adws

JHeFRE 70| E

AWS Encryption SDK

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Encryption SDK

AWS Encryption SDK: 7H& X} 70| =

JHeER 7Hol=

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazonl| & E L Ef|0o|E EBAE Amazon 2| A& = MH|ALL A AHESH7LE Amazon E 24
E O|0|X|E Ho{EEZ|HLE nZof|7| ESS UoZ = Us LASZ AIEE

o £ &L AmazonO|
ARSHX| 22 7|EF R E A EE= Amazondt K& 270 HLE B240| QUHLE F¢ A IQF B 7Q10] Y
S ARXRO| RFAFILICEH

i
]

AWS Encryption SDK JHEER} 70| =

Table of Contents

Bt S OIQULITIE AWS ENCIYPLON SDK? ...t eee ettt 1
QLE AA Bl R E B 0 A THEE e ettt 2
A S3 BHOIEBE] B MHEIA R O] B B A e 3
R B B R Rl B e ettt 3

DN Sy T o L RO 4

T S B B L] oottt ettt n et re e 5
D= OO SU SRS PUPOUORRRRSON 5
Ll - RO 6
o1 =2 T RO 8

EH T T ettt s et et s et b ettt s s 9
= Ly R B e 9

=) B L N R 10
o= 1 D N OO 12
T < RO 12

A B Bl A R A B Rl e 13

CHE B HICH A @ B Bt ettt e et en e, 13

AT L U 14

ez U PR 15
N = L RO 16
S B B A e e 17
7} CIO|E{& AWS Encryption SDK 235t BB Lo, 17

7t &5 5tE HIA|IXIE AWS Encryption SDK S E28t6H= &8 e, 18

P e BT g] SRR 18
M AES-GCM(Z| |E. H'?;', AL s W 19

ZIEE RIB LB Rl B o i 20

PF AT ZEE AWS KIMS oo e e e e e e e e e e e e e 21
B B B| oo e e e e e ras 23
S K T oo e e e e ra s 27
ey e U O L= R 27
Sl B L= OO 27
CFE BT AFR AWS KMS KEYS ovvorooeeveeeeeeeeeeeeeeee oo eeeee oo eeee oo eeeeeeeeeee e eee e seeee e 29
T o < e L= RO 49
B EFE TOIE] F| RIBE ..ottt 61
A A T] A A e e 67

AWS Encryption SDK

O B B Fa A B T D ettt 70
T D B A T ettt ettt 78
A E R Tl O B R B oottt 78
Tl LOIES Tl T A ettt et ettt ettt 78
S B B PR 80
Tl A O] 04 B TH T et 80
B BBl LB ettt e, 81
T A O A A ettt 81
T A R O B LA ettt ettt 83
T A R O R T A ettt 83
LI N I B ST 88
EFA BHBHR] T| IR e et 91
T ettt ettt 94
TR R B A ettt ettt 94
TR B B A ettt 96
S 3F FIRIO CHBE LR Bt R T A& et e, 97
SEEIE FIZ L OFAE FI RIBRE et 97
AWS KIMS T] e ettt ettt ettt ettt 99
AWS KMS F IO B R B Bt oot 101
AWS KMS Z12 AWS KMS keys Ol A AL8 e 101
AW S KIMS R A A ettt 102
AWS KIMS Z A T] A b oottt 117
AWS KMS EIT A T R A et 124
AWS KIMS ZHAIE R T B oo ettt ettt et e 132
R B A ettt ettt 134
AE TR T ettt ettt 135
e B B ettt 136

TH R ATt e ettt ettt 136
B R T R A A ettt 149
AWS KIMS ECDH FIR! ..o e ettt et ee ettt 157
AWS KMS ECDH ZIZI0 TR B BBl Lo 158
AWS KMS ECDH I A A et 158
AWS KMS ECDH A T R A A e 165
RAW AES T) oottt ettt ettt 171
RAW RSA F I oottt ettt ettt et en e 178
PARL ECDH FI R e e ettt ettt ettt et 187

AWS Encryption SDK JHEER} 70| =

N I T8] o B L= s RS 188
A = SRR 206
IR TIBHE O] ottt et 215
ettt e —ee e e e e a———eeeeeaa———teeeeaaa———eeeeaaaateteeeeaaaatteeeeeeaaatreeeeeeaanraeeeeeeaanreeeaeaaans 215
T b OO 216

(OS] B S = R 217

O R 221
N RSSO 228
N = L TSROSO 230
A RO 230

O R 231
€0 SRS 239
Y s e RO 239

T b OO 240
= 1 - TSP 240
Y s e RO 240

T b OO 242
O R 243
JAVA S It ..ottt e et e e e e et e e e e ———— e eeeeeeaaaaaaaeeaeteerrra——————————— 256
K TR 257

T b OO 259
B o ettt e ettt eh et e eeteeea—eeateeeateeeateeeateeeateeaateeeateeabeeeateeeareeeanreean 260
O R 262
Y 1 T o PP 271
Y s e RO 271

T b OO 271
O R 273
RUST ettt ettt e e e et e e e e e — e et e e e e e ———eeeeeaanteeeeeeeaanareeeeeeannnaneeeeeaannaeeaeaans 280
Y s e RO 281

T b OO 281
O R 282
BHRIE QUEITH O] Lottt 284
[0 I I B SRR 285
(O] IR = R 289
O R 302
= L e SRR 325

AWS Encryption SDK JHEER} 70| =

B T e e e e e e 338

T Lo = I N P 341
TIOIE] FI FH A AEE B et 342
EIOIE] FI FHA AR : BHAIRE et 343
HIOIE] Z| FHA OIA: BRFQ REZBh oot 350
THAL O A g, AT et 366
CIOIE] F| FHA Ml T et 368
e o= e B B e S e 368
T N = N B T 371
R N R B b SRR 372
HIOIE] 7| FHAl EF 0= TSRO B0 QULER? e 373
A5 HEIAE: FHA| S 52 MEIGHE B e 373

LH o Z2[AH| 0| 0| FHA|E! HIOIE FIE A ULEL7 e 374
BHOIE] T FHA! Ol .ottt e e eenseeen e enanns 374
B TH AL B e 375
Ol Rl L e e e 376
CloudFormation B E R .. o ettt 388
Of HHTH AWS ENCIYPHON SDK ...ooviiiceeceecte ettt ettt e et e steeee e esesteeeeenaneetesteeeeeeaneens 403
e e —eeeeeeeett—eeeeeeeeeta—eeeeeeeetta—aeeeeeeeta——aeeaeeeett——aaaeteraraaaaaas 403
(0% -/ N RN 404
BHZZE QIEJH 01 (CLI) vvrrooeeeeeeeeeoeeeeeeeeeee oo oo e oo ee e 405
= - O 407
o TP 409
JAVA S It ..ottt e et e e e e et e e e e ———— e eeeeeeaaaaaaaeeaeteerrra——————————— 409
Y 1 T o PP 411
U] PP 412
B M T ettt n s 413
17X O B BT et 413

B T 17 X e e e, 413

B T 20X e e e et 416

B T 2 2 X e e e, 417

B T 2 3 X et e e, 418
OFOIZZ2HO]4Ad AWS ENCIYPHON SDKooveeeeieeiiee et ettt et eeete et eeeesatesseeeeeeesesteseensneane e 419
OFO IRl OI AT B HH I B ettt ee e 420
1EHAH:: o Z 2|70 S Z M 1.x HTLSE UOIOIEFLICH oo 421
2CHA|: OHEEIFAOIME E|M HEOE UHIOIE ..o 422

Vi

AWS Encryption SDK JHEER} 70| =

AWS KMS OFAE] F| BERF RAOIOIE ..ot e e 423
Q74 EEZ OFOITIRIOIA .ot 424
AM BEZ OFOITIRIOIM L.t 427

AWS KIMS TR QAT Ol oo e e e e e 430

T TR A T et ettt 433
T R A T o ettt 434

ZA HTZO| OFO|ZROIM BRI BHZ ..o, 445
O Ol& AP IR CETHLE RIZHE! ZHRI| .o 446
T BE: A " A A BT KB e 446
T SE: HA ™A D MOITHEIAE e, 447
Tl T BB ATl et 447
Bl R B B R e 447
Bl B B Bl R e 448
T B A e e 448

yN = T LT N o) WSSOSO 449

= AWS SDKs 01 H AWS Encryption SDK CFELTF? oo, 449

£ Amazon S3 &3} E2t0|HE QI 0{=E | AWS Encryption SDK CFHELITH? .o 450

oM X|Hst= &35t &1 E|E AWS Encryption SDKIF 7|2 55 1 2|&2 FUL

T 2 e ettt e e e e e e — e e e e e e — e e e e e e e 450

Z7I8F HE(IV)E 0L H| MEE[0 OC|0] FHEEILER? (e 451

ZF HIOIE] FI= oA MM, L33 L ESFEILER? e, 451

CIOIEE 235 3t5t= Ol AFEE CIOIE 7|1§ FX52™ 0= H HOF SHLER? v, 451

= ¢35 E Olole 7|18 &2 3tE olo|EQ ' 7H 0% M| AWS Encryption SDK K& 5tLER7? ... 451
AWS Encryption SDK HA|X| @42 LY f 5 3tEl |O|E{of Lot Bf2 QLES|EE FIt5tLt

R T 452
KA OFAE] Tl B2RFE ABE 4 QLE R e 452
T 7 Ol 2| E2lE F|IZ CIOIHE YESE = QULER? oo 452
2 4558 = U= lolE K82 FUULITF AWS Encryption SDK? ... 453
£ 229/&24(1/0) 2AE RIS o{EH & =351 AWS Encryption SDK S SILIS? ... 453
A I B S et e e e e e et eer e e e e e 454
T A R B A Bl T oottt 454
I T e e 455
B T oo e e e e e e e e ———— 463
HE T ettt e e e e e et ere e e e 467
THIA LR & A O R ettt et e e e e e e e et e e e e 468
ZR MEIE! CHOIEI(HIAIR]T ZAL EHTT 1) e, 469

Vii

AWS Encryption SDK JHEER} 70| =

U AME|[E ClOIE(HIAIR] BA BT 2) oo, 472

g
ZR MEIEIX] &2 CIOIE(HIAIR] ZAL EHT 1) e 474
B AAD B R e 478
A T I Bl oo 480
e =11 = B OO RSRR 484
AWS KMS B T & T8 Ml T e 485
B A O B e e e e 486
E A AT Ol ..o 486
O B 0 =R 488
... cdxc

viii

AWS Encryption SDK JHEER} 70| =

2k £o1lL|7F AWS Encryption SDK?

= 25 AR UHA 2E L 2 ALEE ALE5t0{ CIOIEHE 2lH ¢ =&tstD sise = JUTE A
HE Z2to|E & ¢ 53} 2t0|E2{2] AWS Encryption SDK ILICH 2EHS 2 M H|0|E 2| &5 35 &
33 YHECH o ZZ(FH0|Mel A 7|s0f BB E 4+ A&LICH AWS Encryption SDK £ Apache
2.0 2to|MdAof et F 22 XMSELICH

£ Ct21 Z2 EE0o| AWS Encryption SDK & & L|C}.

2
KA
i)
ok
Ko

YE|ES AHSHoF StLER?

o
e
o
o
O

£ o{EH|, o RE=0f| A ALESHOF StLER?

7l= o{EAH ddstLtR?

7|1& E&sted™ o{=E | alioF stH o{C|of A& sHoF stLtR7?
=

|O|E{E O|S 7tS35tH RS2 oA sHof stLtR?
7t

« O| 8t X7 LY f 5 3HE OO E elg = UL S otcdH oA sHok stLtR?
« 7|15 E Al™En e{2 AlI™ Atolol| LY & Z&HEl O|O|E{7t = EE[X| 8t =5 st 0{E 7| &t oF stLt
27

« Ol AWS KMS gF&tst= |0l 7|& A& sted™ o{E H| sifoF & L7t

E A835to{ HIo|HE E5st= Ol AASE 28 7|E Z8-st= OtAE 7[S
Encryption SDK®&Q|gtL|Ct O3 CSollMH MEBste ZHEHst @S AF85lo4 O|oIE{E &5 36t &
S¢gfL|ct AWS Encryption SDK. = LIHX|E AWS Encryption SDK =& gf

Ol o ofEZ|7Ho|Mo| =4l 7| SECH &
Encryption SDKY == J&LICt = CtS A
C}.

3t £FMHME PSSt ol B2 =382 7|8 AWS
MS3tod ole48t EE 0l AWS Encryption SDK & & L

ok

og
fijo

ofs 35l R ALE|Of| [HE 7|2 2

rOl'

& 7t ol olEf Z4Rofl Chail TR 3 HIOJE] 7|E AWS Encryption SDK 44433t
Lic}. Ol 2t 9551 Kodof TRE COJE| 718 AFSSHE 235t 2 AlIE WELIC

1 OIEE O 7| & 12|&E2 AF& 504 O|O|E{E AWS Encryption SDK & & 3t &FL|C}.
82 the section called “X| & Y1 2[& MEZ” BHHE B ESAAIL.

AWS Encryption SDK JHEER} 70| =

(R

clE 71§ AM&sto{ CIo|H 71§ E&5t7] flgt

|K

= otLt o|&r ol e E 7|2 C|O|EE & 53515104 O|0|EE &= 355t= O|O|E| 7|& AWS Encryption
SDK 23 8Lic = = 0| to| BHE 7|2 TIOJE] 7|2 o= stete TS E MTsod 455
El CIO|E{E o|AE = U= 5 AWS Encryption SDK & LIC}.

0

0 & £01 AWS KMS key o] AWS KMS 2! 2= 7|0|A HSMQ| 7|2 H|O|E & & 53 LCt.
SHLECl BHT 718 AFSE 4 974Ut EERIL T 718 2T ASH M| gl HR CIOEE 82
shohs ol % 24T 7] 5 of= 22 AFRSHT ELC

2t = 3tEl CllO|E{et &M & =3tEl ClO|E 7| & K&t B4 HIAIX|
= Y& 3 E O|o|Ee &= 38 El H|o|H 7|& HolE HIo|E GAlg A%t =3 IAIXIOH 2
JHl AWS Encryption SDK M& & LICt. &,0{A{ C|O|E{E &= 3l5t= CIOIH 7|18 FHstHLU £
g 7t & LICH AWS Encryption SDK .

o| A& Ho{ 730l = AWS SDK7} AWS Encryption SDK Z 2 3} x|t 0f = AWS Encryption SDK 7}
Q5 X| AWS A pfoH AWS MH|AO| BHE|IX| A &LICH & AL&3Stoq OI|O|E{E AWS KMS keys
I & MEfE AWS HH Z2of2ho] e ot

Kl

HT 1
ol
ol

LE &AL E|ZX[EC|0M THY

AWS Encryption SDK £ GitHub2| 2 & A A B|Z X|EE|0|A 7HEELICH O[2{8t E|ZX|EEIE AMS
o

Stoi IEE BT, EXME e ME ST, o] F3in 2 E

03'_ N
HT
([
1l
[0
4>
z0
I
rC
ful

* AWS Encryption SDK for C - aws-encryption-sdk-c

« AWS Encryption SDK for .NET - aws-encryption-sdkZIZX|EE2|2| NET C|HE 2| L|C}.
« AWS 233} CLI - aws-encryption-sdk-cli

* AWS Encryption SDK for Java - aws-encryption-sdk-java

« AWS Encryption SDK for JavaScript - aws-encryption-sdk-javascript

» AWS Encryption SDK for Python - aws-encryption-sdk-python

« AWS Encryption SDK for Rust - aws-encryption-sdk2|ZX|E2[2| Rust C|HE{2|IL|LC}.
« AWS Encryption SDK for Go - aws-encryption-sdkZ|ZX|E2[2| Go C|HE{Z|

QE AA Z|ZXIEZ0IM THE 2

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms-keys
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/

AWS Encryption SDK JHEER} 70| =

535} glolE 2| &l MH|AQtS| 5 3HAd

AWS Encryption SDK = 0421 ZE2J2{ Q10{E X|@ELICE 2 E 20| 22 &5 H4S50| 7t sFL
Ct. 5tLto| @10 3R A5 55t CHE 1o LR 5558 = U&ELICH &3 dsMol= ¢
o M2 Z740| MEE = U&Lct. 0] B ol2{8t M2F =742 ¢1of F3oi| CHE FX|of| *E*':'" lof !
gL CH 3t 2535 U 55358 cHE e setkls 7|20[Lt OtAEH 7| 2 OtAEH 7| SZXHE A
235H0oF BLICH REMIEH LI 2 the section called “7|2 S &A4"E H XML

K= %i'AL—

J2{Lt= CHE 2holE 2l &% A& & AWS Encryption SD
E CIO|EE Ct 2 YACR HHESIEE & 2to|EEE|E ¢35 56t
& LCt.

IC. Zf 2tol2EEls & &3t
E 2lo|lEE2 258" =

-'—]I
rin

DynamoDB Encryption Client 2! Amazon S3 220|21E & ¢ 535}

DynamoDB Encryption Client == Amazon S3 2210|91E & 53512 2t 5 51 E Cl|o|E{E 3
& £ AWS Encryption SDK 9i&LICH o|2{8t 2lo|=2E{2[&= 0] AWS Encryption SDK gHetHsHE
2 5 3t HAIX|IE SIS &= & LCh.

AWS Key Management Service (AWS KMS)

Q JH'I rir

= AWS KMS keys & CI|O|E{ 7| E At&36t0{ CHS 21 KMS 7|& £ &8t HO|HE 25 & AWS
Encryption SDK == U &LICH 0 & E0{0M 3tLt 0|42 AWS KMS keys 2 HIO|E{E &5 5t

AWS Encryption SDK St= & F M8 = UA&LICH AWS HE. J2{Lt AWS Encryption SDK &
Ar&3stod SHE OIO|E{ & =& 3tsl ok & LICt

= AWS KMS 253t EE= A S5t 20| BHEtst= AO|HEIAEE SHSE = AWS Encryption
SDK @i&LICt ReEncrypt O 7HX|2 AWS KMS =5 5 242 0| AWS Encryption SDK gt 3t
= 453 E HAIXIE 52358 &= gigLct

£ CHE 253 KMS 7|BF AWS Encryption SDK X|4&LIC} H|CHE KMS 7|1= &% 38 EE AWS
Encryption SDK2 1 Ql0i| Ar8 & &= Q& LICt. AWS Encryption SDK £ HIAIX|ol MBs e L1 g
& ME ol Cist Xkxl| ECDSA MY 7|8 MAghLct

x| 2 x| 2l

AWS Encryption SDK & H™ 22| L =& F7| HHE X &5101 AWS SDK L =77t AH&6t= 7
ot SYe 7 x| 2E| HME ASE LD L2212 AWS Encryption SDK 210{0f AHE# =+ QL
Al HAO|E AF25tD M HAO| 2lE|AEH °+:LEJ|0|I:3+= 7*OI & LICt 7ol 1.7.x 0| AWS
Encryption SDK EHZ10{| A HE 2.0.x O|&te 2 Tpo|=stE 5§ 528 HZ0| e st A 20|
Z|= REM|EH X122 ME2§u|ct.

74
A
z

ets 5t gtol=2q 2| & MH|ALtS| S 3

https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#asymmetric-cmks
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html

AWS Encryption SDK JHEER} 70| =

ozt =2 2104 %1 AWS Encryption SDK 2 HE 0| @ E A A GitHub 2|Z X|EE[0|Af THE
Euict ZF HHo| =38 F7| AU X BH= 2|ZX|EE|OIC CHE £ JU&LICH ol & E01 §% HT 9
AWS Encryption SDK = &t Z=2J2f 3 do{o| Yt 7t 4(TIA| X[H) EtAHO|X|BHCHE Z2 a2 Y
21012 end-of-support EHH Y = JU&LICt 7H55tH 2T X[El=s HTE AF8stn o4 X[&
E|X| et= T2 Tlet= /ol E&LICH

=232 1o{oi = AWS Encryption SDK HHE S| =& F7| EHAHE <2248 ZF AWS Encryption
SDK Z|ZX|E2|9| SUPPORT_POLICY.rst IS XA L.

ol

* AWS Encryption SDK for C - SUPPORT_POLICY.rst

« AWS Encryption SDK .NET& - SUPPORT_POLICY.rst

- AWS &% 3} CLI - SUPPORT_POLICY.rst

* AWS Encryption SDK for Java - SUPPORT_POLICY. .rst

* AWS Encryption SDK for JavaScript - SUPPORT_POLICY .rst
* AWS Encryption SDK for Python - SUPPORT_POLICY rst

AEMIEH LHE 2 SDK & =+ &= LA LS| o] BT AWS Encryption SDK AWS SDKs. AWS SDKs

AA|S| Lol E 7|

AWS Encryption SDK & Z2I0|E & &5 50f CHEt AtAISH IS 2 CHE A48 TS AR,

« O| SDKOMIM AFE|E 804 ! 7HHol| CHEF =22 9| 7H'E AWS Encryption SDK MM & X 5HA
o

« 2 AR X|EI2 28 Algl AWS Encryption SDK MM S 2 XSHAI2.
« 0| SDKQ| 25 & Alof CHE KHMIBH LIS 2 SDK 25 & Al MME R ZSHMIR.

- OlM SME F Y5t GHE E0o4F £ oM M4MEE AWS Encryption SDKEZ5HMI2 74 AWS
Encryption SDK.

« RtMEH 7 HEE BmEA g BERSAL.

- 9| 7|& MY GitHub2| AWS Encryption SDK AF2F2 AWS Encryption SDKE Z5HAM| 2.

o ALEof CHE EZof Ciet Eide Eed™H AWS Crypto =7 EE L EHE AWS Encryption SDK
HAISHA A2

CHe

rd
[kl

2 0|2 E F345HE AWS Encryption SDK 2o CHet HE lL|ct.

KEMIE| 2ot 7] 4

https://github.com/aws/aws-encryption-sdk-c/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-dafny/blob/mainline/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-cli/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-java/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-python/blob/master/SUPPORT_POLICY.rst
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://github.com/awslabs/aws-encryption-sdk-specification/
https://forums.aws.amazon.com/forum.jspa?forumID=302

AWS Encryption SDK JHEER} 70| =

+ C: GitHubQ| , AWS Encryption SDK for C AWS Encryption SDK C A& A ! aws-encryption-sdk-c
ElZX|IEEIE HZFAML.

« C#/.NET: AWS Encryption SDK .NET& E A2}, GitHub0ll 2= aws-encryption-sdk 2|ZX|E
2|2| aws-encryption-sdk-net C|HE{Z|E& & Z5HMIQ.

« HYE QIE{m|0|A: AWS Encryption SDK HZ

=k E{mo|lA, AWS & &3} CLIZ EM 217 &
GitHub2| aws-encryption-sdk-cli 2| ZX|EE|E

2l
Z5HM2.

i=

=
=t
=

- Java: GitHub2| AWS Encryption SDK for Java, AWS Encryption SDK Javadoc 2! aws-encryption-
sdk-java 2| ZX|EE|E BT tMIR.

JavaScript: GitHub2| the section called “JavaScript” & aws-encryption-sdk-javascript E|ZX|EE|&E
HESHMLR.

+ Python: GitHub2| AWS Encryption SDK for Python, AWS Encryption SDK Python A& M ! aws-
encryption-sdk-python 2|ZX|E2|& & Z5tM L.

L=t HIH7]

L2l A& o 9|7
AE AMEBFHAHL.

0
o
(o]
;
=

etAgfLich AEolLt o|7d0| 7L EXsor & EXM7L (e B2 TS ElA

ko
oH
d
>
|0
Hu

ol ZRHA E ot F|FMHE wr7dst B AWS 2 otof 2F2] AWS Encryption SDKA|

GitHub =X|& 245t X| OtM[L.

- of CHet I=elg XMBsiei™ AFE 52 =2 ag A odofof CHE EXME GitHub Z2IZ X|E 2|0l AWS
Encryption SDKA| & gFL|C}.

« O]l BA0f CHEt I|=EMES MSstEd™ o] Ho|X|o| = I E AL SHMIL. GitHubOA{ O] 2A{2]
QLE A A B|EX|EE|Q! aws-encryption-sdk-docs0ll EME M7|6tHLE 7|08 £ QU&LICH.

9| 7H'd AWS Encryption SDK

o] MMolHEol AFEElE 7HHE A 7H AWS Encryption SDKat 0421 2= E M EBELICH 9
AWS Encryption SDK 28 4|1} 0|8 M= Ol AFESHE 0012 olalist= Ol =20| EI=58 MHA|
EIA&LICt

20| ER3MKR?

- 7t 85 ¢ 53E AWS Encryption SDK AF& 3504 HIO|E{E B35t W2 2otE LIt

https://aws.github.io/aws-encryption-sdk-c/html/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/
https://aws.amazon.com/security/vulnerability-reporting/
https://github.com/awsdocs/aws-encryption-sdk-docs

AWS Encryption SDK JHEER} 70| =

. 25 2t23t0 74 240 Clo|E{E B2 5ts HI0JE 9t ClolE 7I8 &

ok
kel
rr
&
oK
|
2
i)
2.':'
nQ

=l H|A[X[ofl CHSH 2ot L ct.
« JHCHE Héte ZEO2T Ho{ZE AAEE EHI[7F AWS Encryption SDK |4 & LICtH

™
igj
My
m
>
[m

mo |oo |mo
fol
Yo
rn
=]
>
A

. YTEE MED
. A3 T Q4 BEIR
. CHE O HICHE! ot =5
. 71 A

. AT B

- CIXIE MY

H[0lE{ 7I1& E&st= o Eed A&LICt ol o]
o

Bl 7|1& E3st7| 2lofl el QIEEE 2 Atel %P 2f 3 ststes LI o= A
oted™ 7|-ef 3t 7| = 2iE 7|2t ste E OHE @53 7|71 2 LICH 2iE 7|1& AH&36toqd o[o]
Bl 7|18 #33tsts YHE S5 &3t it

ClolH 7| E=

= ngst HIOIE+ 7|2 Zt HIAIX|E AWS Encryption SDK & & 3t8tL|Ch 4™ X|& 8t 2 7|of
M OlolE] 7|71 &3 stELICH dhetEl o 5 3L El HIAIX|of &5 3=l O|o|Eet &7 &5 3=l olo|H
7|18 MEELc

0|I

AWS Encryption SDK JHEER} 70| =

ol 718 XIgsted™ 7|12 = OrAE 7| S2XE AFSELICH

P DATA Gg fa}

: —
Data key Plaintext Algorithm Ciphertext B
data suite
o Encrypted
Message
P P D - ;
Wrapping key Data key Encryption Encrypted
algorithm data key

o 7o e & 7|2 SLUE CllolE &= 3t

0424 7HQ| 2= 7|2 ol|o|E] 7| S 3&t
oLt {Ix[7FCHE BHE ZIE A

EYgEE ZE OO 7IE &

1]
)

|-0|' OH il

AU&LICH ArEXIOCH CHE 2HE 7|18 MBS stHL |
g = AU Z4 e 7= s OlolH 71§ &E &8 E Lt
StE cllolE{et &7 & 2 3HE HIAIX[ol AWS Encryption SDK

4

CIOIEHE S35 &tstedH A E3HE Ol0|H 7| & st E S38E & e el 718 XSalof gL

Wrapping Wrapping Wrapping
key A key B key C

. |
>
Data key

B =)

)
Encrypted Encrypted Encrypted
data key data key data key

AWS Encryption SDK JHEER} 70| =

oft] ¢elEe 2™ AF

71E2xoZ Oo|E1E &5 36t7| Q= AES-GCM CHE & 53t 7| mhl & 4~(HKDF) & MYHO|
ZEE Mt &1 2|E MEZ S AWS Encryption SDK AFS 8fLICH HIOIE] 7|2 &5 3stedm™ of
Z 7o Merst CiE = HIOHE 38 dnE|ES RIHE = U&Lict
Uetro = ChE 7| ¥=3 4T EEO0| HICHE £= HEER! 7| ¥ S5tECHWED O 22 AtO|H
SHAEE MYgLICh JL HE8 7| gdue|lEe IRe 9 222 M35t 7| #elvt o g
&LICH ZtZto| Mg ZAEstt{H CHE 7| §E=S2 CIOIHE Y =38 Chg HER 7| ¥ =32
ool 7|& & & 3tstH ELCH

| (o=

Hl0lE{ 7|&= AWS Encryption SDK 7} C|O|E{E& gtot= Ol AFEste &E 35t 7|LICt 2 ololH

StX| ot Bt 1R

63
7le 423t 7| @F AEE E45te HHOIE HIELICH HIO|H 7| FHAE AFE
8t o|0|E| 7|2 AWS Encryption SDK AF& 38104 ZF H|A|X|E 5 3HetLCt

ok

X SE3HUS 5 E

toh

COlE 718 RIY, 8, 73, &&, 23 E= A8 o7t ¢isLch ¢35

&' [f AWS Encryption SDK 7+ O|& CHAl =&t

= 35t7| |8 AWS Encryption SDK = 2iZ 7| EE&= OtAE 7|2tT 3t Lt 0|4 9| 7]
of &S 5terL|Ct = et A E OOl 7|& AWS Encryption SDK At&3510{ CI|O|EHE &%
3t gh &t | HIZ2 2l M MARLICH 33 CHE =3 2740 BHetst= 25 3HEl HIA|X|of
e = 3t El Cl|o|E{ 2t & 7H & = 3tE Cllo|E] 7|18 ME ' LICE RbAM[EH LHE 2 the section called “SDK &}
=
o

® Tip
ol M= CllolE] 7|9 HIO|E & &3t 7|2 AWS Encryption SDKTEEELICH 7|8 ME=E £
gstod X|pElE gdnElE MER & e = dolH 7|7 ¢ §_§P St o E=2SHX| A2 S St
7| R g+E ASEULCH 7| Rk g+= ClolE 7I1E & OP AN Z Oo|EE &3
gtst= ol A8 El= HIO|H ¢ 535 7|8 BrerghLct. OIE-I?_ Cllo|E{7} Cllo|E{ Z|oi "2

|
af" 2 E3tE|= Zd0| ofLIEt CllO|E Z|"o| M" 2 Z 3tEICt T ':'E*%PE St H&Lich

otz 3tEl Zt dlolE] 7|0l SHE Clo|E| 7|18 5 3tet e 7|0 AlERIE HIRE HIEtE| OB 7} = &
C}t. o] HIEFH|OIE] AWS Encryption SDK £ AFE5ITH0IM 2538 Al &8 elE 7|12 O £0H A
HE = A&Lct

https://en.wikipedia.org/wiki/Key_derivation_function

AWS Encryption SDK JHEER} 70| =

& 7

2HE 7= AWS Encryption SDK 7+ CIO|E{E &3 35t5t= CIOIE 7| & g
3t Z|dLICH Zhzho| Ut A E Of|0|H 7|= & 7H EE= odE] 7He| 2iE 7|2 ¥ = 5tE &~ /U&Lct
7|2 E= OtAEH 7| SZXAE FHE I CIOIHE EE517| !IsH A8 E

(® Note
BiE 7I= 7|12 £ OtAE 7| SEXA0] Qe 718 LEUCH OfAH 7| dEtHe 2 OfAH
7| S2XE MEE M| AUAEASISHE MasterKey 2249k AZFELICH

= (AWS KMS) CHEIAWS KMS keys(CHE 2|7 KMS 7| Z &), $IA| AES-GCM(T2 4353t E&/Z
ot 72E 2E) 7| & B A| RSA 7|2 20| AWS Key Management Service ZEtA O 2 A
2iE 7|& AWS Encryption SDK X|#gfLICH B8t AHA| 2iE 7|& & & 5HHLE 23E = J&LICt

S5 U558 ASY [21T 7|8 T UMAZSE 2Esio} BT O] 5 3 x| Yoz
olE +3E % laLic

« AWS Key Management Service (AWS KMS)2t Z 0| o|zet 8 = 2 A &l & MHIAE AHEELICH.
« AWS CloudHSMO| M MBst= At 22 stER0 E9F ZE(HSM)2 AFS&LICt
- CIE 7| 2| =7 & MH|AE AFE ' LICH

7| 22| AlARI0| glE B
Elof 2 71& 2 %%b—'_ At

HotzdH 7|3 EE= OtAH 7| SSXHE AFSELICH ol M
AWS Encryptlon SDK MB35t 7Lt RHA| 732 MA[Ste 712 & OtAE 7| SEXE MAEE = JUaU
Ct. AWS Encryptlon SDK = ._'|0-| Aok =zdof M2k M2 & E|l= 7[20 0tAH 7| SEXE M3 E
LIct RtMIEH LI 7|2l 5

e
ol
lgj
ya
JHI
0|-
l‘oﬂ
=3
>
oo
QTI_I
rr
)
OH
N
=
ﬁ

_L

()I'U

ZIg2 o IH 71& 44, =3t 5EsELICH 7122 olg M ClolE 71§ efEstete BlE 7|1E
XEg = A&LCH IR 22| 7I82 stLt ol¢ el e E 7|E X|GstHLE, eiE 7I1& MSst 2=t
= -IHléé KIEgfLIch 2fE 7|7k eie 7188 "alstHL F7h 714 &2 AL8sto o ST E 7|

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/kms/
https://aws.amazon.com/cloudhsm/
https://en.wikipedia.org/wiki/Hardware_security_module

AWS Encryption SDK JHEER} 70| =

22 Ho|g £ QU&LICt oM AWS Encryption SDK Mo|3tE 7|22 MENSD AI83lE ol ==20|
LRstH MME XM,

« AWS Encryption SDK for C

* AWS Encryption SDK for JavaScript

« AWS Encryption SDK .NET&

9| H™ 3.x AWS Encryption SDK for Java

- MEAX S5t A2 S22 2H0[E 2 E[(MPL) St & 7A AFE 5= AWS Encryption SDK for
PythonZd< H7T 4.x.

« AWS Encryption SDK for Rust ™ 1.x
« Go AWS Encryption SDK 2| {7 0.1.x 0| 4f

OtAE 7| SZX= 7129 tietdLIch OtAH 7| SZ A= XHet 28 Z|(E= OtAE 7)E Btetg
L|Ct. ZF OtAE Z|= stLtel OtAE 7| SF AR IALE[KB OtAH 7| SZX= LEtXHo 2 o of
AE 7|8 ME&LICH OtAE 7] 22X Java, Python & AWS Encryption CLIOIA X[&4E/LICH
gE35E 2ol Z|B(Ee OtAEH 7| 3ZXhHE XHstof ELICH SE35E {6 SLet 7I2(E= Ota
E 7| 22xH2 X|™Hs6HHLE CHE 7|2l2 R|™HE 4 &Lt 253518 I AWS Encryption SDK £ X|
Mt 2E 2iE 7|E ArE5tod Oo|E 7|18 &= & gfLICH =53+ [AWS Encryption SDK = AHE
A7t X[E3t 28 7|8 AFE5to] 5 5HE CIO|H 7|18 SE3tELICH S53E el eiE 7|8 XI™s5t
= 22 MEd AFEHO|X|BF AWS Encryption SDK 28 Abad|IL|CH

oS5t 2ol HotZ JiMSlE{H 2 E Ol0|H €535 R0l 53 HRAEE T EFAIZLICH &35
3t ZAHAEE ASsts W2 MBI A O[X|E HE L= 235t 2 A2 Lct,

S5t HEHAE = H|ZO| ol (o|o| £7t Q15 CIOIHE =& 5= 71-2f Ho{ MELICH &=3t
ZEIAEO|= ALSRI7E MEIEH 2 E O|O|E{7F 28 E & UX|E ditHo = mtd RY, SHEE AR
Tof CHEt Cllo|E{et 2ol 22 & FXoi| 83 HIOIEHE FHELICH CIOIHE Y=3t5tH =3 7
HAEE A535HE OB 253 HACE HIQITZE|IZ2 CIOIHE S35 [sYs &35 A
SHAE7} 28| EESF AWS Encryption SDK £ Btetete oF 5 3HEl HIA|X| 9| SllC{ol &5 3 Z1E
AEE QHIEIAEZ ZEFA|IZIL|CE.

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK JHEER} 70| =

0{l A AWS Encryption SDK At 3tE 535t HEIAE
AHCMM)7F E7t5He HER! 7| Hlo{Z T E UL £35], MBo| =& E
Otct CMME of & El O| & (aws-crypto-public-key)dt T

O|&-Zt HO{E & E 35t HEAE FIIELICH 253t HEAEO| qws-crypto-public-key O|&
20 2|3l of2f AWS Encryption SDK E|0H &= 3t ZAHAEO| I E Ho{0 M O|E2E AIEE = Q&
LICH REMISE LIS MIAIR| &4l X 0| AADE FHZESMR

o] =8 HAHAE mo{QF CMMO| F7t5t= HE

CHS o 53t ZEAEE ™EO M XIHE
2| 7| Moz FEElo] A&LICH

"Purpose"="Test", "Department"="IT", aws-crypto-public-key=<public key>

IO E =535ttt 3 5tEl HAIXKIE MEELICH = &3 35tE HAIX| {0 &3 ZHEIA

EE FZE% AWS Encryption SDK &= Qo2 53l HEAES HEZ X|ZE ZEH It giaLct 3

Kot 55t HEIAEE S SLE HAIXIE SHIE2H 2536t n U=X| &olst= ol =20 2 5 QU

&Lct

« AWS Encryption SDK Command Line Interface(CLI)OIM S5 3} B0l & S35t AHAEE NS5t
= A% CLI= it BlAE O|0|EE Htetst7| ™ol 22 3HE HIAIX[2| 55 HAEIAEN ST 4L

Ol A=X[FHIgL|CH

- OHE Z 202 2o 7£3o| AR 553 SEHO| 2535 HAHEAEQL bl HIAE H|0|E{7f Z&E
LIC. o Z2|7lo|Me| 553 gt it HIAE H|O|EHE BHEHS7| Tof &4 E535 SEHO &S
st ZAEIAEO| 253t LY (EE ot Eehel &8t HEAET L3 E|o] QU=X| &els{of & Lct
(® Note

CIE HH2 2E Y55 QUMM YSS ZHEHAEE @FSI=HAMSE = A= He S
3l ZHEIAE CMME K|4ELICH

+ 9| {7 3.x AWS Encryption SDK for Java
« for .NET BT AWS Encryption SDK 4.x

o MEiX of S35 X2 ZZ A 2H0|EE2|(MPL) 441t &7 A2 3= AWS Encryption
SDK for Pythond< B 4 .x.

» AWS Encryption SDK for Rust ™ 1.x
+ Go AWS Encryption SDK &2| T 0.1.x O 4

o
fol
Yon
[
]z
[>
[m

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK JHEER} 70| =

=3t HEIAE S MENE = SHE 240| HIZO| ot'elE 7|dslok & LICH =3 HEAE =
AWS Encryption SDK 7} Btetst= 2 5 3HEl HA|X| 2] S[Hoi| LEt Eﬁ*EE EA IEL—l Ct. AWS Key
Management ServiceE AIE5te= 32 H535 HHAE=S Z2 A EZE & 200 UEHEIAE

o)
2 EANE =& U&LICH AWS CloudTrail.

£ AI235to{ Co|E{E Y5 3l5tH o 5 8 El HIA|IX|7} EHEH AWS Encryption SDKELICE.

3 3tEl HAIXIE &E&HE O|o|Ee &7 TlolH 7|o = 3tE AME, dE|F ID, M= AFE
oz ASst HHEAEQ CIX|E MBS Z&ste 0I5 7t58 FASE CIO[E F ZQILICH AWS
n A5 U2 A E3E HAIXKIE ghetotn S5 U2 A E3HE HAIXKIE &

g sstEl OolEet 2= 5tE ClolE 7|8 2¥stH |55t frdo| tastE|n, S StE Ho[H 7|8
ot 535t HIO|E{Qt SRIMoZ MEsD HElg 2ot glaLct

= g 12l& MEZ S AWS Encryption SDK AF&35104 & 5351 2l 53531 2140| 0

AR ot s 3tatm MEEHLICH AWS Encryption SDK 0= 048 € 1 2|& MEZE RN
grLICH X|slE € 2l&2 25 AES(Advanced Encryption Standard)E 712 ¢ 12|E2 2 A& 35l
2 CHE gnelEd U 2ot TEeholct.

B
o
o
i
i

= DE g5 &o| V2o s HE dnE|FE MEZS AWS Encryption SDK A LICH 7|22t
2 Z&0 2 At 7 oM Eo] ket BHEE = U&LICH SOl 2535 QEO|LE 53 748 24
ZE[XHCMM)E M E8E Ml CHA| 0 2[& MERZS XIEE = UKD &&of 2t CHeto| Eedt <
7t OFL|EIH 7|82t 2 A85t= ZWO| 71E E&LICH SA 7|22t 2 HMAC 7|8t FE U &Y 7| /T
84 (HKDF), 7| 749, EFd =M C|x|= ME 21 2|F(ECDSA) ME, 256H|E %535} 7|8 2& AES-

GCMLCt,

OHEEIAH 0lM0] TAdi50l BR 5T GIOIE|E L& 8t AL RIS GIOIEIE B2 8tats
2|27} SUsCHH CIXIE MBO| gl LTEIE MEDS XIMste 28 ToiE £ laLich sxg
7| UL 7| KT H4TH LEHE YDEIE MEDS ASstE 28 M3 BFELIC o243 7150l

HE LnE& MEZ2 olet HTMe| ZEHEE Pl ARH x| ELICH

et S SHE HIAIK] 12

https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF

AWS Encryption SDK JHEER} 70| =

gE3 7 24 #HE|R

A33 FH 24 ZE[AHCMM)E IO E efS3tetT S53t6ts Ol AR 23 7 248
ZEELICH 35t 71 240 Lt HIAE S S 35HE o[7[2t MEH Al HIAIX] ME 7|
7t ZEEILICEH A8 X MMt 2H &5 2 &otX|s ef&LIch 235t 2 £53 HMET} O Cf
& MelErck.

ol Al AWS Encryption SDK ME3tE 712 CMM =& 7HA CMME AF& 8 7HLE AL A} X[CMM
2 dE = J&Lch I8/ CMME XIEE = URIEF Ees ottt 7|13 £ OHAE 7| 3
:xrg X|EstHIE 7|12 CMME AWS Encryptlon SDK &' d&uct. 7|2 CMME A8 A7t X| gt
7|18 E= OtAEH 7| SEXREREH E58 E= 5535 74 248 7IXHZLCH 07]|0= AWS Key
Management Service(AWS KMS)2 Z2 & £33 MH|Ao0f| Cist S&0| Z&E &= Q&Lict

ol

CMME AWS Encryption SDK & Z|2(EEE OFAE] 7| 22X ZHe| 9473 He g 57| 2ol H2 &
g Y K| 22 AISA R A Y S 28 ol Mel X|I™AULICH = ololH 7| 7H&E X35t

£ 714 CMM2 AWS Encryption SDK A&

HICHE & st= X o2 2HE OIO|E 7| H o1& AFRELICH mHo{e| 7| & tLt7t CIOIEHE & &
slstm, Hofe| CtE F|Bt HIO|E{E 25 35E 4 &Lt

= &5 2538 AWS Encryption SDK A & LICH CHE OIO|E 7|2 CIO|EHE & & 3 LICt 3hLt
O|&o| CHE == HICHE 2 & 7|E AFE35tod CHE CllolE 7|8 &= stefLct. & S 5tE Cl|0|E{ 2t Skt
olato| HIO|E] 7|o| & & 3tEl AHEO| ZEHEl 2 5 51 El HA|X|S gHetet|ct.

OB E ¥33t6t7| flie= CHE CIo[E Z7|ot CHE &3 21
AWS Encryption SDK AtE & LICt. C|0|E{E SH55t7| {ldlie &
MNE=&2 AWS Encryption SDK AF& &LC}H

olOlE 7| &= 3HCHE E= HICHE! 2535

B 77t k=5t &

fsst AU 553 2o MBste 712 E= OtAEH 7] SZAtol ek cHE dfo

SZstcls galo| ZHELICH 7|12 Ee 7|30 22 OiE S E35HE ME8t= OtAE AWS KMS
7| 32X E= 2AIRSA 7|2 EE=9t Z2 HICHE 25358 M86t= 7|2 E= OtAH 7| 324/
E MEfg = Ql&LICHJceMasterKey

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Encryption SDK JHEER} 70| =

7| 743

E Z AMO|HEIAEE B QUHEIAEZ O GSE £+ U E EHSE EoF 401 7| 70T 3
goletnx &)2 AWS Encryption SDK X[& LICt O|& <5l 7| 722 HIAIXIE &5 38 ol o]
E{ 7|2t S5 3t0| AFSEE8 EFELIC 7| 73l 2 H|o|E{E ¢ 535t 55 3t6t= 240l AWS

Encryption SDK 23 Al lL|C}.

AESE =z & et CHR 2ol 2|4 CHE &5 = AWS Encryption SDK 7t 2} Uit HIAE HAIXK|IE &5 3}5t
= Ol AL83shE 17 CIO|H 7|ot 22 B HIE 7|= et MAES e s 5terL|ct. SYet Ho[H 7|
2 0| CIO[E{E S =5tclH HED SUs Uit HAET} BHEELICH O E 7|8 AI8E 528 At
Moz Mujgch x| M2 OHE F 712l 7|2 AO|HEAEE S551E = UsLTL E2 32
O[Z! 5t x|2F, & HHO|E 9| AFO|HEAEE CHEX|EF 0175 AlEY £ = U HAER S3351E +
RE 718 e d27t UAsUHT

= AWS Encryption SDK &4 stLte| TRt C|O|E 7|2 Zf gt A E HAIX|E =35t LCt o
o 2iE 7|(E= OtAH 9|) T CIoIE 7|18 &E35te = UXIEH2HE 7|= &4 S LS Olo[H 7|
E 4SS stx|ot Hustn =502 ZEE 2S5 E HAX|olE AXME 2442 2 2iE 7|2
2t S 3tE ME CHE CIOIH 717t Z&E &= U&LICH o|& B0 & ArEA7tH E 32l HAIXIE 5=
3} 5+04 OxO(false)O| BHEHEI X[t STt & 5 3L E HIAIX|E CHE AL XE7F S 335t 0x1(true) Ol Bt

Rl

WS Encryption SDK X|#gL|C} &

Ol ALt & Wx|5t7| flsies 23t W 553
K |°:| M ot 55} BIAES MASt 193 O 0|E] 7|
F

5’| 71912 2 M|A|X|& AWS Encryption SD

TN
M
).I:l
mo
J>

ok

23}

HIZO| otl Cllo|H 7| AExtRl 7| 70! EXtEo| ¢35 WAoo 2 v QIGELICH O CHE & E
SPE.J HIAIX|2| HIEtHO[E{o] 7| 7! -E-XFO“’ MEELICE 7] HUSZ HAIXIE S 5355t AWS
Encryption SDK = H|O|E{ 7|7} &35l HIA|X|o| 8t 7|Q1x| &HelgtL|Ct H|O|E] 7| Erelof| Almj

ot S &3t 20| AuifLct.

7| 7{8lof CHEF X[A 1.7.x0 TUEIROMH, 7| HBOE HAIXIE £55 8 $= QUX|BH 7| H
Sloz ot 5 35}6tX|E AALICH Ol HEE AF85tH 7| HUICZ MO|HHEAEE 235356l 752
SIS HIZE 4 UALICH HT 2.0x01AE 7| ARl0| 23| XIYIELICH 7|2Moz 7| HYlg &
MO A5 5t5tn S5 5HELICEH Ol Ol HZTQ| 2 A SSHE AMO|HEAEE SiSE H27t gl
o 2|7 0l4doil o4l T HLlLIct AWS Encryption SDK.

7| Holg S5t 453 U B537F 2 ALE[0|7|E SHXIEH AF Al7|E A AYSt D M8 8L &
e £ ELICH HM 1 7xEEE 7|2 12| MEZS MMstD AI2E = =2 12|1E A
Z7g FMEtsts 719 &2 AWS Encryption SDK X ELICH. 0| M2 7| 7302 Clo[ElS 23
3l Ol 25318tx| o822 ZAXISHL|C}

14

N
Bl
o

JHEER} 70| =

AWS Encryption SDK
7| AU Ag st 255t El MAIX| 2717+ oz of X0+ 30HL0IE) ®{2I8He Bl AlZtol f H
LICH of ZZ|FH|0lM0o| Z7|Lt d50f o BIE S B2 7] 7S A 86t x| =8 HdEE = A&
Ch. 3tX[2H 33 2R Ft Z<H T 0|8 YA
7| 748] 7|= 15104 EHA 1.7.x U 2.0.x2 OO|1& 0|t ol CHEH AHMIEH LI ofolz
ol AWS Encryptlon SDK MME & ZStMR. 7| 7{8!ol Cht 7|& HE = the section called “¢ 12|
& & X" 2 the section called “HIA|X| A F X" MME FZFHAML.
719! =
70! A2 ol E2|7|0|M0] 7| HAUE ALE5t0 235 U SE3EX| 4R E AMste 8 HEY
LIct 7| 7{8l2 2 C|0|E{E &35t 8 53+5h= 20| AWS Encryption SDK 28 Al IL|CH
712! HHol= Ml 7tX] Zkol A& LICt
(® Note
MAM EE = 2 EE= MZ2E2 AFESHoF E = /J&LICH
79 &M 2
43 7l7H%lez &5 ZF|7HAgloly I AHOUe=Z =5 F|AHUGIO S
(=) 23 =) 23
ForbidEnc
ryptAllowDecrypt
RequireEn
cryptAllo
wDecrypt
RequireEn
cryptRequ
ireDecrypt
710! H& M2 AWS Encryption SDK ™ 1.7 x0|l T EIRESLICH X|HEls ZE T2 38
ofoll M = &LIct
o

AWS Encryption SDK JHEER} 70| =

* ForbidEncryptAllowDecrypte 7| HX RFof 2Hgl0| F5356t KB 7| HUSE 25356t
Xle= et&uch X 1.7.x0f ZEI0| gf2 o EE|Fo|ME M= ZE ZAET 7| HBeE &
Z3E MO|IHEIAEE L5 7| Hof 7| AR 2 5535 e = AT dAEUELICH

=
=
o}, 7| 43! K 2ol B A0l =
(mE|

. Requ1reEncryptAllowDecrypt._ o 7| HUCE A35EL
(=] 17| 7SR &S 3HE Al

s 3t o+ UA&LICE of 2t2 HH 2.0.x0 ==
ot X|BF 7] 715! QiO| Bl|HA| AIO|HRIAE S =S58t + U&LITH

P

= .
« RequireEncryptRequireDecryptE 7| AU S SSHMEF 535 U 55 5HEFLICEH O] 2k HT
2.0.x8| 7|2t LICt 2E AO|HEIAET} 7| 7Bl 2 &5 3tE|= 0| EAS A0 O ZLS At

SErLct

S M™of met M8 = UE gdEE MEZO| Z™EEULCH HH 1.7x2EHE MY |50
ZtAHgIo] 7| HA 2 gt L1 E|E MEZ S AWS Encryption SDK X|BLICH 7S HAMnt S =5t
dT2&E MEZS XIH5t= B AWS Encryption SDK 0|l @ F & BHetetL(ct.

{0l RS MASHe O 20| LW 5HH 700 A& AR MIMS ZHESMQ.

= @IEE! AWS Encryption SDK & 23 & 1 2|&EQ2I AES-GCM2 AI&35t04 CIO|EE ¢ &8st |55

st ZEMAE CIXEH MBS APQ‘W 1 A S SHE HAIX|S FEMD ME[MHE =elgtLlct a8

L} AES-GCM2 CHE F7|& At835t7| [EH--01| AMO|HEIAEE S5 355t Ol AHSEl= HIOIH 7|18 =5
I

A= ALEAPEHH FTL 43 EE M AOIHEAES =5

9 (=N) — —
X7 e = A&LCt o & S0{E 2ilE 7| AWS KMS key 2 AFE3t= 7o=|‘|‘ kms 'Decrypt ™
2Ol UE AFBA=E ZE5HX| D A E3HE MO|HEAEE MEE 4= QU&LICtkms :Encrypt.

ol ZXME &X[5t7| flal= & E3HE HAIXK| Zoi Bt SM CIX|E HE Y1 2[F(ECDSA) MEZ F
7tst= A2 AWS Encryption SDK X[HELICH ME d12[& METS AEStHE 2 Z8HE ZF HIA|
X|ofl CHaH LA| ZzlolE! 7|QF HE 2! 7| H0{Z AWS Encryption SDK A 443t |EP = CllolE 7|29| &

S5t ZHEIAE 0| I{E 2] 7|& AWS Encryption SDK M& 5t Zz2t0ol8! 7|& MM FLICH o|Z Al 5t

OfF T H=8 7|2 #Qlst= ChE MBS ddE + glgLIch ol du2lE2 H=E8 7|8 HAIX] 5l

el F7t 215 HlolEz gf 38l C|o|E Z|of HiQlEsto HIAIXIE =588 + U= MERTII HE
2| 71§ HEst AL ME #elo| dFE OIXIX| et == &Lich

MB Rl 5535t Al T8 d5 HISE FIHAIZILICH HIOIEE &5 8tste ALSALet CIOIEE =
Z3tots MERIL ME|TTF Z o™ MEO| 23 E[X| pf2 L 1E|E MEZE AL8stE X0l E5L

Ct.

CIXE ME 16

AWS Encryption SDK JHEER} 70| =

HICHE RSA AWS KMS 7|21 Z 38t AWS KMS 7|212 AWS KMS 7| =3
st C7ot 5537 Ztol FEE 5 A&Lich

il
>
<
12
<
il
™

- AWS KMS HEH 7|2
- AWS KMS ECDH 7|3
- Raw AES 7|&

« Raw RSA 7|3

- ®A|ECDH 7|3

>

WS Encryption SDK &S f 4]

I EZ 20| A= AWS Encryption SDK 7} CIO|E{E 23356t &5 5= HAIXIE iS5t
FLICEH O| IR EER= 7|2 7|2 AM8dl=E 7|2 T2 MHAE MEFLICH AFSAH X
ol I AE o CHEt REA[EH LHE 2 X El= 2 2o 7£39| GitHub 2lZX|EZ|E & E A

0
o IO I

£ 2t 331 AWS Encryption SDK AF&35t0{ HIO|E{E E S #fLICt ZF HIA|X|= 1R & HIO|E 7
SstELICE O™ X|HE eiE 7|E AF88H Tl|lolH 7|7t = sHELICH & E5E HIAIXIE =
AWS Encryption SDK = X|'d%t e & 7|& AF&35t0q StLt ol | &F =3t El Hi|o|E 7| & ai

SELICH OH OIS AO|HEAEE 23535510 Yt HIAE MA|X|E gHEHE &~ QlaLICH

AWS Encryption SDKOIIM A& 8t= 010l CHsl =20| R AI7F27? the section called “7H'E"2
(%) =t R o|.A-||O

7} CllO|E{E AWS Encryption SDK & & 3l 5t= dH

AWS Encryption SDK JHEER} 70| =

2. 7|3 & Uit HIAE H0|EHE 2E 5 HAME=of MEELICH H|ZOo| ofl MEdX of S5 ZAEIAES
MEst= 2ol E&LICH

3. 453t HMEE 7|20 =3t At R E QFELICE 7|22 HIAIX|of CHal YEH RIAE C|O|E 7|
stLtet XIHE 2t 2l 7|2 23 5tE sHE oI0|E] 7|2o] Ab2 StLHE BHetefLICt

4. 4Z3 HMEE Lt HIAE H|0|E 7|& AE5t04 CIO|HE &3 et & U HIAE O|0[H 9|§
AMIEHLICH 2338 HEIAEE NS 5te E(AWS Encryption SDK 23 Aldi) 253 HAME
453l HEIAEE 25 35E O|O|E{of ¥5 2o = HiQlElgh|ct.

5. 4353t HMEE ¢335tE OO|E, ¥5stE HIO|E 7| & 4535t HEIAEE X & 7|EF HIEHH O
E{(AtE 8t 32)7t Z& & Z =3 El HAIX|E ghetghlct

7+ &t 2 3HEl HIA|X|E AWS Encryption SDK 5% 3l 5= Wi

= A S EE HAXIE 5535tstn it HIAEE Btetst= HIAEE AWS Encryption SDK A S &L

b |

L3 3tEl HAIXIE 5586t 72 (E= OtAE 7| SZRH2 HIAIXIE gE35tste ol AFSE Rt =
9| S (o]

Z 7| & otLt7t S 3HE HAIX|e| &2 35HE HIO|E 7|18 §55HE =+ QU0q
OfF &fLich 7|2 X OtAE 7| 32 Atete| &Hdof et REM[EF LHE 2 the section called “7|2 = &
A MMe BEEHAIS.
1. CIOIEIE S 5518 4 /= B4 7|8 AL 5t0f 7|2 EE DhAE 7| Z2RE MNFLIC 258t
HAMSOl MBe 2T SUS 7122 ALBHIHL OHE 718 AR E 4 2Lt
2. AsstEl HAIXIQ 7|2 E 553 HMEo| MEgLIC.
3. 553t HAMEE 7|8 &= OtAH 7| X0l H 5 stE HAIX[C| &5 3+HE HIOIE 7| & stLIE
25315122 ABLITH 21T HOIE 718 TEsto] 22T HAK MRS M
4. 7|22 i 2l E 7|1E AtEs5to] A= 8HE C|O|EH 7| & stLIE S5 LICH H35tH 8Ho &
Ut HAE CloJE| 717t ZEELICH 712 EE 0FAE 7| SRV RIBE BT 717t 4554 C ol
B 7|1E& S35 = e 89 553t E£0| Auiguict
5 2353 HAMEE 2t HIAE O|0|E{ 7|2 AR50 O|O|E{E E53lstm Ut EIAE H|O|E] 7|2
ARISHH Y MAE GlO|EIS HrEELIC
(@) L ~ 2L .
oM X|HEl= g1 2|&E AMEZ AWS Encryption SDK
dEE NEE2 G dnelEd L 2 2o D2RILICH 535 A|IARIR SdDEE FHE AFE
501 AtO|HEIAEE M T LICtH

7t &= 3HEl HIAIX|E AWS Encryption SDK 5% 3t5t= 18

AWS Encryption SDK JHEER} 70| =

AWS Encryption SDK 2 _|_E| N &= 2 AES-GCMO|2t 5t= Galois/Counter Mode(GCM)2| 11 &
ot 53t EZ(AES) Y TEES AFR5t0] RA| CIO|E{E o5 35H8HLIC} = 256H|E, 192H|E L 128H]

&=3 7|18 AWS Encryptlon SDK X|ELICE Z7|5t HE{(IV)e| Zol= &4 128H0|EILCE. @l
39| Zol= &4 16HtO|ELICE.

7|2xo 2 = HMAC 7|gt extract-and- expand 7| R &(HKDF), ME & 256H|E & &3} 7|7} U
= AES-GCMO| = I 2|E ME S AWS Encryptlon SDK A& &LCt. 9—|'1 Mol 7| 7{5lo| &
Qe e 7| HUEL X|Hsts ¢ 2|1E MEZ S AWS Encryption SDK MEFL|CH O3 X| pfo ™
7| ot & MEo| UX|EH 7| HZO| ot il D E|E MEZ S MEIELICEH

& AES-GCM(Z| . ME, 7| HU £ &)

£ HMAC 7|} extract-and-expand 7| = & < (HKDF)0| 256H|E HIO|E{ & &
AES-GCM & 53} 7|18 £ &st= & 112[& MEZ2 AWS Encryption SDK HE &
CIX|= ME LD 2[E(ECDSA) MBE AWS Encryption SDK F7HELICH 7| A E X[&5H7] /8l 0]
gnz|lE Xﬂ—%&% t 3 3=l HIAIX|2] HIEC| O|Eof ?H“EI 7| 75! EXtGE(H|ZOo| ot Ho|H 7|

4 Ol 7| 7! EXL L Co|EH & =3l 7| Rt RAEt HXHE At&35t0{ HKDFE

3t 7|1& MSstod
gfLch = Bt S

s
>
|_|'|
30
H
o
L

AWS Encryption SDK &1 2|& MEZ

gl dnglE OOl ¥Es 7| 7R d1ElE MELIDEE 7| 715
ZO|(HIE)
AES-GCM 256 HKDF(SHA-384 ECDSA(P-384 HKDF(SHA-512
AME) 2! SHA-384 At AHE)
&)

HKDFE At8stH A+ = Ho|E & 58 7|& MAIE st AE EX|st CIoIE 7I1& Mot A
|

MES Qs ol XDEIE MEZ2 Y535} SHA| &4 L 12IF(SHA-384)1 &M ECDSAS AR EfL
Ct. ECDSAE 7|2 OtAE 7[of CHEr 524 1| HAIZ|X| A AR E 7|BHo 2 AL ELICH HIAIX] A
B2 HAIXI LRI HAIKIE 2Z3He HEHo| JEX| Felstn 22 4X| 7|5 MSELICH 53
OkAE] Z|of CHEt HEF o HAMoM & AHS R M Eoi| Cisl olo|E &5 3E 51835t CHE MEXt

MEOo| ol 553 & 5185t d<ol REFLICH

7| 7{5lo] et El AN E[&E MEZ S Z MO|HHAET} stLto| LR HIAEZR S5 5HE|T
Ct O|E #lall 58 due|&o CiEh o2 MEE CIoIE 7|2] X1 5FE AE Lot

[0l

i

HHE: AES-GCM(Z| . MY, 7| HA =& 19

https://en.wikipedia.org/wiki/HKDF

AWS Encryption SDK JHEER} 70| =

JE} RIH L 2E MEZ

= O|™ Tt o| s &S /el Ct3ut 22 oA & 12|& MEZ S AWS Encryption SDK X[&L
Cl Yeto 2 olg{8t &1 2|& MEZ2 AF83SHX| &t= 0| E&LICE X2 MEo| ds2 3 A
MalE = e M2 H 21 Q7| MEA olgdst ZRE flall 7l =7t =& E 7| AU MEZO| A
SELICH d8 H52 o 20| s{of 3t= oHEZZ|AHIOIME /s MY, 7| HA X 7| R =7t R AEZ
Ol A& M-S ElLct.

AES-GCM(Z| 718! gi2)

7| 70| g YIEIE B
B YTEE HMERS B A
2Lt 7| 74300] Z3HE 17
2l Alztol o 224 Zal|

7| 0f GloJE| 718 HB 3| e LIC THEka] ol
IHHAES OB UH HAE HARIZ 2288 4 2aLich 1
éXﬂ%E% ot Cf 2(+306101E) 25 5L HAIXIE AAIshod &
OlM0f 7ha =43t Mt obelLict.

=)
Ha
r|n
mln
i)
;

= 7| oM, 7| 7%, MEO| U= dnelE MEZD 7| ot & Dlo| AX|Bt A‘l”"% e g
2& Xﬂr:.-l_g AWS Encryption SDK X[& LICt 7| 7HEl0| gle 2 El& ME 22 AHS5tK| &
£ X0l E4Uct ¥ 2ot F2 7|/ 2 7| HAU2 TEEIX|D MBE2 gl °E_|_E|=. Xﬂ%E%
A&ste [ol E&LC a2{Lt o EE(AH 0l M5 Z2ntdo| due|E ME

A 7|1 AHY, 7| /L U MEO| ZHEE LTEE MEZS Ast= WOl 24

M3 9ie AES-GCM

Ir o

& Z3ole dzd & Fel UX|E MSsh= ECDSA MEO| gi&LICE siiE |
Z3tst= A8 AL CIOIEHE S35 8 stE MEAE SSotH AzE = U= 3

o

- OI--I—'E||=|' X'"l:ll_E A|'o al'l_ Zg‘l‘ 5' g g E—J 5' 7‘|9J0| = EI_I OEI--LIE||=| ;:-”I:I' I_;E A|'<3
A
=1
=]

7| 7t e dnElE MEZ2 7| R &+ & AI8stoi R 7I1E ot CHal oilofE] ¢f
d._‘-_ =1

5} 7|2 AES-GCM & 535} 7|2 AFRELICH O| MZ=Z2E AFR 50 A}o|u HAEE MA5
3

I'II' n

=l
o
A2

O|2{8F MZE = ol 2tol=2 e 2|l M o{EH EAIZ[T MAEE=XIof CHEF REMIEF LI 2 the section
called ‘20 2[& A" MMHE HZ5HAMR.

7|Et X|H 2D E2|IF

pal

I

&2 20

AWS Encryption SDK JHEER} 70| =

2} AWS Encryption SDK &7H AFHZ AWS KMS

E ArSstedH efE 7|12 7|8 = 0tAH 7| SZXAHE T4 AWS Encryption SDK&H{of &fLICt. 7| 2l
Z 27t e A2 AWS Key Management Service (AWS KMS)E A& 35t= Zd0| EZ&LICH ol B2 3
E of|A|od=7F AWS Encryption SDK Z 2 & LICFAWS KMS key.
o &% 2 835te{Ho| Hotes T2 aeiY 21o{o] 3= AWS SDK AWS KMS7F AWS Encryption SDK
ZI@8FL|CH AWS Encryption SDK 220/ E 2l0|E2{2l= AWS SDKs2+ &7 X5 stofof XZEHE
OtAE 7|18 KIHELICH AWS KMS.
OIMHE AFEE &H|E 5t24™ AWS Encryption SDKAWS KMS
1. B SMFLICt AWS A, dedg 2ot e{H AWS X|A MIE{o| M Amazon Web Services 7482
Mot 2 A3tstcdT of A SHok LI E BEZSMR.
2. OIE =35 E HMELICH AWS KMS key. E2H 2 AWS Key Management Service 7 X} 70|
Eo| 7| S XM L.
® Tip

AWS KMS key ZE2 12 WA 2 E A& stE{HO| 7| ID E= Amazon 2|44 O|F
(ARN)O| Z2EFL|CH AWS KMS key. AWS KMS key©| ID 2 ARNS 5O 74 AWS Key
Management Service 7H2 X} 7k0|=2| 7| ID 2! ARN 7|8 & Z3tMIL.

3. AHAMA 7| DS 2ot HAMA F7|E MMFFLICEH IAM AFSREQ| HAMA 7| DL 2o BMA F|E A
235t7LF AWS Security Token Service £ AF&3810{ HM|A 7| ID, EOF HAM|A 7| L MM EZO|
ZEE LA HOt X3 ZSHOZ M MMHE MMer = &LICt Eot 2 A|'E1|§ IAM AFE A} EE
= AWS (RE) AAEX A ™t AZE FH7| K3 B

CHA LAl K BB E MEste W0l £&
LICH
MM A F|IE ALE S04 IAM ALEXHE W/ EstEdH IAM AFE HE M| IAM AL S A B S EHESHA
2.
UA EOF XA ZZE HEHseA™ IAM AAS HEBEMO| A EeF X4 S8 2FE ®EsiMR

[

r Java, AWS SDK for JavaScript AWS SDK for Python (Boto) Z=& AWS SDK for C
++ (C2| AR)2| X[}t 3EH oA et AMA 7] 1D E'_O.J HM|A 7|E AHESHo{ AWS A+
EEH2 e LICH HAl X E 8BS ddst 32 MM EE T x|dsHofF gLCt

21

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html#guide-configuration
https://docs.aws.amazon.com/sdk-for-cpp/latest/developer-guide/credentials.html
https://docs.aws.amazon.com/sdk-for-cpp/latest/developer-guide/credentials.html

AWS Encryption SDK JHEER} 70| =

O] MxHE S35 AWS SDKsOI| AWS CHEH @30l MEE &= Q&LICH oF 45 2 &85=0| ZE M
AWS Encryption SDK 20| EHHE 2t2{Ct AWS KMS

5. E CRZ =304 Ax|ELICH AWS Encryption SDK. @S 2olE2{H AI35ltdes =2 I
ool Mx| X|EE HZESML.

Mkl

L

22

AWS Encryption SDK JHEER} 70| =

2 & A2l AWS Encryption SDK

AWS Encryption SDK = YA E& L 2 A& AL St0{ CIOIHE gH EEE = UZT MAHE
ARAELICh B2 2 MEI7F 7|22 2 ME{E[o] UX|BH LR Atells ERE 4&oletH MEiXo =

AEE HEFLICH

b

| A

=
o
o
>
Olo

a) = Z|& ™ E AWS Encryption SDKAHS &L
z} | Al HM 2 2 AWS Encryption SDKY2B|0|E8HM 2. o=
2 Hot K48 #835t0d E||0|E-| B35 & =+ d&Lct oto|a

|H == ol CHEF AHAMIE LI 2 X[2 R X 22| & o HH

>
oo
jo
z
2
ek
40
ol
rr
|H
Hu
I
AL Q)
o
Q
o
Hu
el
k
m

M BiEol A =0
gHEo 2 x|H BE

rr
e
>
2
|0
Hu
L
m
|>
i
Pal

rob

H 4TE0lS B o &7 5t 1 @ F waAlg Fo|7| s YUAIH E
2Tt UBLICH Ol2{8 YBlAS B MBEl= MBEME ASSIH Z2HM I ERE
| 27 oiEalFolME Padlol= g 4 Lt

O OH Of
M ob o
rir

tx
At

OII

7|2k

N
olo

e

£ 2 ALHIE 7|22 22 AWS Encryption SDK AAELICH 7ts5tH AHE 7|22 S ALE8t
M. 7|22t0l 48HO|X| i 8<% HEHOI e gnEl& MEZD Z2 oietE M3 g =

ot 12 ALSXIAZ AERL X|E 713, OtAE 7| S24H g3 714 ZE|RHCMM)et Z 2
MEX XIE 7I5E MBS ELICH ol2gh 13 CiehE ISt Ar8 st 7hsst 2ot lx[Lo{e
0|2 HIZ 2 34D,

IAE AFR

ok

—
e

s

d

oo
ol
l?ﬂ
ry

m

L

> fob

_,.
(o]
£

2 EZ3t ol olo| e US E?:.*%PE A3 A
ots [M= At olx|2
_|

of
|I=E| o535 %

m 0o
m

d

T g
H I

go D% 1o
>
N
=
0]

[>» 0o x

°

n

s >
2
o
i
Pal
0
* foi
5 o
U
T
ne i
ro
o

HL
Fol
g'l_l
rr
jn]
|_n
10
o
it
>
0
>
L -
lTI _

oME L& 35te ok & 53 HEIAE E AWS Encryption SDKX|HELICEH 2538 Al=0] AWS
Encryption SDK Btetét= & 3 3tEl HIAIX[2] &0l 2 =8 ZHRAEE AWS Encryption SDK At
EELICt of Z (70|40l M Lt HIAE O|O|E{ & ghetstT| Tofl, HIAIRIE 2 Z&tsts O AHSE

il

23

https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/

AWS Encryption SDK JHEER} 70| =

SZ3tste Ol A4S E

= | ef
lz23eid Ho{e o & A =otAl2.

&5 3t 5"|E“AE7} IHIAIXl
Ch AEMIEE LIS 2 AFS

r° mlm

rO

IE{H| 0| A S A28t AWS Encryption SDK 7t & 53| ZAEIAEE QI8 |C}

£ 138 Hlo|E{ 7|2 AWS Encryption SDK A445l04 2t Qut EIAE I:HIMH% &= SHELIc O
=S AL RH7E M3 8 e 7|E ArE5to4 CIOIE 7|18 =5t
MstH =352 HIOIEE 57 E = eiguct 77t E5 (x| &

AWS Key Management Service(AWS KMS)2|
M. HAlI AES EE= HA| RSA 7| At85te= 2
LiT- 40| ot AEE[R|E AFESIHML. SIEH
£ MH|&0f 2i¥E 71§ d8stn MEsts ZHol =2

v
|

(=] 5
oF @ E(HSM) EE=2 Z2 HSMs2 M35t
2 A2l AWS CloudHSMIL|C

7| elzgtol QI HIFHLIEE AE35t01 e E 7|oi| CHEF AMAE LRE AEXZT AMehstM 2.
A HED 22 D M| HEE THSGMR. AWS KMS keysE ALSE ME 2 At H=I2
THeE 7| GM U IAM A ALSE LD

thE 71 18
LEste meer otz S5ty M BAMR BfE 7|1§ X|Hste ol &4 718 F&LUCh
O|Z 7| 3= X|Z8t 7|8H AWS Encryption SDK At BfLICH O H| 3t8d o|= 8t of 5 35t 7|8k AL

S 4 QALICH 3 2 719l P AWS KMS CHE AWS HIH £ EIFolM 442 718 A8
R3t7 374Lt ALSE MOl 21k 712 2558 AT stof 50| FAELIC

o S 3t M AWS Encryption SDK 32 &l= 7|13 & OtAE 7| S24tes 2iE 7|18 RIHstoF &
Lict a2l AF&XF7E X8 el E 7|8t 25 AFSELICH =8 #HAIAES 7|3, HA| RSA 7|8,
JCEMasterKeysE At&5t0] 535t L 55 M= 2iE 7|1& X|gsHoF &Lt

-In
ﬂl&" =

P

tol

JB{LE AWS KMS 712 2 DHAE] 7| B2 AHE A8 3to] 22318 miE 21T 7|8 xIME Tt
Qi&LICH £ 2318 Gl0|Ef 7|2] HIEFEIOIE{OI M 7| AIEAHE 7HK{® AWS Encryption SDK 4
UBLICE 31T BT 718 RIBsHE 20| WFElE D AleLICH

OII

AWS KMS ZHZ! 7|2 =gt o] 2 AR E X|5te{H 22
- 2HE AWS KMS 71§ X|dste 7|22 ArSELICH 253t L 5535t Al o[2{8t 7|—2 AF& X7t
X H5t= XIGE 2 7|8t At g LCt
- AWSKMS OtAH 7| U OtAH 7| BZAHE AE5te AR HEH 1.7.x0| EUE HF 2= M
HAE AFEFLICH AWS Encryption SDK. X8t eid 7|20t 5355t |5 35t5t= S=2XE

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html#iam-policies-best-practices

AWS Encryption SDK JHEER} 70| =

MABHLICH B4 BE BT 712 S55tets OIAE 7| TRRO| MRS HE 1.7.x01M H O
& AR EIX| 2f o B 2.0.x01 M AR EI%i& LIC

S33HE E AWS KMS 2iE 7|& X|HstE 2ol A8™0Ix| i B¢ AM SSXE AEE &
A& LIt C & JavaScript AWS Encryption SDK 2l= AWS KMS M 7|22 R|HEfLIcH HM 2
C7t Qe OtAE 7| SE R BT 1.7.x 014 0llM Java & Python2 2 ALE & &= Q&LICH AWS

KMS 2HE 7|E A8 8 5331018t AF8 El= o|z8t AM S22 Xt= IO 7|18 &5 353 2 E 7|
A&t TZ AWS Encryption SDK 0| HA|X o2 X|A|ELIC.

M ZTRE ABHOF SHE FS HM TE 1S5S AB3tod ST TRV ABHE BT 7|8

A A Z

HMBHBLICE oIS S04 AWS KMS 2IF 4 7|22 S AWS 2Iel 2§ 7I8t AL g 3fLIch S5

of BiE 7|BF AL SHE = AWS KMS 712 2 AWS KMS DIAE] 7| S2XHE 748 45 Lt
OH

L
AWS A, 227 Bt gof JF X 0| 7| E& I IAM HHE ALE 510 AWS KMS 2HE Z|of CHet

CIXIE ME AE

M 7|s0| U
7t HAIRIE &
2 MHO| UE

& NE&Z2 M8ste X0l 7}” E&LCH C|x|E MHS HIAIK| & AR
R golstn miAIx| 2 S3HCH B E H{xlole 7|Exo
=2 AWS Encryption SDK

>01
I
F

Hot 27 Agol CIXIE MEo| 23 E|X| o2 B2 CIXIE MEBo| gle dnEl& MEZE M
g+ UELICH et 53] & AEX 50| HIo|HE Y& 3tst CHE AEXF 2&0| s OO]
EE S&3tst= 490l CIXIE MBE M8ste W0l E&LICH

7| HAUME
7l S 2ot 7S M8ste WOl 7tE E4LICH 7] {32 Io|HE 3 &8t 1/ H0IEH 7|9
IDE QIS 2M F 7i ol of Ui HIAE MAIX|E BHEte = U= MOIHEAEE 535356t
A= PN s

= HH 2.0x2E 7| HAUE AHE5to] =5 & |5 30i CHet A X| @S AWS Encryption SDK
NI 7[2Moz2 BE HAXR|l= 7| 70l S8l dE3te(n |SESHELICE of HE 1.7.x2

7| 7S ZE MO|HEIAEE 53538 AWS Encryption SDK = Q& LICt. O] HEE 0|5t T Al
EX7H HE 2.0xE 3 Mo 2 HiZste= o] E20| EI= 5 A LR&LIC

7|1 7H5lol Chet X[Hole Mz2 Sn2[& MEZD 7] 70| ¢le Ao|HEAEZEC B 30H0[E
o 2 MO|HEAEE ddst= M=2 AR E4Ao] ZEHEILICH o] dAlE 50 OIxlE I
£ Z|A3steto] CHF E 2| AFEXI7E 7| 7{8l2| O|™dE F& &+ UL T F&LICH ofE2|70lMol =2
7| 7H5lE HIg-g&tstHL7F 73 gl

25

AWS Encryption SDK JHEER} 70| =

HAIXIE 5%
gfLict

ol

I AWS Encryption SDK st & {&& = UX|Bt T H| ok 5t= Z<o|Bt 7ts

et s 3tE HlolE 7|2 = Mgt

S Z3tstE HAIXK|, &3] MZ[E + el EX0IM 2 HAIX|e] SStECI0E 7o =5 Xﬂ?_
ot= Aol E&LICHL HE2E 53535t + @l oH2 d3stE ololH 7|71 Z&E HAIXIE

Z 3totE X[21 AlZHo| Hoix| 1, HIE 0| soiLt, AIEHE S/ot= EtAL A o Z2[7i0]M 9] AS%
Ol XMstxlz, 7| Q= ettt 14 & 75 80| A&LICH MEto| glg B2, & E3HE HAIX|= =[CH
65,535(2"16 - 1)712| ef 32t El C|O|E] 7|& ERE + U&LICH XtAEH LIE2 & 5 =HEl COlE

Olz{8t 2 Ata|Q| 7|8t0| El&= AWS Encryption SDK 2.0t 7|50 CHEt REAIE LI82 AWS E9
- i

e |
2O0| FYE Zeto[2E & A 53 BAIM Keylds & 7| 70! H ZotM2.

26

https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK JHEER} 70| =

T4 AWS Encryption SDK

AWS Encryption SDK = At&35t7| &= & MAEIR{ELICH AWS Encryption SDK 0l o2 #+4 M
O UX|TH 7|EZt S CHE 22| ofZEE[A0|MHAIM A8X 0|1 S E T AMBSHAH MEYE LICE 3+ X|Pt
MNsE MG HLE AFZRL X|H 7158 ZEstod MAISE M 2 8E ZH&loF & == A&LICH

T3S FME M AWS Encryption SDK 28 AL E ZHE St =|CH8t Blo| 23SHMIL2.

e
K
L}

i1}
ﬂ
o
ini
o
m
N

i
FO |1z |[fob
5]
m
0%
0x

o
o
ol
Loj
iy
J2
>
m
O
<
<
-

x

ME!

[]
M

o
0
12
nx
0

>
Im >
ru

| CllolE= 2
1 7| 7 &

e OO

m

=2 38HY elof M

AWS Encryption SDK £ 0421 ZZ I 210{Z NS E/LICH @10 732 MZ CIE wWiloZ 73E
o= QUX|E S| o2 HASED SLE Vs Xﬂ%ﬁ}_'.:_% MAEIRELICH et o 2 of E 2|71 0]
M3 S EE|E 2H0|HE2IE AFBRILICH 5HX|T S T3S QIFt Z2 Y HoiE MY X
&LICH o€ E0{ 7|2 22 E 5= B2 AWS Encryption SDK for C EE=& ME{E 4= Ql&LCt
AWS Encryption SDK for JavaScript.

cH & 7| AEd

£ 138 & Clo|E| 712 AWS Encryption SDK 24433t04 ZF HIA|X|E & 3}EtL|Ct T|o|E] 7|
el AMAE5HK| §f= & Clole 7|1& Fd8tHLE, BEISHHU AHSE 227t gl&LIth ol AWS

Encryption SDK AIS2 2 & ErL|C}.

ZZIEfY dof M= 57

AWS Encryption SDK JHEER} 70| =

StX|BF ZF Cl|o|E 718 Y= 3t6t2d™ el = 7|12 5Lt o4

£ CtYet 37|10 AES CHE 7| & RSA HICHE 7|8 X|4E
Service(AWS KMS) CHE &5 3F AWS KMS keysT X|&&
of MelL|Ct. metM stES o] 2ot 2E E=ot 22 7| 2l
J40| Z&LICH AWS KMS.

4 MEHSHOF & LICH. AWS Encryption SDK
L|Ct S8 AWS Key Management
| Ch 2N 7|0 ObFAd QI LY Al AP K}

2t MH|IAOM & E38 7|8 AL8StE

|I=I

o2
ton

o =5 35E ?/E el e 7|18 X[™H5te{™ 713(C, Java, JavaScript, NET & Python) EE= OtA
Xt(Java, Python, AWS Encryption CLI)E AFSELICE stLte| 2iE 7§ RI-E st AL, E Lt
10| o424 2 E 7|& XIHE = U&LICH o4 EH*‘*' 7|& Ar&5to4 ClOo|E 7|& eEste B

l= S HoIH 7|e] A= 2 E & ELct ef 3 3tE oo|E Z|(2HE 7|F stLh)=7H AWS

Encryption SDK Bt&tet= o 5 51 E MHAIX|of &5 5HEl Cl|o|E{Qt &4 MEELICH CIo|EE 8353 st

A7 HA 2HE 7| & stLHE AF85to &5 5HE ClO|E 7|18 =353 AWS Encryption SDK 3H0F &

L|CtH

m

([N Fol
o ™
]1|_| il

_OH o
N1 0°"

N
w [
s sl

7|3 E= OtAEH 7| 32 A AWS KMS key HIME X[E5t2{H X|HEI= AWS KMS 7| A/HEAE AFS
stLct 7|9 7| &!EHX}O{I CHEE XEMIEH L& 2 AWS Key Management Service 7HEF X OFLHA{ Q] 7| A
HXIE AWS KMS & ZE8HAI2.

* AWS Encryption SDK for Java AWS Encryption SDK for JavaScript AWS Encryption SDK for
PythonEE = AWS 53l CLIZE AF235tod 253518 | KMS 7)ol &8 7| AlExH(Z| ID, 7] ARN,
HE O|E = HE ARN)E A E = U&LICH E AF83504 & 31 AWS Encryption SDK for CE
= 7] ID £= 7| ARNEH ALE & = Q&L

I

S3te m KMS 7|2| %! 0|8 == HE ARNS X|H3HH AWS Encryption SDK £ sHE &2
HZE 7| ARNS XME5HX|BH HE 2 MHESHK| pb&LICH HEE HAS T OlolE 7|18 =S58t
O A2 El= KMS 7|0l d&e FX| 2&LICt

Cal
sifo

L}

ob g mo
r|r P

A 33
C(5d & 7|18 XI™sts E9)0lM S23He M= 7| ARNS AHE504 AWS KMS keysE
F gfLiCt ol 27 AFE2 AWS Encryption SDKS| 2 E 2104 F#0i M EIL|C}.

1> 2
[

AWS KMS 7|2l 2 &5 35tstHeE &3 3tE OlolE 7|2 HIEHH O|E AWS KMS key 02| 7| ARN
2 AWS Encryptlon SDK MZ&ELICH ¥ 2= M 235358 [AWS Encryption SDK = 2HE! 7|
E Ar835to &3 3HE HIOIE 7|18 25 3556H7| Mol 7|2(E= OtAE 7| 22 XHol SYs 7| ARN
O LIEILI=X| %*&Iah—ltk CHE 7| MHEWE Mgor“ B AlHER7 S 7|E B E AWS KMS
keystHEE AWS Encryption SDK =& QA5 HLE AFE 35t K| b &LCt

HAIAES 7| == #A|RSA 7| Ho{E 7|2 2| 2f¥E 7|2 X[HEstE{H LZAm|0|A 2t 0|2 KISl o
gLich otAE 7| 32 XAH0IM Provider IDE WA HO|AN SHE ST Key IDE 0|.=.01| S L
Ct SZ23E e A35te M AFSEH 7t Hes| SUE HUADO|AL O|FE 2 RHAl 21E 7o

EHZ 7| AMEd 28

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK JHEER} 70| =

AtE35HoF gLich CHE WY _| |A E= Ol 2 M85t % 7| #+d AWS Encryption SDK 2 47}
SUStHEIE = 8 7|12 QIASHLE AFBSHR| E&LICEH

CtE 2| AHE AWS KMS keys

ol A AWS Key Management Service (AWS KMS) Ct& 2| 7|& 2iE 7|2 AL " = U&LICHAWS
Encryption SDK. 3tLI 2|0l A CHE 2| 7|2 25 385tE 42 CHEWM #E O 2™ 7|18 AH&5H0d
S535E AWS Z|Te U&LICHAWS 2. ChS 21T 7(of| CiE X2 2| A 2.3.x AWS Encryption
SDK 2! AWS Encryption CLIS| H{F 3.0.x01| = I EIi& LICt.

AWS KMS C}& 2|1 7| 7| 4 @49 7| ID AWS 2|™ 71 S8t MZ CHE AWS KMS keys 2| &
ALICH olzEt &3l 7|18 O E 2Tl O x| S YEE 712 WA H AL E == U&LICt OF8 2T 7|
= 2™zt EZE‘- 2i0| & 2|0l L= 35t m CHE 2ol = =3t of 5t

B4 A|LLEIRE K| HELICH AWS KMS. CHE 2|T Z|of CHEt REA[EF LHE 2 AWS Key Management

Service 7H%*XF 7I0|EQ9| CtE 2™ 7| AHE 2 & ESIM L.

=S
= olutxiQ| XHsH 22 al

[e][]

CHE 2™ 718 K|35t 7| {51 o= AWS KMS multi-Region-aware 7|21 OFAE 7| 32 XAH7F AWS
Encryption SDK Z & ElLICH 2 Z2 a2 o] MfER CHE 2|1 Al 7|3 = B 2™ 7[9t Ot &
2™ 7|8 25 R[HE U

. Ol 2|F 7)o B E% 2™ QA 7|5 &= B 2| AWS KMS 7|2
7|2 AHO|HEAE 258

i 0‘”
>
1
ok
C
I

- CF& 2™ 7|9| B multi-Region-aware 7| = C|O|E{E °*§§}?_F Ao SO 2| M 7| B
X|Hs 2ol i CHE 2™ SXH|E 7|2 AH836t0 AO|HEAEE dliS5tedn A= & LCH

KMS 7|1& &= 71 ol¢ M&steE CFE 2In 214 7|13 K OtAE 7| S2R0ME B 21 X TS E
M 718 of] 7 X|HE & QJA&LICH aBLE Zh 23 OFE 2l SXE 7| MEoIA stLte| 7|8k X|HE

A
=2 T

4 QLI 71 ID7H 22 7| AlMRIE S JH 014 XIRI5HH ARt $E 0| MmErLICH

EE Y BIM 712 U 0tAE 7] SSRS E OHE 218 AWS KMS 7|18 A8 E 45 laLich o

o ot 33t5t T =3 3hsi2iM SUs 2Nl M SYs OHE 2T 718 ArSsiob L

2 U OtAE 7| B2 RS CIOJEIE 25518 7|20t AO|HEAE =S558 ATHL

C
CIS oMl ChE 21X 719 M2 CFE 21T Q1A 7|2 2l otAE 7| 22 XS AFE36lo{ |Oo|E{E &
S35lsln 25355t W2 HodELICE O] K| ME us-east-1 E|F2| HIO|IE{E & S3tstn 2t

us-west-2 2|Mo| & CHE 2™ SAE 7|18 AH85t0qd 2[™ o L|O|E{E S5 3H&LICt o] oA E
Al 7| Mof of| M| CHES 2|7 7| ARNS AWS H|Zo| K58t Zto 2 HEEL|CE

CHE 21T AL8 AWS KMS keys >9

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key

AWS Encryption SDK JHEER} 70| =

C

ChE 2I™ 7|12 =&l sted™
s::Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder() HIMEE AtE35t04 7|3
g QUAEASIELICH CHE 2I™ 7|18 XIEE LIt

ol ZHEFEH ofMlofls =3l HEAETL TR El0]
o

IR
E dxE EXtE LS5t I 555 MHES HESHAM L.

A ol Ml= GitHub2l AWS Encryption SDK for C 2|Z X|E 2|0{| A kms_multi_region_keys.cppE
I.

SESC RN

/* Encrypt with a multi-Region KMS key in us-east-1 */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl12ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
ws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder().Build(mrk_us_east_1);

/* Create a session; release the keyring */

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),

AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Encrypt the data
*
*/

aws_cryptosdk_session_process_full(

session, ciphertext, ciphertext_buf_sz, &ciphertext_len, plaintext,
plaintext_len));

aws_cryptosdk_session_process_full is designed for non-streaming data

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

CHE 21T AL8 AWS KMS keys 30

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK JHEER} 70| =

C#/.NET

O

|= SE(HXILIOF 558)(us-east-1) 2| CIE 2| 7|2 ¥ E 356tz CHE 2T 7(2] 7| A
HHRtet X[HE 2|2 AWS KMS 20| E 7} = CreateAwsKmsMrkKeyringInput ZXIE
QUARAASZIEELICH 17 CFS CreateAwsKmsMrkKeyring() HIMEE ALE35tod 7|21 WM E
L|Ct

CreateAwsKmsMrkKeyring() HIME= H& 5| stLte| CHE 21T 7|2 7|22 M ELICE O S
2™ 7|2 H|ZE 8 o4t e E 7|2 25 38524H CreateAwsKmsMrkMultiKeyring() HIMEESE
ArSgfLct.

ok

MA o|Al= GitHub2| AWS Encryption SDK for .NET Z2|Z X|E 2|0l M
AwsKmsMrkKeyringExample.cs& & Z3HAM|2.

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1

string mrkUSEastl = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Create the keyring

// You can specify the Region or get the Region from the key ARN

var createMrkEncryptKeyringInput = new CreateAwsKmsMrkKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USEastl),
KmsKeyId = mrkUSEastl

};

var mrkEncryptKeyring =

materialProviders.CreateAwsKmsMrkKeyring(createMrkEncryptKeyringInput);

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()
{
{"purpose", "test"}
};

CHS 2™ AFE AWS KMS keys 31

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK JHEER} 70| =

// Encrypt your plaintext data.
var encryptInput = new EncryptInput

{
Plaintext = plaintext,
Keyring = mrkEncryptKeyring,
EncryptionContext = encryptionContext
};

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

AWS Encryption CLI

O| Mo M= us-east-1 2IX2| CtE BT 7|18 AFE35t0{ hello. txt THUS &= 3tefL(ct. Of of
MoMeE 21 QA E AH&35t04 7| ARNZ X|HSEE 0] od|A|0f A= --wrapping-keys ItEt0|
E{2| region £42 AI&5tK| L& LICE.

ciE 7|0 7| ID7} B X|HSHX| b= B --wrapping-keys key=$keyID region=us-
east-11t Z2 --wrapping-keysQ| region £ At&5t0d IS XIHE = U&LICH

Encrypt with a multi-Region KMS key in us-east-1 Region

To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSEastl=arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$mrkUSEastl \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

Java

P

o

Cts 21 71§ A8 5o &= 35t52{T AwsKmsMrkAwareMasterKeyProvider& QIAEAS)
DCs 2™ IIER

A oldl= GitHub2| BasicMultiRegionKeyEncryptionExample.java AWS Encryption SDK for
Java 2| ZX|E2|0|MH MME B XSHA2.

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the client

CHE 21T AL8 AWS KMS keys >

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java

AWS Encryption SDK JHEER} 70| =

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1

final String mrkUSEastl = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Instantiate an AWS KMS master key provider in strict mode for multi-Region keys
// Configure it to encrypt with the multi-Region key in us-east-1
final AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
AwsKmsMrkAwareMasterKeyProvider

.builder()

.buildStrict(mrkUSEastl);

// Create an encryption context
final Map<String, String> encryptionContext = Collections.singletonMap("Purpose",
"Test");

// Encrypt your plaintext data
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> encryptResult =
crypto.encryptData(
kmsMrkProvider,
encryptionContext,
sourcePlaintext);
byte[] ciphertext = encryptResult.getResult();

JavaScript Browser

CHE 2™ 7|2 & 5315t24™ buildAwsKmsMrkAwareStrictMultiKeyringBrowser () A
EE AI83l04 7|32 BtE1 ot & 2™ 7|18 X[-EFuch

A A= GitHub2| AWS Encryption SDK for JavaScript 2|Z X|E 2|0 A
kms_multi_region_simple.ts& & X35tMI2.

/* Encrypt with a multi-Region KMS key in us-east-1 Region */

import {
buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,

CHE 21T AL8 AWS KMS keys 3

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK JHEER} 70| =

} from '@aws-crypto/client-browser"'

/* Instantiate an AWS Encryption SDK client */
const { encrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

/* Instantiate an AWS KMS client
* The AWS Encryption SDK for JavaScript gets the Region from the key ARN
*/

const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-east-1 */
const multiRegionUsEastKey =
'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcdl2ab34cd56ef1234567890ab’

/* Instantiate the keyring */

const encryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowsexr ({
generatorKeyId: multiRegionUsEastKey,
clientProvider,

1)

/* Set the encryption context */
const context = {
purpose: 'test',

/* Test data to encrypt */
const cleartext = new Uint8Array([1, 2, 3, 4, 5])

/* Encrypt the data */
const { result } = await encrypt(encryptKeyring, cleartext, {
encryptionContext: context,

1)

CHE 21T AL8 AWS KMS keys !

AWS Encryption SDK JHEER} 70| =

JavaScript Node.js

CHE 21 7|2 & Z 35248 buildAwsKmsMrkAwareStrictMultiKeyringNode() HIMEE
Atg3stod 7|21 BtED O 27 7|18 RIGg .

M| o M= GitHub2l AWS Encryption SDK for JavaScript 2|2 X|E 2|0 M
kms_multi_region_simple.ts& & X 35IA[2.

//Encrypt with a multi-Region KMS key in us-east-1 Region
import { buildClient } from '@aws-crypto/client-node'

/* Instantiate the AWS Encryption SDK client
const { encrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

/* Test string to encrypt */
const cleartext = 'asdf'

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
* Specify a multi-Region key in us-east-1
*/
const multiRegionUsEastKey =
'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcdl2ab34cd56ef1234567890ab’

/* Create an AWS KMS keyring */
const mrkEncryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
generatorKeyId: multiRegionUsEastKey,
1

/* Specify an encryption context */
const context = {
purpose: 'test',

/* Create an encryption keyring */
const { result } = await encrypt(mrkEncryptKeyring, cleartext, {
encryptionContext: context,

1)

CHE 21T AL8 AWS KMS keys 5

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts

AWS Encryption SDK JHEER} 70| =

Python

AWS KMS C}S 2™ 7|12 ¢f %3524 MRKAwareStrictAwsKmsMasterKeyProvider () Ol
MEE Ar835t1 OHE 2| 7|18 RI™ggLIct

M| o M= GitHub2| AWS Encryption SDK for Python 2| X X| £ 2/04 A
mrk_aware_kms_provider.pyS & Z &AM 2.

* Encrypt with a multi-Region KMS key in us-east-1 Region

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F

Specify a multi-Region key in us-east-1
mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider

in strict mode

strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
key_ids=[mrk_us_east_1]

Set the encryption context
encryption_context = {
"purpose": "test"

Encrypt your plaintext data

ciphertext, encrypt_header = client.encrypt(
source=source_plaintext,
encryption_context=encryption_context,
key_provider=strict_mrk_key_provider

N

OSo2, AO|HEIAE S us-west-2 EIT2E O|SA|ZLICH AO|HEIAE & CHA| &

£ &Lt

o
et
e
n

3t

us-west-2 Z|™HHM 43 ZEZ AMNO|HEIAEE 535 355t2{H us-west-2 2| A CIS
2™ 712] 7| ARN2 AF&3t0{ CHE 2™ Q14| 7|5 8 QUABASHELICH CHE 2I™H(Y S5 SHE us-

CHE 21T AL8 AWS KMS keys 36

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK JHEER} 70| =

east-1 Z&)0of U= T LC
keyoll CH5to 21X 2t S &S

IS 2| 712| 7| ARNS X|H5IH CHE 2™ 1A 7[5 71 sliE AWS KMS
AN
T

HE oM S35 W CHES 2/ 214 7|5 0i= 7] ARNO| EEfLICH o{7|o M= &3 O 2
T 71e| Zt Zgroll M stLtel 7] ARNEF S{& LICH

Ol oM E A&ist7| o oiA| CtS 2l 7| ARN2 2| &3 222 HEELICHAWS AE.

C

CtE 2™ 7|18 AF835t0] Y4 ZE0i|M =53t 6te{H
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder() HIMEE AF&35t04 7| &
2 QIAEASIEL|CE 2 (us-west-2) 2|0 &4 CHE 2| 7|18 KI™HELCH

MA olAl= GitHub2| AWS Encryption SDK for C 2| Z X|E 20| A kms_multi_region_keys.cpp2

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
ws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder().Build(mrk_us_west_2);

/* Create a session; release the keyring */

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),

AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_session_set_commitment_policy(session,
COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Decrypt the ciphertext
& aws_cryptosdk_session_process_full is designed for non-streaming data
*/

aws_cryptosdk_session_process_full(

CHE 21T AL8 AWS KMS keys 37

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK JHEER} 70| =

session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C#/ .NET

Im ¥ oo M
mlm o koo
01>| n
o
_>i U
wt b
1o N
N 1]
> =
Y o|;0

Z
R
- (@]
=] JZ
H t
> i
TR
" In
N 2
% S5
= O I
% 0 |-0||
< o
@ o
2y
%o
11 o)
= o o
S 2 qu
1o o
> N
= o
s
rr
o
u el
o oo
© o
kl

CreateAwsKmsMrkKeyrlng() HMEE AHE35H0q 0|' Lol EP% 2 KMS 7|2 OF 2™ 7|32
MMEFLICEH

A o|Ml= GitHub2| AWS Encryption SDK for .NET 2| Z X|E 2|0 M
AwsKmsMrkKeyringExample.cs& & X 35HAM2.

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Specify the key ARN of the multi-Region key in us-west-2
string mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Instantiate the keyring input

// You can specify the Region or get the Region from the key ARN

var createMrkDecryptKeyringInput = new CreateAwsKmsMrkKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
KmsKeyId = mrkUSWest2

};

// Create the multi-Region keyring
var mrkDecryptKeyring =
materialProviders.CreateAwsKmsMrkKeyring(createMrkDecryptKeyringInput);

CHE 21T AL8 AWS KMS keys 8

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK JHEER} 70| =

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = mrkDecryptKeyring
I
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

us-west-2 2|0 B CHE 2| 7|18 A&35t01 5535+524™ --wrapping-keys Zt2t0|E{ 2
key SM4E AI835104 7| ARNS X|HELICH

Decrypt with a related multi-Region KMS key in us-west-2 Region

To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSWest2=arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl12ab34cd56ef1234567890ab

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$mrkUSwest2 \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--output .

Java

ol

U4 D E0|M B =35t2{ AwskmsMrkAwareMasterKeyProvider& QAEASIS 1 2 X

(us-west-2) 2|0 & O S 2[™ 7|8 RI-EELCH

A o|ME E24™ GitHub2l AWS Encryption SDK for Java 2|Z X|E 2[04| A
BasicMultiRegionKeyEncryptionExample.java® & Z35HAI2.

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)

CHE 21T AL8 AWS KMS keys 39

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java

AWS Encryption SDK JHEER} 70| =

.build();

// Related multi-Region keys have the same key ID. Their key ARNs differs only in
the Region field.

String mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/

mrk-1234abcdl12ab34cd56ef1234567890ab";

// Use the multi-Region method to create the master key provider
// in strict mode
AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
AwsKmsMrkAwareMasterKeyProvider.builder()
.buildStrict(mrkUSWest2);

// Decrypt your ciphertext

CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto.decryptData(
kmsMrkProvider,
ciphertext);

byte[] decrypted = decryptResult.getResult();

JavaScript Browser

U REMM S535524MH buildAwsKmsMrkAwareStrictMultiKeyringBrowser () HIAf
EE AI83l04 7|32 BHE D 24 (us-west-2) 2l &2 CHE 2| 7|8 KIEELICt

A A= GitHub2l AWS Encryption SDK for JavaScript 2|Z X|E 2|0l M
kms_multi_region_simple.ts& & X 5tAMI2.

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

import {
buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,

} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

declare const credentials: {

CHE 21T AL8 AWS KMS keys 20

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK JHEER} 70| =

accessKeyId: string
secretAccessKey: string
sessionToken: string

/* Instantiate an AWS KMS client
* The AWS Encryption SDK for JavaScript gets the Region from the key ARN
*/

const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-west-2 */
const multiRegionUsWestKey =
'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab’

/* Instantiate the keyring */

const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowser ({
generatorKeyId: multiRegionUsWestKey,
clientProvider,

1)

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDecryptKeyring, result)

JavaScript Node.js

HA 2o M 553t5+29™ buildAwsKmsMrkAwareStrictMultiKeyringNode() HIME
AME73t04 7|2 BHE 1 2 Z(us-west-2) 21T &t CHE 2| 7|8 X[- g LCt

A A= GitHub2l AWS Encryption SDK for JavaScript 2|Z X|E 2|0 M
kms_multi_region_simple.ts& & X 5tAMI2.

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */
import { buildClient } from '@aws-crypto/client-node'
/* Instantiate the client

const { decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'

CHS 2™ AFE AWS KMS keys 71

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts

AWS Encryption SDK JHEER} 70| =

* Specify a multi-Region key in us-west-2
*/
const multiRegionUsWestKey =
'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab’

/* Create an AWS KMS keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
generatorKeyId: multiRegionUsWestKey,

1)

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(decryptKeyring, result)

Python

HA REOM 55 355t2{MH MRKAwareStrictAwsKmsMasterKeyProvider () HAMEE ALS
5tod OtAE 7| S2XHE e LICE 24 (us-west-2) 2|0 B & CHF 2[™ 7|18 XI-'LIC

HMA o|Al= GitHub2| AWS Encryption SDK for Python 2| Z X|E 2|0 M
mrk_aware_kms_provider.pyE & X 5HAMIL.

Decrypt with a related multi-Region KMS key in us-west-2 Region

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F

Related multi-Region keys have the same key ID. Their key ARNs differs only in the
Region field

mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/

mrk-1234abcdl2ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider

in strict mode

strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
key_ids=[mrk_us_west_2]

Decrypt your ciphertext

plaintext = client.decrypt(
source=ciphertext,
key_provider=strict_mrk_key_provider

’ —

CHE 21T AL8 AWS KMS keys 72

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK JHEER} 70| =

AWS KMS CHE 2 7|8 AL 5t0d A B olM S 518 25 USLICh A4 D=ollM =558
IH= OffH AWS KMS keys XIB5HX| S&LICh (B 2151 AWS KMS ZiAY 7|2loi| CHEt Xh A3t LIS
o MMg A SHMRAWS KMS Zi4 72 AL)

OF 2ld 7|z 45358 39 dM 2E0M OE 2T A 7|28 22 2lre| ¢ OHFE 2l
71§ ME3lod SE3HE AITELICH EXSX| i B2 & C

£0]| b A
Encryption SDK £ &5 3t0f|l AFSElE CHE 2| 7|of Ci$t &t 21 &2 AT SHK| ob&LCh.

(® Note
24 2EO|M O 21X 214 7|28 A8 5tod CIOIE| B 22 stets e 25t sfedo| Al
guict
= .

CHS e AM Z2EdM CHE 2™ Q1A 7|28 AH85t0d 5 §_§P st= WS 2oiELICH & X"t
Xl efoo 2 AWS KMS key= CHE AAO|AM 21 7HX{QF AWS Encryption SDK OF gfL|C}. 7}5 5t
M E2H 2H8 BAMoE X|HSML. 2EX| plemE =2 :LEHF:'J 1012| AWS SDKof| T El 2|
oA 22 2| E AWS Encryption SDK 7FX{S L|C}.

O| oM E A=lst7| ™ol ol&l| #H ID2t CHE 2T 7| ARNE 2| R &8 2f2 2 HELICE AWS A,
C

CtE 2T 7|8 AH85to] M B S35t 6ted™

Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder() HIMEE AL&35t0{ 7|3
£ BlE3I1 Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter: :Builder() HIHEE
AE5to] A HEE YUESLICH 2 2 XI™Hét2{M ClientConfigurationg Holst
AWS KMS Z2I0|21E0| M O|& X|™H§Lct.

™A oM= GitHub2| AWS Encryption SDK for C 2|2 X|E 2|0 A kms_multi_region_keys.cpp&

SEXC RS

/* Decrypt in discovery mode with a multi-Region KMS key */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct a discovery filter for the account and partition. The
* filter is optional, but it's a best practice that we recommend.

*/

CHE 21T AL8 AWS KMS keys 13

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK JHEER} 70| =

const char *account_id = "111122223333";
const char *partition = "aws";
const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter

Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter::Builder(partition).AddAccount(account_id).Buil

/* Create an AWS KMS client in the desired region. */
const char *region = "us-west-2";

Aws::Client::ClientConfiguration client_config;
client_config.region = region;
const std::shared_ptr<Aws::KMS::KMSClient> kms_client =
Aws : :MakeShared<Aws: :KMS: :KMSClient>("AWS_SAMPLE_CODE", client_config);

struct aws_cryptosdk_keyring *mrk_keyring =
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder()
WithKmsClient(kms_client)
.BuildDiscovery(region, discovery_filter);

/* Create a session; release the keyring */

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),

AWS_CRYPTOSDK_DECRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
/* Decrypt the ciphertext
& aws_cryptosdk_session_process_full is designed for non-streaming data
*/
aws_cryptosdk_session_process_full(
session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C#/ .NET

AWS Encryption SDK for .NET0{| A multi-Region-aware ZAM 7|22 M4d3te{H S3oil i
3l AWS KMS Z2t0|HE & 7IX{ 2= CreateAwsKmsMrkDiscoveryKeyringInput 24
ek KMS 7|1& Ed AWS THE|M AWS 2T AHo E HMEtste MEIX AN HEE ¢l

ABASHEL|CH O3 O 2 2R 2 CreateAwsKmsMrkDiscoveryKeyring() H|

CHE 21T AL8 AWS KMS keys 22

AWS Encryption SDK JHEER} 70| =

MEE 3 E£&LIct ™A oAM= GitHub2l AWS Encryption SDK for NET 2|2 X|E [0 A
AwsKmsMrkDiscoveryKeyringExample.cs& & X 5HM 2.

