aws

Developer Guide

AWS Panorama

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Panorama Developer Guide

AWS Panorama: Developer Guide

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Panorama Developer Guide

Table of Contents

... viii
What is AWS Panorama? ..cccccccccesesss 1
AWS Panorama end Of SUPPOIT ...ttt et sae e se e e e e e st e s e aestesaasbassa s e ennans 2
ALternatives t0 AWS PanOramacoceeieeneniiinenietneseesteesessesteessesseessessessesessessesessessessesessessessssenes 2
Migrating from AWS PanOramaccecieieieieiecieeee ettt ste e e s e s e e e eaesaessesaessessassesssesessaensensansans 3
SUMIMAIY ettt ettt e st e s rte e st e s ste s s e e e sae s s st e s st e s st asssasssaassseesssesssassssessseesssesssessssessseesstessseesssessseessnans 5
Frequently Asked QUESTIONScceiuiiieieeeeeeec ettt te e e et aesaesae b e s e e e e e e saensanes 5
Getting StArtedcccciiiiiiieeeeeriiiiieiiiiiiiienetnseeisiiiseeeeteeesssssssssssssssssess 8
CONCEPLS ettt ettt s e et s b e s sae e s b e s s sa e s b e s s sa e s b e s st e s b e e e s e essbeessaa s ae e s e e et e e st e e ae e s e e e aa e s e eeteeeraennaeas 9
The AWS Panorama APPLIANCE ...ttt ste e ste s e e e e s s s saessestessessessassae e ssaeaessensansan 9
COMPALIDLE AEVICES .ttt sa e st et e st st et a e e e e e e e et e saetanes 9

PN o] o] L Tar= 4 o] - OO OO R R TRRSRSRRR 10
NOAES ...ttt sttt sttt s s bt s e st st e st e b et s s et et e e s b et e st s s et et e e sebesaesasbentenessantensssesessesansans 10
MOAELS <.ttt ettt ettt et et et st st et e s e st et e e s ba st e st sae b e st e seeba st esaesesbe st esesseseneesesentenans 10
SEEEING UP ittt ettt s e e s st e s st e s s ae s s sa e s b e e saa e s sbe s sa e s b e e st esssessaeessaestesssessseesssasssaanns 12
PrErEQUISITES .eeeeeiieeieeteece ettt ettt s sttt s e e st e s sae s sae e s b e s sse e s saesssaesssesssaesssasssaesssessssenssessseesssesnses 12
Register and configure the AWS Panorama ApplIanceeeeeieecicieceeeececeeee e 13
Upgrade the appliance SOTEWAIE ..ottt sttt s s e sae b neans 16
Add 2 CAMEIA SEFEAM ..ttt sttt te st ettt e e s be st et s e b et s e s beste e esassestesassansensssesassesans 17
NEXE SEEPS eeteiiiicteetretee ettt et e st e s st s et st e e st e s s ae s e s e e s aa et e e besssaesse e st esssesssaesssaesseesssesssaessseesseenns 18
Deploying @an @pPPLICAtION ...ttt e ettt t e s r e b e e rn e e nes 19
PrErEQUISITES .eeeeeiieeieeteece ettt ettt s sttt s e e st e s sae s sae e s b e s sse e s saesssaesssesssaesssasssaesssessssenssessseesssesnses 19
Import the sample QPPLICALION ...t 20
Deploy the QPPLICALION ...ttt e et saesaesaesaesbe s e e snenennens 21
VIBW the OULPUL ...ttt et sae st e e e e s e e et e b e sesaeeseesesnnennanes 23
Enable the SDK fOr PYtRON ...ttt sttt e st e e s sa e e saeaas 25
CLEAN UP ittt ettt ettt et et et e st e st e s s e et e e s e e aa et et et et e s assaeseesaeseassessensensassansansesseessessensansanes 25
NEXE SEEPS eetiiieictieercter ettt e s e s st s e e st e e st e s saesese e s ae et e e aesssae s se e st esssesssaesssaesseesssesssaessseesseenns 26
DeVveloping @PPLICAtIONS ...ttt sttt e te s te st e b e e e e e e e e e a et e aenean 27
The application MANIFEST ...t sttt e e sr et ae s 28
Building with the sample appliCatioN ... 31
Changing the computer ViSion MOAEL ...ttt sae e saens 33
PreproCeSSiNgG IMAGESceeviirierieirieerieesteesreesteesseessesssessssessseessaesssessssessssssssessssesssassssssssessssssssesssesns 35

Uploading metrics with the SDK for PYython ... 36

AWS Panorama Developer Guide

NEXE SEEPS eeeeiieicteetrctee ettt e st e st s e e e st e e st e s s ae s e sa e s aa e s e e e besssaessaesstesssasssaesssaesseasssesssaessseesseenns 39
Supported MOodels AN CAMEIAS ...ttt e e e st sae st e sae st e e e e e e e e esaansanes 40
SUPPOIEEA MOAELS ...ttt ettt e te st e s e s e e e e s e et e sae st e aassessasssessensensansansans 40
SUPPOTEEA CAMEIAS ...ttt ettt e ste e s e s te e e et e e e sae st et e st e st assassaesaessensentansansansassasseeseenaensan 41
APPLIaNCe SPECITICALIONS ..ottt s e s e b e b sae st e s resse e e s rnesnans 42
QUOTAS ettt e e ee e eee e ce e sae e e e e s saae e e s ssa e e s e ssaseesssaaeeesssaseeessssaseeeassaaeeeesssaseeessssseeesnssaneesns 44
PEIMISSIONS .iiiiiiiiiiiiiiiinsss 4D
USEE POLICIES ettt ettt et e et e et e e e e e s et e st et e s e s seesaesaesaess e st assasasassaesaeseensansansansansanes 46
SEIVICE TOLES ..ttt ettt ettt st et e s b et et s s e s b et s se s s et e e sse st et e sabestesassansensssersessesessan 48
Securing the aPPLIANCE FOLE ...ttt sa et et sae s e e se e e e e e neaesnantans 48
USE Of OLNEE SEIVICES ...ttt sttt ettt et et e s et e e sse b e e e e sae st enaons 50
APPLICALION TOLE ettt sttt e s te e e e e et e e e st et e b e st e ssessaeseeseensensansansansansans 52
APPLIANCE c.ciiiiiieerrencciiiieiiiiiiieeeesssesssisieeeeess D3
MANAGING .eeiiitieiiicteeeerteese et e steee e s st s s e e ssse e st essess st esssassstasssesssaessseesstasssesssaesseesstesssessssessseessaesssessseenssens 54
Update the appliance SOTEWAIE ..ottt ettt e e e aenan 54
Deregister an QPPLANCE ...ttt ettt et e st e s ettt e ae st e s e e ae e e e na e e e nanes 55
REDOOT @N QPPLIANCE .ottt ettt e st e st e s e se e e e e e e aententans 55
RESEL AN GPPLIANCE ..ottt ettt st e s e e e e e et e st e st e st e ae e raeseena e e e aentenaeaanes 56
NEEWOIK SEEUP ettt e te s e et e e e e et et e st e st e s tesse s s e s saess et essasantassassassesssensansansansan 57
Single NetWOork CONTIGUIAtIONc.coueeiiieeceeeeee ettt aesae st s e e e e aanean 57
Dual Network coONfIGUIAtioN ..ottt sttt e e e e s s e e e saesaatans 58
CONFIGUIING SEIVICE QCCESS ...vevveererreeieerieieietestestestestesseeseeaessessestessessassassassesssessassensensessessassessesssensenes 58
Configuring Llocal NEEWOIK QCCESScveveieieeeeeeeetetetee ettt a e 59
Private CONNECTIVITY .oooviiieieetetrteeectc sttt se s ste st e s sae s sa e s ae e ae e s sae s saessaeessnassassnnasssans 59
CAIMIBIAS ittt ettt et et s st st st et e e st e b e st e st s b e et e s st e b e st e st s b e e st e st e b e s st eeseeabesatensessesstassesnsanns 60
REMOVING @ STFEAIM ..ottt ee s see et e e sae s se e s e e e sse e s sae s saesbe e saasssessaesssasssnesssassaensses 61
APPLICALIONS ettt te e e e e e et e st et et e st e st e st e e e e e e e e e et et e ba et e s aaeseeseeneenaententensanes 62
BUTEONS @NA LIGRES .ottt ettt te s te st e e e a et st e b e st e se s e e saeseeaennanean 63
SEALUS LIGRT ettt et et et e st e s s e s e e et e e et et e bessessesseeseesaenaensantans 63
NEEWOIK LIGNT oottt ettt et e e et e e e e et e st e st e st e s sa e e se e s et et esasanes 63
Power and reSet DULTONS ..ottt ettt st et sa e aas 64
Managing appliCationscccciiiiiiieeeeeciiiiiiiiiiiiiieeeennnsiiiiiieiieiitssses OD
DEPLOY ettt ettt et e e e et e st st e st et e st e st e et e e e e r e et et et et et e beeaaeRaenteateaetabeeteeseeseensententententantans 66
Install the AWS Panorama AppliCation CLI ...ttt sae s saesaens 66
IMPOrt @an @PPLICATION ..ot sa et et e st e st re s s e e e e e e e e e tesanes 67
BUild @ CONLAINET IMAGE ..ottt te e s e s a et et te s b e s b e s e e e e e e e e saesaaaannan 68

AWS Panorama Developer Guide

IMPOIt @ MOAEL ettt e e et e te st e s e s e e e e e e e et e sestasaassessessaensansansans 69
Upload appliCation @SSELSccuieieieieieeeesecee ettt e te st e s s s e et aestessasaesse e e e s ennannans 70
Deploy an application with the AWS Panorama ConSOoLeccceeeeeeeeceeciececececee e 71
Automate application deploYMENT ...ttt e nens 72
MANAGE ittt ettt e s st e s e et e s e et e s e s e e s s s e e s ssse s s b asssssaesssaase st e s saa e s s e e s e saae e aeeessaaeessaeeeraaeennes 73
Update or copy an apPLliCAtioN ...ttt te st e s te e s e s s sa e sa e e aan 73
Delete versions and apPLiCAtiONScucveeeieceeeeececee ettt n e aenes 73
PACKAGES ...ttt ete e e e e e e e et e st et e st e st e st e e seeseeseessasteste s e basseesaeseessesaentantebansassaeseensaneensantantans 74
APPLICAtIoON MANITEST ..ottt te e e e e e e e e e s et e st e st e s e s seesaennanaens 76
JSON SCREIMA .ottt ettt ae st ettt s a et e s b e st e st e sesbe st e e sbe st e e ssasensenessassenassans 78
NOTAES ..ttt ettt st ettt et e e st et e e st et s s et e st s e b et e e esa b e st esesae st esassantestesensassenessansenaes 79
GBS ettt ettt e e e et et et et et e et e e s e e e e s et etententesseeseeseeneentetentans 79
ADSEIACE NOAES ..ttt sttt ettt s s bt e s b et e e s ae s b et e e saesbesaesassassesassan 80
PAFAMELELS ...ttt ettt st s st s b e st sb e s b e e st s b st e et e s b e et e bt s s e et e et e se e besnteas 83
OVEITIARS ettt ettt et s et ettt ettt s e st et e e s s et et s se s b et e sesse st e st esassastesassassentesasansesessensensesenns 85
BUilding apPlicationscceeeeeciiiiiiiiiiiiiinmeemnnniiiiiiieiiiiinssssssssssssssscess 87
MOAELS <.ttt ettt sa et e e st et s et et e s b et et e s e b et e s e b et e st e R e s et e se e s et eatesatentenetn 88
USING MOAELS IN COAR ettt ettt et este e e e s et et e besaa s e ssa e e e saenaennan 88
BUilding @ CUSTOM MOAEL ...ttt te s se e s a e st e st e saesse s e e snesnennns 89
Packaging @ MOAEL ...ttt e e a et et e s te s s e s s e e sa e e e e e s et e ssasaassassassnenaansans 91
TrAINING MOAELS ..ttt e s e s e e e e e s et e ae st e s s e s seeseesaesaensantansansanes 92
BUILA @N IMAGE ettt e te et e e et et e st e st e st e s e e s e e s e e e et et enta st e bassaeseesaensansansansan 93
SPECifYiNG dEPENUENCIEScveeeeeeeeeeteee ettt s e e e e e e e sa e st a e s aassesse s e e e e naeaanes 94
LOCAL STOMAGE ettt ettt et e st e et e e e e e e st et et e b asseesaesaeseessensensastansansansassessaanean 94
BUILAING IMAGE QSSELS .ttt te e e et et e st e st esae s s e e e et et e sae st e saassasseeseeneensanes 94
AWS SDK .ottt et et e st et et s et et s e ste st s s b e sae st e sasse st e e s s aste st ssessastesaesastestssassentenessansensesessassenaesans 96
USING AMQAZON S3eeeiiiteneerteesteete st esste s st e stessseesaessaeesstesssaesssessseasssessseesssessseesssessssesssessssesssensnes 96
Using the AWS 10T MQTT tOPIC cueevieiiieiiecieeeeeeeeteteteteste e stestesse e e e saesaesaessessessessessesssessessessensansans 96
APPLICALION SDK ...ttt te e e e e e et e s et e st e s b et e st e s se s e e s ess et et e tessassasseeseessensentensansansanses 98
Adding text and boxes t0 OULPUL VIAEOceeviieieeeeceeeeetetee ettt 98
RUNNING MULLIPLE ThIrEAAS ...ttt ettt e e e e e a et et aenas 100
Serving iNDOUNA traffiC ..ottt e s ae b s e nennan 103
Configuring INDOUNA POILS ...ttt st st e s ae b e s ae e e e nnannens 103
SEIVING trafTIC ettt e et st e st e st e s se e e sessaeaenenaeaenes 105
USING the GPU ...ttt ettt ste s e e e e e e e e e st e st e s e b e st e e e e e e s et et et e bassassaesassaeneansansansn 109
Tutorial — Windows development enVIirONMENtc.oocviieiieeecenececeeeeee et ae e nas 111

AWS Panorama Developer Guide

PrErQQUISITES .ottt ettt st s st e s sae s s e e s sa e s st e s s b e s saessae e s st essseesssesssaesssessseesssesssesnnnes 111
INStAll WSL 2 @Nd UDUNTU ..ottt esae st et sse st e e sse st e s s e ssassenassans 112
INSEALL DOCKET ...ttt st ettt e st et s e s b et e e sae st e e s sassansesassansan 112
CONFIGUIE UDUNTU .ttt ettt e te s s e sa et et e st e st e s aeese e e esnennan 112
NEXE STEPS ittt et st e s see e s sae e s e ae e sssreesssneassssaassssasssssassssnesssssessssaassssaesssneenss 114
The AWS Panorama APlcceiiiiiiiiiiiiiiiniiesissses 115
Automate device regiStration ...ttt e aesae st e s e e e e e e e e aesaenens 116
MANAGE APPLIANCE ..ttt ste et e e e e et et e st e st e st e st e e e e e e e e e et et et e teeraeaeesae s enaententan 118
VIBW AEVICES ..ttt ettt et ettt s e sae st e s b et et sae st e e s e sse st e e sse st e st ssassentenessassensssensensesesans 118
Upgrade appliance SOFEWAIE ...ttt st st nes 119
REDOOT QPPLIANCES ...ttt ettt st e e e et et e st e st e s ba e e e e aenaennenean 120
Automate application depPloYMENT ...ttt st ae e ens 122
BUILA the CONTAINET ..ttt s a e sttt b e e aas 122
Upload the container and register NOAES ... eeieieieceeeeceee et 122
Deploy the QPPLICAtION ...ttt re et a e st e b b an e ns 123
MONItor the dePLOYMENT ...ttt e s ae s be e enea e ae s 125
MaNAge APPLICATIONS ..ottt et et e st e saeste st e e e e e e e et e testesaesbesseesaesaeneensansansans 127
VIEW GPPLICATIONS ..ttt et ettt et e s ae s e e e e e e et e te st e saessassesnnennans 127
ManNAge CAMIEIA STFEAIMScoviiiieiiierieereerte et eeteesreeste e st esstesssesssaessseessaesssessssesssessssesssesssaessseessaens 128
USING VPC @NAPOINTS ..ttt et e et e st sa e st e s aesbasse s e e e e s e e e be s esaessanes 131
Creating @ VPC @nAPOiNt ...ttt tesaeste st e se e e e e e e e a et e aasaaeans 131
Connecting an appliance to a private SUBNEt ... 131
Sample AWS CloudFormation temMpPlates ...t 132
SAMPLES ceceeeeeeeeiiiiiiieiiiiiitteeasssessssssseeeess 136
SAMPLE APPLICALIONS ..ttt ettt e st e s te s b e e e e e esa e e e sbastestassasseesaennassansans 136
UBILILY SCIIPES cveeeeeeteee ettt e et re et et e st e st e s b e st e e e e e e e et et et e sassessesseesaensassansansanes 137
CloudFormation tEMPLALES ...ttt te s e e e et e st e s tesaessesseesnesaennans 137
MOre SAMPLES AN TOOLS ..ottt e e e e et e st e st e s se s s e s sa e e s s e s ensentansassasans 138
MONIEOKFING ceveiiiiiiiiiiiiiieennnniiiiiiiceiiitesseasssans 139
AWS PanNorama CONSOLEcoucviiiiirieteirentetrcsietees et ettt se st et saeste st e e ssesa e e ssaste st e e ssestesassassensenanes 140
OGS ittt st s et e s r e s b e e s s b e e e b e e e s e e e e s s e e e e s e e e e s e e e e Rt e e e st e e e aae e aaeee s e esenneesernaans 141
VIEWING AEVICE LOGS ..ottt sttt et e st et e st esaeste e s e e e s et et et e st et asseesessnensensansanean 141
Viewing apPLliCAtioN LOGS ...ttt te st ste s e e e s s s e e e e e besaessassae e snnennan 142
Configuring apPLICAtION LOGS ...cueouiiieeeeeceeee ettt ae s e e e e e e e e e e sbaaans 142
VieWing ProViSionNiNg LOGS ... iiirieicieciecectesesee et et e stestesaessessesse s e e e eaesae st e stessessassassassesssennan 143
Egressing logs from @ AEVICE ...ttt ettt s e ns 144

Vi

AWS Panorama Developer Guide

CLOUAWALCEN MELIICS ittt sttt sttt et e b e st et e st s s be st et ssa st esassassanes 145
USING AEVICE MEBLIICS wuveeeieeeieeeietectetesteeee ettt e testestestessesse e e s s e s et et et assessassessesssensensessansansans 145
USIiNG aPPLICAtION MELIICS ..ccveeeeeeeeieieteeeceeee ettt s e s e e e e st e aesae st e s s e e e e e e e e s e aansanean 146
CONFIGUIING QLAIIMNIS ...ttt ettt te st e st e st e e e e e e e e s e sbatesaassassessnenaanes 146

TrouDBLESHOOTING ..cciiiiiieeeiiiiiiiciiiiiiiiteeneniiiiiieeettttesassssssssssssssesesssanns 147

PrOVISIONING ..eeiiiiiieiiticteeecsteerte st cs et et e st ss e e s sae e st e s saesssaesseesatassae s saesssaasseasssessssessseesssasssessssessseessaenns 147

ApPPLIaNCe CONTIGUIALION ..ottt e e e e e et et e b e st e b e s s e e e s e e aeaenaanean 147

AppPLlication CONFIGUIAtION ...ttt ae st s e e e e e aeaa s 148

CAMIEBIA SEFRAIMS .ttt sttt et b e st s e s b et et s b st e st e b e et e eaesabe st esstesesntesesasasnnan 148

SECUNITY ceiiiiiiiiennnneiiiieieeiitiiensesssssssssssseesssnssssss 150

SECUNTY TEATUIES ..ttt e et st e st e s te st e s e e e e sa e e e e etestestasassessnesesnaans 151

BOST PrACLICES ettt ettt s st s ae e s ae e se e s b e s sa e s s b e e s st e e b e s sa e et e e st e e beessaeeraesntans 153

DAta PrOTECLION ...ttt ae e st e s s e e s sae e s e e s aeessaessaaessnaessaasssasssaesssesseanns 155
ENCryPLion N TraANSIT ..coeeieeeeeeee ettt sre et sre s s e e e ae e s e e s sae s sa e s saeessaesaesssaassneas 156
AWS Panorama APPLIANCE ...ttt e saeste e s e s e s see e e e e s e s e saestessassessaesassaennenaanes 156
PAY o] o] L Tar= Lo 3OO TP RSRRRSRRR 156
ORI SEIVICES ...ttt sttt sttt st et e e s b e st et sae s b et s sesba b et esassetesassassensssanes 157

Identity and access MANAGEMENT ..ottt st e ae s e e e e e e e e e e esaesaaneans 158
AUAIENCE ...ttt ettt sttt s b et s s b et et e s b et e e s s et et s s e b et esassastestesassantesessensensesanes 158
Authenticating With identities ...ttt nnens 158
Managing access USING POLICIES ...coiceeieiiecieeecececeeeete et ste et te e e e e e e e s e e e stestessessesse e e esnennennan 159
How AWS Panorama WOorks With TAM ...ttt sae s eaas 161
Identity-based POliCYy EXAMPLES ...ttt ae s e e et aesaenaens 161
AWS MANAGEA POLICIES .uveeveeeeeietetecteteseeee ettt e rte et s e s e s e e e s e e e st e saesaestessasse s e essesaessessansansanses 164
USING SEIrVICE-LINKEA FOLES ...uoueeeeeeeeeeeeteteteee ettt te st e s sae st e st e s aesaassessnesnannens 166
Cross-service confused deputy PreveNtion ...t s e saeeens 168
TrOUBLESNOOTING .ottt sttt et et e st esae s be e e e sa e e e e e s e b entanean 169

ComPLiANCe ValiIdAtioN ...ttt e e e et aesae s e e be s b e s e e e e e e aenantans 172
Additional considerations for when people are presenteececececenececeeeere e 172

INFraStrUCTUIE SECUNILY cuviieieieeeceeee ettt ettt e st e st e e e se e e et este b e s aa s s e s seesne e esensensansans 173
Deploying the AWS Panorama Appliance in your datacenterccoceveceeeneeceeceeceeceeceenn, 173

RUNTIME @NVIFONMIENT ..ceeii ettt sttt et sb st s s be s nesneenis 174

RELEASES ...ciiiiiiiiiiiiiiiiiiininsssnss 175

vii

AWS Panorama Developer Guide

End of support notice: On May 31, 2026, AWS will end support for AWS Panorama. After May 31,

2026, you will no longer be able to access the AWS Panorama console or AWS Panorama resources.
For more information, see AWS Panorama end of support.

viii

https://docs.aws.amazon.com/panorama/latest/dev/panorama-end-of-support.html

AWS Panorama Developer Guide

What is AWS Panorama?

AWS Panorama is a service that brings computer vision to your on-premises camera network. You
install the AWS Panorama Appliance or another compatible device in your datacenter, register it
with AWS Panorama, and deploy computer vision applications from the cloud. AWS Panorama
works with your existing real time streaming protocol (RTSP) network cameras. The appliance runs
secure computer vision applications from AWS Partners, or applications that you build yourself
with the AWS Panorama Application SDK.

The AWS Panorama Appliance is a compact edge appliance that uses a powerful system-on-module
(SOM) that is optimized for machine learning workloads. The appliance can run multiple computer
vision models against multiple video streams in parallel and output the results in real time. It is
designed for use in commercial and industrial settings and is rated for dust and liquid protection
(IP-62).

The AWS Panorama Appliance enables you to run self-contained computer vision applications at
the edge, without sending images to the AWS Cloud. By using the AWS SDK, you can integrate with
other AWS services and use them to track data from the application over time. By integrating with
other AWS services, you can use AWS Panorama to do the following:

« Analyze traffic patterns — Use the AWS SDK to record data for retail analytics in Amazon
DynamoDB. Use a serverless application to analyze the collected data over time, detect
anomalies in the data, and predict future behavior.

» Receive site safety alerts — Monitor off-limits areas at an industrial site. When your application
detects a potentially unsafe situation, upload an image to Amazon Simple Storage Service
(Amazon S3) and send a notification to an Amazon Simple Notification Service (Amazon SNS)
topic so recipients can take corrective action.

« Improve quality control — Monitor an assembly line's output to identify parts that don't conform
to requirements. Highlight images of nonconformant parts with text and a bounding box and
display them on a monitor for review by your quality control team.

» Collect training and test data — Upload images of objects that your computer vision model
couldn't identify, or where the model's confidence in its guess was borderline. Use a serverless
application to create a queue of images that need to be tagged. Tag the images and use them to
retrain the model in Amazon SageMaker Al.

https://aws.amazon.com//panorama/partners/

AWS Panorama Developer Guide

AWS Panorama uses other AWS services to manage the AWS Panorama Appliance, access models
and code, and deploy applications. AWS Panorama does as much as possible without requiring you
to interact with other services, but a knowledge of the following services can help you understand
how AWS Panorama works.

» SageMaker Al — You can use SageMaker Al to collect training data from cameras or sensors, build

a machine learning model, and train it for computer vision. AWS Panorama uses SageMaker Al
Neo to optimize models to run on the AWS Panorama Appliance.

« Amazon S3 - You use Amazon S3 access points to stage application code, models, and
configuration files for deployment to an AWS Panorama Appliance.

o AWS loT — AWS Panorama uses AWS loT services to monitor the state of the AWS Panorama
Appliance, manage software updates, and deploy applications. You don't need to use AWS loT
directly.

To get started with the AWS Panorama Appliance and learn more about the service, continue to
Getting started with AWS Panorama.

AWS Panorama end of support

After careful consideration, we decided to end support for the AWS Panorama, effective May 31,
2026. AWS Panorama will no longer accept new customers beginning May 20, 2025. As an existing
customer with an account signed up for the service before May 20, 2025, you can continue to use
AWS Panorama features. After May 31, 2026, you will no longer be able to use AWS Panorama.

Alternatives to AWS Panorama

If you're interested in an alternative to AWS Panorama, AWS has options for both buyers and
builders.

For an out-of-the-box solution, the AWS Partner Network offers solutions from multiple partners.

You can browse solutions on the AWS Solutions Library from many of our partners. These partner

solutions include options for hardware, software, software as a service (SaaS) applications,
managed solutions, or custom implementations based on your needs. This approach provides a
solution that addresses your use case without requiring you to have expertise in computer vision,
Al, or application development. This typically provides faster time to value by taking advantage of
the specialized expertise of the AWS Partners.

AWS Panorama end of support 2

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/s3/
https://aws.amazon.com/iot/
https://partners.amazonaws.com/
https://aws.amazon.com/solutions/

AWS Panorama Developer Guide

If you prefer to build your own solution, AWS offers Al tools and services to help you develop an Al-
based computer vision application and manage the applications and devices at the edge. Amazon
SageMaker provides a set of tools to build, train, and deploy ML models for your use case with

fully managed infrastructure, tools, and workflows. In addition to enabling you to build your own
models, Amazon SageMaker JumpStart offers built-in computer vision algorithms that can be fine-

tuned to your specific use case.

For managing devices and applications at the edge, AWS |oT Greengrass is a proven and secure

solution to deploy and update applications for IoT devices. For a server-based implementation,
AWS Systems Manager provides a suite of tools for managing servers and Amazon EKS Anywhere

or ECS Anywhere can manage application containers on edge servers. Amazon provides some

guidelines for managing edge devices, along with additional resources in Section 4 of the Securing
Internet of Things (loT) with AWS whitepaper. This builder approach provides you the tools to

accelerate your Al and device management development while providing complete flexibility to
build a solution that meets your exact requirements and integrates with your existing hardware
and software infrastructure. This typically provides lower operating costs for a solution.

Migrating from AWS Panorama

To move an existing application from AWS Panorama to an alternative implementation, you will
need to replace the existing hardware device, migrate the application from the AWS Panorama
service, and implement edge management and security for the new solution. Each of those areas
will be explored in detail below:

Hardware Replacement

The existing AWS Panorama appliance is based on the Nvidia Jetson Xavier platform. The hardware
can be replaced with a similar off-the-shelf device based on the current generation Nvidia

Jetson platform that meets your requirements, or an edge server. While most AWS Panorama
deployments can be replaced with a similar device, we have seen some customers who utilize a
large number of cameras in a single location find that a server is a better alternative.

Application Migration

AWS Panorama applications need to be rewritten to eliminate the use of any AWS Panorama-
specific API calls. AWS Panorama applications only support video input through Real-Time
Streaming Protocol (RTSP) feeds using H.264 and those video inputs are provided using camera
nodes in the AWS Panorama device SDK.

Migrating from AWS Panorama 3

https://aws.amazon.com/pm/sagemaker
https://aws.amazon.com/pm/sagemaker
https://aws.amazon.com/sagemaker/jumpstart/
https://docs.aws.amazon.com/sagemaker/latest/dg/algorithms-vision.html
https://aws.amazon.com/greengrass/
https://aws.amazon.com/systems-manager/
https://aws.amazon.com/eks/eks-anywhere/
https://aws.amazon.com/ecs/anywhere/
https://docs.aws.amazon.com/whitepapers/latest/securing-iot-with-aws/define-appropriate-update-mechanisms-for-updates.html
https://docs.aws.amazon.com/whitepapers/latest/securing-iot-with-aws/securing-iot-with-aws.html
https://docs.aws.amazon.com/whitepapers/latest/securing-iot-with-aws/securing-iot-with-aws.html
https://developer.nvidia.com/embedded/jetson-partner-products?t1_other-interfaces=rugged

AWS Panorama Developer Guide

To port an existing application, you will need to implement an application class similar to AWS
Panorama so that the existing code can be mostly re-used. Sample code is available in the banner-
code.zip file that shows an example of this implementation using both PyAV and OpenCV.

This is a simple approach with a minimal amount of code changes, but has many of the same
limitations as the current AWS Panorama based implementation in terms of the types of video
streams supported.

Another option would be to re-architect the application to make better use of system resources
and to support new application capabilities. For this option, you use GStreamer or DeepStream to
implement the media pipeline from media source to inference results and business logic, or use

a more feature rich and better performing machine learning (ML) runtime implementation, like
the Nvidia Triton inference server. This approach requires changes to more of the video processing
pipeline, but is both more efficient and allows more flexibility to support a wider range of codecs,
camera types, and other sensors.

