aws

Developer Guide

Amazon Mechanical Turk

API Version 2017-01-17

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Mechanical Turk Developer Guide

Amazon Mechanical Turk: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Mechanical Turk Developer Guide

Table of Contents

What is Amazon Mechanical TUIK?eceeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiisssesss 1
Mechanical TUrk MArkEtPLaCe ... ettt e st e s te s e e a e et et e aesaasaesnas 2
MATKEEPLACE TULES ...ttt ettt e st et e s aesbe s b e e e s e e s et e s ebassassassassasssennanaans 3
The SaNdbOX MArKELPLACE ...ttt ettt e s bessesae s e s e e s ennenaans 3
Tasks that work well 0n Mechanical TUIK ..ottt ss e sresaesees 3
Tasks can be completed within @ Web Browser ... 4
Work can be broken into distinct, Bite-Sized tASKScooviveeviieeiieeieeeeeeeeceeeeceereeeereeeeaeeesaeeens 4
Task supports clear instructions and OUtCOMEScoueeuieieiiieieeececeeee et 4
Examples of common uses of Mechanical TUrKccovieoioeeeneceeeee e 4
COME CONCEPTES ettt ettt e e te e st e st e e st e e sae e s e e e s e s s st e s sesssaassseesssesssasssassseesssessssesseessseessaenns 5
REQUESEEIS N WOIKELS ...ttt stetesteste s e e e e s et st e stesaessassasse e e essesessessansassassassasnsenean 5
MATKEEPLACE ..ottt e et e e et et e st e s b e st e st e s s e e e et et e b et et assasseeseessanaansansansansansen 5
TASK OF HIT ettt sttt sa e st sttt s st e st e s e st et saasbe st e e ssabesassassensenssanes 6
ASSIGNIMIENT ...ttt et e et se e e s te e st e s st e s s st e st e e satasssesssaessseesaesssassssessseesstesssessseessseesseanss 6
REWAId @nd DONUS ...ttt sttt ettt a et ssa st e e s e sae e esaes 6

(@ 0T | L 3 [ar=] o [o] RS RRRRRRR 6
BOST PrACLICOS ettt ettt et sa e s s e s s e e b e s s b e e s e e s b e e b e e ae e e b e e s e et e e ae e saeesraensaans 7
Allow workers to be as efficient as POSSIDLEcueueeuieeeeeeeeee e 7
Build tasks with family and friends in MINd ..o 7
Include an optional feedback field ... 7
TESE WOUE HITS ettt e et e e eree e s re e s s sse e s e st e s naessssaessssassssnesssnsesssssessssaessssaessnns 7
STAMT SIMALL ettt sttt st ettt sttt et e e b et et e s et et e e seee e enas 8
Keep HIT type attributes CONSISLENT ...t 8
Specify that links open new browser, Windows or tabscccceoeieeeceeeeceececeeecec e 9
Limit your use Of WOrKer BLOCKS ..ottt 9
Include clear reasons for rejections and BLOCKSc.ooveieiiiecieneceee e 10
Frequently asked QUESTIONS ...ttt reeve e e et et e st e s e s seese s e e e e aesaatannan 10
Why aren't my tasks being cOMPLeted? ... 10
How do | pull down HITs | created by mistake? ... 10

| expired my HITs. Why am | still getting submissions from workers?c.ccoeeeeeeeeneneenne. 11
Why are some of my task fields missing from my results?cccoveveeeceeeneneciecceeeeeeeeee, 11
Can | make some fields in my task interface requIired? ... 11
How can | test my task iNtErfaCe? ...ttt sa et 11
What is the difference between a HIT and an assignment?cooveviececeneneceseeeeeenne 11

API Version 2017-01-17 iii

Amazon Mechanical Turk Developer Guide

Can | view the HITs | create with the API in the requester website?cccoeeeveeeeeeceeceecnennns 12

| published HITs in the sandbox environment. Why they aren't being completed? 12

| incorrectly rejected some assignments. Can | reverse the rejection?cccccevevevececeeciecnenen, 12

How do | filter the workers eligible to work on my task? ... 12

How do | create a custom qUAlifiCation? ..ot 12

Can | restrict how many HITs a worker can complete for my project?cooveveeevieceeciecnennen. 12

Can | post HITs in languages other than ENglish? ..o 13
Additional Mechanical TUIK RESOUICESc.coivivirieriiirietetseneeteesestesesessesssessessesessassessesassesseneens 13

Set UP MeChaniCal TUFK ..cciiiieeeeeeeiiiiiiiieiiiiinneesenenssssseeeeessess 14
Step 1: Create a Mechanical TUrk @CCOUNToviviieeeeeeeeee et 14
Step 2: Link your AWS account to your Mechanical Turk requester accountccceveeeeereenenne. 15
Step 3: Select @ PAYMENT OPLION ...ttt e et sae st aesbe s e e e e e e e e e aennaaans 15
Step 4: GEt AN AWS QCCESS KBY ...uocuiiieieieteecteetee ettt te st ste e s e s e s e e e e s e saesaestestessassasseesnesaenaensansans 15
Step 5: Configure YOUr Cred@ntials ...ttt s e e s sa et e aesaesre s e e snennens 17
Step 6: Set up the developer SANADOX ...t 17
Access Mechanical TUKKccciiiiiiiiiiiiiiiiiniiinnsissssssssssssssssssssensss 19
Use the Mechanical Turk REQUESEEE Ul ...ttt st saesteste s e se e e e esaesaesaenaans 19
Use the Mechanical TUIK AP ...ttt ettt et s s st e b e st e a s e s e s s ne 19
USE the AWS CLI ..ttt sttt sttt ettt s s et e st s e st et e e ssa st et esassestesassassansenesns 20
Download and configure the AWS CLI ...ttt ste e s e e saeraeens 20

Use the AWS CLI with Mechanical TUIKccooeriiiirieereteeeseee e 20

Get Started with Mechanical TUrKccciiiiiiiiiiiiiiiiiiiiinniinnninnnnnnnissssssssssssnssssssssssssssssssssssssssssssssens 22
PrEIEGQUISITES .ottt ettt et et e st e st e s sae e s ae s s ae e st e s ss e e st e s sse e s st esssessssassseessaesssessssessseesssesssesssaesnses 22
SEEP T2 CreAte @ TASK ..ottt sttt ettt a et et e e ae e a et e tenaan 22

(@ UT=X u oY e 1<) 1 [11 4 1o] o IR 22

TASK QEEFDULES .ottt sttt st a et b et e ene 23

POSE T tASK «.evetiieieteteeec ettt ettt st sa e st s e s b et e s b et et s et et eaesae st enasaans 24

SteP 2: Check task SLALUScceieeeeecee ettt st te e e e saesae st et e s e s e ssaesnennaneans 27
SEEP 3: RELIEVE FESULLS ..ottt ettt e st e st e st e st et e e e s e s et e be st e bessesseesaesaenaansanean 31
Step 4: APProve ASSIGNIMENTSccciiriirieirierrterteeseeste st estesssessseessseesseesssessssesssessseesssesssaesssessssesssesnns 37
Creating and managing tasks (HITS) c.ccciiiiiuuuuiiiiiieceiniinnneennsnnsissssceeessssssssssssssssssssssssssssssssssssssses 39
DEFING QUESTIONS ..ttt et et et e st e st e st e st e s e s sa e s et e saeaatesbassassasssensansensansansans 39
Use HTML t0 define QUESTIONSc.eiviieeeeececeeeteteteteste ettt teste e s s saea e sa s nan 39

(@ T0T=X a oY I 1= 1 [11 41 o K3 45
Requester WEbSIte LAYOULS ..ottt sttt 48

HIT QEEFIDULES .ottt st ettt et st et sb et e s et et s e s et et s sesbe st enassansensons 48

API Version 2017-01-17 iv

Amazon Mechanical Turk Developer Guide

CrEATING HITS oottt et et e s st e st s st e st e s sae e s ae s sa e s ae e sae s sessaesssaesssasssessssesseessaessannns 50
Create @ HIT DiIrECLLY ..ooveeeeeeeeeee ettt et te s testeste e e e e e e e et et e saesbassessnesaesaenaensantans 51
Create @ HIT USING @ HIT TYPE ettt ettt ettt st e s saeestessae s s e e s saeesanesssesssaessaaessnassnassnns 51

MOMITYING HITS ettt te e e e e e e et et e st e st e st e sae st e esaese e e e saestessessansassasseesassaensansans 53
Modify eXPiration tiME ...ttt s te e st e e e e e s et e st e saesse s e s snennennans 53
Add additional @SSIGNMENTSccueeieieeeeeeee ettt se et e st e sae st e s ae e e e e e e aesaennan 53
MOAITY ThE HIT TYPE ettt ettt e ste s teste s e e e e et et e st et e besaassassaesaeneennansanes 54
DBLETE ettt sttt ettt et b et e b et et e b et et e s e b et et e seae st eseese e eseesn 54

USING the SANADOX ..ttt st et e e e sa et e st e s ae s s e s be s e e e e e e saataneans 54
API Calls USING The CLI ..ttt ettt e st e s te s e s e e e s et e sae st e sae s essassassnennannans 55
API calls using the Python SDK (DOt03) ...ttt see s e aenenens 55
TESEING HITS ettt et ste s st e s e e s s ae s s sae s sae e s ae s saessaessaaesssasseesssesssaesssessseesssesssannns 55

HIT references using RequesterAnNNOTation e 56

RELri@VING FESULES ...ciiiiiiiiiiieiiiiiiiieiiiiiinneeesseniiisssieeestsss 57
ASSIGNMENT QEEFDULES ..ttt sttt te st e s be s e e sa e e e aennan 57
ASSIGNIMIENT QNSWET ..eeeiiiiiiieecteriereteesreeste st sereeesseesstesssessseessseesssasssesssaesssassssesssessssessseesssesssesssaesssesssaens 58

RetrieVing HIT StatUs ..cccciiiiiiiieeeeniiiiiiiieiiiiinneeessssisssssscess 61

ManNAgiNg WOTKEFS ...iieeerereeiiiiiiiiiiiiinnnnesnnnisiisiseeeissass 63

Approving and reJECtING WOTK ...ttt sttt e e e e e s ettt e saesae s e s ra e e ns 63

AWAIAING @ DONUS ...ttt ettt st e st st e s e e s e e e e e et et et e aa st e sessaesneseesaansanes 64

BLOCKING WOTKEIS ...ttt ettt sttt e e e e e e ae s et e s te st e s s e s e e saesa e s et et esessassassaeseeseensansansansansanes 64

Selecting €ligible WOIKELS ...ttt ettt st e s s e s e e e e s a e b e ntenan 65
Qualifications and qUALIfICAtION TYPES .ecveeeeeeeee et 65
QUALITICAtION FEQUIFEIMENTSeeieieeeeceeeeeteeree ettt st e s te s e s e e e e e e s e st et e saesaesse e e e s e e esnanaanes 66
System qQUALITICAtION TYPES ..t ettt an 68

Working with custom qualification tYPESceoveieceeeeeeeeee e 73
Create @ QUALIFICAtION tYPE oottt st a e sa e st et aas 74
Assign or remove a worker qUalification ..o 74
QUALIFICALION FEQUESTES ...ttt et e e e e s et e st e st e s aassassasss e s e e esnansansans 74
Tutorial: Require workers t0 be in @ groUpP ...ttt aens 75
Tutorial: Require workers to meet accuracy LeVel ... 76
Tutorial: Exclude workers from selecting tasks ... 77

COMMUNICATE WItR WOTKETS ...ttt ettt sttt e s s e e s e sae st e e snans 78

Use Mechanical Turk notificationsccccceiiiiiiiiiiiiiiiinininnnsnssses 79
NOTIFICATION EVENT TYPES .ttt e e e e st et e s ae st e s b e s e e e s s e aasaeaaaanes 79
NOtITICAtioN dESTINATION ..eeeeieieeee sttt be st s b e e s s se st e e enans 80

API Version 2017-01-17 v

Amazon Mechanical Turk Developer Guide

Handling notifications using AWS Lambda ..ottt 81
SENAING TEST BVENLS ...ttt ettt e st e st e st e e e e e e e e e e st e be st e s e ssaeseesaenaesaestensansanes 84
HIT references using requester anNOTation ...ttt eeens 85
USE reqUESTE tOKENS ...ciiiiiiiieennneiiiiieiiiiiineenessssssssssssessses 86
CORS configuration reqUIremMENTtcccciiiiieeeeeeiiiiiieeieiiiieeeesssessssssssessses 87

API Version 2017-01-17 vi

Amazon Mechanical Turk Developer Guide

What is Amazon Mechanical Turk?

Amazon Mechanical Turk (Mechanical Turk) is a crowdsourcing marketplace that connects you
with an on-demand, scalable, human workforce to complete tasks. Using Mechanical Turk,

you can programmatically direct tasks to the Mechanical Turk marketplace, where they can be
completed by workers around the world. Mechanical Turk allows you to access the intelligence,
skills, and insights of a global workforce for tasks as varied as data categorization, moderation,
data collection and analysis, behavioral studies, and image annotation.

Mechanical Turk is built around the concept of microtasks, which are small, atomic tasks that
workers can complete in their web browser. When you submit work to Mechanical Turk, you
typically start by breaking it into smaller tasks on which workers can work independently. In this
way, a project involving categorizing 10,000 images becomes 10,000 individual microtasks that
workers can complete. By breaking tasks down atomically, hundreds of workers can work on
portions of your project at the same time, which increases how quickly the work can be completed.
In addition, you can specify that each task be completed by multiple workers to allow you to check
for quality or identify biases in subjective questions.

/A Important

If you do not add a CORS configuration to the Amazon S3 buckets that contain your image
input data, HITs that you create using those input images will fail. To learn more, see CORS
configuration requirement.

Use this guide to learn how you can interact with Mechanical Turk programatically. We recommend
you begin by reading the following topics. To get started quickly with Mechanical Turk, see Get
Started with Amazon Mechanical Turk.

Topics

The Amazon Mechanical Turk marketplace

Creating tasks that work well on Amazon Mechanical Turk

Amazon Mechanical Turk core concepts

Amazon Mechanical Turk best practices

Frequently asked questions

API Version 2017-01-17 1

Amazon Mechanical Turk Developer Guide

The Amazon Mechanical Turk marketplace

Mechanical Turk uses the requester and worker terms to describe the two participants in the
marketplace. When you post new tasks to Amazon Mechanical Turk (Mechanical Turk), you are
a requester asking workers to complete your tasks in exchange for the reward amount you offer.
Workers can go to the Mechanical Turk marketplace to find and accept tasks.

As shown in the following image of the marketplace website, workers can see a list of available
tasks, along with details about each task. Workers can review the title and description, reward
amount, and time allotted to complete each task before accepting and working on it. In many
cases, workers preview a task prior to accepting it, which allows them to decide if they want to
work on it.

o000 E‘ Amazon Mechanical Turk X

@ Secure | https://worker.mturk.com/?end_signin=1&openid.pape.max_auth_age=4321 openid.identity=https

Worker ID: A1234EXAMPLE Hello, ACME Requester, Inc. | Sign Out

o — Worker

All HITs Your HITs Queue

— (I 20 %
Requester Title HITs - Reward ~ Created ~ Actions
Amazon Requester Inc. - C [French language proficiency requir, .. 61,046 $0.50 17h ago Preview | Accept & Work
Amazon Requester Inc. - C [BFFENNDEREROA 5 L., 59,647 $0.50 7Thago Preview Accept&Work
Amazon Requester Inc. - C Product to Interest Audit (single yes/... 28,379 20.15 ihago Preview | Accept& Work
Amazon Requester Inc. - C [dominio del idioma espafiol requeri. .. 27 670 $0.50 21hago Preview Accept& Work
Amazon Requester Inc. - C [Proficiéncia no idioma portugués br... 19,719 $0.50 20h ago Preview = Accept8 Work

Submitting tasks to the Mechanical Turk marketplace does not guarantee that workers will
complete them. If workers don't believe that the reward amount is reasonable for the effort
required, or the work isn't something on which they want to work, they skip it and move on to
other tasks. For this reason, we recommended that you put thought into how you describe your
task so that workers can make an informed decision.

After workers complete your task, they submit their response and move on to additional tasks that
you've posted or tasks from other requesters. You can review a worker's submission shortly after
they submit the task. You have the option to approve or reject their submission. If you approve the

Mechanical Turk marketplace API Version 2017-01-17 2

https://worker.mturk.com

Amazon Mechanical Turk Developer Guide

work, the reward amount is distributed to the worker. Note that if you neither approve nor reject a
task submission, it is automatically approved after a set time.

Marketplace rules

Prior to submitting tasks to Mechanical Turk, you should review the Acceptable Use Policy to

ensure that your task adheres to the rules of the marketplace. Prohibited uses cover a range of
activities such as violating the privacy or security of workers or others, abusive behavior, or any
illegal activities. Violating these policies results in removal of your tasks from the Mechanical Turk
marketplace and may result in the suspension of your account.

The sandbox marketplace

To experiment with Mechanical Turk without spending money on the Mechanical Turk marketplace,
you can use the sandbox environment for requestors and the one for workers. This is a mirror

image of the production environment, but no money changes hands when work is completed. Many
requesters create tasks here first and complete them themselves so that they can validate their
task interface and ensure they get the results they expect back. You can find more information on
using the sandbox in Using the sandbox.

Note that there is no financial incentive to complete work in the sandbox marketplace, so you
shouldn't expect tasks you post in the sandbox to be completed unless you do so yourself.

Creating tasks that work well on Amazon Mechanical Turk

Amazon Mechanical Turk (Mechanical Turk) can be used for an exceptionally wide range of tasks.
Tasks that work well on Mechanical Turk generally meet the following criteria:

« Can be completed from within a web browser
« Can be broken into distinct, bite-sized tasks

« Can support clear instructions and outcomes

Most tasks that meet these criteria can be completed on Mechanical Turk, assuming you provide
workers with a task interface that allows them to successfully perform the task. You should also
keep in mind that Mechanical Turk workers excel at tasks that rely on general human knowledge
and skills. While some workers have specialized experience such as legal or medical backgrounds,
most do not. As a result, while Mechanical Turk can enable tasks such as labeling the location of

Marketplace rules API Version 2017-01-17 3

https://www.mturk.com/acceptable-use-policy
https://requestersandbox.mturk.com
https://workersandbox.mturk.com

Amazon Mechanical Turk Developer Guide

people or animals in images, you are likely to have less success asking workers to apply expertise
that would be associated with a radiologist.

Note that tasks must also conform to the rules in the Mechanical Turk Acceptable Use Policy.

Prohibited uses cover a range of activities such as violating the privacy or security of workers or
others, abusive behavior, or any illegal activities.

Tasks can be completed within a web browser

Mechanical Turk tasks are built using HTML and presented to workers via the Mechanical Turk
website. Most workers complete tasks on their computer without the need to use other devices or
specialized software. Tasks that require workers to visit physical locations or leverage other devices
aren't recommended.

Work can be broken into distinct, bite-sized tasks

Most Mechanical Turk tasks take less than five minutes to complete and almost all can be
completed within an hour. This lets workers try new tasks without needing to commit a lot of time.
Most workers appreciate the flexibility that Mechanical Turk provides in moving from task to-task
without being locked in for an extended period of time.

