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C

ChE 2I™ 7|12 =&l sted™
s::Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder() HIMEE AtE35t04 7|3
g QUAEASIELICH CHE 2I™ 7|18 XIEE LIt
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A ol Ml= GitHub2l AWS Encryption SDK for C 2|Z X|E 2|0{| A kms_multi_region_keys.cppE
I.

SESC RN

/* Encrypt with a multi-Region KMS key in us-east-1 */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl12ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
ws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder().Build(mrk_us_east_1);

/* Create a session; release the keyring */

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),

AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Encrypt the data
*
*/

aws_cryptosdk_session_process_full(

session, ciphertext, ciphertext_buf_sz, &ciphertext_len, plaintext,
plaintext_len));

aws_cryptosdk_session_process_full is designed for non-streaming data

/* Clean up the session */
aws_cryptosdk_session_destroy(session);
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C#/.NET

O

|= SE(HXILIOF 558 )(us-east-1) 2| CIE 2| 7|2 ¥ E 356tz CHE 2T 7(2] 7| A
HHRtet X[HE 2|2 AWS KMS 20| E 7} = CreateAwsKmsMrkKeyringInput ZXIE
QUARAASZIEELICH 17 CFS CreateAwsKmsMrkKeyring() HIMEE ALE35tod 7|21 WM E
L|Ct

CreateAwsKmsMrkKeyring() HIME= H& 5| stLte| CHE 21T 7|2 7|22 M ELICE O S
2™ 7|2 H|ZE 8 o4t e E 7|2 25 38524H CreateAwsKmsMrkMultiKeyring() HIMEESE
ArSgfLct.

ok

MA o|Al= GitHub2| AWS Encryption SDK for .NET Z2|Z X|E 2|0l M
AwsKmsMrkKeyringExample.cs& & Z3HAM|2.

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1

string mrkUSEastl = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Create the keyring

// You can specify the Region or get the Region from the key ARN

var createMrkEncryptKeyringInput = new CreateAwsKmsMrkKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USEastl),
KmsKeyId = mrkUSEastl

};

var mrkEncryptKeyring =

materialProviders.CreateAwsKmsMrkKeyring(createMrkEncryptKeyringInput);

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()
{
{"purpose", "test"}
};
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// Encrypt your plaintext data.
var encryptInput = new EncryptInput

{
Plaintext = plaintext,
Keyring = mrkEncryptKeyring,
EncryptionContext = encryptionContext
};

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

AWS Encryption CLI

O| Mo M= us-east-1 2IX2| CtE BT 7|18 AFE35t0{ hello. txt THUS &= 3tefL(ct. Of of
MoMeE 21 QA E AH&35t04 7| ARNZ X|HSEE 0] od|A|0f A= --wrapping-keys ItEt0|
E{2| region £42 AI&5tK| L& LICE.

ciE 7|0 7| ID7} B X|HSHX| b= B --wrapping-keys key=$keyID region=us-
east-11t Z2 --wrapping-keysQ| region £ At&5t0d IS XIHE = U&LICH

# Encrypt with a multi-Region KMS key in us-east-1 Region

# To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSEastl=arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$mrkUSEastl \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

Java

P

o

Cts 21 71§ A8 5o &= 35t52{T AwsKmsMrkAwareMasterKeyProvider& QIAEAS)
DCs 2™ IIER

A oldl= GitHub2| BasicMultiRegionKeyEncryptionExample.java AWS Encryption SDK for
Java 2| ZX|E2|0|MH MME B XSHA2.

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the client
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https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java
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final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1

final String mrkUSEastl = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Instantiate an AWS KMS master key provider in strict mode for multi-Region keys
// Configure it to encrypt with the multi-Region key in us-east-1
final AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
AwsKmsMrkAwareMasterKeyProvider

.builder()

.buildStrict(mrkUSEastl);

// Create an encryption context
final Map<String, String> encryptionContext = Collections.singletonMap("Purpose",
"Test");

// Encrypt your plaintext data
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> encryptResult =
crypto.encryptData(
kmsMrkProvider,
encryptionContext,
sourcePlaintext);
byte[] ciphertext = encryptResult.getResult();

JavaScript Browser

CHE 2™ 7|2 & 5315t24™ buildAwsKmsMrkAwareStrictMultiKeyringBrowser () A
EE AI83l04 7|32 BtE1 ot & 2™ 7|18 X[-EFuch

A A= GitHub2| AWS Encryption SDK for JavaScript 2|Z X|E 2|0 A
kms_multi_region_simple.ts& & X35tMI2.

/* Encrypt with a multi-Region KMS key in us-east-1 Region */

import {
buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,
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https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts
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} from '@aws-crypto/client-browser"'

/* Instantiate an AWS Encryption SDK client */
const { encrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

/* Instantiate an AWS KMS client
* The AWS Encryption SDK for JavaScript gets the Region from the key ARN
*/

const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-east-1 */
const multiRegionUsEastKey =
'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcdl2ab34cd56ef1234567890ab’

/* Instantiate the keyring */

const encryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowsexr ({
generatorKeyId: multiRegionUsEastKey,
clientProvider,

1)

/* Set the encryption context */
const context = {
purpose: 'test',

/* Test data to encrypt */
const cleartext = new Uint8Array([1, 2, 3, 4, 5])

/* Encrypt the data */
const { result } = await encrypt(encryptKeyring, cleartext, {
encryptionContext: context,

1)
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JavaScript Node.js

CHE 21 7|2 & Z 35248 buildAwsKmsMrkAwareStrictMultiKeyringNode() HIMEE
Atg3stod 7|21 BtED O 27 7|18 RIGg .

M| o M= GitHub2l AWS Encryption SDK for JavaScript 2|2 X|E 2|0 M
kms_multi_region_simple.ts& & X 35IA[2.

//Encrypt with a multi-Region KMS key in us-east-1 Region
import { buildClient } from '@aws-crypto/client-node'

/* Instantiate the AWS Encryption SDK client
const { encrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

/* Test string to encrypt */
const cleartext = 'asdf'

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
* Specify a multi-Region key in us-east-1
*/
const multiRegionUsEastKey =
'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcdl2ab34cd56ef1234567890ab’

/* Create an AWS KMS keyring */
const mrkEncryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
generatorKeyId: multiRegionUsEastKey,
1

/* Specify an encryption context */
const context = {
purpose: 'test',

/* Create an encryption keyring */
const { result } = await encrypt(mrkEncryptKeyring, cleartext, {
encryptionContext: context,

1)
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Python

AWS KMS C}S 2™ 7|12 ¢f %3524 MRKAwareStrictAwsKmsMasterKeyProvider () Ol
MEE Ar835t1 OHE 2| 7|18 RI™ggLIct

M| o M= GitHub2| AWS Encryption SDK for Python 2| X X| £ 2/04 A
mrk_aware_kms_provider.pyS & Z &AM 2.

* Encrypt with a multi-Region KMS key in us-east-1 Region

# Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F

# Specify a multi-Region key in us-east-1
mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab"

# Use the multi-Region method to create the master key provider

# in strict mode

strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
key_ids=[mrk_us_east_1]

# Set the encryption context
encryption_context = {
"purpose": "test"

# Encrypt your plaintext data

ciphertext, encrypt_header = client.encrypt(
source=source_plaintext,
encryption_context=encryption_context,
key_provider=strict_mrk_key_provider

N
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east-1 Z&)0of U= T LC
keyoll CH5to 21X 2t S &S

IS 2| 712| 7| ARNS X|H5IH CHE 2™ 1A 7[5 71 sliE AWS KMS
AN
T

HE oM S35 W CHES 2/ 214 7|5 0i= 7] ARNO| EEfLICH o{7|o M= &3 O 2
T 71e| Zt Zgroll M stLtel 7] ARNEF S{& LICH

Ol oM E A&ist7| o oiA| CtS 2l 7| ARN2 2| &3 222 HEELICHAWS AE.

C

CtE 2™ 7|18 AF835t0] Y4 ZE0i|M =53t 6te{H
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder() HIMEE AF&35t04 7| &
2 QIAEASIEL|CE 2 (us-west-2) 2|0 &4 CHE 2| 7|18 KI™HELCH

MA olAl= GitHub2| AWS Encryption SDK for C 2| Z X|E 20| A kms_multi_region_keys.cpp2

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
ws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder().Build(mrk_us_west_2);

/* Create a session; release the keyring */

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),

AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_session_set_commitment_policy(session,
COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Decrypt the ciphertext
& aws_cryptosdk_session_process_full is designed for non-streaming data
*/

aws_cryptosdk_session_process_full(
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session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C#/ .NET
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CreateAwsKmsMrkKeyrlng() HMEE AHE35H0q 0|' Lol EP% 2 KMS 7|2 OF 2™ 7|32
MMEFLICEH

A o|Ml= GitHub2| AWS Encryption SDK for .NET 2| Z X|E 2|0 M
AwsKmsMrkKeyringExample.cs& & X 35HAM2.

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Specify the key ARN of the multi-Region key in us-west-2
string mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Instantiate the keyring input

// You can specify the Region or get the Region from the key ARN

var createMrkDecryptKeyringInput = new CreateAwsKmsMrkKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
KmsKeyId = mrkUSWest2

};

// Create the multi-Region keyring
var mrkDecryptKeyring =
materialProviders.CreateAwsKmsMrkKeyring(createMrkDecryptKeyringInput);
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// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = mrkDecryptKeyring
I
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

us-west-2 2|0 B CHE 2| 7|18 A&35t01 5535+524™ --wrapping-keys Zt2t0|E{ 2
key SM4E AI835104 7| ARNS X|HELICH

# Decrypt with a related multi-Region KMS key in us-west-2 Region

# To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSWest2=arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl12ab34cd56ef1234567890ab

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$mrkUSwest2 \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--output .

Java

ol

U4 D E0|M B =35t2{ AwskmsMrkAwareMasterKeyProvider& QAEASIS 1 2 X

(us-west-2) 2|0 & O S 2[™ 7|8 RI-EELCH

A o|ME E24™ GitHub2l AWS Encryption SDK for Java 2|Z X|E 2[04| A
BasicMultiRegionKeyEncryptionExample.java® & Z35HAI2.

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
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.build();

// Related multi-Region keys have the same key ID. Their key ARNs differs only in
the Region field.

String mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/

mrk-1234abcdl12ab34cd56ef1234567890ab";

// Use the multi-Region method to create the master key provider
// in strict mode
AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
AwsKmsMrkAwareMasterKeyProvider.builder()
.buildStrict(mrkUSWest2);

// Decrypt your ciphertext

CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto.decryptData(
kmsMrkProvider,
ciphertext);

byte[] decrypted = decryptResult.getResult();

JavaScript Browser

U REMM S535524MH buildAwsKmsMrkAwareStrictMultiKeyringBrowser () HIAf
EE AI83l04 7|32 BHE D 24 (us-west-2) 2l &2 CHE 2| 7|8 KIEELICt

A A= GitHub2l AWS Encryption SDK for JavaScript 2|Z X|E 2|0l M
kms_multi_region_simple.ts& & X 5tAMI2.

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

import {
buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,

} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

declare const credentials: {
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accessKeyId: string
secretAccessKey: string
sessionToken: string

/* Instantiate an AWS KMS client
* The AWS Encryption SDK for JavaScript gets the Region from the key ARN
*/

const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-west-2 */
const multiRegionUsWestKey =
'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab’

/* Instantiate the keyring */

const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowser ({
generatorKeyId: multiRegionUsWestKey,
clientProvider,

1)

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDecryptKeyring, result)

JavaScript Node.js

HA 2o M 553t5+29™ buildAwsKmsMrkAwareStrictMultiKeyringNode() HIME
AME73t04 7|2 BHE 1 2 Z(us-west-2) 21T &t CHE 2| 7|8 X[- g LCt

A A= GitHub2l AWS Encryption SDK for JavaScript 2|Z X|E 2|0 M
kms_multi_region_simple.ts& & X 5tAMI2.

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */
import { buildClient } from '@aws-crypto/client-node'
/* Instantiate the client

const { decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
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* Specify a multi-Region key in us-west-2
*/
const multiRegionUsWestKey =
'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab’

/* Create an AWS KMS keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
generatorKeyId: multiRegionUsWestKey,

1)

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(decryptKeyring, result)

Python

HA REOM 55 355t2{MH MRKAwareStrictAwsKmsMasterKeyProvider () HAMEE ALS
5tod OtAE 7| S2XHE e LICE 24 (us-west-2) 2|0 B & CHF 2[™ 7|18 XI-'LIC

HMA o|Al= GitHub2| AWS Encryption SDK for Python 2| Z X|E 2|0 M
mrk_aware_kms_provider.pyE & X 5HAMIL.

# Decrypt with a related multi-Region KMS key in us-west-2 Region

# Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F

# Related multi-Region keys have the same key ID. Their key ARNs differs only in the
Region field

mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/

mrk-1234abcdl2ab34cd56ef1234567890ab"

# Use the multi-Region method to create the master key provider

# in strict mode

strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
key_ids=[mrk_us_west_2]

# Decrypt your ciphertext

plaintext = client.decrypt(
source=ciphertext,
key_provider=strict_mrk_key_provider

’ —
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AWS KMS CHE 2 7|8 AL 5t0d A B olM S 518 25 USLICh A4 D=ollM =558
IH= OffH AWS KMS keys XIB5HX| S&LICh (B 2151 AWS KMS ZiAY 7|2loi| CHEt Xh A3t LIS
o MMg A SHMRAWS KMS Zi4 72 AL )

OF 2ld 7|z 45358 39 dM 2E0M OE 2T A 7|28 22 2lre| ¢ OHFE 2l
71§ ME3lod SE3HE AITELICH EXSX| i B2 & C

£0]| b A
Encryption SDK £ &5 3t0f|l AFSElE CHE 2| 7|of Ci$t &t 21 &2 AT SHK| ob&LCh.

(® Note
24 2EO|M O 21X 214 7|28 A8 5tod CIOIE| B 22 stets e 25t sfedo| Al
guict
= .

CHS e AM Z2EdM CHE 2™ Q1A 7|28 AH85t0d 5 §_§P st= WS 2oiELICH & X"t
Xl efoo 2 AWS KMS key= CHE AAO|AM 21 7HX{QF AWS Encryption SDK OF gfL|C}. 7}5 5t
M E2H 2H8 BAMoE X|HSML. 2EX| plemE =2 :LEHF:'J 1012| AWS SDKof| T El 2|
oA 22 2| E AWS Encryption SDK 7FX{S L|C}.

O| oM E A=lst7| ™ol ol&l| #H ID2t CHE 2T 7| ARNE 2| R &8 2f2 2 HELICE AWS A,
C

CtE 2T 7|8 AH85to] M B S35t 6ted™

Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder() HIMEE AL&35t0{ 7|3
£ BlE3I1 Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter: :Builder() HIHEE
AE5to] A HEE YUESLICH 2 2 XI™Hét2{M ClientConfigurationg Holst
AWS KMS Z2I0|21E0| M O|& X|™H§Lct.

™A oM= GitHub2| AWS Encryption SDK for C 2|2 X|E 2|0 A kms_multi_region_keys.cpp&

SEXC RS

/* Decrypt in discovery mode with a multi-Region KMS key */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct a discovery filter for the account and partition. The
* filter is optional, but it's a best practice that we recommend.

*/
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const char *account_id = "111122223333";
const char *partition = "aws";
const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter

Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter::Builder(partition).AddAccount(account_id).Buil

/* Create an AWS KMS client in the desired region. */
const char *region = "us-west-2";

Aws::Client::ClientConfiguration client_config;
client_config.region = region;
const std::shared_ptr<Aws::KMS::KMSClient> kms_client =
Aws : :MakeShared<Aws: :KMS: :KMSClient>("AWS_SAMPLE_CODE", client_config);

struct aws_cryptosdk_keyring *mrk_keyring =
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder()
WithKmsClient(kms_client)
.BuildDiscovery(region, discovery_filter);

/* Create a session; release the keyring */

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),

AWS_CRYPTOSDK_DECRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
/* Decrypt the ciphertext
& aws_cryptosdk_session_process_full is designed for non-streaming data
*/
aws_cryptosdk_session_process_full(
session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C#/ .NET

AWS Encryption SDK for .NET0{| A multi-Region-aware ZAM 7|22 M4d3te{H S3oil i
3l AWS KMS Z2t0|HE & 7IX{ 2= CreateAwsKmsMrkDiscoveryKeyringInput 24
ek KMS 7|1& Ed AWS THE|M AWS 2T AHo E HMEtste MEIX AN HEE ¢l

ABASHEL|CH O3 O 2 2R 2 CreateAwsKmsMrkDiscoveryKeyring() H|

CHE 21T AL8 AWS KMS keys 22



AWS Encryption SDK JHEER} 70| =

MEE 3 E£&LIct ™A oAM= GitHub2l AWS Encryption SDK for NET 2|2 X|E [0 A
AwsKmsMrkDiscoveryKeyringExample.cs& & X 5HM 2.

E 0|49l AWS |0 CHall CHS 21 1Al AM 7|12l2 BHEr{™
CreateAwsKmsMrkDiscoveryMultiKeyring() MIMEZE AFE3l04 CHE 7|22 BHEHLE
CreateAwsKmsMrkDiscoveryKeyring()2 AFE36t0d CtE 2|™ Q1A ZHAM 7|21 o] 7H BHE
C}2 CreateMultiKeyring() MIMEE Ab835lod 6tLto| Ot S 7|2lo 2 ZAssiLIC

0| M= AwsKmsMrkDiscoveryMultiKeyringExample.cs& & Z5HAM| 2.

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the AWS Encryption SDK and material providers

var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();

var materialProviders =
AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();
List<string> account = new List<string> { "111122223333" },;

// Instantiate the discovery filter

DiscoveryFilter mrkDiscoveryFilter = new DiscoveryFilter()

{

AccountIds = account,
Partition = "aws"

// Create the keyring
var createMrkDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
DiscoveryFilter = mrkDiscoveryFilter
};
var mrkDiscoveryKeyring =
materialProviders.CreateAwsKmsMrkDiscoveryKeyring(createMrkDiscoveryKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = mrkDiscoveryKeyring

i
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var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

AM DM 8535524 - -wrapping-keys IF2H0|E{2Q| discovery "M% At28fLct.

discovery-account & discovery-partition 432 MEf AL O|X|TF HE E|= A ILICH

2|2 X|'H35t24™ o] B0l - -wrapping-keys THEtO|E{Q| region £430| Z & £|o{oF & LICt.
# Decrypt in discovery mode with a multi-Region KMS key

$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-account=111122223333 \
discovery-partition=aws \
region=us-west-2 \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--max-encrypted-data-keys 1 \

--buffer \

--output .

24 2|82 X|-H5ted™ builder() .withDiscoveryMrkRegion Zt2tO/E{E AFEELICH OB
X| &t o™ AWS Encryption SDK & AWS SDK for JavaOld M E S| Z2E 24 2™ 7}

A A& E24™ GitHub2| AWS Encryption SDK for Java 2% X|E 2/0i| A
DiscoveryMultiRegionDecryptionExample.java® & X 3HAHIL2.

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)

.build();

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

AwsKmsMrkAwareMasterKeyProvider mrkDiscoveryProvider =
AwsKmsMrkAwareMasterKeyProvider
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.builder()
.withDiscoveryMrkRegion(Region.US_WEST_2)
.buildDiscovery(discoveryFilter);

// Decrypt your ciphertext

final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto
.decryptData(mrkDiscoveryProvider, ciphertext);

JavaScript Browser

CHEE O s 2™ 7|18 M85t M ZEo|M S5 3t 6te{H
AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser() HAMEE AtE

i
r
n

MA oldl= GitHub2| AWS Encryption SDK for JavaScript 2|Z X|E 2|0 M
kms_multi_region_discovery.ts& & Z3IMIL.

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,

} from 'eaws-crypto/client-browser"'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient()

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

}

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2', credentials })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }
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/* Create an AWS KMS discovery keyring */

const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser({
client,
discoveryFilter,

1)

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, ciphertext)

JavaScript Node.js

CHEE CHE 21T 7| Ar85tod A4 REo|AM S5 35tH6tE{H
AwsKmsMrkAwareSymmetricDiscoveryKeyringNode() HIMEE AFEELICH

MA oldl= GitHub2| AWS Encryption SDK for JavaScript 2|Z X|E 2|0 M
kms_multi_region_discovery.ts& & XM 2.

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
AwsKmsMrkAwareSymmetricDiscoveryKeyringNode,
buildClient,
CommitmentPolicy,
KMS,

} from 'eaws-crypto/client-node’

/* Instantiate the Encryption SDK client
const { decrypt } = buildClient()

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2' })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */

const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringNode({
client,
discoveryFilter,

1)

/* Decrypt your ciphertext */
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const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, result)

Python

CHE 2| 7|18 AF85t0d M 2 E0M S 53562
MRKAwareDiscoveryAwsKmsMasterKeyProvider() HMHEE AtS

M| o M= GitHub2| AWS Encryption SDK for Python 2| X X| £ 2/04 A
mrk_aware_kms_provider.pyE X 5HAMIL.

# Decrypt in discovery mode with a multi-Region KMS key

# Instantiate the client
client = aws_encryption_sdk.EncryptionSDKClient()

# Create the discovery filter and specify the region
decrypt_kwargs = dict(
discovery_filter=DiscoveryFilter(account_ids="111122223333",

partition="aws"),
discovery_region="us-west-2",

# Use the multi-Region method to create the master key provider

# in discovery mode

mrk_discovery_key_provider =
MRKAwareDiscoveryAwsKmsMasterKeyProvider(**decrypt_kwargs)

# Decrypt your ciphertext

plaintext, _ = client.decrypt(
source=ciphertext,
key_provider=mrk_discovery_key_provider
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CHS XM= & =3t Al CiA 2 nEl& MEZ S MEfets YHE 2oiFLICE o]l dXolM= 7| 7
£ 27 AHU2 URIE CIX|E ME2 s HE AES-GCM E 1 E2[& MEZ S MEELICH CIXI™E M
Ho| z& x| o2 dnE|FE MEZCRE H58tole 32 SESE M FME M 523 ZEE A
SELICH ol 2E& MEE AO|HEAETL HHL|M dilistes ZEZ AEZU F53 A 7MY /8
gLt

C

Ol CHA| 1 2|& MEZE XI'H3l2dH CMME BAIMo 2 MM AWS Encryption SDK for C3H
OfF rL|ct O&H ChS aws_cryptosdk_default_cmm_set_alg_idZE CMM & ME4SH &1 2|&
MNEZD &M At ELct.

/* Specify an algorithm suite without signing */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
ws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* To set an alternate algorithm suite, create an cryptographic
materials manager (CMM) explicitly
*/
struct aws_cryptosdk_cmm *cmm =
aws_cryptosdk_default_cmm_new(aws_default_allocator(), kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

/* Specify the algorithm suite for the CMM */
aws_cryptosdk_default_cmm_set_alg_id(cmm, ALG_AES256_GCM_HKDF_SHA512_COMMIT_KEY);

/* Construct the session with the CMM,
then release the CMM reference
*/
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(alloc,
AWS_CRYPTOSDK_ENCRYPT, cmm);
aws_cryptosdk_cmm_release(cmm);

/* Encrypt the data
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Use aws_cryptosdk_session_process_full with non-streaming data

*/
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
session,
ciphertext,

ciphertext_buf_sz,

&ciphertext_len,

plaintext,

plaintext_len)) {
aws_cryptosdk_session_destroy(session);
return AWS_OP_ERR;

CIXIE M 20| 22 3% ClOlEIE =258
SHLIc) 2210 M2 AOlHEA S HiE B7 S8} AL

/* Decrypt unsigned streaming data */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
ws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* Create a session for decrypting with the AWS KMS keyring
Then release the keyring reference
*/

struct aws_cryptosdk_session *session =

aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT_UNSIGNED,
kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

if (!session) {
return AWS_OP_ERR;
/* Limit encrypted data keys */

aws_cryptosdk_session_set_max_encrypted_data_keys(session, 1);

/* Decrypt
Use aws_cryptosdk_session_process_full with non-streaming data
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*/
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
session,
plaintext,
plaintext_buf_sz,
&plaintext_len,
ciphertext,
ciphertext_len)) {
aws_cryptosdk_session_destroy(session);
return AWS_OP_ERR;

}
C#/ .NET
AWS Encryption SDK for .NETOI|A| CHA| 1 2|&E MEZS XIH 524 Encryptinput ZHA| 2]
AlgorithmSuiteId £4& X|I™HE LICH. AWS Encryption SDK for NETO|lE ME 5t d1E2&E
MEZ2 AEste ol A SE = JUe 47t T E[0] A&LICH
AWS Encryption SDK for NETOlE 25358 AEZ|UE [ MEE AIO|HEIAEE ZX|stE O
ME7} ei&LIct.ol etolE B2l AEE|Y CIO|E{E X|EHK| L7 2 ILICH

// Specify an algorithm suite without signing

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Create the keyring

var keyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

var keyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput

{
Plaintext = plaintext,
Keyring = keyring,
AlgoxrithmSuiteId = AlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY
ATEE MEZ MEY 52
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};
var encryptOutput = encryptionSdk.Encrypt(encxyptInput);

AWS Encryption CLI

O| oMo M= hello. txt

nS &E3e M --algorithm It2tO|E{E AFE 504 CIX|E B
ol iz ¢1El& MEZE I

# Specify an algorithm suite without signing

# To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--algorithm AES_256_GCM_HKDF_SHA512_COMMIT_KEY \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt \
--output hello.txt.encrypted \

--decode
Ol oMol MHE 55358 | --decrypt-unsigned TZFOIE{E AL ELIC} O] mEtO|E{= S35
o ezdn £33 AEE|YSt= CLIE AHE35H04 MBE|X| A2 AO|HEIAEE 55318 [ Al
&3le Aol E&LCH

# Decrypt unsigned streaming data

# To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890@ab

$ aws-encryption-cli --decrypt-unsigned \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--max-encrypted-data-keys 1 \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .
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Java

CHAl & 2|& MEZ2 XI1Y5i24™ AwsCrypto.builder().withEncryptionAlgorithm()
HAMEE ASELICH Ol Mo ME CIX|IE MEO| gis OHA D 2[&E MEZ S RI™EELICH

// Specify an algorithm suite without signing

// Instantiate the client

AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
.build();

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a master key provider in strict mode
KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Create an encryption context to identify this ciphertext
Map<String, String> encryptionContext = Collections.singletonMap("Example",
"FileStreaming");

// Encrypt your plaintext data

CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData(
masterKeyProvider,
sourcePlaintext,
encryptionContext);

byte[] ciphertext = encryptResult.getResult();

=35 3E ?I HIo|HE AEE[YE = createUnsignedMessageDecryptingStream() H|
MEE AME835t0{ 5536t ZE MO|IHEAET MEE|X| et =X| & QlghLct.

// Decrypt unsigned streaming data

// Instantiate the client

AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.withMaxEncryptedDataKeys(1)
.build();

// Create a master key provider in strict mode
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String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Decrypt the encrypted message

FileInputStream in = new FileInputStream(srcFile + ".encrypted");
CryptoInputStream<KmsMasterKey> decryptingStream =
crypto.createUnsignedMessageDecryptingStream(masterKeyProvider, in);

// Return the plaintext data

// Write the plaintext data to disk

FileOutputStream out = new FileOutputStream(srcFile + ".decrypted");
IO0Utils.copy(decryptingStream, out);

decryptingStream.close();

JavaScript Browser

L

i dn2lE METS X-5t24™ suiteld Tt2t0|E{E AlgorithmSuiteIdentifier &7
& 2tk A AbSELICH

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient( CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT )

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Encrypt your plaintext data

const { result } = await encrypt(keyring, cleartext, { suiteld:
AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
encryptionContext: context, })

=535t8 e EF decrypt HAMES ASELICH Hete X7t 2AE2|YE X|5HX| 7| 2o
=t X{2| AWS Encryption SDK for JavaScript 0= decrypt-unsigned 2E7} Qi&LICH.

// Decrypt unsigned streaming data
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// Instantiate the client
const { decrypt } = buildClient( CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT )

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Decrypt the encrypted message
const { plaintext, messageHeader } = await decrypt(keyring, ciphertextMessage)

JavaScript Node.js

L

S ot

CIx|E A glo] 23 3
Ch MHE AFO|HEAE 7} 274 s

A LdoElE MERS XI'E5l24™ suiteld It2tO|E{E AlgorithmSuiteIdentifier &7
=T AFSELICE.

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient( CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT )

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

// Encrypt your plaintext data

const { result } = await encrypt(keyring, cleartext, { suiteld:
AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
encryptionContext: context, })

decryptUnsignedMessageStream= A& &L
|f & L|C}.
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// Decrypt unsigned streaming data

// Instantiate the client
const { decryptUnsignedMessageStream } =
buildClient( CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT )

// Create a keyring with the same KMS key used to encrypt

& MEZ M=
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const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringNode({ generatorKeyId })

// Decrypt the encrypted message

const outputStream =
createReadStream(filename) .pipe(decryptUnsignedMessageStream(keyring))

Python

ol

ot
=

| gt 2 2|E2 XI'H5t2{™ algorithm It2tO|E{E Algorithm R7HE it &7H AHR
|t

o 0
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# Specify an algorithm suite without signing

# Instantiate a client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F
max_encrypted_data_keys=1)

# Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

# Encrypt the plaintext using an alternate algorithm suite
ciphertext, encrypted_message_header = client.encrypt(
algorithm=Algoxithm.AES_256_GCM_HKDF_SHA512_COMMIT_KEY, source=source_plaintext,
key_provider=kms_key_provider

)

ma
L |
| |
_

CIXI= ME gio] = =HE HAIXIE S23He M, £ 2E2|Y ol 523 HE decrypt-
oy =

unsigned 2EZ[Y E ArSELch

# Decrypt unsigned streaming data

# Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_R
max_encrypted_data_keys=1)
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# Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

# Decrypt with decrypt-unsigned

with open(ciphertext_filename, "rb") as ciphertext, open(cycled_plaintext_filename,

"wb") as plaintext:
with client.stream(mode="decxypt-unsigned"”,
source=ciphertext,
key_provider=master_key_provider) as decryptor:
for chunk in decryptor:
plaintext.write(chunk)

# Verify that the encryption context
assert all(
pair in decryptor.header.encryption_context.items() for pair in
encryptor.header.encryption_context.items()
)

return ciphertext_filename, cycled_plaintext_filename

Rust

AWS Encryption SDK for Rustol| A CHA| D 2|& MEZ S XIHsttiH g=38
algorithm_suite_id 48 X|&gLICH

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),

ol M
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Go

("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle6)
.send()
.await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(raw_aes_keyring.clone())
.encryption_context(encryption_context.clone())
.algorithm_suite_id(AlgAes256GcmHkdfSha512CommitKey )
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
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// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "AES_256_012"

// Optional: Create an encryption context

encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: key,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagls,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err !'= nil {
panic(err)

// Encrypt your plaintext data
algorithmSuiteId := mpltypes.ESDKAlgorithmSuiteIdAlgAes256GcmHkdfSha512CommitKey
res, err := encryptionClient.Encrypt(context.Background(), esdktypes.EncryptInput{

Plaintext: [1byte(exampleText),
EncryptionContext: encryptionContext,
Keyring: aesKeyring,
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AlgoxrithmSuiteId: &algoxrithmSuiteld,

D)
if err != nil {
panic(err)

}
ot 5 3= O|o|E{ 7| A8t
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@)

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
ws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_arnl, { key_arn2, key_arn3 });

/* Create a session */
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,
kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);
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/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 3);

/* Decrypt */
size_t ciphertext_consumed_output;
aws_cryptosdk_session_process(session,
plaintext_output,
plaintext_buf_sz_output,
&plaintext_len_output,
ciphertext_input,
ciphertext_len_input,
&ciphertext_consumed_output);
assert(aws_cryptosdk_session_is_done(session));
assert(ciphertext_consumed == ciphertext_len);

C#/.NET

AWS Encryption SDK for .NET0I| A & 3 3}El H|0|E 7|& A $t5tE4™H AWS Encryption SDK
for NETO{ CHEt 2CtO|MEE QUAEASIS T MEIX MaxEncryptedDataKeys It2t0|E{E &
Zto 2 M™EELc O™ k2 F+4E AWS Encryption SDK QIAEIA 0| M Decrypt () HIAM

// Decrypt with limited data keys

// Instantiate the material providers
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig
{
MaxEncryptedDataKeys = 3
};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

// Create the keyring
string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;
var createKeyringInput = new CreateAwsKmsKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn
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var decryptKeyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = decryptKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

# Decrypt with limited encrypted data keys

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$key_arnl key=$key_arn2 key=$key_arn3 \
--buffer \
--max-encrypted-data-keys 3 \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

Java

// Construct a client with limited encrypted data keys
final AwsCrypto crypto = AwsCrypto.builder()
.withMaxEncryptedDataKeys(3)
.build();

// Create an AWS KMS master key provider

final KmsMasterKeyProvider keyProvider = KmsMasterKeyProvider.builder()
.buildStrict(keyArnl, keyArn2, keyArn3);

// Decrypt

final CryptoResult<byte[], KmsMasterKey> decryptResult =
crypto.decryptData(keyProvider, ciphertext)

JavaScript Browser

// Construct a client with limited encrypted data keys

2= 2HE ClolE 7| Mgt
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const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string
}
const clientProvider = getClient(KMS, {
credentials: { accessKeyId, secretAccessKey, sessionToken }

1)

// Create an AWS KMS keyring
const keyring = new KmsKeyringBrowser({
clientProvider,
keyIds: [keyArnl, keyArn2, keyArn3],
b

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

JavaScript Node.js

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

// Create an AWS KMS keyring

const keyring = new KmsKeyringBrowser({
keyIds: [keyArnl, keyArn2, keyArn3],

1}

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

Python

# Instantiate a client with limited encrypted data keys
client = aws_encryption_sdk.EncryptionSDKClient(max_encrypted_data_keys=3)

# Create an AWS KMS master key provider
master_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(

key_ids=[key_arnl, key_arn2, key_arn3])

# Decrypt

2= 2HE ClolE 7| Mgt
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plaintext, header = client.decrypt(source=ciphertext,
key_provider=master_key_provider)

Rust

// Instantiate the AWS Encryption SDK client with limited encrypted data keys

let esdk_config = AwsEncryptionSdkConfig::builder()
.max_encrypted_data_keys(max_encrypted_data_keys)
.build()?;

let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Generate ‘max_encrypted_data_keys' raw AES keyrings to use with your keyring
let mut raw_aes_keyrings: Vec<KeyringRef> = vec![];

assert!(max_encrypted_data_keys > @, "max_encrypted_data_keys MUST be greater than
0");

let mut i = 0;
while i < max_encrypted_data_keys {
let aes_key_bytes = generate_aes_key_bytes();

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aes_key_bytes)
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle)
.send()
.await?;

raw_aes_keyrings.push(raw_aes_keyring);
i+=1;

// Create a Multi Keyring with “max_encrypted_data_keys ™ AES Keyrings
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Go

let generator_keyring = raw_aes_keyrings.remove(Q);

let multi_keyring = mpl
.create_multi_keyring()
.generator(generator_keyring)
.child_keyrings(raw_aes_keyrings)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client with limited encrypted data keys
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{
MaxEncryptedDataKeys: &maxEncryptedDataKeys,

)

if err !'= nil {
panic(err)

}

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "RSA_2048_06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Generate 'maxEncryptedDataKeys™ raw AES keyrings to use with your keyring

shE Clolef 7| AIgt
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rawAESKeyrings := make([]Jmpltypes.IKeyring, @, maxEncryptedDataKeys)
var i int64 = 0
for i < maxEncryptedDataKeys {
key, err := generate256KeyBytesAES()
if err !'= nil {
panic(err)
}
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: key,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagl6,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err !'= nil {
panic(err)
}
rawAESKeyrings = append(rawAESKeyrings, aesKeyring)
1++

// Create a Multi Keyring with “max_encrypted_data_keys"™ AES Keyrings
createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
Generator: rawAESKeyrings[0],
ChildKeyrings: rawAESKeyrings[1:],

}
multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
createMultiKeyringInput)
if err !'= nil {
panic(err)
}
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E Mgtete 44 HEE AM8ste X

ChS E& ALSotod AY EE{o| mtE|M ZIE HlstM e

2™ Partition
AWS 2| aws
= 2d™ aws-cn
AWS GovCloud (US) Regions aws-us-gov
O Mol ofMoflMe AM LE{E BtE= WHE Ho{ELICH ZEE ME35L7| ™ol of|A| 2E2 AWS
AE U otE|Mo| f 28 2t 2 HiELICH
C
A oAM= AWS Encryption SDK for C2| kms_discovery.cppE & X 5HAI2.
/* Create a discovery filter for an AWS account and partition */
const char *account_id = "111122223333";
const char *partition = "aws";
const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter
Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter: :Builder(partition).AddAccount(account_id).Buil
C#/ .NET
A ol A= AWS Encryption SDK for .NET2] DiscoveryFilterExample.cs& & X 35HM 2.
// Create a discovery filter for an AWS account and partition
List<string> account = new List<string> { "111122223333" };
DiscoveryFilter exampleDiscoveryFilter = new DiscoveryFilter()
{
AccountIds = account,
Partition = "aws"
ZHAM 2] MY
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https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/DiscoveryFilterExample.cs
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}

AWS Encryption CLI

# Decrypt in discovery mode with a discovery filter

$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-account=111122223333 \
discovery-partition=aws \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--max-encrypted-data-keys 1 \

--buffer \

--output .

Java

A of M= AWS Encryption SDK for Java2| DiscoveryDecryptionExample.javag& & A 35HAM L.

// Create a discovery filter for an AWS account and partition

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

JavaScript (Node and Browser)

A oA E =244 AWS Encryption SDK for JavaScript2| kms_filtered_discovery.ts(Node.js) &
kms_multi_region_discovery.ts(E2}2X)E EHEHA2.

/* Create a discovery filter for an AWS account and partition */
const discoveryFilter = {

accountIDs: ['111122223333'],

partition: '

aws',

Python

M| olAl= AWS Encryption SDK for Python2| discovery _kms_provider.pyE & X 5HAMIL.

# Create the discovery filter and specify the region
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https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryDecryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS

Encryption SDK THLRE 7H0|=

decrypt_kwargs = dict(
discovery_filter=DiscoveryFilter(account_ids="111122223333",

partition="aws"),
discovery_region="us-west-2",

Rust

Go

let discovery_filter = DiscoveryFilter::buildex()
.account_ids(vec![111122223333.to_string()])
.partition("aws".to_string())
.build()?;

import (
mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes

)

discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{111122223333},
Partition: "aws",

}
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« 9| 4% 3.x AWS Encryption SDK for Java
« for .NET BHH™ AWS Encryption SDK 4.x
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o MEIX ot S 3| X2 32Xt 2t0|EB{2|(MPL) &1t &7H AF2 8= AWS Encryption
SDK for PythonZ&d < I:H7H 4.x.