Edge Management and Security

Regardless of the media pipeline, you will also have to implement a secure store for credentials,
e.g. RTSP stream username and password. AWS provides different ways of securely storing
parameters for applications:

o AWS loT Device Shadow service is used to store parameters that are passed to applications, as
well as to track the status of the applications on the edge device.

« AWS Secrets Manager is used to store such credentials to better protect the credentials to access
media streams.

o If you use Amazon EKS or Amazon ECS, then you can also use the secure AWS System Manager

Parameter store for credentials and other application parameters.

The choice depends on the security requirements of the application, as well as which other AWS
products you plan to use to implement your application.

When you replace the AWS Panorama appliance with a generic edge device, you must also
implement required security features for your applications and configure the devices to comply
with your security requirements. AWS provides guidance on this in the Security Pillar of the AWS
Well-Architected Framework. While the framework primarily focuses on cloud applications, most

principles also apply to edge devices. In addition, you should use hardware security features of the

Migrating from AWS Panorama 4

samples/banner-code.zip
samples/banner-code.zip
https://gstreamer.freedesktop.org/
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/triton-inference-server
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://aws.amazon.com/secrets-manager/
https://aws.amazon.com/eks/
https://aws.amazon.com/ecs/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html
https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/architecture/well-architected/

AWS Panorama Developer Guide

chosen solution, such as AWS loT Greengrass V2 hardware security integration, and use security
features provided by the chosen OS and/or device, such as full disk encryption.

Summary

Although AWS Panorama is planning to shut down on May 31, 2026, AWS offers a powerful set
of Al/ML services and solutions in the form of Amazon SageMaker tools to build computer vision
models and device management services, such as AWS loT Greengrass, Amazon EKS and Amazon
ECS Anywhere and AWS System Manager to support the development of similar solutions. AWS

also has a range of offerings from partners in the AWS Partner Network if you prefer to buy instead
of build a solution. Example code and implementation guidance is provided to help to migrate to
an alternate solution if you so choose. You should explore these options to determine what works
best for your specific needs.

For more details, refer to the following resources:

« Amazon SageMaker Developer Guide — Detailed documentation on how to build a model or work

with built-in computer vision algorithms available in SageMaker JumpStart.

o AWS loT Core Developer Guide - Detailed documentation on how to connect and manage loT
Devices.

o AWS loT Greengrass V2 Developer Guide — Detailed documentation on how to build, deploy and

manage loT applications on your devices.

o ECS Anywhere Developer Guide - Detailed documentation on running ECS at the edge.

o EKS Anywhere Best Practices Guide - Detailed documentation on running EKS at the edge.

o AWS Solutions Library — Partner offerings from a range of providers offering pre-built or

customized computer vision solutions.

« Panorama FAQs - Additional Panorama Information.

Frequently Asked Questions

What is the timing for the Panorama discontinuation?

The announcement was made on May 20, 2025. After this date, customers who are not active

on the service will no longer have access to Panorama. Active customers will be able to continue
to use the service normally until May 31, 2026. Customers have until that time to move their
application to an alternative solution and migrate applications of Panorama. After May 31, 2026,

Summary 5

https://docs.aws.amazon.com/greengrass/v2/developerguide/hardware-security.html
https://aws.amazon.com/ecs/anywhere/
https://aws.amazon.com/ecs/anywhere/
https://aws.amazon.com/systems-manager/
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/sagemaker/latest/dg/machine-learning-environments.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algorithms-vision.html
https://aws.amazon.com/sagemaker/jumpstart/
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/what-is-iot-greengrass.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-anywhere.html
https://docs.aws.amazon.com/eks/latest/best-practices/hybrid.html
https://aws.amazon.com/solutions/
https://aws.amazon.com/panorama/faqs/

AWS Panorama Developer Guide

any application that tries to access the Panorama service will no longer work and Panorama devices
will no longer function.

How will existing customers be impacted?

Existing customers can continue to use the service normally until May 31, 2026. After that,
applications that try to access Panorama will no longer work. Panorama devices will also no longer
work after that date.

Are new customers being accepted?

No. As of May 20, 2025, only customers who are active users of Panorama will have access to the
service. If a customer has applications in the service from prior usage that they need to access, they
can create a case with customer support to request access for their account. If a customer does not
have prior usage of the service, they will not be granted access.

What are alternatives customers can explore?

AWS offers a range of services which can replace the Panorama capabilities. We recommend
customers utilize off-the-shelf hardware and manage the device and application via the
combination of AWS loT Core, AWS loT Greengrass, Amazon AKS Anywhere, Amazon ECS
Anywhere, and / or AWS System Manager that meets their requirements. The AWS Partner
Network also has several solutions available from partners with specific Computer Visions expertise
that customers can consider.

How can customers migrate off Panorama?

Panorama applications need to be modified to remove any dependencies on Panorama-specific
APIs, which primarily relate to camera connection and streaming. AWS has provided sample code
to show how to make these changes. Once those dependencies are removed, the application can be
moved to an alternative hardware platform.

If | am having issues on or after May 20, 2025, what support will be available?

AWS will continue to provide support for Panorama up until the end of the discontinuation
notification period (May 31, 2026). For any support requirements, customers should enter a
support case through their normal support channels. AWS will provide security updates, bug fixes,
and availability enhancements.

Frequently Asked Questions 6

AWS Panorama Developer Guide

I cannot migrate before May 31, 2026. Can the date be extended?

We are confident that the alternatives that are available for Panorama enable customers to migrate
to an alternative solution by May 31, 2026 and we have no plans to extend availability of the
service past that date.

Will my edge application continue to function after the service has ended?

No. The Panorama device and applications are dependent on connectivity to the Panorama cloud
service. Once that service is discontinued on May 31, 2026, neither the Panorama application nor
the Panorama device will continue to function.

Frequently Asked Questions 7

AWS Panorama Developer Guide

Getting started with AWS Panorama

To get started with AWS Panorama, first learn about the service's concepts and the terminology

used in this guide. Then you can use the AWS Panorama console to register your AWS Panorama
Appliance and create an application. In about an hour, you can configure the device, update its
software, and deploy a sample application. To complete the tutorials in this section, you use the
AWS Panorama Appliance and a camera that streams video over a local network.

(® Note

To purchase an AWS Panorama Appliance, visit the AWS Panorama console.

The AWS Panorama sample application demonstrates use of AWS Panorama features. It
includes a model that has been trained with SageMaker Al and sample code that uses the AWS
Panorama Application SDK to run inference and output video. The sample application include a

CloudFormation template and scripts that show how to automate development and deployment
workflows from the command line.

The final two topics in this chapter detail requirements for models and cameras, and the hardware

specifications of the AWS Panorama Appliance. If you haven't obtained an appliance and cameras

yet, or plan on developing your own computer vision models, see these topics first for more
information.

Topics

« AWS Panorama concepts

» Setting up the AWS Panorama Appliance

» Deploying the AWS Panorama sample application

» Developing AWS Panorama applications

» Supported computer vision models and cameras

« AWS Panorama Appliance specifications

« Service quotas

https://console.aws.amazon.com/panorama/home#get-device-quote

AWS Panorama Developer Guide

AWS Panorama concepts

In AWS Panorama, you create computer vision applications and deploy them to the AWS Panorama
Appliance or a compatible device to analyze video streams from network cameras. You write
application code in Python and build application containers with Docker. You use the AWS
Panorama Application CLI to import machine learning models locally or from Amazon Simple
Storage Service (Amazon S3). Applications use the AWS Panorama Application SDK to receive video
input from a camera and interact with a model.

Concepts

o The AWS Panorama Appliance

Compatible devices
Applications
Nodes

Models

The AWS Panorama Appliance

The AWS Panorama Appliance is the hardware that runs your applications. You use the AWS
Panorama console to register an appliance, update its software, and deploy applications to it. The
software on the AWS Panorama Appliance connects to camera streams, sends frames of video to
your application, and displays video output on an attached display.

The AWS Panorama Appliance is an edge device powered by Nvidia Jetson AGX Xavier. Instead
of sending images to the AWS Cloud for processing, it runs applications locally on optimized
hardware. This enables you to analyze video in real time and process the results locally. The
appliance requires an internet connection to report its status, to upload logs, and to perform
software updates and deployments.

For more information, see Managing the AWS Panorama Appliance.

Compatible devices

In addition to the AWS Panorama Appliance, AWS Panorama supports compatible devices from
AWS Partners. Compatible devices support the same features as the AWS Panorama Appliance. You
register and manage compatible devices with the AWS Panorama console and API, and build and
deploy applications in the same way.

Concepts 9

AWS Panorama Developer Guide

« Lenovo ThinkEdge® SE70 — Powered by Nvidia Jetson Xavier NX

The content and sample applications in this guide are developed with the AWS Panorama
Appliance. For more information about specific hardware and software features for your device,
refer to the manufacturer's documentation.

Applications

Applications run on the AWS Panorama Appliance to perform computer vision tasks on video
streams. You can build computer vision applications by combining Python code and machine
learning models, and deploy them to the AWS Panorama Appliance over the internet. Applications
can send video to a display, or use the AWS SDK to send results to AWS services.

To build and deploy applications, you use the AWS Panorama Application CLI. The AWS Panorama
Application CLI is a command-Lline tool that generates default application folders and configuration
files, builds containers with Docker, and uploads assets. You can run multiple applications on one
device.

For more information, see Managing AWS Panorama applications.

Nodes

An application comprises multiple components called nodes, which represent inputs, outputs,
models, and code. A node can be configuration only (inputs and outputs), or include artifacts
(models and code). An application's code node are bundled in node packages that you upload to
an Amazon S3 access point, where the AWS Panorama Appliance can access them. An application
manifest is a configuration file that defines connections between the nodes.

For more information, see Application nodes.

Models

A computer vision model is a machine learning network that is trained to process images.
Computer vision models can perform various tasks such as classification, detection, segmentation,
and tracking. A computer vision model takes an image as input and outputs information about the
image or objects in the image.

Applications 10

https://techtoday.lenovo.com/us/en/solutions/smb/thinkedge

AWS Panorama Developer Guide

AWS Panorama supports models built with PyTorch, Apache MXNet, and TensorFlow. You can build
models with Amazon SageMaker Al or in your development environment. For more information,
see 777,

Models 11

AWS Panorama Developer Guide

Setting up the AWS Panorama Appliance

To get started using your AWS Panorama Appliance or compatible device, register it in the AWS

Panorama console and update its software. During the setup process, you create an appliance
resource in AWS Panorama that represents the physical appliance, and copy files to the appliance
with a USB drive. The appliance uses these certificates and configuration files to connect to

the AWS Panorama service. Then you use the AWS Panorama console to update the appliance's
software and register cameras.

Sections

Prerequisites
Register and configure the AWS Panorama Appliance

Upgrade the appliance software

Add a camera stream

Next steps

Prerequisites

To follow this tutorial, you need an AWS Panorama Appliance or compatible device and the
following hardware:

» Display - A display with HDMI input for viewing the sample application output.

» USB drive (included with AWS Panorama Appliance) — A FAT32-formatted USB 3.0 flash memory
drive with at least 1 GB of storage, for transferring an archive with configuration files and a
certificate to the AWS Panorama Appliance.

o Camera - An IP camera that outputs an RTSP video stream.

Use the tools and instructions provided by your camera's manufacturer to identify the camera's
IP address and stream path. You can use a video player such as VLC to verify the stream URL, by
opening it as a network media source:

Setting up 12

https://www.videolan.org/

AWS Panorama Developer Guide

& Open Media

| Ele wDisc 5 Network F Caphure Device
Metwork Protocol
Flease enter a network URL:

risp: 1192, 168.0. 77 feve fmpagd

The AWS Panorama console uses other AWS services to assemble application components, manage
permissions, and verify settings. To register an appliance and deploy the sample application, you
need the following permissions:

o AWSPanoramaFullAccess — Provides full access to AWS Panorama, AWS Panorama access points

in Amazon S3, appliance credentials in AWS Secrets Manager, and appliance logs in Amazon
CloudWatch. Includes permission to create a service-linked role for AWS Panorama.

« AWS Identity and Access Management (IAM) - On first run, to create roles used by the AWS
Panorama service and the AWS Panorama Appliance.

If you don't have permission to create roles in 1AM, have an administrator open the AWS Panorama

console and accept the prompt to create service roles.

Register and configure the AWS Panorama Appliance

The AWS Panorama Appliance is a hardware device that connects to network-enabled cameras
over a local network connection. It uses a Linux-based operating system that includes the AWS
Panorama Application SDK and supporting software for running computer vision applications.

To connect to AWS for appliance management and application deployment, the appliance uses a
device certificate. You use the AWS Panorama console to generate a provisioning certificate. The
appliance uses this temporary certificate to complete initial setup and download a permanent
device certificate.

Register and configure the AWS Panorama Appliance 13

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSPanoramaFullAccess
https://console.aws.amazon.com/panorama/home
https://console.aws.amazon.com/panorama/home

AWS Panorama Developer Guide

/A Important

The provisioning certificate that you generate in this procedure is only valid for 5 minutes.
If you do not complete the registration process within this time frame, you must start over.

To register a appliance

1. Connect the USB drive to your computer. Prepare the appliance by connecting the network
and power cables. The appliance powers on and waits for a USB drive to be connected.

Open the AWS Panorama console Getting started page.

Choose Add device.

Choose Begin setup.

ok W

Enter a name and description for the device resource that represents the appliance in AWS
Panorama. Choose Next

Register and configure the AWS Panorama Appliance 14

https://console.aws.amazon.com/panorama/home#getting-started

AWS Panorama Developer Guide

Set up device: Name

Specify name Configure Download file Power on Done

What do you want to name your device? info

We'll help you set up your oo
device Provide a unique name. You can't edit this name later

my-appliance

Description - Optional

Application development and testing.

You'll use the name to find and identify your device later, so pick Key

something memorable and unique. The optional description and Q asset_tag e

tags make it easy to search and select by location or other
criteria that you supply.

Value - optional

Q, 1234ABCD X

-

Exit Previous m

6. If you need to manually assign an IP address, NTP server, or DNS settings, choose Advanced
network settings. Otherwise, choose Next.

7. Choose Download archive. Choose Next.
8. Copy the configuration archive to the root directory of the USB drive.

9. Connect the USB drive to the USB 3.0 port on the front of the appliance, next to the HDMI
port.

When you connect the USB drive, the appliance copies the configuration archive and network
configuration file to itself and connects to the AWS Cloud. The appliance's status light turns
from green to blue while it completes the connection, and then back to green.

10. To continue, choose Next.

Register and configure the AWS Panorama Appliance 15

AWS Panorama Developer Guide

Set up device: Plug in USB device and power on

© © © ® O

Specify name Configure Download file Power on Done

Plug in the USB storage device, cables, and
power on your device info

Plug the USB storage device
and cables in’ and power (0] Now plug the USB storage device with the configuration file into

your device. Plug in the power cable, ethernet cable (if you're
using that connection type), and press the power button to
finish the initial set up.

The lights will flash for a few moments while the device reads
the configuration and connects to your on-premise network.
Next the device will automatically establish a secure connection
to your AWS account in the cloud, and all further status and
device settings are then managed from the AWS Panorama
console.

| () Your appliance is now connected and online.

The configuration file is read from the USB storage device when
the device is first powered on. The device connects to your on-
premise network, and then establishes a secure connection to
your AWS account in the cloud. Further management of the
device is done from the AWS Panorama console.

Exit Previous m

11. Choose Done.

Upgrade the appliance software

The AWS Panorama Appliance has several software components, including a Linux operating
system, the AWS Panorama application SDK, and supporting computer vision libraries and

frameworks. To ensure that you can use the latest features and applications with your appliance,
upgrade its software after setup and whenever an update is available.

To update the appliance software

1. Open the AWS Panorama console Devices page.

Upgrade the appliance software 16

https://console.aws.amazon.com/panorama/home#devices

AWS Panorama Developer Guide

2. Choose an appliance.
3. Choose Settings

4. Under System software, choose Install software update.

System software Install software update
Version Updated date
4.1.34 10/12/2021, 10:02:04 AM

» Update history

5. Choose a new version and then choose Install.

/A Important

Before you continue, remove the USB drive from the appliance and format it to delete
its contents. The configuration archive contains sensitive data and is not deleted
automatically.

The upgrade process can take 30 minutes or more. You can monitor its progress in the AWS
Panorama console or on a connected monitor. When the process completes, the appliance reboots.

Add a camera stream

Next, register a camera stream with the AWS Panorama console.
To register a camera stream

1. Open the AWS Panorama console Data sources page.

2. Choose Add data source.

Add a camera stream 17

https://console.aws.amazon.com/panorama/home#data-sources

AWS Panorama

Developer Guide

Add data source

Camera stream details info
Mame

exterior-south
Description - optional

Stream 2 - 720p

3. Configure the following settings.

« Name - A name for the camera stream.

» Description — A short description of the camera, its location, or other details.

o RTSP URL - A URL that specifies the camera's IP address and the path to the stream. For

example, rtsp://192.168.0.77/1ive/mpeg4/

» Credentials - If the camera stream is password protected, specify the username and
password.

4. Choose Save.

AWS Panorama stores your camera's credentials securely in AWS Secrets Manager. Multiple

applications can process the same camera stream simultaneously.

Next steps

If you encountered errors during setup, see Troubleshooting.

To deploy a sample application, continue to the next topic.

Next steps

18

AWS Panorama Developer Guide

Deploying the AWS Panorama sample application

After you've set up your AWS Panorama Appliance or compatible device and upgraded its software,
deploy a sample application. In the following sections, you import a sample application with the
AWS Panorama Application CLI and deploy it with the AWS Panorama console.

The sample application uses a machine learning model to classify objects in frames of video from a
network camera. It uses the AWS Panorama Application SDK to load a model, get images, and run
the model. The application then overlays the results on top of the original video and outputs it to a
connected display.

In a retail setting, analyzing foot traffic patterns enables you to predict traffic levels. By combining
the analysis with other data, you can plan for increased staffing needs around holidays and other
events, measure the effectiveness of advertisements and sales promotions, or optimize display
placement and inventory management.

Sections

Prerequisites

« Import the sample application

» Deploy the application

« View the output

« Enable the SDK for Python

» Clean up
» Next steps

Prerequisites
To follow the procedures in this tutorial, you need a command line terminal or shell to run
commands. In the code listings, commands are preceded by a prompt symbol ($) and the name of

the current directory, when appropriate.

~/panorama-project$ this is a command
this is output

For long commands, we use an escape character (\) to split a command over multiple lines.

Deploying an application 19

AWS Panorama Developer Guide

On Linux and macQOS, use your preferred shell and package manager. On Windows 10, you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and
Bash. For help setting up a development environment in Windows, see Setting up a development

environment in Windows.

You use Python to develop AWS Panorama applications and install tools with pip, Python's package
manager. If you don't already have Python, install the latest version. If you have Python 3 but not

pip, install pip with your operating system's package manager, or install a new version of Python,
which comes with pip.

In this tutorial, you use Docker to build the container that runs your application code. Install Docker
from the Docker website: Get Docker

This tutorial uses the AWS Panorama Application CLI to import the sample application, build
packages, and upload artifacts. The AWS Panorama Application CLI uses the AWS Command Line
Interface (AWS CLI) to call service API operations. If you already have the AWS CLI, upgrade it to
the latest version. To install the AWS Panorama Application CLI and AWS CLI, use pip.

$ pip3 install --upgrade awscli panoramacli

Download the sample application, and extract it into your workspace.

« Sample application — aws-panorama-sample.zip

Import the sample application

To import the sample application for use in your account, use the AWS Panorama Application
CLI. The application's folders and manifest contain references to a placeholder account number.
To update these with your account number, run the panorama-cli import-application
command.

aws-panorama-sample$ panorama-cli import-application

The SAMPLE_CODE package, in the packages directory, contains the application's code

and configuration, including a Dockerfile that uses the application base image, panorama-
application. To build the application container that runs on the appliance, use the panorama-
cli build-container command.

Import the sample application 20

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.python.org/downloads/
https://docs.docker.com/get-docker/
https://github.com/awsdocs/aws-panorama-developer-guide/releases/download/v1.0-ga/aws-panorama-sample.zip

AWS Panorama Developer Guide

aws-panorama-sample$ ACCOUNT_ID=$(aws sts get-caller-identity --output text --query
"Account')

aws-panorama-sample$ panorama-cli build-container --container-asset-name code_asset --

package-path packages/${ACCOUNT_ID}-SAMPLE_CODE-1.0

The final step with the AWS Panorama Application CLI is to register the application's code and
model nodes, and upload assets to an Amazon S3 access point provided by the service. The assets
include the code's container image, the model, and a descriptor file for each. To register the nodes
and upload assets, run the panorama-cli package-application command.

aws-panorama-sample$ panorama-cli package-application

Uploading package model

Registered model with patch version
bc9c58bd6f83743f26aa347dc86bfc3dd2451b18f964a6de2cc4570cb6f89119

Uploading package code

Registered code with patch version
11fd7001cb31leab3df6aaed297d600a5ecf641a987044a0c273c78ceb3d5d806

Deploy the application

Use the AWS Panorama console to deploy the application to your appliance.
To deploy the application

1. Open the AWS Panorama console Deployed applications page.

2. Choose Deploy application.

W

Paste the contents of the application manifest, graphs/aws-panorama-sample/
graph. json, into the text editor. Choose Next.

For Application name, enter aws-panorama-sample.
Choose Proceed to deploy.

Choose Begin deployment.

Choose Next without selecting a role.

Choose Select device, and then choose your appliance. Choose Next.

© ® N o u A

On the Select data sources step, choose View input(s), and add your camera stream as a data
source. Choose Next.

10. On the Configure step, choose Next.

Deploy the application 21

https://console.aws.amazon.com/panorama/home#deployed-applications

AWS Panorama Developer Guide

11. Choose Deploy, and then choose Done.

12. In the list of deployed applications, choose aws-panorama-sample.

Refresh this page for updates, or use the following script to monitor the deployment from the
command line.

Example monitor-deployment.sh

while true; do
aws panorama list-application-instances --query 'ApplicationInstances[?Name=="aws-
panorama-sample]'

sleep 10
done
[
{
"Name": "aws-panorama-sample",
"ApplicationInstanceId": "applicationInstance-x264exmpl33gq5pchc2ekoi6uu",
"DefaultRuntimeContextDeviceName": "my-appliance",
"Status": "DEPLOYMENT_PENDING",
"HealthStatus": "NOT_AVAILABLE",
"StatusDescription": "Deployment Workflow has been scheduled.",
"CreatedTime": 1630010747 .443,
"Arn": "arn:aws:panorama:us-west-2:123456789012:applicationInstance/
applicationInstance-x264exmpl33gq5pchc2ekoibuu™,
"Tags": {3}
}
]
[
{
"Name": "aws-panorama-sample",
"ApplicationInstanceId": "applicationInstance-x264exmpl33gq5pchc2ekoi6buu",
"DefaultRuntimeContextDeviceName": "my-appliance",
"Status": "DEPLOYMENT_PENDING",
"HealthStatus": "NOT_AVAILABLE",
"StatusDescription": "Deployment Workflow has completed data validation.",
"CreatedTime": 1630010747 .443,
"Arn": "arn:aws:panorama:us-west-2:123456789012:applicationInstance/
applicationInstance-x264exmpl33gq5pchc2ekoibuu™,
"Tags": {3}
}

Deploy the application 22

AWS Panorama Developer Guide

]

If the application doesn't start running, check the application and device logs in Amazon
CloudWatch Logs.

View the output

When the deployment is complete, the application starts processing the video stream and sends
logs to CloudWatch.

To view logs in CloudWatch Logs

1. Open the Log groups page of the CloudWatch Logs console.

2. Find AWS Panorama application and appliance logs in the following groups:

» Device logs - /aws/panorama/devices/device-id

« Application logs - /aws/panorama/devices/device-id/applications/instance-

id

2022-08-26 17:43:39 INFO INITIALIZING APPLICATION
2022-08-26 17:43:39 INFO ## ENVIRONMENT VARIABLES
{'PATH': '/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin', 'TERM':

'xterm', 'container': 'podman'...}
2022-08-26 17:43:39 INFO Configuring parameters.
2022-08-26 17:43:39 INFO Configuring AWS SDK for Python.
2022-08-26 17:43:39 INFO Initialization complete.
2022-08-26 17:43:39 INFO PROCESSING STREAMS
2022-08-26 17:46:19 INFO epoch length: 160.183 s (0.936 FPS)
2022-08-26 17:46:19 INFO avg inference time: 805.597 ms
2022-08-26 17:46:19 INFO max inference time: 120023.984 ms
2022-08-26 17:46:19 INFO avg frame processing time: 1065.129 ms
2022-08-26 17:46:19 INFO max frame processing time: 149813.972 ms
2022-08-26 17:46:29 INFO epoch length: 10.562 s (14.202 FPS)
2022-08-26 17:46:29 INFO avg inference time: 7.185 ms
2022-08-26 17:46:29 INFO max inference time: 15.693 ms
2022-08-26 17:46:29 INFO avg frame processing time: 66.561 ms
2022-08-26 17:46:29 INFO max frame processing time: 123.774 ms

View the output 23

https://console.aws.amazon.com/cloudwatch/home#logsV2:log-groups

AWS Panorama Developer Guide

To view the application's video output, connect the appliance to a monitor with an HDMI cable. By
default, the application shows any classification result that has more than 20% confidence.

Example squeezenet_classes.json

["tench", "goldfish", "great white shark", "tiger shark",
"hammerhead", "electric ray", "stingray", "cock", "hen", "ostrich",
"brambling", "goldfinch", "house finch", "junco", "indigo bunting",
"robin", "bulbul", "jay", "magpie", "chickadee", "water ouzel",
"kite", "bald eagle", "vulture", "great grey owl",

"European fire salamander", '"common newt", "eft",

"spotted salamander", "axolotl", "bullfrog", "tree frog",

The sample model has 1000 classes including many animals, food, and common objects. Try
pointing your camera at a keyboard or coffee mug.

coffee mug (24%)

View the output 24

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/squeezenet_classes.json

AWS Panorama Developer Guide

For simplicity, the sample application uses a lightweight classification model. The model outputs a
single array with a probability for each of its classes. Real-world applications more frequently use
object detection models that have multidimensional output. For sample applications with more
complex models, see Sample applications, scripts, and templates.

Enable the SDK for Python

The sample application uses the AWS SDK for Python (Boto) to send metrics to Amazon
CloudWatch. To enable this functionality, create a role that grants the application permission to
send metrics, and redeploy the application with the role attached.

The sample application includes a CloudFormation template that creates a role with the
permissions that it needs. To create the role, use the aws cloudformation deploy command.

$ aws cloudformation deploy --template-file aws-panorama-sample.yml --stack-name aws-
panorama-sample-runtime --capabilities CAPABILITY_NAMED_IAM

To redeploy the application

Open the AWS Panorama console Deployed applications page.

1

2. Choose an application.
3. Choose Replace.
4

Complete the steps to deploy the application. In the Specify IAM role, choose the role that
you created. Its name starts with aws-panorama-sample-runtime.

5. When the deployment completes, open the CloudWatch console and view the metrics in the

AWSPanoramaApplication namespace. Every 150 frames, the application logs and uploads
metrics for frame processing and inference time.

Clean up

If you are done working with the sample application, you can use the AWS Panorama console to
remove it from the appliance.

To remove the application from the appliance

1. Open the AWS Panorama console Deployed applications page.

2. Choose an application.

Enable the SDK for Python 25

https://console.aws.amazon.com/panorama/home#deployed-applications
https://console.aws.amazon.com/cloudwatch/home#metricsV2:graph=~();namespace=~'AWSPanoramaApplication
https://console.aws.amazon.com/panorama/home#deployed-applications

AWS Panorama Developer Guide

3. Choose Delete from device.

Next steps

If you encountered errors while deploying or running the sample application, see Troubleshooting.

To learn more about the sample application's features and implementation, continue to the next

topic.

Next steps 26

AWS Panorama

Developer Guide

Developing AWS Panorama applications

You can use the sample application to learn about AWS Panorama application structure, and as a

starting point for your own application.

The following diagram shows the major components of the application running on an AWS
Panorama Appliance. The application code uses the AWS Panorama Application SDK to get images

and interact with the model, which it doesn't have direct access to. The application outputs video

to a connected display but does not send image data outside of your local network.

In this example, the application uses the AWS Panorama Application SDK to get frames of video

Sample application

On-premises

AWS Panorama Appliance

@

TITTI
AWS Panorama SDK

Display

E L@

IP cameras

Telemetry

Application code Model

Logs

BY Amazon Web Services cloud

EIT’.O AWS Panorama
=)
Amazon CloudWatch

from a camera, preprocess the video data, and send the data to a computer vision model that
detects objects. The application displays the result on an HDMI display connected to the appliance.

Sections

The application manifest

Building with the sample application

Changing the computer vision model

Preprocessing images

Uploading metrics with the SDK for Python
Next steps

Developing applications

27

AWS Panorama Developer Guide

The application manifest

The application manifest is a file named graph. json in the graphs folder. The manifest defines
the application's components, which are packages, nodes, and edges.

Packages are code, configuration, and binary files for application code, models, cameras, and
displays. The sample application uses 4 packages:

Example graphs/aws-panorama-sample/graph. json - Packages

"packages": [

{
"name": "123456789012::SAMPLE_CODE",
"version": "1.0"

iy

{
"name": "123456789012::SQUEEZENET_PYTORCH_V1",
"version": "1.0"

iy

{
"name": "panorama::abstract_rtsp_media_source",
"version": "1.0"

iy

{
"name": "panorama::hdmi_data_sink",
"version": "1.0"

}

1,

The first two packages are defined within the application, in the packages directory. They contain
the code and model specific to this application. The second two packages are generic camera and
display packages provided by the AWS Panorama service. The abstract_rtsp_media_source
package is a placeholder for a camera that you override during deployment. The hdmi_data_sink
package represents the HDMI output connector on the device.

Nodes are interfaces to packages, as well as non-package parameters that can have default
values that you override at deploy time. The code and model packages define interfaces in
package. json files that specify inputs and outputs, which can be video streams or a basic data
type such as a float, boolean, or string.

For example, the code_node node refers to an interface from the SAMPLE_CODE package.