E 0|49l AWS |0 CHall CHS 21 1Al AM 7|12l2 BHEr{™
CreateAwsKmsMrkDiscoveryMultiKeyring() MIMEZE AFE3l04 CHE 7|22 BHEHLE
CreateAwsKmsMrkDiscoveryKeyring()2 AFE36t0d CtE 2|™ Q1A ZHAM 7|21 o] 7H BHE
C}2 CreateMultiKeyring() MIMEE Ab835lod 6tLto| Ot S 7|2lo 2 ZAssiLIC

0| M= AwsKmsMrkDiscoveryMultiKeyringExample.cs& & Z5HAM| 2.

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the AWS Encryption SDK and material providers

var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();

var materialProviders =
AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();
List<string> account = new List<string> { "111122223333" },;

// Instantiate the discovery filter

DiscoveryFilter mrkDiscoveryFilter = new DiscoveryFilter()

{

AccountIds = account,
Partition = "aws"

// Create the keyring
var createMrkDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
DiscoveryFilter = mrkDiscoveryFilter
};
var mrkDiscoveryKeyring =
materialProviders.CreateAwsKmsMrkDiscoveryKeyring(createMrkDiscoveryKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = mrkDiscoveryKeyring

i

CHE 21T AL8 AWS KMS keys a5

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryMultiKeyringExample.cs

AWS Encryption SDK JHEER} 70| =

var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

AM DM 8535524 - -wrapping-keys IF2H0|E{2Q| discovery "M% At28fLct.

discovery-account & discovery-partition 432 MEf AL O|X|TF HE E|= A ILICH

2|2 X|'H35t24™ o] B0l - -wrapping-keys THEtO|E{Q| region £430| Z & £|o{oF & LICt.
Decrypt in discovery mode with a multi-Region KMS key

$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-account=111122223333 \
discovery-partition=aws \
region=us-west-2 \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--max-encrypted-data-keys 1 \

--buffer \

--output .

24 2|82 X|-H5ted™ builder() .withDiscoveryMrkRegion Zt2tO/E{E AFEELICH OB
X| &t o™ AWS Encryption SDK & AWS SDK for JavaOld M E S| Z2E 24 2™ 7}

A A& E24™ GitHub2| AWS Encryption SDK for Java 2% X|E 2/0i| A
DiscoveryMultiRegionDecryptionExample.java® & X 3HAHIL2.

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)

.build();

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

AwsKmsMrkAwareMasterKeyProvider mrkDiscoveryProvider =
AwsKmsMrkAwareMasterKeyProvider

CHE 21T AL8 AWS KMS keys 76

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryMultiRegionDecryptionExample.java

AWS Encryption SDK JHEER} 70| =

.builder()
.withDiscoveryMrkRegion(Region.US_WEST_2)
.buildDiscovery(discoveryFilter);

// Decrypt your ciphertext

final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto
.decryptData(mrkDiscoveryProvider, ciphertext);

JavaScript Browser

CHEE O s 2™ 7|18 M85t M ZEo|M S5 3t 6te{H
AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser() HAMEE AtE

i
r
n

MA oldl= GitHub2| AWS Encryption SDK for JavaScript 2|Z X|E 2|0 M
kms_multi_region_discovery.ts& & Z3IMIL.

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,

} from 'eaws-crypto/client-browser"'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient()

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

}

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2', credentials })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

CHE 21T AL8 AWS KMS keys 27

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts

AWS Encryption SDK JHEER} 70| =

/* Create an AWS KMS discovery keyring */

const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser({
client,
discoveryFilter,

1)

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, ciphertext)

JavaScript Node.js

CHEE CHE 21T 7| Ar85tod A4 REo|AM S5 35tH6tE{H
AwsKmsMrkAwareSymmetricDiscoveryKeyringNode() HIMEE AFEELICH

MA oldl= GitHub2| AWS Encryption SDK for JavaScript 2|Z X|E 2|0 M
kms_multi_region_discovery.ts& & XM 2.

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
AwsKmsMrkAwareSymmetricDiscoveryKeyringNode,
buildClient,
CommitmentPolicy,
KMS,

} from 'eaws-crypto/client-node’

/* Instantiate the Encryption SDK client
const { decrypt } = buildClient()

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2' })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */

const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringNode({
client,
discoveryFilter,

1)

/* Decrypt your ciphertext */

CHE 21T AL8 AWS KMS keys 18

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_discovery.ts

AWS Encryption SDK JHEER} 70| =

const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, result)

Python

CHE 2| 7|18 AF85t0d M 2 E0M S 53562
MRKAwareDiscoveryAwsKmsMasterKeyProvider() HMHEE AtS

M| o M= GitHub2| AWS Encryption SDK for Python 2| X X| £ 2/04 A
mrk_aware_kms_provider.pyE X 5HAMIL.

Decrypt in discovery mode with a multi-Region KMS key

Instantiate the client
client = aws_encryption_sdk.EncryptionSDKClient()

Create the discovery filter and specify the region
decrypt_kwargs = dict(
discovery_filter=DiscoveryFilter(account_ids="111122223333",

partition="aws"),
discovery_region="us-west-2",

Use the multi-Region method to create the master key provider

in discovery mode

mrk_discovery_key_provider =
MRKAwareDiscoveryAwsKmsMasterKeyProvider(**decrypt_kwargs)

Decrypt your ciphertext

plaintext, _ = client.decrypt(
source=ciphertext,
key_provider=mrk_discovery_key_provider

o 1E|E NER M

XM oie 7|2 OlolH 71§ €& 3t5t7| @18 oded CHE L HICHE &
Encryption SDK X|&gfLICt. 22{Lt o248t H|o|H 7|& At&3tod Cl|o|E
Encryption SDK 7|22o 2 7| utd, C|X|E ME 2! 7| 7{2]1t &1 AES-GC

=
g = 3tet

- 11—

HE 9nola NEZe2 YEELIN. 7IE Yu2ls MER0l oyl ohE2lolto] e It
S40| EXIot A L0215 MBEZS MUY £5 ASLIC oS Soi, YR A= e CIxIH A

greE MEZ U

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK JHEER} 70| =

CHS XM= & =3t Al CiA 2 nEl& MEZ S MEfets YHE 2oiFLICE o]l dXolM= 7| 7
£ 27 AHU2 URIE CIX|E ME2 s HE AES-GCM E 1 E2[& MEZ S MEELICH CIXI™E M
Ho| z& x| o2 dnE|FE MEZCRE H58tole 32 SESE M FME M 523 ZEE A
SELICH ol 2E& MEE AO|HEAETL HHL|M dilistes ZEZ AEZU F53 A 7MY /8
gLt

C

Ol CHA| 1 2|& MEZE XI'H3l2dH CMME BAIMo 2 MM AWS Encryption SDK for C3H
OfF rL|ct O&H ChS aws_cryptosdk_default_cmm_set_alg_idZE CMM & ME4SH &1 2|&
MNEZD &M At ELct.

/* Specify an algorithm suite without signing */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
ws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* To set an alternate algorithm suite, create an cryptographic
materials manager (CMM) explicitly
*/
struct aws_cryptosdk_cmm *cmm =
aws_cryptosdk_default_cmm_new(aws_default_allocator(), kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

/* Specify the algorithm suite for the CMM */
aws_cryptosdk_default_cmm_set_alg_id(cmm, ALG_AES256_GCM_HKDF_SHA512_COMMIT_KEY);

/* Construct the session with the CMM,
then release the CMM reference
*/
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(alloc,
AWS_CRYPTOSDK_ENCRYPT, cmm);
aws_cryptosdk_cmm_release(cmm);

/* Encrypt the data

greE MEZ U 50

AWS Encryption SDK JHEER} 70| =

Use aws_cryptosdk_session_process_full with non-streaming data

*/
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
session,
ciphertext,

ciphertext_buf_sz,

&ciphertext_len,

plaintext,

plaintext_len)) {
aws_cryptosdk_session_destroy(session);
return AWS_OP_ERR;

CIXIE M 20| 22 3% ClOlEIE =258
SHLIc) 2210 M2 AOlHEA S HiE B7 S8} AL

/* Decrypt unsigned streaming data */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
ws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* Create a session for decrypting with the AWS KMS keyring
Then release the keyring reference
*/

struct aws_cryptosdk_session *session =

aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT_UNSIGNED,
kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

if (!session) {
return AWS_OP_ERR;
/* Limit encrypted data keys */

aws_cryptosdk_session_set_max_encrypted_data_keys(session, 1);

/* Decrypt
Use aws_cryptosdk_session_process_full with non-streaming data

greE MEZ U 51

AWS Encryption SDK JHEER} 70| =

*/
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
session,
plaintext,
plaintext_buf_sz,
&plaintext_len,
ciphertext,
ciphertext_len)) {
aws_cryptosdk_session_destroy(session);
return AWS_OP_ERR;

}
C#/ .NET
AWS Encryption SDK for .NETOI|A| CHA| 1 2|&E MEZS XIH 524 Encryptinput ZHA| 2]
AlgorithmSuiteId £4& X|I™HE LICH. AWS Encryption SDK for NETO|lE ME 5t d1E2&E
MEZ2 AEste ol A SE = JUe 47t T E[0] A&LICH
AWS Encryption SDK for NETOlE 25358 AEZ|UE [MEE AIO|HEIAEE ZX|stE O
ME7} ei&LIct.ol etolE B2l AEE|Y CIO|E{E X|EHK| L7 2 ILICH

// Specify an algorithm suite without signing

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Create the keyring

var keyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

var keyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput

{
Plaintext = plaintext,
Keyring = keyring,
AlgoxrithmSuiteId = AlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY
ATEE MEZ MEY 52

https://github.com/aws/aws-encryption-sdk/blob/mainline/AwsEncryptionSDK/runtimes/net/Generated/AwsEncryptionSdk/EncryptInput.cs
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/net/Generated/AwsCryptographicMaterialProviders/AlgorithmSuiteId.cs

AWS Encryption SDK

JHeER 7Hol=

};
var encryptOutput = encryptionSdk.Encrypt(encxyptInput);

AWS Encryption CLI

O| oMo M= hello. txt

nS &E3e M --algorithm It2tO|E{E AFE 504 CIX|E B
ol iz ¢1El& MEZE I

Specify an algorithm suite without signing

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--algorithm AES_256_GCM_HKDF_SHA512_COMMIT_KEY \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt \
--output hello.txt.encrypted \

--decode
Ol oMol MHE 55358 | --decrypt-unsigned TZFOIE{E AL ELIC} O] mEtO|E{= S35
o ezdn £33 AEE|YSt= CLIE AHE35H04 MBE|X| A2 AO|HEIAEE 55318 [Al
&3le Aol E&LCH

Decrypt unsigned streaming data

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890@ab

$ aws-encryption-cli --decrypt-unsigned \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--max-encrypted-data-keys 1 \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

53

AWS Encryption SDK JHEER} 70| =

Java

CHAl & 2|& MEZ2 XI1Y5i24™ AwsCrypto.builder().withEncryptionAlgorithm()
HAMEE ASELICH Ol Mo ME CIX|IE MEO| gis OHA D 2[&E MEZ S RI™EELICH

// Specify an algorithm suite without signing

// Instantiate the client

AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
.build();

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a master key provider in strict mode
KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Create an encryption context to identify this ciphertext
Map<String, String> encryptionContext = Collections.singletonMap("Example",
"FileStreaming");

// Encrypt your plaintext data

CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData(
masterKeyProvider,
sourcePlaintext,
encryptionContext);

byte[] ciphertext = encryptResult.getResult();

=35 3E ?I HIo|HE AEE[YE = createUnsignedMessageDecryptingStream() H|
MEE AME835t0{ 5536t ZE MO|IHEAET MEE|X| et =X| & QlghLct.

// Decrypt unsigned streaming data

// Instantiate the client

AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.withMaxEncryptedDataKeys(1)
.build();

// Create a master key provider in strict mode

greE MEZ U 54

AWS Encryption SDK JHEER} 70| =

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Decrypt the encrypted message

FileInputStream in = new FileInputStream(srcFile + ".encrypted");
CryptoInputStream<KmsMasterKey> decryptingStream =
crypto.createUnsignedMessageDecryptingStream(masterKeyProvider, in);

// Return the plaintext data

// Write the plaintext data to disk

FileOutputStream out = new FileOutputStream(srcFile + ".decrypted");
IO0Utils.copy(decryptingStream, out);

decryptingStream.close();

JavaScript Browser

L

i dn2lE METS X-5t24™ suiteld Tt2t0|E{E AlgorithmSuiteIdentifier &7
& 2tk A AbSELICH

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Encrypt your plaintext data

const { result } = await encrypt(keyring, cleartext, { suiteld:
AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
encryptionContext: context, })

=535t8 e EF decrypt HAMES ASELICH Hete X7t 2AE2|YE X|5HX| 7| 2o
=t X{2| AWS Encryption SDK for JavaScript 0= decrypt-unsigned 2E7} Qi&LICH.

// Decrypt unsigned streaming data

e
Kl

u

0
Rl
I
M
rx

jul

AWS Encryption SDK

// Instantiate the client
const { decrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Decrypt the encrypted message
const { plaintext, messageHeader } = await decrypt(keyring, ciphertextMessage)

JavaScript Node.js

L

S ot

CIx|E A glo] 23 3
Ch MHE AFO|HEAE 7} 274 s

A LdoElE MERS XI'E5l24™ suiteld It2tO|E{E AlgorithmSuiteIdentifier &7
=T AFSELICE.

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

// Encrypt your plaintext data

const { result } = await encrypt(keyring, cleartext, { suiteld:
AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
encryptionContext: context, })

decryptUnsignedMessageStream= A& &L
|f & L|C}.

=2
x
In U
rr

// Decrypt unsigned streaming data

// Instantiate the client
const { decryptUnsignedMessageStream } =
buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt

& MEZ M=

56

JHeER 7Hol=

AWS Encryption SDK JHEER} 70| =

const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringNode({ generatorKeyId })

// Decrypt the encrypted message

const outputStream =
createReadStream(filename) .pipe(decryptUnsignedMessageStream(keyring))

Python

ol

ot
=

| gt 2 2|E2 XI'H5t2{™ algorithm It2tO|E{E Algorithm R7HE it &7H AHR
|t

o 0
C 2

Specify an algorithm suite without signing

Instantiate a client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F
max_encrypted_data_keys=1)

Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

Encrypt the plaintext using an alternate algorithm suite
ciphertext, encrypted_message_header = client.encrypt(
algorithm=Algoxithm.AES_256_GCM_HKDF_SHA512_COMMIT_KEY, source=source_plaintext,
key_provider=kms_key_provider

)

ma
L |
| |
_

CIXI= ME gio] = =HE HAIXIE S23He M, £ 2E2|Y ol 523 HE decrypt-
oy =

unsigned 2EZ[Y E ArSELch

Decrypt unsigned streaming data

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_R
max_encrypted_data_keys=1)

greE MEZ U 57

AWS Encryption SDK

JHeER 7Hol=

Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

Decrypt with decrypt-unsigned

with open(ciphertext_filename, "rb") as ciphertext, open(cycled_plaintext_filename,

"wb") as plaintext:
with client.stream(mode="decxypt-unsigned"”,
source=ciphertext,
key_provider=master_key_provider) as decryptor:
for chunk in decryptor:
plaintext.write(chunk)

Verify that the encryption context
assert all(
pair in decryptor.header.encryption_context.items() for pair in
encryptor.header.encryption_context.items()
)

return ciphertext_filename, cycled_plaintext_filename

Rust

AWS Encryption SDK for Rustol| A CHA| D 2|& MEZ S XIHsttiH g=38
algorithm_suite_id 48 X|&gLICH

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),

ol M

greE MEZ U

58

AWS Encryption SDK JHEER} 70| =

Go

("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle6)
.send()
.await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(raw_aes_keyring.clone())
.encryption_context(encryption_context.clone())
.algorithm_suite_id(AlgAes256GcmHkdfSha512CommitKey)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

& FEZ O %9

AWS Encryption SDK JHEER} 70| =

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "AES_256_012"

// Optional: Create an encryption context

encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: key,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagls,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err !'= nil {
panic(err)

// Encrypt your plaintext data
algorithmSuiteId := mpltypes.ESDKAlgorithmSuiteIdAlgAes256GcmHkdfSha512CommitKey
res, err := encryptionClient.Encrypt(context.Background(), esdktypes.EncryptInput{

Plaintext: [1byte(exampleText),
EncryptionContext: encryptionContext,
Keyring: aesKeyring,

greE MEZ U 60

AWS Encryption SDK JHEER} 70| =

AlgoxrithmSuiteId: &algoxrithmSuiteld,

D)
if err != nil {
panic(err)

}
ot 5 3= O|o|E{ 7| A8t
2t = 3tEl HAIXIS| 2= 3HE CIO|E] 7|2| %[CH =& MBHE &= U&LICH ol 2 Al 7|52 AH8F
HASSE M HE FHE IS BXISHAHL 555 M & AO|HEIAEE EX[E = UA&LICH
Ol A 5t 7| QIZ 2ol CH5to ELRSHH HIRO| =1 Ao E ARXQl & £t whx|EhL|Ct
2SSl El CIO|E 7| & AMEtete A2 AT = gle 220 HAIXKIE 528 M 71 KRS ELICH
CHE ol A= 3tE HIAIX|oe e =8tol| AL El= 2HE Z[0tCt &= 38L&l T|O[H 7|7} stLbA /UX|2tH
2 & 3l HIA|X[ol= Z=|CH 65,53570 2] @ = 5tE HIO|E 7|7t Z&E = UA&LICH 24 oMol ZAX=
=¥ Ilo| & E5HE 0| 7|18 AHE5t0d A E3tE HAIXKIE FEE = UX[EH 0| B ol AWE =
S 3HE £ i&LICh ek AWS Encryption SDK £ HIA|X|2| &t 5 3HE O|0IE] 7|18 AZIE 7K
et = sEl Zt CIo|E 7|& |55 35tste{n AT &Lch.

ot 5 sE O|o|E{ 7|1& A|EH5te{ MaxEncryptedDataKeys ut2tO/e{E AtEFLICE of mt2tolE =
AWS Encryption SDKH{™ 1.9.x & 22 xBE| X|HEls ZE T2 32 210{0l M AL & 4 A&LICH
Ol MEH AHEO|H 2E 35t U 5535 Al REELICEH EPQ oMol M= Al 7tR[e| MEZE CHE 2iE 7|2
ot 5 5t El HIO|E{E S5 3} 8fLICH MaxEncryptedDataKeys Z/2 322 MHE|0of & LICH

}ol

@)

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
ws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_arnl, { key_arn2, key_arn3 });

/* Create a session */
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,
kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

2= 2HE ClolE 7| Mgt 61

AWS Encryption SDK JHEER} 70| =

/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 3);

/* Decrypt */
size_t ciphertext_consumed_output;
aws_cryptosdk_session_process(session,
plaintext_output,
plaintext_buf_sz_output,
&plaintext_len_output,
ciphertext_input,
ciphertext_len_input,
&ciphertext_consumed_output);
assert(aws_cryptosdk_session_is_done(session));
assert(ciphertext_consumed == ciphertext_len);

C#/.NET

AWS Encryption SDK for .NET0I| A & 3 3}El H|0|E 7|& A $t5tE4™H AWS Encryption SDK
for NETO{ CHEt 2CtO|MEE QUAEASIS T MEIX MaxEncryptedDataKeys It2t0|E{E &
Zto 2 M™EELc O™ k2 F+4E AWS Encryption SDK QIAEIA 0| M Decrypt () HIAM

// Decrypt with limited data keys

// Instantiate the material providers
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig
{
MaxEncryptedDataKeys = 3
};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

// Create the keyring
string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;
var createKeyringInput = new CreateAwsKmsKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

etz stE HIolE 7| ATt 62

AWS Encryption SDK JHEER} 70| =

i

var decryptKeyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = decryptKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Decrypt with limited encrypted data keys

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$key_arnl key=$key_arn2 key=$key_arn3 \
--buffer \
--max-encrypted-data-keys 3 \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

Java

// Construct a client with limited encrypted data keys
final AwsCrypto crypto = AwsCrypto.builder()
.withMaxEncryptedDataKeys(3)
.build();

// Create an AWS KMS master key provider

final KmsMasterKeyProvider keyProvider = KmsMasterKeyProvider.builder()
.buildStrict(keyArnl, keyArn2, keyArn3);

// Decrypt

final CryptoResult<byte[], KmsMasterKey> decryptResult =
crypto.decryptData(keyProvider, ciphertext)

JavaScript Browser

// Construct a client with limited encrypted data keys

2= 2HE ClolE 7| Mgt

63

AWS Encryption SDK

JHeER 7Hol=

const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string
}
const clientProvider = getClient(KMS, {
credentials: { accessKeyId, secretAccessKey, sessionToken }

1)

// Create an AWS KMS keyring
const keyring = new KmsKeyringBrowser({
clientProvider,
keyIds: [keyArnl, keyArn2, keyArn3],
b

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

JavaScript Node.js

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

// Create an AWS KMS keyring

const keyring = new KmsKeyringBrowser({
keyIds: [keyArnl, keyArn2, keyArn3],

1}

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

Python

Instantiate a client with limited encrypted data keys
client = aws_encryption_sdk.EncryptionSDKClient(max_encrypted_data_keys=3)

Create an AWS KMS master key provider
master_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(

key_ids=[key_arnl, key_arn2, key_arn3])

Decrypt

2= 2HE ClolE 7| Mgt

64

AWS Encryption SDK JHEER} 70| =

plaintext, header = client.decrypt(source=ciphertext,
key_provider=master_key_provider)

Rust

// Instantiate the AWS Encryption SDK client with limited encrypted data keys

let esdk_config = AwsEncryptionSdkConfig::builder()
.max_encrypted_data_keys(max_encrypted_data_keys)
.build()?;

let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Generate ‘max_encrypted_data_keys' raw AES keyrings to use with your keyring
let mut raw_aes_keyrings: Vec<KeyringRef> = vec![];

assert!(max_encrypted_data_keys > @, "max_encrypted_data_keys MUST be greater than
0");

let mut i = 0;
while i < max_encrypted_data_keys {
let aes_key_bytes = generate_aes_key_bytes();

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aes_key_bytes)
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle)
.send()
.await?;

raw_aes_keyrings.push(raw_aes_keyring);
i+=1;

// Create a Multi Keyring with “max_encrypted_data_keys ™ AES Keyrings

2= 2HE ClolE 7| Mgt 65

AWS Encryption SDK

JHeER 7Hol=

Go

let generator_keyring = raw_aes_keyrings.remove(Q);

let multi_keyring = mpl
.create_multi_keyring()
.generator(generator_keyring)
.child_keyrings(raw_aes_keyrings)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client with limited encrypted data keys
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{
MaxEncryptedDataKeys: &maxEncryptedDataKeys,

)

if err !'= nil {
panic(err)

}

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "RSA_2048_06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Generate 'maxEncryptedDataKeys™ raw AES keyrings to use with your keyring

shE Clolef 7| AIgt

66

AWS Encryption SDK JHEER} 70| =

rawAESKeyrings := make([]Jmpltypes.IKeyring, @, maxEncryptedDataKeys)
var i int64 = 0
for i < maxEncryptedDataKeys {
key, err := generate256KeyBytesAES()
if err !'= nil {
panic(err)
}
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: key,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagl6,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err !'= nil {
panic(err)
}
rawAESKeyrings = append(rawAESKeyrings, aesKeyring)
1++

// Create a Multi Keyring with “max_encrypted_data_keys"™ AES Keyrings
createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
Generator: rawAESKeyrings[0],
ChildKeyrings: rawAESKeyrings[1:],

}
multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
createMultiKeyringInput)
if err !'= nil {
panic(err)
}

M T M
g 7|18 A8RIIL X|EE 7|28 KMEtst=
FEQE 32 ¥ 718 xIEstR

I I oS
.ol ZEO|ME SHE KMS 7|12 AK8H7HLE M AE AW
S (@]

67

o

=
e
o
0z
0x

AWS Encryption SDK

7-|AH EI:O-”A—I E_$_§|.5HOI: 3|.E 79

3%
E Mgtete 44 HEE AM8ste X

ChS E& ALSotod AY EE{o| mtE|M ZIE HlstM e

2™ Partition
AWS 2| aws
= 2d™ aws-cn
AWS GovCloud (US) Regions aws-us-gov
O Mol ofMoflMe AM LE{E BtE= WHE Ho{ELICH ZEE ME35L7| ™ol of|A| 2E2 AWS
AE U otE|Mo| f 28 2t 2 HiELICH
C
A oAM= AWS Encryption SDK for C2| kms_discovery.cppE & X 5HAI2.
/* Create a discovery filter for an AWS account and partition */
const char *account_id = "111122223333";
const char *partition = "aws";
const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter
Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter: :Builder(partition).AddAccount(account_id).Buil
C#/ .NET
A ol A= AWS Encryption SDK for .NET2] DiscoveryFilterExample.cs& & X 35HM 2.
// Create a discovery filter for an AWS account and partition
List<string> account = new List<string> { "111122223333" };
DiscoveryFilter exampleDiscoveryFilter = new DiscoveryFilter()
{
AccountIds = account,
Partition = "aws"
ZHAM 2] MY

68

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/DiscoveryFilterExample.cs

AWS Encryption SDK JHEER} 70| =

}

AWS Encryption CLI

Decrypt in discovery mode with a discovery filter

$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-account=111122223333 \
discovery-partition=aws \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--max-encrypted-data-keys 1 \

--buffer \

--output .

Java

A of M= AWS Encryption SDK for Java2| DiscoveryDecryptionExample.javag& & A 35HAM L.

// Create a discovery filter for an AWS account and partition

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

JavaScript (Node and Browser)

A oA E =244 AWS Encryption SDK for JavaScript2| kms_filtered_discovery.ts(Node.js) &
kms_multi_region_discovery.ts(E2}2X)E EHEHA2.

/* Create a discovery filter for an AWS account and partition */
const discoveryFilter = {

accountIDs: ['111122223333'],

partition: '

aws',

Python

M| olAl= AWS Encryption SDK for Python2| discovery _kms_provider.pyE & X 5HAMIL.

Create the discovery filter and specify the region

Z4 AH
==

1

B 4o 69

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryDecryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS

Encryption SDK THLRE 7H0|=

decrypt_kwargs = dict(
discovery_filter=DiscoveryFilter(account_ids="111122223333",

partition="aws"),
discovery_region="us-west-2",

Rust

Go

let discovery_filter = DiscoveryFilter::buildex()
.account_ids(vec![111122223333.to_string()])
.partition("aws".to_string())
.build()?;

import (
mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes

)

discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{111122223333},
Partition: "aws",

}

Hett #Est HHAE CMM 714
Lot o33l HHYAE CMME A8 5104 23} ahedol| 255t A=A @78 4 QlaLich @
S5t UM AE = H|HO| ot 7|-gh Hjo MEQLICH 55t HHMAE = &5 st H|o[Eof 22X
2 HQIYEDE LES 2555t O SU A58 HAAET WRELICH T ¢35t HHAE
CMMZ At 8ste B2 ZE &35t &l =55 S &0 ZHE(0{0F 5= E &S5t HHAE 7|(H
7))& stLt ol X[E& & UA&LICH

(® Note

I+ o33 HUAE CMME TS BIFol AR X HELIC

« 9| 4% 3.x AWS Encryption SDK for Java
« for .NET BHH™ AWS Encryption SDK 4.x

70

fol

ton
[
1
[>
Im
I
0]

AWS Encryption SDK JHEER} 70| =

o MEIX ot S 3| X2 32Xt 2t0|EB{2|(MPL) &1t &7H AF2 8= AWS Encryption
SDK for PythonZ&d < I:H7H 4.x.

« Go AWS Encryption SDK & 9| {7 0.1.x O 4f

2ot 535 HEAE CMME AFE5t0{ CIO|EE Y E3tete B2 XIHEE HT & StLt=
OHCOO|EE 558 += U&LICE

2S5t A= AFERI7L R|HE 23t ZHEHAEN EHRet ZE 2E 35 HEAE 7|71 ZEE[0] U=X]
AWS Encryption SDK & Q18} ncryption SDK ML |C}.
== 7|7t otil 7|-gt W02t st Elof, A 35 HJoi M EretEl= A5 5HE HIAIX[e] o it &
AEZ MEEL|CE

U
rr
pal
0
rok
no
fol
ton
R
i
[>
m
; fok
e =
(0)]
m

=355 Al 25 7|8 LBt e 2E 7|24 Ho{7t =& El 4535 HEAEE XN slofF &L|Ct AWS
Encryption SDK =0| ¢33 HEHIAEQ of 5 5= M A|X|Q| S AME =l 7|-Zt T 0{E At25t0] &
35 YoM X[Hal dE5 HAHAEE T ELICH AWS Encryption SDK oA 224 °*§_§F
HEIAEE T EY = gl 42 5535 &rdo| At g4 717 Z£&El 7|-24f Hofo =2
e ?:.E—. P':H L3l El HAIXIE 228 = eigLict 2535 Al X|1™et JAot sYet 7]-2f Ho{E

23t A0 M Be 710} OfF 28 M K| MBFHH T2FHMR
LAl RIBE 4= Qlofof gLk B4 718 XAy

CIS Ao ME Eest 535 ZHEIAE CMM2E AWS KMS 7|2l = 7|8 8kLCt.

C#/ .NET

var encryptionContext = new Dictionary<string, string>()

{
{"encryption", "context"},
{"is not", "secret"},
{"but adds", "useful metadata"},
{"that can help you", "be confident that"},
{"the data you are handling", "is what you think it is"}

e
fol
ton
[
1
[>
Im
I
0]

71

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK JHE R} 74Ol

=

Java

i

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = kmsKey
};

// Create the keyring
var kmsKeyring = mpl.CreateAwsKmsKeyring(createKeyringInput);

var createCMMInput = new CreateRequiredEncryptionContextCMMInput
{
UnderlyingCMM = mpl.CreateDefaultCryptographicMaterialsManager(new
CreateDefaultCryptographicMaterialsManagerInput{Keyring = kmsKeyring}),
// If you pass in a keyring but no underlying cmm, it will result in a failure
because only cmm is supported.
RequiredEncryptionContextKeys = new List<string>(encryptionContext.Keys)

};

// Create the required encryption context CMM
var requiredEcCMM = mpl.CreateRequiredEncryptionContextCMM(createCMMInput);

// Instantiate the AWS Encryption SDK

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// Create your encryption context

final Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("encryption", "context");

encryptionContext.put("is not", "secret");

encryptionContext.put("but adds", "useful metadata");
encryptionContext.put("that can help you", "be confident that");
encryptionContext.put("the data you are handling", "is what you think it is");

ne

to

Yol

=

[
1
[>
Im
I
0]

72

AWS Encryption SDK JHEER} 70| =

// Create a list of required encryption contexts
final List<String> requiredEncryptionContextKeys = Arrays.aslList("encryption",
"context");

// Create the keyring

final MaterialProviders materialProviders = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsKeyringInput keyringInput = CreateAwsKmsKeyringInput.builder()
.kmsKeyId(keyAzrn)
.kmsClient(KmsClient.create())
.build();

IKeyring kmsKeyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Create the required encryption context CMM
ICryptographicMaterialsManager cmm =
materialProviders.CreateDefaultCryptographicMaterialsManager(
CreateDefaultCryptographicMaterialsManagerInput.buildex()
.keyring(kmsKeyring)
.build()
);
ICryptographicMaterialsManager requiredCMM =
materialProviders.CreateRequiredEncryptionContextCMM(
CreateRequiredEncryptionContextCMMInput.buildex()
.requiredEncryptionContextKeys(requiredEncryptionContextKeys)

.underlyingCMM(cmm)
.build()
);
Python
=kl

ot 5 5} ZAEIAE CMMI AWS Encryption SDK for Python E7HE AFE35t2dH ME S 2t
FO|22{2|(MPL) = At&3HoF &Lt

[nf]

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create your encryption context
encryption_context: Dict[str, str] = {
"keyl": "valuel",
"key2": "value2",

e
fol
lgﬂ
[
1
[>
Im
I
0]

73

AWS Encryption SDK JHEER} 70| =

"requiredKeyl": "requiredValuel",
"requiredKey2": "requiredValue2"

Create a list of required encryption context keys
required_encryption_context_keys: List[str] = ["requiredKeyl", "requiredKey2"]

Instantiate the material providers library
mpl: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS keyring
keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
kms_key_id=kms_key_id,
kms_client=boto3.client('kms', region_name="us-west-2")

)

kms_keyring: IKeyring = mpl.create_aws_kms_keyring(keyring_input)

Create the required encryption context CMM
underlying_cmm: ICryptographicMaterialsManager = \
mpl.create_default_cryptographic_materials_managex(
CreateDefaultCryptographicMaterialsManagerInput(
keyring=kms_keyring

required_ec_cmm: ICryptographicMaterialsManager = \
mpl.create_required_encryption_context_cmm(
CreateRequiredEncryptionContextCMMInput(
required_encryption_context_keys=required_encryption_context_keys,
underlying_cmm=underlying_cmm,

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client

e
fol
lgﬂ
[
1
[>
Im
I
0]

74

AWS Encryption SDK

JHeER 7Hol=

let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;

let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Create your encryption context

let encryption_context = HashMap::from([
("keyl".to_string(), "valuel".to_string()),
("key2".to_string(), "value2".to_string()),
("requiredKeyl".to_string(), "requiredValuel".to_string()),
("requiredKey2".to_string(), "requiredValue2".to_string()),

1);

// Create a list of required encryption context keys

let required_encryption_context_keys: Vec<String> = vec![
"requiredKeyl".to_string(),
"requiredKey2".to_string(),

1;

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(

input=kms_multi_keyring_input

// Create the required encryption context CMM

let underlying_cmm = mpl
.create_default_cryptographic_materials_manager()
.keyring(kms_keyring)
.send()
.await?;

let required_ec_cmm = mpl
.create_required_encryption_context_cmm()
.underlying_cmm(underlying_cmm.clone())

ne
to

=

[
1
[>
Im
I
0]

75

AWS Encryption SDK JHEER} 70| =

.required_encryption_context_keys(required_encryption_context_keys)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = defaultKmsKeyRegion

1))
// Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",

e
fol
ton
[
1
[>
Im
I
0]

76

AWS Encryption SDK

JHeER 7Hol=

}

// Create a list of required encryption context keys

requiredEncryptionContextKeys := []string{}

requiredEncryptionContextKeys = append(requiredEncryptionContextKeys,
"requiredKeyl", "requiredKey2")

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create the AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: utils.GetDefaultKMSKeyId(),
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)

// Create the required encryption context CMM
underlyingCMM, err :=
matProv.CreateDefaultCryptographicMaterialsManager(context.Background(),
mpltypes.CreateDefaultCryptographicMaterialsManagerInput{Keyring: awsKmsKeyring})
if err !'= nil {
panic(err)
}
requiredEncryptionContextInput := mpltypes.CreateRequiredEncryptionContextCMMInput{
UnderlyingCMM: underlyingCMM,
RequiredEncryptionContextKeys: requiredEncryptionContextKeys,

}
requiredEC, err := matProv.CreateRequiredEncryptionContextCMM(context.Background(),
requiredEncryptionContextInput)
if err != nil {
panic(err)
}

ne

to

Yol

=

[
1
[>
Im
I
0]

77

AWS Encryption SDK JHEER} 70| =

ACRSEPEES

7ol HA2 H 2|7l0[M0] 7| U ME5to 255t U HE5EX| {FE ZAHsts 74 HHEY
LICt 7| A2 2 O0|EE & 356tn §53t5t= 2d0| AWS Encryption SDK 28 Ap2i[] L|Ct.

7401 R4RHS A4 %A
A O T1I=2 2O

oro|aio|Mst7
&LIC}H.

to ZHste W2 AWS Encryption SDK ™ 1.7.x O|3t0lM T 2.0.x O[22
.ol 213 nt&e oto|z2a oM Ao REMIS| A E|oq Q)

— ol

Jo
ok
of
FO
ok
sl
N
11_0
ﬁ

o
>0
T

10|
HA L—

AWS Encryption SDK 2| =4l HT(H™ 2.0 xR E)2| 7|2 7N H2
RequireEncryptRequireDecrypt= CHEE 9| o & ol M gLICH 3tX|BH 7| 7{52! gio| &
MO|HEHAEE 535 3slof sl A0E 73! A E RequireEncryptAllowDecryptZ ‘='=|7<§6H
x4
O

oF B 4 QUi 2t Z2IEHY lofollAf M HAS HstE Wil Tt ol H

>

L.

AER|Y OO|E{Z &Hed

ol IZIOIE-IE A2EE|TY e FEE dA7E 22 E = CIXIE AHEo| lx[7| Hol7t 5
HAEE AWS Encryptlon SDK gretgtch= ™ol RalstHl2. MEo| &elE m7t x| Lt

FEkst -||-P ANSotX| =& Ste{H A S35 T2MAT 22 E K| AEZYE L
HEEst= 20 %%LIEL

o
o M

e 4o

m rin

|
® n
I>

o[> 1 o
>

m

mu e

e o for i

J

st 2Rt C|X|E MEHOo| ZT&E 2125 NE
AHS

HH RS o &l 37| 2/3l Node.js AWS Encryption SDK for JavaScript 2t ZF2 &5 AWS
Encryption SDK 2104 71340l 553 wdo| YR Z M2l 7|s0| ZEELICH g4 el2dn &24g
A E2|YUsHE AWS Encryption CLIE HZF 1.9.x & 2.2.x0ll --buffer Tt2tO|E{E T UF&LIC

E ¢lof o= 7I1EL HHE 7|58 AF8E = JU&LICH (NET AWS Encryption SDK 8= AE
2|YE X|RStR| ek&LIct)

CIX[EH MEo| gl dE|&E MEEE MESte 89 4 20 F0M decrypt-unsigned 7|52
Ar&3atioF B LICH O] 7|52 MO|HEAEE =536t K|2t MEE ALO|HEIAEE Y7454 ATiEL

Ch ZtM[EH LI 2 2 0E|lE MEF MEE HZsHM 2.

ClOIE 7| 7H &

UetMo 2 O|o|H 7| HAFES 2 HEE|X| fX|BH= O|0[E 7|of MEHE ZHALE 2 MSsh= lo|H 7|
7H& M AWS Encryption SDK MBS & LICH 0|6 7| 7Hal2 U ofZ22|70|Mo| dsS EAA

P RELE 8

W xF 7Hol=

St7| Ao

M 2E0iM HIolH 7| FHEE A8
Bt EX| HAESAH L.

JELICH 225
CtRdH
|=|

AWS Encryption SDK
ChEt 258 EY £
1, ool 7| RfA+E 2| ool H

7|1 7| el=Zetof
= oF HAldfE =Est

OlolE 7| 7 A

AWS Encryption SDK JHEER} 70| =

o| 7| AE0{ AWS Encryption SDK

ol A AWS Encryption SDKZ7| AE0{= HEE AWS KMS 7|20 A835tE HEX
£ Amazon DynamoDB E1|0|§?=!|—|EP 7| AE0{E HEXN 7|—E ME5to] =3 AU E St
AWS KMS @{sllol M +=&stiok st= & +& £0l|= ol =&0| EuCh

I AEO|E HSX 7|20 25 ¢ 5512 235l Clo|E| 253l 7|12 255t O ALt Ealx|
7|12 Sx|5tm HEIELICH 7] AE0|E &M HRR| 7|9 HAMk| 7|0 2E o|M A KMEELICH
s HAlx| 7= &[4 Aol Ex| F|QLIC HES F|2le 2 2535 QAo 193 ClolE ¢35
3t 712 AbR5tm B Bk 7oA IHME 18 HE 7|2 2 ololE ¢35 7|12 o5 5etn
HEX 7|2le g 2x| 7|9 THME 2iE 7| Alolofl MM E HS Txof uhet 2t E o
7| AE0{ 204 & 74H
7| AE 0]

Hax| 7| L HIZA 7|9t 22 HE% dHl0|E{2 | X|5H= DynamoDB Ef0|2lL|c}
FE 7|

| AEO{oilAM E3%| 7|9 H|H 7|2 MAs D H5 st CiE o5 8 KMS 7L}

=2 x| 7|

Q8 BT 718 £55t7] 9 KA £l ClOJE| 7ILich stLtol 7] A
A o 2t BEHR| 7| B ol sHLtol B Ad HRix| 7| R 7}

=2 x| 7|= kms:GenerateDataKeyWithoutPlaintext 1S AWS KMS keys AF23t0{ Zh M EIL|CH
2 7|

of S5t 2rdol AL El= ClO|E &2 3t 7|18 3356t Ol AH8El= 18 dlo|H Z|ILct.

o 7|= 28X 7|0d A Tl ELICH 7| ohdl T2 M| A0f CHEE XEMIBH LI 2 AWS KMS HE X

ZIR 71 MR HEE HZSA

ol

2t 2 edoll AFSElE ClOIE Z|Uch AEM 7|32 2 ¢ 53 20| n&7Eh C|lo[H A Z 5t

7| £E0{ 01 & 7HH 80

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK JHEER} 70| =

|4 HE 78

7

P

ol
rr
o
40
ini
ajo
19
ok
mo
0
lo
oh
A
ﬂ
B
[
rot
rio
1
fjo
m
rr

AEO0{ HAWS KMS HEH 7|22 ALS

ol E&LCH

7

7

7

AE 0] EE|A}

7| AEO0| BEIRIE 7| AEO0{Q 7| AEO{7} §X| L ES5l= 2k 7|8 M T &H2lgh 2
O| U&LICH 7| AE 0] ZE|XE 7| AE0] A& E 5= Amazon DynamoDB E|O|2 01| CHEH A2 7|
TEto| U= FUBH AAEXt0{0F BLICH L CreateKey®t 2 et Qs #EIAF 2o HMAE

AN = = I\
QU= R UBH AL K040 BrLICH ersionKey. 7] AE0] S HAO2 T4Ists Z2ojgt O

CreateKeys= 7| 2E0{ & S50 M KMS 7| ARNS F7}HE =+
KMS 7|= M & EHX| 7|18 4M8E = U&LICH KMS 7|7} K|
g = oo 20| &of cHEt BMAE MFtst= 4ol E&LCt

AEO0{ AFE R}

CHEE ol ALE AtE[0M 7| AE0{ ALEXI= HIOIHE ZE 38, =53, M & &g I HE A 7
2E SHMEH 7| AE0{Q &5 A ELICH et 7| 2E0{ J&Z = Amazon DynamoDB

EO|Z0f CHEt o17| #Etat Qo™ ElLct 7| AE0{ AF& A= |, GetActiveBranchKey
GetBranchKeyVersion2/et 20| & 53} 2edg 7H55H7 steE AFE o CHEF HAM|A
2/2@ ElL|CtGetBeaconkey. A 3HE HElx| 7|8 o5t HLE BElSHE Ol HEHO| ggam
of&Lct.

7| AE0 &2YO| Mo R FHE|HLL JMEOR A MHE B AIE &g ™ E = gLt
7| AE0] Bdo| MG & A MHE A #HE|Xt & d(CreateKey & VersionKey)2 T8 +

HEiX| 7| AE0f ZE|X7F E3R| 7] £2E0{0f 042 KMS 7|E &
20| 0i2{ KMS 7|1& AIEE =+ UL T 7| AE0{ AISRI7I HME
ol E&Lch

o|+

| £2E0{ 4

SEix| 7|18 dEetHLE AWS KMS AS A 7|2 At8stcd™ M E2iX| 7|1§ #Elstn ESste

Amazon DynamoDB HE|0|E2 2! 7| AE0{§ A3l oF B LIC.

I

2|4 HEF 7 81

AWS Encryption SDK JHEER} 70| =

/A Important

=2ix| 7|8 | X|5t= DynamoDB E|0|E& Al
7|32 AH835l0 ¢S5 E OOIEE SHSE + &L |EP

otE[M 7] A HE Zof Cfisl| S 242 Eo EXHY 2/ 2 AHE5H0{ Amazon DynamoDB 7H &} ©FLY
Me| Ello|E & MAE mELICH

IHE|M 7| HH 7

7|2 Elo|E branch-key-id type

=g|™ 7| AE0{ 0|2

248l 2 5= DynamoDB E{|0|22| 0|2 XYY e 7| AE0{ Zde FHE mf X|HE
=2l 7| AE0{ 0|2 4IE5H TEdste W0l SLELICt 277 =2[X 7| AE0{ 0|F2 7| 2E 01
o AR} g ot & WMl AHEXITE MF Helet Foll= HEE = d&LICH 7| AE0] & doi &
o st =2|& 7| AE04 O|F &2 K|'datof & L|Ct

DynamoDB E|0|& O|§3 =2|X 7| AE04 0|& At0[0] one-to-one OHEO| R{o{ofF & LICH =2[H 7|
A E0{0|&2 Ho|2o| MEE ZE Clo|Eol| =2 HtRIEE|0{ DynamoDB =& A4S kA3 8
LIct =2|% 7| AE04 O|§2 DynamoDB E|0|Z O|&1 CHE % /X|Et DynamoDB E|O|E O|& S
=2[M 7| AE0{ 0|2 & X|™H5t= W0l E&LICH 2ol DynamoDB H|O|EE = &8t & H|O[E
O|§0| HEEE 42 =2I™ 7| AE0{ O|§2 A DynamoDB E{|0|= O|§0f DHE5t0o{ HEX 7|0
0%5| 7| AE 010 HMAE = UEF & = U&LICH

=™ 7| AE0{ 0|20 7|& EE OIZ s MEE &5 X| OIML. =2|X 7| AE0{ 0|22 AWS
KMS CloudTrail O|HIE Q| Qdt HIAEZ 2 E A|ElL|CHtablename.

CHS EA

1. the section called “7| AE 0] Q] F1AJ”
2. the section called “E 21 x| 7| A4 A4”

3. AWSKMS AISX 7|2 M

F| AE0] MM 82

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS Encryption SDK JHEER} 70| =

7| AE0{ &2 F

F| AEO0] B2 AIXI7F 8T £ e 0 AWS KMS HS % 7|210| 7| AE0{0f LIYEI KMS
F1E M85t YHE AYELICt = oS0 22 7| AE0{ ¢ 42 AWS Encryption SDK K|
ghuict

ESES

7| AEO0{E HMoZ -_rLéi%F':' | AEO0{E 7| AE0] 2YE 7 E kmsConfiguration o]
M MB35t= KMS 7| ARNZF HAZAE KMS 7|8 AL E &= QI&LICH E&IX| 7|2 MM, ™ 22| E
= 7tX& mf CHE KMS 7| ARNOI 5= E2 0dlQ7t e gLt

oM CHE 2l KMS 7|8 X|HE & kmsConfigurationQUX|BF 2|ME T &S 7|0 TA| ARN2
KMS 7|0 A ZtME 22H K| 7|0l RX|ELIC CHE 2T 71§ RIHE =+ gieH, gL0] Yx|5tE
™ Hets| S CHE 21T 7|18 MBS sHoF gLlc.

7| AE0{ B UE HHO R F4J5tH A8 E(GetActiveBranchKey,,

GetBranchKeyVersionGetBeaconKey) & #2| & i(Createkey 2)2 =&8E + A& L]
ClversionKey. CreateKey= 7| AE0{ 518 2 20f M KMS 7| ARNS 7+ £ Ql= HEt
= 2Lt O|KMS 7|l= M 8M ERlIX| 7|8 M8E = U&LICH KMS 7|7t 7| AE0{0] F7}

T AANE +~ gleo 20| Aol cHEF AMAE HEHstE ol E&LICH

Discovery

gJAg 2l 7| /\501 g HE M 7| AEOE 7| AE0{M 518 FF0 Y= ZE AWS
KMS key ARNZ A& = &LICH J{Lt CtE 21 KMS 7[7F w7dx|D 7|2 ARNOY = 2
0| ArE B2/ AWS KMS 220 E 0| 2|1t UX|SHK| b= AR 0il 2|7t 2hg|ct,

HAMZS 25l 7| AEO{E RME M= CreateKey e
CtversionKey. 53t 5535 AHE & 2
KEMIBH L& 2 the section called “Z|A :"._%J T3 EFR 2 AT AAL.

7| AE0] B 7

7| 2E0{ HYE F 57| Holl S A =212 SFstex| #HlFL/oh

- ol & S A™ELICE KtAMIEH LHE 2 the section called “ZE|A HEH 734 THlg B E5HA
A2

- =21H 7| £2E01 0|5 MY

7| £E0{ &Y o 83

AWS Encryption SDK JHEER} 70| =

DynamoDB E|O|E O|§1t =2|X 7| AE01 O|F At0|0i one-to-one OHE 0| Rl0{0F & LIC}. iEl’“

7| AE04 0|E2 DynamoDB = =g 7tA 3 67| 2I6H ElolE0o XMEE 2 E o[¢
I:II-AIOE |:||.O|l:|5_||:|;| x-l I:I-|;x|.| A|.2N.7|. X{% 7&)

olt Follz HAE & gl&LICH 7| AE0 &*?Joﬂ
MEd sdet =2|™ 7| AE0{ 0| S X[HsHof gfLICt RtMIEF LHE 2 logical key store name &
HE FXSHAAIR

SIS

ClS oMo ME 7| AE0] XtQi2 Xxdoz FABHLIC

. 7| AE0{ H&E 5= DynamoDB E{|0|£ 9|
O|&, 7| AE0{e| =2/ 0|&, C

YatioF BfLct.

o
no
ok
1o
x
<
»
N
i
>
[l
9'|_|
rr
X
<
o
N
>
Y
pa
0
A

(® Note

7| AE0{ MH|A = KMS 7| ARNE AE35HA n24stM 2.

EH =
CreateKey X2 KMS 7| ARN2 EEH | 7| AE01 58 S50 F7HELICH KMS 7|7 2
x| 7| AE0{0f F7

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(

KeyStoreConfig.builder()
.ddbClient(DynamoDbClient.create())
.ddbTableName(keyStoreName)
.logicalKeyStoreName(logicalKeyStoreName)
.kmsClient(KmsClient.create())
.kmsConfiguration(KMSConfiguration.builder()

.kmsKeyArn(kmsKeyArn)
.build())
.build()).build();

C#/ .NET

var kmsConfig = new KMSConfiguration { KmsKeyArn =

var keystoreConfig = new KeyStoreConfig

{

kmsKeyArn };

KmsClient = new AmazonKeyManagementServiceClient(),

KmsConfiguration = kmsConfig,
DdbTableName = keyStoreName,

7| £E0{ &Y o

o

84

AWS Encryption SDK

JHeER 7Hol=

DdbClient = new AmazonDynamoDBClient(),
LogicalKeyStoreName = logicalKeyStoreName
};

var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(
config=KeyStoreConfig(
ddb_client=ddb_client,
ddb_table_name=key_store_name,
logical_key_store_name=logical_key_store_name,
kms_client=kms_client,
kms_configuration=KMSConfigurationKmsKeyArn(
value=kms_key_id

),

Rust

let sdk_config =
aws_config::load_defaults(aws_config: :BehaviorVersion
let key_store_config = KeyStoreConfig::builder()
.kms_client(aws_sdk_kms::Client: :new(&sdk_config))

::latest()).await;

.ddb_client(aws_sdk_dynamodb: :Client: :new(&sdk_config))

.ddb_table_name(key_store_name)
.logical_key_store_name(logical_key_ store_name)

.kms_configuration(KmsConfiguration: :KmsKeyArn(kms_key_arn.to_string()))

.build()?;

let keystore = keystore_client::Client::from_conf(key_store_config)?;

Go

import (

keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/

awscryptographykeystoresmithygenerated"

keystoretypes '"github.com/aws/aws-cryptographic-material-providers-library/mpl/

awscryptographykeystoresmithygeneratedtypes™"
)

bal

to

i
2
-
0x

7| AE0]

85

AWS Encryption SDK JHEER} 70| =

kmsConfig := keystoretypes.KMSConfigurationMemberkmsKeyArn{
Value: kmsKeyArn,

}

keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{
DdbTableName: keyStoreTableName,
KmsConfiguration: &kmsConfig,
LogicalKeyStoreName: logicalKeyStoreName,
DdbClient: ddbClient,
KmsClient: kmsClient,

b

if err !'= nil {
panic(err)

}

A 7y

CHS ool M= AME 21T 7| 2E0{ B YE FIFLICH 7| AE0{ 3 E ot = DynamoDB Ef|0|E
Ol 0|1t =2|X 7| AE 0 O|E2 X|H3HoF &Lt

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
KeyStoreConfig.builder()

.ddbClient(DynamoDbClient.create())

.ddbTableName(keyStoreName)

.logicalKeyStoreName(logicalKeyStoreName)

.kmsClient(KmsClient.create())

.kmsConfiguration(KMSConfiguration.builder()
.discovery(Discovery.builder().build())
.build())

.build()).build();

C#/.NET

var keystoreConfig = new KeyStoreConfig

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsConfiguration = new KMSConfiguration {Discovery = new Discovery()},
DdbTableName = keyStoreName,
DdbClient = new AmazonDynamoDBClient(),
LogicalKeyStoreName = logicalKeyStoreName
};

bal

to

T

7| AE0]

J
I
-4
0%
©
&

AWS Encryption SDK JHEER} 70| =

var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(
config=KeyStoreConfig(
ddb_client=ddb_client,
ddb_table_name=key_store_name,
logical_key_store_name=logical_key_store_name,
kms_client=kms_client,
kms_configuration=KMSConfigurationDiscovery/(
value=Discovery()

)I

Rust

let key_store_config = KeyStoreConfig::builder()
.kms_client(kms_client)
.ddb_client(ddb_client)
.ddb_table_name(key_store_name)
.logical_key_store_name(logical_key store_name)

.kms_configuration(KmsConfiguration: :Discovery(Discovery: :builder().build()?))
.build()?;

Go

import (

keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygenerated"

keystoretypes '"github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes™"

)

kmsConfig := keystoretypes.KMSConfigurationMemberdiscovery{}
keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{

DdbTableName: keyStoreName,
KmsConfiguration: &kmsConfig,
LogicalKeyStoreName: logicalKeyStoreName,
DdbClient: ddbClient,

7| £E0{ &Y o 87

AWS Encryption SDK JHEER} 70| =

KmsClient: kmsClient,
1)
if err !'= nil {

panic(err)
}

HEMX| 7|l= AWS KMS HESX 7|2l AWSKMS key O| & 8 £0|= O MR%PE of| A mt24= | o]
E 7|LIC AWS KMS. &4 2 |= o
7ol chall T8 CllolE 7|& MMstn
2 0

HMR| 7|8 MMM 7| AE0] HYS YHo = F5Hof ELICt CreateKeyE 7| AE
THo| X|HE KMS 7| ARNE 7| AE01 &8 S5of Ftst= M Ue HAUuict a3 ot
7|E A83tod M &4 ERR| 7|8 MAMELICH KMS 7|7t 7| AE0{0f FIHE|H A K& 5

20| Zrdof et AMAE MBtste Zdo| E&LICH

000 @ =
0 X i o
= 0 ox

|0

7| AE0{0IM KMS 7| SHLE 518 S20f £7bst 7Lt 7| AE0] 5] TA0M KIEEH KMS 7| ARN
2 YCI0lE 5t 1 CreateKey CHAl 3& 5104 02| KMS 7|8 518 S 2ol %718 4 &Lt of2f
KMS 7|8 518 S22 EAISHE B2 7| A0 ALBXHE A& HEH0| 2l 7| AE00IA 518
=202 XNWE 7|8 NS £ AUTS ZHM4S s 7| AE0] S TAIsHok BrLICH KA LIS

=
2 the section called “7| AE0{ 2] 21 AI” EHHE B EFHAAIL.

#

—

MK

(@]
Il

rot
ror

HEHR| 7|1& MAMstedH 7| AE 01 Z ol XIHE KMS Z|ofl CiEt
kms:GenerateDataKeyWithoutPlaintext 2! kms:ReEncrypt T8H0| 2 gFL|C}.

HAR| 7| &
O Ede 7| AE0{ & F0iM X|HEt KMS 7|& AH83tod A & ERlix| 7|18 ddstn 7| &
E0{ &2 5t= DynamoDB Ei|O|E0] &M 2&1X| 7|8 F7I&fLC.
CreateKeyE SEE [CtSot 22 MEHM gt 2 XY & ME4E = U&LICH
 branchKeyIdentifier: AF&Xt X|™ branch-key-id& Ho|&LCt,
AEXF XM branch-key-idE PHE24™ encryptionContext TZHO|E{0l F£7} &5 8 HEIA
E T Zgtsfof ghulct.

Bz 7| M 88

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Encryption SDK JHEER} 70| =

« encryptionContext: kms:GenerateDataKeyWithoutPlaintext &0 Z& & &35} ZHHEA E0f
M F7t 215 H|O|E(AAD)E NS5t MEHA HIE O 7|-2f Ho] MEE HalgfLct.

ok

Ol F£7} 535} ZHAEIAE E aws-crypto-ec: HFARL EAIELICH

Java

final Map<String, String> additionalEncryptionContext =
Collections.singletonMap("Additional Encryption Context for",
"custom branch key id");

final String BranchKey = keystore.CreateKey(
CreateKeyInput.builder()
.branchKeyIdentifier(custom-branch-key-id) //OPTIONAL
.encryptionContext(additionalEncryptionContext) //OPTIONAL

.build()).branchKeyIdentifiex();
C#/ .NET

var additionalEncryptionContext = new Dictionary<string, string>();
additionalEncryptionContext.Add("Additional Encryption Context for", "custom
branch key id");

var branchKeyId = keystore.CreateKey(new CreateKeyInput
{
BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL
EncryptionContext = additionalEncryptionContext // OPTIONAL
1)

Python

additional_encryption_context = {"Additional Encryption Context for": "custom branch
key id"}

branch_key_id: str = keystore.create_key(
CreateKeyInput(
branch_key_identifier = "custom-branch-key-id", # OPTIONAL
encryption_context = additional_encryption_context, # OPTIONAL

BER 7| 48 89

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

JHeER 7Hol=

AWS Encryption SDK

HashMap: :from([

Rust
("Additional Encryption Context for".to_string(), "custom branch key

let additional_encryption_context

id".to_string())

1);

let branch_key_id = keystore.create_key()
.branch_key_identifier("custom-branch-key-id") // OPTIONAL

.encryption_context(additional_encryption_context) // OPTIONAL

.send()

.await?
.branch_key_identifier

.unwrap();

Go

map[string]string{
: "custom branch key id",

encryptionContext
"Additional Encryption Context for":

keyStore.CreateKey(context.Background(),

branchKey, err
keystoretypes.CreateKeyInput{
BranchKeyIdentifier: &customBranchKeyId,
additional_encryption_context,

EncryptionContext:
19
if err !'= nil {
return "", err

MX], CreateKey 242 Ct

+ branch-key-id2| 47 4 Universally Unique Identifier(UUID)(AF& X} X| branch-key-idZ& X|

MotR| 2 E9).
- HEx| 7| HX el HZE 4 UUID
S5 MIAIAIUTC)S] 1ISO 8601 2Rt 2 AlZH S A10| timestamp.

£ AH8310{ kms:GenerateDataKeyWithoutPlaintext® & &8

90

e os ¥

1A CHE CreateKey

L|ct.

BEX] 7] 48

https://www.ietf.org/rfc/rfc4122.txt
https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK JHEER} 70| =

"EncryptionContext": {
"branch-key-id" : "branch-key-id",
"type" : "type",
"create-time" : "timestamp",
"logical-key-store-name" : "the logical table name for your key store",
"kms-arn" : the KMS key ARN,
"hierarchy-version" : "1",
"aws-crypto-ec:contextKey": "contextValue"
1,
"KeyId": "the KMS key ARN you specified in your key store actions",
"NumberOfBytes": "32"

~
3
2
A
®
o
)
(@)
=
S
Ty
fol
M
on
v
no
fol
o
i
1z
>
m
iy
2
pni
o
|m
o
d!
T
&
Eal
N

CIS 22 CreateKey &2
of Cist &AM plEE=

EIWQ.FOE CreateKey &2 ddb:TransactWriteltems& 3 &35+0{ 2EH A0 M A5t E|0|= 2| £ T
X 718 RXIE M EF2 FgELC 5oz oS £40| UA&LICH
{
"branch-key-id" : branch-key-id,
"type" : "branch:ACTIVE",
"enc" : the branch key returned by the GenerateDataKeyWithoutPlaintext call,
"version": "branch:version:the branch key version UUID",
"create-time" : "timestamp",
"kms-arn" : "the KMS key ARN you specified in Step 1",
"hierarchy-version" : "1",
"aws-crypto-ec:contextKey": "contextValue"

2o 5ER[7| nA

ZF g x| 7|ofl= 8 Hofl StLte| EA HAMEE Qe & QELICH Yitdo =z 2 #M 2 R| 7| T2
04t 2HE SF5ts ol AFZ2ELICEH SHX|gH E M 23 R| 7|2 RHAIE HRIE AMo{st &M 22|
7ol mA BI=E A™EE &= U&LICH

HHX| 7l Yt HIAE H|0|E 7|8 5 3lstE O AFEZIX| gt &LICt O|E2 Yt §HIAE H|O|E
7|12 &E35tet= 1RE clE 7|12 TE5t= O AFSELICH Bl E 7| & T2 MAE= 28HI0|E Q| F &
2 4= 178 32HI0|E ciE 7|E MMELICH &, ERliX| 7|= & &3 0t27F &5 7] 0od 79
st dellx| 7| oA 91

https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html

AWS Encryption SDK

2elz|22%) olato] IR BT 7|2 TEE 4 UALICH o|FAH AT 9
e Aok FAlo|L ME FHo=Z Qs g ERlik| 7|12 mAlsor & £ 2 laLIct

HEx| 7|0] #AM HXS mAE W7k g4 AEIZ SX|E/LICt oM HElo &M Halk| 7| &3
St RIS 4#iste Ol ALK St M BT 7|18 £S5t O AFRE £ QX|0H odX5| HElE ¢
Qlom & AEoA Y5355 CI0IE 7|12 S5t BT 7|12 MZE £ Lot

4 Mt

x| 7|18 nAlsted™ 7| AE0{ 2o X|IHE KMS Z[of CHEt
kms:GenerateDataKeyWithoutPlaintext 2! kms:ReEncrypt #8t0| 2 & L|C}.

VersionKey 22 AtE5to] €/ Ealix| 7|E mAELICH gd HAX| 7|& wA|5HH ofst HTIS
ChAMste M E31X] 7|7t SGELICH g4 E-iX| 718 WASHE branch-key-ide HEEX| &
LICE VersionKeyE ZEE M TR & HHMRX| 7|E ABWSt= branch-key-idE K|l of &L
Ct.
Java
keystore.VersionKey(
VersionKeyInput.builder()
.branchKeyIdentifier("branch-key-id")
.build()
);
C#/ .NET
keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});
Python
keystore.version_key(
VersionKeyInput(
branch_key_identifier=branch_key_id
)
)
Rust

keystore.version_key()

g gelx| 7| A

92

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Encryption SDK JHEER} 70| =

.branch_key_identifier(branch_key_id)
.send()
.await?;

Go

_, err = keyStore.VersionKey(context.Background(), keystoretypes.VersionKeyInput{
BranchKeyIdentifier: branchKeyId,

1))

if err !'= nil {
return err

gy =2aR| 7| A 93

AWS Encryption SDK JHEER} 70| =

>
o
2 fn
rr
|H
H
L
W
(1)1=]
& ro

o FHE J|ZE M85t S5 A&
LICh 7120 ek 2 HIAXIE 2

chE 717k A8 Euch ¢ 5

|HgfLICh SDKOIM MBsteE 71218 A85L 28 El= AL8X X 7218 &
I

ou

I
o 2
|0
Hu
>.
— 0Ol
Q'I_I
N
-
- N
o

0
0z M
09
ol
Log
i
JiT
Fol
LOL
ok
>
z0 Mo
H o

2 o N
o M

nr w
N
o
mjo
g
mn
Kl
gl:l
ofl
N
o
fjo
o
I
|
o
Acl]
[
o
Q'I_l
Ard
Pl
0l o
ok
1
<
o>
C 0

u
==

jn
HL
ol

u
H K

>

by

%)

HIx
ol op M2
Iﬂo

mjo

ey Management Service (AWS KMS)E & 23l E|X| i 2 HEHE FX| et=

3H4 LHol M 2= 8t 2t g =~ st= AWS KMS 7|2 AWS KMS keys

Jlo 2ot BE(HSM)0H| K& E|74Lt CHE OtAE] 7| MH|A0M ES
T A&LICH REMIEH LHE 2 AWS Encryption SDK At 9

<

\|

-

o
- -

0

w rnrrr

T o8
1=1
[
B
0%
10

[o][]

WE »Y N foh
S

ok o> my

>

Ol ot
Mo rr T rio
oy

N

mo
ou rr > > oH
o & oo oo N

P
Q'I_I
x
20

IS CtE Z2aeY o
Encryption SDK 2| C}& ¢10
1 OtAE 7| MSAHE AtEsHor

1 A8 El= DtAE 7] R OAE 7| S2Xe| AE S FLICH AWS
7

%I_=|
HE A oP04 IHIOIE1E [Z 8t S58ste B9 E&Ele 7|18
ot

ol #XoM=2el 7|18 7I5E M8ete Y 7|2 & MEfst= AWS Encryption SDK 'S Mg
LICF.

COlE{E &=3tE M= 7|20l &=3t XtEE AWS Encryption SDK - ELICH 7|32 Yt BlA
E ol 7|2 7|2lo| Z e 7|2 255 E C0|E 7|2 EAHE S HHetstL|Ct & UHHIAE 7|8

AWS Encryption SDK At&735t04 C|O|EHHE 2 E 38t Ot et HIAE H|0|E 7| AMAgLIcH O3 o
= 25 51E o|o|E] 7|9 &5 51l O o|E{7t ZEHE ot 551l HlAIXKISE AWS Encryption SDK gHgt
FL|CE.

o o

N
o
2
ofn
0z
ke
[(e]
=~

https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/keyring-interface.md

AWS Encryption SDK JHEER} 70| =

AWS Encryption SDK

Cryptographic Materials Manager (CMM)

Get encryption
materials

¥

Fy

p Plaintext data key

Encrypted data keys

Keyring

P

Wrapping Key 1

P

Wrapping Key 2

P

Wrapping Key 3

CIOIEE S3&E W CIO|HE &= 3tst= Ol AF8 S Wt S 7I1-212 AF8St7HLE CHE I3 E A
88 £ U&LICH OIO|EE S535tstei™ 553t 7ol ¢33 7|20 2iE 7|7t 5tk Ol & Z & E(H

&L
L} Qx4 HEtO|

240{oF BfL|Ct

= A3 3E HAIX|e &5 3HE Oo|E| 7|1 7|20l AWS Encryption SDK ME 3t 7|2lol 7|12 & 5t
LIE SE 36t 8 @™ELICE 7|22 s 2E 7|E At836to] &8t E O|o|H 7| & StLUtE =3t
SiAsto Yet EIAE Of|o|E| 7|E gHeHgtLICE. AWS Encryption SDK = it HIAE O|O|H 7|E A
&350 CIO|EHE S8t &LIch 7|20 = e 7] & o= R &5 35tE OO|E 7|1E 555
= 4% 555 50| AujEhct.

0
i

95

AWS Encryption SDK JHEER} 70| =

AWS Encryption SDK

Cryptographic Materials Manager (CMM)
| A

Get decryption

materials Encrypted data keys *

Plaintext data key

k4
Keyring
Wrapping Key 1 Wrapping Key 2 Wrapping Key 3

StLEo| 7|”E ALE5tHLE, S 8 = o] ol 7|2 stLel LS 7|2 Zge == U
&LICH CIO|EE 2E3t e M O s 7|22 OHE 7|28 #ddts ZE 7I2el 2E efE 7|2 2538
Z Hio|H 7|e] At= & HFEHELICH O E 7|2le| el E 7| & StLIE E & éts 7|22 ALE5to4 Tl O|H
E =53535t8 = J&Lch

7|8 =&
o| Ctfet ?_"0'| T34 AWS Encryption SDK 0i|= 2 7+ X| o} Z|=& RO[7} 4 X|BH @10{ A <Foi| [t} &
5| ZEHELICH 3 2o 732 ALE5t0{ CIOIEE Y E 385t 1 CHE 1o FHHoE S55E = UE

LIct. stX|B CIlO|H 7| & &= 3t5t T S5 35t6tE{H SYUstHLE 4 85t= el 7|E ALSsHok & LCt
do] meF =z1of CHet REAM[EF LHE 2 F |0l AeF 20| Zf @104 F*Bdthe section called “Z &H30f CHEt
AWS Encryption SDK for JavaScript M2 & Z35HM2.

g2 o Z2aeid o=z X[ELCH

* AWS Encryption SDK for C
* AWS Encryption SDK for JavaScript

HEEETS 96

AWS Encryption SDK JHEER} 70| =

« AWS Encryption SDK .NET&
« 9| ™ 3.x AWS Encryption SDK for Java

- MEiM QIS 3| X2 32X 2t0|EE{2[(MPL) B4 /81t & 74 AF& 3= AWS Encryption SDK for
Python3<% H

« AWS Encryption SDK Rust&
« AWS Encryption SDK Go&

33t 7|20l CHEr CHefer 27 AHY

0|2|2| AWS Encryption SDK 2104 73 0|M= 223t 7|~

AWS Encryption SDK for C2E 2{Z 7|7} ool 5’|§ %§_§F%* £ Qlo{ok gFLct. 2iE
E|X| eto™ &3 M= AufgfLct et =&t

o{OF FLICt M 7|22 AIE5tod B = E= OHE 5’|%9§ CIO|E{E &= 3t6t
ATiEhct

setxleE 713 2 ofAE 7] MBS A
Ct& E0|=0i M AWS Encryption SDK XS st= 7|20t S #tkl= OtAE 7| 2 OtAE 7| SZAH7LH L
ot U&LICt Ao Mef ZHS = QIEh AtASH HIZ &2 210 Fdof CHEF Fxflol| MBE[of A& L
Ct.

71&: OtAE 7| SZ Xk

AWS KMS 7|3 KMSMasterKey(Java)

KMSMasterKeyProvider(Java)

KMSMasterKey(Python)

KMSMasterKeyProvider(Python)

A= 3 7120l Ciet Chst 7 ALY 97

https://github.com/aws/aws-cryptographic-material-providers-library
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKeyProvider.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html#aws_encryption_sdk.key_providers.kms.KMSMasterKeyProvider

AWS Encryption SDK

JHeER 7Hol=

7|&:

AWS KMS AEX 7|8

AWS KMS ECDH 7|3

Raw AES 7|2

OtAE 7| SEXE:

® Note

AWS Encryption SDK for Python Z! 0= AWS KMS 2| 4
M 7|20 SUS OtAE 7| EEE OFAE 7| S2XH7F 28 &K
AWS Encryption SDK for Java &t &LIC}H

O Zz3eid o] & oM x|l LicH

+ 9| {7 3.x AWS Encryption SDK for Java

« for NET EH™ AWS Encryption SDK 4.x

o MEHM 453 AR SZA 2H0[2E{2|((MPL) S&-E1t &7 AHE 5t
= AWS Encryption SDK for PythonZd< H7 4.x.

« AWS Encryption SDK for Rust 7% 1.x

« Go AWS Encryption SDK 9| H{%1 0.1.x O|4f

CtE 2238 o & Aol M x| E L.

« O] B 3.x AWS Encryption SDK for Java

« for NET EH™ AWS Encryption SDK 4.x

. MR ot 53 2t TR 2tol=2iE|(MPL) B4 4T E7H AL S
= AWS Encryption SDK for Pythond < HZ 4.x.

« AWS Encryption SDK for Rust 7 1.x

+ Go AWS Encryption SDK & 2| H{7 0.1.x O 4

HICHE 2535t 7|9 &7H M85te B
JceMasterKey(Java)

RawMasterKey(Python)

BEElE 713 % Ot AE 7| MBS

98

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey

AWS Encryption SDK JHEER} 70| =

71&: OtAE 7| 32Xk
Raw RSA 7|& HICHE 2t 33t 7|9 &7H AH8 5t B2
JceMasterKey(Java)
RawMasterKey(Python)
® Note

Raw RSA 7|22 H|CHE KMS 7|8 X|§stX| et&LCt HI
CHE RSA KMS 71§ AL83sted= B for NET HHE AWS
Encryption SDK 4.x= CHE & £ 3(SYMMETRIC_DEFAULT)
£ = HICHE RSAE AF235tE AWS KMS 7|32 X[ELICt
AWS KMS keys.

2/ A| ECDH 7|2 ChE Z2 el o] & koM X|4ElLICE

+ 9| ™ 3.x AWS Encryption SDK for Java

« for NET EHH™ AWS Encryption SDK 4.x

o MEiX A5 3 X2 S 2% 2H0|EEE[(MPL) S5t &H AHE St
= AWS Encryption SDK for PythonZd< 7 4.x.

« AWS Encryption SDK for Rust HH& 1.x

+ Go AWS Encryption SDK & 9| H{%1 0.1.x O|4f

AWS KMS 7|&

AWS KMS 7|22 AWS KMS keysE AF235t04 O|O|E] 7|18 MM, 55t LU 535 .
Management Service (AWS KMS)= KMS 7|E 255t FIPS A LHOAM &£ 3| 2hede &g
Ct. 7}535tH AWS KMS 7|3 EE= SAE 2ot S8 2 71T 7|32 AF S " A HEFLICHL

% o
LT o

Xl@dste ZE Z2a2Y o 732 ChE 25351 KMS AWS KMS 7|1 A 8stE 7|32 X
Ch otg T2 324 Qo] #3842 HICHE RSA KMS AWS KMS 7|8 AtE5t= 7|131E R L

Do N

« 9| {™ 3.x AWS Encryption SDK for Java
« for NET BHHTAWS Encryption SDK 4.x

AWS KMS 7|2 99

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS Encryption SDK JHEER} 70| =

- MEiM QIS 3| X2 32X 2t0|EE{2[(MPL) 34581t & 74 AF& 3= AWS Encryption SDK for
Python3< HZE 4.x.

« AWS Encryption SDK for Rust {1 1.x
Go AWS Encryption SDK & 2| {7 0.1.x 0|4

C

T

ok

240 3t 7|20l HICHE KMS 7|1€ Z2fstti st f 58 s E0| AmELIct 5
=)

P
P

o
[

AWS &5 3t CLIS| H{71 2.3.x AWS Encryption SDK 2! T 3.0.x2E{ AWS KMS 7|3 E&= OtAE
7| SZAo|AM AWS KMS CHE 2| 7|18 A8 e = AU &LICEH multi-Region-aware 7|Z AHE0d| CHEt
REAM[EH LHE 2 ofXl= MM E R ZSHMRCHS 2T AFHE AWS KMS keys. CHE 2 7|od| CHEE RHA|E
LHE 2 AWS Key Management Service 7H&f A} 7LO|EQ| CHE 2| 7| A8 2 HAFHAIR.

@® Note
0 A KMS 7|20l AWS Encryption SDK CHEt 2 & 122 AWS KMS 7|32 & EFLIct

AWS KMS 7|&lol= = 7tX| ol el E 7|7F ot E + U&LIh

- Y] 7] et HIAE HO|H 7|§ ddstn & E3ELICH CoIEE & E3tete 7|0l E stLte
4871 7|7k Qlofok gfLICH.
« 77| 87| 7|7F Qg Lt "HAE O|o]E 71§ & ZSHELICE AWS KMS 7[2l0l= 071 ol

Of &7} 7|7k A& =+ U&LICH

HAIXIE &f 25tete{Ho| H&E7] 7|7+ QL
sie 7l= ClolH 7|1& d&stn & 353s
871 7|9k =7t 710l FE2 FAIEL

lo{oF gfL|Ct. AWS KMS 7|20l KMS 7|7} 3tLEEE Qe B
= Ol A2 ELCH S35 M Md7| 7|= MEf A 0|0

P
Ct.

2 E 7|21 OiEI7ERIZ2 AWS KMS 7132 SEMo 2 ME6t7LE SYst7HLE CHE Rl CHE 713
A CHE 7120l AEE = U&LICH

- AWS KMS 7|2lof Z$t Mt
« AWS KMS 7|2 AWS KMS keys 0| A A=
« AWS KMS 7|2l 24

AWS KMS 7|2 100

https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Encryption SDK JHEER} 70| =

« AWS KMS A 7|2 Al S
« AWS KMS 2| AM 7|2 AL

AWS KMS 7|2lof 28t HEt

AWS Encryption SDK 0il=7 2t X| AWS HE oo SSE[X| E&LICHAWS ME|A, TJEdLE
AWS KMS 7|22 AL 35tEd™ 7|212] AWS KMS keys Ol CHEH AWS HIH 2 ChS o ZH2 |4 HEHO
Zegrct.

- AWS KMS 7|22 & 35tste{H 47| 7|oi CHEt kms:GenerateDataKey T&H0| H & LICtH
AWS KMS Z|3e|l 2 & F7t 7|0i| Cial kms:Encrypt #8t0| 2R ELCt
i

7
- AWS KMS 7|22 A&35t0{ E5 31524 AWS KMS 7|10l A 3Lt 014 2| F|oil CHEF kms:Decrypt
Hsto| e st}

122 =35l & g7| 7|20l 7| Z|of CHet
Ch CHE ZE 7| 2ol OHE 2 E AWS KMS Z|of CH &t

kms:Encrypt T8t 0| “'R&*LlEI'.

« H|CHZE! RSA AWS KMS 7|20 Z 2t535l5i0{H 7|22 AAME mf et S 31o0] Al2E HER]| 7] 24
LAE X|I'H5H0F 322 kms:GenerateDataKey B & kms:Encrypt7t 2R 8t X| &t &LIC}H 0| 7|32
2 ot 338 M= AWS KMS 250| 0|F04X|X| & LICt HICHE RSA AWS KMS 7|2lo 2 =335
&t24™ kms:Decrypt T80 T & LICt.

TEtoll Cist REAIE LH8 2 AWS Key Management Service 7H&E Rk HLHA{ Q| KMS 7| HA|A S HEt
2 AWS KMS keys&H Z 5t M 2.

AWS KMS 7|21 AWS KMS keys 01| A Al

2 A&LICH AWS KMS keys. AWS KMS 7|20 ME x| H
AWS KMS key 324 X|H = AWS KMS 7| RIS ALSELICH 712) AWS KMS key OIAIE A1H
ot Ol A8 E = e 7| AER= 2 & 1o F2dof| 2t CHELICH AWS KMS key 2| 7| A& X}of
CHEF Rt L& 2 AWS Key Management Service 7H& At 7t0|E9| 7| AlHEXLE R ESHAMIL.

AWS KMS 7|&lodl= stLt o|&f o7t =& E +
7
O

shdof 7har A8t 7| AlEAHE AL SHE 700l 2 AfELiCt

Y

33 ARNZ AFE5101 KMS 7|& A& AWS Encryption
Ch CHE 2 E 210{ FHAUME= ZIID, 7l ARN, EE 0|& = EE ARNE ME

>
=
w
X
<
@]
N
oru
[||I=|
fo
rol

ek HEt 101

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN

AWS Encryption SDK JHEER} 70| =

- 553} 7|20l M= 7| ARNE Ar&E3501 AWS KMS keysE A'E35 oF & : =
Encryption SDK2| = & 2104 71 3d0f| HE ELICH RAM|EH LIS 2 eiE 7| MEIE A ESHML.

-
[ul
o
kO
1
>
ok

o
>
S
wn

- &35 A 5530 AFEEl= 7| FoME 7] ARNZS AHE3H0{ AWS KMS keysE A5l oF &FL|C}.
O] 27 AFEE AWS Encryption SDK2| 2 & 210 F340f M E LIt

ot 55t 7|20l M KMS 7lof ChaH H2 018 EE W2 ARNS XIMstE 29 258t eie HAf wa
I HZIE 7| ARNE 2= 3HE Ol0|Ef 71o] HIEFHIO|E ol ME BLICH WAS XMEEIX| efeLich. H3
2 WZST o5 52 ClOIE] 7|2 & sets Ol ASEIE KMS 7lols &S Zx| eaLict

U

|EI AH Ad
© oo

AWS KMS

SYUSHHLE CHE AWS HI™E 2 AWS KMS keys HlA EFY AWS KMS key & 021 2 ZF AWS KMS
7|dg HE &= JUauct AWS El7H £ & ¢ 53 KMS 7|(SYMMETRIC_DEFAULT) & H|CHZE
RSA KMS 7|0{0F AWS KMS keys gFLICt CHE =3} CHS 21 KMS 7|8 M8E =& /JU&LICt Cf
= 7|2l0| M E StLF O] o] AWS KMS 7|22 Al2E 4= Q&L

ClolE{E 253t A 253516tE AWS KMS 7|21 MM HLL 58l tE 2535
T2 MME = U&LCt CIOIEHE ¥ 3355t= AWS KMS 7|22 MAE
= gt HAE O|o|E 7|1§ ddstn = 35t6t= O AWS
Ct. CIOIE 7|= KMS 7|2t =88 o 2 ztd0| gigLict O3 Chs MEHEH Z Ut EIAE
OlE{ 7|18 & 3t5tE F7F AWS KMS keys & X|HE 4= &Lt 0| JReZ E5E|E A55HE &
EE =235315l2{H A85tE 253 71210l 7|2l0] AWS KMS keys HO|El & 5tLt o|4t0| Z & x|/
Lt 2= X| efotof B LIC AWS KMS keys. (0] 8= AWS KMS 7|2 AWS KMS keys 2 AWS
A 7|2lolgk guct.)

I 8 AWS KMS 7|
= 47| 7|E XI™HsHof
KMS key A& El= &L

>

).

0|2|2| AWS Encryption SDK 10 #HoM= &=35t 7|2 EE= CHE 7|212| AWS Encryption SDK
for C2E 2i¥ 7|7t CIOIE 7|& & & &tE 4 QlofoF B LICH 2HE 7|7t & Z=tE|X| oto ™ ef 535 o
MEZH MEigLCh et 2Exts 7|21 2E 7(o 228 HetE J7HX|T Qlofok ELICH HM 7|
2 A8slo EHS EE O 7|2 2= HIO|EHE Y35&ste 29 HE3t 2ol AuigfLich 253
AWS Encryption SDK for CZ 40| & M 7|21 FAIHX|BH CFE 2[d AM 7|28 H=Ee = XY
st7Lt CHE 71> X|Hst= E< dufst= d<E oLt

ChE oMol s 4o IAWS KMS 7| 171et =7t 7| 17HE A& 3dtod 7|22 dEeLch dd7| 7|2t
Ft7le 2T EH’é‘ 233t KMS 7|LICt o] oMol = 7] ARNE Ar&5to{ KMS 7|§ A gfLct

Ol &3 3tol AFSEl= AWS KMS 7|2 2| 2 AtZ[0|H S E3t0] A El= AWS KMS 7|3 2F
A AULICEH REAEF LI 2 AWS KMS 7|2 AWS KMS keys 0i|A AEE XM,

H A

L

AWS KMS 7|

ou
0z
0

102

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK JHEER} 70| =

C

AWS KMS key 2| &5 5t 7|20 HE AlgdstE{™ 7| ARN EE= EE ARNS AWS Encryption SDK
for CKI'EH& LIt 5353t 7|20lM= 7| ARNZ ALSaHoF BHLICH AHAIEH LI& 2 AWS KMS 7|3
AWS KMS keys Ol Al8d MME B ZHM|IL.

M| o & 224 string.cppE FE5HAIL.
const char * generator_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

const char * additional_key = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"

struct aws_cryptosdk_keyring *kms_encrypt_keyring =
ws: :Cryptosdk: :KmsKeyring: :Builder().Build(generator_key, {additional_key});

C#/.NET

AWS Encryption SDK for .NETOI|A{ 5tLt O|&f 2| KMS 7|& At&35tod 7|2l 4d5tedH
CreateAwsKmsMultiKeyring() HIMEE AL & LICE O] tMM= F 7He| AWS KMS 7|&
A& grLct. 8t 7Ho| KMS 7|8 XIH5t2{H Generator TtEFO|E{BF AL & LICH =7 KMS 7|8
X|M5t= KmsKeyIds It2tO|E= M4 AL LICH

o| 7|~&oil CHEF 242 AWS KMS Z22H0|HEE 7HK K| ef&LICH CHAlE ZI—I0IAM KMS 7|
2 ZANEE Z 21Tl 7|2 AWS KMS 22+0|¢1EE AWS Encryption SDK AFSELICH K€ E
0{ Generator L2tO|E I 2 AlHE|= KMS 7|7} O|= ME(2EI2) 2™ ()0l U= ER us-
west-2& us-west-2 2|70l CHEF 7|2 AWS KMS Z20[HE & AWS Encryption SDK 448}
LICE AWS KMS Z2t0[HEE AL At X|'H3H0F 6ti= B CreateAwsKmsKeyring() HMEE
A+ &L,

AWS Encryption SDK for .NETOI| A & 53} 7|2 AWS KMS key ol CHSHE X|HE i 7| ID, 7|
ARN, 23 O|§ £&= HE ARNIH Z2 gh 7| AEXHE ALY = JU&LICH AWS KMS 7|3
AWS KMS keys OIlAE AlHE5I = O] E20| Rt MMS R Z5HMAWS KMS 713 AWS
KMS keys OflA AlEH,

CHS ol A|0l A= for NET T AWS Encryption SDK 4.x2+ CreateAwsKmsKeyring() HMEE
ME3t0i AWS KMS ZE20|UEE ALS A} R LICH

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());

AWS KMS 7|2 A 103

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK JHEER} 70| =

var mpl = new MaterialProviders(new MaterialProvidersConfig());

string generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<string> additionalKeys = new List<string> { "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321" };

// Instantiate the keyring input object
var createEncryptKeyringInput = new CreateAwsKmsMultiKeyringInput
{

Generator = generatorKey,

KmsKeyIds = additionalKeys

i

var kmsEncryptKeyring = mpl.CreateAwsKmsMultiKeyring(createEncryptKeyringInput);

JavaScript Browser

oM =35t 7|20l AWS KMS key CHEHE x| & M 7| ID AWS Encryption SDK for JavaScript,

7| ARN, 82! 0| = HE ARNT ZH2 7| AHEXE AEE £ U&LICH AWS KMS 7|
2 AWS KMS keys 0| AHE AlH5t= Ol = 20| ER5tH MME HESIHLQAWS KMS 7|3 AWS
KMS keys Ol A A&,

CHE Aol = buildClient E+E AF235H04 7|2 70! HAE K|HEL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. & At&35t0d &S 3= EHIAIXIOI rsstE OIo|E 7|
£ NgtbuildClientd £ U&LICH REAM|EH LHE £ the section called “2 Z3HEl H|O|E 7|

KB EHelg HESHAAIR.

A ol Ml= GitHub2| AWS Encryption SDK for JavaScript 2|2 X|E2|0{| M kms_simple.ts& & &
StAR.

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider = getClient(KMS, { credentials })

AWS KMS 7|3 4 104

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts

AWS Encryption SDK JHEER} 70| =

const generatorKeyIld = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringBrowser({
clientProvider,
generatorKeylId,
keyIds: [additionalKey]

1))

JavaScript Node.js

) |

04| A °*§§P 7|20l AWS KMS key CHSHE X5 & [7| ID AWS Encryption SDK for JavaScript,

o=
7| ARN, 22l O|E & tg'*' ARNJ—P r2 =8 7| MHEXE AFEE £+ A&LICH AWS KMS 7|
2 AWS KMS keys 0| AHE AlH5t= Ol = 20| ER5tMH MME HESIHLQAWS KMS 7|3 AWS

KMS keys Ol A A}&d

CHE oMo = buildClient &+E AFESt04 7|2 78] HAE K| &L
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. & At&35t0d &S 3= EHIAIXIOI f= 31E O|o|E 7|
£ NgtbuildClientd =% U&LICH RFAM|EF LHE £ the section called “2 Z3HEl H|O|E 7|

MNeh EHHE HESHAAIL.

ok

F

A ol Ml= GitHub2| AWS Encryption SDK for JavaScript 2|2 X|E2|0{| M kms_simple.ts& & &
StAR.

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringNode({
generatorKeylId,

AWS KMS 7|3 4 105

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts

AWS Encryption SDK JHEER} 70| =

keyIds: [additionalKey]
1}

Aol 7|7} = AWS KMS 7|22 MM5H2{™H CreateAwsKmsMultiKeyring() A
EE A8 LLCL ol Mo ME F 7H2| KMS 7|& AFE&LCt. & 7Hel KMS 7|18 X|H5te{H
generator It2tO|E{CF AL ELICH F7F KMS 7|& X|'H3t= kmsKeyIds Tt2tO[E = MEH AR
Lt
=

ol 7|2lof| CHEt 2242 AWS KMS Z2I0|1EE 7K K| et&LICH CHAlE 7210 A KMS 7|

2 EAEE ZF 2o 7|2 AWS KMS 22H0|21EE AWS Encryption SDK AFEEfLICH o€ &
0] Generator Il2t0|E] Zt2 2 AlHE|E= KMS 7|71 O/ ME(aIZ) 2IF()oll U= B us-
west-2E us-west-2 2|0l CHEH 7|2 AWS KMS 2 2I0|HEE AWS Encryption SDK 2438t
LICt. AWS KMS ZE2I0|HEE AL At X|H5H0F 5= B CreateAwsKmsKeyring() HMEE
A+t

7| AlHEXLE AR E 2 &L AWS KMS 7|
O| st MME HZESIMRAWS KMS 72 AWS

fuok

=
AWS KMS keys (IME
KMS keys Ol A A/&4

MA o|Al= GitHub2| AWS Encryption SDK for Java 2| % K| E 2|0 A
BasicEncryptionKeyringExample.javaZ® & ZX35HA 2.

// Instantiate the AWS Encryption SDK and material providers

final AwsCrypto crypto = AwsCrypto.builder().build();

final MaterialProviders materialProviders = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

String generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<String> additionalKey = Collections.singletonList("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");
// Create the keyring
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()

.generator(generatorkKey)

.kmsKeyIds(additionalKey)

.build();

AWS KMS 7|2 A 106

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/BasicEncryptionKeyringExample.java

AWS Encryption SDK JHEER} 70| =

final IKeyring kmsKeyring =
materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

Python

StLF o|&ko] 7|7t *l= AWS KMS 7|22 M/ d35l2{™ create_aws_kms_multi_keyring() Ol
MEE A2LICE o] X ME F 7Hel KMS 7|2 At2¢&tLCt. 8 7Hel KMS 7|2 X|Zdste{H
generator UtZtO|E{BF A& FLICH F7F KMS 7|8 X|IH3HE kms_key_ids ZHEHO|E{= &8 A}
stolL|ct.

o H

O| 7|&of CHEt 232 AWS KMS EEI0|HEE 71X K| f&LICH CHals 71201 KMS 7|

2 EAIEE 2t 2|xo| 7|& AWS KMS Z22H0|91EE AWS Encryption SDK AFREfLIC}H 02 £
01 generator m2tO|E gt 2 A-EE|= KMS 7|7t OIF ME(EIZ) 2l U= B2 us-
west-2& us-west-2 2|&oi CHEF 7|&2 AWS KMS Z20|2HE & AWS Encryption SDK 2844t
LICt. AWS KMS 22}0|1EE A8 X} X5l 0F t= B create_aws_kms_keyring() MM
EE MEFLICH

& mf 7| ID AWS Encryption SDK for Python, 7|
S = 7| AEXE A Y = U&LICH AWS KMS 7|3
AlH5lE Ol =20| EeotH AME FESHHLAWS KMS 7|2 AWS

(Al

oM & =3l 7|20l AWS KMS key CHEHE K|
ARN, 83l 0|& == 3 ARNITF Z
AWS KMS keys (I ME

KMS keys Ol A A&,

C

o2t

CHZ oAM= 712 73] HEHQIE A8 5104 AWS Encryption SDK 2CH0|QIEE QAR AS}
L|CFREQUIRE_ENCRYPT_REQUIRE_DECRYPT. &l 0d A= GitHub2| AWS Encryption SDK for
Python 2|XZ X|E 2|0l M aws_kms_multi_keyring_example.pyE & Z5HM 2.

I

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers library

AWS KMS 7|2 A 107

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/aws_kms_multi_keyring_example.py

AWS Encryption SDK JHEER} 70| =

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

)

Create the AWS KMS keyring
kms_multi_keyring_input: CreateAwsKmsMultiKeyringInput =
CreateAwsKmsMultiKeyringInput(
generator="arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
kms_key_ids="arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"
)

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

)

Rust

StLF o|&ko] 7|7t *l= AWS KMS 7|22 M/ d35l2{™ create_aws_kms_multi_keyring() Ol
MEE A8 &L o] Mo ME F 702l KMS 7|8 A& LICt & 7Hel KMS 7|8 X|H5t2{™
generator UtZtO|E{BF A& FLICH F7F KMS 7|8 X|IH3HE kms_key_ids ZEHO|E{E &8 A}
stolL|C}.

O H

o] 7|2lof| CHEt 21242 AWS KMS 22I0|EE 7HK 2 K| et &LICH CHAlE F[—I0I A KMS |

2 EAEE Z 2|7o| 7|2 AWS KMS 22+0|1EE AWS Encryption SDK AFSELICH € £
0{ generator WetO|EH gt 2 AlMEE|= KMS 7|7} 0|15 MB(E2) 2I™()oll [= ER us-
west-2E us-west-2 2|70l CHEH 7|2 AWS KMS 2 2I0|HEE AWS Encryption SDK 4448t
LICt. AWS KMS 22+0|1EE A& X} X|'H5H0F t= B create_aws_kms_keyring() MM
EE ArSELCH.

off CHsiE x|=e m 7] 1D, 7|

<

AWS Encryption SDK for Rustoll A &t 23l 7|2 AWS KMS ke
ARN, EH3 0| EE= EE ARNIH ZH2 7| A ERE A8 E =+ UA&LICH AWS KMS 7|3
AWS KMS keys O ME Algdste o] E20| B stH MM 2HE M QAWS KMS 712 AWS
KMS keys Ol A A&,

CHS Al E 7|8 745! HZEHQIZE A& 3504 AWS Encryption SDK 2ZI0|1EE QIAEIAS}E!
L|CFREQUIRE_ENCRYPT_REQUIRE_DECRYPT. ™Al oflAl&= GitHub2| aws-encryption-sdk 2|3 X|
E 29| Rust CIHE2[0f Q= aws_kms_keyring_example.rs& & Z35tM| L. aws-encryption-sdk

// Instantiate the AWS Encryption SDK client

AWS KMS 7|2 A 108

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/keyring/aws_kms_keyring_example.rs
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/keyring/aws_kms_keyring_example.rs

AWS Encryption SDK JHEER} 70| =

let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),
1);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

kms_multi_keyring: IKeyring = mpl.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

Go

StLE ol&f2| 7|7t Qe AWS KMS 7|32 MM 5t2{H create_aws_kms_multi_keyring() M|
MEE Ar8tLCt o] oM E F 7He| KMS 7|2 AFEFLICE. 8 79| KMS 7|5 K| &6t
generator ItztO[E{EH ALSELICH F7H KMS 7|& XIH3SHE kms_key_ids Tt2tO[E{= M= A}
stelct.

o k|

o| Z|~&of| CHEt 1242 AWS KMS EC0|IEE 7HX K| et&LICH CHalE Z[—~I0 A KMS 7|
2 EZAElE Z 2l™9 7|8 AWS KMS E210|21EE AWS Encryption SDK A EfLICH G € &

AWS KMS 7|2 A 109

AWS Encryption SDK JHEER} 70| =

0 generator Il2t0|E] Zt2 2 AlHE|E KMS 7|71 O/ ME(EIZ) 2IF()oll Y= B us-
west-2E us-west-2 2|0l CHEE 7|2 AWS KMS Z2+0|HE E AWS Encryption SDK 243 &f
LICH AWS KMS Z2I0|HEE AF2 AL X|H5H0F 3= B create_aws_kms_keyring() HIA

EE MEFLICH

Go AWS KMS key E0ilM =3}
HE 0|8 = BEYARNDH Z 2
KMS keys O|ME AE5t= O &
keys Ol M AlE,

|2 AWS Encryption SDK 0i| CH3HE X|&H& [7| ID, 7| ARN,
| NEXE AL " =+ l&LICH AWS KMS 7|3 AWS
5t MM g 2R SMAWS KMS 7|2 AWS KMS

o
E
FO W

o

CtZ oAM= 7| 7O HAOIE A8 3504 AWS Encryption SDK ZCt0|1EE QIAEAS}
LICFREQUIRE_ENCRYPT_REQUIRE_DECRYPT.

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Optional: Create an encryption context
encryptionContext := map[string]lstring{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library

AWS KMS 7|2 A 110

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK JHEER} 70| =

matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {
panic(err)

// Create the AWS KMS keyring

awsKmsMultiKeyringInput := mpltypes.CreateAwsKmsMultiKeyringInput{
Generator: "&arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
KmsKeyIds: []string{"arn:aws:kms:us-

west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"},

}

awsKmsMultiKeyring, err := matProv.CreateAwsKmsMultiKeyring(context.Background(),
awsKmsMultiKeyringInput)

£ H|CHE RSA KMS AWS KMS 7|8 At835t= 713 AWS Encryption SDK & K| & LICH HICHE
RSA AWS KMS 7|&ol= 7| mlo{7t sttt ZebE &= JU&LICt

HICHZE RSA AWS KMS 7|Zo 2 5 35l5t2iH 7|22 MyEe M 4550 A8E HEE 7| 24 2
AE X|™H&HoF 32 2 kms:GenerateDataKey = kms:Encrypt7} 2R 3HX| oF&LICH. O| 7|gdez &
Z3tE M= AWS KMS 3 £0| 0|F0{X|X| et &LICt HICHE RSA AWS KMS 7|22 2 55 3 5t2{H
kms:Decrypt #8t0| 2L & Lct.

@ Note
HICHE! RSA KMS AWS KMS 7|8 A8 3te 7|2lg Madstaied oig Z2 e edof
StLIE AtS3iof gLct.

2
op

« 9| ™ 3.x AWS Encryption SDK for Java
o for .NET EH{AWS Encryption SDK 4.x

o MEIXM ot S 3| X2 S2 At 2H0|E{2|(MPL) &84Tt &7H A2 3= AWS Encryption
SDK for PythonZd < H{7 4.x.

« AWS Encryption SDK for Rust {7 1.x
« Go AWS Encryption SDK 9| {7 0.1.x O[4f

CH2 oMM E CreateAwskmsRsaKeyring HIAEE AFE35104 HICHE RSA KMS AWS KMS 7|2
7|28 dggLict HICHE RSA AWS KMS 7|32 MAM5te2{H Chs gt2 MSELict

AWS KMS 7|2 A 111

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK JHEER} 70| =

« kmsClient: Af AWS KMS E2}0[|1E M
« kmsKeyID: HICHE RSA KMS 7| A#3tE= 7| ARN
« publicKey: &8t 7|o| HER 7|E Lt UTF-8 213 & PEM It 9| ByteBuffer kmsKeyID

EtLi=
« encryptionAlgorithm: & &35t &1 2|&F2 RSAES_OAEP_SHA_256 = 0|0{0F gfL|Ct.
RSAES_OAEP_SHA_1

C#/ .NET

]

H|CHE! RSA AWS KMS 7|2l AM4A45t2{M™ HICHE RSA KMS 7|0 H{E 2! 7|9 = zlo|8! 7|
ARNE A|Z235fof gfLiCt HERZ! 7|= PEMSZ Qlz2lZ|o{of &FL|Ct. CFS oMo A= H|CHE
RSA AWS KMS 7| o1& AI235t04 7|2l MdErLCt.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var publicKey = new MemoryStream(Encoding.UTF8.GetBytes(AWS KMS RSA public key));

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsRsaKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(),

KmsKeyId = AWS KMS RSA private key ARN,

PublicKey = publicKey,

EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};

// Create the keyring
var kmsRsaKeyring = mpl.CreateAwsKmsRsaKeyring(createKeyringInput);

Java

H|ICHZE RSA AWS KMS 7|22 MAI5t2{™ H|CHE! RSA KMS Z|ol H{E 2! 7|9F Zztol8! 7|
ARNE AN|Z&fof &LICt HER! 7= PEMeZ Q32 E|o{oF & L|Ct CF2 of| Mol M= HICHE
RSA AWS KMS 7| H0{E€ AI835t04 7|22 -derLCt.

// Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder()
// Specify algorithmSuite without asymmetric signing here

//

AWS KMS 7|2 A 112

AWS Encryption SDK JHEER} 70| =

// ALG_AES_128_GCM_IV12_TAG16_NO_KDF("0x0014"),
// ALG_AES_192_GCM_IV12_TAG16_NO_KDF("0x0046"),
// ALG_AES_256_GCM_IV12_TAG16_NO_KDF("0x0078"),
// ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256("0x0114"),
// ALG_AES_192_GCM_IV12_TAG16_HKDF_SHA256("0x0146"),
// ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256("0x0178")

.withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_IV12_ TAG16_HKDF_SHA256)
.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

// Create a KMS RSA keyring.
// This keyring takes in:

// - kmsClient

// - kmsKeyId: Must be an ARN representing an asymmetric RSA KMS key

// - publicKey: A ByteBuffer of a UTF-8 encoded PEM file representing the public
// key for the key passed into kmsKeyId

// - encryptionAlgorithm: Must be either RSAES_OAEP_SHA_256 or RSAES_OAEP_SHA_1

final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
CreateAwsKmsRsaKeyringInput.builder()
.kmsClient(KmsClient.create())
.kmsKeyId(rsakeyArn)
.publicKey(publicKey)
.encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
.build();
IKeyring awsKmsRsaKeyring =
matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Python

HICHE! RSA AWS KMS 7|22 AM4435t2{M HICHE RSA KMS 7|0 H{EE! 7|9 Z=Zl0o|4! 7|
ARNZ M|Z35fof gLct HE 2! 7|= PEMSZ QI3 2lE|o{of gFL|Ct. CFS o Aol M= HICHE!
RSA AWS KMS 7| H0{E Al235l0d 7|2l MAghLICt

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Optional: Create an encryption context

AWS KMS 7|2 A 113

AWS Encryption SDK JHEER} 70| =

encryption_context: Dict[str, str] = {
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS keyring
keyring_input: CreateAwsKmsRsaKeyringInput = CreateAwsKmsRsaKeyringInput(
public_key="public_key",
kms_key_id="kms_key_id",
encryption_algorithm="RSAES_OAEP_SHA_256",
kms_client=kms_client

kms_rsa_keyring: IKeyring = mat_prov.create_aws_kms_rsa_keyring(
input=keyring_input

Rust

HICHE! RSA AWS KMS 7|22 AM4435t2{M HICHE RSA KMS 7|0 H{EE! 7|9 Z=Zj0o|4! 7|
ARNZ M|Z35fof gLct HE 2! 7|= PEMSZ QI3 2lE|o{of &HL|Ct. CFS o Aol M= HICHE!
RSA AWS KMS 7| H0{E& Al235l0d 7|2l MAghLICt

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client

let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),

AWS KMS 7|2 A 114

AWS Encryption SDK JHEER} 70| =

("is not".to_string(), "secret".to_string()),

("but adds".to_string(), "useful metadata".to_string()),

("that can help you".to_string(), "be confident that".to_string()),

("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring

let kms_rsa_keyring = mpl
.create_aws_kms_rsa_keyring()
.kms_key_id(kms_key_id)
.public_key(aws_smithy_types::Blob::new(public_key))

.encryption_algorithm(aws_sdk_kms: :types::EncryptionAlgorithmSpec: :RsaesOaepSha256)
.kms_client(kms_client)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

AWS KMS 7|2 A 115

AWS Encryption SDK JHEER} 70| =

}

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

)
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create the AWS KMS keyring
awsKmsRSAKeyringInput := mpltypes.CreateAwsKmsRsaKeyringInput{

KmsClient: kmsClient,
KmsKeyId: kmsKeyID,
PublicKey: kmsPublicKey,
EncryptionAlgorithm: kmstypes.EncryptionAlgorithmSpecRsaesOaepSha256,
}
awsKmsRSAKeyring, err := matProv.CreateAwsKmsRsaKeyring(context.Background(),
awsKmsRSAKeyringInput)
if err != nil {
panic(err)
}

AWS KMS 7|2 A 116

AWS Encryption SDK JHEER} 70| =

AWS KMS A 7|2 AFE

5358 M=o A& E AWS Encryption SDK = /= B8 7|& X|H5t= ROl 71 & E&L
D ALEE [22{H AWS KMS 2iE 7|& X|™8t 7|2 AMEtet= AWS KMS 5535 7|2
Ct. J2Lt AWS KMS &4 713, & 2iE 7|8 XI'8stX| fh= AWS KMS 7|38 88 =

= EZE AWS KMS M 7|21 AWS KMS CHE 2| 7of| CHEH Z4A8 7|2!2 AWS Encryption SDK A
S ELICH AWS Encryption SDKOIA CHE 2| 7| Ar8 o] 28t WE = CHE 217 A8 AWS KMS keys

= A
MM BEFML.

eliE 7|1E XIgstx| et 7] 2 oi .:1 7|22 CIo|IHE &=

BHS E= O 713822 Ho[HE = 3t

SDK for C, 233 20| & HM 7[2]E F AlstX|2F Ct
=

o=
OE 7IZ0lM X|dste 82 duliste 89

ek &= Ei'ﬁL—lEF AM F7|—2E A& 504
F L|Ct. B AWS Encryption
|12l Bt=o 2 x|™stHLt

on
ofr

AM 7|22 AL 5tH £t ARSHHL HMAE = A=K|of ZHAHGIOIHM L E5HE O

8l AWS KMS key 8t A8310 AWS KMS = 5315t = AWS Encryption SDK 2%

CH AWS KMS key. 2 EXH7F AWS KMS keyol CH$t kms : Decrypt 80| &= Aol
L|Ct.

m ok

N

i “'
[T

< 3
HJI

w4
= >0
0% [y
OH -]]O =

for et © I

o

/A Important
23535 Ct= 7|20l AWS KMS Z4AH 7|2l
ol X|&H8t ZE KMS 7| Mgt "X o|gt
SxtstL|ct AWS KMS ZAM 7|12le Htso 2

of S FX| et&Lct

Io

TEtsle 7o HM F|2le o= F|2lo| ol e 7|2
LICt 222 O+& 7|22 MEtol 7t M2 7
AL CHE 7|20l AL ElE Ze 233l

= |3 AWS KMS Z44AH 7|22 AWS Encryption SDK M3 & L|Ct. B CtSoF 22 O] E 7t
S5tH M MEtHel 7|21 AF8ste [ol E&LICH

of 3 3t El HIAIX|C| CIOIE] 7|2 &3}t Ol AWS KMS key AFHE E

EMEE S 9495 ZEXt= 0|8 AWS KMS key AFE3t0{ |2 3tE = e HEHO| U&L
83tt{=0| ot = /U&LCt o & S0 & =3HE HIoIH 7| & Lt

AWS KMS key U= & et S 5HEIRIZ = A& LT

- AWS KMS 7| CHE AWS A & 2| AWS KMS keys HIAM 2 &5 3HE 7|

§+ =l D E O|o|E{ 7|12 535 38}5l24 AWS Encryption SDK 3t AWS KMS keys &

toll AHS & HEHO| Qi7| 2ol A 7|20l CHE Z|—2IECH =2 &= d&LCh

o|r et

o

AWS KMS 24 712 TS "

AWS Encryption SDK JHEER} 70| =

M 7S MBS B A TEIS ALS504 RITE AWS HIE U THE|4M0] 712 ASE 4
£ KMS 7|8 Mststs 2ol E&
SER IS

= £ AWS Encryption SDKE{Z 1.7.x O] &Foi| A x| &
ELich AY D & otE|ME &

E
| == R |

O ==0| E2stEe AWS 7HE AEA & ARN B4 HZstAl
RAWS Lt 3 E.