Task supports clear instructions and outcomes

The most successful tasks on Mechanical Turk are those that provide the necessary information

for a worker to imagine what a successful response would look like. Avoid tasks that are open-
ended and could have multiple possible outcomes. For example, a task that asks workers to identify
all of the competitors of company X would be frustrating for workers. By specifying that you

want all competitors, workers are left wondering at what point they should draw a line and stop
their research. It would also leave them wondering if you will reject their work if they aren't as
comprehensive as you want them to be. In this example, you should instead be specific about the
data that you need by describing your task as identify the top 5 competitors of company X.

Examples of common uses of Mechanical Turk

The following are examples of common Mechanical Turk use-cases:

 Audio transcription: Transcribe an audio clip.

Tasks can be completed within a web browser API Version 2017-01-17 4

https://www.mturk.com/acceptable-use-policy

Amazon Mechanical Turk Developer Guide

» Categorization: Categorize products.

 Data collection: Identify the website for a business.

o Writing: wWrite a description of a product based on an image and details.

o Market research: Complete a market research survey.

» Rating: Evaluate and rate the quality of an image.

» Usability testing: Visit a website and complete a set of steps, providing feedback on each step.
e Research study: Participate in a study by responding to questions surrounding a scenario.

» Computer vision: Draw bounding boxes around animals in images.

» Natural language processing: ldentify the named entities within a statement.

« Matching: Review two data records and confirm they relate to the same business.

« Moderation: Evaluate a set of images and identify any that don't meet the provided criteria.
» Ranking: Rank a list of products based on their relevance to a search query.

» Data extraction: Extract the names and prices of products in a receipt.

 Text transcription: Transcribe handwritten text.

« Video transcription: Transcribe a video clip.

Amazon Mechanical Turk core concepts

The following are the core concepts of Amazon Mechanical Turk (Mechanical Turk) that you need to
understand to use it effectively.

Requesters and workers

A requester is a company, organization, or person that posts tasks (HITs) to Mechanical Turk for
workers to perform. A worker is a person who performs the tasks specified by a tequester in a HIT.

Marketplace

The Mechanical Turk marketplace is where workers can go to find and accept tasks. In addition

to the production marketplace, there is a second sandbox marketplace where requesters can post
development tasks without money changing hands.

More information can be found in Amazon Mechanical Turk marketplace.

Core concepts API Version 2017-01-17 5

https://worker.mturk.com
https://workersandbox.mturk.com

Amazon Mechanical Turk Developer Guide

Task or HIT

The base unit of work in Mechanical Turk is called a Human Intelligence Task, which is typically
designated as a HIT or task. A HIT represents a single, self-contained task, such as Identify the color
of the car in the photo, that a requester submits to Mechanical Turk for workers to complete.

Mechanical Turk is built around the concept of microtasks, which are small, atomic tasks that
workers can complete in their web browser. When you submit work to Mechanical Turk, you
typically start by breaking it into smaller tasks on which workers can work independently. In this
way, a project involving categorizing 10,000 images becomes 10,000 individual microtasks that
workers can complete. Hundreds of workers can work on portions of your project at the same time,
which increases how quickly the work can be completed. In addition, you can specify that each task
be completed by multiple workers to allow you to check for quality or identify biases in subjective
questions.

Assignment

When creating a HIT, you can specify how many workers can accept and complete each task. Doing
so allows you to collect multiple responses for each item and then compare them. This additional
information can be valuable in managing quality, as well as in collecting multiple data points when
responses are subjective.

When a worker accepts a HIT, Mechanical Turk creates an assignment, which belongs exclusively
to the worker. The worker can submit results up until the expiration of the HIT. When retrieving
results for a HIT, requesters retrieve all of the submitted assignments.

Reward and bonus

A reward is the money you, as a requester, pay workers for satisfactory work they do on your HITs.
A bonus is the amount you award workers for high-quality performance. Rewards are transmitted
to workers when assignment submissions are approved, either by approving the assignment or
when the auto-approval threshold is reached. Bonuses can be sent to workers who have recently
completed an assignment for you.

Qualifications

You can use qualifications to specify attributes of the workers eligible to work on your HITs.
Qualifications can be either system-generated, such as qualifications based on location, or
managed by you, based on past performance on your tasks.

Task or HIT API Version 2017-01-17 6

Amazon Mechanical Turk Developer Guide

To learn more, see Selecting eligible workers.

Amazon Mechanical Turk best practices

Keep the following best practices in mind when you design and create your HITs.

Allow workers to be as efficient as possible

When you post tasks to Mechanical Turk, the reward amount you set is primarily for the worker's
time and attention to your task. If your task interface is inefficient and requires multiple manual
steps that require a lot of time, workers typically expect a higher reward amount to compensate
for the time they need to spend performing those steps. Investing time to make your interface as
efficient as possible pays dividends in higher accuracy and lower costs.

Build tasks with family and friends in mind

When building tasks, it's a common mistake to assume that workers have the same knowledge
you do about your area of expertise. Very few workers have the expertise you do and will likely
be confused if you use highly technical language or make assumptions about their skills. A great
practice is to design your task interface with a member of your family or a friend in mind. Could
they complete your task successfully? If you're not sure, share the interface with them and see if
they can complete it without any additional instructions from you.

Include an optional feedback field

Whenever possible, include an optional feedback field at the end of your task interface, particularly
when working with a new interface. Workers appreciate the opportunity to provide feedback and
often share insights on how to improve it.

Test your HITs

Before posting your tasks to Mechanical Turk, it is always a good idea to take a few minutes to test
your HITs to make sure they work as you expect. It allows you to validate that your interface does
what you expect. Doing the task yourself also lets you get an idea of how long it takes to complete
so that you can set an appropriate reward amount.

The easiest way to test your task interface is to save it to an HTML file and open it in a browser.
From the browser, you can go through all of the steps that a worker would follow in completing

Best practices API Version 2017-01-17 7

Amazon Mechanical Turk Developer Guide

the task. If your task interface is built around a standard form element, you won't be able to test
submitting it, but can test to ensure it works as you expect. If you use the crowd-form element
from Crowd HTML Elements, you can test it by selecting Submit. When you submit from outside of
Mechanical Turk, the results are displayed at the top of the window.

To fully test a task interface and the creation and retrieval of HITs, you can use the sandbox
environment.

Start small

When you create or update a task interface, it's always best to start by posting a small number of
HITs first to confirm that workers complete the task as you expect. It's a great way to understand
how workers respond and gives you a chance to correct any issues before you post the remaining
work. Nothing is worse than posting thousands of dollars of HITs, only to discover that the results
are invalid because you made a mistake in your task interface.

Keep HIT type attributes consistent

When you create a HIT, you provide a number of attributes about the task that tell Mechanical
Turk how to display it in the marketplace. These are separate from the content and question of

the task itself, and include the title, description, reward amount, and attributes describing how
long the task remains active. These attributes comprise the HIT type for your task. Mechanical Turk
automatically creates a HIT type when you first call CreateHIT with those values. When you create
multiple HITs, Mechanical Turk attempts to find an existing HIT type in your account that has the
same attributes and reuse it. If you change any of these attributes—even if they are small changes
to the title or description—it will force Mechanical Turk to create a new HIT type with each change.

Maintaining consistent attributes for your HIT type is important because it directly impacts how
your HIT is displayed on the worker website. On the worker website, HITs are grouped together into
HIT groups based on their HIT type values. As shown in the following image, each HIT group has
thousands of HITs on which a worker can work because they all have the same attributes for title,
description, reward, and other attributes. If workers accept a HIT from one of these HIT groups,
they can automatically move to the next piece of work in the HIT group without needing to return
to the list.

Start small API Version 2017-01-17 8

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateHITOperation.html

Amazon Mechanical Turk Developer Guide

20 W
i HTE - Creans Actions
Find and submit data for high school clubs based on a list of high schools 16,504 4d ago Preview | Accept & Work
Market Research Survey 15,314 2h ago Preview Accept & Wark
Find a video advertisement on Youtube fraom meladata 9,852 8hago Preview | Accept & Wark

Min « HIT approval rate (%) is greater than 75 100

If, however, each HIT has a unique HIT type, then workers see your HITs as a long list of options in
the list and have to return to the list after completing each task.

Reguester Tithe HITs & Reward
Ad Tagger Identify the brands featured in banner ads - 2020-10-26 21:19:18. 1 $0.60 5d ago & Qualify
Ad Tagger Identify the brands featured in banner ads - 2020-10-26 21:19:40. 1 $0.60 5d ago & Cualify
Ad Tagger Identify the brands featured in banner ads - 2020-10-26 21:19:54. 1 $0.60 5d ago & Qualify
Ad Tagger Identify the brands featured in banner ads - 2020-10-26 21:21:23. 1 $0.60 5d ago & Qualify
Ad Tagger Identify the brands featured in banner ads - 2020-10-26 21:21:49. 1 $0.60 5d ago & Qualify

Specify that links open new browser, windows or tabs

When you add links to your task HTML, you should include a target attribute to let the browser
know that it should open a new window or tab when workers click on it. This keeps the worker
interface active in the existing window and prevents issues that sometimes occur when workers use
the Back button to return to the worker interface. Add the _blank target to direct the browser to
open a new window, as shown in the following example.

My link

Limit your use of worker blocks

We recommend that you be judicious in your use of worker blocks and only block those workers
who are clearly not making an attempt to correctly respond to your task (spamming). If a worker
is simply misreading instructions or lacks the requisite skills to complete your task successfully, we
advise you to use a custom qualification to exclude them from future tasks, rather than a block.
Because the blocks a worker receives are a component of Mechanical Turk worker review policies,
and frequent blocks may result in account suspension, workers are sensitive to being blocked by

Specify that links open new browser, windows or tabs API Version 2017-01-17 9

Amazon Mechanical Turk Developer Guide

requesters. If the worker community believes that you are blocking workers unfairly, they may
choose to avoid accepting your tasks in the future.

Include clear reasons for rejections and blocks

Workers take a lot of pride in the quality of their work and pay close attention to rejections and
blocks they receive. When you decide to reject an assignment or block a worker, be as clear as
possible about the reasons for the action. Simply providing a value such incorrect as the reason
gives the worker no information they can use to improve in the future. Instead, be clear about what
the worker did incorrectly. This allows workers to correct their mistakes in future tasks.

Frequently asked questions

Use the following sections to get answers to frequently asked questions. If you need additional
support, use the following link to contact Amazon Mechanical Turk: www.mturk.com/contact-us.

Why aren't my tasks being completed?

There are a number of reasons why the tasks you post to Mechanical Turk aren't being completed.
The most common reason is that the reward amount you specified isn't adequate to compensate
workers for the time and effort they need to commit to your task to complete it. If you suspect this
is the case, remove the HITs from Mechanical Turk by expiring them and experiment with reposting
some of them at a higher reward amount.

Other common reasons include the following.

« The qualification requirements for the task are so narrow that few, if any, workers meet the
criteria to be eligible for the task.

« The task interface has a technical issue that prevents workers from submitting it.

» The assignment duration is set too short for workers to successfully complete the task in the
time allowed.

How do | pull down HITs | created by mistake?

Use the UpdateExpirationForHIT operation and set the ExpireAt time to @ to tell Mechanical Turk

to immediately expire a HIT. Note that this won't prevent workers that have already accepted your
HIT from completing and submitting it.

Include clear reasons for rejections and blocks API Version 2017-01-17 10

http://www.mturk.com/contact-us
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_UpdateExpirationForHITOperation.html

Amazon Mechanical Turk Developer Guide

| expired my HITs. Why am | still getting submissions from workers?

If a worker accepts a HIT before it expires, they are still allowed to complete and submit the task
until the assignment duration elapses. This protects the worker experience by letting them submit
work on which they may have already spent a lot of time, even if you opt to take the HIT down.

Why are some of my task fields missing from my results?

A common mistake in building task interfaces is using the same name attribute for multiple form
inputs. In those cases, only one of the input field values is returned. You should check your HTML
to ensure that each input has a unique name.

Can | make some fields in my task interface required?

You can use HTML, JavaScript, or both to specify required fields and minimum or maximum values
or perform other validations that prevent workers from submitting the task if it doesn't meet the
requirements. To learn more about the types of form validation you can apply, see Client-side form

validation on the Mozilla developer site.

How can | test my task interface?

The easiest way to test your task interface is to save it to an HTML file and open it in a browser.
From the browser, you can go through all of the steps that a worker would perform in completing
the task. If your task interface is built around a standard form element, you can't test submitting it,
but you can test to ensure it works as you expect. If you use the crowd-form element from Crowd
HTML Elements, you can test it by selecting Submit. When you submit from outside of Mechanical
Turk, the results are displayed at the top of the window.

To fully test a task interface and the creation and retrieval of HITs, you can use the sandbox
environment.

What is the difference between a HIT and an assignment?

A HIT is a single task that you create in Mechanical Turk. When workers accept a HIT, they get

an assignment that gives them the right to submit their response. When you create a HIT, you
can specify the maximum number of assignments that can be created for each HIT, which allows
you to get multiple different worker responses for each task. For more information on HITs and
assignments, see Amazon Mechanical Turk core concepts.

| expired my HITs. Why am | still getting submissions from workers? API Version 2017-01-17 11

https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation
https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation

Amazon Mechanical Turk Developer Guide

Can | view the HITs | create with the API in the requester website?

No, the requester website only displays HITs that are created from the requester website.

| published HITs in the sandbox environment. Why they aren't being
completed?
The sandbox environment is a great way to test HITs without spending any money. However,

because no money changes hands, there isn't any incentive for workers to complete your tasks. To
complete your testing, create an account in the worker sandbox environment to complete the tasks

yourself. Then, publish them in the production environment.

| incorrectly rejected some assignments. Can | reverse the rejection?

In the event that you reject an assignment but then discover that the issue was not the worker's
fault, you can call ApproveAssignment to reverse the rejection, but only for assignments submitted
in the last 30 days that haven't been deleted.

How do I filter the workers eligible to work on my task?

Mechanical Turk provides a qualifications system that allows you to use system-managed or
custom criteria to limit the workers that can work on a task. For more information, see Selecting
eligible workers.

How do I create a custom qualification?

You can create custom qualification types that allow you to filter workers eligible to work on your
tasks using criteria based on their past performance on your tasks. For more information, see
Working with custom qualification types.

Can | restrict how many HITs a worker can complete for my project?

Mechanical Turk doesn't provide a native capability to limit the number of HITs that a worker
can contribute to a project or batch. To learn how to accomplish this using custom qualification
types, see Working with custom qualification types. Before starting your project or batch, create a

custom qualification type with a label such as Completed Enough of Project A and pecify that this
type doesn't exist (DoesNotExist) in your qualification requirements for each HIT. When a worker
reaches your threshold of HITs they can submit, you can assign this qualification type to them,
after which they can't accept any HITs for the project.

Can | view the HITs | create with the API in the requester website? API Version 2017-01-17 12

https://workersandbox.mturk.com
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ApproveAssignmentOperation.html

Amazon Mechanical Turk Developer Guide

Can | post HITs in languages other than English?

You can post HITs using any language, provided you note the required language in the title of your
task. However, the number of available workers who are fluent in a given language varies greatly. It
may take longer for your task to be completed or you may need to increase your reward amount if

not enough workers are available.

Additional Mechanical Turk Resources

» The Mechanical Turk API Reference describes all the APl operations for Mechanical Turk in detail.

o The Mechanical Turk Requester User Interface Documentation describes how to create
Mechanical Turk tasks using a graphical user interface.

o Posts on the Mechanical Turk Happenings Blog address updates to the Mechanical Turk
marketplace.

» Blog Tutorials provide instruction on using Mechanical Turk for a variety of tasks.

o The Amazon Mechanical Turk Developer Forums provide questions and answers about
Mechanical Turk.

» Mechanical Turk on Github offers sample code and tutorials.

Can | post HITs in languages other than English? API Version 2017-01-17 13

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/index.html
https://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/index.html
https://blog.mturk.com/
https://blog.mturk.com/tutorials/home
https://developer.amazonwebservices.com/connect/forum.jspa?forumID=11
https://github.com/awslabs/mturk-api-samples

Amazon Mechanical Turk Developer Guide

Set up Amazon Mechanical Turk

Use the following topics to learn how to use Amazon Mechanical Turk (Mechanical Turk) with APIs
or AWS command line tools.

If you plan to interact with Mechanical Turk only through the Mechanical Turk requester user
interface, you can skip these steps and instead follow the Getting Started steps described in the
Requester Ul Guide.

Topics

» Step 1: Create a Mechanical Turk account

» Step 2: Link your AWS account to your Mechanical Turk requester account

» Step 3: Select a payment option

» Step 4: Get an AWS access key

» Step 5: Configure Your Credentials

» Step 6: Set up the developer sandbox

Step 1: Create a Mechanical Turk account

To create an Amazon Mechanical Turk account, go to the Amazon Mechanical Turk Requester
website, choose Create an account, and follow the on-screen instructions.

Note that Mechanical Turk accounts use the same login credentials and profiles as Amazon
retail websites such as Amazon.com. Changes in the name or address on your account, on either
Amazon.com or Mechanical Turk, are reflected in both locations.

To use Mechanical Turk programmatically, you must have an AWS account. If you don't already
have an account, you are prompted to create one when you sign up. You're not charged for any
AWS services that you sign up for unless you use them.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

Step 1: Create a Mechanical Turk account API Version 2017-01-17 14

https://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/GettingStarted.html
https://requester.mturk.com/
http://amazon.com/
https://portal.aws.amazon.com/billing/signup

Amazon Mechanical Turk Developer Guide

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root

user access.

Note your AWS account ID. You need it for the next step.

Step 2: Link your AWS account to your Mechanical Turk
requester account

You need to link your AWS account to your Mechanical Turk requester account. This operation
grants permission to your AWS account to access your requester account using the Mechanical Turk
APIs.

» Go to https://requester.mturk.com/developer/.
» Choose Link your AWS Account and sign in with your AWS root user email address and

password.

Step 3: Select a payment option

Before you can post HITs to the Mechanical Turk marketplace, you need to enable AWS Billing
for your account to pay worker rewards and Mechanical Turk fees. These appear on the AWS
Anniversary Bill for your linked AWS account.

Alternatively, you can prepay for the HITs you plan to create using a credit card payment.

To enable AWS Billing or prepay for HITs, go to the account section of the Requester website.

Step 4: Get an AWS access key

Before you can access Mechanical Turk programmatically, you must have an AWS access key.
Access keys consist of an access key ID and secret access key, which are used to sign programmatic
requests that you make to AWS. If you don't have access keys, you can create them from the AWS
Management Console. As a best practice, do not use the AWS account root user access keys for
any task where they are not required. Instead, create a new administrator IAM user with access

Step 2: Link your AWS account to your Mechanical Turk requester account API Version 2017-01-17 15

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://requester.mturk.com/developer/
https://requester.mturk.com/account

Amazon Mechanical Turk Developer Guide

keys for yourself. To learn how, see Creating your first IAM admin user and group in the IAM User

Guide. If you do not wish to grant administrator access to this account, you can choose either the
AmazonMechanicalTurkFullAccess or AmazonMechanicalTurkReadOnly policy rather than
AdministratorAccess when you attach a policy to the user.

The only time that you can view or download the secret access key is when you create the keys.
You cannot recover them later. However, you can create new access keys at any time. You must
also have permissions to perform the required IAM actions. For more information, see Permissions
Required to Access IAM Resources in the IAM User Guide.

To create access keys for an IAM user:

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/ .