The application manifest 28

AWS Panorama Developer Guide

"nodes": [
{
"name": "code_node",
"interface": "123456789012::SAMPLE_CODE.interface",
"overridable": false,
"launch": "onAppStart"
.

This interface is defined in the package configuration file, package. json. The interface specifies
that the package is business logic and that it takes a video stream named video_in and a floating
point number named threshold as inputs. The interface also specifies that the code requires a
video stream buffer named video_out to output video to a display

Example packages/123456789012-SAMPLE_CODE-1.0/package.json

"nodePackage": {
"envelopeVersion": "2021-01-01",
"name": "SAMPLE_CODE",
"version": "1.0",
"description": "Computer vision application code.",
"assets": [],
"interfaces": [

{
"name": "interface",
"category": "business_logic",
"asset": "code_asset",
"inputs": [
{
"name": "video_in",
"type": "media"
},
{
"name": "threshold",
"type": "float32"
}
1,
"outputs": [
{
"description": "Video stream output",
"name": "video_out",

"type": "media"

The application manifest 29

AWS Panorama Developer Guide

Back in the application manifest, the camera_node node represents a video stream from a camera.
It includes a decorator that appears in the console when you deploy the application, prompting you
to choose a camera stream.

Example graphs/aws-panorama-sample/graph. json - Camera node

"name": '"camera_node",
"interface": "panorama::abstract_rtsp_media_source.rtsp_vl_interface",
"overridable": true,
"launch": "onAppStart",
"decorator": {
"title": "Camera",
"description": "Choose a camera stream."

}I

A parameter node, threshold_param, defines the confidence threshold parameter used by the
application code. It has a default value of 60, and can be overriden during deployment.

Example graphs/aws-panorama-sample/graph. json - Parameter node

{
"name": "threshold_param",
"interface": "float32",
"value": 60.0,
"overridable": true,
"decorator": {
"title": "Confidence threshold",
"description": "The minimum confidence for a classification to be
recorded."
}
}

The application manifest 30

AWS Panorama Developer Guide

The final section of the application manifest, edges, makes connections between nodes. The
camera's video stream and the threshold parameter connect to the input of the code node, and the
video output from the code node connects to the display.

Example graphs/aws-panorama-sample/graph. json - Edges

"edges": [
{
"producer": "camera_node.video_out",
"consumer": "code_node.video_in"
1,
{
"producer": "code_node.video_out",
"consumer": "output_node.video_in"
1,
{
"producer": "threshold_param",
"consumer": "code_node.threshold"
}
]

Building with the sample application

You can use the sample application as a starting point for your own application.

The name of each package must be unique in your account. If you and another user in your account
both use a generic package name such as code or model, you might get the wrong version of

the package when you deploy. Change the name of the code package to one that represents your
application.

To rename the code package

1. Rename the package folder: packages/123456789012-SAMPLE_CODE-1.0/.

2. Update the package name in the following locations.

« Application manifest - graphs/aws-panorama-sample/graph. json
« Package configuration — packages/123456789012-SAMPLE_CODE-1.0/package.json

 Build script - 3-build-container.sh

Building with the sample application 31

AWS Panorama Developer Guide

To update the application's code

1. Modify the application code in packages/123456789012-SAMPLE_CODE-1.0/sxc/
application.py.

2. To build the container, run 3-build-container.sh.

aws-panorama-sample$./3-build-container.sh
TMPDIR=$(pwd) docker build -t code_asset packages/123456789012-SAMPLE_CODE-1.0
Sending build context to Docker daemon 61.44kB
Step 1/2 : FROM public.ecr.aws/panorama/panorama-application
---> 9b197f256b48
Step 2/2 : COPY src /panorama
---> 55c35755e9d2
Successfully built 55c35755e9d2
Successfully tagged code_asset:latest
docker export --output=code_asset.tar $(docker create code_asset:latest)
gzip -9 code_asset.tar
Updating an existing asset with the same name

{
"name": "code_asset",
"implementations": [
{
"type": "container",
"assetUri":
"98aaxmpllclef64cde5acl3bd3be5394e5d17064beccee963b4095d83083c343.tar.gz",
"descriptorUri":
"1872xmpl129481ed053¢c52e66d6af8b030f9eb69b1168a29012f01c7034d7a8f. json"
}
]
}

Container asset for the package has been succesfully built at ~/aws-panorama-
sample-dev/
assets/98aaxmpllclef64cde5acl3bd3be5394e5d17064beccee963b4095d83083¢c343 . tar.gz

The CLI automatically deletes the old container asset from the assets folder and updates the
package configuration.

To upload the packages, run 4-package-application.py.

Open the AWS Panorama console Deployed applications page.

Choose an application.

A

Choose Replace.

Building with the sample application 32

https://console.aws.amazon.com/panorama/home#deployed-applications

AWS Panorama Developer Guide

7. Complete the steps to deploy the application. If needed, you can make changes to the
application manifest, camera streams, or parameters.

Changing the computer vision model

The sample application includes a computer vision model. To use your own model, modify the
model node's configuration, and use the AWS Panorama Application CLI to import it as an asset.

The following example uses an MXNet SSD ResNet50 model that you can download from this
guide's GitHub repo: ssd_512_resnet50_v1_voc.tar.gz

To change the sample application's model

1. Rename the package folder to match your model. For example, to
packages/123456789012-SSD_512 _RESNET50_V1_V0C-1.0/.

2. Update the package name in the following locations.

« Application manifest - graphs/aws-panorama-sample/graph. json

» Package configuration - packages/123456789012-SSD_512 RESNET50_V1_V0C-1.0/
package.json

3. Inthe package configuration file (package. json). Change the assets value to a blank array.

"nodePackage": {
"envelopeVersion": "2021-01-01",
"name": "SSD_512_RESNET50_V1_vocC",
"version": "1.0",
"description": "Compact classification model",
"assets": [],

4. Open the package descriptor file (descriptor. json). Update the framework and shape
values to match your model.

"mlModelDescriptor": {
"envelopeVersion": "2021-01-01",
"framework": "MXNET",

"inputs": [

{

Changing the computer vision model 33

https://github.com/awsdocs/aws-panorama-developer-guide/releases/download/v0.1-preview/ssd_512_resnet50_v1_voc.tar.gz

AWS Panorama Developer Guide

"name": "data",
"shape": [1, 3, 512, 512]

The value for shape, 1,3,512,512, indicates the number of images that the model takes as
input (1), the number of channels in each image (3--red, green, and blue), and the dimensions
of the image (512 x 512). The values and order of the array varies among models.

5. Import the model with the AWS Panorama Application CLI. The AWS Panorama Application CLI
copies the model and descriptor files into the assets folder with unique names, and updates
the package configuration.

aws-panorama-sample$ panorama-cli add-raw-model --model-asset-name model-asset \
--model-local-path ssd _512_resnet50_v1_voc.tar.gz \

--descriptor-path packages/123456789012-SSD_512 RESNET50_V1_V0C-1.0/descriptor.json
\

--packages-path packages/123456789012-SSD_512_RESNET50_V1_V0C-1.0

{
"name": "model-asset",
"implementations": [
{
"type": "model",
"assetUri":
"blal589afes49b346ff47375c284a1998c3e1522b418a7be8910414911784cel. . tar.gz",
"descriptorUri":
"a6a9508953f393f182f05f8beaa86b83325f4a535a5928580273e7fe26f79e78. json"
}
]
}

6. To upload the model, run panorama-cli package-application.

$ panorama-cli package-application

Uploading package SAMPLE_CODE

Patch Version 1844d5a59150d33f6054b@4bac527a1771fd2365e05f990ccd8444a5ab775809
already registered, ignoring upload

Uploading package SSD_512_ RESNET50_V1_VOC

Patch version for the package
244363c74d01e082ad012ebf21e67eef5d81ce@des4dbadlae2b69d0bc498c8fd

Changing the computer vision model 34

AWS Panorama Developer Guide

7.

upload: assets/
blal589afe449b346ff47375c284a1998c3e1522b418a7be8910414911784cel.tar.gz to
s3://arn:aws:s3:us-west-2:454554846382:accesspoint/panorama-123456789012-
wc6bmSeishf4sibdsz5jefhx
63a/123456789012/nodePackages/SSD_512_RESNET50_V1_VOC/binaries/
blal589afe449b346ff47375c284a1998c3e1522b418a7be8910414911784cel.tar.gz
upload: assets/
a6a9508953t393f182f05f8beaa86b83325f4a535a5928580273e7fe26f79e78. json to
s3://arn:aws:s3:us-west-2:454554846382:accesspoint/panorama-123456789012-
wce6bmbeishf4asissz5jefhx63
a/123456789012/nodePackages/SSD_512_RESNET50_V1_VOC/binaries/
a6a9508953t393f182f05f8beaa86b83325f4a535a5928580273e7fe26f79e78. json
{
"ETag": "\"2381dabba34f4bc0100c478e67e9ab5e\"",
"ServerSideEncryption": "AES256",
"VersionId": "KbY5fpESdpYamjWz@YyGgHo3.LQQWUC2"
}
Registered SSD_512_RESNET50_V1_VOC with patch version
244263c74d01e082ad012ebf21e67eef5d81ce@desdbadlae2b69dObc498c8fd
Uploading package SQUEEZENET_PYTORCH_V1
Patch Version 568138c430e0345061bb36T05a04al1458ac834cd6f93bf18fdacdffb62685530
already registered, ignoring upload

Update the application code. Most of the code can be reused. The code specific to the model's
response is in the process_results method.

def process_results(self, inference_results, stream):
"""Processes output tensors from a computer vision model and annotates a
video frame."""
for class_tuple in inference_results:
indexes = self.topk(class_tuple[0])
for j in range(2):
label = 'Class [%s], with probability %.3f.'%
(self.classes[indexes[j]], class_tuple[@][indexes[j]1]1)
stream.add_label(label, 0.1, ©0.25 + 0.1*j)

Depending on your model, you might also need to update the preprocess method.

Preprocessing images

Before the application sends an image to the model, it prepares it for inference by resizing it and

normalizing color data. The model that the application uses requires a 224 x 224 pixel image with

Preprocessing images 35

AWS Panorama Developer Guide

three color channels, to match the number of inputs in its first layer. The application adjusts each
color value by converting it to a number between 0 and 1, subtracting the average value for that
color, and dividing by the standard deviation. Finally, it combines the color channels and converts it
to a NumPy array that the model can process.

Example application.py - Preprocessing

def preprocess(self, img, width):
resized = cv2.resize(img, (width, width))
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
img = resized.astype(np.float32) / 255.
img_a = img[:, :, 0]
img_b = img[:, :, 1]
img_c = img[:, :, 2]
Normalize data in each channel
img_a = (img_a - mean[@]) / std[0]
img_b = (img_b - mean[1]) / std[1]
img_c = (img_c - mean[2]) / std[2]
Put the channels back together
x1 = [[C1, [1, [1]1]
x1[0][0] = img_a
x1[0]1[1]
x1[0][2]
return np.asarray(xl)

img_b

img_c

This process gives the model values in a predictable range centered around 0. It matches the
preprocessing applied to images in the training dataset, which is a standard approach but can vary
per model.

Uploading metrics with the SDK for Python

The sample application uses the SDK for Python to upload metrics to Amazon CloudWatch.

Example application.py — SDK for Python

def process_streams(self):
"""Processes one frame of video from one or more video streams."""
logger.info('epoch length: {:.3f} s ({:.3f} FPS)'.format(epoch_time,
epoch_fps))
logger.info('avg inference time: {:.3f} ms'.format(avg_inference_time))

Uploading metrics with the SDK for Python 36

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/application.py
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/application.py

AWS Panorama

Developer Guide

logger.info('max inference time: {:.3f} ms'.format(max_inference_time))

logger.info('avg frame processing time: {:.3f}
ms'.format(avg_frame_processing_time))

logger.info('max frame processing time: {:.3f}
ms'.format(max_frame_processing_time))

self.inference_time_ms = 0

self.inference_time_max = 0

self.frame_time_ms = 0

self.frame_time_max = 0

self.epoch_start = time.time()

self.put_metric_data('AverageInferenceTime', avg_inference_time)

self.put_metric_data('AverageFrameProcessingTime',
avg_frame_processing_time)

def put_metric_data(self, metric_name, metric_value):
"""Sends a performance metric to CloudwWatch."""

namespace = 'AWSPanoramaApplication’
dimension_name = 'Application Name'
dimension_value = 'aws-panorama-sample'
try:

metric = self.cloudwatch.Metric(namespace, metric_name)
metric.put_data(
Namespace=namespace,
MetricData=[{
'MetricName': metric_name,
'Value': metric_value,

'Unit': 'Milliseconds’,
'Dimensions': [
{

'Name': dimension_name,
'Value': dimension_value

.
{
'Name': 'Device ID',
'Value': self.device_id
}

1]
)
logger.info("Put data for metric %s.%s'", namespace, metric_name)
except ClientError:
logger.warning("Couldn't put data for metric %s.%s'", namespace,
metric_name)
except AttributeError:

Uploading metrics with the SDK for Python

37

AWS Panorama Developer Guide

logger.warning("CloudWatch client is not available.")

It gets permission from a runtime role that you assign during deployment. The role is defined in
the aws-panorama-sample.yml CloudFormation template.

Example aws-panorama-sample.yml

Resources:
runtimeRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: "2012-10-17"
Statement:
Effect: Allow
Principal:
Service:
- panorama.amazonaws.com
Action:
- sts:AssumeRole
Policies:
- PolicyName: cloudwatch-putmetrics
PolicyDocument:
Version: 2012-10-17
Statement:
- Effect: Allow
Action: 'cloudwatch:PutMetricData'
Resource: '*'
Path: /service-role/

The sample application installs the SDK for Python and other dependencies with pip. When you
build the application container, the Dockerfile runs commands to install libraries on top of what
comes with the base image.

Example Dockerfile

FROM public.ecr.aws/panorama/panorama-application

WORKDIR /panorama

COPY .

RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r requirements.txt

Uploading metrics with the SDK for Python 38

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/aws-panorama-sample.yml
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/Dockerfile

AWS Panorama Developer Guide

To use the AWS SDK in your application code, first modify the template to add permissions for all
API actions that the application uses. Update the CloudFormation stack by running the 1-create-
role.sh each time you make a change. Then, deploy changes to your application code.

For actions that modify or use existing resources, it is a best practice to minimize the scope of this
policy by specifying a name or pattern for the target Resource in a separate statement. For details
on the actions and resources supported by each service, see Action, resources, and condition keys in
the Service Authorization Reference

Next steps

For instructions on using the AWS Panorama Application CLI to build applications and create
packages from scratch, see the CLI's README.

« github.com/aws/aws-panorama-cli

For more sample code and a test utility that you can use to validate your application code prior to
deploying, visit the AWS Panorama samples repository.

« github.com/aws-samples/aws-panorama-samples

Next steps 39

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://github.com/aws/aws-panorama-cli
https://github.com/aws-samples/aws-panorama-samples

AWS Panorama Developer Guide

Supported computer vision models and cameras

AWS Panorama supports models built with PyTorch, Apache MXNet, and TensorFlow. When you
deploy an application, AWS Panorama compiles your model in SageMaker Al Neo. You can build
models in Amazon SageMaker Al or in your development environment, as long as you use layers
that are compatible with SageMaker Al Neo.

To process video and get images to send to a model, the AWS Panorama Appliance connects to an
H.264 encoded video stream with the RTSP protocol. AWS Panorama tests a variety of common
cameras for compatibility.

Sections

o Supported models

» Supported cameras

Supported models

When you build an application for AWS Panorama, you provide a machine learning model that the
application uses for computer vision. You can use pre-built and pre-trained models provided by
model frameworks, a sample model, or a model that you build and train yourself.

® Note

For a list of pre-built models that have been tested with AWS Panorama, see Model
compatibility.

When you deploy an application, AWS Panorama uses the SageMaker Al Neo compiler to compile
your computer vision model. SageMaker Al Neo is a compiler that optimizes models to run
efficiently on a target platform, which can be an instance in Amazon Elastic Compute Cloud
(Amazon EC2), or an edge device such as the AWS Panorama Appliance.

AWS Panorama supports the versions of PyTorch, Apache MXNet, and TensorFlow that are
supported for edge devices by SageMaker Al Neo. When you build your own model, you can use the
framework versions listed in the SageMaker Al Neo release notes. In SageMaker Al, you can use the
built-in image classification algorithm.

For more information about using models in AWS Panorama, see Computer vision models.

Supported models and cameras 40

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/resources/model-compatibility.md
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/resources/model-compatibility.md
https://aws.amazon.com/releasenotes/sagemaker-neo-supported-frameworks-and-operators/
https://docs.aws.amazon.com/sagemaker/latest/dg/image-classification.html

AWS Panorama Developer Guide

Supported cameras

The AWS Panorama Appliance supports H.264 video streams from cameras that output RTSP over
a local network. For camera streams greater than 2 megapixels, the appliance scales down the
image to 1920x1080 pixels or an equivalent size that preserves the stream's aspect ratio.

The following camera models have been tested for compatibility with the AWS Panorama
Appliance:

» Axis —M3057-PLVE, M3058-PLVE, P1448-LE, P3225-LV Mk Il
« LaView - LV-PB3040W

« Vivotek - 1B9360-H

« Amcrest - IP2M-841B

« Anpviz - IPC-B850W-S-3X, IPC-D250W-S

« WGCC - Dome PoE 4MP ONVIF

For the appliance's hardware specifications, see AWS Panorama Appliance specifications.

Supported cameras 41

https://www.axis.com/
https://www.laviewsecurity.com/
https://www.vivotek.com/
https://amcrest.com/

AWS Panorama

Developer Gui

de

AWS Panorama Appliance specifications

The AWS Panorama Appliance has the following hardware specifications. For other compatible

devices, refer to the manufacturer's documentation.

Component

Processor and GPU
Ethernet

USB

HDMI output

Dimensions

Weight

Power supply

Power input

Dust and liquid protection
EMI/EMC regulatory compliance
Thermal touch limits
Operating temperature
Operating humidity
Storage temperature

Storage humidity

Cooling

Mounting options

Specification

Nvidia Jetson AGX Xavier with 32GB RAM

2x 1000 Base-T (Gigabyte)

Tx USB 2.0 and 1x USB 3.0 type-A female
2.0a

7.75" x9.6" x 1.6" (197mm x 243mm x 40mm)
3.7lbs (1.7kq)

100V-240V 50-60Hz AC 65W

IEC 60320 C6 (3-pin) receptacle

IP-62

FCC Part-15 (US)

IEC-62368

-20°C to 60°C

0% to 95% RH

-20°C to 85°C

Uncontrolled for low temperature. 90% RH at
high temperature

Forced-air heat extraction (fan)

Rackmount or free standing

Appliance specifications

42

https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

AWS Panorama Developer Guide

Component Specification

Power cord 6-foot (1.8 meter)

Power control Push-button

Reset Momentary switch

Status and network LEDs Programmable 3-color RGB LED

Wi-Fi, Bluetooth and SD card storage are present on the appliance but are not usable.

The AWS Panorama Appliance includes two screws for mounting on a server rack. You can mount
two appliances side-by-side on a 19-inch rack.

Appliance specifications 43

AWS Panorama Developer Guide

Service quotas

AWS Panorama applies quotas to the resources that you create in your account and the
applications that you deploy. If you use AWS Panorama in multiple AWS Regions, quotas apply
separately to each Region. AWS Panorama quotas are not adjustable.

Resources in AWS Panorama include devices, application node packages, and application instances.

» Devices — Up to 50 registered appliances per Region.
» Node packages — 50 packages per Region, with up to 20 versions per package.

« Application instances — Up to 10 applications per device. Each application can monitor up to 8
camera streams. Deployments are limited to 200 per day for each device.

When you use the AWS Panorama Application CLI, AWS Command Line Interface, or AWS SDK with
the AWS Panorama service, quotas apply to the number of API calls that you make. You can make
up to 5 requests total per second. A subset of API operations that create or modify resources apply
an additional limit of 1 request per second.

For a complete list of quotas, visit the Service Quotas console, or see AWS Panorama endpoints and
guotas in the Amazon Web Services General Reference.

Quotas 44

https://console.aws.amazon.com/servicequotas/home/services/panorama/quotas
https://docs.aws.amazon.com/general/latest/gr/panorama.html
https://docs.aws.amazon.com/general/latest/gr/panorama.html

AWS Panorama Developer Guide

AWS Panorama permissions

You can use AWS Identity and Access Management (IAM) to manage access to the AWS Panorama
service and resources like appliances and applications. For users in your account that use AWS
Panorama, you manage permissions in a permissions policy that you can apply to IAM roles. To
manage permissions for an application, you create a role and assign it to the application.

To manage permissions for users in your account, use the managed policy that AWS Panorama

provides, or write your own. You need permissions to other AWS services to get application and
appliance logs, view metrics, and assign a role to an application.

An AWS Panorama Appliance also has a role that grants it permission to access AWS services and
resources. The appliance's role is one of the service roles that the AWS Panorama service uses to
access other services on your behalf.

An application role is a separate service role that you create for an application, to grant it
permission to use AWS services with the AWS SDK for Python (Boto). To create an application role,

you need administrative privileges or the help of an administrator.

You can restrict user permissions by the resource an action affects and, in some cases, by additional
conditions. For example, you can specify a pattern for the Amazon Resource Name (ARN) of an
application that requires a user to include their user name in the name of applications that they
create. For the resources and conditions that are supported by each action, see Actions, resources,
and condition keys for AWS Panorama in the Service Authorization Reference.

For more information, see What is IAM? in the IAM User Guide.

Topics

« Identity-based IAM policies for AWS Panorama

« AWS Panorama service roles and cross-service resources

» Granting permissions to an application

45

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awspanorama.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awspanorama.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/

AWS Panorama Developer Guide

Identity-based IAM policies for AWS Panorama

To grant users in your account access to AWS Panorama, you use identity-based policies in AWS
Identity and Access Management (IAM). Apply identity-based policies to IAM roles that are
associated with a user. You can also grant users in another account permission to assume a role in
your account and access your AWS Panorama resources.

AWS Panorama provides managed policies that grant access to AWS Panorama API actions and, in
some cases, access to other services used to develop and manage AWS Panorama resources. AWS
Panorama updates the managed policies as needed, to ensure that your users have access to new
features when they're released.

o AWSPanoramaFullAccess - Provides full access to AWS Panorama, AWS Panorama access points
in Amazon S3, appliance credentials in AWS Secrets Manager, and appliance logs in Amazon
CloudWatch. Includes permission to create a service-linked role for AWS Panorama. View policy

The AWSPanoramaFullAccess policy allows you to tag AWS Panorama resources, but does not
have all tag-related permissions used by the AWS Panorama console. To grant these permissions,
add the following policy.

« ResourceGroupsandTagEditorFullAccess — View policy

The AWSPanoramaFullAccess policy does not include permission to purchase devices from the
AWS Panorama console. To grant these permissions, add the following policy.

« ElementalAppliancesSoftwareFullAccess — View policy

Managed policies grant permission to API actions without restricting the resources that a user can

modify. For finer-grained control, you can create your own policies that limit the scope of a user's
permissions. Use the full-access policy as a starting point for your policies.

(@ Creating service roles

The first time you use the AWS Panorama console, you need permission to create the

service role used by the AWS Panorama Appliance. A service role gives a service permission
to manage resources or interact with other services. Create this role before granting access
to your users.

User policies 46

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSPanoramaFullAccess
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/ResourceGroupsandTagEditorFullAccess
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/ElementalAppliancesSoftwareFullAccess
https://console.aws.amazon.com/panorama/home

AWS Panorama Developer Guide

For details on the resources and conditions that you can use to limit the scope of a user's

permissions in AWS Panorama, see Actions, resources, and condition keys for AWS Panorama in the
Service Authorization Reference.

User policies 47

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awspanorama.html

AWS Panorama Developer Guide

AWS Panorama service roles and cross-service resources

AWS Panorama uses other AWS services to manage the AWS Panorama Appliance, store data,

and import application resources. A service role gives a service permission to manage resources or
interact with other services. When you sign in to the AWS Panorama console for the first time, you
create the following service roles:

« AWSServiceRoleForAWSPanorama - Allows AWS Panorama to manage resources in AWS loT,
AWS Secrets Manager, and AWS Panorama.

Managed policy: AWSPanoramaServiceLinkedRolePolicy

o AWSPanoramaApplianceServiceRole — Allows an AWS Panorama Appliance to upload logs to
CloudWatch, and to get objects from Amazon S3 access points created by AWS Panorama.

Managed policy: AWSPanoramaApplianceServiceRolePolicy

To view the permissions attached to each role, use the IAM console. Wherever possible, the role's
permissions are restricted to resources that match a naming pattern that AWS Panorama uses. For
example, AWSServiceRoleForAWSPanorama grants only permission for the service to access
AWS |oT resources that have panorama in their name.

Sections

» Securing the appliance role

e Use of other services

Securing the appliance role

The AWS Panorama Appliance uses the AWSPanoramaApplianceServiceRole role to access
resources in your account. The appliance has permission to upload logs to CloudWatch Logs,
read camera stream credentials from AWS Secrets Manager, and to access application artifacts in
Amazon Simple Storage Service (Amazon S3) access points that AWS Panorama creates.

® Note

Applications don't use the appliance's permissions. To give your application permission to
use AWS services, create an application role.

Service roles 48

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/aws-service-role/AWSPanoramaServiceLinkedRolePolicy
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/aws-service-role/AWSPanoramaApplianceServiceRolePolicy
https://console.aws.amazon.com/iam

AWS Panorama Developer Guide

AWS Panorama uses the same service role with all appliances in your account, and does not use
roles across accounts. For an added layer of security, you can modify the appliance role's trust
policy to enforce this explicitly, which is a best practice when you use roles to grant a service
permission to access resources in your account.

To update the appliance role trust policy

1. Open the appliance role in the IAM console: AWSPanoramaApplianceServiceRole

2. Choose Edit trust relationship.

3. Update the policy contents and then choose Update trust policy.

The following trust policy includes a condition that ensures that when AWS Panorama assumes the
appliance role, it is doing so for an appliance in your account. The aws : SourceAccount condition
compares the account ID specified by AWS Panorama to the one that you include in the policy.

Example trust policy - Specific account

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Sexvice": "panorama.amazonaws.com"
}I
"Action": "sts:AssumeRole",
"Condition": {
"StringEquals": {
"aws :SourceAccount'": "123456789012"

Securing the appliance role 49

https://console.aws.amazon.com/iam/home#/roles/AWSPanoramaApplianceServiceRole?section=trust

AWS Panorama Developer Guide

If you want to restrict AWS Panorama further, and allow it to only assume the role with a specific
device, you can specify the device by ARN. The aws : SourceArn condition compares the ARN of
the appliance specified by AWS Panorama to the one that you include in the policy.

Example trust policy - Single appliance

JSON

{
"Version":"2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {
"Sexvice": "panorama.amazonaws.com"
}I
"Action": "sts:AssumeRole",
"Condition": {
"ArnLike": {
"aws:SourceArn'": "arn:aws:panorama:us-east-1:123456789012:device/
device-lk7exmplpvcr3heqwjmesw76ky"
}I
"StringEquals": {
"aws:SourceAccount": "123456789012"
}
}
}

If you reset and reprovision the appliance, you must remove the source ARN condition temporarily
and then add it again with the new device ID.

For more information on these conditions, and security best practices when services use roles to
access resources in your account, see The confused deputy problem in the IAM User Guide.

Use of other services

AWS Panorama creates or accesses resources in the following services:

Use of other services 50

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

AWS Panorama Developer Guide

« AWS loT - Things, policies, certificates, and jobs for the AWS Panorama Appliance
« Amazon S3 — Access points for staging application models, code, and configurations.

» Secrets Manager — Short-term credentials for the AWS Panorama Appliance.

For information about Amazon Resource Name (ARN) format or permission scopes for each service,
see the topics in the IAM User Guide that are linked to in this list.

Use of other services 51

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsiot.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazons3.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awssecretsmanager.html

AWS Panorama Developer Guide

Granting permissions to an application

You can create a role for your application to grant it permission to call AWS services. By default,
applications do not have any permissions. You create an application role in IAM and assign it to an
application during deployment. To grant your application only the permissions that it needs, create
a role for it with permissions for specific API actions.

The sample application includes an CloudFormation template and script that create an application
role. It is a service role that AWS Panorama can assume. This role grants permission for the
application to call CloudWatch to upload metrics.

Example aws-panorama-sample.yml — Application role

Resources:
runtimeRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: "2012-10-17"
Statement:
Effect: Allow
Principal:
Service:
- panorama.amazonaws.com
Action:
- sts:AssumeRole
Policies:
- PolicyName: cloudwatch-putmetrics
PolicyDocument:
Version: 2012-10-17
Statement:
- Effect: Allow
Action: 'cloudwatch:PutMetricData'
Resource: '*'
Path: /service-role/

You can extend this script to grant permissions to other services, by specifying a list of APl actions
or patterns for the value of Action.

For more information on permissions in AWS Panorama, see AWS Panorama permissions.

Application role 52

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/aws-panorama-sample.yml

AWS Panorama Developer Guide

Managing the AWS Panorama Appliance

The AWS Panorama Appliance is the hardware that runs your applications. You use the AWS
Panorama console to register an appliance, update its software, and deploy applications to it. The
software on the AWS Panorama Appliance connects to camera streams, sends frames of video to
your application, and displays video output on an attached display.

After setting up your appliance or another compatible device, you register cameras for use with

applications. You manage camera streams in the AWS Panorama console. When you deploy an

application, you choose which camera streams the appliance sends to it for processing.

For tutorials that introduce the AWS Panorama Appliance with a sample application, see Getting
started with AWS Panorama.

Topics

Managing an AWS Panorama Appliance

Connecting the AWS Panorama Appliance to your network

Managing camera streams in AWS Panorama

Manage applications on an AWS Panorama Appliance

AWS Panorama Appliance buttons and lights

53

AWS Panorama Developer Guide

Managing an AWS Panorama Appliance

You use the AWS Panorama console to configure, upgrade or deregister the AWS Panorama
Appliance and other compatible devices.

To set up an appliance, follow the instructions in the getting started tutorial. The setup process

creates the resources in AWS Panorama that track your appliance and coordinate updates and
deployments.

To register an appliance with the AWS Panorama API, see Automate device registration.