CHE A E=7F AFHEE AWS Encryption SDK = /= KMS AWS KMS 7|2 aws I}E|M 2
111122223333 Oi| Al HH2| 7|2 X|Btet= AM LEE ALE5to] M 7|28 QUARHASEFLICY.

O| ZEE At835H7| ™ol oMl AWS H™E & THE|M Zf2 AWS HE L TE|MO| R &8t IR HHE
LICH KMS 7|7t &3 2I™ol = B2 aws-cn THE|M 2t 2 ALE5HAMIR. KMS 7|7+ AWS GovCloud
(US) Regions0i| A= B2 aws-us-gov ItE|M ZIE AL SHM|L. CHE AWS 2[F0l| /U= B2 aws Tt
E|M Zt2 A83HML.

C

XA olMlE kms_discovery.cppE EESHAIL.

std: :shared_ptr<KmsKeyring::> discovery_filter(
KmsKeyring: :DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.Build());

struct aws_cryptosdk_keyring *kms_discovery_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Buildex ()
.BuildDiscovery(discovery_filter));

C#/ .NET

CH2 oMol A= AWS Encryption SDK for NET 4.x HHEE AFSEfLICH

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;

// In a discovery keyring, you specify an AWS KMS client and a discovery filter,
// but not a AWS KMS key
var kmsDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(),
DiscoveryFilter = new DiscoveryFilter()

AWS KMS ZAM 7|2 AL 118

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK JHEER} 70| =

{

AccountIds = account,
Partition = "aws"

i

var kmsDiscoveryKeyring =
mpl.CreateAwsKmsDiscoveryKeyring(kmsDiscoveryKeyringInput);

JavaScript Browser

g

JavaScriptol M= BAHo = HM K492 X|-sHoF 2 LICH

CHE Aol = buildClient E+E AF235H04 7|2 70! HAHQIE K|HEL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. £ Al235l04 &5 518l HA|X|2| &5 5E H|O|E 7|
=& MEtbuildClientd == QU&LICH RHM|IEH LI 2 the section called “&F 5 3} El CI[O|E 7|

M BHHE HRSt AR,

import {
KmsKeyringBrowser,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const keyring = new KmsKeyringBrowser(clientProvider, {
discovery,
discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }

1)

JavaScript Node.js

Ad
S

1
fifo

JavaScripto A= BA[Hez HMY K| st oF & LICt.

CHS oMM = buildClient &8 AFE3St0d 7|2 78! HAQIE X|HEL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. £ At25t0{ &5 3l El 0 o| &5 SHE H|o|E 7|

AWS KMS ZAM 7|2 AL 119

AWS Encryption SDK JHEER} 70| =

& MgtbuildClientd == U&LICE REMIEH LI 2 the section called “2F 5 3HE! CI[O|E 7|
Mt Bt & X SAAL.

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const discovery = true

const keyring = new KmsKeyringNode({

discovery,

discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
1))

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
.partition("aws")
.accountIds(111122223333)
.build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
= CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
.discoveryFilter(discoveryFilter)
.build();
IKeyring decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

AWS KMS AM 7|2 AL 120

AWS Encryption SDK JHEER} 70| =

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_xregion)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS discovery keyring
discovery_keyring_input: CreateAwsKmsDiscoveryKeyringInput =
CreateAwsKmsDiscoveryKeyringInput(
kms_client=kms_client,
discovery_filter=DiscoveryFiltexr(
account_ids=[aws_account_id],
partition="aws"

discovery_keyring: IKeyring = mat_prov.create_aws_kms_discovery_keyring(
input=discovery_keyring_input

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create a AWS KMS client.

let sdk_config =
aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;

let kms_client = aws_sdk_kms::Client::new(&sdk_config);

AWS KMS 24 712 TS 121

AWS Encryption SDK

JHeER 7Hol=

Go

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create discovery filter

let discovery_filter = DiscoveryFilter::builder()
.account_ids(vec![aws_account_id.to_string()])
.partition("aws".to_string())
.build()?;

// Create the AWS KMS discovery keyring
let discovery_keyring = mpl
.create_aws_kms_discovery_keyring()
.kms_client(kms_client.clone())
.discovery_filter(discovery_filter)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

AWS KMS ZAM 7|2 AL

122

AWS Encryption SDK JHEER} 70| =

cfg, err := config.LoadDefaultConfig(context.TODO())

if err != nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

b
// Optional: Create an encryption context
encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})

if err != nil {
panic(err)
}
// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{kmsKeyAccountID},
Partition: "aws",
}
awsKmsDiscoveryKeyringInput := mpltypes.CreateAwsKmsDiscoveryKeyringInput{
KmsClient: kmsClient,

DiscoveryFilter: &discoveryFilter,
}
awsKmsDiscoveryKeyring, err :=
matProv.CreateAwsKmsDiscoveryKeyring(context.Background(),
awsKmsDiscoveryKeyringInput)
if err != nil {
panic(err)

AWS KMS ZAM 7|2 AL 123

AWS Encryption SDK JHEER} 70| =

AWS KMS 2|™ M 7|13 AF2

AWS KMS 2| M 7|22 KMS 7|2 ARNE X|H5HX| ot= Z|2LIC CHAl= &6 KMS 7|8 A
83104 533} AWS Encryption SDK & £ l&LICH AWS 2|7F.

AWS KMS 2| AM 7|28 A& 35to] 5 33+HE M= X|HE AWS KMS key 2|0 &3 3tE 2 E O
O|E{ 7|2 AWS Encryption SDK S35 3} &L|C} AWS 2. & 35ledH S E X0l A dlolE] 7|12 4538l
AWS 2|™ & X|'HElo| & 5tLt 0|4 AWS KMS keys 0i| CHEF kms : Decrypt 80| Qlo{0F &rL|C}.

CHE AN 7|2i0t OFEHERIZ 21 AA 71212 2 E8tof Q&S FX| etaLIc dE3HE HAIXIE =
Zate ek A SELCH 423t A 53401 A= O 7IZ0lM 2l AM 71318 M8ste B
S35 Aol fEELICEH S 21T A 7122 A8etod B S E= 08 71322 HO|HE 258
ot 42 33 2edo| AmigLct.

/A Important

=53 CtE 7|20 AWS KMS 2| A 7|12lg X &t 32 2™ dM 7132 o5 7|39
CHE 7120 X|Het 2E KMS 7| MgtE REelgfLct. 222 ot s 7|22 AMgtol 7+& M2
7|2 %H SEELICE AWS KMS M 7|22 H=Eo=2 MASE|7LEOHE 7|20l A8 ks 48

< g3g0| S FX| h&LIC

o| 2|™ HM 7|3 X[HE 2|He| KMS 7|28t 25 35HE AWS Encryption SDK for C A|= & L|C}.

AWS Encryption SDK for JavaScript 2 AWS Encryption SDK for NETOIAM A 7|2l A3l 3
? AWS KMS Z2t0|¢ME0M 2|2 F+ 7 LICt 028t AWS Encryption SDK 31 AWS KMS 2
2[MEE KMS 7|8 EEZSHA| e x|t X[HE 2™ 2 ol KMS 7|0 CHEF | 238 20l AlofgfL|

AM 7|12 E A Bote B2 dM EEHE AE5t0d 25 5t0f| AFEEl= KMS 7|18 RI™E AWS A Y 2
otE|Mo| 7|2 AEHstE 20| E&LICH AM EE{= AWS Encryption SDKEHZT 1.7.x O| & 0llM X|24E

& Eo{CtS 2= AM ZEE AF835t0{ AWS KMS 2| M 7|12l d-gtLict o] 7|2l 0|5
ME(2BEIZ) 21T (us-west-2) 2] HIH 1111222233330 | MHE KMS 7|2 M8 AWS Encryption SDK &
LCt.

C

s oMo M o] IR create_kms_client HMEZE 2248 kms_discovery.cppE & ZE5HA
o

L.

AWS KMS 21 24 72 AFS 124

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK JHEER} 70| =

std: :shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filtexr(
KmsKeyring::DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Buildexr ()

.WithKmsClient(create_kms_client(Aws: :Region::US_WEST_2)).BuildDiscovery(discovery_filter))

C#/ .NET

AWS Encryption SDK for .NETO|

= 20| Q& LICE B, o 7|22 AF835lod =
3tst I AFRElE KMS 7|2 E™ 2|Xe

ME 2l 44 7120l 8
Moz MEHe = JU&Lich

ZM 7|20l BIRIE RIBHeHs 7HE 2 2HOI WS Tl BT 7|8t AL 5104 GIOJEIE 22818t
QLICt. EHe BIF 7|7k WA OHE 2ld Q14

x4
BROE O 2T o1 24 7128 N Ssh 2l
8

ZId2 O et 7IsE M8

CreateAwsKmsMrkDiscoveryKeyring() HME0IAM EHEHE 7|22 AWS

KMSE 2 &3t7| Mo 2|tHE2 KMS 7|& EEelZ e LI e 3tE ool 7|7t
CreateAwsKmsMrkDiscoveryKeyringInput Z#%|2| Region It2tO/E{Z X|HE 2| o] KMS
7|2 &S 3tE AWS KMS Zottol 553t @S Lot

CHS ol Mol A= AWS Encryption SDK for NET 4.x HHZ12 AFSELICH

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;

// Create the discovery filter
var filter = DiscoveryFilter = new DiscoveryFilter
{

AccountIds = account,

Partition = "aws"

i

var regionalDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput
{

KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),

AWS KMS 2|7 ZM 7|3 AL 125

AWS Encryption SDK JHEER} 70| =

Region = RegionEndpoint.USWest2,
DiscoveryFilter = filter

i

var kmsRegionalDiscoveryKeyring =
mpl.CreateAwsKmsMrkDiscoveryKeyring(regionalDiscoveryKeyringInput);

AWS KMS £ 20| E (AmazonKeyManagementServiceClient) 2| QIAEI AN B|HE X|H AWS E
M 5tod KMS 718 EX 2 AMEHe &% QlaLich B 0] A2 multi-Region-aware 44 7|2lg

AEste JAECH 2240| Ho{X|1 HI&O0| H B 0| & &= JU&LICH & H™of 2[EE KMS 7|18
ZIE{2I5H = CHAl AWS Encryption SDK for NET AWS KMS2 ¢t 3 st Zt Of|0|E{ 7|0 AWS KMS
CHaH (B2 stHe WIHR)E &30 AWS KMS £ AF&35104 AF2 3= KMS 7|18 X|HE 2[He =z

AM|gHghLct.

CH2 oMol A= AWS Encryption SDK for NET 4.x HHEE AFSEfLICEH

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;

// Create the discovery filter,

// but not a AWS KMS key
var createRegionalDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
DiscoveryFilter = new DiscoveryFilter()
{
AccountIds = account,
Partition = "aws"
}
};

var kmsRegionalDiscoveryKeyring =
mlp.CreateAwsKmsDiscoveryKeyring(createRegionalDiscoveryKeyringInput);

JavaScript Browser

CHE oAM= buildClient &8 AFE3St04 7|& 78! HAQIE X|HEL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. £ Atl25t0{ &5 3l &l 0 o| &t 53l El O[O 7|

AWS KMS 21 24 72 AFS 126

https://docs.aws.amazon.com/sdkfornet/v4/apidocs/items/KeyManagementService/TKeyManagementServiceClient.html

AWS Encryption SDK JHEER} 70| =

& MgtbuildClientd == U&LICE REMIEH LI 2 the section called “2F 5 3HE! CI[O|E 7|
Mt Bt & X SAAL.

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
discovery,
discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
)

JavaScript Node.js

CtZ oMM = buildClient 8 AHE5t0{ 7|2 72! HAQIE XIHE L
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. £ Al235l0d &5 518 HA|X|2| &5 351E H|0O|E 7|
+E MgtbuildClient® == UELICH REAIEH LHE 2 the section called “®f & 3El H|O|E] 7|
Mzt erelg HEsAAL.

Ol 7|2t 1imitRegions &8 EoiM & 0| X0 A kms_regional_discovery.ts& FHZESHMIR.

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-node’

const { encrypt, decrypt } = buildClient(

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)

AWS KMS 2| 2 7|21 Ab 127

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_regional_discovery.ts

AWS Encryption SDK JHEER} 70| =

const keyring = new KmsKeyringNode({
clientProvider,
discovery,
discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }

1)

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
.partition("aws")
.accountIds(111122223333)
.build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
= CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
.discoveryFilter(discoveryFilter)
.regions("us-west-2")
.build();
IKeyring decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_xregion)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(

AWS KMS 21 24 72 AFS 128

AWS Encryption SDK JHEER} 70| =

config=MaterialProvidersConfig()

Create the AWS KMS regional discovery keyring
regional_discovery_keyring_input: CreateAwsKmsMrkDiscoveryKeyringInput = \
CreateAwsKmsMrkDiscoveryKeyringInput(
kms_client=kms_client,
region=mrk_replica_decrypt_region,
discovery_filter=DiscoveryFilter(
account_ids=[111122223333],
partition="aws"

regional_discovery_keyring: IKeyring =
mat_prov.create_aws_kms_mrk_discovery_keyring(
input=regional_discovery_keyring_input

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS client
let decrypt_kms_config = aws_sdk_kms::config::Builder::from(&sdk_config)

AWS KMS 21 24 72 AFS 129

AWS Encryption SDK JHEER} 70| =

.region(Region: :new(mrk_replica_decrypt_region.clone()))
.build();
let decrypt_kms_client = aws_sdk_kms::Client::from_conf(decrypt_kms_config);

// Create discovery filter

let discovery_filter = DiscoveryFilter::builder()
.account_ids(vec![aws_account_id.to_string()])
.partition("aws".to_string())
.build()?;

// Create the regional discovery keyring

let discovery_keyring = mpl
.create_aws_kms_mrk_discovery_keyring()
.kms_client(decrypt_kms_client)
.region(mrk_replica_decrypt_region)
.discovery_filter(discovery_filter)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

AWS KMS 21 24 72 AFS 130

AWS Encryption SDK JHEER} 70| =

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

)
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Create discovery filter

discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{awsAccountID},
Partition: "aws",

// Create the regional discovery keyring
awsKmsMrkDiscoveryInput := mpltypes.CreateAwsKmsMrkDiscoveryKeyringInput{
KmsClient: kmsClient,
Region: alternateRegionMrkKeyRegion,
DiscoveryFilter: &discoveryFilter,
}
awsKmsMrkDiscoveryKeyring, err :=
matProv.CreateAwsKmsMrkDiscoveryKeyring(context.Background(),
awsKmsMrkDiscoveryInput)
if err !'= nil {
panic(err)

AWS Encryption SDK for JavaScript &&= Node.js & 222 X0 CHEt excludeRegions & LY
EHLICH o] 4= 5 AWS KMS 2|7 AWS KMS keys MlA] M2FE|= B[M 7212 MMEL
Cl. CtS dlAMolME O/=F SE(HZILIOF §8)(us-east-1)E AWS 2| XM 2|8t 2 E AWS KMS keys
O ™8 1111222233330 HE AFSE &= U= AWS KMS 2|1 AM 7|22 M ggLlct.

AWS KMS 21 24 72 AFS 131

AWS Encryption SDK JHEER} 70| =

0= S AtEF HIA AWS Encryption SDK for C E7} @ X|2F AL& Xt X|H ClientSupplierE 44435t0{ 7
g = JU&Lct

O| o= Node.jsoll CiEt ZIEE EoiELICH.

const discovery = true
const clientProvider = excludeRegions(['us-east-1'], getKmsClient)
const keyring = new KmsKeyringNode({

clientProvider,

discovery,

discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }
1)

AWS KMS ASx 7|8

AWS KMS 7&™ 7|2l& AtEstH CIOoIEE Y E3tst7{LE sl S8 AWS KMS MOICHE ZE6HX| ©f

N OE 33t KMS 7|12 58 A28 E5E + UELICH 3E2 Z|A3talofF st= ofE2[7|0]
M AWS KMSZH ot @ F A £ MASE & = ol EElFH 0]
off gLt

0ok
fjo
{0
T
[e]]}
A
el
kl
e
Sl
nQ
]
tob
Pal
HU fol

HAE™ 7|22 Amazon DynamoDB El|0|E0 R X|Zl= AWS KMS ES El EHEi x| 7|1E AF28tCtS &
335 2 2535 2ol AIS L= HBMR| 7| AR E ZHE FHASI0I AWSKMS 35 £E £E0|l= ¢35
3l Xt2 A 22 MHQLICH DynamoDB El0|E2 E2i%| 7|18 ZElstT E56tE 7| AE0{ FEg 3
LICH &M 23ix| 7|9t 2 E 0|3t Mol EElikx| 7|2 XA ELICH &M E3lx| 7| Z|A HEo| H 2t

7
A ZILCH AEH 7|22 1 Re ClolE 7|8 A&Est0 Zt HAIXIE & E&tstn 2 & &3t 20
z 2 2o BER| 7|0 ot E T REelE 7|2 Z4 oio|E 2 &
3t 9|— fSetefLIcH HEN 7|22 &Ed 23R 7|2t Tl E efE 7| Atojol| MHE AE FZoil it
et EetELck

AEM 7|22 detdo g 2t HAlR| 7|
710 RHALS HRIE Xﬂo{%F_T'_ g2y 53X
M2 oAE m7tx| Ed del2 fX[EL
Ol AFS EIX| £ X|2F 04715 2|2 S

oo

o 1o 1o
2ol gl >

T

2

10

m
ol
JHr
fol
Yo

AHEH 7|82 QABASSH 24 A7 HEELICH FHA MBS

XHEstn k| 7| Xk= 7} Bt
FE[0] FHA[HIM MZHEIZ| Zoll 2EZ FHA|o| MHE == =[CH AlztE FolgLIch A 7[227t &Y
ol #{& branch-key-id X|&E M ERlX| 7|1E sH=otn EBR[7| 7 QA E o{HlE5t7| 2I6H &
AWS KMS tHH = ¢tL|ct g Eaiix| 7| Xt 7F 2Z FHAlof| A E| 1 FHA| MEHo| BHEE 7+ K|

branch-key-id& X|dst= ZE 353 A 5353 2ol E34X| 7] XAt =7t HASELICH =2ZH 7H

AWS KMS A&™ 7|3 132

https://github.com/aws/aws-encryption-sdk-c/blob/master/aws-encryption-sdk-cpp/include/aws/cryptosdk/cpp/kms_keyring.h#L157

AWS Encryption SDK JHEER} 70| =

Alo 2 %| 7| 1 LA E XMHESHAWS KMS Z&E0| E0{ELICt € E01, JHAI SHEE 15ELZ
7tsl EZ&LICH s FHA| A[Et LH01IH 10,0007H2| & &35t 2t S sst= 2 7I&E AWS KMS
7|22 10,000712| &= 3t &2 SF5t7| /51 10,0007H2] AWS KMS £ &2 s&stjoF gfLICH &

AM7L S e AR AsH™ 7|3 branch key-id2 10,0007H2| &= 35t &S SF 67| ?I5H B

ok AWS KMS 3 &350 ElLct.

= =

futok

EEH 9HA|2 S
Al M|gto| ot2 =
EHol M AlEE =
HHEIDE 55

—

3 A2 S35 AEQF ERlELICH &35 AR = 2 | Z10lM = E=|H 74
77t K| ot 5 3t Zrdof AR ElLICH 2353 A2 25 35HE ZEo| HEHH| O
2Hx| 7] ID L HE oM =E =] FHA| MBto| BH2E W7t R| E24%| 7| ID L AT}
3t 2ol AL ElLCH 2 FHA|= B #Hof o2 T ol S YUEt EE_xI 718 M%

& = U&LICH 2Z FHAI7HE A8 FHEE F+ME A< branch key ID supplierst

EEP
(o]

x| 7|0l ERM x| 7| M QA E XMEE £ QlaLCE
@® Note
o AlEX 7|2of CHEt D= TS AWS KMS HIE A 7|22 AWS Encryption SDK Zr = 8L
C}.

AB 72e o Z2 2T ool W Tl XI#ELIC

« 9| 4™ 3.x AWS Encryption SDK for Java

« for .NET H{7™ AWS Encryption SDK 4.x

« MEHX MPL S&41 &7 AHE38HE AWS Encryption SDK for PythonZd < H{& 4.x.
« AWS Encryption SDK for Rust ™ 1.x

« Go AWS Encryption SDK & 2| {7 0.1.x O[4f

=

1
pal

2

> |ofn
1=

>
[H | oz
o

[l
s

M
>
x
qm

AWS KMS HEZH 7|3 133

AWS Encryption SDK JHEER} 70| =

RAF&= HEAI
1S o™

CHS OdAOHAﬁ“ AE™ 7|20/ Y53 U E5s AABE TEEe WD ¢S5 U =535 =Hdof| Cf
Q 7

i 7|20 +&sl= CIYEH S ES MY | ot 9l et BIAE H|0|E] 7| & 53F T2 A
A0 CHEE 7| MBE HEE AWSKMS ASX 7|2 7|2 ME HEE Z5HML

F

no
o

ok

3 U M

bl

S H&0ME HAIEM 7|20l &3 AI2E Zgfetn nRer o 7|18 TESE WHS HTEL

Ct.

LICH

a. 7| AEO0{EE 5& AWSKMS 5t0o4 &4 E3X| 7|18 siiS5tn Lt BAE &4 2| 7|
E gtErerLict 84 231k 7|2 AlE5HE OO|E= 2280 AWS KMSE 53 & Al
%7} Q15 C|0|E{(AAD)E N2 &tLICt

At & gfLicH
4. ASH 7|2 Ui HAE HEHX| 7|2t 16HIO|E T2 £E0|M T 7EF 2HE 7|E 7HMHSLICH
utME 2iE 7|18 AFE5tod it HIAE H|0|H 7|9 AHR2E 2 E5tEfLICt

o535 HMEER 233l AHEE AR 5104 CIOIEIE 23 8l &LICH RHAIEH LIR 2 AWS Encryption
SDK 7} CIOIEIE 3 stste wig AEsML

=353 o =ol

Che otLHolME HIS™ 7ol 253 X2 E xest AS5HE ClolE| 7|18 258t Wy o
==Y

o-d

1. S3stHME= = Hi5hod HE 7|20 MTHEHL

o
0
=
>
A
2
x
fok
on
rin
s
o
m
N
mlm

EHE HEAl 134

AWS Encryption SDK JHEER} 70| =

2. ASH 782 B3Rl 7| HE, 16HI0|E £E L O|O|H 7|7t &8l $HE dEst= 7Bt H
2 S ¢ssE HolH 7|1 Aldste CIo|EE =& LIcH

71E A Rl 7| HED LRlste R E ZHX
of %".: | & 2 7|22 6EtH = TI—ELICH

O
N
|>
Hn
2
o 0

5. AEHM 7|22 28| 7| Az (YE HIAE HHMR| 7| L HA;MRX| 7| HE)E T stod 24 FHAlo]
X

= (=}
6. HASH™ 7|22 el EEix| 7| Rt= 2t 2EHAH[0| A A3 16HIO|E £EE AFE5t0{ TIO|H 7|E
gEstet 1) 2 7|18 AT LICH
7. ASM 7Y MYE i 718 A8 stod HloIE| 718 S5 3tstT Uit HAE Co|E] 7|8 Bt
g
= .

53535 AHE2et et HHAE H|0|E 7|18 AFE5t04 2 3tHE HIAIXIE S =3H&LCt
I &f 2 3FEl HIAIX|E AWS Encryption SDK 1S 5t= &S & X5HMIL

HEH 7|88 ddstn ArEst7| ™ol Chg AP Z740| SF &= X] F gL

« MEXEE 7| 2E0{ #HEIXITL 7| AE0{E Wdst oLt Ol ol 2 ERIX| 7|§ dE=&LIcH

- 7| 2E0{ HYE FERMELICH

@® Note
7| AEO0] HHg T o mal &g
Ql=KMS 7|7} ZHEL|CT. leﬂ g2 7

— moll
"
30

s Ir

o 1A
2
A
X
Ol
1
N
o
2
x
Pl
oo
e
1>

A = 135

AWS Encryption SDK IR 740l =

« 7| AE0{ L EEHRX| F|0f HMASDT AFESH=
2 the section called “Z 4= Heh HHlS & X5

- XHEl= A 82 dEStD Eo0 7HE MEE Al RS FHIMESLICE XM LIS 2 the
section called “FHA| MES” MME X SHM2.

jni
ME
kO
ok
>
S
%)
=
<
)
rH
o
o

U&LICH RHMIE LHE

A

=T -

rot

AWS Encryption SDK 0fl=7 23t x| AWS H'E fomdo S&SE[X| E&LICHAWS ME|A, TBdLt
HEXN 7|12E A85tedH 7| AE 019 CHE 223 AWS KMS key(E)0ll CHEH AWS HIH & CtS 3t
e xl/\ -'|’-.|o|-0| .u.IO%I-L_“:l._

=24 -1

A8 3tod HIOIEIE & 3385t |5 5H24T kms:Decrypt7t 2 LCt.

= K=3
o=
7|8 d85tT w524 kms:GenerateDataKeyWithoutPlaintext %! kms:ReEncrypt7t £

=R 7] & 7| AEO-IOH CHEE MM A Mo{odl CHEF REAIEH LHE 2 MME & Z5HMIRthe section

FHA| A1EH

HAEM 7|32 d55t H 5535 ol A8xl= BERR| 7| Rz & 2HE 7H4 AWS KMS 5todof CH
et 28 8 EYULICL ASH 7|22 dE517| ol AEE Al RBE ZEsHor Fuct 7|2 FHAl
£ A85tHLE H20] I FHAIE ALERL XIEE = U&LICH

« the section called “7|2 FHA|”

« the section called “MultiThreaded 7HA|”

« the section called “StormTracking 7H A|”

- the section called “25 FHA|”

/A Important
XHElE 2E Al RE2 HE|AZE 42 XSG =S MAHEIR& LI
ag{LtQt B AF8sHE 73 AWS Encryption SDK for PythonAIS X 7|2l HE[AHE &H
2 K| st K| et&LICH REMIEH LI 2 GitHub2l aws-cryptographic-material-providers-library

151
4>
&
rok

136

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/python/README.rst

AWS Encryption SDK JHEER} 70| =

2| ZX|E2[0i| %= Python README.rst It & & & X5t M|R. aws-cryptographic-material-
providers-library

712 FHAl

CHEE AFSXLL| A2 712 JHAIR ABIY @F AEE SFFLICL 7|2 sHAls HEIABET B2 &
A2 XY= T HALIAELICH E)ix| 7| KR 50| BHELH 7|2 A= ERHx| 7| A2 E =0
10X Hof| SR E WUg # AB = AWS KMS of 22 048] ABETIE 2 &5t= WE YKIELIC Of
=7 5t B ABEEF AWS KMS ofl FHA| M2 B E @S E-L|CH

.‘

7|8 FHA|2F StormTracking FHAlE S YUsH ABE ZEHE X|HGHK|R 7|2 FHAIE AFESHE{H &
21 S0 X|'H5tH Euch 2ot MEstE FHA| AL A X|HE2 I E AFE & LICHhe section called
“StormTracking 7HA|".

EH A XMHEE =

Ui HRx] StEis ZeTt ofLizte AE
JlYe MaE 0 FHAl RES XIBE Tt et WAl KBS XIMHK| o A 7l
712 JHAl REES ASSHT 2 82 100022 AHELIC

7|8 FHAIE AER X|EstedH ChE 2t S RIGELICH

oo

= 8T 2 9lAll MEE = e BE¥MR| 7| Atz 52| =& FEHELICH

Java

.cache(CacheType.builder()
.Default(DefaultCache.builder()
.entryCapacity(100)

.build())

C#/.NET

CacheType defaultCache = new CacheType

{
Default = new DefaultCache{EntryCapacity = 100}

};
Python

default_cache = CacheTypeDefault(

FHA| A4EH 137

https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/python/README.rst
https://github.com/aws/aws-cryptographic-material-providers-library/tree/main
https://github.com/aws/aws-cryptographic-material-providers-library/tree/main

AWS Encryption SDK JHEER} 70| =

value=DefaultCache(
entry_capacity=100

Rust

let cache: CacheType = CacheType: :Default(
DefaultCache: :buildexr()
.entry_capacity(100)
.build()?z,
)i

Go

cache := mpltypes.CacheTypeMemberDefault{
Value: mpltypes.DefaultCache{
EntryCapacity: 100,
},
}

MultiThreaded 74 A|

MultiThreaded FHAl= HE|ADIE BF0|M StHGHA AFEE &= UX|TF AWS KMS EE= Amazon
DynamoDB £& & | te 7152 M35HR| eb&LCh mMetM ERX| 7| XE2 20| PR E|H S
Ao 2E Agle g 22lo| MAEILIC O|2 Qlal FHAIE MZ T x|= AWS KMS & 0| 042 &1 ghAd
3 4~ olA L |C}

T AAH

toﬁ,m
o'|-

- 5 8T RH A MY + A= BEEMX| 7| X7 52| & MeEtELICH
- 2 HEHY Y| $E 0l TEHE A HElE ¥5 8 Holgict
Java

.cache(CacheType.builder()
.MultiThreaded(MultiThreadedCache.builder()
.entryCapacity(100)
.entryPruningTailSize(1)

FHA| =4 138

AWS Encryption SDK

JHeER 7Hol=

.build())

C#/.NET

CacheType multithreadedCache = new CacheType
{
MultiThreaded = new MultiThreadedCache
{
EntryCapacity = 100,
EntryPruningTailSize = 1

1Y

Python

multithreaded_cache = CacheTypeMultiThreaded(
value=MultiThreadedCache(
entry_capacity=100,
entry_pruning_tail_size=1

Rust

CacheType: :MultiThreaded(

MultiThreadedCache: :buildexr()
.entry_capacity(100)
.entry_pruning_tail_size(1)
.build()?)

Go

var entryPruningTailSize int32 =1
cache := mpltypes.CacheTypeMemberMultiThreaded{
Value: mpltypes.MultiThreadedCache{

EntryCapacity: 100,
EntryPruningTailSize: &entryPruningTailSize,
},

}

FHA| =4

139

AWS Encryption SDK JHEER} 70| =

StormTracking 7H Al

a5
I'|0
ot
o

StormTracking® HE|ADE 7P o
=™ StormTracking FHAlE E&1%| 7
OSZM o AHETIE ?.Z;-aE N
AR QEE Hefuc.

£ K|S EE HAZIR&LICH EHRX| 7| RIZ2 50| 2=
A2 &S0l 0l2 BtR2E HdUS st AR =0 €= AWS KMS
HFX|EHL|C Ol A 5t 3t A= 0 AWS KMS 0off FHA| M2

IIIIO

StormTracking 7HAIE A& stedH CHS 2t XIEELICH

- ¥5 T ZH A MEE + U= ERX| 7| Az 52| +& Mg

7|24t &5 1,0007H
- ¥5 Yel Y 271 & Holl HElg B3R 7| Az 5ol 8 FolFLc

2R 7| Rt 2E MZ D R[B{E ARt BFR2E|7|7H K] AEIE AlZh(E)E ZelgLch

7122k 10=

- 70l Zt4: 23X 7| Rz ol Mz T A 7HA(X)E HolghLich

712 1=

- Hotz: HHMX| 7| AIRE MZE IEH = U= SAI Al H+E Holghch
71822k 208 AT

« & X AIZHTTL): 23X 7| RIRE MZ D xl2dE A= 7F M Azt ZOHE 7K o] AlZh(E)2
MolgtL|Ct. GetCacheEntryol CHEt 82 Z FHA[7F NoSuchEntryE ._i beh miotch e 22
x| 7|= PutCache &St SUst 7|7t 7|52 WX S 5l Ho 2 ZtFELC.
7|&22k 10=

B Z2EE ZO5IH ANEI HH 2EZ HEHSHoF e YUE[E sfanOutE Holg Lt
71822k 202 2|x

Java

.cache(CacheType.builder()
.StormTracking(StormTrackingCache.builder()
.entryCapacity(100)

FHA| A1EH 140

AWS Encryption SDK JHEER} 70| =

.entryPruningTailSize(1)
.gracePeriod(10)
.gracelnterval(1)
.fanOut(20)
.inFlightTTL(10)
.sleepMilli(20)
.build())

C#/ .NET

CacheType stormTrackingCache = new CacheType
{
StormTracking = new StormTrackingCache
{
EntryCapacity = 100,
EntryPruningTailSize = 1,
FanOut = 20,
Gracelnterval = 1,
GracePeriod 10,
InFlightTTL 10,
SleepMilli = 20

Iy

Python

storm_tracking_cache = CacheTypeStormTracking(
value=StormTrackingCache(
entry_capacity=100,
entry_pruning_tail_size=1,
fan_out=20,
grace_interval=1,
grace_period=10,
in_flight_ttl=10,
sleep_milli=20

Rust

CacheType: :StormTracking(
StormTrackingCache: :builder()

AT S e

AWS Encryption SDK JHEER} 70| =

.entry_capacity(100)
.entry_pruning_tail_size(1)
.grace_period(10)
.grace_interval(1)
.fan_out(20)
.in_flight_ttl(10)
.sleep_milli(20)

.build()?)
Go
var entryPruningTailSize int32 =1
cache := mpltypes.CacheTypeMemberStormTracking{
Value: mpltypes.StormTrackingCache{
EntryCapacity: 100,
EntryPruningTailSize: &entryPruningTailSize,
GraceInterval: 1,
GracePeriod: 10,
FanOut: 20,
InFlightTTL: 10,
SleepMilli: 20,
3,
}
S 7HAl
7o R HEM 7|22 71Ye QAASE ujotc A 22 FHAIE AMELICH TL ZR A
E AE5tH ofe] AIEHM 7|20 M FHAIE SRE = U2E2E HZEIE HAE = J&LICH 37
Ae QAaBASSE 2 HEXM 7|2 ol CHell M 538t Rt =2 FHAIE W dstE Cidl M2 2(ol stLtel 7H
ARt MY S5, 0| M xsteE ZE ASH 7[—20M AL E = U&LICH S 7 7HAIE 713 ZHol &5
3t Atz 7t S5 7E YXlstod HEE| AEE %[XM&stE ol TS0l EuIch cHA ASH 7|22
SUEt 7|2 FHAlo] HM| At A HZE S2HE EY = J&LICH

S INAIE MEE E FHAl fREE K*OlgkL—IEF the section called “7|E FHAL”, the section called
“MultiThreaded ZHAI"EE =& FHA| R Eth
= AFEAF XIH FHAIE CHAE &= U &LICH

IHE| M

FHA| A4EH 142

AWS Encryption SDK JHEER} 70| =

oiE] HEX 7|22 B 7 FHAIE MEE = UELICH S| IHAIE ALE5tod HSHN 7|2 E MY
g MEHM TE|M IDE Molg &= JU&LICH TE|M IDE FHAl A1 Q= ASH 7|28 FEEL
EP = A5 7|2l0| SYsH THE|M ID, logical key store nameX! 22 x| 7| IDE & Xde B F 7|

2 A0 SLE FHA| T2 SRELICE S SR FHAIQ COHE THE|M IDSE F 71| HE X
7|Eo'§ Myste 22 4 7|22 37 7HAl LHe| X[HEHE! XbA| ZHE[MO MHEF FHA| & Foi| YA AEFLICEH
IE|ME 7 7HAl LHMIM =21 28 HE 2 st22 2 HE™ 7|210| CHE mhE|Mol X% El o|o|H
E walistx| et A X|HE THE|MolM SRIMe R 258 £ /JU&LCt

IHE|MOM FHA| S E MALE st HL SRetedis 32 n/et otE|M IDE Holstiok gLict ZHE[M
IDE HIEH 7|20l TPt 7|22 BRX| 7| A= E ChA| AMst 0 CHA| 5218 EHe gi01 3
Aloil ofgl U= FHAI F=FE MAMEE =+ JU&LICH THE|M IDE X|HetX| o™ ASH 7|22
SASHE miotch D&et otE|M ID7F 71”20 AtSe = S ELICH

CHS HRtolME ZIE A €2 S/ FHAIE ddstT 75X 7|20l MEste §HE 2odEL
Ct.

1. M=Z 32X 2to|EE|CryptographicMaterialsCache(MPL)E AF&3t04 (CMC)E A&t
LIC}. https://github.com/aws/aws-cryptographic-material-providers-library

Java

// Instantiate the MPL
final MaterialProviders matProv =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

// Create a CacheType object for the Default cache
final CacheType cache =
CacheType.builder()
.Default(DefaultCache.builder().entryCapacity(100).build())
.build();

// Create a CMC using the default cache
final CreateCryptographicMaterialsCacheInput cryptographicMaterialsCacheInput =
CreateCryptographicMaterialsCacheInput.builder()
.cache(cache)
.build();

final ICryptographicMaterialsCache sharedCryptographicMaterialsCache =
matProv.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

FHA| A1EH 143

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK JHEER} 70| =

C#/.NET

// Instantiate the MPL
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create a CacheType object for the Default cache
var cache new CacheType { Default = new DefaultCache{EntryCapacity = 1003} };

// Create a CMC using the default cache
var cryptographicMaterialsCachelInput = new
CreateCryptographicMaterialsCacheInput {Cache = cache};

var sharedCryptographicMaterialsCache =
materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

Python

Instantiate the MPL
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create a CacheType object for the default cache
cache: CacheType = CacheTypeDefault(
value=DefaultCache(
entry_capacity=100,

Create a CMC using the default cache
cryptographic_materials_cache_input = CreateCryptographicMaterialsCacheInput(
cache=cache,

shared_cryptographic_materials_cache =
mat_prov.create_cryptographic_materials_cache(
cryptographic_materials_cache_input

Rust

// Instantiate the MPL

FHA| A1EH 144

AWS Encryption SDK

JHeER 7Hol=

Go

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create a CacheType object for the default cache
let cache: CacheType = CacheType: :Default(
DefaultCache: :builder()
.entry_capacity(100)
.build()?z,
);

// Create a CMC using the default cache

let shared_cryptographic_materials_cache: CryptographicMaterialsCacheRef = mpl.

create_cryptographic_materials_cache()
.cache(cache)

.send()

.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

)

// Instantiate the MPL
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create a CacheType object for the default cache
cache := mpltypes.CacheTypeMemberDefault{
Value: mpltypes.DefaultCache{
EntryCapacity: 100,
.

// Create a CMC using the default cache
cmcCacheInput := mpltypes.CreateCryptographicMaterialsCacheInput{

FHA| =4

145

AWS Encryption SDK JHEER} 70| =

Cache: &cache,
}
sharedCryptographicMaterialsCache, err :=
matProv.CreateCryptographicMaterialsCache(context.Background(), cmcCacheInput)
if err !'= nil {

panic(err)

[a

2. 2% FHAloll CHEt CacheType ZHA|E M MEHLICEH

1EtA0|M sharedCryptographicMaterialsCache 448tE A CacheType ZH&l|0f THEE
L|Ct

Java

// Create a CacheType object for the sharedCryptographicMaterialsCache
final CacheType sharedCache =
CacheType.buildex()
.Shared(sharedCryptographicMaterialsCache)
.build();

C#/ .NET

// Create a CacheType object for the sharedCryptographicMaterialsCache
var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache };

Python

Create a CacheType object for the shared_cryptographic_materials_cache
shared_cache: CacheType = CacheTypeShared(
value=shared_cryptographic_materials_cache

Rust

// Create a CacheType object for the shared_cryptographic_materials_cache
let shared_cache: CacheType =
CacheType: :Shared(shared_cryptographic_materials_cache);

FHA| A1EH 146

AWS Encryption SDK JHEER} 70| =

Go

// Create a CacheType object for the shared_cryptographic_materials_cache
shared_cache :=
mpltypes.CacheTypeMemberShared{sharedCryptographicMaterialsCache}

3. 2EtAH0M AS ™ 7|22 2 sharedCache ZAE ™ME&LCt.

Z 2 FHAIE AF25H0d HAIES A 7|28 MAE [MEHA O 2 E MO|partitionID5t0od 0424 HIS
X 7|ZolM JHA 22 BRY 4 UsLICH THEIM DS XIHEHK| oM AISH 7|20l KI5 2
2 7|20 1|3 ItE|M IDE &ttt

(® Note
S Ut otE|M ID, logical key store name 2! E2i%| 7| IDE & ZE35tE F 71 o|&to] 7|22
Mdstes 32 ASH 7122 3R FHAIMAM S FHA| &S 2 SFELICE odzd 7|& 0]
S A & =2 SRHX| LT oteiH 4 HSEXN 7|20l 1 RE otE|M IDE AHEHH
Of &fL|Ct

Ct= oMol M= branch key ID supplier, ZHAl A&t 600X 2 HEX 7|22 S LICE 2 HAE
M 7|3 Mo Ho|El gfoll CHEE REMIEH LI 2 MME &= 3HMRthe section called “HIE* 7|

2| AHAH»
=KX=

Java

// Create the Hierarchical keyring
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
CreateAwsKmsHierarchicalKeyringInput.builder()

.keyStore(keystore)
.branchKeyIdSupplier(branchKeyIdSupplier)
.tt1lSeconds(600)
.cache(sharedCache)
.partitionID(partitionID)
.build();

final IKeyring hierarchicalKeyring =

matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

FHA| A4EH 147

AWS Encryption SDK JHEER} 70| =

C#/.NET

// Create the Hierarchical keyring
var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput

{
KeyStore = keystore,
BranchKeyIdSupplier = branchKeyIdSupplier,
Cache = sharedCache,
TtlSeconds = 600,
PartitionId = partitionID
};

var keyring =
materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Python

Create the Hierarchical keyring

keyring_input: CreateAwsKmsHierarchicalKeyringInput =

CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id_supplier=branch_key_id_supplier,
ttl_seconds=600,
cache=shared_cache,
partition_id=partition_id

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input

Rust

// Create the Hierarchical keyring
let keyringl = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_storel)
.branch_key_id(branch_key_id.clone())
// CryptographicMaterialsCacheRef is an Rc (Reference Counted), so if you
clone it to
// pass it to different Hierarchical Keyrings, it will still point to the
same
// underlying cache, and increment the reference count accordingly.

FHA| A1EH 148

AWS Encryption SDK JHEER} 70| =

.cache(shared_cache.clone())
.ttl_seconds(600)
.partition_id(partition_id.clone())
.send()

.await?;

Go

// Create the Hierarchical keyring
hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
KeyStore: keyStorel,
BranchKeyId: &branchKeyId,
TtlSeconds: 600,
Cache: &shared_cache,
PartitionId: &partitionId,
}
keyring, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err !'= nil {
panic(err)

- 7| AE0{O|&

ANEXtEE 7| £E0{ EIXIT} 7| 2AE0{ HE S SIS Y4Bt DynamoDB El|0|E 2| O|F &ILICt.

FHAl A 7 X[AIZHTTL)

24 Al LHe| ERlX| 7| XKtz & F0| BrE[7] ™ol AEE = U= AlZHE) LLICH FHA] Xﬂ%*
TTL2 2cI0[AUETIE & AWS KMS oo 23X 7| A8 S &Qlst= BIZ & XI™HE LIt Ol &f
|

IN
2 0K 7{ofF ELICH FHA| MEH TTLO| BF=El Foil= &=0| M3 ZIX| St =2Z A0 M X7

ElL|CH

. BEz| 7| Algxl

HEM 7|13 Md 149

AWS Encryption SDK JHEER} 70| =

7| AEO0{0M Bt &AM ERX| 7|Z branch-key-id AESIEE HMoZ ML E3Hi%| 7|
|D [=) |=|XI'E X'"'g_éal- ‘JI\‘ 2 ﬁL—l I'

HER| 7] 1D 3F A= & &35 748 | HEE EEE AFR 504 2| E 5535t o 2

gEx| 7|18 A™-EELIC

Zt HAEo| AHA| 22 X| 7|7 = HE|E|HE O|O|E{H|0|A 0= EZX| 7| ID 2ZXE AR5

Zio| EZ&LICt E7R| 7| ID SZAHE AL 5104 ERHX| 7| IDsO| CHEF 7|45t 7| 42 Ol 2 M5t
o EMEHIHAEO Cist SHIE E2ix| 7| IDE & QAIE &= U&LICH of| & E0{ £I=8H O|EE A
25tH 23 x| 7|E b3f61619-4d35-48ad-a275-050f87e15122 CHAl tenantl2 EX & £

=235 Ko Z9 BYU ASH 7S HHoZ T4t 25512 BY HUER HSHstHL &
2% 71D B2RE AR50 HIC 2582 HYSHE HIHEE AlEY £ Lt

. (MY ALE) FHA
WA RBOILE 22 FHAIl MEE 4 s HER| 7| A2 S £5 ASK KIHsHEH 71BS %
JI5he o HAl RED B2 8BS XIHHML

HASE™ 7|22 7|8, MultiThreaded, StormTracking & 27 FHA| 8 & X|HELICE ZF FHA| 88
2 Hol5te Y EoiF = XMIE LI T} oMl MME & X 5HMIQthe section called “FHA| M
EH»

FNAIE XIHstX| 2B ASH 7|22 AUAS22 7|8 /A 82 A 85t
AEELC

oo

5 T2 1,00022

. (MEH AMEH) THE|M ID
E X|™sle 42 MEiMo 2 mtE|M IDE HOJE the section called “B 7 FHAI"S U&LICH THE|M
IDE FHAI0] A2 Q= ASA 7|22 FEFLICEH ZIEIMUHM Al & F2 RHAFE SHAHLE S *5hed
= 4% 1 x8 otE|M IDE ™olslof gLCt ZHE|M Do CHEt EXAIEE XIHE = JU&LICt THE|
MIDE XIH35Ix| etom M A| 1E ZiE|M ID7t 7|13)0d| RSS2 &S ELIC
KEMIEH LI 2 Partitions EHHE 2 X5t AAIR

HEM 7|13 Md 150

AWS Encryption SDK

JHeER 7Hol=

1
o
Ir =
m

F

He ABS 7S TR FHAIOIM SUs FHA
3 z =

ne
o
N I
Rl

fjo

e F0iE Sall AIEX 7122l KMS 7|of| CHet HMAE Fo{stsE E< 7|7
=

&5 22| 7| IDE S stod HISA 7/2 M

R4 x4
S

CHS of|Alodl M HX| 7| ID, the section called “7|& FHA|"Z! FHA| A&t TTLO| 600

S T H
712e Mt e BoiELIcH

o H|H

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsHierarchicalKeyringInput keyringInput =

CreateAwsKmsHierarchicalKeyringInput.builder()
.keyStore(branchKeyStoreName)
.branchKeyId(branch-key-id)
.ttlSeconds(600)
.build();

final Keyring hierarchicalKeyring =

matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/.NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{

KeyStore = keystore,

BranchKeyId = branch-key-id,

TtlSeconds = 600

= 7|5t

%0l A5

|44 ID, logical key store name%! EH2Hx| 7| IDE & ZXst= 5 71 ol Q| 7|&2
g2 ghct o2 7|2 0|
TR ZHE|M IDE AHE5Hot

ok

2

'~

HESX 7|2 Mo

151

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK JHEER} 70| =

var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id=branch_key_id,
ttl_seconds=600

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_store.clone())
.branch_key_id(branch_key_id)
.ttl_seconds(600)
.send()
.await?;

Go

matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})

if err !'= nil {
panic(err)

}

hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
KeyStore: keyStore,

BranchKeyId: &branchKeyID,
TtlSeconds: 600,

HEM 7|13 Md 152

AWS Encryption SDK

JHetxt 7hol=
}
hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err != nil {
panic(err)
}
HEX| 7| ID SZRE AE5t0d ASH 7|12 8

|
!
Rall
N
O
OH
Il
pal
0z
0x

|= oo

EP% Ao MHE = 7He EEH?’CI 7|0l CHet ZA| 0|2 *”“3}1% k-3
HeH

// Create friendly names for each branch-key-id

class ExampleBranchKeyIdSupplier implements IDynamoDbKeyBranchKeyIdSupplier {
private static String branchKeyIdForTenantl;
private static String branchKeyIdForTenant2;

public ExampleBranchKeyIdSupplier(String tenantlId, String tenant2Id) {
this.branchKeyIdForTenantl = tenantlId;
this.branchKeyIdForTenant2 = tenant2Id;
}
// Create the branch key ID supplier
final DynamoDbEncryption ddbEnc = DynamoDbEncryption.builder()

.DynamoDbEncryptionConfig(DynamoDbEncryptionConfig.builder().build())
.build();

final BranchKeyIdSupplier branchKeyIdSupplier =
ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
CreateDynamoDbEncryptionBranchKeyIdSupplierInput.builder()

.ddbKeyBranchKeyIdSupplier(new ExampleBranchKeyIdSupplier(branch-
key-ID-tenantl, branch-key-ID-tenant2))

.build()).branchKeyIdSupplier();

HEM 7|13 Md 153

AWS Encryption SDK JHEER} 70| =

C#/.NET

// Create friendly names for each branch-key-id
class ExampleBranchKeyIdSupplier : DynamoDbKeyBranchKeyIdSupplierBase {
private String _branchKeyIdForTenantl;
private String _branchKeyIdForTenant2;

public ExampleBranchKeyIdSupplier(String tenantlId, String tenant2Id) {
this._branchKeyIdForTenantl = tenantlId;
this._branchKeyIdForTenant2 = tenant2Id;

}

// Create the branch key ID supplier

var ddbEnc = new DynamoDbEncryption(new DynamoDbEncryptionConfig());

var branchKeyIdSupplier = ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
new CreateDynamoDbEncryptionBranchKeyIdSupplierInput
{

DdbKeyBranchKeyIdSupplier = new ExampleBranchKeyIdSupplier(branch-key-
ID-tenantl, branch-key-ID-tenant2)

}) .BranchKeyIdSupplier;

Python

Create branch key ID supplier that maps the branch key ID to a friendly name
branch_key_id_supplier: IBranchKeyIdSupplier = ExampleBranchKeyIdSupplier(
tenant_1_id=branch_key_id_a,
tenant_2_id=branch_key_id_b,

Rust

// Create branch key ID supplier that maps the branch key ID to a friendly name
let branch_key_id_supplier = ExampleBranchKeyIdSupplier: :new(

&branch_key_id_a,

&branch_key_id_b
);

Go

// Create branch key ID supplier that maps the branch key ID to a friendly name
keySupplier := branchKeySupplier{branchKeyA: branchKeyA, branchKeyB: branchKeyB}

HEM 7|13 Md 154

AWS Encryption SDK JHEER} 70| =

2. ASH™ 7|2 MM

CtZ oMol M= 1B A MEE ER4X| 7] ID S =X, 600 2| ZHA| A|Et TLL, 10002| Z[CH 7H
Al 2712 AEH 7|88 Z7|=HELICH

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsHierarchicalKeyringInput keyringInput =

CreateAwsKmsHierarchicalKeyringInput.builder()

.keyStore(keystore)

.branchKeyIdSupplier(branchKeyIdSupplier)

.ttlSeconds(600)

.cache(CacheType.builder() //OPTIONAL
.Default(DefaultCache.builder()
.entryCapacity(100)

.build())
.build();
final Keyring hierarchicalKeyring =
matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/ NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{

KeyStore = keystore,

BranchKeyIdSupplier = branchKeyIdSupplier,

TtlSeconds = 600,

Cache = new CacheType

{

Default = new DefaultCache { EntryCapacity = 100 }

};

var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);
Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

HEM 7|13 Md 155

AWS Encryption SDK JHEER} 70| =

)

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id_supplier=branch_key_id_supplier,
ttl_seconds=600,
cache=CacheTypeDefault(
value=DefaultCache(
entry_capacity=100

),

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_store.clone())
.branch_key_id_supplier(branch_key_id_supplier)
.ttl_seconds(600)
.send()
.await?;

Go

hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{

KeyStore: keyStore,
BranchKeyIdSupplier: &keySupplier,
TtlSeconds: 600,
}
hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err != nil {
panic(err)

HEM 7|13 Md 156

AWS Encryption SDK JHEER} 70| =

}

AWS KMS ECDH 7|2

AWS KMS ECDH 7|32 HICHE 7| HlefS AL&35to] & TS ALXA}F 7holl 37 CHE 2iE 7|18 Z&EAWS
KMS keysg LICt. HX{ 7|2 Elliptic Curve Diffie-Hellman(ECDH) 7| H|2f ¢ 1 2|&2 AL 5to{ &
AlRFO| KMS 7| Ho{e} £ AIXo| HEZ! 7|0 Q= ZZ}0|E! F|oMH 2R A5 =

2782 SR Eot ASE AI8SI0 HIOIH ¢33 7|1E B335l 3R cHE 7
ATh

o
(KDF CTR_HMAC_SHA384)E AWS Encryption SDK Al&35t0{ 2% EiE 7|2
£ 7| ool ChEk NIST HE AL S &4 L

7| ot B+ 64HIO0|EQ| 7| K| 7+ QA E BHEHEILICH & SAIRITL SHIE 7| 78 QAE A
2T E 57| Q= XS 32HI0|EE 7{8! 7|2 A5t OFX|2 32HIO|EE 2L S 7|2 AWS
Encryption SDK At & LICEH S 53F Al 7|~20] HIA|IX| 3| AFO|HEIAE | XKEE SYE 75 7|2t

T8 21T 718 MHE £ 9/ B9 Kdo| MIELICH o & S0{ Alice®] Za}0]4! 7|9} Bobol T
2| 7|2 74% 7|Ao 2 Hl0lE|E 3 3iehs ZS Bobol Zato|H 7|9t Aliced| HEE! 7|2 TAIE
JlYe SYs 3 7lot TR BT 718 MHHD CIOIEE HSE + UBLICH Bobol TEE 7|7t

KMS 7| H017} ot 2 Bob #Al ECDH 7|28 A44tof CIO|EIE sH=& 4 larLich

AWS KMS ECDH 7|2l2 AES-GCME At&35t0{ CHE 7|2 O|0|E{E ¥ 53t efLich O™ CFS AES-
GCME Al235lo{ IMEl 28 2T 7|2 dIolE] 7|18 25 ¢35 35t8Hct 2 AWS KMS ECDH 7|20
= 35 oiE 7|7t StLtE US = UKXIEH CHE 7|20l= H5o2 = CHE 7|28 &7 o424 AWS
KMS ECDH 7|2/& Z &g =+ &LCh.

z2 32 edof &

0Z

AWS KMS ECDH 7|22 %iir A2 22 EH0|EEE(MPL) B 1.5.001 SUEMom Che =2
ey 1o & T X[

« 9| H™ 3.x AWS Encryption SDK for Java

- for .NET E{™ AWS Encryption SDK 4.x

o MEAXI MPL 3540t #7H AHE 5= AWS Encryption SDK for Pythond S HH7 4.x.

« AWS Encryption SDK for Rust EH% 1.x

« Go AWS Encryption SDK &2| {7 0.1.x O[&f

|

AWS KMS ECDH 7|& 157

https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK JHEER} 70| =

- AWS KMS ECDH 7|&lof| ZE 38t Mt

« AWS KMS ECDH 7|3 4

« AWS KMS ECDH A4 7|2 A4

AWS KMS ECDH 7|2lo] Z!e &t H&t

AWS Encryption SDK 0fl= AWS A &0| 2235t X| 2l 20 MH|A0| AWS o|ESHX| f&L|Ct TJeqLt
AWS KMS ECDH 9|E'° A& 35tE{™ 7|2 AWS KMS keys 2|oi| CHE AWS HHot CtE0F 242 %A

Teto| HRELICH Het2 Ar8sts 7| Aok A 7|0tof| ket EekElLICH.

« KmsPrivateKeyToStaticPublicKey 7| 7H|2F AZ7|0FE AL 35H0{ O|O|EE Y5 3l5t1 =6t
o4 gh ARl HICHE! KMS 7| 0404 kms:GetPublicKey & kms:DeriveSharedSecretO] Z 8L
Ch 7|38 QIAEASHE [& AIKtS| DER Q12 E HEER! 7|& &Y M3Bste 89 YAlRtel |t
KMS 7| H0{0f CHEt kms:DeriveSharedSecret T8H2F Qo™ FEL|C}

« KmsPublicKeyDiscovery 7| Hef AF|0LE AIE5104 CIIO|EHHE 55 |
KMS 7| m|0{01| CHEt kms:DeriveSharedSecret 2! kms:GetPublicKey #&t0| %‘REFLJEP.

AWS KMS ECDH 7|3 M

ClOIE{E &= 3t5t1 sH=3dt= AWS KMS ECDH 7|32 Md5te{™
KmsPrivateKeyToStaticPublicKey 7| A A7|0FE AFS3EHOF EHLIC.
KmsPrivateKeyToStaticPublicKey 7| #[2} A7|0tE AFE5t0{ AWS KMS ECDH 7|2€ = 7|8
sted™ Cl2 k2 NMZghuict.

ot
ot

. HFAIRF AWS KMS key ID

KeyUsage g(0| @l H|CHE NIST HZ E}
CIKEY_AGREEMENT. & AlX}o| Zzto|l

N R

. (M= AR WAIR S| HE 2 7|

RFC 528001 42|l CHZ SubjectPublicKeyInfo (SPKI)2t1 T 3t= DER @IZ T X.509 IH{=2!
7040k ErLICE. https://tools.ietf.org/html/rfc5280

i
3]
kO
ok
O
m
Py
ro
AT
on
o
1>
|0
Hu

AWS KMS GetPublicKey £+¢42 HICHE! KMS 7| Ho{o| H{E2! 7|
gheerLICY,

AWS KMS ECDH 7|2lof| Zo st #3S

rot

158

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS Encryption SDK JHEER} 70| =

C
o)
2 AIxko] 22 7|0f 30| MBEIX| 82 FS 7Y E 25 AWS KMS 304 g Alxtel g2 7|

E 7—|AH oI-L_| E|-_
. S4lxto| HEE 7|

RFC 528001 HO|El CHZ SubjectPublicKeyInfo (SPKI)2t1E 3t= +4IXI2| DER QIR E
X.509 HEZ] 7|& XS 38Hok & LICt. hitps://tools.ietf.org/html/rfc5280

AWS KMS GetPublicKey 242 H|CHE KMS 7| Ho12| HHEE| 7|& ERF DER Q13T ¥HAlo2
abetetLct

. B MY

XEE 7| mojol M Bt FM At E AggfLict Y ARer = 4AXtel 7| mo] 25 5 AHY¥O| &
5H oF ErLCH.

oll

Fo

R=8t 2k ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

ME AbE) HEt Ho{ E2 25

L)
—~

mjo

=

et 2042 AI235104 AWS KMS ECDH 7|2/9| KMS 7|0 CHE HMIAE ANofste B2 7|2
7\5te M 2edt RE HE Hod EZE X|Z25H0F gLt

C#/ .NET

CtZ oMo M= g &IXte| K
KMS 2 ECDH 7|22 ét'*éi.
o & AIXtel HER! 7|E NS
KMS 5to{ EFARES| THHEE] 7
Mo AU&Lct.

S 7|, elxte| HER 7| & £AIXto| H{ER] 7|8 AFE5t0{ AWS

LICt O] oMol MHE MEHA SenderPublicKey It2tOIEAE A& St
grLich gaXtol HEEZ! 7|18 MSotx| o™ 7|2 0|E =& AWS
|& MBI B AMREeE = AIKEO| 7| H0{7F 25 ECC_NIST_P256

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new bytel[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations

{

AWS KMS ECDH 7|2l A4 159

https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK JHEER} 70| =

KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput
{
SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
SenderPublicKey = BobPublicKey,
RecipientPublicKey = AlicePublicKey

}
};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KmsClient = new AmazonKeyManagementServiceClient(),
KeyAgreementScheme = staticConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

CtS oMM = e AIXtS| KMS 7|, e ARtel THHE 2! 7| I £~ AXLO| IH{E 2] F7|1§ AF& 50 AWS

KMS 2 ECDH 7|32 M-dgLct. o] oAMol M= MEHA senderPublicKey It2tO|EHE AFE St

of e AIXto| HER! 7|18 MBS LCt ealXtel HEE! 7|& M33HA| fo™ 7|2I0|& & AWS
7

KMS 304 &fAlXIo| THE 2] 7|E AAHENL|CH dhAIXEeF = AIKIe| 7| H|o{7F 25 ECC_NIST_P256
ZMof| U&LICE

// Retrieve public keys

// Must be DER-encoded X.509 public keys

ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab");
ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-

west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

// Create the AWS KMS ECDH static keyring
final CreateAwsKmsEcdhKeyringInput senderKeyringInput =
CreateAwsKmsEcdhKeyringInput.builder()
.kmsClient(KmsClient.create())
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
KmsEcdhStaticConfigurations.builder()
.KmsPrivateKeyToStaticPublicKey/(
KmsPrivateKeyToStaticPublicKeyInput.builder()

AWS KMS ECDH 7|2l A4 160

AWS Encryption SDK JHEER} 70| =

.senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
.senderPublicKey(BobPublicKey)
.recipientPublicKey(AlicePublicKey)
.build()).build()).build();

Python

Ct oMol M e AIREel KMS 7|, e AIXte| HE 2] 7| & AKXt HER! F7|§ AL&5H0 AWS
KMS £ ECDH 7|32 dMgLct. o] ofxof M= MBI% senderPublicKey LEIO|EE AFE
of erAIXto| HEE! 7|18 MBS Lt galXte HEE

KMS 504 Bf AR HHER! F7|E Z

ZMof U&LCH.

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateAwsKmsEcdhKeyringInput,
KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey,
KmsPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Retrieve public keys

Must be DER-encoded X.509 public keys

bob_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
alice_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321")

Create the AWS KMS ECDH static keyring
sender_keyring_input = CreateAwsKmsEcdhKeyringInput(
kms_client = boto3.client('kms', region_name="us-west-2"),
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey(
KmsPrivateKeyToStaticPublicKeyInput(

st

7|12 M35tx| domM 7|20|E & AWS
HAHSHL|C} 2FAREQE = AIKIO| 7| H0{7} 25 ECC_NIST_P256

AWS KMS ECDH 7|2l A4

161

AWS Encryption SDK JHEER} 70| =

sender_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",

sender_public_key = bob_public_key,

recipient_public_key = alice_public_key,

keyring = mat_prov.create_aws_kms_ecdh_keyring(sender_keyring_input)

Rust
CtE ool M= Y AIREel KMS 7|, & alXto| HEE] 7| & = AIXto| H{EE! 7|§ AF&5H04 AWS
KMS 2 ECDH 7|22 & LIct. o] oAM= ME% sender_public_key ItZIO|E{E At
&35t04 g alxt ol ﬂ'l% 7| M3 ELct galxte| HER 71§ MB5HX| o™ 7|20|1E 3 &

AWS KMS 5tod €hAlXte| H{E2| 7|E ZHMEFLICt

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),
1);

// Retrieve public keys
// Must be DER-encoded X.509 keys
let public_key_file_content_sender =

std::fs::read_to_string(Path: :new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_SENDER))?;
let parsed_public_key_file_content_sender = parse(public_key_file_content_sender)?;
let public_key_sender_utf8_bytes = parsed_public_key_file_content_sender.contents();

AWS KMS ECDH 7|2l A4 162

AWS Encryption SDK JHEER} 70| =

let public_key_file_content_recipient =
std::fs::read_to_string(Path: :new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;

let parsed_public_key_file_content_recipient =
parse(public_key_file_content_recipient)?;

let public_key_recipient_utf8_bytes =
parsed_public_key_file_content_recipient.contents();

// Create KmsPrivateKeyToStaticPublicKeyInput
let kms_ecdh_static_configuration_input =
KmsPrivateKeyToStaticPublicKeyInput::buildexr()

.sender_kms_identifier(arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab)
// Must be a UTF8 DER-encoded X.509 public key
.sender_public_key(public_key_sender_utf8_bytes)
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let kms_ecdh_static_configuration =
KmsEcdhStaticConfigurations: :KmsPrivateKeyToStaticPublicKey(kms_ecdh_static_configuration_i

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH keyring

let kms_ecdh_keyring = mpl
.create_aws_kms_ecdh_keyring()
.kms_client(kms_client)
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(kms_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

AWS KMS ECDH 7|2l A4 163

AWS Encryption SDK JHEER} 70| =

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

D)
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Retrieve public keys
// Must be DER-encoded X.509 keys
publicKeySender, err := utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameSender)
if err != nil {
panic(err)
}
publicKeyRecipient, err :=
utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameRecipient)
if err !'= nil {
panic(err)

AWS KMS ECDH 7|2l A4 164

AWS Encryption SDK JHEER} 70| =

}

// Create KmsPrivateKeyToStaticPublicKeyInput
kmsEcdhStaticConfigurationInput := mpltypes.KmsPrivateKeyToStaticPublicKeyInput{
RecipientPublicKey: publicKeyRecipient,
SenderKmsIdentifier: arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
SenderPublicKey: publicKeySender,
}
kmsEcdhStaticConfiguration :=
&mpltypes.KmsEcdhStaticConfigurationsMemberKmsPrivateKeyToStaticPublicKey{
Value: kmsEcdhStaticConfigurationInput,

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create AWS KMS ECDH keyring
awsKmsEcdhKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{

CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: kmsEcdhStaticConfiguration,
KmsClient: kmsClient,
}
awsKmsEcdhKeyring, err := matProv.CreateAwsKmsEcdhKeyring(context.Background(),
awsKmsEcdhKeyringInput)
if err !'= nil {
panic(err)
}

AWS KMS ECDH ZAH 7|2 M A

SZ38He ol M A AWS Encryption SDK &= /= 71& X|™&st= 0| 7+H& Z&LICH ol 2 A
£ [(t224™ KmsPrivateKeyToStaticPublicKey 7| Alef AZ[0tet &7H AWS KMS ECDH 7|
2|2

212 At8HLct ae{L AWS KMS ECDH Z2M 7|2l & X|™E KMS 7| Io{e] H{E 2! 7|7} HIA|X]
AO|HEIAE O KEE 4IXIe HER 7|9 UR[ete ZE HAIXKIE S535tE = U= AWS KMS
7

AE
ECDH 7|22 MdE £ &LCt

AWS KMS ECDH A 7|2 MM 165

AWS Encryption SDK JHEER} 70| =

/A Important

KmsPublicKeyDiscovery 7| A2 A7|0+E AL&5to HAIX|E 555 M F7t ARSI
goE E{%E 9|E AE}-o}-L_||:|._

KmsPublicKeyDiscovery 7| A2F A7|0+E A& 3104 AWS KMS ECDH 7|28 Z7|8t5t2{™ Cts
42 M3ELIcH

. ZAIXEID AWS KMS key

KeyUsage 2£0| @! HICHE NIST H% EtH SM(ECC) KMS 7| H|0{1E 4|33l of &f L
CHKEY_AGREEMENT.
o M AL

ARSI KMS 7| H|o{ofAM Bty S M AL E AlEELICH

R =8 4L ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

. (ME ALY M RojED ==

™t 2048 AF25H04 AWS KMS ECDH 7|212| KMS 7|0i| CHEH HMIAE FofsteE AR 7|12l8 =
7lste i Zost mE HEt Ho{ EE2 M38Hok &Lct.
C#/ NET

CtE oMol M= ECC_NIST_P256 Z410{ KMS 7| H|0{7} 4= AWS KMS ECDH &4 7|28

MetLch X|™HE KMS 7| mo40f CH5H kms:GetPublicKey ! kms:DeriveSharedSecret # 80| ¢lo

Of &fLICt. o] 7|22 XIHE KMS 7| Ho{e| IHEZ] 7|7t HIA|X| AFO|HEA Eof KHEHE 4= &IXt Q|
HE2| 7|9 Yx|Gte ZE HAIXKIE 55388 & U&LICH

]

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create the AWS KMS ECDH discovery keyring
var discoveryConfiguration = new KmsEcdhStaticConfigurations
{
KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput
{
RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"

AWS KMS ECDH A 7|2 MM 166

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK JHEER} 70| =

}
};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KmsClient = new AmazonKeyManagementServiceClient(),
KeyAgreementScheme = discoveryConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

CHS oMol A= ECC_NIST_P256 Z410{ KMS 7| H0{7} Q= AWS KMS ECDH ZAM 7|22 M
MetLich x|™HE KMS 7| 1 040d| CHEH kms:GetPublicKey & kms:DeriveSharedSecret T8H0| Q104
ofF gfLict. o] 7|32 XIHE KMS 7| Ho{2| HEZ! 7|7t HIAIX| AFO|HEIAE N HEE +4IKt9|
HE8| 7|9t YX[st= ZE HAIXIE §55E = JU&LICH

// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput =
CreateAwsKmsEcdhKeyringInput.builder()
.kmsClient(KmsClient.create())
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
KmsEcdhStaticConfigurations.builder()
.KmsPublicKeyDiscovery(
KmsPublicKeyDiscoveryInput.builder()
.recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321") .build()
).build())
.build();

Python

ChS oMol MHE ECC_NIST_P256 JM0ofl KMS 7| T 017} Q= AWS KMS ECDH A 7|22 M

MetLCh X|HE KMS 7| Ho40f CHEH kms:GetPublicKey & kms:DeriveSharedSecret 80| Q104
of gLt o 7|22 XI™E KMS 7| JH|0-|°| H=2| 7|7t HIAIX] AHO|HEIA Eof X% E -“F*.JIP-Ql
HEZ| 7|9t Ux|stE ZE HAIXIE 3te &= JU&Lct.

POI'

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
CreateAwsKmsEcdhKeyringInput,

AWS KMS ECDH A 7|2 MM 167

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK JHEER} 70| =

KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery,
KmsPublicKeyDiscoveryInput,
)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS ECDH discovery keyring
create_keyring_input = CreateAwsKmsEcdhKeyringInput(
kms_client = boto3.client('kms', region_name="us-west-2"),
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme = KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery(
KmsPublicKeyDiscoveryInput(
recipient_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321",
)

keyring = mat_prov.create_aws_kms_ecdh_keyring(create_keyring_input)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client

let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),

AWS KMS ECDH A 7|2 MM 168

AWS Encryption SDK JHEER} 70| =

("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Create KmsPublicKeyDiscoveryInput
let kms_ecdh_discovery_static_configuration_input =
KmsPublicKeyDiscoveryInput::builder()
.recipient_kms_identifier(ecc_recipient_key_azrn)
.build()?;

let kms_ecdh_discovery_static_configuration =
KmsEcdhStaticConfigurations: :KmsPublicKeyDiscovery(kms_ecdh_discovery_static_configuration_

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH discovery keyring

let kms_ecdh_discovery_keyring = mpl
.create_aws_kms_ecdh_keyring()
.kms_client(kms_client.clone())
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(kms_ecdh_discovery_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

AWS KMS ECDH A 7|2 MM 169

AWS Encryption SDK JHEER} 70| =

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

)
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Create KmsPublicKeyDiscoveryInput
kmsEcdhDiscoveryStaticConfigurationInput := mpltypes.KmsPublicKeyDiscoveryInput{
RecipientKmsIdentifier: eccRecipientKeyArn,
}
kmsEcdhDiscoveryStaticConfiguration :=
&mpltypes.KmsEcdhStaticConfigurationsMemberKmsPublicKeyDiscovery{
Value: kmsEcdhDiscoveryStaticConfigurationInput,

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create AWS KMS ECDH discovery keyring
awsKmsEcdhDiscoveryKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{

CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: kmsEcdhDiscoveryStaticConfiguration,
KmsClient: kmsClient,

AWS KMS ECDH A 7|2 MM 170

AWS Encryption SDK JHEER} 70| =

}
awsKmsEcdhDiscoveryKeyring, err :=
matProv.CreateAwsKmsEcdhKeyring(context.Background(),
awsKmsEcdhDiscoveryKeyringInput)
if err !'= nil {
panic(err)

}

Raw AES 7|2l

£ AWS Encryption SDK AtE5tH HIO|E{ 7|& E55t= eiE 7|2 M35t= AES THE 718 AHSE
£ U&LICH 7t2X0|H StEQ0] Eot ZEHSM) == 7| #HE| AIARAM 7| AIRE MM, HE 2
EEaoF FLICH 2iE 7|18 M3stn EZ = 2EZIRl0IA CIoIH 7|1& &= 35t5H0F ot FS Raw
AES 7|3 & AFE35tAlL.

Raw AES 7|22 HIO[HE ¢ §§+o+7| Ql5ll HIO|E HIYZ K|Ast= AES-GCM L1 2|& 2l 2T 7|
£ Ar28tLICH ZF Raw AES Z|Zlofl= 2iE 7|2 stLIEH X|&dE 4 QIX|BH 042 7H2e| Raw AES 7|21
CHEo = £= OHE 7120 &7 S 7[2of Z&8 & += JU&Lct

Al AES 7|2 29| JceMasterKey 2EiA LU AES 2535} 7|2+ &7H AHE El= AWS Encryption SDK
for Python 42| RawMasterKey 22142t 52 AWS Encryption SDK for Java §tH &% &L
C. 3t THOR GlOIEIE Y 285t1 OHE THo2E SYUS 2T 7|8 ALS5t04 CIOIEIE S 58

= U&LICH RMEF 82 7|12 58E MMHE A RtM 2.

7| HlgdamolA & OIF

7|20l M AES 7|& AlE5t7| 2/5H Raw AES 7|22 AL A7 MIS 8t 7| HIRAH O|ALQ 7| O|F S A

SELCH of 22 2ol otL|ct 253 &Fedo| Btetste 25 5HE HIAIX| Sc{of Yot HIAER
LFEFSLICH HSM EE= 7| 22| A|IARIQ| 7| I UAT O|AQ} T A|AEIO|AM AES 7|2 AlHstE 7|
O|E2 Ar&5tE Wo| E&LCH.

E

DM

@ Note
7| UIYAHO|ALL 7| O|E2 JceMasterKey 2! RawMasterKey2| 32Xt ID(EEE 22X}
ol 7| 1D 2Egt SUELCE.
.NET AWS Encryption SDK & AWS Encryption SDK for C 2= KMS aws-kms 712| 7| W&
AHO|A ZtE2 of & gfLict. o] 2t0|EE{2(2] Raw AES 7|& EE&= Raw RSA 7|&ofl= i Ul
LA O|A 7t S AFESHK| OFM| L.

Raw AES 7|2! 171

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey

AWS Encryption SDK JHEER} 70| =

L Amo|Aet 7| 0|5 0| HE 3l °E'7'<I3PXI &*9“4 7| &tz HPOIEW = EéHZ-IEP_'.:_ 533t 7|120] A

o€ £0{ 7| HIYAHO|A HSM_012} 7| O|& AES_256_012E Al23510{ Raw AES 7|2l Mo|g 4=
UA&LICH OHCIS sHY 7|22 AFE85tod U HIo|EE ¢S &tgrLict sl HIo|EE E 5 3lsle{™
SUs 7| HYAHO|A, 7| O|& & 7| AFZE AFR 35104 Raw AES 7|2l T+ E5HAMI2.

CHS oMol M Raw AES 7|22 A 5He B2 Ho4ZFLICH AESWrappingKey B4= AL XL}
Maste 7| A2 E LIEFALICE

C
oM B Al AES 7|21 QUAEIASIEIE{TE AWS Encryption SDK for CAFS &L
EPaws_cryptosdk_raw_aes_keyrlng_new(). ™A o|MIE 2248 raw_aes_keyring.cE & X
ShAlL.
struct aws_allocator *alloc = aws_default_allocator();
AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_name, "AES_256_012");
struct aws_cryptosdk_keyring *raw_aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
alloc, wrapping_key_namespace, wrapping_key_name, aes_wrapping_key,
wrapping_key_len);
C#/ .NET

AWS Encryption SDK for .NETOI| A $4A| AES 7|22 4 5t2{H
materialProviders.CreateRawAesKeyring() HMEE AFSELICH ™A NME 2™
RawAESKeyringExample.cs& & X 3HM2.

CHS oMol A= AWS Encryption SDK for NET 4.x HHE 2 AFSELICH

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

Raw AES 7|2! 172

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs

AWS Encryption SDK JHEER} 70| =

// This example uses the key generator in Bouncy Castle to generate the key

material.
// In production, use key material from a secure source.

var aesWrappingKey = new
MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

// Create the keyring that determines how your data keys are protected.
var createKeyringInput = new CreateRawAesKeyringInput

{

KeyNamespace = keyNamespace,

KeyName = keyName,

WrappingKey = aesWrappingKey,

WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6
};

var keyring = materialProviders.CreateRawAesKeyring(createKeyringInput);

JavaScript Browser

H 2} X{ AWS Encryption SDK for JavaScript 2|= WebCrypto APIM|M & & 3t Z 2|0]E|
HE JIXMSLICH 7|1~ F4517] Tofl WebCrypto B{AIE 2 HA| 7| AIRE 71X E O
RawAesKeyringWebCrypto.importCryptoKey()E Ar&35HoF grL|C}. O|= A 5tp
WebCryptodl| CHEH 2 & 3 £0| H|S7|A0lo{x 7|&o| 22 ELICt

CHS 22 Raw AES 7|32 QIAH
2. 7| Atz 0| Zolol ek AES 2H
™ aes_simple.ts(JavaScript 22t X)E 2t

8l 5t24™ RawAesKeyringWebCrypto() HIMEE ALSSHA
SN E(ENE ME D)2 KIHsH ok g LIch MA oM E =i
ZtMR.

Fa
o)
o

Cl2 oMol M= buildClient 45 AF26104 7|E 73! Z2H0IE K| AL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. £ AlE3t04 &S 5HE! EHIAIxIQ &3 stEl Oo|E 7|
=& K|gtbuildClientd =& U&LICH KM LI 2 the section called “& 5 3t E H|O|E 7|
Mg Eredg BRI,

import {
RawAesWrappingSuiteIdentifier,
RawAesKeyringWebCrypto,
synchronousRandomValues,
buildClient,
CommitmentPolicy,

} from 'eaws-crypto/client-browser'

Raw AES 7|2! 173

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts

AWS Encryption SDK JHEER} 70| =

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

const keyNamespace = 'HSM_01'
const keyName = 'AES_256_012'

const wrappingSuite =
RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

/* Import the plaintext AES key into the WebCrypto backend. */
const aesWrappingKey = await RawAesKeyringWebCrypto.importCryptoKey(
rawAesKey,
wrappingSuite

)

const rawAesKeyring = new RawAesKeyringWebCrypto({
keyName,
keyNamespace,
wrappingSuite,
aesWrappingKey
1)

JavaScript Node.js

Node.js AWS Encryption SDK for JavaScript 80X & A| AES 7|21 QIAEA S} 5124
RawAesKeyringNode 22iA 0| QIAEIA S MMBtLIC} 7| Rk=Z 2| Zo|of et AES & L T 2|
F("eHE ME")2 RI-gsHoF gLt A & E E24™ aes_simple.ts(JavaScript Node.js)& &
M.

CHS oAM= buildClient &8 AFE3St0d 7|2 78! HAQIE X|HEL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. & At235t04 &5 31 El MHA|X|2e| &5 3tE Cl|O|E 7|
=& M$tbuildClientd == U&LICE RIMIEH LI 2 the section called “2 5 3} E! CI[O|E{ 7|

KBt S AT SAAIL.

import {
RawAesKeyringNode,
buildClient,
CommitmentPolicy,
RawAesWrappingSuiteIdentifier,
} from 'eaws-crypto/client-node'

Raw AES 7|2! 174

https://github.com/aws/aws-encryption-sdk-javascript//blob/master/modules/example-node/src/aes_simple.ts

AWS Encryption SDK JHEER} 70| =

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const keyName = 'AES_256_012'
const keyNamespace = 'HSM_01'

const wrappingSuite =
RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

const rawAesKeyring = new RawAesKeyringNode({
keyName,
keyNamespace,
aesWrappingKey,
wrappingSuite,

D

Java

ol Al AES 7|22 QIAEIASIGIE{HE AWS Encryption SDK for JavaAt& & L
CtmatProv.CreateRawAesKeyring().

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder()
.keyName("AES_256_012")
.keyNamespace("HSM_01")
.wrappingKey(AESWrappingKey)
.wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG1l6)
.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())

.build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Python

I

CtE oAM= 712 7O HACIE AFE 3504 AWS Encryption SDK ZCt0|1EE QIAEAS}

L|CFREQUIRE_ENCRYPT_REQUIRE_DECRYPT. M| 0il A= GitHub2l AWS Encryption SDK for
Python 2|Z X|E 2|0 A raw_aes_keyring_example.pyE & X 5HMIL.

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Raw AES 7|2 175

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_aes_keyring_example.py

AWS Encryption SDK

JHeER 7Hol=

)

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "AES_256_@12"

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(

config=MaterialProvidersConfig()

Create Raw AES keyring

keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(

key_namespace=key_name_space,

key_name=key_name,

wrapping_key=AESWrappingKey,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_@1";
let key_name: &str = "AES_256_012";

// Optional: Create an encryption context

Raw AES 7|2

176

AWS Encryption SDK JHEER} 70| =

Go

let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagl6)
.send()
.await?;

import (

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)
//Instantiate the AWS Encryption SDK client.
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)
}
// Define the key namespace and key name
var keyNamespace = "A managed aes keys"

Raw AES 7|2! 177

AWS Encryption SDK JHEER} 70| =

var keyName = "My 256-bit AES wrapping key

// Optional: Create an encryption context

encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {
panic(err)
}
// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: aesWrappingKey,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagls,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err !'= nil {
panic(err)

g RSA HE2| & ZZ|o|8! 7| AE35tod 24 M= 2[ofM Cl|o|E 72| HICHE
OF IE(HSM) E= 7| Z2| A|ARM =z}
RSA HEZ! 7|2 C|o|E 7|1& & E5tefLCt

o8l 7|1E MM, MELUE |CH. 7|5

£33 g+ ZH0lY! 7|2 AF8350 HIO|E 7|18 S5 3HELICt 04t RSA IHE ZE SO0f|A| MEiE
£ l&Lct

535t A £353l5t= Raw RSA 7|20fl= HICHE HE2! 7| Ho{et =2to|8! 7| mo{7t Z & x|o{ofF &
L|Ch B H{E2! 7|8t /& Raw RSA 7|22 Al&35loq OIO|E{E °*§§+§¢ Ao, Z2tolH! 7|2t
= Raw RSA 7|22 AL25104 L|O|E{E 53538 £ Ql&Lct CHE 7|20 Raw RSA 7|22 £ &
Al £ &Lch HEZ! 7|2 Z2to|8! 7|2 Raw RSA 7[RI #MHstE A2 5 7|20l S8 7| o

Raw RSA 7|2l 178

https://github.com/aws/aws-encryption-sdk-c/blob/master/include/aws/cryptosdk/cipher.h

AWS Encryption SDK JHEER} 70| =

010 &£35t=X| EISHM L. o L& 2104 7131 AWS Encryption SDK 2 MHZ CHE m|0{2] 7|E A& 3l
01 Raw RSA 7|2& #5tX| e &LICH CHE FHUME Z[7F SLet 7] mo{ol| M L2 ZHeIX| AFHE
X7t =elsHof g LCt.

ok

Raw RSA 7|22 RSA HILHE 53} 7|2t &7 AtE Z[= AWS Encryption SDK for Python Z<2
JceMasterKey AWS Encryption SDK for Java /2| RawMasterKeyQt S5t #3 HSFLIC
THOZ HIOIEE Y336t CHE FHoZ = SUS BiE 7|18 AH&5t04 CIO|EE 55358 —’F U
&LICH RHAEH L2 7|2 38t B XstML.

@ Note
Raw RSA 7|22 HICHE KMS 7|& K|35t K| et &LICH HICHE RSAKMS 7| A& stEdH
OhE Z2 32 Qdo{7} HICHE RSAE AH&5t= AWS KMS 7|2l X[ELICH AWS KMS
keys.
« 9| H™ 3.x AWS Encryption SDK for Java
« for NET EHHTIAWS Encryption SDK 4.x

o MEIM ot S 3| X2 32Xt 2H0|E{2|(MPL) &80t &7 AH& 8= AWS Encryption
SDK for PythonZd < 7% 4.x.

« Go AWS Encryption SDK & 2| ™ 0.1.x 0|4

RSA KMS 7|e| IHE#2! 7|7} &

]]OII

Zl Raw RSA 7|2l 2 H|0|E{E ¢ 5356t B AWS
Encryption SDK & S35 35} & KMS = i&LICt AWS KMS HICHE KMS 7[o] = Z}0|8!
20/ A

7|= Raw RSA 7|&2le &2 H;‘-EH A&LICH AWS KMS 235 35 ZHed20
SDK Etetste S slEl HAIX|IE 25358 &= QiaLICH

AWS Encryption

01|A‘| Raw RSA 7|22 7 MHE M= 2 7|18 42 E= ItY 0|§O0| ot null2 BEE C-EAEE =
5t= PEM I O| LI 2 MB35l oF AWS Encryption SDK for C& LIC}. JavaScriptol A Raw RSA 7|
2 FM5tH CHE 1o #3 S BE|X| ot 2 £ /U&Lch

on ﬂ°
>

HdAmola & ol&

7|20 RSA 7| Rt2 & AlEst7| flel Raw RSA 7|22 AL A7 MBS 7| WA H 0|AL 7] Of
52 ArSELICH o] 2f2 HIZo| obLIch & E3F 2rdo| gretets A S 3HE HIAIX| sicol] LEE &
AEZ LIEFELICH HS M = 7| 22l AAEo|M RSA 7] Hlo{(EE= ZE2tol8! 7)E A8t 7| Ul
AL m0o|A 2t 7| O|FE AHSste W0l E&LICH

Raw RSA 7|2l 179

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK JHEER} 70| =

® Note
7| A O|AQt 7| O|&2 JceMasterKey & RawMasterKeyQ| 32Xt ID(E= 324X
2 7| ID 2=t SYELICH
= KMS aws-kms 7|0 CHEt 7| HIRIA T O|A ZfE AWS Encryption SDK for C 01| 2F gf L|Ct.
Raw AES 7|2 &= Raw RSA 7|22 AWS Encryption SDK for C2} & 74 AF25HX| OHMIL..

EH HAIXIE &f3&8tstn 5&3t6t7| ?lo Mz CHE 7|22 7ot B2 WYL O|AL} OIF 2t
Ol ELFLICH 553 7|29 7| H&Am 0|42t 7| O|FO| CH/AEXAE FEdt0o] 58 7|29 7|
L Amo|Aet 7| ol F0| H2d| Lxlstx| o™ 7|7t SUEE 7| wWofol HstHEt: S& 3t 7|20
A-SE|X| ef&LICH

5 7|30 U= 7| RIR Q| 7| I YUAHO|ASt 7| O|§2 7|2)0| RSA HH=2] 7|, RSA &

E= 7|l Ho{el & 7|7t 25 ZE |0 U=X| 0o 0f #AHgio] SsHok & LICt o & S0

AHO|A HSM_01 2! 7| O|F RSA_2048_060| /= RSA H{= 2! 7|0f CiEt Raw RSA 7|22

2 olo|lHE gz stetctn 7idat E7laLct i oI & =5 &tste{ Zeto|8! Z|(EE= 7| H o)
ot et 7| HIYAHO|A 2 O|F2 AFE5104 Raw RSA 7|22 F3tML.

o

—

rr

Y BEE XML T WY 28 KNt

LOL
=}
>
0o
Jull
rr
Py
Q
s
X
wn
>
N
o
_0

= Zf olofo| Mo =740 et ChE ot 22 Y ZE& AWS Encryption SDK X| 4 & L|CtH OAEP T
A=Y= 562 AtE3HE OAEPS} SHA-256 TR A2 5HE MGF18 X HM8fLich PKCS1
D= olet HEte| 3 #EE lsiAMEr x| pdELiCH

« SHA-1 Y 2 E7} = OAEP & MGF1

« SHA-256 Y 2 =7} /= OAEP & MGF1

SHA-384 m{E ZE7} /= OAEP & MGF1

SHA-512 T 2 E7} /= OAEP & MGF1

PKCS1v1.5 THE

CHZ oAl SHA-256 THE 2 =7} = MGF11 RSA 7| 9| 371 & 74l 7|1E A& 3+0{ BA| RSA
7|22 My5te 42 2Eo{ELIC RSAPublicKey & RSAPrivateKey B AFE A7 MB5HE
7| R} 2 E LIEPHLICEH

Raw RSA 7|2l 180

https://tools.ietf.org/html/rfc8017#section-7.1
https://tools.ietf.org/html/rfc8017#section-7.2

AWS Encryption SDK JHEER} 70| =

C

oA Raw RSA 7|22 MM35l2{TE AWS Encryption SDK for CAFS &L
Claws_cryptosdk_raw_rsa_keyring_new.

oA Raw RSA 7|2 € FHE M= & 7|& B2 E= It 0|FO0| ot nul2 ZB=E C-EXAtAE
2 ZE5l= PEM k29| LHE 2 A& 35H0oF AWS Encryption SDK for CEFL|CH &l o M|E E2{™
raw_rsa_keyring.cE & ZE5HM 2.

struct aws_allocator *alloc = aws_default_allocator();

AWS_STATIC_STRING_FROM_LITERAL(key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(key_name, "RSA_2048_06");

struct aws_cryptosdk_keyring *rawRsaKeyring = aws_cryptosdk_raw_rsa_keyring_new(
alloc,
key_namespace,
key_name,
private_key_from_pem,
public_key_ from_pem,
AWS_CRYPTOSDK_RSA_OAEP_SHA256_MGF1);

C#/.NET

AWS Encryption SDK for .NET0M Raw RSA 7|22 QIAEIAS| 52
materialProviders.CreateRawRsaKeyring() HIMEE AFSELICH ™A oAM=
RawRSAKeyringExample.cs& & XA 2.

- 12

CH= oMol A= AWS Encryption SDK for .NET 4.x H S AFS & LICH.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "RSA_2048_06";

// Get public and private keys from PEM files

var publicKey = new
MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));

var privateKey = new
MemoryStream(System.I0.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));

Raw RSA 7|2l 181

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_rsa_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawRSAKeyringExample.cs

AWS Encryption SDK

// Create the keyring input
var createRawRsaKeyringInput = new CreateRawRsaKeyringInput

{
KeyNamespace = keyNamespace,
KeyName = keyName,
PaddingScheme = PaddingScheme.OAEP_SHA512_MGF1,
PublicKey = publicKey,
PrivateKey = privateKey

};

// Create the keyring

var rawRsaKeyring = materialProviders.CreateRawRsaKeyring(createRawRsaKeyringInput);

JavaScript Browser

H2te X AWS Encryption SDK for JavaScript 2|= WebCrypto 2t0|EZE[0M =3 Z 2|

OIEIEE 7IMZLICE 7|3 745t 7] ol WebCrypto HHAEZ HA| 7| AIRE 7HK
importPublicKey() BEE importPrivateKey()E At&3sHok gfL|Ct ol A &t

—

of Cigt 2E 5&0| H|IS7|A0lo{ 7|2o| 2t = ELICH 7IK 7| HIMETH A8 stE Z

- ==

dLdue|Entofg e Z=7F L ELICH

7| AtRE 77X & RawRsaKeyringWebCrypto() HIMEE AHE5t0{ 7|3

K. JavaScriptol A{ Raw RSA 7|& & F&5tH CHE Qo] #+30t SetE[X| 2 = S&'%

CHE oMM E buildClient &8 AFE3t0d 7|2 745 ’éﬁ"‘#ﬂ% XI’SEH—I
CHREQUIRE_ENCRYPT_REQUIRE_DECRYPT. & At&3tod

foh
]
-
=2
>
A
\3
]]O
Pol-
1ol

S

ebCrypto

2ol = eH

2l ololE 7|

& A|gtbuildClientd =& UELICH AFAM|SH LI 2 the section called “& 5 3HEl H|O|E] 7|

Mzt BRg AT AAIL.

HZSMR.

jn

M| oM E rsa_simple.ts(JavaScript 2 2H K1)

import {
RsaImportableKey,
RawRsaKeyringWebCrypto,
buildClient,
CommitmentPolicy,

} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

Raw RSA 7|2

182

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/rsa_simple.ts

AWS Encryption SDK JHEER} 70| =

const privateKey = await RawRsaKeyringWebCrypto.importPrivateKey(
privateRsaJwKKey
)

const publicKey = await RawRsaKeyringWebCrypto.importPublicKey/(
publicRsaJwKKey
)

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048 06'

const keyring = new RawRsaKeyringWebCrypto({
keyName,
keyNamespace,
publicKey,
privateKey,

D

JavaScript Node.js

RawRsaKeyringNode ZEHA O Mf QIARAE MBILICH wrapKey IIZIOIEHE HEE 7|1E £
KELICH unwrapKeyIt2tO|E = Z2t0[Y! 7|E ERELICE 7|2 IE REE XIHE == UK
BF RawRsaKeyringNode #dAt7t 7|2 Y REE RIS =E HAHELICH.

JavaScriptoi Al Raw RSA 7|2 & T/ dstH CHE dof 730t S8 E[X| IS =+ [U&LICH

CtZ oMol M= buildClient &8 AFE5to{ 7|2 7B HHQIE RI™EL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. £ Ab25t0od &5 3= HIAIX|2| &5 3= of|o|E 7|
2 MgtbuildClientd == U&LICH REMIEH LI 2 the section called “&F £ 3l H|O|E 7|
M B HESHAAIL.

rH

M| oIM[E 224 rsa_simple.ts(JavaScript Node.js)E & ZHMIL.

import {
RawRsaKeyringNode,
buildClient,
CommitmentPolicy,

} from 'e@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(

Raw RSA 7|2l 183

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/rsa_simple.ts

AWS Encryption SDK JHEER} 70| =

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048 06'

const keyring = new RawRsaKeyringNode({ keyName, keyNamespace, rsaPublicKey,
rsaPrivateKey})

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder()
.keyName ("RSA_2048_06")
.keyNamespace("HSM_01")
.paddingScheme(PaddingScheme.0AEP_SHA256_MGF1)
.publicKey(RSAPublicKey)
.privateKey(RSAPrivateKey)
.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();

IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Python

CHS ol Alol M= 7|2 743 HEHQIE A& 3104 AWS Encryption SDK 22+0|1EE QAR A}
L|CFREQUIRE_ENCRYPT_REQUIRE_DECRYPT. ™A ofM|= GitHub2| AWS Encryption SDK for
Python 2|Z X|E 2| M raw_rsa_keyring_example.pyE & X35IHI2.

]

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "RSA_2048_ 06"

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create Raw RSA keyring

keyring_input: CreateRawRsaKeyringInput = CreateRawRsaKeyringInput(
key_namespace=key_name_space,
key_name=key_name,

Raw RSA 7|2 184

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_rsa_keyring_example.py

AWS Encryption SDK JHEER} 70| =

padding_scheme=PaddingScheme.OAEP_SHA256_MGF1,
public_key=RSAPublicKey,
private_key=RSAPrivateKey

raw_rsa_keyring: IKeyring = mat_prov.create_raw_rsa_keyring(
input=keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Define the key namespace and key name
let key_namespace: &str = "HSM_@1";
let key_name: &str = "RSA_2048_06";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw RSA keyring

let raw_rsa_keyring = mpl
.create_raw_rsa_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.padding_scheme(PaddingScheme: : 0aepSha256Mgf1)
.public_key(aws_smithy_types::Blob: :new(RSAPublicKey))
.private_key(aws_smithy_types::Blob::new(RSAPrivateKey))
.send()
.await?;

Raw RSA 7|2l 185

AWS Encryption SDK JHEER} 70| =

Go

Go

// Instantiate the material providers library
matProv, err :=
awscryptographymaterialproviderssmithygenerated.NewClient(awscryptographymaterialproviderss

// Create Raw RSA keyring

rsaKeyRingInput :=
awscryptographymaterialproviderssmithygeneratedtypes.CreateRawRsaKeyringInput{
KeyName: "rsa",

KeyNamespace: "rsa-keyring",

PaddingScheme:
awscryptographymaterialproviderssmithygeneratedtypes.PaddingSchemePkcsl,
PublicKey: pem.EncodeToMemory(publicKeyBlock),

PrivateKey: pem.EncodeToMemory(privateKeyBlock),

}

rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
rsaKeyRingInput)

import (

"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {

panic(err)

// Optional: Create an encryption context
encryptionContext := map[string]string{

Raw RSA 7|2l 186

AWS Encryption SDK JHEER} 70| =

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

// Define the key namespace and key name
var keyNamespace = "HSM_o1"
var keyName = "RSA_2048_ 06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create Raw RSA keyring

rsaKeyRingInput := mpltypes.CreateRawRsaKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
PaddingScheme: mpltypes.PaddingSchemeOaepSha512Mgfl,

PublicKey: (RSAPublicKey),
PrivateKey: (RSAPrivateKey),
}
rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
rsaKeyRingInput)
if err !'= nil {
panic(err)
}

2 A| ECDH 7|2

} Zhol 29 i 7|2 Exomu:} x| 7|22 gralRtel Z ko 'i' 7| —"‘—NXPP_I TH
ECDH(Elliptic Curve Diffie-Hellman) 7| 7H|2F & £

0 I--I
I
mjo
>
00
g'l_l
A
OH
30
HL
e
e
ol

CHS 7132 3R 2ot 45 E AI835to{ HIO|E| 255 7|18 £S5t 37 eiE 7I1E ThEFLICH 7t
(KDF CTR_HMAC_SHA384)Z AWS Encryption SDK At&3l04 27 2iZ 7|2 mtMdste 7| b &t

£ 7| uteliof CHE NIST HE At g EFLch

2 Al ECDH 7|2 187

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS Encryption SDK JHEER} 70| =

7| IHAY B4 64HI0|E0| 7| T4 A HHEHBILICH o HAIRITL 2HIE 7| T4 QAE A8

S 87| Slss #1S 32H0|E8 125t OFXITE 32HHOIE & 2R BHT 712 AWS
Encryption SDK S EFLIC =28 Al 71240 BIAIX] 8IC| AHoOIm{=I£ S0l HEEl SUE A3 719

TR BT 718 MHE 4 Qs B2 50| AmELICH 0iE S0 Alice®] ZEH0|%! 719} Bobol THE
2| 7|2 7448 71202 ClolEE 2 33tsts 2 Bobol Z2tolY! 7|9t Aliceo] HEE! 7|2 7 AE
Jlzle SYst 79! 7I9 29 T 7|8 KEis T HIOEIE HSE 4+ USLICH Bobol T 7|7}
AWS KMS key Ho{0iAf 7H542 Z49 BobS AWS KMS ECDH 7|28 A445toq HIO[EIE =& 4
ULt

Al ECDH 7|22 AES-GCME AM&35tod CHE 7|2 HI0|EE &&= 3tefLICt 173 ChE AES-GCME
At8stod I E SR ellE 7= ClolE 71§ S5 &&3HELict ZF Raw ECDH 7|3ol= S/ ¥
7|7t stLiEF U = UX|BH EFSo =2 EE= CHE 7|20 &74 042 Raw ECDH 7|22 CH S 7|20 =

gt = A&LIch

Xtz 713 X0|H StES o 2ot REHSM) = 7| ZHE| AlAR 0] A “EPol 7|18 44, ME
E5g Mol U&LIch L AIRet = AlXtol 7| o{E SYEt Bty Mo Blol [U&LICH & oSt
L2 Bt FM AF¥E AWS Encryption SDK x| & LICH.

 ECC_NIST_P256
 ECC_NIST_P384
 ECC_NIST_P512

I.

0x

ZzIefd ol &

o

o 10

A ECDH 7|22 &5 3 Al2 =24 2t0|E 2 2|(MPL) & 1.5.001 EEIIeH OlE =2)Y
104 & H{7TH0f| A X[ELICH.

- O] {7 3.x AWS Encryption SDK for Java

« for NET E{T AWS Encryption SDK 4.x

- MEHY MPL S&41 &7 AFEE AWS Encryption SDK for PythonZd < H7% 4.x.
« AWS Encryption SDK for Rust ™ 1.x

« Go AWS Encryption SDK & 2| & 0.1.x O 4

2l A| ECDH 7|2 MAd

¢ Al ECDH 7|22 RawPrivateKeyToStaticPublicKey, &
EphemeralPrivateKeyToStaticPublicKey®| M| 7}X| &2 H|eF AF|0LE X|HEL

2 Al ECDH 7|2 A 188

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK JHEER} 70| =

CtPublicKeyDiscovery. MEiSHE 7| A2 AF|otof el £8E = Qe &53 &dn 7| 2 2
A7t ZEtklE wAlo] ZEELIC

|

» RawPrivateKeyToStaticPublicKey

» EphemeralPrivateKeyToStaticPublicKey

« PublickeyDiscovery

RawPrivateKeyToStaticPublicKey

RawPrivateKeyToStaticPublicKey 7| #[2f AZ|0tE AFE5t0o{ F7|2I0AM E&lIXto| ZEto[E! 7|
ot =AIXe| HEE] 7|18 MM R F/ELCt 0] 7| A A7[0t= C|O[EE 2 §_§F3P.T’_ =g =
A& LICH.

RawPrivateKeyToStaticPublicKey 7| H[2f AZ|0tE A& 35t0{ HA| ECDH 7|2 & X 7|3t 5tEq

T OHE A E MSELCH
- gixtel Zetold! 7|

RFC 595801 22|l CHZ g AlXte| PEM Q12 E Z20|E! 7|(PKCS #8 PrivateKeylnfo 7+ X)& X3
ati of & LCt.

. 2xtol TEE 7

RFC 528001 HO|El CHZ SubjectPublicKeyInfo (SPKI)EtLE st= +4IXI2| DER QIR E
X.509 HE 2! 7|8 M 33HoF & LICt https://tools.ietf.org/html/rfc5280

HICHE! 7| A12F KMS 7| Hlofo] TE2| 7| £ 9lol M AAE 7| Hofo 22| 7|8 X|HE £ ¢
&LICH AWS.
. B MY

XI’EEl 7| mlool M EfH

1M

MALE S AlEEfL|CH g AReE MR e| 7| Ho] 25 =4 AHL0| S

C#/.NET

// Instantiate material providers

2 Al ECDH 7|2 A 189

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK JHEER} 70| =

var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var BobPrivateKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the Raw ECDH static keyring
var staticConfiguration = new RawEcdhStaticConfigurations()

{
RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput

{
SenderStaticPrivateKey = BobPrivateKey,
RecipientPublicKey = AlicePublicKey

}

};

var createKeyringInput = new CreateRawEcdhKeyringInput()

{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = staticConfiguration

i

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

CH2 Java A0l M= RawPrivateKeyToStaticPublicKey 7| HlSF A7|0FE AF23H0d &k AIX}
ol mzlo|el 7|2t £AIXIe HEZ! 7|2 ME{o =z FAeL|CH F 7| Hlo{ 25 ECC_NIST_P256
ZMof| U&LICE

private static void StaticRawKeyring() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

KeyPair senderKeys = GetRawEccKey();
KeyPair recipient = GetRawEccKey();

// Create the Raw ECDH static keyring
final CreateRawEcdhKeyringInput rawKeyringInput =
CreateRawEcdhKeyringInput.builder()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(

2 Al ECDH 7|2 A 190

AWS Encryption SDK JHEER} 70| =

RawEcdhStaticConfigurations.builder()
.RawPrivateKeyToStaticPublicKey/(
RawPrivateKeyToStaticPublicKeyInput.builder()
// Must be a PEM-encoded private key

.senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded()))
// Must be a DER-encoded X.509 public key

.recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded()))
.build()
)
.build()
).build();

final IKeyring staticKeyring =
materialProviders.CreateRawEcdhKeyring(rawKeyringInput);

}

Python

CH= Python HIA[ME
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey 7| H|Sf A 7|02
Ar&35tod Y AIRIol Z2to|8! 7(eF = AIXte| HEE] 7|18 MAMo R FHELICH F 7| Ho{ 2F
ECC_NIST_P256 Mo U&LC.

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey,
RawPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Must be a PEM-encoded private key

bob_private_key = get_private_key_bytes()
Must be a DER-encoded X.509 public key
alice_public_key = get_public_key_bytes()

Al ECDH 7|3 44 191

AWS Encryption SDK JHEER} 70| =

Create the raw ECDH static keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey(
RawPrivateKeyToStaticPublicKeyInput(
sender_static_private_key = bob_private_key,
recipient_public_key = alice_public_key,

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)
Rust

Ct= Python MMM E raw_ecdh_static_configuration 7| A2F A7|0E AF& 35104 & Al
Atol ZztolHl 7| = AIKIe| HER]| 7|18 WMo =2 EELICH F 7| Ho{ 2F Y8
O{0F B L|Ct.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Create keyring input
let raw_ecdh_static_configuration_input =
RawPrivateKeyToStaticPublicKeyInput: :buildex()

// Must be a UTF8 PEM-encoded private key
.sender_static_private_key(private_key_sender_utf8_bytes)
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

Al ECDH 7|3 44 192

AWS Encryption SDK JHEER} 70| =

let raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :RawPrivateKeyToStaticPublicKey(raw_ecdh_static_configuration_i

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH static keyring

let raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(raw_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Optional: Create your encryption context
encryptionContext := map[string]lstring{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",

2 Al ECDH 7|2 A 193

AWS Encryption SDK JHEER} 70| =

"the data you are handling": "is what you think it is",

// Create keyring input

rawEcdhStaticConfigurationInput := mpltypes.RawPrivateKeyToStaticPublicKeyInput{
SenderStaticPrivateKey: privateKeySender,
RecipientPublicKey: publicKeyRecipient,

}

rawECDHStaticConfiguration :=

&mpltypes.RawEcdhStaticConfigurationsMemberRawPrivateKeyToStaticPublicKey{
Value: rawEcdhStaticConfigurationInput,

}

rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: rawECDHStaticConfiguration,

}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create raw ECDH static keyring
rawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
rawEcdhKeyRingInput)
if err !'= nil {
panic(err)

EphemeralPrivateKeyToStaticPublicKey

7| A2k A7|0t2 7 E EphemeralPrivateKeyToStaticPublicKey 7|22 2Z0iA A 7|

o1& ddstn 2t 53 S&oi CHsll T REH S 7 2HE 7I1E ZEELICH

O 7| Hlef A7|0t= HIAIXK|BH 2 E5He = U&LICH
EphemeralPrivateKeyToStaticPublicKey 7| A AF|0I2 5 3HE HAIXIE 55355
i SUSH FAKe| HEE 7|2 A HE AM F| A AF|OHE ALE5HoF B LICH =535t 24H
PublicKeyDiscovery 7| A|2f & T 2|&2 &7 #A| ECDH Z7|&& A& St 7{Lt = 4IXte| H{EE]
717t HICHE 7| Hl2f KMS 7| H 00| M 7tA{2 B KmsPublicKeyDiscovery 7| AeF A 7|0tk &7
AWS KMS ECDH 7|32 A& = l&LICt

—_

2 Al ECDH 7|2 A 194

AWS Encryption SDK JHEER} 70| =

EphemeralPrivateKeyToStaticPublicKey 7| A2 A7|0LE AFE38t0d 2IA| ECDH 7|2l =7|
3t5t2d™ CHg i 2 M3 ELict

. 2pizto| g2 7|

RFC 528001 Ho|El CHZ SubjectPublicKeyInfo (SPKI)2t1 = &= +4IXtS| DER Q12 E
X.509 HEZ] 7|& XS 38Hok & LICt. hitps://tools.ietf.org/html/rfc5280

HICHE! 7| A2t KMS 7| Hlofel TE 2| 7| T QoM MAE 7| Holol HES 718 XIWE + U
&LICH AWS.