2. In the navigation pane, choose Users.

3. Choose the name of the user whose access keys you want to create, and then choose
the Security credentials tab.

4. Inthe Access keys section, choose Create access key.
5. To view the new access key pair, choose Show. You will not have access to the secret access key
again after this dialog box closes. Your credentials should resemble the following example:

Access key ID: AKIAIOSFODNN7EXAMPLE

Secret access key: wlalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

6. To download the key pair, choose Download .csv file. Store the keys in a secure location. You
will not have access to the secret access key again after this dialog box closes.

Keep the keys confidential in order to protect your AWS account. Never email them. Do not share
them outside your organization, even if an inquiry appears to come from AWS or Amazon.com. No
one who legitimately represents Amazon will ever ask you for your secret key.

« After you download the . csv file, choose Close. When you create an access key, the key pair is
active by default, and you can use the pair right away.
Related topics

« What Is IAM? in the IAM User Guide

Step 4: Get an AWS access key API Version 2017-01-17 16

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions-required.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions-required.html
https://console.aws.amazon.com/iam//
https://console.aws.amazon.com/iam//
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Amazon Mechanical Turk Developer Guide

o AWS Security Credentials in AWS General Reference

Step 5: Configure Your Credentials

To access Mechanical Turk programmatically, you must configure your credentials to enable
authorization for your applications.

There are several ways to do this. For example, you can manually create the credentials file to store
your access key ID and secret access key. You also can use the aws configure command of the
AWS CLI to automatically create the file. Alternatively, you can use environment variables. For more
information about configuring your credentials, see the programming language-specific AWS SDK
developer guide.

The Mechanical Turk API endpoint is only available in the us-east-1 Region so it is recommended
that you configure your default Region as us-east-1. If you primarily work with a different
default AWS Region, you can specify the us-east-1 Region and endpoint as part of your CLI or
SDK requests to Mechanical Turk.

To install and configure the AWS CLI, see Installing, updating, and uninstalling the AWS CLI and
Configuring the AWS CLI in the JAM User Guide, respectively.

Step 6: Set up the developer sandbox

You may wish to test your HITs in the Amazon Mechanical Turk sandbox testing environment to
make sure they work as expected before publishing them in the Mechanical Turk marketplace. The
sandbox is an environment where you can publish and work on HITs at no cost before publishing
them in the production Mechanical Turk marketplace. The sandbox consists of a requester sandbox

website and a worker sandbox website.

Create a requester account on the requester sandbox website, which is located at https://
requestersandbox.mturk.com. This follows the same procedure as creating a Mechanical Turk

account described in Step 1: Create a Mechanical Turk account. You can use the same email address

and account if you wish.

You also need to create a worker account on the worker sandbox website located at https://
workersandbox.mturk.com to view your sandbox HITs as a worker. There is no charge for using the

Mechanical Turk sandbox sites.

Step 5: Configure Your Credentials API Version 2017-01-17 17

https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://requestersandbox.mturk.com/
https://requestersandbox.mturk.com/
https://workersandbox.mturk.com/
https://requestersandbox.mturk.com
https://requestersandbox.mturk.com
https://workersandbox.mturk.com
https://workersandbox.mturk.com

Amazon Mechanical Turk Developer Guide

To create HITs in the sandbox using the Mechanical Turk APIs, you also need to link your AWS
account to your sandbox requester account, as described in Step 2: Link your AWS account to your
Mechanical Turk requester account, on the requester sandbox website.

To configure the AWS CLI or SDKs to access the sandbox instead of the production environment,
you must set the API endpoint to be https://mturk-requester-sandbox.us-east-1.amazonaws.com.
Refer to the AWS CLI Command Reference or SDK documentation for how best to do this.

Step 6: Set up the developer sandbox API Version 2017-01-17 18

https://requestersandbox.mturk.com/developer
https://mturk-requester-sandbox.us-east-1.amazonaws.com
https://aws.amazon.com/cli/
https://aws.amazon.com/tools/

Amazon Mechanical Turk Developer Guide

Access Amazon Mechanical Turk

You can access Amazon Mechanical Turk (Mechanical Turk) using the Mechanical Turk requester
user interface, the AWS Command Line Interface (AWS CLI), or the Mechanical Turk API.

Topics

» Use the Mechanical Turk Requester Ul

+ Use the Mechanical Turk API

o Use the AWS CLI

Use the Mechanical Turk Requester Ul

The Mechanical Turk Requester User Interface (RUI) provides access to Mechanical Turk
functionality using a graphical user interface. You can use the Mechanical Turk RUI to:

» Create projects that define tasks you want workers to complete
« Submit batches of tasks to the Mechanical Turk marketplace

» Monitor and review the results of batches

» Approve and reject task submissions

« Manage workers

» Create and modify qualification types

For more information on using the RUI, visit the Amazon Mechanical Turk Requester Ul Guide.

HITs created from the APl or AWS CLI cannot be viewed from the Requester UL.

Use the Mechanical Turk API

The AWS SDKs provide broad support for Mechanical Turk in Java, JavaScript in the browser, .NET,
Node.js, PHP, Python, Ruby, C++, and Go. To get started quickly with many of these languages,
see the Amazon Mechanical Turk Code Samples.

Before you can use the AWS SDKs with Mechanical Turk, you must get an AWS access key ID and
secret access key. For more information, see Set up Amazon Mechanical Turk.

Use the Mechanical Turk Requester Ul API Version 2017-01-17 19

https://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/index.html
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-browser
https://aws.amazon.com/sdk-for-net
https://aws.amazon.com/sdk-for-node-js
https://aws.amazon.com/sdk-for-php
https://aws.amazon.com/sdk-for-python
https://aws.amazon.com/sdk-for-ruby
https://aws.amazon.com/sdk-for-cpp
https://aws.amazon.com/sdk-for-go
https://github.com/aws-samples/mturk-code-samples

Amazon Mechanical Turk Developer Guide

Use the AWS CLI

You can use the AWS Command Line Interface (AWS CLI) to control multiple AWS services from the
command line and automate them through scripts. This includes posting Mechanical Turk HITs and
retrieving results, either on an ad-hoc basis or within utility scripts.

Before you can use the AWS CLI with Mechanical Turk, you must get an access key ID and secret
access key. For more information, see Get an AWS access key.

For a complete listing of all the commands available for Mechanical Turk in the AWS CLI, see the
AWS CLI Command Reference.

Download and configure the AWS CLI

The AWS CLI is available at https://aws.amazon.com/cli. It runs on Windows, MacOS, or Linux.

After you download the AWS CLI, follow these steps to install and configure it:

» Go to the AWS Command Line Interface User Guide.
» Follow the instructions for Installing the AWS CLI and Configuring the AWS CLI.

Use the AWS CLI with Mechanical Turk

The command line format consists of a Mechanical Turk operation name followed by the
parameters for that operation. The AWS CLI supports a shorthand syntax for the parameter values,
as well as JSON.

For example, the following command returns a list of the HITs that have been created for in your
account.

$ aws mturk list-hits

The next command creates a new HIT in the Mechanical Turk marketplace (for easier readability,
long commands in this section are broken into separate lines).

/A Important

Creating the following HIT results in a charge of $0.12 to your account.

Use the AWS CLI API Version 2017-01-17 20

https://docs.aws.amazon.com/cli/latest/reference/mturk/index.html
https://aws.amazon.com/cli
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Amazon Mechanical Turk

Developer Guide

$ aws mturk create-hit \

--title "Describe the weather" \

--description "Describe the current weather where you live" \

--reward "0.10" \

--lifetime-in-seconds 14400 \

--assignment-duration-in-seconds 300 \

--question '<HTMLQuestion xmlns="http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2011-11-11/HTMLQuestion.xsd">

script>

<HTMLContent><![CDATA[
<!DOCTYPE html>
<script src="https://assets.crowd.aws/crowd-html-elements.js"></

<crowd-form>

<p>Describe the current weather where you live</p>
<p><textarea name="weather" cols="80" rows="3"></textarea></p>
</crowd-form>

11>

</HTMLContent>

<FrameHeight>0</FrameHeight>

</HTMLQuestion>"

This returns the attributes of the HIT you created. After the task is completed, you can retrieve the

results by using the ListAssignmentsForHIT operation.

$ aws mturk list-assignments-for-hit \
--hit-id <The HITId from the previous step>

On the command line, it can be difficult to compose valid HTML for your task when calling
CreateHIT. However, the AWS CLI can read XML files. For example, consider the following, which
creates a HIT using a question stored in a file question.xml.

$ aws mturk create-hit \
--title "Describe the weather" \
--description "Describe the current weather where you live" \
--reward "0.10" \
--lifetime-in-seconds 14400 \
--assignment-duration-in-seconds 300 \
--question file://question.xml

Use the AWS CLI with Mechanical Turk API Version 2017-01-17 21

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ListAssignmentsForHITOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateHITOperation.html

Amazon Mechanical Turk Developer Guide

Get Started with Amazon Mechanical Turk

Use the hands-on tutorials in this section to help you get started and learn more about Amazon
Mechanical Turk.
Topics

 Prerequisites
Step 1: Create a task

Step 2: Check task status

Step 3: Retrieve results

Step 4. Approve Assignments

Prerequisites

Before you begin, you should familiarize yourself with the basic concepts in Amazon Mechanical
Turk. For more information, see The Amazon Mechanical Turk marketplace and Amazon

Mechanical Turk core concepts.

Additional, complete the steps in Set up Amazon Mechanical Turk before completing this tutorial.

Step 1: Create a task

In this step we create a task in Mechanical Turk that asks workers to describe the current weather
where they live. The task interface for this will be created using the HTMLQuestion data structure
and we'll make use of Crowd HTML Elements to simplify the task HTML.

/A Important

Completing the steps in this tutorial results in a charge of $0.60 to your account.

Question definition

The most common way to define tasks in Mechanical Turkis using the HTMLQuestion data
structure, which is defined as XML that encapsulates the HTML that is displayed to the worker. For
this task, we use the following definition.

Prerequisites API Version 2017-01-17 22

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_HTMLQuestionArticle.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_HTMLQuestionArticle.html#ApiReference_HTMLQuestionArticle-crowd

Amazon Mechanical Turk Developer Guide

<HTMLQuestion xmlns="http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2011-11-11/HTMLQuestion.xsd">
<HTMLContent><![CDATA[
<IDOCTYPE html>
<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
<p>Describe the current weather where you live.</p>
<p><textarea name="weather" cols="80" rows="3"></textarea></p>
</crowd-form>
11>
</HTMLContent>
<FrameHeight>0</FrameHeight>
</HTMLQuestion>

Note that the HTML includes a reference to the crowd-html-elements. js library which includes
the crowd-form element. We use the crowd-form element in place of the standard form
element because it removes the need to specify the endpoint for the form to submit results. It also
automatically appends a Submit button if one isn't present. More information about this library
can be found in Crowd HTML Elements.

We've also set the value of FrameHeight to zero, which directs the marketplace website to render
the task interface using the full browser window.

Task attributes

Next, we can define the attributes for our task. We'll use the following attributes:

Attribute Value

Title Describe the weather

Description Describe the current weather where you live
Reward 0.1

MaxAssignments 5

LifetimeInSeconds 14,400

AssignmentDurationInSeconds 300

Task attributes API Version 2017-01-17 23

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-ui-template-reference.html

Amazon Mechanical Turk Developer Guide

Attribute Value

AutoApprovalDelayInSeconds 259,200

Here, we give an accurate description of our task and indicate that we will reward each worker with
10 cents for each successful completion. In addition, we set the MaxAssignments to 5 to indicate
that we would like to get five responses from different workers. Finally, we set the lifetime and
assignment duration to four hours and five minutes respectively. Workers have five minutes to
complete the assignment before it expires and becomes available to other workers. If, after four
hours, we haven't yet gotten a response, the task is automatically removed from the Mechanical
Turk marketplace. We've also set the AutoApprovalDelay at three days which means that an
assignment is automatically approved after three days if we don't take any action to approve or
reject it before then.

For more detail on the attributes that can be specified for a HIT, visit the CreateHIT documentation.

Post the task

You can post a task using the AWS CLI or a language-specific AWS SDK. Select a tab in the
following table to see an example of how you can post a task using the AWS CLI and the AWS SDK
for Python (Boto3).

AWS CLI

The following AWS CLI example creates a new task using create-hit.

$ aws mturk create-hit \
--title "Describe the weather" \
--description "Describe the current weather where you live" \
--reward "0.10" \
--max-assignments 5 \
--lifetime-in-seconds 14400 \
--assignment-duration-in-seconds 300 \
--auto-approval-delay-in-seconds 259200 \
--question '<HTMLQuestion xmlns="http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2011-11-11/HTMLQuestion.xsd">
<HTMLContent><![CDATA[
<!DOCTYPE html>

Post the task API Version 2017-01-17 24

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateHITOperation.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/mturk/create-hit.html

Amazon Mechanical Turk Developer Guide

<script src="https://assets.crowd.aws/crowd-html-elements.js"></
script>

<crowd-form>

<p>Describe the current weather where you live</p>

<p><textarea name="weather" cols="80" rows="3"></textarea></p>

</crowd-form>

11>

</HTMLContent>

<FrameHeight>0</FrameHeight>

</HTMLQuestion>"

Using create-hit returns the following sample result.

"HIT": {

"HITId": "3TL87MO8CLOFYXKXNRLMZO1MOK4FL5",

"HITTypeId": "3AKE@4YHPN13791QQA6BU4GMS7CHZJ]",

"HITGroupId": "367GCHJI5533R84AG2MXJQ0FCCI7M9Q",

"CreationTime": "2020-09-29T14:30:03-07:00",

"Title": "Describe the weather",

"Description": "Describe the current weather where you live",

"Question": "<HTMLQuestion xmlns=\"http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2011-11-11/HTMLQuestion.xsd\">\n<HTMLContent><!
[CDATA[\n<!DOCTYPE html>\n<script src=\"https://assets.crowd.aws/crowd-html-
elements.js\"></script>\n<crowd-form>\n<p>Describe the current weather where you
live</p>\n<p><textarea name=\"weather\" cols=\"80\" rows=\"3\"></textarea></p>\n</
crowd-form>\n]]>\n</HTMLContent>\n<FrameHeight>0</FrameHeight>\n</HTMLQuestion>",

"HITStatus": "Assignable",

"MaxAssignments": 5,

"Reward": "0.10",

"AutoApprovalDelayInSeconds": 259200,

"Expiration": "2020-09-29T18:30:03-07:00",

"AssignmentDurationInSeconds": 300,

"QualificationRequirements": [],

"HITReviewStatus": "NotReviewed",

"NumberOfAssignmentsPending": O,

"NumberOfAssignmentsAvailable": 5,

"NumberOfAssignmentsCompleted": 0

Post the task API Version 2017-01-17 25

Amazon Mechanical Turk Developer Guide

SDK for Python (Boto3)

The following Python code creates a new task using create_hit. This code can be run within a
Jupyter Notebook or IPython as is, or can be incorporated into a Python script and executed.

import boto3
mturk = boto3.client('mturk')

question = """
<HTMLQuestion xmlns="http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2011-11-11/HTMLQuestion.xsd">
<HTMLContent><![CDATA[
<IDOCTYPE html>
<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
<p>Describe the current weather where you live</p>
<p><textarea name="weather" cols="80" rows="3"></textarea></p>
</crowd-form>
11>
</HTMLContent>
<FrameHeight>0</FrameHeight>
</HTMLQuestion>"""

response = mturk.create_hit(
Title='Describe the weather',
Description='Describe the current weather where you live',
Reward='0.10"',
MaxAssignments=5,
LifetimeInSeconds=14400,
AssignmentDurationInSeconds=300,
AutoApprovalDelayInSeconds=259200,
Question=question)

hit_id = response['HIT']J['HITId']
print('Created HIT: {}'.format(hit_id))

This creates the HIT in the marketplace and displays the following.

Created HIT: 3QQUBC64ZDDMMIE3ZX577RS5PMNNX3J

Post the task API Version 2017-01-17 26

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/mturk.html#MTurk.Client.create_hit

Amazon Mechanical Turk Developer Guide

After creating the HIT, capture the HITId that was created and proceed to Step 2: Check task
status.

Step 2: Check task status

In this step, we check the status of a task we created in Mechanical Turk. We poll the API for the
status of our HIT using the HITId from the previous step. You need to capture that identifier and
insert it in the following appropriate location to retrieve your results.

The code block examples in this section have been spaced out for readability.

AWS CLI

The following AWS CLI command retrieves the current state of a HIT using get-hit.

$ aws mturk get-hit --hit-id 3QQUBC64ZDDMMJE3ZX577RS5PMNNXJ]

Using get-hit immediately after creating the HIT returns the following result. The CLI returns
the same information that was returned when you first created the HIT. This includes all of the
attributes for the HIT and its current state. As you can see in the highlighted lines below, all five
assignments are available to be requested by workers and the HITStatus is Assignable.

"HIT": {
"HITId": "3TL87MO8CLOFYXKXNRLMZO1MOK4FL5",
"HITTypeId": "3AKE@4YHPN13791QQA6BU4GMS7CHZ]",
"HITGroupId": "367GCHI5533R84AG2MXJQOFCCI7M9Q",
"CreationTime": "2020-09-29T14:30:03-07:00",
"Title": "Describe the weather",
"Description": "Describe the current weather where you live",
"Question": "<HTMLQuestion xmlns=\"http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2011-11-11/HTMLQuestion.xsd\">
\n<HTMLContent><![CDATA[\n<!DOCTYPE html>\n<script src=
\"https://assets.crowd.aws/crowd-html-elements.js\"></script>
\n<crowd-form>\n<p>Describe the current weather where you live</
p>
\n<p><textarea name=\"weather\" cols=\"80\" rows=\"3\'"></
textarea></p>\n</crowd-form>\n]]>

Step 2: Check task status API Version 2017-01-17 27

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/mturk/get-hit.html

Amazon Mechanical Turk Developer Guide

\n</HTMLContent>\n<FrameHeight>0</FrameHeight>\n</
HTMLQuestion>",
"HITStatus": "Assignable",
"MaxAssignments": 5,
"Reward": "0.10",
"AutoApprovalDelayInSeconds": 259200,
"Expiration": "2020-09-29T18:30:03-07:00",
"AssignmentDurationInSeconds": 300,
"QualificationRequirements": [],
"HITReviewStatus": "NotReviewed",
"NumberOfAssignmentsPending": @,
"NumberOfAssignmentsAvailable": 5,
"NumberOfAssignmentsCompleted": @

If you run the same get-hit command again after about five to ten minutes, the results

will likely match the following example. As you can see in the highlighted sections, the
HITStatus is now Reviewable and there are no longer any assignments available or pending
with workers. However, the completed count is still zero because none of the work has been
approved yet.