« Go AWS Encryption SDK & 9| {7 0.1.x O 4f
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C#/ .NET

var encryptionContext = new Dictionary<string, string>()

{
{"encryption", "context"},
{"is not", "secret"},
{"but adds", "useful metadata"},
{"that can help you", "be confident that"},
{"the data you are handling", "is what you think it is"}
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Java

i

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = kmsKey
};

// Create the keyring
var kmsKeyring = mpl.CreateAwsKmsKeyring(createKeyringInput);

var createCMMInput = new CreateRequiredEncryptionContextCMMInput
{
UnderlyingCMM = mpl.CreateDefaultCryptographicMaterialsManager(new
CreateDefaultCryptographicMaterialsManagerInput{Keyring = kmsKeyring}),
// If you pass in a keyring but no underlying cmm, it will result in a failure
because only cmm is supported.
RequiredEncryptionContextKeys = new List<string>(encryptionContext.Keys)

};

// Create the required encryption context CMM
var requiredEcCMM = mpl.CreateRequiredEncryptionContextCMM(createCMMInput);

// Instantiate the AWS Encryption SDK

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// Create your encryption context

final Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("encryption", "context");

encryptionContext.put("is not", "secret");

encryptionContext.put("but adds", "useful metadata");
encryptionContext.put("that can help you", "be confident that");
encryptionContext.put("the data you are handling", "is what you think it is");
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// Create a list of required encryption contexts
final List<String> requiredEncryptionContextKeys = Arrays.aslList("encryption",
"context");

// Create the keyring

final MaterialProviders materialProviders = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsKeyringInput keyringInput = CreateAwsKmsKeyringInput.builder()
.kmsKeyId(keyAzrn)
.kmsClient(KmsClient.create())
.build();

IKeyring kmsKeyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Create the required encryption context CMM
ICryptographicMaterialsManager cmm =
materialProviders.CreateDefaultCryptographicMaterialsManager(
CreateDefaultCryptographicMaterialsManagerInput.buildex()
.keyring(kmsKeyring)
.build()
);
ICryptographicMaterialsManager requiredCMM =
materialProviders.CreateRequiredEncryptionContextCMM(
CreateRequiredEncryptionContextCMMInput.buildex()
.requiredEncryptionContextKeys(requiredEncryptionContextKeys)

.underlyingCMM(cmm)
.build()
);
Python
=kl

ot 5 5} ZAEIAE CMMI AWS Encryption SDK for Python E7HE AFE35t2dH ME S 2t
FO|22{2|(MPL) = At&3HoF &Lt

[nf]

# Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

# Create your encryption context
encryption_context: Dict[str, str] = {
"keyl": "valuel",
"key2": "value2",
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"requiredKeyl": "requiredValuel",
"requiredKey2": "requiredValue2"

# Create a list of required encryption context keys
required_encryption_context_keys: List[str] = ["requiredKeyl", "requiredKey2"]

# Instantiate the material providers library
mpl: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

# Create the AWS KMS keyring
keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
kms_key_id=kms_key_id,
kms_client=boto3.client('kms', region_name="us-west-2")

)

kms_keyring: IKeyring = mpl.create_aws_kms_keyring(keyring_input)

# Create the required encryption context CMM
underlying_cmm: ICryptographicMaterialsManager = \
mpl.create_default_cryptographic_materials_managex(
CreateDefaultCryptographicMaterialsManagerInput(
keyring=kms_keyring

required_ec_cmm: ICryptographicMaterialsManager = \
mpl.create_required_encryption_context_cmm(
CreateRequiredEncryptionContextCMMInput(
required_encryption_context_keys=required_encryption_context_keys,
underlying_cmm=underlying_cmm,

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
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let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;

let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Create your encryption context

let encryption_context = HashMap::from([
("keyl".to_string(), "valuel".to_string()),
("key2".to_string(), "value2".to_string()),
("requiredKeyl".to_string(), "requiredValuel".to_string()),
("requiredKey2".to_string(), "requiredValue2".to_string()),

1);

// Create a list of required encryption context keys

let required_encryption_context_keys: Vec<String> = vec![
"requiredKeyl".to_string(),
"requiredKey2".to_string(),

1;

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(

input=kms_multi_keyring_input

// Create the required encryption context CMM

let underlying_cmm = mpl
.create_default_cryptographic_materials_manager()
.keyring(kms_keyring)
.send()
.await?;

let required_ec_cmm = mpl
.create_required_encryption_context_cmm()
.underlying_cmm(underlying_cmm.clone())
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.required_encryption_context_keys(required_encryption_context_keys)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = defaultKmsKeyRegion

1))
// Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
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}

// Create a list of required encryption context keys

requiredEncryptionContextKeys := []string{}

requiredEncryptionContextKeys = append(requiredEncryptionContextKeys,
"requiredKeyl", "requiredKey2")

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create the AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: utils.GetDefaultKMSKeyId(),
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)

// Create the required encryption context CMM
underlyingCMM, err :=
matProv.CreateDefaultCryptographicMaterialsManager(context.Background(),
mpltypes.CreateDefaultCryptographicMaterialsManagerInput{Keyring: awsKmsKeyring})
if err !'= nil {
panic(err)
}
requiredEncryptionContextInput := mpltypes.CreateRequiredEncryptionContextCMMInput{
UnderlyingCMM: underlyingCMM,
RequiredEncryptionContextKeys: requiredEncryptionContextKeys,

}
requiredEC, err := matProv.CreateRequiredEncryptionContextCMM(context.Background(),
requiredEncryptionContextInput)
if err != nil {
panic(err)
}
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https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
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Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(

KeyStoreConfig.builder()
.ddbClient(DynamoDbClient.create())
.ddbTableName(keyStoreName)
.logicalKeyStoreName(logicalKeyStoreName)
.kmsClient(KmsClient.create())
.kmsConfiguration(KMSConfiguration.builder()

.kmsKeyArn(kmsKeyArn)
.build())
.build()).build();

C#/ .NET

var kmsConfig = new KMSConfiguration { KmsKeyArn =

var keystoreConfig = new KeyStoreConfig

{

kmsKeyArn };

KmsClient = new AmazonKeyManagementServiceClient(),

KmsConfiguration = kmsConfig,
DdbTableName = keyStoreName,

7| £E0{ &Y o
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DdbClient = new AmazonDynamoDBClient(),
LogicalKeyStoreName = logicalKeyStoreName
};

var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(
config=KeyStoreConfig(
ddb_client=ddb_client,
ddb_table_name=key_store_name,
logical_key_store_name=logical_key_store_name,
kms_client=kms_client,
kms_configuration=KMSConfigurationKmsKeyArn(
value=kms_key_id

),

Rust

let sdk_config =
aws_config::load_defaults(aws_config: :BehaviorVersion
let key_store_config = KeyStoreConfig::builder()
.kms_client(aws_sdk_kms::Client: :new(&sdk_config))

::latest()).await;

.ddb_client(aws_sdk_dynamodb: :Client: :new(&sdk_config))

.ddb_table_name(key_store_name)
.logical_key_store_name(logical_key_ store_name)

.kms_configuration(KmsConfiguration: :KmsKeyArn(kms_key_arn.to_string()))

.build()?;

let keystore = keystore_client::Client::from_conf(key_store_config)?;

Go

import (

keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/

awscryptographykeystoresmithygenerated"

keystoretypes '"github.com/aws/aws-cryptographic-material-providers-library/mpl/

awscryptographykeystoresmithygeneratedtypes™"
)

bal

to
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kmsConfig := keystoretypes.KMSConfigurationMemberkmsKeyArn{
Value: kmsKeyArn,

}

keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{
DdbTableName: keyStoreTableName,
KmsConfiguration: &kmsConfig,
LogicalKeyStoreName: logicalKeyStoreName,
DdbClient: ddbClient,
KmsClient: kmsClient,

b

if err !'= nil {
panic(err)

}

A 7y

CHS ool M= AME 21T 7| 2E0{ B YE FIFLICH 7| AE0{ 3 E ot = DynamoDB Ef|0|E
Ol 0|1t =2|X 7| AE 0 O|E2 X|H3HoF &Lt

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
KeyStoreConfig.builder()

.ddbClient(DynamoDbClient.create())

.ddbTableName(keyStoreName)

.logicalKeyStoreName(logicalKeyStoreName)

.kmsClient(KmsClient.create())

.kmsConfiguration(KMSConfiguration.builder()
.discovery(Discovery.builder().build())
.build())

.build()).build();

C#/.NET

var keystoreConfig = new KeyStoreConfig

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsConfiguration = new KMSConfiguration {Discovery = new Discovery()},
DdbTableName = keyStoreName,
DdbClient = new AmazonDynamoDBClient(),
LogicalKeyStoreName = logicalKeyStoreName
};

bal

to
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var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(
config=KeyStoreConfig(
ddb_client=ddb_client,
ddb_table_name=key_store_name,
logical_key_store_name=logical_key_store_name,
kms_client=kms_client,
kms_configuration=KMSConfigurationDiscovery/(
value=Discovery()

)I

Rust

let key_store_config = KeyStoreConfig::builder()
.kms_client(kms_client)
.ddb_client(ddb_client)
.ddb_table_name(key_store_name)
.logical_key_store_name(logical_key store_name)

.kms_configuration(KmsConfiguration: :Discovery(Discovery: :builder().build()?))
.build()?;

Go

import (

keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygenerated"

keystoretypes '"github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes™"

)

kmsConfig := keystoretypes.KMSConfigurationMemberdiscovery{}
keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{

DdbTableName: keyStoreName,
KmsConfiguration: &kmsConfig,
LogicalKeyStoreName: logicalKeyStoreName,
DdbClient: ddbClient,
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KmsClient: kmsClient,
1)
if err !'= nil {

panic(err)
}

HEMX| 7|l= AWS KMS HESX 7|2l AWSKMS key O| & 8 £0|= O MR%PE of| A mt24= | o]
E 7|LIC AWS KMS. &4 2 |= o
7ol chall T8 CllolE 7|& MMstn
2 0

HMR| 7|8 MMM 7| AE0] HYS YHo = F5Hof ELICt CreateKeyE 7| AE
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2 YCI0lE 5t 1 CreateKey CHAl 3& 5104 02| KMS 7|8 518 S 2ol %718 4 &Lt of2f
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HEHR| 7|1& MAMstedH 7| AE 01 Z ol XIHE KMS Z|ofl CiEt
kms:GenerateDataKeyWithoutPlaintext 2! kms:ReEncrypt T8H0| 2 gFL|C}.

HAR| 7| &
O Ede 7| AE0{ & F0iM X|HEt KMS 7|& AH83tod A & ERlix| 7|18 ddstn 7| &
E0{ &2 5t= DynamoDB Ei|O|E0] &M 2&1X| 7|8 F7I&fLC.
CreateKeyE SEE [ CtSot 22 MEHM gt 2 XY & ME4E = U&LICH
 branchKeyIdentifier: AF&Xt X|™ branch-key-id& Ho|&LCt,
AEXF XM branch-key-idE PHE24™ encryptionContext TZHO|E{0l F£7} &5 8 HEIA
E T Zgtsfof ghulct.
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https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
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« encryptionContext: kms:GenerateDataKeyWithoutPlaintext &0 Z& & &35} ZHHEA E0f
M F7t 215 H|O|E(AAD)E NS5t MEHA HIE O 7|-2f Ho] MEE HalgfLct.

ok

Ol F£7} 535} ZHAEIAE E aws-crypto-ec: HFARL EAIELICH

Java

final Map<String, String> additionalEncryptionContext =
Collections.singletonMap("Additional Encryption Context for",
"custom branch key id");

final String BranchKey = keystore.CreateKey(
CreateKeyInput.builder()
.branchKeyIdentifier(custom-branch-key-id) //OPTIONAL
.encryptionContext(additionalEncryptionContext) //OPTIONAL

.build()).branchKeyIdentifiex();
C#/ .NET

var additionalEncryptionContext = new Dictionary<string, string>();
additionalEncryptionContext.Add("Additional Encryption Context for", "custom
branch key id");

var branchKeyId = keystore.CreateKey(new CreateKeyInput
{
BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL
EncryptionContext = additionalEncryptionContext // OPTIONAL
1)

Python

additional_encryption_context = {"Additional Encryption Context for": "custom branch
key id"}

branch_key_id: str = keystore.create_key(
CreateKeyInput(
branch_key_identifier = "custom-branch-key-id", # OPTIONAL
encryption_context = additional_encryption_context, # OPTIONAL

BER 7| 48 89


https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
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HashMap: :from([

Rust
("Additional Encryption Context for".to_string(), "custom branch key

let additional_encryption_context

id".to_string())

1);

let branch_key_id = keystore.create_key()
.branch_key_identifier("custom-branch-key-id") // OPTIONAL

.encryption_context(additional_encryption_context) // OPTIONAL

.send()

.await?
.branch_key_identifier

.unwrap();

Go

map[string]string{
: "custom branch key id",

encryptionContext
"Additional Encryption Context for":

keyStore.CreateKey(context.Background(),

branchKey, err
keystoretypes.CreateKeyInput{
BranchKeyIdentifier: &customBranchKeyId,
additional_encryption_context,

EncryptionContext:
19
if err !'= nil {
return "", err

MX], CreateKey 242 Ct

+ branch-key-id2| 47 4 Universally Unique Identifier(UUID)(AF& X} X| branch-key-idZ& X|

MotR| 2 E9).
- HEx| 7| HX el HZE 4 UUID
S5 MIAIAIUTC)S] 1ISO 8601 2Rt 2 AlZH S A10| timestamp.

£ AH8310{ kms:GenerateDataKeyWithoutPlaintext® & &8

90

e os ¥

1A CHE CreateKey

L|ct.
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https://www.ietf.org/rfc/rfc4122.txt
https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
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"EncryptionContext": {
"branch-key-id" : "branch-key-id",
"type" : "type",
"create-time" : "timestamp",
"logical-key-store-name" : "the logical table name for your key store",
"kms-arn" : the KMS key ARN,
"hierarchy-version" : "1",
"aws-crypto-ec:contextKey": "contextValue"
1,
"KeyId": "the KMS key ARN you specified in your key store actions",
"NumberOfBytes": "32"
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CIS 22 CreateKey &2
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EIWQ.FOE CreateKey &2 ddb:TransactWriteltems& 3 &35+0{ 2EH A0 M A5t E|0|= 2| £ T
X 718 RXIE M EF2 FgELC 5oz oS £40| UA&LICH
{
"branch-key-id" : branch-key-id,
"type" : "branch:ACTIVE",
"enc" : the branch key returned by the GenerateDataKeyWithoutPlaintext call,
"version": "branch:version:the branch key version UUID",
"create-time" : "timestamp",
"kms-arn" : "the KMS key ARN you specified in Step 1",
"hierarchy-version" : "1",
"aws-crypto-ec:contextKey": "contextValue"
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https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html
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St RIS 4#iste Ol ALK St M BT 7|18 £S5t O AFRE £ QX|0H odX5| HElE ¢
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4 Mt

x| 7|18 nAlsted™ 7| AE0{ 2o X|IHE KMS Z[of CHEt
kms:GenerateDataKeyWithoutPlaintext 2! kms:ReEncrypt #8t0| 2 & L|C}.

VersionKey 22 AtE5to] €/ Ealix| 7|E mAELICH gd HAX| 7|& wA|5HH ofst HTIS
ChAMste M E31X] 7|7t SGELICH g4 E-iX| 718 WASHE branch-key-ide HEEX| &
LICE VersionKeyE ZEE M TR & HHMRX| 7|E ABWSt= branch-key-idE K|l of &L
Ct.
Java
keystore.VersionKey(
VersionKeyInput.builder()
.branchKeyIdentifier("branch-key-id")
.build()
);
C#/ .NET
keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});
Python
keystore.version_key(
VersionKeyInput(
branch_key_identifier=branch_key_id
)
)
Rust

keystore.version_key()

g gelx| 7| A
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.branch_key_identifier(branch_key_id)
.send()
.await?;

Go

_, err = keyStore.VersionKey(context.Background(), keystoretypes.VersionKeyInput{
BranchKeyIdentifier: branchKeyId,

1))

if err !'= nil {
return err
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https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/keyring-interface.md
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AWS Encryption SDK

Cryptographic Materials Manager (CMM)

Get encryption
materials

¥

Fy

p Plaintext data key

Encrypted data keys

Keyring

P

Wrapping Key 1

P

Wrapping Key 2

P

Wrapping Key 3
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AWS Encryption SDK

Cryptographic Materials Manager (CMM)
| A

Get decryption

materials Encrypted data keys *

Plaintext data key

k4
Keyring
Wrapping Key 1 Wrapping Key 2 Wrapping Key 3
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« AWS Encryption SDK .NET&
« 9| ™ 3.x AWS Encryption SDK for Java

- MEiM QIS 3| X2 32X 2t0|EE{2[(MPL) B4 /81t & 74 AF& 3= AWS Encryption SDK for
Python3<% H

« AWS Encryption SDK Rust&
« AWS Encryption SDK Go&

33t 7|20l CHEr CHefer 27 AHY

0|2|2| AWS Encryption SDK 2104 73 0|M= 223t 7|~

AWS Encryption SDK for C2E 2{Z 7|7} ool 5’|§ %§_§F%* £ Qlo{ok gFLct. 2iE
E|X| eto™ &3 M= AufgfLct et =&t

o{OF FLICt M 7|22 AIE5tod B = E= OHE 5’|%9§ CIO|E{E &= 3t6t
ATiEhct

setxleE 713 2 ofAE 7] MBS A
Ct& E0|=0i M AWS Encryption SDK XS st= 7|20t S #tkl= OtAE 7| 2 OtAE 7| SZAH7LH L
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Ct.
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AWS KMS AEX 7|8

AWS KMS ECDH 7|3

Raw AES 7|2

OtAE 7| SEXE:

® Note

AWS Encryption SDK for Python Z! 0= AWS KMS 2| 4
M 7|20 SUS OtAE 7| EEE OFAE 7| S2XH7F 28 &K
AWS Encryption SDK for Java &t &LIC}H

O Zz3eid o] & oM x|l LicH

+ 9| {7 3.x AWS Encryption SDK for Java

« for NET EH™ AWS Encryption SDK 4.x

o MEHM 453 AR SZA 2H0[2E{2|((MPL) S&-E1t &7 AHE 5t
= AWS Encryption SDK for PythonZd< H7 4.x.

« AWS Encryption SDK for Rust 7% 1.x

« Go AWS Encryption SDK 9| H{%1 0.1.x O|4f

CtE 2238 o & Aol M x| E L.

« O] B 3.x AWS Encryption SDK for Java

« for NET EH™ AWS Encryption SDK 4.x

. MR ot 53 2t TR 2tol=2iE|(MPL) B4 4T E7H AL S
= AWS Encryption SDK for Pythond < HZ 4.x.
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71&: OtAE 7| 32Xk
Raw RSA 7|& HICHE 2t 33t 7|9 &7H AH8 5t B2
JceMasterKey(Java)
RawMasterKey(Python)
® Note

Raw RSA 7|22 H|CHE KMS 7|8 X|§stX| et&LCt HI
CHE RSA KMS 71§ AL83sted= B for NET HHE AWS
Encryption SDK 4.x= CHE & £ 3(SYMMETRIC_DEFAULT )
£ = HICHE RSAE AF235tE AWS KMS 7|32 X[ ELICt
AWS KMS keys.

2/ A| ECDH 7|2 ChE Z2 el o] & koM X|4ElLICE

+ 9| ™ 3.x AWS Encryption SDK for Java

« for NET EHH™ AWS Encryption SDK 4.x

o MEiX A5 3 X2 S 2% 2H0|EEE[(MPL) S5t &H AHE St
= AWS Encryption SDK for PythonZd< 7 4.x.

« AWS Encryption SDK for Rust HH& 1.x

+ Go AWS Encryption SDK & 9| H{%1 0.1.x O|4f

AWS KMS 7|&

AWS KMS 7|22 AWS KMS keysE AF235t04 O|O|E] 7|18 MM, 55t LU 535 .
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C

AWS KMS key 2| &5 5t 7|20 HE AlgdstE{™ 7| ARN EE= EE ARNS AWS Encryption SDK
for CKI'EH& LIt 5353t 7|20lM= 7| ARNZ ALSaHoF BHLICH AHAIEH LI& 2 AWS KMS 7|3
AWS KMS keys Ol Al8d MME B ZHM|IL.

M| o & 224 string.cppE FE5HAIL.
const char * generator_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

const char * additional_key = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"

struct aws_cryptosdk_keyring *kms_encrypt_keyring =
ws: :Cryptosdk: :KmsKeyring: :Builder().Build(generator_key, {additional_key});

C#/.NET

AWS Encryption SDK for .NETOI|A{ 5tLt O|&f 2| KMS 7|& At&35tod 7|2l 4d5tedH
CreateAwsKmsMultiKeyring() HIMEE AL & LICE O] tMM= F 7He| AWS KMS 7|&
A& grLct. 8t 7Ho| KMS 7|8 XIH5t2{H Generator TtEFO|E{BF AL & LICH =7 KMS 7|8
X|M5t= KmsKeyIds It2tO|E= M4 AL LICH

o| 7|~&oil CHEF 242 AWS KMS Z22H0|HEE 7HK K| ef&LICH CHAlE ZI—I0IAM KMS 7|
2 ZANEE Z 21Tl 7|2 AWS KMS 22+0|¢1EE AWS Encryption SDK AFSELICH K€ E
0{ Generator L2tO|E I 2 AlHE|= KMS 7|7} O|= ME(2EI2) 2™ ()0l U= ER us-
west-2& us-west-2 2|70l CHEF 7|2 AWS KMS Z20[HE & AWS Encryption SDK 448}
LICE AWS KMS Z2t0[HEE AL At X|'H3H0F 6ti= B CreateAwsKmsKeyring() HMEE
A+ &L,

AWS Encryption SDK for .NETOI| A & 53} 7|2 AWS KMS key ol CHSHE X|HE i 7| ID, 7|
ARN, 23 O|§ £&= HE ARNIH Z2 gh 7| AEXHE ALY = JU&LICH AWS KMS 7|3
AWS KMS keys OIlAE AlHE5I = O] E20| Rt MMS R Z5HMAWS KMS 713 AWS
KMS keys OflA AlEH,

CHS ol A|0l A= for NET T AWS Encryption SDK 4.x2+ CreateAwsKmsKeyring() HMEE
ME3t0i AWS KMS ZE20|UEE ALS A} R LICH

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
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var mpl = new MaterialProviders(new MaterialProvidersConfig());

string generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<string> additionalKeys = new List<string> { "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321" };

// Instantiate the keyring input object
var createEncryptKeyringInput = new CreateAwsKmsMultiKeyringInput
{

Generator = generatorKey,

KmsKeyIds = additionalKeys

i

var kmsEncryptKeyring = mpl.CreateAwsKmsMultiKeyring(createEncryptKeyringInput);

JavaScript Browser

oM =35t 7|20l AWS KMS key CHEHE x| & M 7| ID AWS Encryption SDK for JavaScript,

7| ARN, 82! 0| = HE ARNT ZH2 7| AHEXE AEE £ U&LICH AWS KMS 7|
2 AWS KMS keys 0| AHE AlH5t= Ol = 20| ER5tH MME HESIHLQAWS KMS 7|3 AWS
KMS keys Ol A A&,

CHE Aol = buildClient E+E AF235H04 7|2 70! HAE K|HEL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. & At&35t0d &S 3= EHIAIXIOI rsstE OIo|E 7|
£ NgtbuildClientd £ U&LICH REAM|EH LHE £ the section called “2 Z3HEl H|O|E 7|

KB EHelg HESHAAIR.

A ol Ml= GitHub2| AWS Encryption SDK for JavaScript 2|2 X|E2|0{| M kms_simple.ts& & &
StAR.

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider = getClient(KMS, { credentials })
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const generatorKeyIld = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringBrowser({
clientProvider,
generatorKeylId,
keyIds: [additionalKey]

1))

JavaScript Node.js

) |

04| A °*§§P 7|20l AWS KMS key CHSHE X5 & [ 7| ID AWS Encryption SDK for JavaScript,

o=
7| ARN, 22l O|E & tg'*' ARNJ—P r2 =8 7| MHEXE AFEE £+ A&LICH AWS KMS 7|
2 AWS KMS keys 0| AHE AlH5t= Ol = 20| ER5tMH MME HESIHLQAWS KMS 7|3 AWS

KMS keys Ol A A}&d

CHE oMo = buildClient &+E AFESt04 7|2 78] HAE K| &L
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. & At&35t0d &S 3= EHIAIXIOI f= 31E O|o|E 7|
£ NgtbuildClientd =% U&LICH RFAM|EF LHE £ the section called “2 Z3HEl H|O|E 7|

MNeh EHHE HESHAAIL.

ok

F

A ol Ml= GitHub2| AWS Encryption SDK for JavaScript 2|2 X|E2|0{| M kms_simple.ts& & &
StAR.

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringNode({
generatorKeylId,
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keyIds: [additionalKey]
1}

Aol 7|7} = AWS KMS 7|22 MM5H2{™H CreateAwsKmsMultiKeyring() A
EE A8 LLCL ol Mo ME F 7H2| KMS 7|& AFE&LCt. & 7Hel KMS 7|18 X|H5te{H
generator It2tO|E{CF AL ELICH F7F KMS 7|& X|'H3t= kmsKeyIds Tt2tO[E = MEH AR
Lt
=

ol 7|2lof| CHEt 2242 AWS KMS Z2I0|1EE 7K K| et&LICH CHAlE 7210 A KMS 7|

2 EAEE ZF 2o 7|2 AWS KMS 22H0|21EE AWS Encryption SDK AFEEfLICH o€ &
0] Generator Il2t0|E] Zt2 2 AlHE|E= KMS 7|71 O/ ME(aIZ) 2IF()oll U= B us-
west-2E us-west-2 2|0l CHEH 7|2 AWS KMS 2 2I0|HEE AWS Encryption SDK 2438t
LICt. AWS KMS ZE2I0|HEE AL At X|H5H0F 5= B CreateAwsKmsKeyring() HMEE
A+t

7| AlHEXLE AR E 2 &L AWS KMS 7|
O| st MME HZESIMRAWS KMS 72 AWS

fuok

=
AWS KMS keys (IME
KMS keys Ol A A/&4

MA o|Al= GitHub2| AWS Encryption SDK for Java 2| % K| E 2|0 A
BasicEncryptionKeyringExample.javaZ® & ZX35HA 2.

// Instantiate the AWS Encryption SDK and material providers

final AwsCrypto crypto = AwsCrypto.builder().build();

final MaterialProviders materialProviders = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

String generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<String> additionalKey = Collections.singletonList("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");
// Create the keyring
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()

.generator(generatorkKey)

.kmsKeyIds(additionalKey)

.build();
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final IKeyring kmsKeyring =
materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

Python

StLF o|&ko] 7|7t *l= AWS KMS 7|22 M/ d35l2{™ create_aws_kms_multi_keyring() Ol
MEE A2LICE o] X ME F 7Hel KMS 7|2 At2¢&tLCt. 8 7Hel KMS 7|2 X|Zdste{H
generator UtZtO|E{BF A& FLICH F7F KMS 7|8 X|IH3HE kms_key_ids ZHEHO|E{= &8 A}
stolL|ct.

o H

O| 7|&of CHEt 232 AWS KMS EEI0|HEE 71X K| f&LICH CHals 71201 KMS 7|

2 EAIEE 2t 2|xo| 7|& AWS KMS Z22H0|91EE AWS Encryption SDK AFREfLIC}H 02 £
01 generator m2tO|E gt 2 A-EE|= KMS 7|7t OIF ME(EIZ) 2l U= B2 us-
west-2& us-west-2 2|&oi CHEF 7|&2 AWS KMS Z20|2HE & AWS Encryption SDK 2844t
LICt. AWS KMS 22}0|1EE A8 X} X5l 0F t= B create_aws_kms_keyring() MM
EE MEFLICH

& mf 7| ID AWS Encryption SDK for Python, 7|
S = 7| AEXE A Y = U&LICH AWS KMS 7|3
AlH5lE Ol =20| EeotH AME FESHHLAWS KMS 7|2 AWS

(Al

oM & =3l 7|20l AWS KMS key CHEHE K|
ARN, 83l 0|& == 3 ARNITF Z
AWS KMS keys (I ME

KMS keys Ol A A&,

C

o2t

CHZ oAM= 712 73] HEHQIE A8 5104 AWS Encryption SDK 2CH0|QIEE QAR AS}
L|CFREQUIRE_ENCRYPT_REQUIRE_DECRYPT. &l 0d A= GitHub2| AWS Encryption SDK for
Python 2|XZ X|E 2|0l M aws_kms_multi_keyring_example.pyE & Z5HM 2.

I

# Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

# Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

# Instantiate the material providers library
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mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

)

# Create the AWS KMS keyring
kms_multi_keyring_input: CreateAwsKmsMultiKeyringInput =
CreateAwsKmsMultiKeyringInput(
generator="arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
kms_key_ids="arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"
)

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

)

Rust

StLF o|&ko] 7|7t *l= AWS KMS 7|22 M/ d35l2{™ create_aws_kms_multi_keyring() Ol
MEE A8 &L o] Mo ME F 702l KMS 7|8 A& LICt & 7Hel KMS 7|8 X|H5t2{™
generator UtZtO|E{BF A& FLICH F7F KMS 7|8 X|IH3HE kms_key_ids ZEHO|E{E &8 A}
stolL|C}.

O H

o] 7|2lof| CHEt 21242 AWS KMS 22I0|EE 7HK 2 K| et &LICH CHAlE F[—I0I A KMS |

2 EAEE Z 2|7o| 7|2 AWS KMS 22+0|1EE AWS Encryption SDK AFSELICH € £
0{ generator WetO|EH gt 2 AlMEE|= KMS 7|7} 0|15 MB(E2) 2I™()oll [= ER us-
west-2E us-west-2 2|70l CHEH 7|2 AWS KMS 2 2I0|HEE AWS Encryption SDK 4448t
LICt. AWS KMS 22+0|1EE A& X} X|'H5H0F t= B create_aws_kms_keyring() MM
EE ArSELCH.

off CHsiE x|=e m 7] 1D, 7|

<

AWS Encryption SDK for Rustoll A &t 23l 7|2 AWS KMS ke
ARN, EH3 0| EE= EE ARNIH ZH2 7| A ERE A8 E =+ UA&LICH AWS KMS 7|3
AWS KMS keys O ME Algdste o] E20| B stH MM 2HE M QAWS KMS 712 AWS
KMS keys Ol A A&,

CHS Al E 7|8 745! HZEHQIZE A& 3504 AWS Encryption SDK 2ZI0|1EE QIAEIAS}E!
L|CFREQUIRE_ENCRYPT_REQUIRE_DECRYPT. ™Al oflAl&= GitHub2| aws-encryption-sdk 2|3 X|
E 29| Rust CIHE2[0f Q= aws_kms_keyring_example.rs& & Z35tM| L. aws-encryption-sdk

// Instantiate the AWS Encryption SDK client
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let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),
1);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

kms_multi_keyring: IKeyring = mpl.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

Go

StLE ol&f2| 7|7t Qe AWS KMS 7|32 MM 5t2{H create_aws_kms_multi_keyring() M|
MEE Ar8tLCt o] oM E F 7He| KMS 7|2 AFEFLICE. 8 79| KMS 7|5 K| &6t
generator ItztO[E{EH ALSELICH F7H KMS 7|& XIH3SHE kms_key_ids Tt2tO[E{= M= A}
stelct.

o k|

o| Z|~&of| CHEt 1242 AWS KMS EC0|IEE 7HX K| et&LICH CHalE Z[—~I0 A KMS 7|
2 EZAElE Z 2l™9 7|8 AWS KMS E210|21EE AWS Encryption SDK A EfLICH G € &

AWS KMS 7|2 A 109



AWS Encryption SDK JHEER} 70| =

0 generator Il2t0|E] Zt2 2 AlHE|E KMS 7|71 O/ ME(EIZ) 2IF()oll Y= B us-
west-2E us-west-2 2|0l CHEE 7|2 AWS KMS Z2+0|HE E AWS Encryption SDK 243 &f
LICH AWS KMS Z2I0|HEE AF2 AL X|H5H0F 3= B create_aws_kms_keyring() HIA

EE MEFLICH

Go AWS KMS key E0ilM =3}
HE 0|8 = BEYARNDH Z 2
KMS keys O|ME AE5t= O &
keys Ol M AlE,

|2 AWS Encryption SDK 0i| CH3HE X|&H& [ 7| ID, 7| ARN,
| NEXE AL " =+ l&LICH AWS KMS 7|3 AWS
5t MM g 2R SMAWS KMS 7|2 AWS KMS

o
E
FO W

o

CtZ oAM= 7| 7O HAOIE A8 3504 AWS Encryption SDK ZCt0|1EE QIAEAS}
LICFREQUIRE_ENCRYPT_REQUIRE_DECRYPT.

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Optional: Create an encryption context
encryptionContext := map[string]lstring{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
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matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {
panic(err)

// Create the AWS KMS keyring

awsKmsMultiKeyringInput := mpltypes.CreateAwsKmsMultiKeyringInput{
Generator: "&arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
KmsKeyIds: []string{"arn:aws:kms:us-

west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"},

}

awsKmsMultiKeyring, err := matProv.CreateAwsKmsMultiKeyring(context.Background(),
awsKmsMultiKeyringInput)

£ H|CHE RSA KMS AWS KMS 7|8 At835t= 713 AWS Encryption SDK & K| & LICH HICHE
RSA AWS KMS 7|&ol= 7| mlo{7t sttt ZebE &= JU&LICt

HICHZE RSA AWS KMS 7|Zo 2 5 35l5t2iH 7|22 MyEe M 4550 A8E HEE 7| 24 2
AE X|™H&HoF 32 2 kms:GenerateDataKey = kms:Encrypt7} 2R 3HX| oF&LICH. O| 7|gdez &
Z3tE M= AWS KMS 3 £0| 0|F0{X|X| et &LICt HICHE RSA AWS KMS 7|22 2 55 3 5t2{H
kms:Decrypt #8t0| 2L & Lct.

@ Note
HICHE! RSA KMS AWS KMS 7|8 A8 3te 7|2lg Madstaied oig Z2 e edof
StLIE AtS3iof gLct.

2
op

« 9| ™ 3.x AWS Encryption SDK for Java
o for .NET EH{AWS Encryption SDK 4.x

o MEIXM ot S 3| X2 S2 At 2H0|E{2|(MPL) &84Tt &7H A2 3= AWS Encryption
SDK for PythonZd < H{7 4.x.

« AWS Encryption SDK for Rust {7 1.x
« Go AWS Encryption SDK 9| {7 0.1.x O[4f

CH2 oMM E CreateAwskmsRsaKeyring HIAEE AFE35104 HICHE RSA KMS AWS KMS 7|2
7|28 dggLict HICHE RSA AWS KMS 7|32 MAM5te2{H Chs gt2 MSELict
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« kmsClient: Af AWS KMS E2}0[|1E M
« kmsKeyID: HICHE RSA KMS 7| A#3tE= 7| ARN
« publicKey: &8t 7|o| HER 7|E Lt UTF-8 213 & PEM It 9| ByteBuffer kmsKeyID

EtLi=
« encryptionAlgorithm: & &35t &1 2|&F2 RSAES_OAEP_SHA_256 = 0|0{0F gfL|Ct.
RSAES_OAEP_SHA_1

C#/ .NET

]

H|CHE! RSA AWS KMS 7|2l AM4A45t2{M™ HICHE RSA KMS 7|0 H{E 2! 7|9 = zlo|8! 7|
ARNE A|Z235fof gfLiCt HERZ! 7|= PEMSZ Qlz2lZ|o{of &FL|Ct. CFS oMo A= H|CHE
RSA AWS KMS 7| o1& AI235t04 7|2l MdErLCt.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var publicKey = new MemoryStream(Encoding.UTF8.GetBytes(AWS KMS RSA public key));

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsRsaKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(),

KmsKeyId = AWS KMS RSA private key ARN,

PublicKey = publicKey,

EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};

// Create the keyring
var kmsRsaKeyring = mpl.CreateAwsKmsRsaKeyring(createKeyringInput);

Java

H|ICHZE RSA AWS KMS 7|22 MAI5t2{™ H|CHE! RSA KMS Z|ol H{E 2! 7|9F Zztol8! 7|
ARNE AN|Z&fof &LICt HER! 7= PEMeZ Q32 E|o{oF & L|Ct CF2 of| Mol M= HICHE
RSA AWS KMS 7| H0{E€ AI835t04 7|22 -derLCt.

// Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder()
// Specify algorithmSuite without asymmetric signing here

//
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// ALG_AES_128_GCM_IV12_TAG16_NO_KDF("0x0014"),
// ALG_AES_192_GCM_IV12_TAG16_NO_KDF("0x0046"),
// ALG_AES_256_GCM_IV12_TAG16_NO_KDF("0x0078"),
// ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256("0x0114"),
// ALG_AES_192_GCM_IV12_TAG16_HKDF_SHA256("0x0146"),
// ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256("0x0178")

.withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_IV12_ TAG16_HKDF_SHA256)
.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

// Create a KMS RSA keyring.
// This keyring takes in:

// - kmsClient

// - kmsKeyId: Must be an ARN representing an asymmetric RSA KMS key

// - publicKey: A ByteBuffer of a UTF-8 encoded PEM file representing the public
// key for the key passed into kmsKeyId

// - encryptionAlgorithm: Must be either RSAES_OAEP_SHA_256 or RSAES_OAEP_SHA_1

final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
CreateAwsKmsRsaKeyringInput.builder()
.kmsClient(KmsClient.create())
.kmsKeyId(rsakeyArn)
.publicKey(publicKey)
.encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
.build();
IKeyring awsKmsRsaKeyring =
matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Python

HICHE! RSA AWS KMS 7|22 AM4435t2{M HICHE RSA KMS 7|0 H{EE! 7|9 Z=Zl0o|4! 7|
ARNZ M|Z35fof gLct HE 2! 7|= PEMSZ QI3 2lE|o{of gFL|Ct. CFS o Aol M= HICHE!
RSA AWS KMS 7| H0{E Al235l0d 7|2l MAghLICt

# Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

# Optional: Create an encryption context
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encryption_context: Dict[str, str] = {
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",

# Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

# Create the AWS KMS keyring
keyring_input: CreateAwsKmsRsaKeyringInput = CreateAwsKmsRsaKeyringInput(
public_key="public_key",
kms_key_id="kms_key_id",
encryption_algorithm="RSAES_OAEP_SHA_256",
kms_client=kms_client

kms_rsa_keyring: IKeyring = mat_prov.create_aws_kms_rsa_keyring(
input=keyring_input

Rust

HICHE! RSA AWS KMS 7|22 AM4435t2{M HICHE RSA KMS 7|0 H{EE! 7|9 Z=Zj0o|4! 7|
ARNZ M|Z35fof gLct HE 2! 7|= PEMSZ QI3 2lE|o{of &HL|Ct. CFS o Aol M= HICHE!
RSA AWS KMS 7| H0{E& Al235l0d 7|2l MAghLICt

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client

let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
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("is not".to_string(), "secret".to_string()),

("but adds".to_string(), "useful metadata".to_string()),

("that can help you".to_string(), "be confident that".to_string()),

("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring

let kms_rsa_keyring = mpl
.create_aws_kms_rsa_keyring()
.kms_key_id(kms_key_id)
.public_key(aws_smithy_types::Blob::new(public_key))

.encryption_algorithm(aws_sdk_kms: :types::EncryptionAlgorithmSpec: :RsaesOaepSha256)
.kms_client(kms_client)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)
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}

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

)
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create the AWS KMS keyring
awsKmsRSAKeyringInput := mpltypes.CreateAwsKmsRsaKeyringInput{

KmsClient: kmsClient,
KmsKeyId: kmsKeyID,
PublicKey: kmsPublicKey,
EncryptionAlgorithm: kmstypes.EncryptionAlgorithmSpecRsaesOaepSha256,
}
awsKmsRSAKeyring, err := matProv.CreateAwsKmsRsaKeyring(context.Background(),
awsKmsRSAKeyringInput)
if err != nil {
panic(err)
}
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M 7S MBS B A TEIS ALS504 RITE AWS HIE U THE|4M0] 712 ASE 4
£ KMS 7|8 Mststs 2ol E&
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CHE A E=7F AFHEE AWS Encryption SDK = /= KMS AWS KMS 7|2 aws I}E|M 2
111122223333 Oi| Al HH2| 7|2 X|Btet= AM LEE ALE5to] M 7|28 QUARHASEFLICY.

O| ZEE At835H7| ™ol oMl AWS H™E & THE|M Zf2 AWS HE L TE|MO| R &8t IR HHE
LICH KMS 7|7t &3 2I™ol = B2 aws-cn THE|M 2t 2 ALE5HAMIR. KMS 7|7+ AWS GovCloud
(US) Regions0i| A= B2 aws-us-gov ItE|M ZIE AL SHM|L. CHE AWS 2[F0l| /U= B2 aws Tt
E|M Zt2 A83HML.

C

XA olMlE kms_discovery.cppE EESHAIL.

std: :shared_ptr<KmsKeyring::> discovery_filter(
KmsKeyring: :DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.Build());

struct aws_cryptosdk_keyring *kms_discovery_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Buildex ()
.BuildDiscovery(discovery_filter));

C#/ .NET

CH2 oMol A= AWS Encryption SDK for NET 4.x HHEE AFSEfLICH

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;

// In a discovery keyring, you specify an AWS KMS client and a discovery filter,
// but not a AWS KMS key
var kmsDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(),
DiscoveryFilter = new DiscoveryFilter()

AWS KMS ZAM 7|2 AL 118


https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK JHEER} 70| =

{

AccountIds = account,
Partition = "aws"

i

var kmsDiscoveryKeyring =
mpl.CreateAwsKmsDiscoveryKeyring(kmsDiscoveryKeyringInput);

JavaScript Browser

g

JavaScriptol M= BAHo = HM K492 X|-sHoF 2 LICH

CHE Aol = buildClient E+E AF235H04 7|2 70! HAHQIE K|HEL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. £ Al235l04 &5 518l HA|X|2| &5 5E H|O|E 7|
=& MEtbuildClientd == QU&LICH RHM|IEH LI 2 the section called “&F 5 3} El CI[O|E 7|

M BHHE HRSt AR,

import {
KmsKeyringBrowser,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const keyring = new KmsKeyringBrowser(clientProvider, {
discovery,
discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }

1)

JavaScript Node.js

Ad
S

1
fifo

JavaScripto A= BA[Hez HMY K| st oF & LICt.

CHS oMM = buildClient &8 AFE3St0d 7|2 78! HAQIE X|HEL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. £ At25t0{ &5 3l El 0 o| &5 SHE H|o|E 7|
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& MgtbuildClientd == U&LICE REMIEH LI 2 the section called “2F 5 3HE! CI[O|E 7|
Mt Bt & X SAAL.