. DM A

XNEE HEE F|0fM Bt FM At S AlggLc
gE3 Al 7|82 xIEE Mo M 7| Ho{E ddst Al Zetol8! 7|et X|HE HEE] 7|8 AHS
otod S & 7|18 ZEELICH
R =8 4L ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512
C#/ .NET

CtS o Alol M= EphemeralPrivateKeyToStaticPublicKey 7| A2k AF|0HE A& 504
Raw ECDH 7|22 YH&LICH & &3t Al 7|22 X|EE ECC_NIST_P256 SM0| ZHZ A 7|
Ho{E MM ELct.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the Raw ECDH ephemeral keyring
var ephemeralConfiguration = new RawEcdhStaticConfigurations()
{
EphemeralPrivateKeyToStaticPublicKey = new
EphemeralPrivateKeyToStaticPublicKeyInput
{
RecipientPublicKey = AlicePublicKey
}
};

var createKeyringInput = new CreateRawEcdhKeyringInput()

{

2 Al ECDH 7|2 A 195

https://tools.ietf.org/html/rfc5280

AWS Encryption SDK JHEER} 70| =

CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = ephemeralConfiguration

i

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

CHS ol Aloi A= EphemeralPrivateKeyToStaticPublicKey 7| Hlef AF|0FE AFE 504
Raw ECDH 7|22 Y& LICt 223t Al 7|22 XIEE ECC_NIST_P256 S0l 2= M 7|
Ho{E ddehct.

private static void EphemeralRawEcdhKeyring() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

ByteBuffer recipientPublicKey = getPublicKeyBytes();

// Create the Raw ECDH ephemeral keyring
final CreateRawEcdhKeyringInput ephemerallnput =
CreateRawEcdhKeyringInput.buildexr()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.EphemeralPrivateKeyToStaticPublicKey(
EphemeralPrivateKeyToStaticPublicKeyInput.builder()
.recipientPublicKey(recipientPublicKey)
Lbuild()
)
Lbuild()
).build();

final IKeyring ephemeralKeyring =
materialProviders.CreateRawEcdhKeyring(ephemerallnput);

}

Python

C}S ol Al MHE
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey 7| Hl2f &

2 Al ECDH 7|2 A 196

AWS Encryption SDK JHEER} 70| =

7|0HE Ar&3tod Al ECDH 7|28 4G LICH 225t A 7|32 X[E ECC_NIST_P256 S4d
of 2Z=2 M 7| Zlo{& dgeLct

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey,
EphemeralPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Your get_public_key_bytes must return a DER-encoded X.509 public key
recipient_public_key = get_public_key_bytes()

Create the raw ECDH ephemeral private key keyring
ephemeral_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey(
EphemeralPrivateKeyToStaticPublicKeyInput(
recipient_public_key = recipient_public_key,

keyring = mat_prov.create_raw_ecdh_keyring(ephemeral_input)

Rust

CIS ol Alo|MHE 7| AIF AF7|0E AFE 35104 A ECDH
ephemeral_raw_ecdh_static_configuration 7|22 MMELICH 253t Al 7|22 x|HE
Mol EZHE M 7| Ho{E ddELIct

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

Al ECDH 7|3 44 197

AWS Encryption SDK JHEER} 70| =

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Load public key from UTF-8 encoded PEM files into a DER encoded public key.
let public_key_file_content =

std::fs::read_to_string(Path: :new(EXAMPLE_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content = parse(public_key_file_content)?;
let public_key_recipient_utf8_bytes = parsed_public_key_file_content.contents();

// Create EphemeralPrivateKeyToStaticPublicKeyInput
let ephemeral_raw_ecdh_static_configuration_input =
EphemeralPrivateKeyToStaticPublicKeyInput: :buildex()
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let ephemeral_raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :EphemeralPrivateKeyToStaticPublicKey(ephemeral_raw_ecdh_static

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH ephemeral private key keyring

let ephemeral_raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(ephemeral_raw_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"

2 Al ECDH 7|2 A 198

AWS Encryption SDK JHEER} 70| =

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err != nil {
panic(err)
}
// Optional: Create your encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Load public key from UTF-8 encoded PEM files into a DER encoded public key
publicKeyRecipient, err := LoadPublicKeyFromPEM(eccPublicKeyFileNameRecipient)
if err !'= nil {

panic(err)

// Create EphemeralPrivateKeyToStaticPublicKeyInput
ephemeralRawEcdhStaticConfigurationInput :=
mpltypes.EphemeralPrivateKeyToStaticPublicKeyInput{
RecipientPublicKey: publicKeyRecipient,
}
ephemeralRawECDHStaticConfiguration :=
mpltypes.RawEcdhStaticConfigurationsMemberEphemeralPrivateKeyToStaticPublicKey{
Value: ephemeralRawEcdhStaticConfigurationInput,

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})

2 Al ECDH 7|2 A 199

AWS Encryption SDK JHEER} 70| =

if err !'= nil {
panic(err)

// Create raw ECDH ephemeral private key keyring
rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: &ephemeralRawECDHStaticConfiguration,

}
ecdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
rawEcdhKeyRingInput)
if err !'= nil {
panic(err)
}

PublicKeyDiscovery

£ 35518 M=o A& E AWS Encryption SDK = U= BiE 7|8 X|H5t= R0l 7HE E&LUILCE O]
D AHE HEe{H Y AIXte| Zetol8! 7|9t #=4IXte| HEE| 7|& 25 X|™5t= ECDH 7|21 A

SEhLich gLt HA| ECDH AM 713, & XIEE 719 HEE 7|7 HAIX] AO|HEAEN MHE E
AR HEE| 7|9t YRIstE ZE HAIXIE S&3te & = HAIECDH 7|88 dd8 = U&
LICE. of 7| Alef 270 MIAIXIE 553t + U&LICH

/A Important

PublicKeyDiscovery 7| Ak AF|OHE AL&Sto] HIAIX|E =2 8l5te 82 Tt AR

HE2 7|§ &L

ol
rin

fjo
Pl
OH

PublicKeyDiscovery 7| H|2f A7|0tE AI&3t0{ ®A| ECDH 7|&& Z=7|8l 524 CHS &L
grLich.

- TaIxte] HH zZetoldl 7|

RFC 595801 Zo|El CHZ 4= AlXte| PEM QIZ & Z2tolY! 7|(PKCS #8 PrivateKeyInfo £ X)E X3
&t ok =FL|Ct.

. B MY

2 Al ECDH 7|2 A 200

https://tools.ietf.org/html/rfc5958#section-2

AWS Encryption SDK JHEER} 70| =

XEE Z2to|8] Z|o|AM EFH F4 AL S AEELICH B AR = 4AIXto| 7| Ho 25 J M ALY O]
EoloHol: oI-L_||:|.

R=8t 2L ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C#/ .NET

CtZ ol Al A= PublicKeyDiscovery 7| A SF A7|0tE A&3510{ YAl ECDH 7|32 oL
Ct. o 7|32 x|EE iEFolt” 71o| HE2! 7|7 HIAIX| AO|HEIA Eof MEEl = 4IXto| T{EE]
712t Ax|5t= 2E HAIXIE 2238 &= JU&Lch

}ol

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var AlicePrivateKey = new MemoryStream(new byte[] { });

// Create the Raw ECDH discovery keyring
var discoveryConfiguration = new RawEcdhStaticConfigurations()

{

PublicKeyDiscovery = new PublicKeyDiscoveryInput
{
RecipientStaticPrivateKey = AlicePrivateKey

}

};

var createKeyringInput = new CreateRawEcdhKeyringInput()

{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = discoveryConfiguration

};

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

CtZ ol Al A= PublicKeyDiscovery 7| ASF AF|0E At&3510{ HA| ECDH 7|32 oL
Ct. o 7|32 xIHEE iEFolt” 719l HE 2! 7|7t HIA|IX| AtO|HEAA Eof K{E El = 41Xt o] HEE
7|2t Lx|5tE ZE HAIXIE S5 = UL

}ol

private static void RawEcdhDiscovery() {
// Instantiate material providers
final MaterialProviders materialProviders =

2 Al ECDH 7|2 A 201

AWS Encryption SDK JHEER} 70| =

MaterialProviders.buildex()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())

.build();
KeyPair recipient = GetRawEccKey();

// Create the Raw ECDH discovery keyring
final CreateRawEcdhKeyringInput rawKeyringInput =
CreateRawEcdhKeyringInput.builder()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.PublicKeyDiscovery(
PublicKeyDiscoveryInput.builder()
// Must be a PEM-encoded private key

.recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded()))
.build()

)
.build()
).build();

final IKeyring publicKeyDiscovery =
materialProviders.CreateRawEcdhKeyring(rawKeyringInput);

}

Python

CHS ol AlolME RawEcdhStaticConfigurationsPublicKeyDiscovery 7| Hl2F A7|0LE
A&3l04 Raw ECDH 7|28 &g LICt o] 7|22 X|HE Z2to|Y! 7| HEE] 7|7+ HIAIX| At

O|HEAEN MY E +alxte| M= 7|2t UR|steE ZE HAIXIE 553 & J&LICH

ol

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsPublicKeyDiscovery,
PublicKeyDiscoveryInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(

Al ECDH 7|3 44 202

AWS Encryption SDK JHEER} 70| =

config=MaterialProvidersConfig()

Your get_private_key_bytes must return a PEM-encoded private key
recipient_private_key = get_private_key_bytes()

Create the raw ECDH discovery keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme = RawEcdhStaticConfigurationsPublicKeyDiscovery(
PublicKeyDiscoveryInput(
recipient_static_private_key = recipient_private_key,

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)

Rust

CHS ol Aol E discovery_raw_ecdh_static_configuration 7| A2k A 7|0 A& 5104
Al ECDH 7|22 d8gLct o] 7|32 xIHE Zetol8! 7|o] HER! 7|7F HIAIX| AHO|HEIAE
off M E AR o| HEE! 7|9t UX|StE 2E HAIXIE §5535HE + &LICH

// Instantiate the AWS Encryption SDK client and material providers library
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1);

// Load keys from UTF-8 encoded PEM files.

2 Al ECDH 7|2 A 203

AWS Encryption SDK JHEER} 70| =

let mut file = File::open(Path::new(EXAMPLE_ECC_PRIVATE_KEY_FILENAME_RECIPIENT))?;
let mut private_key_recipient_utf8_bytes = Vec::new();
file.read_to_end(&mut private_key_recipient_utf8_bytes)?;

// Create PublicKeyDiscoveryInput
let discovery_raw_ecdh_static_configuration_input =
PublicKeyDiscoveryInput: :builder()
// Must be a UTF8 PEM-encoded private key
.recipient_static_private_key(private_key_recipient_utf8_bytes)
.build()?;

let discovery_raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :PublicKeyDiscovery(discovery_raw_ecdh_static_configuration_ing

// Create raw ECDH discovery private key keyring

let discovery_raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(discovery_raw_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

Al ECDH 7|3 44 204

AWS Encryption SDK JHEER} 70| =

// Optional: Create your encryption context

encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}
// Load keys from UTF-8 encoded PEM files.
privateKeyRecipient, err := os.ReadFile(eccPrivateKeyFileNameRecipient)
if err !'= nil {

panic(err)
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create PublicKeyDiscoveryInput
discoveryRawEcdhStaticConfigurationInput := mpltypes.PublicKeyDiscoveryInput{
RecipientStaticPrivateKey: privateKeyRecipient,

discoveryRawEcdhStaticConfiguration :=
&mpltypes.RawEcdhStaticConfigurationsMemberPublicKeyDiscovery{
Value: discoveryRawEcdhStaticConfigurationInput,

// Create raw ECDH discovery private key keyring
discoveryRawEcdhKeyringInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: discoveryRawEcdhStaticConfiguration,

discoveryRawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
discoveryRawEcdhKeyringInput)
if err !'= nil {

panic(err)

2 Al ECDH 7|2 A 205

AWS Encryption SDK JHEER} 70| =

Os 713

JlYg ofed Hel 71z HerE 4+ e OF 7lge Kol 2L
2oz TAE F|2LICt o] = 04 7 0 A

2 A3to{ HIOIEIE L2 8tste B2 SiT 7/2el ZE BT 712 4 ool
=3

OE 7122 4dstod CIOIEHE & Z3tsts B9, 7|13 & oL E 4487|7122 2 x|HstMl2. CHE
(=} (e]
—

ZE 7|32 5t9 ZIZ2ol2tm it M7| 7|32 et HIAE H|o|E 7|1§ M5t &S stEct
J™ 2 E 59 7|29 2E B 7|7t SUst LBt HIAE O|0|H 7|18 ¢ = 3HEfLict CHE 7|32
CtE 7121o] 2 e 7|0l CHal e A E 7|9t &t E35HE ClO|E 7| stLtE BHEHEILICH 447] 7|3
Ol KMS 7|22l A2 AWS KMS 2| M47| 7|7t it BIAE 7|8 HMHstn S 5tefLict JH oS
AWS KMS 7|2lo| B & &7 AWS KMS keys 7|2t CtE 7|2lo| 2 & 5t¢| 7|12l ZE ¥ 7|l= &Y
3t QH EIAE 7|12 253530}

My7| 7|2 glol CtE 7|22 dMsle B2 AIMMHo R AH85104 CIO|EHE S5 3518 4= UX|DH ¢S
glet = iaLICH EEE & 53 2 0f|M genertor 7|12/0| Qi CHE 7|22 AFESIE{H CIE CHE 7|
2olM 5t 712 XIHE = ULt 47| 7|2l0| gi= CFE 7|22 CHE CHS 7|120M 4
7| Z|13e 2 X|8E £ igLIct

=33 Al AWS Encryption SDK = 7|22 AI&35t04 &5 3tEl HI0|H 7| & StLIE =& 3tst2in Al
gLch 7|22 o3 71380 X|HE =MOE 2 EEUCH 2E 7| 9 2E 7|7t = 3HE HIo|H 7

=
g 25318 4+ U SA| a7t SRIFLICH

H™ 1.7 xR E &2 3HE Ol0|E{ 7|7} AWS Key Management Service (AWS KMS) 7|=&(E&= OFA

B 7| 322 E ¥ 5 3HE|HE= AWS Encryption SDK &4 9| 7| ARNZ AWS KMS ﬂ&t ztqo|
KeyId Z2tOIE| AWS KMS key 2 MEfLICH O|= Ar&3dt2d= e 7|2 ¢ &3t ool 7|&E dH
ST E EHEE AWS KMS 2% Atz lL]ct.

o =
28X

tMl2.

ol

COHE 71810 &S ofx| & e o

0jo

» C: multi_keyring.cpp
C#/.NET: MultiKeyringExample.cs

« JavaScript Node.js: multi_keyring.ts

- JavaScript 22} X: multi_keyring.ts

Java: MultiKeyringExample.java

os 713 206

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/multi_keyring.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/MultiKeyringExample.cs
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/MultiKeyringExample.java

AWS Encryption SDK

JHeER 7Hol=

» Python: multi_keyring_example.py

CtE 7|22 BhEoiH HX 5t % 7|22 QAEHASSIMR. O] of&|ofHE AWS KMS 7|23t BA|
AES 7|22 ALS5tX|EF Xl ZE 7|22 OE 7|80 Z&8E = JU&Lch
C
/* Define an AWS KMS keyring. For details, see string.cpp */
struct aws_cryptosdk_keyring *kms_keyring =
ws: :Cryptosdk: :KmsKeyring: :Builder().Build(example_key);
// Define a Raw AES keyring. For details, see raw_aes_keyring.c */
struct aws_cryptosdk_keyring *aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
alloc, wrapping_key_namespace, wrapping_key_name, wrapping_key,
AWS_CRYPTOSDK_AES256);
C#/ .NET

// Define an AWS KMS keyring.
materialProviders.CreateAwsKmsKeyring(createKmsKeyringInput);

var kmsKeyring =

// Define a Raw AES keyring.
var aesKeyring =

JavaScript Browser

CHS oMol M= buildClient

CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. & AtE75}04

A
g

g}AIAJC>

TE Xﬂ?ibuildClient
Meh eeds #

import {
KmsKeyringBrowser,
KMS,
getClient,
RawAesKeyringWebCrypto,

For details, see AwsKmsKeyringExample.cs.

For details, see RawAESKeyringExample.cs.

materialProviders.CreateRawAesKeyring(createAesKeyringInput);

Ag 304 712 749! B
o

=13
|:|

|.

=

the

U&LICH REMIEH LHE 2 section called * Zl Hlole 7|

RawAesWrappingSuiteIdentifier,

MultiKeyringWebCrypto,
buildClient,
CommitmentPolicy,
synchronousRandomValues,

tEl CllolE 7|

207

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/multi_keyring_example.py
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs

AWS Encryption SDK

JHeER 7Hol=

} from '@aws-crypto/client-browser"'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const clientProvider = getClient(KMS, { credentials })

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringBrowser({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see aes_simple.ts.
const aesKeyring = new RawAesKeyringWebCrypto({ keyName, keyNamespace,
wrappingSuite, masterKey })

JavaScript Node.js

CHS oMo M= buildClient &8 AFE35t0od 7|2 78! HAQIE X|HEL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. & At235t04 &5 31 El HA|X|2e| &5 3tE C|0|E 7|
& K|8tbuildClient® & U&LICH XFAM|EF LHE 2 the section called “ 5 3 El G|0|E 7|

M BHeE HRstAAlL.

import {
MultiKeyringNode,
KmsKeyringNode,
RawAesKeyringNode,
RawAesWrappingSuiteIdentifier,
buildClient,
CommitmentPolicy,

} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringNode({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see raw_aes_keyring_node.ts.
const aesKeyring = new RawAesKeyringNode({ keyName, keyNamespace, wrappingSuite,

unencryptedMasterKey })

208

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/raw-aes-keyring-node/src/raw_aes_keyring_node.ts

AWS Encryption SDK JHEER} 70| =

Java

// Define the raw AES keyring.

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();

final CreateRawAesKeyringInput createRawAesKeyringInput =

CreateRawAesKeyringInput.builder()
.keyName ("AES_256_012")
.keyNamespace("HSM_01")
.wrappingKey(AESWrappingKey)
.wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6)
.build();

IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// Define the AWS KMS keyring.
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
CreateAwsKmsMrkMultiKeyringInput.builder()
.generator(kmsKeyArn)
.build();
IKeyring awsKmsMrkMultiKeyring =
matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Python

CIS olAloME 7|2 75! HEQIE AFE 3504 AWS Encryption SDK 2CH0|1EE QIAEASIE
LICFREQUIRE_ENCRYPT_REQUIRE_DECRYPT.

Create the AWS KMS keyring
kms_client = boto3.client('kms', region_name="us-west-2")

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

kms_keyring_input: CreateAwsKmsKeyringInput
generator=arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
kms_client=kms_client

CreateAwsKmsKeyringInput(

kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
input=kms_keyring_input

os 713 209

AWS Encryption SDK JHEER} 70| =

)

Create Raw AES keyring
key_name_space = "HSM_01"
key_name = "AES_256_@12"

raw_aes_keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
wrapping_key=AESWrappingKey,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=raw_aes_keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

// Create a Raw AES keyring
let key_namespace: &str = "my-key-namespace";
let key_name: &str = "my-aes-key-name";

s 713 210

AWS Encryption SDK JHEER} 70| =

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle6)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

1)

// Instantiate the material providers library

CHs 713 211

AWS Encryption SDK JHEER} 70| =

JBCH OFE FlRe e m MY
M447] 7/2/0|2 AES 7/2/0| 3t

C

matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {
panic(err)

// Create an AWS KMS keyring

awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: kmsKeyId,

}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)
}
// Create a Raw AES keyring
var keyNamespace = "my-key-namespace"
var keyName = "my-aes-key-name"

aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: AESWrappingKey,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagls,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)

colctE 7|8 ddxtolME dd7] 713 xIFgfLCH.

struct aws_cryptosdk_keyring *multi_keyring = aws_cryptosdk_multi_keyring_new(alloc,
kms_keyring);

CHE 7|12 39| ZI”22 F7t56t24™ aws_cryptosdk_multi_keyring_add_child HMEE
ArZ'hct Fotete & skl 7120l CHal HIMEE 3 ¥ E &5Hof &Lct

7| 212

AWS Encryption SDK JHEER} 70| =

// Add the Raw AES keyring (C only)
aws_cryptosdk_multi_keyring_add_child(multi_keyring, aes_keyring);

C#/ .NET

NET CreateMultiKeyringInput MAXIE ALSstH M7 7|210F xHA] 7|28 Ho|gh £ Q)
&LICH A0} CreateMultiKeyringInput &= g

var createMultiKeyringInput = new CreateMultiKeyringInput

{

Generator = kmsKeyring,
ChildKeyrings = new List<IKeyring>() {aesKeyring}
};

var multiKeyring = materialProviders.CreateMultiKeyring(createMultiKeyringInput);

JavaScript Browser
JavaScript CHE 7|22 HZAE £ Qi&LIC} JavaScript CHE 7|2 MAMXIE AFE6H MAM7| 7|2
ot o2 5t¢| 71”2 X[HE = JU&Lch
const clientProvider = getClient(KMS, { credentials })

const multiKeyring = new MultiKeyringWebCrypto(generator: kmsKeyring, children:
[aesKeyring]);
JavaScript Node.js

A&t dH7| 7|3

i
o

JavaScript Ct& 7|22 A& = & LICH JavaScript CHS 7|3 AR}

= H
1k oq st2f 71818 X|EE = U&LICH

const multiKeyring = new MultiKeyringNode(generator: kmsKeyring, children:
[aesKeyring]);

Java

do
N
ou
1o
0
o
sk
1
)

Java CreateMultiKeyringInput MAXIE AMSEHH M7
&LICH A} createMultiKeyringInput &= A& &= Qi&LICH.

final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.builder()

s 713 213

AWS Encryption SDK JHEER} 70| =

.generator(awsKmsMrkMultiKeyring)
.childKeyrings(Collections.singletonList(rawAesKeyring))
.build();

IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Python

multi_keyring_input: CreateMultiKeyringInput = CreateMultiKeyringInput(
generator=kms_keyring,
child_keyrings=[raw_aes_keyring]

multi_keyring: IKeyring = mat_prov.create_multi_keyring(
input=multi_keyring_input

Rust

let multi_keyring = mpl
.create_multi_keyring()
.generator(kms_keyring.clone())
.child_keyrings(vec![raw_aes_keyring.clone()])
.send()
.await?;

Go

createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
Generator: awsKmsKeyring,
ChildKeyrings: [Impltypes.IKeyring{rawAESKeyring},
}
multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
createMultiKeyringInput)
if err !'= nil {
panic(err)

}

ks 7|18 214

AWS Encryption SDK JHEER} 70| =

AWS Encryption SDK ZZ 122! 210

ojo

AWS Encryption SDK & Chg Z2 1242 lofol A8E 4 UALICL ZE olof T8 4% HS0|
JHSELICH shLtol o] PHo 2 o2 5ista CHE Qlof THoR S 5y
ofl= @104 Aok Z7H0| MBS £ UALICH 0 L 0f2 zzie o

Elof QesLIc 3 5 U =E5E £ M SEE|S F|ZoILt OtAE

7
K2 Ab256HoF FL|Ct. XEMIEH LI 2 the section called “7 |2 S &4 MM S érzéwlsz.

-1
i
pal
I

A

« AWS Encryption SDK for C

« AWS Encryption SDK .NET&

« AWS Encryption SDK Go&

* AWS Encryption SDK for Java

* AWS Encryption SDK for JavaScript

* AWS Encryption SDK for Python

« AWS Encryption SDK Rust&

« AWS Encryption SDK & & QIE{m|0|A

AWS Encryption SDK for C

she WU AHE SI3t 22H0led

= CE o EE/A0|MS B 7he E
Ch. =8k AWS Encryptlon SDK &2 =&

SDK for C M2 &L
gt edst 2 gL,

= &5 3 2t0o|E2{2IE AWS Encryption
22 H{ZRE F3SH7| |8 7]

O| 2 E F& 1 ObEH7FXRI2 AWS Encryption SDKE 112 CIO|E{ E3 7|&& AWS Encryption SDK
for C M3 & LICH olzet 7|soleE & &35 F7H 18 I:+I0|E+(AAD) ottt QIBEI CHE 7| &
TEZ|E MEZO: 7| R L MBS AESt= 256H|E AES-GCM)O| Z & EL|ct

o| 2 E 2104 7134 AWS Encryption SDK 2 2t835| &% 28 J7tsELICH o & £01,E AL 35104
CIOIE{E€ & %3} AWS Encryption SDK for C 3t AWS Encryption CLIE Z &304 x| El= 210 7
o2 O|0|EE SHEE = A&LICH

£ AWS Encryption SDK for C AF& 3247t AWS Key Management Service ()2t &5 & AWS
SDK for C++ 3l{OF & LICFAWS KMS. MEH ALEHRI AWS KMS 7|28 AM83te Z<0o T 0|8 AHS3H

C 215

AWS Encryption SDK JHEER} 70| =

OF &FL|Ct 2Lt AWS Encryption SDK 0= AWS KMS EE&= CHE AWS MH|ATF E QK| f &L
Ct.

XM S| otE 7|

E A8 Z2 e Yo Ci$t AtAIEH LI& 2 C o, GitHubhttps:/github.com/aws/aws-encryption-
sdk-c/tree/master/examples 2| aws-encryption-sdk-c 2|Z X|E 2| 0| M| & AWS Encryption SDK for
C AP| %M E AWS Encryption SDK for CE Z5HAMIL.

« 0420l CIO|E{E S E = U= AWS Encryption SDK for C £ Al23510{ C|O|E{E &5 315t=
dfedoll CHet REMIBH LI 2 AWS 2ot EZ2 39| CHIME AF83510{ 048] 2|TIo| AIO|HEIAEE 3
S5t YHE AWS ZITE T SHMIL2. AWS Encryption SDK

A

+ MX| AWS Encryption SDK for C
« AF2 AWS Encryption SDK for C
« AWS Encryption SDK for C 0| A

M x| AWS Encryption SDK for C

AWS Encryption SDK for C2| Z| &l HME M X|EFLC.

(® Note
2.0.0 AWS Encryption SDK for C O|F 2| 2 & HF 2 end-of-support Bt 7|0 Q4&LICEH
FCLt Clo|E{E HESHK| &t A 2.0.x 0|40l A AWS Encryption SDK for C 2] Z|A1 HH
Mo 2 ohMEHH LHIOIEE = U&LICt L T 2.0.x0 EUE MER 202 7|52 0]
5t ™Dt S EE|X| et &LICH 1.7.x O[5 H{T0 A 2.0.x 0|4 HES 2 UCl|0|E 5T HE
AWS Encryption SDK for Co| %|&l 1.x T2 2 Cl|o|EsHof gHLict AFAIEH LI Ofola
2|0l AWS Encryption SDKE & Z3HM2.

M x| 2 2l=of cHeh REAEH X[E2 aws-encryption-sdk-c 2|Z X|EE2|2] README I 2! AWS
Encrypt|on SDK for C 0flA & Q& &= QI&LICE 047]0{= Amazon Linux, Ubuntu, macOS, Windows
ZS1Z0|M LESHE wHof CHE XI& o] & &[0 JU&LICEH

|25t 7| 10l AWS Encryption SDKOIAf AWS KMS 7|22 AH8EX| 0{f & ZHELICH. AWS KMS
7|22 A8t BRE MxISHoF & LICH AWS SDK for C++. AWS SDKE AWS Key Management

MR 216

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/#readme
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Encryption SDK JHEER} 70| =

Service ()2 &% &&5t= Ol HRELICFAWS KMS. AWS KMS 7|28 M85t
Encryption SDK AWS KMS AtE5t0{ CI|O|E{E EEdl= 53 7|1E dMstn ES§LICt

AlAES 7|13, HAIRSA Z7|& EE&= o| =& 2 =
2 ME3t= AWS SDK for C++ AR E MRIE 27t ei&LICt sHX|EH A| 7
2 HAIEHE 7|1E =Y M5t E53Hof gLict

0 o o

Mx|of 2XM7I U B aws-encryption-sdk-c SIZX|EE|0| EXE M E35t7LE o] HO|X|of| Q!
S me S S ASSHHIR.

AHZ AWS Encryption SDK for C

O| FAMME CHE Z2 a2 o4 730l M X[E|X| AWS Encryption SDK for C &f=2| 8 7|s
of CHaH AdREFHLICH.

O] Mol of Mol M 2.0.x 0|4 E{Z19] AWS Encryption SDK for CE At8 3t WS EoiFLICt
ol &t H-l’“Ig A83tE oAlE GitHub2l aws-encryption-sdk-c 2|ZX|EE| E|ZX|EE|Q| ElE|A 55
oM T ste ZEIAE &2 = JUsLICH

E AL88 Z2 e Yol cHE XbMIEH LHE 2 C oA, GitHubnhttps:/github.com/aws/aws-encryption-
sdk-c/tree/master/examples 2| aws-encryption-sdk-c 2|% X|E 2| oA 2! AWS Encryption SDK for C
AP| MEME AWS Encryption SDK for CE Z5HM| 2.

3 7|2 MME BZTSMR.

A I8t THE1E AWS Encryption SDK for CIHE LIC} 7|2 MM 7|22 AL
St= CMM M, CMM(Z! Z7|&)2 AFEste= Al Mo, AlM &2l

C E= C++ ZE0|M aws_cryptosdk_load_error_strings() HAMEE &g L|Ct. Of O
MEE ClHZof| 02 R8%t 2F HEE EC gL

main HIMEo| et Zo| 8 tHot S &35 FEL|CH

C SDK At 217

https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/aws/aws-encryption-sdk-c/issues
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.github.io/aws-encryption-sdk-c/html/

AWS Encryption SDK JHEER} 70| =

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

ClOIE 71§ f3&8tste Ol AHSE ciE 7|2 7|28 FIELICE O] ffX[ol M= AWS KMS 7|22

110 =7H AFESHR|EF AWS KMS key RIE[o| 2E R 9| 7|2 A = U&LICH

AWS KMS key 2| &t 33l 7|20l HE AlE5t2{™ 7| ARN EE= 2E ARNZ AWS Encryption SDK
for CXIHELICH E535 7|20M= 7| ARNS AHE 3ok &LICH REAMIEH LI& 2 AWS KMS 7|2
AWS KMS keys 0l A AlEH2 E X 5HAMIR.

const char * KEY_ARN = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(KEY_ARN);

3. MMdE g

ol A M|44E AWS Encryption SDK for CAFE 3104 3. 7/0f &t AH[gi0| EF L A E HA|IX[E ¢f
35t 7L B MO|HEIA E HIAIXR|IE SHSELICH MM2 X2| 3-8 LHLH HIAIX| 4EHE |XIF
LICt.

A

L

, 718, 2EE(AWS_CRYPTOSDK_ ENCRYPT EE = AWS_CRYPTOSDK_DECRYPT)E AM& 35104 Al
MEtLcH MM 228 #HZ5H0F 5t < aws_cryptosdk_session_reset HAEE

> me
Ol mo of

grLich.
FIRe 2 MME MAEHII AWS Encryption SDK for C AHFS2 2 7|2 & 535} A2 EEIXHCMM)
E YYELICL o] ZAE BHEHLE |X| BElStHU AXE 2Tt st

oI E S0iCha MME 1B oM Rolst 7|20 #TRIE AR ELICH ClOEIE 388 o 2=
= AWS_CRYPTOSDK_ENCRYPT&ILI|C}.

struct aws_cryptosdk_session * session =

aws_cryptosdk_session_new_from_keyring_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
kms_keyring);

4.C|O|EIE & 55 e 25580t

LICE 43 7t A LR HAES 88 £ 2 B8 31 £3 {7t A AtoH

MIAMof| M TIO|E{E *{2I5t2d™ aws_cryptosdk_session_process HIMEE A28

C SDK A2 218

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK JHEER} 70| =

E4+88 £+ 28 U3 2 ER, aws_cryptosdk_session_process_fullg
29 A2 E2|Y OIo|EHE MEISHoF 5t B2 F oA

g &8¢ = A&LICH o|E £0{ file_streaming.cpp A
E 2 Z3M L. aws_cryptosdk_session_process_fullE= AWS Encryption SDK {7 1.9.x
al 2 2 x0f| EUE|A&LICEH

MMO| HIOIEE S =36t & 7 HEl 3 Uit BIAE ZE= 28 MYstT AIO|HEIAE &
E= £38 MYHFLICH plaintext EE0= ¢35 35tst2dE HAIX|I7F £0{ U2 ciphertext &
E= &35 HMETL EHEtstE ¥ S s8HE HIAIXIE 7S L

/* Encrypting data */
aws_cryptosdk_session_process_full(session,
ciphertext,
ciphertext_buffer_size,
&ciphertext_length,
plaintext,
plaintext_length)

HI440| HIO|EIE 2555t T & TAE Z2 AOIHYAE Lo 2218 MWsD Yt HAE
E= £32 MBFLICH ciphertext EEM = 535 HMET} BHetet & 3l HAIX[7F &04
A1 plaintext EEE= 53535 HMET}F gHEtste Uit HIAE HA[XIE 7HX{SLCE
CIOIE{E S35 3524 aws_cryptosdk_session_process_full HMEE S E&LICI
/* Decrypting data */
aws_cryptosdk_session_process_full(session,
plaintext,
plaintext_buffer_size,
&plaintext_length,
ciphertext,
ciphertext_length)
HEIIRE
HE2l ++8 Yxlete{H %*’S%FE T E Aol AA82 Ot2l & 10 CiEt X E ElelAstof FLicH
J2X| o™ HZE| =71 YAE LIt SDK= 0 & °.=1% o A s=d8e = JUes S-S MSEL
Ct.

C SDK A2 219

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/file_streaming.cpp

AWS Encryption SDK JHEER} 70| =

= ot ¢l 2ix & otLtE Ar8stod &9 A& E BHE motch &9l 2% Chsat Z ol skl 2o o

B AZE 7t |XIFLICH

712(o: 71222 MM BtEY|)

- 7|2 Y55 7 24 ZHERHCMM)(M: 7|2 CMME AtE35t0{ MM EE= AFE AL X[CMM BHE
71)

- GIOIE Z| ZHAl(Hl: ZIZ H FHAIZE A= 7 CMM d)

ot Aol cHet SRIMQI =7 Heotx| 2 &, &2 AAME s FA| of 2l 2ol CHer &=
£ 2elag & J&LICH &2 A 7F A X EH skl Aol cHe LiH K| & =71 f22|AELCH o] o
T2 AtEstH Zt JHAof CHEF =& ERF 7|7k SetE RXIE +~ e ZElALX| g2 xRz
Qs HZE2[7F &l JE YXIE & JA&LICH

HAMo=Z ptE = 52| Zxl|ol CHEF AR 0F 2l2(ASHH ELCH AFS Ko
A= SDK7t MMst= Zixof CHEt A E #elE 20| gi& LI SDKIt
aws_cryptosdk_caching_cmm_new_from_keyring HIAME7} MMoil F=7I5t= 7|2 cMMmzt &

2 HHE BEs B2 SDKE et sl Fx ol dd & AKX E 2telgLich

H7F K| s & =& | XIEL E

0{X|= &Al aws cryptosdk keyring_release HIMEE AtE5t0o] 7|2 ZX E EE[AE
= AU&LICE Ol HMEE AHE5tH 7|—3lo| & =X S7F EO
aws_cryptosdk_session_destroyg S &350 MME ATAIE H 2l 2|AFELICH

CHS ollxoA Z[2l0] e MMdE BrEH
s |. =]

// The session gets a reference to the keyring.
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT, keyring);

// After you create a session with a keyring, release the reference to the keyring
object.
aws_cryptosdk_keyring_release(keyring);

o4 AMlMdofl Csll 7|22 MALESHHLE CMMOIM 21 E|& KMEZ S X|Hete § STE Yo 32,
7”7<1|01| CHet SEMQ H X E fXlsor & = JU&LICE 0] B2 EEl2 HMEE Al 3&5HX| OHA
CHAL MM E AXsteE R 2oz HAME o ol ALSsHX| Bf S W &= E EE|ASHA 2.

Ol H#Z 7IRE 7|22 HIOJE{ 7| 7HEE ¢ Mzt Z2 CHAM CMME ALSE [A8 E =

g 714 CM 2 =
AU&LICH AL 7I—” ol 7 CMME BHE™ 714 CMMO| &= ZiA| 2 5of CHer =& 7tx{SLich

C SDK A2 220

AWS Encryption SDK

JHE R} 7H0|=
CHE shdoll TWRsHK| o2 &, 7HA CMMO| BHEO{RIE FA| FHAl U 7|20l Chet S2IxQI XS 2
BlAE 4 &LICH 21 OFS FHA CMM2E MAIS BHE o, 7HAl CMMOY CHEt & X8 BlAg 4
U LICt

HA|MoZ M
ZOo| HMETL

dgst= Aol CiEh & =8 2e|AstH ELCH 71 CMMe| 7[EHo| &= 7|8 CMMIt
e = AxE HMEo ofs 2 2[E LIt

/ Create the caching CMM from a cache and a keyring.
struct aws_cryptosdk_cmm *caching_cmm =

aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL, 60,
AWS_TIMESTAMP_SECS);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

// Create a session with the caching CMM.
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(allocator,

AWS_CRYPTOSDK_ENCRYPT, caching_cmm);

// Release your references to the caching CMM.
aws_cryptosdk_cmm_release(caching_cmm);

/rrr

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK for C 04|

i

CHS oMo HEE AFE85l04 CIO|EHE &5 36t = 53 AWS Encryption SDK for C &t B
o4& L|C}.

jo

=
-

g HoiEL
2|
=

O MMl o Mol M= 2.0.x 0|4 T 2| AWS Encryption SDK for CE AF&3te W2
05t HEE AFE35HE WA E GitHub2| aws-encryption-sdk-c E|ZX|EE| 2|ZX|EE|Q| 22

oM siFste EElAE &g + U&LICH

|> I[i)l

Ct.
2=

(o]

NM

Mx|etn 2l=3tH o248t of|A| 2! 7|EF o M| AWS Encryption SDK for CQ| AA FET} examples
st2l CIRE2[o Z& =1 ClEEZol Hutd 2 UEFEL|Cbuild. GitHub2| aws-encryption-sdk-c
2l ZXIE2Q] oA 5t2| CIAEZHME T HXME HE 5= U&LICH

AAEH

221

https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples

AWS Encryption SDK JHEER} 70| =

=
=

CtZ MM E=E AL S04 XY AWS Encryption SDK for C 2 235t 5
04& LCt.

ol

I:lol- HH

3t ot =

rr
jo

O] of M= AWS Key Management Service (AWS KMS) AWS KMS key 2|E AFE35l04 OIO|E| 7| & A
M5tD 43 35tetE 713 AWS KMSR Q! 7|28 S3 o2 §LICH o] oiAlol= C++2 & MHE I =Tt
E%FEIN J& LICH. AWS Encryption SDK for C 0llA{E AWS KMS 7|22 A& AWS KMS [HE 3
= AWS SDK for C++ &l{ofF BrL|CH Al AES 7|2 AWS KMS, 2 A| RSA 7|2l EEE 7|20 ZEE|X|
of2 Ch& 7|2ln Ztolet &% X831 X| t= AWS KMS 7|2IE AI83lE S AWS SDK for C++ &
|Q5tR| et & L.

MEl

Mol et =222 AWS Key Management Service 7HEF X} OFLHA 2] 7| A2 AWS KMS keyEf
Z &M L. https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html AWS KMS 7|2
AWS KMS keys HIMHE A= Ol = 20| 2ot MME FESHMAWS KMS 7|2 AWS KMS
keys Ol A AlES,

O| ofA|2| 31 Hmlf EE20{|MH=E AWS KMS 7|22 11 74 AFR 5104 U EHIAE BAIYPEE 455
AWS KMS key & LIC}H

184 2F EXtEE 2=&LCH

C £ C++ ZE0|M aws_cryptosdk_load_error_strings() HMEE 5&&LICt Of O
MEE ClHZof e R88 2LF HEE E=LCH

main HIMEo|Met Zo| & ot S &35 FEL|CH

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

ofl Al 222

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK JHEER} 70| =

2EHA|: 7|”lE FEELICH

ot s3t2 %IE AWS KMS 7|22 MA3fLich o] ofl&llel 7|~ 12 74 AWS KMS keyE|X|2F A

(=N

2|1™ It CHE H™EE AWS KMS keysZ & 510 0421 2 AWS KMS 7|3 AWS

AWS KMS key 2| &t 33l 7|20l HE AlE5t2{™ 7| ARN = 2% ARNZ AWS Encryption SDK
|2l M= 7| ARNZ ALE3sHoF & LICH REAEH LHE 2 AWS KMS 7|2

for CRIHELICI. 553t
AWS KMS keys Ol A Al¥

AWS KMS 7|2 AWS KMS keys Of|A{ Al

o 2 7|32 MdE mf et BIAE O|o|E 7|8 Md5tn &3 3t5t= Ol AWS KMS key AHE
CleEot St Ut HIAE H|0|E{ 7|2 AWS KMS keys & E 8letE F71o| MEIX] HIPS AWS
ey.

2L 2L T1—

)
KMS keysX|'S&LICt 0] 29 H47[2F XIHELICH AWS KMS ke

St 7|2 HfZL|C}.

I:0I-
ok

Ol _:n"_E% AE!3C|>'|3|- | 7('|O'I| 0=”X‘|| 9' ARN%

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_arn);

EHA: MMdE AT

Kb 22 HHAL 717 E AH85tod MdE LT

H)

o
on

DE MMolles 2E7F ZHeEiLct &= 35t5t2dT AWS_CRYPTOSDK_ENCRYPT, S %3} 35l2d
4 AWS_CRYPTOSDK_DECRYPT & StLIE MEHdSHOF B LICH 7|& MM REE A5 E{H
aws_cryptosdk_session_reset HIAMEE AFSELICH.

7122z e 44t &, SDK7t MESstsE HAMEE Ar8stod 7|20l CHet HZ & EE[ad +
AELICH M2 =3 7|7 52 713 7—'17<4|01| CHEN & =& RRIELICH MME AFstHE 713 2 Al
M Aol CHEr & =7 E2|AELLCH o X 72 E J|e2 HZEEl F+8 YXlst AHA|7H ALS

=
Sl AA7E EEAEX ES EQPELIEL

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT,

kms_keyring);

/* When you add the keyring to the session, release the keyring object */

o Al 223

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK JHEER} 70| =

aws_cryptosdk_keyring_release(kms_keyring);

Y55t ZHEAE = H|Ho| ot (oo F7I 215 CIOIHYULICH 255t A| 2535 ZHHAEE K|

2352 AWS Encryption SDK £ 253} ZAEHIAEZ AIO|HEIAE O &5 3} BAlo 2 HEQIE! 6104
HIO|EIE 25 5t6te O SUSH 455 HHAET ZogtLch 24535 HEIAEE AISIE W2
MEH ALZHO|X|2F HE ElE 2 At Lt

/* Allocate a hash table for the encryption context */
int set_up_enc_ctx(struct aws_allocator *alloc, struct aws_hash_table *my_enc_ctx)

// Create encryption context strings
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_keyl, "Example");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_valuel, "String");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key2, "Company");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value2, "MyCryptoCorp");

// Put the key-value pairs in the hash table
aws_hash_table_put(my_enc_ctx, enc_ctx_keyl, (void *)enc_ctx_valuel, &was_created)
aws_hash_table_put(my_enc_ctx, enc_ctx_key2, (void *)enc_ctx_value2, &was_created)

£
aws_cryptosdk_enc_ctx_clone &+ E AI8350 ¢ 55t HEHAEE MMoi SAHELICEH Of
4= o

[|
SME2OIOHE S55tct & 4/2 438 = UL E my_enc_ctxoll EHELICEH

B8 HYAEE M Z2NA B0l MY EIE TabOlE(7} oblah Mol = eiuict. ol
32 TR HIAIXIS 22 3H517| Slsh MM Z2MA B8 ol ¥ EH3TEHE HAIXIS 28
MAHEN| SUsH 225 HYAETF ABEITS BLIC

struct aws_hash_table *session_enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

aws_cryptosdk_enc_ctx_clone(alloc, session_enc_ctx, my_enc_ctx)
S5CHA|: EAtEE &3 stELct

QHI HHAE

ol
=0 = il

MO

AL g2 35Hst2{H MMo| 223 ZEQI AEHHIM
aws_cryptosdk_session_process_full HMEE AFSELICH. AWS Encryption SDK B

ofl A 224

AWS Encryption SDK JHEER} 70| =

1.9.x 2 22.x0 TEO| W2 HIAEZ|Y 53t 2 F55E Qs MAIRELLCH AEEY
HIO|E{E & 2l5t24™ aws_cryptosdk_session_processE FZ0|M S&E&LICEH

Ql21 W= ol T AOIHBAE TEE £ TEQLICH XE|7t 2
HIZ 2 251 HAIKI7H
o)

ciphertext_output & ==
SHE ALE35t040| A= 8HEl HIAIXK|E SHEE = U&LICt.

/* Gets the length of the plaintext that the session processed */
size_t ciphertext_len_output;
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,
ciphertext_output,
ciphertext_buf_sz_output,
&ciphertext_len_output,
plaintext_input,
plaintext_len_input)) {
aws_cryptosdk_session_destroy(session);
return 8;

6EF7l: MM E HElFLICH
orx|ef EFAMIME CMM & Z7I—2ol| CHEF & =& ZBfstod MME AFME LICH

CMM2Z MME MALEsto] ZAtEE =
= AELICH MME SZ 50l AHE 5™
&5t0i Z=5 AWS_CRYPTOSDK_DECRYPTZ

r|r
>

= 82 MME AFK|5t
St7{Lt CHE HIAIXIE =
aws_cryptosdk_session_reset MlA]
Aot

O

.;E?a} =533
(=4

1294 2F EXEE 2=8LCH

C EEE= C++ ZEO0|M aws_cryptosdk_load_error_strings() HAMEE
MEE ClHZo| of? 88t 27 HEE 2L Ct

FLict ol ol

I

fok
M
ok

main HIMEo|er Zo| 8 gHot S &E35H FEL|CH

/* Load error strings for debugging */

o Al 225

AWS Encryption SDK JHEER} 70| =

aws_cryptosdk_load_error_strings();

2EHA|: 7|”lE FEELICH

oM CIO|EHE =5 35t6t™ S5t API7} Btetet & 55t E HIAIX|E AWS KMSHE & LCtH
Decrypt APIE% 223 AWS KMS key S 2 AtE5HX| 2 &LICEH CHA SUHE AWS KMS AHE 5104
of 5 3} AWS KMS key 0il ALt ALO|HEIAE S 25 518LICt I2{L}E AWS Encryption SDK
Ar25tH %F_%jar U 5353 AWS KMS keys AlE AFE5104 AWS KMS 7|22 XIHE + AU&LICt

553 Al ¢35 5HE IHI)\|7<|E 5353t AWS KMS keys 5t = Cl A8 E 20t 7|28 2 HE = UE
LICH o & S0 =Z|o] EX &0l AWS KMS key AHS3HE BH AL SHod 7|212 M
L|Ct. & AWS Encryption SDK 5353t 7|130] LIEFLEX| 5= AWS KMS key 8HE AH& 5HXK|
Ct. M3 E 7|2 AWS KMS keys 0| AME At&35to{ =3t E OO 7|8 523E &= gl 8
2l AWS KMS keys °I7F HolE 7|18 %§_§P b= Ol AFSE[X| A AHLE EEXIE 7|- AWS KMS
keys o|& AtE35t01 5558 0| gi7| MEol 553 =&0| A Lct.

=335 7|20] AWS KMS key CHAHE X|HE e ST 7| ARNS AFEaHof Bt 2% ARNR
ot 5 3l 7|2l0i B 3{ELICEH AWS KMS 7|2 AWS KMS keys OMHE AlEstE Ol E 20| e
0

&t MM g 2 ZEMAWS KMS 712! AWS KMS keys Of| A Al8,

O| oMo ME EXILEE & 53 st= Ol AWS KMS key At El 3t st 2 FHE 7122 XY
gfLICH ol ZEE A™st7| ™ol ol 7] ARNS 3t 7|2 " Lct.

I=0I'

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

struct aws_cryptosdk_keyring *kms_keyring =
ws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_arn);

BEAl MME A FELICH

HBER 7|2 E AFR5H0d MME MdEFLICEH
AWS_CRYPTOSDK_DECRYPT ZEE Al2350{ MM T A48FLICE

71222 MME dMEt £ SDK7t MBst= HAMEE AL&35to 7[—2lol Ciet &= & 2ElA" £
A&LICE. HI/.E'% =3 Set 7|12 AANof Cist X E |X[etH, MMt 7|22 MM e m 2
S|AELICEH O] X IRE 7|82 HEE| =8 YUXIstD A7 AHE 5 [2|7} & 2lAE]

X| =& EotELICE

struct aws_cryptosdk_session *session =

o Al 226

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK

aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,
kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

Aede 25355ipdH 25312 Q6] TAHE MMM

HO

| HIME== AWS Encryption
?let A EIAsLICH A

aws_cryptosdk_session_process_full HHMEE AHSE L
3l E %l
FxoM =&

C}. o
SDK % 1.9.x 2 2.2.x0f TUEIRICH, HAEEZ|Y A5 35 L 555
Ez[Y HIo|E & AEl5tE{™ aws_cryptosdk_session_processE

5355 A AO|HEIAE ZlEE= Q2 Lo o|n YHHEIAE ZE= £3 e Lt
ciphertext_input EEO0|s= 255 HM=7} gtetst & S 5HEl HAIX|7F Q&LICH ®EI7L 22
T|™ plaintext_output ZEO| et HIAE(FRS5HE) EAIE0| ZEELICH

size_t plaintext_len_output;

if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,

plaintext_output,
plaintext_buf_sz_output,
&plaintext_len_output,
ciphertext_input,
ciphertext_len_input)) {

aws_cryptosdk_session_destroy(session);

return 13;

HAIXIE SE 36t Ol AFSE AX| 53t ZHEAEN HAIXIE L& 5HE M MBE dE 3t =
AE7I ZEE[0] UK HRUSHM. dE 5 T4 24 EE[RHCMM) 7 HIAIXIE & E 3517 o
MBE L35t HHEAEN HO{E F7HE &= U222 AX| &E 3t HEAE F7t Hof7t Z&E
= A&LIcH

olME g5 35 ZHEIAE T} SDKY} BhEtste A5 5HE HAIX|o| Z& oz 5535 m &35 A
HIAEE M3E ZR7F AWS Encryption SDK for Cei&LICt 3t X|2t £33} = YR HAE
HAIXKIE gHetst7| Mol MSE 23t HEAE O B E Ho{7t HAIXIE S23tste Ol AFSE &

Z 3t A Eof LIELF=X] ZrQlsloF g L|Ct

ofl A 227

AWS Encryption SDK JHEER} 70| =

HZA| MM SHA 1|
235t o AR E

const struct aws_hash_table *session_enc_ctx
aws_cryptosdk_session_get_enc_ctx_ptr(session);

OHCHS &535HE | SAFSE my_enc_ctx SHA| 0|20 & =3}

gtofl A& El my_enc_ctx SHA| E|O|E 2| ZF 017} S 53501 AFEEl session_enc_ct
O|2of LIEILI=X| B IgrLCt =2 Z|7t JUHL s (2] 240
7 HAIXIE &g gLct,

for (struct aws_hash_iter iter = aws_hash_iter_begin(my_enc_ctx);
aws_hash_iter_done(&iter);
aws_hash_iter_next(&iter)) {
struct aws_hash_element *session_enc_ctx_kv_pair;
aws_hash_table_find(session_enc_ctx, iter.element.key,
&session_enc_ctx_kv_pair)

if (!session_enc_ctx_kv_pair ||
laws_string_eq(
(struct aws_string *)iter.element.value, (struct aws_string
*)session_enc_ctx_kv_pair->value)) {
fprintf(stderr, "Wrong encryption context!\n");
abort();

[a

6EHA: MM E HelLc.

st ZAHMAE S &HOIgH = MME AKstHL MAISE & QJ&LICH MdS M= dsliof st

EE = |_|_ A
AL aws_cryptosdk_session_reset HMEE AFSELICEH

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK .NET&

AWS Encryption SDK for NET2 C# ! 7|El NET Z22f 20{Z2 o E2|7|0|MH2 &3l = 7HY
AHE 28t 2210|ME & &5 3| 2to|EH2|ILICE Ol Windows, macOS, Linux0llA x| ¢4 LICt.

.NET 228

AWS Encryption SDK JHEER} 70| =

® Note

AWS Encryption SDK for .NET ™ 4.0.02 M|A|X| At AWS Encryption SDK CHS L|C}.
[H2tA T 4.0.022 2 ESHE HIAIX|E= for NET H™ 4.0.0 O|4 220t 55518 = AWS
Encryption SDK J&LICH CHE Z2J21Y Qo FHC 2= 553 = eigLch

AWS Encryption SDK for .NET ™ 4.0.12 AWS Encryption SDK H|A[X| AbFof| k2 |
AXIE BHgstn OhtE Z2 38 Q10 73 &5 28F = JU&LUct 7|[2Xo 2 H

2 4.012 HY 4.0.022 Z335HE HAIXIE el€ = UELICH IBLE HT 4.0.022

ot S SLEl HAIRIE E535t6HX| gtoed™ Z20|1E T} O|248 HIAIXIE SiX| et E
NetV4_0_0_RetryPolicy £4& X[HELICH AtMIEH LI 2 GitHub 2| aws-encryption-sdk
2|ZX|EE0M v4.0.1 EE[A HEE HZE5HMR.

AWS Encryption SDK for NET2 CtS1t 22 & AWS Encryption SDK 0lA{Q| CtE Z 2 3212 240
T3 CHELICH

GOl 7| 7H&ol X[EIX] &

=2
=

(® Note

for NET H{Z AWS Encryption SDK 4.x= CHAl| & 33} At =2 & £F M1 AWS KMS HE
M 7|2 K| §ELct

- AEE[Y HO|E{7} X|HEIX]| &I Z
« AWS Encryption SDK for NETO|M 224 EE= AE =H0| ¢
« 7t Z3LICt. AWS SDK for NET

0jo

AWS Encryption SDK for .NETO|=2| CHE 210 34 HHT 2.0.x O|& 0l =& 2& Eet 7[s0| =&
|04 U &LICH AWS Encryption SDK. Z124L} AWS Encryption SDK for NETZ AF&31042| C}E 2104
73421 2.0.x 0| HEIoZ 2t 531 E O|0|E{E 553l AWS Encryption SDKSHE 2 79! XMag X
Haliok & &= U&LICH RHMIEH LHE2 T 2 MY g FASAM L.

OH
1=
fo
o
e
o
o
O
Q)
l?h
>
=
wn
m
-}
(@
<
=l
o
-}
wn
O
-~
lo

ol
N
o
C
o
L
oy
l',J_
N
orr
il
o
I
0x
mjo
HI
(02l
g'l_l
rr

AWS Encryption SDK for NET2 Al S XM=
MZo|H, O|E ##3E ZEQ 0| HAESHY| IEt
= 7|2 3.0i A AWS Encryption SDK 2] 7|s& F35t

rir
o
o
[in
¥l
~
rm
0%
%
>
r
o

KEAMIS| ot 7|

.NET 229

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/NetV4_0_0Example.cs
https://github.com/aws/aws-encryption-sdk/releases/tag/v4.0.1
https://github.com/dafny-lang/dafny/blob/master/README.md

AWS Encryption SDK JHEER} 70| =

- CHA| ¢ 2|& MEZ X" AWS Encryption SDK, & 3 3HEl OI0|E{ 7| A&, AWS KMS CHE 2™
7l M8 SoM SME 785t WHE EoiF = oldle AME FESHM 74 AWS Encryption
SDK.

« AWS Encryption SDK for NETS AIE8t ZZ a2 of| CH8t REM|IEH LHE 2 GitHub2l aws-
encryption-sdk 2|ZX|E2| aws-encryption-sdk-net C|HEE|E & XM 2.

=S|

« AWS Encryption SDK for NET M x|

« AWS Encryption SDK for NET C|EHHZ
« AWS Encryption SDK for .NET 0i|A

AWS Encryption SDK for .NET AX|

AWS Encryption SDK for .NET2 NuGetH| A AWS . Cryptography.EncryptionSDK Ii7|X]
2 A8% £ Ql&LICEH AWS Encryption SDK for NET A x| 2! 2= of CHE REM|I8H LI 2 aws-
encryption-sdk-netZ|ZX|EZ|2] README.md I}E & X 3FIAM L.

& 3.x

AWS Encryption SDK for .NET HHZ 3.x= Windows0l B NET Framework 4.5.2~4.82 K| &L
Ch X|ElE 2E 2Y #|A0l A .NET Core 3.0 0|4 & NET 5.0 O|& 2 X|dEL|Ct

7 4.x

AWS Encryption SDK for .NET ™ 4.x= .NET 6.0 & .NET Framework net48 0|4 & X|#4&fL|Ct.
& 4.x0l= .NET v38 AWS SDK7t E8fL|ct,

AWS Encryption SDK for .NET0{= AWS Key Management Service (AWS KMS) 7|& A28 K| ot
Bt SDK for .NET 7} 2 tL|Ch NuGet I{Z7|X|Q} &7 A xIELICH Z2{LF AWS KMS 7|E A& 35t
X| et= 8 AWS Encryption SDK for .NETO|E= AWS HI™HAIZ AWS 5 EE= AWS MH|AQS| &5
80| 25K A&LICH Rt B2 AWS AY -0 tigt =222 MME FHESM e AWS
Encryption SDK & 74 AtE AWS KMS.

AWS Encryption SDK for .NET C|8{Z

AWS Encryption SDK for NET2 21 & ‘448t X| 2L &LICH. AWS Encryption SDK for .NET2| of 2|=
of Q| HIAIX|E ot X|BH ARH X2 M5t x| ef&LICH

RS 230

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/#readme

AWS Encryption SDK JHEER} 70| =

CIHZ o =20| £/ 5 SDK for NETHA 22012 gMstsHoF gLt of 21 & 2F HAIX|=0]
M et MStE @7 E AWS Encryption SDK for .NETS| 27 SDK for .NET & 7#85l= ol =&0| E

SDK for .NET == Q& LICt SDK for NET 22201 CHEt =Y 2 AWS SDK for .NET 7H& A} oFLHA 2]
AWSLogging2 & Z=35AML. (0l FHME E2{™ .NET Framework 2EIXE Ho{x E7| MM S & &5

ML)

AWS Encryption SDK for .NET O{|A|

CHS ol X0l A= for AWS Encryption SDK .NETZ2 AF835l0f T2 320 Y
mEE 2o{FELICH §3| AWS Encryption SDK 2! ZiZ B2 X} 2to|28]
HOS Z HMEE 3&57| Mol HAMES| 24 Ho|st= ZHAE 2
for NETOIAM AtE5t= 2 T O H|RELICH

CHA| 21 2|1E MEZ XI5 AWS Encryption SDK, &£ 3HE HIO|E{ 7| A&, AWS KMS CHS 2™ 7|

N
A8 SHAM SME Tdsts 22 EodF £ oMl MME # X574 AWS Encryption SDK.

for NET2 AtEEF Z 2220l AWS Encryption SDK CH8F AFA|EF 0| A= GitHub 2| aws -
encryption-sdkZ|ZX|EE| aws-encryption-sdk-net CIEEZ|0] U= M E HZHAL.

AWS Encryption SDK for .NET2| G| O|E{ & S 3}

ol ool A ClOE|E 23 35tstE 7| MEIS HodELICH stLte] AWS KMS 2iE 7|12 S E|E
ClolE| 7|2 & ntadg g5 38HehLct.

1EHAl: AWS Encryption SDK & R E S Z At 2tO|EEHE|E QIATHASIEILIC.

MX AWS Encryption SDK 2! R{E S ZAt 2H0|EEHEIE EHAASIELICH ol HMEE A8 35t0d

QIAEIA
CloIE{E & & 3t5t 1 3iS AWS Encryption SDK & LICH 74 24 SZX 2lolE8{2[e] HMEE
AHE35t04, OIOIEE B35t 7|8 XIHste 7|22 BHE &+ /U&LUch

AWS Encryption SDK & {2 SZ At EtO|EB{EIE QUAEASS= LE2 for . AWS Encryption
SDK NET H{™ 3.x2+ 4.x Ztofl CHE LICt. CtS EtAIE= for . AWS Encryption SDK NET2| HHZF 3.x2t

4x0|M 25 SLFLICE.
Version 3.x

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();

var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders(

ofl A 231

https://docs.aws.amazon.com/sdk-for-net/v4/developer-guide/net-dg-config-other.html#config-setting-awslogging
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples

AWS Encryption SDK JHEER} 70| =

Version 4.x

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

2EA|: 7]=)ol| CHer 1= A& g ELct.

i

7128 BrEE Z HMEo= siiEste 23 A 2eia7t J&LICH ol& S04,
_|

CreateAwsKmsKeyrlng() HMEQ| Q128 ZHX|E BHE2d™H CreateAwsKmsKeyringInput £

Eao QIAHAS WEFLICH

0| 7|2l0| l2dof MAM7| 7|8 X|H3IX| BT KmsKeyId Zt2HOIE{Z X|HE B KMS 7=
MAM7| Z|LICH CIOIE{E & &tst= OO 7|8 MMdstn g5 stErLct.

O| 2124 ZHx|ol= KMS 7| AWS 2|71 ofof| CHEH AWS KMS Z2H0IHE 7 L B LICE AWS KMS
Z2oto|¢EE M5tE{MH0AM AmazonKeyManagementServiceClient EEiAE QUAEASIFE
LICt SDK for .NET. Tt2tO|E{ 10| AmazonKeyManagementServiceClient() ¥MXIE =

™ 7|22 Z2to|dET BHEo{EILICt

g3

AWS Encryption SDK for NETZ ALE% &f Z2t0] AAEE|= AWS KMS 7|20l 7] ID, 7| ARN,

23 0|8 & HE ARNZ AFE5H04 KMS 7|E AlEE £ Ql&LICH S350 AFSEl= AWS

KMS 7|20l M= 7| ARNZ AL&36101 Zt KMS 7| AJHalof gfLICt S5 35t0f 253 7|22 RiA
85t B9 ZE KMS 7/0i 7| ARN AEXIE AFSEL

<

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object
var kmsKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

3EHAl: 713 E S EFLIC

7|38 MystoiH 7|2 = A E AE5t04 7|13 HMEE EEFLICE O] oiA|ol M= KMS 7|
E 3tLto AF23HE CreateAwsKmsKeyring() HMEE AFSELICEH

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

o Al 232

AWS Encryption SDK JHEER} 70| =

4EHA|: ef S5t HEAE S HolgfL|ct

s ZHEAE = MEY A OIX|HOM & Z 3} 2fd o HE 24 ILICH AWS Encryption SDK. H|
2ol ot 7|-2f Wo{E stLt Old Helg + AU&LICH

® Note

AWS Encryption SDK for NET HHZ1 4 x0lME 2ot 53 HEAE CMME AHE5l04
DE o535 Qo Y535t HEHAES Q5 £ o)

== I

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()

{
{"purpose", "test"}
Iy
S5EHA: et S 3tof CHEE 12 ZHA|E A= Ct

Encrypt() HIAMEE £&357| ™Mol EncryptInput 2ciA 9| QIAEAE MMFILICH.

string plaintext = File.ReadAllText("C:\\Documents\\CryptoTest\\TestFile.txt");

// Define the encrypt input
var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

EncryptionContext = encryptionContext
};

BEHA: Uit HIAEE ot s igtLct

o

fod Ut A ES

o

b7|E

mo

9| Encrypt() HA AWS Encryption SDK E& AF&310{ 9] AtE
o

2f 3 2 efLct

Encrypt() HAME7Z} &= EncryptOutputdls & 3HE HIA|IX|(Ciphertext), & E 3}
ZHEIAE L dT2[&E MEZS 7HKME HMET /&Lt

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

o Al 233

AWS Encryption SDK JHEER} 70| =

7EA: ef 3 8HEl HIAIXIE 7FME L CH

AWS Encryption SDK for .NET2| Decrypt() HME

= EncryptOutput QIAE A
Ciphertext HHE 7txXdSLIC}.

EncryptOutput Z4&iQ] Clphertext HH= 33t HEAEE

= HIZ& & =3tE C|olH, &=
3t Cllo|e 7| X! HIEIC|O|EE Z&fet= 018 7ts AMQ 2= 5HE HAIX|LICH &= 5HE
ARIE E7I2h etst A K& St 7L Decrypt () HIM =0l XEstod U HIAEE SHY £ &
L|Ct.
var encryptedMessage = encryptOutput.Ciphertext;
AWS Encryption SDK for NETS| 8t ZEMM 555
2 AtelloME HIOIEE S&3t6t= Ol M8 7I1E XIHsts R0l E2M, Ol2{E SME HHet =2
Eztn gt = 7130l X|=H8 KMS 7|2 AWS Encryption SDK At& 35104 AtO|HEIAEE SHS &L
Ct =33 7|1212| 7|0l = HIOIEE Y= 3tet 7|7t otLt Of4f Z & k|o{ok & Lct,
Ol oflMof A= AWS Encryption SDK for NET2 Al23501 248t R oM E55t6tE 7|2 ES

Ho{ELICh

1EtA|: AWS Encryption SDK & RHE S 2 XAt 2tO|EE{EIE QIAEA

-

sterLlct,

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

2EA|: 7|=)ol| e 1= A& g ErLct.

— 1

7|3 HIMEQ| mi2to|EE X
2 9|E' IJ1IA-I'=01I ST QU2 AT} USL

0>|
Q'I_l
u
¥ .
(H]
AL
o
1]
L
\J
=
2
I

=S MMELICH AWS Encryption SDK for .NET2|

m |n
> m|m
°
S‘i

§P§* LICF.

i
ol

3t 7|20l M= 7] ARNZ At&E5t0o{ KMS 7|& A&l oF &LICE.

string keyArn = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

of| Al

234

AWS Encryption SDK JHEER} 70| =

// Instantiate the keyring input object

var kmsKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

3EHA!: 7|”lE &L

Ol M M= 555t 7|32 dA45t7| 28l CreateAwsKmsKeyring() HIMES 7|3 o123 2%
= A=t Ct

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

4EHA|: S & 3tol| CHEF 23 A& SGFLic

Decrypt() HMEQ| 24 ZHx|E THEE{™ DecryptInput EHAE QIAEASIEILICE

DecryptInput() MAXIO| Ciphertext LEtO|E{= Encrypt() HIAME7} EHEHst
EncryptOutput ZiA|Q| Ciphertext HWHHE 7} XM SLICE Ciphertext 42 &35
& L—FEFLHEH 047|0fl= AWS Encryption SDK 7} HIA|X|E 235 356tE ol 2ot 235
B, &% 35tE olo|H 7| & HEtH|O|E{ 7t Z & FLICt.

HE! HIA|
tEl ol o]

tol

ol

x
m
=
bl
M

m

= ncryptionContext ut2t0|EeE A8 35t
04 Decrypt() HIME=0{A %*?_iF HEIAEE XIHE £ A&t

EncryptionContext O 2tO/EE AFR5t0d U550 AR = 2535 HEIAEJ| AFO|HEIAEES
Z3tote O M8Els 2535 AEAEN ZE /o] U] ST =72 &

4 Zo| MED A LEE MEZS A85tE R CIXKIE MES 2850 &S5 ZHEHAE

m|0{& AWS Encryption SDK F7}&L|C}.

ol

var encryptedMessage = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput

{

Ciphertext = encryptedMessage,

Keyring = keyring,

EncryptionContext = encryptionContext // OPTIONAL
};

of| Al

235

AWS Encryption SDK JHEER} 70| =

5CHA|: ALO|HRIAEE S5 3t LICTH
var decryptOutput = encryptionSdk.Decrypt(decryptInput);
6Tt f S 3F ZAEAE - HH 3.xE & QlgfLch

AWS Encryption SDK for .NET HH™ 3.x2| Decrypt() HIMEE &35t HEHAEE AI&3X| o
&LIct &2 3HE HAIX|S| HIEIHOIE{0IM & &5t ZHARIAE Zf2 7HXK{SLICt 5 J

E gFetstHLE AH8 67| Mo, AtO|HEIAEE 5_??}5}% ol AHSE %*§§P ZAHAEN 2E35 Al
M38 255t HEIAET ZEE|0] YEX| & 2/L|CF

AN -

ro
_o'l_l
rr
_L
L)
H
ot
Pl
E

(0)
5

oot |ob

> 1o
02

jo

H -

ook r|r
ol

ho
i

o]
RA
o
=|_|_

n >

()
e [H1

5 2
T

ol

ob % 1o
HF o fon
o

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
decryptContextValue)
|| 'decryptContextValue.Equals(contextValue))

throw new Exception("Encryption context does not match expected values");

AWS Encryption SDK for NETOHM AM 7|2l AHE5t0 555

stE 2IF KMS 71& X3t CHAl, KMS 7|18 XIY3tx| et

= UELICH S EXO A 7]oi CHEF AWS Encryption SDK 5 % 3} 1EEFOI AE B2 AHY 9|E'%
5t CIOIEHE 2t 588t KMS 7|1& A8 5104 LIOIEE S5 3tE = U&LICH 2 ALEHIE 2I5H
E IE|[M AWS HH o £ 7|12 AL8E + U= KMS 7|18 NMEtste AM HE{E FIHE

A > 0H o
02 Ol me o

AWS Encryption SDK for NET2 ZZI0|¢E 7 2 F AWS KMS 7|2 A
Hatiof st= M CHE 7|22 MSELICHAWS 2|, 22H0[HEQ 21T %*§§P
St= Ol MA8E = A= KMS 7| MEtEfLIcH F 7|29 &= x|z HE AA

CHS Mo = AWS KMS HM 7|2 & A LB E AHE5t0d HIO|EHE S35 8stE HEE 20i&E
LICt.

o Al 236

AWS Encryption SDK THEr R} 7

1EtA|: AWS Encryption SDK & RH2 S ZAt 2t0|E2HEIE QIAEASFLICEH

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

2EA|: 7|=)ol| CHer 2= A& G ELct.

7|13 HMEQ| mt2t0|EeE X[HE5iod™ U= N E M
SDK for NET2| Z 7|2 HIMEO|= aiE = A7t Q&LICEH o] iAo M=
CreateAwsKmsDiscoveryKeyring() HMEE A& 7|22 BrE7| 2ol i=doi CHE
CreateAwsKmsDiscoveryKeyringInput 22iAE °._|éE._‘| stefLct.

FLICF. AWS Encryption

It i
L oy o
2r

List<string> accounts = new List<string> { "111122223333" };

var discoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(),
DiscoveryFilter = new DiscoveryFilter()
{
AccountIds = accounts,
Partition = "aws"

[

};
3EA: 7|2l MdELICt

ol oAl HE E 53t

7|22 MM357| 30 CreateAwskmsDiscoveryKeyring() HAES}
20 olad R = AL

var discoveryKeyring =
materialProviders.CreateAwsKmsDiscoveryKeyring(discoveryKeyringInput);

4THA: 25 501 CHEH 223 Z4RIS AABLICH

Decrypt() HAMEQ| = ZHX|E BHEE{M DecryptInput EHAE QIAEASIFILICEH
Ciphertext It2tO|E{Q| Zt2 Encrypt() HAET} BHEHSHE EncryptOutput ZH&| 2
Ciphertext HE{ILIC

AWS Encryption SDK for .NET HH™ 4 x0{| A= MEHX EncryptionContext IZtOIEHE AFE
04 Decrypt() HIMENM & 53 HEAEE X|HE £ l&LICH

7

ot

o[Al

237

AWS Encryption SDK JHEER} 70| =

EncryptionContext O 2t0|E|E AI2510] 255101 A2 =l 55 HEIAE T AIO|HEIAEE
235355t Ol AFRE|E 255 HEIAEN ZEE|0] YEX| EQlgtLc = 7|18 o

o ZHo| M EH LT EE MERS A5t AR ORI MBS T Esto] 255 HEAEDL
m|0{& AWS Encryption SDK F7}&FL|C}.

var ciphertext = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput

{

Ciphertext = ciphertext,

Keyring = discoveryKeyring,

EncryptionContext = encryptionContext // OPTIONAL
i

var decryptOutput = encryptionSdk.Decrypt(decryptInput);

50HA|: ¢t 55 ZAEIAE - B 3.x2 =QlgtL|ct

AWS Encryption SDK for NET H% 3.x8| Decrypt() HMEE=M &E35 ZHRAEE 7HX{2X|
f&LICtDecrypt(). = 38tE HIA|IX[S| HEICIO|E{MM FZ 8 HEAE ZfS 7PX4§L—|EP. St x|
OF bt Bl A E 2 HHaHstHLF AFR5H7| 70, AO|HEIAES

Eo &35 Al MSEt 535t HEIAET ZEE|0] JUEX| £

AN -

of 3 5}0fl AR El & 55t HHAE T} AOIHHAES HE5t5te
o JeX| Bl o = 7|2 g1El& MEZ 20| MEL &H LT2E MEZS ALS
St B2 CIXI"H MEE X & sto] 5351 ZAHAEof I0{& AWS Encryption SDK F7+&LICtH

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
decryptContextValue)

|| 'decryptContextValue.Equals(contextValue))

throw new Exception("Encryption context does not match expected values");

of| Al

238

AWS Encryption SDK JHEER} 70| =

AWS Encryption SDK Go&

O #X[o M= AWS Encryption SDK for Go& AxI5t1 AtE5t= WEHE MHEELICH AWS
Encryption SDK for Go& A& et Z 220l CHE REMIEH LHE 2 GitHubol| M aws-encryption-sdk
2|ZX|E2[2| go CIHEEIE XML,

AWS Encryption SDK for Go= CHS 1t ZH2 & AWS Encryption SDK 0{AQ| CHE 2 3@l do{ 7

240t CHELICH

. Olo|E 7| 7HAle K| E|XK| et&LICt 2 2{Lt AWS Encryption SDK for Go= CHA|
&2 MO AWS KMS HSX 7|28 x|ghLct.

« AEZ|A OO|E{7} X|HE|X| &2

POI-

3t Xtz 7Y

AWS Encryption SDK for Go0ll=2| CtE& 210 73 B{7 2.0.x O &0l & 2 & 2t 7|50]
0] Q& LICH AWS Encryption SDK. Z124LF AWS Encryption SDK for GoE AF&3t0{2| CHE 240
Q12.0x Ol HM2Z &5 3HEl OIO|E{E 5 53 AWS Encryption SDKStE @< 73! Haig

OF 8 4 UALICH RLMIEH LIS 2 73! B& M5 W BEFMIR.

AWS Encryption SDK for Go= At 2 dste 4] &¢l 210421 Dafny AWS Encryption SDK 2| |
Z0|H, O|§ 73E I =2 0| E|AESHT| ICh 2 A, 715X HEdEg Edsle X

ol &30l A AWS Encryption SDK 2| 7|s& F3ist= 2to|EE{2[7F EHlRI&LICY.

H
rol
o
N
I° -
C

XM S| otE 7|

- OHA L 1 2|1& MEZ X% AWS Encryption SDK, &3 &t El O|0|E{ 7| A&, AWS KMS CH& 2|%
7| A8 S0l SHE FHSE WHE E0iF £ oM MME XML 74 AWS Encryption
SDK.

« AWS Encryption SDK for GoZ 71435l AL 3l
encryption-sdk ZIZX|E2|0of Y= Go (XS &

HIEHS Ho{F & oA=& GitHub2| aws-

|

>

2
P

: z

N

_|
=

i

A =

AWS Encryption SDK for GoE Ax|5t7| Mof Ct& A =740| J=X| = elghLct

Go 239

https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/
https://github.com/dafny-lang/dafny/blob/master/README.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/examples

AWS Encryption SDK JHEER} 70| =

GoQ| X|¢El= HH
Go& o= AWS Encryption SDK Go 1.23 O|4t0o| Ze8tL|C}.

Go CI2Z = 4l ™Mx|of cist REM|EH LI 2 Go installationE & Z5HMIL.

Z| &1 HZ 2| AWS Encryption SDK for Go& x| LICt. for Go x| & 2= AWS Encryption SDK 0f
CHEE REMIBH LI 2 GitHubOll A aws-encryption-sdk 2% X|E 2|2] go CIAE{Z|0of = README.md
AASHMAIR.

)||
>‘|

=

7 AR

b

« AWS Encryption SDK for Go A x|

go get github.com/aws/aws-encryption-sdk/releases/go/encryption-sdk@latest

- A5 Atz SSA e0|EE{E[(MPL) AR

go get github.com/aws/aws-cryptographic-material-providers-library/releases/go/mpl

AWS Encryption SDK for Java

O| &M= AWS Encryption SDK for Javag Mx| & A&tz W2 MEELICH E A8 T
Jef ol chEt REMIEH LHE 2 GitHub2l aws-encryption-sdk-java 2|Z X|EE2|& AWS Encryption SDK
for JavaR = 3tM 2. API 8B ME 2 24™ AWS Encryption SDK for Java& Javadoc2 & E5HML.

- MAX|

« AWS Encryption SDK for Java 0| Al

A=A

E Mx|5H7| ™ol ct AP Z=740] Q= X| AWS Encryption SDK for Java® Q1&g L|C},

Ax 240

https://go.dev/doc/install
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/README.md
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-encryption-sdk-java/
https://aws.github.io/aws-encryption-sdk-java/

AWS Encryption SDK JHEER} 70| =

Java 7Hgf B4

Java 8 O|& 0| ER 3 LIC Oracle ¥ AtO|EO{|A Java SE CHREEZ2 0|S8 CHZ Java SE
Development Kit(JDK)E& CI2 2 =504 A x|&LICEH

Oracle JDKE At835HE < Java Cryptography Extension(JCE) Unlimited Strength Jurisdiction
Policy Filee CH2 2E=35t04 x|l oF & LICt.

Bouncy Castle

0= Bouncy CastleO| AWS Encryption SDK for Java Z 2 &fL|C}.

« AWS Encryption SDK for Java ¥ 1.6.1 0|20 A= Bouncy Castle2 A+9%+04 &S 3 HAE
AlZststm ==t ELCt o] @7 AMEE 5F5H7] 2I5H Bouncy Castle E£&= Bouncy Castle
FIPSE AFE & = U&LICH Bouncy Castle FIPS x| & F/of it =2 BC FIPS MY
M, 55 A HBAM L 2ot ¥ PDFE FESHAM L.

 O|™ H{ZT2Q| | M= Java& Bouncy Castle2| & 3t APIE AWS Encryption SDK for Java AHE
grLICH O] 2 F AFE 2 H| FIPS Bouncy Castle2t BFE&HL|CH

>r

Bouncy CastIeOI 1= A2 Java® Bouncy Castle CHR2 ZE Z 0|535t0{ JDKOI| sHE 5t 32
A ot E Ch2 2 EFLICH Apache Maveng A& 36+0{ & Bouncy Castle S & At(bcprov-ext-

jdk150n)& OFE|®E I &= Bouncy Castle FIPS(bc-fips)& OIE|HEE JHX{E = /U/&LICH.
AWS SDK for Java

9| 7 3.x0ll= AWS KMS 7|22 A& 5t X| AWS SDK for Java 2.x2 {2 7+ AWS Encryption
SDK for Java 2 gfL|C}.

% 2.x 0|3t AWS Encryption SDK for Java =7t B 5HX| &f&LICH AWS SDK for Java. 11
BALt AWS Key Management Service (AWS KMS)E OtAE 7| SZ A2 AF& 524 AWS SDK for
Java 7} E Q& LICt. AWS Encryption SDK for Java HH7 2.4. 0—=|'—E'|._ 1.x & 2.x8 AWS SDK for
Java. AWS Encryption SDK code % AWS SDK for Java 1.x & 2.xE 25 AWS Encryption SDK
for Java X|HolH &5 28& £ Q&LICE o & E04, AWS SDK for Java 7H .x& X|¥st= AWS
Encryption SDK ZE 2 H|O|EHE &= 3tetT7t X|5t= I = AWS SDK for Java 2.x (= 1 B
CH)E AF83tod 25 35HE 4= U&LICH 2.4.0 AWS Encryption SDK for Java 0| HHE Q= AWS
SDK for Java 1.xBt X|&ELICH H™ AO|0|Eof CHet AbAEH LHE2 MM E AWS Encryption
SDKE Z35tM|20F0| 120|144 AWS Encryption SDK.

AWS Encryption SDK for Java ZE& AWS SDK for Java 1.x0| M £ [0/ EE mH AWSKMS
PIE{H 0|4 in AWS SDK for Java 1.x01| CHEF #EE KmsClient RIE{HO|A inoi| CHEF &=
Z AWS SDK for Java 2.xHF&L|C} AWS SDK for Java 2.x. AWS Encryption SDK for Java &

MNHZ=A 241

https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/about/bouncy-castle-fips-faq/
https://www.bouncycastle.org/about/bouncy-castle-fips-faq/
https://www.bouncycastle.org/documentation/
https://www.bouncycastle.org/documentation/
https://bouncycastle.org/download/bouncy-castle-java/
https://maven.apache.org/
https://mvnrepository.com/artifact/org.bouncycastle/bcprov-ext-jdk15on
https://mvnrepository.com/artifact/org.bouncycastle/bcprov-ext-jdk15on
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/package-summary.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/package-summary.html

AWS Encryption SDK JHEER} 70| =

KmsAsyncClient °|E-|TH|0|*% K|35t x| et&LIcth Eft kms W ZJAH O|A CHAl kmssdkv2 Ul
UAH 0| A L] AWS KMSE 2 ZHAM|E AIESHE S T EE U O|ESIML.

E Mx|524™ Apache Maven2 AWS SDK for JavaAl-& & L|C}.

« T AWS SDK for JavaE E4 422 7 224™H pom. xml IO MASHMIL2.

« AWS SDK for Java 1.x2| AWS KMS 2 =01 CHHAEt S&H S MdsigiH EH
2 METDE artifactId® HHEELICtaws-java-sdk-kms.

+ AWS SDK for Java 2.x2| AWS KMS 2 E0i| CHs{MEF S&HE WdsteiH 5L 2 & X|E I
2 M2 M. groupIdE software.amazon.awssdkZ, artifactIdE kmsE AXFLICH.

AEMIEH L& 2 AWS SDK for Java 2.x 7HEFRF FLHA{ 2] AWS SDK for Java 1.x2F 2.x2| 0| S

xl-?t°|.k||o

AWS Encryption SDK 7H&f X} PHLHA{S| Java MMM =E AHE &’ LICH AWS SDK for Java 2.x.
=FN
AWS Encryption SDK for Java®l %4l HME MR[ELICEH

(® Note
2.0.0 AWS Encryption SDK for Java 0| 9| 2 & B2 end-of-support EF 70| Q& LICH
FC Lt Olo|EI1E HAE5sHR| &t T H{ZF 2.0.x 0|40l A AWS Encryption SDK for Java 2| Z| 4l H
Mo 2 OtHSHH YO0 EE = J&LICH 2Lt HH 2.0.x0 EE MEZ2 EoF 7[s2 O]
ot 1 s BHE|X| f&LICt 1.7.x Ol5t HEH0 A 2.0.x O|4 TS E H|0|E 52T HHK
AWS Encryption SDK2| %Al 1.x HM S 2 0| E5{oF & LICH RHAIEH LI& 2 oto|zeo]M
AWS Encryption SDKS & =M.

CH2 1t ZH2 AWS Encryption SDK for Java R Z & Mx|& & QU&LICH.
eSS

E M=x|5t24™ aws-encryption-sdk-java GitHub Z2|ZX|E2[& AWS Encryption SDK for Java= X
StHL Ct2 2 =8 ct

Apache Maven AL

A

e
I

AWS Encryption SDK for Java = Ct& &%+ H2let &7H Apache Maveng &3l AHE
Lict

F=PN 242

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/KmsAsyncClient.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-java/
https://maven.apache.org/

AWS Encryption SDK JHEER} 70| =

<dependency>
<groupId>com.amazonaws</groupIld>
<artifactId>aws-encryption-sdk-java</artifactId>
<version>3.0.0</version>

</dependency>
SDKE Mx|8t 2ol 0] 7}o|=2] ofAl| Java Z =2 GitHub2| Javadoc® M T{EE ZIEE] AIZHSHA|
o

AWS Encryption SDK for Java oA

r >

EF% ofFlo =S AHE5tod HIOIEIE &35t =55 AWS Encryption SDK for Java e &8
HoiELICt o] tM[o M= HE 3.x Ol & ArE5te WS E0{ELICt AWS Encryption SDK for
Java of H{H 3.x0ll=7F AWS Encryption SDK for Java 22 &LICH AWS SDK for Java 2.x. 2| H{H
3xE OtAE 7| SZXHE 7|22 2 AWS Encryption SDK for Java CHAIEF LICH 277 O[5 HHEE AHS
5t olXle|] B2 GitHub2| aws-encryption-sdk-java E|ZX|EE[Q| BE[A SHoiAM T st= el
A

g ds + A&Lch

ul
of
N
o
Mo
>
)
o'||
i
o
o
|m
|>
|m
o
oQ
ol
l?ﬂ
el
i
ol
lgj

=AE =3 U =555t

oMol =2l HH 3.xE AtE3to EAtA
WS HoiELICH EXIEE AE35H7| o

°
[m
=5
2
Hu i
rII
ok
ol
x
kO

O| Ao M= AWS KMS 7|28 AFEELICH AWS KMS 7|2le
O|§ EE= HE ARNS AIE35H04 KMS 7|E A& 4~ Ql&L|Ct.
7|8 Algdsfof gLICt

2 5318 7| ID, 7| ARN, 3!
2353le [7| ARNS AL235104 KMS

encryptData() HAMEE EE5tH AtO| -IE—.éE ot SI= Ho|E 7| A &5 3 HEIAEE Z e
= ¢ 2 3HE HAIX|(CryptoResult)7t BHEHE .CryptoResult ZHX|0|A getResultE £ &
™M decryptData() HIMEON T™MEE = U= & Eiril HAIX| Q] base-64 QIR T EAIY HHTI0| HHet
Ect

=

of| A 243

https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/releases

AWS Encryption SDK JHEER} 70| =

oFzH7L R |2 decryptData()E SEE M BHEE|l= CryptoResult 2ol et HIAE HA|X|
ot AWS KMS key ID7} Z & ELICE oHE2|7|0|40| YUt MAEE vhetst 7| Tof| & E5HEl HIAIX| 2
AWS KMS key IDQ+ &t &3} ZHEIAE 7} of &8 ZdQIX| & QIEFL|Ct

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoResult;

import software.amazon.cryptography.materialproviders.IKeyring;

import software.amazon.cryptography.materialproviders.MaterialProviders;

import
software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;

import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.nio.charset.StandardCharsets;
import java.util.Arrays;

import java.util.Collections;

import java.util.Map;

/**
* Encrypts and then decrypts data using an AWS KMS Keyring.

*

* <p>Arguments:
*

*

* Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS
customer master

X key (CMK), see 'Viewing Keys' at

& http://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
*

*/

public class BasicEncryptionKeyringExample {

private static final byte[] EXAMPLE_DATA = "Hello
World".getBytes(StandardCharsets.UTF_8);

public static void main(final String[] args) {
final String keyArn = args[Q];

ofl A 244

AWS Encryption SDK JHEER} 70| =

encryptAndDecryptWithKeyring(keyArn);
}

public static void encryptAndDecryptWithKeyring(final String keyArn) {
// 1. Instantiate the SDK
// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,
// which means this client only encrypts using committing algorithm suites and
enforces
// that the client will only decrypt encrypted messages that were created with a
committing
// algorithm suite.
// This is the default commitment policy if you build the client with
// “AwsCrypto.builder().build()"
// or “AwsCrypto.standard() .
final AwsCrypto crypto =
AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.

// This example creates a multi keyring, which automatically creates the KMS
client.

final MaterialProviders materialProviders =
MaterialProviders.buildex()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder().generator(keyArn).build();
final IKeyring kmsKeyring =
materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create an encryption context

// We recommend using an encryption context whenever possible

// to protect integrity. This sample uses placeholder values.

// For more information see:

// blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-Integrity-
of-Your-Encrypted-Data-by-Using-AWS-Key-Management

final Map<String, String> encryptionContext =

Collections.singletonMap("ExampleContextKey", "ExampleContextValue");

// 4. Encrypt the data
final CryptoResult<byte[], ?> encryptResult =
crypto.encryptData(kmsKeyring, EXAMPLE_DATA, encryptionContext);

of| A 245

AWS Encryption SDK JHEER} 70| =

final byte[] ciphertext = encryptResult.getResult();

// 5. Decrypt the data
final CryptoResult<byte[], ?> decryptResult =
crypto.decryptData(
kmsKeyring,
ciphertext,
// Verify that the encryption context in the result contains the
// encryption context supplied to the encryptData method
encryptionContext);

// 6. Verify that the decrypted plaintext matches the original plaintext
assert Arrays.equals(decryptResult.getResult(), EXAMPLE_DATA);
}

HO|E AE2| o5

[y == | I-I:IIE
=

=<

s

CHS ORI AHEE AL 3510{ HHO|E AE 2| AWS Encryption SDK 2 5355l 1 sliSste WHe &
0{& LCt.

ol
ol

tol

Ol A= HAIAES 7|2 & AFSELICH

ot & 3t il o] oMol M= AwsCrypto.builder() .withEncryptionAlgorithm() HMEZ
ArE5tod CIX|E MEO| gle dIElE MEZE XIHELICH o] oMol MdE 553 [AtO|THEIA
Eol MYo| gi=X| &Ql5l7| I8 createUnsignedMessageDecryptingStream() HIMEZE Al
&LICH createUnsignedMessageDecryptingStream() HIMEE CIX|EH MEO| U= AtO|H
SHAEE W7dstHd Mufgh|ct.

CIXIE MEo| Z&E 7|12 dT1E& NEZCE Y35tste 42 Cha oX|e 20|
createDecryptingStream() HMEE CHA AFSSHMIR.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoAlgorithm;
import com.amazonaws.encryptionsdk.CryptoInputStream;
import com.amazonaws.encryptionsdk.jce.JceMasterKey;
import com.amazonaws.util.IOUtils;

of| A 246

AWS Encryption SDK JHEER} 70| =

import software.amazon.cryptography.materialproviders.IKeyring;

import software.amazon.cryptography.materialproviders.MaterialProviders;

import software.amazon.cryptography.materialproviders.model.AesWrappingAlg;

import software.amazon.cryptography.materialproviders.model.CreateRawAesKeyringInput;
import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.nio.ByteBuffer;

import java.security.SecureRandom;
import java.util.Collections;

import java.util.Map;

import javax.crypto.SecretKey;

import javax.crypto.spec.SecretKeySpec;

/**
* <p>

* Encrypts and then decrypts a file under a random key.

* <p>

* Arguments:

* <o0l>

* Name of file containing plaintext data to encrypt
*

* <p>
* This program demonstrates using a standard Java {@link SecretKey} object as a {e@link
IKeyring} to
* encrypt and decrypt streaming data.
*/
public class FileStreamingKeyringExample {
private static String srcFile;

public static void main(String[] args) throws IOException {
srcFile = args[0];

// In this example, we generate a random key. In practice,
// you would get a key from an existing store
SecretKey cryptoKey = retrieveEncryptionKey();

// Create a Raw Aes Keyring using the random key and an AES-GCM encryption
algorithm

ofl A 247

AWS Encryption SDK JHEER} 70| =

final MaterialProviders materialProviders = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateRawAesKeyringInput keyringInput =

CreateRawAesKeyringInput.builder()

.wrappingKey(ByteBuffer.wrap(cryptoKey.getEncoded()))
.keyNamespace("Example")
.keyName (""RandomKey")
.wrappingAlg(AesWrappingAlg.ALG_AES128_GCM_IV12_TAGl6)
.build();

IKeyring keyring = materialProviders.CreateRawAesKeyring(keyringInput);

// Instantiate the SDK.

// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,

// which means this client only encrypts using committing algorithm suites and
enforces

// that the client will only decrypt encrypted messages that were created with
a committing

// algorithm suite.

// This is the default commitment policy if you build the client with

// “AwsCrypto.builder().build()"

// or “AwsCrypto.standard() .

// This example encrypts with an algorithm suite that doesn't include signing
for faster decryption,

// since this use case assumes that the contexts that encrypt and decrypt are
equally trusted.

final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)

.withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
.build();

// Create an encryption context to identify the ciphertext
Map<String, String> context = Collections.singletonMap("Example",
"FileStreaming");

// Because the file might be too large to load into memory, we stream the data,

instead of

//loading it all at once.
FileInputStream in = new FileInputStream(srcFile);
CryptoInputStream<JceMasterKey> encryptingStream =

crypto.createEncryptingStream(keyring, in, context);

of| Al

248

AWS Encryption SDK JHEER} 70| =

FileOutputStream out = new FileOutputStream(srcFile + ".encrypted");
I0Utils.copy(encryptingStream, out);

encryptingStream.close();

out.close();

// Decrypt the file. Verify the encryption context before returning the
plaintext.

// Since the data was encrypted using an unsigned algorithm suite, use the
recommended

// createUnsignedMessageDecryptingStream method, which only accepts unsigned
messages.

in = new FileInputStream(srcFile + ".encrypted");

CryptoInputStream<JQceMasterKey> decryptingStream =
crypto.createUnsignedMessageDecryptingStream(keyring, in);

// Does it contain the expected encryption context?

if
(!"FileStreaming".equals(decryptingStream.getCryptoResult().getEncryptionContext().get("Exampl
{

throw new IllegalStateException("Bad encryption context");

// Write the plaintext data to disk.

out = new FileOutputStream(srcFile + ".decrypted");
I0Utils.copy(decryptingStream, out);
decryptingStream.close();

out.close();

/**
* In practice, this key would be saved in a secure location.
* For this demo, we generate a new random key for each operation.
*/
private static SecretKey retrieveEncryptionKey() {
SecureRandom rnd = new SecureRandom();
byte[] rawKey = new byte[16]; // 128 bits
rnd.nextBytes(rawKey);
return new SecretKeySpec(rawKey, "AES");

of| A 249

AWS Encryption SDK

CIE 7| 212 AI2510{ HIO|E AER 4535l Al 2535
CHS Aol CHE 7] 23k AWS Encryption SDK E7HE AF25tE $HE Eo{FELICE CHE 7|1-IS
A&3to LIOIEE Y3 35tets A T 7|12l ZE 2iE 7|2 i CIO|EE 55588 += &Lt

g
Of oMol M= AWS KMS 7|23t Raw RSA 7|22 51| 7|22 AASFLCH

Ol oAM= CIX|E MEo| Z&El 7|2 d0E[& MEZS AE5to] dEsHELICH AER|Y Al 74
M AHAF & C|R|E A—I%% i-.* 0157 | Tof| LB EIAEE AWS Encryption SDK & 2|AEFLICH MZEO|
oI M7t x| ek BA MR A =S O| MM E L BIAEE HHASI T =535 L =

elo| 2t= & et I:IAELO{I %L_IIZI-.

or its affiliates.
Apache-2.0

// Copyright Amazon.com Inc.
// SPDX-License-Identifier:

All Rights Reserved.

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoOutputStream;

import com.amazonaws.util.IOUtils;

import software.amazon.cryptography.materialproviders.IKeyring;

import software.amazon.cryptography.materialproviders.MaterialProviders;
import

software.amazon.cryptography.materialproviders.model.
.cryptography.materialproviders.
cryptography.materialproviders.
cryptography.materialproviders.
cryptography.materialproviders.

import software
import
import

import

.amazon
software.
software.
software.

amazon.
amazon.
amazon.

import
import
import
import
import
import
import
import
import

java.io.
java.io.

ByteArrayInputStream;
ByteArrayOutputStream;
java.io.FileInputStream;
java.io.FileOutputStream;
java.nio.ByteBuffer;
java.security.GeneralSecurityException;
java.security.KeyPair;

java.
java.

security.KeyPairGenerator;
util.Collections;

/**
* <p>
* Encrypts

*

a file using both AWS KMS Key and an

asymmetric

CreateAwsKmsMultiKeyringInput;
model.CreateMultiKeyringInput;

model.CreateRawRsaKeyringInput;

model.MaterialProvidersConfig;
model.PaddingScheme;

key pair.

of| Al

250

AWS Encryption SDK JHEER} 70| =

* <p>

* Arguments:

*

* Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS key,

& see 'Viewing Keys' at http://docs.aws.amazon.com/kms/latest/developerguide/
viewing-keys.html

*

* <]i>Name of file containing plaintext data to encrypt

* </o0l>

* <p>

* You might use AWS Key Management Service (AWS KMS) for most encryption and
decryption operations, but

* still want the option of decrypting your data offline independently of AWS KMS. This
sample

* demonstrates one way to do this.

* <p>

* The sample encrypts data under both an AWS KMS key and an "escrowed" RSA key pair

* so that either key alone can decrypt it. You might commonly use the AWS KMS key for
decryption. However,

* at any time, you can use the private RSA key to decrypt the ciphertext independent
of AWS KMS.

* <p>

* This sample uses the RawRsaKeyring to generate a RSA public-private key pair

* and saves the key pair in memory. In practice, you would store the private key in a
secure offline

* location, such as an offline HSM, and distribute the public key to your development
team.

*/
public class EscrowedEncryptKeyringExample {

private static ByteBuffer publicEscrowKey;
private static ByteBuffer privateEscrowKey;

public static void main(final String[] args) throws Exception {
// This sample generates a new random key for each operation.
// In practice, you would distribute the public key and save the private key in
secure
// storage.
generateEscrowKeyPair();

final String kmsArn = args[0];
final String fileName = args[1];

standardEncrypt(kmsArn, fileName);
standardDecrypt(kmsArn, fileName);

ofl A 251

AWS Encryption SDK JHEER} 70| =

escrowDecrypt(fileName);

private static void standardEncrypt(final String kmsArn, final String fileName)
throws Exception {
// Encrypt with the KMS key and the escrowed public key
// 1. Instantiate the SDK
// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,
// which means this client only encrypts using committing algorithm suites and
enforces
// that the client will only decrypt encrypted messages that were created with
a committing
// algorithm suite.
// This is the default commitment policy if you build the client with
// “AwsCrypto.builder().build()"
// or “AwsCrypto.standard() .
final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.
// This example creates a multi keyring, which automatically creates the KMS
client.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()
.generator(kmsArn)
.build();
IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create the Raw Rsa Keyring with Public Key.
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.build();
IKeyring rsaPublicKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);

o Al 252

AWS Encryption SDK JHEER} 70| =

// 4. Create the multi-keyring.
final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.buildex()
.generator(kmsKeyring)
.childKeyrings(Collections.singletonList(rsaPublicKeyring))
.build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

// 5. Encrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName);

final FileOutputStream out = new FileOutputStream(fileName + ".encrypted");

final CryptoOutputStream<?> encryptingStream =
crypto.createEncryptingStream(multiKeyring, out);

IOUtils.copy(in, encryptingStream);
in.close();
encryptingStream.close();

private static void standardDecrypt(final String kmsArn, final String fileName)
throws Exception {

// Decrypt with the AWS KMS key and the escrow public key.

// 1. Instantiate the SDK.

// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,

// which means this client only encrypts using committing algorithm suites and
enforces

// that the client will only decrypt encrypted messages that were created with
a committing

// algorithm suite.

// This is the default commitment policy if you build the client with

// “AwsCrypto.builder().build()"

// or “AwsCrypto.standard() .

final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.

o Al 253

AWS Encryption SDK JHEER} 70| =

// This example creates a multi keyring, which automatically creates the KMS
client.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()
.generator(kmsArn)
.build();
IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create the Raw Rsa Keyring with Public Key.
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.build();
IKeyring rsaPublicKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);

// 4. Create the multi-keyring.
final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.builder()
.generator(kmsKeyring)
.childKeyrings(Collections.singletonList(rsaPublicKeyring))
.build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

// 5. Decrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName + ".encrypted");

final FileOutputStream out = new FileOutputStream(fileName + ".decrypted");

// Since we are using a signing algorithm suite, we avoid streaming decryption
directly to the output file,

// to ensure that the trailing signature is verified before writing any
untrusted plaintext to disk.

final ByteArrayOutputStream plaintextBuffer = new ByteArrayOutputStream();

final CryptoOutputStream<?> decryptingStream =
crypto.createDecryptingStream(multiKeyring, plaintextBuffer);

I0Utils.copy(in, decryptingStream);

ofl A 254

AWS Encryption SDK JHEER} 70| =

in.close();

decryptingStream.close();

final ByteArrayInputStream plaintextReader = new
ByteArrayInputStream(plaintextBuffer.toByteArray());

IOUtils.copy(plaintextReader, out);

out.close();

private static void escrowDecrypt(final String fileName) throws Exception {
// You can decrypt the stream using only the private key.
// This method does not call AWS KMS.

// 1. Instantiate the SDK
final AwsCrypto crypto = AwsCrypto.standard();

// 2. Create the Raw Rsa Keyring with Private Key.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.privateKey(privateEscrowKey)
.build();
IKeyring escrowPrivateKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);

// 3. Decrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName + ".encrypted");

final FileOutputStream out = new FileOutputStream(fileName + ".deescrowed");

final CryptoOutputStream<?> decryptingStream =
crypto.createDecryptingStream(escrowPrivateKeyring, out);

I0Utils.copy(in, decryptingStream);

in.close();

decryptingStream.close();

o Al 255

AWS Encryption SDK JHEER} 70| =

private static void generateEscrowKeyPair() throws GeneralSecurityException {
final KeyPairGenerator kg = KeyPairGenerator.getInstance("RSA");
kg.initialize(4096); // Escrow keys should be very strong
final KeyPair keyPair = kg.generateKeyPair();
publicEscrowKey = RawRsaKeyringExample.getPEMPublicKey(keyPair.getPublic());
privateEscrowKey = RawRsaKeyringExample.getPEMPrivateKey(keyPair.getPrivate());

AWS Encryption SDK for JavaScript

AWS Encryption SDK for JavaScript & JavaScript2 & E2t<X{ o Z2[710| M2 =~ 3t7L} Node js
2 d M ofE 2[0S Fdst= JNLALE fIEt E2t0|ME F ¢ 535 2to|EHEIE MBSt
A A& LICEH

O| 2 E F3#1 OhEH7FK|2 AWS Encryption SDKE L& HIO|E{ E% 7|52 AWS Encryption SDK
for JavaScript M & LICH 0|28t 7Isole 8% ¥ 535t F7+ 215 Cl|O|E{(AAD), 2t™st T Q1B E CH
d71LdnelE MEZO: 7l = 2 MBE AE 5= 256H|IE AES-GCM)0| Z & E L|CH.

O ZE 210{ 7% AWS Encryption SDK 2 1012 M| =7dof et &= 2

=
RA&LICt. JavaScripte| 2104 Al|2Foi| CHEE AFAM[EH LHE 2 the section called “Z 24" MM E & X SHA
o

- .

Ol
N
or
9'|_|
H1
J

X
X
m

KtAMIS| ot 7|

- EASst ZZagidol cHet XEMIEH LI 2 GitHub 2| aws-encryption-sdk-javascript 2| Z X|EE2|2
AWS Encryption SDK for JavaScript® =5t M2

- Z2I24Y 0i|X= the section called “O| A" & A2}, aws-encryption-sdk-javascript 2|ZX|E2[2]
example-browser & example-node 2 &2 & X 5IAM|2.

« E Ar83t0{ &l of Z 2|7 0|0l M E|0|E{E AWS Encryption SDK for JavaScript & % 35t = Al
ol M= AWS EQoF £ 271 9] AWS Encryption SDK for JavaScript 2! Node.js& Al&3510{ HEH2X0]

Me=3E gdstots HE HZTstMR.

=
« O] S AWS Encryption SDK for JavaScript
« MAX| AWS Encryption SDK for JavaScript

JavaScript 256

https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/

AWS Encryption SDK JHEER} 70| =

- O] 2 & AWS Encryption SDK for JavaScript

« AWS Encryption SDK for JavaScript 0| A

9| 3 &4 AWS Encryption SDK for JavaScript

AWS Encryption SDK for JavaScript =2| CtE 210 731 43 28 7S5t & HAEIREL
Ct AWS Encryption SDK. CHE 29| B & At&35t0q H|O|E{E & E 3t AWS Encryption SDK for
JavaScript 5t AWS Encryption SDK BE & QIE{H0|AE Z &t CHE 2o TS 2 C|0|HE &

o ok

ol

S8 4 LIk £HE AR 5012l CHE of Tatol A MAE o

Encryption SDK for JavaScript & = U{&L|CH AWS Encryption SDK.

stE HAIXIE =58 AWS

il

dcLHE AEE M= JavaScript 210 T34 & & HEt KoM E 7HX| £&HE EXE €10 AWS
Encryption SDK for JavaScriptQ!0{0F & L|C}.

w8 CHE Qo] THS ASE IfE 58 TS 3 OFAE 7| BB, DHAE 7| U 7|21 FAIHOF B
CF. APAIEH LIS 2 712 542 ATt M.

AWS Encryption SDK for JavaScript & &

9| JavaScript #2422 CtS1 22 Mol M CHE 2104 #3418t AWS Encryption SDK CHE LIC}.

- o &35 AU2 ZY ME|=X] &2 AO|HEIAE E BFEHSHX| AWS Encryption SDK for
JavaScript &t &LICk 2Lt AWS Encryption SDK for JavaScript 2| CHE 210 F$40{| A EHEHE
oY XMEIE MOIHEHAEQL Z 2] AME|E[X] 2 MO|HEAEE SHSELICH AWS Encryption
SDK.

+ Node.js HH71 12.9.0 0|4 Node.js&= CtS RSA 7| EiE S M2 K| gLict.
« OAEPS2} SHA1, SHA256, SHA384 EE= SHA512
« OAEP2} SHA1 2! MGF11} SHA1
« PKCS1v15

- H{7 12.9.0 0|2 Node js= CHS RSA 7| 2HZ
« OAEP2} SHA1 2! MGF11} SHA1

1o
_I.L
o
A
o
o
-
ITI

+ PKCS1v15

BT 257

AWS Encryption SDK JHEER} 70| =

HEIRKX Z&tH

UL # EEIRX{= AWS Encryption SDK for JavaScript Ol 223 7|2 53l 24 X|5HK| ot&
L|Ct EE2fRX{o| A F245t= WebCrypto APIOf| CHEt Z8HE F4d5t0] YR FEIE A PS E&te =
OIAL_||:|.