Sections

Update the appliance software

Deregister an appliance

Reboot an appliance

Reset an appliance

Update the appliance software

You view and deploy software updates for the appliance in the AWS Panorama console. Updates
can be required or optional. When a required update is available, the console prompts you to apply
it. You can apply optional updates on the appliance Settings page.

To update the appliance software

1. Open the AWS Panorama console Devices page.
2. Choose an appliance.

3. Choose Settings
4

Under System software, choose Install software update.

Managing 54

https://console.aws.amazon.com/panorama/home#devices

AWS Panorama Developer Guide

5.

System software Install software update
Version Updated date
4.1.34 10/12/2021, 10:02:04 AM

» Update history

Choose a new version and then choose Install.

Deregister an appliance

If you are done working with an appliance, you can use the AWS Panorama console to deregister it
and delete the associated AWS loT resources.

To delete an appliance

1
2
3.
4

Open the AWS Panorama console Devices page.
Choose the appliance's name.
Choose Delete.

Enter the appliance's name and choose Delete.

When you delete an appliance from the AWS Panorama service, data on the appliance is not

deleted automatically. A deregistered appliance can't connect to AWS services and can't be
registered again until it is reset.

Reboot an appliance

You can reboot an appliance remotely.

To reboot an appliance

1.
2.
3.

Open the AWS Panorama console Devices page.
Choose the appliance's name.

Choose Reboot.

Deregister an appliance 55

https://console.aws.amazon.com/panorama/home#devices
https://console.aws.amazon.com/panorama/home#devices

AWS Panorama Developer Guide

The console sends a message to the appliance to reboot it. To receive the signal, the appliance
must be able to connect to AWS loT. To reboot an appliance with the AWS Panorama API, see
Reboot appliances.

Reset an appliance

To use an appliance in a different Region or with a different account, you must reset it and
reprovision it with a new certificate. Resetting the device applies the most recent required software
version and deletes all account data.

To start a reset operation, the appliance must be plugged in and powered down. Press and hold
both the power and reset buttons for five seconds. When you release the buttons, the status light
blinks orange. Wait until the status light blinks green before provisioning or disconnecting the
appliance.

You can also reset the appliance software without deleting certificates from the device. For more
information, see Power and reset buttons.

Reset an appliance 56

AWS Panorama Developer Guide

Connecting the AWS Panorama Appliance to your network

The AWS Panorama Appliance requires connectivity to both the AWS cloud and your on-premises
network of IP cameras. You can connect the appliance to a single firewall that grants access to
both, or connect each of the device's two network interfaces to a different subnet. In either case,
you must secure the appliance's network connections to prevent unauthorized access to your
camera streams.

Sections

 Single network configuration

» Dual network configuration

» Configuring service access

» Configuring local network access

» Private connectivity

Single network configuration

The appliance has two Ethernet ports. If you route all traffic to and from the device through a
single router, you can use the second port for redundancy in case the physical connection to the
first port is broken. Configure your router to allow the appliance to connect only to camera streams
and the internet, and to block camera streams from otherwise leaving your internal network.

On-premises

Camera network

| AWS Panorama Appliance
dis
JSAYaR)
LLLLL AL

| |

—D—er

TTTTT P cameras

LLLLL
LB LA

LiLLL
LA

Router Firewall Internet

For details on the ports and endpoints that the appliance needs access to, see Configuring service

access and Configuring local network access.

Network setup 57

AWS Panorama Developer Guide

Dual network configuration

For an extra layer of security, you can place the appliance in an internet-connected network
separate from your camera network. A firewall between your restricted camera network and the
appliance's network only allows the appliance to access video streams. If your camera network was
previously air-gapped for security purposes, you might prefer this method over connecting the
camera network to a router that also grants access to the internet.

The following example shows the appliance connecting to a different subnet on each port. The
router places the eth@ interface on a subnet that routes to the camera network, and ethl on a
subnet that routes to the internet.

On-premises

Restricted network Internet-connected network
Liill LALLl

é IP cameras ’ AWS Panorama Appliance

m g = p = ARy = = = o) e o B B
| I'etho subnet eth 1 subnet

@S@E@?

S

Firewall Internet

You can confirm the IP address and MAC address of each port in the AWS Panorama console.

Configuring service access

During provisioning, you can configure the appliance to request a specific IP address. Choose an IP
address ahead of time to simplify firewall configuration and ensure that the appliance's address
doesn't change if it's offline for a long period of time.

The appliance uses AWS services to coordinate software updates and deployments. Configure your
firewall to allow the appliance to connect to these endpoints.

Internet access

o AWS loT (HTTPS and MQTT, ports 443, 8443 and 8883) — AWS loT Core and device
management endpoints. For details, see AWS loT Device Management endpoints and quotas in

the Amazon Web Services General Reference.

Dual network configuration 58

https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html

AWS Panorama Developer Guide

o AWS loT credentials (HTTPS, port 443) - credentials.iot.<region>.amazonaws.comand
subdomains.

« Amazon Elastic Container Registry (HTTPS, port 443) -
api.ecr.<region>.amazonaws.com, dkr.ecr.<region>.amazonaws.com and
subdomains.

« Amazon CloudWatch (HTTPS, port 443) —monitoring.<region>.amazonaws.com.
« Amazon CloudWatch Logs (HTTPS, port 443) - 1ogs.<region>.amazonaws.com.

« Amazon Simple Storage Service (HTTPS, port 443) - s3.<region>.amazonaws.com, S3-
accesspoint.<region>.amazonaws.comand subdomains.

If your application calls other AWS services, the appliance needs access to the endpoints for those
services as well. For more information, see Service endpoints and quotas.

Configuring local network access

The appliance needs access to RTSP video streams locally, but not over the internet. Configure your
firewall to allow the appliance to access RTSP streams on port 554 internally, and to not allow
streams to go out to or come in from the internet.

Local access

» Real-time streaming protocol (RTSP, port 554) — To read camera streams.

» Network time protocol (NTP, port 123) — To keep the appliance's clock in sync. If you don't run
an NTP server on your network, the appliance can also connect to public NTP servers over the
internet.

Private connectivity

The AWS Panorama Appliance does not need internet access if you deploy it in a private VPC
subnet with a VPN connection to AWS. You can use Site-to-Site VPN or Direct Connect to create
a VPN connection between an on-premises router and AWS. Within your private VPC subnet, you
create endpoints that let the appliance connect to Amazon Simple Storage Service, AWS loT, and
other services. For more information, see Connecting an appliance to a private subnet.

Configuring local network access 59

https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html

AWS Panorama Developer Guide

Managing camera streams in AWS Panorama

To register video streams as data sources for your application, use the AWS Panorama console. An
application can process multiple streams simultaneously and multiple appliances can connect to
the same stream.

/A Important

An application can connect to any camera stream that is routable from the local network
it connects to. To secure your video streams, configure your network to allow only RTSP
traffic locally. For more information, see Security in AWS Panorama.

To register a camera stream

1. Open the AWS Panorama console Data sources page.

2. Choose Add data source.
Add data source
Camera stream details info
Mame
exterior-south

Description - optional

Stream 2 - 720p

3. Configure the following settings.

« Name - A name for the camera stream.

Cameras 60

https://console.aws.amazon.com/panorama/home#data-sources

AWS Panorama Developer Guide

» Description — A short description of the camera, its location, or other details.

o RTSP URL - A URL that specifies the camera's IP address and the path to the stream. For
example, rtsp://192.168.0.77/1ive/mpeg4/

» Credentials - If the camera stream is password protected, specify the username and
password.

4. Choose Save.

To register a camera stream with the AWS Panorama API, see Automate device registration.

For a list of cameras that are compatible with the AWS Panorama Appliance, see Supported
computer vision models and cameras.

Removing a stream
You can delete a camera stream in the AWS Panorama console.
To remove a camera stream

1. Open the AWS Panorama console Data sources page.

2. Choose a camera stream.

3. Choose Delete data source.

Removing a camera stream from the service does not stop running applications or delete camera
credentials from Secrets Manager. To delete secrets, use the Secrets Manager console.

Removing a stream 61

https://console.aws.amazon.com/panorama/home#data-sources
https://console.aws.amazon.com/secretsmanager/home#!/listSecrets

AWS Panorama Developer Guide

Manage applications on an AWS Panorama Appliance

An application is a combination of code, models, and configuration. From the Devices page in the
AWS Panorama console, you can manage applications on the appliance.

To manage applications on an AWS Panorama Appliance

1. Open the AWS Panorama console Devices page.

2. Choose an appliance.

The Deployed applications page shows applications that have been deployed to the appliance.

Use the options on this page to remove deployed applications from the appliance, or replace a
running application with a new version. You can also clone an application (running or deleted) to
deploy a new copy of it.

Applications 62

https://console.aws.amazon.com/panorama/home#devices

AWS Panorama Developer Guide

AWS Panorama Appliance buttons and lights

The AWS Panorama Appliance has two LED lights above the power button that indicate the device
status and network connectivity.

Status light

The LEDs change color and blink to indicate status. A slow blink is once every three seconds. A fast
blink is once per second.

Status LED states

« Fast blinking green — The appliance is booting up.
» Solid green - The appliance is operating normally.

« Slow blinking blue — The appliance is copying configuration files and attempting to register with
AWS loT.

 Fast blinking blue — The appliance is copying a log image to a USB drive.

» Fast blinking red — The appliance encountered an error during startup or is overheated.
» Slow blinking orange — The appliance is restoring the latest software version.

 Fast blinking orange — The appliance is restoring the minimum software version.

Network light

The network LED has the following states:
Network LED states

» Solid green — An Ethernet cable is connected.

Buttons and lights 63

AWS Panorama Developer Guide

« Blinking green — The appliance is communicating over the network.

« Solid red — An Ethernet cable is not connected.

Power and reset buttons

The power and reset buttons are on the front of the device underneath a protective cover. The
reset button is smaller and recessed. Use a small screwdriver or paperclip to press it.

To reset an appliance

1. The appliance must be plugged in and powered off. To power off the appliance, hold the power
button for 1 second and wait for the shutdown sequence to complete. The shutdown sequence
takes about 10 seconds.

2. Toreset the appliance, use the following button combinations. A short press is 1 second. A
long press is 5 seconds. For operations that require multiple buttons, press and hold both
buttons simultaneously.

o Full reset — Long press power and reset.

Restores the minimum software version and deletes all configuration files and applications.

» Restore latest software version — Short press reset.

Reapplies the latest software update to the appliance.

» Restore minimum software version — Long press reset.

Reapplies the latest required software update to the appliance.

3. Release both buttons. The appliance powers on and the status light blinks orange for several
minutes.

4. When the appliance is ready, the status light blinks green.

Resetting an appliance does not delete it from the AWS Panorama service. For more information,
see Deregister an appliance.

Power and reset buttons 64

AWS Panorama Developer Guide

Managing AWS Panorama applications

Applications run on the AWS Panorama Appliance to perform computer vision tasks on video
streams. You can build computer vision applications by combining Python code and machine
learning models, and deploy them to the AWS Panorama Appliance over the internet. Applications
can send video to a display, or use the AWS SDK to send results to AWS services.

Topics

» Deploy an application

« Managing applications in the AWS Panorama console

» Package configuration

o The AWS Panorama application manifest

« Application nodes

» Application parameters

» Deploy-time configuration with overrides

65

AWS Panorama Developer Guide

Deploy an application

To deploy an application, you use the AWS Panorama Application CLI import it to your account,
build the container, upload and register assets, and create an application instance. This topic goes
into each of these steps in detail and describes what goes on in the background.

If you have not deployed an application yet, see Getting started with AWS Panorama for a
walkthrough.

For more information on customizing and extending the sample application, see Building AWS
Panorama applications.

Sections

Install the AWS Panorama Application CLI

« Import an application

« Build a container image

o Import a model

» Upload application assets

» Deploy an application with the AWS Panorama console

« Automate application deployment

Install the AWS Panorama Application CLI

To install the AWS Panorama Application CLI and AWS CLI, use pip.

$ pip3 install --upgrade awscli panoramacli

To build application images with the AWS Panorama Application CLI, you need Docker. On Linux,
gemu and related system libraries are required as well. For more information on installing and
configuring the AWS Panorama Application CLI, see the README file in the project's GitHub
repository.

» github.com/aws/aws-panorama-cli

For instructions on setting up a build environment in Windows with WSL2, see Setting up a
development environment in Windows.

Deploy 66

https://github.com/aws/aws-panorama-cli

AWS Panorama Developer Guide

Import an application

If you are working with a sample application or an application provided by a third party, use the
AWS Panorama Application CLI to import the application.

my-app$ panorama-cli import-application

This command renames application packages with your account ID. Package names start with the
account ID of the account to which they are deployed. When you deploy an application to multiple
accounts, you must import and package the application separately for each account.

For example, this guide's sample application a code package and a model package, each hamed
with a placeholder account ID. The import-application command renames these to use the
account ID that the CLI infers from your workspace's AWS credentials.

/aws-panorama-sample

assets

graphs

my-app

graph.json

packages
123456789012-SAMPLE_CODE-1.0
Dockerfile
application.py
descriptor.json
package.json
requirements.txt
squeezenet_classes.json
123456789012-SQUEEZENET_PYTORCH-1.0
descriptor.json
package.json

HOH F O B R

123456789012 is replaced with your account ID in the package directory names, and in the
application manifest (graph. json), which refers to them. You can confirm your account ID by
calling aws sts get-caller-identity with the AWS CLI.

$ aws sts get-caller-identity

{
"UserId": "AIDAXMPL7W66UC3GFXMPL",
"Account": "210987654321",

Import an application 67

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/graphs/my-app/graph.json
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SQUEEZENET_PYTORCH-1.0

AWS Panorama Developer Guide

"Arn": "arn:aws:iam::210987654321:user/devenv"

Build a container image

Your application code is packaged in a Docker container image, which includes the application code
and libraries that you install in your Dockerfile. Use the AWS Panorama Application CLI build-
container command to build a Docker image and export a filesystem image.

my-app$ panorama-cli build-container --container-asset-name code_asset --package-path
packages/210987654321-SAMPLE_CODE-1.0

{
"name": "code_asset",
"implementations": [
{
"type": "container",
"assetUri":
"5fa5xmplbc8cl6bf8182a5chb97d626767868d3f4d9958a4e49830e1551d227c5.tar.gz",
"descriptorUri":
"1872xmpl129481ed@53c52e66d6af8b030f9eb69b1168a29012f01c7034d7a8f. json"
}
]
}

Container asset for the package has been succesfully built at
assets/5fa5xmplbc8c16bf8182a5chb97d626767868d3f4d9958a4e49830e1551d227c5.tar.gz

This command creates a Docker image named code_asset and exports a filesystem toa .tar.gz
archive in the assets folder. The CLI pulls the application base image from Amazon Elastic
Container Registry (Amazon ECR), as specified in the application's Dockerfile.

In addition to the container archive, the CLI creates an asset for the package descriptor
(descriptor. json). Both files are renamed with a unique identifier that reflects a hash of the
original file. The AWS Panorama Application CLI also adds a block to the package configuration
that records the names of the two assets. These names are used by the appliance during the
deployment process.

Example packages/123456789012-SAMPLE_CODE-1.0/package.json — with asset block

"nodePackage": {
"envelopeVersion": "2021-01-01",

Build a container image 68

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/package.json

AWS Panorama Developer Guide

"name": "SAMPLE_CODE",

"version": "1.0",
"description": "Computer vision application code.",
"assets": [
{
"name": "code_asset",
"implementations": [
{
"type": "container",
"assetUri":
"5fa5xmplbc8c16bf8182a5ch97d626767868d3f4d9958a4e49830e1551d227c5. tar.gz",
"descriptorUri":
"1872xmpl129481ed@53c52e66d6af8b030f9eb69b1168a29012f01c7034d7a8f. json"
}
]
}
1,
"interfaces": [
{
"name": "interface",
"category": "business_logic",
"asset": "code_asset",
"inputs": [
{
"name": "video_in",

"type": "media"

}I

The name of the code asset, specified in the build-container command, must match the

value of the asset field in the package configuration. In the preceding example, both values are
code_asset.

Import a model

Your application might have a model archive in its assets folder or that you download separately.
If you have a new model, an updated model, or updated model descriptor file, use the add-raw-
model command to import it.

my-app$ panorama-cli add-raw-model --model-asset-name model_asset \
--model-local-path my-model.tar.gz \
--descriptoxr-path packages/210987654321-SQUEEZENET_PYTORCH-1.0/descriptor.json \
--packages-path packages/210987654321-SQUEEZENET_PYTORCH-1.0

Import a model 69

AWS Panorama Developer Guide

If you just need to update the descriptor file, you can reuse the existing model in the assets
directory. You might need to update the descriptor file to configure features such as floating point
precision mode. For example, the following script shows how to do this with the sample app.

Example util-scripts/update-model-config.sh

#!/bin/bash

set -eo pipefail
MODEL_ASSET=fdlaxmplacc3350a5c2673adacffab@6af54c3fladabfes4a8be24cac687a386e
MODEL_PACKAGE=SQUEEZENET_PYTORCH

ACCOUNT_ID=$(1s packages | grep -Eo '[0-9]1{12}' | head -1)

panorama-cli add-raw-model --model-asset-name model_asset --model-local-path assets/
${MODEL_ASSET}.tar.gz --descriptor-path packages/${ACCOUNT_ID}-${MODEL_PACKAGE}-1.0/
descriptor.json --packages-path packages/${ACCOUNT_ID}-${MODEL_PACKAGE}-1.0

cp packages/${ACCOUNT_ID}-${MODEL_PACKAGE}-1.0/package.json packages/${ACCOUNT_ID}-
${MODEL_PACKAGE}-1.0/package.json.bup

Changes to the descriptor file in the model package directory are not applied until you reimport it
with the CLI. The CLI updates the model package configuration with the new asset names in-place,
similar to how it updates the configuration for the application code package when you rebuild a
container.

Upload application assets

To upload and register the application's assets, which include the model archive, container
filesystem archive, and their descriptor files, use the package-application command.

my-app$ panorama-cli package-application

Uploading package SQUEEZENET_PYTORCH

Patch version for the package
5d3cxmplb7113faald130f97f619655d8cal2787¢c751851a0el55e50ebh5e3e96

Deregistering previous patch version
e845xmpl8eal®36leb345c313a8dded30294b3a46b486dc8e7cl74ee7aab29362

Asset fdlaxmplacc3350a5c2673adacffab@6af54c3fladabfesa8be24cac687a386e.tar.gz already
exists, ignoring upload

upload: assets/87fbxmpl6fl8aeaesdle3ff8bbc6147390feafs47d85b5da34f8374974eccsaaf. json
to s3://arn:aws:s3:us-east-2:212345678901:accesspoint/
panorama-210987654321-6k75xmpl2jypelgzst7uux62ye/210987654321/nodePackages/

SQUEEZENET_PYTORCH/
binaries/87fbxmpl6fl8aecae4dle3ff8bbc6147390feaf47d85b5da34f8374974eccsaaf. json

Called register package version for SQUEEZENET_PYTORCH with patch version
5d3cxmplb7113faaldl30f97f619655d8cal2787c751851a0@el55e50eb5e3e96

Upload application assets 70

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/update-model-config.sh

AWS Panorama Developer Guide

If there are no changes to an asset file or the package configuration, the CLI skips it.

T

Uploading package SAMPLE_CODE

Patch Version ca9lxmplca526fe3f07821fb0c514f70ed@cits4f34ch9bd3a20e153730b35d70 already
registered, ignoring upload

Register patch version complete for SQUEEZENET_PYTORCH with patch version
5d3cxmplb7113faald130f97f619655d8cal2787c751851a0el55e50eb5e3e96

Register patch version complete for SAMPLE_CODE with patch version
ca91lxmplca526fe3f07821fb0c514f70ed0cs44T34cbObd3a20e153730b35d70

All packages uploaded and registered successfully

he CLI uploads the assets for each package to an Amazon S3 access point that is specific to your

account. AWS Panorama manages the access point for you, and provides information about it
through the DescribePackage API. The CLI uploads the assets for each package to the location

P

rovided for that package, and registers them with the AWS Panorama service with the settings

described by the package configuration.

Deploy an application with the AWS Panorama console

You can deploy an application with the AWS Panorama console. During the deployment process,

you choose which camera streams to pass to the application code, and configure options provided

by the application's developer.

To deploy an application

1.

W

© ® N o u &

Open the AWS Panorama console Deployed applications page.

Choose Deploy application.

Paste the contents of the application manifest, graph. json, into the text editor. Choose
Next.

Enter a name and descroption.

Choose Proceed to deploy.

Choose Begin deployment.

If your application uses a role, choose it from the drop-down menu. Choose Next.
Choose Select device, and then choose your appliance. Choose Next.

On the Select data sources step, choose View input(s), and add your camera stream as a data
source. Choose Next.

Deploy an application with the AWS Panorama console 71

https://docs.aws.amazon.com/panorama/latest/api/API_DescribePackage.html
https://console.aws.amazon.com/panorama/home#deployed-applications

AWS Panorama Developer Guide

10. On the Configure step, configure any application-specific settings defined by the developer.
Choose Next.

11. Choose Deploy, and then choose Done.

12. In the list of deployed applications, choose the application to monitor its status.

The deployment process takes 15-20 minutes. The appliance's output can be blank for an extended
period while the application starts. If you encounter an error, see Troubleshooting.

Automate application deployment

You can automate the application deployment process with the CreateApplicationinstance API. The

API takes two configuration files as input. The application manifest specifies the packages used and
their relationships. The second file is an overrides file that specifies deploy-time overrides of values
in the application manifest. Using an overrides file lets you use the same application manifest to
deploy the application with different camera streams, and configure other application-specific
settings.

For more information, and example scripts for each of the steps in this topic, see Automate
application deployment.

Automate application deployment 72

https://docs.aws.amazon.com/panorama/latest/api/API_CreateApplicationInstance.html

AWS Panorama Developer Guide

Managing applications in the AWS Panorama console

Use the AWS Panorama console to manage deployed applications.

Sections

« Update or copy an application

» Delete versions and applications

Update or copy an application

To update an application, use the Replace option. When you replace an application, you can update
its code or models.

To update an application

Open the AWS Panorama console Deployed applications page.

1.

2. Choose an application.
3. Choose Replace.
4.

Follow the instructions to create a new version or application.

There is also a Clone option that acts similar to Replace, but doesn't remove the old version of the
application. You can use this option to test changes to an application without stopping the running
version, or to redeploy a version that you've already deleted.

Delete versions and applications
To clean up unused application versions, delete them from your appliances.
To delete an application

1. Open the AWS Panorama console Deployed applications page.

2. Choose an application.

3. Choose Delete from device.

Manage 73

https://console.aws.amazon.com/panorama/home#deployed-applications
https://console.aws.amazon.com/panorama/home#deployed-applications

AWS Panorama Developer Guide

Package configuration

When you use the AWS Panorama Application CLI command panorama-cli package-
application, the CLI uploads your application's assets to Amazon S3 and registers them with
AWS Panorama. Assets include binary files (container images and models) and descriptor files,
which the AWS Panorama Appliance downloads during deployment. To register a package's assets,
you provide a separate package configuration file that defines the package, its assets, and its
interface.

The following example shows a package configuration for a code node with one input and one
output. The video input provides access to image data from a camera stream. The output node
sends processed images out to a display.

Example packages/1234567890-SAMPLE_CODE-1.0/package.json

"nodePackage": {
"envelopeVersion": "2021-01-01",
"name": "SAMPLE_CODE",
"version": "1.0",
"description": "Computer vision application code.",
"assets": [
{
"name": "code_asset",
"implementations": [
{
"type": "container",
"assetUri":
"3d9bxmplbdb67a3c9730abb19e48d78780b50713340ec3871201903d8805328a.tar.gz",
"descriptorUri":
"1872xmpl129481ed@53c52e66d6af8b030f9eb69b1168a29012f01c7034d7a8f. json"
}

1,
"interfaces": [
{
"name": "interface",
"category": "business_logic",
"asset": "code_asset",
"inputs": [

{

Packages 74

AWS Panorama Developer Guide

"name": "video_in",
"type": "media"
}
1,
"outputs": [
{
"description": "Video stream output",
"name": "video_out",
"type": "media"
}
]

The assets section specifies the names of artifacts that the AWS Panorama Application CLI
uploaded to Amazon S3. If you import a sample application or an application from another user,
this section can be empty or refer to assets that aren't in your account. When you run panorama-
cli package-application, the AWS Panorama Application CLI populates this section with the
correct values.

Packages 75

AWS Panorama

Developer Guide

The AWS Panorama application manifest

When you deploy an application, you provide a configuration file called an application manifest.
This file defines the application as a graph with nodes and edges. The application manifest is part
of the application's source code and is stored in the graphs directory.

Example graphs/aws-panorama-sample/graph.json

{
"nodeGraph": {
"envelopeVersion": "2021-01-01",
"packages": [
{
"name": "123456789012::SAMPLE_CODE",
"version": "1.0"
.
{
"name": "123456789012::SQUEEZENET_PYTORCH_V1",
"version": "1.0"
.
{
"name": "panorama::abstract_rtsp_media_source",
"version": "1.0"
.
{
"name": "panorama::hdmi_data_sink",
"version": "1.0"
}
1,
"nodes": [
{
"name": "code_node",
"interface": "123456789012::SAMPLE_CODE.interface"
}
{
"name": "model_node",
"interface": "123456789012::SQUEEZENET_PYTORCH_V1.interface"
.
{

"name": "camera_node",

"interface": "panorama::abstract_rtsp_media_source.rtsp_vl_interface",
"overridable": true,

"overrideMandatory": true,

Application manifest

76

AWS Panorama

Developer Guide

"decorator": {

"title": "IP camera",
"description": "Choose a camera stream."
}
},
{
"name": "output_node",
"interface": "panorama::hdmi_data_sink.hdmi@"
},
{
"name": "log_level",
"interface": "string",
"value": "INFO",
"overridable": true,
"decorator": {
"title": "Logging level",
"description": "DEBUG, INFO, WARNING, ERROR, or
}
}
1,
"edges": [
{
"producer": "camera_node.video_out",
"consumer": "code_node.video_in"
.
{
"producer": "code_node.video_out",
"consumer": "output_node.video_in"
.
{
"producer": "log_level",
"consumer": "code_node.log_level"
}
]

CRITICAL."

Nodes are connected by edges, which specify mappings between nodes' inputs and outputs. The

output of one node connects to the input of another, forming a graph.

Application manifest

77

AWS Panorama Developer Guide

JSON schema

The format of application manifest and override documents is defined in a JSON schema. You
can use the JSON schema to validate your configuration documents before deploying. The JSON
schema is available in this guide's GitHub repository.

» JSON schema - aws-panorama-developer-guide/resources

JSON schema 78

https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources

AWS Panorama Developer Guide

Application nodes

Nodes are models, code, camera streams, output, and parameters. A node has an interface,
which defines its inputs and outputs. The interface can be defined in a package in your account, a
package provided by AWS Panorama, or a built-in type.

In the following example, code_node and model_node refer to the sample code and model
packages included with the sample application. camera_node uses a package provided by AWS
Panorama to create a placeholder for a camera stream that you specify during deployment.

Example graph.json — Nodes

"nodes": [

{

"name": "code_node",
"interface": "123456789012::SAMPLE_CODE.interface"

},
{
"name": "model_node",
"interface": "123456789012::SQUEEZENET_PYTORCH_V1.interface"
},
{
"name": '"camera_node",
"interface": "panorama::abstract_rtsp_media_source.rtsp_vl_interface",
"overridable": true,
"overrideMandatory": true,
"decorator": {
"title": "IP camera",
"description": "Choose a camera stream."
}
}
]
Edges

Edges map the output from one node to the input of another. In the following example, the first
edge maps the output from a camera stream node to the input of an application code node. The
names video_in and video_out are defined in the node packages' interfaces.

Example graph.json — edges

"edges": [

Nodes 79

AWS Panorama Developer Guide

{
"producer": "camera_node.video_out",
"consumer": "code_node.video_in"
.
{
"producer": "code_node.video_out",
"consumer": "output_node.video_in"
.

In your application code, you use the inputs and outputs attributes to get images from the input
stream, and send images to the output stream.

Example application.py - Video input and output

def process_streams(self):

"""Processes one frame of video from one or more video streams.
frame_start = time.time()
self.frame_num += 1
logger.debug(self.frame_num)
Loop through attached video streams
streams = self.inputs.video_in.get()
for stream in streams:
self.process_media(stream)

self.outputs.video_out.put(streams)

Abstract nodes

In an application manifest, an abstract node refers to a package defined by AWS Panorama, which
you can use as a placeholder in your application manifest. AWS Panorama provides two types of
abstract node.

« Camera stream - Choose the camera stream that the application uses during deployment.
Package name — panorama: :abstract_rtsp_media_source

Interface name — rtsp_v1_interface

« HDMI output - Indicates that the application outputs video.

Package name — panorama: :hdmi_data_sink

Abstract nodes 80

AWS Panorama

Developer Guide

Interface name —

The following example shows a basic set of packages, nodes, and edges for an application that
processes camera streams and outputs video to a display. The camera node, which uses the
interface from the abstract_rtsp_media_source package in AWS Panorama, can accept
multiple camera streams as input. The output node, which references hdmi_data_sink, gives
application code access to a video buffer that is output from the appliance's HDMI port.

hdmi@

Example graph.json — Abstract nodes

{
"nodeGraph": {
"envelopeVersion": "2021-01-01",
"packages": [
{
"name": "123456789012::SAMPLE_CODE",
"version": "1.0"
b
{
"name": "123456789012::SQUEEZENET_PYTORCH_V1",
"version": "1.0"
b
{
"name": "panorama::abstract_xrtsp_media_source",
"version": "1.0"
}I
{
"name": "panorama::hdmi_data_sink",
"version": "1.0"
}
1,
"nodes": [
{
"name": "camera_node",
"interface'": "panorama::abstract_rtsp_media_source.rtsp_vl_intexrface",
"overridable": true,
"decorator": {
"title": "IP camera",
"description": "Choose a camera stream."
}
},

Abstract nodes

81

AWS Panorama Developer Guide

{
"name": "output_node",
"interface": "panorama::hdmi_data_sink.hdmi@"
}
1,
"edges": [
{
"producer": "camera_node.video_out",
"consumer": "code_node.video_in"
}I
{
"producer": "code_node.video_out",
"consumer": "output_node.video_in"
}
]

Abstract nodes 82

AWS Panorama

Developer Guide

Application parameters

Parameters are nodes that have a basic type and can be overridden during deployment. A
parameter can have a default value and a decorator, which instructs the application's user how to

configure it.