"HIT": {
"HITId": "3TL87MO8CLOFYXKXNRLMZO1MOK4FL5",
"HITTypeId": "3AKE@4YHPN13791QQA6BU4GMS7CHZ]",
"HITGroupId": "367GCHI5533R84AG2MXJQOFCCI7M9Q",
"CreationTime": "2020-09-29T14:30:03-07:00",
"Title": "Describe the weather",
"Description": "Describe the current weather where you live",
"Question": "<HTMLQuestion xmlns=\"http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2011-11-11/HTMLQuestion.xsd\">
\n<HTMLContent><![CDATA[\n<!DOCTYPE html>\n<script src=
\"https://assets.crowd.aws/crowd-html-elements.js\"></script>
\n<crowd-form>
\n<p>Describe the current weather where you live</p>
\n<p><textarea name=\"weather\" cols=\"80\" rows=\"3\'"></
textarea></p>
\n</crowd-form>\n]]>
\n</HTMLContent>\n<FrameHeight>0</FrameHeight>
\n</HTMLQuestion>",
"HITStatus": "Reviewable",

Step 2: Check task status API Version 2017-01-17 28

Amazon Mechanical Turk Developer Guide

"MaxAssignments": 5,

"Reward": "0.10",
"AutoApprovalDelayInSeconds": 259200,
"Expiration": "2020-09-29T18:30:03-07:00",
"AssignmentDurationInSeconds": 300,
"QualificationRequirements": [],
"HITReviewStatus": "NotReviewed",
"NumberOfAssignmentsPending": 0,
"NumberOfAssignmentsAvailable": 0,
"NumberOfAssignmentsCompleted": 0

Python SDK (Boto3)

The following Python code retrieves the state of a HIT using get_hit. This code can be run
within a Jupyter Notebook or IPython as is, or can be incorporated into a Python script and
executed.

import boto3
mturk = boto3.client('mturk')

response = mturk.get_hit(HITId="'3QQUBC64ZDDMMIE3ZX577RS5PMNNXJ]")
response['HIT']

Using get_hit immediately after creating the HIT returns the following result. The command
returns the same information that was returned when you first created the HIT. That includes
all of the attributes for the HIT and its current state. As you can see in the highlighted lines
below, all five assignments are available to be requested by workers and the HITStatus is
Assignable.

'"HITId': '3TL87MO8CLOFYXKXNRLMZO1MOK4FL5',

'"HITTypeId': '3AKE@4YHPN13791QQA6BU4GMS7CHZ]',

'"HITGroupId': '367GCHI5533R84AG2MXJQOFCCI7MIQ’,

'CreationTime': datetime.datetime(2020, 9, 29, 14, 30, 3, tzinfo=tzlocal()),
'Title': 'Describe the weather',

'Description': 'Describe the current weather where you live',

Step 2: Check task status API Version 2017-01-17 29

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/mturk.html#MTurk.Client.get_hit

Amazon Mechanical Turk Developer Guide

'Question': '<HTMLQuestion xmlns="http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2011-11-11/HTMLQuestion.xsd">
\Nn<HTMLContent><![CDATA[\n<!DOCTYPE html>\n<script src="https://
assets.crowd.aws/crowd-html-elements.js"></script>
\n<crowd-form>\n<p>Describe the current weather where you live</p>
\n<p><textarea name="weather" cols="80" rows="3"></textarea></p>
\n</crowd-form>\n]]>\n</HTMLContent>\n<FrameHeight>0</FrameHeight>
\n</HTMLQuestion>",
'HITStatus': 'Assignable'’,
'MaxAssignments': 5,
'Reward': '0.10',
'AutoApprovalDelayInSeconds': 259200,
'Expiration': datetime.datetime(2020, 9, 29, 18, 30, 3, tzinfo=tzlocal()),
'AssignmentDurationInSeconds': 300,
'QualificationRequirements': [],
'HITReviewStatus': 'NotReviewed',
"NumberOfAssignmentsPending': @,
'NumberOfAssignmentsAvailable': 5,
"NumberOfAssignmentsCompleted': @

If you run the same get_hit command again after about five minutes, the results will likely
appear as shown below. As you can see in the highlighted sections, the HITStatus is now
Reviewable and there are no longer any assignments available or pending with workers.
However, the completed count is still zero because none of the work has been approved yet.

'HITId': '3TL87MO8CLOFYXKXNRLMZO1MOK4FL5',

'HITTypeId': '3AKE@4YHPN13791QQA6BU4GMS7CHZ]',

'"HITGroupId': '367GCHJ5533R84AG2MXJQOFCCI7M9Q",

'CreationTime': datetime.datetime(2020, 9, 29, 14, 30, 3, tzinfo=tzlocal()),

'Title': 'Describe the weather',
'Description': 'Describe the current weather where you live',
'Question': '<HTMLQuestion xmlns="http://mechanicalturk.amazonaws.com/

AWSMechanicalTurkDataSchemas/2011-11-11/HTMLQuestion.xsd">
\Nn<HTMLContent><![CDATA[\n<!DOCTYPE html>\n<script src="https://

assets.crowd.aws/crowd-html-elements.js"></script>
\n<crowd-form>\n<p>Describe the current weather where you live</p>

\n<p><textarea name="weather" cols="80" rows="3"></textarea></p>
\n</crowd-form>\n]]>\n</HTMLContent>\n<FrameHeight>0</FrameHeight>
\n</HTMLQuestion>",

'"HITStatus': 'Reviewable',

Step 2: Check task status API Version 2017-01-17 30

Amazon Mechanical Turk Developer Guide

'MaxAssignments': 5,

'Reward': '0.10',

'AutoApprovalDelayInSeconds': 259200,

'"Expiration': datetime.datetime(2020, 9, 29, 18, 30, 3, tzinfo=tzlocal()),
'AssignmentDurationInSeconds': 300,

'QualificationRequirements': [],

'"HITReviewStatus': 'NotReviewed',

"NumberOfAssignmentsPending': 0,

'NumberOfAssignmentsAvailable': 0,

'NumberOfAssignmentsCompleted': 0

Now that we've confirmed that the HIT is in the Reviewable state, we can proceed to Step 3:
Retrieve Results.

Step 3: Retrieve results

In this step, we retrieve the results of a task we created in Mechanical Turk. We use the HITId from
that was generated in Step 1. You need to capture that identifier and insert it in the appropriate
location below to retrieve your results. Before running the commands in this step, you should
confirm the HITStatus is Reviewable as shown in Step 2, or you may get incomplete results.

AWS CLI

The following AWS CLI command retrieves all of the submitted assignments for your HIT using
list-assignments-for-hit.

$ aws mturk list-assignments-for-hit --hit-id 3TL87MO8CLOFYXKXNRLMZO1MOK4FL5

Using 1list-assignments-for-hit returns an array of results similar to those shown below.
Each assignment has an AssignmentId and includes information about the Worker who
submitted it, when they first accepted it, and when they submitted their answer. The answer
information is captured in a QuestionFormAnswers XML data structure that you can read in
to extract the results. For example, the first assignment below was submitted by the worker
with WorkerId ATKYPXUBSBWJBY, it took them 25 seconds to complete it, and their answer
was "lIts currently raining lightly". Scrolling through the other assignments, you can see how

other workers answered this question.

Step 3: Retrieve results API Version 2017-01-17 31

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/mturk/list-assignments-for-hit.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_QuestionFormAnswersDataStructureArticle.html

Amazon Mechanical Turk Developer Guide

"Assignments": [
{

"AssignmentId": "3IOEN3P9S7I9CGLBIQ5QANAQIXB16B",

"WorkerId": "AIDACKCEVSQ6C2EXAMPLE",

"HITId": "3TL87MO8CLOFYXKXNRLMZO1MOK4FL5",

"AssignmentStatus": "Submitted",

"AutoApprovalTime": "2020-10-02T14:39:42-07:00",

"AcceptTime": "2020-09-29T14:39:17-07:00",

"SubmitTime": "2020-09-29T14:39:42-07:00",

"Answer": "<?xml version=\"1.0\" encoding=\"ASCII\"?
><QuestionFormAnswers xmlns=\"http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2005-10-01/QuestionFormAnswers. xsd
\"><Answer><QuestionIdentifier>taskAnswers</QuestionIdentifier><FreeText>[{\"weather
\":\"Its currently raining lightly\"}]</FreeText></Answer></QuestionFormAnswers>"

.

{
"AssignmentId": "32AT8R96GL8U8SBA6SRINMUBFCI5USP",

"WorkerId": "DAAICKCEVSQ6C2EXAMPLE",

"HITId": "3TL87MO8CLOFYXKXNRLMZO1MOK4FL5",

"AssignmentStatus": "Submitted",

"AutoApprovalTime": "2020-10-02T14:44:47-07:00",

"AcceptTime": "2020-09-29T14:42:45-07:00",

"SubmitTime": "2020-09-29T14:44:47-07:00",

"Answer": "<?xml version=\"1.0\" encoding=\"ASCII\"?
><QuestionFormAnswers xmlns=\"http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2005-10-01/QuestionFormAnswers. xsd
\"><Answer><QuestionIdentifier>taskAnswers</QuestionIdentifier><FreeText>[{\"weather
\":\"It is currently chilly and cloudy outside and looks like it may rain in a

little bit.\"}]</FreeText></Answer></QuestionFormAnswers>"
1,

{
"AssignmentId": "3FTOP5WARFNLTMF@Q7QVP5MWLOBPJIOW",

"WorkerId": "DDAEBCKCEVSQ6C2EXAMPLE",

"HITId": "3TL87MO8CLOFYXKXNRLMZO1MOK4FL5",

"AssignmentStatus": "Submitted",

"AutoApprovalTime": "2020-10-02T14:48:12-07:00",

"AcceptTime": "2020-09-29T14:43:28-07:00",

"SubmitTime": "2020-09-29T14:48:12-07:00",

"Answer": "<?xml version=\"1.0\" encoding=\"ASCII\"?
><QuestionFormAnswers xmlns=\"http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2005-10-01/QuestionFormAnswers. xsd

Step 3: Retrieve results API Version 2017-01-17 32

Amazon Mechanical Turk Developer Guide

\"><Answer><QuestionIdentifier>taskAnswers</QuestionIdentifier><FreeText>[{\"weather
\":\"Currently indianapolis weather very cool, because northwest area are most
of this situation landing. In currently approximately cloud is 15 to 18'C.\"}I</
FreeText></Answer></QuestionFormAnswers>"
},

{
"AssignmentId": "3DI28L7YXADDPVEQP80YMB23QVZE19",

"WorkerId": "AICACKCEVSQ6C2EXAMPLE",

"HITId": "3TL87MO8CLOFYXKXNRLMZO1MOK4FL5",

"AssignmentStatus": "Submitted",

"AutoApprovalTime": "2020-10-02T14:54:52-07:00",

"AcceptTime": "2020-09-29T14:53:05-07:00",

"SubmitTime": "2020-09-29T14:54:52-07:00",

"Answer": "<?xml version=\"1.0\" encoding=\"ASCII\"?
><QuestionFormAnswers xmlns=\"http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2005-10-01/QuestionFormAnswers. xsd
\"><Answer><QuestionIdentifier>taskAnswers</QuestionIdentifier><FreeText>[{\"weather
\":\"32\"}]</FreeText></Answer></QuestionFormAnswers>"

},

{
"AssignmentId": "3LO069W1SU3COZGELODW56TWTBHILG3",

"WorkerId": "SDLKSDEVSQ6C2EXAMPLE",

"HITId": "3TL87MO8CLOFYXKXNRLMZO1MOK4FL5",

"AssignmentStatus": "Submitted",

"AutoApprovalTime": "2020-10-02T14:58:14-07:00",

"AcceptTime": "2020-09-29T14:57:39-07:00",

"SubmitTime": "2020-09-29T14:58:14-07:00",

"Answer": "<?xml version=\"1.0\" encoding=\"ASCII\"?
><QuestionFormAnswers xmlns=\"http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2005-10-01/QuestionFormAnswers. xsd
\"><Answer><QuestionIdentifier>taskAnswers</QuestionIdentifier><FreeText>[{\"weather
\":\"Hot and dry, with poor air quality.\"}]</FreeText></Answer></
QuestionFormAnswers>"

}

Note that the AWS CLI supports various output formats as well as a option - -query that can be
used to filter your results. For example, the following only returns a list of the WorkerIds that
completed the HIT.

Step 3: Retrieve results API Version 2017-01-17 33

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-output.html#cli-usage-output-filter

Amazon Mechanical Turk Developer Guide

$ aws mturk list-assignments-for-hit \
--hit-id 3TL87MO8CLOFYXKXNRLMZO1MOK4FL5 \
--query 'Assignments[*].WorkerId'

SDK for Python (Boto3)

The following Python code retrieves all of the submitted assignments for your HIT using
list_assignments_foxr_hit This code can be run within a Jupyter Notebook or IPython as
is, or can be incorporated into a Python script and executed.

import boto3
mturk = boto3.client('mturk')

response = mturk.list_assignments_for_hit(HITId='3TL87MO8CLOFYXKXNRLMZO1MOK4FL5")
response['Assignments']

Using 1list_assignments_for_hit returns an array of results similar to those shown below.
Each assignment has an AssignmentId and includes information about the worker who
submitted it, when they first accepted it, and when they submitted their answer. The answer
information is captured in a QuestionFormAnswers XML data structure that you can read in
to extract the results. For example, the first assignment below was submitted by the Worker
with WorkerId AIDACKCEVSQ6C2EXAMPLE, it took them 25 seconds to complete it, and their
answer was "lts currently raining lightly". Scrolling through the other assignments, you can see
how other workers answered this question.

{'AssignmentId': '3I0EN3P9S7I9CGLBIQ5@0ANAQIXB16B’,

'WorkerId': 'AIDACKCEVSQ6C2EXAMPLE,

'HITId': '3TL87MO8CLOFYXKXNRLMZO1MOK4FL5',

'AssignmentStatus': 'Submitted',

'AutoApprovalTime': datetime.datetime(2020, 10, 2, 14, 39, 42,
tzinfo=tzlocal()),

'AcceptTime': datetime.datetime(2020, 9, 29, 14, 39, 17, tzinfo=tzlocal()),

'SubmitTime': datetime.datetime(2020, 9, 29, 14, 39, 42, tzinfo=tzlocal()),

'"Answer': '<?xml version="1.0" encoding="ASCII"?><QuestionFormAnswers
xmlns="http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2005-10-01/

Step 3: Retrieve results API Version 2017-01-17 34

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/mturk.html#MTurk.Client.list_assignments_for_hit
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_QuestionFormAnswersDataStructureArticle.html

Amazon Mechanical Turk Developer Guide

QuestionFormAnswers.xsd"><Answer><QuestionIdentifier>taskAnswers</
QuestionIdentifier><FreeText>[{"weather":"Its currently raining lightly"}]1</
FreeText></Answer></QuestionFormAnswers>"
.
{'AssignmentId': '32AT8R96GLBUSBA6SRINMUBFCI5USP',
'"WorkerId': 'DAAICKCEVSQ6C2EXAMPLE,
'HITId': '3TL87MO8CLOFYXKXNRLMZO1MOK4FL5',
'AssignmentStatus': 'Submitted',
'AutoApprovalTime': datetime.datetime(2020, 10, 2, 14, 44, 47,
tzinfo=tzlocal()),
'AcceptTime': datetime.datetime(2020, 9, 29, 14, 42, 45, tzinfo=tzlocal()),
'SubmitTime': datetime.datetime(2020, 9, 29, 14, 44, 47, tzinfo=tzlocal()),
'"Answer': '<?xml version="1.0" encoding="ASCII"?><QuestionFormAnswers
xmlns="http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2005-10-01/
QuestionFormAnswers.xsd"><Answer><QuestionIdentifier>taskAnswers</
QuestionIdentifier><FreeText>[{"weather":"It is currently chilly and cloudy
outside and looks like it may rain in a little bit."}]</FreeText></Answer></
QuestionFormAnswers>"'
},
{'AssignmentId': '3FTOPS5WARFNLTMFQ7QVP5MWLOBPJIOW',
'WorkerId': 'DDAEBCKCEVSQ6C2EXAMPLE,
'"HITId': '3TL87MO8CLOFYXKXNRLMZO1MOK4FL5"',
'AssignmentStatus': 'Submitted',
'AutoApprovalTime': datetime.datetime(2020, 10, 2, 14, 48, 12,
tzinfo=tzlocal()),
'AcceptTime': datetime.datetime(2020, 9, 29, 14, 43, 28, tzinfo=tzlocal()),
'SubmitTime': datetime.datetime(2020, 9, 29, 14, 48, 12, tzinfo=tzlocal()),
"Answer': '<?xml version="1.0" encoding="ASCII"?><QuestionFormAnswers
xmlns="http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2005-10-01/
QuestionFormAnswers.xsd"><Answer><QuestionIdentifier>taskAnswers</
QuestionIdentifier><FreeText>[{"weather":"Currently indianapolis weather very
cool, because northwest area are most of this situation landing. In currently
approximately cloud is 15 to 18\'C."}]</FreeText></Answer></QuestionFormAnswers>"
.
{'AssignmentId': '3DI28L7YXADDPVEQP80YMB23QVZE19',
'"WorkerId': 'AICACKCEVSQ6C2EXAMPLE,
'HITId': '3TL87MO8CLOFYXKXNRLMZO1MOK4FL5',
'AssignmentStatus': 'Submitted',
'AutoApprovalTime': datetime.datetime(2020, 10, 2, 14, 54, 52,
tzinfo=tzlocal()),
'AcceptTime': datetime.datetime(2020, 9, 29, 14, 53, 5, tzinfo=tzlocal()),
'SubmitTime': datetime.datetime(2020, 9, 29, 14, 54, 52, tzinfo=tzlocal()),
'"Answer': '<?xml version="1.0" encoding="ASCII"?><QuestionFormAnswers
xmlns="http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2005-10-01/

Step 3: Retrieve results API Version 2017-01-17 35

Amazon Mechanical Turk

Developer Guide

QuestionFormAnswers.xsd"><Answer><QuestionIdentifier>taskAnswers</
QuestionIdentifier><FreeText>[{"weather":"32"}]</FreeText></Answer></
QuestionFormAnswers>"'
.
{'AssignmentId': '3L069W1SU3COZGELODW56TWTBHILG3',

'WorkerId': 'SDLKSDEVSQ6C2EXAMPLE,

'"HITId': '3TL87MO8CLOFYXKXNRLMZO1MOK4FL5',

'AssignmentStatus': 'Submitted',

'AutoApprovalTime': datetime.datetime(2020, 10, 2, 14, 58, 14,
tzinfo=tzlocal()),

'AcceptTime': datetime.datetime(2020, 9, 29, 14, 57, 39, tzinfo=tzlocal()),
'SubmitTime': datetime.datetime(2020, 9, 29, 14, 58, 14, tzinfo=tzlocal()),

'"Answer': '<?xml version="1.0" encoding="ASCII"?><QuestionFormAnswers

xmlns="http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2005-10-01/

QuestionFormAnswers.xsd"><Answer><QuestionIdentifier>taskAnswers</

QuestionIdentifier><FreeText>[{"weather":"Hot and dry, with poor air quality."}]1</

FreeText></Answer></QuestionFormAnswers>"

}

This information is returned in a Python dict that can be used to access any of the relevant
values for each assignment. In addition, you can use the ElementTree library as shown below to
parse the Answer XML into a format that can be more easily viewed. This code works well with
tasks that use the crowd-form element as we did in this in this tutorial, but may need to be

modified if you use a standard form element.

import xml.etree.ElementTree as ET
import json

answers = []
namespace = {'mt': 'http://mechanicalturk.amazonaws.com/

AWSMechanicalTurkDataSchemas/2005-10-01/QuestionFormAnswers.xsd"'}

for assignment in response['Assignments']:

assignment_answer = ET.fromstring(assignment['Answer']).find('mt:Answer’,

namespace)
answers.append(json.loads(assignment_answer.find('mt:FreeText',
namespace).text))

print(answers)

Step 3: Retrieve results

API Version 2017-01-17 36

https://docs.python.org/3.8/library/xml.etree.elementtree.html

Amazon Mechanical Turk Developer Guide

Now that we've reviewed the results of our HIT, we can proceed to Step 4: Approve
Assignments.