AAH

8 et KB AFE
CHe MiEH AHEE BE 8 R0l 35XoR HEL

- WebCrypto API= PKCS1v15 7| BHE e x|d5tK| ekt
. HEIX{E 192H|E 7|2 X|etK| & LICH

2 EF 0| AWS Encryption SDK for JavaScript 2 & L|Ct. EEt<
25l K| &b = @<, AWS Encryption SDK for JavaScriptet & & =|X| ot &L}

rypto.getRandomValues()&
2t X{ {7 o] CHS REAIEt LH%

o= & EetexolM a2 & ol22{2| & &40| AWS Encryption SDK for JavaScript 22 &
LICH O[243t L+ ME 2 EF5X| = & HElRME X|pete 49 EMES F-alof guict 2%
X| efo ™ =X AWS Encryption SDK for JavaScript OIME AF2 324 A7 AoiEFL|Ct

+ 2 OfZ 1A 001 M 712 22 5t BS £ B WebCrypto APIE YR HEHL KoM AHSE 4
QLI 2 2558 XIMSHE B HEtS K HFO| THE AHMIEH LR 2 2 5518 ASE £ 9

L2722 &= 5HA

F

« Z|&l BT O] Safari &l E2tX{=01 AWS Encryption SDK 228 0H}0|E 2| AES-GCM ¥ 538
K| st x| et &LICH Ha2t? X7t WebCrypto APIE T 215t X|2F AES-GCM= Ar&35t04 0HIOIEE &
5518 £ 9l A E oHIO|E &5 3of2t Z4H 20|E22{2|2 AWS Encryption SDK for JavaScript
A8 UL CHE 2 E Eoll= WebCrypto APIE AFEEFLICEH

= 7tX| & Bt ME Aol EME FstE{™ =0l ot B2 F7HE LT configureFallback & <=0
M FEHE 7152 XIst= etolE82I8 XI™EFLICt S olAl= Microsoft Research JavaScript &

& 258

https://caniuse.com/#feat=getrandomvalues
https://caniuse.com/#feat=cryptography
https://caniuse.com/#feat=cryptography
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/web-crypto-backend/src/backend-factory.ts#L78

AWS Encryption SDK JHEER} 70| =

3t 2to|2E{El(msTcrypto)E AL 5HX|EH 28 7458 ElO|EEEIZ HhE £ Ql&LIch ™A ofl A
fallback.ts& EHZX5tAMI2.

S
—_
=
—

import { configureFallback } from 'eaws-crypto/client-browser'
configureFallback(msrCrypto)

M x| AWS Encryption SDK for JavaScript

E 832 35S 2E ZS2 2 AWS Encryption SDK for JavaScript Tt &ELICEH o2 2E2 &7 &
SHCE MAE IS Eom ol ol Qe DS E2|xo 2 MHESIEE MASELIC RE 75

QELICH CHE H I 2 &2 S8 d<oigh 2 g LICt JavaScript AWS
Encryption SDK 82| 2 =0 CHt RtMI8H LI &2 GitHub2| aws-encryption-sdk-javascript 2| Z X|E 2]
of = ZF ZEQ| of 2= AWS Encryption SDK for JavaScript 2! README .md It S & X 5HAI2.

(@ Note
2.0.0 AWS Encryption SDK for JavaScript 0| 2| 2 E ™2 end-of-support =701 Q&L

FEL OO|EHE #HAE5HK| &t 1 BT 2.0.x 0|40l A{ AWS Encryption SDK for JavaScript 2

Z| A HE2 2 otSHA| o"IZ'||0|E°* £ &LICH L ™ 2.0.x0] EUE ME2 2ot 7|
2 o5t ™ S 8HE|X| et&LICt 1.7.x O3 HHE0|A 2.0.x O|& HH2S 2 4| 0| E 5t
4 HX{ AWS Encryption SDK for JavaScript2| Z|4l 1.x HH S 2 4O[0|E35HoF & L|Ct XAl
5t L& 0to|=22{|0|A AWS Encryption SDKE2 & Z3HMIR.

REE HRIstedH npm I 7|X| 2 E[XHE AESHML.

04 £ =04 Node.js AWS Encryption SDK for JavaScript 0l 2 ZZIe{UsHoF 5l ZE ZE0| X
g El client-node ZE2 Mdx|sto{M CtS BHEZ2 AFSELICH

npm install eaws-crypto/client-node

AWS Encryption SDK for JavaScript 22t XM 2 Z2 32 U3H0F 5t 2E ZEO0| L& E
client-browser &2 MX[5t2{™ Ctg HHES ASFLICH

npm install @aws-crypto/client-browser

AHE Hedof| CHE AlA| ol Ml= GitHub 2| aws-encryption-sdk-javascript 2|ZX|E 2|01 /= example-
node 2 example-browser 2= 2| 0JX|& AWS Encryption SDK for JavaScript& Z35t M 2.

259

Mx

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/fallback.ts
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://www.npmjs.com/get-npm
https://github.com/aws/aws-encryption-sdk-javascript/

AWS Encryption SDK JHEER} 70| =

O 2 & AWS Encryption SDK for JavaScript

O 2 =2 AWS Encryption SDK for JavaScript Ar&5tH T2 ME| e IEE &H MR =
&Lct

JavaScript Node.js =

client-node

Node.js AWS Encryption SDK for JavaScript A E AIE35to{ ZE 12 U5HOF 5l ZE ZES
ZEtgfuct.

caching-materials-manager-node

Node.js@|H|M HIO|E{ 7| FH & 7|5 X|#dst= &+ AWS Encryption SDK for JavaScript & LHE
HL|Ct

decrypt-node

Cllo|E & CIO|E| AERIE LIEHLE S sHE HAIX|IE E53l6t1 EQlStE &+E LHEL|CH
client-node ZE0f ZT&EL|IC}.

encrypt-node

1

tLe RE2| IOIEE ¥ E3tst 1 MBste &+E LHEHLICH client-node ZE0i Z&EL]
Ct.

example-node

Node.js AWS Encryption SDK for JavaScript HIAME AFE8t =2 32| AKX AE LHE L
Ct. CtEet 0| 7|3 & Ch et 30| O|O|E oM E Z & & LCt

hkdf-node
Node.js2|7} £ &1 2|& M&E AWS Encryption SDK for JavaScript 0l M AFHE 3= HMAC

o
7|8k 7| ot g ~(HKDF)E& LHE Lt 22t X{ AWS Encryption SDK for JavaScript 2|&=
WebCrypto API12| 7|2 HKDF &8 AFSELCH.

integration-node

Node.js AWS Encryption SDK for JavaScript 2|7} 2| C}2 @104 341} 5 #tz|=X| &Ql5tE E|A
EE ™Oo|&tL|Ct AWS Encryption SDK.

kms-keyring-node

Node.js0il A AWS KMS 7|32 X|§st= & & LHE-LICH

H
mn

260

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/hkdf-node
https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-node

JHeER 7Hol=

AWS Encryption SDK

raw-aes-keyring-node

£ X[¥ste ¥

Node.js0l M Raw AES 7|2

raw-rsa-keyring-node

JavaScript HEIXE 2 &
client-browser
AWS Encryption SDK for JavaScript E2t M ME A& sto{ Z2 I YN0k = ZE ZES
ZEELcH
caching-materials-manager-browser
H 22 X{0l| A JavaScript 2 2 H|0|E{ 7| 7HAl 7|58 X|ste & 45 e L C
decrypt-browser
22 LIEt = 22 3tHE HAIXRIE S35t &elsts &8 WEHU O

oiolE{ X! Ci|o|E AEE

encrypt-browser

FYol lo|HE & E5tetn ME

Cher et
example-browser
ArEet Z2aed ol A o M ULICH CHY

rr

integration-browser

2|E 7} AWS Encryption SDK for Java2| C}H2 2104 7

Hgl*xol A3
HAEE HolgLICt AWS Encryption SDK.

kms-keyring-browser

HEFR X0 AWS KMS 7|2

raw-aes-keyring-browser
Hat2xXo| M Raw AES 7|2

raw-rsa-keyring-browser

o
A
20
9'|_|
rr
I

HERX{0|AM Raw RSA 7|&
261

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-browser

AWS Encryption SDK JHEER} 70| =

DEFHEE FE R

N

cache-material

tol

ClolE] 7| FHA 7|
M3t

kms-keyring

fjo

K|HELICH Z HolH 7|2 FHAIE &t 55 Rt= & ofdlE5t7| 2

r
kU
In
i

KMS 7|2 g X|ste & LHEHLICH

material-management

& 53t AHE #HE|AHCMM)E T8 LIt
raw-keyring

Raw AES 2/ RSA 7|&lof 23t &8 LHEHLICEH
serialize
SDK7} £2ig S|ziststs o ALgstE B 48 LI HLict

web-crypto-backend

=2t X{2]|0{ A WebCrypto APIE At& 3= &4 AWS Encryption SDK for JavaScript £ LHE 'Y
L|CH.

AWS Encryption SDK for JavaScript 0| A

o
rr

ok

CH2 oMol A= AWS Encryption SDK for JavaScript £ AF&310{ CIO|EHE ¢ 535 4 5
He HEo{FL|Ch

P

3t Y

GitHub 2| aws-encryption-sdk-javascript AWS Encryption SDK for JavaScript 2|32 X| E 2[2| example-
node & example-browser 2= MHE AIE5t= O BE2 X & &2 = U&LICH https:/github.com/
aws/aws-encryption-sdk-javascript/tree/master/modules/example-node aws-encryption-sdk-javascript
O|z48t oAl 2E 2 client-browser EE= client-node 2 EE M%|& m MX|Z|X| k& LICtH

MA 2= MEE X L E: kms_simple.ts, EEFX: kms_simple.ts

A
« AWS KMS 7|22 At
=

= 5104 CilO|E| & 535}
« AWS KMS 7|22 At

of
5to HIO|E{ 553

=2
o
=2
o

ofl Al 262

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/cache-material
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/material-management
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/serialize
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/web-crypto-backend
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts

AWS Encryption SDK JHEER} 70| =

AWS KMS 7|2/ Al235l04 O|O|E| &= 3}

cC
)

CH of M| of| A
s3lstm slis st

rr

XP
Ct.

Ol oMol A= AWS KMSE A& 3eto LIOIH 7|& ddstT =36t 7|12 fE 713 AWS KMS
key O| EAQILICH MMof Ciet TS Y2 AWS Key Management Service 7HEF A} OHLHA Q| 7| MM S
AWS KMS key® Z35HM|L. https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
AWS KMS 7|3 AWS KMS keys 0| MHE AlHE5tE O] =2 0| ERotH MME FHESHML. AWS KMS
7|2 AWS KMS keys Of| A Al

ne
rir

HFO|E Hi AWS Encryption SDK for JavaScript 2 &

E M

=14
o

11E oo

jo SE
L HU

MN HO

of B
Hod

1ERA: 74 B et

X ncryption SDK Zct0[HEE QIARHASSHE M buildClient &+E =

710! MzHg Mxs AWS Encryption SDK for JavaScripts & LICH buildClient &%

MAMZ LIEIL = A7 2f2 ASE LU 2535 U 5535 Al 7S HAE ME35t=
|

O|EE encrypt X decrypt &8 BHEHEFLICH

o I
n
>
=
wn
m

Ct2 o MOIM= buildClient 42 AF235104 7|2 7! Z=QI1E K| & EHL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. £ Al235l0d &5 5t E HA|X|2| &5 351E H|0o|E 7|
e se

& M8tbuildClientd =X U&LICH XHM[EH LI 2 the section called “&f 5 3+l Cl|O|E] 7|
MEh CHIS AL R SHAIAID.

JavaScript Browser

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
} from 'e@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

JavaScript Node.js

import {
KmsKeyringNode,
buildClient,

ofl Al 263

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS Encryption SDK JHEER} 70| =

CommitmentPolicy,
} from 'eaws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

AWS KMS 7|3 o2 &5 5te e dd7| 7|, & Lt BIAE H0|E 7|8 dMstn &E 356 =
ol AWS KMS key AFEE|=E X|H5H0 UHHEIAE MO 7|8 &=

O|&o| F7t 7|8 XIHe = JU&LICH 7|32 et HIAE 4IOIE+ 9I9+ ME7| 7|18 ZEstod 7|
2/0] ZF AWS KMS key ofl CH8 82 HIO|E] 7|2

stote{™ = 3tE OlolH 7| & stLHE S £33

Ol M 33 7|20l AWS KMS keys CHEH S k|5 5t2{™ XIPIE|= ZE AWS KMS 7| AIHRIE A}
&8 AWS Encryption SDK for JavaScripts A&LICH O] (o= HE ARNSE A= 4
7| 712t 7| ARNS 2 AlME|= FTI} 7| 5tLEE AFSELICH.

® Note

=235 3IE 25 AWS KMS 7|22 RiALE5tEd= A< 71 ARNs AF& 35104 7|2 AWS KMS
keys 0| HE Algdaf{oF &FL|Ct.

ol Z=EE Ad57| Mol oKl AWS KMS key AEAIE RE 8t AMEXIZ HFELICH 7|—20lA AWS
KMS keysE At&st= O 228t HEro| Qlofof gLt

JavaScript Browser

Hetf X ol X424 FH2 M3 5t0 AZSHAM| L. O] AWS Encryption SDK for JavaScript 040 A
= A4 3 4+ E AA XtE EH2 = ChA|5t= webpack.DefinePluging Ab& g LICH 2Lt
1 8BS NM3E = A&LICH 2H CHE A+E ZHE AHE5H04 AWS

declare const credentials: {accessKeyId: string, secretAccessKey:string,
sessionToken:string }

const clientProvider = getClient(KMS, {

ofl A 264

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK

JHet &} 7hol=
credentials: {
accessKeylId,
secretAccessKey,
sessionToken
}
1)
OHACHS M7 7] Y F7t 7|0 AWS KMS keys € X|HELICH O3 CHS ECH0|HERLE A

25101 AWS KMS AWS KMS 7|212 MAIEfLICH AWS KMS keys.

const generatorKeyld = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt’
const keyIds = ['arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"]
const keyring = new KmsKeyringBrowser({ clientProvider, generatorKeyld, keyIds })

JavaScript Node.js

const generatorKeyld = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt’
const keyIds = ['arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"]

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

JavaScript Browser

const context = {
stage: 'demo',
purpose: 'simple demonstration app',
origin: 'us-west-2'

}

of| Al

265

AWS Encryption SDK JHEER} 70| =

JavaScript Node.js

const context = {
stage: 'demo',
purpose: 'simple demonstration app’,
origin: 'us-west-2'

}

I

M
A
i
S
m
Mm
POI'
ton
ok
r
o

0| encrypt &+ &= 8 E OO|H, &E3E Oo|F 7| ¥ ¢=3t ZHAHAE U MBS T S
gt HEICOIEE Z & 5te 5 3tE HAIX|(result)E gHetELICt
X|HEl= 2232 2104 AWS Encryption SDK O CHSHE A& 3104 0| 2 S 3tHEl HAIXIE =535
sF A

JavaScript Browser

const plaintext = new Uint8Array([1, 2, 3, 4, 5])

const { result }
context })

await encrypt(keyring, plaintext, { encryptionContext:

JavaScript Node.js

const plaintext = 'asdf'

const { result }
context })

await encrypt(keyring, plaintext, { encryptionContext:

AWS KMS 7|22 AI&35to{ H|o|E 8§55}

£ A8stod &

= A& LI

ok

StE HAIXIE sHS5tn & C|o|E{& =7+ AWS Encryption SDK for JavaScript &

O| ofofl M= the section called "AWS KMS 7|22 A& 304 ClO|E &f 531" o Mol M & = 3HEl T O|E
g Ss&ehoh

o Al 266

AWS Encryption SDK

18HA: A HH S AL

A |
A 1.7 x2E| AWS Encryption SDK 2ZI0|HEE QAEASS= M buildClient & +E =
E& 1 2! HM2 MEE AWS Encryption SDK for Ja vaScrlpt—r A&LICH buildClient &%
£ HU HMS LIEILE EHE 22 ASFELICH ¢35 A 5355 Al 70 HME M85t Ao
O|EE encrypt L decrypt &+E BHEHEFLICH

CHS X0l M= buildClient & AFEstod 7[E 70! HAQIE XIHE L

CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. & At&35t04 &S 3= EHIAIXIOI f= 31E O|lo|E 7|

£ X|8tbuildClientd £ U&LIC XFAM|EH LI S the section called “& Z3HE H|O|E 7|

2 T L AR H

MNEh EHHE HESHAAIL.

JavaScript Browser

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)
JavaScript Node.js

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

o Al 267

AWS Encryption SDK JHEER} 70| =

2EHA|: 7|”lE FEELICH

CIOIEHE S 2 3t5t24H encrypt &7t BHEHS 2r S 5t E HA|X|(result)E MESIMIR
ElHAIRlE g55tE ColE, &5stE Ho|E 7| & gEst HEAE 2 MES
EtCI|O|EE Z&fgfLct.

et S& 5t M AWS KMS 7|22 X|HsHoF gLt CIoIEE 2 & 3tste O AASE Wt S Yt
7I20|Lt CHE 7|28 M8 E = UGLICH HBstedH S 58 7|2 AWS KMS key 0f %= 3Lt Of
o7t etz ekl HIAIXK|e| &2 5tE HIO|E 7] & stLIE S&3te + Qlofof & LIt ololE 7|7t
HEEX| ez 5535} 7|0 dE7] 718 xEe eIt gi&LIch o|FE A st dE7] 719
Ft 717t 22 LAz MelEuUo

oM S5E3 7|2]ol AWS KMS key CHSHE X|Zd5tE24Ed 7] ARNS AFE 8l 0F AWS Encryption SDK
for JavaScriptLICt. 2 X| et o™ AWS KMS key 7} QIAIE|X| oE&LICH AWS KMS 7|2 AWS
KMS keys O|ME AlEét= Ol =80| ER5IH MME FHESME. AWS KMS 7|2 AWS KMS
keys Ol A A/t

o
fol
lgj

o
i
]
lgﬂ
=
Ofn
e
rok
N
o
mjo
>
oo
g'l_l
rr

B2 7| ARNs At&3610{ 7|2 AWS KMS keys

O ol M= ef 22t 71— AWS KMS keys ol & sttt Z&stE 7|32 SEELICH ol 2=
A7 ol oMl 7| ARNS R &EH 7|2 HFELICE AWS KMS keyOi| CHEF kms : Decrypt #Et
Of {0{oF &Lt

JavaScript Browser
Het Ko A4 5H2 MB350 A=A, 0] AWS Encryption SDK for JavaScript 03[0l A

[e) o
= A4 38 4+ & AA XtE EE2 = chA|5h= webpack.DefinePluging Ab& g LICH 2Lt
DE WS M8%t0 At BHUES MIBE = UsLIct JHOF XHH 3HE AH850o{ AWS

declare const credentials: {accessKeyId: string, secretAccessKey:string,
sessionToken:string }

const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,

o Al 268

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK

sessionToken

}
1)

3H CFS AWS KMS E2I0|1EE AIE235104 AWS KMS 7|22 MAEtLICE o] Ao e
AWS KMS keys & 33} 7|2l0| & 5tLtOH AFS & LICEH

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"]

const keyring = new KmsKeyringBrowser({ clientProvider, keyIds })

JavaScript Node.js

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"]

const keyring = new KmsKeyringNode({ keyIds 1})

3EHAl: Cllo|E| & 2 8tE A LICt

O CtS decrypt -8 SEFLICEH W3 M8t =535 7|3 (keyring)dt, encrypt &7t
Hhgkst of 5 51 E IIHIAIII(result)% ML SHMIL. = 713E AWS Encryption SDK At&3t04 f 5 5}

|
Zl Olole 7| & otLtE =38 LIct O3 oS Lt A E H0|E 7|& ME50{ HIOIEHE 5%
SHErLcH

£0| ME38I™ plaintext ZEof Yt BIAE(553HE) O|lO|E{7} ZEELICEH O
messageHeader Zic o= olole 55350 AL E 255
ofl CH&t MIEtC| O|E{ 7+ L & ElLct.

JavaScript Browser

await decrypt(keyring, result)

const { plaintext, messageHeader }

JavaScript Node.js

const { plaintext, messageHeader } = await decrypt(keyring, result)

4THA: & 53t HEIAEE HOlgtLCH

CIOIEE S5 35t5t= Ol A8 E 535t ZAEIAE = decrypt E7F PHet
I .|
=

Al = HIAIX| S
(messageHeader)ol Z&HELICH oHE2[A 0| Mof| A > E"*E ol o] gt

)
E "tztst7| ™ol 455

o Al 269

AWS Encryption SDK JHEER} 70| =

g N3et FEs HHAET S35 [AISE A58 ZHAEIAEN ZEE|0] U=X| EHQIEL
Ct 2UX|= OO 7} HEE[RHLE SHIE & 535 HAEE S35 55K A US2 LIEE = A&
L|C}

Azt HEIAEE 2fQleh [Mf HE S| eX|e Eee aLch MB & 53t nEES M
ots 82 2353 Atz ZERHCMM)2 HIAIXIE & 35t57| Mol e £5t ZHARIAEN HEE M
B 7|1E F7IgLICt J8{Lt MES 2 2535 HEHAE Holz ghetEl 433 ZEAE X3

M HAIX| SIHM g E3t ZHHAEE 7IXSLICH O™ Chg 2el 258 ZEAE(context)
Zt 7|-Zf o047} BretEl ef $ 5 ZARIA E (encryptionContext)Ql 7|-2t mo{Qt L x|t K| &

JavaScript Browser

const { encryptionContext } = messageHeader

Object
.entries(context)
.forEach(([key, value]) => {
if (encryptionContext[key] !== value) throw new Error('Encryption Context
does not match expected values')

1))
JavaScript Node.js

const { encryptionContext } = messageHeader

Object
.entries(context)
.forEach(([key, value]) => {
if (encryptionContext[key] !== value) throw new Error('Encryption Context
does not match expected values')
)
Ot 55} TAE ZAF M4BT Ut HAE GlOJEE WHEE £ sLicH

o Al 270

AWS Encryption SDK JHEER} 70| =

AWS Encryption SDK for Python

0| &AM|0| A= AWS Encryption SDK for PythonE M x| & AtEst= Y S AEELICH E AFSE =
2o st REMIEH L& 2 GitHub2| aws- encryptlon -sdk-python E|XZ X|E2[& AWS Encryption
SDK for PythonZE Z35tMIL. API MEME= EA 27|18 FZ5HMIL.

|

>

2
P

al

5

MM
=

i

« AWS Encryption SDK for Python O{iAl| 2 E

AN E=A
E Mx|5t7]| ™ol Ch2 AP =740| = X| AWS Encryption SDK for Python& @18t L|C}.
K| E|E Python HHA

AWS Encryption SDK for Python & 3.2.0 0|40l A& Python 3.8 O|4t0| =@ &tL|C}.

(® Note
AWS &3 X2 SZXF 2tolEH El(MPL)E EH7Z1 4.x01l AWS Encryption SDK for Python
T QIElof it MEIX S MQIL|CH MPLE Mk|StE2{E Z 2 Python 3.11 O|& S A5l
0|= gt

0| HHZF2l= Python 2.7 & Python 3.4 0|42 AWS Encryption SDK K| 23t X[2t 2|4 HHTO|E
A& 3teE 20| E&LICH AWS Encryption SDK.

Python2 CtR2 2 E5t24™ Python CH2EEE FESHAMIL.
Python& pip x| =+

pipE Python 3.6 0|4 HHZIof Z & |0 4 AUAX[TH °*:LE4IOI 7t EHE £k JaLUct pip Y
o||: = A—|x|o.|| t}-o}- XI-A1| -| |-

r|r
o
|_|
o
nx
0% r
>.
2
I
i
IllIIlI
)||
5
oh
=
kO

kN

AWS Encryption SDK for Python2| Z| &l X2 A x[&L|C}.

Python 271

https://github.com/aws/aws-encryption-sdk-python/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-cryptographic-material-providers-library
https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installation/

AWS Encryption SDK JHEER} 70| =

® Note

3.0.0 AWS Encryption SDK for Python 0|X 2| 2 & B end-of-support Bt 7|0 Q& LICH.
FEL} O0|E{E HZASHK| &8 1 {1 2.0.x 0|40l A AWS Encryption SDK 2] %4l HEH S 2
O H LHIOIEE £+ &Lt IBqLt A 2.0x0 TUE MER 20 7|S2 olet HH
ot SEE|X| & LICH 1.7.x Ol5t HHEOIM 2.0.x 0|4 TS 2 ACl|0|EtE{H HA| AWS
Encryption SDK2| %|A1 1.x HM S ZE Cl|O|E8H of g LICt XbAlEH LHE = Oto|2 0|4 AWS
Encryption SDKE & Z35HMI2.

CHZ ol M2k AWS Encryption SDK for PythonZ O] pipE& AF235t048 Mx|EL|CH

|&1 HE AR

b

pip install "aws-encryption-sdk[MPL]"

MIMPL]OIAE AWS 535} Rt 2 22Xt 2H0|2E{2|(MPL)E M&|gfLIct MPLOE CIO|E{E &
&35t si=35t7| fIgt = 0| ZEE[o] ?AIAL—IEI' MPL2 7 4.x0{ AWS Encryption SDK for
Python T o] cHet MEfX SS-ELICH MPLE MERISt= W0l E&LICH 8L MPLE At
otx| gfeis d< HIMPL]OIME HEE = M'%L—“:P.

pipE ALEsto] 7|X|E HX| X Haclol=ste Lol Cher XtMIet L& 2 7 (x| HXIE & ZstAl
o

ol 2E E3E0|M & 53 2H0|= B4 2|(pycalcryptography) 7 AWS Encryption SDK for Python &
QELICH pipel 2E HEE cryptography 2t0|EE{Z2|E Windows0ll At5 22 Mx|5t1 WE$t
LICt. pip 8.1 O|& K Linux0ll cryptographyE XIS 2 Mx|stm =g ct. ofst T2
pipE A8 50| cryptography 2tO|EZ{2| HlEo| B8t =77} Linux 30 iz d<0l= Ol
et TR E Mx|sok &fLiCt REAMIEH LIS Linux0llAd &S5 LI E & X5HAMIL.

H7& 1.10.0 ¥ 2.5.02 2.5.02 3.3. 2 A+o|°| oS3t Z44 2 AWS Encryption SDK for Python 78}
LI} CHE T olE %Al HE Q| & 532 AWS Encryption SDK for Python A %|&fLIC}H 3.3.2 O] 4 H
Mol &5 3171 2o st L AWS Encryption SDK for Python2| |4l H|O|X HEIE AFE85tE Zd0| £
&Lct.

o| |4l 7HE 2 GitHub2| aws-encryption-sdk-python 2|Z X|E2|& AWS Encryption SDK for

Ax 272

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-cryptographic-material-providers-library
https://packaging.python.org/tutorials/installing-packages/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://cryptography.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/

AWS Encryption SDK JHEER} 70| =

£ MX|$t 20| 7I0|=2| Python 0i|A| ZEE Am{E AWS Encryption SDK for PythonTHA{ A|ZHE L

AWS Encryption SDK for Python 0| 2=

CH2 oMo AHEE AF25l04 CO|EHE 5386t =53 AWS Encryption SDK for Python st 2
2 Ho{ELct

ol
ol

O MMo| oMo M= MEHA] o S5t AtE S2 A 2t0|E 22| 5% 4()2 AWS Encryption SDK for
Python & 71 HH™ 4. xE At&3st= W2 2 o{ELICtaws-cryptographic-material-providers.
Ol HHTE AF85I7LE RIE S 2R 2Ho|EEEI(MPL)7F Qe MRIE AF25tE oXME E24H GitHub
9| aws-encryption-sdk-python E|ZX|EE[BIE[A ST F0o|M 2E(AE FH&LICH

MPLI} AWS Encryption SDK for Python B7H HHE 4.xE M 83t= 42 7|22 AI83%t0{ S&E &5

st& sAELICH = O KT ALS &t OtAE 7| S=2Atet Z8tE[= 7|21 AWS Encryption SDK
NMSELCE REMIEF LHE 2 the section called “7 |2 S 8Hd” EHHE R AMAIL. OtAEH 7| SZXHo]|
M 7|22 oto|ado|Mst= ol chEt of| A= GitHub2| aws-encryption-sdk-pythoniZ|Z®

K|EE|oM Ofo[ZEfo]M tiXME & Z=SHMIL.

CS M MHEE AH86tod EXAIYE 25356t T 5531 AWS Encryption SDK 6t W2 HoiE
L|C}. o] oMo e CHEl 2t 5 o &7 Z|IAWS KMS Z!2 At gtLCt.

Ol Mol E 7|2 75! HAHQIZE A& 35104 AWS Encryption SDK 22I0|P1EE QUAEASIEL
CFREQUIRE_ENCRYPT_REQUIRE_DECRYPT. AtAM|EH L& the section called “7{ 5] 2= M7 EH§

=R-ELISINES

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

This example sets up the KMS Keyring

The AWS KMS keyring uses symmetric encryption KMS keys to generate, encrypt and
decrypt data keys. This example creates a KMS Keyring and then encrypts a custom input
EXAMPLE_DATA

o Al 273

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/releases
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/migration

AWS Encryption SDK JHEER} 70| =

with an encryption context. This example also includes some sanity checks for
demonstration:

1. Ciphertext and plaintext data are not the same

2. Encryption context is correct in the decrypted message header

3. Decrypted plaintext value matches EXAMPLE_DATA

These sanity checks are for demonstration in the example only. You do not need these in
your code.

AWS KMS keyrings can be used independently or in a multi-keyring with other keyrings
of the same or a different type.

import boto3

from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import CreateAwsKmsKeyringInput
from aws_cryptographic_material_providers.mpl.references import IKeyring

from typing import Dict # noga pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

EXAMPLE_DATA: bytes = b"Hello World"

def encrypt_and_decrypt_with_keyring(
kms_key_id: str

"""Demonstrate an encrypt/decrypt cycle using an AWS KMS keyring.

Usage: encrypt_and_decrypt_with_keyring(kms_key_id)

:param kms_key_id: KMS Key identifier for the KMS key you want to use for
encryption and

decryption of your data keys.

:type kms_key_id: string

1. Instantiate the encryption SDK client.

This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,

which enforces that this client only encrypts using committing algorithm suites
and enforces

ofl A 274

AWS Encryption SDK

JHeER 7Hol=

that this client will only decrypt encrypted messages that were created with a

committing

algorithm suite.

This is the default commitment policy if you were to build the client as

“client = aws_encryption_sdk.EncryptionSDKClient() .

client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

2. Create a boto3 client for KMS.
kms_client = boto3.client('kms', region_name="us-west-2")

3. Optional: create encryption context.
Remember that your encryption context is NOT SECRET.
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

4. Create your keyring
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
kms_key_id=kms_key_id,
kms_client=kms_client

kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
input=keyring_input

5. Encrypt the data with the encryptionContext.
ciphertext, _ = client.encrypt(
source=EXAMPLE_DATA,
keyring=kms_keyring,
encryption_context=encryption_context

6. Demonstrate that the ciphertext and plaintext are different.

of| Al

275

AWS Encryption SDK JHEER} 70| =

(This is an example for demonstration; you do not need to do this in your own
code.)

assert ciphertext != EXAMPLE_DATA, \
"Ciphertext and plaintext data are the same. Invalid encryption"

7. Decrypt your encrypted data using the same keyring you used on encrypt.
plaintext_bytes, _ = client.decrypt(
source=ciphertext,
keyring=kms_keyring,
Provide the encryption context that was supplied to the encrypt method
encryption_context=encryption_context,

8. Demonstrate that the decrypted plaintext is identical to the original
plaintext.

(This is an example for demonstration; you do not need to do this in your own
code.)
assert plaintext_bytes == EXAMPLE_DATA, \

"Decrypted plaintext should be identical to the original plaintext. Invalid
decryption"

HIOIE AEZ| 4535 A 553}

CS oM MHEE AL236t04 HIO|E AEZIZ 25 35l5l T 23538 AWS Encryption SDK 8t &S
2o{ELICt o] oMol E HAl AES 7212 AFSELICH

ol Mo ME 7|E 72! ZAOIZ ALE35H04 AWS Encryption SDK Z22I0|HEE QIAEIAS|EL

CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. AFAM|EH LH® 2 the section called “745) &= M7 EH

2 HEAAR.

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

This example demonstrates file streaming for encryption and decryption.

File streaming is useful when the plaintext or ciphertext file/data is too large to
load into

memory. Therefore, the AWS Encryption SDK allows users to stream the data, instead of
loading it

all at once in memory. In this example, we demonstrate file streaming for encryption
and decryption

using a Raw AES keyring. However, you can use any keyring with streaming.

o Al 276

AWS Encryption SDK JHEER} 70| =

This example creates a Raw AES Keyring and then encrypts an input stream from the file
‘plaintext_filename™ with an encryption context to an output (encrypted) file
‘ciphertext_filename .

It then decrypts the ciphertext from “ciphertext_filename® to a new file
“decrypted_filename .

This example also includes some sanity checks for demonstration:

1. Ciphertext and plaintext data are not the same

2. Encryption context is correct in the decrypted message header

3. Decrypted plaintext value matches EXAMPLE_DATA

These sanity checks are for demonstration in the example only. You do not need these in
your code.

See raw_aes_keyring_example.py in the same directory for another raw AES keyring
example

in the AWS Encryption SDK for Python.

import filecmp

import secrets

from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import AesWrappingAlg,
CreateRawAesKeyringInput

from aws_cryptographic_material_providers.mpl.references import IKeyring

from typing import Dict # noga pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

def encrypt_and_decrypt_with_keyring(
plaintext_filename: str,
ciphertext_filename: str,
decrypted_filename: str

"""Demonstrate a streaming encrypt/decrypt cycle.

Usage: encrypt_and_decrypt_with_keyring(plaintext_filename
ciphertext_filename
decrypted_filename)

:param plaintext_filename: filename of the plaintext data

:type plaintext_filename: string

:param ciphertext_filename: filename of the ciphertext data

:type ciphertext_filename: string

of| A 277

AWS Encryption SDK JHEER} 70| =

:param decrypted_filename: filename of the decrypted data

:type decrypted_filename: string

1. Instantiate the encryption SDK client.

This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment

policy,

which enforces that this client only encrypts using committing algorithm suites

and enforces

that this client will only decrypt encrypted messages that were created with a

committing

an

algorithm suite.

This is the default commitment policy if you were to build the client as

“client = aws_encryption_sdk.EncryptionSDKClient() .

client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

2. The key namespace and key name are defined by you.

and are used by the Raw AES keyring to determine

whether it should attempt to decrypt an encrypted data key.
key_name_space = "Some managed raw keys"

key_name = "My 256-bit AES wrapping key"

3. Optional: create encryption context.
Remember that your encryption context is NOT SECRET.
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

4. Generate a 256-bit AES key to use with your keyring.
In practice, you should get this key from a secure key management system such as
HSM.

Here, the input to secrets.token_bytes() = 32 bytes = 256 bits
static_key = secrets.token_bytes(32)

5. Create a Raw AES keyring

We choose to use a raw AES keyring, but any keyring can be used with streaming.

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

of| Al

278

AWS Encryption SDK JHEER} 70| =

)

keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
wrapping_key=static_key,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=keyring_input

6. Encrypt the data stream with the encryptionContext
with open(plaintext_filename, 'rb') as pt_file, open(ciphertext_filename, 'wb') as
ct_file:
with client.stream(
mode="'e"',
source=pt_file,
keyring=raw_aes_keyring,
encryption_context=encryption_context
) as encryptor:
for chunk in encryptor:
ct_file.write(chunk)

7. Demonstrate that the ciphertext and plaintext are different.
(This is an example for demonstration; you do not need to do this in your own
code.)
assert not filecmp.cmp(plaintext_filename, ciphertext_filename), \
"Ciphertext and plaintext data are the same. Invalid encryption"

8. Decrypt your encrypted data stream using the same keyring you used on
encrypt.
with open(ciphertext_filename, 'rb') as ct_file, open(decrypted_filename, 'wb') as
pt_file:
with client.stream(
mode='d",
source=ct_file,
keyring=raw_aes_keyring,
encryption_context=encryption_context
) as decryptor:
for chunk in decryptor:
pt_file.write(chunk)

o Al 279

AWS Encryption SDK JHEER} 70| =

10. Demonstrate that the decrypted plaintext is identical to the original
plaintext.
(This is an example for demonstration; you do not need to do this in your own
code.)
assert filecmp.cmp(plaintext_filename, decrypted_filename), \
"Decrypted plaintext should be identical to the original plaintext. Invalid
decryption"

AWS Encryption SDK Rust&

0| &A|olAM= AWS Encryption SDK for RustE A x|t AF%
Encryption SDK for Rustg& At&38t Z =2 2ol CHEF REMIEH L
ZX|E2|9| Rust CIHEZIE & Z5HMR.

AWS Encryption SDK for Rust= CH2 I} AWS Encryption SDK Z 2 WAoo Zo| & T2 321 o4
T2 cHELCH

 CllO|E 7| 7| &2 K| EIX| et &LICt. 2L} AWS Encryption SDK for Rust= CHA & 28 A2 FH
A E£FMOIAWS KMS HAE™M 7|2l X|§ELICEH

« AEZ|Y OO|E{7} RIHEIXR| &2

AWS Encryption SDK for Rustol|=2| CHE 210 T34 7 2.0.x O|& ol =&l 2&E 2ot 7[s0| 27
T]o{ & LICH AWS Encryption SDK. Z12{Lt AWS Encryption SDK for Rust& AF&3t042| CHE 210
T34012.0x O HHMS 2 &5 3HE HIO|E{E =33t AWS Encryption SDK3tE 49 A HM2 =
Maflof & = JU&LcH XpME 82 H2 EA dY WHg FESHAM L.

AWS Encryption SDK for Rust= At 2Hdst= 34 &l 21012l Dafny AWS Encryption SDK 2|
MEZo|H, O|E 7+ T =2 0| HAESHY| 8 SHLICH O A, 7|s™ HEdE Edste

= o2/ 30i A AWS Encryption SDK 2| 7|58 F#5t= 2to|E2{2|7t EHdFi& LICEH

XM G| otE 7|

- OHA L 1 2I1& MEZ X% AWS Encryption SDK, &3 & El O|0|E{ 7| A&, AWS KMS CH& 2|%
7| M8 S0l SMHE FHSIE WHE E0iF £ oM MME XML 74 AWS Encryption
SDK.

« AWS Encryption SDK for RustE #4345t 1 A& 3t
encryption-sdk 2|ZX|E 2|0 Q= Rust 0i|X|E &

Hrei S HoiF = ol XMl= GitHub2| aws-

Rust 280

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/
https://github.com/dafny-lang/dafny/blob/master/README.md
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples

AWS Encryption SDK JHEER} 70| =

A
« MH =7
« ME|

« AWS Encryption SDK for Rust 0i|Al| ZE

A =

AWS Encryption SDK for Rust& A x|5t7| o C}

mjo
Pl
2
P
r\l
S
30
rr
A
NI
ro
]
-
n

Rust 2! Cargo & x|

RustupS Ab&3dtod 2dxf eFE%Ql Rust ElE|IAE MR[EfLICEH

|-0

rustup CH2 2= & Adx|oll CiEH XtMEH LIS 711 Sof Mx| HALE HESAL.
X

AWS Encryption SDK for RustE Crates.io aws-esdk AHO|ER AFE £ U&LICH. AWS
Encryption SDK for Rust A%x| & 2l=0i| CHEt AFAIEH LI 2 GitHub2| aws-encryption-sdk 2|Z X|E
2|0 M README.md & X3t AI

CH2 o} 22 & o 2 AWS Encryption SDK for RustE A x| 4+ &L|Ch
ESES|

AWS Encryptlon SDK for RustE A4 x|35t24™ aws-encryption-sdk GitHub 2|ZX|EEIE S A5 HLt

Crates.io AF2

Z2HME C|HME 2|0 A CHZ Cargo BES AgfLICH
cargo add aws-esdk

IE = Cargo.tomloi C}HS &

fjo
P
\'l
el
L
ful

aws-esdk = "<version>"

MHEE=A 281

https://rustup.rs/
https://www.rust-lang.org/
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://crates.io/crates/aws-esdk
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline

AWS Encryption SDK JHEER} 70| =

AWS Encryption SDK for Rust oA Z =

Ct= oMol A= AWS Encryption SDK for RustE A& 5104 ME:LEH%%E
£ Ho{&L|Ct. £3| AWS Encryption SDK 2! Mz 32X+ 2lo|EHE|E 2
Z

Agste 712 22 mE
S OIAEIASE
2t HMEE 2] Hol M) et 2ig Solshe ZAE o _E_Aérin—ltr.

LICH 2= CHS

CHAl 2 2l1&E MEF XIY L f 5 5HE O|olE| 7| A8t AWS Encryption SDKIZF Z 0|0l SMHE 77
Sl WHE EoiF & oAM= GitHub2l aws-encryption-sdk 2IZ X|E2|0f Q= Rust MX|E & X 3FHA
o

O| oMol M ClIolH & =3t A FE3540| 7|2 HHE 20oiELICH SHLIS/AWS KMS EiE 7|12 25
Tl ool 7|z %2 mdE S sttt

1EHA|: QIAEIA S AWS Encryption SDK.

O| HHMEE A3l HIOIEE & E 355t =553 AWS Encryption SDK &L|C}

let esdk_config
let esdk_client

AwsEncryptionSdkConfig: :builder().build()?;
esdk_client::Client::from_conf(esdk_config)?;

25 AWS KMS Z2I0|HEE gLt

let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

. oF

M A o

0ok
Fol
ol

- —1—

| HEIAES MAISHLICEH

let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

o[Al 282

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/

AWS Encryption SDK

3EHA!: Rz S2X 2to|EEHEIE QAR ASELICH

rir
A1}
o
jo
=]
N

x|t

-_r“H A 2R etol28 el HMEE A& 3stoq, CIOIEE E55t= 7

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

4EHA|: AWS KMS 7|212 MAdstL|ch.

[= 2 — E B |

7|28 MAMIE{H 7|2 Q2 X E AIE5l0d 7|12l HMEE S & &L |' ol oi oM =
create_aws_kms_keyring() HMEE A& 3t KMS 7| 5 X4

let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

S5EFAl et HAEE A 3ErLICH

let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(kms_keyring.clone())
.encryption_context(encryption_context.clone())
.send()
.await?;

let ciphertext = encryption_response

.ciphertext
.expect("Unable to unwrap ciphertext from encryption response");

At&3tod gf 35l |O|EE S & 3tefLCH

ffo

6= A ef 330l AFEEF A SUE 7|17

let decryption_response = esdk_client.decrypt()
.ciphertext(ciphertext)

.keyring(kms_keyring)
// Provide the encryption context that was supplied to the encrypt method

of| Al

AWS Encryption SDK JHEER} 70| =

.encryption_context(encryption_context)
.send()
.await?;

let decrypted_plaintext = decryption_response

.plaintext

.expect("Unable to unwrap plaintext from decryption
response");

AWS Encryption SDK B & QIE{m|0|A

AWS Encryption SDK B ZE CIE{H| 0| AAWS & Z 3t CLI)E AHE5HH
EoiM CHateE o 2 of|o|E{E &5 3lst T 8115 AWS Encryption SDK &
Jefiy M2 x[4]o] gloi= Euct

At8stod BEED 23 &
ﬁ

4> ﬂllﬂl
o

(@ Note

4.0.0 0| 2| AWS Encryption CLI {2 end-of-support EH74|0f Qd& LIC}H
CL} C|lO|E{E #4738t K| o1 H{& 2.1.x O|4F0flA{ AWS Encryption CLIS| £|Al H{FIS 2 oF
7('|o|'7'|| Uoo|EE = &L L HE 2.1.x0ll EIE ME2 29t 7|52 ol Tt
SEE|X| & LICH BT 1.7.x O|5t0l A KOOI E5H2{™ THX{ AWS Encryption CLIS| Z| &l 1.x
HAMoZ dol|o|EsHoF & L|Ct RIS LHE 2 nto|z8|o]44 AWS Encryption SDKE & x5l

AHE: Hot 7|52 22l AWS Encryption CLI HHZ 1.7.x 2 2.0.x0ll M ZIZ|A RS LICH 1
B4LF AWS Encryption CLI HH 1.8.x&= HH™ 1.7.xE CHAI 5t AWS Encryption CLI 2.1.xE
2.0.xE CHA|ErLICE REAIEH LIE 2 GitHub2| aws-encryption-sdk-cli 2| ZX|EE|| M &7 &
ot HIE FE5HML.

o| 2 E A& OfEH7HR|Z AWS Encryption SDK AWS %*Eﬂ Lie 12 CloIH EE 7|58 M3
grLict olz8t 7Isole 85 & 53}, F71 215 C|O|E{(AAD) 2! 2o 15, CHal 7| 1 E|& AME
=(ol: 7| F&, 7] AU L MBS ALE5HE 256H|E AES-GCM)0| Z & L|Ct

AWS Encryption CLIEE 7|22 2 310 Linux, macOS & Windows0llA X|2AWS Encryption SDK
for Python & LICt. Linux 2= macOS2| 7|2 &, Windows2| B T EZE F(cmd.exe), ZE A|AH
9| PowerShell &0 M BHEM AFREE M504 CIOIEIE E335t5tn 55358 & U&LICH

Z
o
A
o

IE{H| oA 284

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/how-it-works.html#envelope-encryption
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/supported-algorithms.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/supported-algorithms.html

AWS Encryption SDK JHEER} 70| =

AWS Encryption CLIZ AWS Encryption SDKZ & 5l042| 2 E Qo] 732 45 28 7tsELct.
E

0|E E0{E AI&35t04 O|O|EHE & = 3tAWS Encryption SDK for Javastl AWS Encryption CLIE At
g3t 23t = J&Lct

O FX{|0{ M= AWS Encryption CLIE 27051, O|& Ax| U AS5te WS dH5H D, A& O
C 20| &= ¥ 7tX| oM E MSELICtH e AI’”% AWS 2ot E2 09| et 535} CLIE AL 3lod ol

S
O|E{E AWS 235t Tl sliSo5t= WS HESHMR. RIMIE LIB2 M 17|18 HZEStD GitHubOI
aws-encryption-sdk-cli 2|2 X|E 2|0 A AWS Encryption CLI 7HgHod| & ws-e
cli

Ad
o

olr

AWS Encryption CLIEE 7|8t 2 & L|Ct AWS Encryption SDK for Python. CLIE A& mfotct
2| ojay

Python ZIEFIO| Af QIABIATE ASHEILICH 7Hs 3t B9 A5 JHMsH Yrio| SB B ChAl B
U B2 AL BLICH I8 S04, ZF Toll Chal W o] WS Aysts ChAl CIE(Zlol THUS
MAMOE *MElshs BY stLHE AHELIC

|

rO

« AWS Encryption SDK BEZ QIEH0|A M|

AWS &5 3} CLI AF2 gt

AWS 233t CLI2| of

AWS Encryption SDK CLI #& 2! mi2t0|E &=

AWS &t 53} CLI {7

AWS Encryption SDK BHZE QIE{H| 0|A M X|

O —rX1|01IA‘|" AWS Encryptlon CLIE MR IéPE gl g MYEELICH AFM[EF L& 2 GitHub2| aws-

|

o NF EE AzEof Mx|

CLI M%| 285

https://aws.amazon.com/blogs/security/how-to-encrypt-and-decrypt-your-data-with-the-aws-encryption-cli/
https://aws.amazon.com/blogs/security/how-to-encrypt-and-decrypt-your-data-with-the-aws-encryption-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/

AWS Encryption SDK JHEER} 70| =

A EHe AZEQ| o] ™R

AWS Encryption CLI=EE 7|82 2 & L|CH AWS Encryption SDK for Python. AWS Encryption CLIE
M x|5t2{8 Python I Z7|X| 2| EFpip?l Python 27} E R LICt Python & pipE XIElE 2E

SHENM AL E = JU&LICH
AWS Encryption CLIE MX[5t7| ™ol CtS AP =S M&(ELCH
Python

AWS & 53} CLI BT 4.2.0 O|&Fof|= Python 3.8 O|&to| = 8tL|C}.

O™ %1 2| AWS Encryption CLIE Python 2.7 ! 3.4 O|&2 X5t XIBH £ Al Q| AWS
Encryption CLIE At83t= Z0| E&LICEH

Python2 CHE £ 9| Linux & macOS A x|of & =|0] QX|TF Python 3.6 O|&4 22 2| 0|=35Hof
glch =4 T 9 Python7Hc> A&3tE 0| E4LICH WindowsolMHE Pythong A |3l oF 5l
M, Ol 7I2Me 2 MX|k[o] U K| et&LICt. Python2 CI22E35t 10 AX|5tE{™ Python CI2 2

Python & 2fQlstedH -V(CHE At V) TEtO|E & AFS ' LICH

python -V

%

WindowsO| M= Pythong X8t ¥ Path 83 g42| Ztoi Python.exe US| A2 E F7IEL

Ct.

jn

7|2Mo 2 Python2 ZE A XA} CIE{2| E£&= AppData\Local\Programs\Python &%
CIME 2o At&XF Z2E C|HE{2[($home EE= %userprofile%)ol| AX|ELICH AARI0|AM
Python.exe ItUO| 2[X|& & o{H CtF dX|AEZ| 7| & stLHE & QI LICH PowerShellE At
835to HXIAEZ|IE AME = st

PS C:\> dir HKLM:\Software\Python\PythonCore\version\InstallPath
-or-
PS C:\> dir HKCU:\Software\Python\PythonCore\version\InstallPath

CLI Mx| 286

https://www.python.org/downloads/
https://www.python.org/downloads/

AWS Encryption SDK JHEER} 70| =

pip
pipE Python IH7|X| #2IXFILICH AWS Encryption CLI 2! T S&M4E Mx|5H24H pip 8.1
O|&t0| EREFLICH pip A%l EE= Y 0|=0l =20| EHR5tH pip MBS Mx|E &HZESHA
o

Linux & %|0{lA 8.1 pip O|T Q| T2 AWS Encryption CLIO| ZLFt &%
T R&Lct pip HME YO(O|ESHX| &t7|2 MElE F2 e T8 HE 2 MX|E = UL

Ct. REMIEH LI LinuxOlAM 535 ElE 8 EXSHMIR.

AWS Command Line Interface

AWS Command Line Interface (AWS CLI)= AWS &t 33} CLI2H &7H (AWS KMS) AWS KMS keys
ol Al AWS Key Management Service € AtE3t= F0igh EeerL|Ct CHE OtAE 7| SZRE
A-&3He B AWS CLI 7+ EIQ 3t K| et&Lct.

AWS Encryption CLI2F AWS KMS keys E7HE AFE8tE{HE Mx|6t 0 FAd8HoF EL|CH AWS CLI.
TH2 2B AZstE XA EEE AWS Encryption CLIOIA AWS KMS ALEE = IS FL
Ct.

AWS 233t CLI x| 2 AO|o|E
Z| Al X 2] AWS Encryption CLIE A x|&fLICH pipE AFE3H04 AWS Encryption CLIE A %[5t
™, Python ¥ 33} 2tol22{2| L& &toq cLIol E 8t 2to|=2{2|AWS Encryption SDK for

=FN

st
Python7} At 2 2 A X|E LICFAWS SDK for Python (Boto3).
rython

=]

(® Note

4.0.0 0|2| AWS Encryption CLI {2 end-of-support Bt A0l /4& LICE.

AL CO|EHE BHE5HK| &8 H{T 2.1.x 0|4 0f| A AWS Encryption CLIS| %4 HTS 2
Ot HClo|EE £ Q&LIch TE{Lt HE 2.1.x0] EUE MEZ2 2ot 7|52 olst H
Mot 3 E|R| of&LICH BT 1.7.x 0|50l A OOl E5t2{™ X &[Al 1.x HEQ| AWS
Encryption CLIZ dlo|E3Hof gHLCt RFMIEH L& 2 0to|28|0]41 AWS Encryption SDK2
HEML.

MZ2 2ot 7|52 e AWS Encryption CLI 7 1.7.x & 2.0. x| M 2 E|AEF&LICH 2
2{Lt AWS Encryption CLI EHH% 1.8.x& B 1.7.xE CHA|SH 2 AWS Encryption CLI 2.1.x&
2.0.xE CHA|ELICH REMIEH LHE 2 GitHub2| aws-encryption-sdk-cli 2|ZX|E 2|0 e 2

oF HIE HZshMR.

CLI Mx| 287

https://pip.pypa.io/en/latest/installing/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://cryptography.io/en/latest/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK JHEER} 70| =

Z| & TS| AWS Encryption CLIE M %|524H

pip install aws-encryption-sdk-cli

Z| Al A 2] AWS Encryption CLIZ 4184|0|=5t24H
pip install --upgrade aws-encryption-sdk-cli

AWS Encryption CLI 2/0| ™ & & 5Fo 2{7 AWS Encryption SDK
aws-encryption-cli --version

=ol= F Etol2E 2ol M HE 7t LFELICH

M

aws-encryption-sdk-cli/2.1.0 aws-encryption-sdk/2.0.0
%| Al H{F12| AWS Encryption CLIZ ¢]18|0|=35t24™

pip install --upgrade aws-encryption-sdk-cli

AWS Encryption CLIE xlﬁ}‘:‘._ O} & Mx|=|X| 8&t2 AWS SDK for Python (Boto3)d < X| &l H{Z19]
T MxIELICH Boto37h Mx|E B Mx| ZTZ 12 Boto3 HME & Qlstn e st AL Aolo|EE
LICH.

M x%|E! Boto3 HHA 3t 7|
pip show boto3
Boto32| |4 HMO 2 O|0|E

pip install --upgrade boto3

N | AWS Encryption CLI HE M X[5t2{™ GitHub2| aws-encryption-sdk-cli 2|ZX|E 2|

P

01>|
rO

mu o

ES

Pl
o

ol

pipE AHS 304 Python TH7IXIE M&| U YIB|O|= st Yol CHEH REAISH LIS pip ABME
SN =)

CLI Mx| 288

https://github.com/aws/aws-encryption-sdk-cli/
https://pip.pypa.io/en/stable/quickstart/

AWS Encryption SDK JHEER} 70| =

AWS & 53} CLI Al B

Ol Mo M= AWS 253t CLIOIAM ZtEtO|EE M85t W2 dYELICH o= AwS 2535t
CLIS| 0 MME FHESIMR. MA| MBEME EM 2718 HZtAI. o] Ao EAIE 222 AWS
Encryption CLI HH& 2.1.x OI?J%%IL—lEF.

® Note

4.0.0 0| 2| AWS Encryption CLI EHHF& end-of-support Et 70| R}&LICH.

FAELFHO|EE HASHK| &t 1 BT 2.1.x 0|20l A AWS Encryption CLIS| Z|A HEHS 2
PHHSHH YOOI EE £ AU&LCH JB{Lt H™ 2.1.x0| EE MER E¢t 7|S2 0fst H
Mt S 2tE|X| b &LICH HA 1.7.x O|5tof| M UHIO|E St A %[&l 1.x HEH S| AWS
Encryption CLIZ JC|O|E 3t of & LICt AtA|EH LHE 2 0t0[22]|0[4 AWS Encryption SDKE
HESM L.

MEZ2 2ot 7|52 el AWS Encryption CLI EHA 1.7.x 2! 2.0.x0| M 2I2|AEI&LICH 1
2HLt AWS Encryption CLI EHHZ 1.8.x& B 1.7.xE CH&A|SH 2 AWS Encryption CLI 2.1.x&
2.0.xE CHA|ELIC RHAIBH LI 2 GitHub2| aws-encryption-sdk-cli ZIZX|EE|HIMH && £
oF HI B HESAL.

ot 551 OIOlE| 7|8 MBtste EOt 7153 ASeHe WS RoiFE oiRlE 25 5HE HlolE 7| A

AWS KMS CI& 2™ 7|1E AF835le €HE Eo{F = ol MME HXSHMLLCHS 2™ AFE AWS
KMS keys.

|

- Coje ¢S5t A S555t EHY

. T 718 RIWsHE Wy
=

fara }
o o =
- £ 2ARIE XIYste U
- AE5 HHAEE ASSHE &Y

CLIAME &Y 289

https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK JHEER} 70| =

OB =3 Y |53 LY
AWS Encryption CLIE S| 7|5 & AFE3t04 CIOIE & €A &5 3tst s =&

AWS Encryption SDK
A&LICH

m
1

(® Note

O| --master-keys It2tO|E{= AWS Encryption CLIS| {7 1.8.x0lAM f O|4 AL E|X| OF
O A 2. Ax0IM MHEZIQR&LICH CHAl - -wrapping-keys THEHO|E{E AFSELICH HE
21x2E &35t U 5535 Al --wrapping-keys TtetO|E{7} B B LICH REAIEH LIS

AWS Encryption SDK CLI & 2! mi2t0|E & x 2 =M 2.

0=

« AWS 2335} CLIOIA CIOIEE ZE5E m et A E H|0|E{2t AWS KMS key in AWS Key
Management Service ()2t Z2 Ei& Z|(E= OtAH 7))& XIHELICIAWS KMS. AFE Xt X|H OtA
B 7| SZXE MEdt= B2 SSAE XIYgsHor &LICH EFt =35t 2Fdof CHEE 5 5HE HIAIX
2! HIECO|E|e] £3 Q[x|E XIHE &= U&LICH Y535 HEIAE = MY ALE O|X|BF HAEILICH.

8.x0 M, --wrapping-keys It2tO/E{E A8 5tE B --commitment-policy Tt2tO|E]

HZ 1.8
7} 2ostH, 8K oo &K t&LICH HM 2.1 x2E] --commitment-policy It2tO|E
MEH At O|X|BH HE ELIC

=
=

aws-encryption-cli --encrypt --input myPlaintextData \
--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
--output myEncryptedMessage \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt

AWS Encryption CLIE 178 CIO|E{ 7|= CIO|EE &3 3terLIch a2l XI5 el 7[0i M o
Ol 7|7t &= SHEILICE 2ol it &f S &HEl HIAIX] & HEHD|O|EE gretefLict f S 3HEl Al

[|
X|ofl= 2t 5 5HEl HIO|E(AHO| A E) B & 5 51 [0|E| 7| AHEO| Z8tElof Q& LICH CIOlE] 7|
+

AA EH
O M¥, el == E 4ol cisll A 227t ei&Lch

HOIEHE =23te e AE3E HAIX|, LB 535 HEAE it HIAE £2{ 3l H|EHH| 0|
o IXIE MEEfLICH EBF AWS & 2P LIZt HIAIXIE aliSste Ol A8 & U= eiE 7|E X

MEtHLE AWS & 535} CLIo| HIAIX|E

FOI'

stet el E 7I1& AL8E &+ Urhn LrElL|ch

290

AWS Encryption SDK JHEER} 70| =

™ 1.8 xEE 555 Al --wrapping-keys Ttet0|E{= ME At O|X[2F HEELICH HA
2.1.x8E &53t U 5353 Al --wrapping-keys It2tO|E{7} ZHEHL|Ct

E53lE [--wrapping-keys II2t0|E{2] key 42 ALE 35104 O|O|E{E =5 3l5t= c&E 7|1
X HE = U&LICH 553+ A|AWS KMS 2HE 7|8 X|Hste W2 ME AL 0|X|DH AFESHR| 2f2
7|18 Ar&StX| Z5tH st= 2 At LIcH AASXE X[HE OtAE 7| SZXE ME5te B2 =%t
2 2iE 7|8 X|EsHoF &Lt

7| 588 M83IX| &tE B --wrapping-keys II2FO|E{Q| AM 42 2 MAsHoF & LCH
trued{™ AWS 2535} CLIZ} HIAIKIE 2558t 2HE 7|2 AH235l0{ 25518 4 QlaLICH

S SlE OIo|E 7|7t LHF B2 HZRE E2|o HAIXIE
data-keys ItZIO|E{E AtS st A0l 2 At ILICEH
AMNEEl= 2 e 7 stLt) E= g 21Xel Z|CHgL(ol: 57
HolE 7| Mgt & X=stML.

E 355K &t £ 5 --max-encrypted-
2 = 3tEl o|O|E 9|°| ofl & (=3t
2 X|-Egrict AHME 82 & S 35HE

FIF "

)=

£ 9i2{0| *{2|E Folpt Yt =x

m

--buffer 2t0|E{E CIXIY MBO| YEX| &elste &
£ ghetefLict

H

--decrypt-unsigned TIZtO[E{= AHO|HEIAE S 2535510, 23535 Mof HAIX|7F MEEIX|
OFI:E ol'L_ll:l- __algorlthm .U.l'El'EIlE‘IE Al‘ Ol' E—lxl A‘|%‘O| (I:)Il-sIE %I-—T,— |
0 IO|E{E ¢ 5355t B2 o| W2t0|E{E AT LICH AlO|HEAET MBE ZHR =557} AT

grLICH.

--decrypt EEE --decrypt-unsignedE S50l AFSE 4 UX|CH E C A E = Q&L
Ct.

aws-encryption-cli --decrypt --input myEncryptedMessage \
--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
--output myPlaintextData \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt

-
| M|E}C| O]

POI'

AWS Encryption CLI= 2i& 7|& Al&3stod &5 3tEl HAIX|2| CIO|H 7|1& S33tefL
2 OlO|E{ 7|& At 35tod SHE O|O|E{E =3 3tfLICh 2hdof CHEF Ut BIAE H|O|E
E{Z Htakstc},

_I__
>||n—|—

CLI AFS & 291

AWS Encryption SDK JHEER} 70| =

ol 71§ XIEste &Y

AWS =3t CLIGIM C|O|E{E 3 5te M= stLt o4 ol B E F|(EE= OtAEH 7))& X|I%HsHofF &L
Ct. AWS KMS keys in AWS Key Management Service (AWS KMS), AFE A} X|& OFAE] 7| Z 29

o 7| E= & CHE A8 E = J&Uch A8XF XIH OtAE 7| 32XteE 38kl 2 E Python OFA
B 7| 32X = UL

HIT 1.8.x 0|40l 2HE 718 XIYSt2AR --wrapping-keys Th2tOIE|(-w)& AFSELICH O] Tha}
O/E{Q| gf2 attribute=value 40| &4 BZQLICH AE35le £€2 OtAH 7| SR 2 BH
of 2k EetELct

« AWS KMS. &t 23 B0l key £40| U= --wrapping-keys It2IO|E{E X3t oF & LIC}.
™ 2.1 xR E S5 35 W0l --wrapping-keys It2tO|E{E EELICH %§_§P§ e --
wrapping-keys I}2FO[E{0]| ZtO| true®l key &4 EE = discovery £430] Q{0{0F EILICHE Cl=

obel). CHE & 43 M= AbgelLIC

« AFEXXIE OtAE 7| 32X 2E @Yo --wrapping-keys It2tO|EAE X[5ok LIt zt2t
O|E{ Ztoll= key 2! provider &430]| Qlo{oF & L|CH.

Ol

st HAE0l 0921 --wrapping-keys TtEtO|E{ B 042 key &2 L& E = JU&LICH

2 ntetilE &4 el E

--wrapping-keys It2t0/EH gt2 CtE £ Y ST Zte2 FEELICH 2 233 HHo=
--wrapping-keys(®E= --master-keys) ItetO|E{7} ERELICH HT 2.1 xRE |55t Al --

wrapping-keys ZtZt0/E{T EQEL|CH

&4 0| E= ool SHOo|Lt &= EXIL ZHE B2 0|EL 2 2F 28 RFE= |F&LUDL &

£04 --wrapping-keys key=12345 "provider=my cool provider"®lL|C}.

Key: & 7| X|’™H

--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab

ot 53 HHO|= StLt O|af ol key &4 Al 22 EZ &S0k ELICH o2 2HE 7|2 HIOIE 7|18 &5
3t5t2d™ 02 key 2 AFSELICH
CLI AFS & 292

AWS Encryption SDK JHEER} 70| =

aws-encryption-cli --encrypt --wrapping-keys
key=1234abcd-12ab-34cd-56ef-1234567890ab key=1a2b3c4d-5e6f-1a2b-3c4d-5e6f1la2b3c4d

E A3t 253 HHIM 7| ZE2 71 ID AWS KMS keys, 7] ARN, &2l 0|8 == 2 ARNY
£ U&ELICH ol S04, 0| Y53t HHS key 4 ZLol HE ARNS AASELICH 9 7| Alxtof

CHEE REMIEEH LI 2 AWS Key Management Service 7HE X CHLHA{ O] 7| AlEEXIE AWS KMS key
xI-X °|.A-|| o

aws-encryption-cli --encrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:alias/ExampleAlias

A% X|HE OtAE 7| B2XHE A 25tE £ 53 B0l M key L provider £440| 2 8L},

\\ Custom master key provider
aws-encryption-cli --decrypt --wrapping-keys provider='myProvider' key='100101"'

2 AR5t 2531 WA 7| S42 AFR5H04 235 3510] AWS KMS keys AR S S X[&5t HL
Zkol ol A £ M2 AWS KMSX|Z 3104 AWS Encryption CLItrueZl HIAIX|E &5 3H6HE O Al
EZ AWS KMS key E AHEE £ /JU&LICH E XHsle 42 HAIXIE =385t O ArS = h
Z! 7| & 5tLto40F AWS KMS keyEfL|CE

ciE 7|8 X|'d35t= Zd0] AWS Encryption SDK 28 AL ILICH O|E Sall ArE3IlE{=E AISE
AWS KMS key Ud&LICH

Z 3 BHM key &8 22 7| ARNOJ0o{OF BfL|CH.

\\ AWS KMS key
aws-encryption-cli --decrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

M 25351 AWS KMS key Al AHS

553 A AHEE AWS KMS keys & Mete L7t eie B9 40| 2 M SHE AEE = UE
LICHrue. Zt0l O/ AWS Encryption CLItrue7l HIAIX|E &3 AWS KMS key SHE AHE 5104
=533l = UELICE discovery £ E XIH5HK| &t = B2 discovery= false(7|24h)LICH &4
M Mo 555 BHED HAIX|7F EE28HE BT S 28 LICH AWS KMS keys.
240| true?! discovery 82 key 82 ALE35t04 AWS KMS keysE X|™5t= CHA ALSE =

ey &
&LICH 2 ¢S 3HE HAIXKIE 2 535HE I AWS KMS keysZ - -wrapping-keys It2+HO|E{0]
7| £°8 E= 20| trueO|X|2t & Ct= ol AM &40 R{ofof &LCt.

rr 0

293

0lo
oL
1T

CLI A

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK JHEER} 70| =

AMO| true@! A< discovery- partltlon 2 discovery-account £4& A& 6101 AWS HH x| st 9
H£H4O 2 AWS KMS keys AHE E[=E A|Etote 20| 7t E&LICH CHE XM A K48 AL
835l AWS Encryption CLIZF X|'SEl AWS KMS key 2|E AF& & £ Q& LICH AWS HH.

aws-encryption-cli --decrypt --wrapping-keys \
discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666

Provider: OtAH 7| 3ZAF X|™H

provider £482 OtAEH 7| SZXHE AHEELICH 72212 aws-kmsO|H, O|= AWS KMSE LtE}
HL|CH CHE OtAEH 7| -ésEXP% AE3teE B provider 40| ZhL|C}.

--wrapping-keys key=12345 provider=my_custom_provider

A& XI'E(HIAWS KMS) OtAE 7| 2 At AFE 0l CHEF AFMIEH LHE 2 AWS Encryption CLI 2|2
X|E2|e| README moiM 12 7+ &= AXsHM L.
2l XI5 Aws 2™

ol

HE ALE5t04 AWS E|T ol K| LICH AWS KMS key. O £482 ¢33t BH|AM, 1

= S
7| SZA7F AWS KMSQ! B2 0Bt & & LCt

=]

> o
m

ko
L=

AWS 2535 CLI BE2 ARNZH Z2 2| AWS 2| o] & & B2 7| &4 U0l X|ZEE M8
gLICH 7] 2t0I& XI'H5tE AWS 22T £ 4 0] FAIFLICE

region 42 CHE 2|1 AFFELCH QMELICH 2I™ S48 AFR5HX|
P22 AWS CLI HEE T2 Zlof AWS 2| X|™HE EE 7|2 T2 EIS A2 EL|CH

profile 432 AF25104 AWS CLI HEHEI =
AWS Z|™o| z&HE = A&LICt o] HE2
Ct.

--wrapping-keys key=alias/primary-key profile=admin-1

CLI AIS & 294

0lo

0
It

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/blob/master/README.rst
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles

AWS Encryption SDK

profile A4S AFR 504 %2 5 U 2 5 HUOIM CHA ot 9B S XIME & UBLICH Y58
L= 7| 3o 2

o =
B0l M AWS Encryption CLI= 7| gtoll 2|M0| Z& E|X| £ 2| £40| giles d<oiBt BHE
20 AWS 2™ o MHE AISHELICH 5335 HHolM= 0l Z2o Y AWS 2™ 9|0 FAIE

LICE.

oic] 2fE 7|E XIHst= &Y
Zt BP0l oed 2iE FI(E= OtAE 7)) & XIEE + JU<H

BT 718 = 7H Ol4 XIB5HH & mh 24T 717} ClOlE] 2 % stofl ASElE CIOIE] 7|8 &
2 = St Ol 718 L2 SBLICH BBHOE MRS 25 5tE HAIIf

Folm{ A E) 9 &5 5HE ClOIE] 7| 2&(Z BHE 7|2 St o

SELIC BE T2 A28 ClOE 7] LIS SE5E O3 ClOEE S2ste 4

$key_oregon=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$key_ohio=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

--wrapping-keys key=$key_oregon key=$key_ohio
St B0l 048] --wrapping-keys It2tO[E{E Z B & LICH X[EE £ 20| A9 LT &
E 7|0l HEE[X| efE E? CHE FE2 AASELICHL
--wrapping-keys region=us-east-2 key=alias/test_key \

--wrapping-keys region=us-west-1 key=alias/test_key

zfol I AM &4

£ME true AFE3SHH AWS 233t CLIZI HIAIX[E ZZ3F AWS KMS key Bt 2&
ol
AN

EAMNEE £ %I—lEF S st B0l 048] --wrapping-keys IIEIO|E{E A8 EE B --

wrapping-keys It2t0|E{Q| discovery=trueE& At&35tHM C}E --wrapping-keys It2t0|E0]
UE key -’—.ﬁ’és'ol 18t s0tMo 2 RiHo|g £+ &Lt
& E0 Cts BHMM X HW - -wrapping-keys TtEHO|E{Q| 7| &2 AWS Encryption CLIE

%
XHE 2 M EELCHAWS KMS key. 22{Lt & #®Ml| --wrapping-keys It2tO|E{Q] A K442 At
235t AWS Encryption CLIZ}F X[El A1 AWS KMS key 2|2 AFE35l0 HIAIXIE SHSE 4+ A& L

TAA

295

AWS Encryption SDK JHEER} 70| =

aws-encryption-cli --decrypt \
--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab \
--wrapping-keys discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666

Q212 Rt Wy
Encryption CLIS| AWS &t 53| 2d2 Ut HIAE H|0|EE =S 2 dhot 2t S 31E HA|X|E BHetgt
LICH 523 22 4= 35tE HAIXIE Y=o R Hhot Ut A E O|0|HE BHEHELICE.

2124 2| x|Z& AWS Encryption CLIO| 2 2{F = --input Z}2+O|E{(-i)= 2 & AWS Encryption CLI &
Hol| 2ot

CtE YW & StLIE AH835tod U E MBS E += U&LICH

. C|HEZ E= C|2E{Z| 0|2 THEES AFREHL|CH el2d0| C|ZE| 2|9l B --recursive Tt2tO|E]

- 21212 B (stdin)oll MY ELICH - WEtOIE{of --input gt AFSELICH (--input THEIOIEE

echo 'Hello World' | aws-encryption-cli --encrypt --input -

- 296

CLI A

0lo

0
It

AWS Encryption SDK JHEER} 70| =

£3] 9IXIE KIHste &Y

s
ne
L
u
T
gk
r

--output It2tO|E{= AWS &= 35t E_E 533 Zdo| ZHAutE xdE QXIE 45 E
Ct. Ol= 2 & AWS Encryption CLI & S = of
of CHall A £3 mtUS MeLICt.

1S 2 AWS Encryption CLIE A1 E QM Ot S mtUS Ho{&5L
M7| Mol ol HAIX|E E A|o+= --interactive IIZIOIE{E A}
S Ho{M 7|7} dh e AR Q3 E AL{SF = --no-overwriteE AIE & LILCE.
|3tX| §t2 4™ --quietE AFSELICE AWS Encryption CLIMIA 2
>R1E|C|HM QAR E AL 50 £3 AE R 7| &fLICh

0
2
z
N
ox

K

N 1]
o FH
>.
u
bl
0
kl

= oIS Axlstod Al EfLICE BEo| Aufst

rir
b
il

0
4o
M

JefLICH oY Z2E X[Yst= 89 BHO0| A™E(7| ol F20o (s ZE CIEH

--output myEncryptedData.txt
+ CIZE{2IE RIMELIch Wado| M#E|7| Mo &34 CI=E{2|7} lojot ELCh.

2230fl ot CIHEIE 2|7t 23 El B¢ BE2 XIGE CIHEEE| otelel ot CIHAEEIE ChA| dEE
LICF.

--output Test

£33 2Ix|7} CIHMEE|(THY O|F ¢i3)2! B AWS Encryption CLIE= €23 It O/ HO[ALE 7|
Hto2 £ Il O|§ 2 MMELICH 2535 22 .encryptedE U= It O|Fof| FotstT 5
Z3t 2 Y2 .decryptedE FIHELICH HOIAHE HAESIEAH --suffix D2tOIEHE AFSELICH

o|E E04, file.txtE Y= 3l5tH L5353 BHO| file.txt.encryptedE HHELICH.
file.txt.encryptedE& =% 36t 553 BAHO0| file.txt.encrypted.decryptedE 4
%I-L_||:|.

= .

CLI AFS & 297

AWS Encryption SDK JHEER} 70| =

. HBH(stdout)oll &LICH --output THEHIIEIQ] - 3 UFLICH --output -2 AL 30 B
g CiE WOl Z2IoR MEE 4 AUSLIC

--output -

et
1
20
Iy
L
Ani
!
1

ot 53 A 553 BH0IM 58 HHAAEE KIS
o o

2 =S AE = H[HO| ol 2o|of F7t 215 H|O|H I &LICH AWS Encryptlon CLI01|A‘| I

3t ZAMIAE = name=value H0{ 2222 FEELICE mtdof CHEt ME, EO0M ¢35 2 4S &

& O =20| £l= dlo|H & &7t H&Mof| 228 o|0|E{& Z & 510 lHIO-IE —_r"A"E DE 2H=xE
ol

of & 3} WHoM X|H5tE g E 8 HEAES CMMO| F7I5HE F71 Ho{s &E8HE ClO|E{of &%
gt Alo 2 HiQIYELICE E8t BAEO| Btetste 23 sHE HIAIXK|oz (et ’RIAER) L ELICH
E ME35t= B AWSKMS key2 238t ZARIAE =0 ZH2 ZAtHZE 2 270 EIAER EA|
2 = J&LICH AWS CloudTrail.
Cl2 o N|= name=value H|0{ 372 A MHEI & 535 HEIAEE Ho{FL|C}

--encryption-context purpose=test dept=IT class=confidential
=533 3E
=33 BHoM dE 3 HEAEE 5 5HE HAIX] HIE2H S53t5tn U=X| &lst= ol =
0| Euct

LIch Z2{Lt ol A &t AWS 235t CLIE =53
FEZo| Aloighu|ct.

ol

o|§ S04, CtS BHE2 Y535 HHAE| dept=IT7| Z&E BRE 2 S3}tE HAIXIE S535He
LICE.

CLI AFS & 298

AWS Encryption SDK

JHetxt 7hol=
aws-encryption-cli --decrypt --encryption-context dept=IT ...
Ot 55t HYAEE Bt FAo| FL REULICH T 458 HYAEE MU mi= ST 2Ol
HIZo| ot S 7|d&lioF ELCt =3 ZHARAE| 7|2 CI|o|HE Z &6t x| oMl
ofSst HEHAE XY
- &S5t BHOIA --encryption-context TtEtO|E{E StLt 0|42 name=value 042t B 7 At
EFLICH SHE ALE5t0d Z Ho{E FELICH
--encryption-context name=value [name=value]
- 53535 HHO| --encryption-context Lt2tO|E] gtol= name=value H0{, name L4 (4)
= ol Eo 80| & E & JU&LICH
--encryption-context name[=value] [name] [name=value]
name=value H042| name == valued| SEO|L} S EX7F T El 32 A Ho{E I8 =
= |=|L—|E|'
--encryption-context "department=software engineering" "AWS ##=us-west-2"
0 € £01, ol ¥ Z3 WA= F H0{2] purpose=test & dept=230| Z&E S35} ZHEHAET}

Olz3t =23 B MTHLIC 2 Bo| o

ol
ol

ZHEIAEE= gl &4 5351 ZHEIAEQ|
& = Hol =3 | 5t

\\ Any one or both of the encryption context pairs
aws-encryption-cli --decrypt --encryption-context dept=23 ...

\\ Any one or both of the encryption context names
aws-encryption-cli --decrypt --encryption-context purpose ...

\\ Any combination of names and pairs

aws-encryption-cli --decrypt --encryption-context dept purpose=test ...

X

CLI A

0lo

0
It

299

AWS Encryption SDK JHEER} 70| =

lgﬁ
!
=2
>
A
_0
+0I-
lgﬁ
N
m
>
[m
2
rr
Ral
0%
r
kO
k>
N
e

ot x| 2k OIE-I?_ S35 B2 AMELch &3

g z[o] UKl ef& LIt

aws-encryption-cli --decrypt --encryption-context dept=Finance ...
aws-encryption-cli --decrypt --encryption-context scope ...

A O T o O =
Hof ciet 72! HAME H™YEEd™ --commitment-policy ItEtO|E{E AFEEFLICE O mtEtOlE
£ HA 1.8.x0 EUEIRELICE Ol= .°=.*§§P 1 =533 HHE| RELICH MAEE 7{8] HA2 i
g HAMO| LIEtLtE HEHP &L Hdof cHet 748! Mg M 5K L2 AWS Encryption
CLIZt Z7|8Zt2 Ar8 ' LICt
o & 04 CtZ matO|E 242 72 H2E require-encrypt-allow-decrypt2 MHELICE Of
B2 HU YA & 7| HBIe R 4536t X[T 7] Z{B] AFE 0{F et Bt AH[Q10| &t S 5tE! AO|THEIA
EE= 5353ELU L

--commitment-policy require-encrypt-allow-decrypt

T8 oo T2t0|EHE MEste EY

AHZ E|= AWS Encryption CLI It 2HO|E{QF ZH2 TA4 mhlofl X{&Hstod Alzte AMofstm 2 @

El=A
—
TRE = AsLICH

du A
mu

e BEIAE mhUlL|CH AWS

T Dt AWS Encryption CLI B230| ml2t0|E{Qt Zt2 X &5

Encryption CLI &0l 74 MFOE% ESHH I oo mi2to|e 2 gre 2 cHA| &Lt
BHE0| Y LHES =t AR SYs 047+ LIEFELICH 74 TS ofiH O|F0|E 7HE =+
U R AL KITF HMAE £ e RE CIEEZ[o QIXIE = A&LICH

CtZ oAl #+ TRl key.conf= ME CHE 2|70 AWS KMS keys F 7HE K| & LICt.

--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
--wrapping-keys key=arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

B 74 o2 AS5te{ It 0|8 ol at 7|15 (@) E I LICH PowerShell £ 0| ME 2HE]
ZAHE AM836tod at 7|5 (T@)E OlAZO|Z X{2|gLct.

O] oi|xl| BH2 2f 55 HHO0IM key.conf IHAUS ALSELICH

CLI AFS & 300

AWS Encryption SDK

Bash
$ aws-encryption-cli -e @key.conf -i hello.txt -o testdir
PowerShell

PS C:\> aws-encryption-cli -e “@key.conf -i .\Hello.txt -o .\TestDir

T4 e 75

T4 0 A8 FE2 o 24U

O|€ £04, 0iAl encrypt.conf I+YUO| LIS CtS1t Z&LICH

Archive Files

--encrypt

--output /archive/logs

--recursive

--interactive

--encryption-context class=unclassified dept=IT
--suffix # No suffix

--metadata-output ~/metadata

@caching.conf # Use limited caching

BHol ofe] 7+ w2 &Y = UELICH O] x| BHE2 encrypt.conf & master-
keys.conf 7+ It 2 25 AFSELICH

Bash

$ aws-encryption-cli -i /usr/logs @encrypt.conf @master-keys.conf

CLI AMS &

0lo

0
It

301

AWS Encryption SDK JHEER} 70| =

PowerShell

PS C:\> aws-encryption-cli -i $home\Test*.log ‘@encrypt.conf “@master-keys.conf

CHS: AWS Encryption CLI 0|X| AL 3l £ 7|

AWS 253} CcLIO| o

LIE A8 EM 2. otAE 7| & 7|E oi2f

CtZ K& Al 535t C
2 gt MMg 2R SHMIL. 2 2 =& AWS Encryption
=

O|E{of CHEF =2 &
SDK CLI #+2 % mlztole] #x Mg 3

oto
oo
A
rio
g'l_l
rr
3
u
i
[=)
x
>
=
wn
nQ
K
> Mo

@ Note
CtS oMol A= AWS Encryption CLI HH 2.1.x2| £ 22 AFSELICH
MZ2 ot 7|52 22l AWS Encryption CLI EHA 1.7.x 2! 2.0.x0|AM 2 Z|AE[RF&LICH 2
2{Lt AWS Encryption CLI EHH 1.8 x= B 1.7.xE CHAISH L AWS Encryption CLI 2.1.x&
2.0.xE CHAIELICH REMIBH LHE 2 GitHubQ| aws-encryption-sdk-cli 2| ZX|EE2[0]MH & £
of MuZ A xEMS.

o
Fol
l‘oj
H
jn]}
9
ﬂ

M
el
g
FiF
r2
N
or
|0
>
()
_o'l_l
rr
oz
It
mjo
HL
i
ek
rr
=]
il
rr
e
Fol
lgﬂ
n
jn]
o
o
N
el

AWS KMS CI& 2| 7|E AI85te HHE HEodF = o= MM HZTSMRLHS 27 AFE AWS
KMS keys.

A

- Y ASE

- US55

- CIHEZe ZE IY 4535}
- CIHEEZe ZE Y 5355}
- BEEM AES B S55
« 0t OIAE 7| A8

ofl Al 302

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK JHEER} 70| =

« CIOIE 7| FH& ALE

O] of Ao A= AWS Encryption CLIZ A& 35104 "Hello World" 2A+0| Z & El hello.txt ZtO| LK

2
x
o2
ok
on
2
o
jo
>
0%
|
2
>
=
w
m
>
s)
<
=
o
)
@)
—

2HEXE 71X, 15§ ool
S StE

HAIXIE A oo #&L|ct

H

}0I'
molI

5 | P 20| 7| ARNE $keyArn B AWS KMS key Ol K& ELICEH E AFE5t0d & 5 5HE
7| ID AWS KMS key, 7| ARN, H& O|F E= HE ARNZ At835t04 AJHE = &Lt o 7| A4
Ktoll CHEt REAIEE LIS 2 AWS Key Management Service ik &t StLHA{ Q| 7| AlHERLE AWS KMS
key& Z3HMI2.

l

T Hn BHE2 0 W8S ¢E3tELct ol -2 --encrypt L2tOIEHE AHE504 &S X[H
St --input Zt2O|E{E AL 5104 S 8He T2 EAIRLICH --wrapping-keys Zt2tO/E{QF E
Qe 7| 5482 7| ARN2Z AWS KMS key EA|E|=E AFE ST B0l XA LICE

0| HYL --metadata-output T2tOIE{E AR 5t0d &5 3t 2dof it HIEIHIOE{SE QIFt HIAE
ot X|HELct @3-l --encryption-context ItEtOIE{E AFE 350 25 ZARIAEE K|
St= 230 2 AbadLct

Lt 0| BELE --commitment-policy TtEFO|E{E AFE 3104 7O HAME HAIMSZE MY ELIC
& 1.8.x0| = --wrapping-keys It2t0|E{E AFEE [O m2tO|E{7t ELELICH HA 2.1.xF
E{ --commitment-policy Zt2tO|E{E MEH AL O|X|2H HEEILICH.

--output Zt2tO|E Q] gt2l HM()2 &3 2 X CIHEZ|o| A= F B0l XA L|CE
Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt \
--output .

ofl A 303

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK JHEER} 70| =

PowerShell

To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --encrypt °
--input Hello.txt
--wrapping-keys key=$keyArn °
--metadata-output $home\Metadata.txt
--commitment-policy require-encrypt-require-decrypt °

~

~

--encryption-context purpose=test °
--output .

&5t HHO| Y36t ofiH ST BHets x| et &LICH BHEo| M3 0{F E &Qlste{w $2 Hr 9|
22 72 QI8 LCt W20l MBstH $79] 2 0(Bash) == True(PowerShell)QLICH HZ0| Al
m5t™ $29| 242 00| ofL| 7L} (Bash) False(PowerShell) & L|C}.
Bash

$ echo $?

0
PowerShell

PS C:\> $?

True
CIEEZ S5 HHES Ar85to ¥ 535 B-O| hello. txt.encryptedits M IHUE HHFM =X
golgh =5 &Lt &&3t BYo| E390| nt Y o|F 2 XIHsHX| 24 7| I Z 0l AWS Encryption

C
Ut O|F 0| 21 M.encryptedd|At7t = THUol| £ G} &LICH CHE ™HO[AF
x |24 --suffix T}2tO/E{E A2 ELIC.

hello.txt. encrypted It Jol= hello. txt TtUO| ALO|HEIAE O|O|E 7|2 FE3IE AR, £
7t HEtD|O|E{(¥ =8t ZARAE Zeh7t o El 25 3HEl HAIX|7F 01 U&LICH
Bash

$ 1s

ofl A 304

AWS Encryption SDK JHEER} 70| =

hello.txt hello.txt.encrypted

PowerShell

PS C:\> dir

Directory: C:\TestCLI

Mode LastWriteTime Length Name
-a---- 9/15/2017 5:57 PM 11 Hello.txt
-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted

Tl = 5 5}

O od| Mol A= AWS Encryption CLIE AF&35t04 O|F Od| X0l M & =8l El Hello.txt.encrypted It
Uo| L& = E Lt

-decrypt IEtO|E{E ALE5t0{ 2 US EA|

B2 - 2 &t --input TEOIE{E ALRSt0d &
sleh mtele AlYEEiLICH --output THEFOIE{Q] Zf2 3AH C|Z]

EE|E LIEtLE Ml

key 50| QU= --wrapping-keys It2tO|E{= ¥ E&E HAIX|E S53t5t= Ol A= 2iE 7|
E X|YELIct E A88t 5535 WHAM 7| £ AWS KMS keys2| Zf2 7| ARNO|0{OF §FL|C}. --
wrapping-keys II2t0|EE S5 3 B0 BtEA| EQFLICH AWS KMS keysE A8 35lE B9
key SM4E AI835l01 S5 31E 2|50 AWS KMS keys £ X|& 5l 7L} discovery £4E true U2 Z K|
HEg = UELICHE O X|EE == I8). ALK XH 0tAH 7| S2XHE AE5te B key S5+
provider £40| gL}

ofr
-_

A 2.1 xEE --commitment-policy It2tO|E{E MEH AEO|X|BH HEEILICEH 0| HAMoZ
A3 7|22k9] require-encrypt-require-decryptE XIHSIHEIE o= & HWEF| & £ Q)

E7 M3 E BT --encryption-context HPE
| oo K2 S 70 £
FE HIAIX|S| & &5t ZHARIAE O

M =53 HFo| AuiFict

m° O
_o'k
0
Fob
11
r

S22 A==
33t CLI

=
—
2fLICE 224X| &

Yol

BIAEE A |.R oI-L_||:|.

o;
= |:|_?_

Edl
= =
3t o%'oilkl *"E” At

o s

i

o
Io

purpose=test H04{7}

--metadata-output I2t0|E= 5535 240 CHet HEICIO|E{E I8 oS RI™ELICE --
output It2tOIE{Q| gLl M()2 £ mtU2 #HA CIREZ|of &Lich.

ofl A 305

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK JHEER} 70| =

282 CloIE 717t IR B2 HRE HAo| HAXIE =
data-keys TEHOIEIE A8 3HE 70l 24 ArzlILICH o
SEls 2 4T 71 stLb) = BElMQl 2|CHaH(ol: 57H)2
E 7| MgtE HE5HAM L.

5 35}5t K| &t =S --max-encrypted-
S 3tE CIolE 7|19| ol & = §_§P01| At
XIHgLIch RHMIEE L8 2 st=l dlo]

POI'

--buffer= CIX|E MEO| U=X| &RlsteE S ZE UZ0| *2|E Fogt U HAES PrEtefL

Ct.

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--output .

PowerShell

\\ To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt °
--input Hello.txt.encrypted °
--wrapping-keys key=$keyArn °
--commitment-policy require-encrypt-require-decrypt °
--encryption-context purpose=test °
--metadata-output $home\Metadata.txt °
--max-encrypted-data-keys 1 °
--buffer °
--output .

S35 BE0| YSotH o ET BrEtetx| r&LICH BHO 435 0{F E FH stz $? 49
Zf2 7tMELICH CIEEE) 55 TP S AL8otod BH0| .decryptedEtsE HOIAZE 22 M T

ofl A 306

AWS Encryption SDK JHEER} 70| =

$ 1s
hello.txt hello.txt.encrypted hello.txt.encrypted.decrypted

$ cat hello.txt.encrypted.decrypted
Hello World

PowerShell

PS C:\> dir

Directory: C:\TestCLI

Mode LastWriteTime Length Name

-a---- 9/17/2017 1:01 PM 11 Hello.txt

-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted

-a---- 9/17/2017 1:08 PM 11 Hello.txt.encrypted.decrypted

PS C:\> Get-Content Hello.txt.encrypted.decrypted
Hello World

ClelEz2|el RE Tt 2k 5 5}

O| o Mol A= AWS Encryption CLIE At&3t04 CIEIE 2|0 = 2E Ao LIS & ESELICH

®240] 042{ THoll WS O/xI= 2 AWS Encryption CLIE 2 THUE THExo 2 *{2|&Lict 1t
U L8 S JHKQT, OFAE Flol M IUo| TRE CIOIE] 7| 7HM2T, HOlE 7|12 Y LIS S o
Z5otT, Z0E £ CIE2lol A Ihol &LICH DHEtM £ 1HUS SEMoR 25 5E 4
&Lt

O| TestDir C|HE|E| 2 20|= &5 355184

rr
e
>
m
—‘-71
°
[}
k|
>

n
T
0

Bash

$ 1s testdir

ofl A 307

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-content

AWS Encryption SDK JHEER} 70| =

cool-new-thing.py hello.txt employees.csv

PowerShell

PS C:\> dir C:\TestDir

Directory: C:\TestDir

Mode LastWriteTime Length Name

-a---- 9/12/2017 3:11 PM 2139 cool-new-thing.py
-a---- 9/15/2017 5:57 PM 11 Hello.txt

-a---- 9/17/2017 1:44 PM 46 Employees.csv

»

| H 29| Amazon 2lAA O (ARN)E $keyArn B4 AWS KMS key ofl A &H&FL|C}

=] BHE TestDir CIEEZ|0 U= T
TestEnc C|ZE{Z|0 &LICt TestEnc C|
CIHE{Z|0|2 2 --recursive Tt2tO/E{7} E-IJ-E}.L’l .

_—|—

--wrapping-keys It2tO|E{Q} = key SH2 AFEE 7|1& X[HEE
st ZHEIAE QI dept=IT7| ZEELICH o] U S = 3t5t= P =3 HEAEE X|HSHH
D E oo s =3 HEAET ASELICH

o 0o
o
L v}
0K

HHo= =35t 75.*°*°1| CHEt HELCO|EE 2 && ?{X[& AWS Encryption CLIO| 243
metadata-output ZEtOIE{T U&LICEH AWS Encryption CLIE €& 3HE Z- ot o] EHOH °fo9| ul
STE(fo][= Eﬂ_:.'_E% Lt

--commitment-policy parametert= H{™ 2.1.xFE MEY AL O|X|BF HEELICH H™O|LF A3
ZEJ MO|HEAEE 553518 4= Q101 AIiste B BAIM 7 HM MYS ALSstH 2XIE it

EH #Xlste ol 80| E & U&LICH

HHF 0| PR E|M AWS Encryption CLI= ¥ E3tEl It(E TestEnc CIEE 2|0l 7|& 5t KB &332 vt
gtot x| et &Lt

Orx|9f BHE2 TestEnc CIAEE|S| Tt LS LIGRLICH LBt HAE ZRIXO| 2t 2|3 milotch & &
£ 2EIx0| 3 mUo| stLi QU&LICH FHo| ChA HO|AE XIHstx| gte=z &3t BY

| 2t 2129 m} ol O|§ 0o .encryptedE FIIGH&LICEH

ofl A 308

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS Encryption SDK JHEER} 70| =

Bash

To run this example, replace the fictitious key ARN with a valid master key
identifier.

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input testdir --recursive\
--wrapping-keys key=$keyArn \
--encryption-context dept=IT \
--commitment-policy require-encrypt-require-decrypt \
--metadata-output ~/metadata \
--output testenc

$ 1s testenc
cool-new-thing.py.encrypted employees.csv.encrypted hello.txt.encrypted

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
identifier.

PS C:\> $keyArn = arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PS C:\> aws-encryption-cli --encrypt °
--input .\TestDir --recursive °
--wrapping-keys key=$keyArn °
--encryption-context dept=IT °
--commitment-policy require-encrypt-require-decrypt °
--metadata-output .\Metadata\Metadata.txt °
--output .\TestEnc

PS C:\> dir .\TestEnc

Directory: C:\TestEnc

Mode LastWriteTime Length Name

-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted

-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

of| Al

309

AWS Encryption SDK JHEER} 70| =

CIHEEe 2E oY =535

o| oidl= CIEIEEo e ZE TS SE3HELICH O MMM &5 3HE TestEnc CIREZ[2
ut UFE AIRFERLICE

Bash

$ 1s testenc
cool-new-thing.py.encrypted hello.txt.encrypted employees.csv.encrypted

PowerShell

PS C:\> dir C:\TestEnc

Directory: C:\TestEnc

Mode LastWriteTime Length Name

-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted

-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

0| 253 A2 TestEnc EIE*'E-IEIQI DE OUE 535355l 0 Yt BIAE 1S TestDec C|EIE]
2loil &Lict 7| £41 7| ARN 240 U= --wrapping-keys ZtEtO|E{= AWS TS =55 AWS
KMS keys st Cll AL E &5 3} CLI01| K|AlgtLICH B2 --interactive TI2}O|E{E AL 5}04
St 0|2 0| mtE FHo{rrT| Toi AWS Encryption CLIOI ZEZEE EA|SITE X|A|ELICH

Al 3t AWS Encryption CLIE TS HES D B0 E ’Sf*c;'%F |EFE||0|E'|0| AIHE 7|S8HCHS
LIHX| ot A& &QlgtL|Ct AWS Encryption CLIZ} CHE O|R 2 mtg S35 356t K| R6tH M|
5353 HHO| ZA| AuliFct.

Ol M MHE 2E U2 mtdo| A5 3tEl HAIX|0] dept=IT =3} ZHHAE QAT ZEE|0] UG
LICH St X[BF ef 53t ZHAEAE T CHE HIAIXIE SE35tets B0t 253 HHEAEO[UR = FHQ

Mg = U&LICH 6§ S0 LR HAIX|| 53t HEAET} dept=financeO|1 CHE HIAIX]
of AZtE HEAE T dept=IT2! B2 S XIHstx| AT 53 ZHEHAE | F4 dept 0[FO0|
ZEE|o] AR &g = UA&LICH & O MM Z &Qlsit{H Hr ol BEoz ndg S35
= A&LICH

o Al 310

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK JHEER} 70| =

2535 FY2 ofH AT BHEke
P

.decrypted HOAI7I E2 M It E HENU 505 & 0 o |H} & = -
ol ZHIXE 7 E BHEE MSELULCH

Bash

To run this example, replace the fictitious key ARN with a valid master key
identifier.

$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \

--input testenc --recursive \

--wrapping-keys key=$keyArn \

--encryption-context dept=IT \

--commitment-policy require-encrypt-require-decrypt \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \

--buffer \

--output testdec --interactive

$ 1s testdec
cool-new-thing.py.encrypted.decrypted hello.txt.encrypted.decrypted
employees.csv.encrypted.decrypted

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
identifier.

PS C:\> $keyArn = 'arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt °
--input C:\TestEnc --recursive °
--wrapping-keys key=$keyArn °
--encryption-context dept=IT °
--commitment-policy require-encrypt-require-decrypt °
--metadata-output $home\Metadata.txt °
--max-encrypted-data-keys 1 °
--buffer °

--output C:\TestDec --interactive

PS C:\> dir .\TestDec

of| A 311

AWS Encryption SDK JHEER} 70| =

Mode LastWriteTime Length Name
-a---- 10/8/2017 4:57 PM 2139 cool-new-
thing.py.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 46 Employees.csv.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 11 Hello.txt.encrypted.decrypted

Ol M= =S %‘%"(stdin)gi mo|Z st £33 B E(stdout)oll A= %*E':.% Ho{E Lt BH
o | 04 40| ASCII7} ot

Ol M= Ut EIAE BXtEE 253t HHEoZE mto|=Z5t 1 3 35tE HAIXIE 2
LICH 323 OFE 0] e 33 E HAIKIE 558 BY¥o = njo|Zsty, siy HE2 32 ot

O| = 2}Ql(stdout)Oll £ LIC}.
Ol A= ChEat Z2 Ml 7Hx| BEo 2 T4 E|o{ U&LICH.
« X e H20| 7| ARNE $keyArn H4= AWS KMS key 0ff Z{ZHgFLICt,

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

« T | B2 Hello World =AtY¥E =38t BHOE uo|Zstm T A E $encrypted HE
ofl K& gfLich

--input & --output ZtZtO/E{E= 25 AWS Encryption CLI &0 gtE A| & Ct =0|

Qs

= = |
TRY(stdin)2 2 THO|ZE| T 1SS LIEFHLHEIH --input T2tOIE{ Q| Ztof a+0|£()2 A LI
£242 HYZE(stdout)2 ELHE{H --output TH2tO|E{Q| Ztol| 5IO|E S AFSEHLICY.

o Al 312

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK JHEER} 70| =

--encode IlZOE{E &84

=] =etL|Ct Ol A 5tHH €lo| &5
3=l H|AlX|2] ASCIIZ} OF R

Ol B2 /e 3TU ¥o|=2= AdE3t HHAE = st 0 MIEIH|O|E|(-S)E EAISHX| ef&LICH

Bash

$ encrypted=$(echo 'Hello World' | aws-encryption-cli --encrypt -S \

--input - --output - --
encode \
--wrapping-keys key=
$keyArn)
PowerShell

PS C:\> $encrypted = 'Hello World' | aws-encryption-cli --encrypt -S °

--input - --output - --
encode °

--wrapping-keys key=
$keyArn

o Ml | BHE2 $encrypted 0| &

POI'

SHE HIAIXIE 5535 HHEoZ mlo|= & LCt.

Ol 533t Y2 --input -2 AI&3sto{ =40| ZhOo|Z 2t Rl(stdin)IM E0{21 USS LHEHLHT
--output -2 AI85t0{ £E232 It O|Z 2 Ql(stdout) 2 2 EL|Ct. (= mtetO|E =

O|E7} ofL|2t 2] RIXIE AFBSEZ $encrypted B8 --input ZIEIOIEQ| ZIS 2 A8 E
T i&Lct)

O| M| M= --wrapping-keys TtEFO|E{Q| A K42 A& 3504 AWS Encryption CLIZHE At
83510 HIO|E{E =23} AWS KMS key ot =5 S{S & LICE 047|M= HY HAE X|Hs5tx| gte =

o 1=

2 BT 2.1.x O|&rol| CHEt 712722 require-encrypt-require-decryptE AFSELICH

30| A= otEl F QUITEACEE S5 BYE --decode LEHOIEE ArE5H0] Base64 = Q
IAYE g 25315H7| ™Mol C|ZEEL|Ct £t --decode T}2O|E{E A& 310{ Base64Z QI
IYE UZE LS 5tetT| ™ol C|ZEE = J&LICH

AM LRMZO|, O] HH2 2535 ZHHAEE 25D M|EIH|O|E(-S)E EAISHK| et &LCH.

o Al 313

AWS Encryption SDK JHEER} 70| =

Bash

$ echo $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=true
--input - --output - --decode --buffer -S
Hello World

PowerShell

PS C:\> $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=$true
--input - --output - --decode --buffer -S
Hello World

57 ¥4 glol BY BBoR o

1
50
I
T
AN

5t o =58 5

1 =

fjo

A A
e T

}OI'
ok

H HHL --encode It2HO|E

O oMo &I --input ! --output II2tO[E{0E - ZtO| U2
2292 C|AEEL|CH

E ME835lod £33 Q1A Y ST --decode I}EHO|E{E AFR 3104 ©

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ echo 'Hello World' |

aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --
output - --encode -S |

aws-encryption-cli --decrypt --wrapping-keys discovery=true --input - --
output - --decode -S
Hello World

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> 'Hello World' |
aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --

output - --encode -S |
aws-encryption-cli --decrypt --wrapping-keys discovery=$true --input
- --output - --decode -S

Hello World

of| A 314

AWS Encryption SDK JHEER} 70| =

o424 OIAE 7| AFS

O od| X[l A= AWS Encryption CLIOIA CIO|E{E &= 3t5tD Si=E M o4 OtAEH 7|E AH&Stes
S Ho{ELLCt.

oic{ OtAE 7|& AHE5t0d HIOIEHE 253 stH allY OtAE 7| & stLEE AFE5tod HIO|EHE S5& 3
g+ UELICH Ol =S A8 stH OtAE 7] & stLHE AH8E & Sl dEMZ HIOIEHE 5353
g+ UELICH 2 E3HE HO|EE ool XMEstE 2 AWS 2|T0| HEF S AH8stH S YU 2|1
O OfAE 7|& AL83t0o O|O|EHE sHSE + A&LICH

oic] OtAE 7|2 3 8tsts 42 & MM 0tAE 7|71 SEet Jg 2 gLCH 0] 7= CIOIBHE &3
stot= ol AL El= HIOIH 7|1& *”’SEFL—IEP LtH K] EIV\E4 7= et HAE O|O|H 7|& & Z &L
Ch O Z2n, &S 5tE HAIX|ol= & Z8HE ClolEet & 3tEl H[o|E 7| 2&0] Zf ObAE Z|otct 8t
LM ZetElLICH HlolE 71§ BFE A2 X M okAH Z|o|X[EH CHE 2 E OtAH 7|2% H|olH 7|

ISN|
W
£ 23535104 O|O|EIE 2538 & QlaLlch

}OI'

FII'I

Ml 7He| OtAE] 7|12 AM88t %535

_

ol ofixll W2 M ol BHE 718 AR 5Hod Al 7ol AWS 2IFZEztoll sHLH Finance.log TFS
ot 3 3itLC)

O| HH2 4S5 3HE HAIXIE Archive CIHIE{Z|0f #&LIC}H O] HHEE ZL0| e --suffix Ti2tO|E
X D|

—
E AL85tod HOIME EAISHR| pte22 /3] 3 &3 nt Y 0|F 0| SYELICH.

O] B2 M| 7IX| key £ 4E 7HEl --wrapping-keys IIZIO|E{E AL ELICH ZH2 H&30i 042 7H
9| --wrapping-keys ItZtO|EE A E =T U&LICH

»*
rII
i

&}t5t7| 28 AWS Encryption CLIE 55 9| ciE 7[2! $keyldl CIOIEHE &
1 Chg LIHX| 2HE 7|& 42 AF&5t0q
o

CI0/E! 718 MEHER 2B, 22
¢ 2 '3 8HE HAIRIOlE 2B stE o

$ keyl=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$ key2=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef
$ key3=arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6fla2b3c4d

$ aws-encryption-cli --encrypt --input /logs/finance.log \
--output /archive --suffix \
--encryption-context class=log \

o Al 315

AWS Encryption SDK JHEER} 70| =

--metadata-output ~/metadata \
--wrapping-keys key=$keyl key=$key2 key=$key3

PowerShell

PS C:\> $keyl = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> $key2 = 'arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef"

PS C:\> $key3 = 'arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d’

PS C:\> aws-encryption-cli --encrypt --input D:\Logs\Finance.log °
--output D:\Archive --suffix °
--encryption-context class=log °
--metadata-output $home\Metadata.txt
--wrapping-keys key=$keyl key=$key2 key=$key3

~

O] ™2 Finance.log ItYUo| A S 3 E AHRE 535315104 Finance C|HE{Z|2
Finance.log.clear Z+o] &LICH M| 7HE 2 Z3tEl O|O|EHE sH=5lciH S et Al AWS KMS
keys 7H FE= 19| ZIEt2 X8 AWS KMS keys% Q& LICH O] GFIOIME AWS KMS keysS sfLt

oF XIE gLk

> foi

olO|E] = 53t0fl AWS KMS keys AHSE AWS 25 3l CLIO| € 2[24™ - -wrapping-keys It2t0|E]
O 7| M2 ALSELICH E AL85tod S5 35HE Ml 7| &4 AWS KMS keys2| 2t2 7| ARNO|0{OF &
L|CF.

AWS KMS keys X|"4EH0{| M Decrypt APIE S & &+ = Tetol Qlo{ok EfLICH RHMIEF HE = AWS
KMSOi| CHE 215 S M| A Ko{§E FHESHAMR.