Parameter types

The following example shows two parameters, a string and a number, which are sent to a code

node as inputs.

string - A string. For example, DEBUG.
int32 - An integer. For example, 20
float32 - A floating point number. For example, 47 .5

boolean - true or false.

Example graph.json — Parameters

"nodes":

{

classification.

iy
{

L

"name": "detection_threshold",
"interface": "float32",
"value": 20.0,
"overridable": true,
"decorator": {

"title": "Threshold",

"description": "The minimum confidence percentage for a positive

}

"name": "log_level",

"interface": "string",

"value": "INFO",

"overridable": true,

"decorator": {
"title": "Logging level",
"description": "DEBUG, INFO, WARNING,

ERROR, or CRITICAL."

Parameters

83

AWS Panorama Developer Guide

}
1,
"edges": [
{
"producer": "detection_threshold",
"consumer": "code_node.threshold"
I
{
"producer": "log_level",
"consumer": "code_node.log_level"
}
]

You can modify parameters directly in the application manifest, or provide new values at deploy-
time with overrides. For more information, see Deploy-time configuration with overrides.

Parameters 84

AWS Panorama Developer Guide

Deploy-time configuration with overrides

You configure parameters and abstract nodes during deployment. If you use the AWS Panorama
console to deploy, you can specify a value for each parameter and choose a camera stream as
input. If you use the AWS Panorama API to deploy applications, you specify these settings with an
overrides document.

An overrides document is similar in structure to an application manifest. For parameters with basic
types, you define a node. For camera streams, you define a node and a package that maps to a
registered camera stream. Then you define an override for each node that specifies the node from
the application manifest that it replaces.

Example overrides.json

{
"nodeGraphOverrides": {
"nodes": [
{
"name": "my_camera",
"interface": "123456789012::exterior-south.exterior-south"
.
{
"name": "my_region",
"interface": "string",
"value": "us-east-1"
}
1,
"packages": [
{
"name": "123456789012: :exterior-south",
"version": "1.0"
}
1,
"nodeOverrides": [
{
"replace": "camera_node",
"with": [
{
"name": "my_camera"
}
]
},

Overrides 85

AWS Panorama Developer Guide

{
"replace": "region",
"with": [
{
"name": "my_region"
}
]
}

1,
"envelopeVersion": "2021-01-01"

In the preceding example, the document defines overrides for one string parameter and an abstract
camera node. The nodeOverrides tells AWS Panorama which nodes in this document override
which in the application manifest.

Overrides 86

AWS Panorama Developer Guide

Building AWS Panorama applications

Applications run on the AWS Panorama Appliance to perform computer vision tasks on video
streams. You can build computer vision applications by combining Python code and machine
learning models, and deploy them to the AWS Panorama Appliance over the internet. Applications
can send video to a display, or use the AWS SDK to send results to AWS services.

A model analyzes images to detect people, vehicles, and other objects. Based on images that it has
seen during training, the model tells you what it thinks something is, and how confident it is in its
guess. You can train models with your own image data or get started with a sample.

The application's code process still images from a camera stream, sends them to a model, and
processes the result. A model might detect multiple objects and return their shapes and location.
The code can use this information to add text or graphics to the video, or to send results to an AWS
service for storage or further processing.

To get images from a stream, interact with a model, and output video, application code uses the
AWS Panorama Application SDK. The application SDK is a Python library that supports models
generated with PyTorch, Apache MXNet, and TensorFlow.

Topics

« Computer vision models

 Building an application image

« Calling AWS services from your application code
« The AWS Panorama Application SDK

o Running multiple threads

« Serving inbound traffic
» Using the GPU

» Setting up a development environment in Windows

87

AWS Panorama Developer Guide

Computer vision models

A computer vision model is a software program that is trained to detect objects in images. A model
learns to recognize a set of objects by first analyzing images of those objects through training. A
computer vision model takes an image as input and outputs information about the objects that

it detects, such as the type of object and its location. AWS Panorama supports computer vision
models built with PyTorch, Apache MXNet, and TensorFlow.

® Note

For a list of pre-built models that have been tested with AWS Panorama, see Model
compatibility.

Sections

Using models in code

Building a custom model

Packaging a model

Training models

Using models in code

A model returns one or more results, which can include probabilities for detected classes, location
information, and other data.The following example shows how to run inference on an image from a
video stream and send the model's output to a processing function.

Example application.py - Inference

def process_media(self, stream):
"""Runs inference on a frame of video."""
image_data = preprocess(stream.image,self.MODEL_DIM)
logger.debug('Image data: {}'.format(image_data))
Run inference
inference_start = time.time()
inference_results = self.call({"data":image_data}, self.MODEL_NODE)
Log metrics
inference_time = (time.time() - inference_start) * 1000

Models 88

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/resources/model-compatibility.md
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/resources/model-compatibility.md
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/application.py

AWS Panorama Developer Guide

if inference_time > self.inference_time_max:
self.inference_time_max = inference_time

self.inference_time_ms += inference_time

Process results (classification)

self.process_results(inference_results, stream)

The following example shows a function that processes results from basic classification model. The
sample model returns an array of probabilities, which is the first and only value in the results array.

Example application.py - Processing results

def process_results(self, inference_results, stream):
"""Processes output tensors from a computer vision model and annotates a video
frame."""
if inference_results is None:
logger.warning("Inference results are None.")
return
max_results = 5
logger.debug('Inference results: {}'.format(inference_results))
class_tuple = inference_results[0Q]
enum_vals = [(i, val) for i, val in enumerate(class_tuple[0])]
sorted_vals = sorted(enum_vals, key=lambda tup: tup[1l])
top_k = sorted_vals[::-1][:max_results]
indexes = [tup[@] for tup in top_k]

for j in range(max_results):
label = 'Class [%s], with probability %.3f.'% (self.classes[indexes[j]],
class_tuple[@][indexes[j]1])
stream.add_label(label, 0.1, 0.1 + 0.1%j)

The application code finds the values with the highest probabilities and maps them to labels in a
resource file that's loaded during initialization.

Building a custom model

You can use models that you build in PyTorch, Apache MXNet, and TensorFlow in AWS Panorama
applications. As an alternative to building and training models in SageMaker Al, you can use a
trained model or build and train your own model with a supported framework and exportitina
local environment or in Amazon EC2.

Building a custom model 89

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/application.py

AWS Panorama Developer Guide

® Note

For details about the framework versions and file formats supported by SageMaker Al Neo,
see Supported Frameworks in the Amazon SageMaker Al Developer Guide.

The repository for this guide provides a sample application that demonstrates this workflow for
a Keras model in TensorFlow SavedModel format. It uses TensorFlow 2 and can run locally in a
virtual environment or in a Docker container. The sample app also includes templates and scripts
for building the model on an Amazon EC2 instance.

o Custom model sample application

E Devenvironment
: Amazon 53
Local build Amazon Sagemaker Neo

NI o (I [T
Virtual Container

Model

% @
environment ?lo—
& — O0—| Compilation job
€ o—
Compiled
Amazon EC2 moadel
LLlll

3 - -
-1 64 C
Cloud build ”E” B -

Trrr

Build container GPU

AWS Panorama uses SageMaker Al Neo to compile models for use on the AWS Panorama
Appliance. For each framework, use the format that's supported by SageMaker Al Neo, and package
the model ina .tar.gz archive.

For more information, see Compile and deploy models with Neo in the Amazon SageMaker Al
Developer Guide.

Building a custom model 90

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/custom-model
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-compilation-preparing-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html

AWS Panorama Developer Guide

Packaging a model

A model package comprises a descriptor, package configuration, and model archive. Like in an
application image package, the package configuration tells the AWS Panorama service where the

model and descriptor are stored in Amazon S3.

Example packages/123456789012-SQUEEZENET_PYTORCH-1.0/descriptor.json

"mlModelDescriptor": {
"envelopeVersion": "2021-01-01",
"framework": "PYTORCH",
"frameworkVersion": "1.8",
"precisionMode": "FP1l6",
"inputs": [

{
"name": "data",
"shape": [

(® Note

Specify the framework version's major and minor version only. For a list of supported
PyTorch, Apache MXNet, and TensorFlow versions versions, see Supported frameworks.

To import a model, use the AWS Panorama Application CLI import-raw-model command. If
you make any changes to the model or its descriptor, you must rerun this command to update the
application's assets. For more information, see Changing the computer vision model.

For the descriptor file's JSON schema, see assetDescriptor.schema.json.

Packaging a model 91

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SQUEEZENET_PYTORCH-1.0/descriptor.json
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/resources/manifest-schema/ver_2021-01-01/assetDescriptor.schema.json

AWS Panorama Developer Guide

Training models

When you train a model, use images from the target environment, or from a test environment that
closely resembles the target environment. Consider the following factors that can affect model
performance:

« Lighting — The amount of light that is reflected by a subject determines how much detail the
model has to analyze. A model trained with images of well-lit subjects might not work well in a
low-light or backlit environment.

» Resolution - The input size of a model is typically fixed at a resolution between 224 and 512
pixels wide in a square aspect ratio. Before you pass a frame of video to the model, you can
downscale or crop it to fit the required size.

« Image distortion — A camera's focal length and lens shape can cause images to exhibit distortion
away from the center of the frame. The position of a camera also determines which features of a
subject are visible. For example, an overhead camera with a wide angle lens will show the top of
a subject when it's in the center of the frame, and a skewed view of the subject's side as it moves
farther away from center.

To address these issues, you can preprocess images before sending them to the model, and train
the model on a wider variety of images that reflect variances in real-world environments. If a
model needs to operate in a lighting situations and with a variety of cameras, you need more data
for training. In addition to gathering more images, you can get more training data by creating
variations of your existing images that are skewed or have different lighting.

Training models 92

AWS Panorama Developer Guide

Building an application image

The AWS Panorama Appliance runs applications as container filesystems exported from an image
that you build. You specify your application's dependencies and resources in a Dockerfile that uses
the AWS Panorama application base image as a starting point.

To build an application image, you use Docker and the AWS Panorama Application CLI. The
following example from this guide's sample application demonstrates these use cases.

Example packages/123456789012-SAMPLE_CODE-1.0/Dockerfile

FROM public.ecr.aws/panorama/panorama-application

WORKDIR /panorama

COPY . .

RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r requirements.txt

The following Dockerfile instructions are used.

« FROM - Loads the application base image (public.ecr.aws/panorama/panorama-
application).

« WORKDIR - Set the working directory on the image. /panorama is used for application code and
related files. This setting only persists during the build and does not affect the working directory
for your application at runtime (/).

o COPY - Copies files from a local path to a path on the image. COPY . . copies the files in
the current directory (the package directory) to the working directory on the image. For
example, the application code is copied from packages/123456789012-SAMPLE_CODE-1.0/
application.py to /panorama/application.py.

e RUN - Runs shell commands on the image during the build. A single RUN operation can run
multiple commands in sequence by using && between commands. This example updates the pip
package manager and then installs the libraries listed in requirements. txt.

You can use other instructions, such as ADD and ARG, that are useful at build time. Instructions that
add runtime information to the container, such as ENV, do not work with AWS Panorama. AWS
Panorama does not run a container from the image. It only uses the image to export a filesystem,
which is transferred to the appliance.

Build an image 93

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/Dockerfile

AWS Panorama Developer Guide

Specifying dependencies

requirements. txt is a Python requirements file that specifies libraries used by the application.
The sample application uses Open CV and the AWS SDK for Python (Boto3).

Example packages/123456789012-SAMPLE_CODE-1.0/requirements.txt

boto3==1.24.*
opencv-python==4.6.*

The pip install command in the Dockerfile installs these libraries to the Python dist-
packages directory under /usr/local/1lib, so that they can be imported by your application
code.

Local storage

AWS Panorama reserves the /opt/aws/panorama/storage directory for application storage.
Your application can create and modify files at this path. Files created in the storage directory
persist across reboots. Other temporary file locations are cleared on boot.

Building image assets

When you build an image for your application package with the AWS Panorama Application

CLI, the CLI runs docker build in the package directory. This builds an application image that
contains your application code. The CLI then creates a container, exports its filesystem, compresses
it, and stores it in the assets folder.

$ panorama-cli build-container --container-asset-name code_asset --package-path
packages/123456789012-SAMPLE_CODE-1.0

docker build -t code_asset packages/123456789012-SAMPLE_CODE-1.0 --pull

docker export --output=code_asset.tar $(docker create code_asset:latest)

gzip -1 code_asset.tar

{
"name": "code_asset",
"implementations": [
{
"type": "container",
"assetUri":
"6f67xmpl32743ed0e60c151a02f2f@dalbf70a4ab9d83fe236fa32a6f9b9f808.tar.gz",

"descriptorUri":

"1872xmpl129481ed053c52e66d6af8b030f9eb69b1168a29012f01c7034d7a8f. json"

Specifying dependencies 94

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/requirements.txt

AWS Panorama Developer Guide

}

}

Container asset for the package has been succesfully built at /home/
user/aws-panorama-developer-guide/sample-apps/aws-panorama-sample/
assets/6f67xmpl32743ed0e60c151a02f2f@dalbf70a4ab9d83fe236fa32a6f9b9f808.tar.gz

The JSON block in the output is an asset definition that the CLI adds to the package configuration
(package. json) and registers with the AWS Panorama service. The CLI also copies the descriptor
file, which specifies the path to the application script (the application's entry point).

Example packages/123456789012-SAMPLE_CODE-1.0/descriptor.json

{
"runtimeDescriptor":
{
"envelopeVersion": "2021-01-01",
"entry":
{
"path": "python3",
"name": "/panorama/application.py"
}
}
}

In the assets folder, the descriptor and application image are named for their SHA-256 checksum.
This name is used as a unique identifier for the asset when it is stored is Amazon S3.

Building image assets 95

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/descriptor.json

AWS Panorama Developer Guide

Calling AWS services from your application code

You can use the AWS SDK for Python (Boto) to call AWS services from your application code. For
example, if your model detects something out of the ordinary, you could post metrics to Amazon
CloudWatch, send an notification with Amazon SNS, save an image to Amazon S3, or invoke a
Lambda function for further processing. Most AWS services have a public API that you can use with
the AWS SDK.

The appliance does not have permission to access any AWS services by default. To grant it
permission, create a role for the application, and assign it to the application instance during

deployment.

Sections

» Using Amazon S3

» Using the AWS loT MQTT topic

Using Amazon S3

You can use Amazon S3 to store processing results and other application data.

import boto3

s3_client=boto3.client("s3")

s3_clients3.upload_file(data_file,
s3_bucket_name,
os.path.basename(data_file))

Using the AWS loT MQTT topic

You can use the SDK for Python (Boto3) to send messages to an MQTT topic in AWS loT. In the
following example, the application posts to a topic named after the appliance's thing name, which
you can find in AWS IoT console.

import boto3

iot_client=boto3.client('iot-data"')

topic = "panorama/panorama_my-appliance_Thing_a@le373b"
iot_client.publish(topic=topic, payload="my message")

AWS SDK 96

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html
https://console.aws.amazon.com/iot/home#/thinghub

AWS Panorama Developer Guide

Choose a name that indicates the device ID or other identifier of your choice. To publish messages,
the application needs permission to call iot:Publish.

To monitor an MQTT queue

1. Openthe AWS IoT console Test page.

2. For Subscription topic, enter the name of the topic. For example, panorama/panorama_my-
appliance_Thing_a@1le373b.

3. Choose Subscribe to topic.

Using the AWS loT MQTT topic 97

https://console.aws.amazon.com/iot/home?region=us-east-1#/test

AWS Panorama Developer Guide

The AWS Panorama Application SDK

The AWS Panorama Application SDK is a Python library for developing AWS Panorama
applications. In your application code, you use the AWS Panorama Application SDK to load a

computer vision model, run inference, and output video to a monitor.

(@ Note

To ensure that you have access to the latest functionality of the AWS Panorama Application
SDK, upgrade the appliance software.

For details about the classes that the application SDK defines and their methods, see Application
SDK reference.

Sections

« Adding text and boxes to output video

Adding text and boxes to output video

With the AWS Panorama SDK, you can output a video stream to a display. The video can include
text and boxes that show output from the model, the current state of the application, or other
data.

Each object in the video_in array is an image from a camera stream that is connected to the
appliance. The type of this object is panoramasdk . media. It has methods to add text and
rectangular boxes to the image, which you can then assign to the video_out array.

In the following example, the sample application adds a label for each of the results. Each result is
positioned at the same left position, but at different heights.

for j in range(max_results):
label = 'Class [%s], with probability %.3f.'% (self.classes[indexes[j]],
class_tuple[@][indexes[j]1]1)
stream.add_label(label, 0.1, 0.1 + 0.1%j)

To add a box to the output image, use add_rect. This method takes 4 values between 0 and 1,
indicating the position of the top left and bottom right corners of the box.

Application SDK 98

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/resources/applicationsdk-reference.md
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/resources/applicationsdk-reference.md

AWS Panorama Developer Guide

w,h,c = stream.image.shape
stream.add_rect(x1l/w, yl/h, x2/w, y2/h)

Adding text and boxes to output video 99

AWS Panorama Developer Guide

Running multiple threads

You can run your application logic on a processing thread and use other threads for other
background processes. For example, you can create a thread that serves HTTP traffic for

debugging, or a thread that monitors inference results and sends data to AWS.

To run multiple threads, you use the threading module from the Python standard library to create
a thread for each process. The following example shows the main loop of the debug server sample
application, which creates an application object and uses it to run three threads.

Example packages/123456789012-DEBUG_SERVER-1.0/application.py — Main loop

def main():
panorama = panoramasdk.node()
while True:
try:
Instantiate application
logger.info('INITIALIZING APPLICATION')
app = Application(panorama)
Create threads for stream processing, debugger, and client
app.run_thread = threading.Thread(target=app.run_cv)
app.server_thread = threading.Thread(target=app.run_debugger)
app.client_thread = threading.Thread(target=app.run_client)
Start threads
logger.info('RUNNING APPLICATION')
app.run_thread.start()
logger.info('RUNNING SERVER')
app.server_thread.start()
logger.info('RUNNING CLIENT')
app.client_thread.start()
Wait for threads to exit
app.run_thread. join()
app.server_thread.join()
app.client_thread.join()
logger.info('RESTARTING APPLICATION')
except:
logger.exception('Exception during processing loop.')

When all of the threads exit, the application restarts itself. The run_cv loop processes images from
camera streams. If it receives a signal to stop, it shuts down the debugger process, which runs an
HTTP server and can't shut itself down. Each thread must handle its own errors. If an error is not
caught and logged, the thread exits silently.

Running multiple threads 100

https://docs.python.org/3/library/threading.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/packages/123456789012-DEBUG_SERVER-1.0/application.py

AWS Panorama Developer Guide

Example packages/123456789012-DEBUG_SERVER-1.0/application.py — Processing loop

Processing loop
def run_cv(self):
"""Run computer vision workflow in a loop."""
logger.info("PROCESSING STREAMS")
while not self.terminate:
try:
self.process_streams()
turn off debug logging after 15 loops
if logger.getEffectivelevel() == logging.DEBUG and self.frame_num ==
15:
logger.setlLevel(logging.INFO)
except:
logger.exception('Exception on processing thread.')
Stop signal received
logger.info("SHUTTING DOWN SERVER")
self.server.shutdown()
self.server.server_close()
logger.info("EXITING RUN THREAD")

Threads communicate via the application's self object. To restart the application processing
loop, the debugger thread calls the stop method. This method sets a terminate attribute, which
signals the other threads to shut down.

Example packages/123456789012-DEBUG_SERVER-1.0/application.py — Stop method

Interrupt processing loop
def stop(self):
"""Signal application to stop processing."""
logger.info("STOPPING APPLICATION")
Signal processes to stop
self.terminate = True
HTTP debug server
def run_debugger(self):
"""Process debug commands from local network."""
class ServerHandler(SimpleHTTPRequestHandler):
Store reference to application
application = self
Get status
def do_GET(self):
"""Process GET requests."""
logger.info('Get request to {}'.format(self.path))

Running multiple threads 101

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/packages/123456789012-DEBUG_SERVER-1.0/application.py
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/packages/123456789012-DEBUG_SERVER-1.0/application.py

AWS Panorama Developer Guide

if self.path == "/status":
self.send_200('0K")
else:
self.send_error(400)
Restart application
def do_POST(self):
"""Process POST requests.
logger.info('Post request to {}'.format(self.path))
if self.path == '/restart':
self.send_200("'0K")
ServerHandler.application.stop()
else:
self.send_error(400)

Running multiple threads 102

AWS Panorama Developer Guide

Serving inbound traffic

You can monitor or debug applications locally by running an HTTP server alongside your
application code. To serve external traffic, you map ports on the AWS Panorama Appliance to ports
on your application container.

/A Important

By default, the AWS Panorama Appliance does not accept incoming traffic on any ports.
Opening ports on the appliance has implicit security risk. When you use this feature,
you must take additional steps to secure your appliance from external traffic and secure

communications between authorized clients and the appliance.
The sample code included with this guide is for demonstration purposes and does not
implement authentication, authorization, or encryption.

You can open up ports in the range 8000-9000 on the appliance. These ports, when opened, can
receive traffic from any routable client. When you deploy your application, you specify which ports
to open, and map ports on the appliance to ports on your application container. The appliance
software forwards traffic to the container, and sends responses back to the requestor. Requests are
received on the appliance port that you specify and responses go out on a random ephemeral port.

Configuring inbound ports

You specify port mappings in three places in your application configuration. The code package's
package. json, you specify the port that the code node listens on in a network block. The
following example declares that the node listens on port 80.

Example packages/123456789012-DEBUG_SERVER-1.0/package.json

"outputs": [
{
"description": "Video stream output",
"name": "video_out",

"type": "media"
}
1,
"network": {
"inboundPorts": [

{

Serving inbound traffic 103

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/packages/123456789012-DEBUG_SERVER-1.0/package.json

AWS Panorama Developer Guide

"port": 80,
"description": "http"

In the application manifest, you declare a routing rule that maps a port on the appliance to a port
on the application's code container. The following example adds a rule that maps port 8080 on the
device to port 80 on the code_node container.

Example graphs/my-app/graph.json

{
"producer": "model_input_width",
"consumer": "code_node.model_input_width"
.
{
"producer": "model_input_order",
"consumer": "code_node.model_input_order"
}
1)
"networkRoutingRules": [
{
"node": "code_node",
"containerPort": 80,
"hostPort": 8080,
"decorator": {
"title": "Listener port 8080",
"description": "Container monitoring and debug."
}
}
]

When you deploy the application, you specify the same rules in the AWS Panorama console, or
with an override document passed to the CreateApplicationinstance API. You must provide this
configuration at deploy time to confirm that you want to open ports on the appliance.

Example graphs/my-app/override.json

"replace": "camera_node",
"with": [

Configuring inbound ports 104

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/graphs/my-app/graph.json
https://docs.aws.amazon.com/panorama/latest/api/API_CreateApplicationInstance.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/graphs/my-app/override.json

AWS Panorama Developer Guide

{
"name": "exterior-north"
}
]
}
1,
"networkRoutingRules": [
{
"node": "code_node",
"containexPort": 80,
"hostPoxt": 8080
}
1,

"envelopeVersion": "2021-01-01"

If the device port specified in the application manifest is in use by another application, you can use
the override document to choose a different port.

Serving traffic

With ports open on the container, you can open a socket or run a server to handle incoming
requests. The debug-server sample shows a basic implementation of an HTTP server running
alongside computer vision application code.

/A Important

The sample implementation is not secure for production use. To avoid making your
appliance vulnerable to attacks, you must implement appropriate security controls in your
code and network configuration.

Example packages/123456789012-DEBUG_SERVER-1.0/application.py - HTTP server

HTTP debug server
def run_debugger(self):
"""Process debug commands from local network."""
class ServerHandler(SimpleHTTPRequestHandler):
Store reference to application
application = self

Serving traffic 105

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/packages/123456789012-DEBUG_SERVER-1.0/application.py

AWS Panorama Developer Guide

Get status
def do_GET(self):
"""Process GET requests.
logger.info('Get request to {}'.format(self.path))
if self.path == '/status':
self.send_200("'0K")
else:
self.send_error(400)
Restart application
def do_POST(self):
"""Process POST requests.
logger.info('Post request to {}'.format(self.path))
if self.path == '/restart':
self.send_200('0K")
ServerHandler.application.stop()
else:
self.send_error(400)
Send response
def send_200(self, msg):
"""Send 200 (success) response with message."""
self.send_response(200)
self.send_header('Content-Type', 'text/plain')
self.end_headers()
self.wfile.write(msg.encode('utf-8"'))

try:
Run HTTP server
self.server = HTTPServer(("", self.CONTAINER_PORT), ServerHandler)
self.server.serve_forever(1l)
Server shut down by run_cv loop
logger.info("EXITING SERVER THREAD")
except:
logger.exception('Exception on server thread.')

The server accepts GET requests at the /status path to retrieve some information about the
application. It also accepts a POST request to /restart to restart the application.

To demonstrate this functionality, the sample application runs an HTTP client on a separate thread.
The client calls the /status path over the local network shortly after startup, and restarts the
application a few minutes later.

Example packages/123456789012-DEBUG_SERVER-1.0/application.py — HTTP client

HTTP test client

Serving traffic 106

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/packages/123456789012-DEBUG_SERVER-1.0/application.py

AWS Panorama Developer Guide

def run_client(self):
"""Send HTTP requests to device port to demnostrate debug server functions."""
def client_get():
"""Get container status"""
r = requests.get('http://{}:{}/status’'.format(self.device_ip,
self.DEVICE_PORT))
logger.info('Response: {}'.format(r.text))
return
def client_post():
"""Restart application"""
r = requests.post('http://{}:{}/restart'.format(self.device_ip,
self.DEVICE_PORT))
logger.info('Response: {}'.format(r.text))
return
Call debug server
while not self.terminate:
try:
time.sleep(30)
client_get()
time.sleep(300)
client_post()
except:
logger.exception('Exception on client thread.')
stop signal received
logger.info("EXITING CLIENT THREAD")

The main loop manages the threads and restarts the application when they exit.

Example packages/123456789012-DEBUG_SERVER-1.0/application.py — Main loop

def main():
panorama = panoramasdk.node()
while True:
try:
Instantiate application
logger.info('INITIALIZING APPLICATION')
app = Application(panorama)
Create threads for stream processing, debugger, and client
app.run_thread = threading.Thread(target=app.run_cv)
app.server_thread = threading.Thread(target=app.run_debugger)
app.client_thread = threading.Thread(target=app.run_client)
Start threads
logger.info('RUNNING APPLICATION')
app.run_thread.start()

Serving traffic 107

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/packages/123456789012-DEBUG_SERVER-1.0/application.py

AWS Panorama Developer Guide

logger.info('RUNNING SERVER')

app.server_thread.start()

logger.info('RUNNING CLIENT')

app.client_thread.start()

Wait for threads to exit

app.run_thread. join()

app.server_thread.join()

app.client_thread.join()

logger.info('RESTARTING APPLICATION')
except:

logger.exception('Exception during processing loop.')

To deploy the sample application, see the instructions in this guide's GitHub repository.

Serving traffic 108

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/README.md

AWS Panorama Developer Guide

Using the GPU

You can access the graphics processor (GPU) on the AWS Panorama Appliance to use GPU-
accelerated libraries, or run machine learning models in your application code. To turn on GPU
access, you add GPU access as a requirement to the package configuration after building your
application code container.

/A Important

If you enable GPU access, you can't run model nodes in any application on the appliance.
For security purposes, GPU access is restricted when the appliance runs a model compiled
with SageMaker Al Neo. With GPU access, you must run your models in application code
nodes, and all applications on the device share access to the GPU.

To turn on GPU access for your application, update the package configuration after you build
the package with the AWS Panorama Application CLI. The following example shows the
requirements block that adds GPU access to the application code node.

Example package.json with requirements block

"nodePackage": {
"envelopeVersion": "2021-01-01",
"name": "SAMPLE_CODE",
"version": "1.0",
"description": "Computer vision application code.",
"assets": [
{
"name": "code_asset",
"implementations": [
{
"type": "container",
"assetUri":
"eba3xmpl71aa387e8f89be9a8c396416cdb80a717bb32103c957a8bf41440b12.tar.gz",
"descriptorUri":
"4abdxmpl5a6f047d2b3047adde44704759d13f0126c00ed9b4309726F6bb43400ba9. json"
"requirements": [
{
"type": "hardware_access",
"inferenceAccelerators": [

Using the GPU 109

AWS Panorama Developer Guide

{
"deviceType": "nvhost_gpu",
"sharedResourcePolicy": {
"policy" : "allow_all"
}
}

]I

"interfaces": [

Update the package configuration between the build and packaging steps in your development
workflow.

To deploy an application with GPU access

1. To build the application container, use the build-container command.

$ panorama-cli build-container --container-asset-name code_asset --package-path
packages/123456789012-SAMPLE_CODE-1.0

2. Addthe requirements block to the package configuration.

3. To upload the container asset and package configuration, use the package-application
command.

$ panorama-cli package-application

4. Deploy the application.

For sample applications that use GPU access, visit the aws-panorama-samples GitHub repository.

Using the GPU 110

https://github.com/aws-samples/aws-panorama-samples

AWS Panorama Developer Guide

Setting up a development environment in Windows

To build a AWS Panorama application, you use Docker, command-Lline tools, and Python. In
Windows, you can set up a development environment by using Docker Desktop with Windows
Subsystem for Linux and Ubuntu. This tutorial walks you through the setup process for

a development environment that has been tested with AWS Panorama tools and sample
applications.

Sections

Prerequisites
Install WSL 2 and Ubuntu

Install Docker

Configure Ubuntu

Next steps

Prerequisites

To follow this tutorial, you need a version of Windows that supports Windows Subsystem for Linux
2 (WSL 2).

« Windows 10 version 1903 and higher (Build 18362 and higher) or Windows 11
« Windows features

« Windows Subsystem for Linux

« Hyper-V

« Virtual machine platform

This tutorial was developed with the following software versions.