Step 4: Approve Assignments

In this step, we approve the assignments submitted by workers so that the reward is transferred
to their account. In Step 1, we set the Auto Approval Delay so that if we do nothing, workers are
paid automatically after three days. However, it is always a best practice to approve work quickly
if at all possible so that workers don't have to wait for the time to expire. Alternatively, if you plan
to approve all of the assignments that are submitted, the Auto Approval Delay can be set to 0 and
you can skip this step.

We use the same HITId that was generated in Step 1. You will need to capture that identifier and
insert it in the appropriate location below to approve the results.

AWS CLI

To approve the assignments, we need to start by retrieving a list of the AssignmentIds. We
begin by getting a list of the AssignmentIds using a variation of the query we used in Step 3
to retrieve results.

$ aws mturk list-assignments-for-hit \
--hit-id 3TL87MO8CLOFYXKXNRLMZO1MOK4FL5 \
--query 'Assignments[*].AssignmentId'

This returns a list of the AssignmentIds for our HIT as shown below.

L
"3I0EN3P9S7I9CGLBIQ50ANAQIXB16B",
"32AT8RI96GLBUSBA6SRINMUBFCI5USP",
"3FTOPS5WARFNLTMFOQ7QVP5MWLOBPIOW",
"3DI28L7YXADDPVEQP80YMB230QVZE19",
"3L069W1SU3COZGELODWS56TWTBHILG3"
]

Now we can use the approve-assignment operation to approve each of the assignments.

Step 4: Approve Assignments API Version 2017-01-17 37

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/mturk/approve-assignment.html

Amazon Mechanical Turk

Developer Guide

$ aws
$ aws
aws
aws
aws

“H A H

mturk
mturk
mturk
mturk
mturk

approve-assignment
approve-assignment
approve-assignment
approve-assignment
approve-assignment

SDK for Python (Boto3)

--assignment-id
--assignment-id
--assignment-id
--assignment-id
--assignment-id

3I0EN3P9S7I9CGLBIQ50ANAQIXB16B
32AT8RO6GLBUSBA6SRINMUBFCI5USP
3FTOPSWARFNLTMF@7QVP5MWL@BPIOW
3DI28L7YXADDPVEQP80YMB230VZE19
3L069W1SU3COZGELODWS56TWTBHILG3

To approve the assignments, retrieve the list of assignments using the HITId and iterating

through the results to call the approve_assignment operation.

import boto3

mturk = boto3.client('mturk')

response =

for assignment in response['Assignments']:
mturk.approve_assignment(AssignmentId=assignment['AssignmentId'])

mturk.list_assignments_for_hit(HITId='3TL87MO8CLOFYXKXNRLMZO1MOK4FL5")

Step 4: Approve Assignments

API Version 2017-01-17 38

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/mturk.html#MTurk.Client.approve_assignment

Amazon Mechanical Turk Developer Guide

Creating and managing tasks (HITs)

This section contains information about how to create tasks (HITs) in Amazon Mechanical Turk. This
includes the components of a task, how to create a task, and how to modify an existing task.

To learn how to retrieve HIT status and worker results, see Retrieving HIT status and Retrieving

results respectively.

Topics
» Define questions

« HIT attributes

« Creating HITs
» Modifying HITs

» Using the sandbox

» HIT references using RequesterAnnotation

Define questions

The central component of a task in Amazon Mechanical Turk (Mechanical Turk) is the interface you
provide for workers to give you the data you need. In Mechanical Turk tasks are presented via a
web interface with which workers can interact and submit completed tasks. The following sections
outline how to define a question in Mechanical Turk.

Topics

» Use HTML to define questions

« Question definitions

» Requester website layouts

Use HTML to define questions

Because workers access tasks (HITs) on Amazon Mechanical Turk (Mechanical Turk) using a web
browser, the most common approach for creating a task interface for Mechanical Turk is to use
HTML, CSS, and JavaScript. The following describes how the Mechanical Turk worker website works
and the necessary steps to define an HTML task interface.

Define questions API Version 2017-01-17 39

Amazon Mechanical Turk Developer Guide

Topics

How Mechanical Turk tasks are rendered
Defining an HTML form

Crowd HTML Elements

Templating
Submitting from JavaScript

How Mechanical Turk tasks are rendered

When a worker accepts a task in the Mechanical Turk marketplace, they are directed to a page for
the assignment they've accepted. This page contains an iframe HTML element that has a URL for
your task interface. If you define your question using the HTMLQuestion schema, the URL is for a
Mechanical Turk location containing the HTML you provided. If you use the ExternalQuestion
schema, this is the URL you provide, which points to your own resources.

Mechanical Turk appends four query parameters to the URL that provide your task interface with
information about the assignment, as shown in the following example.

https://tictactoe.amazon.com/gamesurvey.cgi?gameid=01523
&hitId=123RVWYBAZWQQEXAMPLE
&assignmentId=123RVWYBAZWOQOEXAMPLE456RVWYBAZWOOEXAMPLE
&turkSubmitTo=https://www.mturk.com/
&workerId=AZ3456EXAMPLE

In this example, the first line is the URL that was provided in an ExternalQuestion definition,
and the additional lines contain query parameters that are appended by Mechanical Turk. These are
described below.

hitId: The ID of the HIT
assignmentId: The ID of the assignment that the worker has accepted for this HIT

turkSubmitTo: The Mechanical Turk server to which your form should submit a response
workerId: The ID of the worker

In most cases, you won't need to directly interact with these values, but it can be useful
information in various situations. For example, you can have your question check the

Use HTML to define questions API Version 2017-01-17 40

Amazon Mechanical Turk Developer Guide

assignmentId value to see if a worker is currently previewing your task or if they've accepted it.
If the assignmentIdis ASSIGNMENT_ID_NOT_AVAILABLE, you can disable input fields so that
workers don't start working on it before they've accepted it.

Defining an HTML form

The example below describes a simple HTML form that prompts workers to answer a single
question. The centerpiece of this task is the form element that directs the form to submit the
worker response to 'https://www.mturk.com/mturk/externalSubmit’ with an HTTP POST call.

This element contains a textarea input element with a name attribute that is associated with
the worker's response. You can include as many input elements as you wish in your form, but each
element must have a unique name attribute.

<!DOCTYPE html>
<script type='text/javascript' src='https://s3.amazonaws.com/mturk-public/
externalHIT_vl.js'></script>
<form method='post' id='mturk_form' action='https://www.mturk.com/mturk/
externalSubmit'>

<p>Describe the current weather where you live</p>

<p><textarea name="weather" cols="80" rows="3"></textarea></p>

<p><input type="submit" id="submitButton" class="btn btn-primary" value="Submit"/></
p>
</form>
<script language='Javascript'>turkSetAssignmentID()</script>

To be able to successfully process the worker's response, Mechanical Turk needs the form response
to include the assignmentId that was provided in the query parameters for this task. The two
script elements in the example above use a Mechanical Turk library that will automatically
populate the assignmentId value in the form.

Note that the form action attribute in the preceding example explicitly specifies the URL to which
the form should be submitted. If you are testing in the sandbox environment, you need to modify
this value to https://workersandbox.mturk.com/mturk/externalSubmit, or construct it
using the value provided in the turkSubmitTo query parameter.

The HTML you include in your task can be as simple or complex as necessary to allow workers to
provide the data you need. It's not uncommon for developers to include CSS and JavaScript code
to provide a rich interface to workers, and in many cases, developers have leveraged React or other
frontend libraries. Regardless of how you present the task to workers, you must use of a form

Use HTML to define questions API Version 2017-01-17 41

https://www.mturk.com/mturk/externalSubmit

Amazon Mechanical Turk Developer Guide

element to submit a POST to Mechanical Turk when the task is complete. This directs the browser
to advance and notify Mechanical Turk that the task is complete. For Mechanical Turk to accept the
POST operation, it must include the assignmentId field so that Mechanical Turk can associate it
with the worker's submission.

Crowd HTML Elements

Crowd HTML Elements are web components, a web standard that abstracts HTML markup, CSS,
and JavaScript functionality into an HTML tag or set of tags. This allows you to build powerful task
interfaces more easily.

To use Crowd HTML Elements you must include the following in your task HTML.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

This imports the library and gives you access to all of the elements. You can then replace the form
element in your HTML with the crowd-form element as shown below. In this example, we have
the same task interface as the one described in the previous section, but the HTML is simplified
because the crowd-form element encapsulates the necessary code to direct where the response
will be submitted, includes the assignmentId, and automatically adds a Submit button if it's not
present.

<!DOCTYPE html>
<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>

<p>Describe the current weather where you live</p>

<p><textarea name="weather" cols="80" rows="3"></textarea></p>
</crowd-form>

Crowd HTML Elements includes a range of elements ranging from wrappers for common form
elements such as text fields and check boxes (crowd-input and crowd-checkbox), to full task
interfaces for tasks such as drawing bounding boxes on images (crowd-bounding-box) and text
entity annotation (crowd-entity-annotation).

For a full list of the available elements, see the Crowd HTML Elements Reference.

Use HTML to define questions API Version 2017-01-17 42

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_HTMLCustomElementsArticle.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-ui-template-reference.html

Amazon Mechanical Turk Developer Guide

Templating

When using Mechanical Turk tasks it's common to use a template approach to reuse the same
question definition on multiple tasks. For example, the following can be used to gather keywords
for a single image, but wouldn't be as useful when collecting keywords for thousands of images.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>

<p>Provide three keywords for the image above:</p>
<p><input type="text" name="keywordl"></p>
<p><input type="text" name="keyword2"></p>
<p><input type="text" name="keyword3"></p>
</crowd-form>

To enable reuse of this HTML, you can replace the image URL with a template variable surrounded
by curly braces as shown below. We've also added the URL as a hidden form element to make it
easier to process the results by including the source URL alongside the keywords workers provide.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>

<input type="hidden" name="url" value="${url}">
<p>Provide three keywords for the image above:</p>
<p><input type="text" name="keywordl"></p>
<p><input type="text" name="keyword2"></p>
<p><input type="text" name="keyword3"></p>
</crowd-form>

When you iterate through the list of images, you can then simply perform a find/replace on the
${url} value in the HTML so that each task has a unique question corresponding to an image URL.

Note that the ${} syntax used above is also used for tasks created using the Mechanical Turk
requester website. There are a variety of different templating languages and libraries you can use
to render your task interface. It's recommended you choose a library that works best for you in
your desired programming language.

Use HTML to define questions API Version 2017-01-17 43

Amazon Mechanical Turk Developer Guide

Submitting from JavaScript

In some cases, it's necessary to collect data using mechanisms other than form fields. For example,
a task interface that prompts workers to draw a bounding box on an image would capture the
coordinates of the box workers drew as a JavaScript variable. To allow workers to submit the data,
you must place it in a form element that can be submitted to Mechanical Turk.

There are two common ways to do this. The first is using a hidden form value within your task
as shown in the following code excerpt. The form includes hidden values for the assignmentId
and coordinates that we want to return. When workers choose the Submit button, the
handleFormSubmit function is called. The function populates the values in the hidden form
elements and then submits the form.

<html>

<button onclick="handleFormSubmit()">Submit</button>
<form method="'post' id='mturk_form' action='https://www.mturk.com/mturk/
externalSubmit'>

<input type="hidden" id="inputCoordinates" name="coordinates">

<input type="hidden" id="inputAssignmentId" name="assignmentId">
</form>

<script>

function handleFormSubmit() {
const urlParams = new URLSearchParams(window.location.search)
document.getElementById('inputAssignmentId').value = urlParams.get('assignmentId')
document.getElementById('inputCoordinates').value = JSON.stringify(coordinates)
document.getElementById('mturk_form').submit()

}

</script>

You must include a value for assignmentId in your form submission so that Mechanical Turk can
correctly associate the response with the correct worker and HIT.

In cases where you don't want to include the form and hidden inputs in the HTML, you can instead
create and populate the elements dynamically from your JavaScript code as shown in the following
example. Note that in the following code, we're assigning the value for action based on the
turkSubmitTo value from the URL search parameters for the task. This sets the correct value
based on whether or not you are working in the production or sandbox environment.

Use HTML to define questions API Version 2017-01-17 44

Amazon Mechanical Turk Developer Guide

const handleClick () =>{
const urlParams = new URLSearchParams(window.location.search)

// create the form element and point it to the correct endpoint

const form = document.createElement('form')

form.action = (new URL('mturk/externalSubmit', urlParams.get('turkSubmitTo'))).href
form.method = 'post'

// attach the assignmentId

const inputAssignmentId = document.createElement('input')
inputAssignmentId.name = 'assignmentId'
inputAssignmentId.value = urlParams.get('assignmentId')
inputAssignmentId.hidden = true
form.appendChild(inputAssignmentId)

// attach data I want to send back

const inputCoordinates = document.createElement('input')
inputCoordinates.name = 'coordinates'
inputCoordinates.value = JSON.stringify(coordinates)
inputCoordinates.hidden = true
form.appendChild(inputCoordinates)

// attach the form to the HTML document and trigger submission

document.body.appendChild(foxrm)
form.submit()

Question definitions
Mechanical Turk provides three XML schemas that you can use to define your questions:

e HTMLQuestion
e ExternalQuestion

e QuestionForm

Use the following topics to learn more about these schemas.

Topics
« HTMLQuestion

« ExternalQuestion

Question definitions API Version 2017-01-17 45

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_HTMLQuestionArticle.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ExternalQuestionArticle.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_QuestionFormDataStructureArticle.html

Amazon Mechanical Turk Developer Guide

e QuestionForm

HTMLQuestion

Most developers use the HTMLQuestion schema to create HITs. HTMLQuestion wraps an HTML
form that is displayed to workers. This typically takes the following form:

<HTMLQuestion xmlns="http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2011-11-11/HTMLQuestion.xsd">
<HTMLContent><![CDATA[
<IDOCTYPE html>
<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
<p>Describe the current weather where you live</p>
<p><textarea name="weather" cols="80" rows="3"></textarea></p>
</crowd-form>
1]></HTMLContent>
<FrameHeight>0</FrameHeight>
</HTMLQuestion>

As you can see in the preceding XML, the HTML content is enclosed in a CDATA element within
the XML and includes the elements that define how your question appears to workers. More
information on defining your HTML can be found in Use HTML to define questions.

ExternalQuestion

When you create a task using the HTMLQuestion format, your HTML is hosted by Mechanical Turk.
Using Mechanical Turk to host your task helps ensure that it is in a highly available location. If,
however, you want to host the task interface on your own servers or cloud resources, you can use
the ExternalQuestion format.

To use ExternalQuestion, your URL must meet the following criteria:

» The location specified by the URL must support HTTPS.

» The location must be highly available and able to respond quickly when workers accept or
preview your task.

« The URL cannot include any of the reserved query parameters (assignmentId, hitId,
turkSubmitTo, and workerId) that is appended by Mechanical Turk, as described in How
Mechanical Turk tasks are rendered .

Question definitions API Version 2017-01-17 46

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_HTMLQuestionArticle.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ExternalQuestionArticle.html

Amazon Mechanical Turk Developer Guide

» The location specified by the URL must perform a form POST operation with the assignmentId
when the task is completed, as described in Use HTML to define questions.

Amazon S3 is a great option for hosting your task HTML. When you use an S3-hosted layout, you
need to add a ContentType header and set the ACL to public read, as shown in the following
Python SDK PutObject call:

s3_client.put_object(
ACL="public-read',
Body=HTML layout,
Bucket=S3 bucket name,
Key=0bject name,
ContentType="text/html"

When using this schema, you simply need to indicate the URL you want to use.

<?xml version="1.0" encoding="UTF-8"7?>

<ExternalQuestion xmlns=" http://mechanicalturk.amazonaws.com/

AWSMechanicalTurkDataSchemas/2006-07-14/ExternalQuestion.xsd">
<ExternalURL>https://tictactoe.amazon.com/gamesurvey.cgi?gameid=01523</ExternalURL>
<FrameHeight>0</FrameHeight>

</ExternalQuestion>

When you use ExternalQuestion, you can make the served HTML as complex or simple as
necessary for your particular task. However, you must use of a form element to submit a POST
to Mechanical Turk when the task is complete. This directs the browser to advance and notify
Mechanical Turk that the task is complete.

QuestionForm
QuestionFormis a legacy XML format that can be used to define Mechanical Turk tasks using an

XML schema. While it is still supported, we recommend building your task using HTMLQuestion or
ExternalQuestion.

Question definitions API Version 2017-01-17 47

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_QuestionFormDataStructureArticle.html

Amazon Mechanical Turk Developer Guide

Requester website layouts

If you have an existing task you created using the Mechanical Turk requester website, you can
create HITs by referencing the LayoutId for that task and avoiding the need to provide a question
value. To find the LayoutId, navigate to your Project List on the requester website and select
the name of the project you want to use. A box pops up showing the HIT Type ID, Layout ID, and
Layout Parameters that you can reference.

As shown in the following code example, the definition also includes the template parameters that
are defined within the HTML. When you create a HIT, you need to pass both the HITLayoutId and
values for the parameters that are defined.

.oy

HITLayoutId: "302UWD6SNTXSG9Z4I77HMZAXQU6499",
HITLayoutParameters: [

{
"Name": "image_url",
"Value": " https://my-bucket.s3.amazonaws.com/imgl234.jpg "
}
]

More detail on creating HITs with these values can be found in Creating HITs.

HIT attributes

When you create a task (HIT) with Amazon Mechanical Turk (Mechanical Turk), you provide a
number of attributes about the task that tell Mechanical Turk how to display it in the marketplace.
These are separate from the content and question of the task itself, and include the title,
description, reward amount, and attributes describing how long the task will remain active.

The attributes can be grouped as follows.
Descriptive attributes

« Title
» Description

Requester website layouts API Version 2017-01-17 48

https://requester.mturk.com/create/projects

Amazon Mechanical Turk Developer Guide

« Keywords

Reward time-related attributes

« AssignmentDurationInSeconds
o AutoApprovalDelayInSeconds
e« LifetimeInSeconds

MaxAssignments QualificationRequirements

The first six attributes (Title, Description, Keywords, Reward,
AssignmentDurationInSeconds, and AutoApprovalDelayInSeconds) and
QualificationRequirements comprise the HIT Type for the task. The HIT Type attributes

are common across a group of HITs and allow the Mechanical Turk marketplace to group tasks
together that have the same HIT Type. When workers complete a task, they can immediately start
on the next task with the same HIT Type.

When you call the CreateHIT API and provide these values, Mechanical Turk first attempts to
find an existing HIT Type that has the same values for these attributes. If one doesn't exist, then
a new HIT Type is created. Alternatively, you can call CteateHITType with these attributes

to directly create a HIT Type and then use the resulting HIT Type ID to create HITs using the
CreateHITWithHITType API.

Title, Description, and Keywoxds

These should provide a clear description of the task to be completed, as well as any relevant search
keywords that help workers find your task.

Reward

The amount that is transferred to the worker when the task is approved. This is in US dollars and
should be provided to the API as a string. For example, to set the reward for a HIT at 10 cents, the
value would be "0.10".

AssignmentDurationInSeconds

AssignmentDurationInSeconds is the amount of time that workers have to complete the task.
For example, if you create a HIT that has an AssignmentDurationInSeconds of 300 it expires
after 5 minutes. If a worker does not complete it in that time, it is be assigned to a new worker.