2 AEZM, o]l M= &= 3HE CIOoIE 7|7F T B2 ERE a9 [HWXI% S535tetR| s
--max-encrypted-data-keys It2t0|E{E AL EFLICE O] oMol & 2HE 7|

aZ
HF
POI'
LOL
2

235K|2H 2SS E HAIX|olE &535E W A= Ml 742l 2iE 7o I:HﬁH Zr 2k Stk & M| 7R

ot 5512 O O|E| 7|7t U&LICH 23 5HE CIO|E] F|2| ofl &k JH4 FEE &EE 2|CHZk(0l: 5)2 kIRE
LICt z[CHgt2 3ECH 2 A X5t B o| AmgrLIc REMIE L8 2 s stE CllolE 7| AEHS &

Z3tML

Bash

$ aws-encryption-cli --decrypt --input /archive/finance.log \

o Al 316

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html

AWS Encryption SDK JHEER} 70| =

--wrapping-keys key=$keyl \

--output /finance --suffix '.clear' \
--metadata-output ~/metadata \
--max-encrypted-data-keys 3 \
--buffer \

--encryption-context class=log

PowerShell

PS C:\> aws-encryption-cli --decrypt °
--input D:\Arxchive\Finance.log °
--wrapping-keys key=$keyl °
--output D:\Finance --suffix '.clear’
--metadata-output .\Metadata\Metadata.txt °
--max-encrypted-data-keys 3 °
--buffer °
--encryption-context class=log

ATRES Y535 QUL

Fol:

gt

= 232 EoM AWS ¥ E 5t CLIE M85t YUY
SB-EE Kyt Clo[E #E| Z2 ML U
o

/A Warning
oto|xdo| 274X} 7} Mo{E £ F Q= H|2 7| 2 HIO|E{7t 25 ZEEIOEE ¢=E =
Zolsfot gLICH & EEl ClolE2 215 37|12 Qlaf o= | oAl CllolE] Ligoll chgt mizkst
MEJ e £ et

AN EH

of| A 317

AWS Encryption SDK JHEER} 70| =

Bash

Continue running even if an operation fails.
set +e

dir=%$1

encryptionContext=$2

s3bucket=$3

s3folder=$4

masterKeyProvider="aws-kms"
metadataOutput="/tmp/metadata-$(date +%s)"

compress(){

gzip -gf $1
}
encrypt(){
-e encrypt
-i input
-0 output
--metadata-output unique file for metadata
-m masterKey read from environment variable
-c encryption context read from the second argument.
-v be verbose

aws-encryption-cli -e -i ${1} -o $(dirname ${1}) --metadata-output
${metadataOutput} -m key="${masterKey}" provider="${masterKeyProvider}" -c
"${encryptionContext}" -v

}

s3put (){
copy file argument 1 to s3 location passed into the script.
aws s3 cp ${1} ${s3bucket}/${s3folder}

}

Validate all required arguments are present.
if ["${dir}" 1 && ["${encryptionContext}"] && ["${s3bucket}"] &&
["${s3folder}"] && ["${masterKey}" 1; then

Is $dir a valid directory?

test -d "${dir}"

if [$? -ne @]; then
echo "Input is not a directory; exiting"
exit 1

of| Al

318

AWS Encryption SDK

JHeER 7Hol=

echo " and ENV var \$masterKey must be set"
exit 255
fi
PowerShell

fi

Iterate over all the files in the directory, except *gz and *encrypted (in case of

a re-run).
f in $(find ${dir} -type f \(-name "*" | -pame *.gz ! -name *encrypted \));

for
do

echo "Working on $f"
compress ${f}

encrypt ${f}.gz

rm -f ${f}.gz

s3put ${f}.gz.encrypted

done;

else

#Requires -Modules AWSPowerShell, Microsoft.PowerShell.Archive

echo "Arguments: <Directory> <encryption context> <s3://bucketname> <s3 folder>"

Param

(

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String[]]

$FilePath,

[Parameter()]
[Switch]
$Recurse,

[Parameter(Mandatory=$true)]
[String]
$wrappingKeyID,

[Parameter()]
[String]
$masterKeyProvider = 'aws-kms',

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

of| Al

319

AWS Encryption SDK JHEER} 70| =

$ZipDirectory,

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

$EncryptDirectory,

[Parameter()]
[String]
$EncryptionContext,

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

$MetadataDirectory,

[Parameter(Mandatory)]
[ValidateScript({Test-S3Bucket -BucketName $_3})]
[String]

$S3Bucket,

[Parameter()]
[String]
$S3BucketFolder

BEGIN {}

PROCESS {
if ($files = dir $FilePath -Recurse:$Recurse)
{

Step 1: Compress
foreach ($file in $files)
{

$fileName = $file.Name

try

{

Microsoft.PowerShell.Archive\Compress-Archive -Path $file.FullName -
DestinationPath $ZipDirectory\$filename.zip

}
catch
{
Write-Error "Zip failed on $file.FullName"
}

o Al 320

AWS Encryption SDK JHEER} 70| =

Step 2: Encrypt
if (-not (Test-Path "$ZipDirectory\$filename.zip"))
{
Write-Error "Cannot find zipped file: $ZipDirectory\$filename.zip"

}

else
{
2>&1 captures command output
$err = (aws-encryption-cli -e -i "$ZipDirectory\$filename.zip"
-0 $EncryptDirectory °
-m key=$wrappingKeyID provider=
$masterKeyProvider °
-c¢ $EncryptionContext °
--metadata-output $MetadataDirectory °

-v) 2>&1

Check error status
if ($? -eq $false)
{

Write the error

$err
}
elseif (Test-Path "$EncryptDirectory\$fileName.zip.encrypted")
{

Step 3: Write to S3 bucket
if ($S3BucketFolder)
{
Write-S30bject -BucketName $S3Bucket -File
"$EncryptDirectory\$fileName.zip.encrypted" -Key "$S3BucketFolder/
$fileName.zip.encrypted"

}

else

{
Write-S30bject -BucketName $S3Bucket -File
"$EncryptDirectory\$fileName.zip.encrypted"

}

of| A 321

AWS Encryption SDK JHEER} 70| =

CIOIE 7] 7He ALS

ol MM B2 2 utd

fjo

s 3tste BH0| CIO[E 7| FH &S AFSELICH

7|22 2 AWS Encryption CLI(Z! 7|E}F -S| AWS Encryption SDK)= &2 3t5t= ZF mhloil CHaH

n&etololH 7|18 MdgrLct Zt 2rdof|l 1 Ret OO0l 7|E M&85t= XWol| 53 2 Atzio]Z!

SHX|BH LR &&= ClolH 7|18 MEtHo 2 RALE & = /J/&LCt lolH 7| 7i&8 1 ¢l
o

o=
ZS 2ot AX|LIo{of 7 2olstod OB EIH0IMO| Hot @F ASHS npotstm REEt Hot
o

O| Mol M= ClIOIE 7| o2 OtAE 7| S0 CHet @ BIEE E0iM F 535 2ol £ &
b_.;ol|_||:_|.
vl = .

O| iAo HHE=2 & 2 goo7Hel 22 21 mlo| ZEE oiq 7He| 5t CIRE 2|7t e 2 CIEEH
O|E o3 5h8rLICH A M| S AWS KMS key 2] ARNES keyARN 4220l K& gtL|CH & wimf &
He2 ?=!E—’.' EIEi!E4E|9| 2E ndg (MAHMeE) 53515104 o 7t0|E C|EEE[of &LICt o] BE2

5109 .archive HO|AIE R|HELICH

1

1
0
c
-+
—+
[
x
H
u
EE
I
1)1
Dl
ol

--caching Zt2tO0|E{= G[OIH 7| 7 & ALE S HEELICH 2E Y *{2lE & Holl & 74 ol& 2l
Ol 7I1& AtEstX| f7] Eoll FHAIL] IO 7| & M|EHot= capacity 82
AlE ClolE 7|1& ME8E + e 7I7HE AHstE max_age 82 10X 2 AHEEHLICH

MEH AHE 1 max_messages_crypted £42 MHA|X[107H2 DdHE|2 2 5tLte| GIO|EH Z|= 107K Of 4
ol mtUE & E35t5t= Ol AFSE|X| §E&LICt ZF C[o|E 7|2 %*§_§FEE oty =& ANEtstH Al
CIOIE 7|7t &4 &= o 7|x| 28 A& 0| dMstHEIE JEF2 dhe ot =8 L = A&t

24 MMM dgstE 21 mtUolM o] BES A-stedH 2 Elxt HeH(Linuxe| B sudo,
Windows2| 22 ZE|XI HEteZ AsH)o| ZE 4 QlaL|ch

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input /var/log/httpd --recursive \
--output ~/archive --suffix .archive \
--wrapping-keys key=$keyArn \
--encryption-context class=log \
--suppress-metadata \

o Al 322

AWS Encryption SDK

JHeER 7Hol=

PowerShell

--caching capacity=1 max_age=10 max_messages_encrypted=10

PS C:\> $keyARN = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab’

PS C:\> aws-encryption-cli --encrypt °

--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'

--wrapping-

keys key=$keyARN °

--encryption-context class=log °

--suppress

-metadata °

--caching capacity=1 max_age=10

max_messages_encrypted=10

Ol oilAlol M= CllolE 7| 79| 3
A EFLICE O] oM E dlolE| 7| 7H4) gio] Al

CIEE2(ef 2 ot o Ciali M Tl 7§ &S

E 1 E HIAESHZ| 26 PowerShell2] Measure-Command cmdlet2

M5tEd 2t25t= O of 2571 ZAELICH O| ZEMAE

JErLCh.

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °

--output $home\Archive --suffix

--wrapping-keys key=$keyARN °
--encryption-context class=log °
--suppress-metadata }

.archive'

Days : 0
Hours 0
Minutes : 0
Seconds : 25
Milliseconds : 453
Ticks : 254531202
TotalDays : 0.000294596298611111
TotalHours : 0.00707031116666667
TotalMinutes : 0.42421867
TotalSeconds : 25.4531202
TotalMilliseconds : 25453.1202

of & 323

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-command

AWS Encryption SDK JHEER} 70| =

HlolE] 7| FZHAS AHE5HH 2 HIoIE Z|E %|cH 1074 T2 K| &t
LIC}. O|X| o] B2 &2 5= o 12% 0|80 AL E|MH OtAE 7| 22 Xto|| CHet & £E =i
1102 &L|C}.

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'

--wrapping-keys key=$keyARN

--encryption-context class=log °

--suppress-metadata °

--caching capacity=1 max_age=10
max_messages_encrypted=10}

Days : 0

Hours : 0

Minutes 0

Seconds 11

Milliseconds . 813

Ticks : 118132640

TotalDays : 0.000136727592592593
TotalHours : 0.00328146222222222
TotalMinutes : 0.196887733333333
TotalSeconds : 11.813264

TotalMilliseconds : 11813.264

max_messages_encrypted M$t2 M7H5tH 2 E nto| SUst Oo|E 7|2 = 3HELICH o= A|
BZESHH T2 M AT EM ““*Eﬂlxlt ot 1 CllO|Ef 7|8 AHALS & {0l Z7tgfLich ag{Lt otAH
7| SZXtof| Cist & A== 12 F0{5LICH

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'

--wrapping-keys key=$keyARN °
--encryption-context class=log °
--suppress-metadata °

--caching capacity=1 max_age=10}

Days : 0

of| A 324

AWS Encryption SDK JHEER} 70| =

Hours : 0

Minutes 0

Seconds : 10

Milliseconds . 252

Ticks : 102523367

TotalDays : 0.000118661304398148
TotalHours : 0.00284787130555556
TotalMinutes : 0.170872278333333
TotalSeconds : 10.2523367

TotalMilliseconds : 10252.3367

AWS Encryption SDK CLI & %! zi2t0|E & x

0| &A= AWS Encryption SDK Command Line Interface(CL)E A& 3t | EZo| & 7 & ctolof
O3 S ZHEE T2t O0le dEE MIELICh efE 7| & 7IEt miet0le 2 E 222 AWS 2 E 5t
CLI AF% S MME BESMR. ol&lE AWS 2hE 3 CLIS| of MMdE ’E.ZE%PMIR A dYME &
Mel7|& B=xFML.

=X

e AWS &35 3} CLITE
« AWS &35 3} CLI HHEZE ulztOo|E
. 12 mz2t0o|E

AWS ¢ 53t CLI &

0|2{8t AWS Encryption CLI 72 CH0|0412 AWS Encryption CLIZ $85tE 2 Ztgdo|
0{&FLICt. O]&= AWS Encryption CLI EHHZ 2.1.x O|&0|M HE E|l= T+ 22 LIEFHLICH

=]
-

gl
mjo

MZ2 2ot 7|52 el AWS Encryption CLI EFHE 1.7.x & 2.0.x0AM & 2[AEIR{&LICH 28 Lt
AWS Encryption CLI H{& 1.8.x= HT 1.7.x& CHA|5t T AWS Encryption CLI 2.1.x= 2.0.xE CHAIE
LICE KEAIBH LI 2 GitHub2| aws-encryption-sdk-cli 2| Z X|EZ|0l|A B2 2ot HTE 2T HAM2.

(® Note
utet0lE B0l BAIE[o] K| f= B, 2 mEt0lE Ee 82 2 BHoM 8 HEt ASF
£ A&Lct,
ut2t0[E{7F X[HsHR| =

|3

£ A83HE B2 AWS Encryption CLIE B1LF 2F gi0]| K|
HEIX| b= S8E FAIEL

7= W oetole HE 325

https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK JHEER} 70| =

INFe R

e

utetolE AdEa &4 A& AWS Encryption CLI T2 71284 --help EE=E AFSEFLICH-
h.

aws-encryption-cli (--help | -h)

HZ 7t Kd27|

HO

AF%E*L—lL'-F—-versio 22 5L,
L

Ct.

AWS Encryption CLI & x|°| HM HE & 7tX{ 2™
| E F

MNE E1stHL, AWS €535 CLI AFR0]

o [Ho

aws-encryption-cli --version

Encrypt data

CtE 7 & CHolo{2 2 encrypt FHol| AtE &l mEt0IE{E EoiELICH

aws-encryption-cli --encrypt
--input <input> [--recursive] [--decode]
--output <output> [--interactive] [--no-overwrite] [--suffix
[<suffix>]] [--encode]
--wrapping-keys [--wrapping-keys]
key=<keyID> [key=<keyID>]
[provider=<provider-name>] [region=<aws-region>]
[profile=<aws-profile>]

--metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]
[--commitment-policy <commitment-policy>]
[--encryption-context <encryption_context> [<encryption_context>
.11

[--max-encrypted-data-keys <integer>]
[--algorithm <algorithm_suite>]
[--caching <attributes>]
[--frame-length <length>]

[-v | -vv | -vvv | -vvvv]

[--quiet]

CHS 7 & CHolo{2 2 decrypt FFol| AtE =l mEt0IE{E EoiELICH

7= W oetole HE 326

AWS Encryption SDK JHEER} 70| =

™ 1.8 xEE 555 Al --wrapping-keys Ttet0|E{= ME At O|X[2F HEELICH HA
ol Z#tL|Ct AWS KMS keys@| &

21 x2E ¢53t U 5535 Al --wrapping-keys ItEtO0|E{7} 2 E
£EE A835tod 2 E 71E KIH(2-Y Atell)st7{LE discovery £EE trueE2 HHE = JU&

F key S8
L|Ct 22424 AWS Encryption CLIOIM At & = 4= ¥ 7|7} MEtElX| i &L ct.

aws-encryption-cli --decrypt (or [--decrypt-unsigned])
--input <input> [--recursive] [--decode]

--output <output> [--interactive] [--no-overwrite] [--suffix

[<suffix>]] [--encode]
--wrapping-keys [--wrapping-keys]
[key=<keyID>] [key=<keyID>]
[discovery={true|false}] [discovery-partition=<aws-partition-
name> discovery-account=<aws-account-ID> [discovery-account=<aws-account-ID>] ...]
[provider=<provider-name>] [region=<aws-region>]

[profile=<aws-profile>]
I

--metadata-output <location> [--overwrite-metadatal] --suppress-

metadatal
[--commitment-policy <commitment-policy>]

[--encryption-context <encryption_context> [<encryption_context>

..1]
[--buffer]

[--max-encrypted-data-keys <integer>]
[--caching <attributes>]
[--max-length <length>]

[-v | -vv | -vvv | -vvvv]
[--quiet]
T8 od AFE
ui2t0|E{et s 2ol X E 7 IS HExE = U&LICt ol BHo mtO|E et 2t 2 ™
st= A Z&Lch. 04IX1I'— T4 Thdof| mtetO|EE MEsts B AME HERsAH e

aws-encryption-cli @<configuration_file>

In a PowerShell console, use a backtick to escape the @.
aws-encryption-cli ‘@<configuration_file>

327

AWS Encryption SDK JHEER} 70| =

AWS & 53} CLI BHZ ni2to|E

O] =52 AWS Encryption CLI B3 utzt0|E{of Ciet 7|2 dEES NS ELICH ©A dE2 aws-
encryption-sdk-cli dHME A Z3IH L.

--encrypt (-e)
2= |O|EE &3 efLIct 2E BHO= --encrypt, --decrypt EEE --decrypt-
unsigned Tt2t0O[E{7} RL0{0F & L|CH

--decrypt (-d)

22 Oo|EE 558t g Lct 2E BHol= --encrypt, --decrypt £= --decrypt-
unsigned Lt2tO[E{7} RL0{0F EFLICH

--decrypt-unsigned[HH% 1.9.x & 2.2.x01| = E]

--decrypt-unsigned I}Zl0/E{= MO|HEHAEE 55 35t1, 5§53 Tof| HAIX|7F HBEE/X]
I 5 gfLCt --algorithm m2tOIEE AFSstD CIX|E HEO| gls &dnEl& MEZS M
5t0{ CIO|EE ¥ =358t B O| TtEtO|EE AFSELICH MO|HEAET MEE A2 5557t A
i ghct.

--decrypt E£&= --decrypt-unsigned& S35 5t0 AISE = UX|0F = CH AISE == ei&L
Ct.

--wrapping-keys (-w)[EH7 1.8.x01| = I E]

53l U 553 2ol ArEEl= e F|(EE= OtAE F)E RAEgLct 2 H-Eo|M 042 --
wrapping-keys It2tO|EE A E = JU&LIC.

H 2.1 x2EE=

-wrapping-keys I}2+O/E{7} *§_§F Y =555 WHo| EELCH HH

1.8.x0IM =3t B0l --wrapping-keys EE& --master-keys It2t0|E{7F 2 & L|C}. H
M 1.8x0MH 555 BHO| L --wrapping-keys Itet0|E{= ME AEO|X[gH HEELICEH

AR X|1E OtAE 7| SZRE A85ts B €335 U 533 HHE= key & provider 40|
LZIQELICH & AFSE [AWS KMS key 2F 5 5t HYPoll= 7| o Lo 5535 HHEol=
20l true?l key &g £ discovery &40 *_é'RE*I—lﬂP(% CHe obel). 2538} Al key A A}

835t= 70| AWS Encryption SDK 28 Al L] S3 H{Z! &= Amazon SQS CH
7|0 U= HIAIX[Qt 20| d=3HX| f2 IHI/\IXI% 12 253tste B9 §5 SLE U

LS L—

AWS KMS Ct& 2|1 7|18 2iE 7|2 At85te WHE Eo{F = ol dME HESM LS 2
AFE AWS KMS keys.

e R -

http://aws-encryption-sdk-cli.readthedocs.io/en/latest/
http://aws-encryption-sdk-cli.readthedocs.io/en/latest/

AWS Encryption SDK JHEER} 70| =

0%
>
rlo

£4: - -wrapping-keys T2t OIE{S| 2t S Chg 402 ZAELIL

attribute_name=value®lL|LC}.

key

ol AEE EiE 7|E AEE
O/E] 2fol 02] key S EE XIHE = U&LICH
= MOl BtEA| HegrL|ct 253 HZE AWS KMS

7| ID, 7| ARN, 2238 O|& EE= U3 ARNY = &
2 AWS Key Management Service it X} OFLY

. =8 BY: 2E o= 8 B
key Ol ME AHE3HE 72 7] 440| 7
SLICH AWS KMS 7| AiRiofl chzt

Me| 7| AEXE A AStA 2.

OE r|o _I}>

- 2535 HH: AWS KMS keysE AI835l04 2535t AL --wrapping-keys ItetO|E{0]|
= 7| ARN 20| U= key &4 &= 240| true?l discovery £430| H#LICHE Ch= of
=l). key 42 AL 3= 20| AWS Encryption SDK 284 AFILICH AFS A K| OFAE
7| S2XE AE5t0d S5 3HE = key §40| BHEA| R FFL|Ct

(® Note
=& 3 BHM AWS KMS 2l & 71§ X|'dstedH 7| 42| 2f0] 7| ARNO|o{of &
711D, B& O|§ &= HE ARNZ AtE5t= F< AWS Encryption CLIE 2HE
7€ °._|¢! &tX| ZgfLich

Zt --wrapping-keys Z}2tO|Ef £f0f 02 key & 32 KHE = l&uch agLt --
wrapplng keys ZtZtO|E{2] 2 E provider, region & profile 432 dig mtztOlE] Ztol =
2 710l MEELICH M2 CHE §4 2o 2 ¥ 7|18 XI™52dH T-olA 042 --

wrapping-keys I}2tO|E{E AFS & LICEH.

discovery

AWS Encryption CLI7} 2 2|2|& AL&35t04 HIA|X|E |5E3 AWS KMS key 5t 5 5{& e LICt
discovery Zf2 true EE= falsed = U&LICE 7|22t2 falseLICt discovery H82 5

23t BH0|M, 22|12 otAH 7| SZXH7FAWS KMSQ! ZA0| Bt & = & LIC}.

E A83104 553 AWS KMS keys® [l --wrapping-keys Zt2t0|E{0|= 7| £ E&=

Zto| 2l AM £do| ERELICHrue(E Ct OtE). key 82 ME3te 4 210| false?l

discovery £ E2 AtE35l0{ HME BAHoE HEEH £ /J&LICH

- False (Z|2%)) - AM Sdo| X|HE|X| k7Lt 240] 21 BL false AWS Encryption CLI
= --wrapping-keys o 2t0|E e 7| 492 AWS KMS keys XIEE BF A& 50 HIA| K|

EIEENIEEES 329

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK JHEER} 70| =

ok

E S35 3}8LICt discovery7t false [key £ 2 X|HSHX| to™ 53531 B0l Auj

2]
stLICH O Zt2 AWS 2t E 3 CLI 28 Al2llE X|4ELict

« True - AM £40| Zt0o| 21 B true AWS Encryption CLIE & E3HEl HIAIX[2| HIEIH| O]
E{ AWS KMS keys 0| & 7tX{2 1 O|& AtE5t04 HIA[X|E AWS KMS keys = Z 3t gFL|Ct.
2ol ol AAM £MH2 55351 Al 2l 7|1& X[HE =+ ¢l= HA 1.8.x 0| 2] AWS Encryption
CLI H™AH true SEELICH J2{U4HE AFE5tE{E 2|= AWS KMS key &= BA|ZL|CH
discovery7t true [l key £ X|H5IH |58 FHF 0| AlufgrL|ct.

O| true gt2 AL& 3™ AWS Encryption CLIZF M2 CHE AWS A & 2| AWS KMS keys
Ol ME AFESt7HLE AL ROl A AHE FHEHO| @1= AWS KMS keys & AFEStE{D & = UE

HAAMo| 21 ZHL discovery-partition 2! discovery-account £ AF2304 AWS A X|& et
L4922 AWS KMS keys AHE E|=E& MEHstE truedO| 7t E&LICH

discovery-account

il

Mol H2E &

3toil AWS KMS keys A8 E|l=E X[HEIQ 2 MEHELICH AWS H 1. O

Rl KABH Zt2 AWS A IDYILICE.

g

=4 AFgO[Dd 444 4 4 AWS KMS keys Of 2 A4 trues|T 244 ThE|M S40]

Z+ discovery-account 432 tLt2| AWS A IDBH AF&SHX|BH SUBt - -wrapping-keys
ut2t0|E{of| A 0421 discovery-account £82 X[He = A&LICt X[™HE --wrapping-keys
o 2tOlEof X|HE 2E A" XIEE AWS ZHE|[Mof| Jo{oF & LCt

discovery-partition
discovery-account & 44 0| Ao CHet AWS THE|ME X[HELICH 2f2 , aws aws-cnE=2t

2 AWS THE|M0|0{0F EL|Claws-gov-cloud. AFAIEH LI 2 AWS & &= 9] Amazon

2|44 0|52 ARSML.

0| &2 discovery-account S48 2 AISE M 2FLICEH ZF --wrapping keys Zt2tO[E{0]|
£ discovery-partition &2 stLtEF X|HE = JU&Lct o2] ZHE[M AWS A ™ o HE XI5t
£ =7} - -wrapping-keys LI2tO|E{E AFSELICH

provider

OHAE] 7| STRE Al

et &AI2 provider=ID Ho{L|C} 7|27t 2l aws-kms= & LIE
HLICH AWS KMS. 0] &4

OtAE] 7| SZRH7H7L ot BB R EFLICH AWS KMS.

M T

e R >0

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS Encryption SDK JHEER} 70| =

2|

AWS 2| 2| AMER LT AWS KMS key O] £d2 oflgt # 2B LICH AWS KMS keys. O &
S key HEA0 20| XIBE[X| oS I ASEIH, 2FX| ol Zols FAIELICH A
& M AWS CLI BEE Z2ntelo| 7|2 2|™& AEe g Lot

profile
AWS CLI O|50| X|HE Z=mt S AEELICt O] £E2 ol2F &8 LICH AWS KMS keys.
ol Zz Eo| 2|™2 7| AExtof 20| X|HE[X| et o] BB0] region 50| ¢S MR ALE
ElLICH.
--input (-i)
253 E= S53E ClolEe| fIXIE XIFELICH o] met0|E s Ea AP ULICH 2t2 ot &
£ Cl2EE 42 £E 1Y 018 HHY & &Ltk B (stdin)oll THEH Y2ie Mste B2

21210] gl 7 BO| 2FLF Z1 90| MTxoz L

--recursive (-r, -R)

= C|HEE2] L sHE ot CIEE{2[of mhdoi| CHal 2fd e =~ &FLICt o| mtatn|E = &40l
--input®@! C|EEZ|o| A2 E4=LCt.

--decode

AE3E F °._|_=.'_ 2E IJ{IAIXI% S35 35tt{H HAIXIE S&3tst7| ol HA| HAIX|E C|2E
o
=

r

':'4%'01I --encode Il2}O0|EE AF2EH AL ST 2535 E2I9| --decode
E 04 Base64 2 Q1A ==l

0 s

X|EgfLch o] metOles 4 AFZLICH 2f2 I OlF, Z7IE CI™EE|, E= &

(=)
=
242 HHBE (stdout)ofl A E - = Q&LICH

XEE £ CIHEEE7t EMSHXR| o™ ¥ 2 Mufgi|ct 2dof ot CI=EE27t 28 E 32
AWS Encryption CLI= X|'d8t £33 C|RE 2| ot2hod| 5t CIREZIE ATIELICH

d

T2 2 oetole #x 331

https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

AWS Encryption SDK

K
2
Il}e
r
ljl
0
mIE
rII
oY
Q'I_I
.r..”
F_E'.
|
I

o
E
interactive & --no-overwrite MFEFDIE-IE AF%E*L—HZF. 'E—1'0-|&7| @1% E Alstx| efeEd
M --quiet WEtO|EIE AFSELICH

® Note
£3 11Ug FoimE WHO| MuistH £ mhelo| ARIELCh
--interactive

oAU E FHo{A 7| ol HIAIXIE EAIRLICEH

--no-overwrite

otUE Ho{Arx| f&LicH CHal £33 mtUo| e B2 AWS 253 CLI= af

--suffix

AWS Encryption CLI7| dst= Tt ol AF&XF X 1t Of
A2 LIEHLHE{™ Zfo| gi= TEtO|E(--suffix)E AFSELICH.

7129 & --output WEtOE{7I I O|§E XIH5HX| i 42 £ It O|§=2 & 1t
YU o|Eoil HO|AHE CE Zdat Z 2 o|& 2 7HELICH ¢35 B
LICt 2353 @ado| MO|AE .decryptedLICH.

--encode

Base64(HIO[L{2|E BMIAER) QIZEE £330 MEYLICL QlZT2 ¥4 SAE Z2 40
ju.

24 El A E O| H|ASCIl 2XIE &2 sHA46}

&5l PowerShell Z&0 M £212 Ot E BHEoE MESHHLE Mol ME st R0
=l O| metn|EE AFS R LICH
--metadata-output

& 23t 2ol CHEr HIELC|OIE o] #IX|E XIEELICH B2t Tt o|§S UFLICH CIAE 2|7t
EXSHR| pto™ HH2 AufefL|ct B E(stdout)oll HIEICIO|EIE AME{H -& ASELC

H2 E24(--output) L MEIHO|E] £E24(--metadata-output)S SUSH WS Z stdoutod| £
&= eigLIch £t --input EEE --output 2t0| CIEEE[(THY Ol M2|)2! Z< HEHIOE &
g SYe CIAEEE[L Y CI=E2[Q] 6t CIEE 2|0 2 &= eig Lt

AWS Encryption SDK JHEER} 70| =

7|18 g X|Hele B2 7IEX 22 AWS Encryption CLIE mto| 2 E ZEIx0f M HEH O]
HHIZEE F7IELICE 0| 7|52 ME835tH 2E 2535 2ol CHEr HIEHH|O|E{7t Z &t &l B
I Qe MAME £ QlALICH 7|2 US| LIRS H0o{AMP{M - -overwrite-metadata It2HO|E]
E ArS gLt

AWS Encryption CLI= BZ0| =&8st= 2 253 E= 553 2o CHsH JSON & 49| H|EHC|
O|F t|ZE=& EFEHELICH ZF HIEHH(O|H B2 =0l= 3 & £33 It Uo| ™A Z=, 535 7HE
AE QTH|IEMED, 22|17 MYs AEStD Eot EE S SFSt=X 2Hlst= 0 MEE = U

IEP S W27t ZEELICH

--overwrite-metadata

HEIHIO|E £33 IUO| LIS Ho{#&LICH 7[E™MO 2 --metadata-output ItEI0|E= T}
ol 7|&E Li&0ol HEtHO|E{E F7IE L Ct.

--suppress-metadata (-S)

AE3 E= 553 Mol CiEr HEtDIo|BE sZLCh.

--commitment-policy

ot 53t ol 253 W0l ChEt A HAMS R|IHFLICH FHT MM HAIXI7F 7| HL Eot s
ANE5t0] 45 5E|T E55tE|=X| {22 AXELICH

--commitment-policy ItZtO|E{E H 1.8.x00 TUEIR&LICE ol &E3 2 5535 Ho]

7 1.8.x0lA AWS Encryption CLIE 2E &5 3t & 53535 =¢{0f forbid-encrypt-allow-
decrypt 78] HAME AIS&LICH &35 EE= 553 HAH0|M --wrapping-keys It2t0[E
E M83%tE B9 forbid-encrypt-allow-decrypt 20| Q= --commitment-policy I}
2tO/E{7t BtEA] ERELIC} --wrapping-keys It2tO|EE AL 35X E2™ - -commitment-
policy WEtO|E{= fESHK| &LICH AN HAE HAstH 70! HAO| HT 2.1.xE ¥a0]
Eg [require-encrypt-require-decrypt2 A& HEE= XS BAMo 2 WX[E =
&Lt

H™M 21 x2E 2E 72 M2 ZhHo| X[ELIC --commitment-policy It2tO|E= MEY AL
Ol{ 7|28/ 2 require-encrypt-require-decrypt &LICt,
o| utetO|Ee| 2t 2 Chs1t Z&Lct

« forbid-encrypt-allow-decrypt - 7| AU E & =35e = gigLICt A= 3HEl ALO|T{E]
AEE 7| 72 AI2 {82} ZAQi0| E55tE £+ Q&LIC

e d

ozt &= 333

AWS Encryption SDK JHEER} 70| =

%1 1.8.x0{| M Ol= R USHH R=38 2L ULICH. AWS Encryption CLI= 25 ¥53% & 5355}
240 forbid-encrypt-allow-decrypt 75! ¥ g AP%E*L-IEL

- require-encrypt-allow-decrypt - 7| {2 %
o ztH|gi0| | 3tEHLICE. O] 22 ™ 2.1.x0 =

« require-encrypt-require-decrypt(Z|£%}) - 7| 74!
Ct. O 22 A 2.1.x0f| E/E|R&LICH Ol= BT 2.1.x O] 7
&5tHM AWS Encryption CLI= O|T™ TS| 2 &S 3tEl AIO|HEIAE
AWS Encryption SDK.

715 & Mo CHEt AHAISH L& 2 0Fo| 12| 0] AWS Encryption SDK AME R ZSHAM2.

--encryption-context (-c)

ztdo| of

L

ok

st ZHEIAE S XIGELICH o] meto|eE Ea= ot X|gh HEELICH
o

— = o
« --encrypt B0l 5tLt 0|4 2| name=value H0{E LT LICt SHMS ALE5t0{ HO{E 71&

gl
« --decrypt BHEO|M name=value H04, Z2t0| = name 24 E= & CHE I LICH
name=value H0{2| name == value0l SEHO|L} Ex EXI7F ZEE A< A Ho{E
A 2352 FALICH € £04 --encryption-context "department=software

development" L|C}.
--buffer (-b)[HHT 1.9.x & 2.2.x0{| = IE]

CIX|™E MEO| JU=X| &Eelst= S &2
--max-encrypted-data-keys[tH™ 1.9.x

HEl HIAIX|S| & 2 3HEl HolE 7]2o] 2[c ~& XIFEfLICH o] mEt0IE{= ME AFE iL|CE.

FOI'
ol

& & 2h2 1~65,535Q4LICt. O Tt2tO|E{E 4=f5HH AWS Encryption CLIE 2|CHZt S M &3t
cfgLct &3t HAIX|E £|CH 65,535(2M6 - 1)7He| Z 2 3HE CIOIE] 7|18 BRE & AULL

EtOIEE A8 5tod R E Aol HAIXIE SX|E = U&LICH 553 B
HAIXIE B XIstT S35t + i dE3tE HlolE 7(7t Bfol & & o
AR 25 5HE WXE = U&LICH RHMlEH HE Y ollde 2= 8HE olo|H 7| MEt Mg Fx

e R o

AWS Encryption SDK JHEER} 70| =

--version
AWS Encryption CLI2| HEE 7}XdSLIC}.
-V | -vV | -vwV | -vvvv

DIAIXI AIéH—IEP ’E‘E'.QI Mg HE &= 2tolefel v 7isof a2t
L A5t ZE T4 2 A0 A

CIHZ =& OIo|IE & ._F%E*LIEL
--quiet (-q)

= otUE FHoi{& mf LIEHLHE HIAIX|QE 22 B HAIX|IE EAlSHX| St& LIt

=

T

--master-keys (-m)[O|&f AFSE|X| £ 2]

(® Note
--master-keys It2t0|E{= HT 1.8.x0{ A O 0| AFS E[X| St HA 2.1.x0 M A7
R&Lict Al --wrapping-keys Zt2tO|E{E A EHLIC}.

ot 535t 2l 255t S0l ALBEIE OAE 718 XIFELICH ZF HoiA 042 OtAE 7| ThatolE
g A 2

1| =
= 1
g + A&LICH

--master-keys IZtO/EH= =35 & E A EELICt o] mtetolE{E AFSXE X|E(HI
AWS KMS) OtAE 7| SZXE AHE S B S35 BP0 EFEA| 2Lt

44 --master-keys I2t0/E{Q] 242 OHS 422 THELICH HA2

attribute_name=value&lL|C}.

key

ok

5 s

stofofl AFSE BT 7|8 AHBILICH HAIR key=ID HOIRILICH key 4442 BE o
H

255t HH AWS KMS key HIME AtE35t= B2 7|1 £482| 4f2 7| ID, 7| ARN, EE 0]
& E= EWE ARNY = J&LICH AWS KMS 7| AlExtof CHEF REAIEH LI 2 AWS Key
Management Service 7H X} QHLHA{ Q| 7| A|HEXIE R T SHMIL.

key &4 OFAE] 7| 22 X7 AWS KMS7} o &

[} =53 B0 T AP QULICH key &
2 AWS KMS keyoll M &= 3tEl CIO|EHE =585

= BEol= 518 E/X| ef&LIC

e R .

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

JHeER 7Hol=

AWS Encryption SDK

U&LICH ae{Lt 2 E provider,

A
T AAHE

Zt --master-keys It2tO|E Zfof 042 key SHE X|HE
70 MBELICH MECOHE S92

=
region 2! profile &4 s ut2t0|E 2ol 2 & OFAE
2 OtAEH 7|18 X|H5t2{™ B 0|AM 048] --master-keys II2tO|EHE AFSFLICH

provider

LICt A2 provider=ID H0{LIC}. 7|27, 2! aws-kms=E& LIE}
S AH7E7F ot Bofok e FL|CH AWS KMS.

T

4

Al
=
2
=

OlAE 7| 3=2AHE 4
H|C AWS KMS. 0

2|

AWS 2| o|E AlEEFLICH AWS KMS key. O] 42 ofEF & LICH AWS KMS keys. O] &
2 key AERtol| 2[H0] X|IHEIX| k2 T2 Bol= FAIELICH A
& A AWS CLI BEE Z=zntao| 7|& EIE% H’ES'_QI&*LIEP.

profile

-

2 ot S EELICH AWS KMS keys.
0] region /50| Q12 MEH ALS

AWS CLI O|§ 0| X|HEl =20t S AlHEFLICE o] &4
F 11 0

-1 =
ol Zzzdo| g™ 7| AEXRtof 20| X|HEIX] &

| B

Lot

o2 o2to|E

--algorithm

CHAM 20 2[E MEZ S XIEEELICH o] mheto|EE ME A0l 253 BE

O| Z2tO|E{E M=F3tH AWS Encryption CLIE EH7 1.8.x0| AWS Encryption SDK = 1 El0| CH3t

7|8 &D2E MER S SHLE MSFLICH F 7|2 g2 25 HKDF, ECDSA A & 256H]|

E 2t 33t 7|9 &7H AES-GCME AF & LCt. stLtE 7| A2 AFS5tn CHE StLteE AFESHK|
L|Ct

7|2 dnelE MEZ ME2 FEol et 75! ZAof et Z-EE LI

Zt 222 2M 2ol

--frame-length

AEE e dolz EE YEgLICH o] mEt0IEE M AL ol 2f 33 BHo|MEF 7
L|C.
1dL[Ct. Z240] 0017 =B Mel=lX|

gt2 HIO|E Bt (2 Y™BfLICH R & 242 0 & 1~2731 -
ol 2 CIOIE{E LIEHELICE 7[= 22 4096(HIO|E) LICt.
336

I S

https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html
https://en.wikipedia.org/wiki/HKDF
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/index.html#execution

AWS Encryption SDK JHEER} 70| =

® Note

JtsstH =8| MEIE CIOIEIE AH8SHMIR. £ BllHAIl S 20 =7 X2|=X| 2t

CIO|E{& AWS Encryption SDK K| B LICH o Y 0] 7342 05| Z 2| X2 K|

of2 ALO|HEIAE & M8 AWS Encryption SDK == 4 &LILCH. |’°."_4E|E DE 2o 73
E

2 =Zoe XM2lE MO|HEAESL Z7Q X{2|ZIX| 2f2 AtO|{E S35 = UE
LICH
max-length

12! XEIZ|X| 2t 2 HIAIX|Q]
H =53 HHo|H2t REEL
2l MAH xR &LICE

E
=3
X
ruO
mlo
2
Im
A
Hfo
lo
ﬁ
- 4
|K
o}
°
L
|
A
rr
o [H
o

Zf2 HIO|E B2 U2iFtL|Ct of mZtO|EE MEfstHe 5538 Al = 37|18 FMEHsHX|
AWS Encryption SDK St &L|C}.

--caching
ZF 2123 mtdod| ciall Mf Cllo|E| 7|1& st CHAl O|o|E| 7|& ZHALE St HIOIE 7| e 7IsE
gdstef ol metn|BE g AUE[2E X[EfLICH o] 7IsE Ar&st7| Zoi ClolH 7| 7K

2 dsErLICt
A HEME oM.

--caching ZlZt0|E{0l & CHS

1

4ol A&LC

FHAl S =0l FHAloll FIHE AIFFE AlEetod FHA| 5o A& AlZh(F)E ZAEELICH

OLCH & 2t U LICH =[CHZt2 g Lo

K
>
10
0%
I
i)
o
o
o
¥
»
I'| r
b

ICH HIAIXR] =& 2EE LI

FES U2 1~2r32L|C} Z7|EZf2 HIAIX]| 243270 LICE.

T2 Y oetole #x 337

AWS Encryption SDK

JHeER 7Hol=

max_bytes_encrypted(ME AF&H)

HAIE S50l EeE +~ U= 2|0 HHO|E =8 ZAFELICH

RESH U2 0 L 1~2763 - 1LICE 7|22t2 HIAIX] 2763 - 170 IL|Ct Z2f0] 00| Hl HIA[X]
EAEE F5Etstes BB OIOIE 7| 7HeE ALSE + U&LICH

AWS 253t CLI B{7

Z| 4

®

EHZ1 2] AWS Encryption CLIE AF235HE Zd0| E&LICH

Note

4.0.0 0| 2| AWS Encryption CLI EHE2 end-of-support £ 74|04 Q4 & LICt.

EL} Olo|E{E ¥HZA5HK| o1 {7 2.1.x 0|40 A AWS Encryption CLIS| Z|&l HHE S Z ©F
Mol H do|o|EE £ U&L|ch 2Lt A 2.1.x0ll EUE ME2 22 7|52 o6t Xt
2tE|X| et &LICH BT 1.7.x 0|50l A 0| E5t2{TH T1X{ AWS Encryption CLIS| Z| &1 1.x
Mo 2 d|o|Esfof gLict. REMIEH LI 2 nfo|1e|o|A AWS Encryption SDK2 & =3t
M.

MZ& 29 7|52 el AWS Encryption CLI & 1.7.x 2 2.0.x0IMH RZ|AER&LICH 2
24Lt AWS Encryption CLI HH 1.8.x&= H& 1.7.xE& CHA 5t AWS Encryption CLI 2.1.x&
2.0.xE CHA|EFLICH REAIEF LHE 2 GitHub2| aws-encryption-sdk-cli 2| ZX|E2[0fMH &Ed £
ot HIE FESHML.

k

9| 2 HToi| CHEt RFMIEH LI 2 M2 AWS Encryption SDKEF Z M| 2 2| {1 AWS Encryption

SDK.
04FH
AWS

7T

Encryption CLI2| %Al HAM S 2 oto|ad|o|MEfL|Ct A 2.1.x O] 4

g A

%

fjo

ALE3H{oF StLER7?

b
>

Encryption CLIE M& AtE5t= 8% X4 HAE AFE LY.

1.7.x AWS Encryption SDK 0| X2 2 ¢t 3 31 E O|0|E|E 55 3t 6t2{t HA| AWS
(=]

HxotMlR.

g2 HEELICH AFMIE L& 2 0ro|a 8|0l AWS Encryption SDK

XM G| otE 7|

o B4 AbErol CHEF REMEF LH& T, A -HM S 2 Oto|ag|o|M5t 7| |8t X|EI2 0to|z 80|44 AWS

Encryption SDK MME & XML,

2 YHIo|ES 7| M| ZE H
=

B

338

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK JHEER} 70| =

- ME& AWS Encryption CLI Tt2}0[E L £4oi CHet dB2 MM E FH XM LAWS Encryption
SDK CLI #& 2 metoje F=E.

Ct

0jo

2=
=/

rlo

7 1.8.x 2! 2.1.x0{ A AWS Encryption CLIS| B4 AlgtS ML |CH

AWS 253t CLI T 1.8.x 48 AtE

« --master-keys It2t0|E{E O O|&f AL SHX| b &LICH CHAl --wrapping-keys It2tO|E{E Al
ot

« --wrapping-keys(-w) Zt2t0|E{E FI7+EILICE --master-keys LiEtO|E{C| R E &4 X|§E
LICt EE3 AWS KMS keysE AFE35t0o 5558 Mot R &8 O30 22 MEIM 42 FIHEL
Ct.

 discovery

« discovery-partition

« discovery-account

A8X XIH OtAE 7| 32X B2 --encrypt & --decrypt WA= --wrapping-keys &
= --master-keys It2t0|E{ 7t e LICHE Ch= OtE). £8HE A& StE --encrypt BHEM=

--wrapping-keys I}2I0|E{ EE& --master-keys ZF2FOIE{7} AWS KMS keys Z & LICHE
Ct ot'el).

E M83tE --decrypt BA0I|A AWS KMS keys--wrapping-keys It2tO|E{= B4 A& O|X|
Ok ™ 2.1.x0H 2est22 HEELICH 0|2 AF88tE B2 key £ EE£ discovery 54 & &t
LIE true 2422 X|H5HoF &LICHEZ Ct= ot H).

« --commitment-policy Lt2tO|E{E FIIELICH St & 22 forbid-encrypt-allow-
decryptLIC} forbid-encrypt-allow-decrypt 743! A2 nE 53| 3l 253 Ho]

AtSELICH

A 1.8.x0M --wrapping-keys I2t0|E{E AL E M= forbid-encrypt-allow-decrypt
Ztol Q& --commitment-policy HEtO|E{7} ZRBtLICH O] Zt2 BAIMHo 2 MAsHH B
21x2 Yado|l=8 m 73! A0 RS2 ZE require-encrypt-require-decrypt® G E|

£ RE YX|g + JA&LIch

AWS Encryption CLI & 2.1.x 8473 AtE

« --master-keys Lt2t0O|E{E NMHELICt CHAl --wrapping-keys It2tO|EHE AMS & LICE.

EHH 339

AWS Encryption SDK JHEER} 70| =

« --wrapping-keys IIZl0/HE 2E &E38 L 5535 BHO| BHEA| ERELICH key HH E=
discovery &4 & StLIE true Zt2 2 X|™HaloF ELICHE CHe oFH).

« --commitment-policy It2t0|E{= CtEt 22 Zf2 KI@ELICH RHAME LHE2 7HS! EA A
X-IO 7<I-7<o|.k||o

« forbid-encrypt-allow-decrypt
* require-encrypt-allow-decrypt
- require-encrypt-require decrypt(ZI£%})
« --commitment-policy It2tO|E{E= A 2.1x0| A ME4 At IL|Ct 7|24 2 require-
encrypt-require-decrypt&lL|C}H.

AWS Encryption CLIOJ| CHEt EHF 1.9.x 2 2.2.x 843 ALE

N
N
b
jo
2
>
Q'I_l
=
FO

« --decrypt-unsigned It2}O|E{E FItEFLICH RHAIEH LHE2 HT 2.2.
o --buffer WEtO|EHE FIHELICE RHAIEH LIE 2 HT 2.2.x8 B ETHAMIL.

« --max-encrypted-data-keys It2tO|EHE F7teFLICH AtAEH LI 2 2= 3= HIO|H 7| A

g% AXSML.

AWS Encryption CLI {71 3.0.x 473 AtE

« AWS KMS C}& 2| 7|0 cist X[

fjo

FIHELICH KA LI 2 CHE 2[T AHE AWS KMS keys

B

340

AWS Encryption SDK JHEER} 70| =

CIlOIE 7| 7H &

Clo|E 7| 7H&l2 CI|O|H 7| & 2t A S35t RE2 & FHA|of KA ELICH CO|EE 2f =38t 6t7{Lt sH=E
= FHAIIAM L x|5HE OIOIE| 7|2 AWS Encryption SDK 3t&LICH Yx|5HE CIOIE| 7|18 &t 'F'_

7|18 d4M35t= Cial FHAIE CIOIE 7|18 ASELICE CIOIE 7| FH 42 HsS 7HMst HIE S
H oHZ2[AH 0| & &rof| [HE MH|A BtE LHMAM XI5t Ol =S 0| ELIC.

o
. 2E3 RS S 4 9i8 HER SE7L, HISO| B0l SHLL, MEHE0| AL, Blas FlorE

7 &2 AWS Key Management Service ()2 242 253 HHIAS A2 ELU = JUELICIAWS
KMS. AWS KMS =4 @3 = st o 28t B2 7&o| REE & UA&LICt o EE(7|0[M2 74
AlEl 7|18 AE5I0iE &5t TiAl LR TIOIH 7| REE XMEIE = U&LICH AWS KMS. (AWS
Support Center0l| M ALHIE MAM5t0 HH - E =L =% J&LICtH)

|E{ 7| FHAIE M5t D B2lst= ol AWS Encryption SDK =2 0| ELICH 2Z FHA|2}, FHA|SF
A% 25t AAEX7E MYE 2ot A2 M85t A 25 st At HEIXHIHA CMM)E MBS
ZLICH o243t 718 QLA E EH AH85tH A|AR HotZ RX[SHHMCIOIE] 7|18 E2MHoE MALS
S o

ololE] 7| FH A2 F 2|l ok AWS Encryption SDK &t=2| MEHX 7|52lLICt J7|[EMHozE
3} =hedoll CHall A CilO|E] 7|2 AWS Encryption SDK A§438tL|C} 0] 7|82 535 28 Ab
22 ClolEe 7|8 Bt A8 6 K| &t =5 gLt YEtAo 2 HolE 7| FHA2

Mete o 28t Zoloh ASELICE O3 oS dlolE 7| FHA 2ot AAHZLE A8 3tod HIE 2

EE HYste ol 228 z2|adto| 7fdE AL st=X| HIE LI

JlOII

™ 3.x= 7|13 QE{mH0|A T} ofl BI7HA| OFAE 7| S X QIE{H 0|A & AHEshE i) CMM AWS
Encryption SDK for Java BF X|48fL|Ct 2L} .NET AWS Encryption SDK 82| {71 4.x,2| ™ 3.x
AWS Encryption SDK for Java, Rust AWS Encryption SDK & 2| {7 4.x AWS Encryption SDK for
Python, Go AWS Encryption SDK 82| H& 1.x= CHAl| 2535t RI2 7|4 £F M2 AWS KMS A X
7|22 K|HELICH AWS KMS HEZHM 7|22 255tE 2EIA= AWS KMS HEH 7|7 2Rt 5

Z3te = &Lt

341

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/

AWS Encryption SDK JHEER} 70| =

Olz{8t 2ot ERflo|l=E=of CHEH At LHE 2 AWS E2F E 29| AWS Encryption SDK: H|O|E
H =2

7| 74 &0l of E 2|7 ol Moil Mef et x| Z 86t EH

|

 HIOIE 7| FH& ALS HE

« AL EoF A EFE
X

_|
=
« OOl 7| S MR BE

« OlO|E{ 7| 7HA! of A

CIOIE 7| 7 AtE L

O| &AM M= oHEE|Fo|Mofl M H|O|E] 7| FHAE AL 5= WS Eod
2 OrLHELICH O CHE, 2o TlO|E] 7| FHAlE AF235lo 2RI S
EHESE Zgereiuct

LICt T2 MAE B
2 35t5t= ZHEE oA 2

no I

o| MiAd0| of Mol ME 2.0.x 0|4 HHE 2| AWS Encryption SDKE Al 6tE #Hg HoiELICt olst
-|7"|° AME5t= oAe] A2 ZZ el 21010 CHE GitHubl| ElZX|E2|e] EE|A FSFo|AM sHE

ol M CIo|E 7| FHAIE Ab85tE A oKt ElAE & of|MlE CH2 2 AWS Encryption SDKZEFZ 5HA|
o

.

* C/C++: caching_cmm.cpp

Java: SimpleDataKeyCachingExample.java

JavaScript 22} X: caching_cmm.ts

JavaScript Node.js: caching_cmm.ts

Python: data_key _caching_basic.py

AWS Encryption SDK for NET2 Cl|O|E 7| FH &2 XI5t X| f&LC.

|

- HlolH 7| e ALS: EHAIE

o CIOIE{ 7| ZHA oKX 2XYE & 55

HlolE 7 7 &) A8 &Y 342

https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py

AWS Encryption SDK

CIOIE 7| 7H &) AFS: EF AL

Ol EHAlE XIZI2 ClOJE| 7| HAIS FH3HE o WR# 74 24

=1L L

- OOl 7| FHAIE B LICt. O] oMol M =7 AWS Encryption SDK X3
LICt FHAIE 107HQ| CIO|E 7|2 A|EHErLCt.

9'|_|
rir
[
=
L

E Al23t

C
// Cache capacity (maximum number of entries) is required
size_t cache_capacity = 10;
struct aws_allocator *allocator = aws_default_allocator();
struct aws_cryptosdk_materials_cache *cache =
aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);
Java

CHS Ao M=l ™ 2.xE AFEFLICH AWS Encryption SDK for Java. ™ 3.x= HO|E 7|
714 CMME 4 AWS Encryption SDK for Java O|4 AF&35HX| E&LICH B 3.x0i A= CHAI &
I.

Z3 AR A SFEMOIAWS KMS AISAH 7|22 A8 £ &L|Ct

// Cache capacity (maximum number of entries) is required
int MAX_CACHE_SIZE = 10;

CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(MAX_CACHE_SIZE);

JavaScript Browser
const capacity = 10
const cache = getlLocalCryptographicMaterialsCache(capacity)

JavaScript Node.js

const capacity = 10

const cache = getlLocalCryptographicMaterialsCache(capacity)

ClolEe 7| 7H& AMS: BHAE 343

AWS Encryption SDK

Python

Cache capacity (maximum number of entries) is required
MAX_CACHE_SIZE = 10

cache = aws_encryption_sdk.LocalCryptoMaterialsCache(MAX_CACHE_SIZE)

- OtAH 7| = XH(Java & Python) == 7|2(C & JavaScript)2 Mg LICH O oMo M= AWS
Key Management Service (AWS KMS) OtAH 7| 3FAt &= S8 E[= AWS KMS 7|22 AFSE
L|CF.

C
// Create an AWS KMS keyring
// The input is the Amazon Resource Name (ARN)
// of an AWS KMS key
struct aws_cryptosdk_keyring *kms_keyring =
ws: :Cryptosdk: :KmsKeyring: :Builder().Build(kms_key_arn);
Java

CtS oA =2 T 2.xE AFE & LICH AWS Encryption SDK for Java. HH 3.x= Cl|O|E 7|
714 CMM2 [AWS Encryption SDK for Java O|&F AFE5HX| E&LICH BT 3.x0I M= CHAY &
5 AR A £F MR AWS KMS ASH 7|22 A8 £ &LCt

// Create an AWS KMS master key provider

// The input is the Amazon Resource Name (ARN)

// of an AWS KMS key

MasterKeyProvider<KmsMasterKey> keyProvider =
KmsMasterKeyProvider.builder().buildStrict(kmsKeyAzrn);

JavaScript Browser

= HEte Al 20t 2152 2ol

"Hetx{o| 2ot Q15 S ot st A l=3aHof &LICt of o G
webpack(kms.webpack.config)oil A 2ot 15 & HolgfL|Ct. AWS KMS E20|HE I R4
PHolM AWS KMS 220 E SZX QATHAE HMHELICH O CHE 7122 MEg M 2

O|HE ZZXHE AWS KMS key (generatorkKeyId).

clole] 7| FHA ALS: EHAlE 344

AWS Encryption SDK JHEER} 70| =

const { accessKeylId, secretAccessKey, sessionToken } = credentials

const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken
}
1)

/* Create an AWS KMS keyring
* You must configure the AWS KMS keyring with at least one AWS KMS key
* The input is the Amazon Resource Name (ARN)
*/ of an AWS KMS key
const keyring = new KmsKeyringBrowser({
clientProvider,
generatorKeyId,
keyIds,
b

JavaScript Node.js

/* Create an AWS KMS keyring
& The input is the Amazon Resource Name (ARN)
*x/ of an AWS KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

Python

Create an AWS KMS master key provider

The input is the Amazon Resource Name (ARN)

of an AWS KMS key

key_provider =
aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

- I 5 E Atz 2EIRHFHE CMM)E ' LICH

ClolEe 7| 7H& AMS: BHAE 345

AWS Encryption SDK JHEER} 70| =

e CMME FHA| & OtAE 7| SSX B 7120 A LICEH 23 OFS 71 CMMOIM FHA &

of dAlat s HEELCH

C
oA 7|2 cvMmT 22 7|2 CMM E= Z|=2IoAM FHA cMME M 44& AWS Encryption SDK for
C= U&LICH o]l o= ZIR oM &l CMME A/ EdEFLICEH
e cMME et = 7(2 A FHAlof CHet X E ZEIAE = U&LICH REMIEH L& 2 the
section called ‘&t = 72 E"2 & ESIMIL.
// Create the caching CMM
// Set the partition ID to NULL.
// Set the required maximum age value to 60 seconds.
struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL,
60, AWS_TIMESTAMP_SECS);
// Add an optional message threshold
// The cached data key will not be used for more than 10 messages.
aws_status = aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, 10);
// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);
Java

CHZ oMM =S HE 2.xE AFS & LICH AWS Encryption SDK for Java. EH™ 3.x AWS
Encryption SDK for Java &= OIO|E{ 7| FHAS X|&5tX| L XD CHA| 531 A2 71 & £F M2l
AWS KMS A5 7|2l X|dgrL|ct.

/*
* Security thresholds
* Max entry age is required.

£ Max messages (and max bytes) per entry are optional

*/
int MAX_ENTRY_AGE_SECONDS = 60;
int MAX_ENTRY_MSGS = 10;

ClolEe 7| 7H& AMS: BHAE 346

AWS Encryption SDK JHEER} 70| =

//Create a caching CMM
CryptoMaterialsManager cachingCmm =
CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)
.withCache(cache)
.withMaxAge(MAX_ENTRY_AGE_SECONDS,
TimeUnit.SECONDS)

.withMessageUselLimit(MAX_ENTRY_MSGS)
.build();

JavaScript Browser

/-k
* Security thresholds
* Max age (in milliseconds) is required.
* Max messages (and max bytes) per entry are optional.
*/
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new WebCryptoCachingMaterialsManager({
backingMaterials: keyring,
cache,
maxAge,
maxMessagesEncrypted

1)

JavaScript Node.js

/*
* Security thresholds
& Max age (in milliseconds) is required.
& Max messages (and max bytes) per entry are optional.
*/
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new NodeCachingMaterialsManager({
backingMaterials: keyring,
cache,
maxAge,
maxMessagesEncrypted

ClolEe 7| 7H& AMS: BHAE 347

AWS Encryption SDK JHEER} 70| =

1)

Python

Security thresholds

Max entry age is required.

Max messages (and max bytes) per entry are optional
#

MAX_ENTRY_AGE_SECONDS = 60.0

MAX_ENTRY_MESSAGES = 10

Create a caching CMM

caching_cmm = CachingCryptoMaterialsManagex(
master_key_provider=key_provider,
cache=cache,
max_age=MAX_ENTRY_AGE_SECONDS,
max_messages_encrypted=MAX_ENTRY_MESSAGES

R %l—“—'—l‘. a3 cgoll M FHA|E AWS Encryption SDK &t 2|8t =5 ot 7{Lt AHA|

£0i|M Cllo|E] 7| 7H& & A8 3sto{ C|O|EE &

3 glstHL 235 3l5ttie 22 0lAE 7| 33X E
= CHE CMM CHAIO| AR RFOl FHA CMME XY

ot fol
L
o ol

(® Note
HolE{ AERIOILE, 2 7|E & == 9= IO|EE ¥ E35tste 2 F0|M HIoIE 27IE %
Matof BLICE. AWS Encryption SDK = & = @i 2 7|2| CIO|EE =3t M HI0|E 7| 7K
g A83HX| et&LCH.

oM i CMM2 2 M4 E AWS Encryption SDK for CA438t CH2 MIMHE X 2|&fLich.

Z|2Me 2 HAIX| 27|18 & = i1 AM[Eto| iz A<= HlIolE ZI1E& 7H&SHK|
AWS Encryption SDK St &L|Ct H& st Clo|Ef 2718 2 & 7HA2 58524 ™
aws_cryptosdk_session_set_message_bound HMEE AF&3I0{ HIA|X|C| Z|CH 27|18 A

ClolEe 7| 7H& AMS: BHAE 348

AWS Encryption SDK JHEER} 70| =

- (A

1§ oflf HIAIR| 27|20 I A DdEELICH AN HAIKI 27|71 HIE =atstH &
|

/* Create a session with the caching CMM. Set the session mode to encrypt. */
struct aws_cryptosdk_session *session =

aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
caching_cmm);

/* Set a message bound of 1000 bytes */
aws_status = aws_cryptosdk_session_set_message_bound(session, 1000);

/* Encrypt the message using the session with the caching CMM */
aws_status = aws_cryptosdk_session_process(

session, output_buffer, output_capacity, &output_produced,
input_buffer, input_len, &input_consumed);

/* Release your references to the caching CMM and the session. */
aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_session_destroy(session);

Java

CHS Aol M =2l ™ 2.xE AF EFLICH AWS Encryption SDK for Java. ™ 3.x= Cl|O|E{ 7| 7Y
4 CMMZ [AWS Encryption SDK for Java O|& AF&3tX| o &LICH B 3.x0HE CHAl & =35t
A2 I EFMRAAWS KMS ASH 7|22 A" =& /U&LCH

// When the call to encryptData specifies a caching CMM,

// the encryption operation uses the data key cache

final AwsCrypto encryptionSdk = AwsCrypto.standard();

return encryptionSdk.encryptData(cachingCmm, plaintext_source).getResult();

JavaScript Browser

const { result } = await encrypt(cachingCmm, plaintext)

JavaScript Node.js

AWS Encryption SDK for JavaScript for Node.jsOll M 714 CMME AtE35t= B2 encrypt HAME
ol gt HlAE o] Zo|7t HELCt MSetx| &t C|o|E| 7|7t FHA|ZIX| §f&LICH HOol=

Ls H
MEoi =ier Lt A E Hjo|E{ 7} sliiE Z0|& Zutst™ & =3t 2efo| AufgfLICt HIO[EE

ClolEe 7| 7H& AMS: BHAE 349

AWS Encryption SDK JHEER} 70| =

AEE|UE 1o+ 20| Yyt HAEO| BEE oIS D2 FL HNEIS I 2 2t MTEL

Ct.

const { result } = await encrypt(cachingCmm, plaintext, { plaintextLength:
plaintext.length })

Python

Set up an encryption client
client = aws_encryption_sdk.EncryptionSDKClient()

When the call to encrypt specifies a caching CMM,

the encryption operation uses the data key cache

#

encrypted_message, header = client.encrypt(
source=plaintext_source,
materials_manager=caching_cmm

Cio|E 7| 7Hd ol A|: 2R & E 3t

O| ZtEtSt T E oKz EXGES YSsle [CIOIE] 7| FHAS AFEELICH EHAYE T ZAX{e| I EE
Al 7S EHEHIAE I ER ZAsHeL|Ct

o| oMo ME 2Z FHA| L AWS KMS keyol| CHE m/\a 7| =

2 EZ A L OtAH 7| 3ZR EE 7|2 S ALE5tod M
°*I—|EP Java 2! PythonOfl A & °Fo 3l QXe A CMM, 2558 U EIAE
AEE X|HEtLct colME MMol 7iA cMMo| X|HEIH, MM 2E 3 2o

ok
r
al
E
o
I
ﬂ

i

Ol oM E A&HEE4HH AWS KMS key2| Amazon ZlAA O|F(ARN)S A& 35Hof
Mdstz{™ AWS KMS keyE AHEE = = TEHo| Qlo{of & Lct,

CiolEf 7| 7HA| o L ALE ol CHEF RhAIEH AA| ofl&l= CIO[E 7] e oA ZE Mg FHAtM L.

C

/*
* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
* this file except in compliance with the License. A copy of the License is

ClolE 7| 7HA o A|: EAtYE &= 5t 350

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users

AWS Encryption SDK JHEER} 70| =

*

located at

*

http://aws.amazon.com/apache2.0/

* or in the "license" file accompanying this file. This file is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied. See the License for the specific language governing permissions and

* limitations under the License.

*/

#include <aws/cryptosdk/cache.h>
#include <aws/cryptosdk/cpp/kms_keyring.h>
#include <aws/cryptosdk/session.h>

void encrypt_with_caching(
uint8_t *ciphertext, // output will go here (assumes ciphertext_capacity
bytes already allocated)
size_t *ciphertext_len, // length of output will go here
size_t ciphertext_capacity,
const char *kms_key_arn,
int max_entry_age,
int cache_capacity) {
const uint64_t MAX_ENTRY_MSGS = 100;

struct aws_allocator *allocator = aws_default_allocator();

// Load error strings for debugging
aws_cryptosdk_load_error_strings();

// Create a keyring
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(kms_key_azrn);

// Create a cache
struct aws_cryptosdk_materials_cache *cache =
aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);

// Create a caching CMM
struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(
allocator, cache, kms_keyring, NULL, max_entry_age, AWS_TIMESTAMP_SECS);
if (!caching_cmm) abort();

HiolEf 7| e oflAMl: EXtL &= 3 351

AWS Encryption SDK JHEER} 70| =

if (aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, MAX_ENTRY_MSGS))
abort();

// Create a session
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
caching_cmm);
if (!session) abort();

// Encryption context

struct aws_hash_table *enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

if (!enc_ctx) abort();

AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key, "purpose");

AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value, "test");

if (aws_hash_table_put(enc_ctx, enc_ctx_key, (void *)enc_ctx_value, NULL))
abort();

// Plaintext data to be encrypted

const char *my_data = "My plaintext data";

size_t my_data_len = strlen(my_data);

if (aws_cryptosdk_session_set_message_size(session, my_data_len)) abort();

// When the session uses a caching CMM, the encryption operation uses the data
key cache
// specified in the caching CMM.
size_t bytes_read;
if (aws_cryptosdk_session_process(
session,
ciphertext,
ciphertext_capacity,
ciphertext_len,
(const uint8_t *)my_data,
my_data_len,
&bytes_read))
abort();
if (laws_cryptosdk_session_is_done(session) || bytes_read != my_data_len)
abort();

aws_cryptosdk_session_destroy(session);
aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

HiolEf 7| e oflAMl: EXtL &= 3 352

AWS Encryption SDK

JHeER 7Hol=

}

Java

CHS oMol EL] HE 2.xE AFE & LICH AWS Encryption SDK for Java. EH 3.x& C|O|E] 7|
Al CMM& { AWS Encryption SDK for Java 0|4 A2 &} K| E’éé LICH HA 3.x0 M= CHA| & =3t

Az A

// Copyright Amazon.com Inc.
// SPDX-License-Identifier: Apache-

7H

| &2 MO AWS KMS HSX 7|22 Al £ & LCt.

or its affiliates. All Rights Reserved.

2.0

package com.amazonaws.crypto.examples;

import
import
import
import
import
import
import
import
import
import
import
import

/**

* <p>

com.
com.
com.
com.
com.
com.
com.
com.

java.

java

java.
java.

* Encrypts

* <p>

amazonaws.
amazonaws.
amazonaws.
amazonaws.

amazonaws
amazonaws
amazonaws

amazonaws.

encryptionsdk.
encryptionsdk.
encryptionsdk.
encryptionsdk.
.encryptionsdk.
.encryptionsdk.
.encryptionsdk.
encryptionsdk.
nio.charset.StandardCharsets;

.util.Collections;

util.Map;
util.concurrent.TimeUnit;

AwsCrypto;

CryptoMaterialsManager;
MasterKeyProvider;
caching.CachingCryptoMaterialsManager;
caching.CryptoMaterialsCache;
caching.LocalCryptoMaterialsCache;
kmssdkv2.KmsMasterKey;
kmssdkv2.KmsMasterKeyProvider;

a string using an &KMS; key and data key caching

* Arguments:

*

* <]i>KMS Key ARN: To find the Amazon Resource Name of your &KMS; key,
see 'Find the key ID and ARN' at https://docs.aws.amazon.com/kms/latest/

*

developerguide/find-cmk-id-arn.html
* <]i>Max entry age:

Maximum time

(in seconds) that a cached entry can be used

* Cache capacity: Maximum number of entries in the cache
*

*/

public class SimpleDataKeyCachingExample {

/*

ClolE 7| 7HA o A|: EAtYE &= 5t

353

AWS Encryption SDK

JHeER 7Hol=

* Security thresholds

Max entry age is required.
Max messages (and max bytes) per data key are optional

private static final int MAX_ENTRY_MSGS = 100;

public static byte[] encryptWithCaching(String kmsKeyArn, int maxEntryAge, int
cacheCapacity) {

// Plaintext data to be encrypted
byte[] myData = "My plaintext data".getBytes(StandardCharsets.UTF_8);

// Encryption context

// Most encrypted data should have an associated encryption context

// to protect integrity. This sample uses placeholder values.

// For more information see:

// blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-

Integrity-of-Your-Encrypted-Data-by-Using-AWS-Key-Management

final Map<String, String> encryptionContext =

Collections.singletonMap("purpose", "test");

// Create a master key provider
MasterKeyProvider<KmsMasterKey> keyProvider =

KmsMasterKeyProvider.builder()

.buildStrict(kmsKeyArn);

// Create a cache
CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(cacheCapacity);

// Create a caching CMM
CryptoMaterialsManager cachingCmm =

CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)

.withCache(cache)

.withMaxAge(maxEntryAge, TimeUnit.SECONDS)
.withMessageUselLimit (MAX_ENTRY_MSGS)
.build();

// When the call to encryptData specifies a caching CMM,
// the encryption operation uses the data key cache
final AwsCrypto encryptionSdk = AwsCrypto.standard();
return encryptionSdk.encryptData(cachingCmm, myData,

encryptionContext).getResult();

}

ololE 7| 7 &) oilx: EXY =5t

354

AWS Encryption SDK JHEER} 70| =

}

JavaScript Browser

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

/* This is a simple example of using a caching CMM with a KMS keyring
* to encrypt and decrypt using the AWS Encryption SDK for Javascript in a browser.

*/

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
WebCryptoCachingMaterialsManager,
getLocalCryptographicMaterialsCache,
} from '@aws-crypto/client-browser’
import { toBase64 } from 'eaws-sdk/util-base64-browser'

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,
* which enforces that this client only encrypts using committing algorithm suites
* and enforces that this client
* will only decrypt encrypted messages
* that were created with a committing algorithm suite.
* This is the default commitment policy
* if you build the client with “buildClient()".
*/

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

/* This is injected by webpack.
* The webpack.DefinePlugin or eaws-sdk/karma-credential-loader will replace the
values when bundling.
* The credential values are pulled from eaws-sdk/credential-provider-node
* Use any method you like to get credentials into the browser.
* See kms.webpack.config
*/

declare const credentials: {

HiolEf 7| e oflAMl: EXtL &= 3 355

AWS Encryption SDK JHEER} 70| =

accessKeyId: string
secretAccessKey: string
sessionToken: string

/* This is done to facilitate testing. */
export async function testCachingCMMExample() {
/* This example uses an &KMS; keyring. The generator key in a &KMS; keyring
generates and encrypts the data key.
* The caller needs kms:GenerateDataKey permission on the &KMS; key in
generatorKeyId.
*/
const generatorKeyId =
'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt’

/* Adding additional KMS keys that can decrypt.
* The caller must have kms:Encrypt permission for every &KMS; key in keyIds.
* You might list several keys in different AWS Regions.
* This allows you to decrypt the data in any of the represented Regions.
* In this example, the generator key
* and the additional key are actually the same &KMS; key.
* In “generatorId’, this &KMS; key is identified by its alias ARN.
* In “keyIds®, this &KMS; key is identified by its key ARN.
* In practice, you would specify different &KMS; keys,
* or omit the “keyIds® parameter.
* This is *only* to demonstrate how the &KMS; key ARNs are configured.
*/
const keyIds = [
'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f",

/* Need a client provider that will inject correct credentials.

* The credentials here are injected by webpack from your environment bundle is
created

* The credential values are pulled using eaws-sdk/credential-provider-node.

* See kms.webpack.config

* You should inject your credential into the browser in a secure manner

* that works with your application.

*/

const { accessKeylId, secretAccessKey, sessionToken } = credentials

/* getClient takes a KMS client constructor
* and optional configuration values.
* The credentials can be injected here,

HiolEf 7| e oflAMl: EXtL &= 3 356

AWS Encryption SDK JHEER} 70| =

* because browsers do not have a standard credential discovery process the way
Node.js does.
*/
const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken,
1,
1)

/* You must configure the KMS keyring with your &KMS; keys */
const keyring = new KmsKeyringBrowser({

clientProvider,

generatorKeylId,

keyIds,
1))

/* Create a cache to hold the data keys (and related cryptographic material).
* This example uses the local cache provided by the Encryption SDK.
* The “capacity’ value represents the maximum number of entries
* that the cache can hold.
* To make room for an additional entry,
* the cache evicts the oldest cached entry.

* Both encrypt and decrypt requests count independently towards this threshold.

* Entries that exceed any cache threshold are actively removed from the cache.
* By default, the SDK checks one item in the cache every 60 seconds (60,000
milliseconds).
* To change this frequency, pass in a “proactiveFrequency’ value
* as the second parameter. This value is in milliseconds.
*/
const capacity = 100
const cache = getLocalCryptographicMaterialsCache(capacity)

/* The partition name lets multiple caching CMMs share the same local
cryptographic cache.

* By default, the entries for each CMM are cached separately. However, if you
want these CMMs to share the cache,

* use the same partition name for both caching CMMs.

* If you don't supply a partition name, the Encryption SDK generates a random
name for each caching CMM.

* As a result, sharing elements in the cache MUST be an intentional operation.

*/

const partition = 'local partition name'

ololE 7| 7 &) oilx: EXY =5t

357

AWS Encryption SDK JHEER} 70| =

/* maxAge is the time in milliseconds that an entry will be cached.
* Elements are actively removed from the cache.
*/

const maxAge = 1000 * 60

/* The maximum number of bytes that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest practical value.
*/

const maxBytesEncrypted = 100

/* The maximum number of messages that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest practical value.
*/

const maxMessagesEncrypted = 10

const cachingCMM = new WebCryptoCachingMaterialsManagexr({
backingMaterials: keyring,
cache,
partition,
maxAge,
maxBytesEncrypted,
maxMessagesEncrypted,

/* Encryption context is a *very* powerful tool for controlling

* and managing access.

* When you pass an encryption context to the encrypt function,

* the encryption context is cryptographically bound to the ciphertext.

* If you don't pass in the same encryption context when decrypting,

* the decrypt function fails.

* The encryption context is ***not*** secret!

* Encrypted data is opaque.

* You can use an encryption context to assert things about the encrypted data.

* The encryption context helps you to determine

* whether the ciphertext you retrieved is the ciphertext you expect to decrypt.

* For example, if you are are only expecting data from 'us-west-2',

* the appearance of a different AWS Region in the encryption context can indicate
malicious interference.

* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/

concepts.html#encryption-context
*

HiolEf 7| e oflAMl: EXtL &= 3 358

AWS Encryption SDK JHEER} 70| =

* Also, cached data keys are reused ***only*** when the encryption contexts
passed into the functions are an exact case-sensitive match.
* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context
*/
const encryptionContext = {
stage: 'demo',
purpose: 'simple demonstration app',
origin: 'us-west-2',

}

/* Find data to encrypt. */
const plainText = new Uint8Array([1l, 2, 3, 4, 5])

/* Encrypt the data.

* The caching CMM only reuses data keys

* when it know the length (or an estimate) of the plaintext.

* However, in the browser,

* you must provide all of the plaintext to the encrypt function.

* Therefore, the encrypt function in the browser knows the length of the
plaintext

* and does not accept a plaintextLength option.

*/
const { result } = await encrypt(cachingCMM, plainText, { encryptionContext })

/* Log the plain text

* only for testing and to show that it works.

*/

console.log('plainText:', plainText)
document.write('</br>plainText:' + plainText + '</br>")

/* Log the baseb4-encoded result
* so that you can try decrypting it with another AWS Encryption SDK
implementation.
*/
const resultBase64 = toBase64(result)
console.log(resultBase64)
document.write(resultBaseb4)

/* Decrypt the data.
* NOTE: This decrypt request will not use the data key
* that was cached during the encrypt operation.
* Data keys for encrypt and decrypt operations are cached separately.

*/

HiolEf 7| e oflAMl: EXtL &= 3 359

AWS Encryption SDK JHEER} 70| =

const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

/* Grab the encryption context so you can verify it. */
const { encryptionContext: decryptedContext } = messageHeader

/* Verify the encryption context.

* If you use an algorithm suite with signing,

* the Encryption SDK adds a name-value pair to the encryption context that
contains the public key.

* Because the encryption context might contain additional key-value pairs,

* do not include a test that requires that all key-value pairs match.

* Instead, verify that the key-value pairs that you supplied to the “encrypt’
function are included in the encryption context that the “decrypt’™ function

returns.
*/

Object.entries(encryptionContext).forEach(([key, value]) => {
if (decryptedContext[key] !== value)

throw new Error('Encryption Context does not match expected values')

1)

/* Log the clear message
* only for testing and to show that it works.
*/
document.write('</br>Decrypted:' + plaintext)
console.log(plaintext)

/* Return the values to make testing easy. */
return { plainText, plaintext }

JavaScript Node.js

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
NodeCachingMaterialsManager,
getLocalCryptographicMaterialsCache,
} from '@aws-crypto/client-node'

HiolEf 7| e oflAMl: EXtL &= 3 360

AWS Encryption SDK JHEER} 70| =

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,
* which enforces that this client only encrypts using committing algorithm suites
* and enforces that this client
* will only decrypt encrypted messages
* that were created with a committing algorithm suite.
* This is the default commitment policy
* if you build the client with “buildClient() .
*/

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

export async function cachingCMMNodeSimpleTest() {
/* An &KMS; key is required to generate the data key.
* You need kms:GenerateDataKey permission on the &KMS; key in generatorKeyId.
*/
const generatorKeyld =
'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt’

/* Adding alternate &KMS; keys that can decrypt.
* Access to kms:Encrypt is required for every &KMS; key in keyIds.
* You might list several keys in different AWS Regions.
* This allows you to decrypt the data in any of the represented Regions.
* In this example, the generator key
* and the additional key are actually the same &KMS; key.
* In “generatorId’, this &KMS; key is identified by its alias ARN.
* In “keyIds', this &KMS; key is identified by its key ARN.
* In practice, you would specify different &KMS; keys,
* or omit the “keyIds' parameter.
* This is *only* to demonstrate how the &KMS; key ARNs are configured.
*/
const keyIds = [
'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f",

/* The &KMS; keyring must be configured with the desired &KMS; keys
* This example passes the keyring to the caching CMM
* instead of using it directly.
*/

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

/* Create a cache to hold the data keys (and related cryptographic material).
* This example uses the local cache provided by the Encryption SDK.

HiolEf 7| e oflAMl: EXtL &= 3 361

AWS Encryption SDK JHEER} 70| =

* The “capacity’ value represents the maximum number of entries
* that the cache can hold.
* To make room for an additional entry,
* the cache evicts the oldest cached entry.
* Both encrypt and decrypt requests count independently towards this threshold.
* Entries that exceed any cache threshold are actively removed from the cache.
* By default, the SDK checks one item in the cache every 60 seconds (60,000
milliseconds).
* To change this frequency, pass in a “proactiveFrequency’ value
* as the second parameter. This value is in milliseconds.
*/
const capacity = 100
const cache = getlLocalCryptographicMaterialsCache(capacity)

/* The partition name lets multiple caching CMMs share the same local
cryptographic cache.

* By default, the entries for each CMM are cached separately. However, if you
want these CMMs to share the cache,

* use the same partition name for both caching CMMs.

* If you don't supply a partition name, the Encryption SDK generates a random
name for each caching CMM.

* As a result, sharing elements in the cache MUST be an intentional operation.

*/

const partition = 'local partition name'

/* maxAge is the time in milliseconds that an entry will be cached.
* Elements are actively removed from the cache.
*/

const maxAge = 1000 * 60

/* The maximum amount of bytes that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest value possible.
*/

const maxBytesEncrypted = 100

/* The maximum number of messages that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest value possible.
*/

const maxMessagesEncrypted = 10

const cachingCMM = new NodeCachingMaterialsManagexr({
backingMaterials: keyring,

HiolEf 7| e oflAMl: EXtL &= 3 362

AWS Encryption SDK JHEER} 70| =

cache,

partition,

maxAge,
maxBytesEncrypted,
maxMessagesEncrypted,

/* Encryption context is a *very* powerful tool for controlling

* and managing access.

* When you pass an encryption context to the encrypt function,

* the encryption context is cryptographically bound to the ciphertext.

* If you don't pass in the same encryption context when decrypting,

* the decrypt function fails.

* The encryption context is ***not*** secret!

* Encrypted data is opaque.

* You can use an encryption context to assert things about the encrypted data.

* The encryption context helps you to determine

* whether the ciphertext you retrieved is the ciphertext you expect to decrypt.

* For example, if you are are only expecting data from 'us-west-2',

* the appearance of a different AWS Region in the encryption context can indicate
malicious interference.

* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
concepts.html#encryption-context

*

* Also, cached data keys are reused ***only*** when the encryption contexts
passed into the functions are an exact case-sensitive match.

* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context

*/

const encryptionContext = {

stage: 'demo',

purpose: 'simple demonstration app',

origin: 'us-west-2',

/* Find data to encrypt. A simple string. */
const cleartext = 'asdf'

/* Encrypt the data.
* The caching CMM only reuses data keys
* when it know the length (or an estimate) of the plaintext.
* If you do not know the length,
* because the data is a stream
* provide an estimate of the largest expected value.

HiolEf 7| e oflAMl: EXtL &= 3 363

AWS Encryption SDK JHEER} 70| =

*

*

If your estimate is smaller than the actual plaintext length
* the AWS Encryption SDK will throw an exception.

* If the plaintext is not a stream,
* the AWS Encryption SDK uses the actual plaintext length
* instead of any length you provide.

*/

const { result } = await encrypt(cachingCMM, cleartext, {
encryptionContext,
plaintextLength: 4,

1)

/* Decrypt the data.
* NOTE: This decrypt request will not use the data key
* that was cached during the encrypt operation.
* Data keys for encrypt and decrypt operations are cached separately.
*/

const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

/* Grab the encryption context so you can verify it. */
const { encryptionContext: decryptedContext } = messageHeader

/* Verify the encryption context.

* If you use an algorithm suite with signing,

* the Encryption SDK adds a name-value pair to the encryption context that
contains the public key.

* Because the encryption context might contain additional key-value pairs,

* do not include a test that requires that all key-value pairs match.

* Instead, verify that the key-value pairs that you supplied to the “encrypt’
function are included in the encryption context that the “decrypt’™ function

returns.
*/

Object.entries(encryptionContext).forEach(([key, value]) => {
if (decryptedContext[key] !== value)

throw new Error('Encryption Context does not match expected values')

1)

/* Return the values so the code can be tested. */
return { plaintext, result, cleartext, messageHeader }

HiolEf 7| e oflAMl: EXtL &= 3 364

AWS Encryption SDK JHEER} 70| =

Python

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You
may not use this file except in compliance with the License. A copy of
the License is located at

#

#

#

#

#

#

http://aws.amazon.com/apache2.0/

#

or in the "license" file accompanying this file. This file is

distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.
"""Example of encryption with data key caching."""

import aws_encryption_sdk

from aws_encryption_sdk import CommitmentPolicy

def encrypt_with_caching(kms_key_arn, max_age_in_cache, cache_capacity):
"""Encrypts a string using an &KMS; key and data key caching.

:param str kms_key_arn: Amazon Resource Name (ARN) of the &KMS; key

:param float max_age_in_cache: Maximum time in seconds that a cached entry can
be used

:param int cache_capacity: Maximum number of entries to retain in cache at once

Data to be encrypted

my_data = "My plaintext data"

Security thresholds
Max messages (or max bytes per) data key are optional
MAX_ENTRY_MESSAGES = 100

Create an encryption context
encryption_context = {"purpose": "test"}

Set up an encryption client with an explicit commitment policy. Note that if
you do not explicitly choose a

commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default.

client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F

Create a master key provider for the &KMS; key

HiolEf 7| e oflAMl: EXtL &= 3 365

AWS Encryption SDK JHEER} 70| =

key_provider =
aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

Create a local cache
cache = aws_encryption_sdk.LocalCryptoMaterialsCache(cache_capacity)

Create a caching CMM

caching_cmm = aws_encryption_sdk.CachingCryptoMaterialsManager/(
master_key_provider=key_provider,
cache=cache,
max_age=max_age_in_cache,
max_messages_encrypted=MAX_ENTRY_MESSAGES,

When the call to encrypt data specifies a caching CMM,
the encryption operation uses the data key cache specified
in the caching CMM
encrypted_message, _header = client.encrypt(
source=my_data, materials_manager=caching_cmm,
encryption_context=encryption_context

)

return encrypted_message

FHAl 2ot Az A
GlOIE] 7| FHAI T o8 W 4 CMMO| MB3He ot UAIZtS FAdsok Bt

ClOIE 7|0 EZ &= Co|E o] &
U Erots 7='°01|E'F FHAIE! Tl Of
S2 M 75. joil MEXIX| efoH

mu ok g
o Mo
N
z0
oy O
L :
ul
=
Z
@)
<
<
0
=
Z
ook
H]
2
K
O\I rln
o
o
o]
ﬁ

AWS Encryption SDK Bt 7| ot gF+=E ALE35t0{ 2F S 51 E HIOIE% 7|18 FHAELIC E LT A
Ztof Chst AstdE MEELICEH ol A St & Z1totod RHAFS E[X| &f
£ gfLict oLt Yet HAE Ho[E] 7|E (ZIEXHe mlEEI LHoll) FHAIEIEE, 7|7t KHE &= AlZh
2 2|ASEtE T ot 5t 717t &4 E d2* &£ = U= Clo|HE MEtst= S g Lo

ro
ro
n}
9
_F.'l
ﬂ
Nr
9
0
1ol
0

FHAl EoF A 2L M 366

https://en.wikipedia.org/wiki/Key_derivation_function

AWS Encryption SDK

JHeER 7Hol=

FHAl 2ot A gL M of &= AWS 2ot 2219| AWS Encryption SDK: El|0|E{ 7| 7HAI 0] o Z 2|7
o

OlMof XM&ferx

~
AL
2
ol
rr
o
T
fjo
2
P
ol T.
X

(® Note
e CMM2 2 YA E 25 MEELICH SM g2 XIEsX| et 714 CMMo| 7|22
Ol A+E &Lt
HIOIE 7| FH &2 LAIHSE HIE G356t 7| 28 AWS Encryption SDK 2| Java & Python
M= null ¥ =3t REE FHA(null ZHANE MSELICH null FHA|= 2 GET Lo CHal +
gll-% H|_|-§|_|-3|._—1|_ PUT _IC_I>_7<-Io.|| C>I:I-—|.x| E)gl-gL_“_j._ 9HA| QEF I:I:'— I=|O|- OI7:||7I-° OOE A X4 3|.E
CHAl null FHAIE A8 5t A0| ZEZ&LICH REMIEH LIS 2 Java & PythonOl| A null ZHAIE &=

|MFE AlEfstod FHAIE 52 MEE + = 7IzhE ZAEELICH of 2t2 E+Lich

21248 LICH = =[CH =3 72t ANI8HstX| AWS Encryption SDK 2 & LICt

O| B E 210 &2 LZ|XE AWS Encryption SDK for JavaScriptAl& 5t =& A 2lst 1 2| £+
£ X B2 AWS Encryption SDK ol g L|C},

OHEZC|ZO0|MO| FHAIE &8 = U= 71 B2 7tHdS A8 LCt =0 712 FAHIZE 7| n A
HMAMH MNEE = JU&LICt 0| ArE5to4 CIOIE 7|9 RHAE 2 ANEtetD, ¥ =3t AtEo| &
2 z|A56tH, A IElE St HHo| HEEURE = /U= ol 7|8 MHE &= JU&LICH

FHAIE ClOlE 7|7t ef 3 8tE &~ = 2[C HIAIX| =& RIFELICH of 22 M= Argduct 11t
273270 HIAIX| Atole| Zk2 B{ELICH 7|22t 2 HIAIX] 2/327H IL|Ct.

L— HA —

FHAIE 2 7|12 B2 El= HAIR] ==, MAES Sall S 7tXE + & B3 AX[et 771 £4E
B2 EE 7 U HAIXI =8 MEHe = S Br3 2 A dE&Lch

Z|cH HtO| Z 3HME ALY)
FHAIE HIOlE 7|7t ef 38t +~ /= ZICH HFOIE & XIFELICH of 22 M= ArglLct. ot
263 - 1 Atole] gt2 U=ELICt 7|22k2 2763 - 1L|Ct. 20| 00T Bl HIAIX| 2XtE S =35t
ot= B0i2H ColH 7| 7S MEE + U&LICH

Ol HAIZtE B7re i X 22| Hio|EJH ZEHEILICH XM2|E HiO|E 2t B HIOIE T &4AH|2L
£ ZotstH FHAIE oI 717t o M2 2FHM AEEIUE = UXIEF FHA[0| M M 7HELICH

FHAI &

oF A2t B 367

https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/caching/NullCryptoMaterialsCache.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.caches.null.html

AWS Encryption SDK JHEER} 70| =

CIOIE 7| 7H e MR HE

CH 20| OHEZIHOIME ABA XI% ZEE SASHA| 91T GlOJE] 7| FHAS| 7|2 THE AR E
4 QLI 0] MMl 7|2 THD, S ol Chet B x| MF HEE HuEtLic

|
- HlolE 7] 7ol HE A
AEs A= A &S
- A5 Atz Y BE[R WY
« Hlole 7| FHAl E=ol= F£30]
2
—

. ol-s§|- 5’-|E1I/\E 3|-|A|

Cl0JEf 7| FHAlQ| B w4l

POI'

QM CIolE 7| 7H&E A8 sto{ CO|EE &
£ BHX Al M 281 |5t ClolE 71§ HAME =
7|& Ar83toq CO|EE & Z3tefLICE TJeiX| et FHA|7F giS
HELCH

3t 5t 7Lt £33t 5t= 3 AWS Encryption SDK
LICH 58 UX| %*%% 3tom FHAIE O|O|E
ot OtEH7EXIZ A CllO|E] 7|7 A

AEE|Y Ho|Ee 2ol 27| & =+ e Clo|E{ol= OlolH 7| 7H&o| AEE|X| S &LICH O|& &
sff 74l CMMO| Z[CH HIO|E AZLE MHstH MEY + U&LICt Ol S&E YXlstzd™ HAIX| 2
7|& &Z3t 2ol FIHEfLCH

HIOlE 7| 7H&2 FHA| 2lo = 7H & 2 =5 Rt = ZFE[AH(FHE CMM)E AFS ' LICH 7H& CMM2 ZHA|
3l 7|2 CMMTt 435 & 85tE E4+ ¢35 A2 #HERHCMM) LI (DtAE 7| SSA EE 7138
x| 3t AWS Encryption SDK 0l 7|2 CMME ZHSLICH) FHA CMME 7|2 CMMO| BHetst= o
Ol 7|& ZHAIRLICE B 7H& CMM2 AL AHIF D8t FHAl EoF dAZf S HE T LICH

FHAIIAM ZZEl IOl Z|7F MEiE|E e EXISHT| flsl ZE & 7158 71 CMM2 FHA|E &
3 Atz ol OhE £d0| 78 24 21 Y[sHoF BLICH

c dTIZFEXMES

o A53 HEIAE(H|0] Qe BRUE)

- OE|M O|§(FH 4 CMME AlHSHE BAIY)
c (525 ©8) gE3HE HolH 7

clole 7| A ME HE 368

AWS Encryption SDK JHEER} 70| =

|.2

=]

=

. CMM2 si{e 7|2(C & JavaScript) £= OFAE 7| S XH(Java & Python)ol| =3 RAI2E 2F
|

® Note

= 2I2|& MEZO| 7| R &+ E AI83t= Z<0Bt Olo|H 7|& AWS Encryption SDK
FHAIE LI,

I EZ= Olo|E] 7| FHA 2 AL SHHLE AF8 3R I ot1 ool ¢535 EE XMElste WS
priy=—} I

HoiELICH FHA[2t 7 CMME Z & 5104 ALS AT et 7He 78 24Tt M A0l A o{ZH| A

S&|l=X| 2oiELICH.

AE 7| 32X EE 7|~ X|HELICH AWS Encryption SDK £ AF2 X} OFAE] 7| EEE
=58

7|81 45 &8ss 7|2 CMME BHELICH
= CMMo|| & =38 Xt 2 & AWS Encryption SDK L & LICH £ 35t AR 7K 27]).

gfLICH 0470l AWS Key Management Service ()2 Z 2 .:.*§_§P MH|£0f CHEt 3 &0
A& LICFAWS KMS. CMM2 2t 53} XF 28 AWS Encryption SDKO1| EHgHEFLICH,

£ it BlA E Of|0|E| 7|2 AWS Encryption SDK AF23t04 CO|E{E &5 58| & 3 3HEl O|o]
Eot &t stE ol 7|8 &2 3HE HA|IX|0f A& 5H0{ AL RFod|AH| gHetgfL|Ct

HlolE 7| 7Halol 2 S &4 369

https://en.wikipedia.org/wiki/Key_derivation_function

JHEER} 70| =

AWS Encryption SDK

7H

Request to
encrypt data
Encrypted
User DATA e Y|V message

AWS

Encryption 03 Encrypt

SDK

Get cryptographic

materials

Cryptographic
materials
manager (CMM)

Get master keys

CMM Generate data key

&2 ArEstod Cl|o|E =3t

GlOIE] 7| HA8 A B3t 228t A28 JHM2EH T2 2 SHELIC

1.

o Z Z|7llo|AMolof Elo|E{ & =3l AWS Encryption SDK & & &L},

QE2 7|82 g3 718 24 #ElRHCMM)et HZAE Al 2fs 74 24 #E[RHEHA CMM)E XY
ghuich otAE 7| 324 =& 7|—&212 X[H5HH AWS Encryption SDK 0ilA 7| CMME2 BHELICEH

a. ZHAI7} dR[ot= 52 HoH AUX[st= A 52| MAE 7|7 A ALS 22 UH0|Est L 7Y

e &= SpKoi| BHerEtLIcH 284 K|
= .|E-| xl_loHoI-L_||:|.

MMOi| Af ClIO|Ef 7|1& A4

712 cMM2 sl ZI2I(C L JavaScript) EEE OFAE] 7| E2XH(Java L Python)2 £ E{ &5 3}
A2 E 7HKZLICH 047]|0= AWS Key Management Service@t Z2 MH|A0| CHEH S &0| Z &

GI0lE] 7 A Aol S T 4]

AWS Encryption SDK THLRE 7H0|=

2 = &Lct 71# CMM2 HI0|E 7[of Yt A E 2l er S 5HEI AFE S 714 cMMod| BHEHE!
L|CF.

&l CMME2 A 53t AF2 & FH Aol REEFLICE.

I XE2E AWS Encryption SDKO| gH&HetL|C}.

5. £ Yt BIAE H|0|E{ 7|Z2 AWS Encryption SDK AF& 3104 C|O|E{E &t 3&t&tL|Ct 23 sHE oo
E{et & S35 El CIO|E 7|8 ¥ S 3HE HIAIX|of A% to{ AFERtoi|AH| BHetehLct

I
u
0>
O
=
<
ro
o2
]
1ol

Request to
User encrypt data Encrypted

message ==
Caching
F=

AWS

Encryption Get "’_—v DATA 3 Encrypt
SDK cryptographic
materials T

Return to SDK

|

Caching
CMM
Keys in
Query cache B ca:he'r’ - Save in cache

J??

Get cryptographic materials
CMM

Get master keys
Generate data key

v

St AR FHA| M

£ Olole 7| FH ol AAE == &f 53t Xt= 7H Aol CHEF 2T AHYE AWS Encryption SDK 8
olgrL|ct et 7 s HIREl L & =2 AE(LRU) ZHAIRI 24 FHAIE MISELICH.
24 I Ao| QIARHAE MAEE{H Java L Python0ll A LocalCryptoMaterialsCache
MXE MM3H7HLE, JavaScriptoll M getLocalCryptographicMaterialsCache & 4 & COlA
aws_cryptosdk_materials_cache_local_new ¥&XIE AL ELIC

ZH A0l FHAIE E=2| T MH, LR & A /x| #EIE HIRE 7|2 FHAl #EIE 2/t 25
ol L Elof U&LICH AR XK FHAl RtE| 2El2 S48 W Tt GiaLich 22 HAIE 2012 AL
&5t7Lt, AL R XIESH AL, 28 El= FHAIZ THAE &~ [U&LICH

oS3 RFE FHA| M 371

https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_.28LRU.29

AWS Encryption SDK JHEER} 70| =

27 HAIE SNY 1 8F, 5 A MEE & UE 20H ¥2 £8 LT 0| XS ASSHH
GIOJE| 7| FHAHS Ol MIBHElS 28R AHAIE MAE £ &L

AWS Encryption SDK for Java ! &= null & 3} Xt= 7§ Al(NullCryptoMaterialsCache) AWS
Encryption SDK for Python = A& &fLIC}. NullCryptoMaterialsCache= 2E GET 20| CH3l +2f2
HHEHSED PUT 4ol E5HK| &E&LICH NullCryptoMaterialsCacheE EAEO| AF23HHLE FHA 2
SOt ZeEl ofE 2|70l FH &S LAIMo = HIEHe e = A&LCh

0| A AWS Encryption SDKZf & 23} Rt 2 7HAl= 14 =3 Atz 22X FH& CMM)eF A ELICEH

A CMM2 FHA|0I A TIlO|E{ 7|2 7FXd2t FHA|0 CIOIE] 7|2 21 AFSRF7F MASH o Az S
MEELICE A CMME MEE M, SHE CMMO| AL & FHAIE X|H5t, CMMO| 7H&lE CIO|E] 7|
E Mdst= 7|12 CMM E&= OtAH 7| SZXHE RI™FLICEH

POI'
ol

efsst Atz AN EElR &Y

ciolE 7| 7H&lE & =
ClOIE 25238t E= |55 QUM EE P55t

AIie cMME XIEELICH

FAFE BEIRHEHS CMM)E SMEHLIcH 2/ CHS
I2 E2|XHCMM), OFAE 7 7

rk

Xl 8ol CMMO| {&LICH & CF ol Z|(X &3 & &35} Xh=z)E 7HM X2 ot

CMM Z|3(C EE&= JavaScript) E=

OtAE 7| 32 F(JaanP Python)2t @1ZElLICt. SDK7t
CMMO| 535t L= 555 74 QAE QST CM
CM

7|2 EE OtAE 7| Z2RERE 7Y

LAE JFXZ Lt Java L Python0oi| A CMM DFAE—I 9|§ AN235104CI0IE] 7|2 MA o535
= 2353518k ¢ 2 JavaScriptoll M 7|21 ¢S5 RIS AMAd 9l of 551511 gHeterLCt

- FHA CMME S| FHAI(0H: 2Z FHAl & 712 CcMM)SH HAZEILICH SDKT} 7HA! cCMMod| & 5 3
AZRE QHHH INA CMME2 FHAI0IM SHE 714 QLAE 71XE{D ASELICH Yxlete 52
¥E + He 42 7MY CMM2 7|2 CMMO]| 71 d RAE EELICH JH S M 233t X2 E
I AEE CHS S ERtol| A gheketLct

B FHA CMME 2 FHAI Z =0l ALSR7H ABIEH 20 7zt MBELICH 2O AAIZEE FHA
CMMOIA M5t SB3t22 FHAI7t WLt 74 24802 MASIX| SACiEE SEls B
HAIE AFSE 4 QBLiCt

=3 AtE A 2| K MM 372

AWS Encryption SDK JHEER} 70| =

ClOIE 7| ZHAl =0l F90| S04 ILtR?

GIOIE} 7| FHAIS GlOJE} 7| U B2d %2 5t Rt2E A MEFLICH 2 HSols of2f LiE
7h ZFEILICH o] M HolE] 7| HHA 7S5 A +
RHEHA CMM)Ol A E ot 2iAigte MEE 1 K88 4 UALIC

= o - O

ot 53} 2teqo| A2 Of|0|E| 7| FHAlof| FIIE|= B =0l= O QAT TEELICH
. QHt A E H|0|E] 7

- 235351E ol 7|(5tLt O]4h

. US55 HEAE

« HAIX| ME 7|(3tLE7F AL ElE AR)

23535} 2tdo| A2 O|0|E] 7| FHAIM| FIHE= S§=2o|= 0l QA7 £

o
i
-
[ul

. QHt BHIAE O|0|E] 7|
« M 0l 7|(EL7E AL ElE ER)
- MHIEIHIO|E{(EQt LA ZL MBS It A8 FIRE £ §)

= - =1 o | | o H

DE Y dE3 HHAEES X504 HIOIHE LE3HE &= A&LICH 3HXIE A E 5 HHAEE

HIOlE 7| FH&loll M SHFH &g ELICH 0|& S35 HIolE 77t S YE 7HA CMMOIM MM E B

o= ZHAl0f ClIOIE] 7|2 5t9l 2 &S BHE = U&LICH

A& st ZHEAE = HIZO| ot oo L0 E Z & stE 7I-2f Ho] MELICH 23538tsts St &
S5t HEAEE 2 Z3HE CO|Eo FE5Mo= HIQIYL|E R H|0|EE S5 35tstE O SYE A= 3t
HEIAETL EHQFFLICH ol M AWS Encryption SDK 538 ZHRIAE = 2 5 3tE Cl|0|E 2 Cl0|H 7|

oF B &= SHE HIAIX|o MEELICH

CIOIE 7| FHAIE MEsteE B2 A5 HHAEE Soff F 33 ol ALEE FHAIE §E o 7|
£ MEE =T J&LICH 53 HHMAE = OI0|E ZIFHAl &= IDo| L5)t &7 FHAl =0l MY

HlolE 7| FHAl F=ols Fol0] S04 ALtR? 373

AWS Encryption SDK JHEER} 70| =

ELICH ZHAIE CIO|E 7|= &2 3t ARAETL LR[StE
HolE 7|& MAIEsteiH SYet =8 HAHMAEE X[H
ot =5t HEIAEE X|&IStL|C}.

]IOI' O\I
5
p=
_>,:
0o
I
A
lT'
}0|-
tob
=0)
0
2
Am
o

Ot 55t HYAEE B4 M AFFOIXIEH M EILICH Q80| ¢35 HYAES RIKSHR| b= BL
4 o5 5t ZHMAET} FHAl S AlERt0| ZHE|D 2 2T YxIFLICH

Li ol Z2[70]440] FHAIE ClIO|E] 7|E AtE3dtL QLIR?
clolE| 7] 7HAle 54 ofZ2i7lold & Y3 = ol O <0l £|st marelLich a2t ofzkel
Qlglo| #utglo R, Mgtol Yobh EoAel 4 QUEX| THEFE Chg oMol iRt 2X| BEtstE X

ol gfLct.

ool 7| 7H&l2 ClO|E 7| E MALES7| =0l 7HE & At 20t= M OoIE 7|1E§ dd57] /et
A8 £0l= RJUUC HIolE 7| iAo HEHE= 27| HIOIE 7|18 M5t 7HAI7F AWS
KMS Ge nerateDataKey =2t [EH':'P 242 AWS Encryption SDK 2 &£ & LICH J2{Lt 7l S

§_2P HEIAE L ATEE NEE ZE5tod SUet SMHE 712l £E2 Ol|o|H 7| & 4 st= ol

70 L

o MHEt dsE =0l = 7H 18t

Ct.

o| 7% AWS Encryption SDK O] AIKIZ FHAIQ| CIO[E| 7|2 AFR5tT QI=X| &olstPdm Ot 7|a e

AMESH EML.

- OtAH 7| QlZzt9| EILOH M 3£ BT E =2l5to{ M ol|olE| 7|& BHELICt OI0|E{ 7| 7H&0] &
THEIOI N 7| BIEE 28 K47} =0l = HOIHLICk of & B0l AWS KNS Dl 7] 5
7|22 A2 3tE <2 CloudTrail 210 M GenerateDataKey & ZAA48HL|C}.

« CtEEH A5 3 Qo] CHEE ST 2Z AWS Encryption SDK MM BHEtE|E o 5 3L El HA|X|E
HImBLICEH o & E018 M85t B CHE & E 3 5 & 9| ParsedCiphertext ZH&|E AWS

Encryption SDK for JavaH| 1 & L|C}. AWS Encryption SDK for JavaScriptol A MessageHeader2|
encryptedDataKeys & L& H|W&LICH CIO|H 7|& AHALE5HH &= 3HEl HIAIX]|2| & =5t
Zl olo|H 7|7t 3 LELCt.

CIOIE 7| 7H&) of A

O oMol ME ClolE 7| 7l 24 FHAIE &7 A& stod Chefer 2|710fA] 042] ClHtOo|0 o5l A
dEl= ololE7t & &3t A XE &le ol E2(7olde| ST & 7H&3tefL

JP)

to o

5t0

ol

(][]

O| AlLtE2|20i A= 042] HIO|E] HatRLT} IHIOI EHE dd

= 8tstod ZF 2|T 2| Kinesis A E
Zlofl &LICH AWS Lambda & (AHIRHE 2ERE = .

U HAE HO|HE s 279

T

ol
ol

Li o Z 2|7 0|440| FHA|E CIOIE] 7|E ALEst 1 RLIR? 374

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/ParsedCiphertext.html
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/serialize/src/types.ts#L21
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/lambda/

AWS Encryption SDK THLRE 7H0|=

DynamoDB E|O|Z 0]l £ L|Ct. Cl|O|E{ A AHKFRE AH|XF= AWS Encryption SDK & AWS KMS OtAE

7| BSAHE ASELICH KMSO CHEt £5 F0/7] I3H 2 WARFeL AHIRHE XHA| 27 HHAIE 2
Qo Lo

Java 2! PythonO|A O|24E GiA|e] AA FEE 2 5= UELICH MEo|= MEo CHEt 2l AAE H
9|5tE= CloudFormation ®IE ST Z & |0 /U&LICH
Producers
' ™y
Kinesis
~
\[Consumer I \[Consumer I Consumer Consumer
£ A\ v
Amazon Amazon
DynamoDB DynamoDB
S £ N\ v

Al 2t

otel olM= ZH FHAI7E of oiX[e] & KMS & (B =F)E ®ell 22l 1%= Eole HEE
o4& LCH.

24 Al ATt 375

AWS Encryption SDK JHEER} 70| =

MAMI 23

ZCI0|MET =T 23

i

| 2t 2Me =g
O|1E Ha A
Cloj[EH 7| ¥ ClolE 7| & BH|(EBITE)
M(us-west-2) E3}(eu-ce
ntral-1)

FHAl RS 1 1 1 500 500

E2Z FHA| 1rps/100&| Ak 1rps/1003| Ab 1rps/100&| Ak 500 5
=2 =2 =2
o o o

AH|IRFRH
Zoi0|MER X 2F 2ldE 2t 2 =2
O|1E e 3

cole 7| = MAkR} A
z3l

FHAl A S AR 500 500 2 1,000
1rps

2 FHA| AR 500 5 2 10
1rps/1003| Al
=2
o

Hlo|E| 7| ZHA! of|X| 2 E

Java & PythonOl M 2Z FHA|E At& 8 O|O|E] 7| FHAIE ZHEHSHA| 3R LICE O] 2
9| 1':- QIABAE MdgtLct. stLte= EIIOIE-IE &S 5t5t= ClO|E MAtXt&o|m CHE

StLt= Cllo|E{E ali= 3= O|O|E A H[XHAWS Lambda &)%%IL—IEP Zt 1ol do|E{ 7| FH A +

8401 CHEt AEMIEH LHE 2 AWS Encryption SDKO{| CHF Javadoc & Python MEME & X 5HM L.

CllOIE] 7| 7 &2 7 AWS Encryption SDK X|&5tE 2E T2 a2 210{0f AFEE &= U&LICE

ol M ClolE] 7| FH&E ALE St A o &2t E|AEE of A= CHE 2 AWS Encryption SDKE Z 5t All
o

L.

oA 2= 376

https://aws.github.io/aws-encryption-sdk-java/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/

AWS Encryption SDK JHEER} 70| =

C/C++: caching_cmm.cpp

« Java: SimpleDataKeyCachingExample.java

JavaScript 22} Xq: caching_cmm.ts

» JavaScript Node.js: caching_cmm.ts

» Python: data_key caching_basic.py

S J7tX{Qt JSONS 2 #8611, AWS Encryption SDK £ At&35l0{ &t 5 5t6t 11, ALO|T{E
% 7_||‘O| Kinesis AE g2log ALT"— |°|-L|E|' AWS Elxl_-l

= iAot s K2 BEIRHEHA CMM)E HMolsiM 22 FHAl L 7|2 AWS KMS OAE 7| 25
Aot dZgrLIct 74 CMM2 OtAH 7| SZAte| HIO|H Z|(R 22l 453t Rt2)E FHAIEFLICH E
£ CH&l5t0d FHA|2 &5 &5t AFSKE7F A7EE 2ot A2 2 ME =L Ch.