« Ubuntu 20.04
« Python 3.8.5
o Docker 20.10.8

Tutorial — Windows development environment 111

AWS Panorama Developer Guide

Install WSL 2 and Ubuntu

If you have Windows 10 version 2004 and higher (Build 19041 and higher), you can install WSL 2
and Ubuntu 20.04 with the following PowerShell command.

> wsl --install -d Ubuntu-20.04

For older Windows version, follow the instructions in the WSL 2 documentation: Manual

installation steps for older versions

Install Docker

To install Docker Desktop, download and run the installer package from hub.docker.com. If you

encounter issues, follow the instructions on the Docker website: Docker Desktop WSL 2 backend.

Run Docker Desktop and follow the first-run tutorial to build an example container.

(® Note

Docker Desktop only enables Docker in the default distribution. If you have other

Linux distributions installed prior to running this tutorial, enable Docker in the newly
installed Ubuntu distribution in the Docker Desktop settings menu under Resources, WSL
integration.

Configure Ubuntu

You can now run Docker commands in your Ubuntu virtual machine. To open a command-line
terminal, run the distribution from the start menu. The first time you run it, you configure a
username and password that you can use to run administrator commands.

To complete configuration of your development environment, update the virtual machine's
software and install tools.

To configure the virtual machine

1. Update the software that comes with Ubuntu.

$ sudo apt update && sudo apt upgrade -y && sudo apt autoremove

Install WSL 2 and Ubuntu 112

https://docs.microsoft.com/en-us/windows/wsl/install-manual
https://docs.microsoft.com/en-us/windows/wsl/install-manual
https://hub.docker.com/editions/community/docker-ce-desktop-windows/
https://docs.docker.com/desktop/windows/wsl/

AWS Panorama Developer Guide

2. Install development tools with apt.

$ sudo apt install unzip python3-pip

3. Install Python libraries with pip.

$ pip3 install awscli panoramacli

4. Open a new terminal, and then run aws configure to configure the AWS CLI.

$ aws configure

If you don't have access keys, you can generate them in the IAM console.

Finally, download and import the sample application.
To get the sample application

1. Download and extract the sample application.

$ wget https://github.com/awsdocs/aws-panorama-developer-guide/releases/download/
vl.0-ga/aws-panorama-sample.zip

$ unzip aws-panorama-sample.zip

$ cd aws-panorama-sample

2. Run the included scripts to test compilation, build the application container, and upload
packages to AWS Panorama.

aws-panorama-sample$./0-test-compile.sh
aws-panorama-sample$./l-create-role.sh
aws-panorama-sample$./2-import-app.sh
aws-panorama-sample$./3-build-container.sh
aws-panorama-sample$./4-package-app.sh

The AWS Panorama Application CLI uploads packages and registers them with the AWS Panorama
service. You can now deploy the sample app with the AWS Panorama console.

Configure Ubuntu 113

https://console.aws.amazon.com/iamv2/home?#/users

AWS Panorama Developer Guide

Next steps

To explore and edit the project files, you can use File Explorer or an integrated development
environment (IDE) that supports WSL.

To access the virtual machine's file system, open File explorer and enter \\ws1$ in the navigation
bar. This directory contains a link to the virtual machine's file system (Ubuntu-20.04) and file
systems for Docker's data. Under Ubuntu-20. @4, your user directory is at home\username.

(® Note

To access files in your Windows installation from within Ubuntu, navigate to the /mnt/c
directory. For example, you can list files in your downloads directory by running 1s /mnt/
c/Users/windows-username/Downloads.

With Visual Studio Code, you can edit application code in your development environment and run
commands with an integrated terminal. To install Visual Studio Code, visit code.visualstudio.com.
After installation, add the Remote WSL extension.

Windows terminal is an alternative to the standard Ubuntu terminal that you've been running
commands in. It supports multiple tabs and can run PowerShell, Command Prompt, and terminals
for any other variety of Linux that you install. It supports copy and paste with Ctrl+C and Ctrl+V,
clickable URLs, and other useful improvements. To install Windows Terminal, visit microsoft.com.

Next steps 114

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701

AWS Panorama Developer Guide

The AWS Panorama API

You can use the AWS Panorama service's public APl to automate device and application
management workflows. With the AWS Command Line Interface or the AWS SDK, you can develop
scripts or applications that manage resources and deployments. This guide's GitHub repository
includes scripts that you can use as a starting point for your own code.

« aws-panorama-developer-quide/util-scripts

Sections

Automate device registration

Manage appliances with the AWS Panorama API

Automate application deployment

Manage applications with the AWS Panorama API

Using VPC endpoints

115

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts

AWS Panorama Developer Guide

Automate device registration

To provision an appliance, use the ProvisionDevice API. The response includes a ZIP file with the
device's configuration and temporary credentials. Decode the file and save it in an archive with the
prefix certificates-omni_.

Example provision-device.sh

if [[$# -eq 1 1] ; then
DEVICE_NAME=$1
else
echo "Usage: ./provision-device.sh <device-name>"
exit 1
fi
CERTIFICATE_BUNDLE=certificates-omni_${DEVICE_NAME}.zip
aws panorama provision-device --name ${DEVICE_NAME} --output text --query Certificates
| base64 --decode > ${CERTIFICATE_BUNDLE}
echo "Created certificate bundle ${CERTIFICATE_BUNDLE}"

The credentials in the configuration archive expire after 5 minutes. Transfer the archive to your
appliance with the included USB drive.

To register a camera, use the CreateNodeFromTemplateJob API. This API takes a map of template
parameters for the camera's username, password, and URL. You can format this map as a JSON
document by using Bash string manipulation.

Example register-camera.sh

if [[$# -eq 3 1] ; then
NAME=$1
USERNAME=$2
URL=%$3
else
echo "Usage: ./register-camera.sh <stream-name> <username> <rtsp-url>"
exit 1
fi
echo "Enter camera stream password: "
read PASSWORD
TEMPLATE="{"Username":"MY_USERNAME", "Password":"MY_PASSWORD", "StreamUrl": "MY_URL"}'
TEMPLATE=${TEMPLATE/MY_USERNAME/$USERNAME}
TEMPLATE=${TEMPLATE/MY_PASSWORD/$PASSWORD}
TEMPLATE=${TEMPLATE/MY_URL/$URL}

Automate device registration 116

https://docs.aws.amazon.com/panorama/latest/api/API_ProvisionDevice.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/provision-device.sh
https://docs.aws.amazon.com/panorama/latest/api/API_CreateNodeFromTemplateJob.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/register-camera.sh

AWS Panorama Developer Guide

echo ${TEMPLATE}

JOB_ID=$(aws panorama create-node-from-template-job --template-type RTSP_CAMERA_STREAM
--output-package-name ${NAME} --output-package-version "1.0" --node-name ${NAME} --

template-parameters "${TEMPLATE}" --output text)

Alternatively, you can load the JSON configuration from a file.

--template-parameters file://camera-template.json

Automate device registration 117

AWS Panorama Developer Guide

Manage appliances with the AWS Panorama API
You can automate appliance management tasks with the AWS Panorama API.

View devices

To get a list of appliances with device IDs, use the ListDevices API.

$ aws panorama list-devices
"Devices": [
{
"Deviceld": "device-4tafxmplhtmzabv5lsacba4ere",
"Name": "my-appliance",
"CreatedTime": 1652409973.613,
"ProvisioningStatus": "SUCCEEDED",
"LastUpdatedTime": 1652410973.052,
"LeaseExpirationTime": 1652842940.0

To get more details about an appliance, use the DescribeDevice API.

$ aws panorama describe-device --device-id device-4tafxmplhtmzabv5lsacba4ere
{
"Deviceld": "device-4tafxmplhtmzabv5lsacba4ere",
"Name": "my-appliance",
"Arn": "arn:aws:panorama:us-west-2:123456789012:device/
device-4tafxmplhtmzabv5lsacba4ere”,
"Type": "PANORAMA_APPLIANCE",
"DeviceConnectionStatus": "ONLINE",
"CreatedTime": 1648232043.421,
"ProvisioningStatus": "SUCCEEDED",
"LatestSoftware": "4.3.55",
"CurrentSoftware": "4.3.45",
"SerialNumber": "GFXMPL0013023708",
"Tags": {},
"CurrentNetworkingStatus": {
"Ethernet@Status": {
"IpAddress": "192.168.0.1/24",
"ConnectionStatus": "CONNECTED",
"HwAddress": "8C:XM:PL:60:C5:88"

Manage appliance 118

https://docs.aws.amazon.com/panorama/latest/api/API_ListDevices.html
https://docs.aws.amazon.com/panorama/latest/api/API_DescribeDevice.html

AWS Panorama Developer Guide

},

"EthernetlStatus": {
"IpAddress": "--",
"ConnectionStatus": "NOT_CONNECTED",
"HwAddress": "8C:XM:PL:60:C5:89"

}

3,
"LeaseExpirationTime": 1652746098.0

Upgrade appliance software

If the LatestSoftware version is newer than the CurrentSoftware, you can upgrade the
device. Use the CreateJobForDevices API to create an over-the-air (OTA) update job.

$ aws panorama create-job-for-devices --device-ids device-4tafxmplhtmzabv5lsacbha4ere \
--device-job-config '{"OTAJobConfig": {"ImageVersion": "4.3.55"}}' --job-type OTA

{
"Jobs": [
{
"JobId": "device-4tafxmplhtmzabv5lsacba4ere-0",
"Deviceld": "device-4tafxmplhtmzabv5lsacba4ere"
}
]
}

In a script, you can populate the image version field in the job configuration file with Bash string
manipulation.

Example check-updates.sh

apply_update() {
DEVICE_ID=%$1
NEW_VERSION=$2
CONFIG='{"0TAJobConfig": {"ImageVersion": "NEW_VERSION"}}'
CONFIG=${CONFIG/NEW_VERSION/$NEW_VERSION}
aws panorama create-job-for-devices --device-ids ${DEVICE_ID} --device-job-config
"${CONFIG}" --job-type OTA
}

The appliance downloads the specified software version and updates itself. Watch the update's
progress with the DescribeDeviceJob API.

Upgrade appliance software 119

https://docs.aws.amazon.com/panorama/latest/api/API_CreateJobForDevices.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/check-updates.sh
https://docs.aws.amazon.com/panorama/latest/api/API_DescribeDeviceJob.html

AWS Panorama

Developer Guide

$ aws panorama describe-device-job --job-id device-4tafxmplhtmzabv5lsacba4ere-0

{
"JobId": "device-4tafxmplhtmzabv5lsacba4ere-0",
"Deviceld": "device-4tafxmplhtmzabv5lsacba4ere",
"DeviceArn": "arn:aws:panorama:us-west-2:559823168634:device/
device-4tafxmplhtmzabv5lsacba4ere”,
"DeviceName": "my-appliance",
"DeviceType": "PANORAMA_APPLIANCE",
"ImageVersion": "4.3.55",
"Status": "REBOOTING",
"CreatedTime": 1652410232.465
}

To get a list of all running jobs, use the ListDevicesJobs.

$ aws panorama list-devices-jobs

{
"Devicelobs": [
{
"DeviceName": "my-appliance",
"Deviceld": "device-4tafxmplhtmzabv5lsacba4ere",
"JobId": "device-4tafxmplhtmzabv5lsacba4ere-0",
"CreatedTime": 1652410232.465
}
]
}

For a sample script that checks for and applies updates, see check-updates.sh in this guide's GitHub

repository.
Reboot appliances

To reboot an appliance, use the CreateJobForDevices API.

$ aws panorama create-job-for-devices --device-ids device-4tafxmplhtmzabv5lsacba4ere --

job-type REBOOT
{
"Jobs": [
{
"JobId": "device-4tafxmplhtmzabv5lsacba4ere-0",
"Deviceld": "device-4tafxmplhtmzabv5lsacba4ere"

Reboot appliances

120

https://docs.aws.amazon.com/panorama/latest/api/API_ListDevicesJobs.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/check-updates.sh
https://docs.aws.amazon.com/panorama/latest/api/API_CreateJobForDevices.html

AWS Panorama Developer Guide

]

In a script, you can get a list of devices and choose one to reboot interactively.

Example reboot-device.sh — usage

$./reboot-device.sh
Getting devices...

0: device-53amxmplyn3gmj72epzanacniy my-se70-1
1: device-6talxmpl5mmik6gh5moba6jium my-manh-24
Choose a device
1
Reboot device device-6talxmpl5mmik6gh5moba6jium? (y/n)y
{

"Jobs": [

{

"DevicelId": "device-6talxmpl5mmik6gh5moba6jium",
"JobId": "device-6talxmpl5mmik6gh5moba6jium-8"

Reboot appliances 121

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/reboot-device.sh

AWS Panorama Developer Guide

Automate application deployment

To deploy an application, you use both the AWS Panorama Application CLI and AWS Command Line
Interface. After building the application container, you upload it and other assets to an Amazon S3
access point. You then deploy the application with the CreateApplicationinstance API.

For more context and instructions for using the scripts shown, follow the instructions in the sample
application README.

Sections

Build the container

Upload the container and register nodes

Deploy the application

Monitor the deployment

Build the container

To build the application container, use the build-container command. This command builds a
Docker container and saves it as a compressed file system in the assets folder.

Example 3-build-container.sh

CODE_PACKAGE=SAMPLE_CODE

ACCOUNT_ID=$(aws sts get-caller-identity --output text --query 'Account')

panorama-cli build-container --container-asset-name code_asset --package-path packages/
${ACCOUNT_ID}-${CODE_PACKAGE}-1.0

You can also use command-line completion to fill in the path argument by typing part of the path,
and then pressing TAB.

$ panorama-cli build-container --package-path packages/TAB

Upload the container and register nodes

To upload the application, use the package-application command. This command uploads
assets from the assets folder to an Amazon S3 access point that AWS Panorama manages.

Automate application deployment 122

https://docs.aws.amazon.com/panorama/latest/api/API_CreateApplicationInstance.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/README.md
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/README.md
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/3-build-container.sh

AWS Panorama Developer Guide

Example 4-package-app.sh

panorama-cli package-application

The AWS Panorama Application CLI uploads container and descriptor assets referenced by the
package configuration (package. json) in each package, and registers the packages as nodes
in AWS Panorama. You then refer to these nodes in your application manifest (graph. json) to
deploy the application.

Deploy the application

To deploy the application, you use the CreateApplicationinstance API. This action takes the
following parameters, among others.

« ManifestPayload - The application manifest (graph. json) that defines the application's
nodes, packages, edges, and parameters.

« ManifestOverridesPayload - A second manifest that overrides parameters in the first. The
application manifest can be considered as a static resource in the application source, where the
override manifest provides deploy-time settings that customize the deployment.

« DefaultRuntimeContextDevice - The target device.

e RuntimeRoleArn - The ARN of an IAM role that the application uses to access AWS services and
resources.

« ApplicationInstanceIdToReplace - The ID of an existing application instance to remove
from the device.

The manifest and override payloads are JSON documents that must be provided as a string value
nested inside of another document. To do this, the script loads the manifests from a file as a string
and uses the g tool to construct the nested document.

Example 5-deploy.sh - compose manifests

GRAPH_PATH="graphs/my-app/graph.json"
OVERRIDE_PATH="graphs/my-app/override.json"

application manifest

GRAPH=$(cat ${GRAPH_PATH} | tr -d '\n' | tr -d '[:blank:]")
MANIFEST="$(jq --arg value "${GRAPH}" '.PayloadData="\($value)"' <<< {})"
manifest override

Deploy the application 123

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/4-package-app.sh
https://docs.aws.amazon.com/panorama/latest/api/API_CreateApplicationInstance.html
https://stedolan.github.io/jq/
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/5-deploy.sh

AWS Panorama Developer Guide

OVERRIDE=$(cat ${OVERRIDE_PATH} | tr -d '\n' | tr -d '[:blank:]")
MANIFEST_OVERRIDE="$(jq --arg value "${OVERRIDE}" '.PayloadData="\($value)"' <<< {}H)"

The deploy script uses the ListDevices API to get a list of registered devices in the current Region,
and saves the users choice to a local file for subsequent deployments.

Example 5-deploy.sh - find a device

echo "Getting devices..."

DEVICES=$(aws panorama list-devices)

DEVICE_NAMES=($((echo ${DEVICES} | jq -r '.Devices |=sort_by(.LastUpdatedTime) |
[.Devices[].Name] | @sh') | tr -d \'\"))

DEVICE_IDS=($((echo ${DEVICES} | jq -r '.Devices |=sort_by(.LastUpdatedTime) |
[.Devices[].DeviceId] | @sh') | tr -d \'\"))

for ((c=0; c<${#DEVICE_NAMES[@]}; c++))

do

echo "${c}: ${DEVICE_IDS[${c}]1} ${DEVICE_NAMES[${c3}]1}"

done

echo "Choose a device"

read D_INDEX

echo "Deploying to device ${DEVICE_IDS[${D_INDEX}]}"

echo -n ${DEVICE_IDS[${D_INDEX}]} > device-id.txt

DEVICE_ID=$(cat device-id.txt)

The application role is created by another script (1-create-role.sh). The deploy script gets the ARN

of this role from AWS CloudFormation. If the application is already deployed to the device, the
script gets the ID of that application instance from a local file.

Example 5-deploy.sh - role ARN and replacement arguments

application role

STACK_NAME=panorama-${NAME}

ROLE_ARN=$(aws cloudformation describe-stacks --stack-name panorama-${PWD##*/} --query
'Stacks[@].0utputs[?0utputKey=="roleArn].OutputValue' --output text)

ROLE_ARG="--runtime-role-arn=${ROLE_ARN}"

existing application instance id

if [-f "application-id.txt"]; then
EXISTING_APPLICATION=$(cat application-id.txt)
REPLACE_ARG="--application-instance-id-to-replace=${EXISTING_APPLICATION}"
echo "Replacing application instance ${EXISTING_APPLICATION}"

Deploy the application 124

https://docs.aws.amazon.com/panorama/latest/api/API_ListDevices.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/5-deploy.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/1-create-role.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/5-deploy.sh

AWS Panorama Developer Guide

fi

Finally, the script puts all of the pieces together to create an application instance and deploy the
application to the device. The service responds with an instance ID which the script stores for later
use.

Example 5-deploy.sh - deploy application

APPLICATION_ID=$(aws panorama create-application-instance ${REPLACE_ARG} --manifest-

payload="${MANIFEST}" --default-runtime-context-device=${DEVICE_ID} --name=${NAME}
--description="command-line deploy" --tags client=sample --manifest-overrides-

payload="${MANIFEST_OVERRIDE}" ${ROLE_ARG} --output text)

echo "New application instance ${APPLICATION_ID}"

echo -n $APPLICATION_ID > application-id.txt

Monitor the deployment

To monitor a deployment, use the ListApplicationinstances API. The monitor script gets the device
ID and application instance ID from files in the application directory and uses them to construct a
CLI command. It then calls in a loop.

Example 6-monitor-deployment.sh

APPLICATION_ID=$(cat application-id.txt)
DEVICE_ID=%(cat device-id.txt)
QUERY="ApplicationInstances[?ApplicationInstanceId==\" APPLICATION_ID\]"
QUERY=${QUERY/APPLICATION_ID/$APPLICATION_ID}
MONITOR_CMD="aws panorama list-application-instances --device-id ${DEVICE_ID} --query
${QUERY}"
MONITOR_CMD=${MONITOR_CMD/QUERY/$QUERY}
while true; do
$MONITOR_CMD
sleep 60
done

When the deployment completes, you can view logs by calling the Amazon CloudWatch Logs API.
The view logs script uses the CloudWatch Logs GetLogEvents API.

Example view-logs.sh

GROUP="/aws/panorama/devices/MY_DEVICE_ID/applications/MY_APPLICATION_ID"

Monitor the deployment 125

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/5-deploy.sh
https://docs.aws.amazon.com/panorama/latest/api/API_ListApplicationInstances.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/6-monitor-deployment.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/view-logs.sh

AWS Panorama Developer Guide

GROUP=${GROUP/MY_DEVICE_ID/$DEVICE_ID}
GROUP=${GROUP/MY_APPLICATION_ID/$APPLICATION_ID}
echo "Getting logs for group ${GROUP}."
#set -x
while true
do
LOGS=$(aws logs get-log-events --log-group-name ${GROUP} --log-stream-name
code_node --1limit 150)
readarray -t ENTRIES < <(echo $LOGS | jg -c '.events[].message')
for ENTRY in "${ENTRIES[e@]}"; do
echo "$ENTRY" | tr -d \"
done
sleep 20
done

Monitor the deployment 126

AWS Panorama

Developer Guide

Manage applications with the AWS Panorama API

You can monitor and manage applications with the AWS Panorama API.

View applications

To get a list of applications running on an appliance, use the ListApplicationinstances API.

$ aws panorama list-application-instances
"ApplicationInstances": [

{

"Name": "aws-panorama-sample",

"ApplicationInstanceId": "applicationInstance-ddaxxmpl2z7bg74ywutd7byxuq",
"DefaultRuntimeContextDevice": "device-4tafxmplhtmzabv5lsacba4ere",
"DefaultRuntimeContextDeviceName": "my-appliance",

"Description": "command-line deploy",

"Status": "DEPLOYMENT_SUCCEEDED",

"HealthStatus": "RUNNING",

"StatusDescription": "Application deployed successfully.",

"CreatedTime": 1661902051.925,

"Arn": "arn:aws:panorama:us-east-2:123456789012:applicationInstance/

applicationInstance-ddaxxmpl2z7bg74ywutd7byxuq",

iy

"Tags": {
"client": "sample"

To get more details about an application instance's nodes, use the

ListApplicationinstanceNodelnstances API.

$ aws panorama list-application-instance-node-instances --application-instance-id
applicationInstance-ddaxxmpl2z7bg74ywutd7byxuq

{

"NodeInstances": [

{

"NodeInstancelId": "code_node",

"NodeId": "SAMPLE_CODE-1.0-fd3dxmpl-interface",
"PackageName": "SAMPLE_CODE",

"PackageVersion": "1.0",

Manage applications

127

https://docs.aws.amazon.com/panorama/latest/api/API_ListApplicationInstances.html
https://docs.aws.amazon.com/panorama/latest/api/API_ListApplicationInstanceNodeInstances.html

AWS Panorama Developer Guide

"PackagePatchVersion":
"fd3dxmpl2bdfasle6felbe290a79dd2c29cf0l4eadf7416d861ce7715ad5e8a8",

"NodeName": "interface",

"CurrentStatus": "RUNNING"

},
{
"NodeInstanceId": "camera_node_override",
"NodeId": "warehouse-floor-1.0-9eabxmpl-warehouse-floor",
"PackageName": "warehouse-floor",
"PackageVersion": "1.0",

"PackagePatchVersion":
"9eabxmple89f0f8b2f2852cca2abe7971aa38f1629a210d069045e83697e42a7",

"NodeName": "warehouse-floor",

"CurrentStatus": "RUNNING"

},

{
"NodeInstanceIld": "output_node",
"NodeId": "hdmi_data_sink-1.0-9c23xmpl-hdmiQ@",
"PackageName": "hdmi_data_sink",
"PackageVersion": "1.0",

"PackagePatchVersion":
"9c23xmplc4c98b92baeastaf676c8b16063d17945a3f6bd8f83f4ff5aa0dob394",

"NodeName": "hdmiQ@",

"CurrentStatus": "RUNNING"

"NodeInstanceId": "model_node",

"NodeId": "SQUEEZENET_PYTORCH-1.0-5d3cabda-interface",

"PackageName": "SQUEEZENET_PYTORCH",

"PackageVersion": "1.0",

"PackagePatchVersion":
"5d3cxmplb7113faald130f97f619655d8cal2787c751851a0el55e50eb5e3e96",

"NodeName": "interface",

"CurrentStatus": "RUNNING"

Manage camera streams

You can pause and resume camera stream nodes with the SignalApplicationinstanceNodelnstances
API.

Manage camera streams 128

https://docs.aws.amazon.com/panorama/latest/api/API_SignalApplicationInstanceNodeInstances.html

AWS Panorama Developer Guide

$ aws panorama signal-application-instance-node-instances --application-instance-id
applicationInstance-ddaxxmpl2z7bg74ywutd7byxuq \
--node-signals '[{"NodeInstanceld": "camera_node_override", "Signal":
"PAUSE"}]"
{
"ApplicationInstanceId": "applicationInstance-ddaxxmpl2z7bg74ywutd7byxuq"

In a script, you can get a list of nodes and choose one to pause or resume interactively.

Example pause-camera.sh — usage

my-app$./pause-camera.sh

Getting nodes...

@: SAMPLE_CODE RUNNING
1: warehouse-floor RUNNING
2: hdmi_data_sink RUNNING
3: entrance-north PAUSED
4: SQUEEZENET_PYTORCH RUNNING
Choose a node

1

Signalling node warehouse-floor

+ aws panorama signal-application-instance-node-instances --application-instance-id
applicationInstance-r3a7xmplcbmpjqeds7vj4b6pjy --node-signals '[{"NodeInstanceId":
"warehouse-floor", "Signal": "PAUSE"}]'

{
"ApplicationInstanceId": "applicationInstance-r3a7xmplcbmpjqeds7vj4b6pjy"

By pausing and resuming camera nodes, you can cycle through a larger number of camera streams
than can be processed simultaneously. To do this, map multiple camera streams to the same input
node in your override manifest.

In the following example, the override manifest maps two camera streams, warehouse-floor
and entrance-north to the same input node (camera_node). The warehouse-floor stream is
active when the application starts and the entrance-north node waits for a signal to turn on.

Example override-multicam.json

"nodeGraphOverrides": {

Manage camera streams 129

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/pause-camera.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/graphs/my-app/override-multicam.json

AWS Panorama

Developer Guide

"nodes": [
{
"name": "warehouse-floor",
"interface": "123456789012::warehouse-floor.warehouse-floor",
"launch": "onAppStart"
I
{
"name": "entrance-north",
"interface": "123456789012::entrance-north.entrance-north",
"launch": "onSignal"
},
"packages": [
{
"name": "123456789012: :warehouse-floor",
"version": "1.0"
},
{
"name": "123456789012::entrance-north",
"version": "1.0"
}
1,
"nodeOverrides": [
{
"replace": "camera_node",
"with": [
{
"name": "warehouse-floor"
},
{
"name": "entrance-north"
}
]
}

For details on deploying with the API, see Automate application deployment.

Manage camera streams

130

AWS Panorama Developer Guide

Using VPC endpoints

If you work in a VPC without internet access, you can create a VPC endpoint for use with AWS

Panorama. A VPC endpoint lets clients running in a private subnet connect to an AWS service
without an internet connection.

For details on ports and endpoints used by the AWS Panorama Appliance, see ???.

Sections

» Creating a VPC endpoint

« Connecting an appliance to a private subnet

« Sample AWS CloudFormation templates

Creating a VPC endpoint

To establish a private connection between your VPC and AWS Panorama, create a VPC endpoint.

A VPC endpoint is not required to use AWS Panorama. You only need to create a VPC endpoint if
you work in a VPC without internet access. When the AWS CLI or SDK attempts to connect to AWS
Panorama, the traffic is routed through the VPC endpoint.

Create a VPC endpoint for AWS Panorama using the following settings:

« Service name — com.amazonaws.us-west-2. panoxama

» Type - Interface

A VPC endpoint uses the service's DNS name to get traffic from AWS SDK clients without any
additional configuration. For more information about using VPC endpoints, see Interface VPC

endpoints in the Amazon VPC User Guide.

Connecting an appliance to a private subnet

The AWS Panorama Appliance can connect to AWS over a private VPN connection with AWS Site-
to-Site VPN or AWS Direct Connect. With these services, you can create a private subnet that
extends to your data center. The appliance connects to the private subnet and accesses AWS
services through VPC endpoints.

Using VPC endpoints 131

https://console.aws.amazon.com//vpc/home#CreateVpcEndpoint:
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html

AWS Panorama Developer Guide

Site-to-Site VPN and Direct Connect are services for connecting your data center to Amazon VPC
securely. With Site-to-Site VPN, you can use commercially available network devices to connect.
Direct Connect uses an AWS device to connect.

« Site-to-Site VPN - What is AWS Site-to-Site VPN?

« Direct Connect — What is AWS Direct Connect?

After you've connected your local network to a private subnet in a VPC, create VPC endpoints for
the following services.

« Amazon Simple Storage Service — AWS PrivateLink for Amazon S3

o AWS loT Core — Using AWS IoT Core with interface VPC endpoints (data plane and credential
provider)

« Amazon Elastic Container Registry — Amazon Elastic Container Registry interface VPC endpoints

« Amazon CloudWatch - Using CloudWatch with interface VPC endpoints

« Amazon CloudWatch Logs — Using CloudWatch Logs with interface VPC endpoints

The appliance does not need connectivity to the AWS Panorama service. It communicates with AWS
Panorama through a messaging channel in AWS IoT.

In addition to VPC endpoints, Amazon S3 and AWS IloT require the use of Amazon Route 53 private
hosted zones. The private hosted zone routes traffic from subdomains, including subdomains for
Amazon S3 access points and MQTT topics, to the correct VPC endpoint. For information on private
hosted zones, see Working with private hosted zones in the Amazon Route 53 Developer Guide.

For a sample VPC configuration with VPC endpoints and private hosted zones, see Sample AWS
CloudFormation templates.

Sample AWS CloudFormation templates

The GitHub repository for this guide provides AWS CloudFormation templates that you can use to
create resources for use with AWS Panorama. The templates create a VPC with two private subnets,
a public subnet, and a VPC endpoint. You can use the private subnets in the VPC to host resources
that are isolated from the internet. Resources in the public subnet can communicate with the
private resources, but the private resources can't be accessed from the internet.

