge 14 120

High performance computing

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

hpc6a.48xlarge 1 120

hpc6id.32xlarge 1 120

hpc7g.4xlarge 3 120

hpc7g.8xlarge 3 120

Amazon EC2 container instances 807

Amazon Elastic Container Service Developer Guide

Instance type Task limit without ENI
trunking

Task limit with ENI trunking

hpc7g.16xlarge 3 120

Reserving Amazon ECS Linux container instance memory

When the Amazon ECS container agent registers a container instance to a cluster, the agent must
determine how much memory the container instance has available to reserve for your tasks.
Because of platform memory overhead and memory occupied by the system kernel, this number
is different than the installed memory amount that is advertised for Amazon EC2 instances. For
example, an m4.large instance has 8 GiB of installed memory. However, this does not always
translate to exactly 8192 MiB of memory available for tasks when the container instance registers.

The Amazon ECS container agent provides a configuration variable called ECS_RESERVED_MEMORY,
which you can use to remove a specified number of MiB of memory from the pool that is allocated
to your tasks. This effectively reserves that memory for critical system processes.

If you occupy all of the memory on a container instance with your tasks, then it is possible that
your tasks will contend with critical system processes for memory and possibly start a system
failure.

For example, if you specify ECS_RESERVED_MEMORY=256 in your container agent configuration
file, then the agent registers the total memory minus 256 MiB for that instance, and 256 MiB of
memory could not be allocated by ECS tasks. For more information about agent configuration
variables and how to set them, see Amazon ECS container agent configuration and Bootstrapping
Amazon ECS Linux container instances to pass data.

If you specify 8192 MiB for the task, and none of your container instances have 8192 MiB or
greater of memory available to satisfy this requirement, then the task cannot be placed in your
cluster. If you are using a managed compute environment, then AWS Batch must launch a larger
instance type to accommodate the request.

You should also reserve some memory for the Amazon ECS container agent and other critical
system processes on your container instances, so that your task's containers do not contend for the
same memory and possibly starts a system failure.

Amazon EC2 container instances 808

Amazon Elastic Container Service Developer Guide

The Amazon ECS container agent uses the Docker ReadMemInfo() function to query the total
memory available to the operating system. Both Linux and Windows provide command line utilities
to determine the total memory.

Example - Determine Linux total memory

The free command returns the total memory that is recognized by the operating system.

$ free -b

Example output for an m4.large instance running the Amazon ECS-optimized Amazon Linux AMI.

 total used free shared buffers cached
Mem: 8373026816 348180480 8024846336 90112 25534464 205418496
-/+ buffers/cache: 117227520 8255799296

This instance has 8373026816 bytes of total memory, which translates to 7985 MiB available for
tasks.

Example - Determine Windows total memory

The wmic command returns the total memory that is recognized by the operating system.

C:\> wmic ComputerSystem get TotalPhysicalMemory

Example output for an m4.large instance running the Amazon ECS-optimized Windows Server
AMI.

TotalPhysicalMemory
8589524992

This instance has 8589524992 bytes of total memory, which translates to 8191 MiB available for
tasks.

Viewing container instance memory

You can view how much memory a container instance registers with in the Amazon ECS console (or
with the DescribeContainerInstances API operation). If you are trying to maximize your resource
utilization by providing your tasks as much memory as possible for a particular instance type, you
can observe the memory available for that container instance and then assign your tasks that much
memory.

Amazon EC2 container instances 809

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeContainerInstances.html

Amazon Elastic Container Service Developer Guide

To view container instance memory

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters, and then choose the cluster that hosts your container
instance.

3. Choose Infrastructure, and then under Container instances, choose a container instance.

4. The Resources section shows the registered and available memory for the container instance.

The Registered memory value is what the container instance; registered with Amazon ECS
when it was first launched, and the Available memory value is what has not already been
allocated to tasks.

Managing Amazon ECS container instances remotely using AWS Systems Manager

You can use the Run Command capability in AWS Systems Manager (Systems Manager) to securely
and remotely manage the configuration of your Amazon ECS container instances. Run Command
provides a simple way to perform common administrative tasks without logging on locally to the
instance. You can manage configuration changes across your clusters by simultaneously executing
commands on multiple container instances. Run Command reports the status and results of each
command.

Here are some examples of the types of tasks you can perform with Run Command:

• Install or uninstall packages.

• Perform security updates.

• Clean up Docker images.

• Stop or start services.

• View system resources.

• View log files.

• Perform file operations.

For more information about Run Command, see AWS Systems Manager Run Command in the AWS
Systems Manager User Guide.

The following are prequisites to using Systems Manager with Amazon ECS.

Amazon EC2 container instances 810

https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/systems-manager/latest/userguide/run-command.html

Amazon Elastic Container Service Developer Guide

1. You must grant the container instance role (ecsInstanceRole) permissions to access the
Systems Manager APIs. You can do this by assigning the AmazonSSMManagedInstanceCore
to the ecsInstanceRole role. For information about how to attach a policy to a role, see
Update permissions for a role in the AWS Identity and Access Management User Guide

2. Verify that SSM Agent is installed on your container instances. For more information, see
Manually installing and uninstalling SSM Agent on EC2 instances for Linux.

After you attach Systems Manager managed policies to your ecsInstanceRole and verify
that AWS Systems Manager Agent (SSM Agent) is installed on your container instances, you can
start using Run Command to send commands to your container instances. For information about
running commands and shell scripts on your instances and viewing the resulting output, see
Running Commands Using Systems Manager Run Command and Run Command Walkthroughs in
the AWS Systems Manager User Guide.

A common use case is to update container instance software with Run Command. You can follow
the procedues in the AWS Systems Manager User Guide with the following parameters.

Parameter Value

Command document AWS-RunShellScript

Command $ yum update -y

Target instances Your container instances

Using an HTTP proxy for Amazon ECS Linux container instances

You can configure your Amazon ECS container instances to use an HTTP proxy for both the Amazon
ECS container agent and the Docker daemon. This is useful if your container instances do not have
external network access through an Amazon VPC internet gateway, NAT gateway, or instance.

To configure your Amazon ECS Linux container instance to use an HTTP proxy, set the following
variables in the relevant files at launch time (with Amazon EC2 user data). You can also manually
edit the configuration file, and then restart the agent.

Amazon EC2 container instances 811

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-role-permissions.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/manually-install-ssm-agent-linux.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/run-command.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/run-command-walkthroughs.html

Amazon Elastic Container Service Developer Guide

/etc/ecs/ecs.config (Amazon Linux 2 and AmazonLinux AMI)

HTTP_PROXY=10.0.0.131:3128

Set this value to the hostname (or IP address) and port number of an HTTP proxy to use for
the Amazon ECS agent to connect to the internet. For example, your container instances
may not have external network access through an Amazon VPC internet gateway, NAT
gateway, or instance.

NO_PROXY=169.254.169.254,169.254.170.2,/var/run/docker.sock

Set this value to 169.254.169.254,169.254.170.2,/var/run/docker.sock to filter
EC2 instance metadata, IAM roles for tasks, and Docker daemon traffic from the proxy.

/etc/systemd/system/ecs.service.d/http-proxy.conf (Amazon Linux 2 only)

Environment="HTTP_PROXY=10.0.0.131:3128/"

Set this value to the hostname (or IP address) and port number of an HTTP proxy to use
for ecs-init to connect to the internet. For example, your container instances may not
have external network access through an Amazon VPC internet gateway, NAT gateway, or
instance.

Environment="NO_PROXY=169.254.169.254,169.254.170.2,/var/run/
docker.sock"

Set this value to 169.254.169.254,169.254.170.2,/var/run/docker.sock to filter
EC2 instance metadata, IAM roles for tasks, and Docker daemon traffic from the proxy.

/etc/init/ecs.override (Amazon Linux AMI only)

env HTTP_PROXY=10.0.0.131:3128

Set this value to the hostname (or IP address) and port number of an HTTP proxy to use
for ecs-init to connect to the internet. For example, your container instances may not
have external network access through an Amazon VPC internet gateway, NAT gateway, or
instance.

env NO_PROXY=169.254.169.254,169.254.170.2,/var/run/docker.sock

Set this value to 169.254.169.254,169.254.170.2,/var/run/docker.sock to filter
EC2 instance metadata, IAM roles for tasks, and Docker daemon traffic from the proxy.

Amazon EC2 container instances 812

Amazon Elastic Container Service Developer Guide

/etc/systemd/system/docker.service.d/http-proxy.conf (Amazon Linux 2 only)

Environment="HTTP_PROXY=http://10.0.0.131:3128"

Set this value to the hostname (or IP address) and port number of an HTTP proxy to use for
the Docker daemon to connect to the internet. For example, your container instances may
not have external network access through an Amazon VPC internet gateway, NAT gateway,
or instance.

Environment="NO_PROXY=169.254.169.254,169.254.170.2"

Set this value to 169.254.169.254,169.254.170.2 to filter EC2 instance metadata from
the proxy.

/etc/sysconfig/docker (Amazon Linux AMI and Amazon Linux 2 only)

export HTTP_PROXY=http://10.0.0.131:3128

Set this value to the hostname (or IP address) and port number of an HTTP proxy to use for
the Docker daemon to connect to the internet. For example, your container instances may
not have external network access through an Amazon VPC internet gateway, NAT gateway,
or instance.

export NO_PROXY=169.254.169.254,169.254.170.2

Set this value to 169.254.169.254,169.254.170.2 to filter EC2 instance metadata from
the proxy.

Setting these environment variables in the above files only affects the Amazon ECS container
agent, ecs-init, and the Docker daemon. They do not configure any other services (such as yum)
to use the proxy.

For information about how to confiure thhe proxy, see How do I set up an HTTP proxy for Docker
and the Amazon ECS container agent in Amazon Linux 2 or AL2023.

Configuring pre-initialized instances for your Amazon ECS Auto Scaling group

Amazon ECS supports Amazon EC2 Auto Scaling warm pools. A warm pool is a group of pre-
initialized Amazon EC2 instances ready to be placed into service. Whenever your application needs
to scale out, Amazon EC2 Auto Scaling uses the pre-initialized instances from the warm pool rather
than launching cold instances, allows for any final initialization process to run, and then places the
instance into service.

Amazon EC2 container instances 813

https://repost.aws/knowledge-center/ecs-http-proxy-docker-linux2
https://repost.aws/knowledge-center/ecs-http-proxy-docker-linux2

Amazon Elastic Container Service Developer Guide

To learn more about warm pools and how to add a warm pool to your Auto Scaling group, see
Warm pools for Amazon EC2 Auto Scaling in the Amazon EC2 Auto Scaling User Guide.

When you create or update a warm pool for an Auto Scaling group for Amazon ECS , you cannot
set the option that returns instances to the warm pool on scale in (ReuseOnScaleIn). For more
information, see put-warm-pool in the AWS Command Line Interface Reference.

To use warm pools with your Amazon ECS cluster, set the ECS_WARM_POOLS_CHECK agent
configuration variable to true in the User data field of your Amazon EC2 Auto Scaling group
launch template.

The following shows an example of how the agent configuration variable can be specified in the
User data field of an Amazon EC2 launch template. Replace MyCluster with the name our your
cluster.

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=MyCluster
ECS_WARM_POOLS_CHECK=true
EOF

The ECS_WARM_POOLS_CHECK variable is only supported on agent versions 1.59.0 and later. For
more information about the variable, see Amazon ECS container agent configuration.

Updating the Amazon ECS container agent

Occasionally, you might need to update the Amazon ECS container agent to pick up bug fixes
and new features. Updating the Amazon ECS container agent does not interrupt running tasks
or services on the container instance. The process for updating the agent differs depending on
whether your container instance was launched with an Amazon ECS-optimized AMI or another
operating system.

Note

Agent updates do not apply to Windows container instances. We recommend that you
launch new container instances to update the agent version in your Windows clusters.

Amazon EC2 container instances 814

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-warm-pools.html
https://docs.aws.amazon.com/cli/latest/reference/autoscaling/put-warm-pool.html

Amazon Elastic Container Service Developer Guide

Checking the Amazon ECS container agent version

You can check the version of the container agent that is running on your container instances to see
if you need to update it. The container instance view in the Amazon ECS console provides the agent
version. Use the following procedure to check your agent version.

Amazon ECS console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, choose the Region where your external instance is registered.

3. In the navigation pane, choose Clusters and select the cluster that hosts the external
instance.

4. On the Cluster : name page, choose the Infrastructure tab.

5. Under Container instances, note the Agent version column for your container instances.
If the container instance does not contain the latest version of the container agent, the
console alerts you with a message and flags the outdated agent version.

If your agent version is outdated, you can update your container agent with the following
procedures:

• If your container instance is running an Amazon ECS-optimized AMI, see Updating the
Amazon ECS container agent on an Amazon ECS-optimized AMI.

• If your container instance is not running an Amazon ECS-optimized AMI, see Manually
updating the Amazon ECS container agent (for non-Amazon ECS-Optimized AMIs).

Important

To update the Amazon ECS agent version from versions before v1.0.0 on your
Amazon ECS-optimized AMI, we recommend that you terminate your current
container instance and launch a new instance with the most recent AMI version. Any
container instances that use a preview version should be retired and replaced with
the most recent AMI. For more information, see Launching an Amazon ECS Linux
container instance.

Amazon EC2 container instances 815

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Amazon ECS container agent introspection API

You can also use the to check the agent Amazon ECS container agent introspection API
version from the container instance itself. For more information, see Amazon ECS container
introspection.

To check if your Amazon ECS container agent is running the latest version with the
introspection API

1. Log in to your container instance via SSH.

2. Query the introspection API.

[ec2-user ~]$ curl -s 127.0.0.1:51678/v1/metadata | python3 -mjson.tool

Note

The introspection API added Version information in the version v1.0.0 of the
Amazon ECS container agent. If Version is not present when querying the
introspection API, or the introspection API is not present in your agent at all, then
the version you are running is v0.0.3 or earlier. You should update your version.

Updating the Amazon ECS container agent on an Amazon ECS-optimized AMI

If you are using an Amazon ECS-optimized AMI, you have several options to get the latest version
of the Amazon ECS container agent (shown in order of recommendation):

• Terminate the container instance and launch the latest version of the Amazon ECS-optimized
Amazon Linux 2 AMI (either manually or by updating your Auto Scaling launch configuration
with the latest AMI). This provides a fresh container instance with the most current tested and
validated versions of Amazon Linux, Docker, ecs-init, and the Amazon ECS container agent.
For more information, see Amazon ECS-optimized Linux AMIs.

• Connect to the instance with SSH and update the ecs-init package (and its dependencies)
to the latest version. This operation provides the most current tested and validated versions of
Docker and ecs-init that are available in the Amazon Linux repositories and the latest version
of the Amazon ECS container agent. For more information, see To update the ecs-init package
on an Amazon ECS-optimized AMI.

Amazon EC2 container instances 816

Amazon Elastic Container Service Developer Guide

• Update the container agent with the UpdateContainerAgent API operation, either through
the console or with the AWS CLI or AWS SDKs. For more information, see Updating the Amazon
ECS container agent with the UpdateContainerAgent API operation.

Note

Agent updates do not apply to Windows container instances. We recommend that you
launch new container instances to update the agent version in your Windows clusters.

To update the ecs-init package on an Amazon ECS-optimized AMI

1. Log in to your container instance via SSH.

2. Update the ecs-init package with the following command.

sudo yum update -y ecs-init

Note

The ecs-init package and the Amazon ECS container agent are updated
immediately. However, newer versions of Docker are not loaded until the Docker
daemon is restarted. Restart either by rebooting the instance, or by running the
following commands on your instance:

• Amazon ECS-optimized Amazon Linux 2 AMI:

sudo systemctl restart docker

• Amazon ECS-optimized Amazon Linux AMI:

sudo service docker restart && sudo start ecs

Amazon EC2 container instances 817

Amazon Elastic Container Service Developer Guide

Updating the Amazon ECS container agent with the UpdateContainerAgent API operation

Important

The UpdateContainerAgent API is only supported on Linux variants of the Amazon ECS-
optimized AMI, with the exception of the Amazon ECS-optimized Amazon Linux 2 (arm64)
AMI. For container instances using the Amazon ECS-optimized Amazon Linux 2 (arm64)
AMI, update the ecs-init package to update the agent. For container instances that are
running other operating systems, see Manually updating the Amazon ECS container agent
(for non-Amazon ECS-Optimized AMIs). If you are using Windows container instances, we
recommend that you launch new container instances to update the agent version in your
Windows clusters.

The UpdateContainerAgent API process begins when you request an agent update, either
through the console or with the AWS CLI or AWS SDKs. Amazon ECS checks your current agent
version against the latest available agent version, and if an update is possible. If an update
is not available, for example, if the agent is already running the most recent version, then a
NoUpdateAvailableException is returned.

The stages in the update process shown above are as follows:

PENDING

An agent update is available, and the update process has started.

STAGING

The agent has begun downloading the agent update. If the agent cannot download the update,
or if the contents of the update are incorrect or corrupted, then the agent sends a notification
of the failure and the update transitions to the FAILED state.

STAGED

The agent download has completed and the agent contents have been verified.

UPDATING

The ecs-init service is restarted and it picks up the new agent version. If the agent is for
some reason unable to restart, the update transitions to the FAILED state; otherwise, the agent
signals Amazon ECS that the update is complete.

Amazon EC2 container instances 818

Amazon Elastic Container Service Developer Guide

Note

Agent updates do not apply to Windows container instances. We recommend that you
launch new container instances to update the agent version in your Windows clusters.

To update the Amazon ECS container agent on an Amazon ECS-optimized AMI in the console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, choose the Region where your external instance is registered.

3. In the navigation pane, choose Clusters and select the cluster.

4. On the Cluster : name page, choose the Infrastructure tab.

5. Under Container instances, select the instances to update, and then choose Actions, Update
agent.

Manually updating the Amazon ECS container agent (for non-Amazon ECS-Optimized AMIs)

Occasionally, you might need to update the Amazon ECS container agent to pick up bug fixes
and new features. Updating the Amazon ECS container agent does not interrupt running tasks or
services on the container instance.

Note

Agent updates do not apply to Windows container instances. We recommend that you
launch new container instances to update the agent version in your Windows clusters.

1. Log in to your container instance via SSH.

2. Check to see if your agent uses the ECS_DATADIR environment variable to save its state.

ubuntu:~$ docker inspect ecs-agent | grep ECS_DATADIR

Output:

"ECS_DATADIR=/data",

Amazon EC2 container instances 819

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Important

If the previous command does not return the ECS_DATADIR environment variable, you
must stop any tasks running on this container instance before updating your agent.
Newer agents with the ECS_DATADIR environment variable save their state and you
can update them while tasks are running without issues.

3. Stop the Amazon ECS container agent.

ubuntu:~$ docker stop ecs-agent

4. Delete the agent container.

ubuntu:~$ docker rm ecs-agent

5. Ensure that the /etc/ecs directory and the Amazon ECS container agent configuration file
exist at /etc/ecs/ecs.config.

ubuntu:~$ sudo mkdir -p /etc/ecs && sudo touch /etc/ecs/ecs.config

6. Edit the /etc/ecs/ecs.config file and ensure that it contains at least the following
variable declarations. If you do not want your container instance to register with the default
cluster, specify your cluster name as the value for ECS_CLUSTER.

ECS_DATADIR=/data
ECS_ENABLE_TASK_IAM_ROLE=true
ECS_ENABLE_TASK_IAM_ROLE_NETWORK_HOST=true
ECS_LOGFILE=/log/ecs-agent.log
ECS_AVAILABLE_LOGGING_DRIVERS=["json-file","awslogs"]
ECS_LOGLEVEL=info
ECS_CLUSTER=default

For more information about these and other agent runtime options, see Amazon ECS container
agent configuration.

Note

You can optionally store your agent environment variables in Amazon S3 (which can be
downloaded to your container instances at launch time using Amazon EC2 user data).

Amazon EC2 container instances 820

Amazon Elastic Container Service Developer Guide

This is recommended for sensitive information such as authentication credentials for
private repositories. For more information, see Storing Amazon ECS container instance
configuration in Amazon S3 and Using non-AWS container images in Amazon ECS.

7. Pull the latest Amazon ECS container agent image from Amazon Elastic Container Registry
Public.

ubuntu:~$ docker pull public.ecr.aws/ecs/amazon-ecs-agent:latest

Output:

Pulling repository amazon/amazon-ecs-agent
a5a56a5e13dc: Download complete
511136ea3c5a: Download complete
9950b5d678a1: Download complete
c48ddcf21b63: Download complete
Status: Image is up to date for amazon/amazon-ecs-agent:latest

8. Run the latest Amazon ECS container agent on your container instance.

Note

Use Docker restart policies or a process manager (such as upstart or systemd) to
treat the container agent as a service or a daemon and ensure that it is restarted after
exiting. The Amazon ECS-optimized AMI uses the ecs-init RPM for this purpose, and
you can view the source code for this RPM on GitHub.

The following example of the agent run command is broken into separate lines to show each
option. For more information about these and other agent runtime options, see Amazon ECS
container agent configuration.

Important

Operating systems with SELinux enabled require the --privileged option in your
docker run command. In addition, for SELinux-enabled container instances, we
recommend that you add the :Z option to the /log and /data volume mounts.
However, the host mounts for these volumes must exist before you run the command
or you receive a no such file or directory error. Take the following action

Amazon EC2 container instances 821

https://github.com/aws/amazon-ecs-init

Amazon Elastic Container Service Developer Guide

if you experience difficulty running the Amazon ECS agent on an SELinux-enabled
container instance:

• Create the host volume mount points on your container instance.

ubuntu:~$ sudo mkdir -p /var/log/ecs /var/lib/ecs/data

• Add the --privileged option to the docker run command below.

• Append the :Z option to the /log and /data container volume mounts (for
example, --volume=/var/log/ecs/:/log:Z) to the docker run command below.

ubuntu:~$ sudo docker run --name ecs-agent \
--detach=true \
--restart=on-failure:10 \
--volume=/var/run:/var/run \
--volume=/var/log/ecs/:/log \
--volume=/var/lib/ecs/data:/data \
--volume=/etc/ecs:/etc/ecs \
--volume=/etc/ecs:/etc/ecs/pki \
--net=host \
--env-file=/etc/ecs/ecs.config \
amazon/amazon-ecs-agent:latest

Note

If you receive an Error response from daemon: Cannot start container
message, you can delete the failed container with the sudo docker rm ecs-agent
command and try running the agent again.

Amazon ECS-optimized Windows AMIs

The Amazon ECS-optimized AMIs are preconfigured with the necessary components that you need
to run Amazon ECS workloads. Although you can create your own container instance AMI that
meets the basic specifications needed to run your containerized workloads on Amazon ECS, the
Amazon ECS-optimized AMIs are preconfigured and tested on Amazon ECS by AWS engineers. It is
the simplest way for you to get started and to get your containers running on AWS quickly.

Amazon EC2 container instances 822

Amazon Elastic Container Service Developer Guide

The Amazon ECS-optimized AMI metadata, including the AMI name, Amazon ECS container agent
version, and Amazon ECS runtime version which includes the Docker version, for each variant can
be retrieved programmatically. For more information, see the section called “Retrieving Amazon
ECS-optimized Windows AMI metadata”.

Important

All ECS-optimized AMI variants produced after August 2022 will be migrating from Docker
EE (Mirantis) to Docker CE (Moby project).
To ensure that customers have the latest security updates by default, Amazon ECS
maintains at least the last three Windows Amazon ECS-optimized AMIs. After releasing new
Windows Amazon ECS-optimized AMIs, Amazon ECS makes the Windows Amazon ECS-
optimized AMIs that are older private. If there is a private AMI that you need access to, let
us know by filing a ticket with Cloud Support.

Amazon ECS-optimized AMI variants

The following Windows Server variants of the Amazon ECS-optimized AMI are available for your
Amazon EC2 instances.

Important

All ECS-optimized AMI variants produced after August will be migrating from Docker EE
(Mirantis) to Docker CE (Moby project).

• Amazon ECS-optimized Windows Server 2025 Full AMI

• Amazon ECS-optimized Windows Server 2025 Core AMI

• Amazon ECS-optimized Windows Server 2022 Full AMI

• Amazon ECS-optimized Windows Server 2022 Core AMI

• Amazon ECS-optimized Windows Server 2019 Full AMI

• Amazon ECS-optimized Windows Server 2019 Core AMI

• Amazon ECS-optimized Windows Server 2016 Full AMI

Amazon EC2 container instances 823

Amazon Elastic Container Service Developer Guide

Important

Windows Server 2016 does not support the latest Docker version, for example 25.x.x.
Therefore the Windows Server 2016 Full AMIs will not receive security or bug patches
to the Docker runtime. We recommend that you move to one of the following Windows
platforms:

• Windows Server 2022 Full

• Windows Server 2022 Core

• Windows Server 2019 Full

• Windows Server 2019 Core

On August 9, 2022, the Amazon ECS-optimized Windows Server 20H2 Core AMI reached its end
of support date. No new versions of this AMI will be released. For more information, see Windows
Server release information.

Windows Server 2025, Windows Server 2022, Windows Server 2019, and Windows Server 2016
are Long-Term Servicing Channel (LTSC) releases. Windows Server 20H2 is a Semi-Annual Channel
(SAC) release. For more information, see Windows Server release information.

Considerations

Here are some things you should know about Amazon EC2 Windows containers and Amazon ECS.

• Windows containers can't run on Linux container instances, and the opposite is also the case.
For better task placement for Windows and Linux tasks, keep Windows and Linux container
instances in separate clusters and only place Windows tasks on Windows clusters. You can ensure
that Windows task definitions are only placed on Windows instances by setting the following
placement constraint: memberOf(ecs.os-type=='windows').

• Windows containers are supported for tasks that use the EC2 and Fargate launch types.

• Windows containers and container instances can't support all the task definition parameters
that are available for Linux containers and container instances. For some parameters, they aren't
supported at all, and others behave differently on Windows than they do on Linux. For more
information, see Amazon ECS task definition differences for EC2 instances running Windows.

• For the IAM roles for tasks feature, you need to configure your Windows container instances to
allow the feature at launch. Your containers must run some provided PowerShell code when

Amazon EC2 container instances 824

https://learn.microsoft.com/en-us/windows-server/get-started/windows-server-release-info
https://learn.microsoft.com/en-us/windows-server/get-started/windows-server-release-info
https://learn.microsoft.com/en-us/windows-server/get-started/windows-server-release-info

Amazon Elastic Container Service Developer Guide

they use the feature. For more information, see Amazon EC2 Windows instance additional
configuration.

• The IAM roles for tasks feature uses a credential proxy to provide credentials to the containers.
This credential proxy occupies port 80 on the container instance, so if you use IAM roles for
tasks, port 80 is not available for tasks. For web service containers, you can use an Application
Load Balancer and dynamic port mapping to provide standard HTTP port 80 connections to
your containers. For more information, see Use load balancing to distribute Amazon ECS service
traffic.

• The Windows Server Docker images are large (9 GiB). So, your Windows container instances
require more storage space than Linux container instances.

• To run a Windows container on a Windows Server, the container’s base image OS version
must match that of the host. For more information, see Windows container version
compatibility on the Microsoft documentation website. If your cluster runs multiple Windows
versions, you can ensure that a task is placed on an EC2 instance running on the same
version by using the placement constraint: memberOf(attribute:ecs.os-family ==
WINDOWS_SERVER_<OS_Release>_<FULL or CORE>). For more information, see the section
called “Retrieving Amazon ECS-optimized Windows AMI metadata”.

Retrieving Amazon ECS-optimized Windows AMI metadata

The AMI ID, image name, operating system, container agent version, and runtime version for
each variant of the Amazon ECS-optimized AMIs can be programmatically retrieved by querying
the Systems Manager Parameter Store API. For more information about the Systems Manager
Parameter Store API, see GetParameters and GetParametersByPath.

Note

Your administrative user must have the following IAM permissions to retrieve the
Amazon ECS-optimized AMI metadata. These permissions have been added to the
AmazonECS_FullAccess IAM policy.

• ssm:GetParameters

• ssm:GetParameter

• ssm:GetParametersByPath

Amazon EC2 container instances 825

https://learn.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/version-compatibility?tabs=windows-server-2022%2Cwindows-11
https://learn.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/version-compatibility?tabs=windows-server-2022%2Cwindows-11
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameters.html
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParametersByPath.html

Amazon Elastic Container Service Developer Guide

Systems Manager Parameter Store parameter format

Note

The following Systems Manager Parameter Store API parameters are deprecated and
should not be used to retrieve the latest Windows AMIs:

• /aws/service/ecs/optimized-ami/windows_server/2016/english/full/
recommended/image_id

• /aws/service/ecs/optimized-ami/windows_server/2019/english/full/
recommended/image_id

The following is the format of the parameter name for each Amazon ECS-optimized AMI variant.

• Windows Server 2025 Full AMI metadata:

/aws/service/ami-windows-latest/Windows_Server-2025-English-Full-ECS_Optimized

• Windows Server 2025 Core AMI metadata:

/aws/service/ami-windows-latest/Windows_Server-2025-English-Core-ECS_Optimized

• Windows Server 2022 Full AMI metadata:

/aws/service/ami-windows-latest/Windows_Server-2022-English-Full-ECS_Optimized

• Windows Server 2022 Core AMI metadata:

/aws/service/ami-windows-latest/Windows_Server-2022-English-Core-ECS_Optimized

• Windows Server 2019 Full AMI metadata:

/aws/service/ami-windows-latest/Windows_Server-2019-English-Full-ECS_Optimized

• Windows Server 2019 Core AMI metadata:

/aws/service/ami-windows-latest/Windows_Server-2019-English-Core-ECS_Optimized

• Windows Server 2016 Full AMI metadata:

Amazon EC2 container instances 826

Amazon Elastic Container Service Developer Guide

/aws/service/ami-windows-latest/Windows_Server-2016-English-Full-ECS_Optimized

The following parameter name format retrieves the metadata of the latest stable Windows Server
2019 Full AMI

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2019-
English-Full-ECS_Optimized

The following is an example of the JSON object that is returned for the parameter value.

{
 "Parameters": [
 {
 "Name": "/aws/service/ami-windows-latest/Windows_Server-2019-English-Full-
ECS_Optimized",
 "Type": "String",
 "Value": "{\"image_name\":\"Windows_Server-2019-English-Full-
ECS_Optimized-2023.06.13\",\"image_id\":\"ami-0debc1fb48e4aee16\",\"ecs_runtime_version
\":\"Docker (CE) version 20.10.21\",\"ecs_agent_version\":\"1.72.0\"}",
 "Version": 58,
 "LastModifiedDate": "2023-06-22T19:37:37.841000-04:00",
 "ARN": "arn:aws:ssm:us-east-1::parameter/aws/service/ami-windows-latest/
Windows_Server-2019-English-Full-ECS_Optimized",
 "DataType": "text"
 }
],
 "InvalidParameters": []
}

Each of the fields in the output above are available to be queried as sub-parameters. Construct the
parameter path for a sub-parameter by appending the sub-parameter name to the path for the
selected AMI. The following sub-parameters are available:

• schema_version

• image_id

• image_name

• os

• ecs_agent_version

Amazon EC2 container instances 827

Amazon Elastic Container Service Developer Guide

• ecs_runtime_version

Examples

The following examples show ways in which you can retrieve the metadata for each Amazon ECS-
optimized AMI variant.

Retrieving the metadata of the latest stable Amazon ECS-optimized AMI

You can retrieve the latest stable Amazon ECS-optimized AMI using the AWS CLI with the following
AWS CLI commands.

• For the Amazon ECS-optimized Windows Server 2025 Full AMI:

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2025-
English-Full-ECS_Optimized --region us-east-1

• For the Amazon ECS-optimized Windows Server 2025 Core AMI:

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2025-
English-Core-ECS_Optimized --region us-east-1

• For the Amazon ECS-optimized Windows Server 2022 Full AMI:

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2022-
English-Full-ECS_Optimized --region us-east-1

• For the Amazon ECS-optimized Windows Server 2022 Core AMI:

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2022-
English-Core-ECS_Optimized --region us-east-1

• For the Amazon ECS-optimized Windows Server 2019 Full AMI:

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2019-
English-Full-ECS_Optimized --region us-east-1

• For the Amazon ECS-optimized Windows Server 2019 Core AMI:

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2019-
English-Core-ECS_Optimized --region us-east-1

Amazon EC2 container instances 828

Amazon Elastic Container Service Developer Guide

• For the Amazon ECS-optimized Windows Server 2016 Full AMI:

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2016-
English-Full-ECS_Optimized --region us-east-1

Using the latest recommended Amazon ECS-optimized AMI in an AWS CloudFormation
template

You can reference the latest recommended Amazon ECS-optimized AMI in an AWS CloudFormation
template by referencing the Systems Manager parameter store name.

Parameters:
 LatestECSOptimizedAMI:
 Description: AMI ID
 Type: AWS::SSM::Parameter::Value<AWS::EC2::Image::Id>
 Default: /aws/service/ami-windows-latest/Windows_Server-2019-English-Full-
ECS_Optimized/image_id

Amazon ECS-optimized Windows AMI versions

View the current and previous versions of the Amazon ECS-optimized AMIs and their corresponding
versions of the Amazon ECS container agent, Docker, and the ecs-init package.

The Amazon ECS-optimized AMI metadata, including the AMI ID, for each variant can be retrieved
programmatically. For more information, see the section called “Retrieving Amazon ECS-optimized
Windows AMI metadata”.

The following tabs display a list of Windows Amazon ECS-optimized AMIs versions. For details on
referencing the Systems Manager Parameter Store parameter in an AWS CloudFormation template,
see Using the latest recommended Amazon ECS-optimized AMI in an AWS CloudFormation
template.

Important

To ensure that customers have the latest security updates by default, Amazon ECS
maintains at least the last three Windows Amazon ECS-optimized AMIs. After releasing new
Windows Amazon ECS-optimized AMIs, Amazon ECS makes the Windows Amazon ECS-
optimized AMIs that are older private. If there is a private AMI that you need access to, let
us know by filing a ticket with Cloud Support.

Amazon EC2 container instances 829

Amazon Elastic Container Service Developer Guide

Windows Server 2016 does not support the latest Docker version, for example 25.x.x.
Therefore the Windows Server 2016 Full AMIs will not receive security or bug patches
to the Docker runtime. We recommend that you move to one of the following Windows
platforms:

• Windows Server 2022 Full

• Windows Server 2022 Core

• Windows Server 2019 Full

• Windows Server 2019 Core

Windows Server 2025 Full AMI versions

The table below lists the current and previous versions of the Amazon ECS-optimized Windows
Server 2025 Full AMI and their corresponding versions of the Amazon ECS container agent and
Docker.

Amazon ECS-optim
ized Windows
Server 2025 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2025-English
-Full-ECS_Optimize
d-2025.06.13

1.94.0 25.0.6 (Docker
CE)

Public

Use the following AWS CLI command to retrieve the current Amazon ECS-optimized Windows
Server 2025 Full AMI.

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2025-
English-Full-ECS_Optimized

Amazon EC2 container instances 830

Amazon Elastic Container Service Developer Guide

Windows Server 2025 Core AMI versions

The table below lists the current and previous versions of the Amazon ECS-optimized Windows
Server 2025 Core AMI and their corresponding versions of the Amazon ECS container agent and
Docker.

Amazon ECS-optim
ized Windows
Server 2025 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2025-English-
Core-ECS_Optimize
d-2025.06.13

1.94.0 25.0.6 (Docker
CE)

Public

Use the following AWS CLI command to retrieve the current Amazon ECS-optimized Windows
Server 2025 Core AMI.

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2025-
English-Core-ECS_Optimized

Windows Server 2022 Full AMI versions

The table below lists the current and previous versions of the Amazon ECS-optimized Windows
Server 2022 Full AMI and their corresponding versions of the Amazon ECS container agent and
Docker.

Amazon ECS-optim
ized Windows
Server 2022 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2025.06.13

1.94.0 25.0.6 (Docker
CE)

Public

Amazon EC2 container instances 831

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2022 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2025.05.17

1.93.1 25.0.6 (Docker
CE)

Public

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2025.4.14

1.91.2 25.0.6 (Docker
CE)

Public

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2025.3.17

1.91.0 25.0.6 (Docker
CE)

Public

Windows_S
erver-2022-English
-Full-ECS_Optimize
d-2025.2.14

1.90.0 25.0.6 (Docker
CE)

Public

Use the following AWS CLI command to retrieve the current Amazon ECS-optimized Windows
Server 2022 Full AMI.

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2022-
English-Full-ECS_Optimized

Windows Server 2022 Core AMI versions

The table below lists the current and previous versions of the Amazon ECS-optimized Windows
Server 2022 Core AMI and their corresponding versions of the Amazon ECS container agent and
Docker.

Amazon EC2 container instances 832

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2022 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2025.06.13

1.94.0 25.0.6 (Docker
CE)

Public

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2025.05.17

1.93.1 25.0.6 (Docker
CE)

Public

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2025.4.14

1.91.2 25.0.6 (Docker
CE)

Public

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2025.3.17

1.91.0 25.0.6 (Docker
CE)

Public

Windows_S
erver-2022-English-
Core-ECS_Optimize
d-2025.2.14

1.90.0 25.0.6 (Docker
CE)

Public

Use the following AWS CLI command to retrieve the current Amazon ECS-optimized Windows
Server 2022 Full AMI.

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2022-
English-Core-ECS_Optimized

Amazon EC2 container instances 833

Amazon Elastic Container Service Developer Guide

Windows Server 2019 Full AMI versions

The table below lists the current and previous versions of the Amazon ECS-optimized Windows
Server 2019 Full AMI and their corresponding versions of the Amazon ECS container agent and
Docker.

Amazon ECS-optim
ized Windows
Server 2019 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2025.06.13

1.94.0 25.0.6 (Docker
CE)

Public

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2025.05.17

1.93.1 25.0.6 (Docker
CE)

Public

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2025.4.14

1.91.2 25.0.6 (Docker
CE)

Public

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2025.3.17

1.91.0 25.0.6 (Docker
CE)

Public

Windows_S
erver-2019-English
-Full-ECS_Optimize
d-2025.2.14

1.90.0 25.0.6 (Docker
CE)

Public

Use the following AWS CLI command to retrieve the current Amazon ECS-optimized Windows
Server 2019 Full AMI.

Amazon EC2 container instances 834

Amazon Elastic Container Service Developer Guide

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2019-
English-Full-ECS_Optimized

Windows Server 2019 Core AMI versions

The table below lists the current and previous versions of the Amazon ECS-optimized Windows
Server 2019 Core AMI and their corresponding versions of the Amazon ECS container agent and
Docker.

Amazon ECS-optim
ized Windows
Server 2019 Core
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2025.06.13

1.94.0 25.0.6 (Docker
CE)

Public

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2025.05.17

1.93.1 25.0.6 (Docker
CE)

Public

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2025.4.14

1.91.2 25.0.6 (Docker
CE)

Public

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2025.3.17

1.91.0 25.0.6 (Docker
CE)

Public

Windows_S
erver-2019-English-
Core-ECS_Optimize
d-2025.2.14

1.90.0 25.0.6 (Docker
CE)

Public

Amazon EC2 container instances 835

Amazon Elastic Container Service Developer Guide

Use the following AWS CLI command to retrieve the current Amazon ECS-optimized Windows
Server 2019 Full AMI.

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2019-
English-Core-ECS_Optimized

Windows Server 2016 Full AMI versions

Important

Windows Server 2016 does not support the latest Docker version, for example 25.x.x.
Therefore the Windows Server 2016 Full AMIs will not receive security or bug patches
to the Docker runtime. We recommend that you move to one of the following Windows
platforms:

• Windows Server 2022 Full

• Windows Server 2022 Core

• Windows Server 2019 Full

• Windows Server 2019 Core

The table below lists the current and previous versions of the Amazon ECS-optimized Windows
Server 2016 Full AMI and their corresponding versions of the Amazon ECS container agent and
Docker.

Amazon ECS-optim
ized Windows
Server 2016 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2025.06.13

1.94.0 20.10.23
(Docker CE)

Public

Windows_S
erver-2016-English

1.93.1 20.10.23
(Docker CE)

Public

Amazon EC2 container instances 836

Amazon Elastic Container Service Developer Guide

Amazon ECS-optim
ized Windows
Server 2016 Full
AMI

Amazon ECS
container agent
version

Docker version Visibility

-Full-ECS_Optimize
d-2025.05.17

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2025.4.14

1.91.2 20.10.23
(Docker CE)

Public

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2025.3.17

1.91.0 20.10.23
(Docker CE)

Public

Windows_S
erver-2016-English
-Full-ECS_Optimize
d-2025.2.14

1.90.0 20.10.23
(Docker CE)

Public

Use the following AWS CLI Amazon ECS-optimized Windows Server 2016 Full AMI.

aws ssm get-parameters --names /aws/service/ami-windows-latest/Windows_Server-2016-
English-Full-ECS_Optimized

Building your own Amazon ECS-optimized Windows AMI

Use EC2 Image Builder to build your own custom Amazon ECS-optimized Windows AMI. This
makes it easy to use a Windows AMI with your own license on Amazon ECS. Amazon ECS provides
a managed Image Builder component which provides the system configuration needed to run
Windows instances to host your containers. Each Amazon ECS managed component includes a
specific container agent and Docker version. You can customize your image to use either the latest
Amazon ECS managed component, or if an older container agent or Docker version is needed you
can specify a different component.

Amazon EC2 container instances 837

Amazon Elastic Container Service Developer Guide

For a full walkthrough of using EC2 Image Builder, see Getting started with EC2 Image Builder in
the EC2 Image Builder User Guide.

When building your own Amazon ECS-optimized Windows AMI using EC2 Image Builder, you create
an image recipe. Your image recipe must meet the following requirements:

• The Source image should be based on Windows Server 2019 Core, Windows Server 2019 Full,
Windows Server 2022 Core, or Windows Server 2022 Full. Any other Windows operating system
is not supported and may not be compatible with the component.

• When specifying the Build components, the ecs-optimized-ami-windows component is
required. The update-windows component is recommended, which ensures the image contains
the latest security updates.

To specify a different component version, expand the Versioning options menu and specify the
component version you want to use. For more information, see Listing the ecs-optimized-
ami-windows component versions.

Listing the ecs-optimized-ami-windows component versions

When creating an EC2 Image Builder recipe and specifying the ecs-optimized-ami-windows
component, you can either use the default option or you can specify a specific component version.
To determine what component versions are available, along with the Amazon ECS container agent
and Docker versions contained within the component, you can use the AWS Management Console.

To list the available ecs-optimized-ami-windows component versions

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. On the navigation bar, select the Region that are building your image in.

3. In the navigation pane, under the Saved configurations menu, choose Components.

4. On the Components page, in the search bar type ecs-optimized-ami-windows and pull
down the qualification menu and select Quick start (Amazon-managed).

5. Use the Description column to determine the component version with the Amazon ECS
container agent and Docker version your image requires.

Amazon EC2 container instances 838

https://docs.aws.amazon.com/imagebuilder/latest/userguide/set-up-ib-env.html#image-builder-accessing-prereq
https://console.aws.amazon.com/imagebuilder/

Amazon Elastic Container Service Developer Guide

Amazon ECS Windows container instance management

When you use EC2 instances for your Amazon ECS workloads, you are responsible for maintaing
the instances.

Agent updates do not apply to Windows container instances. We recommend that you launch new
container instances to update the agent version in your Windows clusters.

Management procedures

• Launching an Amazon ECS Windows container instance

• Bootstrapping Amazon ECS Windows container instances to pass data

• Using an HTTP proxy for Amazon ECS Windows container instances

• Configuring Amazon ECS Windows container instances to receive Spot Instance notices

Launching an Amazon ECS Windows container instance

Your Amazon ECS container instances are created using the Amazon EC2 console. Before you begin,
be sure that you've completed the steps in Set up to use Amazon ECS.

For more information about the launch wizard, see Launch an instance using the new launch
instance wizard in the Amazon EC2 User Guide.

You can use the new Amazon EC2 wizard to launch an instance. You can use the following list for
the parameters and leave the parameters not listed as the default. The following instructions take
you through each parameter group.

Procedure

Before you begin, complete the steps in Set up to use Amazon ECS.

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation bar at the top of the screen, the current AWS Region is displayed (for
example, US East (Ohio)). Select a Region in which to launch the instance. This choice is
important because some Amazon EC2 resources can be shared between Regions, while others
can't.

3. From the Amazon EC2 console dashboard, choose Launch instance.

Amazon EC2 container instances 839

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-launch-instance-wizard.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-launch-instance-wizard.html
https://console.aws.amazon.com/ec2/

Amazon Elastic Container Service Developer Guide

Name and tags

The instance name is a tag, where the key is Name, and the value is the name that you specify. You
can tag the instance, the volumes, and elastic graphics. For Spot Instances, you can tag the Spot
Instance request only.

Specifying an instance name and additional tags is optional.

• For Name, enter a descriptive name for the instance. If you don't specify a name, the instance
can be identified by its ID, which is automatically generated when you launch the instance.

• To add additional tags, choose Add additional tags. Choose Add tag, and then enter a key and
value, and select the resource type to tag. Choose Add tag again for each additional tag to add.

Application and OS Images (Amazon Machine Image)

An Amazon Machine Image (AMI) contains the information required to create an instance. For
example, an AMI might contain the software that's required to act as a web server, such as Apache,
and your website.

For the latest Amazon ECS-optimized AMIs and their values, see Windows Amazon ECS-optimized
AMI.

Use the Search bar to find a suitable Amazon ECS-optimized AMI published by AWS.

1. Based on your requirements, enter one of the following AMIs in the Search bar and press Enter.

• Windows_Server-2022-English-Full-ECS_Optimized

• Windows_Server-2022-English-Core-ECS_Optimized

• Windows_Server-2019-English-Full-ECS_Optimized

• Windows_Server-2019-English-Core-ECS_Optimized

• Windows_Server-2016-English-Full-ECS_Optimized

2. On the Choose an Amazon Machine Image (AMI) page, select the Community AMIs tab.

3. From the list that appears, choose a Microsoft-verified AMI with the most recent publish date
and click Select.

Instance type

The instance type defines the hardware configuration and size of the instance. Larger instance
types have more CPU and memory. For more information, see Instance types.

Amazon EC2 container instances 840

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_windows_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_windows_AMI.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

Amazon Elastic Container Service Developer Guide

• For Instance type, select the instance type for the instance.

The instance type that you select determines the resources available for your tasks to run on.

Key pair (login)

For Key pair name, choose an existing key pair, or choose Create new key pair to create a new one.

Important

If you choose the Proceed without key pair (Not recommended) option, you won't be
able to connect to the instance unless you choose an AMI that is configured to allow users
another way to log in.

Network settings

Configure the network settings, as necessary.

• Networking platform: Choose Virtual Private Cloud (VPC), and then specify the subnet in the
Network interfaces section.

• VPC: Select an existing VPC in which to create the security group.

• Subnet: You can launch an instance in a subnet associated with an Availability Zone, Local Zone,
Wavelength Zone, or Outpost.

To launch the instance in an Availability Zone, select the subnet in which to launch your instance.
To create a new subnet, choose Create new subnet to go to the Amazon VPC console. When you
are done, return to the launch instance wizard and choose the Refresh icon to load your subnet
in the list.

To launch the instance in a Local Zone, select a subnet that you created in the Local Zone.

To launch an instance in an Outpost, select a subnet in a VPC that you associated with the
Outpost.

• Auto-assign Public IP: If your instance should be accessible from the internet, verify that the
Auto-assign Public IP field is set to Enable. If not, set this field to Disable.

Amazon EC2 container instances 841

Amazon Elastic Container Service Developer Guide

Note

Container instances need access to communicate with the Amazon ECS service endpoint.
This can be through an interface VPC endpoint or through your container instances
having public IP addresses.
For more information about interface VPC endpoints, see Amazon ECS interface VPC
endpoints (AWS PrivateLink)
If you do not have an interface VPC endpoint configured and your container instances
do not have public IP addresses, then they must use network address translation (NAT)
to provide this access. For more information, see NAT gateways in the Amazon VPC User
Guide and Using an HTTP proxy for Amazon ECS Linux container instances in this guide.

• Firewall (security groups): Use a security group to define firewall rules for your container
instance. These rules specify which incoming network traffic is delivered to your container
instance. All other traffic is ignored.

• To select an existing security group, choose Select existing security group, and select the
security group that you created in Set up to use Amazon ECS

Configure storage

The AMI you selected includes one or more volumes of storage, including the root volume. You can
specify additional volumes to attach to the instance.

You can use the Simple view.

• Storage type: Configure the storage for your container instance.

If you are using the Amazon ECS-optimized Amazon Linux AMI, your instance has two volumes
configured. The Root volume is for the operating system's use, and the second Amazon EBS
volume (attached to /dev/xvdcz) is for Docker's use.

You can optionally increase or decrease the volume sizes for your instance to meet your
application needs.

Amazon EC2 container instances 842

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon Elastic Container Service Developer Guide

Advanced details

For Advanced details, expand the section to view the fields and specify any additional parameters
for the instance.

• Purchasing option: Choose Request Spot Instances to request Spot Instances. You also need to
set the other fields related to Spot Instances. For more information, see Spot Instance Requests.

Note

If you are using Spot Instances and see a Not available message, you may need to
choose a different instance type.

.

• IAM instance profile: Select your container instance IAM role. This is usually named
ecsInstanceRole.

Important

If you do not launch your container instance with the proper IAM permissions, your
Amazon ECS agent cannot connect to your cluster. For more information, see Amazon
ECS container instance IAM role.

• (Optional) User data: Configure your Amazon ECS container instance with user data, such as the
agent environment variables from Amazon ECS container agent configuration. Amazon EC2 user
data scripts are executed only one time, when the instance is first launched. The following are
common examples of what user data is used for:

• By default, your container instance launches into your default cluster. To launch into a non-
default cluster, choose the Advanced Details list. Then, paste the following script into the User
data field, replacing your_cluster_name with the name of your cluster.

The EnableTaskIAMRole turns on the Task IAM roles feature for the tasks.

In addition, the following options are available when you use the awsvpc network mode.

• EnableTaskENI: This flag turns on task networking and is required when you use the
awsvpc network mode.

Amazon EC2 container instances 843

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-requests.html

Amazon Elastic Container Service Developer Guide

• AwsvpcBlockIMDS: This optional flag blocks IMDS access for the task containers running in
the awsvpc network mode.

• AwsvpcAdditionalLocalRoutes: This optional flag allows you to have additional routes
in the task namespace.

Replace ip-address with the IP Address for the additional routes, for example
172.31.42.23/32.

<powershell>
Import-Module ECSTools
Initialize-ECSAgent -Cluster your_cluster_name -EnableTaskIAMRole -EnableTaskENI -
AwsvpcBlockIMDS -AwsvpcAdditionalLocalRoutes
'["ip-address"]'
</powershell>

Bootstrapping Amazon ECS Windows container instances to pass data

When you launch an Amazon EC2 instance, you can pass user data to the EC2 instance. The data
can be used to perform common automated configuration tasks and even run scripts when
the instance boots. For Amazon ECS, the most common use cases for user data are to pass
configuration information to the Docker daemon and the Amazon ECS container agent.

You can pass multiple types of user data to Amazon EC2, including cloud boothooks, shell scripts,
and cloud-init directives. For more information about these and other format types, see the
Cloud-Init documentation.

You can pass this user data when using the Amazon EC2 launch wizard. For more information, see
Launching an Amazon ECS Linux container instance.

Default Windows user data

This example user data script shows the default user data that your Windows container instances
receive if you use the console. The script below does the following:

• Sets the cluster name to the name you entered.

• Sets the IAM roles for tasks.

• Sets json-file and awslogs as the available logging drivers.

Amazon EC2 container instances 844

https://cloudinit.readthedocs.io/en/latest/explanation/format.html

Amazon Elastic Container Service Developer Guide

In addition, the following options are available when you use the awsvpc network mode.

• EnableTaskENI: This flag turns on task networking and is required when you use the awsvpc
network mode.

• AwsvpcBlockIMDS: This optional flag blocks IMDS access for the task containers running in
awsvpc network mode.

• AwsvpcAdditionalLocalRoutes: This optional flag allows you to have additional routes.

Replace ip-address with the IP Address for the additional routes, for example
172.31.42.23/32.

You can use this script for your own container instances (provided that they are launched from the
Amazon ECS-optimized Windows Server AMI).

Replace the -Cluster cluster-name line to specify your own cluster name.

<powershell>
Initialize-ECSAgent -Cluster cluster-name -EnableTaskIAMRole -LoggingDrivers '["json-
file","awslogs"]' -EnableTaskENI -AwsvpcBlockIMDS -AwsvpcAdditionalLocalRoutes
'["ip-address"]'
</powershell>

For Windows tasks that are configured to use the awslogs logging driver, you must also set the
ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE environment variable on your container
instance. Use the following syntax.

Replace the -Cluster cluster-name line to specify your own cluster name.

<powershell>
[Environment]::SetEnvironmentVariable("ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE",
 $TRUE, "Machine")
Initialize-ECSAgent -Cluster cluster-name -EnableTaskIAMRole -LoggingDrivers '["json-
file","awslogs"]'
</powershell>

Windows agent installation user data

This example user data script installs the Amazon ECS container agent on an instance launched
with a Windows_Server-2016-English-Full-Containers AMI. It has been adapted from the agent
installation instructions on the Amazon ECS Container Agent GitHub repository README page.

Amazon EC2 container instances 845

https://github.com/aws/amazon-ecs-agent

Amazon Elastic Container Service Developer Guide

Note

This script is shared for example purposes. It is much easier to get started with Windows
containers by using the Amazon ECS-optimized Windows Server AMI. For more information,
see Creating an Amazon ECS cluster for the Fargate launch type.

For information about how to install the Amazon ECS agent on Windows Server 2022 Full, see
Issue 3753 on GitHub.

You can use this script for your own container instances (provided that they are launched with
a version of the Windows_Server-2016-English-Full-Containers AMI). Be sure to replace the
windows line to specify your own cluster name (if you are not using a cluster called windows).

<powershell>
Set up directories the agent uses
New-Item -Type directory -Path ${env:ProgramFiles}\Amazon\ECS -Force
New-Item -Type directory -Path ${env:ProgramData}\Amazon\ECS -Force
New-Item -Type directory -Path ${env:ProgramData}\Amazon\ECS\data -Force
Set up configuration
$ecsExeDir = "${env:ProgramFiles}\Amazon\ECS"
[Environment]::SetEnvironmentVariable("ECS_CLUSTER", "windows", "Machine")
[Environment]::SetEnvironmentVariable("ECS_LOGFILE", "${env:ProgramData}\Amazon\ECS\log
\ecs-agent.log", "Machine")
[Environment]::SetEnvironmentVariable("ECS_DATADIR", "${env:ProgramData}\Amazon\ECS
\data", "Machine")
Download the agent
$agentVersion = "latest"
$agentZipUri = "https://s3.amazonaws.com/amazon-ecs-agent/ecs-agent-windows-
$agentVersion.zip"
$zipFile = "${env:TEMP}\ecs-agent.zip"
Invoke-RestMethod -OutFile $zipFile -Uri $agentZipUri
Put the executables in the executable directory.
Expand-Archive -Path $zipFile -DestinationPath $ecsExeDir -Force
Set-Location ${ecsExeDir}
Set $EnableTaskIAMRoles to $true to enable task IAM roles
Note that enabling IAM roles will make port 80 unavailable for tasks.
[bool]$EnableTaskIAMRoles = $false
if (${EnableTaskIAMRoles}) {
 $HostSetupScript = Invoke-WebRequest https://raw.githubusercontent.com/aws/amazon-
ecs-agent/master/misc/windows-deploy/hostsetup.ps1
 Invoke-Expression $($HostSetupScript.Content)

Amazon EC2 container instances 846

https://github.com/aws/amazon-ecs-agent/issues/3753
https://github.com/aws/amazon-ecs-agent/issues/3753

Amazon Elastic Container Service Developer Guide

}
Install the agent service
New-Service -Name "AmazonECS" `
 -BinaryPathName "$ecsExeDir\amazon-ecs-agent.exe -windows-service" `
 -DisplayName "Amazon ECS" `
 -Description "Amazon ECS service runs the Amazon ECS agent" `
 -DependsOn Docker `
 -StartupType Manual
sc.exe failure AmazonECS reset=300 actions=restart/5000/restart/30000/restart/60000
sc.exe failureflag AmazonECS 1
Start-Service AmazonECS
</powershell>

Using an HTTP proxy for Amazon ECS Windows container instances

You can configure your Amazon ECS container instances to use an HTTP proxy for both the Amazon
ECS container agent and the Docker daemon. This is useful if your container instances do not have
external network access through an Amazon VPC internet gateway, NAT gateway, or instance.

To configure your Amazon ECS Windows container instance to use an HTTP proxy, set the following
variables at launch time (with Amazon EC2 user data).

[Environment]::SetEnvironmentVariable("HTTP_PROXY",
"http://proxy.mydomain:port", "Machine")

Set HTTP_PROXY to the hostname (or IP address) and port number of an HTTP proxy to use for
the Amazon ECS agent to connect to the internet. For example, your container instances may
not have external network access through an Amazon VPC internet gateway, NAT gateway, or
instance.

[Environment]::SetEnvironmentVariable("NO_PROXY",
"169.254.169.254,169.254.170.2,\\.\pipe\docker_engine", "Machine")

Set NO_PROXY to 169.254.169.254,169.254.170.2,\\.\pipe\docker_engine to filter
EC2 instance metadata, IAM roles for tasks, and Docker daemon traffic from the proxy.

Example Windows HTTP proxy user data script

The example user data PowerShell script below configures the Amazon ECS container agent and
the Docker daemon to use an HTTP proxy that you specify. You can also specify a cluster into which
the container instance registers itself.

Amazon EC2 container instances 847

Amazon Elastic Container Service Developer Guide

To use this script when you launch a container instance, follow the steps in the section called
“Launching a container instance”. Just copy and paste the PowerShell script below into the
User data field (be sure to substitute the red example values with your own proxy and cluster
information).

Note

The -EnableTaskIAMRole option is required to enable IAM roles for tasks. For more
information, see Amazon EC2 Windows instance additional configuration.

<powershell>
Import-Module ECSTools

$proxy = "http://proxy.mydomain:port"
[Environment]::SetEnvironmentVariable("HTTP_PROXY", $proxy, "Machine")
[Environment]::SetEnvironmentVariable("NO_PROXY", "169.254.169.254,169.254.170.2,\\.
\pipe\docker_engine", "Machine")

Restart-Service Docker
Initialize-ECSAgent -Cluster MyCluster -EnableTaskIAMRole
</powershell>

Configuring Amazon ECS Windows container instances to receive Spot Instance notices

Amazon EC2 terminates, stops, or hibernates your Spot Instance when the Spot price exceeds
the maximum price for your request or capacity is no longer available. Amazon EC2 provides a
Spot Instance interruption notice, which gives the instance a two-minute warning before it is
interrupted. If Amazon ECS Spot Instance draining is enabled on the instance, ECS receives the Spot
Instance interruption notice and places the instance in DRAINING status.

Important

Amazon ECS monitors for the Spot Instance interruption notices that have the terminate
and stop instance-actions. If you specified either the hibernate instance interruption
behavior when requesting your Spot Instances or Spot Fleet, then Amazon ECS Spot
Instance draining is not supported for those instances.

Amazon EC2 container instances 848

Amazon Elastic Container Service Developer Guide

When a container instance is set to DRAINING, Amazon ECS prevents new tasks from being
scheduled for placement on the container instance. Service tasks on the draining container
instance that are in the PENDING state are stopped immediately. If there are container instances in
the cluster that are available, replacement service tasks are started on them.

You can turn on Spot Instance draining when you launch an instance. You must set the
ECS_ENABLE_SPOT_INSTANCE_DRAINING parameter before you start the container agent.
Replace my-cluster with the name of your cluster.

[Environment]::SetEnvironmentVariable("ECS_ENABLE_SPOT_INSTANCE_DRAINING", "true",
 "Machine")

Initialize the agent
Initialize-ECSAgent -Cluster my-cluster

For more information, see the section called “Launching a container instance”.

Amazon ECS clusters for the external launch type

Amazon ECS Anywhere provides support for registering an external instance such as an on-
premises server or virtual machine (VM), to your Amazon ECS cluster. External instances are
optimized for running applications that generate outbound traffic or process data. If your
application requires inbound traffic, the lack of Elastic Load Balancing support makes running
these workloads less efficient. Amazon ECS added a new EXTERNAL launch type that you can use
to create services or run tasks on your external instances.

Supported operating systems and system architectures

The following is the list of supported operating systems and system architectures.

• Amazon Linux 2

• Amazon Linux 2023

• CentOS Stream 9

• RHEL 7, RHEL 8, RHEL 9 — Neither Docker or RHEL's open package repositories support installing
Docker natively on RHEL. You must ensure that Docker is installed before you run the install
script that's described in this document.

• Fedora 32, Fedora 33, Fedora 40

• openSUSE Tumbleweed

Clusters for the external launch type 849

Amazon Elastic Container Service Developer Guide

• Ubuntu 18, Ubuntu 20, Ubuntu 22, Ubuntu 24

• Debian 10

Important

Debian 9 Long Term Support (LTS support) ended on June 30, 2022 and is no longer
supported by Amazon ECS Anywhere.

• Debian 11

• Debian 12

• SUSE Enterprise Server 15

• The x86_64 and ARM64 CPU architectures are supported.

• The following Windows operating system versions are supported:

• Windows Server 2022

• Windows Server 2019

• Windows Server 2016

• Windows Server 20H2

Considerations

Before you start using external instances, be aware of the following considerations.

• You can register an external instance to one cluster at a time. For instructions on how to register
an external instance with a different cluster, see Deregistering an Amazon ECS external instance.

• Your external instances require an IAM role that allows them to communicate with AWS APIs. For
more information, see Amazon ECS Anywhere IAM role.

• Your external instances should not have a preconfigured instance credential chain defined locally
as this will interfere with the registration script.

• To send container logs to CloudWatch Logs, make sure that you create and specify a task
execution IAM role in your task definition.

• When an external instance is registered to a cluster, the ecs.capability.external attribute
is associated with the instance. This attribute identifies the instance as an external instance. You
can add custom attributes to your external instances to use as a task placement constraint. For
more information, see Custom attributes.

Considerations 850

Amazon Elastic Container Service Developer Guide

• You can add resource tags to your external instance. For more information, see External
container instances.

• ECS Exec is supported on external instances. For more information, see Monitor Amazon ECS
containers with ECS Exec.

• The following are additional considerations that are specific to networking with your external
instances. For more information, see Networking .

• Service load balancing isn't supported.

• Service discovery isn't supported.

• Tasks that run on external instances must use the bridge, host, or none network modes. The
awsvpc network mode isn't supported.

• There are Amazon ECS service domains in each AWS Region. These service domains must be
allowed to send traffic to your external instances.

• The SSM Agent installed on your external instance maintains IAM credentials that are rotated
every 30 minutes using a hardware fingerprint. If your external instance loses connection
to AWS, the SSM Agent automatically refreshes the credentials after the connection is re-
established. For more information, see Validating on-premises servers and virtual machines
using a hardware fingerprint in the AWS Systems Manager User Guide.

• The UpdateContainerAgent API isn't supported. For instructions on how to update the SSM
Agent or the Amazon ECS agent on your external instances, see Updating the AWS Systems
Manager agent and Amazon ECS container agent on an external instance.

• Amazon ECS capacity providers aren't supported. To create a service or run a standalone task on
your external instances, use the EXTERNAL launch type.

• SELinux isn't supported.

• Using Amazon EFS volumes or specifying an EFSVolumeConfiguration isn't supported.

• Integration with App Mesh isn't supported.

• If you use the console to create an external instance task definition, you must create the task
definition with the console JSON editor.

• When you run ECS Anywhere on Windows, you must use your own Windows license on the on-
premises infrastructure.

• When you use a non Amazon ECS-optimized AMI, run the following commands on the external
container instance to configure rules to use IAM roles for tasks. For more information, see
External instance additional configuration.

$ sysctl -w net.ipv4.conf.all.route_localnet=1

Considerations 851

https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent-technical-details.html#fingerprint-validation
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent-technical-details.html#fingerprint-validation

Amazon Elastic Container Service Developer Guide

$ iptables -t nat -A PREROUTING -p tcp -d 169.254.170.2 --dport 80 -j DNAT --to-
destination 127.0.0.1:51679
$ iptables -t nat -A OUTPUT -d 169.254.170.2 -p tcp -m tcp --dport 80 -j REDIRECT --
to-ports 51679

Networking

Amazon ECS external instances are optimized for running applications that generate outbound
traffic or process data. If your application requires inbound traffic, such as a web service, the lack
of Elastic Load Balancing support makes running these workloads less efficient because there isn't
support for placing these workloads behind a load balancer.

The following are additional considerations that are specific to networking with your external
instances.

• Service load balancing isn't supported.

• Service discovery isn't supported.

• Linux tasks that run on external instances must use the bridge, host, or none network modes.
The awsvpc network mode isn't supported.

For more information about each network mode, see Amazon ECS task networking options for
the EC2 launch type.

• Windows tasks that run on external instances must use the default network mode.

• There are Amazon ECS service domains in each Region and must be allowed to send traffic to
your external instances.

• The SSM Agent installed on your external instance maintains IAM credentials that are rotated
every 30 minutes using a hardware fingerprint. If your external instance loses connection
to AWS, the SSM Agent automatically refreshes the credentials after the connection is re-
established. For more information, see Validating on-premises servers and virtual machines using
a hardware fingerprint in the AWS Systems Manager User Guide.

The following domains are used for communication between the Amazon ECS service and the
Amazon ECS agent that's installed on your external instance. Make sure that traffic is allowed and
that DNS resolution works. For each endpoint, region represents the Region identifier for an AWS
Region that's supported by Amazon ECS, such as us-east-2 for the US East (Ohio) Region. The

Considerations 852

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent-technical-details.html#fingerprint-validation
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent-technical-details.html#fingerprint-validation

Amazon Elastic Container Service Developer Guide

endpoints for all Regions that you use should be allowed. For the ecs-a and ecs-t endpoints, you
should include an asterisk (for example, ecs-a-*).

• ecs-a-*.region.amazonaws.com — This endpoint is used when managing tasks.

• ecs-t-*.region.amazonaws.com — This endpoint is used to manage task and container
metrics.

• ecs.region.amazonaws.com — This is the service endpoint for Amazon ECS.

• ssm.region.amazonaws.com — This is the service endpoint for AWS Systems Manager.

• ec2messages.region.amazonaws.com — This is the service endpoint that AWS Systems
Manager uses to communicate between the Systems Manager agent and the Systems Manager
service in the cloud.

• ssmmessages.region.amazonaws.com — This is the service endpoint that is required to
create and delete session channels with the Session Manager service in the cloud.

• If your tasks require communication with any other AWS services, make sure that those service
endpoints are allowed. Example applications include using Amazon ECR to pull container images
or using CloudWatch for CloudWatch Logs. For more information, see Service endpoints in the
AWS General Reference.

Amazon FSx for Windows File Server with ECS Anywhere

In order to use the Amazon FSx for Windows File Server with Amazon ECS external instances
you must establish a connection between your on-premises data center and the AWS Cloud. For
information about the options for connecting your network to your VPC, see Amazon Virtual
Private Cloud Connectivity Options.

gMSA with ECS Anywhere

The following use cases are supported for ECS Anywhere.

• The Active Directory is in the AWS Cloud - For this configuration, you create a connection
between your on-premises network and the AWS Cloud using an AWS Direct Connect connection.
For information about how to create the connection, see Amazon Virtual Private Cloud
Connectivity Options.You create an Active Directory in the AWS Cloud. For information about
how to get started with AWS Directory Service, see Setting up AWS Directory Service in the
AWS Directory Service Administration Guide. You can then join your external instances to the
domain using the AWS Direct Connect connection. For information about working with gMSA
with Amazon ECS, see the section called “Learn how to use gMSAs for EC2 Windows containers”.

Considerations 853

https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/introduction.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/setting_up.html

Amazon Elastic Container Service Developer Guide

• The Active Directory is in the on-premises data center. - For this configuration, you join your
external instances to the on-premises Active Directory. You then use the locally available
credentials when you run the Amazon ECS tasks.

Creating an Amazon ECS cluster for the External launch type

You create a cluster to define the infrastructure your tasks and services run on.

Before you begin, be sure that you've completed the steps in Set up to use Amazon ECS and assign
the appropriate IAM permission. For more information, see the section called “Amazon ECS cluster
examples”. The Amazon ECS console provides a simple way to create the resources that are needed
by an Amazon ECS cluster by creating a AWS CloudFormation stack.

To make the cluster creation process as easy as possible, the console has default selections for
many choices which we describe below. There are also help panels available for most of the
sections in the console which provide further context.

You can modify the following options:

• Add a namespace to the cluster.

A namespace allows services that you create in the cluster can connect to the other services
in the namespace without additional configuration. For more information, see Interconnect
Amazon ECS services.

• Configure the cluster for external instances

• Turn on Container Insights with enhanced observability, or Container Insights .

CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs from
your containerized applications and microservices. Container Insights also provides diagnostic
information, such as container restart failures, that you use to isolate issues and resolve them
quickly. For more information, see the section called “Monitor Amazon ECS containers using
Container Insights with enhanced observability”.

On December 2, 2024, AWS released Container Insights with enhanced observability for
Amazon ECS. This version supports enhanced observability for Amazon ECS clusters using the
Amazon EC2 and Fargate launch types. After you configure Container Insights with enhanced
observability on Amazon ECS, Container Insights auto-collects detailed infrastructure telemetry
from the cluster level down to the container level in your environment and displays your data
in dashboards that show you a variety of metrics and dimensions. You can then use these out-

Creating a cluster for the External launch type 854

Amazon Elastic Container Service Developer Guide

of-the-box dashboards on the Container Insights console to better understand your container
health and performance, and to mitigate issues faster by identifying anomalies.

We recommend that you use Container Insights with enhanced observability instead of Container
Insights because it provides detailed visibility in your container environment, reducing the mean
time to resolution.

• Assign a AWS KMS key for your managed storage. For information about how to create a key, see
Create a KMS key in the AWS Key Management Service User Guide.

• Add tags to help you identify your cluster.

To create a new cluster (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose Create cluster.

5. Under Cluster configuration, configure the following:

• For Cluster name, enter a unique name.

The name can contain up to 255 letters (uppercase and lowercase), numbers, and hyphens.

• (Optional) To have the namespace used for Service Connect be different from the cluster
name, for Namespace, enter a unique name.

6. (Optional) Use Container Insights, expand Monitoring, and then choose one of the following
options:

• To use the recommended Container Insights with enhanced observability, choose Container
Insights with enhanced observability.

• To use Container Insights, choose Container Insights.

7. (Optional) Encrypt the data on managed storage. Under Encryption, for Managed storage,
enter the ARN of the AWS KMS key you want to use to encrypt the managed storage data.

8. (Optional) To help identify your cluster, expand Tags, and then configure your tags.

[Add a tag] Choose Add tag and do the following:

• For Key, enter the key name.

Creating a cluster for the External launch type 855

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

• For Value, enter the key value.

9. Choose Create.

Next steps

You must register the instances with the cluster. For more information, see Registering an external
instance to an Amazon ECS cluster.

Create a task definition for the external launch type. For more information, see Creating an
Amazon ECS task definition using the console

Run your applications as standalone tasks, or as part of a service. For more information, see the
following:

• Running an application as an Amazon ECS task

• Creating an Amazon ECS service using the console

Registering an external instance to an Amazon ECS cluster

For each external instance you register with an Amazon ECS cluster, it must have the SSM Agent,
the Amazon ECS container agent, and Docker installed. To register the external instance to an
Amazon ECS cluster, it must first be registered as an AWS Systems Manager managed instance. You
can create the installation script in a few clicks on the Amazon ECS console. The installation script
includes an Systems Manager activation key and commands to install each of the required agents
and Docker. The installation script must be run on your on-premises server or VM to complete the
installation and registration steps.

Note

Before registering your Linux external instance with the cluster, create the /etc/ecs/
ecs.config file on your external instance and add any container agent configuration
parameters that you want. You can't do this after registering the external instance to a
cluster. For more information, see Amazon ECS container agent configuration.

AWS Management Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

Registering an external instance to an Amazon ECS cluster 856

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, choose a cluster to register your external instance to.

5. On the Cluster : name page, choose the Infrastructure tab.

6. On the Register external instances page, complete the following steps.

a. For Activation key duration (in days), enter the number of days that the activation key
remains active for. After the number of days you entered pass, the key no longer works
when registering an external instance.

b. For Number of instances, enter the number of external instances that you want to
register to your cluster with the activation key.

c. For Instance role, choose the IAM role to associate with your external instances. If a
role wasn't already created, choose Create new role to have Amazon ECS create a role
on your behalf. For more information about what IAM permissions are required for
your external instances, see Amazon ECS Anywhere IAM role.

d. Copy the registration command. This command should be run on each external
instance you want to register to the cluster.

Important

The bash portion of the script must be run as root. If the command isn't run as
root, an error is returned.

e. Choose Close.

AWS CLI for Linux operating systems

1. Create an Systems Manager activation pair. This is used for Systems Manager managed
instance activation. The output includes an ActivationId and ActivationCode. You
use these in a later step. Make sure that you specify the ECS Anywhere IAM role that you
created. For more information, see Amazon ECS Anywhere IAM role.

aws ssm create-activation --iam-role ecsAnywhereRole | tee ssm-activation.json

2. On your on-premises server or virtual machine (VM), download the installation script.

Registering an external instance to an Amazon ECS cluster 857

Amazon Elastic Container Service Developer Guide

curl --proto "https" -o "/tmp/ecs-anywhere-install.sh" "https://amazon-ecs-
agent.s3.amazonaws.com/ecs-anywhere-install-latest.sh"

3. (Optional) On your on-premises server or virtual machine (VM), use the following steps to
verify the installation script using the script signature file.

a. Download and install GnuPG. For more information about GNUpg, see the GnuPG
website. For Linux systems, install gpg using the package manager on your flavor of
Linux.

b. Retrieve the Amazon ECS PGP public key.

gpg --keyserver hkp://keys.gnupg.net:80 --recv BCE9D9A42D51784F

c. Download the installation script signature. The signature is an ascii detached PGP
signature stored in a file with the .asc extension.

curl --proto "https" -o "/tmp/ecs-anywhere-install.sh.asc" "https://amazon-
ecs-agent.s3.amazonaws.com/ecs-anywhere-install-latest.sh.asc"

d. Verify the installation script file using the key.

gpg --verify /tmp/ecs-anywhere-install.sh.asc /tmp/ecs-anywhere-install.sh

The following is the expected output.

gpg: Signature made Tue 25 May 2021 07:16:29 PM UTC
gpg: using RSA key 50DECCC4710E61AF
gpg: Good signature from "Amazon ECS <ecs-security@amazon.com>" [unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the
 owner.
Primary key fingerprint: F34C 3DDA E729 26B0 79BE AEC6 BCE9 D9A4 2D51 784F
 Subkey fingerprint: D64B B6F9 0CF3 77E9 B5FB 346F 50DE CCC4 710E 61AF

4. On your on-premises server or virtual machine (VM), run the installation script. Specify the
cluster name, Region, and the Systems Manager activation ID and activation code from the
first step.

sudo bash /tmp/ecs-anywhere-install.sh \

Registering an external instance to an Amazon ECS cluster 858

https://www.gnupg.org
https://www.gnupg.org

Amazon Elastic Container Service Developer Guide

 --region $REGION \
 --cluster $CLUSTER_NAME \
 --activation-id $ACTIVATION_ID \
 --activation-code $ACTIVATION_CODE

For an on-premises server or virtual machine (VM) that has the NVIDIA driver installed for
GPU workloads, you must add the --enable-gpu flag to the installation script. When this
flag is specified, the install script verifies that the NVIDIA driver is running and then adds
the required configuration variables to run your Amazon ECS tasks. For more information
about running GPU workloads and specifying GPU requirements in a task definition, see
Specifying GPUs in an Amazon ECS task definition.

sudo bash /tmp/ecs-anywhere-install.sh \
 --region $REGION \
 --cluster $CLUSTER_NAME \
 --activation-id $ACTIVATION_ID \
 --activation-code $ACTIVATION_CODE \
 --enable-gpu

Use the following steps to register an existing external instance with a different cluster.

To register an existing external instance with a different cluster

1. Stop the Amazon ECS container agent.

sudo systemctl stop ecs.service

2. Edit the /etc/ecs/ecs.config file and on the ECS_CLUSTER line, ensure the cluster
name matches the name of the cluster to register the external instance with.

3. Remove the existing Amazon ECS agent data.

sudo rm /var/lib/ecs/data/agent.db

4. Start the Amazon ECS container agent.

sudo systemctl start ecs.service

Registering an external instance to an Amazon ECS cluster 859

Amazon Elastic Container Service Developer Guide

AWS CLI for Windows operating systems

1. Create an Systems Manager activation pair. This is used for Systems Manager managed
instance activation. The output includes an ActivationId and ActivationCode. You
use these in a later step. Make sure that you specify the ECS Anywhere IAM role that you
created. For more information, see Amazon ECS Anywhere IAM role.

aws ssm create-activation --iam-role ecsAnywhereRole | tee ssm-activation.json

2. On your on-premises server or virtual machine (VM), download the installation script.

Invoke-RestMethod -URI "https://amazon-ecs-agent.s3.amazonaws.com/ecs-anywhere-
install.ps1" -OutFile “ecs-anywhere-install.ps1”

3. (Optional) The Powershell script is signed by Amazon and therefore, Windows
automatically performs the certificate validation on the same. You do not need to perform
any manual validation.

To manually verify the certificate, right-click on the file, navigate to properties and use the
Digital Signatures tab to obtain more details.

This option is only available when the host has the certificate in the certificate store.

The verification should return information similar to the following:

Verification (PowerShell)
Get-AuthenticodeSignature -FilePath .\ecs-anywhere-install.ps1

SignerCertificate Status Path
----------------- ------ ----
EXAMPLECERTIFICATE Valid ecs-anywhere-install.ps1

...

Subject : CN="Amazon Web Services, Inc.",...

4. On your on-premises server or virtual machine (VM), run the installation script. Specify the
cluster name, Region, and the Systems Manager activation ID and activation code from the
first step.

Registering an external instance to an Amazon ECS cluster 860

Amazon Elastic Container Service Developer Guide

.\ecs-anywhere-install.ps1 -Region $Region -Cluster $Cluster -
ActivationID $ActivationID -ActivationCode $ActivationCode

5. Verify the Amazon ECS container agent is running.

Get-Service AmazonECS

Status Name DisplayName
------ ---- -----------
Running AmazonECS Amazon ECS

Use the following steps to register an existing external instance with a different cluster.

To register an existing external instance with a different cluster

1. Stop the Amazon ECS container agent.

Stop-Service AmazonECS

2. Modify the ECS_CLUSTER parameter so that the cluster name matches the name of the
cluster to register the external instance with.

[Environment]::SetEnvironmentVariable("ECS_CLUSTER", $ECSCluster,
 [System.EnvironmentVariableTarget]::Machine)

3. Remove the existing Amazon ECS agent data.

Remove-Item -Recurse -Force $env:ProgramData\Amazon\ECS\data*

4. Start the Amazon ECS container agent.

Start-Service AmazonECS

The AWS CLI can be used to create a Systems Manager activation before running the installation
script to complete the external instance registration process.

Registering an external instance to an Amazon ECS cluster 861

Amazon Elastic Container Service Developer Guide

Deregistering an Amazon ECS external instance

We recommend that you deregister the instance from both Amazon ECS and AWS Systems
Manager after you are done with the instance. Following deregistration, the external instance is no
longer able to accept new tasks.

If you have tasks that are running on the container instance when you deregister it, the tasks
remain running until they stop through some other means. However, these tasks are no longer
monitored or accounted for by Amazon ECS. If these tasks on your external instance are part of
an Amazon ECS service, then the service scheduler starts another copy of that task, on a different
instance, if possible.

After you deregister the instance, clean up the remaining AWS resources on the instance. You can
then register it to a new cluster.

Procedure

AWS Management Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, choose the Region where your external instance is registered.

3. In the navigation pane, choose Clusters and select the cluster that hosts the external
instance.

4. On the Cluster : name page, choose the Infrastructure tab.

5. Under Container instances, select the external instance ID to deregister. You're redirected
to the container instance detail page.

6. On the Container Instance : id page, choose Deregister.

7. Review the deregistration message. Select Deregister from AWS Systems Manager to
also deregister the external instance as an Systems Manager managed instance. Choose
Deregister.

Note

You can deregister the external instance as an Systems Manager managed instance
in the Systems Manager console. For instructions, see Deregistering managed nodes
in a hybrid and multicloud environment in the AWS Systems Manager User Guide.

Deregistering an external instance 862

https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/systems-manager/latest/userguide/fleet-manager-deregister-hybrid-nodes.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/fleet-manager-deregister-hybrid-nodes.html

Amazon Elastic Container Service Developer Guide

8. After you deregister the instance, clean up AWS resources on your on-premises server or
VM .

Deregistering an external instance 863

Amazon Elastic Container Service Developer Guide

Operating system Steps

Linux a. Stop the Amazon ECS
container agent and the
SSM Agent services on
the instance.

sudo systemctl stop
 ecs amazon-ssm-
agent

b. Remove the Amazon ECS
and Systems Manager
packages.

For CentOS 7, CentOS
8, and RHEL 7

sudo yum remove -y
 amazon-ecs-init
 amazon-ssm-agent

For SUSE Enterprise
Server 15

sudo zypper remove
 -y amazon-ecs-init
 amazon-ssm-agent

For Debian and Ubuntu

sudo apt remove -y
 amazon-ecs-init
 amazon-ssm-agent

c. Remove the leftover
directories.

Deregistering an external instance 864

Amazon Elastic Container Service Developer Guide

Operating system Steps

 sudo rm -rf /var/
lib/ecs /etc/ecs /
var/lib/amazon/ss
m /var/log/ecs /
var/log/amazon/ssm

Windows a. Stop the Amazon ECS
container agent and the
SSM Agent services on
the instance.

Stop-Service
 AmazonECS

Stop-Service
 AmazonSSMAgent

b. Remove the Amazon ECS
package.

.\ecs-anywhere-ins
tall.ps1 -Uninstal
l

AWS CLI

1. You need the instance ID and the container instance ARN to deregister the container
instance. If you do not have theses values, run the following comands

Run the following commandto get the instance ID.

You use the instance ID (instanceID) to get the container instance ARN
(containerInstanceARN).

Deregistering an external instance 865

Amazon Elastic Container Service Developer Guide

instanceId=$(aws ssm describe-instance-information --region "{{ region }}" |
 jq ".InstanceInformationList[] |select(.IPAddress==\"{{ IPv4 Address }}\")
 | .InstanceId" | tr -d'"'

Run the following commands.

You use the containerInstanceArn as a parameter in the command to deregister the
instance (deregister-container-instance).

instances=$(aws ecs list-container-instances --cluster "{{ cluster }}" --region
 "{{ region }}" | jq -c '.containerInstanceArns')
containerInstanceArn=$(aws ecs describe-container-instances --cluster
 "{{ cluster }}" --region "{{ region }}" --container-instances $instances
 | jq ".containerInstances[] | select(.ec2InstanceId==\"{{ instanceId }}\")
 | .containerInstanceArn" | tr -d '"')

2. Run the following command to drain the instance.

aws ecs update-container-instances-state --cluster "{{ cluster }}" --region
 "{{ region }}" --container-instances "{{ containerInstanceArn }}" --status
 DRAINING

3. After the container instance finishes draining, run the following command to deregister the
instance.

aws ecs deregister-container-instance --cluster "{{ cluster }}" --region
 "{{ region }}" --container-instance "{{ containerInstanceArn }}"

4. Run the following command to remove the container instance from SSM.

aws ssm deregister-managed-instance --region "{{ region }}" --instance-id
 "{{ instanceId }}"

5. After you deregister the instance, clean up AWS resources on your on-premises server or
VM .

Operating system Steps

Linux a. Stop the Amazon ECS
container agent and the

Deregistering an external instance 866

Amazon Elastic Container Service Developer Guide

Operating system Steps

SSM Agent services on
the instance.

sudo systemctl stop
 ecs amazon-ssm-
agent

b. Remove the Amazon ECS
and Systems Manager
packages.

sudo (yum/apt/
zypper) remove
 amazon-ecs-init
 amazon-ssm-agent

c. Remove the leftover
directories.

 sudo rm -rf /var/
lib/ecs /etc/ecs /
var/lib/amazon/ss
m /var/log/ecs /
var/log/amazon/ssm

Deregistering an external instance 867

Amazon Elastic Container Service Developer Guide

Operating system Steps

Windows a. Stop the Amazon ECS
container agent and the
SSM Agent services on
the instance.

Stop-Service
 AmazonECS

Stop-Service
 AmazonSSMAgent

b. Remove the Amazon ECS
package.

.\ecs-anywhere-ins
tall.ps1 -Uninstal
l

Updating the AWS Systems Manager agent and Amazon ECS container
agent on an external instance

Your on-premises server or VM must run both the AWS Systems Manager Agent (SSM Agent) and
the Amazon ECS container agent when running Amazon ECS workloads. AWS releases new versions
of these agents when any capabilities are added or updated. If your external instances are using an
earlier version of either agent, you can update them using the following procedures.

Updating the SSM Agent on an external instance

AWS Systems Manager recommends that you automate the process of updating the SSM Agent
on your instances. They provide several methods to automate updates. For more information, see
Automating updates to SSM Agent in the AWS Systems Manager User Guide.

Updating the Amazon ECS agent on an external instance

On your external instances, the Amazon ECS container agent is updated by upgrading the ecs-
init package. Updating the Amazon ECS agent doesn't interrupt the running tasks or services.

Updating the AWS Systems Manager agent and Amazon ECS container agent 868

https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent-automatic-updates.html

Amazon Elastic Container Service Developer Guide

Amazon ECS provides the ecs-init package and signature file in an Amazon S3 bucket in each
Region. Beginning with ecs-init version 1.52.1-1, Amazon ECS provides separate ecs-init
packages for use depending on the operating system and system architecture your external
instance uses.

Use the following table to determine the ecs-init package that you should download based on
the operating system and system architecture your external instance uses.

Note

You can determine which operating system and system architecture that your external
instance uses by using the following commands.

cat /etc/os-release
uname -m

Operating systems (architecture) ecs-init package

CentOS 7 (x86_64)

CentOS 8 (x86_64)

CentOS Stream 9 (x86_64)

SUSE Enterprise Server 15 (x86_64)

RHEL 7 (x86_64)

RHEL 8 (x86_64)

amazon-ecs-init-latest.x86_
64.rpm

CentOS 7 (aarch64)

CentOS 8 (aarch64)

CentOS Stream 9 (aarch64)

RHEL 7 (aarch64)

amazon-ecs-init-latest.aarc
h64.rpm

Debian 9 (x86_64) amazon-ecs-init-latest.amd64.deb

Updating the AWS Systems Manager agent and Amazon ECS container agent 869

Amazon Elastic Container Service Developer Guide

Operating systems (architecture) ecs-init package

Debian 10 (x86_64)

Debian 11 (x86_64)

Debian 12 (x86_64)

Ubuntu 18 (x86_64)

Ubuntu 20 (x86_64)

Ubuntu 22 (x86_64)

Ubuntu 24 (x86_64)

Debian 9 (aarch64)

Debian 10 (aarch64)

Debian 11 (aarch64)

Debian 12 (aarch64)

Ubuntu 18 (aarch64)

Ubuntu 20 (aarch64)

Ubuntu 22 (aarch64)

Ubuntu 24 (aarch64)

amazon-ecs-init-latest.arm64.deb

Follow these steps to update the Amazon ECS agent.

To update the Amazon ECS agent

1. Confirm the Amazon ECS agent version that you're running.

curl -s 127.0.0.1:51678/v1/metadata | python3 -mjson.tool

2. Download the ecs-init package for your operating system and system architecture. Amazon
ECS provides the ecs-init package file in an Amazon S3 bucket in each Region. Make sure

Updating the AWS Systems Manager agent and Amazon ECS container agent 870

Amazon Elastic Container Service Developer Guide

that you replace the <region> identifier in the command with the Region name (for example,
us-west-2) that you're geographically closest to.

amazon-ecs-init-latest.x86_64.rpm

curl -o amazon-ecs-init.rpm https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.x86_64.rpm

amazon-ecs-init-latest.aarch64.rpm

curl -o amazon-ecs-init.rpm https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.aarch64.rpm

amazon-ecs-init-latest.amd64.deb

curl -o amazon-ecs-init.deb https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.amd64.deb

amazon-ecs-init-latest.arm64.deb

curl -o amazon-ecs-init.deb https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.arm64.deb

3. (Optional) Verify the validity of the ecs-init package file using the PGP signature.

a. Download and install GnuPG. For more information about GNUpg, see the GnuPG website.
For Linux systems, install gpg using the package manager on your flavor of Linux.

b. Retrieve the Amazon ECS PGP public key.

gpg --keyserver hkp://keys.gnupg.net:80 --recv BCE9D9A42D51784F

c. Download the ecs-init package signature. The signature is an ASCII detached PGP
signature that's stored in a file with the .asc extension. Amazon ECS provides the
signature file in an Amazon S3 bucket in each Region. Make sure that you replace the
<region> identifier in the command with the Region name (for example, us-west-2)
that you're geographically closest to.

amazon-ecs-init-latest.x86_64.rpm

Updating the AWS Systems Manager agent and Amazon ECS container agent 871

https://www.gnupg.org

Amazon Elastic Container Service Developer Guide

curl -o amazon-ecs-init.rpm.asc https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.x86_64.rpm.asc

amazon-ecs-init-latest.aarch64.rpm

curl -o amazon-ecs-init.rpm.asc https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.aarch64.rpm.asc

amazon-ecs-init-latest.amd64.deb

curl -o amazon-ecs-init.deb.asc https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.amd64.deb.asc

amazon-ecs-init-latest.arm64.deb

curl -o amazon-ecs-init.deb.asc https://s3.<region>.amazonaws.com/amazon-ecs-
agent-<region>/amazon-ecs-init-latest.arm64.deb.asc

d. Verify the ecs-init package file using the key.

For the rpm packages

gpg --verify amazon-ecs-init.rpm.asc ./amazon-ecs-init.rpm

For the deb packages

gpg --verify amazon-ecs-init.deb.asc ./amazon-ecs-init.deb

The following is the expected output.

gpg: Signature made Fri 14 May 2021 09:31:36 PM UTC
gpg: using RSA key 50DECCC4710E61AF
gpg: Good signature from "Amazon ECS <ecs-security@amazon.com>" [unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: F34C 3DDA E729 26B0 79BE AEC6 BCE9 D9A4 2D51 784F
 Subkey fingerprint: D64B B6F9 0CF3 77E9 B5FB 346F 50DE CCC4 710E 61AF

4. Install the ecs-init package.

Updating the AWS Systems Manager agent and Amazon ECS container agent 872

Amazon Elastic Container Service Developer Guide

For the rpm package on CentOS 7, CentOS 8, and RHEL 7

sudo yum install -y ./amazon-ecs-init.rpm

For the rpm package on SUSE Enterprise Server 15

sudo zypper install -y --allow-unsigned-rpm ./amazon-ecs-init.rpm

For the deb package

sudo dpkg -i ./amazon-ecs-init.deb

5. Restart the ecs service.

sudo systemctl restart ecs

6. Verify the Amazon ECS agent version was updated.

curl -s 127.0.0.1:51678/v1/metadata | python3 -mjson.tool

Updating an Amazon ECS cluster

You can modify the following cluster properties:

• Set a default capacity provider

Each cluster can have one or more capacity providers and an optional capacity provider strategy.
The capacity provider strategy determines how the tasks are spread across the cluster's capacity
providers. When you run a standalone task or create a service, you either use the cluster's default
capacity provider strategy or a capacity provider strategy that overrides the default one.

• Turn on Container Insights.

CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs from
your containerized applications and microservices. Container Insights also provides diagnostic
information, such as container restart failures, that you use to isolate issues and resolve them
quickly. For more information, see the section called “Monitor Amazon ECS containers using
Container Insights with enhanced observability”.

Updating a cluster 873

Amazon Elastic Container Service Developer Guide

• Add tags to help you identify your clusters.

Procedure

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the cluster.

4. On the Cluster : name page, choose Update cluster.

5. To set the default capacity provider, under Default capacity provider strategy, choose Add
more.

a. For Capacity provider, choose the capacity provider.

b. (Optional) For Base, enter the minimum number of tasks that run on the capacity provider.

You can only set a Base value for one capacity provider.

c. (Optional) For Weight, enter the relative percentage of the total number of launched tasks
that use the specified capacity provider.

d. (Optional) Repeat the steps for any additional capacity providers.

6. To turn on or off Container Insights, expand Monitoring, and then turn on Use Container
Insights.

7. To help identify your cluster, expand Tags, and then configure your tags.

[Add a tag] Choose Add tag and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

[Remove a tag] Choose Remove to the right of the tag’s Key and Value.

8. Choose Update.

Deleting an Amazon ECS cluster

If you are finished using a cluster, you can delete it. After you delete the cluster, it transitions to the
INACTIVE state. Clusters with an INACTIVE status may remain discoverable in your account for a

Deleting a cluster 874

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

period of time. However, this behavior is subject to change in the future, so you should not rely on
INACTIVE clusters persisting.

Before you delete a cluster, you must perform the following operations:

• Delete all services in the cluster. For more information, see the section called “Deleting a
service”.

• Stop all currently running tasks. For more information, see the section called “Stopping a task”.

• Deregister all registered container instances in the cluster. For more information, see the section
called “Deregistering a container instance”.

• Delete the namespace. For more information, see Deleting namespaces in the AWS Cloud Map
Developer Guide.

Procedure

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Clusters.

4. On the Clusters page, select the cluster to delete.

5. In the upper-right of the page, choose Delete Cluster.

A message is displayed when you did not delete all the resources associated with the cluster.

6. In the confirmation box, enter delete cluster name.

Deregistering an Amazon ECS container instance

Important

This topic is for container instances created in Amazon EC2 only. For more information
about deregistering external instances, see Deregistering an Amazon ECS external instance.

When you are finished with an Amazon EC2 backed container instance, you should deregister it
from your cluster. Following deregistration, the container instance is no longer able to accept new
tasks.

Deregistering a container instance 875

https://docs.aws.amazon.com/cloud-map/latest/dg/deleting-namespaces.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

If you have tasks running on the container instance when you deregister it, these tasks remain
running until you terminate the instance or the tasks stop through some other means. However,
these tasks are orphaned which means they are no longer monitored or accounted for by Amazon
ECS. If an orphaned task on your container instance is part of an Amazon ECS service, then the
service scheduler starts another copy of that task, on a different container instance, if possible.
Any containers in orphaned service tasks that are registered with an Application Load Balancer
target group are deregistered. They begin connection draining according to the settings on the
load balancer or target group. If an orphaned tasks is using the awsvpc network mode, their elastic
network interfaces are deleted.

If you intend to use the container instance for some other purpose after deregistration, you
should stop all of the tasks running on the container instance before deregistration. This stops any
orphaned tasks from consuming resources.

When deregistering a container instance, be aware of the following considerations.

• Because each container instance has unique state information, they should not be deregistered
from one cluster and re-registered into another. To relocate container instance resources, we
recommend that you terminate container instances from one cluster and launch new container
instances in the new cluster. For more information, see Terminate your instance in the Amazon
EC2 User Guide and Launching an Amazon ECS Linux container instance.

• If the container instance is managed by an Auto Scaling group or a AWS CloudFormation stack,
terminate the instance by updating the Auto Scaling group or AWS CloudFormation stack.
Otherwise, the Auto Scaling group or AWS CloudFormation will create a new instance after you
terminate it.

• If you terminate a running container instance with a connected Amazon ECS container agent, the
agent automatically deregisters the instance from your cluster. Stopped container instances or
instances with disconnected agents are not automatically deregistered when terminated.

• Deregistering a container instance removes the instance from a cluster, but it does not terminate
the Amazon EC2 instance. If you are finished using the instance, be sure to terminate it to stop
billing. For more information, see Terminate your instance in the Amazon EC2 User Guide.

Procedure

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, choose the Region where your external instance is registered.

Procedure 876

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

3. In the navigation pane, choose Clusters and select the cluster that hosts the instance.

4. On the Cluster : name page, choose the Infrastructure tab.

5. Under Container instances, select the instance ID to deregister. You're redirected to the
container instance detail page.

6. On the Container Instance : id page, choose Deregister.

7. On the confirmation screen, choose Deregister.

8. If you are finished with the container instance, terminate the underlying Amazon EC2 instance.
For more information, see Terminate Your Instance in the Amazon EC2 User Guide.

Draining Amazon ECS container instances

There might be times when you need to remove a container instance from your cluster, for
example, to perform system updates or to scale down the cluster capacity. Amazon ECS provides
the ability to transition a container instance to a DRAINING status. This is referred to as container
instance draining. When a container instance is set to DRAINING, Amazon ECS prevents new tasks
from being scheduled for placement on the container instance.

Draining behavior for services

Any tasks that are part of a service that are in a PENDING state are stopped immediately. If there
is available container instance capacity in the cluster, the service scheduler will start replacement
tasks. If there isn't enough container instance capacity, a service event message will be sent
indicating the issue.

Tasks that are part of a service on the container instance that are in a RUNNING state
are transitioned to a STOPPED state. The service scheduler attempts to replace the tasks
according to the service's deployment type and deployment configuration parameters,
minimumHealthyPercent and maximumPercent. For more information, see Amazon ECS
services and Amazon ECS service definition parameters.

• If minimumHealthyPercent is below 100%, the scheduler can ignore desiredCount
temporarily during task replacement. For example, desiredCount is four tasks, a minimum
of 50% allows the scheduler to stop two existing tasks before starting two new tasks. If the
minimum is 100%, the service scheduler can't remove existing tasks until the replacement
tasks are considered healthy. If tasks for services that do not use a load balancer are in the
RUNNING state, they are considered healthy. Tasks for services that use a load balancer are

Container instance draining 877

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html

Amazon Elastic Container Service Developer Guide

considered healthy if they are in the RUNNING state and the container instance they are hosted
on is reported as healthy by the load balancer.

Important

If you use Spot Instances and minimumHealthyPercent is greater than or equal to
100%, then the service will not have enough time to replace the task before the Spot
Instance terminates.

• The maximumPercent parameter represents an upper limit on the number of running tasks
during task replacement, which allows you to define the replacement batch size. For example,
if desiredCount of four tasks, a maximum of 200% starts four new tasks before stopping the
four tasks to be drained (provided that the cluster resources required to do this are available). If
the maximum is 100%, then replacement tasks can't start until the draining tasks have stopped.

Important

If both minimumHealthyPercent and maximumPercent are 100%, then the service
can't remove existing tasks, and also cannot start replacement tasks. This prevents
successful container instance draining and prevents making new deployments.

Draining behavior for standalone tasks

Any standalone tasks in the PENDING or RUNNING state are unaffected; you must wait for them to
stop on their own or stop them manually. The container instance will remain in DRAINING status.

A container instance has completed draining when all tasks running on the instance transition to
a STOPPED state. The container instance remains in a DRAINING state until it is activated again
or deleted. You can verify the state of the tasks on the container instance by using the ListTasks
operation with the containerInstance parameter to get a list of tasks on the instance followed
by a DescribeTasks operation with the Amazon Resource Name (ARN) or ID of each task to verify
the task state.

When you are ready for the container instance to start hosting tasks again, you change the state
of the container instance from DRAINING to ACTIVE. The Amazon ECS service scheduler will then
consider the container instance for task placement again.

Draining behavior for standalone tasks 878

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ListTasks.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeTasks.html

Amazon Elastic Container Service Developer Guide

Procedure

The following steps can be used to set a container instance to draining using the new AWS
Management Console.

You can also use the UpdateContainerInstancesState API action or the update-container-instances-
state command to change the status of a container instance to DRAINING.

AWS Management Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose a cluster that hosts your instances.

4. On the Cluster : name page, choose the Infrastructure tab. Then, under Container instances
select the check box for each container instance you want to drain.

5. Choose Actions, Drain.

Amazon ECS container agent

The Amazon ECS agent is a process that runs on every container instance that is registered with
your cluster. It facilitates the communication between your container instances and Amazon ECS.

Note

On Linux container instances, the agent container mounts top-level directories such as /
lib, /lib64, and /proc. This is necessary for ECS features and functionalities such as
Amazon EBS volumes, awsvpc network mode, Amazon ECS Service Connect, and FireLens
for Amazon ECS.

Each Amazon ECS container agent version supports a different feature set and provides bug fixes
from previous versions. When possible, we always recommend using the latest version of the
Amazon ECS container agent. To update your container agent to the latest version, see Updating
the Amazon ECS container agent.

The Amazon ECS container agent contains the amazon-ecs-pause image.Amazon ECS uses this
image for tasks that use awsvpc network mode.

Procedure 879

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateContainerInstancesState.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-container-instances-state.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-container-instances-state.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

To see which features and enhancements are included with each agent release, see https://
github.com/aws/amazon-ecs-agent/releases.

Important

The minimum Docker version for reliable metrics is Docker version v20.10.13 and newer,
which is included in Amazon ECS-optimized AMI 20220607 and newer.
Amazon ECS agent versions 1.20.0 and newer have deprecated support for Docker
versions older than 18.01.0.

Lifecycle

When the Amazon ECS container agent registers an Amazon EC2 instance to your cluster, the
Amazon EC2 instance reports its status as ACTIVE and its agent connection status as TRUE. This
container instance can accept run task requests.

If you stop (not terminate) a container instance, the status remains ACTIVE, but the agent
connection status transitions to FALSE within a few minutes. Any tasks that were running on the
container instance stop. If you start the container instance again, the container agent reconnects
with the Amazon ECS service, and you are able to run tasks on the instance again.

Important

If you stop and start a container instance, or reboot that instance, some older versions
of the Amazon ECS container agent register the instance again without deregistering the
original container instance ID. In this case, Amazon ECS lists more container instances in
your cluster than you actually have. (If you have duplicate container instance IDs for the
same Amazon EC2 instance ID, you can safely deregister the duplicates that are listed as
ACTIVE with an agent connection status of FALSE.) This issue is fixed in the current version
of the Amazon ECS container agent. For more information about updating to the current
version, see Updating the Amazon ECS container agent.

If you change the status of a container instance to DRAINING, new tasks are not placed on the
container instance. Any service tasks running on the container instance are removed, if possible, so
that you can perform system updates. For more information, see Draining Amazon ECS container
instances.

Lifecycle 880

https://github.com/aws/amazon-ecs-agent/releases
https://github.com/aws/amazon-ecs-agent/releases

Amazon Elastic Container Service Developer Guide

If you deregister or terminate a container instance, the container instance status changes to
INACTIVE immediately, and the container instance is no longer reported when you list your
container instances. However, you can still describe the container instance for one hour following
termination. After one hour, the instance description is no longer available.

Important

You can drain the instances manually, or build an Auto Scaling group lifecycle hook to set
the instance status to DRAINING. See Amazon EC2 Auto Scaling lifecycle hooks for more
information about Auto Scaling lifecycle hooks.

Amazon ECS-optimized AMI

The Linux variants of the Amazon ECS-optimized AMI use the Amazon Linux 2 AMI as their base.
The Amazon Linux 2 source AMI name for each variant can be retrieved by querying the Systems
Manager Parameter Store API. For more information, see Retrieving Amazon ECS-optimized
Linux AMI metadata. When you launch our container instances from the most recent Amazon
ECS-optimized Amazon Linux 2 AMI you receive the current container agent version. To launch a
container instance with the latest Amazon ECS-optimized Amazon Linux 2 AMI, see Launching an
Amazon ECS Linux container instance.

Additional information

The following pages provide additional information about the changes:

• Amazon ECS Agent changelog on GitHub

• The source code for the ecs-init application and the scripts and configuration for packaging
the agent are now part of the agent repository. For older versions of ecs-init and packaging,
see Amazon ecs-init changelog on GitHub

• Amazon Linux 2 release notes.

• Docker Engine release notes in the Docker documentation

• NVIDIA Driver Documentation in the NVIDIA documentation

Amazon ECS container agent configuration

Applies to: EC2 instances

Amazon ECS-optimized AMI 881

https://docs.aws.amazon.com/autoscaling/ec2/userguide/lifecycle-hooks.html
https://github.com/aws/amazon-ecs-agent/blob/master/CHANGELOG.md
https://github.com/aws/amazon-ecs-init/blob/master/CHANGELOG.md
https://docs.aws.amazon.com/AL2/latest/relnotes/relnotes-al2.html
https://docs.docker.com/engine/release-notes/27/
https://docs.nvidia.com/datacenter/tesla/index.html

Amazon Elastic Container Service Developer Guide

The Amazon ECS container agent supports a number of configuration options, most of which you
set through environment variables.

If your container instance was launched with a Linux variant of the Amazon ECS-optimized AMI,
you can set these environment variables in the /etc/ecs/ecs.config file and then restart
the agent. You can also write these configuration variables to your container instances with
Amazon EC2 user data at launch time. For more information, see Bootstrapping Amazon ECS Linux
container instances to pass data.

If your container instance was launched with a Windows variant of the Amazon ECS-optimized AMI,
you can set these environment variables with the PowerShell SetEnvironmentVariable command
and then restart the agent. For more information, see Run commands when you launch an EC2
instance with user data input in the Amazon EC2 User Guide and the section called “Bootstrapping
container instances”.

If you are manually starting the Amazon ECS container agent (for non Amazon ECS-optimized
AMIs), you can use these environment variables in the docker run command that you use to start
the agent. Use these variables with the syntax --env=VARIABLE_NAME=VARIABLE_VALUE. For
sensitive information, such as authentication credentials for private repositories, you should store
your agent environment variables in a file and pass them all at one time with the --env-file
path_to_env_file option. You can use the following commands to add the variables.

sudo systemctl stop ecs
sudo vi /etc/ecs/ecs.config
And add the environment variables with VARIABLE_NAME=VARIABLE_VALUE format.
sudo systemctl start ecs

Run the Amazon ECS agent with the host PID namespace

By default, the Amazon ECS agent runs with its own PID namespace. In the following
configurations, you can configure the Amazon ECS agent to run with the host PID namespace:

• SELinux enforcing mode is enabled .

• Docker's SELinux security policy is set to true.

You can configure this behavior by setting the ECS_AGENT_PID_NAMESPACE_HOST environment
variable to true in your /etc/ecs/ecs.config file. When this variable is enabled, ecs-init
will start the Amazon ECS agent container with the host's PID namespace (--pid=host), allowing

Container agent configuration 882

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html

Amazon Elastic Container Service Developer Guide

the agent to bootstrap itself properly in SELinux-enforcing environments. This feature is available
in Amazon ECS agent version 1.94.0 and later.

To enable this feature, add the following line to your /etc/ecs/ecs.config file:

ECS_AGENT_PID_NAMESPACE_HOST=true

After making this change, restart the Amazon ECS agent for the change to take effect:

sudo systemctl restart ecs

The following features will not work SELinux enforcing mode is enabled and the Docker security
policy is set to true, even when ECS_AGENT_PID_NAMESPACE_HOST=true is set.

• Amazon ECS Exec

• Amazon EBS task attach

• Service Connect

• FireLens for Amazon ECS

Available parameters

For information about the available Amazon ECS container agent configuration parameters, see
Amazon ECS Container Agent on GitHub.

Storing Amazon ECS container instance configuration in Amazon S3

Amazon ECS container agent configuration is controlled with the environment variable. Linux
variants of the Amazon ECS-optimized AMI look for these variables in /etc/ecs/ecs.config
when the container agent starts and configure the agent accordingly. Non-sensative environment
variables, such as ECS_CLUSTER, can be passed to the container instance at launch through
Amazon EC2 user data and written to this file without consequence. However, other sensitive
information, such as your AWS credentials or the ECS_ENGINE_AUTH_DATA variable, should never
be passed to an instance in user data or written to /etc/ecs/ecs.config in a way that would
allow them to show up in a .bash_history file.

Storing configuration information in a private bucket in Amazon S3 and granting read-only access
to your container instance IAM role is a secure and convenient way to allow container instance

Container agent configuration 883

https://github.com/aws/amazon-ecs-agent/blob/master/README.md

Amazon Elastic Container Service Developer Guide

configuration at launch. You can store a copy of your ecs.config file in a private bucket. You can
then use Amazon EC2 user data to install the AWS CLI and copy your configuration information to
/etc/ecs/ecs.config when the instance launches.

To store an ecs.config file in Amazon S3

1. You must grant the container instance role (ecsInstanceRole) permissions to have read only
access to Amazon S3. You can do this by assigning the AmazonS3ReadOnlyAccess to the
ecsInstanceRole role. For information about how to attach a policy to a role, see Update
permissions for a role in the AWS Identity and Access Management User Guide

2. Create an ecs.config file with valid Amazon ECS agent configuration variables using
the following format. This example configures private registry authentication. For more
information, see Using non-AWS container images in Amazon ECS.

ECS_ENGINE_AUTH_TYPE=dockercfg
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":
{"auth":"zq212MzEXAMPLE7o6T25Dk0i","email":"email@example.com"}}

Note

For a full list of available Amazon ECS agent configuration variables, see Amazon ECS
Container Agent on GitHub.

3. To store your configuration file, create a private bucket in Amazon S3. For more information,
see Creating a bucket in the Amazon Simple Storage Service User Guide.

4. Upload the ecs.config file to your S3 bucket. For more information, see Uploading objects
in the Amazon Simple Storage Service User Guide.

To load an ecs.config file from Amazon S3 at launch

1. Complete the earlier procedures in this section to allow read-only Amazon S3 access to your
container instances and store an ecs.config file in a private S3 bucket.

2. Launch new container instances and use the following example script in the EC2 User data. The
script installs the AWS CLI and copies your configuration file to /etc/ecs/ecs.config. For
more information, see Launching an Amazon ECS Linux container instance.

#!/bin/bash

Container agent configuration 884

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-role-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-role-permissions.html
https://github.com/aws/amazon-ecs-agent/blob/master/README.md
https://github.com/aws/amazon-ecs-agent/blob/master/README.md
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html

Amazon Elastic Container Service Developer Guide

yum install -y aws-cli
aws s3 cp s3://your_bucket_name/ecs.config /etc/ecs/ecs.config

Installing the Amazon ECS container agent

If you want to register an Amazon EC2 instance with your Amazon ECS cluster and that instance
is not using an AMI based on the Amazon ECS-optimized AMI, you can install the Amazon ECS
container agent manually using the following procedure. To do this, you can either download the
agent from one of the regional Amazon S3 buckets or from Amazon Elastic Container Registry
Public. If you download from one of the regional Amazon S3 buckets, you can optionally verify the
validity of the container agent file using the PGP signature.

Note

The systemd units for both Amazon ECS and Docker services have a directive to wait
for cloud-init to finish before starting both services. The cloud-init process is not
considered finished until your Amazon EC2 user data has finished running. Therefore,
starting Amazon ECS or Docker via Amazon EC2 user data may cause a deadlock. To start
the container agent using Amazon EC2 user data you can use systemctl enable --now
--no-block ecs.service.

Installing the Amazon ECS container agent on a non-Amazon Linux EC2 instance

To install the Amazon ECS container agent on an Amazon EC2 instance, you can download the
agent from one of the regional Amazon S3 buckets and install it.

Note

When using a non-Amazon Linux AMI, your Amazon EC2 instance requires cgroupfs
support for the cgroup driver in order for the Amazon ECS agent to support task level
resource limits. For more information, see Amazon ECS agent on GitHub.

The latest Amazon ECS container agent files, by Region, for each system architecture are listed
below for reference.

Installing the Amazon ECS container agent 885

https://github.com/aws/amazon-ecs-agent

Amazon Elastic Container Service Developer Guide

Region Region name Amazon ECS init deb
files

Amazon ECS init rpm
files

us-east-2 US East (Ohio) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

us-east-1 US East (N. Virginia) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

us-west-1 US West (N. Californi
a)

Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

us-west-2 US West (Oregon) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

ap-east-1 Asia Pacific (Hong
Kong)

Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

ap-northeast-1 Asia Pacific (Tokyo) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

Installing the Amazon ECS container agent 886

https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.amd64.deb
https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.amd64.deb
https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.arm64.deb
https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.arm64.deb
https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-east-2.amazonaws.com/amazon-ecs-agent-us-east-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-east-1.amazonaws.com/amazon-ecs-agent-us-east-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-west-1.amazonaws.com/amazon-ecs-agent-us-west-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.amd64.deb
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.amd64.deb
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.arm64.deb
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.arm64.deb
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-east-1.amazonaws.com/amazon-ecs-agent-ap-east-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-northeast-1.amazonaws.com/amazon-ecs-agent-ap-northeast-1/amazon-ecs-init-latest.aarch64.rpm

Amazon Elastic Container Service Developer Guide

Region Region name Amazon ECS init deb
files

Amazon ECS init rpm
files

ap-northeast-2 Asia Pacific (Seoul) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

ap-south-1 Asia Pacific (Mumbai) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

ap-southeast-1 Asia Pacific (Singapor
e)

Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

ap-southeast-2 Asia Pacific (Sydney) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

ca-central-1 Canada (Central) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

eu-central-1 Europe (Frankfurt) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

Installing the Amazon ECS container agent 887

https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.amd64.deb
https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.amd64.deb
https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.arm64.deb
https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.arm64.deb
https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-northeast-2.amazonaws.com/amazon-ecs-agent-ap-northeast-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-south-1.amazonaws.com/amazon-ecs-agent-ap-south-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.amd64.deb
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.arm64.deb
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-southeast-1.amazonaws.com/amazon-ecs-agent-ap-southeast-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.amd64.deb
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.amd64.deb
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.arm64.deb
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.arm64.deb
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.ap-southeast-2.amazonaws.com/amazon-ecs-agent-ap-southeast-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.amd64.deb
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.amd64.deb
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.arm64.deb
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.arm64.deb
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.ca-central-1.amazonaws.com/amazon-ecs-agent-ca-central-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.amd64.deb
https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.amd64.deb
https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.arm64.deb
https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.arm64.deb
https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.eu-central-1.amazonaws.com/amazon-ecs-agent-eu-central-1/amazon-ecs-init-latest.aarch64.rpm

Amazon Elastic Container Service Developer Guide

Region Region name Amazon ECS init deb
files

Amazon ECS init rpm
files

eu-west-1 Europe (Ireland) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

eu-west-2 Europe (London) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

eu-west-3 Europe (Paris) Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

sa-east-1 South America (São
Paulo)

Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64

Amazon ECS init
aarch64 (aarch64)

us-gov-east-1 AWS GovCloud (US-
East)

Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

us-gov-west-1 AWS GovCloud (US-
West)

Amazon ECS init
amd64 (amd64)

Amazon ECS init
arm64 (arm64)

Amazon ECS init
x86_64 (x86_64)

Amazon ECS init
aarch64 (aarch64)

Installing the Amazon ECS container agent 888

https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.amd64.deb
https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.amd64.deb
https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.arm64.deb
https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.arm64.deb
https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.eu-west-1.amazonaws.com/amazon-ecs-agent-eu-west-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.amd64.deb
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.amd64.deb
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.arm64.deb
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.arm64.deb
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.eu-west-2.amazonaws.com/amazon-ecs-agent-eu-west-2/amazon-ecs-init-latest.aarch64.rpm
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.amd64.deb
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.amd64.deb
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.arm64.deb
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.arm64.deb
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.x86_64.rpm
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.aarch64.rpm
https://s3.eu-west-3.amazonaws.com/amazon-ecs-agent-eu-west-3/amazon-ecs-init-latest.aarch64.rpm
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.sa-east-1.amazonaws.com/amazon-ecs-agent-sa-east-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-gov-east-1.amazonaws.com/amazon-ecs-agent-us-gov-east-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.amd64.deb
https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.arm64.deb
https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.x86_64.rpm
https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.aarch64.rpm
https://s3.us-gov-west-1.amazonaws.com/amazon-ecs-agent-us-gov-west-1/amazon-ecs-init-latest.aarch64.rpm

Amazon Elastic Container Service Developer Guide

To install the Amazon ECS container agent on an Amazon EC2 instance using a non-Amazon
Linux AMI

1. Launch an Amazon EC2 instance with an IAM role that allows access to Amazon ECS. For more
information, see Amazon ECS container instance IAM role.

2. Connect to your instance.

3. Install the latest version of Docker on your instance.

4. Check your Docker version to verify that your system meets the minimum version requirement.

Note

The minimum Docker version for reliable metrics is Docker version v20.10.13 and
newer, which is included in Amazon ECS-optimized AMI 20220607 and newer.
Amazon ECS agent versions 1.20.0 and newer have deprecated support for Docker
versions older than 18.01.0.

docker --version

5. Download the appropriate Amazon ECS agent file for your operating system and system
architecture and install it.

For deb architectures:

ubuntu:~$ curl -O https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/
amazon-ecs-init-latest.amd64.deb
ubuntu:~$ sudo dpkg -i amazon-ecs-init-latest.amd64.deb

For rpm architectures:

fedora:~$ curl -O https://s3.us-west-2.amazonaws.com/amazon-ecs-agent-us-west-2/
amazon-ecs-init-latest.x86_64.rpm
fedora:~$ sudo yum localinstall -y amazon-ecs-init-latest.x86_64.rpm

6. Edit the /lib/systemd/system/ecs.service file and add the following line at the end of
the [Unit] section.

After=cloud-final.service

Installing the Amazon ECS container agent 889

Amazon Elastic Container Service Developer Guide

7. (Optional) To register the instance with a cluster other than the default cluster, edit the /
etc/ecs/ecs.config file and add the following contents. The following example specifies
the MyCluster cluster.

ECS_CLUSTER=MyCluster

For more information about these and other agent runtime options, see Amazon ECS container
agent configuration.

Note

You can optionally store your agent environment variables in Amazon S3 (which can be
downloaded to your container instances at launch time using Amazon EC2 user data).
This is recommended for sensitive information such as authentication credentials for
private repositories. For more information, see Storing Amazon ECS container instance
configuration in Amazon S3 and Using non-AWS container images in Amazon ECS.

8. Start the ecs service.

ubuntu:~$ sudo systemctl start ecs

Running the Amazon ECS agent with host network mode

When running the Amazon ECS container agent, ecs-init will create the container agent
container with the host network mode. This is the only supported network mode for the container
agent container.

This allows you to block access to the Amazon EC2 instance metadata service endpoint
(http://169.254.169.254) for the containers started by the container agent. This ensures that
containers cannot access IAM role credentials from the container instance profile and enforces that
tasks use only the IAM task role credentials. For more information, see Amazon ECS task IAM role.

This also makes it so the container agent doesn't contend for connections and network traffic on
the docker0 bridge.

Amazon ECS container agent log configuration parameters

The Amazon ECS container agent stores logs on your container instances.

Container agent log configuration parameters 890

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Amazon Elastic Container Service Developer Guide

For container agent version 1.36.0 and later, by default the logs are located at /var/log/
ecs/ecs-agent.log on Linux instances and at C:\ProgramData\Amazon\ECS\log\ecs-
agent.log on Windows instances.

For container agent version 1.35.0 and earlier, by default the logs are located at /var/log/ecs/
ecs-agent.log.timestamp on Linux instances and at C:\ProgramData\Amazon\ECS\log
\ecs-agent.log.timestamp on Windows instances.

By default, the agent logs are rotated hourly with a maximum of 24 logs being stored.

The following are the container agent configuration variables that can be used to change
the default agent logging behavior. For more information, see Amazon ECS container agent
configuration.

ECS_LOGFILE

Example values: /ecs-agent.log

Default value on Linux: Null

Default value on Windows: Null

The location where agent logs should be written. If you are running the agent via ecs-init,
which is the default method when using the Amazon ECS-optimized AMI, the in-container path
is /log, and ecs-init mounts that out to /var/log/ecs/ on the host.

ECS_LOGLEVEL

Example values: crit, error, warn, info, debug

Default value on Linux: info

Default value on Windows: info

The level of detail to log.

ECS_LOGLEVEL_ON_INSTANCE

Example values: none, crit, error, warn, info, debug

Default value on Linux: none, if ECS_LOG_DRIVER is explicitly set to a non-empty value;
otherwise the same value as ECS_LOGLEVEL

Container agent log configuration parameters 891

Amazon Elastic Container Service Developer Guide

Default value on Windows: none, if ECS_LOG_DRIVER is explicitly set to a non-empty value;
otherwise the same value as ECS_LOGLEVEL

Can be used to override ECS_LOGLEVEL and set a level of detail that should be logged in the
on-instance log file, separate from the level that is logged in the logging driver. If a logging
driver is explicitly set, on-instance logs are turned off by default. They can be turned back on
with this variable.

ECS_LOG_DRIVER

Example values: awslogs, fluentd, gelf, json-file, journald, syslog, splunk

Default value on Linux: json-file

Default value on Windows: Not applicable

Determines the logging driver the agent container uses.

ECS_LOG_ROLLOVER_TYPE

Example values: size, hourly

Default value on Linux: hourly

Default value on Windows: hourly

Determines whether the container agent log file is rotated hourly or based on size. By default,
the agent log file is rotated each hour.

ECS_LOG_OUTPUT_FORMAT

Example values: logfmt, json

Default value on Linux: logfmt

Default value on Windows: logfmt

Determines the log output format. When the json format is used, each line in the log is a
structured JSON map.

ECS_LOG_MAX_FILE_SIZE_MB

Example values: 10

Default value on Linux: 10

Default value on Windows: 10

Container agent log configuration parameters 892

Amazon Elastic Container Service Developer Guide

When the ECS_LOG_ROLLOVER_TYPE variable is set to size, this variable determines the
maximum size (in MB) of the log file before it's rotated. If the rollover type is set to hourly,
then this variable is ignored.

ECS_LOG_MAX_ROLL_COUNT

Example values: 24

Default value on Linux: 24

Default value on Windows: 24

Determines the number of rotated log files to keep. Older log files are deleted after this limit is
reached.

For container agent version 1.36.0 and later, the following is an example log file when the logfmt
format is used.

level=info time=2019-12-12T23:43:29Z msg="Loading configuration" module=agent.go
level=info time=2019-12-12T23:43:29Z msg="Image excluded from cleanup: amazon/amazon-
ecs-agent:latest" module=parse.go
level=info time=2019-12-12T23:43:29Z msg="Image excluded from cleanup: amazon/amazon-
ecs-pause:0.1.0" module=parse.go
level=info time=2019-12-12T23:43:29Z msg="Amazon ECS agent Version: 1.36.0, Commit:
 ca640387" module=agent.go
level=info time=2019-12-12T23:43:29Z msg="Creating root ecs cgroup: /ecs"
 module=init_linux.go
level=info time=2019-12-12T23:43:29Z msg="Creating cgroup /ecs"
 module=cgroup_controller_linux.go
level=info time=2019-12-12T23:43:29Z msg="Loading state!" module=statemanager.go
level=info time=2019-12-12T23:43:29Z msg="Event stream ContainerChange start
 listening..." module=eventstream.go
level=info time=2019-12-12T23:43:29Z msg="Restored cluster 'auto-robc'" module=agent.go
level=info time=2019-12-12T23:43:29Z msg="Restored from checkpoint file. I
 am running as 'arn:aws:ecs:us-west-2:0123456789:container-instance/auto-
robc/3330a8a91d15464ea30662d5840164cd' in cluster 'auto-robc'" module=agent.go

The following is an example log file when the JSON format is used.

{"time": "2019-11-07T22:52:02Z", "level": "info", "msg": "Starting Amazon Elastic
 Container Service Agent", "module": "engine.go"}

Container agent log configuration parameters 893

Amazon Elastic Container Service Developer Guide

For container agent versions 1.35.0 and earlier, the following is the format of the log file.

2016-08-15T15:54:41Z [INFO] Starting Agent: Amazon ECS Agent - v1.12.0 (895f3c1)
2016-08-15T15:54:41Z [INFO] Loading configuration
2016-08-15T15:54:41Z [WARN] Invalid value for task cleanup duration, will be overridden
 to 3h0m0s, parsed value 0, minimum threshold 1m0s
2016-08-15T15:54:41Z [INFO] Checkpointing is enabled. Attempting to load state
2016-08-15T15:54:41Z [INFO] Loading state! module="statemanager"
2016-08-15T15:54:41Z [INFO] Detected Docker versions [1.17 1.18 1.19 1.20 1.21 1.22]
2016-08-15T15:54:41Z [INFO] Registering Instance with ECS
2016-08-15T15:54:41Z [INFO] Registered! module="api client"

Configuring Amazon ECS container instances for private Docker images

The Amazon ECS container agent can authenticate with private registries, using basic
authentication. When you enable private registry authentication, you can use private Docker
images in your task definitions. This feature is only supported by tasks using the EC2 launch type.

Another method of enabling private registry authentication uses AWS Secrets Manager to store
your private registry credentials securely and then reference them in your container definition. This
allows your tasks to use images from private repositories. This method supports tasks using either
the EC2 or Fargate launch types. For more information, see Using non-AWS container images in
Amazon ECS.

The Amazon ECS container agent looks for two environment variables when it launches:

• ECS_ENGINE_AUTH_TYPE, which specifies the type of authentication data that is being sent.

• ECS_ENGINE_AUTH_DATA, which contains the actual authentication credentials.

Linux variants of the Amazon ECS-optimized AMI scan the /etc/ecs/ecs.config file for these
variables when the container instance launches, and each time the service is started (with the sudo
start ecs command). AMIs that are not Amazon ECS-optimized should store these environment
variables in a file and pass them with the --env-file path_to_env_file option to the docker
run command that starts the container agent.

Important

We do not recommend that you inject these authentication environment variables at
instance launch with Amazon EC2 user data or pass them with the --env option to the

Configuring container instances for private Docker images 894

Amazon Elastic Container Service Developer Guide

docker run command. These methods are not appropriate for sensitive data, such as
authentication credentials. For information about safely adding authentication credentials
to your container instances, see Storing Amazon ECS container instance configuration in
Amazon S3.

Authentication formats

There are two available formats for private registry authentication, dockercfg and docker.

dockercfg authentication format

The dockercfg format uses the authentication information stored in the configuration file that is
created when you run the docker login command. You can create this file by running docker login
on your local system and entering your registry user name, password, and email address. You can
also log in to a container instance and run the command there. Depending on your Docker version,
this file is saved as either ~/.dockercfg or ~/.docker/config.json.

cat ~/.docker/config.json

Output:

{
 "auths": {
 "https://index.docker.io/v1/": {
 "auth": "zq212MzEXAMPLE7o6T25Dk0i"
 }
 }
}

Important

Newer versions of Docker create a configuration file as shown above with an outer auths
object. The Amazon ECS agent only supports dockercfg authentication data that is in the
below format, without the auths object. If you have the jq utility installed, you can extract
this data with the following command: cat ~/.docker/config.json | jq .auths

cat ~/.docker/config.json | jq .auths

Configuring container instances for private Docker images 895

Amazon Elastic Container Service Developer Guide

Output:

{
 "https://index.docker.io/v1/": {
 "auth": "zq212MzEXAMPLE7o6T25Dk0i",
 "email": "email@example.com"
 }
}

In the above example, the following environment variables should be added to the environment
variable file (/etc/ecs/ecs.config for the Amazon ECS-optimized AMI) that the Amazon ECS
container agent loads at runtime. If you are not using an Amazon ECS-optimized AMI and you are
starting the agent manually with docker run, specify the environment variable file with the --
env-file path_to_env_file option when you start the agent.

ECS_ENGINE_AUTH_TYPE=dockercfg
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":
{"auth":"zq212MzEXAMPLE7o6T25Dk0i","email":"email@example.com"}}

You can configure multiple private registries with the following syntax:

ECS_ENGINE_AUTH_TYPE=dockercfg
ECS_ENGINE_AUTH_DATA={"repo.example-01.com":
{"auth":"zq212MzEXAMPLE7o6T25Dk0i","email":"email@example-01.com"},"repo.example-02.com":
{"auth":"fQ172MzEXAMPLEoF7225DU0j","email":"email@example-02.com"}}

docker authentication format

The docker format uses a JSON representation of the registry server that the agent should
authenticate with. It also includes the authentication parameters required by that registry (such as
user name, password, and the email address for that account). For a Docker Hub account, the JSON
representation looks like the following:

{
 "https://index.docker.io/v1/": {
 "username": "my_name",
 "password": "my_password",
 "email": "email@example.com"
 }
}

Configuring container instances for private Docker images 896

Amazon Elastic Container Service Developer Guide

In this example, the following environment variables should be added to the environment variable
file (/etc/ecs/ecs.config for the Amazon ECS-optimized AMI) that the Amazon ECS container
agent loads at runtime. If you are not using an Amazon ECS-optimized AMI, and you are starting
the agent manually with docker run, specify the environment variable file with the --env-file
path_to_env_file option when you start the agent.

ECS_ENGINE_AUTH_TYPE=docker
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":
{"username":"my_name","password":"my_password","email":"email@example.com"}}

You can configure multiple private registries with the following syntax:

ECS_ENGINE_AUTH_TYPE=docker
ECS_ENGINE_AUTH_DATA={"repo.example-01.com":
{"username":"my_name","password":"my_password","email":"email@example-01.com"},"repo.example-02.com":
{"username":"another_name","password":"another_password","email":"email@example-02.com"}}

Procedure

Use the following procedure to turn on private registries for your container instances.

To enable private registries in the Amazon ECS-optimized AMI

1. Log in to your container instance using SSH.

2. Open the /etc/ecs/ecs.config file and add the ECS_ENGINE_AUTH_TYPE and
ECS_ENGINE_AUTH_DATA values for your registry and account:

sudo vi /etc/ecs/ecs.config

This example authenticates a Docker Hub user account:

ECS_ENGINE_AUTH_TYPE=docker
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":
{"username":"my_name","password":"my_password","email":"email@example.com"}}

3. Check to see if your agent uses the ECS_DATADIR environment variable to save its state:

docker inspect ecs-agent | grep ECS_DATADIR

Configuring container instances for private Docker images 897

Amazon Elastic Container Service Developer Guide

Output:

"ECS_DATADIR=/data",

Important

If the previous command does not return the ECS_DATADIR environment variable,
you must stop any tasks running on this container instance before stopping the agent.
Newer agents with the ECS_DATADIR environment variable save their state and you
can stop and start them while tasks are running without issues. For more information,
see Updating the Amazon ECS container agent.

4. Stop the ecs service:

sudo stop ecs

Output:

ecs stop/waiting

5. Restart the ecs service.

• For the Amazon ECS-optimized Amazon Linux 2 AMI:

sudo systemctl restart ecs

• For the Amazon ECS-optimized Amazon Linux AMI:

sudo stop ecs && sudo start ecs

6. (Optional) You can verify that the agent is running and see some information about your new
container instance by querying the agent introspection API operation. For more information,
see the section called “Container introspection”.

curl http://localhost:51678/v1/metadata

Configuring container instances for private Docker images 898

Amazon Elastic Container Service Developer Guide

Automatic Amazon ECS task and image cleanup

Each time a task is placed on a container instance, the Amazon ECS container agent checks to see
if the images referenced in the task are the most recent of the specified tag in the repository. If
not, the default behavior allows the agent to pull the images from their respective repositories.
If you frequently update the images in your tasks and services, your container instance storage
can quickly fill up with Docker images that you are no longer using and may never use again. For
example, you may use a continuous integration and continuous deployment (CI/CD) pipeline.

Note

The Amazon ECS agent image pull behavior can be customized using the
ECS_IMAGE_PULL_BEHAVIOR parameter. For more information, see Amazon ECS container
agent configuration.

Likewise, containers that belong to stopped tasks can also consume container instance storage
with log information, data volumes, and other artifacts. These artifacts are useful for debugging
containers that have stopped unexpectedly, but most of this storage can be safely freed up after a
period of time.

By default, the Amazon ECS container agent automatically cleans up stopped tasks and Docker
images that are not being used by any tasks on your container instances.

Note

The automated image cleanup feature requires at least version 1.13.0 of the Amazon ECS
container agent. To update your agent to the latest version, see Updating the Amazon ECS
container agent.

The following agent configuration variables are available to tune your automated task and image
cleanup experience. For more information about how to set these variables on your container
instances, see Amazon ECS container agent configuration.

ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION

This variable specifies the time to wait before removing any containers that belong to stopped
tasks. The image cleanup process cannot delete an image as long as there is a container that

Clean up tasks and images 899

Amazon Elastic Container Service Developer Guide

references it. After images are not referenced by any containers (either stopped or running), the
image becomes a candidate for cleanup. By default, this parameter is set to 3 hours, but you
can reduce this period to as low as 1 second if you need to for your application. The parameter
is ignored if you set the value less than 1 second.

ECS_DISABLE_IMAGE_CLEANUP

If you set this variable to true, then automated image cleanup is turned off on your container
instance and no images are automatically removed.

ECS_IMAGE_CLEANUP_INTERVAL

This variable specifies how frequently the automated image cleanup process should check for
images to delete. The default is every 30 minutes but you can reduce this period to as low as 10
minutes to remove images more frequently.

ECS_IMAGE_MINIMUM_CLEANUP_AGE

This variable specifies the minimum amount of time between when an image was pulled and
when it may become a candidate for removal. This is used to prevent cleaning up images that
have just been pulled. The default is 1 hour.

ECS_NUM_IMAGES_DELETE_PER_CYCLE

This variable specifies how many images may be removed during a single cleanup cycle. The
default is 5 and the minimum is 1.

When the Amazon ECS container agent is running and automated image cleanup is not
turned off, the agent checks for Docker images that are not referenced by running or stopped
containers at a frequency determined by the ECS_IMAGE_CLEANUP_INTERVAL variable. If
unused images are found and they are older than the minimum cleanup time specified by the
ECS_IMAGE_MINIMUM_CLEANUP_AGE variable, the agent removes up to the maximum number
of images that are specified with the ECS_NUM_IMAGES_DELETE_PER_CYCLE variable. The least-
recently referenced images are deleted first. After the images are removed, the agent waits until
the next interval and repeats the process again.

Clean up tasks and images 900

Amazon Elastic Container Service Developer Guide

Schedule your containers on Amazon ECS

Amazon Elastic Container Service (Amazon ECS) is a shared state, optimistic concurrency system
that provides flexible scheduling capabilities for your containerized workloads. The Amazon ECS
schedulers use the same cluster state information as the Amazon ECS API to make appropriate
placement decisions.

Amazon ECS provides a service scheduler for long-running tasks and applications. It also provides
the ability to run standalone tasks or scheduled tasks for batch jobs or single run tasks. You can
specify the task placement strategies and constraints for running tasks that best meet your needs.
For example, you can specify whether tasks run across multiple Availability Zones or within a single
Availability Zone. And, optionally, you can integrate tasks with your own custom or third-party
schedulers.

Option When to use More information

Service The service scheduler is
suitable for long running
stateless services and
applications. The service
scheduler optionally also
makes sure that tasks are
registered against an Elastic
Load Balancing load balancer.
You can update your services
that are maintained by the
service scheduler. This might
include deploying a new task
definition or changing the
number of desired tasks that
are running. By default, the
service scheduler spreads
tasks across multiple Availabil
ity Zones. However, you can
use task placement strategies

Amazon ECS services

901

Amazon Elastic Container Service Developer Guide

Option When to use More information

and constraints to customize
task placement decisions.

Standalone task A standalone task is suitable
for processes such as batch
jobs that perform work and
then stop. For example,
you can have a process
call RunTask when work
comes into a queue. The task
pulls work from the queue,
performs the work, and
then exits. Using RunTask,
you can allow the default
task placement strategy to
distribute tasks randomly
across your cluster. This
minimizes the chances that
a single instance gets a
disproportionate number of
tasks.

Amazon ECS standalone tasks

902

Amazon Elastic Container Service Developer Guide

Option When to use More information

Scheduled tasks A scheduled task is suitable
when you have tasks to
run at set intervals in your
cluster, you can use EventBrid
ge Scheduler to create a
schedule. You can run tasks
for a backup operation or
a log scan. The EventBrid
ge Scheduler schedule that
you create can run one or
more tasks in your cluster
at specified times. Your
scheduled event can be set
to a specific interval (run
every N minutes, hours, or
days). Otherwise, for more
complicated scheduling, you
can use a cron expression.

Using Amazon EventBrid
ge Scheduler to schedule
Amazon ECS tasks

Compute options

With Amazon ECS, you can specify the infrastructure your tasks or services run on. You can use a
capacity provider strategy, or a launch type.

For Fargate, the capacity providers are Fargate and Fargate Spot. For EC2, the capacity provider is
the Auto Scaling group with the registered container instances.

The capacity provider strategy distributes your tasks across the capacity providers associated with
your cluster.

Only capacity providers that are both already associated with a cluster and have an ACTIVE or
UPDATING status can be used in a capacity provider strategy. You can associate a capacity provider
with a cluster when you create a cluster.

Compute options 903

Amazon Elastic Container Service Developer Guide

In a capacity provider strategy, the optional base value designates how many tasks, at a minimum,
run on a specified capacity provider. Only one capacity provider in a capacity provider strategy can
have a base defined.

The weight value determines the relative percentage of the total number of launched tasks
that use the specified capacity provider. Consider the following example. You have a strategy
that contains two capacity providers, and both have a weight of 1. When the base percentage
is reached, the tasks are split evenly across the two capacity providers. Using that same
logic, suppose that you specify a weight of 1 for capacityProviderA and a weight of 4 for
capacityProviderB. Then, for every one task that's run using capacityProviderA, there are four tasks
that use capacityProviderB.

The launch type launches your tasks directly on either Fargate or on the Amazon EC2 instances that
you have manually registered to your clusters.

Amazon ECS task lifecycle

When a task is started, either manually or as part of a service, it can pass through several states
before it finishes on its own or is stopped manually. Some tasks are meant to run as batch jobs that
naturally progress through from PENDING to RUNNING to STOPPED. Other tasks, which can be part
of a service, are meant to continue running indefinitely, or to be scaled up and down as needed.

When task status changes are requested, such as stopping a task or updating the desired count of
a service to scale it up or down, the Amazon ECS container agent tracks these changes as the last
known status (lastStatus) of the task and the desired status (desiredStatus) of the task. Both
the last known status and desired status of a task can be seen either in the console or by describing
the task with the API or AWS CLI.

The flow chart below shows the task lifecycle flow.

Task lifecycle 904

Amazon Elastic Container Service Developer Guide

Lifecycle states

The following are descriptions of each of the task lifecycle states.

PROVISIONING

Amazon ECS has to perform additional steps before the task is launched. For example, for tasks
that use the awsvpc network mode, the elastic network interface needs to be provisioned.

PENDING

This is a transition state where Amazon ECS is waiting on the container agent to take further
action. A task stays in the pending state until there are available resources for the task.

Lifecycle states 905

Amazon Elastic Container Service Developer Guide

ACTIVATING

This is a transition state where Amazon ECS has to perform additional steps after the task
is launched but before the task can transition to the RUNNING state. This is the state where
Amazon ECS pulls the container images, creates the containers, configures the task networking,
registers load balancer target groups, and configures service discovery.

RUNNING

The task is successfully running.

DEACTIVATING

This is a transition state where Amazon ECS has to perform additional steps before the task is
stopped. For example, for tasks that are part of a service that's configured to use Elastic Load
Balancings target groups, the target group deregistration occurs during this state.

STOPPING

This is a transition state where Amazon ECS is waiting on the container agent to take further
action.

For Linux containers, the container agent will send the SIGTERM signal to notify the application
needs to finish and shut down, and then send a SIGKILL after waiting the StopTimeout
duration set in the task definition.

DEPROVISIONING

Amazon ECS has to perform additional steps after the task has stopped but before the task
transitions to the STOPPED state. For example, for tasks that use the awsvpc network mode,
the elastic network interface needs to be detached and deleted.

STOPPED

The task has been successfully stopped.

If your task stopped because of an error, see Viewing Amazon ECS stopped task errors.

DELETED

This is a transition state when a task stops. This state is not displayed in the console, but is
displayed in describe-tasks.

Lifecycle states 906

Amazon Elastic Container Service Developer Guide

How Amazon ECS places tasks on container instances

You can use task placement to configure Amazon ECS to place your tasks on container instances
that meet certain criteria, for example an Availability Zone or instance type.

The following are task placement components:

• Task placement strategy - The algorithm for selecting container instances for task placement or
tasks for termination. For example, Amazon ECS can select container instances at random, or it
can select container instances such that tasks are distributed evenly across a group of instances.

• Task group - A group of related tasks, for example database tasks.

• Task placement constraint - These are rules that must be met in order to place a task on
a container instance. If the constraint is not met, the task is not placed and remains in the
PENDING state. For example, you can use a constraint to place tasks only on a particular instance
type.

Amazon ECS has different algorithms for the launch types.

EC2 launch type

For tasks that use the EC2 launch type, Amazon ECS must determine where to place the task based
on the requirements specified in the task definition, such as CPU and memory. Similarly, when you
scale down the task count, Amazon ECS must determine which tasks to terminate. You can apply
task placement strategies and constraints to customize how Amazon ECS places and terminates
tasks.

The default task placement strategies depend on whether you run tasks manually (standalone
tasks) or within a service. For tasks running as part of an Amazon ECS service, the task placement
strategy is spread using the attribute:ecs.availability-zone. There isn't a default task
placement constraint for tasks not in services. For more information, see Schedule your containers
on Amazon ECS.

Note

Task placement strategies are a best effort. Amazon ECS still attempts to place tasks
even when the most optimal placement option is unavailable. However, task placement
constraints are binding, and they can prevent task placement.

How Amazon ECS places tasks on container instances 907

Amazon Elastic Container Service Developer Guide

You can use task placement strategies and constraints together. For example, you can use a task
placement strategy and a task placement constraint to distribute tasks across Availability Zones
and bin pack tasks based on memory within each Availability Zone, but only for G2 instances.

When Amazon ECS places tasks, it uses the following process to select container instances:

1. Identify the container instances that satisfy the CPU, GPU, memory, and port requirements in
the task definition.

2. Identify the container instances that satisfy the task placement constraints.

3. Identify the container instances that satisfy the task placement strategies.

4. Select the container instances for task placement.

Fargate launch type

Task placement strategies and constraints aren't supported for tasks using the Fargate launch type.
Fargate will try its best to spread tasks across accessible Availability Zones. If the capacity provider
includes both Fargate and Fargate Spot, the spread behavior is independent for each capacity
provider.

Use strategies to define Amazon ECS task placement

For tasks that use the EC2 launch type, Amazon ECS must determine where to place the task based
on the requirements specified in the task definition, such as CPU and memory. Similarly, when you
scale down the task count, Amazon ECS must determine which tasks to terminate. You can apply
task placement strategies and constraints to customize how Amazon ECS places and terminates
tasks.

The default task placement strategies depend on whether you run tasks manually (standalone
tasks) or within a service. For tasks running as part of an Amazon ECS service, the task placement
strategy is spread using the attribute:ecs.availability-zone. There isn't a default task
placement constraint for tasks not in services. For more information, see Schedule your containers
on Amazon ECS.

Fargate launch type 908

Amazon Elastic Container Service Developer Guide

Note

Task placement strategies are a best effort. Amazon ECS still attempts to place tasks
even when the most optimal placement option is unavailable. However, task placement
constraints are binding, and they can prevent task placement.

You can use task placement strategies and constraints together. For example, you can use a task
placement strategy and a task placement constraint to distribute tasks across Availability Zones
and bin pack tasks based on memory within each Availability Zone, but only for G2 instances.

When Amazon ECS places tasks, it uses the following process to select container instances:

1. Identify the container instances that satisfy the CPU, GPU, memory, and port requirements in
the task definition.

2. Identify the container instances that satisfy the task placement constraints.

3. Identify the container instances that satisfy the task placement strategies.

4. Select the container instances for task placement.

You specify task placement strategies in the service definition, or task definition using the
placementStrategy parameter.

"placementStrategy": [
 {
 "field": "The field to apply the placement strategy against",
 "type": "The placement strategy to use"
 }
]

You can specify the strategies when you run a task (RunTask), create a new service (CreateService),
or update an existing service (UpdateService).

The following table describes the available types and fields.

type Valid field values

binpack • cpu

• memory

Use strategies to define task placement 909

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html

Amazon Elastic Container Service Developer Guide

type Valid field values

Tasks are placed on container
instances so as to leave the
least amount of unused CPU
or memory. This strategy
minimizes the number of
container instances in use.

When this strategy is used
and a scale-in action is taken,
Amazon ECS terminates tasks.
It does this based on the
amount of resources that
are left on the container
instance after the task is
terminated. The container
instance that has the most
available resources left after
task termination has that task
terminated.

random

Tasks are placed randomly.

Not used

Use strategies to define task placement 910

Amazon Elastic Container Service Developer Guide

type Valid field values

spread

Tasks are placed evenly based
on the specified value.
Service tasks are spread
based on the tasks from that
service. Standalone tasks are
spread based on the tasks
from the same task group. For
more information about task
groups, see Group related
Amazon ECS tasks .

When the spread strategy
is used and a scale-in action
is taken, Amazon ECS selects
tasks to terminate that
maintain a balance across
Availability Zones. Within an
Availability Zone, tasks are
selected at random.

• instanceId (or host,
which has the same effect)

• any platform or custom
attribute that's applied to
a container instance, such
as attribute:ecs.avai
lability-zone

The task placement strategies can be updated for existing services as well. For more information,
see How Amazon ECS places tasks on container instances.

You can create a task placement strategy that uses multiple strategies by creating arrays of
strategies in the order that you want them performed. For example, if you want to spread tasks
across Availability Zones and then bin pack tasks based on memory within each Availability Zone,
specify the Availability Zone strategy followed by the memory strategy. For example strategies, see
Example Amazon ECS task placement strategies.

Example Amazon ECS task placement strategies

You can specify task placement strategies with the following actions: CreateService, UpdateService,
and RunTask.

Use strategies to define task placement 911

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html

Amazon Elastic Container Service Developer Guide

Examples

• Distribute tasks evenly across Availability Zones

• Distribute tasks evenly across all instances

• Bin pack tasks based on memory

• Place tasks randomly

• Distribute tasks evenly across Availability Zones and then distributes tasks evenly across the
instances within each Availability Zone

• Distribute tasks evenly across Availability Zones and then bin pack tasks based on memory
within each Availability Zone

• Distribute tasks evenly across instances and then bin pack tasks based on memory

Distribute tasks evenly across Availability Zones

The following strategy distributes tasks evenly across Availability Zones.

"placementStrategy": [
 {
 "field": "attribute:ecs.availability-zone",
 "type": "spread"
 }
]

Distribute tasks evenly across all instances

The following strategy distributes tasks evenly across all instances.

"placementStrategy": [
 {
 "field": "instanceId",
 "type": "spread"
 }
]

Bin pack tasks based on memory

The following strategy bin packs tasks based on memory.

"placementStrategy": [
 {

Use strategies to define task placement 912

Amazon Elastic Container Service Developer Guide

 "field": "memory",
 "type": "binpack"
 }
]

Place tasks randomly

The following strategy places tasks randomly.

"placementStrategy": [
 {
 "type": "random"
 }
]

Distribute tasks evenly across Availability Zones and then distributes tasks evenly across the
instances within each Availability Zone

The following strategy distributes tasks evenly across Availability Zones and then distributes tasks
evenly across the instances within each Availability Zone.

"placementStrategy": [
 {
 "field": "attribute:ecs.availability-zone",
 "type": "spread"
 },
 {
 "field": "instanceId",
 "type": "spread"
 }
]

Distribute tasks evenly across Availability Zones and then bin pack tasks based on memory
within each Availability Zone

The following strategy distributes tasks evenly across Availability Zones and then bin packs tasks
based on memory within each Availability Zone.

"placementStrategy": [
 {
 "field": "attribute:ecs.availability-zone",
 "type": "spread"

Use strategies to define task placement 913

Amazon Elastic Container Service Developer Guide

 },
 {
 "field": "memory",
 "type": "binpack"
 }
]

Distribute tasks evenly across instances and then bin pack tasks based on memory

The following strategy distributes tasks evenly across evenly across all instances and then bin packs
tasks based on memory within each instance.

"placementStrategy": [
 {
 "field": "instanceId",
 "type": "spread"
 },
 {
 "field": "memory",
 "type": "binpack"
 }
]

Group related Amazon ECS tasks

You can identify a set of related tasks and place them in a task group. All tasks with the same
task group name are considered as a set when using the spread task placement strategy. For
example, suppose that you're running different applications in one cluster, such as databases and
web servers. To ensure that your databases are balanced across Availability Zones, add them to
a task group named databases and then use the spread task placement strategy. For more
information, see Use strategies to define Amazon ECS task placement.

Task groups can also be used as a task placement constraint. When you specify a task group in the
memberOf constraint, tasks are only sent to container instances that run tasks in the specified task
group. For an example, see Example Amazon ECS task placement constraints.

By default, standalone tasks use the task definition family name (for example, family:my-task-
definition) as the task group name if a custom task group name isn't specified. Tasks launched
as part of a service use the service name as the task group name and can't be changed.

The following requirements for the task group apply.

Group related tasks 914

Amazon Elastic Container Service Developer Guide

• A task group name must be 255 or fewer characters.

• Each task can be in exactly one group.

• After launching a task, you can't modify its task group.

Define which container instances Amazon ECS uses for tasks

A task placement constraint is a rule about a container instance that Amazon ECS uses to
determine if the task is allowed to run on the instance. At least one container instance must match
the constraint. If there are no instances that match the constraint, the task remains in a PENDING
state. When you create a new service or update an existing one, you can specify task placement
constraints for the service's tasks.

You can specify task placement constraints in the service definition, task definition, or task using
the placementConstraint parameter.

"placementConstraints": [
 {
 "expression": "The expression that defines the task placement constraints",
 "type": "The placement constraint type to use"
 }
]

The following table describes how to use the parameters.

Constraint type Can be specified when

distinctInstance

Place each active task on a
different container instance.

Amazon ECS looks at the
desired status of the tasks
for the task placement.
For example, if the desired
status of the existing task
is STOPPED, (but the last
status isn’t), a new incoming

• Running a task RunTask

• Creating a new service
CreateService,

Define which container instances are used for tasks 915

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html

Amazon Elastic Container Service Developer Guide

Constraint type Can be specified when

task can be placed on the
same instance despite the
distinctInstance
placement constraint.
Therefore, you might see
2 tasks with last status
of RUNNING on the same
instance.

Important

We recommend that
customers looking
for strong isolation
for their tasks use
Fargate. Fargate
runs each task in a
hardware virtualiz
ation environment.
This ensures that
these container
ized workloads do
not share network
interfaces, Fargate
ephemeral storage,
CPU, or memory
with other tasks. For
more information, see
Security Overview of
AWS Fargate.

Define which container instances are used for tasks 916

https://d1.awsstatic.com/whitepapers/AWS_Fargate_Security_Overview_Whitepaper.pdf
https://d1.awsstatic.com/whitepapers/AWS_Fargate_Security_Overview_Whitepaper.pdf

Amazon Elastic Container Service Developer Guide

Constraint type Can be specified when

memberOf

Place tasks on container
instances that satisfy an
expression.

• Running a task RunTask

• Creating a new service
CreateService,

• Creating a new task
definition RegisterT
askDefinition

• Creating a new revision of
a task definition RegisterT
askDefinition

• Updating a service
UpdateService

When you use the memberOf constraint type, you can create an expression using the cluster
query language which defines the container instances where Amazon ECS can place tasks. The
expression is a way for you to group your container instances by attributes. The expression goes in
the expression parameter of placementConstraint.

Amazon ECS container instance attributes

You can add custom metadata to your container instances, known as attributes. Each attribute has
a name and an optional string value. You can use the built-in attributes provided by Amazon ECS or
define custom attributes.

The following sections contain sample built-in, optional, and custom attributes.

Built-in attributes

Amazon ECS automatically applies the following attributes to your container instances.

ecs.ami-id

The ID of the AMI used to launch the instance. An example value for this attribute is
ami-1234abcd.

ecs.availability-zone

The Availability Zone for the instance. An example value for this attribute is us-east-1a.

Define which container instances are used for tasks 917

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html

Amazon Elastic Container Service Developer Guide

ecs.instance-type

The instance type for the instance. An example value for this attribute is g2.2xlarge.

ecs.os-type

The operating system for the instance. The possible values for this attribute are linux and
windows.

ecs.os-family

The operating system version for the instance.

For Linux instances, the valid value is LINUX. For Windows instances, ECS sets the
value in the WINDOWS_SERVER_<OS_Release>_<FULL or CORE> format. The
valid values are WINDOWS_SERVER_2022_FULL, WINDOWS_SERVER_2022_CORE,
WINDOWS_SERVER_20H2_CORE, WINDOWS_SERVER_2019_FULL,
WINDOWS_SERVER_2019_CORE, and WINDOWS_SERVER_2016_FULL.

This is important for Windows containers and Windows containers on AWS Fargate because
the OS version of every Windows container must match that of the host. If the Windows
version of the container image is different than the host, the container doesn't start. For more
information, see Windows container version compatibility on the Microsoft documentation
website.

If your cluster runs multiple Windows versions, you can ensure that a task is placed
on an EC2 instance running on the same version by using the placement constraint:
memberOf(attribute:ecs.os-family == WINDOWS_SERVER_<OS_Release>_<FULL
or CORE>). For more information, see the section called “Retrieving Amazon ECS-optimized
Windows AMI metadata”.

ecs.cpu-architecture

The CPU architecture for the instance. Example values for this attribute are x86_64 and arm64.

ecs.vpc-id

The VPC the instance was launched into. An example value for this attribute is vpc-1234abcd.

ecs.subnet-id

The subnet the instance is using. An example value for this attribute is subnet-1234abcd.

Define which container instances are used for tasks 918

https://learn.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/version-compatibility?tabs=windows-server-2022%2Cwindows-11

Amazon Elastic Container Service Developer Guide

Optional attributes

Amazon ECS may add the following attributes to your container instances.

ecs.awsvpc-trunk-id

If this attribute exists, the instance has a trunk network interface. For more information, see
Increasing Amazon ECS Linux container instance network interfaces.

ecs.outpost-arn

If this attribute exists, it contains the Amazon Resource Name (ARN) of the Outpost. For more
information, see the section called “Amazon Elastic Container Service on AWS Outposts”.

ecs.capability.external

If this attribute exists, the instance is identified as an external instance. For more information,
see Amazon ECS clusters for the external launch type.

Custom attributes

You can apply custom attributes to your container instances. For example, you can define an
attribute with the name "stack" and a value of "prod".

When specifying custom attributes, you must consider the following.

• The name must contain between 1 and 128 characters and name may contain letters (uppercase
and lowercase), numbers, hyphens, underscores, forward slashes, back slashes, or periods.

• The value must contain between 1 and 128 characters and may contain letters (uppercase and
lowercase), numbers, hyphens, underscores, periods, at signs (@), forward slashes, back slashes,
colons, or spaces. The value can't contain any leading or trailing whitespace.

Create expressions to define container instances for Amazon ECS tasks

Cluster queries are expressions that allow you to group objects. For example, you can group
container instances by attributes such as Availability Zone, instance type, or custom metadata. For
more information, see Amazon ECS container instance attributes.

After you have defined a group of container instances, you can customize Amazon ECS to place
tasks on container instances based on group. For more information, see Running an application as

Define which container instances are used for tasks 919

Amazon Elastic Container Service Developer Guide

an Amazon ECS task, and Creating an Amazon ECS service using the console. You can also apply a
group filter when listing container instances.

Expression syntax

Expressions have the following syntax:

subject operator [argument]

Subject

The attribute or field to be evaluated.

agentConnected

Select container instances by their Amazon ECS container agent connection status. You can use
this filter to search for instances with container agents that are disconnected.

Valid operators: equals (==), not_equals (!=), in, not_in (!in), matches (=~), not_matches (!~)

agentVersion

Select container instances by their Amazon ECS container agent version. You can use this filter
to find instances that are running outdated versions of the Amazon ECS container agent.

Valid operators: equals (==), not_equals (!=), greater_than (>), greater_than_equal (>=),
less_than (<), less_than_equal (<=)

attribute:attribute-name

Select container instances by attribute. For more information, see Amazon ECS container
instance attributes.

ec2InstanceId

Select container instances by their Amazon EC2 instance ID.

Valid operators: equals (==), not_equals (!=), in, not_in (!in), matches (=~), not_matches (!~)

registeredAt

Select container instances by their container instance registration date. You can use this filter to
find newly registered instances or instances that are very old.

Define which container instances are used for tasks 920

Amazon Elastic Container Service Developer Guide

Valid operators: equals (==), not_equals (!=), greater_than (>), greater_than_equal (>=),
less_than (<), less_than_equal (<=)

Valid date formats: 2018-06-18T22:28:28+00:00, 2018-06-18T22:28:28Z,
2018-06-18T22:28:28, 2018-06-18

runningTasksCount

Select container instances by number of running tasks. You can use this filter to find instances
that are empty or near empty (few tasks running on them).

Valid operators: equals (==), not_equals (!=), greater_than (>), greater_than_equal (>=),
less_than (<), less_than_equal (<=)

task:group

Select container instances by task group. For more information, see Group related Amazon ECS
tasks .

Operator

The comparison operator. The following operators are supported.

Operator Description

==, equals String equality

!=, not_equals String inequality

>, greater_than Greater than

>=, greater_than_equal Greater than or equal to

<, less_than Less than

<=, less_than_equal Less than or equal to

exists Subject exists

!exists, not_exists Subject doesn't exist

in Value in argument list

Define which container instances are used for tasks 921

Amazon Elastic Container Service Developer Guide

Operator Description

!in, not_in Value not in argument list

=~, matches Pattern match

!~, not_matches Pattern mismatch

Note

A single expression can't contain parentheses. However, parentheses can be used to specify
precedence in compound expressions.

Argument

For many operators, the argument is a literal value.

The in and not_in operators expect an argument list as the argument. You specify an argument
list as follows:

[argument1, argument2, ..., argumentN]

The matches and not_matches operators expect an argument that conforms to the Java regular
expression syntax. For more information, see java.util.regex.Pattern.

Compound expressions

You can combine expressions using the following Boolean operators:

• &&, and

• ||, or

• !, not

You can specify precedence using parentheses:

(expression1 or expression2) and expression3

Define which container instances are used for tasks 922

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Amazon Elastic Container Service Developer Guide

Example expressions

The following are example expressions.

Example: String Equality

The following expression selects instances with the specified instance type.

attribute:ecs.instance-type == t2.small

Example: Argument List

The following expression selects instances in the us-east-1a or us-east-1b Availability Zone.

attribute:ecs.availability-zone in [us-east-1a, us-east-1b]

Example: Compound Expression

The following expression selects G2 instances that aren't in the us-east-1d Availability Zone.

attribute:ecs.instance-type =~ g2.* and attribute:ecs.availability-zone != us-east-1d

Example: Task Affinity

The following expression selects instances that are hosting tasks in the service:production
group.

task:group == service:production

Example: Task Anti-Affinity

The following expression selects instances that aren't hosting tasks in the database group.

not(task:group == database)

Example: Running task count

The following expression selects instances that are only running one task.

Define which container instances are used for tasks 923

Amazon Elastic Container Service Developer Guide

runningTasksCount == 1

Example: Amazon ECS container agent version

The following expression selects instances that are running a container agent version below 1.14.5.

agentVersion < 1.14.5

Example: Instance registration time

The following expression selects instances that were registered before February 13, 2018.

registeredAt < 2018-02-13

Example: Amazon EC2 instance ID

The following expression selects instances with the following Amazon EC2 instance IDs.

ec2InstanceId in ['i-abcd1234', 'i-wxyx7890']

Example Amazon ECS task placement constraints

The following are task placement constraint examples.

This example uses the memberOf constraint to place tasks on t2 instances. It can be specified with
the following actions: CreateService, UpdateService, RegisterTaskDefinition, and RunTask.

"placementConstraints": [
 {
 "expression": "attribute:ecs.instance-type =~ t2.*",
 "type": "memberOf"
 }
]

The example uses the memberOf constraint to place replica tasks on instances with tasks in the
daemon service daemon-service task group, respecting any task placement strategies that are
also specified. This constraint ensures that the daemon service tasks get placed on the EC2 instance
prior to the replica service tasks.

Replace daemon-service with the name of the daemon service.

Define which container instances are used for tasks 924

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html

Amazon Elastic Container Service Developer Guide

"placementConstraints": [
 {
 "expression": "task:group == service:daemon-service",
 "type": "memberOf"
 }
]

The example uses the memberOf constraint to place tasks on instances with other tasks in the
databases task group, respecting any task placement strategies that are also specified. For more
information about task groups, see Group related Amazon ECS tasks . It can be specified with the
following actions: CreateService, UpdateService, RegisterTaskDefinition, and RunTask.

"placementConstraints": [
 {
 "expression": "task:group == databases",
 "type": "memberOf"
 }
]

The distinctInstance constraint places each task in the group on a different instance. It can be
specified with the following actions: CreateService, UpdateService, and RunTask

Amazon ECS looks at the desired status of the tasks for the task placement. For example, if the
desired status of the existing task is STOPPED, (but the last status isn’t), a new incoming task can
be placed on the same instance despite the distinctInstance placement constraint. Therefore,
you might see 2 tasks with last status of RUNNING on the same instance.

"placementConstraints": [
 {
 "type": "distinctInstance"
 }
]

Amazon ECS standalone tasks

You can run your application as a task when you have an application that performs some work,
and then stops, for example a batch process. If you want to run a task one time, you can use the
console, AWS CLI, APIs, or SDKs.

Standalone tasks 925

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html

Amazon Elastic Container Service Developer Guide

If you need to run your application on a rate-based, cron-based, or one-time schedule, you can
create schedule using EventBridge Scheduler.

Task workflow

When you launch Amazon ECS tasks (standalone tasks or by Amazon ECS services), a task is created
and initially moved to the PROVISIONING state. When a task is in the PROVISIONING state,
neither the task nor the containers exist because Amazon ECS needs to find compute capacity for
placing the task.

Amazon ECS selects the appropriate compute capacity for your task based on your launch type or
capacity provider configuration. You can use capacity providers and capacity provider strategies
with both the Fargate and Amazon EC2 launch types. With Fargate, you don’t have to think
about provisioning, configuring, and scaling of your cluster capacity. Fargate takes care of all
infrastructure management for your tasks. For the EC2 launch type, you can either manage
your cluster capacity by registering Amazon EC2 instances to your cluster, or you can use cluster
auto scaling to simplify your compute capacity management. Cluster auto scaling takes care of
dynamically scaling your cluster capacity, so that you can focus on running tasks. Amazon ECS
determines where to place the task based on the requirements you specify in the task definition,
such as CPU and memory, as well your placement constraints and strategies. For more information,
see, How Amazon ECS places tasks on container instances.

If you use a capacity provider with managed scaling enabled, tasks that can't be started due to a
lack of compute capacity are moved to the PROVISIONING state rather than failing immediately.
After finding the capacity for placing your task, Amazon ECS provisions the necessary attachments
(for example, Elastic Network Interfaces (ENIs) for tasks in awsvpc mode). It uses the Amazon
ECS container agent to pull your container images, and then start your containers. After the
provisioning completes and the relevant containers have launched, Amazon ECS moves the task
into RUNNING state. For information about the task states, see Amazon ECS task lifecycle.

Optimize Amazon ECS task launch time

In order to speed up your task launches, consider the following recommendations.

• Cache container images and binpack instances

If you use the EC2 launch type you can configure the Amazon ECS container agent pull behavior
to ECS_IMAGE_PULL_BEHAVIOR: prefer-cached. The image is pulled remotely if there is no
cached image. Otherwise, the cached image on the instance is used. Automated image cleanup

Task workflow 926

Amazon Elastic Container Service Developer Guide

is turned off for the container to ensure that the cached image isn't removed. This reduces image
pull-time for subsequent launches. The effect of caching is even greater when you have a high
task density in your container instances, which you can configure using the binpack placement
strategy. Caching container images is especially beneficial for windows-based workloads which
usually have large (tens of GBs) container image sizes. When using the binpack placement
strategy, you can also consider using Elastic Network Interface (ENI) trunking to place more tasks
with the awsvpc network mode on each container instance. ENI trunking increases the number
of tasks you can run on awsvpc mode. For example, a c5.large instance that may support
running only 2 tasks concurrently, can run up to 10 tasks with ENI trunking.

• Choose an optimal network mode

Although there are many instances where awsvpc network mode is ideal, this network mode
can inherently increase task launch latency, because for each task in awsvpc mode, Amazon
ECS workflows need to provision and attach an ENI by invoking Amazon EC2 APIs which adds an
overhead of several seconds to your task launches. By contrast, a key advantage of using awsvpc
network mode is that each task has a security group to allow or deny traffic. This means you
have greater flexibility to control communications between tasks and services at a more granular
level. If the deployment speed is your priority, you can consider using bridge mode to speed up
task launches. For more information, see the section called “AWSVPC network mode”.

• Track your task launch lifecycle to find optimization opportunities

It is often difficult to know the amount of time it takes for your application to start-up.
Launching your container image, running start-up scripts, and other configurations during
application start-up can take a surprising amount of time. You can use the Task metadata
endpoint to post metrics to track application start-up time from StartedAt in the container
metadata response to the StartedAt time for your task or service. With this data, you can
understand how your application is contributing to the total launch time, and find areas where
you can reduce unnecessary application-specific overhead and optimize your container images.
For more information, see Optimize Amazon ECS capacity and availability.

• Choose an optimal instance type (for the the EC2 launch type)

Choosing the correct instance type is based on the resource reservation (for example, CPU,
memory) that you configure on your task. Therefore, when sizing the instance, you can calculate
how many tasks can be placed on a single instance. A simple example of a well-placed task, is
hosting 4 tasks requiring 0.5 vCPU and 2GB of memory reservations in an m5.large instance
(supporting 2 vCPU and 8 GB memory). The reservations of this task definition take full
advantage of the instance’s resources.

Optimize task launch time 927

Amazon Elastic Container Service Developer Guide

Running an application as an Amazon ECS task

You can create a task for a one-time process using the AWS Management Console.

To create a standalone task (AWS Management Console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. The Amazon ECS console allows you to create a standalone task from either your cluster detail
page or from the task definition revision list. Use the following steps to create your standalone
task depending on the resource page you choose.

To start a service from Steps

The cluster detail page a. On the Clusters page,
select the cluster to
create the service in.

b. From the Tasks tab,
choose Run task.

The task definition revision
page

a. On the Task definitio
ns page, choose the
task definition family to
display the revisions for
that family.

b. Select the revision you
want to use.

c. From the Deploy menu,
choose Run task.

3. For Existing cluster, choose the cluster.

Choose Create cluster to run the task on a new cluster

4. Choose how your tasks are distributed across your cluster infrastructure. Under Compute
configuration, choose your option.To use a capacity provider strategy, you must configure your
capacity providers at the cluster level.

If you haven't configured your cluster to use a capacity provider, use a launch type instead.

Running an application as a task 928

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Distribution method Steps

Capacity provider strategy a. In the Compute options
section, select Capacity
provider strategy.

b. Choose a strategy:

• To use the cluster's
default capacity
provider strategy,
choose Use cluster
default.

• If your cluster doesn't
have a default capacity
provider strategy, or to
use a custom strategy,
choose Use custom,
Add capacity provider
strategy and define
your custom capacity
provider strategy by
specifying a Base,
Capacity provider, and
Weight.

Note

To use a capacity
provider in a
strategy, the
capacity provider
must be associated
with the cluster.

Running an application as a task 929

Amazon Elastic Container Service Developer Guide

Distribution method Steps

Launch type a. In the Compute options
section, select Launch
type.

b. For Launch type, choose
a launch type.

c. (Optional) When the
Fargate launch type is
specified, for Platform
version, specify the
platform version to use.
If a platform version isn't
specified, the LATEST
platform version is used.

5. Under Deployment configuration, do the following:

a. For Task definition, enter the task definition.

Important

The console validates the selection to ensure that the selected task definition
family and revision are compatible with the defined compute configuration.

b. For Desired tasks, enter the number of tasks to launch.

c. For Task group, enter the task group name.

6. If your task definition uses the awsvpc network mode, expand Networking. Use the following
steps to specify a custom configuration.

a. For VPC, select the VPC to use.

b. For Subnets, select one or more subnets in the VPC that the task scheduler considers
when placing your tasks.

c. For Security group, you can either choose an existing security group or create a new one.
To use an existing security group, choose the security group and move to the next step.
To create a new security group, choose Create a new security group. You must specify a

Running an application as a task 930

Amazon Elastic Container Service Developer Guide

security group name, description, and then add one or more inbound rules for the security
group.

d. For Public IP, choose whether to auto-assign a public IP address to the elastic network
interface (ENI) of the task.

AWS Fargate tasks can be assigned a public IP address when run in a public subnet so they
have a route to the internet. EC2 tasks can't be assigned a public IP using this field. For
more information, see Amazon ECS task networking options for the Fargate launch type
and Allocate a network interface for an Amazon ECS task..

7. If your task uses a data volume that's compatible with configuration at deployment, you can
configure the volume by expanding Volume.

The volume name and volume type are configured when creating a task definition revision and
can't be changed when you run a standalone task. To update the volume name and type, you
must create a new task definition revision and run a task by using the new revision.

To configure this volume
type

Do this

Amazon EBS a. For EBS volume type,
choose the type of EBS
volume that you want to
attach to your task.

b. For Size (GiB), enter a
valid value for the volume
size in gibibytes (GiB). You
can specify a minimum
of 1 GiB and a maximum
of 16,384 GiB volume
size. This value is required
unless you provide a
snapshot ID.

c. For IOPS, enter the
maximum number of
input/output operation
s (IOPS) that the volume

Running an application as a task 931

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-networking.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking-awsvpc.html

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

should provide. This value
is configurable only for
io1,io2, and gp3 volume
types.

d. For Throughput (MiB/
s), enter the throughpu
t that the volume should
provide, in mebibytes per
second (MiBps, or MiB/s).
This value is configurable
only for the gp3 volume
type.

e. For Snapshot ID, choose
an existing Amazon EBS
volume snapshot or enter
the ARN of a snapshot
if you want to create a
volume from a snapshot.
 You can also create a
new, empty volume by
not choosing or entering
a snapshot ID.

f. If you specify a Snapshot
ID, you can specify a
Volume initialization
rate (MiB/s). Enter a
value between 100 and
300, in MiB/s, that will
determine how fast
data is loaded from the
snapshot specified using
Snapshot ID for volume
creation.

Running an application as a task 932

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

g. For Termination policy,
deselect the checkbox
if you want the volume
configured for attachmen
t to the task to be
preserved after the task
is terminated. By default,
EBS volumes that are
attached to tasks are
deleted when the task is
terminated.

h. For File system type,
choose the type of file
system that will be used
for data storage and
retrieval on the volume.
You can choose either
the operating system
default or a specific file
system type. The default
for Linux is XFS. For
volumes created from
a snapshot, you must
specify the same filesyste
m type that the volume
was using when the
snapshot was created. If
there is a filesystem type
mismatch, the task will
fail to start.

i. For Infrastructure role,
choose an IAM role with
the necessary permissio

Running an application as a task 933

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

ns that allow Amazon
ECS to manage Amazon
EBS volumes for tasks.
You can attach the
AmazonECSInfrastru
ctureRole
PolicyForVolumes
managed policy to the
role, or you can use the
policy as a guide to create
and attach an your own
policy with permissions
that meet your specific
needs. For more informati
on about the necessary
permissions, see see
Amazon ECS infrastru
cture IAM role.

j. For Encryption, choose
Default if you want to
use the Amazon EBS
encryption by default
settings. If your account
has Encryption by default
configured, the volume
will be encrypted with
the AWS Key Managemen
t Service (AWS KMS) key
that's specified in the
setting. If you choose
Default and Amazon EBS
default encryption isn't
turned on, the volume
will be unencrypted.

Running an application as a task 934

https://docs.aws.amazon.com/ebs/latest/userguide/encryption-by-default.html

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

If you choose Custom,
you can specify an AWS
KMS key of your choice
for volume encryption.

If you choose None, the
volume will be unencrypt
ed unless you have
encryption by default
configured, or if you
create a volume from an
encrypted snapshot.

k. If you've chosen Custom
for Encryption, you must
specify the AWS KMS key
that you want to use.
For KMS key, choose an
AWS KMS key or enter a
key ARN. If you choose
to encrypt your volume
by using a symmetric
customer managed key,
make sure that you have
the right permissions
defined in your AWS
KMS key policy. For more
information, see Data
encryption for Amazon
EBS volumes.

l. (Optional) Under Tags,
you can add tags to your
Amazon EBS volume by
either propagating tags

Running an application as a task 935

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

from the task definition
or by providing your own
tags.

If you want to propagate
tags from the task
definition, choose Task
definition for Propagate
tags from. If you choose
Do not propagate, or if
you don't choose a value,
the tags aren't propagate
d.

If you want to provide
your own tags, choose
Add tag and then provide
the key and value for
each tag you add.

For more information
about tagging Amazon
EBS volumes, see Tagging
Amazon EBS volumes.

8. (Optional) To use a task placement strategy other than the default, expand Task Placement,
and then choose from the following options.

For more information, see How Amazon ECS places tasks on container instances.

• AZ Balanced Spread – Distribute tasks across Availability Zones and across container
instances in the Availability Zone.

• AZ Balanced BinPack – Distribute tasks across Availability Zones and across container
instances with the least available memory.

• BinPack – Distribute tasks based on the least available amount of CPU or memory.

Running an application as a task 936

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specify-ebs-config.html#ebs-volume-tagging
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specify-ebs-config.html#ebs-volume-tagging

Amazon Elastic Container Service Developer Guide

• One Task Per Host – Place, at most, one task from the service on each container instance.

• Custom – Define your own task placement strategy.

If you chose Custom, define the algorithm for placing tasks and the rules that are considered
during task placement.

• Under Strategy, for Type and Field, choose the algorithm and the entity to use for the
algorithm.

You can enter a maximum of 5 strategies.

• Under Constraint, for Type and Expression, choose the rule and attribute for the constraint.

For example, to set the constraint to place tasks on T2 instances, for the Expression, enter
attribute:ecs.instance-type =~ t2.*.

You can enter a maximum of 10 constraints.

9. (Optional) To override the task IAM role, or task execution role that is defined in your task
definition, expand Task overrides, and then complete the following steps:

a. For Task role, choose an IAM role for this task. For more information, see Amazon ECS
task IAM role.

Only roles with the ecs-tasks.amazonaws.com trust relationship are displayed. For
instructions on how to create an IAM role for your tasks, see Creating the task IAM role.

b. For Task execution role, choose a task execution role. For more information, see Amazon
ECS task execution IAM role.

10. (Optional) To override the container commands and environment variables, expand Container
Overrides, and then expand the container.

• To send a command to the container other than the task definition command, for Command
override, enter the Docker command.

• To add an environment variable, choose Add Environment Variable. For Key, enter the
name of your environment variable. For Value, enter a string value for your environment
value (without the surrounding double quotation marks (" ")).

AWS surrounds the strings with double quotation marks (" ") and passes the string to the
container in the following format:

Running an application as a task 937

Amazon Elastic Container Service Developer Guide

MY_ENV_VAR="This variable contains a string."

11. (Optional) To help identify your task, expand the Tags section, and then configure your tags.

To have Amazon ECS automatically tag all newly launched tasks with the cluster name and
the task definition tags, select Turn on Amazon ECS managed tags, and then select Task
definitions.

Add or remove a tag.

• [Add a tag] Choose Add tag, and then do the following:

• For Key, enter the key name.

• For Value, enter the key value.

• [Remove a tag] Next to the tag, choose Remove tag.

12. Choose Create.

Using Amazon EventBridge Scheduler to schedule Amazon ECS tasks

EventBridge Scheduler is a serverless scheduler that allows you to create, run, and manage tasks
from one central, managed service. It provides one-time and recurring scheduling functionality
independent of event buses and rules. EventBridge Scheduler is highly customizable, and offers
improved scalability over EventBridge scheduled rules, with a wider set of target API operations
and AWS services. EventBridge Scheduler provides the following schedules which you can configure
for your tasks in the EventBridge Scheduler console:

• Rate-based

• Cron-based

You can configure cron-based schedules in any time zone.

• One-time schedules

You can configure one-time schedules in any time zone.

You can schedule your Amazon ECS using Amazon EventBridge Scheduler.

Although you can create a scheduled task in the Amazon ECS console, currently the EventBridge
Scheduler console provides more functionality.

Using Amazon EventBridge Scheduler to schedule tasks 938

Amazon Elastic Container Service Developer Guide

Complete the following steps before you schedule a task:

1. Use the VPC console to get the subnet IDs where the tasks run and the security group IDs for
the subnets. For more information, see Subnets for your VPC, and Control traffic to your AWS
resources using security groups in the Amazon VPC User Guide.

2. Configure the EventBridge Scheduler execution role. For more information, see Set up the
execution role in the Amazon EventBridge Scheduler User Guide.

3. If you want to use a capacity provider strategy to run the task, you must have a capacity provider
associated with the cluster.

To create a new schedule using the console

1. Open the Amazon EventBridge Scheduler console at https://console.aws.amazon.com/
scheduler/home.

2. On the Schedules page, choose Create schedule.

3. On the Specify schedule detail page, in the Schedule name and description section, do the
following:

a. For Schedule name, enter a name for your schedule. For example, MyTestSchedule.

b. (Optional) For Description, enter a description for your schedule. For example,
TestSchedule.

c. For Schedule group, choose a schedule group. If you don't have a group, choose default.
To create a schedule group, choose create your own schedule.

You use schedule groups to add tags to groups of schedules.

4. Choose your schedule options.

Occurrence Do this...

One-time schedule

A one-time schedule invokes
a target only once at the
date and time that you
specify.

For Date and time, do the
following:

• Enter a valid date in
YYYY/MM/DD format.

• Enter a timestamp in 24-
hour hh:mm format.

Using Amazon EventBridge Scheduler to schedule tasks 939

https://docs.aws.amazon.com/vpc/latest/userguide/configure-subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-groups.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-groups.html
https://docs.aws.amazon.com/scheduler/latest/UserGuide/setting-up.html#setting-up-execution-role
https://docs.aws.amazon.com/scheduler/latest/UserGuide/setting-up.html#setting-up-execution-role
https://console.aws.amazon.com/scheduler/home/
https://console.aws.amazon.com/scheduler/home/

Amazon Elastic Container Service Developer Guide

Occurrence Do this...

• For Timezone, choose the
timezone.

Using Amazon EventBridge Scheduler to schedule tasks 940

Amazon Elastic Container Service Developer Guide

Occurrence Do this...

Recurring schedule

A recurring schedule invokes
a target at a rate that
you specify using a cron
expression or rate expressio
n.

a. For Schedule type, do
one of the following:

• To use a cron expressio
n to define the
schedule, choose
Cron-based schedule
and enter the cron
expression.

• To use a rate expression
to define the schedule,
choose Rate-based
schedule and enter the
rate expression.

For more informati
on about cron and
rate expressions, see
Schedule types on
EventBridge Scheduler
 in the Amazon
EventBridge Scheduler
User Guide.

b. For Flexible time
window, choose Off to
turn off the option, or
choose one of the pre-
defined time windows.
For example, if you
choose 15 minutes
and you set a recurring
 schedule to invoke its
target once every hour,
the schedule runs within

Using Amazon EventBridge Scheduler to schedule tasks 941

https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based

Amazon Elastic Container Service Developer Guide

Occurrence Do this...

15 minutes after the start
of every hour.

5. (Optional) If you chose Recurring schedule in the previous step, in the Timeframe section, do
the following:

a. For Timezone, choose a timezone.

b. For Start date and time, enter a valid date in YYYY/MM/DD format, and then specify a
timestamp in 24-hour hh:mm format.

c. For End date and time, enter a valid date in YYYY/MM/DD format, and then specify a
timestamp in 24-hour hh:mm format.

6. Choose Next.

7. On the Select target page, do the following:

a. Choose All APIs, and then in the search box enter ECS.

b. Select Amazon ECS.

c. In the search box, enter RunTask, and then choose RunTask.

d. For ECS cluster, choose the cluster.

e. For ECS task, choose the task definition to use for the task.

f. Choose how your tasks are distributed across your cluster infrastructure. Expand Compute
options, and then choose one of the following options

Compute option Steps

Capacity provider strategy a. Choose Capacity
provider strategy.

b. Choose a strategy:

• To use the default
capacity provider
strategy, choose Use
cluster default.

• To use a custom
strategy, choose Use

Using Amazon EventBridge Scheduler to schedule tasks 942

Amazon Elastic Container Service Developer Guide

Compute option Steps

custom. Then, enter
the Base, Capacity
provider, and Weight.

For EC2, the Capacity
provider is the Auto
Scaling group.

Launch type a. Choose Launch type.

b. For Launch type, choose
a launch type.

c. When the Fargate
launch type is specified
, for Platform version,
specify the platform
version to use.

g. For Subnets, enter the subnet IDs to run the task in.

h. For Security groups, enter the security group IDs for the subnet.

i. (Optional) To use a task placement strategy other than the default, expand Placement
constraint, and then enter the constraints.

For more information, see How Amazon ECS places tasks on container instances.

j. (Optional) To help identify your tasks, under Tags configure your tags.

To have Amazon ECS automatically tag all newly launched tasks with the task definition
tags, select Enable Amazon ECS managed tags.

8. Choose Next.

9. On the Settings page, do the following:

a. To turn on the schedule, under Schedule state, toggle Enable schedule.

b. To configure a retry policy for your schedule, under Retry policy and dead-letter queue
(DLQ), do the following:

• Toggle Retry.

Using Amazon EventBridge Scheduler to schedule tasks 943

Amazon Elastic Container Service Developer Guide

• For Maximum retention time of event, enter the maximum hour(s) and min(s) that
EventBridge Scheduler must keep an unprocessed event.

• The maximum time is 24 hours.

• For Maximum retries, enter the maximum number of times EventBridge Scheduler
retries the schedule if the target returns an error.

The maximum value is 185 retries.

With retry policies, if a schedule fails to invoke its target, EventBridge Scheduler re-runs
the schedule. If configured, you must set the maximum retention time and retries for the
schedule.

c. Choose where EventBridge Scheduler stores undelivered events.

Dead-letter queue (DLQ)
option

Do this...

Don't store Choose None.

Store the event in the
same AWS account
where you're creating the
schedule

a. Choose Select an
Amazon SQS queue in
my AWS account as a
DLQ.

b. Choose the Amazon
Resource Name (ARN) of
the Amazon SQS queue.

