기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.
Amazon MWAA 환경에서 Aurora PostgreSQL 데이터베이스 정리
Amazon Managed Workflows for Apache Airflow는 Aurora PostgreSQL 데이터베이스를 Apache Airflow 메타데이터 베이스로 사용하며, 여기서 DAG가 실행되고 작업 인스턴스가 저장됩니다. 다음 샘플 코드는 Amazon MWAA 환경의 전용 Aurora PostgreSQL 데이터베이스에서 항목을 정기적으로 정리합니다.
버전
이 페이지의 코드 예제를 Python 3.10의 Apache Airflow v2 및 Python 3.11의 Apache Airflow v3와 함께 사용할 수 있습니다. https://peps.python.org/pep-0664/
사전 조건
이 페이지의 이 샘플 코드를 사용하려면 다음 항목이 필요합니다.
종속성
Apache Airflow v2 이상에서이 코드 예제를 사용하려면 추가 종속성이 필요하지 않습니다. aws-mwaa-docker-images를 사용하여 Apache Airflow를 설치합니다.
코드 샘플
다음 DAG는 TABLES_TO_CLEAN에 지정된 테이블에 대한 메타데이터 데이터베이스를 정리합니다. 이 예제는 지정된 테이블에서 30일이 넘은 데이터를 삭제합니다. 항목이 삭제되는 기간을 조정하려면 MAX_AGE_IN_DAYS를 다른 값으로 설정합니다.
- Apache Airflow v2.4 and later
-
from airflow import DAG
from airflow.models.param import Param
from airflow.operators.bash_operator import BashOperator
from airflow.utils.dates import days_ago
from datetime import datetime, timedelta
# Note: Database commands might time out if running longer than 5 minutes. If this occurs, please increase the MAX_AGE_IN_DAYS (or change
# timestamp parameter to an earlier date) for initial runs, then reduce on subsequent runs until the desired retention is met.
MAX_AGE_IN_DAYS = 30
# To clean specific tables, please provide a comma-separated list per
# https://airflow.apache.org/docs/apache-airflow/stable/cli-and-env-variables-ref.html#clean
# A value of None will clean all tables
TABLES_TO_CLEAN = None
with DAG(
dag_id="clean_db_dag",
schedule_interval=None,
catchup=False,
start_date=days_ago(1),
params={
"timestamp": Param(
default=(datetime.now()-timedelta(days=MAX_AGE_IN_DAYS)).strftime("%Y-%m-%d %H:%M:%S"),
type="string",
minLength=1,
maxLength=255,
),
}
) as dag:
if TABLES_TO_CLEAN:
bash_command="airflow db clean --clean-before-timestamp '{{ params.timestamp }}' --tables '"+TABLES_TO_CLEAN+"' --skip-archive --yes"
else:
bash_command="airflow db clean --clean-before-timestamp '{{ params.timestamp }}' --skip-archive --yes"
cli_command = BashOperator(
task_id="bash_command",
bash_command=bash_command
)
- Apache Airflow v2.2 and earlier
-
from airflow import settings
from airflow.utils.dates import days_ago
from airflow.models import DagTag, DagModel, DagRun, ImportError, Log, SlaMiss, RenderedTaskInstanceFields, TaskInstance, TaskReschedule, XCom
from airflow.decorators import dag, task
from airflow.utils.dates import days_ago
from time import sleep
from airflow.version import version
major_version, minor_version = int(version.split('.')[0]), int(version.split('.')[1])
if major_version >= 2 and minor_version >= 6:
from airflow.jobs.job import Job
else:
# The BaseJob class was renamed as of Apache Airflow v2.6
from airflow.jobs.base_job import BaseJob as Job
# Delete entries for the past 30 days. Adjust MAX_AGE_IN_DAYS to set how far back this DAG cleans the database.
MAX_AGE_IN_DAYS = 30
MIN_AGE_IN_DAYS = 0
DECREMENT = -7
# This is a list of (table, time) tuples.
# table = the table to clean in the metadata database
# time = the column in the table associated to the timestamp of an entry
# or None if not applicable.
TABLES_TO_CLEAN = [[Job, Job.latest_heartbeat],
[TaskInstance, TaskInstance.execution_date],
[TaskReschedule, TaskReschedule.execution_date],
[DagTag, None],
[DagModel, DagModel.last_parsed_time],
[DagRun, DagRun.execution_date],
[ImportError, ImportError.timestamp],
[Log, Log.dttm],
[SlaMiss, SlaMiss.execution_date],
[RenderedTaskInstanceFields, RenderedTaskInstanceFields.execution_date],
[XCom, XCom.execution_date],
]
@task()
def cleanup_db_fn(x):
session = settings.Session()
if x[1]:
for oldest_days_ago in range(MAX_AGE_IN_DAYS, MIN_AGE_IN_DAYS, DECREMENT):
earliest_days_ago = max(oldest_days_ago + DECREMENT, MIN_AGE_IN_DAYS)
print(f"deleting {str(x[0])} entries between {earliest_days_ago} and {oldest_days_ago} days old...")
earliest_date = days_ago(earliest_days_ago)
oldest_date = days_ago(oldest_days_ago)
query = session.query(x[0]).filter(x[1] >= earliest_date).filter(x[1] <= oldest_date)
query.delete(synchronize_session= False)
session.commit()
sleep(5)
else:
# No time column specified for the table. Delete all entries
print("deleting", str(x[0]), "...")
query = session.query(x[0])
query.delete(synchronize_session= False)
session.commit()
session.close()
@dag(
dag_id="cleanup_db",
schedule_interval="@weekly",
start_date=days_ago(7),
catchup=False,
is_paused_upon_creation=False
)
def clean_db_dag_fn():
t_last=None
for x in TABLES_TO_CLEAN:
t=cleanup_db_fn(x)
if t_last:
t_last >> t
t_last = t
clean_db_dag = clean_db_dag_fn()