Sample AWS CloudFormation templates 132

https://docs.aws.amazon.com/vpn/latest/s2svpn/
https://docs.aws.amazon.com/directconnect/latest/UserGuide/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/privatelink-interface-endpoints.html
https://docs.aws.amazon.com/iot/latest/developerguide/IoTCore-VPC.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch-and-interface-VPC.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch-logs-and-interface-VPC.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html

AWS Panorama

Developer Guide

Example vpc-endpoint.yml - Private subnets

AWSTemplateFormatVersion: 2010-09-09
Resources:

vpc:
Type: AWS::EC2::VPC
Properties:

CidrBlock: 172.31.0.0/16
EnableDnsHostnames: true
EnableDnsSupport: true
Tags:
- Key: Name
Value: !Ref AWS::StackName
privateSubnetA:
Type: AWS::EC2::Subnet
Properties:
VpcId: !Ref vpc
AvailabilityZone:
Fn::Select:
-0
- Fn::GetAZs: ""
CidrBlock: 172.31.3.0/24
MapPublicIpOnLaunch: false
Tags:
- Key: Name

Value: !Sub ${AWS::StackName}-subnet-a

The vpc-endpoint.yml template shows how to create a VPC endpoint for AWS Panorama. You
can use this endpoint to manage AWS Panorama resources with the AWS SDK or AWS CLI.

Example vpc-endpoint.yml - VPC endpoint

panoramaEndpoint:
Type: AWS::EC2::VPCEndpoint
Properties:

ServiceName: !Sub com.amazonaws.${AWS: :Region}.panorama

VpcId: !Ref vpc

VpcEndpointType: Interface
SecurityGroupIds:

- lGetAtt vpc.DefaultSecurityGroup
PrivateDnsEnabled: true

SubnetIds:

Sample AWS CloudFormation templates

133

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/vpc-endpoint.yml
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/vpc-endpoint.yml

AWS Panorama

Developer Guide

- IRef privateSubnetA
- IRef privateSubnetB
PolicyDocument:

Version: 2012-10-17

Statement:

- Effect: Allow
Principal: "*"
Action:

- "panorama:*"
Resource:

_ nxn

The PolicyDocument is a resource-based permissions policy that defines the API calls that can be
made with the endpoint. You can modify the policy to restrict the actions and resources that can be
accessed through the endpoint. For more information, see Controlling access to services with VPC

endpoints in the Amazon VPC User Guide.

The vpc-appliance.yml template shows how to create VPC endpoints and private hosted zones
for services used by the AWS Panorama Appliance.

Example vpc-appliance.yml — Amazon S3 access point endpoint with private hosted zone

s3Endpoint:
Type: AWS::EC2::VPCEndpoint
Properties:

ServiceName: !Sub com.amazonaws.${AWS: :Region}.s3

VpcId: !Ref vpc
VpcEndpointType: Interface
SecurityGroupIds:

- !GetAtt vpc.DefaultSecurityGroup

PrivateDnsEnabled: false
SubnetIds:

- IRef privateSubnetA

- IRef privateSubnetB

s3apHostedZone:

Type: AWS::Route53::HostedZone
Properties:
Name: !Sub s3-accesspoint.${AWS
VPCs:

- VPCId: !'Ref vpc
VPCRegion: !Ref AWS::Region
s3apRecords:

::Region}.amazonaws.com

Sample AWS CloudFormation templates

134

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/vpc-appliance.yml

AWS Panorama Developer Guide

Type: AWS::Route53::RecordSet
Properties:
HostedZoneld: !Ref s3apHostedZone
Name: !Sub "*.s3-accesspoint.${AWS::Region}.amazonaws.com"

Type: CNAME

TTL: 600

first DNS entry, split on :, second value

ResourceRecords:

- !Select [1, !Split [":", !Select [0, !GetAtt s3Endpoint.DnsEntries]]]

The sample templates demonstrate the creation of Amazon VPC and Route 53 resources with a
sample VPC. You can adapt these for your use case by removing the VPC resources and replacing
the references to subnet, security group, and VPC IDs with the IDs of your resources.

Sample AWS CloudFormation templates 135

AWS Panorama Developer Guide

Sample applications, scripts, and templates

The GitHub repository for this guide provides sample applications, scripts, and templates for
AWS Panorama devices. Use these samples to learn best practices and automate development
workflows.

Sections

Sample applications

Utility scripts

CloudFormation templates

More samples and tools

Sample applications

Sample applications demonstrate use of AWS Panorama features and common computer
vision tasks. These sample applications include scripts and templates that automate setup and
deployment. With minimal configuration, you can deploy and update applications from the
command line.

« aws-panorama-sample — Basic computer vision with a classification model. Use the AWS SDK

for Python (Boto) to upload metrics to CloudWatch, instrument preprocessing and inference
methods, and configure logging.

» debug-server — Open inbound ports on the device and forward traffic to an application code

container. Use multithreading to run application code, an HTTP server, and an HTTP client
simultaneously.

« custom-model — Export models from code and compile with SageMaker Al Neo to test

compatibility with the AWS Panorama Appliance. Build locally in a Python development, in a
Docker container, or on an Amazon EC2 instance. Export and compile all built-in application
models in Keras for a specific TensorFlow or Python version.

For more sample applications, also visit the aws-panorama-samples repository.

Sample applications 136

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/custom-model
https://github.com/aws-samples/aws-panorama-samples

AWS Panorama Developer Guide

Utility scripts

The scripts in the util-scripts directory manage AWS Panorama resources or automate
development workflows.

» provision-device.sh — Provision a device.

o check-updates.sh — Check for and apply appliance software updates.

« reboot-device.sh — Reboot a device.

 register-camera.sh — Register a camera.

» deregister-camera.sh — Delete a camera node.

« view-logs.sh — View logs for an application instance.

. pause—camera.sh — Pause or resume a camera stream.

« push.sh — Build, upload, and deploy an application.

» rename-package.sh — Rename a node package. Updates directory names, configuration files, and

the application manifest.

« samplify.sh — Replace your account ID with an example account ID, and restore backup
configurations to remove local configuration.

» update-model-config.sh — Re-add the model to the application after updating the descriptor file.

 cleanup-patches.sh — Deregister old patch versions and delete their manifests from Amazon S3.

For usage details, see the README.

CloudFormation templates

Use the CloudFormation templates in the cloudformation-templates directory to create
resources for AWS Panorama applications.

« alarm-application.yml — Create an alarm that monitors an application for errors. If the

application instance raises errors or stops running for 5 minutes, the alarm sends a notification
email.

» alarm-device.yml — Create an alarm that monitors a device's connectivity. If the device stops

sending metrics for 5 minutes, the alarm sends a notification email.

Utility scripts 137

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/provision-device.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/check-updates.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/reboot-device.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/register-camera.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/deregister-camera.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/view-logs.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/pause-camera.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/push.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/rename-package.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/samplify.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/update-model-config.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/cleanup-patches.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/alarm-application.yml
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/alarm-device.yml

AWS Panorama Developer Guide

« application-role.yml — Create an application role. The role includes permission to send metrics
to CloudWatch. Add permissions to the policy statement for other API operations that your

application uses.

« vpc-appliance.yml — Create a VPC with private subnet service access for the AWS Panorama
Appliance. To connect the appliance to a VPC, use AWS Direct Connect or AWS Site-to-Site VPN.

« vpc-endpoint.yml — Create a VPC with private subnet service access to the AWS Panorama
service. Resources inside of the VPC can connect to AWS Panorama to monitor and manage AWS
Panorama resources without connecting to the internet.

The create-stack.sh script in this directory creates CloudFormation stacks. It takes a variable
number of arguments. The first argument is the name of the template, and the remaining
arguments are overrides for parameters in the template.

For example, the following command creates an application role.

$./create-stack.sh application-role

More samples and tools

The aws-panorama-samples repository has more sample applications and useful tools.

Applications — Sample applications for various model architectures and use cases.

Camera stream validation — Validate camera streams.

PanoJupyter — Run JupyterLab on an AWS Panorama Appliance.

Sideloading — Update application code without building or deploying an application container.

The AWS community has also developed tools and guidance for AWS Panorama. Check out the
following open source projects on GitHub.

» cookiecutter-panorama — A Cookiecutter template for AWS Panorama applications.

« backpack — Python modules for accessing runtime environment details, profiling, and additional
video output options.

More samples and tools 138

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/application-role.yml
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/vpc-appliance.yml
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/vpc-endpoint.yml
https://github.com/aws-samples/aws-panorama-samples
https://github.com/aws-samples/aws-panorama-samples/tree/main/samples
https://github.com/aws-samples/aws-panorama-samples/tree/main/tools/camera_stream_validation
https://github.com/aws-samples/aws-panorama-samples/tree/main/tools/pano_jupyter
https://github.com/aws-samples/aws-panorama-samples/tree/main/tools/sideloading
https://github.com/mrtj/cookiecutter-panorama
https://github.com/Neosperience/backpack

AWS Panorama Developer Guide

Monitoring AWS Panorama resources and applications

You can monitor AWS Panorama resources in the AWS Panorama console and with Amazon
CloudWatch. The AWS Panorama Appliance connects to the AWS Cloud over the internet to report
its status and the status of connected cameras. While it is on, the appliance also sends logs to
CloudWatch Logs in real time.

The appliance gets permission to use AWS loT, CloudWatch Logs, and other AWS services from
a service role that you create the first time that you use the AWS Panorama console. For more
information, see AWS Panorama service roles and cross-service resources.

For help troubleshooting specific errors, see Troubleshooting.

Topics

« Monitoring in the AWS Panorama console

» Viewing AWS Panorama logs

« Monitoring appliances and applications with Amazon CloudWatch

139

AWS Panorama Developer Guide

Monitoring in the AWS Panorama console

You can use the AWS Panorama console to monitor your AWS Panorama Appliance and cameras.
The console uses AWS loT to monitor the state of the appliance.

To monitor your appliance in the AWS Panorama console

Open the AWS Panorama console.

Open the AWS Panorama console Devices page.
Choose an appliance.

To see the status of an application instance, choose it from the list.

i A W=

To see the status of the appliance's network interfaces, choose Settings.

The overall status of the appliance appears at the top of the page. If the status is Online, then the
appliance is connected to AWS and sending regular status updates.

AWS Panorama console 140

https://console.aws.amazon.com/panorama/home
https://console.aws.amazon.com/panorama/home#devices

AWS Panorama Developer Guide

Viewing AWS Panorama logs

AWS Panorama reports application and system events to Amazon CloudWatch Logs. When you
encounter issues, you can use the event logs to help debug your AWS Panorama application or
troubleshoot the application's configuration.

To view logs in CloudWatch Logs

1. Open the Log groups page of the CloudWatch Logs console.

2. Find AWS Panorama application and appliance logs in the following groups:

» Device logs - /aws/panorama/devices/device-id

« Application logs — /aws/panorama/devices/device-id/applications/instance-
id

When you reprovision an appliance after updating the system software, you can also view logs on
the provisioning USB drive.

Sections

Viewing device logs

Viewing application logs

Configuring application logs

Viewing provisioning logs

Egressing logs from a device

Viewing device logs

The AWS Panorama Appliance creates a log group for the device, and a group for each application
instance that you deploy. The device logs contain information about application status, software
upgrades, and system configuration.

Device logs — /aws/panorama/devices/device-id

« occ_log - Output from the controller process. This process coordinates application
deployments and reports on the status of each application instance's nodes.

« ota_log - Output from the process that coordinates over-the-air (OTA) software upgrades.

Logs 141

https://console.aws.amazon.com/cloudwatch/home#logsV2:log-groups

AWS Panorama Developer Guide

» syslog - Output from the device's syslog process, which captures messages sent between
processes.

» kern_log - Events from the device's Linux kernel.

« logging_setup_logs - Output from the process that configures the CloudWatch Logs agent.
« cloudwatch_agent_logs - Output from the CloudWatch Logs agent.

« shadow_log - Output from the AWS loT device shadow.

Viewing application logs
An application instance's log group contains a log stream for each node, named after the node.
Application logs - /aws/panorama/devices/device-id/applications/instance-id

» Code - Output from your application code and the AWS Panorama Application SDK. Aggregates
application logs from /opt/aws/panorama/logs.

» Model - Output from the process that coordinates inference requests with a model.
» Stream - Output from the process that decodes video from a camera stream.

» Display — Output from the process that renders video output for the HDMI port.

« mds - Logs from the appliance metadata server.

« console_output - Captures standard output and error streams from code containers.

If you don't see logs in CloudWatch Logs, confirm that you are in the correct AWS Region. If you
are, there might be an issue with the appliance's connection to AWS or with permissions on the
appliance's AWS ldentity and Access Management (IAM) role.

Configuring application logs

Configure a Python logger to write log files to /opt/aws/panorama/logs. The appliance streams
logs from this location to CloudWatch Logs. To avoid using too much disk space, use a maximum
file size of 10 MiB and a backup count of 1. The following example shows a method that creates a
logger.

Example application.py — Logger configuration

def get_logger(name=__name__,level=1ogging.INFOQ):

Viewing application logs 142

https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/application.py#L181

AWS Panorama Developer Guide

logger = logging.getlLogger(name)

logger.setlLevel(level)

LOG_PATH = '/opt/aws/panorama/logs'

handler = RotatingFileHandlex("{}/app.log".format(LOG_PATH), maxBytes=10000000,
backupCount=1)

formatter = logging.Formatter(fmt='%(asctime)s %(levelname)-8s %(message)s',

datefmt="%Y-%m-%d %H:%M:%S"')

handler.setFormatter(formatter)

logger.addHandler(handler)

return logger

Initialize the logger at the global scope and use it throughout your application code.

Example application.py - Initialize logger

def main():
try:
logger.info("INITIALIZING APPLICATION")
app = Application()
logger.info("PROCESSING STREAMS")
while True:
app.process_streams()
turn off debug logging after 150 loops
if logger.getEffectivelevel() == logging.DEBUG and app.frame_num == 150:
logger.setlLevel(logging.INFO)
except:

logger.exception('Exception during processing loop.')
loggexr = get_logger(level=logging.INFO)

main()

Viewing provisioning logs

During provisioning, the AWS Panorama Appliance copies logs to the USB drive that you use to
transfer the configuration archive to the appliance. Use these logs to troubleshoot provisioning
issues on appliances with the latest software version.

/A Important

Provisioning logs are available for appliances updated to software version 4.3.23 or newer.

Viewing provisioning logs 143

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/application.py#L205

AWS Panorama Developer Guide

Application logs

e /panorama/occ.log - AWS Panorama controller software logs.
« /panorama/ota_agent.log - AWS Panorama over-the-air update agent logs.
« /panorama/syslog.log - Linux system logs.

« /panorama/kern.log - Linux kernel logs.

Egressing logs from a device

If your device and application logs don't appear in CloudWatch Logs, you can use a USB drive to get
an encrypted log image off of the device. The AWS Panorama service team can decrypt the logs on
your behalf and assist in debugging.

Prerequisites
To follow the procedure you will need the following hardware:

« USB drive — A FAT32-formatted USB flash memory drive with at least 1 GB of storage, for
transferring the log files off the AWS Panorama Appliance.

To egress logs from the device

1. Prepare a USB drive with a managed_logs folder inside of a panorama folder.

/
panorama
managed_logs
Connect the USB drive to the device.
Power off the AWS Panorama Appliance.
Power on the AWS Panorama Appliance.

The device copies logs to the device. The status LED blinks blue while this is in progress.

o v oA~ W N

Log files can then be found inside managed_logs directory with the format
panorama_device_log_v1_dd_hh_mm.img

You can't decrypt the log image yourself. Work with customer support, a technical account
manager for AWS Panorama, or a solutions architect to coordinate with the service team.

Egressing logs from a device 144

AWS Panorama Developer Guide

Monitoring appliances and applications with Amazon
CloudWatch

When an appliance is online, AWS Panorama sends metrics to Amazon CloudWatch. You can build
graphs and dashboards with these metrics in the CloudWatch console to monitor appliance activity,
and set alarms that notify you when devices go offline or applications encounter errors.

To view metrics in the CloudWatch console

Open the AWS Panorama console Metrics page (PanoramaDeviceMetrics namespace).

1
2. Choose a dimension schema.

3. Choose metrics to add them to the graph.
4

To choose a different statistic and customize the graph, use the options on the Graphed
metrics tab. By default, graphs use the Average statistic for all metrics.

® Pricing
CloudWatch has an Always Free tier. Beyond the free tier threshold, CloudWatch charges
for metrics, dashboards, alarms, logs, and insights. For details, see CloudWatch pricing.

For more information about CloudWatch, see the Amazon CloudWatch User Guide.

Sections

» Using device metrics

» Using application metrics

« Configuring alarms

Using device metrics

When an appliance is online, it sends metrics to Amazon CloudWatch. You can use these metrics to
monitor device activity and trigger an alarm if devices go offline.

« DeviceActive - Sent periodically when the device is active.

Dimensions — DeviceId and DeviceName.

CloudWatch metrics 145

https://console.aws.amazon.com/cloudwatch/home#metricsV2:graph=~();namespace=~'PanoramaDeviceMetrics
https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

AWS Panorama Developer Guide

View the DeviceActive metric with the Average statistic.

Using application metrics

When an application encounters an error, it sends metrics to Amazon CloudWatch. You can use
these metrics to trigger an alarm if an application stops running.

« ApplicationErrors - The number of application errors recorded.

Dimensions — ApplicationInstanceName and ApplicationInstanceld.

View the application metrics with the Sum statistic.
Configuring alarms

To get notifications when a metric exceeds a threshold, create an alarm. For example, you can
create an alarm that sends a notification when the sum of the ApplicationErrors metric stays
at 1 for 20 minutes.

To create an alarm

1. Open the Amazon CloudWatch console Alarms page.

2. Choose Create alarm.

3. Choose Select metric and locate a metric for your device, such as ApplicationErrors for
applicationInstance-gk75xmplgbqtenlnmz4ehiu7xa,my-application.

4. Follow the instructions to configure a condition, action, and name for the alarm.

For detailed instructions, see Create a CloudWatch alarm in the Amazon CloudWatch User Guide.

Using application metrics 146

https://console.aws.amazon.com/cloudwatch/home#alarmsV2:
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html

AWS Panorama Developer Guide

Troubleshooting

The following topics provide troubleshooting advice for errors and issues that you might encounter
when using the AWS Panorama console, appliance, or SDK. If you find an issue that is not listed
here, use the Provide feedback button on this page to report it.

You can find logs for your appliance in the Amazon CloudWatch Logs console. The appliance
uploads logs from your application code, the appliance software, and AWS IoT processes as they
are generated. For more information, see Viewing AWS Panorama logs.

Provisioning
Issue: (macOS) My computer doesn't recognize the included USB drive with a USB-C adapter.

This can occur if you plug the USB drive into a USB-C adapter that is already connected to your
computer. Try disconnecting the adapter and reconnecting it with the USB drive already attached.

Issue: Provisioning fails when | use my own USB drive.
Issue: Provisioning fails when | use the appliance's USB 2.0 port.

The AWS Panorama Appliance is compatible with USB flash memory devices between 1 and 32
GB, but not all are compatible. Some issues have been observed when using the USB 2.0 port for
provisioning. For consistent results, use the included USB drive with the USB 3.0 port (next to the
HDMI port).

For the Lenovo ThinkEdge® SE70, a USB drive is not included with the appliance. Use a USB 3.0

drive with at least 1 GB of storage.

Appliance configuration

Issue: The appliance shows a blank screen during boot up.

After completing the initial boot sequence, which takes about one minute, the appliance shows a
blank screen for a minute or more while it loads your model and starts your application. Also, the
appliance does not output video if you connect a display after it turns on.

Issue: The appliance doesn't respond when | hold the power button down to turn it off.

Provisioning 147

https://console.aws.amazon.com/cloudwatch/home#logsV2:log-groups

AWS Panorama Developer Guide

The appliance takes up to 10 seconds to shut down safely. You need to hold the power button
down for only 1 second to start the shutdown sequence. For a complete list of button operations,
see AWS Panorama Appliance buttons and lights.

Issue: | need to generate a new configuration archive to change settings or replace a lost certificate.

AWS Panorama does not store the device certificate or network configuration after you download
it, and you can't reuse configuration archives. Delete the appliance using the AWS Panorama
console and create a new one with a new configuration archive.

Application configuration

Issue: When | run multiple applications, | can't control which uses the HDMI output.

When you deploy multiple applications that have output nodes, the application that started
most recently uses the HDMI output. If this application stops running, another application can
use the output. To give only one application access to the output, remove the output node and
corresponding edge from the other application's application manifest and redeploy.

Issue: Application output doesn't appear in logs

Configure a Python logger to write log files to /opt/aws/panorama/logs. These are captured
in a log stream for the code container node. Standard output and error streams are captured in a

separate log stream called console-output. If you use print, use the flush=True option to
keep messages from getting stuck in the output buffer.

Error: You've reached the maximum number of versions for package SAMPLE_CODE. Deregister
unused package versions and try again.

Source: AWS Panorama service

Each time you deploy a change to an application, you register a patch version that represents the
package configuration and asset files for each package that it uses. Use the cleanup patches script
to deregister unused patch versions.

Camera streams

Error: liveMediaO: Failed to get SDP description: Connection to server failed: Connection timed out
(-115)

Application configuration 148

AWS Panorama Developer Guide

Error: liveMediaO: Failed to get SDP description: 404 Not Found; with the result code: 404

Error: liveMediaO: Failed to get SDP description: DESCRIBE send() failed: Broken pipe; with the result
code: -32

Source: Camera node log

The appliance can't connect to the application's camera stream. When this happens, the video
output is blank or freezes on the last processed frame while the application waits for a frame of
video from the AWS Panorama Application SDK. The appliance software attempts to connect to the
camera stream and logs timeout errors in the camera node log. Verify that your camera stream URL
is correct and that RTSP traffic is routable between the camera and appliance within your network.
For more information, see Connecting the AWS Panorama Appliance to your network.

Error: ERROR finalizelnterface(35) Camera credential fetching for port [username] failed
Source: OCC log

The AWS Secrets Manager secret with the camera stream's credentials can't be found. Delete the
camera stream and recreate it.

Error: Camera did not provide an H264 encoded stream
Source: Camera node log

The camera stream has an encoding other than H.264, such as H.265. Redeploy the application
with an H.264 camera stream. For details on supported cameras, see Supported cameras.

Camera streams 149

AWS Panorama Developer Guide

Security in AWS Panorama

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes

this as security of the cloud and security in the cloud:

» Security of the cloud — AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to AWS Panorama, see

AWS Services in Scope by Compliance Program.

« Security in the cloud - Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company's
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using AWS Panorama. The following topics show you how to configure AWS Panorama to meet
your security and compliance objectives. You also learn how to use other AWS services that help
you to monitor and secure your AWS Panorama resources.

Topics

« AWS Panorama Appliance security features

« AWS Panorama Appliance security best practices

» Data protection in AWS Panorama

« Identity and access management for AWS Panorama

o Compliance validation for AWS Panorama

« Infrastructure security in AWS Panorama

+ Runtime environment software in AWS Panorama

150

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS Panorama Developer Guide

AWS Panorama Appliance security features

To protect your applications, models, and hardware against malicious code and other exploits, the

AWS Panorama Appliance implements an extensive set of security features. These include but are
not limited to the following.

 Full-disk encryption — The appliance implements Linux unified key setup (LUKS2) full-disk
encryption. All system software and application data are encrypted with a key that is specific to
your device. Even with physical access to the device, an attacker cannot inspect the contents of
its storage.

« Memory layout randomization — To protect against attacks that target executable code loaded
into memory, the AWS Panorama Appliance uses address space layout randomization (ASLR).
ASLR randomizes the location of operating system code as it is loaded into memory. This
prevents the use of exploits that attempt to overwrite or run specific sections of code by
predicting where it is stored at runtime.

» Trusted execution environment — The appliance uses a trusted execution environment (TEE)
based on ARM TrustZone, with isolated storage, memory, and processing resources. Keys and
other sensitive data stored in the trust zone can only be accessed by a trusted application, which
runs in a separate operating system within the TEE. The AWS Panorama Appliance software runs
in the untrusted Linux environment alongside application code. It can only access cryptographic
operations by making a request to the secure application.

» Secure provisioning — When you provision an appliance, the credentials (keys, certificates, and
other cryptographic material) that you transfer to the device are only valid for a short time.
The appliance uses the short-lived credentials to connect to AWS loT and requests a certificate
for itself that's valid for a longer time. The AWS Panorama service generates credentials and
encrypts them with a key that is hardcoded on the device. Only the device that requested the
certificate can decrypt it and communicate with AWS Panorama.

« Secure boot — When the device starts up, each software component is authenticated before
it runs. The boot ROM, software hardcoded in the processor that can't be modified, uses a
hardcoded encryption key to decrypt the bootloader, which validates the trusted execution
environment kernel, and so forth.

» Signed kernel — Kernel modules are signed with an asymmetric encryption key. The operating
system kernel decrypts the signature with the public key and verifies that it matches the
module's signature before loading the module into memory.

Security features 151

AWS Panorama Developer Guide

o dme-verity - Similar to how kernel modules are validated, the appliance uses the Linux Device
Mapper's dm-verity feature to verify the integrity of the appliance software image before
mounting it. If the appliance software is modified, it won't run.

» Rollback prevention — When you update the appliance software, the appliance blows an
electronic fuse on the SoC (system on a chip). Each software version expects an increasing
number of fuses to be blown, and can't run if more are blown.

Security features 152

AWS Panorama Developer Guide

AWS Panorama Appliance security best practices

Keep in mind the following best practices when using the AWS Panorama appliance.

» Physically secure the appliance - Install the appliance in an enclosed server rack or secure room.
Limit physical access to the device to authorized personnel.

« Secure the appliance's network connection — Connect the appliance to a router that limits
access to internal and external resources. The appliance needs to connect to cameras, which can
be on a secure internal network. It also needs to connect to AWS. Use the second Ethernet port
only for physical redundancy, and configure the router to allow only required traffic.

Use one of the recommended network configurations to plan your network layout. For more
information, see Connecting the AWS Panorama Appliance to your network.

« Format the USB drive — After provisioning an appliance, remove the USB drive and format it. The
appliance does not use the USB drive after it registers with the AWS Panorama service. Format
the drive to remove temporary credentials, configuration files, and provisioning logs.

» Keep the appliance up to date — Apply appliance software updates in a timely manner. When
you view an appliance in the AWS Panorama console, the console notifies you if a software
update is available. For more information, see Managing an AWS Panorama Appliance.

With the DescribeDevice APl operation, you can automate checking for updates by comparing

the LatestSoftware and CurrentSoftware fields. When the latest software version differs
from the current version, apply the update with the console or by using the CreateJobForDevices

operation.

« If you stop using an appliance, reset it - Before you move the appliance out of your secure data
center, fully reset it. With the appliance powered down and plugged in, press both the power and
reset button simultaneously for 5 seconds. This deletes account credentials, applications, and
logs from the appliance.

For more information, see AWS Panorama Appliance buttons and lights.

» Limit access to AWS Panorama and other AWS services - The AWSPanoramaFullAccess provides

access to all AWS Panorama API operations and, as necessary, access to other services. Where
possible, the policy limits access to resources based on naming conventions. For example, it
provides access to AWS Secrets Manager secrets that have names starting with panorama. For
users that need read-only access, or access to a more specific set of resources, use the managed
policy as a starting point for your least-privilege policies.

Best practices 153

https://docs.aws.amazon.com/panorama/latest/api/API_DescribeDevice.html
https://docs.aws.amazon.com/panorama/latest/api/API_CreateJobForDevices.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/

AWS Panorama Developer Guide

For more information, see Identity-based IAM policies for AWS Panorama.

Best practices 154

AWS Panorama Developer Guide

Data protection in AWS Panorama

The AWS shared responsibility model applies to data protection in AWS Panorama. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this

infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.

For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

« Use multi-factor authentication (MFA) with each account.
o Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

« Set up APl and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

« Use AWS encryption solutions, along with all default security controls within AWS services.

» Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

« If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with AWS Panorama or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Sections

« Encryption in transit

Data protection 155

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

AWS Panorama Developer Guide

o AWS Panorama Appliance

» Applications

e Other services

Encryption in transit

AWS Panorama API endpoints support secure connections only over HTTPS. When you manage
AWS Panorama resources with the AWS Management Console, AWS SDK, or the AWS Panorama
API, all communication is encrypted with Transport Layer Security (TLS). Communication between
the AWS Panorama Appliance and AWS is also encrypted with TLS. Communication between the
AWS Panorama Appliance and cameras over RTSP is not encrypted.

For a complete list of APl endpoints, see AWS Regions and endpoints in the AWS General Reference.

AWS Panorama Appliance

The AWS Panorama Appliance has physical ports for Ethernet, HDMI video, and USB storage. The
SD card slot, Wi-Fi, and Bluetooth are not usable. The USB port is only used during provisioning to
transfer a configuration archive to the appliance.

The contents of the configuration archive, which includes the appliance's provisioning certificate
and network configuration, are not encrypted. AWS Panorama does not store these files; they can
only be retrieved when you register an appliance. After you transfer the configuration archive to an
appliance, delete it from your computer and USB storage device.

The entire file system of the appliance is encrypted. Additionally, the appliance applies several
system-level protections, including rollback protection for required software updates, signed
kernel and bootloader, and software integrity verification.

When you stop using the appliance, perform a full reset to delete your application data and reset
the appliance software.

Applications

You control the code that you deploy to your appliance. Validate all application code for security
issues before deploying it, regardless of its source. If you use 3rd party libraries in your application,
carefully consider the licensing and support policies for those libraries.

Encryption in transit 156

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Panorama Developer Guide

Application CPU, memory, and disk usage are not constrained by the appliance software. An
application using too many resources can negatively impact other applications and the device's
operation. Test applications separately before combining or deploying to production environments.

Application assets (codes and models) are not isolated from access within your account, appliance,
or build environment. The container images and model archives generated by the AWS Panorama

Application CLI are not encrypted. Use separate accounts for production workloads and only allow
access on an as-needed basis.

Other services

To store your models and application containers securely in Amazon S3, AWS Panorama uses
server-side encryption with a key that Amazon S3 manages. For more information, see Protecting
data using encryption in the Amazon Simple Storage Service User Guide.

Camera stream credentials are encrypted at rest in AWS Secrets Manager. The appliance's IAM role
grants it permission to retrieve the secret in order to access the stream's username and password.

The AWS Panorama Appliance sends log data to Amazon CloudWatch Logs. CloudWatch Logs
encrypts this data by default, and can be configured to use a customer managed key. For more
information, see Encrypt log data in CloudWatch Logs using AWS KMS in the Amazon CloudWatch
Logs User Guide.

Other services 157

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingEncryption.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html

AWS Panorama Developer Guide

Identity and access management for AWS Panorama

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS Panorama resources. 1AM is an AWS service that you
can use with no additional charge.