HIT attributes API Version 2017-01-17 49

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateHITOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateHITTypeOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateHITWithHITTypeOperation.html

Amazon Mechanical Turk Developer Guide

You should specify a duration that is long enough that a worker can still complete it even if they
run into difficulties. However, don't set it to be overly long, as this can result in an assignment
becoming orphaned for the duration of the time. Setting a long assignment duration can also
discourage workers from accepting it if workers believe the amount of time required is significantly
out of line with the reward amount.

Auto-approval delay

After a worker submits an aAssignment, you have the option to approve or reject their work.
However, if the amount of time specified by the AutoApprovalDelayInSeconds elapses, then
it is automatically approved. Timely approval or rejection of worker submissions is important to
workers as it directly influences how quickly they get paid for the tasks they complete. As such,
you should strive to review work shortly after it is submitted and set the auto-approval delay as
low as possible so that workers don't have to wait inordinately long if you fail to approve some
assignments. To automatically approve all work that is submitted, you can set the auto-approval
delay to O.

Lifetime

LifetimeInSeconds is the maximum amount of time that a HIT is available to be accepted in the
Mechanical Turk marketplace. If the lifetime expires before all of the available assignments have
been accepted, it is removed from the marketplace. Note that if the lifetime expires after a worker
accepts an assignment, the worker can still submit a response up until the assignment duration
expires.

Max Assignments
MaxAssignments specifies the maximum number of workers that can submit responses for a HIT.
Qualification Requirements

QualificationRequirements can be used to manage which workers can view and accept a HIT.
More information on using qualification requirements can be found in Managing workers.

Creating HITs

A human intelligence task, or HIT, is a question your application asks and a worker answers. There
are two primary ways to create tasks (HITs) in Amazon Mechanical Turk (Mechanical Turk): directly
or using a HIT Type ID. In both cases, you need to provide a valid question and attributes for your
HIT.

Creating HITs API Version 2017-01-17 50

Amazon Mechanical Turk Developer Guide

Topics

o Create a HIT Directly

o Create a HIT using a HIT Type

Create a HIT Directly

The most common way to create HITs in Mechanical Turk is via the CreateHIT operation. This API
can be called with a JSON object containing the following values.

"Title": String,

"Description": String,

"Question": String,

"HITLayoutId": String,

"HITLayoutParameters": HITLayoutParameterList,
"Reward": String,
"AssignmentDurationInSeconds": Integer,
"LifetimeInSeconds": Integer,

"Keywords": String,

"MaxAssignments": Integer,
"AutoApprovalDelayInSeconds": Integer,
"QualificationRequirements": QualificationRequirementList,
"AssignmentReviewPolicy": ReviewPolicy,
"HITReviewPolicy": ReviewPolicy,
"RequesterAnnotation": String,
"UniqueRequestToken": String

The response includes the HITId that was generated for the task as well as the HITTypeId that
has been assigned to the HIT. It also includes all of the attributes of the HIT that were provided in
the CreateHIT call.

Create a HIT using a HIT Type

Creating a HIT with a HIT Type allows you to be explicit about which HITs ought to be the same
type and is a best practice for customers creating large numbers of HITs. It is also valuable when
connecting notifications to your HITs as described in Use Mechanical Turk notifications.

Create a HIT Directly API Version 2017-01-17 51

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateHITOperation.html

Amazon Mechanical Turk

Developer Guide

When creating a HIT using a HIT Type, you can use a HIT Type ID generated via a previous
CreateHIT call or generate one by calling the CreateHITType operation. This APl can be called
with a JSON object containing the following values.

"Title": String,

"Description": String,

"Reward": String,
"AssignmentDurationInSeconds": Integer,
"Keywords": String,
"AutoApprovalDelayInSeconds": Integer,

"QualificationRequirements": QualificationRequirementList

The response includes a generated HITTypeId, or the ID of an existing HIT Type in your account
that has the same attributes. The HITTypelId can then be used to call CreateHITWithHITType
with a JSON object containing the following values.

"HITTypeld": String,

"Question": String,

"HITLayoutId": String,

"HITLayoutParameters": HITLayoutParameterList,
"LifetimeInSeconds": Integer,
"MaxAssignments": Integer,
"AssignmentReviewPolicy": ReviewPolicy,
"HITReviewPolicy": ReviewPolicy,
"RequesterAnnotation": String,
"UniqueRequestToken": String

The response includes the HITId that was generated for the HIT and all of the attributes of the

HIT.

Create a HIT using a HIT Type

API Version 2017-01-17 52

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateHITOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateHITTypeOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateHITWithHITTypeOperation.html

Amazon Mechanical Turk Developer Guide

Modifying HITs

Once a HIT has been created in the Amazon Mechanical Turk (Mechanical Turk) marketplace, it's
possible to modify it; however, there is an important caveat. Because your HIT is now available to
workers, Mechanical Turk will not allow you to make changes that will negatively impact them. For
example, Mechanical Turk won't let you delete a HIT on which a worker is actively working. The
following are the common operations you can perform to modify HITs.

Topics

Modify expiration time

Add additional assignments

Modify the HIT Type

Delete

Modify expiration time

When a HIT is created, the LifetimeInSeconds is used to calculate an ExpiresAt value that
tells Mechanical Turk when to remove a HIT from the marketplace if it hasn't been completed yet.
You can use the UpdateExpirationForHIT operation to either extend this time further into the

future to allow workers more time to complete it or shorten the time if responses are no longer
valuable.

A common use of UpdateExpirationForHIT is to call it with a value of O or a time in the past
to tell Mechanical Turk to immediately expire a HIT. This is useful when you make a mistake in
your HIT definition and immediately need to remove the task from the marketplace. Note that this
won't prevent workers who have already accepted your HIT from completing and submitting it.

Add additional assignments

When a HIT is created, the MaxAssignments value is provided and informs Mechanical Turk of
how many workers can submit responses for the task. If you need to allow additional workers
to provide responses, you can call CreateAdditionalAssignmentsForHIT to add additional

available assignments.

A common pattern for managing quality in Mechanical Turk is to ask multiple workers to provide
responses for a given task and then compare the results. One approach for doing this is to

Modifying HITs API Version 2017-01-17 53

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_UpdateExpirationForHITOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateAdditionalAssignmentsForHITOperation.html

Amazon Mechanical Turk Developer Guide

start with a minimal number of assignments and then add additional assignments if there is
disagreement among workers. You can use this approach to limit the number of assignments
needed for tasks where there is general agreement, while gathering additional data points for tasks
that are more ambiguous.

Note that HITs created with fewer than 10 assignments cannot be extended to have 10 or more
assignments.

Modify the HIT Type

The HIT Type attributes of a HIT, such as the reward amount, title, or assignment duration, can be
modified by changing the HIT Type assigned using the UpdateHITTypeOfHIT operation. While

this can allow you to modify any of the HIT Type attribute values on an active HIT, Mechanical Turk
prevents you from changing the HIT Type on HITs with assignments that have been accepted or
submitted by workers.

Delete

The DeleteHIT operation disposes of HITs that are no longer needed. Calling this operation
deletes your HIT from Mechanical Turk. Once deleted, it is no longer available if you call ListHITs,
GetHIT, or ListAssignmentsForHIT. HITs must be in a Reviewable state to be disposed and

all of the completed assignments must be either approved or rejected. As a result, this operation
isn't a solution for removing HITs that you published by mistake, you should instead use the
UpdateExpirationForHIT operation to immediately expire your task. HITs are automatically

disposed after 120 days.

Using the sandbox

Many requesters choose to test their Amazon Mechanical Turk (Mechanical Turk) tasks in the
sandbox environment. The sandbox is a mirror image of the production marketplace and is a useful
way to test task interfaces and processes without spending money on worker rewards or fees. In
the sandbox environment, you can perform all of the same operations you can perform in the
production environment, such as creating HITs and retrieving results. This can be a great way to
test your task interface and confirm that the results you receive meet your needs.

Because the sandbox is a mirror of production environment, you need to complete account setup
a second time, as described in Set up Amazon Mechanical Turk. To enable easy switching between

testing and production, you can link to the same AWS account and use the same AWS credentials.

Modify the HIT Type API Version 2017-01-17 54

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_UpdateHITTypeOfHITOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ListHITsOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_GetHITOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ListAssignmentsForHITOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_UpdateExpirationForHITOperation.html

Amazon Mechanical Turk Developer Guide

To switch to the sandbox environment, simply specify that you want the CLI or SDK to use the
sandbox endpoint (https://mturk-requester-sandbox.us-east-1.amazonaws.com).

API calls using the CLI

When using the sandbox from the AWS CLI, you need to specify the sandbox endpoint with each
operation as shown in the following GetAccountBalance request.

aws mturk get-account-balance --endpoint https://mturk-requester-sandbox.us-
east-1.amazonaws.com

This returns an available balance of 70000.00, the default balance in the sandbox.

API calls using the Python SDK (boto3)

The Python AWS SDK, like all of the AWS SDKs, allows you to specify the endpoint when you
instantiate a Mechanical Turk client. The following example shows how you would create a client
and make a request using the GetAccountBalance operation.

import boto3
client = boto3.client(
'mturk’,

endpoint_url="https://mturk-requester-sandbox.us-east-1.amazonaws.com'

)

print(client.get_account_balance()['AvailableBalance'])

This returns an available balance of 70000.00, the default balance in the sandbox.

Testing HITs

To test your HITs in the sandbox, you can use the same operations described in Creating HITs,

provided you've configured the SDK or CLI to use the sandbox endpoint. When you create HITs in
the sandbox, they are published to https://workersandbox.mturk.com instead of the production

marketplace. Since this is a separate location and workers won't receive a reward for completing
your tasks there, you need to create an account and complete the tasks yourself, or have members
of your team assist, to fully test your HITs.

API calls using the CLI API Version 2017-01-17 55

https://workersandbox.mturk.com

Amazon Mechanical Turk Developer Guide

When HITs are completed in the sandbox environment, you can retrieve results using the same
operations as those described in the following sections of this guide.

HIT references using RequesterAnnotation

When building processes that leverage Amazon Mechanical Turk (Mechanical Turk), it's often
valuable to keep track of identifiers associated with the data in each HIT, particularly when
handling HIT responses via notifications. For example, you might want to associate your HITs with
a record in a database such as Amazon DynamoDB, and want your HIT to reference the primary key
of the record.

The RequesterAnnotation attribute is a useful option for tracking these references.

When you create a HIT using CreateHIT or CreateHITWithHITType, you can provide a
RequesterAnnotation field that contains arbitrary data about each HIT. Although it is limited to
255 ASCII characters, this is generally adequate to capture identifiers that denote the origin of your

data. The data provided here is only visible to the requester who created the HIT.

When you receive a notification that a HIT has been completed, you can use the GetHIT operation
to retrieve the RequesterAnnotation. The identifier captured in the RequesterAnnotation
can then be used to make updates in your database or other systems.

HIT references using RequesterAnnotation API Version 2017-01-17 56

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateHITOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateHITWithHITTypeOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_GetHITOperation.html

Amazon Mechanical Turk Developer Guide

Retrieving results

Retrieving the results of a HIT involves gathering the responses from each of the assignment
submissions provided by workers. At any point in a HIT's lifecycle (before it is disposed) you can call
the ListAssignmentsForHIT operation to retrieve all of assignments that have been submitted

and the answers provided by workers. If the some of the assignments are still awaiting submission
by workers, you receive partial results containing the assignments have been submitted so far.

Topics

« Assignment attributes

» Assignment answer

Assignment attributes

The ListAssignmentsForHIT operation returns an array of zero or more assignments, each
captured in an Assignment data structure. The following example shows the data structure that
is returned. Each assignment includes the ID of the HIT with which it's associated, the worker who
submitted it, and the ID of the assignment itself. The AssignmentStatus is one of Submitted,
Approved, or Rejected. When a worker first submits an assignment, the status is Submitted,
and changes based on your decision to approve or reject the assignment.

AssignmentId: "123RVWYBAZWQOOEXAMPLE456RVWYBAZWQQEXAMPLE",
WorkerId:"AZ3456EXAMPLE",

HITId:"123RVWYBAZWOQEXAMPLE",
AssignmentStatus:"Submitted",

AcceptTime: "2019-12-01T12:00:00Z2",

SubmitTime: "2019-12-01T13:04:597",

AutoApprovalTime: "2019-12-04T13:04:597",

Answer:'...

The AcceptTime and SubmitTime indicate when a worker first accepted the task and when they
submitted it. This can be used to infer a rough approximation of how long it took the worker to

Assignment attributes API Version 2017-01-17 57

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ListAssignmentsForHITOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_AssignmentDataStructureArticle.html

Amazon Mechanical Turk Developer Guide

complete the task; however, keep in mind that a worker may step away from their computer for a
period of time after accepting a task so the time delta may be inflated.

The AutoApprovalTime indicates when the assignment will be automatically approved if you
don't approve or reject it yourself. This is computed by adding the auto-approval delay you set
when creating the HIT to the SubmitTime.

Assignment answer

The Answer value is returned as a string containing a QuestionFormAnswers XML data structure.

The layout of this data structure corresponds to the HTML form fields you provided in your
question HTML. For example, consider the following task form using a standard HTML form
element and form field.

<form method="'post' id='mturk_form' action='https://www.mturk.com/mturk/
externalSubmit'>

<p>What country do you live in?</p>

<p><input type="text" name="country"></p>

<p>Describe the current weather where you live</p>

<p><textarea name="weather" cols="80" rows="3"></textarea></p>

<p><input type="submit" id="submitButton" class="btn btn-primary" value="Submit"/></
p>
</form>

The QuestionFormAnswers data structure contains an Answer value for each form field in
your HTML. The QuestionIdentifier is the name supplied for the form field in your HTML
and the FreeText attribute is the value that was entered in the field by the worker. Here the
QuestionIdentifier values country and weather match the names specified in the form
definition. The FreeText values contain the worker's responses.

<?xml version="1.0" encoding="ASCII"?>
<QuestionFormAnswers xmlns="http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2005-10-01/QuestionFormAnswers.xsd">
<Answer>
<QuestionIdentifier>country</QuestionIdentifier>
<FreeText>United States</FreeText>
</Answer>

Assignment answer API Version 2017-01-17 58

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_QuestionFormAnswersDataStructureArticle.html

Amazon Mechanical Turk Developer Guide

<Answer>
<Questionldentifier>weather</QuestionIdentifier>
<FreeText>It's currently raining lightly</FreeText>
</Answer>
</QuestionFormAnswers>

Assignment Answer when using crowd-form

The structure of the answers returned in the QuestionFormAnswer data structure is slightly
different when using the crowd-form element from the Crowd HTML Elements library. Consider
the following example that mirrors the preceding one, but replaces form with crowd-form.

<crowd-form>
<p>What country do you live in?</p>
<p><input type="text" name="country"></p>
<p>Describe the current weather where you live</p>
<p><textarea name="weather" cols="80" rows="3"></textarea></p>
</ crowd-form>

The crowd-form element collapses all of the form field values into a single Answer value in the
QuestionFormAnswer data structure as shown in the following example. This answer always has
the identifier taskAnswers and the FreeText value is an array of JSON key-value pairs containing
the worker answers.

<?xml version="1.0" encoding="ASCII"?>
<QuestionFormAnswers xmlns="http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2005-10-01/QuestionFormAnswers.xsd">
<Answer>
<QuestionIdentifier>taskAnswers</QuestionIdentifier>
<FreeText>

L

"country": "United States",
"weather": "It's currently raining lightly"

]
</FreeText>
</Answer>

Assignment answer API Version 2017-01-17 59

Amazon Mechanical Turk Developer Guide

</QuestionFormAnswers>

Assignment answer API Version 2017-01-17 60

Amazon Mechanical Turk Developer Guide

Retrieving HIT status

At any point after a HIT is created in Amazon Mechanical Turk (Mechanical Turk) up until it is
disposed, you can retrieve the status of a HIT using the GetHIT operation. In addition, you can
call ListHITs, ListHITsForQualificationType, or ListReviewableHITs to retrieve HIT
information. The HIT data structure returned by these operations includes the attributes and
question used to create the HIT, as well as attributes that describe the current status of the HIT.

The most useful attribute to monitor is the HITStatus value, which can be used to evaluate if a
HIT is complete. When a HIT is created, its HITStatus initially has a value of Assignable, which
indicates that it's possible for a worker to accept it and begin working on it. After the maximum
number of assignments have been accepted, the HIT moves to a status of Unassignable because
no additional workers can accept it. Finally, a HIT moves to the Reviewable state when all of

the assignments have been submitted or the HIT has expired. Keep in mind that you can retrieve
interim results at any time, regardless of whether or not all of the HITs have been submitted.

You can use the values NumberOfAssignmentsAvailable and
NumberOfAssignmentsPending to monitor assignment acceptance and submission. When

a HIT is first created, the number of assignments available is equal to the MaxAssignments
value. As HITs are accepted by workers, this number is reduced and the number of assignments
pending increases. When workers submit assignments, they are no longer reflected in
NumberOfAssignmentsPending. Similarly, if workers return an assignment or the assignment
duration elapses, the assignment is no longer reflected in pending but returns to available. When
all of the available assignments have been submitted or the HIT expires, the number of pending
and available are both 0.

HIT Lifecycle

The following example shows the HIT status values through the lifecycle of a HIT with
MaxAssignments set to 5.

Step HITStatus Number Of Number Of
assignments assignments
available pending

Initial state Assignable 5 0

API Version 2017-01-17 61

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_GetHITOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ListHITsOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ListHITsForQualificationTypeOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ListReviewableHITsOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_HITDataStructureArticle.html

Amazon Mechanical Turk

Developer Guide

Step

Three assignments
have been accepted

All assignments
accepted and two
submitted

One assignment is
returned

All assignments
submitted

Three of the
submitted assignmen
ts have been
approved

All of the assignmen
ts have been
approved

HITStatus

Assignable

Unassignable

Assignable

Reviewable

Reviewable

Reviewable

Number Of
assignments
available

2

Number Of
assignments
pending

3

API Version 2017-01-17 62

Amazon Mechanical Turk Developer Guide

Managing workers

This section contains information about how you can improve the quality of the results you
get from Amazon Mechanical Turk (Mechanical Turk) by rewarding your workers for successful
completion of your tasks and specifying which workers you want working on them.

Topics

» Approving and rejecting work

« Awarding a bonus

» Blocking workers

» Selecting eligible workers

» Working with custom qualification types

« Communicate with workers

Approving and rejecting work

Before workers can receive payment for tasks you post to Amazon Mechanical Turk (Mechanical
Turk), the work must be approved. You can review a worker's submission prior to transferring funds
to their account.

When you create tasks (HITs) in Mechanical Turk, one of the attributes you can set is the auto-
approval delay. This specifies how long you have to review a task before it's automatically
approved. As a general rule, it's best to keep this delay as short as possible so that workers don't
have to wait overly long to receive payment for the work they did for you. Being prompt and fair in
payment contributes to a positive relationship with the worker community.

Between the time a task is submitted and when the auto-approval delay is reached, you can use
ListAssignmentsForHIT to review a worker's submission and validate that they've made a

reasonable effort to complete the task successfully. If so, you can call ApproveAssignment to

authorize payment to the worker. If you identify a worker that is putting in no effort at all on your
task (spamming), you can use the RejectAssignment operation to invalidate their submission.