Store the event in a
different AWS account
from where you're creating
the schedule

a. Choose Specify an
Amazon SQS queue in
other AWS accounts as
a DLQ.

b. Enter the Amazon
Resource Name (ARN) of
the Amazon SQS queue.

d. To use a customer managed key to encrypt your target input, under Encryption, choose
Customize encryption settings (advanced).

Using Amazon EventBridge Scheduler to schedule tasks 944

Amazon Elastic Container Service Developer Guide

If you choose this option, enter an existing KMS key ARN or choose Create an AWS KMS
key to navigate to the AWS KMS console. For more information about how EventBridge
Scheduler encrypts your data at rest, see Encryption at rest in the Amazon EventBridge
Scheduler User Guide.

e. For Permissions, choose Use existing role, then select the role.

To have EventBridge Scheduler create a new execution role for you, choose Create new
role for this schedule. Then, enter a name for Role name. If you choose this option,
EventBridge Scheduler attaches the required permissions necessary for your templated
target to the role.

10. Choose Next.

11. In the Review and create schedule page, review the details of your schedule. In each section,
choose Edit to go back to that step and edit its details.

12. Choose Create schedule.

You can view a list of your new and existing schedules on the Schedules page. Under the
Status column, verify that your new schedule is Enabled.

Next steps

You can use the EventBridge Scheduler console or the AWS CLI to manage the schedule. For more
information, see Managing a schedule in the Amazon EventBridge Scheduler User Guide.

Stopping an Amazon ECS task

If you no longer need to keep a standalone task running, you can stop the task. The Amazon ECS
console makes it easy to stop one or more tasks.

You can't restart a standalone stopped task.

If you want to stop a service, see Deleting an Amazon ECS service using the console.

To stop a standalone task (AWS Management Console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the cluster to navigate to the cluster details page.

Stopping a task 945

https://docs.aws.amazon.com/scheduler/latest/UserGuide/encryption-rest.html
https://docs.aws.amazon.com/scheduler/latest/UserGuide/managing-schedule.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

4. On the cluster detail page, choose the Tasks tab.

5. You can filter tasks by launch type using the Filter launch type list.

Tasks to stop Steps

One or more a. Select the tasks, and
then choose Stop, Stop
selected.

b. On the Stop task
confirmation page,
choose Stop

All
Important

If you choose
to stop all tasks
using the console,
Amazon ECS stops
all standalone
tasks and tasks
that are part of a
service. Therefore
, we recommend
caution when using
this option.

a. Choose Stop, Stop all.

b. On the Stop task
confirmation page, enter
Stop all tasks, and then
choose Stop.

Stopping a task 946

Amazon Elastic Container Service Developer Guide

Amazon ECS services

You can use an Amazon ECS service to run and maintain a specified number of instances of a task
definition simultaneously in an Amazon ECS cluster. If one of your tasks fails or stops, the Amazon
ECS service scheduler launches another instance of your task definition to replace it. This helps
maintain your desired number of tasks in the service.

You can also optionally run your service behind a load balancer. The load balancer distributes
traffic across the tasks that are associated with the service.

We recommend that you use the service scheduler for long running stateless services and
applications. The service scheduler ensures that the scheduling strategy that you specify is
followed and reschedules tasks when a task fails. For example, if the underlying infrastructure fails,
the service scheduler reschedules a task. You can use task placement strategies and constraints to
customize how the scheduler places and terminates tasks. If a task in a service stops, the scheduler
launches a new task to replace it. This process continues until your service reaches your desired
number of tasks based on the scheduling strategy that the service uses. The scheduling strategy of
the service is also referred to as the service type.

The service scheduler also replaces tasks determined to be unhealthy after a container health
check or a load balancer target group health check fails. This replacement depends on the
maximumPercent and desiredCount service definition parameters. If a task is marked unhealthy,
the service scheduler will first start a replacement task. Then, the following happens.

• If the replacement task has a health status of HEALTHY, the service scheduler stops the
unhealthy task

• If the replacement task has a health status of UNHEALTHY, the scheduler will stop either the
unhealthy replacement task or the existing unhealthy task to get the total task count to equal
desiredCount.

If the maximumPercent parameter limits the scheduler from starting a replacement task first, the
scheduler will stop an unhealthy task one at a time at random to free up capacity, and then start a
replacement task. The start and stop process continues until all unhealthy tasks are replaced with
healthy tasks. Once all unhealthy tasks have been replaced and only healthy tasks are running,
if the total task count exceeds the desiredCount, healthy tasks are stopped at random until
the total task count equals desiredCount. For more information about maximumPercent and
desiredCount, see Service definition parameters.

Services 947

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html

Amazon Elastic Container Service Developer Guide

The service scheduler includes logic that throttles how often tasks are restarted if tasks repeatedly
fail to start. If a task is stopped without having entered a RUNNING state, the service scheduler
starts to slow down the launch attempts and sends out a service event message. This behavior
prevents unnecessary resources from being used for failed tasks before you can resolve the issue.
After the service is updated, the service scheduler resumes normal scheduling behavior. For
more information, see Amazon ECS service throttle logic and Viewing Amazon ECS service event
messages.

There are two service scheduler strategies available:

• REPLICA—The replica scheduling strategy places and maintains the desired number of tasks
across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You
can use task placement strategies and constraints to customize task placement decisions. For
more information, see Replica strategy.

• DAEMON—The daemon scheduling strategy deploys exactly one task on each active container
instance that meets all of the task placement constraints that you specify in your cluster. When
using this strategy, there is no need to specify a desired number of tasks, a task placement
strategy, or use Service Auto Scaling policies. For more information, see Daemon strategy.

Note

Fargate tasks do not support the DAEMON scheduling strategy.

Daemon strategy

The daemon scheduling strategy deploys exactly one task on each active container instance
that meets all of the task placement constraints specified in your cluster. The service scheduler
evaluates the task placement constraints for running tasks, and stops tasks that don't meet the
placement constraints. When you use this strategy, you don't need to specify a desired number of
tasks, a task placement strategy, or use Service Auto Scaling policies.

Amazon ECS reserves container instance compute resources including CPU, memory, and network
interfaces for the daemon tasks. When you launch a daemon service on a cluster with other replica
services, Amazon ECS prioritizes the daemon task. This means that the daemon task is the first task
to launch on the instances and the last task to stop after all replica tasks are stopped. This strategy
ensures that resources aren't used by pending replica tasks and are available for the daemon tasks.
Note that there might be times when your daemon strategy services can't start because the replica

Daemon strategy 948

Amazon Elastic Container Service Developer Guide

strategy service start faster and the CPU and memory resources aren't available for the strategy
service.

The daemon service scheduler doesn't place any tasks on instances that have a DRAINING status.
If a container instance transitions to a DRAINING status, the daemon tasks on it are stopped. The
service scheduler also monitors when new container instances are added to your cluster and adds
the daemon tasks to them.

When you specify a deployment configuration, the value for the maximumPercent parameter
must be 100 (specified as a percentage), which is the default value used if not set. The default
value for the minimumHealthyPercent parameter is 0 (specified as a percentage).

You must restart the service when you change the placement constraints for the daemon service.
Amazon ECS dynamically updates the resources that are reserved on qualifying instances for the
daemon task. For existing instances, the scheduler tries to place the task on the instance.

A new deployment starts when there is a change to the task size or container resource reservation
in the task definition. A new deployment also starts when updating a service or setting a different
revision of the task definition. Amazon ECS picks up the updated CPU and memory reservations for
the daemon, and then blocks that capacity for the daemon task.

If there are insufficient resources for either of the above cases, the following happens:

• The task placement fails.

• A CloudWatch event is generated.

• Amazon ECS continues to try and schedule the task on the instance by waiting for resources to
become available.

• Amazon ECS frees up any reserved instances that no longer meet the placement constraint
criteria and stops the corresponding daemon tasks.

The daemon scheduling strategy can be used in the following cases:

• Running application containers

• Running support containers for logging, monitoring and tracing tasks

Tasks using the Fargate launch type or the CODE_DEPLOY or EXTERNAL deployment controller
types don't support the daemon scheduling strategy.

Daemon strategy 949

Amazon Elastic Container Service Developer Guide

When the service scheduler stops running tasks, it attempts to maintain balance across the
Availability Zones in your cluster. The scheduler uses the following logic:

• If a placement strategy is defined, use that strategy to select which tasks to terminate. For
example, if a service has an Availability Zone spread strategy defined, a task is selected that
leaves the remaining tasks with the best spread.

• If no placement strategy is defined, use the following logic to maintain balance across the
Availability Zones in your cluster:

• Sort the valid container instances. Give priority to instances that have the largest number of
running tasks for this service in their respective Availability Zone. For example, if zone A has
one running service task and zones B and C each have two running service task, container
instances in either zone B or C are considered optimal for termination.

• Stop the task on a container instance in an optimal Availability Zone based on the previous
steps. Favoring container instances with the largest number of running tasks for this service.

Replica strategy

The replica scheduling strategy places and maintains the desired number of tasks in your cluster.

For a service that runs tasks on Fargate, when the service scheduler launches new tasks or stops
running tasks, the service scheduler uses a best attempt to maintain a balance across Availability
Zones. You don't need to specify task placement strategies or constraints.

When you create a service that runs tasks on EC2 instances, you can optionally specify task
placement strategies and constraints to customize task placement decisions. If no task placement
strategies or constraints are specified, then by default the service scheduler spreads the tasks
across Availability Zones. The service scheduler uses the following logic:

• Determines which of the container instances in your cluster can support your service's task
definition (for example, required CPU, memory, ports, and container instance attributes).

• Determines which container instances satisfy any placement constraints that are defined for the
service.

• When you have a replica service that depends on a daemon service (for example, a daemon
log router task that needs to be running before tasks can use logging), create a task placement
constraint that ensures that the daemon service tasks get placed on the EC2 instance prior to the
replica service tasks. For more information, see Example Amazon ECS task placement constraints.

Replica strategy 950

Amazon Elastic Container Service Developer Guide

• When there's a defined placement strategy, use that strategy to select an instance from the
remaining candidates.

• When there's no defined placement strategy, use the following logic to balance tasks across the
Availability Zones in your cluster:

• Sorts the valid container instances. Gives priority to instances that have the fewest number of
running tasks for this service in their respective Availability Zone. For example, if zone A has
one running service task and zones B and C each have zero, valid container instances in either
zone B or C are considered optimal for placement.

• Places the new service task on a valid container instance in an optimal Availability Zone based
on the previous steps. Favors container instances with the fewest number of running tasks for
this service.

We recommend that you use the service rebalacing feature when you use the REPLICA strategy
because it helps ensure high availability for you service.

Balancing an Amazon ECS service across Availability Zones

To help your applications achieve high availability, we recommend configuring your multi-task
services to run across multiple Availability Zones. For services that specify their first placement
strategy to be Availability Zone spread, AWS makes a best effort to evenly distribute service tasks
across the available Availability Zones. However, there might be times when the number of tasks
running in one Availability Zone is not the same as in other Availability Zones, such as after an
Availability Zone disruption. To address this task imbalance, you can enable the Availability Zone
rebalancing feature. With Availability Zone rebalancing, Amazon ECS continuously monitors
the distribution of tasks across Availability Zones for each of your services. When Amazon ECS
detects an uneven task distribution, it automatically takes action to rebalance the workload across
Availability Zones. This involves launching new tasks in the Availability Zones with the fewest
tasks and terminating tasks in the overloaded Availability Zones. This redistribution ensures no
single Availability Zone becomes a point of failure, helping maintain the overall availability of your
containerized applications. The automated rebalancing process eliminates the need for manual
intervention, speeding the time to recovery after an event.

The following is an overview of the Availability Zone rebalancing process:

1. Amazon ECS starts monitoring a service after it reaches the steady state, and looks at the
number of tasks running in each Availability Zone.

Availability Zone rebalancing 951

Amazon Elastic Container Service Developer Guide

2. Amazon ECS performs the following operations when it detects an imbalance in the number of
tasks running in each Availability Zone:

• Sends a service event indicating that Availability Zone rebalancing is starting.

• Starts tasks in Availability Zones with the fewest number of running tasks

• Stops the tasks in Availability Zones with the largest number of running tasks.

• The scheduler waits for the newly started tasks to be HEALTHY and RUNNING before stopping
the tasks in the over-scaled Availability Zone.

• Sends a service event with the Availability Zone rebalancing outcome.

How Amazon ECS detects uneven task distribution

Amazon ECS determines an imbalance in the number of tasks running in each Availability Zone
by dividing the service’s desired task count by the number of configured Availability Zones. If the
desired task count doesn’t divide evenly, Amazon ECS distributes the remainder of tasks evenly
across the configured Availability Zones. Each Availability Zone must have at least one task.

For example, consider an Amazon ECS service with a desired count of two tasks configured for two
Availability Zones. In this scenario, the desired task count divides evenly. A balanced distribution
would be one task per Availability Zone. If there are two tasks in Availability Zone 1 and zero tasks
in Availability Zone 2, Amazon ECS would initiate rebalancing by starting a task in Availability Zone
2 before stopping a task in Availability Zone 1.

Now, consider an Amazon ECS service with a desired count of three tasks configured for two
Availability Zones. In this scenario, the desired task count does not divide evenly. A balanced
distribution would be one task in Availability Zone 1 and two tasks in Availability Zone 2 because
each Availability Zone has at least one task and the remainder task is placed in Availability Zone 2.

Consider an Amazon ECS service that has a desired count of five tasks configured for three
Availability Zones. In this scenario, the desired task count does not divide evenly. A balanced
distribution would be one task in Availability Zone 1 and two tasks each in Availability Zones 2 and
3. After accounting for every Availability Zone having one task each, the two remainder tasks are
distributed evenly across the Availability Zones.

Considerations for configuring Availability Zone rebalancing

Consider the following when you want to configure Availability Zone rebalancing:

Availability Zone rebalancing 952

Amazon Elastic Container Service Developer Guide

• Availability Zone rebalancing supports the Fargate and EC2 launch types. For Fargate, Amazon
ECS will automatically redistribute tasks across available Availability Zones to maintain balance.
For the EC2 launch type, Amazon ECS rebalances tasks across existing container instances on
a best-effort basis, respecting your defined placement strategies and constraints. However,
Amazon ECS can't launch new instances in underutilized Availability Zones as part of the
rebalancing process, limiting the rebalancing to existing container instances.

• Availability Zone rebalancing works in the following configurations:

• Services that use the Replica strategy

• Services that specify Availability Zone spread as the first task placement strategy, or do not
specify a placement strategy.

• You can't use Availability Zone rebalancing with services that meet any of the following criteria:

• Uses the Daemon strategy

• Uses the EXTERNAL launch type (ECS Anywhere)

• Uses 100% for the maximumPercent value

• Uses a Classic Load Balancer

• Uses the attribute:ecs.availability-zone as a task placement constraint

Placement strategies and placement constraints with Availability Zone
rebalancing

Placement strategies determine how Amazon ECS selects container instances and Availability
Zones for task placement termination. Task placement constraints are rules that determine
whether a task is allowed to run on a specific container instance. For the EC2 launch type, you
can use placement strategies and placement constraints in conjunction with Availability Zone
rebalancing. However, for Availability Zone rebalancing to work, the Availability Zone spread
placement strategy must be the first strategy specified. Availability Zone rebalancing is compatible
with various placement strategy combinations. For example, you can create a strategy that first
distributes tasks evenly across Availability Zones, and then bin packs tasks based on memory
within each Availability Zone. In this case, Availability Zone rebalancing works because the
Availability Zone spread strategy is specified first. It's important to note that Availability Zone
rebalancing won't work if the first strategy in the placement strategy array is not an Availability
Zone spread component. This requirement ensures that the primary focus of task distribution
is maintaining balance across Availability Zones, which is crucial for high availability. For more

Availability Zone rebalancing 953

Amazon Elastic Container Service Developer Guide

information about task placement strategies and constraints, see How Amazon ECS places tasks on
container instances.

Task placement strategies and constraints aren't supported for tasks using the Fargate launch type.
Fargate will try its best to spread tasks across accessible Availability Zones. If the capacity provider
includes both Fargate and Fargate Spot, the spread behavior is independent for each capacity
provider.

The following example strategy distributes tasks evenly across Availability Zones, and then bin
packs tasks based on memory within each Availability Zone. Availability Zone rebalancing is
compatible with the service because the spread strategy is first.

"placementStrategy": [
 {
 "field": "attribute:ecs.availability-zone",
 "type": "spread"
 },
 {
 "field": "memory",
 "type": "binpack"
 }
]

Turn on Availability Zone rebalancing

You need to enable Availability Zone rebalancing for new and existing services.

You can enable and disable Availability Zone rebalancing using the console, APIs, or the AWS CLI.

Service type API Console CLI

Existing UpdateService Updating an Amazon
ECS service

update-service

New CreateService Creating an Amazon
ECS service using the
console

create-service

Availability Zone rebalancing 954

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-service.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html

Amazon Elastic Container Service Developer Guide

Track Amazon ECS Availability Zone rebalancing

You can verify if Availability Zone rebalancing is enabled for a service in the console or by calling
describe-services. The following example can be used to see the status with the CLI.

The response will be either ENABLED or DISABLED.

aws ecs describe-services \
 --services service-name \
 --cluster cluster-name \
 --query services[0].availabilityZoneRebalancing

Service events

Amazon ECS sends service action events to help you understand the Availability Zone rebalancing
lifecycle.

Event Scenario Type Learn more

SERVICE_R
EBALANCIN
G_STARTED

Amazon ECS starts
an Availability
Zone rebalancing
operation

INFO service (service-
name) is not AZ
balanced with
number-tasks
tasks in Availabil
ity Zone 1 ,
number-tasks
in Availabil
ity Zone 2 ,
and number-ta
sks in Availabil
ity Zone 3 .
AZ Rebalancing in
progress.

SERVICE_R
EBALANCIN
G_COMPLETED

The Availability
Zone rebalancing
operation completes

INFO service (service-n
ame) is AZ balanced
with number-
tasks tasks in

Availability Zone rebalancing 955

Amazon Elastic Container Service Developer Guide

Event Scenario Type Learn more

Availability
Zone 1, number-
tasks tasks
in Availabil
ity Zone 2 , and
number-tasks
tasks in Availabil
ity Zone 3 .

TASKS_STARTED Amazon ECS
successfully start
tasks as part of
the Availability
Zone rebalancing
operation

INFO service-name
has started number-
tasks tasks
in Availabil
ity Zone to AZ
Rebalance: task-
ids.

TASKS_STOPPED Amazon ECS
successfully stops
tasks as part of
the Availability
Zone rebalancing
operation

INFO service-name has
stopped number-ta
sks running tasks
in Availability
Zone due to AZ
rebalancing: task-
id.

Availability Zone rebalancing 956

Amazon Elastic Container Service Developer Guide

Event Scenario Type Learn more

SERVICE_T
ASK_PLACE
MENT_FAILURE

Amazon ECS failed
to start a task as part
of the Availability
Zone rebalancing
operation

ERROR For the EC2 launch
type, see service
(service-name)
is unable to place a
task in Availabil
ity Zone because
no container instance
met all of its
requirements.

For the Fargate
launch type, see
service (service-
name) is unable
to place a task in
Availability
Zone.

TASKSET_S
CALE_IN_F
AILURE_BY
_TASK_PRO
TECTION

The Availability
Zone rebalanci
ng operation is
blocked because task
protection is in use.

INFO service (service-
name) was unable
to AZ Rebalance
because task-set-
name was unable
to scale in due to
reason.

SERVICE_R
EBALANCIN
G_STOPPED

The Availability
Zone rebalancing
operation stopped.
Amazon ECS sends
additional events
which provide more
information.

INFO service (service-
name) stopped AZ
Rebalancing.

Availability Zone rebalancing 957

Amazon Elastic Container Service Developer Guide

Task state change events

Amazon ECS sends a task state change event (START) for each task that is starts as part of the
rebalancing process.

Amazon ECS sends a task state change event (STOPPED) event for each task that it stops as part of
the rebalancing process. The reason is set to Availability-zone rebalancing initiated
by (deployment ecs-svc/deployment-id).

For more information about the events, see Amazon ECS task state change events.

Creating an Amazon ECS service using the console

Create a service to run and maintain a specified number of instances of a task definition
simultaneously in a cluster. If one of your tasks fails or stops, the Amazon ECS service scheduler
launches another instance of your task definition to replace it. This helps maintain your desired
number of tasks in the service.

Decide on the following configuration parameters before you create a service:

• There are two compute options that distribute your tasks.

• A capacity provider strategy causes Amazon ECS to distribute your tasks in one or across
multiple capacity providers.

• A launch type causes Amazon ECS to launch our tasks directly on either Fargate or on the EC2
instances registered to your clusters.

• Task definitions that use the awsvpc network mode or services configured to use a load balancer
must have a networking configuration. By default, the console selects the default Amazon VPC
along with all subnets and the default security group within the default Amazon VPC.

• The placement strategy, The default task placement strategy distributes tasks evenly across
Availability Zones.

We recommend that you use Availability Zone rebalancing to help ensure high availability for
your service. For more information, see Balancing an Amazon ECS service across Availability
Zones.

• When you use the Launch Type for your service deployment, by default the service starts in the
subnets in your cluster VPC.

• For the capacity provider strategy, the console selects a compute option by default. The
following describes the order that the console uses to select a default:

Creating a service 958

Amazon Elastic Container Service Developer Guide

• If your cluster has a default capacity provider strategy defined, it is selected.

• If your cluster doesn't have a default capacity provider strategy defined but you have the
Fargate capacity providers added to the cluster, a custom capacity provider strategy that uses
the FARGATE capacity provider is selected.

• If your cluster doesn't have a default capacity provider strategy defined but you have one or
more Auto Scaling group capacity providers added to the cluster, the Use custom (Advanced)
option is selected and you need to manually define the strategy.

• If your cluster doesn't have a default capacity provider strategy defined and no capacity
providers added to the cluster, the Fargate launch type is selected.

• The default deployment failure detection default options are to use the Amazon ECS
deployment circuit breaker option with the Rollback on failures option.

For more information, see How the Amazon ECS deployment circuit breaker detects failures.

• If you want to use the blue/green deployment option, determine how CodeDeploy moves the
applications. The following options are available:

• CodeDeployDefault.ECSAllAtOnce: Shifts all traffic to the updated Amazon ECS container at
once

• CodeDeployDefault.ECSLinear10PercentEvery1Minutes: Shifts 10 percent of traffic every
minute until all traffic is shifted.

• CodeDeployDefault.ECSLinear10PercentEvery3Minutes: Shifts 10 percent of traffic every 3
minutes until all traffic is shifted.

• CodeDeployDefault.ECSCanary10Percent5Minutes: Shifts 10 percent of traffic in the first
increment. The remaining 90 percent is deployed five minutes later.

• CodeDeployDefault.ECSCanary10Percent15Minutes: Shifts 10 percent of traffic in the first
increment. The remaining 90 percent is deployed 15 minutes later.

• Decide if you want Amazon ECS to increase or decrease the desired number of tasks in your
service automatically. For information see, Automatically scale your Amazon ECS service.

• If you need an application to connect to other applications that run in Amazon ECS, determine
the option that fits your architecture. For more information, see Interconnect Amazon ECS
services.

• When you create a service that uses Amazon ECS circuit breaker, Amazon ECS creates a service
deployment and a service revision. These resources allow you to view detailed information about
the service history. For more information, see View service history using Amazon ECS service
deployments.

Creating a service 959

Amazon Elastic Container Service Developer Guide

For information about how to create a service using the AWS CLI, see create-service in the AWS
Command Line Interface Reference.

For information about how to create a service using AWS CloudFormation, see AWS::ECS::Service
in the AWS CloudFormation User Guide.

Create a service with the default options

You can use the console to quickly create and deploy a service. The service has the following
configuration:

• Deploys in the VPC and subnets associated with your cluster

• Deploys one task

• Uses the rolling deployment

• Uses the capacity provider strategy with your default capacity provider

• Uses the deployment circuit breaker to detect failures and sets the option to automatically roll
back the deployment on failure

To deploy a service using the default parameters follow these steps.

To create a service (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation page, choose Clusters.

3. On the Clusters page, choose the cluster to create the service in.

4. From the Services tab, choose Create.

The Create service page appears.

5. Under Service details, do the following:

a. For Task definition, enter the task definition family and revision to use.

b. For Service name, enter a name for your service.

6. Under Deployment configuration, do the following:

• For Desired tasks, enter the number of tasks to launch and maintain in the service.

Creating a service 960

https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-service.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

7. (Optional) To help identify your service and tasks, expand the Tags section, and then configure
your tags.

To have Amazon ECS automatically tag all newly launched tasks with the cluster name and
the task definition tags, select Turn on Amazon ECS managed tags, and then select Task
definitions.

To have Amazon ECS automatically tag all newly launched tasks with the cluster name and the
service tags, select Turn on Amazon ECS managed tags, and then select Service.

Add or remove a tag.

• [Add a tag] Choose Add tag, and then do the following:

• For Key, enter the key name.

• For Value, enter the key value.

• [Remove a tag] Next to the tag, choose Remove tag.

Create a service using defined parameters

To create a service by using defined parameters, follow these steps.

To create a service (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. Determine the resource from where you launch the service.

To start a service from Steps

Clusters a. On the Clusters page,
select the cluster to
create the service in.

b. From the Services tab,
choose Create.

Task definition a. On the Task definitions
page, select the option
button next to the task
definition.

Creating a service 961

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

To start a service from Steps

b. On the Deploy menu,
choose Create service.

The Create service page appears.

3. Under Service details, do the following:

a. For Task definition, enter the task definition to use. Then, for Revision, choose the
revision to use.

b. For Service name, enter a name for your service.

4. For Existing cluster, choose the cluster.

Choose Create cluster to run the task on a new cluster

5. Choose how your tasks are distributed across your cluster infrastructure. Under Compute
configuration, choose your option.

Compute option Steps

Capacity provider strategy a. Under Compute options,
choose Capacity provider
strategy.

b. Choose a strategy:

• To use the cluster's
default capacity
provider strategy,
choose Use cluster
default.

• If your cluster doesn't
have a default capacity
provider strategy, or to
use a custom strategy,
choose Use custom,
Add capacity provider
strategy, and then

Creating a service 962

Amazon Elastic Container Service Developer Guide

Compute option Steps

define your custom
capacity provider
strategy by specifyin
g a Base, Capacity
provider, and Weight.

Note

To use a capacity
provider in a
strategy, the
capacity provider
must be associated
with the cluster.

Launch type a. In the Compute options
section, select Launch
type.

b. For Launch type, choose
a launch type.

c. (Optional) When the
Fargate launch type is
specified, for Platform
version, specify the
platform version to use.
If a platform version isn't
specified, the LATEST
platform version is used.

6. Under Deployment configuration, do the following:

a. For Service type, choose the service scheduling strategy.

• To have the scheduler deploy exactly one task on each active container instance that
meets all of the task placement constraints, choose Daemon.

Creating a service 963

Amazon Elastic Container Service Developer Guide

• To have the scheduler place and maintain the desired number of tasks in your cluster,
choose Replica.

b. If you chose Replica, for Desired tasks, enter the number of tasks to launch and maintain
in the service.

c. If you chose Replica, to have Amazon ECS monitor the distribution of tasks across
Availability Zones, and redistribute them when there is an imbalance, under Availability
Zone service rebalancing, select Availability Zone service rebalancing.

d. For Health check grace period, enter the amount of time (in seconds) that the enter the
amount of time (in seconds) that the service scheduler ignores unhealthy Elastic Load
Balancing, VPC Lattice, and container health checks after a task has first started. If you do
not specify a health check grace period value, the default value of 0 is used.

e. Determine the deployment type for your service. Expand Deployment options, and then
specify the following parameters.

Creating a service 964

Amazon Elastic Container Service Developer Guide

Deployment type Steps

Rolling update a. For Min running tasks,
enter the lower limit
on the number of
tasks in the service
that must remain in
the RUNNING state
during a deploymen
t, as a percentage of
the desired number of
tasks (rounded up to
the nearest integer). For
more information, see
Deployment configura
tion.

b. For Max running tasks,
enter the upper limit
on the number of tasks
in the service that are
allowed in the RUNNING
or PENDING state
during a deployment,
as a percentage of the
desired number of tasks
(rounded down to the
nearest integer).

Creating a service 965

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html#sd-deploymentconfiguration
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html#sd-deploymentconfiguration

Amazon Elastic Container Service Developer Guide

Deployment type Steps

Blue/green deployment a. For Deployment
configuration, choose
how CodeDeploy routes
production traffic to
your replacement task
set during a deploymen
t.

b. For Service role for
CodeDeploy, choose the
IAM role the service uses
to make API requests
to authorized AWS
services.

f. To configure how Amazon ECS detects and handles deployment failures, expand
Deployment failure detection, and then choose your options.

i. To stop a deployment when the tasks cannot start, select Use the Amazon ECS
deployment circuit breaker.

To have the software automatically roll back the deployment to the last completed
deployment state when the deployment circuit breaker sets the deployment to a
failed state, select Rollback on failures.

ii. To stop a deployment based on application metrics, select Use CloudWatch alarm(s).
Then, from CloudWatch alarm name, choose the alarms. To create a new alarm, go to
the CloudWatch console.

To have the software automatically roll back the deployment to the last completed
deployment state when a CloudWatch alarm sets the deployment to a failed state,
select Rollback on failures.

7. If your task definition uses the awsvpc network mode, you can specify a custom network
configuration expand Networking, and then do the following to.

a. For VPC, select the VPC to use.

Creating a service 966

Amazon Elastic Container Service Developer Guide

b. For Subnets, select one or more subnets in the VPC that the task scheduler considers
when placing your tasks.

c. For Security group, you can either select an existing security group or create a new one.
To use an existing security group, select the security group and move to the next step.
To create a new security group, choose Create a new security group. You must specify a
security group name, description, and then add one or more inbound rules for the security
group.

d. For Public IP, choose whether to auto-assign a public IP address to the elastic network
interface (ENI) of the task.

AWS Fargate tasks can be assigned a public IP address when run in a public subnet so they
have a route to the internet. EC2 tasks can't be assigned a public IP using this field. For
more information, see Amazon ECS task networking options for the Fargate launch type
and Allocate a network interface for an Amazon ECS task.

8. (Optional) To interconnect you service using Service Connect, expand Service Connect, and
then specify the following:

a. Select Turn on Service Connect.

b. Under Service Connect configuration, specify the client mode.

• If your service runs a network client application that only needs to connect to other
services in the namespace, choose Client side only.

• If your service runs a network or web service application and needs to provide endpoints
for this service, and connects to other services in the namespace, choose Client and
server.

c. To use a namespace that is not the default cluster namespace, for Namespace, choose the
service namespace.

d. (Optional) Specify a log configuration. Select Use log collection. The default option sends
container logs to CloudWatch Logs. The other log driver options are configured using AWS
FireLens. For more information, see Send Amazon ECS logs to an AWS service or AWS
Partner.

The following describes each container log destination in more detail.

• Amazon CloudWatch – Configure the task to send container logs to CloudWatch Logs.
The default log driver options are provided, which create a CloudWatch log group on
your behalf. To specify a different log group name, change the driver option values.

Creating a service 967

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-networking.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking-awsvpc.html

Amazon Elastic Container Service Developer Guide

• Amazon Data Firehose – Configure the task to send container logs to Firehose. The
default log driver options are provided, which send logs to a Firehose delivery stream.
To specify a different delivery stream name, change the driver option values.

• Amazon Kinesis Data Streams – Configure the task to send container logs to Kinesis
Data Streams. The default log driver options are provided, which send logs to an Kinesis
Data Streams stream. To specify a different stream name, change the driver option
values.

• Amazon OpenSearch Service – Configure the task to send container logs to an
OpenSearch Service domain. The log driver options must be provided.

• Amazon S3 – Configure the task to send container logs to an Amazon S3 bucket. The
default log driver options are provided, but you must specify a valid Amazon S3 bucket
name.

9. (Optional) To interconnect you service using Service Discovery, expand Service discovery, and
then do the following.

a. Select Use service discovery.

b. To use a new namespace, choose Create a new namespace under Configure namespace,
and then provide a namespace name and description. To use an existing namespace,
choose Select an existing namespace and then choose the namespace that you want to
use.

c. Provide Service Discovery service information such as the service's name and description.

d. To have Amazon ECS perform periodic container-level health checks, select Enable
Amazon ECS task health propagation.

e. For DNS record type, select the DNS record type to create for your service. Amazon ECS
service discovery only supports A and SRV records, depending on the network mode
that your task definition specifies. For more information about these record types, see
Supported DNS Record Types in the Amazon Route 53 Developer Guide.

• If the task definition that your service task specifies uses the bridge or host network
mode, only type SRV records are supported. Choose a container name and port
combination to associate with the record.

• If the task definition that your service task specifies uses the awsvpc network mode,
select either the A or SRV record type. If you choose A, skip to the next step. If you
choose SRV, specify either the port that the service can be found on or a container
name and port combination to associate with the record.

Creating a service 968

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/ResourceRecordTypes.html

Amazon Elastic Container Service Developer Guide

For TTL, enter the time in seconds how long a record set is cached by DNS resolvers and
by web browsers.

10. (Optional) To interconnect you service using VPC Lattice, xxpand VPC Lattice, and then do the
following:

a. Select Turn on VPC Lattice

b. For Infrastructure role, choose the infrastructure role.

If you haven't created a role, choose Create infrastructure role.

c. Under Target Groups choose the target group or groups. You need to choose at least one
target group and can have a maximum of five. Choose Add target group to add additional
target groups. Choose the Port name, Protocol, and Port for each target group you chose.

To delete a target group, choose Remove.

Note

• If you want to add existing target groups, you need use the AWS CLI. For
instructions on how to add target groups using the AWS CLI, see register-targets
in the AWS Command Line Interface Reference.

• While a VPC Lattice service can have multiple target groups, each target group
can only be added to one service.

d. To complete the VPC Lattice configuration, by including your new target groups in the
listener default action or in the rules of an existing VPC Lattice service in the VPC Lattice
console. For more information, see Listener rules for your VPC Lattice service.

11. (Optional) To configure a load balancer for your service, expand Load balancing.

Choose the load balancer.

To use this load balancer Do this

Application Load Balancer a. For Load balancer type,
select Application Load
Balancer.

Creating a service 969

https://docs.aws.amazon.com/cli/latest/reference/vpc-lattice/register-targets.html
https://docs.aws.amazon.com/vpc-lattice/latest/ug/listener-rules.html

Amazon Elastic Container Service Developer Guide

To use this load balancer Do this

b. Choose Create a new
load balancer to
create a new Applicati
on Load Balancer or
Use an existing load
balancer to select an
existing Application Load
Balancer.

c. For Load balancer name,
enter a unique name.

d. For Choose container to
load balance, choose the
container that hosts the
service.

e. For Listener, enter a
port and protocol for the
Application Load Balancer
to listen for connection
requests on. By default,
the load balancer will be
configured to use port 80
and HTTP.

f. For Target group name,
enter a name and a
protocol for the target
group that the Applicati
on Load Balancer routes
requests to. By default,
the target group routes
requests to the first
container defined in your
task definition.

g. For Degregistration
delay, enter the number

Creating a service 970

Amazon Elastic Container Service Developer Guide

To use this load balancer Do this

of seconds for the load
balancer to change the
target state to UNUSED.
The default is 300
seconds.

h. For Health check path,
enter an existing path
within your container
where the Application
Load Balancer periodica
lly sends requests to
verify the connectio
n health between the
Application Load Balancer
and the container.
The default is the root
directory (/).

Creating a service 971

Amazon Elastic Container Service Developer Guide

To use this load balancer Do this

Network Load Balancer a. For Load balancer type,
select Network Load
Balancer.

b. For Load Balancer,
choose an existing
Network Load Balancer.

c. For Choose container to
load balance, choose the
container that hosts the
service.

d. For Target group name,
enter a name and a
protocol for the target
group that the Network
Load Balancer routes
requests to. By default,
the target group routes
requests to the first
container defined in your
task definition.

e. For Degregistration
delay, enter the number
of seconds for the load
balancer to change the
target state to UNUSED.
The default is 300
seconds.

f. For Health check path,
enter an existing path
within your container
where the Network Load
Balancer periodically
sends requests to verify

Creating a service 972

Amazon Elastic Container Service Developer Guide

To use this load balancer Do this

the connection health
between the Application
Load Balancer and the
container. The default is
the root directory (/).

12. (Optional) To configure service Auto Scaling, expand Service auto scaling, and then specify
the following parameters.To use predicte auto scaling, which looks at past load data from
traffic flows, configure it after you create the service. For more information, see Use historical
patterns to scale Amazon ECS services with predictive scaling.

a. To use service auto scaling, select Service auto scaling.

b. For Minimum number of tasks, enter the lower limit of the number of tasks for service
auto scaling to use. The desired count will not go below this count.

c. For Maximum number of tasks, enter the upper limit of the number of tasks for service
auto scaling to use. The desired count will not go above this count.

d. Choose the policy type. Under Scaling policy type, choose one of the following options.

To use this policy type Do this

Target tracking a. For Scaling policy type,
choose Target tracking.

b. For Policy name, enter
the name of the policy.

c. For ECS service metric,
select one of the
following metrics.

• ECSServiceAverageC
PUUtilization –
Average CPU utilizati
on of the service.

• ECSServiceAverageM
emoryUtilization
– Average memory

Creating a service 973

Amazon Elastic Container Service Developer Guide

To use this policy type Do this

utilization of the
service.

• ALBRequestCountPer
Target – Number of
requests completed
per target in an
Application Load
Balancer target group.

d. For Target value, enter
the value the service
maintains for the
selected metric.

e. For Scale-out cooldown
period, enter the
amount of time, in
seconds, after a scale-
out activity (add tasks)
that must pass before
another scale-out
activity can start.

f. For Scale-in cooldown
period, enter the
amount of time, in
seconds, after a scale-in
activity (remove tasks)
that must pass before
another scale-in activity
can start.

g. To prevent the policy
from performing a
scale-in activity, select
Turn off scale-in.

h. • (Optional) Select Turn
off scale-in if you want

Creating a service 974

Amazon Elastic Container Service Developer Guide

To use this policy type Do this

your scaling policy to
scale out for increased
traffic but don’t need it
to scale in when traffic
decreases.

Creating a service 975

Amazon Elastic Container Service Developer Guide

To use this policy type Do this

Step scaling a. For Scaling policy type,
choose Step scaling.

b. For Policy name, enter
the policy name.

c. For Alarm name, enter
a unique name for the
alarm.

d. For Amazon ECS service
metric, choose the
metric to use for the
alarm.

e. For Statistic, choose the
alarm statistic.

f. For Period, choose the
period for the alarm.

g. For Alarm condition,
choose how to compare
the selected metric to
the defined threshold.

h. For Threshold to
compare metrics and
Evaluation period to
initiate alarm, enter the
threshold used for the
alarm and how long to
evaluate the threshold.

i. Under Scaling actions,
do the following:

• For Action, select
whether to add,
remove, or set a
specific desired count
for your service.

Creating a service 976

Amazon Elastic Container Service Developer Guide

To use this policy type Do this

• If you chose to add
or remove tasks,
for Value, enter the
number of tasks (or
percent of existing
tasks) to add or
remove when the
scaling action is
initiated. If you chose
to set the desired
count, enter the
number of tasks.
For Type, select
whether the Value
is an integer or a
percent value of the
existing desired count.

• For Lower bound
and Upper bound,
enter the lower
boundary and upper
boundary of your step
scaling adjustmen
t. By default, the
lower bound for an
add policy is the
alarm threshold and
the upper bound is
positive (+) infinity.
By default, the
upper bound for a
remove policy is the
alarm threshold and

Creating a service 977

Amazon Elastic Container Service Developer Guide

To use this policy type Do this

the lower bound is
negative (-) infinity.

• (Optional) Add
additional scaling
options. Choose Add
new scaling action,
and then repeat the
Scaling actions steps.

• For Cooldown period,
enter the amount of
time, in seconds, to
wait for a previous
scaling activity to
take effect. For an
add policy, this is the
time after a scale-
out activity that the
scaling policy blocks
scale-in activities
and limits how many
tasks can be scale
out at a time. For a
remove policy, this is
the time after a scale-
in activity that must
pass before another
scale-in activity can
start.

13. (Optional) To use a task placement strategy other than the default, expand Task Placement,
and then choose from the following options.

For more information, see How Amazon ECS places tasks on container instances.

Creating a service 978

Amazon Elastic Container Service Developer Guide

• AZ Balanced Spread – Distribute tasks across Availability Zones and across container
instances in the Availability Zone.

• AZ Balanced BinPack – Distribute tasks across Availability Zones and across container
instances with the least available memory.

• BinPack – Distribute tasks based on the least available amount of CPU or memory.

• One Task Per Host – Place, at most, one task from the service on each container instance.

• Custom – Define your own task placement strategy.

If you chose Custom, define the algorithm for placing tasks and the rules that are considered
during task placement.

• Under Strategy, for Type and Field, choose the algorithm and the entity to use for the
algorithm.

You can enter a maximum of 5 strategies.

• Under Constraint, for Type and Expression, choose the rule and attribute for the constraint.

For example, to set the constraint to place tasks on T2 instances, for the Expression, enter
attribute:ecs.instance-type =~ t2.*.

You can enter a maximum of 10 constraints.

14. If your task uses a data volume that's compatible with configuration at deployment, you can
configure the volume by expanding Volume.

The volume name and volume type are configured when you create a task definition revision
and can't be changed when creating a service. To update the volume name and type, you must
create a new task definition revision and create a service by using the new revision.

To configure this volume
type

Do this

Amazon EBS a. For EBS volume type,
choose the type of EBS
volume that you want to
attach to your task.

Creating a service 979

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

b. For Size (GiB), enter a
valid value for the volume
size in gibibytes (GiB). You
can specify a minimum
of 1 GiB and a maximum
of 16,384 GiB volume
size. This value is required
unless you provide a
snapshot ID.

c. For IOPS, enter the
maximum number of
input/output operation
s (IOPS) that the volume
should provide. This value
is configurable only for
io1,io2, and gp3 volume
types.

d. For Throughput (MiB/
s), enter the throughpu
t that the volume should
provide, in mebibytes per
second (MiBps, or MiB/s).
This value is configurable
only for the gp3 volume
type.

e. For Snapshot ID, choose
an existing Amazon EBS
volume snapshot or enter
the ARN of a snapshot
if you want to create a
volume from a snapshot.
You can also create a new,
empty volume by not

Creating a service 980

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

choosing or entering a
snapshot ID.

f. If you specify a Snapshot
ID, you can specify a
Volume initialization
rate (MiB/s). Enter a
value between 100 and
300, in MiB/s, that will
determine how fast
data is loaded from the
snapshot specified using
Snapshot ID for volume
creation.

g. For File system type,
choose the type of file
system that will be used
for data storage and
retrieval on the volume.
You can choose either
the operating system
default or a specific file
system type. The default
for Linux is XFS. For
volumes created from
a snapshot, you must
specify the same filesyste
m type that the volume
was using when the
snapshot was created. If
there is a filesystem type
mismatch, the task will
fail to start.

Creating a service 981

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

h. For Infrastructure role,
choose an IAM role with
the necessary permissio
ns that allow Amazon
ECS to manage Amazon
EBS volumes for tasks.
You can attach the
AmazonECSInfrastru
ctureRole
PolicyForVolumes
managed policy to the
role, or you can use the
policy as a guide to create
and attach an your own
policy with permissions
that meet your specific
needs. For more informati
on about the necessary
 permissions, see Amazon
ECS infrastructure IAM
role.

i. For Encryption, choose
Default if you want to
use the Amazon EBS
encryption by default
settings. If your account
has Encryption by default
configured, the volume
will be encrypted with
the AWS Key Managemen
t Service (AWS KMS) key
that's specified in the
setting. If you choose

Creating a service 982

https://docs.aws.amazon.com/ebs/latest/userguide/encryption-by-default.html

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

Default and Amazon EBS
default encryption isn't
turned on, the volume
will be unencrypted.

If you choose Custom,
you can specify an AWS
KMS key of your choice
for volume encryption.

If you choose None, the
volume will be unencrypt
ed unless you have
encryption by default
configured, or if you
create a volume from an
encrypted snapshot.

j. If you've chosen Custom
for Encryption, you must
specify the AWS KMS key
that you want to use.
For KMS key, choose an
AWS KMS key or enter a
key ARN. If you choose
to encrypt your volume
by using a symmetric
customer managed key,
make sure that you have
the right permissions
defined in your AWS
KMS key policy. For more
information, see Data
encryption for Amazon
EBS volumes.

Creating a service 983

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

k. (Optional) Under Tags,
you can add tags to your
Amazon EBS volume by
either propagating tags
from the task definition
or service, or by providing
your own tags.

If you want to propagate
tags from the task
definition, choose Task
definition for Propagate
tags from. If you want to
propagate tags from the
service, choose Service
for Propagate tags from.
If you choose Do not
propagate, or if you don't
choose a value, the tags
aren't propagated.

If you want to provide
your own tags, choose
Add tag and then provide
the key and value for
each tag you add.

For more information
about tagging Amazon
EBS volumes, see Tagging
Amazon EBS volumes.

15. (Optional) To help identify your service and tasks, expand the Tags section, and then configure
your tags.

Creating a service 984

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specify-ebs-config.html#ebs-volume-tagging
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specify-ebs-config.html#ebs-volume-tagging

Amazon Elastic Container Service Developer Guide

To have Amazon ECS automatically tag all newly launched tasks with the cluster name and the
task definition tags, select Turn on Amazon ECS managed tags, and then for Propagate tags
from, choose Task definitions.

To have Amazon ECS automatically tag all newly launched tasks with the cluster name and the
service tags, select Turn on Amazon ECS managed tags, and then for Propagate tags from,
choose Service.

Add or remove a tag.

• [Add a tag] Choose Add tag, and then do the following:

• For Key, enter the key name.

• For Value, enter the key value.

• [Remove a tag] Next to the tag, choose Remove tag.

16. Choose Create.

Next steps

The following are additional actions after you create a service.

• Configure predicte auto scaling, which looks at past load data from traffic flows. For more
information, see Use historical patterns to scale Amazon ECS services with predictive scaling.

• Track your deployment and view your service history for services that Amazon ECS circuit
breaker. For more information, see View service history using Amazon ECS service deployments.

Update Amazon ECS service parameters

After you create a service, there are times when you might need to update the service parameters,
for example, the number of tasks.

When the service scheduler launches new tasks, it determines task placement in your cluster with
the following logic.

• Determine which of the container instances in your cluster can support your service's task
definition. For example, they have the required CPU, memory, ports, and container instance
attributes.

Update Amazon ECS service parameters 985

Amazon Elastic Container Service Developer Guide

• By default, the service scheduler attempts to balance tasks across Availability Zones in this
manner even though you can choose a different placement strategy.

• Sort the valid container instances by the fewest number of running tasks for this service in the
same Availability Zone as the instance. For example, if zone A has one running service task and
zones B and C each have zero, valid container instances in either zone B or C are considered
optimal for placement.

• Place the new service task on a valid container instance in an optimal Availability Zone (based
on the previous steps), favoring container instances with the fewest number of running tasks
for this service.

When the service scheduler stops running tasks, it attempts to maintain balance across the
Availability Zones in your cluster using the following logic:

• Sort the container instances by the largest number of running tasks for this service in the same
Availability Zone as the instance. For example, if zone A has one running service task and zones
B and C each have two, container instances in either zone B or C are considered optimal for
termination.

• Stop the task on a container instance in an optimal Availability Zone (based on the previous
steps), favoring container instances with the largest number of running tasks for this service.

Use the list to determine if you can change the service parameter.

Availability Zone rebalancing

Indicates whether to use Availability Zone rebalancing for the service.

You can change this parameter for rolling deployments.

Capacity provider strategy

The details of a capacity provider strategy. You can set a capacity provider when you create a
cluster, run a task, or update a service.

When you use Fargate, the capacity providers are FARGATE or FARGATE_SPOT.

When you use Amazon EC2, the capacity providers are Auto Scaling groups.

You can change capacity providers for rolling deployments and blue/green deployments.

The following list provides the valid transitions:

Update Amazon ECS service parameters 986

Amazon Elastic Container Service Developer Guide

• Update the Fargate launch type to an Auto Scaling group capacity provider.

• Update the Amazon EC2 launch type to a Fargate capacity provider.

• Update the Fargate capacity provider to an Auto Scaling group capacity provider.

• Update the Amazon EC2 capacity provider to a Fargate capacity provider.

• Update the Auto Scaling group or Fargate capacity provider back to the launch type. When
you use the CLI, or API, you pass an empty list in the capacityProviderStrategy
parameter.

Cluster

You can't change the cluster name.

Deployment configuration

The deployment configuration includes the CloudWatch alarms, and circuit breaker used to
detect failures and the required configuration.

The deployment circuit breaker determines whether a service deployment will fail if the service
can't reach a steady state. If you use the deployment circuit breaker, a service deployment will
transition to a failed state and stop launching new tasks. If you use the rollback option, when
a service deployment fails, the service is rolled back to the last deployment that completed
successfully.

When you update a service that uses Amazon ECS circuit breaker, Amazon ECS creates a service
deployment and a service revision. These resources allow you to view detailed information
about the service history. For more information, see View service history using Amazon ECS
service deployments.

The service scheduler uses the minimum healthy percent and maximum percent parameters (in
the deployment configuration for the service) to determine the deployment strategy.

If a service uses the rolling update (ECS) deployment type, the minimum healthy percent
represents a lower limit on the number of tasks in a service that must remain in the RUNNING
state during a deployment, as a percentage of the desired number of tasks (rounded up to the
nearest integer). The parameter also applies while any container instances are in the DRAINING
state if the service contains tasks using the EC2 launch type. Use this parameter to deploy
without using additional cluster capacity. For example, if your service has a desired number of
four tasks and a minimum healthy percent of 50 percent, the scheduler may stop two existing
tasks to free up cluster capacity before starting two new tasks. The service considers tasks

Update Amazon ECS service parameters 987

Amazon Elastic Container Service Developer Guide

healthy for services that do not use a load balancer if they are in the RUNNING state. The service
considers tasks healthy for services that do use a load balancer if they are in the RUNNING state
and they are reported as healthy by the load balancer. The default value for minimum healthy
percent is 100 percent.

If a service uses the rolling update (ECS) deployment type, the maximum percent parameter
represents an upper limit on the number of tasks in a service that are allowed in the PENDING,
RUNNING, or STOPPING state during a deployment, as a percentage of the desired number of
tasks (rounded down to the nearest integer). The parameter also applies while any container
instances are in the DRAINING state if the service contains tasks using the EC2 launch type. Use
this parameter to define the deployment batch size. For example, if your service has a desired
number of four tasks and a maximum percent value of 200 percent, the scheduler may start
four new tasks before stopping the four older tasks. This is provided that the cluster resources
required to do this are available. The default value for the maximum percent is 200 percent.

When the service scheduler replaces a task during an update, the service first removes the task
from the load balancer (if used) and waits for the connections to drain. Then, the equivalent of
docker stop is issued to the containers running in the task. This results in a SIGTERM signal and
a 30-second timeout, after which SIGKILL is sent and the containers are forcibly stopped. If
the container handles the SIGTERM signal gracefully and exits within 30 seconds from receiving
it, no SIGKILL signal is sent. The service scheduler starts and stops tasks as defined by your
minimum healthy percent and maximum percent settings.

The service scheduler also replaces tasks determined to be unhealthy after a container health
check or a load balancer target group health check fails. This replacement depends on the
maximumPercent and desiredCount service definition parameters. If a task is marked
unhealthy, the service scheduler will first start a replacement task. Then, the following happens.

• If the replacement task has a health status of HEALTHY, the service scheduler stops the
unhealthy task

• If the replacement task has a health status of UNHEALTHY, the scheduler will stop either the
unhealthy replacement task or the existing unhealthy task to get the total task count to equal
desiredCount.

If the maximumPercent parameter limits the scheduler from starting a replacement task
first, the scheduler will stop an unhealthy task one at a time at random to free up capacity,
and then start a replacement task. The start and stop process continues until all unhealthy
tasks are replaced with healthy tasks. Once all unhealthy tasks have been replaced and only
healthy tasks are running, if the total task count exceeds the desiredCount, healthy tasks

Update Amazon ECS service parameters 988

Amazon Elastic Container Service Developer Guide

are stopped at random until the total task count equals desiredCount. For more information
about maximumPercent and desiredCount, see Service definition parameters.

Desired task count

The number of instantiations of the task to place and keep running in your service.

If you want to temporarily stop your service, set this value to 0. Then, when you are ready to
start the service, update the service with the original value.

You can change this parameter for rolling deployments, and blue/green deployments.

Enable managed tags

Determines whether to turn on Amazon ECS managed tags for the tasks in the service.

Only tasks launched after the update will reflect the update. To update the tags on all tasks, use
the force deployment option.

You can change this parameter for rolling deployments, and blue/green deployments.

Enable ECS Exec

Determines whether Amazon ECS Exec is used.

If you do not want to override the value that was set when the service was created, you can set
this to null when performing this action.

You can change this parameter for rolling deployments.

Health check grace period

The period of time, in seconds, that the Amazon ECS service scheduler ignores unhealthy Elastic
Load Balancing, VPC Lattice, and container health checks after a task has first started. If you
don't specify a health check grace period value, the default value of 0 is used. If you don't use
any of the health checks, then healthCheckGracePeriodSeconds is unused.

If your service's tasks take a while to start and respond to health checks, you can specify a
health check grace period of up to 2,147,483,647 seconds (about 69 years). During that time,
the Amazon ECS service scheduler ignores health check status. This grace period can prevent
the service scheduler from marking tasks as unhealthy and stopping them before they have
time to come up.

You can change this parameter for rolling deployments and blue/green deployments.

Update Amazon ECS service parameters 989

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html

Amazon Elastic Container Service Developer Guide

Load balancers

You must use a service-linked role when you update a load balancer.

A list of Elastic Load Balancing load balancer objects. It contains the load balancer name, the
container name, and the container port to access from the load balancer. The container name is
as it appears in a container definition.

Amazon ECS does not automatically update the security groups associated with Elastic Load
Balancing load balancers or Amazon ECS container instances.

When you add, update, or remove a load balancer configuration, Amazon ECS starts new tasks
with the updated Elastic Load Balancing configuration, and then stops the old tasks when the
new tasks are running.

For services that use rolling updates, you can add, update, or remove Elastic Load Balancing
target groups. You can update from a single target group to multiple target groups and from
multiple target groups to a single target group.

For services that use blue/green deployments, you can update Elastic Load Balancing target
groups by using CreateDeployment through CodeDeploy. Note that multiple target groups
are not supported for blue/green deployments. For more information see Register multiple
target groups with a service.

For services that use the external deployment controller, you can add, update, or remove load
balancers by using CreateTaskSet. Note that multiple target groups are not supported for
external deployments. For more information see Register multiple target groups with a service.

Pass an empty list to remove load balancers.

You can change this parameter for rolling deployments.

Network configuration

The service network configuration.

You can change this parameter for rolling deployments.

Placement constraints

An array of task placement constraint objects to update the service to use. If no value is
specified, the existing placement constraints for the service will remain unchanged. If this
value is specified, it will override any existing placement constraints defined for the service. To
remove all existing placement constraints, specify an empty array.

Update Amazon ECS service parameters 990

https://docs.aws.amazon.com/codedeploy/latest/APIReference/API_CreateDeployment.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/register-multiple-targetgroups.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/register-multiple-targetgroups.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateTaskSet.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/register-multiple-targetgroups.html

Amazon Elastic Container Service Developer Guide

You can specify a maximum of 10 constraints for each task. This limit includes constraints in the
task definition and those specified at runtime.

You can change this parameter for rolling deployments, and blue/green deployments.

Placement strategy

The task placement strategy objects to update the service to use. If no value is specified, the
existing placement strategy for the service will remain unchanged. If this value is specified,
it will override the existing placement strategy defined for the service. To remove an existing
placement strategy, specify an empty object.

You can change this parameter for rolling deployments, and blue/green deployments.

Platform version

The Fargate platform version your service runs on.

A service using a Linux platform version cannot be updated to use a Windows platform version
and vice versa.

You can change this parameter for rolling deployments.

Propagate tags

Determines whether to propagate the tags from the task definition or the service to the task. If
no value is specified, the tags aren't propagated.

Only tasks launched after the update will reflect the update. To update the tags on all tasks, set
forceNewDeployment to true, so that Amazon ECS starts new tasks with the updated tags.

You can change this parameter for rolling deployments, and blue/green deployments.

Service Connect configuration

The configuration for Amazon ECS Service Connect. This parameter determines how the service
connects to other services within your application.

You can change this parameter for rolling deployments.

Service registries

You must use a service-linked role when you update the service registries.

The details for the service discovery registries to assign to this service. For more information,
see Service Discovery.

Update Amazon ECS service parameters 991

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-discovery.html

Amazon Elastic Container Service Developer Guide

When you add, update, or remove the service registries configuration, Amazon ECS starts new
tasks with the updated service registries configuration, and then stops the old tasks when the
new tasks are running.

Pass an empty list to remove the service registries.

You can change this parameter for rolling deployments.

Task definition

The task definition and revision to use for the service.

If you change the ports used by containers in a task definition, you might need to update the
security groups for the container instances to work with the updated ports.

If you update the task definition for the service, the container name and container port that are
specified in the load balancer configuration must remain in the task definition.

The container image pull behavior differs for the launch types. For more information, see one of
the following:

• Fargate launch type for Amazon ECS

• EC2 launch type for Amazon ECS

• External (Amazon ECS Anywhere) launch type for Amazon ECS

You can change this parameter for rolling deployments.

Volume configuration

The details of the volume that was configuredAtLaunch. When set to true, this
parameter configures the Amazon EBS task attachment during deployment. You
can configure the size, volumeType, IOPS, throughput, snapshot and encryption in
ServiceManagedEBSVolumeConfiguration. The name of the volume must match the name
from the task definition. If set to null, no new deployment is triggered. Otherwise, if this
configuration differs from the existing one, it triggers a new deployment.

You can change this parameter for rolling deployments.

VPC Lattice configuration

The VPC Lattice configuration for your service. This defines how your service integrates with
VPC Lattice for service-to-service communication.

Update Amazon ECS service parameters 992

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ServiceManagedEBSVolumeConfiguration.html

Amazon Elastic Container Service Developer Guide

You can change this parameter for rolling deployments.

AWS CDK considerations

The AWS CDK doesn't track resource states. It doesn't know whether you are creating or updating a
service. Customers should use the escape hatch to access the ecs Service L1 construct directly.

For information about escape hatches, see Customize constructs from the AWS Construct Library in
the AWS Cloud Development Kit (AWS CDK) v2 Developer Guide.

To migrate your existing service to the ecs.Service construct, do the following:

1. Use the escape hatch to access the Service L1 construct.

2. Manually set the following properties in the Service L1 construct.

If your service uses Amazon EC2 capacity:

• daemon?

• placementConstraints?

• placementStrategies?

• If you use the awsvpc network mode, you need to set the vpcSubnets? and the
securityGroups? constructs.

If your service uses Fargate:

• FargatePlatformVersion

• The vpcSubnets? and the securityGroups? constructs.

3. Set the launchType as follows:

const cfnEcsService = service.node.findChild('Service') as ecs.CfnService;
cfnEcsService.launchType = "FARGATE";

To migrate from a launch type to a capacity provider, do the following:

1. Use the escape hatch to access the Service L1 construct.

2. Add the capacityProviderStrategies? construct.

Update Amazon ECS service parameters 993

https://docs.aws.amazon.com/cdk/v2/guide/cfn-layer.html#develop-customize-escape

Amazon Elastic Container Service Developer Guide

3. Deploy the service.

Updating an Amazon ECS service

After you create a service, there are times when you might need to update the service parameters,
for example the number of tasks.

When you update a service that uses Amazon ECS circuit breaker, Amazon ECS creates a service
deployment and a service revision. These resources allow you to view detailed information about
the service history. For more information, see View service history using Amazon ECS service
deployments.

Prerequisites

Before updating a service, verify which service parameters can be changed for your deployment
type. For a complete list of changeable parameters, see Update Amazon ECS service parameters.

Procedure

Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, choose the cluster.

3. On the cluster details page, in the Services section, select the check box next to the service,
and then choose Update.

4. To have your service start a new deployment, select Force new deployment.

5. For Task definition, choose the task definition family and revision.

Important

The console validates that the selected task definition family and revision are
compatible with the defined compute configuration. If you receive a warning, verify
both your task definition compatibility and the compute configuration that you
selected.

6. If you chose Replica, for Desired tasks, enter the number of tasks to launch and maintain
in the service.

Update Amazon ECS service parameters 994

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

7. If you chose Replica, to have Amazon ECS monitor the distribution of tasks across
Availability Zones, and redistribute them when there is an imbalance, under Availability
Zone service rebalancing, select Availability Zone service rebalancing.

8. For Min running tasks, enter the lower limit on the number of tasks in the service
that must remain in the RUNNING state during a deployment, as a percentage of the
desired number of tasks (rounded up to the nearest integer). For more information, see
Deployment configuration.

9. For Max running tasks, enter the upper limit on the number of tasks in the service that
are allowed in the RUNNING or PENDING state during a deployment, as a percentage of the
desired number of tasks (rounded down to the nearest integer).

10. To configure how Amazon ECS detects and handles deployment failures, expand
Deployment failure detection, and then choose your options.

a. To stop a deployment when the tasks cannot start, select Use the Amazon ECS
deployment circuit breaker.

To have the software automatically roll back the deployment to the last completed
deployment state when the deployment circuit breaker sets the deployment to a failed
state, select Rollback on failures.

b. To stop a deployment based on application metrics, select Use CloudWatch alarm(s).
Then, from CloudWatch alarm name, choose the alarms. To create a new alarm, go to
the CloudWatch console.

To have the software automatically roll back the deployment to the last completed
deployment state when a CloudWatch alarm sets the deployment to a failed state,
select Rollback on failures.

11. To change the compute options, expand Compute configuration, and then do the
following:

a. For services on AWS Fargate, for Platform version, choose the new version.

b. For services that use a capacity provider strategy, for Capacity provider strategy, do
the following:

• To add an additional capacity provider, choose Add more. Then, for Capacity
provider, choose the capacity provider.

• To remove a capacity provider, to the right of the capacity provider, choose Remove.

Update Amazon ECS service parameters 995

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html#sd-deploymentconfiguration

Amazon Elastic Container Service Developer Guide

A service that's using an Auto Scaling group capacity provider can't be updated to use
a Fargate capacity provider. A service that's using a Fargate capacity provider can't be
updated to use an Auto Scaling group capacity provider.

12. (Optional) To configure service Auto Scaling, expand Service auto scaling, and then specify
the following parameters.To use predicte auto scaling, which looks at past load data
from traffic flows, configure it after you create the service. For more information, see Use
historical patterns to scale Amazon ECS services with predictive scaling.

a. To use service auto scaling, select Service auto scaling.

b. For Minimum number of tasks, enter the lower limit of the number of tasks for service
auto scaling to use. The desired count will not go below this count.

c. For Maximum number of tasks, enter the upper limit of the number of tasks for
service auto scaling to use. The desired count will not go above this count.

d. Choose the policy type. Under Scaling policy type, choose one of the following
options.

To use this policy type Do this

Target tracking a. For Scaling policy
type, choose Target
tracking.

b. For Policy name, enter
the name of the policy.

c. For ECS service metric,
select one of the
following metrics.

• ECSServiceAverageC
PUUtilization –
Average CPU utilizati
on of the service.

• ECSServic
eAverageM
emoryUtilization
– Average memory

Update Amazon ECS service parameters 996

Amazon Elastic Container Service Developer Guide

To use this policy type Do this

utilization of the
service.

• ALBReques
tCountPerTarget –
Number of requests
completed per target
in an Application
Load Balancer target
group.

d. For Target value, enter
the value the service
maintains for the
selected metric.

e. For Scale-out
cooldown period,
enter the amount of
time, in seconds, after
a scale-out activity
(add tasks) that must
pass before another
scale-out activity can
start.

f. For Scale-in cooldown
period, enter the
amount of time, in
seconds, after a scale-
in activity (remove
tasks) that must pass
before another scale-in
activity can start.

g. To prevent the policy
from performing a
scale-in activity, select
Turn off scale-in.

Update Amazon ECS service parameters 997

Amazon Elastic Container Service Developer Guide

To use this policy type Do this

h. • (Optional) Select
Turn off scale-in if
you want your scaling
policy to scale out for
increased traffic but
don’t need it to scale in
when traffic decreases.

Update Amazon ECS service parameters 998

Amazon Elastic Container Service Developer Guide

To use this policy type Do this

Step scaling a. For Scaling policy
type, choose Step
scaling.

b. For Policy name, enter
the policy name.

c. For Alarm name, enter
a unique name for the
alarm.

d. For Amazon ECS
service metric, choose
the metric to use for
the alarm.

e. For Statistic, choose
the alarm statistic.

f. For Period, choose the
period for the alarm.

g. For Alarm condition
, choose how to
compare the selected
metric to the defined
threshold.

h. For Threshold to
compare metrics and
Evaluation period to
initiate alarm, enter
the threshold used for
the alarm and how
long to evaluate the
threshold.

i. Under Scaling actions,
do the following:

• For Action, select
whether to add,

Update Amazon ECS service parameters 999

Amazon Elastic Container Service Developer Guide

To use this policy type Do this

remove, or set a
specific desired
count for your
service.

• If you chose to add
or remove tasks,
for Value, enter
the number of
tasks (or percent
of existing tasks)
to add or remove
when the scaling
action is initiated.
If you chose to set
the desired count,
enter the number
of tasks. For Type,
select whether the
Value is an integer
or a percent value of
the existing desired
count.

• For Lower bound
and Upper bound,
enter the lower
boundary and
upper boundary of
your step scaling
adjustment. By
default, the lower
bound for an add
policy is the alarm
threshold and the
upper bound is

Update Amazon ECS service parameters 1000

Amazon Elastic Container Service Developer Guide

To use this policy type Do this

positive (+) infinity.
By default, the
upper bound for a
remove policy is the
alarm threshold and
the lower bound is
negative (-) infinity.

• (Optional) Add
additional scaling
options. Choose Add
new scaling action,
and then repeat
the Scaling actions
steps.

• For Cooldown
period, enter the
amount of time, in
seconds, to wait for
a previous scaling
activity to take
effect. For an add
policy, this is the
time after a scale-
out activity that the
scaling policy blocks
scale-in activities
and limits how many
tasks can be scale
out at a time. For a
remove policy, this
is the time after a
scale-in activity that
must pass before

Update Amazon ECS service parameters 1001

Amazon Elastic Container Service Developer Guide

To use this policy type Do this

another scale-in
activity can start.

13. (Optional) To use Service Connect, select Turn on Service Connect, and then specify the
following:

a. Under Service Connect configuration, specify the client mode.

• If your service runs a network client application that only needs to connect to other
services in the namespace, choose Client side only.

• If your service runs a network or web service application and needs to provide
endpoints for this service, and connects to other services in the namespace, choose
Client and server.

b. To use a namespace that is not the default cluster namespace, for Namespace, choose
the service namespace.

14. If your task uses a data volume that's compatible with configuration at deployment, you
can configure the volume by expanding Volume.

The volume name and volume type are configured when you create a task definition
revision and can't be changed when you update a service. To update the volume name and
type, you must create a new task definition revision and update the service by using the
new revision.

To configure this volume
type

Do this

Amazon EBS a. For EBS volume type,
choose the type of EBS
volume that you want to
attach to your task.

b. For Size (GiB), enter
a valid value for the
volume size in gibibytes
(GiB). You can specify a
minimum of 1 GiB and a

Update Amazon ECS service parameters 1002

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

maximum of 16,384 GiB
volume size. This value
is required unless you
provide a snapshot ID.

c. For IOPS, enter the
maximum number of
input/output operation
s (IOPS) that the volume
should provide. This
value is configurable
only for io1,io2, and
gp3 volume types.

d. For Throughput (MiB/
s), enter the throughput
that the volume should
provide, in mebibytes
per second (MiBps, or
MiB/s). This value is
configurable only for the
gp3 volume type.

e. For Snapshot ID, choose
an existing Amazon
EBS volume snapshot
or enter the ARN of a
snapshot if you want to
create a volume from a
snapshot. You can also
create a new, empty
volume by not choosing
or entering a snapshot
ID.

f. If you specify a
Snapshot ID, you

Update Amazon ECS service parameters 1003

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

can specify a Volume
initialization rate
(MiB/s). Enter a value
between 100 and 300,
in MiB/s, that will
determine how fast
data is loaded from the
snapshot specified using
Snapshot ID for volume
creation.

g. For File system type,
choose the type of file
system that will be used
for data storage and
retrieval on the volume.
You can choose either
the operating system
default or a specific
file system type. The
default for Linux is XFS.
For volumes created
from a snapshot, you
must specify the same
filesystem type that
the volume was using
when the snapshot
was created. If there
is a filesystem type
mismatch, the task will
fail to start.

h. For Infrastructure
role, choose an IAM
role with the necessary

Update Amazon ECS service parameters 1004

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

permissions that allow
Amazon ECS to manage
Amazon EBS volumes
for tasks. You can
attach the AmazonECS
Infrastru
ctureRole
PolicyForVolumes
managed policy to the
role, or you can use
the policy as a guide to
create and attach an
your own policy with
permissions that meet
your specific needs. For
more information about
the necessary permissio
ns, see Amazon ECS
infrastructure IAM role.

i. For Encryption, choose
Default if you want
to use the Amazon
EBS encryption by
default settings. If your
account has Encryptio
n by default configure
d, the volume will be
encrypted with the
AWS Key Managemen
t Service (AWS KMS)
key that's specified
in the setting. If you
choose Default and
Amazon EBS default

Update Amazon ECS service parameters 1005

https://docs.aws.amazon.com/ebs/latest/userguide/encryption-by-default.html
https://docs.aws.amazon.com/ebs/latest/userguide/encryption-by-default.html

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

encryption isn't turned
on, the volume will be
unencrypted.

If you choose Custom,
you can specify an AWS
KMS key of your choice
for volume encryption.

If you choose None,
the volume will be
unencrypted unless
you have encryption by
default configured, or
if you create a volume
from an encrypted
 snapshot.

j. If you've chosen Custom
for Encryption, you
must specify the AWS
KMS key that you want
to use. For KMS key,
choose an AWS KMS key
or enter a key ARN. If
you choose to encrypt
your volume by using
a symmetric customer
managed key, make
sure that you have
the right permissions
defined in your AWS
KMS key policy. For more
information, see Data

Update Amazon ECS service parameters 1006

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

encryption for Amazon
EBS volumes.

k. (Optional) Under Tags,
you can add tags to your
Amazon EBS volume
by either propagati
ng tags from the task
definition or service, or
by providing your own
tags.

If you want to propagate
tags from the task
definition, choose Task
definition for Propagate
tags from. If you want
to propagate tags from
the service, choose
Service for Propagate
tags from. If you choose
Do not propagate, or
if you don't choose a
value, the tags aren't
propagated.

If you want to provide
your own tags, choose
Add tag and then
provide the key and
value for each tag you
add.

For more information
about tagging Amazon
EBS volumes, see

Update Amazon ECS service parameters 1007

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html?icmpid=docs_ecs_hp-deploy#ebs-kms-encryption

Amazon Elastic Container Service Developer Guide

To configure this volume
type

Do this

Tagging Amazon EBS
volumes.

15. (Optional) To help identify your service, expand the Tags section, and then configure your
tags.

• [Add a tag] Choose Add tag, and do the following:

• For Key, enter the key name.

• For Value, enter the key value.

• [Remove a tag] Next to the tag, choose Remove tag.

16. Choose Update.

AWS CLI

• Run update-service. For information about running the command, see update-service in
the AWS Command Line Interface Reference.

The following update-service example updates the desired task count of the service
my-http-service to 2.

Replace the user-input with your values.

aws ecs update-service \
 --cluster MyCluster \
 --service my-http-service \
 --desired-count 2

Next steps

Track your deployment and view your service history for services that Amazon ECS circuit breaker.
For more information, see View service history using Amazon ECS service deployments.

Update Amazon ECS service parameters 1008

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specify-ebs-config.html#ebs-volume-tagging
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specify-ebs-config.html#ebs-volume-tagging
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-service.html

Amazon Elastic Container Service Developer Guide

Updating an Amazon ECS blue/green deployment using the console

You can update a blue/green deployment configuration using the Amazon ECS console. The
current blue/green deployment configuration is pre-populated. You can update the following blue/
green deployment options:

• Deployment group name - The CodeDeploy deployment settings

• Application name - The CodeDeploy deployment group

• Deployment configuration - How CodeDeploy routes production traffic to your replacement task
set during a deployment

• Test listener on the load balancer - CodeDeploy uses the test listener to route your test traffic to
the replacement task set during a deployment

You must configure the new option before you update the configuration.

To update a blue/green deployment configuration (Amazon ECS console)

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, select the cluster.

3. On the Cluster overview page, select the service, and then choose Update.

4. Expand Deployment options - Powered by CodeDeploy, and then choose which options to
update:

• To modify the CodeDeploy deployment group, for Application name, choose the
deployment group.

• To modify the CodeDeploy deployment settings, for Deployment group name, choose the
group.

• To modify how CodeDeploy routes production traffic to your replacement task set during a
deployment, for Deployment configuration, choose the option.

5. Select the deployment lifecycle event hooks and the associated Lambda functions to run as
part of the new revision of the service deployment. The available lifecycle hooks are:

• BeforeInstall – Use this deployment lifecycle event hook to invoke a Lambda function
before the replacement task set is created. The result of the Lambda function at this
lifecycle event does not initiate a rollback.

Updating a blue/green deployment 1009

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

• AfterInstall – Use this deployment lifecycle event hook to invoke a Lambda function after
the replacement task set is created. The result of the Lambda function at this lifecycle event
can initiate a rollback.

• BeforeAllowTraffic – Use this deployment lifecycle event hook to invoke a Lambda function
before the production traffic has been rerouted to the replacement task set. The result of
the Lambda function at this lifecycle event can initiate a rollback.

• AfterAllowTraffic – Use this deployment lifecycle event hook to invoke a Lambda function
after the production traffic has been rerouted to the replacement task set. The result of the
Lambda function at this lifecycle event can initiate a rollback.

6. To modify the test listener, expand Load balancing, and then for Test listener for CodeDeploy
deployment, choose the test listener.

7. Choose Update.

Deleting an Amazon ECS service using the console

The following are some of the reasons you would delete a service:

• The application is no longer needed

• You are migrating the service to a new environment

• The application is not actively being used

• The application is using more resources than needed and you are trying to optmize your costs

The service is automatically scaled down to zero before it is deleted. Load balancer resources or
service discovery resources associated with the service are not affected by the service deletion. To
delete your Elastic Load Balancing resources, see one of the following topics, depending on your
load balancer type: Delete an Application Load Balancer or Delete a Network Load Balancer.

When you delete a service, Amazon ECS deletes all service deployments and service revisions for
the service.

When you delete a service, if there are still running tasks that require cleanup, the service status
moves from ACTIVE to DRAINING, and the service is no longer visible in the console or in the
ListServices API operation. After all tasks have transitioned to either STOPPING or STOPPED
status, the service status moves from DRAINING to INACTIVE. Services in the DRAINING or
INACTIVE status can still be viewed with the DescribeServices API operation.

Deleting a service 1010

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-delete.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-delete.html

Amazon Elastic Container Service Developer Guide

Important

If you attempt to create a new service with the same name as an existing service in either
ACTIVE or DRAINING status, you'll receive an error.

Procedure

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, select the cluster for the service.

3. On the Clusters page, choose the cluster.

4. On the Cluster : name page, choose the Services tab.

5. Select the services, and then choose Delete.

6. To delete a service even if it wasn't scaled down to zero tasks, select Force delete service.

7. At the confirmation prompt, enter delete, and then choose Delete.

Deploy Amazon ECS services by replacing tasks

When you create a service which uses the rolling update (ECS) deployment type, the Amazon ECS
service scheduler replaces the currently running tasks with new tasks. The number of tasks that
Amazon ECS adds or removes from the service during a rolling update is controlled by the service
deployment configuration.

Amazon ECS uses the following parameters to determine the number of tasks:

• The minimumHealthyPercent represents the lower limit on the number of tasks that should
be running for a service during a deployment or when a container instance is draining, as a
percent of the desired number of tasks for the service. This value is rounded up. For example if
the minimum healthy percent is 50 and the desired task count is four, then the scheduler can
stop two existing tasks before starting two new tasks. Likewise, if the minimum healthy percent
is 75% and the desired task count is two, then the scheduler can't stop any tasks due to the
resulting value also being two.

If tasks become unhealthy, the Amazon ECS service scheduler will start replacement tasks first
and maintain minimumHealthyPercent tasks until the replacement tasks become healthy.
As the replacement tasks launch and become healthy, the unhealthy tasks will gradually be
stopped.

Rolling update deployments 1011

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

• The maximumPercent represents the upper limit on the number of tasks that should be running
for a service during a deployment or when a container instance is draining, as a percent of the
desired number of tasks for a service. This value is rounded down. For example if the maximum
percent is 200 and the desired task count is four then the scheduler can start four new tasks
before stopping four existing tasks. Likewise, if the maximum percent is 125 and the desired task
count is three, the scheduler can't start any tasks due to the resulting value also being three.

Important

When setting a minimum healthy percent or a maximum percent, you should ensure that
the scheduler can stop or start at least one task when a deployment is initiated. If your
service has a deployment that is stuck due to an invalid deployment configuration, a
service event message will be sent. For more information, see service (service-name)
was unable to stop or start tasks during a deployment because of the service deployment
configuration. Update the minimumHealthyPercent or maximumPercent value and try
again..

Rolling deployments have 2 methods which provide a way to quickly identify when a service
deployment has failed:

• the section called “ How the deployment circuit breaker detects failures”

• the section called “How CloudWatch alarms detect deployment failures”

The methods can be used separately or together. When both methods are used, the deployment is
set to failed as soon as the failure criteria for either failure method is met.

Use the following guidelines to help determine which method to use:

• Circuit breaker - Use this method when you want to stop a deployment when the tasks can't
start.

• CloudWatch alarms - Use this method when you want to stop a deployment based on application
metrics.

Both methods support rolling back to the previous service revision.

Rolling update deployments 1012

Amazon Elastic Container Service Developer Guide

Container image resolution

By default, Amazon ECS resolves container image tags specified in the task definition to container
image digests. If you create a service that runs and maintains a single task, that task is used
to establish image digests for the containers in the task. If you create a service that runs and
maintains multiple tasks, the first task started by the service scheduler during deployment is used
to establish the image digests for the containers in the tasks.

If three or more attempts at establishing the container image digests fail, the deployment
continues without image digest resolution. If the deployment circuit breaker is enabled, the
deployment is additionally failed and rolled back.

After the container image digests have been established, Amazon ECS uses the digests to start any
other desired tasks, and for any future service updates. This leads to all tasks in a service always
running identical container images, resulting in version consistency for your software.

You can configure this behavior for each container in your task by using the
versionConsistency parameter in the container definition. For more information, see
versionConsistency.

Note

• Amazon ECS Agent versions lower than 1.31.0 don't support image digest resolution.
Agent versions 1.31.0 to 1.69.0 support image digest resolution only for images
pushed to Amazon ECR repositories. Agent versions 1.70.0 or higher support image
digest resolution for all images.

• The minimum Fargate Linux platform version for image digest resolution is 1.3.0. The
minimum Fargate Windows platform version for image digest resolution is 1.0.0.

• Amazon ECS doesn't capture digests of sidecar containers managed by Amazon ECS, such
as the Amazon GuardDuty security agent or Service Connect proxy.

• To reduce potential latency associated with container image resolution in services with
multiple tasks, run Amazon ECS agent version 1.83.0 or higher on EC2 container
instances. To avoid potential latency, specify container image digests in your task
definition.

• If you create a service with a desired task count of zero, Amazon ECS can't establish
container digests until you trigger another deployment of the service with a desired task
count greater than zero.

Rolling update deployments 1013

Amazon Elastic Container Service Developer Guide

• To establish updated image digests, you can force a new deployment. The updated
digests will be used to start new tasks and will not affect already running tasks. For more
information about forcing new deployments, see forceNewDeployment in the Amazon
ECS API reference.

How the Amazon ECS deployment circuit breaker detects failures

The deployment circuit breaker is the rolling update mechanism that determines if the tasks reach
a steady state. The deployment circuit breaker has an option that will automatically roll back a
failed deployment to the deployment that is in the COMPLETED state.

When a service deployment changes state, Amazon ECS sends a service deployment state
change event to EventBridge. This provides a programmatic way to monitor the status of your
service deployments. For more information, see Amazon ECS service deployment state change
events. We recommend that you create and monitor an EventBridge rule with an eventName of
SERVICE_DEPLOYMENT_FAILED so that you can take manual action to start your deployment. For
more information, see Getting started with EventBridge in the Amazon EventBridge User Guide.

When the deployment circuit breaker determines that a deployment failed, it looks for the most
recent deployment that is in a COMPLETED state. This is the deployment that it uses as the roll-
back deployment. When the rollback starts, the deployment changes from a COMPLETED to
IN_PROGRESS. This means that the deployment is not eligible for another rollback until it reaches
a COMPLETED state. When the deployment circuit breaker does not find a deployment that is in a
COMPLETED state, the circuit breaker does not launch new tasks and the deployment is stalled.

When you create a service, the scheduler keeps track of the tasks that failed to launch in two
stages.

• Stage 1 - The scheduler monitors the tasks to see if they transition into the RUNNING state.

• Success - The deployment has a chance of transitioning to the COMPLETED state because
there is more than one task that transitioned to the RUNNING state. The failure criteria is
skipped and the circuit breaker moves to stage 2.

• Failure - There are consecutive tasks that did not transition to the RUNNING state and the
deployment might transition to the FAILED state.

• Stage 2 - The deployment enters this stage when there is at least one task in the RUNNING
state. The circuit breaker checks the health checks for the tasks in the current deployment being

Rolling update deployments 1014

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html#ECS-UpdateService-request-forceNewDeployment
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html

Amazon Elastic Container Service Developer Guide

evaluated. The validated health checks are Elastic Load Balancing, AWS Cloud Map service health
checks, and container health checks.

• Success - There is at least one task in the running state with health checks that have passed.

• Failure - The tasks that are replaced because of health check failures have reached the failure
threshold.

Consider the following when you use the deployment circuit breaker method on a service.
EventBridge generates the rule.

• The DescribeServices response provides insight into the state of a deployment, the
rolloutState and rolloutStateReason. When a new deployment is started, the rollout
state begins in an IN_PROGRESS state. When the service reaches a steady state, the rollout state
transitions to COMPLETED. If the service fails to reach a steady state and circuit breaker is turned
on, the deployment will transition to a FAILED state. A deployment in a FAILED state doesn't
launch any new tasks.

• In addition to the service deployment state change events Amazon ECS sends for deployments
that have started and have completed, Amazon ECS also sends an event when a deployment
with circuit breaker turned on fails. These events provide details about why a deployment failed
or if a deployment was started because of a rollback. For more information, see Amazon ECS
service deployment state change events.

• If a new deployment is started because a previous deployment failed and a rollback occurred,
the reason field of the service deployment state change event indicates the deployment was
started because of a rollback.

• The deployment circuit breaker is only supported for Amazon ECS services that use the rolling
update (ECS) deployment controller.

• You must use the Amazon ECS console, or the AWS CLI when you use the deployment circuit
breaker with the CloudWatch option. For more information, see the section called “Create
a service using defined parameters” and create-service in the AWS Command Line Interface
Reference.

The following create-service AWS CLI example shows how to create a Linux service when the
deployment circuit breaker is used with the rollback option.

aws ecs create-service \
 --service-name MyService \

Rolling update deployments 1015

https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html

Amazon Elastic Container Service Developer Guide

 --deployment-controller type=ECS \
 --desired-count 3 \
 --deployment-configuration "deploymentCircuitBreaker={enable=true,rollback=true}"
 \
 --task-definition sample-fargate:1 \
 --launch-type FARGATE \
 --platform-family LINUX \
 --platform-version 1.4.0 \
 --network-configuration
 "awsvpcConfiguration={subnets=[subnet-12344321],securityGroups=[sg-12344321],assignPublicIp=ENABLED}"

Example:

Deployment 1 is in a COMPLETED state.

Deployment 2 cannot start, so the circuit breaker rolls back to Deployment 1. Deployment 1
transitions to the IN_PROGRESS state.

Deployment 3 starts and there is no deployment in the COMPLETED state, so Deployment 3 cannot
roll back, or launch tasks.

Failure threshold

The deployment circuit breaker calculates the threshold value, and then uses the value to
determine when to move the deployment to a FAILED state.

The deployment circuit breaker has a minimum threshold of 3 and a maximum threshold of 200.
and uses the values in the following formula to determine the deployment failure.

Minimum threshold <= 0.5 * desired task count => maximum threshold

When the result of the calculation is greater than the minimum of 3, but smaller than the
maximum of 200, the failure threshold is set to the calculated threshold (rounded up).

Note

You cannot change either of the threshold values.

There are two stages for the deployment status check.

Rolling update deployments 1016

Amazon Elastic Container Service Developer Guide

1. The deployment circuit breaker monitors tasks that are part of the deployment and checks for
tasks that are in the RUNNING state. The scheduler ignores the failure criteria when a task in the
current deployment is in the RUNNING state and proceeds to the next stage. When tasks fail to
reach in the RUNNING state, the deployment circuit breaker increases the failure count by one.
When the failure count equals the threshold, the deployment is marked as FAILED.

2. This stage is entered when there are one or more tasks in the RUNNING state. The deployment
circuit breaker performs health checks on the following resources for the tasks in the current
deployment:

• Elastic Load Balancing load balancers

• AWS Cloud Map service

• Amazon ECS container health checks

When a health check fails for the task, the deployment circuit breaker increases the failure count
by one. When the failure count equals the threshold, the deployment is marked as FAILED.

The following table provides some examples.

Desired task count Calculation Threshold

1 3 <= 0.5 * 1 => 200 3 (the calculated value is less
than the minimum)

25 3 <= 0.5 * 25 => 200 13 (the value is rounded up)

400 3 <= 0.5 * 400 => 200 200

800 3 <= 0.5 * 800 => 200 200 (the calculated value is
greater than the maximum)

For example, when the threshold is 3, the circuit breaker starts with the failure count set at 0.
When a task fails to reach the RUNNING state, the deployment circuit breaker increases the failure
count by one. When the failure count equals 3, the deployment is marked as FAILED.

For additional examples about how to use the rollback option, see Announcing Amazon ECS
deployment circuit breaker.

Rolling update deployments 1017

https://aws.amazon.com/blogs/containers/announcing-amazon-ecs-deployment-circuit-breaker/
https://aws.amazon.com/blogs/containers/announcing-amazon-ecs-deployment-circuit-breaker/

Amazon Elastic Container Service Developer Guide

How CloudWatch alarms detect Amazon ECS deployment failures

You can configure Amazon ECS to set the deployment to failed when it detects that a specified
CloudWatch alarm has gone into the ALARM state.

You can optionally set the configuration to roll back a failed deployment to the last completed
deployment.

The following create-service AWS CLI example shows how to create a Linux service when the
deployment alarms are used with the rollback option.

aws ecs create-service \
 --service-name MyService \
 --deployment-controller type=ECS \
 --desired-count 3 \
 --deployment-configuration
 "alarms={alarmNames=[alarm1Name,alarm2Name],enable=true,rollback=true}" \
 --task-definition sample-fargate:1 \
 --launch-type FARGATE \
 --platform-family LINUX \
 --platform-version 1.4.0 \
 --network-configuration
 "awsvpcConfiguration={subnets=[subnet-12344321],securityGroups=[sg-12344321],assignPublicIp=ENABLED}"

Consider the following when you use the Amazon CloudWatch alarms method on a service.

• The bake time is a period of time after a new service version has scaled out and the old service
version has scaled in, during which Amazon ECS continues to monitor the alarm associated
with the deployment. Amazon ECS computes this time period based on the alarm configuration
associated with the deployment. You can't set this value.

• The deploymentConfiguration request parameter now contains the alarms data type. You
can specify the alarm names, whether to use the method, and whether to initiate a rollback
when the alarms indicate a deployment failure. For more information, see CreateService in the
Amazon Elastic Container Service API Reference.

• The DescribeServices response provides insight into the state of a deployment, the
rolloutState and rolloutStateReason. When a new deployment starts, the rollout state
begins in an IN_PROGRESS state. When the service reaches a steady state and the bake time is
complete, the rollout state transitions to COMPLETED. If the service fails to reach a steady state
and the alarm has gone into the ALARM state, the deployment will transition to a FAILED state.
A deployment in a FAILED state won't launch any new tasks.

Rolling update deployments 1018

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html

Amazon Elastic Container Service Developer Guide

• In addition to the service deployment state change events Amazon ECS sends for deployments
that have started and have completed, Amazon ECS also sends an event when a deployment that
uses alarms fails. These events provide details about why a deployment failed or if a deployment
was started because of a rollback. For more information, see Amazon ECS service deployment
state change events.

• If a new deployment is started because a previous deployment failed and rollback was turned on,
the reason field of the service deployment state change event will indicate the deployment was
started because of a rollback.

• If you use the deployment circuit breaker and the Amazon CloudWatch alarms to detect failures,
either one can initiate a deployment failure as soon as the criteria for either method is met. A
rollback occurs when you use the rollback option for the method that initiated the deployment
failure.

• The Amazon CloudWatch alarms is only supported for Amazon ECS services that use the rolling
update (ECS) deployment controller.

• You can configure this option by using the Amazon ECS console, or the AWS CLI. For more
information, see the section called “Create a service using defined parameters” and create-
service in the AWS Command Line Interface Reference.

• You might notice that the deployment status remains IN_PROGRESS for a prolonged amount of
time. The reason for this is that Amazon ECS does not change the status until it has deleted the
active deployment, and this does not happen until after the bake time. Depending on your alarm
configuration, the deployment might appear to take several minutes longer than it does when
you don't use alarms (even though the new primary task set is scaled up and the old deployment
is scaled down). If you use CloudFormation timeouts, consider increasing the timeouts. For more
information, see Creating wait conditions in a template in the AWS CloudFormation User Guide.

• Amazon ECS calls DescribeAlarms to poll the alarms. The calls to DescribeAlarms count
toward the CloudWatch service quotas associated with your account. If you have other AWS
services that call DescribeAlarms, there might be an impact on Amazon ECS to poll the
alarms. For example, if another service makes enough DescribeAlarms calls to reach the
quota, that service is throttled and Amazon ECS is also throttled and unable to poll alarms. If
an alarm is generated during the throttling period, Amazon ECS might miss the alarm and the
roll back might not occur. There is no other impact on the deployment. For more information on
CloudWatch service quotas, see CloudWatch service quotas in the CloudWatch User Guide.

• If an alarm is in the ALARM state at the beginning of a deployment, Amazon ECS will not monitor
alarms for the duration of that deployment (Amazon ECS ignores the alarm configuration).

Rolling update deployments 1019

https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-waitcondition.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_limits.htm

Amazon Elastic Container Service Developer Guide

This behavior addresses the case where you want to start a new deployment to fix an initial
deployment failure.

Recommended alarms

We recommend that you use the following alarm metrics:

• If you use an Application Load Balancer, use the HTTPCode_ELB_5XX_Count and
HTTPCode_ELB_4XX_Count Application Load Balancer metrics. These metrics check for HTTP
spikes. For more information about the Application Load Balancer metrics, see CloudWatch
metrics for your Application Load Balancer in the User Guide for Application Load Balancers.

• If you have an existing application, use the CPUUtilization and MemoryUtilization
metrics. These metrics check for the percentage of CPU and memory that the cluster or service
uses. For more information, see the section called “Considerations”.

• If you use Amazon Simple Queue Service queues in your tasks, use
ApproximateNumberOfMessagesNotVisible Amazon SQS metric. This metric checks for
number of messages in the queue that are delayed and not available for reading immediately.
For more information about Amazon SQS metrics, see Available CloudWatch metrics for Amazon
SQS in the Amazon Simple Queue Service Developer Guide.

Stopping Amazon ECS service deployments

You can manually stop a deployment when a failing deployment was not detected by the circuit
breaker or CloudWatch alarms. The following stop types are available:

• Rollback - This option rolls back the service deployment to the previous service revision.

You can use this option even if you didn't configure the service deployment for the rollback
option.

You can stop a deployment that is in any of the following states. For more information about
service deployment states, see View service history using Amazon ECS service deployments.

• PENDING - The service deployment moves to the ROLLBACK_REQUESTED state, and then the
rollback operation starts.

• IN_PROGRESS - The service deployment moves to the ROLLBACK_REQUESTED state, and then
the rollback operation starts.

Rolling update deployments 1020

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-cloudwatch-metrics.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-cloudwatch-metrics.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html

Amazon Elastic Container Service Developer Guide

• STOP_REQUESTED - The service deployment continues to stop.

• ROLLBACK_REQUESTED - The service deployment continues the rollback operation.

• ROLLBACK_IN_PROGRESS - The service deployment continues the rollback operation.

Procedure

Before you begin, configure the required permissions for viewing service deployments. For more
information, see Permissions required for viewing Amazon ECS service deployments.

Amazon ECS Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, choose the cluster.

3. On the cluster details page, in the Services section, choose the service.

The service details page displays.

4. On the service details page, choose Deployments.

The deployments page displays.

5. Under Ongoing deployment, choose Roll back. Then, in the confirmation window, choose
Roll back.

AWS CLI

1. Run list-service-deployments to retrieve the service deployment ARN.

Replace the user-input with your values.

aws ecs list-service-deployments --cluster cluster-name --service service-name

Note the serviceDeploymentArn for the deployment you want to stop.

{
 "serviceDeployments": [
 {
 "serviceDeploymentArn": "arn:aws:ecs:us-west-2:123456789012:service-
deployment/cluster-name/service-name/NCWGC2ZR-taawPAYrIaU5",

Rolling update deployments 1021

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

 "serviceArn": "arn:aws:ecs:us-west-2:123456789012:service/cluster-
name/service-name",
 "clusterArn": "arn:aws:ecs:us-west-2:123456789012:cluster/cluster-
name",
 "targetServiceRevisionArn": "arn:aws:ecs:us-
west-2:123456789012:service-revision/cluster-name/service-
name/4980306466373577095",
 "status": "SUCCESSFUL"
 }
]
}

2. Run stop-service-deployments. Use the serviceDeploymentArn that was returned
from list-service-deployments.

Replace the user-input with your values.

aws ecs stop-service-deployment --service-deployment-arn
 arn:aws:ecs:region:123456789012:service-deployment/cluster-name/service-
name/NCWGC2ZR-taawPAYrIaU5 --stop-type ROLLBACK

Next steps

Decide what changes need to be made to the service, and then update the service. For more
information, see Updating an Amazon ECS service.

Best practices for Amazon ECS service parameters

To ensure that there's no application downtime, the deployment process is as follows:

1. Start the new application containers while keeping the existing containers running.

2. Check that the new containers are healthy.

3. Stop the old containers.

Depending on your deployment configuration and the amount of free, unreserved space in your
cluster it may take multiple rounds of this to complete replace all old tasks with new tasks.

There are two service configuration options that you can use to modify the number:

• minimumHealthyPercent: 100% (default)

Rolling update deployments 1022

Amazon Elastic Container Service Developer Guide

The lower limit on the number of tasks for your service that must remain in the RUNNING state
during a deployment. This is a percentage of the desiredCount rounded up to the nearest
integer. This parameter allows you to deploy without using additional cluster capacity.

• maximumPercent: 200% (default)

The upper limit on the number of tasks for your service that are allowed in the RUNNING or
PENDING state during a deployment. This is a percentage of the desiredCount rounded down
to the nearest integer.

Example: Default configuration options

Consider the following service that has six tasks, deployed in a cluster that has room for eight tasks
total. The default service configuration options don't allow the deployment to go below 100% of
the six desired tasks.

The deployment process is as follows:

1. The goal is to replace the six tasks.

2. The scheduler starts two new tasks because the default settings require that there are six
running tasks.

There are now six existing tasks and two new tasks.

3. The scheduler stops two of the existing tasks.

There are now four existing tasks and two new ones.

4. The scheduler starts two additional new tasks.

There are now four existing tasks and four new tasks.

5. The scheduler shuts down two of the existing tasks.

There are now two existing tasks and four new ones.

6. The scheduler starts two additional new tasks.

There are now two existing tasks and six new tasks

7. The scheduler shuts down the last two existing tasks.

There are now six new tasks.

Rolling update deployments 1023

Amazon Elastic Container Service Developer Guide

In the above example, if you use the default values for the options, there is a 2.5 minute wait for
each new task that starts. Additionally, the load balancer might have to wait 5 minutes for the old
task to stop.

Example: Modify minimumHealthyPercent

You can speed up the deployment by setting the minimumHealthyPercent value to 50%.

Consider the following service that has six tasks, deployed in a cluster that has room for eight tasks
total. The deployment process is as follows:

1. The goal is to replace six tasks.

2. The scheduler stops three of the existing tasks.

There are still three existing tasks running which meets the minimumHealthyPercent value.

3. The scheduler starts five new tasks.

There are three existing task tasks and five new tasks.

4. The scheduler stops the remaining three existing tasks.

There are five new tasks

5. The scheduler starts the final new tasks.

There are six new tasks.

Example: Modify cluster free space

You could also add additional free space so that you can run additional tasks.

Consider the following service that has six tasks, deployed in a cluster that has room for ten tasks
total. The deployment process is as follows:

1. The goal is to replace the existing tasks.

2. The scheduler stops three of the existing tasks,

There are three existing tasks.

3. The scheduler starts six new tasks.

There are the existing tasks and six new tasks

4. The scheduler stops the three existing tasks.

Rolling update deployments 1024

Amazon Elastic Container Service Developer Guide

There are six new tasks.

Recommendations

Use the following values for the service configuration options when your tasks are idle for some
time and don't have a high utilization rate.

• minimumHealthyPercent: 50%

• maximumPercent: 200%

View service history using Amazon ECS service deployments

Service deployments provide a comprehensive view of your deployments. Service deployments
provide the following information about the service:

• The currently deployed workload configuration (the source service revision)

• The workload configuration being deployed (the target service revision)

• The deployment status

• The number of failed tasks the circuit break detected

• The CloudWatch alarms that are in alarm

• When the service deployment started and completed

• The details of a rollback if one occurred

For information about the service deployment properties, see Properties included in an Amazon
ECS service deployment.

Service deployments are read-only and each have a unique ID.

There are three service deployment stages:

Stage Definition Associated states

Pending A service deployment has
been created, but has not
started

PENDING

Rolling update deployments 1025

Amazon Elastic Container Service Developer Guide

Stage Definition Associated states

Ongoing A service deployment is in-
progress

• IN_PROGRESS

• STOP_REQUESTED

• ROLLBACK_REQUESTED

• ROLLBACK_IN_PROGRESS

Completed A service deployment has
finished (successfully or
unsuccessfully)

• SUCCESSFUL

• STOPPED

• ROLLBACK_SUCCESSFUL

• ROLLBACK_FAILED

You use service deployments to understand the lifecycle of you service and to determine if
there are any actions you need to take. For example, if a rollback happened, you might need to
investigate the service deployment and looking at service events.

You can view the most recent 90-day history for deployments created on or after October 25, 2024
by using the console, API, and the AWS CLI.

You can stop a deployment that has not completed. For more information, see Stopping Amazon
ECS service deployments.

Service deployment lifecycle

Amazon ECS creates a new service deployment automatically when any of the following actions
happen:

• A user creates a service.

• A user updates the service and uses the force new deployment option.

• A user updates one or more service properties that require a deployment.

While a deployment is ongoing, Amazon ECS updates the following service deployment properties
to reflect the service deployment’s progress:

• The state

• The number of running tasks

Rolling update deployments 1026

Amazon Elastic Container Service Developer Guide

The number of running tasks indicated in the service revision might not equal the actual number
of running task. This number represents the number of tasks running when the deployment
completed. For example, if you launched tasks independent of the service deployment, those
tasks are not included in the running task count for the service revision.

• Circuit breaker failure detection:

• The number of tasks that have failed to start

• CloudWatch alarm failure detection

• The alarms that are active

• Rollback information:

• The start time

• The reason for the rollback

• The ARN of the service revision used for the rollback

• The status reason

Amazon ECS deletes the service deployment when you delete a service.

Service deployment states

A service deployment starts in PENDING state.

The following illustration shows the service deployment states that can happen after the
PENDING state: IN_PROGRESS, ROLLBACK_REQUESTED, SUCCESSFUL, STOP_REQUESTED,
ROLLBACK_IN_PROGRESSS, ROLLBACK_FAILED, ROLLBACK_SUCCESSFUL, and STOPPED.

Rolling update deployments 1027

Amazon Elastic Container Service Developer Guide

The following information provides details about service deployment states:

• PENDING - The service deployment has been created, but has not started.

The state can move to IN_PROGRESS, ROLLBACK_REQUESTED, STOP_REQUESTED, or STOPPED.

• IN_PROGRESS - The service deployment is ongoing.

The state can move to SUCCESSFUL, STOP_REQUESTED, ROLLBACK_REQUESTED,
ROLLBACK_IN_PROGRESS, and STOPPED.

• STOP_REQUESTED - The service deployment state moves to STOP_REQUESTED when any of the
following happen:

• A user starts a new service deployment.

• The rollback option is not in use for the failure detection mechanism (the circuit breaker or
alarm-based) and the service does not reach the SUCCESSFUL state.

The state moves to STOPPED.

• ROLLBACK_REQUESTED - The service deployment state moves to ROLLBACK_REQUESTED when
a user request a rollback through the console, API, or CLI.

Rolling update deployments 1028

Amazon Elastic Container Service Developer Guide

The state can move to SUCCESSFUL, ROLLBACK_IN_PROGRESS, and STOPPED.

• SUCCESSFUL - The service deployment state moves to SUCCESSFUL when the service
deployment successfully completes.

• ROLLBACK_IN_PROGRESS - The service deployment state moves to ROLLBACK_IN_PROGRESS
when the rollback option is in use for the failure detection mechanism (the circuit breaker or
alarm-based) and the service fails.

The state moves to ROLLBACK_SUCCESSFUL, or ROLLBACK_FAILED.

Properties included in an Amazon ECS service deployment

The following properties are included in a service deployment.

Property Description

Service deployment ARN The ARN of the service
deployment.

Service ARN The ARN of the service for
this service deployment.

Cluster ARN The ARN for the cluster that
hosts the service.

Service deployment creation
time

The time the service
deployment was created.

Service deployment start time The time the service
deployment started.

Service deployment finish
time

The time the service
deployment finished.

Service deployment stopped
time

The time the service
deployment stopped.

Service deployment update
time

The time that the service
deployment was last updated.

Rolling update deployments 1029

Amazon Elastic Container Service Developer Guide

Property Description

Source service revisions The currently running service
revisions.

For information about the
included properties, see
Properties included in an
Amazon ECS service revision.

Rolling update deployments 1030

Amazon Elastic Container Service Developer Guide

Property Description

Deployment configuration The deployment parameters
including the circuit breaker
configuration, the alarms that
determine .

• The lower limit on the
number of tasks that
should be running for a
service during a deploymen
t or when a container
instance is draining, as
a percent of the desired
number of tasks for the
service.

• The upper limit on the
number of tasks that
should be running for a
service during a deploymen
t or when a container
instance is draining, as
a percent of the desired
number of tasks for the
service.

• The circuit breaker
configuration.

• The alarms used for failure
detection.

Target service revision The service revision to deploy.

After the deployment
completes successfully, the
target service revision is the
running service revision.

Rolling update deployments 1031

Amazon Elastic Container Service Developer Guide

Property Description

Service deployment status The service deployment state.

The valid values are
PENDING, SUCCESSFUL,
STOPPED, STOP_REQU
ESTED, STOP_IN_P
ROGRESS, IN_PROGRESS,
ROLLBACK_IN_PROGRESS,
ROLLBACK_SUCCESSFUL, and
ROLLBACK_FAILED.

Service deployment status
information

Information about why the
service deployment is in the
current status. For example,
the circuit breaker detected a
failure.

Rollback information The rollback options the
service deployment uses
when the deployment fails.

Service deployment circuit
breaker options

The circuit breaker that
determines a service
deployment failed.

CloudWatch alarms for the
service deployment

The CloudWatch alarms that
determine when a service
deployment fails.

Permissions required for viewing Amazon ECS service deployments

When you follow the best practice of granting least privilege, you need to add additional
permissions in order to view service deployments in the console.

You need access to the following actions:

• ListServiceDeployments

Rolling update deployments 1032

Amazon Elastic Container Service Developer Guide

• DescribeServiceDeployments

• DescribeServiceRevisions

You need access to the following resources:

• Service

• Service deployment

• Service revision

The following example policy contains the required permissions, and limits the actions to a
specified service.

Replace the account, cluster-name, and service-name with your values.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:ListServiceDeployments",
 "ecs:DescribeServiceDeployments",
 "ecs:DescribeServiceRevisions"
],
 "Resource": [
 "arn:aws:ecs:us-east-1:123456789012:service/cluster-name/service-name",
 "arn:aws:ecs:us-east-1:123456789012:service-deployment/cluster-name/
service-name/*",
 "arn:aws:ecs:us-east-1:123456789012:service-revision/cluster-name/service-
name/*"
]
 }
]
}

Viewing Amazon ECS service deployments

You can see the most recent 90-day history for deployments created on or after October 25, 2024.
The service deployments can be in any of the following states:

• In-progress

Rolling update deployments 1033

Amazon Elastic Container Service Developer Guide

• Pending

• Completed

You can use this information to determine if you need to update how the service is being deployed,
or the service revision. For information about the included properties, see Properties included in an
Amazon ECS service deployment.

Before you begin, configure the required permissions for viewing service deployments. For more
information, see Permissions required for viewing Amazon ECS service deployments.

Amazon ECS Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, choose the cluster.

3. On the cluster details page, in the Services section, choose the service.

The service details page displays.

4. On the service details page, choose Deployments.

5. Choose the service deployment to view.

To view service
deployments for this
deployment type

Do this

Ongoing deployment Under Ongoing
deployments, choose the
Deployment ID.

Last deployment Under Last deployment,
choose the Deployment ID.

Completed deployments Under Service deploymen
ts, choose the Deployment
ID.

The service deployment details page appears.

Rolling update deployments 1034

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

6. (Optional) Compare service revisions to view the differences.

Under Service revisions, choose Compare revisions, and then select 2 revisions to
compare.

The service revisions are displayed side-by-side with the differences highlighted.

AWS CLI

1. Run list-service-deployments to retrieve the service deployment ARN.

Replace the variables with your values.

aws ecs list-service-deployments --cluster cluster-name --service service-name

Note the serviceDeploymentArn for the deployment you want to view.

{
 "serviceDeployments": [
 {
 "serviceDeploymentArn": "arn:aws:ecs:us-west-2:123456789012:service-
deployment/example/sd-example/NCWGC2ZR-taawPAYrIaU5",
 "serviceArn": "arn:aws:ecs:us-west-2:123456789012:service/example/
sd-example",
 "clusterArn": "arn:aws:ecs:us-west-2:123456789012:cluster/example",
 "targetServiceRevisionArn": "arn:aws:ecs:us-
west-2:123456789012:service-revision/example/sd-example/4980306466373577095",
 "status": "SUCCESSFUL"
 }
]
}

2. Run describe-service-deployments. Use the serviceDeploymentArn that was
returned from list-service-deployments.

Replace the variables with your values.

aws ecs describe-service-deployments --service-deployment-arns
 arn:aws:ecs:region:123456789012:service-deployment/cluster-name/service-
name/NCWGC2ZR-taawPAYrIaU5

Rolling update deployments 1035

Amazon Elastic Container Service Developer Guide

Next steps

You can view the details for service revisions in the deployment. For more information, see Viewing
Amazon ECS service revision details

Amazon ECS service revisions

A service revision contains a record of the workload configuration Amazon ECS is attempting to
deploy. Whenever you create or deploy a service, Amazon ECS automatically creates and captures
the configuration that you're trying to deploy in the service revision.

Service revisions are read-only and have unique identifiers. For information about the included
properties, see Properties included in an Amazon ECS service revision.

Service revisions provide the following benefits:

• During a service deployment, you can compare the currently deployed service revision (source)
with the one being deployed (target).

• When you use the rollback option for a service deployment, Amazon ECS automatically rolls back
the service deployment to the last successfully deployed service revision.

• Service revisions contain the record of the workload configuration in one resource.

Service revision lifecycle

Amazon ECS automatically creates a new service revision when you create a service, or update a
service property that starts a deployment.

Amazon ECS doesn't create a new service revision for a rollback operation. Amazon ECS uses the
last successful service revision for the rollback.

A service revision is immutable.

Amazon ECS deletes the service revision when you delete a service.

You can view service revisions created on or after October 25, 2024 by using the console, API, and
the CLI.

Properties included in an Amazon ECS service revision

The following properties are included in a service revision.

Rolling update deployments 1036

Amazon Elastic Container Service Developer Guide

Resource Description

Service ARN The ARN that identifies the
service.

Cluster ARN The ARN for the cluster that
hosts the service.

Task definition ARN The ARN of the task definition
used for the service tasks.

Service registries The details for the service
registries used for service
discovery.

• The container name

The container name value
to be used for your service
discovery service.

• The container port

The port value to be used
for your service discovery
service. This value is
also specified in the task
definition.

• The port

The port value used if your
service discovery service
specified an SRV record.

• The registry ARN

The Amazon Resource
Name (ARN) of the service
registry.

Rolling update deployments 1037

Amazon Elastic Container Service Developer Guide

Resource Description

Capacity providers The capacity provider strategy
details.

• The capacity provider name

The capacity provider name
used for the service.

• The capacity provider
weight

The relative percentag
e of the total number of
tasks launched that should
use the specified capacity
provider.

• The capacity provider base

The number of tasks, at a
minimum, to run on the
specified capacity provider.

Container images The details about the
container images.

• The container name

• The image digest

• The container image

Rolling update deployments 1038

Amazon Elastic Container Service Developer Guide

Resource Description

Networking The network configuration for
the service.

• Whether there is a public IP
address

• The subnets the tasks run
in

• The security groups that
control the service traffic

Launch type The launch type used for the
service.

Fargate-specific properties When the launch type is
Fargate, this is information
about the Fargate version.

• The platform version and
the platform family

• Ephemeral storage

• The amount of
ephemeral storage
to allocate for the
deployment.

• The KMS key to use for
storage encryption.

Rolling update deployments 1039

Amazon Elastic Container Service Developer Guide

Resource Description

Amazon EBS volumes that are
configured at deployment

The configuration for a
volume specified in the task
definition as a volume that is
configured at launch time.

• Encrypted

Indicates whether the
volume is encrypted.

• File system type

The Linux filesystem type
for the volume.

• IOPS

The number of I/O
operations per second
(IOPS).

• KMS key

• IAM role

The ARN of the IAM role to
associate with this volume.

• Size

The size of the volume in
GiB.

• Snapshot ID

The volume snapshot ID.

• Tag specifications

The tag configuration for
the volume.

• Throughput

Rolling update deployments 1040

Amazon Elastic Container Service Developer Guide

Resource Description

The throughput provisioned
for the volume.

• Volume type

The volume type.

Service Connect The Service Connect
configuration.

• The indication of whether
Service Connect is in use

• The namespace

• The list of interconnected
services

• The Service Connect
logging configuration

Service load balancers The load balancers that route
the service traffic.

• The name

• The container name

• The container port

• The target group ARN

Runtime Monitoring Indicates if Runtime
Monitoring is on.

Creation date The date the service revision
was created.

VPC Lattice The VPC Lattice configuration
for the service revision.

Rolling update deployments 1041

Amazon Elastic Container Service Developer Guide

Viewing Amazon ECS service revision details

You can view information about the following service revision types that were created on or after
October 25, 2024:

• Source -The currently deployed workload configuration

• Target - The workload configuration being deployed

Amazon ECS Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, choose the cluster.

3. On the cluster details page, in the Services section, choose the service.

The service details page displays.

4. On the service details page, choose Deployments.

5. Choose the service revision to view.

To view service revisions
for this deployment type

Do this

Ongoing deployments Under Ongoing
deployments, do the
following:

• To view the source
service revision, under
Service revisions, choose
the service revision ID
for the Source Revision
type.

• To view the target
service revision, under
Service revisions, choose
the service revision ID for
the Target Revision type.

Rolling update deployments 1042

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

To view service revisions
for this deployment type

Do this

Last deployment Under Last deployment,
choose the Target service
revision.

Completed deployments Under Service deploymen
ts, do the following:

• Under Target service
revision, choose the ID.

AWS CLI

1. Run describe-service-deployments to retrieve the service revision ARN.

Replace the variables with your values.

aws ecs describe-service-deployments --service-deployment-arns
 arn:aws:ecs:region:account-id:service/cluster-name/service-name/NCWGC2ZR-
taawPAYrIaU5

Note the arn for the sourceServiceRevisions or the targetServiceRevisions.

{
 "serviceDeployments": [
 {
 "serviceDeploymentArn": "arn:aws:ecs:us-west-2:123456789012:service-
deployment/example/sd-example/NCWGC2ZR-taawPAYrIaU5",
 "serviceArn": "arn:aws:ecs:us-west-2:123456789012:service/example/
sd-example",
 "clusterArn": "arn:aws:ecs:us-west-2:123456789012:cluster/example",
 "updatedAt": "2024-09-10T16:49:35.572000+00:00",
 "sourceServiceRevision": {
 "arn": "arn:aws:ecs:us-west-2:123456789012:service-revision/
example/sd-example/4980306466373578954",
 "requestedTaskCount": 0,
 "runningTaskCount": 0,
 "pendingTaskCount": 0

Rolling update deployments 1043

Amazon Elastic Container Service Developer Guide

 },
 "targetServiceRevision": {
 "arn": "arn:aws:ecs:us-west-2:123456789012:service-revision/
example/sd-example/4980306466373577095",
 "requestedTaskCount": 0,
 "runningTaskCount": 0,
 "pendingTaskCount": 0
 },
 "status": "IN_PROGRESS",
 "deploymentConfiguration": {
 "deploymentCircuitBreaker": {
 "enable": false,
 "rollback": false
 },
 "maximumPercent": 200,
 "minimumHealthyPercent": 100
 }
 }
],
 "failures": []
}

2. Run describe-service-revisions. Use the arn that was returned from describe-
service-deployments.

Replace the variables with your values.

aws ecs describe-service-revisions --service-revision-arns
 arn:aws:ecs:region:123456789012:service-revision/cluster-name/service-
name/4980306466373577095

Validate the state of an Amazon ECS service before deployment

The blue/green deployment type uses the blue/green deployment model controlled by
CodeDeploy. Use this deployment type to verify a new deployment of a service before sending
production traffic to it. For more information, see What Is CodeDeploy in the AWS CodeDeploy User
Guide.

There are three ways traffic can shift during a blue/green deployment:

Blue/green deployments 1044

https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html

Amazon Elastic Container Service Developer Guide

• Canary — Traffic is shifted in two increments. You can choose from predefined canary options
that specify the percentage of traffic shifted to your updated task set in the first increment and
the interval, in minutes, before the remaining traffic is shifted in the second increment.

• Linear — Traffic is shifted in equal increments with an equal number of minutes between each
increment. You can choose from predefined linear options that specify the percentage of traffic
shifted in each increment and the number of minutes between each increment.

• All-at-once — All traffic is shifted from the original task set to the updated task set all at once.

The following are components of CodeDeploy that Amazon ECS uses when a service uses the blue/
green deployment type:

CodeDeploy application

A collection of CodeDeploy resources. This consists of one or more deployment groups.

CodeDeploy deployment group

The deployment settings. This consists of the following:

• Amazon ECS cluster and service

• Load balancer target group and listener information

• Deployment roll back strategy

• Traffic rerouting settings

• Original revision termination settings

• Deployment configuration

• CloudWatch alarms configuration that can be set up to stop deployments

• SNS or CloudWatch Events settings for notifications

For more information, see Working with Deployment Groups in the AWS CodeDeploy User Guide.

CodeDeploy deployment configuration

Specifies how CodeDeploy routes production traffic to your replacement task set during
a deployment. The following pre-defined linear and canary deployment configuration are
available. You can also create custom defined linear and canary deployments as well. For more
information, see Working with Deployment Configurations in the AWS CodeDeploy User Guide.

• CodeDeployDefault.ECSAllAtOnce: Shifts all traffic to the updated Amazon ECS container at
once

Blue/green deployments 1045

https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-groups.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-configurations.html

Amazon Elastic Container Service Developer Guide

• CodeDeployDefault.ECSLinear10PercentEvery1Minutes: Shifts 10 percent of traffic every
minute until all traffic is shifted.

• CodeDeployDefault.ECSLinear10PercentEvery3Minutes: Shifts 10 percent of traffic every 3
minutes until all traffic is shifted.

• CodeDeployDefault.ECSCanary10Percent5Minutes: Shifts 10 percent of traffic in the first
increment. The remaining 90 percent is deployed five minutes later.

• CodeDeployDefault.ECSCanary10Percent15Minutes: Shifts 10 percent of traffic in the first
increment. The remaining 90 percent is deployed 15 minutes later.

Revision

A revision is the CodeDeploy application specification file (AppSpec file). In the AppSpec file,
you specify the full ARN of the task definition and the container and port of your replacement
task set where traffic is to be routed when a new deployment is created. The container
name must be one of the container names referenced in your task definition. If the network
configuration or platform version has been updated in the service definition, you must also
specify those details in the AppSpec file. You can also specify the Lambda functions to run
during the deployment lifecycle events. The Lambda functions allow you to run tests and return
metrics during the deployment. For more information, see AppSpec File Reference in the AWS
CodeDeploy User Guide.

Considerations

Consider the following when using the blue/green deployment type:

• When an Amazon ECS service using the blue/green deployment type is initially created, an
Amazon ECS task set is created.

• You must configure the service to use either an Application Load Balancer or Network Load
Balancer. The following are the load balancer requirements:

• You must add a production listener to the load balancer, which is used to route production
traffic.

• An optional test listener can be added to the load balancer, which is used to route test traffic.
If you specify a test listener, CodeDeploy routes your test traffic to the replacement task set
during a deployment.

• Both the production and test listeners must belong to the same load balancer.

Blue/green deployments 1046

https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspec-file.html

Amazon Elastic Container Service Developer Guide

• You must define a target group for the load balancer. The target group routes traffic to the
original task set in a service through the production listener.

• When a Network Load Balancer is used, only the CodeDeployDefault.ECSAllAtOnce
deployment configuration is supported.

• For services configured to use service auto scaling and the blue/green deployment type,
auto scaling is not blocked during a deployment but the deployment may fail under some
circumstances. The following describes this behavior in more detail.

• If a service is scaling and a deployment starts, the green task set is created and CodeDeploy
will wait up to an hour for the green task set to reach steady state and won't shift any traffic
until it does.

• If a service is in the process of a blue/green deployment and a scaling event occurs, traffic
will continue to shift for 5 minutes. If the service doesn't reach steady state within 5 minutes,
CodeDeploy will stop the deployment and mark it as failed.

• If a service is in the process of a blue/green deployment and a scaling event occurs, the desired
task count might be set to an unexpected value. This is caused by auto scaling considering the
running task count as current capacity, which is twice the appropriate number of tasks being
used in the desired task count calculation.

• Tasks using the Fargate launch type or the CODE_DEPLOY deployment controller types don't
support the DAEMON scheduling strategy.

• When you initially create a CodeDeploy application and deployment group, you must specify the
following:

• You must define two target groups for the load balancer. One target group should be the
initial target group defined for the load balancer when the Amazon ECS service was created.
The second target group's only requirement is that it can't be associated with a different load
balancer than the one the service uses.

• When you create a CodeDeploy deployment for an Amazon ECS service, CodeDeploy creates a
replacement task set (or green task set) in the deployment. If you added a test listener to the load
balancer, CodeDeploy routes your test traffic to the replacement task set. This is when you can
run any validation tests. Then CodeDeploy reroutes the production traffic from the original task
set to the replacement task set according to the traffic rerouting settings for the deployment
group.

Blue/green deployments 1047

Amazon Elastic Container Service Developer Guide

Required IAM permissions

Blue/green deployments are made possible by a combination of the Amazon ECS and CodeDeploy
APIs. Users must have the appropriate permissions for these services before they can use Amazon
ECS blue/green deployments in the AWS Management Console or with the AWS CLI or SDKs.

In addition to the standard IAM permissions for creating and updating services, Amazon
ECS requires the following permissions. These permissions have been added to the
AmazonECS_FullAccess IAM policy. For more information, see AmazonECS_FullAccess.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codedeploy:CreateApplication",
 "codedeploy:CreateDeployment",
 "codedeploy:CreateDeploymentGroup",
 "codedeploy:GetApplication",
 "codedeploy:GetDeployment",
 "codedeploy:GetDeploymentGroup",
 "codedeploy:ListApplications",
 "codedeploy:ListDeploymentGroups",
 "codedeploy:ListDeployments",
 "codedeploy:StopDeployment",
 "codedeploy:GetDeploymentTarget",
 "codedeploy:ListDeploymentTargets",
 "codedeploy:GetDeploymentConfig",
 "codedeploy:GetApplicationRevision",
 "codedeploy:RegisterApplicationRevision",
 "codedeploy:BatchGetApplicationRevisions",
 "codedeploy:BatchGetDeploymentGroups",
 "codedeploy:BatchGetDeployments",
 "codedeploy:BatchGetApplications",
 "codedeploy:ListApplicationRevisions",
 "codedeploy:ListDeploymentConfigs",
 "codedeploy:ContinueDeployment",
 "sns:ListTopics",
 "cloudwatch:DescribeAlarms",
 "lambda:ListFunctions"
],
 "Resource": ["*"]

Blue/green deployments 1048

Amazon Elastic Container Service Developer Guide

 }
]
}

Note

In addition to the standard Amazon ECS permissions required to run tasks and services,
users also require iam:PassRole permissions to use IAM roles for tasks.

CodeDeploy needs permissions to call Amazon ECS APIs, modify your Elastic Load Balancing,
invoke Lambda functions, and describe CloudWatch alarms, as well as permissions to modify
your service's desired count on your behalf. Before creating an Amazon ECS service that uses the
blue/green deployment type, you must create an IAM role (ecsCodeDeployRole). For more
information, see Amazon ECS CodeDeploy IAM Role.

The Create Amazon ECS service example and Update Amazon ECS service example IAM policy
examples show the permissions that are required for users to use Amazon ECS blue/green
deployments on the AWS Management Console.

Deploying an Amazon ECS service using a blue/green deployment

Learn how to create an Amazon ECS service containing a Fargate task that uses the blue/green
deployment type with the AWS CLI.

Note

Support for performing a blue/green deployment has been added for AWS
CloudFormation. For more information, see Perform Amazon ECS blue/green deployments
through CodeDeploy using AWS CloudFormation in the AWS CloudFormation User Guide.

Prerequisites

This tutorial assumes that you have completed the following prerequisites:

• The latest version of the AWS CLI is installed and configured. For more information about
installing or upgrading the AWS CLI, see Installing or updating to the latest version of the AWS
CLI.

Blue/green deployments 1049

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/blue-green.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/blue-green.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon Elastic Container Service Developer Guide

Note

You can use dual-stack service endpoints to interact with Amazon ECS from the AWS CLI,
SDKs, and the Amazon ECS API over both IPv4 and IPv6. For more information, see Using
Amazon ECS dual-stack endpoints.

• The steps in Set up to use Amazon ECS have been completed.

• Your IAM user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• You have a VPC and security group created to use. For more information, see the section called
“Create a virtual private cloud”.

• The Amazon ECS CodeDeploy IAM role is created. For more information, see Amazon ECS
CodeDeploy IAM Role.

Step 1: Create an Application Load Balancer

Amazon ECS services using the blue/green deployment type require the use of either an
Application Load Balancer or a Network Load Balancer. This tutorial uses an Application Load
Balancer.

To create an Application Load Balancer

1. Use the create-load-balancer command to create an Application Load Balancer. Specify two
subnets that aren't from the same Availability Zone as well as a security group.

aws elbv2 create-load-balancer \
 --name bluegreen-alb \
 --subnets subnet-abcd1234 subnet-abcd5678 \
 --security-groups sg-abcd1234 \
 --region us-east-1

The output includes the Amazon Resource Name (ARN) of the load balancer, with the following
format:

arn:aws:elasticloadbalancing:region:aws_account_id:loadbalancer/app/bluegreen-alb/
e5ba62739c16e642

Blue/green deployments 1050

https://docs.aws.amazon.com/cli/latest/reference/elbv2/create-load-balancer.html

Amazon Elastic Container Service Developer Guide

2. Use the create-target-group command to create a target group. This target group will route
traffic to the original task set in your service.

aws elbv2 create-target-group \
 --name bluegreentarget1 \
 --protocol HTTP \
 --port 80 \
 --target-type ip \
 --vpc-id vpc-abcd1234 \
 --region us-east-1

The output includes the ARN of the target group, with the following format:

arn:aws:elasticloadbalancing:region:aws_account_id:targetgroup/
bluegreentarget1/209a844cd01825a4

3. Use the create-listener command to create a load balancer listener with a default rule that
forwards requests to the target group.

aws elbv2 create-listener \
 --load-balancer-arn
 arn:aws:elasticloadbalancing:region:aws_account_id:loadbalancer/app/bluegreen-alb/
e5ba62739c16e642 \
 --protocol HTTP \
 --port 80 \
 --default-actions
 Type=forward,TargetGroupArn=arn:aws:elasticloadbalancing:region:aws_account_id:targetgroup/
bluegreentarget1/209a844cd01825a4 \
 --region us-east-1

The output includes the ARN of the listener, with the following format:

arn:aws:elasticloadbalancing:region:aws_account_id:listener/app/bluegreen-alb/
e5ba62739c16e642/665750bec1b03bd4

Step 2: Create an Amazon ECS cluster

Use the create-cluster command to create a cluster named tutorial-bluegreen-cluster to
use.

Blue/green deployments 1051

https://docs.aws.amazon.com/cli/latest/reference/elbv2/create-target-group.html
https://docs.aws.amazon.com/cli/latest/reference/elbv2/create-listener.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-cluster.html

Amazon Elastic Container Service Developer Guide

aws ecs create-cluster \
 --cluster-name tutorial-bluegreen-cluster \
 --region us-east-1

The output includes the ARN of the cluster, with the following format:

arn:aws:ecs:region:aws_account_id:cluster/tutorial-bluegreen-cluster

Step 3: Register a task definition

Use the register-task-definition command to register a task definition that is compatible with
Fargate. It requires the use of the awsvpc network mode. The following is the example task
definition used for this tutorial.

First, create a file named fargate-task.json with the following contents. Ensure that you use
the ARN for your task execution role. For more information, see Amazon ECS task execution IAM
role.

{
 "family": "sample-fargate",
 "networkMode": "awsvpc",
 "containerDefinitions": [
 {
 "name": "sample-app",
 "image": "public.ecr.aws/docker/library/httpd:latest",
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp"
 }
],
 "essential": true,
 "entryPoint": [
 "sh",
 "-c"
],
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #333;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>

Blue/green deployments 1052

https://docs.aws.amazon.com/cli/latest/reference/ecs/register-task-definition.html

Amazon Elastic Container Service Developer Guide

 <h2>Congratulations!</h2> <p>Your application is now running on a container in Amazon
 ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html && httpd-
foreground\""
]
 }
],
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "256",
 "memory": "512"
}

Then register the task definition using the fargate-task.json file that you created.

aws ecs register-task-definition \
 --cli-input-json file://fargate-task.json \
 --region us-east-1

Step 4: Create an Amazon ECS service

Use the create-service command to create a service.

First, create a file named service-bluegreen.json with the following contents.

{
 "cluster": "tutorial-bluegreen-cluster",
 "serviceName": "service-bluegreen",
 "taskDefinition": "tutorial-task-def",
 "loadBalancers": [
 {
 "targetGroupArn":
 "arn:aws:elasticloadbalancing:region:aws_account_id:targetgroup/
bluegreentarget1/209a844cd01825a4",
 "containerName": "sample-app",
 "containerPort": 80
 }
],
 "launchType": "FARGATE",
 "schedulingStrategy": "REPLICA",
 "deploymentController": {
 "type": "CODE_DEPLOY"
 },

Blue/green deployments 1053

https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html

Amazon Elastic Container Service Developer Guide

 "platformVersion": "LATEST",
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "ENABLED",
 "securityGroups": ["sg-abcd1234"],
 "subnets": ["subnet-abcd1234", "subnet-abcd5678"]
 }
 },
 "desiredCount": 1
}

Then create your service using the service-bluegreen.json file that you created.

aws ecs create-service \
 --cli-input-json file://service-bluegreen.json \
 --region us-east-1

The output includes the ARN of the service, with the following format:

arn:aws:ecs:region:aws_account_id:service/service-bluegreen

Obtain the DNS name of the load balancer using the following command.

 aws elbv2 describe-load-balancers --name bluegreen-alb --query
 'LoadBalancers[*].DNSName'

Enter the DNS name in your web browser and you should see a webpage that displays the sample
app with a blue background.

Step 5: Create the AWS CodeDeploy resources

Use the following steps to create your CodeDeploy application, the Application Load Balancer
target group for the CodeDeploy deployment group, and the CodeDeploy deployment group.

To create CodeDeploy resources

1. Use the create-application command to create a CodeDeploy application. Specify the ECS
compute platform.

aws deploy create-application \
 --application-name tutorial-bluegreen-app \

Blue/green deployments 1054

https://docs.aws.amazon.com/cli/latest/reference/deploy/create-application.html

Amazon Elastic Container Service Developer Guide

 --compute-platform ECS \
 --region us-east-1

The output includes the application ID, with the following format:

{
 "applicationId": "b8e9c1ef-3048-424e-9174-885d7dc9dc11"
}

2. Use the create-target-group command to create a second Application Load Balancer target
group, which will be used when creating your CodeDeploy deployment group.

aws elbv2 create-target-group \
 --name bluegreentarget2 \
 --protocol HTTP \
 --port 80 \
 --target-type ip \
 --vpc-id "vpc-0b6dd82c67d8012a1" \
 --region us-east-1

The output includes the ARN for the target group, with the following format:

arn:aws:elasticloadbalancing:region:aws_account_id:targetgroup/
bluegreentarget2/708d384187a3cfdc

3. Use the create-deployment-group command to create a CodeDeploy deployment group.

First, create a file named tutorial-deployment-group.json with the following contents.
This example uses the resource that you created. For the serviceRoleArn, specify the ARN
of your Amazon ECS CodeDeploy IAM role. For more information, see Amazon ECS CodeDeploy
IAM Role.

{
 "applicationName": "tutorial-bluegreen-app",
 "autoRollbackConfiguration": {
 "enabled": true,
 "events": ["DEPLOYMENT_FAILURE"]
 },
 "blueGreenDeploymentConfiguration": {
 "deploymentReadyOption": {
 "actionOnTimeout": "CONTINUE_DEPLOYMENT",

Blue/green deployments 1055

https://docs.aws.amazon.com/cli/latest/reference/elbv2/create-target-group.html
https://docs.aws.amazon.com/cli/latest/reference/deploy/create-deployment-group.html

Amazon Elastic Container Service Developer Guide

 "waitTimeInMinutes": 0
 },
 "terminateBlueInstancesOnDeploymentSuccess": {
 "action": "TERMINATE",
 "terminationWaitTimeInMinutes": 5
 }
 },
 "deploymentGroupName": "tutorial-bluegreen-dg",
 "deploymentStyle": {
 "deploymentOption": "WITH_TRAFFIC_CONTROL",
 "deploymentType": "BLUE_GREEN"
 },
 "loadBalancerInfo": {
 "targetGroupPairInfoList": [
 {
 "targetGroups": [
 {
 "name": "bluegreentarget1"
 },
 {
 "name": "bluegreentarget2"
 }
],
 "prodTrafficRoute": {
 "listenerArns": [
 "arn:aws:elasticloadbalancing:region:aws_account_id:listener/
app/bluegreen-alb/e5ba62739c16e642/665750bec1b03bd4"
]
 }
 }
]
 },
 "serviceRoleArn": "arn:aws:iam::aws_account_id:role/ecsCodeDeployRole",
 "ecsServices": [
 {
 "serviceName": "service-bluegreen",
 "clusterName": "tutorial-bluegreen-cluster"
 }
]
}

Then create the CodeDeploy deployment group.

Blue/green deployments 1056

Amazon Elastic Container Service Developer Guide

aws deploy create-deployment-group \
 --cli-input-json file://tutorial-deployment-group.json \
 --region us-east-1

The output includes the deployment group ID, with the following format:

{
 "deploymentGroupId": "6fd9bdc6-dc51-4af5-ba5a-0a4a72431c88"
}

Step 6: Create and monitor a CodeDeploy deployment

Before creating a CodeDeploy deployment, update the task definition command in fargate-
task.json as follows to change the sample app background color to green.

{
 ...
 "containerDefinitions": [
 {
 ...
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #097969;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in Amazon
 ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html && httpd-
foreground\""
]
 }
],
 ...
}

Register the updated task definition using the following command.

aws ecs register-task-definition \
 --cli-input-json file://fargate-task.json \
 --region us-east-1

Blue/green deployments 1057

Amazon Elastic Container Service Developer Guide

Now, use the following steps to create and upload an application specification file (AppSpec file)
and an CodeDeploy deployment.

To create and monitor a CodeDeploy deployment

1. Create and upload an AppSpec file using the following steps.

a. Create a file named appspec.yaml with the contents of the CodeDeploy deployment
group. This example uses the updated task definition.

version: 0.0
Resources:
 - TargetService:
 Type: AWS::ECS::Service
 Properties:
 TaskDefinition: "arn:aws:ecs:region:aws_account_id:task-
definition/tutorial-task-def:2"
 LoadBalancerInfo:
 ContainerName: "sample-app"
 ContainerPort: 80
 PlatformVersion: "LATEST"

b. Use the s3 mb command to create an Amazon S3 bucket for the AppSpec file.

aws s3 mb s3://tutorial-bluegreen-bucket

c. Use the s3 cp command to upload the AppSpec file to the Amazon S3 bucket.

aws s3 cp ./appspec.yaml s3://tutorial-bluegreen-bucket/appspec.yaml

2. Create the CodeDeploy deployment using the following steps.

a. Create a file named create-deployment.json with the contents of the CodeDeploy
deployment. This example uses the resources that you created earlier in the tutorial.

{
 "applicationName": "tutorial-bluegreen-app",
 "deploymentGroupName": "tutorial-bluegreen-dg",
 "revision": {
 "revisionType": "S3",
 "s3Location": {
 "bucket": "tutorial-bluegreen-bucket",

Blue/green deployments 1058

https://docs.aws.amazon.com/cli/latest/reference/s3/mb.html
https://docs.aws.amazon.com/cli/latest/reference/s3/cp.html

Amazon Elastic Container Service Developer Guide

 "key": "appspec.yaml",
 "bundleType": "YAML"
 }
 }
}

b. Use the create-deployment command to create the deployment.

aws deploy create-deployment \
 --cli-input-json file://create-deployment.json \
 --region us-east-1

The output includes the deployment ID, with the following format:

{
 "deploymentId": "d-RPCR1U3TW"
}

3. Use the get-deployment-target command to get the details of the deployment, specifying the
deploymentId from the previous output.

aws deploy get-deployment-target \
--deployment-id "d-IMJU3A8TW" \
--target-id tutorial-bluegreen-cluster:service-bluegreen \
--region us-east-1

Initially, the deployment status is InProgress. Traffic is directed to the original task set,
which has a taskSetLabel of BLUE, a status of PRIMARY, and a trafficWeight of
100.0. The replacement task set has a taskSetLabel of GREEN, a status of ACTIVE, and
a trafficWeight of 0.0. The web browser you entered the DNS name in still displays the
sample app with a blue background.

{
"deploymentTarget": {
"deploymentTargetType": "ECSTarget",
"ecsTarget": {
 "deploymentId": "d-RPCR1U3TW",
 "targetId": "tutorial-bluegreen-cluster:service-bluegreen",
 "targetArn": "arn:aws:ecs:region:aws_account_id:service/service-bluegreen",
 "lastUpdatedAt": "2023-08-10T12:07:24.797000-05:00",
 "lifecycleEvents": [

Blue/green deployments 1059

https://docs.aws.amazon.com/cli/latest/reference/deploy/create-deployment.html
https://docs.aws.amazon.com/cli/latest/reference/deploy/get-deployment-target.html

Amazon Elastic Container Service Developer Guide

 {
 "lifecycleEventName": "BeforeInstall",
 "startTime": "2023-08-10T12:06:22.493000-05:00",
 "endTime": "2023-08-10T12:06:22.790000-05:00",
 "status": "Succeeded"
 },
 {
 "lifecycleEventName": "Install",
 "startTime": "2023-08-10T12:06:22.936000-05:00",
 "status": "InProgress"
 },
 {
 "lifecycleEventName": "AfterInstall",
 "status": "Pending"
 },
 {
 "lifecycleEventName": "BeforeAllowTraffic",
 "status": "Pending"
 },
 {
 "lifecycleEventName": "AllowTraffic",
 "status": "Pending"
 },
 {
 "lifecycleEventName": "AfterAllowTraffic",
 "status": "Pending"
 }
],
 "status": "InProgress",
 "taskSetsInfo": [
 {
 "identifer": "ecs-svc/9223370493423413672",
 "desiredCount": 1,
 "pendingCount": 0,
 "runningCount": 1,
 "status": "ACTIVE",
 "trafficWeight": 0.0,
 "targetGroup": {
 "name": "bluegreentarget2"
 },
 "taskSetLabel": "Green"
 },
 {
 "identifer": "ecs-svc/9223370493425779968",

Blue/green deployments 1060

Amazon Elastic Container Service Developer Guide

 "desiredCount": 1,
 "pendingCount": 0,
 "runningCount": 1,
 "status": "PRIMARY",
 "trafficWeight": 100.0,
 "targetGroup": {
 "name": "bluegreentarget1"
 },
 "taskSetLabel": "Blue"
 }
]
}
}
}

Continue to retrieve the deployment details using the command until the deployment status
is Succeeded, as shown in the following output. Traffic is now redirected to the replacement
task set, which now has a status of PRIMARY and a trafficWeight of 100.0. Refresh the
web browser you entered the load balancer DNS name in, and you should now see the sample
app with a green background.

{
"deploymentTarget": {
"deploymentTargetType": "ECSTarget",
"ecsTarget": {
 "deploymentId": "d-RPCR1U3TW",
 "targetId": "tutorial-bluegreen-cluster:service-bluegreen",
 "targetArn": "arn:aws:ecs:region:aws_account_id:service/service-bluegreen",
 "lastUpdatedAt": "2023-08-10T12:07:24.797000-05:00",
 "lifecycleEvents": [
 {
 "lifecycleEventName": "BeforeInstall",
 "startTime": "2023-08-10T12:06:22.493000-05:00",
 "endTime": "2023-08-10T12:06:22.790000-05:00",
 "status": "Succeeded"
 },
 {
 "lifecycleEventName": "Install",
 "startTime": "2023-08-10T12:06:22.936000-05:00",
 "endTime": "2023-08-10T12:08:25.939000-05:00",
 "status": "Succeeded"
 },

Blue/green deployments 1061

Amazon Elastic Container Service Developer Guide

 {
 "lifecycleEventName": "AfterInstall",
 "startTime": "2023-08-10T12:08:26.089000-05:00",
 "endTime": "2023-08-10T12:08:26.403000-05:00",
 "status": "Succeeded"
 },
 {
 "lifecycleEventName": "BeforeAllowTraffic",
 "startTime": "2023-08-10T12:08:26.926000-05:00",
 "endTime": "2023-08-10T12:08:27.256000-05:00",
 "status": "Succeeded"
 },
 {
 "lifecycleEventName": "AllowTraffic",
 "startTime": "2023-08-10T12:08:27.416000-05:00",
 "endTime": "2023-08-10T12:08:28.195000-05:00",
 "status": "Succeeded"
 },
 {
 "lifecycleEventName": "AfterAllowTraffic",
 "startTime": "2023-08-10T12:08:28.715000-05:00",
 "endTime": "2023-08-10T12:08:28.994000-05:00",
 "status": "Succeeded"
 }
],
 "status": "Succeeded",
 "taskSetsInfo": [
 {
 "identifer": "ecs-svc/9223370493425779968",
 "desiredCount": 1,
 "pendingCount": 0,
 "runningCount": 1,
 "status": "ACTIVE",
 "trafficWeight": 0.0,
 "targetGroup": {
 "name": "bluegreentarget1"
 },
 "taskSetLabel": "Blue"
 },
 {
 "identifer": "ecs-svc/9223370493423413672",
 "desiredCount": 1,
 "pendingCount": 0,
 "runningCount": 1,

Blue/green deployments 1062

Amazon Elastic Container Service Developer Guide

 "status": "PRIMARY",
 "trafficWeight": 100.0,
 "targetGroup": {
 "name": "bluegreentarget2"
 },
 "taskSetLabel": "Green"
 }
]
}
}
}

Step 7: Clean up

When you have finished this tutorial, clean up the resources associated with it to avoid incurring
charges for resources that you aren't using.

Cleaning up the tutorial resources

1. Use the delete-deployment-group command to delete the CodeDeploy deployment group.

aws deploy delete-deployment-group \
 --application-name tutorial-bluegreen-app \
 --deployment-group-name tutorial-bluegreen-dg \
 --region us-east-1

2. Use the delete-application command to delete the CodeDeploy application.

aws deploy delete-application \
 --application-name tutorial-bluegreen-app \
 --region us-east-1

3. Use the delete-service command to delete the Amazon ECS service. Using the --force flag
allows you to delete a service even if it has not been scaled down to zero tasks.

aws ecs delete-service \
 --service arn:aws:ecs:region:aws_account_id:service/service-bluegreen \
 --force \
 --region us-east-1

4. Use the delete-cluster command to delete the Amazon ECS cluster.

Blue/green deployments 1063

https://docs.aws.amazon.com/cli/latest/reference/deploy/delete-deployment-group.html
https://docs.aws.amazon.com/cli/latest/reference/deploy/delete-application.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/delete-service.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/delete-cluster.html

Amazon Elastic Container Service Developer Guide

aws ecs delete-cluster \
 --cluster tutorial-bluegreen-cluster \
 --region us-east-1

5. Use the s3 rm command to delete the AppSpec file from the Amazon S3 bucket.

aws s3 rm s3://tutorial-bluegreen-bucket/appspec.yaml

6. Use the s3 rb command to delete the Amazon S3 bucket.

aws s3 rb s3://tutorial-bluegreen-bucket

7. Use the delete-load-balancer command to delete the Application Load Balancer.

aws elbv2 delete-load-balancer \
 --load-balancer-arn
 arn:aws:elasticloadbalancing:region:aws_account_id:loadbalancer/app/bluegreen-alb/
e5ba62739c16e642 \
 --region us-east-1

8. Use the delete-target-group command to delete the two Application Load Balancer target
groups.

aws elbv2 delete-target-group \
 --target-group-arn
 arn:aws:elasticloadbalancing:region:aws_account_id:targetgroup/
bluegreentarget1/209a844cd01825a4 \
 --region us-east-1

aws elbv2 delete-target-group \
 --target-group-arn
 arn:aws:elasticloadbalancing:region:aws_account_id:targetgroup/
bluegreentarget2/708d384187a3cfdc \
 --region us-east-1

Deploy Amazon ECS services using a third-party controller

The external deployment type allows you to use any third-party deployment controller for full
control over the deployment process for an Amazon ECS service. The details for your service are

External deployments 1064

https://docs.aws.amazon.com/cli/latest/reference/s3/rm.html
https://docs.aws.amazon.com/cli/latest/reference/s3/rb.html
https://docs.aws.amazon.com/cli/latest/reference/elbv2/delete-load-balancer.html
https://docs.aws.amazon.com/cli/latest/reference/elbv2/delete-target-group.html

Amazon Elastic Container Service Developer Guide

managed by either the service management API actions (CreateService, UpdateService, and
DeleteService) or the task set management API actions (CreateTaskSet, UpdateTaskSet,
UpdateServicePrimaryTaskSet, and DeleteTaskSet). Each API action manages a subset of
the service definition parameters.

The UpdateService API action updates the desired count and health check grace period
parameters for a service. If the launch type, platform version, load balancer details, network
configuration, or task definition need to be updated, you must create a new task set.

The UpdateTaskSet API action updates only the scale parameter for a task set.

The UpdateServicePrimaryTaskSet API action modifies which task set in a service is the
primary task set. When you call the DescribeServices API action, it returns all fields specified
for a primary task set. If the primary task set for a service is updated, any task set parameter values
that exist on the new primary task set that differ from the old primary task set in a service are
updated to the new value when a new primary task set is defined. If no primary task set is defined
for a service, when describing the service, the task set fields are null.

External deployment considerations

Consider the following when using the external deployment type:

• The supported load balancer types are either an Application Load Balancer or a Network Load
Balancer.

• The Fargate launch type or EXTERNAL deployment controller types don't support the DAEMON
scheduling strategy.

External deployment workflow

The following is the basic workflow for managing an external deployment on Amazon ECS.

To manage an Amazon ECS service using an external deployment controller

1. Create an Amazon ECS service. The only required parameter is the service name. You can
specify the following parameters when creating a service using an external deployment
controller. All other service parameters are specified when creating a task set within the
service.

External deployments 1065

Amazon Elastic Container Service Developer Guide

serviceName

Type: String

Required: Yes

The name of your service. Up to 255 letters (uppercase and lowercase), numbers, hyphens,
and underscores are allowed. Service names must be unique within a cluster, but you
can have similarly named services in multiple clusters within a Region or across multiple
Regions.

desiredCount

The number of instantiations of the specified task set task definition to place and keep
running within the service.

deploymentConfiguration

Optional deployment parameters that control how many tasks run during a deployment
and the ordering of stopping and starting tasks.

tags

Type: Array of objects

Required: No

The metadata that you apply to the service to help you categorize and organize them. Each
tag consists of a key and an optional value, both of which you define. When a service is
deleted, the tags are deleted as well. A maximum of 50 tags can be applied to the service.
For more information, see Tagging Amazon ECS resources.

key

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Required: No

One part of a key-value pair that make up a tag. A key is a general label that acts like a
category for more specific tag values.

External deployments 1066

Amazon Elastic Container Service Developer Guide

value

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: No

The optional part of a key-value pair that make up a tag. A value acts as a descriptor
within a tag category (key).

enableECSManagedTags

Specifies whether to use Amazon ECS managed tags for the tasks within the service. For
more information, see Use tags for billing.

propagateTags

Type: String

Valid values: TASK_DEFINITION | SERVICE

Required: No

Specifies whether to copy the tags from the task definition or the service to the tasks in
the service. If no value is specified, the tags are not copied. Tags can only be copied to the
tasks within the service during service creation. To add tags to a task after service creation
or task creation, use the TagResource API action.

schedulingStrategy

The scheduling strategy to use. Services using an external deployment controller support
only the REPLICA scheduling strategy.

placementConstraints

An array of placement constraint objects to use for tasks in your service. You can specify
a maximum of 10 constraints per task (this limit includes constraints in the task definition
and those specified at run time). If you are using the Fargate launch type, task placement
constraints aren't supported.

External deployments 1067

Amazon Elastic Container Service Developer Guide

placementStrategy

The placement strategy objects to use for tasks in your service. You can specify a maximum
of four strategy rules per service.

The following is an example service definition for creating a service using an external
deployment controller.

{
 "cluster": "",
 "serviceName": "",
 "desiredCount": 0,
 "role": "",
 "deploymentConfiguration": {
 "maximumPercent": 0,
 "minimumHealthyPercent": 0
 },
 "placementConstraints": [
 {
 "type": "distinctInstance",
 "expression": ""
 }
],
 "placementStrategy": [
 {
 "type": "binpack",
 "field": ""
 }
],
 "schedulingStrategy": "REPLICA",
 "deploymentController": {
 "type": "EXTERNAL"
 },
 "tags": [
 {
 "key": "",
 "value": ""
 }
],
 "enableECSManagedTags": true,
 "propagateTags": "TASK_DEFINITION"

External deployments 1068

Amazon Elastic Container Service Developer Guide

}

2. Create an initial task set. The task set contains the following details about your service:

taskDefinition

The task definition for the tasks in the task set to use.

launchType

Type: String

Valid values: EC2 | FARGATE | EXTERNAL

Required: No

The launch type on which to run your service. If a launch type is not specified, the default
capacityProviderStrategy is used by default. For more information, see Amazon ECS
launch types.

If a launchType is specified, the capacityProviderStrategy parameter must be
omitted.

platformVersion

Type: String

Required: No

The platform version on which your tasks in the service are running. A platform version
is only specified for tasks using the Fargate launch type. If one is not specified, the latest
version (LATEST) is used by default.

AWS Fargate platform versions are used to refer to a specific runtime environment for the
Fargate task infrastructure. When specifying the LATEST platform version when running
a task or creating a service, you get the most current platform version available for your
tasks. When you scale up your service, those tasks receive the platform version that was
specified on the service's current deployment. For more information, see Fargate platform
versions for Amazon ECS.

External deployments 1069

Amazon Elastic Container Service Developer Guide

Note

Platform versions are not specified for tasks using the EC2 launch type.

loadBalancers

A load balancer object representing the load balancer to use with your service. When using
an external deployment controller, only Application Load Balancers and Network Load
Balancers are supported. If you're using an Application Load Balancer, only one Application
Load Balancer target group is allowed per task set.

The following snippet shows an example loadBalancer object to use.

"loadBalancers": [
 {
 "targetGroupArn": "",
 "containerName": "",
 "containerPort": 0
 }
]

Note

When specifying a loadBalancer object, you must specify a targetGroupArn
and omit the loadBalancerName parameters.

networkConfiguration

The network configuration for the service. This parameter is required for task definitions
that use the awsvpc network mode to receive their own elastic network interface, and it's
not supported for other network modes. For more information about networking for the
Fargate launch type, see Amazon ECS task networking options for the Fargate launch type.

serviceRegistries

The details of the service discovery registries to assign to this service. For more
information, see Use service discovery to connect Amazon ECS services with DNS names.

External deployments 1070

Amazon Elastic Container Service Developer Guide

scale

A floating-point percentage of the desired number of tasks to place and keep running
in the task set. The value is specified as a percent total of a service's desiredCount.
Accepted values are numbers between 0 and 100.

The following is a JSON example for creating a task set for an external deployment controller.

{
 "service": "",
 "cluster": "",
 "externalId": "",
 "taskDefinition": "",
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "subnets": [
 ""
],
 "securityGroups": [
 ""
],
 "assignPublicIp": "DISABLED"
 }
 },
 "loadBalancers": [
 {
 "targetGroupArn": "",
 "containerName": "",
 "containerPort": 0
 }
],
 "serviceRegistries": [
 {
 "registryArn": "",
 "port": 0,
 "containerName": "",
 "containerPort": 0
 }
],
 "launchType": "EC2",
 "capacityProviderStrategy": [
 {

External deployments 1071

Amazon Elastic Container Service Developer Guide

 "capacityProvider": "",
 "weight": 0,
 "base": 0
 }
],
 "platformVersion": "",
 "scale": {
 "value": null,
 "unit": "PERCENT"
 },
 "clientToken": ""
}

3. When service changes are needed, use the UpdateService, UpdateTaskSet, or
CreateTaskSet API action depending on which parameters you're updating. If you created a
task set, use the scale parameter for each task set in a service to determine how many tasks
to keep running in the service. For example, if you have a service that contains tasksetA and
you create a tasksetB, you might test the validity of tasksetB before wanting to transition
production traffic to it. You could set the scale for both task sets to 100, and when you
were ready to transition all production traffic to tasksetB, you could update the scale for
tasksetA to 0 to scale it down.

Use load balancing to distribute Amazon ECS service traffic

Your service can optionally be configured to use Elastic Load Balancing to distribute traffic evenly
across the tasks in your service.

Note

When you use tasks sets, all the tasks in the set must all be configured to use Elastic Load
Balancing or to not use Elastic Load Balancing.

Amazon ECS services hosted on AWS Fargate support the Application Load Balancers, Network
Load Balancers, and Gateway Load Balancers. Use the following table to learn about what type of
load balancer to use.

Use load balancing to distribute service traffic 1072

Amazon Elastic Container Service Developer Guide

Load Balancer type Use in these cases

Application Load Balancer Route HTTP/HTTPS (or layer
7) traffic.

Application Load Balancers
offer several features that
make them attractive for use
with Amazon ECS services:

• Each service can serve
traffic from multiple load
balancers and expose
multiple load balanced
ports by specifying multiple
target groups.

• They are supported by
tasks hosted on both
Fargate and EC2 instances.

• Application Load Balancers
allow containers to use
dynamic host port mapping
(so that multiple tasks
from the same service
are allowed per container
instance).

• Application Load Balancers
support path-based routing
and priority rules (so that
multiple services can use
the same listener port on
a single Application Load
Balancer).

Network Load Balancer Route TCP or UDP (or layer 4)
traffic.

Use load balancing to distribute service traffic 1073

Amazon Elastic Container Service Developer Guide

Load Balancer type Use in these cases

Gateway Load Balancer Route TCP or UDP (or layer 4)
traffic.

Use virtual appliances, such as
firewalls, intrusion detection
and prevention systems,
and deep packet inspection
systems.

We recommend that you use Application Load Balancers for your Amazon ECS services so that
you can take advantage of these latest features, unless your service requires a feature that is only
available with Network Load Balancers or Gateway Load Balancers. For more information about
Elastic Load Balancing and the differences between the load balancer types, see the Elastic Load
Balancing User Guide.

With your load balancer, you pay only for what you use. For more information, see Elastic Load
Balancing pricing.

Optimize load balancer health check parameters for Amazon ECS

Load balancers route requests only to the healthy targets in the Availability Zones for the load
balancer. Each target is registered to a target group. The load balancer checks the health of each
target, using the target group health check settings. After you register the target, it must pass one
health check to be considered healthy. Amazon ECS monitors the load balancer. The load balancer
periodically sends health checks to the Amazon ECS container. The Amazon ECS agent monitors,
and waits for the load balancer to report on the container health. It does this before it considers
the container to be in a healthy status.

Two Elastic Load Balancing health check parameters affect deployment speed:

• Health check interval: Determines the approximate amount of time, in seconds, between health
checks of an individual container. By default, the load balancer checks every 30 seconds.

This parameter is named:

• HealthCheckIntervalSeconds in the Elastic Load Balancing API

• Interval on the Amazon EC2 console

Use load balancing to distribute service traffic 1074

https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
https://aws.amazon.com/elasticloadbalancing/pricing/
https://aws.amazon.com/elasticloadbalancing/pricing/

Amazon Elastic Container Service Developer Guide

• Healthy threshold count: Determines the number of consecutive health check successes required
before considering an unhealthy container healthy. By default, the load balancer requires five
passing health checks before it reports that the target container is healthy.

This parameter is named:

• HealthyThresholdCount in the Elastic Load Balancing API

• Healthy threshold on the Amazon EC2 console

Important: For newly registered targets, only a single successful health check is required to
consider the target healthy, regardless of the healthy threshold count setting. The healthy
threshold count only applies when a target is transitioning from an unhealthy state back to a
healthy state.

With the default settings, if a target becomes unhealthy and then recovers, the total time to
determine the health of a container is two minutes and 30 seconds (30 seconds * 5 = 150
seconds).

You can speed up the health-check process if your service starts up and stabilizes in under 10
seconds. To speed up the process, reduce the health check interval and the healthy threshold
count.

• HealthCheckIntervalSeconds (Elastic Load Balancing API name) or Interval (Amazon EC2
console name): 5

• HealthyThresholdCount (Elastic Load Balancing API name) or Healthy threshold (Amazon
EC2 console name): 2

With this setting, the health-check process takes 10 seconds compared to the default of two
minutes and 30 seconds.

For more information about the Elastic Load Balancing health check parameters, see Health checks
for your target groups in the Elastic Load Balancing User Guide.

Optimize load balancer connection draining parameters for Amazon ECS

To allow for optimization, clients maintain a keep alive connection to the container service. This
allows subsequent requests from that client to reuse the existing connection. When you want to
stop traffic to a container, you notify the load balancer. The load balancer periodically checks to see
if the client closed the keep alive connection. The Amazon ECS agent monitors the load balancer,

Use load balancing to distribute service traffic 1075

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/target-group-health-checks.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/target-group-health-checks.html

Amazon Elastic Container Service Developer Guide

and waits for the load balancer to report that the keep alive connection is closed (the target is in an
UNUSED state).

The amount of time that the load balancer waits to move the target to the UNUSED state is the
deregistration delay. You can configure the following load balancer parameter to speed up your
deployments.

• deregistration_delay.timeout_seconds: 300 (default)

When you have a service with a response time that's under 1 second, set the parameter to the
following value to have the load balancer only wait 5 seconds before it breaks the connection
between the client and the back-end service:

• deregistration_delay.timeout_seconds: 5

Note

Do not set the value to 5 seconds when you have a service with long-lived requests, such as
slow file uploads or streaming connections.

SIGTERM responsiveness

Amazon ECS first sends a SIGTERM signal to the task to notify the application needs to finish and
shut down. Then, Amazon ECS sends a SIGKILL message. When applications ignore the SIGTERM,
the Amazon ECS service must wait to send the SIGKILL signal to terminate the process.

The amount of time that Amazon ECS waits to send the SIGKILL message is determined by the
following Amazon ECS agent option:

• ECS_CONTAINER_STOP_TIMEOUT: 30 (default)

For more information about the container agent parameter, see Amazon ECS Container Agent on
GitHub.

To speed up the waiting period, set the Amazon ECS agent parameter to the following value:

• ECS_CONTAINER_STOP_TIMEOUT: 2

Use load balancing to distribute service traffic 1076

https://github.com/aws/amazon-ecs-agent/blob/master/README.md

Amazon Elastic Container Service Developer Guide

If your application takes more than 1 second, multiply the value by 2 and use that number as the
value.

In this case, the Amazon ECS waits 2 seconds for the container to shut down, and then Amazon ECS
sends a SIGKILL message when the application didn't stop.

You can also modify the application code to trap the SIGTERM signal and react to it. The following
is example in JavaScript:

process.on('SIGTERM', function() {
 server.close();
})

This code causes the HTTP server to stop listening for any new requests, finish answering any in-
flight requests, and then the Node.js process terminates because the event loop has nothing to
do. Given this, if it takes the process only 500 ms to finish its in-flight requests, it terminates early
without having to wait out the stop timeout and get sent a SIGKILL.

Use an Application Load Balancer for Amazon ECS

An Application Load Balancer makes routing decisions at the application layer (HTTP/HTTPS),
supports path-based routing, and can route requests to one or more ports on each container
instance in your cluster. Application Load Balancers support dynamic host port mapping. For
example, if your task's container definition specifies port 80 for an NGINX container port, and port
0 for the host port, then the host port is dynamically chosen from the ephemeral port range of the
container instance (such as 32768 to 61000 on the latest Amazon ECS-optimized AMI). When the
task launches, the NGINX container is registered with the Application Load Balancer as an instance
ID and port combination, and traffic is distributed to the instance ID and port corresponding to that
container. This dynamic mapping allows you to have multiple tasks from a single service on the
same container instance. For more information, see the User Guide for Application Load Balancers.

For information about the best practices for setting parameters to speed up you deployments see:

• Optimize load balancer health check parameters for Amazon ECS

• Optimize load balancer connection draining parameters for Amazon ECS

Consider the following when using Application Load Balancers with Amazon ECS:

Use load balancing to distribute service traffic 1077

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/

Amazon Elastic Container Service Developer Guide

• Amazon ECS requires the service-linked IAM role which provides the permissions needed to
register and deregister targets with your load balancer when tasks are created and stopped. For
more information, see Using service-linked roles for Amazon ECS.

• Target group must have the IP address type set to IPv4.

Although tasks support IPv6, service integration with IPv6 Elastic Load Balancing isn't supported.

• For services with tasks using the awsvpc network mode, when you create a target group for your
service, you must choose ip as the target type, not instance. This is because tasks that use
the awsvpc network mode are associated with an elastic network interface, not an Amazon EC2
instance.

• If your service requires access to multiple load balanced ports, such as port 80 and port 443 for
an HTTP/HTTPS service, you can configure two listeners. One listener is responsible for HTTPS
that forwards the request to the service, and another listener that is responsible for redirecting
HTTP requests to the appropriate HTTPS port. For more information, see Create a listener to
your Application Load Balancer in the User Guide for Application Load Balancers.

• Your load balancer subnet configuration must include all Availability Zones that your container
instances reside in.

• After you create a service, the load balancer configuration can't be changed from the AWS
Management Console. You can use the AWS Copilot, AWS CloudFormation, AWS CLI or SDK
to modify the load balancer configuration for the ECS rolling deployment controller only,
not AWS CodeDeploy blue/green or external. When you add, update, or remove a load
balancer configuration, Amazon ECS starts a new deployment with the updated Elastic Load
Balancing configuration. This causes tasks to register to and deregister from load balancers.
We recommend that you verify this on a test environment before you update the Elastic
Load Balancing configuration. For information about how to modify the configuration, see
UpdateService in the Amazon Elastic Container Service API Reference.

• If a service task fails the load balancer health check criteria, the task is stopped and restarted.
This process continues until your service reaches the number of desired running tasks.

• If you are experiencing problems with your load balancer-enabled services, see Troubleshooting
service load balancers in Amazon ECS.

• Your tasks and load balancer must be in the same VPC.

• Use a unique target group for each service.

Using the same target group for multiple services might lead to issues during service
deployments.

Use load balancing to distribute service traffic 1078

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-listener.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-listener.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html

Amazon Elastic Container Service Developer Guide

For information about how to create an Application Load Balancer, see Create an Application Load
Balancer in Application Load Balancers

Use a Network Load Balancer for Amazon ECS

A Network Load Balancer makes routing decisions at the transport layer (TCP/SSL). It can handle
millions of requests per second. After the load balancer receives a connection, it selects a target
from the target group for the default rule using a flow hash routing algorithm. It attempts to
open a TCP connection to the selected target on the port specified in the listener configuration.
It forwards the request without modifying the headers. Network Load Balancers support dynamic
host port mapping. For example, if your task's container definition specifies port 80 for an NGINX
container port, and port 0 for the host port, then the host port is dynamically chosen from the
ephemeral port range of the container instance (such as 32768 to 61000 on the latest Amazon
ECS-optimized AMI). When the task is launched, the NGINX container is registered with the
Network Load Balancer as an instance ID and port combination, and traffic is distributed to the
instance ID and port corresponding to that container. This dynamic mapping allows you to have
multiple tasks from a single service on the same container instance. For more information, see the
User Guide for Network Load Balancers.

For information about the best practices for setting parameters to speed up you deployments see:

• Optimize load balancer health check parameters for Amazon ECS

• Optimize load balancer connection draining parameters for Amazon ECS

Consider the following when using Network Load Balancers with Amazon ECS:

• Amazon ECS requires the service-linked IAM role which provides the permissions needed to
register and deregister targets with your load balancer when tasks are created and stopped. For
more information, see Using service-linked roles for Amazon ECS.

• You cannot attach more than five target groups to a service.

• For services with tasks using the awsvpc network mode, when you create a target group for your
service, you must choose ip as the target type, not instance. This is because tasks that use
the awsvpc network mode are associated with an elastic network interface, not an Amazon EC2
instance.

• Your load balancer subnet configuration must include all Availability Zones that your container
instances reside in.

Use load balancing to distribute service traffic 1079

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-application-load-balancer.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-application-load-balancer.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/

Amazon Elastic Container Service Developer Guide

• After you create a service, the load balancer configuration can't be changed from the AWS
Management Console. You can use the AWS Copilot, AWS CloudFormation, AWS CLI or SDK
to modify the load balancer configuration for the ECS rolling deployment controller only,
not AWS CodeDeploy blue/green or external. When you add, update, or remove a load
balancer configuration, Amazon ECS starts a new deployment with the updated Elastic Load
Balancing configuration. This causes tasks to register to and deregister from load balancers.
We recommend that you verify this on a test environment before you update the Elastic
Load Balancing configuration. For information about how to modify the configuration, see
UpdateService in the Amazon Elastic Container Service API Reference.

• If a service task fails the load balancer health check criteria, the task is stopped and restarted.
This process continues until your service reaches the number of desired running tasks.

• When you use a Gateway Load Balancer configured with IP addresses as targets and Client
IP Preservation off, requests are seen as coming from the Gateway Load Balancers private IP
address. This means that services behind an Gateway Load Balancer are effectively open to the
world as soon as you allow incoming requests and health checks in the target security group.

• For Fargate tasks, you must use platform version 1.4.0 (Linux) or 1.0.0 (Windows).

• If you are experiencing problems with your load balancer-enabled services, see Troubleshooting
service load balancers in Amazon ECS.

• Your tasks and load balancer must be in the same VPC.

• The Network Load Balancer client IP address preservation is compatible with Fargate targets.

• Use a unique target group for each service.

Using the same target group for multiple services might lead to issues during service
deployments.

For information about how to create a Network Load Balancer, see Create a Network Load Balancer
in Network Load Balancers

Important

If your service's task definition uses the awsvpc network mode (which is required for
the Fargate launch type), you must choose ip as the target type, not instance. This is
because tasks that use the awsvpc network mode are associated with an elastic network
interface, not an Amazon EC2 instance.

Use load balancing to distribute service traffic 1080

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/create-network-load-balancer.html

Amazon Elastic Container Service Developer Guide

You cannot register instances by instance ID if they have the following instance types: C1,
CC1, CC2, CG1, CG2, CR1, G1, G2, HI1, HS1, M1, M2, M3, and T1. You can register instances
of these types by IP address.

Use a Gateway Load Balancer for Amazon ECS

A Gateway Load Balancer operates at the third layer of the Open Systems Interconnection (OSI)
model, the network layer. It listens for all IP packets across all ports and forwards traffic to the
target group that's specified in the listener rule. It maintains stickiness of flows to a specific target
appliance using 5-tuple (for TCP/UDP flows) or 3-tuple (for non-TCP/UDP flows). For example,
if your task's container definition specifies port 80 for an NGINX container port, and port 0 for
the host port, then the host port is dynamically chosen from the ephemeral port range of the
container instance (such as 32768 to 61000 on the latest Amazon ECS-optimized AMI). When the
task is launched, the NGINX container is registered with the Gateway Load Balancer as an instance
ID and port combination, and traffic is distributed to the instance ID and port corresponding to that
container. This dynamic mapping allows you to have multiple tasks from a single service on the
same container instance. For more information, see What is a Gateway Load Balancer in Gateway
Load Balancers.

For information about the best practices for setting parameters to speed up you deployments see:

• Optimize load balancer health check parameters for Amazon ECS

• Optimize load balancer connection draining parameters for Amazon ECS

Consider the following when using Gateway Load Balancers with Amazon ECS:

• Amazon ECS requires the service-linked IAM role which provides the permissions needed to
register and deregister targets with your load balancer when tasks are created and stopped. For
more information, see Using service-linked roles for Amazon ECS.

• For services with tasks using the awsvpc network mode, when you create a target group for your
service, you must choose ip as the target type, not instance. This is because tasks that use
the awsvpc network mode are associated with an elastic network interface, not an Amazon EC2
instance.

• For services with tasks that use a network mode other than awsvpc, Gateway Load Balancers are
not supported.

Use load balancing to distribute service traffic 1081

https://docs.aws.amazon.com/elasticloadbalancing/latest/gateway/introduction.html

Amazon Elastic Container Service Developer Guide

• Your load balancer subnet configuration must include all Availability Zones that your container
instances reside in.

• After you create a service, the load balancer configuration can't be changed from the AWS
Management Console. You can use the AWS Copilot, AWS CloudFormation, AWS CLI or SDK
to modify the load balancer configuration for the ECS rolling deployment controller only,
not AWS CodeDeploy blue/green or external. When you add, update, or remove a load
balancer configuration, Amazon ECS starts a new deployment with the updated Elastic Load
Balancing configuration. This causes tasks to register to and deregister from load balancers.
We recommend that you verify this on a test environment before you update the Elastic
Load Balancing configuration. For information about how to modify the configuration, see
UpdateService in the Amazon Elastic Container Service API Reference.

• If a service task fails the load balancer health check criteria, the task is stopped and restarted.
This process continues until your service reaches the number of desired running tasks.

• When you use a Gateway Load Balancer configured with IP addresses as targets, requests are
seen as coming from the Gateway Load Balancers private IP address. This means that services
behind an Gateway Load Balancer are effectively open to the world as soon as you allow
incoming requests and health checks in the target security group.

• For Fargate tasks, you must use platform version 1.4.0 (Linux) or 1.0.0 (Windows).

• If you are experiencing problems with your load balancer-enabled services, see Troubleshooting
service load balancers in Amazon ECS.

• Your tasks and load balancer must be in the same VPC.

• Use a unique target group for each service.

Using the same target group for multiple services might lead to issues during service
deployments.

For information about how to create a Gateway Load Balancer, see Getting started with Gateway
Load Balancers in Gateway Load Balancers

Important

If your service's task definition uses the awsvpc network mode (which is required for
the Fargate launch type), you must choose ip as the target type, not instance. This is
because tasks that use the awsvpc network mode are associated with an elastic network
interface, not an Amazon EC2 instance.

Use load balancing to distribute service traffic 1082

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/gateway/getting-started.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/gateway/getting-started.html

Amazon Elastic Container Service Developer Guide

You cannot register instances by instance ID if they have the following instance types: C1,
CC1, CC2, CG1, CG2, CR1, G1, G2, HI1, HS1, M1, M2, M3, and T1. You can register instances
of these types by IP address.

Registering multiple target groups with an Amazon ECS service

Your Amazon ECS service can serve traffic from multiple load balancers and expose multiple load
balanced ports when you specify multiple target groups in a service definition.

To create a service specifying multiple target groups, you must create the service using the Amazon
ECS API, SDK, AWS CLI, or an AWS CloudFormation template. After the service is created, you can
view the service and the target groups registered to it with the AWS Management Console. You
must use UpdateService to modify the load balancer configuration of an existing service.

Multiple target groups can be specified in a service definition using the following format. For the
full syntax of a service definition, see Service definition template.

"loadBalancers":[
 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_1/1234567890123456",
 "containerName":"container_name",
 "containerPort":container_port
 },
 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_2/6543210987654321",
 "containerName":"container_name",
 "containerPort":container_port
 }
]

Considerations

The following should be considered when you specify multiple target groups in a service definition.

• For services that use an Application Load Balancer or Network Load Balancer, you cannot attach
more than five target groups to a service.

Use load balancing to distribute service traffic 1083

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html

Amazon Elastic Container Service Developer Guide

• Specifying multiple target groups in a service definition is only supported under the following
conditions:

• The service must use either an Application Load Balancer or Network Load Balancer.

• The service must use the rolling update (ECS) deployment controller type.

• Specifying multiple target groups is supported for services containing tasks using both the
Fargate and EC2 launch types.

• When creating a service that specifies multiple target groups, the Amazon ECS service-linked
role must be created. The role is created by omitting the role parameter in API requests, or the
Role property in AWS CloudFormation. For more information, see Using service-linked roles for
Amazon ECS.

Example service definitions

Following are a few example use cases for specifying multiple target groups in a service definition.
For the full syntax of a service definition, see Service definition template.

Having separate load balancers for internal and external traffic

In the following use case, a service uses two separate load balancers, one for internal traffic and a
second for internet-facing traffic, for the same container and port.

"loadBalancers":[
 //Internal ELB
 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_1/1234567890123456",
 "containerName":"nginx",
 "containerPort":8080
 },
 //Internet-facing ELB
 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_2/6543210987654321",
 "containerName":"nginx",
 "containerPort":8080
 }
]

Use load balancing to distribute service traffic 1084

Amazon Elastic Container Service Developer Guide

Exposing multiple ports from the same container

In the following use case, a service uses one load balancer but exposes multiple ports from the
same container. For example, a Jenkins container might expose port 8080 for the Jenkins web
interface and port 50000 for the API.

"loadBalancers":[
 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_1/1234567890123456",
 "containerName":"jenkins",
 "containerPort":8080
 },
 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_2/6543210987654321",
 "containerName":"jenkins",
 "containerPort":50000
 }
]

Exposing ports from multiple containers

In the following use case, a service uses one load balancer and two target groups to expose ports
from separate containers.

"loadBalancers":[
 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_1/1234567890123456",
 "containerName":"webserver",
 "containerPort":80
 },
 {

 "targetGroupArn":"arn:aws:elasticloadbalancing:region:123456789012:targetgroup/
target_group_name_2/6543210987654321",
 "containerName":"database",
 "containerPort":3306

Use load balancing to distribute service traffic 1085

Amazon Elastic Container Service Developer Guide

 }
]

Automatically scale your Amazon ECS service

Automatic scaling is the ability to increase or decrease the desired number of tasks in your Amazon
ECS service automatically. Amazon ECS leverages the Application Auto Scaling service to provide
this functionality. For more information, see the Application Auto Scaling User Guide.

Amazon ECS publishes CloudWatch metrics with your service’s average CPU and memory usage.
For more information, see Amazon ECS service utilization metrics. You can use these and other
CloudWatch metrics to scale out your service (add more tasks) to deal with high demand at
peak times, and to scale in your service (run fewer tasks) to reduce costs during periods of low
utilization.

Amazon ECS Service Auto Scaling supports the following types of automatic scaling:

• Use a target metric to scale Amazon ECS services— Increase or decrease the number of tasks
that your service runs based on a target value for a specific metric. This is similar to the way
that your thermostat maintains the temperature of your home. You select temperature and the
thermostat does the rest.

• Use predefined increments based on CloudWatch alarms to scale Amazon ECS services— Increase
or decrease the number of tasks that your service runs based on a set of scaling adjustments,
known as step adjustments, that vary based on the size of the alarm breach.

• Use scheduled actions to scale Amazon ECS services—Increase or decrease the number of tasks
that your service runs based on the date and time.

• Use historical patterns to scale Amazon ECS services with predictive scaling—Increase or
decrease the number of tasks that your service runs based on historical load data analytics to
detect daily or weekly patterns in traffic flows.

Considerations

When using scaling policies, consider the following:

• Amazon ECS sends metrics in 1-minute intervals to CloudWatch. Metrics are not available until
the clusters and services send the metrics to CloudWatch, and you cannot create CloudWatch
alarms for metrics that do not exist.

Service auto scaling 1086

https://docs.aws.amazon.com/autoscaling/application/userguide/what-is-application-auto-scaling.html

Amazon Elastic Container Service Developer Guide

• The scaling policies support a cooldown period. This is the number of seconds to wait for a
previous scaling activity to take effect.

• For scale-out events, the intention is to continuously (but not excessively) scale out. After
Service Auto Scaling successfully scales out using a scaling policy, it starts to calculate the
cooldown time. The scaling policy won't increase the desired capacity again unless either a
larger scale out is initiated or the cooldown period ends. While the scale-out cooldown period
is in effect, the capacity added by the initiating scale-out activity is calculated as part of the
desired capacity for the next scale-out activity.

• For scale-in events, the intention is to scale in conservatively to protect your application's
availability, so scale-in activities are blocked until the cooldown period has expired. However,
if another alarm initiates a scale-out activity during the scale-in cooldown period, Service Auto
Scaling scales out the target immediately. In this case, the scale-in cooldown period stops and
doesn't complete.

• The service scheduler respects the desired count at all times, but as long as you have active
scaling policies and alarms on a service, Service Auto Scaling could change a desired count that
was manually set by you.

• If a service's desired count is set below its minimum capacity value, and an alarm initiates a scale-
out activity, Service Auto Scaling scales the desired count up to the minimum capacity value and
then continues to scale out as required, based on the scaling policy associated with the alarm.
However, a scale-in activity does not adjust the desired count, because it is already below the
minimum capacity value.

• If a service's desired count is set above its maximum capacity value, and an alarm initiates a scale
in activity, Service Auto Scaling scales the desired count out to the maximum capacity value and
then continues to scale in as required, based on the scaling policy associated with the alarm.
However, a scale-out activity does not adjust the desired count, because it is already above the
maximum capacity value.

• During scaling activities, the actual running task count in a service is the value that Service
Auto Scaling uses as its starting point, as opposed to the desired count. This is what processing
capacity is supposed to be. This prevents excessive (runaway) scaling that might not be satisfied,
for example, if there aren't enough container instance resources to place the additional tasks. If
the container instance capacity is available later, the pending scaling activity may succeed, and
then further scaling activities can continue after the cooldown period.

• If you want your task count to scale to zero when there's no work to be done, set a minimum
capacity of 0. With target tracking scaling policies, when actual capacity is 0 and the metric
indicates that there is workload demand, Service Auto Scaling waits for one data point to be sent

Service auto scaling 1087

Amazon Elastic Container Service Developer Guide

before scaling out. In this case, it scales out by the minimum possible amount as a starting point
and then resumes scaling based on the actual running task count.

• Application Auto Scaling turns off scale-in processes while Amazon ECS deployments are
in progress. However, scale-out processes continue to occur, unless suspended, during a
deployment. For more information, see Service auto scaling and deployments.

• You have several Application Auto Scaling options for Amazon ECS tasks. Target tracking is the
easiest mode to use. With it, all you need to do is set a target value for a metric, such as CPU
average utilization. Then, the auto scaler automatically manages the number of tasks that are
needed to attain that value. With step scaling you can more quickly react to changes in demand,
because you define the specific thresholds for your scaling metrics, and how many tasks to add
or remove when the thresholds are crossed. And, more importantly, you can react very quickly to
changes in demand by minimizing the amount of time a threshold alarm is in breach.

Optimize Amazon ECS service auto scaling

An Amazon ECS service is a managed collection of tasks. Each service has an associated task
definition, a desired task count, and an optional placement strategy. Amazon ECS service auto
scaling is implemented through the Application Auto Scaling service. Application Auto Scaling
uses CloudWatch metrics as the source for scaling metrics. It also uses CloudWatch alarms to
set thresholds on when to scale your service in or out. You provide the thresholds for scaling,
either by setting a metric target, referred to as target tracking scaling, or by specifying thresholds,
referred to as step scaling. After Application Auto Scaling is configured, it continually calculates the
appropriate desired task count for the service. It also notifies Amazon ECS when the desired task
count should change, either by scaling it out or scaling it in.

To use service auto scaling effectively, you must choose an appropriate scaling metric.

An application should be scaled out if demand is forecasted to be greater than the current capacity.
Conversely, an application can be scaled in to conserve costs when resources exceed demand.

Identify a metric

To scale effectively, it's critical to identify a metric that indicates utilization or saturation. This
metric must exhibit the following properties to be useful for scaling.

• The metric must be correlated with demand. When resources are held steady, but demand
changes, the metric value must also change. The metric should increase or decrease when
demand increases or decreases.

Service auto scaling 1088

Amazon Elastic Container Service Developer Guide

• The metric value must scale in proportion to capacity. When demand holds constant, adding
more resources must result in a proportional change in the metric value. So, doubling the
number of tasks should cause the metric to decrease by 50%.

The best way to identify a utilization metric is through load testing in a pre-production
environment such as a staging environment. Commercial and open-source load testing solutions
are widely available. These solutions typically can either generate synthetic load or simulate real
user traffic.

To start the process of load testing, build dashboards for your application’s utilization metrics.
These metrics include CPU utilization, memory utilization, I/O operations, I/O queue depth, and
network throughput. You can collect these metrics with a service such as Container Insights. For
more information, see Monitor Amazon ECS containers using Container Insights with enhanced
observability. During this process, make sure that you collect and plot metrics for your application’s
response times or work completion rates.

Start with a small request or job insertion rate. Keep this rate steady for several minutes to allow
your application to warm up. Then, slowly increase the rate and hold it steady for a few minutes.
Repeat this cycle, increasing the rate each time until your application’s response or completion
times are too slow to meet your service-level objectives (SLOs).

While load testing, examine each of the utilization metrics. The metrics that increase along with
the load are the top candidates to serve as your best utilization metrics.

Next, identify the resource that reaches saturation. At the same time, also examine the utilization
metrics to see which one flattens out at a high level first, or reaches a peak and then crashes
your application first. For example, if CPU utilization increases from 0% to 70-80% as you add
load, then stays at that level after even more load is added, then it's safe to say that the CPU is
saturated. Depending on the CPU architecture, it might never reach 100%. For example, assume
that memory utilization increases as you add load, and then your application suddenly crashes
when it reaches the task or Amazon EC2 instance memory limit. In this situation, it's likely the case
that memory has been fully consumed. Multiple resources might be consumed by your application.
Therefore, choose the metric that represents the resource that depletes first.

Last, try load testing again after doubling the number of tasks or Amazon EC2 instances. Assume
that the key metric increases, or decreases, at half the rate as before. If this is the case, then the
metric is proportional to capacity. This is a good utilization metric for auto scaling.

Service auto scaling 1089

Amazon Elastic Container Service Developer Guide

Now consider this hypothetical scenario. Suppose that you load test an application and find that
the CPU utilization eventually reaches 80% at 100 requests per second. When more load is added,
it doesn't make CPU utilization raise anymore. However, it does make your application respond
more slowly. Then, you run the load test again, doubling the number of tasks but holding the rate
at its previous peak value. If you find the average CPU utilization falls to about 40%, then average
CPU utilization is a good candidate for a scaling metric. On the other hand, if CPU utilization
remains at 80% after increasing the number of tasks, then average CPU utilization isn't a good
scaling metric. In that case, more research is needed to find a suitable metric.

Common application models and scaling properties

Software of all kinds are run on AWS. Many workloads are homegrown, whereas others are based
on popular open-source software. Regardless of where they originate, we have observed some
common design patterns for services. How to scale effectively depends in large part on the pattern.

The efficient CPU-bound server

The efficient CPU-bound server utilizes almost no resources other than CPU and network
throughput. Each request can be handled by the application alone. Requests don't depend on
other services such as databases. The application can handle hundreds of thousands of concurrent
requests, and can efficiently utilize multiple CPUs to do so. Each request is either serviced by a
dedicated thread with low memory overhead, or there's an asynchronous event loop that runs
on each CPU that services requests. Each replica of the application is equally capable of handling
a request. The only resource that might be depleted before CPU is network bandwidth. In CPU
bound-services, memory utilization, even at peak throughput, is a fraction of the resources
available.