Topics

e Audience

« Authenticating with identities

« Managing access using policies

+« How AWS Panorama works with IAM

o AWS Panorama identity-based policy examples

« AWS managed policies for AWS Panorama

» Using service-linked roles for AWS Panorama

» Cross-service confused deputy prevention

» Troubleshooting AWS Panorama identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs based on your role:

 Service user - request permissions from your administrator if you cannot access features (see
Troubleshooting AWS Panorama identity and access)

» Service administrator - determine user access and submit permission requests (see How AWS
Panorama works with IAM)

« IAM administrator - write policies to manage access (see AWS Panorama identity-based policy
examples)

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated as the AWS account root user, an IAM user, or by assuming an IAM role.

Identity and access management 158

AWS Panorama Developer Guide

You can sign in as a federated identity using credentials from an identity source like AWS

IAM Identity Center (IAM Identity Center), single sign-on authentication, or Google/Facebook
credentials. For more information about signing in, see How to sign in to your AWS account in the
AWS Sign-In User Guide.

For programmatic access, AWS provides an SDK and CLI to cryptographically sign requests. For
more information, see AWS Signature Version 4 for AP| requests in the IAM User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity called the AWS account root
user that has complete access to all AWS services and resources. We strongly recommend that you
don't use the root user for everyday tasks. For tasks that require root user credentials, see Tasks
that require root user credentials in the IAM User Guide.

IAM users and groups

An IAM user is an identity with specific permissions for a single person or application. We
recommend using temporary credentials instead of IAM users with long-term credentials. For more
information, see Require human users to use federation with an identity provider to access AWS

using temporary credentials in the IAM User Guide.

An |AM group specifies a collection of IAM users and makes permissions easier to manage for large
sets of users. For more information, see Use cases for IAM users in the IAM User Guide.

IAM roles

An IAM role is an identity with specific permissions that provides temporary credentials. You can
assume a role by switching from a user to an IAM role (console) or by calling an AWS CLI or AWS

API operation. For more information, see Methods to assume a role in the IAM User Guide.

IAM roles are useful for federated user access, temporary IAM user permissions, cross-account
access, cross-service access, and applications running on Amazon EC2. For more information, see
Cross account resource access in IAM in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy defines permissions when associated with an identity or resource. AWS evaluates these
policies when a principal makes a request. Most policies are stored in AWS as JSON documents. For

Managing access using policies 159

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS Panorama Developer Guide

more information about JSON policy documents, see Overview of JSON policies in the IAM User
Guide.

Using policies, administrators specify who has access to what by defining which principal can
perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. An IAM administrator creates IAM policies and
adds them to roles, which users can then assume. IAM policies define permissions regardless of the
method used to perform the operation.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you attach to an identity (user,
group, or role). These policies control what actions identities can perform, on which resources, and
under what conditions. To learn how to create an identity-based policy, see Define custom IAM

permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be inline policies (embedded directly into a single identity) or managed
policies (standalone policies attached to multiple identities). To learn how to choose between
managed and inline policies, see Choose between managed policies and inline policies in the IAM
User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples
include IAM role trust policies and Amazon S3 bucket policies. In services that support resource-
based policies, service administrators can use them to control access to a specific resource. You
must specify a principal in a resource-based policy.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLSs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Managing access using policies 160

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html

AWS Panorama Developer Guide

Other policy types

AWS supports additional policy types that can set the maximum permissions granted by more
common policy types:

» Permissions boundaries - Set the maximum permissions that an identity-based policy can grant
to an IAM entity. For more information, see Permissions boundaries for IAM entities in the IAM
User Guide.

« Service control policies (SCPs) — Specify the maximum permissions for an organization or
organizational unit in AWS Organizations. For more information, see Service control policies in
the AWS Organizations User Guide.

» Resource control policies (RCPs) — Set the maximum available permissions for resources in your
accounts. For more information, see Resource control policies (RCPs) in the AWS Organizations
User Guide.

» Session policies — Advanced policies passed as a parameter when creating a temporary session
for a role or federated user. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS Panorama works with IAM

Before you use IAM to manage access to AWS Panorama, you should understand what IAM features
are available to use with AWS Panorama. To get a high-level view of how AWS Panorama and other
AWS services work with IAM, see AWS services that work with IAM in the IAM User Guide.

For an overview of permissions, policies, and roles as they are used by AWS Panorama, see AWS
Panorama permissions.

AWS Panorama identity-based policy examples

By default, IAM users and roles don't have permission to create or modify AWS Panorama
resources. They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS
API. An IAM administrator must create IAM policies that grant users and roles permission to

How AWS Panorama works with IAM 161

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Panorama Developer Guide

perform specific APl operations on the specified resources they need. The administrator must then
attach those policies to the IAM users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating policies on the JSON tab in the IJAM User Guide.

Topics

» Policy best practices

» Using the AWS Panorama console

« Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS Panorama
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

» Get started with AWS managed policies and move toward least-privilege permissions — To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS

managed policies for job functions in the IAM User Guide.

« Apply least-privilege permissions — When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

« Use conditions in IAM policies to further restrict access — You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as CloudFormation. For more
information, see 1AM JSON policy elements: Condition in the IAM User Guide.

« Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions — IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides

Identity-based policy examples 162

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS Panorama Developer Guide

more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

« Require multi-factor authentication (MFA) - If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API

operations are called, add MFA conditions to your policies. For more information, see Secure API

access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User

Guide.
Using the AWS Panorama console

To access the AWS Panorama console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the AWS Panorama resources in your
AWS account. If you create an identity-based policy that is more restrictive than the minimum
required permissions, the console won't function as intended for entities (IAM users or roles) with
that policy.

For more information, see Identity-based |IAM policies for AWS Panorama

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

"Version": "2012-10-17",
"Statement": [
{

"Sid": "ViewOwnUserInfo",

"Effect": "Allow",

"Action": [
"iam:GetUserPolicy",
"iam:ListGroupsForUser",
"iam:ListAttachedUserPolicies",
"iam:ListUserPolicies",
"iam:GetUser"

]I

Identity-based policy examples

163

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS Panorama Developer Guide

"Resource": ["arn:aws:iam::*:user/${aws:usernamel}"]

.
{

"Sid": "NavigateInConsole",

"Effect": "Allow",

"Action": [
"iam:GetGroupPolicy",
"iam:GetPolicyVersion",
"iam:GetPolicy",
"iam:ListAttachedGroupPolicies",
"iam:ListGroupPolicies",
"iam:ListPolicyVersions",
"iam:ListPolicies",
"iam:ListUsers"

1,

"Resource": "*"

}

AWS managed policies for AWS Panorama

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use

cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new APl operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS Panorama provides the following managed policies. For the full contents and change history
of each policy, see the linked pages in the IAM console.

AWS managed policies 164

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS Panorama Developer Guide

o AWSPanoramaFullAccess — Provides full access to AWS Panorama, AWS Panorama access points

in Amazon S3, appliance credentials in AWS Secrets Manager, and appliance logs in Amazon
CloudWatch. Includes permission to create a service-linked role for AWS Panorama.

« AWSPanoramaServiceLinkedRolePolicy — Allows AWS Panorama to manage resources in AWS loT,
AWS Secrets Manager, and AWS Panorama.

« AWSPanoramaApplianceServiceRolePolicy — Allows an AWS Panorama Appliance to upload logs
to CloudWatch, and to get objects from Amazon S3 access points created by AWS Panorama.

AWS Panorama updates to AWS managed policies

The following table describes updates to managed policies for AWS Panorama.

Change Description Date

AWSPanoramaApplian Replace StringLike condition 2024-12-10
ceServiceRolePolicy - Update with ArnLike for writing ARNs.
to an existing policy

AWSPanoramaFullAccess - Replace StringLike condition 2024-12-10
Update to an existing policy with ArnLike for writing ARNSs.

AWSPanoramaFullAccess — Added permissions to the 2022-01-13
Update to an existing policy user policy to allow users

to view log groups in the

CloudWatch Logs console.

AWSPanoramaFullAccess — Added permissions to the 2021-10-20
Update to an existing policy user policy to allow users to

manage the AWS Panorama

service-linked role, and

to access AWS Panorama
resources in other services
including IAM, Amazon S3,
CloudWatch, and Secrets
Manager.

AWS managed policies 165

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSPanoramaFullAccess
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSPanoramaServiceLinkedRolePolicy
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSPanoramaApplianceServiceRolePolicy

AWS Panorama Developer Guide

Change Description Date
AWSPanoramaApplian New policy for the AWS 2021-10-20
ceServiceRolePolicy — New Panorama Appliance service

policy role

AWSPanoramaService New policy for the AWS 2021-10-20

LinkedRolePolicy — New policy Panorama service-linked role.

AWS Panorama started AWS Panorama started 2021-10-20
tracking changes tracking changes for its AWS
managed policies.

Using service-linked roles for AWS Panorama
AWS Panorama uses AWS Identity and Access Management (IAM) service-linked roles. A service-

linked role is a unique type of IAM role that is linked directly to AWS Panorama. Service-linked roles
are predefined by AWS Panorama and include all the permissions that the service requires to call

other AWS services on your behalf.

A service-linked role makes setting up AWS Panorama easier because you don’t have to manually
add the necessary permissions. AWS Panorama defines the permissions of its service-linked roles,
and unless defined otherwise, only AWS Panorama can assume its roles. The defined permissions
include the trust policy and the permissions policy, and that permissions policy cannot be attached
to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your AWS Panorama resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see AWS services that work

with 1AM and look for the services that have Yes in the Service-linked role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Sections

« Service-linked role permissions for AWS Panorama

» Creating a service-linked role for AWS Panorama

Using service-linked roles 166

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Panorama Developer Guide

« Editing a service-linked role for AWS Panorama

» Deleting a service-linked role for AWS Panorama

» Supported Regions for AWS Panorama service-linked roles

Service-linked role permissions for AWS Panorama

AWS Panorama uses the service-linked role named AWSServiceRoleForAWSPanorama - Allows
AWS Panorama to manage resources in AWS loT, AWS Secrets Manager, and AWS Panorama..

The AWSServiceRoleForAWSPanorama service-linked role trusts the following services to assume
the role:

e panorama.amazonaws.com

The role permissions policy allows AWS Panorama to complete the following actions:

« Monitor AWS Panorama resources
« Manage AWS loT resources for the AWS Panorama Appliance

» Access AWS Secrets Manager secrets to get camera credentials

For a full list of permissions, view the AWSPanoramaServiceLinkedRolePolicy policy in the IAM

console.

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-linked role permissions in
the IAM User Guide.

Creating a service-linked role for AWS Panorama

You don't need to manually create a service-linked role. When you register an appliance in the AWS
Management Console, the AWS CLI, or the AWS API, AWS Panorama creates the service-linked role
for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you register an appliance, AWS Panorama creates the
service-linked role for you again.

Using service-linked roles 167

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSPanoramaServiceLinkedRolePolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

AWS Panorama Developer Guide

Editing a service-linked role for AWS Panorama

AWS Panorama does not allow you to edit the AWSServiceRoleForAWSPanorama service-linked
role. After you create a service-linked role, you cannot change the name of the role because various
entities might reference the role. However, you can edit the description of the role using IAM. For
more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for AWS Panorama

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

To delete the AWS Panorama resources used by the AWSServiceRoleForAWSPanorama, use the
procedures in the following sections of this guide.

« Delete versions and applications

» Deregister an appliance

® Note

If the AWS Panorama service is using the role when you try to delete the resources, then
the deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete the AWSServiceRoleForAWSPanorama service-linked role, use the IAM console, the AWS
CLI, or the AWS API. For more information, see Deleting a service-linked role in the IAM User Guide.

Supported Regions for AWS Panorama service-linked roles

AWS Panorama supports using service-linked roles in all of the regions where the service is
available. For more information, see AWS Regions and endpoints.

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur

Cross-service confused deputy prevention 168

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Panorama Developer Guide

when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws : SourceArn and aws : SourceAccount global condition context

keys in resource policies to limit the permissions that AWS Panorama gives another service to the
resource. If you use both global condition context keys, the aws : SourceAccount value and the
account in the aws : SourceArn value must use the same account ID when used in the same policy
statement.

The value of aws : SourceArn must be the ARN of an AWS Panorama device.

The most effective way to protect against the confused deputy problem is to use the

aws : SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws : SourceArn
global context condition key with wildcards (*) for the unknown portions of the ARN. For example,
arn:aws:servicename: :123456789012:*.

For instructions on securing the service role that AWS Panorama uses to give permission to the
AWS Panorama Appliance, see Securing the appliance role.

Troubleshooting AWS Panorama identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS Panorama and IAM.

Topics

« | am not authorized to perform an action in AWS Panorama

« | am not authorized to perform iam:PassRole

« | want to allow people outside of my AWS account to access my AWS Panorama resources

I am not authorized to perform an action in AWS Panorama

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your user name and password.

Troubleshooting 169

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS Panorama Developer Guide

The following example error occurs when the mateojackson IAM user tries to use the console to
view details about an appliance but does not have panorama:DescribeAppliance permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
panorama:DescribeAppliance on resource: my-appliance

In this case, Mateo asks his administrator to update his policies to allow him to access the my -
appliance resource using the panorama:DescribeAppliance action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS Panorama.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the
console to perform an action in AWS Panorama. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my AWS Panorama
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

Troubleshooting 170

AWS Panorama Developer Guide

« To learn whether AWS Panorama supports these features, see How AWS Panorama works with
I1AM.

» To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

» To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the JAM User Guide.

» To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

« To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Troubleshooting 171

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS Panorama Developer Guide

Compliance validation for AWS Panorama

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are

interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. For more
information about your compliance responsibility when using AWS services, see AWS Security

Documentation.

Additional considerations for when people are present

Below are some best practices to consider when using AWS Panorama for scenarios where people
might be present:

« Ensure that you are aware of and compliant with all applicable laws and regulations for your use
case. This may include laws related to the positioning and field of view of your cameras, notice
and signage requirements when placing and using cameras, and the rights of people that may be
present in your videos, including their privacy rights.

 Take into account the effect of your cameras on people and their privacy. In addition to legal
requirements, consider whether it would be appropriate to place notice in areas where your
cameras are located, and whether cameras should be placed in plain sight and free of any
occlusions, so people are not surprised that they may be on camera.

» Have appropriate policies and procedures in place for the operation of your cameras and review
of data obtained from the cameras.

» Consider appropriate access controls, usage limitations, and retention periods for the data
obtained from your cameras.

Compliance validation 172

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/security/
https://docs.aws.amazon.com/security/

AWS Panorama Developer Guide

Infrastructure security in AWS Panorama

As a managed service, AWS Panorama is protected by AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well-Architected Framework.

You use AWS published API calls to access AWS Panorama through the network. Clients must
support the following:

» Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

 Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Deploying the AWS Panorama Appliance in your datacenter

The AWS Panorama Appliance needs internet access to communicate with AWS services. It also
needs access to your internal network of cameras. It is important to consider your network
configuration carefully and only provide each device the access that it needs. Be careful if your
configuration allows the AWS Panorama Appliance to act as a bridge to a sensitive IP camera
network.

You are responsible for the following:

« The physical and logical network security of the AWS Panorama Appliance.
» Securely operating the network-attached cameras when you use the AWS Panorama Appliance.
» Keeping the AWS Panorama Appliance and camera software updated.

« Complying with any applicable laws or regulations associated with the content of the videos and
images you gather from your production environments, including those related to privacy.

The AWS Panorama Appliance uses unencrypted RTSP camera streams. For more information on
connecting the AWS Panorama Appliance to your network, see Connecting the AWS Panorama

Appliance to your network. For details on encryption, see Data protection in AWS Panorama.

Infrastructure security 173

https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

AWS Panorama Developer Guide

Runtime environment software in AWS Panorama

AWS Panorama provides software that runs your application code in an Ubuntu Linux-based
environment on the AWS Panorama Appliance. AWS Panorama is responsible for keeping software
in the appliance image up to date. AWS Panorama regularly releases software updates, which you
can apply by using the AWS Panorama console.

You can use libraries in your application code by installing them in the application's Dockerfile.
To ensure application stability across builds, choose a specific version of each library. Update your
dependencies regularly to address security issues.

Runtime environment 174

AWS Panorama

Developer Guide

Releases

The following table shows when features and software updates were released for the AWS

Panorama service, software, and documentation. To ensure that you have access to all features,

update your AWS Panorama Appliance to the latest software version. For more information on a

release, see the linked topic.

Change

End of support notice

Updated managed policies

Appliance software update

Description Date

End of support notice: On May 20, 2025
May 31, 2026, AWS will end

support for AWS Panorama.

After May 31, 2026, you will

no longer be able to access

the AWS Panorama console or

AWS Panorama resources. For

more information, see AWS

Panorama end of support.

AWS Identity and Access December 10, 2024
Management managed

policies for AWS Panorama

have been updated. For

details, see AWS managed

policies.

Version 7.0.13 is a major December 28, 2023
version update that changes
how the appliance manages
software updates. If you
restrict network communica
tion outbound from the
appliance, or connect it to a
private VPC subnet, you must
allow access to additional
endpoints and ports before
applying the update. For more

175

https://docs.aws.amazon.com/path-to/panorama-end-of-support.html
https://docs.aws.amazon.com/path-to/panorama-end-of-support.html
https://docs.aws.amazon.com/panorama/latest/dev/security-iam-awsmanpol.html
https://docs.aws.amazon.com/panorama/latest/dev/security-iam-awsmanpol.html

AWS Panorama

Developer Guide

Appliance software update

Appliance software update

Appliance software update

Console update

Appliance software update

information, see the change
log.

Version 6.2.1 includes bug
fixes. For more information,
see the change log.

Version 6.0.8 includes bug

fixes and security improveme
nts. For more information, see

the change log.

Version 5.1.7 includes bug
fixes and error handling
improvements. For more
information, see the change

log.

You can now purchase the
AWS Panorama Appliance

from the management

console. To grant a user
permission to purchase
devices, see Identity-
based IAM policies for AWS
Panorama.

Version 5.0.74 includes bug
fixes and error handling
improvements. For more
information, see the change

log.

September 6, 2023

July 6, 2023

March 31, 2023

February 2, 2023

January 23, 2023

176

https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://console.aws.amazon.com/panorama/home#get-device-quote
https://console.aws.amazon.com/panorama/home#get-device-quote
https://console.aws.amazon.com/panorama/home#get-device-quote
https://console.aws.amazon.com/panorama/home#get-device-quote
https://docs.aws.amazon.com/panorama/latest/dev/permissions-user.html
https://docs.aws.amazon.com/panorama/latest/dev/permissions-user.html
https://docs.aws.amazon.com/panorama/latest/dev/permissions-user.html
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md

AWS Panorama

Developer Guide

APl update

New tool for developers

Application base image
update

Appliance software update

Appliance software update

Added AllowMajo
rVersionUpdate option
to 0TAJobConfig to make
appliance software major
version updates opt-in.

For more information, see
CreateJobForDevices.

A new tool, "sideloading",
is available in the AWS
Panorama samples GitHub
repository. You can use this
tool to update application
code without building and
deploying a container. For
more information, see the
README.

Version 1.2.0 adds a timeout

option to video_in.get() ,

sets the AWS_REGION
environment variable, and
improves error handling. For
more information, see the

change log.

Version 5.0.42 includes bug
fixes and security updates.
For more information, see the

change log.

Version 5.0.7 adds support
for rebooting appliances

remotely and pausing camera

streams remotely. For more
information, see the change

log.

January 19, 2023

November 16, 2022

November 16, 2022

November 16, 2022

October 13, 2022

177

https://docs.aws.amazon.com/panorama/latest/api/API_CreateJobForDevices.html
https://github.com/aws-samples/aws-panorama-samples/tree/main/tools/sideloading
https://github.com/aws-samples/aws-panorama-samples/tree/main/tools/sideloading
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://docs.aws.amazon.com/panorama/latest/dev/appliance-manage.html#appliance-manage-reboot
https://docs.aws.amazon.com/panorama/latest/dev/appliance-manage.html#appliance-manage-reboot
https://docs.aws.amazon.com/panorama/latest/dev/api-applications.html#api-applications-cameras
https://docs.aws.amazon.com/panorama/latest/dev/api-applications.html#api-applications-cameras
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md

AWS Panorama

Developer Guide

Appliance software update

Appliance software update

AWS PrivateLink support

Appliance software update

Lenovo ThinkEdge® SE70

Version 4.3.93 adds support
for retrieving logs from an

offline device. For more

information, see the change
log.

Version 4.3.72 includes bug
fixes and security updates.
For more information, see the

change log.

AWS Panorama supports VPC
endpoints for managing AWS
Panorama resources from

a private subnet. For more
information, see Using VPC

endpoints.

Version 4.3.55 improves
storage utilization for the
console_output log. For

more information, see the
change log.

A new appliance for AWS
Panorama is available

from Lenovo. The Lenovo
ThinkEdge® SE70, powered
by Nvidia Jetson Xavier NX,
supports the same features as
the AWS Panorama Appliance
. For more information, see
Compatible devices.

August 24, 2022

June 23, 2022

June 2, 2022

May 5, 2022

April 6, 2022

178

https://docs.aws.amazon.com/panorama/latest/dev/monitoring-logging.html#monitoring-logging-egress
https://docs.aws.amazon.com/panorama/latest/dev/monitoring-logging.html#monitoring-logging-egress
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://docs.aws.amazon.com/panorama/latest/dev/api-endpoints.html
https://docs.aws.amazon.com/panorama/latest/dev/api-endpoints.html
https://docs.aws.amazon.com/panorama/latest/dev/monitoring-logging.html
https://docs.aws.amazon.com/panorama/latest/dev/monitoring-logging.html
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://docs.aws.amazon.com/panorama/latest/dev/gettingstarted-concepts.html#gettingstarted-concepts-devices

AWS Panorama

Developer Guide

Application base image
update

Appliance software update

Appliance software update

Updated managed policies

Provisioning logs

Version 1.1.0 improves March 29, 2022
performance when running
background threads and adds

a flag (is_cached) to media
objects that indicates if the
image is fresh. For more
information, see gallery.e
Cr.aws.

Version 4.3.45 adds support March 24, 2022
for GPU access and inbound

ports. For more information,

see the change log.

Version 4.3.35 improves February 22, 2022
security and performance.
For more information, see the

change log.

AWS Identity and Access January 13, 2022
Management managed

policies for AWS Panorama

have been updated. For

details, see AWS managed

policies.

With appliance software January 13, 2022
4.3.23, the appliance writes

logs to a USB drive during

provisioning. For more

information, see Logs.

179

https://docs.aws.amazon.com/panorama/latest/dev/applications-threading
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/applicationsdk-reference.md#media
https://gallery.ecr.aws/panorama/panorama-application
https://gallery.ecr.aws/panorama/panorama-application
https://docs.aws.amazon.com/panorama/latest/dev/applications-gpuaccess.html
https://docs.aws.amazon.com/panorama/latest/dev/applications-ports.html
https://docs.aws.amazon.com/panorama/latest/dev/applications-ports.html
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://docs.aws.amazon.com/panorama/latest/dev/security-iam-awsmanpol.html
https://docs.aws.amazon.com/panorama/latest/dev/security-iam-awsmanpol.html
https://docs.aws.amazon.com/panorama/latest/dev/monitoring-logging.html

AWS Panorama

Developer Guide

NTP server configuration

Additional regions

Appliance software update

Updated managed policies

General availability

You can now configure the
AWS Panorama Appliance

to use a specific NTP server
for clock syncronization.
Configure NTP settings during
appliance setup with other
networking settings. For more
information, see Setting up.

AWS Panorama is now
available in the Asia Pacific
(Singapore) and Asia Pacific
(Sydney) Regions.

Version 4.3.4 adds support for
the precisionMode setting
for models and updates
logging behavior. For more
information, see the change

log.

AWS Identity and Access
Management managed
policies for AWS Panorama
have been updated. For
details, see AWS managed

policies.

AWS Panorama is now
available to all customers

in the US East (N. Virginia)

, US West (Oregon), Europe
(Ireland), and Canada
(Central) Regions. To purchase
an AWS Panorama Appliance,
visit AWS Panorama.

January 13, 2022

January 13, 2022

November 8, 2021

October 20, 2021

October 20, 2021

180

https://docs.aws.amazon.com/panorama/latest/dev/gettingstarted-setup.html
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://docs.aws.amazon.com/panorama/latest/dev/security-iam-awsmanpol.html
https://docs.aws.amazon.com/panorama/latest/dev/security-iam-awsmanpol.html
https://aws.amazon.com/panorama

AWS Panorama Developer Guide

Preview AWS Panorama is available December 1, 2020
by invitation in the US East
(N. Virginia) and US West
(Oregon) Regions.

181

	AWS Panorama
	Table of Contents
	
	What is AWS Panorama?
	AWS Panorama end of support
	Alternatives to AWS Panorama
	Migrating from AWS Panorama
	Hardware Replacement
	Application Migration
	Edge Management and Security

	Summary
	Frequently Asked Questions
	What is the timing for the Panorama discontinuation?
	How will existing customers be impacted?
	Are new customers being accepted?
	What are alternatives customers can explore?
	How can customers migrate off Panorama?
	If I am having issues on or after May 20, 2025, what support will be available?
	I cannot migrate before May 31, 2026. Can the date be extended?
	Will my edge application continue to function after the service has ended?

	Getting started with AWS Panorama
	AWS Panorama concepts
	The AWS Panorama Appliance
	Compatible devices
	Applications
	Nodes
	Models

	Setting up the AWS Panorama Appliance
	Prerequisites
	Register and configure the AWS Panorama Appliance
	Upgrade the appliance software
	Add a camera stream
	Next steps

	Deploying the AWS Panorama sample application
	Prerequisites
	Import the sample application
	Deploy the application
	View the output
	Enable the SDK for Python
	Clean up
	Next steps

	Developing AWS Panorama applications
	The application manifest
	Building with the sample application
	Changing the computer vision model
	Preprocessing images
	Uploading metrics with the SDK for Python
	Next steps

	Supported computer vision models and cameras
	Supported models
	Supported cameras

	AWS Panorama Appliance specifications
	Service quotas

	AWS Panorama permissions
	Identity-based IAM policies for AWS Panorama
	AWS Panorama service roles and cross-service resources
	Securing the appliance role
	Use of other services

	Granting permissions to an application

	Managing the AWS Panorama Appliance
	Managing an AWS Panorama Appliance
	Update the appliance software
	Deregister an appliance
	Reboot an appliance
	Reset an appliance

	Connecting the AWS Panorama Appliance to your network
	Single network configuration
	Dual network configuration
	Configuring service access
	Configuring local network access
	Private connectivity

	Managing camera streams in AWS Panorama
	Removing a stream

	Manage applications on an AWS Panorama Appliance
	AWS Panorama Appliance buttons and lights
	Status light
	Network light
	Power and reset buttons

	Managing AWS Panorama applications
	Deploy an application
	Install the AWS Panorama Application CLI
	Import an application
	Build a container image
	Import a model
	Upload application assets
	Deploy an application with the AWS Panorama console
	Automate application deployment

	Managing applications in the AWS Panorama console
	Update or copy an application
	Delete versions and applications

	Package configuration
	The AWS Panorama application manifest
	JSON schema

	Application nodes
	Edges
	Abstract nodes

	Application parameters
	Deploy-time configuration with overrides

	Building AWS Panorama applications
	Computer vision models
	Using models in code
	Building a custom model
	Packaging a model
	Training models

	Building an application image
	Specifying dependencies
	Local storage
	Building image assets

	Calling AWS services from your application code
	Using Amazon S3
	Using the AWS IoT MQTT topic

	The AWS Panorama Application SDK
	Adding text and boxes to output video

	Running multiple threads
	Serving inbound traffic
	Configuring inbound ports
	Serving traffic

	Using the GPU
	Setting up a development environment in Windows
	Prerequisites
	Install WSL 2 and Ubuntu
	Install Docker
	Configure Ubuntu
	Next steps

	The AWS Panorama API
	Automate device registration
	Manage appliances with the AWS Panorama API
	View devices
	Upgrade appliance software
	Reboot appliances

	Automate application deployment
	Build the container
	Upload the container and register nodes
	Deploy the application
	Monitor the deployment

	Manage applications with the AWS Panorama API
	View applications
	Manage camera streams

	Using VPC endpoints
	Creating a VPC endpoint
	Connecting an appliance to a private subnet
	Sample AWS CloudFormation templates

	Sample applications, scripts, and templates
	Sample applications
	Utility scripts
	CloudFormation templates
	More samples and tools

	Monitoring AWS Panorama resources and applications
	Monitoring in the AWS Panorama console
	Viewing AWS Panorama logs
	Viewing device logs
	Viewing application logs
	Configuring application logs
	Viewing provisioning logs
	Egressing logs from a device
	Prerequisites

	Monitoring appliances and applications with Amazon CloudWatch
	Using device metrics
	Using application metrics
	Configuring alarms

	Troubleshooting
	Provisioning
	Appliance configuration
	Application configuration
	Camera streams

	Security in AWS Panorama
	AWS Panorama Appliance security features
	AWS Panorama Appliance security best practices
	Data protection in AWS Panorama
	Encryption in transit
	AWS Panorama Appliance
	Applications
	Other services

	Identity and access management for AWS Panorama
	Audience
	Authenticating with identities
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS Panorama works with IAM
	AWS Panorama identity-based policy examples
	Policy best practices
	Using the AWS Panorama console
	Allow users to view their own permissions

	AWS managed policies for AWS Panorama
	AWS Panorama updates to AWS managed policies

	Using service-linked roles for AWS Panorama
	Service-linked role permissions for AWS Panorama
	Creating a service-linked role for AWS Panorama
	Editing a service-linked role for AWS Panorama
	Deleting a service-linked role for AWS Panorama
	Supported Regions for AWS Panorama service-linked roles

	Cross-service confused deputy prevention
	Troubleshooting AWS Panorama identity and access
	I am not authorized to perform an action in AWS Panorama
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS Panorama resources

	Compliance validation for AWS Panorama
	Additional considerations for when people are present

	Infrastructure security in AWS Panorama
	Deploying the AWS Panorama Appliance in your datacenter

	Runtime environment software in AWS Panorama

	Releases