We recommend you only reject work when workers are clearly putting in no effort to submit
an accurate response to your task. It's inappropriate to penalize a worker for submitting data
incorrectly because you provided unclear instructions or they simply made a mistake in interpreting

Approving and rejecting work API Version 2017-01-17 63

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ListAssignmentsForHITOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ApproveAssignmentOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_RejectAssignmentOperation.html

Amazon Mechanical Turk Developer Guide

what you wanted them to do. Most workers zealously guard their approval rating and avoid doing
work for requesters that they believe are in unfair in how they reject work.

In the event that you reject an assignment but then discover that the issue was not the worker's
fault, you can call ApproveAssignment to reverse the rejection, but only for assignments
submitted in the last 30 days that haven't been deleted.

Awarding a bonus

You can send bonus payments to workers who have completed an assignment for you in Amazon
Mechanical Turk (Mechanical Turk) in the past six months. Requesters commonly use bonus
payments to recognize workers that perform tasks particularly well, or go above and beyond in
helping to resolve problems with a task interface.

To send a bonus, you can use the SendBonus operation. You need to provide the ID of the worker
and a past assignment that they've completed for you. The operation also requires that you specify
the bonus amount in US Dollars and provide a reason for the award.

Note that your account is charged for the bonus payment as well as Mechanical Turk fees.

Blocking workers

When you identify workers that are not putting in the requested effort on your tasks on Amazon
Mechanical Turk (Mechanical Turk), you have the option to block them. This prevents them from
doing any future work for you so long as the block is in place. Workers are notified that they've
been blocked from your tasks.

The CreateWorkerBlock operation can be used to block a worker by simply providing the

ID of the worker and a reason for the block. Similarly, you can remove a block by using the
DeleteWorkerBlock operation. At any point you can retrieve all of the workers that have been

blocked by using the ListWorkerBlocks operation.

Note that we recommend you be judicious in your use of worker blocks and only block those
workers that are clearly not making an attempt to correctly respond to your task (spamming).

If a worker is simply misreading instructions or lacks the requisite skills to complete your task
successfully, we advise you to use a custom qualification requirement to exclude them from future
tasks, rather than a block. Because the blocks a worker receives are a component of Mechanical
Turk worker review policies and frequent blocks may result in account suspension, workers are

Awarding a bonus API Version 2017-01-17 64

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ApproveAssignmentOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_SendBonusOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateWorkerBlockOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_DeleteWorkerBlockOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ListWorkerBlocksOperation.html

Amazon Mechanical Turk Developer Guide

sensitive to being blocked by requesters. If the worker community believes that you are blocking
workers unfairly, they may choose to avoid accepting your tasks in the future.

Selecting eligible workers

By default, all tasks (HITs) posted to Amazon Mechanical Turk (Mechanical Turk) are available to
all active workers in the Mechanical Turk marketplace. You can restrict the audience that's eligible
for your HITs by adding qualification requirements. Qualification requirements can be used to
both restrict the audience to workers that meet certain criteria, or exclude those that have certain
attributes. These requirements operate on attributes that are assigned to workers as qualifications.
Qualifications can be assigned by the Mechanical Turk system or requesters, and are visible to
workers in their account.

Topics

» Qualifications and qualification types

» Qualification requirements

« System qualification types

Qualifications and qualification types

Qualification types are system- or requester-defined descriptions of an attribute that

can be associated with a worker. One example is the system-generated qualification type
NumberHITsApproved, which measures the number of HITs a worker has submitted and had
approved. Another would be a requester-defined qualification type that tracks how accurate a
worker has been on previous tasks that the requester has posted.

When a qualification type is assigned to a worker, it is applied as a qualification for that

worker. In the case of the system-generated NumberHITsApproved qualification type, a
qualification is automatically created for a worker as the work they submit is approved. For
custom qualification types, a requester can assign the qualification to a worker using the
AssociateQualificationWithWorker operation and optionally providing an integer value to

associate with it.

Selecting eligible workers API Version 2017-01-17 65

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_AssociateQualificationWithWorkerOperation.html

Amazon Mechanical Turk Developer Guide

Qualification requirements

A requirement is defined when calling either CreateHIT or CreateHITType. Either operation
accepts an array of one or more QualificationRequirement data structures to specify the
qualifications workers must have to be eligible for your HIT.

The QualificationRequirement data structure comprises four attributes:
QualificationTypeld, Comparator, value (either IntegerValues or LocaleValues), and
ActionsGuarded. The QualificationTypeld specifies the qualification type that should

be applied and can be either the ID of an Mechanical Turk system qualification type, or one you
create in your account. The Comparator and value are then used to evaluate if the worker has the
required qualification attributes to be eligible for the HIT. Finally, the ActionsGuarded indicates
the level of visibility that a HIT has to workers that aren't eligible to accept it.

The Comparator attribute specifies how the qualification type is evaluated and is typically used
with a value. The following table illustrates the values that can be used for Comparator and the
required value attribute, if any. The existence Comparators don't require a value attribute since
they are only used to evaluate if the qualification type has been assigned, not the value that has
been associated with it.

Type Values Required value Example
attribute
Existence Exists None Only include workers

that have been
assigned the qualifica
tion type, regardless
of value.

DoesNotExist None Exclude workers that
have been assigned
the qualification type.

Numeric LessThan IntegerValues Only include workers
that have been
assigned the qualifica
tion type where the

Qualification requirements API Version 2017-01-17 66

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_QualificationRequirementDataStructureArticle.html

Amazon Mechanical Turk Developer Guide

Type Values Required value Example
attribute

assigned value is less

than 50.
LessThanO IntegerValues Only include workers
rEqualTo that have been

assigned the qualifica
tion type where the
assigned value is less
than or equal to 50.

GreaterThan IntegerValues Only include
Workers that have
been assigned the
Qualification Type
where the assigned
value is greater than

50.
GreaterTh IntegerValues Only include workers
anOrEqualTo that have been

assigned the qualifica
tion type where the
assigned value is
greater than or equal

to 50.
Equivalence EqualTo IntegerValues or Onlyinclude workers
LocaleValues located in Spain.
NotEqualTo IntegerValues or Onlyinclude workers
LocaleValues who have been

assigned the qualifica
tion type where the
assigned value is not
42.

Qualification requirements API Version 2017-01-17 67

Amazon Mechanical Turk Developer Guide

Type Values Required value Example
attribute

Set In IntegerValues or Only include workers
LocaleValues who have been

assigned the qualifica
tion type where the
assigned valueis 1, 2,

30r8.
NotIn IntegerValues or Onlyinclude workers
LocaleValues who are not located

in the US States of
Florida and Georgia.

The ActionsGuarded attribute indicates the level of visibility that your HIT has to workers
who aren't eligible for it. This defaults to Accept, which indicates that ineligible workers can't
accept it, but they can see it in the Mechanical Turk marketplace and preview the task if they
wish so that they can request a qualification to work on the HIT if they wish to. If you want to
prevent them from previewing it, you can set the ActionsGuarded to PreviewAndAccept;
they can then see it in their list of available tasks and request any custom qualifications. Finally,
DiscoverPreviewAndAccept hides the HIT from ineligible workers.

The CreateHIT and CreateHITType operations accept an array of qualification requirements
which can include one or more qualification requirement data structures so you cano apply
multiple requirements to workers to be eligible for your task. Because workers must meet all of
the requirements, be careful to ensure that the requirements do not conflict. For example, if you
had a qualification requirement that specified workers must be located in the US and a second
requirement that they be located in canada, it would be impossible for any worker to meet both
criteria. If your goal is to include workers in either the US or Canada, you would need replace the
two requirements with a single requirement using the In Comparator to restrict workers to those
in an array containing both the US and Canada.

System qualification types

The most commonly used qualification types are those provided by Mechanical Turk. These include
the following:

System qualification types API Version 2017-01-17 68

Amazon Mechanical Turk Developer Guide

A HITs approved qualification for the number of HITs that workers have successfully completed in

the past, which can be used to identify workers with more or less experience.

» An Approval Percentage qualification to specify workers that you have approved at a specified
rate on previous tasks.

» A Locale qualification to select workers in specific countries or US states.

« A Masters qualification that is awarded to workers that have demonstrated superior performance
over a period of time across thousands of HITs.

« An Adult qualification that selects workers who have indicated they are over 18 years of age and

are willing to work on potentially offensive content.

Each of these qualification types has an associated QualificationTypeld which can be found in
the documentation for QualificationRequirement.

Using the HITs Approved qualification type

The NumberHITsApproved qualification type restricts tasks to workers with more or less
experience based on their past work on Mechanical Turk. For example, if you only wanted to use
workers who were relatively new to the platform and had successfully submitted fewer than 500
HITs, you would use the following value for QualificationRequirements.

QualificationRequirements: [

{
QualificationTypeld: '00000000000000000040',
Comparator: 'LessThan',
IntegerValues: [500]

X
]

If, instead, you wanted more experienced workers who had successfully completed 100 HITs, you
would use the following.

QualificationRequirements: [

{
QualificationTypeld: '00000000000000000040',
Comparator: ' GreaterThanOrEqualTo',
IntegerValues: [100]

}

System qualification types API Version 2017-01-17 69

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_QualificationRequirementDataStructureArticle.html#ApiReference_QualificationType-IDs

Amazon Mechanical Turk Developer Guide

]

Using the Masters qualification type

The Masters qualification type is a Mechanical Turk-managed qualification type that is assigned
to workers when they have demonstrated superior performance over a period of time across
thousands of HITs. There is no value associated with it, so you can simply use the Exists
comparator to apply it to your tasks.

Note that there is an additional fee for using the Masters qualification on your task as described in
Mechanical Turk Pricing.

QualificationRequirements: [

{
QualificationTypeld: '2F1QJWKUDD8XADTFD2Q@G6UTO95ALH',

Comparator: 'Exists'

}

Using the Percentage Approved type

The PercentAssignmentsApproved qualification type restricts tasks based on how often
you have approved or rejected past work a worker has done for you. For example, to only accept
workers that have an approval rate of greater than or equal to 95%, the following qualification
requirement would be included in your CreateHIT calls.

QualificationRequirements: [

{
QualificationTypeld: '000000000000000000L0",

Comparator: 'GreaterThanOrEqualTo',
IntegerValues: [95]
}

Note that a worker's approval rate is statistically meaningless for small numbers of assignments,
since a single rejection can reduce the approval rate by many percentage points. To ensure that a
new worker's approval rate is unaffected by these statistically meaningless changes, if a worker has
submitted fewer than 100 assignments for you, the worker's approval rate is 100%.

System qualification types API Version 2017-01-17 70

https://www.mturk.com/pricing
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateHITOperation.html

Amazon Mechanical Turk Developer Guide

Using the Locale qualification type

Locale is a Mechanical Turk qualification type that specifies the workers that are eligible for your
task based on where they are located. To use Locale, you must specify one or more LocaleValues
using a JSON data structure that includes a Country attribute and can optionally include a
Subdivision attribute. The Country attribute should specify the two-character country code

of the country. The Subdivision attribute is only supported when the Country is "US" and
should specify the two-character state code for the US state. The following example would restrict
workers to those in the US state of Minnesota.

QualificationRequirements: [
{

QualificationTypeld: '00000000000000000071',

Comparator: 'EqualTo',

LocaleValues: [

{

Country: "US",
Subdivision: "MN"

To select multiple locations, you should use the In comparator and a list of locales as shown in the
following example, which restricts the task to workers in the US and Canada.

QualificationRequirements: [
{
QualificationTypeld: '00000000000000000071',
Comparator: 'In',
LocaleValues: [
{ Country: "US" },
{ Country: "CA" }
]
}

System qualification types API Version 2017-01-17 71

Amazon Mechanical Turk Developer Guide

Use caution when using multiple Locale qualification requirements in the same HIT. If the
requirements above were split into two requirements, one for the US and one for CA, no norkers
could accept the task. However, using two Locale requirements is a good way to restrict workers
to the US but exclude selected states. The following would include all workers in the US with the
exception of workers in Florida and Georgia.

QualificationRequirements: [

{
QualificationTypeld: '00000000000000000071',

Comparator: 'Equals,
LocaleValues: [
{ Country: "US" }
]
1,
{
QualificationTypeld: '00000000000000000071',
Comparator: 'NotIn,
LocaleValues: [
{ Country: "US", Subdivision: 'FL'},
{ Country: "US", Subdivision: 'GA'}
]

Objectionable content

Some tasks, such as image moderation, involve handling content that some workers might

find objectionable, typically because it involves imagery that contains violence or nudity. If

there is the potential that some of your HITs may contain objectionable content, you should
make use of the Adult qualification type. This restricts the task to workers who have confirmed
they are over 18 years of age and are willing to view potentially objectionable content. The
qualification requirement should also specify an ActionsGuarded value of PreviewAndAccept
or DiscoverPreviewAndAccept.

QualificationRequirements: [

{
QualificationTypeld: '00000000000000000060',

Comparator: 'Equals',

System qualification types API Version 2017-01-17 72

Amazon Mechanical Turk Developer Guide

IntegerValues: [1],
ActionsGuarded: 'PreviewAndAccept'

In addition, you should include "(WARNING: This HIT may contain adult content. Worker discretion
is advised.)" in the title of your HIT.

Custom qualification type

Requester-defined qualification types can also be created to handle a range of needs in managing
who can work on your tasks. Information on how to create and use custom qualification types can
be found in Working with custom qualification types.

Working with custom qualification types

When using Amazon Mechanical Turk (Mechanical Turk), you can create qualification types that
you can then assign to workers as qualifications. Qualifications can be used for a range of worker
management approaches, such as identifying workers that have met certain criteria in past tasks
(HITs) or assigning a score based on performance over time. The following discusses how to create
and assign qualification types to workers, as well as how to modify or revoke them.

Mechanical Turk also provides the option to create qualification tests that allow workers to take
a test to be assigned aqualification automatically. That topic isn't addressed here, but more
information can be found in the APl Documentation.

Topics

» Create a qualification type

« Assign or remove a worker qualification

» Qualification requests

« Tutorial: Creating a qualification requirement that requires workers be in a group

» Tutorial: Create a qualification requirement that workers have achieved at least 80% accuracy on

previous tasks

» Tutorial: Creating a qualification type to exclude workers from selected tasks

Working with custom qualification types API Version 2017-01-17 73

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateQualificationTypeOperation.html

Amazon Mechanical Turk Developer Guide

Create a qualification type

The CreateQualificationType operation can be used to register a new qualification type in

your account. Simply specify the name, provide a brief description, and specify Active as the
status. Note that the qualification type name and description are visible to workers. You can update
these values using the UpdateQualificationType operation.

Assign or remove a worker qualification

To assign a qualification type to a worker, use the AssociateQualificationWithWorker

operation, specifying the ID of the qualification type and the worker it should be applied to.
You can also assign an integer value such as a score. To modify the integer value, call the
AssociateQualificationWithWorker operation again with the new value.

You can remove a qualification using the DisassociateQualificationFromWorker operation.

Qualification requests

When workers don't have one of the custom qualification types required to do your task, they have
the option to request it from the Mechanical Turk marketplace. This is most commonly associated
with tasks that have qualification tests but all custom qualification types can be requested.

These requests can be queried using the ListQualificationRequests operation

and can be approved or rejected using the AcceptQualificationRequest or

RejectQualificationRequest operations respectively.

Additional operations
The following operations can be used when working with qualifications.

Additional Operations

« ListQualificationTypes: Retrieves a list of your existing qualification types.

« GetQualificationType: Retrieves the details of a qualification type.

e ListWorkersWithQualificationType: Retrieves a list of workers that have been assigned a
qualification type.

e« ListHITsForQualificationType: Retrieves a list of HITs that include a qualification type in

their requirements.

Create a qualification type API Version 2017-01-17 74

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateQualificationTypeOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_UpdateQualificationTypeOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_AssociateQualificationWithWorkerOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_DisassociateQualificationFromWorkerOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ListQualificationRequestsOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_AcceptQualificationRequestOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_RejectQualificationRequestOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ListQualificationTypesOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_GetQualificationTypeOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ListWorkersWithQualificationTypeOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ListHITsForQualificationTypeOperation.html

Amazon Mechanical Turk Developer Guide

e GetQualificationScore: Retrieves the qualification assigned to a worker for a qualification
type.

Tutorial: Creating a qualification requirement that requires workers be
in a group

In the following example, we create a qualification type that describes a group of workers that
have demonstrated expertise at a task and add it to our qualification requirements. To start, we use
the CreateQualificationType operation to create the type with which we're working.

Name: 'Experts',
Description: 'Demonstrated expertise at my task',
QualificationTypeStatus: 'Active'

}

The CreateQualificationType operation will return an ID,
3TL87MOS8CLOFYXKXNRLMOOEXAMPLE, that we can assign to workers. For each worker, we call
the AssociateQualificationWithWorker operation to add them to our group.

{
WorkerId: 'AZ3456EXAMPLE',

QualificationTypeId: '3TL87MO8CLOFYXKXNRLMO@OEXAMPLE'
}

Now that we've built our group, we can reference it in the QualificationRequirements for our
HITs as shown in the following example.

QualificationRequirements: [

{
QualificationTypeId: '3TL87MO8CLOFYXKXNRLMO@OEXAMPLE',
Comparator: 'Exists',
ActionsGuarded: 'DiscoverPreviewAndAccept'

Tutorial: Require workers to be in a group API Version 2017-01-17 75

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_GetQualificationScoreOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateQualificationTypeOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_AssociateQualificationWithWorkerOperation.html

Amazon Mechanical Turk Developer Guide

]

Because the ActionsGuarded is set to DiscoverPreviewAndAccept, it is only visible to
workers who've been assigned the qualification type.

Tutorial: Create a qualification requirement that workers have achieved
at least 80% accuracy on previous tasks

In the following example, we create a qualification type that we can use to record how well workers
did on a previous set of tasks and then build a qualification requirement that requires them to

have achieved at least 80% accuracy. In this approach, we start by posting a set of HITs to which
we already know the answer. When workers respond to these HITs, we can track their responses
against the known answers and assign them a score as a qualification.

To start, we use the CreateQualificationType operation to create the type with which we

want to work.

Name: 'Task Scores',
Description: 'Score on previous tasks,
QualificationTypeStatus: 'Active'

}

The CreateQualificationType operation returns an ID,
3TL87MO8CLOFYXKXNRLMOOEXAMPLE, that we can assign to workers. For each worker, we call
the AssociateQualificationWithWorker operation to record the score they achieved on the
earlier tasks. In the example below, we record that the worker was 93% accurate on the test HITs.

{
WorkerId: 'AZ3456EXAMPLE',

QualificationTypeId: '3TL87MO8CLOFYXKXNRLMOQEXAMPLE',
IntegerValue: 93

}

Now that we've built our group, we can reference it in the QualificationRequirements for our
HITs as shown below.

Tutorial: Require workers to meet accuracy level API Version 2017-01-17 76

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateQualificationTypeOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_AssociateQualificationWithWorkerOperation.html

Amazon Mechanical Turk Developer Guide

QualificationRequirements: [
{
QualificationTypeId: '3TL87MO8CLOFYXKXNRLMOQEXAMPLE',
Comparator: 'GreaterThanOrEqual',
IntegerValues: [80]
}

Tutorial: Creating a qualification type to exclude workers from selected
tasks

In the following example, we create a qualification type that describes a group of workers that
have demonstrated they don't perform well at our tasks and excludes them in our qualification

requirements. To start, we use the CreateQualificationType operation to create the type with
which we want to work.