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const discovery = true

const keyring = new KmsKeyringNode({

discovery,

discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
1))

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
.partition("aws")
.accountIds(111122223333)
.build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
= CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
.discoveryFilter(discoveryFilter)
.build();
IKeyring decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

# Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
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# Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_xregion)

# Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

# Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

# Create the AWS KMS discovery keyring
discovery_keyring_input: CreateAwsKmsDiscoveryKeyringInput =
CreateAwsKmsDiscoveryKeyringInput(
kms_client=kms_client,
discovery_filter=DiscoveryFiltexr(
account_ids=[aws_account_id],
partition="aws"

discovery_keyring: IKeyring = mat_prov.create_aws_kms_discovery_keyring(
input=discovery_keyring_input

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create a AWS KMS client.

let sdk_config =
aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;

let kms_client = aws_sdk_kms::Client::new(&sdk_config);
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Go

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create discovery filter

let discovery_filter = DiscoveryFilter::builder()
.account_ids(vec![aws_account_id.to_string()])
.partition("aws".to_string())
.build()?;

// Create the AWS KMS discovery keyring
let discovery_keyring = mpl
.create_aws_kms_discovery_keyring()
.kms_client(kms_client.clone())
.discovery_filter(discovery_filter)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client
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cfg, err := config.LoadDefaultConfig(context.TODO())

if err != nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

b
// Optional: Create an encryption context
encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})

if err != nil {
panic(err)
}
// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{kmsKeyAccountID},
Partition: "aws",
}
awsKmsDiscoveryKeyringInput := mpltypes.CreateAwsKmsDiscoveryKeyringInput{
KmsClient: kmsClient,

DiscoveryFilter: &discoveryFilter,
}
awsKmsDiscoveryKeyring, err :=
matProv.CreateAwsKmsDiscoveryKeyring(context.Background(),
awsKmsDiscoveryKeyringInput)
if err != nil {
panic(err)
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std: :shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filtexr(
KmsKeyring::DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Buildexr ()

.WithKmsClient(create_kms_client(Aws: :Region::US_WEST_2)).BuildDiscovery(discovery_filter))

C#/ .NET

AWS Encryption SDK for .NETO|

= 20| Q& LICE B, o 7|22 AF835lod =
3tst I AFRElE KMS 7|2 E™ 2|Xe

ME 2l 44 7120l 8
Moz MEHe = JU&Lich

ZM 7|20l BIRIE RIBHeHs 7HE 2 2HOI WS Tl BT 7|8t AL 5104 GIOJEIE 22818t
QLICt. EHe BIF 7|7k WA OHE 2ld Q14

x4
BROE O 2T o1 24 7128 N Ssh 2l
8

ZId2 O et 7IsE M8

CreateAwsKmsMrkDiscoveryKeyring() HME0IAM EHEHE 7|22 AWS

KMSE 2 &3t7| Mo 2|tHE2 KMS 7|& EEelZ e LI e 3tE ool 7|7t
CreateAwsKmsMrkDiscoveryKeyringInput Z#%|2| Region It2tO/E{Z X|HE 2| o] KMS
7|2 &S 3tE AWS KMS Zottol 553t @S Lot

CHS ol Mol A= AWS Encryption SDK for NET 4.x HHZ12 AFSELICH

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;

// Create the discovery filter
var filter = DiscoveryFilter = new DiscoveryFilter
{

AccountIds = account,

Partition = "aws"

i

var regionalDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput
{

KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
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Region = RegionEndpoint.USWest2,
DiscoveryFilter = filter

i

var kmsRegionalDiscoveryKeyring =
mpl.CreateAwsKmsMrkDiscoveryKeyring(regionalDiscoveryKeyringInput);

AWS KMS £ 20| E (AmazonKeyManagementServiceClient) 2| QIAEI AN B|HE X|H AWS E
M 5tod KMS 718 EX 2 AMEHe &% QlaLich B 0] A2 multi-Region-aware 44 7|2lg

AEste JAECH 2240| Ho{X|1 HI&O0| H B 0| & &= JU&LICH & H™of 2[EE KMS 7|18
ZIE{2I5H = CHAl AWS Encryption SDK for NET AWS KMS2 ¢t 3 st Zt Of|0|E{ 7|0 AWS KMS
CHaH (B2 stHe WIHR)E &30 AWS KMS £ AF&35104 AF2 3= KMS 7|18 X|HE 2[He =z

AM|gHghLct.

CH2 oMol A= AWS Encryption SDK for NET 4.x HHEE AFSEfLICEH

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;

// Create the discovery filter,

// but not a AWS KMS key
var createRegionalDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
DiscoveryFilter = new DiscoveryFilter()
{
AccountIds = account,
Partition = "aws"
}
};

var kmsRegionalDiscoveryKeyring =
mlp.CreateAwsKmsDiscoveryKeyring(createRegionalDiscoveryKeyringInput);

JavaScript Browser

CHE oAM= buildClient &8 AFE3St04 7|& 78! HAQIE X|HEL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. £ Atl25t0{ &5 3l &l 0 o| &t 53l El O[O 7|
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& MgtbuildClientd == U&LICE REMIEH LI 2 the section called “2F 5 3HE! CI[O|E 7|
Mt Bt & X SAAL.

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
discovery,
discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
)

JavaScript Node.js

CtZ oMM = buildClient 8 AHE5t0{ 7|2 72! HAQIE XIHE L
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. £ Al235l0d &5 518 HA|X|2| &5 351E H|0O|E 7|
+E MgtbuildClient® == UELICH REAIEH LHE 2 the section called “®f & 3El H|O|E] 7|
Mzt erelg HEsAAL.

Ol 7|2t 1imitRegions &8 EoiM & 0| X0 A kms_regional_discovery.ts& FHZESHMIR.

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-node’

const { encrypt, decrypt } = buildClient(

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
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const keyring = new KmsKeyringNode({
clientProvider,
discovery,
discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }

1)

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
.partition("aws")
.accountIds(111122223333)
.build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
= CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
.discoveryFilter(discoveryFilter)
.regions("us-west-2")
.build();
IKeyring decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

# Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

# Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_xregion)

# Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

# Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
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config=MaterialProvidersConfig()

# Create the AWS KMS regional discovery keyring
regional_discovery_keyring_input: CreateAwsKmsMrkDiscoveryKeyringInput = \
CreateAwsKmsMrkDiscoveryKeyringInput(
kms_client=kms_client,
region=mrk_replica_decrypt_region,
discovery_filter=DiscoveryFilter(
account_ids=[111122223333],
partition="aws"

regional_discovery_keyring: IKeyring =
mat_prov.create_aws_kms_mrk_discovery_keyring(
input=regional_discovery_keyring_input

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS client
let decrypt_kms_config = aws_sdk_kms::config::Builder::from(&sdk_config)
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.region(Region: :new(mrk_replica_decrypt_region.clone()))
.build();
let decrypt_kms_client = aws_sdk_kms::Client::from_conf(decrypt_kms_config);

// Create discovery filter

let discovery_filter = DiscoveryFilter::builder()
.account_ids(vec![aws_account_id.to_string()])
.partition("aws".to_string())
.build()?;

// Create the regional discovery keyring

let discovery_keyring = mpl
.create_aws_kms_mrk_discovery_keyring()
.kms_client(decrypt_kms_client)
.region(mrk_replica_decrypt_region)
.discovery_filter(discovery_filter)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)
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// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

)
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Create discovery filter

discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{awsAccountID},
Partition: "aws",

// Create the regional discovery keyring
awsKmsMrkDiscoveryInput := mpltypes.CreateAwsKmsMrkDiscoveryKeyringInput{
KmsClient: kmsClient,
Region: alternateRegionMrkKeyRegion,
DiscoveryFilter: &discoveryFilter,
}
awsKmsMrkDiscoveryKeyring, err :=
matProv.CreateAwsKmsMrkDiscoveryKeyring(context.Background(),
awsKmsMrkDiscoveryInput)
if err !'= nil {
panic(err)

AWS Encryption SDK for JavaScript &&= Node.js & 222 X0 CHEt excludeRegions & LY
EHLICH o] 4= 5 AWS KMS 2|7 AWS KMS keys MlA] M2FE|= B[ M 7212 MMEL
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https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/python/README.rst
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Java

.cache(CacheType.builder()
.Default(DefaultCache.builder()
.entryCapacity(100)

.build())

C#/.NET

CacheType defaultCache = new CacheType

{
Default = new DefaultCache{EntryCapacity = 100}

};
Python

default_cache = CacheTypeDefault(
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value=DefaultCache(
entry_capacity=100

Rust

let cache: CacheType = CacheType: :Default(
DefaultCache: :buildexr()
.entry_capacity(100)
.build()?z,
)i

Go

cache := mpltypes.CacheTypeMemberDefault{
Value: mpltypes.DefaultCache{
EntryCapacity: 100,
},
}

MultiThreaded 74 A|

MultiThreaded FHAl= HE|ADIE BF0|M StHGHA AFEE &= UX|TF AWS KMS EE= Amazon
DynamoDB £& & | te 7152 M35HR| eb&LCh mMetM ERX| 7| XE2 20| PR E|H S
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Java

.cache(CacheType.builder()
.MultiThreaded(MultiThreadedCache.builder()
.entryCapacity(100)
.entryPruningTailSize(1)
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.build())

C#/.NET

CacheType multithreadedCache = new CacheType
{
MultiThreaded = new MultiThreadedCache
{
EntryCapacity = 100,
EntryPruningTailSize = 1

1Y

Python

multithreaded_cache = CacheTypeMultiThreaded(
value=MultiThreadedCache(
entry_capacity=100,
entry_pruning_tail_size=1

Rust

CacheType: :MultiThreaded(

MultiThreadedCache: :buildexr()
.entry_capacity(100)
.entry_pruning_tail_size(1)
.build()?)

Go

var entryPruningTailSize int32 =1
cache := mpltypes.CacheTypeMemberMultiThreaded{
Value: mpltypes.MultiThreadedCache{

EntryCapacity: 100,
EntryPruningTailSize: &entryPruningTailSize,
},

}

FHA| =4

139



AWS Encryption SDK JHEER} 70| =

StormTracking 7H Al

a5
I'|0
ot
o

StormTracking® HE|ADE 7P o
=™ StormTracking FHAlE E&1%| 7
OSZM o AHETIE ?.Z;-aE N
AR QEE Hefuc.

£ K|S EE HAZIR&LICH EHRX| 7| RIZ2 50| 2=
A2 &S0l 0l2 BtR2E HdUS st AR =0 €= AWS KMS
HFX|EHL|C Ol A 5t 3t A= 0 AWS KMS 0off FHA| M2

IIIIO

StormTracking 7HAIE A& stedH CHS 2t XIEELICH

- ¥5 T ZH A MEE + U= ERX| 7| Az 52| +& Mg

7|24t &5 1,0007H
- ¥5 Yel Y 271 & Holl HElg B3R 7| Az 5ol 8 FolFLc

2R 7| Rt 2E MZ D R[B{E ARt BFR2E|7|7H K] AEIE AlZh(E)E ZelgLch

7122k 10=

- 70l Zt4: 23X 7| Rz ol Mz T A 7HA(X)E HolghLich

712 1=

- Hotz: HHMX| 7| AIRE MZE IEH = U= SAI Al H+E Holghch
71822k 208 AT

« & X AIZHTTL): 23X 7| RIRE MZ D xl2dE A= 7F M Azt ZOHE 7K o] AlZh(E)2
MolgtL|Ct. GetCacheEntryol CHEt 82 Z FHA[7F NoSuchEntryE ._i beh miotch e 22
x| 7|= PutCache &St SUst 7|7t 7|52 WX S 5l Ho 2 ZtFELC.
7|&22k 10=

B Z2EE ZO5IH ANEI HH 2EZ HEHSHoF e YUE[E sfanOutE Holg Lt
71822k 202 2|x

Java

.cache(CacheType.builder()
.StormTracking(StormTrackingCache.builder()
.entryCapacity(100)
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.entryPruningTailSize(1)
.gracePeriod(10)
.gracelnterval(1)
.fanOut(20)
.inFlightTTL(10)
.sleepMilli(20)
.build())

C#/ .NET

CacheType stormTrackingCache = new CacheType
{
StormTracking = new StormTrackingCache
{
EntryCapacity = 100,
EntryPruningTailSize = 1,
FanOut = 20,
Gracelnterval = 1,
GracePeriod 10,
InFlightTTL 10,
SleepMilli = 20

Iy

Python

storm_tracking_cache = CacheTypeStormTracking(
value=StormTrackingCache(
entry_capacity=100,
entry_pruning_tail_size=1,
fan_out=20,
grace_interval=1,
grace_period=10,
in_flight_ttl=10,
sleep_milli=20

Rust

CacheType: :StormTracking(
StormTrackingCache: :builder()

AT S e
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.entry_capacity(100)
.entry_pruning_tail_size(1)
.grace_period(10)
.grace_interval(1)
.fan_out(20)
.in_flight_ttl(10)
.sleep_milli(20)

.build()?)
Go
var entryPruningTailSize int32 =1
cache := mpltypes.CacheTypeMemberStormTracking{
Value: mpltypes.StormTrackingCache{
EntryCapacity: 100,
EntryPruningTailSize: &entryPruningTailSize,
GraceInterval: 1,
GracePeriod: 10,
FanOut: 20,
InFlightTTL: 10,
SleepMilli: 20,
3,
}
S 7HAl
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1. M=Z 32X 2to|EE|CryptographicMaterialsCache(MPL)E AF&3t04 (CMC)E A&t
LIC}. https://github.com/aws/aws-cryptographic-material-providers-library

Java

// Instantiate the MPL
final MaterialProviders matProv =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

// Create a CacheType object for the Default cache
final CacheType cache =
CacheType.builder()
.Default(DefaultCache.builder().entryCapacity(100).build())
.build();

// Create a CMC using the default cache
final CreateCryptographicMaterialsCacheInput cryptographicMaterialsCacheInput =
CreateCryptographicMaterialsCacheInput.builder()
.cache(cache)
.build();

final ICryptographicMaterialsCache sharedCryptographicMaterialsCache =
matProv.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);
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C#/.NET

// Instantiate the MPL
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create a CacheType object for the Default cache
var cache new CacheType { Default = new DefaultCache{EntryCapacity = 1003} };

// Create a CMC using the default cache
var cryptographicMaterialsCachelInput = new
CreateCryptographicMaterialsCacheInput {Cache = cache};

var sharedCryptographicMaterialsCache =
materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

Python

# Instantiate the MPL
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

# Create a CacheType object for the default cache
cache: CacheType = CacheTypeDefault(
value=DefaultCache(
entry_capacity=100,

# Create a CMC using the default cache
cryptographic_materials_cache_input = CreateCryptographicMaterialsCacheInput(
cache=cache,

shared_cryptographic_materials_cache =
mat_prov.create_cryptographic_materials_cache(
cryptographic_materials_cache_input

Rust

// Instantiate the MPL
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Go

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create a CacheType object for the default cache
let cache: CacheType = CacheType: :Default(
DefaultCache: :builder()
.entry_capacity(100)
.build()?z,
);

// Create a CMC using the default cache

let shared_cryptographic_materials_cache: CryptographicMaterialsCacheRef = mpl.

create_cryptographic_materials_cache()
.cache(cache)

.send()

.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

)

// Instantiate the MPL
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create a CacheType object for the default cache
cache := mpltypes.CacheTypeMemberDefault{
Value: mpltypes.DefaultCache{
EntryCapacity: 100,
.

// Create a CMC using the default cache
cmcCacheInput := mpltypes.CreateCryptographicMaterialsCacheInput{
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Cache: &cache,
}
sharedCryptographicMaterialsCache, err :=
matProv.CreateCryptographicMaterialsCache(context.Background(), cmcCacheInput)
if err !'= nil {

panic(err)

[a

2. 2% FHAloll CHEt CacheType ZHA|E M MEHLICEH

1EtA0|M sharedCryptographicMaterialsCache 448tE A CacheType ZH&l|0f THEE
L|Ct

Java

// Create a CacheType object for the sharedCryptographicMaterialsCache
final CacheType sharedCache =
CacheType.buildex()
.Shared(sharedCryptographicMaterialsCache)
.build();

C#/ .NET

// Create a CacheType object for the sharedCryptographicMaterialsCache
var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache };

Python

# Create a CacheType object for the shared_cryptographic_materials_cache
shared_cache: CacheType = CacheTypeShared(
value=shared_cryptographic_materials_cache

Rust

// Create a CacheType object for the shared_cryptographic_materials_cache
let shared_cache: CacheType =
CacheType: :Shared(shared_cryptographic_materials_cache);
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Go

// Create a CacheType object for the shared_cryptographic_materials_cache
shared_cache :=
mpltypes.CacheTypeMemberShared{sharedCryptographicMaterialsCache}

3. 2EtAH0M AS ™ 7|22 2 sharedCache ZAE ™ME&LCt.
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Java

// Create the Hierarchical keyring
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
CreateAwsKmsHierarchicalKeyringInput.builder()

.keyStore(keystore)
.branchKeyIdSupplier(branchKeyIdSupplier)
.tt1lSeconds(600)
.cache(sharedCache)
.partitionID(partitionID)
.build();

final IKeyring hierarchicalKeyring =

matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);
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C#/.NET

// Create the Hierarchical keyring
var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput

{
KeyStore = keystore,
BranchKeyIdSupplier = branchKeyIdSupplier,
Cache = sharedCache,
TtlSeconds = 600,
PartitionId = partitionID
};

var keyring =
materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Python

# Create the Hierarchical keyring

keyring_input: CreateAwsKmsHierarchicalKeyringInput =

CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id_supplier=branch_key_id_supplier,
ttl_seconds=600,
cache=shared_cache,
partition_id=partition_id

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input

Rust

// Create the Hierarchical keyring
let keyringl = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_storel)
.branch_key_id(branch_key_id.clone())
// CryptographicMaterialsCacheRef is an Rc (Reference Counted), so if you
clone it to
// pass it to different Hierarchical Keyrings, it will still point to the
same
// underlying cache, and increment the reference count accordingly.
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.cache(shared_cache.clone())
.ttl_seconds(600)
.partition_id(partition_id.clone())
.send()

.await?;

Go

// Create the Hierarchical keyring
hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
KeyStore: keyStorel,
BranchKeyId: &branchKeyId,
TtlSeconds: 600,
Cache: &shared_cache,
PartitionId: &partitionId,
}
keyring, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err !'= nil {
panic(err)
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Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsHierarchicalKeyringInput keyringInput =

CreateAwsKmsHierarchicalKeyringInput.builder()
.keyStore(branchKeyStoreName)
.branchKeyId(branch-key-id)
.ttlSeconds(600)
.build();

final Keyring hierarchicalKeyring =

matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/.NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{

KeyStore = keystore,

BranchKeyId = branch-key-id,

TtlSeconds = 600
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var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id=branch_key_id,
ttl_seconds=600

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_store.clone())
.branch_key_id(branch_key_id)
.ttl_seconds(600)
.send()
.await?;

Go

matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})

if err !'= nil {
panic(err)

}

hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
KeyStore: keyStore,

BranchKeyId: &branchKeyID,
TtlSeconds: 600,
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}
hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err != nil {
panic(err)
}
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// Create friendly names for each branch-key-id

class ExampleBranchKeyIdSupplier implements IDynamoDbKeyBranchKeyIdSupplier {
private static String branchKeyIdForTenantl;
private static String branchKeyIdForTenant2;

public ExampleBranchKeyIdSupplier(String tenantlId, String tenant2Id) {
this.branchKeyIdForTenantl = tenantlId;
this.branchKeyIdForTenant2 = tenant2Id;
}
// Create the branch key ID supplier
final DynamoDbEncryption ddbEnc = DynamoDbEncryption.builder()

.DynamoDbEncryptionConfig(DynamoDbEncryptionConfig.builder().build())
.build();

final BranchKeyIdSupplier branchKeyIdSupplier =
ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
CreateDynamoDbEncryptionBranchKeyIdSupplierInput.builder()

.ddbKeyBranchKeyIdSupplier(new ExampleBranchKeyIdSupplier(branch-
key-ID-tenantl, branch-key-ID-tenant2))

.build()).branchKeyIdSupplier();
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C#/.NET

// Create friendly names for each branch-key-id
class ExampleBranchKeyIdSupplier : DynamoDbKeyBranchKeyIdSupplierBase {
private String _branchKeyIdForTenantl;
private String _branchKeyIdForTenant2;

public ExampleBranchKeyIdSupplier(String tenantlId, String tenant2Id) {
this._branchKeyIdForTenantl = tenantlId;
this._branchKeyIdForTenant2 = tenant2Id;

}

// Create the branch key ID supplier

var ddbEnc = new DynamoDbEncryption(new DynamoDbEncryptionConfig());

var branchKeyIdSupplier = ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
new CreateDynamoDbEncryptionBranchKeyIdSupplierInput
{

DdbKeyBranchKeyIdSupplier = new ExampleBranchKeyIdSupplier(branch-key-
ID-tenantl, branch-key-ID-tenant2)

}) .BranchKeyIdSupplier;

Python

# Create branch key ID supplier that maps the branch key ID to a friendly name
branch_key_id_supplier: IBranchKeyIdSupplier = ExampleBranchKeyIdSupplier(
tenant_1_id=branch_key_id_a,
tenant_2_id=branch_key_id_b,

Rust

// Create branch key ID supplier that maps the branch key ID to a friendly name
let branch_key_id_supplier = ExampleBranchKeyIdSupplier: :new(

&branch_key_id_a,

&branch_key_id_b
);

Go

// Create branch key ID supplier that maps the branch key ID to a friendly name
keySupplier := branchKeySupplier{branchKeyA: branchKeyA, branchKeyB: branchKeyB}
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Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsHierarchicalKeyringInput keyringInput =

CreateAwsKmsHierarchicalKeyringInput.builder()

.keyStore(keystore)

.branchKeyIdSupplier(branchKeyIdSupplier)

.ttlSeconds(600)

.cache(CacheType.builder() //OPTIONAL
.Default(DefaultCache.builder()
.entryCapacity(100)

.build())
.build();
final Keyring hierarchicalKeyring =
matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/ NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{

KeyStore = keystore,

BranchKeyIdSupplier = branchKeyIdSupplier,

TtlSeconds = 600,

Cache = new CacheType

{

Default = new DefaultCache { EntryCapacity = 100 }

};

var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);
Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()
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)

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id_supplier=branch_key_id_supplier,
ttl_seconds=600,
cache=CacheTypeDefault(
value=DefaultCache(
entry_capacity=100

),

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_store.clone())
.branch_key_id_supplier(branch_key_id_supplier)
.ttl_seconds(600)
.send()
.await?;

Go

hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{

KeyStore: keyStore,
BranchKeyIdSupplier: &keySupplier,
TtlSeconds: 600,
}
hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err != nil {
panic(err)

HEM 7|13 Md 156



AWS Encryption SDK JHEER} 70| =

}

AWS KMS ECDH 7|2

AWS KMS ECDH 7|32 HICHE 7| HlefS AL&35to] & TS ALXA}F 7holl 37 CHE 2iE 7|18 Z&EAWS
KMS keysg LICt. HX{ 7|2 Elliptic Curve Diffie-Hellman(ECDH) 7| H|2f ¢ 1 2|&2 AL 5to{ &
AlRFO| KMS 7| Ho{e} £ AIXo| HEZ! 7|0 Q= ZZ}0|E! F|oMH 2R A5 =

2782 SR Eot ASE AI8SI0 HIOIH ¢33 7|1E B335l 3R cHE 7
ATh

o
(KDF CTR_HMAC_SHA384)E AWS Encryption SDK Al&35t0{ 2% EiE 7|2
£ 7| ool ChEk NIST HE AL S &4 L

7| ot B+ 64HIO0|EQ| 7| K| 7+ QA E BHEHEILICH & SAIRITL SHIE 7| 78 QAE A
2T E 57| Q= XS 32HI0|EE 7{8! 7|2 A5t OFX|2 32HIO|EE 2L S 7|2 AWS
Encryption SDK At & LICEH S 53F Al 7|~20] HIA|IX| 3| AFO|HEIAE | XKEE SYE 75 7|2t

T8 21T 718 MHE £ 9/ B9 Kdo| MIELICH o & S0{ Alice®] Za}0]4! 7|9} Bobol T
2| 7|2 74% 7|Ao 2 Hl0lE|E 3 3iehs ZS Bobol Zato|H 7|9t Aliced| HEE! 7|2 TAIE
JlYe SYs 3 7lot TR BT 718 MHHD CIOIEE HSE + UBLICH Bobol TEE 7|7t

KMS 7| H017} ot 2 Bob #Al ECDH 7|28 A44tof CIO|EIE sH=& 4 larLich

AWS KMS ECDH 7|2l2 AES-GCME At&35t0{ CHE 7|2 O|0|E{E ¥ 53t efLich O™ CFS AES-
GCME Al235lo{ IMEl 28 2T 7|2 dIolE] 7|18 25 ¢35 35t8Hct 2 AWS KMS ECDH 7|20
= 35 oiE 7|7t StLtE US = UKXIEH CHE 7|20l= H5o2 = CHE 7|28 &7 o424 AWS
KMS ECDH 7|2/& Z &g =+ &LCh.

z2 32 edof &

0Z

AWS KMS ECDH 7|22 %iir A2 22 EH0|EEE(MPL) B 1.5.001 SUEMom Che =2
ey 1o & T X[

« 9| H™ 3.x AWS Encryption SDK for Java

- for .NET E{™ AWS Encryption SDK 4.x

o MEAXI MPL 3540t #7H AHE 5= AWS Encryption SDK for Pythond S HH7 4.x.

« AWS Encryption SDK for Rust EH% 1.x

« Go AWS Encryption SDK &2| {7 0.1.x O[&f

|

AWS KMS ECDH 7|& 157


https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK JHEER} 70| =

- AWS KMS ECDH 7|&lof| ZE 38t Mt

« AWS KMS ECDH 7|3 4

« AWS KMS ECDH A4 7|2 A4

AWS KMS ECDH 7|2lo] Z!e &t H&t

AWS Encryption SDK 0fl= AWS A &0| 2235t X| 2l 20 MH|A0| AWS o|ESHX| f&L|Ct TJeqLt
AWS KMS ECDH 9|E'° A& 35tE{™ 7|2 AWS KMS keys 2|oi| CHE AWS HHot CtE0F 242 %A

Teto| HRELICH Het2 Ar8sts 7| Aok A 7|0tof| ket EekElLICH.

« KmsPrivateKeyToStaticPublicKey 7| 7H|2F AZ7|0FE AL 35H0{ O|O|EE Y5 3l5t1 =6t
o4 gh ARl HICHE! KMS 7| 0404 kms:GetPublicKey & kms:DeriveSharedSecretO] Z 8L
Ch 7|38 QIAEASHE [ & AIKtS| DER Q12 E HEER! 7|& &Y M3Bste 89 YAlRtel |t
KMS 7| H0{0f CHEt kms:DeriveSharedSecret T8H2F Qo™ FEL|C}

« KmsPublicKeyDiscovery 7| Hef AF|0LE AIE5104 CIIO|EHHE 55 |
KMS 7| m|0{01| CHEt kms:DeriveSharedSecret 2! kms:GetPublicKey #&t0| %‘REFLJEP.

AWS KMS ECDH 7|3 M

ClOIE{E &= 3t5t1 sH=3dt= AWS KMS ECDH 7|32 Md5te{™
KmsPrivateKeyToStaticPublicKey 7| A A7|0FE AFS3EHOF EHLIC.
KmsPrivateKeyToStaticPublicKey 7| #[2} A7|0tE AFE5t0{ AWS KMS ECDH 7|2€ = 7|8
sted™ Cl2 k2 NMZghuict.

ot
ot

. HFAIRF AWS KMS key ID

KeyUsage g(0| @l H|CHE NIST HZ E}
CIKEY_AGREEMENT. & AlX}o| Zzto|l

N R

. (M= AR WAIR S| HE 2 7|

RFC 528001 42|l CHZ SubjectPublicKeyInfo (SPKI)2t1 T 3t= DER @IZ T X.509 IH{=2!
7040k ErLICE. https://tools.ietf.org/html/rfc5280

i
3]
kO
ok
O
m
Py
ro
AT
on
o
1>
|0
Hu

AWS KMS GetPublicKey £+¢42 HICHE! KMS 7| Ho{o| H{E2! 7|
gheerLICY,

AWS KMS ECDH 7|2lof| Zo st #3S

rot

158


https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS Encryption SDK JHEER} 70| =

C
o)
2 AIxko] 22 7|0f 30| MBEIX| 82 FS 7Y E 25 AWS KMS 304 g Alxtel g2 7|

E 7—|AH oI-L_| E|-_
. S4lxto| HEE 7|

RFC 528001 HO|El CHZ SubjectPublicKeyInfo (SPKI)2t1E 3t= +4IXI2| DER QIR E
X.509 HEZ] 7|& XS 38Hok & LICt. hitps://tools.ietf.org/html/rfc5280

AWS KMS GetPublicKey 242 H|CHE KMS 7| Ho12| HHEE| 7|& ERF DER Q13T ¥HAlo2
abetetLct

. B MY

XEE 7| mojol M Bt FM At E AggfLict Y ARer = 4AXtel 7| mo] 25 5 AHY¥O| &
5H oF ErLCH.

oll

Fo

R=8t 2k ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

ME AbE) HEt Ho{ E2 25

L)
—~

mjo

=

et 2042 AI235104 AWS KMS ECDH 7|2/9| KMS 7|0 CHE HMIAE ANofste B2 7|2
7\5te M 2edt RE HE Hod EZE X|Z25H0F gLt

C#/ .NET

CtZ oMo M= g &IXte| K
KMS 2 ECDH 7|22 ét'*éi.
o & AIXtel HER! 7|E NS
KMS 5to{ EFARES| THHEE] 7
Mo AU&Lct.

S 7|, elxte| HER 7| & £AIXto| H{ER] 7|8 AFE5t0{ AWS

LICt O] oMol MHE MEHA SenderPublicKey It2tOIEAE A& St
grLich gaXtol HEEZ! 7|18 MSotx| o™ 7|2 0|E =& AWS
|& MBI B AMREeE = AIKEO| 7| H0{7F 25 ECC_NIST_P256

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new bytel[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations

{
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KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput
{
SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
SenderPublicKey = BobPublicKey,
RecipientPublicKey = AlicePublicKey

}
};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KmsClient = new AmazonKeyManagementServiceClient(),
KeyAgreementScheme = staticConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

CtS oMM = e AIXtS| KMS 7|, e ARtel THHE 2! 7| I £~ AXLO| IH{E 2] F7|1§ AF& 50 AWS

KMS 2 ECDH 7|32 M-dgLct. o] oAMol M= MEHA senderPublicKey It2tO|EHE AFE St

of e AIXto| HER! 7|18 MBS LCt ealXtel HEE! 7|& M33HA| fo™ 7|2I0|& & AWS
7

KMS 304 &fAlXIo| THE 2] 7|E AAHENL|CH dhAIXEeF = AIKIe| 7| H|o{7F 25 ECC_NIST_P256
ZMof| U&LICE

// Retrieve public keys

// Must be DER-encoded X.509 public keys

ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab");
ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-

west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

// Create the AWS KMS ECDH static keyring
final CreateAwsKmsEcdhKeyringInput senderKeyringInput =
CreateAwsKmsEcdhKeyringInput.builder()
.kmsClient(KmsClient.create())
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
KmsEcdhStaticConfigurations.builder()
.KmsPrivateKeyToStaticPublicKey/(
KmsPrivateKeyToStaticPublicKeyInput.builder()
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.senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
.senderPublicKey(BobPublicKey)
.recipientPublicKey(AlicePublicKey)
.build()).build()).build();

Python

Ct oMol M e AIREel KMS 7|, e AIXte| HE 2] 7| & AKXt HER! F7|§ AL&5H0 AWS
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import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateAwsKmsEcdhKeyringInput,
KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey,
KmsPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

# Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

# Retrieve public keys

# Must be DER-encoded X.509 public keys

bob_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
alice_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321")

# Create the AWS KMS ECDH static keyring
sender_keyring_input = CreateAwsKmsEcdhKeyringInput(
kms_client = boto3.client('kms', region_name="us-west-2"),
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey(
KmsPrivateKeyToStaticPublicKeyInput(

st

7|12 M35tx| domM 7|20|E & AWS
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sender_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",

sender_public_key = bob_public_key,

recipient_public_key = alice_public_key,

keyring = mat_prov.create_aws_kms_ecdh_keyring(sender_keyring_input)

Rust
CtE ool M= Y AIREel KMS 7|, & alXto| HEE] 7| & = AIXto| H{EE! 7|§ AF&5H04 AWS
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// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),
1);

// Retrieve public keys
// Must be DER-encoded X.509 keys
let public_key_file_content_sender =

std::fs::read_to_string(Path: :new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_SENDER))?;
let parsed_public_key_file_content_sender = parse(public_key_file_content_sender)?;
let public_key_sender_utf8_bytes = parsed_public_key_file_content_sender.contents();
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let public_key_file_content_recipient =
std::fs::read_to_string(Path: :new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;

let parsed_public_key_file_content_recipient =
parse(public_key_file_content_recipient)?;

let public_key_recipient_utf8_bytes =
parsed_public_key_file_content_recipient.contents();

// Create KmsPrivateKeyToStaticPublicKeyInput
let kms_ecdh_static_configuration_input =
KmsPrivateKeyToStaticPublicKeyInput::buildexr()

.sender_kms_identifier(arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab)
// Must be a UTF8 DER-encoded X.509 public key
.sender_public_key(public_key_sender_utf8_bytes)
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let kms_ecdh_static_configuration =
KmsEcdhStaticConfigurations: :KmsPrivateKeyToStaticPublicKey(kms_ecdh_static_configuration_i

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH keyring

let kms_ecdh_keyring = mpl
.create_aws_kms_ecdh_keyring()
.kms_client(kms_client)
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(kms_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
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mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

D)
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Retrieve public keys
// Must be DER-encoded X.509 keys
publicKeySender, err := utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameSender)
if err != nil {
panic(err)
}
publicKeyRecipient, err :=
utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameRecipient)
if err !'= nil {
panic(err)
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}

// Create KmsPrivateKeyToStaticPublicKeyInput
kmsEcdhStaticConfigurationInput := mpltypes.KmsPrivateKeyToStaticPublicKeyInput{
RecipientPublicKey: publicKeyRecipient,
SenderKmsIdentifier: arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
SenderPublicKey: publicKeySender,
}
kmsEcdhStaticConfiguration :=
&mpltypes.KmsEcdhStaticConfigurationsMemberKmsPrivateKeyToStaticPublicKey{
Value: kmsEcdhStaticConfigurationInput,

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create AWS KMS ECDH keyring
awsKmsEcdhKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{

CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: kmsEcdhStaticConfiguration,
KmsClient: kmsClient,
}
awsKmsEcdhKeyring, err := matProv.CreateAwsKmsEcdhKeyring(context.Background(),
awsKmsEcdhKeyringInput)
if err !'= nil {
panic(err)
}
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]

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create the AWS KMS ECDH discovery keyring
var discoveryConfiguration = new KmsEcdhStaticConfigurations
{
KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput
{
RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
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}
};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KmsClient = new AmazonKeyManagementServiceClient(),
KeyAgreementScheme = discoveryConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java
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// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput =
CreateAwsKmsEcdhKeyringInput.builder()
.kmsClient(KmsClient.create())
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
KmsEcdhStaticConfigurations.builder()
.KmsPublicKeyDiscovery(
KmsPublicKeyDiscoveryInput.builder()
.recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321") .build()
).build())
.build();

Python
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import boto3
from aws_cryptographic_materialproviders.mpl.models import (
CreateAwsKmsEcdhKeyringInput,
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KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery,
KmsPublicKeyDiscoveryInput,
)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
import ECDHCurveSpec

# Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

# Create the AWS KMS ECDH discovery keyring
create_keyring_input = CreateAwsKmsEcdhKeyringInput(
kms_client = boto3.client('kms', region_name="us-west-2"),
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme = KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery(
KmsPublicKeyDiscoveryInput(
recipient_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321",
)

keyring = mat_prov.create_aws_kms_ecdh_keyring(create_keyring_input)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client

let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
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("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Create KmsPublicKeyDiscoveryInput
let kms_ecdh_discovery_static_configuration_input =
KmsPublicKeyDiscoveryInput::builder()
.recipient_kms_identifier(ecc_recipient_key_azrn)
.build()?;

let kms_ecdh_discovery_static_configuration =
KmsEcdhStaticConfigurations: :KmsPublicKeyDiscovery(kms_ecdh_discovery_static_configuration_

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH discovery keyring

let kms_ecdh_discovery_keyring = mpl
.create_aws_kms_ecdh_keyring()
.kms_client(kms_client.clone())
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(kms_ecdh_discovery_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"
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// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

)
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Create KmsPublicKeyDiscoveryInput
kmsEcdhDiscoveryStaticConfigurationInput := mpltypes.KmsPublicKeyDiscoveryInput{
RecipientKmsIdentifier: eccRecipientKeyArn,
}
kmsEcdhDiscoveryStaticConfiguration :=
&mpltypes.KmsEcdhStaticConfigurationsMemberKmsPublicKeyDiscovery{
Value: kmsEcdhDiscoveryStaticConfigurationInput,

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create AWS KMS ECDH discovery keyring
awsKmsEcdhDiscoveryKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{

CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: kmsEcdhDiscoveryStaticConfiguration,
KmsClient: kmsClient,
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}
awsKmsEcdhDiscoveryKeyring, err :=
matProv.CreateAwsKmsEcdhKeyring(context.Background(),
awsKmsEcdhDiscoveryKeyringInput)
if err !'= nil {
panic(err)

}
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L Amo|Aet 7| 0|5 0| HE 3l °E'7'<I3PXI &*9“4 7| &tz HPOIEW = EéHZ-IEP_'.:_ 533t 7|120] A

o€ £0{ 7| HIYAHO|A HSM_012} 7| O|& AES_256_012E Al23510{ Raw AES 7|2l Mo|g 4=
UA&LICH OHCIS sHY 7|22 AFE85tod U HIo|EE ¢S &tgrLict sl HIo|EE E 5 3lsle{™
SUs 7| HYAHO|A, 7| O|& & 7| AFZE AFR 35104 Raw AES 7|2l T+ E5HAMI2.

CHS oMol M Raw AES 7|22 A 5He B2 Ho4ZFLICH AESWrappingKey B4= AL XL}
Maste 7| A2 E LIEFALICE

C
oM B Al AES 7|21 QUAEIASIEIE{TE AWS Encryption SDK for CAFS &L
EPaws_cryptosdk_raw_aes_keyrlng_new( ). ™A o|MIE 2248 raw_aes_keyring.cE & X
ShAlL.
struct aws_allocator *alloc = aws_default_allocator();
AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_name, "AES_256_012");
struct aws_cryptosdk_keyring *raw_aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
alloc, wrapping_key_namespace, wrapping_key_name, aes_wrapping_key,
wrapping_key_len);
C#/ .NET

AWS Encryption SDK for .NETOI| A $4A| AES 7|22 4 5t2{H
materialProviders.CreateRawAesKeyring() HMEE AFSELICH ™A NME 2™
RawAESKeyringExample.cs& & X 3HM2.

CHS oMol A= AWS Encryption SDK for NET 4.x HHE 2 AFSELICH

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";
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// This example uses the key generator in Bouncy Castle to generate the key

material.
// In production, use key material from a secure source.

var aesWrappingKey = new
MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

// Create the keyring that determines how your data keys are protected.
var createKeyringInput = new CreateRawAesKeyringInput

{

KeyNamespace = keyNamespace,

KeyName = keyName,

WrappingKey = aesWrappingKey,

WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6
};

var keyring = materialProviders.CreateRawAesKeyring(createKeyringInput);

JavaScript Browser

H 2} X{ AWS Encryption SDK for JavaScript 2|= WebCrypto APIM|M & & 3t Z 2|0]E|
HE JIXMSLICH 7|1~ F4517] Tofl WebCrypto B{AIE 2 HA| 7| AIRE 71X E O
RawAesKeyringWebCrypto.importCryptoKey()E Ar&35HoF grL|C}. O|= A 5tp
WebCryptodl| CHEH 2 & 3 £0| H|S7|A0lo{x 7|&o| 22 ELICt

CHS 22 Raw AES 7|32 QIAH
2. 7| Atz 0| Zolol ek AES 2H
™ aes_simple.ts(JavaScript 22t X)E 2t

8l 5t24™ RawAesKeyringWebCrypto() HIMEE ALSSHA
SN E(ENE ME D)2 KIHsH ok g LIch MA oM E =i
ZtMR.