HME &2 Uit 255 X2 ﬂfalxr(CMM) = OtAE 7| 32X CHAl 7HA CMME X
A

Java

CHS Ao M =2l ™ 2.xE AFEFLICH AWS Encryption SDK for Java. ™ 3.x= Cl|O|E{ 7| 7Y
A CMMZ [AWS Encryption SDK for Java 0|4 AF&3HX| o &LICH B 3.x0MHE CHA| & 235}
AR A &EF MR AWS KMS ASH 7|28 AL E =& l&Lct

/*
* Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

*

* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
this file except

* in compliance with the License. A copy of the License is located at
*

* http://aws.amazon.com/apache2.0

*

* or in the "license" file accompanying this file. This file is distributed on an
"AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

* specific language governing permissions and limitations under the License.

*/

package com.amazonaws.crypto.examples.kinesisdatakeycaching;

oA Z= 377

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py
https://aws.amazon.com/kinesis/streams/

AWS Encryption SDK

JHeER 7Hol=

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

/**

com.
com.
com.
com.
com.
com.
com.
com.
com.
com.

java.
java.
java.
java.
java.
java.

amazonaws.encryptionsdk.AwsCrypto;
amazonaws.encryptionsdk.CommitmentPolicy;
amazonaws.encryptionsdk.CryptoResult;
amazonaws.encryptionsdk.MasterKeyProvider;
amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
amazonaws.encryptionsdk.kmssdkv2.KmsMasterKey;
amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
amazonaws.encryptionsdk.multi.MultipleProviderFactory;
amazonaws.util. json.Jackson;

util.Arraylist;
util.HashMap;

util.List;

util.Map;

util.UUID;
util.concurrent.TimeUnit;

software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
software.amazon.awssdk.core.SdkBytes;
software.amazon.awssdk.regions.Region;
software.amazon.awssdk.services.kinesis.KinesisClient;

software.amazon.awssdk.services.kms.KmsClient;

* Pushes data to Kinesis Streams in multiple Regions.

*/

public class MultiRegionRecordPusher {

private
private
private
private
private
private
private

/**

static final long MAX_ENTRY_AGE_MILLISECONDS = 300000;

static final long MAX_ENTRY_USES = 100;

static final int MAX_CACHE_ENTRIES = 100;

final String streamName_;

final Arraylist<KinesisClient> kinesisClients_;

final CachingCryptoMaterialsManager cachingMaterialsManager_;
final AwsCrypto crypto_;

* Creates an instance of this object with Kinesis clients for all target
Regions and a cached
* key provider containing KMS master keys in all target Regions.

*/
public MultiRegionRecordPusher(final Region[] regions, final String
kmsAliasName,
X 2= 378

AWS Encryption SDK JHEER} 70| =

final String streamName) {

streamName_ = streamName;

crypto_ = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

kinesisClients_ = new ArraylList<>();

AwsCredentialsProvider credentialsProvider =
DefaultCredentialsProvider.builder().build();

// Build KmsMasterKey and AmazonKinesisClient objects for each target region
List<KmsMasterKey> masterKeys = new ArraylList<>();
for (Region region : regions) {
kinesisClients_.add(KinesisClient.buildexr()
.credentialsProvider(credentialsProvider)
.region(region)
.build());

KmsMasterKey regionMasterKey = KmsMasterKeyProvider.builder()
.defaultRegion(region)
.builderSuppliexr(() ->
KmsClient.builder().credentialsProvider(credentialsProvider))
.buildStrict(kmsAliasName)
.getMasterKey(kmsAliasName);

masterKeys.add(regionMasterKey);

// Collect KmsMasterKey objects into single provider and add cache
MasterKeyProvider<?> masterKeyProvider =
MultipleProviderFactory.buildMultiProvider(
KmsMasterKey.class,
masterKeys

);

cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()
.withMasterKeyProvider(masterKeyProvider)
.withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
.withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
.withMessageUseLimit(MAX_ENTRY_USES)
.build();

/**

oA 2= 379

AWS Encryption SDK JHEER} 70| =

* JSON serializes and encrypts the received record data and pushes it to all
target streams.
*/
public void putRecord(final Map<Object, Object> data) {
String partitionKey = UUID.randomUUID().toString();
Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("stream", streamName_);

// JSON serialize data
String jsonData = Jackson.toJsonString(data);

// Encrypt data

CryptoResult<byte[], ?> result = crypto_.encryptData(
cachingMaterialsManager_,
jsonData.getBytes(),
encryptionContext

);

byte[] encryptedData = result.getResult();

// Put records to Kinesis stream in all Regions
for (KinesisClient regionalKinesisClient : kinesisClients_) {
regionalKinesisClient.putRecord(builder ->
builder.streamName(streamName_)
.data(SdkBytes.fromByteArray(encryptedData))
.partitionKey(partitionKey));

Python

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
file except

in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
IS" BASIS,

oA 2= 380

AWS Encryption SDK JHEER} 70| =

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

specific language governing permissions and limitations under the License.

import json

import uuid

from aws_encryption_sdk import EncryptionSDKClient, StrictAwsKmsMasterKeyProvider,
CachingCryptoMaterialsManager, LocalCryptoMaterialsCache, CommitmentPolicy

from aws_encryption_sdk.key_providers.kms import KMSMasterKey

import boto3

class MultiRegionRecordPusher(object):
"""Pushes data to Kinesis Streams in multiple Regions.
CACHE_CAPACITY = 100
MAX_ENTRY_AGE_SECONDS = 300.0
MAX_ENTRY_MESSAGES_ENCRYPTED = 100

def __init_ (self, regions, kms_alias_name, stream_name):
self._kinesis_clients = []
self._stream_name = stream_name

Set up EncryptionSDKClient
_client =
EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

Set up KMSMasterKeyProvider with cache
_key_provider = StrictAwsKmsMasterKeyProvider(kms_alias_name)

Add MasterKey and Kinesis client for each Region
for region in regions:
self._kinesis_clients.append(boto3.client('kinesis’,
region_name=region))
regional_master_key = KMSMasterKey(
client=boto3.client('kms', region_name=region),
key_id=kms_alias_name
)

_key_provider.add_master_key_provider(regional_master_key)

cache = LocalCryptoMaterialsCache(capacity=self.CACHE_CAPACITY)
self._materials_manager = CachingCryptoMaterialsManager(
master_key_provider=_key_provider,
cache=cache,

oA 2=

381

AWS Encryption SDK

JHeER 7Hol=

max_age=self.MAX_ENTRY_AGE_SECONDS,
max_messages_encrypted=self.MAX_ENTRY_MESSAGES_ENCRYPTED

def put_record(self, record_data):

"""JSON serializes and encrypts the received record data and pushes it to

all target streams.

:param dict record_data: Data to write to stream
Kinesis partition key to randomize write load across stream shards
partition_key = uuid.uuid4().hex

encryption_context = {'stream': self._stream_name}

JSON serialize data
json_data = json.dumps(record_data)

Encrypt data

encrypted_data, _header = _client.encrypt(
source=json_data,
materials_manager=self._materials_manager,
encryption_context=encryption_context

Put records to Kinesis stream in all Regions
for client in self._kinesis_clients:
client.put_record(
StreamName=self._stream_name,
Data=encrypted_data,
PartitionKey=partition_key

A H| R}

ClO|E{ AH|Xt= Kinesis O|HIE O 2|3 EB|7HE|= AWS Lambda & ILICt ZF HIZEE 535355t
T X245 6t H Ut HIAE PlZEE S 2|X 2] Amazon DynamoDB E{| 0201 #L|C}.

MAK T EQ} OFEH7HKR|2 AH|IAF ZEE S523 HMEE £ M 7HA &S At= BEIRHEHA
CMM)E At&35t0o4 O|O|E 7| & FHE = U E FLCt

oA 2=

382

https://aws.amazon.com/kinesis/
https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/

AWS Encryption SDK JHEER} 70| =

Java ZE= X|HEE AH8610{ ¥E RE0iM OtAH 7| SSXHE UEFLICH AWS KMS key. S35t
AlolE YA 2 EJHEHIEA| ER o|'7(| F K2k 2 A}E1|°'L.|E} Python ZE= ZM ZCE AISE

Ol ZEE AIE3stH7L HIO|E 7| & 3t 28 7|& AWS Encryption SDK A& 35t0{ £ 53518 = Q|
& LC},

}OI'

Java

CHS oMM E BT 2.xE AFEEHLICH AWS Encryption SDK for Java. H{& 3.x& Cl|O|E{ 7| 7H 4
CMM2Z I AWS Encryption SDK for Java O|& At&3HX| o &LICH HM 3.x0I M= CHAl & S8 &t
2 A EFMHAAWS KMS ASH 7|22 A8 =X &L

Ol ZE= A EE0lM SZ35tst7| I8 OtAH 7| SSAHE YEELICH = AWS Encryption
SDK AWS KMS keys AFEX}7 x| 8t BF AtE3t0 HIAIX|E S28te + A&LICH

/*
* Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
this file except
* in compliance with the License. A copy of the License is located at

*

* http://aws.amazon.com/apache2.0

*

* or in the "license" file accompanying this file. This file is distributed on an
"AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

* specific language governing permissions and limitations under the License.

*/

package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoResult;

import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;

import com.amazonaws.services.lambda.runtime.Context;

import com.amazonaws.services.lambda.runtime.events.KinesisEvent;

import com.amazonaws.services.lambda.runtime.events.KinesisEvent.KinesisEventRecord;
import com.amazonaws.util.BinaryUtils;

import java.io.UnsupportedEncodingException;

import java.nio.ByteBuffer;

oA 2= 383

AWS Encryption SDK JHEER} 70| =

import java.nio.charset.StandardCharsets;

import java.util.concurrent.TimeUnit;

import software.amazon.awssdk.enhanced.dynamodb.DynamoDbEnhancedClient;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbTable;

import software.amazon.awssdk.enhanced.dynamodb.TableSchema;

/**
* Decrypts all incoming Kinesis records and writes records to DynamoDB.
*/

public class LambdaDecryptAndWrite {

private static final long MAX_ENTRY_AGE_MILLISECONDS = 600000;
private static final int MAX_CACHE_ENTRIES = 100;

private final CachingCryptoMaterialsManager cachingMaterialsManager_;
private final AwsCrypto crypto_;

private final DynamoDbTable<Item> table_;

/**
* Because the cache is used only for decryption, the code doesn't set the max
bytes or max
* message security thresholds that are enforced only on on data keys used for
encryption.
*/
public LambdaDecryptAndwWrite() {
String kmsKeyArn = System.getenv("CMK_ARN");
cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()

.withMasterKeyProvider(KmsMasterKeyProvider.builder().buildStrict(kmsKeyArn))
.withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
.withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
.build();

crypto_ = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

String tableName = System.getenv("TABLE_NAME");
DynamoDbEnhancedClient dynamodb = DynamoDbEnhancedClient.builder().build();
table_ = dynamodb.table(tableName, TableSchema.fromClass(Item.class));

/**
* @param event
* @param context

ol ZE 384

AWS Encryption SDK JHEER} 70| =

*/
public void handleRequest(KinesisEvent event, Context context)
throws UnsupportedEncodingException {
for (KinesisEventRecord record : event.getRecords()) {
ByteBuffer ciphertextBuffer = record.getKinesis().getData();
byte[] ciphertext = BinaryUtils.copyAllBytesFrom(ciphertextBuffer);

// Decrypt and unpack record
CryptoResult<byte[], ?> plaintextResult =
crypto_.decryptData(cachingMaterialsManager_,
ciphertext);

// Verify the encryption context value
String streamArn = record.getEventSourceARN();
String streamName = streamArn.substring(streamArn.indexOf("/") + 1);
if (!
streamName.equals(plaintextResult.getEncryptionContext().get("stream"))) {
throw new IllegalStateException("Wrong Encryption Context!");

// Write record to DynamoDB

String jsonItem = new String(plaintextResult.getResult(),
StandardCharsets.UTF_8);

System.out.println(jsonItem);

table_.putItem(Item.fromJSON(jsonItem));

private static class Item {

static Item fromJSON(String jsonText) {
// Parse JSON and create new Item
return new Item();

Python

O| Python ZE&= AM RE0M OtAH 7| SSXAHE AHE 5104 %EiP%*L—IEP Ol H| oF‘:"' AWS

|
Encryption SDK 7} |O|E{ 7|1& &= &l &t 2l
8 = U ¥ 7|8 XYt ¥4 2=t 28 Arel| Juct.

[e]]}

oA 2= 385

AWS Encryption SDK JHEER} 70| =

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
file except
in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

specific language governing permissions and limitations under the License.

import baseb4

import json

import logging

import os

from aws_encryption_sdk import EncryptionSDKClient,
DiscoveryAwsKmsMasterKeyProvider, CachingCryptoMaterialsManager,
LocalCryptoMaterialsCache, CommitmentPolicy

import boto3

_LOGGER = logging.getlLogger(__name__)
_is_setup = False

CACHE_CAPACITY = 100
MAX_ENTRY_AGE_SECONDS = 600.0

def setup():
"""Sets up clients that should persist across Lambda invocations.
global encryption_sdk_client
encryption_sdk_client =
EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

global materials_manager
key_provider = DiscoveryAwsKmsMasterKeyProvider()
cache = LocalCryptoMaterialsCache(capacity=CACHE_CAPACITY)

Because the cache is used only for decryption, the code doesn't set
the max bytes or max message security thresholds that are enforced
only on on data keys used for encryption.

oA 2= 386

AWS Encryption SDK JHEER} 70| =

materials_manager = CachingCryptoMaterialsManager(
master_key_provider=key_provider,
cache=cache,
max_age=MAX_ENTRY_AGE_SECONDS
)
global table
table_name = os.environ.get('TABLE_NAME')
table = boto3.resource('dynamodb').Table(table_name)
global _is_setup
_is_setup = True

def lambda_handler(event, context):
"""Decrypts all incoming Kinesis records and writes records to DynamoDB."""
_LOGGER.debug('New event:"')
_LOGGER.debug(event)
if not _is_setup:
setup()
with table.batch_writer() as batch:
for record in event.get('Records', []):
Record data baseb4-encoded by Kinesis
ciphertext = baseb64.b64decode(record['kinesis']J['data'])

Decrypt and unpack record

plaintext, header = encryption_sdk_client.decrypt(
source=ciphertext,
materials_manager=materials_manager

)

item = json.loads(plaintext)

Verify the encryption context value

stream_name = record['eventSourceARN'].split('/', 1)[1]

if stream_name != header.encryption_context['stream']:
raise ValueError('Wrong Encryption Context!')

Write record to DynamoDB
batch.put_item(Item=item)

oA 2= 387

AWS Encryption SDK JHEER} 70| =

HlOlE] 7| 7HA o Al: CloudFormation template

O| CloudFormation ElZ &2 O|0|E 7| 7H & of|XM|E A{Ed5t= O| 2R st ZE AWS E2[AAE M- e
Ct.

JSON
{
"Parameters": {
"SourceCodeBucket": {
"Type": "String",
"Description": "S3 bucket containing Lambda source code zip files"
1,
"PythonLambdaS3Key": {
"Type": "String",
"Description": "S3 key containing Python Lambda source code zip file"
1,
"PythonLambdaObjectVersionId": {
"Type": "String",
"Description": "S3 version id for S3 key containing Python Lambda source
code zip file"
I
"JavalLambdaS3Key": {
"Type": "String",
"Description": "S3 key containing Python Lambda source code zip file"
I
"JavalLambdaObjectVersionId": {
"Type": "String",
"Description": "S3 version id for S3 key containing Python Lambda source
code zip file"
1,
"KeyAliasSuffix": {
"Type": "String",
"Description": "Suffix to use for KMS key Alias (ie: alias/
KeyAliasSuffix)"

I
"StreamName": {
"Type": "String",
"Description'": "Name to use for Kinesis Stream"

o
"Resources": {
"InputStream": {

CloudFormation & Z=! 388

AWS Encryption SDK JHEER} 70| =

"Type": "AWS::Kinesis::Stream",
"Properties": {
"Name": {
"Ref": "StreamName"
},
"ShardCount": 2

iy
"PythonLambdaOutputTable": {

"Type": "AWS::DynamoDB: :Table",
"Properties": {
"AttributeDefinitions": [

{
"AttributeName": "id",
"AttributeType": "S"
}
1,
"KeySchema": [
{
"AttributeName": "id",
"KeyType": "HASH"
}
1,

"ProvisionedThroughput": {
"ReadCapacityUnits": 1,
"WriteCapacityUnits": 1

},
"PythonLambdaRole": {
"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
I
"Action": "sts:AssumeRole"
}

iy

CloudFormation & Z=! 389

AWS Encryption SDK JHEER} 70| =

"ManagedPolicyArns": [
"arn:aws:iam::aws:policy/service-role/
AwSLambdaBasicExecutionRole"
1,
"Policies": [
{
"PolicyName": "PythonLambdaAccess",
"PolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"dynamodb:DescribeTable",
"dynamodb:BatchWriteItem"

1,

"Resource": {

"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${PythonLambdaOutputTable}"

}

},
{

"Effect": "Allow",

"Action": [
"dynamodb:PutItem"

1,

"Resource": {

"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${PythonLambdaOutputTable}*"

}

},
{

"Effect": "Allow",

"Action": [
"kinesis:GetRecords",
"kinesis:GetShardIterator",
"kinesis:DescribeStream",
"kinesis:ListStreams"

1,

"Resource": {

"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}"

}

CloudFormation & Z=! 390

AWS Encryption SDK JHEER} 70| =

I
"PythonLambdaFunction": {
"Type": "AWS::Lambda::Function",
"Properties": {
"Description": "Python consumer",
"Runtime": "python2.7",
"MemorySize": 512,
"Timeout": 90,
"Role": {
"Fn::GetAtt": [
"PythonLambdaRole",

"Arn"
]
},
"Handler":
"aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler",
"Code": {
"S3Bucket": {
"Ref": "SourceCodeBucket"
},
"S3Key": {
"Ref": "PythonLambdaS3Key"
I
"S30bjectVersion": {
"Ref": "PythonLambdaObjectVersionId"
}
I

"Environment": {
"Variables": {
"TABLE_NAME": {
"Ref": "PythonLambdaOutputTable"

},

"PythonLambdaSourceMapping": {
"Type": "AWS::Lambda::EventSourceMapping",
"Properties": {

CloudFormation & Z=! 391

AWS Encryption SDK JHEER} 70| =

"BatchSize": 1,
"Enabled": true,
"EventSourceArn": {
"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}"
.
"FunctionName": {
"Ref": "PythonLambdaFunction"
},
"StartingPosition": "TRIM_HORIZON"

I
"JavalLambdaOutputTable": {
"Type": "AWS::DynamoDB: :Table",
"Properties": {
"AttributeDefinitions": [

{
"AttributeName": "id",
"AttributeType": "S"
}
1,
"KeySchema": [
{
"AttributeName": "id",
"KeyType": "HASH"
}
1,

"ProvisionedThroughput": {
"ReadCapacityUnits": 1,
"WriteCapacityUnits": 1

},
"JavaLambdaRole": {
"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"

iy

CloudFormation & Z=! 392

AWS Encryption SDK

JHeER 7Hol=

"Action":

iy

"ManagedPolicyArns":

"sts:AssumeRole"

L

"arn:aws:iam::aws:policy/service-role/

AWSLambdaBasicExecutionRole"

15
"Policies": [

{

"PolicyName": "JavalLambdaAccess",
"PolicyDocument": {

"Version":

"2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [
"dynamodb:DescribeTable",
"dynamodb:BatchWriteItem"

1,

"Resource": {

${AWS: :AccountId}:table/${JavaLambdaOutputTable}"

}I
{

"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
}
"Effect": "Allow",
"Action": [
"dynamodb:PutItem"
15

"Resource": {
"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:

${AWS: :AccountId}:table/${JavaLambdaOutputTable}*"

}I
{

}

"Effect": "Allow",

"Action": [
"kinesis:GetRecords",
"kinesis:GetShardIterator",
"kinesis:DescribeStream",
"kinesis:ListStreams"

1,

"Resource": {

CloudFormation & Z 3!

393

AWS Encryption SDK

JHeER 7Hol=

"Fn::Sub": "arn:aws:kinesis:${AWS::
${AWS: :AccountId}:stream/${InputStream}"

}
}
]
}
}
]

}
I
"JavalLambdaFunction": {

"Type": "AWS::Lambda::Function",

"Properties": {
"Description":
"Runtime":

"Java consumer",
"java8",
"MemorySize": 512,
"Timeout": 90,
"Role": {
"Fn::GetAtt": [
"JavalLambdaRole",
"Arn"

3,
"Handler":
crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite
"Code": {
"S3Bucket":
"Ref":

""com.amazonaws.

{

"SourceCodeBucket"
1,
"S3Key": {

"Ref": "JavalLambdaS3Key"

iy
"S30bjectVersion": {

"Ref": "JavalLambdaObjectVersionId"

}
I
"Environment": {
"Variables": {
"TABLE_NAME": {
"Ref": "JavalLambdaOutputTable"
},
"CMK_ARN": {

"Fn::GetAtt": [
"RegionKinesisCMK",

Region}:

: :handleRequest",

2|

CloudFormation & 2!

394

AWS Encryption SDK JHEER} 70| =

IlArnll

},
"JavalLambdaSourceMapping": {
"Type": "AWS::Lambda::EventSourceMapping",
"Properties": {
"BatchSize": 1,
"Enabled": true,
"EventSourceArn": {
"Fn::Sub": "arn:aws:kinesis:${AWS: :Region}:
${AWS: :AccountId}:stream/${InputStream}"

1,
"FunctionName": {

"Ref": "JavalLambdaFunction"
I

"StartingPosition": "TRIM_HORIZON"

I
"RegionKinesisCMK": {
"Type": "AWS: :KMS::Key",
"Properties": {
"Description": "Used to encrypt data passing through Kinesis Stream
in this region",
"Enabled": true,
"KeyPolicy": {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": {
"Fn::Sub": "arn:aws:iam::${AWS: :AccountId}:root"

I

"Action": [
"kms:Encrypt",
"kms:GenerateDataKey",
"kms:CreateAlias",
"kms:DeleteAlias",
"kms:DescribeKey",

CloudFormation & Z=! 395

AWS Encryption SDK JHEER} 70| =

"kms:DisableKey",
"kms:EnableKey",
"kms:PutKeyPolicy",
"kms:ScheduleKeyDeletion",
"kms:UpdateAlias",

"kms :UpdateKeyDescription"

1,
"Resource": "*"
},
{
"Effect": "Allow",
"Principal": {
"AWS": [
{
"Fn::GetAtt": [
"PythonLambdaRole",
"Arn"
]
},
{
"Fn::GetAtt": [
"JavalLambdaRole",
"Arn"
]
}
]
},
"Action": "kms:Decrypt",
"Resource": "*"
}

iy

"RegionKinesisCMKAlias": {
"Type": "AWS::KMS::Alias",
"Properties": {
"AliasName": {
"Fn::Sub": "alias/${KeyAliasSuffix}"
I
"TargetKeyId": {
"Ref": "RegionKinesisCMK"

CloudFormation & Z=! 396

AWS Encryption SDK JHEER} 70| =

}

YAML

Parameters:
SourceCodeBucket:
Type: String
Description: S3 bucket containing Lambda source code zip files
PythonLambdaS3Key:
Type: String
Description: S3 key containing Python Lambda source code zip file
PythonLambdaObjectVersionId:
Type: String
Description: S3 version id for S3 key containing Python Lambda source code
zip file
JavalLambdaS3Key:
Type: String
Description: S3 key containing Python Lambda source code zip file
JavaLambdaObjectVersionId:
Type: String
Description: S3 version id for S3 key containing Python Lambda source code
zip file
KeyAliasSuffix:
Type: String
Description: 'Suffix to use for KMS CMK Alias (ie: alias/<KeyAliasSuffix>)'
StreamName:
Type: String
Description: Name to use for Kinesis Stream
Resources:
InputStream:
Type: AWS::Kinesis::Stream
Properties:
Name: !Ref StreamName
ShardCount: 2
PythonLambdaOutputTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
AttributeName: id
AttributeType: S

CloudFormation & Z 3!

397

AWS Encryption SDK

JHeER 7Hol=

KeySchema:
AttributeName: id
KeyType: HASH
ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1

PythonLambdaRole:

Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:
Service: lambda.amazonaws.com
Action: sts:AssumeRole
ManagedPolicyArns:

- arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

Policies:
PolicyName: PythonLambdaAccess
PolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Action:
- dynamodb:DescribeTable
- dynamodb:BatchWriteItem
Resource: !Sub arn:aws:dynamodb:${AWS

${AWS: :AccountId}:table/${PythonLambdaOutputTable}

Effect: Allow
Action:
- dynamodb:PutItem
Resource: !Sub arn:aws:dynamodb:${AWS

${AWS: :AccountId}:table/${PythonLambdaOutputTable}*

Effect: Allow
Action:
- kinesis:GetRecords
- kinesis:GetShardIterator

: :Region}:

: :Region}:

CloudFormation & Z 3!

398

AWS Encryption SDK

JHeER 7Hol=

- kinesis:DescribeStream
- kinesis:ListStreams
Resource: !Sub arn:aws:kinesis:${AWS
${AWS: :AccountId}:stream/${InputStream}
PythonLambdaFunction:
Type: AWS::Lambda::Function
Properties:
Description: Python consumer
Runtime: python2.7
MemorySize: 512
Timeout: 90
Role: !GetAtt PythonLambdaRole.Azrn
Handler:
aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler
Code:
S3Bucket: !Ref SourceCodeBucket
S3Key: !Ref PythonLambdaS3Key
S30bjectVersion: !Ref PythonlLambdaObjectVersionId
Environment:
Variables:
TABLE_NAME: !'Ref PythonLambdaOutputTable
PythonLambdaSourceMapping:
Type: AWS::Lambda::EventSourceMapping
Properties:
BatchSize: 1
Enabled: true
EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}
FunctionName: !Ref PythonLambdaFunction
StartingPosition: TRIM_HORIZON
JavalambdaOutputTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
AttributeName: id
AttributeType: S
KeySchema:
AttributeName: id
KeyType: HASH
ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1

: :Region}:

CloudFormation & Z 3!

399

AWS Encryption SDK JHEER} 70| =

JavalLambdaRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:
Service: lambda.amazonaws.com
Action: sts:AssumeRole
ManagedPolicyArns:
- arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
Policies:
PolicyName: JavalLambdaAccess
PolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Action:
- dynamodb:DescribeTable
- dynamodb:BatchWriteItem
Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS: :AccountId}:table/${JavalLambdaOutputTable}
Effect: Allow
Action:
- dynamodb:PutItem
Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS: :AccountId}:table/${JavalLambdaOutputTable}*
Effect: Allow
Action:

- kinesis:GetRecords
kinesis:GetShardIterator
kinesis:DescribeStream
kinesis:ListStreams

Resource: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}
JavalLambdaFunction:
Type: AWS::Lambda::Function
Properties:

CloudFormation & Z=! 400

AWS Encryption SDK JHEER} 70| =

Description: Java consumer
Runtime: java8
MemorySize: 512
Timeout: 90
Role: !GetAtt JavalLambdaRole.Arn
Handler:
com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndwWrite: :handleRequest
Code:
S3Bucket: !Ref SourceCodeBucket
S3Key: !Ref JavalambdaS3Key
S30bjectVersion: !Ref JavalLambdaObjectVersionId
Environment:
Variables:
TABLE_NAME: !Ref JavalLambdaOutputTable
CMK_ARN: !GetAtt RegionKinesisCMK.Azrn
JavalLambdaSourceMapping:
Type: AWS::Lambda::EventSourceMapping
Properties:
BatchSize: 1
Enabled: true
EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}
FunctionName: !Ref JavalLambdaFunction
StartingPosition: TRIM_HORIZON
RegionKinesisCMK:
Type: AWS::KMS: :Key
Properties:
Description: Used to encrypt data passing through Kinesis Stream in this
region
Enabled: true
KeyPolicy:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:
AWS: !Sub arn:aws:iam::${AWS::AccountId}:root
Action:
Data plane actions
- kms:Encrypt
- kms:GenerateDataKey
Control plane actions
- kms:CreateAlias
- kms:DeleteAlias

CloudFormation & Z=! 401

AWS Encryption SDK

JHeER 7Hol=

- kms:DescribeKey

- kms:DisableKey

- kms:EnableKey

- kms:PutKeyPolicy

- kms:ScheduleKeyDeletion

- kms:UpdateAlias

- kms:UpdateKeyDescription
Resource: '*'

Effect: Allow
Principal:
AWS:
- !GetAtt PythonLambdaRole.Arn
- lGetAtt JavalLambdaRole.Arn
Action: kms:Decrypt
Resource: '*'
RegionKinesisCMKAlias:
Type: AWS::KMS::Alias
Properties:
AliasName: !Sub alias/${KeyAliasSuffix}
TargetKeyId: !Ref RegionKinesisCMK

CloudFormation &I Z 3!

402

AWS Encryption SDK JHEER} 70| =

S| {7 AWS Encryption SDK

AWS Encryption SDK 210{ 80| M= 20| M A HE 2 E[E ArE5to] 2 ZEE|Ae| HE #2E O
21| Algdat 4= QlaLICH HOIX HE 5 0 H1Z(0l: 1.xx0IM 2.xx2 B1Z)2 = #HA o
HIZ7t Hed = Us S HE A S LIEHLICH M HTS| #HE AL 0| ZE A
g O|xl= "2 otLict 2Els HEE HESIo] I
Aofl: x.1.x0ll M x.2.x2 #H%)2 g4 olst HEn &

= A&LIcH

g @RI HUSAIR. Dol BN B
£ix

= H
—_ —_
|8t H O|& AFBE|X| e @471 ZEE

756t MEdSE EEJEH Q102 o] %Al HEES AF2 AWS Encryptlon SDK StMl2. Z 9| R K|
el 3 x| HMe x o odof F&of ek CHELICH M3 st T2 e Q1042 X|¥ElE H
Hoi cHst REMEH LIS 2 6H ?10{2| GitHub Z|Z X|E 2|0{|A{ SUPPORT_POLICY.rst It 2t x 5t

°*:LE1|0|=01| NSt E=E S5 LFE UK |o+7|TIoH%éE? OIJ; & M 7Isol & E &4
S HED RHAMIE AL XIS MBS ELICH ol §0{ T 1.7.x & 1.8.x= 1.7.x 0|5t H{T04[A
20xo|M HMoZ HagolEste o E20| gl Ear A E**HIEI? &Lt xtME g2 ot

0|224|0] 4 AWS Encryption SDKE & Z3HM|2.

(® Note
A 35 o] xE M O|X &1 oto|Ld T o] ZE mx|E LIEFLICE 0 & E0{ HH
1.7x= 1.7.13t 1.7.98 X 35t0{ 1.72 A& st= ZE HTIE LIEHEL|CH
MZ& 29 7|52 el AWS Encryption CLI & 1.7.x 2 2.0.x0IMH RZIAER&LICH 2
B4LF AWS Encryption CLI HH 1.8.x2= HH™ 1.7.xE CHAI 5t AWS Encryption CLI 2.1.x&
2.0.xE CHA|ELICH REMIEH LHE 2 GitHub 2| aws-encryption-sdk-cli 2|ZX|E 2|0 BHEd 2
o HoE HESAL.

Che Eols 2 Z2 20 @do{ofl Chal XIHElS HF 7h] F2 0| R ofl AWS Encryption SDK CHEt
L7t Liet U LICH

C

D2E HE AR CHEt REMIEH A2 GitHub2| aws-encryption-sdk-c 2|2 K| E 2|0 A
CHANGELOG.md & Z=35HMA|2.

C 403

https://semver.org/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/blob/master/CHANGELOG.md

AWS Encryption SDK

JHeER 7Hol=

HIO|X] = Mg &
1.x 1.0
1.7
2.x 2.0
2.2
2.3
C#/.NET

D E BHE AFEof CiE REM[E dE2
CHANGELOG.md # =3t &A|2.

M O|X ™ M "

3.X 3.1.0

Initial release.

Updates to the AWS
Encryption SDK that
help users of earlier
versions upgrade

to versions 2.0.x

and later. For more
information, see E{7d

Updates to the AWS
Encryption SDK. For
more information, see
7% 2.0.x.

Improvements to the
message decryption
process.

Adds support for AWS
KMS multi-Region
keys.

SDK H[O|X T =&

F7| A

End-of-Support 7|

Initial release.

R4 Al
o

M3

Al (GA)

GitHub2| aws-encryption-sdk-net2|ZX[E 2|0 A

SDK H|O|A HT =&

F7| A

End-of-Support

C#/.NET

404

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

JHeER 7Hol=

4.x 4.0

BHE IE{m 0| A(CLI)

Adds support for the
AWS KMS Hierarchi
cal keyring, the
required encryption
context CMM, and
asymmetric RSA AWS
KMS keyrings.

AWS Encryption SDK
for NET H{7 3.x7} K|
o =0 Eo{t&Ll
Ct 4.x2 ¥ad0|=
SHAIR.

SA EA(GA)

DE HE AFEOf CHEF REMIEH M™HE 2 GitHub 2| aws-encryption-sdk-cli 2|ZX|E2[H|AH AWS &F 5 3}

CLI H& 2 CHANGELOG.rst& &%

H O x BT M g&
1.x 1.0

1.7
2.x 20

Initial release.

Updates to the AWS
Encryption SDK that
help users of earlier
versions upgrade

to versions 2.0.x

and later. For more
information, see EH{%

Updates to the AWS
Encryption SDK. For
more information, see
7% 2.0.x.

SDK HO|X A =&
F7| BHA

End-of-Support EH7|

End-of-Support EH7|

HEE olEH 0/A(CL)

405

https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/blob/master/CHANGELOG.rst
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

JHeER 7Hol=

2.1
2.2
3.X 3.0
4.x 4.0
41

--discovery ItZ}
OEE M7HstD --
wrapping-keys I}
2tO|E{Q| discovery
MO 2 HhELICH.

AWS Encryption CLI
H™M 2102 CHE =
Zaefd edo{o| HH
2.01 S UL

Improvements to the
message decryption
process.

Adds support for AWS
KMS multi-Region
keys.

The AWS Encryptio
n CLI no longer
supports Python 2
or Python 3.4. As of
major version 4.x of
the AWS Encryption
CLI, only Python 3.5
or later is supported.

The AWS Encryptio
n CLI no longer
supports Python 3.5.
As of version 4.1.x of
the AWS Encryption
CLI, only Python 3.6
or later is supported.

End-of-Support 7|

x4
S

1z

T

Al (GA)

HAZ QIE{H0|A(CLI)

406

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK JHEER} 70| =

4.2 The AWS Encryptio
n CLI no longer
supports Python 3.6.
As of version 4.2.x of
the AWS Encryption
CLI, only Python 3.7
or later is supported.

Java

D E B3 AFEof ChEt REMIEH MH 2 GitHub2| aws-encryption-sdk-java 2| Z X|E 2|0 A
CHANGELOG.rst& & X 3sIAM2.

H| O] X T ME ge SDK MIO|X H™ +=H
7| EHA
1.X 1.0 Initial release. End-of-Support EHA|
1.3 Adds support for
cryptographic

materials manager
and data key caching.
Moved to deterministic
IV generation.

1.6.1 AwsCrypto
.encryptS
tring() ZE A
& S X|AwsCrypto
.decryptS
tring() gt
2! AwsCrypto
.encryptD
ata() % Edt
EL|CtAwsCrypto
.decryptData()

Java 407

https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/blob/master/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK JHEER} 70| =

1.7 Updates to the AWS
Encryption SDK that
help users of earlier
versions upgrade
to versions 2.0.x
and later. For more
information, see E{7&

2.X 2.0 Updates to the AWS U 7HEE(GA)
Encryption SDK. For
more information, see
{7 2.0.x.

% 2.x= 202440
KX &2 2EZ MEt
AWS Encryption SDK
2.2 Improvements to the for Java & LILC}.
message decryption
process.

2.3 Adds support for AWS
KMS multi-Region
keys.

24 Adds support for AWS
SDK for Java 2.x.

Java 408

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK JHEER} 70| =

3.x 3.0 £ Nz 3= %t 2Ho SA EA(GA)
=He2{2|(MPL) AWS
Encryption SDK for
Java o S gL
Ct. https://github.co
m/aws/aws-crypto

graphic-material-p

roviders-library

H;‘:I ol |:||EH7_‘| RSA
AWS KMS 7|3 AWS
KMS ECDH 7|3
AWS KMS 7=||"7"I 7|
o EAl AES 9'0
Al RSA 5’IE' A
ECDH 7|8, & 7|3

ol =/ Q 5 o|-——|. Z{El
AE CMMO]| CHEE K|
HE FIHELICH

Go

DE HZ AFEof ChEt REMIEH MH 2 GitHub 2l aws-encryption-sdk Z|ZX|E 22| Go CIHE 2|0 Q!
= CHANGELOG.md & X3St AIL.

HIOIx T Ml ge SDK HIOIX| BT &
7| EHA
0.1.x 0.1.0 Initial release. HA EAl(GA)
JavaScript

S2E HE AFE ChEt ARMIEH M2 GitHub2| aws-encryption-sdk-javascript 2|12 X|E 2|01l A
CHANGELOG.md & Z5HA|2.

Go 409

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/CHANGELOG.md

AWS Encryption SDK JHEER} 70| =

M| O X T Ml

o
HL

SDK H|O|X X =&
F7| BHA

4

1.X 1.0 Initial release. End-of-Support EHA|

1.7 Updates to the AWS
Encryption SDK that
help users of earlier
versions upgrade
to versions 2.0.x
and later. For more
information, see H{7&

2.X 2.0 Updates to the AWS End-of-Support 7|
Encryption SDK. For
more information, see
7% 2.0.x.

2.2 Improvements to the
message decryption
process.

2.3 Adds support for AWS
KMS multi-Region
keys.

3.X 3.0 Removes Cl coverage Maintenance
for Node 10.
Upgrades dependenc
ies to no longer
support Node 8 and
Node 10.

E{% 3.x0| CHEH X|#
AWS Encryption SDK
for JavaScript 2 2024
H1&E 170l B2 E

L|cF.

4.x 4.0 Requires version 3 of &4 EA| (GA)
the AWS Encryptio
n SDK for JavaScrip
t's kms-##### to

JavaScript 410

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK JHEER} 70| =

use the AWS KMS
keyring.

Python

DE HE AFEOf CHEF REMIEE AHE2 GitHub 2| aws-encryption-sdk-python 23 X|E 2|04 A
CHANGELOG.rst& & EZsHAM2.

H OIx B Mg HE SDK H|O|X{ {7 43
7| EA
1.X 1.0 Initial release. End-of-Support Et 7|
1.3 Adds support for
cryptographic

materials manager
and data key caching.
Moved to deterministic
IV generation.

1.7 Updates to the AWS
Encryption SDK that
help users of earlier
versions upgrade
to versions 2.0.x
and later. For more
information, see HH{%1

2.X 2.0 Updates to the AWS End-of-Support £t 7|
Encryption SDK. For

more information, see
B 2.0.x.

2.2 Improvements to the
message decryption
process.

Python 411

https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/blob/master/CHANGELOG.rst
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK JHEER} 70| =

2.3 Adds support for AWS
KMS multi-Region
keys.

i Al (GA)

>
1
M

0

3.x 3.0 The AWS Encryptio
n SDK for Python
no longer supports
Python 2 or Python
3.4. As of major
version 3.x of the
AWS Encryption
SDK for Python, only
Python 3.5 or later is
supported.

i Al (GA)

>
1
M

4.x 4.0 £ Nz 3= %t 2Ho
=Heg{2|(MPL) AWS
Encryption SDK for
Python 2 S& &L
Ct. https://github.co
m/aws/aws-crypto
graphic-material-p
roviders-library

0

Rust

DE B3 Arehol cHE XM A
CHANGELOG.md & X 35HAM2.

rlo

GitHub2| aws-encryption-sdk 2|%Z X|E 2| Rust C|ZE{ 2|01 M

HIOIx T Ml ge SDK HIOIX| BT &
F7| EHA
1.x 1.0 Initial release. HA EAl(GA)

Rust 412

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK JHEER} 70| =

HT ME EE

CHE S &2 X|¥EZlE AWS Encryption SDKHZ 7Ho| =2 RI0|-HE MHEHLICH.

A

. 1.7.x 0|5} KT
« ™ 1.7.x

- H{F 2.0.x

« HF 2.2.x

- H{F 2.3.x

1.7.x O|3} ™

(@ Note
9| 2 E 1.x.x HHT AWS Encryption SDK 2 end-of-support Et7|01| Q& LIC} 7Hs 8 8 wa
= 27321 2104 AWS Encryption SDK 0] AF2 & = Qe %A T | 2 Yad|o|=&Lct.
1.7.x O|7 AWS Encryption SDK EHZ0{| A 418 0|=524HH T 1.7.xE Y2 2|0|=35Hok &
LIt REMIEH L& 2 oto|22|0]A AWS Encryption SDKE & Z5HAIQ.

1.7.x AWS Encryption SDK 0| H{T2 Galois/Counter Mode(AES-GCM)8| & 535t & &g
&2 AE8t ¢33 HMAC 7|E extract-and-expand 7| & &< (HKDF), A&, 256H|E &£ 3} 7|1E
ZEtet e 2ot 752 MBELICH sHR[g ogdet HAR2 7| HUE ZE5to HEElE 2 A
& XI§sHR| et&LICh
7 1.7 .x

(® Note

9| 2 & 1.x.x H™ AWS Encryption SDK £ end-of-support =t 74|01 24 &LIC}.

A 1.7.xE O HHFQ| A X7 %1 2.0.x 0|42 2 247 8|0|= AWS Encryption SDK & £ QI
g dAIRELICH E XS A6t ER0| HTE US| Z2 32 o{o M AL 7tsEh 2[4
™o Z A|ZHE AWS Encryption SDKs & LICH

HM ME EE 413

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK JHEER} 70| =

T 1.7.x2 Olst D} 2teotH| S8t E|, SCHet HE8 AL S Z st U7HLE AWS Encryption
SEEH HTM2.0x ZEEES IEE A
A

SDK°| Exl-o |:||_:|7=|°|.7;| l‘ﬁL,|E|- cc ol- 0|A|- |:|.|x jl_|._I|:_ ’ A
Clo|EE == JU&LICt of7]ol= M 7|S0| Z& k[0 UXR[BH 2t Ms| HMEE|X|= et&L|Ch 8 ZH|
JZHE MR 2E M 7152 A ME8HK| 26t 5 st 74 Lol 2L ch.

-

HX 1.7.x0l= CtSat 242 H

ox

Atgto| = &HEL|Ct.
AWS KMS OtAEH 7| 32 A+ L0 E(E)

A 1.7.xE ¥Z3st EEE AN B0 A AWS KMS OtAH 7| 3= XHE AWS Encryption SDK for
Python @AM 2 MA5= AWS Encryption SDK for Java 20 M2 2 MMHXE T lEfLICt 0]
%2 AWS Encryption SDK BEZE QIE{HO|A(CLI| FAHSH 48 ArE S FIHELICE RHAIE

LHE 2 AWS KMS OtAE 7| SZA UH0|EE FESMLR.

. 9474 ZE0f M AWS KMS OHAE] 7| B2AHE 21 7| S8 W2 30, ASAIV} XIBE o)
T 7|20 22 ststn S L €2 ZEE ASSEE BT JIE AT 28S HE s

= AWS Encryption SDK 28 Atz IL|C}

- AM BEOMAWS KMS OFAH 7| 3ZXE o 2iE 7|2 AAS5HR| §E&LIch &S 3tol= 2l
7|8 MEE = glaLIct 55350 ZE B 7|8 ArE5tod &8 E CIOIH 7|18 =355t
& ¢ U&LICE CHEF 25510 A= 2iE 718 S AWS A™HH U= 28 7|12 A&t

LI AE ZE{32 ME A O|X|2 HEE|l= 28 At lu(ch.

20 I
I

O Tl AWS KMS DHAE] 7| BERHE MAISHE MARHE BT 1.7x0IAE Of 014 ABEIX]
PrO T BT 2.0.x01kHE RIAEILICE Ol248H MAIRHE ALSATL XIRE 2T 7|8 Atgstof 23
st OHAE] 7| B2RHE UABIASIELICH SHRIRH RITE 24 7lo g0l ClolE| 718 2%
52t 24T 7|8 A stod ST o2 stEl ClOIE| 718 Z2aELICk ABXHE CHE AWS AT 2 2

™ AWS KMS keys & 3 ot01 AtEstX| XS 2 7I& AEst0{ 2| X A H HAIXIE SE3+E
= &L

gt

I.I

AWS KMS OFAE] 7|o| Wdxts HAELX| et&LIch 253 2 553 A| AWS KMS OHAH 7|=
AWS KMS key At& X7t X|Z&48F BF AL B LICH

AWS KMS 7|2 0| E(MEH AFE

T 1.7.x2= AWS KMS AAM 7[2E& §-¥o 2 A|EHst= AWS Encryption SDK for C & AWS
Encryption SDK for JavaScript 73401 Af ZEE F7t&FLICt AWS AH. o] ME2R HE EH
B ALEO|X|BF HE = DB ALk RHAIE LI 2 AWS KMS 7|2 YOI0|ES HEFAML.

AWS KMS 7|2lo| MMAtE HAL|X| A&LICH E& AWS KMS 7|22 (st D Eof A OlAE
7| Z2RAEH SEHEHLCH AWS KMS Z24M 7|2le M D Eof| M HA|Mo 2 MAI=! |}

7 1.7.x 414

AWS Encryption SDK JHEER} 70| =

AWS KMS & &loi 7| ID ME

2t s 3tE O|0|E 7|& 5= 3E = AWS Encryption SDK & & & AWS KMS =
3 & AWS KMS key o X|A&eLct = 4535 ZH O|lo|E| 7|2 HIEIH|O|E| AWS KMS
key 0llX2| 7| ID Zt2 AWS Encryption SDK 7tX{&LIC}. O] 7|sols ZE BH0| 3K &

.

HE A=t KMS 7|2 2= SHEl AFO|HHEAEE di=5t= H|2] 7| IDE X['EE AWS KMS key E
QE AXIZF AWS KMS 28 Aba|L(ct. o] 22 7| g— XtolM 2HE 7I1E XI™Héet= ot opt
JERIZ 7 At stedE BE 712 AFRSHMH AWS KMS BF 2353515t £ 2 gfLct

0

7| A2 2 AO|HEAE 553

7

HE 1.7.x2 71 743 S0l BAHO0| 455HE AOIHHAEE H2 58 + UYBLICH 5HXIEH 7|
SR E MOIHHAES 45518 £ GALICH Ol 5AS AL AO|HEHAET} watsty|
Mol 7| HNSZ 22 5HE MOIHHYAEES B2 8HY 4 s HEEIAH0IMS BEI5| HHZE £ 9

=
&LICH Ol T2 7| 745! gio] H S 3tE HAIXIE SE36t2 2 MO|HHEAEES CHA| FE 3t
Z 97} o9& Lch.

Teiot7| sl HX 1.7.x0lE7H 7| A2 = S5 L= S55HE = UK 4R E &4
al X

Off
2

o) A3 1A Aol ZEE|o] Q&LICH AWS Encryption SDK EHZ&
U H &8 2k2! ForbidEncryptAllowDecrypt7t ZE 535t U 53535}
F. O] Zt2 AWS Encryption SDK 7} 7| Z{8lo| =& & M €1 2[& MEZ2 5 5tLt

gct ol Salle 7| N |50l #HI0| AO|HEAEE
(@]

g'l_l
oz |1
12 (= mjo
Hu
o
l

> I2 8
2 il

ol
ol _>'-_
Ol
o I
A
M

)
o2

ol
l?ﬂ

ok

1
50

ok H1

on
>
=
n
m
>
o
>
=
o
-]
n
)
A
et
A
30
I
C:
lT'

b mim 13 N o2 ©

™ 1.7.x0dl 75! E& Zto| stLtiO|X|E o|H ZlZ|A0 ZUE M APIE ALSE M=
Ol Zt2 BAIH sh == Qloqof gfLICt O] 2t BAMeE H™5tH HH 2.1.x2 Y8 0|
=& m H3 H2Mo| AIS2SZ require-encrypt-require-decrypt2 HAL = AS YX|E

= QA&LICH Ol BFAHe 2 79! EA 2 O0ro|as 0|4 e = &L
(o]

J>| rr
» [0 Jo

HOlo| ZTEE Ld12& NMEZ

A

=
A‘I':HOI ESFEIN AL EF% StLt= MBS Zehst UX| ef&LICH ool X[HEH
& MEol= AES-GCME At88t &5
st

(HKDF)7} & z|o{ Ql&LCt

HE 1.7.x0lE 71 72 E X|ste F 7Hel Mz22 LT 2|E MEZ 0| Z& &[0 U
L=
(@)

jil°]
ok
ok
N
T
=
>
(@]
d
rT:
h
Wy
h
1o
0
Y
3o
Hn

StX|2h & Z 3ol ALBElE 72 L& MEZ2 HEE K| k&L OIE-I%* gdrelEMEZS
HHE 1.7.x0ll =7HE[0] ALERte| o ZE2(7H[0|MH0] T 2.0.x O| oM LU E|EE AEE = ULHF
K| gdgrLcH

7 1.7.x 415

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId

AWS Encryption SDK JHEER} 70| =

CMM 71¢d B8 At

BIE 1.7.x0 7] S KI#s| 5 7|2 225t 74 @4 BEIXHCMM) QIE{T|0|A 7} HZE
QUELICH O ¥Z AFE 2 ALS A XI% CMME B3t ZROfB M ELICH RIAIE LIS AR 8t
= ZE2JeHY 2do{o| API @B M E&= GitHub 2|2

B 2.0.x

& 2.0.xe X|EE 2HE 7| L 7| 75! AWS Encryption SDK2 Z & 500 MBS == MZR2 2ot
7|52 X|ELICt olt8t 7[5 & XI§st7| flsH T 2.0.x0{= AWS Encryption SDK2| 2& 0|35}
ol CHEH =2 B4 AFE 0| Z & E|o] U&LICH BT 1.7.xE HHE 504 O|2{Et 243 A& ol CHH|E
= A&LCH HH 2.0x0= CHSot 22 F7F L HE AL D &7H HEH 1.7x0| EEI 2ZE MER
7|50l Z&E[lo] d&LICt.

® Note
9| H{& 2.x.x AWS Encryption SDK for Python AWS Encryption SDK for JavaScriptZ! AWS &
3 3} CLIE end-of-support |01l Q& LICEH
5tE T2 2L 210{Z2 0] AWS Encryption SDK HEE2 X|5t T 9 X| 2H2[6H= 2o of

AWS KMS OtAE 7| 22 A}

& 1.7.x0I M O O|AF AFRE|X| b= 2420 AWS KMS OHAE 7| 22 A MAMXH=E A 2.0.x00 A
MHELICH 478 2= e = ZAM 2 E0AM AWS KMS OHAE 7| 22AE Aoz A5 oF g
L|C}.

7| HO2 2 AIO|HERIAE 2f 535 Bl 553

A
75! M2 Mol et A-EELICH 7|BMo R &4 7| 7
StE ALO|HEIAER £S5t eFL|CH 7S HAZ ¥dZ5tX| &t = & AWS Encryption SDK
1.7.x8 Z &3t 0|5t X 2| AWS Encryption SDKZ & S 3HEl AIO|HEIAEE 535 5}5HK|

B rr huro E
18]
| |-0||
I

B 2.0.x 416

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK JHEER} 70| =

/A Important
Zl2Mo 2 HH 2.0xE 7| 72 glo| 53 E MOIHEAEE 55 361K| ot &LICEH Of
Zcl7loldol M 7] 715! ¢io| & Z&HEl AIO|HERIAE T} W AlEh F2, AllowDecryptE 7

Ol X% ZtS MEIEIN Q.

EHT 2.0.x01 A, 2! E& dHolle Chant 242 M 7HX| R &8 2kol A&LCh

« ForbidEncryptAllowDecrypt - AWS Encryption SDK £ 7| Sl 2 & 53518 & &Lt
A S 3tE AMOIHEAEE 7] 70! ALE 0 2t #AHQI0| 25 35He = U&LICH
7

IF

* RequireEncryptAllowDecrypt - AWS Encryption SDK &
ot 53l AO|HEIAE S 7| 7 A 04 ot 70| %iérg & Lok
o

« RequireEncryptRequireDecrypt (Z7IE2%}) -=
OF &fLICt 7| 7{5!0| A= AtO|HEIAE B S5 3t EHLICH

0|7 H{E 2|of| A EHT 2.0.x AWS Encryption SDK 2 O+O|12[0|445tE B2 ofZ2[FH o] Moi| A &t
ME 4 UE ZE J|E MO|IHHAEES E353518 £ QX E 70 MM Zto=z MHstct Alzt
ol X|fol 2t o] MHE =HE 7ts540| =&LICH.

B 2.2.x

SEEREEE

POI-

3tE ool 7| Mgholl cHer x| o] FIHEIRA& LI

® Note

™ 2.x.x & AWS Encryption SDK for Python AWS Encryption SDK for JavaScript AWS &3
3l CLIE end-of-support EF7|0fl Q& LICH.

5t =232 210{Z 0] AWS Encryption SDK HHME x| 5t 1 S x| & E|5H= o i
& XtAIE L& 2 GitHub 2|Z X|E 2|2 SUPPORT_POLICY.rst IS HZHA L.

CIXIE HE

SE3 Al CIXIE ME MEIE IHdst7| flsf ol = CHE 7150l AWS Encryption SDK Z & £[0{ {!

gLict
. HIAEZIY ZE - CIXIE MBO| 2= Z CIXIY ME 2olg Zatstod 2E 2210

c |
ook bt BIAEE HHEHSILICH O] 7|52 AF2SHH CIX|E MHEE &Ql5t7| Mol Yt HIAE

7% 2.2.x 417

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

E M8 = glgLUch CIXEH MBo R 53t CIoEH(ZIE ¢ =

OtCh O] 712 AF2SHMIL. 6|E S04 AWS Encryption CLIE &4 AEZ|A HE0{ A I:'||
MElst7| 2o CIX|™E MEoE AO|HEAEE =S558 [Mf - -buffer

L|Ct.

40
|

2
2
Olo
I
fok
on
H
In
o
2 N
olr

I.

Pol-
l'oj
rn
il
S
I
N
Pl
o

51 HAIX|Q| 2551 ClolE] 7|0 £8 MEHE 4 UALICH 0] 7SS A8 2 Este
12 T DLAE 7| ZIR EE FIRIS SRISL HE 8 Al o4 Abo|T{E

2
=

M £ ole 220 HAXKIE S58E e 3 8E oo|H 71§ Mook gFLIct OF Al &t
T 7| elzlof CHetod EE RS HIEO| £ MM 2 AZXMR 352 YXIFFLIC

HH7& 2.3.x

AWS KMS C+S 2|7 Z|of CHet X[FIHgFLct RHAIE LHE 2 CHE 2[7 AL AWS KMS keys2
xI-X o|.A-||O

(® Note
AWS Encryption CLIE H™ 3.0.x2E CtS 2™ 7|18 R gLt
{7 2.x.x & AWS Encryption SDK for Python AWS Encryption SDK for JavaScript AWS &%
3l CLIE end-of-support Et7A|0f] Q& LI}
H5tE T2 2L 21042 0] AWS Encryption SDK HEE x| 5t D 2 X| 225 o Cf
g REMIEE LH 2 GitHub Z|ZX|E2|9| SUPPORT_POLICY.rst IS &AM 2.

B 2.3.x 418

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK JHEER} 70| =

OFo|22{[0]d AWS Encryption SDK

= 0] &3 28 7tsdt Z=2ae2f Y 2d0{ #32 AWS Encryption SDK X|#5tH, ZF 32 GitHub
O| RE AA B|ZX|EZIM IHLELICH 71 £2 Y2 2 21040l AWS Encryption SDK CHaH| |
A HTOIE AHE S5t ALt

A 2.0.x O|& oM Z|Al HMS 2 9HFI8tH| 41810l = AWS Encryption SDK & £ Q& LICH 18
Lto| 2.0.x HHEOlE 528 MZ2 29 7|5 0| AWS Encryption SDK ZEIieH, O & = F
2 #HZ AbgelLict 1.7.x Olst HZ0IAM 2.0.x & 0|4 Mo 2 adol=stedm HA] %Al 1.x HA
OS2 Yado|=sHof ELICH o] Mo &= vF AHEE olalist D, o E 2|7 0| Mof| &= SHIE H
Mg MEfSt T, AWS Encryption SDK2| Z|A HMo 2 o5t ’8-3—7‘—‘.'OE oto|apo|Met=dl =
20| EI= & MAEZIRA&LCE

o 2 H™oi| CHst RFMIEH LIE 2 M2 AWS Encryption SDKEFZ M2 2| {7 AWS Encryption
SDK.

/A Important
1.7.x O|5} HTO| M =|Al 1. x HHS R THA Yaol0|=6HX| b1 ZHFRE 2.0.x 0|4
Yaclo|l=siMe etELICE B 2.0x Ol 22 Y AOB0|lEstn BEE M 7|52 Al E
3}5tH AWS Encryption SDK & 0| HTQ|ol M &3 El ALO|HEAEE S8 = ols
LICF AWS Encryption SDK.

(® Note

AWS Encryption SDK for .NET2| Z|&l M2 H{Z 3.0. xR LICt. AWS Encryption SDK

for NET2| 2E HZT29| 2.0.x0l =TT 2ot D A€ X[ELIC AWS Encryption SDK.
ELt Cl|lO|E{E HASHK| AT 2[4 HESE QM5 HJadol=8 £+ &Lt

AWS Encryption CLI:O| O+0|1&{|0|4d 7}0|=E& ¢4 [AWS Encryption CLI 1.8.x01| CH&F

1.7.x OrO|22f|0|M X|&]E AF8 3t AWS Encryption CLI 2.1.x01l CHE 2.0.x OFO|28{|0]M |

2 ASELICEH XA LIS 2 AWS 2t 35t CLI T2 & ESHAIR.

MZ2 29 7|52 2l AWS Encryption CLI T 1.7.x & 2.0.x0| M EE2|AEIR&LICH 2

2{Lt AWS Encryption CLI EHH% 1.8.x&= B 1.7.xE CHA|SH 2 AWS Encryption CLI 2.1.x&

2.0.xE CHAIELICH RHMIBH LHE 2 GitHubQ| aws-encryption-sdk-cli 2| Z X|EE2[0]M &t £

OI- :'L'I_I_E 7€|'X OI.A-”O

419

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK JHEER} 70| =

At ALERE

r>|

E XS M85t 42 Z2Ia2iY 21040 AWS Encryption SDK & Z| & HHTH S
Encryption SDKAX|ELICH 7|24t 22| B AWS Encryption SDK, 7| Tt &! 7
ASSE EE5to{e RE Eot 7|2 S e LICH AWS Encryption SDK

2R AFE R

JtsEh 8 Wl #HX T AL 7HSEE 214 HEMS R YaBo|=Este o] E&LICH o 2E
1.x HZ AWS Encryption SDK 2 & Z2 24 ¢10{2] 0|F X 0t&7HX|2 end-of-support
EH7A o °|*|,||:} A8 S Z2 a2 21049] AWS Encryption SDK X[2! x| 22| 4 EHoil CH

AAEH

g AtME L8 2 K| 2 || e MME FESMR.

AWS Encryption SDK %1 2.0.x O|& 0| M= CIO|HE E&5l= Ol =20| &l ME2 E¢t 7S

£ M3 &Lt aeqLk AWS Encryption SDK EHA 2.0.x0|= O™ HT Dt S8 E[X| i £ ¥HE
Aol ZEE|0] UELICH QHTSHA| TEH5E{Td HA] B4R T AFE5te T2 e 21019

Z|41x HE2 2 Oto|aeo|MetM 2. Z|4l 1.x B{T10] 26| BiE |1 XMCHE 2 S8HEH 2.0.x O
o T2 kst ool 1e o] M %* U&ELICH O| 2EHAH ZEMA = E6] 24 oHE 2|7 0|

of E&fLch

ALt 9| 7|8H0] /&= AWS Encryption SDK 20+ 7|s01 CHE REA[EH LI 2 AWS EoF 2
El 2CI0|ME & 2531 HAI™ Keylds & 7| A2 & XFHAMIL.

o3t
Sk AF
O O L— —

2109

o ME ME3Ste Ol =& 0| 2R354l AWS Encryption SDK for Java 7t AWS SDK for Java 2.x? At
SESS Y

S|

- Oto|&|o|4Ad & Hfx &84 AWS Encryption SDK
- AWS KMS OtAE 7| S AC|0|E

- AWS KMS 7|2 YO|0|E

AN
Al ez o] oto|ado|Md 22X s

oo 20|44 2 HHAE #HEd AWS Encryption SDK

o
Paal
olo
ol
2
oo

x 0|7 AWS Encryption SDK H{Z10{ M 2.0.x O|&4 2 Z oto|zzi|o|ME e 7| 743!
§_§FE OFEASHA| etslioF BrLIC O 2{X| 2t o ZEZ|A 0| MM SE5HE = Qs A

<)
El
I
|>
m

ok

oto|zzeflofAM &l HY L 'He 420

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK JHEER} 70| =

7h BHEO{ELICH AWS KMS OtAE 7| SSAHE M85te 39 ¥4 2E E= AM ZE0|M OtAH
7| S2XE d8st= M YEGXZE Lolo|Estof gLct.

0| =2 AWS Encryption SDK 2| 0|5t {10 A 2.0.x 0|4 HHAM S 2 olo|aao|Mdsts Al
EEXE HY SR gLCEH & M3 ME5te B2 7|2 HHEHE M8 7tsE 2[4 HEHE FA|
AL & AWS Encryption SDK% Q& LICH

0424 Et#HE 7{A oto|2d|o|

21010} St AIOIHEIAE S =55t 4 of AlZHet 482 mlsh2iw
613 B3 20| FaUICH O BPAIS AREYI Tl 2 D) BREID B3l MESIER
SHOIStAIR. Ol 02 ZAET} Al B4 ofEEIAH 0|0l S5 SLELICt

1E-AH: ofZ 2|70l E =& 1.x HE 2 2 UO|0|EgfLICH.

/A Important
Z[411.x BH O] AWS Encryption SDK2| 1.7.x EE= O|& HHTQIX| = Ql5tM| .

o| |4l 1.x HA AWS Encryption SDK 22| 2| 7{A| H{ AWS Encryption SDK 2} 0| %1} S 8tk

H H7 2.0.x O|& 1t SEELICEH of7|ol= HE 2.0.x0 = M 7|S0| Z& E|x[2t s oto|zzo|

Mg ol AT etrist 7|22t ZEalor SLICH ERFt B2 AWS KMS OtAH 7| SZAHE ¥
o

HO|E3t1D 7| 7B E AO|HEIAEE E535e = Qe d12[&E NEZLE 2| HlEE = Q!

&L|C}.

« HI7HA] AWS KMS OFAE 7| MIZAe| MMXIE E% 5104 O| &t A E|X| tE RAE 1 A|5HAl
Q. Pythono| B2 x| B Z1E ALC 2AM1x HEHM H Ol AFBEIX| 8iE ZE QAE

2.0.x O] HHZI0I| M K| H = A & LICE

« 7{8] A S ForbidEncryptAllowDecryptZ HA|M o2 MAEFLICH %Al 1.x HTO0IM S5t
A =8 Z2oIx|2t o] ZE|AM TUE APIE AHSE M ST Ao Lot HH 2 O X Ol’é>
HZ o= nto|zeo|Me f ojE 2|7 o]40] 7| ! gio]
gt X|EFL|Ct RFAMIBH LI 2 the section called “7{5! M2 MZEg X ZSHAML2.

1A o Z2l7ilo|M e %A 1.x HE 22 Yd|o|EgLCH 421

https://docs.python.org/3/library/warnings.html

AWS Encryption SDK JHEER} 70| =

« AWSKMS OIAE] 7| B2XE A5t ZR AlHAI OlAE 7| BEXE YA re A AM e
X|Hste OtAE 7| SZXE Yol|o|Edt of & LICH o] MC|0|E= AWS Encryption SDK for Java
AWS Encryption SDK for Python 1 AWS 2335} CLIo| 2EELC AM 2ol otAH 7| XS
X2 ALBSHE B AFBElE tiE 718 §Y AWS H™Ho| BHE 7|2 AStete A EHEE #3545

£ Z0| E4&LIct Ol MHIO|E= ME A O|X|2t HEE[= 2 Atelduct RHMIEH LIE S AWS

KMS OtAE 7| S2A YO0|ES =AML,

« AWSKMS ZM 7|22 A85tE 42 55310 A8El= tiE 718 S AWS A M| 2fE 7|2 |
gtote M ZE{E 736t 20| E4LICH Ol MHIO|IE= ME A O|X|2H HEElE 2 Ate

MH0|E

S 2#x3NQ

L.

[o][]

LICE REMEH LHE 2 AWS KMS 7|2

2EHA: ofEE2[FH0|ME 2[4 HT2 = YH|0|E

Z(1. x HEE RE SAEO HIEFHOM 2.0.x 0|4 HFeZ Hado|=g £ &LICt HA
2.0.x0l= 2 & O|H Aol £ 2 ¥13E A& 0| Z & k|o{ JU&LICH AWS Encryption SDK. 5t X|2F 1EHA|
oM HESte CHE I EE HE5HH 2|4 HTSZ 0to|ado|ME [2R E I|E &= JU&LCH

ZAM HHMSZ YOl|0|ESHY| Tof 2! HA0o| U2 E|AH ForbidEncryptAllowDecryptZ MY E|

o U=X| &IStM L. 2 Ch= olO|E{ o et T ol RequireEncryptAllowDecryptZ2
olo|2gio|M8t CHS 7|8 M9l RequireEncryptRequireDecryptZ & = Q&L|Ct CHS miE
ot Zro| edo| Tt HAHE s&ste Wol E&LICH

1. 742 ™ E ForbidEncryptAllowDecrypt2 &8t AEHoM AIZE M. AWS Encryption

(=2
SDK = 7| AN S ZE HAIX|IE S35t = UX|C ot & 7| HOUE ME5H =35t K|= et&LCH.
2. #H|7} 2t2 &M b A S RequireEncryptAllowDecrypt2 UOIOIESIMR. £ 7| HE2

of 5 3} 51 7| AWS Encryption SDK A|ZF8tLICEH F| 72! AL 0459} 2+7{|240] ALO|H{E

710! M Z RequireEncryptAllowDecryptZ YH|O|ESH7| Tof =&l 1.x HHEIO| M A48 AtO
HEAEE 235355t oZ2|7|0|Me| SAEE Z§510d ZE SAE HIZE|0{ Q=X| &0l
LICt. % 1.7.x AWS Encryption SDK O|™Q| HT2 7| HUICE ¢S5t El HAIX|E SHSE +
&LCt.

|
I.

ol

5211

Lt of | 7| 715! QlO0| MO|HEAEE MElstn U=X| 017 & FYste XIRE off
Zcl7iloldo| F7tst7[ol £2 Efo|TLICH o[AH| otE 3! HA dHE X

RequireEncryptRequireDecrypt® YOIO|ESH T Ot EHX| BEHE &= QI&LICEH Amazon SQS
CH7| ol HIAIRIE Z=8lste Aot Z2 LR ofEEI7H0|Me| B 0|6t M L E5tE 2E
AO|HEA EJ} CHA] 4 Z 3HE| 7Lt AT X[E WH7FK| 22 ZICtEdoF & &= /J&LcH &= 351 El S3

2EHA|: o EE|FH0|ME ZA HHSE HH0|E 422

AWS Encryption SDK JHEER} 70| =

et 22 CHE ol E2[70|Mel 32 ZE AN E OREcst T, Mg Es MUZEsHoF & = AU
& LC},
3. 7l 7Bl glo] A= 3HE HIAIX|7H el 20| & ASHH oY HME
RequireEncryptRequireDecryp t2 UO|O|EE™ &= UA&LICE O 22 AI85IH &4 7| U
S5l ClO|E{7t = 5tE|D S5 SHELICH O] dH2 7|20/ 2 BAMoE dHE Hes Skl
':‘* Ol 4HE M83st= XWo| E&LICE BAIX HAHE2 ofEE|7H0|MollM 7| D! gio| Z=3HEl Al
O|HHMAE % e 2 HeE = e ClHZ Y &M E8o| 80| Euc

AWS KMS OAH 7| 32 A LO|0|E

|4l 1.x H{To| 2 oto|aso|M AWS Encryption SDK$t C}S H{7 2.0.x 0|42 Z Ofo|agi|o|M3t
2404 2| 7HAl AWS KMS OtAE| 7| 22XE P28 D C F= 24 D C oM HAXO 2 MAIE OtAE
7| SSXE ghof Erlct. 27 Al DP*E'I 7| 3F A= HE 1.7x0|M O O|&f AFEE[X| 2tord B
2.0.xH M M7HE[R}&LICE O] B4ZE2 AWS Encryption SDK for Java, AWS Encryption SDK for Python
2 AWS Encryption CLIE At&5t= OHEE|7H 0| X AFJEIEof| HHEA| EELICH o] MMl of A
= ZEE Ho|o|Est= YHE EoiELICt

® Note
Python2| 3¢ x| St Z1E ZLICt O[FH stH =0 HO[0|ESHOF 5t FEE A
‘Hate ol =0l ELich

AWS KMS OtAE 7|(0tAE 7| S2XAE otH)E Ar8stE B9 0| EAE dUE = JU&LICH AWS
KMS OtAE 7= O Old AFSEIX| S HLE MHEIX] e &LICH s otAE 7IE XIEE eiE 7|= 8t

A Estetn S5 3HELICH

O| MMo| Xz H@5Hok ot T E QA0 Z2HE HELICH HOIO|EE ZE9| A o= T
=2 202 2Ho{o| GitHub 2IZX|E2|] oK M2 R X stM|2. =8t 0|E+=+ oMo HE YEHE o
Z 7| ARNs AI&35042 LIEFHLICH AWS KMS keys. X £ 312 Q|8 OFAE 7| SZAE AHE M |
E3H AWS KMS 7| A/EXHE AE5L0{E LIEHE == JU&LICH AWS KMS key . 5§53 E ¢|8t OtAH
7| SZAE MHE B2 7| ARNS ARS8l of g Lct.

F&"

oro|zz2llo| Mo CHal RtA|IS| Y otE 7|

T2 E AWS Encryption SDK At&Xtof CHaol| A 7B HA g d&st= Lol CHSH & ot LICHhe
section called “7{5! &= M%)

AWS KMS OFAE] 7] 22 & AClolE 423

https://docs.python.org/3/library/warnings.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK JHEER} 70| =

AWS Encryption SDK for C & AWS Encryption SDK for JavaScript Ab&XtQ| 32| 7|2loi| CHE AEH
M Ao|o|Eof CHaH Lot=LICtAWS KMS 7[2 20| E.

=H
- 74 me 2 otolagolM
- AM e 2 otolagolM

¥4 2E=Z ool oM

o| %|Al 1. x Ao 2 2ih|0|ESH & |7HA| O}AE] 7| 22XE U4 2 o| OlAE 7| 22 X2 AWS
Encryption SDKHIELICE ¥ ZEME &535F L 55351 A| AHSE 2iE 7|E X|'H5HoF ghLct.

= X|&&t 2iE 7|8 AWS Encryption SDK A23LICH Of O|A AFR E|X| Of= OFAE 7| Z2AH= gl
AWS A% 2| AWS KMS keys 2 Z8H5104 O|O|E| 7|12 2538 AWS KMS key B2 AL25t0d O|O|

HE sliSse = A&LCH

A s R EO| OtAE 7| 2 A= AWS Encryption SDK HE 1.7.x0l EJE[R&LICEH Ol HH
1.7x0| A o O|& AFE E[X| 2t M 2.0.x0IM MAHE= Bl7HAl OtAH 7| S2AHE nAELICH &
4 20 OtAE 7| S2XHE A& 3StE 20| AWS Encryption SDK 285 Ab2d|1L|C},

CIE IE= &35 U E5510 A28 = e ¥4 ZEO| OIAEH 7| 3ZAHE MAELICH
Java

O| oi| A= AWS Encryption SDK for Javal| {71 1.6.2 0|3t HHEE AL 35l= OHEE[FH0lMo ZE
£ LtEHL(CE

O] ZE &= KmsMasterKeyProvider.builder() HIAMEE At835t0{ OtAE 7| SZAHE ¥ 7
AWS KMS key 2 AFE35HE AWS KMS OIAE 7| B2 XHE QIABHASSFLICEH

// Create a master key provider

// Replace the example key ARN with a valid one

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.withKeysForEncryption(awsKmsKey)
.build();

O| od| A= AWS Encryption SDK for Java 2| HHT 1.7.x O|4 HHEE AL 35l= OHEE[FH 0lMo ZE
£ LIEbLIC ™A oMl = BasicEncryptionExample.javaZ & ZE5HMIL.

474 Z =2 nto|z2o|M 424

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicEncryptionExample.java

AWS Encryption SDK JHEER} 70| =

O|™ oMol M AFR El Builder.build() ! Builder.withKeysForEncryption() HMEE
HHZ 1.7.x0I M . 0|4 AP E|X| &t md T 2.0.x0| A M HEIA& LI}

A 2= OtAE 7| SZAE YHI0|ESHT| l6H 0l ZE= O Ol AHE EIX| i= HIMEo] CHEt
5Z8 MBuilder.buildStrict() HIMEoO| CHet =2 CHA|ELICE O] MM E EHE 7|
AWS KMS key 2 5tLIE X85 X[t Builder.buildStrict() HIMEE o{3{e| SE 7t
&= & LICH AWS KMS keys.

// Create a master key provider in strict mode

// Replace the example key ARN with a valid one from your AWS ##.
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

Python

O| of|M|= AWS Encryption SDK for Python2| T 1.4.12 At&5t= OfEE[AH|0|Me| 2=

£ LIEPHLICH ol 2EE BT 1.7.x0llM o] o4 AL E|X| etom M 2.0.x01 M & 7HE
KMSMasterKeyProviderE AFEELICIH 23538 Al AWS KMS keys X|&8tol| &t74|Qi0] Ti|O|E]
7|2 & 53t AWS KMS key BHE AFSEFLICE.

Et, KMSMasterKey= O O|4 AFEEIX| oLt MIHE|X| eEt&LICH 238t & =553 Al AWS
KMS key X|&38H Bt AbFLICH

Create a master key provider

Replace the example key ARN with a valid one

key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = KMSMasterKeyProvidex(
key_ids=[key_1, key_2]
)

O| of|M|= AWS Encryption SDK for Python2| H& 1.7 xE& A& 3t= o E 2|7 0|Me| I EE LIE}
HL|CEH M| oAM= basic_encryption.pyE & ZESHAML.

{74 m= 2 nto|ad|olM 425

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/basic_encryption.py

AWS Encryption SDK JHEER} 70| =
U4 2E OtAEH 7| SZAE UO|0|ESHY| 25 0| Z=&= KMSMasterKeyProvider ()Od| CHEt
3 &8 StrictAwsKmsMasterKeyProvider()oll Cigt &2 CHAI|ELIC}.

Create a master key provider in strict mode

Replace the example key ARNs with valid values from your AWS

key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider
key_ids=[key_1, key_2]

StrictAwsKmsMasterKeyProvider(

AWS Encryption CLI

O of &0 M= Encryption CLI EHHT 1.1.7 O[5t & AFE35t04 AWS 535t U 55 3t5t= HHE E0q
ELct

1.1.7 Ol3t HHOI M= 2= 3HE [stLt o|& ol OtAH Z|(E&= 2iE 7|)E RI™FELICH: AWS
KMS key). ALE AL X|H OFAH 7| SZAHE AHS6HX| e Bt 553 A| 2iE 7|E XIHY = &
LICt AWS 2t 23} CLI= CIO|E| 7|& 25 35tet ZE 2 7|18 ME8E = &Lt

\\ Replace the example key ARN with a valid one
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--master-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

il

ZC 2 olo|zgo|Ad 426

AWS Encryption SDK JHEER} 70| =

O| of|M|of| A= AWS Encryption CLI {7 1.7.x O| & E AtE5t0] 538t A S5 35}5t= WS E 0]
ELICH MA oAM= AWS S35l CLISJ off MME R XML,

--master-keys It2t0|E= HE 1.7.x0| M & 0|4 AEE|X| 2t HA 2.0.x0I M MHEIRI&

LICt 253t U 5535 Hol 28 --wrapping-keys ItEHOIE{2 CHA| =IA& LICt. O] mtEtO|
He ¥4 2 U M o EE X|HELICH M4t 2= o=t eiE 7|8 MBS EXS=

AWS Encryption SDK 2% Ab2i|IL|C},

ok

HA 22 YIdo|=E52dH --wrapping-keys T2FOIE{2] key M4 S AFE35t0q &
=3 Al 2iE 7|18 XIHSAM L.

5o =

\\ Replace the example key ARN with a valid value
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

AM o2 gro|zaio|M

7 x52E 0tAE 7| 22X} CHalf AWS KMS 174
5: §§+ Al i 7|8 X8t

7t agumgzﬁwwfigﬂMﬂE
x| £ 70| A8™olx| g
2 7='°7+ AL & S0 Hg*'% A-835H0f 2381 AWS KMS keys & S Alste &

g] 7| ARNsE LtZEaliof ot= B2 EE ol 0| ™ME A ELIch 8 AM ZEo| ntAH 7| S 2 Xt
£ ool OfAH 7| SSXAME HSot2 2 0to|2e|o[M MEfo| Ete 2 UA[He = AL St

o ¥4 ZEofM OtAE 7| S2A2 Yad0|=8 £ &L

A =2 gho|adolM 427

AWS Encryption SDK JHEER} 70| =

DEo|M OtAE 7| S2XE AEE = A&LICH O|2{et OtAH 7| At
= Qe A3l A8 +~ l&LICH S58E W= CIoIH 7|18 &3

O|2t &2 Aol= M
Ell oz
&L|Ct St X|2F SUEH Ao 2 SE 5= Bl7HA| OtAH 7| SZ At
2 at

oME i 7|18 X|™

515 2E BT 7IE ALY £ 9

oh= 2Bl 7 DEOIM HAISE MAHOF BFLICH A B2l M DLAE] 7| BSXHE AR SHE

S ABY 4 ot BT 718 S5 AWS ATl o0t REE £ 2aLICH ol AN LEf= M
ABIZILICL AWS THEWRF AT Chet AAIE! LIS S AWS 2t ol

AHEO|R| B HE K
Amazon 2|42 A O]

o
L

CHS Mo &

H0
H
[n
[e]

| AWS KMS OFAE 7| 32Xet 5353

2f3sHE 2leh HA £ fler a4
O AWS KMS OtAE 7| SZAE dEefLICH A ZEO| OtAE 7| SZXte A HEE A& 5t0d
S350l A4S &= ciE 7|8 aws THE[M I & of| M| AWS AE2 2 2F MEHEFLICH o< ZHEHEE O]
oMo M= HE EE{7F ERsHK| oL X|BF 8F ol ZE(7H0]440l| M CI|O|EHE = 3tet D CHE ofE 2|7 0]
MM CIoIEE =25t W 0 &8 2 AR LIcH

Java

O| of M= AWS Encryption SDK for Java2| & 1.7.x 0|4 HTE ALE35lE ofZEE|FH0|Me] 2=
£ LIePHLICH ™A of M= DiscoveryDecryptionExample.javag & X 35HAM 2.

5352 Qe ¥4 R oM OtAE 7| B2XHE QIAEASSHZ| 2/8l o] HAoHE
Builder.buildStrict() HIMEE A+%°*LIE+ =) {3t AM 2EoM otAEH 7|
S2ZRE CIARHASEY| QIHME Builder.buildDiscovery() HAMEES AFSELICH.
Builder.buildDiscovery() HME= X|IHE AWS THE|M 2 HZH AWS KMS keys 0| AHE
AWS Encryption SDK 2 M|$tDiscoveryFilterst=& AFS & LICEH

s
Z3E

// Create a master key provider in strict mode for encrypting
// Replace the example alias ARN with a valid one from your AWS ##.
String awsKmsKey = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias";

KmsMasterKeyProvider encryptingKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Create a master key provider in discovery mode for decrypting

// Replace the example account IDs with valid values.

DiscoveryFilter accounts = new DiscoveryFilter("aws", Arrays.aslList("111122223333",
"'444455556666"));

KmsMasterKeyProvider decryptingKeyProvider = KmsMasterKeyProvider.builder()
.buildDiscovery(accounts);

A =2 gho|adolM 428

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/

AWS Encryption SDK JHEER} 70| =

Python

0| of| M= AWS Encryption SDK for Python 2| T 1.7.x O|& HHE AL 5l= ol Z2l7io|Mel 2
EE LtErHLICEH ™A o|Al= discovery_kms_provider.pyE & X 35HAML.

ASSE et YA 2™ OtAH 7| SZRHE HA5H7| f/sH o] oAM=
StrictAwsKmsMasterKeyProvider& A& LICH =53 E @2t AM ZEo|M OtAH 7| 3
ZAHE MME7| I XIHE AWS THE|M 2 A AWS KMS keys HIME AWS Encryption SDK
2 M#tpiscoveryFilterst= DiscoveryAwsKmsMasterKeyProvider2t E7HE AFSE L
Ct.

Create a master key provider in strict mode

Replace the example key ARN and alias ARNs with valid values from your AWS ##.
key_1 = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

key_2 = "arn:aws:kms:us-
west-2:444455556666:key/la2b3c4d-5e6f-1a2b-3c4d-5e6f1la2b3c4d"

aws_kms_master_key_provider = StrictAwsKmsMastexrKeyProvider(
key_ids=[key_1, key_2]

Create a master key provider in discovery mode for decrypting
Replace the example account IDs with valid values
accounts = DiscoveryFilter(
partition="aws",
account_ids=["111122223333", "444455556666"]
)
aws_kms_master_key_provider = DiscoveryAwsKmsMasterKeyProvidexr(
discovery_filter=accounts

AWS Encryption CLI

O of &0l A= AWS Encryption CLI HHT1 1.7.x O|&f 2 ALE35to] 53t 2 |5 35t6t= YHE
HodZL|CH HH 1. 7xEE ¢ 535F o §§_§P Al --wrapping-keys Tt2t0|E{7¢ 2 & LICH.
--wrapping-keys IIZ}OEE ¥4 2= U AM ne 2 x|24efLch MA oM E the section

called “Of|A|” MM FH XML

A=Y o ol oMol M= 28 7|8 XIBE LICH(E S A). 2 23HE e 20l truedl --
rapping-keys Z}2t0O|E{2| discovery $42 AIS5t0f AM DEE HA

AAM meE 2 oto|ad|olM 429

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS Encryption SDK JHEER} 70| =

O| AM ZE0ofM AF&E AWS Encryption SDK == /= & 7|£ S35 eHE 7|2 M Etst7|

28 AWS A 0| oMol MHE --wrapping-keys TH2tO|E{Q| discovery-partition &

discovery-account £82 ALEFLICE O|2{3t MEHA £ 2 discovery £80| trueZ2 M
AMO

HE Z202t RE8LICH discovery-partition 2! discovery-account £42 &7 AIE
atof 5t & CF HSo 2= REHK| pi&Lch

\\ Replace the example key ARN with a valid value
$ keyAlias=arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyAlias \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext
\\ Replace the example account IDs with valid values
$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666 \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--output .

AWS KMS 7|2 d-|o|E

O] AWS KMS 7|3 AWS Encryption SDK for C, AWS Encryption SDK for NET & AWS Encryption
SDK for JavaScript= &3t L 553} Al 2iE 7|18 X|IHE = = x| 2H A E MBS et
AWS KMS M 7|28 ddste 32 HAMoE HEsHMIR.

AWS KMS 7|3 o= 430

AWS Encryption SDK JHEER} 70| =

® Note

AWS Encryption SDK for NET2| Z[4l {2 B 3.0.xL|Ct. AWS Encryption SDK
for NETQ| 2 E 29| 2.0.x0] EIE Eot I A2i|E K| EFLICH AWS Encryption SDK.
Mo 2 ot A aslo|=g 4 QlaLct,

—

(@)
FELOO|HE #HEs K| et %[

_|
AWS KMS 2| AM F|2l0| ArE 5t eHE
LICH AWS AN, AM 7|2l EE{&5tE 20| AWS Encryption SDK 28 Ab2|1L|C},

1z
N
o
[
oY
1z
1}
o
M
i
N
Q'I_l
rr
0L
It
jo
HL
i
IEN
r
ful

o] MAd0| of M= AWS KMS 2|~ A
oto|zzaylol Mo CHa RHAIS| LotE 7|

2 & AWS Encryption SDK At&Xtof CHaol| A 7B HA g dHst= Lol CHSH & ot&E LICHhe
section called “7{5! &A1 M7E”,

AWS Encryption SDK for Java AWS Encryption SDK for Python2! AWS & &} CLI AFE X 2| ZZ<0]
M OtAE 7| SZAto| 228 Aol|o|Eo CH3H & ob&L|Cthe section called “AWS KMS OAE 7| 3
=X Lol E”,

OHZc|7o|Mof CHE ot 242 Z =T} g £ USLICE o]l HAoHE OIF ME(EIE)(us-west-2)
ZIZ1o| 2HE F|0F AF2E £ /= AWS KMS Z|T A 7|2l MAIgtL|Ct o] o|AMlE 1.7.x 0| AWS
Encryption SDK 2| I EE LIEFHLICH 3HX|EH 1.7.x Ol HEO|MHE 04™3| S E&LICH

C

struct aws_cryptosdk_keyring *kms_regional_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder ()
.WithKmsClient(create_kms_client(Aws: :Region::US_WEST_2)).BuildDiscovery());

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser({ clientProvider, discovery })

AWS KMS 7|3 o= 431

AWS Encryption SDK JHEER} 70| =

JavaScript Node.js

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({ clientProvider, discovery })

HM 1.7 x5 2E AM 7|2l0] AWS KMS AM ZEE £ U&LICH o] ZM LE{=7l 5%
sloi AF2& AWS Encryption SDK = AWS KMS keys ME OE[M U AHHEHe| 2 AIsHgLCt.
O| ZEE AI83517| ol 2Rt A nE[ME HAS T oM H/H IDE |R&F8 W22 HIRAME.

C

A oAM= kms_discovery.cppE & E5HAIL.

std: :shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter(
KmsKeyring::DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.AddAccount("444455556666")
.Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
ws: :Cryptosdk: :KmsKeyring: :Buildex ()

WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery(discovery_filter))

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {

discovery,
discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:

'aws' }

1)

JavaScript Node.js

A olAl= kms_filtered_discovery.ts& & ZSHM L.

AWS KMS 7|3 o= 432

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts

AWS Encryption SDK JHEER} 70| =

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)

const keyring = new KmsKeyringNode({
clientProvider,

discovery,
discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:

'aws' }

7| HB 2 M85t 5 5tE HIOIE7t 84 S et HHAER 55 5HELICH HE 1.7.x82E0| 2
ot £ 42 NMIs5t7| flse 7| Aot & M €1 2[& ME =S AWS Encryption SDK A& & LTt

7|
COIEE &=3tetn S55+E M 7| HU AIS {2 E ZHstE{H HU H2 9 dHE M FLICH
7| HB S E HIO|EE Y3 35t5t 5556t 40| AWS Encryption SDK 28 Ab2| JL|C,

7] EH MHEH2 |41 1.x HH0| A BT AWS Encryption SDK 2.0.x O|& 22 oto|1el|o|Mst= Ot

M EZ2MAS F HH HAHM 528 FELICH HS g MH5tD HEs Foil= of
Zc|7lo|ldg Z2EM 2t Zof B St 7| ol HX{stAH HIAESHoF & LICH Oto|zsol4 X|&2 ot
O|za|o|M 2! Hi E ¥ AWS Encryption SDK AIME & X 5HM|2.

2.0.x O|& O 7HB! E& MHol|= Crta0t 22 M 71X &8 240] Q&L =& 1.x HH
(1.7x HHHEE{)0ol| A= ForbidEncryptAllowDecrypt Bt S &HL|CH

ncryption SDK &= gi&LICH &

m

« ForbidEncryptAllowDecrypt -& 7| HUSZE &S 358 AWS
SEl AIO|HEIAEE 7| Y AL 02 2 ZH7|gi0| 5

ok

Z|4 1 x HHO|M Ol RYUSHH &8 2tLICt O|E &3l 7| AN E S535tE &H|7| 2tT6]
2t2E|7| HK|= 7| AU R ¥ E 35K L E ELICH O] 2t BAMo=E 5t H 2.0.x O[4
HHMe 2 fado|l=g mf #HE! *—.OI XSS Z require-encrypt-require-decrypt® #HE3
El= R UX[E = UASLICH T, BAHXMo = 7S FAE oto|ao|ME = JU&LCh

r>

« RequireEncryptAllowDecrypt -= AWS Encryption SDK &4 7| 7SI 2 &t S35ttt &%
StE AIO|HEIAEE 7| 7 ALE 02 2 ZHAH|Q10| S 535 = JU&LICH 0] 2t2 BT 2.0.x0 =

==

7tEIR& LICH

« RequireEncryptRequireDecrypt -= AWS Encryption SDK &4 7| -I Sle2 ¢
LICt of 2t2 BT 2.0.x01 FIHE|{&LICE. Ol BT 2.0.x O|& 0l M 7|2 gt L.

HA —

433

AWS Encryption SDK JHEER} 70| =

Z A x HHOM FU5HAH &8 HAU H™ ZL2 ForbidEncryptAllowDecrypt &L
Ct 2.0.x O|& HESE DFOIILEﬂOl.*_:'?_ Z ZHI7} e 02 AHO HHE EAxo = H
ag = JaLch 7| 75! gio] 23 3HE HIAIX|7 gl Z[ol & lx|7| Tol= 70! HAS
Requ1reEncryptRequ1reDecrypt§ UO[o|E5tK| OFM| L.

S dldlE 24 1.x HE & 2.0.x O HHTOIM S HAE HYst= S E EodELICH 7|2 &
2eiY dodof| et ek &L

oro|zz2llo|Mof CHal RtAIG| Y otE 7|

AWS Encryption SDK for Java AWS Encryption SDK for PythonZ! AWS ¢f £ 3} CLIS| B0l OtA

B 7| 32 Xto]| 2t A ALEof| CHSH 2ol & LICthe section called “AWS KMS OFAE] 7| 32X
HOIE”.

AWS Encryption SDK for C 22| Z< 9| 7|2loi| CiEt ME%] 4O|0|E0f| CHEH AWS Encryption SDK
for JavaScript2 Ot &= LICFAWS KMS 7|2 4H[0|E.

719! B MBS O ALSSHE Wi 2 olof 2H0icH 3 CHELICH O oMol ME B &t
o WS OB LICH HI HAS WSty | Fof 0Ho| T2 01M I HHE Weiol M CHEHA T2 WAIS
HESML

H™ 1.7 x5 E aws cryptosdk_session_set_commitment policy & =& AWS Encryption
SDK for CAF&35t04 &t 535} 3t Mol S HAg DL dEet A HA2 s Al
F

=z
MM ZEE RE 453 = 3t 2ol MEELCH

Jo Ji

wo)||

aws_cryptosdk_session_new_from_keyring &
aws_cryptosdk_session_new_from_cmm &£ B 1.7.x01A O
Old AHEEIX| efomd HH 2.0.x0 M M7HEIR}&LICH Ol2det &= Al
Mg vtetstE aws_cryptosdk_session_new_from_keyring_2 &
aws_cryptosdk_session_new_from_cmm_2 &= CHA|ELICH

N

Z| & 1.x 0| M aws_cryptosdk_session_new_from_keyring_
2! aws_cryptosdk_session_new_from_cmm_2Z A28 B2
COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT B! M™ Zf& Al &35}04

aws cryptosdk_se551on set_commitment_policy &+& S &5l 0k &LICH 2.0.x O|&F H
HMo| B O| 8 2&stes W2 ME AE0|H &8 22 ZF AFSE LT 2.0.x 0|4 HZHQ

7|2 78! 22 COMMITMENT _POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPTJLICE.

e PURSES RSPy 434

AWS Encryption SDK JHEER} 70| =

Al .

M| of & 2 24H™ string.cppE B XE

o

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Create an AWS KMS keyring */

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;
struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* Create an encrypt session with a CommitmentPolicy setting */
struct aws_cryptosdk_session *encrypt_session =
aws_cryptosdk_session_new_from_keyring_2(
alloc, AWS_CRYPTOSDK_ENCRYPT, kms_keyring);

aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(encrypt_session,
COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

/* Encrypt your data */

size_t plaintext_consumed_output;

aws_cryptosdk_session_process(encrypt_session,
ciphertext_output,
ciphertext_buf_sz_output,
ciphertext_len_output,
plaintext_input,
plaintext_len_input,
&plaintext_consumed_output)

/* Create a decrypt session with a CommitmentPolicy setting */

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);
struct aws_cryptosdk_session *decrypt_session =
*aws_cryptosdk_session_new_from_keyring_2(
alloc, AWS_CRYPTOSDK_DECRYPT, kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(decrypt_session,
COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

il
a
0
12
nx
0
(1
o
o
L

435

>
0!
I

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK JHEER} 70| =

/* Decrypt your ciphertext */

size_t ciphertext_consumed_output;

aws_cryptosdk_session_process(decxrypt_session,
plaintext_output,
plaintext_buf_sz_output,
plaintext_len_output,
ciphertext_input,
ciphertext_len_input,
&ciphertext_consumed_output)

C#/ .NET

require-encrypt-require-decrypt Zt2 AWS Encryption SDK for .NET2| 2
= HTH0AM 7|2 70! EAULICH 2H MHE BAMo=E dHE &= UX|EH EH
Abgt2 oblL|ct 2Lt AWS Encryption SDK for NET2 AF&35t0d 7| {59! AWS
Encryption SDK 810[|2| Ct& 210 3o Z A S SHEI AO|HEIAEE iS5t &
< 71 M 7t 2 REQUIRE_ENCRYPT_ALLOW_DECRYPT == 2 #Z5H0k &L
CHFORBID_ENCRYPT_ALLOW_DECRYPT. O 24X| &t ™ AIO|HEIAE 5353 A= 7 AuiFict.

AWS Encryption SDK for .NETO|A{Q| QIAE A0 748! HAMM & MHEL|CH AWS Encryption SDK.
CommitmentPolicy I}2tO|E{E AF23104 AwsEncryptionSdkConfig ZH&|E QUAEASIS
o 74 U E AHE 3504 AWS Encryption SDK QIAEIAE MM3tLICH O™ CHS FMHE AWS
Encryption SDK QIAEAO| Encrypt() X Decrypt() HMEE & LICtH

O] ofloi = 748! HAHE require-encrypt-allow-decrypt2 AAELICH

// Instantiate the material providers
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig

{
CommitmentPolicy = CommitmentPolicy.REQUIRE_ENCRYPT_ALLOW_DECRYPT

};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

var encryptionContext = new Dictionary<string, string>()

e PURSES RSPy 436

AWS Encryption SDK JHEER} 70| =

{

{"purpose", "test"}encryptionSdk

};

var createKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

var keyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

EncryptionContext = encryptionContext
};

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

// Decrypt your ciphertext
var decryptInput = new DecryptInput

{
Ciphertext = ciphertext,

Keyring = keyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

AWS & 53} CLIOIAM 8! HA g MXStEd™H --commitment-policy ItEO|EIE AFSEFLICEH
o| mlztOlEE A 1.8.x0 EUE|A&LICE.

Z A1 .x HHO| B --encrypt £E --decrypt BHOIA - -wrapping-keys T}ZO|E{E A
88 M= forbid-encrypt-allow-decrypt 20| Q= --commitment-policy Zt2tO|E{7}
ZIQgtLic aX| $2™ --commitment-policy ItEtO|E{7F R &K of A ElLICH

2.1.x L 0|4 H™O|AM = --commitment-policy Tt2tOIE{ 7} MEH ALEHO|H 7| 7! g0 &=
StEl ALO|HEIAEE A 3356t 7Lt £ 5356HK| &= require-encrypt-require-decrypt &t

ol 7= zteILict. 3HX|EH R &| BE| U X HH| TR0 TS DE 455 3 =55 SS0HM
7|0l MRS Ao 2 MEst= Zd0| E&LCH

e PURSES RSPy 437

3
0!

AWS Encryption SDK JHEER} 70| =

ol oflofl e 745! HAS MEIsfLict 3 1.8.x HMEE] --master-keys L2ZHO|E{E CHA|sHE
--wrapping-keys I2tOEAE AR LICH AFMIEH LEE 2 the section called “AWS KMS OFAE
7| 22 A UH|I0|E’E HXSIMIL. ™A o|Me AWS €53 CLIC| of MME B ESHAML.

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data - no change to algorithm suite used

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--commitment-policy forbid-encrypt-allow-decrypt \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext - supports key commitment on 1.7 and later

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--commitment-policy forbid-encrypt-allow-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \

--output .
Java
{7 1.7 x5 E{ AWS Encryption SDK Z2}0|21EE LIEHHE X AwsCryptoRlQ| QIAEIAO] 7
2 HAEZ AWS Encryption SDK for Javadd & efL|Ct O] 7S H& M2 ST Z2I0|MEHM =
EE DE 4535 2 553 2ol M ELICH

AwsCrypto() MEAt=9| |4 1.x HX|AM = O 0|4 AFE E|X| AWS Encryption

SDK for Java &t & 2.0.x0|MHE M7HELICH A Builder EciA,
Builder.withCommitmentPolicy() HIME, CommitmentPolicy €7 R Z Chx|E L
Ct.

Z[411.x H™ Q| Builder 2240 = Builder . .withCommitmentPolicy () HAME
@} CommitmentPolicy.ForbidEncryptAllowDecrypt QI=7F HBFLICH 2.0.x
™S E Builder.withCommitmentPolicy() HIMEE MEd AFEO|T 7|2

CommitmentPolicy.RequireEncryptRequireDecrypt®lL|C}.

A o|dl= SetCommitmentPolicyExample.javaZ® & Z35HM 2.

e PURSES RSPy 438

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SetCommitmentPolicyExample.java

AWS Encryption SDK JHEER} 70| =

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.buildexr()

.withCommitmentPolicy(CommitmentPolicy.ForbidEncxryptAllowDecrypt)
.build();

// Create a master key provider in strict mode
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Encrypt your plaintext data
CryptoResult<byte[], KmsMasterKey> encryptResult
masterKeyProvider,
sourcePlaintext,
encryptionContext);
byte[] ciphertext = encryptResult.getResult();

crypto.encryptData(

// Decrypt your ciphertext

CryptoResult<byte[], KmsMasterKey> decryptResult = crypto.decryptData(
masterKeyProvider,
ciphertext);

byte[] decrypted = decryptResult.getResult();

JavaScript
A 1.7 x2E AWS Encryption SDK 2ZI0|HE & QAEASIS= M buildClient &+E =
£ m AU HME M E AWS Encryption SDK for Ja vaScrlpt—r A&LICH buildClient &%
= AU HAME LI = GHY 22 A SFLICH 2335t A 5535t Al 70! S HE5t= A
O|EE encrypt L decrypt &£ BHEHEFLICH

Z| M 1. x HAOME buildClient &0
CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT Ql47}
ZIQBrL|CH 2.0.x HHEE| 75! HA Q= MEH ALE 0|1 7|22

T = — HA -

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT®ILIC}.

ol xt2
=0]
o=

[ut
—
AL

WS MYste{H HHE

CH.

ol

Eli]
[ls]

o x
(S}
=

RotCte M2 X 2l5tH Node.js ZELQF HEFR X

T o

F

r|r —'—
ok J

o |r

CHS oMol A E AWS KMS 7|21 AL&5tod C|0|E{E 23 & 8tLIct Af buildClient B4 E 7
0! Z2HS FORBID_ENCRYPT_ALLOW_DECRYPTZ MH3IH Ol Z|Al 1.x H{E Q| 7|£ZLL]CH.

S = 439

AWS Encryption SDK JHEER} 70| =

buildClientOoAM EtetE|E 2O O|=E encrypt & decrypt &+ AFS K7 M&st 7{G]

Mg ML

import { buildClient } from '@aws-crypto/client-node'
const { encrypt, decrypt } =
buildClient(CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

// Create an AWS KMS keyring
const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias'

const keylIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"']
const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

// Encrypt your plaintext data
const { ciphertext } = await encrypt(keyring, plaintext, { encryptionContext:
context })

// Decrypt your ciphertext
const { decrypted, messageHeader } = await decrypt(keyring, ciphertext)

Python

™ 1.7 x5 E{ AWS Encryption SDK 22I0|HEE LIEILHE M Z&|EncryptionSDKClient !
O| QIAEAAO] 743! =S AWS Encryption SDK for Python & L|CH M 7{0! H=2 S

Z22I0|HE QIABAE MB5t= ZE encrypt 2 decrypt ZE0| M ELICH,

& 1.x Q| EncryptionSDKClient &A=
CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT ¥7HE 2t
O HRELICH 2.0x HTRH 7 HA il MEY AL Ol 7|24t2
(o]
=

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT |L|C}.
Of of&Aloi M= M EncryptionSDKClient MMXIE AFE5tT HU HAME 1.7.x 7|28
2 M™gLIch MAXHE AWS Encryption SDKE LIEHE Z2I0|HEE QIAEASIEL

Ct. o] 22+0|2E0|M encrypt, decrypt EEE stream HIMEE S &5H M s 7{4!
Aol M ELch E8to| dAMoME EE3t L =555t AWS KMS keys Al7|E X
StrictAwsKmsMasterKeyProvider Z2i4A 0| A MMXIE AFSELICH

0
9'|_l
rir

A oAM= set_commitment.pyE HZXSIMIL.

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_AL

e PURSES RSPy 440

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/set_commitment.py

AWS Encryption SDK JHEER} 70| =

// Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

Encrypt your plaintext data

ciphertext, encrypt_header = client.encrypt(
source=source_plaintext,
encryption_context=encryption_context,
master_key_provider=aws_kms_strict_master_key_provider

Decrypt your ciphertext

decrypted, decrypt_header = client.decxypt(
source=ciphertext,
master_key_provider=aws_kms_strict_master_key_provider

Rust

require-encrypt-require-decrypt Zt2 AWS Encryption SDK for Rustl| 2 & HZT0{AM 7|
= U HAQULICH 2 At ZE BA[Mo 2 MHE = UK E AFE2 ofHL(C aeqLt AWS
Encryption SDK for RustE AF&3t0{ 7| 743! AWS Encryption SDK 810|2| CHE @10 3o =2 ¢f
SSHEl MO|HEIAEE Sl|Sdtes A< 713! A 212 REQUIRE_ENCRYPT_ALLOW_DECRYPT &£
= 2 475l ok BL|CHFORBID_ENCRYPT_ALLOW_DECRYPT. 12{X| oo™ AO|HEAE £5 35|
A7t AufEhLCt,

AWS Encryption SDK for Rustoi|A{2| @IAE A 0] 75! H2 S T LICH AWS Encryption SDK.
comitment_policy It2tO/E{E AF&3t04 AwsEncryptionSdkConfig ZHA|E QIARASIS
0 T A E AH8 3504 AWS Encryption SDK QIAEAE HMBHLICH O™ ChE FA4E AWS
Encryption SDK RIAEIAO| Encrypt() & Decrypt() HMEE ZE&LICEH

O] ofloi = 745! HAHE forbid-encrypt-allow-decryptE A& gL|Ct.

// Configure the commitment policy on the AWS Encryption SDK instance

let esdk_config = AwsEncryptionSdkConfig::buildexr()
.commitment_policy(ForbidEncryptAllowDecrypt)
.build()?;

let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

il
a
0
12
nx
0
(1
o
o
L

>
0!
I

441

AWS Encryption SDK JHEER} 70| =

// Create an AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(kms_keyring.clone())
.encryption_context(encryption_context.clone())
.send()
.await?;

// Decrypt your ciphertext
let decryption_response = esdk_client.decrypt()
.ciphertext(ciphertext)
.keyring(kms_keyring)
// Provide the encryption context that was supplied to the encrypt method
.encryption_context(encryption_context)

il
a
0
12
nx
0
(1
o
19
L

442

>
0!
I

AWS Encryption SDK JHEER} 70| =

Go

.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
commitPolicyForbidEncryptAllowDecrypt :=
mpltypes.ESDKCommitmentPolicyForbidEncryptAllowDecrypt
encryptionClient, err :=
client.NewClient(esdktypes.AwsEncryptionSdkConfig{CommitmentPolicy:
&commitPolicyForbidEncryptAllowDecrypt})
if err !'= nil {
panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

)
// Optional: Create an encryption context
encryptionContext := map[string]lstring{
"encryption": "context",
"is not": "secret",
EaPUR S IS P s 443

AWS Encryption SDK

JHeER 7Hol=

"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create an AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: kmsKeyId,
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)

// Encrypt your plaintext data
res, err := forbidEncryptClient.Encrypt(context.Background(),
esdktypes.EncryptInput{

Plaintext: [1byte(exampleText),
EncryptionContext: encryptionContext,
Keyring: awsKmsKeyring,

1))

if err != nil {
panic(err)

}

// Decrypt your ciphertext
decryptOutput, err := forbidEncryptClient.Decrypt(context.Background(),
esdktypes.DecryptInput{
Ciphertext: res.Ciphertext,
EncryptionContext: encryptionContext,
Keyring: awsKmsKeyring,
b
if err !'= nil {
panic(err)

>0

02
12
nx
02
oL
It

444

AWS Encryption SDK JHEER} 70| =

%Al HX oz ol olo|zado|M 22X A

I TIPS |:|-|7<-I 2.0.x 0|22 UH|0|ESHZ| Moilo] =&l 1.x HMSZ AWS Encryption SDK
N HEZEErL|CH O|=EH 6t 2.0.x O|AF MO 2 UO|o|EE
[gt AME £ Q= CHEE Q| 2FE WX|ste ol =30| EuCt olE =& st xHAMISH x|&2 oto|za
0| AWS Encryption SDK MME & X 3FIAM Q.

r
9
[m
>
é
%)
m
>
(@)
<
=
<}
5
%)
O
=
Q'I_l
I-J
o
2
ol
C

/A Important
%| &1 1.x HX 0] AWS Encryption SDK2| 1.7.x EE= 0|4 HEQIX| EOIEHA|2.