This type of application is suitable for CPU-based auto scaling. The application enjoys maximum
flexibility in terms of scaling. It can be scaled vertically by providing larger Amazon EC2 instances
or Fargate vCPUs to it. And, it can also be scaled horizontally by adding more replicas. Adding more
replicas, or doubling the instance size, cuts the average CPU utilization relative to capacity by half.

If you're using Amazon EC2 capacity for this application, consider placing it on compute-optimized
instances such as the c5 or c6g family.

The efficient memory-bound server

The efficient memory-bound server allocates a significant amount of memory per request. At
maximum concurrency, but not necessarily throughput, memory is depleted before the CPU

Service auto scaling 1090

Amazon Elastic Container Service Developer Guide

resources are depleted. Memory associated with a request is freed when the request ends.
Additional requests can be accepted as long as there is available memory.

This type of application is suitable for memory-based auto scaling. The application enjoys
maximum flexibility in terms of scaling. It can be scaled both vertically by providing larger
Amazon EC2 or Fargate memory resources to it. And, it can also be scaled horizontally by adding
more replicas. Adding more replicas, or doubling the instance size, can cut the average memory
utilization relative to capacity by half.

If you're using Amazon EC2 capacity for this application, consider placing it on memory-optimized
instances such as the r5 or r6g family.

Some memory-bound applications don't free the memory that's associated with a request when it
ends, so that a reduction in concurrency doesn't result in a reduction in the memory used. For this,
we don't recommend that you use memory-based scaling.

The worker-based server

The worker-based server processes one request for each individual worker thread one after
another. The worker threads can be lightweight threads, such as POSIX threads. They can also be
heavier-weight threads, such as UNIX processes. No matter which thread they are, there's always
a maximum concurrency that the application can support. Usually the concurrency limit is set
proportionally to the memory resources that are available. If the concurrency limit is reached,
additional requests are placed into a backlog queue. If the backlog queue overflows, additional
incoming requests are immediately rejected. Common applications that fit this pattern include
Apache web server and Gunicorn.

Request concurrency is usually the best metric for scaling this application. Because there's a
concurrency limit for each replica, it's important to scale out before the average limit is reached.

The best way to obtain request concurrency metrics is to have your application report them to
CloudWatch. Each replica of your application can publish the number of concurrent requests as a
custom metric at a high frequency. We recommend that the frequency is set to be at least once
every minute. After several reports are collected, you can use the average concurrency as a scaling
metric. This metric is calculated by taking the total concurrency and dividing it by the number
of replicas. For example, if total concurrency is 1000 and the number of replicas is 10, then the
average concurrency is 100.

If your application is behind an Application Load Balancer, you can also use the
ActiveConnectionCount metric for the load balancer as a factor in the scaling metric. The

Service auto scaling 1091

Amazon Elastic Container Service Developer Guide

ActiveConnectionCount metric must be divided by the number of replicas to obtain an average
value. The average value must be used for scaling, as opposed to the raw count value.

For this design to work best, the standard deviation of response latency should be small at low
request rates. We recommend that, during periods of low demand, most requests are answered
within a short time, and there isn't a lot of requests that take significantly longer than average
time to respond. The average response time should be close to the 95th percentile response time.
Otherwise, queue overflows might occur as result. This leads to errors. We recommend that you
provide additional replicas where necessary to mitigate the risk of overflow.

The waiting server

The waiting server does some processing for each request, but it is highly dependent on one
or more downstream services to function. Container applications often make heavy use of
downstream services like databases and other API services. It can take some time for these services
to respond, particularly in high capacity or high concurrency scenarios. This is because these
applications tend to use few CPU resources and utilize their maximum concurrency in terms of
available memory.

The waiting service is suitable either in the memory-bound server pattern or the worker-based
server pattern, depending on how the application is designed. If the application’s concurrency is
limited only by memory, then average memory utilization should be used as a scaling metric. If the
application’s concurrency is based on a worker limit, then average concurrency should be used as a
scaling metric.

The Java-based server

If your Java-based server is CPU-bound and scales proportionally to CPU resources, then it might
be suitable for the efficient CPU-bound server pattern. If that is the case, average CPU utilization
might be appropriate as a scaling metric. However, many Java applications aren't CPU-bound,
making them challenging to scale.

For the best performance, we recommend that you allocate as much memory as possible to the
Java Virtual Machine (JVM) heap. Recent versions of the JVM, including Java 8 update 191 or later,
automatically set the heap size as large as possible to fit within the container. This means that, in
Java, memory utilization is rarely proportional to application utilization. As the request rate and
concurrency increases, memory utilization remains constant. Because of this, we don't recommend
scaling Java-based servers based on memory utilization. Instead, we typically recommend scaling
on CPU utilization.

Service auto scaling 1092

Amazon Elastic Container Service Developer Guide

In some cases, Java-based servers encounter heap exhaustion before exhausting CPU. If your
application is prone to heap exhaustion at high concurrency, then average connections are the best
scaling metric. If your application is prone to heap exhaustion at high throughput, then average
request rate is the best scaling metric.

Servers that use other garbage-collected runtimes

Many server applications are based on runtimes that perform garbage collection such as .NET
and Ruby. These server applications might fit into one of the patterns described earlier. However,
as with Java, we don't recommend scaling these applications based on memory, because their
observed average memory utilization is often uncorrelated with throughput or concurrency.

For these applications, we recommend that you scale on CPU utilization if the application is CPU
bound. Otherwise, we recommend that you scale on average throughput or average concurrency,
based on your load testing results.

Job processors

Many workloads involve asynchronous job processing. They include applications that don't receive
requests in real time, but instead subscribe to a work queue to receive jobs. For these types
of applications, the proper scaling metric is almost always queue depth. Queue growth is an
indication that pending work outstrips processing capacity, whereas an empty queue indicates that
there's more capacity than work to do.

AWS messaging services, such as Amazon SQS and Amazon Kinesis Data Streams,
provide CloudWatch metrics that can be used for scaling. For Amazon SQS,
ApproximateNumberOfMessagesVisible is the best metric. For Kinesis Data Streams, consider
using the MillisBehindLatest metric, published by the Kinesis Client Library (KCL). This metric
should be averaged across all consumers before using it for scaling.

Service auto scaling and deployments

Application Auto Scaling turns off scale-in processes while Amazon ECS deployments are in
progress. However, scale-out processes continue to occur, unless suspended, during a deployment.
If you want to suspend scale-out processes while deployments are in progress, take the following
steps.

1. Call the describe-scalable-targets command, specifying the resource ID of the service
associated with the scalable target in Application Auto Scaling (Example: service/default/
sample-webapp). Record the output. You will need it when you call the next command.

Service auto scaling 1093

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/describe-scalable-targets.html

Amazon Elastic Container Service Developer Guide

2. Call the register-scalable-target command, specifying the resource ID, namespace,
and scalable dimension. Specify true for both DynamicScalingInSuspended and
DynamicScalingOutSuspended.

3. After deployment is complete, you can call the register-scalable-target command to resume
scaling.

For more information, see Suspending and resuming scaling for Application Auto Scaling.

Use a target metric to scale Amazon ECS services

With target tracking scaling policies, you select a metric and set a target value. Amazon ECS Service
Auto Scaling creates and manages the CloudWatch alarms that control the scaling policy and
calculates the scaling adjustment based on the metric and the target value. The scaling policy adds
or removes service tasks as required to keep the metric at, or close to, the specified target value. In
addition to keeping the metric close to the target value, a target tracking scaling policy also adjusts
to the fluctuations in the metric due to a fluctuating load pattern and minimizes rapid fluctuations
in the number of tasks running in your service.

Target tracking policies remove the need to manually define CloudWatch alarms and scaling
adjustments. Amazon ECS handles this automatically based on the target you set.

Consider the following when using target tracking policies:

• A target tracking scaling policy assumes that it should perform scale out when the specified
metric is above the target value. You cannot use a target tracking scaling policy to scale out
when the specified metric is below the target value.

• A target tracking scaling policy does not perform scaling when the specified metric has
insufficient data. It does not perform scale in because it does not interpret insufficient data as
low utilization.

• You may see gaps between the target value and the actual metric data points. This is because
Service Auto Scaling always acts conservatively by rounding up or down when it determines how
much capacity to add or remove. This prevents it from adding insufficient capacity or removing
too much capacity.

• To ensure application availability, the service scales out proportionally to the metric as fast as it
can, but scales in more gradually.

Service auto scaling 1094

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-suspend-resume-scaling.html

Amazon Elastic Container Service Developer Guide

• Application Auto Scaling turns off scale-in processes while Amazon ECS deployments are
in progress. However, scale-out processes continue to occur, unless suspended, during a
deployment. For more information, see Service auto scaling and deployments.

• You can have multiple target tracking scaling policies for an Amazon ECS service, provided that
each of them uses a different metric. The intention of Service Auto Scaling is to always prioritize
availability, so its behavior differs depending on whether the target tracking policies are ready
for scale out or scale in. It will scale out the service if any of the target tracking policies are ready
for scale out, but will scale in only if all of the target tracking policies (with the scale-in portion
turned on) are ready to scale in.

• Do not edit or delete the CloudWatch alarms that Service Auto Scaling manages for a target
tracking scaling policy. Service Auto Scaling deletes the alarms automatically when you delete
the scaling policy.

• The ALBRequestCountPerTarget metric for target tracking scaling policies is not supported
for the blue/green deployment type.

For more information about target tracking scaling policies, see Target tracking scaling policies in
the Application Auto Scaling User Guide.

Create a target tracking scaling policy for Amazon ECS service auto scaling

Create a target tracking scaling policy to have Amazon ECS increase or decrease the desired task
count in your service automatically. Target tracking works off of a target metric value.

Console

1. In addition to the standard IAM permissions for creating and updating services, you need
additional permissions. For more information, see IAM permissions required for Amazon ECS
service auto scaling.

2. Determine the metrics to use for the policy. The following metrics are available:

• ECSServiceAverageCPUUtilization – The average CPU utilization the service should use.

• ECSServiceAverageMemoryUtilization – Average memory utilization the service should use.

• ALBRequestCountPerTarget – The average number of requests per minute that task should
ideally receive.

3. Open the console at https://console.aws.amazon.com/ecs/v2.

4. On the Clusters page, choose the cluster.

Service auto scaling 1095

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

5. On the cluster details page, in the Services section, and then choose the service.

The service details page appears.

6. Choose Set the number of tasks.

7. Under Amazon ECS service task count, choose Use auto scaling.

The Task count section appears.

a. For Minimum number of tasks, enter the lower limit of the number of tasks for service
auto scaling to use. The desired count will not go below this count.

b. For Maximum, enter the upper limit of the number of tasks for service auto scaling to use.
The desired count will not go above this count.

c. Choose Save.

The policies page appears.

8. Choose Create scaling policy.

The Create policy page appears.

9. For Scaling policy type, choose Target tracking.

10. For Policy name, enter the name of the policy.

11. For Metric type, choose your metrics from the list of options.

12. For Target utilization, enter the target value for the percentage of tasks that Amazon ECS
should maintain. Service auto scaling scales out your capacity until the average utilization is at
the target utilization, or until it reaches the maximum number of tasks you specified.

13. Under Additional Settings, do the following

a. For Scale-in cooldown period, enter the amount of time in seconds after a scale-in
activity completes before another scale-in activity can start.

b. For Scale-out cooldown period, enter the amount of time in seconds to wait for a
previous scale-out activity to take effect.

c. To create only a scale-out policy, select Disable scale-in.

14. Choose Create scaling policy.

Service auto scaling 1096

Amazon Elastic Container Service Developer Guide

AWS CLI

1. Register your Amazon ECS service as a scalable target using the register-scalable-target
command.

2. Create a scaling policy using the put-scaling-policy command.

Use predefined increments based on CloudWatch alarms to scale Amazon ECS
services

With step scaling policies, you create and manage the CloudWatch alarms that invoke the scaling
process. When an alarm is breached, Amazon ECS initiates the scaling policy associated with that
alarm. The step scaling policy scales tasks using a set of adjustments, known as step adjustments.
The size of the adjustment varies based on the magnitude of the alarm breach.

• If the breach exceeds the first threshold, Amazon ECS applies the first step adjustment.

• If the breach exceeds the second threshold, Amazon ECS applies the second step adjustment, and
so on.

We strongly recommend that you use target tracking scaling policies to scale on metrics like
average CPU utilization or average request count per target. Metrics that decrease when capacity
increases and increase when capacity decreases can be used to proportionally scale out or in the
number of tasks using target tracking. This helps ensure that Amazon ECS follows the demand
curve for your applications closely.

Create a step scaling policy for Amazon ECS service auto scaling

Create a step scaling policy to have Amazon ECS increase or decrease the desired number of tasks
in your service automatically. Step scaling runs based on a set of scaling adjustments, known as
step adjustments, that vary based on the size of the alarm breach.

Console

1. In addition to the standard IAM permissions for creating and updating services, you need
additional permissions. For more information, see IAM permissions required for Amazon ECS
service auto scaling.

2. Determine the metrics to use for the policy. The following metrics are available:

• ECSServiceAverageCPUUtilization – The average CPU utilization the service should use.

Service auto scaling 1097

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scaling-policy.html

Amazon Elastic Container Service Developer Guide

• ECSServiceAverageMemoryUtilization – Average memory utilization the service should use.

• ALBRequestCountPerTarget – The average number of requests per minute that task should
ideally receive.

3. Create the CloudWatch alarms for the metrics. For more information, see Create a CloudWatch
alarm based on a static threshold in the Amazon CloudWatch User Guide.

4. Open the console at https://console.aws.amazon.com/ecs/v2.

5. On the Clusters page, choose the cluster.

6. On the cluster details page, in the Services section, and then choose the service.

The service details page appears.

7. Choose Set the number of tasks.

8. Under Amazon ECS service task count, choose Use auto scaling.

The Task count section appears.

a. For Minimum number of tasks, enter the lower limit of the number of tasks for service
auto scaling to use. The desired count will not go below this count.

b. For Maximum, enter the upper limit of the number of tasks for service auto scaling to use.
The desired count will not go above this count.

c. Choose Save.

The policies page appears.

9. Choose Create scaling policy.

The Create policy page appears.

10. For Scaling policy type, choose Step Scaling.

11. Configure the scaling-out properties. Under Steps to add tasks do the following:

a. For Policy name, enter the name of the policy.

b. For CloudWatch alarm name, choose the CloudWatch alarm.

c. For Metric aggregation type, choose how to compare the selected metric to the defined
threshold.

d. For Adjustment types, choose whether the adjustment is based on a change in the
number of tasks, or a change in the percentage of tasks.

e. For Actions to take, enter the values for what action to take.

Service auto scaling 1098

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

Choose Add step to add additional actions.

12. Configure the scaling-in properties. Under Steps to remove tasks, do the following:

a. For Policy name, enter the name of the policy.

b. For CloudWatch alarm name, choose the CloudWatch alarm.

c. For Metric aggregation type, choose how to compare the selected metric to the defined
threshold.

d. For Adjustment types, choose whether the adjustment is based on a change in the
number of tasks, or a change in the percentage of tasks.

e. For Actions to take, enter the values for what action to take.

Choose Add step to add additional actions.

13. For Cooldown period, enter the amount of time, in seconds, to wait for a previous scaling
activity to take effect. For an add policy, this is the time after a scale-out activity that the
scaling policy blocks scale-in activities and limits how many tasks can be scale out at a time.
For a remove policy, this is the time after a scale-in activity that must pass before another
scale-in activity can start.

14. Choose Create scaling policy.

AWS CLI

1. Register your Amazon ECS service as a scalable target using the register-scalable-target
command.

2. Create a scaling policy using the put-scaling-policy command.

Use scheduled actions to scale Amazon ECS services

With scheduled scaling, you can set up automatic scaling for your application based on predictable
load changes by creating scheduled actions that increase or decrease the number of tasks at
specific times. This allows you to scale your application proactively to match predictable load
changes.

These scheduled scaling actions allow you to optimize costs and performance. Your application has
a sufficient number of tasks to handle the mid-week traffic peak, but does not over-provision the
number of tasks at other times.

Service auto scaling 1099

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scaling-policy.html

Amazon Elastic Container Service Developer Guide

You can use scheduled scaling and scaling policies together to get the benefits of proactive
and reactive approaches to scaling. After a scheduled scaling action runs, the scaling policy can
continue to make decisions about whether to further scale the number of tasks. This helps you
ensure that you have a sufficient number of tasks to handle the load for your application. While
your application scales to match demand, current capacity must fall within the minimum and
maximum number of tasks that was set by your scheduled action.

You can configure schedule scaling using the AWS CLI. For more information about scheduled
scaling, see Scheduled Scaling in the Application Auto Scaling User Guide.

Create a scheduled action for Amazon ECS service auto scaling

Create a scheduled action to have Amazon ECS increase or decrease the number of tasks that your
service runs based on the date and time.

Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, choose the cluster.

3. On the cluster details page, in the Services section, choose the service.

The service details page appears.

4. Choose Service auto scaling.

The service auto scaling page appears.

5. If you haven't configured service auto scaling, choose Set the number of tasks.

The Amazon ECS service task count section appears.

Under Amazon ECS service task count, choose Use service auto scaling to adjust your
service's desired task count.

The Task count section appears.

a. For Minimum number of tasks, enter the lower limit of the number of tasks for service
auto scaling to use. The desired count will not go below this count.

b. For Maximum, enter the upper limit of the number of tasks for service auto scaling to use.
The desired count will not go above this count.

c. Choose Choose Save.

Service auto scaling 1100

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

The policies page appears.

6. Choose Scheduled actions, and then choose Create.

The Create Scheduled action page appears.

7. For Action name, enter a unique name.

8. For Time zone, choose a time zone.

All of the time zones listed are from the IANA Time Zone database. For more information, see
List of tz database time zones.

9. For Start time, enter the Date and Time the action starts.

If you chose a recurring schedule, the start time defines when the first scheduled action in the
recurring series runs.

10. For Recurrence, choose one of the available options.

• To scale on a recurring schedule, choose how often Amazon ECS runs the scheduled action.

• If you choose an option that begins with Rate, the cron expression is created for you.

• If you choose Cron, enter a cron expression that specifies when to perform the action.

• To scale only once, choose Once.

11. Under Task adjustments, do the following:

• For Minimum, enter the minumum number of tasks the service should run.

• For Maximum, enter the maximum number of tasks the service should run.

12. Choose Create scheduled action.

CLI

Use the AWS CLI as follows to configure scheduled scaling policies for your service. Replace each
user input placeholder with your own information.

Example: To scale one time only

Use the following put-scheduled-action command with the --start-time "YYYY-MM-
DDThh:mm:ssZ" and and either or both of the --MinCapacity and --MaxCapacity options.

aws application-autoscaling put-scheduled-action --service-namespace ecs \

Service auto scaling 1101

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scheduled-action.html

Amazon Elastic Container Service Developer Guide

 --resource-id service/my-cluster/my-service \
 --scheduled-action-name my-one-time-schedule \
 --start-time 2021-01-30T12:00:00 \
 --scalable-target-action MinCapacity=3,MaxCapacity=10

Example: To schedule scaling on a recurring schedule

Use the following put-scheduled-action command. Replace the user input with your values.

aws application-autoscaling put-scheduled-action --service-namespace ecs \
 --resource-id service/my-cluster/my-service \
 --scheduled-action-name my-recurring-action \
 --schedule "rate(5 hours)" \
 --start-time 2021-01-30T12:00:00 \
 --end-time 2021-01-31T22:00:00 \
 --scalable-target-action MinCapacity=3,MaxCapacity=10

The specified recurrence schedule runs based on the UTC time zone. To specify a different time
zone, include the --time-zone option and the name of the IANA time zone, as in the following
example.

--time-zone "America/New_York"

For more information, see List of tz database time zones.

Use historical patterns to scale Amazon ECS services with predictive scaling

Predictive scaling looks at past load data from traffic flows to analyze daily or weekly patterns. It
then uses this analysis to anticipate future needs and proactively increase tasks in your service as
needed.

Predictive auto scaling is most useful in the following situations.

• Cyclical traffic ‐ Increased use of resources during regular business hours, and decreased use of
resources during evenings and weekends.

• Recurring on-and-off workload patterns ‐ Examples include batch processing, testing, or periodic
data analysis.

• Applications with long initialization times ‐ This can impact application performance during
scale-out events causing of noticeable latency.

Service auto scaling 1102

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scheduled-action.html
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Amazon Elastic Container Service Developer Guide

If your applications take a long time to initialize and traffic increases in a regular pattern, you
should consider using predicitive scaling. It helps you scale faster by proactively increasing the
number of tasks for forecasted loads, instead of using dynamic scaling policies, such as Target
Tracking or Step Scaling alone. By helping you avoid the possibility of over-provisioning the
number of tasks, predictive scaling can also potentially save you money.

For example, consider an application that has high usage during business hours and low usage
overnight. At the start of each business day, predictive scaling can scale-out tasks before the first
influx of traffic. This helps your application maintain high availability and performance when
going from a period of lower utilization to a period of higher utilization. You don't have to wait
for dynamic scaling to react to changing traffic. You also don't have to spend time reviewing your
application's load patterns and trying to schedule the right amount of tasks using scheduled
scaling.

Predictive scaling is a service-level capability that scales the task of your service independently
from the scaling of the underlying compute capacity (for example, EC2 or Fargate). For Fargate,
AWS manages and automatically scales the underlying capacity based on task requirements. For
EC2 capacity, you can use Auto Scaling group capacity providers to automatically scale underlying
EC2 instances based on the scaling requirements of your tasks.

Contents

• How predictive scaling works in Amazon ECS

• Create a predictive scaling policy for Amazon ECS service auto scaling

• Evaluate your predictive scaling policies for Amazon ECS

• Use scheduled actions to override forecast values for Amazon ECS

• Advanced predictive scaling policy using custom metrics for Amazon ECS

How predictive scaling works in Amazon ECS

Here you can learn about considerations for using predictive scaling, how it works, and what the
limits are.

Considerations for using predictive scaling

• You want to make sure predictive scaling is suitable for your workload. You can check this by
configuring scaling policies in forecast only mode and see what the console recommends. You
should evaluate the forecast and recommendations before starting to use predictive scaling.

Service auto scaling 1103

Amazon Elastic Container Service Developer Guide

• Before predictive scaling can start forecasting, it needs at least 24 hours of historical data. The
more historical data that is available, the more effective the forecast, with two weeks being ideal.
You'll also need to wait 24 hours for before predictive scaling can generate new forecasts when
you delete an Amazon ECS service and create a new one. One way to speed this up is to use
custom metrics to aggregate metrics across old and new Amazon ECS service.

• Choose a load metric that accurately represents the full load on your application and is the
aspect of your application that's most important to scale on.

• Dynamic scaling with predictive scaling helps you follow the demand for your application
closely, so you can scale in during lulls and scale out during unexpected increases in traffic.
When multiple scaling policies are active, each policy determines the desired number of tasks
independently, and the desired number of tasks is set to the maximum of those.

• You can use predictive scaling alongside your dynamic scaling policies, such as target tracking
or step scaling, so that your applications scale based on both real-time and historic patterns. By
itself, predictive scaling doesn't scale-in your tasks.

• If you use a custom role when calling the register-scalable-target API, you may get an
error saying predictive scaling policy can only work with SLR enabled. In this case you should
call register-scalable-target again but without role-arn. Use SLR when registering the
scalable target and call the put-scaling-policy API.

How predictive scaling works

You use predictive scaling by creating a predictive scaling policy that specifies the CloudWatch
metric to monitor and analyze. Predictive scaling must have at least 24 hours of data to start
forecasting future values.

After you create the policy, predictive scaling starts analyzing metric data from up to the past
14 days to identify patterns. This analysis is used to generate the next 48 hours of requirements
hourly forecasts. The latest CloudWatch data is used to update the forecast every six hours. As new
data comes in, predictive scaling continuously improves the accuracy of future forecasts.

When you first enable predictive scaling, it runs in forecast only mode. It generates forecasts in
this mode, but it doesn't scale your Amazon ECS service based on those forecasts. This means
you can evaluate the accuracy and suitability of the forecast. You view forecast data by using the
GetPredictiveScalingForecast API operation or the AWS Management Console.

When you decide to start using predictive scaling, switch the scaling policy to forecast and scale
mode. The following occurs while in this mode.

Service auto scaling 1104

Amazon Elastic Container Service Developer Guide

Your Amazon ECS service is scaled at the start of each hour based on the forecast for that hour,
by default. You can choose to start earlier by using the SchedulingBufferTime property in the
PutScalingPolicy API operation. This makes new tasks launch ahead of forecasted demand and
gives them time to boot and become ready to handle traffic.

Maximum tasks limit

When you register Amazon ECS services for scaling, you define a maximum number of tasks that
can be launched per service. By default, when scaling policies are set, they cannot increase the
number of tasks higher than its maximum limit.

Alternatively, you can allow the service's maximum number of tasks to be automatically increased
if the forecast approaches or exceeds the maximum number of tasks of the Amazon ECS service.

Warning

Use caution when allowing the maximum number of tasks to be automatically increased.
This can lead to more tasks being launched than intended, if the increased maximum
number of tasks isn't monitored and managed. The increased maximum number of tasks
then becomes the new normal maximum number of tasks for the Amazon ECS service until
you manually update it. The maximum number of tasks doesn't automatically decrease
back to the original maximum.

Supported regions

• US East (N. Virginia)

• US East (Ohio)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Jakarta)

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

Service auto scaling 1105

Amazon Elastic Container Service Developer Guide

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• China (Beijing)

• China (Ningxia)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Milan)

• Europe (Paris)

• Europe (Stockholm)

• Middle East (Bahrain)

• South America (São Paulo)

• AWS GovCloud (US-East)

• AWS GovCloud (US-West)

Create a predictive scaling policy for Amazon ECS service auto scaling

Create a predictive scaling policy to have Amazon ECS increase or decrease the number of tasks
that your service runs based on historical data.

Note

A new service needs to provide at least 24 hours of data before a forecast can be
generated.

Console

1. In addition to the standard IAM permissions for creating and updating services, you need
additional permissions. For more information, see IAM permissions required for Amazon ECS
service auto scaling.

Service auto scaling 1106

Amazon Elastic Container Service Developer Guide

2. Determine the metrics to use for the policy. The following metrics are available:

• ECSServiceAverageCPUUtilization – The average CPU utilization the service should use.

• ECSServiceAverageMemoryUtilization – Average memory utilization the service should use.

• ALBRequestCountPerTarget – The average number of requests per minute that task should
ideally receive.

You can alternatively use a custom metric. You need to define the following values:

• Load - a metric that accurately represents the full load on your application and is the aspect
of your application that's most important to scale on.

• Scaling metric - the best predictor for how much utilization is ideal for your application.

3. Open the console at https://console.aws.amazon.com/ecs/v2.

4. On the Clusters page, choose the cluster.

5. On the cluster details page, in the Services section, choose the service.

The service details page appears.

6. Choose Service auto scaling and then choose Set the number of tasks.

7. Under Amazon ECS service task count, choose Use auto scaling.

The Task count section appears.

a. For Minimum number of tasks, enter the lower limit of the number of tasks for service
auto scaling to use. The desired count will not go below this count.

b. For Maximum, enter the upper limit of the number of tasks for service auto scaling to use.
The desired count will not go above this count.

c. Choose Save.

The policies page appears.

8. Choose Create scaling policy.

The Create policy page appears.

9. For Scaling policy type, choose Predictive Scaling.

10. For Policy name, enter the name of the policy.

11. For Metric pair, choose your metrics from the list of options.

Service auto scaling 1107

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

If you chose Application Load Balancer request count per target, then choose a target group
in Target group. Application Load Balancer request count per target is only supported if you
have attached an Application Load Balancer target group for your service.

If you chose Custom metric pair, choose individual metrics from the lists for Load metric and
Scaling metric.

12. For Target utilization, enter the target value for the percentage of tasks that Amazon ECS
should maintain. Service auto scaling scales out your capacity until the average utilization is at
the target utilization, or until it reaches the maximum number of tasks you specified.

13. Choose Create scaling policy.

AWS CLI

Use the AWS CLI as follows to configure predictive scaling policies for your Amazon ECS service.
Replace each user input placeholder with your own information.

For more information about the CloudWatch metrics you can specify, see
PredictiveScalingMetricSpecification in the Amazon EC2 Auto Scaling API Reference.

Example 1: A predictive scaling policy with predefined memory.

The following is an example policy with a predefined memory configuration.

cat policy.json
{
 "MetricSpecifications": [
 {
 "TargetValue": 40,
 "PredefinedMetricPairSpecification": {
 "PredefinedMetricType": "ECSServiceMemoryUtilization"
 }
 }
],
 "SchedulingBufferTime": 3600,
 "MaxCapacityBreachBehavior": "HonorMaxCapacity",
 "Mode": "ForecastOnly"
}

The following example illustrates creating the policy by running the put-scaling-policy command
with the configuration file specified.

Service auto scaling 1108

https://docs.aws.amazon.com/autoscaling/ec2/APIReference/API_PredictiveScalingMetricSpecification.html
https://docs.aws.amazon.com/cli/latest/reference/autoscaling/put-scaling-policy.html

Amazon Elastic Container Service Developer Guide

aws application-autoscaling put-scaling-policy \
--service-namespace ecs \
--region us-east-1 \
--policy-name predictive-scaling-policy-example \
--resource-id service/MyCluster/test \
--policy-type PredictiveScaling \
--scalable-dimension ecs:service:DesiredCount \
--predictive-scaling-policy-configuration file://policy.json

If successful, this command returns the policy's ARN.

{
 "PolicyARN": "arn:aws:autoscaling:us-
east-1:012345678912:scalingPolicy:d1d72dfe-5fd3-464f-83cf-824f16cb88b7:resource/ecs/
service/MyCluster/test:policyName/predictive-scaling-policy-example",
 "Alarms": []
}

Example 2: A predictive scaling policy with predefined CPU.

The following is an example policy with a predefined CPU configuration.

cat policy.json
{
 "MetricSpecifications": [
 {
 "TargetValue": 0.00000004,
 "PredefinedMetricPairSpecification": {
 "PredefinedMetricType": "ECSServiceCPUUtilization"
 }
 }
],
 "SchedulingBufferTime": 3600,
 "MaxCapacityBreachBehavior": "HonorMaxCapacity",
 "Mode": "ForecastOnly"
}

The following example illustrates creating the policy by running the put-scaling-policy command
with the configuration file specified.

aws aas put-scaling-policy \
--service-namespace ecs \

Service auto scaling 1109

https://docs.aws.amazon.com/cli/latest/reference/autoscaling/put-scaling-policy.html

Amazon Elastic Container Service Developer Guide

--region us-east-1 \
--policy-name predictive-scaling-policy-example \
--resource-id service/MyCluster/test \
--policy-type PredictiveScaling \
--scalable-dimension ecs:service:DesiredCount \
--predictive-scaling-policy-configuration file://policy.json

If successful, this command returns the policy's ARN.

{
 "PolicyARN": "arn:aws:autoscaling:us-
east-1:012345678912:scalingPolicy:d1d72dfe-5fd3-464f-83cf-824f16cb88b7:resource/ecs/
service/MyCluster/test:policyName/predictive-scaling-policy-example",
 "Alarms": []
}

Evaluate your predictive scaling policies for Amazon ECS

Before you use a predictive scaling policy to scale your services, review the recommendations and
other data for your policy in the Amazon ECS console. This is important because you don't want
a predictive scaling policy to scale your actual capacity until you know that its predictions are
accurate.

If the service is new, allow 24 hours to create the first forecast.

When AWS creates a forecast, it uses historical data. If your service doesn't have much recent
historical data yet, predictive scaling might temporarily backfill the forecast with aggregates
created from the currently available historical aggregates. Forecasts are backfilled for up to two
weeks before a policy's creation date.

View your predictive scaling recommendations

For effective analysis, service auto scaling should have at least two predictive scaling policies to
compare. (However, you can still review the findings for a single policy.) When you create multiple
policies, you can evaluate a policy that uses one metric against a policy that uses a different metric.
You can also evaluate the impact of different target value and metric combinations. After the
predictive scaling policies are created, Amazon ECS immediately starts evaluating which policy
would do a better job of scaling your group.

To view your recommendations in the Amazon ECS console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

Service auto scaling 1110

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

2. On the Clusters page, choose the cluster.

3. On the cluster details page, in the Services section, choose the service.

The service details page appears.

4. Choose Service auto scaling.

5. Choose the predictive scaling policy, and then choose Actions, Predictive Scaling, View
recommendation.

You can view details about a policy along with our recommendation. The recommendation
tells you whether the predictive scaling policy does a better job than not using it.

If you're unsure whether a predictive scaling policy is appropriate for your group, review the
Availability impact and Cost impact columns to choose the right policy. The information for
each column tells you what the impact of the policy is.

• Availability impact: Describes whether the policy would avoid negative impact to
availability by provisioning enough tasks to handle the workload, compared to not using the
policy.

• Cost impact: Describes whether the policy would avoid negative impact on your costs by not
over-provisioning tasks, compared to not using the policy. By over-provisioning too much,
your services are underutilized or idle, which only adds to the cost impact.

If you have multiple policies, then a Best prediction tag displays next to the name of
the policy that gives the most availability benefits at lower cost. More weight is given to
availability impact.

6. (Optional) To select the desired time period for recommendation results, choose your preferred
value from the Evaluation period dropdown: 2 days, 1 week, or 2 weeks. By default, the
evaluation period is the last two weeks. A longer evaluation period provides more data points
to the recommendation results. However, adding more data points might not improve the
results if your load patterns have changed, such as after a period of exceptional demand. In
this case, you can get a more focused recommendation by looking at more recent data.

Note

Recommendations are generated only for policies that are in Forecast only mode. The
recommendations feature works better when a policy is in the Forecast only mode

Service auto scaling 1111

Amazon Elastic Container Service Developer Guide

throughout the evaluation period. If you start a policy in Forecast and scale mode and
switch it to Forecast only mode later, the findings for that policy are likely to be biased.
This is because the policy has already contributed toward the actual capacity.

Review predictive scaling monitoring graphs

In the console, you can review the forecast of the previous days, weeks, or months to visualize how
well the policy performs over time. You can also use this information to evaluate the accuracy of
predictions when deciding whether to let a policy scale your actual number of tasks.

To review predictive scaling monitoring graphs in the Amazon ECS console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, choose the cluster.

3. On the cluster details page, in the Services section, choose the service.

The service details page appears.

4. Choose Service auto scaling.

5. Choose the predictive scaling policy, and then choose Actions, Predictive Scaling, View Graph.

6. In the Monitoring section, you can view your policy's past and future forecasts for load and
capacity against actual values. The Load graph shows load forecast and actual values for
the load metric that you chose. The Capacity graph shows the number of tasks predicted by
the policy. It also includes the actual number of tasks launched. The vertical line separates
historical values from future forecasts. These graphs become available shortly after the policy
is created.

7. (Optional) To change the amount of historical data shown in the chart, choose your preferred
value from the Evaluation period dropdown at the top of the page. The evaluation period
does not transform the data on this page in any way. It only changes the amount of historical
data shown.

Compare data in the Load graph

Each horizontal line represents a different set of data points reported in one-hour intervals:

1. Actual observed load uses the SUM statistic for your chosen load metric to show the total
hourly load in the past.

Service auto scaling 1112

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

2. Load predicted by the policy shows the hourly load prediction. This prediction is based on the
previous two weeks of actual load observations.

Compare data in the Capacity graph

Each horizontal line represents a different set of data points reported in one-hour intervals:

1. Actual observed number of tasks shows your Amazon ECS service actual capacity in the past,
which depends on your other scaling policies and minimum group size in effect for the selected
time period.

2. Capacity predicted by the policy shows the baseline capacity that you can expect to have at the
beginning of each hour when the policy is in Forecast and scale mode.

3. Inferred required number of tasks shows the ideal number of tasks in your service to maintain
the scaling metric at the target value you chose.

4. Minimum number of tasks shows the minimum number of tasks in your service.

5. Maximum capacity shows the maximum number of tasks in your service.

For the purpose of calculating the inferred required capacity, we begin by assuming that each
task is equally utilized at a specified target value. In practice, the number of tasks are not equally
utilized. By assuming that utilization is uniformly spread between tasks, however, we can make
a likelihood estimate of the amount of capacity that is needed. The requirement for thenumber
of tasks is then calculated to be inversely proportional to the scaling metric that you used for
your predictive scaling policy. In other words, as the number of tasks increase, the scaling metric
decreases at the same rate. For example, if the number of tasks doubles, the scaling metric must
decrease by half.

The formula for the inferred required capacity:

sum of (actualServiceUnits*scalingMetricValue)/(targetUtilization)

For example, we take the actualServiceUnits (10) and the scalingMetricValue (30) for a
given hour. We then take the targetUtilization that you specified in your predictive scaling
policy (60) and calculate the inferred required capacity for the same hour. This returns a value of
5. This means that five is the inferred amount of capacity required to maintain capacity in direct
inverse proportion to the target value of the scaling metric.

Service auto scaling 1113

Amazon Elastic Container Service Developer Guide

Note

Various levers are available for you to adjust and improve the cost savings and availability
of your application.

• You use predictive scaling for the baseline capacity and dynamic scaling to handle
additional capacity. Dynamic scaling works independently from predictive scaling, scaling
in and out based on current utilization. First, Amazon ECS calculates the recommended
number of tasks for each non-scheduled scaling policy. Then, it scales based on the
policy that provides the largest number of tasks.

• To allow scale in to occur when the load decreases, your service should always have at
least one dynamic scaling policy with the scale-in portion enabled.

• You can improve scaling performance by making sure that your minimum and maximum
capacity are not too restrictive. A policy with a recommended number of tasks that does
not fall within the minimum and maximum capacity range will be prevented from scaling
in and out.

Monitor predictive scaling metrics for Amazon ECS with CloudWatch

You can use Amazon CloudWatch to monitor your data for predictive scaling. A predictive scaling
policy collects data that is used to forecast your future load. The data collected is automatically
stored in CloudWatch at regular intervals and can be used to visualize how well the policy performs
over time. You can also create CloudWatch alarms to notify you when performance indicators
change beyond the limits that you defined.

Visualize historical forecast data

Load forecast data for a predictive scaling policy can be viewed in CloudWatch and can be useful
when visualizing forecasts against other CloudWatch metrics in a single graph. You can also see
trends over time by viewing a broader time range. You can access up to 15 months of historical
metrics to get a better perspective on how your policy is performing.

To view historical forecast data using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Metrics and then All metrics.

3. Choose the Application Auto Scaling metric namespace.

Service auto scaling 1114

https://console.aws.amazon.com/cloudwatch/

Amazon Elastic Container Service Developer Guide

4. Choose Predictive Scaling Load Forecasts.

5. In the search field, enter the name of the predictive scaling policy or the name of the Amazon
ECS service group, and then press Enter to filter the results.

6. To graph a metric, select the check box next to the metric. To change the name of the graph,
choose the pencil icon. To change the time range, select one of the predefined values or
choose custom. For more information, see Graphing a metric in the Amazon CloudWatch User
Guide.

7. To change the statistic, choose the Graphed metrics tab. Choose the column heading or an
individual value, and then choose a different statistic. Although you can choose any statistic
for each metric, not all statistics are useful for PredictiveScalingLoadForecast metrics. For
example, the Average, Minimum, and Maximum statistics are useful, but the Sum statistic is
not.

8. To add another metric to the graph, under Browse, choose All, find the specific metric, and
then select the check box next to it. You can add up to 10 metrics.

9. (Optional) To add the graph to a CloudWatch dashboard, choose Actions, Add to dashboard.

Create accuracy metrics using metric math

With metric math, you can query multiple CloudWatch metrics and use math expressions to
create new time series based on these metrics. You can visualize the resulting time series on the
CloudWatch console and add them to dashboards. For more information about metric math, see
Using metric math in the Amazon CloudWatch User Guide.

Using metric math, you can graph the data that service auto scaling generates for predictive
scaling in different ways. This helps you monitor policy performance over time, and helps you
understand whether your combination of metrics can be improved.

For example, you can use a metric math expression to monitor the mean absolute percentage error
(MAPE). The MAPE metric helps monitor the difference between the forecasted values and the
actual values observed during a given forecast window. Changes in the value of MAPE can indicate
whether the policy's performance is degrading over time as the nature of your application changes.
An increase in MAPE signals a wider gap between the forecasted values and the actual values.

Example: Metric math expression

To get started with this type of graph, you can create a metric math expression like the one shown
in the following example.

Service auto scaling 1115

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/graph_a_metric.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error

Amazon Elastic Container Service Developer Guide

Instead of a single metric, there is an array of metric data query structures for
MetricDataQueries. Each item in MetricDataQueries gets a metric or performs a math
expression. The first item, e1, is the math expression. The designated expression sets the
ReturnData parameter to true, which ultimately produces a single time series. For all other
metrics, the ReturnData value is false.

In the example, the designated expression uses the actual and forecasted values as input and
returns the new metric (MAPE). m1 is the CloudWatch metric that contains the actual load values
(assuming CPU utilization is the load metric that was originally specified for the policy named my-
predictive-scaling-policy). m2 is the CloudWatch metric that contains the forecasted load
values. The math syntax for the MAPE metric is as follows:

Average of (abs ((Actual - Forecast)/(Actual)))

Visualize your accuracy metrics and set alarms

To visualize the accuracy metric data, select the Metrics tab in the CloudWatch console. You can
graph the data from there. For more information, see Adding a math expression to a CloudWatch
graph in the Amazon CloudWatch User Guide.

You can also set an alarm on a metric that you're monitoring from the Metrics section. While on
the Graphed metrics tab, select the Create alarm icon under the Actions column. The Create
alarm icon is represented as a small bell. For more information and notification options, see
Creating a CloudWatch alarm based on a metric math expression and Notifying users on alarm
changes in the Amazon CloudWatch User Guide.

Alternatively, you can use GetMetricData and PutMetricAlarm to perform calculations using metric
math and create alarms based on the output.

Use scheduled actions to override forecast values for Amazon ECS

Sometimes, you might have additional information about your future application requirements
that the forecast calculation is unable to take into account. For example, forecast calculations
might underestimate the tasks needed for an upcoming marketing event. You can use scheduled
actions to temporarily override the forecast during future time periods. The scheduled actions
can run on a recurring basis, or at a specific date and time when there are one-time demand
fluctuations.

For example, you can create a scheduled action with a higher number of tasks than what is
forecasted. At runtime, Amazon ECS updates the minimum number of tasks in your service.
Because predictive scaling optimizes for the number of tasks, a scheduled action with a minimum

Service auto scaling 1116

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html#adding-metrics-expression-console
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html#adding-metrics-expression-console
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Create-alarm-on-metric-math-expression.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Notify_Users_Alarm_Changes.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Notify_Users_Alarm_Changes.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html

Amazon Elastic Container Service Developer Guide

number of tasks that is higher than the forecast values is honored. This prevents the number of
tasks from being less than expected. To stop overriding the forecast, use a second scheduled action
to return the minimum number of tasks to its original setting.

The following procedure outlines the steps for overriding the forecast during future time periods.

Topics

• Step 1: (Optional) Analyze time series data

• Step 2: Create two scheduled actions

Important

This topic assumes that you are trying to override the forecast to scale to a higher capacity
than what is forecasted. If you need to temporarily decrease the number of tasks without
interference from a predictive scaling policy, use forecast only mode instead. While in
forecast only mode, predictive scaling will continue to generate forecasts, but it will not
automatically increase the number of tasks. You can then monitor resource utilization and
manually decrease the number of tasks as needed.

Step 1: (Optional) Analyze time series data

Start by analyzing the forecast time series data. This is an optional step, but it is helpful if you want
to understand the details of the forecast.

1. Retrieve the forecast

After the forecast is created, you can query for a specific time period in the forecast. The goal
of the query is to get a complete view of the time series data for a specific time period.

Your query can include up to two days of future forecast data. If you have been using
predictive scaling for a while, you can also access your past forecast data. However, the
maximum time duration between the start and end time is 30 days.

To get the forecast using the get-predictive-scaling-forecast AWS CLI command, provide the
following parameters in the command:

• Enter the name of the cluster name in the resource-id parameter.

• Enter the name of the policy in the --policy-name parameter.

Service auto scaling 1117

https://docs.aws.amazon.com/cli/latest/reference/autoscaling/get-predictive-scaling-forecast.html

Amazon Elastic Container Service Developer Guide

• Enter the start time in the --start-time parameter to return only forecast data for after
or at the specified time.

• Enter the end time in the --end-time parameter to return only forecast data for before the
specified time.

aws application-autoscaling get-predictive-scaling-forecast \
 --service-namespace ecs \
 --resource-id service/MyCluster/test \
 --policy-name cpu40-predictive-scaling-policy \
 --scalable-dimension ecs:service:DesiredCount \
 --start-time "2021-05-19T17:00:00Z" \
 --end-time "2021-05-19T23:00:00Z"

If successful, the command returns data similar to the following example.

{
 "LoadForecast": [
 {
 "Timestamps": [
 "2021-05-19T17:00:00+00:00",
 "2021-05-19T18:00:00+00:00",
 "2021-05-19T19:00:00+00:00",
 "2021-05-19T20:00:00+00:00",
 "2021-05-19T21:00:00+00:00",
 "2021-05-19T22:00:00+00:00",
 "2021-05-19T23:00:00+00:00"
],
 "Values": [
 153.0655799339254,
 128.8288551285919,
 107.1179447150675,
 197.3601844551528,
 626.4039934516954,
 596.9441277518481,
 677.9675713779869
],
 "MetricSpecification": {
 "TargetValue": 40.0,
 "PredefinedMetricPairSpecification": {
 "PredefinedMetricType": "ASGCPUUtilization"
 }

Service auto scaling 1118

Amazon Elastic Container Service Developer Guide

 }
 }
],
 "CapacityForecast": {
 "Timestamps": [
 "2021-05-19T17:00:00+00:00",
 "2021-05-19T18:00:00+00:00",
 "2021-05-19T19:00:00+00:00",
 "2021-05-19T20:00:00+00:00",
 "2021-05-19T21:00:00+00:00",
 "2021-05-19T22:00:00+00:00",
 "2021-05-19T23:00:00+00:00"
],
 "Values": [
 2.0,
 2.0,
 2.0,
 2.0,
 4.0,
 4.0,
 4.0
]
 },
 "UpdateTime": "2021-05-19T01:52:50.118000+00:00"
}

The response includes two forecasts: LoadForecast and CapacityForecast.
LoadForecast shows the hourly load forecast. CapacityForecast shows forecast values
for the capacity that is needed on an hourly basis to handle the forecasted load while
maintaining a TargetValue of 40.0 (40% average CPU utilization).

2. Identify the target time period

Identify the hour or hours when the one-time demand fluctuation should take place.
Remember that dates and times shown in the forecast are in UTC.

Step 2: Create two scheduled actions

Next, create two scheduled actions for a specific time period when your application will have a
higher than forecasted load. For example, if you have a marketing event that will drive traffic to
your site for a limited period of time, you can schedule a one-time action to update the minimum

Service auto scaling 1119

Amazon Elastic Container Service Developer Guide

capacity when it starts. Then, schedule another action to return the minimum capacity to the
original setting when the event ends.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, choose the cluster.

3. On the cluster details page, in the Services section, and then choose the service.

The service details page appears.

4. Choose Service Auto Scaling.

The policies page appears.

5. Choose Scheduled actions, and then choose Create.

The Create Schedule action page appears.

6. For Action name, enter a unique name.

7. For Time zone, choose a time zone.

All of the time zones listed are from the IANA Time Zone database. For more information, see
List of tz database time zones.

8. For Start time, enter the Date and Time the action starts.

9. For Recurrence, choose Once.

10. Under Task adjustments, For Minimum, enter a value less than or equal to the maximum
number of tasks..

11. Choose Create scheduled action.

The policies page appears.

12. Configure a second scheduled action to return the minimum number of tasks to the original
setting at the end of the event. Predictive scaling can scale the number of tasks only when the
value you set for Minimum is lower than the forecast values.

To create two scheduled actions for one-time events (AWS CLI)

To use the AWS CLI to create the scheduled actions, use the put-scheduled-update-group-action
command.

For example, let's define a schedule that maintains a minimum capacity of three instances on May
19 at 5:00 PM for eight hours. The following commands show how to implement this scenario.

Service auto scaling 1120

https://console.aws.amazon.com/ecs/v2
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://docs.aws.amazon.com/cli/latest/reference/autoscaling/put-scheduled-update-group-action.html

Amazon Elastic Container Service Developer Guide

The first put-scheduled-update-group-action command instructs Amazon EC2 Auto Scaling to
update the minimum capacity of the specified Auto Scaling group at 5:00 PM UTC on May 19,
2021.

aws autoscaling put-scheduled-update-group-action --scheduled-action-name my-event-
start \
 --auto-scaling-group-name my-asg --start-time "2021-05-19T17:00:00Z" --minimum-
capacity 3

The second command instructs Amazon EC2 Auto Scaling to set the group's minimum capacity to
one at 1:00 AM UTC on May 20, 2021.

aws autoscaling put-scheduled-update-group-action --scheduled-action-name my-event-end
 \
 --auto-scaling-group-name my-asg --start-time "2021-05-20T01:00:00Z" --minimum-
capacity 1

After you add these scheduled actions to the Auto Scaling group, Amazon EC2 Auto Scaling does
the following:

• At 5:00 PM UTC on May 19, 2021, the first scheduled action runs. If the group currently has
fewer than three instances, the group scales out to three instances. During this time and for the
next eight hours, Amazon EC2 Auto Scaling can continue to scale out if the predicted capacity is
higher than the actual capacity or if there is a dynamic scaling policy in effect.

• At 1:00 AM UTC on May 20, 2021, the second scheduled action runs. This returns the minimum
capacity to its original setting at the end of the event.

Scaling based on recurring schedules

To override the forecast for the same time period every week, create two scheduled actions and
provide the time and date logic using a cron expression.

The cron expression format consists of five fields separated by spaces: [Minute] [Hour]
[Day_of_Month] [Month_of_Year] [Day_of_Week]. Fields can contain any allowed values, including
special characters.

For example, the following cron expression runs the action every Tuesday at 6:30 AM. The asterisk
is used as a wildcard to match all values for a field.

Service auto scaling 1121

https://docs.aws.amazon.com/cli/latest/reference/autoscaling/put-scheduled-update-group-action.html

Amazon Elastic Container Service Developer Guide

30 6 * * 2

See also

For more information about how to manage scheduled actions, see Use scheduled actions to scale
Amazon ECS services.

Advanced predictive scaling policy using custom metrics for Amazon ECS

You can use predefined or custom metrics in a predictive scaling policy. Custom metrics are useful
when the predefined metrics, such as CPU, memory, etc) aren't enough to sufficiently describe your
application load.

When creating a predictive scaling policy with custom metrics, you can specify other CloudWatch
metrics provided by AWS. Alternatively, you can specify metrics that you define and publish
yourself. You can also use metric math to aggregate and transform existing metrics into a new
time series that AWS doesn't automatically track. An example is combining values in your data by
calculating new sums or averages called aggregating. The resulting data is called an aggregate.

The following section contains best practices and examples of how to construct the JSON structure
for the policy.

Prerequisites

To add custom metrics to your predictive scaling policy, you must have
cloudwatch:GetMetricData permissions.

To specify your own metrics instead of the metrics that AWS provides, you must first publish
your metrics to CloudWatch. For more information, see Publishing custom metrics in the Amazon
CloudWatch User Guide.

If you publish your own metrics, make sure to publish the data points at a minimum frequency of
five minutes. Data points are retrieved from CloudWatch based on the length of the period that
it needs. For example, the load metric specification uses hourly metrics to measure the load on
your application. CloudWatch uses your published metric data to provide a single data value for
any one-hour period by aggregating all data points with timestamps that fall within each one-hour
period.

Best practices

The following best practices can help you use custom metrics more effectively:

Service auto scaling 1122

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/publishingMetrics.html

Amazon Elastic Container Service Developer Guide

• The most useful metric for the load metric specification is a metric that represents the load on an
Auto Scaling group as a whole.

• The most useful metric for the scaling metric specification to scale by is an average throughput
or utilization per task metric.

• The target utilization must match the type of scaling metric. For a policy configuration that uses
CPU utilization, this is a target percentage, for example.

• If these recommendations are not followed, the forecasted future values of the time series
will probably be incorrect. To validate that the data is correct, you can view the forecasted
values in the console. Alternatively, after you create your predictive scaling policy, inspect the
LoadForecast objects returned by a call to the GetPredictiveScalingForecast API.

• We strongly recommend that you configure predictive scaling in forecast only mode so that you
can evaluate the forecast before predictive scaling starts actively scaling.

Limitations

• You can query data points of up to 10 metrics in one metric specification.

• For the purposes of this limit, one expression counts as one metric.

Troubleshooting a predictive scaling policy with custom metrics

If an issue occurs while using custom metrics, we recommend that you do the following:

• If you encounter an issue in a blue/green deployment while using a search expression, make
sure you created an search expression that's looking for a partial match and not an exact match.
You should also check that the query is only finding Auto Scaling groups running in the specific
application. For more information about the search expression syntax, see CloudWatch search
expression syntax in the Amazon CloudWatch User Guide.

• The put-scaling-policy command validates an expression when you create your scaling policy.
However, there's a possibility that this command might fail to identify the exact cause of the
detected errors. To fix the issues, troubleshoot the errors that you receive in a response from a
request to the get-metric-data command. You can also troubleshoot the expression from the
CloudWatch console.

• You must specify false for ReturnData if MetricDataQueries specifies the SEARCH()
function on its own without a math function like SUM(). This is because search expressions might
return multiple time series, and a metric specification based on an expression can return only one
time series.

Service auto scaling 1123

https://docs.aws.amazon.com/autoscaling/application/APIReference/API_GetPredictiveScalingForecast.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/search-expression-syntax.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/search-expression-syntax.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scaling-policy.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-data.html

Amazon Elastic Container Service Developer Guide

• All metrics involved in a search expression should be of the same resolution.

Constructing the JSON for predictive scaling custom metrics with Amazon ECS

The following section contains examples for how to configure predictive scaling to query data
from CloudWatch. There are two different methods to configure this option, and the method that
you choose affects which format you use to construct the JSON for your predictive scaling policy.
When you use metric math, the format of the JSON varies further based on the metric math being
performed.

1. To create a policy that gets data directly from other CloudWatch metrics provided by AWS or
metrics that you publish to CloudWatch, see Example predictive scaling policy with custom load
and scaling metrics using the AWS CLI.

Example predictive scaling policy with custom load and scaling metrics using the AWS CLI

To create a predictive scaling policy with custom load and scaling metrics with the AWS CLI,
store the arguments for --predictive-scaling-configuration in a JSON file named
config.json.

You start adding custom metrics by replacing the replaceable values in the following example with
those of your metrics and your target utilization.

{
 "MetricSpecifications": [
 {
 "TargetValue": 50,
 "CustomizedScalingMetricSpecification": {
 "MetricDataQueries": [
 {
 "Id": "scaling_metric",
 "MetricStat": {
 "Metric": {
 "MetricName": "MyUtilizationMetric",
 "Namespace": "MyNameSpace",
 "Dimensions": [
 {
 "Name": "MyOptionalMetricDimensionName",
 "Value": "MyOptionalMetricDimensionValue"
 }
]

Service auto scaling 1124

Amazon Elastic Container Service Developer Guide

 },
 "Stat": "Average"
 }
 }
]
 },
 "CustomizedLoadMetricSpecification": {
 "MetricDataQueries": [
 {
 "Id": "load_metric",
 "MetricStat": {
 "Metric": {
 "MetricName": "MyLoadMetric",
 "Namespace": "MyNameSpace",
 "Dimensions": [
 {
 "Name": "MyOptionalMetricDimensionName",
 "Value": "MyOptionalMetricDimensionValue"
 }
]
 },
 "Stat": "Sum"
 }
 }
]
 }
 }
]
}

For more information, see MetricDataQuery in the Amazon EC2 Auto Scaling API Reference.

Note

Following are some additional resources that can help you find metric names, namespaces,
dimensions, and statistics for CloudWatch metrics:

• For information about the available metrics for AWS services, see AWS services that
publish CloudWatch metrics in the Amazon CloudWatch User Guide.

• To get the exact metric name, namespace, and dimensions (if applicable) for a
CloudWatch metric with the AWS CLI, see list-metrics.

Service auto scaling 1125

https://docs.aws.amazon.com/autoscaling/ec2/APIReference/API_MetricDataQuery.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-services-cloudwatch-metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-services-cloudwatch-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/list-metrics.html

Amazon Elastic Container Service Developer Guide

To create this policy, run the put-scaling-policy command using the JSON file as input, as
demonstrated in the following example.

aws application-autoscaling put-scaling-policy --policy-name my-predictive-scaling-
policy \
 --auto-scaling-group-name my-asg --policy-type PredictiveScaling \
 --predictive-scaling-configuration file://config.json

If successful, this command returns the policy's Amazon Resource Name (ARN).

{
 "PolicyARN": "arn:aws:autoscaling:region:account-id:scalingPolicy:2f4f5048-d8a8-4d14-
b13a-d1905620f345:autoScalingGroupName/my-asg:policyName/my-predictive-scaling-policy",
 "Alarms": []
}

Use metric math expressions

The following section provides information about using metric math with predictive scaling policies
in your policy.

Understand metric math

If all you want to do is aggregate existing metric data, CloudWatch metric math saves you the
effort and cost of publishing another metric to CloudWatch. You can use any metric that AWS
provides, and you can also use metrics that you define as part of your applications.

For more information, see Using metric math in the Amazon CloudWatch User Guide.

If you choose to use a metric math expression in your predictive scaling policy, consider the
following points:

• Metric math operations use the data points of the unique combination of metric name,
namespace, and dimension keys/value pairs of metrics.

• You can use any arithmetic operator (+ - * / ^), statistical function (such as AVG or SUM), or other
function that CloudWatch supports.

• You can use both metrics and the results of other math expressions in the formulas of the math
expression.

Service auto scaling 1126

https://docs.aws.amazon.com/cli/latest/reference/autoscaling/put-scaling-policy.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html

Amazon Elastic Container Service Developer Guide

• Your metric math expressions can be made up of different aggregations. However, it's a best
practice for the final aggregation result to use Average for the scaling metric and Sum for the
load metric.

• Any expressions used in a metric specification must eventually return a single time series.

To use metric math, do the following:

• Choose one or more CloudWatch metrics. Then, create the expression. For more information, see
Using metric math in the Amazon CloudWatch User Guide.

• Verify that the metric math expression is valid by using the CloudWatch console or the
CloudWatch GetMetricData API.

Example predictive scaling policy that combines metrics using metric math (AWS CLI)

Sometimes, instead of specifying the metric directly, you might need to first process its data in
some way. For example, you might have an application that pulls work from an Amazon SQS
queue, and you might want to use the number of items in the queue as criteria for predictive
scaling. The number of messages in the queue does not solely define the number of instances
that you need. Therefore, more work is needed to create a metric that can be used to calculate the
backlog per instance.

The following is an example predictive scaling policy for this scenario. It specifies scaling and load
metrics that are based on the Amazon SQS ApproximateNumberOfMessagesVisible metric,
which is the number of messages available for retrieval from the queue. It also uses the Amazon
EC2 Auto Scaling GroupInServiceInstances metric and a math expression to calculate the
backlog per instance for the scaling metric.

aws application-autoscaling put-scaling-policy --policy-name my-sqs-custom-metrics-
policy \
 --policy-type PredictiveScaling \
 --predictive-scaling-configuration file://config.json
 --service-namespace ecs \
 --resource-id service/MyCluster/test \
 "MetricSpecifications": [
 {
 "TargetValue": 100,
 "CustomizedScalingMetricSpecification": {
 "MetricDataQueries": [
 {

Service auto scaling 1127

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricData.html

Amazon Elastic Container Service Developer Guide

 "Label": "Get the queue size (the number of messages waiting to be
 processed)",
 "Id": "queue_size",
 "MetricStat": {
 "Metric": {
 "MetricName": "ApproximateNumberOfMessagesVisible",
 "Namespace": "AWS/SQS",
 "Dimensions": [
 {
 "Name": "QueueName",
 "Value": "my-queue"
 }
]
 },
 "Stat": "Sum"
 },
 "ReturnData": false
 },
 {
 "Label": "Get the group size (the number of running instances)",
 "Id": "running_capacity",
 "MetricStat": {
 "Metric": {
 "MetricName": "GroupInServiceInstances",
 "Namespace": "AWS/AutoScaling",
 "Dimensions": [
 {
 "Name": "AutoScalingGroupName",
 "Value": "my-asg"
 }
]
 },
 "Stat": "Sum"
 },
 "ReturnData": false
 },
 {
 "Label": "Calculate the backlog per instance",
 "Id": "scaling_metric",
 "Expression": "queue_size / running_capacity",
 "ReturnData": true
 }
]
 },

Service auto scaling 1128

Amazon Elastic Container Service Developer Guide

 "CustomizedLoadMetricSpecification": {
 "MetricDataQueries": [
 {
 "Id": "load_metric",
 "MetricStat": {
 "Metric": {
 "MetricName": "ApproximateNumberOfMessagesVisible",
 "Namespace": "AWS/SQS",
 "Dimensions": [
 {
 "Name": "QueueName",
 "Value": "my-queue"
 }
],
 },
 "Stat": "Sum"
 },
 "ReturnData": true
 }
]
 }
 }
]
}

The example returns the policy's ARN.

{
 "PolicyARN": "arn:aws:autoscaling:region:account-id:scalingPolicy:2f4f5048-d8a8-4d14-
b13a-d1905620f345:autoScalingGroupName/my-asg:policyName/my-sqs-custom-metrics-policy",
 "Alarms": []
}

Interconnect Amazon ECS services

Applications that run in Amazon ECS tasks often need to receive connections from the internet or
to connect to other applications that run in Amazon ECS services. If you need external connections
from the internet, we recommend using Elastic Load Balancing. For more information about
integrated load balancing, see the section called “Use load balancing to distribute service traffic”.

If you need an application to connect to other applications that run in Amazon ECS services,
Amazon ECS provides the following ways to do this without a load balancer:

Interconnect services 1129

Amazon Elastic Container Service Developer Guide

• Amazon ECS Service Connect

We recommend Service Connect, which provides Amazon ECS configuration for service discovery,
connectivity, and traffic monitoring. With Service Connect, your applications can use short
names and standard ports to connect to Amazon ECS services in the same cluster, other clusters,
including across VPCs in the same AWS Region.

When you use Service Connect, Amazon ECS manages all of the parts of service discovery:
creating the names that can be discovered, dynamically managing entries for each task as the
tasks start and stop, running an agent in each task that is configured to discover the names.
Your application can look up the names by using the standard functionality for DNS names
and making connections. If your application does this already, you don't need to modify your
application to use Service Connect.

You provide the complete configuration inside each service and task definition. Amazon ECS
manages changes to this configuration in each service deployment, to ensure that all tasks in
a deployment behave in the same way. For example, a common problem with DNS as service
discovery is controlling a migration. If you change a DNS name to point to the new replacement
IP addresses, it might take the maximum TTL time before all the clients begin using the new
service. With Service Connect, the client deployment updates the configuration by replacing
the client tasks. You can configure the deployment circuit breaker and other deployment
configuration to affect Service Connect changes in the same way as any other deployment.

For more information, see Use Service Connect to connect Amazon ECS services with short
names.

• Amazon ECS service discovery

Another approach for service-to-service communication is direct communication using service
discovery. In this approach, you can use the AWS Cloud Map service discovery integration with
Amazon ECS. Using service discovery, Amazon ECS syncs the list of launched tasks to AWS Cloud
Map, which maintains a DNS hostname that resolves to the internal IP addresses of one or more
tasks from that particular service. Other services in the Amazon VPC can use this DNS hostname
to send traffic directly to another container using its internal IP address.

This approach to service-to-service communication provides low latency. There are no extra
components between the containers. Traffic travels directly from one container to the other
container.

Interconnect services 1130

Amazon Elastic Container Service Developer Guide

This approach is suitable when using the awsvpc network mode, where each task has its own
unique IP address. Most software only supports the use of DNS A records, which resolve directly
to IP addresses. When using the awsvpc network mode, the IP address for each task are an A
record. However, if you're using bridge network mode, multiple containers could be sharing
the same IP address. Additionally, dynamic port mappings cause the containers to be randomly
assigned port numbers on that single IP address. At this point, an A record is no longer enough
for service discovery. You must also use an SRV record. This type of record can keep track of both
IP addresses and port numbers but requires that you configure applications appropriately. Some
prebuilt applications that you use might not support SRV records.

Another advantage of the awsvpc network mode is that you have a unique security group for
each service. You can configure this security group to allow incoming connections from only the
specific upstream services that need to talk to that service.

The main disadvantage of direct service-to-service communication using service discovery is that
you must implement extra logic to have retries and deal with connection failures. DNS records
have a time-to-live (TTL) period that controls how long they are cached for. It takes some time
for the DNS record to be updated and for the cache to expire so that your applications can pick
up the latest version of the DNS record. So, your application might end up resolving the DNS
record to point at another container that's no longer there. Your application needs to handle
retries and have logic to ignore bad backends.

For more information, see Use service discovery to connect Amazon ECS services with DNS
names

• Amazon VPC Lattice

Amazon VPC Lattice is a managed application networking service that Amazon ECS customers
use to observe, secure, and monitor applications built across AWS compute services, VPCs, and
accounts without having to modify their code.

VPC Lattice uses target groups, which are a collection of compute resources. These targets run
your application or service and can be Amazon EC2 instances, IP addresses, Lambda functions,
and Application Load Balancers. By associating their Amazon ECS services with a VPC Lattice
target group, customers can now enable Amazon ECS tasks as IP targets in VPC Lattice. Amazon
ECS automatically registers tasks to the VPC Lattice target group when tasks for the registered
service are launched.

Interconnect services 1131

Amazon Elastic Container Service Developer Guide

For more information, see Use Amazon VPC Lattice to connect, observe, and secure your Amazon
ECS services.

Network mode compatibility table

The following table covers the compatibility between these options and the task network modes.
In the table, "client" refers to the application that's making the connections from inside an Amazon
ECS task.

Interconnection Options Bridged awsvpc Host

Service discovery yes, but requires
clients be aware
of SRV records
in DNS without
hostPort.

yes yes, but requires
clients be aware
of SRV records
in DNS without
hostPort.

Service Connect yes yes no

VPC Lattice yes yes yes

Use Service Connect to connect Amazon ECS services with short names

Amazon ECS Service Connect provides management of service-to-service communication as
Amazon ECS configuration. It builds both service discovery and a service mesh in Amazon ECS. This
provides the complete configuration inside each service that you manage by service deployments,
a unified way to refer to your services within namespaces that doesn't depend on the VPC DNS
configuration, and standardized metrics and logs to monitor all of your applications. Service
Connect only interconnects services.

The following diagram shows an example Service Connect network with 2 subnets in the VPC and
2 services. A client service that runs WordPress with 1 task in each subnets. A server service that
runs MySQL with 1 task in each subnet. Both services are highly available and resilient to task
and Availability Zone issues because each service runs multiple tasks that are spread out over 2
subnets. The solid arrows show a connection from WordPress to MySQL. For example, a mysql
--host=mysql CLI command that is run from inside the WordPress container in the task with
the IP address 172.31.16.1. The command uses the short name mysql on the default port for

Interconnect services 1132

Amazon Elastic Container Service Developer Guide

MySQL. This name and port connects to the Service Connect proxy in the same task. The proxy in
the WordPress task uses round-robin load balancing and any previous failure information in outlier
detection to pick which MySQL task to connect to. As shown by the solid arrows in the diagram,
the proxy connects to the second proxy in the MySQL task with the IP Address 172.31.16.2. The
second proxy connects to the local MySQL server in the same task. Both proxies report connection
performance that is visible in graphs in the Amazon ECS and Amazon CloudWatch consoles so that
you can get performance metrics from all kinds of applications in the same way.

The following terms are used with Service Connect.

port name

The Amazon ECS task definition configuration that assigns a name to a particular port mapping.
This configuration is only used by Amazon ECS Service Connect.

client alias

The Amazon ECS service configuration that assigns the port number that is used in the
endpoint. Additionally, the client alias can assign the DNS name of the endpoint, overriding the

Interconnect services 1133

Amazon Elastic Container Service Developer Guide

discovery name. If a discovery name isn't provided in the Amazon ECS service, the client alias
name overrides the port name as the endpoint name. For endpoint examples, see the definition
of endpoint. Multiple client aliases can be assigned to an Amazon ECS service. This configuration
is only used by Amazon ECS Service Connect.

discovery name

The optional, intermediate name that you can create for a specified port from the task
definition. This name is used to create a AWS Cloud Map service. If this name isn't provided,
the port name from the task definition is used. Multiple discovery names can be assigned to
a specific port an Amazon ECS service. This configuration is only used by Amazon ECS Service
Connect.

AWS Cloud Map service names must be unique within a namespace. Because of this limitation,
you can have only one Service Connect configuration without a discovery name for a particular
task definition in each namespace.

endpoint

The URL to connect to an API or website. The URL contains the protocol, a DNS name, and the
port. For more information about endpoints in general, see endpoint in the AWS glossary in the
Amazon Web Services General Reference.

Service Connect creates endpoints that connect to Amazon ECS services and configures the
tasks in Amazon ECS services to connect to the endpoints. The URL contains the protocol, a DNS
name, and the port. You select the protocol and port name in the task definition, as the port
must match the application that is inside the container image. In the service, you select each
port by name and can assign the DNS name. If you don't specify a DNS name in the Amazon
ECS service configuration, the port name from the task definition is used by default. For
example, a Service Connect endpoint could be http://blog:80, grpc://checkout:8080,
or http://_db.production.internal:99.

Service Connect service

The configuration of a single endpoint in an Amazon ECS service. This is a part of the Service
Connect configuration, consisting of a single row in the Service Connect and discovery name
configuration in the console, or one object in the services list in the JSON configuration of
an Amazon ECS service. This configuration is only used by Amazon ECS Service Connect.

For more information, see ServiceConnectService in the Amazon Elastic Container Service API
Reference.

Interconnect services 1134

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html#endpoint
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ServiceConnectService.html

Amazon Elastic Container Service Developer Guide

namespace

The short name or full Amazon Resource Name (ARN) of the AWS Cloud Map namespace for
use with Service Connect. The namespace must be in the same AWS Region as the Amazon ECS
service and cluster. The type of namespace in AWS Cloud Map doesn't affect Service Connect.

Service Connect uses the AWS Cloud Map namespace as a logical grouping of Amazon ECS
tasks that talk to one another. Each Amazon ECS service can belong to only one namespace.
The services within a namespace can be spread across different Amazon ECS clusters within the
same AWS Region in the same AWS account. You can freely organize services by any criteria.

client service

A service that runs a network client application. This service must have a namespace configured.
Each task in the service can discover and connect to all of the endpoints in the namespace
through a Service Connect proxy container.

If any of your containers in the task need to connect to an endpoint from a service in a
namespace, choose a client service. If a frontend, reverse proxy, or load balancer application
receives external traffic through other methods such as from Elastic Load Balancing, it could use
this type of Service Connect configuration.

client-server service

An Amazon ECS service that runs a network or web service application. This service must have a
namespace and at least one endpoint configured. Each task in the service is reachable by using
the endpoints. The Service Connect proxy container listens on the endpoint name and port to
direct traffic to the app containers in the task.

If any of the containers expose and listen on a port for network traffic, choose a client-server
service. These applications don't need to connect to other client-server services in the same
namespace, but the client configuration is needed. A backend, middleware, business tier, or
most microservices can use this type of Service Connect configuration. If you want a frontend,
reverse proxy, or load balancer application to receive traffic from other services configured with
Service Connect in the same namespace, these services should use this type of Service Connect
configuration.

The Service Connect feature creates a virtual network of related services. The same service
configuration can be used across multiple different namespaces to run independent yet identical
sets of applications. Service Connect defines the proxy container in the Amazon ECS service. This
way, the same task definition can be used to run identical applications in different namespaces

Interconnect services 1135

Amazon Elastic Container Service Developer Guide

with different Service Connect configurations. Each task that the service makes runs a proxy
container in the task.

Service Connect is suitable for connections between Amazon ECS services within the same
namespace. For the following applications, you need to use an additional interconnection method
to connect to an Amazon ECS service that is configured with Service Connect:

• Tasks that are configured in other namespaces

• Tasks that aren’t configured for Service Connect

• Other applications outside of Amazon ECS

These applications can connect through the Service Connect proxy but can’t resolve Service
Connect endpoint names.

For these applications to resolve the IP addresses of Amazon ECS tasks, you need to use another
interconnection method.

Topics

• Pricing

• Amazon ECS Service Connect components

• Amazon ECS Service Connect configuration overview

• Encrypt Amazon ECS Service Connect traffic

• Configuring Amazon ECS Service Connect with the AWS CLI

Pricing

• Amazon ECS Service Connect pricing depends on whether you use AWS Fargate or Amazon EC2
infrastructure to host your containerized workloads. When using Amazon ECS on AWS Outposts,
the pricing follows the same model that's used when you use Amazon EC2 directly. For more
information, see Amazon ECS Pricing.

• There is no additional charge for using Amazon ECS Service Connect.

• AWS Cloud Map usage is completely free when used by Service Connect.

• Customers pay for compute resources, used by Amazon ECS Service Connect, including vCPU
and Memory. As Amazon ECS Service Connect agent runs inside a customer task, there is no
additional charge for running it. The task resources are shared between the customer workload
and the Amazon ECS Service Connect agent.

Interconnect services 1136

https://aws.amazon.com/ecs/pricing

Amazon Elastic Container Service Developer Guide

• When using Amazon ECS Service Connect traffic encryption functionality with AWS Private CA,
customers pay for the private certificate authority they create and for each TLS certificate issued.
For more details, see AWS Private Certificate Authority pricing. To estimate the monthly cost
of TLS certificates, customers need to know the number of Amazon ECS services that have TLS
enabled, multiply it by the certificate cost, and then multiply it by six. As Amazon ECS Service
Connect automatically rotates TLS certificates every five days, there are six certificates issued per
Amazon ECS service, per month, on average.

Amazon ECS Service Connect components

When you use Amazon ECS Service Connect, you configure each Amazon ECS service to run
a server application that receives network requests (client-server service) or to run a client
application that makes the requests (client service).

When you prepare to start using Service Connect, start with a client-server service. You can add a
Service Connect configuration to a new service or an existing service. Amazon ECS creates a Service
Connect endpoint in the namespace. Additionally, Amazon ECS creates a new deployment in the
service to replace the tasks that are currently running.

Existing tasks and other applications can continue to connect to existing endpoints, and external
applications. If a client-server service adds tasks by scaling out, new connections from clients will
be balanced between all of the tasks. If a client-server service is updated, new connections from
clients will be balanced between the tasks of the new version .

Existing tasks can't resolve and connect to the new endpoint. Only new tasks with a Service
Connect configuration in the same namespace and that start running after this deployment can
resolve and connect to this endpoint.

This means that the operator of the client application determines when the configuration of their
app changes, even though the operator of the server application can change their configuration
at any time. The list of endpoints in the namespace can change every time that any service in the
namespace is deployed. Existing tasks and replacement tasks continue to behave the same as they
did after the most recent deployment.

Consider the following examples.

First, assume that you are creating an application that is available to the public internet in a single
AWS CloudFormation template and single AWS CloudFormation stack. The public discovery and
reachability should be created last by AWS CloudFormation, including the frontend client service.

Interconnect services 1137

https://aws.amazon.com/private-ca/pricing/

Amazon Elastic Container Service Developer Guide

The services need to be created in this order to prevent an time period when the frontend client
service is running and available the public, but a backend isn't. This eliminates error messages
from being sent to the public during that time period. In AWS CloudFormation, you must use the
dependsOn to indicate to AWS CloudFormation that multiple Amazon ECS services can't be made
in parallel or simultaneously. You should add the dependsOn to the frontend client service for
each backend client-server service that the client tasks connect to.

Second, assume that a frontend service exists without Service Connect configuration. The tasks are
connecting to an existing backend service. Add a client-server Service Connect configuration to the
backend service first, using the same name in the DNS or clientAlias that the frontend uses.
This creates a new deployment, so all the deployment rollback detection or AWS Management
Console, AWS CLI, AWS SDKs and other methods to roll back and revert the backend service to the
previous deployment and configuration. If you are satisfied with the performance and behavior
of the backend service, add a client or client-server Service Connect configuration to the frontend
service. Only the tasks in the new deployment use the Service Connect proxy that is added to
those new tasks. If you have issues with this configuration, you can roll back and revert to your
previous configuration by using the deployment rollback detection or AWS Management Console,
AWS CLI, AWS SDKs and other methods to roll back and revert the backend service to the previous
deployment and configuration. If you use another service discovery system that is based on DNS
instead of Service Connect, any frontend or client applications begin using new endpoints and
changed endpoint configuration after the local DNS cache expires, commonly taking multiple
hours.

Networking

By default, the Service Connect proxy listens on the containerPort from the task definition
port mapping. Your security group rules must allow incoming (ingress) traffic to this port from the
subnets where clients will run.

Even if you set a port number in the Service Connect service configuration, this doesn't change the
port for the client-server service that the Service Connect proxy listens on. When you set this port
number, Amazon ECS changes the port of the endpoint that the client services connect to, on the
Service Connect proxy inside those tasks. The proxy in the client service connects to the proxy in
the client-server service using the containerPort.

If you want to change the port that the Service Connect proxy listens on, change the
ingressPortOverride in the Service Connect configuration of the client-server service. If you
change this port number, you must allow inbound traffic on this port that is used by traffic to this
service.

Interconnect services 1138

Amazon Elastic Container Service Developer Guide

Traffic that your applications send to Amazon ECS services configured for Service Connect require
that the Amazon VPC and subnets have route table rules and network ACL rules that allow the
containerPort and ingressPortOverride port numbers that you are using.

You can use Service Connect to send traffic between VPCs. The same requirements for the route
table rules, network ACLs, and security groups apply to both VPCs.

For example, two clusters create tasks in different VPCs. A service in each cluster is configured
to use the same namespace. The applications in these two services can resolve every endpoint in
the namespace without any VPC DNS configuration. However, the proxies can't connect unless
the VPC peering, VPC, or subnet route tables, and VPC network ACLs allow the traffic on the
containerPort and ingressPortOverride port numbers.

For tasks that use the bridge networking mode, you must create a security group with an inbound
rule that allows traffic on the upper dynamic port range. Then, assign the security group to all the
EC2 instances in the Service Connect cluster.

Service Connect proxy

If you create or update a service with Service Connect configuration, Amazon ECS adds a new
container to each new task as it is started. This pattern of using a separate container is called a
sidecar. This container isn't present in the task definition and you can't configure it. Amazon
ECS manages the Container configuration in the service. This allows you to reuse the same task
definitions between multiple services, namespaces, and tasks without Service Connect.

Proxy resources

• For task definitions, you must set the CPU and memory parameters.

We recommend adding an additional 256 CPU units and at least 64 MiB of memory to your task
CPU and memory for the Service Connect proxy container. On AWS Fargate, the lowest amount
of memory that you can set is 512 MiB of memory. On Amazon EC2, task definition memory is
required.

• For the service, you set the log configuration in the Service Connect configuration.

• If you expect tasks in this service to receive more than 500 requests per second at their peak
load, we recommend adding 512 CPU units to your task CPU in this task definition for the
Service Connect proxy container.

• If you expect to create more than 100 Service Connect services in the namespace or 2000 tasks
in total across all Amazon ECS services within the namespace, we recommend adding 128 MiB

Interconnect services 1139

Amazon Elastic Container Service Developer Guide

of memory to your task memory for the Service Connect proxy container. You should do this in
every task definition that is used by all of the Amazon ECS services in the namespace.

Proxy configuration

Your applications connect to the proxy in the sidecar container in the same task as the application
is in. Amazon ECS configures the task and containers so that applications only connect to the
proxy when the application is connected to the endpoint names in the same namespace. All other
traffic doesn't use the proxy. The other traffic includes IP addresses in the same VPC, AWS service
endpoints, and external traffic.

Load balancing

Service Connect configures the proxy to use the round-robin strategy for load balancing
between the tasks in a Service Connect endpoint. The local proxy that is in the task where the
connection comes from, picks one of the tasks in the client-server service that provides the
endpoint.

For example, consider a task that runs WordPress in a service that is configured as a client
service in a namespace called local. There is another service with 2 tasks that run the MySQL
database. This service is configured to provide an endpoint called mysql through Service
Connect in the same namespace. In the WordPress task, the WordPress application connects to
the database using the endpoint name. Connections to this name go to the proxy that runs in
a sidecar container in the same task. Then, the proxy can connect to either of the MySQL tasks
using the round-robin strategy.

Load balancing strategies: round-robin

Outlier detection

This feature uses data that the proxy has about prior failed connections to avoid sending new
connections to the hosts that had the failed connections. Service Connect configures the outlier
detection feature of the proxy to provide passive health checks.

Using the previous example, the proxy can connect to either of the MySQL tasks. If the proxy
made multiple connections to a specific MySQL task, and 5 or more of the connections failed in
the last 30 seconds, then the proxy avoids that MySQL task for 30 to 300 seconds.

Interconnect services 1140

Amazon Elastic Container Service Developer Guide

Retries

Service Connect configures the proxy to retry connection that pass through the proxy and fail,
and the second attempt avoids using the host from the previous connection. This ensures that
each connection through Service Connect doesn't fail for one-off reasons.

Number of retries: 2

Timeout

Service Connect configures the proxy to wait a maximum time for your client-server
applications to respond. The default timeout value is 15 seconds, but it can be updated.

Optional parameters:

idleTimeout ‐ The amount of time in seconds a connection stays active while idle. A value of 0
disables idleTimeout.

The idleTimeout default for HTTP/HTTP2/GRPC is 5 minutes.

The idleTimeout default for TCP is 1 hour.

perRequestTimeout ‐ The amount of time waiting for the upstream to respond with a complete
response per request. A value of 0 turns off perRequestTimeout. This can only be set when
the appProtocol for application container is HTTP/HTTP2/GRPC. The default is 15 seconds.

Note

If idleTimeout is set to a time that is less than perRequestTimeout, the connection
will close when the idleTimeout is reached and not the perRequestTimeout.

Considerations

Consider the following when using Service Connect:

• Tasks that run in Fargate must use the Fargate Linux platform version 1.4.0 or higher to use
Service Connect.

• The Amazon ECS agent version on the container instance must be 1.67.2 or higher.

• Container instances must run the Amazon ECS-optimized Amazon Linux 2023 AMI version
20230428 or later, or Amazon ECS-optimized Amazon Linux 2 AMI version 2.0.20221115 to
use Service Connect. These versions have the Service Connect agent in addition to the Amazon

Interconnect services 1141

Amazon Elastic Container Service Developer Guide

ECS container agent. For more information about the Service Connect agent, see Amazon ECS
Service Connect Agent on GitHub.

• Container instances must have the ecs:Poll permission for the resource
arn:aws:ecs:region:0123456789012:task-set/cluster/*. If you are
using the ecsInstanceRole, you don't need to add additional permissions. The
AmazonEC2ContainerServiceforEC2Role managed policy has the necessary permissions.
For more information, see Amazon ECS container instance IAM role.

• Only services that use rolling deployments are supported with Service Connect.

• Tasks that use the bridge network mode and use Service Connect don't support the hostname
container definition parameter.

• Task definitions must set the task memory limit to use Service Connect. For more information,
see Service Connect proxy.

• Task definitions that set container memory limits aren't supported.

You can set container memory limits on your containers, but you must set the task memory
limit to a number greater than the sum of the container memory limits. The additional CPU
and memory in the task limits that aren't allocated in the container limits are used by the
Service Connect proxy container and other containers that don't set container limits. For more
information, see Service Connect proxy.

• You can configure Service Connect to use any AWS Cloud Map namespace in the same Region in
the same AWS account.

• Each service can belong to only one namespace.

• Only the tasks that services create are supported.

• All endpoints must be unique within a namespace.

• All discovery names must be unique within a namespace.

• You must redeploy existing services before the applications can resolve new endpoints. New
endpoints that are added to the namespace after the most recent deployment won't be added
to the task configuration. For more information, see the section called “Service Connect
components”.

• Service Connect doesn't delete namespaces when clusters are deleted. You must delete
namespaces in AWS Cloud Map.

• Application Load Balancer traffic defaults to routing through the Service Connect agent in
awsvpc network mode. If you want non-service traffic to bypass the Service Connect agent, use
the ingressPortOverride parameter in your Service Connect service configuration.

Interconnect services 1142

https://github.com/aws/amazon-ecs-service-connect-agent
https://github.com/aws/amazon-ecs-service-connect-agent
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ServiceConnectService.html

Amazon Elastic Container Service Developer Guide

• Service Connect with TLS does not support Bridge networking mode. Only awsvpc networking
mode is supported.

Service Connect doesn't support the following:

• Windows containers

• HTTP 1.0

• Standalone tasks

• Services that use the blue/green and external deployment types

• External container instance for Amazon ECS Anywhere aren't supported with Service Connect.

• PPv2

Amazon ECS Service Connect configuration overview

When you use Service Connect, there are parameters you need to configure in your resources.

The following table describes the configuration parameters for the Amazon ECS resources.

Parameter location App type Description Required

Task definition Client There are no changes available for
Service Connect in client task definitio
ns.

N/A

Task definition Client-se
rver

Servers must add name fields to ports
in the portMappings of containers.
For more information, see portMappi
ngs

Yes

Task definition Client-se
rver

Servers can optionally provide an
application protocol (for example,
HTTP) to receive protocol-specific
metrics for their server applications (for
example, HTTP 5xx).

No

Service definition Client Client services must add a serviceCo
nnectConfiguration to

Yes

Interconnect services 1143

Amazon Elastic Container Service Developer Guide

Parameter location App type Description Required

configure the namespace to join. This
namespace must contain all of the
server services that this service needs
to discover. For more information, see
serviceConnectConfiguration

.

Service definition Client-se
rver

Server services must add a serviceCo
nnectConfiguration to
configure the DNS names, port
numbers, and namespace that
the service is available from. For
more information, see serviceCo
nnectConfiguration .

Yes

Cluster Client Clusters can add a default Service
Connect namespace. New services
in the cluster inherit the namespace
when Service Connect is configured in a
service.

No

Cluster Client-se
rver

There are no changes available for
Service Connect in clusters that apply
to server services. Server task definitio
ns and services must set the respective
configuration.

N/A

Overview of steps to configure Service Connect

The following steps provide an overview of how to configure Service Connect.

Important

• Service Connect creates AWS Cloud Map services in your account. Modifying these AWS
Cloud Map resources by manually registering/deregistering instances, changing instance

Interconnect services 1144

Amazon Elastic Container Service Developer Guide

attributes, or deleting a service may lead to unexpected behavior for your application
traffic or subsequent deployments.

• Service Connect doesn't support links in the task definition.

1. Add port names to the port mappings in your task definitions. Additionally, you can identify the
layer 7 protocol of the application, to get additional metrics.

2. Create a cluster with a AWS Cloud Map namespace or create the namespace separately. For
simple organization, create a cluster with the name that you want for the namespace and
specify the identical name for the namespace. In this case, Amazon ECS creates a new HTTP
namespace with the necessary configuration. Service Connect doesn't use or create DNS hosted
zones in Amazon Route 53.

3. Configure services to create Service Connect endpoints within the namespace.

4. Deploy services to create the endpoints. Amazon ECS adds a Service Connect proxy container
to each task, and creates the Service Connect endpoints in AWS Cloud Map. This container isn't
configured in the task definition, and the task definition can be reused without modification to
create multiple services in the same namespace or in multiple namespaces.

5. Deploy client apps as services to connect to the endpoints. Amazon ECS connects them to the
Service Connect endpoints through the Service Connect proxy in each task.

Applications only use the proxy to connect to Service Connect endpoints. There is no additional
configuration to use the proxy. The proxy performs round-robin load balancing, outlier
detection, and retries. For more information about the proxy, see Service Connect proxy.

6. Monitor traffic through the Service Connect proxy in Amazon CloudWatch.

Cluster configuration

You can set a default namespace for Service Connect when you create or update the cluster. If you
specify a namespace name that doesn't exist in the same AWS Region and account, a new HTTP
namespace is created.

If you create a cluster and specify a default Service Connect namespace, the cluster waits in the
PROVISIONING status while Amazon ECS creates the namespace. You can see an attachment in
the status of the cluster that shows the status of the namespace. Attachments aren't displayed by
default in the AWS CLI, you must add --include ATTACHMENTS to see them.

Interconnect services 1145

Amazon Elastic Container Service Developer Guide

Service configuration

Service Connect is designed to require the minimum configuration. You need to set a name for
each port mapping that you would like to use with Service Connect in the task definition. In the
service, you need to turn on Service Connect and select a namespace to make a client service. To
make a client-server service, you need to add a single Service Connect service configuration that
matches the name of one of the port mappings. Amazon ECS reuses the port number and port
name from the task definition to define the Service Connect service and endpoint. To override
those values, you can use the other parameters Discovery, DNS, and Port in the console, or
discoveryName and clientAliases, respectively in the Amazon ECS API.

Encrypt Amazon ECS Service Connect traffic

Amazon ECS Service Connect supports automatic traffic encryption with Transport Layer Security
(TLS) certificates for Amazon ECS services. When you point your Amazon ECS services toward an
AWS Private Certificate Authority (AWS Private CA), Amazon ECS automatically provisions TLS
certificates to encrypt traffic between your Amazon ECS Service Connect services. Amazon ECS
generates, rotates, and distributes TLS certificates used for traffic encryption.

Automatic traffic encryption with Service Connect uses industry-leading encryption capabilities
to secure your inter-service communication that helps you meet your security requirements. It
supports AWS Private Certificate Authority TLS certificates with 256-bit ECDSA and 2048-
bit RSA encryption. You also have full control over private certificates and signing keys to help
you meet compliance requirements. By default, TLS 1.3 is supported, but TLS 1.0 - 1.2 are not
supported. Service Connect supports TLS 1.3 with the following ciphers:

• TLS_AES_128_GCM_SHA256

• TLS_AES_256_GCM_SHA384

• TLS_CHACHA20_POLY1305_SHA256

Note

In order to use TLS 1.3, you must enable it on the listener on the target.
Only inbound and outbound traffic passing though the Amazon ECS agent is encrypted.

Interconnect services 1146

https://docs.aws.amazon.com/privateca/latest/userguide/PcaWelcome.html

Amazon Elastic Container Service Developer Guide

Service Connect and Application Load Balancer health checks

You can use Service Connect with Application Load Balancer health checks and TLS 1.3 encryption.

Application Load Balancer configuration

Configure the Application Load Balancer with the following settings:

• Configure a TLS listener with a TLS 1.3 security policy (such as `ELBSecurityPolicy-
TLS13-1-2-2021-06`). For more information, see Security policies for your Application Load
Balancer.

• Create a target group with the following settings:

• Set the protocol to HTTPS

• Attach the target group to the TLS listener

• Configure the health check port to match your Service Connect service's container port

Service Connect configuration

Configure a service with the following settings:

• Configure the service to use awsvpc network mode, as bridge network mode is not supported.

• Enable Service Connect for the service.

• Set up the load balancer configuration with the following settings:

• Specify the target group you configured for your Application Load Balancer

• Set the container port to match the Service Connect TLS service's container port

• Avoid setting ingressPortOverride for the service. For more information, see
ServiceConnectService in the Amazon Elastic Container Service API Reference.

Considerations

Consider the following when using Application Load Balancer, TLS and Service Connect:

• Use awsvpc network mode instead of bridge network mode for HTTPS health checks when
using Service Connect with TLS encryption. HTTP health checks will continue to work with
bridge mode.

• Configure the target group health check port to match the Service Connect service's container
port, not the default HTTPS port (443).

Interconnect services 1147

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/describe-ssl-policies.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/describe-ssl-policies.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ServiceConnectService.html

Amazon Elastic Container Service Developer Guide

AWS Private Certificate Authority certificates and Service Connect

You need to have the infrastructure IAM role. For more information about this role, see Amazon
ECS infrastructure IAM role.

AWS Private Certificate Authority modes for Service Connect

AWS Private Certificate Authority can run in two modes: general purpose and short-lived.

• General purpose ‐ Certificates that can be configured with any expiration date.

• Short-lived ‐ Certificates with a maximum validity of seven days.

While Amazon ECS supports both modes, we recommend using short-lived certificates. By default,
certificates rotate every five days, and running in short-lived mode offers significant cost savings
over general purpose.

Service Connect doesn't support certificate revocation and instead leverages short-lived certificates
with frequent certificate rotation. You have the authority to modify the rotation frequency, disable,
or delete the secrets using managed rotation in Secrets Manager, but doing so can come with the
following possible consequences.

• Shorter Rotation Frequency ‐ A shorter rotation frequency incurs higher costs due to AWS Private
CA, AWS KMS and Secrets Manager, and Auto Scaling experiencing an increased workload for
rotation.

• Longer Rotation Frequency ‐ Your applications’ communications fail if the rotation frequency
exceeds seven days.

• Deletion of Secret ‐ Deleting the secret results in rotation failure and impacts customer
application communications.

In the event of your secret rotation failing, a RotationFailed event is published in AWS
CloudTrail. You can also set up a CloudWatch Alarm for RotationFailed.

Important

Don't add replica Regions to secrets. Doing so prevents Amazon ECS from deleting the
secret, because Amazon ECS doesn't have permission to remove Regions from replication. If
you already added the replication, run the following command.

Interconnect services 1148

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/infrastructure_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/infrastructure_IAM_role.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotate-secrets_managed.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon Elastic Container Service Developer Guide

aws secretsmanager remove-regions-from-replication \
 --secret-id SecretId \
 --remove-replica-regions region-name

Subordinate Certificate Authorities

You can bring any AWS Private CA, root or subordinate, to Service Connect TLS to issue end-
entity certificates for the services. The provided issuer is treated as the signer and root of trust
everywhere. You can issue end-entity certificates for different parts of your application from
different subordinate CAs. When using the AWS CLI, provide the Amazon Resource Name (ARN) of
the CA to establish the trust chain.

On-premises Certificate Authorities

To use your on-premises CA, you create and configure a subordinate CA in AWS Private Certificate
Authority. This ensures all TLS certificates issued for your Amazon ECS workloads share the trust
chain with the workloads you run on premises and are able to securely connect.

Important

Add the required tag AmazonECSManaged : true in your AWS Private CA.

Infrastructure as code

When using Service Connect TLS with Infrastructure as Code (IaC) tools, it's important to configure
your dependencies correctly to avoid issues, such as services stuck in draining. Your AWS KMS key,
if provided, IAM role, and AWS Private CA dependencies should be deleted after your Amazon ECS
service.

Service Connect and Secrets Manager

When using Amazon ECS Service Connect with TLS encryption, the service interacts with
Secrets Manager in the following ways:

Service Connect utilizes the infrastructure role provided to create secrets within Secrets Manager.
These secrets are used to store the associated private keys for your TLS certificates for encrypting
traffic between your Service Connect services.

Interconnect services 1149

Amazon Elastic Container Service Developer Guide

Warning

The automatic creation and management of these secrets by Service Connect streamlines
the process of implementing TLS encryption for your services. However, it's important to be
aware of potential security implications. Other IAM roles that have read access to Secrets
Manager may be able to access these automatically created secrets. This could expose
sensitive cryptographic material to unauthorized parties, if access controls are not properly
configured.
To mitigate this risk, follow these best practices:

• Carefully manage and restrict access to Secrets Manager, especially for secrets created by
Service Connect.

• Regularly audit IAM roles and their permissions to ensure the principle of least privilege
is maintained.

When granting read access to Secrets Manager, consider excluding the TLS private keys created by
Service Connect. You can do this by using a condition in your IAM policies to exclude secrets with
ARNs that match the pattern:

"arn:aws:secretsmanager:::secret:ecs-sc!"

An example IAM policy that denies the GetSecretValue action to all secrets with the ecs-sc!
prefix:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "arn:aws:secretsmanager:*:*:secret:ecs-sc!*"
 }
]
}

Interconnect services 1150

Amazon Elastic Container Service Developer Guide

Note

This is a general example and may need to be adjusted based on your specific use case
and AWS account configuration. Always test your IAM policies thoroughly to ensure they
provide the intended access while maintaining security.

By understanding how Service Connect interacts with Secrets Manager, you can better manage the
security of your Amazon ECS services while leveraging the benefits of automatic TLS encryption.

Service Connect and AWS Key Management Service

You can use AWS Key Management Service to encrypt and decrypt your Service Connect resources.
AWS KMS is a service managed by AWS where you can make and manage cryptographic keys that
protect your data.

When using AWS KMS with Service Connect, you can either choose to use an AWS owned key that
AWS manages for you, or you can choose an existing AWS KMS key. You can also create a new AWS
KMS key to use.

Providing your own encryption key

You can provide your own key materials, or you can use an external key store through AWS Key
Management Service Import your own key into AWS KMS, and then specify the Amazon Resource
Name (ARN) of that key in Amazon ECS Service Connect.

The following is an example AWS KMS policy. Replace the user input values with your own.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "id",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/role-name"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:GenerateDataKey",

Interconnect services 1151

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk

Amazon Elastic Container Service Developer Guide

 "kms:GenerateDataKeyPair"
],
 "Resource": "*"
 }
]
}

For more information about key policies, see Creating a key policy in the AWS Key Management
Service Developer Guide.

Note

Service Connect supports only symmetric encryption AWS KMS keys. You can't use
any other type of AWS KMS key to encrypt your Service Connect resources. For help
determining whether a AWS KMS key is a symmetric encryption key, see Identify
asymmetric KMS keys.

For more information on AWS Key Management Service symmetric encryption keys, see Symmetric
encryption AWS KMS keys in the AWS Key Management Service Developer Guide.

Enabling TLS for Amazon ECS Service Connect

You enable traffic encryption when you create or update a Service Connect service.

To enable traffic encryption for a service in an existing namespace using the AWS Management
Console

1. You need to have the infrastructure IAM role. For more information about this role, see
Amazon ECS infrastructure IAM role.

2. Open the console at https://console.aws.amazon.com/ecs/v2.

3. In the navigation pane, choose Namespaces.

4. Choose the Namespace with the Service you'd like to enable traffic encryption for.

5. Choose the Service you'd like to enable traffic encryption for.

6. Choose Update Service in the top right corner and scroll down to the Service Connect section.

7. Choose Turn on traffic encryption under your service information to enable TLS.

8. For Service Connect TLS role, choose an existing infrastructure IAM role or create a new one.

9. For Signer certificate authority, choose an existing certificate authority or create a new one.

Interconnect services 1152

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/identify-key-types.html#identify-asymm-keys
https://docs.aws.amazon.com/kms/latest/developerguide/identify-key-types.html#identify-asymm-keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/infrastructure_IAM_role.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

For more information, see see AWS Private Certificate Authority certificates and Service
Connect.

10. For Choose an AWS KMS key, choose an AWS owned and managed key or you can choose a
different key. You can also choose to create a new one.

For an example of using the AWS CLI to configure TLS for your service, Configuring Amazon ECS
Service Connect with the AWS CLI.

Verifying TLS is enabled for Amazon ECS Service Connect

Service Connect initiates TLS at the Service Connect agent and terminates it at the destination
agent. As a result, the application code never sees TLS interactions. Use the following steps to
verify that TLS is enabled.

1. Include the openssl CLI in your application image.

2. Enable ECS Exec on your services to connect to your tasks via SSM. Alternately, you can launch
an Amazon EC2 instance in the same Amazon VPC as the service.

3. Retrieve the IP and port of a task from a service that you want to verify. You can retrieve the
task IP address in the AWS Cloud Map console. The information is on the service details page
for the namespace.

4. Log on to any of your tasks using execute-command like in the following example.
Alternately, log on to the Amazon EC2 instance created in Step 2.

$ aws ecs execute-command --cluster cluster-name \
 --task task-id \
 --container container-name \
 --interactive \
 --command "/bin/sh"

Note

Calling the DNS name directly does not reveal the certificate.

5. In the connected shell, use the openssl CLI to verify and view the certificate attached to the
task.

Example:

Interconnect services 1153

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-exec.html

Amazon Elastic Container Service Developer Guide

openssl s_client -connect 10.0.147.43:6379 < /dev/null 2> /dev/null \
| openssl x509 -noout -text

Example response:

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 <serial-number>
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: <issuer>
 Validity
 Not Before: Jan 23 21:38:12 2024 GMT
 Not After : Jan 30 22:38:12 2024 GMT
 Subject: <subject>
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 <pub>
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Subject Alternative Name:
 DNS:redis.yelb-cftc
 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 Authority Key Identifier:
 keyid:<key-id>

 X509v3 Subject Key Identifier:
 1D:<id>
 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment
 X509v3 Extended Key Usage:
 TLS Web Server Authentication, TLS Web Client Authentication
 Signature Algorithm: ecdsa-with-SHA256
 <hash>

Interconnect services 1154

Amazon Elastic Container Service Developer Guide

Configuring Amazon ECS Service Connect with the AWS CLI

You can create an Amazon ECS service for a Fargate task that uses Service Connect with the AWS
CLI.

Note

You can use dual-stack service endpoints to interact with Amazon ECS from the AWS CLI,
SDKs, and the Amazon ECS API over both IPv4 and IPv6. For more information, see Using
Amazon ECS dual-stack endpoints.

Prerequisites

The following are Service Connect prerequisites:

• Verify that the latest version of the AWS CLI is installed and configured. For more information,
see Installing or updating to the latest version of the AWS CLI.

• Your IAM user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• You have a VPC, subnet, route table, and security group created to use. For more information,
see the section called “Create a virtual private cloud”.

• You have a task execution role with the name ecsTaskExecutionRole and the
AmazonECSTaskExecutionRolePolicy managed policy is attached to the role. This role
allows Fargate to write the NGINX application logs and Service Connect proxy logs to Amazon
CloudWatch Logs. For more information, see Creating the task execution role.

Step 1: Create the cluster

Use the following steps to create your Amazon ECS cluster and namespace.

To create the Amazon ECS cluster and AWS Cloud Map namespace

1. Create an Amazon ECS cluster named tutorial to use. The parameter --service-
connect-defaults sets the default namespace of the cluster. In the example output, a
AWS Cloud Map namespace of the name service-connect doesn't exist in this account and
AWS Region, so the namespace is created by Amazon ECS. The namespace is made in AWS

Interconnect services 1155

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon Elastic Container Service Developer Guide

Cloud Map in the account, and is visible with all of the other namespaces, so use a name that
indicates the purpose.

aws ecs create-cluster --cluster-name tutorial --service-connect-defaults
 namespace=service-connect

Output:

{
 "cluster": {
 "clusterArn": "arn:aws:ecs:us-west-2:123456789012:cluster/tutorial",
 "clusterName": "tutorial",
 "serviceConnectDefaults": {
 "namespace": "arn:aws:servicediscovery:us-
west-2:123456789012:namespace/ns-EXAMPLE"
 },
 "status": "PROVISIONING",
 "registeredContainerInstancesCount": 0,
 "runningTasksCount": 0,
 "pendingTasksCount": 0,
 "activeServicesCount": 0,
 "statistics": [],
 "tags": [],
 "settings": [
 {
 "name": "containerInsights",
 "value": "disabled"
 }
],
 "capacityProviders": [],
 "defaultCapacityProviderStrategy": [],
 "attachments": [
 {
 "id": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "type": "sc",
 "status": "ATTACHING",
 "details": []
 }
],
 "attachmentsStatus": "UPDATE_IN_PROGRESS"
 }
}

Interconnect services 1156

Amazon Elastic Container Service Developer Guide

}

2. Verify that the cluster is created:

aws ecs describe-clusters --clusters tutorial

Output:

{
 "clusters": [
 {
 "clusterArn": "arn:aws:ecs:us-west-2:123456789012:cluster/tutorial",
 "clusterName": "tutorial",
 "serviceConnectDefaults": {
 "namespace": "arn:aws:servicediscovery:us-
west-2:123456789012:namespace/ns-EXAMPLE"
 },
 "status": "ACTIVE",
 "registeredContainerInstancesCount": 0,
 "runningTasksCount": 0,
 "pendingTasksCount": 0,
 "activeServicesCount": 0,
 "statistics": [],
 "tags": [],
 "settings": [],
 "capacityProviders": [],
 "defaultCapacityProviderStrategy": []
 }
],
 "failures": []
}

3. (Optional) Verify that the namespace is created in AWS Cloud Map. You can use the AWS
Management Console or the normal AWS CLI configuration as this is created in AWS Cloud
Map.

For example, use the AWS CLI:

aws servicediscovery get-namespace --id ns-EXAMPLE

Output:

Interconnect services 1157

Amazon Elastic Container Service Developer Guide

{
 "Namespace": {
 "Id": "ns-EXAMPLE",
 "Arn": "arn:aws:servicediscovery:us-west-2:123456789012:namespace/ns-
EXAMPLE",
 "Name": "service-connect",
 "Type": "HTTP",
 "Properties": {
 "DnsProperties": {
 "SOA": {}
 },
 "HttpProperties": {
 "HttpName": "service-connect"
 }
 },
 "CreateDate": 1661749852.422,
 "CreatorRequestId": "service-connect"
 }
}

Step 2: Create the service for the server

The Service Connect feature is intended for interconnecting multiple applications on Amazon ECS.
At least one of those applications needs to provide a web service to connect to. In this step, you
create:

• The task definition that uses the unmodified official NGINX container image and includes Service
Connect configuration.

• The Amazon ECS service definition that configures Service Connect to provide service discovery
and service mesh proxy for traffic to this service. The configuration reuses the default namespace
from the cluster configuration to reduce the amount of service configuration that you make for
each service.

• The Amazon ECS service. It runs one task using the task definition, and inserts an additional
container for the Service Connect proxy. The proxy listens on the port from the container port
mapping of the task definition. In a client application running in Amazon ECS, the proxy in the
client task listens for outbound connections to the task definition port name, service discovery
name or service client alias name, and the port number from the client alias.

Interconnect services 1158

Amazon Elastic Container Service Developer Guide

To create the web service with Service Connect

1. Register a task definition that's compatible with Fargate and uses the awsvpc network mode.
Follow these steps:

a. Create a file that's named service-connect-nginx.json with the contents of the
following task definition.

This task definition configures Service Connect by adding name and appProtocol
parameters to the port mapping. The port name makes this port more identifiable in the
service configuration when multiple ports are used. The port name is also used by default
as the discoverable name for use by other applications in the namespace.

The task definition contains the task IAM role because the service has ECS Exec enabled.

Important

This task definition uses a logConfiguration to send the nginx output from
stdout and stderr to Amazon CloudWatch Logs. This task execution role doesn't
have the extra permissions required to make the CloudWatch Logs log group.
Create the log group in CloudWatch Logs using the AWS Management Console
or AWS CLI. If you don't want to send the nginx logs to CloudWatch Logs you can
remove the logConfiguration.
Replace the AWS account id in the task execution role with your AWS account id.

{
 "family": "service-connect-nginx",
 "executionRoleArn": "arn:aws:iam::123456789012:role/ecsTaskExecutionRole",
 "taskRoleArn": "arn:aws:iam::123456789012:role/ecsTaskRole",
 "networkMode": "awsvpc",
 "containerDefinitions": [
 {
 "name": "webserver",
 "image": "public.ecr.aws/docker/library/nginx:latest",
 "cpu": 100,
 "portMappings": [
 {
 "name": "nginx",

Interconnect services 1159

Amazon Elastic Container Service Developer Guide

 "containerPort": 80,
 "protocol": "tcp",
 "appProtocol": "http"
 }
],
 "essential": true,
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/service-connect-nginx",
 "awslogs-region": "region",
 "awslogs-stream-prefix": "nginx"
 }
 }
 }
],
 "cpu": "256",
 "memory": "512"
}

b. Register the task definition using the service-connect-nginx.json file:

aws ecs register-task-definition --cli-input-json file://service-connect-
nginx.json

2. Create a service:

a. Create a file that's named service-connect-nginx-service.json with the contents
of the Amazon ECS service that you're creating. This example uses the task definition that
was created in the previous step. An awsvpcConfiguration is required because the
example task definition uses the awsvpc network mode.

When you create the ECS service, specify the Fargate launch type, and the LATEST
platform version that supports Service Connect. The securityGroups and subnets
must belong to a VPC that has the requirements for using Amazon ECS. You can obtain
the security group and subnet IDs from the Amazon VPC Console.

This service configures Service Connect by adding the serviceConnectConfiguration
parameter. The namespace is not required because the cluster has a default namespace
configured. Client applications running in ECS in the namespace connect to this service
by using the portName and the port in the clientAliases. For example, this service

Interconnect services 1160

Amazon Elastic Container Service Developer Guide

is reachable using http://nginx:80/, as nginx provides a welcome page in the root
location /. External applications that are not running in Amazon ECS or are not in the
same namespace can reach this application through the Service Connect proxy by using
the IP address of the task and the port number from the task definition. For your tls
configuration, add the certificate arn for your awsPcaAuthorityArn, your kmsKey, and
roleArn of your IAM role.

This service uses a logConfiguration to send the service connect proxy output from
stdout and stderr to Amazon CloudWatch Logs. This task execution role doesn't
have the extra permissions required to make the CloudWatch Logs log group. Create
the log group in CloudWatch Logs using the AWS Management Console or AWS CLI.
We recommend that you create this log group and store the proxy logs in CloudWatch
Logs. If you don't want to send the proxy logs to CloudWatch Logs you can remove the
logConfiguration.

{
 "cluster": "tutorial",
 "deploymentConfiguration": {
 "maximumPercent": 200,
 "minimumHealthyPercent": 0
 },
 "deploymentController": {
 "type": "ECS"
 },
 "desiredCount": 1,
 "enableECSManagedTags": true,
 "enableExecuteCommand": true,
 "launchType": "FARGATE",
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "ENABLED",
 "securityGroups": [
 "sg-EXAMPLE"
],
 "subnets": [
 "subnet-EXAMPLE",
 "subnet-EXAMPLE",
 "subnet-EXAMPLE"
]
 }

Interconnect services 1161

Amazon Elastic Container Service Developer Guide

 },
 "platformVersion": "LATEST",
 "propagateTags": "SERVICE",
 "serviceName": "service-connect-nginx-service",
 "serviceConnectConfiguration": {
 "enabled": true,
 "services": [
 {
 "portName": "nginx",
 "clientAliases": [
 {
 "port": 80
 }
],
 "tls": {
 "issuerCertificateAuthority": {
 "awsPcaAuthorityArn": "certificateArn"
 },
 "kmsKey": "kmsKey",
 "roleArn": "iamRoleArn"
 }
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/service-connect-proxy",
 "awslogs-region": "region",
 "awslogs-stream-prefix": "service-connect-proxy"
 }
 }
 },
 "taskDefinition": "service-connect-nginx"
}

b. Create a service using the service-connect-nginx-service.json file:

aws ecs create-service --cluster tutorial --cli-input-json file://service-
connect-nginx-service.json

Output:

Interconnect services 1162

Amazon Elastic Container Service Developer Guide

{
 "service": {
 "serviceArn": "arn:aws:ecs:us-west-2:123456789012:service/tutorial/
service-connect-nginx-service",
 "serviceName": "service-connect-nginx-service",
 "clusterArn": "arn:aws:ecs:us-west-2:123456789012:cluster/tutorial",
 "loadBalancers": [],
 "serviceRegistries": [],
 "status": "ACTIVE",
 "desiredCount": 1,
 "runningCount": 0,
 "pendingCount": 0,
 "launchType": "FARGATE",
 "platformVersion": "LATEST",
 "platformFamily": "Linux",
 "taskDefinition": "arn:aws:ecs:us-west-2:123456789012:task-definition/
service-connect-nginx:1",
 "deploymentConfiguration": {
 "deploymentCircuitBreaker": {
 "enable": false,
 "rollback": false
 },
 "maximumPercent": 200,
 "minimumHealthyPercent": 0
 },
 "deployments": [
 {
 "id": "ecs-svc/3763308422771520962",
 "status": "PRIMARY",
 "taskDefinition": "arn:aws:ecs:us-west-2:123456789012:task-
definition/service-connect-nginx:1",
 "desiredCount": 1,
 "pendingCount": 0,
 "runningCount": 0,
 "failedTasks": 0,
 "createdAt": 1661210032.602,
 "updatedAt": 1661210032.602,
 "launchType": "FARGATE",
 "platformVersion": "1.4.0",
 "platformFamily": "Linux",
 "networkConfiguration": {
 "awsvpcConfiguration": {

Interconnect services 1163

Amazon Elastic Container Service Developer Guide

 "assignPublicIp": "ENABLED",
 "securityGroups": [
 "sg-EXAMPLE"
],
 "subnets": [
 "subnet-EXAMPLEf",
 "subnet-EXAMPLE",
 "subnet-EXAMPLE"
]
 }
 },
 "rolloutState": "IN_PROGRESS",
 "rolloutStateReason": "ECS deployment ecs-
svc/3763308422771520962 in progress.",
 "failedLaunchTaskCount": 0,
 "replacedTaskCount": 0,
 "serviceConnectConfiguration": {
 "enabled": true,
 "namespace": "service-connect",
 "services": [
 {
 "portName": "nginx",
 "clientAliases": [
 {
 "port": 80
 }
]
 }
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/service-connect-proxy",
 "awslogs-region": "us-west-2",
 "awslogs-stream-prefix": "service-connect-proxy"
 },
 "secretOptions": []
 }
 },
 "serviceConnectResources": [
 {
 "discoveryName": "nginx",
 "discoveryArn": "arn:aws:servicediscovery:us-
west-2:123456789012:service/srv-EXAMPLE"

Interconnect services 1164

Amazon Elastic Container Service Developer Guide

 }
]
 }
],
 "roleArn": "arn:aws:iam::123456789012:role/aws-service-role/
ecs.amazonaws.com/AWSServiceRoleForECS",
 "version": 0,
 "events": [],
 "createdAt": 1661210032.602,
 "placementConstraints": [],
 "placementStrategy": [],
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "ENABLED",
 "securityGroups": [
 "sg-EXAMPLE"
],
 "subnets": [
 "subnet-EXAMPLE",
 "subnet-EXAMPLE",
 "subnet-EXAMPLE"
]
 }
 },
 "schedulingStrategy": "REPLICA",
 "enableECSManagedTags": true,
 "propagateTags": "SERVICE",
 "enableExecuteCommand": true
 }
}

The serviceConnectConfiguration that you provided appears inside the first
deployment of the output. As you make changes to the ECS service in ways that need to
make changes to tasks, a new deployment is created by Amazon ECS.

Step 3: Verify that you can connect

To verify that Service Connect is configured and working, follow these steps to connect to the web
service from an external application. Then, see the additional metrics in CloudWatch the Service
Connect proxy creates.

Interconnect services 1165

Amazon Elastic Container Service Developer Guide

To connect to the web service from an external application

• Connect to the task IP address and container port using the task IP address

Use the AWS CLI to get the task ID, using the aws ecs list-tasks --cluster tutorial.

If your subnets and security group permit traffic from the public internet on the port from
the task definition, you can connect to the public IP from your computer. The public IP isn't
available from `describe-tasks` however, so the steps involve going to the Amazon EC2 AWS
Management Console or AWS CLI to get the details of the elastic network interface.

In this example, an Amazon EC2 instance in the same VPC uses the private IP of the task. The
application is nginx, but the server: envoy header shows that the Service Connect proxy is
used. The Service Connect proxy is listening on the container port from the task definition.

$ curl -v 10.0.19.50:80/
* Trying 10.0.19.50:80...
* Connected to 10.0.19.50 (10.0.19.50) port 80 (#0)
> GET / HTTP/1.1
> Host: 10.0.19.50
> User-Agent: curl/7.79.1
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< server: envoy
< date: Tue, 23 Aug 2022 03:53:06 GMT
< content-type: text/html
< content-length: 612
< last-modified: Tue, 16 Apr 2019 13:08:19 GMT
< etag: "5cb5d3c3-264"
< accept-ranges: bytes
< x-envoy-upstream-service-time: 0
<
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;

Interconnect services 1166

Amazon Elastic Container Service Developer Guide

 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

To view Service Connect metrics

The Service Connect proxy creates application (HTTP, HTTP2, gRPC, or TCP connection) metrics in
CloudWatch metrics. When you use the CloudWatch console, see the additional metric dimensions
of DiscoveryName, (DiscoveryName, ServiceName, ClusterName), TargetDiscoveryName, and
(TargetDiscoveryName, ServiceName, ClusterName) under the Amazon ECS namespace. For more
information about these metrics and the dimensions, see View Available Metrics in the Amazon
CloudWatch Logs User Guide.

Use service discovery to connect Amazon ECS services with DNS names

Your Amazon ECS service can optionally be configured to use Amazon ECS service discovery.
Service discovery uses AWS Cloud Map API actions to manage HTTP and DNS namespaces for your
Amazon ECS services. For more information, see What Is AWS Cloud Map in the AWS Cloud Map
Developer Guide.

Service discovery is available in the following AWS Regions:

Interconnect services 1167

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/viewing_metrics_with_cloudwatch.html
https://docs.aws.amazon.com/cloud-map/latest/dg/Welcome.html

Amazon Elastic Container Service Developer Guide

Region Name Region

US East (N. Virginia) us-east-1

US East (Ohio) us-east-2

US West (N. California) us-west-1

US West (Oregon) us-west-2

Africa (Cape Town) af-south-1

Asia Pacific (Hong Kong) ap-east-1

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Hyderabad) ap-south-2

Asia Pacific (Tokyo) ap-northeast-1

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Osaka) ap-northeast-3

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Jakarta) ap-southeast-3

Asia Pacific (Melbourne) ap-southeast-4

Canada (Central) ca-central-1

Canada West (Calgary) ca-west-1

China (Beijing) cn-north-1

China (Ningxia) cn-northwest-1

Europe (Frankfurt) eu-central-1

Interconnect services 1168

Amazon Elastic Container Service Developer Guide

Region Name Region

Europe (Zurich) eu-central-2

Europe (Ireland) eu-west-1

Europe (London) eu-west-2

Europe (Paris) eu-west-3

Europe (Milan) eu-south-1

Europe (Stockholm) eu-north-1

Israel (Tel Aviv) il-central-1

Europe (Spain) eu-south-2

Middle East (UAE) me-central-1

Middle East (Bahrain) me-south-1

South America (São Paulo) sa-east-1

AWS GovCloud (US-East) us-gov-east-1

AWS GovCloud (US-West) us-gov-west-1

Service Discovery concepts

Service discovery consists of the following components:

• Service discovery namespace: A logical group of service discovery services that share the same
domain name, such as example.com, which is where you want to route traffic. You can create a
namespace with a call to the aws servicediscovery create-private-dns-namespace
command or in the Amazon ECS console. You can use the aws servicediscovery list-
namespaces command to view the summary information about the namespaces that were
created by the current account. For more information about the service discovery commands,
see create-private-dns-namespace and list-namespaces in the AWS Cloud Map (service
discovery) AWS CLI Reference Guide.

Interconnect services 1169

https://docs.aws.amazon.com/cli/latest/reference/servicediscovery/create-private-dns-namespace.html
https://docs.aws.amazon.com/cli/latest/reference/servicediscovery/list-namespaces.html

Amazon Elastic Container Service Developer Guide

• Service discovery service: Exists within the service discovery namespace and consists of
the service name and DNS configuration for the namespace. It provides the following core
component:

• Service registry: Allows you to look up a service via DNS or AWS Cloud Map API actions and
get back one or more available endpoints that can be used to connect to the service.

• Service discovery instance: Exists within the service discovery service and consists of the
attributes associated with each Amazon ECS service in the service directory.

• Instance attributes: The following metadata is added as custom attributes for each Amazon
ECS service that is configured to use service discovery:

• AWS_INSTANCE_IPV4 – For an A record, the IPv4 address that Route 53 returns in response
to DNS queries and AWS Cloud Map returns when discovering instance details, for example,
192.0.2.44.

• AWS_INSTANCE_PORT – The port value associated with the service discovery service.

• AVAILABILITY_ZONE – The Availability Zone into which the task was launched. For tasks
using the EC2 launch type, this is the Availability Zone in which the container instance exists.
For tasks using the Fargate launch type, this is the Availability Zone in which the elastic
network interface exists.

• REGION – The Region in which the task exists.

• ECS_SERVICE_NAME – The name of the Amazon ECS service to which the task belongs.

• ECS_CLUSTER_NAME – The name of the Amazon ECS cluster to which the task belongs.

• EC2_INSTANCE_ID – The ID of the container instance the task was placed on. This custom
attribute is not added if the task is using the Fargate launch type.

• ECS_TASK_DEFINITION_FAMILY – The task definition family that the task is using.

• ECS_TASK_SET_EXTERNAL_ID – If a task set is created for an external deployment and
is associated with a service discovery registry, then the ECS_TASK_SET_EXTERNAL_ID
attribute will contain the external ID of the task set.

• Amazon ECS health checks: Amazon ECS performs periodic container-level health checks. If
an endpoint does not pass the health check, it is removed from DNS routing and marked as
unhealthy.

Service discovery considerations

The following should be considered when using service discovery:

Interconnect services 1170

Amazon Elastic Container Service Developer Guide

• Service discovery is supported for tasks on Fargate that use platform version 1.1.0 or later. For
more information, see Fargate platform versions for Amazon ECS.

• Services configured to use service discovery have a limit of 1,000 tasks per service. This is due to
a Route 53 service quota.

• The Create Service workflow in the Amazon ECS console only supports registering services
into private DNS namespaces. When an AWS Cloud Map private DNS namespace is created, a
Route 53 private hosted zone will be created automatically.

• The VPC DNS attributes must be configured for successful DNS resolution. For information about
how to configure the attributes, see DNS support in your VPC in the Amazon VPC User Guide.

• The DNS records created for a service discovery service always register with the private IP
address for the task, rather than the public IP address, even when public namespaces are used.

• Service discovery requires that tasks specify either the awsvpc, bridge, or host network mode
(none is not supported).

• If the service task definition uses the awsvpc network mode, you can create any combination of
A or SRV records for each service task. If you use SRV records, a port is required.

• If the service task definition uses the bridge or host network mode, the SRV record is the only
supported DNS record type. Create a SRV record for each service task. The SRV record must
specify a container name and container port combination from the task definition.

• DNS records for a service discovery service can be queried within your VPC. They use the
following format: <service-discovery-service-name>.<service-discovery-
namespace>.

• When doing a DNS query on the service name, A records return a set of IP addresses that
correspond to your tasks. SRV records return a set of IP addresses and ports for each task.

• If you have eight or fewer healthy records, Route 53 responds to all DNS queries with all of the
healthy records.

• When all records are unhealthy, Route 53 responds to DNS queries with up to eight unhealthy
records.

• You can configure service discovery for a service that's behind a load balancer, but service
discovery traffic is always routed to the task and not the load balancer.

• Service discovery doesn't support the use of Classic Load Balancers.

• We recommend you use container-level health checks managed by Amazon ECS for your service
discovery service.

Interconnect services 1171

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-support

Amazon Elastic Container Service Developer Guide

• HealthCheckCustomConfig—Amazon ECS manages health checks on your behalf. Amazon
ECS uses information from container and health checks, and your task state, to update
the health with AWS Cloud Map. This is specified using the --health-check-custom-
config parameter when creating your service discovery service. For more information, see
HealthCheckCustomConfig in the AWS Cloud Map API Reference.

• The AWS Cloud Map resources created when service discovery is used must be cleaned up
manually.

• Tasks and instances are registered as UNHEALTHY until the container health checks return a
value. If the health checks pass, the status is updated to HEALTHY. If the container health checks
fail, the service discovery instance is deregistered.

Service discovery pricing

Customers using Amazon ECS service discovery are charged for Route 53 resources and AWS Cloud
Map discovery API operations. This involves costs for creating the Route 53 hosted zones and
queries to the service registry. For more information, see AWS Cloud Map Pricing in the AWS Cloud
Map Developer Guide.

Amazon ECS performs container level health checks and exposes them to AWS Cloud Map custom
health check API operations. This is currently made available to customers at no extra cost. If you
configure additional network health checks for publicly exposed tasks, you're charged for those
health checks.

Creating an Amazon ECS service that uses Service Discovery

Learn how to create a service containing a Fargate task that uses service discovery with the AWS
CLI.

For a list of AWS Regions that support service discovery, see Use service discovery to connect
Amazon ECS services with DNS names.

For information about the Regions that support Fargate, see the section called “AWS Fargate
Regions”.

Interconnect services 1172

https://docs.aws.amazon.com/cloud-map/latest/api/API_HealthCheckCustomConfig.html
https://docs.aws.amazon.com/cloud-map/latest/dg/cloud-map-pricing.html

Amazon Elastic Container Service Developer Guide

Note

You can use dual-stack service endpoints to interact with Amazon ECS from the AWS CLI,
SDKs, and the Amazon ECS API over both IPv4 and IPv6. For more information, see Using
Amazon ECS dual-stack endpoints.

Prerequisites

Before you start this tutorial, make sure that the following prerequisites are met:

• The latest version of the AWS CLI is installed and configured. For more information, see Installing
or updating to the latest version of the AWS CLI.

• The steps described in Set up to use Amazon ECS are complete.

• Your IAM user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• You have created at least one VPC and one security group. For more information, see the section
called “Create a virtual private cloud”.

Step 1: Create the Service Discovery resources in AWS Cloud Map

Follow these steps to create your service discovery namespace and service discovery service:

1. Create a private Cloud Map service discovery namespace. This example creates a namespace
that's called tutorial. Replace vpc-abcd1234 with the ID of one of your existing VPCs.

aws servicediscovery create-private-dns-namespace \
 --name tutorial \
 --vpc vpc-abcd1234

The output of this command is as follows.

{
 "OperationId": "h2qe3s6dxftvvt7riu6lfy2f6c3jlhf4-je6chs2e"
}

Interconnect services 1173

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon Elastic Container Service Developer Guide

2. Using the OperationId from the output of the previous step, verify that the private
namespace was created successfully. Make note of the namespace ID because you use it in
subsequent commands.

aws servicediscovery get-operation \
 --operation-id h2qe3s6dxftvvt7riu6lfy2f6c3jlhf4-je6chs2e

The output is as follows.

{
 "Operation": {
 "Id": "h2qe3s6dxftvvt7riu6lfy2f6c3jlhf4-je6chs2e",
 "Type": "CREATE_NAMESPACE",
 "Status": "SUCCESS",
 "CreateDate": 1519777852.502,
 "UpdateDate": 1519777856.086,
 "Targets": {
 "NAMESPACE": "ns-uejictsjen2i4eeg"
 }
 }
}

3. Using the NAMESPACE ID from the output of the previous step, create a service discovery
service. This example creates a service named myapplication. Make note of the service ID
and ARN because you use them in subsequent commands.

aws servicediscovery create-service \
 --name myapplication \
 --dns-config "NamespaceId="ns-
uejictsjen2i4eeg",DnsRecords=[{Type="A",TTL="300"}]" \
 --health-check-custom-config FailureThreshold=1

The output is as follows.

{
 "Service": {
 "Id": "srv-utcrh6wavdkggqtk",
 "Arn": "arn:aws:servicediscovery:region:aws_account_id:service/srv-
utcrh6wavdkggqtk",
 "Name": "myapplication",
 "DnsConfig": {

Interconnect services 1174

Amazon Elastic Container Service Developer Guide

 "NamespaceId": "ns-uejictsjen2i4eeg",
 "DnsRecords": [
 {
 "Type": "A",
 "TTL": 300
 }
]
 },
 "HealthCheckCustomConfig": {
 "FailureThreshold": 1
 },
 "CreatorRequestId": "e49a8797-b735-481b-a657-b74d1d6734eb"
 }
}

Step 2: Create the Amazon ECS resources

Follow these steps to create your Amazon ECS cluster, task definition, and service:

1. Create an Amazon ECS cluster. This example creates a cluster that's named tutorial.

aws ecs create-cluster \
 --cluster-name tutorial

2. Register a task definition that's compatible with Fargate and uses the awsvpc network mode.
Follow these steps:

a. Create a file that's named fargate-task.json with the contents of the following task
definition.

{
 "family": "tutorial-task-def",
 "networkMode": "awsvpc",
 "containerDefinitions": [
 {
 "name": "sample-app",
 "image": "public.ecr.aws/docker/library/httpd:2.4",
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp"

Interconnect services 1175

Amazon Elastic Container Service Developer Guide

 }
],
 "essential": true,
 "entryPoint": [
 "sh",
 "-c"
],
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #333;} </style>
 </head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample
 App</h1> <h2>Congratulations!</h2> <p>Your application is now running on a
 container in Amazon ECS.</p> </div></body></html>' > /usr/local/apache2/
htdocs/index.html && httpd-foreground\""
]
 }
],
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "256",
 "memory": "512"
}

b. Register the task definition using fargate-task.json.

aws ecs register-task-definition \
 --cli-input-json file://fargate-task.json

3. Create an ECS service by following these steps:

a. Create a file that's named ecs-service-discovery.json with the contents of the ECS
service that you're creating. This example uses the task definition that was created in the
previous step. An awsvpcConfiguration is required because the example task definition
uses the awsvpc network mode.

When you create the ECS service, specify the Fargate launch type, and the LATEST
platform version that supports service discovery. When the service discovery service is
created in AWS Cloud Map , registryArn is the ARN returned. The securityGroups
and subnets must belong to the VPC that's used to create the Cloud Map namespace.
You can obtain the security group and subnet IDs from the Amazon VPC Console.

Interconnect services 1176

Amazon Elastic Container Service Developer Guide

{
 "cluster": "tutorial",
 "serviceName": "ecs-service-discovery",
 "taskDefinition": "tutorial-task-def",
 "serviceRegistries": [
 {
 "registryArn":
 "arn:aws:servicediscovery:region:aws_account_id:service/srv-utcrh6wavdkggqtk"
 }
],
 "launchType": "FARGATE",
 "platformVersion": "LATEST",
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "ENABLED",
 "securityGroups": ["sg-abcd1234"],
 "subnets": ["subnet-abcd1234"]
 }
 },
 "desiredCount": 1
}

b. Create your ECS service using ecs-service-discovery.json.

aws ecs create-service \
 --cli-input-json file://ecs-service-discovery.json

Step 3: Verify Service Discovery in AWS Cloud Map

You can verify that everything is created properly by querying your service discovery information.
After service discovery is configured, you can either use AWS Cloud Map API operations, or call dig
from an instance within your VPC. Follow these steps:

1. Using the service discovery service ID, list the service discovery instances. Make note of the
instance ID (marked in bold) for resource cleanup.

 aws servicediscovery list-instances \
 --service-id srv-utcrh6wavdkggqtk

The output is as follows.

Interconnect services 1177

Amazon Elastic Container Service Developer Guide

{
 "Instances": [
 {
 "Id": "16becc26-8558-4af1-9fbd-f81be062a266",
 "Attributes": {
 "AWS_INSTANCE_IPV4": "172.31.87.2"
 "AWS_INSTANCE_PORT": "80",
 "AVAILABILITY_ZONE": "us-east-1a",
 "REGION": "us-east-1",
 "ECS_SERVICE_NAME": "ecs-service-discovery",
 "ECS_CLUSTER_NAME": "tutorial",
 "ECS_TASK_DEFINITION_FAMILY": "tutorial-task-def"
 }
 }
]
}

2. Use the service discovery namespace, service, and additional parameters such as ECS cluster
name to query details about the service discovery instances.

aws servicediscovery discover-instances \
 --namespace-name tutorial \
 --service-name myapplication \
 --query-parameters ECS_CLUSTER_NAME=tutorial

3. The DNS records that are created in the Route 53 hosted zone for the service discovery service
can be queried with the following AWS CLI commands:

a. Using the namespace ID, get information about the namespace, which includes the
Route 53 hosted zone ID.

aws servicediscovery \
 get-namespace --id ns-uejictsjen2i4eeg

The output is as follows.

{
 "Namespace": {
 "Id": "ns-uejictsjen2i4eeg",
 "Arn": "arn:aws:servicediscovery:region:aws_account_id:namespace/ns-
uejictsjen2i4eeg",

Interconnect services 1178

Amazon Elastic Container Service Developer Guide

 "Name": "tutorial",
 "Type": "DNS_PRIVATE",
 "Properties": {
 "DnsProperties": {
 "HostedZoneId": "Z35JQ4ZFDRYPLV"
 }
 },
 "CreateDate": 1519777852.502,
 "CreatorRequestId": "9049a1d5-25e4-4115-8625-96dbda9a6093"
 }
}

b. Using the Route 53 hosted zone ID from the previous step (see the text in bold), get the
resource record set for the hosted zone.

aws route53 list-resource-record-sets \
 --hosted-zone-id Z35JQ4ZFDRYPLV

4. You can also query the DNS from an instance within your VPC using dig.

dig +short myapplication.tutorial

Step 4: Clean up

When you're finished with this tutorial, clean up the associated resources to avoid incurring charges
for unused resources. Follow these steps:

1. Deregister the service discovery service instances using the service ID and instance ID that you
noted previously.

aws servicediscovery deregister-instance \
 --service-id srv-utcrh6wavdkggqtk \
 --instance-id 16becc26-8558-4af1-9fbd-f81be062a266

The output is as follows.

{
 "OperationId": "xhu73bsertlyffhm3faqi7kumsmx274n-jh0zimzv"
}

Interconnect services 1179

Amazon Elastic Container Service Developer Guide

2. Using the OperationId from the output of the previous step, verify that the service discovery
service instances were deregistered successfully.

aws servicediscovery get-operation \
 --operation-id xhu73bsertlyffhm3faqi7kumsmx274n-jh0zimzv

{
 "Operation": {
 "Id": "xhu73bsertlyffhm3faqi7kumsmx274n-jh0zimzv",
 "Type": "DEREGISTER_INSTANCE",
 "Status": "SUCCESS",
 "CreateDate": 1525984073.707,
 "UpdateDate": 1525984076.426,
 "Targets": {
 "INSTANCE": "16becc26-8558-4af1-9fbd-f81be062a266",
 "ROUTE_53_CHANGE_ID": "C5NSRG1J4I1FH",
 "SERVICE": "srv-utcrh6wavdkggqtk"
 }
 }
}

3. Delete the service discovery service using the service ID.

aws servicediscovery delete-service \
 --id srv-utcrh6wavdkggqtk

4. Delete the service discovery namespace using the namespace ID.

aws servicediscovery delete-namespace \
 --id ns-uejictsjen2i4eeg

The output is as follows.

{
 "OperationId": "c3ncqglftesw4ibgj5baz6ktaoh6cg4t-jh0ztysj"
}

5. Using the OperationId from the output of the previous step, verify that the service discovery
namespace was deleted successfully.

aws servicediscovery get-operation \

Interconnect services 1180

Amazon Elastic Container Service Developer Guide

 --operation-id c3ncqglftesw4ibgj5baz6ktaoh6cg4t-jh0ztysj

The output is as follows.

{
 "Operation": {
 "Id": "c3ncqglftesw4ibgj5baz6ktaoh6cg4t-jh0ztysj",
 "Type": "DELETE_NAMESPACE",
 "Status": "SUCCESS",
 "CreateDate": 1525984602.211,
 "UpdateDate": 1525984602.558,
 "Targets": {
 "NAMESPACE": "ns-rymlehshst7hhukh",
 "ROUTE_53_CHANGE_ID": "CJP2A2M86XW3O"
 }
 }
}

6. Update the desired count for the Amazon ECS service to 0. You must do this to delete the
service in the next step.

aws ecs update-service \
 --cluster tutorial \
 --service ecs-service-discovery \
 --desired-count 0

7. Delete the Amazon ECS service.

aws ecs delete-service \
 --cluster tutorial \
 --service ecs-service-discovery

8. Delete the Amazon ECS cluster.

aws ecs delete-cluster \
 --cluster tutorial

Interconnect services 1181

Amazon Elastic Container Service Developer Guide

Use Amazon VPC Lattice to connect, observe, and secure your Amazon ECS
services

Amazon VPC Lattice is a managed application networking service that Amazon ECS customers
use to observe, secure, and monitor applications built across AWS compute services, VPCs, and
accounts without having to modify their code.

VPC Lattice uses target groups, which are a collection of compute resources. These targets run
your application or service and can be Amazon EC2 instances, IP addresses, Lambda functions, and
Application Load Balancers. By associating their Amazon ECS services with a VPC Lattice target
group, customers can now enable Amazon ECS tasks as IP targets in VPC Lattice. Amazon ECS
automatically registers tasks to the VPC Lattice target group when tasks for the registered service
are launched.

Note

When using five VPC Lattice configurations, your deployment time may be slightly longer
than when using fewer configurations.

A listener rule is used to forward traffic to a specified target group when the conditions are met.
A listener checks for connection requests using the protocol on the port you configured. A service
routes requests to it's registered targets based on the rules that you define when you configured
your listener.

Amazon ECS also automatically replaces a task if it becomes unhealthy according to VPC Lattice
health checks. Once associated with VPC Lattice, Amazon ECS customers can also take advantage
of many other cross-compute connectivity, security, and observability features in VPC Lattice like
connecting to services across clusters, VPCs, and accounts with AWS Resource Access Manager, IAM
integration for authorization and authentication, and advanced traffic management features.

Amazon ECS customers can benefit from VPC Lattice in the following ways.

• Increased developer productivity ‐ VPC Lattice boosts developer productivity by letting you focus
on building features, while VPC Lattice handles networking, security and observability challenges
in a uniform way across all compute platforms.

• Better security posture ‐ VPC Lattice enables your developers to easily authenticate and secure
communication across applications and compute platforms, enforce encryption in transit, and

Interconnect services 1182

Amazon Elastic Container Service Developer Guide

apply granular access controls with VPC Lattice Auth policies. This allows you to adopt a stronger
security posture that meets industry leading regulatory and compliance requirements.

• Improved application scalability and resilience ‐ VPC Lattice lets you create a network of
deployed applications with features like path, header, and method-based routing, authentication,
authorization, and monitoring. These benefits are provided with no resource overhead on
workloads and can support multi-cluster deployments that generate millions of requests per
second without adding significant latency.

• Deployment flexibility with heterogeneous infrastructure ‐ VPC Lattice provides consistent
features across all compute services like Amazon ECS, Fargate, Amazon EC2, Amazon EKS, and
Lambda and allows your organization the flexibility to choose suitable infrastructure for each
application.

How VPC Lattice works with other Amazon ECS services

Using VPC Lattice with Amazon ECS may change the way you use other Amazon ECS services, while
others stay the same.

Application Load Balancers

You no longer need to create a specific Application Load Balancer to use with the Application Load
Balancer target group type in VPC Lattice that then links to the Amazon ECS service. You only need
to configure your Amazon ECS service with a VPC Lattice target group instead. You can also still
choose to use Application Load Balancer with Amazon ECS at the same time.

Amazon ECS rolling deployments

Only Amazon ECS rolling deployments work with VPC Lattice, and Amazon ECS safely brings
tasks into and removes them from services during deployment. Code deploy and Blue/Green
deployments aren't supported.

To learn more about VPC Lattice, see the Amazon VPC Lattice User Guide.

Create a service that uses VPC Lattice

You can use either the AWS Management Console or the AWS CLI to create a service with VPC
Lattice.

Prerequisites

Before you start this tutorial, make sure that the following prerequisites are met:

Interconnect services 1183

https://docs.aws.amazon.com/vpc-lattice/latest/ug/what-is-vpc-lattice.html

Amazon Elastic Container Service Developer Guide

• The latest version of the AWS CLI is installed and configured. For more information, see Installing
the AWS Command Line Interface.

Note

You can use dual-stack service endpoints to interact with Amazon ECS from the AWS CLI,
SDKs, and the Amazon ECS API over both IPv4 and IPv6. For more information, see Using
Amazon ECS dual-stack endpoints.

• The steps described in Set up to use Amazon ECS are complete.

• Your IAM user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

Create a service that uses VPC Lattice with the AWS Management Console

Follow these steps to create a service with VPC Lattice using the AWS Management Console.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation page, choose Clusters.

3. On the Clusters page, choose the cluster to create the service in.

4. From the Services tab, choose Create.

If you've never created a service before, follow the steps found in Creating an Amazon ECS
service using the console, then continue with these steps when you reach the VPC Lattice
section.

5. Choose to Turn on VPC Lattice by checking the button.

6. To use an existing role, for ECS infrastructure role for Amazon ECS, choose one that you've
already created to use when creating the VPC Lattice target group. To create a new role,
Create ECS infrastructure role.

7. Choose the VPC.

The VPC depends on the networking mode you selected when you registered your task
definition. If you use the host or network mode with the EC2 launch type, choose your VPC.

For the awsvpc mode, the VPC is automatically selected based on the VPC you chose under
Networking and can't be changed.

Interconnect services 1184

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-service-console-v2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-service-console-v2.html

Amazon Elastic Container Service Developer Guide

8. Under Target Groups choose the target group or groups. You need to choose at least one
target group and can have a maximum of five. Choose Add target group to add additional
target groups. Choose the Port name, Protocol, and Port for each target group you chose. To
delete a target group, choose Remove.

Note

• If you want to add existing target groups, you need use the AWS CLI. For instructions
on how to add target groups using the AWS CLI, see register-targets in the AWS
Command Line Interface Reference.

• While a VPC Lattice service can have multiple target groups, each target group can
only be added to one service.

9. At this point, you navigate to the VPC Lattice console to continue setting up. This is where you
include your new target groups in the listener default action or in the rules of an existing VPC
Lattice service.

For more information, see Listener rules for your VPC Lattice service.

Important

You need to allow the inbound rule vpc-lattice prefix to your security group or tasks
and health checks can fail.

Create a service that uses VPC Lattice with the AWS CLI

Use the AWS CLI to create a service with VPC Lattice. Replace each user input placeholder
with your own information.

1. Create a target group configuration file. The following example is named tg-config.json

{
 "ipAddressType": "IPV4",
 "port": 443,
 "protocol": "HTTPS",
 "protocolVersion": "HTTP1",
 "vpcIdentifier": "vpc-f1663d9868EXAMPLE"

Interconnect services 1185

https://docs.aws.amazon.com/cli/latest/reference/vpc-lattice/register-targets.html
https://docs.aws.amazon.com/vpc-lattice/latest/ug/listener-rules.html

Amazon Elastic Container Service Developer Guide

}

2. Use the following command to create a VPC Lattice target group.

aws vpc-lattice create-target-group \
 --name my-lattice-target-group-ip \
 --type IP \
 --config file://tg-config.json

Example output:

{
 "arn": "arn:aws:vpc-lattice:us-east-2:123456789012:targetgroup/
tg-0eaa4b9ab4EXAMPLE",
 "config": {
 "healthCheck": {
 "enabled": true,
 "healthCheckIntervalSeconds": 30,
 "healthCheckTimeoutSeconds": 5,
 "healthyThresholdCount": 5,
 "matcher": {
 "httpCode": "200"
 },
 "path": "/",
 "protocol": "HTTPS",
 "protocolVersion": "HTTP1",
 "unhealthyThresholdCount": 2
 },
 "ipAddressType": "IPV4",
 "port": 443,
 "protocol": "HTTPS",
 "protocolVersion": "HTTP1",
 "vpcIdentifier": "vpc-f1663d9868EXAMPLE"
 },
 "id": "tg-0eaa4b9ab4EXAMPLE",
 "name": "my-lattice-target-group-ip",
 "status": "CREATE_IN_PROGRESS",
 "type": "IP"
}

3. The following JSON file named ecs-service-vpc-lattice.json is an example used to
attach an Amazon ECS service to a VPC Lattice target group. The portName in the example

Interconnect services 1186

Amazon Elastic Container Service Developer Guide

below is the same one you defined in your task definition's portMappings property's name
field.

{
 "serviceName": "ecs-service-vpc-lattice",
 "taskDefinition": "ecs-task-def",
 "vpcLatticeConfigurations": [
 {
 "targetGroupArn": "arn:aws:vpc-lattice:us-
west-2:123456789012:targetgroup/tg-0eaa4b9ab4EXAMPLE",
 "portName": "testvpclattice",
 "roleArn": "arn:aws:iam::123456789012:role/
ecsInfrastructureRoleVpcLattice"
 }
],
 "desiredCount": 5,
 "role": "ecsServiceRole"
}

Use the following command to create an Amazon ECS service and attach it to the VPC Lattice
target group using the json example above.

aws ecs create-service \
 --cluster clusterName \
 --serviceName ecs-service-vpc-lattice \
 --cli-input-json file://ecs-service-vpc-lattice.json

Note

VPC Lattice isn't supported on Amazon ECS Anywhere.

Protect your Amazon ECS tasks from being terminated by scale-in
events

You can use Amazon ECS task scale-in protection to protect your tasks from being terminated by
scale-in events from either service auto scaling or deployments.

Task scale-in protection 1187

Amazon Elastic Container Service Developer Guide

Certain applications require a mechanism to safeguard mission-critical tasks from termination by
scale-in events during times of low utilization or during service deployments. For example:

• You have a queue-processing asynchronous application such as a video transcoding job where
some tasks need to run for hours even when cumulative service utilization is low.

• You have a gaming application that runs game servers as Amazon ECS tasks that need to
continue running even if all users have logged-out to reduce start-up latency of a server reboot.

• When you deploy a new code version, you need tasks to continue running because it would be
expensive to reprocess.

To protect tasks that belong to your service from terminating in a scale-in event, set the
ProtectionEnabled attribute to true. When you set ProtectionEnabled to true, tasks
are protected for 2 hours by default. You can then customize the protection period by using the
ExpiresInMinutes attribute. You can protect your tasks for a minimum of 1 minute and up
to a maximum of 2880 minutes (48 hours). If you're using the AWS CLI, you can specify the --
protection-enabled option.

After a task finishes its requisite work, you can set the ProtectionEnabled attribute to false,
allowing the task to be terminated by subsequent scale-in events. If you're using the AWS CLI, you
can specify the --no-protection-enabled option.

Task scale-in protection mechanisms

You can set and get task scale-in protection using either the Amazon ECS container agent endpoint
or the Amazon ECS API.

• Amazon ECS container agent endpoint

We recommend using the Amazon ECS container agent endpoint for tasks that can self-
determine the need to be protected. Use this approach for queue-based or job-processing
workloads.

When a container starts processing work, for example by consuming an SQS message, you can
set the ProtectionEnabled attribute through the task scale-in protection endpoint path
$ECS_AGENT_URI/task-protection/v1/state from within the container. Amazon ECS
will not terminate this task during scale-in events. After your task finishes its work, you can
clear the ProtectionEnabled attribute using the same endpoint, making the task eligible for
termination during subsequent scale-in events.

Task scale-in protection 1188

Amazon Elastic Container Service Developer Guide

For more information about the Amazon ECS container agent endpoint, see Amazon ECS task
scale-in protection endpoint.

• Amazon ECS API

You can use the Amazon ECS API to set and retrieve task scale-in protection if your application
has a component that tracks the status of active tasks. Use UpdateTaskProtection to mark
one or more tasks as protected. Use GetTaskProtection to retrieve the protection status.

An example of this approach would be if your application is hosting game server sessions as
Amazon ECS tasks. When a user logs in to a session on the server (task), you can mark the task as
protected. After the user logs out, you can either clear the protection specifically for this task or
periodically clear protection for similar tasks that no longer have active sessions, depending on
your requirement to keep idle servers.

For more information, see UpdateTaskProtection and GetTaskProtection in the Amazon Elastic
Container Service API Reference.

You can combine both approaches. For example, use the Amazon ECS agent endpoint to set task
protection from within a container and use the Amazon ECS API to remove task protection from
your external controller service.

Considerations

Consider the following points before using task scale-in protection:

• We recommend using the Amazon ECS container agent endpoint because the Amazon ECS agent
has built-in retry mechanisms and a simpler interface.

• You can reset the task scale-in protection expiration period by calling UpdateTaskProtection
for a task that already has protection turned on.

• Determine how long a task would need to complete its requisite work and set the
expiresInMinutes property accordingly. If you set the protection expiration longer than
necessary, then you will incur costs and face delays in the deployment of new tasks.

• Task scale-in protection is supported on Amazon ECS container agent 1.65.0 or later.

You can add support for this feature on Amazon EC2 instances using older versions of the
Amazon ECS container agent by updating the agent to the latest version. For more information,
see Updating the Amazon ECS container agent.

Task scale-in protection 1189

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateTaskProtection.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_GetTaskProtection.html

Amazon Elastic Container Service Developer Guide

• Deployment considerations:

• If the service uses a rolling update, new tasks will be created but tasks running older version
will not be terminated until protectionEnabled is cleared or expires. You can adjust the
maximumPercentage parameter in deployment configuration to a value that allows new
tasks to be created when old tasks are protected.

• If a blue/green update is applied, the blue deployment with protected tasks will not be
removed if tasks have protectionEnabled. Traffic will be diverted to the new tasks that
come up and older tasks will only be removed when protectionEnabled is cleared or
expires. Depending on the timeout of the CodeDeploy or CloudFormation updates, the
deployment may timeout and the older Blue tasks may still be present.

• If you use CloudFormation, the update-stack has a 3 hour timeout. Therefore, if you set your
task protection for longer than 3 hours, then your CloudFormation deployment may result in
failure and rollback.

During the time your old tasks are protected, the CloudFormation stack shows
UPDATE_IN_PROGRESS. If task scale-in protection is removed or expires within the 3 hour
window, your deployment will succeed and move to the UPDATE_COMPLETE status. If the
deployment is stuck in UPDATE_IN_PROGRESS for more than 3 hours, it will fail and show
UPDATE_FAILED state, and will then be rolled back to old task set.

• Amazon ECS sends service events when protected tasks keep a deployment (rolling or blue/
green) from reaching the steady state, so that you can take remedial actions. While trying to
update the protection status of a task, if you receive a DEPLOYMENT_BLOCKED error message,
it means the service has more protected tasks than the desired count of tasks for the service.
To resolve this error, do one the following:

• Wait for the current task protection to expire. Then set task protection.

• Determine which tasks can be stopped. Then use UpdateTaskProtectionwith the
protectionEnabled option set to false for these tasks.

• Increase the desired task count of the service to more than the number of protected tasks.

IAM permissions required for task scale-in protection

The task must have the Amazon ECS task role with the following permissions:

• ecs:GetTaskProtection: Allows the Amazon ECS container agent to call
GetTaskProtection.

Task scale-in protection 1190

Amazon Elastic Container Service Developer Guide

• ecs:UpdateTaskProtection: Allows the Amazon ECS container agent to call
UpdateTaskProtection.

Amazon ECS task scale-in protection endpoint

The Amazon ECS container agent automatically injects the ECS_AGENT_URI environment variable
into the containers of Amazon ECS tasks to provide a method to interact with the container agent
API endpoint.

We recommend using the Amazon ECS container agent endpoint for tasks that can self-determine
the need to be protected.

When a container starts processing work, you can set the protectionEnabled attribute using the
task scale-in protection endpoint path $ECS_AGENT_URI/task-protection/v1/state from
within the container.

Use a PUT request to this URI from within a container to set task scale-in protection. A GET request
to this URI returns the current protection status of a task.

Task scale-in protection request parameters

You can set task scale-in protection using the ${ECS_AGENT_URI}/task-protection/v1/
state endpoint with the following request parameters.

ProtectionEnabled

Specify true to mark a task for protection. Specify false to remove protection and make the
task eligible for termination.

Type: Boolean

Required: Yes

ExpiresInMinutes

The number of minutes the task is protected. You can specify a minimum of 1 minute to up
to 2,880 minutes (48 hours). During this time period, your task will not be terminated by
scale-in events from service Auto Scaling or deployments. After this time period lapses, the
protectionEnabled parameter is set to false.

If you don’t specify the time, then the task is automatically protected for 120 minutes (2 hours).

Type: Integer

Task scale-in protection 1191

Amazon Elastic Container Service Developer Guide

Required: No

The following examples show how to set task protection with different durations.

Example of how to protect a task with the default time period

This example shows how to protect a task with the default time period of 2 hours.

curl --request PUT --header 'Content-Type: application/json' ${ECS_AGENT_URI}/task-
protection/v1/state --data '{"ProtectionEnabled":true}'

Example of how to protect a task for 60 minutes

This example shows how to protect a task for 60 minutes using the expiresInMinutes
parameter.

curl --request PUT --header 'Content-Type: application/json' ${ECS_AGENT_URI}/task-
protection/v1/state --data '{"ProtectionEnabled":true,"ExpiresInMinutes":60}'

Example of how to protect a task for 24 hours

This example shows how to protect a task for 24 hours using the expiresInMinutes parameter.

curl --request PUT --header 'Content-Type: application/json' ${ECS_AGENT_URI}/task-
protection/v1/state --data '{"ProtectionEnabled":true,"ExpiresInMinutes":1440}'

The PUT request returns the following response.

{
 "protection": {
 "ExpirationDate": "2023-12-20T21:57:44.837Z",
 "ProtectionEnabled": true,
 "TaskArn": "arn:aws:ecs:us-west-2:111122223333:task/1234567890abcdef0"
 }
}

Task scale-in protection response parameters

The following information is returned from the task scale-in protection endpoint
${ECS_AGENT_URI}/task-protection/v1/state in the JSON response.

Task scale-in protection 1192

Amazon Elastic Container Service Developer Guide

ExpirationDate

The epoch time when protection for the task will expire. If the task is not protected, this value is
null.

ProtectionEnabled

The protection status of the task. If scale-in protection is enabled for a task, the value is true.
Otherwise, it is false.

TaskArn

The full Amazon Resource Name (ARN) of the task that the container belongs to.

The following example shows the details returned for a protected task.

curl --request GET ${ECS_AGENT_URI}/task-protection/v1/state

{
 "protection":{
 "ExpirationDate":"2023-12-20T21:57:44Z",
 "ProtectionEnabled":true,
 "TaskArn":"arn:aws:ecs:us-west-2:111122223333:task/1234567890abcdef0"
 }
}

The following information is returned when a failure occurs.

Arn

The full Amazon Resource Name (ARN) of the task.

Detail

The details related to the failure.

Reason

The reason for the failure.

The following example shows the details returned for a task that is not protected.

Task scale-in protection 1193

Amazon Elastic Container Service Developer Guide

{
 "failure":{
 "Arn":"arn:aws:ecs:us-west-2:111122223333:task/1234567890abcdef0",
 "Detail":null,
 "Reason":"TASK_NOT_VALID"
 }
}

The following information is returned when an exception occurs.

requestID

The AWS request ID for the Amazon ECS API call that results in an exception.

Arn

The full Amazon Resource Name (ARN) of the task or service.

Code

The error code.

Message

The error message.

Note

If a RequestError or RequestTimeout error appears, it is likely that it's a networking
issue. Try using VPC endpoints for Amazon ECS.

The following example shows the details returned when an error occurs.

{
 "requestID":"12345-abc-6789-0123-abc",
 "error":{
 "Arn":"arn:aws:ecs:us-west-2:555555555555:task/my-cluster-
name/1234567890abcdef0",
 "Code":"AccessDeniedException",
 "Message":"User: arn:aws:sts::444455556666:assumed-role/my-ecs-task-
role/1234567890abcdef0 is not authorized to perform: ecs:GetTaskProtection on resource:

Task scale-in protection 1194

Amazon Elastic Container Service Developer Guide

 arn:aws:ecs:us-west-2:555555555555:task/test/1234567890abcdef0 because no identity-
based policy allows the ecs:GetTaskProtection action"
 }
}

The following error appears if the Amazon ECS agent is unable to get a response from the Amazon
ECS endpoint for reasons such as network issues or the Amazon ECS control plane is down.

{
 "error": {
 "Arn": "arn:aws:ecs:us-west-2:555555555555:task/my-cluster-name/1234567890abcdef0",
 "Code": "RequestCanceled",
 "Message": "Timed out calling Amazon ECS Task Protection API"
 }
}

The following error appears when the Amazon ECS agent gets a throttling exception from Amazon
ECS.

{
 "requestID": "12345-abc-6789-0123-abc",
 "error": {
 "Arn": "arn:aws:ecs:us-west-2:555555555555:task/my-cluster-name/1234567890abcdef0",
 "Code": "ThrottlingException",
 "Message": "Rate exceeded"
 }
}

Use fault injection with your Amazon ECS and Fargate workloads

Customers can utilize fault injection with Amazon ECS on both Amazon EC2 and Fargate to test
how their application responds to certain impairment scenarios. These tests provide information
you can use to optimize your application's performance and resiliency.

When fault injection is enabled, the Amazon ECS container agent allows tasks access to new
fault injection endpoints. You need to opt-in in order to use fault injection by setting the
enableFaultInjection task definition parameter value to true. The default value is false.

{
 ...

Fault injection with Amazon ECS and Fargate 1195

Amazon Elastic Container Service Developer Guide

 "enableFaultInjection": true
}

Note

Fault injection only works with tasks using the awsvpc or host network modes.
Fault injection isn't available on Windows.

For information on how to enable fault injection in the AWS Management Console, see Creating an
Amazon ECS task definition using the console.

You'll need to enable the feature for testing in the AWS Fault Injection Service. For more
information, see Use the AWS FIS aws:ecs:task actions.

Note

If you don't use thenew Amazon ECS optimized AMIs, or have a custom AMI, install the
following dependencies:

• tc

• sch_netem kernel module

Amazon ECS fault injection endpoints

The Amazon ECS container agent automatically injects the ECS_AGENT_URI environment variable
into the containers of Amazon ECS tasks to provide a method to interact with the container agent
API endpoint. Each endpoint includes a /start, /stop, and /status endpoint. The endpoints
only accept requests from tasks that have enabled fault injection, and each endpoint has a rate
limit of 1 request per 5 seconds per container. Exceeding this limit results in an error.

Note

Amazon ECS Agent version 1.88.0+ is required to use the fault injection endpoints.

The three endpoints for use with fault injection are:

Fault injection with Amazon ECS and Fargate 1196

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-definition.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-definition.html
https://docs.aws.amazon.com/fis/latest/userguide/ecs-task-actions.html

Amazon Elastic Container Service Developer Guide

• Network blackhole port endpoint

• Network packet loss endpoint

• Network latency endpoint

A successful request results in a response code of 200 with a message of running when you call
the /start endpoint, stopped for the /stop endpoint, and running or not-running for the /
status endpoint.

{
 "Status": <string>
}

An unsuccessful request returns one of the follow error codes:

• 400 ‐ Bad request

• 409 ‐ Fault injection request conflicts with another running fault

• 429 ‐ Request was throttled

• 500 ‐ Server had an unexpected error

{
 "Error": <string message>
}

Note

Either one network latency fault or one network packet loss fault can be injected at a time.
Trying to inject more than one results in the request being rejected.

Network blackhole port endpoint

The {ECS_AGENT_URI}/fault/v1/network-blackhole-port endpoint drops inbound or
outbound traffic for a specific port and protocol in a task's network namespace and is compatible
with two modes:

• awsvpc ‐ the changes are applied to the task network namespace

Fault injection with Amazon ECS and Fargate 1197

Amazon Elastic Container Service Developer Guide

• host ‐ the changes are applied to the default network namespace container instance

{ECS_AGENT_URI}/fault/v1/network-blackhole-port/start

This endpoint starts the network blackhole port fault injections and has the following parameters:

Port

The specified port to use for the blackhole port fault injection.

Type: Integer

Required: Yes

Protocol

The protocol to use for the blackhole port fault injection.

Type: String

Valid values: tcp | udp

Required: Yes

TrafficType

The traffic type used by the fault injection.

Type: String

Valid values: ingress | egress

Required: Yes

SourcesToFilter

A JSON array of IPv4 addresses or CIDR blocks that are protected from the fault.

Type: Array of strings

Required: No

Fault injection with Amazon ECS and Fargate 1198

Amazon Elastic Container Service Developer Guide

The following is an example request for using the start endpoint (replace the red values with
your own):

Endpoint: ${ECS_AGENT_URI}/fault/v1/network-blackhole-port/start

Http method:POST

Request payload:
{
 "Port": 1234,
 "Protocol": "tcp|udp",
 "TrafficType": "ingress|egress"
 "SourcesToFilter": ["${IP1}", "${IP2}", ...],
}

{ECS_AGENT_URI}/fault/v1/network-blackhole-port/stop

This endpoint stops the fault specified in the request. This endpoint has the following parameters:

Port

The port impacted by the fault that should be stopped.

Type: Integer

Required: Yes

Protocol

The protocol to use to stop the fault.

Type: String

Valid values: tcp | udp

Required: Yes

TrafficType

The traffic type used by the fault injection.

Type: String

Fault injection with Amazon ECS and Fargate 1199

Amazon Elastic Container Service Developer Guide

Valid values: ingress | egress

Required: Yes

The following is an example request for using the stop endpoint (replace the red values with your
own):

Endpoint: ${ECS_AGENT_URI}/fault/v1/network-blackhole-port/stop

Http method: POST

Request payload:
{
 "Port": 1234,
 "Protocol": "tcp|udp",
 "TrafficType": "ingress|egress",
}

{ECS_AGENT_URI}/fault/v1/network-blackhole-port/status

This endpoint is used to check the status of the fault injection. This endpoint has the following
parameters:

Port

The impacted port to check for the fault's status.

Type: Integer

Required: Yes

Protocol

The protocol to use when checking for the fault's status.

Type: String

Valid values: tcp | udp

Required: Yes

TrafficType

Fault injection with Amazon ECS and Fargate 1200

Amazon Elastic Container Service Developer Guide

The traffic type used by the fault injection.

Type: String

Valid values: ingress | egress

Required: Yes

The following is an example request for using the status endpoint (replace the red values with
your own):

Endpoint: ${ECS_AGENT_URI}/fault/v1/network-blackhole-port/status

Http method: POST

Request payload:
{
 "Port": 1234,
 "Protocol": "tcp|udp",
 "TrafficType": "ingress|egress",
}

Network latency endpoint

The {ECS_AGENT_URI}/fault/v1/network-latency endpoint adds delay and jitter to the
task's network interface for traffic to a specific sources. The endpoint is compatible with two
modes:

• awsvpc ‐ the changes are applied to the task network interface

• host ‐ the changes are applied to the default network interface

{ECS_AGENT_URI}/fault/v1/network-latency/start

This /start endpoint begins the network latency fault injection and has the following parameters:

DelayMilliseconds

The number of milliseconds of delay to add to the network interface to use for the fault injection.

Type: Integer

Fault injection with Amazon ECS and Fargate 1201

Amazon Elastic Container Service Developer Guide

Required: Yes

JitterMilliseconds

The number of milliseconds of jitter to add to the network interface to use for the fault injection.

Type: Integer

Required: Yes

Sources

A JSON array of IPv4 addresses or CIDR blocks that are destination for use with fault injection.

Type: Array of strings

Required: Yes

SourcesToFilter

A JSON array of IPv4 addresses or CIDR blocks that are protected from the fault.
SourcesToFilter takes priority over Sources.

Type: Array of strings

Required: No

The following is an example request for using the /start endpoint (replace the red values with
your own):

Endpoint: ${ECS_AGENT_URI}/fault/v1/network-latency/start

Http method: POST

Request payload:
{
 "DelayMilliseconds": 123,
 "JitterMilliseconds": 123,
 "Sources": ["${IP1}", "${IP2}", ...],
 "SourcesToFilter": ["${IP1}", "${IP2}", ...],
}

Fault injection with Amazon ECS and Fargate 1202

Amazon Elastic Container Service Developer Guide

{ECS_AGENT_URI}/fault/v1/network-latency/stop and /status

The {ECS_AGENT_URI}/fault/v1/network-latency/stop endpoint stops the fault, and the
{ECS_AGENT_URI}/fault/v1/network-latency/status checks the fault's status.

The following are two example requests for using the /stop and the /status endpoints. Both use
the POST HTTP method.

Endpoint: ${ECS_AGENT_URI}/fault/v1/network-latency/stop

Endpoint: ${ECS_AGENT_URI}/fault/v1/network-latency/status

Network packet loss endpoint

The {ECS_AGENT_URI}/fault/v1/network-packet-loss endpoint adds packet loss to the
given network interface. This endpoint is compatible with two modes:

• awsvpc ‐ the changes are applied to the task network interface

• host ‐ the changes are applied to the default network interface

{ECS_AGENT_URI}/fault/v1/network-packet-loss/start

This /start endpoint begins the network packet loss fault injection and has the following
parameters:

LossPercent

The percentage of packet loss

Type: Integer

Required: Yes

Sources

A JSON array of IPv4 addresses or CIDR blocks to use for the fault injection tests.

Type: Array of strings

Required: Yes

SourcesToFilter

Fault injection with Amazon ECS and Fargate 1203

Amazon Elastic Container Service Developer Guide

A JSON array of IPv4 addresses or CIDR blocks that are protected from the fault.
SourcesToFilter takes priority over Sources.

Type: Array of strings

Required: No

The following is an example request for using the start endpoint (replace the red values with
your own):

Endpoint: ${ECS_AGENT_URI}/fault/v1/network-packet-loss/start

Http method: POST

{
 "LossPercent": 6,
 "Sources": ["${IP1}", "${IP2}", ...],
 "SourcesToFilter": ["${IP1}", "${IP2}", ...],
}

{ECS_AGENT_URI}/fault/v1/network-packet-loss/stop and /status

The {ECS_AGENT_URI}/fault/v1/network-packet-loss/stop endpoint stops the fault, and
the {ECS_AGENT_URI}/fault/v1/network-packet-loss/status checks the fault's status.
Only one of each type of fault is supported at a time.

The following are two example requests for using the /stop and the /status endpoints. Both use
the POST HTTP method.

Endpoint: ${ECS_AGENT_URI}/fault/v1/network-packet-loss/stop

Endpoint: ${{ECS_AGENT_URI}/fault/v1/network-packet-loss/status

Migrate an Amazon ECS short service ARN to a long ARN

Amazon ECS assigns a unique Amazon Resource Name (ARN) to each service. Services that were
created before 2021 have a short ARN format:

arn:aws:ecs:region:aws_account_id:service/service-name

Amazon ECS changed the ARN format to include the cluster name. This is a long ARN format:

Migrate a service short ARN 1204

Amazon Elastic Container Service Developer Guide

arn:aws:ecs:region:aws_account_id:service/cluster-name/service-name

Your service must have the long ARN format in order to tag your service.

You can migrate a service with a short ARN format to a long ARN format without having to
recreate the service. You can use the API, CLI, or the console. You can't undo the migration
operation.

If you want to use AWS CloudFormation to tag a service with short ARN format, you must
migrate the service using the API, CLI, or console. After the migration completes you can use AWS
CloudFormation to tag the service.

If you want to use Terraform to tag a service with short ARN format, you must migrate the service
using the API, CLI, or console. After the migration completes you can use Terraform to tag the
service.

After the migration is complete, the service has the following changes:

• The long ARN format

arn:aws:ecs:region:aws_account_id:service/cluster-name/service-name

• When you migrate using the console, Amazon ECS adds a tag to the service with the key set to
"ecs:serviceArnMigratedAt" and the value set to the migration timestamp (UTC format).

This tag counts toward your tag quota.

• When the PhysicalResourceId in a AWS CloudFormation stack represents a service ARN, the
value does not change and will continue to be the short service ARN.

Prerequisites

Perform the following operations before you migrate the service ARN.

1. To see if you have a short service ARN, view the service details in the Amazon ECS console
(you see a warning when the service has the short ARN format), or the serviceARN return
parameter from describe-services. When the ARN does not include the cluster name, you
have a short ARN. The following is the format of a short ARN:

arn:aws:ecs:region:aws_account_id:service/service-name

2. Note the created at date.

Migrate a service short ARN 1205

Amazon Elastic Container Service Developer Guide

3. If you have IAM policies that use the short ARN format, update it to the long ARN format.

Replace each user input placeholder with your own information.

arn:aws:ecs:region:aws_account_id:service/cluster-name/service-name

For more information, see Editing IAM policies in the AWS Identity and Access Management
User Guide.

4. If you have tools that use the short ARN format, update it to the long ARN format.

Replace each user input placeholder with your own information.

arn:aws:ecs:region:aws_account_id:service/cluster-name/service-name

5. Enable the service long ARN format. Run put-account-setting with the
serviceLongArnFormat option set to enabled. For more information, see, put-account-
setting in the Amazon Elastic Container Service API Reference.

Run the command as the root user when your service has an unknown createdAt date.

aws ecs put-account-setting --name serviceLongArnFormat --value enabled

Example output

{
 "setting": {
 "name": "serviceLongArnFormat",
 "value": "enabled",
 "principalArn": "arn:aws:iam::123456789012:role/your-role",
 "type": user
 }
}

6. Enable the task long ARN format. This allows tasks that are running as part of a service to have
the long ARN format. Run put-account-setting with the taskLongArnFormat option set
to enabled. For more information, see, put-account-setting in the Amazon Elastic Container
Service API Reference.

Run the command as the root user when your service has an unknown createdAt date.

aws ecs put-account-setting --name taskLongArnFormat --value enabled

Migrate a service short ARN 1206

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-edit.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/put-account-setting.html

Amazon Elastic Container Service Developer Guide

Example output

{
 "setting": {
 "name": "taskLongArnFormat",
 "value": "enabled",
 "principalArn": "arn:aws:iam::123456789012:role/your-role",
 "type": user
 }
}

Procedure

Use the following to migrate your service ARN.

Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, choose the cluster.

3. In the Services section, choose a service that has a warning in the ARN column.

The service details page appears.

4. Choose Migrate to long ARN.

The Migrate service dialog box appears.

5. Choose Migrate.

CLI

After you complete the prerequisites, you can tag your service. Run the following command:

Amazon ECS considers passing the long ARN format in a tag-resource API request for a service
with a short ARN as a signal to migrate the service to use the long ARN format.

aws ecs tag-resource \
 --resource-arn arn:aws:ecs:region:aws_account_id:service/cluster-name/service-name
 --tags key=key1,value=value1

Migrate a service short ARN 1207

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

The following example tags MyService with a tag that has a key set to "TestService" and a value set
to "WebServers:

aws ecs tag-resource \
 --resource-arn arn:aws:ecs:us-east-1:123456789012:service/MyCluster/MyService
 --tags key=TestService1,value=WebServers

Terraform

After you complete the prerequisites, you can tag your service. Create an aws_ecs_service
resource and set the tags reference. For more information, see Resource: aws_ecs_service in the
Terraform documentation.

resource "aws_ecs_service" "MyService" {
 name = "example"
 cluster = aws_ecs_cluster.MyService.id

 tags = {
 "Name" = "MyService"
 "Environment" = "Production"
 "Department" = "QualityAssurance"
 }
}

Next steps

You can add tags to the service. For more information, see Adding tags to Amazon ECS resources.

If you want Amazon ECS to propagate the tags from the task definition or the service to the task,
run update-service with the propagateTags parameter. For more information, see update-
service in the AWS Command Line Interface Reference.

Troubleshooting

Some users might encounter the following error when they migrate from the short ARN format to
the long ARN format.

There was an error while migrating the ARN of service service-name. The
specified account does not have serviceLongArnFormat or taskLongArnFormat
account settings enabled. Add account settings in order to enable tagging.

Migrate a service short ARN 1208

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/ecs_service
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-service.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-service.html

Amazon Elastic Container Service Developer Guide

If you have already enabled the serviceLongArnFormat account setting but still encounter this
error, it might be because the account settings for the long ARN format hasn't been enabled for the
specific IAM principal that originally created the service.

1. Identify the principal that created the service.

1. In the console, the information is available in the Created by field in the Configuration and
networking tab on the Service details page in the Amazon ECS console.

2. For the AWS CLI, run the following command:

Replace the user-input with your values.

aws ecs describe-services --cluster cluster-name --services service-name --query
 'services[0].{createdBy: createdBy}'

2. Enable the required account settings for that specific principal. You can do this in one of the
following ways:

a. Assume the IAM user or role for that principal. Then run put-account-setting.

b. Use the root user to run the command while specifying the creating principal with the
principal-arn.

Example.

Replace the principal-arn with the value from Step 1.

aws ecs put-account-setting --name serviceLongArnFormat --value enabled --
principal-arn arn:aws:iam::123456789012:role/jdoe

Both methods enable the required serviceLongArnFormat account setting on the principal that
created the service, which allows the ARN migration to proceed.

Amazon ECS service throttle logic

The Amazon ECS service scheduler includes logic that throttles how often service tasks are
launched if they repeatedly fail to start.

If tasks for a service repeatedly fail to enter the RUNNING state (progressing directly from
a PENDING to a STOPPED status), then the time between subsequent restart attempts is

Service throttle logic 1209

Amazon Elastic Container Service Developer Guide

incrementally increased up to a maximum of 27 minutes. This maximum period is subject to
change in the future. This behavior reduces the effect that failing tasks have on your Amazon ECS
cluster resources or Fargate infrastructure costs. If your service initiates the throttle logic, you
receive the following service event message:

(service service-name) is unable to consistently start tasks successfully.

Amazon ECS doesn't ever stop a failing service from retrying. It also doesn't attempt to modify it in
any way other than increasing the time between restarts. The service throttle logic doesn't provide
any user-tunable parameters.

If you update your service to use a new task definition, your service returns to a normal, non-
throttled state immediately. For more information, see Updating an Amazon ECS service.

The following are some common causes that initiate this logic. We recommend that you take
manual action to address the issue:

• A lack of resources to host your task with, such as ports, memory, or CPU units in your cluster. In
this case, you also see the insufficient resource service event message.

• The Amazon ECS container agent can't pull your task Docker image. This might be because a bad
container image name, image, or tag, or a lack of private registry authentication or permissions.
In this case, you also see CannotPullContainerError in your stopped task errors.

• Insufficient disk space on your container instance to create the container. In this case, you also
see CannotCreateContainerError in your stopped task errors. For more information, see
Troubleshoot the Docker API error (500): devmapper in Amazon ECS.

Important

Tasks that are stopped after they reach the RUNNING state don't start the throttle logic
or the associated service event message. For example, assume that failed Elastic Load
Balancing health checks for a service cause a task to be flagged as unhealthy, and Amazon
ECS deregisters it and stops the task. At this point, the tasks aren't throttled. Even if a task's
container command immediately exits with a non-zero exit code, the task already moved
to the RUNNING state. Tasks that fail immediately because command errors don't cause the
throttle or the service event message.

Service throttle logic 1210

Amazon Elastic Container Service Developer Guide

Amazon ECS service definition parameters

A service definition defines how to run your Amazon ECS service. The following parameters can be
specified in a service definition.

Launch type

launchType

Type: String

Valid values: EC2 | FARGATE | EXTERNAL

Required: No

The launch type on which to run your service. If a launch type is not specified, the default
capacityProviderStrategy is used by default. For more information, see Amazon ECS
launch types.

If a launchType is specified, the capacityProviderStrategy parameter must be omitted.

Capacity provider strategy

capacityProviderStrategy

Type: Array of objects

Required: No

The capacity provider strategy to use for the service.

A capacity provider strategy consists of one or more capacity providers along with the base
and weight to assign to them. A capacity provider must be associated with the cluster to be
used in a capacity provider strategy. The PutClusterCapacityProviders API is used to associate
a capacity provider with a cluster. Only capacity providers with an ACTIVE or UPDATING status
can be used.

If a capacityProviderStrategy is specified, the launchType parameter must
be omitted. If no capacityProviderStrategy or launchType is specified, the
defaultCapacityProviderStrategy for the cluster is used.

Service definition parameters 1211

Amazon Elastic Container Service Developer Guide

If you want to specify a capacity provider that uses an Auto Scaling group, the capacity
provider must already be created. New capacity providers can be created with the
CreateCapacityProvider API operation.

To use an AWS Fargate capacity provider, specify either the FARGATE or FARGATE_SPOT
capacity providers. The AWS Fargate capacity providers are available to all accounts and only
need to be associated with a cluster to be used.

The PutClusterCapacityProviders API operation is used to update the list of available capacity
providers for a cluster after the cluster is created.

capacityProvider

Type: String

Required: Yes

The short name or full Amazon Resource Name (ARN) of the capacity provider.

weight

Type: Integer

Valid range: Integers between 0 and 1,000.

Required: No

The weight value designates the relative percentage of the total number of tasks launched
that use the specified capacity provider.

For example, assume that you have a strategy that contains two capacity providers and
both have a weight of one. When the base is satisfied, the tasks split evenly across the
two capacity providers. Using that same logic, assume that you specify a weight of 1 for
capacityProviderA and a weight of 4 for capacityProviderB. Then, for every one task that is
run using capacityProviderA, four tasks use capacityProviderB.

base

Type: Integer

Valid range: Integers between 0 and 100,000.

Required: No

Service definition parameters 1212

Amazon Elastic Container Service Developer Guide

The base value designates how many tasks, at a minimum, to run on the specified capacity
provider. Only one capacity provider in a capacity provider strategy can have a base defined.

Task definition

taskDefinition

Type: String

Required: No

The family and revision (family:revision) or full Amazon Resource Name (ARN) of the
task definition to run in your service. If a revision isn't specified, the latest ACTIVE revision of
the specified family is used.

A task definition must be specified when using the rolling update (ECS) deployment controller.

Platform operating system

platformFamily

Type: string

Required: Conditional

Default: Linux

This parameter is required for Amazon ECS services hosted on Fargate.

This parameter is ignored for Amazon ECS services hosted on Amazon EC2.

The operating system on the containers that runs the service. The valid values
are LINUX, WINDOWS_SERVER_2019_FULL, WINDOWS_SERVER_2019_CORE,
WINDOWS_SERVER_2022_FULL, and WINDOWS_SERVER_2022_CORE.

The platformFamily value for every task that you specify for the service must match
the service platformFamily value. For example, if you set the platformFamily to
WINDOWS_SERVER_2019_FULL, the platformFamily value for all the tasks must be
WINDOWS_SERVER_2019_FULL.

Service definition parameters 1213

Amazon Elastic Container Service Developer Guide

Platform version

platformVersion

Type: String

Required: No

The platform version on which your tasks in the service are running. A platform version is only
specified for tasks using the Fargate launch type. If one is not specified, the latest version
(LATEST) is used by default.

AWS Fargate platform versions are used to refer to a specific runtime environment for the
Fargate task infrastructure. When specifying the LATEST platform version when running a task
or creating a service, you get the most current platform version available for your tasks. When
you scale up your service, those tasks receive the platform version that was specified on the
service's current deployment. For more information, see Fargate platform versions for Amazon
ECS.

Note

Platform versions are not specified for tasks using the EC2 launch type.

Cluster

cluster

Type: String

Required: No

The short name or full Amazon Resource Name (ARN) of the cluster on which to run your
service. If you do not specify a cluster, the default cluster is assumed.

Service name

serviceName

Type: String

Service definition parameters 1214

Amazon Elastic Container Service Developer Guide

Required: Yes

The name of your service. Up to 255 letters (uppercase and lowercase), numbers, hyphens,
and underscores are allowed. Service names must be unique within a cluster, but you can have
similarly named services in multiple clusters within a Region or across multiple Regions.

Scheduling strategy

schedulingStrategy

Type: String

Valid values: REPLICA | DAEMON

Required: No

The scheduling strategy to use. If no scheduling strategy is specified, the REPLICA strategy is
used. For more information, see Amazon ECS services.

There are two service scheduler strategies available:

• REPLICA—The replica scheduling strategy places and maintains the desired number of tasks
across your cluster. By default, the service scheduler spreads tasks across Availability Zones.
You can use task placement strategies and constraints to customize task placement decisions.
For more information, see Replica strategy.

• DAEMON—The daemon scheduling strategy deploys exactly one task on each active container
instance that meets all of the task placement constraints that you specify in your cluster.
When using this strategy, there is no need to specify a desired number of tasks, a task
placement strategy, or use Service Auto Scaling policies. For more information, see Daemon
strategy.

Note

Fargate tasks do not support the DAEMON scheduling strategy.

Desired count

desiredCount

Type: Integer

Service definition parameters 1215

Amazon Elastic Container Service Developer Guide

Required: No

The number of instantiations of the specified task definition to place and keep running in your
service.

This parameter is required if the REPLICA scheduling strategy is used. If the service uses the
DAEMON scheduling strategy, this parameter is optional.

When you use service auto scaling, when you update a currently running service with a
desiredCount less than the number of tasks currently running, the service scales down to the
specified desiredCount.

Deployment configuration

deploymentConfiguration

Type: Object

Required: No

Optional deployment parameters that control how many tasks run during the deployment and
the ordering of stopping and starting tasks.

maximumPercent

Type: Integer

Required: No

If a service is using the rolling update (ECS) deployment type, the maximumPercent
parameter represents an upper limit on the number of your service's tasks that are allowed
in the RUNNING, STOPPING, or PENDING state during a deployment. It is expressed as a
percentage of the desiredCount that is rounded down to the nearest integer. You can use
this parameter to define the deployment batch size. For example, if your service is using the
REPLICA service scheduler and has a desiredCount of four tasks and a maximumPercent
value of 200%, the scheduler starts four new tasks before stopping the four older tasks.
This is provided that the cluster resources required to do this are available. The default
maximumPercent value for a service using the REPLICA service scheduler is 200%.

The Amazon ECS scheduler uses this parameter to replace unhealthy tasks by starting
replacement tasks first and then stopping the unhealthy tasks, as long as cluster resources

Service definition parameters 1216

Amazon Elastic Container Service Developer Guide

for starting replacement tasks are available. For more information about how the scheduler
replaces unhealthy tasks, see Amazon ECS services.

If your service is using the DAEMON service scheduler type, the maximumPercent should
remain at 100%. This is the default value.

The maximum number of tasks during a deployment is the desiredCount multiplied by the
maximumPercent/100, rounded down to the nearest integer value.

If a service is using either the blue/green (CODE_DEPLOY) or EXTERNAL deployment types
and tasks that use the EC2 launch type, the maximum percent value is set to the default
value. The value is used to define the upper limit on the number of the tasks in the service
that remain in the RUNNING state while the container instances are in the DRAINING state.

Note

You can't specify a custom maximumPercent value for a service that uses either the
blue/green (CODE_DEPLOY) or EXTERNAL deployment types and has tasks that use
the EC2 launch type.

If the service uses either the blue/green (CODE_DEPLOY) or EXTERNAL deployment types,
and the tasks in the service use the Fargate launch type, the maximum percent value is not
used. The value is still returned when describing your service.

minimumHealthyPercent

Type: Integer

Required: No

If a service is using the rolling update (ECS) deployment type, the
minimumHealthyPercent represents a lower limit on the number of your service's
tasks that must remain in the RUNNING state during a deployment. This is expressed as a
percentage of the desiredCount that is rounded up to the nearest integer. You can use this
parameter to deploy without using additional cluster capacity.