Fa
o)
o

Cl2 oMol M= buildClient 45 AF26104 7|E 73! Z2H0IE K| AL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. £ AlE3t04 &S 5HE! EHIAIxIQ &3 stEl Oo|E 7|
=& K|gtbuildClientd =& U&LICH KM LI 2 the section called “& 5 3t E H|O|E 7|
Mg Eredg BRI,

import {
RawAesWrappingSuiteIdentifier,
RawAesKeyringWebCrypto,
synchronousRandomValues,
buildClient,
CommitmentPolicy,

} from 'eaws-crypto/client-browser'
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const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

const keyNamespace = 'HSM_01'
const keyName = 'AES_256_012'

const wrappingSuite =
RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

/* Import the plaintext AES key into the WebCrypto backend. */
const aesWrappingKey = await RawAesKeyringWebCrypto.importCryptoKey(
rawAesKey,
wrappingSuite

)

const rawAesKeyring = new RawAesKeyringWebCrypto({
keyName,
keyNamespace,
wrappingSuite,
aesWrappingKey
1)

JavaScript Node.js

Node.js AWS Encryption SDK for JavaScript 80X & A| AES 7|21 QIAEA S} 5124
RawAesKeyringNode 22iA 0| QIAEIA S MMBtLIC} 7| Rk=Z 2| Zo|of et AES & L T 2|
F("eHE ME")2 RI-gsHoF gLt A & E E24™ aes_simple.ts(JavaScript Node.js)& &
M.

CHS oAM= buildClient &8 AFE3St0d 7|2 78! HAQIE X|HEL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. & At235t04 &5 31 El MHA|X|2e| &5 3tE Cl|O|E 7|
=& M$tbuildClientd == U&LICE RIMIEH LI 2 the section called “2 5 3} E! CI[O|E{ 7|

KBt S AT SAAIL.

import {
RawAesKeyringNode,
buildClient,
CommitmentPolicy,
RawAesWrappingSuiteIdentifier,
} from 'eaws-crypto/client-node'
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const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const keyName = 'AES_256_012'
const keyNamespace = 'HSM_01'

const wrappingSuite =
RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

const rawAesKeyring = new RawAesKeyringNode({
keyName,
keyNamespace,
aesWrappingKey,
wrappingSuite,

D

Java

ol Al AES 7|22 QIAEIASIGIE{HE AWS Encryption SDK for JavaAt& & L
CtmatProv.CreateRawAesKeyring().

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder()
.keyName("AES_256_012")
.keyNamespace("HSM_01")
.wrappingKey(AESWrappingKey)
.wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG1l6)
.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())

.build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Python

I

CtE oAM= 712 7O HACIE AFE 3504 AWS Encryption SDK ZCt0|1EE QIAEAS}

L|CFREQUIRE_ENCRYPT_REQUIRE_DECRYPT. M| 0il A= GitHub2l AWS Encryption SDK for
Python 2|Z X|E 2|0 A raw_aes_keyring_example.pyE & X 5HMIL.

# Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
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JHeER 7Hol=

)

# Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "AES_256_@12"

# Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

# Instantiate the material providers

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(

config=MaterialProvidersConfig()

# Create Raw AES keyring

keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(

key_namespace=key_name_space,

key_name=key_name,

wrapping_key=AESWrappingKey,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_@1";
let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
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Go

let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagl6)
.send()
.await?;

import (

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)
//Instantiate the AWS Encryption SDK client.
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)
}
// Define the key namespace and key name
var keyNamespace = "A managed aes keys"
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var keyName = "My 256-bit AES wrapping key

// Optional: Create an encryption context

encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {
panic(err)
}
// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: aesWrappingKey,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagls,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err !'= nil {
panic(err)

g RSA HE2| & ZZ|o|8! 7| AE35tod 24 M= 2[ofM Cl|o|E 72| HICHE
OF IE(HSM) E= 7| Z2| A|ARM =z}
RSA HEZ! 7|2 C|o|E 7|1& & E5tefLCt

o8l 7|1E MM, MELUE |CH. 7|5

£33 g+ ZH0lY! 7|2 AF8350 HIO|E 7|18 S5 3HELICt 04t RSA IHE ZE SO0f|A| MEiE
£ l&Lct

535t A £353l5t= Raw RSA 7|20fl= HICHE HE2! 7| Ho{et =2to|8! 7| mo{7t Z & x|o{ofF &
L|Ch B H{E2! 7|8t /& Raw RSA 7|22 Al&35loq OIO|E{E °*§§+§¢ Ao, Z2tolH! 7|2t
= Raw RSA 7|22 AL25104 L|O|E{E 53538 £ Ql&Lct CHE 7|20 Raw RSA 7|22 £ &
Al £ &Lch HEZ! 7|2 Z2to|8! 7|2 Raw RSA 7[RI #MHstE A2 5 7|20l S8 7| o
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010 &£35t=X| EISHM L. o L& 2104 7131 AWS Encryption SDK 2 MHZ CHE m|0{2] 7|E A& 3l
01 Raw RSA 7|2& #5tX| e &LICH CHE FHUME Z[7F SLet 7] mo{ol| M L2 ZHeIX| AFHE
X7t =elsHof g LCt.

ok

Raw RSA 7|22 RSA HILHE 53} 7|2t &7 AtE Z[= AWS Encryption SDK for Python Z<2
JceMasterKey AWS Encryption SDK for Java /2| RawMasterKeyQt S5t #3 HSFLIC
THOZ HIOIEE Y336t CHE FHoZ = SUS BiE 7|18 AH&5t04 CIO|EE 55358 —’F U
&LICH RHAEH L2 7|2 38t B XstML.

@ Note
Raw RSA 7|22 HICHE KMS 7|& K|35t K| et &LICH HICHE RSAKMS 7| A& stEdH
OhE Z2 32 Qdo{7} HICHE RSAE AH&5t= AWS KMS 7|2l X[ ELICH AWS KMS
keys.
« 9| H™ 3.x AWS Encryption SDK for Java
« for NET EHHTIAWS Encryption SDK 4.x

o MEIM ot S 3| X2 32Xt 2H0|E{2|(MPL) &80t &7 AH& 8= AWS Encryption
SDK for PythonZd < 7% 4.x.

« Go AWS Encryption SDK & 2| ™ 0.1.x 0|4

RSA KMS 7|e| IHE#2! 7|7} &

]]OII

Zl Raw RSA 7|2l 2 H|0|E{E ¢ 5356t B AWS
Encryption SDK & S35 35} & KMS = i&LICt AWS KMS HICHE KMS 7[o] = Z}0|8!
20/ A

7|= Raw RSA 7|&2le &2 H;‘-EH A&LICH AWS KMS 235 35 ZHed20
SDK Etetste S slEl HAIX|IE 25358 &= QiaLICH

AWS Encryption

01|A‘| Raw RSA 7|22 7 MHE M= 2 7|18 42 E= ItY 0|§O0| ot null2 BEE C-EAEE =
5t= PEM I O| LI 2 MB35l oF AWS Encryption SDK for C& LIC}. JavaScriptol A Raw RSA 7|
2 FM5tH CHE 1o #3 S BE|X| ot 2 £ /U&Lch

on ﬂ°
>

HdAmola & ol&

7|20 RSA 7| Rt2 & AlEst7| flel Raw RSA 7|22 AL A7 MBS 7| WA H 0|AL 7] Of
52 ArSELICH o] 2f2 HIZo| obLIch & E3F 2rdo| gretets A S 3HE HIAIX| sicol] LEE &
AEZ LIEFELICH HS M = 7| 22l AAEo|M RSA 7] Hlo{(EE= ZE2tol8! 7)E A8t 7| Ul
AL m0o|A 2t 7| O|FE AHSste W0l E&LICH
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7| A O|AQt 7| O|&2 JceMasterKey & RawMasterKeyQ| 32Xt ID(E= 324X
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= KMS aws-kms 7|0 CHEt 7| HIRIA T O|A ZfE AWS Encryption SDK for C 01| 2F gf L|Ct.
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A-SE|X| ef&LICH
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A=Y= 562 AtE3HE OAEPS} SHA-256 TR A2 5HE MGF18 X HM8fLich PKCS1
D= olet HEte| 3 #EE lsiAMEr x| pdELiCH

« SHA-1 Y 2 E7} = OAEP & MGF1

« SHA-256 Y 2 =7} /= OAEP & MGF1

SHA-384 m{E ZE7} /= OAEP & MGF1

SHA-512 T 2 E7} /= OAEP & MGF1

PKCS1v1.5 THE

CHZ oAl SHA-256 THE 2 =7} = MGF11 RSA 7| 9| 371 & 74l 7|1E A& 3+0{ BA| RSA
7|22 My5te 42 2Eo{ELIC RSAPublicKey & RSAPrivateKey B AFE A7 MB5HE
7| R} 2 E LIEPHLICEH
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C

oA Raw RSA 7|22 MM35l2{TE AWS Encryption SDK for CAFS &L
Claws_cryptosdk_raw_rsa_keyring_new.

oA Raw RSA 7|2 € FHE M= & 7|& B2 E= It 0|FO0| ot nul2 ZB=E C-EXAtAE
2 ZE5l= PEM k29| LHE 2 A& 35H0oF AWS Encryption SDK for CEFL|CH &l o M|E E2{™
raw_rsa_keyring.cE & ZE5HM 2.

struct aws_allocator *alloc = aws_default_allocator();

AWS_STATIC_STRING_FROM_LITERAL(key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(key_name, "RSA_2048_06");

struct aws_cryptosdk_keyring *rawRsaKeyring = aws_cryptosdk_raw_rsa_keyring_new(
alloc,
key_namespace,
key_name,
private_key_from_pem,
public_key_ from_pem,
AWS_CRYPTOSDK_RSA_OAEP_SHA256_MGF1);

C#/.NET

AWS Encryption SDK for .NET0M Raw RSA 7|22 QIAEIAS| 52
materialProviders.CreateRawRsaKeyring() HIMEE AFSELICH ™A oAM=
RawRSAKeyringExample.cs& & XA 2.

- 12

CH= oMol A= AWS Encryption SDK for .NET 4.x H S AFS & LICH.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "RSA_2048_06";

// Get public and private keys from PEM files

var publicKey = new
MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));

var privateKey = new
MemoryStream(System.I0.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));
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// Create the keyring input
var createRawRsaKeyringInput = new CreateRawRsaKeyringInput

{
KeyNamespace = keyNamespace,
KeyName = keyName,
PaddingScheme = PaddingScheme.OAEP_SHA512_MGF1,
PublicKey = publicKey,
PrivateKey = privateKey

};

// Create the keyring

var rawRsaKeyring = materialProviders.CreateRawRsaKeyring(createRawRsaKeyringInput);

JavaScript Browser

H2te X AWS Encryption SDK for JavaScript 2|= WebCrypto 2t0|EZE[0M =3 Z 2|

OIEIEE 7IMZLICE 7|3 745t 7] ol WebCrypto HHAEZ HA| 7| AIRE 7HK
importPublicKey() BEE importPrivateKey()E At&3sHok gfL|Ct ol A &t

—

of Cigt 2E 5&0| H|IS7|A0lo{ 7|2o| 2t = ELICH 7IK 7| HIMETH A8 stE Z

- ==

dLdue|Entofg e Z=7F L ELICH

7| AtRE 77X & RawRsaKeyringWebCrypto() HIMEE AHE5t0{ 7|3

K. JavaScriptol A{ Raw RSA 7|& & F&5tH CHE Qo] #+30t SetE[X| 2 = S&'%

CHE oMM E buildClient &8 AFE3t0d 7|2 745 ’éﬁ"‘#ﬂ% XI’SEH—I
CHREQUIRE_ENCRYPT_REQUIRE_DECRYPT. & At&3tod

foh
]
-
=2
>
A
\3
]]O
Pol-
1ol

S

ebCrypto

2ol = eH

2l ololE 7|

& A|gtbuildClientd =& UELICH AFAM|SH LI 2 the section called “& 5 3HEl H|O|E] 7|

Mzt BRg AT AAIL.

HZSMR.

jn

M| oM E rsa_simple.ts(JavaScript 2 2H K1)

import {
RsaImportableKey,
RawRsaKeyringWebCrypto,
buildClient,
CommitmentPolicy,

} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)
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const privateKey = await RawRsaKeyringWebCrypto.importPrivateKey(
privateRsaJwKKey
)

const publicKey = await RawRsaKeyringWebCrypto.importPublicKey/(
publicRsaJwKKey
)

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048 06'

const keyring = new RawRsaKeyringWebCrypto({
keyName,
keyNamespace,
publicKey,
privateKey,

D

JavaScript Node.js

RawRsaKeyringNode ZEHA O Mf QIARAE MBILICH wrapKey IIZIOIEHE HEE 7|1E £
KELICH unwrapKeyIt2tO|E = Z2t0[Y! 7|E ERELICE 7|2 IE REE XIHE == UK
BF RawRsaKeyringNode #dAt7t 7|2 Y REE RIS =E HAHELICH.

JavaScriptoi Al Raw RSA 7|2 & T/ dstH CHE dof 730t S8 E[X| IS =+ [U&LICH

CtZ oMol M= buildClient &8 AFE5to{ 7|2 7B HHQIE RI™EL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. £ Ab25t0od &5 3= HIAIX|2| &5 3= of|o|E 7|
2 MgtbuildClientd == U&LICH REMIEH LI 2 the section called “&F £ 3l H|O|E 7|
M B HESHAAIL.

rH

M| oIM[E 224 rsa_simple.ts(JavaScript Node.js)E & ZHMIL.

import {
RawRsaKeyringNode,
buildClient,
CommitmentPolicy,

} from 'e@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
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CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048 06'

const keyring = new RawRsaKeyringNode({ keyName, keyNamespace, rsaPublicKey,
rsaPrivateKey})

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder()
.keyName ("RSA_2048_06")
.keyNamespace("HSM_01")
.paddingScheme(PaddingScheme.0AEP_SHA256_MGF1)
.publicKey(RSAPublicKey)
.privateKey(RSAPrivateKey)
.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();

IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Python

CHS ol Alol M= 7|2 743 HEHQIE A& 3104 AWS Encryption SDK 22+0|1EE QAR A}
L|CFREQUIRE_ENCRYPT_REQUIRE_DECRYPT. ™A ofM|= GitHub2| AWS Encryption SDK for
Python 2|Z X|E 2| M raw_rsa_keyring_example.pyE & X35IHI2.

]

# Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "RSA_2048_ 06"

# Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

# Create Raw RSA keyring

keyring_input: CreateRawRsaKeyringInput = CreateRawRsaKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
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padding_scheme=PaddingScheme.OAEP_SHA256_MGF1,
public_key=RSAPublicKey,
private_key=RSAPrivateKey

raw_rsa_keyring: IKeyring = mat_prov.create_raw_rsa_keyring(
input=keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Define the key namespace and key name
let key_namespace: &str = "HSM_@1";
let key_name: &str = "RSA_2048_06";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw RSA keyring

let raw_rsa_keyring = mpl
.create_raw_rsa_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.padding_scheme(PaddingScheme: : 0aepSha256Mgf1)
.public_key(aws_smithy_types::Blob: :new(RSAPublicKey))
.private_key(aws_smithy_types::Blob::new(RSAPrivateKey))
.send()
.await?;
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Go

Go

// Instantiate the material providers library
matProv, err :=
awscryptographymaterialproviderssmithygenerated.NewClient(awscryptographymaterialproviderss

// Create Raw RSA keyring

rsaKeyRingInput :=
awscryptographymaterialproviderssmithygeneratedtypes.CreateRawRsaKeyringInput{
KeyName: "rsa",

KeyNamespace: "rsa-keyring",

PaddingScheme:
awscryptographymaterialproviderssmithygeneratedtypes.PaddingSchemePkcsl,
PublicKey: pem.EncodeToMemory(publicKeyBlock),

PrivateKey: pem.EncodeToMemory(privateKeyBlock),

}

rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
rsaKeyRingInput)

import (

"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {

panic(err)

// Optional: Create an encryption context
encryptionContext := map[string]string{
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"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

// Define the key namespace and key name
var keyNamespace = "HSM_o1"
var keyName = "RSA_2048_ 06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create Raw RSA keyring

rsaKeyRingInput := mpltypes.CreateRawRsaKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
PaddingScheme: mpltypes.PaddingSchemeOaepSha512Mgfl,

PublicKey: (RSAPublicKey),
PrivateKey: (RSAPrivateKey),
}
rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
rsaKeyRingInput)
if err !'= nil {
panic(err)
}
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C#/.NET

// Instantiate material providers

2 Al ECDH 7|2 A 189


https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK JHEER} 70| =

var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var BobPrivateKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the Raw ECDH static keyring
var staticConfiguration = new RawEcdhStaticConfigurations()

{
RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput

{
SenderStaticPrivateKey = BobPrivateKey,
RecipientPublicKey = AlicePublicKey

}

};

var createKeyringInput = new CreateRawEcdhKeyringInput()

{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = staticConfiguration

i

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

CH2 Java A0l M= RawPrivateKeyToStaticPublicKey 7| HlSF A7|0FE AF23H0d &k AIX}
ol mzlo|el 7|2t £AIXIe HEZ! 7|2 ME{o =z FAeL|CH F 7| Hlo{ 25 ECC_NIST_P256
ZMof| U&LICE

private static void StaticRawKeyring() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

KeyPair senderKeys = GetRawEccKey();
KeyPair recipient = GetRawEccKey();

// Create the Raw ECDH static keyring
final CreateRawEcdhKeyringInput rawKeyringInput =
CreateRawEcdhKeyringInput.builder()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
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RawEcdhStaticConfigurations.builder()
.RawPrivateKeyToStaticPublicKey/(
RawPrivateKeyToStaticPublicKeyInput.builder()
// Must be a PEM-encoded private key

.senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded()))
// Must be a DER-encoded X.509 public key

.recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded()))
.build()
)
.build()
).build();

final IKeyring staticKeyring =
materialProviders.CreateRawEcdhKeyring(rawKeyringInput);

}

Python

CH= Python HIA[ME
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey 7| H|Sf A 7|02
Ar&35tod Y AIRIol Z2to|8! 7(eF = AIXte| HEE] 7|18 MAMo R FHELICH F 7| Ho{ 2F
ECC_NIST_P256 Mo U&LC.

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey,
RawPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

# Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

# Must be a PEM-encoded private key

bob_private_key = get_private_key_bytes()
# Must be a DER-encoded X.509 public key
alice_public_key = get_public_key_bytes()
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# Create the raw ECDH static keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey(
RawPrivateKeyToStaticPublicKeyInput(
sender_static_private_key = bob_private_key,
recipient_public_key = alice_public_key,

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)
Rust

Ct= Python MMM E raw_ecdh_static_configuration 7| A2F A7|0E AF& 35104 & Al
Atol ZztolHl 7| = AIKIe| HER]| 7|18 WMo =2 EELICH F 7| Ho{ 2F Y8
O{0F B L|Ct.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Create keyring input
let raw_ecdh_static_configuration_input =
RawPrivateKeyToStaticPublicKeyInput: :buildex()

// Must be a UTF8 PEM-encoded private key
.sender_static_private_key(private_key_sender_utf8_bytes)
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;
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let raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :RawPrivateKeyToStaticPublicKey(raw_ecdh_static_configuration_i

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH static keyring

let raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(raw_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Optional: Create your encryption context
encryptionContext := map[string]lstring{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
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"the data you are handling": "is what you think it is",

// Create keyring input

rawEcdhStaticConfigurationInput := mpltypes.RawPrivateKeyToStaticPublicKeyInput{
SenderStaticPrivateKey: privateKeySender,
RecipientPublicKey: publicKeyRecipient,

}

rawECDHStaticConfiguration :=

&mpltypes.RawEcdhStaticConfigurationsMemberRawPrivateKeyToStaticPublicKey{
Value: rawEcdhStaticConfigurationInput,

}

rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: rawECDHStaticConfiguration,

}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create raw ECDH static keyring
rawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
rawEcdhKeyRingInput)
if err !'= nil {
panic(err)

EphemeralPrivateKeyToStaticPublicKey
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EphemeralPrivateKeyToStaticPublicKey 7| A2 A7|0LE AFE38t0d 2IA| ECDH 7|2l =7|
3t5t2d™ CHg i 2 M3 ELict
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CtS o Alol M= EphemeralPrivateKeyToStaticPublicKey 7| A2k AF|0HE A& 504
Raw ECDH 7|22 YH&LICH & &3t Al 7|22 X|EE ECC_NIST_P256 SM0| ZHZ A 7|
Ho{E MM ELct.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the Raw ECDH ephemeral keyring
var ephemeralConfiguration = new RawEcdhStaticConfigurations()
{
EphemeralPrivateKeyToStaticPublicKey = new
EphemeralPrivateKeyToStaticPublicKeyInput
{
RecipientPublicKey = AlicePublicKey
}
};

var createKeyringInput = new CreateRawEcdhKeyringInput()

{
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CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = ephemeralConfiguration

i

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

CHS ol Aloi A= EphemeralPrivateKeyToStaticPublicKey 7| Hlef AF|0FE AFE 504
Raw ECDH 7|22 Y& LICt 223t Al 7|22 XIEE ECC_NIST_P256 S0l 2= M 7|
Ho{E ddehct.

private static void EphemeralRawEcdhKeyring() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

ByteBuffer recipientPublicKey = getPublicKeyBytes();

// Create the Raw ECDH ephemeral keyring
final CreateRawEcdhKeyringInput ephemerallnput =
CreateRawEcdhKeyringInput.buildexr()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.EphemeralPrivateKeyToStaticPublicKey(
EphemeralPrivateKeyToStaticPublicKeyInput.builder()
.recipientPublicKey(recipientPublicKey)
Lbuild()
)
Lbuild()
).build();

final IKeyring ephemeralKeyring =
materialProviders.CreateRawEcdhKeyring(ephemerallnput);

}

Python

C}S ol Al MHE
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey 7| Hl2f &
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7|0HE Ar&3tod Al ECDH 7|28 4G LICH 225t A 7|32 X[ E ECC_NIST_P256 S4d
of 2Z=2 M 7| Zlo{& dgeLct

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey,
EphemeralPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

# Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

# Your get_public_key_bytes must return a DER-encoded X.509 public key
recipient_public_key = get_public_key_bytes()

# Create the raw ECDH ephemeral private key keyring
ephemeral_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey(
EphemeralPrivateKeyToStaticPublicKeyInput(
recipient_public_key = recipient_public_key,

keyring = mat_prov.create_raw_ecdh_keyring(ephemeral_input)

Rust

CIS ol Alo|MHE 7| AIF AF7|0E AFE 35104 A ECDH
ephemeral_raw_ecdh_static_configuration 7|22 MMELICH 253t Al 7|22 x|HE
Mol EZHE M 7| Ho{E ddELIct

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;
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// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Load public key from UTF-8 encoded PEM files into a DER encoded public key.
let public_key_file_content =

std::fs::read_to_string(Path: :new(EXAMPLE_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content = parse(public_key_file_content)?;
let public_key_recipient_utf8_bytes = parsed_public_key_file_content.contents();

// Create EphemeralPrivateKeyToStaticPublicKeyInput
let ephemeral_raw_ecdh_static_configuration_input =
EphemeralPrivateKeyToStaticPublicKeyInput: :buildex()
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let ephemeral_raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :EphemeralPrivateKeyToStaticPublicKey(ephemeral_raw_ecdh_static

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH ephemeral private key keyring

let ephemeral_raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(ephemeral_raw_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"
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mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err != nil {
panic(err)
}
// Optional: Create your encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Load public key from UTF-8 encoded PEM files into a DER encoded public key
publicKeyRecipient, err := LoadPublicKeyFromPEM(eccPublicKeyFileNameRecipient)
if err !'= nil {

panic(err)

// Create EphemeralPrivateKeyToStaticPublicKeyInput
ephemeralRawEcdhStaticConfigurationInput :=
mpltypes.EphemeralPrivateKeyToStaticPublicKeyInput{
RecipientPublicKey: publicKeyRecipient,
}
ephemeralRawECDHStaticConfiguration :=
mpltypes.RawEcdhStaticConfigurationsMemberEphemeralPrivateKeyToStaticPublicKey{
Value: ephemeralRawEcdhStaticConfigurationInput,

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
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if err !'= nil {
panic(err)

// Create raw ECDH ephemeral private key keyring
rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: &ephemeralRawECDHStaticConfiguration,

}
ecdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
rawEcdhKeyRingInput)
if err !'= nil {
panic(err)
}

PublicKeyDiscovery
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XEE Z2to|8] Z|o|AM EFH F4 AL S AEELICH B AR = 4AIXto| 7| Ho 25 J M ALY O]
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R=8t 2L ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C#/ .NET

CtZ ol Al A= PublicKeyDiscovery 7| A SF A7|0tE A&3510{ YAl ECDH 7|32 oL
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}ol

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var AlicePrivateKey = new MemoryStream(new byte[] { });

// Create the Raw ECDH discovery keyring
var discoveryConfiguration = new RawEcdhStaticConfigurations()

{

PublicKeyDiscovery = new PublicKeyDiscoveryInput
{
RecipientStaticPrivateKey = AlicePrivateKey

}

};

var createKeyringInput = new CreateRawEcdhKeyringInput()

{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = discoveryConfiguration

};

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

CtZ ol Al A= PublicKeyDiscovery 7| ASF AF|0E At&3510{ HA| ECDH 7|32 oL
Ct. o 7|32 xIHEE iEFolt” 719l HE 2! 7|7t HIA|IX| AtO|HEAA Eof K{E El = 41Xt o] HEE
7|2t Lx|5tE ZE HAIXIE S5 = UL

}ol

private static void RawEcdhDiscovery() {
// Instantiate material providers
final MaterialProviders materialProviders =
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MaterialProviders.buildex()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())

.build();
KeyPair recipient = GetRawEccKey();

// Create the Raw ECDH discovery keyring
final CreateRawEcdhKeyringInput rawKeyringInput =
CreateRawEcdhKeyringInput.builder()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.PublicKeyDiscovery(
PublicKeyDiscoveryInput.builder()
// Must be a PEM-encoded private key

.recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded()))
.build()

)
.build()
).build();

final IKeyring publicKeyDiscovery =
materialProviders.CreateRawEcdhKeyring(rawKeyringInput);

}

Python

CHS ol AlolME RawEcdhStaticConfigurationsPublicKeyDiscovery 7| Hl2F A7|0LE
A&3l04 Raw ECDH 7|28 &g LICt o] 7|22 X|HE Z2to|Y! 7| HEE] 7|7+ HIAIX| At

O|HEAEN MY E +alxte| M= 7|2t UR|steE ZE HAIXIE 553 & J&LICH

ol

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsPublicKeyDiscovery,
PublicKeyDiscoveryInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
import ECDHCurveSpec

# Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
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config=MaterialProvidersConfig()

# Your get_private_key_bytes must return a PEM-encoded private key
recipient_private_key = get_private_key_bytes()

# Create the raw ECDH discovery keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme = RawEcdhStaticConfigurationsPublicKeyDiscovery(
PublicKeyDiscoveryInput(
recipient_static_private_key = recipient_private_key,

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)

Rust

CHS ol Aol E discovery_raw_ecdh_static_configuration 7| A2k A 7|0 A& 5104
Al ECDH 7|22 d8gLct o] 7|32 xIHE Zetol8! 7|o] HER! 7|7F HIAIX| AHO|HEIAE
off M E AR o| HEE! 7|9t UX|StE 2E HAIXIE §5535HE + &LICH

// Instantiate the AWS Encryption SDK client and material providers library
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1);

// Load keys from UTF-8 encoded PEM files.
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let mut file = File::open(Path::new(EXAMPLE_ECC_PRIVATE_KEY_FILENAME_RECIPIENT))?;
let mut private_key_recipient_utf8_bytes = Vec::new();
file.read_to_end(&mut private_key_recipient_utf8_bytes)?;

// Create PublicKeyDiscoveryInput
let discovery_raw_ecdh_static_configuration_input =
PublicKeyDiscoveryInput: :builder()
// Must be a UTF8 PEM-encoded private key
.recipient_static_private_key(private_key_recipient_utf8_bytes)
.build()?;

let discovery_raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :PublicKeyDiscovery(discovery_raw_ecdh_static_configuration_ing

// Create raw ECDH discovery private key keyring

let discovery_raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(discovery_raw_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)
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// Optional: Create your encryption context

encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}
// Load keys from UTF-8 encoded PEM files.
privateKeyRecipient, err := os.ReadFile(eccPrivateKeyFileNameRecipient)
if err !'= nil {

panic(err)
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create PublicKeyDiscoveryInput
discoveryRawEcdhStaticConfigurationInput := mpltypes.PublicKeyDiscoveryInput{
RecipientStaticPrivateKey: privateKeyRecipient,

discoveryRawEcdhStaticConfiguration :=
&mpltypes.RawEcdhStaticConfigurationsMemberPublicKeyDiscovery{
Value: discoveryRawEcdhStaticConfigurationInput,

// Create raw ECDH discovery private key keyring
discoveryRawEcdhKeyringInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: discoveryRawEcdhStaticConfiguration,

discoveryRawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
discoveryRawEcdhKeyringInput)
if err !'= nil {

panic(err)
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» C: multi_keyring.cpp
C#/.NET: MultiKeyringExample.cs

« JavaScript Node.js: multi_keyring.ts

- JavaScript 22} X: multi_keyring.ts

Java: MultiKeyringExample.java
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» Python: multi_keyring_example.py

CtE 7|22 BhEoiH HX 5t % 7|22 QAEHASSIMR. O] of&|ofHE AWS KMS 7|23t BA|
AES 7|22 ALS5tX|EF Xl ZE 7|22 OE 7|80 Z&8E = JU&Lch
C
/* Define an AWS KMS keyring. For details, see string.cpp */
struct aws_cryptosdk_keyring *kms_keyring =
ws: :Cryptosdk: :KmsKeyring: :Builder().Build(example_key);
// Define a Raw AES keyring. For details, see raw_aes_keyring.c */
struct aws_cryptosdk_keyring *aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
alloc, wrapping_key_namespace, wrapping_key_name, wrapping_key,
AWS_CRYPTOSDK_AES256);
C#/ .NET

// Define an AWS KMS keyring.
materialProviders.CreateAwsKmsKeyring(createKmsKeyringInput);

var kmsKeyring =

// Define a Raw AES keyring.
var aesKeyring =

JavaScript Browser

CHS oMol M= buildClient

CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. & AtE75}04

A
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TE Xﬂ?ibuildClient
Meh eeds #

import {
KmsKeyringBrowser,
KMS,
getClient,
RawAesKeyringWebCrypto,

For details, see AwsKmsKeyringExample.cs.

For details, see RawAESKeyringExample.cs.

materialProviders.CreateRawAesKeyring(createAesKeyringInput);
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RawAesWrappingSuiteIdentifier,

MultiKeyringWebCrypto,
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CommitmentPolicy,
synchronousRandomValues,
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https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs
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} from '@aws-crypto/client-browser"'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const clientProvider = getClient(KMS, { credentials })

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringBrowser({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see aes_simple.ts.
const aesKeyring = new RawAesKeyringWebCrypto({ keyName, keyNamespace,
wrappingSuite, masterKey })

JavaScript Node.js

CHS oMo M= buildClient &8 AFE35t0od 7|2 78! HAQIE X|HEL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. & At235t04 &5 31 El HA|X|2e| &5 3tE C|0|E 7|
& K|8tbuildClient® & U&LICH XFAM|EF LHE 2 the section called “ 5 3 El G|0|E 7|

M BHeE HRstAAlL.

import {
MultiKeyringNode,
KmsKeyringNode,
RawAesKeyringNode,
RawAesWrappingSuiteIdentifier,
buildClient,
CommitmentPolicy,

} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringNode({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see raw_aes_keyring_node.ts.
const aesKeyring = new RawAesKeyringNode({ keyName, keyNamespace, wrappingSuite,

unencryptedMasterKey })
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Java

// Define the raw AES keyring.

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();

final CreateRawAesKeyringInput createRawAesKeyringInput =

CreateRawAesKeyringInput.builder()
.keyName ("AES_256_012")
.keyNamespace("HSM_01")
.wrappingKey(AESWrappingKey)
.wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6)
.build();

IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// Define the AWS KMS keyring.
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
CreateAwsKmsMrkMultiKeyringInput.builder()
.generator(kmsKeyArn)
.build();
IKeyring awsKmsMrkMultiKeyring =
matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Python

CIS olAloME 7|2 75! HEQIE AFE 3504 AWS Encryption SDK 2CH0|1EE QIAEASIE
LICFREQUIRE_ENCRYPT_REQUIRE_DECRYPT.

# Create the AWS KMS keyring
kms_client = boto3.client('kms', region_name="us-west-2")

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

kms_keyring_input: CreateAwsKmsKeyringInput
generator=arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
kms_client=kms_client

CreateAwsKmsKeyringInput(

kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
input=kms_keyring_input
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)

# Create Raw AES keyring
key_name_space = "HSM_01"
key_name = "AES_256_@12"

raw_aes_keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
wrapping_key=AESWrappingKey,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=raw_aes_keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

// Create a Raw AES keyring
let key_namespace: &str = "my-key-namespace";
let key_name: &str = "my-aes-key-name";

s 713 210



AWS Encryption SDK JHEER} 70| =

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle6)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

1)

// Instantiate the material providers library
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C

matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {
panic(err)

// Create an AWS KMS keyring

awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: kmsKeyId,

}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)
}
// Create a Raw AES keyring
var keyNamespace = "my-key-namespace"
var keyName = "my-aes-key-name"

aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: AESWrappingKey,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagls,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)

colctE 7|8 ddxtolME dd7] 713 xIFgfLCH.

struct aws_cryptosdk_keyring *multi_keyring = aws_cryptosdk_multi_keyring_new(alloc,
kms_keyring);

CHE 7|12 39| ZI”22 F7t56t24™ aws_cryptosdk_multi_keyring_add_child HMEE
ArZ'hct Fotete & skl 7120l CHal HIMEE 3 ¥ E &5Hof &Lct
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// Add the Raw AES keyring (C only)
aws_cryptosdk_multi_keyring_add_child(multi_keyring, aes_keyring);

C#/ .NET

NET CreateMultiKeyringInput MAXIE ALSstH M7 7|210F xHA] 7|28 Ho|gh £ Q)
&LICH A0} CreateMultiKeyringInput &= g

var createMultiKeyringInput = new CreateMultiKeyringInput

{

Generator = kmsKeyring,
ChildKeyrings = new List<IKeyring>() {aesKeyring}
};

var multiKeyring = materialProviders.CreateMultiKeyring(createMultiKeyringInput);

JavaScript Browser
JavaScript CHE 7|22 HZAE £ Qi&LIC} JavaScript CHE 7|2 MAMXIE AFE6H MAM7| 7|2
ot o2 5t¢| 71”2 X[HE = JU&Lch
const clientProvider = getClient(KMS, { credentials })

const multiKeyring = new MultiKeyringWebCrypto(generator: kmsKeyring, children:
[aesKeyring]);
JavaScript Node.js

A&t dH7| 7|3

i
o

JavaScript Ct& 7|22 A& = & LICH JavaScript CHS 7|3 AR}

= H
1k oq st2f 71818 X|EE = U&LICH

const multiKeyring = new MultiKeyringNode(generator: kmsKeyring, children:
[aesKeyring]);

Java

do
N
ou
1o
0
o
sk
1
)

Java CreateMultiKeyringInput MAXIE AMSEHH M7
&LICH A} createMultiKeyringInput &= A& &= Qi&LICH.

final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.builder()
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.generator(awsKmsMrkMultiKeyring)
.childKeyrings(Collections.singletonList(rawAesKeyring))
.build();

IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Python

multi_keyring_input: CreateMultiKeyringInput = CreateMultiKeyringInput(
generator=kms_keyring,
child_keyrings=[raw_aes_keyring]

multi_keyring: IKeyring = mat_prov.create_multi_keyring(
input=multi_keyring_input

Rust

let multi_keyring = mpl
.create_multi_keyring()
.generator(kms_keyring.clone())
.child_keyrings(vec![raw_aes_keyring.clone()])
.send()
.await?;

Go

createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
Generator: awsKmsKeyring,
ChildKeyrings: [Impltypes.IKeyring{rawAESKeyring},
}
multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
createMultiKeyringInput)
if err !'= nil {
panic(err)

}
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5t ™Dt S EE|X| et &LICH 1.7.x O[5 H{T0 A 2.0.x 0|4 HES 2 UCl|0|E 5T HE
AWS Encryption SDK for Co| %|&l 1.x T2 2 Cl|o|EsHof gHLict AFAIEH LI Ofola
2|0l AWS Encryption SDKE & Z3HM2.

M x| 2 2l=of cHeh REAEH X[E2 aws-encryption-sdk-c 2|Z X|EE2|2] README I 2! AWS
Encrypt|on SDK for C 0flA & Q& &= QI&LICE 047]0{= Amazon Linux, Ubuntu, macOS, Windows
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Service ()2 &% &&5t= Ol HRELICFAWS KMS. AWS KMS 7|28 M85t
Encryption SDK AWS KMS AtE5t0{ CI|O|E{E EEdl= 53 7|1E dMstn ES§LICt

AlAES 7|13, HAIRSA Z7|& EE&= o| =& 2 =
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2 HAIEHE 7|1E =Y M5t E53Hof gLict
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Mx|of 2XM7I U B aws-encryption-sdk-c SIZX|EE|0| EXE M E35t7LE o] HO|X|of| Q!
S me S S ASSHHIR.

AHZ AWS Encryption SDK for C

O| FAMME CHE Z2 a2 o4 730l M X[ E|X| AWS Encryption SDK for C &f=2| 8 7|s
of CHaH AdREFHLICH.

O] Mol of Mol M 2.0.x 0|4 E{Z19] AWS Encryption SDK for CE At8 3t WS EoiFLICt
ol &t H-l’“Ig A83tE oAlE GitHub2l aws-encryption-sdk-c 2|ZX|EE| E|ZX|EE|Q| ElE|A 55
oM T ste ZEIAE &2 = JUsLICH

E AL88 Z2 e Yol cHE XbMIEH LHE 2 C oA, GitHubnhttps:/github.com/aws/aws-encryption-
sdk-c/tree/master/examples 2| aws-encryption-sdk-c 2|% X|E 2| oA 2! AWS Encryption SDK for C
AP| MEME AWS Encryption SDK for CE Z5HM| 2.

3 7|2 MME BZTSMR.

A I8t THE1E AWS Encryption SDK for CIHE LIC} 7|2 MM 7|22 AL
St= CMM M, CMM(Z! Z7|&)2 AFEste= Al Mo, AlM &2l

C E= C++ ZE0|M aws_cryptosdk_load_error_strings() HAMEE &g L|Ct. Of O
MEE ClHZof| 02 R8%t 2F HEE EC gL

main HIMEo| et Zo| 8 tHot S &35 FEL|CH
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/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

ClOIE 71§ f3&8tste Ol AHSE ciE 7|2 7|28 FIELICE O] ffX[ol M= AWS KMS 7|22

110 =7H AFESHR|EF AWS KMS key RIE[o| 2E R 9| 7|2 A = U&LICH

AWS KMS key 2| &t 33l 7|20l HE AlE5t2{™ 7| ARN EE= 2E ARNZ AWS Encryption SDK
for CXIHELICH E535 7|20M= 7| ARNS AHE 3ok &LICH REAMIEH LI& 2 AWS KMS 7|2
AWS KMS keys 0l A AlEH2 E X 5HAMIR.

const char * KEY_ARN = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(KEY_ARN);

3. MMdE g

ol A M|44E AWS Encryption SDK for CAFE 3104 3. 7/0f &t AH[gi0| EF L A E HA|IX[E ¢f
35t 7L B MO|HEIA E HIAIXR|IE SHSELICH MM2 X2| 3-8 LHLH HIAIX| 4EHE |XIF
LICt.