(@ Note

AWS 253} CLI:O| 7}0|=0{ A B 1.7.x01l CHEt & == AWS &3 3 CLI EHE1 1.8.x0 AWS
Encryption SDK M &EL|Ct. 0| 7t0|=0| M B 2.0.x0f| CHEF & == AWS Encryption CLIZ|
2.1.x0{l AWS Encryption SDK & EL|C}.

MZ2 2ot 7|52 &2 AWS Encryption CLI FHF 1.7.x & 2.0.x0{ M B 2|AE[RFA&LICEH O
2Lt AWS Encryption CLI EHHZ 1.8.x= B 1.7.xE CHA|SH 2 AWS Encryption CLI 2.1.x&
2.0.xE CHAIELICH REMIBH LHE 2 GitHubQ| aws-encryption-sdk-cli 2| Z X|EE2[0]M & £
ot & HESHML.

Ol =2 UAE = U= 7t detHel 2 7R E elMstn sidste ol =F0| El= 5 dAE[I&LICH

|

« O ol ASEIX| §EHLE M7HE |

- FEESE AN BM I LTEENES
- TE S AHU G A AO|HEAE

- I AHANHS A

- Z[Et AES RF

- 7El 5535 2F

- EY O ALY

Z| A HTcZ2o| oto|Bold EX A 445

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK JHEER} 70| =

O] o4 A E[X| g 7HLE AMI7{E 24|

HHZ 2.0.x0= HE 1.7.x0| M O|&f AFS EIX| i = BllHA| AR HIME, ?:.—1‘— 1 FeA ®MHE
HIZ et Z 71X £ 38 A 0| Z& |0 JY&Lct Hutgde]| @F, 7HMH7| 27, #& 2F 2 7|
SENE o8 2LREEO2HY dodo| M2k CHE)E Y XIste{H HA =232 Y edo{ofl AWS
Encryption SDK ¥&= Z|A 1.x HACS| 2 Had|o|=gLCh. (1.7.x O[4 B{T O[040k BfL|Ct) &A1 1.x
HME AEdtE 82 HE 7|27t MHE|Z| Mol A 4 AFE S AIETE = /&L Ch

N

i
m2
P
g'l_l

ZAl Yadlol=slof st B AF8 S Z=OeiT ol HE =21
230|M HESHE 7|22 HIF M L.

Ox Ol HHSZ
74
o

0
I 7 7|28 H

TaSE AN S A dneE MEZ

ok

ol &

fok
M

7% EHnt SE5te LIEIE MEZE XHetes F2 7 & 277 Ldsto] 4535t
I

Ol2{8t RO 2FE YX|ste{H L1 2|E MEZS XIH5HX| OtML. 7|22 2 AWS Encryption
SDK & 748! % ""‘—'.*I'—P SEEE 7tE obdEt dnelE S MEIELICH U MK i g nelE A
E00 Z0o| g Z|E MET S XHalof ot A2 7O A s2tkl= gdne|E NMETS MESE]
Of &fLICt.
7{5) 2 S otsE LnelE NED
ForbidEncryptAllowDecrypt CtEot 20| 7| 7{Blo| gie 2E ¢ 2|E Al
E:

AES_256_GCM_IV12_TAG16_HKDF
_SHA384_ECDSA_P384 (03 78)(MH AUS)

AES_256_GCM_IV12_TAG16_HKDF
_SHA256 (01 78)(M™ Q1=

RequireEncryptAllowDecrypt CtZ1k 20| 7| 7{8l0| /Y= 2E LEE Al
E.:
RequireEncryptRequireDecrypt AES_ 256_GCM_HKDF_SHA512_COM

MIT_KEY_ECDSA_P384 (05 78)(AMYE UR)

AES_256_GCM_HKDF_SHA512_COM
MIT_KEY (04 78)(MEH 81

Ol o1& AFSEIXI AL MAE A 446

AWS Encryption SDK JHEER} 70| =

A 0E|E MEE XIHstR| i 2 EjolM ol 277t Ydlste B2, A =5t A= HERHCMM)7L S
ot dE|E MEE MERIE & U&LICH 7|8 CMM2 &5t d1El& MEE MEsHX| PEX]
Ot MEX XIE CMME SEdte L1 ElE MEE MHE + U&LICH 0| E26tH AEXR X

M
CMM EAM MMHE FZstMIR.
o

RequireEncryptRequireDecrypt 72! =0 A= AWS Encryption SDK 7t 7| 7{5! g10| & 55t
Z HAIXIE S23t5te JAE §8stX| t&LICt 7| 7{%! 10| HIA|X|E S =35 AWS Encryption SDK
SIS0 2FHstH 7o & 2R/ 7 gretELct.

O| 27 & ¥X|5t2{™ RequireEncryptRequireDecrypt 72! M S MX5t7| 7ol 7| 5! g0
U535 El DE AO|HEIAEE 7| 7{OIo 2 £5 356l 1 CHA| €556 HLE CHE o Z 2|7 0| 440{| A &
2lsok gfLICt o] 2/ 7} YdlstE B S&5t= AO|HEIAEN OS] 27 E BHEHSHAHLE 740! HHY
2 YA 2 RequireEncryptAllowDecryptZ HAE = U&LICH

HAESZ HA| Yado|=5X| &1 2.0x HEHSZ
Al 1.x HRO 2 251 2.0.x 0|4 Mo 2 g
St W2 Te{stMlR. =8 Y2 oto[adio|M 2 H =

1.7.x O3 HEIO| A %41 1.x(1.7.x O

JB0|ERE7| MEo O] 277t el
O|=5t7| Mof liF HE EE 54

g AWS Encryption SDKE & x5l

e

F-‘Zho_>

b =

o
é_l_

ofl B
|

m
Hel

T

x

| A

(@]
x.

11>|

otss x|o| l|o|E] 7|7} D-IlAIIIOI 2 O|0|E{ 7|9t EOIo|-7§| okot §§§|' 3E
=53 Zo| O|o|g| 7|= @glo:l-ggw 7| 71212 HIAIX|E E535t5t0 &

HEE = Us HAIXKIE 3totX| Rt & E3 gL

POI'

3 35tsltde &5 8HE HIAIX|7F AWS Encryption SDKO|A BHEHE|X| ot QS S LIEHHL
BHE MIA|X|O|74Lt CIlO|Ef &4 o] At == Ql&LCt O] LR 7t L5t o Z 2|7 0| M
oM HAIRIE HES T HSSHL M HIAIX| HEIE FXIE 5= U&Lct.

AU&LICH AWS KMS A4 7|2o|Lt A 2Eo| OtAE 7| MBS
A& LICH.

g 33= 04 71X O|f = AuiE
E Ar8sto HAIXIE &

&
Z3te =+ ¢
Az 5ol AL E HEHO| U= 2HE ZI7t U= 718 E= OtAH 7| MISAHE KIZsHoF &LCt HEtof

8t =222 AWS Key Management Service 7Het At OHLHA Q| 7| A0 27| Lo CHEF BMA A
2 AWS KMS keysE Z3HM[L. AWS KMS key

T SE: AU A & Ato|HE| 447

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-viewing.html
https://docs.aws.amazon.com/kms/latest/developerguide/determining-access.html

AWS Encryption SDK JHEER} 70| =

et 35tE o]

>
:Ilzé
ol
il
r|r
rIo
>
S
wn
m
>
(@]
32
j=4
o
>3
wn
O
PN
N
=2
>
Ral
_0

X|&st 22 7|8t AWS Encryption

StLt o|&tol| CHBt kms :Decrypt ™
ZA AWS KMS 7|2 = 74

o{o| AdZ 5t Qb BHIAE

E Z4 AWS KMS keysOE =X
=£ 2 DP*H 7| SZXE AL85tod HAXIE S53t8 2 5 U
= 7

2510 AL E 717t ARIE £ UE

S 05 MY

OHE2|7|ol4d0| LIOIHE & &E3t6t ML S 236 O Amists ¢ YEtMez 2E 7|5, 7|13, O
AE 7| MEA EE A EHME YUO|0|Esto] EXME sHEE + A&LICH sHX[BH O EE |71|0|A=ic>
AWS Encryption SDK2| 0|5t HTS 2 Etlst= 20| x|M0[2t1 HESE L J}U&LICH

E 5ol st= oz ZAM =&AL, 1.7.x AWS Encryption SDK 0|2 HEI2 7| 7S &
A Z3HE MO|HHAEE SiS8 + glgLitt

=3

H
—

ot

=z
=
L&

« Z|A11.x BT AWS Encryption SDK 2| 0|5+ EHH
Mol M X|HEIX| b= 7|22t A E M EsteiH ZE

ok =

SR E
E g
2.0.x O|& oI 7| HTU(FHS! HAE Requ1reEncryptAllowDec y
§_§FE AEMCIH 17 x HES R EWME = JUX|B D EC Ol TS E
Edl

1.7.x AWS Encryption SDK O|T Q| HME 7| OIS 2 &5 5HEl AtO|TH

Yo
o
N
I

Mo A42 7| 70lg A 255
7Lt @

i
O fon

x
o
1
30
I>
T
|j|
=2
z
i
\,'
9
z
BT
9

.=.L—|EP E'ﬂ.*OI EA?_F A2 BE HAIXIE =5

AA
Tede = A&l

-y

2E
B
A
gl=l

mo e
4>
O

0z Mo
Q'I_l
rir

X

JEt £33 2F 448

AWS Encryption SDK JHEER} 70| =

iFE 2 EE(FAQ)
= AWS SDKs 0% A AWS Encryption SDK CH& L|77t?
= Amazon S3 2 338 ZE0[AHE 2} 0{%E | AWS Encryption SDK CHE LI7H?
« oM X|2dslE & 53l &1 2|EF AWS Encryption SDKI} 7|2 5381 2 1 2|E2 FUUL?
« 715 HE(V)= o{EAH MHE[H ofC|of HEELHR?
04

%7.” AHA—| OI-§_§|_ ol E§§|. |[_|._(LDI_’)

« Z OlolH 7|=
g =35t6t= O ALSE CIO|E 7|1 F2I5te4T o2 sHof 3tLER?

= ¢35 E Olole 7|1E &3 3=l oIO|E{Q &7 0{%E H| AWS Encryption SDK K& 5HLER7?
« AWS Encryption SDK HIA|X| 4|2 L} 5 5}E Cl|O|E{of MOtLt B2 QEHSIEE FIH6LIR?
« KA OtAE 7| SEXE AISE

- CIoIHE

fo

m

=
T I ol el EiE 7|2 OIO|EE ¥ E5E = ULIR?
steh = U= Ho|H 82 FAUYLI AWS Encryption SDK?

« £ U2/E2(1/0) AERIE oA &5 35}5t 1 AWS Encryption SDK S5 5LER27?

= T —

ot

b [0

fok

[e][]

= AWS SDKs 01| AWS Encryption SDK Ct& LI7+?

AWS SDKsE= AWS Key Management Service ()& X% & 5101 Amazon Web Services(AWS)2t 4 5 &f
23517| I8 2to|E 2|2 MBELICFAWS KMS. AWS Encryption SDK for .NET AWS Encryption
SDK1} Z29| A& ¢dof R3olle &4 5Ust =2 124 102 AWS SDK7F E#fLct. chE o
of #E0l= 718 £ 0t&H 7| SZX0lA 71§ AL83HE AWS KMS B 012 sid AWS SDK7t &
QErLICH REMIEH HE &= AWS Encryption SDK 2 122 910{0i M ZZ2 324 edo{of CHEt FHME

AWS SDKsE& At&35t0o] Ao HIO|E(CHE &= 3t 7|2 %|CH 4,096HI0|E) 53t L 53535, Fet0|
HE = 531 E I8t OIO|E| 7] M4 AWS KMSS 8t &% =838 £ QlaL|ct ag{Lt CIolE 7|2
Myg e MA gsst U =55 T2 MAE #HelsHok gfLICH of7|0l= Q5 ol CIO|E 7|& At& &t
ClO|E =3 AWS KMS, Lt BIAE H|0|E 7|9 et™eh I 7|, @ = 3HE HI0|E 7| X%, T[0|E 7|
£33t 2 Ho|E £&37+ ZEELICH. AWS Encryption SDK 0i|A O] ZZ2MAE 2[5 &LICt.

P

E A EZE 2 2 AlEE AF25tod TIO|E{E &5 3556l 1 siS6HE 2Ho|E 84212 AWS Encryption
SDK MB&L|Ct HIO|H 7|& st X[Het efd 7|2 & =38t O g ¥ = 5HE C|o|E2t S5 3tof

= AWS SDKs 0% 7| AWS Encryption SDK L} LI7}+? 449

https://aws.amazon.com/tools/

AWS Encryption SDK JHEER} 70| =

Lest d33tE HolE 7|71 & El 0|8 7ts Clo|H ZA Rl &= 35t El HAIXIE gHEtELICH 555t
g 7t £l &= 5HE HIAIX|QE StLE |4t o| 2T Z|(MEH AFEhE ME5HE7F Lt A E H|0|EE
AWS Encryption SDK g+gtghL|C}.

| &
g ef33t (o 7| BEIRF E= .__EﬂEll* StEff o 2ot EE oM 4t .:.*§_§F 7IE M8 = A
&LICt AWS HZH0[81 AWS Encryption SDK HEt =& AFSE = U&LCH

= Amazon S3 & & &t Z2t0[1E 2} 0= H AWS Encryption SDK
CHELITE?

AWS SDKs2| Amazon S3 & &3t 22t0|21E = Amazon Simple Storage Service(Amazon S3)0{| X%
st= ClO|E{of CHEt =3t W =538 AMBELICt ol2et E2t0|AE = Amazon S32F ZIE5HAH| ¢4
A0 2 Amazon S30{| MEE CIO|E{o|BF A8 E &= Ul&LCt.

= O{C|MLE MHEE += = ClolE o Chidt & 535 & |5 3HE AWS Encryption SDK M3 & L|C}.
AWS Encryption SDK & Amazon S3 253t Z20|HE = H|O|E 40| CHE AO|HEHAEE M/
5t7| =0l Z & Elx| et&Lct

st 2t 1 2|& AWS Encryption SDK1} 7|2 &5

—_ — -—
or— |:|_?_
st dDE|FS FARAULM?

= AES-GCMO|2t11 3= Galois/Counter Mode(GCM)2| & & 53t EE(AES) CHE °E* 2&ES
AWS Encryption SDK At&3104 Cl|O|E{E &5 3+ELICH 0|8 S3H o4 CHE 2 HICHE 2
M ME45t0{, CIOIEHE &5 35t5t= HIOIH 7|8 €558 = A&LICt

AES-GCM2o| Z2 7|2 ¢TI E|& MEZ 2 256H|E 7|, 7| TH4(HKDF), CIX|EH AME 2 7| 7{5l0] &
£ AES-GCMILICt. AWS Encryptlon SDK 8t CIX|"H ME 2 7| 72! ¢i0] 192H|E I 128H|E
A5 7o A5 dTEES KIHELICH

HE d0l X758 HE(IV)2| Z0|= 12HH0|E0[| T 215 B9 ZO|= 16HIOIE LT 7B Moz
SDK= OIO|E] 7|& HMAC 7|8t extract-and-expand 7| R & <(HKDF)2| 230 2 A& 3t0{ AES-

GCM &5 3 7|2 {31 Elliptic Curve Digital Signature Algorithm(ECDSA) MY x F7}&HL|Ct

A8e LElE MEol CHE RtAMIEH LIS2 X S nE&E MERE MHEE HRotA 2.

Klpxle gnel&ol ofgh 7 MR HEs 202[& HZ ddS HXstMe.

= Amazon S3 & 35} 220|21E 2 0{% H| AWS Encryption SDK CHE LI 7}+? 450

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html

AWS Encryption SDK JHEER} 70| =

7|8 HE(IV)E o{EH HE|MH oC|o] MY E[LER?

£ 28X HME=E AWS Encryption SDK At&3to4 Zej|lotct CHE IV 2t 2 Fg&LICH o] MRt E
S5H HIAIX| LHoll M V7L BE=E[X| et =5 F LTt (AWS Encryption SDK for Java & BH{%1 1.3.0 0|
0l AWS Encryption SDK for Python= 2+ 2| l0f| CHall TR 8 IV 2t2 AWS Encryption SDK F %<
2 dMzi&LIct)

IV= 0| AWS Encryption SDK EFetst= et Z 82l HIAIX|ol| MEEL|ch RHAIE LHE 2 AWS
Encryption SDK HIA|X| A X EHHE BTt AAIL.

P

Zt HO|E 7= ofEH &8, ¥Est & SE3HE[LIR?
YHe AR ste 7| EE 0hAE 7| SIAol 2 CHELICH

O AWS KMS 7|21t OtAE 7| '<T':>_ Xt= AWS KMS GenerateDataKey APl 21242 AWS Encryption
SDK At83t0o{ Zt HIO|E{ 7|8 5t m eHE 7|2 &3 5teLct F71 KMS 7|2 HI0|E 7|9 SAtE
St2H AWS KMS 2 55t 2rdg AL ELICH CIo|E 7|18 5= 36t248 AWSKMS 5535

r
i 2 AR EFLICH XM LHE 2 GitHub2| AWS Encryption SDK AFZ0lA AWS KMS 7|22 & =X

o
I'|0 t0|'

CHE 7I-e 2 Z2)Y Qlofo| 2 Abd|
stefLICH REMIEH LIS GitHub2| AtFof Ql=

23

Xto|

g Atg 510 CIOIE| 718 M4d5
: Y EED

]
ol MMM 71

to ef
=

N }o|-

Iy %2

3t 2
| S

CIOIEHE & & 3tst= Ol AHEE ClO|E 7|& F=XstciH o€ i

0 A10] AWS Encryption SDK %42 +=&grL|Ct. C|0IEE ¥ £ 3l5t™H SDKE Clo|E 7|1&§ ¢35 3+5t
1, 455tE 7|18 = sHE Olo|Eet BA EtetElE 2 stEl HIAIX|of MEELICH CIO|EE 5535t
& [AWS Encryption SDK = & 2 3tEl HAIX|M &5 5HE C|O|E| 7|& F&35t0{ O|0|EH = 35t0f

A-S gLt

S3tE OOl 7|18 &5 3HE olO|E{Qt & 7H o= H AWS
Encryption SDK K& 35HLER?

o| otz 5t A2 55t E Clo|EQt &= 8tE HIo|H 77t Z& &l B HIo|EH X1 A3 5HE HA|
X|E AWS Encryption SDK EFEHEILICEH HIAIX| FAI2 2[4 F 7HX| B2 slHe 22e 2 FHE L

Z7[st HE{(1V)= o= H ddE[H ofC|of MEELIR? 451

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/aws-kms/aws-kms-keyring.md
https://github.com/awslabs/aws-encryption-sdk-specification/tree/master/framework

AWS Encryption SDK JHEER} 70| =

ch. HIAIR] SlCiolls 3 818l clolE] 7|9F HIAIX| 22 T4 g Alof Ci#t &E 7} 28 Elo] gLt
5318 Cl0JE{7} & Elo] Q& LICH YDEIE KME R0 CIXIYE MEO| ZEHE 2

HAIX] 220l o
2 HAIX| Aol Mol ZEE HEF 20| ZEELICH REMIE LIS 2 AWS Encryption SDK HIAIX|
A AE OHg BESAAL.

AWS Encryption SDK HIA[X| & A2 L & S 3FFl Cl|O|E{oi| AdofLt
D2 QHIEE F7t5ILEIR?

oM F7t5tE QHSIES| &2 CIS2 £ &8 042 2 210l AWS Encryption SDK 2t E 2t & L|Ct

E 7|8 F8(5tLt AWS KMS key = EHE Z|(EE&= OFAE 7[), AAD 815, ZaIY X2IZ K| &£ o]
B, MEO| Y= =3t LT E|F)2 AWS Encryption SDK &7H At st B2 2HS|E= 2f 600H
EQlLCt eEt™o 2 AWS Encryption SDK & M3 E AADE A|2|5t11 1KB 0|s5te| QLH{GIEE
= 2= Q& LICH KM L& AWS Encryption SDK HIA|X| Al 2t = EHHRIg &t X

—_

o
ot

P

ini

mo
ot
o

T ME MRS A8 XIRElE Z2 a8 olofof mat ZRtELICH Lt X|MEE 2
EPNELE: 2 B EIRHOMMS)Ms). THAE] 7| 2%, 71, hAE] 71 2 o)

F i ol eiE ZIZ CIO|EHE 2 EEE & ULER?

of. 7|7t CHE EITol| UHLE S5 80| AHEE + Sl B F7t 28 (== OtAE 7))& AHE5H04
CIOIE Z7I1& 3 &stod 85dE FIHE + U&LICh

oi{ BiiE 7|= CIO|HE &= =tstzd® o] 2iE 7|7t Qe 7I1¥ E= 0t&H 7| SEAHE BrELICH
78z MU M 042 2iE 7[E At8stod B Y 7|28 BFEHLE LIS 7[2 8 BhE & A&LIch

AWS Encryption SDK HIA|X| @412 L} &= 3HE C|lO|Eof| YotLt Bl Q=

i
"

et 452

AWS Encryption SDK JHEER} 70| =

oiz4 2 7|2 HIO|EE &5 35t5tHE StLte| BHE F|& AWS Encryption SDK AF& 3510 it HIAE
clolE| 7|& ddgfLict ololH | D5t 2iE 7|2 et o2 o] gisLIct o] AFde o

gt A E [Cf|O|E] 7|2 cHE 7|2 &
CHE 2iE 7|= HIo|H 7| &5 3te
o, Zt effE 7|9 & & &HE ool 7

terLch O™ 53t HMEE

stEl OIolE 7| SAIES tl._
L stEl HA[X|ofl= ef = 3tEl o|ofH

Ch O 202 dyk= ¢
1747+ 2 &ElL|Ch

f0|' r\OI-

— 11°I' }OI- rIr

g EZtE HAIXKIE e Es ol MEXIE 2iE 7| & StLIE AL85t0] S 25+ = U&LICH = 2f
Zl 7|2 AWS Encryption SDK Al23t0{ &t 5 3L El H0|E] 7|12 siSELICH O3 Cf S et BlAE O
O|E] 7|& AE35t0q ClIO|E{E S5 3 &hLCh

E 43535 = e HlolEH 82 FULI7F AWS Encryption

o|CHREEo| ZE2 a2y o] T2 HAl HIO|E(HIO|E HIE), 110 AEZ|(HIO|E AER]) U EXIY
£ ¢ =38 AWS Encryption SDK &= &LICt. AWS Encryption SDK for NET2 I/0 AE &2 X|H
StX| etguct X|HEl= T2 e Y edof Zhzbol CHEt oAl 2 EE M3 FLct

= LUZH/E=(1/0) 2EZE o{E A 535t AWS Encryption

= 72 110 2EEg eiEsle 453 E= 553 AEZE AWS Encryption SDK g L|C}H &%
3l Ex= S35 AERI2 7| = MY ZE0M 253 AUE sHELICH o E &0 7|2 2EF
oM Uit BIAE C|O|EE o1 =38t & At E BHete = UELICH E= 7|2 2EZ M ALO|
HEAEE 9|1 55358t & AU E EHEte = U&LICH 2AEEZ|YE X|Hste X2El= ZE2Tefd
oo ZtZto| AEEIE 53 LU =5 5t6t= oK L EE M3 FELCH

AWS Encryption SDK for NET2 I/0 AE &S X|SHX| L&LICH

2 ¢355E = = lolH 82 FUYULIT AWS Encryption SDK? 453

AWS Encryption SDK JHEER} 70| =

AWS Encryption SDK & =X

AWS Encryption SDK2} S &tE|= A&l &5 3 2to|EH2[E 2= mf o] Ho|X|e] HEE Hx&
= A&LICH S &tE[= XA 2 =3 2to|EE{E[E HESte B2t ofLEtH o] HE = Ee gis

ZJdLct.

X#ElE Z2 384 2104 & StLt AWS Encryption SDK 0| AME AE5tE{H MMES R ESHAM T
EIei do.

1]
[e][]

o

= AFZ 2 GitHub 2| AWS Encryption SDK AFQf

&8t AWS Encryption SDK T+312| 24
%

ot T12|&E AWS Encryption SDK A8 3t0d @ $31El C| 0|9t s o3 81! tlolE] 7|
| & Y olo|E| TE F& HAIXIE BHEHELICH O FMoIME 2 T2IFT olole] Txof o
o AEeLICh o] HEE Al85104 0| SDKS S ElE AOIHEAEE oim & 4 9l 2lol=zi2lE

« AWS Encryption SDK HIA|X| A & X
« AWS Encryption SDK M A|X| &
« AWS Encryption SDKO{| CHEH &
+ AWS Encryption SDK & 1 2|& #
« AWS Encryption SDK Z= 7|3} HIE{ & &
« AWSKMS A& 7|2 7I& Al

Al
Al
A o A|

7} 1% of|o|E{(AAD) & X

-III

AWS Encryption SDK HIA|X| & Al &t X

AWS Encryption SDKet Z2tk|= AtA| & =3l 2t0|EB{EIE UEE [o] Ho|X|e] HEE
T A&LICH ZEE|= KA Z =35t 2Ho|EEEIE LESIE Bt ofLIEtH ol HE = ERe eig

Lot

XlHzlEs 2324 1o B 5tLt AWS Encryption SDK 0l M E ArE5t2d™ MME FHEFMRE
2 Adod.

HAIX] EA &x 454

https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK JHEER} 70| =

i
o
9'|_l
rr

A2 GitHub2| AWS Encryption SDK A} QF

&8t AWS Encryption SDK T+312| 24
%

ol gtz 8t Aele erEstEl ClOlEl(2hE SIAE)9l O F etz stel Hlolel 71t EatEl prel clolel 7
Z E= A= 5E HAIX[E AWS Encryption SDK EHetefL|Ct O] CI|O|E T+ =& Olalist 7Lt O|& e
ME Blo|EE|IE & 52{H HAIX| @Al olsHsHok &Lct.

HAIK] GAIR 5|4 £ 7% 220 siciet 202 TAELICH Z20f nteh HIAIK| &40l Al
S0l S 20| ZH SIS HLICH HIAIRI HAIS UIESIT OIS ©HE BHE Hols ABAS
%0o|5tM 0|2 & AIC|QH(big-endian) EAl0|2t T E BFLICH HIAIX| $AI2 SIC{E Al&tsto 22, L
2(2lE) £22 olo{FLIch.

AWS Encryption SDK 0l X|#i5Hs 21215 MEZS T 7HK| HIAIKI HA HE 5 stLHE AFSEL
CF. 7] 7430 9= YTEE MERS HAIK HA BT 18 ABELICH 7| 74300| 2= D 2E A

Ea2 HA|XK| @A HE 28 AFREFLICEH

=X

Sl &

22 2z

. HEg 2x

s #+X

HAIX] st &= 3HE H0[E 7[2t HAIX| 28 74 g Ao
Eo|M= HIAIX| SA HE 1 2 20| sIHE 7 st E=0l O
E7t &7HELCH

et 27} Zefk[of Ql&LICt ChS
HBELICH EAIE =ACHZ BtO|

EXfstx| =S 2L
9| gfolC

® Note
O| H|O|E2| ZE LIO|E{E EE{H 7|2 EE ME2E AT ESloF & £ U&LICE

5[455

https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK

JHeER 7Hol=

s +=

Field

Version
Type
Algorithm ID
Message ID

AAD Length

AAD

Encrypted Data Key Count

Encrypted Data Key(s)

Content Type

Reserved

IV Length

Frame Length

HIAIX] SA HT 1
ZIO|(HIO|E)

1

ot 5 51 ZAEIAE 7} H|0o{ =
742 2H}O|E AAD Zl0o| E =
7

s ol EEQ| Zo|= 0T 2
HFOIE(AAD Z 0| ZE)of EA|
Euic

ot 531 ZHEIAE 7} H|o{ =
7L sl{ol AAD ZEJI Q&
L|C}.

2

T

Ha S 3LEI HO|H 7|12 &=
Zt ollo|E{ 7|2 Zolof et
..|

Z-EL o

o

—

o

HIAIX] SA HH 2
ZO|(HIo|E)

1

EXfstx| A=

2

3} ZAEIAE 7} H|0{ e
1=

ot S
< 2H}O|E AAD Z0|
7

s ol EEQ| Zo|= 0T 2
HFOIE(AAD Z 0| ZE)of EA|
Euic

ot 531 ZHEIAE 7} H|o{ Q=
7L sl{ol AAD ZEJI Q&
L|C}.

N

T

Hae S 3LEI HO|H 7|12 &=
Zt ollo|E{ 7|2 Zolof et
..|

Z-EL o

o

s =

456

AWS Encryption SDK JHEER} 70| =

Field HIAIX] &4 HH 1 HIAIK| A A 2
Z0|(HI0|E) Zl0|(HI0|E)
Algorithm Suite Data EXSHK| oS He HAIXIE et e

&ofl olsfl ZEELICH

Header Authentication H HAIXIE s oz B HAIR|E MAMsH 212

&ofl olsl ZEELIcH &ofl olsl ZEELIcH

7T

O| HIAIX| EAlo| HILICH HHAME 1 = 20| HIO|EZ QAT E|0]{ 16T+ E7[HOZE 01 &=
= 02L|C}.

0%

o
TT

0II

Ol HIAIX| EAlo| REQLICH FE2 X FSFEL

ClEsH S §+ Cllo|Eetn MHELICH s /Y 442 1280|EH HPOIEEOIE'_ = |0
7|¥Ho 2 80lL|Ct.

HIAIR| EA HE 20l O]l ZE7 EXHEHK| & L|CH

odTE|EID

ANEE g1 E|Fo AEXIQILICE 0] 2 3 e 16HIE H42 s{ME|= 2H0|E gflLct
ot 1 2|&of ciet RFMIEH LH& 2 AWS Encryption SDK € T 2|& £ X MME 2 XS
HAIX| ID
HAIX|E AlHst= ol MM E ZhlL(ch HIAIX[D] &F
- ASSHE HAIXIE TReHH AT LIC
« HAIX| SIHE HIAIX| 220 2fstH I LICH

£ =
« 09 ¥ EEHE HAIX|2t &7 ClolE 7|& HHsHAH MAIEE =+ e HFHLES MSELc

« AWS Encryption SDKO|A A2 O|0|E] 7|& MAIEstHL 7|7t EFalX|= 48 S YX[Ey
CH.

O| Zf2 HIAIX| B4 T 10 M= 128H|IE 0| HT 20| M= 256H|E ILIC}.

s = 457

AWS Encryption SDK JHEER} 70| =

AAD Z 0|

015 O|0|E{(AAD) 2| ZOo|LICt. Of Zt2 AAD7I Z & &l HIO|E & X|Hst= B & Q1= 16
HIE Y+2 siiMZl= 2Ht0[E 2L iLCH.

e al I Hlo] Q= B AAD 20| 2E=9| Zt2 oLt

Z7} Q15 Hlo|ELICt AADE Y55t ZEIAEO| QIFEOR, 2t 7|9t 2L0| UTF-8E QI E
ARGl 7|-2f Ho{Q| i L|Ct 55t HEAE = HIO|E A|HAR HEIT|0 AAD 222 A
EELcH 2535 HHAET H|o{ U= A2 sl{ol AAD EE=7} gi&Lct

MEO| = dNE|ES2 AEste B2 &8t HHEAENE= 7I-2F Ho] {'aws-crypto-
public-key"', tht}7+ Zgte|ofoF B LCt Qixt= SEC 1 HT 2.00| et & FE ¥ base64=
I E Bt Mo H QE LIEHLICH =3t HEIAEN = F7} gLo| Z&E £ UX|B 7

El AAD2| %|CH Z0|E= 226 - 1HFO|E QIL|Ct.

CHE EoME AADE FM5t=E EEof CHa MHEELICH 7I-Z2f Ho{s 7M€ R UTF-8 EAF 2 =0]
(et @Exl=c = HHEELICH EAIE =AMCHE HIO|E T F7HELICEH

AAD 7+

Field Z0|(HtO|E)

Key-Value Pair Count 2

Key Length 2

Key B4 0|7 2HtO|E0f XIHE 2f(7| o))t S
UerLct.

Value Length 2

Value B4~ 0|7 2H}O|EOf XIHE 2L (2t 2ozt &
UerLct.

7|-gf mlod ==

AADQ| 7|-2f m|o4 s~ ILIC}. O Zt2 AADOIM 7|-2f mjo1e| =& X|Hst= §Z Sl 16HIE
Y2 siME|= 28Ol E 2L ILICH AADS| %[0 71-2f H|o{ == 276 - 1ILICH

s & 458

http://www.secg.org/sec1-v2.pdf

AWS Encryption SDK JHEER} 70| =

23 HEAET QIHLL &f 58

L|CF.

A
o
|>
[m
N
o
2
o
rr
My
40
o
1}

E &= AAD #x0i ERY5HX]

ro no
o> fob

S

7| 4o

7|-gk mWlo1e| 7| Zo|LICt. o] 2t 717t Z & E HIO|E & X|HetE F35 9= 16HIE H=
2 ikl 2HF0E 2L ILCH.

7|
7|-gt Ho{e| 7| lL|Ct. UTF-82 QIFEIEl HO|E A|RAQIL|CEH

2k 4o
7|-Zk mlo{e| gk ZolLict. o gf2 Zto| £ & E HIO|E £~8 X|HSE B35 Q= 16H|E M
2 HME|E 2HO|E ZEILCE.

2t

7|-gt mlo{o| gk lLlct. UTF-82 QIR EE HIO|E A[HAILICH.
& Z3tE olH 7| +

25 3E ClolH 7| =lL|ct o] gf2 33t E ololE 7|2| +& X|™st= 7% el 16HIE
T2 siAM|= 28t0|E gLt ZF HIAIX|2| &f 3 3HE H|O0|E 9|°| Z|c £ 65 5357H(2"16 1)
2L|CH

ef 3 3=l O|olE Z|(&)

& Z3HE O[O 79| A[EAQLICH AlZA9| Zols 5 3tE HolH 7|2 #2F Z T|0[E 7|2
Zoloil et ZEELICH AlZA0=E & E8HE OO0l 7|7} stk oldf Z & Elof U&LICH

OhS ZolMeE 2 E23tE Z HolH 71§ 7 dst= H=oi chsll dBELICH EAIE =AMCHZ BtO|
E7t FIHELICH

AE5SE OIOIH 7| &

Field Zlo|(Ho|E)
Key Provider ID Length 2
Key Provider ID B4 0| 2HIO|Eof| X|HE 2k(Z| 2 Xt ID

Key Provider Information Length 2

s & 459

AWS Encryption SDK

Field

Key Provider Information

Encrypted Data Key Length

Encrypted Data Key

JHEER}E 710l =
Zi0|(HtO|E)
B4~ 0| 2HIO|Eof X|™HE Zk(Z| S=A
= Zol)zt sefLict.

N

2= 0|7 2HIO|Eof| X El 24(
Ol 7| Zol)zt SUFLICH.

7| 22X ID Z 0|
7| 22 A Algdxto| ZolL|ct o] 22 7| 22X ID7F ZEE HIOIE =8 X|Hdle 835 9
= 16H|E 42 A E|= 2HFO|E ZHlL]Ct.

7| 32X D
7| 32 A AEXLICH &S 3HE OI0|E 7]o] SZXHE LIEtU = O A EIH =& 71s38tE
g MAZ|RAE&LICEH

7| 22A HE Zo|
7| 22 A HEo| Zo|LICt O] g2 7| S2A HEJI T E HIOIE £ X|Hsl= 8% ¢
= 16H|E M2 S{ME|= 2HI0|E ZHIL|CH

7| 32 A HE
7| 32X HEQLICH 7| S=Xtoll o5 A™ElLICE.
AWS KMS O| OFAE] 7| % XFO|74LE AWS KMS 7|2lE A5t d< 0| Ztoll=2l Amazon

2laA O|&(ARN)O| Z & &
et 3tE olo|E 7| Zol

LICH AWS KMS key.

or23hel ololE| 7o) Zol LIt of &S 2 stel ClolE 717t ZEE Hio|E 8 XIHsE
H3 9l= 16H|E M4 =2 sHAE|= 2HIO|E ZHlL|C}.
et 5 3+l Ho|E 7|
o %52l Clo|E] 7IYLIch 7| SStol ola 2 5hE ololE] st 7L
SEEES
%3t E CIOEIS REOR, Za &{2|% x| 7Lt Zai| MBI

460

JHeER 7Hol=

AWS Encryption SDK
(@ Note
7tsstH Z2| XMElE CloIEE ABSHMR. = BlHAl S 20 Z 8| XMEIE|X| oF
ClO|E{& AWS Encryption SDK X|HELICH o UF 10 342 0{T5| = Bf| 7'<'|E|E|7<|
OI2 AO|HEIAE E A8 AWS Encryption SDK &= QU&LICH X|HElE ZE o 73
2 T XME|E AO|HEIAEQ L2 XEIEIXK| A2 AMO|HEIAEE 5558 = &
L|Ct.
Zt 22 IEMo 2 S EHE LI
E7|HoZ 029Ut

A

Zolol o RESZ LM
ES

OlH HIO|EZ Qla Y E|of 16Z!
stE BFlo| BlobILICH Z &I ®M2IEI K| &
E7|Ho=Z g19lLCt.

_

ok

| —
B s
- O

=
ot

| % 2|E Ci|o|E]

oo
Ls T

=z ®2|E 2=
oY X2l X| §f2 CIo|E = B EX| e ¢
2 Z8lx= R 10| HIO|ER 1Y E[0{ 16T
Cls=
4HFO|E o of| & El A|HAQLICE O] gt2 00]o{of ELCt HIO|EZ QIFEE|0] 16Tl ET(HS
Z 00 00 00 00ILICHK I 242 32H|E M 212 4HIO|E A|AHA).
HAIX] &4 HH 20= O]l 2E7F EXMSHR| A& LICH
IV 20|
Z 7|5t WE{(IV)e| Zo|LICt O] gt2 IVE Z&Et HIO|E & X[Hdle B% iz 8HIE ¥ 2
AE[= 1HEOIE ZEULICE O] 2t2 HIAIX|E g8t YT 2|F 2] IV HEOIE gtof ola A ELICt.
HAIK| ol ZHEXM IV 2 AE5tE I EI&E MEZD X|etE HAIX| 84 HH 20i= Of
Zl= 7t ERHSHR| f& Lt
o 2ol
o X2lE diolEel ZF Zaf|lol Zo|LICt o] gt2 Zf Q| HiO|E #2 X H5t= &
% 9= 32H|E ¥ =2 SHME|= 4HH0|E gL LICH C[O|E 7 Z 2|2 ®M2[E[o] UX| 22 B
Content Type ZE9| Zt0[121 < 0] 2t2 00[0{0F &L|Ct.
oY XelE x|

EO
LI_

oM. =
ol of

Al 8 E RO
of FH2 i3] ZalY #EIEIX]
of 7%

(® Note
7tsstH oY X2l IO E At
CIlO|E{& AWS Encryption SDK X| & L|CH o L5 0
of2 AlO|HEIAEE MAdE AWS Encryption SDK &= U &LICH X[HEE 2
461

s =

AWS Encryption SDK

AME|E AFO|HEIAEQF = 7y

e =l

LICH

¢ neE|l& ME ClolH

]]{I:

HIAIKIE 4438t 2 DEIF0| TRE %7+ HOlE{RILICH Zoloh LHS

o o =
Ch Z2ol= 0 = U&LICH

HAIX] E4 T 10i= o] =7 EXistX| S &LICH

8 215

s 2152 HAIXIE & ne|Fof ofsh Z2H
LICH Ivet 1B el 2 & EL

3H 01E =

Field & 1.0014 2] Zlo|(H}O|E)

IV e HAIKIE A3t 2 T3
&9| IV HIO|E gte 2 A™EE

L|Ct.

W2 HAIRKIS YA 2T
&2| 215 Ef1 HiO|E Ztofl
sl 2 Lct.

Authentication Tag

lo|n

s 215 e & AdteteE ol AL ElE =713 4

U Mel=x| 2 AO|HEAE

ElLch sl els2 T
LICt EA[El =XCHZ BtO|E 7} FI7HEILICH

IE{(IV) I LIC.

X&) Slic{oll CHaH | AHE

7% 2.00{ A 2] ZO|(HIO|E)

ol

AF

oo

o4
HA

0jo

ol
-

e MAKIE Sut gae)

OJsf] é"*%‘L—IEL

HAIX] A HE 29| sil{ol= o] E=7F EAHet x| h&LICH HIAIX| @4 HH 2 HAIX] 5
ol ZHEXM IV 2t2 Ar8ste dueEl& ME 2B XTI

ol

—

EN2

0l

slciel e1F ghduch sl e ™A LHE

Cil AbS-ELC

s =

462

AWS Encryption SDK JHEER} 70| =
227z
HAIXR| 220= AHO|HEIAERLT 5t= S 8HE CIO|E7F Z& E|0] U&LICH 2 #+2= 2H=E
SEZHY M2l Xl &S Fe Zo Mg ol wal EetEuct ohS dMoHE 24 28X /%
of CHEt HIAIX| 222 FAlo cHall M LICH HAIR| 28 2= HAIR EA HEH 1 2 200 S
ghlct.
S|
- Zo& XMEIEX] 42 Ho|E
- Z2|&d X2l clolH
Y Melxlx| &2 dlolH
o MelElX| g2 ololEe= gt VY 25 AADE AH&35104 B Blob2 2 & 5 3HE LCY.
(® Note
7tsotH ZoY ME|E C0|EHE MESHMIR. = BlHAl =28 =3 XE2I&|X| &2 o]
E{E AWS Encryption SDK X| & LICH o] Y& 0] 7342 04T5| Z 8| XZIZ|X| &E2 A

O|HEAEE & AWS Encryption SDK = J&LICH X|HElE ZE o FH2 =Y
MelEl Alo|HE A E oF Z B MEIZ|X| et2 AIO|HEAEE 535358 = &Lt
ot Eof Zale] M2|E[X| %2 H0|IEHE F+dste EETL Lo }&LICH EA|E & AMCHE HEO|ET}
Z=7HEL .
oY XMEZX| 2 28 X
Field ZI0|(HI 0| E)
% B4 S|4 Q| IV Length HFOIE ol X|&E! Ztat
SYELICE.
Encrypted Content Length 8
Encrypted Content = 0|7 gHIO|Eof X|HE Zh(=35tE 2E
= Zol)a sehct.
Authentication Tag He AL E gn2|E 3ol ek A-EELLICH

ric
Fo

463

AWS Encryption SDK JHEER} 70| =

\Y
Asst dTEET HH ASE Z7(8F HE(IV)ILICH
efsstEl 2 ZO|
& 3tE 2EIX = AMO|HEAE S| ZO|ILICH 0] g2 &5 &E 2HATII L E HIOIE =&
XHste B3 Qe 64HIE Y2 Si{AJE[= 8HIO|E ZhlLICt
7Moo 2, HBElE E|CHZE2 2263 - 1 EE = 8 AH|HIO|E(8EIB)YLICH ZE{LE 723 El &2
&0l M2 Mt 2 e AX| 2|cHg 2 2436 - 32 EE= 64 7|H|HHO| E(64GiB) & LICt.
(® Note
O| SDK2| Java T30l M= 1o Mgt 2 QI3 Of 2 2431 - 1 EE&= 27|H|HIO|E(2GiB)
2 F7t Mgtgolct.
o sstEl 2HIX

E2E0l Cigh & 2 eLIch HAIX 2EE elE5ste ol AASELICH

=Y MElE ClolH

clglolet= s et 2ole

AWS Encryption SDK &f

IEZ LHELCH & 1
shefLch.

l’—'l

Z7 ®X2|E Hlo|Eo|M et A E H|0|E
QEhIV A EZ AADE AI25t04 2 Zhele d

fo

HTJ |I=I

@ Note
JtsetH Za Y XMEIE CIoIEE ASSHMR. & BlHAl =28 =8| XMEI=|X| &5 2 o]
E{& AWS Encryption SDK X| & LIC}H o LUF 240 7342 045 Z &Y XMEI=IX| &2 At
O|HEYAEE M4E AWS Encryption SDK &= l&LICH X[El= ZE 240 -_rL 2 Zoy
ME|E MO|HEAES Z2 MEIE|X| 2f2 AIO|HEAEE S35t + &LICH

}0I'

=g Zol(Z=oiY LY s 35HE 2ElI= Zol)= HAIX|OICH CHE 4 Q&LICH Z 89| =|CH HIO|E
=232 - 1QLCH HIA|X|e] Z|CH Z || == 2432 - 1Q1L|C}.

464

T
El
4
B

AWS Encryption SDK JHEER} 70| =

rir
ﬁ
OR
I
ol

°

Zjyoll= Lt
_|

ol 21T zef|, ol H F 7kR] 80| U&LICH ZE HAIK]
oz FHK| OF &f

=
Lt 2 33l

HAIXRISl 2 E Y 22 =2y Zol7t SYFLICH 2[5 Zefdel =g doles M2 OE =
A& LIC

o 2|2 diolEel = + 82 e sstE 2RIx 9| Zolof et CHELICH

r

. malel Zolel SY - 2 3iE 2Ex Zo|7h Yt majelol T2 Loloh S YsE HAIXlE dlo]
£f {0l ZoI7} 091 515 TS e ste Ut TR TAHE & YaLich EE HAIKIE O
5 maozpt TAE 4 BLICH 0l B9, 2T U Ut T YD =

O|EHE ZFote X
ol Zol7t SYE

. el Zolof B4 - o3 81l 2RI Zoly} Yyt ol T Zolo| R Hi40l Ze o
x| lOlE] Flofl Zol7t 09! 25 Zalele mishs Yyt Z@oz By £ YaLICH Ee O
AX|= HIOEIE Z8ots 215 ZalQoz By 4 UaLICH 0| B9, 215 Zae Uu Zay

1L

J—l' E.”OI 7|o|7|. =0 %|=|
. Z3Y Zolo| B4} obe - ¢ E5HE
Ot A<, 21T = 8|dofl LtHX| o
Z3j Zol=eh Lt
. Z3Q Zo|ECt B - ¢55HE ZEx o7t Uit Zalol T Lol B HL HAIXIE
|

E'= OB E Z£&dts 218 Zo|dez FHELICH 285 Zdel Zajy Zo

S ZolMe zefgde 7 dste E=ol cholf dBELICH EA[E =ACHZ HHO|E T} FI7HEILICH

Field Z0|(HtO|E)

Sequence Number 4

v B4 32| IV Length HFO|Eofl K| E Ztat
SYerLct

Encrypted Content 4 FI{ 2| Frame Lengtholl XIHE {0 &
L|ct

Authentication Tag B 32| Algorithm IDM| X|HE CHE ALSE

AN
T .
ot 2|&o ek Z™ME L Ct

T
El
4
B

465

AWS Encryption SDK

JHeER 7Hol=

ABA HS

ma|Q] AJRA Sl
ME|= 4HIO|E

7t I
HA

Zo| ClOlE = A[ZA HE 10]A Al
M zef|HEch 14 B7teliof BrLCH 22{X] &

gsst dUE[E0AM ghersh zef ol ef 3 5tE 2EIX(AFo|H

Field

Sequence Number End

Sequence Number

\Y

Encrypted Content Length

Encrypted Content

Authentication Tag

O| ZE 7I2H HEQULICH 0| 42 75 = 32HIE =2

IE{(IV) LIt SDK= &
FLICH 4ol AA8E &1

H

ol

F ot OF E L—IEL =5

o2 =XMCH= i X|=|o{oF 5t0d O

EMAIESXRED T EDEL

HEXM YHYS AEstod HIAIXRIe] Z =2

M EH 20| CHst A
1 E|& ME=ol ket X|1-E LI

Bl A E)QIL|CE.

HE el&st= ol AHSELICH.

ZI0|(HIO0|E)

4

4

B4 SIH2l IV Length HHO|E Ol XIHE 2=t

4

B~ 0| 4HIO|Eof X|HE Zh(ZE st 2H
= Zo|)ut SLFLICt.

B4 Sl 2] Algorithm IDOY| X|HE CHE AEE
et ng|&ol ek 2™ ELLCt

T
El
4
B

466

AWS Encryption SDK JHEER} 70| =

AMBA S T

%5 ZB|de LIEHHE EAIZ|ULICH SHE 2t 2 4HIO|ER QI T E|0{ 16T+ E7[HO 2 FF
FF FF FFRILICE
AL HS

ZUABAHSAALICH ZP|o| SE FI2E HEQLICH 0| 42 85 Q= 32H|IE M= &
ME|E= 4HEO|E ZHILICH.
uﬂmﬂma“ﬂﬂéﬁé1wHAlﬂ%é¢ﬂ+$$£ﬂ esﬁmzwﬂﬂww&mm
Ct.

\Y
Zjeol 7|8 HE(IV)QLICH SDKE ZAXMEX] g g Ab25tod HIAIX|Q] ZF =& ofl CHal M
2 CHE VE TAELICH IV Zole] Zol= 21 2|E AME 2o mat XIAELct.

efs3tEl Z2H = Zo|
ot 5 5HE FElxo| ZlolYLct o Zte ZaYel ¢ 5tE FRIATL ZEHE HIO|E £8 X|Hste
2% 9= 32H|E Y42 sHiME|= 4HI0|E 2L ALICtH

AE st AT FAM Breret Za ol &S 3tEl 2RI (AO|HEAE) QL
215 B2

ME 7[s0| e dTEIEE AEsts B2 HAIX| Aol HHE 20| ZFELICE HAIXK| HE20E
HAIX sl & 2&20f Chall AlMtE CIXIE Mol ZHELICH COHE EolME HIE 28 7 dsts EE
HEfLICH EAIE = MOHE HHO|ETH FIHELICH HIAIX| HHE 2 F 2= HAIX] A HE 1

off CHal A erLct
2 20iM SLErLICt

HE 2 TE
Field Z0|(HIO|E)

Signature Length 2

HIEZ & 467

AWS Encryption SDK

JHEER}E 710l =
Field Z0|(HtO|E)
Signature 4 0| 2HIO|E 0] X|HE ZH(AME Lot S
Ugtct.
ME Zo|
MEo| ZolLICt. o] k2 MEO| Z&E HIO|E £E X|Hte B3 9= 16HIE HeE sHAE
= 2H}0|E ZfLCt.
ME
MEUL|CH
AWS Encryption SDK H|A|X| &3 4] of|]|
AWS Encryption SDKe} 3 2tE[= A& 2= 8 2to|EE{2|§ YEE M o]l Ho|X|e| HEE HXE
T A&LICH Z8E|= A =3t 2Ho|EE2|E UESE 27t otLletH o] HEE EHe glg
AeLict.
XlEle 2238y 2101 & 5kt AWS Encryption SDK 0| ME AF8 3T MME TSN Z

222 2104,

&8t AWS Encryption SDK 7£312| @ A E HO|gt=
2 HBZFAMR.
CHS FA oAM= AWS Encryption SDK HIA|X| &Alo| of| &

Tl EI7|He 2 B AIEH CHE oS HIOIE 7} LIEHHE LIS o1 CHE

=

- Zf| XMElE olo|E(HAIXK| #A] HE 1)

« =i ME[E CIOIE{(HAIX] A HT 2)

- R MElElX| gk 2 ClolE(HIAIXI A HE 1)

AbSf

2 GitHub2| AWS Encryption SDK AF&F

Ho{&ELIC Z oMl= Al HIO|IEE 16
ot Mg 2oiELch

=2o=2 L

HIAIX] &4 ol &

468

https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK

JHeER 7Hol=

zod »2|E Slo|H(HIAIX| =

80
data)
0378
6E7COFBD 4DF4A999 717C22A2 DDFE1A27
008E
0004
0005
30746869 73
0002
6973
0003
31616E
000A
656E6372 79774690 6F6E
0008
32636F6E 74657874
0007
6578616D 706C65
0015
6177732D 63727970 746F2D70 75626C69
public-key")
632D6B65 79
0044
416A4173 7569326F 7430364C 4B77715A

58444A6E 552F4171 63327644 2B304F6B
704F5A31 63633854 67327164 37727335
614C5467 376C7666 5545572F 38362B2F
35773D3D
0002
0007

(7)
6177732D 6B6D73
kms™)

~

—

1)

ChE olXlE HIAIR] ZEA HA 10 =i 2|2 ololE{of cHeF HIAIX]

Version (1.0)
Type (128, customer authenticated encrypted

Alg EoiELich

Algorithm ID (see #### ##)
Message ID (random
Length (142)

AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD

Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value

Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair

128-bit value)

Count (4)

1,
1,
1,
1,
2,
2,
2,
2,
3,
3,
3,
3,
4,
4,

AAD Key-Value Pair 4,
AAD Key-Value Pair 4, Value
("AjAsui2ot@6LKwgzZXDInU/Aqc2vD+@0kp0Z1cc8Tg2qd7rs5aLTg71vfUEW/86+/5w=="")

Key Length (5)
Key ("@This")
Value Length (2)
Value ("is")

Key Length (3)
Key ("1lan")

Value Length (10)
Value ("encryption")
Key Length (8)
Key ("2context")
Value Length (7)
Value ("example")
Key Length (21)
Key ("aws-crypto-

Value Length (68)

EncryptedDataKeyCount (2)
Encrypted Data Key 1, Key Provider ID Length

Encrypted Data Key 1, Key Provider ID ("aws-

Z2f| Y ME2IE Clo[E(HAIX] F4| T 1)

469

AWS Encryption SDK

JHeER 7Hol=

004B
Information Length (75)
61726E3A 6177733A 6B6D733A

Information ("arn:aws:kms:

a755-138a6d9alle6")
6573742D 323A3131 31313232
33333A6B 65792F37 31356330
35383235 2D343234 352D6137
33386136 64396131 316536
00A7

Length (167)
01010200 7857A1C1
956C4702 23DCE8D7
02A4EF29 7F000000
86F70D01 Q0706A06F
092A8648 86F70D01
48016503 04012E30
7A12EB19 8BF2D802
A5474FBC 392360B5
A6BD7332 6BF86DAB
4707E356 ADA3735A
9F224BF9 E67E87
0007

(7)
6177732D
kms™)
004E

Information Length (78)
61726E3A 6177733A 6B6D733A

F7370545
16C59679
7E307C06
306D0201
0701301E
11040C3F
01108038
CB9997E0
60D8CCB8
7C52D778

6B6D73

Information ("arn:aws:kms:

be3435b423ff")
656E7472 616C2D31
32333333 333A6B65
34622D61 6663632D
372D6265 33343335
00A7

Length (167)
01010200 78FAFFFB
QE57BD87 3F6QF4E6
AF787150 69000000
86F70D01 Q0706A06F
092A8648 86F70D01
48016503 Q4012E30
D218B674 5BBC6102

3A313131
792F3962
34366138
62343233

DEDE@6AF
FD196144
7E307C06
306D0201
0701301E
11040C36
01108038

Encrypted

75732D77 Encrypted

Data Key 1, Key Provider

Data Key 1, Key Provider

us-west-2:111122223333:key/715c0818-5825-4245-

32323333
3831382D
35352D31

Encrypted

4LECA7C83
973E3CED
092A8648
00306806
06096086
F02C897B
24003D1F
6A17DE4C
8295DBE9S
B3135A47

Encrypted

Encrypted

Encrypted

Encrypted

63612D63 Encrypted

ca-central-1:111122223333:

31323232
31336361
2D616134
6666
Encrypted

AC72F79B
5A002C94
092A8648
00306806
06096086
CD985E12
0320E3CD

Encrypted

Data Key 1, Encrypted Data Key

Data Key 1, Encrypted Data Key

Data Key 2, Key Provider ID Length

Data Key 2, Key Provider ID ("aws-
Data Key 2, Key Provider

Data Key 2, Key Provider
key/9bl3casb-afcc-46a8-aas47-

Data Key 2, Encrypted Data Key

Data Key 2, Encrypted Data Key

Z2f| Y ME2IE Clo[E(HAIX] F4| T 1)

470

AWS Encryption SDK JHEER} 70| =

E470AA27 DEAB660B 3EQCESEQ 8B1A89E4
57DCC69B AAB1294F 21202C01 SA50D323
72EBAAFD E24E3ED8 7168EQFA DB40Q508F
556FBD58 9E621C

02 Content Type (2, framed data)
00000000 Reserved

ocC IV Length (12)

00000100 Frame Length (256)

4ECBD5CO 9899CA65 923D2347 IV

0B896144 QCA27950 CA571201 4DA58029 Authentication Tag

Fem - +

| Body |

Fem - +

00000001 Frame 1, Sequence Number (1)
6BD3FE9C ADBCB213 5B89SESF1 Frame 1, IV

1F6471EQ@ AS51AF310 1QFA9EF6 FOC76EDF Frame 1, Encrypted Content

F5AFA33C 7D2E8C6C 9C5D5175 A212AF8E
FBDSA@C3 C6E3FB59 C125DBF2 89AC7939
BDEE43A8 OF0OQF49E ACBBD8B2 1C785089
A90DB923 699A1495 (C3B31B50 0A48A830
201E3AD9 1EA6DAl4 7F6496DB 6BCl04A4
DEB7F372 375ECB28 9BF84B6D 2863889F
CB80A167 9C361C4B S5ECQ7438 7A4822B4
A7DSD2CC 5150D414 AF75F509 FCE118BD
6D1E798B AEBA4CDB ADQ@OQSESF 1A571B77
0041BC78 3E5F2F41 8AF157FD 461E959A
BB732F27 D83DC36D CCOEBCO5 00D87803
57F2BB80 066971C2 DEEAQ62F 4F36255D
E866C042 E1382369 12E9926B BA4QE2FC
A820055F FB47E428 41876F14 3B6261D9
5262DB34 59F5D37E 76E46522 E8213640

Q4EE3CC5 379732B5 F56751FA 8ES5F26AD Frame 1, Authentication Tag
00000002 Frame 2, Sequence Number (2)
F1140984 FF25F943 959BES14 Frame 2, IV

216C7C6A 2234F395 F@D2D9B9 304670BF Frame 2, Encrypted Content

Al042608 8A8BCB3F B58CF384 D72EC004
A41455B4 9A78BACS 36ES54E68 2709B7BD
A884C1E1 705FF696 E540D297 446A8285
23DFEE28 E74B225A 732F2C0C 27C6BDA2
7597C901 65EF3502 546575D4 6D5EBF22
1FF787AB 2E38FD77 125D129C 43D44B96
778D7CEE 3C36625F FF3A985C 76F7D320
ED70B1F3 79729B47 E7D9B5FC 02FCESF5
C8760D55 7779520A 81D54F9B EC45219D

oY x2lE CIO[E|(HAIX] HA] HA 1) art

AWS Encryption SDK

JHeER 7Hol=

95941F7E
AC65B6EF
2A57F1FD
DF1172C2
3B16F868
FECDC4A4
A61FQA3B
FFFFFFFF
00000003
35F74F11
0000008E
F7A53D37
B965AD1F
BA9FA7C4
88859500
4ALE52A3
3A043180
CO51AD55
6ADCO17D
B66B6ASA
811234FD

0066

30640230
639AED00O
758B309F
5208B133
3C6A7D5E
7E06808D
A13762FF

5CBAEACS
08262D74
E7060503
FA63CF54
1BBC5E4D
8577F08B
A3E45A84

25410F01

2F467237
A910AAS5SF
B25AF82E
7096FABB
8E41484D
DF25E5C5
A437F6BC
BA41CDA4
80FDB433
8D589683
+

+

085C1D3C
F7624854
5EFD9D5D
02301DF7
4F8B894E
OFE79002
844D

CEC13B62 1464757D
44670624 A3657F7F
AC37E197 2F297A84
E6E2B9B6 A86F582B
0B6919B3 08D5ABCF
99D766A1 E5545670

4D151493 63ECA38F Frame 2, Authentication Tag
Final Frame, Sequence Number End
Final Frame, Sequence Number (3)
DDOEQ4BF Final Frame, IV
Final Frame, Encrypted Content Length (142)
6FBDOB57 D1DFE830 Final Frame, Encrypted Content
SEFFFFF4 BC7D431C

64A04E3A A0915526
3ACAD32A 75CFEDOC
270B7A0F ED61810C
3676E449 0986557F
139E9E55 6199FD60
CO9F17A83 3823F9EC
8A48D6A4 21CB

51F6F39A 040B3E3B Final Frame, Authentication Tag
Signature Length (102)

63424E15 B2244448 Signature

F8CF2203 D7198A28

2EQ7ADOB 467B8317
2DFC877A 66838028
83D98E7C E350F424
E24422B9 98A0D130

Z 3| %{2|E o o|E{(HIAIX| &4l HH 2)

CHS odlMlE HIAIX] &AL B E

02
0578

29| =g %2|E ClolEof CiEh HIAIX| @Al2 Eo{ELICH

Version (2.0)
Algorithm ID (see Algorithms reference)

122747eb 21dfe39b 38631c61 7fad7340

Z2f| Y ME2IE Slo[E(HAIX] S4| HH 2)

472

AWS Encryption SDK

JHeER 7Hol=

cc621a30 32allcc3 216d0204 fd148459
008e

0004

0005

30546869 73

0002

6973

0003

31616e

000a

656e6372 79707469 6f6e

0008

32636f6e 74657874

0007

6578616d 706c65

0015

6177732d 63727970 746f2d70 75626c69
public-key")

632d6b65 79

0044

41746733 72703845 41345161 36706669

Message ID (random
AAD Length (142)

AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair

AAD Key-Value Pair
AAD Key-Value Pair

256-bit value)

Count (4)

1, Key Length (5)

1, Key ("@This™")

1, Value Length (2)

1, Value ("is")

2, Key Length (3)

2, Key ("lan")

2, Value Length (10)

2, Value ("encryption")
3, Key Length (8)

3, Key ("2context")

3, Value Length (7)

3, Value ("example")
4, Key Length (21)
4, Key ("aws-crypto-

4, Value Length (68)
4, Value

("QXRnM3JwOEVBNFFhNnBmaTk3MULTNTk3NHpOMn1ZWE5vSmtwRHFPc@dIYkVaVDRGMES0M1FKRStmbTFVY@1WdThnPTO=

39373149 53353937 347a4e32 7959584e
6T4abb70 44714f73 47486245 5a54346a
30Q4e4e32 5164452b 666d3155 634d5675
38673d3d
0001
0007
(7)
6177732d 6b6d73
kms™")
004b
Information Length (75)
61726e3a 6177733a 6b6d733a 75732d77

Encrypted Data Key
Encrypted Data Key

Encrypted Data Key

Encrypted Data Key

Encrypted Data Key

Count (1)
1, Key Provider ID Length

1, Key Provider ID ("aws-

1, Key Provider

1, Key

Provider Information ("arn:aws:kms:us-west-2:658956600833:key/b3537efl-

d8dc-4780-9f5a-55776cbb2f7f")

6573742d 32323635
33333a6b 6579262
64386463 2d343738
35373736 63626232
00a7
Length (167)

01010100 7840f38c
29515057 1964ada3

38393536 36303038
33353337 6566312d
302d3966 35612d35
663766

275e3109 7416c107
eflc2le9 4c8badbd

Encrypted Data Key 1, Encrypted Data Key

Encrypted Data Key 1, Encrypted Data Key

Z2f| Y ME2IE Slo[E(HAIX] S4| HH 2)

473

AWS Encryption SDK

JHeER 7Hol=

bc9dafb4
86f70d01
09228648
48016503
06063803
413196d2
eQ0ee216
ba62e9e4
cc9ee5cH
02

00001000
05cd@35b
634f7b2c
76cb339f

fEffffff
00000001
00000000
00000009
fabe39c6
f683a564

0067

30650230
ade70b3f
967d91d8
869cade2
e5054803
074217ea
3657e2b0

=3 &2 x| &2 ol ofE{(H AlX]

CHS oo = Z8Y

14000000
0706a06°f
86f70d01
04012e30
8460802
903bf1d7
74ecl349
f2ac8df6
7203bb

29d5499d
c3df2aa9
2536741f

00000000

02927399
405d68db

+

+

2ale47ad
2a2bc3b8
42d92baf
023100aa
110c9ed8
3b@1b660
9368hbd

7e307c06
306d0201
0701301e
11040c39
0110803b
3ed98fc8
12777577
bcb1758f

4587570b
88210105
59al1c202

00000001

3e
eeb0@656¢c

98867925
50eb9lef
357bba48
ael2desf
11b2e08a
534ac921

09228648
00306806
06096086
32d75294
2a46bc23
a94ac6ed
7fa@52a5
2ce@fb21

87502afe
4a2c7687
4f2594ab

d57c9eb0

cl712e8f
56cfdd18
f636c7a0
8a0afe85
c4a052a9
bf@91d12

Content Type (2, framed data)

Frame

Length (4096)

Algorithm Suite Data (key commitment)

Authentication Tag

Final
Final
Final
Final
Final
Final

Frame, Sequence Number End

Frame, Sequence Number (1)

Frame, IV

Frame, Encrypted Content Length (9)
Frame, Encrypted Content

Frame, Authentication Tag

Signature Length (103)

Signature
AT 1)

| ME|Z|x| &f 2 Ci|ol|Efoi| CHEF HIAIX] SAlE EoiE LI

Ze Y MeEl=l x|

o2 dllo[E(HIAIX] 4] BT 1)

474

AWS Encryption SDK

JHeER 7Hol=

® Note

st Ze| MEIE HIoIEE AL

StH2. = BlI7HAl S 28 =8| MEIZIX| &2 o]

E{€ AWS Encryption SDK K| EfLICt o LT o 72342 047‘* | =2l ME[=|X| ef2 At

O|T{=lAE & AAIE AWS Encryption SDK 4 UZLICH X|2Els 2E o] 28 zayl
*EIE AO|HEAE 9 ZE|Q XEIE/X| 2 AO|IHHMAES 2558 £ YALICH

| Header |

Fem - +

01 Version (1.0)

80 Type (128, customer authenticated encrypted
data)

0378 Algorithm ID (see #### ##)

B8929B01 753D4A45 C@217F39 404F70QFF Message ID (random 128-bit value)

008E AAD Length (142)

0004 AAD Key-Value Pair Count (4)

0005 AAD Key-Value Pair 1, Key Length (5)
30746869 73 AAD Key-Value Pair 1, Key ("QThis")
0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")

0003 AAD Key-Value Pair 2, Key Length (3)
31616E AAD Key-Value Pair 2, Key ("lan")

000A AAD Key-Value Pair 2, Value Length (10)
656E6372 79774690 6F6E AAD Key-Value Pair 2, Value ("encryption")
0008 AAD Key-Value Pair 3, Key Length (8)
32636F6E 74657874 AAD Key-Value Pair 3, Key ("2context")
0007 AAD Key-Value Pair 3, Value Length (7)
6578616D 706C65 AAD Key-Value Pair 3, Value ("example")
0015 AAD Key-Value Pair 4, Key Length (21)
6177732D 63727970 746F2D70 75626C69 AAD Key-Value Pair 4, Key ("aws-crypto-
public-key")

632D6B65 79

0044 AAD Key-Value Pair 4, Value Length (68)
41734738 67473949 6E4C5075 3136594B AAD Key-Value Pair 4, Value

("AsG89gGOINLPul6YK1qXTOD+nykG8YqHAhgecj8aXfD2e5B4gtVE73dZkyC1A+TAMOQ==")

6C715854
68716563
74564537
4F513D3D
0002

4F442B6E 796B4738 59714841
6A386158 66443265 35423467
33645A6B 79436C41 2B72414D

Encrypted Data Key Count (2)

Ze Y MeEl=l x|

o2 dllo[E(HIAIX] 4] BT 1) 475

AWS Encryption SDK

JHeER 7Hol=

0007
(7)
6177732D 6B6D73
kms™)
004B

Encrypted

Encrypted

Encrypted

Information Length (75)

61726E3A 6177733A

Information ("arn:aws:kms:

6B6D733A 75732D77 Encrypted

a755-138a6d9alleb")

6573742D 323A3131
33333A6B 65792F37
35383235 2D343234
33386136 64396131
00A7

Length (167)
01010200 7857A1C1
956C4702 23DCESD7Y
Q2A4EF29 7F000000
86F70D01 Q0706A06F
092A8648 86F70D01
48016503 Q4012E30
OF2A0383 659EF802
3A33605C 48840656
ES9A33EBE 33F46461
418E1151 21311A75
3E2DEBD5 CB@@5D
0007

(7)
6177732D 6B6D73
kms™)
Q04E

31313232 32323333
31356330 3831382D
352D6137 35352D31
316536
Encrypted

F7370545 4ECA7C83 Encrypted
16C59679 973E3CED
7E307C06 ©092A8648
306D0201 00306806
0701301E 06096086
11040C28 4116449A
0110803B B23A8133
C38BCB1F 9CCE7369
O591FECA 947262F3
E575ECC5 61A286E0Q

Encrypted

Encrypted

Encrypted

Information Length (78)

61726E3A 6177733A

Information ("arn:aws:kms:ca-central-1:111122223333:

be3435b423ff")
656E7472 616C2D31
32333333 333A6B65
34622D61 6663632D
372D6265 33343335
00A7

Length (167)
01010200 78FAFFFB
QE57BD87 3F6QF4E6
AF787150 69000000

6B6D733A 63612D63 Encrypted

3A313131 31323232
792F3962 31336361
34366138 2D616134
62343233 6666
Encrypted

DEDE@6AF AC72F79B Encrypted
FD196144 5A002C94
7E307C06 092A8648

Data Key 1, Key Provider ID Length
Data Key 1, Key Provider ID ("aws-
Data Key 1, Key Provider

Data Key 1, Key Provider

us-west-2:111122223333:key/715c0818-5825-4245-

Data Key 1, Encrypted Data Key

Data Key 1, Encrypted Data Key

Data Key 2, Key Provider ID Length
Data Key 2, Key Provider ID ("aws-
Data Key 2, Key Provider

Data Key 2, Key Provider
key/9bl3casb-afcc-46a8-aas47-

Data Key 2, Encrypted Data Key

Data Key 2, Encrypted Data Key

Ze| Y MEl=x| of 2 ClOIB{(HIAIR] B4 HT 1)

476

AWS Encryption SDK

JHeER 7Hol=

86F70D01
092A8648
48016503
76616EF2
FDD@1BD9S
3CC686D7
71F18A46
2A363C2A
01

00000000
oC

00000000
734C1BBE
2C82BB23

D39DD3E5
00000000
E8B6F955
5871BA4C
59455BD8
E4159DFE
6766ECD5
55FCDA5B
C7D75BCC
ECE10AA7
95FE9C58
31E4F48A
B48A2068
C9B21A10
9D86E334
54C0C231
B8178484
12B0000OC
A5BA8Q4F
A15D0551
5E2034DB
46B2C979
€2394012
C6FFB914
1BABBAE4
F3CB6B86
B731839B

0706A06F 306D020
86F70D01 0701301
04012E30 11040CB
A6B30D02 0110803
B0979082 @99FDBF
F3CF7C7A CCC5263
80QE2C43F A34COES
E11397

032F7025 84CDA9SD
4CBF4AAB 8F5C600

915E0201 77A4AB1
0000028E

B5F22FE4 FD89022
93F78436 1085E4F
D76479DF C28D2E0Q
C8A944B6 685643F

1 00306806
E 06096086
2 A820D0CC
B 8073D0OF1
C F7B13548
9 122A1495
8 11D05114

0
2 622E886C

1

4 4E1D5155
8 D61ECE28
B BDB3D5D3
C EA24122B

E3F54653 DF205D30 ©0081D2D8

9F5318BC F4265B0

6 2FE7C741

10FQ5EAS QE2F2F40 47A60344

559AF633 9DE2C21
€65329D1 377C4CD
9B1CCO47 EE5A071
8060DF60 B492A73
371E6179 78FAFBO
701E1442 EASDA28
AD43571A B907192
7EB73A4F AAE46B2
8429F504 936B249
7F190927 5D2DF65
DAEBA4AF 2060D@D
4D19E7CD EEA6CF7
AB84EE12 202FD6D

B 12AC8087
7 EA1Q3EC1
9 704211E5
7 21B0DB21
B BAAEC3F4
8 64485077
5 609A4ES9
6 F5B374B8
2 AAF47E94
1 B59D4C2F
5 CB1DA4E6
E 549C86AC
F E7E3CO9F

AF20A97E 369BCBDA 62459D3E

FEFD4DE5 88F5AFE
BE55325E 4FB7E60
71666C06 6BF74E1l
CF711F6A 84CAS5F

1 98488557
2 C1CO4BEE
B OF881F31
5 958D3B44

Content Type (1, nonframed data)
Reserved

IV Length (12)

Frame Length (@, nonframed data)
IV

Authentication Tag

IV
Encrypted Content Length (654)
Encrypted Content

Ze Y MeEl=l x|

of 2 lo[E{(HAIX| 4| H

1)

477

AWS Encryption SDK

JHeER 7Hol=

AWS Encryption SDKO{| CH§H £

E3862DF6
6920AA76
D4ESDF5C
6932E67C
63490741
978A019C
66DFF333
2C15100C
9247EF61
76EQ8ESB
E24FDE26
C4A46ALE
2EAFDOCB
1E3305D9
6276C5F1
50715406
65B2E942

0067

30650230
CBE194F1
BE84B355
1BEB8281
15599638
331F3614
34CB7E4B

AWS Encryption SDKe} S 2tE|= AH&l| 253t 2lol2E8 {22 &
'35 2tol22i2|§ Yeste E

A Ol
_I_AAII=I

ZAlLct.

338E02B5
OBF8E903
491EE86B
C64B3A26
3AB79D60
FE49EEQA
QE10226F
6A2AA3F1
3E7B7EQD
9ADCDF8C
3044C856
B5AB72FE
BOEB8B83
@COE2294
A3B7ES51E
822D1682

24BEEAGE
+

+

7229DDF5
1CCOF8CF
3CED1721
02310082
889F72C3
BC407CEE
363A38

LICt 2&t5|=

C345CFF8
552C5A04
20C33FE1
B8988B25
D8AEFBES
@ES6BFOD
0A1B219C
88251874
29F3AD89
C886D4FD
BFO8F051
096041F1
AEQ5885A
ESAD7E3B
422D365D
80BOF2E5
A513F918

B86A5B64
D27B7F8B
A@BE2A1B
OCB323EF
B15D1700
B86A66FA

KA &

A31D54F3
917CCD11
5D21F0QAD
CFA33E2B
2F48E25A
D6074DDB
BES54E4C2
FDCO94F6B
FA14A29C
A69F6CB4
1ADAD329
F3F3571B
8F2D2793
8E4DEC96
E4C0259C
5C94

CCEC1DE3

54E4D627
F50658C0
8E3F449E
58A4ACE3
5FB26E61
CBF74D9E

Authentication Tag

Signature Length (103)
Signature

x4
o

= O
L

—

©l

o

=

=

& 5tLF AWS Encryption SDK 0AE AL

A

@15 O|O|E(AAD) &=

C St
—=

<7t OH—IEP':“' o4
=l

MMg

2 GitHub2| AWS Encryption SDK A}2F

478

https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK

JHeER 7Hol=

Zt et & 31 240 CHSH AES-GCM & 11
A74LE A 2|2 K|
Counter Mode)0oi| A 2| AAD AtE HEdod| CHEH REAIBH LY

& AMel=A

2|50/ %7 915 Clo|E{(AAD)E MIBsHok BHLICH Ol= =3
=& Olo|E & Chofl CHsii AT of&F7FX|ILICH AADE2F GCM(Galois/
&2 Recommendations for Block Cipher

ofe
LS —

Modes of Operations: Galois/Counter Mode (GCM) and GMAC(EE& &5 28 &Alof Cist HE At

& GCM(Galois/Counter Mode) & GMAC)E & Z3IMI2.
S ZolME EE AADE Fdots o s dBELICH EA|E =XCHZ HiO|E7F FIHELICH
=& AAD X

Field Z0|(HtO|E)

Message |ID 16

Body AAD Content Ha OIS 559 2F AAD 2HXE & E6HA

2.
Sequence Number 4
Content Length 8

M A|X| ID

HIAIX| S0 A

22 AAD 28I

HE HI S Y

E& Olole 8o et Z8x=

2 ME[Z[X| i 2 Co[E{ 2] Z

= L=

Message ID gt lL|Ct.

UTF-82 QIFZEl ZrlL|ct.

32 AWSKMSEncryptionClient Single Block ZtS AFSE

e

ME|E ClolE{o| U Zayedel F

2 AWSKMSEncryptionClient Frame Zf2 AFSEL

el

| MelEl Cllo[E | (& =2 gfe| 8

2 AWSKMSEncryptionClient Final Frame Zt2

>

&L

Rl
r

N

o4
HA

4r
fok
rir

Zo| Y x2|E HoE{e] B¢

32HIE HE sHMEl=

4HIO|E ZflL|Ct.

Ol Zefgd A|EA HE

L|CH.

rc
£l
>
>
lw)
i)
B

479

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

AWS Encryption SDK JHEER} 70| =
Zo Y ME[=X] f2 Ho|E el B2 & 12 A8 ELICH o] 22 16Tl E 7|0l 4HIO|E 00
00 00 012 QIR ELICY,

A5 E flall dnEIE MSEE L HIAE O|o|E{ 2 Zo|(HFo|E)ILICE o] 22 #% 9l
x A
A

Tl 8HtOIE 2L &iLCt.

AWS Encryption SDK & 1 2|& & =X

AWS Encryption SDKe} S &tE|= AH&l| 253t 2lo|l22{2|2 2=g) o] mo|X|e] MEE Rt x&
= A& 8tEl= XA 535 2tolEREIE EHESE A7t otL|EtH ol HE= EHe o2

ZAlLct.

Xzl =284 1o B 5tLt AWS Encryption SDK 0l M E ALE 52 MME HEFME
Z ™ o104,

HolgtE AFY 2 GitHub2l AWS Encryption SDK AHQF

i
[e]l]

&8t AWS Encryption SDK T+312| 24
%

x4
2 #EsML.

ot ZEE|= AMOIHEAEE 2|1 £ = = XAl 20|28 2§ #5535t B AWS Encryption SDK
7t X|HElE g12lE MEZE AWS Encryption SDK #245t0{ 2IA| CI|O|E{E & E35te WHE O]
siistok gf LICt.

£ OIS ¢ 12|& ME=S AWS Encryption SDK X[ELICt 2 & AES-GCM ¢ 1 2|& ME o=
12HtO|E Z= 7|5t HIE{Q} 16HFO|E AES-GCM 21F Ef7t /I&LICH 7|2 21 2|&E ME 22 AWS
Encryption SDK H7Z & MEREE 7| 7{5) HAMof 2t ChELICH XFMISH L& HE HA dl gt 2[&
HNEZS &EZHA L.

AWS Encryption SDK & 1 2|& AQE

gdnglE HAXIE 2332 OolHZ 7I¢ MBgn 7| AHA gdnglE
D Mwd mEls Zodl gmEE 2lE gn2lE MED O
E) olE{ Z0

(HFO|E)

05 78 0x02 AES- 256 HKDF(SHA ECDSA(P-: HKDF(SHA 32(7| #

GCM 512 At8) 84 & 512 AH8) 9

480

e
Kl
o
ip
it
B

https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK

JHeER 7Hol=

gne|

ID

04

03

03

02

01

01

01

00

O

78

78

46

14

78

46

14

78

HIAIR]
A 7

0x02

0x01

0x01

0x01

0x01

0x01

0x01

0x01

34
[=)

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

GlolE 7|
Zoj(Hl
E)

256

256

192

128

256

192

128

256

e N
H Ho
=
i

HKDF(SHA
512 ALR)

HKDF(SHA
384 AtE)

HKDF(SHA
384 AFR)

HKDF(SHA
256 AMR)

HKDF(SHA
256 AMR)

HKDF(SHA
256 AMR)

HKDF(SHA
256 AFR)

o4
HA

il

ne
K

R,

cl&

SHA-384
AE)

(oF |
HA

Ojo

ECDSA(P-:
84 &
SHA-384
ALE)

ECDSA(P-!
84 &
SHA-384
ALE)

ECDSA(P-:
56 !
SHA-256
AHR)

o
HA

Ojo

50
njo

50
ajo

50
0jo

o N
o
ALTN
ik

HKDF(SHA
512 ALR)

o4
HA

Ojo

50
Ojo

50
Ojo

50
Ojo

50
0jo

50
ajo

50
0jo

STEnEIES
ME2 o
olE{ 2o
(HtO|E)
32(7| 7
2
ST AbEt
o=
HA
ST AbSt
(oL K=2
HA
SHE Abe
oie
HA 2
SHE Abe
(oL K=2
HA
SHE Abet
[eR k=2
HA
SHE Abe
oie
HA A

Ojo of?
Pal
0%

20 o

e
Kl

0
it
B

481

AWS Encryption SDK JHEER} 70| =

orn2lE HAXIE €33 Y OolHZ|l 7|k Mdagn 7|78 et ng|l&
ID AlHA n2& Zo|(H] gtnglg 2l&E otzlE NEZ O
E) O|E{ &4 0|
(HIO|E)
00 46 0x01 AES- 192 = al= q= SHE AL
GCM =
00 14 0x01 AES- 128 RS = B SHE AL
GCM =
odTE|EID
ot 2|E TS 1 85HAH AlEEdstE 2HEO|E 16 T4 ZLILICH O] 22 AO|HEIAE O HA|X| 5

o
=
ol M ELIC

HAIX] SA HH

HAIX] SAL HEULICEH 7] 7%00] = L1 E|E MEE 2 HAIK| B4 HT 2(0x02) & AHSE
LICH 7| 7{2l0] i 2 nE|lE MEZ 2 HAIXK| ZA HZE 1(0x01)E AFESEfLICH

2 nE|l&E ME ClolE 2ol

21 2Z|E MEZ|E 2EE Cl|o|E{2| ZOo|(HIO|E)JLICH o] HE&= HIAIX]| &4 HE 2(0x02)0]
MBH X|HELICH HAIX] &4 HH 2(0x02)04 A O| BlIO|E{= HIAIX| SIEH2| Algorithm suite
data o ZAIELICE 7| HUE X|Hste €0EE MEZ2 7| 72 2XHo] 32HI0|EE A
SELCH RtME HE = ol 282 7| AU dnE|& S FEFAMLR.

Cilolef 7| Zo|

H|O|E{ 7|2 ZO|(HIE)ILICH. AWS Encryption SDK £ 256H|E, 192H|E, 128H|E 7|& X|&E
LICt ClIOIE Z|= 7|2 == OtAH 7|2 HMEL|CH

UE 230 H= Ol HIoIE Z|7F HMAC 7|8t & L 2% 7| R & (HKDF)Q| 2o 2 ALSE
LICt. HKDF2| £3i2 453l 1 2[&0MH IOIE &E3t 7|12 AFZSEILICH RIMIEt HEE= 0ol 5
=

=
EO| 7| QR d1EES HXSIAML.

A LnEE

MEBElE g5t &dnE|EC| 0| & 2EQILICH. AWS Encryption SDK o| &1 2|& MEZ2
Galois/Counter Mode(GCM)2| 112 535} EF(AES) &3t &1 2|ES AFSFLICH

k=

b

= 482

AWS Encryption SDK JHEER} 70| =

7l A g nel&E

7| 749! 2x1US A s O ASEE 2nEIEY

L[CF. HA|X| SllH2] Algorithm
suite data ZE=o| MEE|/H 7| 7{2/oi CHEF I0|E] 7|

= Ol AFSELCH

[o][]

gdngl&E MEZ 7| 7HUE F7t5t= S0l cHe 7|2l ME2 Cryptology ePrint Archive 2
7| 7‘|D| AEADE |:|—l—°|'k”o

7l dn2lE&E

0|I

ciole| & 53 7|12 F&3HE ol ASElE HVAC 7|8 £& 2 &% 7| R & (HKDF)QILICH =
RFC 586901 2| El HKDFE AWS Encryption SDK AF>L|C}

7| 745! o] &

rr
ne
kl
i)
iy
!
JIj 5
M

2T 2|E ID 01xx - 03xx)

o M2E|E SiA| &= 21 2|E MEZ0 M2 SHA-384 EE= SHA-256 & 5HLFQILCY,
« F& CHA o] AR
« £EE= ME5K| St&LICH RFCOH| [ME £EE 022 THEI BAIYEE M™MHELICH Bt 4
O|E sllA| &4 £240| Zo|2t Z oM, O|= SHA-3842| ZZL 48HIO|E, SHA-2562| Z3<2 324}
o|lEL]C}
- QM I M A= 7™ E= OIAEH 7| SZ R0 &2 d|o|E 7|ILICt.
« E3CHA ol AR
« Q124 OJAl Lt F|= FE HAH S| &2t
- 21 HE= 21 2|E ID2F HIAIXR| IDE &= MOHE 4488 JAlL|Ct,
- E23 7| 374 249/ Z0|= HIo|E 7| Z0|L|Ct o] £3i2 453 1 2[&0MH lolE &
23 7|2 AFSELICH

EZ(L12l&E ID 04xx L 05xx)
A-

- M8E|= HA| = SHA-512]L|C}.
- FEHAO B2
- £E= 256H|E &5t FA| gfdLct HAIX] @A B{F 2(0x02)04| M O £0| MessageID
Zcof MEELcH
e X7 7| M A= 7|2 EE= OtAE 7| 22 RH0i|A] BH O|o|E 7|LCt
- EE EAH o B
- U oA U Fl= FE HAQ ERQULCE
- 7| oilo|&2 &l 2C|Pt HIO|E &=A{Z UTF-8 2|2 E HIO|E DERIVEKEY EXAIE LY.

e
Kl
o
ip
it
B

483

https://eprint.iacr.org/2020/1153
https://tools.ietf.org/html/rfc5869

AWS Encryption SDK

JHeER 7Hol=

- UH HEE= dTE|E D2 7| B0l S =AMCHE dZgE Zuct.
- EY 7|78 240 Zols dlolEf 7| Zoluct ol 232 & &3 AT 2|F0|M ClolH ¢
=5 7|2 AHSEUCH
HIAIX| A HT
AT 2|E MEZD M A ElE HAIK| FAS HTQLICH RHME LI 2 HAIX| HA EES
HxstMle
ME L&
MOIHEAE 5| & 2F0| CIX[E MBS ddsts Ol A8 ElE ME dI2IFULICH = O3
N HEot 87 Ebpd M C|X|EH ME ¢ 2|&F(ECDSA)S AWS Encryption SDK A & L|C},
- AI8E|l= Bt ZM2 ¢ 12| IDE RIHE P-384 = P-256 F41ILICE ol2{#t T2
DSS(CIX|E ME EFE)(FIPS PUB 186-4)01 Ho|E|o{ U&LICH.
- Ar8E|= Al B 4= SHA-384(P-384 4 ALE) EE= SHA-256(P-256 =41 Atg)lL|Ct.
AWS Encryption SDK 7|3} HIE{ & X

AWS Encryption SDK2 Z&tZ|= AHX| &3l 2to|22H2|E UEE i ol Ho|X|e| HEE #x &
T A&Lct 28 E= XA ¢ =3t 2to|EHEEIE HESe 47t ofLIEtH o]l HE= ER g8
Aot
X#ElE Z2 384 2104 & StLt AWS Encryption SDK 0| AME AE5tE{T MME R ESHAMR T
22 2doq
&2t AWS Encryption SDK T#212| R A& ™|t ALY 2 GitHub2| AWS Encryption SDK AHSF
2 HZsML
= XEles BE g1 EE ME2o 223 Z=7|5 HE(IVs)E AWS Encryption SDK A S & LT},
SDKE ZH| Y A|HA HEE AE5104 IVE M52 E SUE HIAIX|e] & Zaf|]o| SYEHIVE 7t
& = gL
ZI 96H|E(12HIO|E) IVE CI& =ME A2 E F 7| &l C|o HIO|E HHEE T ELIC.
« B4HIE: O(HE ALS S 2I5f olotE)
- 32H|E: I ARA S 50 215 Ef19| A2 0] g2 25 oLt

484

http://doi.org/10.6028/NIST.FIPS.186-4
https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/
https://en.wikipedia.org/wiki/Initialization_vector

AWS Encryption SDK JHEER} 70| =

A Ol ATHE|7] Holl= AWS Encryption SDK 7 &4 M| T|O|E{ 7|1& AFE3H0{ ZF HIA|X]
I 2E IV% °'°|§ MosaLICH FEAZ HMHE IvE ClIoIE 7171 RAFEE X0 gle
i LICt. SDK7t oMo 2 H|0|H 7|E A& 5t= CIoIE 7| 7HalE2 =Y

lI|>

S T el A
T35 27 2™ IVE At&35H04 Cl|O|E 5’|0| Mgz
7t %*Ei} HRIE TSR] &t 1 2232 MHIA|X|E & =&l AWS Encryption SDK & &= Q/&LICH.

|r
[IL?_ o|-
kl
o
Oj
Pl
I
S El

AWS KMS A& 7|8 7= M8 HE

AWS KMS 7#AIEX 7|22 1]stX| 82 CIOIE 7I1& AL835t0d Z HIAIXRIE Y5 3tstn & 23|
7|0l A mp 4= 73 7|2 Zf tlo|H 7|& & =3tefLict. o] 7|22 HMAC SHA-256 O|A}
7

2z °
4 #4E S5 7H2E REoM 7| S S8 AR50 Ohe @202 3200|E 24T 7|18 TS U

o gE

AR} "aws-kms-hierarchy"2| UTF-8 Q13 2 El Zk

HEX 7|22 o ME 2 E 7|2 AF235104 16HI0|E 91F Ef 2! CFS @247} 874 AES-GCM-2562
AtEsto] Lk A E O|O|E] 7|2l A2 S Y Z3tELCt

- IME 2iE 7|l= AES-GCM & = 7|2 AFSELCH
- OlO|E 7= AES-GCM HIAIX|2 AMEELCH

. 12H}O|E £ 59| & 7|3} HIE|(IV)= AES-GCM IVE AFRElL|C}
- OOt 22 2™ E 22 28 ste F7+ 213 HI0|E{(AAD)
4 ZO|(HIO|E) 2o 2 siAME
"aws-kms-hierarchy" 17 UTF-8 213 &
Hehx| 7| AERt e UTF-8 212d
Ea x| 7| HEH 16 UTF-8 213 &
A3t HEHAE == UTF-8 13E 7|-2t m|od

>
=
w
A
<
w
X
Ol
_|>1
@
N
M
=
4T
o
HT

485

https://en.wikipedia.org/wiki/Key_derivation_function
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
https://en.wikipedia.org/wiki/UTF-8

AWS Encryption SDK

JHeER 7Hol=

AWS Encryption SDK 7HEf X} SFLHM S| EM 7|15

O| Z=A|of A= AWS Encryption SDK 7HEE X} 7HO|=0i CHEF S22t AHI0|E Ateol| cHs A ELICH.

Chg £
AE F2 ¥
£ XIF Aho|EstT AU&LICE &

AWS Encryption SDK for Java
H{7 3.x

AWS Encryption SDK for .NET
7% 4.x

o
1z
M
Ral

MO
x
rE
ox

oAM= 2017 112 O|F O| B ELE HB A S
HE ALY 2|0l dEI oK YololEst
E

=
et #HE Aol Cish 2 &l #roedtd RSS IIE & T SELICH

A4
=o

AWS KMS ECDH 7|2! &l &A|

ECDH 7|2lof| CHEF A™H M7t
FIE|R&LICE

E Mz S=x 2tol2g{e2
AWS Encryption SDK for Java
of SEELICH 7|2 & EQF

33t ZAEIAE CMMo] CHEt
2lg Foberch

oo

>
ol

|2

AWS KMS H&5H 7|3 Ze
ot 4535 HEIAE CMM 2
H|CHE! RSA AWS KMS Z7|Z2l0f|
CHEH X|E F7HEHLICEH

for NETO| AWS Encryption
SDK CHEF X|2E AT0ELICH

1724 obAE 7|(CMK)E
— AWS Key Management

20249 6 17

20234 128 6

20234 10 12¢

2022 5 17

20214 8% 30

Z|4 Hdlo|E

486

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#master-key

AWS Encryption SDK

JHeER 7Hol=

o

>
M
Ral

o
e
M
Ral

Service 8018 AWS KMS key
2l KMS 7|2 HtELICt

Cts 2[™ 7]of cier X[ol
FILE[RELICH AWS Key
Management Service.(AWS
KMS) CtS 2[™ 7|= AWS
KMS 7| ID2 7| 7+ A7t
SUst7| 2ol M2 HHHM
ANEE 4 AWS 21T Qe M2
cheol 7| uct

INME HAIX| 253 ZZA
20 CiEr dBEM7F =7 A A
ClO|E XA & LICE.

AWS Encryption CLI B

™ 1.7.xE CHAI5t= AWS
Encryption CLI {7 1.8.x &
AWS Encryption CLI 2.0.xE&
CH& = AWS Encryption CLI
2.1.x0| M4l 2lg|Aof CHEr M
BME F7t5t1 HOIO|EXNE

LICH

2 Ate| 7to|=, Ooto|2a o]
M 7IolE, ddo|EE 7HdE, A
HIoO|EE =223l 2of F
AN, dMio|EE ¢ 1 E& ME
X, Holo|EE HIAIXK] E
X, M HAIX] &4 ol 7¢
&=l AWS Encryption SDK
M1.7.x Y 2.0.x2 HAl EA|
2lA0] ciet dBAM7 F7¢
Y| O|EE[A& LT

mEE e |0 |

a

)||

20214 6% 84

20214 58 11

20204 10& 27

202074 9& 24

M AdH0|lE

487

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/configure.html#config-mrks
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#digital-sigs
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/best-practices.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/migration-guide.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/migration-guide.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html

AWS Encryption SDK

JHeER 7Hol=

{1 Al
(=2

Al

M

NEEEVEEE RS

NEEEVEEE RS

i=)
[
o
€
4Ll
°
1l

AWS Encryption SDK for

JavaScripte| HAl EA| EE|A

off CHer dBEM7F =70 A Ao
O|EE|A&LICE.

AWS Encryption SDK for
JavaScript2| 74 HE} &2|A
of CHet MM} R} 2 e
OlE EltgLct

AWS Encryption SDK for C2]
YAl EAl 2Elao] Cidt M
M7t F7+ & HO|O|EEIRE
L|Ct.

AWS Encryption SDK for C2]
Ozl £7] 2elAof Cigt M
M7t FILE[R&LICH

AWS Encryption SDKO1| CHEt
BHE QIEHo[A MHEM7}
F7LE[R&LICH

20194108 1

20199 6 21

20197 52 16

20197 2 5

20174 11& 20

EoME 2017 112 0| AWS Encryption SDK 7H& X} 7H0| =0 M BHHZAE S 2 Abghol CHEH

A0
= o

M Z|soi cet ClolE 7] 70 &
HME7F FIHE|R & LI

SDK7} 22| IV MAMoq A2
X-IX-I |V ?.A-IOE H:|7=IE|O-IQ

£ MHSt= the section called

Date

20174 7€ 314

O ol

488

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html

AWS Encryption SDK

JHeER 7Hol=

E
\

HoolE

A4
=o

7|t HE HE =AM E
JtEIRA&LICH

0|I

MER2 535 A2 HERE
HIR & 7 E 8 MESt= the
section called “70's” &AM 7| F
7t A& L C.

HAIX| A FE dEMIM
AWS Encryption SDK & = Al
Mo 2 EHEE|i&LICH.

of et MME FItU&LICH
AWS Encryptlon SDK X|# &

AWS Encryption SDK O|X|=
Q[E Python Z2 21 €
0{& X|HELICtJava.

AWS Encryption SDK 2/0| A
HAol x|x BE|A.

Date

20174 38 21

20174 38 21

2016'H 3 22

Ol AUHI0IE

489

A 7h0|=

=13
=

AWS Encryption SDK

cdxc

	AWS Encryption SDK
	Table of Contents
	란 무엇입니까 AWS Encryption SDK?
	오픈 소스 리포지토리에서 개발
	암호화 라이브러리 및 서비스와의 호환성
	지원 및 유지 관리
	자세히 알아보기
	피드백 보내기
	의 개념 AWS Encryption SDK
	봉투 암호화
	데이터 키
	래핑 키
	키링 및 마스터 키 공급자
	암호화 컨텍스트
	암호화된 메시지
	알고리즘 제품군
	암호화 구성 요소 관리자
	대칭 및 비대칭 암호화
	키 커밋
	커밋 정책
	디지털 서명

	AWS Encryption SDK 작동 방식
	가 데이터를 AWS Encryption SDK 암호화하는 방법
	가 암호화된 메시지를 AWS Encryption SDK 복호화하는 방법

	에서 지원되는 알고리즘 제품군 AWS Encryption SDK
	권장: AES-GCM(키 유도. 서명, 키 커밋 포함)
	기타 지원 알고리즘 제품군

	와 AWS Encryption SDK 함께 사용 AWS KMS
	모범 사례 AWS Encryption SDK
	구성 AWS Encryption SDK
	프로그래밍 언어 선택
	래핑 키 선택
	다중 리전 사용 AWS KMS keys
	알고리즘 제품군 선택
	암호화된 데이터 키 제한
	검색 필터 생성
	필요한 암호화 컨텍스트 CMM 구성
	커밋 정책 설정
	스트리밍 데이터로 작업
	데이터 키 캐싱

	의 키 스토어 AWS Encryption SDK
	키 스토어 용어 및 개념
	최소 권한 구현
	키 스토어 생성
	키 스토어 작업 구성
	키 스토어 작업 구성
	정적 구성
	검색 구성

	활성 브랜치 키 생성
	활성 브랜치 키 교체

	키링
	키링 작동 방식
	키링 호환성
	암호화 키링에 대한 다양한 요구 사항
	호환되는 키링 및 마스터 키 제공자

	AWS KMS 키링
	AWS KMS 키링에 필요한 권한
	AWS KMS 키링 AWS KMS keys 에서 식별
	AWS KMS 키링 생성
	AWS KMS 검색 키링 사용
	AWS KMS 리전 검색 키링 사용

	AWS KMS 계층적 키링
	작동 방식
	사전 조건
	필수 권한
	캐시 선택
	기본 캐시
	MultiThreaded 캐시
	StormTracking 캐시
	공유 캐시

	계층적 키링 생성
	정적 브랜치 키 ID를 사용하여 계층적 키링 생성
	브랜치 키 ID 공급자를 사용하여 계층적 키링 생성

	AWS KMS ECDH 키링
	AWS KMS ECDH 키링에 필요한 권한
	AWS KMS ECDH 키링 생성
	AWS KMS ECDH 검색 키링 생성

	Raw AES 키링
	Raw RSA 키링
	원시 ECDH 키링
	원시 ECDH 키링 생성
	RawPrivateKeyToStaticPublicKey
	EphemeralPrivateKeyToStaticPublicKey
	PublicKeyDiscovery

	다중 키링

	AWS Encryption SDK 프로그래밍 언어
	AWS Encryption SDK for C
	설치 AWS Encryption SDK for C
	사용 AWS Encryption SDK for C
	데이터 암호화 및 복호화 패턴
	참조 카운트

	AWS Encryption SDK for C 예제
	문자열 암호화 및 복호화
	문자열 암호화
	문자열 복호화

	AWS Encryption SDK .NET용
	AWS Encryption SDK for .NET 설치
	AWS Encryption SDK for .NET 디버깅
	AWS Encryption SDK for .NET 예제
	AWS Encryption SDK for .NET의 데이터 암호화
	AWS Encryption SDK for .NET의 엄격한 모드에서 복호화
	AWS Encryption SDK for .NET에서 검색 키링을 사용하여 복호화

	AWS Encryption SDK Go용
	사전 조건
	설치

	AWS Encryption SDK for Java
	사전 조건
	설치
	AWS Encryption SDK for Java 예제
	문자열 암호화 및 복호화
	바이트 스트림 암호화 및 복호화
	다중 키 링을 사용하여 바이트 스트림 암호화 및 복호화

	AWS Encryption SDK for JavaScript
	의 호환성 AWS Encryption SDK for JavaScript
	AWS Encryption SDK for JavaScript 호환성
	브라우저 호환성

	설치 AWS Encryption SDK for JavaScript
	의 모듈 AWS Encryption SDK for JavaScript
	JavaScript Node.js 모듈
	JavaScript 브라우저용 모듈
	모든 구현을 위한 모듈

	AWS Encryption SDK for JavaScript 예제
	AWS KMS 키링을 사용하여 데이터 암호화
	AWS KMS 키링을 사용하여 데이터 복호화

	AWS Encryption SDK for Python
	사전 조건
	설치
	AWS Encryption SDK for Python 예제 코드
	문자열 암호화 및 복호화
	바이트 스트림 암호화 및 복호화

	AWS Encryption SDK Rust용
	사전 조건
	설치
	AWS Encryption SDK for Rust 예제 코드
	AWS Encryption SDK for Rust에서 데이터 암호화 및 복호화

	AWS Encryption SDK 명령줄 인터페이스
	AWS Encryption SDK 명령줄 인터페이스 설치
	사전 필수 소프트웨어 설치
	AWS 암호화 CLI 설치 및 업데이트

	AWS 암호화 CLI 사용 방법
	데이터 암호화 및 복호화 방법
	래핑 키를 지정하는 방법
	주요 파라미터 속성 래핑
	여러 래핑 키를 지정하는 방법

	입력을 제공하는 방법
	출력 위치를 지정하는 방법
	암호화 컨텍스트를 사용하는 방법
	커밋 정책을 지정하는 방법
	구성 파일에 파라미터를 저장하는 방법

	AWS 암호화 CLI의 예
	파일 암호화
	파일 복호화
	디렉터리의 모든 파일 암호화
	디렉터리의 모든 파일 복호화
	명령줄에서 암호화 및 복호화
	여러 마스터 키 사용
	스크립트의 암호화 및 복호화
	데이터 키 캐싱 사용

	AWS Encryption SDK CLI 구문 및 파라미터 참조
	AWS 암호화 CLI 구문
	AWS 암호화 CLI 명령줄 파라미터
	고급 파라미터

	AWS 암호화 CLI 버전
	AWS 암호화 CLI 버전 1.8.x 변경 사항
	AWS Encryption CLI 버전 2.1.x 변경 사항
	AWS Encryption CLI에 대한 버전 1.9.x 및 2.2.x 변경 사항
	AWS Encryption CLI 버전 3.0.x 변경 사항

	데이터 키 캐싱
	데이터 키 캐싱 사용 방법
	데이터 키 캐싱 사용: 단계별
	데이터 키 캐싱 예제: 문자열 암호화

	캐시 보안 임계값 설정
	데이터 키 캐싱 세부 정보
	데이터 키 캐싱의 작동 방식
	캐싱을 사용하지 않고 데이터 암호화
	캐싱을 사용하여 데이터 암호화

	암호화 자료 캐시 생성
	암호화 자료 캐싱 관리자 생성
	데이터 키 캐시 항목에는 무엇이 들어 있나요?
	암호화 컨텍스트: 캐시 항목을 선택하는 방법
	내 애플리케이션이 캐시된 데이터 키를 사용하고 있나요?

	데이터 키 캐싱 예제
	로컬 캐시 결과
	데이터 키 캐싱 예제 코드
	생산자
	소비자

	데이터 키 캐싱 예제: CloudFormation template

	의 버전 AWS Encryption SDK
	C
	C#/.NET
	명령줄 인터페이스(CLI)
	Java
	Go
	JavaScript
	Python
	Rust
	버전 세부 정보
	1.7.x 이하 버전
	버전 1.7.x
	버전 2.0.x
	버전 2.2.x
	버전 2.3.x

	마이그레이션 AWS Encryption SDK
	마이그레이션 및 배포 방법 AWS Encryption SDK
	1단계: 애플리케이션을 최신 1.x 버전으로 업데이트합니다.
	2단계: 애플리케이션을 최신 버전으로 업데이트

	AWS KMS 마스터 키 공급자 업데이트
	엄격 모드로 마이그레이션
	검색 모드로 마이그레이션

	AWS KMS 키링 업데이트
	커밋 정책 설정
	커밋 정책 설정 방법

	최신 버전으로의 마이그레이션 문제 해결
	더 이상 사용되지 않거나 제거된 객체
	구성 충돌: 커밋 정책 및 알고리즘 제품군
	구성 충돌: 커밋 정책 및 사이퍼텍스트
	키 커밋 검증 실패
	기타 암호화 오류
	기타 복호화 오류
	롤백 고려 사항

	자주 묻는 질문(FAQ)
	는 AWS SDKs 어떻게 AWS Encryption SDK 다릅니까?
	는 Amazon S3 암호화 클라이언트와 어떻게 AWS Encryption SDK 다릅니까?
	에서 지원하는 암호화 알고리즘 AWS Encryption SDK과 기본 암호화 알고리즘은 무엇입니까?
	초기화 벡터(IV)는 어떻게 생성되며 어디에 저장되나요?
	각 데이터 키는 어떻게 생성, 암호화 및 복호화되나요?
	데이터를 암호화하는 데 사용된 데이터 키를 추적하려면 어떻게 해야 하나요?
	는 암호화된 데이터 키를 암호화된 데이터와 함께 어떻게 AWS Encryption SDK 저장하나요?
	AWS Encryption SDK 메시지 형식은 내 암호화된 데이터에 얼마나 많은 오버헤드를 추가하나요?
	자체 마스터 키 공급자를 사용할 수 있나요?
	두 개 이상의 래핑 키로 데이터를 암호화할 수 있나요?
	로 암호화할 수 있는 데이터 유형은 무엇입니까 AWS Encryption SDK?
	는 입력/출력(I/O) 스트림을 어떻게 암호화하고 AWS Encryption SDK 해독하나요?

	AWS Encryption SDK 참조
	AWS Encryption SDK 메시지 형식 참조
	헤더 구조
	본문 구조
	프레임 처리되지 않은 데이터
	프레임 처리된 데이터

	바닥글 구조

	AWS Encryption SDK 메시지 형식 예제
	프레임 처리된 데이터(메시지 형식 버전 1)
	프레임 처리된 데이터(메시지 형식 버전 2)
	프레임 처리되지 않은 데이터(메시지 형식 버전 1)

	AWS Encryption SDK에 대한 본문 추가 인증 데이터(AAD) 참조
	AWS Encryption SDK 알고리즘 참조
	AWS Encryption SDK 초기화 벡터 참조
	AWS KMS 계층적 키링 기술 세부 정보

	AWS Encryption SDK 개발자 안내서의 문서 기록
	최신 업데이트
	이전 업데이트

	