For example, if your service has a desiredCount of four tasks, a
minimumHealthyPercent of 50%, and a maximumPercent of 100%, the service
scheduler stops two existing tasks to free up cluster capacity before starting two new tasks.

Service definition parameters 1217

Amazon Elastic Container Service Developer Guide

If any tasks are unhealthy and if maximumPercent doesn't allow the Amazon ECS scheduler
to start replacement tasks, the scheduler stops the unhealthy tasks one-by-one — using the
minimumHealthyPercent as a constraint — to clear up capacity to launch replacement
tasks. For more information about how the scheduler replaces unhealthy tasks, see Amazon
ECS services.

For services that do not use a load balancer, consider the following:

• A service is considered healthy if all essential containers within the tasks in the service
pass their health checks.

• If a task has no essential containers with a health check defined, the service scheduler
waits for 40 seconds after a task reaches a RUNNING state before the task is counted
towards the minimum healthy percent total.

• If a task has one or more essential containers with a health check defined, the service
scheduler waits for the task to reach a healthy status before counting it towards the
minimum healthy percent total. A task is considered healthy when all essential containers
within the task have passed their health checks. The amount of time the service scheduler
can wait for is determined by the container health check settings. For more information,
see Health check.

For services that do use a load balancer, consider the following:

• If a task has no essential containers with a health check defined, the service scheduler
waits for the load balancer target group health check to return a healthy status before
counting the task towards the minimum healthy percent total.

• If a task has an essential container with a health check defined, the service scheduler waits
for both the task to reach a healthy status and the load balancer target group health
check to return a healthy status before counting the task towards the minimum healthy
percent total.

The default value for a replica service for minimumHealthyPercent is 100%. The default
minimumHealthyPercent value for a service using the DAEMON service schedule is 0% for
the AWS CLI, the AWS SDKs, and the APIs and 50% for the AWS Management Console.

The minimum number of healthy tasks during a deployment is the desiredCount
multiplied by the minimumHealthyPercent/100, rounded up to the nearest integer value.

If a service is using either the blue/green (CODE_DEPLOY) or EXTERNAL deployment types
and is running tasks that use the EC2 launch type, the minimum healthy percent value is

Service definition parameters 1218

Amazon Elastic Container Service Developer Guide

set to the default value. The value is used to define the lower limit on the number of the
tasks in the service that remain in the RUNNING state while the container instances are in the
DRAINING state.

Note

You can't specify a custom maximumPercent value for a service that uses either the
blue/green (CODE_DEPLOY) or EXTERNAL deployment types and has tasks that use
the EC2 launch type.

If a service is using either the blue/green (CODE_DEPLOY) or EXTERNAL deployment types
and is running tasks that use the Fargate launch type, the minimum healthy percent value is
not used, although it is returned when describing your service.

Deployment controller

deploymentController

Type: Object

Required: No

The deployment controller to use for the service. If no deployment controller is specified, the
ECS controller is used. For more information, see Amazon ECS services.

type

Type: String

Valid values: ECS | CODE_DEPLOY | EXTERNAL

Required: yes

The deployment controller type to use. There are three deployment controller types
available:

ECS

The rolling update (ECS) deployment type involves replacing the current running version
of the container with the latest version. The number of containers Amazon ECS adds or

Service definition parameters 1219

Amazon Elastic Container Service Developer Guide

removes from the service during a rolling update is controlled by adjusting the minimum
and maximum number of healthy tasks allowed during a service deployment, as specified
in the deploymentConfiguration.

CODE_DEPLOY

The blue/green (CODE_DEPLOY) deployment type uses the blue/green deployment
model powered by CodeDeploy, which allows you to verify a new deployment of a service
before sending production traffic to it.

EXTERNAL

Use the external deployment type when you want to use any third-party deployment
controller for full control over the deployment process for an Amazon ECS service.

Task placement

placementConstraints

Type: Array of objects

Required: No

An array of placement constraint objects to use for tasks in your service. You can specify a
maximum of 10 constraints per task. This limit includes constraints in the task definition and
those specified at run time. If you use the Fargate launch type, task placement constraints aren't
supported.

type

Type: String

Required: No

The type of constraint. Use distinctInstance to ensure that each task in a particular
group is running on a different container instance. Use memberOf to restrict the selection
to a group of valid candidates. The value distinctInstance is not supported in task
definitions.

expression

Type: String

Service definition parameters 1220

Amazon Elastic Container Service Developer Guide

Required: No

A cluster query language expression to apply to the constraint. You can't specify an
expression if the constraint type is distinctInstance. For more information, see Create
expressions to define container instances for Amazon ECS tasks.

placementStrategy

Type: Array of objects

Required: No

The placement strategy objects to use for tasks in your service. You can specify a maximum of
four strategy rules per service.

type

Type: String

Valid values: random | spread | binpack

Required: No

The type of placement strategy. The random placement strategy randomly places tasks on
available candidates. The spread placement strategy spreads placement across available
candidates evenly based on the field parameter. The binpack strategy places tasks on
available candidates that have the least available amount of the resource that's specified
with the field parameter. For example, if you binpack on memory, a task is placed on the
instance with the least amount of remaining memory but still enough to run the task.

field

Type: String

Required: No

The field to apply the placement strategy against. For the spread placement strategy, valid
values are instanceId (or host, which has the same effect), or any platform or custom
attribute that's applied to a container instance, such as attribute:ecs.availability-
zone. For the binpack placement strategy, valid values are cpu and memory. For the
random placement strategy, this field is not used.

Service definition parameters 1221

Amazon Elastic Container Service Developer Guide

Tags

tags

Type: Array of objects

Required: No

The metadata that you apply to the service to help you categorize and organize them. Each tag
consists of a key and an optional value, both of which you define. When a service is deleted,
the tags are deleted as well. A maximum of 50 tags can be applied to the service. For more
information, see Tagging Amazon ECS resources.

key

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Required: No

One part of a key-value pair that make up a tag. A key is a general label that acts like a
category for more specific tag values.

value

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: No

The optional part of a key-value pair that make up a tag. A value acts as a descriptor within
a tag category (key).

enableECSManagedTags

Type: Boolean

Valid values: true | false

Required: No

Specifies whether to use Amazon ECS managed tags for the tasks in the service. If no value is
specified, the default value is false. For more information, see Use tags for billing.

Service definition parameters 1222

Amazon Elastic Container Service Developer Guide

propagateTags

Type: String

Valid values: TASK_DEFINITION | SERVICE

Required: No

Specifies whether to copy the tags from the task definition or the service to the tasks in the
service. If no value is specified, the tags are not copied. Tags can only be copied to the tasks
within the service during service creation. To add tags to a task after service creation or task
creation, use the TagResource API action.

Network configuration

networkConfiguration

Type: Object

Required: No

The network configuration for the service. This parameter is required for task definitions that
use the awsvpc network mode to receive their own Elastic Network Interface, and it isn't
supported for other network modes. If using the Fargate launch type, the awsvpc network
mode is required. For more information about networking for the Amazon EC2 launch type,
see Amazon ECS task networking options for the EC2 launch type. For more information about
networking for the Fargate launch type, see Amazon ECS task networking options for the
Fargate launch type.

awsvpcConfiguration

Type: Object

Required: No

An object representing the subnets and security groups for a task or service.

subnets

Type: Array of strings

Required: Yes

Service definition parameters 1223

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-networking.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-networking.html

Amazon Elastic Container Service Developer Guide

The subnets that are associated with the task or service. There is a limit of 16 subnets
that can be specified according to awsvpcConfiguration.

securityGroups

Type: Array of strings

Required: No

The security groups associated with the task or service. If you don't specify a security
group, the default security group for the VPC is used. There's a limit of five security
groups that can be specified based on awsvpcConfiguration.

assignPublicIP

Type: String

Valid values: ENABLED | DISABLED

Required: No

Whether the task's elastic network interface receives a public IP address. If no value is
specified, the default value of DISABLED is used.

healthCheckGracePeriodSeconds

Type: Integer

Required: No

The period of time, in seconds, that the Amazon ECS service scheduler ignores unhealthy Elastic
Load Balancing, VPC Lattice, and container health checks after a task has first started. If you do
not specify a health check grace period value, the default value of 0 is used. If you do not use
any of the health checks, then healthCheckGracePeriodSeconds is unused.

If your service's tasks take a while to start and respond, you can specify a health check grace
period of up to 2,147,483,647 seconds (about 69 years). During that time, the Amazon ECS
service scheduler ignores the health check status. This grace period can prevent the service
scheduler from marking tasks as unhealthy and stopping them before they have time to come
up.

loadBalancers

Type: Array of objects

Service definition parameters 1224

Amazon Elastic Container Service Developer Guide

Required: No

A load balancer object representing the load balancers to use with your service. For services
that use an Application Load Balancer or Network Load Balancer, there's a limit of five target
groups that you can attach to a service.

After you create a service, the load balancer configuration can't be changed from the AWS
Management Console. You can use the AWS Copilot, AWS CloudFormation, AWS CLI or SDK
to modify the load balancer configuration for the ECS rolling deployment controller only,
not AWS CodeDeploy blue/green or external. When you add, update, or remove a load
balancer configuration, Amazon ECS starts a new deployment with the updated Elastic Load
Balancing configuration. This causes tasks to register to and deregister from load balancers.
We recommend that you verify this on a test environment before you update the Elastic
Load Balancing configuration. For information about how to modify the configuration, see
UpdateService in the Amazon Elastic Container Service API Reference.

For Application Load Balancers and Network Load Balancers, this object must contain the load
balancer target group ARN, the container name (as it appears in a container definition), and the
container port to access from the load balancer. When a task from this service is placed on a
container instance, the container instance and port combination is registered as a target in the
target group specified.

targetGroupArn

Type: String

Required: No

The full Amazon Resource Name (ARN) of the Elastic Load Balancing target group that's
associated with a service.

A target group ARN is only specified when using an Application Load Balancer or Network
Load Balancer.

loadBalancerName

Type: String

Required: No

The name of the load balancer to associate with the service.

Service definition parameters 1225

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html

Amazon Elastic Container Service Developer Guide

If you're using an Application Load Balancer or a Network Load Balancer, omit the load
balancer name parameter.

containerName

Type: String

Required: No

The name of the container (as it appears in a container definition) to associate with the load
balancer.

containerPort

Type: Integer

Required: No

The port on the container to associate with the load balancer. This port must correspond to
a containerPort in the task definition used by tasks in the service. For tasks that use the
EC2 launch type, the container instance must allow inbound traffic on the hostPort of the
port mapping.

role

Type: String

Required: No

The short name or full ARN of the IAM role that allows Amazon ECS to make calls to your load
balancer on your behalf. This parameter is only permitted if you are using a load balancer with a
single target group for your service, and your task definition does not use the awsvpc network
mode. If you specify the role parameter, you must also specify a load balancer object with the
loadBalancers parameter.

If your specified role has a path other than /, then you must either specify the full role ARN
(this is recommended) or prefix the role name with the path. For example, if a role with the
name bar has a path of /foo/ then you would specify /foo/bar as the role name. For more
information, see Friendly Names and Paths in the IAM User Guide.

Important

If your account has already created the Amazon ECS service-linked role, that role is
used by default for your service unless you specify a role here. The service-linked role is

Service definition parameters 1226

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-friendly-names

Amazon Elastic Container Service Developer Guide

required if your task definition uses the awsvpc network mode, in which case you should
not specify a role here. For more information, see Using service-linked roles for Amazon
ECS.

serviceConnectConfiguration

Type: Object

Required: No

The configuration for this service to discover and connect to services, and be discovered by, and
connected from, other services within a namespace.

For more information, see Use Service Connect to connect Amazon ECS services with short
names.

enabled

Type: Boolean

Required: Yes

Specifies whether to use Service Connect with this service.

namespace

Type: String

Required: No

The short name or full Amazon Resource Name (ARN) of the AWS Cloud Map namespace
for use with Service Connect. The namespace must be in the same AWS Region as the
Amazon ECS service and cluster. The type of namespace doesn't affect Service Connect. For
more information about AWS Cloud Map, see Working with Services in the AWS Cloud Map
Developer Guide.

services

Type: Array of objects

Required: No

An array of Service Connect service objects. These are names and aliases (also known as
endpoints) that are used by other Amazon ECS services to connect to this service.

Service definition parameters 1227

https://docs.aws.amazon.com/cloud-map/latest/dg/working-with-services.html

Amazon Elastic Container Service Developer Guide

This field isn't required for a "client" Amazon ECS service that's a member of a namespace
only to connect to other services within the namespace. An example is frontend application
that accepts incoming requests from either a load balancer that's attached to the service or
by other means.

An object selects a port from the task definition, assigns a name for the AWS Cloud Map
service, and an array of aliases (also known as endpoints) and ports for client applications to
refer to this service.

portName

Type: String

Required: Yes

The portName must match the name of one of the portMappings from all of the
containers in the task definition of this Amazon ECS service.

discoveryName

Type: String

Required: No

The discoveryName is the name of the new AWS Cloud Map service that Amazon ECS
creates for this Amazon ECS service. This must be unique within the AWS Cloud Map
namespace.

If this field isn't specified, portName is used.

clientAliases

Type: Array of objects

Required: No

The list of client aliases for this service connect service. You use these to assign names
that can be used by client applications. The maximum number of client aliases that you
can have in this list is 1.

Each alias ("endpoint") is a DNS name and port number that other Amazon ECS services
("clients") can use to connect to this service.

Each name and port combination must be unique within the namespace.

Service definition parameters 1228

Amazon Elastic Container Service Developer Guide

These names are configured within each task of the client service, not in AWS Cloud Map.
DNS requests to resolve these names don't leave the task, and don't count toward the
quota of DNS requests per second per elastic network interface.

port

Type: Integer

Required: Yes

The listening port number for the service connect proxy. This port is available inside
of all of the tasks within the same namespace.

To avoid changing your applications in client Amazon ECS services, set this to the
same port that the client application uses by default.

dnsName

Type: String

Required: No

The dnsName is the name that you use in the applications of client tasks to connect to
this service. The name must be a valid DNS label.

The default value is the discoveryName.namespace if this field is not specified. If
the discoveryName isn't specified, the portName from the task definition is used.

To avoid changing your applications in client Amazon ECS services, set this to the
same name that the client application uses by default. For example, a few common
names are database, db, or the lowercase name of a database, such as mysql or
redis.

ingressPortOverride

Type: Integer

Required: No

(Optional) The port number for the Service Connect proxy to listen on.

Use the value of this field to bypass the proxy for traffic on the port number that's
specified in the named portMapping in the task definition of this application, and then

Service definition parameters 1229

Amazon Elastic Container Service Developer Guide

use it in your Amazon VPC security groups to allow traffic into the proxy for this Amazon
ECS service.

In awsvpc mode, the default value is the container port number that's specified in the
named portMapping in the task definition of this application. In bridge mode, the
default value is the dynamic ephemeral port of the Service Connect proxy.

logConfiguration

Type: LogConfiguration Object

Required: No

This defines where the Service Connect proxy logs are published. Use the logs for
debugging during unexpected events. This configuration sets the logConfiguration
parameter in the Service Connect proxy container in each task in this Amazon ECS
service. The proxy container isn't specified in the task definition.

We recommend that you use the same log configuration as the application containers of
the task definition for this Amazon ECS service. For FireLens, this is the log configuration
of the application container. It's not the FireLens log router container that uses the
fluent-bit or fluentd container image.

serviceRegistries

Type: Array of objects

Required: No

The details of the service discovery configuration for your service. For more information, see
Use service discovery to connect Amazon ECS services with DNS names.

registryArn

Type: String

Required: No

The Amazon Resource Name (ARN)of the service registry. The currently supported service
registry is AWS Cloud Map. For more information, see Working with Services in the AWS
Cloud Map Developer Guide.

port

Type: Integer

Service definition parameters 1230

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LogConfiguration.html
https://docs.aws.amazon.com/cloud-map/latest/dg/working-with-services.html

Amazon Elastic Container Service Developer Guide

Required: No

The port value that's used if your service discovery service specified an SRV record. This field
is required if both the awsvpc network mode and SRV records are used.

containerName

Type: String

Required: No

The container name value to be used for your service discovery service. This value is
specified in the task definition. If the task definition that your service task specifies uses the
bridge or host network mode, you must specify a containerName and containerPort
combination from the task definition. If the task definition that your service task specifies
uses the awsvpc network mode and a type SRV DNS record is used, you must specify either
a containerName and containerPort combination or a port value, but not both.

containerPort

Type: Integer

Required: No

The port value to be used for your service discovery service. This value is specified in the task
definition. If the task definition your service task specifies uses the bridge or host network
mode, you must specify a containerName and containerPort combination from the
task definition. If the task definition your service task specifies uses the awsvpc network
mode and a type SRV DNS record is used, you must specify either a containerName and
containerPort combination or a port value, but not both.

Client token

clientToken

Type: String

Required: No

The unique, case-sensitive identifier that you provide to ensure the idempotency of the request.
It can be up to 32 ASCII characters long.

Service definition parameters 1231

Amazon Elastic Container Service Developer Guide

Availability Zone rebalancing

availabilityZoneRebalancing

Type: String

Required: No

Indicates whether the service uses Availability Zone rebalancing.The valid values are ENABLED
and DISABLED. For more information about Availability Zone rebalancing, see Balancing an
Amazon ECS service across Availability Zones.

Volume configurations

volumeConfigurations

Type: Object

Required: No

The configuration that will be used to create volumes for tasks that are managed by the
service. Only volumes that are marked as configuredAtLaunch in the task definition can be
configured by using this object.

This object is required for attaching Amazon EBS volumes to tasks that are managed by a
service. For more information, see Use Amazon EBS volumes with Amazon ECS.

name

Type: String

Required: Yes

The name of a volume that's configured when creating or updating a service. Up to 255
letters (uppercase and lowercase), numbers, underscores (_), and hyphens (-) are allowed.
This value must match the volume name that's specified in the task definition.

managedEBSVolume

Type: Object

Required: No

Service definition parameters 1232

Amazon Elastic Container Service Developer Guide

The volume configuration used for creating Amazon EBS volumes that are attached to tasks
that are maintained by a service when the service is created or updated. One volume is
attached per task.

encrypted

Type: Boolean

Required: No

Valid values: true|false

Specifies whether to encrypt each created Amazon EBS volume. If you've turned on
Amazon EBS encryption by default for a particular AWS Region for your AWS account but
set this parameter to false, this parameter will be overridden, and the volumes will be
encrypted with the KMS key specified for encryption by default. For more information
about Amazon EBS encryption by default, see Enable Amazon EBS encryption by default
in the Amazon EBS User Guide. For more information about encrypting Amazon EBS
volumes attached to Amazon ECS tasks, see Encrypt data stored in Amazon EBS volumes
attached to Amazon ECS tasks.

kmsKeyId

Type: String

Required: No

The identifier of the AWS Key Management Service (AWS KMS) key to use for Amazon
EBS encryption. If kmsKeyId is specified, the encrypted state must be true.

The key specified using this parameter overrides the Amazon EBS default or any cluster-
level KMS key for Amazon ECS managed storage encryption that you may have specified.
For more information, see Encrypt data stored in Amazon EBS volumes attached to
Amazon ECS tasks.

You can specify the KMS key by using any of the following:

• Key ID – For example, 1234abcd-12ab-34cd-56ef-1234567890ab.

• Key alias – For example, alias/ExampleAlias.

• Key ARN – For example, arn:aws:kms:us-
east-1:012345678910:key/1234abcd-12ab-34cd-56ef-1234567890ab.

Service definition parameters 1233

https://docs.aws.amazon.com/ebs/latest/userguide/encryption-by-default.html

Amazon Elastic Container Service Developer Guide

• Alias ARN – For example, arn:aws:kms:us-east-1:012345678910:alias/
ExampleAlias.

Important

AWS authenticates the KMS key asynchronously. Therefore, if you specify an ID,
alias, or ARN that isn't valid, the action can appear to succeed, but it eventually
fails. For more information, see Troubleshooting Amazon EBS volume attachment
issues.

volumeType

Type: String

Required: No

Valid values: gp2|gp3|io1|io2|sc1|st1|standard

The Amazon EBS volume type. For more information about volume types, see Amazon
EBS volume types in the Amazon EBS User Guide. The default volume type is gp3.

Note

The standard volume type is not supported for Fargate tasks.

sizeInGiB

Type: Integer

Required: No

Valid range: Integers between 1 and 16,384

The size of the EBS volume in gibibytes (GiB). If you do not provide a snapshot ID to
configure a volume for attachment, you must provide a size value. If you configure a
volume for attachment by using a snapshot, the default value is the snapshot size. You
can then specify a size greater than or equal to the snapshot size.

For gp2 and gp3 volume types, the valid range is 1-16,384.

Service definition parameters 1234

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/troubleshoot-ebs-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/troubleshoot-ebs-volumes.html
https://docs.aws.amazon.com/ebs/latest/userguide/ebs-volume-types.html
https://docs.aws.amazon.com/ebs/latest/userguide/ebs-volume-types.html

Amazon Elastic Container Service Developer Guide

For io1 and io2 volume types, the valid range is 4-16,384.

For st1 and sc1 volume types, the valid range is 125-16,384.

For the standard volume type, the valid range is 1-1,024.

snapshotId

Type: String

Required: No

The ID of the snapshot of an existing Amazon EBS volume that Amazon ECS uses
to create new volumes for attachment. You must specify either a snapshotId or a
sizeInGiB.

volumeInitializationRate

Type: Integer

Required: No

The rate, in MiB/s, at which data is fetched from a snapshot of an existing Amazon EBS
volume to create new volumes for attachment. This property can be specified only
if you specify a snapshotId. For more information about this volume initialization
rate, including the range of supported rates for initialization, see Initialize Amazon EBS
volumes in the Amazon EBS User Guide.

iops

Type: Integer

Required: No

The number of I/O operations per second (IOPS). For gp3, io1, and io2 volumes, this
represents the number of IOPS that are provisioned for the volume. For gp2 volumes,
this value represents the baseline performance of the volume and the rate at which the
volume accumulates I/O credits for bursting. This parameter is required for io1 and io2
volumes. This parameter is not supported for gp2, st1,sc1, or standard volumes.

For gp3 volumes, the valid range of values is 3,000 to 16,000.

For io1 volumes, the valid range of values is 100 to 64,000.

For io2 volumes, the valid range of values is 100 to 64,000.

Service definition parameters 1235

https://docs.aws.amazon.com/ebs/latest/userguide/initalize-volume.html
https://docs.aws.amazon.com/ebs/latest/userguide/initalize-volume.html

Amazon Elastic Container Service Developer Guide

throughput

Type: Integer

Required: No

The throughput to provision for the volumes that are attached to tasks that are
maintained by a service.

Important

This parameter is supported only for gp3 volumes.

roleArn

Type: String

Required: Yes

The Amazon Resource ARN (ARN) of the infrastructure AWS Identity and Access
Management (IAM) role that provides Amazon ECS permissions to manage Amazon EBS
resources for your tasks. For more information, see Amazon ECS infrastructure IAM role.

tagSpecifications

Type: Object

Required: No

The specification for tags to be applied to each Amazon EBS volume.

resourceType

Type: String

Required: Yes

Valid values: volume

The type of resource to tag on creation.

tags

Type: Array of objects

Service definition parameters 1236

Amazon Elastic Container Service Developer Guide

Required: No

The metadata that you apply to volumes to help you categorize and organize
them. Each tag consists of a key and an optional value, both of which you define.
AmazonECSCreated and AmazonECSManaged are reserved tags that are added by
Amazon ECS on your behalf, so you can specify a maximum of 48 tags of your own.
When a volume is deleted, the tags are deleted as well. For more information, see
Tagging Amazon ECS resources.

key

Type: String

Length Constraints: Minimum length of 1. Maximum length of 128.

Required: No

One part of a key-value pair that makes up a tag. A key is a general label that acts
like a category for more specific tag values.

value

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Required: No

The optional part of a key-value pair that makes up a tag. A value acts as a
descriptor within a tag category (key).

propagateTags

Type: String

Valid values: TASK_DEFINITION | SERVICE | NONE

Required: No

Specifies whether to copy the tags from the task definition or the service to a volume.
If NONE is specified or no value is specified, the tags aren't copied.

fileSystemType

Type: String

Required: No

Service definition parameters 1237

Amazon Elastic Container Service Developer Guide

Valid values: xfs|ext3|ext4|NTFS

The type of file system on a volume. The volume's file system type determines how data
is stored and retrieved in the volume. For volumes created from a snapshot, you must
specify the same filesystem type that the volume was using when the snapshot was
created. If there is a filesystem type mismatch, the task will fail to start.

The valid values for Linux are xfs, ext3, and ext4. The default for volumes that are
attached to Linux tasks is XFS.

The valid values for Windows are NTFS. The default for volumes that are attached to
Windows tasks is NTFS.

Service definition template

The following shows the JSON representation of an Amazon ECS service definition.

Amazon EC2 launch type

{
 "cluster": "",
 "serviceName": "",
 "taskDefinition": "",
 "loadBalancers": [
 {
 "targetGroupArn": "",
 "loadBalancerName": "",
 "containerName": "",
 "containerPort": 0
 }
],
 "serviceRegistries": [
 {
 "registryArn": "",
 "port": 0,
 "containerName": "",
 "containerPort": 0
 }
],
 "desiredCount": 0,
 "clientToken": "",
 "launchType": "EC2",

Service definition template 1238

Amazon Elastic Container Service Developer Guide

 "capacityProviderStrategy": [
 {
 "capacityProvider": "",
 "weight": 0,
 "base": 0
 }
],
 "platformVersion": "",
 "role": "",
 "deploymentConfiguration": {
 "deploymentCircuitBreaker": {
 "enable": true,
 "rollback": true
 },
 "maximumPercent": 0,
 "minimumHealthyPercent": 0,
 "alarms": {
 "alarmNames": [
 ""
],
 "enable": true,
 "rollback": true
 }
 },
 "placementConstraints": [
 {
 "type": "distinctInstance",
 "expression": ""
 }
],
 "placementStrategy": [
 {
 "type": "binpack",
 "field": ""
 }
],
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "subnets": [
 ""
],
 "securityGroups": [
 ""
],

Service definition template 1239

Amazon Elastic Container Service Developer Guide

 "assignPublicIp": "DISABLED"
 }
 },
 "healthCheckGracePeriodSeconds": 0,
 "schedulingStrategy": "REPLICA",
 "deploymentController": {
 "type": "EXTERNAL"
 },
 "tags": [
 {
 "key": "",
 "value": ""
 }
],
 "enableECSManagedTags": true,
 "propagateTags": "TASK_DEFINITION",
 "enableExecuteCommand": true,
 "availabilityZoneRebalancing": "ENABLED",
 "serviceConnectConfiguration": {
 "enabled": true,
 "namespace": "",
 "services": [
 {
 "portName": "",
 "discoveryName": "",
 "clientAliases": [
 {
 "port": 0,
 "dnsName": ""
 }
],
 "ingressPortOverride": 0
 }
],
 "logConfiguration": {
 "logDriver": "journald",
 "options": {
 "KeyName": ""
 },
 "secretOptions": [
 {
 "name": "",
 "valueFrom": ""
 }

Service definition template 1240

Amazon Elastic Container Service Developer Guide

]
 }
 },
 "volumeConfigurations": [
 {
 "name": "",
 "managedEBSVolume": {
 "encrypted": true,
 "kmsKeyId": "",
 "volumeType": "",
 "sizeInGiB": 0,
 "snapshotId": "",
 "volumeInitializationRate": 0,
 "iops": 0,
 "throughput": 0,
 "tagSpecifications": [
 {
 "resourceType": "volume",
 "tags": [
 {
 "key": "",
 "value": ""
 }
],
 "propagateTags": "NONE"
 }
],
 "roleArn": "",
 "filesystemType": ""
 }
 }
]
}

Fargate launch type

{
 "cluster": "",
 "serviceName": "",
 "taskDefinition": "",
 "loadBalancers": [
 {
 "targetGroupArn": "",

Service definition template 1241

Amazon Elastic Container Service Developer Guide

 "loadBalancerName": "",
 "containerName": "",
 "containerPort": 0
 }
],
 "serviceRegistries": [
 {
 "registryArn": "",
 "port": 0,
 "containerName": "",
 "containerPort": 0
 }
],
 "desiredCount": 0,
 "clientToken": "",
 "launchType": "FARGATE",
 "capacityProviderStrategy": [
 {
 "capacityProvider": "",
 "weight": 0,
 "base": 0
 }
],
 "platformVersion": "",
 "platformFamily": "",
 "role": "",
 "deploymentConfiguration": {
 "deploymentCircuitBreaker": {
 "enable": true,
 "rollback": true
 },
 "maximumPercent": 0,
 "minimumHealthyPercent": 0,
 "alarms": {
 "alarmNames": [
 ""
],
 "enable": true,
 "rollback": true
 }
 },
 "placementStrategy": [
 {
 "type": "binpack",

Service definition template 1242

Amazon Elastic Container Service Developer Guide

 "field": ""
 }
],
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "subnets": [
 ""
],
 "securityGroups": [
 ""
],
 "assignPublicIp": "DISABLED"
 }
 },
 "healthCheckGracePeriodSeconds": 0,
 "schedulingStrategy": "REPLICA",
 "deploymentController": {
 "type": "EXTERNAL"
 },
 "tags": [
 {
 "key": "",
 "value": ""
 }
],
 "enableECSManagedTags": true,
 "propagateTags": "TASK_DEFINITION",
 "enableExecuteCommand": true,
 "availabilityZoneRebalancing": "ENABLED",
 "serviceConnectConfiguration": {
 "enabled": true,
 "namespace": "",
 "services": [
 {
 "portName": "",
 "discoveryName": "",
 "clientAliases": [
 {
 "port": 0,
 "dnsName": ""
 }
],
 "ingressPortOverride": 0
 }

Service definition template 1243

Amazon Elastic Container Service Developer Guide

],
 "logConfiguration": {
 "logDriver": "journald",
 "options": {
 "KeyName": ""
 },
 "secretOptions": [
 {
 "name": "",
 "valueFrom": ""
 }
]
 }
 },
 "volumeConfigurations": [
 {
 "name": "",
 "managedEBSVolume": {
 "encrypted": true,
 "kmsKeyId": "",
 "volumeType": "",
 "sizeInGiB": 0,
 "snapshotId": "",
 "volumeInitializationRate": 0,
 "iops": 0,
 "throughput": 0,
 "tagSpecifications": [
 {
 "resourceType": "volume",
 "tags": [
 {
 "key": "",
 "value": ""
 }
],
 "propagateTags": "NONE"
 }
],
 "roleArn": "",
 "filesystemType": ""
 }
 }
]

Service definition template 1244

Amazon Elastic Container Service Developer Guide

}

You can create this service definition template using the following AWS CLI command.

aws ecs create-service --generate-cli-skeleton

Service definition template 1245

Amazon Elastic Container Service Developer Guide

Tagging Amazon ECS resources

To help you manage your Amazon ECS resources, you can optionally assign your own metadata to
each resource using tags. Each tag consists of a key and an optional value.

You can use tags to categorize your Amazon ECS resources in different ways, for example, by
purpose, owner, or environment. This is useful when you have many resources of the same type.
You can quickly identify a specific resource based on the tags that you assigned to it. For example,
you can define a set of tags for your account's Amazon ECS container instances. This helps you
track each instance's owner and stack level.

You can use tags for your Cost and Usage reports. You can use these reports to analyze the cost
and usage of your Amazon ECS resources. For more information, see the section called “Usage
Reports”.

Warning

There are many APIs that return tag keys and their values. Denying access to
DescribeTags doesn’t automatically deny access to tags returned by other APIs. As a best
practice, we recommend that you do not include sensitive data in your tags.

We recommend that you devise a set of tag keys that meets your needs for each resource type. You
can use a consistent set of tag keys for easier management of your resources. You can search and
filter the resources based on the tags you add.

Tags don't have any semantic meaning to Amazon ECS and are interpreted strictly as a string of
characters. You can edit tag keys and values, and you can remove tags from a resource at any time.
You can set the value of a tag to an empty string, but you can't set the value of a tag to null. If you
add a tag that has the same key as an existing tag on that resource, the new value overwrites the
earlier value. When you delete a resource, any tags for the resource are also deleted.

If you use AWS Identity and Access Management (IAM), you can control which users in your AWS
account have permission to manage tags.

How resources are tagged

There are multiple ways that Amazon ECS tasks, services, task definitions, and clusters are tagged:

How resources are tagged 1246

Amazon Elastic Container Service Developer Guide

• A user manually tags a resource by using the AWS Management Console, Amazon ECS API, the
AWS CLI, or an AWS SDK.

• A user creates a service or runs a standalone task and selects the Amazon ECS-managed tags
option.

Amazon ECS automatically tags all newly launched tasks. For more information, see the section
called “Amazon ECS-managed tags”.

• A user creates a resource using the console. The console automatically tags the resources.

These tags are returned in the AWS CLI, and AWS SDK responses and are displayed in the
console. You cannot modify or delete these tags.

For information about the added tags, see the Tags automatically added by the console column
in the Tagging support for Amazon ECS resources table.

If you specify tags when you create a resource and the tags can't be applied, Amazon ECS rolls
back the creation process. This ensures that resources are either created with tags or not created at
all, and that no resources are left untagged at any time. By tagging resources while they're being
created, you can eliminate the need to run custom tagging scripts after resource creation.

The following table describes the Amazon ECS resources that support tagging.

Resource Supports tags Supports tag
propagation

Tags automatic
ally added by the
console

Amazon ECS tasks Yes Yes, from the task
definition.

Key: aws:ecs:c
lusterName

Value: cluster-n
ame

Amazon ECS services Yes Yes, from either the
task definition or the
service to the tasks
in the service.

Key: ecs:servi
ce:stackId

Value arn:aws:c
loudforma
tion: arn

How resources are tagged 1247

Amazon Elastic Container Service Developer Guide

Resource Supports tags Supports tag
propagation

Tags automatic
ally added by the
console

Amazon ECS task sets Yes No
N/A

Amazon ECS task
definitions

Yes No
Key: ecs:taskD
efinition
:createdFrom

Value: ecs-conso
le-v2

Amazon ECS clusters Yes No
Key: aws:cloud
formation
:logical-id

Value: ECSCluster
Key: aws:cloud
formation
:stack-id

Value: arn:aws:c
loudforma
tion: arn

Key: aws:cloud
formation
:stack-name

Value: ECS-Conso
le-V2-Clu
ster- EXAMPLE

How resources are tagged 1248

Amazon Elastic Container Service Developer Guide

Resource Supports tags Supports tag
propagation

Tags automatic
ally added by the
console

Amazon ECS
container instances

Yes Yes, from the Amazon
EC2 instance. For
more information,
see Adding tags
to an Amazon ECS
container instance.

N/A

Amazon ECS External
instances

Yes No
N/A

Amazon ECS capacity
provider

Yes.

You cannot tag the
predefined FARGATE
and FARGATE_SPOT
capacity providers.

No N/A

Tagging resources on creation

The following resources support tagging on creation using the Amazon ECS API, AWS CLI, or AWS
SDK:

• Amazon ECS tasks

• Amazon ECS services

• Amazon ECS task definition

• Amazon ECS task sets

• Amazon ECS clusters

• Amazon ECS container instances

• Amazon ECS capacity providers

Tagging resources on creation 1249

Amazon Elastic Container Service Developer Guide

Amazon ECS has the option to use tagging authorization for resource creation. When the AWS
account is configured for tagging authorization, users must have permissions for actions that
create the resource, such as ecsCreateCluster. If you specify tags in the resource-creating
action, AWS performs additional authorization to verify if users or roles have permissions to create
tags. Therefore, you must grant explicit permissions to use the ecs:TagResource action. For
more information, see the section called “Tag resources during creation”. For information about
how to configure the option, see the section called “Tagging authorization”.

Restrictions

The following restrictions apply to tags:

• A maximum of 50 tags can be associated with a resource.

• Tag keys can't be repeated for one resource. Each tag key must be unique, and can only have one
value.

• Keys can be up to 128 characters long in UTF-8.

• Values can be up to 256 characters long in UTF-8.

• If multiple AWS services and resources use your tagging schema, limit the types of characters
you use. Some services might have restrictions on allowed characters. Generally, allowed
characters are letters, numbers, spaces, and the following characters: + - = . _ : / @.

• Tag keys and values are case sensitive.

• You can't use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either
keys or values. These are reserved only for AWS use. You can't edit or delete tag keys or values
with this prefix. Tags with this prefix don't count against your tags-per-resource limit.

Amazon ECS-managed tags

When you use Amazon ECS-managed tags, Amazon ECS automatically tags all newly launched
tasks and any Amazon EBS volumes attached to the tasks with the cluster information and either
the user-added task definition tags or the service tags. The following describes the added tags:

• Standalone tasks – a tag with a Key as aws:ecs:clusterName and a Value set to the cluster
name. All task definition tags that were added by users. An Amazon EBS volume attached to a
standalone task will receive the tag with a Key as aws:ecs:clusterName and a Value set to the
cluster name. For more information about Amazon EBS volume tagging, see Tagging Amazon
EBS volumes.

Restrictions 1250

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specify-ebs-config.html#ebs-volume-tagging
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specify-ebs-config.html#ebs-volume-tagging

Amazon Elastic Container Service Developer Guide

• Tasks that are part of a service – a tag with a Key as aws:ecs:clusterName and a Value set
to the cluster name. A tag with a Key as aws:ecs:serviceName and a Value set to the service
name. Tags from one of the following resources:

• Task definitions – All task definition tags that were added by users.

• Services – All service tags that were added by users.

An Amazon EBS volume attached to a task that is part of a service will receive a tag with a
Key as aws:ecs:clusterName and a Value set to the cluster name, and a tag with a Key as
aws:ecs:serviceName and a Value set to the service name. For more information about
Amazon EBS volume tagging, see Tagging Amazon EBS volumes.

The following options are required for this feature:

• You must opt in to the new Amazon Resource Name (ARN) and resource identifier (ID) formats.
For more information, see Amazon Resource Names (ARNs) and IDs.

• When you use the APIs to create a service or run a task, you must set enableECSManagedTags
to true for run-task and create-service. For more information, see create-service and run-
task in the AWS Command Line Interface API Reference.

• Amazon ECS uses managed tags to determine when some features are enabled, for example
cluster Auto Scaling. We recommend that you do not manually modify tags so that the Amazon
ECS can effectively manage the features.

Use tags for billing

AWS provides a reporting tool called Cost Explorer that you can use to analyze the cost and usage
of your Amazon ECS resources.

You can use Cost Explorer to view charts of your usage and costs. You can view data from the
last 13 months, and forecast how much you're likely to spend for the next three months. You
can use Cost Explorer to see patterns in how much you spend on AWS resources over time. For
example, you can use it to identify areas that need further inquiry and see trends that you can use
to understand your costs. You also can specify time ranges for the data, and view time data by day
or by month.

You can use Amazon ECS-managed tags or user-added tags for your Cost and Usage Report. For
more information, see Amazon ECS usage reports.

Use tags for billing 1251

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specify-ebs-config.html#ebs-volume-tagging
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html

Amazon Elastic Container Service Developer Guide

To see the cost of your combined resources, you can organize your billing information based on
resources that have the same tag key values. For example, you can tag several resources with a
specific application name, and then organize your billing information to see the total cost of that
application across several services. For more information about setting up a cost allocation report
with tags, see The Monthly Cost Allocation Report in the AWS Billing User Guide.

Additionally, you can turn on Split Cost Allocation Data to get task-level CPU and memory usage
data in your Cost and Usage Reports. For more information, see Task-level Cost and Usage Reports.

Note

If you've turned on reporting, it can take up to 24 hours before the data for the current
month is available for viewing.

Adding tags to Amazon ECS resources

You can tag new or existing tasks, services, task definitions, or clusters. For information about
tagging your container instances, see Adding tags to an Amazon ECS container instance.

Warning

Do not add personally identifiable information (PII) or other confidential or sensitive
information in tags. Tags are accessible to many AWS services, including billing. Tags are
not intended to be used for private or sensitive data.

You can use the following resources to specify tags when you create the resource.

Task Console AWS CLI API Action

Run one or more tasks. Running an
application as
an Amazon ECS
task

run-task RunTask

Create a service. Creating an
Amazon ECS

create-service CreateService

Adding tags to resources 1252

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/configurecostallocreport.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/run-task.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateService.html

Amazon Elastic Container Service Developer Guide

Task Console AWS CLI API Action

service using the
console

Create a task set. Deploy Amazon
ECS services
using a third-par
ty controller

create-task-set CreateTaskSet

Register a task definition. the section
called “Creating
a task definitio
n using the
console”

register-task-
definition

RegisterT
askDefinition

Create a cluster. Creating an
Amazon ECS
cluster for the
Fargate launch
type

create-cluster CreateCluster

Run one or more container instances
.

Launching an
Amazon ECS
Linux container
 instance

run-instances RunInstances

Adding tags to existing resources (Amazon ECS console)

You can add or delete tags that are associated with your clusters, services, tasks, and task
definitions directly from the resource's page.

To modify a tag for an individual resource

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. From the navigation bar, select the AWS Region to use.

3. In the navigation pane, select a resource type (for example, Clusters).

4. Select the resource from the resource list, choose the Tags tab, and then choose Manage tags.

Adding tags to resources 1253

https://docs.aws.amazon.com/cli/latest/reference/ecs/create-task-set.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateTaskSet.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/register-task-definition.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/register-task-definition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-cluster.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateCluster.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/run-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RunInstances.html
https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

5. Configure your tags.

[Add a tag] Choose Add tag, and then do the following:

• For Key, enter the key name.

• For Value, enter the key value.

6. Choose Save.

Adding tags to existing resources (AWS CLI)

You can add or overwrite one or more tags by using the AWS CLI or an API.

Note

You can use dual-stack service endpoints to interact with Amazon ECS from the AWS CLI,
SDKs, and the Amazon ECS API over both IPv4 and IPv6. For more information, see Using
Amazon ECS dual-stack endpoints.

• AWS CLI - tag-resource

• API action - TagResource

Adding tags to an Amazon ECS container instance

You can associate tags with your container instances using one of the following methods:

• Method 1 – When creating the container instance using the Amazon EC2 API, CLI, or console,
specify tags by passing user data to the instance using the container agent configuration
parameter ECS_CONTAINER_INSTANCE_TAGS. This creates tags that are associated with the
container instance in Amazon ECS only, they cannot be listed using the Amazon EC2 API. For
more information, see Bootstrapping Amazon ECS Linux container instances to pass data.

Important

If you launch your container instances using an Amazon EC2 Auto Scaling group, then
you should use the ECS_CONTAINER_INSTANCE_TAGS agent configuration parameter to

Adding tags to a container instance 1254

https://docs.aws.amazon.com/cli/latest/reference/ecs/tag-resource.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_TagResource.html

Amazon Elastic Container Service Developer Guide

add tags. This is due to the way in which tags are added to Amazon EC2 instances that
are launched using Auto Scaling groups.

The following is an example of a user data script that associates tags with your container
instance:

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=MyCluster
ECS_CONTAINER_INSTANCE_TAGS={"tag_key": "tag_value"}
EOF

• Method 2 – When you create your container instance using the Amazon EC2 API,
CLI, or console, first specify tags using the TagSpecification.N parameter. Then,
pass user data to the instance by using the container agent configuration parameter
ECS_CONTAINER_INSTANCE_PROPAGATE_TAGS_FROM. Doing so propagates them from
Amazon EC2 to Amazon ECS.

The following is an example of a user data script that propagates the tags that are associated
with an Amazon EC2 instance, and registers the instance with a cluster that's named MyCluster.

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=MyCluster
ECS_CONTAINER_INSTANCE_PROPAGATE_TAGS_FROM=ec2_instance
EOF

To provide access to allow container instance tags to propagate from Amazon EC2 to Amazon
ECS, manually add the following permissions as an inline policy to the Amazon ECS container
instance IAM role. For more information, see Adding and Removing IAM Policies.

• ec2:DescribeTags

The following is an example policy that's used to add these permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Adding tags to a container instance 1255

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

 "Action": [
 "ec2:DescribeTags"
],
 "Resource": "*"
 }
]
}

External container instances

You can associate tags with your external container instances by using one of the following
methods.

• Method 1 – Before running the installation script to register your external instance with your
cluster, create or edit the Amazon ECS container agent configuration file at /etc/ecs/
ecs.config and add the ECS_CONTAINER_INSTANCE_TAGS container agent configuration
parameter. This creates tags that are associated with the external instance.

The following is example syntax.

ECS_CONTAINER_INSTANCE_TAGS={"tag_key": "tag_value"}

• Method 2 – After your external instance is registered to your cluster, you can use the AWS
Management Console to add tags. For more information, see Adding tags to existing resources
(Amazon ECS console).

Amazon ECS usage reports

AWS provides a reporting tool called Cost Explorer that you can use to analyze the cost and usage
of your Amazon ECS resources.

You can use Cost Explorer to view charts of your usage and costs. You can view data from the
last 13 months, and forecast how much you're likely to spend for the next three months. You
can use Cost Explorer to see patterns in how much you spend on AWS resources over time. For
example, you can use it to identify areas that need further inquiry and see trends that you can use
to understand your costs. You also can specify time ranges for the data, and view time data by day
or by month.

External container instances 1256

Amazon Elastic Container Service Developer Guide

The metering data in your Cost and Usage Report shows usage across all of your Amazon ECS
tasks. The metering data includes CPU usage as vCPU-Hours and memory usage as GB-Hours for
each task that was run. How that data is presented depends on the launch type of the task.

For tasks using the Fargate launch type, the lineItem/Operation column shows FargateTask
and you will see the cost associated with each task.

For tasks that use the EC2 launch type, the lineItem/Operation column shows ECSTask-
EC2 and the tasks don't have a direct cost associated with them. The metering data that's shown
in the report, such as memory usage, represents the total resources that the task reserved over
the billing period that you specify. You can use this data to determine the cost of your underlying
cluster of Amazon EC2 instances. The cost and usage data for your Amazon EC2 instances are listed
separately under the Amazon EC2 service.

You can also use the Amazon ECS managed tags to identify the service or cluster that each task
belongs to. For more information, see Use tags for billing.

Important

The metering data is only viewable for tasks that are launched on or after November 16,
2018. Tasks that are launched before this date don't show metering data.

The following is an example of some of the fields that you can use to sort cost allocation data in
Cost Explorer.

• Cluster name

• Service name

• Resource tags

• Launch type

• AWS Region

• Usage type

For more information about creating an AWS Cost and Usage Report, see AWS Cost and Usage
Report in the AWS Billing User Guide.

Usage Reports 1257

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-reports-costusage.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-reports-costusage.html

Amazon Elastic Container Service Developer Guide

Task-level Cost and Usage Reports

AWS Cost Management can provide CPU and memory usage data in the AWS Cost and Usage
Report for the each task on Amazon ECS, including tasks on Fargate and tasks on EC2. This data is
called Split Cost Allocation Data. You can use this data to analyze costs and usage for applications.
Additionally, you can split and allocate the costs to individual business units and teams with cost
allocation tags and cost categories. For more information about Split Cost Allocation Data, see
Understanding split cost allocation data in the AWS Cost and Usage Report User Guide.

You can opt in to task-level Split Cost Allocation Data for the account in the AWS Cost Management
Console. If you have a management (payer) account, you can opt in from the payer account to
apply this configuration to every linked account.

After you set up Split Cost Allocation Data, there will be additional columns under the
splitLineItem header in the report. For more information see Split line item details in the AWS Cost
and Usage Report User Guide

For tasks on EC2, this data splits the cost of the EC2 instance based on the resource usage or
reservations and the remaining resources on the instance.

The following are prerequistites:

• Set the ECS_DISABLE_METRICS Amazon ECS agent configuration parameter to false.

When this setting is false, the Amazon ECS agent sends metrics to Amazon CloudWatch.
On Linux, this setting is false by default and metrics are sent to CloudWatch. On Windows,
this setting is true by default, so you must change the setting to false to send the metrics
to CloudWatch for AWS Cost Management to use. For more information about ECS agent
configuration, see Amazon ECS container agent configuration.

• The minimum Docker version for reliable metrics is Docker version v20.10.13 and newer, which is
included in Amazon ECS-optimized AMI 20220607 and newer.

To use Split Cost Allocation Data, you must create a report, and select Split cost allocation data.
For more information, see Creating Cost and Usage Reports in the AWS Cost and Usage Report
User Guide.

AWS Cost Management calculates the Split Cost Allocation Data with the task CPU and memory
usage. AWS Cost Management can use the task CPU and memory reservation instead of the usage,

Task-level cost and usage 1258

https://docs.aws.amazon.com/cur/latest/userguide/split-cost-allocation-data.html
https://docs.aws.amazon.com/cur/latest/userguide/split-line-item-columns.html
https://docs.aws.amazon.com/cur/latest/userguide/cur-create.html

Amazon Elastic Container Service Developer Guide

if the usage is unavailable. If you see the CUR is using the reservations, check that your container
instances meet the prerequisites and the task resource usage metrics appear in CloudWatch.

Task-level cost and usage 1259

Amazon Elastic Container Service Developer Guide

Monitoring Amazon ECS

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon ECS and your AWS solutions. You should collect monitoring data from all of the parts of
your AWS solution so that you can more easily debug a multi-point failure if one occurs. Before
you start monitoring Amazon ECS, create a monitoring plan that includes answers to the following
questions:

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

The metrics made available depend on the launch type of the tasks and services in your clusters. If
you are using the Fargate launch type for your services, then CPU and memory utilization metrics
are provided to assist in the monitoring of your services. For the Amazon EC2 launch type, you own
and need to monitor the EC2 instances that make your underlying infrastructure. Additional CPU
and memory reservation and utilization metrics are made available at the cluster, service, and task.

The next step is to establish a baseline for normal Amazon ECS performance in your environment,
by measuring performance at various times and under different load conditions. As you monitor
Amazon ECS, store historical monitoring data so that you can compare it with current performance
data, identify normal performance patterns and performance anomalies, and devise methods to
address issues.

To establish a baseline you should, at a minimum, monitor the following items:

• The CPU and memory reservation and utilization metrics for your Amazon ECS clusters

• The CPU and memory utilization metrics for your Amazon ECS services

For more information, see Viewing Amazon ECS metrics.

1260

Amazon Elastic Container Service Developer Guide

Best practices for monitoring Amazon ECS

Use the following best practices for monitoring Amazon ECS.

• Make monitoring a priority to head off small problems before they become big ones

• Create a monitoring plan that includes answers to the following question

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

• Automate monitoring as much as possible.

• Check the Amazon ECS log files. For more information, see Viewing Amazon ECS container agent
logs.

• Use Runtime Monitoring to help protect your accounts, containers, workloads, and the data
within your AWS environment. For more information, see Identify unauthorized behavior using
Runtime Monitoring.

Monitoring tools for Amazon ECS

AWS provides various tools that you can use to monitor Amazon ECS. You can configure some of
these tools to do the monitoring for you, while some of the tools require manual intervention. We
recommend that you automate monitoring tasks as much as possible.

Automated monitoring tools

You can use the following automated monitoring tools to watch Amazon ECS and report when
something is wrong:

• Amazon CloudWatch alarms – Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over
a number of time periods. The action is a notification sent to an Amazon Simple Notification
Service (Amazon SNS) topic or Amazon EC2 Auto Scaling policy. CloudWatch alarms do not
invoke actions simply because they are in a particular state; the state must have changed and

Best practices for monitoring Amazon ECS 1261

Amazon Elastic Container Service Developer Guide

been maintained for a specified number of periods. For more information, see Monitor Amazon
ECS using CloudWatch.

For services with tasks that use the Fargate launch type, you can use CloudWatch alarms to scale
in and scale out the tasks in your service based on CloudWatch metrics, such as CPU and memory
utilization. For more information, see Automatically scale your Amazon ECS service.

For clusters with tasks or services using the EC2 launch type, you can use CloudWatch alarms
to scale in and scale out the container instances based on CloudWatch metrics, such as cluster
memory reservation.

For your container instances that were launched with the Amazon ECS-optimized Amazon Linux
AMI, you can use CloudWatch Logs to view different logs from your container instances in one
convenient location. You must install the CloudWatch agent on your container instances. For
more information, see Download and configure the CloudWatch agent using the command line
in the Amazon CloudWatch User Guide. You must also add the ECS-CloudWatchLogs policy
to the ecsInstanceRole role. For more information, see Monitoring container instances
permissions.

• Amazon CloudWatch Logs – Monitor, store, and access the log files from the containers in your
Amazon ECS tasks by specifying the awslogs log driver in your task definitions. For more
information, see Send Amazon ECS logs to CloudWatch .

You can also monitor, store, and access the operating system and Amazon ECS container agent
log files from your Amazon ECS container instances. This method for accessing logs can be used
for containers using the EC2 launch type.

• Amazon CloudWatch Events – Match events and route them to one or more target functions
or streams to make changes, capture state information, and take corrective action. For more
information, see Automate responses to Amazon ECS errors using EventBridge in this guide and
EventBridge is the evolution of Amazon CloudWatch Events in the Amazon EventBridge User
Guide.

• Container Insights – Collect, aggregate, and summarize metrics and logs from your containerized
applications and microservices. Container Insights collects data as performance log events using
embedded metric format. These performance log events are entries that use a structured JSON
schema that allow high-cardinality data to be ingested and stored at scale. From this data,
CloudWatch creates aggregated metrics at the cluster, task, and service level as CloudWatch
metrics. The metrics that Container Insights collects are available in CloudWatch automatic
dashboards, and are also viewable in the Metrics section of the CloudWatch console.

Automated Tools 1262

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/download-cloudwatch-agent-commandline.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-cwe-now-eb.html

Amazon Elastic Container Service Developer Guide

• AWS CloudTrail log monitoring – Share log files between accounts, monitor CloudTrail log files
in real time by sending them to CloudWatch Logs, write log processing applications in Java, and
validate that your log files have not changed after delivery by CloudTrail. For more information,
see Log Amazon ECS API calls using AWS CloudTrail in this guide, and Working with CloudTrail
Log Files in the AWS CloudTrail User Guide.

• Runtime Monitoring – Detect threats for clusters and containers within your AWS environment.
Runtime Monitoring uses a GuardDuty security agent that adds runtime visibility into individual
Amazon ECS workloads, for example, file access, process execution, and network connections.

Manual monitoring tools

Another important part of monitoring Amazon ECS involves manually monitoring those items
that the CloudWatch alarms don't cover. The CloudWatch, Trusted Advisor, and other AWS console
dashboards provide an at-a-glance view of the state of your AWS environment. We recommend
that you also check the log files on your container instances and the containers in your tasks.

• Amazon ECS console:

• Cluster metrics for the EC2 launch type

• Service metrics

• Service health status

• Service deployment events

• CloudWatch home page:

• Current alarms and status

• Graphs of alarms and resources

• Service health status

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services you care about.

• Graph metric data to troubleshoot issues and discover trends.

• Search and browse all your AWS resource metrics.

• Create and edit alarms to be notified of problems.

• Container health check - These are commands that run locally on a container and validate
application health and availability. You configure these per container in your task definition.

Manual Tools 1263

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html

Amazon Elastic Container Service Developer Guide

• AWS Trusted Advisor can help you monitor your AWS resources to improve performance,
reliability, security, and cost effectiveness. Four Trusted Advisor checks are available to all users;
more than 50 checks are available to users with a Business or Enterprise support plan. For more
information, see AWS Trusted Advisor.

Trusted Advisor has these checks that relate to Amazon ECS:

• A fault tolerance which indicates that you have a service running in a single Availability Zone.

• A fault tolerance which indicates that you have not used the spread placement strategy for
multiple Availability Zones.

• AWS Compute Optimizer is a service that analyzes the configuration and utilization metrics of
your AWS resources. It reports whether your resources are optimal, and generates optimization
recommendations to reduce the cost and improve the performance of your workloads.

For more information, see AWS Compute Optimizer recommendations for Amazon ECS.

Monitor Amazon ECS using CloudWatch

You can monitor your Amazon ECS resources using Amazon CloudWatch, which collects and
processes raw data from Amazon ECS into readable, near real-time metrics. These statistics
are recorded for a period of two weeks so that you can access historical information and gain a
better perspective on how your clusters or services are performing. Amazon ECS metric data is
automatically sent to CloudWatch in 1-minute periods. For more information about CloudWatch,
see the Amazon CloudWatch User Guide.

Amazon ECS provides free metrics for clusters and services. For an additional cost, you can turn
on Amazon ECS CloudWatch Container Insights for your cluster for per-task metrics, including
CPU, memory, and EBS filesystem utilization. For more information about Container Insights, see
Monitor Amazon ECS containers using Container Insights with enhanced observability.

Considerations

The following should be considered when using Amazon ECS CloudWatch metrics.

• Any Amazon ECS service hosted on Fargate has CloudWatch CPU and memory utilization metrics
automatically, so you don't need to take any manual steps.

• For any Amazon ECS task or service hosted on Amazon EC2 instances, the Amazon EC2 instance
requires version 1.4.0 or later (Linux) or 1.0.0 or later (Windows) of the container agent for

Monitor Amazon ECS using CloudWatch 1264

https://aws.amazon.com/premiumsupport/technology/trusted-advisor/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

Amazon Elastic Container Service Developer Guide

CloudWatch metrics to be generated. However, we recommend using the latest container agent
version. For information about checking your agent version and updating to the latest version,
see Updating the Amazon ECS container agent.

• The minimum Docker version for reliable CloudWatch metrics is Docker version 20.10.13 and
newer.

• Your Amazon EC2 instances also require the ecs:StartTelemetrySession permission on
the IAM role that you launch your Amazon EC2 instances with. If you created your Amazon ECS
container instance IAM role before CloudWatch metrics were available for Amazon ECS, you
might need to add this permission. For information about the container instance IAM role and
attaching the managed IAM policy for container instances, see Amazon ECS container instance
IAM role.

• You can disable CloudWatch metrics collection on your Amazon EC2 instances by setting
ECS_DISABLE_METRICS=true in your Amazon ECS container agent configuration. For more
information, see Amazon ECS container agent configuration.

Recommended metrics

Amazon ECS provides free CloudWatch metrics you can use to monitor your resources. The
CPU and memory reservation and the CPU, memory, and EBS filesystem utilization across your
cluster as a whole, and the CPU, memory, and EBS filesystem utilization on the services in your
clusters can be measured using these metrics. For your GPU workloads, you can measure your GPU
reservation across your cluster.

The infrastructure your Amazon ECS tasks are hosted on in your clusters determines which metrics
are available. For tasks hosted on Fargate infrastructure, Amazon ECS provides CPU, memory, and
EBS filesystem utilization metrics to assist in the monitoring of your services. For tasks hosted
on EC2 instances, Amazon ECS provides CPU, memory, and GPU reservation metrics and CPU
and memory utilization metrics at the cluster and service level. You need to monitor the Amazon
EC2 instances that make your underlying infrastructure separately. For more information about
monitoring your Amazon EC2 instances, see Monitoring Amazon EC2 in the Amazon EC2 User
Guide.

For information about the recommended alarms to use with Amazon ECS, see one of the following
in the Amazon CloudWatch Logs User Guide:

• Amazon ECS

• Amazon ECS with Container Insights

Recommended metrics 1265

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_ec2.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Best_Practice_Recommended_Alarms_AWS_Services.html#ECS
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Best_Practice_Recommended_Alarms_AWS_Services.html#ECS-ContainerInsights

Amazon Elastic Container Service Developer Guide

Viewing Amazon ECS metrics

After you have resources running in your cluster, you can view the metrics on the Amazon ECS
and CloudWatch consoles. The Amazon ECS console provides a 24-hour maximum, minimum, and
average view of your cluster and service metrics. The CloudWatch console provides a fine-grained
and customizable display of your resources, as well as the number of running tasks in a service.

Amazon ECS console

Amazon ECS service CPU and memory utilization metrics are available on the Amazon ECS console.
The view provided for service metrics shows the average, minimum, and maximum values for the
previous 24-hour period, with data points available in 5-minute intervals. For more information,
see Amazon ECS service utilization metrics.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. Select the cluster that you want to view metrics for.

3. Determine the metrics to view.

To view metrics from Steps

Clusters On the cluster details page,
choose the Metrics tab.
There is also a link provided
to the CloudWatch console
to view your CloudWatch
Container Insights metrics if
you have those turned on.

Services On the cluster details page,
on the Services tab, select
the service. The metrics are
then available on the Health
and metrics tab.

Viewing Amazon ECS metrics 1266

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

CloudWatch console

For the Fargate launch type, Amazon ECS service metrics can also be viewed on the CloudWatch
console. The console provides the most detailed view of Amazon ECS metrics, and you can tailor
the views to suit your needs. You can view the service utilization and service RUNNING task count.

For the EC2 launch type, Amazon ECS cluster and service metrics can also be viewed on the
CloudWatch console. The console provides the most detailed view of Amazon ECS metrics, and you
can tailor the views to suit your needs.

For information about how to view the metrics, see View available metrics the Amazon CloudWatch
User Guide.

Amazon ECS CloudWatch metrics

You can use CloudWatch usage metrics to provide visibility into your accounts usage of resources.
Use these metrics to visualize your current service usage on CloudWatch graphs and dashboards.

Amazon ECS sends metrics to CloudWatch at one-minute intervals. These metrics are collected
for resources that have tasks in the RUNNING state. If a cluster, service, or other resource has no
running tasks, no metrics will be reported for that resource during that period. For example, if you
have a cluster with one service but that service has no tasks in a RUNNING state, there will be no
metrics sent to CloudWatch. Similarly, if you have two services and one of them has running tasks
while the other doesn't, only the metrics for the service with running tasks would be sent.

Metric Description Valid Dimension Useful Statistics Unit

CPUReservation The percentag
e of CPU units
that are reserved
in the cluster or
service.

The CPU
reservation
(filtered by
ClusterName)
is measured as
the total CPU

ClusterName . Average,
Minimum,
Maximum

Percent

Amazon ECS CloudWatch metrics 1267

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/viewing_metrics_with_cloudwatch.html

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

units that are
reserved by
Amazon ECS
tasks on the
cluster, divided
by the total CPU
units for all of
the Amazon
EC2 instances
 registered in
the cluster.
Only Amazon
EC2 instances
in ACTIVE or
DRAINING
status will affect
CPU reservati
on metrics. The
metric is only
supported for
tasks hosted on
an Amazon EC2
instance.

Amazon ECS CloudWatch metrics 1268

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

CPUUtiliz
ation

The percentag
e of CPU units
that is used by
the cluster or
service.

The cluster-l
evel CPU utilizati
on (filtered by
ClusterName)
is measured as
the total CPU
units that are in
use by Amazon
ECS tasks on the
cluster, divided
by the total CPU
units for all of
the Amazon
EC2 instances
registered in
the cluster.
Only Amazon
EC2 instances
in ACTIVE or
DRAINING
status will affect
CPU reservati
on metrics. The
cluster-level
metric is only
supported for
tasks hosted on
an Amazon EC2
instance.

ClusterName ,
ServiceName

Average,
Minimum,
Maximum

Percent

Amazon ECS CloudWatch metrics 1269

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

The service-l
evel CPU utilizati
on (filtered by
ClusterName ,
ServiceName)
is measured as
the total CPU
units in use
by the tasks
that belong
to the service,
divided by the
total number of
CPU units that
are reserved
for the tasks
that belong
to the service.
The service-l
evel metric is
supported for
tasks hosted on
Amazon EC2
instances and
Fargate.

Amazon ECS CloudWatch metrics 1270

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

MemoryRes
ervation

The percentage
of memory that
is reserved by
running tasks in
the cluster.

Cluster memory
reservation is
measured as the
total memory
that is reserved
by Amazon
ECS tasks on
the cluster,
divided by the
total amount of
memory for all
of the Amazon
EC2 instances
registered in
the cluster. This
metric can only
be filtered by
ClusterName .
Only Amazon
EC2 instances
in ACTIVE or
DRAINING
status will
affect memory
reservati
on metrics.
The cluster
level memory
reservation

ClusterName . Average,
Minimum,
Maximum

Percent

Amazon ECS CloudWatch metrics 1271

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

metric is only
supported for
tasks hosted on
an Amazon EC2
instance.

Note

When
calculati
ng
memory
utilizati
on, if
MemoryRes
ervation
is
specified
, it's used
in the
calculati
on
instead
of total
memory.

Amazon ECS CloudWatch metrics 1272

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

MemoryUti
lization

The percentag
e of memory
in use by the
cluster or
service.

The cluster-level
memory utilizati
on (filtered by
ClusterName)
is measured
as the total
memory in use
by Amazon ECS
tasks on the
cluster, divided
by the total
memory for all
of the Amazon
EC2 instances
registered in
the cluster.
Only Amazon
EC2 instances
in ACTIVE or
DRAINING
status will affect
memory utilizati
on metrics. The
cluster-level
metric is only
supported for
tasks hosted on
an Amazon EC2
instance.

ClusterName ,
ServiceName

Average,
Minimum,
Maximum

Percent

Amazon ECS CloudWatch metrics 1273

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

The service-level
memory utilizati
on (filtered by
ClusterName ,
ServiceName)
is measured
as the total
memory in use
by the tasks
that belong
to the service,
divided by the
total memory
reserved for
the tasks that
belong to
the service.
The service-l
evel metric is
supported for
tasks hosted on
Amazon EC2
instances and
Fargate.

Amazon ECS CloudWatch metrics 1274

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

EBSFilesy
stemUtili
zation

The percentage
of the Amazon
EBS filesyste
m that is used
by tasks in a
service.

The service level
EBS filesyste
m utilizati
on metric
(filtered by
ClusterName ,
ServiceName)
is measured
as the total
amount of the
EBS filesyste
m in use by
the tasks that
belong to the
service, divided
by the total
amount of
EBS filesystem
storage that is
allocated for
all tasks that
belong to the
service. The
service level
EBS filesyste
m utilization
metric is only
available for

ClusterName ,
ServiceName

Average,
Minimum,
Maximum

Percent

Amazon ECS CloudWatch metrics 1275

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

tasks hosted on
Amazon EC2
instances (using
container agent
version 1.79.0
) and Fargate
(using platform
version 1.4.0)
that have an
EBS volume
attached.

Note

For tasks
hosted
on
Fargate,
there is
space
on the
disk that
is only
used by
Fargate.
There is
no cost
associate
d with
the
space
Fargate
uses, but
you will
see this

Amazon ECS CloudWatch metrics 1276

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

additiona
l storage
using
tools like
df.

Amazon ECS CloudWatch metrics 1277

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

GPUReserv
ation

The percentage
of total available
GPUs that are
reserved by
running tasks in
the cluster.

The cluster level
GPU reservati
on metric is
measured as
the number of
GPUs reserved
by Amazon
ECS tasks on
the cluster,
divided by the
total number
of GPUs that
was available
on all of the
Amazon EC2
instances with
GPUs registere
d in the cluster.
Only Amazon
EC2 instances
in ACTIVE or
DRAINING
status will affect
GPU reservation
metrics.

ClusterName Average,
Minimum,
Maximum

Percent

Amazon ECS CloudWatch metrics 1278

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

ActiveCon
nectionCo
unt

The total
number of
concurrent
connections
active from
clients to the
Amazon ECS
Service Connect
proxies that
run in tasks
that share
the selected
Discovery
Name .

This metric is
only available
if you have
configured
Amazon ECS
Service Connect.

Valid dimension
s: Discovery
Name and
Discovery
Name,
ServiceNa
me,
ClusterName .

Discovery
Name and
Discovery
Name ,
ServiceName ,
ClusterName

Average,
Minimum,
Maximum, Sum

Count

Amazon ECS CloudWatch metrics 1279

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

NewConnec
tionCount

The total
number of new
connections
established
from clients to
the Amazon
ECS Service
Connect proxies
that run in
tasks that share
the selected
Discovery
Name .

This metric is
only available
if you have
configured
Amazon ECS
Service Connect.

Discovery
Name and
Discovery
Name,
ServiceNa
me,
ClusterName

Average,
Minimum,
Maximum, Sum

Count

Processed
Bytes

The total
number of bytes
of inbound
traffic processed
by the Service
Connect proxies.

This metric is
only available
if you have
configured
Amazon ECS
Service Connect.

Discovery
Name and
Discovery
Name,
ServiceNa
me,
ClusterName

Average,
Minimum,
Maximum, Sum

Bytes

Amazon ECS CloudWatch metrics 1280

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

RequestCo
unt

The number
of inbound
traffic requests
processed by the
Service Connect
proxies.

This metric is
only available
if you have
configured
Amazon ECS
Service Connect.

You also need
to configure
appProtoc
ol in the port
mapping in your
task definition.

Discovery
Name and
Discovery
Name,
ServiceNa
me,
ClusterName

Average,
Minimum,
Maximum, Sum

Count

Amazon ECS CloudWatch metrics 1281

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

GrpcReque
stCount

The number of
gRPC inbound
traffic requests
processed by the
Service Connect
proxies.

This metric is
only available
if you have
configure
d Amazon
ECS Service
Connect and the
appProtocol
is GRPC in the
port mapping in
the task definitio
n.

Discovery
Name and
Discovery
Name,
ServiceNa
me,
ClusterName

Average,
Minimum,
Maximum, Sum

Count

Amazon ECS CloudWatch metrics 1282

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

HTTPCode_
Target_2X
X_Count

The number of
HTTP response
codes with
numbers 200 to
299 generated
by the applicati
ons in these
tasks. These
tasks are the
targets. This
metric only
counts the
responses sent
to the Service
Connect proxies
by the applicati
ons in these
tasks, not
responses sent
directly.

This metric is
only available
if you have
configure
d Amazon
ECS Service
Connect and
the appProtoc
ol is HTTP or
HTTP2 in the
port mapping in
the task definitio
n.

TargetDis
coveryName
and TargetDis
coveryNam
e,
ServiceNa
me,
ClusterName

Average,
Minimum,
Maximum, Sum

Count

Amazon ECS CloudWatch metrics 1283

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

Valid dimension
s: .

Amazon ECS CloudWatch metrics 1284

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

HTTPCode_
Target_3X
X_Count

The number of
HTTP response
codes with
numbers 300 to
399 generated
by the applicati
ons in these
tasks. These
tasks are the
targets. This
metric only
counts the
responses sent
to the Service
Connect proxies
by the applicati
ons in these
tasks, not
responses sent
directly.

This metric is
only available
if you have
configure
d Amazon
ECS Service
Connect and
the appProtoc
ol is HTTP or
HTTP2 in the
port mapping in
the task definitio
n.

TargetDis
coveryName
and TargetDis
coveryNam
e,
ServiceNa
me,
ClusterName

Average,
Minimum,
Maximum, Sum

Count

Amazon ECS CloudWatch metrics 1285

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

HTTPCode_
Target_4X
X_Count

The number of
HTTP response
codes with
numbers 400 to
499 generated
by the applicati
ons in these
tasks. These
tasks are the
targets. This
metric only
counts the
responses sent
to the Service
Connect proxies
by the applicati
ons in these
tasks, not
responses sent
directly.

This metric is
only available
if you have
configure
d Amazon
ECS Service
Connect and
the appProtoc
ol is HTTP or
HTTP2 in the
port mapping in
the task definitio
n.

TargetDis
coveryName
and TargetDis
coveryNam
e,
ServiceNa
me,
ClusterName

Average,
Minimum,
Maximum, Sum

Count

Amazon ECS CloudWatch metrics 1286

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

HTTPCode_
Target_5X
X_Count

The number of
HTTP response
codes with
numbers 500 to
599 generated
by the applicati
ons in these
tasks. These
tasks are the
targets. This
metric only
counts the
responses sent
to the Service
Connect proxies
by the applicati
ons in these
tasks, not
responses sent
directly.

This metric is
only available
if you have
configure
d Amazon
ECS Service
Connect and
the appProtoc
ol is HTTP or
HTTP2 in the
port mapping in
the task definitio
n.

TargetDis
coveryName
and TargetDis
coveryNam
e,
ServiceNa
me,
ClusterName

Average,
Minimum,
Maximum, Sum

Count

Amazon ECS CloudWatch metrics 1287

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

RequestCo
untPerTar
get

The average
number of
requests
received by each
target that share
the selected
Discovery
Name .

This metric is
only available
if you have
configured
Amazon ECS
Service Connect.

TargetDis
coveryName
and TargetDis
coveryNam
e,
ServiceNa
me,
ClusterName

Average Count

TargetPro
cessedByt
es

The total
number of bytes
processed by the
Service Connect
proxies.

This metric is
only available
if you have
configured
Amazon ECS
Service Connect.

TargetDis
coveryName
and TargetDis
coveryNam
e,
ServiceNa
me,
ClusterName

Average,
Minimum,
Maximum, Sum

Bytes

Amazon ECS CloudWatch metrics 1288

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

TargetRes
ponseTime

The latency of
the applicati
on request
processing. The
time elapsed,
in milliseco
nds, after the
request reached
the Service
Connect proxy in
the target task
until a response
from the target
application is
received back to
the proxy.

This metric is
only available
if you have
configured
Amazon ECS
Service Connect.

TargetDis
coveryName
and TargetDis
coveryNam
e,
ServiceNa
me,
ClusterName

Average,
Minimum,
Maximum

Milliseconds

Amazon ECS CloudWatch metrics 1289

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

ClientTLS
Negotiati
onErrorCo
unt

The total
number of
times the TLS
connection
failed. This
metric is only
used when TLS
is enabled.

This metric is
only available
if you have
configured
Amazon ECS
Service Connect.

Discovery
Name and
Discovery
Name ,
ServiceName ,
ClusterName

Average,
Minimum,
Maximum, Sum

Count

Amazon ECS CloudWatch metrics 1290

Amazon Elastic Container Service Developer Guide

Metric Description Valid Dimension Useful Statistics Unit

TargetTLS
Negotiati
onErrorCo
unt

The total
number of
times the TLS
connection
failed due to
missing client
certificates,
failed AWS
Private CA
verifications,
or failed SAN
verifications.
This metric is
only used when
TLS is enabled.

This metric is
only available
if you have
configured
Amazon ECS
Service Connect.

ServiceName ,
ClusterName ,
TargetDis
coveryName
and TargetDis
coveryName

Average,
Minimum,
Maximum, Sum

Count

Dimensions for Amazon ECS metrics

Amazon ECS metrics use the AWS/ECS namespace and provide metrics for the following
dimensions. Amazon ECS only sends metrics for resources that have tasks in the RUNNING state.
For example, if you have a cluster with one service in it but that service has no tasks in a RUNNING
state, there will be no metrics sent to CloudWatch. If you have two services and one of them has
running tasks and the other doesn't, only the metrics for the service with running tasks would be
sent.

Amazon ECS CloudWatch metrics 1291

Amazon Elastic Container Service Developer Guide

Dimension Definition

ClusterName This dimension filters the data that you
request for all resources in a specified cluster.
All Amazon ECS metrics are filtered by
ClusterName .

ServiceName This dimension filters the data that you
request for all resources in a specified service
within a specified cluster.

DiscoveryName This dimension filters the data that you
request for traffic metrics to a specified
Service Connect discovery name across all
Amazon ECS clusters.

Note that a specific port in a running container
can have multiple discovery names.

DiscoveryName, ServiceName,
ClusterName

This dimension filters the data that you
request for traffic metrics to a specified
Service Connect discovery name across tasks
that have this discovery name and that are
created by this service in this cluster.

Use this dimension to see the inbound traffic
metrics for a specific service, if you have
reused the same discovery name in multiple
services in different namespaces.

Note that a specific port in a running container
can have multiple discovery names.

TargetDiscoveryName This dimension filters the data that you
request for traffic metrics to a specified
Service Connect discovery name across all
Amazon ECS clusters.

Amazon ECS CloudWatch metrics 1292

Amazon Elastic Container Service Developer Guide

Dimension Definition

Different from DiscoveryName , these traffic
metrics only measure inbound traffic to this
DiscoveryName that come from other
Amazon ECS tasks that have a Service Connect
configuration in this namespace. This includes
tasks made by services with either a client-on
ly or client-server Service Connect configura
tion.

Note that a specific port in a running container
can have multiple discovery names.

TargetDiscoveryName, ServiceNa
me, ClusterName

This dimension filters the data that you
request for traffic metrics to a specified
Service Connect discovery name but only
counts traffic from tasks created by this
service in this cluster.

Use this dimension to see the inbound traffic
metrics that come from a specific client in
another service.

Different from DiscoveryName,
ServiceName, ClusterName , these
traffic metrics only measure inbound traffic to
this DiscoveryName that come from other
Amazon ECS tasks that have a Service Connect
configuration in this namespace. This includes
tasks made by services with either a client-on
ly or client-server Service Connect configura
tion.

Note that a specific port in a running container
can have multiple discovery names.

Amazon ECS CloudWatch metrics 1293

Amazon Elastic Container Service Developer Guide

AWS Fargate usage metrics

You can use CloudWatch usage metrics to provide visibility into your accounts usage of resources.
Use these metrics to visualize your current service usage on CloudWatch graphs and dashboards.

AWS Fargate usage metrics correspond to AWS service quotas. You can configure alarms that alert
you when your usage approaches a service quota. For more information about Fargate service
quotas, Amazon ECS endpoints and quotas in the Amazon Web Services General Reference..

AWS Fargate publishes the following metrics in the AWS/Usage namespace.

Metric Description

ResourceCount The total number of the specified resource running on your
account. The resource is defined by the dimensions associated
with the metric.

The following dimensions are used to refine the usage metrics that are published by AWS Fargate.

Dimension Description

Service The name of the AWS service containing the resource. For
AWS Fargate usage metrics, the value for this dimension is
Fargate.

Type The type of entity that is being reported. Currently, the only
valid value for AWS Fargate usage metrics is Resource.

Resource The type of resource that is running. The type of resource that
is running. Currently, the only valid value for AWS Fargate
usage metrics is vCPU which returns information about the
running instances.

Class The class of resource being tracked. The class of resource being
tracked. For AWS Fargate usage metrics with vCPU as the value
of the Resource dimension, the valid values are Standard/
OnDemand and Standard/Spot .

AWS Fargate usage metrics 1294

https://docs.aws.amazon.com/general/latest/gr/ecs-service.html

Amazon Elastic Container Service Developer Guide

You can use the Service Quotas console to visualize your usage on a graph and configure alarms
that alert you when your AWS Fargate usage approaches a service quota. For information about
how to create a CloudWatch alarm to notify you when you're close to a quota value threshold, see
Service Quotas and Amazon CloudWatch alarms in the Service Quotas User Guide

.

Amazon ECS cluster reservation metrics

Cluster reservation metrics are measured as the percentage of CPU, memory, and GPUs that are
reserved by all Amazon ECS tasks on a cluster when compared to the aggregate CPU, memory,
and GPUs that were registered for each active container instance in the cluster. Only container
instances in ACTIVE or DRAINING status will affect cluster reservation metrics. This metric is used
only on clusters with tasks or services hosted on EC2 instances. It's not supported on clusters with
tasks hosted on AWS Fargate.

 (Total CPU units reserved by tasks in cluster) x 100
Cluster CPU reservation =
 --
 (Total CPU units registered by container instances in
 cluster)

 (Total MiB of memory reserved by tasks in cluster x
 100)
Cluster memory reservation =
 --
 (Total MiB of memory registered by container instances in
 cluster)

 (Total GPUs reserved by tasks in cluster x 100)
Cluster GPU reservation =
 --
 (Total GPUs registered by container instances in cluster)

When you run a task in a cluster, Amazon ECS parses its task definition and reserves the aggregate
CPU units, MiB of memory, and GPUs that are specified in its container definitions. Each minute,
Amazon ECS calculates the number of CPU units, MiB of memory, and GPUs that are currently
reserved for each task that is running in the cluster. The total amount of CPU, memory, and GPUs
reserved for all tasks running on the cluster is calculated, and those numbers are reported to

Amazon ECS cluster reservation metrics 1295

https://docs.aws.amazon.com/servicequotas/latest/userguide/configure-cloudwatch.html

Amazon Elastic Container Service Developer Guide

CloudWatch as a percentage of the total registered resources for the cluster. If you specify a soft
limit (memoryReservation) in the task definition, it's used to calculate the amount of reserved
memory. Otherwise, the hard limit (memory) is used. The total MiB of memory reserved by tasks
in a cluster also includes temporary file system (tmpfs) volume size and sharedMemorySize if
defined in the task definition. For more information about hard and soft limits, shared memory
size, and tmpfs volume size, see Task Definition Parameters.

For example, a cluster has two active container instances registered: a c4.4xlarge instance and a
c4.large instance. The c4.4xlarge instance registers into the cluster with 16,384 CPU units and
30,158 MiB of memory. The c4.large instance registers with 2,048 CPU units and 3,768 MiB of
memory. The aggregate resources of this cluster are 18,432 CPU units and 33,926 MiB of memory.

If a task definition reserves 1,024 CPU units and 2,048 MiB of memory, and ten tasks are started
with this task definition on this cluster (and no other tasks are currently running), a total of 10,240
CPU units and 20,480 MiB of memory are reserved. This is reported to CloudWatch as 55% CPU
reservation and 60% memory reservation for the cluster.

The following illustration shows the total registered CPU units in a cluster and what their
reservation and utilization means to existing tasks and new task placement. The lower (Reserved,
used) and center (Reserved, not used) blocks represent the total CPU units that are reserved for
the existing tasks that are running on the cluster, or the CPUReservation CloudWatch metric.
The lower block represents the reserved CPU units that the running tasks are actually using on the
cluster, or the CPUUtilization CloudWatch metric. The upper block represents CPU units that
are not reserved by existing tasks; these CPU units are available for new task placement. Existing
tasks can use these unreserved CPU units as well, if their need for CPU resources increases. For
more information, see the cpu task definition parameter documentation.

Amazon ECS cluster reservation metrics 1296

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definitions

Amazon Elastic Container Service Developer Guide

Amazon ECS cluster utilization metrics

The cluster utilization metrics are available for CPU, memory, and, when there is an EBS volume
attached to your tasks, EBS filesystem utilization. These metrics are only available for clusters with
tasks or services hosted on Amazon EC2 instances. They're not supported on clusters with tasks
hosted on AWS Fargate.

Amazon ECS cluster level CPU and memory utilization metrics

The CPU and memory utilization is measured as the percentage of CPU and memory that is used
by all tasks on a cluster when compared to the aggregate CPU and memory that was registered for
each active Amazon EC2 instances registered to the cluster. Only Amazon EC2 instances in ACTIVE
or DRAINING status will affect cluster utilization metrics.

 (Total CPU units used by tasks in cluster) x 100
Cluster CPU utilization =
 --
 (Total CPU units registered by container instances in
 cluster)

Amazon ECS cluster utilization metrics 1297

Amazon Elastic Container Service Developer Guide

 (Total MiB of memory used by tasks in cluster x
 100)
Cluster memory utilization =
 --
 (Total MiB of memory registered by container instances in
 cluster)

Each minute, the Amazon ECS container agent on each Amazon EC2 instance calculates the
number of CPU units and MiB of memory that is currently being used for each task that is running
on that Amazon EC2 instance, and this information is reported back to Amazon ECS. The total
amount of CPU and memory used for all tasks running on the cluster is calculated, and those
numbers are reported to CloudWatch as a percentage of the total registered resources for the
cluster.

For example, a cluster has two active Amazon EC2 instances registered, a c4.4xlarge instance
and a c4.large instance. The c4.4xlarge instance registers into the cluster with 16,384 CPU
units and 30,158 MiB of memory. The c4.large instance registers with 2,048 CPU units and
3,768 MiB of memory. The aggregate resources of this cluster are 18,432 CPU units and 33,926
MiB of memory.

If ten tasks are running on this cluster and each task consumes 1,024 CPU units and 2,048 MiB of
memory, a total of 10,240 CPU units and 20,480 MiB of memory are used on the cluster. This is
reported to CloudWatch as 55% CPU utilization and 60% memory utilization for the cluster.

Amazon ECS cluster-level Amazon EBS filesystem utilization

The cluster level EBS filesystem utilization metric is measured as the total amount of the EBS
filesystem in use by the tasks running on the cluster, divided by the total amount of EBS filesystem
storage that was allocated for all of the tasks in the cluster.

 (Total GB of EBS filesystem used by tasks in
 cluster x 100)
Cluster EBS filesystem utilization =

 (Total GB of EBS filesystem allocated to tasks
 in cluster)

Amazon ECS cluster utilization metrics 1298

Amazon Elastic Container Service Developer Guide

Amazon ECS service utilization metrics

The service utilization metrics are available for CPU, memory, and, when there is an EBS volume
attached to your tasks, EBS filesystem utilization. The service level metrics are supported for
services with tasks hosted on both Amazon EC2 instances and Fargate.

Service level CPU and memory utilization

The CPU and memory utilization is measured as the percentage of CPU and memory that is used
by the Amazon ECS tasks that belong to a service on a cluster when compared to the CPU and
memory that is specified in the service's task definition.

When viewing these metrics in CloudWatch, you can choose different statistics:

• Average: The average utilization across all tasks in the service. This is calculated using the
formula below.

• Minimum: The utilization of the task with the lowest resource usage in the service. This
represents the percentage of CPU or memory used by the least resource-intensive task compared
to what was specified in the task definition.

• Maximum: The utilization of the task with the highest resource usage in the service. This
represents the percentage of CPU or memory used by the most resource-intensive task
compared to what was specified in the task definition.

The following formulas show how the Average statistic is calculated:

 (Total CPU units used by tasks in service) x 100
Service CPU utilization =
 --
 (Total CPU units specified in task definition) x (number of
 tasks in service)

 (Total MiB of memory used by tasks in service) x
 100
Service memory utilization =
 --
 (Total MiB of memory specified in task definition) x
 (number of tasks in service)

Amazon ECS service utilization metrics 1299

Amazon Elastic Container Service Developer Guide

Note

The formulas above apply only to the Average statistic. The Minimum and Maximum
statistics represent the individual task with the lowest and highest resource utilization,
respectively, rather than an aggregate calculation across all tasks.

Amazon ECS collects metrics every 20 seconds. Each minute, the Amazon ECS container agent
calculates the number of CPU units and MiB of memory that are currently being used for each
running task owned by the service. This information is reported back to Amazon ECS. The total
amount of CPU and memory used for all tasks owned by the service that are running on the cluster
is calculated, and those numbers are reported to CloudWatch as a percentage of the total resources
that are specified for the service in the service's task definition. The minimum and maximum values
are the smallest and largest of the 20 second metrics. The average is the aggregate of the 3 values.

If you specify a soft limit (memoryReservation), it's used to calculate the amount of reserved
memory. Otherwise, the hard limit (memory) is used. For more information about hard and soft
limits, see Task size.

For example, the task definition for a service specifies a total of 512 CPU units and 1,024 MiB of
memory (with the hard limit memory parameter) for all of its containers. The service has a desired
count of 1 running task, the service is running on a cluster with 1 c4.large container instance
(with 2,048 CPU units and 3,768 MiB of total memory), and there are no other tasks running on
the cluster. Although the task specifies 512 CPU units, because it is the only running task on a
container instance with 2,048 CPU units, it can use up to four times the specified amount (2,048 /
512). However, the specified memory of 1,024 MiB is a hard limit and it can't be exceeded, so in
this case, service memory utilization can't exceed 100%.

If the previous example used the soft limit memoryReservation instead of the hard limit memory
parameter, the service's tasks could use more than the specified 1,024 MiB of memory as needed.
In this case, the service's memory utilization could exceed 100%.

If your application has a sudden spike in memory utilization for a short amount of time, you will
not see the service memory utilization increasing because Amazon ECS collects multiple data
points every minute, and then aggregates them to one data point that is sent to CloudWatch.

If this task is performing CPU-intensive work during a period and using all 2,048 of the available
CPU units and 512 MiB of memory, the service reports 400% CPU utilization and 50% memory

Amazon ECS service utilization metrics 1300

Amazon Elastic Container Service Developer Guide

utilization. If the task is idle and using 128 CPU units and 128 MiB of memory, the service reports
25% CPU utilization and 12.5% memory utilization.

Note

In this example, the CPU utilization will only go above 100% when the CPU units are
defined at the container level. If you define CPU units at the task level, the utilization will
not go above the defined task-level limit.

Service level EBS filesystem utilization

The service level EBS filesystem utilization is measured as the total amount of the EBS filesystem in
use by the tasks that belong to the service, divided by the total amount of EBS filesystem storage
that is allocated for all tasks that belong to the service.

 (Total GB of EBS filesystem used by tasks in the
 service x 100)
Service EBS filesystem utilization =

 (Total GB of EBS filesystem allocated to tasks
 in the service)

Service RUNNING task count

You can use CloudWatch metrics to view the number of tasks in your services that are in the
RUNNING state. For example, you can set a CloudWatch alarm for this metric to alert you if the
number of running tasks in your service falls below a specified value.

Service RUNNING task count in Amazon ECS CloudWatch Container Insights

A "Number of Running Tasks" (RunningTaskCount) metric is available per cluster and per service
when you use Amazon ECS CloudWatch Container Insights. You can use Container Insights for
all new clusters created by opting in to the containerInsights account setting, on individual
clusters by turning on the cluster settings during cluster creation, or on existing clusters by using
the UpdateClusterSettings API. Metrics collected by CloudWatch Container Insights are charged as
custom metrics. For more information about CloudWatch pricing, see CloudWatch Pricing.

To view this metric, see Amazon ECS Container Insights Metrics in the Amazon CloudWatch User
Guide.

Amazon ECS service utilization metrics 1301

https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-view-metrics.html

Amazon Elastic Container Service Developer Guide

Automate responses to Amazon ECS errors using EventBridge

Using Amazon EventBridge, you can automate your AWS services and respond automatically to
system events such as application availability issues or resource changes. Events from AWS services
are delivered to EventBridge in near real time. You can write simple rules to indicate which events
are of interest to you and what automated actions to take when an event matches a rule. The
actions that can be automatically configured to include the following:

• Adding events to log groups in CloudWatch Logs

• Invoking an AWS Lambda function

• Invoking Amazon EC2 Run Command

• Relaying the event to Amazon Kinesis Data Streams

• Activating an AWS Step Functions state machine

• Notifying an Amazon SNS topic or an Amazon Simple Queue Service (Amazon SQS) queue

For more information, see Getting started with Amazon EventBridge in the Amazon EventBridge
User Guide.

You can use Amazon ECS events for EventBridge to receive near real-time notifications regarding
the current state of your Amazon ECS clusters. If your tasks are using the EC2 launch type, you can
see the state of both the container instances and the current state of all tasks running on those
container instances. If your tasks are using the Fargate launch type, you can see the state of the
container instances.

Using EventBridge, you can build custom schedulers on top of Amazon ECS that are responsible
for orchestrating tasks across clusters and monitoring the state of clusters in near real time. You
can eliminate scheduling and monitoring code that continuously polls the Amazon ECS service
for status changes and instead handle Amazon ECS state changes asynchronously using any
EventBridge target. Targets might include AWS Lambda, Amazon Simple Queue Service, Amazon
Simple Notification Service, or Amazon Kinesis Data Streams.

An Amazon ECS event stream ensures that every event is delivered at least one time. If duplicate
events are sent, the event provides enough information to identify duplicates. For more
information, see Handling Amazon ECS events.

Events are relatively ordered, so that you can easily tell when an event occurred in relation to other
events.

Automate responses to Amazon ECS errors using EventBridge 1302

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html

Amazon Elastic Container Service Developer Guide

Topics

• Amazon ECS events

• Handling Amazon ECS events

Amazon ECS events

Amazon ECS tracks the state of each of your tasks and services. If the state of a task or service
changes, an event is generated and is sent to Amazon EventBridge. These events are classified
as task state change events and service action events. These events and their possible causes are
described in greater detail in the following sections.

Amazon ECS generates and sends the following types of events to EventBridge:

• Container instance state change

• Task state change

• Deployment state change

• Service action

Note

Amazon ECS might add other event types, sources, and details in the future. If you are de-
serializing event JSON data in code, make sure that your application is prepared to handle
unknown properties to avoid issues if and when these additional properties are added.

In some cases, multiple events are generated for the same activity. For example, when a task
is started on a container instance, a task state change event is generated for the new task.
A container instance state change event is generated to account for the change in available
resources, such as CPU, memory, and available ports, on the container instance. Likewise, if a
container instance is terminated, events are generated for the container instance, the container
agent connection status, and every task that was running on the container instance.

Container state change and task state change events contain two version fields: one in the
main body of the event, and one in the detail object of the event. The following describes the
differences between these two fields:

Amazon ECS events 1303

Amazon Elastic Container Service Developer Guide

• The version field in the main body of the event is set to 0 on all events. For more information
about EventBridge parameters, see AWS service event metadata in the Amazon EventBridge User
Guide.

• The version field in the detail object of the event describes the version of the associated
resource. Each time a resource changes state, this version is incremented. Because events can be
sent multiple times, this field allows you to identify duplicate events. Duplicate events have the
same version in the detail object. If you are replicating your Amazon ECS container instance
and task state with EventBridge, you can compare the version of a resource reported by the
Amazon ECS APIs with the version reported in EventBridge for the resource (inside the detail
object) to verify that the version in your event stream is current.

Service action events only contain the version field in the main body.

Service action events specify the service in 2 different fields:

• For events generated by create-service, the service is in the serviceName field.

• For events generated by update-service, the service is in the service field.

If you use automated tooling for service events, you need to code for both fields.

For information about how to create a rule for service action events, see Amazon ECS service action
events.

For additional information about how to integrate Amazon ECS and EventBridge, see Integrating
Amazon EventBridge and Amazon ECS.

Amazon ECS container instance state change events

The following scenarios cause container instance state change events:

You call the StartTask, RunTask, or StopTask API operations, either directly or with the AWS
Management Console or SDKs.

Placing or stopping tasks on a container instance modifies the available resources on the
container instance, such as CPU, memory, and available ports.

The Amazon ECS service scheduler starts or stops a task.

Placing or stopping tasks on a container instance modifies the available resources on the
container instance, such as CPU, memory, and available ports.

Amazon ECS events 1304

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events-structure.html
https://aws.amazon.com/blogs/compute/integrating-amazon-eventbridge-and-amazon-ecs/
https://aws.amazon.com/blogs/compute/integrating-amazon-eventbridge-and-amazon-ecs/

Amazon Elastic Container Service Developer Guide

The Amazon ECS container agent calls the SubmitTaskStateChange API operation with a
STOPPED status for a task with a desired status of RUNNING.

The Amazon ECS container agent monitors the state of tasks on your container instances, and it
reports any state changes. If a task that is supposed to be RUNNING is transitioned to STOPPED,
the agent releases the resources that were allocated to the stopped task, such as CPU, memory,
and available ports.

You deregister the container instance with the DeregisterContainerInstance API operation,
either directly or with the AWS Management Console or SDKs.

Deregistering a container instance changes the status of the container instance and the
connection status of the Amazon ECS container agent.

A task was stopped when an EC2 instance was stopped.

When you stop a container instance, the tasks that are running on it are transitioned to the
STOPPED status.

The Amazon ECS container agent registers a container instance for the first time.

The first time the Amazon ECS container agent registers a container instance (at launch or when
first run manually), this creates a state change event for the instance.

The Amazon ECS container agent connects or disconnects from Amazon ECS.

When the Amazon ECS container agent connects or disconnects from the Amazon ECS backend,
it changes the agentConnected status of the container instance.

Note

The Amazon ECS container agent disconnects and reconnects several times per hour as
a part of its normal operation, so agent connection events should be expected. These
events are not an indication that there is an issue with the container agent or your
container instance.

You upgrade the Amazon ECS container agent on an instance.

The container instance detail contains an object for the container agent version. If you upgrade
the agent, this version information changes and generates an event.

Amazon ECS events 1305

Amazon Elastic Container Service Developer Guide

Example Container instance state change event

Container instance state change events are delivered in the following format. The detail section
below resembles the ContainerInstance object that is returned from a DescribeContainerInstances
API operation in the Amazon Elastic Container Service API Reference. For more information about
EventBridge parameters, see AWS service event metadata in the Amazon EventBridge User Guide.

{
 "version": "0",
 "id": "8952ba83-7be2-4ab5-9c32-6687532d15a2",
 "detail-type": "ECS Container Instance State Change",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2016-12-06T16:41:06Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:ecs:us-east-1:111122223333:container-instance/
b54a2a04-046f-4331-9d74-3f6d7f6ca315"
],
 "detail": {
 "agentConnected": true,
 "attributes": [
 {
 "name": "com.amazonaws.ecs.capability.logging-driver.syslog"
 },
 {
 "name": "com.amazonaws.ecs.capability.task-iam-role-network-host"
 },
 {
 "name": "com.amazonaws.ecs.capability.logging-driver.awslogs"
 },
 {
 "name": "com.amazonaws.ecs.capability.logging-driver.json-file"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.17"
 },
 {
 "name": "com.amazonaws.ecs.capability.privileged-container"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.18"
 },

Amazon ECS events 1306

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ContainerInstance.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeContainerInstances.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events-structure.html

Amazon Elastic Container Service Developer Guide

 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.19"
 },
 {
 "name": "com.amazonaws.ecs.capability.ecr-auth"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.20"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.21"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.22"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.23"
 },
 {
 "name": "com.amazonaws.ecs.capability.task-iam-role"
 }
],
 "clusterArn": "arn:aws:ecs:us-east-1:111122223333:cluster/default",
 "containerInstanceArn": "arn:aws:ecs:us-east-1:111122223333:container-instance/
b54a2a04-046f-4331-9d74-3f6d7f6ca315",
 "ec2InstanceId": "i-f3a8506b",
 "registeredResources": [
 {
 "name": "CPU",
 "type": "INTEGER",
 "integerValue": 2048
 },
 {
 "name": "MEMORY",
 "type": "INTEGER",
 "integerValue": 3767
 },
 {
 "name": "PORTS",
 "type": "STRINGSET",
 "stringSetValue": [
 "22",
 "2376",
 "2375",

Amazon ECS events 1307

Amazon Elastic Container Service Developer Guide

 "51678",
 "51679"
]
 },
 {
 "name": "PORTS_UDP",
 "type": "STRINGSET",
 "stringSetValue": []
 }
],
 "remainingResources": [
 {
 "name": "CPU",
 "type": "INTEGER",
 "integerValue": 1988
 },
 {
 "name": "MEMORY",
 "type": "INTEGER",
 "integerValue": 767
 },
 {
 "name": "PORTS",
 "type": "STRINGSET",
 "stringSetValue": [
 "22",
 "2376",
 "2375",
 "51678",
 "51679"
]
 },
 {
 "name": "PORTS_UDP",
 "type": "STRINGSET",
 "stringSetValue": []
 }
],
 "status": "ACTIVE",
 "version": 14801,
 "versionInfo": {
 "agentHash": "aebcbca",
 "agentVersion": "1.13.0",
 "dockerVersion": "DockerVersion: 1.11.2"

Amazon ECS events 1308

Amazon Elastic Container Service Developer Guide

 },
 "updatedAt": "2016-12-06T16:41:06.991Z"
 }
}

Amazon ECS task state change events

The following scenarios cause task state change events:

You call the StartTask, RunTask, or StopTask API operations, either directly or with the AWS
Management Console, AWS CLI, or SDKs.

Starting or stopping tasks creates new task resources or modifies the state of existing task
resources.

The Amazon ECS service scheduler starts or stops a task.

Starting or stopping tasks creates new task resources or modifies the state of existing task
resources.

The Amazon ECS container agent calls the SubmitTaskStateChange API operation.

For the Amazon EC2 launch type, the Amazon ECS container agent monitors the state of
your tasks on your container instances. The Amazon ECS container agent reports any state
changes. State changes might include changes from PENDING to RUNNING or from RUNNING to
STOPPED.

You force deregistration of the underlying container instance with the
DeregisterContainerInstance API operation and the force flag, either directly or with the
AWS Management Console or SDKs.

Deregistering a container instance changes the status of the container instance and the
connection status of the Amazon ECS container agent. If tasks are running on the container
instance, the force flag must be set to allow deregistration. This stops all tasks on the
instance.

The underlying container instance is stopped or terminated.

When you stop or terminate a container instance, the tasks that are running on it are
transitioned to the STOPPED status.

Amazon ECS events 1309

Amazon Elastic Container Service Developer Guide

A container in the task changes state.

The Amazon ECS container agent monitors the state of containers within tasks. For example, if a
container that is running within a task stops, this container state change generates an event.

A task using the Fargate Spot capacity provider receives a termination notice.

When a task is using the FARGATE_SPOT capacity provider and is stopped due to a Spot
interruption, a task state change event is generated.

Example Task state change event

Task state change events are delivered in the following format. Note the following about the fields:

• The health status of the event is not available in the task state change event. If you need the task
health status, you can run describe-tasks.

• When your containers use an image hosted with Amazon ECR, the imageDigest field is
returned.

• The values for the createdAt, connectivityAt, pullStartedAt, startedAt,
pullStoppedAt, and updatedAt fields are ISO string timestamps.

• The detail-type value is "ECS Task State Change".

• When the event is generated for a stopped task, the stoppedReason and stoppedCode fields
provide additional information about why the task stopped (for example, "User initiated").

For more information about EventBridge parameters, see AWS service event metadata in the
Amazon EventBridge Events Reference.

For information about how to configure an Amazon EventBridge event rule that only captures task
events where the task has stopped running because one of its essential containers has terminated,
see Sending Amazon Simple Notification Service alerts for Amazon ECS task stopped events

{
 "version": "0",
 "id": "105f6bb1-4da6-c630-4965-35383018cbca",
 "detail-type": "ECS Task State Change",
 "source": "aws.ecs",
 "account": "123456789012",
 "time": "2025-05-06T11:02:34Z",
 "region": "us-east-1",
 "resources": [

Amazon ECS events 1310

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeTasks.html
https://docs.aws.amazon.com/eventbridge/latest/ref/events-structure.html

Amazon Elastic Container Service Developer Guide

 "arn:aws:ecs:us-east-1:123456789012:task/example-cluster/a1173316d40a45dea9"
],
 "detail": {
 "attachments": [
 {
 "id": "fe3a9a46-6a47-40ee-afd9-7952ae90a75a",
 "type": "eni",
 "status": "ATTACHED",
 "details": [
 {
 "name": "subnetId",
 "value": "subnet-0d0eab1bb38d5ca64"
 },
 {
 "name": "networkInterfaceId",
 "value": "eni-0103a2f01bad57d71"
 },
 {
 "name": "macAddress",
 "value": "0e:50:d1:c1:77:81"
 },
 {
 "name": "privateDnsName",
 "value": "ip-10-0-1-163.ec2.internal"
 },
 {
 "name": "privateIPv4Address",
 "value": "10.0.1.163"
 }
]
 }
],
 "attributes": [
 {
 "name": "ecs.cpu-architecture",
 "value": "x86_64"
 }
],
 "availabilityZone": "us-east-1b",
 "capacityProviderName": "FARGATE",
 "clusterArn": "arn:aws:ecs:us-east-1:123456789012:cluster/example-cluster",
 "connectivity": "CONNECTED",
 "connectivityAt": "2025-05-06T11:02:17.19Z",
 "containers": [

Amazon ECS events 1311

Amazon Elastic Container Service Developer Guide

 {
 "containerArn": "arn:aws:ecs:us-east-1:123456789012:container/example-
cluster/a1173316d40a45dea9/a0a99b87-baa8-4bf6-b9f1-a9a95917a635",
 "lastStatus": "RUNNING",
 "name": "web",
 "image": "nginx",
 "imageDigest":
 "sha256:c15da6c91de8d2f436196f3a768483ad32c258ed4e1beb3d367a27ed67253e66",
 "runtimeId": "a1173316d40a45dea9-0265927825",
 "taskArn": "arn:aws:ecs:us-east-1:123456789012:task/example-cluster/
a1173316d40a45dea9",
 "networkInterfaces": [
 {
 "attachmentId": "fe3a9a46-6a47-40ee-afd9-7952ae90a75a",
 "privateIpv4Address": "10.0.1.163"
 }
],
 "cpu": "99",
 "memory": "100"
 },
 {
 "containerArn": "arn:aws:ecs:us-east-1:123456789012:container/example-
cluster/a1173316d40a45dea9/a2010e2d-ba7c-4135-8b79-e0290ff3cd8c",
 "lastStatus": "RUNNING",
 "name": "aws-guardduty-agent-nm40lC",
 "imageDigest":
 "sha256:bf9197abdf853607e5fa392b4f97ccdd6ca56dd179be3ce8849e552d96582ac8",
 "runtimeId": "a1173316d40a45dea9-2098416933",
 "taskArn": "arn:aws:ecs:us-east-1:123456789012:task/example-cluster/
a1173316d40a45dea9",
 "networkInterfaces": [
 {
 "attachmentId": "fe3a9a46-6a47-40ee-afd9-7952ae90a75a",
 "privateIpv4Address": "10.0.1.163"
 }
],
 "cpu": "null"
 },
 {
 "containerArn": "arn:aws:ecs:us-east-1:123456789012:container/example-
cluster/a1173316d40a45dea9/dccf0ca2-d929-471f-a5c3-98006fd4379e",
 "lastStatus": "RUNNING",
 "name": "aws-otel-collector",
 "image": "public.ecr.aws/aws-observability/aws-otel-collector:v0.32.0",

Amazon ECS events 1312

Amazon Elastic Container Service Developer Guide

 "imageDigest":
 "sha256:7a1b3560655071bcacd66902c20ebe9a69470d5691fe3bd36baace7c2f3c4640",
 "runtimeId": "a1173316d40a45dea9-4027662657",
 "taskArn": "arn:aws:ecs:us-east-1:123456789012:task/example-cluster/
a1173316d40a45dea9",
 "networkInterfaces": [
 {
 "attachmentId": "fe3a9a46-6a47-40ee-afd9-7952ae90a75a",
 "privateIpv4Address": "10.0.1.163"
 }
],
 "cpu": "0"
 }
],
 "cpu": "256",
 "createdAt": "2025-05-06T11:02:13.877Z",
 "desiredStatus": "RUNNING",
 "enableExecuteCommand": false,
 "ephemeralStorage": {
 "sizeInGiB": 20
 },
 "group": "family:webserver",
 "launchType": "FARGATE",
 "lastStatus": "RUNNING",
 "memory": "512",
 "overrides": {
 "containerOverrides": [
 {
 "name": "web"
 },
 {
 "environment": [
 {
 "name": "CLUSTER_NAME",
 "value": "example-cluster"
 },
 {
 "name": "REGION",
 "value": "us-east-1"
 },
 {
 "name": "HOST_PROC",
 "value": "/host_proc"
 },

Amazon ECS events 1313

Amazon Elastic Container Service Developer Guide

 {
 "name": "AGENT_RUNTIME_ENVIRONMENT",
 "value": "ecsfargate"
 },
 {
 "name": "STAGE",
 "value": "prod"
 }
],
 "memory": 128,
 "name": "aws-guardduty-agent-nm40lC"
 },
 {
 "name": "aws-otel-collector"
 }
]
 },
 "platformVersion": "1.4.0",
 "pullStartedAt": "2025-05-06T11:02:24.162Z",
 "pullStoppedAt": "2025-05-06T11:02:33.493Z",
 "startedAt": "2025-05-06T11:02:34.325Z",
 "taskArn": "arn:aws:ecs:us-east-1:123456789012:task/example-cluster/
a1173316d40a45dea9",
 "taskDefinitionArn": "arn:aws:ecs:us-east-1:123456789012:task-definition/
webserver:5",
 "updatedAt": "2025-05-06T11:02:34.325Z",
 "version": 3
 }
}

Example

The following is an example of a task state change event for the EC2 launch type.

{
 "version": "0",
 "id": "a65cf262-f104-0dd5-ceda-4b09ba71a441",
 "detail-type": "ECS Task State Change",
 "source": "aws.ecs",
 "account": "123456789012",
 "time": "2025-05-12T13:12:06Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:ecs:us-east-1:123456789012:task/example/c1ffa94f19a540ed8d9f7e1d2a5d"

Amazon ECS events 1314

Amazon Elastic Container Service Developer Guide

],
 "detail": {
 "attachments": [
 {
 "id": "52333e3b-b812-41a8-b057-9ed184bbe5e1",
 "type": "eni",
 "status": "ATTACHED",
 "details": [
 {
 "name": "subnetId",
 "value": "subnet-0d0eab1bb38d5ca64"
 },
 {
 "name": "networkInterfaceId",
 "value": "eni-0ea90f746500773a4"
 },
 {
 "name": "macAddress",
 "value": "0e:d5:9b:ce:49:fb"
 },
 {
 "name": "privateDnsName",
 "value": "ip-10-0-1-37.ec2.internal"
 },
 {
 "name": "privateIPv4Address",
 "value": "10.0.1.37"
 }
]
 }
],
 "attributes": [
 {
 "name": "ecs.cpu-architecture",
 "value": "x86_64"
 }
],
 "availabilityZone": "us-east-1b",
 "capacityProviderName": "Infra-ECS-Cluster-example-fa84e0cc-
AsgCapacityProvider-OseQJU9pizmp",
 "clusterArn": "arn:aws:ecs:us-east-1:123456789012:cluster/example",
 "connectivity": "CONNECTED",
 "connectivityAt": "2025-05-12T13:11:44.98Z",

Amazon ECS events 1315

Amazon Elastic Container Service Developer Guide

 "containerInstanceArn": "arn:aws:ecs:us-east-1:123456789012:container-instance/
example/d1d84798400f49f3b21cb61610c1e",
 "containers": [
 {
 "containerArn": "arn:aws:ecs:us-east-1:123456789012:container/example/
c1ffa94f19a540ed8d9f7e1d2a5d3626/197d0994-5367-4a6d-9f9a-f075e4a6",
 "lastStatus": "RUNNING",
 "name": "aws-otel-collector",
 "image": "public.ecr.aws/aws-observability/aws-otel-collector:v0.32.0",
 "imageDigest":
 "sha256:7a1b3560655071bcacd66902c20ebe9a69470d5691fe3bd36baace7c2f3c4640",
 "runtimeId":
 "8e926f0ccd8fe2b459926f49584ba6d33a3d9f61398dbabe944ee6a13a8ff3a1",
 "taskArn": "arn:aws:ecs:us-east-1:123456789012:task/example/
c1ffa94f19a540ed8d9f7e1d2a5d",
 "networkInterfaces": [
 {
 "attachmentId": "52333e3b-b812-41a8-b057-9ed184bbe5e1",
 "privateIpv4Address": "10.0.1.37"
 }
],
 "cpu": "0"
 },
 {
 "containerArn": "arn:aws:ecs:us-east-1:123456789012:container/example/
c1ffa94f19a540ed8d9f7e1d2a5d3626/cab39ef0-9c50-459d-844b-b9d51d73d",
 "lastStatus": "RUNNING",
 "name": "web",
 "image": "nginx",
 "imageDigest":
 "sha256:c15da6c91de8d2f436196f3a768483ad32c258ed4e1beb3d367a27ed67253e66",
 "runtimeId":
 "9f1c73f0094f051541d9e5c2ab1e172d83c4eb5171bcc857c4504b02770ff3b8",
 "taskArn": "arn:aws:ecs:us-east-1:123456789012:task/example/
c1ffa94f19a540ed8d9f7e1d2a5d",
 "networkInterfaces": [
 {
 "attachmentId": "52333e3b-b812-41a8-b057-9ed184bbe5e1",
 "privateIpv4Address": "10.0.1.37"
 }
],
 "cpu": "99",
 "memory": "100"
 }

Amazon ECS events 1316

Amazon Elastic Container Service Developer Guide

],
 "cpu": "256",
 "createdAt": "2025-05-12T13:11:44.98Z",
 "desiredStatus": "RUNNING",
 "enableExecuteCommand": false,
 "group": "family:webserver",
 "launchType": "EC2",
 "lastStatus": "RUNNING",
 "memory": "512",
 "overrides": {
 "containerOverrides": [
 {
 "name": "aws-otel-collector"
 },
 {
 "name": "web"
 }
]
 },
 "pullStartedAt": "2025-05-12T13:11:59.491Z",
 "pullStoppedAt": "2025-05-12T13:12:05.896Z",
 "startedAt": "2025-05-12T13:12:06.053Z",
 "taskArn": "arn:aws:ecs:us-east-1:123456789012:task/example/
c1ffa94f19a540ed8d9f7e1d2a5d",
 "taskDefinitionArn": "arn:aws:ecs:us-east-1:123456789012:task-definition/
webserver",
 "updatedAt": "2025-05-12T13:12:06.053Z",
 "version": 4
 }
}

Amazon ECS service action events

Amazon ECS sends service action events with the detail type ECS Service Action. Unlike the
container instance and task state change events, the service action events do not include a version
number in the details response field. The following is an event pattern that is used to create an
EventBridge rule for Amazon ECS service action events. For more information, see Getting started
with EventBridge in the Amazon EventBridge User Guide.

{
 "source": [
 "aws.ecs"

Amazon ECS events 1317

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html

Amazon Elastic Container Service Developer Guide

],
 "detail-type": [
 "ECS Service Action"
]
}

Amazon ECS sends events with INFO, WARN, and ERROR event types. The following are the service
action events.

Service action events with INFO event type

SERVICE_STEADY_STATE

The service is healthy and at the desired number of tasks, thus reaching a steady state. The
service scheduler reports the status periodically, so you might receive this message multiple
times.

TASKSET_STEADY_STATE

The task set is healthy and at the desired number of tasks, thus reaching a steady state.

CAPACITY_PROVIDER_STEADY_STATE

A capacity provider associated with a service reaches a steady state.

SERVICE_DESIRED_COUNT_UPDATED

When the service scheduler updates the computed desired count for a service or task set. This
event is not sent when the desired count is manually updated by a user.

TASKS_STOPPED

The service has stopped the running task.

SERVICE_DEPLOYMENT_IN_PROGRESS

A service deployment is in progress. The service deployment can be either a rollback, or a new
service revision.

SERVICE_DEPLOYMENT_COMPLETED

A service deployment is in the steady state and is complete. The service deployment can be
either a rollback, or to deploy an updated service revision.

Amazon ECS events 1318

Amazon Elastic Container Service Developer Guide

Service action events with WARN event type

SERVICE_TASK_START_IMPAIRED

The service is unable to consistently start tasks successfully.

SERVICE_DISCOVERY_INSTANCE_UNHEALTHY

A service using service discovery contains an unhealthy task. The service scheduler detects that
a task within a service registry is unhealthy.

VPC_LATTICE_TARGET_UNHEALTHY

The service using VPC Lattice has detected one of the targets for the VPC Lattice is unhealthy.

Service action events with ERROR event type

SERVICE_DAEMON_PLACEMENT_CONSTRAINT_VIOLATED

A task in a service using the DAEMON service scheduler strategy no longer meets the placement
constraint strategy for the service.

ECS_OPERATION_THROTTLED

The service scheduler has been throttled due to the Amazon ECS API throttle limits.

SERVICE_DISCOVERY_OPERATION_THROTTLED

The service scheduler has been throttled due to the AWS Cloud Map API throttle limits. This can
occur on services configured to use service discovery.

SERVICE_TASK_PLACEMENT_FAILURE

The service scheduler is unable to place a task. The cause will be described in the reason field.

A common cause for this service event being generated is because of a lack of resources in the
cluster to place the task. For example, not enough CPU or memory capacity on the available
container instances or no container instances being available. Another common cause is
when the Amazon ECS container agent is disconnected on the container instance, causing the
scheduler to be unable to place the task.

SERVICE_TASK_CONFIGURATION_FAILURE

The service scheduler is unable to place a task due to a configuration error. The cause will be
described in the reason field.

Amazon ECS events 1319

Amazon Elastic Container Service Developer Guide

A common cause of this service event being generated is because tags were being applied to
the service but the user or role had not opted in to the new Amazon Resource Name (ARN)
format in the Region. For more information, see Amazon Resource Names (ARNs) and IDs.
Another common cause is that Amazon ECS was unable to assume the task IAM role provided.

SERVICE_HEALTH_UNKNOWN

The service was unable to describe the health data for tasks.

SERVICE_DEPLOYMENT_FAILED

A service deployment did not reach the steady. This happens when a CloudWatch is triggered or
the circuit breaker detects a service deployment failure.

Example Service steady state event

Service steady state events are delivered in the following format. For more information about
EventBridge parameters, see Events in EventBridge in the Amazon EventBridge User Guide.

{
 "version": "0",
 "id": "af3c496d-f4a8-65d1-70f4-a69d52e9b584",
 "detail-type": "ECS Service Action",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2019-11-19T19:27:22Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {
 "eventType": "INFO",
 "eventName": "SERVICE_STEADY_STATE",
 "clusterArn": "arn:aws:ecs:us-west-2:111122223333:cluster/default",
 "createdAt": "2019-11-19T19:27:22.695Z"
 }
}

Example Capacity provider steady state event

Capacity provider steady state events are delivered in the following format.

{

Amazon ECS events 1320

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html

Amazon Elastic Container Service Developer Guide

 "version": "0",
 "id": "b9baa007-2f33-0eb1-5760-0d02a572d81f",
 "detail-type": "ECS Service Action",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2019-11-19T19:37:00Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {
 "eventType": "INFO",
 "eventName": "CAPACITY_PROVIDER_STEADY_STATE",
 "clusterArn": "arn:aws:ecs:us-west-2:111122223333:cluster/default",
 "capacityProviderArns": [
 "arn:aws:ecs:us-west-2:111122223333:capacity-provider/ASG-tutorial-
capacity-provider"
],
 "createdAt": "2019-11-19T19:37:00.807Z"
 }
}

Example Service task start impaired event

Service task start impaired events are delivered in the following format.

{
 "version": "0",
 "id": "57c9506e-9d21-294c-d2fe-e8738da7e67d",
 "detail-type": "ECS Service Action",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2019-11-19T19:55:38Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {
 "eventType": "WARN",
 "eventName": "SERVICE_TASK_START_IMPAIRED",
 "clusterArn": "arn:aws:ecs:us-west-2:111122223333:cluster/default",
 "createdAt": "2019-11-19T19:55:38.725Z"
 }

Amazon ECS events 1321

Amazon Elastic Container Service Developer Guide

}

Example Service task placement failure event

Service task placement failure events are delivered in the following format. For more information,
see Events in EventBridge in the Amazon EventBridge User Guide.

In the following example, the task was attempting to use the FARGATE_SPOT capacity provider but
the service scheduler was unable to acquire any Fargate Spot capacity.

{
 "version": "0",
 "id": "ddca6449-b258-46c0-8653-e0e3a6d0468b",
 "detail-type": "ECS Service Action",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2019-11-19T19:55:38Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {
 "eventType": "ERROR",
 "eventName": "SERVICE_TASK_PLACEMENT_FAILURE",
 "clusterArn": "arn:aws:ecs:us-west-2:111122223333:cluster/default",
 "capacityProviderArns": [
 "arn:aws:ecs:us-west-2:111122223333:capacity-provider/FARGATE_SPOT"
],
 "reason": "RESOURCE:FARGATE",
 "createdAt": "2019-11-06T19:09:33.087Z"
 }
}

In the following example for the EC2 launch type, the task was attempted to launch on the
Container Instance 2dd1b186f39845a584488d2ef155c131 but the service scheduler was unable
to place the task because of insufficient CPU.

{
 "version": "0",
 "id": "ddca6449-b258-46c0-8653-e0e3a6d0468b",
 "detail-type": "ECS Service Action",
 "source": "aws.ecs",

Amazon ECS events 1322

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html

Amazon Elastic Container Service Developer Guide

 "account": "111122223333",
 "time": "2019-11-19T19:55:38Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {
 "eventType": "ERROR",
 "eventName": "SERVICE_TASK_PLACEMENT_FAILURE",
 "clusterArn": "arn:aws:ecs:us-west-2:111122223333:cluster/default",
 "containerInstanceArns": [
 "arn:aws:ecs:us-west-2:111122223333:container-instance/
default/2dd1b186f39845a584488d2ef155c131"
],
 "reason": "RESOURCE:CPU",
 "createdAt": "2019-11-06T19:09:33.087Z"
 }
}

Amazon ECS service deployment state change events

Amazon ECS sends service deployment change state events with the detail type ECS Deployment
State Change. The following is an event pattern that is used to create an EventBridge rule for
Amazon ECS service deployment state change events. For more information about creating an
EventBridge rule, see Getting started with Amazon EventBridge in the Amazon EventBridge User
Guide.

{
 "source": [
 "aws.ecs"
],
 "detail-type": [
 "ECS Deployment State Change"
]
}

Amazon ECS sends events with INFO and ERROR event types. For more information, see Amazon
ECS service action events

The following are the service deployment state change events.

Amazon ECS events 1323

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html

Amazon Elastic Container Service Developer Guide

SERVICE_DEPLOYMENT_IN_PROGRESS

The service deployment is in progress. This event is sent for both initial deployments and
rollback deployments.

SERVICE_DEPLOYMENT_COMPLETED

The service deployment has completed. This event is sent once a service reaches a steady state
after a deployment.

SERVICE_DEPLOYMENT_FAILED

The service deployment has failed. This event is sent for services with deployment circuit
breaker logic turned on.

Example service deployment in progress event

Service deployment in progress events are delivered when both an initial and a rollback
deployment is started. The difference between the two is in the reason field. For more
information about EventBridge parameters, see AWS service event metadata; in the Amazon
EventBridge User Guide.

The following shows an example output for an initial deployment starting.

{
 "version": "0",
 "id": "ddca6449-b258-46c0-8653-e0e3a6EXAMPLE",
 "detail-type": "ECS Deployment State Change",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2020-05-23T12:31:14Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {
 "eventType": "INFO",
 "eventName": "SERVICE_DEPLOYMENT_IN_PROGRESS",
 "deploymentId": "ecs-svc/123",
 "updatedAt": "2020-05-23T11:11:11Z",
 "reason": "ECS deployment deploymentId in progress."
 }

Amazon ECS events 1324

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events-structure.html

Amazon Elastic Container Service Developer Guide

}

The following shows an example output for a rollback deployment starting. The reason field
provides the ID of the deployment the service is rolling back to.

{
 "version": "0",
 "id": "ddca6449-b258-46c0-8653-e0e3aEXAMPLE",
 "detail-type": "ECS Deployment State Change",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2020-05-23T12:31:14Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {
 "eventType": "INFO",
 "eventName": "SERVICE_DEPLOYMENT_IN_PROGRESS",
 "deploymentId": "ecs-svc/123",
 "updatedAt": "2020-05-23T11:11:11Z",
 "reason": "ECS deployment circuit breaker: rolling back to
 deploymentId deploymentID."
 }
}

Example service deployment completed event

Service deployment completed state events are delivered in the following format. For more
information, see Deploy Amazon ECS services by replacing tasks.

{
 "version": "0",
 "id": "ddca6449-b258-46c0-8653-e0e3aEXAMPLE",
 "detail-type": "ECS Deployment State Change",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2020-05-23T12:31:14Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {

Amazon ECS events 1325

Amazon Elastic Container Service Developer Guide

 "eventType": "INFO",
 "eventName": "SERVICE_DEPLOYMENT_COMPLETED",
 "deploymentId": "ecs-svc/123",
 "updatedAt": "2020-05-23T11:11:11Z",
 "reason": "ECS deployment deploymentID completed."
 }
}

Example service deployment failed event

Service deployment failed state events are delivered in the following format. A service deployment
failed state event will only be sent for services that have deployment circuit breaker logic turned
on. For more information, see Deploy Amazon ECS services by replacing tasks.

{
 "version": "0",
 "id": "ddca6449-b258-46c0-8653-e0e3aEXAMPLE",
 "detail-type": "ECS Deployment State Change",
 "source": "aws.ecs",
 "account": "111122223333",
 "time": "2020-05-23T12:31:14Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:ecs:us-west-2:111122223333:service/default/servicetest"
],
 "detail": {
 "eventType": "ERROR",
 "eventName": "SERVICE_DEPLOYMENT_FAILED",
 "deploymentId": "ecs-svc/123",
 "updatedAt": "2020-05-23T11:11:11Z",
 "reason": "ECS deployment circuit breaker: task failed to start."
 }
}

Handling Amazon ECS events

Amazon ECS sends events on an at least once basis. This means you might receive multiple copies
of a given event. Additionally, events may not be delivered to your event listeners in the order in
which the events occurred.

To order of events properly, the detail section of each event contains a version property. Each
time a resource changes state, this version is incremented. Duplicate events have the same

Handling events 1326

Amazon Elastic Container Service Developer Guide

version in the detail object. If you are replicating your Amazon ECS container instance and
task state with EventBridge, you can compare the version of a resource reported by the Amazon
ECS APIs with the version reported in EventBridge for the resource to verify that the version in
your event stream is current. Events with a higher version property number should be treated as
occurring later than events with lower version numbers.

Example: Handling events in an AWS Lambda function

The following example shows a Lambda function written in Python 3.9 that captures both task and
container instance state change events and saves them to one of two Amazon DynamoDB tables:

• ECSCtrInstanceState – Stores the latest state for a container instance. The table ID is the
containerInstanceArn value of the container instance.

• ECSTaskState – Stores the latest state for a task. The table ID is the taskArn value of the task.

import json
import boto3

def lambda_handler(event, context):
 id_name = ""
 new_record = {}

 # For debugging so you can see raw event format.
 print('Here is the event:')
 print((json.dumps(event)))

 if event["source"] != "aws.ecs":
 raise ValueError("Function only supports input from events with a source type
 of: aws.ecs")

 # Switch on task/container events.
 table_name = ""
 if event["detail-type"] == "ECS Task State Change":
 table_name = "ECSTaskState"
 id_name = "taskArn"
 event_id = event["detail"]["taskArn"]
 elif event["detail-type"] == "ECS Container Instance State Change":
 table_name = "ECSCtrInstanceState"
 id_name = "containerInstanceArn"
 event_id = event["detail"]["containerInstanceArn"]
 else:

Handling events 1327

Amazon Elastic Container Service Developer Guide

 raise ValueError("detail-type for event is not a supported type. Exiting
 without saving event.")

 new_record["cw_version"] = event["version"]
 new_record.update(event["detail"])

 # "status" is a reserved word in DDB, but it appears in containerPort
 # state change messages.
 if "status" in event:
 new_record["current_status"] = event["status"]
 new_record.pop("status")

 # Look first to see if you have received a newer version of an event ID.
 # If the version is OLDER than what you have on file, do not process it.
 # Otherwise, update the associated record with this latest information.
 print("Looking for recent event with same ID...")
 dynamodb = boto3.resource("dynamodb", region_name="us-east-1")
 table = dynamodb.Table(table_name)
 saved_event = table.get_item(
 Key={
 id_name : event_id
 }
)
 if "Item" in saved_event:
 # Compare events and reconcile.
 print(("EXISTING EVENT DETECTED: Id " + event_id + " - reconciling"))
 if saved_event["Item"]["version"] < event["detail"]["version"]:
 print("Received event is a more recent version than the stored event -
 updating")
 table.put_item(
 Item=new_record
)
 else:
 print("Received event is an older version than the stored event -
 ignoring")
 else:
 print(("Saving new event - ID " + event_id))

 table.put_item(
 Item=new_record
)

Handling events 1328

Amazon Elastic Container Service Developer Guide

The following Fargate example shows a Lambda function written in Python 3.9 that captures task
state change events and saves them to the following Amazon DynamoDB table:

import json
import boto3

def lambda_handler(event, context):
 id_name = ""
 new_record = {}

 # For debugging so you can see raw event format.
 print('Here is the event:')
 print((json.dumps(event)))

 if event["source"] != "aws.ecs":
 raise ValueError("Function only supports input from events with a source type
 of: aws.ecs")

 # Switch on task/container events.
 table_name = ""
 if event["detail-type"] == "ECS Task State Change":
 table_name = "ECSTaskState"
 id_name = "taskArn"
 event_id = event["detail"]["taskArn"]
 else:
 raise ValueError("detail-type for event is not a supported type. Exiting
 without saving event.")

 new_record["cw_version"] = event["version"]
 new_record.update(event["detail"])

 # "status" is a reserved word in DDB, but it appears in containerPort
 # state change messages.
 if "status" in event:
 new_record["current_status"] = event["status"]
 new_record.pop("status")

 # Look first to see if you have received a newer version of an event ID.
 # If the version is OLDER than what you have on file, do not process it.
 # Otherwise, update the associated record with this latest information.
 print("Looking for recent event with same ID...")
 dynamodb = boto3.resource("dynamodb", region_name="us-east-1")

Handling events 1329

Amazon Elastic Container Service Developer Guide

 table = dynamodb.Table(table_name)
 saved_event = table.get_item(
 Key={
 id_name : event_id
 }
)
 if "Item" in saved_event:
 # Compare events and reconcile.
 print(("EXISTING EVENT DETECTED: Id " + event_id + " - reconciling"))
 if saved_event["Item"]["version"] < event["detail"]["version"]:
 print("Received event is a more recent version than the stored event -
 updating")
 table.put_item(
 Item=new_record
)
 else:
 print("Received event is an older version than the stored event -
 ignoring")
 else:
 print(("Saving new event - ID " + event_id))

 table.put_item(
 Item=new_record
)

Monitor Amazon ECS containers using Container Insights with
enhanced observability

Container Insights collects, aggregates, and summarizes metrics and logs from your containerized
applications and microservices. provides all the Container Insights metrics, plus additional task and
container metrics.

Container Insights discovers all the running containers in a cluster and collects performance data
at every layer of the performance stack. Operational data is collected as performance log events.
These are entries that use a structured JSON schema for high-cardinality data to be ingested and
stored at scale. From this data, CloudWatch creates higher-level aggregated metrics at the cluster,
service, and task level as CloudWatch metrics. The metrics include utilization for resources such as
CPU, memory, disk, and network. The metrics are available in CloudWatch automatic dashboards.

The metrics only reflect the resources with running tasks during the specified time range. For
example, if you have a cluster with one service in it but that service has no tasks in a RUNNING

Monitor Amazon ECS containers using Container Insights with enhanced observability 1330

Amazon Elastic Container Service Developer Guide

state, there will be no metrics sent to CloudWatch. If you have two services and one of them has
running tasks and the other doesn't, only the metrics for the service with running tasks will be sent.

On December 2, 2024, AWS released Container Insights with enhanced observability for Amazon
ECS. This version supports enhanced observability for Amazon ECS clusters using the Amazon EC2
and Fargate launch types After you configure Container Insights with enhanced observability on
Amazon ECS, Container Insights auto-collects detailed infrastructure telemetry from the cluster
level down to the container level in your environment and displays these critical performance
data in curated dashboards removing the heavy lifting in observability set-up. For information
about how to set up Container Insights with enhanced observability, see Container Insights with
enhanced observability.

We recommend that you use Container Insights with enhanced observability instead of Container
Insights because it provides detailed visibility in your container environment, reducing the mean
time to resolution. For more information, see Amazon ECS Container Insights with enhanced
observability metrics in the Amazon CloudWatch User Guide.

The events that you can view are the ones that Amazon ECS sends to Amazon EventBridge. For
more information, see Amazon ECS events.

Important

Metrics collected by CloudWatch Container Insights are charged as custom metrics. For
more information about CloudWatch pricing, see CloudWatch Pricing.

Determine Amazon ECS task health using container health
checks

When you create a task definition, you can configure a health check for you containers. Health
checks are commands that run locally on a container and validate application health and
availability.

The Amazon ECS container agent only monitors and reports on the health checks that are specified
in the task definition. Amazon ECS doesn't monitor Docker health checks that are embedded in
a container image but aren't specified in the container definition. Health check parameters that
are specified in a container definition override any Docker health checks that exist in the container
image.

Determine task health using container health checks 1331

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-enhanced-observability-metrics-ECS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-enhanced-observability-metrics-ECS.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_cwe_events.html
https://aws.amazon.com/cloudwatch/pricing/

Amazon Elastic Container Service Developer Guide

When a health check is defined in a task definition, the container runs the health check process
inside the container, and then evaluate the exit code to determine the application health.

The health check consists the following parameters:

• Command – The command that the container runs to determine if it's healthy. The string array
can start with CMD to run the command arguments directly, or CMD-SHELL to run the command
with the container's default shell. Use CMD-SHELL when you need shell features like pipes,
redirects, command chaining, or environment variable expansion. For example, CMD-SHELL
allows you to use commands like curl -f http://localhost/ || exit 1 where the shell
interprets the || operator. Use CMD for simple commands that don't require shell interpretation.

• Interval – The period of time (in seconds) between each health check.

• Timeout – The period of time (in seconds) to wait for a health check to succeed before it's
considered a failure.

• Retries – The number of times to retry a failed health check before the container is considered
unhealthy.

• Start period – The optional grace period to provide containers time to bootstrap in before failed
health checks count towards the maximum number of retries.

If a health check succeeds within the startPeriod, then the container is considered healthy
and any subsequent failures count toward the maximum number of retries.

For information about how to specify a health check in a task definition, see Health check.

The following describes the possible health status values for a container:

• HEALTHY–The container health check has passed successfully.

• UNHEALTHY–The container health check has failed.

• UNKNOWN–The container health check is being evaluated, there's no container health check
defined, or Amazon ECS doesn't have the health status of the container.

The health check commands run on the container. Therefore you must include the commands in
the container image.

The health check connects to the application through the container's loopback interface at
localhost or 127.0.0.1. An exit code of 0 indicates success, and non-zero exit code indicates
failure.

Determine task health using container health checks 1332

Amazon Elastic Container Service Developer Guide

Consider the following when using container health checks:

• Container health checks require version 1.17.0 or greater of the Amazon ECS container agent.

• Container health checks are supported for Fargate tasks if you're using Linux platform version
1.1.0 or greater or Windows platform version 1.1.0 or greater

How Amazon ECS determines task health

Containers that are essential and have health check command in the task definition are the only
ones considered to determine the task health.

The following rules are evaluated in order:

1. If the status of one essential container is UNHEALTHY, then the task status is UNHEALTHY.

2. If the status of one essential container is UNKNOWN, then the task status is UNKNOWN.

3. If the status of all essential containers are HEALTHY, then the task status is HEALTHY.

Consider the following task health example with 2 essential containers.

Container 1 health Container 2 health Task health

UNHEALTHY UNKNOWN UNHEALTHY

UNHEALTHY HEALTHY UNHEALTHY

HEALTHY UNKNOWN UNKNOWN

HEALTHY HEALTHY HEALTHY

Consider the following task health example with 3 containers.

Container 1 health Container 2 health Container 3 health Task health

UNHEALTHY UNKNOWN UNKNOWN UNHEALTHY

UNHEALTHY UNKNOWN HEALTHY UNHEALTHY

How task health is determined 1333

Amazon Elastic Container Service Developer Guide

Container 1 health Container 2 health Container 3 health Task health

UNHEALTHY HEALTHY HEALTHY UNHEALTHY

HEALTHY UNKNOWN HEALTHY UNKNOWN

HEALTHY UNKNOWN UNKNOWN UNKNOWN

HEALTHY HEALTHY HEALTHY HEALTHY

How health checks are affected by agent disconnects

If the Amazon ECS container agent becomes disconnected from the Amazon ECS service, this won't
cause a container to transition to an UNHEALTHY status. This is by design, to ensure that containers
remain running during agent restarts or temporary unavailability. The health check status is
the "last heard from" response from the Amazon ECS agent, so if the container was considered
HEALTHY prior to the disconnect, that status will remain until the agent reconnects and another
health check occurs. There are no assumptions made about the status of the container health
checks.

Viewing Amazon ECS container health

You can view the container health in the console, and using the API in the DescribeTasks
response. For more information, see DescribeTasks in the Amazon Elastic Container Service API
Reference.

If you use logging for your container, for example Amazon CloudWatch Logs, you can configure
the health check command to forward the container health output to your logs. Make sure to use
2&1 to catch both the stdout and stderr information. The following example uses CMD-SHELL
because it requires shell features like the pipe (>>) and logical OR (||) operators:

"command": [
 "CMD-SHELL",
 "curl -f http://localhost/ >> /proc/1/fd/1 2>&1 || exit 1"
],

Health checks and agent disconnects 1334

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeTasks.html

Amazon Elastic Container Service Developer Guide

Monitor Amazon ECS container instance health

Amazon ECS provides container instance health monitoring. You can quickly determine whether
Amazon ECS has detected any problems that might prevent your container instances from running
containers. Amazon ECS performs automated checks on every running container instance with
agent version 1.57.0 or later to identify issues. For more information on verifying the agent
version an a container instance, see Updating the Amazon ECS container agent.

You must be using AWS CLI version 1.22.3 or later or AWS CLI version 2.3.6 or later. For
information about how to update the AWS CLI, see Installing or updating the latest version of the
AWS CLI in the AWS Command Line Interface User Guide Version 2.

To view the container instance health, run describe-container-instances with the
CONTAINER_INSTANCE_HEALTH option.

The following are the valid values for overallStatus :

• OK

• IMPAIRED

• INSUFFICIENT_DATA

• INITIALIZING

The following is an example of how to run describe-container-instances .

aws ecs describe-container-instances \
 --cluster cluster_name \
 --container-instances 47279cd2cadb41cbaef2dcEXAMPLE \
 --include CONTAINER_INSTANCE_HEALTH

The following is an example of the health status object in the output.

"healthStatus": {
 "overallStatus": "OK",
 "details": [{
 "type": "CONTAINER_RUNTIME",
 "status": "OK",
 "lastUpdated": "2021-11-10T03:30:26+00:00",
 "lastStatusChange": "2021-11-10T03:26:41+00:00"
 }]

Monitor Amazon ECS container instance health 1335

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon Elastic Container Service Developer Guide

}

Container instance-health issues

When the overallStatus any status other than OK, try the following:

• Wait, and then run describe-container-instances

• View your container instance health in the EC2 console or by using the CLI.

• Review the CloudWatch metrics. For more information, see Monitor Amazon ECS using
CloudWatch

• Check the AWS Health Dashboard to see if there are any issues with the service.

Identify Amazon ECS optimization opportunities using
application trace data

Amazon ECS integrates with AWS Distro for OpenTelemetry to collect trace data from your
application. Amazon ECS uses an AWS Distro for OpenTelemetry sidecar container to collect
and route trace data to AWS X-Ray. For more information, see Setting up AWS Distro for
OpenTelemetry Collector in Amazon ECS. You can then use AWS X-Ray to identify errors and
exceptions, analyze performance bottlenecks and response times.

For the AWS Distro for OpenTelemetry Collector to send trace data to AWS X-Ray, your application
must be configured to create the trace data. For more information, see Instrumenting your
application for AWS X-Ray in the AWS X-Ray Developer Guide.

Required IAM permissions for AWS Distro for OpenTelemetry
integration with AWS X-Ray

The Amazon ECS integration with AWS Distro for OpenTelemetry requires that you create a task
role and specify the role in your task definition. We recommend that you configure the AWS Distro
for OpenTelemetry sidecar to route container logs to CloudWatch Logs.

Important

If you also collect application metrics using the AWS Distro for OpenTelemetry integration,
ensure your task IAM role also contains the permissions necessary for that integration. For

Container instance-health issues 1336

https://aws-otel.github.io/docs/setup/ecs
https://aws-otel.github.io/docs/setup/ecs
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html

Amazon Elastic Container Service Developer Guide

more information, see Correlate Amazon ECS application performance using application
metrics.

Create the following policy, and then attach it to the task execution role.

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter the following JSON policy document:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:DescribeLogGroups",
 "logs:PutRetentionPolicy",
 "xray:PutTraceSegments",
 "xray:PutTelemetryRecords",
 "xray:GetSamplingRules",
 "xray:GetSamplingTargets",
 "xray:GetSamplingStatisticSummaries",
 "ssm:GetParameters"
],
 "Resource": "*"
 }
]

Required IAM permissions for AWS Distro for OpenTelemetry integration with AWS X-Ray 1337

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

}

6. Choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring in the
IAM User Guide.

7. On the Review and create page, enter a Policy name and a Description (optional) for the
policy that you are creating. Review Permissions defined in this policy to see the permissions
that are granted by your policy.

8. Choose Create policy to save your new policy.

Specifying the AWS Distro for OpenTelemetry sidecar for AWS X-Ray
integration in your task definition

The Amazon ECS console simplifies creating the AWS Distro for OpenTelemetry sidecar container
by using the Use trace collection option. For more information, see Creating an Amazon ECS task
definition using the console.

If you're not using the Amazon ECS console, you can add the AWS Distro for OpenTelemetry
sidecar container to your task definition. The following task definition snippet shows the container
definition for adding the AWS Distro for OpenTelemetry sidecar for AWS X-Ray integration.

{
 "family": "otel-using-xray",
 "taskRoleArn": "arn:aws:iam::111122223333:role/AmazonECS_OpenTelemetryXrayRole",
 "executionRoleArn": "arn:aws:iam::111122223333:role/ecsTaskExecutionRole",
 "containerDefinitions": [{
 "name": "aws-otel-emitter",
 "image": "application-image",
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/aws-otel-emitter",

Specifying the AWS Distro for OpenTelemetry sidecar for AWS X-Ray integration in your task definition 1338

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure

Amazon Elastic Container Service Developer Guide

 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "dependsOn": [{
 "containerName": "aws-otel-collector",
 "condition": "START"
 }]
 },
 {
 "name": "aws-otel-collector",
 "image": "public.ecr.aws/aws-observability/aws-otel-collector:v0.30.0",
 "essential": true,
 "command": [
 "--config=/etc/ecs/otel-instance-metrics-config.yaml"
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-create-group": "True",
 "awslogs-group": "/ecs/ecs-aws-otel-sidecar-collector",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
 }
 }
],
 "networkMode": "awsvpc",
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "1024",
 "memory": "3072"
}

Correlate Amazon ECS application performance using
application metrics

Amazon ECS on Fargate supports collecting metrics from your applications running on Fargate and
exporting them to either Amazon CloudWatch or Amazon Managed Service for Prometheus.

Correlate Amazon ECS application performance using application metrics 1339

Amazon Elastic Container Service Developer Guide

You can use the collected metadata to correlate application performance data with underlying
infrastructure data, reducing the mean time to resolve the problem.

Amazon ECS uses an AWS Distro for OpenTelemetry sidecar container to collect and route your
application metrics to the destination. The Amazon ECS console experience simplifies the process
of adding this integration when creating your task definitions.

Topics

• Exporting application metrics to Amazon CloudWatch

• Exporting application metrics to Amazon Managed Service for Prometheus

Exporting application metrics to Amazon CloudWatch

Amazon ECS on Fargate supports exporting your custom application metrics to Amazon
CloudWatch as custom metrics. This is done by adding the AWS Distro for OpenTelemetry sidecar
container to your task definition. The Amazon ECS console simplifies this process by adding the Use
metric collection option when creating a new task definition. For more information, see Creating
an Amazon ECS task definition using the console.

The application metrics are exported to CloudWatch Logs with log group name /aws/ecs/
application/metrics and the metrics can be viewed in the ECS/AWSOTel/Application
namespace. Your application must be instrumented with the OpenTelemetry SDK. For
more information, see Introduction to AWS Distro for OpenTelemetry in the AWS Distro for
OpenTelemetry documentation.

Considerations

The following should be considered when using the Amazon ECS on Fargate integration with AWS
Distro for OpenTelemetry to send application metrics to Amazon CloudWatch.

• This integration only sends your custom application metrics to CloudWatch. If you want task-
level metrics, you can turn on Container Insights in the Amazon ECS cluster configuration. For
more information, see Monitor Amazon ECS containers using Container Insights with enhanced
observability.

• The AWS Distro for OpenTelemetry integration is supported for Amazon ECS workloads hosted
on Fargate and Amazon ECS workloads hosted on Amazon EC2 instances. External instances
aren't currently supported.

Exporting application metrics to Amazon CloudWatch 1340

https://aws-otel.github.io/docs/introduction

Amazon Elastic Container Service Developer Guide

• CloudWatch supports a maximum of 30 dimensions per metric. By default, Amazon ECS
defaults to including the TaskARN, ClusterARN, LaunchType, TaskDefinitionFamily,
and TaskDefinitionRevision dimensions to the metrics. The remaining 25 dimensions
can be defined by your application. If more than 30 dimensions are configured, CloudWatch
can't display them. When this occurs, the application metrics will appear in the ECS/
AWSOTel/Application CloudWatch metric namespace but without any dimensions. You can
instrument your application to add additional dimensions. For more information, see Using
CloudWatch metrics with AWS Distro for OpenTelemetry in the AWS Distro for OpenTelemetry
documentation.

Required IAM permissions for AWS Distro for OpenTelemetry integration with
Amazon CloudWatch

The Amazon ECS integration with AWS Distro for OpenTelemetry requires that you create a task
IAM role and specify the role in your task definition. We recommend that the AWS Distro for
OpenTelemetry sidecar also be configured to route container logs to CloudWatch Logs which
requires a task execution IAM role be created and specified in your task definition as well. The
Amazon ECS console takes care of the task execution IAM role on your behalf, but the task IAM role
must be created manually and added to your task definition. For more information about the task
execution IAM role, see Amazon ECS task execution IAM role.

Important

If you're also collecting application trace data using the AWS Distro for OpenTelemetry
integration, ensure your task IAM role also contains the permissions necessary for that
integration. For more information, see Identify Amazon ECS optimization opportunities
using application trace data.
If your application requires any additional permissions, you should add them to this
policy. Each task definition may only specify one task IAM role. For example, if you
are using a custom configuration file stored in Systems Manager, you should add the
ssm:GetParameters permission to this IAM policy.

To create the service role for Elastic Container Service (IAM console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

Exporting application metrics to Amazon CloudWatch 1341

https://aws-otel.github.io/docs/getting-started/cloudwatch-metrics
https://aws-otel.github.io/docs/getting-started/cloudwatch-metrics
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

2. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

3. For Trusted entity type, choose AWS service.

4. For Service or use case, choose Elastic Container Service, and then choose the Elastic
Container Service Task use case.

5. Choose Next.

6. In the Add permissions section, search for AWSDistroOpenTelemetryPolicyForXray, then
select the policy.

7. (Optional) Set a permissions boundary. This is an advanced feature that is available for service
roles, but not service-linked roles.

a. Open the Set permissions boundary section, and then choose Use a permissions
boundary to control the maximum role permissions.

IAM includes a list of the AWS managed and customer-managed policies in your account.

b. Select the policy to use for the permissions boundary.

8. Choose Next.

9. Enter a role name or a role name suffix to help you identify the purpose of the role.

Important

When you name a role, note the following:

• Role names must be unique within your AWS account, and can't be made unique by
case.

For example, don't create roles named both PRODROLE and prodrole. When a
role name is used in a policy or as part of an ARN, the role name is case sensitive,
however when a role name appears to customers in the console, such as during the
sign-in process, the role name is case insensitive.

• You can't edit the name of the role after it's created because other entities might
reference the role.

10. (Optional) For Description, enter a description for the role.

11. (Optional) To edit the use cases and permissions for the role, in the Step 1: Select trusted
entities or Step 2: Add permissions sections, choose Edit.

Exporting application metrics to Amazon CloudWatch 1342

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

Amazon Elastic Container Service Developer Guide

12. (Optional) To help identify, organize, or search for the role, add tags as key-value pairs. For
more information about using tags in IAM, see Tags for AWS Identity and Access Management
resources in the IAM User Guide.

13. Review the role, and then choose Create role.

Specifying the AWS Distro for OpenTelemetry sidecar in your task definition

The Amazon ECS console simplifies the experience of creating the AWS Distro for OpenTelemetry
sidecar container by using the Use metric collection option. For more information, see Creating an
Amazon ECS task definition using the console.

If you're not using the Amazon ECS console, you can add the AWS Distro for OpenTelemetry
sidecar container to your task definition manually. The following task definition example shows the
container definition for adding the AWS Distro for OpenTelemetry sidecar for Amazon CloudWatch
integration.

{
 "family": "otel-using-cloudwatch",
 "taskRoleArn": "arn:aws:iam::111122223333:role/AmazonECS_OpenTelemetryCloudWatchRole",
 "executionRoleArn": "arn:aws:iam::111122223333:role/ecsTaskExecutionRole",
 "containerDefinitions": [
 {
 "name": "aws-otel-emitter",
 "image": "application-image",
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/aws-otel-emitter",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "dependsOn": [{
 "containerName": "aws-otel-collector",
 "condition": "START"
 }]
 },
 {
 "name": "aws-otel-collector",
 "image": "public.ecr.aws/aws-observability/aws-otel-collector:v0.30.0",

Exporting application metrics to Amazon CloudWatch 1343

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html

Amazon Elastic Container Service Developer Guide

 "essential": true,
 "command": [
 "--config=/etc/ecs/ecs-cloudwatch.yaml"
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-create-group": "True",
 "awslogs-group": "/ecs/ecs-aws-otel-sidecar-collector",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
 }
 }
],
 "networkMode": "awsvpc",
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "1024",
 "memory": "3072"
}

Exporting application metrics to Amazon Managed Service for
Prometheus

Amazon ECS supports exporting your task-level CPU, memory, network, and storage metrics and
your custom application metrics to Amazon Managed Service for Prometheus. This is done by
adding the AWS Distro for OpenTelemetry sidecar container to your task definition. The Amazon
ECS console simplifies this process by adding the Use metric collection option when creating a
new task definition. For more information, see Creating an Amazon ECS task definition using the
console.

The metrics are exported to Amazon Managed Service for Prometheus and can be viewed using
the Amazon Managed Grafana dashboard. Your application must be instrumented with either
Prometheus libraries or with the OpenTelemetry SDK. For more information about instrumenting
your application with the OpenTelemetry SDK, see Introduction to AWS Distro for OpenTelemetry
in the AWS Distro for OpenTelemetry documentation.

Exporting application metrics to Amazon Managed Service for Prometheus 1344

https://aws-otel.github.io/docs/introduction

Amazon Elastic Container Service Developer Guide

When using the Prometheus libraries, your application must expose a /metrics endpoint which is
used to scrape the metrics data. For more information about instrumenting your application with
Prometheus libraries, see Prometheus client libraries in the Prometheus documentation.

Considerations

The following should be considered when using the Amazon ECS on Fargate integration with AWS
Distro for OpenTelemetry to send application metrics to Amazon Managed Service for Prometheus.

• The AWS Distro for OpenTelemetry integration is supported for Amazon ECS workloads hosted
on Fargate and Amazon ECS workloads hosted on Amazon EC2 instances. External instances
aren't supported currently.

• By default, AWS Distro for OpenTelemetry includes all available task-level dimensions for your
application metrics when exporting to Amazon Managed Service for Prometheus. You can also
instrument your application to add additional dimensions. For more information, see Getting
Started with Prometheus Remote Write Exporter for Amazon Managed Service for Prometheus in
the AWS Distro for OpenTelemetry documentation.

Required IAM permissions for AWS Distro for OpenTelemetry integration with
Amazon Managed Service for Prometheus

The Amazon ECS integration with Amazon Managed Service for Prometheus using the AWS Distro
for OpenTelemetry sidecar requires that you create a task IAM role and specify the role in your task
definition. This task IAM role must be created manually using the steps below prior to registering
your task definition.

We recommend that the AWS Distro for OpenTelemetry sidecar also be configured to route
container logs to CloudWatch Logs which requires a task execution IAM role be created and
specified in your task definition as well. The Amazon ECS console takes care of the task execution
IAM role on your behalf, but the task IAM role must be created manually. For more information
about creating a task execution IAM role, see Amazon ECS task execution IAM role.

Important

If you're also collecting application trace data using the AWS Distro for OpenTelemetry
integration, ensure your task IAM role also contains the permissions necessary for that

Exporting application metrics to Amazon Managed Service for Prometheus 1345

https://prometheus.io/docs/instrumenting/clientlibs/
https://aws-otel.github.io/docs/getting-started/prometheus-remote-write-exporter
https://aws-otel.github.io/docs/getting-started/prometheus-remote-write-exporter

Amazon Elastic Container Service Developer Guide

integration. For more information, see Identify Amazon ECS optimization opportunities
using application trace data.

To create the service role for Elastic Container Service (IAM console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

3. For Trusted entity type, choose AWS service.

4. For Service or use case, choose Elastic Container Service, and then choose the Elastic
Container Service Task use case.

5. Choose Next.

6. In the Add permissions section, search for AmazonPrometheusRemoteWriteAccess, then
select the policy.

7. (Optional) Set a permissions boundary. This is an advanced feature that is available for service
roles, but not service-linked roles.

a. Open the Set permissions boundary section, and then choose Use a permissions
boundary to control the maximum role permissions.

IAM includes a list of the AWS managed and customer-managed policies in your account.

b. Select the policy to use for the permissions boundary.

8. Choose Next.

9. Enter a role name or a role name suffix to help you identify the purpose of the role.

Important

When you name a role, note the following:

• Role names must be unique within your AWS account, and can't be made unique by
case.

For example, don't create roles named both PRODROLE and prodrole. When a
role name is used in a policy or as part of an ARN, the role name is case sensitive,
however when a role name appears to customers in the console, such as during the
sign-in process, the role name is case insensitive.

Exporting application metrics to Amazon Managed Service for Prometheus 1346

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

Amazon Elastic Container Service Developer Guide

• You can't edit the name of the role after it's created because other entities might
reference the role.

10. (Optional) For Description, enter a description for the role.

11. (Optional) To edit the use cases and permissions for the role, in the Step 1: Select trusted
entities or Step 2: Add permissions sections, choose Edit.

12. (Optional) To help identify, organize, or search for the role, add tags as key-value pairs. For
more information about using tags in IAM, see Tags for AWS Identity and Access Management
resources in the IAM User Guide.

13. Review the role, and then choose Create role.

Specifying the AWS Distro for OpenTelemetry sidecar in your task definition

The Amazon ECS console simplifies the experience of creating the AWS Distro for OpenTelemetry
sidecar container by using the Use metric collection option. For more information, see Creating an
Amazon ECS task definition using the console.

If you're not using the Amazon ECS console, you can add the AWS Distro for OpenTelemetry
sidecar container to your task definition manually. The following task definition example shows the
container definition for adding the AWS Distro for OpenTelemetry sidecar for Amazon Managed
Service for Prometheus integration.

{
 "family": "otel-using-cloudwatch",
 "taskRoleArn": "arn:aws:iam::111122223333:role/AmazonECS_OpenTelemetryCloudWatchRole",
 "executionRoleArn": "arn:aws:iam::111122223333:role/ecsTaskExecutionRole",
 "containerDefinitions": [{
 "name": "aws-otel-emitter",
 "image": "application-image",
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/aws-otel-emitter",
 "awslogs-region": "aws-region",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "dependsOn": [{

Exporting application metrics to Amazon Managed Service for Prometheus 1347

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html

Amazon Elastic Container Service Developer Guide

 "containerName": "aws-otel-collector",
 "condition": "START"
 }]
 },
 {
 "name": "aws-otel-collector",
 "image": "public.ecr.aws/aws-observability/aws-otel-collector:v0.30.0",
 "essential": true,
 "command": [
 "--config=/etc/ecs/ecs-amp.yaml"
],
 "environment": [{
 "name": "AWS_PROMETHEUS_ENDPOINT",
 "value": "https://aps-workspaces.aws-region.amazonaws.com/workspaces/
ws-a1b2c3d4-5678-90ab-cdef-EXAMPLE11111/api/v1/remote_write"
 }],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-create-group": "True",
 "awslogs-group": "/ecs/ecs-aws-otel-sidecar-collector",
 "awslogs-region": "aws-region",
 "awslogs-stream-prefix": "ecs"
 }
 }
 }
],
 "networkMode": "awsvpc",
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "1024",
 "memory": "3072"
}

Log Amazon ECS API calls using AWS CloudTrail

Amazon Elastic Container Service is integrated with AWS CloudTrail, a service that provides a
record of actions taken by a user, role, or an AWS service. CloudTrail captures all API calls for
Amazon ECS as events. The calls captured include calls from the Amazon ECS console and code
calls to the Amazon ECS API operations. Using the information collected by CloudTrail, you can

Log Amazon ECS API calls using AWS CloudTrail 1348

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

Amazon Elastic Container Service Developer Guide

determine the request that was made to Amazon ECS, the IP address from which the request was
made, when it was made, and additional details.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root user or user credentials.

• Whether the request was made on behalf of an IAM Identity Center user.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

CloudTrail is active in your AWS account when you create the account and you automatically
have access to the CloudTrail Event history. The CloudTrail Event history provides a viewable,
searchable, downloadable, and immutable record of the past 90 days of recorded management
events in an AWS Region. For more information, see Working with CloudTrail Event history in the
AWS CloudTrail User Guide. There are no CloudTrail charges for viewing the Event history.

For an ongoing record of events in your AWS account past 90 days, create a trail or a CloudTrail
Lake event data store.

CloudTrail trails

A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. All trails created using the
AWS Management Console are multi-Region. You can create a single-Region or a multi-Region
trail by using the AWS CLI. Creating a multi-Region trail is recommended because you capture
activity in all AWS Regions in your account. If you create a single-Region trail, you can view only
the events logged in the trail's AWS Region. For more information about trails, see Creating a
trail for your AWS account and Creating a trail for an organization in the AWS CloudTrail User
Guide.

You can deliver one copy of your ongoing management events to your Amazon S3 bucket at no
charge from CloudTrail by creating a trail, however, there are Amazon S3 storage charges. For
more information about CloudTrail pricing, see AWS CloudTrail Pricing. For information about
Amazon S3 pricing, see Amazon S3 Pricing.

CloudTrail Lake event data stores

CloudTrail Lake lets you run SQL-based queries on your events. CloudTrail Lake converts existing
events in row-based JSON format to Apache ORC format. ORC is a columnar storage format

Log Amazon ECS API calls using AWS CloudTrail 1349

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://aws.amazon.com/cloudtrail/pricing/
https://aws.amazon.com/s3/pricing/
https://orc.apache.org/

Amazon Elastic Container Service Developer Guide

that is optimized for fast retrieval of data. Events are aggregated into event data stores, which
are immutable collections of events based on criteria that you select by applying advanced
event selectors. The selectors that you apply to an event data store control which events persist
and are available for you to query. For more information about CloudTrail Lake, see Working
with AWS CloudTrail Lake in the AWS CloudTrail User Guide.

CloudTrail Lake event data stores and queries incur costs. When you create an event data
store, you choose the pricing option you want to use for the event data store. The pricing
option determines the cost for ingesting and storing events, and the default and maximum
retention period for the event data store. For more information about CloudTrail pricing, see
AWS CloudTrail Pricing.

Amazon ECS management events in CloudTrail

Management events provide information about management operations that are performed on
resources in your AWS account. These are also known as control plane operations. By default,
CloudTrail logs management events.

Amazon Elastic Container Service logs all Amazon ECS control plane operations as management
events. For example, calls to the CreateService, RunTask and DeleteCluster sections
generate entries in the CloudTrail log files. For a list of the Amazon Elastic Container Service
control plane operations that Amazon ECS logs to CloudTrail, see the Amazon Elastic Container
Service API Reference.

Amazon ECS event examples

An event represents a single request from any source and includes information about the requested
API operation, the date and time of the operation, request parameters, and so on. CloudTrail log
files aren't an ordered stack trace of the public API calls, so events don't appear in any specific
order.

The following example shows a CloudTrail event that demonstrates the CreateService action.

Note

This example has been formatted for improved readability. In a CloudTrail log file, all
entries and events are concatenated into a single line. In addition, this example has been

Amazon ECS management events in CloudTrail 1350

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-manage-costs.html#cloudtrail-lake-manage-costs-pricing-option
https://aws.amazon.com/cloudtrail/pricing/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html#logging-management-events
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/

Amazon Elastic Container Service Developer Guide

limited to a single Amazon ECS entry. In a real CloudTrail log file, you see entries and
events from multiple AWS services.

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE:account_name",
 "arn": "arn:aws:sts::123456789012:user/Mary_Major",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-06-20T18:32:25Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/Admin",
 "accountId": "123456789012",
 "userName": "Mary_Major"
 }
 }
 },
 "eventTime": "2018-06-20T19:04:36Z",
 "eventSource": "ecs.amazonaws.com",
 "eventName": "CreateCluster",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "203.0.113.12",
 "userAgent": "console.amazonaws.com",
 "requestParameters": {
 "clusterName": "default"
 },
 "responseElements": {
 "cluster": {
 "clusterArn": "arn:aws:ecs:us-east-1:123456789012:cluster/default",
 "pendingTasksCount": 0,
 "registeredContainerInstancesCount": 0,
 "status": "ACTIVE",
 "runningTasksCount": 0,
 "statistics": [],

Amazon ECS event examples 1351

Amazon Elastic Container Service Developer Guide

 "clusterName": "default",
 "activeServicesCount": 0
 }
 },
 "requestID": "cb8c167e-EXAMPLE",
 "eventID": "e3c6f4ce-EXAMPLE",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

For information about CloudTrail record contents, see CloudTrail record contents in the AWS
CloudTrail User Guide.

Monitor workloads using Amazon ECS metadata

You can use the task and container metadata to troubleshoot your workloads and to make
configuration changes based on the runtime environment.

Metadata includes the following categories:

• Task-level attributes that provide information about where the task is running.

• Container-level attributes that provide the Docker ID, name, and image details.

This provides visibility into the container.

• Network settings such as IP addresses, subnets, and network mode.

This helps with network configuration and troubleshooting.

• Task status and health

This lets you know if the tasks are running.

You can view metadata by any of the following methods:

• Container metadata file

Beginning with version 1.15.0 of the Amazon ECS container agent, various container metadata is
available within your containers or the host container instance. By enabling this feature, you can
query the information about a task, container, and container instance from within the container

Monitor workloads using metadata 1352

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-record-contents.html

Amazon Elastic Container Service Developer Guide

or the host container instance. The metadata file is created on the host instance and mounted
in the container as a Docker volume and therefore is not available when a task is hosted on AWS
Fargate.

• Task metadata endpoint

The Amazon ECS container agent injects an environment variable into each container, referred
to as the task metadata endpoint which provides various task metadata and Docker stats to the
container.

• Container introspection

The Amazon ECS container agent provides an API operation for gathering details about the
container instance on which the agent is running and the associated tasks running on that
instance.

Amazon ECS environment variables

Environment variables control a task's behavior such as the capacity used to run the task. Amazon
ECS sets the following environment variables for your tasks:

• AWS_CONTAINER_CREDENTIALS_RELATIVE_URI - The full HTTP URL endpoint for the SDK to
use when making a request for credentials. This includes both the scheme and the host. For more
information, see Container credential provider in the AWS SDKs Reference Guide.

• ECS_CONTAINER_METADATA_URI_V4 - The address of the task metadata version 4. For more
information, see Amazon ECS task metadata endpoint version 4.

• ECS_CONTAINER_METADATA_URI - The address of the task metadata version 3. For more
information, see Amazon ECS task metadata endpoint version 3.

• ECS_AGENT_URI - The base address for different endpoints supported by Fargate. For more
information, see:

• Amazon ECS task scale-in protection endpoint

• Amazon ECS fault injection endpoints

• AWS_EXECUTION_ENV - The information about the launch type the task runs on.

• For Fargate, Amazon ECS sets this to AWS_ECS_FARGATE.

• For EC2, Amazon ECS sets this to AWS_ECS_EC2.

• AWS_DEFAULT_REGION – The default AWS Region for your AWS account. This is the default
Region where your task runs.

Environment variables 1353

https://docs.docker.com/reference/api/engine/version/v1.30/#tag/Container/operation/ContainerStats
https://docs.aws.amazon.com/sdkref/latest/guide/feature-container-credentials.html

Amazon Elastic Container Service Developer Guide

• AWS_REGION – The Region where the task runs. If defined, this value overrides the
AWS_DEFAULT_REGION.

You can view the environment variables in the task metadata. For more information, see one of the
following topics:

• Fargate - Amazon ECS task metadata available for tasks on Fargate

• EC2 - Task metadata available for Amazon ECS tasks on EC2

Amazon ECS container metadata file

Beginning with version 1.15.0 of the Amazon ECS container agent, various container metadata is
available within your containers or the host container instance. By enabling this feature, you can
query the information about a task, container, and container instance from within the container or
the host container instance. The metadata file is created on the host instance and mounted in the
container as a Docker volume and therefore is not available when a task is hosted on AWS Fargate.

The container metadata file is cleaned up on the host instance when the container is cleaned
up. You can adjust when this happens with the ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION
container agent variable. For more information, see Automatic Amazon ECS task and image
cleanup.

Topics

• Container metadata file locations

• Turning on Amazon ECS container metadata

• Amazon ECS container metadata file format

Container metadata file locations

By default, the container metadata file is written to the following host and container paths.

• For Linux instances:

• Host path: /var/lib/ecs/data/metadata/cluster_name/task_id/container_name/
ecs-container-metadata.json

Container metadata file 1354

Amazon Elastic Container Service Developer Guide

Note

The Linux host path assumes that the default data directory mount path (/var/lib/
ecs/data) is used when the agent is started. If you are not using an Amazon ECS-
optimized AMI (or the ecs-init package to start and maintain the container agent),
be sure to set the ECS_HOST_DATA_DIR agent configuration variable to the host path
where the container agent's state file is located. For more information, see Amazon
ECS container agent configuration.

• Container path: /opt/ecs/metadata/random_ID/ecs-container-metadata.json

• For Windows instances:

• Host path: C:\ProgramData\Amazon\ECS\data\metadata
\task_id\container_name\ecs-container-metadata.json

• Container path: C:\ProgramData\Amazon\ECS\metadata\random_ID\ecs-container-
metadata.json

However, for easy access, the container metadata file location is set to the
ECS_CONTAINER_METADATA_FILE environment variable inside the container. You can read the
file contents from inside the container with the following command:

• For Linux instances:

cat $ECS_CONTAINER_METADATA_FILE

• For Windows instances (PowerShell):

Get-Content -path $env:ECS_CONTAINER_METADATA_FILE

Turning on Amazon ECS container metadata

You can turn on container metadata at the container instance level by setting the
ECS_ENABLE_CONTAINER_METADATA container agent variable to true. You can set this variable
in the /etc/ecs/ecs.config configuration file and restart the agent. You can also set it as a
Docker environment variable at runtime when the agent container is started. For more information,
see Amazon ECS container agent configuration.

Container metadata file 1355

Amazon Elastic Container Service Developer Guide

If the ECS_ENABLE_CONTAINER_METADATA is set to true when the agent starts, metadata
files are created for any containers created from that point forward. The Amazon ECS
container agent cannot create metadata files for containers that were created before the
ECS_ENABLE_CONTAINER_METADATA container agent variable was set to true. To ensure that all
containers receive metadata files, you should set this agent variable at container instance launch.
The following is an example user data script that will set this variable as well as register your
container instance with your cluster.

#!/bin/bash
cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=your_cluster_name
ECS_ENABLE_CONTAINER_METADATA=true
EOF

Amazon ECS container metadata file format

The following information is stored in the container metadata JSON file.

Cluster

The name of the cluster that the container's task is running on.

ContainerInstanceARN

The full Amazon Resource Name (ARN) of the host container instance.

TaskARN

The full Amazon Resource Name (ARN) of the task that the container belongs to.

TaskDefinitionFamily

The name of the task definition family the container is using.

TaskDefinitionRevision

The task definition revision the container is using.

ContainerID

The Docker container ID (and not the Amazon ECS container ID) for the container.

ContainerName

The container name from the Amazon ECS task definition for the container.

Container metadata file 1356

Amazon Elastic Container Service Developer Guide

DockerContainerName

The container name that the Docker daemon uses for the container (for example, the name that
shows up in docker ps command output).

ImageID

The SHA digest for the Docker image used to start the container.

ImageName

The image name and tag for the Docker image used to start the container.

PortMappings

Any port mappings associated with the container.

ContainerPort

The port on the container that is exposed.

HostPort

The port on the host container instance that is exposed.

BindIp

The bind IP address that is assigned to the container by Docker. This IP address is only
applied with the bridge network mode, and it is only accessible from the container
instance.

Protocol

The network protocol used for the port mapping.

Networks

The network mode and IP address for the container.

NetworkMode

The network mode for the task to which the container belongs.

IPv4Addresses

The IP addresses associated with the container.

Container metadata file 1357

Amazon Elastic Container Service Developer Guide

Important

If your task is using the awsvpc network mode, the IP address of the container will
not be returned. In this case, you can retrieve the IP address by reading the /etc/
hosts file with the following command:

tail -1 /etc/hosts | awk '{print $1}'

MetadataFileStatus

The status of the metadata file. When the status is READY, the metadata file is current and
complete. If the file is not ready yet (for example, the moment the task is started), a truncated
version of the file format is available. To avoid a likely race condition where the container
has started, but the metadata has not yet been written, you can parse the metadata file and
wait for this parameter to be set to READY before depending on the metadata. This is usually
available in less than 1 second from when the container starts.

AvailabilityZone

The Availability Zone the host container instance resides in.

HostPrivateIPv4Address

The private IP address for the task the container belongs to.

HostPublicIPv4Address

The public IP address for the task the container belongs to.

Example Amazon ECS container metadata file (READY)

The following example shows a container metadata file in the READY status.

{
 "Cluster":"arn:aws:ecs:us-east-1:123456789012:cluster/MyCluster",
 "TaskARN":"arn:aws:ecs:us-east-1:123456789012:task/MyCluster/
b593651c4d6b44a6b2b583f45c957e15",
 "Family":"curltest-container",
 "Revision":"2",
 "DesiredStatus":"RUNNING",
 "KnownStatus":"RUNNING",

Container metadata file 1358

Amazon Elastic Container Service Developer Guide

 "Limits":
 {
 "CPU":0.25,
 "Memory":512
 },
 "PullStartedAt":"2025-01-17T20:56:17.394610044Z",
 "PullStoppedAt":"2025-01-17T20:56:25.282708213Z",
 "AvailabilityZone":"us-east-1b",
 "LaunchType":"FARGATE",
 "Containers":[
 {
 "DockerId":"b593651c4d6b44a6b2b583f45c957e15-3356213583",
 "Name":"curltest","DockerName":"curltest",
 "Image":"public.ecr.aws/amazonlinux/amazonlinux:latest",

 "ImageID":"sha256:7f371357694782356b65c7fd60dd1ca124c47bd5ed1b1ffe7c0e17f562898367",
 "Labels":
 {
 "com.amazonaws.ecs.cluster":"arn:aws:ecs:us-
east-1:123456789012:cluster/MyCluster",
 "com.amazonaws.ecs.container-name":"curltest",
 "com.amazonaws.ecs.task-arn":"arn:aws:ecs:us-
east-1:123456789012:task/MyCluster/b593651c4d6b44a6b2b583f45c957e15",
 "com.amazonaws.ecs.task-definition-family":"curltest-
container","com.amazonaws.ecs.task-definition-version":"2"
 },
 "DesiredStatus":"RUNNING",
 "KnownStatus":"RUNNING",
 "Limits":
 {
 "CPU":2
 },
 "CreatedAt":"2025-01-17T20:56:26.180347056Z",
 "StartedAt":"2025-01-17T20:56:26.180347056Z",
 "Type":"NORMAL",
 "LogDriver":"awslogs",
 "LogOptions":
 {
 "awslogs-create-group":"true",
 "awslogs-group":"/ecs/curltest-container",
 "awslogs-region":"us-east-1",
 "awslogs-stream":"ecs/curltest/b593651c4d6b44a6b2b583f45c957e15"
 },

Container metadata file 1359

Amazon Elastic Container Service Developer Guide

 "ContainerARN":"arn:aws:ecs:us-east-1:123456789012:container/MyCluster/
b593651c4d6b44a6b2b583f45c957e15/934575e8-5bdb-478f-b763-2341a85b690e",
 "Networks":[
 {
 "NetworkMode":"awsvpc",
 "IPv4Addresses":["10.0.1.58"]
 }
],
 "Snapshotter":"overlayfs"
 }
],
 "ClockDrift":
 {
 "ClockErrorBound":0.487801,"ReferenceTimestamp":"2025-01-17T20:56:02Z",
 "ClockSynchronizationStatus":"SYNCHRONIZED"
 },
 "FaultInjectionEnabled":false
}

Example Incomplete Amazon ECS container metadata file (not yet READY)

The following example shows a container metadata file that has not yet reached the READY status.
The information in the file is limited to a few parameters that are known from the task definition.
The container metadata file should be ready within 1 second after the container starts.

{
 "Cluster": "default",
 "ContainerInstanceARN": "arn:aws:ecs:us-west-2:012345678910:container-instance/
default/1f73d099-b914-411c-a9ff-81633b7741dd",
 "TaskARN": "arn:aws:ecs:us-west-2:012345678910:task/default/
d90675f8-1a98-444b-805b-3d9cabb6fcd4",
 "ContainerName": "metadata"
}

Task metadata available for Amazon ECS tasks on EC2

The Amazon ECS container agent provides a method to retrieve various task metadata and Docker
stats. This is referred to as the task metadata endpoint. The following versions are available:

• Task metadata endpoint version 4 – Provides a variety of metadata and Docker stats to
containers. Can also provide network rate data. Available for Amazon ECS tasks launched on
Amazon EC2 Linux instances running at least version 1.39.0 of the Amazon ECS container

Task metadata available for Amazon ECS tasks on EC2 1360

https://docs.docker.com/reference/api/engine/version/v1.30/#tag/Container/operation/ContainerStats
https://docs.docker.com/reference/api/engine/version/v1.30/#tag/Container/operation/ContainerStats

Amazon Elastic Container Service Developer Guide

agent. For Amazon EC2 Windows instances that use awsvpc network mode, the Amazon ECS
container agent must be at least version 1.54.0. For more information, see Amazon ECS task
metadata endpoint version 4.

• Task metadata endpoint version 3 – Provides a variety of metadata and Docker stats to
containers. Available for Amazon ECS tasks launched on Amazon EC2 Linux instances running at
least version 1.21.0 of the Amazon ECS container agent. For Amazon EC2 Windows instances
that use awsvpc network mode, the Amazon ECS container agent must be at least version
1.54.0. For more information, see Amazon ECS task metadata endpoint version 3.

• Task metadata endpoint version 2 – Available for Amazon ECS tasks launched on Amazon EC2
Linux instances running at least version 1.17.0 of the Amazon ECS container agent. For Amazon
EC2 Windows instances that use awsvpc network mode, the Amazon ECS container agent must
be at least version 1.54.0. For more information, see Amazon ECS task metadata endpoint
version 2.

If your Amazon ECS task is hosted on Amazon EC2, you can also access task host metadata using
the Instance Metadata Service (IMDS) endpoint. The following command, when run from within the
instance hosting the task, lists the ID of the host instance.

 curl http://169.254.169.254/latest/meta-data/instance-id

The information you can obtain from the endpoint is divided into categories such as instance-
id. For more information about the different categories of host instance metadata you can obtain
using the endpoint, see Instance metadata categories .

Amazon ECS task metadata endpoint version 4

The Amazon ECS container agent injects an environment variable into each container, referred
to as the task metadata endpoint which provides various task metadata and Docker stats to the
container.

The task metadata and network rate stats are sent to CloudWatch Container Insights and can
be viewed in the AWS Management Console. For more information, see Monitor Amazon ECS
containers using Container Insights with enhanced observability.

Note

Amazon ECS provides earlier versions of the task metadata endpoint. To avoid the need
to create new task metadata endpoint versions in the future, additional metadata may be

Task metadata available for Amazon ECS tasks on EC2 1361

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html#instancedata-data-categories
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

added to the version 4 output. We will not remove any existing metadata or change the
metadata field names.

The environment variable is injected by default into the containers of Amazon ECS tasks launched
on Amazon EC2 Linux instances that are running at least version 1.39.0 of the Amazon ECS
container agent. For Amazon EC2 Windows instances that use awsvpc network mode, the Amazon
ECS container agent must be at least version 1.54.0. For more information, see Amazon ECS Linux
container instance management.

Note

You can add support for this feature on Amazon EC2 instances using older versions of
the Amazon ECS container agent by updating the agent to the latest version. For more
information, see Updating the Amazon ECS container agent.

Task metadata endpoint version 4 paths

The following task metadata endpoint paths are available to containers.

${ECS_CONTAINER_METADATA_URI_V4}

This path returns metadata for the container.

${ECS_CONTAINER_METADATA_URI_V4}/task

This path returns metadata for the task, including a list of the container IDs and names for all
of the containers associated with the task. For more information about the response for this
endpoint, see Amazon ECS task metadata V4 JSON response.

${ECS_CONTAINER_METADATA_URI_V4}/taskWithTags

This path returns the metadata for the task included in the /task endpoint in addition to the
task and container instance tags that can be retrieved using the ListTagsForResource API.
Any errors received when retrieving the tag metadata will be included in the Errors field in the
response.

Task metadata available for Amazon ECS tasks on EC2 1362

Amazon Elastic Container Service Developer Guide

Note

The Errors field is only in the response for tasks hosted on Amazon EC2 Linux
instances running at least version 1.50.0 of the container agent. For Amazon EC2
Windows instances that use awsvpc network mode, the Amazon ECS container agent
must be at least version 1.54.0
This endpoint requires the ecs.ListTagsForResource permission.

Important

When using the ${ECS_CONTAINER_METADATA_URI_V4}/taskWithTags endpoint,
be aware that each call makes up to two API requests to ecs:ListTagsForResource
(one for container instance tags and one for task tags). This can lead to API throttling if
called frequently.
Consider implementing caching or batching strategies to reduce the frequency of calls,
especially in high-traffic applications. For information about throttling limits for the
ListTagsForResource API, see Request throttling for the Amazon ECS API.

${ECS_CONTAINER_METADATA_URI_V4}/stats

This path returns Docker stats for the specific container. For more information about each of the
returned stats, see ContainerStats in the Docker API documentation.

For Amazon ECS tasks that use the awsvpc or bridge network modes hosted on Amazon EC2
Linux instances running at least version 1.43.0 of the container agent, there will be additional
network rate stats included in the response. For all other tasks, the response will only include
the cumulative network stats.

${ECS_CONTAINER_METADATA_URI_V4}/task/stats

This path returns Docker stats for all of the containers associated with the task. This can be
used by sidecar containers to extract network metrics. For more information about each of the
returned stats, see ContainerStats in the Docker API documentation.

For Amazon ECS tasks that use the awsvpc or bridge network modes hosted on Amazon EC2
Linux instances running at least version 1.43.0 of the container agent, there will be additional

Task metadata available for Amazon ECS tasks on EC2 1363

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/request-throttling.html
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

network rate stats included in the response. For all other tasks, the response will only include
the cumulative network stats.

Amazon ECS task metadata V4 JSON response

The following information is returned from the task metadata endpoint
(${ECS_CONTAINER_METADATA_URI_V4}/task) JSON response. This includes metadata
associated with the task in addition to the metadata for each container within the task.

Cluster

The Amazon Resource Name (ARN) or short name of the Amazon ECS cluster to which the task
belongs.

ServiceName

The name of the service to which the task belongs. ServiceName will appear for Amazon EC2
and Amazon ECS Anywhere container instances if the task is associated with a service.

Note

The ServiceName metadata is only included when using Amazon ECS container agent
version 1.63.1 or later.

VPCID

The VPC ID of the Amazon EC2 container instance. This field only appears for Amazon EC2
instances.

Note

The VPCID metadata is only included when using Amazon ECS container agent version
1.63.1 or later.

TaskARN

The Amazon Resource Name (ARN) of the task to which the container belongs.

Task metadata available for Amazon ECS tasks on EC2 1364

Amazon Elastic Container Service Developer Guide

Family

The family of the Amazon ECS task definition for the task.

Revision

The revision of the Amazon ECS task definition for the task.

DesiredStatus

The desired status for the task from Amazon ECS.

KnownStatus

The known status for the task from Amazon ECS.

Limits

The resource limits specified at the task level, such as CPU (expressed in vCPUs) and memory.
This parameter is omitted if no resource limits are defined.

PullStartedAt

The timestamp for when the first container image pull began.

PullStoppedAt

The timestamp for when the last container image pull finished.

AvailabilityZone

The Availability Zone the task is in.

Note

The Availability Zone metadata is only available for Fargate tasks using platform version
1.4 or later (Linux) or 1.0.0 (Windows).

LaunchType

The launch type the task is using. When using cluster capacity providers, this indicates whether
the task is using Fargate or EC2 infrastructure.

Task metadata available for Amazon ECS tasks on EC2 1365

Amazon Elastic Container Service Developer Guide

Note

This LaunchType metadata is only included when using Amazon ECS Linux container
agent version 1.45.0 or later (Linux) or 1.0.0 or later (Windows).

Containers

A list of container metadata for each container associated with the task.

DockerId

The Docker ID for the container.

When you use Fargate, the id is a 32-digit hex followed by a 10 digit number.

Name

The name of the container as specified in the task definition.

DockerName

The name of the container supplied to Docker. The Amazon ECS container agent generates
a unique name for the container to avoid name collisions when multiple copies of the same
task definition are run on a single instance.

Image

The image for the container.

ImageID

The SHA-256 digest for the image.

Ports

Any ports exposed for the container. This parameter is omitted if there are no exposed ports.

Labels

Any labels applied to the container. This parameter is omitted if there are no labels applied.

DesiredStatus

The desired status for the container from Amazon ECS.

Task metadata available for Amazon ECS tasks on EC2 1366

Amazon Elastic Container Service Developer Guide

KnownStatus

The known status for the container from Amazon ECS.

ExitCode

The exit code for the container. This parameter is omitted if the container has not exited.

Limits

The resource limits specified at the container level, such as CPU (expressed in CPU units) and
memory. This parameter is omitted if no resource limits are defined.

CreatedAt

The time stamp for when the container was created. This parameter is omitted if the
container has not been created yet.

StartedAt

The time stamp for when the container started. This parameter is omitted if the container
has not started yet.

FinishedAt

The time stamp for when the container stopped. This parameter is omitted if the container
has not stopped yet.

Type

The type of the container. Containers that are specified in your task definition are of type
NORMAL. You can ignore other container types, which are used for internal task resource
provisioning by the Amazon ECS container agent.

LogDriver

The log driver the container is using.

Note

This LogDriver metadata is only included when using Amazon ECS Linux container
agent version 1.45.0 or later.

LogOptions

The log driver options defined for the container.

Task metadata available for Amazon ECS tasks on EC2 1367

Amazon Elastic Container Service Developer Guide

Note

This LogOptions metadata is only included when using Amazon ECS Linux
container agent version 1.45.0 or later.

ContainerARN

The Amazon Resource Name (ARN) of the container.

Note

This ContainerARN metadata is only included when using Amazon ECS Linux
container agent version 1.45.0 or later.

Networks

The network information for the container, such as the network mode and IP address. This
parameter is omitted if no network information is defined.

RestartCount

The number of times the container has been restarted.

Note

The RestartCount metadata is included only if a restart policy is enabled for the
container. For more information, see Restart individual containers in Amazon ECS
tasks with container restart policies.