A

L

, 718, 2EE(AWS_CRYPTOSDK_ ENCRYPT EE = AWS_CRYPTOSDK_DECRYPT)E AM& 35104 Al
MEtLcH MM 228 #HZ5H0F 5t < aws_cryptosdk_session_reset HAEE

> me
Ol mo of

grLich.
FIRe 2 MME MAEHII AWS Encryption SDK for C AHFS2 2 7|2 & 535} A2 EEIXHCMM)
E YYELICL o] ZAE BHEHLE |X| BElStHU AXE 2Tt st

oI E S0iCha MME 1B oM Rolst 7|20 #TRIE AR ELICH ClOEIE 388 o 2=
= AWS_CRYPTOSDK_ENCRYPT&ILI|C}.

struct aws_cryptosdk_session * session =

aws_cryptosdk_session_new_from_keyring_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
kms_keyring);

4.C|O|EIE & 55 e 25580t

LICE 43 7t A LR HAES 88 £ 2 B8 31 £3 {7t A AtoH

MIAMof| M TIO|E{E *{2I5t2d™ aws_cryptosdk_session_process HIMEE A28
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E4+88 £+ 28 U3 2 ER, aws_cryptosdk_session_process_fullg
29 A2 E2|Y OIo|EHE MEISHoF 5t B2 F oA

g &8¢ = A&LICH o|E £0{ file_streaming.cpp A
E 2 Z3M L. aws_cryptosdk_session_process_fullE= AWS Encryption SDK {7 1.9.x
al 2 2 x0f| EUE|A&LICEH

MMO| HIOIEE S =36t & 7 HEl 3 Uit BIAE ZE= 28 MYstT AIO|HEIAE &
E= £38 MYHFLICH plaintext EE0= ¢35 35tst2dE HAIX|I7F £0{ U2 ciphertext &
E= &35 HMETL EHEtstE ¥ S s8HE HIAIXIE 7S L

/* Encrypting data */
aws_cryptosdk_session_process_full(session,
ciphertext,
ciphertext_buffer_size,
&ciphertext_length,
plaintext,
plaintext_length)

HI440| HIO|EIE 2555t T & TAE Z2 AOIHYAE Lo 2218 MWsD Yt HAE
E= £32 MBFLICH ciphertext EEM = 535 HMET} BHetet & 3l HAIX[7F &04
A1 plaintext EEE= 53535 HMET}F gHEtste Uit HIAE HA[XIE 7HX{SLCE
CIOIE{E S35 3524 aws_cryptosdk_session_process_full HMEE S E&LICI
/* Decrypting data */
aws_cryptosdk_session_process_full(session,
plaintext,
plaintext_buffer_size,
&plaintext_length,
ciphertext,
ciphertext_length)
HEIIRE
HE2l ++8 Yxlete{H %*’S%FE T E Aol AA82 Ot2l & 10 CiEt X E ElelAstof FLicH
J2X| o™ HZE| =71 YAE LIt SDK= 0 & °.=1% o A s=d8e = JUes S-S MSEL
Ct.
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= ot ¢l 2ix & otLtE Ar8stod &9 A& E BHE motch &9l 2% Chsat Z ol skl 2o o
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712(o: 71222 MM BtEY|)

- 7|2 Y55 7 24 ZHERHCMM)(M: 7|2 CMME AtE35t0{ MM EE= AFE AL X[ CMM BHE
71)

- GIOIE Z| ZHAl(Hl: ZIZ H FHAIZE A= 7 CMM d )

ot Aol cHet SRIMQI =7 Heotx| 2 &, &2 AAME s FA| of 2l 2ol CHer &=
£ 2elag & J&LICH &2 A 7F A X EH skl Aol cHe LiH K| & =71 f22|AELCH o] o
T2 AtEstH Zt JHAof CHEF =& ERF 7|7k SetE RXIE +~ e ZElALX| g2 xRz
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HAMo=Z ptE = 52| Zxl|ol CHEF AR 0F 2l2(ASHH ELCH AFS Ko
A= SDK7t MMst= Zixof CHEt A E #elE 20| gi& LI SDKIt
aws_cryptosdk_caching_cmm_new_from_keyring HIAME7} MMoil F=7I5t= 7|2 cMMmzt &

2 HHE BEs B2 SDKE et sl Fx ol dd & AKX E 2telgLich

H7F K| s & =& | XIEL E

0{X|= &Al aws cryptosdk keyring_release HIMEE AtE5t0o] 7|2 ZX E EE[AE
= AU&LICE Ol HMEE AHE5tH 7|—3lo| & =X S7F EO
aws_cryptosdk_session_destroyg S &350 MME ATAIE H 2l 2|AFELICH

CHS ollxoA Z[2l0] e MMdE BrEH
s |. =]

// The session gets a reference to the keyring.
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT, keyring);

// After you create a session with a keyring, release the reference to the keyring
object.
aws_cryptosdk_keyring_release(keyring);

o4 AMlMdofl Csll 7|22 MALESHHLE CMMOIM 21 E|& KMEZ S X|Hete § STE Yo 32,
7”7<1|01| CHet SEMQ H X E fXlsor & = JU&LICE 0] B2 EEl2 HMEE Al 3&5HX| OHA
CHAL MM E AXsteE R 2oz HAME o ol ALSsHX| Bf S W &= E EE|ASHA 2.

Ol H#Z 7IRE 7|22 HIOJE{ 7| 7HEE ¢ Mzt Z2 CHAM CMME ALSE [ A8 E =

g 714 CM 2 =
AU&LICH AL 7I—” ol 7 CMME BHE™ 714 CMMO| &= ZiA| 2 5of CHer =& 7tx{SLich
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/ Create the caching CMM from a cache and a keyring.
struct aws_cryptosdk_cmm *caching_cmm =

aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL, 60,
AWS_TIMESTAMP_SECS);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

// Create a session with the caching CMM.
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(allocator,

AWS_CRYPTOSDK_ENCRYPT, caching_cmm);

// Release your references to the caching CMM.
aws_cryptosdk_cmm_release(caching_cmm);

/rrr

aws_cryptosdk_session_destroy(session);
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/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();
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const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_arn);

EHA: MMdE AT

Kb 22 HHAL 717 E AH85tod MdE LT

H )

o
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DE MMolles 2E7F ZHeEiLct &= 35t5t2dT AWS_CRYPTOSDK_ENCRYPT, S %3} 35l2d
4 AWS_CRYPTOSDK_DECRYPT & StLIE MEHdSHOF B LICH 7|& MM REE A5 E{H
aws_cryptosdk_session_reset HIAMEE AFSELICH.

7122z e 44t &, SDK7t MESstsE HAMEE Ar8stod 7|20l CHet HZ & EE[ad +
AELICH M2 =3 7|7 52 713 7—'17<4|01| CHEN & =& RRIELICH MME AFstHE 713 2 Al
M Aol CHEr & =7 E2|AELLCH o X 72 E J|e2 HZEEl F+8 YXlst AHA|7H ALS

=
Sl AA7E EEAEX ES EQPELIEL

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT,

kms_keyring);

/* When you add the keyring to the session, release the keyring object */
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aws_cryptosdk_keyring_release(kms_keyring);

Y55t ZHEAE = H|Ho| ot (oo F7I 215 CIOIHYULICH 255t A| 2535 ZHHAEE K|
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HIO|EIE 25 5t6te O SUSH 455 HHAET ZogtLch 24535 HEIAEE AISIE W2
MEH ALZHO|X|2F HE ElE 2 At Lt

/* Allocate a hash table for the encryption context */
int set_up_enc_ctx(struct aws_allocator *alloc, struct aws_hash_table *my_enc_ctx)

// Create encryption context strings
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_keyl, "Example");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_valuel, "String");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key2, "Company");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value2, "MyCryptoCorp");

// Put the key-value pairs in the hash table
aws_hash_table_put(my_enc_ctx, enc_ctx_keyl, (void *)enc_ctx_valuel, &was_created)
aws_hash_table_put(my_enc_ctx, enc_ctx_key2, (void *)enc_ctx_value2, &was_created)

£
aws_cryptosdk_enc_ctx_clone &+ E AI8350 ¢ 55t HEHAEE MMoi SAHELICEH Of
4= o

[ |
SME2OIOHE S55tct & 4/2 438 = UL E my_enc_ctxoll EHELICEH

B8 HYAEE M Z2NA B0l MY EIE TabOlE(7} oblah Mol = eiuict. ol
32 TR HIAIXIS 22 3H517| Slsh MM Z2MA B8 ol ¥ EH3TEHE HAIXIS 28
MAHEN| SUsH 225 HYAETF ABEITS BLIC

struct aws_hash_table *session_enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

aws_cryptosdk_enc_ctx_clone(alloc, session_enc_ctx, my_enc_ctx)
S5CHA|: EAtEE &3 stELct

QHI HHAE

ol
=0 = il

MO

AL g2 35Hst2{H MMo| 223 ZEQI AEHHIM
aws_cryptosdk_session_process_full HMEE AFSELICH. AWS Encryption SDK B
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1.9.x 2 22.x0 TEO| W2 HIAEZ|Y 53t 2 F55E Qs MAIRELLCH AEEY
HIO|E{E & 2l5t24™ aws_cryptosdk_session_processE FZ0|M S&E&LICEH

Ql21 W= ol T AOIHBAE TEE £ TEQLICH XE|7t 2
HIZ 2 251 HAIKI7H
o)

ciphertext_output & ==
SHE ALE35t040| A= 8HEl HIAIXK|E SHEE = U&LICt.

/* Gets the length of the plaintext that the session processed */
size_t ciphertext_len_output;
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,
ciphertext_output,
ciphertext_buf_sz_output,
&ciphertext_len_output,
plaintext_input,
plaintext_len_input)) {
aws_cryptosdk_session_destroy(session);
return 8;

6EF7l: MM E HElFLICH
orx|ef EFAMIME CMM & Z7I—2ol| CHEF & =& ZBfstod MME AFME LICH

CMM2Z MME MALEsto] ZAtEE =
= AELICH MME SZ 50l AHE 5™
&5t0i Z=5 AWS_CRYPTOSDK_DECRYPTZ

r|r
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= 82 MME AFK|5t
St7{Lt CHE HIAIXIE =
aws_cryptosdk_session_reset MlA]
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O
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1294 2F EXEE 2=8LCH

C EEE= C++ ZEO0|M aws_cryptosdk_load_error_strings() HAMEE
MEE ClHZo| of? 88t 27 HEE 2L Ct
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main HIMEo|er Zo| 8 gHot S &E35H FEL|CH

/* Load error strings for debugging */
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aws_cryptosdk_load_error_strings();

2EHA|: 7|”lE FEELICH

oM CIO|EHE =5 35t6t™ S5t API7} Btetet & 55t E HIAIX|E AWS KMSHE & LCtH
Decrypt APIE% 223 AWS KMS key S 2 AtE5HX| 2 &LICEH CHA SUHE AWS KMS AHE 5104
of 5 3} AWS KMS key 0il ALt ALO|HEIAE S 25 518LICt I2{L}E AWS Encryption SDK
Ar25tH %F_%jar U 5353 AWS KMS keys AlE AFE5104 AWS KMS 7|22 XIHE + AU&LICt

553 Al ¢35 5HE IHI)\|7<|E 5353t AWS KMS keys 5t = Cl A8 E 20t 7|28 2 HE = UE
LICH o & S0 =Z|o] EX &0l AWS KMS key AHS3HE BH AL SHod 7|212 M
L|Ct. & AWS Encryption SDK 5353t 7|130] LIEFLEX| 5= AWS KMS key 8HE AH& 5HXK|
Ct. M3 E 7|2 AWS KMS keys 0| AME At&35to{ =3t E OO 7|8 523E &= gl 8
2l AWS KMS keys °I7F HolE 7|18 %§_§P b= Ol AFSE[X| A AHLE EEXIE 7|- AWS KMS
keys o|& AtE35t01 5558 0| gi7| MEol 553 =&0| A Lct.

=335 7|20] AWS KMS key CHAHE X|HE e ST 7| ARNS AFEaHof Bt 2% ARNR
ot 5 3l 7|2l0i B 3{ELICEH AWS KMS 7|2 AWS KMS keys OMHE AlEstE Ol E 20| e
0

&t MM g 2 ZEMAWS KMS 712! AWS KMS keys Of| A Al8,

O| oMo ME EXILEE & 53 st= Ol AWS KMS key At El 3t st 2 FHE 7122 XY
gfLICH ol ZEE A™st7| ™ol ol 7] ARNS 3t 7|2 " Lct.

I=0I'

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

struct aws_cryptosdk_keyring *kms_keyring =
ws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_arn);

BEAl MME A FELICH

HBER 7|2 E AFR5H0d MME MdEFLICEH
AWS_CRYPTOSDK_DECRYPT ZEE Al2350{ MM T A48FLICE

71222 MME dMEt £ SDK7t MBst= HAMEE AL&35to 7[—2lol Ciet &= & 2ElA" £
A&LICE. HI/.E'% =3 Set 7|12 AANof Cist X E |X[etH, MMt 7|22 MM e m 2
S|AELICEH O] X IRE 7|82 HEE| =8 YUXIstD A7 AHE 5 [ 2|7} & 2lAE]

X| =& EotELICE

struct aws_cryptosdk_session *session =
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AWS Encryption SDK

aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,
kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

Aede 25355ipdH 25312 Q6] TAHE MMM

HO

| HIME== AWS Encryption
?let A EIAsLICH A

aws_cryptosdk_session_process_full HHMEE AHSE L
3l E %l
FxoM =&

C}. o
SDK % 1.9.x 2 2.2.x0f TUEIRICH, HAEEZ|Y A5 35 L 555
Ez[Y HIo|E & AEl5tE{™ aws_cryptosdk_session_processE

5355 A AO|HEIAE ZlEE= Q2 Lo o|n YHHEIAE ZE= £3 e Lt
ciphertext_input EEO0|s= 255 HM=7} gtetst & S 5HEl HAIX|7F Q&LICH ®EI7L 22
T|™ plaintext_output ZEO| et HIAE(FRS5HE) EAIE0| ZEELICH

size_t plaintext_len_output;

if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,

plaintext_output,
plaintext_buf_sz_output,
&plaintext_len_output,
ciphertext_input,
ciphertext_len_input)) {

aws_cryptosdk_session_destroy(session);

return 13;

HAIXIE SE 36t Ol AFSE AX| 53t ZHEAEN HAIXIE L& 5HE M MBE dE 3t =
AE7I ZEE[0] UK HRUSHM. dE 5 T4 24 EE[RHCMM) 7 HIAIXIE & E 3517 o
MBE L35t HHEAEN HO{E F7HE &= U222 AX| &E 3t HEAE F7t Hof7t Z&E
= A&LIcH

olME g5 35 ZHEIAE T} SDKY} BhEtste A5 5HE HAIX|o| Z& oz 5535 m &35 A
HIAEE M3E ZR7F AWS Encryption SDK for Cei&LICt 3t X|2t £33} = YR HAE
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HZA| MM SHA 1|
235t o AR E

const struct aws_hash_table *session_enc_ctx
aws_cryptosdk_session_get_enc_ctx_ptr(session);

OHCHS &535HE | SAFSE my_enc_ctx SHA| 0|20 & =3}

gtofl A& El my_enc_ctx SHA| E|O|E 2| ZF 017} S 53501 AFEEl session_enc_ct
O|2of LIEILI=X| B IgrLCt =2 Z|7t JUHL s (2] 240
7 HAIXIE &g gLct,

for (struct aws_hash_iter iter = aws_hash_iter_begin(my_enc_ctx);
aws_hash_iter_done(&iter);
aws_hash_iter_next(&iter)) {
struct aws_hash_element *session_enc_ctx_kv_pair;
aws_hash_table_find(session_enc_ctx, iter.element.key,
&session_enc_ctx_kv_pair)

if (!session_enc_ctx_kv_pair ||
laws_string_eq(
(struct aws_string *)iter.element.value, (struct aws_string
*)session_enc_ctx_kv_pair->value)) {
fprintf(stderr, "Wrong encryption context!\n");
abort();

[a

6EHA: MM E HelLc.

st ZAHMAE S &HOIgH = MME AKstHL MAISE & QJ&LICH MdS M= dsliof st

EE = |_|_ A
AL aws_cryptosdk_session_reset HMEE AFSELICEH

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK .NET&

AWS Encryption SDK for NET2 C# ! 7|El NET Z22f 20{Z2 o E2|7|0|MH2 &3l = 7HY
AHE 28t 2210|ME & &5 3| 2to|EH2|ILICE Ol Windows, macOS, Linux0llA x| ¢4 LICt.
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® Note

AWS Encryption SDK for .NET ™ 4.0.02 M|A|X| At AWS Encryption SDK CHS L|C}.
[H2tA T 4.0.022 2 ESHE HIAIX|E= for NET H™ 4.0.0 O|4 220t 55518 = AWS
Encryption SDK J&LICH CHE Z2J21Y Qo FHC 2= 553 = eigLch

AWS Encryption SDK for .NET ™ 4.0.12 AWS Encryption SDK H|A[X| AbFof| k2 |
AXIE BHgstn OhtE Z2 38 Q10 73 &5 28F = JU&LUct 7|[2Xo 2 H

2 4.012 HY 4.0.022 Z335HE HAIXIE el€ = UELICH IBLE HT 4.0.022

ot S SLEl HAIRIE E535t6HX| gtoed™ Z20|1E T} O|248 HIAIXIE SiX| et E
NetV4_0_0_RetryPolicy £4& X[HELICH AtMIEH LI 2 GitHub 2| aws-encryption-sdk
2|ZX|EE0M v4.0.1 EE[A HEE HZE5HMR.
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- CHA| ¢ 2|& MEZ X" AWS Encryption SDK, & 3 3HEl OI0|E{ 7| A&, AWS KMS CHE 2™
7l M8 SoM SME 785t WHE EoiF = oldle AME FESHM 74 AWS Encryption
SDK.

« AWS Encryption SDK for NETS AIE8t ZZ a2 of| CH8t REM|IEH LHE 2 GitHub2l aws-
encryption-sdk 2|ZX|E2| aws-encryption-sdk-net C|HEE|E & XM 2.

=S|

« AWS Encryption SDK for NET M x|

« AWS Encryption SDK for NET C|EHHZ
« AWS Encryption SDK for .NET 0i|A

AWS Encryption SDK for .NET AX|

AWS Encryption SDK for .NET2 NuGetH| A AWS . Cryptography.EncryptionSDK Ii7|X]
2 A8% £ Ql&LICEH AWS Encryption SDK for NET A x| 2! 2= of CHE REM|I8H LI 2 aws-
encryption-sdk-netZ|ZX|EZ|2] README.md I}E & X 3FIAM L.

& 3.x

AWS Encryption SDK for .NET HHZ 3.x= Windows0l B NET Framework 4.5.2~4.82 K| &L
Ch X|ElE 2E 2Y #|A0l A .NET Core 3.0 0|4 & NET 5.0 O|& 2 X|dEL|Ct

7 4.x

AWS Encryption SDK for .NET ™ 4.x= .NET 6.0 & .NET Framework net48 0|4 & X|#4&fL|Ct.
& 4.x0l= .NET v38 AWS SDK7t E8fL|ct,

AWS Encryption SDK for .NET0{= AWS Key Management Service (AWS KMS) 7|& A28 K| ot
Bt SDK for .NET 7} 2 tL|Ch NuGet I{Z7|X|Q} &7 A xIELICH Z2{LF AWS KMS 7|E A& 35t
X| et= 8 AWS Encryption SDK for .NETO|E= AWS HI™HAIZ AWS 5 EE= AWS MH|AQS| &5
80| 25K A&LICH Rt B2 AWS AY -0 tigt =222 MME FHESM e AWS
Encryption SDK & 74 AtE AWS KMS.

AWS Encryption SDK for .NET C|8{Z

AWS Encryption SDK for NET2 21 & ‘448t X| 2L &LICH. AWS Encryption SDK for .NET2| of 2|=
of Q| HIAIX|E ot X|BH ARH X2 M5t x| ef&LICH
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CIHZ o =20| £/ 5 SDK for NETHA 22012 gMstsHoF gLt of 21 & 2F HAIX|=0]
M et MStE @7 E AWS Encryption SDK for .NETS| 27 SDK for .NET & 7#85l= ol =&0| E

SDK for .NET == Q& LICt SDK for NET 22201 CHEt =Y 2 AWS SDK for .NET 7H& A} oFLHA 2]
AWSLogging2 & Z=35AML. (0l FHME E2{™ .NET Framework 2EIXE Ho{x E7| MM S & &5

ML)

AWS Encryption SDK for .NET O{|A|

CHS ol X0l A= for AWS Encryption SDK .NETZ2 AF835l0f T2 320 Y
mEE 2o{FELICH §3| AWS Encryption SDK 2! ZiZ B2 X} 2to|28]
HOS Z HMEE 3&57| Mol HAMES| 24 Ho|st= ZHAE 2
for NETOIAM AtE5t= 2 T O H|RELICH

CHA| 21 2|1E MEZ XI5 AWS Encryption SDK, &£ 3HE HIO|E{ 7| A&, AWS KMS CHS 2™ 7|

N
A8 SHAM SME Tdsts 22 EodF £ oMl MME # X574 AWS Encryption SDK.

for NET2 AtEEF Z 2220l AWS Encryption SDK CH8F AFA|EF 0| A= GitHub 2| aws -
encryption-sdkZ|ZX|EE| aws-encryption-sdk-net CIEEZ|0] U= M E HZHAL.

AWS Encryption SDK for .NET2| G| O|E{ & S 3}

ol ool A ClOE|E 23 35tstE 7| MEIS HodELICH stLte] AWS KMS 2iE 7|12 S E|E
ClolE| 7|2 & ntadg g5 38HehLct.

1EHAl: AWS Encryption SDK & R E S Z At 2tO|EEHE|E QIATHASIEILIC.

MX AWS Encryption SDK 2! R{E S ZAt 2H0|EEHEIE EHAASIELICH ol HMEE A8 35t0d

QIAEIA
CloIE{E & & 3t5t 1 3iS AWS Encryption SDK & LICH 74 24 SZX 2lolE8{2[e] HMEE
AHE35t04, OIOIEE B35t 7|8 XIHste 7|22 BHE &+ /U&LUch

AWS Encryption SDK & {2 SZ At EtO|EB{EIE QUAEASS= LE2 for . AWS Encryption
SDK NET H{™ 3.x2+ 4.x Ztofl CHE LICt. CtS EtAIE= for . AWS Encryption SDK NET2| HHZF 3.x2t

4x0|M 25 SLFLICE.
Version 3.x

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();

var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders(
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Version 4.x

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

2EA|: 7]=)ol| CHer 1= A& g ELct.

i

7128 BrEE Z HMEo= siiEste 23 A 2eia7t J&LICH ol& S04,
_|

CreateAwsKmsKeyrlng() HMEQ| Q128 ZHX|E BHE2d™H CreateAwsKmsKeyringInput £

Eao QIAHAS WEFLICH

0| 7|2l0| l2dof MAM7| 7|8 X|H3IX| BT KmsKeyId Zt2HOIE{Z X|HE B KMS 7=
MAM7| Z|LICH CIOIE{E & &tst= OO 7|8 MMdstn g5 stErLct.

O| 2124 ZHx|ol= KMS 7| AWS 2|71 ofof| CHEH AWS KMS Z2H0IHE 7 L B LICE AWS KMS
Z2oto|¢EE M5tE{MH0AM AmazonKeyManagementServiceClient EEiAE QUAEASIFE
LICt SDK for .NET. Tt2tO|E{ 10| AmazonKeyManagementServiceClient() ¥MXIE =

™ 7|22 Z2to|dET BHEo{EILICt

g3

AWS Encryption SDK for NETZ ALE% &f Z2t0] AAEE|= AWS KMS 7|20l 7] ID, 7| ARN,

23 0|8 & HE ARNZ AFE5H04 KMS 7|E AlEE £ Ql&LICH S350 AFSEl= AWS

KMS 7|20l M= 7| ARNZ AL&36101 Zt KMS 7| AJHalof gfLICt S5 35t0f 253 7|22 RiA
85t B9 ZE KMS 7/0i 7| ARN AEXIE AFSEL

<

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object
var kmsKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

3EHAl: 713 E S EFLIC

7|38 MystoiH 7|2 = A E AE5t04 7|13 HMEE EEFLICE O] oiA|ol M= KMS 7|
E 3tLto AF23HE CreateAwsKmsKeyring() HMEE AFSELICEH

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);
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4EHA|: ef S5t HEAE S HolgfL|ct

s ZHEAE = MEY A OIX|HOM & Z 3} 2fd o HE 24 ILICH AWS Encryption SDK. H|
2ol ot 7|-2f Wo{E stLt Old Helg + AU&LICH

® Note

AWS Encryption SDK for NET HHZ1 4 x0lME 2ot 53 HEAE CMME AHE5l04
DE o535 Qo Y535t HEHAES Q5 £ o)

== I

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()

{
{"purpose", "test"}
Iy
S5EHA: et S 3tof CHEE 12 ZHA|E A= Ct

Encrypt() HIAMEE £&357| ™Mol EncryptInput 2ciA 9| QIAEAE MMFILICH.

string plaintext = File.ReadAllText("C:\\Documents\\CryptoTest\\TestFile.txt");

// Define the encrypt input
var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

EncryptionContext = encryptionContext
};

BEHA: Uit HIAEE ot s igtLct

o

fod Ut A ES

o

b7|E

mo
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Encrypt() HAME7Z} &= EncryptOutputdls & 3HE HIA|IX|(Ciphertext), & E 3}
ZHEIAE L dT2[&E MEZS 7HKME HMET /&Lt

var encryptOutput = encryptionSdk.Encrypt(encryptInput);
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7EA: ef 3 8HEl HIAIXIE 7FME L CH

AWS Encryption SDK for .NET2| Decrypt() HME

= EncryptOutput QIAE A
Ciphertext HHE 7txXdSLIC}.
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var encryptedMessage = encryptOutput.Ciphertext;
AWS Encryption SDK for NETS| 8t ZEMM 555
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Ct =33 7|1212| 7|0l = HIOIEE Y= 3tet 7|7t otLt Of4f Z & k|o{ok & Lct,
Ol oflMof A= AWS Encryption SDK for NET2 Al23501 248t R oM E55t6tE 7|2 ES

Ho{ELICh

1EtA|: AWS Encryption SDK & RHE S 2 XAt 2tO|EE{EIE QIAEA
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sterLlct,

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());
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string keyArn = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
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// Instantiate the keyring input object

var kmsKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

3EHA!: 7|”lE &L

Ol M M= 555t 7|32 dA45t7| 28l CreateAwsKmsKeyring() HIMES 7|3 o123 2%
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var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);
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= ncryptionContext ut2t0|EeE A8 35t
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EncryptionContext O 2tO/EE AFR5t0d U550 AR = 2535 HEIAEJ| AFO|HEIAEES
Z3tote O M8Els 2535 AEAEN ZE /o] U] ST =72 &

4 Zo| MED A LEE MEZS A85tE R CIXKIE MES 2850 &S5 ZHEHAE

m|0{& AWS Encryption SDK F7}&L|C}.
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var encryptedMessage = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput

{

Ciphertext = encryptedMessage,

Keyring = keyring,

EncryptionContext = encryptionContext // OPTIONAL
};
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5CHA|: ALO|HRIAEE S5 3t LICTH
var decryptOutput = encryptionSdk.Decrypt(decryptInput);
6Tt f S 3F ZAEAE - HH 3.xE & QlgfLch

AWS Encryption SDK for .NET HH™ 3.x2| Decrypt() HIMEE &35t HEHAEE AI&3X| o
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// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
decryptContextValue)
|| 'decryptContextValue.Equals(contextValue))

throw new Exception("Encryption context does not match expected values");

AWS Encryption SDK for NETOHM AM 7|2l AHE5t0 555

stE 2IF KMS 71& X3t CHAl, KMS 7|18 XIY3tx| et

= UELICH S EXO A 7]oi CHEF AWS Encryption SDK 5 % 3} 1EEFOI AE B2 AHY 9|E'%
5t CIOIEHE 2t 588t KMS 7|1& A8 5104 LIOIEE S5 3tE = U&LICH 2 ALEHIE 2I5H
E IE|[M AWS HH o £ 7|12 AL8E + U= KMS 7|18 NMEtste AM HE{E FIHE

A > 0H o
02 Ol me o

AWS Encryption SDK for NET2 ZZI0|¢E 7 2 F AWS KMS 7|2 A
Hatiof st= M CHE 7|22 MSELICHAWS 2|, 22H0[HEQ 21T %*§§P
St= Ol MA8E = A= KMS 7| MEtEfLIcH F 7|29 &= x|z HE AA

CHS Mo = AWS KMS HM 7|2 & A LB E AHE5t0d HIO|EHE S35 8stE HEE 20i&E
LICt.
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1EtA|: AWS Encryption SDK & RH2 S ZAt 2t0|E2HEIE QIAEASFLICEH

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

2EA|: 7|=)ol| CHer 2= A& G ELct.

7|13 HMEQ| mt2t0|EeE X[HE5iod™ U= N E M
SDK for NET2| Z 7|2 HIMEO|= aiE = A7t Q&LICEH o] iAo M=
CreateAwsKmsDiscoveryKeyring() HMEE A& 7|22 BrE7| 2ol i=doi CHE
CreateAwsKmsDiscoveryKeyringInput 22iAE °._|éE._‘| stefLct.

FLICF. AWS Encryption

It i
L oy o
2r

List<string> accounts = new List<string> { "111122223333" };

var discoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(),
DiscoveryFilter = new DiscoveryFilter()
{
AccountIds = accounts,
Partition = "aws"

[

};
3EA: 7|2l MdELICt

ol oAl HE E 53t

7|22 MM357| 30 CreateAwskmsDiscoveryKeyring() HAES}
20 olad R = AL

var discoveryKeyring =
materialProviders.CreateAwsKmsDiscoveryKeyring(discoveryKeyringInput);

4THA: 25 501 CHEH 223 Z4RIS AABLICH

Decrypt() HAMEQ| = ZHX|E BHEE{M DecryptInput EHAE QIAEASIFILICEH
Ciphertext It2tO|E{Q| Zt2 Encrypt() HAET} BHEHSHE EncryptOutput ZH&| 2
Ciphertext HE{ILIC

AWS Encryption SDK for .NET HH™ 4 x0{| A= MEHX EncryptionContext IZtOIEHE AFE
04 Decrypt() HIMENM & 53 HEAEE X|HE £ l&LICH
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EncryptionContext O 2t0|E|E AI2510] 255101 A2 =l 55 HEIAE T AIO|HEIAEE
235355t Ol AFRE|E 255 HEIAEN ZEE|0] YEX| EQlgtLc = 7|18 o

o ZHo| M EH LT EE MERS A5t AR ORI MBS T Esto] 255 HEAEDL
m|0{& AWS Encryption SDK F7}&FL|C}.

var ciphertext = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput

{

Ciphertext = ciphertext,

Keyring = discoveryKeyring,

EncryptionContext = encryptionContext // OPTIONAL
i

var decryptOutput = encryptionSdk.Decrypt(decryptInput);

50HA|: ¢t 55 ZAEIAE - B 3.x2 =QlgtL|ct

AWS Encryption SDK for NET H% 3.x8| Decrypt() HMEE=M &E35 ZHRAEE 7HX{2X|
f&LICtDecrypt(). = 38tE HIA|IX[S| HEICIO|E{MM FZ 8 HEAE ZfS 7PX4§L—|EP. St x|
OF bt Bl A E 2 HHaHstHLF AFR5H7| 70, AO|HEIAES

Eo &35 Al MSEt 535t HEIAET ZEE|0] JUEX| £
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St B2 CIXI"H MEE X & sto] 5351 ZAHAEof I0{& AWS Encryption SDK F7+&LICtH

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
decryptContextValue)

|| 'decryptContextValue.Equals(contextValue))

throw new Exception("Encryption context does not match expected values");
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AWS Encryption SDK Go&

O #X[o M= AWS Encryption SDK for Go& AxI5t1 AtE5t= WEHE MHEELICH AWS
Encryption SDK for Go& A& et Z 220l CHE REMIEH LHE 2 GitHubol| M aws-encryption-sdk
2|ZX|E2[2| go CIHEEIE XML,

AWS Encryption SDK for Go= CHS 1t ZH2 & AWS Encryption SDK 0{AQ| CHE 2 3@l do{ 7

240t CHELICH

. Olo|E 7| 7HAle K| E|XK| et&LICt 2 2{Lt AWS Encryption SDK for Go= CHA|
&2 MO AWS KMS HSX 7|28 x|ghLct.

« AEZ|A OO|E{7} X|HE|X| &2

POI-

3t Xtz 7Y

AWS Encryption SDK for Go0ll=2| CtE& 210 73 B{7 2.0.x O &0l & 2 & 2t 7|50]
0] Q& LICH AWS Encryption SDK. Z124LF AWS Encryption SDK for GoE AF&3t0{2| CHE 240
Q12.0x Ol HM2Z &5 3HEl OIO|E{E 5 53 AWS Encryption SDKStE @< 73! Haig

OF 8 4 UALICH RLMIEH LIS 2 73! B& M5 W BEFMIR.

AWS Encryption SDK for Go= At 2 dste 4] &¢l 210421 Dafny AWS Encryption SDK 2| |
Z0|H, O|§ 73E I =2 0| E|AESHT| ICh 2 A, 715X HEdEg Edsle X

ol &30l A AWS Encryption SDK 2| 7|s& F3ist= 2to|EE{2[7F EHlRI&LICY.
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7| A8 S0l SHE FHSE WHE E0iF £ oM MME XML 74 AWS Encryption
SDK.

« AWS Encryption SDK for GoZ 71435l AL 3l
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AWS Encryption SDK for GoE Ax|5t7| Mof Ct& A =740| J=X| = elghLct
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https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/
https://github.com/dafny-lang/dafny/blob/master/README.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/examples
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GoQ| X|¢El= HH
Go& o= AWS Encryption SDK Go 1.23 O|4t0o| Ze8tL|C}.

Go CI2Z = 4l ™Mx|of cist REM|EH LI 2 Go installationE & Z5HMIL.

Z| &1 HZ 2| AWS Encryption SDK for Go& x| LICt. for Go x| & 2= AWS Encryption SDK 0f
CHEE REMIBH LI 2 GitHubOll A aws-encryption-sdk 2% X|E 2|2] go CIAE{Z|0of = README.md
AASHMAIR.

)||
>‘|

=
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« AWS Encryption SDK for Go A x|

go get github.com/aws/aws-encryption-sdk/releases/go/encryption-sdk@latest

- A5 Atz SSA e0|EE{E[(MPL) AR

go get github.com/aws/aws-cryptographic-material-providers-library/releases/go/mpl

AWS Encryption SDK for Java

O| &M= AWS Encryption SDK for Javag Mx| & A&tz W2 MEELICH E A8 T
Jef ol chEt REMIEH LHE 2 GitHub2l aws-encryption-sdk-java 2|Z X|EE2|& AWS Encryption SDK
for JavaR = 3tM 2. API 8B ME 2 24™ AWS Encryption SDK for Java& Javadoc2 & E5HML.

- MAX|

« AWS Encryption SDK for Java 0| Al

A=A

E Mx|5H7| ™ol ct AP Z=740] Q= X| AWS Encryption SDK for Java® Q1&g L|C},

Ax 240


https://go.dev/doc/install
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/README.md
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-encryption-sdk-java/
https://aws.github.io/aws-encryption-sdk-java/

AWS Encryption SDK JHEER} 70| =

Java 7Hgf B4

Java 8 O|& 0| ER 3 LIC Oracle ¥ AtO|EO{|A Java SE CHREEZ2 0|S8 CHZ Java SE
Development Kit(JDK)E& CI2 2 =504 A x|&LICEH

Oracle JDKE At835HE < Java Cryptography Extension(JCE) Unlimited Strength Jurisdiction
Policy Filee CH2 2E=35t04 x|l oF & LICt.

Bouncy Castle

0= Bouncy CastleO| AWS Encryption SDK for Java Z 2 &fL|C}.

« AWS Encryption SDK for Java ¥ 1.6.1 0|20 A= Bouncy Castle2 A+9%+04 &S 3 HAE
AlZststm ==t ELCt o] @7 AMEE 5F5H7] 2I5H Bouncy Castle E£&= Bouncy Castle
FIPSE AFE & = U&LICH Bouncy Castle FIPS x| & F/of it =2 BC FIPS MY
M, 55 A HBAM L 2ot ¥ PDFE FESHAM L.

 O|™ H{ZT2Q| | M= Java& Bouncy Castle2| & 3t APIE AWS Encryption SDK for Java AHE
grLICH O] 2 F AFE 2 H| FIPS Bouncy Castle2t BFE&HL|CH

_>r_

Bouncy CastIeOI 1= A2 Java® Bouncy Castle CHR2 ZE Z 0|535t0{ JDKOI| sHE 5t 32
A ot E Ch2 2 EFLICH Apache Maveng A& 36+0{ & Bouncy Castle S & At(bcprov-ext-

jdk150n)& OFE|®E I &= Bouncy Castle FIPS(bc-fips)& OIE|HEE JHX{E = /U/&LICH.
AWS SDK for Java

9| 7 3.x0ll= AWS KMS 7|22 A& 5t X| AWS SDK for Java 2.x2 {2 7+ AWS Encryption
SDK for Java 2 gfL|C}.

% 2.x 0|3t AWS Encryption SDK for Java =7t B 5HX| &f&LICH AWS SDK for Java. 11
BALt AWS Key Management Service (AWS KMS)E OtAE 7| SZ A2 AF& 524 AWS SDK for
Java 7} E Q& LICt. AWS Encryption SDK for Java HH7 2.4. 0—=|'—E'|._ 1.x & 2.x8 AWS SDK for
Java. AWS Encryption SDK code % AWS SDK for Java 1.x & 2.xE 25 AWS Encryption SDK
for Java X|HolH &5 28& £ Q&LICE o & E04, AWS SDK for Java 7H .x& X|¥st= AWS
Encryption SDK ZE 2 H|O|EHE &= 3tetT7t X|5t= I = AWS SDK for Java 2.x (= 1 B
CH)E AF83tod 25 35HE 4= U&LICH 2.4.0 AWS Encryption SDK for Java 0| HHE Q= AWS
SDK for Java 1.xBt X|&ELICH H™ AO|0|Eof CHet AbAEH LHE2 MM E AWS Encryption
SDKE Z35tM|20F0| 120|144 AWS Encryption SDK.

AWS Encryption SDK for Java ZE& AWS SDK for Java 1.x0| M £ [0/ EE mH AWSKMS
PIE{H 0|4 in AWS SDK for Java 1.x01| CHEF #EE KmsClient RIE{HO|A inoi| CHEF &=
Z AWS SDK for Java 2.xHF&L|C} AWS SDK for Java 2.x. AWS Encryption SDK for Java &
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https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/about/bouncy-castle-fips-faq/
https://www.bouncycastle.org/about/bouncy-castle-fips-faq/
https://www.bouncycastle.org/documentation/
https://www.bouncycastle.org/documentation/
https://bouncycastle.org/download/bouncy-castle-java/
https://maven.apache.org/
https://mvnrepository.com/artifact/org.bouncycastle/bcprov-ext-jdk15on
https://mvnrepository.com/artifact/org.bouncycastle/bcprov-ext-jdk15on
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/package-summary.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/package-summary.html
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KmsAsyncClient °|E-|TH|0|*% K|35t x| et&LIcth Eft kms W ZJAH O|A CHAl kmssdkv2 Ul
UAH 0| A L] AWS KMSE 2 ZHAM|E AIESHE S T EE U O|ESIML.

E Mx|524™ Apache Maven2 AWS SDK for JavaAl-& & L|C}.

« T AWS SDK for JavaE E4 422 7 224™H pom. xml IO MASHMIL2.

« AWS SDK for Java 1.x2| AWS KMS 2 =01 CHHAEt S&H S MdsigiH EH
2 METDE artifactId® HHEELICtaws-java-sdk-kms.

+ AWS SDK for Java 2.x2| AWS KMS 2 E0i| CHs{MEF S&HE WdsteiH 5L 2 & X|E I
2 M2 M. groupIdE software.amazon.awssdkZ, artifactIdE kmsE AXFLICH.

AEMIEH L& 2 AWS SDK for Java 2.x 7HEFRF FLHA{ 2] AWS SDK for Java 1.x2F 2.x2| 0| S

xl-?t°|.k||o

AWS Encryption SDK 7H&f X} PHLHA{S| Java MMM =E AHE &’ LICH AWS SDK for Java 2.x.
=FN
AWS Encryption SDK for Java®l %4l HME MR[ELICEH

(® Note
2.0.0 AWS Encryption SDK for Java 0| 9| 2 & B2 end-of-support EF 70| Q& LICH
FC Lt Olo|EI1E HAE5sHR| &t T H{ZF 2.0.x 0|40l A AWS Encryption SDK for Java 2| Z| 4l H
Mo 2 OtHSHH YO0 EE = J&LICH 2Lt HH 2.0.x0 EE MEZ2 EoF 7[s2 O]
ot 1 s BHE|X| f&LICt 1.7.x Ol5t HEH0 A 2.0.x O|4 TS E H|0|E 52T HHK
AWS Encryption SDK2| %Al 1.x HM S 2 0| E5{oF & LICH RHAIEH LI& 2 oto|zeo]M
AWS Encryption SDKS & =M.