Name: 'Excluded',
Description: 'Excluded from this task',
QualificationTypeStatus: 'Active'

}

The CreateQualificationType operation returns an ID,
3TL87MOS8CLOFYXKXNRLMOOEXAMPLE, that we can assign to workers. For each worker, we call
the AssociateQualificationWithWorker operation to add them to the excluded group.

{
WorkerId: 'AZ3456EXAMPLE’,

QualificationTypeld: '3TL87MO8CLOFYXKXNRLMO@EXAMPLE'
}

Now that we've built our group, we can reference it in the QualificationRequirements for our
HITs as shown in the following example.

Tutorial: Exclude workers from selecting tasks API Version 2017-01-17 77

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateQualificationTypeOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_AssociateQualificationWithWorkerOperation.html

Amazon Mechanical Turk Developer Guide

QualificationRequirements: [

{
QualificationTypeId: '3TL87MO8CLOFYXKXNRLMOQEXAMPLE',

Comparator: 'DoesNotExist',
ActionsGuarded: 'DiscoverPreviewAndAccept'

Because the ActionsGuarded has been set to DiscoverPreviewAndAccept, it is not visible to
workers who've been assigned the qualification type.

Communicate with workers

You can send messages to workers in Amazon Mechanical Turk (Mechanical Turk) if you've
previously accepted or rejected an assignment from that worker using the NotifyWorkers

operation. It's common to use this operation when you want to notify workers that you've posted
new tasks for them to work on, or alert them to changes in your task interface.

Similarly, workers can send messages to you via email if they have questions about your task,
rejections, or other comments. You are welcome to engage with workers if you wish. We encourage
you to maintain a positive relationship with the worker community.

Worker forums

There are a number of forums where workers congregate to discuss tasks, requesters, and the
Mechanical Turk platform in general. If you wish to engage the worker community to get their
input on proposed tasks or other topics, you can post to one of the forums listed below.

Mechanical Turk Subreddit
Mechanical Turk Crowd

Mechanical Turk Forum

TurkerView

Communicate with workers API Version 2017-01-17 78

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_NotifyWorkersOperation.html
https://www.reddit.com/r/mturk/
https://www.mturkcrowd.com/
http://www.mturkforum.com/index.php
https://forum.turkerview.com/

Amazon Mechanical Turk Developer Guide

Use Mechanical Turk notifications

Amazon Mechanical Turk (Mechanical Turk) has a notifications capability that can be used to trigger
actions when your HITs reach various stages. Using notifications, you can process the results of
assignments and HITs immediately after they are submitted to evaluate worker submissions or
begin downstream processing of data. This allows you to integrate Mechanical Turk more easily
into your processes and can support moving from batch processing of data to a real-time approach.

Common use cases include:

« Immediately add more assignments to a HIT when there is disagreement between workers that
have responded.

« Update a database with the results of the HIT.

» Evaluate worker submissions as soon as they are submitted so you can take action if workers are
consistently making errors.

 Chain multiple Mechanical Turk steps together by triggering the next step when a HIT is
completed.

Notification event types

Notifications are associated with a HIT Type. You can request that Mechanical Turk send a
notification when any of the following events occur for HITs using a given HIT Type.

« AssignmentAccepted: A worker has accepted a HIT and has an assignment.
« AssignmentAbandoned: An assignment has been abandoned because the assignment duration
has elapsed.

« AssignmentReturned: A worker has chosen to return an assignment rather than complete the
task.

« AssignmentSubmitted: A worker has submitted an assignment.

« AssignmentRejected: You have rejected an assignment.

« AssignmentApproved: An assignment has been approved.

« HITCreated: A HIT has been created using the HIT Type.

« HITExtended: Assignments have been added to a HIT.

« HITDisposed: A HIT has been disposed.

« HITReviewable: A HIT has reached the Reviewable state, either because all of the
assignments have been submitted or the HIT has expired.

Notification event types API Version 2017-01-17 79

Amazon Mechanical Turk Developer Guide

« HITExpired: The HIT has expired (the lifetime has elapsed) before all of the available
assignments have been submitted.
« Ping:Is only be sent when using the SendTestEventNotification operation.

The AssignmentSubmitted and HITReviewable events are the most commonly used event
notifications because they allow you to setup processes that can be triggered as soon as an
assignment or HIT is complete. Using the HITReviewable notification, you can immediately
update a database or other system with the values returned by the HIT. The HITExpired event

is also useful because it can be treated as a dead letter queue, letting you act on tasks that
weren't completed by workers. Using the HITExpired notification, you might sideline tasks to be
completed by members of your team, or attempt to repost them at a higher reward amount.

Notification destination

Notifications can be sent to either an Amazon Simple Queue Service (Amazon SQS) queue or an
Amazon Simple Notification Service (Amazon SNS) topic. In both cases, multiple events may be
batched into a single message if appropriate.

To set up an Amazon SQS queue for use with Mechanical Turk, follow the setup instructions
found in Notification Handling Using Amazon SQS. To set up an Amazon SNS topic, follow the
steps in Notification Handling Using Amazon SNS. Note that in both cases, you need to configure
permissions properly to allow Mechanical Turk to send messages to your topic or queue.

Enabling Notifications

Notifications can be enabled for a HIT Type using the UpdateNotificationSettings operation.
The following is an example of a request to receive a message on an Amazon SNS topic when HITs
become reviewable.

{

'"HITTypeId': '3AKEQ4YHPN13791QQA6EXAMPLE’,

"Notification': {
'Destination': 'arn:aws:sns:us-east-1:7429088EXAMPLE:my_mturk_topic',
'Transport': 'SNS',
'Version': '2014-08-15",
'EventTypes': ['HITReviewable']

},

'"Active': True

}

Notification destination API Version 2017-01-17 80

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_SendTestEventNotificationOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_NotificationReceptorAPI_SQSTransportArticle.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_NotificationReceptorAPI_SNSTransportArticle.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_UpdateNotificationSettingsOperation.html

Amazon Mechanical Turk Developer Guide

The notification data structure specifies the ARN of the destination you want to receive the
messages, specifies that the Transport is either Amazon SNS or Amazon SQS, and includes a
list of the event types about which you want to be notified. The only valid value for Version is
'2014-08-15". The Active value indicates if the notification should be enabled.

Because only one notification configuration can be assigned to a HIT Type, calling
UpdateNotificationSettings with a new value for notification replaces any existing
notifications. You can call UpdateNotificationSettings with just the HITTypeId and a value
for Active if you want to enable or disable notifications on the HIT Type.

Handling notifications using AWS Lambda

There are a wide range of approaches for using Mechanical Turk notifications, but the most
common one is to use Amazon SNS with AWS Lambda. AWS Lambda provides a straightforward
way to set up code that processes the event and attaches a trigger to kick off processing when new
Amazon SNS messages are received.

Start by creating an Amazon SNS topic you can use for Mechanical Turk notifications. The
instructions in Notification Handling Using Amazon SNS can be used to set it up and configure

permissions to allow Mechanical Turk to send messages to the topic. Then, use the following
procedure to create a lambda function to process your Amazon SNS messages.

To create a Lambda function to handle your Mechanical Turk events:

Navigate to Lambda in the AWS Console: https://console.aws.amazon.com/lambda/.

Select Create Function.
Select the Author from scratch option.

Under Function name, provide a name for your function.

i A W=

You can select the language runtime you wish to use; in this example we use a Python 3
runtime.

6. You can keep the default permission configuration, which creates a new role for this function.
If you want to use an existing role, or create a role from AWS policy templates, select the arrow
next to Change default execution role to expand that section. Select one of the options. If you
select another option, make sure that role you use has required permissions described in AWS
Lambda execution role in the AWS Lambda Developer Guide.

Handling notifications using AWS Lambda API Version 2017-01-17 81

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_NotificationReceptorAPI_SNSTransportArticle.html
https://console.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

Amazon Mechanical Turk Developer Guide

Note down the name of your execution role — you will use it in the following procedure.

7. Select Create function to create the lambda function.

Next, you must add the AmazonMechanicalTurkFullAccess policy to the execution role you
created or used in step 6 of the preceding procedure so your Lambda function can retrieve the
results of the HIT. The following procedure assumes that you are already in the Lambda console. If
you are on the summary page for your new lambda function, you can skip the first step.

To add required permissions to your Lambda execution role:

1. Select the lambda function you want to use to process Amazon SNS requests. This brings you
to the summary page for that function. You should see the function name at the top of the

page.
Select the Permissions tab.

Select the Role name. This redirects you to summary page for that role in the IAM console.

Choose Attach Policies.

ok W

In the search field, enter AmazonMechanicalTurkFullAccess and select the check box next to
that policy.

6. Select Attach policy.

Now that you have created a lambda function with permission to process Amazon SNS notifications
send from Amazon Mechanical Turk, you can create a trigger for your Amazon SNS topic. A trigger
is used to configure the conditions under which your function is called.

The following procedure assumes you are in the Lambda console.
To create a lambda trigger for your Amazon SNS topic:

1. On the lambda function summary page, select the Configuration tab.
2. Choose Add trigger to add your Amazon SNS topic as a trigger for your Lambda function.

3. When prompted to select a trigger service, search for and select SNS, then select the topic you
created for notifications.

4. Enter the code that you want to use to process Amazon SNS messages. The following Python
code provides a template for getting started.

Handling notifications using AWS Lambda API Version 2017-01-17 82

Amazon Mechanical Turk Developer Guide

import json
import boto3
import xml.etree.ElementTree as ET

def lambda_handler(event, context):
for record in event['Records']:
notification = json.loads(record['Sns']['Message'])

for mturk_event in notification['Events']:
mturk = boto3.client('mturk', region_name='us-east-1')

if mturk_event['EventType'] == 'HITReviewable':

Retrieve the answers that were provided by Workers

response =
mturk.list_assignments_for_hit(HITId=mturk_event['HITId'])

assignments = response['Assignments']

answers = []

for assignment in assignments:

answers.append(parse_answers(assignment))

Do something with the answers
...

Function to parse the Answer XML object
def parse_answers(assignment):
result = {
'WorkerId': assignment['WorkerId'],
'"Answer': []

ns = {'mt': 'http://mechanicalturk.amazonaws.com/
AWSMechanicalTurkDataSchemas/2005-10-01/QuestionFormAnswers.xsd"'}
root = ET.fromstring(assignment['Answer'])

for a in root.findall('mt:Answer', ns):
name = a.find('mt:QuestionIdentifier', ns).text
value = a.find('mt:FreeText', ns).text
result['Answer'].append({name: value})

return result

Handling notifications using AWS Lambda API Version 2017-01-17 83

Amazon Mechanical Turk Developer Guide

5. After you've added the code to your Lambda function and edited it to meet your needs, you
can select Deploy and begin using it.

It is recommended that you test your trigger to make sure it works as expected.

To test your Amazon SNS trigger on your Lambda function summary page:

1. In the Function code section, select the arrow next to Test.
Select Configure test event.
Select the Create new test event radio button.

Enter a name for your event in the text box.

i W

Enter the test event. The following can be used for your test parameters after replacing the
HITId with a completed HIT in your account.

"Records": [
{
"Sns": {
"Message": "{\"Events\":[{\"EventType\":\"HITReviewable\",\"HITId\":
\"31ANT7FQN71LA48IQEXAMPLE\"}]1}"
}
}

Sending test events

To test the configuration of your Amazon SNS topic or Amazon SQS queue and any handlers you
have in place, you can use the SendTestEventNotification operation. Provide the notification
configuration you want to use and the event you would like to test.

'"Notification': {
'Destination': 'arn:aws:sns:us-east-1:7429088EXAMPLE :my_mturk_topic’,
'Transport': 'SNS',
'Version': '2014-08-15',

Sending test events API Version 2017-01-17 84

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_SendTestEventNotificationOperation.html

Amazon Mechanical Turk Developer Guide

'EventTypes': ['HITReviewable']

1,
'TestEventType': 'HITReviewable'

HIT references using requester annotation

When building processes that leverage Amazon Mechanical Turk (Mechanical Turk), it's often
valuable to keep track of identifiers associated with the data in each HIT, particularly when
handling HIT responses via notifications. For example, you might want to associate your HITs with a
record in a database such as Amazon DynamoDB, and would like your HIT to reference the primary
key of the record.

The RequesterAnnotation attribute is a useful option for tracking these references.

When you create a HIT using CreateHIT or CreateHITWithHITType, you can provide a
RequesterAnnotation field that contains arbitrary data about each HIT. Although it is limited to
255 ASCII characters, this is generally adequate to capture identifiers that denote the origin of your
data. The data provided here is only visible to the requester who created the HIT.

When you receive a notification that a HIT has been completed, you can use the GetHIT operation
to retrieve the RequesterAnnotation. The identifier captured in the RequesterAnnotation
can then be used to make updates in your database or other systems.

HIT references using requester annotation API Version 2017-01-17 85

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateHITOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_CreateHITWithHITTypeOperation.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_GetHITOperation.html

Amazon Mechanical Turk Developer Guide

Use request tokens

Many of the API operations that have an impact on HITs or the money rewarded to workers, such
as CreateHIT and SendBonus, can include a UniqueRequestToken attribute. This denotes

a unique identifier for the request that can be used in scenarios where you want to gracefully
handle and retry errors without creating duplicate HITs or payments. This is useful in cases such
as network timeouts, where it is unclear whether or not the call succeeded on the server. If the
operation has already been performed using the same UniqueRequestToken, subsequent calls
return an error with a message containing the request ID.

Note that the token must not be longer than 64 characters in length and it is your responsibility to
ensure uniqueness of the token. The unique token expires after 24 hours.

API Version 2017-01-17 86

Amazon Mechanical Turk Developer Guide

CORS configuration requirement

Earlier in 2020, widely used browsers like Chrome and Firefox changed their default behavior for
rotating images based on image metadata, referred to as EXIF data. Previously, images would
always display in browsers exactly how they are stored on disk, which is typically unrotated. After
the change, images now rotate according to a piece of image metadata called orientation value.
This has important implications for the entire machine learning (ML) community. For example, if
the EXIF orientation is not considered, applications that are used to annotate images may display
images in unexpected orientations and result in incorrect labels.

Starting with Chrome 89, AWS can no longer automatically prevent the rotation of images because
the web standards group W3C has decided that the ability to control rotation of images violates
the web's Same Origin Policy. Therefore, to ensure human workers annotate your input images in a
predictable orientation when you submit requests to label an image, you must add a CORS header
policy to the Amazon S3 buckets that contain your input images.

/A Important

If you do not add a CORS configuration to the S3 buckets that contains your input data,
tasks for those input data objects will fail.

You can add a CORS policy to an S3 bucket that contains input data in the S3 console. To set
the required CORS headers on the S3 bucket that contain your input images in the S3 console,
follow the directions detailed in How do | add cross-domain resource sharing with CORS?. Use the

following CORS configuration code for the buckets that hosts your images. You must use the JSON
format if you add a CORS configuration using the console.

JSON

[{
"AllowedHeaders": [],
"AllowedMethods": ["GET"],
"AllowedOrigins": ["*"],
"ExposeHeaders": []

]

XML

API Version 2017-01-17 87

https://en.wikipedia.org/wiki/Exif
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-cors-configuration.html

Amazon Mechanical Turk

Developer Guide

<CORSConfiguration>
<CORSRule>
<AllowedOrigin>*</AllowedOrigin>
<AllowedMethod>GET</AllowedMethod>
</CORSRule>
</CORSConfiguration>

API Version 2017-01-17 88

	Amazon Mechanical Turk
	Table of Contents
	What is Amazon Mechanical Turk?
	The Amazon Mechanical Turk marketplace
	Marketplace rules
	The sandbox marketplace

	Creating tasks that work well on Amazon Mechanical Turk
	Tasks can be completed within a web browser
	Work can be broken into distinct, bite-sized tasks
	Task supports clear instructions and outcomes
	Examples of common uses of Mechanical Turk

	Amazon Mechanical Turk core concepts
	Requesters and workers
	Marketplace
	Task or HIT
	Assignment
	Reward and bonus
	Qualifications

	Amazon Mechanical Turk best practices
	Allow workers to be as efficient as possible
	Build tasks with family and friends in mind
	Include an optional feedback field
	Test your HITs
	Start small
	Keep HIT type attributes consistent
	Specify that links open new browser, windows or tabs
	Limit your use of worker blocks
	Include clear reasons for rejections and blocks

	Frequently asked questions
	Why aren't my tasks being completed?
	How do I pull down HITs I created by mistake?
	I expired my HITs. Why am I still getting submissions from workers?
	Why are some of my task fields missing from my results?
	Can I make some fields in my task interface required?
	How can I test my task interface?
	What is the difference between a HIT and an assignment?
	Can I view the HITs I create with the API in the requester website?
	I published HITs in the sandbox environment. Why they aren't being completed?
	I incorrectly rejected some assignments. Can I reverse the rejection?
	How do I filter the workers eligible to work on my task?
	How do I create a custom qualification?
	Can I restrict how many HITs a worker can complete for my project?
	Can I post HITs in languages other than English?
	Additional Mechanical Turk Resources

	Set up Amazon Mechanical Turk
	Step 1: Create a Mechanical Turk account
	Step 2: Link your AWS account to your Mechanical Turk requester account
	Step 3: Select a payment option
	Step 4: Get an AWS access key
	Step 5: Configure Your Credentials
	Step 6: Set up the developer sandbox

	Access Amazon Mechanical Turk
	Use the Mechanical Turk Requester UI
	Use the Mechanical Turk API
	Use the AWS CLI
	Download and configure the AWS CLI
	Use the AWS CLI with Mechanical Turk

	Get Started with Amazon Mechanical Turk
	Prerequisites
	Step 1: Create a task
	Question definition
	Task attributes
	Post the task

	Step 2: Check task status
	Step 3: Retrieve results
	Step 4: Approve Assignments

	Creating and managing tasks (HITs)
	Define questions
	Use HTML to define questions
	How Mechanical Turk tasks are rendered
	Defining an HTML form
	Crowd HTML Elements
	Templating
	Submitting from JavaScript

	Question definitions
	HTMLQuestion
	ExternalQuestion
	QuestionForm

	Requester website layouts

	HIT attributes
	Creating HITs
	Create a HIT Directly
	Create a HIT using a HIT Type

	Modifying HITs
	Modify expiration time
	Add additional assignments
	Modify the HIT Type
	Delete

	Using the sandbox
	API calls using the CLI
	API calls using the Python SDK (boto3)
	Testing HITs

	HIT references using RequesterAnnotation

	Retrieving results
	Assignment attributes
	Assignment answer

	Retrieving HIT status
	Managing workers
	Approving and rejecting work
	Awarding a bonus
	Blocking workers
	Selecting eligible workers
	Qualifications and qualification types
	Qualification requirements
	System qualification types
	Using the HITs Approved qualification type
	Using the Masters qualification type
	Using the Percentage Approved type
	Using the Locale qualification type
	Objectionable content
	Custom qualification type

	Working with custom qualification types
	Create a qualification type
	Assign or remove a worker qualification
	Qualification requests
	Additional operations

	Tutorial: Creating a qualification requirement that requires workers be in a group
	Tutorial: Create a qualification requirement that workers have achieved at least 80% accuracy on previous tasks
	Tutorial: Creating a qualification type to exclude workers from selected tasks

	Communicate with workers

	Use Mechanical Turk notifications
	Notification event types
	Notification destination
	Handling notifications using AWS Lambda
	Sending test events
	HIT references using requester annotation

	Use request tokens
	CORS configuration requirement