ExecutionStoppedAt

The time stamp for when the tasks DesiredStatus moved to STOPPED. This occurs when an
essential container moves to STOPPED.

Amazon ECS task metadata v4 examples

The following examples show example outputs from each of the task metadata endpoints.

Task metadata available for Amazon ECS tasks on EC2 1368

Amazon Elastic Container Service Developer Guide

Example container metadata response

When querying the ${ECS_CONTAINER_METADATA_URI_V4} endpoint you are returned only
metadata about the container itself. The following is an example output from a task that runs as
part of a service (MyService).

{
 "DockerId": "ea32192c8553fbff06c9340478a2ff089b2bb5646fb718b4ee206641c9086d66",
 "Name": "curl",
 "DockerName": "ecs-curltest-24-curl-cca48e8dcadd97805600",
 "Image": "111122223333.dkr.ecr.us-west-2.amazonaws.com/curltest:latest",
 "ImageID":
 "sha256:d691691e9652791a60114e67b365688d20d19940dde7c4736ea30e660d8d3553",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/
default/8f03e41243824aea923aca126495f665",
 "com.amazonaws.ecs.task-definition-family": "curltest",
 "com.amazonaws.ecs.task-definition-version": "24"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 10,
 "Memory": 128
 },
 "CreatedAt": "2020-10-02T00:15:07.620912337Z",
 "StartedAt": "2020-10-02T00:15:08.062559351Z",
 "Type": "NORMAL",
 "LogDriver": "awslogs",
 "LogOptions": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/metadata",
 "awslogs-region": "us-west-2",
 "awslogs-stream": "ecs/curl/8f03e41243824aea923aca126495f665"
 },
 "ContainerARN": "arn:aws:ecs:us-west-2:111122223333:container/0206b271-
b33f-47ab-86c6-a0ba208a70a9",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [

Task metadata available for Amazon ECS tasks on EC2 1369

Amazon Elastic Container Service Developer Guide

 "10.0.2.100"
],
 "AttachmentIndex": 0,
 "MACAddress": "0e:9e:32:c7:48:85",
 "IPv4SubnetCIDRBlock": "10.0.2.0/24",
 "PrivateDNSName": "ip-10-0-2-100.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "10.0.2.1/24"
 }
]
}

Example task metadata response

When querying the ${ECS_CONTAINER_METADATA_URI_V4}/task endpoint you are returned
metadata about the task the container is part of in addition to the metadata for each container
within the task. The following is an example output.

{
 "Cluster": "default",
 "TaskARN": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "Family": "curltest",
 "ServiceName": "MyService",
 "Revision": "26",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "PullStartedAt": "2020-10-02T00:43:06.202617438Z",
 "PullStoppedAt": "2020-10-02T00:43:06.31288465Z",
 "AvailabilityZone": "us-west-2d",
 "VPCID": "vpc-1234567890abcdef0",
 "LaunchType": "EC2",
 "Containers": [
 {
 "DockerId":
 "598cba581fe3f939459eaba1e071d5c93bb2c49b7d1ba7db6bb19deeb70d8e38",
 "Name": "~internal~ecs~pause",
 "DockerName": "ecs-curltest-26-internalecspause-e292d586b6f9dade4a00",
 "Image": "amazon/amazon-ecs-pause:0.1.0",
 "ImageID": "",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "~internal~ecs~pause",

Task metadata available for Amazon ECS tasks on EC2 1370

Amazon Elastic Container Service Developer Guide

 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "com.amazonaws.ecs.task-definition-family": "curltest",
 "com.amazonaws.ecs.task-definition-version": "26"
 },
 "DesiredStatus": "RESOURCES_PROVISIONED",
 "KnownStatus": "RESOURCES_PROVISIONED",
 "Limits": {
 "CPU": 0,
 "Memory": 0
 },
 "CreatedAt": "2020-10-02T00:43:05.602352471Z",
 "StartedAt": "2020-10-02T00:43:06.076707576Z",
 "Type": "CNI_PAUSE",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.61"
],
 "AttachmentIndex": 0,
 "MACAddress": "0e:10:e2:01:bd:91",
 "IPv4SubnetCIDRBlock": "10.0.2.0/24",
 "PrivateDNSName": "ip-10-0-2-61.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "10.0.2.1/24"
 }
]
 },
 {
 "DockerId":
 "ee08638adaaf009d78c248913f629e38299471d45fe7dc944d1039077e3424ca",
 "Name": "curl",
 "DockerName": "ecs-curltest-26-curl-a0e7dba5aca6d8cb2e00",
 "Image": "111122223333.dkr.ecr.us-west-2.amazonaws.com/curltest:latest",
 "ImageID":
 "sha256:d691691e9652791a60114e67b365688d20d19940dde7c4736ea30e660d8d3553",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "com.amazonaws.ecs.task-definition-family": "curltest",
 "com.amazonaws.ecs.task-definition-version": "26"
 },

Task metadata available for Amazon ECS tasks on EC2 1371

Amazon Elastic Container Service Developer Guide

 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 10,
 "Memory": 128
 },
 "CreatedAt": "2020-10-02T00:43:06.326590752Z",
 "StartedAt": "2020-10-02T00:43:06.767535449Z",
 "Type": "NORMAL",
 "LogDriver": "awslogs",
 "LogOptions": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/metadata",
 "awslogs-region": "us-west-2",
 "awslogs-stream": "ecs/curl/158d1c8083dd49d6b527399fd6414f5c"
 },
 "ContainerARN": "arn:aws:ecs:us-west-2:111122223333:container/
abb51bdd-11b4-467f-8f6c-adcfe1fe059d",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.61"
],
 "AttachmentIndex": 0,
 "MACAddress": "0e:10:e2:01:bd:91",
 "IPv4SubnetCIDRBlock": "10.0.2.0/24",
 "PrivateDNSName": "ip-10-0-2-61.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "10.0.2.1/24"
 }
]
 }
]
}

Example task with tags metadata response

When querying the ${ECS_CONTAINER_METADATA_URI_V4}/taskWithTags endpoint you are
returned metadata about the task, including the task and container instance tags. The following is
an example output.

{
 "Cluster": "default",

Task metadata available for Amazon ECS tasks on EC2 1372

Amazon Elastic Container Service Developer Guide

 "TaskARN": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "Family": "curltest",
 "ServiceName": "MyService",
 "Revision": "26",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "PullStartedAt": "2020-10-02T00:43:06.202617438Z",
 "PullStoppedAt": "2020-10-02T00:43:06.31288465Z",
 "AvailabilityZone": "us-west-2d",
 "VPCID": "vpc-1234567890abcdef0",
 "TaskTags": {
 "tag-use": "task-metadata-endpoint-test"
 },
 "ContainerInstanceTags":{
 "tag_key":"tag_value"
 },
 "LaunchType": "EC2",
 "Containers": [
 {
 "DockerId":
 "598cba581fe3f939459eaba1e071d5c93bb2c49b7d1ba7db6bb19deeb70d8e38",
 "Name": "~internal~ecs~pause",
 "DockerName": "ecs-curltest-26-internalecspause-e292d586b6f9dade4a00",
 "Image": "amazon/amazon-ecs-pause:0.1.0",
 "ImageID": "",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "~internal~ecs~pause",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "com.amazonaws.ecs.task-definition-family": "curltest",
 "com.amazonaws.ecs.task-definition-version": "26"
 },
 "DesiredStatus": "RESOURCES_PROVISIONED",
 "KnownStatus": "RESOURCES_PROVISIONED",
 "Limits": {
 "CPU": 0,
 "Memory": 0
 },
 "CreatedAt": "2020-10-02T00:43:05.602352471Z",
 "StartedAt": "2020-10-02T00:43:06.076707576Z",
 "Type": "CNI_PAUSE",
 "Networks": [

Task metadata available for Amazon ECS tasks on EC2 1373

Amazon Elastic Container Service Developer Guide

 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.61"
],
 "AttachmentIndex": 0,
 "MACAddress": "0e:10:e2:01:bd:91",
 "IPv4SubnetCIDRBlock": "10.0.2.0/24",
 "PrivateDNSName": "ip-10-0-2-61.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "10.0.2.1/24"
 }
]
 },
 {
 "DockerId":
 "ee08638adaaf009d78c248913f629e38299471d45fe7dc944d1039077e3424ca",
 "Name": "curl",
 "DockerName": "ecs-curltest-26-curl-a0e7dba5aca6d8cb2e00",
 "Image": "111122223333.dkr.ecr.us-west-2.amazonaws.com/curltest:latest",
 "ImageID":
 "sha256:d691691e9652791a60114e67b365688d20d19940dde7c4736ea30e660d8d3553",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "com.amazonaws.ecs.task-definition-family": "curltest",
 "com.amazonaws.ecs.task-definition-version": "26"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 10,
 "Memory": 128
 },
 "CreatedAt": "2020-10-02T00:43:06.326590752Z",
 "StartedAt": "2020-10-02T00:43:06.767535449Z",
 "Type": "NORMAL",
 "LogDriver": "awslogs",
 "LogOptions": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/metadata",
 "awslogs-region": "us-west-2",
 "awslogs-stream": "ecs/curl/158d1c8083dd49d6b527399fd6414f5c"

Task metadata available for Amazon ECS tasks on EC2 1374

Amazon Elastic Container Service Developer Guide

 },
 "ContainerARN": "arn:aws:ecs:us-west-2:111122223333:container/
abb51bdd-11b4-467f-8f6c-adcfe1fe059d",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.61"
],
 "AttachmentIndex": 0,
 "MACAddress": "0e:10:e2:01:bd:91",
 "IPv4SubnetCIDRBlock": "10.0.2.0/24",
 "PrivateDNSName": "ip-10-0-2-61.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "10.0.2.1/24"
 }
]
 }
]
}

Example task with tags with an error metadata response

When querying the ${ECS_CONTAINER_METADATA_URI_V4}/taskWithTags endpoint you
are returned metadata about the task, including the task and container instance tags. If there
is an error retrieving the tagging data, the error is returned in the response. The following is an
example output for when the IAM role associated with the container instance doesn't have the
ecs:ListTagsForResource permission allowed.

{
 "Cluster": "default",
 "TaskARN": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "Family": "curltest",
 "ServiceName": "MyService",
 "Revision": "26",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "PullStartedAt": "2020-10-02T00:43:06.202617438Z",
 "PullStoppedAt": "2020-10-02T00:43:06.31288465Z",
 "AvailabilityZone": "us-west-2d",
 "VPCID": "vpc-1234567890abcdef0",
 "Errors": [
 {

Task metadata available for Amazon ECS tasks on EC2 1375

Amazon Elastic Container Service Developer Guide

 "ErrorField": "ContainerInstanceTags",
 "ErrorCode": "AccessDeniedException",
 "ErrorMessage": "User: arn:aws:sts::111122223333:assumed-
role/ecsInstanceRole/i-0744a608689EXAMPLE is not authorized to perform:
 ecs:ListTagsForResource on resource: arn:aws:ecs:us-west-2:111122223333:container-
instance/default/2dd1b186f39845a584488d2ef155c131",
 "StatusCode": 400,
 "RequestId": "cd597ef0-272b-4643-9bd2-1de469870fa6",
 "ResourceARN": "arn:aws:ecs:us-west-2:111122223333:container-instance/
default/2dd1b186f39845a584488d2ef155c131"
 },
 {
 "ErrorField": "TaskTags",
 "ErrorCode": "AccessDeniedException",
 "ErrorMessage": "User: arn:aws:sts::111122223333:assumed-
role/ecsInstanceRole/i-0744a608689EXAMPLE is not authorized to perform:
 ecs:ListTagsForResource on resource: arn:aws:ecs:us-west-2:111122223333:task/
default/9ef30e4b7aa44d0db562749cff4983f3",
 "StatusCode": 400,
 "RequestId": "862c5986-6cd2-4aa6-87cc-70be395531e1",
 "ResourceARN": "arn:aws:ecs:us-west-2:111122223333:task/
default/9ef30e4b7aa44d0db562749cff4983f3"
 }
],
 "LaunchType": "EC2",
 "Containers": [
 {
 "DockerId":
 "598cba581fe3f939459eaba1e071d5c93bb2c49b7d1ba7db6bb19deeb70d8e38",
 "Name": "~internal~ecs~pause",
 "DockerName": "ecs-curltest-26-internalecspause-e292d586b6f9dade4a00",
 "Image": "amazon/amazon-ecs-pause:0.1.0",
 "ImageID": "",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "~internal~ecs~pause",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "com.amazonaws.ecs.task-definition-family": "curltest",
 "com.amazonaws.ecs.task-definition-version": "26"
 },
 "DesiredStatus": "RESOURCES_PROVISIONED",
 "KnownStatus": "RESOURCES_PROVISIONED",
 "Limits": {

Task metadata available for Amazon ECS tasks on EC2 1376

Amazon Elastic Container Service Developer Guide

 "CPU": 0,
 "Memory": 0
 },
 "CreatedAt": "2020-10-02T00:43:05.602352471Z",
 "StartedAt": "2020-10-02T00:43:06.076707576Z",
 "Type": "CNI_PAUSE",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.61"
],
 "AttachmentIndex": 0,
 "MACAddress": "0e:10:e2:01:bd:91",
 "IPv4SubnetCIDRBlock": "10.0.2.0/24",
 "PrivateDNSName": "ip-10-0-2-61.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "10.0.2.1/24"
 }
]
 },
 {
 "DockerId":
 "ee08638adaaf009d78c248913f629e38299471d45fe7dc944d1039077e3424ca",
 "Name": "curl",
 "DockerName": "ecs-curltest-26-curl-a0e7dba5aca6d8cb2e00",
 "Image": "111122223333.dkr.ecr.us-west-2.amazonaws.com/curltest:latest",
 "ImageID":
 "sha256:d691691e9652791a60114e67b365688d20d19940dde7c4736ea30e660d8d3553",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/
default/158d1c8083dd49d6b527399fd6414f5c",
 "com.amazonaws.ecs.task-definition-family": "curltest",
 "com.amazonaws.ecs.task-definition-version": "26"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 10,
 "Memory": 128
 },
 "CreatedAt": "2020-10-02T00:43:06.326590752Z",
 "StartedAt": "2020-10-02T00:43:06.767535449Z",

Task metadata available for Amazon ECS tasks on EC2 1377

Amazon Elastic Container Service Developer Guide

 "Type": "NORMAL",
 "LogDriver": "awslogs",
 "LogOptions": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/metadata",
 "awslogs-region": "us-west-2",
 "awslogs-stream": "ecs/curl/158d1c8083dd49d6b527399fd6414f5c"
 },
 "ContainerARN": "arn:aws:ecs:us-west-2:111122223333:container/
abb51bdd-11b4-467f-8f6c-adcfe1fe059d",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.61"
],
 "AttachmentIndex": 0,
 "MACAddress": "0e:10:e2:01:bd:91",
 "IPv4SubnetCIDRBlock": "10.0.2.0/24",
 "PrivateDNSName": "ip-10-0-2-61.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "10.0.2.1/24"
 }
]
 }
]
}

Example container stats response

When querying the ${ECS_CONTAINER_METADATA_URI_V4}/stats endpoint you are returned
network metrics for the container. For Amazon ECS tasks that use the awsvpc or bridge network
modes hosted on Amazon EC2 instances running at least version 1.43.0 of the container agent,
there will be additional network rate stats included in the response. For all other tasks, the
response will only include the cumulative network stats.

The following is an example output from an Amazon ECS task on Amazon EC2 that uses the
bridge network mode.

{
 "read": "2020-10-02T00:51:13.410254284Z",
 "preread": "2020-10-02T00:51:12.406202398Z",
 "pids_stats": {
 "current": 3

Task metadata available for Amazon ECS tasks on EC2 1378

Amazon Elastic Container Service Developer Guide

 },
 "blkio_stats": {
 "io_service_bytes_recursive": [

],
 "io_serviced_recursive": [

],
 "io_queue_recursive": [

],
 "io_service_time_recursive": [

],
 "io_wait_time_recursive": [

],
 "io_merged_recursive": [

],
 "io_time_recursive": [

],
 "sectors_recursive": [

]
 },
 "num_procs": 0,
 "storage_stats": {

 },
 "cpu_stats": {
 "cpu_usage": {
 "total_usage": 360968065,
 "percpu_usage": [
 182359190,
 178608875
],
 "usage_in_kernelmode": 40000000,
 "usage_in_usermode": 290000000
 },
 "system_cpu_usage": 13939680000000,
 "online_cpus": 2,
 "throttling_data": {

Task metadata available for Amazon ECS tasks on EC2 1379

Amazon Elastic Container Service Developer Guide

 "periods": 0,
 "throttled_periods": 0,
 "throttled_time": 0
 }
 },
 "precpu_stats": {
 "cpu_usage": {
 "total_usage": 360968065,
 "percpu_usage": [
 182359190,
 178608875
],
 "usage_in_kernelmode": 40000000,
 "usage_in_usermode": 290000000
 },
 "system_cpu_usage": 13937670000000,
 "online_cpus": 2,
 "throttling_data": {
 "periods": 0,
 "throttled_periods": 0,
 "throttled_time": 0
 }
 },
 "memory_stats": {
 "usage": 1806336,
 "max_usage": 6299648,
 "stats": {
 "active_anon": 606208,
 "active_file": 0,
 "cache": 0,
 "dirty": 0,
 "hierarchical_memory_limit": 134217728,
 "hierarchical_memsw_limit": 268435456,
 "inactive_anon": 0,
 "inactive_file": 0,
 "mapped_file": 0,
 "pgfault": 4185,
 "pgmajfault": 0,
 "pgpgin": 2926,
 "pgpgout": 2778,
 "rss": 606208,
 "rss_huge": 0,
 "total_active_anon": 606208,
 "total_active_file": 0,

Task metadata available for Amazon ECS tasks on EC2 1380

Amazon Elastic Container Service Developer Guide

 "total_cache": 0,
 "total_dirty": 0,
 "total_inactive_anon": 0,
 "total_inactive_file": 0,
 "total_mapped_file": 0,
 "total_pgfault": 4185,
 "total_pgmajfault": 0,
 "total_pgpgin": 2926,
 "total_pgpgout": 2778,
 "total_rss": 606208,
 "total_rss_huge": 0,
 "total_unevictable": 0,
 "total_writeback": 0,
 "unevictable": 0,
 "writeback": 0
 },
 "limit": 134217728
 },
 "name": "/ecs-curltest-26-curl-c2e5f6e0cf91b0bead01",
 "id": "5fc21e5b015f899d22618f8aede80b6d70d71b2a75465ea49d9462c8f3d2d3af",
 "networks": {
 "eth0": {
 "rx_bytes": 84,
 "rx_packets": 2,
 "rx_errors": 0,
 "rx_dropped": 0,
 "tx_bytes": 84,
 "tx_packets": 2,
 "tx_errors": 0,
 "tx_dropped": 0
 }
 },
 "network_rate_stats": {
 "rx_bytes_per_sec": 0,
 "tx_bytes_per_sec": 0
 }
}

Example task stats response

When querying the ${ECS_CONTAINER_METADATA_URI_V4}/task/stats endpoint you are
returned network metrics about the task the container is part of. The following is an example
output.

Task metadata available for Amazon ECS tasks on EC2 1381

Amazon Elastic Container Service Developer Guide

{
 "01999f2e5c6cf4df3873f28950e6278813408f281c54778efec860d0caad4854": {
 "read": "2020-10-02T00:51:32.51467703Z",
 "preread": "2020-10-02T00:51:31.50860463Z",
 "pids_stats": {
 "current": 1
 },
 "blkio_stats": {
 "io_service_bytes_recursive": [

],
 "io_serviced_recursive": [

],
 "io_queue_recursive": [

],
 "io_service_time_recursive": [

],
 "io_wait_time_recursive": [

],
 "io_merged_recursive": [

],
 "io_time_recursive": [

],
 "sectors_recursive": [

]
 },
 "num_procs": 0,
 "storage_stats": {

 },
 "cpu_stats": {
 "cpu_usage": {
 "total_usage": 177232665,
 "percpu_usage": [
 13376224,
 163856441

Task metadata available for Amazon ECS tasks on EC2 1382

Amazon Elastic Container Service Developer Guide

],
 "usage_in_kernelmode": 0,
 "usage_in_usermode": 160000000
 },
 "system_cpu_usage": 13977820000000,
 "online_cpus": 2,
 "throttling_data": {
 "periods": 0,
 "throttled_periods": 0,
 "throttled_time": 0
 }
 },
 "precpu_stats": {
 "cpu_usage": {
 "total_usage": 177232665,
 "percpu_usage": [
 13376224,
 163856441
],
 "usage_in_kernelmode": 0,
 "usage_in_usermode": 160000000
 },
 "system_cpu_usage": 13975800000000,
 "online_cpus": 2,
 "throttling_data": {
 "periods": 0,
 "throttled_periods": 0,
 "throttled_time": 0
 }
 },
 "memory_stats": {
 "usage": 532480,
 "max_usage": 6279168,
 "stats": {
 "active_anon": 40960,
 "active_file": 0,
 "cache": 0,
 "dirty": 0,
 "hierarchical_memory_limit": 9223372036854771712,
 "hierarchical_memsw_limit": 9223372036854771712,
 "inactive_anon": 0,
 "inactive_file": 0,
 "mapped_file": 0,
 "pgfault": 2033,

Task metadata available for Amazon ECS tasks on EC2 1383

Amazon Elastic Container Service Developer Guide

 "pgmajfault": 0,
 "pgpgin": 1734,
 "pgpgout": 1724,
 "rss": 40960,
 "rss_huge": 0,
 "total_active_anon": 40960,
 "total_active_file": 0,
 "total_cache": 0,
 "total_dirty": 0,
 "total_inactive_anon": 0,
 "total_inactive_file": 0,
 "total_mapped_file": 0,
 "total_pgfault": 2033,
 "total_pgmajfault": 0,
 "total_pgpgin": 1734,
 "total_pgpgout": 1724,
 "total_rss": 40960,
 "total_rss_huge": 0,
 "total_unevictable": 0,
 "total_writeback": 0,
 "unevictable": 0,
 "writeback": 0
 },
 "limit": 4073377792
 },
 "name": "/ecs-curltest-26-internalecspause-a6bcc3dbadfacfe85300",
 "id": "01999f2e5c6cf4df3873f28950e6278813408f281c54778efec860d0caad4854",
 "networks": {
 "eth0": {
 "rx_bytes": 84,
 "rx_packets": 2,
 "rx_errors": 0,
 "rx_dropped": 0,
 "tx_bytes": 84,
 "tx_packets": 2,
 "tx_errors": 0,
 "tx_dropped": 0
 }
 },
 "network_rate_stats": {
 "rx_bytes_per_sec": 0,
 "tx_bytes_per_sec": 0
 }
 },

Task metadata available for Amazon ECS tasks on EC2 1384

Amazon Elastic Container Service Developer Guide

 "5fc21e5b015f899d22618f8aede80b6d70d71b2a75465ea49d9462c8f3d2d3af": {
 "read": "2020-10-02T00:51:32.512771349Z",
 "preread": "2020-10-02T00:51:31.510597736Z",
 "pids_stats": {
 "current": 3
 },
 "blkio_stats": {
 "io_service_bytes_recursive": [

],
 "io_serviced_recursive": [

],
 "io_queue_recursive": [

],
 "io_service_time_recursive": [

],
 "io_wait_time_recursive": [

],
 "io_merged_recursive": [

],
 "io_time_recursive": [

],
 "sectors_recursive": [

]
 },
 "num_procs": 0,
 "storage_stats": {

 },
 "cpu_stats": {
 "cpu_usage": {
 "total_usage": 379075681,
 "percpu_usage": [
 191355275,
 187720406
],
 "usage_in_kernelmode": 60000000,

Task metadata available for Amazon ECS tasks on EC2 1385

Amazon Elastic Container Service Developer Guide

 "usage_in_usermode": 310000000
 },
 "system_cpu_usage": 13977800000000,
 "online_cpus": 2,
 "throttling_data": {
 "periods": 0,
 "throttled_periods": 0,
 "throttled_time": 0
 }
 },
 "precpu_stats": {
 "cpu_usage": {
 "total_usage": 378825197,
 "percpu_usage": [
 191104791,
 187720406
],
 "usage_in_kernelmode": 60000000,
 "usage_in_usermode": 310000000
 },
 "system_cpu_usage": 13975800000000,
 "online_cpus": 2,
 "throttling_data": {
 "periods": 0,
 "throttled_periods": 0,
 "throttled_time": 0
 }
 },
 "memory_stats": {
 "usage": 1814528,
 "max_usage": 6299648,
 "stats": {
 "active_anon": 606208,
 "active_file": 0,
 "cache": 0,
 "dirty": 0,
 "hierarchical_memory_limit": 134217728,
 "hierarchical_memsw_limit": 268435456,
 "inactive_anon": 0,
 "inactive_file": 0,
 "mapped_file": 0,
 "pgfault": 5377,
 "pgmajfault": 0,
 "pgpgin": 3613,

Task metadata available for Amazon ECS tasks on EC2 1386

Amazon Elastic Container Service Developer Guide

 "pgpgout": 3465,
 "rss": 606208,
 "rss_huge": 0,
 "total_active_anon": 606208,
 "total_active_file": 0,
 "total_cache": 0,
 "total_dirty": 0,
 "total_inactive_anon": 0,
 "total_inactive_file": 0,
 "total_mapped_file": 0,
 "total_pgfault": 5377,
 "total_pgmajfault": 0,
 "total_pgpgin": 3613,
 "total_pgpgout": 3465,
 "total_rss": 606208,
 "total_rss_huge": 0,
 "total_unevictable": 0,
 "total_writeback": 0,
 "unevictable": 0,
 "writeback": 0
 },
 "limit": 134217728
 },
 "name": "/ecs-curltest-26-curl-c2e5f6e0cf91b0bead01",
 "id": "5fc21e5b015f899d22618f8aede80b6d70d71b2a75465ea49d9462c8f3d2d3af",
 "networks": {
 "eth0": {
 "rx_bytes": 84,
 "rx_packets": 2,
 "rx_errors": 0,
 "rx_dropped": 0,
 "tx_bytes": 84,
 "tx_packets": 2,
 "tx_errors": 0,
 "tx_dropped": 0
 }
 },
 "network_rate_stats": {
 "rx_bytes_per_sec": 0,
 "tx_bytes_per_sec": 0
 }
 }
}

Task metadata available for Amazon ECS tasks on EC2 1387

Amazon Elastic Container Service Developer Guide

Amazon ECS task metadata endpoint version 3

Important

The task metadata version 3 endpoint is no longer being actively maintained. We
recommend that you update the task metadata version 4 endpoint to get the latest
metadata endpoint information. For more information, see the section called “Task
metadata endpoint version 4”.
If you are using Amazon ECS tasks hosted on AWS Fargate, see Amazon ECS task metadata
endpoint version 3 for tasks on Fargate.

Beginning with version 1.21.0 of the Amazon ECS container agent, the agent injects an
environment variable called ECS_CONTAINER_METADATA_URI into each container in a task. When
you query the task metadata version 3 endpoint, various task metadata and Docker stats are
available to tasks. For tasks that use the bridge network mode, network metrics are available
when querying the /stats endpoints.

The task metadata endpoint version 3 feature is enabled by default for tasks that use the Fargate
launch type on platform version v1.3.0 or later and tasks that use the EC2 launch type and are
launched on Amazon EC2 Linux infrastructure running at least version 1.21.0 of the Amazon ECS
container agent or on Amazon EC2 Windows infrastructure running at least version 1.54.0 of the
Amazon ECS container agent and use awsvpc network mode. For more information, see Amazon
ECS Linux container instance management.

You can add support for this feature on older container instances by updating the agent to the
latest version. For more information, see Updating the Amazon ECS container agent.

Important

For tasks using the Fargate launch type and platform versions prior to v1.3.0, the task
metadata version 2 endpoint is supported. For more information, see Amazon ECS task
metadata endpoint version 2.

Task Metadata endpoint version 3 paths

The following task metadata endpoints are available to containers:

Task metadata available for Amazon ECS tasks on EC2 1388

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint-v3-fargate.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint-v3-fargate.html
https://docs.docker.com/reference/api/engine/version/v1.30/#tag/Container/operation/ContainerStats

Amazon Elastic Container Service Developer Guide

${ECS_CONTAINER_METADATA_URI}

This path returns metadata JSON for the container.

${ECS_CONTAINER_METADATA_URI}/task

This path returns metadata JSON for the task, including a list of the container IDs and names
for all of the containers associated with the task. For more information about the response for
this endpoint, see Amazon ECS task metadata v3 JSON response.

${ECS_CONTAINER_METADATA_URI}/taskWithTags

This path returns the metadata for the task included in the /task endpoint in addition to the
task and container instance tags that can be retrieved using the ListTagsForResource API.

${ECS_CONTAINER_METADATA_URI}/stats

This path returns Docker stats JSON for the specific Docker container. For more information
about each of the returned stats, see ContainerStats in the Docker API documentation.

${ECS_CONTAINER_METADATA_URI}/task/stats

This path returns Docker stats JSON for all of the containers associated with the task. For
more information about each of the returned stats, see ContainerStats in the Docker API
documentation.

Amazon ECS task metadata v3 JSON response

The following information is returned from the task metadata endpoint
(${ECS_CONTAINER_METADATA_URI}/task) JSON response.

Cluster

The Amazon Resource Name (ARN) or short name of the Amazon ECS cluster to which the task
belongs.

TaskARN

The Amazon Resource Name (ARN) of the task to which the container belongs.

Family

The family of the Amazon ECS task definition for the task.

Revision

The revision of the Amazon ECS task definition for the task.

Task metadata available for Amazon ECS tasks on EC2 1389

https://docs.docker.com/reference/api/engine/version/v1.30/#tag/Container/operation/ContainerStats
https://docs.docker.com/reference/api/engine/version/v1.30/#tag/Container/operation/ContainerStats

Amazon Elastic Container Service Developer Guide

DesiredStatus

The desired status for the task from Amazon ECS.

KnownStatus

The known status for the task from Amazon ECS.

Limits

The resource limits specified at the task level, such as CPU (expressed in vCPUs) and memory.
This parameter is omitted if no resource limits are defined.

PullStartedAt

The timestamp for when the first container image pull began.

PullStoppedAt

The timestamp for when the last container image pull finished.

AvailabilityZone

The Availability Zone the task is in.

Note

The Availability Zone metadata is only available for Fargate tasks using platform version
1.4 or later (Linux) or 1.0.0 or later (Windows).

Containers

A list of container metadata for each container associated with the task.

DockerId

The Docker ID for the container.

Name

The name of the container as specified in the task definition.

DockerName

The name of the container supplied to Docker. The Amazon ECS container agent generates
a unique name for the container to avoid name collisions when multiple copies of the same
task definition are run on a single instance.

Task metadata available for Amazon ECS tasks on EC2 1390

Amazon Elastic Container Service Developer Guide

Image

The image for the container.

ImageID

The SHA-256 digest for the image.

Ports

Any ports exposed for the container. This parameter is omitted if there are no exposed ports.

Labels

Any labels applied to the container. This parameter is omitted if there are no labels applied.

DesiredStatus

The desired status for the container from Amazon ECS.

KnownStatus

The known status for the container from Amazon ECS.

ExitCode

The exit code for the container. This parameter is omitted if the container has not exited.

Limits

The resource limits specified at the container level, such as CPU (expressed in CPU units) and
memory. This parameter is omitted if no resource limits are defined.

CreatedAt

The time stamp for when the container was created. This parameter is omitted if the
container has not been created yet.

StartedAt

The time stamp for when the container started. This parameter is omitted if the container
has not started yet.

FinishedAt

The time stamp for when the container stopped. This parameter is omitted if the container
has not stopped yet.

Task metadata available for Amazon ECS tasks on EC2 1391

Amazon Elastic Container Service Developer Guide

Type

The type of the container. Containers that are specified in your task definition are of type
NORMAL. You can ignore other container types, which are used for internal task resource
provisioning by the Amazon ECS container agent.

Networks

The network information for the container, such as the network mode and IP address. This
parameter is omitted if no network information is defined.

ClockDrift

The information about the difference between the reference time and the system time. This
applies to the Linux operating system. This capability uses Amazon Time Sync Service to
measure clock accuracy and provide the clock error bound for containers. For more information,
see Set the time for your Linux instance in the Amazon EC2 User Guide for Linux instances.

ReferenceTime

The basis of clock accuracy. Amazon ECS uses the Coordinated Universal Time (UTC) global
standard through NTP, for example 2021-09-07T16:57:44Z.

ClockErrorBound

The measure of clock error, defined as the offset to UTC. This error is the difference in
milliseconds between the reference time and the system time.

ClockSynchronizationStatus

Indicates whether the most recent synchronization attempt between the system time and
the reference time was successful.

The valid values are SYNCHRONIZED and NOT_SYNCHRONIZED.

ExecutionStoppedAt

The time stamp for when the tasks DesiredStatus moved to STOPPED. This occurs when an
essential container moves to STOPPED.

Amazon ECS task metadata v3 examples

The following examples show sample outputs from the task metadata endpoints.

Task metadata available for Amazon ECS tasks on EC2 1392

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html

Amazon Elastic Container Service Developer Guide

Example Container Metadata Response

When querying the ${ECS_CONTAINER_METADATA_URI} endpoint you are returned only
metadata about the container itself. The following is an example output.

{
 "DockerId": "43481a6ce4842eec8fe72fc28500c6b52edcc0917f105b83379f88cac1ff3946",
 "Name": "nginx-curl",
 "DockerName": "ecs-nginx-5-nginx-curl-ccccb9f49db0dfe0d901",
 "Image": "nrdlngr/nginx-curl",
 "ImageID":
 "sha256:2e00ae64383cfc865ba0a2ba37f61b50a120d2d9378559dcd458dc0de47bc165",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "nginx-curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-
east-2:012345678910:task/9781c248-0edd-4cdb-9a93-f63cb662a5d3",
 "com.amazonaws.ecs.task-definition-family": "nginx",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 512,
 "Memory": 512
 },
 "CreatedAt": "2018-02-01T20:55:10.554941919Z",
 "StartedAt": "2018-02-01T20:55:11.064236631Z",
 "Type": "NORMAL",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.106"
]
 }
]
}

Example task metadata response

When querying the ${ECS_CONTAINER_METADATA_URI}/task endpoint you are returned
metadata about the task the container is part of. The following is an example output.

Task metadata available for Amazon ECS tasks on EC2 1393

Amazon Elastic Container Service Developer Guide

The following JSON response is for a single-container task.

{
 "Cluster": "default",
 "TaskARN": "arn:aws:ecs:us-east-2:012345678910:task/9781c248-0edd-4cdb-9a93-
f63cb662a5d3",
 "Family": "nginx",
 "Revision": "5",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Containers": [
 {
 "DockerId": "731a0d6a3b4210e2448339bc7015aaa79bfe4fa256384f4102db86ef94cbbc4c",
 "Name": "~internal~ecs~pause",
 "DockerName": "ecs-nginx-5-internalecspause-acc699c0cbf2d6d11700",
 "Image": "amazon/amazon-ecs-pause:0.1.0",
 "ImageID": "",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "~internal~ecs~pause",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-
east-2:012345678910:task/9781c248-0edd-4cdb-9a93-f63cb662a5d3",
 "com.amazonaws.ecs.task-definition-family": "nginx",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RESOURCES_PROVISIONED",
 "KnownStatus": "RESOURCES_PROVISIONED",
 "Limits": {
 "CPU": 0,
 "Memory": 0
 },
 "CreatedAt": "2018-02-01T20:55:08.366329616Z",
 "StartedAt": "2018-02-01T20:55:09.058354915Z",
 "Type": "CNI_PAUSE",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.106"
]
 }
]
 },
 {

Task metadata available for Amazon ECS tasks on EC2 1394

Amazon Elastic Container Service Developer Guide

 "DockerId": "43481a6ce4842eec8fe72fc28500c6b52edcc0917f105b83379f88cac1ff3946",
 "Name": "nginx-curl",
 "DockerName": "ecs-nginx-5-nginx-curl-ccccb9f49db0dfe0d901",
 "Image": "nrdlngr/nginx-curl",
 "ImageID":
 "sha256:2e00ae64383cfc865ba0a2ba37f61b50a120d2d9378559dcd458dc0de47bc165",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "nginx-curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-
east-2:012345678910:task/9781c248-0edd-4cdb-9a93-f63cb662a5d3",
 "com.amazonaws.ecs.task-definition-family": "nginx",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 512,
 "Memory": 512
 },
 "CreatedAt": "2018-02-01T20:55:10.554941919Z",
 "StartedAt": "2018-02-01T20:55:11.064236631Z",
 "Type": "NORMAL",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.106"
]
 }
]
 }
],
 "PullStartedAt": "2018-02-01T20:55:09.372495529Z",
 "PullStoppedAt": "2018-02-01T20:55:10.552018345Z",
 "AvailabilityZone": "us-east-2b"
}

Task metadata available for Amazon ECS tasks on EC2 1395

Amazon Elastic Container Service Developer Guide

Amazon ECS task metadata endpoint version 2

Important

The task metadata version 2 endpoint is no longer being actively maintained. We
recommend that you update the task metadata version 4 endpoint to get the latest
metadata endpoint information. For more information, see the section called “Task
metadata endpoint version 4”.

Beginning with version 1.17.0 of the Amazon ECS container agent, various task metadata and
Docker stats are available to tasks that use the awsvpc network mode at an HTTP endpoint that is
provided by the Amazon ECS container agent.

All containers belonging to tasks that are launched with the awsvpc network mode receive a local
IPv4 address within a predefined link-local address range. When a container queries the metadata
endpoint, the Amazon ECS container agent can determine which task the container belongs to
based on its unique IP address, and metadata and stats for that task are returned.

Enabling task metadata

The task metadata version 2 feature is enabled by default for the following:

• Tasks using the Fargate launch type that use platform version v1.1.0 or later. For more
information, see Fargate platform versions for Amazon ECS.

• Tasks using the EC2 launch type that also use the awsvpc network mode and are launched on
Amazon EC2 Linux infrastructure running at least version 1.17.0 of the Amazon ECS container
agent or on Amazon EC2 Windows infrastructure running at least version 1.54.0 of the
Amazon ECS container agent. For more information, see Amazon ECS Linux container instance
management.

You can add support for this feature on older container instances by updating the agent to the
latest version. For more information, see Updating the Amazon ECS container agent.

Task metadata endpoint paths

The following API endpoints are available to containers:

Task metadata available for Amazon ECS tasks on EC2 1396

https://docs.docker.com/reference/api/engine/version/v1.30/#tag/Container/operation/ContainerStats

Amazon Elastic Container Service Developer Guide

169.254.170.2/v2/metadata

This endpoint returns metadata JSON for the task, including a list of the container IDs and
names for all of the containers associated with the task. For more information about the
response for this endpoint, see Task metadata JSON response.

169.254.170.2/v2/metadata/<container-id>

This endpoint returns metadata JSON for the specified Docker container ID.

169.254.170.2/v2/metadata/taskWithTags

This path returns the metadata for the task included in the /task endpoint in addition to the
task and container instance tags that can be retrieved using the ListTagsForResource API.

169.254.170.2/v2/stats

This endpoint returns Docker stats JSON for all of the containers associated with the task.
For more information about each of the returned stats, see ContainerStats in the Docker API
documentation.

169.254.170.2/v2/stats/<container-id>

This endpoint returns Docker stats JSON for the specified Docker container ID. For more
information about each of the returned stats, see ContainerStats in the Docker API
documentation.

Task metadata JSON response

The following information is returned from the task metadata endpoint (169.254.170.2/v2/
metadata) JSON response.

Cluster

The Amazon Resource Name (ARN) or short name of the Amazon ECS cluster to which the task
belongs.

TaskARN

The Amazon Resource Name (ARN) of the task to which the container belongs.

Family

The family of the Amazon ECS task definition for the task.

Task metadata available for Amazon ECS tasks on EC2 1397

https://docs.docker.com/reference/api/engine/version/v1.30/#tag/Container/operation/ContainerStats
https://docs.docker.com/reference/api/engine/version/v1.30/#tag/Container/operation/ContainerStats

Amazon Elastic Container Service Developer Guide

Revision

The revision of the Amazon ECS task definition for the task.

DesiredStatus

The desired status for the task from Amazon ECS.

KnownStatus

The known status for the task from Amazon ECS.

Limits

The resource limits specified at the task level, such as CPU (expressed in vCPUs) and memory.
This parameter is omitted if no resource limits are defined.

PullStartedAt

The timestamp for when the first container image pull began.

PullStoppedAt

The timestamp for when the last container image pull finished.

AvailabilityZone

The Availability Zone the task is in.

Note

The Availability Zone metadata is only available for Fargate tasks using platform version
1.4 or later (Linux) or 1.0.0 or later (Windows).

Containers

A list of container metadata for each container associated with the task.

DockerId

The Docker ID for the container.

Name

The name of the container as specified in the task definition.

Task metadata available for Amazon ECS tasks on EC2 1398

Amazon Elastic Container Service Developer Guide

DockerName

The name of the container supplied to Docker. The Amazon ECS container agent generates
a unique name for the container to avoid name collisions when multiple copies of the same
task definition are run on a single instance.

Image

The image for the container.

ImageID

The SHA-256 digest for the image.

Ports

Any ports exposed for the container. This parameter is omitted if there are no exposed ports.

Labels

Any labels applied to the container. This parameter is omitted if there are no labels applied.

DesiredStatus

The desired status for the container from Amazon ECS.

KnownStatus

The known status for the container from Amazon ECS.

ExitCode

The exit code for the container. This parameter is omitted if the container has not exited.

Limits

The resource limits specified at the container level, such as CPU (expressed in CPU units) and
memory. This parameter is omitted if no resource limits are defined.

CreatedAt

The time stamp for when the container was created. This parameter is omitted if the
container has not been created yet.

StartedAt

The time stamp for when the container started. This parameter is omitted if the container
has not started yet.

Task metadata available for Amazon ECS tasks on EC2 1399

Amazon Elastic Container Service Developer Guide

FinishedAt

The time stamp for when the container stopped. This parameter is omitted if the container
has not stopped yet.

Type

The type of the container. Containers that are specified in your task definition are of type
NORMAL. You can ignore other container types, which are used for internal task resource
provisioning by the Amazon ECS container agent.

Networks

The network information for the container, such as the network mode and IP address. This
parameter is omitted if no network information is defined.

ClockDrift

The information about the difference between the reference time and the system time. This
applies to the Linux operating system. This capability uses Amazon Time Sync Service to
measure clock accuracy and provide the clock error bound for containers. For more information,
see Set the time for your Linux instance in the Amazon EC2 User Guide for Linux instances.

ReferenceTime

The basis of clock accuracy. Amazon ECS uses the Coordinated Universal Time (UTC) global
standard through NTP, for example 2021-09-07T16:57:44Z.

ClockErrorBound

The measure of clock error, defined as the offset to UTC. This error is the difference in
milliseconds between the reference time and the system time.

ClockSynchronizationStatus

Indicates whether the most recent synchronization attempt between the system time and
the reference time was successful.

The valid values are SYNCHRONIZED and NOT_SYNCHRONIZED.

ExecutionStoppedAt

The time stamp for when the tasks DesiredStatus moved to STOPPED. This occurs when an
essential container moves to STOPPED.

Task metadata available for Amazon ECS tasks on EC2 1400

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html

Amazon Elastic Container Service Developer Guide

Example task metadata response

The following JSON response is for a single-container task.

{
 "Cluster": "default",
 "TaskARN": "arn:aws:ecs:us-east-2:012345678910:task/9781c248-0edd-4cdb-9a93-
f63cb662a5d3",
 "Family": "nginx",
 "Revision": "5",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Containers": [
 {
 "DockerId": "731a0d6a3b4210e2448339bc7015aaa79bfe4fa256384f4102db86ef94cbbc4c",
 "Name": "~internal~ecs~pause",
 "DockerName": "ecs-nginx-5-internalecspause-acc699c0cbf2d6d11700",
 "Image": "amazon/amazon-ecs-pause:0.1.0",
 "ImageID": "",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "~internal~ecs~pause",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-
east-2:012345678910:task/9781c248-0edd-4cdb-9a93-f63cb662a5d3",
 "com.amazonaws.ecs.task-definition-family": "nginx",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RESOURCES_PROVISIONED",
 "KnownStatus": "RESOURCES_PROVISIONED",
 "Limits": {
 "CPU": 0,
 "Memory": 0
 },
 "CreatedAt": "2018-02-01T20:55:08.366329616Z",
 "StartedAt": "2018-02-01T20:55:09.058354915Z",
 "Type": "CNI_PAUSE",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.106"
]
 }
]

Task metadata available for Amazon ECS tasks on EC2 1401

Amazon Elastic Container Service Developer Guide

 },
 {
 "DockerId": "43481a6ce4842eec8fe72fc28500c6b52edcc0917f105b83379f88cac1ff3946",
 "Name": "nginx-curl",
 "DockerName": "ecs-nginx-5-nginx-curl-ccccb9f49db0dfe0d901",
 "Image": "nrdlngr/nginx-curl",
 "ImageID":
 "sha256:2e00ae64383cfc865ba0a2ba37f61b50a120d2d9378559dcd458dc0de47bc165",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "nginx-curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-
east-2:012345678910:task/9781c248-0edd-4cdb-9a93-f63cb662a5d3",
 "com.amazonaws.ecs.task-definition-family": "nginx",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 512,
 "Memory": 512
 },
 "CreatedAt": "2018-02-01T20:55:10.554941919Z",
 "StartedAt": "2018-02-01T20:55:11.064236631Z",
 "Type": "NORMAL",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.106"
]
 }
]
 }
],
 "PullStartedAt": "2018-02-01T20:55:09.372495529Z",
 "PullStoppedAt": "2018-02-01T20:55:10.552018345Z",
 "AvailabilityZone": "us-east-2b"
}

Task metadata available for Amazon ECS tasks on EC2 1402

Amazon Elastic Container Service Developer Guide

Amazon ECS task metadata available for tasks on Fargate

Amazon ECS on Fargate provides a method to retrieve various metadata, network metrics, and
Docker stats about your containers and the tasks they are a part of. This is referred to as the task
metadata endpoint. The following task metadata endpoint versions are available for Amazon ECS
on Fargate tasks:

• Task metadata endpoint version 4 – Available for tasks that use platform version 1.4.0 or later.

• Task metadata endpoint version 3 – Available for tasks that use platform version 1.1.0 or later.

All containers belonging to tasks that are launched with the awsvpc network mode receive a local
IPv4 address within a predefined link-local address range. When a container queries the metadata
endpoint, the container agent can determine which task the container belongs to based on its
unique IP address, and metadata and stats for that task are returned.

Topics

• Amazon ECS task metadata endpoint version 4 for tasks on Fargate

• Amazon ECS task metadata endpoint version 3 for tasks on Fargate

Amazon ECS task metadata endpoint version 4 for tasks on Fargate

Important

If you are using Amazon ECS tasks hosted on Amazon EC2 instances, see Amazon ECS task
metadata endpoint.

Beginning with Fargate platform version 1.4.0, an environment variable named
ECS_CONTAINER_METADATA_URI_V4 is injected into each container in a task. When you query the
task metadata endpoint version 4, various task metadata and Docker stats are available to tasks.

The task metadata endpoint version 4 functions like the version 3 endpoint but provides additional
network metadata for your containers and tasks. Additional network metrics are available when
querying the /stats endpoints as well.

The task metadata endpoint is on by default for all Amazon ECS tasks run on AWS Fargate that use
platform version 1.4.0 or later.

Task metadata available for tasks on Fargate 1403

https://docs.docker.com/reference/api/engine/version/v1.30/#tag/Container/operation/ContainerStats
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint.html
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

Note

To avoid the need to create new task metadata endpoint versions in the future, additional
metadata may be added to the version 4 output. We will not remove any existing metadata
or change the metadata field names.

Fargate task metadata endpoint version 4 paths

The following task metadata endpoints are available to containers:

${ECS_CONTAINER_METADATA_URI_V4}

This path returns metadata for the container.

${ECS_CONTAINER_METADATA_URI_V4}/task

This path returns metadata for the task, including a list of the container IDs and names for all
of the containers associated with the task. For more information about the response for this
endpoint, see Amazon ECS task metadata v4 JSON response for tasks on Fargate.

${ECS_CONTAINER_METADATA_URI_V4}/stats

This path returns Docker stats for the Docker container. For more information about each of the
returned stats, see ContainerStats in the Docker API documentation.

Note

Amazon ECS tasks on AWS Fargate require that the container run for ~1 second prior to
returning the container stats.

${ECS_CONTAINER_METADATA_URI_V4}/task/stats

This path returns Docker stats for all of the containers associated with the task. For
more information about each of the returned stats, see ContainerStats in the Docker API
documentation.

Task metadata available for tasks on Fargate 1404

https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

Note

Amazon ECS tasks on AWS Fargate require that the container run for ~1 second prior to
returning the container stats.

Amazon ECS task metadata v4 JSON response for tasks on Fargate

The following metadata is returned in the task metadata endpoint
(${ECS_CONTAINER_METADATA_URI_V4}/task) JSON response.

Cluster

The Amazon Resource Name (ARN) or short name of the Amazon ECS cluster to which the task
belongs.

VPCID

The VPC ID of the Amazon EC2 container instance. This field only appears for Amazon EC2
instances.

Note

The VPCID metadata is only included when using Amazon ECS container agent version
1.63.1 or later.

TaskARN

The Amazon Resource Name (ARN) of the task to which the container belongs.

Family

The family of the Amazon ECS task definition for the task.

Revision

The revision of the Amazon ECS task definition for the task.

DesiredStatus

The desired status for the task from Amazon ECS.

Task metadata available for tasks on Fargate 1405

Amazon Elastic Container Service Developer Guide

KnownStatus

The known status for the task from Amazon ECS.

Limits

The resource limits specified at the task levels such as CPU (expressed in vCPUs) and memory.
This parameter is omitted if no resource limits are defined.

PullStartedAt

The timestamp for when the first container image pull began.

PullStoppedAt

The timestamp for when the last container image pull finished.

AvailabilityZone

The Availability Zone the task is in.

Note

The Availability Zone metadata is only available for Fargate tasks using platform version
1.4 or later (Linux) or 1.0.0 (Windows).

LaunchType

The launch type the task is using. When using cluster capacity providers, this indicates whether
the task is using Fargate or EC2 infrastructure.

Note

This LaunchType metadata is only included when using Amazon ECS Linux container
agent version 1.45.0 or later (Linux) or 1.0.0 or later (Windows).

EphemeralStorageMetrics

The reserved size and current usage of the ephemeral storage of this task.

Task metadata available for tasks on Fargate 1406

Amazon Elastic Container Service Developer Guide

Note

Fargate reserves space on disk. It is only used by Fargate. You aren't billed for it. It isn't
shown in these metrics. However, you can see this additional storage in other tools such
as df.

Utilized

The current ephemeral storage usage (in MiB) of this task.

Reserved

The reserved ephemeral storage (in MiB) of this task. The size of the ephemeral storage can't
be changed in a running task. You can specify the ephermalStorage object in your task
definition to change the amount of ephemeral storage. The ephermalStorage is specified
in GiB, not MiB. The ephermalStorage and the EphemeralStorageMetrics are only
available on Fargate Linux platform version 1.4.0 or later.

Containers

A list of container metadata for each container associated with the task.

DockerId

The Docker ID for the container.

When you use Fargate, the id is a 32-digit hex followed by a 10 digit number.

Name

The name of the container as specified in the task definition.

DockerName

The name of the container supplied to Docker. The Amazon ECS container agent generates
a unique name for the container to avoid name collisions when multiple copies of the same
task definition are run on a single instance.

Image

The image for the container.

ImageID

The SHA-256 digest for the image.

Task metadata available for tasks on Fargate 1407

Amazon Elastic Container Service Developer Guide

Ports

Any ports exposed for the container. This parameter is omitted if there are no exposed ports.

Labels

Any labels applied to the container. This parameter is omitted if there are no labels applied.

DesiredStatus

The desired status for the container from Amazon ECS.

KnownStatus

The known status for the container from Amazon ECS.

ExitCode

The exit code for the container. This parameter is omitted if the container has not exited.

Limits

The resource limits specified at the container level such as CPU (expressed in CPU units) and
memory. This parameter is omitted if no resource limits are defined.

CreatedAt

The time stamp for when the container was created. This parameter is omitted if the
container has not been created yet.

StartedAt

The time stamp for when the container started. This parameter is omitted if the container
has not started yet.

FinishedAt

The time stamp for when the container stopped. This parameter is omitted if the container
has not stopped yet.

Type

The type of the container. Containers that are specified in your task definition are of type
NORMAL. You can ignore other container types, which are used for internal task resource
provisioning by the Amazon ECS container agent.

LogDriver

The log driver the container is using.

Task metadata available for tasks on Fargate 1408

Amazon Elastic Container Service Developer Guide

Note

This LogDriver metadata is only included when using Amazon ECS Linux container
agent version 1.45.0 or later.

LogOptions

The log driver options defined for the container.

Note

This LogOptions metadata is only included when using Amazon ECS Linux
container agent version 1.45.0 or later.

ContainerARN

The Amazon Resource Name (ARN) of the container.

Note

This ContainerARN metadata is only included when using Amazon ECS Linux
container agent version 1.45.0 or later.

Networks

The network information for the container, such as the network mode and IP address. This
parameter is omitted if no network information is defined.

Snapshotter

The snapshotter that was used by containerd to download this container image. Valid values
are overlayfs, which is the default, and soci, used when lazy loading with a SOCI index.
This parameter is only available for tasks that run on Linux platform version 1.4.0.

RestartCount

The number of times the container has been restarted.

Task metadata available for tasks on Fargate 1409

Amazon Elastic Container Service Developer Guide

Note

The RestartCount metadata is included only if a restart policy is enabled for the
container. For more information, see Restart individual containers in Amazon ECS
tasks with container restart policies.

ClockDrift

The information about the difference between the reference time and the system time. This
capability uses Amazon Time Sync Service to measure clock accuracy and provide the clock
error bound for containers. For more information, see Set the time for your Linux instance in the
Amazon EC2 User Guide for Linux instances.

ReferenceTime

The basis of clock accuracy. Amazon ECS uses the Coordinated Universal Time (UTC) global
standard through NTP, for example 2021-09-07T16:57:44Z.

ClockErrorBound

The measure of clock error, defined as the offset to UTC. This error is the difference in
milliseconds between the reference time and the system time.

ClockSynchronizationStatus

Indicates whether the most recent synchronization attempt between the system time and
the reference time was successful.

The valid values are SYNCHRONIZED and NOT_SYNCHRONIZED.

ExecutionStoppedAt

The time stamp for when the tasks DesiredStatus moved to STOPPED. This occurs when an
essential container moves to STOPPED.

Amazon ECS task metadata v4 examples for tasks on Fargate

The following examples show sample outputs from the task metadata endpoints for Amazon ECS
tasks run on AWS Fargate.

From the container, you can use curl followed by the task meta data endpoint to query the
endpoint for example curl ${ECS_CONTAINER_METADATA_URI_V4}/task.

Task metadata available for tasks on Fargate 1410

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html

Amazon Elastic Container Service Developer Guide

Example container metadata response

When querying the ${ECS_CONTAINER_METADATA_URI_V4} endpoint you are returned only
metadata about the container itself. The following is an example output.

{
 "DockerId": "cd189a933e5849daa93386466019ab50-2495160603",
 "Name": "curl",
 "DockerName": "curl",
 "Image": "111122223333.dkr.ecr.us-west-2.amazonaws.com/curltest:latest",
 "ImageID":
 "sha256:25f3695bedfb454a50f12d127839a68ad3caf91e451c1da073db34c542c4d2cb",
 "Labels": {
 "com.amazonaws.ecs.cluster": "arn:aws:ecs:us-west-2:111122223333:cluster/
default",
 "com.amazonaws.ecs.container-name": "curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-west-2:111122223333:task/default/
cd189a933e5849daa93386466019ab50",
 "com.amazonaws.ecs.task-definition-family": "curltest",
 "com.amazonaws.ecs.task-definition-version": "2"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 10,
 "Memory": 128
 },
 "CreatedAt": "2020-10-08T20:09:11.44527186Z",
 "StartedAt": "2020-10-08T20:09:11.44527186Z",
 "Type": "NORMAL",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "192.0.2.3"
],
 "AttachmentIndex": 0,
 "MACAddress": "0a:de:f6:10:51:e5",
 "IPv4SubnetCIDRBlock": "192.0.2.0/24",
 "DomainNameServers": [
 "192.0.2.2"
],
 "DomainNameSearchList": [
 "us-west-2.compute.internal"

Task metadata available for tasks on Fargate 1411

Amazon Elastic Container Service Developer Guide

],
 "PrivateDNSName": "ip-10-0-0-222.us-west-2.compute.internal",
 "SubnetGatewayIpv4Address": "192.0.2.0/24"
 }
],
 "ContainerARN": "arn:aws:ecs:us-west-2:111122223333:container/05966557-
f16c-49cb-9352-24b3a0dcd0e1",
 "LogOptions": {
 "awslogs-create-group": "true",
 "awslogs-group": "/ecs/containerlogs",
 "awslogs-region": "us-west-2",
 "awslogs-stream": "ecs/curl/cd189a933e5849daa93386466019ab50"
 },
 "LogDriver": "awslogs",
 "Snapshotter": "overlayfs"
}

Amazon ECS task metadata v4 examples for tasks on Fargate

When querying the ${ECS_CONTAINER_METADATA_URI_V4}/task endpoint you are returned
metadata about the task the container is part of. The following is an example output.

{
 "Cluster": "arn:aws:ecs:us-east-1:123456789012:cluster/MyEmptyCluster",
 "TaskARN": "arn:aws:ecs:us-east-1:123456789012:task/MyEmptyCluster/
bfa2636268144d039771334145e490c5",
 "Family": "sample-fargate",
 "Revision": "5",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 0.25,
 "Memory": 512
 },
 "PullStartedAt": "2023-07-21T15:45:33.532811081Z",
 "PullStoppedAt": "2023-07-21T15:45:38.541068435Z",
 "AvailabilityZone": "us-east-1d",
 "Containers": [
 {
 "DockerId": "bfa2636268144d039771334145e490c5-1117626119",
 "Name": "curl-image",
 "DockerName": "curl-image",
 "Image": "curlimages/curl",

Task metadata available for tasks on Fargate 1412

Amazon Elastic Container Service Developer Guide

 "ImageID":
 "sha256:daf3f46a2639c1613b25e85c9ee4193af8a1d538f92483d67f9a3d7f21721827",
 "Labels": {
 "com.amazonaws.ecs.cluster": "arn:aws:ecs:us-east-1:123456789012:cluster/
MyEmptyCluster",
 "com.amazonaws.ecs.container-name": "curl-image",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-east-1:123456789012:task/
MyEmptyCluster/bfa2636268144d039771334145e490c5",
 "com.amazonaws.ecs.task-definition-family": "sample-fargate",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": { "CPU": 128 },
 "CreatedAt": "2023-07-21T15:45:44.91368314Z",
 "StartedAt": "2023-07-21T15:45:44.91368314Z",
 "Type": "NORMAL",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": ["172.31.42.189"],
 "AttachmentIndex": 0,
 "MACAddress": "0e:98:9f:33:76:d3",
 "IPv4SubnetCIDRBlock": "172.31.32.0/20",
 "DomainNameServers": ["172.31.0.2"],
 "DomainNameSearchList": ["ec2.internal"],
 "PrivateDNSName": "ip-172-31-42-189.ec2.internal",
 "SubnetGatewayIpv4Address": "172.31.32.1/20"
 }
],
 "ContainerARN": "arn:aws:ecs:us-east-1:123456789012:container/MyEmptyCluster/
bfa2636268144d039771334145e490c5/da6cccf7-1178-400c-afdf-7536173ee209",
 "Snapshotter": "overlayfs"
 },
 {
 "DockerId": "bfa2636268144d039771334145e490c5-3681984407",
 "Name": "fargate-app",
 "DockerName": "fargate-app",
 "Image": "public.ecr.aws/docker/library/httpd:latest",
 "ImageID":
 "sha256:8059bdd0058510c03ae4c808de8c4fd2c1f3c1b6d9ea75487f1e5caa5ececa02",
 "Labels": {
 "com.amazonaws.ecs.cluster": "arn:aws:ecs:us-east-1:123456789012:cluster/
MyEmptyCluster",

Task metadata available for tasks on Fargate 1413

Amazon Elastic Container Service Developer Guide

 "com.amazonaws.ecs.container-name": "fargate-app",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-east-1:123456789012:task/
MyEmptyCluster/bfa2636268144d039771334145e490c5",
 "com.amazonaws.ecs.task-definition-family": "sample-fargate",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": { "CPU": 2 },
 "CreatedAt": "2023-07-21T15:45:44.954460255Z",
 "StartedAt": "2023-07-21T15:45:44.954460255Z",
 "Type": "NORMAL",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": ["172.31.42.189"],
 "AttachmentIndex": 0,
 "MACAddress": "0e:98:9f:33:76:d3",
 "IPv4SubnetCIDRBlock": "172.31.32.0/20",
 "DomainNameServers": ["172.31.0.2"],
 "DomainNameSearchList": ["ec2.internal"],
 "PrivateDNSName": "ip-172-31-42-189.ec2.internal",
 "SubnetGatewayIpv4Address": "172.31.32.1/20"
 }
],
 "ContainerARN": "arn:aws:ecs:us-east-1:123456789012:container/MyEmptyCluster/
bfa2636268144d039771334145e490c5/f65b461d-aa09-4acb-a579-9785c0530cbc",
 "Snapshotter": "overlayfs"
 }
],
 "LaunchType": "FARGATE",
 "ClockDrift": {
 "ClockErrorBound": 0.446931,
 "ReferenceTimestamp": "2023-07-21T16:09:17Z",
 "ClockSynchronizationStatus": "SYNCHRONIZED"
 },
 "EphemeralStorageMetrics": {
 "Utilized": 261,
 "Reserved": 20496
 }
}

Task metadata available for tasks on Fargate 1414

Amazon Elastic Container Service Developer Guide

Example task stats response

When querying the ${ECS_CONTAINER_METADATA_URI_V4}/task/stats endpoint you are
returned network metrics about the task the container is part of. The following is an example
output.

{
 "3d1f891cded94dc795608466cce8ddcf-464223573": {
 "read": "2020-10-08T21:24:44.938937019Z",
 "preread": "2020-10-08T21:24:34.938633969Z",
 "pids_stats": {},
 "blkio_stats": {
 "io_service_bytes_recursive": [
 {
 "major": 202,
 "minor": 26368,
 "op": "Read",
 "value": 638976
 },
 {
 "major": 202,
 "minor": 26368,
 "op": "Write",
 "value": 0
 },
 {
 "major": 202,
 "minor": 26368,
 "op": "Sync",
 "value": 638976
 },
 {
 "major": 202,
 "minor": 26368,
 "op": "Async",
 "value": 0
 },
 {
 "major": 202,
 "minor": 26368,
 "op": "Total",
 "value": 638976
 }

Task metadata available for tasks on Fargate 1415

Amazon Elastic Container Service Developer Guide

],
 "io_serviced_recursive": [
 {
 "major": 202,
 "minor": 26368,
 "op": "Read",
 "value": 12
 },
 {
 "major": 202,
 "minor": 26368,
 "op": "Write",
 "value": 0
 },
 {
 "major": 202,
 "minor": 26368,
 "op": "Sync",
 "value": 12
 },
 {
 "major": 202,
 "minor": 26368,
 "op": "Async",
 "value": 0
 },
 {
 "major": 202,
 "minor": 26368,
 "op": "Total",
 "value": 12
 }
],
 "io_queue_recursive": [],
 "io_service_time_recursive": [],
 "io_wait_time_recursive": [],
 "io_merged_recursive": [],
 "io_time_recursive": [],
 "sectors_recursive": []
 },
 "num_procs": 0,
 "storage_stats": {},
 "cpu_stats": {
 "cpu_usage": {

Task metadata available for tasks on Fargate 1416

Amazon Elastic Container Service Developer Guide

 "total_usage": 1137691504,
 "percpu_usage": [
 696479228,
 441212276,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0
],
 "usage_in_kernelmode": 80000000,
 "usage_in_usermode": 810000000
 },
 "system_cpu_usage": 9393210000000,
 "online_cpus": 2,
 "throttling_data": {
 "periods": 0,
 "throttled_periods": 0,
 "throttled_time": 0
 }
 },
 "precpu_stats": {
 "cpu_usage": {
 "total_usage": 1136624601,
 "percpu_usage": [
 695639662,
 440984939,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,

Task metadata available for tasks on Fargate 1417

Amazon Elastic Container Service Developer Guide

 0,
 0,
 0,
 0
],
 "usage_in_kernelmode": 80000000,
 "usage_in_usermode": 810000000
 },
 "system_cpu_usage": 9373330000000,
 "online_cpus": 2,
 "throttling_data": {
 "periods": 0,
 "throttled_periods": 0,
 "throttled_time": 0
 }
 },
 "memory_stats": {
 "usage": 6504448,
 "max_usage": 8458240,
 "stats": {
 "active_anon": 1675264,
 "active_file": 557056,
 "cache": 651264,
 "dirty": 0,
 "hierarchical_memory_limit": 536870912,
 "hierarchical_memsw_limit": 9223372036854772000,
 "inactive_anon": 0,
 "inactive_file": 3088384,
 "mapped_file": 430080,
 "pgfault": 11034,
 "pgmajfault": 5,
 "pgpgin": 8436,
 "pgpgout": 7137,
 "rss": 4669440,
 "rss_huge": 0,
 "total_active_anon": 1675264,
 "total_active_file": 557056,
 "total_cache": 651264,
 "total_dirty": 0,
 "total_inactive_anon": 0,
 "total_inactive_file": 3088384,
 "total_mapped_file": 430080,
 "total_pgfault": 11034,
 "total_pgmajfault": 5,

Task metadata available for tasks on Fargate 1418

Amazon Elastic Container Service Developer Guide

 "total_pgpgin": 8436,
 "total_pgpgout": 7137,
 "total_rss": 4669440,
 "total_rss_huge": 0,
 "total_unevictable": 0,
 "total_writeback": 0,
 "unevictable": 0,
 "writeback": 0
 },
 "limit": 9223372036854772000
 },
 "name": "curltest",
 "id": "3d1f891cded94dc795608466cce8ddcf-464223573",
 "networks": {
 "eth1": {
 "rx_bytes": 2398415937,
 "rx_packets": 1898631,
 "rx_errors": 0,
 "rx_dropped": 0,
 "tx_bytes": 1259037719,
 "tx_packets": 428002,
 "tx_errors": 0,
 "tx_dropped": 0
 }
 },
 "network_rate_stats": {
 "rx_bytes_per_sec": 43.298687872232854,
 "tx_bytes_per_sec": 215.39347269466413
 }
 }
}

Amazon ECS task metadata endpoint version 3 for tasks on Fargate

Important

The task metadata version 3 endpoint is no longer being actively maintained. We
recommend that you update the task metadata version 4 endpoint to get the latest
metadata endpoint information. For more information, see the section called “Task
metadata endpoint version 4 for tasks on Fargate”.

Task metadata available for tasks on Fargate 1419

Amazon Elastic Container Service Developer Guide

Beginning with Fargate platform version 1.1.0, an environment variable named
ECS_CONTAINER_METADATA_URI is injected into each container in a task. When you query the
task metadata version 3 endpoint, various task metadata and Docker stats are available to tasks.

The task metadata endpoint feature is enabled by default for Amazon ECS tasks hosted on Fargate
that use platform version 1.1.0 or later. For more information, see Fargate platform versions for
Amazon ECS.

Task metadata endpoint paths for tasks on Fargate

The following API endpoints are available to containers:

${ECS_CONTAINER_METADATA_URI}

This path returns metadata JSON for the container.

${ECS_CONTAINER_METADATA_URI}/task

This path returns metadata JSON for the task, including a list of the container IDs and names
for all of the containers associated with the task. For more information about the response for
this endpoint, see Amazon ECS task metadata v3 JSON response for tasks on Fargate.

${ECS_CONTAINER_METADATA_URI}/stats

This path returns Docker stats JSON for the specific Docker container. For more information
about each of the returned stats, see ContainerStats in the Docker API documentation.

${ECS_CONTAINER_METADATA_URI}/task/stats

This path returns Docker stats JSON for all of the containers associated with the task. For
more information about each of the returned stats, see ContainerStats in the Docker API
documentation.

Amazon ECS task metadata v3 JSON response for tasks on Fargate

The following information is returned from the task metadata endpoint
(${ECS_CONTAINER_METADATA_URI}/task) JSON response.

Cluster

The Amazon Resource Name (ARN) or short name of the Amazon ECS cluster to which the task
belongs.

Task metadata available for tasks on Fargate 1420

https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats
https://docs.docker.com/engine/api/v1.30/#operation/ContainerStats

Amazon Elastic Container Service Developer Guide

TaskARN

The Amazon Resource Name (ARN) of the task to which the container belongs.

Family

The family of the Amazon ECS task definition for the task.

Revision

The revision of the Amazon ECS task definition for the task.

DesiredStatus

The desired status for the task from Amazon ECS.

KnownStatus

The known status for the task from Amazon ECS.

Limits

The resource limits specified at the task level, such as CPU (expressed in vCPUs) and memory.
This parameter is omitted if no resource limits are defined.

PullStartedAt

The timestamp for when the first container image pull began.

PullStoppedAt

The timestamp for when the last container image pull finished.

AvailabilityZone

The Availability Zone the task is in.

Note

The Availability Zone metadata is only available for Fargate tasks using platform version
1.4 or later (Linux) or 1.0.0 or later (Windows).

Containers

A list of container metadata for each container associated with the task.

Task metadata available for tasks on Fargate 1421

Amazon Elastic Container Service Developer Guide

DockerId

The Docker ID for the container.

Name

The name of the container as specified in the task definition.

DockerName

The name of the container supplied to Docker. The Amazon ECS container agent generates
a unique name for the container to avoid name collisions when multiple copies of the same
task definition are run on a single instance.

Image

The image for the container.

ImageID

The SHA-256 digest for the image.

Ports

Any ports exposed for the container. This parameter is omitted if there are no exposed ports.

Labels

Any labels applied to the container. This parameter is omitted if there are no labels applied.

DesiredStatus

The desired status for the container from Amazon ECS.

KnownStatus

The known status for the container from Amazon ECS.

ExitCode

The exit code for the container. This parameter is omitted if the container has not exited.

Limits

The resource limits specified at the container level, such as CPU (expressed in CPU units) and
memory. This parameter is omitted if no resource limits are defined.

CreatedAt

The time stamp for when the container was created. This parameter is omitted if the
container has not been created yet.

Task metadata available for tasks on Fargate 1422

Amazon Elastic Container Service Developer Guide

StartedAt

The time stamp for when the container started. This parameter is omitted if the container
has not started yet.

FinishedAt

The time stamp for when the container stopped. This parameter is omitted if the container
has not stopped yet.

Type

The type of the container. Containers that are specified in your task definition are of type
NORMAL. You can ignore other container types, which are used for internal task resource
provisioning by the Amazon ECS container agent.

Networks

The network information for the container, such as the network mode and IP address. This
parameter is omitted if no network information is defined.

ClockDrift

The information about the difference between the reference time and the system time. This
applies to the Linux operating system. This capability uses Amazon Time Sync Service to
measure clock accuracy and provide the clock error bound for containers. For more information,
see Set the time for your Linux instance in the Amazon EC2 User Guide for Linux instances.

ReferenceTime

The basis of clock accuracy. Amazon ECS uses the Coordinated Universal Time (UTC) global
standard through NTP, for example 2021-09-07T16:57:44Z.

ClockErrorBound

The measure of clock error, defined as the offset to UTC. This error is the difference in
milliseconds between the reference time and the system time.

ClockSynchronizationStatus

Indicates whether the most recent synchronization attempt between the system time and
the reference time was successful.

The valid values are SYNCHRONIZED and NOT_SYNCHRONIZED.

Task metadata available for tasks on Fargate 1423

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html

Amazon Elastic Container Service Developer Guide

ExecutionStoppedAt

The time stamp for when the tasks DesiredStatus moved to STOPPED. This occurs when an
essential container moves to STOPPED.

Amazon ECS task metadata v3 examples for tasks on Fargate

The following JSON response is for a single-container task.

{
 "Cluster": "default",
 "TaskARN": "arn:aws:ecs:us-east-2:012345678910:task/9781c248-0edd-4cdb-9a93-
f63cb662a5d3",
 "Family": "nginx",
 "Revision": "5",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Containers": [
 {
 "DockerId": "731a0d6a3b4210e2448339bc7015aaa79bfe4fa256384f4102db86ef94cbbc4c",
 "Name": "~internal~ecs~pause",
 "DockerName": "ecs-nginx-5-internalecspause-acc699c0cbf2d6d11700",
 "Image": "amazon/amazon-ecs-pause:0.1.0",
 "ImageID": "",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "~internal~ecs~pause",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-
east-2:012345678910:task/9781c248-0edd-4cdb-9a93-f63cb662a5d3",
 "com.amazonaws.ecs.task-definition-family": "nginx",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RESOURCES_PROVISIONED",
 "KnownStatus": "RESOURCES_PROVISIONED",
 "Limits": {
 "CPU": 0,
 "Memory": 0
 },
 "CreatedAt": "2018-02-01T20:55:08.366329616Z",
 "StartedAt": "2018-02-01T20:55:09.058354915Z",
 "Type": "CNI_PAUSE",
 "Networks": [
 {

Task metadata available for tasks on Fargate 1424

Amazon Elastic Container Service Developer Guide

 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.106"
]
 }
]
 },
 {
 "DockerId": "43481a6ce4842eec8fe72fc28500c6b52edcc0917f105b83379f88cac1ff3946",
 "Name": "nginx-curl",
 "DockerName": "ecs-nginx-5-nginx-curl-ccccb9f49db0dfe0d901",
 "Image": "nrdlngr/nginx-curl",
 "ImageID":
 "sha256:2e00ae64383cfc865ba0a2ba37f61b50a120d2d9378559dcd458dc0de47bc165",
 "Labels": {
 "com.amazonaws.ecs.cluster": "default",
 "com.amazonaws.ecs.container-name": "nginx-curl",
 "com.amazonaws.ecs.task-arn": "arn:aws:ecs:us-
east-2:012345678910:task/9781c248-0edd-4cdb-9a93-f63cb662a5d3",
 "com.amazonaws.ecs.task-definition-family": "nginx",
 "com.amazonaws.ecs.task-definition-version": "5"
 },
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Limits": {
 "CPU": 512,
 "Memory": 512
 },
 "CreatedAt": "2018-02-01T20:55:10.554941919Z",
 "StartedAt": "2018-02-01T20:55:11.064236631Z",
 "Type": "NORMAL",
 "Networks": [
 {
 "NetworkMode": "awsvpc",
 "IPv4Addresses": [
 "10.0.2.106"
]
 }
]
 }
],
 "PullStartedAt": "2018-02-01T20:55:09.372495529Z",
 "PullStoppedAt": "2018-02-01T20:55:10.552018345Z",
 "AvailabilityZone": "us-east-2b"

Task metadata available for tasks on Fargate 1425

Amazon Elastic Container Service Developer Guide

}

Amazon ECS container introspection

The Amazon ECS container agent provides an API operation for gathering details about the
container instance on which the agent is running and the associated tasks running on that instance.
You can use the curl command from within the container instance to query the Amazon ECS
container agent (port 51678) and return container instance metadata or task information.

Important

Your container instance must have an IAM role that allows access to Amazon ECS in order
to retrieve the metadata. For more information, see Amazon ECS container instance IAM
role.

To view container instance metadata, log in to your container instance via SSH and run the
following command. Metadata includes the container instance ID, the Amazon ECS cluster in which
the container instance is registered, and the Amazon ECS container agent version information.

curl -s http://localhost:51678/v1/metadata | python3 -mjson.tool

Output:

{
 "Cluster": "cluster_name",
 "ContainerInstanceArn": "arn:aws:ecs:region:aws_account_id:container-
instance/cluster_name/container_instance_id",
 "Version": "Amazon ECS Agent - v1.30.0 (02ff320c)"
}

To view information about all of the tasks that are running on a container instance, log in to your
container instance via SSH and run the following command:

curl http://localhost:51678/v1/tasks

Output:

Container introspection 1426

Amazon Elastic Container Service Developer Guide

{
 "Tasks": [
 {
 "Arn": "arn:aws:ecs:us-west-2:012345678910:task/default/example5-58ff-46c9-
ae05-543f8example",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Family": "hello_world",
 "Version": "8",
 "Containers": [
 {
 "DockerId":
 "9581a69a761a557fbfce1d0f6745e4af5b9dbfb86b6b2c5c4df156f1a5932ff1",
 "DockerName": "ecs-hello_world-8-mysql-fcae8ac8f9f1d89d8301",
 "Name": "mysql",
 "CreatedAt": "2023-10-08T20:09:11.44527186Z",
 "StartedAt": "2023-10-08T20:09:11.44527186Z",
 "ImageID":
 "sha256:2ae34abc2ed0a22e280d17e13f9c01aaf725688b09b7a1525d1a2750e2c0d1de"
 },
 {
 "DockerId":
 "bf25c5c5b2d4dba68846c7236e75b6915e1e778d31611e3c6a06831e39814a15",
 "DockerName": "ecs-hello_world-8-wordpress-e8bfddf9b488dff36c00",
 "Name": "wordpress"
 }
]
}
]
}

You can view information for a particular task that is running on a container instance. To specify a
specific task or container, append one of the following to the request:

• The task ARN (?taskarn=task_arn)

• The Docker ID for a container (?dockerid=docker_id)

To get task information with a container's Docker ID, log in to your container instance via SSH and
run the following command.

Container introspection 1427

Amazon Elastic Container Service Developer Guide

Note

Amazon ECS container agents before version 1.14.2 require full Docker container IDs for
the introspection API, not the short version that is shown with docker ps. You can get
the full Docker ID for a container by running the docker ps --no-trunc command on the
container instance.

curl http://localhost:51678/v1/tasks?dockerid=79c796ed2a7f

Output:

{
 "Arn": "arn:aws:ecs:us-west-2:012345678910:task/default/e01d58a8-151b-40e8-
bc01-22647b9ecfec",
 "Containers": [
 {
 "DockerId":
 "79c796ed2a7f864f485c76f83f3165488097279d296a7c05bd5201a1c69b2920",
 "DockerName": "ecs-nginx-efs-2-nginx-9ac0808dd0afa495f001",
 "Name": "nginx",
 "CreatedAt": "2023-10-08T20:09:11.44527186Z",
 "StartedAt": "2023-10-08T20:09:11.44527186Z",
 "ImageID":
 "sha256:2ae34abc2ed0a22e280d17e13f9c01aaf725688b09b7a1525d1a2750e2c0d1de"
 }
],
 "DesiredStatus": "RUNNING",
 "Family": "nginx-efs",
 "KnownStatus": "RUNNING",
 "Version": "2"
}

Identify unauthorized behavior using Runtime Monitoring

Amazon GuardDuty is a threat detection service that helps protect your accounts, containers,
workloads, and the data within your AWS environment. Using machine learning (ML) models, and
anomaly and threat detection capabilities, GuardDuty continuously monitors different log sources

Identify unauthorized behavior using Runtime Monitoring 1428

Amazon Elastic Container Service Developer Guide

and runtime activity to identify and prioritize potential security risks and malicious activities in
your environment.

Runtime Monitoring in GuardDuty protects workloads running on Fargate and EC2 container
instances by continuously monitoring AWS log and networking activity to identify malicious
or unauthorized behavior. Runtime Monitoring uses a lightweight, fully managed GuardDuty
security agent that analyzes on-host behavior, such as file access, process execution, and network
connections. This covers issues including escalation of privileges, use of exposed credentials,
or communication with malicious IP addresses, domains, and the presence of malware on your
Amazon EC2 instances and container workloads. For more information, see GuardDuty Runtime
Monitoring in the GuardDuty User Guide.

Your security administrator enables Runtime Monitoring for a single or multiple accounts in AWS
Organizations for GuardDuty. They also select whether GuardDuty automatically deploys the
GuardDuty security agent when you use Fargate. All your clusters are automatically protected, and
GuardDuty manages the security agent on your behalf.

You can also manually configure the GuardDuty security agent in the following cases:

• You use EC2 container instances

• You need granular control to enable Runtime Monitoring at the cluster level

To use Runtime Monitoring, you must configure the clusters that are protected, and install and
manage the GuardDuty security agent on your EC2 container instances.

How Runtime Monitoring works with Amazon ECS

Runtime Monitoring uses a lightweight GuardDuty security agent that monitors Amazon ECS
workload activity for how applications are requesting, gaining access and consuming underlying
system resources.

For Fargate tasks, the GuardDuty security agent runs as a sidecar container for each task.

For EC2 container instances, the GuardDuty security agent runs as a process on the instance.

The GuardDuty security agent collects data from the following resources, and then sends the
data to GuardDuty to process. You can view the findings in the GuardDuty console. You can also
send them to other AWS services such as AWS Security Hub, or a third-party security vendor
for aggregation and remediation. For information about how to view and manage findings, see
Managing Amazon GuardDuty findings in the Amazon GuardDuty User Guide.

How Runtime Monitoring works with Amazon ECS 1429

https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring.html
https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring.html
https://docs.aws.amazon.com/guardduty/latest/ug/findings_management.html

Amazon Elastic Container Service Developer Guide

• Responses from the following Amazon ECS API calls:

• DescribeClusters

The response parameters include the Runtime Monitoring tag (when the tag is set) when you
use the --include TAGS option.

• DescribeTasks

For the Fargate launch type, the response parameters include the GuardDuty sidecar container.

• ListAccountSettings

The response parameters include the Runtime Monitoring account setting, which is set by your
security administrator.

• The container agent introspection data. For more information, see Amazon ECS container
introspection.

• The task metadata endpoint for the launch type:

• Amazon ECS task metadata endpoint version 4

• Amazon ECS task metadata endpoint version 4 for tasks on Fargate

Considerations

Consider the following when using Runtime Monitoring:

• Runtime Monitoring has a cost associated with it. For more information, see Amazon GuardDuty
Pricing.

• Runtime Monitoring is not supported on Amazon ECS Anywhere.

• Runtime Monitoring is not supported for the Windows operating system.

• When you use Amazon ECS Exec on Fargate, you must specify the container name because the
GuardDuty security agent runs as a sidecar container.

• You cannot use Amazon ECS Exec on the GuardDuty security agent sidecar container.

• The IAM user that controls Runtime Monitoring at the cluster level, must have the appropriate
IAM permissions for tagging. For more information, see IAM tutorial: Define permissions to
access AWS resources based on tags in the IAM User Guide.

• Fargate tasks must use a task execution role. This role grants the tasks permission to retrieve,
update, and manage the GuardDuty security agent, which is stored in an Amazon ECR private
repository, on your behalf.

Considerations 1430

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeTasks.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ListAccountSettings.html
https://aws.amazon.com/guardduty/pricing/
https://aws.amazon.com/guardduty/pricing/
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

Amazon Elastic Container Service Developer Guide

Resource utilization

The tag that you add to the cluster counts toward the cluster tag quota.

The GuardDuty agent sidecar container does not count toward the containers per task definition
quota.

As with most security software, there is a slight overhead for GuardDuty. For information about the
Fargate memory limits, see CPU and memory limits in the GuardDuty User Guide. For information
about the Amazon EC2 memory limits, see CPU and memory limit for GuardDuty agent.

Runtime Monitoring for Amazon ECS Fargate workloads

If you use EC2 container instances, you must manually configure Runtime Monitoring. For more
information, see Runtime Monitoring for EC2 workloads on Amazon ECS.

You can have GuardDuty manage the security agent on your container instances. This option is only
available for Fargate. This option (GuardDuty agent management) is available in GuardDuty

When you use GuardDuty agent management, GuardDuty performs the following operations:

• Creates VPC endpoints for GuardDuty for each VPC that hosts a cluster.

• Retrieves, and installs the latest GuardDuty security agent as a sidecar container on all new
standalone Fargate tasks, and new service deployments.

A new service deployment happens the first time you launch a service, or when you update an
existing service with the force new deployment option.

Turning on Runtime Monitoring for Amazon ECS

You can configure GuardDuty to automatically manage the security agen for all your Fargate
clusters.

Prerequisites

The following are prerequisites for using Runtime Monitoring:

• The Fargate platform version must be 1.4.0 or later for Linux.

• IAM roles and permissions for Amazon ECS:

Resource utilization 1431

https://docs.aws.amazon.com/guardduty/latest/ug/prereq-runtime-monitoring-ecs-support.html#ecs-runtime-agent-cpu-memory-limits
https://docs.aws.amazon.com/guardduty/latest/ug/prereq-runtime-monitoring-ec2-support.html#ec2-cpu-memory-limits-gdu-agent

Amazon Elastic Container Service Developer Guide

• Fargate tasks must use a task execution role. This role grants the tasks permission to retrieve,
update, and manage the GuardDuty security agent on your behalf. For more information see
Amazon ECS task execution IAM role.

• You control Runtime Monitoring for a cluster with a pre-defined tag. If your access policies
restrict access based on tags, you must grant explicit permissions to your IAM users to tag
clusters. For more information, see IAM tutorial: Define permissions to access AWS resources
based on tags in the IAM User Guide.

• Connecting to the Amazon ECR repository:

The GuardDuty security agent is stored in an Amazon ECR repository. Each standalone and
service task must have access to the repository. You can use one of the following options:

• For tasks in public subnets, you can either use a public IP address for the task, or create a
VPC endpoint for Amazon ECR in the subnet where the task runs. For more information, see
Amazon ECR interface VPC endpoints (AWS PrivateLink) in the Amazon Elastic Container
Registry User Guide.

• For tasks in private subnets, you can use a Network Address Translation (NAT) gateway, or
create a VPC endpoint for Amazon ECR in the subnet where the task runs.

For more information, see Private subnet and NAT gateway.

• You must have the AWSServiceRoleForAmazonGuardDuty role for GuardDuty. For more
information, see Service-linked role permissions for GuardDuty in the Amazon GuardDuty User
Guide.

• Any files that you want to protect with Runtime Monitoring must be accessible by the root user.
If you manually changed the permissions of a file, you must set it to 755.

The following are prerequisites for using Runtime Monitoring on EC2 container instances:

• You must use version 20230929 or later of the Amazon ECS-AMI.

• You must run Amazon ECS agent to version 1.77 or later on the container instances.

• You must use kernel version 5.10 or later.

• For information about the supported Linux operating systems and architectures, see Which
operating models and workloads does GuardDuty Runtime Monitoring support.

• You can use Systems Manager to manage your container instances. For more information, see
Setting up Systems Manager for EC2 instances in the AWS Systems Manager Session Manager
User Guide.

Runtime Monitoring for Fargate workloads 1432

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/networking-outbound.html#networking-private-subnet
https://docs.aws.amazon.com/guardduty/latest/ug/slr-permissions.html
https://aws.amazon.com/guardduty/faqs/?nc1=h_ls%23product-faqs%23guardduty-faqs%23guardduty-ecs-runtime-monitoring
https://aws.amazon.com/guardduty/faqs/?nc1=h_ls%23product-faqs%23guardduty-faqs%23guardduty-ecs-runtime-monitoring
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-setting-up-ec2.html

Amazon Elastic Container Service Developer Guide

Procedure

You enable Runtime Monitoring in GuardDuty. For information about how to enable the feature,
see Enabling Runtime Monitoring in the Amazon GuardDuty User Guide.

Adding Runtime Monitoring to existing Amazon ECS Fargate tasks

When you turn on Runtime Monitoring, all new standalone tasks, and new service deployments in
the cluster are protected automatically. In order to preserve the immutability constraint, existing
tasks are not affected.

Prerequisites

1. Turn on Runtime Monitoring. For more information, see Turning on Runtime Monitoring for
Amazon ECS.

2. Fargate tasks must use a task execution role. This role grants the tasks permission to retrieve,
update, and manage the GuardDuty security agent on your behalf. For more information see
Amazon ECS task execution IAM role.

Procedure

• To immediately protect a task, you need to perform one of the following actions:

• For standalone tasks, stop the tasks, and then start them. For more information, see
Stopping an Amazon ECS task and Running an application as an Amazon ECS task

• For tasks that are part of a service, update the service with the "force new deployment"
option. For more information, see Updating an Amazon ECS service.

Removing Runtime Monitoring from an Amazon ECS cluster

You might want to exclude certain clusters from protection, for example clusters that you use for
testing. This causes GuardDuty to perform the following operations on resources in the cluster:

• No longer deploy the GuardDuty security agent to new standalone Fargate tasks, or new service
deployments.

In order to preserve the immutability constraint, existing tasks and deployments with Runtime
Monitoring enabled are not affected.

• Stop billing and no longer accepts run time events for tasks.

Runtime Monitoring for Fargate workloads 1433

https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring-configuration.html

Amazon Elastic Container Service Developer Guide

Procedure

Perform the following steps to remove Runtime Monitoring from a cluster.

1. Use the Amazon ECS console or AWS CLI to set the GuardDutyManaged tag key on the cluster
to false. For more information, see Updating a cluster or Working with tags using the CLI or
API. Use the following values for the tag.

Note

The Key and Value are case sensitive and must exactly match the strings.

Key = GuardDutyManaged, Value = false

2. Delete the GuardDuty VPC endpoint for the cluster. For more information about how to delete
VPC endpoints, see Delete an interface endpoint in the AWS PrivateLink User Guide.

Removing Runtime Monitoring for Amazon ECS from an account

When you no longer want to use Runtime Monitoring, disable the feature in GuardDuty. For
information about how to disable the feature, see Enabling Runtime Monitoring in the Amazon
GuardDuty User Guide.

GuardDuty performs the following operations:

• Deletes the VPC endpoints for GuardDuty for each VPC that hosts a cluster.

• No longer deploys the GuardDuty security agent to new standalone Fargate tasks, or new service
deployments.

In order to preserve the immutability constraint, existing tasks and deployments are not affected
until they are stopped, replicated, or scaled.

• Stops billing and no longer accepts run time events for tasks.

Runtime Monitoring for EC2 workloads on Amazon ECS

Use this option when you use EC2 instances for your capacity, or when you need granular control of
Runtime Monitoring at the cluster-level on Fargate.

Runtime Monitoring for EC2 workloads 1434

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/update-cluster-v2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html#tag-resources-api-sdk
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html#tag-resources-api-sdk
https://docs.aws.amazon.com/vpc/latest/privatelink/delete-interface-endpoint.html
https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring-configuration.html

Amazon Elastic Container Service Developer Guide

You provision the clusters for Runtime Monitoring by adding a pre-defined tag.

For EC2 container instances, you download, install, and manage the GuardDuty security agent.

For Fargate, GuardDuty manages the security agent on your behalf.

Turning on Runtime Monitoring for Amazon ECS

You can turn on Runtime Monitoring for clusters with EC2 instances, or when you need granular
control of Runtime Monitoring at the cluster-level on Fargate.

The following are prerequisites for using Runtime Monitoring:

• The Fargate platform version must be 1.4.0 or later for Linux.

• IAM roles and permissions for Amazon ECS:

• Fargate tasks must use a task execution role. This role grants the tasks permission to retrieve,
update, and manage the GuardDuty security agent on your behalf. For more information see
Amazon ECS task execution IAM role.

• You control Runtime Monitoring for a cluster with a pre-defined tag. If your access policies
restrict access based on tags, you must grant explicit permissions to your IAM users to tag
clusters. For more information, see IAM tutorial: Define permissions to access AWS resources
based on tags in the IAM User Guide.

• Connecting to the Amazon ECR repository:

The GuardDuty security agent is stored in an Amazon ECR repository. Each standalone and
service task must have access to the repository. You can use one of the following options:

• For tasks in public subnets, you can either use a public IP address for the task, or create a
VPC endpoint for Amazon ECR in the subnet where the task runs. For more information, see
Amazon ECR interface VPC endpoints (AWS PrivateLink) in the Amazon Elastic Container
Registry User Guide.

• For tasks in private subnets, you can use a Network Address Translation (NAT) gateway, or
create a VPC endpoint for Amazon ECR in the subnet where the task runs.

For more information, see Private subnet and NAT gateway.

• You must have the AWSServiceRoleForAmazonGuardDuty role for GuardDuty. For more
information, see Service-linked role permissions for GuardDuty in the Amazon GuardDuty User
Guide.

Runtime Monitoring for EC2 workloads 1435

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/networking-outbound.html#networking-private-subnet
https://docs.aws.amazon.com/guardduty/latest/ug/slr-permissions.html

Amazon Elastic Container Service Developer Guide

• Any files that you want to protect with Runtime Monitoring must be accessible by the root user.
If you manually changed the permissions of a file, you must set it to 755.

The following are prerequisites for using Runtime Monitoring on EC2 container instances:

• You must use version 20230929 or later of the Amazon ECS-AMI.

• You must run Amazon ECS agent to version 1.77 or later on the container instances.

• You must use kernel version 5.10 or later.

• For information about the supported Linux operating systems and architectures, see Which
operating models and workloads does GuardDuty Runtime Monitoring support.

• You can use Systems Manager to manage your container instances. For more information, see
Setting up Systems Manager for EC2 instances in the AWS Systems Manager Session Manager
User Guide.

You turn on Runtime Monitoring in GuardDuty. For information about how to enable the feature,
see Enabling Runtime Monitoring in the Amazon GuardDuty User Guide.

Adding Runtime Monitoring an Amazon ECS cluster

Configure Runtime Monitoring for the cluster, and then install the GuardDuty security agent on
your EC2 container instances.

Prerequisites

1. Turn on Runtime Monitoring. For more information, see Turning on Runtime Monitoring for
Amazon ECS.

2. You control Runtime Monitoring for a cluster with a pre-defined tag. If your access policies
restrict access based on tags, you must grant explicit permissions to your IAM users to tag
clusters. For more information, see IAM tutorial: Define permissions to access AWS resources
based on tags in the IAM User Guide.

Procedure

Perform the following operations to add Runtime Monitoring to a cluster.

1. Create a VPC endpoint for GuardDuty for each cluster VPC. For more information, see Creating
Amazon VPC endpoint manually in the GuardDuty User Guide.

Runtime Monitoring for EC2 workloads 1436

https://aws.amazon.com/guardduty/faqs/?nc1=h_ls%23product-faqs%23guardduty-faqs%23guardduty-ecs-runtime-monitoring
https://aws.amazon.com/guardduty/faqs/?nc1=h_ls%23product-faqs%23guardduty-faqs%23guardduty-ecs-runtime-monitoring
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-setting-up-ec2.html
https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring-configuration.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/guardduty/latest/ug/managing-gdu-agent-ec2-manually.html#creating-vpc-endpoint-ec2-agent-manually
https://docs.aws.amazon.com/guardduty/latest/ug/managing-gdu-agent-ec2-manually.html#creating-vpc-endpoint-ec2-agent-manually

Amazon Elastic Container Service Developer Guide

2. Configure the EC2 container instances.

a. Update the Amazon ECS agent to version 1.77 or later on the EC2 container instances in
the cluster. For more information see Updating the Amazon ECS container agent.

b. Install the GuardDuty security agent on the EC2 container instances in the cluster. For
more information, see Managing the security agent on an Amazon EC2 instance manually
in the GuardDuty User Guide.

All new and existing tasks, and deployments are immediately protected because the
GuardDuty security agent runs as a process on the EC2 container instance.

3. Use the Amazon ECS console or AWS CLI to set the GuardDutyManaged tag key on the cluster
to true. For more information, see Updating a cluster or Working with tags using the CLI or
API. Use the following values for the tag.

Note

The Key and Value are case sensitive and must exactly match the strings.

Key = GuardDutyManaged, Value = true

Adding Runtime Monitoring to existing Amazon ECS tasks

When you turn on Runtime Monitoring, all new standalone tasks, and new service deployments in
the cluster are protected automatically. In order to preserve the immutability constraint, existing
tasks are not affected.

Prerequisites

• Turn on Runtime Monitoring. For more information, see Turning on Runtime Monitoring for
Amazon ECS.

Procedure

• To immediately protect a task, you need to perform one of the following actions:

• For standalone tasks, stop the tasks, and then start them. For more information, see
Stopping an Amazon ECS task and Running an application as an Amazon ECS task.

Runtime Monitoring for EC2 workloads 1437

https://docs.aws.amazon.com/guardduty/latest/ug/managing-gdu-agent-ec2-manually.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/update-cluster-v2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html#tag-resources-api-sdk
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html#tag-resources-api-sdk

Amazon Elastic Container Service Developer Guide

• For tasks that are part of a service, update the service with the "force new deployment"
option. For more information, see Updating an Amazon ECS service.

Removing Runtime Monitoring from an Amazon ECS cluster

You can remove Runtime Monitoring from a cluster. This causes GuardDuty to stop monitoring all
resources in the cluster.

To remove Runtime Monitoring from a cluster

1. Use the Amazon ECS console or AWS CLI to set the GuardDutyManaged tag key on the cluster
to false. For more information, see Updating a cluster or Working with tags using the CLI or
API.

Note

The Key and Value are case sensitive and must exactly match the strings.

Key = GuardDutyManaged, Value = false

2. Uninstall the GuardDuty security agent on you EC2 container instances in the cluster.

For more information, see Uninstalling the security agent manually in the GuardDuty User
Guide.

3. Delete the GuardDuty VPC endpoint for each cluster VPC. For more information about how to
delete VPC endpoints, see Delete an interface endpoint in the AWS PrivateLink User Guide.

Updating the GuardDuty security agent on your Amazon ECS container instances

For information about how to update the GuardDuty security agent on your EC2 container
instances, see Updating GuardDuty security agent in the Amazon GuardDuty User Guide.

Removing Runtime Monitoring for Amazon ECS from an account

When you no longer want to use Runtime Monitoring, disable the feature in GuardDuty. For
information about how to disable the feature, see Enabling Runtime Monitoring in the Amazon
GuardDuty User Guide.

Runtime Monitoring for EC2 workloads 1438

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/update-cluster-v2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html#tag-resources-api-sdk
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-using-tags.html#tag-resources-api-sdk
https://docs.aws.amazon.com/guardduty/latest/ug/managing-gdu-agent-ec2-manually.html#gdu-update-security-agent-ec2
https://docs.aws.amazon.com/vpc/latest/privatelink/delete-interface-endpoint.html
https://docs.aws.amazon.com/guardduty/latest/ug/managing-gdu-agent-ec2-manually.html#gdu-update-security-agent-ec2
https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring-configuration.html

Amazon Elastic Container Service Developer Guide

Remove Runtime Monitoring from all clusters. For more information, see Removing Runtime
Monitoring from an Amazon ECS cluster.

Runtime Monitoring Troubleshooting

You might need to troubleshoot or verify that Runtime Monitoring is enabled and running on your
tasks and containers.

Topics

• How can I tell if Runtime Monitoring is active on my account?

• How can I tell if Runtime Monitoring is active on a cluster?

• How can I tell if the GuardDuty security agent is running on a Fargate task?

• How can I tell if the GuardDuty security agent is running on an EC2 container instance?

• What happens when there is no task execution role for a task running on the cluster?

• How can I tell if I have the correct permissions to tag clusters for Runtime Monitoring?

• What happens when there is no connection Amazon ECR?

• How do I address out of memory errors on my Fargate tasks after enabling Runtime Monitoring?

How can I tell if Runtime Monitoring is active on my account?

In the Amazon ECS console, the information is in on the Account Settings page.

You can also run list-account-settings with the effective-settings option.

aws ecs list-account-settings --effective-settings

Output

The setting with name set to guardDutyActivate and value set to on indicates that the account
is configured. You must check with your GuardDuty administrator to see if the management is
automatic or manual.

{
 "setting": {
 "name": "guardDutyActivate",
 "value": "enabled",
 "principalArn": "arn:aws:iam::123456789012:root",
 "type": "aws-managed"

Troubleshooting Runtime Monitoring 1439

Amazon Elastic Container Service Developer Guide

 }
}

How can I tell if Runtime Monitoring is active on a cluster?

You can review the coverage statistics in the GuardDuty console. This includes information for
the Amazon ECS resources associated with your own account or your member accounts is the
percentage of the healthy clusters over all the clusters in the selected AWS Region. This includes
the coverage for clusters that use the Fargate and EC2 launch types. For more information, see
Reviewing coverage statistics in the Amazon GuardDuty User Guide.

How can I tell if the GuardDuty security agent is running on a Fargate task?

The GuardDuty security agent runs as a sidecar container for Fargate tasks.

In the Amazon ECS console, the sidecar is displayed under Containers on the Task details page.

You can run describe-tasks and look for the container with a name set to aws-gd-agent and
the lastStatus set to RUNNING.

The following example shows the output for the default cluster for task aws:ecs:us-
east-1:123456789012:task/0b69d5c0-d655-4695-98cd-5d2d5EXAMPLE.

aws ecs describe-tasks --cluster default --tasks aws:ecs:us-
east-1:123456789012:task/0b69d5c0-d655-4695-98cd-5d2d5EXAMPLE

Output

The container named gd-agent is in the RUNNING state.

"containers": [
 {
 "containerArn": "arn:aws:ecs:us-east-1:123456789012:container/4df26bb4-
f057-467b-a079-96167EXAMPLE",
 "taskArn": "arn:aws:ecs:us-east-1:123456789012:task/0b69d5c0-
d655-4695-98cd-5d2d5EXAMPLE",
 "lastStatus": "RUNNING",
 "healthStatus": "UNKNOWN",
 "memory": "string",
 "name": "aws-gd-agent"
 }

Troubleshooting Runtime Monitoring 1440

https://docs.aws.amazon.com/guardduty/latest/ug/gdu-assess-coverage-ecs.html#ecs-review-coverage-statistics-ecs-runtime-monitoring

Amazon Elastic Container Service Developer Guide

]

How can I tell if the GuardDuty security agent is running on an EC2 container
instance?

Run the following command to view the status:

sudo systemctl status amazon-guardduty-agent

The log file is in the following location:

/var/log/amzn-guardduty-agent

What happens when there is no task execution role for a task running on the
cluster?

For Fargate tasks, the task starts without the GuardDuty security agent sidecar container. The
GuardDuty dashboard will show that the task is missing protection in the coverage statistics
dashboard.

How can I tell if I have the correct permissions to tag clusters for Runtime
Monitoring?

In order to tag a cluster, you must have the ecs:TagResource action for both CreateCluster
and UpdateCluster.

The following is a snippet of an example policy.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:TagResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ecs:CreateAction" : "CreateCluster",
 "ecs:CreateAction" : "UpdateCluster",

Troubleshooting Runtime Monitoring 1441

Amazon Elastic Container Service Developer Guide

 }
 }
 }
]
}

What happens when there is no connection Amazon ECR?

For Fargate tasks, the task starts without the GuardDuty security agent sidecar container. The
GuardDuty dashboard will show that the task is missing protection in the coverage statistics
dashboard.

How do I address out of memory errors on my Fargate tasks after enabling
Runtime Monitoring?

The GuardDuty security agent is a lightweight process. However, the process still consumes
resources according to the size of the workload. We recommend using container resource tracking
tooling, such as Amazon CloudWatch Container Insights to stage GuardDuty deployments in your
cluster. These tools help you to discover the consumption profile of the GuardDuty security agent
for your applications. You can then adjust your Fargate task size, if required, to avoid potential out
of memory conditions.

Monitor Amazon ECS containers with ECS Exec

With Amazon ECS Exec, you can directly interact with containers without needing to first interact
with the host container operating system, open inbound ports, or manage SSH keys. You can use
ECS Exec to run commands in or get a shell to a container running on an Amazon EC2 instance or
on AWS Fargate. This makes it easier to collect diagnostic information and quickly troubleshoot
errors. For example, in a development context, you can use ECS Exec to easily interact with various
process in your containers and troubleshoot your applications. And in production scenarios, you can
use it to gain break-glass access to your containers to debug issues.

You can run commands in a running Linux or Windows container using ECS Exec from the Amazon
ECS API, AWS Command Line Interface (AWS CLI), AWS SDKs, or the AWS Copilot CLI. For details on
using ECS Exec, as well as a video walkthrough, using the AWS Copilot CLI, see the Copilot GitHub
documentation.

You can also use ECS Exec to maintain stricter access control policies. By selectively turning on this
feature, you can control who can run commands and on which tasks they can run those commands.

Monitor Amazon ECS containers with ECS Exec 1442

https://aws.github.io/copilot-cli/docs/commands/svc-exec/
https://aws.github.io/copilot-cli/docs/commands/svc-exec/

Amazon Elastic Container Service Developer Guide

With a log of each command and their output, you can use ECS Exec to view which tasks were run
and you can use CloudTrail to audit who accessed a container.

Considerations

For this topic, you should be familiar with the following aspects involved with using ECS Exec:

• ECS Exec is not currently supported using the AWS Management Console.

The clusters details page displays the logging and AWS KMS customer managed key used to
encrypt the data between the local client and the container.

• ECS Exec might not work as expected when running on operating systems not supported by
Systems Manager. For information about the supported operating systems, see Operating
system types in the AWS Systems Manager User Guide.

• ECS Exec is supported for tasks that run on the following infrastructure:

• Linux containers on Amazon EC2 on any Amazon ECS-optimized AMI, including Bottlerocket

• Linux and Windows containers on external instances (Amazon ECS Anywhere)

• Linux and Windows containers on AWS Fargate

• Windows containers on Amazon EC2 on the following Windows Amazon ECS-optimized AMIs
(with the container agent version 1.56 or later):

• Amazon ECS-optimized Windows Server 2022 Full AMI

• Amazon ECS-optimized Windows Server 2022 Core AMI

• Amazon ECS-optimized Windows Server 2019 Full AMI

• Amazon ECS-optimized Windows Server 2019 Core AMI

• Amazon ECS-optimized Windows Server 20H2 Core AMI

• If you configured an HTTP proxy for your task, set the NO_PROXY environment variable to
"NO_PROXY=169.254.169.254,169.254.170.2" in order to bypass the proxy for EC2
instance metadata and IAM role traffic. If you don't configure the NO_PROXY environment
variable, there can be failures when retrieving instance metadata or IAM role credentials from
the metadata endpoint within the container. Setting the NO_PROXY environment variable as
recommended filters the metadata and IAM traffic so that requests to 169.254.169.254 and
169.254.170.2 do not go through the HTTP proxy.

• ECS Exec and Amazon VPC

• If you are using interface Amazon VPC endpoints with Amazon ECS, you must create the
interface Amazon VPC endpoints for the Systems Manager Session Manager (ssmmessages).

Considerations 1443

https://docs.aws.amazon.com/systems-manager/latest/userguide/operating-systems-and-machine-types.html#prereqs-os-linux
https://docs.aws.amazon.com/systems-manager/latest/userguide/operating-systems-and-machine-types.html#prereqs-os-linux

Amazon Elastic Container Service Developer Guide

For more information about Systems Manager VPC endpoints, see Use AWS PrivateLink to set
up a VPC endpoint for Session Manager in the AWS Systems Manager User Guide.

• If you are using interface Amazon VPC endpoints with Amazon ECS, and you are using AWS
KMS key for encryption, then you must create the interface Amazon VPC endpoint for AWS
KMS key. For more information, see Connecting to AWS KMS key through a VPC endpoint in
the AWS Key Management Service Developer Guide.

• When you have tasks that run on Amazon EC2 instances, use awsvpc networking mode. If you
don't have internet access, such as not configured to use a NAT gateway), you must create the
interface Amazon VPC endpoints for the Systems Manager Session Manager (ssmmessages).
For more information about awsvpc network mode considerations, see Considerations. For
more information about Systems Manager VPC endpoints, see Use AWS PrivateLink to set up a
VPC endpoint for Session Manager in the AWS Systems Manager User Guide.

• ECS Exec and SSM

• When a user runs commands on a container using ECS Exec, these commands are run as the
root user. The SSM agent and its child processes run as root even when you specify a user ID
for the container.

• The SSM agent requires that the container file system can be written to in order to create
the required directories and files. Therefore, making the root file system read-only using the
readonlyRootFilesystem task definition parameter, or any other method, isn't supported.

• While starting SSM sessions outside of the execute-command action is possible, this results
in the sessions not being logged and being counted against the session limit. We recommend
limiting this access by denying the ssm:start-session action using an IAM policy. For more
information, see Limiting access to the Start Session action.

• The following features run as a sidecar container. Therefore, you must specify the container
name to run the command on.

• Runtime Monitoring

• Service Connect

• Users can run all of the commands that are available within the container context. The following
actions might result in orphaned and zombie processes: terminating the main process of the
container, terminating the command agent, and deleting dependencies. To cleanup zombie
processes, we recommend adding the initProcessEnabled flag to your task definition.

• ECS Exec uses some CPU and memory. You'll want to accommodate for that when specifying the
CPU and memory resource allocations in your task definition.

Considerations 1444

https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started-privatelink.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started-privatelink.html
https://docs.aws.amazon.com/kms/latest/developerguide/kms-vpc-endpoint.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking-awsvpc.html#linux
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started-privatelink.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started-privatelink.html

Amazon Elastic Container Service Developer Guide

• You must be using AWS CLI version 1.22.3 or later or AWS CLI version 2.3.6 or later. For
information about how to update the AWS CLI, see Installing or updating the latest version of
the AWS CLI in the AWS Command Line Interface User Guide Version 2.

• You can have only one ECS Exec session per process ID (PID) namespace. If you are sharing a PID
namespace in a task, you can only start ECS Exec sessions into one container.

• The ECS Exec session has an idle timeout time of 20 minutes. This value can't be changed.

• You can't turn on ECS Exec for existing tasks. It can only be turned on for new tasks.

• You can't use ECS Exec when you use run-task to launch a task on a cluster that uses managed
scaling with asynchronous placement (launch a task with no instance).

• You can't run ECS Exec against Microsoft Nano Server containers.

Prerequisites

Before you start using ECS Exec, make sure that you have completed these actions:

• Install and configure the AWS CLI. For more information, see Get started with the AWS CLI.

• Install Session Manager plugin for the AWS CLI. For more information, see Install the Session
Manager plugin for the AWS CLI.

• You must use a task role with the appropriate permissions for ECS Exec. For more information,
see Task IAM role.

• ECS Exec has version requirements depending on whether your tasks are hosted on Amazon EC2
or AWS Fargate:

• If you're using Amazon EC2, you must use an Amazon ECS optimized AMI that was released
after January 20th, 2021, with an agent version of 1.50.2 or greater. For more information, see
Amazon ECS optimized AMIs.

• If you're using AWS Fargate, you must use platform version 1.4.0 or higher (Linux) or 1.0.0
(Windows). For more information, see AWS Fargate platform versions.

Architecture

ECS Exec makes use of AWS Systems Manager (SSM) Session Manager to establish a connection
with the running container and uses AWS Identity and Access Management (IAM) policies to control
access to running commands in a running container. This is made possible by bind-mounting
the necessary SSM agent binaries into the container. The Amazon ECS or AWS Fargate agent is

Prerequisites 1445

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#other_task_definition_params
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#other_task_definition_params
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/platform-fargate.html

Amazon Elastic Container Service Developer Guide

responsible for starting the SSM core agent inside the container alongside your application code.
For more information, see Systems Manager Session Manager.

You can audit which user accessed the container using the ExecuteCommand event in AWS
CloudTrail and log each command (and their output) to Amazon S3 or Amazon CloudWatch Logs.
To encrypt data between the local client and container with your own encryption key, you must
provide the AWS Key Management Service (AWS KMS) key.

Using ECS Exec

Optional task definition changes

If you set the task definition parameter initProcessEnabled to true, this starts the init process
inside the container. This removes any zombie SSM agent child processes found. The following
provides an example.

{
 "taskRoleArn": "ecsTaskRole",
 "networkMode": "awsvpc",
 "requiresCompatibilities": [
 "EC2",
 "FARGATE"
],
 "executionRoleArn": "ecsTaskExecutionRole",
 "memory": ".5 gb",
 "cpu": ".25 vcpu",
 "containerDefinitions": [
 {
 "name": "amazon-linux",
 "image": "amazonlinux:latest",
 "essential": true,
 "command": ["sleep","3600"],
 "linuxParameters": {
 "initProcessEnabled": true
 }
 }
],
 "family": "ecs-exec-task"
}

Using ECS Exec 1446

https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html

Amazon Elastic Container Service Developer Guide

Turning on ECS Exec for your tasks and services

You can turn on the ECS Exec feature for your services and standalone tasks by specifying the --
enable-execute-command flag when using one of the following AWS CLI commands: create-
service, update-service, start-task, or run-task.

For example, if you run the following command, the ECS Exec feature is turned on for a newly
created service that runs on Fargate. For more information about creating services, see create-
service.

aws ecs create-service \
 --cluster cluster-name \
 --task-definition task-definition-name \
 --enable-execute-command \
 --service-name service-name \
 --launch-type FARGATE \
 --network-configuration
 "awsvpcConfiguration={subnets=[subnet-12344321],securityGroups=[sg-12344321],assignPublicIp=ENABLED}"
 \
 --desired-count 1

After you turn on ECS Exec for a task, you can run the following command to confirm the task is
ready to be used. If the lastStatus property of the ExecuteCommandAgent is listed as RUNNING
and the enableExecuteCommand property is set to true, then your task is ready.

aws ecs describe-tasks \
 --cluster cluster-name \
 --tasks task-id

The following output snippet is an example of what you might see.

{
 "tasks": [
 {
 ...
 "containers": [
 {
 ...
 "managedAgents": [
 {
 "lastStartedAt": "2021-03-01T14:49:44.574000-06:00",

Using ECS Exec 1447

https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/update-service.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/start-task.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/run-task.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/create-service.html

Amazon Elastic Container Service Developer Guide

 "name": "ExecuteCommandAgent",
 "lastStatus": "RUNNING"
 }
]
 }
],
 ...
 "enableExecuteCommand": true,
 ...
 }
]
}

Running commands using ECS Exec

After you have confirmed the ExecuteCommandAgent is running, you can open an interactive
shell on your container using the following command. If your task contains multiple containers,
you must specify the container name using the --container flag. Amazon ECS only supports
initiating interactive sessions, so you must use the --interactive flag.

The following command will run an interactive /bin/sh command against a container named
container-name for a task with an ID of task-id.

The task-id is the Amazon Resource Name (ARN) of the task.

aws ecs execute-command --cluster cluster-name \
 --task task-id \
 --container container-name \
 --interactive \
 --command "/bin/sh"

Logging using ECS Exec

Turning on logging in your tasks and services

Important

For more information about CloudWatch pricing, see CloudWatch Pricing. Amazon ECS also
provides monitoring metrics that are provided at no additional cost. For more information,
see Monitor Amazon ECS using CloudWatch.

Logging using ECS Exec 1448

https://aws.amazon.com/cloudwatch/pricing/

Amazon Elastic Container Service Developer Guide

Amazon ECS provides a default configuration for logging commands run using ECS Exec. The
default is to send logs to CloudWatch Logs using the awslogs log driver that's configured in
your task definition. If you want to provide a custom configuration, the AWS CLI supports a --
configuration flag for both the create-cluster and update-cluster commands. The
container image requires script and cat to be installed in order to have command logs uploaded
correctly to Amazon S3 or CloudWatch Logs. For more information about creating clusters, see
create-cluster.

Note

This configuration only handles the logging of the execute-command session. It doesn't
affect logging of your application.

The following example creates a cluster and then logs the output to your CloudWatch Logs
LogGroup named cloudwatch-log-group-name and your Amazon S3 bucket named s3-
bucket-name.

You must use an AWS KMS customer managed key to encrypt the log group when you set the
CloudWatchEncryptionEnabled option to true. For information about how to encrypt the
log group, see Encrypt log data in CloudWatch Logs using AWS Key Management Service, in the
Amazon CloudWatch Logs User Guide.

aws ecs create-cluster \
 --cluster-name cluster-name \
 --configuration executeCommandConfiguration="{ \
 kmsKeyId=string, \
 logging=OVERRIDE, \
 logConfiguration={ \
 cloudWatchLogGroupName=cloudwatch-log-group-name, \
 cloudWatchEncryptionEnabled=true, \
 s3BucketName=s3-bucket-name, \
 s3EncryptionEnabled=true, \
 s3KeyPrefix=demo \
 } \
 }"

The logging property determines the behavior of the logging capability of ECS Exec:

• NONE: logging is turned off.

Logging using ECS Exec 1449

https://docs.aws.amazon.com/cli/latest/reference/ecs/create-cluster.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html#encrypt-log-data-kms-policy

Amazon Elastic Container Service Developer Guide

• DEFAULT: logs are sent to the configured awslogs driver. If the driver isn't configured, then no
log is saved.

• OVERRIDE: logs are sent to the provided Amazon CloudWatch Logs LogGroup, Amazon S3
bucket, or both.

IAM permissions required for Amazon CloudWatch Logs or Amazon S3 Logging

To enable logging, the Amazon ECS task role that's referenced in your task definition needs to have
additional permissions. These additional permissions can be added as a policy to the task role.
They're different depending on if you direct your logs to Amazon CloudWatch Logs or Amazon S3.

Amazon CloudWatch Logs

The following example policy adds the required Amazon CloudWatch Logs permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:region:account-id:log-group:/aws/
ecs/cloudwatch-log-group-name:*"
 }
]
}

Amazon S3

The following example policy adds the required Amazon S3 permissions.

Logging using ECS Exec 1450

Amazon Elastic Container Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetEncryptionConfiguration"
],
 "Resource": "arn:aws:s3:::s3-bucket-name"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::s3-bucket-name/*"
 }
]
 }

IAM permissions required for encryption using your own AWS KMS key (KMS key)

By default, the data transferred between your local client and the container uses TLS 1.2
encryption that AWS provides. To further encrypt data using your own KMS key, you must create
a KMS key and add the kms:Decrypt permission to your task IAM role. This permission is used by
your container to decrypt the data. For more information about creating a KMS key, see Creating
keys.

You add the following inline policy to your task IAM role which requires the AWS KMS permissions.
For more information, see ECS Exec permissions.

{
 "Version": "2012-10-17",
 "Statement": [

Logging using ECS Exec 1451

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

Amazon Elastic Container Service Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": "kms-key-arn"
 }
]
}

For the data to be encrypted using your own KMS key, the user or group using the execute-
command action must be granted the kms:GenerateDataKey permission.

The following example policy for your user or group contains the required permission to use your
own KMS key. You must specify the Amazon Resource Name (ARN) of your KMS key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey"
],
 "Resource": "kms-key-arn"
 }
]
}

Using IAM policies to limit access to ECS Exec

You limit user access to the execute-command API action by using one or more of the following
IAM policy condition keys:

• aws:ResourceTag/clusterTagKey

• ecs:ResourceTag/clusterTagKey

• aws:ResourceTag/taskTagKey

• ecs:ResourceTag/taskTagKey

• ecs:container-name

• ecs:cluster

Using IAM policies to limit access to ECS Exec 1452

Amazon Elastic Container Service Developer Guide

• ecs:task

• ecs:enable-execute-command

With the following example IAM policy, users can run commands in containers that are running
within tasks with a tag that has an environment key and development value and in a cluster
that's named cluster-name.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:ExecuteCommand",
 "ecs:DescribeTasks"
],
 "Resource": [
 "arn:aws:ecs:region:aws-account-id:task/cluster-name/*",
 "arn:aws:ecs:region:aws-account-id:cluster/cluster-name"
],
 "Condition": {
 "StringEquals": {
 "ecs:ResourceTag/environment": "development"
 }
 }
 }
]
}

With the following IAM policy example, users can't use the execute-command API when the
container name is production-app.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "ecs:ExecuteCommand"
],
 "Resource": "*",

Using IAM policies to limit access to ECS Exec 1453

Amazon Elastic Container Service Developer Guide

 "Condition": {
 "StringEquals": {
 "ecs:container-name": "production-app"
 }
 }
 }
]
}

With the following IAM policy, users can only launch tasks when ECS Exec is turned off.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:RunTask",
 "ecs:StartTask",
 "ecs:CreateService",
 "ecs:UpdateService"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ecs:enable-execute-command": "false"
 }
 }
 }
]
}

Note

Because the execute-command API action contains only task and cluster resources in a
request, only cluster and task tags are evaluated.

For more information about IAM policy condition keys, see Actions, resources, and condition keys
for Amazon Elastic Container Service in the Service Authorization Reference.

Using IAM policies to limit access to ECS Exec 1454

Amazon Elastic Container Service Developer Guide

Limiting access to the Start Session action

While starting SSM sessions on your container outside of ECS Exec is possible, this could potentially
result in the sessions not being logged. Sessions started outside of ECS Exec also count against the
session quota. We recommend limiting this access by denying the ssm:start-session action
directly for your Amazon ECS tasks using an IAM policy. You can deny access to all Amazon ECS
tasks or to specific tasks based on the tags used.

The following is an example IAM policy that denies access to the ssm:start-session action for
tasks in all Regions with a specified cluster name. You can optionally include a wildcard with the
cluster-name.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "ssm:StartSession",
 "Resource": [
 "arn:aws:ecs:region:aws-account-id:task/cluster-name/*"
 }
]
}

The following is an example IAM policy that denies access to the ssm:start-session action on
resources in all Regions tagged with tag key Task-Tag-Key and tag value Exec-Task.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "ssm:StartSession",
 "Resource": "arn:aws:ecs:*:*:task/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Task-Tag-Key": "Exec-Task"
 }
 }
 }
]

Using IAM policies to limit access to ECS Exec 1455

Amazon Elastic Container Service Developer Guide

}

For help with any issues you may run into when using Amazon ECS Exec, see Troubleshooting issues
with Exec.

AWS Compute Optimizer recommendations for Amazon ECS

AWS Compute Optimizer generates recommendations for Amazon ECS task and container sizes. For
more information, see What is AWS Compute Optimizer? in the AWS Compute Optimizer User Guide.

Task and container size recommendations for Amazon ECS services on
AWS Fargate

AWS Compute Optimizer generates recommendations for Amazon ECS services on AWS Fargate.
AWS Compute Optimizer recommends task CPU and task memory size and container CPU,
container memory and container memory reservation sizes. These recommendations are displayed
on the following pages of the Compute Optimizer console.

• Recommendations for Amazon ECS services on Fargate page

• Amazon ECS services on Fargate details page

For more information, see Viewing recommendations for Amazon ECS services on Fargate in the
AWS Compute Optimizer User Guide.

Compute Optimizer recommendations 1456

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-exec-troubleshooting.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-exec-troubleshooting.html
https://docs.aws.amazon.com/compute-optimizer/latest/ug/what-is-compute-optimizer.html
https://docs.aws.amazon.com/compute-optimizer/latest/ug/view-ecs-recommendations.html

Amazon Elastic Container Service Developer Guide

Amazon ECS troubleshooting

You might need to troubleshoot issues with your load balancers, tasks, services, or container
instances. This chapter helps you find diagnostic information from the Amazon ECS container
agent, the Docker daemon on the container instance, and the service event log in the Amazon ECS
console.

For information about stopped tasks, see one of the following.

Action Learn more

Resolve stopped task errors. Viewing Amazon ECS stopped
task errors

View stopped task errors. Resolve Amazon ECS stopped
task errors

Review stopped task error
codes.

Amazon ECS stopped tasks
error messages

Review CannotPullContainer
task errors.

CannotPullContainer task
errors in Amazon ECS

View task IAM role requests. Viewing IAM role requests for
Amazon ECS tasks

For information about service errors, see one of the following.

Action Learn more

View service event messages. Viewing Amazon ECS service
event messages

Review service event
messages.

Amazon ECS service event
messages

1457

Amazon Elastic Container Service Developer Guide

Action Learn more

Review load balancer issues. Troubleshooting service load
balancers in Amazon ECS

Review service auto scaling
issues.

Troubleshooting service auto
scaling in Amazon ECS

For information about task definition errors, see one of the following.

Action Learn more

Resolve task definition
memory error.

Troubleshoot Amazon ECS
task definition invalid CPU or
memory errors

For information about Amazon ECS agent errors, see one of the following.

Action Learn more

View Amazon ECS container
agent logs.

Viewing Amazon ECS
container agent logs

Learn how to collect Amazon
ECS logs.

Collecting container logs with
Amazon ECS logs collector

Retrieve diagnostic details
with the Amazon ECS agent.

Retrieve Amazon ECS
diagnostic details with agent
introspection

For information about Docker errors, see one of the following.

1458

Amazon Elastic Container Service Developer Guide

Action Learn more

Use Docker diagnostics. Docker diagnostics in Amazon
ECS

Turn on Docker debug mode. Configuring verbose output
from the Docker daemon in
Amazon ECS

Troubleshoot Docker API error
500.

Troubleshoot the Docker API
error (500): devmapper

 in Amazon ECS

For information about ECS Exec and Amazon ECS Anywhere errors, see one of the following.

Action Learn more

Troubleshoot ECS Exec. Troubleshoot Amazon ECS
Exec issues

Troubleshoot Amazon ECS
Anywhere.

Troubleshoot Amazon ECS
Anywhere issues

For information about throttling issues, see one of the following.

Action Learn more

Learn about Fargate throttlin
g quotas.

AWS Fargate throttling
quotas

Learn the best practices for
Amazon ECS throttling.

Handle Amazon ECS throttlin
g issues

For information about API errors, see one of the following.

1459

Amazon Elastic Container Service Developer Guide

Action Learn more

Resolve API errors. Amazon ECS API failure
reasons

Resolve Amazon ECS stopped task errors

When your task fails to start, you see an error message in the console and in the describe-tasks
output parameters (stoppedReason and stoppedCode).

You can view stopped tasks in the console for one hour. In order to see stopped tasks, you must
change the filter option. For more information, see Viewing Amazon ECS stopped task errors.

The following pages provide information about stopped tasks.

• Learn about changes to stopped task error messages.

Amazon ECS stopped task error messages updates

• View your stopped tasks so you can get information about the cause.

Viewing Amazon ECS stopped task errors

• Learn about the stopped tasks error messages and possible reasons for the errors.

Amazon ECS stopped tasks error messages

• Learn how to verify stopped task connectivity and fix the errors.

Verifying Amazon ECS stopped task connectivity

Amazon ECS stopped task error messages updates

Beginning June 14, 2024 the Amazon ECS team is changing the stopped task error messages as
described in the following tables. The stopCode will not change. If your applications depend on
exact error message strings, you must update your applications with the new strings. For help with
questions or problems, contact AWS Support.

Resolve stopped task errors 1460

Amazon Elastic Container Service Developer Guide

Note

We recommend that you do not rely on the error messages for your automation, because
the error messages are subject to change.

CannotPullContainerError

Old error message New error message

CannotPullContainerError:
Error response from daemon:
pull access denied for
repository , repository
does not exist or may require
'docker login': denied: User:
roleARN

• CannotPullContainerError:
The task can’t pull the
image. Check that the
role has the permissions
to pull images from the
registry. Error response
from daemon: pull access
denied for repository ,
repository does not exist or
may require 'docker login':
denied: User: roleARN is
not authorized to perform:
ecr:BatchGetImage on
resource: image because no
identity-based policy allows
the ecr:BatchGetImage
action.

• CannotPullContainerError:
The task can’t pull the
image. Check whether the
image exists. Error response
from daemon: pull access
denied for repository ,
repository does not exist or
may require 'docker login':

Stopped task error messages updates 1461

Amazon Elastic Container Service Developer Guide

Old error message New error message

denied: requested access to
the resource is denied.

CannotPullContainerError:
Error response from daemon:
Get imageURI: net/http:
request canceled while
waiting for connection

CannotPullContainerError:
The task can’t pull the image.
Check your network configura
tion. Error response from
daemon: Get image: net/
http: request canceled while
waiting for connection
(Client.Timeout exceeded
while awaiting headers)

CannotPullContainerError:
ref pull has been retried
5 time(s): failed to copy:
httpReadSeeker: failed open:
failed to do request: Get
registry-uri : dial tcp
<ip>:<port> i/o timeout

CannotPullContainerError:
The task cannot pull image-
uri from the registry
registry-uri . There is
a connection issue between
the task and the registry.
Check your task network
configuration. : failed to copy:
httpReadSeeker: failed open:
failed to do request: Get
registry-uri : dial tcp
<ip>:<port> i/o timeout

ResourceNotFoundException

Old error message New error message

Fetching secret data from
AWS Secrets Manager in
region region: secret
sercretARN : ResourceN
otFoundException: Secrets

ResourceNotFoundException:
The task can't retrieve the
secret with ARN 'sercretAR
N ' from AWS Secrets
Manager. Check whether the

Stopped task error messages updates 1462

Amazon Elastic Container Service Developer Guide

Old error message New error message

Manager can't find the
specified secret.

secret exists in the specified
Region. ResourceNotFoundEx
ception: Fetching secret data
from AWS Secrets Manager
in region region: secret
sercretARN : ResourceN
otFoundException: Secrets
Manager can't find the
specified secret.

ResourceInitializationError

Old error message New error message

ResourceInitializationError
: unable to pull secrets or
registry auth: execution
resource retrieval failed:
unable to retrieve ecr registry
auth: service call has been
retried 3 time(s): RequestEr
ror: send request failed
caused by: Post "https://
api.ecr.us-east-1.amazonaws
.com/": dial tcp <ip>:<port>:
i/o timeout. Please check your
task network configuration.

ResourceInitializationError
: unable to pull secrets
or registry auth: The task
cannot pull registry auth
from Amazon ECR: There is
a connection issue between
the task and Amazon ECR.
Check your task network
configuration. RequestError:
send request failed caused
by: Post "https://api.ecr.us-
east-1.amazonaws.com": dial
tcp <ip>:<port>: i/o timeout

ResourceInitializationError
: unable to pull secrets or
registry auth: execution
resource retrieval failed:
unable to retrieve secrets
from ssm: service call has

ResourceInitializationError
: unable to pull secrets or
registry auth: unable to
retrieve secrets from ssm: The
task cannot pull secrets from
AWS Systems Manager. There

Stopped task error messages updates 1463

Amazon Elastic Container Service Developer Guide

Old error message New error message

been retried 5 time(s):
RequestCanceled: request
context canceled caused by:
context deadline exceeded

is a connection issue between
the task and AWS Systems
Manager Parameter Store.
Check your task network
configuration. RequestCa
nceled: request context
canceled caused by: context
deadline exceeded

ResourceInitializationError:
failed to download env files:
file download command:
non empty error stream:
RequestCanceled: request
context canceled caused by:
context deadline exceeded

ResourceInitializationError:
failed to download env files:
The task can't download the
environment variable files
from Amazon S3. There is a
connection issue between
the task and Amazon S3.
Check your task network
configuration. service call
has been retried 5 time(s):
RequestCanceled: request
context canceled caused by:
context deadline exceeded

ResourceInitializationError
: failed to validate logger
args::signal:killed

ResourceInitializationError
: failed to validate logger
args: The task cannot find
the Amazon CloudWatch
log group defined in the
task definition. There is a
connection issue between the
task and Amazon CloudWatc
h. Check your network
configuration. : signal: killed

Stopped task error messages updates 1464

Amazon Elastic Container Service Developer Guide

Old error message New error message

ResourceInitializationError
: unable to pull secrets or
registry auth: pull command
failed: : signal: killed

ResourceInitializationError
: unable to pull secrets or
registry auth: Check your
task network configuration. :
signal: killed

Viewing Amazon ECS stopped task errors

If you have trouble starting a task, your task might be stopping because of application or
configuration errors. For example, you run the task and the task displays a PENDING status and
then disappears.

If your task was created by an Amazon ECS service, the actions that Amazon ECS takes to maintain
the service are published in the service events. You can view the events in the AWS Management
Console, AWS CLI, AWS SDKs, the Amazon ECS API, or tools that use the SDKs and API. These
events include Amazon ECS stopping and replaces a task because the containers in the task have
stopped running, or have failed too many health checks from Elastic Load Balancing.

If your task ran on a container instance on Amazon EC2 or external computers, you can also look at
the logs of the container runtime and the Amazon ECS Agent. These logs are on the host Amazon
EC2 instance or external computer. For more information, see Viewing Amazon ECS container agent
logs.

Procedure

Console

AWS Management Console

The following steps can be used to check stopped tasks for errors using the console. In order to
see stopped tasks, you must change the filter option.

Stopped tasks only appear in the console for 1 hour.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

Viewing stopped task errors 1465

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

3. On the Clusters page, choose the cluster.

4. On the Cluster : name page, choose the Tasks tab.

5. Configure the filter to display stopped tasks. For Filter desired status, choose Stopped.

The Stopped option displays your stopped tasks and Any desired status displays all of your
tasks.

6. Choose the stopped task to inspect.

7. In the row for your stopped task, in the Last Status column, choose Stopped.

A pop-up window displays the stopped reason.

AWS CLI

1. List the stopped tasks in a cluster. The output contains the Amazon Resource Name (ARN)
of the task, which you need to describe the task.

aws ecs list-tasks \
 --cluster cluster_name \
 --desired-status STOPPED \
 --region region

2. Describe the stopped task to retrieve the information. For more information, see describe-
tasks in the AWS Command Line Interface Reference.

aws ecs describe-tasks \
 --cluster cluster_name \
 --tasks arn:aws:ecs:region:account_id:task/cluster_name/task_ID \
 --region region

Use the following output parameters.

• stopCode - The stop code indicates why a task was stopped, for example
ResourceInitializationError

• StoppedReason - The reason the task stopped.

• reason (in the containers structure) - The reason provide additional details about the
stopped container.

Viewing stopped task errors 1466

https://docs.aws.amazon.com/cli/latest/reference/ecs/describe-tasks.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/describe-tasks.html

Amazon Elastic Container Service Developer Guide

Next steps

View your stopped tasks so you can get information about the cause. For more information, see
Amazon ECS stopped tasks error messages.

Amazon ECS stopped tasks error messages

The following are the possible error messages you may receive when your task stops unexpectedly.

To check your stopped tasks for an error message using the AWS Management Console, see
Viewing Amazon ECS stopped task errors.

Stopped task error codes have a category associated with them, for example
"ResourceInitializationError". To get more information about each category, see the following:

Category Learn more

TaskFailedToStart Troubleshooting Amazon ECS
TaskFailedToStart errors

ResourceInitializationError Troubleshooting Amazon ECS
ResourceInitializationError
errors

ResourceNotFoundException Troubleshooting Amazon ECS
ResourceNotFoundException
errors

SpotInterruptionError Troubleshooting Amazon ECS
SpotInterruption errors

InternalError Troubleshooting Amazon ECS
InternalError errors

OutOfMemoryError Troubleshooting Amazon ECS
OutOfMemoryError errors

ContainerRuntimeError Troubleshooting Amazon ECS
ContainerRuntimeError errors

Stopped tasks error messages 1467

Amazon Elastic Container Service Developer Guide

Category Learn more

ContainerRuntimeTi
meoutError

Troubleshooting Amazon
ECS ContainerRuntimeTi
meoutError errors

CannotStartContainerError Troubleshooting Amazon ECS
CannotStartContainerError
errors

CannotStopContainerError Troubleshooting Amazon ECS
CannotStopContainerError
errors

CannotInspectContainerError Troubleshooting Amazon ECS
CannotInspectContainerError
errors

CannotCreateVolumeError Troubleshooting Amazon ECS
CannotCreateVolumeError
errors

CannotPullContainer CannotPullContainer task
errors in Amazon ECS

Troubleshooting Amazon ECS TaskFailedToStart errors

The following are some TaskFailedToStart error messages and actions that you can take to fix
the errors.

To check your stopped tasks for an error message using the AWS Management Console, see
Viewing Amazon ECS stopped task errors.

Unexpected EC2 error while attempting to Create Network Interface with public IP assignment
enabled in subnet 'subnet-id

This happens when a Fargate task that uses the awsvpc network mode and runs in a subnet with a
public IP address, and the subnet does not have enough IP addresses.

Stopped tasks error messages 1468

Amazon Elastic Container Service Developer Guide

The number of available IP addresses is available on the subnet details page in the Amazon EC2
console, or by using describe-subnets. For more information, see View your subnet in the
Amazon VPC User Guide.

To fix this issue, you can create a new subnet to run your task in.

InternalError: <reason>

This error occurs when an ENI attachment is requested. Amazon EC2 asynchronously handles the
provisioning of the ENI. The provisioning process takes time. Amazon ECS has a timeout in case
there are long wait times or unreported failures. There are times when the ENI is provisioned,
but the report comes to Amazon ECS after the failure timeout. In this case, Amazon ECS sees the
reported task failure with an in-use ENI.

The selected task definition is not compatible with the selected compute strategy

This error occurs when you chose a task definition with a launch type that does not match the
cluster capacity type. For more information, see Amazon ECS launch types. You need to select a
task definition that matches the capacity provider assigned to your cluster.

Unable to attach network interface to unused device index

This error occurs when When using awsvpc networking type and there is not enough CPU/memory
for the task. First, check the CPU for the instances. For more information, see Amazon EC2 instance
type specifications in Amazon EC2 instance types. Take the CPU value for the instance and multiply
it by the number of ENIs for the instance. Use that value e in the task definition.

AGENT

The container instance that you attempted to launch a task onto has an agent that's currently
disconnected. To prevent extended wait times for task placement, the request was rejected.

For information about how to troubleshoot an agent that's disconnected, see How do I
troubleshoot a disconnected Amazon ECS agent.

Troubleshooting Amazon ECS ResourceInitializationError errors

The following are some ResourceInitialization error messages and actions that you can take
to fix the errors.

To check your stopped tasks for an error message using the AWS Management Console, see
Viewing Amazon ECS stopped task errors.

Stopped tasks error messages 1469

https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#view-subnet
https://docs.aws.amazon.com/ec2/latest/instancetypes/ec2-instance-type-specifications.html
https://docs.aws.amazon.com/ec2/latest/instancetypes/ec2-instance-type-specifications.html
https://repost.aws/knowledge-center/ecs-agent-disconnected-linux2-ami
https://repost.aws/knowledge-center/ecs-agent-disconnected-linux2-ami

Amazon Elastic Container Service Developer Guide

Errors

• The task cannot pull registry authentication from Amazon ECR. There is a connection issue
between the task and Amazon ECR. Check your task network configuration.

• The task can't download the environment variable files from Amazon S3. There is a connection
issue between the task and Amazon S3. Check your task network configuration.

• The task cannot pull secrets from AWS Systems Manager Parameter Store. Check your network
connection between the task and AWS Systems Manager.

• The task can’t pull secrets from AWS Secrets Manager. There is a connection issue between the
task and Secrets Manager. Check your task network configuration.

• The task can’t pull the secret from Secrets Manager. The task can't retrieve the secret with ARN
‘secretARN' from Secrets Manager. Check whether the secret exists in the specified Region.

• pull command failed: unable to pull secrets or registry auth Check your task network
configuration.

• The task cannot find the Amazon CloudWatch log group defined in the task definition. There is a
connection issue between the task and Amazon CloudWatch. Check your network configuration.

• failed to initialize logging driver

• failed to invoke EFS utils commands to set up EFS volumes

The task cannot pull registry authentication from Amazon ECR. There is a connection issue
between the task and Amazon ECR. Check your task network configuration.

This error indicates that the task can't connect to Amazon ECR.

Check the connection between the task and Amazon ECR. For information, see Verifying Amazon
ECS stopped task connectivity.

The task can't download the environment variable files from Amazon S3. There is a connection
issue between the task and Amazon S3. Check your task network configuration.

This error occurs when your task can't download your environment file from Amazon S3.

Check the connection between the task and the Amazon S3 VPC endpoint. For information, see
Verifying Amazon ECS stopped task connectivity.

Stopped tasks error messages 1470

Amazon Elastic Container Service Developer Guide

The task cannot pull secrets from AWS Systems Manager Parameter Store. Check your network
connection between the task and AWS Systems Manager.

This error occurs when your task can't pull the image defined in the task definition using the
credentials in Systems Manager.

Check the connection between the task and the Systems Manager VPC endpoint. For information,
see Verifying Amazon ECS stopped task connectivity.

The task can’t pull secrets from AWS Secrets Manager. There is a connection issue between the
task and Secrets Manager. Check your task network configuration.

This error occurs when your task can't pull the image defined in the task definition using the
credentials in Secrets Manager.

The error indicates that there is a network connectivity issue between the Systems Manager VPC
endpoint and the task.

For information about how to verify the connectivity between the task and the endpoint, see
Verifying Amazon ECS stopped task connectivity.

The task can’t pull the secret from Secrets Manager. The task can't retrieve the secret with ARN
‘secretARN' from Secrets Manager. Check whether the secret exists in the specified Region.

This error occurs when your task can't pull the image defined in the task definition using the
credentials in Secrets Manager.

This issue is caused by one of the following reasons:

Error cause.. Do this...

Network connectivity issue
between the Secrets Manager
VPC endpoint and the task.

The problem is a network
issue when you see any of the
following strings in the error
message:

Verify the connectivity
between the task and the
Secrets Manager endpoint.
 For more information,
see Verifying Amazon ECS
stopped task connectivity.

Stopped tasks error messages 1471

Amazon Elastic Container Service Developer Guide

Error cause.. Do this...

• dial tcp

• dial udp

• <ip>:<port>: i/o timeout

• net/http: TLS handshake
timeout

• read: connection timed out

• Client.Timeout exceeded
while awaiting headers

• net/http: request canceled
while waiting for connectio
n

• signal: killed

• context deadline exceeded

The task execution role
defined in the task definition
doesn't have the permissions
for Secrets Manager.

Add the required permissio
ns for Secrets Manager to
the task execution role. For
more information, see Secrets
Manager or Systems Manager
permissions.

The secret ARN doesn't exist Check that the ARN exists
in Secrets Manager. For
information about viewing
your images, see Find secrets
in Secrets Manager in the
Secrets Manager Developer
Guide.

pull command failed: unable to pull secrets or registry auth Check your task network
configuration.

This error occurs when your task can't connect to Amazon ECR, Systems Manager, or Secrets
Manager. This is due to a misconfiguration in your network.

Stopped tasks error messages 1472

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_search-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_search-secret.html

Amazon Elastic Container Service Developer Guide

To fix this issue, verify the connectivty between the task and Amazon ECR. You also need to check
connectivity between your task and the service which stores your secret (Systems Manager, or
Secrets Manager). For more information, see Verifying Amazon ECS stopped task connectivity.

The task cannot find the Amazon CloudWatch log group defined in the task definition.
There is a connection issue between the task and Amazon CloudWatch. Check your network
configuration.

This error occurs when your task fails to find the CloudWatch log group you defined in the task
definition.

The error indicates that there is a network connectivity issue between the CloudWatch VPC
endpoint and the task.

For information about how to verify the connectivity between the task and the endpoint, see
Verifying Amazon ECS stopped task connectivity.

failed to initialize logging driver

This error occurs when your task fails to find the CloudWatch log group you defined in the task
definition.

The error indicates that the CloudWatch group in the task definition does not exist.

Use the following steps to find the missing CloudWatch.

1. Run the following command to get the task definition information.

aws ecs describe-task-definition \
 --task-definition task-def-name

Look at the output for each container and note the awslogs-group value.

"logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/example-group",
 "awslogs-create-group": "true",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 },

Stopped tasks error messages 1473

Amazon Elastic Container Service Developer Guide

2. Verify that the group existis in CloudWatch for more information, see Working with log groups
and log streams in the Amazon CloudWatch Logs User Guide.

The issue is either that the group specified in the task definition is incorrect, or the log group
does not exist.

3. Fix the issue.

The issue is... Do this...

The incorrect log group
is specified in the task
definition.

Update the task definitio
n to include the log group
configuration in the
container definition.For
information about updating
the task definition, see
Updating an Amazon
ECS task definition using
the console or RegisterT
askDefinition in the Amazon
Elastic Container Service API
Reference.

The log group does not exist
in CloudWatch

Create the log group.
For more information,
see Create a log group in
CloudWatch Logs in the
Amazon CloudWatch Logs
User Guide.

failed to invoke EFS utils commands to set up EFS volumes

The following issues might prevent you from mounting your Amazon EFS volumes on your asks:

• The Amazon EFS file system isn't configured correctly.

• The task doesn't have the required permissions.

• There are issues related to network and VPC configurations.

Stopped tasks error messages 1474

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html

Amazon Elastic Container Service Developer Guide

For information about how to debug and fix this issue, see Why can't I mount my Amazon EFS
volumes on my AWS Fargate tasks on AWS re:Post.

Troubleshooting Amazon ECS ResourceNotFoundException errors

The following are some ResourceNotFoundException error messages and actions that you can
take to fix the errors.

To check your stopped tasks for an error message using the AWS Management Console, see
Viewing Amazon ECS stopped task errors.

The task can't retrieve the secret with ARN 'sercretARN' from AWS Secrets Manager. Check
whether the secret exists in the specified Region.

This error occurs when the task can't retrieve the secret from Secrets Manager. This means that the
secret specified in the task definition (and contained in the error message) does not exist in Secrets
Manager.

The Region is in the error message.

Fetching secret data from AWS Secrets Manager in region region: secret sercretARN:
ResourceNotFoundException: Secrets Manager can't find the specified secret.

For information about finding a secret, see Find secrets in AWS Secrets Manager in the AWS Secrets
Manager User Guide.

Use the following table to determine and address the error.

Issue Actions

The secret is in a different
Region from the the task
definition.

a. Create the secret in the
same Region as the task.
For more information, see
Create an AWS Secrets
Manager secret.

b. Update the task definitio
n with the new secret.
For more information,
see Updating an Amazon
ECS task definition using

Stopped tasks error messages 1475

https://repost.aws/knowledge-center/fargate-unable-to-mount-efs
https://repost.aws/knowledge-center/fargate-unable-to-mount-efs
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_search-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Elastic Container Service Developer Guide

Issue Actions

the console or RegisterT
askDefinition in the
Amazon Elastic Container
Service API Reference.

The task definition has the
incorrect secret ARN. The
correct secret exists in Secrets
Manager.

Update the task definitio
n with the correct secret.
For more information, see
Updating an Amazon ECS task
definition using the console
or RegisterTaskDefinition in
the Amazon Elastic Container
Service API Reference.

The secret no longer exists. a. Create the secret in the
same Region as the task.
For more information, see
Create an AWS Secrets
Manager secret.

b. Update the task definitio
n with the new secret.
For more information,
see Updating an Amazon
ECS task definition using
the console or RegisterT
askDefinition in the
Amazon Elastic Container
Service API Reference.

Troubleshooting Amazon ECS SpotInterruption errors

The SpotInterruption error has different reasons for the Fargate and EC2 launch types.

To check your stopped tasks for an error message using the AWS Management Console, see
Viewing Amazon ECS stopped task errors.

Stopped tasks error messages 1476

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RegisterTaskDefinition.html

Amazon Elastic Container Service Developer Guide

Fargate launch type

The SpotInterruption error occurs when there is no Fargate Spot capacity or when Fargate
takes back Spot capacity.

You can have your tasks run in multiple Availability Zones to allow for more capacity.

EC2 launch type

This error occurs when there are no available Spot Instances or EC2 takes back Spot Instance
capacity.

You can have your instances run in multiple Availability Zones to allow for more capacity.

Troubleshooting Amazon ECS InternalError errors

Applies to: Fargate launch type

To check your stopped tasks for an error message using the AWS Management Console, see
Viewing Amazon ECS stopped task errors.

The InternalError error when the agent encounters an unexpected, non-runtime related
internal error.

This error only occurs if using platform version 1.4 or later.

For information about how to debug and fix this issue, see Amazon ECS stopped tasks error
messages.

Troubleshooting Amazon ECS OutOfMemoryError errors

The following are some OutOfMemoryError error messages and actions that you can take to fix the
errors.

To check your stopped tasks for an error message using the AWS Management Console, see
Viewing Amazon ECS stopped task errors.

container killed due to memory usage

This error occurs when a container exits due to processes in the container consuming more memory
than was allocated in the task definition, or due to host or operating system constraints.

Stopped tasks error messages 1477

Amazon Elastic Container Service Developer Guide

Troubleshooting Amazon ECS ContainerRuntimeError errors

The following are some ContainerRuntimeError error messages and actions that you can take to fix
the errors.

To check your stopped tasks for an error message using the AWS Management Console, see
Viewing Amazon ECS stopped task errors.

ContainerRuntimeError

This error occurs when the agent receives an unexpected error from containerd for a
runtime-specific operation. This error is usually caused by an internal failure in the agent or the
containerd runtime.

This error only occurs if you use platform version 1.4.0 or later (Linux) or 1.0.0 or later
(Windows).

For information about how to debug and fix this issue, see Why is my Amazon ECS task Stopped on
AWS re:Post.

Troubleshooting Amazon ECS ContainerRuntimeTimeoutError errors

The following are some ContainerRuntimeTimeoutError error messages and actions that you can
take to fix the errors.

To check your stopped tasks for an error message using the AWS Management Console, see
Viewing Amazon ECS stopped task errors.

Could not transition to running; timed out after waiting 1m or Docker timeout error

This error occurs when a container can't transition to either a RUNNING or STOPPED state within
the timeout period. The reason and timeout value is provided in the error message.

Troubleshooting Amazon ECS CannotStartContainerError errors

The following are some CannotStartContainerError error messages and actions that you can take to
fix the errors.

To check your stopped tasks for an error message using the AWS Management Console, see
Viewing Amazon ECS stopped task errors.

Stopped tasks error messages 1478

https://repost.aws/knowledge-center/ecs-task-stopped

Amazon Elastic Container Service Developer Guide

failed to get container status: <reason>

This error occurs when a container can't be started.

If your container attempts to exceed the memory specified here, the container is stopped. Increase
the memory presented to the container. This is the memory parameter in the task definition. For
more information, see the section called “Memory”.

Troubleshooting Amazon ECS CannotStopContainerError errors

The following are some CannotStopContainerError error messages and actions that you can take to
fix the errors.

To check your stopped tasks for an error message using the AWS Management Console, see
Viewing Amazon ECS stopped task errors.

CannotStopContainerError

This error occurs when a container can’t be stopped.

For information about how to debug and fix this issue, see Why is my Amazon ECS task Stopped on
AWS re:Post.

Troubleshooting Amazon ECS CannotInspectContainerError errors

The following are some CannotInspectContainerError error messages and actions that you can take
to fix the errors.

To check your stopped tasks for an error message using the AWS Management Console, see
Viewing Amazon ECS stopped task errors.

CannotInspectContainerError

This error occurs when the container agent can't describe the container through the container
runtime.

When using platform version 1.3 or earlier, the Amazon ECS agent returns the reason from Docker.

When using platform version 1.4.0 or later (Linux) or 1.0.0 or later (Windows), the Fargate agent
returns the reason from containerd.

Stopped tasks error messages 1479

https://repost.aws/knowledge-center/ecs-task-stopped

Amazon Elastic Container Service Developer Guide

For information about how to debug and fix this issue, see Why is my Amazon ECS task Stopped on
AWS re:Post.

Troubleshooting Amazon ECS CannotCreateVolumeError errors

The following are some CannotCreateVolumeError error messages and actions that you can take to
fix the errors.

To check your stopped tasks for an error message using the AWS Management Console, see
Viewing Amazon ECS stopped task errors.

CannotCreateVolumeError

This error occurs when the agent can't create the volume mount specified in the task definition.

This error only occurs if you use platform version 1.4.0 or later (Linux) or 1.0.0 or later
(Windows).

For information about how to debug and fix this issue, see Why is my Amazon ECS task Stopped on
AWS re:Post.

CannotPullContainer task errors in Amazon ECS

The following errors indicate that the task failed to start because Amazon ECS can't retrieve the
specified container image.

Note

The 1.4 Fargate platform version truncates long error messages.

To check your stopped tasks for an error message using the AWS Management Console, see
Viewing Amazon ECS stopped task errors.

Errors

• The task can’t pull the image. Check that the role has the permissions to pull images from the
registry.

• The task cannot pull ‘image-name’ from the Amazon ECR repository ‘repository URI’. There is a
connection issue between the task and Amazon ECR. Check your task network configuration.

• The task can’t pull the image. Check your network configuration

Stopped tasks error messages 1480

https://repost.aws/knowledge-center/ecs-task-stopped
https://repost.aws/knowledge-center/ecs-task-stopped

Amazon Elastic Container Service Developer Guide

• CannotPullContainerError: pull image manifest has been retried 5 time(s): failed to resolve ref

• API error (500): Get https://111122223333.dkr.ecr.us-east-1.amazonaws.com/v2/: net/http:
request canceled while waiting for connection

• API error

• write /var/lib/docker/tmp/GetImageBlob111111111: no space left on device

• ERROR: toomanyrequests: Too Many Requests or You have reached your pull rate limit.

• Error response from daemon: Get url: net/http: request canceled while waiting for connection

• ref pull has been retried 1 time(s): failed to copy: httpReaderSeeker: failed open: unexpected
status code

• pull access denied

• pull command failed: panic: runtime error: invalid memory address or nil pointer dereference

• error pulling image conf/error pulling image configuration

• Context canceled

The task can’t pull the image. Check that the role has the permissions to pull images from the
registry.

This error indicates that the task can't pull the image specified in the task definition because of
permission issues.

To resolve this issue:

1. Check that the image exists in the repository. For information about viewing your images, see
Viewing image details in Amazon ECR in the Amazon Elastic Container Registry User Guide.

2. Verify that the role-arn has the correct permissions to pull the image.

For information about how to update roles, see Update permissions for a role in the AWS
Identity and Access Management Use Guide.

The task uses one of the following roles:

• For tasks with the Fargate launch type, this is the task execution role. For information about
the additional permissions for Amazon ECR, Fargate tasks pulling Amazon ECR images over
interface endpoints permissions.

• For tasks with the EC2 launch type, this is the container instance role. For information about
the additional permissions for Amazon ECR, Amazon ECR permissions.

Stopped tasks error messages 1481

https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-info.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-role-permissions.html

Amazon Elastic Container Service Developer Guide

The task cannot pull ‘image-name’ from the Amazon ECR repository ‘repository URI’.
There is a connection issue between the task and Amazon ECR. Check your task network
configuration.

This error indicates that the task can't connect to Amazon ECR. Check the connection to the
repository URI repository.

For information about how to verify and resolve the issue, see Verifying Amazon ECS stopped task
connectivity.

The task can’t pull the image. Check your network configuration

This error indicates that the task can't connect to Amazon ECR.

For information about how to verify and resolve the issue, see Verifying Amazon ECS stopped task
connectivity.

CannotPullContainerError: pull image manifest has been retried 5 time(s): failed to resolve ref

This error indicates that the task can't pull the image.

To resolve this, you can:

• Verify that the image specified in the task definition matches the image in the repository.

• Amazon ECS forces image version stability. If the original image is no longer available you
get this error. The image tag is part of enforcing this behavior. Change the image in the task
definition from using :latest as the tag to a specifc version. For more information, see Container
image resolution.

For information about how to verify and resolve the issue, see Verifying Amazon ECS stopped task
connectivity.

API error (500): Get https://111122223333.dkr.ecr.us-east-1.amazonaws.com/v2/: net/http:
request canceled while waiting for connection

This error indicates that a connection timed out, because a route to the internet doesn't exist.

To resolve this issue, you can:

• For tasks in public subnets, specify ENABLED for Auto-assign public IP when launching the task.
For more information, see Running an application as an Amazon ECS task.

Stopped tasks error messages 1482

Amazon Elastic Container Service Developer Guide

• For tasks in private subnets, specify DISABLED for Auto-assign public IP when launching the
task, and configure a NAT gateway in your VPC to route requests to the internet. For more
information, see NAT Gateways in the Amazon VPC User Guide.

API error

This error indicates that there is a connection issue with the Amazon ECR endpoint.

For information about how to resolve this issue, see How can I resolve the Amazon ECR error
"CannotPullContainerError: API error" in Amazon ECS on the Support website.

write /var/lib/docker/tmp/GetImageBlob111111111: no space left on device

This error indicates that there is insufficient disk space.

To resolve this issue, free up disk space.

If you are using the Amazon ECS-optimized AMI, you can use the following command to retrieve
the 20 largest files on your file system:

du -Sh / | sort -rh | head -20

Example output:

5.7G /var/lib/docker/
containers/50501b5f4cbf90b406e0ca60bf4e6d4ec8f773a6c1d2b451ed8e0195418ad0d2
1.2G /var/log/ecs
594M /var/lib/docker/devicemapper/mnt/
c8e3010e36ce4c089bf286a623699f5233097ca126ebd5a700af023a5127633d/rootfs/data/logs
...

In some cases, the root volume might be filled out by a running container. If the container is
using the default json-file log driver without a max-size limit, it may be that the log file
is responsible for most of that space used. You can use the docker ps command to verify
which container is using the space by mapping the directory name from the output above to the
container ID. For example:

CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
50501b5f4cbf amazon/amazon-ecs-agent:latest "/agent" 4 days ago
 Up 4 days ecs-agent

Stopped tasks error messages 1483

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-pull-container-api-error-ecr/
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-pull-container-api-error-ecr/

Amazon Elastic Container Service Developer Guide

By default, when using the json-file log driver, Docker captures the standard output (and
standard error) of all of your containers and writes them in files using the JSON format. You can set
the max-size as a log driver option, which prevents the log file from taking up too much space.
For more information, see JSON File logging driver in the Docker documentation.

The following is a container definition snippet showing how to use this option:

{
 "log-driver": "json-file",
 "log-opts": {
 "max-size": "256m"
 }
}

An alternative, if your container logs are taking up too much disk space, is to use the awslogs log
driver. The awslogs log driver sends the logs to CloudWatch, which frees up the disk space that
would otherwise be used for your container logs on the container instance. For more information,
see Send Amazon ECS logs to CloudWatch .

ERROR: toomanyrequests: Too Many Requests or You have reached your pull rate limit.

This error indicates that there is a Docker Hub rate limiting.

If you receive one of the following errors, you're likely hitting the Docker Hub rate limits:

For more information about the Docker Hub rate limits, see Understanding Docker Hub rate
limiting.

If you have increased the Docker Hub rate limit and you need to authenticate your Docker pulls for
your container instances, see Private registry authentication for container instances.

Error response from daemon: Get url: net/http: request canceled while waiting for connection

This error indicates that a connection timed out, because a route to the internet doesn't exist.

To resolve this issue, you can:

• For tasks in public subnets, specify ENABLED for Auto-assign public IP when launching the task.
For more information, see Running an application as an Amazon ECS task.

• For tasks in private subnets, specify DISABLED for Auto-assign public IP when launching the
task, and configure a NAT gateway in your VPC to route requests to the internet. For more
information, see NAT Gateways in the Amazon VPC User Guide.

Stopped tasks error messages 1484

https://docs.docker.com/engine/logging/drivers/json-file/
https://www.docker.com/increase-rate-limits
https://www.docker.com/increase-rate-limits
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth-container-instances.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon Elastic Container Service Developer Guide

ref pull has been retried 1 time(s): failed to copy: httpReaderSeeker: failed open: unexpected
status code

This error indicates that there was a failure when copying an image.

To resolve this issue, review one of the following articles:

• For Fargate tasks, see How do I resolve the "cannotpullcontainererror" error for my Amazon ECS
tasks on Fargate.

• For other tasks, see How do I resolve the "cannotpullcontainererror" error for my Amazon ECS
tasks.

pull access denied

This error indicates that there is no access to the image.

To resolve this issue, you might need to authenticate your Docker client with Amazon ECR For more
information, see Private registry authentication in the Amazon ECR User Guide.

pull command failed: panic: runtime error: invalid memory address or nil pointer dereference

This error indicates that there is no access to the image because of an invalid memory address or
nil pointer dereference.

To resolve this issue:

• Check that you have the security group rules to reach Amazon S3.

• When you use gateway endpoints, you must add a route in the route table to access the
endpoint.

error pulling image conf/error pulling image configuration

This error indicates a rate limit has been reached or there is a network error:

To resolve this issue, see How can I resolve the "CannotPullContainerError" error in my Amazon ECS
EC2 Launch Type Task.

Context canceled

This error indicates that the context was cancelled.

Stopped tasks error messages 1485

https://aws.amazon.com/premiumsupport/knowledge-center/ecs-fargate-pull-container-error/
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-fargate-pull-container-error/
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-pull-container-error/
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-pull-container-error/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/registry_auth.html
https://repost.aws/knowledge-center/ecs-pull-container-error
https://repost.aws/knowledge-center/ecs-pull-container-error

Amazon Elastic Container Service Developer Guide

The common cause for this error is because the VPC your task is using doesn't have a route to pull
the container image from Amazon ECR.

Verifying Amazon ECS stopped task connectivity

There are times when a task stops because of a network connectivity issue. It might be an
intermittent issue, but it is most likely caused because the task cannot connect to an endpoint.

Testing the task connectivity

You can use AWSSupport-TroubleshootECSTaskFailedToStart runbook to test the task
connectivity. When you use the runbook, you need the following resource information:

• The task ID

Use the ID of the most recent failed task.

• The cluster that the task was in

For information about how to use the runbook, see AWSSupport-
TroubleshootECSTaskFailedToStart in the AWS Systems Manager Automation runbook
reference.

The runbook analyzes the task. You can view the results in the Output section for the following
issues that can prevent a task from starting:

• Network connectivity to the configured container registry

• VPC endpoint connectivity

• Security group rule configuration

Fixing VPC endpoint issues

When the AWSSupport-TroubleshootECSTaskFailedToStart runbook result indicates the
VPC endpoint issue, check the following configuration:

• The VPC where you create the endpoint needs to use Private DNS.

• Make sure that you have a AWS PrivateLink endpoint for the service that the task cannot connect
to in the same VPC as the task. For more information see one of the following:

Verifying task connectivity 1486

https://docs.aws.amazon.com/systems-manager-automation-runbooks/latest/userguide/automation-aws-troubleshootecstaskfailedtostart.html
https://docs.aws.amazon.com/systems-manager-automation-runbooks/latest/userguide/automation-aws-troubleshootecstaskfailedtostart.html

Amazon Elastic Container Service Developer Guide

Service VPC endpoint information
for the service

Amazon ECR Amazon ECR interface VPC
endpoints (AWS PrivateLink)

Systems Manager Improve the security of
EC2 instances by using
VPC endpoints for Systems
Manager

Secrets Manager Using an AWS Secrets
Manager VPC endpoint

CloudWatch CloudWatch VPC endpoint

Amazon S3 AWS PrivateLink for Amazon
S3

• Configure an outbound rule for the task subnet which allows HTTPS on port 443 DNS (TCP)
traffic. For more information, see Configure security group rules in the Amazon Elastic Compute
Cloud User Guide.

• If you use a custom name domain server, then confirm the DNS query's settings. The query must
have outbound access on port 53, and use UDP and TCP protocol. Also, it must have HTTPS
access on port 443. For more information, see Coonfigure security group rules in the Amazon
Elastic Compute Cloud User Guide.

• If the subnet has a network ACL, the following ACL rules are required:

• An outbound rule that allows traffic that allows traffic on ports 1024-65535.

• An inbound rule that allows TCP traffic on port 443.

For information about how to configure rules, see Control traffic to subnets using network ACLs
in the Amazon Virtual Private Cloud User Guide.

Fixing network issues

When the AWSSupport-TroubleshootECSTaskFailedToStart runbook result indicates a
network issue, check the following configuration:

Verifying task connectivity 1487

https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-create-vpc.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-create-vpc.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-create-vpc.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-create-vpc.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch-and-interface-VPC.html#cloudwatch-interface-VPC-availability
https://docs.aws.amazon.com/AmazonS3/latest/userguide/privatelink-interface-endpoints.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/privatelink-interface-endpoints.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/changing-security-group.html#add-remove-security-group-rules
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/changing-security-group.html#add-remove-security-group-rules
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html

Amazon Elastic Container Service Developer Guide

Tasks that use awsvpc network mode in a public subnet

Perform the following configuration based on the runbook:

• For tasks in public subnets, specify ENABLED for Auto-assign public IP when launching the task.
For more information, see Running an application as an Amazon ECS task.

• You need a gateway to handle internet traffic. The route table for the task subnet needs to have
a route for traffic to the gateway.

For more information, see Add and remove routes from a route table in the Amazon Virtual
Private Cloud User Guide.

Gateway type Route table destination Rout table target

NAT 0.0.0.0/0 NAT gateway ID

Internet gateway 0.0.0.0/0 Internet gateway ID

• If the task subnet has a network ACL, the following ACL rules are required:

• An outbound rule that allows traffic on ports 1024-65535.

• An inbound rule that allows TCP traffic on port 443.

For information about how to configure rules, see Control traffic to subnets using network ACLs
in the Amazon Virtual Private Cloud User Guide.

Tasks that use awsvpc network mode in a private subnet

Perform the following configuration based on the runbook:

• Choose DISABLED for Auto-assign public IP when launching the task.

• Configure a NAT gateway in your VPC to route requests to the internet. For more information,
see NAT Gateways in the Amazon Virtual Private Cloud User Guide.

• The route table for the task subnet needs to have a route for traffic to the NAT gateway.

For more information, see Add and remove routes from a route table in the Amazon Virtual
Private Cloud User Guide.

Verifying task connectivity 1488

https://docs.aws.amazon.com/vpc/latest/userguide/WorkWithRouteTables.html#AddRemoveRoutes
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/WorkWithRouteTables.html#AddRemoveRoutes

Amazon Elastic Container Service Developer Guide

Gateway type Route table destination Rout table target

NAT 0.0.0.0/0 NAT gateway ID

• If the task subnet has a network ACL, the following ACL rules are required:

• An outbound rule that allows traffic on ports 1024-65535.

• An inbound rule that allows TCP traffic on port 443.

For information about how to configure rules, see Control traffic to subnets using network ACLs
in the Amazon Virtual Private Cloud User Guide.

Tasks that don't use awsvpc network mode in a public subnet

Perform the following configuration based on the runbook:

• Choose Turn on for Auto assign IP under Networking for Amazon EC2 instances when you
create the cluster.

This option assigns a public IP address to the instance primary network interface.

• You need a gateway to handle internet traffic. The route table for the instance subnet needs to
have a route for traffic to the gateway.

For more information, see Add and remove routes from a route table in the Amazon Virtual
Private Cloud User Guide.

Gateway type Route table destination Rout table target

NAT 0.0.0.0/0 NAT gateway ID

Internet gateway 0.0.0.0/0 Internet gateway ID

• If the instance subnet has a network ACL, the following ACL rules are required:

• An outbound rule that allows traffic on ports 1024-65535.

• An inbound rule that allows TCP traffic on port 443.

For information about how to configure rules, see Control traffic to subnets using network ACLs
in the Amazon Virtual Private Cloud User Guide.

Verifying task connectivity 1489

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
https://docs.aws.amazon.com/vpc/latest/userguide/WorkWithRouteTables.html#AddRemoveRoutes
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html

Amazon Elastic Container Service Developer Guide

Tasks that don't use awsvpc network mode in a private subnet

Perform the following configuration based on the runbook:

• Choose Turn off for Auto assign IP under Networking for Amazon EC2 instances when you
create the cluster.

• Configure a NAT gateway in your VPC to route requests to the internet. For more information,
see NAT Gateways in the Amazon VPC User Guide.

• The route table for the instance subnet needs to have a route for traffic to the NAT gateway.

For more information, see Add and remove routes from a route table in the Amazon Virtual
Private Cloud User Guide.

Gateway type Route table destination Rout table target

NAT 0.0.0.0/0 NAT gateway ID

• If the task subnet has a network ACL, the following ACL rules are required:

• An outbound rule that allows traffic on ports 1024-65535.

• An inbound rule that allows TCP traffic on port 443.

For information about how to configure rules, see Control traffic to subnets using network ACLs
in the Amazon Virtual Private Cloud User Guide.

Viewing IAM role requests for Amazon ECS tasks

When you use a provider for your task credentials in an IAM role, the provider requests saved in
an audit log. The audit log inherits the same log rotation settings as the container agent log. The
ECS_LOG_ROLLOVER_TYPE, ECS_LOG_MAX_FILE_SIZE_MB, and ECS_LOG_MAX_ROLL_COUNT
container agent configuration variables can be set to affect the behavior of the audit log. For more
information, see Amazon ECS container agent log configuration parameters.

For container agent version 1.36.0 and later, the audit log is located at /var/log/ecs/
audit.log. When the log is rotated, a timestamp in YYYY-MM-DD-HH format is added to the end
of the log file name.

For container agent version 1.35.0 and earlier, the audit log is located at /var/log/ecs/
audit.log.YYYY-MM-DD-HH.

Viewing IAM role requests 1490

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/WorkWithRouteTables.html#AddRemoveRoutes
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html

Amazon Elastic Container Service Developer Guide

The log entry format is as follows:

• Timestamp

• HTTP response code

• IP address and port number of request origin

• Relative URI of the credential provider

• The user agent that made the request

• The ARN of the task to which the requesting container belongs

• The GetCredentials API name and version number

• The name of the Amazon ECS cluster to which the container instance is registered

• The container instance ARN

You can use the following command to view the log files.

cat /var/log/ecs/audit.log.2016-07-13-16

Output:

2016-07-13T16:11:53Z 200 172.17.0.5:52444 "/v1/credentials" "python-requests/2.7.0
 CPython/2.7.6 Linux/4.4.14-24.50.amzn1.x86_64" TASK_ARN GetCredentials
 1 CLUSTER_NAME CONTAINER_INSTANCE_ARN

Viewing Amazon ECS service event messages

When troubleshooting a problem with a service, the first place you should check for diagnostic
information is the service event log. You can view service events using the DescribeServices
API, the AWS CLI, or by using the AWS Management Console.

When viewing service event messages using the Amazon ECS API, only the events from the service
scheduler are returned. These include the most recent task placement and instance health events.
However, the Amazon ECS console displays service events from the following sources.

• Task placement and instance health events from the Amazon ECS service scheduler. These events
have a prefix of service (service-name). To ensure that this event view is helpful, we only
show the 100 most recent events. Duplicate event messages are omitted until either the cause

Viewing service event messages 1491

Amazon Elastic Container Service Developer Guide

is resolved, or six hours passes. If the cause is not resolved within six hours, you receive another
service event message for that cause.

• Service Auto Scaling events. These events have a prefix of Message and occur only when a
service is configured with an Application Auto Scaling scaling policy.

Use the following steps to view your current service event messages.

Console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Clusters.

3. On the Clusters page, choose the cluster.

4. Choose the service to inspect.

5. Choose Deployments and events, under Events, view the messages.

AWS CLI

Use the describe-services command to view the service event messages for a specified service.

The following AWS CLI example describes the service-name service in the default cluster,
which will provide the latest service event messages.

aws ecs describe-services \
 --cluster default \
 --services service-name \
 --region us-west-2

Amazon ECS service event messages

The following are examples of service event messages you may see in the Amazon ECS console.

service (service-name) has reached a steady state.

The service scheduler sends a service (service-name) has reached a steady state.
service event when the service is healthy and at the desired number of tasks, thus reaching a
steady state.

Amazon ECS service event messages 1492

https://console.aws.amazon.com/ecs/v2
https://docs.aws.amazon.com/cli/latest/reference/ecs/describe-services.html

Amazon Elastic Container Service Developer Guide

The service scheduler reports the status periodically, so you might receive this message multiple
times.

service (service-name) was unable to place a task because no container instance
met all of its requirements.

The service scheduler sends this event message when it couldn't find the available resources to add
another task. The possible causes for this are:

Use capacity providers to automatically scale your EC2 instances. For more information, see
Amazon ECS capacity providers for the EC2 launch type .

If you intended to use a capacity provider, make sure that you’re either passing a capacity
provider strategy or have a default capacity provider strategy associated with your cluster and
are not passing launch type and capacity provider strategy as input

No container instances were found in your cluster

If no container instances are registered in the cluster you attempt to run a task in, you receive
this error. You should add container instances to your cluster. For more information, see
Launching an Amazon ECS Linux container instance.

Not enough ports

If your task uses fixed host port mapping (for example, your task uses port 80 on the host for a
web server), you must have at least one container instance per task, because only one container
can use a single host port at a time. You should add container instances to your cluster or
reduce your number of desired tasks.

Too many ports registered

The closest matching container instance for task placement can't exceed the maximum allowed
reserved port limit of 100 host ports per container instance. Using dynamic host port mapping
may remediate the issue.

Port already in-use

The task definition of this task uses the same port in its port mapping as a task already running
on the container instance that was chosen. The service event message would have the chosen
container instance ID as part of the message below.

The closest matching container-instance is already using a port required by your
 task.

Amazon ECS service event messages 1493

Amazon Elastic Container Service Developer Guide

Not enough memory

If your task definition specifies 1000 MiB of memory, and the container instances in your cluster
each have 1024 MiB of memory, you can only run one copy of this task per container instance.
You can experiment with less memory in your task definition so that you could launch more
than one task per container instance, or launch more container instances into your cluster.

Note

If you're trying to maximize your resource utilization by providing your tasks as much
memory as possible for a particular instance type, see Reserving Amazon ECS Linux
container instance memory.

Not enough CPU

A container instance has 1,024 CPU units for every CPU core. If your task definition specifies
1,000 CPU units, and the container instances in your cluster each have 1,024 CPU units, you can
only run one copy of this task per container instance. You can experiment with fewer CPU units
in your task definition so that you could launch more than one task per container instance, or
launch more container instances into your cluster.

Not enough available ENI attachment points

Tasks that use the awsvpc network mode each receive their own elastic network interface (ENI),
which is attached to the container instance that hosts it. Amazon EC2 instances have a limit to
the number of ENIs that can be attached to them and there are no container instances in the
cluster that have ENI capacity available.

The ENI limit for individual container instances depends on the following conditions:

• If you have not opted in to the awsvpcTrunking account setting, the ENI limit for each
container instance depends on the instance type. For more information, see IP Addresses Per
Network Interface Per Instance Type in the Amazon EC2 User Guide.

• If you have opted in to the awsvpcTrunking account setting but you have not launched
new container instances using a supported instance type after opting in, the ENI limit for each
container instance is still at the default value. For more information, see IP Addresses Per
Network Interface Per Instance Type in the Amazon EC2 User Guide.

• If you have opted in to the awsvpcTrunking account setting and you have launched new
container instances using a supported instance type after opting in, additional ENIs are

Amazon ECS service event messages 1494

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

Amazon Elastic Container Service Developer Guide

available. For more information, see Supported instances for increased Amazon ECS container
network interfaces.

For more information about opting in to the awsvpcTrunking account setting, see Increasing
Amazon ECS Linux container instance network interfaces.

You can add container instances to your cluster to provide more available network adapters.

Container instance missing required attribute

Some task definition parameters require a specific Docker remote API version to be installed
on the container instance. Others, such as the logging driver options, require the container
instances to register those log drivers with the ECS_AVAILABLE_LOGGING_DRIVERS agent
configuration variable. If your task definition contains a parameter that requires a specific
container instance attribute, and you don't have any available container instances that can
satisfy this requirement, the task can't be placed.

A common cause of this error is if your service is using tasks that use the awsvpc network mode
and the EC2 launch type. The cluster you specified doesn't have a container instance registered
to it in the same subnet that was specified in the awsvpcConfiguration when the service
was created.

You can use the AWSSupport-TroubleshootECSContainerInstance runbook to
troubleshoot. The runbook reviews whether the user data for the instance contains
the correct cluster information, whether the instance profile contains the required
permissions, and network configuration issues. For more information, see AWSSupport-
TroubleshootECSContainerInstance in the AWS Systems Manager Automation runbook reference
User Guide.

For more information on which attributes are required for specific task definition parameters
and agent configuration variables, see Amazon ECS task definition parameters for the Fargate
launch type and Amazon ECS container agent configuration.

service (service-name) was unable to place a task because no container instance
met all of its requirements. The closest matching container-instance container-
instance-id has insufficient CPU units available.

The closest matching container instance for task placement doesn't contain enough CPU units to
meet the requirements in the task definition. Review the CPU requirements in both the task size
and container definition parameters of the task definition.

Amazon ECS service event messages 1495

https://docs.aws.amazon.com/systems-manager-automation-runbooks/latest/userguide/automation-aws-troubleshoot-ecs-container-instance.html
https://docs.aws.amazon.com/systems-manager-automation-runbooks/latest/userguide/automation-aws-troubleshoot-ecs-container-instance.html

Amazon Elastic Container Service Developer Guide

service (service-name) was unable to place a task because no container instance
met all of its requirements. The closest matching container-instance container-
instance-id encountered error "AGENT".

The Amazon ECS container agent on the closest matching container instance for task placement
is disconnected. If you can connect to the container instance with SSH, you can examine the agent
logs; for more information, see Amazon ECS container agent log configuration parameters. You
should also verify that the agent is running on the instance. If you are using the Amazon ECS-
optimized AMI, you can try stopping and restarting the agent with the following command.

• For the Amazon ECS-optimized Amazon Linux 2 AMI and Amazon ECS-optimized Amazon Linux
2023 AMI

sudo systemctl restart ecs

• For the Amazon ECS-optimized Amazon Linux AMI

sudo stop ecs && sudo start ecs

service (service-name) (instance instance-id) is unhealthy in (elb elb-name)
due to (reason Instance has failed at least the UnhealthyThreshold number of
health checks consecutively.)

This service is registered with a load balancer and the load balancer health checks are failing. For
more information, see Troubleshooting service load balancers in Amazon ECS.

service (service-name) is unable to consistently start tasks successfully.

This service contains tasks that have failed to start after consecutive attempts. At this point,
the service scheduler begins to incrementally increase the time between retries. You should
troubleshoot why your tasks are failing to launch. For more information, see Amazon ECS service
throttle logic.

After the service is updated, for example with an updated task definition, the service scheduler
resumes normal behavior.

Amazon ECS service event messages 1496

Amazon Elastic Container Service Developer Guide

service (service-name) operations are being throttled. Will try again later.

This service is unable to launch more tasks due to API throttling limits. Once the service scheduler
is able to launch more tasks, it will resume.

To request an API rate limit quota increase, open the AWS Support Center page, sign in if
necessary, and choose Create case. Choose Service limit increase. Complete and submit the form.

service (service-name) was unable to stop or start tasks during a
deployment because of the service deployment configuration. Update the
minimumHealthyPercent or maximumPercent value and try again.

This service is unable to stop or start tasks during a service deployment due to the deployment
configuration. The deployment configuration consists of the minimumHealthyPercent and
maximumPercent values, which are defined when the service is created. Those values can also be
updated on an existing service.

The minimumHealthyPercent represents the lower limit on the number of tasks that should be
running for a service during a deployment or when a container instance is draining. It's a percent of
the desired number of tasks for the service. This value is rounded up. For example, if the minimum
healthy percent is 50 and the desired task count is four, then the scheduler can stop two existing
tasks before starting two new tasks. Likewise, if the minimum healthy percent is 75% and the
desired task count is two, then the scheduler can't stop any tasks due to the resulting value also
being two.

The maximumPercent represents the upper limit on the number of tasks that should be running
for a service during a deployment or when a container instance is draining. It's a percent of the
desired number of tasks for a service. This value is rounded down. For example, if the maximum
percent is 200 and the desired task count is four, then the scheduler can start four new tasks
before stopping four existing tasks. Likewise, if the maximum percent is 125 and the desired task
count is three, the scheduler can't start any tasks due to the resulting value also being three.

When setting a minimum healthy percent or a maximum percent, you should ensure that the
scheduler can stop or start at least one task when a deployment is triggered.

Amazon ECS service event messages 1497

https://console.aws.amazon.com/support/home#/

Amazon Elastic Container Service Developer Guide

service (service-name) was unable to place a task. Reason: You've reached the
limit on the number of tasks you can run concurrently

You can request a quota increase for the resource that caused the error. For more information, see
Service quotas. To request a quota increase, see Requesting a quota increase in the Service Quotas
User Guide.

service (service-name) was unable to place a task. Reason: Internal error.

The following is the possible reason for this error:

The service is unable to start a task due to a subnet being in an unsupported Availability Zone.

For information about the supported Fargate Regions and Availability Zones, see the section called
“AWS Fargate Regions”.

For information about how to view the subnet Availability Zone, see View your subnet in the
Amazon VPC User Guide.

service (service-name) was unable to place a task. Reason: The requested CPU
configuration is above your limit.

You can request a quota increase for the resource that caused the error. For more information, see
Service quotas. To request a quota increase, see Requesting a quota increase in the Service Quotas
User Guide.

service (service-name) was unable to place a task. Reason: The requested
MEMORY configuration is above your limit.

You can request a quota increase for the resource that caused the error. For more information, see
Service quotas. To request a quota increase, see Requesting a quota increase in the Service Quotas
User Guide.

service (service-name) was unable to place a task. Reason: You’ve reached the
limit on the number of vCPUs you can run concurrently

AWS Fargate is transitioning from task count-based quotas to vCPU-based quotas.

You can request a quota increase for the Fargate vCPU-based quota. For more information, see
Service quotas. To request a Fargate quota increase, see Requesting a quota increase in the Service
Quotas User Guide.

Amazon ECS service event messages 1498

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#view-subnet
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

Amazon Elastic Container Service Developer Guide

service (service-name) was unable to reach steady state because task set
(taskSet-ID) was unable to scale in. Reason: The number of protected tasks are
more than the desired count of tasks

The service has more protected tasks than the desirednumber of tasks. You can do one the
following:

• Wait until the protection on the current tasks expire, enabling them to be terminated.

• Determine which tasks can be stopped and use the UpdateTaskProtection API with the
protectionEnabled option set to false to unset protection for these tasks.

• Increase the desired task count of the service to more than the number of protected tasks.

service (service-name) was unable to reach steady state. Reason: No Container
Instances were found in your capacity provider.

The service scheduler sends this event message when it couldn't find the available resources to add
another task. The possible causes for this are:

There is no capacity provider associated with the cluster

Use describe-services to verify that you have a capacity provider associated with the
cluster You can update the capacity provider strategy for the service.

Verify that there is available capacity in the capacity provider, In the case of the EC2 launch
type, make sure that the container instances meet the task definition requirements.

No container instances were found in your cluster

If no container instances are registered in the cluster you attempt to run a task in, you receive
this error. You should add container instances to your cluster. For more information, see
Launching an Amazon ECS Linux container instance.

Not enough ports

If your task uses fixed host port mapping (for example, your task uses port 80 on the host for a
web server), you must have at least one container instance per task. Only one container can use
a single host port at a time. You should add container instances to your cluster or reduce your
number of desired tasks.

Amazon ECS service event messages 1499

Amazon Elastic Container Service Developer Guide

Too many ports registered

The closest matching container instance for task placement can't exceed the maximum allowed
reserved port limit of 100 host ports per container instance. Using dynamic host port mapping
may remediate the issue.