CH2 1t ZH2 AWS Encryption SDK for Java R Z & Mx|& & QU&LICH.
eSS

E M=x|5t24™ aws-encryption-sdk-java GitHub Z2|ZX|E2[& AWS Encryption SDK for Java= X
StHL Ct2 2 =8 ct

Apache Maven AL

A

e
I

AWS Encryption SDK for Java = Ct& &%+ H2let &7H Apache Maveng &3l AHE
Lict
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https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/KmsAsyncClient.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-java/
https://maven.apache.org/
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<dependency>
<groupId>com.amazonaws</groupIld>
<artifactId>aws-encryption-sdk-java</artifactId>
<version>3.0.0</version>

</dependency>
SDKE Mx|8t 2ol 0] 7}o|=2] ofAl| Java Z =2 GitHub2| Javadoc® M T{EE ZIEE] AIZHSHA|
o

AWS Encryption SDK for Java oA

r >

EF% ofFlo =S AHE5tod HIOIEIE &35t =55 AWS Encryption SDK for Java e &8
HoiELICt o] tM[o M= HE 3.x Ol & ArE5te WS E0{ELICt AWS Encryption SDK for
Java of H{H 3.x0ll=7F AWS Encryption SDK for Java 22 &LICH AWS SDK for Java 2.x. 2| H{H
3xE OtAE 7| SZXHE 7|22 2 AWS Encryption SDK for Java CHAIEF LICH 277 O[5 HHEE AHS
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O|§ EE= HE ARNS AIE35H04 KMS 7|E A& 4~ Ql&L|Ct.
7|8 Algdsfof gLICt
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2353le [ 7| ARNS AL235104 KMS

encryptData() HAMEE EE5tH AtO| -IE—.éE ot SI= Ho|E 7| A &5 3 HEIAEE Z e
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https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/releases
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oFzH7L R |2 decryptData( )E SEE M BHEE|l= CryptoResult 2ol et HIAE HA|X|
ot AWS KMS key ID7} Z & ELICE oHE2|7|0|40| YUt MAEE vhetst 7| Tof| & E5HEl HIAIX| 2
AWS KMS key IDQ+ &t &3} ZHEIAE 7} of &8 ZdQIX| & QIEFL|Ct

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoResult;

import software.amazon.cryptography.materialproviders.IKeyring;

import software.amazon.cryptography.materialproviders.MaterialProviders;

import
software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;

import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.nio.charset.StandardCharsets;
import java.util.Arrays;

import java.util.Collections;

import java.util.Map;

/**
* Encrypts and then decrypts data using an AWS KMS Keyring.

*

* <p>Arguments:
*

* <ol>

* <li>Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS
customer master

X key (CMK), see 'Viewing Keys' at

& http://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
* </ol>

*/

public class BasicEncryptionKeyringExample {

private static final byte[] EXAMPLE_DATA = "Hello
World".getBytes(StandardCharsets.UTF_8);

public static void main(final String[] args) {
final String keyArn = args[Q];
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encryptAndDecryptWithKeyring(keyArn);
}

public static void encryptAndDecryptWithKeyring(final String keyArn) {
// 1. Instantiate the SDK
// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,
// which means this client only encrypts using committing algorithm suites and
enforces
// that the client will only decrypt encrypted messages that were created with a
committing
// algorithm suite.
// This is the default commitment policy if you build the client with
// “AwsCrypto.builder().build()"
// or “AwsCrypto.standard() .
final AwsCrypto crypto =
AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.

// This example creates a multi keyring, which automatically creates the KMS
client.

final MaterialProviders materialProviders =
MaterialProviders.buildex()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder().generator(keyArn).build();
final IKeyring kmsKeyring =
materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create an encryption context

// We recommend using an encryption context whenever possible

// to protect integrity. This sample uses placeholder values.

// For more information see:

// blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-Integrity-
of-Your-Encrypted-Data-by-Using-AWS-Key-Management

final Map<String, String> encryptionContext =

Collections.singletonMap("ExampleContextKey", "ExampleContextValue");

// 4. Encrypt the data
final CryptoResult<byte[], ?> encryptResult =
crypto.encryptData(kmsKeyring, EXAMPLE_DATA, encryptionContext);
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final byte[] ciphertext = encryptResult.getResult();

// 5. Decrypt the data
final CryptoResult<byte[], ?> decryptResult =
crypto.decryptData(
kmsKeyring,
ciphertext,
// Verify that the encryption context in the result contains the
// encryption context supplied to the encryptData method
encryptionContext);

// 6. Verify that the decrypted plaintext matches the original plaintext
assert Arrays.equals(decryptResult.getResult(), EXAMPLE_DATA);
}

HO|E AE2| o5
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CHS ORI AHEE AL 3510{ HHO|E AE 2| AWS Encryption SDK 2 5355l 1 sliSste WHe &
0{& LCt.

ol
ol

tol

Ol A= HAIAES 7|2 & AFSELICH

ot & 3t il o] oMol M= AwsCrypto.builder() .withEncryptionAlgorithm() HMEZ
ArE5tod CIX|E MEO| gle dIElE MEZE XIHELICH o] oMol MdE 553 [ AtO|THEIA
Eol MYo| gi=X| &Ql5l7| I8 createUnsignedMessageDecryptingStream() HIMEZE Al
&LICH createUnsignedMessageDecryptingStream() HIMEE CIX|EH MEO| U= AtO|H
SHAEE W7dstHd Mufgh|ct.

CIXIE MEo| Z&E 7|12 dT1E& NEZCE Y35tste 42 Cha oX|e 20|
createDecryptingStream() HMEE CHA AFSSHMIR.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoAlgorithm;
import com.amazonaws.encryptionsdk.CryptoInputStream;
import com.amazonaws.encryptionsdk.jce.JceMasterKey;
import com.amazonaws.util.IOUtils;

of| A 246



AWS Encryption SDK JHEER} 70| =

import software.amazon.cryptography.materialproviders.IKeyring;

import software.amazon.cryptography.materialproviders.MaterialProviders;

import software.amazon.cryptography.materialproviders.model.AesWrappingAlg;

import software.amazon.cryptography.materialproviders.model.CreateRawAesKeyringInput;
import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.nio.ByteBuffer;

import java.security.SecureRandom;
import java.util.Collections;

import java.util.Map;

import javax.crypto.SecretKey;

import javax.crypto.spec.SecretKeySpec;

/**
* <p>

* Encrypts and then decrypts a file under a random key.

* <p>

* Arguments:

* <o0l>

* <li>Name of file containing plaintext data to encrypt
* </ol>

* <p>
* This program demonstrates using a standard Java {@link SecretKey} object as a {e@link
IKeyring} to
* encrypt and decrypt streaming data.
*/
public class FileStreamingKeyringExample {
private static String srcFile;

public static void main(String[] args) throws IOException {
srcFile = args[0];

// In this example, we generate a random key. In practice,
// you would get a key from an existing store
SecretKey cryptoKey = retrieveEncryptionKey();

// Create a Raw Aes Keyring using the random key and an AES-GCM encryption
algorithm
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final MaterialProviders materialProviders = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateRawAesKeyringInput keyringInput =

CreateRawAesKeyringInput.builder()

.wrappingKey(ByteBuffer.wrap(cryptoKey.getEncoded()))
.keyNamespace("Example")
.keyName (""RandomKey")
.wrappingAlg(AesWrappingAlg.ALG_AES128_GCM_IV12_TAGl6)
.build();

IKeyring keyring = materialProviders.CreateRawAesKeyring(keyringInput);

// Instantiate the SDK.

// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,

// which means this client only encrypts using committing algorithm suites and
enforces

// that the client will only decrypt encrypted messages that were created with
a committing

// algorithm suite.

// This is the default commitment policy if you build the client with

// “AwsCrypto.builder().build()"

// or “AwsCrypto.standard() .

// This example encrypts with an algorithm suite that doesn't include signing
for faster decryption,

// since this use case assumes that the contexts that encrypt and decrypt are
equally trusted.

final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)

.withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
.build();

// Create an encryption context to identify the ciphertext
Map<String, String> context = Collections.singletonMap("Example",
"FileStreaming");

// Because the file might be too large to load into memory, we stream the data,

instead of

//loading it all at once.
FileInputStream in = new FileInputStream(srcFile);
CryptoInputStream<JceMasterKey> encryptingStream =

crypto.createEncryptingStream(keyring, in, context);
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FileOutputStream out = new FileOutputStream(srcFile + ".encrypted");
I0Utils.copy(encryptingStream, out);

encryptingStream.close();

out.close();

// Decrypt the file. Verify the encryption context before returning the
plaintext.

// Since the data was encrypted using an unsigned algorithm suite, use the
recommended

// createUnsignedMessageDecryptingStream method, which only accepts unsigned
messages.

in = new FileInputStream(srcFile + ".encrypted");

CryptoInputStream<JQceMasterKey> decryptingStream =
crypto.createUnsignedMessageDecryptingStream(keyring, in);

// Does it contain the expected encryption context?

if
(!"FileStreaming".equals(decryptingStream.getCryptoResult().getEncryptionContext().get("Exampl
{

throw new IllegalStateException("Bad encryption context");

// Write the plaintext data to disk.

out = new FileOutputStream(srcFile + ".decrypted");
I0Utils.copy(decryptingStream, out);
decryptingStream.close();

out.close();

/**
* In practice, this key would be saved in a secure location.
* For this demo, we generate a new random key for each operation.
*/
private static SecretKey retrieveEncryptionKey() {
SecureRandom rnd = new SecureRandom();
byte[] rawKey = new byte[16]; // 128 bits
rnd.nextBytes(rawKey);
return new SecretKeySpec(rawKey, "AES");
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or its affiliates.
Apache-2.0

// Copyright Amazon.com Inc.
// SPDX-License-Identifier:

All Rights Reserved.

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoOutputStream;

import com.amazonaws.util.IOUtils;

import software.amazon.cryptography.materialproviders.IKeyring;

import software.amazon.cryptography.materialproviders.MaterialProviders;
import

software.amazon.cryptography.materialproviders.model.
.cryptography.materialproviders.
cryptography.materialproviders.
cryptography.materialproviders.
cryptography.materialproviders.

import software
import
import

import

.amazon
software.
software.
software.

amazon.
amazon.
amazon.

import
import
import
import
import
import
import
import
import

java.io.
java.io.

ByteArrayInputStream;
ByteArrayOutputStream;
java.io.FileInputStream;
java.io.FileOutputStream;
java.nio.ByteBuffer;
java.security.GeneralSecurityException;
java.security.KeyPair;

java.
java.

security.KeyPairGenerator;
util.Collections;

/**
* <p>
* Encrypts

*

a file using both AWS KMS Key and an

asymmetric

CreateAwsKmsMultiKeyringInput;
model.CreateMultiKeyringInput;

model.CreateRawRsaKeyringInput;

model.MaterialProvidersConfig;
model.PaddingScheme;

key pair.
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* <p>

* Arguments:

* <ol>

* <li>Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS key,

& see 'Viewing Keys' at http://docs.aws.amazon.com/kms/latest/developerguide/
viewing-keys.html

*

* <]i>Name of file containing plaintext data to encrypt

* </o0l>

* <p>

* You might use AWS Key Management Service (AWS KMS) for most encryption and
decryption operations, but

* still want the option of decrypting your data offline independently of AWS KMS. This
sample

* demonstrates one way to do this.

* <p>

* The sample encrypts data under both an AWS KMS key and an "escrowed" RSA key pair

* so that either key alone can decrypt it. You might commonly use the AWS KMS key for
decryption. However,

* at any time, you can use the private RSA key to decrypt the ciphertext independent
of AWS KMS.

* <p>

* This sample uses the RawRsaKeyring to generate a RSA public-private key pair

* and saves the key pair in memory. In practice, you would store the private key in a
secure offline

* location, such as an offline HSM, and distribute the public key to your development
team.

*/
public class EscrowedEncryptKeyringExample {

private static ByteBuffer publicEscrowKey;
private static ByteBuffer privateEscrowKey;

public static void main(final String[] args) throws Exception {
// This sample generates a new random key for each operation.
// In practice, you would distribute the public key and save the private key in
secure
// storage.
generateEscrowKeyPair();

final String kmsArn = args[0];
final String fileName = args[1];

standardEncrypt(kmsArn, fileName);
standardDecrypt(kmsArn, fileName);

ofl A 251



AWS Encryption SDK JHEER} 70| =

escrowDecrypt(fileName);

private static void standardEncrypt(final String kmsArn, final String fileName)
throws Exception {
// Encrypt with the KMS key and the escrowed public key
// 1. Instantiate the SDK
// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,
// which means this client only encrypts using committing algorithm suites and
enforces
// that the client will only decrypt encrypted messages that were created with
a committing
// algorithm suite.
// This is the default commitment policy if you build the client with
// “AwsCrypto.builder().build()"
// or “AwsCrypto.standard() .
final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.
// This example creates a multi keyring, which automatically creates the KMS
client.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()
.generator(kmsArn)
.build();
IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create the Raw Rsa Keyring with Public Key.
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.build();
IKeyring rsaPublicKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);
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// 4. Create the multi-keyring.
final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.buildex()
.generator(kmsKeyring)
.childKeyrings(Collections.singletonList(rsaPublicKeyring))
.build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

// 5. Encrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName);

final FileOutputStream out = new FileOutputStream(fileName + ".encrypted");

final CryptoOutputStream<?> encryptingStream =
crypto.createEncryptingStream(multiKeyring, out);

IOUtils.copy(in, encryptingStream);
in.close();
encryptingStream.close();

private static void standardDecrypt(final String kmsArn, final String fileName)
throws Exception {

// Decrypt with the AWS KMS key and the escrow public key.

// 1. Instantiate the SDK.

// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,

// which means this client only encrypts using committing algorithm suites and
enforces

// that the client will only decrypt encrypted messages that were created with
a committing

// algorithm suite.

// This is the default commitment policy if you build the client with

// “AwsCrypto.builder().build()"

// or “AwsCrypto.standard() .

final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.
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// This example creates a multi keyring, which automatically creates the KMS
client.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()
.generator(kmsArn)
.build();
IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create the Raw Rsa Keyring with Public Key.
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.build();
IKeyring rsaPublicKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);

// 4. Create the multi-keyring.
final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.builder()
.generator(kmsKeyring)
.childKeyrings(Collections.singletonList(rsaPublicKeyring))
.build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

// 5. Decrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName + ".encrypted");

final FileOutputStream out = new FileOutputStream(fileName + ".decrypted");

// Since we are using a signing algorithm suite, we avoid streaming decryption
directly to the output file,

// to ensure that the trailing signature is verified before writing any
untrusted plaintext to disk.

final ByteArrayOutputStream plaintextBuffer = new ByteArrayOutputStream();

final CryptoOutputStream<?> decryptingStream =
crypto.createDecryptingStream(multiKeyring, plaintextBuffer);

I0Utils.copy(in, decryptingStream);
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in.close();

decryptingStream.close();

final ByteArrayInputStream plaintextReader = new
ByteArrayInputStream(plaintextBuffer.toByteArray());

IOUtils.copy(plaintextReader, out);

out.close();

private static void escrowDecrypt(final String fileName) throws Exception {
// You can decrypt the stream using only the private key.
// This method does not call AWS KMS.

// 1. Instantiate the SDK
final AwsCrypto crypto = AwsCrypto.standard();

// 2. Create the Raw Rsa Keyring with Private Key.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.privateKey(privateEscrowKey)
.build();
IKeyring escrowPrivateKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);

// 3. Decrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName + ".encrypted");

final FileOutputStream out = new FileOutputStream(fileName + ".deescrowed");

final CryptoOutputStream<?> decryptingStream =
crypto.createDecryptingStream(escrowPrivateKeyring, out);

I0Utils.copy(in, decryptingStream);

in.close();

decryptingStream.close();
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private static void generateEscrowKeyPair() throws GeneralSecurityException {
final KeyPairGenerator kg = KeyPairGenerator.getInstance("RSA");
kg.initialize(4096); // Escrow keys should be very strong
final KeyPair keyPair = kg.generateKeyPair();
publicEscrowKey = RawRsaKeyringExample.getPEMPublicKey(keyPair.getPublic());
privateEscrowKey = RawRsaKeyringExample.getPEMPrivateKey(keyPair.getPrivate());
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hkdf-node
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raw-aes-keyring-node

£ X[¥ste ¥

Node.js0l M Raw AES 7|2
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client-browser
AWS Encryption SDK for JavaScript E2t M ME A& sto{ Z2 I YN0k = ZE ZES
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caching-materials-manager-browser
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material-management

& 53t AHE #HE|AHCMM)E T8 LIt
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Raw AES 2/ RSA 7|&lof 23t &8 LHEHLICEH
serialize
SDK7} £2ig S|ziststs o ALgstE B 48 LI HLict

web-crypto-backend

=2t X{2]|0{ A WebCrypto APIE At& 3= &4 AWS Encryption SDK for JavaScript £ LHE 'Y
L|CH.
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key O| EAQILICH MMof Ciet TS Y2 AWS Key Management Service 7HEF A} OHLHA Q| 7| MM S
AWS KMS key® Z35HM|L. https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
AWS KMS 7|3 AWS KMS keys 0| MHE AlHE5tE O] =2 0| ERotH MME FHESHML. AWS KMS
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HFO|E Hi AWS Encryption SDK for JavaScript 2 &

E M

=14
o

11E oo

jo SE
L HU

MN HO

of B
Hod

1ERA: 74 B et

X ncryption SDK Zct0[HEE QIARHASSHE M buildClient &+E =

710! MzHg Mxs AWS Encryption SDK for JavaScripts & LICH buildClient &%

MAMZ LIEIL = A7 2f2 ASE LU 2535 U 5535 Al 7S HAE ME35t=
|

O|EE encrypt X decrypt &8 BHEHEFLICH
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>
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Ct2 o MOIM= buildClient 42 AF235104 7|2 7! Z=QI1E K| & EHL
CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. £ Al235l0d &5 5t E HA|X|2| &5 351E H|0o|E 7|
e se

& M8tbuildClientd =X U&LICH XHM[EH LI 2 the section called “&f 5 3+l Cl|O|E] 7|
MEh CHIS AL R SHAIAID.

JavaScript Browser

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
} from 'e@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

JavaScript Node.js

import {
KmsKeyringNode,
buildClient,

ofl Al 263


https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS Encryption SDK JHEER} 70| =

CommitmentPolicy,
} from 'eaws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

AWS KMS 7|3 o2 &5 5te e dd7| 7|, & Lt BIAE H0|E 7|8 dMstn &E 356 =
ol AWS KMS key AFEE|=E X|H5H0 UHHEIAE MO 7|8 &=

O|&o| F7t 7|8 XIHe = JU&LICH 7|32 et HIAE 4IOIE+ 9I9+ ME7| 7|18 ZEstod 7|
2/0] ZF AWS KMS key ofl CH8 82 HIO|E] 7|2

stote{™ = 3tE OlolH 7| & stLHE S £33

Ol M 33 7|20l AWS KMS keys CHEH S k|5 5t2{™ XIPIE|= ZE AWS KMS 7| AIHRIE A}
&8 AWS Encryption SDK for JavaScripts A&LICH O] (o= HE ARNSE A= 4
7| 712t 7| ARNS 2 AlME|= FTI} 7| 5tLEE AFSELICH.

® Note

=235 3IE 25 AWS KMS 7|22 RiALE5tEd= A< 71 ARNs AF& 35104 7|2 AWS KMS
keys 0| HE Algdaf{oF &FL|Ct.

ol Z=EE Ad57| Mol oKl AWS KMS key AEAIE RE 8t AMEXIZ HFELICH 7|—20lA AWS
KMS keysE At&st= O 228t HEro| Qlofof gLt

JavaScript Browser

Hetf X ol X424 FH2 M3 5t0 AZSHAM| L. O] AWS Encryption SDK for JavaScript 040 A
= A4 3 4+ E AA XtE EH2 = ChA|5t= webpack.DefinePluging Ab& g LICH 2Lt
1 8BS NM3E = A&LICH 2H CHE A+E ZHE AHE5H04 AWS

declare const credentials: {accessKeyId: string, secretAccessKey:string,
sessionToken:string }

const clientProvider = getClient(KMS, {
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JHet &} 7hol=
credentials: {
accessKeylId,
secretAccessKey,
sessionToken
}
1)
OHACHS M7 7] Y F7t 7|0 AWS KMS keys € X|HELICH O3 CHS ECH0|HERLE A

25101 AWS KMS AWS KMS 7|212 MAIEfLICH AWS KMS keys.

const generatorKeyld = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt’
const keyIds = ['arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ]
const keyring = new KmsKeyringBrowser({ clientProvider, generatorKeyld, keyIds })

JavaScript Node.js

const generatorKeyld = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt’
const keyIds = ['arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ]

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

JavaScript Browser

const context = {
stage: 'demo',
purpose: 'simple demonstration app',
origin: 'us-west-2'

}
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JavaScript Node.js

const context = {
stage: 'demo',
purpose: 'simple demonstration app’,
origin: 'us-west-2'

}
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0| encrypt &+ &= 8 E OO|H, &E3E Oo|F 7| ¥ ¢=3t ZHAHAE U MBS T S
gt HEICOIEE Z & 5te 5 3tE HAIX|(result)E gHetELICt
X|HEl= 2232 2104 AWS Encryption SDK O CHSHE A& 3104 0| 2 S 3tHEl HAIXIE =535
sF A

JavaScript Browser

const plaintext = new Uint8Array([1, 2, 3, 4, 5])

const { result }
context })

await encrypt(keyring, plaintext, { encryptionContext:

JavaScript Node.js

const plaintext = 'asdf'

const { result }
context })

await encrypt(keyring, plaintext, { encryptionContext:

AWS KMS 7|22 AI&35to{ H|o|E 8§55}

£ A8stod &

= A& LI

ok

StE HAIXIE sHS5tn & C|o|E{& =7+ AWS Encryption SDK for JavaScript &

O| ofofl M= the section called "AWS KMS 7|22 A& 304 ClO|E &f 531" o Mol M & = 3HEl T O|E
g Ss&ehoh
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18HA: A HH S AL

A |
A 1.7 x2E| AWS Encryption SDK 2ZI0|HEE QAEASS= M buildClient & +E =
E& 1 2! HM2 MEE AWS Encryption SDK for Ja vaScrlpt—r A&LICH buildClient &%
£ HU HMS LIEILE EHE 22 ASFELICH ¢35 A 5355 Al 70 HME M85t Ao
O|EE encrypt L decrypt &+E BHEHEFLICH

CHS X0l M= buildClient & AFEstod 7[E 70! HAQIE XIHE L

CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. & At&35t04 &S 3= EHIAIXIOI f= 31E O|lo|E 7|

£ X|8tbuildClientd £ U&LIC XFAM|EH LI S the section called “& Z3HE H|O|E 7|

2 T L AR H

MNEh EHHE HESHAAIL.

JavaScript Browser

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)
JavaScript Node.js

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)
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2EHA|: 7|”lE FEELICH

CIOIEHE S 2 3t5t24H encrypt &7t BHEHS 2r S 5t E HA|X|(result)E MESIMIR
ElHAIRlE g55tE ColE, &5stE Ho|E 7| & gEst HEAE 2 MES
EtCI|O|EE Z&fgfLct.

et S& 5t M AWS KMS 7|22 X|HsHoF gLt CIoIEE 2 & 3tste O AASE Wt S Yt
7I20|Lt CHE 7|28 M8 E = UGLICH HBstedH S 58 7|2 AWS KMS key 0f %= 3Lt Of
o7t etz ekl HIAIXK|e| &2 5tE HIO|E 7] & stLIE S&3te + Qlofof & LIt ololE 7|7t
HEEX| ez 5535} 7|0 dE7] 718 xEe eIt gi&LIch o|FE A st dE7] 719
Ft 717t 22 LAz MelEuUo

oM S5E3 7|2]ol AWS KMS key CHSHE X|Zd5tE24Ed 7] ARNS AFE 8l 0F AWS Encryption SDK
for JavaScriptLICt. 2 X| et o™ AWS KMS key 7} QIAIE|X| oE&LICH AWS KMS 7|2 AWS
KMS keys O|ME AlEét= Ol =80| ER5IH MME FHESME. AWS KMS 7|2 AWS KMS
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B2 7| ARNs At&3610{ 7|2 AWS KMS keys

O ol M= ef 22t 71— AWS KMS keys ol & sttt Z&stE 7|32 SEELICH ol 2=
A7 ol oMl 7| ARNS R &EH 7|2 HFELICE AWS KMS keyOi| CHEF kms : Decrypt #Et
Of {0{oF &Lt

JavaScript Browser
Het Ko A4 5H2 MB350 A=A, 0] AWS Encryption SDK for JavaScript 03[0l A

[e) o
= A4 38 4+ & AA XtE EE2 = chA|5h= webpack.DefinePluging Ab& g LICH 2Lt
DE WS M8%t0 At BHUES MIBE = UsLIct JHOF XHH 3HE AH850o{ AWS

declare const credentials: {accessKeyId: string, secretAccessKey:string,
sessionToken:string }

const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
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sessionToken

}
1)

3H CFS AWS KMS E2I0|1EE AIE235104 AWS KMS 7|22 MAEtLICE o] Ao e
AWS KMS keys & 33} 7|2l0| & 5tLtOH AFS & LICEH

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ]

const keyring = new KmsKeyringBrowser({ clientProvider, keyIds })

JavaScript Node.js

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ]

const keyring = new KmsKeyringNode({ keyIds 1})

3EHAl: Cllo|E| & 2 8tE A LICt

O CtS decrypt -8 SEFLICEH W3 M8t =535 7|3 (keyring)dt, encrypt &7t
Hhgkst of 5 51 E IIHIAIII(result)% ML SHMIL. = 713E AWS Encryption SDK At&3t04 f 5 5}
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Zl Olole 7| & otLtE =38 LIct O3 oS Lt A E H0|E 7|& ME50{ HIOIEHE 5%
SHErLcH

£0| ME38I™ plaintext ZEof Yt BIAE(553HE) O|lO|E{7} ZEELICEH O
messageHeader Zic o= olole 55350 AL E 255
ofl CH&t MIEtC| O|E{ 7+ L & ElLct.

JavaScript Browser

await decrypt(keyring, result)

const { plaintext, messageHeader }

JavaScript Node.js

const { plaintext, messageHeader } = await decrypt(keyring, result)

4THA: & 53t HEIAEE HOlgtLCH
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Zt 7|-Zf o047} BretEl ef $ 5 ZARIA E (encryptionContext)Ql 7|-2t mo{Qt L x|t K| &

JavaScript Browser

const { encryptionContext } = messageHeader

Object
.entries(context)
.forEach(([key, value]) => {
if (encryptionContext[key] !== value) throw new Error('Encryption Context
does not match expected values')

1))
JavaScript Node.js

const { encryptionContext } = messageHeader

Object
.entries(context)
.forEach(([key, value]) => {
if (encryptionContext[key] !== value) throw new Error('Encryption Context
does not match expected values')
)
Ot 55} TAE ZAF M4BT Ut HAE GlOJEE WHEE £ sLicH
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AWS Encryption SDK for Python
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(® Note
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® Note

3.0.0 AWS Encryption SDK for Python 0|X 2| 2 & B end-of-support Bt 7|0 Q& LICH.
FEL} O0|E{E HZASHK| &8 1 {1 2.0.x 0|40l A AWS Encryption SDK 2] %4l HEH S 2
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Encryption SDK2| %|A1 1.x HM S ZE Cl|O|E8H of g LICt XbAlEH LHE = Oto|2 0|4 AWS
Encryption SDKE & Z35HMI2.

CHZ ol M2k AWS Encryption SDK for PythonZ O] pipE& AF235t048 Mx|EL|CH

|&1 HE AR
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pip install "aws-encryption-sdk[MPL]"

MIMPL]OIAE AWS 535} Rt 2 22Xt 2H0|2E{2|(MPL)E M&|gfLIct MPLOE CIO|E{E &
&35t si=35t7| fIgt = 0| ZEE[o] ?AIAL—IEI' MPL2 7 4.x0{ AWS Encryption SDK for
Python T o] cHet MEfX SS-ELICH MPLE MERISt= W0l E&LICH 8L MPLE At
otx| gfeis d< HIMPL]OIME HEE = M'%L—“:P.

pipE ALEsto] 7|X|E HX| X Haclol=ste Lol Cher XtMIet L& 2 7 (x| HXIE & ZstAl
o

ol 2E E3E0|M & 53 2H0|= B4 2|(pycalcryptography) 7 AWS Encryption SDK for Python &
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LICt. pip 8.1 O|& K Linux0ll cryptographyE XIS 2 Mx|stm =g ct. ofst T2
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et TR E Mx|sok &fLiCt REAMIEH LIS Linux0llAd &S5 LI E & X5HAMIL.

H7& 1.10.0 ¥ 2.5.02 2.5.02 3.3. 2 A+o|°| oS3t Z44 2 AWS Encryption SDK for Python 78}
LI} CHE T olE %Al HE Q| & 532 AWS Encryption SDK for Python A %|&fLIC}H 3.3.2 O] 4 H
Mol &5 3171 2o st L AWS Encryption SDK for Python2| |4l H|O|X HEIE AFE85tE Zd0| £
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# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0

This example sets up the KMS Keyring

The AWS KMS keyring uses symmetric encryption KMS keys to generate, encrypt and
decrypt data keys. This example creates a KMS Keyring and then encrypts a custom input
EXAMPLE_DATA
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with an encryption context. This example also includes some sanity checks for
demonstration:

1. Ciphertext and plaintext data are not the same

2. Encryption context is correct in the decrypted message header

3. Decrypted plaintext value matches EXAMPLE_DATA

These sanity checks are for demonstration in the example only. You do not need these in
your code.

AWS KMS keyrings can be used independently or in a multi-keyring with other keyrings
of the same or a different type.

import boto3

from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import CreateAwsKmsKeyringInput
from aws_cryptographic_material_providers.mpl.references import IKeyring

from typing import Dict # noga pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

EXAMPLE_DATA: bytes = b"Hello World"

def encrypt_and_decrypt_with_keyring(
kms_key_id: str

"""Demonstrate an encrypt/decrypt cycle using an AWS KMS keyring.

Usage: encrypt_and_decrypt_with_keyring(kms_key_id)

:param kms_key_id: KMS Key identifier for the KMS key you want to use for
encryption and

decryption of your data keys.

:type kms_key_id: string

# 1. Instantiate the encryption SDK client.

# This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,

# which enforces that this client only encrypts using committing algorithm suites
and enforces
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# that this client will only decrypt encrypted messages that were created with a

committing

# algorithm suite.

# This is the default commitment policy if you were to build the client as

# “client = aws_encryption_sdk.EncryptionSDKClient() .

client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

# 2. Create a boto3 client for KMS.
kms_client = boto3.client('kms', region_name="us-west-2")

# 3. Optional: create encryption context.
# Remember that your encryption context is NOT SECRET.
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

# 4. Create your keyring
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
kms_key_id=kms_key_id,
kms_client=kms_client

kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
input=keyring_input

# 5. Encrypt the data with the encryptionContext.
ciphertext, _ = client.encrypt(
source=EXAMPLE_DATA,
keyring=kms_keyring,
encryption_context=encryption_context

# 6. Demonstrate that the ciphertext and plaintext are different.
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# (This is an example for demonstration; you do not need to do this in your own
code.)

assert ciphertext != EXAMPLE_DATA, \
"Ciphertext and plaintext data are the same. Invalid encryption"

# 7. Decrypt your encrypted data using the same keyring you used on encrypt.
plaintext_bytes, _ = client.decrypt(
source=ciphertext,
keyring=kms_keyring,
# Provide the encryption context that was supplied to the encrypt method
encryption_context=encryption_context,

# 8. Demonstrate that the decrypted plaintext is identical to the original
plaintext.

# (This is an example for demonstration; you do not need to do this in your own
code.)
assert plaintext_bytes == EXAMPLE_DATA, \

"Decrypted plaintext should be identical to the original plaintext. Invalid
decryption"

HIOIE AEZ| 4535 A 553}

CS oM MHEE AL236t04 HIO|E AEZIZ 25 35l5l T 23538 AWS Encryption SDK 8t &S
2o{ELICt o] oMol E HAl AES 7212 AFSELICH

ol Mo ME 7|E 72! ZAOIZ ALE35H04 AWS Encryption SDK Z22I0|HEE QIAEIAS|EL

CIREQUIRE_ENCRYPT_REQUIRE_DECRYPT. AFAM|EH LH® 2 the section called “745) &= M7 EH

2 HEAAR.

# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0

This example demonstrates file streaming for encryption and decryption.

File streaming is useful when the plaintext or ciphertext file/data is too large to
load into

memory. Therefore, the AWS Encryption SDK allows users to stream the data, instead of
loading it

all at once in memory. In this example, we demonstrate file streaming for encryption
and decryption

using a Raw AES keyring. However, you can use any keyring with streaming.
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This example creates a Raw AES Keyring and then encrypts an input stream from the file
‘plaintext_filename™ with an encryption context to an output (encrypted) file
‘ciphertext_filename .

It then decrypts the ciphertext from “ciphertext_filename® to a new file
“decrypted_filename .

This example also includes some sanity checks for demonstration:

1. Ciphertext and plaintext data are not the same

2. Encryption context is correct in the decrypted message header

3. Decrypted plaintext value matches EXAMPLE_DATA

These sanity checks are for demonstration in the example only. You do not need these in
your code.

See raw_aes_keyring_example.py in the same directory for another raw AES keyring
example

in the AWS Encryption SDK for Python.

import filecmp

import secrets

from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import AesWrappingAlg,
CreateRawAesKeyringInput

from aws_cryptographic_material_providers.mpl.references import IKeyring

from typing import Dict # noga pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

def encrypt_and_decrypt_with_keyring(
plaintext_filename: str,
ciphertext_filename: str,
decrypted_filename: str

"""Demonstrate a streaming encrypt/decrypt cycle.

Usage: encrypt_and_decrypt_with_keyring(plaintext_filename
ciphertext_filename
decrypted_filename)

:param plaintext_filename: filename of the plaintext data

:type plaintext_filename: string

:param ciphertext_filename: filename of the ciphertext data

:type ciphertext_filename: string
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:param decrypted_filename: filename of the decrypted data

:type decrypted_filename: string

# 1. Instantiate the encryption SDK client.

# This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment

policy,

# which enforces that this client only encrypts using committing algorithm suites

and enforces

# that this client will only decrypt encrypted messages that were created with a

committing

an

# algorithm suite.

# This is the default commitment policy if you were to build the client as

# “client = aws_encryption_sdk.EncryptionSDKClient() .

client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

# 2. The key namespace and key name are defined by you.

# and are used by the Raw AES keyring to determine

# whether it should attempt to decrypt an encrypted data key.
key_name_space = "Some managed raw keys"

key_name = "My 256-bit AES wrapping key"

# 3. Optional: create encryption context.
# Remember that your encryption context is NOT SECRET.
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

# 4. Generate a 256-bit AES key to use with your keyring.
# In practice, you should get this key from a secure key management system such as
HSM.

# Here, the input to secrets.token_bytes() = 32 bytes = 256 bits
static_key = secrets.token_bytes(32)

# 5. Create a Raw AES keyring

# We choose to use a raw AES keyring, but any keyring can be used with streaming.

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()
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)

keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
wrapping_key=static_key,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=keyring_input

# 6. Encrypt the data stream with the encryptionContext
with open(plaintext_filename, 'rb') as pt_file, open(ciphertext_filename, 'wb') as
ct_file:
with client.stream(
mode="'e"',
source=pt_file,
keyring=raw_aes_keyring,
encryption_context=encryption_context
) as encryptor:
for chunk in encryptor:
ct_file.write(chunk)

# 7. Demonstrate that the ciphertext and plaintext are different.
# (This is an example for demonstration; you do not need to do this in your own
code.)
assert not filecmp.cmp(plaintext_filename, ciphertext_filename), \
"Ciphertext and plaintext data are the same. Invalid encryption"

# 8. Decrypt your encrypted data stream using the same keyring you used on
encrypt.
with open(ciphertext_filename, 'rb') as ct_file, open(decrypted_filename, 'wb') as
pt_file:
with client.stream(
mode='d",
source=ct_file,
keyring=raw_aes_keyring,
encryption_context=encryption_context
) as decryptor:
for chunk in decryptor:
pt_file.write(chunk)
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# 10. Demonstrate that the decrypted plaintext is identical to the original
plaintext.
# (This is an example for demonstration; you do not need to do this in your own
code.)
assert filecmp.cmp(plaintext_filename, decrypted_filename), \
"Decrypted plaintext should be identical to the original plaintext. Invalid
decryption"
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let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),
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let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
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let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;
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let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(kms_keyring.clone())
.encryption_context(encryption_context.clone())
.send()
.await?;

let ciphertext = encryption_response

.ciphertext
.expect("Unable to unwrap ciphertext from encryption response");
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let decryption_response = esdk_client.decrypt()
.ciphertext(ciphertext)

.keyring(kms_keyring)
// Provide the encryption context that was supplied to the encrypt method
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.encryption_context(encryption_context)
.send()
.await?;

let decrypted_plaintext = decryption_response

.plaintext

.expect("Unable to unwrap plaintext from decryption
response");
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A EHe AZEQ| o] ™R

AWS Encryption CLI=EE 7|82 2 & L|CH AWS Encryption SDK for Python. AWS Encryption CLIE
M x|5t2{8 Python I Z7|X| 2| EFpip?l Python 27} E R LICt Python & pipE XIElE 2E

SHENM AL E = JU&LICH
AWS Encryption CLIE MX[5t7| ™ol CtS AP =S M&(ELCH
Python

AWS & 53} CLI BT 4.2.0 O|&Fof|= Python 3.8 O|&to| = 8tL|C}.

O™ %1 2| AWS Encryption CLIE Python 2.7 ! 3.4 O|&2 X5t XIBH £ Al Q| AWS
Encryption CLIE At83t= Z0| E&LICEH

Python2 CHE £ 9| Linux & macOS A x|of & =|0] QX|TF Python 3.6 O|&4 22 2| 0|=35Hof
glch =4 T 9 Python7Hc> A&3tE 0| E4LICH WindowsolMHE Pythong A |3l oF 5l
M, Ol 7I2Me 2 MX|k[o] U K| et&LICt. Python2 CI22E35t 10 AX|5tE{™ Python CI2 2

Python & 2fQlstedH -V(CHE At V) TEtO|E & AFS ' LICH

python -V

%

WindowsO| M= Pythong X8t ¥ Path 83 g42| Ztoi Python.exe US| A2 E F7IEL

Ct.

jn

7|2Mo 2 Python2 ZE A XA} CIE{2| E£&= AppData\Local\Programs\Python &%
CIME 2o At&XF Z2E C|HE{2[($home EE= %userprofile%)ol| AX|ELICH AARI0|AM
Python.exe ItUO| 2[X|& & o{H CtF dX|AEZ| 7| & stLHE & QI LICH PowerShellE At
835to HXIAEZ|IE AME = st

PS C:\> dir HKLM:\Software\Python\PythonCore\version\InstallPath
# -or-
PS C:\> dir HKCU:\Software\Python\PythonCore\version\InstallPath
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https://www.python.org/downloads/
https://www.python.org/downloads/
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pip
pipE Python IH7|X| #2IXFILICH AWS Encryption CLI 2! T S&M4E Mx|5H24H pip 8.1
O|&t0| EREFLICH pip A%l EE= Y 0|=0l =20| EHR5tH pip MBS Mx|E &HZESHA
o

Linux & %|0{lA 8.1 pip O|T Q| T2 AWS Encryption CLIO| ZLFt &%
T R&Lct pip HME YO(O|ESHX| &t7|2 MElE F2 e T8 HE 2 MX|E = UL

Ct. REMIEH LI LinuxOlAM 535 ElE 8 EXSHMIR.

AWS Command Line Interface

AWS Command Line Interface (AWS CLI)= AWS &t 33} CLI2H &7H (AWS KMS) AWS KMS keys
ol Al AWS Key Management Service € AtE3t= F0igh EeerL|Ct CHE OtAE 7| SZRE
A-&3He B AWS CLI 7+ EIQ 3t K| et&Lct.

AWS Encryption CLI2F AWS KMS keys E7HE AFE8tE{HE Mx|6t 0 FAd8HoF EL|CH AWS CLI.
TH2 2B AZstE XA EEE AWS Encryption CLIOIA AWS KMS ALEE = IS FL
Ct.

AWS 233t CLI x| 2 AO|o|E
Z| Al X 2] AWS Encryption CLIE A x|&fLICH pipE AFE3H04 AWS Encryption CLIE A %[5t
™, Python ¥ 33} 2tol22{2| L& &toq cLIol E 8t 2to|=2{2|AWS Encryption SDK for

=FN

st
Python7} At 2 2 A X|E LICFAWS SDK for Python (Boto3).
rython

=]

(® Note

4.0.0 0|2| AWS Encryption CLI {2 end-of-support Bt A0l /4& LICE.

AL CO|EHE BHE5HK| &8 H{T 2.1.x 0|4 0f| A AWS Encryption CLIS| %4 HTS 2
Ot HClo|EE £ Q&LIch TE{Lt HE 2.1.x0] EUE MEZ2 2ot 7|52 olst H
Mot 3 E|R| of&LICH BT 1.7.x 0|50l A OOl E5t2{™ X &[Al 1.x HEQ| AWS
Encryption CLIZ dlo|E3Hof gHLCt RFMIEH L& 2 0to|28|0]41 AWS Encryption SDK2
HEML.