Port already in-use

The task definition of this task uses the same port in its port mapping as a task already running
on the container instance that was chosen. The service event message would have the chosen
container instance ID as part of the message below.

The closest matching container-instance is already using a port required by your
 task.

Not enough memory

If your task definition specifies 1000 MiB of memory, and the container instances in your cluster
each have 1024 MiB of memory, you can only run one copy of this task per container instance.
You can experiment with less memory in your task definition so that you could launch more
than one task per container instance, or launch more container instances into your cluster.

Note

If you are trying to maximize your resource utilization by providing your tasks as much
memory as possible for a particular instance type, see Reserving Amazon ECS Linux
container instance memory.

Not enough available ENI attachment points

Tasks that use the awsvpc network mode each receive their own elastic network interface (ENI),
which is attached to the container instance that hosts it. Amazon EC2 instances have a limit to
the number of ENIs that can be attached to them, and there are no container instances in the
cluster that have ENI capacity available.

The ENI limit for individual container instances depends on the following conditions:

• If you have not opted in to the awsvpcTrunking account setting, the ENI limit for each
container instance depends on the instance type. For more information, see IP Addresses Per
Network Interface Per Instance Type in the Amazon EC2 User Guide.

Amazon ECS service event messages 1500

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

Amazon Elastic Container Service Developer Guide

• If you have opted in to the awsvpcTrunking account setting but you have not launched
new container instances using a supported instance type after opting in, the ENI limit for each
container instance is still at the default value. For more information, see IP Addresses Per
Network Interface Per Instance Type in the Amazon EC2 User Guide.

• If you have opted in to the awsvpcTrunking account setting and you have launched new
container instances using a supported instance type after opting in, additional ENIs are
available. For more information, see Supported instances for increased Amazon ECS container
network interfaces.

For more information about opting in to the awsvpcTrunking account setting, see Increasing
Amazon ECS Linux container instance network interfaces.

You can add container instances to your cluster to provide more available network adapters.

Container instance missing required attribute

Some task definition parameters require a specific Docker remote API version to be installed
on the container instance. Others, such as the logging driver options, require the container
instances to register those log drivers with the ECS_AVAILABLE_LOGGING_DRIVERS agent
configuration variable. If your task definition contains a parameter that requires a specific
container instance attribute, and you don't have any available container instances that can
satisfy this requirement, the task cannot be placed.

A common cause of this error is if your service is using tasks that use the awsvpc network
mode and the EC2 launch type and the cluster you specified doesn't have a container instance
registered to it in the same subnet that was specified in the awsvpcConfiguration when the
service was created.

You can use the AWSSupport-TroubleshootECSContainerInstance runbook to
troubleshoot. The runbook reviews whether the user data for the instance contains
the correct cluster information, whether the instance profile contains the required
permissions, and network configuration issues. For more information, see AWSSupport-
TroubleshootECSContainerInstance in the AWS Systems Manager Automation runbook reference
User Guide.

For more information on which attributes are required for specific task definition parameters
and agent configuration variables, see Amazon ECS task definition parameters for the Fargate
launch type and Amazon ECS container agent configuration.

Amazon ECS service event messages 1501

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/systems-manager-automation-runbooks/latest/userguide/automation-aws-troubleshoot-ecs-container-instance.html
https://docs.aws.amazon.com/systems-manager-automation-runbooks/latest/userguide/automation-aws-troubleshoot-ecs-container-instance.html

Amazon Elastic Container Service Developer Guide

service (service-name) was unable to place a task. Reason: Capacity is
unavailable at this time. Please try again later or in a different availability zone.

There is currently no available capacity to run your service on.

You can do one the following:

• Wait until the Fargate capacity or EC2 container instances become available.

• Relaunch the service and specify additional subnets.

service (service-name) deployment failed: tasks failed to start.

The tasks in your service failed to start.

For information about how to debug stopped tasks. see Amazon ECS stopped tasks error messages.

service (service-name) Timed out waiting for Amazon ECS Agent to start. Please
check logs at /var/log/ecs/ecs-agent.log".

The Amazon ECS container agent on the closest matching container instance for task placement
is disconnected. If you can connect to the container instance with SSH, you can examine the agent
logs. For more information, see Amazon ECS container agent log configuration parameters. You
should also verify that the agent is running on the instance. If you are using the Amazon ECS-
optimized AMI, you can try stopping and restarting the agent with the following command.

• For the Amazon ECS-optimized Amazon Linux 2 AMI

sudo systemctl restart ecs

• For the Amazon ECS-optimized Amazon Linux AMI

sudo stop ecs && sudo start ecs

Amazon ECS service event messages 1502

Amazon Elastic Container Service Developer Guide

service (service-name) task set (taskSet-ID) is not healthy in target-group
(targetGroup-ARN)) due to TARGET GROUP IS NOT FOUND.

The task set for the service is failing health checks because the target group isn't found. You should
delete and recreate the service. Don't delete any Elastic Load Balancing target group unless the
corresponding Amazon ECS service is already deleted.

service (service-name) task set (taskSet-ID) is not healthy in target-group
(targetGroup-ARN)) due to TARGET IS NOT FOUND.

The task set for the service is failing health checks because the target isn't found.

Amazon ECS Availability Zone service rebalancing service event
messages

The following are examples of service event messages you might see.

service (service-name) is not AZ balanced with number-tasks tasks in
Availability Zone 1, number-tasks in Availability Zone 2, and
number-tasks in Availability Zone 3. AZ Rebalancing in progress.

The service scheduler sends a service (service-name) is not AZ balanced service event
when the number of tasks is not evenly spread across Availability Zones. There is no action to take.
This is an information event.

service (service-name) is AZ balanced with number-tasks tasks in
Availability Zone 1, number-tasks tasks in Availability Zone 2, and
number-tasks tasks in Availability Zone 3.

The service scheduler sends a service (service-name) is AZ balanced service event when
Availability Zone service rebalancing completes. There is no action to take. This is an information
event.

service-name has started number-tasks tasks in Availability Zone to AZ
Rebalance: task-ids.

The service scheduler sends a service-name/task-set-name has started number tasks in
Availability Zone service event when it starts tasks in an Availability Zone because of service
rebalancing. There is no action to take. This is an information event.

Amazon ECS Availability Zone service rebalancing service event messages 1503

Amazon Elastic Container Service Developer Guide

service-name has stopped number-tasks running tasks in Availability
Zone due to AZ rebalancing: task-id.

The service scheduler sends a service-name/task-set-name has started number tasks in
Availability Zone service event when it stops tasks in an Availability Zone because of service
rebalancing. There is no action to take. This is an information event.

service (service-name) is unable to place a task in Availability Zone
because no container instance met all of its requirements.

The service scheduler sends a service-name is unable to place a task in Availability Zone
service event because no container instance met all of its requirements. To address the issue,
launch instances in the Availability Zone.

service (service-name) is unable to place a task in Availability Zone.

The service scheduler sends a service-name is unable to place a task in Availability Zone
service event when you use the Fargate launch type and there is no available capacity.

You can add additional subnets in the Availability Zone in the error message, or contact Support to
get additional capacity.

service (service-name) was unable to AZ Rebalance because task-set-name
was unable to scale in due to reason.

The service scheduler sends a service-name was unable to AZ Rebalance because task-set-
name was unable to scale in due to reason service event when you use task scale-in protection.

You can do one the following:

• Wait until the protection on the current tasks expire, enabling them to be terminated.

• Determine which tasks can be stopped and use the UpdateTaskProtection API with the
protectionEnabled option set to false to unset protection for these tasks.

• Increase the desired task count of the service to more than the number of protected tasks.

Amazon ECS Availability Zone service rebalancing service event messages 1504

Amazon Elastic Container Service Developer Guide

service (service-name) stopped AZ Rebalancing.

The service scheduler sends a service-name stopped AZ Rebalancing service event when the
Availability Zone rebalancing operation stopped. This is an information event. Amazon ECS sends
additional events which provide more information.

Troubleshooting service load balancers in Amazon ECS

Amazon ECS services can register tasks with an Elastic Load Balancing load balancer. Load balancer
configuration errors are common causes for stopped tasks. If your stopped tasks were started by
services that use a load balancer, consider the following possible causes.

Amazon ECS service-linked role doesn't exist

The Amazon ECS service-linked role allows Amazon ECS services to register container instances
with Elastic Load Balancing load balancers. The service-linked role must be created in your
account. For more information, see Using service-linked roles for Amazon ECS.

Container instance security group

If your container is mapped to port 80 on your container instance, your container instance
security group must allow inbound traffic on port 80 for the load balancer health checks to
pass.

Elastic Load Balancing load balancer not configured for all Availability Zones

Your load balancer should be configured to use all of the Availability Zones in a Region, or at
least all of the Availability Zones where your container instances reside. If a service uses a load
balancer and starts a task on a container instance that resides in an Availability Zone that the
load balancer isn't configured to use, the task never passes the health check. This results in the
task being killed.

Elastic Load Balancing load balancer health check misconfigured

The load balancer health check parameters can be overly restrictive or point to resources that
don't exist. If a container instance is determined to be unhealthy, it's removed from the load
balancer. Be sure to verify that the following parameters are configured correctly for your
service load balancer.

Ping Port

The Ping Port value for a load balancer health check is the port on the container instances
that the load balancer checks to determine if it is healthy. If this port is misconfigured, the

Troubleshooting service load balancers in Amazon ECS 1505

Amazon Elastic Container Service Developer Guide

load balancer likely deregisters your container instance from itself. This port should be
configured to use the hostPort value for the container in your service's task definition that
you're using with the health check.

Ping Path

This is part of the load balancer healthcheck. It is an endpoint on your application that can
resturn a successful status code (for example, 200) when the application is healthy. This
value is often set to index.html, but if your service doesn't respond to that request, then
the health check fails. If your container doesn't have an index.html file, you can set this to
/ to target the base URL for the container instance.

Response Timeout

This is the amount of time that your container has to return a response to the health check
ping. If this value is lower than the amount of time required for a response, the health check
fails.

Health Check Interval

This is the amount of time between health check pings. The shorter your health check
intervals are, the faster your container instance can reach the Unhealthy Threshold.

Unhealthy Threshold

This is the number of times your health check can fail before your container instance is
considered unhealthy. If you have an unhealthy threshold of 2, and a health check interval
of 30 seconds, then your task has 60 seconds to respond to the health check ping before it's
assumed unhealthy. You can raise the unhealthy threshold or the health check interval to
give your tasks more time to respond.

Unable to update the service servicename: Load balancer container name or port changed in
task definition

If your service uses a load balancer, you can use the AWS CLI or SDK to modify the load balancer
configuration. For information about how to modify the configuration, see UpdateService in the
Amazon Elastic Container Service API Reference. If you update the task definition for the service,
the container name and container port that are specified in the load balancer configuration
must remain in the task definition.

Troubleshooting service load balancers in Amazon ECS 1506

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateService.html

Amazon Elastic Container Service Developer Guide

You've reached the limit on the number of tasks that you can run concurrently.

For a new account, your quotas might be lower that the service quotas. The service quota for
your account can be viewed in the Service Quotas console. To request a quota increase, see
Requesting a quota increase in the Service Quotas User Guide.

Troubleshooting service auto scaling in Amazon ECS

Application Auto Scaling turns off scale-in processes while Amazon ECS deployments are in
progress, and they resume once the deployment has completed. However, scale-out processes
continue to occur, unless suspended, during a deployment. For more information, see Suspending
and resuming scaling for Application Auto Scaling.

Troubleshoot Amazon ECS task definition invalid CPU or
memory errors

When registering a task definition using the Amazon ECS API or AWS CLI, if you specify an invalid
cpu or memory value, the following error is returned.

An error occurred (ClientException) when calling the RegisterTaskDefinition operation:
 Invalid 'cpu' setting for task.

Note

When using Terraform, the following error might be returned.

Error: ClientException: No Fargate configuration exists for given values.

To resolve this issue, you must specify a supported value for the task CPU and memory in your task
definition. The cpu value can be expressed in CPU units or vCPUs in a task definition. It's converted
to an integer indicating the CPU units when the task definition is registered. The memory value can
be expressed in MiB or GB in a task definition. It's converted to an integer indicating the MiB when
the task definition is registered.

Troubleshooting service auto scaling in Amazon ECS 1507

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-suspend-resume-scaling.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-suspend-resume-scaling.html

Amazon Elastic Container Service Developer Guide

For task definitions that specify FARGATE for the requiresCompatibilities parameter (even
if EC2 is also specified), you must use one of the values in the following table. These values
determines your range of supported values for the CPU and memory parameter.

For tasks hosted on Fargate, the following table shows the valid CPU and memory combinations.
The memory values in the JSON file are specified in MiB. You can convert the GB value to MiB by
multiplying the value by 1024. For example 1 GB = 1024 MiB.

CPU value Memory value Operating systems
supported for AWS Fargate

256 (.25 vCPU) 512 MiB, 1 GB, 2 GB Linux

512 (.5 vCPU) 1 GB, 2 GB, 3 GB, 4 GB Linux

1024 (1 vCPU) 2 GB, 3 GB, 4 GB, 5 GB, 6 GB,
7 GB, 8 GB

Linux, Windows

2048 (2 vCPU) Between 4 GB and 16 GB in 1
GB increments

Linux, Windows

4096 (4 vCPU) Between 8 GB and 30 GB in 1
GB increments

Linux, Windows

8192 (8 vCPU)

Note

This option requires
Linux platform 1.4.0
or later.

Between 16 GB and 60 GB in
4 GB increments

Linux

16384 (16vCPU) Between 32 GB and 120 GB in
8 GB increments

Linux

Troubleshoot task definition invalid CPU or memory errors 1508

Amazon Elastic Container Service Developer Guide

CPU value Memory value Operating systems
supported for AWS Fargate

Note

This option requires
Linux platform 1.4.0
or later.

For tasks hosted on Amazon EC2, supported task CPU values are between 0.25 vCPUs and 192
vCPUs.

Amazon ECS uses the CPU period and the CPU quota to control the task size CPU hard limits. When
you specify the vCPU in your task definition, Amazon ECS translates the value to the CPU period
and CPU quota settings that apply to the cgroup.

The CPU quota controls the amount of CPU time granted to a cgroup during a given CPU period.
Both settings are expressed in terms of microseconds. When the CPU quota equals the CPU period
means a cgroup can execute up to 100% on one vCPU (or any other fraction that totals to 100%
for multiple vCPUs). The CPU quota has a maximum of 1000000us and the CPU period has a
minimum of 1ms. You can use these values to set the limits for your CPU count. When you change
the CPU period without changing the CPU quota, you have different effective limits than what
you've specified in your task definition.

The 100ms period allows for vCPUs ranging from 0.125 to 10.

Note

Task-level CPU and memory parameters are ignored for Windows containers.

Viewing Amazon ECS container agent logs

Amazon ECS stores logs in the /var/log/ecs folder of your container instances. There are logs
available from the Amazon ECS container agent and from the ecs-init service that controls the
state of the agent (start/stop) on the container instance. You can view these log files by connecting
to a container instance using SSH.

Viewing container agent logs 1509

Amazon Elastic Container Service Developer Guide

Note

If you are not sure how to collect all of the logs on your container instances, you can use
the Amazon ECS logs collector. For more information, see Collecting container logs with
Amazon ECS logs collector .

Linux operating system

The ecs-init process stores logs at /var/log/ecs/ecs-init.log.

The ecs-init.log file contains information about the container agent lifecycle management,
configuration, and bootstrapping.

You can use the following command to view the log files.

cat /var/log/ecs/ecs-init.log

Output:

2018-02-16T18:13:54Z [INFO] pre-start
2018-02-16T18:13:56Z [INFO] start
2018-02-16T18:13:56Z [INFO] No existing agent container to remove.
2018-02-16T18:13:56Z [INFO] Starting Amazon Elastic Container Service Agent

Windows operating system

You can use the Amazon ECS logs collector for Windows. For more information, see Amazon ECS
Logs Collector For Windows on Github.

1. Connect to your instance.

2. Open PowerShell and then run the following commands with administrative privileges. The
commands download the script and collects the logs.

Invoke-WebRequest -OutFile ecs-logs-collector.ps1 https://
raw.githubusercontent.com/awslabs/aws-ecs-logs-collector-for-windows/master/ecs-
logs-collector.ps1
.\ecs-logs-collector.ps1

Viewing container agent logs 1510

https://github.com/awslabs/aws-ecs-logs-collector-for-windows?tab=readme-ov-file#aws-ecs-logs-collector-for-windows
https://github.com/awslabs/aws-ecs-logs-collector-for-windows?tab=readme-ov-file#aws-ecs-logs-collector-for-windows

Amazon Elastic Container Service Developer Guide

You can turn on debug logging for Amazon ECS agent and the Docker daemon. This option allows
the script to collect the logs before turning on debug mode. The script restarts the Docker daemon
and Amazon ECS agent, and then terminates all containers running on the instance. Before running
the following command, drain the container instance and moving any important tasks to other
container instances.

Run the following command to turn on logging.

.\ecs-logs-collector.ps1 -RunMode debug

Collecting container logs with Amazon ECS logs collector

If you are unsure how to collect all of the various logs on your container instances, you can use the
Amazon ECS logs collector. It is available on GitHub for both Linux and Windows. The script collects
general operating system logs as well as Docker and Amazon ECS container agent logs, which can
be helpful for troubleshooting AWS Support cases. It then compresses and archives the collected
information into a single file that can easily be shared for diagnostic purposes. It also supports
enabling debug mode for the Docker daemon and the Amazon ECS container agent on Amazon
Linux variants, such as the Amazon ECS-optimized AMI. Currently, the Amazon ECS logs collector
supports the following operating systems:

• Amazon Linux

• Red Hat Enterprise Linux 7

• Debian 8

• Ubuntu 14.04

• Ubuntu 16.04

• Ubuntu 18.04

• Windows Server 2016

Note

The source code for the Amazon ECS logs collector is available on GitHub for both Linux
and Windows. We encourage you to submit pull requests for changes that you would like to
have included. However, Amazon Web Services doesn't currently support running modified
copies of this software.

Collecting container logs with Amazon ECS logs collector 1511

https://github.com/awslabs/ecs-logs-collector
https://github.com/awslabs/aws-ecs-logs-collector-for-windows
https://github.com/awslabs/ecs-logs-collector
https://github.com/awslabs/aws-ecs-logs-collector-for-windows

Amazon Elastic Container Service Developer Guide

To download and run the Amazon ECS logs collector for Linux

1. Connect to your container instance.

2. Download the Amazon ECS logs collector script.

curl -O https://raw.githubusercontent.com/awslabs/ecs-logs-collector/master/ecs-
logs-collector.sh

3. Run the script to collect the logs and create the archive.

Note

To enable the debug mode for the Docker daemon and the Amazon ECS container
agent, add the --mode=enable-debug option to the following command. This might
restart the Docker daemon, which kills all containers that are running on the instance.
Consider draining the container instance and moving any important tasks to other
container instances before enabling debug mode. For more information, see Draining
Amazon ECS container instances.

[ec2-user ~]$ sudo bash ./ecs-logs-collector.sh

Important

We recommend that you edit the logs and remove all sensitive data from the files.
You can search for known data, and also search for environment variables such as
AWS_ACCESS_KEY_ID , AWS_SECRET_ACCESS_KEY , and AWS_SESSION_TOKEN in the file.

After you have run the script, you can examine the collected logs in the collect folder that the
script created. The collect.tgz file is a compressed archive of all of the logs, which you can
share with AWS Support for diagnostic help.

To download and run the Amazon ECS logs collector for Windows

1. Connect to your container instance. For more information, see Connect to your Windows
instance using RDP in the Amazon EC2 User Guide.

Collecting container logs with Amazon ECS logs collector 1512

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connecting_to_windows_instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connecting_to_windows_instance.html

Amazon Elastic Container Service Developer Guide

2. Download the Amazon ECS logs collector script using PowerShell.

Invoke-WebRequest -OutFile ecs-logs-collector.ps1 https://
raw.githubusercontent.com/awslabs/aws-ecs-logs-collector-for-windows/master/ecs-
logs-collector.ps1

3. Run the script to collect the logs and create the archive.

Note

To enable the debug mode for the Docker daemon and the Amazon ECS container
agent, add the -RunMode debug option to the following command. This restarts the
Docker daemon, which kills all containers that are running on the instance. Consider
draining the container instance and moving any important tasks to other container
instances before enabling debug mode. For more information, see Draining Amazon
ECS container instances.

.\ecs-logs-collector.ps1

Important

We recommend that you edit the logs and remove all sensitive data from the files.
You can search for known data, and also search for environment variables such as
AWS_ACCESS_KEY_ID , AWS_SECRET_ACCESS_KEY , and AWS_SESSION_TOKEN in the file.

After you have run the script, you can examine the collected logs in the collect folder that the
script created. The collect.tgz file is a compressed archive of all of the logs, which you can
share with AWS Support for diagnostic help.

Retrieve Amazon ECS diagnostic details with agent
introspection

The Amazon ECS agent introspection API provides information about the overall state of the
Amazon ECS agent and the container instances.

Agent introspection 1513

Amazon Elastic Container Service Developer Guide

You can use the agent introspection API to get the Docker ID for a container in your task. You can
use the agent introspection API by connecting to a container instance using SSH.

Important

Your container instance must have an IAM role that allows access to Amazon ECS in order
to reach the introspection API. For more information, see Amazon ECS container instance
IAM role.

The following example shows two tasks, one that is currently running and one that was stopped.

Note

The following command is piped through the python -mjson.tool for greater readability.

curl http://localhost:51678/v1/tasks | python -mjson.tool

Output:

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 1095 100 1095 0 0 117k 0 --:--:-- --:--:-- --:--:-- 133k
{
 "Tasks": [
 {
 "Arn": "arn:aws:ecs:us-west-2:aws_account_id:task/090eff9b-1ce3-4db6-848a-
a8d14064fd24",
 "Containers": [
 {
 "DockerId":
 "189a8ff4b5f04affe40e5160a5ffadca395136eb5faf4950c57963c06f82c76d",
 "DockerName": "ecs-console-sample-app-static-6-simple-
app-86caf9bcabe3e9c61600",
 "Name": "simple-app"
 },
 {
 "DockerId":
 "f7f1f8a7a245c5da83aa92729bd28c6bcb004d1f6a35409e4207e1d34030e966",

Agent introspection 1514

Amazon Elastic Container Service Developer Guide

 "DockerName": "ecs-console-sample-app-static-6-busybox-
ce83ce978a87a890ab01",
 "Name": "busybox"
 }
],
 "Family": "console-sample-app-static",
 "KnownStatus": "STOPPED",
 "Version": "6"
 },
 {
 "Arn": "arn:aws:ecs:us-west-2:aws_account_id:task/1810e302-eaea-4da9-
a638-097bea534740",
 "Containers": [
 {
 "DockerId":
 "dc7240fe892ab233dbbcee5044d95e1456c120dba9a6b56ec513da45c38e3aeb",
 "DockerName": "ecs-console-sample-app-static-6-simple-app-
f0e5859699a7aecfb101",
 "Name": "simple-app"
 },
 {
 "DockerId":
 "096d685fb85a1ff3e021c8254672ab8497e3c13986b9cf005cbae9460b7b901e",
 "DockerName": "ecs-console-sample-app-static-6-
busybox-92e4b8d0ecd0cce69a01",
 "Name": "busybox"
 }
],
 "DesiredStatus": "RUNNING",
 "Family": "console-sample-app-static",
 "KnownStatus": "RUNNING",
 "Version": "6"
 }
]
}

In the preceding example, the stopped task (090eff9b-1ce3-4db6-848a-a8d14064fd24) has
two containers. You can use docker inspect container-ID to view detailed information on each
container. For more information, see Amazon ECS container introspection.

Agent introspection 1515

Amazon Elastic Container Service Developer Guide

Docker diagnostics in Amazon ECS

Docker provides several diagnostic tools that help you troubleshoot problems with your containers
and tasks. For more information about all of the available Docker command line utilities, see
the Docker CLI reference in the Docker documentation. You can access the Docker command line
utilities by connecting to a container instance using SSH.

The exit codes that Docker containers report can also provide some diagnostic information
(for example, exit code 137 means that the container received a SIGKILL signal). For more
information, see Exit Status in the Docker documentation.

List Docker containers in Amazon ECS

You can use the docker ps command on your container instance to list the running containers. In
the following example, only the Amazon ECS container agent is running. For more information, see
docker ps in the Docker documentation.

docker ps

Output:

CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
cee0d6986de0 amazon/amazon-ecs-agent:latest "/agent" 22 hours ago
 Up 22 hours 127.0.0.1:51678->51678/tcp ecs-agent

You can use the docker ps -a command to see all containers (even stopped or killed containers).
This is helpful for listing containers that are unexpectedly stopping. In the following example,
container f7f1f8a7a245 exited 9 seconds ago, so it doesn't show up in a docker ps output
without the -a flag.

docker ps -a

Output:

CONTAINER ID IMAGE COMMAND
 CREATED STATUS PORTS NAMES
db4d48e411b1 amazon/ecs-emptyvolume-base:autogenerated "not-applicable"
 19 seconds ago ecs-
console-sample-app-static-6-internalecs-emptyvolume-source-c09288a6b0cba8a53700

Docker diagnostics in Amazon ECS 1516

https://docs.docker.com/reference/cli/docker/
https://docs.docker.com/reference/cli/docker/container/run/#exit-status
https://docs.docker.com/reference/cli/docker/#ps

Amazon Elastic Container Service Developer Guide

f7f1f8a7a245 busybox:buildroot-2014.02 "\"sh -c '/bin/sh -c
 22 hours ago Exited (137) 9 seconds ago ecs-
console-sample-app-static-6-busybox-ce83ce978a87a890ab01
189a8ff4b5f0 httpd:2 "httpd-foreground"
 22 hours ago Exited (137) 40 seconds ago ecs-
console-sample-app-static-6-simple-app-86caf9bcabe3e9c61600
0c7dca9321e3 amazon/ecs-emptyvolume-base:autogenerated "not-applicable"
 22 hours ago ecs-
console-sample-app-static-6-internalecs-emptyvolume-source-90fefaa68498a8a80700
cee0d6986de0 amazon/amazon-ecs-agent:latest "/agent"
 22 hours ago Up 22 hours 127.0.0.1:51678->51678/tcp ecs-
agent

View Docker Logs in Amazon ECS

You can view the STDOUT and STDERR streams for a container with the docker logs command. In
this example, the logs are displayed for the dc7240fe892a container and piped through the head
command for brevity. For more information, go to docker logs in the Docker documentation.

Note

Docker logs are only available on the container instance if you are using the default json
log driver. If you have configured your tasks to use the awslogs log driver, then your
container logs are available in CloudWatch Logs. For more information, see Send Amazon
ECS logs to CloudWatch .

docker logs dc7240fe892a | head

Output:

AH00558: httpd: Could not reliably determine the server's fully qualified domain name,
 using 172.17.0.11. Set the 'ServerName' directive globally to suppress this message
AH00558: httpd: Could not reliably determine the server's fully qualified domain name,
 using 172.17.0.11. Set the 'ServerName' directive globally to suppress this message
[Thu Apr 23 19:48:36.956682 2015] [mpm_event:notice] [pid 1:tid 140327115417472]
 AH00489: Apache/2.4.12 (Unix) configured -- resuming normal operations
[Thu Apr 23 19:48:36.956827 2015] [core:notice] [pid 1:tid 140327115417472] AH00094:
 Command line: 'httpd -D FOREGROUND'
10.0.1.86 - - [23/Apr/2015:19:48:59 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:48:59 +0000] "GET / HTTP/1.1" 200 348

View Docker Logs in Amazon ECS 1517

https://docs.docker.com/reference/cli/docker/#logs

Amazon Elastic Container Service Developer Guide

10.0.1.86 - - [23/Apr/2015:19:49:28 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:49:29 +0000] "GET / HTTP/1.1" 200 348
10.0.1.86 - - [23/Apr/2015:19:49:50 +0000] "-" 408 -
10.0.0.154 - - [23/Apr/2015:19:49:50 +0000] "-" 408 -
10.0.1.86 - - [23/Apr/2015:19:49:58 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:49:59 +0000] "GET / HTTP/1.1" 200 348
10.0.1.86 - - [23/Apr/2015:19:50:28 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:50:29 +0000] "GET / HTTP/1.1" 200 348
time="2015-04-23T20:11:20Z" level="fatal" msg="write /dev/stdout: broken pipe"

Inspect Docker Containers in Amazon ECS

If you have the Docker ID of a container, you can inspect it with the docker inspect command.
Inspecting containers provides the most detailed view of the environment in which a container was
launched. For more information, see docker inspect in the Docker documentation.

docker inspect dc7240fe892a

Output:

[{
 "AppArmorProfile": "",
 "Args": [],
 "Config": {
 "AttachStderr": false,
 "AttachStdin": false,
 "AttachStdout": false,
 "Cmd": [
 "httpd-foreground"
],
 "CpuShares": 10,
 "Cpuset": "",
 "Domainname": "",
 "Entrypoint": null,
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/
local/apache2/bin",
 "HTTPD_PREFIX=/usr/local/apache2",
 "HTTPD_VERSION=2.4.12",
 "HTTPD_BZ2_URL=https://www.apache.org/dist/httpd/httpd-2.4.12.tar.bz2"
],
 "ExposedPorts": {

Inspect Docker Containers in Amazon ECS 1518

https://docs.docker.com/reference/cli/docker/#inspect

Amazon Elastic Container Service Developer Guide

 "80/tcp": {}
 },
 "Hostname": "dc7240fe892a",
...

Configuring verbose output from the Docker daemon in
Amazon ECS

If you're having trouble with Docker containers or images, you can turn on debug mode on your
Docker daemon. Using debugging provides more verbose output from the daemon, You can use
this to retrive error messages that are sent from container registries, such as Amazon ECR.

Important

This procedure is written for the Amazon ECS-optimized Amazon Linux AMI. For other
operating systems, see Enable debugging and Control and configure Docker with systemd
in the Docker documentation.

To use Docker daemon debug mode on the Amazon ECS-optimized Amazon Linux AMI

1. Connect to your container instance.

2. Open the Docker options file with a text editor, such as vi. For the Amazon ECS-optimized
Amazon Linux AMI, the Docker options file is at /etc/sysconfig/docker.

3. Find the Docker options statement and add the -D option to the string, inside the quotes.

Note

If the Docker options statement begins with a #, remove that character to uncomment
the statement and enable the options.

For the Amazon ECS-optimized Amazon Linux AMI, the Docker options statement is called
OPTIONS. For example:

Additional startup options for the Docker daemon, for example:
OPTIONS="--ip-forward=true --iptables=true"
By default we limit the number of open files per container

Configuring verbose output from the Docker daemon in Amazon ECS 1519

https://docs.docker.com/engine/admin/#enable-debugging

Amazon Elastic Container Service Developer Guide

OPTIONS="-D --default-ulimit nofile=1024:4096"

4. Save the file and exit your text editor.

5. Restart the Docker daemon.

sudo service docker restart

The output is as follows:

Stopping docker: [OK]
Starting docker: . [OK]

6. Restart the Amazon ECS agent.

sudo service ecs restart

Your Docker logs should now show more verbose output.

time="2015-12-30T21:48:21.907640838Z" level=debug msg="Unexpected response from
 server: \"{\\\"errors\\\":[{\\\"code\\\":\\\"DENIED\\\",\\\"message\\\":\\\"User:
 arn:aws:sts::1111:assumed-role/ecrReadOnly/i-abcdefg is not authorized to perform:
 ecr:InitiateLayerUpload on resource: arn:aws:ecr:us-east-1:1111:repository/nginx_test
\\\"}]}\\n\" http.Header{\"Connection\":[]string{\"keep-alive\"}, \"Content-Type\":
[]string{\"application/json; charset=utf-8\"}, \"Date\":[]string{\"Wed, 30 Dec 2015
 21:48:21 GMT\"}, \"Docker-Distribution-Api-Version\":[]string{\"registry/2.0\"},
 \"Content-Length\":[]string{\"235\"}}"

Troubleshoot the Docker API error (500): devmapper in
Amazon ECS

The following Docker error indicates that the thin pool storage on your container instance is full,
and that the Docker daemon cannot create new containers:

CannotCreateContainerError: API error (500): devmapper: Thin Pool has 4350 free data
 blocks which is less than minimum required 4454 free data blocks. Create more free
 space in thin pool or use dm.min_free_space option to change behavior

Troubleshoot the Docker API error (500): devmapper in Amazon ECS 1520

Amazon Elastic Container Service Developer Guide

By default, Amazon ECS-optimized Amazon Linux AMIs from version 2015.09.d and later launch
with an 8-GiB volume for the operating system that's attached at /dev/xvda and mounted as the
root of the file system. There's an additional 22-GiB volume that's attached at /dev/xvdcz that
Docker uses for image and metadata storage. If this storage space is filled up, the Docker daemon
cannot create new containers.

The easiest way to add storage to your container instances is to terminate the existing instances
and launch new ones with larger data storage volumes. However, if you can't do this, you can
add storage to the volume group that Docker uses and extend its logical volume by following the
procedures in Amazon ECS-optimized Linux AMIs.

If your container instance storage is filling up too quickly, there are a few actions that you can take
to reduce this effect:

• To view the thin poll information, run the following command on your container instance:

docker info

• (Amazon ECS container agent 1.8.0 and later) You can reduce the amount of
time that stopped or exited containers remain on your container instances. The
ECS_ENGINE_TASK_CLEANUP_WAIT_DURATION agent configuration variable sets the time
duration to wait from when a task is stopped until the Docker container is removed (by default,
this value is 3 hours). This removes the Docker container data. If this value is set too low, you
might not be able to inspect your stopped containers or view the logs before they are removed.
For more information, see Amazon ECS container agent configuration.

• You can remove non-running containers and unused images from your container instances. You
can use the following example commands to manually remove stopped containers and unused
images. Deleted containers can't be inspected later, and deleted images must be pulled again
before starting new containers from them.

To remove non-running containers, run the following command on your container instance:

docker rm $(docker ps -aq)

To remove unused images, run the following command on your container instance:

docker rmi $(docker images -q)

Troubleshoot the Docker API error (500): devmapper in Amazon ECS 1521

Amazon Elastic Container Service Developer Guide

• You can remove unused data blocks within containers. You can use the following command
to run fstrim on any running container and discard any data blocks that are unused by the
container file system.

sudo sh -c "docker ps -q | xargs docker inspect --format='{{ .State.Pid }}' | xargs -
IZ fstrim /proc/Z/root/"

Troubleshoot Amazon ECS Exec issues

The following are troubleshooting notes to help diagnose why you may be getting an error when
using ECS Exec.

Verify using the Exec Checker

The ECS Exec Checker script provides a way to verify and validate that your Amazon ECS cluster
and task have met the prerequisites for using the ECS Exec feature. The ECS Exec Checker script
verifies both your AWS CLI environment and cluster and tasks are ready for ECS Exec, by calling
various APIs on your behalf. The tool requires the latest version of the AWS CLI and that the jq is
available. For more information, see ECS Exec Checker on GitHub.

Error when calling execute-command

If a The execute command failed error occurs, the following are possible causes.

• The task does not have the required permissions. Verify that the task definition used to launch
your task has a task IAM role defined and that the role has the required permissions. For more
information, see ECS Exec permissions.

• The SSM agent isn't installed or isn't running.

• There is an interface Amazon VPC endpoint for Amazon ECS, but there isn't one for Systems
Manager Session Manager.

Troubleshoot Amazon ECS Anywhere issues

Amazon ECS Anywhere provides support for registering an external instance such as an on-
premises server or virtual machine (VM) to your Amazon ECS cluster. The following are common
issues that you might encounter and general troubleshooting recommendations for them.

Troubleshoot ECS Exec issues 1522

https://github.com/aws-containers/amazon-ecs-exec-checker

Amazon Elastic Container Service Developer Guide

Topics

• External instance registration issues

• External instance network issues

• Issues running tasks on your external instance

External instance registration issues

When registering an external instance with your Amazon ECS cluster, the following requirements
must be met:

• An AWS Systems Manager activation, which consists of an activation ID and activation code,
must be retrieved. You use it to register the external instance as a Systems Manager managed
instance. When a Systems Manager activation is requested, specify a registration limit and
expiration date. The registration limit specifies the maximum number of instances that can
be registered using the activation. The default value for registration limit is 1 instance. The
expiration date specifies when the activation expires. The default value is 24 hours. If the
Systems Manager activation that you're using to register your external instance isn't valid,
request a new one. For more information, see Registering an external instance to an Amazon ECS
cluster.

• An IAM policy is used to provide your external instance the permissions that it needs to
communicate with AWS API operations. If this managed policy isn't created properly and doesn't
contain the required permissions, external instance registration fails. For more information, see
Amazon ECS Anywhere IAM role.

• Amazon ECS provides an installation script that installs Docker, the Amazon ECS container agent,
and the Systems Manager Agent on your external instance. If the installation script fails, it's
likely that the script can't be run again on the same instance without an error occurring. If this
happens, follow the cleanup process to clear AWS resources from the instance so you can run
the installation script again. For more information, see Deregistering an Amazon ECS external
instance.

Note

Be aware that, if the installation script successfully requested and used the Systems
Manager activation, running the installation script a second time uses the Systems

External instance registration issues 1523

Amazon Elastic Container Service Developer Guide

Manager activation again. This might in turn cause you to reach the registration limit for
that activation. If this limit is reached, you must create a new activation.

• When running the installation script on an external instance for GPU workloads, if the NVIDIA
driver is not detected or configured properly, an error will occur. The installation script uses the
nvidia-smi command to confirm the existence of the NVIDIA driver.

External instance network issues

To communicate any changes, your external instance requires a network connection to AWS. If your
external instance loses its network connection to AWS, tasks that are running on your instances
continue to run anyway unless stopped manually. After the connection to AWS is restored, the AWS
credentials that are used by the Amazon ECS container agent and Systems Manager Agent on the
external instance renew automatically. For more information about the AWS domains that are used
for communication between your external instance and AWS, see Networking .

Issues running tasks on your external instance

If your tasks or containers fail to run on your external instance, the most common causes are either
network or permission related. If your containers are pulling their images from Amazon ECR or are
configured to send container logs to CloudWatch Logs, your task definition must specify a valid
task execution IAM role. Without a valid task execution IAM role, your containers will fail to start.
For more information about network related issues, see External instance network issues.

Important

Amazon ECS provides the Amazon ECS logs collection tool. You can use it to collect logs
from your external instances for troubleshooting purposes. For more information, see
Collecting container logs with Amazon ECS logs collector .

AWS Fargate throttling quotas

AWS Fargate limits Amazon ECS tasks and Amazon EKS pods launch rates to quotas (formerly
referred to as limits) using a token bucket algorithm for each AWS account on a per-Region basis.
With this algorithm, your account has a bucket that holds a specific number of tokens. The number
of tokens in the bucket represents your rate quota at any given second. Each customer account has

External instance network issues 1524

https://en.wikipedia.org/wiki/Token_bucket

Amazon Elastic Container Service Developer Guide

a tasks and pods token bucket that depletes based on the number of tasks and pods launched by
the customer account. This token bucket has a bucket maximum that allows you to periodically
make a higher number of requests, and a refill rate that allows you to sustain a steady rate of
requests for as long as needed.

For example, the tasks and pods token bucket size for a Fargate customer account is 100 tokens,
and the refill rate is 20 tokens per second. Therefore, you can immediately launch up to 100
Amazon ECS tasks and Amazon EKS pods per customer account, with a sustained launch rate of 20
Amazon ECS tasks and Amazon EKS pods per second.

Actions Bucket maximum
capacity (or Burst
rate)

Bucket refill rate (or
Sustained rate)

Fargate Resource rate quota for On Demand

Amazon ECS tasks and Amazon EKS pods1

100 20

Fargate Resource rate quota for Spot Amazon
ECS tasks

100 20

1Accounts launching only Amazon EKS pods have a burst rate of 20 with a sustained pod launch
rate of 20 pod launches per second when using the platform versions called out in the Amazon EKS
platform versions.

Throttling the RunTask API in Fargate

In addition, Fargate limits the request rate when launching tasks using the Amazon ECS RunTask
API using a separate quota. Fargate limits Amazon ECS RunTask API requests for each AWS
account on a per-Region basis. Each request that you make removes one token from the bucket. We
do this to help the performance of the service, and to ensure fair usage for all Fargate customers.
API calls are subject to the request quotas whether they originate from the Amazon Elastic
Container Service console, a command line tool, or a third-party application. The rate quota for
calls to the Amazon ECS RunTask API is 20 calls per second (burst and sustained). Each call to this
API can, however, launch up to 10 tasks. This means you can launch 100 tasks in one second by
making 10 calls to this API, requesting 10 tasks to be launched in each call. Similarly, you could
also make 20 calls to this API, requesting 5 tasks to be launched in each call. For more information

Throttling the RunTask API in Fargate 1525

https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html

Amazon Elastic Container Service Developer Guide

on API throttling for Amazon ECS RunTask API, see API request throttling in the Amazon ECS API
Reference.

In practice, task and pod launch rates are also dependent on other considerations such as container
images to be downloaded and unpacked, health checks and other integrations enabled, such as
registering tasks or pods into a load balancer. Customers see variations in task and pod launch
rates compared with the quotas represented earlier based on the features that customers enable.

Adjusting rate quotas in Fargate

You can request an increase for Fargate rate throttling quotas for your AWS account. For more
information, see Requesting a quota increase in the Service Quotas User Guide.

Handle Amazon ECS throttling issues

Throttling errors fall into two major categories: synchronous throttling and asynchronous
throttling.

Synchronous throttling

When synchronous throttling occurs, you immediately receive an error response from Amazon
ECS. This category typically occurs when you call Amazon ECS APIs while running tasks or creating
services. For more information about the throttling involved and the relevant throttle limits, see
Request throttling for the Amazon ECS API.

When your application initiates API requests, for example, by using the AWS CLI or an AWS SDK,
you can remediate API throttling. You can do this by either architecting your application to handle
the errors or by implementing an exponential backoff and jitter strategy with retry logic for the API
calls. For more information, see Timeouts, retries, and backoff with jitter.

If you use an AWS SDK, the automatic retry logic is built-in and configurable.

Asynchronous throttling

Asynchronous throttling occurs because of asynchronous workflows where Amazon ECS
or AWS CloudFormation might be calling APIs on your behalf to provision resources. It's
important to know which AWS APIs that Amazon ECS invokes on your behalf. For example, the
CreateNetworkInterface API is invoked for tasks that use the awsvpc network mode, and the
DescribeTargetHealth API is invoked when performing health checks for tasks registered to a
load balancer.

Adjusting rate quotas in Fargate 1526

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/request-throttling.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/request-throttling.html
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/

Amazon Elastic Container Service Developer Guide

When your workloads reach a considerable scale, these API operations might be throttled. That is,
they might be throttled enough to breach the limits enforced by Amazon ECS or the AWS service
that is being called. For example, if you deploy hundreds of services, each having hundreds of
tasks concurrently that use the awsvpc network mode, Amazon ECS invokes Amazon EC2 API
operations such as CreateNetworkInterface and Elastic Load Balancing API operations such as
RegisterTarget or DescribeTargetHealth to register the elastic network interface and load
balancer, respectively. These API calls can exceed the API limits, resulting in throttling errors. The
following is an example of an Elastic Load Balancing throttling error that's included in the service
event message.

{
 "userIdentity":{
 "arn":"arn:aws:sts::111122223333:assumed-role/AWSServiceRoleForECS/ecs-service-
scheduler",
 "eventTime":"2022-03-21T08:11:24Z",
 "eventSource":"elasticloadbalancing.amazonaws.com",
 "eventName":" DescribeTargetHealth ",
 "awsRegion":"us-east-1",
 "sourceIPAddress":"ecs.amazonaws.com",
 "userAgent":"ecs.amazonaws.com",
 "errorCode":"ThrottlingException",
 "errorMessage":"Rate exceeded",
 "eventID":"0aeb38fc-229b-4912-8b0d-2e8315193e9c"
 }
}

When these API calls share limits with other API traffic in your account, they might be difficult
monitor even though they're emitted as service events.

Monitor throttling

It's important to identify which API requests are throttled and who issues these requests. You can
use AWS CloudTrail which monitors throttling, and integrates with CloudWatch, Amazon Athena,
and Amazon EventBridge. You can configure CloudTrail to send specific events to CloudWatch Logs.
CloudWatch Logs log insights parses and analyzes the events. This identifies details in throttling
events such as the user or IAM role that made the call and the number of API calls that were made.
For more information, see Monitoring CloudTrail log files with CloudWatch Logs.

For more information about CloudWatch Logs insights and instructions on how to query log files,
see Analyzing log data with CloudWatch Logs Insights.

Monitor throttling 1527

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/monitor-cloudtrail-log-files-with-cloudwatch-logs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html

Amazon Elastic Container Service Developer Guide

With Amazon Athena, you can create queries and analyze data using standard SQL. For example,
you can create an Athena table to parse CloudTrail events. For more information, see Using the
CloudTrail console to create an Athena table for CloudTrail logs.

After creating an Athena table, you can use SQL queries such as the following one to investigate
ThrottlingException errors.

Replace the user-input with your values.

select eventname, errorcode,eventsource,awsregion, useragent,COUNT(*) count
FROM cloudtrail_table-name
where errorcode = 'ThrottlingException'
AND eventtime between '2024-09-24T00:00:08Z' and '2024-09-23T23:15:08Z'
group by errorcode, awsregion, eventsource, useragent, eventname
order by count desc;

Amazon ECS also emits event notifications to Amazon EventBridge. There are resource
state change events and service action events. They include API throttling events such as
ECS_OPERATION_THROTTLED and SERVICE_DISCOVERY_OPERATION_THROTTLED. For more
information, see Amazon ECS service action events.

These events can be consumed by a service such as AWS Lambda to perform actions in response.
For more information, see Handling Amazon ECS events.

If you run standalone tasks, some API operations such as RunTask are asynchronous, and retry
operations aren't automatically performed. In such cases, you can use services such as AWS
Step Functions with EventBridge integration to retry throttled or failed operations. For more
information, see Manage a container task (Amazon ECS, Amazon SNS).

Use CloudWatch to monitor throttling

CloudWatch offers API usage monitoring on the Usage namespace under By AWS Resource.
These metrics are logged with type API and metric name CallCount. You can create alarms to
start whenever these metrics reach a certain threshold. For more information, see Visualizing your
service quotas and setting alarms.

CloudWatch also offers anomaly detection. This feature uses machine learning to analyze and
establish baselines based on the particular behavior of the metric that you enabled it on. If
there's unusual API activity, you can use this feature together with CloudWatch alarms. For more
information, see Using CloudWatch anomaly detection.

Use CloudWatch to monitor throttling 1528

https://docs.aws.amazon.com/athena/latest/ug/cloudtrail-logs.html#create-cloudtrail-table-ct
https://docs.aws.amazon.com/athena/latest/ug/cloudtrail-logs.html#create-cloudtrail-table-ct
https://docs.aws.amazon.com/step-functions/latest/dg/sample-project-container-task-notification.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Quotas-Visualize-Alarms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Quotas-Visualize-Alarms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html

Amazon Elastic Container Service Developer Guide

By proactively monitoring throttling errors, you can contact Support to increase the relevant
throttling limits and also receive guidance for your unique application needs.

Amazon ECS API failure reasons

When an API action that you have triggered through the Amazon ECS API, console, or the AWS CLI
exits with a failures error message, the following might assist in troubleshooting the cause. The
failure returns a reason and the Amazon Resource Name (ARN) of the resource associated with the
failure.

Many resources are Region-specific, so when using the console ensure that you set the correct
Region for your resources. When using the AWS CLI, make sure that your AWS CLI commands are
being sent to the correct Region with the --region region parameter.

For more information about the structure of the Failure data type, see Failure in the Amazon
Elastic Container Service API Reference.

The following are examples of failure messages that you might receive when running API
commands.

API action Failure reason or Stopped
reason

Cause

DescribeClusters MISSING The specified cluster wasn't
found. Verify the spelling of
the cluster name.

DescribeInstances MISSING The specified container
instance wasn't found. Verify
that you specified the cluster
the container instance is
registered to and that both
the container instance ARN or
ID is correct.

DescribeServices MISSING The specified service wasn't
found. Verify that the correct
cluster or Region is specified

API failure reasons 1529

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Failure.html

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

and that the service ARN or
name is valid.

DescribeTasks MISSING The specified task wasn't
found. Verify the correct
cluster or Region is specified
and that both the task ARN or
ID is valid.

API failure reasons 1530

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

DescribeTasks TaskFailedToStart:
RESOURCE:*

For RESOURCE:CPU
errors, the number of CPUs
requested by the task are
unavailable on your container
instances. This generally
happens when the CPU unit
requirement in your task
definition is larger than the
CPU size of the Amazon EC2
instances defined in the Auto
Scaling group mapped to the
capacity provider. You need to
check your capacity provider
configuration.

For RESOURCE:MEMORY
errors, the amount of
memory requested by the
task are unavailable on your
container instances. This
generally happens when the
memory amount requireme
nt in your task definition is
larger than the supported
memory on the Amazon EC2
instances defined in the Auto
Scaling group mapped to the
capacity provider. You need to
check your capacity provider
configuration.

API failure reasons 1531

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

TaskFailedToStart:
AGENT

The container instance that
you attempted to launch
a task onto has an agent
that's currently disconnec
ted. To prevent extended wait
times for task placement, the
request was rejected.

For information about how to
troubleshoot an agent that's
disconnected, see How do I
troubleshoot a disconnected
Amazon ECS agent.

TaskFailedToStart:
MemberOf placement
constraint unsatisfi
ed

There is no container instance
that meets the placement
 constraints defined in your
task definition.

API failure reasons 1532

https://repost.aws/knowledge-center/ecs-agent-disconnected-linux2-ami
https://repost.aws/knowledge-center/ecs-agent-disconnected-linux2-ami
https://repost.aws/knowledge-center/ecs-agent-disconnected-linux2-ami

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

TaskFailedToStart:
ATTRIBUTE

Your task definition contains
a parameter that requires a
specific container instance
attribute that isn't available
on your container instances.
For example, if your task uses
the awsvpc network mode,
but there are no instances in
your specified subnets with
the ecs.capability.tas
k-eni attribute. For more
information about which
attributes are required
for specific task definitio
n parameters and agent
configuration variables, see
Amazon ECS task definition
parameters for the Fargate
launch type and Amazon ECS
container agent configura
tion.

TaskFailedToStart: NO
ACTIVE INSTANCES

There are no active instances
in your capacity provider. For
information about how to
manage your Auto Scaling
groups, see Auto Scaling
groups in the Amazon EC2
Auto Scaling User Guide.

API failure reasons 1533

https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

TaskFailedToStart:
EMPTY CAPACITY
PROVIDER

There are no instances in
your cluster. This is most
likely because of an empty
capacity provider, or because
the instances in the capacity
provider are not registered to
the cluster. For information
about how to manage your
Auto Scaling groups, see Auto
Scaling groups in the Amazon
EC2 Auto Scaling User Guide.

MISSING The specified task wasn't
found. Verify that the cluster
name or ARN and the task
ARN or ID are valid.

GetTaskProtection

TASK_NOT_VALID The specified task isn't part of
an Amazon ECS service. Only
Amazon ECS service-managed
tasks can be protected. Verify
the task ARN or ID and try
again.

API failure reasons 1534

https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

RunTask or StartTask RESOURCE:* The resource or resources that
are requested by the task are
unavailable on the container
instances in the cluster. If
the resource is CPU, memory,
ports, or elastic network
interfaces, you might need
to add additional container
instances to your cluster.

For RESOURCE:ENI errors,
your cluster doesn't have
any available elastic network
interface attachment points,
which are required for tasks
that use the awsvpc network
mode. Amazon EC2 instances
have a limit to the number
of network interfaces that
can be attached to them,
and the primary network
interface counts as one. For
more information about how
many network interfaces are
supported for each instance
type, see IP Addresses
Per Network Interface Per
Instance Type in the Amazon
EC2 User Guide.

For RESOURCE:GPU
errors, the number of GPUs
requested by the task are
unavailable and you might

API failure reasons 1535

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

need to add GPU-enabled
container instances to your
cluster. For more information,
see Amazon ECS task definitio
ns for GPU workloads.

AGENT The container instance that
you attempted to launch
a task onto has an agent
that's currently disconnec
ted. To prevent extended wait
times for task placement, the
request was rejected.

For information about how to
troubleshoot an agent that's
disconnected, see How do I
troubleshoot a disconnected
Amazon ECS agent.

LOCATION The container instance that
you attempted to launch a
task onto is in a different
Availability Zone than the
subnets that you specified in
your awsVpcConfiguratio
n .

API failure reasons 1536

https://repost.aws/knowledge-center/ecs-agent-disconnected-linux2-ami
https://repost.aws/knowledge-center/ecs-agent-disconnected-linux2-ami
https://repost.aws/knowledge-center/ecs-agent-disconnected-linux2-ami

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

ATTRIBUTE Your task definition contains
a parameter that requires a
specific container instance
attribute that isn't available
on your container instances.
For example, if your task uses
the awsvpc network mode,
but there are no instances in
your specified subnets with
the ecs.capability.tas
k-eni attribute. For more
information about which
attributes are required
for specific task definitio
n parameters and agent
configuration variables, see
Amazon ECS task definition
parameters for the Fargate
launch type and Amazon ECS
container agent configura
tion.

StartTask MISSING The container instance that
you attempted to launch the
task onto can't be found.
Check if the wrong cluster
or Region is specified, or the
container instance ARN or ID
is misspelled.

API failure reasons 1537

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

INACTIVE The container instance that
you attempted to launch
a task onto was previously
deregistered with Amazon
ECS and can't be used.

StopServiceDeploym
ent

ECS deployment failed A fraud account ran the
StopServiceDeploym
ent API.

TagResource InvalidParameterEx
ception

The ARN for the service that
you are tagging has the short
format. You must migrate to
the long format. For informati
on about how to migrate the
ARN, see Migrate an Amazon
ECS short service ARN to a
long ARN.

DEPLOYMENT_BLOCKED Can't set task protection as
one or more protected tasks
are preventing the service
deployment from reaching
a steady state. Unset task
protection on existing tasks
or wait until task protection
expires.

UpdateTaskProtection

MISSING The specified task wasn't
found. Verify that the cluster
name or ARN and the task
ARN or ID are valid.

API failure reasons 1538

Amazon Elastic Container Service Developer Guide

API action Failure reason or Stopped
reason

Cause

TASK_NOT_VALID The specified task isn't part of
an Amazon ECS service. Only
Amazon ECS service-managed
tasks can be protected. Verify
the task ARN or ID and try
again.

Note

Besides the failure scenarios described here, API operations can also fail due to exceptions,
resulting in error responses. For a list of such exceptions, see Common Errors.

API failure reasons 1539

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/CommonErrors.html

Amazon Elastic Container Service Developer Guide

Security in Amazon Elastic Container Service

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to Amazon Elastic
Container Service, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Amazon ECS. The following topics show you how to configure Amazon ECS to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your Amazon ECS resources.

Topics

• Identity and Access Management for Amazon Elastic Container Service

• Logging and Monitoring in Amazon Elastic Container Service

• Compliance validation for Amazon Elastic Container Service

• AWS Fargate Federal Information Processing Standard (FIPS-140)

• Infrastructure Security in Amazon Elastic Container Service

• AWS shared responsibility model for Amazon ECS

• Network security best practices for Amazon ECS

• Amazon ECS task and container security best practices

1540

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Elastic Container Service Developer Guide

Identity and Access Management for Amazon Elastic Container
Service

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Amazon ECS resources. IAM is an AWS service that you
can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Elastic Container Service works with IAM

• Identity-based policy examples for Amazon Elastic Container Service

• AWS managed policies for Amazon Elastic Container Service

• Using service-linked roles for Amazon ECS

• IAM roles for Amazon ECS

• Permissions required for the Amazon ECS console

• IAM permissions required for Amazon ECS service auto scaling

• Grant permission to tag resources on creation

• Troubleshooting Amazon Elastic Container Service identity and access

• IAM best practices for Amazon ECS

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Amazon ECS.

Service user – If you use the Amazon ECS service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more Amazon ECS features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
Amazon ECS, see Troubleshooting Amazon Elastic Container Service identity and access.

Identity and Access Management 1541

Amazon Elastic Container Service Developer Guide

Service administrator – If you're in charge of Amazon ECS resources at your company, you
probably have full access to Amazon ECS. It's your job to determine which Amazon ECS features
and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
Amazon ECS, see How Amazon Elastic Container Service works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to Amazon ECS. To view example Amazon ECS identity-based
policies that you can use in IAM, see Identity-based policy examples for Amazon Elastic Container
Service.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

Authenticating with identities 1542

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Amazon Elastic Container Service Developer Guide

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Authenticating with identities 1543

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html

Amazon Elastic Container Service Developer Guide

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the

Authenticating with identities 1544

https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Elastic Container Service Developer Guide

principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

Managing access using policies 1545

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Elastic Container Service Developer Guide

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Managing access using policies 1546

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Elastic Container Service Developer Guide

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing access using policies 1547

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

Amazon Elastic Container Service Developer Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Elastic Container Service works with IAM

Before you use IAM to manage access to Amazon ECS, learn what IAM features are available to use
with Amazon ECS.

IAM feature Amazon ECS support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Partial

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Forward access sessions (FAS) Yes

Service roles Yes

Service-linked roles Yes

To get a high-level view of how Amazon ECS and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

How Amazon Elastic Container Service works with IAM 1548

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Elastic Container Service Developer Guide

Identity-based policies for Amazon ECS

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Amazon ECS

To view examples of Amazon ECS identity-based policies, see Identity-based policy examples for
Amazon Elastic Container Service.

Resource-based policies within Amazon ECS

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access

How Amazon Elastic Container Service works with IAM 1549

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Elastic Container Service Developer Guide

to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Amazon ECS

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Amazon ECS actions, see Actions defined by Amazon Elastic Container Service in the
Service Authorization Reference.

Policy actions in Amazon ECS use the following prefix before the action:

ecs

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "ecs:action1",
 "ecs:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "ecs:Describe*"

How Amazon Elastic Container Service works with IAM 1550

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-actions-as-permissions

Amazon Elastic Container Service Developer Guide

To view examples of Amazon ECS identity-based policies, see Identity-based policy examples for
Amazon Elastic Container Service.

Policy resources for Amazon ECS

Supports policy resources: Partial

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Amazon ECS resource types and their ARNs, see Resources defined by Amazon
Elastic Container Service in the Service Authorization Reference. To learn with which actions you can
specify the ARN of each resource, see Actions defined by Amazon Elastic Container Service.

Some Amazon ECS API actions support multiple resources. For example, multiple clusters can be
referenced when calling the DescribeClusters API action. To specify multiple resources in a
single statement, separate the ARNs with commas.

"Resource": [
 "EXAMPLE-RESOURCE-1",
 "EXAMPLE-RESOURCE-2"

For example, the Amazon ECS cluster resource has the following ARN:

arn:${Partition}:ecs:${Region}:${Account}:cluster/${clusterName}

To specify my-cluster-1 and my-cluster-2 cluster in your statement, use the following ARNs:

How Amazon Elastic Container Service works with IAM 1551

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-actions-as-permissions

Amazon Elastic Container Service Developer Guide

"Resource": [
 "arn:aws:ecs:us-east-1:123456789012:cluster/my-cluster-1",
 "arn:aws:ecs:us-east-1:123456789012:cluster/my-cluster-2"

To specify all clusters that belong to a specific account, use the wildcard (*):

"Resource": "arn:aws:ecs:us-east-1:123456789012:cluster/*"

For task definitions, you can specify the latest revision, or a specific revision.

To specify all revisions of the task definition, use the wildcard (*):

"Resource:arn:${Partition}:ecs:${Region}:${Account}:task-definition/
${TaskDefinitionFamilyName}:*"

To specify a specific task definition revision, use ${TaskDefinitionRevisionNumber}:

"Resource:arn:${Partition}:ecs:${Region}:${Account}:task-definition/
${TaskDefinitionFamilyName}:${TaskDefinitionRevisionNumber}"

To view examples of Amazon ECS identity-based policies, see Identity-based policy examples for
Amazon Elastic Container Service.

Policy condition keys for Amazon ECS

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

How Amazon Elastic Container Service works with IAM 1552

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

Amazon Elastic Container Service Developer Guide

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

Amazon ECS supports the following service-specific condition keys that you can use to provide
fine-grained filtering for your IAM policies:

Condition Key Description Evaluation
Types

aws:RequestTag/
${TagKey}

The context key is formatted "aws:Requ
estTag/ tag-key":"tag-value " where tag-
keyand tag-value are a tag key and value pair.

Checks that the tag key–value pair is present in an AWS
request. For example, you could check to see that the
request includes the tag key "Dept" and that it has the
value "Accounting" .

String

aws:Resou
rceTag/${
TagKey}

The context key is formatted "aws:Reso
urceTag/ tag-key":"tag-value " where tag-
keyand tag-value are a tag key and value pair.

Checks that the tag attached to the identity resource
(user or role) matches the specified key name and value.

String

aws:TagKeys This context key is formatted "aws:TagKeys":" tag-
key" where tag-key is a list of tag keys without values
(for example, ["Dept","Cost-Center"]).

Checks the tag keys that are present in an AWS request.

String

ecs:Resou
rceTag/${
TagKey}

The context key is formatted "ecs:Reso
urceTag/ tag-key":"tag-value " where tag-
keyand tag-value are a tag key and value pair.

String

How Amazon Elastic Container Service works with IAM 1553

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Elastic Container Service Developer Guide

Condition Key Description Evaluation
Types

Checks that the tag attached to the identity resource
(user or role) matches the specified key name and value.

ecs:account-
setting

he context key is formatted "ecs:account-setti
ng":" account-setting " where account-s
etting is the name of the account setting.

String

ecs:auto-assign-
public-ip

The context key is formatted "ecs:auto-assign-
public-ip":" value" where value- is "true" or
"false".

String

ecs:capacity-
provider

The context key is formatted "ecs:capacity-
provider":" capacity-provider-arn " where
capacity-provider-arn is the ARN for the
capacity provider.

ARN, Null

ecs:cluster The context key is formatted "ecs:clus
ter":" cluster-arn " where cluster-arn is the
ARN for the Amazon ECS cluster.

ARN, Null

ecs:compute-
compatability

The context key is formatted "ecs:compute-compa
tability":" compatability-type " where
compatability-type is "FARGATE", "EC2" or
"EXTERNAL".

String

ecs:container-
instances

The context key is formatted "ecs:container-
instances":" container-instance-arns "
where container-instance-arns is one or more
container instance ARNs.

ARN, Null

ecs:container-
name

The context key is formatted "ecs:container-
name":" container-name " where container-
instance- is the name of an Amazon ECS container
which is defined in the task definition.

String

How Amazon Elastic Container Service works with IAM 1554

Amazon Elastic Container Service Developer Guide

Condition Key Description Evaluation
Types

ecs:enabl
e-execute-
command

The context key is formatted "ecs:enable-execut
e-command":" value" where value- is "true" or
"false".

String

ecs:enable-
service-connect

The context key is formatted "ecs:enable-servic
e-connect":" value" where value is "true" or
"false".

String

ecs:enable-ebs-
volumes

The context key is formatted "ecs:enable-ebs-
volumes":" value" where value is "true" or
"false".

String

ecs:enable-
managed-tags

The context key is formatted "ecs:enable-manage
d-tags":" value" where value is "true" or
"false".

String

ecs:enable-vpc-
lattice

The context key is formatted "ecs:vpc-lattice":
" value" where value is "true" or "false".

String

ecs:fargate-
ephemeral-stora
ge-kms-key

The context key is formatted "ecs:fargate-ephem
eral-storage-kms-key":" key" where key is
the ID of the AWS KMS key.

String

ecs:namespace The context key is formatted "ecs:name
space":" namespace-arn " where namespace-
arn is the ARN for the AWS Cloud Map namespace.

ARN, Null

ecs:propagate-
tags

The context key is formatted "ecs:propagate-tag
s":" value" where value is "TASK_DEFINITION" ,
"SERVICE" , or "NONE".

String

ecs:service The context key is formatted "ecs:serv
ice":" service-arn " where service-arn is the
ARN for the Amazon ECS service.

ARN, Null

How Amazon Elastic Container Service works with IAM 1555

Amazon Elastic Container Service Developer Guide

Condition Key Description Evaluation
Types

ecs:task-definitio
n

The context key is formatted "ecs:task-definiti
on":" task-definition-arn " where task-defi
nition-arn is the ARN for the Amazon ECS task
definition.

ARN, Null

ecs:subnet The context key is formatted "ecs:subn
et":" subnets" where subnets are the subnets of a
task or service that uses awsvpc mode.

String

ecs:task The context key is formatted "ecs:task":" task-
arn" where task-arn is the ARN for the Amazon ECS
service.

ARN, Null

ecs:task-cpu The context key is formatted "ecs:task-
cpu":"task-cpu" where task-cpu is the task cpu, as
an integer with 1024 = 1 vCPU.

Integer

ecs:task-
memory

The context key is formatted "ecs:task-memory":
" task-memory " where task-memory is the task
memory in MiB.

Integer

To see a list of Amazon ECS condition keys, see Condition keys for Amazon Elastic Container
Service in the Service Authorization Reference. To learn with which actions and resources you can
use a condition key, see Actions defined by Amazon Elastic Container Service.

To view examples of Amazon ECS identity-based policies, see Identity-based policy examples for
Amazon Elastic Container Service.

Access control lists (ACLs) in Amazon ECS

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

How Amazon Elastic Container Service works with IAM 1556

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-actions-as-permissions

Amazon Elastic Container Service Developer Guide

Attribute-based access control (ABAC) with Amazon ECS

Important

Amazon ECS supports attributes-based access control for all Amazon ECS resources. To
determine whether you can use attributes to scope an action, use the Actions defined by
Amazon ECS table in Service Authorization Reference. First verify that there is a resource in
the Resource column. Then, use the Condition keys column to see the keys for the action/
resource combination.

Supports ABAC (tags in policies): Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

For more information about tagging Amazon ECS resources, see Tagging Amazon ECS resources.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see Describing Amazon ECS services based on tags.

How Amazon Elastic Container Service works with IAM 1557

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html#amazonelasticcontainerservice-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

Amazon Elastic Container Service Developer Guide

Using Temporary credentials with Amazon ECS

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switch from a user to an IAM role
(console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Forward access sessions for Amazon ECS

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Amazon ECS

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

How Amazon Elastic Container Service works with IAM 1558

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Elastic Container Service Developer Guide

Warning

Changing the permissions for a service role might break Amazon ECS functionality. Edit
service roles only when Amazon ECS provides guidance to do so.

Service-linked roles for Amazon ECS

Supports service-linked roles: Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing Amazon ECS service-linked roles, see Using service-linked
roles for Amazon ECS.

Identity-based policy examples for Amazon Elastic Container Service

By default, users and roles don't have permission to create or modify Amazon ECS resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by Amazon ECS, including the format of the
ARNs for each of the resource types, see Actions, resources, and condition keys for Amazon Elastic
Container Service in the Service Authorization Reference.

Topics

• Amazon ECS policy best practices

• Allow Amazon ECS users to view their own permissions

• Amazon ECS cluster examples

• Amazon ECS container instance examples

Identity-based policy examples 1559

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html

Amazon Elastic Container Service Developer Guide

• Amazon ECS task definition examples

• Run Amazon ECS Task Example

• Start Amazon ECS task example

• List and describe Amazon ECS task examples

• Create Amazon ECS service example

• Update Amazon ECS service example

• Describing Amazon ECS services based on tags

• Deny Amazon ECS Service Connect Namespace Override Example

Amazon ECS policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon ECS
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and

Identity-based policy examples 1560

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Elastic Container Service Developer Guide

functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Allow Amazon ECS users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",

Identity-based policy examples 1561

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Elastic Container Service Developer Guide

 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Amazon ECS cluster examples

The following IAM policy allows permission to create and list clusters. The CreateCluster and
ListClusters actions do not accept any resources, so the resource definition is set to * for all
resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:CreateCluster",
 "ecs:ListClusters"
],
 "Resource": ["*"]
 }
]
}

The following IAM policy allows permission to describe and delete a specific cluster. The
DescribeClusters and DeleteCluster actions accept cluster ARNs as resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:DescribeClusters",
 "ecs:DeleteCluster"
],
 "Resource": ["arn:aws:ecs:us-east-1:<aws_account_id>:cluster/
<cluster_name>"]

Identity-based policy examples 1562

Amazon Elastic Container Service Developer Guide

 }
]
}

The following IAM policy can be attached to a user or group that would only allow that user or
group to perform operations on a specific cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ecs:Describe*",
 "ecs:List*"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Action": [
 "ecs:DeleteCluster",
 "ecs:DeregisterContainerInstance",
 "ecs:ListContainerInstances",
 "ecs:RegisterContainerInstance",
 "ecs:SubmitContainerStateChange",
 "ecs:SubmitTaskStateChange"
],
 "Effect": "Allow",
 "Resource": "arn:aws:ecs:us-east-1:<aws_account_id>:cluster/default"
 },
 {
 "Action": [
 "ecs:DescribeContainerInstances",
 "ecs:DescribeTasks",
 "ecs:ListTasks",
 "ecs:UpdateContainerAgent",
 "ecs:StartTask",
 "ecs:StopTask",
 "ecs:RunTask"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {

Identity-based policy examples 1563

Amazon Elastic Container Service Developer Guide

 "ArnEquals": {"ecs:cluster": "arn:aws:ecs:us-
east-1:<aws_account_id>:cluster/default"}
 }
 }
]
}

Amazon ECS container instance examples

Container instance registration is handled by the Amazon ECS agent, but there may be times where
you want to allow a user to deregister an instance manually from a cluster. Perhaps the container
instance was accidentally registered to the wrong cluster, or the instance was terminated with tasks
still running on it.

The following IAM policy allows a user to list and deregister container instances in a specified
cluster:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:DeregisterContainerInstance",
 "ecs:ListContainerInstances"
],
 "Resource": ["arn:aws:ecs:<region>:<aws_account_id>:cluster/
<cluster_name>"]
 }
]
}

The following IAM policy allows a user to describe a specified container instance in a specified
cluster. To open this permission up to all container instances in a cluster, you can replace the
container instance UUID with *.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Identity-based policy examples 1564

Amazon Elastic Container Service Developer Guide

 "Action": ["ecs:DescribeContainerInstances"],
 "Condition": {
 "ArnEquals": {"ecs:cluster":
 "arn:aws:ecs:<region>:<aws_account_id>:cluster/<cluster_name>"}
 },
 "Resource": ["arn:aws:ecs:<region>:<aws_account_id>:container-instance/
<cluster_name>/<container_instance_UUID>"]
 }
]
}

Amazon ECS task definition examples

Task definition IAM policies do not support resource-level permissions, but the following IAM policy
allows a user to register, list, and describe task definitions:

If you use the console, you must add CloudFormation: CreateStack as an Action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:RegisterTaskDefinition",
 "ecs:ListTaskDefinitions",
 "ecs:DescribeTaskDefinition"
],
 "Resource": ["*"]
 }
]
}

Run Amazon ECS Task Example

The resources for RunTask are task definitions. To limit which clusters a user can run task
definitions on, you can specify them in the Condition block. The advantage is that you don't have
to list both task definitions and clusters in your resources to allow the appropriate access. You can
apply one, the other, or both.

The following IAM policy allows permission to run any revision of a specific task definition on a
specific cluster:

Identity-based policy examples 1565

Amazon Elastic Container Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ecs:RunTask"],
 "Condition": {
 "ArnEquals": {"ecs:cluster":
 "arn:aws:ecs:<region>:<aws_account_id>:cluster/<cluster_name>"}
 },
 "Resource": ["arn:aws:ecs:<region>:<aws_account_id>:task-definition/
<task_family>:*"]
 }
]
}

Start Amazon ECS task example

The resources for StartTask are task definitions. To limit which clusters and container instances
a user can start task definitions on, you can specify them in the Condition block. The advantage
is that you don't have to list both task definitions and clusters in your resources to allow the
appropriate access. You can apply one, the other, or both.

The following IAM policy allows permission to start any revision of a specific task definition on a
specific cluster and specific container instance.

Note

For this example, when you call the StartTask API with the AWS CLI or another AWS SDK,
you must specify the task definition revision so that the Resource mapping matches.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ecs:StartTask"],
 "Condition": {
 "ArnEquals": {

Identity-based policy examples 1566

Amazon Elastic Container Service Developer Guide

 "ecs:cluster": "arn:aws:ecs:<region>:<aws_account_id>:cluster/
<cluster_name>",
 "ecs:container-instances":
 ["arn:aws:ecs:<region>:<aws_account_id>:container-instance/<cluster_name>/
<container_instance_UUID>"]
 }
 },
 "Resource": ["arn:aws:ecs:<region>:<aws_account_id>:task-definition/
<task_family>:*"]
 }
]
}

List and describe Amazon ECS task examples

The following IAM policy allows a user to list tasks for a specified cluster:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ecs:ListTasks"],
 "Condition": {
 "ArnEquals": {"ecs:cluster":
 "arn:aws:ecs:<region>:<aws_account_id>:cluster/<cluster_name>"}
 },
 "Resource": ["*"]
 }
]
}

The following IAM policy allows a user to describe a specified task in a specified cluster:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ecs:DescribeTasks"],
 "Condition": {
 "ArnEquals": {"ecs:cluster":
 "arn:aws:ecs:<region>:<aws_account_id>:cluster/<cluster_name>"}

Identity-based policy examples 1567

Amazon Elastic Container Service Developer Guide

 },
 "Resource": ["arn:aws:ecs:<region>:<aws_account_id>:task/<cluster_name>/
<task_UUID>"]
 }
]
}

Create Amazon ECS service example

The following IAM policy allows a user to create Amazon ECS services in the AWS Management
Console:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:Describe*",
 "application-autoscaling:PutScalingPolicy",
 "application-autoscaling:RegisterScalableTarget",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "ecs:List*",
 "ecs:Describe*",
 "ecs:CreateService",
 "elasticloadbalancing:Describe*",
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:GetRole",
 "iam:ListAttachedRolePolicies",
 "iam:ListRoles",
 "iam:ListGroups",
 "iam:ListUsers"
],
 "Resource": ["*"]
 }
]
}

Identity-based policy examples 1568

Amazon Elastic Container Service Developer Guide

Update Amazon ECS service example

The following IAM policy allows a user to update Amazon ECS services in the AWS Management
Console:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:Describe*",
 "application-autoscaling:PutScalingPolicy",
 "application-autoscaling:DeleteScalingPolicy",
 "application-autoscaling:RegisterScalableTarget",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "ecs:List*",
 "ecs:Describe*",
 "ecs:UpdateService",
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:GetRole",
 "iam:ListAttachedRolePolicies",
 "iam:ListRoles",
 "iam:ListGroups",
 "iam:ListUsers"
],
 "Resource": ["*"]
 }
]
}

Describing Amazon ECS services based on tags

You can use conditions in your identity-based policy to control access to Amazon ECS resources
based on tags. This example shows how you might create a policy that allows describing your
services. However, permission is granted only if the service tag Owner has the value of that user's
user name. This policy also grants the permissions necessary to complete this action on the
console.

{

Identity-based policy examples 1569

Amazon Elastic Container Service Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DescribeServices",
 "Effect": "Allow",
 "Action": "ecs:DescribeServices",
 "Resource": "*"
 },
 {
 "Sid": "ViewServiceIfOwner",
 "Effect": "Allow",
 "Action": "ecs:DescribeServices",
 "Resource": "arn:aws:ecs:*:*:service/*",
 "Condition": {
 "StringEquals": {"ecs:ResourceTag/Owner": "${aws:username}"}
 }
 }
]
}

You can attach this policy to the IAM users in your account. If a user named richard-roe
attempts to describe an Amazon ECS service, the service must be tagged Owner=richard-roe or
owner=richard-roe. Otherwise he is denied access. The condition tag key Owner matches both
Owner and owner because condition key names are not case-sensitive. For more information, see
IAM JSON Policy Elements: Condition in the IAM User Guide.

Deny Amazon ECS Service Connect Namespace Override Example

The following IAM policy denies a user from overriding the default Service Connect namespace in
a service configuration. The default namespace is set in the cluster. However, you can override it
in a service configuration. For consistency, consider setting all your new services to use the same
namespace. Use the following context keys to require services to use a specific namespace. Replace
the <region>, <aws_account_id>, <cluster_name> and <namespace_id> with your own in
the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:CreateService",

Identity-based policy examples 1570

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Elastic Container Service Developer Guide

 "ecs:UpdateService"
],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:<region>:<aws_account_id>:cluster/
<cluster_name>",
 "ecs:namespace":
 "arn:aws:servicediscovery:<region>:<aws_account_id>:namespace/<namespace_id>"
 }
 },
 "Resource": "*"
 }
]
}

AWS managed policies for Amazon Elastic Container Service

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
where the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new operations become available. Services do not remove
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

Amazon ECS and Amazon ECR provide several managed policies and trust relationships that
you can attach to users, groups, roles, Amazon EC2 instances, and Amazon ECS tasks that allow

AWS managed policies for Amazon ECS 1571

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

Amazon Elastic Container Service Developer Guide

differing levels of control over resources and API operations. You can apply these policies directly,
or you can use them as starting points for creating your own policies. For more information about
the Amazon ECR managed policies, see Amazon ECR managed policies.

AmazonECS_FullAccess

You can attach the AmazonECS_FullAccess policy to your IAM identities. This policy grants
administrative access to Amazon ECS resources and grants an IAM identity (such as a user, group,
or role) access to the AWS services that Amazon ECS is integrated with to use all of Amazon ECS
features. Using this policy allows access to all of Amazon ECS features that are available in the AWS
Management Console.

To view the permissions for this policy, see AmazonECS_FullAccess in the AWS Managed Policy
Reference.

AmazonECSInfrastructureRolePolicyForVolumes

You can attach the AmazonECSInfrastructureRolePolicyForVolumes managed policy to
your IAM entities.

The policy grants the permissions that are needed by Amazon ECS to make AWS API calls on your
behalf. You can attach this policy to the IAM role that you provide with your volume configuration
when you launch Amazon ECS tasks and services. The role allows Amazon ECS to manage volumes
attached to your tasks. For more information, see Amazon ECS infrastructure IAM role.

To view the permissions for this policy, see AmazonECSInfrastructureRolePolicyForVolumes in the
AWS Managed Policy Reference.

AmazonEC2ContainerServiceforEC2Role

You can attach the AmazonEC2ContainerServiceforEC2Role policy to your IAM identities.
This policy grants administrative permissions that allow Amazon ECS container instances to make
calls to AWS on your behalf. For more information, see Amazon ECS container instance IAM role.

Amazon ECS attaches this policy to a service role that allows Amazon ECS to perform actions on
your behalf against Amazon EC2 instances or external instances.

To view the permissions for this policy, see AmazonEC2ContainerServiceforEC2Role in the AWS
Managed Policy Reference.

AWS managed policies for Amazon ECS 1572

https://docs.aws.amazon.com/AmazonECR/latest/userguide/ecr_managed_policies.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonECS_FullAccess.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/infrastructure_IAM_role.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonECSInfrastructureRolePolicyForVolumes.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEC2ContainerServiceforEC2Role.html

Amazon Elastic Container Service Developer Guide

Considerations

You should consider the following recommendations and considerations when using the
AmazonEC2ContainerServiceforEC2Role managed IAM policy.

• Following the standard security advice of granting least privilege, you can modify the
AmazonEC2ContainerServiceforEC2Role managed policy to fit your specific needs.
If any of the permissions granted in the managed policy aren't needed for your use case,
create a custom policy and add only the permissions that you require. For example, the
UpdateContainerInstancesState permission is provided for Spot Instance draining. If that
permission isn't needed for your use case, exclude it using a custom policy.

• Containers that are running on your container instances have access to all of the permissions that
are supplied to the container instance role through instance metadata. We recommend that you
limit the permissions in your container instance role to the minimal list of permissions that are
provided in the managed AmazonEC2ContainerServiceforEC2Role policy. If the containers
in your tasks need extra permissions that aren't listed, we recommend providing those tasks with
their own IAM roles. For more information, see Amazon ECS task IAM role.

You can prevent containers on the docker0 bridge from accessing the permissions supplied to
the container instance role. You can do this while still allowing the permissions that are provided
by Amazon ECS task IAM role by running the following iptables command on your container
instances. Containers can't query instance metadata with this rule in effect. This command
assumes the default Docker bridge configuration and it doesn't work with containers that use the
host network mode. For more information, see Network mode.

sudo yum install -y iptables-services; sudo iptables --insert DOCKER USER 1 --in-
interface docker+ --destination 169.254.169.254/32 --jump DROP

You must save this iptables rule on your container instance for it to survive a reboot. For the
Amazon ECS-optimized AMI, use the following command. For other operating systems, consult
the documentation for that OS.

• For the Amazon ECS-optimized Amazon Linux 2 AMI:

sudo iptables-save | sudo tee /etc/sysconfig/iptables && sudo systemctl enable --
now iptables

• For the Amazon ECS-optimized Amazon Linux AMI:

AWS managed policies for Amazon ECS 1573

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Amazon Elastic Container Service Developer Guide

sudo service iptables save

AmazonEC2ContainerServiceEventsRole

You can attach the AmazonEC2ContainerServiceEventsRole policy to your IAM identities.
This policy grants permissions that allow Amazon EventBridge (formerly CloudWatch Events) to run
tasks on your behalf. This policy can be attached to the IAM role that's specified when you create
scheduled tasks. For more information, see Amazon ECS EventBridge IAM Role.

To view the permissions for this policy, see AmazonEC2ContainerServiceEventsRole in the AWS
Managed Policy Reference.

AmazonECSTaskExecutionRolePolicy

The AmazonECSTaskExecutionRolePolicy managed IAM policy grants the permissions that
are needed by the Amazon ECS container agent and AWS Fargate container agents to make
AWS API calls on your behalf. This policy can be added to your task execution IAM role. For more
information, see Amazon ECS task execution IAM role.

To view the permissions for this policy, see AmazonECSTaskExecutionRolePolicy in the AWS
Managed Policy Reference.

AmazonECSServiceRolePolicy

The AmazonECSServiceRolePolicy managed IAM policy enables Amazon Elastic Container
Service to manage your cluster. This policy can be added to your AWSServiceRoleForECS service-
linked role.

To view the permissions for this policy, see AmazonECSServiceRolePolicy in the AWS Managed
Policy Reference.

AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity

You can attach the
AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
policy to your IAM entities. This policy grants administrative access to AWS Private Certificate
Authority, Secrets Manager and other AWS Services required to manage Amazon ECS Service
Connect TLS features on your behalf.

AWS managed policies for Amazon ECS 1574

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEC2ContainerServiceEventsRole.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonECSTaskExecutionRolePolicy.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using-service-linked-roles-for-clusters.html#service-linked-role-permissions-clusters
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonECSServiceRolePolicy.html

Amazon Elastic Container Service Developer Guide

To view the permissions for this policy, see
AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity in the AWS Managed
Policy Reference.

AWSApplicationAutoscalingECSServicePolicy

You can't attach AWSApplicationAutoscalingECSServicePolicy to your IAM entities. This
policy is attached to a service-linked role that allows Application Auto Scaling to perform actions
on your behalf. For more information, see Service-linked roles for Application Auto Scaling.

To view the permissions for this policy, see AWSApplicationAutoscalingECSServicePolicy in the AWS
Managed Policy Reference.

AWSCodeDeployRoleForECS

You can't attach AWSCodeDeployRoleForECS to your IAM entities. This policy is attached
to a service-linked role that allows CodeDeploy to perform actions on your behalf. For more
information, see Create a service role for CodeDeploy in the AWS CodeDeploy User Guide.

To view the permissions for this policy, see AWSCodeDeployRoleForECS in the AWS Managed Policy
Reference.

AWSCodeDeployRoleForECSLimited

You can't attach AWSCodeDeployRoleForECSLimited to your IAM entities. This policy is
attached to a service-linked role that allows CodeDeploy to perform actions on your behalf. For
more information, see Create a service role for CodeDeploy in the AWS CodeDeploy User Guide.

To view the permissions for this policy, see AWSCodeDeployRoleForECSLimited in the AWS
Managed Policy Reference.

AmazonECSInfrastructureRolePolicyForVpcLattice

You can attach the AmazonECSInfrastructureRolePolicyForVpcLattice policy to your IAM
entities. This policy Provides access to other AWS service resources required to manage VPC Lattice
feature in Amazon ECS workloads on your behalf.

To view the permissions for this policy, see AmazonECSInfrastructureRolePolicyForVpcLattice in the
AWS Managed Policy Reference.

AWS managed policies for Amazon ECS 1575

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSApplicationAutoscalingECSServicePolicy.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/getting-started-create-service-role.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSCodeDeployRoleForECS.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/getting-started-create-service-role.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSCodeDeployRoleForECSLimited.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonECSInfrastructureRolePolicyForVpcLattice.html

Amazon Elastic Container Service Developer Guide

Provides access to other AWS service resources required to manage VPC Lattice feature in Amazon
ECS workloads on your behalf.

Amazon ECS updates to AWS managed policies

View details about updates to AWS managed policies for Amazon ECS since this service started
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the Amazon ECS Document history page.

Change Description Date

Add permissions to
AmazonECSServiceRolePolicy

The AmazonECSServiceRo
lePolicy managed IAM
policy was updated with new
AWS Cloud Map permissio
ns which Amazon ECS can
update AWS Cloud Map
service attributes for services
that Amazon ECS manages.

June 24, 2025

Add permissions to
AmazonECSInfrastructureRole
PolicyForVolumes

The AmazonECSInfrastru
ctureRolePolicyFor
Volumes policy has
been updated to add the
ec2:DescribeInstan
ces permission. The
permission helps prevent
device name collision for
Amazon EBS volumes that
are attached to Amazon ECS
tasks that run on the same
container instance.

June 2, 2025

Add new AmazonECSInfrastru
ctureRolePolicyForVpcLattice

Provides access to other AWS
service resources required to
manage VPC Lattice feature

November 18, 2024

AWS managed policies for Amazon ECS 1576

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSServiceRolePolicy
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVpcLattice
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVpcLattice

Amazon Elastic Container Service Developer Guide

Change Description Date

in Amazon ECS workloads on
your behalf.

Add permissions to
AmazonECSInfrastructureRole
PolicyForVolumes

The AmazonECSInfrastru
ctureRolePolicyFor
Volumes policy has been
updated to allow customers
to create an Amazon EBS
volume from a snapshot.

October 10, 2024

Added permissions to the
section called “AmazonEC
S_FullAccess”

The AmazonECS_FullAcce
ss policy was updated
to add iam:PassRole
permissions for IAM roles for
a role named ecsInfras
tructureRole . This is
the default IAM role created
by the AWS Management
Console that is intended to
be used as an ECS infrastru
cture role that allows Amazon
ECS to manage Amazon EBS
volumes attached to ECS
tasks.

August 13, 2024

Add new AmazonECSInfrastru
ctureRolePolicyForServiceCo
nnectTransportLayerSecurity
 policy

Added new AmazonECS
InfrastructureRolePolicyFor
ServiceConnectTransportLaye
rSecurity policy that provides
administrative access to AWS
KMS, AWS Private Certificate
Authority, Secrets Manager
and enables Amazon ECS
Service Connect TLS features
to work properly.

January 22, 2024

AWS managed policies for Amazon ECS 1577

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity

Amazon Elastic Container Service Developer Guide

Change Description Date

Add new policy AmazonECS
InfrastructureRolePolicyFor
Volumes

The AmazonECSInfrastru
ctureRolePolicyFor
Volumes policy was
added. The policy grants the
permissions that are needed
by Amazon ECS to make AWS
API calls to manage Amazon
EBS volumes associated with
Amazon ECS workloads.

January 11, 2024

Add permissions to
AmazonECSServiceRolePolicy

The AmazonECSServiceRo
lePolicy managed IAM
policy was updated with new
events permissions and
additional autoscaling
and autoscaling-plans
permissions.

December 4, 2023

Add permissions to
AmazonEC2Container
ServiceEventsRole

The AmazonECSServiceRo
lePolicy managed IAM
policy was updated to allow
access to the AWS Cloud Map
DiscoverInstancesR
evision API operation.

October 4, 2023

Add permissions to
AmazonEC2Container
ServiceforEC2Role

The AmazonEC2Container
ServiceforEC2Role
policy was modified to add
the ecs:TagResource
permission, which includes
a condition that limits the
permission only to newly
created clusters and registere
d container instances.

March 6, 2023

AWS managed policies for Amazon ECS 1578

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSServiceRolePolicy
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonEC2ContainerServiceEventsRole
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonEC2ContainerServiceEventsRole
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonEC2ContainerServiceforEC2Role
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonEC2ContainerServiceforEC2Role

Amazon Elastic Container Service Developer Guide

Change Description Date

Add permissions to the
section called “AmazonEC
S_FullAccess”

The AmazonECS_FullAcce
ss policy was modified
to add the elasticlo
adbalancing:AddTags
permission, which includes
a condition that limits the
permission only to newly
created load balancers, target
groups, rules, and listeners
created. This permission
doesn't allow tags to be
added to any already created
Elastic Load Balancing
 resources.

January 4, 2023

Amazon ECS started tracking
changes

Amazon ECS started tracking
changes for its AWS managed
policies.

June 8, 2021

Phased out AWS managed IAM policies for Amazon Elastic Container Service

The following AWS managed IAM policies are phased out. These policies are now replaced by the
updated policies. We recommend that you update your users or roles to use the updated policies.

AmazonEC2ContainerServiceFullAccess

Important

The AmazonEC2ContainerServiceFullAccess managed IAM policy was phased
out as of January 29, 2021, in response to a security finding with the iam:passRole
permission. This permission grants access to all resources including credentials to
roles in the account. Now that the policy is phased out, you can't attach the policy to
any new users or roles. Any users or roles that already have the policy attached can
continue using it. However, we recommend that you update your users or roles to use the

AWS managed policies for Amazon ECS 1579

Amazon Elastic Container Service Developer Guide

AmazonECS_FullAccess managed policy instead. For more information, see Migrating to
the AmazonECS_FullAccess managed policy.

AmazonEC2ContainerServiceRole

Important

The AmazonEC2ContainerServiceRole managed IAM policy is phased out. It's now
replaced by the Amazon ECS service-linked role. For more information, see Using service-
linked roles for Amazon ECS.

AmazonEC2ContainerServiceAutoscaleRole

Important

The AmazonEC2ContainerServiceAutoscaleRole managed IAM policy is phased out.
It's now replaced by the Application Auto Scaling service-linked role for Amazon ECS. For
more information, see Service-linked roles for Application Auto Scaling in the Application
Auto Scaling User Guide.

Migrating to the AmazonECS_FullAccess managed policy

The AmazonEC2ContainerServiceFullAccess managed IAM policy was phased out on January
29, 2021, in response to a security finding with the iam:passRole permission. This permission
grants access to all resources including credentials to roles in the account. Now that the policy is
phased out, you can't attach the policy to any new groups, users, or roles. Any groups, users, or
roles that already have the policy attached can continue using it. However, we recommend that you
update your groups, users, or roles to use the AmazonECS_FullAccess managed policy instead.

The permissions that are granted by the AmazonECS_FullAccess policy include the complete list
of permissions that are necessary to use ECS as an administrator. If you currently use permissions
that are granted by the AmazonEC2ContainerServiceFullAccess policy that aren't in the
AmazonECS_FullAccess policy, you can add them to an inline policy statement. For more
information, see AWS managed policies for Amazon Elastic Container Service.

AWS managed policies for Amazon ECS 1580

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html

Amazon Elastic Container Service Developer Guide

Use the following steps to determine if you have any groups, users, or roles that are currently using
the AmazonEC2ContainerServiceFullAccess managed IAM policy. Then, update them to
detach the earlier policy and attach the AmazonECS_FullAccess policy.

To update a group, user, or role to use the AmazonECS_FullAccess policy (AWS Management
Console)

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies and search for and select the
AmazonEC2ContainerServiceFullAccess policy.

3. Choose the Policy usage tab that displays any IAM role that's currently using this policy.

4. For each IAM role that's currently using the AmazonEC2ContainerServiceFullAccess
policy, select the role and use the following steps to detach the phased out policy and attach
the AmazonECS_FullAccess policy.

a. On the Permissions tab, choose the X next to the AmazonEC2ContainerServiceFullAccess
policy.

b. Choose Add permissions.

c. Choose Attach existing policies directly, search for and select the
AmazonECS_FullAccess policy, and then choose Next: Review.

d. Review the changes and then choose Add permissions.

e. Repeat these steps for each group, user, or role that's using the
AmazonEC2ContainerServiceFullAccess policy.

To update a group, user, or role to use the AmazonECS_FullAccess policy (AWS CLI)

1. Use the generate-service-last-accessed-details command to generate a report that includes
details about when the phased out policy was last used.

aws iam generate-service-last-accessed-details \
 --arn arn:aws:iam::aws:policy/AmazonEC2ContainerServiceFullAccess

Example output:

{
 "JobId": "32bb1fb0-1ee0-b08e-3626-ae83EXAMPLE"

AWS managed policies for Amazon ECS 1581

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/generate-service-last-accessed-details.html

Amazon Elastic Container Service Developer Guide

}

2. Use the job ID from the previous output with the get-service-last-accessed-details command
to retrieve the last accessed report of the service. This report displays the Amazon Resource
Name (ARN) of the IAM entities that last used the phased out policy.

aws iam get-service-last-accessed-details \
 --job-id 32bb1fb0-1ee0-b08e-3626-ae83EXAMPLE

3. Use one of the following commands to detach the
AmazonEC2ContainerServiceFullAccess policy from a group, user, or role.

• detach-group-policy

• detach-role-policy

• detach-user-policy

4. Use one of the following commands to attach the AmazonECS_FullAccess policy to a group,
user, or role.

• attach-group-policy

• attach-role-policy

• attach-user-policy

Using service-linked roles for Amazon ECS

Amazon Elastic Container Service uses AWS Identity and Access Management (IAM)service-linked
roles. A service-linked role is a unique type of IAM role that is linked directly to Amazon ECS. The
service-linked role is predefined by Amazon ECS and includes all the permissions that the service
requires to call other AWS services on your behalf.

A service-linked role makes setting up Amazon ECS easier because you don’t have to manually add
the necessary permissions. Amazon ECS defines the permissions of its service-linked roles, and
unless defined otherwise, only Amazon ECS can assume its roles. The defined permissions include
the trust policy and the permissions policy, and that permissions policy cannot be attached to any
other IAM entity.

For information about other services that support service-linked roles, see AWS services that work
with IAM and look for the services that have Yes in the Service-linked roles column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Using service-linked roles 1582

https://docs.aws.amazon.com/cli/latest/reference/iam/get-service-last-accessed-details.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-user-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Elastic Container Service Developer Guide

Service-linked role permissions for Amazon ECS

Amazon ECS uses the service-linked role named AWSServiceRoleForECS.

The AWSServiceRoleForECS service-linked role trusts the following services to assume the role:

• ecs.amazonaws.com

The role permissions policy named AmazonECSServiceRolePolicy allows Amazon ECS to complete
the following actions on the specified resources:

• Action: When using the awsvpc network mode for your Amazon ECS tasks, Amazon ECS
manages the lifecycle of the elastic network interfaces associated with the task. This also
includes tags that Amazon ECS adds to your elastic network interfaces.

• Action: When using a load balancer with your Amazon ECS service, Amazon ECS manages the
registration and deregistration of resources with the load balancer.

• Action: When using Amazon ECS service discovery, Amazon ECS manages the required Route 53
and AWS Cloud Map resources for service discovery to work.

• Action: When using Amazon ECS service auto scaling, Amazon ECS manages the required Auto
Scaling resources.

• Action: Amazon ECS creates and manages CloudWatch alarms and log streams that assist in the
monitoring of your Amazon ECS resources.

• Action: When using Amazon ECS Exec, Amazon ECS manages the permissions needed to start
Amazon ECS Exec sessions to your tasks.

• Action: When using Amazon ECS Service Connect, Amazon ECS manages the required AWS Cloud
Map resources to use the feature.

• Action: When using Amazon ECS capacity providers, Amazon ECS manages the permissions
required to modify the Auto Scaling group and its Amazon EC2 instances.

• Action: Amazon ECS can update AWS Cloud Map service attributes for services that Amazon ECS
manages.

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-linked role permissions in
the IAM User Guide.

Using service-linked roles 1583

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSServiceRolePolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create-service-linked-role.html#service-linked-role-permissions

Amazon Elastic Container Service Developer Guide

Creating a service-linked role for Amazon ECS

In most cases you don't need to manually create a service-linked role. When you create a cluster or
create or update a service in the AWS Management Console, the AWS CLI, or the AWS API, Amazon
ECS creates the service-linked role for you. If you do not see the AWSServiceRoleForECS role after
you create a cluster, perform the following to fix the issue:

• Verify and configure the permissions to allow Amazon ECS to create, edit, or delete a service-
linked role on your behalf. For more information, see Service-linked role permissions in the IAM
User Guide.

• Retry the cluster creation operation, or manually create the service-linked role.

You can use the IAM console to create the AWSServiceRoleForECS service-linked role. In the
AWS CLI or the AWS API, create a service-linked role with the ecs.amazonaws.com service
name. For more information, see Creating a service-linked role in the IAM User Guide.

Important

This service-linked role can appear in your account if you completed an action in another
service that uses the features supported by this role.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create a cluster or create or update a service,
Amazon ECS creates the service-linked role for you again.

If you delete this service-linked role, you can use the same IAM process to create the role again.

Editing a service-linked role for Amazon ECS

Amazon ECS doesn't allow you to edit the AWSServiceRoleForECS service-linked role. After you
create a service-linked role, you cannot change the name of the role because various entities
might reference the role. However, you can edit the description of the role using IAM. For more
information, see Update a service-linked role in the IAM User Guide.

Deleting a service-linked role for Amazon ECS

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored

Using service-linked roles 1584

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create-service-linked-role.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create-service-linked-role.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-service-linked-role.html

Amazon Elastic Container Service Developer Guide

or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Note

If the Amazon ECS service is using the role when you try to delete the resources, then the
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To check whether the service-linked role has an active session

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles and choose the AWSServiceRoleForECS name (not the
check box).

3. On the Summary page, choose Access Advisor and review recent activity for the service-linked
role.

Note

If you are unsure whether Amazon ECS is using the AWSServiceRoleForECS role, you
can try to delete the role. If the service is using the role, then the deletion fails and you
can view the regions where the role is being used. If the role is being used, then you
must wait for the session to end before you can delete the role. You cannot revoke the
session for a service-linked role.

To remove Amazon ECS resources used by the AWSServiceRoleForECS service-linked role

You must delete all Amazon ECS clusters in all AWS Regions before you can delete the
AWSServiceRoleForECS role.

1. Scale all Amazon ECS services down to a desired count of 0 in all regions, and then delete the
services. For more information, see Updating an Amazon ECS service and Deleting an Amazon
ECS service using the console.

2. Force deregister all container instances from all clusters in all regions. For more information,
see Deregistering an Amazon ECS container instance.

3. Delete all Amazon ECS clusters in all regions. For more information, see Deleting an Amazon
ECS cluster.

Using service-linked roles 1585

https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

To manually delete the service-linked role using IAM

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForECS service-
linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

Supported regions for Amazon ECS service-linked roles

Amazon ECS supports using service-linked roles in all of the regions where the service is available.
For more information, see AWS regions and endpoints.

IAM roles for Amazon ECS

An IAM role is an IAM identity that you can create in your account that has specific permissions. In
Amazon ECS, you can create roles to grant permissions to Amazon ECS resource such as containers
or services.

The roles Amazon ECS requires depend on the task definition launch type and the features that you
use. Use the following table to determine which IAM roles you need for Amazon ECS.

Role Definition When required More information

Task execution role This role allows
Amazon ECS to use
other AWS services
on your behalf.

Your task is hosted
on AWS Fargate or
on external instances
 and:

• pulls a container
image from an
Amazon ECR
private repository.

• pulls a container
image from an
Amazon ECR
private repositor
y in a different
account from the
account that runs
the task.

Amazon ECS task
execution IAM role

IAM roles for Amazon ECS 1586

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html#id_roles_manage_delete_slr
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Elastic Container Service Developer Guide

Role Definition When required More information

• sends container
logs to CloudWatc
h Logs using the
awslogs log
driver.

Your task is hosted on
either AWS Fargate
or Amazon EC2
instances and:

• uses private
registry authentic
ation.

• uses Runtime
Monitoring.

• the task definition
references sensitive
data using Secrets
Manager secrets
or AWS Systems
Manager Parameter
Store parameters.

Task role This role allows your
application code (on
the container) to use
other AWS services.

Your application
accesses other AWS
services, such as
Amazon S3.

Amazon ECS task IAM
role

Container instance
role

This role allows your
EC2 instances or
external instances
to register with the
cluster.

Your task is hosted
on Amazon EC2
instances or an
external instance.

Amazon ECS
container instance
IAM role

IAM roles for Amazon ECS 1587

Amazon Elastic Container Service Developer Guide

Role Definition When required More information

Amazon ECS
Anywhere role

This role allows your
external instances to
access AWS APIs.

Your task is hosted on
external instances.

Amazon ECS
Anywhere IAM role

Amazon ECS
CodeDeploy role

This role allows
CodeDeploy to make
updates to your
services.

You use the
CodeDeploy blue/
green deploymen
t type to deploy
services.

Amazon ECS
CodeDeploy IAM Role

Amazon ECS
EventBridge role

This role allows
EventBridge to make
updates to your
services.

You use the EventBrid
ge rules and targets
to schedule your
tasks.

Amazon ECS
EventBridge IAM Role

IAM roles for Amazon ECS 1588

Amazon Elastic Container Service Developer Guide

Role Definition When required More information

Amazon ECS infrastru
cture role

This role allows
Amazon ECS to
manage infrastru
cture resources in
your clusters.

• You want to
attach Amazon
EBS volumes to
your Fargate or
EC2 launch type
Amazon ECS tasks.
The infrastru
cture role allows
Amazon ECS to
manage Amazon
EBS volumes for
your tasks.

• You want to use
Transport Layer
Security (TLS) to
encrypt traffic
between your
Amazon ECS
Service Connect
services.

• You want to create
VPC Lattice target
groups.

Amazon ECS infrastru
cture IAM role

Best practices for IAM roles in Amazon ECS

The roles Amazon ECS requires depend on the task definition launch type and the features that you
use. We recommend that you create separate roles in the table instead of sharing roles.

Role Definition When required More information

Task execution role This role allows
Amazon ECS to use

Your task is hosted
on AWS Fargate or

Amazon ECS task
execution IAM role

IAM roles for Amazon ECS 1589

Amazon Elastic Container Service Developer Guide

Role Definition When required More information

other AWS services
on your behalf.

on external instances
 and:

• pulls a container
image from an
Amazon ECR
private repository.

• pulls a container
image from an
Amazon ECR
private repositor
y in a different
account from the
account that runs
the task.

• sends container
logs to CloudWatc
h Logs using the
awslogs log
driver.

Your task is hosted on
either AWS Fargate
or Amazon EC2
instances and:

• uses private
registry authentic
ation.

• uses Runtime
Monitoring.

• the task definition
references sensitive
data using Secrets

IAM roles for Amazon ECS 1590

Amazon Elastic Container Service Developer Guide

Role Definition When required More information

Manager secrets
or AWS Systems
Manager Parameter
Store parameters.

Task role This role allows your
application code (on
the container) to use
other AWS services.

Your application
accesses other AWS
services, such as
Amazon S3.

Amazon ECS task IAM
role

Container instance
role

This role allows your
EC2 instances or
external instances
to register with the
cluster.

Your task is hosted
on Amazon EC2
instances or an
external instance.

Amazon ECS
container instance
IAM role

Amazon ECS
Anywhere role

This role allows your
external instances to
access AWS APIs.

Your task is hosted on
external instances.

Amazon ECS
Anywhere IAM role

Amazon ECS
CodeDeploy role

This role allows
CodeDeploy to make
updates to your
services.

You use the
CodeDeploy blue/
green deploymen
t type to deploy
services.

Amazon ECS
CodeDeploy IAM Role

Amazon ECS
EventBridge role

This role allows
EventBridge to make
updates to your
services.

You use the EventBrid
ge rules and targets
to schedule your
tasks.

Amazon ECS
EventBridge IAM Role

IAM roles for Amazon ECS 1591

Amazon Elastic Container Service Developer Guide

Role Definition When required More information

Amazon ECS infrastru
cture role

This role allows
Amazon ECS to
manage infrastru
cture resources in
your clusters.

• You want to
attach Amazon
EBS volumes to
your Fargate or
EC2 launch type
Amazon ECS tasks.
The infrastru
cture role allows
Amazon ECS to
manage Amazon
EBS volumes for
your tasks.

• You want to use
Transport Layer
Security (TLS) to
encrypt traffic
between your
Amazon ECS
Service Connect
services.

• You want to create
VPC Lattice target
groups.

Amazon ECS infrastru
cture IAM role

Task role

We recommend that you assign a task role. Its role can be distinguished from the role of the
Amazon EC2 instance that it's running on. Assigning each task a role aligns with the principle of
least privileged access and allows for greater granular control over actions and resources.

When assigning IAM roles for a task, you must use the following trust policy so that each of your
tasks can assume an IAM role that's different from the one that your EC2 instance uses. This way,
your task doesn't inherit the role of your EC2 instance.

{

IAM roles for Amazon ECS 1592

Amazon Elastic Container Service Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

When you add a task role to a task definition, the Amazon ECS container agent
automatically creates a token with a unique credential ID (for example, 12345678-90ab-
cdef-1234-567890abcdef) for the task. This token and the role credentials are then
added to the agent's internal cache. The agent populates the environment variable
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI in the container with the URI of the credential
ID (for example, /v2/credentials/12345678-90ab-cdef-1234-567890abcdef).

You can manually retrieve the temporary role credentials from inside a container by appending the
environment variable to the IP address of the Amazon ECS container agent and running the curl
command on the resulting string.

curl 169.254.170.2$AWS_CONTAINER_CREDENTIALS_RELATIVE_URI

The expected output is as follows:

{
 "RoleArn": "arn:aws:iam::123456789012:role/SSMTaskRole-SSMFargateTaskIAMRole-
DASWWSF2WGD6",
 "AccessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "SecretAccessKey": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY",
 "Token": "IQoJb3JpZ2luX2VjEEM/Example==",
 "Expiration": "2021-01-16T00:51:53Z"
}

Newer versions of the AWS SDKs automatically fetch these credentials from the
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI environment variable when making AWS API
calls. For information about how to renew credentials, see Renewing AWS credentials on rePost.

IAM roles for Amazon ECS 1593

https://repost.aws/questions/QUgcf1EIOPS7GZNboeAiyO9Q/renewing-aws-credentials

Amazon Elastic Container Service Developer Guide

The output includes an access key-pair consisting of a secret access key ID and a secret key which
your application uses to access AWS resources. It also includes a token that AWS uses to verify that
the credentials are valid. By default, credentials assigned to tasks using task roles are valid for six
hours. After that, they are automatically rotated by the Amazon ECS container agent.

Task execution role

The task execution role is used to grant the Amazon ECS container agent permission to call specific
AWS API actions on your behalf. For example, when you use AWS Fargate, Fargate needs an IAM
role that allows it to pull images from Amazon ECR and write logs to CloudWatch Logs. An IAM role
is also required when a task references a secret that's stored in AWS Secrets Manager, such as an
image pull secret.

Note

If you're pulling images as an authenticated user, you're less likely to be impacted by the
changes that occurred to Docker Hub's pull rate limits. For more information see, Private
registry authentication for container instances.
By using Amazon ECR and Amazon ECR Public, you can avoid the limits imposed by Docker.
If you pull images from Amazon ECR, this also helps shorten network pull times and
reduces data transfer changes when traffic leaves your VPC.

Important

When you use Fargate, you must authenticate to a private image registry using
repositoryCredentials. It's not possible to set the Amazon ECS container agent
environment variables ECS_ENGINE_AUTH_TYPE or ECS_ENGINE_AUTH_DATA or modify
the ecs.config file for tasks hosted on Fargate. For more information, see Private registry
authentication for tasks.

Container instance role

The AmazonEC2ContainerServiceforEC2Role managed IAM policy includes the
following permissions. Following the standard security advice of granting least privilege, the
AmazonEC2ContainerServiceforEC2Role managed policy can be used as a guide. If you don't
need any of the permissions that are granted in the managed policy for your use case, create a
custom policy and add only the permissions that you need.

IAM roles for Amazon ECS 1594

https://www.docker.com/pricing/resource-consumption-updates
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth-container-instances.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth-container-instances.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html

Amazon Elastic Container Service Developer Guide

• ec2:DescribeTags –)Optional) Allows a principal to describe the tags that are associated with
an Amazon EC2 instance. This permission is used by the Amazon ECS container agent to support
resource tag propagation. For more information, see How resources are tagged.

• ecs:CreateCluster – (Optional) Allows a principal to create an Amazon ECS cluster. This
permission is used by the Amazon ECS container agent to create a default cluster, if one
doesn't already exist.

• ecs:DeregisterContainerInstance – (Optional) Allows a principal to deregister an Amazon
ECS container instance from a cluster. The Amazon ECS container agent doesn't call this API
operation, but this permission remains to help ensure backwards compatibility.

• ecs:DiscoverPollEndpoint – (Required) This action returns endpoints that the Amazon ECS
container agent uses to poll for updates.

• ecs:Poll – (Required) Allows the Amazon ECS container agent to communicate with the
Amazon ECS control plane to report task state changes.

• ecs:RegisterContainerInstance – (Required) Allows a principal to register a container
instance with a cluster. This permission is used by the Amazon ECS container agent to register
the Amazon EC2 instance with a cluster and to support resource tag propagation.

• ecs:StartTelemetrySession – (Optional) Allows the Amazon ECS container agent to
communicate with the Amazon ECS control plane to report health information and metrics for
each container and task.

Although this permission is not required, we recommend that you add it to allowthe container
instance metrics to start scale actions and also receive reports related to health check
commands.

• ecs:TagResource – (Optional) Allows the Amazon ECS container agent to tag cluster on
creation and to tag container instances when they are registered to a cluster.

• ecs:UpdateContainerInstancesState – Allows a principal to modify the status of an
Amazon ECS container instance. This permission is used by the Amazon ECS container agent for
Spot Instance draining.

• ecs:Submit* – (Required) This includes the SubmitAttachmentStateChanges,
SubmitContainerStateChange, and SubmitTaskStateChange API actions. They're used
by the Amazon ECS container agent to report state changes for each resource to the Amazon
ECS control plane. The SubmitContainerStateChange permission is no longer used by the
Amazon ECS container agent but remains to help ensure backwards compatibility.

• ecr:GetAuthorizationToken – (Optional) Allows a principal to retrieve an authorization
token. The authorization token represents your IAM authentication credentials and can be used

IAM roles for Amazon ECS 1595

Amazon Elastic Container Service Developer Guide

to access any Amazon ECR registry that the IAM principal has access to. The authorization token
received is valid for 12 hours.

• ecr:BatchCheckLayerAvailability – (Optional) When a container image is pushed to an
Amazon ECR private repository, each image layer is checked to verify if it's already pushed. If it is,
then the image layer is skipped.

• ecr:GetDownloadUrlForLayer – (Optional) When a container image is pulled from an
Amazon ECR private repository, this API is called once for each image layer that's not already
cached.

• ecr:BatchGetImage – (Optional) When a container image is pulled from an Amazon ECR
private repository, this API is called once to retrieve the image manifest.

• logs:CreateLogStream – (Optional) Allows a principal to create a CloudWatch Logs log
stream for a specified log group.

• logs:PutLogEvents – (Optional) Allows a principal to upload a batch of log events to a
specified log stream.

The following policy contains the required permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:DiscoverPollEndpoint",
 "ecs:Poll",
 "ecs:RegisterContainerInstance",
 "ecs:UpdateContainerInstancesState",
 "ecs:Submit*"
],
 "Resource": "*"
 }
]
}

Service-linked roles

You can use the service-linked role for Amazon ECS to grant the Amazon ECS service permission
to call other service APIs on your behalf. Amazon ECS needs the permissions to create and delete

IAM roles for Amazon ECS 1596

Amazon Elastic Container Service Developer Guide

network interfaces, register, and de-register targets with a target group. It also needs the necessary
permissions to create and delete scaling policies. These permissions are granted through the
service-linked role. This role is created on your behalf the first time that you use the service.

Note

If you inadvertently delete the service-linked role, you can recreate it. For instructions, see
Create the service-linked role.

Roles recommendations

We recommend that you do the following when setting up your task IAM roles and policies.

Block access to Amazon EC2 metadata

When you run your tasks on Amazon EC2 instances, we strongly recommend that you block access
to Amazon EC2 metadata to prevent your containers from inheriting the role assigned to those
instances. If your applications have to call an AWS API action, use IAM roles for tasks instead.

To prevent tasks running in bridge mode from accessing Amazon EC2 metadata, run the following
command or update the instance's user data. For more instruction on updating the user data of
an instance, see this AWS Support Article. For more information about the task definition bridge
mode, see task definition network mode.

sudo yum install -y iptables-services; sudo iptables --insert FORWARD 1 --in-interface
 docker+ --destination 169.254.169.254/32 --jump DROP

For this change to persist after a reboot, run the following command that's specific for your
Amazon Machine Image (AMI):

• Amazon Linux 2

sudo iptables-save | sudo tee /etc/sysconfig/iptables && sudo systemctl enable --now
 iptables

• Amazon Linux

sudo service iptables save

IAM roles for Amazon ECS 1597

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using-service-linked-roles.html#create-service-linked-role
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-container-ec2-metadata/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#network_mode

Amazon Elastic Container Service Developer Guide

For tasks that use awsvpc network mode, set the environment variable
ECS_AWSVPC_BLOCK_IMDS to true in the /etc/ecs/ecs.config file.

You should set the ECS_ENABLE_TASK_IAM_ROLE_NETWORK_HOST variable to false in the ecs-
agent config file to prevent the containers that are running within the host network from
accessing the Amazon EC2 metadata.

Use the awsvpc network mode

Use the network awsvpc network mode to restrict the flow of traffic between different tasks or
between your tasks and other services that run within your Amazon VPC. This adds an additional
layer of security. The awsvpc network mode provides task-level network isolation for tasks that
run on Amazon EC2. It is the default mode on AWS Fargate. it's the only network mode that you
can use to assign a security group to tasks.

Use last accessed information to refine roles

We recommend that you remove any actions that were never used or haven't been used for some
time. This prevents unwanted access from happening. To do this, review last accessed information
provided by IAM, and then remove actions that were never used or haven't been used recently. You
can do this by following the following steps.

Run the following command to generate a report showing the last access information for the
referenced policy:

aws iam generate-service-last-accessed-details --arn arn:aws:iam::123456789012:policy/
ExamplePolicy1

use the JobId that was in the output to run the following command. After you do this, you can
view the results of the report.

aws iam get-service-last-accessed-details --job-id 98a765b4-3cde-2101-2345-example678f9

For more information, see Refine permissions in AWS using last accessed information.

Monitor AWS CloudTrail for suspicious activity

You can monitor AWS CloudTrail for any suspicious activity. Most AWS API calls are logged to
AWS CloudTrail as events. They are analyzed by AWS CloudTrail Insights, and you're alerted of

IAM roles for Amazon ECS 1598

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_last-accessed.html

Amazon Elastic Container Service Developer Guide

any suspicious behavior that's associated with write API calls. This might include a spike in call
volume. These alerts include such information as the time the unusual activity occurred and the
top identity ARN that contributed to the APIs.

You can identify actions that are performed by tasks with an IAM role in AWS CloudTrail by
looking at the event's userIdentity property. In the following example, the arn includes of
the name of the assumed role, s3-write-go-bucket-role, followed by the name of the task,
7e9894e088ad416eb5cab92afExample.

"userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROA36C6WWEJ2YEXAMPLE:7e9894e088ad416eb5cab92afExample",
 "arn": "arn:aws:sts::123456789012:assumed-role/s3-write-go-bucket-
role/7e9894e088ad416eb5cab92afExample",
 ...
}

Note

When tasks that assume a role are run on Amazon EC2 container instances, a request
is logged by Amazon ECS container agent to the audit log of the agent that's located
at an address in the /var/log/ecs/audit.log.YYYY-MM-DD-HH format. For more
information, see Task IAM Roles Log and Logging Insights Events for Trails.

Amazon ECS task execution IAM role

The task execution role grants the Amazon ECS container and Fargate agents permission to
make AWS API calls on your behalf. The task execution IAM role is required depending on the
requirements of your task. You can have multiple task execution roles for different purposes and
services associated with your account.

Note

These permissions aren't acccessible by the containers in the task. For the IAM permissions
that your application needs to run, see Amazon ECS task IAM role.

The following are common use cases for a task execution IAM role:

IAM roles for Amazon ECS 1599

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/logs.html#task_iam_roles-logs
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-insights-events-with-cloudtrail.html

Amazon Elastic Container Service Developer Guide

• Your task is hosted on AWS Fargate or on an external instance and:

• pulls a container image from an Amazon ECR private repository.

• pulls a container image from an Amazon ECR private repository in a different account from the
account that runs the task.

• sends container logs to CloudWatch Logs using the awslogs log driver. For more information,
see Send Amazon ECS logs to CloudWatch .

• Your tasks are hosted on either AWS Fargate or Amazon EC2 instances and:

• uses private registry authentication. For more information, see Private registry authentication
permissions.

• uses Runtime Monitoring.

• the task definition references sensitive data using Secrets Manager secrets or AWS Systems
Manager Parameter Store parameters. For more information, see Secrets Manager or Systems
Manager permissions.

Note

The task execution role is supported by Amazon ECS container agent version 1.16.0 and
later.

Amazon ECS provides the managed policy named AmazonECSTaskExecutionRolePolicy which
contains the permissions the common use cases described above require. For more information,
see AmazonECSTaskExecutionRolePolicy in the AWS Managed Policy Reference Guide. It might be
necessary to add inline policies to your task execution role for special use cases

The Amazon ECS console creates a task execution role. You can manually attach the managed IAM
policy for tasks to allow Amazon ECS to add permissions for future features and enhancements
as they are introduced. You can use IAM console search to search for ecsTaskExecutionRole
and see if your account already has the task execution role. For more information, see IAM console
search in the IAM user guide.

If you pull images as an authenticated user, you're less likely to be impacted by the changes that
occurred to Docker Hub usage and limits. For more information see, Private registry authentication
for container instances.

IAM roles for Amazon ECS 1600

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonECSTaskExecutionRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_search.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_search.html
https://docs.docker.com/docker-hub/usage/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth-container-instances.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth-container-instances.html

Amazon Elastic Container Service Developer Guide

By using Amazon ECR and Amazon ECR Public, you can avoid the limits imposed by Docker. If you
pull images from Amazon ECR, this also helps shorten network pull times and reduces data transfer
changes when traffic leaves your VPC.

When you use Fargate, you must authenticate to a private image registry using
repositoryCredentials. It's not possible to set the Amazon ECS container agent environment
variables ECS_ENGINE_AUTH_TYPE or ECS_ENGINE_AUTH_DATA or modify the ecs.config file
for tasks hosted on Fargate. For more information, see Private registry authentication for tasks.

Creating the task execution role

If your account doesn't already have a task execution role, use the following steps to create the
role.

AWS Management Console

To create the service role for Elastic Container Service (IAM console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

3. For Trusted entity type, choose AWS service.

4. For Service or use case, choose Elastic Container Service, and then choose the Elastic
Container Service Task use case.

5. Choose Next.

6. In the Add permissions section, search for AmazonECSTaskExecutionRolePolicy, then
select the policy.

7. Choose Next.

8. For Role name, enter ecsTaskExecutionRole.

9. Review the role, and then choose Create role.

AWS CLI

Replace all user input with your own information.

1. Create a file named ecs-tasks-trust-policy.json that contains the trust policy to
use for the IAM role. The file should contain the following:

IAM roles for Amazon ECS 1601

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create an IAM role named ecsTaskExecutionRole using the trust policy created in the
previous step.

aws iam create-role \
 --role-name ecsTaskExecutionRole \
 --assume-role-policy-document file://ecs-tasks-trust-policy.json

3. Attach the AWS managed AmazonECSTaskExecutionRolePolicy policy to the
ecsTaskExecutionRole role.

aws iam attach-role-policy \
 --role-name ecsTaskExecutionRole \
 --policy-arn arn:aws:iam::aws:policy/service-role/
AmazonECSTaskExecutionRolePolicy

After you create the role, add additional permissions to the role for the following features.

Feature Additional permissions

Pull container images from private registries
outside of AWS (such as Docker Hub, Quay.io,
or your own private registry) using Secrets
Manager credentials

Private registry authentication permissions

IAM roles for Amazon ECS 1602

Amazon Elastic Container Service Developer Guide

Feature Additional permissions

Pass sensitive data with Systems Manager or
Secrets Manager

Secrets Manager or Systems Manager
permissions

Have Fargate tasks pull Amazon ECR images
over interface endpoints

Fargate tasks pulling Amazon ECR images over
interface endpoints permissions

Host configuration files in an Amazon S3
bucket

Amazon S3 file storage permissions

Configure Container Insights to view Amazon
ECS lifecycle events

Permissions required for enabling Amazon ECS
lifecycle events inContainer Insights

View Amazon ECS lifecycle events in Container
Insights

Permissions required to view Amazon ECS
lifecycle events in Container Insights

Private registry authentication permissions

Private registry authentication allows your Amazon ECS tasks to pull container images from private
registries outside of AWS (such as Docker Hub, Quay.io, or your own private registry) that require
authentication credentials. This feature uses Secrets Manager to securely store your registry
credentials, which are then referenced in your task definition using the repositoryCredentials
parameter.

For more information about configuring private registry authentication, see Using non-AWS
container images in Amazon ECS.

To provide access to the secrets that contain your private registry credentials, add the following
permissions as an inline policy to the task execution role. For more information, see Adding and
Removing IAM Policies.

• secretsmanager:GetSecretValue—Required to retrieve the private registry credentials from
Secrets Manager.

• kms:Decrypt—Required only if your secret uses a custom KMS key and not the default key. The
Amazon Resource Name (ARN) for your custom key must be added as a resource.

The following is an example inline policy that adds the permissions.

IAM roles for Amazon ECS 1603

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:<region>:<aws_account_id>:secret:secret_name",
 "arn:aws:kms:<region>:<aws_account_id>:key/key_id"
]
 }
]
}

Secrets Manager or Systems Manager permissions

The permission to allow the container agent to pull the necessary AWS Systems Manager or Secrets
Manager resources. For more information, see Pass sensitive data to an Amazon ECS container.

Using Secrets Manager

To provide access to the Secrets Manager secrets that you create, manually add the following
permission to the task execution role. For information about how to manage permissions, see
Adding and Removing IAM identity permissions in the IAM User Guide.

• secretsmanager:GetSecretValue– Required if you are referencing a Secrets Manager secret.
Adds the permission to retrieve the secret from Secrets Manager.

The following example policy adds the required permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],

IAM roles for Amazon ECS 1604

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

 "Resource": [
 "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name"
]
 }
]
}

Using Systems Manager

Important

For tasks that use the EC2 launch type, you must use the ECS agent configuration variable
ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE=true to use this feature. You can
add it to the ./etc/ecs/ecs.config file during container instance creation or you can
add it to an existing instance and then restart the ECS agent. For more information, see
Amazon ECS container agent configuration.

To provide access to the Systems Manager Parameter Store parameters that you create, manually
add the following permissions as a policy to the task execution role. For information about how to
manage permissions, see Adding and Removing IAM identity permissions in the IAM User Guide.

• ssm:GetParameters — Required if you are referencing a Systems Manager Parameter Store
parameter in a task definition. Adds the permission to retrieve Systems Manager parameters.

• secretsmanager:GetSecretValue — Required if you are referencing a Secrets Manager
secret either directly or if your Systems Manager Parameter Store parameter is referencing a
Secrets Manager secret in a task definition. Adds the permission to retrieve the secret from
Secrets Manager.

• kms:Decrypt — Required only if your secret uses a customer managed key and not the default
key. The ARN for your custom key should be added as a resource. Adds the permission to decrypt
the customer managed key .

The following example policy adds the required permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {

IAM roles for Amazon ECS 1605

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

 "Effect": "Allow",
 "Action": [
 "ssm:GetParameters",
 "secretsmanager:GetSecretValue",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:ssm:region:aws_account_id:parameter/parameter_name",
 "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name",
 "arn:aws:kms:region:aws_account_id:key/key_id"
]
 }
]
}

Fargate tasks pulling Amazon ECR images over interface endpoints permissions

When launching tasks that use the Fargate launch type that pull images from Amazon ECR when
Amazon ECR is configured to use an interface VPC endpoint, you can restrict the tasks access to a
specific VPC or VPC endpoint. Do this by creating a task execution role for the tasks to use that use
IAM condition keys.

Use the following IAM global condition keys to restrict access to a specific VPC or VPC endpoint.
For more information, see AWS Global Condition Context Keys.

• aws:SourceVpc—Restricts access to a specific VPC. You can restrict the VPC to the VPC that
hosts the task and endpoint.

• aws:SourceVpce—Restricts access to a specific VPC endpoint.

The following task execution role policy provides an example for adding condition keys:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],

IAM roles for Amazon ECS 1606

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Elastic Container Service Developer Guide

 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:sourceVpce": "vpce-xxxxxx",
 "aws:sourceVpc": "vpc-xxxxx"
 }
 }
 }
]
}

Amazon ECR permissions

The following permissions are required when you need to pull container images from Amazon
ECR private repositories. The task execution role should have these permissions to allow the
Amazon ECS container and Fargate agents to pull container images on your behalf. For basic ECS
implementations, these permissions should be added to the task execution role rather than the
task IAM role.

The Amazon ECS task execution role managed policy (AmazonECSTaskExecutionRolePolicy)
includes the necessary permissions for pulling images from Amazon ECR. If you're using the
managed policy, you don't need to add these permissions separately.

If you're creating a custom policy, include the following permissions to allow pulling images from
Amazon ECR:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchGetImage",

IAM roles for Amazon ECS 1607

Amazon Elastic Container Service Developer Guide

 "ecr:GetDownloadUrlForLayer",
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 }
]
}

Note that these permissions are different from the permissions that might be required in the task
IAM role if your application code needs to interact with Amazon ECR APIs directly. For information
about task IAM role permissions for Amazon ECR, see Amazon ECR permissions.

Amazon S3 file storage permissions

When you specify a configuration file that's hosted in Amazon S3, the task execution
role must include the s3:GetObject permission for the configuration file and the
s3:GetBucketLocation permission on the Amazon S3 bucket that the file is in. For more
information, see Policy actions for Amazon S3 in the Amazon Simple Storage Service User Guide.

The following example policy adds the required permissions for retrieving a file from Amazon S3.
Specify the name of your Amazon S3 bucket and configuration file name.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket/folder_name/config_file_name"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket"
]

IAM roles for Amazon ECS 1608

https://docs.aws.amazon.com/AmazonS3/latest/userguide/security_iam_service-with-iam.html#security_iam_service-with-iam-id-based-policies-actions

Amazon Elastic Container Service Developer Guide

 }
]
}

Amazon ECS task IAM role

Your Amazon ECS tasks can have an IAM role associated with them. The permissions granted in
the IAM role are assumed by the containers running in the task. This role allows your application
code (on the container) to use other AWS services. The task role is required when your application
accesses other AWS services, such as Amazon S3.

Note

These permissions aren't accessed by the Amazon ECS container and Fargate agents. For
the IAM permissions that Amazon ECS needs to pull container images and run the task, see
Amazon ECS task execution IAM role.

The following are the benefits of using task roles:

• Credential Isolation: Task credentials are isolated at the EC2 instance level. While each task
receives credentials for its defined IAM role through the ECS container agent and instance
metadata service, tasks running on the same EC2 instance may potentially access credentials
belonging to other tasks on that instance. For workloads requiring stronger isolation, consider
using Fargate which provides task-level isolation.

• Authorization: Unauthorized containers cannot access IAM role credentials defined for other
tasks.

• Auditing: Access and event logging is available through CloudTrail to ensure retrospective
auditing. Task credentials have a context of taskArn that is attached to the session, so
CloudTrail logs show which task is using which role.

Note

When you specify an IAM role for a task, the AWS CLI or other SDKs in the containers for
that task use the AWS credentials provided by the task role exclusively and they no longer
inherit any IAM permissions from the Amazon EC2 or external instance they are running on.

IAM roles for Amazon ECS 1609

Amazon Elastic Container Service Developer Guide

Creating the task IAM role

When creating an IAM policy for your tasks to use, the policy must include the permissions that you
want the containers in your tasks to assume. You can use an existing AWS managed policy, or you
can create a custom policy from scratch that meets your specific needs. For more information, see
Creating IAM policies in the IAM User Guide.

Important

For Amazon ECS tasks (for all launch types), we recommend that you use the IAM policy
and role for your tasks. These credentials allow your task to make AWS API requests
without calling sts:AssumeRole to assume the same role that is already associated with
the task. If your task requires that a role assumes itself, you must create a trust policy that
explicitly allows that role to assume itself. For more information, see Updating a role trust
policy in the IAM User Guide.

After the IAM policy is created, you can create an IAM role which includes that policy which you
reference in your Amazon ECS task definition. You can create the role using the Elastic Container
Service Task use case in the IAM console. Then, you can attach your specific IAM policy to the role
that gives the containers in your task the permissions you desire. The procedures below describe
how to do this.

If you have multiple task definitions or services that require IAM permissions, you should consider
creating a role for each specific task definition or service with the minimum required permissions
for the tasks to operate so that you can minimize the access that you provide for each task.

For information about the service endpoint for your Region, see Service endpoints in the Amazon
Web Services General Reference Guide.

The IAM task role must have a trust policy that specifies the ecs-tasks.amazonaws.com service.
The sts:AssumeRole permission allows your tasks to assume an IAM role that's different from
the one that the Amazon EC2 instance uses. This way, your task doesn't inherit the role associated
with the Amazon EC2 instance. The following is an example trust policy. Replace the Region
identifier and specify the AWS account number that you use when launching tasks.

IAM roles for Amazon ECS 1610

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-role-trust-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-role-trust-policy.html
https://docs.aws.amazon.com/general/latest/gr/ecs-service.html#ecs_region

Amazon Elastic Container Service Developer Guide

Important

When creating your task IAM role, it is recommended that you use the
aws:SourceAccount or aws:SourceArn condition keys in the trust relationship policy
associated with the role to scope the permissions further to prevent the confused deputy
security issue. Using the aws:SourceArn condition key to specify a specific cluster is
not currently supported, you should use the wildcard to specify all clusters. To learn
more about the confused deputy problem and how to protect your AWS account, see The
confused deputy problem in the IAM User Guide.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":[
 "ecs-tasks.amazonaws.com"
]
 },
 "Action":"sts:AssumeRole",
 "Condition":{
 "ArnLike":{
 "aws:SourceArn":"arn:aws:ecs:us-west-2:111122223333:*"
 },
 "StringEquals":{
 "aws:SourceAccount":"111122223333"
 }
 }
 }
]
}

Use the following procedure to create a policy to retrieve objects from Amazon S3 with an example
policy. Replace all user input with your own values.

IAM roles for Amazon ECS 1611

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Elastic Container Service Developer Guide

AWS Management Console

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter the following JSON policy document:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObject"
],
 "Resource":[
 "arn:aws:s3:::my-task-secrets-bucket/*"
]
 }
]
}

6. Choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However,
if you make changes or choose Next in the Visual editor, IAM might restructure
your policy to optimize it for the visual editor. For more information, see Policy
restructuring in the IAM User Guide.

IAM roles for Amazon ECS 1612

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure

Amazon Elastic Container Service Developer Guide

7. On the Review and create page, enter a Policy name and a Description (optional) for
the policy that you are creating. Review Permissions defined in this policy to see the
permissions that are granted by your policy.

8. Choose Create policy to save your new policy.

AWS CLI

Replace all user input with your own values.

1. Create a file called s3-policy.json with the following content.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObject"
],
 "Resource":[
 "arn:aws:s3:::my-task-secrets-bucket/*"
]
 }
]
}

2. Use the following command to create the IAM policy using the JSON policy document file.
Replace all user input with your own values.

aws iam create-policy \
 --policy-name taskRolePolicy \
 --policy-document file://s3-policy.json

Use the following procedure to create the service role.

IAM roles for Amazon ECS 1613

Amazon Elastic Container Service Developer Guide

AWS Management Console

To create the service role for Elastic Container Service (IAM console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

3. For Trusted entity type, choose AWS service.

4. For Service or use case, choose Elastic Container Service, and then choose the Elastic
Container Service Task use case.

5. Choose Next.

6. For Add permissions, search for and choose the policy you created.

7. Choose Next.

8. For Role name, enter a name for your role. For this example, type
AmazonECSTaskS3BucketRole to name the role.

9. Review the role, and then choose Create role.

AWS CLI

1. Create a file named ecs-tasks-trust-policy.json that contains the trust policy
to use for the task IAM role. The file should contain the following. Replace the Region
identifier and specify the AWS account number that you use when launching tasks.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObject"
],
 "Resource":[
 "arn:aws:s3:::my-task-secrets-bucket/*"
]
 }
]
}

IAM roles for Amazon ECS 1614

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

2. Create an IAM role named ecsTaskRole using the trust policy created in the previous step.

aws iam create-role \
 --role-name ecsTaskRole \
 --assume-role-policy-document file://ecs-tasks-trust-policy.json

3. Retrieve the ARN of the IAM policy you created using the following command. Replace
taskRolePolicy with the name of the policy you created.

aws iam list-policies --scope Local --query 'Policies[?
PolicyName==`taskRolePolicy`].Arn'

4. Attach the IAM policy you created to the ecsTaskRole role. Replace the policy-arn with
the ARN of the policy that you created.

aws iam attach-role-policy \
 --role-name ecsTaskRole \
 --policy-arn arn:aws:iam:111122223333:aws:policy/taskRolePolicy

After you create the role, add additional permissions to the role for the following features.

Feature Additional permissions

Use ECS Exec ECS Exec permissions

Use an image from a private Amazon ECR
repository

Amazon ECR permissions

Use EC2 instances (Windows and Linux) Amazon EC2 instances additional configura
tion

Use external instances External instance additional configuration

Use Windows EC2 instances Amazon EC2 Windows instance additional
configuration

IAM roles for Amazon ECS 1615

Amazon Elastic Container Service Developer Guide

Amazon ECR permissions

The following permissions are required when your application code needs to interact with Amazon
ECR repositories directly. Note that for basic implementation where you only need to pull images
from Amazon ECR, these permissions are not required at the task IAM role level. Instead, the
Amazon ECS task execution role should have these permissions. For more information about the
task execution role, see Amazon ECS task execution IAM role.

If your application code running in the container needs to interact with Amazon ECR APIs directly,
you should add the following permissions to a task IAM role and include the task IAM role in your
task definition. For more information, see Adding and Removing IAM Policies in the IAM User Guide.

Use the following policy for your task IAM role to add the required Amazon ECR permissions for
container applications that need to interact with Amazon ECR directly:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer",
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 }
]
}

ECS Exec permissions

The ECS Exec feature requires a task IAM role to grant containers the permissions needed for
communication between the managed SSM agent (execute-command agent) and the SSM service.
You should add the following permissions to a task IAM role and include the task IAM role in your
task definition. For more information, see Adding and Removing IAM Policies in the IAM User Guide.

Use the following policy for your task IAM role to add the required SSM permissions.

{

IAM roles for Amazon ECS 1616

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-exec.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssmmessages:CreateControlChannel",
 "ssmmessages:CreateDataChannel",
 "ssmmessages:OpenControlChannel",
 "ssmmessages:OpenDataChannel"
],
 "Resource": "*"
 }
]
}

Amazon EC2 instances additional configuration

We recommend that you limit the permissions in your container instance role to the minimal list of
permissions used in the AmazonEC2ContainerServiceforEC2Role managed IAM policy.

Your Amazon EC2 instances require at least version 1.11.0 of the container agent to use task role;
however, we recommend using the latest container agent version. For information about checking
your agent version and updating to the latest version, see Updating the Amazon ECS container
agent. If you use an Amazon ECS-optimized AMI, your instance needs at least 1.11.0-1 of the
ecs-init package. If your instances are using the latest Amazon ECS-optimized AMI, then they
contain the required versions of the container agent and ecs-init. For more information, see
Amazon ECS-optimized Linux AMIs.

If you are not using the Amazon ECS-optimized AMI for your container instances, add the --
net=host option to your docker run command that starts the agent and the following agent
configuration variables for your desired configuration (for more information, see Amazon ECS
container agent configuration):

ECS_ENABLE_TASK_IAM_ROLE=true

Uses IAM roles for tasks for containers with the bridge and default network modes.

ECS_ENABLE_TASK_IAM_ROLE_NETWORK_HOST=true

Uses IAM roles for tasks for containers with the host network mode. This variable is only
supported on agent versions 1.12.0 and later.

IAM roles for Amazon ECS 1617

Amazon Elastic Container Service Developer Guide

For an example run command, see Manually updating the Amazon ECS container agent (for non-
Amazon ECS-Optimized AMIs). You will also need to set the following networking commands on
your container instance so that the containers in your tasks can retrieve their AWS credentials:

sudo sysctl -w net.ipv4.conf.all.route_localnet=1
sudo iptables -t nat -A PREROUTING -p tcp -d 169.254.170.2 --dport 80 -j DNAT --to-
destination 127.0.0.1:51679
sudo iptables -t nat -A OUTPUT -d 169.254.170.2 -p tcp -m tcp --dport 80 -j REDIRECT --
to-ports 51679

You must save these iptables rules on your container instance for them to survive a reboot. You
can use the iptables-save and iptables-restore commands to save your iptables rules and restore
them at boot. For more information, consult your specific operating system documentation.

To prevent containers run by tasks that use the awsvpc network mode from accessing the
credential information supplied to the Amazon EC2 instance profile, while still allowing the
permissions that are provided by the task role, set the ECS_AWSVPC_BLOCK_IMDS agent
configuration variable to true in the agent configuration file and restart the agent. For more
information, see Amazon ECS container agent configuration.

To prevent containers run by tasks that use the bridge network mode from accessing the
credential information supplied to the Amazon EC2 instance profile, while still allowing the
permissions that are provided by the task role, by running the following iptables command on
your Amazon EC2 instances. This command doesn't affect containers in tasks that use the host or
awsvpc network modes. For more information, see Network mode.

• sudo yum install -y iptables-services; sudo iptables --insert DOCKER-USER 1 --in-
interface docker+ --destination 169.254.169.254/32 --jump DROP

You must save this iptables rule on your Amazon EC2 instance for it to survive a reboot. When
using the Amazon ECS-optimized AMI, you can use the following command. For other operating
systems, consult the documentation for that operating system.

sudo iptables-save | sudo tee /etc/sysconfig/iptables && sudo systemctl enable --now
 iptables

IAM roles for Amazon ECS 1618

Amazon Elastic Container Service Developer Guide

External instance additional configuration

Your external instances require at least version 1.11.0 of the container agent to use task IAM
roles; however, we recommend using the latest container agent version. For information about
checking your agent version and updating to the latest version, see Updating the Amazon ECS
container agent. If you are using an Amazon ECS-optimized AMI, your instance needs at least
1.11.0-1 of the ecs-init package. If your instances are using the latest Amazon ECS-optimized
AMI, then they contain the required versions of the container agent and ecs-init. For more
information, see Amazon ECS-optimized Linux AMIs.

If you are not using the Amazon ECS-optimized AMI for your container instances, add the --
net=host option to your docker run command that starts the agent and the following agent
configuration variables for your desired configuration (for more information, see Amazon ECS
container agent configuration):

ECS_ENABLE_TASK_IAM_ROLE=true

Uses IAM roles for tasks for containers with the bridge and default network modes.

ECS_ENABLE_TASK_IAM_ROLE_NETWORK_HOST=true

Uses IAM roles for tasks for containers with the host network mode. This variable is only
supported on agent versions 1.12.0 and later.

For an example run command, see Manually updating the Amazon ECS container agent (for non-
Amazon ECS-Optimized AMIs). You will also need to set the following networking commands on
your container instance so that the containers in your tasks can retrieve their AWS credentials:

sudo sysctl -w net.ipv4.conf.all.route_localnet=1
sudo iptables -t nat -A PREROUTING -p tcp -d 169.254.170.2 --dport 80 -j DNAT --to-
destination 127.0.0.1:51679
sudo iptables -t nat -A OUTPUT -d 169.254.170.2 -p tcp -m tcp --dport 80 -j REDIRECT --
to-ports 51679

You must save these iptables rules on your container instance for them to survive a reboot. You
can use the iptables-save and iptables-restore commands to save your iptables rules and restore
them at boot. For more information, consult your specific operating system documentation.

IAM roles for Amazon ECS 1619

Amazon Elastic Container Service Developer Guide

Amazon EC2 Windows instance additional configuration

Important

This applies only to Windows containers on EC2 that use task roles.

The task role with Windows features requires additional configuration on EC2.

• When you launch your container instances, you must set the -EnableTaskIAMRole option in
the container instances user data script. The EnableTaskIAMRole turns on the Task IAM roles
feature for the tasks. For example:

<powershell>
Import-Module ECSTools
Initialize-ECSAgent -Cluster 'windows' -EnableTaskIAMRole
</powershell>

• You must bootstrap your container with the networking commands that are provided in Amazon
ECS container bootstrap script.

• You must create an IAM role and policy for your tasks. For more information, see Creating the
task IAM role.

• The IAM roles for the task credential provider use port 80 on the container instance. Therefore,
if you configure IAM roles for tasks on your container instance, your containers can't use port 80
for the host port in any port mappings. To expose your containers on port 80, we recommend
configuring a service for them that uses load balancing. You can use port 80 on the load
balancer. By doing so, traffic can be routed to another host port on your container instances. For
more information, see Use load balancing to distribute Amazon ECS service traffic.

• If your Windows instance is restarted, you must delete the proxy interface and initialize the
Amazon ECS container agent again to bring the credential proxy back up.

Amazon ECS container bootstrap script

Before containers can access the credential proxy on the container instance to get credentials, the
container must be bootstrapped with the required networking commands. The following code
example script should be run on your containers when they start.

IAM roles for Amazon ECS 1620

Amazon Elastic Container Service Developer Guide

Note

You do not need to run this script when you use awsvpc network mode on Windows.

If you run Windows containers which include Powershell, then use the following script:

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License"). You may
not use this file except in compliance with the License. A copy of the
License is located at
#
http://aws.amazon.com/apache2.0/
#
or in the "license" file accompanying this file. This file is distributed
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing
permissions and limitations under the License.

$gateway = (Get-NetRoute | Where { $_.DestinationPrefix -eq '0.0.0.0/0' } | Sort-Object
 RouteMetric | Select NextHop).NextHop
$ifIndex = (Get-NetAdapter -InterfaceDescription "Hyper-V Virtual Ethernet*" | Sort-
Object | Select ifIndex).ifIndex
New-NetRoute -DestinationPrefix 169.254.170.2/32 -InterfaceIndex $ifIndex -NextHop
 $gateway -PolicyStore ActiveStore # credentials API
New-NetRoute -DestinationPrefix 169.254.169.254/32 -InterfaceIndex $ifIndex -NextHop
 $gateway -PolicyStore ActiveStore # metadata API

If you run Windows containers that only have the Command shell, then use the following script:

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License"). You may
not use this file except in compliance with the License. A copy of the
License is located at
#
http://aws.amazon.com/apache2.0/
#
or in the "license" file accompanying this file. This file is distributed
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing

IAM roles for Amazon ECS 1621

Amazon Elastic Container Service Developer Guide

permissions and limitations under the License.

for /f "tokens=1" %i in ('netsh interface ipv4 show interfaces ^| findstr /x /r
 ".*vEthernet.*"') do set interface=%i
for /f "tokens=3" %i in ('netsh interface ipv4 show addresses %interface% ^| findstr /
x /r ".*Default.Gateway.*"') do set gateway=%i
netsh interface ipv4 add route prefix=169.254.170.2/32 interface="%interface%"
 nexthop="%gateway%" store=active # credentials API
netsh interface ipv4 add route prefix=169.254.169.254/32 interface="%interface%"
 nexthop="%gateway%" store=active # metadata API

Amazon ECS container instance IAM role

Amazon ECS container instances, including both Amazon EC2 and external instances, run the
Amazon ECS container agent and require an IAM role for the service to know that the agent
belongs to you. Before you launch container instances and register them to a cluster, you must
create an IAM role for your container instances to use. The role is created in the account that you
use to log into the console or run the AWS CLI commands.

Important

If you are registering external instances to your cluster, the IAM role you use requires
Systems Manager permissions as well. For more information, see Amazon ECS Anywhere
IAM role.

Amazon ECS provides the AmazonEC2ContainerServiceforEC2Role managed IAM policy
which contains the permissions needed to use the full Amazon ECS feature set. This managed
policy can be attached to an IAM role and associated with your container instances. Alternatively,
you can use the managed policy as a guide when creating a custom policy to use. The container
instance role provides permissions needed for the Amazon ECS container agent and Docker
daemon to call AWS APIs on your behalf. For more information on the managed policy, see
AmazonEC2ContainerServiceforEC2Role.

IAM roles for Amazon ECS 1622

Amazon Elastic Container Service Developer Guide

Create the container instance role

Important

If you are registering external instances to your cluster, see Amazon ECS Anywhere IAM
role.

You can manually create the role and attach the managed IAM policy for container instances
to allow Amazon ECS to add permissions for future features and enhancements as they are
introduced. Use the following procedure to attach the managed IAM policy if needed.

AWS Management Console

To create the service role for Elastic Container Service (IAM console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

3. For Trusted entity type, choose AWS service.

4. For Service or use case, choose Elastic Container Service, and then choose the EC2 Role
for Elastic Container Service use case.

5. Choose Next.

6. In the Permissions policies section, verify that the
AmazonEC2ContainerServiceforEC2Role policy is selected.

Important

The AmazonEC2ContainerServiceforEC2Role managed policy should be attached
to the container instance IAM role, otherwise you will receive an error using the
AWS Management Console to create clusters.

7. Choose Next.

8. For Role name, enter ecsInstanceRole

9. Review the role, and then choose Create role.

IAM roles for Amazon ECS 1623

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

AWS CLI

Replace all user input with your own values.

1. Create a file called instance-role-trust-policy.json with the following contents.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": { "Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
]
}

2. Use the following command to create the instance IAM role using the trust policy
document.

aws iam create-role \
 --role-name ecsInstanceRole \
 --assume-role-policy-document file://instance-role-trust-policy.json

3. Create an instance profile named ecsInstanceRole-profile using the create-instance-
profile command.

aws iam create-instance-profile --instance-profile-name ecsInstanceRole-profile

Example response

{
 "InstanceProfile": {
 "InstanceProfileId": "AIPAJTLBPJLEGREXAMPLE",
 "Roles": [],
 "CreateDate": "2022-04-12T23:53:34.093Z",
 "InstanceProfileName": "ecsInstanceRole-profile",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:instance-profile/ecsInstanceRole-
profile"
 }

IAM roles for Amazon ECS 1624

https://docs.aws.amazon.com/cli/latest/reference/iam/create-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-instance-profile.html

Amazon Elastic Container Service Developer Guide

}

4. Add the ecsInstanceRole role to the ecsInstanceRole-profile instance profile.

aws iam add-role-to-instance-profile \
 --instance-profile-name ecsInstanceRole-profile \
 --role-name ecsInstanceRole

5. Attach the AmazonEC2ContainerServiceRoleForEC2Role managed policy to the role
using the following command.

aws iam attach-role-policy \
 --policy-arn arn:aws:iam::aws:policy/service-role/
AmazonEC2ContainerServiceforEC2Role \
 --role-name ecsInstanceRole

After you create the role, add additional permissions to the role for the following features.

Feature Additional permissions

Amazon ECR has the container image Amazon ECR permissions

Have CloudWatch Logs monitor container
instances

Monitoring container instances permissions

Host configuration files in an Amazon S3
bucket

Amazon S3 read-only access

Amazon ECR permissions

The Amazon ECS container instance role that you use with your container instances must have the
following IAM policy permissions for Amazon ECR.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

IAM roles for Amazon ECS 1625

Amazon Elastic Container Service Developer Guide

 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer",
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 }
]
}

If you use the AmazonEC2ContainerServiceforEC2Role managed policy for your container
instances, then your role has the proper permissions. To check that your role supports Amazon ECR,
see Amazon ECS Container Instance IAM Role in the Amazon Elastic Container Service Developer
Guide.

Permissions required for setting the awsvpcTrunking account setting

Amazon ECS supports launching container instances with increased ENI density using supported
Amazon EC2 instance types. When you use this feature, we recommend that you create 2 container
instance roles. Enable the awsvpcTrunking account setting for one role and use that role for
tasks that require ENI trunking. For information about the awsvpcTrunking account setting, see
Access Amazon ECS features with account settings.

The container instance role that you use with your container instances must have the following IAM
policy permissions for setting the account setting

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:ListAccountSettings",
 "ecs:ListAttributes",
 "ecs:PutAccountSetting"
],
 "Resource": "*"
 }
]
}

In order to use the conatiner instance role, add the following to instance user data:

IAM roles for Amazon ECS 1626

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html

Amazon Elastic Container Service Developer Guide

#!/bin/bash
aws ecs put-account-setting --name awsvpcTrunking --value enabled --region region
ECS_CLUSTER=MyCluster>> /etc/ecs/ecs.config
EOF

For more information about adding user data to your EC2 instances, see Run commands on your
Linux instance at launch in the Amazon EC2 User Guide.

Amazon S3 read-only access

Storing configuration information in a private bucket in Amazon S3 and granting read-only access
to your container instance IAM role is a secure and convenient way to allow container instance
configuration at launch time. You can store a copy of your ecs.config file in a private bucket, use
Amazon EC2 user data to install the AWS CLI and then copy your configuration information to /
etc/ecs/ecs.config when the instance launches.

For more information about creating an ecs.config file, storing it in Amazon S3, and launching
instances with this configuration, see Storing Amazon ECS container instance configuration in
Amazon S3.

You can use the following AWS CLI command to allow Amazon S3 read-only access for your
container instance role. Replace ecsInstanceRole with the name of the role that you created.

aws iam attach-role-policy \
 --role-name ecsInstanceRole \
 --policy-arn arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess

You can also use the IAM console to add Amazon S3 read-only access
(AmazonS3ReadOnlyAccess) to your role. For more information, see Updating permissions for a
role in the AWS Identity and Access Management User Guide.

Monitoring container instances permissions

Before your container instances can send log data to CloudWatch Logs, you must create an IAM
policy to allow the Amazon ECS agent to write the customer's application logs to CloudWatch
(normally handled through the awslogs driver). After you create the policy, attach that policy to
ecsInstanceRole.

IAM roles for Amazon ECS 1627

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-role-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-role-permissions.html

Amazon Elastic Container Service Developer Guide

AWS Management Console

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter the following JSON policy document:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": ["arn:aws:logs:*:*:*"]
 }
]
}

6. Choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However,
if you make changes or choose Next in the Visual editor, IAM might restructure
your policy to optimize it for the visual editor. For more information, see Policy
restructuring in the IAM User Guide.

IAM roles for Amazon ECS 1628

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure

Amazon Elastic Container Service Developer Guide

7. On the Review and create page, enter a Policy name and a Description (optional) for
the policy that you are creating. Review Permissions defined in this policy to see the
permissions that are granted by your policy.

8. Choose Create policy to save your new policy.

After you create the policy, attach the policy to the container instance role. For information
about how to attach the policy to the role, see Updating permissions for a role in the AWS
Identity and Access Management User Guide.

AWS CLI

1. Create a file called instance-cw-logs.json with the following content.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": ["arn:aws:logs:*:*:*"]
 }
]
}

2. Use the following command to create the IAM policy using the JSON policy document file.

aws iam create-policy \
 --policy-name cwlogspolicy \
 --policy-document file://instance-cw-logs.json

3. Retrieve the ARN of the IAM policy you created using the following command. Replace
cwlogspolicy with the name of the policy you created.

aws iam list-policies --scope Local --query 'Policies[?
PolicyName==`cwlogspolicy`].Arn'

IAM roles for Amazon ECS 1629

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-role-permissions.html

Amazon Elastic Container Service Developer Guide

4. Use the following command to attach the policy to the container instance IAM role using
the policy ARN.

aws iam attach-role-policy \
 --role-name ecsInstanceRole \
 --policy-arn arn:aws:iam:111122223333:aws:policy/cwlogspolicy

Amazon ECS Anywhere IAM role

When you register an on-premises server or virtual machine (VM) to your cluster, the server
or VM requires an IAM role to communicate with AWS APIs. You only need to create this IAM
role once for each AWS account. However, this IAM role must be associated with each server or
VM that you register to a cluster. This role is the ECSAnywhereRole. You can create this role
manually. Alternatively, Amazon ECS can create the role on your behalf when you register an
external instance in the AWS Management Console. You can use IAM console search to search for
ecsAnywhereRole and see if your account already has the role. For more information, see IAM
console search in the IAM user guide.

AWS provides two managed IAM policies that can be used when creating the ECS Anywhere IAM
role, the AmazonSSMManagedInstanceCore and AmazonEC2ContainerServiceforEC2Role
policies. The AmazonEC2ContainerServiceforEC2Role policy includes permissions that likely
provide more access than you need. Therefore, depending on your specific use case, we recommend
that you create a custom policy adding only the permissions from that policy that you require in it.
For more information, see Amazon ECS container instance IAM role.

The task execution IAM role grants the Amazon ECS container agent permission to make AWS
API calls on your behalf. When a task execution IAM role is used, it must be specified in your task
definition. For more information, see Amazon ECS task execution IAM role.

The task execution role is required if any of the following conditions apply:

• You're sending container logs to CloudWatch Logs using the awslogs log driver.

• Your task definition specifies a container image that's hosted in an Amazon ECR private
repository. However, if the ECSAnywhereRole role that's associated with your external instance
also includes the permissions necessary to pull images from Amazon ECR then your task
execution role doesn't need to include them.

IAM roles for Amazon ECS 1630

https://docs.aws.amazon.com/IAM/latest/UserGuide/console_search.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_search.html

Amazon Elastic Container Service Developer Guide

Creating the Amazon ECS Anywhere role

Replace all user input with your own information.

1. Create a local file named ssm-trust-policy.json with the following trust policy.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"Service": [
 "ssm.amazonaws.com"
]},
 "Action": "sts:AssumeRole"
 }
}

2. Create the role and attach the trust policy by using the following AWS CLI command.

aws iam create-role --role-name ecsAnywhereRole --assume-role-policy-document
 file://ssm-trust-policy.json

3. Attach the AWS managed policies by using the following command.

aws iam attach-role-policy --role-name ecsAnywhereRole --policy-arn
 arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore
aws iam attach-role-policy --role-name ecsAnywhereRole --policy-arn
 arn:aws:iam::aws:policy/service-role/AmazonEC2ContainerServiceforEC2Role

You can also use the IAM custom trust policy workflow to create the role. For more information, see
Creating a role using custom trust policies (console) in the IAM User Guide.

Amazon ECS infrastructure IAM role

An Amazon ECS infrastructure IAM role allows Amazon ECS to manage infrastructure resources in
your clusters on your behalf, and is used when:

• You want to attach Amazon EBS volumes to your Fargate or EC2 launch type Amazon ECS tasks.
The infrastructure role allows Amazon ECS to manage Amazon EBS volumes for your tasks.

• You want to use Transport Layer Security (TLS) to encrypt traffic between your Amazon ECS
Service Connect services.

IAM roles for Amazon ECS 1631

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html

Amazon Elastic Container Service Developer Guide

• You want to create Amazon VPC Lattice target groups.

When Amazon ECS assumes this role to take actions on your behalf, the events will be visible in
AWS CloudTrail. If Amazon ECS uses the role to manage Amazon EBS volumes attached to your
tasks, the CloudTrail log roleSessionName will be ECSTaskVolumesForEBS. If the role is used
to encrypt traffic between your Service Connect services, the CloudTrail log roleSessionName
will be ECSServiceConnectForTLS. If the role is used to create target groups for VPC Lattice,
the CloudTrail log roleSessionName will be ECSNetworkingWithVPCLattice. You can use this
name to search events in the CloudTrail console by filtering for User name.

Amazon ECS provides managed policies which contain the permissions required for volume
attachment and TLS. For more information see, AmazonECSInfrastructureRolePolicyForVolumes,
AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity, and
AmazonECSInfrastructureRolePolicyForVpcLatticein the AWS Managed Policy Reference Guide.

Creating the Amazon ECS infrastructure role

Replace all user input with your own information.

1. Create a file named ecs-infrastructure-trust-policy.json that contains the trust
policy to use for the IAM role. The file should contain the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccessToECSForInfrastructureManagement",
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Use the following AWS CLI command to create a role named ecsInfrastructureRole by
using the trust policy that you created in the previous step.

aws iam create-role \

IAM roles for Amazon ECS 1632

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonECSInfrastructureRolePolicyForVolumes.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonECSInfrastructureRolePolicyForVpcLattice.html

Amazon Elastic Container Service Developer Guide

 --role-name ecsInfrastructureRole \
 --assume-role-policy-document file://ecs-infrastructure-trust-policy.json

3. Depending on your use case, attach the AWS managed
AmazonECSInfrastructureRolePolicyForVolumes,
AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity,
or AmazonECSInfrastructureRolePolicyForVpcLattice policy to the
ecsInfrastructureRole role.

aws iam attach-role-policy \
 --role-name ecsInfrastructureRole \
 --policy-arn arn:aws:iam::aws:policy/service-role/
AmazonECSInfrastructureRolePolicyForVolumes

aws iam attach-role-policy \
 --role-name ecsInfrastructureRole \
 --policy-arn arn:aws:iam::aws:policy/service-role/
AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity

You can also use the IAM console's Custom trust policy workflow to create the role. For more
information, see Creating a role using custom trust policies (console) in the IAM User Guide.

Important

If the ECS infrastructure role is being used by Amazon ECS to manage Amazon EBS volumes
attached to your tasks, ensure the following before you stop tasks that use Amazon EBS
volumes.

• The role isn't deleted.

• The trust policy for the role isn't modified to remove Amazon ECS access
(ecs.amazonaws.com).

• The managed policy AmazonECSInfrastructureRolePolicyForVolumes isn't
removed. If you must modify the role's permissions, retain at least ec2:DetachVolume,
ec2:DeleteVolume, and ec2:DescribeVolumes for volume deletion.

Deleting or modifying the role before stopping tasks with attached Amazon EBS volumes
will result in the tasks getting stuck in DEPROVISIONING and the associated Amazon EBS

IAM roles for Amazon ECS 1633

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html

Amazon Elastic Container Service Developer Guide

volumes failing to delete. Amazon ECS will automatically retry at regular intervals to stop
the task and delete the volume until the necessary permissions are restored. You can view
a task's volume attachment status and associated status reason by using the DescribeTasks
API.

After you create the file, you must grant your user permission to pass the role to Amazon ECS.

Permission to pass the infrastructure role to Amazon ECS

To use an ECS infrastructure IAM role, you must grant your user permission to pass the
role to Amazon ECS. Attach the following iam:PassRole permission to your user. Replace
ecsInfrastructureRole with the name of the infrastructure role that you created.

{
 "Version": "2012-10-17",
 "Statement": [

 {
 "Action": "iam:PassRole",
 "Effect": "Allow",
 "Resource": ["arn:aws:iam::*:role/ecsInfrastructureRole"],
 "Condition": {
 "StringEquals": {"iam:PassedToService": "ecs.amazonaws.com"}
 }
 }
]
}

For more information about iam:Passrole and updating permissions for your user, see Granting
a user permissions to pass a role to an AWS service and Changing permissions for an IAM user in
the AWS Identity and Access Management User Guide.

Amazon ECS CodeDeploy IAM Role

Before you can use the CodeDeploy blue/green deployment type with Amazon ECS, the
CodeDeploy service needs permissions to update your Amazon ECS service on your behalf. These
permissions are provided by the CodeDeploy IAM role (ecsCodeDeployRole).

IAM roles for Amazon ECS 1634

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeTasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html

Amazon Elastic Container Service Developer Guide

Note

Users also require permissions to use CodeDeploy; these permissions are described in
Required IAM permissions.

There are two managed policies provided. For more information, see one of the following in the
AWS Managed Policy Reference Guide:

• AWSCodeDeployRoleForECS - gives CodeDeploy permission to update any resource using the
associated action.

• AWSCodeDeployRoleForECSLimited - gives CodeDeploy more limited permissions.

Creating the CodeDeploy role

You can use the following procedures to create a CodeDeploy role for Amazon ECS

AWS Management Console

To create the service role for CodeDeploy (IAM console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

3. For Trusted entity type, choose AWS service.

4. For Service or use case, choose CodeDeploy, and then choose the CodeDeploy - ECS use
case.

5. Choose Next.

6. In the Attach permissions policy section, ensure that the AWSCodeDeployRoleForECS
policy is selected.

7. Choose Next.

8. For Role name, enter ecsCodeDeployRole.

9. Review the role, and then choose Create role.

IAM roles for Amazon ECS 1635

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSCodeDeployRoleForECS.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSCodeDeployRoleForECSLimited.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

AWS CLI

Replace all user input with your own information.

1. Create a file named codedeploy-trust-policy.json that contains the trust policy to
use for the CodeDeploy IAM role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": ["codedeploy.amazonaws.com"]
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create an IAM role named ecsCodedeployRole using the trust policy created in the
previous step.

aws iam create-role \
 --role-name ecsCodedeployRole \
 --assume-role-policy-document file://codedeploy-trust-policy.json

3. Attach the AWSCodeDeployRoleForECS or AWSCodeDeployRoleForECSLimited
managed policy to the ecsTaskRole role.

aws iam attach-role-policy \
 --role-name ecsCodedeployRole \
 --policy-arn arn:aws:iam::aws:policy/AWSCodeDeployRoleForECS

aws iam attach-role-policy \
 --role-name ecsCodedeployRole \
 --policy-arn arn:aws:iam::aws:policy/AWSCodeDeployRoleForECSLimited

IAM roles for Amazon ECS 1636

Amazon Elastic Container Service Developer Guide

When the tasks in your service need a task execution role, you must add the iam:PassRole
permission for each task execution role or task role override to the CodeDeploy role as a policy.

Task execution role permissions

When the tasks in your service need a task execution role, you must add the iam:PassRole
permission for each task execution role or task role override to the CodeDeploy role as a policy. For
more information, see Amazon ECS task execution IAM role and Amazon ECS task IAM role. Then,
you attach that policy to the CodeDeploy role

Create the policy

AWS Management Console

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter the following JSON policy document:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": ["arn:aws:iam::<aws_account_id>:role/
<ecsCodeDeployRole>"]
 }
]
}

6. Choose Next.

IAM roles for Amazon ECS 1637

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

Note

You can switch between the Visual and JSON editor options anytime. However,
if you make changes or choose Next in the Visual editor, IAM might restructure
your policy to optimize it for the visual editor. For more information, see Policy
restructuring in the IAM User Guide.

7. On the Review and create page, enter a Policy name and a Description (optional) for
the policy that you are creating. Review Permissions defined in this policy to see the
permissions that are granted by your policy.

8. Choose Create policy to save your new policy.

After you create the policy, attach the policy to the CodeDeploy role. For information about
how to attach the policy to the role, see Update permissions for a role in the AWS Identity and
Access Management User Guide.

AWS CLI

Replace all user input with your own information.

1. Create a file called blue-green-iam-passrole.json with the following content.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": ["arn:aws:iam::<aws_account_id>:role/
<ecsCodeDeployRole>"]
 }
]
}

2. Use the following command to create the IAM policy using the JSON policy document file.

aws iam create-policy \
 --policy-name cdTaskExecutionPolicy \
 --policy-document file://blue-green-iam-passrole.json

IAM roles for Amazon ECS 1638

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-role-permissions.html

Amazon Elastic Container Service Developer Guide

3. Retrieve the ARN of the IAM policy you created using the following command.

aws iam list-policies --scope Local --query 'Policies[?
PolicyName==`cdTaskExecutionPolicy`].Arn'

4. Use the following command to attach the policy to the CodeDeploy IAM role.

aws iam attach-role-policy \
 --role-name ecsCodedeployRole \
 --policy-arn arn:aws:iam:111122223333:aws:policy/cdTaskExecutionPolicy

Amazon ECS EventBridge IAM Role

Before you can use Amazon ECS scheduled tasks with EventBridge rules and targets, the
EventBridge service needs permissions to run Amazon ECS tasks on your behalf. These permissions
are provided by the EventBridge IAM role (ecsEventsRole).

The AmazonEC2ContainerServiceEventsRole policy is shown below.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ecs:RunTask"],
 "Resource": ["*"]
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": ["*"],
 "Condition": {
 "StringLike": {"iam:PassedToService": "ecs-tasks.amazonaws.com"}
 }
 },
 {
 "Effect": "Allow",
 "Action": "ecs:TagResource",
 "Resource": "*",
 "Condition": {
 "StringEquals": {

IAM roles for Amazon ECS 1639

Amazon Elastic Container Service Developer Guide

 "ecs:CreateAction": ["RunTask"]
 }
 }
 }
]
}

If your scheduled tasks require the use of the task execution role, a task role, or a task role override,
then you must add iam:PassRole permissions for each task execution role, task role, or task
role override to the EventBridge IAM role. For more information about the task execution role, see
Amazon ECS task execution IAM role.

Note

Specify the full ARN of your task execution role or task role override.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": ["arn:aws:iam::<aws_account_id>:role/
<ecsTaskExecutionRole_or_TaskRole_name>"]
 }
]
}

You can choose to let the AWS Management Console create the EventBridge role for you when you
configure a scheduled task. For more information, see Using Amazon EventBridge Scheduler to
schedule Amazon ECS tasks .

Creating the EventBridge role

Replace all user input with your own information.

1. Create a file named eventbridge-trust-policy.json that contains the trust policy to use
for the IAM role. The file should contain the following:

{

IAM roles for Amazon ECS 1640

Amazon Elastic Container Service Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Use the following command to create an IAM role named ecsEventsRole by using the trust
policy that you created in the previous step.

aws iam create-role \
 --role-name ecsEventsRole \
 --assume-role-policy-document file://eventbridge-trust-policy.json

3. Attach the AWS managed AmazonEC2ContainerServiceEventsRole to the
ecsEventsRole role using the following command .

aws iam attach-role-policy \
 --role-name ecsEventsRole \
 --policy-arn arn:aws:iam::aws:policy/service-role/
AmazonEC2ContainerServiceEventsRole

You can also use the IAM console's Custom trust policy workflow (https://
console.aws.amazon.com/iam/) to create the role. For more information, see Creating a role using
custom trust policies (console) in the IAM User Guide.

Attaching a policy to the ecsEventsRole role

You can use the following procedures to add permissions for the task execution role to the
EventBridge IAM role.

IAM roles for Amazon ECS 1641

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html

Amazon Elastic Container Service Developer Guide

AWS Management Console

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter the following JSON policy document:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": ["arn:aws:iam::<aws_account_id>:role/
<ecsTaskExecutionRole_or_TaskRole_name>"]
 }
]
}

6. Choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However,
if you make changes or choose Next in the Visual editor, IAM might restructure
your policy to optimize it for the visual editor. For more information, see Policy
restructuring in the IAM User Guide.

7. On the Review and create page, enter a Policy name and a Description (optional) for
the policy that you are creating. Review Permissions defined in this policy to see the
permissions that are granted by your policy.

8. Choose Create policy to save your new policy.

IAM roles for Amazon ECS 1642

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure

Amazon Elastic Container Service Developer Guide

After you create the policy, attach the policy to the EventBridge role. For information about
how to attach the policy to the role, see Update permissions for a role in the AWS Identity and
Access Management User Guide.

AWS CLI

Replace all user input with your own information.

1. Create a file called ev-iam-passrole.json with the following content.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": ["arn:aws:iam::<aws_account_id>:role/
<ecsTaskExecutionRole_or_TaskRole_name>"]
 }
]
}

2. Use the following AWS CLI command to create the IAM policy using the JSON policy
document file.

aws iam create-policy \
 --policy-name eventsTaskExecutionPolicy \
 --policy-document file://ev-iam-passrole.json

3. Retrieve the ARN of the IAM policy you created using the following command.

aws iam list-policies --scope Local --query 'Policies[?
PolicyName==`eventsTaskExecutionPolicy`].Arn'

4. Use the following command to attach the policy to the EventBridge IAM role by using the
policy ARN.

aws iam attach-role-policy \
 --role-name ecsEventsRole \
 --policy-arn arn:aws:iam:111122223333:aws:policy/eventsTaskExecutionPolicy

IAM roles for Amazon ECS 1643

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-role-permissions.html

Amazon Elastic Container Service Developer Guide

Permissions required for the Amazon ECS console

Following the best practice of granting least privilege, you can use the AmazonECS_FullAccess
managed policy as a template for creating you own custom policy. That way, you can take away or
add permissions to and from the managed policy based on your specific requirements. For more
information, see AmazonECS_FullAccess in the AWS Managed Policy Reference.

Permissions for creating IAM roles

The following actions require additional permissions in order to complete the operation:

• Registering an external instance - for more information, see Amazon ECS Anywhere IAM role

• Registering a task definition - for more information, see Amazon ECS task execution IAM role

• Creating an EventBridge rule to use for scheduling tasks - for more information, see Amazon ECS
EventBridge IAM Role

You can add these permissions by creating a role in IAM before you use them in the Amazon ECS
console. If you do not create the roles, the Amazon ECS console creates then on your behalf.

Permissions required for registering an external instance to a cluster

You need additional permissions when you register an external instance to a cluster and you want
to create a new external instance (ecsExternalInstanceRole) role.

The following additional permissions are required:

• iam– Allows principals to create and list IAM roles and their attached policies.

• ssm – Allows principals to register the external instance with Systems Manager.

Note

In order to choose an existing ecsExternalInstanceRole, you must have the
iam:GetRole and iam:PassRole permissions.

The following policy contains the required permissions, and limits the actions to the
ecsExternalInstanceRole role.

Permissions required for the Amazon ECS console 1644

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonECS_FullAccess.html

Amazon Elastic Container Service Developer Guide

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:CreateInstanceProfile",
 "iam:AddRoleToInstanceProfile",
 "iam:ListInstanceProfilesForRole",
 "iam:GetRole"
],
 "Resource": "arn:aws:iam::*:role/ecsExternalInstanceRole"
 },
 {
 "Effect": "Allow",
 "Action": ["iam:PassRole","ssm:CreateActivation"],
 "Resource": "arn:aws:iam::*:role/ecsExternalInstanceRole"
 }
]
}

Permissions required for registering a task definition

You need additional permissions when you register a task definition and you want to create a new
task execution (ecsTaskExecutionRole) role.

The following additional permissions are required:

• iam– Allows principals to create and list IAM roles and their attached policies.

Note

In order to choose an existing ecsTaskExecutionRole, you must have the iam:GetRole
permission.

The following policy contains the required permissions, and limits the actions to the
ecsTaskExecutionRole role.

{

Permissions required for the Amazon ECS console 1645

Amazon Elastic Container Service Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:GetRole"
],
 "Resource": "arn:aws:iam::*:role/ecsTaskExecutionRole"
 }
]
}

Permissions required for creating an EventBridge rule for scheduled tasks

You need additional permissions when you schedule a task and you want to create a new
CloudWatch Events role (ecsEventsRole) role.

The following additional permissions are required:

• iam– Allows principals to create and list IAM roles and their attached policies, and to allow
Amazon ECS to pass the role to other services to assume the role.

Note

In order to choose an existing ecsEventsRole, you must have the iam:GetRole and
iam:PassRole permissions.

The following policy contains the required permissions, and limits the actions to the
ecsEventsRole role.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:GetRole",
 "iam:PassRole"

Permissions required for the Amazon ECS console 1646

Amazon Elastic Container Service Developer Guide

],
 "Resource": "arn:aws:iam::*:role/ecsEventsRole"
 }
]
}

Permissions required for viewing service deployments

When you follow the best practice of granting least privilege, you need to add additional
permissions in order to view service deployments in the console.

You need access to the following actions:

• ListServiceDeployments

• DescribeServiceDeployments

• DescribeServiceRevisions

You need access to the following resources:

• Service

• Service deployment

• Service revision

The following example policy contains the required permissions, and limits the actions to a
specified service.

Replace the account, cluster-name, and service-name with your values.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:ListServiceDeployments",
 "ecs:DescribeServiceDeployments",
 "ecs:DescribeServiceRevisions"
],
 "Resource": [
 "arn:aws:ecs:us-east-1:123456789012:service/cluster-name/service-name",

Permissions required for the Amazon ECS console 1647

Amazon Elastic Container Service Developer Guide

 "arn:aws:ecs:us-east-1:123456789012:service-deployment/cluster-name/
service-name/*",
 "arn:aws:ecs:us-east-1:123456789012:service-revision/cluster-name/service-
name/*"
]
 }
]
}

Permissions required to view Amazon ECS lifecycle events in Container Insights

The following permissions are required to view the lifecycle events. Add the following permissions
as an inline policy to the role. For more information, see Adding and Removing IAM Policies.

• events:DescribeRule

• events:ListTargetsByRule

• logs:DescribeLogGroups

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "events:DescribeRule",
 "events:ListTargetsByRule",
 "logs:DescribeLogGroups"
],
 "Resource": "*"
 }
]
}

Permissions required for enabling Amazon ECS lifecycle events inContainer
Insights

The following permissions are required to configure the lifecycle events:

• events:PutRule

• events:PutTargets

Permissions required for the Amazon ECS console 1648

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Elastic Container Service Developer Guide

• logs:CreateLogGroup

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "events:PutRule",
 "events:PutTargets",
 "logs:CreateLogGroup"
],
 "Resource": "*"
 }
]
}

Permissions required for the Amazon ECS console with AWS CloudFormation

Before using the AWS Management Console to create your resources, you'll need to make sure to
have the correct IAM permissions. For information on how to set up permissions for the Amazon
ECS console in general first, see Permissions required for the Amazon ECS console.

The Amazon ECS console is powered by AWS CloudFormation and requires additional IAM
permissions in the following cases:

• Creating a cluster

• Creating a service

• Creating a capacity provider

You can create a policy for the additional permissions, and then attach them to the IAM role you
use to access the console. For more information, see Creating IAM policies in the IAM User Guide.

Permissions required for creating a cluster

When you create a cluster in the console, you need additional permissions that grant you
permissions to manage AWS CloudFormation stacks.

The following additional permissions are required:

Permissions required for the Amazon ECS console 1649

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/console-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-start

Amazon Elastic Container Service Developer Guide

• cloudformation – Allows principals to create and manage AWS CloudFormation stacks. This
is required when creating Amazon ECS clusters using the AWS Management Console and the
subsequent managing of those clusters.

• ssm – Allows AWS CloudFormation to reference latest Amazon ECS-optimized AMI. This is
required when creating Amazon ECS clusters using the AWS Management Console.

The following policy contains the required AWS CloudFormation permissions, and limits the actions
to resources created in the Amazon ECS console.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateStack",
 "cloudformation:DeleteStack",
 "cloudformation:DescribeStack*",
 "cloudformation:UpdateStack"
],
 "Resource": [
 "arn:*:cloudformation:*:*:stack/Infra-ECS-Cluster-*"
]
 },
 {
 "Effect": "Allow",
 "Action": "ssm:GetParameters",
 "Resource": [
 "arn:aws:ssm:*:*:parameter/aws/service/ecs/optimized-ami/amazon-linux-2*/
*",
 "arn:aws:ssm:*:*:parameter/aws/service/ecs/optimized-ami/amazon-
linux-2023*/*"
]
 }
]
}

If you have not created the Amazon ECS container instance role (ecsInstanceRole), and you are
creating a cluster that uses Amazon EC2 instances, then the console will create the role on your
behalf.

Permissions required for the Amazon ECS console 1650

Amazon Elastic Container Service Developer Guide

In addition, if you use Auto Scaling groups, then you need additional permissions so that the
console can add tags to the auto scaling groups when using the cluster auto scaling feature.

The following additional permissions are required:

• autoscaling – Allows the console to tag Amazon EC2 Auto Scaling group. This is required
when managing Amazon EC2 auto scaling groups when using the cluster auto scaling feature.
The tag is the ECS-managed tag that the console automatically adds to the group to indicate is
was created in the console.

• iam– Allows principals to list IAM roles and their attached policies. Principals can also list
instance profiles available to your Amazon EC2 instances.

The following policy contains the required IAM permissions, and limits the actions to the
ecsInstanceRole role.

The Auto Scaling permissions are not limited.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:CreateInstanceProfile",
 "iam:AddRoleToInstanceProfile",
 "iam:ListInstanceProfilesForRole",
 "iam:GetRole"
],
 "Resource": "arn:aws:iam::*:role/ecsInstanceRole"
 },
 {
 "Effect": "Allow",
 "Action": "autoscaling:CreateOrUpdateTags",
 "Resource": "*"
 }
]
}

Permissions required for the Amazon ECS console 1651

Amazon Elastic Container Service Developer Guide

Permissions required for creating a service

When you create a service in the console, you need additional permissions that grant you
permissions to manage AWS CloudFormation stacks. The following additional permissions are
required:

• cloudformation – Allows principals to create and manage AWS CloudFormation stacks. This
is required when creating Amazon ECS services using the AWS Management Console and the
subsequent managing of those services.

The following policy contains the required permissions, and limits the actions to resources created
in the Amazon ECS console.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateStack",
 "cloudformation:DeleteStack",
 "cloudformation:DescribeStack*",
 "cloudformation:UpdateStack"
],
 "Resource": [
 "arn:*:cloudformation:*:*:stack/ECS-Console-V2-Service-*"
]
 }
]
}

IAM permissions required for Amazon ECS service auto scaling

Service Auto Scaling is made possible by a combination of the Amazon ECS, CloudWatch, and
Application Auto Scaling APIs. Services are created and updated with Amazon ECS, alarms are
created with CloudWatch, and scaling policies are created with Application Auto Scaling.

In addition to the standard IAM permissions for creating and updating services, the following
permissions are required to interact with Service Auto Scaling settings as shown in the following
example policy.

{

IAM permissions required for Amazon ECS service auto scaling 1652

Amazon Elastic Container Service Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:*",
 "ecs:DescribeServices",
 "ecs:UpdateService",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms",
 "cloudwatch:DescribeAlarmHistory",
 "cloudwatch:DescribeAlarmsForMetric",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:ListMetrics",
 "cloudwatch:DisableAlarmActions",
 "cloudwatch:EnableAlarmActions",
 "iam:CreateServiceLinkedRole",
 "sns:CreateTopic",
 "sns:Subscribe",
 "sns:Get*",
 "sns:List*"
],
 "Resource": ["*"]
 }
]
}

The Create Amazon ECS service example and Update Amazon ECS service example IAM policy
examples show the required permissions to use Service Auto Scaling in the AWS Management
Console.

The Application Auto Scaling service also needs permission to describe your Amazon ECS services
and CloudWatch alarms, and permissions to modify your service's desired count on your behalf. The
sns: permissions are for the notifications that CloudWatch sends to an Amazon SNS topic when a
threshold has been exceeded. If you use automatic scaling for your Amazon ECS services, it creates
a service-linked role named AWSServiceRoleForApplicationAutoScaling_ECSService.
This service-linked role grants Application Auto Scaling permission to describe the alarms for
your policies, to monitor the current running task count of the service, and to modify the desired
count of the service. The original managed Amazon ECS role for Application Auto Scaling was
ecsAutoscaleRole, but it is no longer required. The service-linked role is the default role for

IAM permissions required for Amazon ECS service auto scaling 1653

Amazon Elastic Container Service Developer Guide

Application Auto Scaling. For more information, see Service-linked roles for Application Auto
Scaling in the Application Auto Scaling User Guide.

If you created your Amazon ECS container instance role before CloudWatch metrics are available
for Amazon ECS, you might need to add the ecs:StartTelemetrySession permission. For more
information, see Considerations.

Grant permission to tag resources on creation

The following tag-on create Amazon ECS API actions allow you to specify tags when you create
the resource. If tags are specified in the resource-creating action, AWS performs additional
authorization to verify that the correct permissions are assigned to create tags.

• CreateCapacityProvider

• CreateCluster

• CreateService

• CreateTaskSet

• RegisterContainerInstance

• RegisterTaskDefinition

• RunTask

• StartTask

You can use resource tags to implement attribute-based control (ABAC). For more information,
see the section called “Control access to Amazon ECS resources using resource tags” and Tagging
resources.

To allow tagging on creation, create or modify a policy to include both the permissions to use
the action that creates the resource, such as ecs:CreateCluster or ecs:RunTask and the
ecs:TagResource action.

The following example demonstrates a policy that allows users to create clusters and add tags
during the cluster creation. Users are not permitted to tag any existing resources (they cannot call
the ecs:TagResource action directly).

{
 "Statement": [

Tag resources during creation 1654

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html

Amazon Elastic Container Service Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "ecs:CreateCluster"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecs:TagResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ecs:CreateAction": [
 "CreateCluster",
 "CreateCapacityProvider",
 "CreateService",
 "CreateTaskSet",
 "RegisterContainerInstance",
 "RegisterTaskDefinition",
 "RunTask",
 "StartTask"
]
 }
 }
 }
]
}

The ecs:TagResource action is only evaluated if tags are applied during the resource-creating
action. Therefore, a user that has permissions to create a resource (assuming there are no tagging
conditions) does not require permissions to use the ecs:TagResource action if no tags are
specified in the request. However, if the user attempts to create a resource with tags, the request
fails if the user does not have permissions to use the ecs:TagResource action.

Amazon ECS control access to specific tags

You can use additional conditions in the Condition element of your IAM policies to control the
tag keys and values that can be applied to resources.

The following condition keys can be used with the examples in the preceding section:

Tag resources during creation 1655

Amazon Elastic Container Service Developer Guide

• aws:RequestTag: To indicate that a particular tag key or tag key and value must be present in a
request. Other tags can also be specified in the request.

• Use with the StringEquals condition operator to enforce a specific tag key and value
combination, for example, to enforce the tag cost-center=cc123:

"StringEquals": { "aws:RequestTag/cost-center": "cc123" }

• Use with the StringLike condition operator to enforce a specific tag key in the request; for
example, to enforce the tag key purpose:

"StringLike": { "aws:RequestTag/purpose": "*" }

• aws:TagKeys: To enforce the tag keys that are used in the request.

• Use with the ForAllValues modifier to enforce specific tag keys if they are provided in the
request (if tags are specified in the request, only specific tag keys are allowed; no other tags
are allowed). For example, the tag keys environment or cost-center are allowed:

"ForAllValues:StringEquals": { "aws:TagKeys": ["environment","cost-center"] }

• Use with the ForAnyValue modifier to enforce the presence of at least one of the specified
tag keys in the request. For example, at least one of the tag keys environment or webserver
must be present in the request:

"ForAnyValue:StringEquals": { "aws:TagKeys": ["environment","webserver"] }

These condition keys can be applied to resource-creating actions that support tagging, as well as
the ecs:TagResource action. To learn whether an Amazon ECS API action supports tagging, see
Actions, resources, and condition keys for Amazon ECS.

To force users to specify tags when they create a resource, you must use the aws:RequestTag
condition key or the aws:TagKeys condition key with the ForAnyValue modifier on the resource-
creating action. The ecs:TagResource action is not evaluated if a user does not specify tags for
the resource-creating action.

For conditions, the condition key is not case-sensitive and the condition value is case-sensitive.
Therefore, to enforce the case-sensitivity of a tag key, use the aws:TagKeys condition key, where
the tag key is specified as a value in the condition.

Tag resources during creation 1656

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html

Amazon Elastic Container Service Developer Guide

For more information about multi-value conditions, see Conditions with multiple context keys or
values in the IAM User Guide.

Control access to Amazon ECS resources using resource tags

When you create an IAM policy that grants users permission to use Amazon ECS resources, you can
include tag information in the Condition element of the policy to control access based on tags.
This is known as attribute-based access control (ABAC). ABAC provides better control over which
resources a user can modify, use, or delete. For more information, see What is ABAC for AWS?

For example, you can create a policy that allows users to delete a cluster, but denies the action if
the cluster has the tag environment=production. To do this, you use the aws:ResourceTag
condition key to allow or deny access to the resource based on the tags that are attached to the
resource.

"StringEquals": { "aws:ResourceTag/environment": "production" }

To learn whether an Amazon ECS API action supports controlling access using the
aws:ResourceTag condition key, see Actions, resources, and condition keys for Amazon ECS. Note
that the Describe actions do not support resource-level permissions, so you must specify them in
a separate statement without conditions.

For example IAM policies, see Amazon ECS Example policies .

If you allow or deny users access to resources based on tags, you must consider explicitly denying
users the ability to add those tags to or remove them from the same resources. Otherwise, it's
possible for a user to circumvent your restrictions and gain access to a resource by modifying its
tags.

Amazon ECS Example policies

You can use IAM policies to grant users permissions to view and work with specific resources in the
Amazon ECS console. You can use the example policies in the previous section; however, they are
designed for requests that are made with the AWS CLI or an AWS SDK.

Example: Allow users to delete an Amazon ECS cluster based on tags

The following policy allows users to delete clusters when the tag has a key/value pair of "Purpose/
Testing".

{

Tag resources during creation 1657

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-logic-multiple-context-keys-or-values.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-logic-multiple-context-keys-or-values.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerservice.html

Amazon Elastic Container Service Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ecs:DeleteCluster"
],
 "Effect": "Allow",
 "Resource": "arn:aws:ecs:region:account-id:cluster/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Purpose": "Testing"
 }
 }
 }
]
}

Troubleshooting Amazon Elastic Container Service identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon ECS and IAM.

Topics

• I am not authorized to perform an action in Amazon ECS

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Amazon ECS resources

• Additional troubleshooting resources

I am not authorized to perform an action in Amazon ECS

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
ecs:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 ecs:GetWidget on resource: my-example-widget

Troubleshooting 1658

Amazon Elastic Container Service Developer Guide

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the ecs:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Amazon ECS.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Amazon ECS. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Amazon ECS
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Amazon ECS supports these features, see How Amazon Elastic Container
Service works with IAM.

Troubleshooting 1659

Amazon Elastic Container Service Developer Guide

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Additional troubleshooting resources

The following pages provide information about error codes:

• Amazon ECS stopped tasks error messages

• Viewing Amazon ECS service event messages

IAM best practices for Amazon ECS

You can use AWS Identity and Access Management (IAM) to manage and control access to your
AWS services and resources through rule-based policies for authentication and authorization
purposes. More specifically, through this service, you control access to your AWS resources by using
policies that are applied to users, groups, or roles. Among these three, users are accounts that can
have access to your resources. And, an IAM role is a set of permissions that can be assumed by an
authenticated identity, which isn't associated with a particular identity outside of IAM. For more
information, see Amazon ECS overview of access management: Permissions and policies.

Follow the policy of least privileged access

Create policies that are scoped to allow users to perform their prescribed jobs. For example, if a
developer needs to periodically stop a task, create a policy that only permits that particular action.
The following example only allows a user to stop a task that belongs to a particular task_family
on a cluster with a specific Amazon Resource Name (ARN). Referring to an ARN in a condition is also
an example of using resource-level permissions. You can use resource-level permissions to specify
the resource that you want an action to apply to.

{
 "Version": "2012-10-17",

IAM best practices 1660

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html

Amazon Elastic Container Service Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:StopTask"
],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:region:account_id:cluster/cluster_name"
 }
 },
 "Resource": [
 "arn:aws:ecs:region:account_id:task-definition/task_family:*"
]
 }
]
}

Have cluster resources serve as the administrative boundary

Policies that are too narrowly scoped can cause a proliferation of roles and increase administrative
overhead. Rather than creating roles that are scoped to particular tasks or services only, create
roles that are scoped to clusters and use the cluster as your primary administrative boundary.

Create automated pipelines to isolate end-users from the API

You can limit the actions that users can use by creating pipelines that automatically package
and deploy applications onto Amazon ECS clusters. This effectively delegates the job of creating,
updating, and deleting tasks to the pipeline. For more information, see Tutorial: Amazon ECS
standard deployment with CodePipeline in the AWS CodePipeline User Guide.

Use policy conditions for an added layer of security

When you need an added layer of security, add a condition to your policy. This can be useful if
you're performing a privileged operation or when you need to restrict the set of actions that can
be performed against particular resources. The following example policy requires multi-factor
authorization when deleting a cluster.

{
 "Version": "2012-10-17",
 "Statement": [

IAM best practices 1661

https://docs.aws.amazon.com/codepipeline/latest/userguide/ecs-cd-pipeline.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/ecs-cd-pipeline.html

Amazon Elastic Container Service Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "ecs:DeleteCluster"
],
 "Condition": {
 "Bool": {
 "aws:MultiFactorAuthPresent": "true"
 }
 },
 "Resource": ["*"]
 }
]
}

Tags applied to services are propagated to all the tasks that are part of that service. Because
of this, you can create roles that are scoped to Amazon ECS resources with specific tags. In the
following policy, an IAM principal starts and stops all tasks with a tag-key of Department and a
tag-value of Accounting.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:StartTask",
 "ecs:StopTask",
 "ecs:RunTask"
],
 "Resource": "arn:aws:ecs:*",
 "Condition": {
 "StringEquals": {"ecs:ResourceTag/Department": "Accounting"}
 }
 }
]
}

Periodically audit access to the APIs

A user might change roles. After they change roles, the permissions that were previously granted
to them might no longer apply. Make sure that you audit who has access to the Amazon ECS

IAM best practices 1662

Amazon Elastic Container Service Developer Guide

APIs and whether that access is still warranted. Consider integrating IAM with a user lifecycle
management solution that automatically revokes access when a user leaves the organization. For
more information, see AWS security audit guidelines in the AWS Identity and Access Management
User Guide.

Logging and Monitoring in Amazon Elastic Container Service

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon Elastic Container Service and your AWS solutions. You should collect monitoring data from
all of the parts of your AWS solution so that you can more easily debug a multi-point failure if one
occurs. AWS provides several tools for monitoring your Amazon ECS resources and responding to
potential incidents:

Amazon CloudWatch Alarms

Watch a single metric over a time period that you specify, and perform one or more actions
based on the value of the metric relative to a given threshold over a number of time periods.
The action is a notification sent to an Amazon Simple Notification Service (Amazon SNS) topic
or Amazon EC2 Auto Scaling policy. CloudWatch alarms do not invoke actions simply because
they are in a particular state; the state must have changed and been maintained for a specified
number of periods. For more information, see Monitor Amazon ECS using CloudWatch.

For services with tasks that use the Fargate launch type, you can use CloudWatch alarms to
scale in and scale out the tasks in your service based on CloudWatch metrics, such as CPU and
memory utilization. For more information, see Automatically scale your Amazon ECS service.

For clusters with tasks or services using the EC2 launch type, you can use CloudWatch alarms
to scale in and scale out the container instances based on CloudWatch metrics, such as cluster
memory reservation.

Amazon CloudWatch Logs

Monitor, store, and access the log files from the containers in your Amazon ECS tasks by
specifying the awslogs log driver in your task definitions. For more information, see Using the
awslogs driver.

You can also monitor, store, and access the operating system and Amazon ECS container agent
log files from your Amazon ECS container instances. This method for accessing logs can be used
for containers using the EC2 launch type..

Logging and Monitoring 1663

https://docs.aws.amazon.com/IAM/latest/UserGuide/security-audit-guide.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_awslogs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_awslogs.html

Amazon Elastic Container Service Developer Guide

Amazon CloudWatch Events

Match events and route them to one or more target functions or streams to make changes,
capture state information, and take corrective action. For more information, see Automate
responses to Amazon ECS errors using EventBridge in this guide and EventBridge is the
evolution of Amazon CloudWatch Events in the Amazon EventBridge User Guide.

AWS CloudTrail Logs

CloudTrail provides a record of actions taken by a user, role, or an AWS service in Amazon ECS.
Using the information collected by CloudTrail, you can determine the request that was made
to Amazon ECS, the IP address from which the request was made, who made the request, when
it was made, and additional details. For more information, see Log Amazon ECS API calls using
AWS CloudTrail.

AWS Trusted Advisor

Trusted Advisor draws upon best practices learned from serving hundreds of thousands of AWS
customers. Trusted Advisor inspects your AWS environment and then makes recommendations
when opportunities exist to save money, improve system availability and performance, or help
close security gaps. All AWS customers have access to five Trusted Advisor checks. Customers
with a Business or Enterprise support plan can view all Trusted Advisor checks.

For more information, see AWS Trusted Advisor in the Support User Guide.

AWS Compute Optimizer

AWS Compute Optimizer is a service that analyzes the configuration and utilization metrics of
your AWS resources. It reports whether your resources are optimal, and generates optimization
recommendations to reduce the cost and improve the performance of your workloads.

For more information, see AWS Compute Optimizer recommendations for Amazon ECS.

Another important part of monitoring Amazon ECS involves manually monitoring those items
that the CloudWatch alarms don't cover. The CloudWatch, Trusted Advisor, and other AWS console
dashboards provide an at-a-glance view of the state of your AWS environment. We recommend
that you also check the log files on your container instances and the containers in your tasks.

Logging and Monitoring 1664

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-cwe-now-eb.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-cwe-now-eb.html
https://docs.aws.amazon.com/awssupport/latest/user/getting-started.html#trusted-advisor

Amazon Elastic Container Service Developer Guide

Compliance validation for Amazon Elastic Container Service

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security Compliance & Governance – These solution implementation guides discuss architectural
considerations and provide steps for deploying security and compliance features.

• HIPAA Eligible Services Reference – Lists HIPAA eligible services. Not all AWS services are HIPAA
eligible.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

Compliance validation 1665

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/solutions/security/security-compliance-governance/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html

Amazon Elastic Container Service Developer Guide

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Compliance and security best practices for Amazon ECS

Your compliance responsibility when using Amazon ECS is determined by the sensitivity of your
data, the compliance objectives of your company, and applicable laws and regulations.

Payment Card Industry Data Security Standards (PCI DSS)

It's important that you understand the complete flow of cardholder data (CHD) within the
environment when adhering to PCI DSS. The CHD flow determines the applicability of the PCI DSS,
defines the boundaries and components of a cardholder data environment (CDE), and therefore
the scope of a PCI DSS assessment. Accurate determination of the PCI DSS scope is key to defining
the security posture and ultimately a successful assessment. Customers must have a procedure
for scope determination that assures its completeness and detects changes or deviations from the
scope.

The temporary nature of containerized applications provides additional complexities when auditing
configurations. As a result, customers need to maintain an awareness of all container configuration
parameters to ensure compliance requirements are addressed throughout all phases of a container
lifecycle.

For additional information on achieving PCI DSS compliance on Amazon ECS, refer to the following
whitepapers.

• Architecting on Amazon ECS for PCI DSS compliance

HIPAA (U.S. Health Insurance Portability and Accountability Act)

Using Amazon ECS with workloads that process protected health information (PHI) requires no
additional configuration. Amazon ECS acts as an orchestration service that coordinates the launch
of containers on Amazon EC2. It doesn't operate with or upon data within the workload being
orchestrated. Consistent with HIPAA regulations and the AWS Business Associate Addendum, PHI
should be encrypted in transit and at-rest when accessed by containers launched with Amazon ECS.

Various mechanisms for encrypting at-rest are available with each AWS storage option, such as
Amazon S3, Amazon EBS, and AWS KMS. You can deploy an overlay network (such as VNS3 or

Compliance and security best practices 1666

https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://d1.awsstatic.com/whitepapers/compliance/architecting-on-amazon-ecs-for-pci-dss-compliance.pdf

Amazon Elastic Container Service Developer Guide

Weave Net) to ensure complete encryption of PHI transferred between containers or to provide a
redundant layer of encryption. You should also use complete logging, and direct all container logs
to Amazon CloudWatch. For information about using the best practices for infrastructure security,
see Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

AWS Security Hub

Use AWS Security Hub. This AWS service provides a comprehensive view of your security state
within AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

Amazon GuardDuty with Amazon ECS Runtime Monitoring

Amazon GuardDuty is a threat detection service that helps protect your accounts, containers,
workloads, and the data within your AWS environment. Using machine learning (ML) models, and
anomaly and threat detection capabilities, GuardDuty continuously monitors different log sources
and runtime activity to identify and prioritize potential security risks and malicious activities in
your environment.

Use Runtime Monitoring in GuardDuty to identify malicious or unauthorized behavior. Runtime
Monitoring protects workloads running on Fargate and EC2 by continuously monitoring AWS log
and networking activity to identify malicious or unauthorized behavior. Runtime Monitoring uses
a lightweight, fully managed GuardDuty security agent that analyzes on-host behavior, such as
file access, process execution, and network connections. This covers issues including escalation of
privileges, use of exposed credentials, or communication with malicious IP addresses, domains,
and the presence of malware on your Amazon EC2 instances and container workloads. For more
information, see GuardDuty Runtime Monitoring in the GuardDuty User Guide.

Compliance recommendations

We recommend that you engage the compliance program owners within your business early and
use the AWS shared responsibility model to identify compliance control ownership for success with
the relevant compliance programs. For more information, see AWS shared responsibility model for
Amazon ECS .

Compliance and security best practices 1667

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/runtime-monitoring.html

Amazon Elastic Container Service Developer Guide

AWS Fargate Federal Information Processing Standard
(FIPS-140)

Federal Information Processing Standard (FIPS). FIPS-140 is a U.S. and Canadian government
standard that specifies the security requirements for cryptographic modules that protect sensitive
information. FIPS-140 defines a set of validated cryptography functions that can be used to
encrypt data in transit and data at rest.

When you turn on FIPS-140 compliance, you can run workloads on Fargate in a manner that
is compliant with FIPS-140. For more information about FIPS-140 compliance, see Federal
Information Processing Standard (FIPS) 140-3.

AWS Fargate FIPS-140 Considerations

Consider the following when using FIPS-140 compliance on Fargate:

• FIPS-140 compliance is only available in the AWS GovCloud (US) Regions.

• Fargate supports FIPS-140 version 140.3

• FIPS-140 compliance is turned off by default. You must turn it on.

• Your tasks must use the following configuration for FIPS-140 compliance:

• The operatingSystemFamily must be LINUX.

• The cpuArchitecture must be X86_64.

• The Fargate platform version must be 1.4.0 or later.

Use FIPS on Fargate

Use the following procedure to use FIPS-140 compliance on Fargate.

1. Turn on FIPS-140 compliance. For more information, see the section called “AWS Fargate
Federal Information Processing Standard (FIPS-140) compliance”.

2. You can optionally use ECS Exec to run the following command to verify the FIPS-140
compliance status for a cluster.

Replace cluster-name with the name of your cluster, task-id with the ID or ARN of your
task, and container-name with the name of the container in your task you want to run the
command against.

AWS Fargate FIPS-140 compliance 1668

https://aws.amazon.com/compliance/fips/
https://aws.amazon.com/compliance/fips/

Amazon Elastic Container Service Developer Guide

A return value of "1" indicates that you are using FIPS.

aws ecs execute-command \
 --cluster cluster-name \
 --task task-id \
 --container container-name \
 --interactive \
 --command "cat /proc/sys/crypto/fips_enabled"

Use CloudTrail for Fargate FIPS-140 auditing

CloudTrail is turned on in your AWS account when you create the account. When API and console
activity occurs in Amazon ECS, that activity is recorded in a CloudTrail event along with other AWS
service events in Event history. You can view, search, and download recent events in your AWS
account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon ECS, create a
trail which CloudTrail uses to deliver log files to an Amazon S3 bucket. By default, when you create
a trail in the console, the trail applies to all regions. The trail logs events from all Regions in the
AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally,
you can configure other AWS services to further analyze and act upon the event data collected in
CloudTrail logs. For more information, see the section called “Log Amazon ECS API calls using AWS
CloudTrail”.

The following example shows a CloudTrail log entry that demonstrates the
PutAccountSettingDefault API action:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAIV5AJI5LXF5EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/jdoe",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIPWIOFC3EXAMPLE",
 },
 "eventTime": "2023-03-01T21:45:18Z",
 "eventSource": "ecs.amazonaws.com",
 "eventName": "PutAccountSettingDefault",

Use CloudTrail for Fargate FIPS-140 auditing 1669

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon Elastic Container Service Developer Guide

 "awsRegion": "us-gov-east-1",
 "sourceIPAddress": "52.94.133.131",
 "userAgent": "aws-cli/2.9.8 Python/3.9.11 Windows/10 exe/AMD64 prompt/off command/
ecs.put-account-setting",
 "requestParameters": {
 "name": "fargateFIPSMode",
 "value": "enabled"
 },
 "responseElements": {
 "setting": {
 "name": "fargateFIPSMode",
 "value": "enabled",
 "principalArn": "arn:aws:iam::123456789012:user/jdoe"
 }
 },
 "requestID": "acdc731e-e506-447c-965d-f5f75EXAMPLE",
 "eventID": "6afced68-75cd-4d44-8076-0beEXAMPLE",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256",
 "clientProvidedHostHeader": "ecs-fips.us-gov-east-1.amazonaws.com"
 }
}

Infrastructure Security in Amazon Elastic Container Service

As a managed service, Amazon Elastic Container Service is protected by AWS global network
security. For information about AWS security services and how AWS protects infrastructure, see
AWS Cloud Security. To design your AWS environment using the best practices for infrastructure
security, see Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Amazon ECS through the network. Clients must support
the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

Infrastructure Security 1670

https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

Amazon Elastic Container Service Developer Guide

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

You can call these API operations from any network location. Amazon ECS supports resource-based
access policies, which can include restrictions based on the source IP address, so make sure that the
policies account for the IP address for the network location. You can also use Amazon ECS policies
to control access from specific Amazon Virtual Private Cloud endpoints or specific VPCs. Effectively,
this isolates network access to a given Amazon ECS resource from only the specific VPC within the
AWS network. For more information, see Amazon ECS interface VPC endpoints (AWS PrivateLink).

Amazon ECS interface VPC endpoints (AWS PrivateLink)

You can improve the security posture of your VPC by configuring Amazon ECS to use an interface
VPC endpoint. Interface endpoints are powered by AWS PrivateLink, a technology that allows you
to privately access Amazon ECS APIs by using private IP addresses. AWS PrivateLink restricts all
network traffic between your VPC and Amazon ECS to the Amazon network. You don't need an
internet gateway, a NAT device, or a virtual private gateway.

For more information about AWS PrivateLink and VPC endpoints, see VPC endpoints in the
Amazon VPC User Guide.

Considerations

Considerations for endpoints in Regions introduced starting on December 23, 2023

Before you set up interface VPC endpoints for Amazon ECS, be aware of the following
considerations:

• You must have the following Region-specific VPC endpoints:

Note

If you do not configure all of the endpoints, your traffic will go over the public endpoints,
not your VPC endpoint.

Interface VPC endpoints (AWS PrivateLink) 1671

https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://docs.aws.amazon.com/vpc/latest/privatelink/concepts.html#concepts-vpc-endpoints

Amazon Elastic Container Service Developer Guide

• com.amazonaws.region.ecs-agent

• com.amazonaws.region.ecs-telemetry

• com.amazonaws.region.ecs

For example, the Canada West (Calgary) (ca-west-1) Region needs the following VPC endpoints:

• com.amazonaws.ca-west-1.ecs-agent

• com.amazonaws.ca-west-1.ecs-telemetry

• com.amazonaws.ca-west-1.ecs

• When you use a template to create AWS resources in the new Region and the template was
copied from a Region introduced before December 23, 2023, depending on the copy-from
Region, perform one of the following operations.

For example, the copy-from Region is US East (N. Virginia) (us-east-1). The copy-to Region is
Canada West (Calgary) (ca-west-1) .

Configuration Action

The copied-from Region does
not have any VPC endpoints.

Create all three VPC
endpoints for the new
Region (for example,
com.amazonaws.ca-w
est-1.ecs-agent).

The copied-from Region
contains Region-specific VPC
endpoints.

a. Create all three VPC
endpoints for the new
Region (for example,
com.amazonaws.ca-w
est-1.ecs-agent).

b. Delete all three VPC
endpoints for the copy-
from Region (for example,
com.amazonaws.us-e
ast-1.ecs-agent).

Interface VPC endpoints (AWS PrivateLink) 1672

Amazon Elastic Container Service Developer Guide

Considerations for Amazon ECS VPC endpoints for the Fargate launch type

When there is an VPC endpoint for ecr.dkr and ecr.api in the same VPC where a Fargate task
is deployed into, it will use the VPC endpoint. If there is no VPC endpoint, it will use the Fargate
interface.

Before you set up interface VPC endpoints for Amazon ECS, be aware of the following
considerations:

• Tasks using the Fargate launch type don't require the interface VPC endpoints for Amazon ECS,
but you might need interface VPC endpoints for Amazon ECR, Secrets Manager, or Amazon
CloudWatch Logs described in the following points.

• To allow your tasks to pull private images from Amazon ECR, you must create the interface
VPC endpoints for Amazon ECR. For more information, see Interface VPC Endpoints (AWS
PrivateLink) in the Amazon Elastic Container Registry User Guide.

Important

If you configure Amazon ECR to use an interface VPC endpoint, you can create a task
execution role that includes condition keys to restrict access to a specific VPC or VPC
endpoint. For more information, see Fargate tasks pulling Amazon ECR images over
interface endpoints permissions.

• To allow your tasks to pull sensitive data from Secrets Manager, you must create the interface
VPC endpoints for Secrets Manager. For more information, see Using Secrets Manager with
VPC Endpoints in the AWS Secrets Manager User Guide.

• If your VPC doesn't have an internet gateway and your tasks use the awslogs log driver to
send log information to CloudWatch Logs, you must create an interface VPC endpoint for
CloudWatch Logs. For more information, see Using CloudWatch Logs with Interface VPC
Endpoints in the Amazon CloudWatch Logs User Guide.

• VPC endpoints currently don't support cross-Region requests. Ensure that you create your
endpoint in the same Region where you plan to issue your API calls to Amazon ECS. For example,
assume that you want to run tasks in US East (N. Virginia). Then, you must create the Amazon
ECS VPC endpoint in US East (N. Virginia). An Amazon ECS VPC endpoint created in any other
region can't run tasks in US East (N. Virginia).

Interface VPC endpoints (AWS PrivateLink) 1673

https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch-logs-and-interface-VPC.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch-logs-and-interface-VPC.html

Amazon Elastic Container Service Developer Guide

• VPC endpoints only support Amazon-provided DNS through Amazon Route 53. If you want to
use your own DNS, you can use conditional DNS forwarding. For more information, see DHCP
Options Sets in the Amazon VPC User Guide.

• The security group attached to the VPC endpoint must allow incoming connections on TCP port
443 from the private subnet of the VPC.

• Service Connect management of the Envoy proxy uses the com.amazonaws.region.ecs-
agent VPC endpoint. When you don't use the VPC endpoints, Service Connect management
of the Envoy proxy uses the ecs-sc endpoint in that Region. For a list of the Amazon ECS
endpoints in each Region, see Amazon ECS endpoints and quotas.

Considerations for Amazon ECS VPC endpoints for the EC2 launch type

Before you set up interface VPC endpoints for Amazon ECS, be aware of the following
considerations:

• Tasks using the EC2 launch type require that the container instances that they're launched on
to run version 1.25.1 or later of the Amazon ECS container agent. For more information, see
Amazon ECS Linux container instance management.

• To allow your tasks to pull sensitive data from Secrets Manager, you must create the interface
VPC endpoints for Secrets Manager. For more information, see Using Secrets Manager with VPC
Endpoints in the AWS Secrets Manager User Guide.

• If your VPC doesn't have an internet gateway and your tasks use the awslogs log driver to send
log information to CloudWatch Logs, you must create an interface VPC endpoint for CloudWatch
Logs. For more information, see Using CloudWatch Logs with Interface VPC Endpoints in the
Amazon CloudWatch Logs User Guide.

• VPC endpoints currently don't support cross-Region requests. Ensure that you create your
endpoint in the same Region where you plan to issue your API calls to Amazon ECS. For example,
assume that you want to run tasks in US East (N. Virginia). Then, you must create the Amazon
ECS VPC endpoint in US East (N. Virginia). An Amazon ECS VPC endpoint created in any other
Region can't run tasks in US East (N. Virginia).

• VPC endpoints only support Amazon-provided DNS through Amazon Route 53. If you want to
use your own DNS, you can use conditional DNS forwarding. For more information, see DHCP
Options Sets in the Amazon VPC User Guide.

• The security group attached to the VPC endpoint must allow incoming connections on TCP port
443 from the private subnet of the VPC.

Interface VPC endpoints (AWS PrivateLink) 1674

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/general/latest/gr/ecs-service.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch-logs-and-interface-VPC.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html

Amazon Elastic Container Service Developer Guide

Understanding Amazon ECS endpoint naming patterns

It's important to understand that the Amazon ECS agent may make requests to endpoints with
numbered suffixes, such as:

• ecs-a-1.region.amazonaws.com, ecs-a-2.region.amazonaws.com, etc. for agent
endpoints

• ecs-t-1.region.amazonaws.com, ecs-t-2.region.amazonaws.com, etc. for telemetry
endpoints

This behavior occurs because the Amazon ECS agent uses the DiscoverPollEndpoint API to
dynamically determine which specific endpoint to connect to. If your VPC endpoints don't properly
handle these numbered endpoint variations, the agent will fall back to using public endpoints,
even if you've configured VPC endpoints for the base names.

The role of DiscoverPollEndpoint API

The DiscoverPollEndpoint API is used by the Amazon ECS agent to discover the appropriate
endpoint to poll for tasks. When the agent calls this API, it receives a specific endpoint URL that
may include a numbered suffix. To ensure your VPC endpoints work correctly, your network
configuration must allow the agent to:

1. Access the DiscoverPollEndpoint API

2. Connect to the returned endpoint URLs, including those with numbered suffixes

If you're troubleshooting VPC endpoint connectivity issues, verify that your agent can
reach both the base endpoints and any numbered variations that might be returned by the
DiscoverPollEndpoint API.

Creating the VPC Endpoints for Amazon ECS

To create the VPC endpoint for the Amazon ECS service, use the Access an AWS service using an
interface VPC endpoint procedure in the Amazon VPC User Guide to create the following endpoints.
If you have existing container instances within your VPC, you should create the endpoints in the
order that they're listed. If you plan on creating your container instances after your VPC endpoint is
created, the order doesn't matter.

Interface VPC endpoints (AWS PrivateLink) 1675

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DiscoverPollEndpoint.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DiscoverPollEndpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint

Amazon Elastic Container Service Developer Guide

Note

If you do not configure all of the endpoints, your traffic will go over the public endpoints,
not your VPC endpoint.
When you create endpoints, Amazon ECS also creates a private DNS name for the
endpoint. For example, ecs-a.region.amazonaws.com for ecs-agent and ecs-
t.region.amazonaws.com for ecs-telemetry.

• com.amazonaws.region.ecs-agent

• com.amazonaws.region.ecs-telemetry

• com.amazonaws.region.ecs

Note

region represents the Region identifier for an AWS Region supported by Amazon ECS,
such as us-east-2 for the US East (Ohio) Region.

The ecs-agent endpoint uses the ecs:poll API, and the ecs-telemetry endpoint uses the
ecs:poll and ecs:StartTelemetrySession API.

If you have existing tasks that are using the EC2 launch type, after you have created the VPC
endpoints, each container instance needs to pick up the new configuration. For this to happen, you
must either reboot each container instance or restart the Amazon ECS container agent on each
container instance. To restart the container agent, do the following.

To restart the Amazon ECS container agent

1. Log in to your container instance via SSH.

2. Stop the container agent.

sudo docker stop ecs-agent

3. Start the container agent.

sudo docker start ecs-agent

Interface VPC endpoints (AWS PrivateLink) 1676

Amazon Elastic Container Service Developer Guide

After you have created the VPC endpoints and restarted the Amazon ECS container agent on each
container instance, all newly launched tasks pick up the new configuration.

Creating a VPC endpoint policy for Amazon ECS

You can attach an endpoint policy to your VPC endpoint that controls access to Amazon ECS. The
policy specifies the following information:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: VPC endpoint policy for Amazon ECS actions

The following is an example of an endpoint policy for Amazon ECS. When attached to an endpoint,
this policy grants access to permission to create and list clusters. The CreateCluster and
ListClusters actions do not accept any resources, so the resource definition is set to * for all
resources.

{
 "Statement":[
 {
 "Principal":"*",
 "Effect": "Allow",
 "Action": [
 "ecs:CreateCluster",
 "ecs:ListClusters"
],
 "Resource": [
 "*"
]
 }
]
}

Interface VPC endpoints (AWS PrivateLink) 1677

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

Amazon Elastic Container Service Developer Guide

AWS shared responsibility model for Amazon ECS

Security and Compliance is a shared responsibility between AWS and the customer. This shared
model can help relieve the customer’s operational burden as AWS operates, manages and controls
the components from the host operating system and virtualization layer down to the physical
security of the facilities in which the service operates. The customer assumes responsibility and
management of the guest operating system (including updates and security patches), other
associated application software as well as the configuration of the AWS provided security group
firewall. Customers should carefully consider the services they choose as their responsibilities vary
depending on the services used, the integration of those services into their IT environment, and
applicable laws and regulations. The nature of this shared responsibility also provides the flexibility
and customer control that permits the deployment.

Fargate launch type

The following illustration shows the shared responsibility model for the Fargate launch type.
Fargate runs each workload in an isolated hardware virtualized environment. As a result, each task
gets dedicated infrastructure capacity. Containerized workloads running on Fargate do not share an
operating system, Linux kernel, network interface, ephemeral storage, CPU, or memory with other
tasks. When using Fargate, customers are not responsible for securing the compute infrastructure
that runs their containers. Fargate will provision and patch the infrastructure upon which customer
workloads run. For more information, see Task retirement and maintenance for AWS Fargate on
Amazon ECS .

You are responsible for managing the following resources:

• Network configuration including VPC, NACLs, security groups, and route tables

• Client and service storage encryption. For more information, see Storage options for Amazon
ECS tasks.

• Container images. For more information, see Amazon ECS task and container security best
practices.

• IAM permissions for the applications by using the task role. For more information, see Amazon
ECS task IAM role.

Shared responsibility model 1678

Amazon Elastic Container Service Developer Guide

EC2 launch type

The following illustration shows the shared responsibility for the EC2 launch type. When you run
tasks on EC2 instances you are responsible for maintaining your EC2 instances in addition to the
following resources:

• The Amazon ECS agent.

• • The EC2 instance AMI, including patching and hardening.

• Network configuration including VPC, NACLs, security groups, and route tables.

• Client and service storage encryption. For more information, see Storage options for Amazon
ECS tasks.

• Container images. For more information, see Amazon ECS task and container security best
practices.

• IAM permissions for the applications by using the task role. For more information, see Amazon
ECS task IAM role.

EC2 launch type 1679

Amazon Elastic Container Service Developer Guide

Network security best practices for Amazon ECS

Network security is a broad topic that encompasses several subtopics. These include encryption-in-
transit, network segmentation and isolation, firewalling, traffic routing, and observability.

Encryption in transit

Encrypting network traffic prevents unauthorized users from intercepting and reading data
when that data is transmitted across a network. With Amazon ECS, network encryption can be
implemented in any of the following ways.

• Using Nitro instances:

By default, traffic is automatically encrypted between the following Nitro instance types: C5n,
G4, I3en, M5dn, M5n, P3dn, R5dn, and R5n. Traffic isn't encrypted when it's routed through a
transit gateway, load balancer, or similar intermediary.

• Encryption in transit

• What's new announcement from 2019

• This talk from re:Inforce 2019

• Using Server Name Indication (SNI) with an Application Load Balancer:

Network security best practices 1680

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/data-protection.html#encryption-transit
https://aws.amazon.com/about-aws/whats-new/2019/10/introducing-amazon-ec2-m5n-m5dn-r5n-and-r5dn-instances-featuring-100-gbps-of-network-bandwidth/
https://youtu.be/oqHLLbOoxDg?si=Us1YhSiY4deXLFA7

Amazon Elastic Container Service Developer Guide

The Application Load Balancer (ALB) and Network Load Balancer (NLB) support Server Name
Indication (SNI). By using SNI, you can put multiple secure applications behind a single listener.
For this, each has its own TLS certificate. We recommend that you provision certificates for
the load balancer using AWS Certificate Manager (ACM) and then add them to the listener's
certificate list. The AWS load balancer uses a smart certificate selection algorithm with SNI. If
the hostname that's provided by a client matches a single certificate in the certificate list, the
load balancer chooses that certificate. If a hostname that's provided by a client matches multiple
certificates in the list, the load balancer selects a certificate that the client can support. Examples
include self-signed certificate or a certificate generated through the ACM.

• SNI with Application Load Balancer

• SNI with Network Load Balancer

• End-to-end encryption with TLS certificates:

This involves deploying a TLS certificate with the task. This can either be a self-signed certificate
or a certificate from a trusted certificate authority. You can obtain the certificate by referencing
a secret for the certificate. Otherwise, you can choose to run a container that issues a Certificate
Signing Request (CSR) to ACM and then mounts the resulting secret to a shared volume.

• Maintaining transport layer security all the way to your containers using the Network Load
Balancer with Amazon ECS part 1

• Maintaining Transport Layer Security (TLS) all the way to your container part 2: Using AWS
Private Certificate Authority

Task networking

The following recommendations are in consideration of how Amazon ECS works. Amazon ECS
doesn't use an overlay network. Instead, tasks are configured to operate in different network
modes. For example, tasks that are configured to use bridge mode acquire a non-routable IP
address from a Docker network that runs on each host. Tasks that are configured to use the
awsvpc network mode acquire an IP address from the subnet of the host. Tasks that are configured
with host networking use the host's network interface. awsvpc is the preferred network mode.
This is because it's the only mode that you can use to assign security groups to tasks. It's also the
only mode that's available for AWS Fargate tasks on Amazon ECS.

Task networking 1681

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-https-listener.html#https-listener-certificates
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/create-listener.html
https://aws.amazon.com/blogs/compute/maintaining-transport-layer-security-all-the-way-to-your-container-using-the-network-load-balancer-with-amazon-ecs/
https://aws.amazon.com/blogs/compute/maintaining-transport-layer-security-all-the-way-to-your-container-using-the-network-load-balancer-with-amazon-ecs/
https://aws.amazon.com/blogs/compute/maintaining-transport-layer-security-all-the-way-to-your-container-part-2-using-aws-certificate-manager-private-certificate-authority/
https://aws.amazon.com/blogs/compute/maintaining-transport-layer-security-all-the-way-to-your-container-part-2-using-aws-certificate-manager-private-certificate-authority/

Amazon Elastic Container Service Developer Guide

Security groups for tasks

We recommend that you configure your tasks to use the awsvpc network mode. After you
configure your task to use this mode, the Amazon ECS agent automatically provisions and attaches
an Elastic Network Interface (ENI) to the task. When the ENI is provisioned, the task is enrolled
in an AWS security group. The security group acts as a virtual firewall that you can use to control
inbound and outbound traffic.

If you use a custom firewall with tasks or services, add an outbound rule to allow traffic for the
Amazon ECS agent management endpoints ("ecs-a-*.region.amazonaws.com"), telemetry
endpoints ("ecs-t-*.region.amazonaws.com"), and the Service Connect Envoy management
endpoints ("ecs-sc.region.api.aws").

AWS PrivateLink and Amazon ECS

AWS PrivateLink is a networking technology that allows you to create private endpoints for
different AWS services, including Amazon ECS. The endpoints are required in sandboxed
environments where there is no Internet Gateway (IGW) attached to the Amazon VPC and no
alternative routes to the Internet. Using AWS PrivateLink ensures that calls to the Amazon ECS
service stay within the Amazon VPC and do not traverse the internet. For instructions on how to
create AWS PrivateLink endpoints for Amazon ECS and other related services, see Amazon ECS
interface Amazon VPC endpoints.

Important

AWS Fargate tasks don't require an AWS PrivateLink endpoint for Amazon ECS.

Amazon ECR and Amazon ECS both support endpoint policies. These policies allow you to refine
access to a service's APIs. For example, you could create an endpoint policy for Amazon ECR that
only allows images to be pushed to registries in particular AWS accounts. A policy like this could be
used to prevent data from being exfiltrated through container images while still allowing users to
push to authorized Amazon ECR registries. For more information, see Use VPC endpoint policies.

The following policy allows all AWS principals in your account to perform all actions against only
your Amazon ECR repositories:

{

AWS PrivateLink and Amazon ECS 1682

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html#vpc-endpoint-policies

Amazon Elastic Container Service Developer Guide

 "Statement": [
 {
 "Sid": "LimitECRAccess",
 "Principal": "*",
 "Action": "*",
 "Effect": "Allow",
 "Resource": "arn:aws:ecr:region:account_id:repository/*"
 },
]
}

You can enhance this further by setting a condition that uses the new PrincipalOrgID property.
This prevents pushing and pulling of images by an IAM principal that isn't part of your AWS
Organizations. For more information, see aws:PrincipalOrgID.

We recommended applying the same policy to both the com.amazonaws.region.ecr.dkr and
the com.amazonaws.region.ecr.api endpoints.

Container agent settings

The Amazon ECS container agent configuration file includes several environment
variables that relate to network security. ECS_AWSVPC_BLOCK_IMDS and
ECS_ENABLE_TASK_IAM_ROLE_NETWORK_HOST are used to block a task's access to Amazon EC2
metadata. HTTP_PROXY is used to configure the agent to route through a HTTP proxy to connect
to the internet. For instructions on configuring the agent and the Docker runtime to route through
a proxy, see HTTP Proxy Configuration.

Important

These settings aren't available when you use AWS Fargate.

Network security recommendations

We recommend that you do the following when setting up your Amazon VPC, load balancers, and
network.

Container agent settings 1683

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principalorgid
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/http_proxy_config.html

Amazon Elastic Container Service Developer Guide

Use network encryption where applicable with Amazon ECS

You should use network encryption where applicable. Certain compliance programs, such as PCI
DSS, require that you encrypt data in transit if the data contains cardholder data. If your workload
has similar requirements, configure network encryption.

Modern browsers warn users when connecting to insecure sites. If your service is fronted by a
public facing load balancer, use TLS/SSL to encrypt the traffic from the client's browser to the load
balancer and re-encrypt to the backend if warranted.

Use awsvpc network mode and security groups to control traffic between tasks
and other resources in Amazon ECS

You should use awsvpc network mode and security groups when you need to control traffic
between tasks and between tasks and other network resources. If your service is behind an ALB,
use security groups to only allow inbound traffic from other network resources using the same
security group as your ALB. If your application is behind an NLB, configure the task's security group
to only allow inbound traffic from the Amazon VPC CIDR range and the static IP addresses assigned
to the NLB.

Security groups should also be used to control traffic between tasks and other resources within the
Amazon VPC such as Amazon RDS databases.

Create Amazon ECS clusters in separate Amazon VPCs when network traffic needs
to be strictly isolated

You should create clusters in separate Amazon VPCs when network traffic needs to be strictly
isolated. Avoid running workloads that have strict security requirements on clusters with workloads
that don't have to adhere to those requirements. When strict network isolation is mandatory,
create clusters in separate Amazon VPCs and selectively expose services to other Amazon VPCs
using Amazon VPC endpoints. For more information, see VPC endpoints.

Configure AWS PrivateLink endpoints when warranted for Amazon ECS

You should configure AWS PrivateLink endpoints when warranted. If your security policy prevents
you from attaching an Internet Gateway (IGW) to your Amazon VPCs, configure AWS PrivateLink
endpoints for Amazon ECS and other services such as Amazon ECR, AWS Secrets Manager, and
Amazon CloudWatch.

Network security recommendations 1684

https://docs.aws.amazon.com/vpc/latest/privatelink/concepts.html#concepts-vpc-endpoints

Amazon Elastic Container Service Developer Guide

Use Amazon VPC Flow Logs to analyze the traffic to and from long-running tasks
in Amazon ECS

You should use Amazon VPC Flow Logs to analyze the traffic to and from long-running tasks. Tasks
that use awsvpc network mode get their own ENI. Doing this, you can monitor traffic that goes to
and from individual tasks using Amazon VPC Flow Logs. A recent update to Amazon VPC Flow Logs
(v3), enriches the logs with traffic metadata including the vpc ID, subnet ID, and the instance ID.
This metadata can be used to help narrow an investigation. For more information, see Amazon VPC
Flow Logs.

Note

Because of the temporary nature of containers, flow logs might not always be an effective
way to analyze traffic patterns between different containers or containers and other
network resources.

Amazon ECS task and container security best practices

You should consider the container image as your first line of defense against an attack. An insecure,
poorly constructed image can allow an attacker to escape the bounds of the container and gain
access to the host. You should do the following to mitigate the risk of this happening.

We recommend that you do the following when setting up your tasks and containers.

Create minimal or use distroless images

Start by removing all extraneous binaries from the container image. If you’re using an unfamiliar
image from Amazon ECR Public Gallery, inspect the image to refer to the contents of each of the
container's layers. You can use an application such as Dive to do this.

Alternatively, you can use distroless images that only include your application and its runtime
dependencies. They don't contain package managers or shells. Distroless images improve the
"signal to noise of scanners and reduces the burden of establishing provenance to just what you
need." For more information, see the GitHub documentation on distroless.

Docker has a mechanism for creating images from a reserved, minimal image known as scratch. For
more information, see Creating a simple parent image using scratch in the Docker documentation.

Task and container security best practices 1685

https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-basics
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-basics
https://github.com/wagoodman/dive
https://github.com/GoogleContainerTools/distroless
https://docs.docker.com/develop/develop-images/baseimages/#create-a-simple-parent-image-using-scratch

Amazon Elastic Container Service Developer Guide

With languages like Go, you can create a static linked binary and reference it in your Dockerfile. The
following example shows how you can accomplish this.

############################
STEP 1 build executable binary
############################
FROM golang:alpine AS builder
Install git.
Git is required for fetching the dependencies.
RUN apk update && apk add --no-cache git
WORKDIR $GOPATH/src/mypackage/myapp/
COPY . .
Fetch dependencies.
Using go get.
RUN go get -d -v
Build the binary.
RUN go build -o /go/bin/hello
############################
STEP 2 build a small image
############################
FROM scratch
Copy our static executable.
COPY --from=builder /go/bin/hello /go/bin/hello
Run the hello binary.
ENTRYPOINT ["/go/bin/hello"]
This creates a container image that consists of your application and nothing else,
 making it extremely secure.

The previous example is also an example of a multi-stage build. These types of builds are attractive
from a security standpoint because you can use them to minimize the size of the final image
pushed to your container registry. Container images devoid of build tools and other extraneous
binaries improves your security posture by reducing the attack surface of the image. For more
information about multi-stage builds, see Multi-stage builds in the Docker documentation.

Scan your images for vulnerabilities

Similar to their virtual machine counterparts, container images can contain binaries and application
libraries with vulnerabilities or develop vulnerabilities over time. The best way to safeguard against
exploits is by regularly scanning your images with an image scanner.

Amazon ECR provides two versions of basic scanning that use the Common Vulnerabilities and
Exposures (CVEs) database:

Scan your images for vulnerabilities 1686

https://docs.docker.com/build/building/multi-stage/

Amazon Elastic Container Service Developer Guide

• AWS native basic scanning – Uses AWS native technology, which is now GA and recommended.
This improved basic scanning is designed to provide customers with better scanning results and
vulnerability detection across a broad set of popular operating systems. This allows customers to
further strengthen the security of their container images. All new customer registries are opted
into this improved version by default.

• Clair basic scanning – The previous basic scanning version which uses the open-source Clair
project and is deprecated. For more information about Clair, see Clair on GitHub.

Both AWS native and Clair basic scanning are supported in all regions listed in AWS Services
by Region, except for those that were added after September, 2024. Because Clair support is
deprecated, Clair will not be supported in new regions as they are added and will no longer be
supported in all regions as of October 1, 2025.

Amazon ECR uses the severity for a CVE from the upstream distribution source if available.
Otherwise, the Common Vulnerability Scoring System (CVSS) score is used. The CVSS score can be
used to obtain the NVD vulnerability severity rating. For more information, see NVD Vulnerability
Severity Ratings.

You can also see the results of a scan from within the Amazon ECR console or by calling the
DescribeImageScanFindings API. Images with a HIGH or CRITICAL vulnerability should be deleted
or rebuilt. If an image that has been deployed develops a vulnerability, it should be replaced as
soon as possible.

Docker Desktop Edge version 2.3.6.0 or later can scan local images. The scans are powered by Snyk,
an application security service. When vulnerabilities are discovered, Snyk identifies the layers and
dependencies with the vulnerability in the Dockerfile. It also recommends safe alternatives like
using a slimmer base image with fewer vulnerabilities or upgrading a particular package to a newer
version. By using Docker scan, developers can resolve potential security issues before pushing their
images to the registry.

• Automating image compliance using Amazon ECR and AWS Security Hub explains how to surface
vulnerability information from Amazon ECR in AWS Security Hub and automate remediation by
blocking access to vulnerable images.

Scan your images for vulnerabilities 1687

https://github.com/quay/clair
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://docs.aws.amazon.com/AmazonECR/latest/APIReference/API_DescribeImageScanFindings.html
https://www.docker.com/products/docker-desktop/
https://docs.docker.com/engine/scan/
https://snyk.io/
https://aws.amazon.com/blogs/containers/automating-image-compliance-for-amazon-eks-using-amazon-elastic-container-registry-and-aws-security-hub/

Amazon Elastic Container Service Developer Guide

Remove special permissions from your images

The access rights flags setuid and setgid allow running an executable with the permissions of
the owner or group of the executable. Remove all binaries with these access rights from your image
as these binaries can be used to escalate privileges. Consider removing all shells and utilities like nc
and curl that can be used for malicious purposes. You can find the files with setuid and setgid
access rights by using the following command.

find / -perm /6000 -type f -exec ls -ld {} \;

To remove these special permissions from these files, add the following directive to your container
image.

RUN find / -xdev -perm /6000 -type f -exec chmod a-s {} \; || true

Create a set of curated images

Rather than allowing developers to create their own images, create a set of vetted images for
the different application stacks in your organization. By doing so, developers can forego learning
how to compose Dockerfiles and concentrate on writing code. As changes are merged into your
codebase, a CI/CD pipeline can automatically compile the asset and then store it in an artifact
repository. And, last, copy the artifact into the appropriate image before pushing it to a Docker
registry such as Amazon ECR. At the very least you should create a set of base images that
developers can create their own Dockerfiles from. You should avoid pulling images from Docker
Hub. You don't always know what is in the image and about a fifth of the top 1000 images
have vulnerabilities. A list of those images and their vulnerabilities can be found at https://
vulnerablecontainers.org/.

Scan application packages and libraries for vulnerabilities

Use of open source libraries is now common. As with operating systems and OS packages, these
libraries can have vulnerabilities . As part of the development lifecycle these libraries should be
scanned and updated when critical vulnerabilities are found.

Docker Desktop performs local scans using Snyk. It can also be used to find vulnerabilities and
potential licensing issues in open source libraries. It can be integrated directly into developer

Remove special permissions from your images 1688

https://vulnerablecontainers.org/
https://vulnerablecontainers.org/

Amazon Elastic Container Service Developer Guide

workflows giving you the ability to mitigate risks posed by open source libraries. For more
information, see the following topics:

• Open Source Application Security Tools includes a list of tools for detecting vulnerabilities in
applications.

Perform static code analysis

You should perform static code analysis before building a container image. It's performed against
your source code and is used to identify coding errors and code that could be exploited by a
malicious actor, such as fault injections. You can use Amazon Inspector. For more information,
see Scanning Amazon ECR container images with Amazon Inspector in the Amazon Inspector User
Guide.

Run containers as a non-root user

You should run containers as a non-root user. By default, containers run as the root user unless
the USER directive is included in your Dockerfile. The default Linux capabilities that are assigned by
Docker restrict the actions that can be run as root, but only marginally. For example, a container
running as root is still not allowed to access devices.

As part of your CI/CD pipeline you should lint Dockerfiles to look for the USER directive and fail the
build if it's missing. For more information, see the following topics:

• Dockerfile-lint is an open-source tool from RedHat that can be used to check if the file conforms
to best practices.

• Hadolint is another tool for building Docker images that conform to best practices.

Use a read-only root file system

You should use a read-only root file system. A container's root file system is writable by default.
When you configure a container with a RO (read-only) root file system it forces you to explicitly
define where data can be persisted. This reduces your attack surface because the container's file
system can't be written to unless permissions are specifically granted.

Perform static code analysis 1689

https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://docs.aws.amazon.com/inspector/latest/user/scanning-ecr.html
https://github.com/projectatomic/dockerfile_lint
https://github.com/hadolint/hadolint

Amazon Elastic Container Service Developer Guide

Note

Having a read-only root file system can cause issues with certain OS packages that expect
to be able to write to the filesystem. If you're planning to use read-only root file systems,
thoroughly test beforehand.

Configure tasks with CPU and Memory limits (Amazon EC2)

You should configure tasks with CPU and memory limits to minimize the following risk. A task's
resource limits set an upper bound for the amount of CPU and memory that can be reserved by all
the containers within a task. If no limits are set, tasks have access to the host's CPU and memory.
This can cause issues where tasks deployed on a shared host can starve other tasks of system
resources.

Note

Amazon ECS on AWS Fargate tasks require you to specify CPU and memory limits because
it uses these values for billing purposes. One task hogging all of the system resources isn't
an issue for Amazon ECS Fargate because each task is run on its own dedicated instance.
If you don't specify a memory limit, Amazon ECS allocates a minimum of 4MB to each
container. Similarly, if no CPU limit is set for the task, the Amazon ECS container agent
assigns it a minimum of 2 CPUs.

Use immutable tags with Amazon ECR

With Amazon ECR, you can and should use configure images with immutable tags. This prevents
pushing an altered or updated version of an image to your image repository with an identical tag.
This protects against an attacker pushing a compromised version of an image over your image with
the same tag. By using immutable tags, you effectively force yourself to push a new image with a
different tag for each change.

Avoid running containers as privileged (Amazon EC2)

You should avoid running containers as privileged. For background, containers run as privileged
are run with extended privileges on the host. This means the container inherits all of the Linux

Configure tasks with CPU and Memory limits (Amazon EC2) 1690

Amazon Elastic Container Service Developer Guide

capabilities assigned to root on the host. It's use should be severely restricted or forbidden. We
advise setting the Amazon ECS container agent environment variable ECS_DISABLE_PRIVILEGED
to true to prevent containers from running as privileged on particular hosts if privileged
isn't needed. Alternatively you can use AWS Lambda to scan your task definitions for the use of the
privileged parameter.

Note

Running a container as privileged isn't supported on Amazon ECS on AWS Fargate.

Remove unnecessary Linux capabilities from the container

The following is a list of the default Linux capabilities assigned to Docker containers. For more
information about each capability, see Overview of Linux Capabilities.

CAP_CHOWN, CAP_DAC_OVERRIDE, CAP_FOWNER, CAP_FSETID, CAP_KILL,
CAP_SETGID, CAP_SETUID, CAP_SETPCAP, CAP_NET_BIND_SERVICE,
CAP_NET_RAW, CAP_SYS_CHROOT, CAP_MKNOD, CAP_AUDIT_WRITE,
CAP_SETFCAP

If a container doesn't require all of the Docker kernel capabilities listed above, consider dropping
them from the container. For more information about each Docker kernel capability, see
KernelCapabilities. You can find out which capabilities are in use by doing the following:

• Install the OS package libcap-ng and run the pscap utility to list the capabilities that each
process is using.

• You can also use capsh to decipher which capabilities a process is using.

Use a customer managed key (CMK) to encrypt images pushed to
Amazon ECR

You should use a customer managed key (CMK) to encrypt images that are pushed to Amazon
ECR. Images that are pushed to Amazon ECR are automatically encrypted at rest with a AWS Key
Management Service (AWS KMS) managed key. If you would rather use your own key, Amazon ECR
now supports AWS KMS encryption with customer managed keys (CMK). Before enabling server

Remove unnecessary Linux capabilities from the container 1691

https://man7.org/linux/man-pages/man7/capabilities.7.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_KernelCapabilities.html
https://people.redhat.com/sgrubb/libcap-ng
https://www.man7.org/linux/man-pages/man1/capsh.1.html

Amazon Elastic Container Service Developer Guide

side encryption with a CMK, review the Considerations listed in the documentation on encryption
at rest.

Use a customer managed key (CMK) to encrypt images pushed to Amazon ECR 1692

https://docs.aws.amazon.com/AmazonECR/latest/userguide/encryption-at-rest.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/encryption-at-rest.html

Amazon Elastic Container Service Developer Guide

Tutorials for Amazon ECS

The following tutorials show you how to perform common tasks when using Amazon ECS.

You can use any of the following tutorials to learn more about getting started with Amazon ECS.

Tutorial overview Learn more

Get started with Amazon ECS
on Fargate.

Learn how to create an
Amazon ECS Linux task for
the Fargate launch type

Get started with Windows
containers on Fargate.

Learn how to create an
Amazon ECS Windows task
for the Fargate launch type

Get started with Windows
containers for the EC2 launch
type.

Learn how to create an
Amazon ECS Windows task
for the EC2 launch type

You can use any of the following tutorials to deploy tasks on Amazon ECS using the AWS CLI

Tutorial overview Learn more

Create a Linux task for the
Fargate launch type.

Creating an Amazon ECS
Linux task for the Fargate
launch type with the AWS CLI

Create a Windows task for the
Fargate launch type.

Creating an Amazon ECS
Windows task for the Fargate
launch type with the AWS CLI

Create a Linux task for the
EC2 launch type.

Creating an Amazon ECS task
for the EC2 launch type with
the AWS CLI

1693

Amazon Elastic Container Service Developer Guide

You can use any of the following tutorials to learn more about monitoring and logging.

Tutorial overview Learn more

Set up a simple Lambda
function that listens for task
events and writes them out
to a CloudWatch Logs log
stream.

Configuring Amazon ECS to
listen for CloudWatch Events
events

Configure an Amazon
EventBridge event rule that
only captures task events
where the task has stopped
running because one of its
essential containers has
terminated.

Sending Amazon Simple
Notification Service alerts for
Amazon ECS task stopped
events

Concatenate log messages
that originally belong to one
context but were split across
multiple records or log lines.

Concatenating multiline or
stack-trace Amazon ECS log
messages

Deploy Fluent Bit containers
on their Windows instances
running in Amazon ECS to
stream logs generated by the
Windows tasks to Amazon
CloudWatch for centralized
logging.

Deploying Fluent Bit on
Amazon ECS Windows
containers

You can use any of the following tutorials to learn more about how to use Active Directory
authentication with group Managed Service Account on Amazon ECS.

1694

Amazon Elastic Container Service Developer Guide

Tutorial overview Learn more

Use group Managed Service
Account with Linux containers
on EC2.

Using gMSA for EC2 Linux
containers on Amazon ECS

Use group Managed Service
Account with Windows
containers on EC2.

Learn how to use gMSAs for
EC2 Windows containers for
Amazon ECS

Use group Managed Service
Account with Linux containers
on Fargate.

Using gMSA for Linux
containers on Fargate

Create a task that runs a
Windows container that has
credentials to access Active
Directory with domainles
s group Managed Service
Account.

Using Amazon ECS Windows
containers with domainless
gMSA using the AWS CLI

Creating an Amazon ECS Linux task for the Fargate launch type
with the AWS CLI

The following steps help you set up a cluster, register a task definition, run a Linux task, and
perform other common scenarios in Amazon ECS with the AWS CLI. Use the latest version of the
AWS CLI. For more information on how to upgrade to the latest version, see Installing or updating
to the latest version of the AWS CLI.

Note

You can use dual-stack service endpoints to interact with Amazon ECS from the AWS CLI,
SDKs, and the Amazon ECS API over both IPv4 and IPv6. For more information, see Using
Amazon ECS dual-stack endpoints.

Creating a Linux task for the Fargate launch type with the AWS CLI 1695

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon Elastic Container Service Developer Guide

Topics

• Prerequisites

• Step 1: Create a Cluster

• Step 2: Register a Linux Task Definition

• Step 3: List Task Definitions

• Step 4: Create a Service

• Step 5: List Services

• Step 6: Describe the Running Service

• Step 7: Test

• Step 8: Clean Up

Prerequisites

This tutorial assumes that the following prerequisites have been completed.

• The latest version of the AWS CLI is installed and configured. For more information about
installing or upgrading your AWS CLI, Installing or updating to the latest version of the AWS CLI.

• The steps in Set up to use Amazon ECS have been completed.

• Your IAM user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• You have a VPC and security group created to use. This tutorial uses a container image hosted
on Amazon ECR Public so your task must have internet access. To give your task a route to the
internet, use one of the following options.

• Use a private subnet with a NAT gateway that has an elastic IP address.

• Use a public subnet and assign a public IP address to the task.

For more information, see the section called “Create a virtual private cloud”.

For information about security groups and rules, see, Default security groups for your VPCs and
Example rules in the Amazon Virtual Private Cloud User Guide.

• If you follow this tutorial using a private subnet, you can use Amazon ECS Exec to directly
interact with your container and test the deployment. You will need to create a task IAM role to
use ECS Exec. For more information on the task IAM role and other prerequisites, see Monitor
Amazon ECS containers with Amazon ECS Exec.

Prerequisites 1696

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#DefaultSecurityGroup
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#security-group-rule-examples
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-exec.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-exec.html

Amazon Elastic Container Service Developer Guide

• (Optional) AWS CloudShell is a tool that gives customers a command line without needing to
create their own EC2 instance. For more information, see What is AWS CloudShell? in the AWS
CloudShell User Guide.

Step 1: Create a Cluster

By default, your account receives a default cluster.

Note

The benefit of using the default cluster that is provided for you is that you don't have to
specify the --cluster cluster_name option in the subsequent commands. If you do
create your own, non-default, cluster, you must specify --cluster cluster_name for
each command that you intend to use with that cluster.

Create your own cluster with a unique name with the following command:

aws ecs create-cluster --cluster-name fargate-cluster

Output:

{
 "cluster": {
 "status": "ACTIVE",
 "defaultCapacityProviderStrategy": [],
 "statistics": [],
 "capacityProviders": [],
 "tags": [],
 "clusterName": "fargate-cluster",
 "settings": [
 {
 "name": "containerInsights",
 "value": "disabled"
 }
],
 "registeredContainerInstancesCount": 0,
 "pendingTasksCount": 0,
 "runningTasksCount": 0,
 "activeServicesCount": 0,

Step 1: Create a Cluster 1697

https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html

Amazon Elastic Container Service Developer Guide

 "clusterArn": "arn:aws:ecs:region:aws_account_id:cluster/fargate-cluster"
 }
}

Step 2: Register a Linux Task Definition

Before you can run a task on your ECS cluster, you must register a task definition. Task definitions
are lists of containers grouped together. The following example is a simple task definition
that creates a PHP web app using the httpd container image hosted on Docker Hub. For more
information about the available task definition parameters, see Amazon ECS task definitions. For
this tutorial, the taskRoleArn is only needed if you are deploying the task in a private subnet and
wish to test the deployment. Replace the taskRoleArn with the IAM task role you created to use
ECS Exec as mentioned in Prerequisites.

 {
 "family": "sample-fargate",
 "networkMode": "awsvpc",
 "taskRoleArn": "arn:aws:iam::aws_account_id:role/execCommandRole",
 "containerDefinitions": [
 {
 "name": "fargate-app",
 "image": "public.ecr.aws/docker/library/httpd:latest",
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp"
 }
],
 "essential": true,
 "entryPoint": [
 "sh",
 "-c"
],
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample
 App</title> <style>body {margin-top: 40px; background-color: #333;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in Amazon
 ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html && httpd-
foreground\""
]

Step 2: Register a Linux Task Definition 1698

Amazon Elastic Container Service Developer Guide

 }
],
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "256",
 "memory": "512"
}

Save the task definition JSON as a file and pass it with the --cli-input-json
file://path_to_file.json option.

To use a JSON file for container definitions:

aws ecs register-task-definition --cli-input-json file://$HOME/tasks/fargate-task.json

The register-task-definition command returns a description of the task definition after it
completes its registration.

Step 3: List Task Definitions

You can list the task definitions for your account at any time with the list-task-definitions
command. The output of this command shows the family and revision values that you can use
together when calling run-task or start-task.

aws ecs list-task-definitions

Output:

{
 "taskDefinitionArns": [
 "arn:aws:ecs:region:aws_account_id:task-definition/sample-fargate:1"
]
}

Step 4: Create a Service

After you have registered a task for your account, you can create a service for the registered task in
your cluster. For this example, you create a service with one instance of the sample-fargate:1

Step 3: List Task Definitions 1699

Amazon Elastic Container Service Developer Guide

task definition running in your cluster. The task requires a route to the internet, so there are two
ways you can achieve this. One way is to use a private subnet configured with a NAT gateway with
an elastic IP address in a public subnet. Another way is to use a public subnet and assign a public IP
address to your task. We provide both examples below.

Example using a private subnet. The enable-execute-command option is needed to use
Amazon ECS Exec.

aws ecs create-service --cluster fargate-cluster --service-name fargate-service --
task-definition sample-fargate:1 --desired-count 1 --launch-type "FARGATE" --network-
configuration "awsvpcConfiguration={subnets=[subnet-abcd1234],securityGroups=[sg-
abcd1234]}" --enable-execute-command

Example using a public subnet.

aws ecs create-service --cluster fargate-cluster --service-name fargate-service --
task-definition sample-fargate:1 --desired-count 1 --launch-type "FARGATE" --network-
configuration "awsvpcConfiguration={subnets=[subnet-abcd1234],securityGroups=[sg-
abcd1234],assignPublicIp=ENABLED}"

The create-service command returns a description of the task definition after it completes its
registration.

Step 5: List Services

List the services for your cluster. You should see the service that you created in the previous
section. You can take the service name or the full ARN that is returned from this command and use
it to describe the service later.

aws ecs list-services --cluster fargate-cluster

Output:

{
 "serviceArns": [
 "arn:aws:ecs:region:aws_account_id:service/fargate-cluster/fargate-service"
]
}

Step 5: List Services 1700

Amazon Elastic Container Service Developer Guide

Step 6: Describe the Running Service

Describe the service using the service name retrieved earlier to get more information about the
task.

aws ecs describe-services --cluster fargate-cluster --services fargate-service

If successful, this will return a description of the service failures and services. For example, in
the services section, you will find information on deployments, such as the status of the
tasks as running or pending. You may also find information on the task definition, the network
configuration and time-stamped events. In the failures section, you will find information on
failures, if any, associated with the call. For troubleshooting, see Service Event Messages. For more
information about the service description, see Describe Services.

{
 "services": [
 {
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "subnets": [
 "subnet-abcd1234"
],
 "securityGroups": [
 "sg-abcd1234"
],
 "assignPublicIp": "ENABLED"
 }
 },
 "launchType": "FARGATE",
 "enableECSManagedTags": false,
 "loadBalancers": [],
 "deploymentController": {
 "type": "ECS"
 },
 "desiredCount": 1,
 "clusterArn": "arn:aws:ecs:region:aws_account_id:cluster/fargate-cluster",
 "serviceArn": "arn:aws:ecs:region:aws_account_id:service/fargate-service",
 "deploymentConfiguration": {
 "maximumPercent": 200,
 "minimumHealthyPercent": 100
 },
 "createdAt": 1692283199.771,

Step 6: Describe the Running Service 1701

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-event-messages.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeServices

Amazon Elastic Container Service Developer Guide

 "schedulingStrategy": "REPLICA",
 "placementConstraints": [],
 "deployments": [
 {
 "status": "PRIMARY",
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "subnets": [
 "subnet-abcd1234"
],
 "securityGroups": [
 "sg-abcd1234"
],
 "assignPublicIp": "ENABLED"
 }
 },
 "pendingCount": 0,
 "launchType": "FARGATE",
 "createdAt": 1692283199.771,
 "desiredCount": 1,
 "taskDefinition": "arn:aws:ecs:region:aws_account_id:task-
definition/sample-fargate:1",
 "updatedAt": 1692283199.771,
 "platformVersion": "1.4.0",
 "id": "ecs-svc/9223370526043414679",
 "runningCount": 0
 }
],
 "serviceName": "fargate-service",
 "events": [
 {
 "message": "(service fargate-service) has started 2 tasks: (task
 53c0de40-ea3b-489f-a352-623bf1235f08) (task d0aec985-901b-488f-9fb4-61b991b332a3).",
 "id": "92b8443e-67fb-4886-880c-07e73383ea83",
 "createdAt": 1510811841.408
 },
 {
 "message": "(service fargate-service) has started 2 tasks: (task
 b4911bee-7203-4113-99d4-e89ba457c626) (task cc5853e3-6e2d-4678-8312-74f8a7d76474).",
 "id": "d85c6ec6-a693-43b3-904a-a997e1fc844d",
 "createdAt": 1510811601.938
 },
 {

Step 6: Describe the Running Service 1702

Amazon Elastic Container Service Developer Guide

 "message": "(service fargate-service) has started 2 tasks: (task
 cba86182-52bf-42d7-9df8-b744699e6cfc) (task f4c1ad74-a5c6-4620-90cf-2aff118df5fc).",
 "id": "095703e1-0ca3-4379-a7c8-c0f1b8b95ace",
 "createdAt": 1510811364.691
 }
],
 "runningCount": 0,
 "status": "ACTIVE",
 "serviceRegistries": [],
 "pendingCount": 0,
 "createdBy": "arn:aws:iam::aws_account_id:user/user_name",
 "platformVersion": "LATEST",
 "placementStrategy": [],
 "propagateTags": "NONE",
 "roleArn": "arn:aws:iam::aws_account_id:role/aws-service-role/
ecs.amazonaws.com/AWSServiceRoleForECS",
 "taskDefinition": "arn:aws:ecs:region:aws_account_id:task-definition/
sample-fargate:1"
 }
],
 "failures": []
}

Step 7: Test

Testing task deployed using public subnet

Describe the task in the service so that you can get the Elastic Network Interface (ENI) for the task.

First, get the task ARN.

aws ecs list-tasks --cluster fargate-cluster --service fargate-service

The output contains the task ARN.

{
 "taskArns": [
 "arn:aws:ecs:us-east-1:123456789012:task/fargate-service/EXAMPLE
]
}

Describe the task and locate the ENI ID. Use the task ARN for the tasks parameter.

Step 7: Test 1703

Amazon Elastic Container Service Developer Guide

aws ecs describe-tasks --cluster fargate-cluster --tasks arn:aws:ecs:us-
east-1:123456789012:task/service/EXAMPLE

The attachment information is listed in the output.

{
 "tasks": [
 {
 "attachments": [
 {
 "id": "d9e7735a-16aa-4128-bc7a-b2d5115029e9",
 "type": "ElasticNetworkInterface",
 "status": "ATTACHED",
 "details": [
 {
 "name": "subnetId",
 "value": "subnetabcd1234"
 },
 {
 "name": "networkInterfaceId",
 "value": "eni-0fa40520aeEXAMPLE"
 },
]
 }
…
}

Describe the ENI to get the public IP address.

aws ec2 describe-network-interfaces --network-interface-id eni-0fa40520aeEXAMPLE

The public IP address is in the output.

{
 "NetworkInterfaces": [
 {
 "Association": {
 "IpOwnerId": "amazon",
 "PublicDnsName": "ec2-34-229-42-222.compute-1.amazonaws.com",
 "PublicIp": "198.51.100.2"
 },

Step 7: Test 1704

Amazon Elastic Container Service Developer Guide

…
}

Enter the public IP address in your web browser and you should see a webpage that displays the
Amazon ECS sample application.

Testing task deployed using private subnet

Describe the task and locate managedAgents to verify that the ExecuteCommandAgent is
running. Note the privateIPv4Address for later use.

aws ecs describe-tasks --cluster fargate-cluster --tasks arn:aws:ecs:us-
east-1:123456789012:task/fargate-service/EXAMPLE

The managed agent information is listed in the output.

{
 "tasks": [
 {
 "attachments": [
 {
 "id": "d9e7735a-16aa-4128-bc7a-b2d5115029e9",
 "type": "ElasticNetworkInterface",
 "status": "ATTACHED",
 "details": [
 {
 "name": "subnetId",
 "value": "subnetabcd1234"
 },
 {
 "name": "networkInterfaceId",
 "value": "eni-0fa40520aeEXAMPLE"
 },
 {
 "name": "privateIPv4Address",
 "value": "10.0.143.156"
 }
]
 }
],
 ...
 "containers": [

Step 7: Test 1705

Amazon Elastic Container Service Developer Guide

 {
 ...
 "managedAgents": [
 {
 "lastStartedAt": "2023-08-01T16:10:13.002000+00:00",
 "name": "ExecuteCommandAgent",
 "lastStatus": "RUNNING"
 }
],
 ...
 }

After verifying that the ExecuteCommandAgent is running, you can run the following command
to run an interactive shell on the container in the task.

 aws ecs execute-command --cluster fargate-cluster \
 --task arn:aws:ecs:us-east-1:123456789012:task/fargate-service/EXAMPLE \
 --container fargate-app \
 --interactive \
 --command "/bin/sh"

After the interactive shell is running, run the following commands to install cURL.

apt update

apt install curl

After installing cURL, run the following command using the private IP address you obtained earlier.

 curl 10.0.143.156

You should see the HTML equivalent of the Amazon ECS sample application webpage.

<html>
 <head>
 <title>Amazon ECS Sample App</title>
 <style>body {margin-top: 40px; background-color: #333;} </style>
 </head>
 <body>
 <div style=color:white;text-align:center>

Step 7: Test 1706

Amazon Elastic Container Service Developer Guide

 <h1>Amazon ECS Sample App</h1>
 <h2>Congratulations!</h2> <p>Your application is now running on a container in
 Amazon ECS.</p>
 </div>
 </body>
</html>

Step 8: Clean Up

When you are finished with this tutorial, you should clean up the associated resources to avoid
incurring charges for unused resources.

Delete the service.

aws ecs delete-service --cluster fargate-cluster --service fargate-service --force

Delete the cluster.

aws ecs delete-cluster --cluster fargate-cluster

Creating an Amazon ECS Windows task for the Fargate launch
type with the AWS CLI

The following steps help you set up a cluster, register a task definition, run a Windows task, and
perform other common scenarios in Amazon ECS with the AWS CLI. Ensure that you are using the
latest version of the AWS CLI. For more information on how to upgrade to the latest version, see
Installing or updating to the latest version of the AWS CLI.

Note

You can use dual-stack service endpoints to interact with Amazon ECS from the AWS CLI,
SDKs, and the Amazon ECS API over both IPv4 and IPv6. For more information, see Using
Amazon ECS dual-stack endpoints.

Topics

• Prerequisites

Step 8: Clean Up 1707

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon Elastic Container Service Developer Guide

• Step 1: Create a Cluster

• Step 2: Register a Windows Task Definition

• Step 3: List task definitions

• Step 4: Create a service

• Step 5: List services

• Step 6: Describe the Running Service

• Step 7: Clean Up

Prerequisites

This tutorial assumes that the following prerequisites have been completed.

• The latest version of the AWS CLI is installed and configured. For more information about
installing or upgrading your AWS CLI, see Installing or updating to the latest version of the AWS
CLI.

• The steps in Set up to use Amazon ECS have been completed.

• Your IAM user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• You have a VPC and security group created to use. This tutorial uses a container image hosted on
Docker Hub so your task must have internet access. To give your task a route to the internet, use
one of the following options.

• Use a private subnet with a NAT gateway that has an elastic IP address.

• Use a public subnet and assign a public IP address to the task.

For more information, see the section called “Create a virtual private cloud”.

For information about security groups and rules, see, Default security groups for your VPCs and
Example rules in the Amazon Virtual Private Cloud User Guide.

• (Optional) AWS CloudShell is a tool that gives customers a command line without needing to
create their own EC2 instance. For more information, see What is AWS CloudShell? in the AWS
CloudShell User Guide.

Step 1: Create a Cluster

By default, your account receives a default cluster.

Prerequisites 1708

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#DefaultSecurityGroup
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#security-group-rule-examples
https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html

Amazon Elastic Container Service Developer Guide

Note

The benefit of using the default cluster that is provided for you is that you don't have to
specify the --cluster cluster_name option in the subsequent commands. If you do
create your own, non-default, cluster, you must specify --cluster cluster_name for
each command that you intend to use with that cluster.

Create your own cluster with a unique name with the following command:

aws ecs create-cluster --cluster-name fargate-cluster

Output:

{
 "cluster": {
 "status": "ACTIVE",
 "statistics": [],
 "clusterName": "fargate-cluster",
 "registeredContainerInstancesCount": 0,
 "pendingTasksCount": 0,
 "runningTasksCount": 0,
 "activeServicesCount": 0,
 "clusterArn": "arn:aws:ecs:region:aws_account_id:cluster/fargate-cluster"
 }
}

Step 2: Register a Windows Task Definition

Before you can run a Windows task on your Amazon ECS cluster, you must register a task definition.
Task definitions are lists of containers grouped together. The following example is a simple
task definition that creates a web app. For more information about the available task definition
parameters, see Amazon ECS task definitions.

{
 "containerDefinitions": [
 {
 "command": ["New-Item -Path C:\\inetpub\\wwwroot\\index.html -Type file
 -Value '<html> <head> <title>Amazon ECS Sample App</title> <style>body {margin-top:

Step 2: Register a Windows Task Definition 1709

Amazon Elastic Container Service Developer Guide

 40px; background-color: #333;} </style> </head><body> <div style=color:white;text-
align:center> <h1>Amazon ECS Sample App</h1> <h2>Congratulations!</h2> <p>Your
 application is now running on a container in Amazon ECS.</p>'; C:\\ServiceMonitor.exe
 w3svc"],
 "entryPoint": [
 "powershell",
 "-Command"
],
 "essential": true,
 "cpu": 2048,
 "memory": 4096,
 "image": "mcr.microsoft.com/windows/servercore/iis:windowsservercore-
ltsc2019",
 "name": "sample_windows_app",
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80,
 "protocol": "tcp"
 }
]
 }
],
 "memory": "4096",
 "cpu": "2048",
 "networkMode": "awsvpc",
 "family": "windows-simple-iis-2019-core",
 "executionRoleArn": "arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
 "runtimePlatform": {"operatingSystemFamily": "WINDOWS_SERVER_2019_CORE"},
 "requiresCompatibilities": ["FARGATE"]
}

The above example JSON can be passed to the AWS CLI in two ways: You can save the task
definition JSON as a file and pass it with the --cli-input-json file://path_to_file.json
option.

To use a JSON file for container definitions:

aws ecs register-task-definition --cli-input-json file://$HOME/tasks/fargate-task.json

The register-task-definition command returns a description of the task definition after it
completes its registration.

Step 2: Register a Windows Task Definition 1710

Amazon Elastic Container Service Developer Guide

Step 3: List task definitions

You can list the task definitions for your account at any time with the list-task-definitions
command. The output of this command shows the family and revision values that you can use
together when calling run-task or start-task.

aws ecs list-task-definitions

Output:

{
 "taskDefinitionArns": [
 "arn:aws:ecs:region:aws_account_id:task-definition/sample-fargate-windows:1"
]
}

Step 4: Create a service

After you have registered a task for your account, you can create a service for the registered task in
your cluster. For this example, you create a service with one instance of the sample-fargate:1
task definition running in your cluster. The task requires a route to the internet, so there are two
ways you can achieve this. One way is to use a private subnet configured with a NAT gateway with
an elastic IP address in a public subnet. Another way is to use a public subnet and assign a public IP
address to your task. We provide both examples below.

Example using a private subnet.

aws ecs create-service --cluster fargate-cluster --service-name fargate-service
 --task-definition sample-fargate-windows:1 --desired-count 1 --launch-type
 "FARGATE" --network-configuration "awsvpcConfiguration={subnets=[subnet-
abcd1234],securityGroups=[sg-abcd1234]}"

Example using a public subnet.

aws ecs create-service --cluster fargate-cluster --service-name fargate-service
 --task-definition sample-fargate-windows:1 --desired-count 1 --launch-type
 "FARGATE" --network-configuration "awsvpcConfiguration={subnets=[subnet-
abcd1234],securityGroups=[sg-abcd1234],assignPublicIp=ENABLED}"

Step 3: List task definitions 1711

Amazon Elastic Container Service Developer Guide

The create-service command returns a description of the task definition after it completes its
registration.

Step 5: List services

List the services for your cluster. You should see the service that you created in the previous
section. You can take the service name or the full ARN that is returned from this command and use
it to describe the service later.

aws ecs list-services --cluster fargate-cluster

Output:

{
 "serviceArns": [
 "arn:aws:ecs:region:aws_account_id:service/fargate-service"
]
}

Step 6: Describe the Running Service

Describe the service using the service name retrieved earlier to get more information about the
task.

aws ecs describe-services --cluster fargate-cluster --services fargate-service

If successful, this will return a description of the service failures and services. For example,
in services section, you will find information on deployments, such as the status of the tasks
as running or pending. You may also find information on the task definition, the network
configuration and time-stamped events. In the failures section, you will find information on
failures, if any, associated with the call. For troubleshooting, see Service Event Messages. For more
information about the service description, see Describe Services.

{
 "services": [
 {
 "status": "ACTIVE",
 "taskDefinition": "arn:aws:ecs:region:aws_account_id:task-definition/
sample-fargate-windows:1",
 "pendingCount": 2,

Step 5: List services 1712

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-event-messages.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeServices

Amazon Elastic Container Service Developer Guide

 "launchType": "FARGATE",
 "loadBalancers": [],
 "roleArn": "arn:aws:iam::aws_account_id:role/aws-service-role/
ecs.amazonaws.com/AWSServiceRoleForECS",
 "placementConstraints": [],
 "createdAt": 1510811361.128,
 "desiredCount": 2,
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "subnets": [
 "subnet-abcd1234"
],
 "securityGroups": [
 "sg-abcd1234"
],
 "assignPublicIp": "DISABLED"
 }
 },
 "platformVersion": "LATEST",
 "serviceName": "fargate-service",
 "clusterArn": "arn:aws:ecs:region:aws_account_id:cluster/fargate-cluster",
 "serviceArn": "arn:aws:ecs:region:aws_account_id:service/fargate-service",
 "deploymentConfiguration": {
 "maximumPercent": 200,
 "minimumHealthyPercent": 100
 },
 "deployments": [
 {
 "status": "PRIMARY",
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "subnets": [
 "subnet-abcd1234"
],
 "securityGroups": [
 "sg-abcd1234"
],
 "assignPublicIp": "DISABLED"
 }
 },
 "pendingCount": 2,
 "launchType": "FARGATE",
 "createdAt": 1510811361.128,
 "desiredCount": 2,

Step 6: Describe the Running Service 1713

Amazon Elastic Container Service Developer Guide

 "taskDefinition": "arn:aws:ecs:region:aws_account_id:task-
definition/sample-fargate-windows:1",
 "updatedAt": 1510811361.128,
 "platformVersion": "0.0.1",
 "id": "ecs-svc/9223370526043414679",
 "runningCount": 0
 }
],
 "events": [
 {
 "message": "(service fargate-service) has started 2 tasks: (task
 53c0de40-ea3b-489f-a352-623bf1235f08) (task d0aec985-901b-488f-9fb4-61b991b332a3).",
 "id": "92b8443e-67fb-4886-880c-07e73383ea83",
 "createdAt": 1510811841.408
 },
 {
 "message": "(service fargate-service) has started 2 tasks: (task
 b4911bee-7203-4113-99d4-e89ba457c626) (task cc5853e3-6e2d-4678-8312-74f8a7d76474).",
 "id": "d85c6ec6-a693-43b3-904a-a997e1fc844d",
 "createdAt": 1510811601.938
 },
 {
 "message": "(service fargate-service) has started 2 tasks: (task
 cba86182-52bf-42d7-9df8-b744699e6cfc) (task f4c1ad74-a5c6-4620-90cf-2aff118df5fc).",
 "id": "095703e1-0ca3-4379-a7c8-c0f1b8b95ace",
 "createdAt": 1510811364.691
 }
],
 "runningCount": 0,
 "placementStrategy": []
 }
],
 "failures": []
}

Step 7: Clean Up

When you are finished with this tutorial, you should clean up the associated resources to avoid
incurring charges for unused resources.

Delete the service.

aws ecs delete-service --cluster fargate-cluster --service fargate-service --force

Step 7: Clean Up 1714

Amazon Elastic Container Service Developer Guide

Delete the cluster.

aws ecs delete-cluster --cluster fargate-cluster

Creating an Amazon ECS task for the EC2 launch type with the
AWS CLI

The following steps help you set up a cluster, register a task definition, run a task, and perform
other common scenarios in Amazon ECS with the AWS CLI. Use the latest version of the AWS CLI.
For more information on how to upgrade to the latest version, see Installing or updating to the
latest version of the AWS CLI.

Note

You can use dual-stack service endpoints to interact with Amazon ECS from the AWS CLI,
SDKs, and the Amazon ECS API over both IPv4 and IPv6. For more information, see Using
Amazon ECS dual-stack endpoints.

Topics

• Prerequisites

• Create a cluster

• Launch a container instance with the Amazon ECS AMI

• List container instances

• Describe your container instance

• Register a task definition

• List task definitions

• Create a service

• List services

• Describe the service

• Describe the running task

• Test the web server

• Clean up resources

Creating a task for the EC2 launch type with the AWS CLI 1715

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon Elastic Container Service Developer Guide

Prerequisites

This tutorial assumes that the following prerequisites have been completed:

• The latest version of the AWS CLI is installed and configured. For more information about
installing or upgrading your AWS CLI, see Installing or updating to the latest version of the AWS
CLI.

• The steps in Set up to use Amazon ECS have been completed.

• Your IAM user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• You have a container instance IAM role created to use. For more informaton, see Amazon ECS
container instance IAM role.

• You have a VPC created to use. For more information, see the section called “Create a virtual
private cloud”.

• (Optional) AWS CloudShell is a tool that gives customers a command line without needing to
create their own EC2 instance. For more information, see What is AWS CloudShell? in the AWS
CloudShell User Guide.

Create a cluster

By default, your account receives a default cluster when you launch your first container instance.

Note

The benefit of using the default cluster that is provided for you is that you don't have to
specify the --cluster cluster_name option in the subsequent commands. If you do
create your own, non-default, cluster, you must specify --cluster cluster_name for
each command that you intend to use with that cluster.

Create your own cluster with a unique name with the following command:

aws ecs create-cluster --cluster-name MyCluster

Output:

Prerequisites 1716

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html

Amazon Elastic Container Service Developer Guide

{
 "cluster": {
 "clusterName": "MyCluster",
 "status": "ACTIVE",
 "clusterArn": "arn:aws:ecs:region:aws_account_id:cluster/MyCluster"
 }
}

Launch a container instance with the Amazon ECS AMI

Container instances are EC2 instances that run the Amazon ECS container agent and have been
registered into a cluster. In this section, you'll launch an EC2 instance using the ECS-optimized AMI.

To launch a container instance with the AWS CLI

1. Retrieve the latest ECS-optimized Amazon Linux 2 AMI ID for your AWS Region using the
following command. This command uses AWS Systems Manager Parameter Store to get the
latest ECS-optimized AMI ID. The AMI includes the Amazon ECS container agent and Docker
runtime pre-installed.

aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/
recommended --query 'Parameters[0].Value' --output text | jq -r '.image_id'

Output:

ami-abcd1234

2. Create a security group that allows SSH access for managing your container instance and HTTP
access for the web server.

aws ec2 create-security-group --group-name ecs-tutorial-sg --description "ECS
 tutorial security group"

Output:

{
 "GroupId": "sg-abcd1234"
}

3. Add an inbound rule to the security group by running the following command.

Launch a container instance with the Amazon ECS AMI 1717

Amazon Elastic Container Service Developer Guide

aws ec2 authorize-security-group-ingress --group-id sg-abcd1234 --protocol tcp --
port 80 --cidr 0.0.0.0/0

Output:

{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-efgh5678",
 "GroupId": "sg-abcd1234",
 "GroupOwnerId": "123456789012",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 80,
 "ToPort": 80,
 "CidrIpv4": "0.0.0.0/0"
 }
]
}

The security group now allows SSH access from the specified IP range and HTTP access from
anywhere. In a production environment, you should restrict SSH access to your specific IP
address and consider limiting HTTP access as needed.

4. Create an EC2 key pair for SSH access to your container instance.

aws ec2 create-key-pair --key-name ecs-tutorial-key --query 'KeyMaterial' --output
 text > ecs-tutorial-key.pem
chmod 400 ecs-tutorial-key.pem

The private key is saved to your local machine with appropriate permissions for SSH access.

5. Launch an EC2 instance using the ECS-optimized AMI and configure it to join your cluster.

aws ec2 run-instances --image-id ami-abcd1234 --instance-type t3.micro --key-
name ecs-tutorial-key --security-group-ids sg-abcd1234 --iam-instance-profile
 Name=ecsInstanceRole --user-data '#!/bin/bash
echo ECS_CLUSTER=MyCluster >> /etc/ecs/ecs.config'
{
 "Instances": [

Launch a container instance with the Amazon ECS AMI 1718

Amazon Elastic Container Service Developer Guide

 {
 "InstanceId": "i-abcd1234",
 "ImageId": "ami-abcd1234",
 "State": {
 "Code": 0,
 "Name": "pending"
 },
 "PrivateDnsName": "",
 "PublicDnsName": "",
 "StateReason": {
 "Code": "pending",
 "Message": "pending"
 },
 "InstanceType": "t3.micro",
 "KeyName": "ecs-tutorial-key",
 "LaunchTime": "2025-01-13T10:30:00.000Z"
 }
]
}

The user data script configures the Amazon ECS agent to register the instance with your
MyCluster. The instance uses the ecsInstanceRole IAM role, which provides the necessary
permissions for the agent.

List container instances

Within a few minutes of launching your container instance, the Amazon ECS agent registers the
instance with your default cluster. You can list the container instances in a cluster by running the
following command:

aws ecs list-container-instances --cluster default

Output:

{
 "containerInstanceArns": [
 "arn:aws:ecs:us-east-1:aws_account_id:container-instance/container_instance_ID"
]
}

List container instances 1719

Amazon Elastic Container Service Developer Guide

Describe your container instance

After you have the ARN or ID of a container instance, you can use the describe-container-instances
command to get valuable information on the instance, such as remaining and registered CPU and
memory resources.

aws ecs describe-container-instances --cluster MyCluster --container-
instances container_instance_ID

Output:

{
 "failures": [],
 "containerInstances": [
 {
 "status": "ACTIVE",
 "registeredResources": [
 {
 "integerValue": 1024,
 "longValue": 0,
 "type": "INTEGER",
 "name": "CPU",
 "doubleValue": 0.0
 },
 {
 "integerValue": 995,
 "longValue": 0,
 "type": "INTEGER",
 "name": "MEMORY",
 "doubleValue": 0.0
 },
 {
 "name": "PORTS",
 "longValue": 0,
 "doubleValue": 0.0,
 "stringSetValue": [
 "22",
 "2376",
 "2375",
 "51678"
],
 "type": "STRINGSET",

Describe your container instance 1720

Amazon Elastic Container Service Developer Guide

 "integerValue": 0
 },
 {
 "name": "PORTS_UDP",
 "longValue": 0,
 "doubleValue": 0.0,
 "stringSetValue": [],
 "type": "STRINGSET",
 "integerValue": 0
 }
],
 "ec2InstanceId": "instance_id",
 "agentConnected": true,
 "containerInstanceArn": "arn:aws:ecs:us-west-2:aws_account_id:container-
instance/container_instance_ID",
 "pendingTasksCount": 0,
 "remainingResources": [
 {
 "integerValue": 1024,
 "longValue": 0,
 "type": "INTEGER",
 "name": "CPU",
 "doubleValue": 0.0
 },
 {
 "integerValue": 995,
 "longValue": 0,
 "type": "INTEGER",
 "name": "MEMORY",
 "doubleValue": 0.0
 },
 {
 "name": "PORTS",
 "longValue": 0,
 "doubleValue": 0.0,
 "stringSetValue": [
 "22",
 "2376",
 "2375",
 "51678"
],
 "type": "STRINGSET",
 "integerValue": 0
 },

Describe your container instance 1721

Amazon Elastic Container Service Developer Guide

 {
 "name": "PORTS_UDP",
 "longValue": 0,
 "doubleValue": 0.0,
 "stringSetValue": [],
 "type": "STRINGSET",
 "integerValue": 0
 }
],
 "runningTasksCount": 0,
 "attributes": [
 {
 "name": "com.amazonaws.ecs.capability.privileged-container"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.17"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.18"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.19"
 },
 {
 "name": "com.amazonaws.ecs.capability.logging-driver.json-file"
 },
 {
 "name": "com.amazonaws.ecs.capability.logging-driver.syslog"
 }
],
 "versionInfo": {
 "agentVersion": "1.5.0",
 "agentHash": "b197edd",
 "dockerVersion": "DockerVersion: 1.7.1"
 }
 }
]
}

You can also find the Amazon EC2 instance ID that you can use to monitor the instance in the
Amazon EC2 console or with the aws ec2 describe-instances --instance-id instance_id
command.

Describe your container instance 1722

Amazon Elastic Container Service Developer Guide

Register a task definition

Before you can run a task on your Amazon ECS cluster, you must register a task definition. Task
definitions are lists of containers grouped together. The following example is a simple task
definition that uses an nginx image. For more information about the available task definition
parameters, see Amazon ECS task definitions.

{
 "family": "nginx-task",
 "containerDefinitions": [
 {
 "name": "nginx",
 "image": "public.ecr.aws/ecs-sample-image/amazon-ecs-sample:latest",
 "cpu": 256,
 "memory": 512,
 "essential": true,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp"
 }
]
 }
],
 "requiresCompatibilities": ["EC2"],
 "networkMode": "bridge"
}

The above example JSON can be passed to the AWS CLI in two ways: You can save the task
definition JSON as a file and pass it with the --cli-input-json file://path_to_file.json
option. Or, you can escape the quotation marks in the JSON and pass the JSON container
definitions on the command line. If you choose to pass the container definitions on the command
line, your command additionally requires a --family parameter that is used to keep multiple
versions of your task definition associated with each other.

To use a JSON file for container definitions:

aws ecs register-task-definition --cli-input-json file://$HOME/tasks/nginx.json

Register a task definition 1723

Amazon Elastic Container Service Developer Guide

The register-task-definition returns a description of the task definition after it completes its
registration.

{
 "taskDefinition": {
 "taskDefinitionArn": "arn:aws:ecs:us-east-1:123456789012:task-definition/nginx-
task:1",
 "family": "nginx-task",
 "revision": 1,
 "status": "ACTIVE",
 "containerDefinitions": [
 {
 "name": "nginx",
 "image": "public.ecr.aws/docker/library/nginx:latest",
 "cpu": 256,
 "memory": 512,
 "essential": true,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp"
 }
],
 "environment": [],
 "mountPoints": [],
 "volumesFrom": []
 }
],
 "volumes": [],
 "networkMode": "bridge",
 "compatibilities": [
 "EC2"
],
 "requiresCompatibilities": [
 "EC2"
]
 }
}

Register a task definition 1724

Amazon Elastic Container Service Developer Guide

List task definitions

You can list the task definitions for your account at any time with the list-task-definitions
command. The output of this command shows the family and revision values that you can use
together when calling create-service.

aws ecs list-task-definitions

Output:

{
 "taskDefinitionArns": [
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/sleep360:1",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/sleep360:2",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/nginx-task:1",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:3",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:4",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:5",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:6"
]
}

Create a service

After you have registered a task for your account and have launched a container instance that is
registered to your cluster, you can create an Amazon ECS service that runs and maintains a desired
number of tasks simultaneously using the task definition that you registered. For this example, you
place a single instance of the nginx:1 task definition in your default cluster.

aws ecs create-service --cluster default --service-name nginx-service --task-
definition nginx-task:1 --desired-count 1

Output:

{
 "service": {
 "serviceArn": "arn:aws:ecs:us-east-1:aws_account_id:service/MyCluster/nginx-
service",
 "serviceName": "nginx-service",
 "clusterArn": "arn:aws:ecs:us-east-1:aws_account_id:cluster/MyCluster",

List task definitions 1725

Amazon Elastic Container Service Developer Guide

 "taskDefinition": "arn:aws:ecs:us-east-1:aws_account_id:task-definition/nginx-
task:1",
 "desiredCount": 1,
 "runningCount": 0,
 "pendingCount": 0,
 "launchType": "EC2",
 "status": "ACTIVE",
 "createdAt": "2025-01-13T10:45:00.000Z"
 }
}

List services

List the services for your cluster. You should see the service that you created in the previous
section. You can note the service ID or the full ARN that is returned from this command and use it
to describe the service later.

aws ecs list-services --cluster MyCluster

Output:

{
 "taskArns": [
 "arn:aws:ecs:us-east-1:aws_account_id:task/task_ID"
]
}

Describe the service

Describe the service using the following command to get more information about the service.

aws ecs describe-services --cluster MyCluster --services nginx-service

Output:

{
 "services": [
 {
 "serviceArn": "arn:aws:ecs:us-east-1:aws_account_id:service/MyCluster/
nginx-service",
 "serviceName": "nginx-service",

List services 1726

Amazon Elastic Container Service Developer Guide

 "clusterArn": "arn:aws:ecs:us-east-1:aws_account_id:cluster/MyCluster",
 "taskDefinition": "arn:aws:ecs:us-east-1:aws_account_id:task-definition/
nginx-task:1",
 "desiredCount": 1,
 "runningCount": 1,
 "pendingCount": 0,
 "launchType": "EC2",
 "status": "ACTIVE",
 "createdAt": "2025-01-13T10:45:00.000Z",
 "events": [
 {
 "id": "abcd1234-5678-90ab-cdef-1234567890ab",
 "createdAt": "2025-01-13T10:45:30.000Z",
 "message": "(service nginx-service) has started 1 tasks: (task
 abcd1234-5678-90ab-cdef-1234567890ab)."
 }
]
 }
]
}

Describe the running task

After describing the service, run the following command to get more information about the task
that is running as part of your service.

aws ecs list-tasks --cluster MyCluster --service-name nginx-service

Output:

{
 "tasks": [
 {
 "taskArn": "arn:aws:ecs:us-east-1:aws_account_id:task/MyCluster/
abcd1234-5678-90ab-cdef-1234567890ab",
 "clusterArn": "arn:aws:ecs:us-east-1:aws_account_id:cluster/MyCluster",
 "taskDefinitionArn": "arn:aws:ecs:us-east-1:aws_account_id:task-definition/
nginx-task:1",
 "containerInstanceArn": "arn:aws:ecs:us-east-1:aws_account_id:container-
instance/MyCluster/abcd1234-5678-90ab-cdef-1234567890ab",
 "lastStatus": "RUNNING",
 "desiredStatus": "RUNNING",

Describe the running task 1727

Amazon Elastic Container Service Developer Guide

 "containers": [
 {
 "containerArn": "arn:aws:ecs:us-east-1:aws_account_id:container/
MyCluster/abcd1234-5678-90ab-cdef-1234567890ab/abcd1234-5678-90ab-cdef-1234567890ab",
 "taskArn": "arn:aws:ecs:us-east-1:aws_account_id:task/MyCluster/
abcd1234-5678-90ab-cdef-1234567890ab",
 "name": "nginx",
 "lastStatus": "RUNNING",
 "networkBindings": [
 {
 "bindIP": "0.0.0.0",
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp"
 }
]
 }
],
 "createdAt": "2025-01-13T10:45:00.000Z",
 "startedAt": "2025-01-13T10:45:30.000Z"
 }
]
}

Test the web server

To test the web server

1. Retrieve the public IP address of your container instance by running the following command.

aws ec2 describe-instances --instance-ids i-abcd1234 --query
 'Reservations[0].Instances[0].PublicIpAddress' --output text

Output:

203.0.113.25

2. After retrieving the IP address, run the following curl command with the IP address.

curl http://203.0.113.25

Test the web server 1728

Amazon Elastic Container Service Developer Guide

Output:

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you can see this page, the nginx web server is successfully installed and
 working.</p>
...
</body>
</html>

The nginx welcome page confirms that your service is running successfully and accessible from
the internet.

Clean up resources

To avoid incurring charges, clean up the resources that you created in this tutorial.

To clean up resources

1. Update the service to have zero desired tasks, then delete the service.

aws ecs update-service --cluster MyCluster --service nginx-service --desired-count
 0
{
 "service": {
 "serviceArn": "arn:aws:ecs:us-east-1:123456789012:service/MyCluster/nginx-
service",
 "serviceName": "nginx-service",
 "desiredCount": 0,
 "runningCount": 1,
 "pendingCount": 0,
 "status": "ACTIVE"
 }
}

Clean up resources 1729

Amazon Elastic Container Service Developer Guide

2. Wait for the running tasks to stop, then delete the service.

aws ecs delete-service --cluster MyCluster --service nginx-service
{
 "service": {
 "serviceArn": "arn:aws:ecs:us-east-1:123456789012:service/MyCluster/nginx-
service",
 "serviceName": "nginx-service",
 "status": "DRAINING"
 }
}

3. Terminate the container instance you created.

aws ec2 terminate-instances --instance-ids i-abcd1234
{
 "TerminatingInstances": [
 {
 "InstanceId": "i-abcd1234",
 "CurrentState": {
 "Code": 32,
 "Name": "shutting-down"
 },
 "PreviousState": {
 "Code": 16,
 "Name": "running"
 }
 }
]
}

4. Clean up the security group and key pair that you created.

aws ec2 delete-security-group --group-id sg-abcd1234
aws ec2 delete-key-pair --key-name ecs-tutorial-key
rm ecs-tutorial-key.pem

5. Delete the Amazon ECS cluster.

aws ecs delete-cluster --cluster MyCluster
{
 "cluster": {
 "clusterArn": "arn:aws:ecs:us-east-1:123456789012:cluster/MyCluster",

Clean up resources 1730

Amazon Elastic Container Service Developer Guide

 "clusterName": "MyCluster",
 "status": "INACTIVE"
 }
}

Configuring Amazon ECS to listen for CloudWatch Events
events

Learn how to set up a simple Lambda function that listens for task events and writes them out to a
CloudWatch Logs log stream.

Prerequisite: Set up a test cluster

If you do not have a running cluster to capture events from, follow the steps in the section called
“Creating a cluster for the Fargate launch type” to create one. At the end of this tutorial, you run a
task on this cluster to test that you have configured your Lambda function correctly.

Step 1: Create the Lambda function

In this procedure, you create a simple Lambda function to serve as a target for Amazon ECS event
stream messages.

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Choose Create function.

3. On the Author from scratch screen, do the following:

a. For Name, enter a value.

b. For Runtime, choose your version of Python, for example, Python 3.9.

c. For Role, choose Create a new role with basic Lambda permissions.

4. Choose Create function.

5. In the Function code section, edit the sample code to match the following example:

import json

def lambda_handler(event, context):
 if event["source"] != "aws.ecs":

Configuring Amazon ECS to listen for CloudWatch Events events 1731

https://console.aws.amazon.com/lambda/

Amazon Elastic Container Service Developer Guide

 raise ValueError("Function only supports input from events with a source
 type of: aws.ecs")

 print('Here is the event:')
 print(json.dumps(event))

This is a simple Python 3.9 function that prints the event sent by Amazon ECS. If everything
is configured correctly, at the end of this tutorial, you see that the event details appear in the
CloudWatch Logs log stream associated with this Lambda function.

6. Choose Save.

Step 2: Register an event rule

Next, you create a CloudWatch Events event rule that captures task events coming from
your Amazon ECS clusters. This rule captures all events coming from all clusters within the
account where it is defined. The task messages themselves contain information about the
event source, including the cluster on which it resides, that you can use to filter and sort events
programmatically.

Note

When you use the AWS Management Console to create an event rule, the console
automatically adds the IAM permissions necessary to grant CloudWatch Events permission
to call your Lambda function. If you are creating an event rule using the AWS CLI, you need
to grant this permission explicitly. For more information, see Events in Amazon EventBridge
and Amazon EventBridge event patterns in the Amazon EventBridge User Guide.

To route events to your Lambda function

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. On the navigation pane, choose Events, Rules, Create rule.

3. For Event Source, choose ECS as the event source. By default, the rule applies to all Amazon
ECS events for all of your Amazon ECS groups. Alternatively, you can select specific events or a
specific Amazon ECS group.

4. For Targets, choose Add target, for Target type, choose Lambda function, and then select
your Lambda function.

Step 2: Register an event rule 1732

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-patterns.html
https://console.aws.amazon.com/cloudwatch/

Amazon Elastic Container Service Developer Guide

5. Choose Configure details.

6. For Rule definition, type a name and description for your rule and choose Create rule.

Step 3: Create a task definition

Create a task definition.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task Definitions.

3. Choose Create new Task Definition, Create new revision with JSON.

4. Copy and paste the following example task definition into the box and then choose Save.

{
 "containerDefinitions": [
 {
 "command": [
 "/bin/sh -c \"echo '<html> <head> <title>Amazon ECS Sample App</
title> <style>body {margin-top: 40px; background-color: #333;} </style> </
head><body> <div style=color:white;text-align:center> <h1>Amazon ECS Sample App</
h1> <h2>Congratulations!</h2> <p>Your application is now running on a container in
 Amazon ECS.</p> </div></body></html>' > /usr/local/apache2/htdocs/index.html &&
 httpd-foreground\""
],
 "entryPoint": [
 "sh",
 "-c"
],
 "essential": true,
 "image": "public.ecr.aws/docker/library/httpd:2.4",
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group" : "/ecs/fargate-task-definition",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "ecs"
 }
 },
 "name": "sample-fargate-app",
 "portMappings": [
 {
 "containerPort": 80,

Step 3: Create a task definition 1733

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

 "hostPort": 80,
 "protocol": "tcp"
 }
]
 }
],
 "cpu": "256",
 "executionRoleArn": "arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
 "family": "fargate-task-definition",
 "memory": "512",
 "networkMode": "awsvpc",
 "runtimePlatform": {
 "operatingSystemFamily": "LINUX"
 },
 "requiresCompatibilities": [
 "FARGATE"
]
}

5. Choose Create.

Step 4: Test your rule

Finally, you create a CloudWatch Events event rule that captures task events coming from
your Amazon ECS clusters. This rule captures all events coming from all clusters within the
account where it is defined. The task messages themselves contain information about the
event source, including the cluster on which it resides, that you can use to filter and sort events
programmatically.

To test your rule

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. Choose Task definitions.

3. Choose console-sample-app-static, and then choose Deploy, Run new task.

4. For Cluster, choose default, and then choose Deploy.

5. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

6. On the navigation pane, choose Logs and select the log group for your Lambda function (for
example, /aws/lambda/my-function).

7. Select a log stream to view the event data.

Step 4: Test your rule 1734

https://console.aws.amazon.com/ecs/v2
https://console.aws.amazon.com/cloudwatch/

Amazon Elastic Container Service Developer Guide

Sending Amazon Simple Notification Service alerts for Amazon
ECS task stopped events

Configure an Amazon EventBridge event rule that only captures task events where the task has
stopped running because one of its essential containers has terminated. The event sends only task
events with a specific stoppedReason property to the designated Amazon SNS topic.

Prerequisite: Set up a test cluster

If you do not have a running cluster to capture events from, follow the steps in Getting started
with the console using Linux containers on AWS Fargate to create one. At the end of this tutorial,
you run a task on this cluster to test that you have configured your Amazon SNS topic and
EventBridge rule correctly.

Prerequisite: Configure permissions for Amazon SNS

To allow EventBridge to publish to an Amazon SNS topic, use the aws sns get-topic-attributes and
the aws sns set-topic-attributes commands.

For information about how to add the permission, see Amazon SNS permissions in the Amazon
Simple Notification Service Developer Guide

Add the following permissions:

{
 "Sid": "PublishEventsToMyTopic",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sns: Publish",
 "Resource": "arn:aws:sns:region:account-id:TaskStoppedAlert",
}

Step 1: Create and subscribe to an Amazon SNS topic

For this tutorial, you configure an Amazon SNS topic to serve as an event target for your new event
rule.

Sending Amazon Simple Notification Service alerts for task stopped events 1735

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/getting-started-fargate.html#get-started-fargate-cluster
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/getting-started-fargate.html#get-started-fargate-cluster
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-use-resource-based.html#eb-sns-permissions

Amazon Elastic Container Service Developer Guide

For information about how to create and subscribe to an Amazon SNS topic , see Getting started
with Amazon SNS in the Amazon Simple Notification Service Developer Guide and use the following
table to determine what options to select.

Option Value

Type Standard

Name TaskStoppedAlert

Protocol Email

Endpoint An email address to which
you currently have access

Step 2: Register an event rule

Next, you register an event rule that captures only task-stopped events for tasks with stopped
containers.

For information about how to create and subscribe to an Amazon SNS topic , see Create a rule
in Amazon EventBridge in the Amazon EventBridge User Guide and use the following table to
determine what options to select.

Option Value

Rule type Rule with an event pattern

Event source AWS events or EventBridge
partner events

Event pattern Custom pattern (JSON editor)

Event pattern {
 "source":[
 "aws.ecs"
],
 "detail-type":[

Step 2: Register an event rule 1736

https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html#step-create-queue
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html#step-create-queue
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html

Amazon Elastic Container Service Developer Guide

Option Value

 "ECS Task State
 Change"
],
 "detail":{
 "lastStatus":[
 "STOPPED"
],
 "stoppedReason":[
 "Essentia
l container in task
 exited"
]
 }
}

Target type AWS service

Target SNS topic

Topic TaskStoppedAlert (The topic
you created in Step 1)

Step 3: Test your rule

Verify that the rule is working by running a task that exits shortly after it starts. If your event rule is
configured correctly, you receive an email message within a few minutes with the event text. If you
have an existing task definition that can satisfy the rule requirements, run a task using it. If you do
not, the following steps will walk you through registering a Fargate task definition and running it
that will.

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. In the navigation pane, choose Task definitions.

3. Choose Create new task definition, Create new task definition with JSON.

4. In the JSON editor box, edit your JSON file, copy the following into the editor.

{
 "containerDefinitions":[

Step 3: Test your rule 1737

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

 {
 "command":[
 "sh",
 "-c",
 "sleep 5"
],
 "essential":true,
 "image":"public.ecr.aws/amazonlinux/amazonlinux:latest",
 "name":"test-sleep"
 }
],
 "cpu":"256",
 "executionRoleArn":"arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
 "family":"fargate-task-definition",
 "memory":"512",
 "networkMode":"awsvpc",
 "requiresCompatibilities":[
 "FARGATE"
]
}

5. Choose Create.

To run a task from the console

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. On the Clusters page, choose the cluster you created in the prerequisites.

3. From the Tasks tab, choose Run new task.

4. For Application type, choose Task.

5. For Task definition, choose fargate-task-definition.

6. For Desired tasks, enter the number of tasks to launch.

7. Choose Create.

Concatenating multiline or stack-trace Amazon ECS log
messages

Beginning with AWS for Fluent Bit version 2.22.0, a multiline filter is included. The multiline
filter helps concatenate log messages that originally belong to one context but were split across

Concatenating multiline or stack-trace log messages 1738

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

multiple records or log lines. For more information about the multiline filter, see the Fluent Bit
documentation.

Common examples of split log messages are:

• Stack traces.

• Applications that print logs on multiple lines.

• Log messages that were split because they were longer than the specified runtime max buffer
size. You can concatenate log messages split by the container runtime by following the example
on GitHub: FireLens Example: Concatenate Partial/Split Container Logs.

Required IAM permissions

You have the necessary IAM permissions for the container agent to pull the container images from
Amazon ECR and for the container to route logs to CloudWatch Logs.

For these permissions, you must have the following roles:

• A task IAM role.

• A task execution IAM role.

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter the following JSON policy document:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",

Required IAM permissions 1739

https://docs.fluentbit.io/manual/pipeline/filters/multiline-stacktrace
https://docs.fluentbit.io/manual/pipeline/filters/multiline-stacktrace
https://github.com/aws-samples/amazon-ecs-firelens-examples/tree/mainline/examples/fluent-bit/filter-multiline-partial-message-mode
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Elastic Container Service Developer Guide

 "Action": [
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }]
}

6. Choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring in the
IAM User Guide.

7. On the Review and create page, enter a Policy name and a Description (optional) for the
policy that you are creating. Review Permissions defined in this policy to see the permissions
that are granted by your policy.

8. Choose Create policy to save your new policy.

Determine when to use the multiline log setting

The following are example log snippets that you see in the CloudWatch Logs console with the
default log setting. You can look at the line that starts with log to determine if you need the
multiline filter. When the context is the same, you can use the multiline log setting, In this
example, the context is "com.myproject.model.MyProject".

2022-09-20T15:47:56:595-05-00 {"container_id":
 "82ba37cada1d44d389b03e78caf74faa-EXAMPLE", "container_name": "example-
app", "source=": "stdout", "log": ": " at com.myproject.modele.
(MyProject.badMethod.java:22)",
 {
 "container_id": "82ba37cada1d44d389b03e78caf74faa-EXAMPLE",
 "container_name: ": "example-app",
 "source": "stdout",
 "log": ": " at com.myproject.model.MyProject.badMethod(MyProject.java:22)",
 "ecs_cluster": "default",

Determine when to use the multiline log setting 1740

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure

Amazon Elastic Container Service Developer Guide

 "ecs_task_arn": "arn:aws:region:123456789012:task/default/
b23c940d29ed4714971cba72cEXAMPLE",
 "ecs_task_definition": "firelense-example-multiline:3"
 }

2022-09-20T15:47:56:595-05-00 {"container_id":
 "82ba37cada1d44d389b03e78caf74faa-EXAMPLE", "container_name": "example-app", "stdout",
 "log": ": " at com.myproject.modele.(MyProject.oneMoreMethod.java:18)",
 {
 "container_id": "82ba37cada1d44d389b03e78caf74faa-EXAMPLE",
 "container_name: ": "example-app",
 "source": "stdout",
 "log": ": " at
 com.myproject.model.MyProject.oneMoreMethod(MyProject.java:18)",
 "ecs_cluster": "default",
 "ecs_task_arn": "arn:aws:region:123456789012:task/default/
b23c940d29ed4714971cba72cEXAMPLE,
 "ecs_task_definition": "firelense-example-multiline:3"
 }

After you use the multiline log setting, the output will look similar to the example below.

2022-09-20T15:47:56:595-05-00 {"container_id":
 "82ba37cada1d44d389b03e78caf74faa-EXAMPLE", "container_name": "example-app",
 "stdout",...
 {
 "container_id": "82ba37cada1d44d389b03e78caf74faa-EXAMPLE",
 "container_name: ": "example-app",
 "source": "stdout",
 "log: "September 20, 2022 06:41:48 Exception in thread \"main\"
 java.lang.RuntimeException: Something has gone wrong, aborting!\n
 at com.myproject.module.MyProject.badMethod(MyProject.java:22)\n at
 at com.myproject.model.MyProject.oneMoreMethod(MyProject.java:18)
 com.myproject.module.MyProject.main(MyProject.java:6)",
 "ecs_cluster": "default",
 "ecs_task_arn": "arn:aws:region:123456789012:task/default/
b23c940d29ed4714971cba72cEXAMPLE",
 "ecs_task_definition": "firelense-example-multiline:2"
 }

Determine when to use the multiline log setting 1741

Amazon Elastic Container Service Developer Guide

Parse and concatenate options

To parse logs and concatenate lines that were split because of newlines, you can use either of these
two options.

• Use your own parser file that contains the rules to parse and concatenate lines that belong to the
same message.

• Use a Fluent Bit built-in parser. For a list of languages supported by the Fluent Bit built-in
parsers, see Fluent Bit documentation.

The following tutorial walks you through the steps for each use case. The steps show you how
to concatenate multilines and send the logs to Amazon CloudWatch. You can specify a different
destination for your logs.

Example: Use a parser that you create

In this example, you will complete the following steps:

1. Build and upload the image for a Fluent Bit container.

2. Build and upload the image for a demo multiline application that runs, fails, and generates a
multiline stack trace.

3. Create the task definition and run the task.

4. View the logs to verify that messages that span multiple lines appear concatenated.

Build and upload the image for a Fluent Bit container

This image will include the parser file where you specify the regular expression and a configuration
file that references the parser file.

1. Create a folder with the name FluentBitDockerImage.

2. Within the folder, create a parser file that contains the rules to parse the log and concatenate
lines that belong in the same message.

a. Paste the following contents in the parser file:

[MULTILINE_PARSER]
 name multiline-regex-test
 type regex

Parse and concatenate options 1742

https://docs.fluentbit.io/manual/pipeline/filters/multiline-stacktrace

Amazon Elastic Container Service Developer Guide

 flush_timeout 1000
 #
 # Regex rules for multiline parsing
 # ---------------------------------
 #
 # configuration hints:
 #
 # - first state always has the name: start_state
 # - every field in the rule must be inside double quotes
 #
 # rules | state name | regex pattern | next state
 # ------|---------------|--
 rule "start_state" "/(Dec \d+ \d+\:\d+\:\d+)(.*)/" "cont"
 rule "cont" "/^\s+at.*/" "cont"

As you customize your regex pattern, we recommend you use a regular expression editor
to test the expression.

b. Save the file as parsers_multiline.conf.

3. Within the FluentBitDockerImage folder, create a custom configuration file that references
the parser file that you created in the previous step.

For more information about the custom configuration file, see Specifying a custom
configuration file in the Amazon Elastic Container Service Developer Guide

a. Paste the following contents in the file:

[SERVICE]
 flush 1
 log_level info
 parsers_file /parsers_multiline.conf

[FILTER]
 name multiline
 match *
 multiline.key_content log
 multiline.parser multiline-regex-test

Note

You must use the absolute path of the parser.

Parse and concatenate options 1743

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/firelens-taskdef.html#firelens-taskdef-customconfig
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/firelens-taskdef.html#firelens-taskdef-customconfig

Amazon Elastic Container Service Developer Guide

b. Save the file as extra.conf.

4. Within the FluentBitDockerImage folder, create the Dockerfile with the Fluent Bit image
and the parser and configuration files that you created.

a. Paste the following contents in the file:

FROM public.ecr.aws/aws-observability/aws-for-fluent-bit:latest

ADD parsers_multiline.conf /parsers_multiline.conf
ADD extra.conf /extra.conf

b. Save the file as Dockerfile.

5. Using the Dockerfile, build a custom Fluent Bit image with the parser and custom
configuration files included.

Note

You can place the parser file and configuration file anywhere in the Docker image
except /fluent-bit/etc/fluent-bit.conf as this file path is used by FireLens.

a. Build the image: docker build -t fluent-bit-multiline-image .

Where: fluent-bit-multiline-image is the name for the image in this example.

b. Verify that the image was created correctly: docker images —filter
reference=fluent-bit-multiline-image

If successful, the output shows the image and the latest tag.

6. Upload the custom Fluent Bit image to Amazon Elastic Container Registry.

a. Create an Amazon ECR repository to store the image: aws ecr create-repository
--repository-name fluent-bit-multiline-repo --region us-east-1

Where: fluent-bit-multiline-repo is the name for the repository and us-east-1 is
the region in this example.

The output gives you the details of the new repository.

Parse and concatenate options 1744

Amazon Elastic Container Service Developer Guide

b. Tag your image with the repositoryUri value from the previous output: docker tag
fluent-bit-multiline-image repositoryUri

Example: docker tag fluent-bit-multiline-image
xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/fluent-bit-multiline-
repo

c. Run the docker image to verify it ran correctly: docker images —filter
reference=repositoryUri

In the output, the repository name changes from fluent-bit-multiline-repo to the
repositoryUri.

d. Authenticate to Amazon ECR by running the aws ecr get-login-password command
and specifying the registry ID you want to authenticate to: aws ecr get-login-
password | docker login --username AWS --password-stdin registry
ID.dkr.ecr.region.amazonaws.com

Example: ecr get-login-password | docker login --username AWS --
password-stdin xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com

A successful login message appears.

e. Push the image to Amazon ECR: docker push registry
ID.dkr.ecr.region.amazonaws.com/repository name

Example: docker push xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/
fluent-bit-multiline-repo

Build and upload the image for a demo multiline application

This image will include a Python script file that runs the application and a sample log file.

When you run the task, the application simulates runs, then fails and creates a stack trace.

1. Create a folder named multiline-app: mkdir multiline-app

2. Create a Python script file.

a. Within the multiline-app folder, create a file and name it main.py.

b. Paste the following contents in the file:

Parse and concatenate options 1745

Amazon Elastic Container Service Developer Guide

import os
import time
file1 = open('/test.log', 'r')
Lines = file1.readlines()

count = 0

for i in range(10):
 print("app running normally...")
 time.sleep(1)

Strips the newline character
for line in Lines:
 count += 1
 print(line.rstrip())
print(count)
print("app terminated.")

c. Save the main.py file.

3. Create a sample log file.

a. Within the multiline-app folder, create a file and name it test.log.

b. Paste the following contents in the file:

single line...
Dec 14 06:41:08 Exception in thread "main" java.lang.RuntimeException:
 Something has gone wrong, aborting!
 at com.myproject.module.MyProject.badMethod(MyProject.java:22)
 at com.myproject.module.MyProject.oneMoreMethod(MyProject.java:18)
 at com.myproject.module.MyProject.anotherMethod(MyProject.java:14)
 at com.myproject.module.MyProject.someMethod(MyProject.java:10)
 at com.myproject.module.MyProject.main(MyProject.java:6)
another line...

c. Save the test.log file.

4. Within the multiline-app folder, create the Dockerfile.

a. Paste the following contents in the file:

FROM public.ecr.aws/amazonlinux/amazonlinux:latest

Parse and concatenate options 1746

Amazon Elastic Container Service Developer Guide

ADD test.log /test.log

RUN yum upgrade -y && yum install -y python3

WORKDIR /usr/local/bin

COPY main.py .

CMD ["python3", "main.py"]

b. Save the Dockerfile file.

5. Using the Dockerfile, build an image.

a. Build the image: docker build -t multiline-app-image .

Where: multiline-app-image is the name for the image in this example.

b. Verify that the image was created correctly: docker images —filter
reference=multiline-app-image

If successful, the output shows the image and the latest tag.

6. Upload the image to Amazon Elastic Container Registry.

a. Create an Amazon ECR repository to store the image: aws ecr create-repository
--repository-name multiline-app-repo --region us-east-1

Where: multiline-app-repo is the name for the repository and us-east-1 is the
region in this example.

The output gives you the details of the new repository. Note the repositoryUri value as
you will need it in the next steps.

b. Tag your image with the repositoryUri value from the previous output: docker tag
multiline-app-image repositoryUri

Example: docker tag multiline-app-image xxxxxxxxxxxx.dkr.ecr.us-
east-1.amazonaws.com/multiline-app-repo

c. Run the docker image to verify it ran correctly: docker images —filter
reference=repositoryUri

In the output, the repository name changes from multiline-app-repo to the
repositoryUri value.

Parse and concatenate options 1747

Amazon Elastic Container Service Developer Guide

d. Push the image to Amazon ECR: docker push
aws_account_id.dkr.ecr.region.amazonaws.com/repository name

Example: docker push xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/
multiline-app-repo

Create the task definition and run the task

1. Create a task definition file with the file name multiline-task-definition.json.

2. Paste the following contents in the multiline-task-definition.json file:

{
 "family": "firelens-example-multiline",
 "taskRoleArn": "task role ARN,
 "executionRoleArn": "execution role ARN",
 "containerDefinitions": [
 {
 "essential": true,
 "image": "aws_account_id.dkr.ecr.us-east-1.amazonaws.com/fluent-bit-
multiline-image:latest",
 "name": "log_router",
 "firelensConfiguration": {
 "type": "fluentbit",
 "options": {
 "config-file-type": "file",
 "config-file-value": "/extra.conf"
 }
 },
 "memoryReservation": 50
 },
 {
 "essential": true,
 "image": "aws_account_id.dkr.ecr.us-east-1.amazonaws.com/multiline-app-
image:latest",
 "name": "app",
 "logConfiguration": {
 "logDriver": "awsfirelens",
 "options": {
 "Name": "cloudwatch_logs",
 "region": "us-east-1",
 "log_group_name": "multiline-test/application",

Parse and concatenate options 1748

Amazon Elastic Container Service Developer Guide

 "auto_create_group": "true",
 "log_stream_prefix": "multiline-"
 }
 },
 "memoryReservation": 100
 }
],
 "requiresCompatibilities": ["FARGATE"],
 "networkMode": "awsvpc",
 "cpu": "256",
 "memory": "512"
}

Replace the following in the multiline-task-definition.json task definition:

a. task role ARN

To find the task role ARN, go to the IAM console. Choose Roles and find the ecs-task-
role-for-firelens task role that you created. Choose the role and copy the ARN that
appears in the Summary section.

b. execution role ARN

To find the execution role ARN, go to the IAM console. Choose Roles and find the
ecsTaskExecutionRole role. Choose the role and copy the ARN that appears in the
Summary section.

c. aws_account_id

To find your aws_account_id, log into the AWS Management Console. Choose your user
name on the top right and copy your Account ID.

d. us-east-1

Replace the region if necessary.

3. Register the task definition file: aws ecs register-task-definition --cli-input-
json file://multiline-task-definition.json --region region

4. Open the console at https://console.aws.amazon.com/ecs/v2.

5. In the navigation pane, choose Task Definitions and then choose the firelens-example-
multiline family because we registered the task definition to this family in the first line of
the task definition above.

Parse and concatenate options 1749

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

6. Choose the latest version.

7. Choose the Deploy, Run task.

8. On the Run Task page, For Cluster, choose the cluster, and then under Networking, for
Subnets, choose the available subnets for your task.

9. Choose Create.

Verify that multiline log messages in Amazon CloudWatch appear concatenated

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. From the navigation pane, expand Logs and choose Log groups.

3. Choose the multiline-test/applicatio log group.

4. Choose the log. View messages. Lines that matched the rules in the parser file are
concatenated and appear as a single message.

The following log snippet shows lines concatenated in a single Java stack trace event:

{
 "container_id": "xxxxxx",
 "container_name": "app",
 "source": "stdout",
 "log": "Dec 14 06:41:08 Exception in thread \"main\"
 java.lang.RuntimeException: Something has gone wrong, aborting!\n
 at com.myproject.module.MyProject.badMethod(MyProject.java:22)\n at
 com.myproject.module.MyProject.oneMoreMethod(MyProject.java:18)\n
 at com.myproject.module.MyProject.anotherMethod(MyProject.java:14)\n
 at com.myproject.module.MyProject.someMethod(MyProject.java:10)\n at
 com.myproject.module.MyProject.main(MyProject.java:6)",
 "ecs_cluster": "default",
 "ecs_task_arn": "arn:aws:ecs:us-east-1:xxxxxxxxxxxx:task/default/xxxxxx",
 "ecs_task_definition": "firelens-example-multiline:2"
}

The following log snippet shows how the same message appears with just a single line if you
run an Amazon ECS container that is not configured to concatenate multiline log messages.

{
 "log": "Dec 14 06:41:08 Exception in thread \"main\"
 java.lang.RuntimeException: Something has gone wrong, aborting!",
 "container_id": "xxxxxx-xxxxxx",

Parse and concatenate options 1750

https://console.aws.amazon.com/cloudwatch/

Amazon Elastic Container Service Developer Guide

 "container_name": "app",
 "source": "stdout",
 "ecs_cluster": "default",
 "ecs_task_arn": "arn:aws:ecs:us-east-1:xxxxxxxxxxxx:task/default/xxxxxx",
 "ecs_task_definition": "firelens-example-multiline:3"
}

Example: Use a Fluent Bit built-in parser

In this example, you will complete the following steps:

1. Build and upload the image for a Fluent Bit container.

2. Build and upload the image for a demo multiline application that runs, fails, and generates a
multiline stack trace.

3. Create the task definition and run the task.

4. View the logs to verify that messages that span multiple lines appear concatenated.

Build and upload the image for a Fluent Bit container

This image will include a configuration file that references the Fluent Bit parser.

1. Create a folder with the name FluentBitDockerImage.

2. Within the FluentBitDockerImage folder, create a custom configuration file that references
the Fluent Bit built-in parser file.

For more information about the custom configuration file, see Specifying a custom
configuration file in the Amazon Elastic Container Service Developer Guide

a. Paste the following contents in the file:

[FILTER]
 name multiline
 match *
 multiline.key_content log
 multiline.parser go

b. Save the file as extra.conf.

3. Within the FluentBitDockerImage folder, create the Dockerfile with the Fluent Bit image
and the parser and configuration files that you created.

Parse and concatenate options 1751

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/firelens-taskdef.html#firelens-taskdef-customconfig
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/firelens-taskdef.html#firelens-taskdef-customconfig

Amazon Elastic Container Service Developer Guide

a. Paste the following contents in the file:

FROM public.ecr.aws/aws-observability/aws-for-fluent-bit:latest
ADD extra.conf /extra.conf

b. Save the file as Dockerfile.

4. Using the Dockerfile, build a custom Fluent Bit image with the custom configuration file
included.

Note

You can place the configuration file anywhere in the Docker image except /fluent-
bit/etc/fluent-bit.conf as this file path is used by FireLens.

a. Build the image: docker build -t fluent-bit-multiline-image .

Where: fluent-bit-multiline-image is the name for the image in this example.

b. Verify that the image was created correctly: docker images —filter
reference=fluent-bit-multiline-image

If successful, the output shows the image and the latest tag.

5. Upload the custom Fluent Bit image to Amazon Elastic Container Registry.

a. Create an Amazon ECR repository to store the image: aws ecr create-repository
--repository-name fluent-bit-multiline-repo --region us-east-1

Where: fluent-bit-multiline-repo is the name for the repository and us-east-1 is
the region in this example.

The output gives you the details of the new repository.

b. Tag your image with the repositoryUri value from the previous output: docker tag
fluent-bit-multiline-image repositoryUri

Example: docker tag fluent-bit-multiline-image
xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/fluent-bit-multiline-
repo

Parse and concatenate options 1752

Amazon Elastic Container Service Developer Guide

c. Run the docker image to verify it ran correctly: docker images —filter
reference=repositoryUri

In the output, the repository name changes from fluent-bit-multiline-repo to the
repositoryUri.

d. Authenticate to Amazon ECR by running the aws ecr get-login-password command
and specifying the registry ID you want to authenticate to: aws ecr get-login-
password | docker login --username AWS --password-stdin registry
ID.dkr.ecr.region.amazonaws.com

Example: ecr get-login-password | docker login --username AWS --
password-stdin xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com

A successful login message appears.

e. Push the image to Amazon ECR: docker push registry
ID.dkr.ecr.region.amazonaws.com/repository name

Example: docker push xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/
fluent-bit-multiline-repo

Build and upload the image for a demo multiline application

This image will include a Python script file that runs the application and a sample log file.

1. Create a folder named multiline-app: mkdir multiline-app

2. Create a Python script file.

a. Within the multiline-app folder, create a file and name it main.py.

b. Paste the following contents in the file:

import os
import time
file1 = open('/test.log', 'r')
Lines = file1.readlines()

count = 0

for i in range(10):
 print("app running normally...")

Parse and concatenate options 1753

Amazon Elastic Container Service Developer Guide

 time.sleep(1)

Strips the newline character
for line in Lines:
 count += 1
 print(line.rstrip())
print(count)
print("app terminated.")

c. Save the main.py file.

3. Create a sample log file.

a. Within the multiline-app folder, create a file and name it test.log.

b. Paste the following contents in the file:

panic: my panic

goroutine 4 [running]:
panic(0x45cb40, 0x47ad70)
 /usr/local/go/src/runtime/panic.go:542 +0x46c fp=0xc42003f7b8 sp=0xc42003f710
 pc=0x422f7c
main.main.func1(0xc420024120)
 foo.go:6 +0x39 fp=0xc42003f7d8 sp=0xc42003f7b8 pc=0x451339
runtime.goexit()
 /usr/local/go/src/runtime/asm_amd64.s:2337 +0x1 fp=0xc42003f7e0
 sp=0xc42003f7d8 pc=0x44b4d1
created by main.main
 foo.go:5 +0x58

goroutine 1 [chan receive]:
runtime.gopark(0x4739b8, 0xc420024178, 0x46fcd7, 0xc, 0xc420028e17, 0x3)
 /usr/local/go/src/runtime/proc.go:280 +0x12c fp=0xc420053e30 sp=0xc420053e00
 pc=0x42503c
runtime.goparkunlock(0xc420024178, 0x46fcd7, 0xc, 0x1000f010040c217, 0x3)
 /usr/local/go/src/runtime/proc.go:286 +0x5e fp=0xc420053e70 sp=0xc420053e30
 pc=0x42512e
runtime.chanrecv(0xc420024120, 0x0, 0xc420053f01, 0x4512d8)
 /usr/local/go/src/runtime/chan.go:506 +0x304 fp=0xc420053f20 sp=0xc420053e70
 pc=0x4046b4
runtime.chanrecv1(0xc420024120, 0x0)
 /usr/local/go/src/runtime/chan.go:388 +0x2b fp=0xc420053f50 sp=0xc420053f20
 pc=0x40439b

Parse and concatenate options 1754

Amazon Elastic Container Service Developer Guide

main.main()
 foo.go:9 +0x6f fp=0xc420053f80 sp=0xc420053f50 pc=0x4512ef
runtime.main()
 /usr/local/go/src/runtime/proc.go:185 +0x20d fp=0xc420053fe0 sp=0xc420053f80
 pc=0x424bad
runtime.goexit()
 /usr/local/go/src/runtime/asm_amd64.s:2337 +0x1 fp=0xc420053fe8
 sp=0xc420053fe0 pc=0x44b4d1

goroutine 2 [force gc (idle)]:
runtime.gopark(0x4739b8, 0x4ad720, 0x47001e, 0xf, 0x14, 0x1)
 /usr/local/go/src/runtime/proc.go:280 +0x12c fp=0xc42003e768 sp=0xc42003e738
 pc=0x42503c
runtime.goparkunlock(0x4ad720, 0x47001e, 0xf, 0xc420000114, 0x1)
 /usr/local/go/src/runtime/proc.go:286 +0x5e fp=0xc42003e7a8 sp=0xc42003e768
 pc=0x42512e
runtime.forcegchelper()
 /usr/local/go/src/runtime/proc.go:238 +0xcc fp=0xc42003e7e0 sp=0xc42003e7a8
 pc=0x424e5c
runtime.goexit()
 /usr/local/go/src/runtime/asm_amd64.s:2337 +0x1 fp=0xc42003e7e8
 sp=0xc42003e7e0 pc=0x44b4d1
created by runtime.init.4
 /usr/local/go/src/runtime/proc.go:227 +0x35

goroutine 3 [GC sweep wait]:
runtime.gopark(0x4739b8, 0x4ad7e0, 0x46fdd2, 0xd, 0x419914, 0x1)
 /usr/local/go/src/runtime/proc.go:280 +0x12c fp=0xc42003ef60 sp=0xc42003ef30
 pc=0x42503c
runtime.goparkunlock(0x4ad7e0, 0x46fdd2, 0xd, 0x14, 0x1)
 /usr/local/go/src/runtime/proc.go:286 +0x5e fp=0xc42003efa0 sp=0xc42003ef60
 pc=0x42512e
runtime.bgsweep(0xc42001e150)
 /usr/local/go/src/runtime/mgcsweep.go:52 +0xa3 fp=0xc42003efd8
 sp=0xc42003efa0 pc=0x419973
runtime.goexit()
 /usr/local/go/src/runtime/asm_amd64.s:2337 +0x1 fp=0xc42003efe0
 sp=0xc42003efd8 pc=0x44b4d1
created by runtime.gcenable
 /usr/local/go/src/runtime/mgc.go:216 +0x58
one more line, no multiline

c. Save the test.log file.

Parse and concatenate options 1755

Amazon Elastic Container Service Developer Guide

4. Within the multiline-app folder, create the Dockerfile.

a. Paste the following contents in the file:

FROM public.ecr.aws/amazonlinux/amazonlinux:latest
ADD test.log /test.log

RUN yum upgrade -y && yum install -y python3

WORKDIR /usr/local/bin

COPY main.py .

CMD ["python3", "main.py"]

b. Save the Dockerfile file.

5. Using the Dockerfile, build an image.

a. Build the image: docker build -t multiline-app-image .

Where: multiline-app-image is the name for the image in this example.

b. Verify that the image was created correctly: docker images —filter
reference=multiline-app-image

If successful, the output shows the image and the latest tag.

6. Upload the image to Amazon Elastic Container Registry.

a. Create an Amazon ECR repository to store the image: aws ecr create-repository
--repository-name multiline-app-repo --region us-east-1

Where: multiline-app-repo is the name for the repository and us-east-1 is the
region in this example.

The output gives you the details of the new repository. Note the repositoryUri value as
you will need it in the next steps.

b. Tag your image with the repositoryUri value from the previous output: docker tag
multiline-app-image repositoryUri

Example: docker tag multiline-app-image xxxxxxxxxxxx.dkr.ecr.us-
east-1.amazonaws.com/multiline-app-repo

Parse and concatenate options 1756

Amazon Elastic Container Service Developer Guide

c. Run the docker image to verify it ran correctly: docker images —filter
reference=repositoryUri

In the output, the repository name changes from multiline-app-repo to the
repositoryUri value.

d. Push the image to Amazon ECR: docker push
aws_account_id.dkr.ecr.region.amazonaws.com/repository name

Example: docker push xxxxxxxxxxxx.dkr.ecr.us-east-1.amazonaws.com/
multiline-app-repo

Create the task definition and run the task

1. Create a task definition file with the file name multiline-task-definition.json.

2. Paste the following contents in the multiline-task-definition.json file:

{
 "family": "firelens-example-multiline",
 "taskRoleArn": "task role ARN,
 "executionRoleArn": "execution role ARN",
 "containerDefinitions": [
 {
 "essential": true,
 "image": "aws_account_id.dkr.ecr.us-east-1.amazonaws.com/fluent-bit-
multiline-image:latest",
 "name": "log_router",
 "firelensConfiguration": {
 "type": "fluentbit",
 "options": {
 "config-file-type": "file",
 "config-file-value": "/extra.conf"
 }
 },
 "memoryReservation": 50
 },
 {
 "essential": true,
 "image": "aws_account_id.dkr.ecr.us-east-1.amazonaws.com/multiline-app-
image:latest",
 "name": "app",
 "logConfiguration": {

Parse and concatenate options 1757

Amazon Elastic Container Service Developer Guide

 "logDriver": "awsfirelens",
 "options": {
 "Name": "cloudwatch_logs",
 "region": "us-east-1",
 "log_group_name": "multiline-test/application",
 "auto_create_group": "true",
 "log_stream_prefix": "multiline-"
 }
 },
 "memoryReservation": 100
 }
],
 "requiresCompatibilities": ["FARGATE"],
 "networkMode": "awsvpc",
 "cpu": "256",
 "memory": "512"
}

Replace the following in the multiline-task-definition.json task definition:

a. task role ARN

To find the task role ARN, go to the IAM console. Choose Roles and find the ecs-task-
role-for-firelens task role that you created. Choose the role and copy the ARN that
appears in the Summary section.

b. execution role ARN

To find the execution role ARN, go to the IAM console. Choose Roles and find the
ecsTaskExecutionRole role. Choose the role and copy the ARN that appears in the
Summary section.

c. aws_account_id

To find your aws_account_id, log into the AWS Management Console. Choose your user
name on the top right and copy your Account ID.

d. us-east-1

Replace the region if necessary.

3. Register the task definition file: aws ecs register-task-definition --cli-input-
json file://multiline-task-definition.json --region us-east-1

4. Open the console at https://console.aws.amazon.com/ecs/v2.
Parse and concatenate options 1758

https://console.aws.amazon.com/ecs/v2

Amazon Elastic Container Service Developer Guide

5. In the navigation pane, choose Task Definitions and then choose the firelens-example-
multiline family because we registered the task definition to this family in the first line of
the task definition above.

6. Choose the latest version.

7. Choose the Deploy, Run task.

8. On the Run Task page, For Cluster, choose the cluster, and then under Networking, for
Subnets, choose the available subnets for your task.

9. Choose Create.

Verify that multiline log messages in Amazon CloudWatch appear concatenated

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. From the navigation pane, expand Logs and choose Log groups.

3. Choose the multiline-test/applicatio log group.

4. Choose the log and view the messages. Lines that matched the rules in the parser file are
concatenated and appear as a single message.

The following log snippet shows a Go stack trace that is concatenated into a single event:

{
 "log": "panic: my panic\n\ngoroutine 4 [running]:\npanic(0x45cb40,
 0x47ad70)\n /usr/local/go/src/runtime/panic.go:542 +0x46c fp=0xc42003f7b8
 sp=0xc42003f710 pc=0x422f7c\nmain.main.func1(0xc420024120)\n foo.go:6
 +0x39 fp=0xc42003f7d8 sp=0xc42003f7b8 pc=0x451339\nruntime.goexit()\n /usr/
local/go/src/runtime/asm_amd64.s:2337 +0x1 fp=0xc42003f7e0 sp=0xc42003f7d8
 pc=0x44b4d1\ncreated by main.main\n foo.go:5 +0x58\n\ngoroutine 1 [chan receive]:
\nruntime.gopark(0x4739b8, 0xc420024178, 0x46fcd7, 0xc, 0xc420028e17, 0x3)\n /usr/
local/go/src/runtime/proc.go:280 +0x12c fp=0xc420053e30 sp=0xc420053e00 pc=0x42503c
\nruntime.goparkunlock(0xc420024178, 0x46fcd7, 0xc, 0x1000f010040c217, 0x3)\n
 /usr/local/go/src/runtime/proc.go:286 +0x5e fp=0xc420053e70 sp=0xc420053e30
 pc=0x42512e\nruntime.chanrecv(0xc420024120, 0x0, 0xc420053f01, 0x4512d8)\n
 /usr/local/go/src/runtime/chan.go:506 +0x304 fp=0xc420053f20 sp=0xc420053e70
 pc=0x4046b4\nruntime.chanrecv1(0xc420024120, 0x0)\n /usr/local/go/src/runtime/
chan.go:388 +0x2b fp=0xc420053f50 sp=0xc420053f20 pc=0x40439b\nmain.main()\n
 foo.go:9 +0x6f fp=0xc420053f80 sp=0xc420053f50 pc=0x4512ef\nruntime.main()\n
 /usr/local/go/src/runtime/proc.go:185 +0x20d fp=0xc420053fe0 sp=0xc420053f80
 pc=0x424bad\nruntime.goexit()\n /usr/local/go/src/runtime/asm_amd64.s:2337
 +0x1 fp=0xc420053fe8 sp=0xc420053fe0 pc=0x44b4d1\n\ngoroutine 2 [force gc
 (idle)]:\nruntime.gopark(0x4739b8, 0x4ad720, 0x47001e, 0xf, 0x14, 0x1)\n /

Parse and concatenate options 1759

https://console.aws.amazon.com/cloudwatch/

Amazon Elastic Container Service Developer Guide

usr/local/go/src/runtime/proc.go:280 +0x12c fp=0xc42003e768 sp=0xc42003e738
 pc=0x42503c\nruntime.goparkunlock(0x4ad720, 0x47001e, 0xf, 0xc420000114, 0x1)\n
 /usr/local/go/src/runtime/proc.go:286 +0x5e fp=0xc42003e7a8 sp=0xc42003e768
 pc=0x42512e\nruntime.forcegchelper()\n /usr/local/go/src/runtime/proc.go:238
 +0xcc fp=0xc42003e7e0 sp=0xc42003e7a8 pc=0x424e5c\nruntime.goexit()\n /usr/
local/go/src/runtime/asm_amd64.s:2337 +0x1 fp=0xc42003e7e8 sp=0xc42003e7e0
 pc=0x44b4d1\ncreated by runtime.init.4\n /usr/local/go/src/runtime/proc.go:227
 +0x35\n\ngoroutine 3 [GC sweep wait]:\nruntime.gopark(0x4739b8, 0x4ad7e0,
 0x46fdd2, 0xd, 0x419914, 0x1)\n /usr/local/go/src/runtime/proc.go:280 +0x12c
 fp=0xc42003ef60 sp=0xc42003ef30 pc=0x42503c\nruntime.goparkunlock(0x4ad7e0,
 0x46fdd2, 0xd, 0x14, 0x1)\n /usr/local/go/src/runtime/proc.go:286 +0x5e
 fp=0xc42003efa0 sp=0xc42003ef60 pc=0x42512e\nruntime.bgsweep(0xc42001e150)\n
 /usr/local/go/src/runtime/mgcsweep.go:52 +0xa3 fp=0xc42003efd8 sp=0xc42003efa0
 pc=0x419973\nruntime.goexit()\n /usr/local/go/src/runtime/asm_amd64.s:2337 +0x1
 fp=0xc42003efe0 sp=0xc42003efd8 pc=0x44b4d1\ncreated by runtime.gcenable\n /usr/
local/go/src/runtime/mgc.go:216 +0x58",
 "container_id": "xxxxxx-xxxxxx",
 "container_name": "app",
 "source": "stdout",
 "ecs_cluster": "default",
 "ecs_task_arn": "arn:aws:ecs:us-east-1:xxxxxxxxxxxx:task/default/xxxxxx",
 "ecs_task_definition": "firelens-example-multiline:2"
}

The following log snippet shows how the same event appears if you run an ECS container that
is not configured to concatenate multiline log messages. The log field contains a single line.

{
 "log": "panic: my panic",
 "container_id": "xxxxxx-xxxxxx",
 "container_name": "app",
 "source": "stdout",
 "ecs_cluster": "default",
 "ecs_task_arn": "arn:aws:ecs:us-east-1:xxxxxxxxxxxx:task/default/xxxxxx",
 "ecs_task_definition": "firelens-example-multiline:3"

Parse and concatenate options 1760

Amazon Elastic Container Service Developer Guide

Note

If your logs go to log files instead of the standard output, we recommend specifying the
multiline.parser and multiline.key_content configuration parameters in the Tail
input plugin instead of the Filter.

Deploying Fluent Bit on Amazon ECS Windows containers

Fluent Bit is a fast and flexible log processor and router supported by various operating systems. It
can be used to route logs to various AWS destinations such as Amazon CloudWatch Logs, Firehose
Amazon S3, and Amazon OpenSearch Service. Fluent Bit supports common partner solutions such
as Datadog, Splunk, and custom HTTP servers. For more information about Fluent Bit, see the
Fluent Bit website.

The AWS for Fluent Bit image is available on Amazon ECR on both the Amazon ECR Public Gallery
and in an Amazon ECR repository in most Regions for high availability. For more information, see
aws-for-fluent-bit on the GitHub website.

This tutorial walks you through how to deploy Fluent Bit containers on their Windows instances
running in Amazon ECS to stream logs generated by the Windows tasks to Amazon CloudWatch for
centralized logging.

This tutorial uses the following approach:

• Fluent Bit runs as a service with the Daemon scheduling strategy. This strategy ensures that a
single instance of Fluent Bit always runs on the container instances in the cluster.

• Listens on port 24224 using the forward input plug-in.

• Expose port 24224 to the host so that the docker runtime can send logs to Fluent Bit using
this exposed port.

• Has a configuration which allows Fluent Bit to send the logs records to specified destinations.

• Launch all other Amazon ECS task containers using the fluentd logging driver. For more
information, see Fluentd logging driver on the Docker documentation website.

• Docker connects to the TCP socket 24224 on localhost inside the host namespace.

• The Amazon ECS agent adds labels to the containers which includes the cluster name, task
definition family name, task definition revision number, task ARN, and the container name.
The same information is added to the log record using the labels option of the fluentd docker

Deploying Fluent Bit on Windows containers 1761

https://docs.fluentbit.io/manual/pipeline/inputs/tail#multiline-support
https://docs.fluentbit.io/manual/pipeline/inputs/tail#multiline-support
https://www.datadoghq.com/
https://www.splunk.com/
https://fluentbit.io/
https://github.com/aws/aws-for-fluent-bit
https://github.com/aws/aws-for-fluent-bit
https://docs.docker.com/engine/logging/drivers/fluentd/

Amazon Elastic Container Service Developer Guide

logging driver. For more information, see labels, labels-regex, env, and env-regex on the
Docker documentation website.

• Because the async option of the fluentd logging driver is set to true, when the Fluent Bit
container is restarted, docker buffers the logs until the Fluent Bit container is restarted. You
can increase the buffer limit by setting the fluentd-buffer-limit option. For more information,
see fluentd-buffer-limit on the Docker documentation website.

The work flow is as follows:

• The Fluent Bit container starts and listens on port 24224 which is exposed to the host.

• Fluent Bit uses the task IAM role credentials specified in its task definition.

• Other tasks launched on the same instance use the fluentd docker logging driver to connect to
the Fluent Bit container on port 24224.

• When the application containers generate logs, docker runtime tags those records, adds
additional metadata specified in labels, and then forwards them on port 24224 in the host
namespace.

• Fluent Bit receives the log record on port 24224 because it is exposed to the host namespace.

• Fluent Bit performs its internal processing and routes the logs as specified.

This tutorial uses the default CloudWatch Fluent Bit configuration which does the following:

• Creates a new log group for each cluster and task definition family.

• Creates a new log stream for each task container in above generated log group whenever a new
task is launched. Each stream will be marked with the task id to which the container belongs.

• Adds additional metadata including the cluster name, task ARN, task container name, task
definition family, and the task definition revision number in each log entry.

For example, if you have task_1 with container_1 and container_2 and task_2 with
container_3, then the following are the CloudWatch log streams:

• /aws/ecs/windows.ecs_task_1

task-out.TASK_ID.container_1

task-out.TASK_ID.container_2

• /aws/ecs/windows.ecs_task_2

Deploying Fluent Bit on Windows containers 1762

https://docs.docker.com/config/containers/logging/fluentd/#labels-labels-regex-env-and-env-regex
https://docs.docker.com/config/containers/logging/fluentd/#fluentd-buffer-limit

Amazon Elastic Container Service Developer Guide

task-out.TASK_ID.container_3

Note

You can use dual-stack service endpoints to interact with Amazon ECS from the AWS CLI,
SDKs, and the Amazon ECS API over both IPv4 and IPv6. For more information, see Using
Amazon ECS dual-stack endpoints.

Steps

• Prerequisites

• Step 1: Create the IAM access roles

• Step 2: Create an Amazon ECS Windows container instance

• Step 3: Configure Fluent Bit

• Step 4: Register a Windows Fluent Bit task definition which routes the logs to CloudWatch

• Step 5: Run the ecs-windows-fluent-bit task definition as an Amazon ECS service using the
daemon scheduling strategy

• Step 6: Register a Windows task definition which generates the logs

• Step 7: Run the windows-app-task task definition

• Step 8: Verify the logs on CloudWatch

• Step 9: Clean up

Prerequisites

This tutorial assumes that the following prerequisites have been completed:

• The latest version of the AWS CLI is installed and configured. For more information, see Installing
or updating to the latest version of the AWS CLI.

• The aws-for-fluent-bit container image is available for the following Windows operating
systems:

• Windows Server 2019 Core

• Windows Server 2019 Full

• Windows Server 2022 Core

Prerequisites 1763

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon Elastic Container Service Developer Guide

• Windows Server 2022 Full

• The steps in Set up to use Amazon ECS have been completed.

• You have a cluster. In this tutorial, the cluster name is FluentBit-cluster.

• You have a VPC with a public subnet where the EC2 instance will be launched. You can use your
default VPC. You can also use a private subnet that allows Amazon CloudWatch endpoints to
reach the subnet. For more information about Amazon CloudWatch endpoints, see Amazon
CloudWatch endpoints and quotas in the AWS General Reference. For information about how
to use the Amazon VPC wizard to create a VPC, see the section called “Create a virtual private
cloud”.

Step 1: Create the IAM access roles

Create the Amazon ECS IAM roles.

1. Create the Amazon ECS container instance role named "ecsInstanceRole". For more
information, see Amazon ECS container instance IAM role.

2. Create an IAM role for the Fluent Bit task named fluentTaskRole. For more information, see
the section called “Task IAM role”.

The IAM permissions granted in this IAM role are assumed by the task containers. In order to
allow Fluent Bit to send logs to CloudWatch, you need to attach the following permissions to
the task IAM role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

Step 1: Create the IAM access roles 1764

https://docs.aws.amazon.com/general/latest/gr/cw_region.html
https://docs.aws.amazon.com/general/latest/gr/cw_region.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html

Amazon Elastic Container Service Developer Guide

3. Attach the policy to the role.

a. Save the above content in a file named fluent-bit-policy.json.

b. Run the following command to attach the inline policy to fluentTaskRole IAM role.

aws iam put-role-policy --role-name fluentTaskRole --policy-name
 fluentTaskPolicy --policy-document file://fluent-bit-policy.json

Step 2: Create an Amazon ECS Windows container instance

Create an Amazon ECS Windows container instance.

To create an Amazon ECS instance

1. Use the aws ssm get-parameters command to retrieve the AMI ID for the Region that
hosts your VPC. For more information, see Retrieving Amazon ECS-Optimized AMI metadata.

2. Use the Amazon EC2 console to launch the instance.

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

b. From the navigation bar, select the Region to use.

c. From the EC2 Dashboard, choose Launch instance.

d. For Name, enter a unique name.

e. For Application and OS Images (Amazon Machine Image), choose the AMI that you
retrieved in the first step.

f. For Instance type, choose t3.xlarge.

g. For Key pair (login), choose a key pair.

h. Under Network settings, for Security group, choose an existing security group, or create
a new one.

i. Under Network settings, for Auto-assign Public IP, select Enable.

j. Under Advanced details, for IAM instance profile , choose ecsInstanceRole.

k. Configure your Amazon ECS container instance with the following user data. Under
Advanced Details, paste the following script into the User data field, replacing
cluster_name with the name of your cluster.

<powershell>
Step 2: Create an Amazon ECS Windows container instance 1765

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/retrieve-ecs-optimized_windows_AMI.html
https://console.aws.amazon.com/ec2/

Amazon Elastic Container Service Developer Guide

Import-Module ECSTools
Initialize-ECSAgent -Cluster cluster-name -EnableTaskENI -EnableTaskIAMRole -
LoggingDrivers '["awslogs","fluentd"]'
</powershell>

l. When you are ready, select the acknowledgment field, and then choose Launch Instances.

m. A confirmation page lets you know that your instance is launching. Choose View Instances
to close the confirmation page and return to the console.

Step 3: Configure Fluent Bit

You can use the following default configuration provided by AWS to get quickly started:

• Amazon CloudWatch which is based on the Fluent Bit plug-in for Amazon CloudWatch on the
Fluent Bit Official Manual.

Alternatively, you can use other default configurations provided by AWS. For more information,
see Overriding the entrypoint for the Windows image on the aws-for-fluent-bit the Github
website.

The default Amazon CloudWatch Fluent Bit configuration is shown below.

Replace the following variables:

• region with the Region where you want to send the Amazon CloudWatch logs.

[SERVICE]
 Flush 5
 Log_Level info
 Daemon off

[INPUT]
 Name forward
 Listen 0.0.0.0
 Port 24224
 Buffer_Chunk_Size 1M
 Buffer_Max_Size 6M
 Tag_Prefix ecs.

Amazon ECS agent adds the following log keys as labels to the docker container.

Step 3: Configure Fluent Bit 1766

https://github.com/aws/aws-for-fluent-bit/blob/mainline/ecs_windows_forward_daemon/cloudwatch.conf
https://docs.fluentbit.io/manual/v/1.9-pre/pipeline/outputs/cloudwatch
https://github.com/aws/aws-for-fluent-bit/tree/mainline/ecs_windows_forward_daemon#overriding-the-entrypoint-for-the-windows-image

Amazon Elastic Container Service Developer Guide

We would use fluentd logging driver to add these to log record while sending it to
 Fluent Bit.
[FILTER]
 Name modify
 Match ecs.*
 Rename com.amazonaws.ecs.cluster ecs_cluster
 Rename com.amazonaws.ecs.container-name ecs_container_name
 Rename com.amazonaws.ecs.task-arn ecs_task_arn
 Rename com.amazonaws.ecs.task-definition-family
 ecs_task_definition_family
 Rename com.amazonaws.ecs.task-definition-version
 ecs_task_definition_version

[FILTER]
 Name rewrite_tag
 Match ecs.*
 Rule $ecs_task_arn ^([a-z-:0-9]+)/([a-zA-Z0-9-_]+)/([a-z0-9]+)$
 out.$3.$ecs_container_name false
 Emitter_Name re_emitted

[OUTPUT]
 Name cloudwatch_logs
 Match out.*
 region region
 log_group_name fallback-group
 log_group_template /aws/ecs/$ecs_cluster.$ecs_task_definition_family
 log_stream_prefix task-
 auto_create_group On

Every log which gets into Fluent Bit has a tag which you specify, or is automatically generated
when you do not supply one. The tags can be used to route different logs to different destinations.
For additional information, see Tag in the Fluent Bit Official Manual.

The Fluent Bit configuration described above has the following properties:

• The forward input plug-in listens for incoming traffic on TCP port 24224.

• Each log entry received on that port has a tag which the forward input plug-in modifies to prefix
the record with ecs. string.

• The Fluent Bit internal pipeline routes the log entry to modify the filter using the Match regex.
This filter replaces the keys in the log record JSON to the format which Fluent Bit can consume.

Step 3: Configure Fluent Bit 1767

https://docs.fluentbit.io/manual/concepts/key-concepts#tag

Amazon Elastic Container Service Developer Guide

• The modified log entry is then consumed by the rewrite_tag filter. This filter changes the tag of
the log record to the format out.TASK_ID.CONTAINER_NAME.

• The new tag will be routed to output cloudwatch_logs plug-in which creates the log groups and
streams as described earlier by using the log_group_template and log_stream_prefix
options of the CloudWatch output plug-in. For additional information, see Configuration
parameters in the Fluent Bit Official Manual.

Step 4: Register a Windows Fluent Bit task definition which routes the
logs to CloudWatch

Register a Windows Fluent Bit task definition which routes the logs to CloudWatch.

Note

This task definition exposes Fluent Bit container port 24224 to the host port 24224. Verify
that this port is not open in your EC2 instance security group to prevent access from
outside.

To register a task definition

1. Create a file named fluent-bit.json with the following contents.

Replace the following variables:

• task-iam-role with the Amazon Resource Name (ARN) of your task IAM role

• region with the Region where your task runs

{
 "family": "ecs-windows-fluent-bit",
 "taskRoleArn": "task-iam-role",
 "containerDefinitions": [
 {
 "name": "fluent-bit",
 "image": "public.ecr.aws/aws-observability/aws-for-fluent-
bit:windowsservercore-latest",
 "cpu": 512,
 "portMappings": [

Step 4: Register a Windows Fluent Bit task definition which routes the logs to CloudWatch 1768

https://docs.fluentbit.io/manual/v/1.9-pre/pipeline/outputs/cloudwatch#configuration-parameters
https://docs.fluentbit.io/manual/v/1.9-pre/pipeline/outputs/cloudwatch#configuration-parameters

Amazon Elastic Container Service Developer Guide

 {
 "hostPort": 24224,
 "containerPort": 24224,
 "protocol": "tcp"
 }
],
 "entryPoint": [
 "Powershell",
 "-Command"
],
 "command": [
 "C:\\entrypoint.ps1 -ConfigFile C:\\ecs_windows_forward_daemon\
\cloudwatch.conf"
],
 "environment": [
 {
 "name": "AWS_REGION",
 "value": "region"
 }
],
 "memory": 512,
 "essential": true,
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "/ecs/fluent-bit-logs",
 "awslogs-region": "region",
 "awslogs-stream-prefix": "flb",
 "awslogs-create-group": "true"
 }
 }
 }
],
 "memory": "512",
 "cpu": "512"
}

2. Run the following command to register the task definition.

aws ecs register-task-definition --cli-input-json file://fluent-bit.json --
region region

Step 4: Register a Windows Fluent Bit task definition which routes the logs to CloudWatch 1769

Amazon Elastic Container Service Developer Guide

You can list the task definitions for your account by running the list-task-definitions
command. The output of displays the family and revision values that you can use together
with run-task or start-task.

Step 5: Run the ecs-windows-fluent-bit task definition as an
Amazon ECS service using the daemon scheduling strategy

After you register a task definition for your account, you can run a task in the cluster. For this
tutorial, you run one instance of the ecs-windows-fluent-bit:1 task definition in your
FluentBit-cluster cluster. Run the task in a service which uses the daemon scheduling
strategy, which ensures that a single instance of Fluent Bit always runs on each of your container
instances.

To run a task

1. Run the following command to start the ecs-windows-fluent-bit:1 task definition
(registered in the previous step) as a service.

Note

This task definition uses the awslogs logging driver, your container instance need to
have the necessary permissions.

Replace the following variables:

• region with the Region where your service runs

aws ecs create-service \
 --cluster FluentBit-cluster \
 --service-name FluentBitForwardDaemonService \
 --task-definition ecs-windows-fluent-bit:1 \
 --launch-type EC2 \
 --scheduling-strategy DAEMON \
 --region region

2. Run the following command to list your tasks.

Step 5: Run the ecs-windows-fluent-bit task definition as an Amazon ECS service using the
daemon scheduling strategy

1770

Amazon Elastic Container Service Developer Guide

Replace the following variables:

• region with the Region where your service tasks run

aws ecs list-tasks --cluster FluentBit-cluster --region region

Step 6: Register a Windows task definition which generates the logs

Register a task definition which generates the logs. This task definition deploys Windows container
image which will write a incremental number to stdout every second.

The task definition uses the fluentd logging driver which connects to port 24224 which the Fluent
Bit plug-in listens to. The Amazon ECS agent labels each Amazon ECS container with tags including
the cluster name, task ARN, task definition family name, task definition revision number and the
task container name. These key-value labels are passed to Fluent Bit.

Note

This task uses the default network mode. However, you can also use the awsvpc network
mode with the task.

To register a task definition

1. Create a file named windows-app-task.json with the following contents.

{
 "family": "windows-app-task",
 "containerDefinitions": [
 {
 "name": "sample-container",
 "image": "mcr.microsoft.com/windows/servercore:ltsc2019",
 "cpu": 512,
 "memory": 512,
 "essential": true,
 "entryPoint": [
 "Powershell",
 "-Command"

Step 6: Register a Windows task definition which generates the logs 1771

Amazon Elastic Container Service Developer Guide

],
 "command": [
 "$count=1;while(1) { Write-Host $count; sleep 1; $count=$count+1;}"
],
 "logConfiguration": {
 "logDriver": "fluentd",
 "options": {
 "fluentd-address": "localhost:24224",
 "tag": "{{ index .ContainerLabels \"com.amazonaws.ecs.task-definition-
family\" }}",
 "fluentd-async": "true",
 "labels": "com.amazonaws.ecs.cluster,com.amazonaws.ecs.container-
name,com.amazonaws.ecs.task-arn,com.amazonaws.ecs.task-definition-
family,com.amazonaws.ecs.task-definition-version"
 }
 }
 }
],
 "memory": "512",
 "cpu": "512"
}

2. Run the following command to register the task definition.

Replace the following variables:

• region with the Region where your task runs

aws ecs register-task-definition --cli-input-json file://windows-app-task.json --
region region

You can list the task definitions for your account by running the list-task-definitions
command. The output of displays the family and revision values that you can use together
with run-task or start-task.

Step 7: Run the windows-app-task task definition

After you register the windows-app-task task definition, run it in your FluentBit-cluster
cluster.

Step 7: Run the windows-app-task task definition 1772

Amazon Elastic Container Service Developer Guide

To run a task

1. Run the windows-app-task:1 task definition you registered in the previous step.

Replace the following variables:

• region with the Region where your task runs

aws ecs run-task --cluster FluentBit-cluster --task-definition windows-app-task:1
 --count 2 --region region

2. Run the following command to list your tasks.

aws ecs list-tasks --cluster FluentBit-cluster

Step 8: Verify the logs on CloudWatch

In order to verify your Fluent Bit setup, check for the following log groups in the CloudWatch
console:

• /ecs/fluent-bit-logs - This is the log group which corresponds to the Fluent Bit daemon
container which is running on the container instance.

• /aws/ecs/FluentBit-cluster.windows-app-task - This is the log group which
corresponds to all the tasks launched for windows-app-task task definition family inside
FluentBit-cluster cluster.

task-out.FIRST_TASK_ID.sample-container - This log stream contains all the logs
generated by the first instance of the task in the sample-container task container.

task-out.SECOND_TASK_ID.sample-container - This log stream contains all the logs
generated by the second instance of the task in the sample-container task container.

The task-out.TASK_ID.sample-container log stream has fields similar to the following:

{
 "source": "stdout",
 "ecs_task_arn": "arn:aws:ecs:region:0123456789012:task/FluentBit-
cluster/13EXAMPLE",

Step 8: Verify the logs on CloudWatch 1773

Amazon Elastic Container Service Developer Guide

 "container_name": "/ecs-windows-app-task-1-sample-container-cEXAMPLE",
 "ecs_cluster": "FluentBit-cluster",
 "ecs_container_name": "sample-container",
 "ecs_task_definition_version": "1",
 "container_id": "61f5e6EXAMPLE",
 "log": "10",
 "ecs_task_definition_family": "windows-app-task"
}

To verify the Fluent Bit setup

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups. Make sure that you're in the Region where you
deployed Fluent Bit to your containers.

In the list of log groups in the AWS Region, you should see the following:

• /ecs/fluent-bit-logs

• /aws/ecs/FluentBit-cluster.windows-app-task

If you see these log groups, the Fluent Bit setup is verified.

Step 9: Clean up

When you have finished this tutorial, clean up the resources associated with it to avoid incurring
charges for resources that you aren't using.

To clean up the tutorial resources

1. Stop the windows-simple-task task and the ecs-fluent-bit task. For more information,
see the section called “Stopping a task”.

2. Run the following command to delete the /ecs/fluent-bit-logs log group. For more
information, about deleting log groups see delete-log-group in the AWS Command Line
Interface Reference.

aws logs delete-log-group --log-group-name /ecs/fluent-bit-logs
aws logs delete-log-group --log-group-name /aws/ecs/FluentBit-cluster.windows-app-
task

Step 9: Clean up 1774

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/cli/latest/reference/logs/delete-log-group.html

Amazon Elastic Container Service Developer Guide

3. Run the following command to terminate the instance.

aws ec2 terminate-instances --instance-ids instance-id

4. Run the following commands to delete the IAM roles.

aws iam delete-role --role-name ecsInstanceRole
aws iam delete-role --role-name fluentTaskRole

5. Run the following command to delete the Amazon ECS cluster.

aws ecs delete-cluster --cluster FluentBit-cluster

Using gMSA for EC2 Linux containers on Amazon ECS

Amazon ECS supports Active Directory authentication for Linux containers on EC2 through a
special kind of service account called a group Managed Service Account (gMSA).

Linux based network applications, such as .NET Core applications, can use Active Directory to
facilitate authentication and authorization management between users and services. You can use
this feature by designing applications that integrate with Active Directory and run on domain-
joined servers. But, because Linux containers can't be domain-joined, you need to configure a Linux
container to run with gMSA.

A Linux container that runs with gMSA relies on the credentials-fetcher daemon that runs
on the container's host Amazon EC2 instance. That is, the daemon retrieves the gMSA credentials
from the Active Directory domain controller and then transfers these credentials to the container
instance. For more information about service accounts, see Create gMSAs for Windows containers
on the Microsoft Learn website.

Considerations

Consider the following before you use gMSA for Linux containers:

• If your containers run on EC2, you can use gMSA for Windows containers and Linux containers.
For information about how to use gMSA for Linux container on Fargate, see Using gMSA for
Linux containers on Fargate.

• You might need a Windows computer that's joined to the domain to complete the prerequisites.
For example, you might need a Windows computer that's joined to the domain to create the

Using gMSA for EC2 Linux containers 1775

https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts

Amazon Elastic Container Service Developer Guide

gMSA in Active Directory with PowerShell. The RSAT Active Director PowerShell tools are only
available for Windows. For more information, see Installing the Active Directory administration
tools.

• You chose between domainless gMSA and joining each instance to a single domain. By using
domainless gMSA, the container instance isn't joined to the domain, other applications on the
instance can't use the credentials to access the domain, and tasks that join different domains can
run on the same instance.

Then, choose the data storage for the CredSpec and optionally, for the Active Directory user
credentials for domainless gMSA.

Amazon ECS uses an Active Directory credential specification file (CredSpec). This file contains
the gMSA metadata that's used to propagate the gMSA account context to the container.
You generate the CredSpec file and then store it in one of the CredSpec storage options in
the following table, specific to the Operating System of the container instances. To use the
domainless method, an optional section in the CredSpec file can specify credentials in one of
the domainless user credentials storage options in the following table, specific to the Operating
System of the container instances.

Storage location Linux Windows

Amazon Simple Storage
Service

CredSpec CredSpec

AWS Secrets Manager domainless user credentials domainless user credentials

Amazon EC2 Systems
Manager Parameter Store

CredSpec CredSpec, domainless user
credentials

Local file N/A CredSpec

Prerequisites

Before you use the gMSA for Linux containers feature with Amazon ECS, make sure to complete the
following:

• You set up an Active Directory domain with the resources that you want your containers to
access. Amazon ECS supports the following setups:

Prerequisites 1776

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html

Amazon Elastic Container Service Developer Guide

• An AWS Directory Service Active Directory. AWS Directory Service is an AWS managed Active
Directory that's hosted on Amazon EC2. For more information, see Getting Started with AWS
Managed Microsoft AD in the AWS Directory Service Administration Guide.

• An on-premises Active Directory. You must ensure that the Amazon ECS Linux container
instance can join the domain. For more information, see AWS Direct Connect.

• You have an existing gMSA account in the Active Directory. For more information, see Using
gMSA for EC2 Linux containers on Amazon ECS.

• You installed and are running the credentials-fetcher daemon on an Amazon ECS Linux
container instance. You also added an initial set of credentials to the credentials-fetcher
daemon to authenticate with the Active Directory.

Note

The credentials-fetcher daemon is only available for Amazon Linux 2023
and Fedora 37 and later. The daemon isn't available for Amazon Linux 2. For more
information, see aws/credentials-fetcher on GitHub.

• You set up the credentials for the credentials-fetcher daemon to authenticate with the
Active Directory. The credentials must be a member of the Active Directory security group that
has access to the gMSA account. There are multiple options in Decide if you want to join the
instances to the domain, or use domainless gMSA..

• You added the required IAM permissions. The permissions that are required depend on the
methods that you choose for the initial credentials and for storing the credential specification:

• If you use domainless gMSA for initial credentials, IAM permissions for AWS Secrets Manager
are required on the task execution role.

• If you store the credential specification in SSM Parameter Store, IAM permissions for Amazon
EC2 Systems Manager Parameter Store are required on the task execution role.

• If you store the credential specification in Amazon S3, IAM permissions for Amazon Simple
Storage Service are required on the task execution role.

Setting up gMSA-capable Linux Containers on Amazon ECS

Prepare the infrastructure

The following steps are considerations and setup that are performed once. After you complete
these steps, you can automate creating container instances to reuse this configuration.

Setup 1777

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-direct-connect.html
https://github.com/aws/credentials-fetcher

Amazon Elastic Container Service Developer Guide

Decide how the initial credentials are provided and configure the EC2 user data in a reusable EC2
launch template to install the credentials-fetcher daemon.

1. Decide if you want to join the instances to the domain, or use domainless gMSA.

• Join EC2 instances to the Active Directory domain

• Join the instances by user data

Add the steps to join the Active Directory domain to your EC2 user data in an EC2
launch template. Multiple Amazon EC2 Auto Scaling groups can use the same launch
template.

You can use these steps Joining an Active Directory or FreeIPA domain in the Fedora
Docs.

• Make an Active Directory user for domainless gMSA

The credentials-fetcher daemon has a feature that's called domainless gMSA. This
feature requires a domain, but the EC2 instance doesn't need to be joined to the domain.
By using domainless gMSA, the container instance isn't joined to the domain, other
applications on the instance can't use the credentials to access the domain, and tasks that
join different domains can run on the same instance. Instead, you provide the name of a
secret in AWS Secrets Manager in the CredSpec file. The secret must contain a username,
password, and the domain to log in to.

This feature is supported and can be used with Linux and Windows containers.

This feature is similar to the gMSA support for non-domain-joined container hosts
feature. For more information about the Windows feature, see gMSA architecture and
improvements on the Microsoft Learn website.

a. Make a user in your Active Directory domain. The user in Active Directory must have
permission to access the gMSA service accounts that you use in the tasks.

b. Create a secret in AWS Secrets Manager, after you made the user in Active Directory.
For more information, see Create an AWS Secrets Manager secret.

c. Enter the user's username, password, and the domain into JSON key-value pairs called
username, password and domainName, respectively.

{"username":"username","password":"passw0rd", "domainName":"example.com"}

Setup 1778

https://docs.fedoraproject.org/en-US/quick-docs/join-active-directory-freeipa/
https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts#gmsa-architecture-and-improvements
https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts#gmsa-architecture-and-improvements
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Elastic Container Service Developer Guide

d. Add configuration to the CredSpec file for the service account. The additional
HostAccountConfig contains the Amazon Resource Name (ARN) of the secret in
Secrets Manager.

On Windows, the PluginGUID must match the GUID in the following example
snippet. On Linux, the PluginGUID is ignored. Replace MySecret with example with
the Amazon Resource Name (ARN) of your secret.

 "ActiveDirectoryConfig": {
 "HostAccountConfig": {
 "PortableCcgVersion": "1",
 "PluginGUID": "{859E1386-BDB4-49E8-85C7-3070B13920E1}",
 "PluginInput": {
 "CredentialArn": "arn:aws:secretsmanager:aws-
region:111122223333:secret:MySecret"
 }
 }

e. The domainless gMSA feature needs additional permissions in the task execution role.
Follow the step (Optional) domainless gMSA secret.

2. Configure instances and install credentials-fetcher daemon

You can install the credentials-fetcher daemon with a user data script in your EC2
Launch Template. The following examples demonstrate two types of user data, cloud-
config YAML or bash script. These examples are for Amazon Linux 2023 (AL2023). Replace
MyCluster with the name of the Amazon ECS cluster that you want these instances to join.

• cloud-config YAML

Content-Type: text/cloud-config
package_reboot_if_required: true
packages:
 # prerequisites
 - dotnet
 - realmd
 - oddjob
 - oddjob-mkhomedir
 - sssd
 - adcli
 - krb5-workstation
 - samba-common-tools

Setup 1779

Amazon Elastic Container Service Developer Guide

 # https://github.com/aws/credentials-fetcher gMSA credentials management for
 containers
 - credentials-fetcher
write_files:
configure the ECS Agent to join your cluster.
replace MyCluster with the name of your cluster.
- path: /etc/ecs/ecs.config
 owner: root:root
 permissions: '0644'
 content: |
 ECS_CLUSTER=MyCluster
 ECS_GMSA_SUPPORTED=true
runcmd:
start the credentials-fetcher daemon and if it succeeded, make it start after
 every reboot
- "systemctl start credentials-fetcher"
- "systemctl is-active credentials-fetcher && systemctl enable credentials-
fetcher"

• bash script

If you're more comfortable with bash scripts and have multiple variables to write to /
etc/ecs/ecs.config, use the following heredoc format. This format writes everything
between the lines beginning with cat and EOF to the configuration file.

#!/usr/bin/env bash
set -euxo pipefail

prerequisites
timeout 30 dnf install -y dotnet realmd oddjob oddjob-mkhomedir sssd adcli
 krb5-workstation samba-common-tools
install https://github.com/aws/credentials-fetcher gMSA credentials
 management for containers
timeout 30 dnf install -y credentials-fetcher

start credentials-fetcher
systemctl start credentials-fetcher
systemctl is-active credentials-fetcher && systemctl enable credentials-fetcher

cat <<'EOF' >> /etc/ecs/ecs.config
ECS_CLUSTER=MyCluster
ECS_GMSA_SUPPORTED=true

Setup 1780

Amazon Elastic Container Service Developer Guide

EOF

There are optional configuration variables for the credentials-fetcher daemon that you
can set in /etc/ecs/ecs.config. We recommend that you set the variables in the user data
in the YAML block or heredoc similar to the previous examples. Doing so prevents issues with
partial configuration that can happen with editing a file multiple times. For more information
about the ECS agent configuration, see Amazon ECS Container Agent on GitHub.

• Optionally, you can use the variable CREDENTIALS_FETCHER_HOST if you change the
credentials-fetcher daemon configuration to move the socket to another location.

Setting up permissions and secrets

Do the following steps once for each application and each task definition. We recommend that you
use the best practice of granting the least privilege and narrow the permissions used in the policy.
This way, each task can only read the secrets that it needs.

1. (Optional) domainless gMSA secret

If you use the domainless method where the instance isn't joined to the domain, follow this
step.

You must add the following permissions as an inline policy to the task execution IAM role.
Doing so gives the credentials-fetcher daemon access to the Secrets Manager secret.
Replace the MySecret example with the Amazon Resource Name (ARN) of your secret in the
Resource list.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:ssm:aws-region:111122223333:secret:MySecret"
]
 }
]

Setup 1781

https://github.com/aws/amazon-ecs-agent/blob/master/README.md#environment-variables

Amazon Elastic Container Service Developer Guide

}

Note

If you use your own KMS key to encrypt your secret, you must add the necessary
permissions to this role and add this role to the AWS KMS key policy.

2. Decide if you're using SSM Parameter Store or S3 to store the CredSpec

Amazon ECS supports the following ways to reference the file path in the credentialSpecs
field of the task definition.

If you join the instances to a single domain, use the prefix credentialspec: at the start of
the ARN in the string. If you use domainless gMSA, then use credentialspecdomainless:.

For more information about the CredSpec, see Credential specification file.

• Amazon S3 Bucket

Add the credential spec to an Amazon S3 bucket. Then, reference the Amazon Resource
Name (ARN) of the Amazon S3 bucket in the credentialSpecs field of the task
definition.

{
 "family": "",
 "executionRoleArn": "",
 "containerDefinitions": [
 {
 "name": "",
 ...
 "credentialSpecs": [
 "credentialspecdomainless:arn:aws:s3:::${BucketName}/
${ObjectName}"
],
 ...
 }
],
 ...
}

Setup 1782

Amazon Elastic Container Service Developer Guide

To give your tasks access to the S3 bucket, add the following permissions as an inline
policy to the Amazon ECS task execution IAM role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor",
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/{object}"
]
 }
]
}

• SSM Parameter Store parameter

Add the credential spec to an SSM Parameter Store parameter. Then, reference
the Amazon Resource Name (ARN) of the SSM Parameter Store parameter in the
credentialSpecs field of the task definition.

{
 "family": "",
 "executionRoleArn": "",
 "containerDefinitions": [
 {
 "name": "",
 ...
 "credentialSpecs": [
 "credentialspecdomainless:arn:aws:ssm:aws-
region:111122223333:parameter/parameter_name"
],
 ...
 }
],
 ...

Setup 1783

Amazon Elastic Container Service Developer Guide

}

To give your tasks access to the SSM Parameter Store parameter, add the following
permissions as an inline policy to the Amazon ECS task execution IAM role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameters"
],
 "Resource": [
 "arn:aws:ssm:aws-region:111122223333:parameter/parameter_name"
]
 }
]
}

Credential specification file

Amazon ECS uses an Active Directory credential specification file (CredSpec). This file contains the
gMSA metadata that's used to propagate the gMSA account context to the Linux container. You
generate the CredSpec and reference it in the credentialSpecs field in your task definition. The
CredSpec file doesn't contain any secrets.

The following is an example CredSpec file.

{
 "CmsPlugins": [
 "ActiveDirectory"
],
 "DomainJoinConfig": {
 "Sid": "S-1-5-21-2554468230-2647958158-2204241789",
 "MachineAccountName": "WebApp01",
 "Guid": "8665abd4-e947-4dd0-9a51-f8254943c90b",
 "DnsTreeName": "example.com",
 "DnsName": "example.com",
 "NetBiosName": "example"
 },

CredSpec file 1784

Amazon Elastic Container Service Developer Guide

 "ActiveDirectoryConfig": {
 "GroupManagedServiceAccounts": [
 {
 "Name": "WebApp01",
 "Scope": "example.com"
 }
],
 "HostAccountConfig": {
 "PortableCcgVersion": "1",
 "PluginGUID": "{859E1386-BDB4-49E8-85C7-3070B13920E1}",
 "PluginInput": {
 "CredentialArn": "arn:aws:secretsmanager:aws-
region:111122223333:secret:MySecret"
 }
 }
 }
}

Creating a CredSpec

You create a CredSpec by using the CredSpec PowerShell module on a Windows computer that's
joined to the domain. Follow the steps in Create a credential spec on the Microsoft Learn website.

Using gMSA for Linux containers on Fargate

Amazon ECS supports Active Directory authentication for Linux containers on Fargate through a
special kind of service account called a group Managed Service Account (gMSA).

Linux based network applications, such as .NET Core applications, can use Active Directory to
facilitate authentication and authorization management between users and services. You can use
this feature by designing applications that integrate with Active Directory and run on domain-
joined servers. But, because Linux containers can't be domain-joined, you need to configure a Linux
container to run with gMSA.

Considerations

Consider the following before you use gMSA for Linux containers on Fargate:

• You must be running Platform Version 1.4 or later.

• You might need a Windows computer that's joined to the domain to complete the prerequisites.
For example, you might need a Windows computer that's joined to the domain to create the

Using gMSA for Linux containers on Fargate 1785

https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts#create-a-credential-spec

Amazon Elastic Container Service Developer Guide

gMSA in Active Directory with PowerShell. The RSAT Active Director PowerShell tools are only
available for Windows. For more information, see Installing the Active Directory administration
tools.

• You must use domainless gMSA.

Amazon ECS uses an Active Directory credential specification file (CredSpec). This file contains
the gMSA metadata that's used to propagate the gMSA account context to the container. You
generate the CredSpec file, and then store it in an Amazon S3 bucket.

• A task can only support one Active Directory.

Prerequisites

Before you use the gMSA for Linux containers feature with Amazon ECS, make sure to complete the
following:

• You set up an Active Directory domain with the resources that you want your containers to
access. Amazon ECS supports the following setups:

• An AWS Directory Service Active Directory. AWS Directory Service is an AWS managed Active
Directory that's hosted on Amazon EC2. For more information, see Getting Started with AWS
Managed Microsoft AD in the AWS Directory Service Administration Guide.

• An on-premises Active Directory. You must ensure that the Amazon ECS Linux container
instance can join the domain. For more information, see AWS Direct Connect.

• You have an existing gMSA account in the Active Directory and a user that has permission to
access the gMSA service account. For more information, see Make an Active Directory user for
domainless gMSA.

• You have an Amazon S3 bucket. For more information, see Creating a bucket in the Amazon S3
User Guide.

Setting up gMSA-capable Linux Containers on Amazon ECS

Prepare the infrastructure

The following steps are considerations and setup that are performed once.

Prerequisites 1786

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-direct-connect-network-to-amazon.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html

Amazon Elastic Container Service Developer Guide

• Make an Active Directory user for domainless gMSA

When you use domainless gMSA, the container isn't joined to the domain. Other applications
that run on the container can't use the credentials to access the domain. Tasks that use a
different domain can run on the same container. You provide the name of a secret in AWS
Secrets Manager in the CredSpec file. The secret must contain a username, password, and the
domain to log in to.

This feature is similar to the gMSA support for non-domain-joined container hosts feature. For
more information about the Windows feature, see gMSA architecture and improvements on
the Microsoft Learn website.

a. Configure a user in your Active Directory domain. The user in the Active Directory must
have permission to access the gMSA service account that you use in the tasks.

b. You have a VPC and subnets that can resolve the Active Directory domain name. Configure
the VPC with DHCP options with the domain name that points to the Active Directory
service name. For information about how to configure DHCP options for a VPC, see Work
with DHCP option sets in the Amazon Virtual Private Cloud User Guide.

c. Create a secret in AWS Secrets Manager.

d. Create the credential specification file.

Setting up permissions and secrets

Do the following steps one time for each application and each task definition. We recommend that
you use the best practice of granting the least privilege and narrow the permissions used in the
policy. This way, each task can only read the secrets that it needs.

1. Make a user in your Active Directory domain. The user in Active Directory must have
permission to access the gMSA service accounts that you use in the tasks.

2. After you make the Active Directory user, create a secret in AWS Secrets Manager. For more
information, see Create an AWS Secrets Manager secret.

3. Enter the user's username, password, and the domain into JSON key-value pairs called
username, password and domainName, respectively.