MZ2 2ot 7|52 e AWS Encryption CLI 7 1.7.x & 2.0. x| M 2 E|AEF&LICH 2
2{Lt AWS Encryption CLI EHH% 1.8.x& B 1.7.xE CHA|SH 2 AWS Encryption CLI 2.1.x&
2.0.xE CHA|ELICH REMIEH LHE 2 GitHub2| aws-encryption-sdk-cli 2|ZX|E 2|0 e 2

oF HIE HZshMR.
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https://pip.pypa.io/en/latest/installing/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://cryptography.io/en/latest/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
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Z| & TS| AWS Encryption CLIE M %|524H

pip install aws-encryption-sdk-cli

Z| Al A 2] AWS Encryption CLIZ 4184|0|=5t24H
pip install --upgrade aws-encryption-sdk-cli

AWS Encryption CLI 2/0| ™ & & 5Fo 2{7 AWS Encryption SDK
aws-encryption-cli --version

=ol= F Etol2E 2ol M HE 7t LFELICH

M

aws-encryption-sdk-cli/2.1.0 aws-encryption-sdk/2.0.0
%| Al H{F12| AWS Encryption CLIZ ¢]18|0|=35t24™

pip install --upgrade aws-encryption-sdk-cli

AWS Encryption CLIE xlﬁ}‘:‘._ O} & Mx|=|X| 8&t2 AWS SDK for Python (Boto3)d < X| &l H{Z19]
T MxIELICH Boto37h Mx|E B Mx| ZTZ 12 Boto3 HME & Qlstn e st AL Aolo|EE
LICH.

M x%|E! Boto3 HHA 3t 7|
pip show boto3
Boto32| |4 HMO 2 O|0|E

pip install --upgrade boto3

N | AWS Encryption CLI HE M X[5t2{™ GitHub2| aws-encryption-sdk-cli 2|ZX|E 2|

P

01>|
rO

mu o

ES

Pl
o

ol

pipE AHS 304 Python TH7IXIE M&| U YIB|O|= st Yol CHEH REAISH LIS pip ABME
SN =)
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https://github.com/aws/aws-encryption-sdk-cli/
https://pip.pypa.io/en/stable/quickstart/
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AWS & 53} CLI Al B

Ol Mo M= AWS 253t CLIOIAM ZtEtO|EE M85t W2 dYELICH o= AwS 2535t
CLIS| 0 MME FHESIMR. MA| MBEME EM 2718 HZtAI. o] Ao EAIE 222 AWS
Encryption CLI HH& 2.1.x OI?J%%IL—lEF.

® Note

4.0.0 0| 2| AWS Encryption CLI EHHF& end-of-support Et 70| R}&LICH.

FAELFHO|EE HASHK| &t 1 BT 2.1.x 0|20l A AWS Encryption CLIS| Z|A HEHS 2
PHHSHH YOOI EE £ AU&LCH JB{Lt H™ 2.1.x0| EE MER E¢t 7|S2 0fst H
Mt S 2tE|X| b &LICH HA 1.7.x O|5tof| M UHIO|E St A %[&l 1.x HEH S| AWS
Encryption CLIZ JC|O|E 3t of & LICt AtA|EH LHE 2 0t0[22]|0[4 AWS Encryption SDKE
HESM L.

MEZ2 2ot 7|52 el AWS Encryption CLI EHA 1.7.x 2! 2.0.x0| M 2I2|AEI&LICH 1
2HLt AWS Encryption CLI EHHZ 1.8.x& B 1.7.xE CH&A|SH 2 AWS Encryption CLI 2.1.x&
2.0.xE CHA|ELIC RHAIBH LI 2 GitHub2| aws-encryption-sdk-cli ZIZX|EE|HIMH && £
oF HI B HESAL.

ot 551 OIOlE| 7|8 MBtste EOt 7153 ASeHe WS RoiFE oiRlE 25 5HE HlolE 7| A

AWS KMS CI& 2™ 7|1E AF835le €HE Eo{F = ol MME HXSHMLLCHS 2™ AFE AWS
KMS keys.

|

- Coje ¢S5t A S555t EHY

. T 718 RIWsHE Wy
=

fara }
o o =
- £ 2ARIE XIYste U
- AE5 HHAEE ASSHE &Y
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https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
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OB =3 Y |53 LY
AWS Encryption CLIE S| 7|5 & AFE3t04 CIOIE & €A &5 3tst s =&

AWS Encryption SDK
A&LICH

m
1

(® Note

O| --master-keys It2tO|E{= AWS Encryption CLIS| {7 1.8.x0lAM f O|4 AL E|X| OF
O A 2. Ax0IM MHEZIQR&LICH CHAl - -wrapping-keys THEHO|E{E AFSELICH HE
21x2E &35t U 5535 Al --wrapping-keys TtetO|E{7} B B LICH REAIEH LIS

AWS Encryption SDK CLI & 2! mi2t0|E & x 2 =M 2.

0=

« AWS 2335} CLIOIA CIOIEE ZE5E m et A E H|0|E{2t AWS KMS key in AWS Key
Management Service ()2t Z2 Ei& Z|(E= OtAH 7))& XIHELICIAWS KMS. AFE Xt X|H OtA
B 7| SZXE MEdt= B2 SSAE XIYgsHor &LICH EFt =35t 2Fdof CHEE 5 5HE HIAIX
2! HIECO|E|e] £3 Q[x|E XIHE &= U&LICH Y535 HEIAE = MY ALE O|X|BF HAEILICH.

8.x0 M, --wrapping-keys It2tO/E{E A8 5tE B --commitment-policy Tt2tO|E]

HZ 1.8
7} 2ostH, 8K oo &K t&LICH HM 2.1 x2E] --commitment-policy It2tO|E
MEH At O|X|BH HE ELIC

=
=

aws-encryption-cli --encrypt --input myPlaintextData \
--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
--output myEncryptedMessage \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt

AWS Encryption CLIE 178 CIO|E{ 7|= CIO|EE &3 3terLIch a2l XI5 el 7[0i M o
Ol 7|7t &= SHEILICE 2ol it &f S &HEl HIAIX] & HEHD|O|EE gretefLict f S 3HEl Al

[ |
X|ofl= 2t 5 5HEl HIO|E(AHO| A E) B & 5 51 [0|E| 7| AHEO| Z8tElof Q& LICH CIOlE] 7|
+

AA EH
O M¥, el == E 4ol cisll A 227t ei&Lch

HOIEHE =23te e AE3E HAIX|, LB 535 HEAE it HIAE £2{ 3l H|EHH| 0|
o IXIE MEEfLICH EBF AWS & 2P LIZt HIAIXIE aliSste Ol A8 & U= eiE 7|E X

MEtHLE AWS & 535} CLIo| HIAIX|E

FOI'

stet el E 7I1& AL8E &+ Urhn LrElL|ch
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™ 1.8 xEE 555 Al --wrapping-keys Ttet0|E{= ME At O|X[2F HEELICH HA
2.1.x8E &53t U 5353 Al --wrapping-keys It2tO|E{7} ZHEHL|Ct

E53lE [ --wrapping-keys II2t0|E{2] key 42 ALE 35104 O|O|E{E =5 3l5t= c&E 7|1
X HE = U&LICH 553+ A|AWS KMS 2HE 7|8 X|Hste W2 ME AL 0|X|DH AFESHR| 2f2
7|18 Ar&StX| Z5tH st= 2 At LIcH AASXE X[HE OtAE 7| SZXE ME5te B2 =%t
2 2iE 7|8 X|EsHoF &Lt

7| 588 M83IX| &tE B --wrapping-keys II2FO|E{Q| AM 42 2 MAsHoF & LCH
trued{™ AWS 2535} CLIZ} HIAIKIE 2558t 2HE 7|2 AH235l0{ 25518 4 QlaLICH

S SlE OIo|E 7|7t LHF B2 HZRE E2|o HAIXIE
data-keys ItZIO|E{E AtS st A0l 2 At ILICEH
AMNEEl= 2 e 7 stLt) E= g 21Xel Z|CHgL(ol: 57
HolE 7| Mgt & X=stML.

E 355K &t £ 5 --max-encrypted-
2 = 3tEl o|O|E 9|°| ofl & (=3t
2 X|-Egrict AHME 82 & S 35HE

FIF "

)=

£ 9i2{0| *{2|E Folpt Yt =x

m

--buffer 2t0|E{E CIXIY MBO| YEX| &elste &
£ ghetefLict

H

--decrypt-unsigned TIZtO[E{= AHO|HEIAE S 2535510, 23535 Mof HAIX|7F MEEIX|
OFI:E ol'L_ll:l- __algorlthm .U.l'El'EIlE‘IE Al‘ Ol' E—lxl A‘|%‘O| (I:)Il-sIE %I-—T,— |
0 IO|E{E ¢ 5355t B2 o| W2t0|E{E AT LICH AlO|HEAET MBE ZHR =557} AT

grLICH.

--decrypt EEE --decrypt-unsignedE S50l AFSE 4 UX|CH E C A E = Q&L
Ct.

aws-encryption-cli --decrypt --input myEncryptedMessage \
--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
--output myPlaintextData \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt

-
| M|E}C| O]

POI'

AWS Encryption CLI= 2i& 7|& Al&3stod &5 3tEl HAIX|2| CIO|H 7|1& S33tefL
2 OlO|E{ 7|& At 35tod SHE O|O|E{E =3 3tfLICh 2hdof CHEF Ut BIAE H|O|E
E{Z Htakstc},

_I__
>||n—|—
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ol 71§ XIEste &Y

AWS =3t CLIGIM C|O|E{E 3 5te M= stLt o4 ol B E F|(EE= OtAEH 7))& X|I%HsHofF &L
Ct. AWS KMS keys in AWS Key Management Service (AWS KMS), AFE A} X|& OFAE] 7| Z 29

o 7| E= & CHE A8 E = J&Uch A8XF XIH OtAE 7| 32XteE 38kl 2 E Python OFA
B 7| 32X = UL

HIT 1.8.x 0|40l 2HE 718 XIYSt2AR --wrapping-keys Th2tOIE|(-w)& AFSELICH O] Tha}
O/E{Q| gf2 attribute=value 40| &4 BZQLICH AE35le £€2 OtAH 7| SR 2 BH
of 2k EetELct

« AWS KMS. &t 23 B0l key £40| U= --wrapping-keys It2IO|E{E X3t oF & LIC}.
™ 2.1 xR E S5 35 W0l --wrapping-keys It2tO|E{E EELICH %§_§P§ e --
wrapping-keys I}2FO[E{0]| ZtO| true®l key &4 EE = discovery £430] Q{0{0F EILICHE Cl=

obel). CHE & 43 M= AbgelLIC

« AFEXXIE OtAE 7| 32X 2E @Yo --wrapping-keys It2tO|EAE X[ 5ok LIt zt2t
O|E{ Ztoll= key 2! provider &430]| Qlo{oF & L|CH.

Ol

st HAE0l 0921 --wrapping-keys TtEtO|E{ B 042 key &2 L& E = JU&LICH

2 ntetilE &4 el E

--wrapping-keys It2t0/EH gt2 CtE £ Y ST Zte2 FEELICH 2 233 HHo=
--wrapping-keys(®E= --master-keys) ItetO|E{7} ERELICH HT 2.1 xRE |55t Al --

wrapping-keys ZtZt0/E{T EQEL|CH

&4 0| E= ool SHOo|Lt &= EXIL ZHE B2 0|EL 2 2F 28 RFE= |F&LUDL &

£04 --wrapping-keys key=12345 "provider=my cool provider"®lL|C}.

Key: & 7| X|’™H

--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab

ot 53 HHO|= StLt O|af ol key &4 Al 22 EZ &S0k ELICH o2 2HE 7|2 HIOIE 7|18 &5
3t5t2d™ 02 key 2 AFSELICH
CLI AFS & 292
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aws-encryption-cli --encrypt --wrapping-keys
key=1234abcd-12ab-34cd-56ef-1234567890ab key=1a2b3c4d-5e6f-1a2b-3c4d-5e6f1la2b3c4d

E A3t 253 HHIM 7| ZE2 71 ID AWS KMS keys, 7] ARN, &2l 0|8 == 2 ARNY
£ U&ELICH ol S04, 0| Y53t HHS key 4 ZLol HE ARNS AASELICH 9 7| Alxtof

CHEE REMIEEH LI 2 AWS Key Management Service 7HE X CHLHA{ O] 7| AlEEXIE AWS KMS key
xI-X °|.A-|| o

aws-encryption-cli --encrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:alias/ExampleAlias

A% X|HE OtAE 7| B2XHE A 25tE £ 53 B0l M key L provider £440| 2 8L},

\\ Custom master key provider
aws-encryption-cli --decrypt --wrapping-keys provider='myProvider' key='100101"'

2 AR5t 2531 WA 7| S42 AFR5H04 235 3510] AWS KMS keys AR S S X[ &5t HL
Zkol ol A £ M2 AWS KMSX|Z 3104 AWS Encryption CLItrueZl HIAIX|E &5 3H6HE O Al
EZ AWS KMS key E AHEE £ /JU&LICH E XHsle 42 HAIXIE =385t O ArS = h
Z! 7| & 5tLto40F AWS KMS keyEfL|CE

ciE 7|8 X|'d35t= Zd0] AWS Encryption SDK 28 AL ILICH O|E Sall ArE3IlE{=E AISE
AWS KMS key Ud&LICH

Z 3 BHM key &8 22 7| ARNOJ0o{OF BfL|CH.

\\ AWS KMS key
aws-encryption-cli --decrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

M 25351 AWS KMS key Al AHS

553 A AHEE AWS KMS keys & Mete L7t eie B9 40| 2 M SHE AEE = UE
LICHrue. Zt0l O/ AWS Encryption CLItrue7l HIAIX|E &3 AWS KMS key SHE AHE 5104
=533l = UELICE discovery £ E XIH5HK| &t = B2 discovery= false(7|24h)LICH &4
M Mo 555 BHED HAIX|7F EE28HE BT S 28 LICH AWS KMS keys.
240| true?! discovery 82 key 82 ALE35t04 AWS KMS keysE X|™5t= CHA ALSE =

ey &
&LICH 2 ¢S 3HE HAIXKIE 2 535HE I AWS KMS keysZ - -wrapping-keys It2+HO|E{0]
7| £°8 E= 20| trueO|X|2t & Ct= ol AM &40 R{ofof &LCt.

rr 0
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https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK JHEER} 70| =

AMO| true@! A< discovery- partltlon 2 discovery-account £4& A& 6101 AWS HH x| st 9
H£H4O 2 AWS KMS keys AHE E[=E A|Etote 20| 7t E&LICH CHE XM A K48 AL
835l AWS Encryption CLIZF X|'SEl AWS KMS key 2|E AF& & £ Q& LICH AWS HH.

aws-encryption-cli --decrypt --wrapping-keys \
discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666

Provider: OtAH 7| 3ZAF X|™H

provider £482 OtAEH 7| SZXHE AHEELICH 72212 aws-kmsO|H, O|= AWS KMSE LtE}
HL|CH CHE OtAEH 7| -ésEXP% AE3teE B provider 40| ZhL|C}.

--wrapping-keys key=12345 provider=my_custom_provider

A& XI'E(HIAWS KMS) OtAE 7| 2 At AFE 0l CHEF AFMIEH LHE 2 AWS Encryption CLI 2|2
X|E2|e| README moiM 12 7+ &= AXsHM L.
2l XI5 Aws 2™

ol

HE ALE5t04 AWS E|T ol K| LICH AWS KMS key. O £482 ¢33t BH|AM, 1

= S
7| SZA7F AWS KMSQ! B2 0Bt & & LCt

=]

> o
m

ko
L=

AWS 2535 CLI BE2 ARNZH Z2 2| AWS 2| o] & & B2 7| &4 U0l X|ZEE M8
gLICH 7] 2t0I& XI'H5tE AWS 22T £ 4 0] FAIFLICE

region 42 CHE 2|1 AFFELCH QMELICH 2I™ S48 AFR5HX|
P22 AWS CLI HEE T2 Zlof AWS 2| X|™HE EE 7|2 T2 EIS A2 EL|CH

profile 432 AF25104 AWS CLI HEHEI =
AWS Z|™o| z&HE = A&LICt o] HE2
Ct.

--wrapping-keys key=alias/primary-key profile=admin-1
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https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/blob/master/README.rst
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles
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profile A4S AFR 504 %2 5 U 2 5 HUOIM CHA ot 9B S XIME & UBLICH Y58
L= 7| 3o 2

o =
B0l M AWS Encryption CLI= 7| gtoll 2|M0| Z& E|X| £ 2| £40| giles d<oiBt BHE
20 AWS 2™ o MHE AISHELICH 5335 HHolM= 0l Z2o Y AWS 2™ 9|0 FAIE

LICE.

oic] 2fE 7|E XIHst= &Y
Zt BP0l oed 2iE FI(E= OtAE 7)) & XIEE + JU&LTH

BT 718 = 7H Ol4 XIB5HH & mh 24T 717} ClOlE] 2 % stofl ASElE CIOIE] 7|8 &
2 = St Ol 718 L2 SBLICH BBHOE MRS 25 5tE HAIIf

Folm{ A E) 9 &5 5HE ClOIE] 7| 2&(Z BHE 7|2 St o

SELIC BE T2 A28 ClOE 7] LIS SE5E O3 ClOEE S2ste 4

$key_oregon=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$key_ohio=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

--wrapping-keys key=$key_oregon key=$key_ohio
St B0l 048] --wrapping-keys It2tO[E{E Z B & LICH X[EE £ 20| A9 LT &
E 7|0l HEE[X| efE E? CHE FE2 AASELICHL
--wrapping-keys region=us-east-2 key=alias/test_key \

--wrapping-keys region=us-west-1 key=alias/test_key

zfol I AM &4

£ME true AFE3SHH AWS 233t CLIZI HIAIX[E ZZ3F AWS KMS key Bt 2&
ol
AN

EAMNEE £ %I—lEF S st B0l 048] --wrapping-keys IIEIO|E{E A8 EE B --

wrapping-keys It2t0|E{Q| discovery=trueE& At&35tHM C}E --wrapping-keys It2t0|E0]
UE key -’—.ﬁ’és'ol 18t s0tMo 2 RiHo|g £+ &Lt
& E0 Cts BHMM X HW - -wrapping-keys TtEHO|E{Q| 7| &2 AWS Encryption CLIE

%
XHE 2 M EELCHAWS KMS key. 22{Lt & #®Ml| --wrapping-keys It2tO|E{Q] A K442 At
235t AWS Encryption CLIZ}F X[ El A1 AWS KMS key 2|2 AFE35l0 HIAIXIE SHSE 4+ A& L

TAA
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aws-encryption-cli --decrypt \
--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab \
--wrapping-keys discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666

Q212 Rt Wy
Encryption CLIS| AWS &t 53| 2d2 Ut HIAE H|0|EE =S 2 dhot 2t S 31E HA|X|E BHetgt
LICH 523 22 4= 35tE HAIXIE Y=o R Hhot Ut A E O|0|HE BHEHELICE.

2124 2| x|Z& AWS Encryption CLIO| 2 2{F = --input Z}2+O|E{(-i)= 2 & AWS Encryption CLI &
Hol| 2ot

CtE YW & StLIE AH835tod U E MBS E += U&LICH

. C|HEZ E= C|2E{Z| 0|2 THEES AFREHL|CH el2d0| C|ZE| 2|9l B --recursive Tt2tO|E]

- 21212 B (stdin)oll MY ELICH - WEtOIE{of --input gt AFSELICH (--input THEIOIEE

echo 'Hello World' | aws-encryption-cli --encrypt --input -
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£3] 9IXIE KIHste &Y

s
ne
L
u
T
gk
r

--output It2tO|E{= AWS &= 35t E_E 533 Zdo| ZHAutE xdE QXIE 45 E
Ct. Ol= 2 & AWS Encryption CLI & S = of
of CHall A £3 mtUS MeLICt.

1S 2 AWS Encryption CLIE A1 E QM Ot S mtUS Ho{&5L
M7| Mol ol HAIX|E E A|o+= --interactive IIZIOIE{E A}
S Ho{M 7|7} dh e AR Q3 E AL{SF = --no-overwriteE AIE & LILCE.
|3tX| §t2 4™ --quietE AFSELICE AWS Encryption CLIMIA 2
>R1E|C|HM QAR E AL 50 £3 AE R 7| &fLICh

0
2
z
N
ox

K

N 1]
o FH
>.
u
bl
0
kl

= oIS Axlstod Al EfLICE BEo| Aufst

rir
b
il

0
4o
M

JefLICH oY Z2E X[Yst= 89 BHO0| A™E(7| ol F20o (s ZE CIEH

--output myEncryptedData.txt
+ CIZE{2IE RIMELIch Wado| M#E|7| Mo &34 CI=E{2|7} lojot ELCh.

2230fl ot CIHEIE 2|7t 23 El B¢ BE2 XIGE CIHEEE| otelel ot CIHAEEIE ChA| dEE
LICF.

--output Test

£33 2Ix|7} CIHMEE|(THY O|F ¢i3)2! B AWS Encryption CLIE= €23 It O/ HO[ALE 7|
Hto2 £ Il O|§ 2 MMELICH 2535 22 .encryptedE U= It O|Fof| FotstT 5
Z3t 2 Y2 .decryptedE FIHELICH HOIAHE HAESIEAH --suffix D2tOIEHE AFSELICH

o|E E04, file.txtE Y= 3l5tH L5353 BHO| file.txt.encryptedE HHELICH.
file.txt.encryptedE& =% 36t 553 BAHO0| file.txt.encrypted.decryptedE 4
%I-L_||:|.

= .
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. HBH(stdout)oll &LICH --output THEHIIEIQ] - 3 UFLICH --output -2 AL 30 B
g CiE WOl Z2IoR MEE 4 AUSLIC

--output -

et
1
20
Iy
L
Ani
!
1

ot 53 A 553 BH0IM 58 HHAAEE KIS
o o

2 =S AE = H[HO| ol 2o|of F7t 215 H|O|H I &LICH AWS Encryptlon CLI01|A‘| I

3t ZAMIAE = name=value H0{ 2222 FEELICE mtdof CHEt ME, EO0M ¢35 2 4S &

& O =20| £l= dlo|H & &7t H&Mof| 228 o|0|E{& Z & 510 lHIO-IE —_r"A"E DE 2H=xE
ol

of & 3} WHoM X|H5tE g E 8 HEAES CMMO| F7I5HE F71 Ho{s &E8HE ClO|E{of &%
gt Alo 2 HiQIYELICE E8t BAEO| Btetste 23 sHE HIAIXK|oz (et ’RIAER) L ELICH
E ME35t= B AWSKMS key2 238t ZARIAE =0 ZH2 ZAtHZE 2 270 EIAER EA|
2 = J&LICH AWS CloudTrail.
Cl2 o N|= name=value H|0{ 372 A MHEI & 535 HEIAEE Ho{FL|C}

--encryption-context purpose=test dept=IT class=confidential
=533 3E
=33 BHoM dE 3 HEAEE 5 5HE HAIX] HIE2H S53t5tn U=X| &lst= ol =
0| Euct

LIch Z2{Lt ol A &t AWS 235t CLIE =53
FEZo| Aloighu|ct.

ol

o|§ S04, CtS BHE2 Y535 HHAE| dept=IT7| Z&E BRE 2 S3}tE HAIXIE S535He
LICE.
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JHetxt 7hol=
aws-encryption-cli --decrypt --encryption-context dept=IT ...
Ot 55t HYAEE Bt FAo| FL REULICH T 458 HYAEE MU mi= ST 2Ol
HIZo| ot S 7|d&lioF ELCt =3 ZHARAE| 7|2 CI|o|HE Z &6t x| oMl
ofSst HEHAE XY
- &S5t BHOIA --encryption-context TtEtO|E{E StLt 0|42 name=value 042t B 7 At
EFLICH SHE ALE5t0d Z Ho{E FELICH
--encryption-context name=value [name=value]
- 53535 HHO| --encryption-context Lt2tO|E] gtol= name=value H0{, name L4 (4 )
= ol Eo 80| & E & JU&LICH
--encryption-context name[=value] [name] [name=value]
name=value H042| name == valued| SEO|L} S EX7F T El 32 A Ho{E I8 =
= |=|L—|E|'
--encryption-context "department=software engineering" "AWS ##=us-west-2"
0 € £01, ol ¥ Z3 WA= F H0{2] purpose=test & dept=230| Z&E S35} ZHEHAET}

Olz3t =23 B MTHLIC 2 Bo| o

ol
ol

ZHEIAEE= gl &4 5351 ZHEIAEQ|
& = Hol =3 | 5t

\\ Any one or both of the encryption context pairs
aws-encryption-cli --decrypt --encryption-context dept=23 ...

\\ Any one or both of the encryption context names
aws-encryption-cli --decrypt --encryption-context purpose ...

\\ Any combination of names and pairs

aws-encryption-cli --decrypt --encryption-context dept purpose=test ...

X

CLI A

0lo

0
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lgﬁ
!
=2
>
A
_0
+0I-
lgﬁ
N
m
>
[m
2
rr
Ral
0%
r
kO
k>
N
e

ot x| 2k OIE-I?_ S35 B2 AMELch &3

g z[o] UKl ef& LIt

aws-encryption-cli --decrypt --encryption-context dept=Finance ...
aws-encryption-cli --decrypt --encryption-context scope ...

A O T o O =
Hof ciet 72! HAME H™YEEd™ --commitment-policy ItEtO|E{E AFEEFLICE O mtEtOlE
£ HA 1.8.x0 EUEIRELICE Ol= .°=.*§§P 1 =533 HHE| RELICH MAEE 7{8] HA2 i
g HAMO| LIEtLtE HEHP &L Hdof cHet 748! Mg M 5K L2 AWS Encryption
CLIZt Z7|8Zt2 Ar8 ' LICt
o & 04 CtZ matO|E 242 72 H2E require-encrypt-allow-decrypt2 MHELICE Of
B2 HU YA & 7| HBIe R 4536t X[T 7] Z{B] AFE 0{F et Bt AH[Q10| &t S 5tE! AO|THEIA
EE= 5353ELU L

--commitment-policy require-encrypt-allow-decrypt

T8 oo T2t0|EHE MEste EY

AHZ E|= AWS Encryption CLI It 2HO|E{QF ZH2 TA4 mhlofl X{&Hstod Alzte AMofstm 2 @

El=A
—
TRE = AsLICH

du A
mu

e BEIAE mhUlL|CH AWS

T Dt AWS Encryption CLI B230| ml2t0|E{Qt Zt2 X &5

Encryption CLI &0l 74 MFOE% ESHH I oo mi2to|e 2 gre 2 cHA| &Lt
BHE0| Y LHES =t AR SYs 047+ LIEFELICH 74 TS ofiH O|F0|E 7HE =+
U R AL KITF HMAE £ e RE CIEEZ[o QIXIE = A&LICH

CtZ oAl #+ TRl key.conf= ME CHE 2|70 AWS KMS keys F 7HE K| & LICt.

--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
--wrapping-keys key=arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

B 74 o2 AS5te{ It 0|8 ol at 7|15 (@) E I LICH PowerShell £ 0| ME 2HE]
ZAHE AM836tod at 7|5 (T@)E OlAZO|Z X{2|gLct.

O] oi|xl| BH2 2f 55 HHO0IM key.conf IHAUS ALSELICH
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Bash
$ aws-encryption-cli -e @key.conf -i hello.txt -o testdir
PowerShell

PS C:\> aws-encryption-cli -e “@key.conf -i .\Hello.txt -o .\TestDir

T4 e 75

T4 0 A8 FE2 o 24U

O|€ £04, 0iAl encrypt.conf I+YUO| LIS CtS1t Z&LICH

# Archive Files

--encrypt

--output /archive/logs

--recursive

--interactive

--encryption-context class=unclassified dept=IT
--suffix # No suffix

--metadata-output ~/metadata

@caching.conf # Use limited caching

BHol ofe] 7+ w2 &Y = UELICH O] x| BHE2 encrypt.conf & master-
keys.conf 7+ It 2 25 AFSELICH

Bash

$ aws-encryption-cli -i /usr/logs @encrypt.conf @master-keys.conf

CLI AMS &

0lo

0
It
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PowerShell

PS C:\> aws-encryption-cli -i $home\Test\*.log ‘@encrypt.conf “@master-keys.conf

CHS: AWS Encryption CLI 0|X| AL 3l £ 7|

AWS 253} CcLIO| o

LIE A8 EM 2. otAE 7| & 7|E oi2f

CtZ K& Al 535t C
2 gt MMg 2R SHMIL. 2 2 =& AWS Encryption
=

O|E{of CHEF =2 &
SDK CLI #+2 % mlztole] #x Mg 3

oto
oo
A
rio
g'l_l
rr
3
u
i
[=)
x
>
=
wn
nQ
K
> Mo

@ Note
CtS oMol A= AWS Encryption CLI HH 2.1.x2| £ 22 AFSELICH
MZ2 ot 7|52 22l AWS Encryption CLI EHA 1.7.x 2! 2.0.x0|AM 2 Z|AE[RF&LICH 2
2{Lt AWS Encryption CLI EHH 1.8 x= B 1.7.xE CHAISH L AWS Encryption CLI 2.1.x&
2.0.xE CHAIELICH REMIBH LHE 2 GitHubQ| aws-encryption-sdk-cli 2| ZX|EE2[0]MH & £
of MuZ A xEMS.

o
Fol
l‘oj
H
jn]}
9
ﬂ

M
el
g
FiF
r2
N
or
|0
>
()
_o'l_l
rr
oz
It
mjo
HL
i
ek
rr
=]
il
rr
e
Fol
lgﬂ
n
jn]
o
o
N
el

AWS KMS CI& 2| 7|E AI85te HHE HEodF = o= MM HZTSMRLHS 27 AFE AWS
KMS keys.

A

- Y ASE

- US55

- CIHEZe ZE IY 4535}
- CIHEEZe ZE Y 5355}
- BEEM AES B S55
« 0t OIAE 7| A8
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« CIOIE 7| FH& ALE

O] of Ao A= AWS Encryption CLIZ A& 35104 "Hello World" 2A+0| Z & El hello.txt ZtO| LK

2
x
o2
ok
on
2
o
jo
>
0%
|
2
>
=
w
m
>
s)
<
=
o
)
@)
—

2HEXE 71X, 15§ ool
S StE

HAIXIE A oo #&L|ct

H

}0I'
molI

5 | P 20| 7| ARNE $keyArn B AWS KMS key Ol K& ELICEH E AFE5t0d & 5 5HE
7| ID AWS KMS key, 7| ARN, H& O|F E= HE ARNZ At835t04 AJHE = &Lt o 7| A4
Ktoll CHEt REAIEE LIS 2 AWS Key Management Service ik &t StLHA{ Q| 7| AlHERLE AWS KMS
key& Z3HMI2.

l

T Hn BHE2 0 W8S ¢E3tELct ol -2 --encrypt L2tOIEHE AHE504 &S X[H
St --input Zt2O|E{E AL 5104 S 8He T2 EAIRLICH --wrapping-keys Zt2tO/E{QF E
Qe 7| 5482 7| ARN2Z AWS KMS key EA|E|=E AFE ST B0l XA LICE

0| HYL --metadata-output T2tOIE{E AR 5t0d &5 3t 2dof it HIEIHIOE{SE QIFt HIAE
ot X|HELct @3-l --encryption-context ItEtOIE{E AFE 350 25 ZARIAEE K|
St= 230 2 AbadLct

Lt 0| BELE --commitment-policy TtEFO|E{E AFE 3104 7O HAME HAIMSZE MY ELIC
& 1.8.x0| = --wrapping-keys It2t0|E{E AFEE [ O m2tO|E{7t ELELICH HA 2.1.xF
E{ --commitment-policy Zt2tO|E{E MEH AL O|X|2H HEEILICH.

--output Zt2tO|E Q] gt2l HM()2 &3 2 X CIHEZ|o| A= F B0l XA L|CE
Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt \
--output .
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PowerShell

# To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --encrypt °
--input Hello.txt
--wrapping-keys key=$keyArn °
--metadata-output $home\Metadata.txt
--commitment-policy require-encrypt-require-decrypt °

~

~

--encryption-context purpose=test °
--output .

&5t HHO| Y36t ofiH ST BHets x| et &LICH BHEo| M3 0{F E &Qlste{w $2 Hr 9|
22 72 QI8 LCt W20l MBstH $79] 2 0(Bash) == True(PowerShell)QLICH HZ0| Al
m5t™ $29| 242 00| ofL| 7L} (Bash) False(PowerShell) & L|C}.
Bash

$ echo $?

0
PowerShell

PS C:\> $?

True
CIEEZ S5 HHES Ar85to ¥ 535 B-O| hello. txt.encryptedits M IHUE HHFM =X
golgh =5 &Lt &&3t BYo| E390| nt Y o|F 2 XIHsHX| 24 7| I Z 0l AWS Encryption

C
Ut O|F 0| 21 M.encryptedd|At7t = THUol| £ G} &LICH CHE ™HO[AF
x |24 --suffix T}2tO/E{E A2 ELIC.

hello.txt. encrypted It Jol= hello. txt TtUO| ALO|HEIAE O|O|E 7|2 FE3IE AR, £
7t HEtD|O|E{(¥ =8t ZARAE Zeh7t o El 25 3HEl HAIX|7F 01 U&LICH
Bash

$ 1s
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hello.txt hello.txt.encrypted

PowerShell

PS C:\> dir

Directory: C:\TestCLI

Mode LastWriteTime Length Name
-a---- 9/15/2017 5:57 PM 11 Hello.txt
-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted

Tl = 5 5}

O od| Mol A= AWS Encryption CLIE AF&35t04 O|F Od| X0l M & =8l El Hello.txt.encrypted It
Uo| L& = E Lt

-decrypt IEtO|E{E ALE5t0{ 2 US EA|

B2 - 2 &t --input TEOIE{E ALRSt0d &
sleh mtele AlYEEiLICH --output THEFOIE{Q] Zf2 3AH C|Z]

EE|E LIEtLE Ml

key 50| QU= --wrapping-keys It2tO|E{= ¥ E&E HAIX|E S53t5t= Ol A= 2iE 7|
E X|YELIct E A88t 5535 WHAM 7| £ AWS KMS keys2| Zf2 7| ARNO|0{OF §FL|C}. --
wrapping-keys II2t0|EE S5 3 B0 BtEA| EQFLICH AWS KMS keysE A8 35lE B9
key SM4E AI835l01 S5 31E 2|50 AWS KMS keys £ X|& 5l 7L} discovery £4E true U2 Z K|
HEg = UELICHE O X|EE == I8). ALK XH 0tAH 7| S2XHE AE5te B key S5+
provider £40| gL}

ofr
-_

A 2.1 xEE --commitment-policy It2tO|E{E MEH AEO|X|BH HEEILICEH 0| HAMoZ
A3 7|22k9] require-encrypt-require-decryptE XIHSIHEIE o= & HWEF| & £ Q)

E7 M3 E BT --encryption-context HPE
| oo K2 S 70 £
FE HIAIX|S| & &5t ZHARIAE O

M =53 HFo| AuiFict

m° O
_o'k
0
Fob
11
r

S22 A==
33t CLI

=
—
2fLICE 224X| &

Yol

BIAEE A |.R oI-L_||:|.

o;
= |:|_?_

Edl
= =
3t o%'oilkl *"E” At

o s

i

o
Io

purpose=test H04{7}

--metadata-output I2t0|E= 5535 240 CHet HEICIO|E{E I8 oS RI™ELICE --
output It2tOIE{Q| gLl M()2 £ mtU2 #HA CIREZ|of &Lich.
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282 CloIE 717t IR B2 HRE HAo| HAXIE =
data-keys TEHOIEIE A8 3HE 70l 24 ArzlILICH o
SEls 2 4T 71 stLb) = BElMQl 2|CHaH(ol: 57H)2
E 7| MgtE HE5HAM L.

5 35}5t K| &t =S --max-encrypted-
S 3tE CIolE 7|19| ol & = §_§P01| At
XIHgLIch RHMIEE L8 2 st=l dlo]

POI'

--buffer= CIX|E MEO| U=X| &RlsteE S ZE UZ0| *2|E Fogt U HAES PrEtefL

Ct.

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--output .

PowerShell

\\ To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt °
--input Hello.txt.encrypted °
--wrapping-keys key=$keyArn °
--commitment-policy require-encrypt-require-decrypt °
--encryption-context purpose=test °
--metadata-output $home\Metadata.txt °
--max-encrypted-data-keys 1 °
--buffer °
--output .

S35 BE0| YSotH o ET BrEtetx| r&LICH BHO 435 0{F E FH stz $? 49
Zf2 7tMELICH CIEEE) 55 TP S AL8otod BH0| .decryptedEtsE HOIAZE 22 M T
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$ 1s
hello.txt hello.txt.encrypted hello.txt.encrypted.decrypted

$ cat hello.txt.encrypted.decrypted
Hello World

PowerShell

PS C:\> dir

Directory: C:\TestCLI

Mode LastWriteTime Length Name

-a---- 9/17/2017 1:01 PM 11 Hello.txt

-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted

-a---- 9/17/2017 1:08 PM 11 Hello.txt.encrypted.decrypted

PS C:\> Get-Content Hello.txt.encrypted.decrypted
Hello World

ClelEz2|el RE Tt 2k 5 5}

O| o Mol A= AWS Encryption CLIE At&3t04 CIEIE 2|0 = 2E Ao LIS & ESELICH

®240] 042{ THoll WS O/xI= 2 AWS Encryption CLIE 2 THUE THExo 2 *{2|&Lict 1t
U L8 S JHKQT, OFAE Flol M IUo| TRE CIOIE] 7| 7HM2T, HOlE 7|12 Y LIS S o
Z5otT, Z0E £ CIE2lol A Ihol &LICH DHEtM £ 1HUS SEMoR 25 5E 4
&Lt

O| TestDir C|HE|E| 2 20|= &5 355184

rr
e
>
m
—‘-71
°
[}
k|
>

n
T
0

Bash

$ 1s testdir
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cool-new-thing.py hello.txt employees.csv

PowerShell

PS C:\> dir C:\TestDir

Directory: C:\TestDir

Mode LastWriteTime Length Name

-a---- 9/12/2017 3:11 PM 2139 cool-new-thing.py
-a---- 9/15/2017 5:57 PM 11 Hello.txt

-a---- 9/17/2017 1:44 PM 46 Employees.csv

»

| H 29| Amazon 2lAA O (ARN)E $keyArn B4 AWS KMS key ofl A &H&FL|C}

= ] BHE TestDir CIEEZ|0 U= T
TestEnc C|ZE{Z|0 &LICt TestEnc C|
CIHE{Z|0|2 2 --recursive Tt2tO/E{7} E-IJ-E}.L’l .

_—|—

--wrapping-keys It2tO|E{Q} = key SH2 AFEE 7|1& X[HEE
st ZHEIAE QI dept=IT7| ZEELICH o] U S = 3t5t= P =3 HEAEE X|HSHH
D E oo s =3 HEAET ASELICH

o 0o
o
L v}
0K

HHo= =35t 75.*°*°1| CHEt HELCO|EE 2 && ?{X[& AWS Encryption CLIO| 243
metadata-output ZEtOIE{T U&LICEH AWS Encryption CLIE €& 3HE Z- ot o] EHOH °fo9| ul
STE(fo][= Eﬂ_:.'_E% Lt

--commitment-policy parametert= H{™ 2.1.xFE MEY AL O|X|BF HEELICH H™O|LF A3
ZEJ MO|HEAEE 553518 4= Q101 AIiste B BAIM 7 HM MYS ALSstH 2XIE it

EH #Xlste ol 80| E & U&LICH

HHF 0| PR E|M AWS Encryption CLI= ¥ E3tEl It(E TestEnc CIEE 2|0l 7|& 5t KB &332 vt
gtot x| et &Lt

Orx|9f BHE2 TestEnc CIAEE|S| Tt LS LIGRLICH LBt HAE ZRIXO| 2t 2|3 milotch & &
£ 2EIx0| 3 mUo| stLi QU&LICH FHo| ChA HO|AE XIHstx| gte=z &3t BY

| 2t 2129 m} ol O|§ 0o .encryptedE FIIGH&LICEH
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Bash

# To run this example, replace the fictitious key ARN with a valid master key
identifier.

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input testdir --recursive\
--wrapping-keys key=$keyArn \
--encryption-context dept=IT \
--commitment-policy require-encrypt-require-decrypt \
--metadata-output ~/metadata \
--output testenc

$ 1s testenc
cool-new-thing.py.encrypted employees.csv.encrypted hello.txt.encrypted

PowerShell

# To run this example, replace the fictitious key ARN with a valid master key
identifier.

PS C:\> $keyArn = arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PS C:\> aws-encryption-cli --encrypt °
--input .\TestDir --recursive °
--wrapping-keys key=$keyArn °
--encryption-context dept=IT °
--commitment-policy require-encrypt-require-decrypt °
--metadata-output .\Metadata\Metadata.txt °
--output .\TestEnc

PS C:\> dir .\TestEnc

Directory: C:\TestEnc

Mode LastWriteTime Length Name

-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted

-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

of| Al

309



AWS Encryption SDK JHEER} 70| =

CIHEEe 2E oY =535

o| oidl= CIEIEEo e ZE TS SE3HELICH O MMM &5 3HE TestEnc CIREZ[2
ut UFE AIRFERLICE

Bash

$ 1s testenc
cool-new-thing.py.encrypted hello.txt.encrypted employees.csv.encrypted

PowerShell

PS C:\> dir C:\TestEnc

Directory: C:\TestEnc

Mode LastWriteTime Length Name

-a---- 9/17/2017  2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted

-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

0| 253 A2 TestEnc EIE*'E-IEIQI DE OUE 535355l 0 Yt BIAE 1S TestDec C|EIE]
2loil &Lict 7| £41 7| ARN 240 U= --wrapping-keys ZtEtO|E{= AWS TS =55 AWS
KMS keys st Cll AL E &5 3} CLI01| K|AlgtLICH B2 --interactive TI2}O|E{E AL 5}04
St 0|2 0| mtE FHo{rrT| Toi AWS Encryption CLIOI ZEZEE EA|SITE X|A|ELICH

Al 3t AWS Encryption CLIE TS HES D B0 E ’Sf*c;'%F |EFE||0|E'|0| AIHE 7|S8HCHS
LIHX| ot A& &QlgtL|Ct AWS Encryption CLIZ} CHE O|R 2 mtg S35 356t K| R6tH M|
5353 HHO| ZA| AuliFct.