{"username":"username","password":"passw0rd", "domainName":"example.com"}

Setup 1787

https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts#gmsa-architecture-and-improvements
https://docs.aws.amazon.com/vpc/latest/userguide/DHCPOptionSet.html
https://docs.aws.amazon.com/vpc/latest/userguide/DHCPOptionSet.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon Elastic Container Service Developer Guide

4. You must add the following permissions as an inline policy to the task execution IAM role.
Doing so gives the credentials-fetcher daemon access to the Secrets Manager secret.
Replace the MySecret example with the Amazon Resource Name (ARN) of your secret in the
Resource list.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:aws-region:111122223333:secret:MySecret"
]
 }
]
}

Note

If you use your own KMS key to encrypt your secret, you must add the necessary
permissions to this role and add this role to the AWS KMS key policy.

5. Add the credential spec to an Amazon S3 bucket. Then, reference the Amazon Resource Name
(ARN) of the Amazon S3 bucket in the credentialSpecs field of the task definition.

{
 "family": "",
 "executionRoleArn": "",
 "containerDefinitions": [
 {
 "name": "",
 ...
 "credentialSpecs": [
 "credentialspecdomainless:arn:aws:s3:::${BucketName}/${ObjectName}"
],
 ...
 }
],

Setup 1788

Amazon Elastic Container Service Developer Guide

 ...
}

To give your tasks access to the S3 bucket, add the following permissions as an inline policy to
the Amazon ECS task execution IAM role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListObject"
],
 "Resource": [
 "arn:aws:s3:::{bucket_name}",
 "arn:aws:s3:::{bucket_name}/{object}"
]
 }
]
}

Credential specification file

Amazon ECS uses an Active Directory credential specification file (CredSpec). This file contains the
gMSA metadata that's used to propagate the gMSA account context to the Linux container. You
generate the CredSpec and reference it in the credentialSpecs field in your task definition. The
CredSpec file doesn't contain any secrets.

The following is an example CredSpec file.

{
 "CmsPlugins": [
 "ActiveDirectory"
],
 "DomainJoinConfig": {
 "Sid": "S-1-5-21-2554468230-2647958158-2204241789",
 "MachineAccountName": "WebApp01",
 "Guid": "8665abd4-e947-4dd0-9a51-f8254943c90b",

CredSpec file 1789

Amazon Elastic Container Service Developer Guide

 "DnsTreeName": "example.com",
 "DnsName": "example.com",
 "NetBiosName": "example"
 },
 "ActiveDirectoryConfig": {
 "GroupManagedServiceAccounts": [
 {
 "Name": "WebApp01",
 "Scope": "example.com"
 }
],
 "HostAccountConfig": {
 "PortableCcgVersion": "1",
 "PluginGUID": "{859E1386-BDB4-49E8-85C7-3070B13920E1}",
 "PluginInput": {
 "CredentialArn": "arn:aws:secretsmanager:aws-
region:111122223333:secret:MySecret"
 }
 }
 }
}

Creating a CredSpec and uploading it to an Amazon S3

You create a CredSpec by using the CredSpec PowerShell module on a Windows computer that's
joined to the domain. Follow the steps in Create a credential spec on the Microsoft Learn website.

After you create the credential specification file, upload it to an Amazon S3 bucket. Copy the
CredSpec file to the computer or environment that you are running AWS CLI commands in.

Run the following AWS CLI command to upload the CredSpec to Amazon S3. Replace amzn-s3-
demo-bucket with the name of your Amazon S3 bucket. You can store the file as an object in any
bucket and location, but you must allow access to that bucket and location in the policy that you
attach to the task execution role.

For PowerShell, use the following command:

$ Write-S3Object -BucketName "amzn-s3-demo-bucket" -Key "ecs-domainless-gmsa-credspec"
 -File "gmsa-cred-spec.json"

The following AWS CLI command uses backslash continuation characters that are used by sh and
compatible shells.

CredSpec file 1790

https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts#create-a-credential-spec

Amazon Elastic Container Service Developer Guide

$ aws s3 cp gmsa-cred-spec.json \
s3://amzn-s3-demo-bucket/ecs-domainless-gmsa-credspec

Using Amazon ECS Windows containers with domainless gMSA
using the AWS CLI

The following tutorial shows how to create an Amazon ECS task that runs a Windows container
that has credentials to access Active Directory with the AWS CLI. By using domainless gMSA,
the container instance isn't joined to the domain, other applications on the instance can't use
the credentials to access the domain, and tasks that join different domains can run on the same
instance.

Topics

• Prerequisites

• Step 1: Create and configure the gMSA account on Active Directory Domain Services (AD DS)

• Step 2: Upload Credentials to Secrets Manager

• Step 3: Modify your CredSpec JSON to include domainless gMSA information

• Step 4: Upload CredSpec to Amazon S3

• Step 5: (Optional) Create an Amazon ECS cluster

• Step 6: Create an IAM role for container instances

• Step 7: Create a custom task execution role

• Step 8: Create a task role for Amazon ECS Exec

• Step 9: Register a task definition that uses domainless gMSA

• Step 10: Register a Windows container instance to the cluster

• Step 11: Verify the container instance

• Step 12: Run a Windows task

• Step 13: Verify the container has gMSA credentials

• Step 14: Clean up

• Debugging Amazon ECS domainless gMSA for Windows containers

Using Windows containers with domainless gMSA using the AWS CLI 1791

Amazon Elastic Container Service Developer Guide

Prerequisites

This tutorial assumes that the following prerequisites have been completed:

• The steps in Set up to use Amazon ECS have been completed.

• Your IAM user has the required permissions specified in the AmazonECS_FullAccess IAM policy
example.

• The latest version of the AWS CLI is installed and configured. For more information about
installing or upgrading your AWS CLI, see Installing the AWS Command Line Interface.

Note

You can use dual-stack service endpoints to interact with Amazon ECS from the AWS CLI,
SDKs, and the Amazon ECS API over both IPv4 and IPv6. For more information, see Using
Amazon ECS dual-stack endpoints.

• You set up an Active Directory domain with the resources that you want your containers to
access. Amazon ECS supports the following setups:

• An AWS Directory Service Active Directory. AWS Directory Service is an AWS managed Active
Directory that's hosted on Amazon EC2. For more information, see Getting Started with AWS
Managed Microsoft AD in the AWS Directory Service Administration Guide.

• An on-premises Active Directory. You must ensure that the Amazon ECS Linux container
instance can join the domain. For more information, see AWS Direct Connect.

• You have a VPC and subnets that can resolve the Active Directory domain name.

• You chose between domainless gMSA and joining each instance to a single domain. By using
domainless gMSA, the container instance isn't joined to the domain, other applications on the
instance can't use the credentials to access the domain, and tasks that join different domains can
run on the same instance.

Then, choose the data storage for the CredSpec and optionally, for the Active Directory user
credentials for domainless gMSA.

Amazon ECS uses an Active Directory credential specification file (CredSpec). This file contains
the gMSA metadata that's used to propagate the gMSA account context to the container.
You generate the CredSpec file and then store it in one of the CredSpec storage options in
the following table, specific to the Operating System of the container instances. To use the
domainless method, an optional section in the CredSpec file can specify credentials in one of

Prerequisites 1792

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-direct-connect-network-to-amazon.html

Amazon Elastic Container Service Developer Guide

the domainless user credentials storage options in the following table, specific to the Operating
System of the container instances.

Storage location Linux Windows

Amazon Simple Storage
Service

CredSpec CredSpec

AWS Secrets Manager domainless user credentials domainless user credentials

Amazon EC2 Systems
Manager Parameter Store

CredSpec CredSpec, domainless user
credentials

Local file N/A CredSpec

• (Optional) AWS CloudShell is a tool that gives customers a command line without needing to
create their own EC2 instance. For more information, see What is AWS CloudShell? in the AWS
CloudShell User Guide.

Step 1: Create and configure the gMSA account on Active Directory
Domain Services (AD DS)

Create and configure a gMSA account on the Active Directory domain.

1. Generate a Key Distribution Service root key

Note

If you are using AWS Directory Service, then you can skip this step.

The KDS root key and gMSA permissions are configured with your AWS managed Microsoft AD.

If you have not already created a gMSA Service Account in your domain, you’ll need to first
generate a Key Distribution Service (KDS) root key. The KDS is responsible for creating,
rotating, and releasing the gMSA password to authorized hosts. When the ccg.exe needs to
retrieve gMSA credentials, it contact KDS to retrieve the current password.

Step 1: Create and configure the gMSA account on Active Directory Domain Services (AD DS) 1793

https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html

Amazon Elastic Container Service Developer Guide

To check if the KDS root key has already been created, run the following PowerShell
cmdlet with domain admin privileges on a domain controller using the ActiveDirectory
PowerShell module. For more information about the module, see ActiveDirectory Module on
the Microsoft Learn website.

PS C:\> Get-KdsRootKey

If the command returns a key ID, you can skip the rest of this step. Otherwise, create the KDS
root key by running the following command:

PS C:\> Add-KdsRootKey -EffectiveImmediately

Although the argument EffectiveImmediately to the command implies the key is effective
immediately, you need to wait 10 hours before the KDS root key is replicated and available for
use on all domain controllers.

2. Create the gMSA account

To create the gMSA account and allow the ccg.exe to retrieve the gMSA password, run the
following PowerShell commands from a Windows Server or client with access to the domain.
Replace ExampleAccount with the name that you want for your gMSA account.

a. PS C:\> Install-WindowsFeature RSAT-AD-PowerShell

b. PS C:\> New-ADGroup -Name "ExampleAccount Authorized Hosts" -SamAccountName
 "ExampleAccountHosts" -GroupScope DomainLocal

c. PS C:\> New-ADServiceAccount -Name "ExampleAccount" -DnsHostName
 "contoso" -ServicePrincipalNames "host/ExampleAccount", "host/contoso" -
PrincipalsAllowedToRetrieveManagedPassword "ExampleAccountHosts"

d. Create a user with a permanent password that doesn't expire. These credentials are stored
in AWS Secrets Manager and used by each task to join the domain.

PS C:\> New-ADUser -Name "ExampleAccount" -AccountPassword (ConvertTo-
SecureString -AsPlainText "Test123" -Force) -Enabled 1 -PasswordNeverExpires 1

Step 1: Create and configure the gMSA account on Active Directory Domain Services (AD DS) 1794

https://learn.microsoft.com/en-us/powershell/module/activedirectory/?view=windowsserver2022-ps

Amazon Elastic Container Service Developer Guide

e. PS C:\> Add-ADGroupMember -Identity "ExampleAccountHosts" -Members
 "ExampleAccount"

f. Install the PowerShell module for creating CredSpec objects in Active Directory and
output the CredSpec JSON.

PS C:\> Install-PackageProvider -Name NuGet -Force

PS C:\> Install-Module CredentialSpec

g. PS C:\> New-CredentialSpec -AccountName ExampleAccount

3. Copy the JSON output from the previous command into a file called gmsa-cred-spec.json.
This is the CredSpec file. It is used in Step 3, Step 3: Modify your CredSpec JSON to include
domainless gMSA information.

Step 2: Upload Credentials to Secrets Manager

Copy the Active Directory credentials into a secure credential storage system, so that each task
retrieves it. This is the domainless gMSA method. By using domainless gMSA, the container
instance isn't joined to the domain, other applications on the instance can't use the credentials to
access the domain, and tasks that join different domains can run on the same instance.

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

• Run the following AWS CLI command and replace the username, password, and domain name
to match your environment. Keep the ARN of the secret to use in the next step, Step 3: Modify
your CredSpec JSON to include domainless gMSA information

The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws secretsmanager create-secret \
--name gmsa-plugin-input \
--description "Amazon ECS - gMSA Portable Identity." \

Step 2: Upload Credentials to Secrets Manager 1795

Amazon Elastic Container Service Developer Guide

--secret-string "{\"username\":\"ExampleAccount\",\"password\":\"Test123\",
\"domainName\":\"contoso.com\"}"

Step 3: Modify your CredSpec JSON to include domainless gMSA
information

Before uploading the CredSpec to one of the storage options, add information to the CredSpec
with the ARN of the secret in Secrets Manager from the previous step. For more information, see
Additional credential spec configuration for non-domain-joined container host use case on the
Microsoft Learn website.

1. Add the following information to the CredSpec file inside the ActiveDirectoryConfig.
Replace the ARN with the secret in Secrets Manager from the previous step.

Note that the PluginGUID value must match the GUID in the following example snippet and
is required.

"HostAccountConfig": {
 "PortableCcgVersion": "1",
 "PluginGUID": "{859E1386-BDB4-49E8-85C7-3070B13920E1}",
 "PluginInput": "{\"credentialArn\": \"arn:aws:secretsmanager:aws-
region:111122223333:secret:gmsa-plugin-input\"}"
 }

You can also use a secret in SSM Parameter Store by using the ARN in this format:
\"arn:aws:ssm:aws-region:111122223333:parameter/gmsa-plugin-input\".

2. After you modify the CredSpec file, it should look like the following example:

{
 "CmsPlugins": [
 "ActiveDirectory"
],
 "DomainJoinConfig": {
 "Sid": "S-1-5-21-4066351383-705263209-1606769140",
 "MachineAccountName": "ExampleAccount",
 "Guid": "ac822f13-583e-49f7-aa7b-284f9a8c97b6",
 "DnsTreeName": "contoso",
 "DnsName": "contoso",
 "NetBiosName": "contoso"

Step 3: Modify your CredSpec JSON to include domainless gMSA information 1796

https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts#additional-credential-spec-configuration-for-non-domain-joined-container-host-use-case

Amazon Elastic Container Service Developer Guide

 },
 "ActiveDirectoryConfig": {
 "GroupManagedServiceAccounts": [
 {
 "Name": "ExampleAccount",
 "Scope": "contoso"
 },
 {
 "Name": "ExampleAccount",
 "Scope": "contoso"
 }
],
 "HostAccountConfig": {
 "PortableCcgVersion": "1",
 "PluginGUID": "{859E1386-BDB4-49E8-85C7-3070B13920E1}",
 "PluginInput": "{\"credentialArn\": \"arn:aws:secretsmanager:aws-
region:111122223333:secret:gmsa-plugin-input\"}"
 }
 }
}

Step 4: Upload CredSpec to Amazon S3

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

1. Copy the CredSpec file to the computer or environment that you are running AWS CLI
commands in.

2. Run the following AWS CLI command to upload the CredSpec to Amazon S3. Replace
MyBucket with the name of your Amazon S3 bucket. You can store the file as an object in any
bucket and location, but you must allow access to that bucket and location in the policy that
you attach to the task execution role.

The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws s3 cp gmsa-cred-spec.json \
s3://MyBucket/ecs-domainless-gmsa-credspec

Step 4: Upload CredSpec to Amazon S3 1797

Amazon Elastic Container Service Developer Guide

Step 5: (Optional) Create an Amazon ECS cluster

By default, your account has an Amazon ECS cluster named default. This cluster is used by
default in the AWS CLI, SDKs, and AWS CloudFormation. You can use additional clusters to group
and organize tasks and infrastructure, and assign defaults for some configuration.

You can create a cluster from the AWS Management Console, AWS CLI, SDKs, or AWS
CloudFormation. The settings and configuration in the cluster don't affect gMSA.

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

$ aws ecs create-cluster --cluster-name windows-domainless-gmsa-cluster

Important

If you choose to create your own cluster, you must specify --cluster clusterName for
each command that you intend to use with that cluster.

Step 6: Create an IAM role for container instances

A container instance is a host computer to run containers in ECS tasks, for example Amazon EC2
instances. Each container instance registers to an Amazon ECS cluster. Before you launch Amazon
EC2 instances and register them to a cluster, you must create an IAM role for your container
instances to use.

To create the container instance role, see Amazon ECS container instance IAM role. The default
ecsInstanceRole has sufficient permissions to complete this tutorial.

Step 7: Create a custom task execution role

Amazon ECS can use a different IAM role for the permissions needed to start each task, instead
of the container instance role. This role is the task execution role. We recommend creating a task
execution role with only the permissions required for ECS to run the task, also known as least-
privilege permissions. For more information about the principle of least privilege, see SEC03-BP02
Grant least privilege access in the AWS Well-Architected Framework.

Step 5: (Optional) Create an Amazon ECS cluster 1798

https://docs.aws.amazon.com/wellarchitected/latest/framework/sec_permissions_least_privileges.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/sec_permissions_least_privileges.html

Amazon Elastic Container Service Developer Guide

1. To create a task execution role, see Creating the task execution role. The default permissions
allow the container instance to pull container images from Amazon Elastic Container Registry
and stdout and stderr from your applications to be logged to Amazon CloudWatch Logs.

Because the role needs custom permissions for this tutorial, you can give the role a different
name than ecsTaskExecutionRole. This tutorial uses ecsTaskExecutionRole in further
steps.

2. Add the following permissions by creating a custom policy, either an inline policy that only
exists in for this role, or a policy that you can reuse. Replace the ARN for the Resource in the
first statement with the Amazon S3 bucket and location, and the second Resource with the
ARN of the secret in Secrets Manager.

If you encrypt the secret in Secrets Manager with a custom key, you must also allow
kms:Decrypt for the key.

If you use SSM Parameter Store instead of Secrets Manager, you must allow
ssm:GetParameter for the parameter, instead of secretsmanager:GetSecretValue.

{
"Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::MyBucket/ecs-domainless-gmsa-credspec/gmsa-cred-
spec.json"
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": "arn:aws:secretsmanager:aws-region:111122223333:secret:gmsa-
plugin-input"
 }
]
}

Step 7: Create a custom task execution role 1799

Amazon Elastic Container Service Developer Guide

Step 8: Create a task role for Amazon ECS Exec

This tutorial uses Amazon ECS Exec to verify functionality by running a command inside a running
task. To use ECS Exec, the service or task must turn on ECS Exec and the task role (but not the task
execution role) must have ssmmessages permissions. For the required IAM policy, see ECS Exec
permissions.

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

To create a task role using the AWS CLI, follow these steps.

1. Create a file called ecs-tasks-trust-policy.json with the following contents:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create an IAM role. You can replace the name ecs-exec-demo-task-role but keep the
name for following steps.

The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws iam create-role --role-name ecs-exec-demo-task-role \
--assume-role-policy-document file://ecs-tasks-trust-policy.json

You can delete the file ecs-tasks-trust-policy.json.

3. Create a file called ecs-exec-demo-task-role-policy.json with the following contents:

{

Step 8: Create a task role for Amazon ECS Exec 1800

Amazon Elastic Container Service Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssmmessages:CreateControlChannel",
 "ssmmessages:CreateDataChannel",
 "ssmmessages:OpenControlChannel",
 "ssmmessages:OpenDataChannel"
],
 "Resource": "*"
 }
]
}

4. Create an IAM policy and attach it to the role from the previous step.

The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws iam put-role-policy \
 --role-name ecs-exec-demo-task-role \
 --policy-name ecs-exec-demo-task-role-policy \
 --policy-document file://ecs-exec-demo-task-role-policy.json

You can delete the file ecs-exec-demo-task-role-policy.json.

Step 9: Register a task definition that uses domainless gMSA

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

1. Create a file called windows-gmsa-domainless-task-def.json with the following
contents:

{
 "family": "windows-gmsa-domainless-task",
 "containerDefinitions": [
 {

Step 9: Register a task definition 1801

Amazon Elastic Container Service Developer Guide

 "name": "windows_sample_app",
 "image": "mcr.microsoft.com/windows/servercore/iis",
 "cpu": 1024,
 "memory": 1024,
 "essential": true,
 "credentialSpecs": [
 "credentialspecdomainless:arn:aws:s3:::ecs-domainless-gmsa-
credspec/gmsa-cred-spec.json"
],
 "entryPoint": [
 "powershell",
 "-Command"
],
 "command": [
 "New-Item -Path C:\\inetpub\\wwwroot\\index.html -ItemType file -Value
 '<html> <head> <title>Amazon ECS Sample App</title> <style>body {margin-top:
 40px; background-color: #333;} </style> </head><body> <div style=color:white;text-
align:center> <h1>Amazon ECS Sample App</h1> <h2>Congratulations!</h2> <p>Your
 application is now running on a container in Amazon ECS.</p>' -Force ; C:\
\ServiceMonitor.exe w3svc"
],
 "portMappings": [
 {
 "protocol": "tcp",
 "containerPort": 80,
 "hostPort": 8080
 }
]
 }
],
 "taskRoleArn": "arn:aws:iam::111122223333:role/ecs-exec-demo-task-role",
 "executionRoleArn": "arn:aws:iam::111122223333:role/ecsTaskExecutionRole"
}

2. Register the task definition by running the following command:

The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws ecs register-task-definition \
--cli-input-json file://windows-gmsa-domainless-task-def.json

Step 9: Register a task definition 1802

Amazon Elastic Container Service Developer Guide

Step 10: Register a Windows container instance to the cluster

Launch an Amazon EC2 Windows instance and run the ECS container agent to register it as a
container instance in the cluster. ECS runs tasks on the container instances that are registered to
the cluster that the tasks are started in.

1. To launch an Amazon EC2 Windows instance that is configured for Amazon ECS in the AWS
Management Console, see Launching an Amazon ECS Windows container instance. Stop at the
step for user data.

2. For gMSA, the user data must set the environment variable ECS_GMSA_SUPPORTED before
starting the ECS container agent.

For ECS Exec, the agent must start with the argument -EnableTaskIAMRole.

To secure the instance IAM role by preventing tasks from reaching the EC2 IMDS web service to
retrieve the role credentials, add the argument -AwsvpcBlockIMDS. This only applies to tasks
that use the awsvpc network mode.

<powershell>
[Environment]::SetEnvironmentVariable("ECS_GMSA_SUPPORTED", $TRUE, "Machine")
Import-Module ECSTools
Initialize-ECSAgent -Cluster windows-domainless-gmsa-cluster -EnableTaskIAMRole -
AwsvpcBlockIMDS
</powershell>

3. Review a summary of your instance configuration in the Summary panel, and when you're
ready, choose Launch instance.

Step 11: Verify the container instance

You can verify that there is a container instance in the cluster using the AWS Management Console.
However, gMSA needs additional features that are indicated as attributes. These attributes aren't
visible in the AWS Management Console, so this tutorial uses the AWS CLI.

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

Step 10: Register a Windows container instance 1803

Amazon Elastic Container Service Developer Guide

1. List the container instances in the cluster. Container instances have an ID that is different from
the ID of the EC2 instance.

$ aws ecs list-container-instances

Output:

{
 "containerInstanceArns": [
 "arn:aws:ecs:aws-region:111122223333:container-
instance/default/MyContainerInstanceID"
]
}

For example, 526bd5d0ced448a788768334e79010fd is a valid container instance ID.

2. Use the container instance ID from the previous step to get the details for the container
instance. Replace MyContainerInstanceID with the ID.

The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws ecs describe-container-instances \
 ----container-instances MyContainerInstanceID

Note that the output is very long.

3. Verify that the attributes list has an object with the key called name and a value
ecs.capability.gmsa-domainless. The following is an example of the object.

Output:

{
 "name": "ecs.capability.gmsa-domainless"
}

Step 11: Verify the container instance 1804

Amazon Elastic Container Service Developer Guide

Step 12: Run a Windows task

Run an Amazon ECS task. If there is only 1 container instance in the cluster, you can use run-
task. If there are many different container instances, it might be easier to use start-task and
specify the container instance ID to run the task on, than to add placement constraints to the task
definition to control what type of container instance to run this task on.

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

1.
The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

aws ecs run-task --task-definition windows-gmsa-domainless-task \
 --enable-execute-command --cluster windows-domainless-gmsa-cluster

Note the task ID that is returned by the command.

2. Run the following command to verify that the task has started. This command waits and
doesn't return the shell prompt until the task starts. Replace MyTaskID with the task ID from
the previous step.

$ aws ecs wait tasks-running --task MyTaskID

Step 13: Verify the container has gMSA credentials

Verify that the container in the task has a Kerberos token. gMSA

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

1.
The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws ecs execute-command \

Step 12: Run a Windows task 1805

Amazon Elastic Container Service Developer Guide

--task MyTaskID \
--container windows_sample_app \
--interactive \
--command powershell.exe

The output will be a PowerShell prompt.

2. Run the following command in the PowerShell terminal inside the container.

PS C:\> klist get ExampleAccount$

In the output, note the Principal is the one that you created previously.

Step 14: Clean up

When you are finished with this tutorial, you should clean up the associated resources to avoid
incurring charges for unused resources.

This step uses the AWS CLI. You can run these commands in AWS CloudShell in the default shell,
which is bash.

1. Stop the task. Replace MyTaskID with the task ID from step 12, Step 12: Run a Windows task.

$ aws ecs stop-task --task MyTaskID

2. Terminate the Amazon EC2 instance. Afterwards, the container instance in the cluster will be
deleted automatically after one hour.

You can find and terminate the instance by using the Amazon EC2 console. Or, you can run the
following command. To run the command, find the EC2 instance ID in the output of the aws
ecs describe-container-instances command from step 1, Step 11: Verify the container
instance. i-10a64379 is an example of an EC2 instance ID.

$ aws ec2 terminate-instances --instance-ids MyInstanceID

3. Delete the CredSpec file in Amazon S3. Replace MyBucket with the name of your Amazon S3
bucket.

$ aws s3api delete-object --bucket MyBucket --key ecs-domainless-gmsa-credspec/
gmsa-cred-spec.json

Step 14: Clean up 1806

Amazon Elastic Container Service Developer Guide

4. Delete the secret from Secrets Manager. If you used SSM Parameter Store instead, delete the
parameter.

The following command uses backslash continuation characters that are used by sh and
compatible shells. This command isn't compatible with PowerShell. You must modify the
command to use it with PowerShell.

$ aws secretsmanager delete-secret --secret-id gmsa-plugin-input \
 --force-delete-without-recovery

5. Deregister and delete the task definition. By deregistering the task definition, you mark it as
inactive so it can't be used to start new tasks. Then, you can delete the task definition.

a. Deregister the task definition by specifying the version. ECS automatically makes versions
of task definitions, that are numbered starting from 1. You refer to the versions in the
same format as the labels on container images, such as :1.

$ aws ecs deregister-task-definition --task-definition windows-gmsa-domainless-
task:1

b. Delete the task definition.

$ aws ecs delete-task-definitions --task-definition windows-gmsa-domainless-
task:1

6. (Optional) Delete the ECS cluster, if you created a cluster.

$ aws ecs delete-cluster --cluster windows-domainless-gmsa-cluster

Debugging Amazon ECS domainless gMSA for Windows containers

Amazon ECS task status

ECS tries to start a task exactly once. Any task that has an issue is stopped, and set to the status
STOPPED. There are two common types of issues with tasks. First, tasks that couldn't be started.
Second, tasks where the application has stopped inside one of the containers. In the AWS
Management Console, look at the Stopped reason field of the task for the reason why the task

Debugging 1807

Amazon Elastic Container Service Developer Guide

was stopped. In the AWS CLI, describe the task and look at the stoppedReason. For steps in
the AWS Management Console and AWS CLI, see Viewing Amazon ECS stopped task errors.

Windows Events

Windows Events for gMSA in containers are logged in the Microsoft-Windows-
Containers-CCG log file and can be found in the Event Viewer in the section Applications and
Services in Logs\Microsoft\Windows\Containers-CCG\Admin. For more debugging tips,
see Troubleshoot gMSAs for Windows containers on the Microsoft Learn website.

ECS agent gMSA plugin

Logging for gMSA plugin for the ECS agent on the Windows container instance is in the
following directory, C:/ProgramData/Amazon/gmsa-plugin/. Look in this log to see if
the domainless user credentials were downloaded from the storage location, such as Secrets
Manager, and that the credential format was read correctly.

Learn how to use gMSAs for EC2 Windows containers for
Amazon ECS

Amazon ECS supports Active Directory authentication for Windows containers through a special
kind of service account called a group Managed Service Account (gMSA).

Windows based network applications such as .NET applications often use Active Directory to
facilitate authentication and authorization management between users and services. Developers
commonly design their applications to integrate with Active Directory and run on domain-
joined servers for this purpose. Because Windows containers cannot be domain-joined, you must
configure a Windows container to run with gMSA.

A Windows container running with gMSA relies on its host Amazon EC2 instance to retrieve the
gMSA credentials from the Active Directory domain controller and provide them to the container
instance. For more information, see Create gMSAs for Windows containers.

Note

This feature is not supported on Windows containers on Fargate.

Topics

Learn how to use gMSAs for EC2 Windows containers 1808

https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/gmsa-troubleshooting#non-domain-joined-container-hosts-use-event-logs-to-identify-configuration-issues
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts

Amazon Elastic Container Service Developer Guide

• Considerations

• Prerequisites

• Setting up gMSA for Windows Containers on Amazon ECS

Considerations

The following should be considered when using gMSAs for Windows containers:

• When using the Amazon ECS-optimized Windows Server 2016 Full AMI for your container
instances, the container hostname must be the same as the gMSA account name defined in
the credential spec file. To specify a hostname for a container, use the hostname container
definition parameter. For more information, see Network settings.

• You chose between domainless gMSA and joining each instance to a single domain. By using
domainless gMSA, the container instance isn't joined to the domain, other applications on the
instance can't use the credentials to access the domain, and tasks that join different domains can
run on the same instance.

Then, choose the data storage for the CredSpec and optionally, for the Active Directory user
credentials for domainless gMSA.

Amazon ECS uses an Active Directory credential specification file (CredSpec). This file contains
the gMSA metadata that's used to propagate the gMSA account context to the container.
You generate the CredSpec file and then store it in one of the CredSpec storage options in
the following table, specific to the Operating System of the container instances. To use the
domainless method, an optional section in the CredSpec file can specify credentials in one of
the domainless user credentials storage options in the following table, specific to the Operating
System of the container instances.

Storage location Linux Windows

Amazon Simple Storage
Service

CredSpec CredSpec

AWS Secrets Manager domainless user credentials domainless user credentials

Amazon EC2 Systems
Manager Parameter Store

CredSpec CredSpec, domainless user
credentials

Considerations 1809

Amazon Elastic Container Service Developer Guide

Storage location Linux Windows

Local file N/A CredSpec

Prerequisites

Before you use the gMSA for Windows containers feature with Amazon ECS, make sure to complete
the following:

• You set up an Active Directory domain with the resources that you want your containers to
access. Amazon ECS supports the following setups:

• An AWS Directory Service Active Directory. AWS Directory Service is an AWS managed Active
Directory that's hosted on Amazon EC2. For more information, see Getting Started with AWS
Managed Microsoft AD in the AWS Directory Service Administration Guide.

• An on-premises Active Directory. You must ensure that the Amazon ECS Linux container
instance can join the domain. For more information, see AWS Direct Connect.

• You have an existing gMSA account in the Active Directory. For more information, see Create
gMSAs for Windows containers.

• You chose to use domainless gMSA or the Amazon ECS Windows container instance hosting
the Amazon ECS task must be domain joined to the Active Directory and be a member of the
Active Directory security group that has access to the gMSA account.

By using domainless gMSA, the container instance isn't joined to the domain, other applications
on the instance can't use the credentials to access the domain, and tasks that join different
domains can run on the same instance.

• You added the required IAM permissions. The permissions that are required depend on the
methods that you choose for the initial credentials and for storing the credential specification:

• If you use domainless gMSA for initial credentials, IAM permissions for AWS Secrets Manager
are required on the Amazon EC2 instance role.

• If you store the credential specification in SSM Parameter Store, IAM permissions for Amazon
EC2 Systems Manager Parameter Store are required on the task execution role.

• If you store the credential specification in Amazon S3, IAM permissions for Amazon Simple
Storage Service are required on the task execution role.

Prerequisites 1810

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-direct-connect-network-to-amazon.html
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts

Amazon Elastic Container Service Developer Guide

Setting up gMSA for Windows Containers on Amazon ECS

To set up gMSA for Windows Containers on Amazon ECS, you can follow the complete tutorial that
includes configuring the prerequisites Using Amazon ECS Windows containers with domainless
gMSA using the AWS CLI.

The following sections cover the CredSpec configuration in detail.

Topics

• Example CredSpec

• Domainless gMSA setup

• Referencing a Credential Spec File in a Task Definition

Example CredSpec

Amazon ECS uses a credential spec file that contains the gMSA metadata used to propagate the
gMSA account context to the Windows container. You can generate the credential spec file and
reference it in the credentialSpec field in your task definition. The credential spec file does not
contain any secrets.

The following is an example credential spec file:

{
 "CmsPlugins": [
 "ActiveDirectory"
],
 "DomainJoinConfig": {
 "Sid": "S-1-5-21-2554468230-2647958158-2204241789",
 "MachineAccountName": "WebApp01",
 "Guid": "8665abd4-e947-4dd0-9a51-f8254943c90b",
 "DnsTreeName": "contoso.com",
 "DnsName": "contoso.com",
 "NetBiosName": "contoso"
 },
 "ActiveDirectoryConfig": {
 "GroupManagedServiceAccounts": [
 {
 "Name": "WebApp01",
 "Scope": "contoso.com"
 }

Setup 1811

Amazon Elastic Container Service Developer Guide

]
 }
}

Domainless gMSA setup

We recommend domainless gMSA instead of joining the container instances to a single domain. By
using domainless gMSA, the container instance isn't joined to the domain, other applications on
the instance can't use the credentials to access the domain, and tasks that join different domains
can run on the same instance.

1. Before uploading the CredSpec to one of the storage options, add information to the CredSpec
with the ARN of the secret in Secrets Manager or SSM Parameter Store. For more information,
see Additional credential spec configuration for non-domain-joined container host use case on
the Microsoft Learn website.

Domainless gMSA credential format

The following is the JSON format for the domainless gMSA credentials for your Active
Directory. Store the credentials in Secrets Manager or SSM Parameter Store.

{
 "username":"WebApp01",
 "password":"Test123!",
 "domainName":"contoso.com"
}

2. Add the following information to the CredSpec file inside the ActiveDirectoryConfig.
Replace the ARN with the secret in Secrets Manager or SSM Parameter Store.

Note that the PluginGUID value must match the GUID in the following example snippet and
is required.

 "HostAccountConfig": {
 "PortableCcgVersion": "1",
 "PluginGUID": "{859E1386-BDB4-49E8-85C7-3070B13920E1}",
 "PluginInput": "{\"credentialArn\": \"arn:aws:secretsmanager:aws-
region:111122223333:secret:gmsa-plugin-input\"}"
 }

Setup 1812

https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts#additional-credential-spec-configuration-for-non-domain-joined-container-host-use-case

Amazon Elastic Container Service Developer Guide

You can also use a secret in SSM Parameter Store by using the ARN in this format:
\"arn:aws:ssm:aws-region:111122223333:parameter/gmsa-plugin-input\".

3. After you modify the CredSpec file, it should look like the following example:

{
 "CmsPlugins": [
 "ActiveDirectory"
],
 "DomainJoinConfig": {
 "Sid": "S-1-5-21-4066351383-705263209-1606769140",
 "MachineAccountName": "WebApp01",
 "Guid": "ac822f13-583e-49f7-aa7b-284f9a8c97b6",
 "DnsTreeName": "contoso",
 "DnsName": "contoso",
 "NetBiosName": "contoso"
 },
 "ActiveDirectoryConfig": {
 "GroupManagedServiceAccounts": [
 {
 "Name": "WebApp01",
 "Scope": "contoso"
 },
 {
 "Name": "WebApp01",
 "Scope": "contoso"
 }
],
 "HostAccountConfig": {
 "PortableCcgVersion": "1",
 "PluginGUID": "{859E1386-BDB4-49E8-85C7-3070B13920E1}",
 "PluginInput": "{\"credentialArn\": \"arn:aws:secretsmanager:aws-
region:111122223333:secret:gmsa-plugin-input\"}"
 }
 }
}

Referencing a Credential Spec File in a Task Definition

Amazon ECS supports the following ways to reference the file path in the credentialSpecs
field of the task definition. For each of these options, you can provide credentialspec: or

Setup 1813

Amazon Elastic Container Service Developer Guide

domainlesscredentialspec:, depending on whether you are joining the container instances to
a single domain, or using domainless gMSA, respectively.

Amazon S3 Bucket

Add the credential spec to an Amazon S3 bucket and then reference the Amazon Resource Name
(ARN) of the Amazon S3 bucket in the credentialSpecs field of the task definition.

{
 "family": "",
 "executionRoleArn": "",
 "containerDefinitions": [
 {
 "name": "",
 ...
 "credentialSpecs": [
 "credentialspecdomainless:arn:aws:s3:::${BucketName}/${ObjectName}"
],
 ...
 }
],
 ...
}

You must also add the following permissions as an inline policy to the Amazon ECS task execution
IAM role to give your tasks access to the Amazon S3 bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor",
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::{bucket_name}",
 "arn:aws:s3:::{bucket_name}/{object}"
]
 }
]

Setup 1814

Amazon Elastic Container Service Developer Guide

}

SSM Parameter Store parameter

Add the credential spec to an SSM Parameter Store parameter and then reference the Amazon
Resource Name (ARN) of the SSM Parameter Store parameter in the credentialSpecs field of
the task definition.

{
 "family": "",
 "executionRoleArn": "",
 "containerDefinitions": [
 {
 "name": "",
 ...
 "credentialSpecs": [

 "credentialspecdomainless:arn:aws:ssm:region:111122223333:parameter/parameter_name"
],
 ...
 }
],
 ...
}

You must also add the following permissions as an inline policy to the Amazon ECS task execution
IAM role to give your tasks access to the SSM Parameter Store parameter.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameters"
],
 "Resource": [
 "arn:aws:ssm:region:111122223333:parameter/parameter_name"
]
 }
]
}

Setup 1815

Amazon Elastic Container Service Developer Guide

Local File

With the credential spec details in a local file, reference the file path in the credentialSpecs
field of the task definition. The file path referenced must be relative to the C:\ProgramData
\Docker\CredentialSpecs directory and use the backslash ('\') as the file path separator.

{
 "family": "",
 "executionRoleArn": "",
 "containerDefinitions": [
 {
 "name": "",
 ...
 "credentialSpecs": [
 "credentialspec:file://CredentialSpecDir\CredentialSpecFile.json"
],
 ...
 }
],
 ...
}

Using EC2 Image Builder to build customized Amazon ECS-
optimized AMIs

AWS recommends that you use the Amazon ECS-optimized AMIs because they are preconfigured
with the requirements and recommendations to run your container workloads. There might
be times when you need to customize your AMI to add additional software. You can use EC2
Image Builder for the creation, management, and deployment of your server images. You retain
ownership of the customized images created in your account. You can use EC2 Image Builder
pipelines to automate updates and system patching for your images, or use a stand-alone
command to create an image with your defined configuration resources.

You create a recipe for your image. The recipe includes a parent image, and any additional
components. You also create a pipeline which distributes your customized AMI.

You create a recipe for your image. An Image Builder image recipe is a document that defines
the base image and the components that are applied to the base image to produce the desired
configuration for the output AMI image. You also create a pipeline which distributes your

Using Image Builder to build customized Amazon ECS-optimized AMIs 1816

Amazon Elastic Container Service Developer Guide

customized AMI. For more information, see How EC2 Image Builder works in the EC2 Image Builder
User Guide.

We recommend that you use one of the following Amazon ECS-optimized AMIs as your "Parent
image" in EC2 Image Builder:

• Linux

• Amazon ECS-optimized AL2023 x86

• Amazon ECS-optimized Amazon Linux 2023 (arm64) AMI

• Amazon ECS-optimized Amazon Linux 2 kernel 5 AMI

• Amazon ECS-optimized Amazon Linux 2 x86 AMI

• Windows

• Amazon ECS-optimized Windows 2022 Full x86

• Amazon ECS-optimized Windows 2022 Core x86

• Amazon ECS-optimized Windows 2019 Full x86

• Amazon ECS-optimized Windows 2019 Core x86

• Amazon ECS-optimized Windows 2016 Full x86

We also recommend that you select "Use latest available OS version". The pipeline will use
semantic versioning for the parent image, which helps detect the dependency updates in
automatically scheduled jobs. For more information, see Semantic versioning in the EC2 Image
Builder User Guide.

AWS regularly updates Amazon ECS-optimized AMI images with security patches and the new
container agent version. When you use an AMI ID as your parent image in your image recipe,
you need to regularly check for updates to the parent image. If there are updates, you must
create a new version of your recipe with the updated AMI. This ensures that your custom images
incorporate the latest version of the parent image. For information about how to create a workflow
to automatically update your EC2 instances in your Amazon ECS cluster with the newly created
AMIs, see How to create an AMI hardening pipeline and automate updates to your ECS instance
fleet.

You can also specify the Amazon Resource Name (ARN) of a parent image that's published through
a managed EC2 Image Builder pipeline. Amazon routinely publishes Amazon ECS-optimized AMI
images through managed pipelines. These images are publicly accessible. You must have the
correct permissions to access the image. When you use an image ARN instead of an AMI in your

Using Image Builder to build customized Amazon ECS-optimized AMIs 1817

https://docs.aws.amazon.com/imagebuilder/latest/userguide/how-image-builder-works.html
https://docs.aws.amazon.com/imagebuilder/latest/userguide/ibhow-semantic-versioning.html
https://aws.amazon.com/blogs/security/how-to-create-an-ami-hardening-pipeline-and-automate-updates-to-your-ecs-instance-fleet/
https://aws.amazon.com/blogs/security/how-to-create-an-ami-hardening-pipeline-and-automate-updates-to-your-ecs-instance-fleet/

Amazon Elastic Container Service Developer Guide

Image Builder recipe, your pipeline automatically uses the most recent version of the parent image
each time it runs. This approach eliminates the need to manually create new recipe versions for
each update.

Using the image ARN with infrastructure as code (IaC)

You can configure the recipe using the EC2 Image Builder console, or infrastructure as code
(for example, AWS CloudFormation), or the AWS SDK. When you specify a parent image in your
recipe, you can specify an EC2 AMI ID, Image Builder image ARN, AWS Marketplace product ID,
or container image. AWS publishes both AMI IDs and Image Builder image ARNs of Amazon ECS-
Optimized AMIs publicly. The following is the ARN format for the image:

arn:${Partition}:imagebuilder:${Region}:${Account}:image/${ImageName}/${ImageVersion}

The ImageVersion has the following format. Replace major, minor and patch with the latest
values.

<major>.<minor>.<patch>

You can replace major, minor and patch to specific values or you can use Versionless ARN
of an image, so your pipeline remains up-to-date with the latest version of the parent image.
A versionless ARN uses wildcard format ‘x.x.x’ to represent the image version. This approach
allows the Image Builder service to automatically resolve to the most recent version of the image.
Using versionless ARN ensures that your reference always point to the latest image available,
streamlining the process of maintaining up to date images in your deployment. When you create a
recipe with the console, EC2 Image Builder automatically identifies the ARN for your parent image.
When you use IaC to create the recipe, you must identify the ARN and select the desired image
version or use versionless arn to indicate latest available image. We recommend that you create
an automated script to filter and only display images that align with your criteria. The following
Python script shows how to retrieve a list of Amazon ECS-optimized AMIs.

The script accepts two optional arguments: owner and platform, with default values of
“Amazon”, and “Windows” respectively. The valid values for the owner argument are: Self,
Shared, Amazon, and ThirdParty. The valid values for the platform argument are Windows
and Linux. For example, if you run the script with the owner argument set to Amazon and the
platform set to Linux, the script generates a list of images published by Amazon including
Amazon ECS-Optimized images.

Using the image ARN with infrastructure as code (IaC) 1818

Amazon Elastic Container Service Developer Guide

import boto3
import argparse

def list_images(owner, platform):
 # Create a Boto3 session
 session = boto3.Session()

 # Create an EC2 Image Builder client
 client = session.client('imagebuilder')

 # Define the initial request parameters
 request_params = {
 'owner': owner,
 'filters': [
 {
 'name': 'platform',
 'values': [platform]
 }
]
 }

 # Initialize the results list
 all_images = []

 # Get the initial response with the first page of results
 response = client.list_images(**request_params)

 # Extract images from the response
 all_images.extend(response['imageVersionList'])

 # While 'nextToken' is present, continue paginating
 while 'nextToken' in response and response['nextToken']:
 # Update the token for the next request
 request_params['nextToken'] = response['nextToken']

 # Get the next page of results
 response = client.list_images(**request_params)

 # Extract images from the response
 all_images.extend(response['imageVersionList'])

 return all_images

Using the image ARN with infrastructure as code (IaC) 1819

Amazon Elastic Container Service Developer Guide

def main():
 # Initialize the parser
 parser = argparse.ArgumentParser(description="List AWS images based on owner and
 platform")

 # Add the parameters/arguments
 parser.add_argument("--owner", default="Amazon", help="The owner of the images.
 Default is 'Amazon'.")
 parser.add_argument("--platform", default="Windows", help="The platform type of the
 images. Default is 'Windows'.")

 # Parse the arguments
 args = parser.parse_args()

 # Retrieve all images based on the provided owner and platform
 images = list_images(args.owner, args.platform)

 # Print the details of the images
 for image in images:
 print(f"Name: {image['name']}, Version: {image['version']}, ARN:
 {image['arn']}")

if __name__ == "__main__":
 main()

Using the image ARN with AWS CloudFormation

An Image Builder image recipe is a blueprint that specifies the parent image and
components required to achieve the intended configuration of the output image. You use
the AWS::ImageBuilder::ImageRecipe resource. Set the ParentImage value to the
image ARN. Use the versionless ARN of your desired image to ensure your pipeline always
uses the most recent version of the image. For example, arn:aws:imagebuilder:us-
east-1:aws:image/amazon-linux-2023-ecs-optimized-x86/x.x.x. The following
AWS::ImageBuilder::ImageRecipe resource definition uses an Amazon managed image ARN:

ECSRecipe:
 Type: AWS::ImageBuilder::ImageRecipe
 Properties:
 Name: MyRecipe
 Version: '1.0.0'
 Components:
 - ComponentArn: [<The component arns of the image recipe>]

Using the image ARN with AWS CloudFormation 1820

Amazon Elastic Container Service Developer Guide

 ParentImage: "arn:aws:imagebuilder:us-east-1:aws:image/amazon-linux-2023-ecs-
optimized-x86/x.x.x"

For more information about the AWS::ImageBuilder::ImageRecipe resource see in the AWS
CloudFormation User Guide.

You can automate the creation of new images in your pipeline by setting the Schedule property
of the AWS::ImageBuilder::ImagePipeline resource. The schedule includes a start condition
and cron expression. For more information, see AWS::ImageBuilder::ImagePipeline in the
AWS CloudFormation User Guide.

The following of AWS::ImageBuilder::ImagePipeline example has the pipeline run a build at
10:00AM Coordinated Universal Time (UTC) every day. Set the following Schedule values:

• Set PipelineExecutionStartCondition to
EXPRESSION_MATCH_AND_DEPENDENCY_UPDATES_AVAILABLE. The build initiates only if
dependent resources like the parent image or components, which use the wildcard ‘x’ in their
semantic versions, are updated. This ensures the build incorporates the latest updates of those
resources.

• Set ScheduleExpression to the cron expression (0 10 * * ? *).

ECSPipeline:
 Type: AWS::ImageBuilder::ImagePipeline
 Properties:
 Name: my-pipeline
 ImageRecipeArn: <arn of the recipe you created in previous step>
 InfrastructureConfigurationArn: <ARN of the infrastructure configuration
 associated with this image pipeline>
 Schedule:
 PipelineExecutionStartCondition:
 EXPRESSION_MATCH_AND_DEPENDENCY_UPDATES_AVAILABLE
 ScheduleExpression: 'cron(0 10 * * ? *)'

Using the image ARN with Terraform

The approach for specifying your pipeline's parent image and schedule in Terraform aligns with
that in AWS CloudFormation. You use the aws_imagebuilder_image_recipe resource. Set
the parent_image value to the image ARN. Use the versionless ARN of your desired image to

Using the image ARN with Terraform 1821

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-imagebuilder-imagerecipe.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-imagebuilder-imagepipeline.html

Amazon Elastic Container Service Developer Guide

ensure your pipeline always uses the most recent version of the image. For more information, see
aws_imagebuilder_image_recipein the Terraform documentation.

In the schedule configuration block of the aws_imagebuilder_image_pipeline resource,
set the schedule_expression argument value to a cron expression of your choice to specify
how often the pipeline runs, and set the pipeline_execution_start_condition to
EXPRESSION_MATCH_AND_DEPENDENCY_UPDATES_AVAILABLE. For more information, see
aws_imagebuilder_image_pipelinein the Terraform documentation.

Using AWS Deep Learning Containers on Amazon ECS

AWS Deep Learning Containers provide a set of Docker images for training and serving models
in TensorFlow and Apache MXNet (Incubating) on Amazon ECS. Deep Learning Containers enable
optimized environments with TensorFlow, NVIDIA CUDA (for GPU instances), and Intel MKL (for
CPU instances) libraries. Container images for Deep Learning Containers are available in Amazon
ECR to reference in Amazon ECS task definitions. You can use Deep Learning Containers along with
Amazon Elastic Inference to lower your inference costs.

To get started using Deep Learning Containers without Elastic Inference on Amazon ECS, see
Amazon ECS setup in the AWS Deep Learning AMIs Developer Guide.

Using AWS Deep Learning Containers 1822

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/imagebuilder_image_recipe#argument-reference
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/imagebuilder_image_pipeline#argument-reference
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-setup.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-setup.html

Amazon Elastic Container Service Developer Guide

Amazon ECS service quotas

When you create your AWS account, we set default quotas (also referred to as limits) on your AWS
resources on a per-Region basis. If you attempt to exceed the quota for a resource, the request
fails.

The Service Quotas console is a central location where you can view and manage your quotas for
AWS services, and request a quota increase for many of the resources that you use. Use the quota
information that we provide to manage your resources. Plan to request any quota increases in
advance of the time that you'll need them.

For more information about Amazon ECS and Fargate quotas, see Amazon ECS endpoints and
quotas in the Amazon Web Services General Reference. For information about API throttling in the
Amazon ECS API, see Request throttling for the Amazon ECS API.

Managing your Amazon ECS and AWS Fargate service quotas in
the AWS Management Console

Amazon ECS has integrated with Service Quotas, an AWS service that enables you to view and
manage your quotas from a central location. For more information, see What is Service Quotas? in
the Service Quotas User Guide.

Service Quotas makes it easy to look up the value of your Amazon ECS service quotas.

AWS Management Console

To view Amazon ECS and Fargate service quotas using the AWS Management Console

1. Open the Service Quotas console at https://console.aws.amazon.com/servicequotas/.

2. In the navigation pane, choose AWS services.

3. From the AWS services list, search for and select Amazon Elastic Container Service
(Amazon ECS) or AWS Fargate.

In the Service quotas list, you can see the service quota name, applied value (if it is
available), AWS default quota, and whether the quota value is adjustable.

4. To view additional information about a service quota, such as the description, choose the
quota name.

Managing your service quotas in the AWS Management Console 1823

https://docs.aws.amazon.com/general/latest/gr/ecs-service.html
https://docs.aws.amazon.com/general/latest/gr/ecs-service.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/request-throttling.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://console.aws.amazon.com/servicequotas/

Amazon Elastic Container Service Developer Guide

5. (Optional) To request a quota increase, select the quota that you want to increase, select
Request quota increase, enter or select the required information, and select Request.

To work more with service quotas using the AWS Management Console see the Service Quotas
User Guide. To request a quota increase, see Requesting a quota increase in the Service Quotas
User Guide.

AWS CLI

To view Amazon ECS and Fargate service quotas using the AWS CLI

Run the following command to view the default Amazon ECS quotas.

aws service-quotas list-aws-default-service-quotas \
 --query 'Quotas[*].
{Adjustable:Adjustable,Name:QuotaName,Value:Value,Code:QuotaCode}' \
 --service-code ecs \
 --output table

Run the following command to view the default Fargate quotas.

aws service-quotas list-aws-default-service-quotas \
 --query 'Quotas[*].
{Adjustable:Adjustable,Name:QuotaName,Value:Value,Code:QuotaCode}' \
 --service-code fargate \
 --output table

Run the following command to view your applied Fargate quotas.

aws service-quotas list-service-quotas \
 --service-code fargate

Note

Amazon ECS doesn't support applied quotas.

For more information about working with service quotas using the AWS CLI, see the Service
Quotas AWS CLI Command Reference. To request a quota increase, see the request-
service-quota-increase command in the AWS CLI Command Reference.

Managing your service quotas in the AWS Management Console 1824

https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/index.html#cli-aws-service-quotas
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/index.html#cli-aws-service-quotas
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/request-service-quota-increase.html
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/request-service-quota-increase.html
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/index.html#cli-aws-service-quotas

Amazon Elastic Container Service Developer Guide

Handle Amazon ECS service quotas and API throttling limits

Amazon ECS is integrated with several AWS services, including Elastic Load Balancing, AWS Cloud
Map, and Amazon EC2. With this tight integration, Amazon ECS includes several features such as
service load balancing, Service Connect, task networking, and cluster auto scaling. Amazon ECS
and the other AWS services that it integrates with all maintain service quotas and API rate limits
to ensure consistent performance and utilization. These service quotas also prevent the accidental
provisioning of more resources than needed and protect against malicious actions that might
increase your bill.

By familiarizing yourself with your service quotas and the AWS API rate limits, you can plan for
scaling your workloads without worrying about unexpected performance degradation. For more
information, see Request throttling for the Amazon ECS API.

When scaling your workloads on Amazon ECS, we recommend that you consider the following
service quota.

• AWS Fargate has quotas that limit the number of concurrent running tasks in each AWS Region.
There are quotas for both On-Demand and Fargate Spot tasks on Amazon ECS. Each service
quota also includes any Amazon EKS pods that you run on Fargate.

• For tasks that run on Amazon EC2 instances, the maximum number of Amazon EC2 instances
that you can register for each cluster is 5,000. If you use Amazon ECS cluster auto scaling with an
Auto Scaling group capacity provider, or if you manage Amazon EC2 instances for your cluster on
your own, this quota might become a deployment bottleneck. If you require more capacity, you
can create more clusters or request a service quota increase.

• If you use Amazon ECS cluster auto scaling with an Auto Scaling group capacity provider, when
scaling your services consider the Tasks in the PROVISIONING state per cluster
quota. This quota is the maximum number of tasks in the PROVISIONING state for each cluster
for which capacity providers can increase capacity. When you launch a large number of tasks all
at the same time, you can easily meet this quota. One example is if you simultaneously deploy
tens of services, each with hundreds of tasks. When this happens, the capacity provider needs
to launch new container instances to place the tasks when the cluster has insufficient capacity.
While the capacity provider is launching additional Amazon EC2 instances, the Amazon ECS
service scheduler likely will continue to launch tasks in parallel. However, this activity might be
throttled because of insufficient cluster capacity. The Amazon ECS service scheduler implements
a back-off and exponential throttling strategy for retrying task placement as new container
instances are launched. As a result, you might experience slower deployment or scale-out times.

Handle service quotas and API throttling limits 1825

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/request-throttling.html

Amazon Elastic Container Service Developer Guide

To avoid this situation, you can plan your service deployments in one of the following ones.
Either deploy a large number of tasks don't require increasing cluster capacity, or keep spare
cluster capacity for new task launches.

In addition to considering Amazon ECS service quota when scaling your workloads, consider also
the service quota for the other AWS services that are integrated with Amazon ECS.

Elastic Load Balancing

You can configure your Amazon ECS services to use Elastic Load Balancing to distribute traffic
evenly across the tasks. For more information and recommended best practices for how to choose
a load balancer, see Use load balancing to distribute Amazon ECS service traffic.

Elastic Load Balancing service quotas

When you scale your workloads, consider the following Elastic Load Balancing service quotas. Most
Elastic Load Balancing service quotas are adjustable, and you can request an increase in the Service
Quotas console.

Application Load Balancer

When you use an Application Load Balancer, depending on your use case, you might need to
request a quota increase for:

• The Targets per Application Load Balancer quota which is the number of targets
behind your Application Load Balancer.

• The Targets per Target Group per Region quota which is the number of targets behind
your Target Groups.

For more information, see Quotas for your Application Load Balancers in User Guide for Application
Load Balancers.

Network Load Balancer

There are stricter limitations on the number of targets you can register with a Network Load
Balancer. When using a Network Load Balancer, you often will want to enable cross-zone support,
which comes with additional scaling limitations on Targets per Availability Zone Per
Network Load Balancer the maximum number of targets per Availability Zone for each

Elastic Load Balancing 1826

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-limits.html

Amazon Elastic Container Service Developer Guide

Network Load Balancer. For more information, see Quotas for your Network Load Balancers iin the
User Guide for Network Load Balancers.

Elastic Load Balancing API throttling

When you configure an Amazon ECS service to use a load balancer, the target group health checks
must pass before the service is considered healthy. For performing these health checks, Amazon
ECS invokes Elastic Load Balancing API operations on your behalf. If you have a large number of
services configured with load balancers in your account, you might slower service deployments
because of potential throttling specifically for the RegisterTarget, DeregisterTarget,
and DescribeTargetHealth Elastic Load Balancing API operations. When throttling occurs,
throttling errors occur in your Amazon ECS service event messages.

If you experience AWS Cloud Map API throttling, you can contact Support for guidance on how to
increase your AWS Cloud Map API throttling limits. For more information about monitoring and
troubleshooting such throttling errors, see Handle Amazon ECS throttling issues.

Elastic network interfaces

With your tasks use the awsvpc network mode, Amazon ECS provisions a unique elastic network
interface (ENI) for each task. When your Amazon ECS services use an Elastic Load Balancing load
balancer, these network interfaces are also registered as targets to the appropriate target group
defined in the service.

Elastic network interface service quotas

When you run tasks that use the awsvpc network mode, a unique elastic network interface is
attached to each task. If those tasks must be reached over the internet, assign a public IP address
to the elastic network interface for those tasks. When you scale your Amazon ECS workloads,
consider these two important quotas:

• The Network interfaces per Region quota which is the maximum number of network
interfaces in an AWS Region for your account.

• The Elastic IP addresses per Region quota which is the maximum number of elastic IP
addresses in an AWS Region.

Both of these service quotas are adjustable and you can request an increase from your Service
Quotas console for these. For more information, see Amazon VPC service quotas in the Amazon
Virtual Private Cloud user Guide.

Elastic network interfaces 1827

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html#vpc-limits-enis

Amazon Elastic Container Service Developer Guide

For Amazon ECS workloads that are hosted on Amazon EC2 instances, when running tasks that
use the awsvpc network mode consider the Maximum network interfaces service quota,
the maximum number of network instances for each Amazon EC2 instance. This quota limits
the number of tasks that you can place on an instance. You cannot adjust the quota and it's not
available in the Service Quotas console. For more information, see IP addresses per network
interface per instance type in the Amazon EC2 User Guide.

Although you can't change the number of network interfaces that can be attached to an Amazon
EC2 instance, you can use the elastic network interface trunking feature to increase the number
of available network interfaces. For example, by default a c5.large instance can have up to
three network interfaces. The primary network interface for the instance counts as one. So, you
can attach an additional two network interfaces to the instance. Because each task that uses the
awsvpc network mode requires a network interface, you can typically only run two such tasks
on this instance type. This can lead to under-utilization of your cluster capacity. If you enable
elastic network interface trunking, you can increase the network interface density to place a
larger number of tasks on each instance. With trunking turned on, a c5.large instance can have
up to 12 network interfaces. The instance has the primary network interface and Amazon ECS
creates and attaches a "trunk" network interface to the instance. As a result, with this configuration
you can run 10 tasks on the instance instead of the default two tasks. For more information, see
Increasing Amazon ECS Linux container instance network interfaces.

Elastic network interface API throttling

When you run tasks that use the awsvpc network mode, Amazon ECS relies on the following
Amazon EC2 APIs. Each of these APIs have different API throttles. For more information, see
Request throttling for the Amazon EC2 API in the Amazon EC2 API Reference.

• CreateNetworkInterface

• AttachNetworkInterface

• DetachNetworkInterface

• DeleteNetworkInterface

• DescribeNetworkInterfaces

• DescribeVpcs

• DescribeSubnets

• DescribeSecurityGroups

• DescribeInstances

Elastic network interfaces 1828

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/throttling.html

Amazon Elastic Container Service Developer Guide

If the Amazon EC2 API calls are throttled during the elastic network interface provisioning
workflows, the Amazon ECS service scheduler automatically retries with exponential back-offs.
These automatic retires might sometimes lead to a delay in launching tasks, which results in
slower deployment speeds. When API throttling occurs, you will see the message Operations
are being throttled. Will try again later. on your service event messages. If you
consistently meet Amazon EC2 API throttles, you can contact Support for guidance on how to
increase your API throttling limits. For more information about monitoring and troubleshooting
throttling errors, see Handling throttling issues.

AWS Cloud Map

Amazon ECS service discovery and Service Connect use AWS Cloud Map APIs to manage
namespaces for your Amazon ECS services. If your services have a large number of tasks, consider
the following recommendations.

AWS Cloud Map service quotas

When Amazon ECS services are configured to use service discovery or Service Connect, the Tasks
per service quota which is the maximum number of tasks for the service, is affected by the AWS
Cloud Map Instances per service service quota which is the maximum number of instances
for that service. In particular, the AWS Cloud Map service quota decreases the amount of instances
that you can run to at most 1,000 instances per service. You cannot change the AWS Cloud Map
quota. For more information, see AWS Cloud Map service quotas.

AWS Cloud Map API throttling

Amazon ECS calls the ListInstances, GetInstancesHealthStatus, RegisterInstance, and
DeregisterInstance AWS Cloud Map APIs on your behalf. They help with service discovery and
perform health checks when you launch a task. When multiple services that use service discovery
with a large number of tasks are deployed at the same time, this can result in exceeding the AWS
Cloud Map API throttling limits. When this happens, you likely will see the following message:
Operations are being throttled. Will try again later in your Amazon ECS service
event messages and slower deployment and task launch speed. AWS Cloud Map doesn't document
throttling limits for these APIs. If you experience throttling from these, you can contact Support
for guidance on increasing your API throttling limits. For more recommendations about monitoring
and troubleshooting such throttling errors, see Handle Amazon ECS throttling issues.

AWS Cloud Map 1829

https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/operating-at-scale-dealing-with-throttles.html
https://docs.aws.amazon.com/general/latest/gr/cloud_map.html

Amazon Elastic Container Service Developer Guide

Amazon ECS API reference

In addition to the AWS Management Console and the AWS Command Line Interface (AWS CLI),
Amazon ECS also provides an API. You can use the API to automate tasks for managing Amazon
ECS resources.

• For a list of API operations by Amazon ECS resource, see Actions by Amazon ECS resource.

• For an alphabetical list of API operations, see Actions.

• For an alphabetical list of data types, see Data types.

• For a list of common query parameters, see Common parameters.

• For descriptions of the error codes, see Common errors.

For more information about the AWS CLI, see AWS Command Line Interface reference for Amazon
ECS.

1830

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/OperationList-query.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Types.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/CommonParameters.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/CommonErrors.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/index.html
https://docs.aws.amazon.com/cli/latest/reference/ecs/index.html

Amazon Elastic Container Service Developer Guide

Document history

The following table describes the major updates and new features for the Amazon Elastic Container
Service Developer Guide. We also update the documentation frequently to address the feedback
that you send us.

Change Description Date

Update to default log
driver mode.

The default logging mode for Amazon ECS has been
updated from blocking to non-blocking .
You can override this default mode by specifying
a mode in your container definition's logConfig
uration or configure your own default by setting
 the defaultLogDriverMode account setting
using the Amazon ECS console or the AWS CLI. For
more information, see Default log driver mode.

June 25,
2025

Add permissions to
AmazonECSServiceRo
lePolicy

The AmazonECSServiceRolePolicy managed
IAM policy was updated with new AWS Cloud Map
permissions which Amazon ECS can update AWS
Cloud Map service attributes for services that
Amazon ECS manages.

June 24,
2025

Support for the Amazon
ECS-optimized Windows
Server 2025 Full AMI
and Amazon ECS-optim
ized Windows Server
2025 Core AMI.

For more information, see Amazon ECS-optimized
Windows AMIs.

June 20,
2025

Support for updating a
service capacity provider
strategy.

You can now update a service capacity provider
strategy. For more information, see Update service
parameters.

June 12,
2025

Add permissions to
AmazonECSInfrastru

The AmazonECSInfrastructureRole
PolicyForVolumes policy has been updated to
add the ec2:DescribeInstances permission.

June 2,
2025

1831

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-account-settings.html#default-log-driver-mode
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSServiceRolePolicy
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSServiceRolePolicy
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_windows_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_windows_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/update-service-parameters.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/update-service-parameters.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes

Amazon Elastic Container Service Developer Guide

Change Description Date

ctureRolePolicyFor
Volumes

The permission helps prevent device name collision
for Amazon EBS volumes that are attached to
Amazon ECS tasks that run on the same container
instance.

Support for volume
initialization rate for
Amazon EBS volumes
attached to Amazon ECS
tasks.

You can now set a volumeIntiializationRate
to determine the rate, in MiB/s, at which data is
fetched from a snapshot of an existing Amazon
EBS volume to create new volumes for attachmen
t to Amazon ECS tasks. For more information, see
volumeInitializationRate.

May 13,
2025

Support for stopping a
service deployment.

You can now stop a service deployment. For more
information, see Stopping Amazon ECS service
deployments.

May 2,
2025

Support for Amazon ECS
dual-stack endpoints.

You can now use dual-stack endpoints to interact
with Amazon ECS. Dual-stack endpoints support
requests to Amazon ECS over both Internet Protocol
version 4 (IPv4) and Internet Protocol version 6 (IPv6).
For more information, see Using Amazon ECS dual-
stack endpoints.

April 30,
2025

Support for configuring
a default log driver mode
at the account level in
an AWS Region.

You can now configure a default delivery mode of
log messages from a container to the log driver that
you specify in your logConfiguration using the
 defaultLogDriverMode account setting. For
more information, see Default log driver mode.

April 17,
2025

Support for migrating a
service with a short ARN
format to the long ARN
format.

You can now migrate a service with a short ARN
format to the long ARN formatk packet. For more
information, see Migrate an Amazon ECS short
service ARN to a long ARN.

February
13, 2025

1832

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_definition_parameters.html#sd-volumeConfigurations
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/stop-service-deployment.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/stop-service-deployment.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/dual-stack-endpoint.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/dual-stack-endpoint.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-account-settings.html#default-log-driver-mode
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-arn-migration.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-arn-migration.html

Amazon Elastic Container Service Developer Guide

Change Description Date

Support for three
types of fault injection
on Amazon ECS and
 Fargate.

You can now use network blackhole port, network
latency, and network packet loss fault injection with
Amazon ECS and Fargate. For more information, see
Use AWS Fault Injection Service to test your Amazon
ECS workloads.

December
19, 2024

Support for CloudWatch
Container Insights with
enhanced observability.

You can use CloudWatch Container Insights with
enhanced observability. For more information, see
Monitor Amazon ECS containers using Container
Insights with enhanced observability.

December
2, 2024

Support for predictive
scaling.

You can use predictive scaling to anticipate future
needs and proactively increase tasks in your service
as needed. For more information, see Use historical
patterns to scale CloudWatch services with predictive
scaling.

November
21, 2024

Support for service-r
ebalancing.

You can now have Amazon ECS automatically balance
your service tasks across Availability Zones. For more
information, see Balancing an Amazon ECS service
across Availability Zones.

November
19, 2024

Support for configuring
resolution of container
image tags to image
 digests.

You can now configure the resolution of container
image tags to digests for each container in tasks
that are part of a service. For more information,
see Container image resolution and versionCo
nsistency .

November
19, 2024

Add new AmazonECS
Infrastru
ctureRole
PolicyFor
VpcLattice IAM
policy

The AmazonECSInfrastructureRole
PolicyForVpcLattice policy provides access
to other AWS service resources required to manage
VPC Lattice feature in Amazon ECS workloads on your
behalf.

November
18, 2024

1833

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fault-injection-service.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fault-injection-service.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fault-injection-service.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-container-insights.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-container-insights.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-container-insights.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/predictive-auto-scaling.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/predictive-auto-scaling.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/predictive-auto-scaling.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVpcLattice
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVpcLattice

Amazon Elastic Container Service Developer Guide

Change Description Date

VPC Lattice is now
available for Amazon ECS
services.

You can now use VPC Lattice to standardize your
service-to-service connectivity, security, and
observability. For more information, see Use Amazon
VPC Lattice to connect, observe, and secure your
Amazon ECS services.

November
18, 2024

Support for service
history using service
deployments and service
 revisions.

You can use service deployments and service revisions
to view deployment history. For more information,
see View service history using Amazon ECS service
deployments and Amazon ECS service revisions.

October
30, 2024

Support for Amazon
EBS volumes for the
EC2 launch type using
the Windows operating
system.

Amazon ECS support Amazon EBS volumes attached
to tasks running on EC2 instances with the Windows
operating system. For more information, see Use
Amazon EBS volumes with Amazon ECS.

October
24, 2024

Add permissions to
AmazonECSInfrastru
ctureRolePolicyFor
Volumes.

The AmazonECSInfrastructureRole
PolicyForVolumes policy has been updated
to allow customers to create an Amazon EBS
volume from a snapshot. For more information, see
AmazonECSInfrastructureRolePolicyForVolumes.

October
10, 2024

Fargate Spot is available
for Linux ARM.

Support for Fargate Spot on Linux ARM was added to
Amazon ECS.

September
6, 2024

Container restart policy
for individual containers
in Amazon ECS tasks.

You can enable restart policies for essential and non-
essential containers defined in your task definition
to overcome transient failures faster and maintain
task availability. For more information, see Restart
individual containers in Amazon ECS tasks with
container restart policies.

August 15,
2024

1834

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-vpc-lattice.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-vpc-lattice.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-vpc-lattice.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-deployment.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-deployment.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-revision.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes

Amazon Elastic Container Service Developer Guide

Change Description Date

Added permissions
to the section called
“AmazonECS_FullAccess”

The AmazonECS_FullAccess policy was updated
to add iam:PassRole permissions for IAM roles
for a role named ecsInfrastructureRole .
This is the default IAM role created by the AWS
Management Console that is intended to be used as
an ECS infrastructure role that allows Amazon ECS to
manage Amazon EBS volumes attached to ECS tasks.

August 13,
2024

Amazon Linux 2023,
CentOS Stream 9, Fedora
40, and Ubuntu 24
support added for ECS
Anywhere

Support for the Amazon Linux 2023, CentOS Stream
9, Fedora 40, and Ubuntu 24 operating systems was
added to ECS Anywhere. For more information, see
Supported operating systems and system architect
ures.

July 23,
2024

Container image
resolution for services
that use the rolling up
date (ECS) deployment
type.

To ensure that all tasks in a service that uses the
rolling update deployment controller use the same
container image, Amazon ECS resolves container
image names and any image tags specified in the
task definition to container image digests. For more
information, see Container image resolution.

July 10,
2024

Debian 11 and Debian 12
support added for ECS
Anywhere

Support for the Debian 11 and Debian 12 operating
systems was added to ECS Anywhere. For more
information, see Supported operating systems and
system architectures.

March 28,
2024

gMSA for Linux
Containers on Fargate
support

Amazon ECS supports Active Directory authentication
for Linux containers on Fargate through a special
kind of service account called a group Managed
Service Account (gMSA). For more information, see
Using gMSA for Linux containers on Fargate.

March 5,
2024

CloudWatch metrics
added for Amazon EBS
volumes attached to
tasks

Amazon ECS now publishes CloudWatch metrics for
the Amazon EBS storage utilization for tasks that
have an Amazon EBS volume attached. For more
information, see Amazon ECS CloudWatch metrics.

February 8,
2024

1835

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/deployment-type-ecs.html#deployment-container-image-stability
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/platform-fargate-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-metrics.html

Amazon Elastic Container Service Developer Guide

Change Description Date

Service Connect TLS You can now use TLS with Service Connect. January
22, 2024

Service Connect TLS
managed policy

Added new AmazonECSInfrastructureRolePolicyFor
ServiceConnectTransportLayerSecurity policy.

January
22, 2024

Service Connect timeout
configuration update

Service Connect timeout configuration can now be
 updated and includes two optional parameters -
idleTimeout and perRequestTimeout .

January
22, 2024

Amazon ECS managed
instance draining

You can use Amazon ECS managed instance draining
to facilitate graceful termination of Amazon ECS
instances.

January
19, 2024

Ubuntu 22 support
added for ECS Anywhere

Support for the Ubuntu 22 operating system was
added to ECS Anywhere. For more information, see
Supported operating systems and system architect
ures.

January
16, 2024

Add AmazonECS
Infrastru
ctureRole
PolicyForVolumes
IAM policy

The AmazonECSInfrastructureoleP
olicyForVolumes was added. The policy grants
the permissions that are needed by Amazon ECS to
 make AWS API calls to manage Amazon EBS volumes
associated with Amazon ECS workloads.

January
11, 2024

Amazon EBS data
volume for Amazon ECS
task

You can configure 1 Amazon EBS data volume per
task during deployment for attachment to standalo
ne Amazon ECS tasks or tasks managed by an ECS
service. Configuring a volume at deployment allows
you to create resuable task definitions not constra
ined to specific volume types or settings. Amazon
EBS volumes provide a highly available, cost-effe
ctive, durable, high-performance block storage for
data intensive containerized workloads.

January
11, 2024

1836

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-connect-tls.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-connect-concepts.html#service-connect-concepts-proxy
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/managed-instance-draining.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSInfrastructureRolePolicyForVolumes
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ebs-volumes.html

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon ECS classic
console reached end of
life

The Amazon ECS console has reached the end of life. December
4, 2023

Updated policy The AmazonECSServiceRolePolicy managed IAM
policy was updated with new events permissions
and additional autoscaling and autoscaling-
plans permissions.

December
4, 2023

Runtime Monitoring
support

You can use Runtime Monitoring to monitor your
Amazon ECS workloads to identify malicious or
unauthorized behavior. For more information, see
Runtime Monitoring.

November
26, 2023

Updated policy The AmazonECSServiceRolePolicy managed
IAM policy was updated to allow access to the AWS
Cloud Map DiscoverInstancesRevision API.

October 4,
2023

AWS Fargate task
retirement configuration

You can configure the wait period before Fargate
tasks are retired For more information, see AWS
Fargate task maintenance.

September
5, 2023

Additional task definitio
n parameters in AWS
Fargate

AWS Fargate adds support for pidMode and
systemControls in Linux platform version 1.4.0.
For more information, see Task definitions.

August 9,
2023

Amazon ECS console task
definition page redesign

The task definition page in the Amazon ECS console
has been redesigned and contains additional options.
For more information, see Creating a task definition
using the console.

July 26,
2023

1837

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSServiceRolePolicy
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-guard-duty-integration.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSServiceRolePolicy
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-maintenance.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-maintenance.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html#fargate-task-defs
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-definition.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-definition.html

Amazon Elastic Container Service Developer Guide

Change Description Date

Fargate supports lazy
loading with Seekable
OCI indexes

AWS Fargate is introducing Seekable OCI (SOCI)
indexes. With SOCI, containers only spend a few
seconds on the image pull before they can start,
providing time for environment setup and applicati
on instantiation while the image is downloaded in
the background. For more information, see Lazy
loading container images using Seekable OCI (SOCI).

July 17,
2023

Improved support for
gMSA on Linux and
Windows

The task definition has a new credentialSpecs
field for gMSA for Linux and Windows. A new
complete tutorial for domainless gMSA on Windows
has been added, see Tutorial: Using Windows
Containers with Domainless gMSA using the AWS
CLI. For more information, see Using gMSAs for
Linux Containers and Using gMSAs for Windows Co
ntainers.

July 14,
2023

Improved ECS Agent
versions documentation

The documentation for the Amazon ECS Agent
versions has been updated. We recommend that you
use the v20.10.13 version or newer of Docker
with the latest version of the Amazon ECS container
agent. The released versions and changes to the
agent are available on GitHub. For more information,
see Amazon ECS Linux container agent versions.

June 20,
2023

Updated Region availabil
ity for Fargate ARM64
support

The Region availability for Fargate ARM64 support
has been updated. For more information, see
Considerations.

June 19,
2023

Improve cluster auto
scaling documentation

The documentation for Amazon ECS scaling of
Amazon EC2 Auto Scaling has significant improvem
ents in accuracy and readability. For more informati
on, see Amazon ECS cluster auto scaling.

May 4,
2023

1838

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-tasks-services.html#fargate-tasks-soci-images
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-tasks-services.html#fargate-tasks-soci-images
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/tutorial-gmsa-windows.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/tutorial-gmsa-windows.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/tutorial-gmsa-windows.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/linux-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/linux-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-versions.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-auto-scaling.html

Amazon Elastic Container Service Developer Guide

Change Description Date

Tagging authorization
for resource creation.

Users must have permissions for actions that create
the resource, such as ecsCreateCluster . When
you create a resource and specify tags for that
resource, AWS performs additional authorization to
 verify that there are permissions to create tags. For
more information, see Tagging authorization and
Grant permission to tag resources on creation.

April 18,
2023

Support for gMSA for
Linux containers on EC2

You can use gMSA to authenticate to Active Directory
for Linux containers on EC2. For more information,
see Using gMSAs for Linux Containers.

April 14,
2023

Support for ephemeral
storage for Windows
containers on AWS
Fargate

You can use ephemeral storage for Windows
containers on AWS Fargate. For more information,
see Fargate task storage.

April 14,
2023

AWS Cost Managemen
t support for task-level
CUR data

You can turn on task-level cost and resource usage
in the Cost and Usage Reports. This adds Split Cost
Allocation Data for tasks that run on AWS Fargate
and EC2. For more information, see Task-level Cost
and Usage Reports.

April 12,
2023

Amazon Linux 2023
Amazon ECS-optimized
AMI

You can deploy workloads on the Amazon Linux 2023
Amazon ECS-optimized AMI. For more information,
see Amazon ECS-optimized Linux AMIs.

April 10,
2023

AWS Fargate Federal
Information Processing
Standard (FIPS) 140

You can deploy workloads on Amazon ECS on
AWS Fargate in a manner compliant with Federal
Information Processing Standard (FIPS) 140. For
more information, see AWS Fargate Federal Informati
on Processing Standard (FIPS-140).

April 10,
2023

1839

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-account-settings.html#tag-resources-setting
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/supported-iam-actions-tagging.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/linux-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-storage.html

Amazon Elastic Container Service Developer Guide

Change Description Date

Task definition deletion You can delete a task definition using the Amazon
ECS console, SDK, and AWS CLI. For more informati
on, see Deleting a task definition revision using the
console and Task definitions.

February
24, 2023

AWS Fargate service
recommendations in
Compute Optimizer

AWS Compute Optimizer generates task and
container size recommendations based on the
utilization of running tasks in Amazon ECS services
on AWS Fargate. For more information, see Viewing
recommendations for Amazon ECS services on
 Fargate.

January
27, 2023

Amazon ECS console The new Amazon ECS console is now the default
console. For more information, see New Amazon
ECS console.

January
19, 2023

Updated AmazonECS
_FullAccess IAM
policy

The AmazonECS_FullAccess IAM policy is
updated to include permissions to add tags to load
balancers during creation. For more information, see
AmazonECS_FullAccess.

January 4,
2023

Use CloudWatch alarms
to detect Amazon ECS
service deployment
failures

You can configure Amazon ECS to set the deploymen
t to failed when it detects that a specified CloudWatc
h alarm has gone into the ALARM state. For more
information, see the section called “Rolling update
deployments”.

December
19, 2022

Support for container
port mapping

You can set a port number range on the container
that's bound to the dynamically mapped host port
range. For more information, see the section called
“Port mappings”.

December
15, 2022

General availability of
Amazon ECS Service
Connect

This feature adds service discovery and service mesh
that is controlled by Amazon ECS service deploymen
ts. For more information, see the section called “
Service Connect”.

November
27, 2022

1840

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/delete-task-definition-v2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/delete-task-definition-v2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-recommendations.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-recommendations.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-recommendations.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/new-console.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/new-console.html

Amazon Elastic Container Service Developer Guide

Change Description Date

The new Amazon ECS
console experience
for task definitions is
 updated

The new Amazon ECS console experience now
contains a JSON editor for task defintions. For more
information, see the section called “Creating a task
definition using the console”.

October
27, 2022

The new Amazon ECS
console experience
for task definitions is
 updated

The new Amazon ECS console experience now
contains a JSON editor for task defintions. For more
information, see the section called “Creating a task
definition using the console”.

October
27, 2022

The new Amazon ECS
console experience is
updated

The new Amazon ECS console experience has been
updated with additional service and task parameter
s. For more information, see the section called
“Creating a service” and the section called “Running
an application as a task”.

October 7,
2022

New information in
task metadata endpoint
version 4

The task metadata endpoint version 4 now invludes
the VPC ID and the service name. For more informati
on, see the section called “Task metadata endpoint
version 4”.

October 7,
2022

New task definition sizes Amazon ECS on Fargate now supports the 8 vCPU
and 16 vCPU task sizes. For more information, see
the section called “Task size”.

September
16, 2022

ECS CLI pages archived The ECS CLI documentation has been archived. We
recommend using AWS Copilot for your command
line tool needs. For more information, see Creating
Amazon ECS resources using the AWS Copilot
command line interface.

September
15, 2022

New Fargate quotas Fargate is transitioning from task count-based quotas
to vCPU-based quotas. For more information, see
Amazon ECS endpoints and quotas.

September
8, 2022

1841

https://docs.aws.amazon.com/general/latest/gr/ecs-service.html

Amazon Elastic Container Service Developer Guide

Change Description Date

Support for Amazon EC2
Auto Scaling warm pools.

You can now use Amazon EC2 Auto Scaling warm
pools to scale out your applications faster and save
costs. For more information, see Configuring pre-initi
alized instances for your Amazon ECS Auto Scaling
group.

March 23,
2022

Support for Windows
instances in ECS
Anywhere.

ECS Anywhere now supports Windows instances. For
more information, see Amazon ECS clusters for the
external launch type.

March 3,
2022

Added ECS Exec support
for external instances

ECS Exec is now supported for external instances
. For more information, see Monitor Amazon ECS
containers with ECS Exec.

January
24, 2022

The new Amazon ECS
console experience
updated

The new Amazon ECS console experience supports
creating and deleting a cluster, updating a task
definition, and deregistering a task definition. For
more information, see Creating an Amazon ECS
cluster for the Fargate launch type, Deleting an
Amazon ECS cluster, Updating an Amazon ECS task
definition using the console, and Deregistering
an Amazon ECS task definition revision using the
console.

December
8, 2021

The new Amazon ECS
console experience
updated

The new Amazon ECS console experience supports
creating a task definition. For more information, see
Creating an Amazon ECS task definition using the co
nsole.

November
23, 2021

Amazon ECS supports
the 64-bit ARM architect
ure for Linux.

Amazon ECS supports the 64-bit ARM CPU architect
ure for the Linux operating system. For more
information, see the section called “Task definitions
for 64-bit ARM workloads”.

November
23, 2021

1842

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon ECS support for
the fluentd log-driver-
buffer-limit option

Amazon ECS supports the fluentd log-driver-
buffer-limit option. For more information, see
Send Amazon ECS logs to an AWS service or AWS
Partner.

November
22, 2021

Amazon ECS-optimized
Linux AMI build script

Amazon ECS has open-sourced the build scripts that
are used to build the Linux variants of the Amazon
ECS-optimized AMI. For more information, see
 Amazon ECS-optimized Linux AMI build script.

November
19, 2021

Container instance
health

Amazon ECS adds support for container instance
health monitoring. For more information, see
Monitor Amazon ECS container instance health.

November
10, 2021

Support for Windows
Amazon ECS Exec

Amazon ECS Exec supports Windows. For more
information, see Monitor Amazon ECS containers with
ECS Exec.

November
1, 2021

Support for Windows
containers on Fargate.

Amazon ECS supports Windows containers on
Fargate. For more information, see Fargate Windows
platform version change log.

October
28, 2021

GPU support for external
instances on Amazon ECS
Anywhere

Amazon ECS supports specifying GPU requireme
nts in the task definition for tasks run on external
instances. For more information, see Amazon ECS
task definitions for GPU workloads and Registering
an external instance to an Amazon ECS cluster.

October 8,
2021

Support of awsvpc
network mode on
Windows

Amazon ECS supports awsvpc network mode on
Windows. For more information, see Allocate a
network interface for an Amazon ECS task.

July 15,
2021

General availability of
Bottlerocket

Amazon ECS supports an Amazon ECS-optimized
AMI variant of the Bottlerocket operating system
is provided as an AMI. For more information, see
 Amazon ECS-optimized Bottlerocket AMIs.

June 30,
2021

1843

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon ECS scheduled
tasks update

Amazon EventBridge added support for additional
parameters when creating rules that trigger Amazon
ECS scheduled tasks.

June 25,
2021

AWS managed policies
for Amazon ECS

Amazon ECS added documentation of AWS managed
policies for service-linked roles. For more informati
on, see AWS managed policies for Amazon Elastic
Container Service.

June 8,
2021

Getting started with the
AWS CDK

Added a getting started guide for using the AWS
CDK with Amazon ECS. For more information, see
Creating Amazon ECS resources using the AWS CDK.

May 27,
2021

Amazon ECS Anywhere Amazon ECS has added support for registering an
on-premise server or virtual machine (VM) with
your cluster. For more information, see Amazon ECS
clusters for the external launch type.

May 25,
2021

Amazon ECS-optimized
Windows Server 20H2
Core AMI

Amazon ECS has added support for a new Windows
Amazon ECS-optimized AMI variant for Windows
Server 20H2 Core. For more information, see Amazon
ECS-optimized Linux AMIs.

April 19,
2021

Amazon ECS Exec Amazon ECS has released a new debugging tool
called ECS Exec. For more information, see Monitor
Amazon ECS containers with ECS Exec.

March 15,
2021

VPC endpoint policy
support

Amazon ECS now supports VPC endpoint policies.
For more information, see Creating a VPC endpoint
policy for Amazon ECS.

January
11, 2021

New console experience Amazon ECS has released a new console experienc
e which supports creating or updating a service or
running a standalone task. For more information, see
Creating an Amazon ECS service using the console
and Running an application as an Amazon ECS task.

December
28, 2020

1844

Amazon Elastic Container Service Developer Guide

Change Description Date

Capacity provider update Amazon ECS added support for updating an existing
Auto Scaling group capacity provider.

November
23, 2020

ECS now supporting
Amazon FSx for Windows
File Server for Windows
 tasks

Amazon ECS added support for specifying Amazon
FSx for Windows File Server volumes in Windows
task definitions. For more information, see Use FSx
for Windows File Server volumes with Amazon ECS.

November
11, 2020

VPC dual-stack mode
support added

Amazon ECS added support for using a VPC in dual-
stack mode with tasks using the awsvpc network
mode, which provides support for IPv6 addresses.
For more information, see Using a VPC in dual-stack
mode.

November
5, 2020

Task metadata endpoint
v4 update

Amazon ECS added additional metadata to the task
metadata endpoint v4 output. For more information,
see Amazon ECS task metadata endpoint version 4.

November
5, 2020

Support for Local Zones
and Wavelength Zones

Amazon ECS added support for workloads in Local
Zones and Wavelength Zones. For more information,
see Amazon ECS applications in shared subnets, Local
Zones, and Wavelength Zones.

September
4, 2020

Amazon ECS variant of
Bottlerocket AMI

Bottlerocket is a Linux-based open source operating
system that is purpose-built by AWS for running
containers. An Amazon ECS-optimized AMI variant
of the Bottlerocket operating system is provided
as an AMI you can use when launching Amazon
ECS container instances. For more information, see
Amazon ECS-optimized Bottlerocket AMIs.

August 31,
2020

1845

Amazon Elastic Container Service Developer Guide

Change Description Date

Task metadata endpoint
version 4 updated for
network rate stats

The task metadata endpoint version 4 has been
updated to provide network rate stats for Amazon
ECS tasks that use the awsvpc or bridge network
modes hosted on Amazon EC2 instances running
 at least version 1.43.0 of the container agent. For
more information, see Amazon ECS task metadata
endpoint version 4.

August 10,
2020

Fargate usage metrics AWS Fargate provides CloudWatch usage metrics
which provide visibility into your accounts usage of
Fargate On-Demand and Fargate Spot resources. For
more information, see Usage metrics.

August 3,
2020

AWS Copilot version
0.1.0

The new AWS Copilot CLI launched, providing high-
level commands to simplify modeling, creating,
releasing, and managing containerized applications
 on Amazon ECS from a local development environme
nt. For more information, see Creating Amazon
ECS resources using the AWS Copilot command line
interface.

July 9,
2020

AWS Fargate platform
versions deprecation
schedule

The Fargate platform version deprecation schedule
has been added. For more information, see AWS
Fargate Linux platform version deprecation.

July 8,
2020

AWS Fargate Region
expansion

Amazon ECS on AWS Fargate has expanded to the
Europe (Milan) Region.

June 25,
2020

Amazon ECS optimized
Amazon Linux 2 (Neuron)
AMI released

Amazon ECS released an Amazon ECS optimized
Amazon Linux 2 (Neuron) AMI for inferential
workloads.

For more information, see Amazon ECS-optimized
Linux AMIs.

June 24,
2020

1846

Amazon Elastic Container Service Developer Guide

Change Description Date

Added support for
deleting capacity
providers

Amazon ECS added support for deleting Auto Scaling
group capacity providers.

June 11,
2020

AWS Fargate platform
version 1.4.0 update

Beginning on May 28, 2020, any new Fargate task
that is launched using platform version 1.4.0 will
have its 20 GB ephemeral storage encrypted with
an AES-256 encryption algorithm using an AWS
Fargate-managed encryption key. For more informati
on, see Fargate task ephemeral storage for Amazon
ECS.

May 28,
2020

Environment variable file
support

Added support for specifying environment variable
files in a task definition, which enables you to bulk
add environment variables to your containers. For
more information, see Pass an individual environment
variable to an Amazon ECS container.

May 18,
2020

AWS Fargate Region
expansion

AWS Fargate with Amazon ECS has expanded to the
Africa (Cape Town) Region.

May 11,
2020

Service quota updated The following service quota was updated:

•
Clusters per account was raised from 2,000 to
 10,000.

For more information, see Amazon ECS endpoints
and quotas.

April 17,
2020

1847

https://docs.aws.amazon.com/general/latest/gr/ecs-service.html
https://docs.aws.amazon.com/general/latest/gr/ecs-service.html

Amazon Elastic Container Service Developer Guide

Change Description Date

AWS Fargate platform
version 1.4.0

AWS Fargate platform version 1.4.0 is released, which
contains the following features:

•
Added support for using Amazon EFS file system
volumes for persistent task storage. For more
information, see Use Amazon EFS volumes with
Amazon ECS.

•
The ephemeral task storage has been increased
to 20 GB. For more information, see Fargate task
ephemeral storage for Amazon ECS.

•
The network traffic behavior to and from tasks has
been updated. Starting with platform version 1.4,
all Fargate tasks receive a single elastic network
interface (referred to as the task ENI) and all
network traffic flows through that ENI within yo
ur VPC and will be visible to you through your VPC
flow logs. For more information, see Amazon ECS
task networking options for the Fargate launch
type.

•
Task ENIs add support for jumbo frames. Network
interfaces are configured with a maximum
transmission unit (MTU), which is the size of the
largest payload that fits within a single frame. The
 larger the MTU, the more application payload
can fit within a single frame, which reduces per-
frame overhead and increases efficiency. Supportin
g jumbo frames will reduce overhead when the
network path between your task and the destinati
on supports jumbo frames, such as all traffic that
remains within your VPC.

•

April 8,
2020

1848

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-networking.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-networking.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-networking.html

Amazon Elastic Container Service Developer Guide

Change Description Date

CloudWatch Container Insights will include network
performance metrics for Fargate tasks. For more
information, see Monitor Amazon ECS containers
using Container Insights with enhanced observabi
lity.

•
Added support for the task metadata endpoint v4
which provides additional information for your
Fargate tasks, including network stats for the task
and which Availability Zone the task is running
in. For more information, see Amazon ECS task
metadata endpoint version 4.

•
Added support for the SYS_PTRACE Linux
parameter in container definitions. For more
information, see Linux parameters.

•
The Fargate container agent replaces the use of the
Amazon ECS container agent for all Fargate tasks.
This change should not have an effect on how your
tasks run.

•
The container runtime is now using Containerd
instead of Docker. This change should not have
an effect on how your tasks run. You will notice
that some error messages that originate with the
container runtime will change from mentioning
Docker to more general errors.

For more information, see Fargate platform versions
for Amazon ECS.

1849

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon EFS file system
support for task volumes

Amazon EFS file systems can be used as data volumes
for both your Amazon ECS and Fargate tasks. For
more information, see Use Amazon EFS volumes with
Amazon ECS.

April 8,
2020

Amazon ECS Task
Metadata Endpoint
version 4

Beginning with Amazon ECS container agent
version 1.39.0 and Fargate platform version 1.4.0,
an environment variable named ECS_CONTA
INER_METADATA_URI_V4 is injected into
each container in a task. When you query the
task metadata version 4 endpoint, various task
metadata and Docker stats are available to tasks. For
more information, see Amazon ECS task metadata
endpoint version 4.

April 8,
2020

Support for specific
versions of Secrets
Manager secrets to be
injected as environment
variables

Added support for specifying sensitive data using
specific versions of Secrets Manager secrets. For
more information, see Pass sensitive data to an
Amazon ECS container.

February
24, 2020

Added additional
CodeDeploy deployment
configuration options for
blue/green deployments

The CodeDeploy service added new canary and
linear deployment configurations for the Amazon
ECS deployment type. The ability to define cust
om deployment configurations is also available.
For more information, see Validate the state of an
Amazon ECS service before deployment .

February 6,
2020

Added the efsVolume
Configuration task
definition parameter

The efsVolumeConfiguration task definition
parameter is in public preview, which makes it easier
to use Amazon EFS file systems with your Amazon
ECS tasks. For more information, see Use Amazon EFS
volumes with Amazon ECS.

January
17, 2020

1850

https://docs.docker.com/reference/api/engine/version/v1.30/#tag/Container/operation/ContainerStats

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon ECS container
agent logging behavior
updated

The Amazon ECS container agent logging locations
and rotation behavior has been updated. For more
information, see Amazon ECS container agent log
configuration parameters.

January
13, 2020

Fargate Spot Amazon ECS added support for running tasks using
Fargate Spot. For more information, see Amazon ECS
clusters for Fargate.

December
3, 2019

Cluster Auto Scaling Amazon ECS cluster auto scaling enables you to
have more control over how you scale tasks within
a cluster. For more information, see Automatically
manage Amazon ECS capacity with cluster auto
scaling.

December
3, 2019

Cluster Capacity
Providers

Amazon ECS cluster capacity providers determine
the infrastructure to use for your tasks. For more
information, see Amazon ECS clusters.

December
3, 2019

Creating a cluster on an
AWS Outposts

Amazon ECS now supports creating clusters on an
AWS Outposts. For more information, see the section
called “Amazon Elastic Container Service on AWS
Outposts”.

December
3, 2019

Service Action Events Amazon ECS now sends events to Amazon EventBrid
ge when certain service actions occur. For more
information, see Amazon ECS service action events.

November
25, 2019

Amazon ECS GPU-optim
ized AMI Supports G4
Instances

Amazon ECS added support for the g4 instance type
family when using the Amazon ECS GPU-optimized
AMI. For more information, see Amazon ECS task
definitions for GPU workloads.

October 8,
2019

1851

Amazon Elastic Container Service Developer Guide

Change Description Date

FireLens for Amazon ECS FireLens for Amazon ECS is in general availability.
FireLens for Amazon ECS enables you to use task
definition parameters to route logs to an AWS
 service or partner destination for log storage and
analytics. For more information, see Send Amazon
ECS logs to an AWS service or AWS Partner.

September
30, 2019

AWS Fargate region
expansion

AWS Fargate with Amazon ECS has expanded to the
Europe (Paris), Europe (Stockholm), and Middle East
(Bahrain) regions.

September
30, 2019

Deep Learning Container
s with Elastic Inference
on Amazon ECS

Amazon ECS supports attaching Amazon Elastic
Inference accelerators to your containers to make
running deep learning inference workloads more
 efficient.

September
3, 2019

FireLens for Amazon ECS FireLens for Amazon ECS is in public preview. FireLens
for Amazon ECS enables you to use task definitio
n parameters to route logs to an AWS service or
partner destination for log storage and analytics. For
more information, see Send Amazon ECS logs to an
AWS service or AWS Partner.

August 30,
2019

CloudWatch Container
Insights

CloudWatch Container Insights is now generally
available. It enables you to collect, aggregate, and
summarize metrics and logs from your containerized
applications and microservices. For more information,
see Monitor Amazon ECS containers using Container
Insights with enhanced observability.

August 30,
2019

1852

Amazon Elastic Container Service Developer Guide

Change Description Date

Container Level Swap
Configuration

Amazon ECS added support for controlling the usage
of swap memory space on your Linux container
instances at the container level. Using a per-conta
iner swap configuration, each container within a task
 definition can have swap enabled or disabled, and
for those that have it enabled, the maximum amount
of swap space used can be limited. For more inform
ation, see Managing container swap memory space
on Amazon ECS.

August 16,
2019

AWS Fargate region
expansion

AWS Fargate with Amazon ECS has expanded to the
Asia Pacific (Hong Kong) Region.

August 6,
2019

Elastic Network Interface
Trunking

Added additional supported Amazon EC2 instance
types for ENI trunking feature. For more information,
see Supported instances for increased Amazon ECS
container network interfaces.

August 1,
2019

Registering Multiple
Target Groups with a
Service

Added support for specifying multiple target groups
in a service definition. For more information, see
Registering multiple target groups with an Amazon
ECS service.

July 30,
2019

Specifying Sensitive Data
Using Secrets Manager
Secrets

Added tutorial for specifying sensitive data using
Secrets Manager secrets. For more information,
see Specifying sensitive data using Secrets Manager
secrets in Amazon ECS.

July 20,
2019

CloudWatch Container
Insights

Amazon ECS has added support for CloudWatc
h Container Insights. For more information, see
Monitor Amazon ECS containers using Container
Insights with enhanced observability.

July 9,
2019

1853

Amazon Elastic Container Service Developer Guide

Change Description Date

Resource-level permissio
ns for Amazon ECS
services and tasksets

Amazon ECS has expanded resource-level permissio
ns support for Amazon ECS services and tasks. For
more information, see How Amazon Elastic Container
Service works with IAM.

June 27,
2019

New Amazon ECS-optim
ized AMI patched for
AWS-2019-005

Amazon ECS has updated the Amazon ECS-optim
ized AMI to address the vulnerabilities described in
AWS-2019-005.

June 17,
2019

Elastic Network Interface
Trunking

Amazon ECS introduces support for launching
container instances using supported Amazon EC2
instance types that have increased elastic network
 interface (ENI) density. Using these instance types
and opting in to the awsvpcTrunking account
setting provides increased ENI density on newly
launched container instances which allows you to
place more tasks on each container instance. For
more information, see Increasing Amazon ECS Linux
container instance network interfaces.

June 6,
2019

AWS Fargate platform
version 1.3.0 update

Beginning on May 1, 2019, any new Fargate task
that is launched supports the splunk log driver
in addition to the awslogs log driver. For more
information, see Storage and logging.

May 1,
2019

AWS Fargate platform
version 1.3.0 update

Beginning on May 1, 2019, any new Fargate task
that is launched supports referencing sensitive data
in the log configuration of a container using the
secretOptions container definition parameter.
For more information, see Pass sensitive data to an
Amazon ECS container.

May 1,
2019

1854

https://aws.amazon.com/security/security-bulletins/AWS-2019-005/

Amazon Elastic Container Service Developer Guide

Change Description Date

AWS Fargate platform
version 1.3.0 update

Beginning on April 2, 2019, any new Fargate task
that is launched supports injecting sensitive data
into your containers by storing your sensitive data in
either AWS Secrets Manager secrets or AWS Systems
Manager Parameter Store parameters and then
referencing them in your container definition. For
more information, see Pass sensitive data to an
Amazon ECS container.

Apr 2,
2019

AWS Fargate platform
version 1.3.0 update

Beginning on March 27, 2019, any new Fargate task
launched can use additional task definition parameter
s that enable you to define a proxy configuration,
dependencies for container startup and shutdow
n as well as a per-container start and stop timeout
value. For more information, see Proxy configuration,
Container dependency, and Container timeouts.

March 27,
2019

Amazon ECS introduces
the external deployment
type

The external deployment type enables you to use
 any third-party deployment controller for full control
over the deployment process for an Amazon ECS
service. For more information, see Deploy Amazon
ECS services using a third-party controller.

March 27,
2019

AWS Deep Learning
Containers on Amazon
ECS

AWS Deep Learning Containers are a set of Docker
images for training and serving models in TensorFlo
w on Amazon Elastic Container Service (Amazon
ECS). Deep Learning Containers provide optimized e
nvironments with TensorFlow, Nvidia CUDA (for GPU
instances), and Intel MKL (for CPU instances) libraries
and are available in Amazon ECR. For more inform
ation, see Using AWS Deep Learning Containers on
Amazon ECS.

March 27,
2019

1855

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon ECS introduce
s enhanced container
dependency managemen
t

Amazon ECS introduces additional task definition
parameters that enable you to define dependenc
ies for container startup and shutdown as well as a
per-container start and stop timeout value. For more
information, see Container dependency.

March 7,
2019

Amazon ECS introduce
s the PutAccoun
tSettingDefault
API

Amazon ECS introduces the PutAccountSettingD
efault API that allows a user to set the default
ARN/ID format opt in status for all the users and
roles on the account. Previously, setting the account's
 default opt in status required the use of the account
owner.

For more information, see Amazon Resource Names
(ARNs) and IDs.

February 8,
2019

Amazon ECS supports
GPU workloads

Amazon ECS introduces support for GPU workloads
by enabling you to create clusters with GPU-enabl
ed container instances. In a task definition you can
specify the number of required GPUs and the ECS
agent will pin the physical GPUs to the container.

For more information, see Amazon ECS task definitio
ns for GPU workloads.

February 4,
2019

Amazon ECS expanded
secrets support

Amazon ECS expanded support for using AWS Secrets
Manager secrets directly in your task definitions to
inject sensitive data into your containers.

For more information, see Pass sensitive data to an
Amazon ECS container.

January
21, 2019

1856

Amazon Elastic Container Service Developer Guide

Change Description Date

Interface VPC Endpoints
(AWS PrivateLink)

Added support for configuring interface VPC
endpoints powered by AWS PrivateLink. This allows
you to create a private connection between your VPC
and Amazon ECS without requiring access over the
Internet, through a NAT instance, a VPN connection,
or AWS Direct Connect.

For more information, see Interface VPC Endpoints
(AWS PrivateLink).

December
26, 2018

AWS Fargate platform
version 1.3.0

New AWS Fargate platform version released, which
contains:

•
Added support for using AWS Systems Manager
Parameter Store parameters to inject sensitive
data into your containers.

For more information, see Pass sensitive data to an
Amazon ECS container.

•
Added task recycling for Fargate tasks, which is
 the process of refreshing tasks that are a part of an
Amazon ECS service.

For more information, see Task retirement and
maintenance for AWS Fargate on Amazon ECS.

For more information, see Fargate platform versions
for Amazon ECS.

December
17, 2018

1857

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-maintenance.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-maintenance.html

Amazon Elastic Container Service Developer Guide

Change Description Date

Service limits updated The following service limits were updated:

•
Number of clusters per Region, per account was
raised from 1000 to 2000.

•
Number of container instances per cluster was
raised from 1000 to 2000.

•
Number of services per cluster was raised from
 500 to 1000.

For more information, see Amazon ECS service
quotas.

December
14, 2018

AWS Fargate region
expansion

AWS Fargate with Amazon ECS has expanded to the
Asia Pacific (Mumbai) and Canada (Central) Regions.

For more information, see Supported Regions for
Amazon ECS on AWS Fargate.

December
7, 2018

Amazon ECS blue/green
deployments

Amazon ECS added support for blue/green
deployments using CodeDeploy. This deployment
type allows you to verify a new deployment of a
service before sending production traffic to it.

For more information, see Validate the state of an
Amazon ECS service before deployment .

November
27, 2018

Amazon ECS-optimized
Amazon Linux 2 (arm64)
AMI released

Amazon ECS released an Amazon ECS-optimized
Amazon Linux 2 AMIs for arm64 architecture.

For more information, see Amazon ECS-optimized
Linux AMIs.

November
26, 2018

1858

Amazon Elastic Container Service Developer Guide

Change Description Date

Added support for
additional Docker flags in
task definitions

Amazon ECS introduced support for the following
Docker flags in task definitions:

•
IPC mode

•
PID mode

November
16, 2018

Amazon ECS secrets
support

Amazon ECS added support for using AWS Systems
Manager Parameter Store parameters to inject
sensitive data into your containers.

For more information, see Pass sensitive data to an
Amazon ECS container.

November
15, 2018

Resource tagging Amazon ECS added support for adding metadata tags
to your services, task definitions, tasks, clusters, and
container instances.

For more information, see Tagging Amazon ECS
resources.

November
15, 2018

AWS Fargate Region
expansion

AWS Fargate with Amazon ECS has expanded to
the US West (N. California) and Asia Pacific (Seoul)
Regions.

For more information, see AWS Fargate for Amazon
ECS.

November
7, 2018

1859

Amazon Elastic Container Service Developer Guide

Change Description Date

Service limits updated The following service limits were updated:

•
Number of tasks using the Fargate launch type, per
Region, per account was raised from 20 to 50.

•
Number of public IP addresses for tasks using the
 Fargate launch type was raised from 20 to 50.

For more information, see Amazon ECS service
quotas.

October
31, 2018

AWS Fargate Region
expansion

AWS Fargate with Amazon ECS has expanded to the
Europe (London) Region.

For more information, see AWS Fargate for Amazon
ECS.

October
26, 2018

Amazon ECS-optimized
Amazon Linux 2 AMI
Released

Amazon ECS vends Linux AMIs that are optimized
for the service in two variants. The latest and
recommended version is based on x;. Amazon ECS
also vends AMIs that are based on the , but we
recommend that you migrate your workloads to the
Amazon Linux 2 variant, as support for the Amazon
Linux AMI will end no later than June 30, 2020.

For more information, see Amazon ECS-optimized
Linux AMIs.

October
18, 2018

1860

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon ECS Task
Metadata Endpoint
version 3

Beginning with version 1.21.0 of the Amazon ECS
container agent, the agent injects an environment
variable called ECS_CONTAINER_METADATA_URI
into each container in a task. When you query the
task metadata version 3 endpoint, various task
 metadata and Docker stats are available to tasks that
use the awsvpc network mode at an HTTP endpoint
that is provided by the Amazon ECS container agent.
For more information, see Monitor workloads using
Amazon ECS metadata.

October
18, 2018

Amazon ECS service
discovery Region
expansion

Amazon ECS service discovery has expanded support
to the Canada (Central), South America (São Paulo),
Asia Pacific (Seoul), Asia Pacific (Mumbai), and Europe
(Paris) Regions.

For more information, see Use service discovery to
connect Amazon ECS services with DNS names.

September
27, 2018

Added support for
additional Docker flags in
container definitions

Amazon ECS introduced support for the following
Docker flags in container definitions:

•
System controls

•
Interactive

•
Pseudo terminal

September
17, 2018

1861

https://docs.docker.com/reference/api/engine/version/v1.30/#tag/Container/operation/ContainerStats

Amazon Elastic Container Service Developer Guide

Change Description Date

Private registry authentic
ation support for
Amazon ECS using AWS
Fargate tasks

Amazon ECS introduced support for Fargate tasks
using private registry authentication using AWS
Secrets Manager. This feature enables you to store
your credentials securely and then reference them in
your container definition, which allows your tasks to
use private images.

For more information, see Using non-AWS container
images in Amazon ECS.

September
10, 2018

Amazon ECS service
discovery Region
expansion

Amazon ECS service discovery has expanded support
to the Asia Pacific (Singapore), Asia Pacific (Sydney),
Asia Pacific (Tokyo), EU (Frankfurt), and Europe
(London) Regions.

For more information, see Use service discovery to
connect Amazon ECS services with DNS names.

August 30,
2018

Scheduled tasks with
Fargate tasks support

Amazon ECS introduced support for scheduled tasks
for the Fargate launch type.

August 28,
2018

Private registry authentic
ation using AWS Secrets
Manager support

Amazon ECS introduced support for private registry
authentication using AWS Secrets Manager. This
feature enables you to store your credentials securely
 and then reference them in your container definition,
which allows your tasks to use private images.

For more information, see Using non-AWS container
images in Amazon ECS.

August 16,
2018

Docker volume support
added

Amazon ECS introduced support for Docker volumes.

For more information, see Storage options for
Amazon ECS tasks.

August 9,
2018

1862

Amazon Elastic Container Service Developer Guide

Change Description Date

AWS Fargate Region
expansion

AWS Fargate with Amazon ECS has expanded to the
Europe (Frankfurt), Asia Pacific (Singapore), and Asia
Pacific (Sydney) Regions.

For more information, see AWS Fargate for Amazon
ECS.

July 19,
2018

Amazon ECS service
scheduler strategies
added

Amazon ECS introduced the concept of service
scheduler strategies.

There are two service scheduler strategies available:

• REPLICA—The replica scheduling strategy places
and maintains the desired number of tasks across
your cluster. By default, the service scheduler
spreads tasks across Availability Zones. You can
use task placement strategies and constraints to
customize task placement decisions. For more
information, see Replica strategy.

• DAEMON—The daemon scheduling strategy deploys
exactly one task on each active container instance
that meets all of the task placement constrain
ts that you specify in your cluster. When using
this strategy, there is no need to specify a desired
number of tasks, a task placement strategy, or use
Service Auto Scaling policies. For more information,
see Daemon strategy.

Note

Fargate tasks do not support the DAEMON
scheduling strategy.

.

June 12,
2018

1863

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon ECS container
agent v1.18.0

New version of the Amazon ECS container agent
released, which added the following functionality:

•
Added support for customizing the container
agent image pull behavior using the ECS_IMAGE
_PULL_BEHAVIOR parameter. For more
information, see Amazon ECS container agent
configuration.

For more information, see amazon-ecs-agent github.

May 24,
2018

Added Support for
bridge and host
Network Modes When
Configuring Service
Discovery

Added support for configuring service discovery
for Amazon ECS services using task definitions
that specify the bridge or host network modes.
For more information, see Use service discovery to
connect Amazon ECS services with DNS names.

May 22,
2018

Added support for
additional Amazon ECS-
optimized AMI metadata
 parameters

Added subparameters that allow you to programat
ically retrieve the Amazon ECS-optimized AMI ID,
image name, operating system, container agent versi
on, and runtime version. Query the metadata using
the Systems Manager Parameter Store API. For more
information, see Retrieving Amazon ECS-optimized
Linux AMI metadata.

May 9,
2018

AWS Fargate Region
expansion

AWS Fargate with Amazon ECS has expanded to
the US East (Ohio), US West (Oregon), and EU West
(Ireland) Regions.

For more information, see AWS Fargate for Amazon
ECS.

April 26,
2018

1864

https://github.com/aws/amazon-ecs-agent/blob/master/CHANGELOG.md

Amazon Elastic Container Service Developer Guide

Change Description Date

Amazon ECS-optimized
AMI Metadata Retrieval

Added ability to programatically retrieve Amazon
ECS-optimized AMI metadata using the Systems
Manager Parameter Store API. For more informati
on, see Retrieving Amazon ECS-optimized Linux AMI
metadata.

April 10,
2018

AWS Fargate platform
version

New AWS Fargate platform version released, which
contains:

•
Added support for Monitor workloads using
Amazon ECS metadata.

•
Added support for Health check.

•
Added support for Use service discovery to connect
Amazon ECS services with DNS names

For more information, see Fargate platform versions
for Amazon ECS.

March 26,
2018

Amazon ECS Service
Discovery

Added integration with Route 53 to support Amazon
ECS service discovery. For more information, see Use
service discovery to connect Amazon ECS services
with DNS names.

March 22,
2018

Docker shm-size and
tmpfs support

Added support for the Docker shm-size and tmpfs
parameters in Amazon ECS task definitions.

For more information about the updated ECS CLI
syntax, see Linux parameters.

March 20,
2018

Container Health Checks Added support for Docker health checks in container
definitions. For more information, see Health check.

March 8,
2018

1865

Amazon Elastic Container Service Developer Guide

Change Description Date

AWS Fargate Added overview for Amazon ECS with AWS Fargate.
For more information, see AWS Fargate for Amazon
ECS.

February
22, 2018

Amazon ECS Task
Metadata Endpoint

Beginning with version 1.17.0 of the Amazon ECS
container agent, various task metadata and Docker
stats are available to tasks that use the awsvpc
network mode at an HTTP endpoint that is provided
by the Amazon ECS container agent. For more
information, see Monitor workloads using Amazon
ECS metadata.

February 8,
2018

Amazon ECS Service
Auto Scaling using target
tracking policies

Added support for ECS Service Auto Scaling using
target tracking policies in the Amazon ECS console.
For more information, see Use a target metric to scale
Amazon ECS services.

Removed the previous tutorial for step scaling in the
ECS first run wizard. This was replaced with the new
tutorial for target tracking.

February 8,
2018

Docker 17.09 support Added support for Docker 17.09. For more informati
on, see Amazon ECS-optimized Linux AMIs.

January
18, 2018

New service scheduler
behavior

Updated information about the behavior for service
tasks that fail to launch. Documented new service
event message that triggers when a service task has
consecutive failures. .

January
11, 2018

Elastic Load Balancing
health check initializ
ation wait period

Added ability to specify a wait period for health
checks.

December
27, 2017

Task-level CPU and
memory

Added support for specifying CPU and memory at the
task-level in task definitions. For more information,
see TaskDefinition.

December
12, 2017

1866

https://docs.docker.com/reference/api/engine/version/v1.30/#tag/Container/operation/ContainerStats
https://docs.docker.com/reference/api/engine/version/v1.30/#tag/Container/operation/ContainerStats
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_TaskDefinition.html

Amazon Elastic Container Service Developer Guide

Change Description Date

Task execution role The Amazon ECS container agent makes calls to the
Amazon ECS API actions on your behalf, so it requires
an IAM policy and role for the service to know that
the agent belongs to you. The following actions are
covered by the task execution role:

•
Calls to Amazon ECR to pull the container image

•
Calls to CloudWatch to store container application
logs

For more information, see Amazon ECS task
execution IAM role.

December
7, 2017

Windows containers
support GA

Added support for Windows Server 2016 container
s. For more information, see Amazon ECS-optimized
AMI variants.

December
5, 2017

AWS Fargate GA Added support for launching Amazon ECS services
using the Fargate launch type. For more information,
see Amazon ECS launch types.

November
29, 2017

Amazon ECS name
change

Amazon Elastic Container Service is renamed
(previously Amazon EC2 Container Service).

November
21, 2017

1867

Amazon Elastic Container Service Developer Guide

Change Description Date

Task networking The task networking features provided by the awsvpc
network mode give Amazon ECS tasks the same
networking properties as Amazon EC2 instances.
When you use the awsvpc network mode in your
task definitions, every task that is launched from
that task definition gets its own elastic network int
erface, a primary private IP address, and an internal
DNS hostname. The task networking feature simplifie
s container networking and gives you more control
over how containerized applications communica
te with each other and other services within your
VPCs. For more information, see Amazon ECS task
networking options for the EC2 launch type.

November
14, 2017

Amazon ECS container
metadata

Amazon ECS containers are now able to access
metadata such as their Docker container or image
ID, networking configuration, or Amazon ARNs.
For more information, see Amazon ECS container
metadata file.

November
2, 2017

Docker 17.06 support Added support for Docker 17.06. For more informati
on, see Amazon ECS-optimized Linux AMIs.

November
2, 2017

Support for Docker flags:
device and init

Added support for Docker's device and init features
in task definitions using the LinuxParameters
parameter (devices and initProcessEnabled).
For more information, see LinuxParameters.

November
2, 2017

Support for Docker flags:
cap-add and cap-drop

Added support for Docker's cap-add and cap-drop
features in task definitions using the LinuxPara
meters parameter (capabilities). For more
information, see LinuxParameters.

September
22, 2017

Network Load Balancer
support

Amazon ECS added support for Network Load
Balancers in the Amazon ECS console.

September
7, 2017

1868

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LinuxParameters.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LinuxParameters.html

Amazon Elastic Container Service Developer Guide

Change Description Date

RunTask overrides Added support for task definition overrides when
running a task. This allows you to run a task while
changing a task definition without the need to create
a new task definition revision. For more information,
see Running an application as an Amazon ECS task.

June 27,
2017

Amazon ECS scheduled
tasks

Added support for scheduling tasks using cron. June 7,
2017

Spot Instances in the
Amazon ECS console

Added support for creating Spot Fleet container
instances within the Amazon ECS console. For more
information, see Launching an Amazon ECS Linux
container instance.

June 6,
2017

Amazon SNS notificat
ion for new Amazon ECS-
optimized AMI releases

Added ability to subscribe to SNS notifications about
new Amazon ECS-optimized AMI releases.

March 23,
2017

Microservices and batch
jobs

Added documentation for two common use cases for
Amazon ECS: microservices and batch jobs.

February
2017

Container instance
draining

Added support for container instance draining, which
provides a method for removing container instances
from a cluster. For more information, see Draining
Amazon ECS container instances.

January
24, 2017

Docker 1.12 support Added support for Docker 1.12. For more informati
on, see Amazon ECS-optimized Linux AMIs.

January
24, 2017

New task placement
strategies

Added support for task placement strategies:
attribute-based placement, bin pack, Availability
Zone spread, and one per host. For more informati
on, see Use strategies to define Amazon ECS task
placement.

December
29, 2016

1869

Amazon Elastic Container Service Developer Guide

Change Description Date

Windows container
support in beta

Added support for Windows Server 2016 containers
(beta). For more information, see Amazon ECS-optim
ized AMI variants.

December
20, 2016

Blox OSS support Added support for Blox OSS, which allows for custom
task schedulers. For more information, see Schedule
your containers on Amazon ECS.

December
1, 2016

Amazon ECS event
stream for CloudWatch
Events

Amazon ECS now sends container instance and task
state changes to CloudWatch Events. For more
information, see Automate responses to Amazon ECS
errors using EventBridge.

November
21, 2016

Amazon ECS container
logging to CloudWatch
Logs

Added support for the awslogs driver to send
container log streams to CloudWatch Logs. For more
information, see Send Amazon ECS logs to CloudWatc
h .

September
12, 2016

Amazon ECS services
with Elastic Load
Balancing support for
dynamic ports

Added support for a load balancer to support
multiple instance:port combinations per listener,
which increases flexibility for containers. Now you
can let Docker dynamically define the container's host
port and the ECS scheduler registers the instance:
port with the load balancer. For more information,
see Use load balancing to distribute Amazon ECS
service traffic.

August 11,
2016

IAM roles for Amazon
ECS tasks

Added support for associating IAM roles with a task.
This provides finer-grained permissions to container
s as opposed to a single role for an entire container
instance. For more information, see Amazon ECS task
IAM role.

July 13,
2016

Docker 1.11 support Added support for Docker 1.11. For more informati
on, see Amazon ECS-optimized Linux AMIs.

May 31,
2016

1870

Amazon Elastic Container Service Developer Guide

Change Description Date

Task automatic scaling Amazon ECS added support for automatically scaling
your tasks run by a service. For more information, see
Automatically scale your Amazon ECS service.

May 18,
2016

Task definition filtering
on task family

Added support for filtering a list of task definitio
n based on the task definition family. For more
information, see ListTaskDefinitions.

May 17,
2016

Docker container and
Amazon ECS agent
logging

Amazon ECS added ability to send ECS agent and
Docker container logs from container instances to
CloudWatch Logs to simplify troubleshooting issues.

May 5,
2016

ECS-optimized AMI now
supports Amazon Linux
2016.03.

The ECS-optimized AMI added support for Amazon
Linux 2016.03. For more information, see Amazon
ECS-optimized Linux AMIs.

April 5,
2016

Docker 1.9 support Added support for Docker 1.9. For more information,
see Amazon ECS-optimized Linux AMIs.

December
22, 2015

CloudWatch metrics for
cluster CPU and memory
reservation

Amazon ECS added custom CloudWatch metrics for
CPU and memory reservation.

December
22, 2015

New Amazon ECS first-
run experience

The Amazon ECS console first-run experience added
zero-click role creation.

November
23, 2015

Task placement across
Availability Zones

The Amazon ECS service scheduler added support for
task placement across Availability Zones.

October 8,
2015

CloudWatch metrics for
Amazon ECS clusters and
services

Amazon ECS added custom CloudWatch metrics
for CPU and memory utilization for each container
instance, service, and task definition family in a
cluster. These new metrics can be used to scale
container instances in a cluster using Auto Scaling
groups or to create custom CloudWatch alarms.

August 17,
2015

1871

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ListTaskDefinitions.html

Amazon Elastic Container Service Developer Guide

Change Description Date

UDP port support Added support for UDP ports in task definitions. July 7,
2015

Environment variable
overrides

Added support for deregisterTaskDefinition and
environment variable overrides for runTask.

June 18,
2015

Automated Amazon ECS
agent updates

Added ability to see the ECS agent version that is
running on a container instance. Also able to update
the ECS agent from the AWS Management Console,
AWS CLI, and SDK.

June 11,
2015

Amazon ECS service
scheduler and Elastic
Load Balancing integrati
on

Added ability to define a service and associate that
service with an Elastic Load Balancing load balancer.

April 9,
2015

Amazon ECS GA Amazon ECS general availability in the US East (N.
Virginia), US West (Oregon), Asia Pacific (Tokyo), and
Europe (Ireland) Regions.

April 9,
2015

1872

	Amazon Elastic Container Service
	Table of Contents
	What is Amazon Elastic Container Service?
	Terminology and components
	Features
	Provisioning
	Pricing
	Related services

	Learn how to create and use Amazon ECS resources
	Set up to use Amazon ECS
	AWS Management Console
	Sign up for an AWS account
	Create a user with administrative access
	Create a virtual private cloud
	Create a security group
	Create the credentials to connect to your EC2 instance
	Install the AWS CLI
	Next steps for using Amazon ECS

	Creating a container image for use on Amazon ECS
	Prerequisites
	Installing Docker on AL2023

	Create a Docker image
	Push your image to Amazon Elastic Container Registry
	Clean up
	Next steps

	Learn how to create an Amazon ECS Linux task for the Fargate launch type
	Prerequisites
	Step 1: Create the cluster
	Step 2: Create a task definition
	Step 3: Create the service
	Step 4: View your service
	Step 5: Clean up

	Learn how to create an Amazon ECS Windows task for the Fargate launch type
	Prerequisites
	Step 1: Create a cluster
	Step 2: Register a Windows task definition
	Step 3: Create a service with your task definition
	Step 4: View your service
	Step 5: Clean Up

	Learn how to create an Amazon ECS Windows task for the EC2 launch type
	Prerequisites
	Step 1: Create a cluster
	Step 2: Register a task definition
	Step 3: Create a Service
	Step 4: View your Service
	Step 5: Clean Up

	Creating Amazon ECS resources using the AWS CDK
	Step 1: Set up your AWS CDK project
	Step 2: Use the AWS CDK to define a containerized web server on Fargate
	Step 3: Test the web server
	Step 4: Clean up
	Next steps

	Creating Amazon ECS resources using the AWS Copilot command line interface
	Installing the AWS Copilot CLI
	Use Homebrew
	Download binary
	(Optional) Verify the manually installed AWS Copilot CLI using PGP signatures

	Deploying a sample Amazon ECS application using the AWS Copilot CLI
	Prerequisites
	Deploy a sample Amazon ECS application using a single command

	Using Amazon ECS with AWS CloudFormation
	AWS CloudFormation example templates for Amazon ECS
	Task definitions
	Fargate Linux task definition
	Amazon EFS task definition

	Clusters
	Create an empty cluster with default settings
	Create an empty cluster with managed storage encryption and enhanced Container Insights
	Create a cluster with the AL2023 Amazon ECS-Optimized-AMI

	Services
	Deploy an application
	Deploy a service with ECS Exec enabled
	Deploy service that uses Amazon VPC Lattice
	Deploy service with a volume configuration
	Deploy service with capacity providers

	IAM roles for Amazon ECS
	Amazon ECS task execution role

	Creating Amazon ECS resources using the AWS CloudFormation console
	Prerequisites
	Step 1: Create a stack template
	Step 2: Create a stack for Amazon ECS resources
	Step 3: Verify
	Step 4: Clean up resources

	Creating Amazon ECS resources using AWS CLI commands for AWS CloudFormation
	Prerequisites
	Step 1: Create a stack
	Step 2: Verify resource creation
	Step 3: Clean up

	Amazon ECS best practices
	AWS Fargate for Amazon ECS
	Walkthroughs
	Capacity providers
	Task definitions
	Platform versions
	Service load balancing
	Usage metrics
	Amazon ECS security considerations for when to use the Fargate launch type
	Fargate security best practices in Amazon ECS
	Use AWS KMS to encrypt ephemeral storage for Fargate
	SYS_PTRACE capability for kernel syscall tracing with Fargate
	Use Amazon GuardDuty with Fargate Runtime Monitoring
	Fargate security considerations for Amazon ECS

	Fargate platform versions for Amazon ECS
	
	Migrating to Linux platform version 1.4.0 on Amazon ECS
	Fargate Linux platform version change log
	1.4.0
	1.3.0

	AWS Fargate Linux platform version deprecation
	Deprecated Fargate Linux versions change log
	1.2.0
	1.1.0
	1.0.0

	Fargate Windows platform version change log
	1.0.0

	Windows containers on Fargate considerations for Amazon ECS
	Fargate task ephemeral storage for Amazon ECS
	Fargate Linux container platform versions
	Version 1.4.0 or later
	Version 1.3.0 or earlier

	Fargate Windows container platform versions
	Version 1.0.0 or later

	Customer managed keys for AWS Fargate ephemeral storage for Amazon ECS
	Create an encryption key for Fargate ephemeral storage for Amazon ECS
	Managing AWS KMS keys for Fargate ephemeral storage for Amazon ECS

	Task retirement and maintenance for AWS Fargate on Amazon ECS
	Task retirement notice overview
	Can I opt-out of task retirement?
	Can I get task retirement notifications through other AWS services?
	Can I change a task retirement after it is scheduled?
	How does Amazon ECS handle tasks that are part of a service?
	Can Amazon ECS automatically handle standalone tasks?
	Prepare for AWS Fargate task retirement on Amazon ECS
	Step 1: Set the task wait time
	Step 2: Capture task retirement notifications to alert teams and take actions
	Step 3: Control the replacement of tasks

	Supported Regions for Amazon ECS on AWS Fargate
	Linux containers on AWS Fargate
	Windows containers on AWS Fargate

	Architect your solution for Amazon ECS
	Capacity
	Service endpoints
	Networking
	Feature access
	IAM roles
	Logging
	Amazon ECS launch types
	Fargate launch type for Amazon ECS
	Linux containers on Fargate container image pull behavior for Amazon ECS
	Windows containers on Fargate container image pull behavior for Amazon ECS

	EC2 launch type for Amazon ECS
	Container image pull behavior for the EC2 and external launch types for Amazon ECS

	External (Amazon ECS Anywhere) launch type for Amazon ECS

	Using Amazon ECS dual-stack endpoints
	Using dual-stack endpoints from the AWS CLI
	Using dual-stack endpoints from the AWS SDKs
	Using dual-stack endpoints from the REST API

	Amazon ECS applications in shared subnets, Local Zones, and Wavelength Zones
	Shared subnets
	Local Zones
	Wavelength Zones

	Amazon Elastic Container Service on AWS Outposts
	Considerations
	Prerequisites
	Overview of cluster creation on AWS Outposts

	Optimize Amazon ECS capacity and availability
	Maximizing scaling speed
	Handling demand shocks

	Amazon ECS networking best practices
	Connect Amazon ECS applications to the internet
	Public subnet and internet gateway
	Private subnet and NAT gateway

	Best practices for receiving inbound connections to Amazon ECS from the internet
	Application Load Balancer
	Network Load Balancer
	Amazon API Gateway HTTP API

	Best practices for connecting Amazon ECS to AWS services from inside your VPC
	NAT gateway
	AWS PrivateLink

	Best practices for connecting Amazon ECS services in a VPC
	Using Service Connect
	Using service discovery
	Using an internal load balancer

	Best practices for networking Amazon ECS services across AWS accounts and VPCs
	AWS services for Amazon ECS networking troubleshooting
	CloudWatch Container Insights
	AWS X-Ray
	VPC Flow Logs
	Network tuning tips
	nofile ulimit
	sysctl net

	Access Amazon ECS features with account settings
	Amazon Resource Names (ARNs) and IDs
	ARN and resource ID format timeline
	Container Insights
	Container Insights with enhanced observability
	Container Insights

	AWS Fargate Federal Information Processing Standard (FIPS-140) compliance
	Tagging authorization
	Tagging authorization timeline
	AWS Fargate task retirement wait time
	Increase Linux container instance network interfaces
	Runtime Monitoring (Amazon GuardDuty integration)
	Dual stack IPv6 VPC
	Default log driver mode
	Viewing Amazon ECS account settings using the console
	Modifying Amazon ECS account settings
	Next steps

	Reverting to the default Amazon ECS account settings
	Managing Amazon ECS account settings using the AWS CLI

	IAM roles for Amazon ECS

	Amazon ECS task definitions
	Amazon ECS task definition states
	Amazon ECS resources that can block a deletion
	Task definition deletion after the blocked resource is removed

	Architect your application for Amazon ECS
	Best practices for Amazon ECS container images
	Best practices for Amazon ECS task sizes
	Stateless applications
	Other applications

	Amazon ECS task networking options for the EC2 launch type
	Allocate a network interface for an Amazon ECS task
	Linux considerations
	Windows considerations
	Using a VPC in dual-stack mode

	Map Amazon ECS container ports to the EC2 instance network interface
	Use Docker's virtual network for Amazon ECS Linux tasks

	Amazon ECS task networking options for the Fargate launch type
	Considerations
	Using a VPC in dual-stack mode

	Storage options for Amazon ECS tasks
	Use Amazon EBS volumes with Amazon ECS
	Supported operating systems and launch types
	Considerations
	Defer volume configuration to launch time in an Amazon ECS task definition
	Linux
	Windows

	Encrypt data stored in Amazon EBS volumes attached to Amazon ECS tasks
	Customer managed KMS key policy

	Specify Amazon EBS volume configuration at Amazon ECS deployment
	Configure a volume for a standalone task
	Configure a volume at service creation
	Configure a volume at service update
	Configure a service to no longer utilize Amazon EBS volumes

	Termination policy for Amazon EBS volumes
	Tag Amazon EBS volumes

	Performance of Amazon EBS volumes for Fargate on-demand tasks
	Performance of Amazon EBS volumes for EC2 tasks
	Troubleshooting Amazon EBS volume attachments to Amazon ECS tasks
	Check volume attachment status
	Service and task failures
	Status reasons for Amazon EBS volume attachment to Amazon ECS tasks

	Use Amazon EFS volumes with Amazon ECS
	Considerations
	Use Amazon EFS access points
	Best practices for using Amazon EFS volumes with Amazon ECS
	Security and access controls for Amazon EFS volumes
	IAM policies

	Amazon EFS volume performance
	Amazon EFS volume throughput
	Optimizing cost for Amazon EFS volumes
	Amazon EFS volume data protection

	Specify an Amazon EFS file system in an Amazon ECS task definition
	Configuring Amazon EFS file systems for Amazon ECS using the console
	Step 1: Create an Amazon ECS cluster
	Step 2: Create a security group for Amazon EC2 instances and the Amazon EFS file system
	Step 3: Create an Amazon EFS file system
	Step 4: Add content to the Amazon EFS file system
	Step 5: Create a task definition
	Step 6: Run a task and view the results

	Use FSx for Windows File Server volumes with Amazon ECS
	Considerations
	Best practices for using FSx for Windows File Server with Amazon ECS
	Security and access controls for FSx for Windows File Server
	Data encryption for FSx for Windows File Server volumes
	Use Windows ACLs for folder level access control

	Specify an FSx for Windows File Server file system in an Amazon ECS task definition
	Methods for storing FSx for Windows File Server volume credentials

	Learn how to configure FSx for Windows File Server file systems for Amazon ECS
	Prerequisites for the tutorial
	Step 1: Create IAM access roles
	Step 2: Create Windows Active Directory (AD)
	Step 3: Verify and update your security group
	Step 4: Create an FSx for Windows File Server file system
	Step 5: Create an Amazon ECS cluster
	Step 6: Create an Amazon ECS optimized Amazon EC2 instance
	Step 7: Register a Windows task definition
	Step 8: Run a task and view the results
	Step 9: Clean up

	Use Docker volumes with Amazon ECS
	Considerations for using Docker volumes
	Specify a Docker volume in an Amazon ECS task definition
	Docker volume examples for Amazon ECS

	Use bind mounts with Amazon ECS
	Considerations when using bind mounts
	Specify a bind mount in an Amazon ECS task definition
	Bind mount examples for Amazon ECS

	Managing container swap memory space on Amazon ECS
	Considerations

	Amazon ECS task definition differences for the Fargate launch type
	Task definition parameters
	Operating Systems and architectures
	Task CPU and memory
	Task networking
	Task resource limits
	Logging
	Event logging
	Task lifecycle logging
	Application logging

	Task storage
	Lazy loading container images using Seekable OCI (SOCI)

	Amazon ECS task definition differences for EC2 instances running Windows

	Creating an Amazon ECS task definition using the console
	JSON validation
	AWS CloudFormation stacks
	Procedure

	Updating an Amazon ECS task definition using the console
	JSON validation
	Procedure

	Deregistering an Amazon ECS task definition revision using the console
	AWS CloudFormation stacks
	Procedure

	Deleting an Amazon ECS task definition revision using the console
	Amazon ECS resources that can block a deletion
	Task definition deletion after the blocked resource is removed

	Procedure

	Amazon ECS task definition use cases
	Amazon ECS task definitions for GPU workloads
	Considerations
	Launch a GPU container instance for Amazon ECS
	Use a launch template
	Use the AWS CLI

	Specifying GPUs in an Amazon ECS task definition
	Share GPUs
	What to do if you need a P2 instance

	Amazon ECS task definitions for video transcoding workloads
	Considerations
	Using a VT1 AMI
	Task definition requirements
	Specifying video transcoding in an Amazon ECS task definition

	Amazon ECS task definitions for AWS Neuron machine learning workloads
	Considerations
	Use the Amazon ECS-optimized Amazon Linux 2023 (Neuron) AMI
	Use the Amazon ECS optimized Amazon Linux 2 (Neuron) AMI
	Task definition requirements
	Specifying AWS Neuron machine learning in an Amazon ECS task definition

	Amazon ECS task definitions for deep learning instances
	Considerations
	Using a DL1 AMI
	Specifying deep learning in an Amazon ECS task definition

	Amazon ECS task definitions for 64-bit ARM workloads
	Considerations
	Specifying the ARM architecture in an Amazon ECS task definition

	Send Amazon ECS logs to CloudWatch
	Fargate launch type
	EC2 launch type
	Example Amazon ECS task definition: Route logs to CloudWatch
	Next steps

	Send Amazon ECS logs to an AWS service or AWS Partner
	Configuring Amazon ECS logs for high throughput
	AWS for Fluent Bit image repositories for Amazon ECS
	Amazon ECR Public Gallery
	Linux
	Windows

	Amazon ECR
	Linux
	Windows

	Example Amazon ECS task definition: Route logs to FireLens
	Use a custom configuration file

	Using non-AWS container images in Amazon ECS
	Restart individual containers in Amazon ECS tasks with container restart policies
	Considerations
	Specifying a container restart policy in an Amazon ECS task definition

	Pass sensitive data to an Amazon ECS container
	Use AWS Secrets Manager or AWS Systems Manager Parameter Store for storing secret materials
	Retrieve data from an encrypted Amazon S3 bucket
	Mount the secret to a volume using a sidecar container
	Pass an individual environment variable to an Amazon ECS container
	Pass environment variables to an Amazon ECS container
	Example

	Pass Secrets Manager secrets programmatically in Amazon ECS
	Create the Secrets Manager secret
	Update your application to programmatically retrieve Secrets Manager secrets

	Pass Systems Manager Parameter Store secrets programmatically in Amazon ECS
	Create the parameter
	Update your application to programmatically retrieve Systems Manager Parameter Store secrets

	Pass Secrets Manager secrets through Amazon ECS environment variables
	Create the AWS Secrets Manager secret
	Add the environment variable to the container definition
	Example container definitions

	Pass Systems Manager parameters through Amazon ECS environment variables
	Create the Systems Manager parameter
	Add the environment variable to the container definition
	Update your application to programmatically retrieve Systems Manager Parameter Store secrets

	Pass secrets for Amazon ECS logging configuration
	Use Secrets Manager
	Add the environment variable to the container definition
	Use Systems Manager

	Specifying sensitive data using Secrets Manager secrets in Amazon ECS
	Prerequisites
	Step 1: Create an Secrets Manager secret
	Step 2: Add the secrets permissions to the task execution role
	Step 3: Create a task definition
	Step 4: Create a cluster
	Step 5: Run a task
	Step 6: Verify
	Step 7: Clean up

	Amazon ECS task definition parameters for the Fargate launch type
	Family
	Launch types
	Task role
	Task execution role
	Network mode
	Runtime platform
	Task size
	Container definitions
	Standard container definition parameters
	Name
	Image
	Memory
	Port mappings
	Private Repository Credentials

	Advanced container definition parameters
	Restart policy
	Health check
	Environment
	Network settings
	Storage and logging
	Security
	Resource limits
	Docker labels

	Other container definition parameters
	Linux parameters
	Container dependency
	Container timeouts
	System controls
	Interactive
	Pseudo terminal

	Elastic Inference accelerator name
	Proxy configuration
	Volumes
	Tags
	Other task definition parameters
	Ephemeral storage
	IPC mode
	PID mode
	Fault injection

	Amazon ECS task definition parameters for the EC2 launch type
	Family
	Launch types
	Task role
	Task execution role
	Network mode
	Runtime platform
	Task size
	Container definitions
	Standard container definition parameters
	Name
	Image
	Memory
	Port mappings
	Private Repository Credentials

	Advanced container definition parameters
	Restart policy
	Health check
	Environment
	Network settings
	Storage and logging
	Security
	Resource limits
	Docker labels

	Other container definition parameters
	Linux parameters
	Container dependency
	Container timeouts
	System controls
	Interactive
	Pseudo terminal

	Elastic Inference accelerator name
	Task placement constraints
	Proxy configuration
	Volumes
	Tags
	Other task definition parameters
	IPC mode
	PID mode
	Fault injection

	Amazon ECS task definition template
	Example Amazon ECS task definitions
	Webserver
	splunk log driver
	fluentd log driver
	gelf log driver
	Workloads on external instances
	Amazon ECR image and task definition IAM role
	Entrypoint with command
	Container dependency
	Volumes in task definitions
	Windows sample task definitions

	Amazon ECS clusters
	Capacity providers
	Amazon ECS clusters for Fargate
	Fargate Spot termination notices
	Creating an Amazon ECS cluster for the Fargate launch type
	Procedure
	Next steps

	Amazon ECS capacity providers for the EC2 launch type
	Amazon EC2 container instance security considerations for Amazon ECS
	Creating an Amazon ECS cluster for the Amazon EC2 launch type
	Auto Scaling group options
	Networking options
	Next steps

	Automatically manage Amazon ECS capacity with cluster auto scaling
	
	Turn on cluster auto scaling

	Optimize Amazon ECS cluster auto scaling
	Capacity provider step scaling sizes
	Instance warm-up period
	Spare capacity

	Amazon ECS managed scaling behavior
	Managed scale-out behavior
	Scale-out considerations

	Managed scale-in behavior

	Control the instances Amazon ECS terminates
	Updating managed termination protection for Amazon ECS capacity providers
	Console
	AWS CLI

	Turning on Amazon ECS cluster auto scaling
	Turning off Amazon ECS cluster auto scaling
	Disassociate the capacity provider
	Turn off managed scaling for the capacity provider

	Creating a capacity provider for Amazon ECS
	Updating an Amazon ECS capacity provider
	Deleting an Amazon ECS capacity provider
	Safely stop Amazon ECS workloads running on EC2 instances
	How managed instance draining works with EventBridge
	Configuring Amazon ECS capacity providers to safely shut down instances
	Amazon ECS Managed instance draining troubleshooting

	Creating resources for Amazon ECS cluster auto scaling using the AWS Management Console
	Prerequisites
	Step 1: Create an Amazon ECS cluster
	Step 2: Register a task definition
	Step 3: Run a task
	Step 4: Verify
	Step 5: Clean up

	Amazon EC2 container instances for Amazon ECS
	Spot Instances
	Amazon ECS-optimized Linux AMIs
	Applying security updates to the Amazon ECS-optimized AMI
	Retrieving Amazon ECS-optimized Linux AMI metadata
	Systems Manager Parameter Store parameter format
	Examples
	Retrieving the metadata of the latest recommended Amazon ECS-optimized AMI
	Retrieving the image ID of the latest recommended Amazon ECS-optimized Amazon Linux 2023 AMI
	Retrieving the metadata of a specific Amazon ECS-optimized Amazon Linux 2 AMI version
	Retrieving the Amazon ECS-optimized Amazon Linux 2 kernel 5.10 AMI metadata using the Systems Manager GetParametersByPath API
	Retrieving the image ID of the latest recommended Amazon ECS-optimized Amazon Linux 2 kernel 5.10 AMI
	Using the latest recommended Amazon ECS-optimized AMI in an AWS CloudFormation template

	Amazon ECS-optimized Linux AMI build script

	Amazon ECS-optimized Bottlerocket AMIs
	Considerations
	Retrieving Amazon ECS-optimized Bottlerocket AMI metadata
	aws-ecs-2 Bottlerocket AMI variant
	aws-ecs-2-nvidia Bottlerocket AMI variant
	aws-ecs-1 Bottlerocket AMI variant
	aws-ecs-1-nvidia Bottlerocket AMI variant
	Next steps

	Launching a Bottlerocket instance for Amazon ECS

	Amazon ECS Linux container instance management
	Launching an Amazon ECS Linux container instance
	Procedure
	Name and tags
	Application and OS Images (Amazon Machine Image)
	Instance type
	Key pair (login)
	Network settings
	Configure storage
	Advanced details

	Bootstrapping Amazon ECS Linux container instances to pass data
	Amazon ECS container agent
	Docker daemon

	Configuring Amazon ECS Linux container instances to receive Spot Instance notices
	Running a script when you launch an Amazon ECS Linux container instance
	Increasing Amazon ECS Linux container instance network interfaces
	Considerations
	Prerequisites
	Supported instances for increased Amazon ECS container network interfaces
	General purpose
	Compute optimized
	Memory optimized
	Storage optimized
	Accelerated computing
	High performance computing

	Reserving Amazon ECS Linux container instance memory
	Viewing container instance memory

	Managing Amazon ECS container instances remotely using AWS Systems Manager
	Using an HTTP proxy for Amazon ECS Linux container instances
	Configuring pre-initialized instances for your Amazon ECS Auto Scaling group
	Updating the Amazon ECS container agent
	Checking the Amazon ECS container agent version
	Updating the Amazon ECS container agent on an Amazon ECS-optimized AMI
	Updating the Amazon ECS container agent with the UpdateContainerAgent API operation

	Manually updating the Amazon ECS container agent (for non-Amazon ECS-Optimized AMIs)

	Amazon ECS-optimized Windows AMIs
	Amazon ECS-optimized AMI variants
	Considerations

	Retrieving Amazon ECS-optimized Windows AMI metadata
	Systems Manager Parameter Store parameter format
	Examples
	Retrieving the metadata of the latest stable Amazon ECS-optimized AMI
	Using the latest recommended Amazon ECS-optimized AMI in an AWS CloudFormation template

	Amazon ECS-optimized Windows AMI versions
	

	Building your own Amazon ECS-optimized Windows AMI
	Listing the ecs-optimized-ami-windows component versions

	Amazon ECS Windows container instance management
	Launching an Amazon ECS Windows container instance
	Procedure
	Name and tags
	Application and OS Images (Amazon Machine Image)
	Instance type
	Key pair (login)
	Network settings
	Configure storage
	Advanced details

	Bootstrapping Amazon ECS Windows container instances to pass data
	Default Windows user data
	Windows agent installation user data

	Using an HTTP proxy for Amazon ECS Windows container instances
	Configuring Amazon ECS Windows container instances to receive Spot Instance notices

	Amazon ECS clusters for the external launch type
	Supported operating systems and system architectures
	Considerations
	Networking
	Amazon FSx for Windows File Server with ECS Anywhere
	gMSA with ECS Anywhere

	Creating an Amazon ECS cluster for the External launch type
	Next steps

	Registering an external instance to an Amazon ECS cluster
	Deregistering an Amazon ECS external instance
	Procedure

	Updating the AWS Systems Manager agent and Amazon ECS container agent on an external instance
	Updating the SSM Agent on an external instance
	Updating the Amazon ECS agent on an external instance

	Updating an Amazon ECS cluster
	Deleting an Amazon ECS cluster
	Deregistering an Amazon ECS container instance
	Procedure

	Draining Amazon ECS container instances
	Draining behavior for services
	Draining behavior for standalone tasks
	Procedure

	Amazon ECS container agent
	Lifecycle
	Amazon ECS-optimized AMI
	Additional information
	Amazon ECS container agent configuration
	Run the Amazon ECS agent with the host PID namespace
	Available parameters
	Storing Amazon ECS container instance configuration in Amazon S3

	Installing the Amazon ECS container agent
	Installing the Amazon ECS container agent on a non-Amazon Linux EC2 instance
	Running the Amazon ECS agent with host network mode

	Amazon ECS container agent log configuration parameters
	Configuring Amazon ECS container instances for private Docker images
	Authentication formats
	Procedure

	Automatic Amazon ECS task and image cleanup

	Schedule your containers on Amazon ECS
	Compute options
	Amazon ECS task lifecycle
	Lifecycle states

	How Amazon ECS places tasks on container instances
	EC2 launch type
	Fargate launch type
	Use strategies to define Amazon ECS task placement
	Example Amazon ECS task placement strategies
	Distribute tasks evenly across Availability Zones
	Distribute tasks evenly across all instances
	Bin pack tasks based on memory
	Place tasks randomly
	Distribute tasks evenly across Availability Zones and then distributes tasks evenly across the instances within each Availability Zone
	Distribute tasks evenly across Availability Zones and then bin pack tasks based on memory within each Availability Zone
	Distribute tasks evenly across instances and then bin pack tasks based on memory

	Group related Amazon ECS tasks
	Define which container instances Amazon ECS uses for tasks
	Amazon ECS container instance attributes
	Built-in attributes
	Optional attributes
	Custom attributes

	Create expressions to define container instances for Amazon ECS tasks
	Expression syntax
	Example expressions

	Example Amazon ECS task placement constraints

	Amazon ECS standalone tasks
	Task workflow
	Optimize Amazon ECS task launch time
	Running an application as an Amazon ECS task
	Using Amazon EventBridge Scheduler to schedule Amazon ECS tasks
	Next steps

	Stopping an Amazon ECS task

	Amazon ECS services
	Daemon strategy
	Replica strategy
	Balancing an Amazon ECS service across Availability Zones
	How Amazon ECS detects uneven task distribution
	Considerations for configuring Availability Zone rebalancing
	Placement strategies and placement constraints with Availability Zone rebalancing
	Turn on Availability Zone rebalancing
	Track Amazon ECS Availability Zone rebalancing
	Service events
	Task state change events

	Creating an Amazon ECS service using the console
	Create a service with the default options
	Create a service using defined parameters
	Next steps

	Update Amazon ECS service parameters
	AWS CDK considerations
	Updating an Amazon ECS service
	Prerequisites
	Procedure
	Next steps

	Updating an Amazon ECS blue/green deployment using the console
	Deleting an Amazon ECS service using the console
	Deploy Amazon ECS services by replacing tasks
	Container image resolution
	How the Amazon ECS deployment circuit breaker detects failures
	Failure threshold

	How CloudWatch alarms detect Amazon ECS deployment failures
	Recommended alarms

	Stopping Amazon ECS service deployments
	Procedure
	Next steps

	Best practices for Amazon ECS service parameters
	View service history using Amazon ECS service deployments
	Service deployment lifecycle
	Service deployment states
	Properties included in an Amazon ECS service deployment
	Permissions required for viewing Amazon ECS service deployments
	Viewing Amazon ECS service deployments
	Next steps

	Amazon ECS service revisions
	Service revision lifecycle
	Properties included in an Amazon ECS service revision
	Viewing Amazon ECS service revision details

	Validate the state of an Amazon ECS service before deployment
	Considerations
	Required IAM permissions
	Deploying an Amazon ECS service using a blue/green deployment
	Prerequisites
	Step 1: Create an Application Load Balancer
	Step 2: Create an Amazon ECS cluster
	Step 3: Register a task definition
	Step 4: Create an Amazon ECS service
	Step 5: Create the AWS CodeDeploy resources
	Step 6: Create and monitor a CodeDeploy deployment
	Step 7: Clean up

	Deploy Amazon ECS services using a third-party controller
	External deployment considerations
	External deployment workflow

	Use load balancing to distribute Amazon ECS service traffic
	Optimize load balancer health check parameters for Amazon ECS
	Optimize load balancer connection draining parameters for Amazon ECS
	SIGTERM responsiveness

	Use an Application Load Balancer for Amazon ECS
	Use a Network Load Balancer for Amazon ECS
	Use a Gateway Load Balancer for Amazon ECS
	Registering multiple target groups with an Amazon ECS service
	Considerations
	Example service definitions
	Having separate load balancers for internal and external traffic
	Exposing multiple ports from the same container
	Exposing ports from multiple containers

	Automatically scale your Amazon ECS service
	Considerations
	Optimize Amazon ECS service auto scaling
	Identify a metric
	Common application models and scaling properties
	The efficient CPU-bound server
	The efficient memory-bound server
	The worker-based server
	The waiting server
	The Java-based server
	Servers that use other garbage-collected runtimes
	Job processors

	Service auto scaling and deployments
	Use a target metric to scale Amazon ECS services
	Create a target tracking scaling policy for Amazon ECS service auto scaling
	Console
	AWS CLI

	Use predefined increments based on CloudWatch alarms to scale Amazon ECS services
	Create a step scaling policy for Amazon ECS service auto scaling
	Console
	AWS CLI

	Use scheduled actions to scale Amazon ECS services
	Create a scheduled action for Amazon ECS service auto scaling
	Console
	CLI

	Use historical patterns to scale Amazon ECS services with predictive scaling
	How predictive scaling works in Amazon ECS
	Considerations for using predictive scaling
	How predictive scaling works
	Maximum tasks limit
	Supported regions

	Create a predictive scaling policy for Amazon ECS service auto scaling
	Console
	AWS CLI
	Example 1: A predictive scaling policy with predefined memory.
	Example 2: A predictive scaling policy with predefined CPU.

	Evaluate your predictive scaling policies for Amazon ECS
	View your predictive scaling recommendations
	Review predictive scaling monitoring graphs
	Monitor predictive scaling metrics for Amazon ECS with CloudWatch
	Visualize historical forecast data
	Create accuracy metrics using metric math
	Visualize your accuracy metrics and set alarms

	Use scheduled actions to override forecast values for Amazon ECS
	Step 1: (Optional) Analyze time series data
	Step 2: Create two scheduled actions
	Scaling based on recurring schedules
	See also

	Advanced predictive scaling policy using custom metrics for Amazon ECS
	Prerequisites
	Best practices
	Limitations
	Troubleshooting a predictive scaling policy with custom metrics
	Constructing the JSON for predictive scaling custom metrics with Amazon ECS
	Example predictive scaling policy with custom load and scaling metrics using the AWS CLI
	Use metric math expressions
	Understand metric math

	Example predictive scaling policy that combines metrics using metric math (AWS CLI)

	Interconnect Amazon ECS services
	Network mode compatibility table
	Use Service Connect to connect Amazon ECS services with short names
	Pricing
	Amazon ECS Service Connect components
	Networking
	Service Connect proxy
	Considerations

	Amazon ECS Service Connect configuration overview
	Cluster configuration
	Service configuration

	Encrypt Amazon ECS Service Connect traffic
	Service Connect and Application Load Balancer health checks
	Application Load Balancer configuration
	Service Connect configuration
	Considerations

	AWS Private Certificate Authority certificates and Service Connect
	Service Connect and Secrets Manager
	Service Connect and AWS Key Management Service
	Enabling TLS for Amazon ECS Service Connect
	Verifying TLS is enabled for Amazon ECS Service Connect

	Configuring Amazon ECS Service Connect with the AWS CLI
	Prerequisites
	Step 1: Create the cluster
	Step 2: Create the service for the server
	Step 3: Verify that you can connect

	Use service discovery to connect Amazon ECS services with DNS names
	Service Discovery concepts
	Service discovery considerations
	Service discovery pricing
	Creating an Amazon ECS service that uses Service Discovery
	Prerequisites
	Step 1: Create the Service Discovery resources in AWS Cloud Map
	Step 2: Create the Amazon ECS resources
	Step 3: Verify Service Discovery in AWS Cloud Map
	Step 4: Clean up

	Use Amazon VPC Lattice to connect, observe, and secure your Amazon ECS services
	How VPC Lattice works with other Amazon ECS services
	Create a service that uses VPC Lattice
	Prerequisites
	Create a service that uses VPC Lattice with the AWS Management Console
	Create a service that uses VPC Lattice with the AWS CLI

	Protect your Amazon ECS tasks from being terminated by scale-in events
	Task scale-in protection mechanisms
	Considerations
	IAM permissions required for task scale-in protection
	Amazon ECS task scale-in protection endpoint
	
	Task scale-in protection request parameters
	Task scale-in protection response parameters

	Use fault injection with your Amazon ECS and Fargate workloads
	Amazon ECS fault injection endpoints
	Network blackhole port endpoint
	{ECS_AGENT_URI}/fault/v1/network-blackhole-port/start
	{ECS_AGENT_URI}/fault/v1/network-blackhole-port/stop
	{ECS_AGENT_URI}/fault/v1/network-blackhole-port/status

	Network latency endpoint
	{ECS_AGENT_URI}/fault/v1/network-latency/start
	{ECS_AGENT_URI}/fault/v1/network-latency/stop and /status

	Network packet loss endpoint
	{ECS_AGENT_URI}/fault/v1/network-packet-loss/start
	{ECS_AGENT_URI}/fault/v1/network-packet-loss/stop and /status

	Migrate an Amazon ECS short service ARN to a long ARN
	Prerequisites
	Procedure
	Console
	CLI
	Terraform
	Next steps

	Troubleshooting

	Amazon ECS service throttle logic
	Amazon ECS service definition parameters
	Launch type
	Capacity provider strategy
	Task definition
	Platform operating system
	Platform version
	Cluster
	Service name
	Scheduling strategy
	Desired count
	Deployment configuration
	Deployment controller
	Task placement
	Tags
	Network configuration
	Client token
	Availability Zone rebalancing
	Volume configurations

	Service definition template

	Tagging Amazon ECS resources
	How resources are tagged
	Tagging resources on creation
	Restrictions
	Amazon ECS-managed tags
	Use tags for billing
	Adding tags to Amazon ECS resources
	Adding tags to existing resources (Amazon ECS console)
	Adding tags to existing resources (AWS CLI)

	Adding tags to an Amazon ECS container instance
	External container instances

	Amazon ECS usage reports
	Task-level Cost and Usage Reports

	Monitoring Amazon ECS
	Best practices for monitoring Amazon ECS
	Monitoring tools for Amazon ECS
	Automated monitoring tools
	Manual monitoring tools

	Monitor Amazon ECS using CloudWatch
	Considerations
	Recommended metrics
	Viewing Amazon ECS metrics
	Amazon ECS console
	CloudWatch console

	Amazon ECS CloudWatch metrics
	Dimensions for Amazon ECS metrics

	AWS Fargate usage metrics
	Amazon ECS cluster reservation metrics
	Amazon ECS cluster utilization metrics
	Amazon ECS cluster level CPU and memory utilization metrics
	Amazon ECS cluster-level Amazon EBS filesystem utilization

	Amazon ECS service utilization metrics
	Service level CPU and memory utilization
	Service level EBS filesystem utilization
	Service RUNNING task count
	Service RUNNING task count in Amazon ECS CloudWatch Container Insights

	Automate responses to Amazon ECS errors using EventBridge
	Amazon ECS events
	Amazon ECS container instance state change events
	Amazon ECS task state change events
	Amazon ECS service action events
	Service action events with INFO event type
	Service action events with WARN event type
	Service action events with ERROR event type

	Amazon ECS service deployment state change events

	Handling Amazon ECS events
	Example: Handling events in an AWS Lambda function

	Monitor Amazon ECS containers using Container Insights with enhanced observability
	Determine Amazon ECS task health using container health checks
	How Amazon ECS determines task health
	How health checks are affected by agent disconnects
	Viewing Amazon ECS container health

	Monitor Amazon ECS container instance health
	Container instance-health issues

	Identify Amazon ECS optimization opportunities using application trace data
	Required IAM permissions for AWS Distro for OpenTelemetry integration with AWS X-Ray
	Specifying the AWS Distro for OpenTelemetry sidecar for AWS X-Ray integration in your task definition

	Correlate Amazon ECS application performance using application metrics
	Exporting application metrics to Amazon CloudWatch
	Considerations
	Required IAM permissions for AWS Distro for OpenTelemetry integration with Amazon CloudWatch
	Specifying the AWS Distro for OpenTelemetry sidecar in your task definition

	Exporting application metrics to Amazon Managed Service for Prometheus
	Considerations
	Required IAM permissions for AWS Distro for OpenTelemetry integration with Amazon Managed Service for Prometheus
	Specifying the AWS Distro for OpenTelemetry sidecar in your task definition

	Log Amazon ECS API calls using AWS CloudTrail
	Amazon ECS management events in CloudTrail
	Amazon ECS event examples

	Monitor workloads using Amazon ECS metadata
	Amazon ECS environment variables
	Amazon ECS container metadata file
	Container metadata file locations
	Turning on Amazon ECS container metadata
	Amazon ECS container metadata file format

	Task metadata available for Amazon ECS tasks on EC2
	Amazon ECS task metadata endpoint version 4
	Task metadata endpoint version 4 paths
	Amazon ECS task metadata V4 JSON response
	Amazon ECS task metadata v4 examples
	Example container metadata response
	Example task metadata response
	Example task with tags metadata response
	Example task with tags with an error metadata response
	Example container stats response
	Example task stats response

	Amazon ECS task metadata endpoint version 3
	Task Metadata endpoint version 3 paths
	Amazon ECS task metadata v3 JSON response
	Amazon ECS task metadata v3 examples
	Example Container Metadata Response
	Example task metadata response

	Amazon ECS task metadata endpoint version 2
	Enabling task metadata
	Task metadata endpoint paths
	Task metadata JSON response
	Example task metadata response

	Amazon ECS task metadata available for tasks on Fargate
	Amazon ECS task metadata endpoint version 4 for tasks on Fargate
	Fargate task metadata endpoint version 4 paths
	Amazon ECS task metadata v4 JSON response for tasks on Fargate
	Amazon ECS task metadata v4 examples for tasks on Fargate
	Example container metadata response
	Amazon ECS task metadata v4 examples for tasks on Fargate
	Example task stats response

	Amazon ECS task metadata endpoint version 3 for tasks on Fargate
	Task metadata endpoint paths for tasks on Fargate
	Amazon ECS task metadata v3 JSON response for tasks on Fargate
	Amazon ECS task metadata v3 examples for tasks on Fargate

	Amazon ECS container introspection

	Identify unauthorized behavior using Runtime Monitoring
	How Runtime Monitoring works with Amazon ECS
	Considerations
	Resource utilization
	Runtime Monitoring for Amazon ECS Fargate workloads
	Turning on Runtime Monitoring for Amazon ECS
	Prerequisites
	Procedure

	Adding Runtime Monitoring to existing Amazon ECS Fargate tasks
	Prerequisites
	Procedure

	Removing Runtime Monitoring from an Amazon ECS cluster
	Procedure

	Removing Runtime Monitoring for Amazon ECS from an account

	Runtime Monitoring for EC2 workloads on Amazon ECS
	Turning on Runtime Monitoring for Amazon ECS
	Adding Runtime Monitoring an Amazon ECS cluster
	Prerequisites
	Procedure

	Adding Runtime Monitoring to existing Amazon ECS tasks
	Prerequisites
	Procedure

	Removing Runtime Monitoring from an Amazon ECS cluster
	Updating the GuardDuty security agent on your Amazon ECS container instances
	Removing Runtime Monitoring for Amazon ECS from an account

	Runtime Monitoring Troubleshooting
	How can I tell if Runtime Monitoring is active on my account?
	How can I tell if Runtime Monitoring is active on a cluster?
	How can I tell if the GuardDuty security agent is running on a Fargate task?
	How can I tell if the GuardDuty security agent is running on an EC2 container instance?
	What happens when there is no task execution role for a task running on the cluster?
	How can I tell if I have the correct permissions to tag clusters for Runtime Monitoring?
	What happens when there is no connection Amazon ECR?
	How do I address out of memory errors on my Fargate tasks after enabling Runtime Monitoring?

	Monitor Amazon ECS containers with ECS Exec
	Considerations
	Prerequisites
	Architecture
	Using ECS Exec
	Optional task definition changes
	Turning on ECS Exec for your tasks and services
	Running commands using ECS Exec

	Logging using ECS Exec
	Turning on logging in your tasks and services
	IAM permissions required for Amazon CloudWatch Logs or Amazon S3 Logging
	IAM permissions required for encryption using your own AWS KMS key (KMS key)

	Using IAM policies to limit access to ECS Exec
	Limiting access to the Start Session action

	AWS Compute Optimizer recommendations for Amazon ECS
	Task and container size recommendations for Amazon ECS services on AWS Fargate

	Amazon ECS troubleshooting
	Resolve Amazon ECS stopped task errors
	Amazon ECS stopped task error messages updates
	CannotPullContainerError
	ResourceNotFoundException
	ResourceInitializationError

	Viewing Amazon ECS stopped task errors
	Procedure
	Next steps

	Amazon ECS stopped tasks error messages
	Troubleshooting Amazon ECS TaskFailedToStart errors
	Unexpected EC2 error while attempting to Create Network Interface with public IP assignment enabled in subnet 'subnet-id
	InternalError: <reason>
	The selected task definition is not compatible with the selected compute strategy
	Unable to attach network interface to unused device index
	AGENT

	Troubleshooting Amazon ECS ResourceInitializationError errors
	The task cannot pull registry authentication from Amazon ECR. There is a connection issue between the task and Amazon ECR. Check your task network configuration.
	The task can't download the environment variable files from Amazon S3. There is a connection issue between the task and Amazon S3. Check your task network configuration.
	The task cannot pull secrets from AWS Systems Manager Parameter Store. Check your network connection between the task and AWS Systems Manager.
	The task can’t pull secrets from AWS Secrets Manager. There is a connection issue between the task and Secrets Manager. Check your task network configuration.
	The task can’t pull the secret from Secrets Manager. The task can't retrieve the secret with ARN ‘secretARN' from Secrets Manager. Check whether the secret exists in the specified Region.
	pull command failed: unable to pull secrets or registry auth Check your task network configuration.
	The task cannot find the Amazon CloudWatch log group defined in the task definition. There is a connection issue between the task and Amazon CloudWatch. Check your network configuration.
	failed to initialize logging driver
	failed to invoke EFS utils commands to set up EFS volumes

	Troubleshooting Amazon ECS ResourceNotFoundException errors
	The task can't retrieve the secret with ARN 'sercretARN' from AWS Secrets Manager. Check whether the secret exists in the specified Region.

	Troubleshooting Amazon ECS SpotInterruption errors
	Fargate launch type
	EC2 launch type

	Troubleshooting Amazon ECS InternalError errors
	Troubleshooting Amazon ECS OutOfMemoryError errors
	container killed due to memory usage

	Troubleshooting Amazon ECS ContainerRuntimeError errors
	ContainerRuntimeError

	Troubleshooting Amazon ECS ContainerRuntimeTimeoutError errors
	Could not transition to running; timed out after waiting 1m or Docker timeout error

	Troubleshooting Amazon ECS CannotStartContainerError errors
	failed to get container status: <reason>

	Troubleshooting Amazon ECS CannotStopContainerError errors
	CannotStopContainerError

	Troubleshooting Amazon ECS CannotInspectContainerError errors
	CannotInspectContainerError

	Troubleshooting Amazon ECS CannotCreateVolumeError errors
	CannotCreateVolumeError

	CannotPullContainer task errors in Amazon ECS
	The task can’t pull the image. Check that the role has the permissions to pull images from the registry.
	The task cannot pull ‘image-name’ from the Amazon ECR repository ‘repository URI’. There is a connection issue between the task and Amazon ECR. Check your task network configuration.
	The task can’t pull the image. Check your network configuration
	CannotPullContainerError: pull image manifest has been retried 5 time(s): failed to resolve ref
	API error (500): Get https://111122223333.dkr.ecr.us-east-1.amazonaws.com/v2/: net/http: request canceled while waiting for connection
	API error
	write /var/lib/docker/tmp/GetImageBlob111111111: no space left on device
	ERROR: toomanyrequests: Too Many Requests or You have reached your pull rate limit.
	Error response from daemon: Get url: net/http: request canceled while waiting for connection
	ref pull has been retried 1 time(s): failed to copy: httpReaderSeeker: failed open: unexpected status code
	pull access denied
	pull command failed: panic: runtime error: invalid memory address or nil pointer dereference
	error pulling image conf/error pulling image configuration
	Context canceled

	Verifying Amazon ECS stopped task connectivity
	Testing the task connectivity
	Fixing VPC endpoint issues
	Fixing network issues
	Tasks that use awsvpc network mode in a public subnet
	Tasks that use awsvpc network mode in a private subnet
	Tasks that don't use awsvpc network mode in a public subnet
	Tasks that don't use awsvpc network mode in a private subnet

	Viewing IAM role requests for Amazon ECS tasks
	Viewing Amazon ECS service event messages
	Amazon ECS service event messages
	service (service-name) has reached a steady state.
	service (service-name) was unable to place a task because no container instance met all of its requirements.
	service (service-name) was unable to place a task because no container instance met all of its requirements. The closest matching container-instance container-instance-id has insufficient CPU units available.
	service (service-name) was unable to place a task because no container instance met all of its requirements. The closest matching container-instance container-instance-id encountered error "AGENT".
	service (service-name) (instance instance-id) is unhealthy in (elb elb-name) due to (reason Instance has failed at least the UnhealthyThreshold number of health checks consecutively.)
	service (service-name) is unable to consistently start tasks successfully.
	service (service-name) operations are being throttled. Will try again later.
	service (service-name) was unable to stop or start tasks during a deployment because of the service deployment configuration. Update the minimumHealthyPercent or maximumPercent value and try again.
	service (service-name) was unable to place a task. Reason: You've reached the limit on the number of tasks you can run concurrently
	service (service-name) was unable to place a task. Reason: Internal error.
	service (service-name) was unable to place a task. Reason: The requested CPU configuration is above your limit.
	service (service-name) was unable to place a task. Reason: The requested MEMORY configuration is above your limit.
	service (service-name) was unable to place a task. Reason: You’ve reached the limit on the number of vCPUs you can run concurrently
	service (service-name) was unable to reach steady state because task set (taskSet-ID) was unable to scale in. Reason: The number of protected tasks are more than the desired count of tasks
	service (service-name) was unable to reach steady state. Reason: No Container Instances were found in your capacity provider.
	service (service-name) was unable to place a task. Reason: Capacity is unavailable at this time. Please try again later or in a different availability zone.
	service (service-name) deployment failed: tasks failed to start.
	service (service-name) Timed out waiting for Amazon ECS Agent to start. Please check logs at /var/log/ecs/ecs-agent.log".
	service (service-name) task set (taskSet-ID) is not healthy in target-group (targetGroup-ARN)) due to TARGET GROUP IS NOT FOUND.
	service (service-name) task set (taskSet-ID) is not healthy in target-group (targetGroup-ARN)) due to TARGET IS NOT FOUND.

	Amazon ECS Availability Zone service rebalancing service event messages
	service (service-name) is not AZ balanced with number-tasks tasks in Availability Zone 1, number-tasks in Availability Zone 2, and number-tasks in Availability Zone 3. AZ Rebalancing in progress.
	service (service-name) is AZ balanced with number-tasks tasks in Availability Zone 1, number-tasks tasks in Availability Zone 2, and number-tasks tasks in Availability Zone 3.
	service-name has started number-tasks tasks in Availability Zone to AZ Rebalance: task-ids.
	service-name has stopped number-tasks running tasks in Availability Zone due to AZ rebalancing: task-id.
	service (service-name) is unable to place a task in Availability Zone because no container instance met all of its requirements.
	service (service-name) is unable to place a task in Availability Zone.
	service (service-name) was unable to AZ Rebalance because task-set-name was unable to scale in due to reason.
	service (service-name) stopped AZ Rebalancing.

	Troubleshooting service load balancers in Amazon ECS
	Troubleshooting service auto scaling in Amazon ECS
	Troubleshoot Amazon ECS task definition invalid CPU or memory errors
	Viewing Amazon ECS container agent logs
	Linux operating system
	Windows operating system

	Collecting container logs with Amazon ECS logs collector
	Retrieve Amazon ECS diagnostic details with agent introspection
	Docker diagnostics in Amazon ECS
	List Docker containers in Amazon ECS
	View Docker Logs in Amazon ECS
	Inspect Docker Containers in Amazon ECS

	Configuring verbose output from the Docker daemon in Amazon ECS
	Troubleshoot the Docker API error (500): devmapper in Amazon ECS
	Troubleshoot Amazon ECS Exec issues
	Verify using the Exec Checker
	Error when calling execute-command

	Troubleshoot Amazon ECS Anywhere issues
	External instance registration issues
	External instance network issues
	Issues running tasks on your external instance

	AWS Fargate throttling quotas
	Throttling the RunTask API in Fargate
	Adjusting rate quotas in Fargate

	Handle Amazon ECS throttling issues
	Synchronous throttling
	Asynchronous throttling
	Monitor throttling
	Use CloudWatch to monitor throttling

	Amazon ECS API failure reasons

	Security in Amazon Elastic Container Service
	Identity and Access Management for Amazon Elastic Container Service
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Elastic Container Service works with IAM
	Identity-based policies for Amazon ECS
	Identity-based policy examples for Amazon ECS

	Resource-based policies within Amazon ECS
	Policy actions for Amazon ECS
	Policy resources for Amazon ECS
	Policy condition keys for Amazon ECS
	Access control lists (ACLs) in Amazon ECS
	Attribute-based access control (ABAC) with Amazon ECS
	Using Temporary credentials with Amazon ECS
	Forward access sessions for Amazon ECS
	Service roles for Amazon ECS
	Service-linked roles for Amazon ECS

	Identity-based policy examples for Amazon Elastic Container Service
	Amazon ECS policy best practices
	Allow Amazon ECS users to view their own permissions
	Amazon ECS cluster examples
	Amazon ECS container instance examples
	Amazon ECS task definition examples
	Run Amazon ECS Task Example
	Start Amazon ECS task example
	List and describe Amazon ECS task examples
	Create Amazon ECS service example
	Update Amazon ECS service example
	Describing Amazon ECS services based on tags
	Deny Amazon ECS Service Connect Namespace Override Example

	AWS managed policies for Amazon Elastic Container Service
	AmazonECS_FullAccess
	AmazonECSInfrastructureRolePolicyForVolumes
	AmazonEC2ContainerServiceforEC2Role
	Considerations

	AmazonEC2ContainerServiceEventsRole
	AmazonECSTaskExecutionRolePolicy
	AmazonECSServiceRolePolicy
	AmazonECSInfrastructureRolePolicyForServiceConnectTransportLayerSecurity
	AWSApplicationAutoscalingECSServicePolicy
	AWSCodeDeployRoleForECS
	AWSCodeDeployRoleForECSLimited
	AmazonECSInfrastructureRolePolicyForVpcLattice
	Amazon ECS updates to AWS managed policies
	Phased out AWS managed IAM policies for Amazon Elastic Container Service
	AmazonEC2ContainerServiceFullAccess
	AmazonEC2ContainerServiceRole
	AmazonEC2ContainerServiceAutoscaleRole

	Migrating to the AmazonECS_FullAccess managed policy

	Using service-linked roles for Amazon ECS
	Service-linked role permissions for Amazon ECS
	Creating a service-linked role for Amazon ECS
	Editing a service-linked role for Amazon ECS
	Deleting a service-linked role for Amazon ECS
	Supported regions for Amazon ECS service-linked roles

	IAM roles for Amazon ECS
	Best practices for IAM roles in Amazon ECS
	Task role
	Task execution role
	Container instance role
	Service-linked roles
	Roles recommendations
	Block access to Amazon EC2 metadata
	Use the awsvpc network mode
	Use last accessed information to refine roles
	Monitor AWS CloudTrail for suspicious activity

	Amazon ECS task execution IAM role
	Creating the task execution role
	Private registry authentication permissions
	Secrets Manager or Systems Manager permissions
	Fargate tasks pulling Amazon ECR images over interface endpoints permissions
	Amazon ECR permissions
	Amazon S3 file storage permissions

	Amazon ECS task IAM role
	Creating the task IAM role
	Amazon ECR permissions
	ECS Exec permissions
	Amazon EC2 instances additional configuration
	External instance additional configuration
	Amazon EC2 Windows instance additional configuration
	Amazon ECS container bootstrap script

	Amazon ECS container instance IAM role
	Create the container instance role
	Amazon ECR permissions
	Permissions required for setting the awsvpcTrunking account setting
	Amazon S3 read-only access
	Monitoring container instances permissions

	Amazon ECS Anywhere IAM role
	Creating the Amazon ECS Anywhere role

	Amazon ECS infrastructure IAM role
	Creating the Amazon ECS infrastructure role
	Permission to pass the infrastructure role to Amazon ECS

	Amazon ECS CodeDeploy IAM Role
	Creating the CodeDeploy role
	Task execution role permissions

	Amazon ECS EventBridge IAM Role
	Creating the EventBridge role
	Attaching a policy to the ecsEventsRole role

	Permissions required for the Amazon ECS console
	Permissions for creating IAM roles
	Permissions required for registering an external instance to a cluster
	Permissions required for registering a task definition
	Permissions required for creating an EventBridge rule for scheduled tasks
	Permissions required for viewing service deployments
	Permissions required to view Amazon ECS lifecycle events in Container Insights
	Permissions required for enabling Amazon ECS lifecycle events inContainer Insights
	Permissions required for the Amazon ECS console with AWS CloudFormation
	Permissions required for creating a cluster
	Permissions required for creating a service

	IAM permissions required for Amazon ECS service auto scaling
	Grant permission to tag resources on creation
	Amazon ECS control access to specific tags
	Control access to Amazon ECS resources using resource tags
	Amazon ECS Example policies
	Example: Allow users to delete an Amazon ECS cluster based on tags

	Troubleshooting Amazon Elastic Container Service identity and access
	I am not authorized to perform an action in Amazon ECS
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amazon ECS resources
	Additional troubleshooting resources

	IAM best practices for Amazon ECS
	Follow the policy of least privileged access
	Have cluster resources serve as the administrative boundary
	Create automated pipelines to isolate end-users from the API
	Use policy conditions for an added layer of security
	Periodically audit access to the APIs

	Logging and Monitoring in Amazon Elastic Container Service
	Compliance validation for Amazon Elastic Container Service
	Compliance and security best practices for Amazon ECS
	Payment Card Industry Data Security Standards (PCI DSS)
	HIPAA (U.S. Health Insurance Portability and Accountability Act)
	AWS Security Hub
	Amazon GuardDuty with Amazon ECS Runtime Monitoring
	Compliance recommendations

	AWS Fargate Federal Information Processing Standard (FIPS-140)
	AWS Fargate FIPS-140 Considerations
	Use FIPS on Fargate
	Use CloudTrail for Fargate FIPS-140 auditing

	Infrastructure Security in Amazon Elastic Container Service
	Amazon ECS interface VPC endpoints (AWS PrivateLink)
	Considerations
	Considerations for endpoints in Regions introduced starting on December 23, 2023
	Considerations for Amazon ECS VPC endpoints for the Fargate launch type
	Considerations for Amazon ECS VPC endpoints for the EC2 launch type

	Understanding Amazon ECS endpoint naming patterns
	The role of DiscoverPollEndpoint API

	Creating the VPC Endpoints for Amazon ECS
	Creating a VPC endpoint policy for Amazon ECS

	AWS shared responsibility model for Amazon ECS
	Fargate launch type
	EC2 launch type

	Network security best practices for Amazon ECS
	Encryption in transit
	Task networking
	Security groups for tasks

	AWS PrivateLink and Amazon ECS
	Container agent settings
	Network security recommendations
	Use network encryption where applicable with Amazon ECS
	Use awsvpc network mode and security groups to control traffic between tasks and other resources in Amazon ECS
	Create Amazon ECS clusters in separate Amazon VPCs when network traffic needs to be strictly isolated
	Configure AWS PrivateLink endpoints when warranted for Amazon ECS
	Use Amazon VPC Flow Logs to analyze the traffic to and from long-running tasks in Amazon ECS

	Amazon ECS task and container security best practices
	Create minimal or use distroless images
	Scan your images for vulnerabilities
	Remove special permissions from your images
	Create a set of curated images
	Scan application packages and libraries for vulnerabilities
	Perform static code analysis
	Run containers as a non-root user
	Use a read-only root file system
	Configure tasks with CPU and Memory limits (Amazon EC2)
	Use immutable tags with Amazon ECR
	Avoid running containers as privileged (Amazon EC2)
	Remove unnecessary Linux capabilities from the container
	Use a customer managed key (CMK) to encrypt images pushed to Amazon ECR

	Tutorials for Amazon ECS
	Creating an Amazon ECS Linux task for the Fargate launch type with the AWS CLI
	Prerequisites
	Step 1: Create a Cluster
	Step 2: Register a Linux Task Definition
	Step 3: List Task Definitions
	Step 4: Create a Service
	Step 5: List Services
	Step 6: Describe the Running Service
	Step 7: Test
	Testing task deployed using public subnet
	Testing task deployed using private subnet

	Step 8: Clean Up

	Creating an Amazon ECS Windows task for the Fargate launch type with the AWS CLI
	Prerequisites
	Step 1: Create a Cluster
	Step 2: Register a Windows Task Definition
	Step 3: List task definitions
	Step 4: Create a service
	Step 5: List services
	Step 6: Describe the Running Service
	Step 7: Clean Up

	Creating an Amazon ECS task for the EC2 launch type with the AWS CLI
	Prerequisites
	Create a cluster
	Launch a container instance with the Amazon ECS AMI
	List container instances
	Describe your container instance
	Register a task definition
	List task definitions
	Create a service
	List services
	Describe the service
	Describe the running task
	Test the web server
	Clean up resources

	Configuring Amazon ECS to listen for CloudWatch Events events
	Prerequisite: Set up a test cluster
	Step 1: Create the Lambda function
	Step 2: Register an event rule
	Step 3: Create a task definition
	Step 4: Test your rule

	Sending Amazon Simple Notification Service alerts for Amazon ECS task stopped events
	Prerequisite: Set up a test cluster
	Prerequisite: Configure permissions for Amazon SNS
	Step 1: Create and subscribe to an Amazon SNS topic
	Step 2: Register an event rule
	Step 3: Test your rule

	Concatenating multiline or stack-trace Amazon ECS log messages
	Required IAM permissions
	Determine when to use the multiline log setting
	Parse and concatenate options
	Example: Use a parser that you create
	Example: Use a Fluent Bit built-in parser

	Deploying Fluent Bit on Amazon ECS Windows containers
	Prerequisites
	Step 1: Create the IAM access roles
	Step 2: Create an Amazon ECS Windows container instance
	Step 3: Configure Fluent Bit
	Step 4: Register a Windows Fluent Bit task definition which routes the logs to CloudWatch
	Step 5: Run the ecs-windows-fluent-bit task definition as an Amazon ECS service using the daemon scheduling strategy
	Step 6: Register a Windows task definition which generates the logs
	Step 7: Run the windows-app-task task definition
	Step 8: Verify the logs on CloudWatch
	Step 9: Clean up

	Using gMSA for EC2 Linux containers on Amazon ECS
	Considerations
	Prerequisites
	Setting up gMSA-capable Linux Containers on Amazon ECS
	Credential specification file

	Using gMSA for Linux containers on Fargate
	Considerations
	Prerequisites
	Setting up gMSA-capable Linux Containers on Amazon ECS
	Credential specification file

	Using Amazon ECS Windows containers with domainless gMSA using the AWS CLI
	Prerequisites
	Step 1: Create and configure the gMSA account on Active Directory Domain Services (AD DS)
	Step 2: Upload Credentials to Secrets Manager
	Step 3: Modify your CredSpec JSON to include domainless gMSA information
	Step 4: Upload CredSpec to Amazon S3
	Step 5: (Optional) Create an Amazon ECS cluster
	Step 6: Create an IAM role for container instances
	Step 7: Create a custom task execution role
	Step 8: Create a task role for Amazon ECS Exec
	Step 9: Register a task definition that uses domainless gMSA
	Step 10: Register a Windows container instance to the cluster
	Step 11: Verify the container instance
	Step 12: Run a Windows task
	Step 13: Verify the container has gMSA credentials
	Step 14: Clean up
	Debugging Amazon ECS domainless gMSA for Windows containers

	Learn how to use gMSAs for EC2 Windows containers for Amazon ECS
	Considerations
	Prerequisites
	Setting up gMSA for Windows Containers on Amazon ECS
	Example CredSpec
	Domainless gMSA setup
	Referencing a Credential Spec File in a Task Definition
	Amazon S3 Bucket
	SSM Parameter Store parameter
	Local File

	Using EC2 Image Builder to build customized Amazon ECS-optimized AMIs
	Using the image ARN with infrastructure as code (IaC)
	Using the image ARN with AWS CloudFormation
	Using the image ARN with Terraform

	Using AWS Deep Learning Containers on Amazon ECS

	Amazon ECS service quotas
	Managing your Amazon ECS and AWS Fargate service quotas in the AWS Management Console
	Handle Amazon ECS service quotas and API throttling limits
	Elastic Load Balancing
	Elastic Load Balancing service quotas
	Elastic Load Balancing API throttling

	Elastic network interfaces
	Elastic network interface service quotas
	Elastic network interface API throttling

	AWS Cloud Map
	AWS Cloud Map service quotas
	AWS Cloud Map API throttling

	Amazon ECS API reference
	Document history