Ol M MHE 2E U2 mtdo| A5 3tEl HAIX|0] dept=IT =3} ZHHAE QAT ZEE|0] UG
LICH St X[BF ef 53t ZHAEAE T CHE HIAIXIE SE35tets B0t 253 HHEAEO[ UR = FHQ

Mg = U&LICH 6§ S0 LR HAIX|| 53t HEAET} dept=financeO|1 CHE HIAIX]
of AZtE HEAE T dept=IT2! B2 S XIHstx| AT 53 ZHEHAE | F4 dept 0[FO0|
ZEE|o] AR &g = UA&LICH & O MM Z &Qlsit{H Hr ol BEoz ndg S35
= A&LICH
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2535 FY2 ofH AT BHEke
P

.decrypted HOAI7I E2 M It E HENU 505 & 0 o |H} & = -
ol ZHIXE 7 E BHEE MSELULCH

Bash

# To run this example, replace the fictitious key ARN with a valid master key
identifier.

$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \

--input testenc --recursive \

--wrapping-keys key=$keyArn \

--encryption-context dept=IT \

--commitment-policy require-encrypt-require-decrypt \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \

--buffer \

--output testdec --interactive

$ 1s testdec
cool-new-thing.py.encrypted.decrypted hello.txt.encrypted.decrypted
employees.csv.encrypted.decrypted

PowerShell

# To run this example, replace the fictitious key ARN with a valid master key
identifier.

PS C:\> $keyArn = 'arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt °
--input C:\TestEnc --recursive °
--wrapping-keys key=$keyArn °
--encryption-context dept=IT °
--commitment-policy require-encrypt-require-decrypt °
--metadata-output $home\Metadata.txt °
--max-encrypted-data-keys 1 °
--buffer °

--output C:\TestDec --interactive

PS C:\> dir .\TestDec
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Mode LastWriteTime Length Name
-a---- 10/8/2017 4:57 PM 2139 cool-new-
thing.py.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 46 Employees.csv.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 11 Hello.txt.encrypted.decrypted

Ol M= =S %‘%"(stdin)gi mo|Z st £33 B E(stdout)oll A= %*E':.% Ho{E Lt BH
o | 04 40| ASCII7} ot

Ol M= Ut EIAE BXtEE 253t HHEoZE mto|=Z5t 1 3 35tE HAIXIE 2
LICH 323 OFE 0] e 33 E HAIKIE 558 BY¥o = njo|Zsty, siy HE2 32 ot

O| = 2}Ql(stdout)Oll £ LIC}.
Ol A= ChEat Z2 Ml 7Hx| BEo 2 T4 E|o{ U&LICH.
« X e H20| 7| ARNE $keyArn H4= AWS KMS key 0ff Z{ZHgFLICt,

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

« T | B2 Hello World =AtY¥E =38t BHOE uo|Zstm T A E $encrypted HE
ofl K& gfLich

--input & --output ZtZtO/E{E= 25 AWS Encryption CLI &0 gtE A| & Ct =0|

Qs

= = |
TRY(stdin)2 2 THO|ZE| T 1SS LIEFHLHEIH --input T2tOIE{ Q| Ztof a+0|£( )2 A LI
£242 HYZE(stdout)2 ELHE{H --output TH2tO|E{Q| Ztol| 5IO|E S AFSEHLICY.
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--encode IlZOE{E &84

=] =etL|Ct Ol A 5tHH €lo| &5
3=l H|AlX|2] ASCIIZ} OF R

Ol B2 /e 3TU ¥o|=2= AdE3t HHAE = st 0 MIEIH|O|E|(-S)E EAISHX| ef&LICH

Bash

$ encrypted=$(echo 'Hello World' | aws-encryption-cli --encrypt -S \

--input - --output - --
encode \
--wrapping-keys key=
$keyArn )
PowerShell

PS C:\> $encrypted = 'Hello World' | aws-encryption-cli --encrypt -S °

--input - --output - --
encode °

--wrapping-keys key=
$keyArn

o Ml | BHE2 $encrypted 0| &

POI'

SHE HIAIXIE 5535 HHEoZ mlo|= & LCt.

Ol 533t Y2 --input -2 AI&3sto{ =40| ZhOo|Z 2t Rl(stdin)IM E0{21 USS LHEHLHT
--output -2 AI85t0{ £E232 It O|Z 2 Ql(stdout) 2 2 EL|Ct. (= mtetO|E =

O|E7} ofL|2t 2] RIXIE AFBSEZ $encrypted B8 --input ZIEIOIEQ| ZIS 2 A8 E
T i&Lct)

O| M| M= --wrapping-keys TtEFO|E{Q| A K42 A& 3504 AWS Encryption CLIZHE At
83510 HIO|E{E =23} AWS KMS key ot =5 S{S & LICE 047|M= HY HAE X|Hs5tx| gte =

o 1=

2 BT 2.1.x O|&rol| CHEt 712722 require-encrypt-require-decryptE AFSELICH

30| A= otEl F QUITEACEE S5 BYE --decode LEHOIEE ArE5H0] Base64 = Q
IAYE g 25315H7| ™Mol C|ZEEL|Ct £t --decode T}2O|E{E A& 310{ Base64Z QI
IYE UZE LS 5tetT| ™ol C|ZEE = J&LICH

AM LRMZO|, O] HH2 2535 ZHHAEE 25D M|EIH|O|E(-S)E EAISHK| et &LCH.
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Bash

$ echo $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=true
--input - --output - --decode --buffer -S
Hello World

PowerShell

PS C:\> $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=$true
--input - --output - --decode --buffer -S
Hello World

57 ¥4 glol BY BBoR o

1
50
I
T
AN

5t o =58 5

1 =

fjo

A A
e T

}OI'
ok

H HHL --encode It2HO|E

O oMo &I --input ! --output II2tO[E{0E - ZtO| U2
2292 C|AEEL|CH

E ME835lod £33 Q1A Y ST --decode I}EHO|E{E AFR 3104 ©

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ echo 'Hello World' |

aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --
output - --encode -S |

aws-encryption-cli --decrypt --wrapping-keys discovery=true --input - --
output - --decode -S
Hello World

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> 'Hello World' |
aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --

output - --encode -S |
aws-encryption-cli --decrypt --wrapping-keys discovery=$true --input
- --output - --decode -S

Hello World
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o424 OIAE 7| AFS

O od| X[l A= AWS Encryption CLIOIA CIO|E{E &= 3t5tD Si=E M o4 OtAEH 7|E AH&Stes
S Ho{ELLCt.

oic{ OtAE 7|& AHE5t0d HIOIEHE 253 stH allY OtAE 7| & stLEE AFE5tod HIO|EHE S5& 3
g+ UELICH Ol =S A8 stH OtAE 7] & stLHE AH8E & Sl dEMZ HIOIEHE 5353
g+ UELICH 2 E3HE HO|EE ool XMEstE 2 AWS 2|T0| HEF S AH8stH S YU 2|1
O OfAE 7|& AL83t0o O|O|EHE sHSE + A&LICH

oic] OtAE 7|2 3 8tsts 42 & MM 0tAE 7|71 SEet Jg 2 gLCH 0] 7= CIOIBHE &3
stot= ol AL El= HIOIH 7|1& *”’SEFL—IEP LtH K] EIV\E4 7= et HAE O|O|H 7|& & Z &L
Ch O Z2n, &S 5tE HAIX|ol= & Z8HE ClolEet & 3tEl H[o|E 7| 2&0] Zf ObAE Z|otct 8t
LM ZetElLICH HlolE 71§ BFE A2 X M okAH Z|o|X[EH CHE 2 E OtAH 7|2% H|olH 7|

ISN|
W
£ 23535104 O|O|EIE 2538 & QlaLlch

}OI'

FII'I

Ml 7He| OtAE] 7|12 AM88t %535

_

ol ofixll W2 M ol BHE 718 AR 5Hod Al 7ol AWS 2IFZEztoll sHLH Finance.log TFS
ot 3 3itLC)

O| HH2 4S5 3HE HAIXIE Archive CIHIE{Z|0f #&LIC}H O] HHEE ZL0| e --suffix Ti2tO|E
X D|

—
E AL85tod HOIME EAISHR| pte22 /3] 3 &3 nt Y 0|F 0| SYELICH.

O] B2 M| 7IX| key £ 4E 7HEl --wrapping-keys IIZIO|E{E AL ELICH ZH2 H&30i 042 7H
9| --wrapping-keys ItZtO|EE A E =T U&LICH

»*
rII
i

&}t5t7| 28 AWS Encryption CLIE 55 9| ciE 7[2! $keyldl CIOIEHE &
1 Chg LIHX| 2HE 7|& 42 AF&5t0q
o

CI0/E! 718 MEHER 2B, 22
¢ 2 '3 8HE HAIRIOlE 2B stE o

$ keyl=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$ key2=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef
$ key3=arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6fla2b3c4d

$ aws-encryption-cli --encrypt --input /logs/finance.log \
--output /archive --suffix \
--encryption-context class=log \
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--metadata-output ~/metadata \
--wrapping-keys key=$keyl key=$key2 key=$key3

PowerShell

PS C:\> $keyl = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> $key2 = 'arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef"

PS C:\> $key3 = 'arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d’

PS C:\> aws-encryption-cli --encrypt --input D:\Logs\Finance.log °
--output D:\Archive --suffix °
--encryption-context class=log °
--metadata-output $home\Metadata.txt
--wrapping-keys key=$keyl key=$key2 key=$key3

~

O] ™2 Finance.log ItYUo| A S 3 E AHRE 535315104 Finance C|HE{Z|2
Finance.log.clear Z+o] &LICH M| 7HE 2 Z3tEl O|O|EHE sH=5lciH S et Al AWS KMS
keys 7H FE= 19| ZIEt2 X8 AWS KMS keys% Q& LICH O] GFIOIME AWS KMS keysS sfLt

oF XIE gLk

> foi

olO|E] = 53t0fl AWS KMS keys AHSE AWS 25 3l CLIO| € 2[24™ - -wrapping-keys It2t0|E]
O 7| M2 ALSELICH E AL85tod S5 35HE Ml 7| &4 AWS KMS keys2| 2t2 7| ARNO|0{OF &
L|CF.

AWS KMS keys X|"4EH0{| M Decrypt APIE S & &+ = Tetol Qlo{ok EfLICH RHMIEF HE = AWS
KMSOi| CHE 215 S M| A Ko{§E FHESHAMR.

2 AEZM, o]l M= &= 3HE CIOoIE 7|7F T B2 ERE a9 [HWXI% S535tetR| s
--max-encrypted-data-keys It2t0|E{E AL EFLICE O] oMol & 2HE 7|

aZ
HF
POI'
LOL
2

235K|2H 2SS E HAIX|olE &535E W A= Ml 742l 2iE 7o I:HﬁH Zr 2k Stk & M| 7R

ot 5512 O O|E| 7|7t U&LICH 23 5HE CIO|E] F|2| ofl &k JH4 FEE &EE 2|CHZk(0l: 5)2 kIRE
LICt z[CHgt2 3ECH 2 A X5t B o| AmgrLIc REMIE L8 2 s stE CllolE 7| AEHS &

Z3tML

Bash

$ aws-encryption-cli --decrypt --input /archive/finance.log \
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--wrapping-keys key=$keyl \

--output /finance --suffix '.clear' \
--metadata-output ~/metadata \
--max-encrypted-data-keys 3 \
--buffer \

--encryption-context class=log

PowerShell

PS C:\> aws-encryption-cli --decrypt °
--input D:\Arxchive\Finance.log °
--wrapping-keys key=$keyl °
--output D:\Finance --suffix '.clear’
--metadata-output .\Metadata\Metadata.txt °
--max-encrypted-data-keys 3 °
--buffer °
--encryption-context class=log

ATRES Y535 QUL

Fol:

gt

= 232 EoM AWS ¥ E 5t CLIE M85t YUY
SB-EE Kyt Clo[E #E| Z2 ML U
o

/A Warning
oto|xdo| 274X} 7} Mo{E £ F Q= H|2 7| 2 HIO|E{7t 25 ZEEIOEE ¢=E =
Zolsfot gLICH & EEl ClolE2 215 37|12 Qlaf o= | oAl CllolE] Ligoll chgt mizkst
MEJ e £ et

AN EH
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Bash

# Continue running even if an operation fails.
set +e

dir=%$1

encryptionContext=$2

s3bucket=$3

s3folder=$4

masterKeyProvider="aws-kms"
metadataOutput="/tmp/metadata-$(date +%s)"

compress(){

gzip -gf $1
}
encrypt(){
# -e encrypt
# -i input
# -0 output
# --metadata-output unique file for metadata
# -m masterKey read from environment variable
# -c encryption context read from the second argument.
# -v be verbose

aws-encryption-cli -e -i ${1} -o $(dirname ${1}) --metadata-output
${metadataOutput} -m key="${masterKey}" provider="${masterKeyProvider}" -c
"${encryptionContext}" -v

}

s3put (){
# copy file argument 1 to s3 location passed into the script.
aws s3 cp ${1} ${s3bucket}/${s3folder}

}

# Validate all required arguments are present.
if [ "${dir}" 1 && [ "${encryptionContext}" ] && [ "${s3bucket}" ] &&
[ "${s3folder}" ] && [ "${masterKey}" 1; then

# Is $dir a valid directory?

test -d "${dir}"

if [ $? -ne @ ]; then
echo "Input is not a directory; exiting"
exit 1
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echo " and ENV var \$masterKey must be set"
exit 255
fi
PowerShell

fi

# Iterate over all the files in the directory, except *gz and *encrypted (in case of

a re-run).
f in $(find ${dir} -type f \( -name "*" | -pame \*.gz ! -name \*encrypted \) );

for
do

echo "Working on $f"
compress ${f}

encrypt ${f}.gz

rm -f ${f}.gz

s3put ${f}.gz.encrypted

done;

else

#Requires -Modules AWSPowerShell, Microsoft.PowerShell.Archive

echo "Arguments: <Directory> <encryption context> <s3://bucketname> <s3 folder>"

Param

(

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String[]]

$FilePath,

[Parameter()]
[Switch]
$Recurse,

[Parameter(Mandatory=$true)]
[String]
$wrappingKeyID,

[Parameter()]
[String]
$masterKeyProvider = 'aws-kms',

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]
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$ZipDirectory,

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

$EncryptDirectory,

[Parameter()]
[String]
$EncryptionContext,

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

$MetadataDirectory,

[Parameter(Mandatory)]
[ValidateScript({Test-S3Bucket -BucketName $_3})]
[String]

$S3Bucket,

[Parameter()]
[String]
$S3BucketFolder

BEGIN {}

PROCESS {
if ($files = dir $FilePath -Recurse:$Recurse)
{

# Step 1: Compress
foreach ($file in $files)
{

$fileName = $file.Name

try

{

Microsoft.PowerShell.Archive\Compress-Archive -Path $file.FullName -
DestinationPath $ZipDirectory\$filename.zip

}
catch
{
Write-Error "Zip failed on $file.FullName"
}
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# Step 2: Encrypt
if (-not (Test-Path "$ZipDirectory\$filename.zip"))
{
Write-Error "Cannot find zipped file: $ZipDirectory\$filename.zip"

}

else
{
# 2>&1 captures command output
$err = (aws-encryption-cli -e -i "$ZipDirectory\$filename.zip"
-0 $EncryptDirectory °
-m key=$wrappingKeyID provider=
$masterKeyProvider °
-c¢ $EncryptionContext °
--metadata-output $MetadataDirectory °

-v) 2>&1

# Check error status
if ($? -eq $false)
{

# Write the error

$err
}
elseif (Test-Path "$EncryptDirectory\$fileName.zip.encrypted")
{

# Step 3: Write to S3 bucket
if ($S3BucketFolder)
{
Write-S30bject -BucketName $S3Bucket -File
"$EncryptDirectory\$fileName.zip.encrypted" -Key "$S3BucketFolder/
$fileName.zip.encrypted"

}

else

{
Write-S30bject -BucketName $S3Bucket -File
"$EncryptDirectory\$fileName.zip.encrypted"

}
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CIOIE 7] 7He ALS

ol MM B2 2 utd
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ol mtUE & E35t5t= Ol AFSE|X| §E&LICt ZF C[o|E 7|2 %*§_§FEE oty =& ANEtstH Al
CIOIE 7|7t &4 &= o 7|x| 28 A& 0| dMstHEIE JEF2 dhe ot =8 L = A&t

24 MMM dgstE 21 mtUolM o] BES A-stedH 2 Elxt HeH(Linuxe| B sudo,
Windows2| 22 ZE|XI HEteZ AsH)o| ZE 4 QlaL|ch

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input /var/log/httpd --recursive \
--output ~/archive --suffix .archive \
--wrapping-keys key=$keyArn \
--encryption-context class=log \
--suppress-metadata \
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PowerShell

--caching capacity=1 max_age=10 max_messages_encrypted=10

PS C:\> $keyARN = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab’

PS C:\> aws-encryption-cli --encrypt °

--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'

--wrapping-

keys key=$keyARN °

--encryption-context class=log °

--suppress

-metadata °

--caching capacity=1 max_age=10

max_messages_encrypted=10

Ol oilAlol M= CllolE 7| 79| 3
A EFLICE O] oM E dlolE| 7| 7H4) gio] Al

CIEE2(ef 2 ot o Ciali M Tl 7§ &S

E 1 E HIAESHZ| 26 PowerShell2] Measure-Command cmdlet2

M5tEd 2t25t= O of 2571 ZAELICH O| ZEMAE

JErLCh.

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °

--output $home\Archive --suffix

--wrapping-keys key=$keyARN °
--encryption-context class=log °
--suppress-metadata }

.archive'

Days : 0
Hours 0
Minutes : 0
Seconds : 25
Milliseconds : 453
Ticks : 254531202
TotalDays : 0.000294596298611111
TotalHours : 0.00707031116666667
TotalMinutes : 0.42421867
TotalSeconds : 25.4531202
TotalMilliseconds : 25453.1202
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HlolE] 7| FZHAS AHE5HH 2 HIoIE Z|E %|cH 1074 T2 K| &t
LIC}. O|X| o] B2 &2 5= o 12% 0|80 AL E|MH OtAE 7| 22 Xto|| CHet & £E =i
1102 &L|C}.

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'

--wrapping-keys key=$keyARN

--encryption-context class=log °

--suppress-metadata °

--caching capacity=1 max_age=10
max_messages_encrypted=10}

Days : 0

Hours : 0

Minutes 0

Seconds 11

Milliseconds . 813

Ticks : 118132640

TotalDays : 0.000136727592592593
TotalHours : 0.00328146222222222
TotalMinutes : 0.196887733333333
TotalSeconds : 11.813264

TotalMilliseconds : 11813.264

max_messages_encrypted M$t2 M7H5tH 2 E nto| SUst Oo|E 7|2 = 3HELICH o= A|
BZESHH T2 M AT EM ““*Eﬂlxlt ot 1 CllO|Ef 7|8 AHALS & {0l Z7tgfLich ag{Lt otAH
7| SZXtof| Cist & A== 12 F0{5LICH

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'

--wrapping-keys key=$keyARN °
--encryption-context class=log °
--suppress-metadata °

--caching capacity=1 max_age=10}

Days : 0

of| A 324
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Hours : 0

Minutes 0

Seconds : 10

Milliseconds . 252

Ticks : 102523367

TotalDays : 0.000118661304398148
TotalHours : 0.00284787130555556
TotalMinutes : 0.170872278333333
TotalSeconds : 10.2523367

TotalMilliseconds : 10252.3367

AWS Encryption SDK CLI & %! zi2t0|E & x

0| &A= AWS Encryption SDK Command Line Interface(CL)E A& 3t | EZo| & 7 & ctolof
O3 S ZHEE T2t O0le dEE MIELICh efE 7| & 7IEt miet0le 2 E 222 AWS 2 E 5t
CLI AF% S MME BESMR. ol&lE AWS 2hE 3 CLIS| of MMdE ’E.ZE%PMIR A dYME &
Mel7|& B=xFML.

=X

e AWS &35 3} CLITE
« AWS &35 3} CLI HHEZE ulztOo|E
. 12 mz2t0o|E

AWS ¢ 53t CLI &

0|2{8t AWS Encryption CLI 72 CH0|0412 AWS Encryption CLIZ $85tE 2 Ztgdo|
0{&FLICt. O]&= AWS Encryption CLI EHHZ 2.1.x O|&0|M HE E|l= T+ 22 LIEFHLICH

=]
-

gl
mjo

MZ2 2ot 7|52 el AWS Encryption CLI EFHE 1.7.x & 2.0.x0AM & 2[AEIR{&LICH 28 Lt
AWS Encryption CLI H{& 1.8.x= HT 1.7.x& CHA|5t T AWS Encryption CLI 2.1.x= 2.0.xE CHAIE
LICE KEAIBH LI 2 GitHub2| aws-encryption-sdk-cli 2| Z X|EZ|0l|A B2 2ot HTE 2T HAM2.

(® Note
utet0lE B0l BAIE[o] K| f= B, 2 mEt0lE Ee 82 2 BHoM 8 HEt ASF
£ A&Lct,
ut2t0[E{7F X[HsHR| =

|3

£ A83HE B2 AWS Encryption CLIE B1LF 2F gi0]| K|
HEIX| b= S8E FAIEL

7= W oetole HE 325


https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
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INFe R

e

utetolE AdEa &4 A& AWS Encryption CLI T2 71284 --help EE=E AFSEFLICH-
h.

aws-encryption-cli (--help | -h)

HZ 7t Kd27|

HO

AF%E*L—lL'-F—-versio 22 5L,
L

Ct.

AWS Encryption CLI & x|°| HM HE & 7tX{ 2™
| E F

MNE E1stHL, AWS €535 CLI AFR0]

o [Ho

aws-encryption-cli --version

Encrypt data

CtE 7 & CHolo{2 2 encrypt FHol| AtE &l mEt0IE{E EoiELICH

aws-encryption-cli --encrypt
--input <input> [--recursive] [--decode]
--output <output> [--interactive] [--no-overwrite] [--suffix
[<suffix>]] [--encode]
--wrapping-keys [--wrapping-keys]
key=<keyID> [key=<keyID>]
[provider=<provider-name>] [region=<aws-region>]
[profile=<aws-profile>]

--metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]
[--commitment-policy <commitment-policy>]
[--encryption-context <encryption_context> [<encryption_context>
.11

[--max-encrypted-data-keys <integer>]
[--algorithm <algorithm_suite>]
[--caching <attributes>]
[--frame-length <length>]

[-v | -vv | -vvv | -vvvv]

[--quiet]

CHS 7 & CHolo{2 2 decrypt FFol| AtE =l mEt0IE{E EoiELICH

7= W oetole HE 326
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™ 1.8 xEE 555 Al --wrapping-keys Ttet0|E{= ME At O|X[2F HEELICH HA
ol Z#tL|Ct AWS KMS keys@| &

21 x2E ¢53t U 5535 Al --wrapping-keys ItEtO0|E{7} 2 E
£EE A835tod 2 E 71E KIH(2-Y Atell)st7{LE discovery £EE trueE2 HHE = JU&

F key S8
L|Ct 22424 AWS Encryption CLIOIM At & = 4= ¥ 7|7} MEtElX| i &L ct.

aws-encryption-cli --decrypt (or [--decrypt-unsigned])
--input <input> [--recursive] [--decode]

--output <output> [--interactive] [--no-overwrite] [--suffix

[<suffix>]] [--encode]
--wrapping-keys [--wrapping-keys]
[key=<keyID>] [key=<keyID>]
[discovery={true|false}] [discovery-partition=<aws-partition-
name> discovery-account=<aws-account-ID> [discovery-account=<aws-account-ID>] ...]
[provider=<provider-name>] [region=<aws-region>]

[profile=<aws-profile>]
I

--metadata-output <location> [--overwrite-metadatal] --suppress-

metadatal
[--commitment-policy <commitment-policy>]

[--encryption-context <encryption_context> [<encryption_context>

..1]
[--buffer]

[--max-encrypted-data-keys <integer>]
[--caching <attributes>]
[--max-length <length>]

[-v | -vv | -vvv | -vvvv]
[--quiet]
T8 od AFE
ui2t0|E{et s 2ol X E 7 IS HExE = U&LICt ol BHo mtO|E et 2t 2 ™
st= A Z&Lch. 04IX1I'— T4 Thdof| mtetO|EE MEsts B AME HERsAH e

aws-encryption-cli @<configuration_file>

# In a PowerShell console, use a backtick to escape the @.
aws-encryption-cli ‘@<configuration_file>
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AWS & 53} CLI BHZ ni2to|E

O] =52 AWS Encryption CLI B3 utzt0|E{of Ciet 7|2 dEES NS ELICH ©A dE2 aws-
encryption-sdk-cli dHME A Z3IH L.

--encrypt (-e)
2= |O|EE &3 efLIct 2E BHO= --encrypt, --decrypt EEE --decrypt-
unsigned Tt2t0O[E{7} RL0{0F & L|CH

--decrypt (-d)

22 Oo|EE 558t g Lct 2E BHol= --encrypt, --decrypt £= --decrypt-
unsigned Lt2tO[E{7} RL0{0F EFLICH

--decrypt-unsigned[HH% 1.9.x & 2.2.x01| = E]

--decrypt-unsigned I}Zl0/E{= MO|HEHAEE 55 35t1, 5§53 Tof| HAIX|7F HBEE/X]
I 5 gfLCt --algorithm m2tOIEE AFSstD CIX|E HEO| gls &dnEl& MEZS M
5t0{ CIO|EE ¥ =358t B O| TtEtO|EE AFSELICH MO|HEAET MEE A2 5557t A
i ghct.

--decrypt E£&= --decrypt-unsigned& S35 5t0 AISE = UX|0F = CH AISE == ei&L
Ct.

--wrapping-keys (-w)[EH7 1.8.x01| = I E]

53l U 553 2ol ArEEl= e F|(EE= OtAE F)E RAEgLct 2 H-Eo|M 042 --
wrapping-keys It2tO|EE A E = JU&LIC.

H 2.1 x2EE=

-wrapping-keys I}2+O/E{7} *§_§F Y =555 WHo| EELCH HH

1.8.x0IM =3t B0l --wrapping-keys EE& --master-keys It2t0|E{7F 2 & L|C}. H
M 1.8x0MH 555 BHO| L --wrapping-keys Itet0|E{= ME AEO|X[gH HEELICEH

AR X|1E OtAE 7| SZRE A85ts B €335 U 533 HHE= key & provider 40|
LZIQELICH & AFSE [ AWS KMS key 2F 5 5t HYPoll= 7| o Lo 5535 HHEol=
20l true?l key &g £ discovery &40 *_é'RE*I—lﬂP(% CHe obel). 2538} Al key A A}

835t= 70| AWS Encryption SDK 28 Al L] S3 H{Z! &= Amazon SQS CH
7|0 U= HIAIX[Qt 20| d=3HX| f2 IHI/\IXI% 12 253tste B9 §5 SLE U

LS L—

AWS KMS Ct& 2|1 7|18 2iE 7|2 At85te WHE Eo{F = ol dME HESM LS 2
AFE AWS KMS keys.

e R -


http://aws-encryption-sdk-cli.readthedocs.io/en/latest/
http://aws-encryption-sdk-cli.readthedocs.io/en/latest/
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0%
>
rlo

£4: - -wrapping-keys T2t OIE{S| 2t S Chg 402 ZAELIL

attribute_name=value®lL|LC}.

key

ol AEE EiE 7|E AEE
O/E] 2fol 02] key S EE XIHE = U&LICH
= MOl BtEA| HegrL|ct 253 HZE AWS KMS

7| ID, 7| ARN, 2238 O|& EE= U3 ARNY = &
2 AWS Key Management Service it X} OFLY

. =8 BY: 2E o= 8 B
key Ol ME AHE3HE 72 7] 440| 7
SLICH AWS KMS 7| AiRiofl chzt

Me| 7| AEXE A AStA 2.

OE r|o _I}>

- 2535 HH: AWS KMS keysE AI835l04 2535t AL --wrapping-keys ItetO|E{0]|
= 7| ARN 20| U= key &4 &= 240| true?l discovery £430| H#LICHE Ch= of
=l). key 42 AL 3= 20| AWS Encryption SDK 284 AFILICH AFS A K| OFAE
7| S2XE AE5t0d S5 3HE = key §40| BHEA| R FFL|Ct

(® Note
=& 3 BHM AWS KMS 2l & 71§ X|'dstedH 7| 42| 2f0] 7| ARNO|o{of &
711D, B& O|§ &= HE ARNZ AtE5t= F< AWS Encryption CLIE 2HE
7€ °._|¢! &tX| ZgfLich

Zt --wrapping-keys Z}2tO|Ef £f0f 02 key & 32 KHE = l&uch agLt --
wrapplng keys ZtZtO|E{2] 2 E provider, region & profile 432 dig mtztOlE] Ztol =
2 710l MEELICH M2 CHE §4 2o 2 ¥ 7|18 XI™52dH T-olA 042 --

wrapping-keys I}2tO|E{E AFS & LICEH.

discovery

AWS Encryption CLI7} 2 2|2|& AL&35t04 HIA|X|E |5E3 AWS KMS key 5t 5 5{& e LICt
discovery Zf2 true EE= falsed = U&LICE 7|22t2 falseLICt discovery H82 5

23t BH0|M, 22|12 otAH 7| SZXH7FAWS KMSQ! ZA0| Bt & = & LIC}.

E A83104 553 AWS KMS keys® [l --wrapping-keys Zt2t0|E{0|= 7| £ E&=

Zto| 2l AM £do| ERELICHrue(E Ct OtE). key 82 ME3te 4 210| false?l

discovery £ E2 AtE35l0{ HME BAHoE HEEH £ /J&LICH

- False (Z|2%)) - AM Sdo| X|HE|X| k7Lt 240] 21 BL false AWS Encryption CLI
= --wrapping-keys o 2t0|E e 7| 492 AWS KMS keys XIEE BF A& 50 HIA| K|

EIEENIEEES 329


https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
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ok

E S35 3}8LICt discovery7t false [ key £ 2 X|HSHX| to™ 53531 B0l Auj

2]
stLICH O Zt2 AWS 2t E 3 CLI 28 Al2llE X|4ELict

« True - AM £40| Zt0o| 21 B true AWS Encryption CLIE & E3HEl HIAIX[2| HIEIH| O]
E{ AWS KMS keys 0| & 7tX{2 1 O|& AtE5t04 HIA[X|E AWS KMS keys = Z 3t gFL|Ct.
2ol ol AAM £MH2 55351 Al 2l 7|1& X[HE =+ ¢l= HA 1.8.x 0| 2] AWS Encryption
CLI H™AH true SEELICH J2{U4HE AFE5tE{E 2|= AWS KMS key &= BA|ZL|CH
discovery7t true [l key £ X|H5IH |58 FHF 0| AlufgrL|ct.

O| true gt2 AL& 3™ AWS Encryption CLIZF M2 CHE AWS A & 2| AWS KMS keys
Ol ME AFESt7HLE AL ROl A AHE FHEHO| @1= AWS KMS keys & AFEStE{D & = UE

HAAMo| 21 ZHL discovery-partition 2! discovery-account £ AF2304 AWS A X|& et
L4922 AWS KMS keys AHE E|=E& MEHstE truedO| 7t E&LICH

discovery-account

il

Mol H2E &

3toil AWS KMS keys A8 E|l=E X[HEIQ 2 MEHELICH AWS H 1. O

Rl KABH Zt2 AWS A IDYILICE.

g

=4 AFgO[Dd 444 4 4 AWS KMS keys Of 2 A4 trues|T 244 ThE|M S40]

Z+ discovery-account 432 tLt2| AWS A IDBH AF&SHX|BH SUBt - -wrapping-keys
ut2t0|E{of| A 0421 discovery-account £82 X[He = A&LICt X[™HE --wrapping-keys
o 2tOlEof X|HE 2E A" XIEE AWS ZHE|[Mof| Jo{oF & LCt

discovery-partition
discovery-account & 44 0| Ao CHet AWS THE|ME X[HELICH 2f2 , aws aws-cnE=2t

2 AWS THE|M0|0{0F EL|Claws-gov-cloud. AFAIEH LI 2 AWS & &= 9] Amazon

2|44 0|52 ARSML.

0| &2 discovery-account S48 2 AISE M 2FLICEH ZF --wrapping keys Zt2tO[E{0]|
£ discovery-partition &2 stLtEF X|HE = JU&Lct o2] ZHE[M AWS A ™ o HE XI5t
£ =7} - -wrapping-keys LI2tO|E{E AFSELICH

provider

OHAE] 7| STRE Al

et &AI2 provider=ID Ho{L|C} 7|27t 2l aws-kms= & LIE
HLICH AWS KMS. 0] &4

OtAE] 7| SZRH7H7L ot BB R EFLICH AWS KMS.

M T

e R >0


https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
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2|

AWS 2| 2| AMER LT AWS KMS key O] £d2 oflgt # 2B LICH AWS KMS keys. O &
S key HEA0 20| XIBE[X| oS I ASEIH, 2FX| ol Zols FAIELICH A
& M AWS CLI BEE Z2ntelo| 7|2 2|™& AEe g Lot

profile
AWS CLI O|50| X|HE Z=mt S AEELICt O] £E2 ol2F &8 LICH AWS KMS keys.
ol Zz Eo| 2|™2 7| AExtof 20| X|HE[X| et o] BB0] region 50| ¢S MR ALE
ElLICH.
--input (-i)
253 E= S53E ClolEe| fIXIE XIFELICH o] met0|E s Ea AP ULICH 2t2 ot &
£ Cl2EE 42 £E 1Y 018 HHY & &Ltk B (stdin)oll THEH Y2ie Mste B2

21210] gl 7 BO| 2FLF Z1 90| MTxoz L

--recursive (-r, -R)

= C|HEE2] L sHE ot CIEE{2[of mhdoi| CHal 2fd e =~ &FLICt o| mtatn|E = &40l
--input®@! C|EEZ|o| A2 E4=LCt.

--decode

AE3E F °._|_=.'_ 2E IJ{IAIXI% S35 35tt{H HAIXIE S&3tst7| ol HA| HAIX|E C|2E
o
=

r

':'4%'01I --encode Il2}O0|EE AF2EH AL ST 2535 E2I9| --decode
E 04 Base64 2 Q1A ==l

0 s

X|EgfLch o] metOles 4 AFZLICH 2f2 I OlF, Z7IE CI™EE|, E= &

(=)
=
242 HHBE (stdout)ofl A E - = Q&LICH

XEE £ CIHEEE7t EMSHXR| o™ ¥ 2 Mufgi|ct 2dof ot CI=EE27t 28 E 32
AWS Encryption CLI= X|'d8t £33 C|RE 2| ot2hod| 5t CIREZIE ATIELICH

d
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https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html
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K
2
Il}e
r
_ljl_
0
mIE
rII
oY
Q'I_I
_.r..”_
F_E'.
|
I

o
E
interactive & --no-overwrite MFEFDIE-IE AF%E*L—HZF. 'E—1'0-|&7| @1% E Alstx| efeEd
M --quiet WEtO|EIE AFSELICH

® Note
£3 11Ug FoimE WHO| MuistH £ mhelo| ARIELCh
--interactive

oAU E FHo{A 7| ol HIAIXIE EAIRLICEH

--no-overwrite

otUE Ho{Arx| f&LicH CHal £33 mtUo| e B2 AWS 253 CLI= af

--suffix

AWS Encryption CLI7| dst= Tt ol AF&XF X 1t Of
A2 LIEHLHE{™ Zfo| gi= TEtO|E(--suffix)E AFSELICH.

7129 & --output WEtOE{7I I O|§E XIH5HX| i 42 £ It O|§=2 & 1t
YU o|Eoil HO|AHE CE Zdat Z 2 o|& 2 7HELICH ¢35 B
LICt 2353 @ado| MO|AE .decryptedLICH.

--encode

Base64(HIO[L{2|E BMIAER) QIZEE £330 MEYLICL QlZT2 ¥4 SAE Z2 40
ju.

24 El A E O| H|ASCIl 2XIE &2 sHA46}

&5l PowerShell Z&0 M £212 Ot E BHEoE MESHHLE Mol ME st R0
=l O| metn|EE AFS R LICH
--metadata-output

& 23t 2ol CHEr HIELC|OIE o] #IX|E XIEELICH B2t Tt o|§S UFLICH CIAE 2|7t
EXSHR| pto™ HH2 AufefL|ct B E(stdout)oll HIEICIO|EIE AME{H -& ASELC

H2 E24(--output) L MEIHO|E] £E24(--metadata-output)S SUSH WS Z stdoutod| £
&= eigLIch £t --input EEE --output 2t0| CIEEE[(THY Ol M2|)2! Z< HEHIOE &
g SYe CIAEEE[L Y CI=E2[Q] 6t CIEE 2|0 2 &= eig Lt




AWS Encryption SDK JHEER} 70| =

7|18 g X|Hele B2 7IEX 22 AWS Encryption CLIE mto| 2 E ZEIx0f M HEH O]
HHIZEE F7IELICE 0| 7|52 ME835tH 2E 2535 2ol CHEr HIEHH|O|E{7t Z &t &l B
I Qe MAME £ QlALICH 7|2 US| LIRS H0o{AMP{M - -overwrite-metadata It2HO|E]
E ArS gLt

AWS Encryption CLI= BZ0| =&8st= 2 253 E= 553 2o CHsH JSON & 49| H|EHC|
O|F t|ZE=& EFEHELICH ZF HIEHH(O|H B2 =0l= 3 & £33 It Uo| ™A Z=, 535 7HE
AE QTH|IEMED, 22|17 MYs AEStD Eot EE S SFSt=X 2Hlst= 0 MEE = U

IEP S W27t ZEELICH

--overwrite-metadata

HEIHIO|E £33 IUO| LIS Ho{#&LICH 7[E™MO 2 --metadata-output ItEI0|E= T}
ol 7|&E Li&0ol HEtHO|E{E F7IE L Ct.

--suppress-metadata (-S)

AE3 E= 553 Mol CiEr HEtDIo|BE sZLCh.

--commitment-policy

ot 53t ol 253 W0l ChEt A HAMS R|IHFLICH FHT MM HAIXI7F 7| HL Eot s
ANE5t0] 45 5E|T E55tE|=X| {22 AXELICH

--commitment-policy ItZtO|E{E H 1.8.x00 TUEIR&LICE ol &E3 2 5535 Ho]

7 1.8.x0lA AWS Encryption CLIE 2E &5 3t & 53535 =¢{0f forbid-encrypt-allow-
decrypt 78] HAME AIS&LICH &35 EE= 553 HAH0|M --wrapping-keys It2t0[E
E M83%tE B9 forbid-encrypt-allow-decrypt 20| Q= --commitment-policy I}
2tO/E{7t BtEA] ERELIC} --wrapping-keys It2tO|EE AL 35X E2™ - -commitment-
policy WEtO|E{= fESHK| &LICH AN HAE HAstH 70! HAO| HT 2.1.xE ¥a0]
Eg [ require-encrypt-require-decrypt2 A& HEE= XS BAMo 2 WX[E =
&Lt

H™M 21 x2E 2E 72 M2 ZhHo| X[ ELIC --commitment-policy It2tO|E= MEY AL
Ol{ 7|28/ 2 require-encrypt-require-decrypt &LICt,
o| utetO|Ee| 2t 2 Chs1t Z&Lct

« forbid-encrypt-allow-decrypt - 7| AU E & =35e = gigLICt A= 3HEl ALO|T{E]
AEE 7| 72 AI2 {82} ZAQi0| E55tE £+ Q&LIC

e d

ozt &= 333
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%1 1.8.x0{| M Ol= R USHH R=38 2L ULICH. AWS Encryption CLI= 25 ¥53% & 5355}
240 forbid-encrypt-allow-decrypt 75! ¥ g AP%E*L-IEL

- require-encrypt-allow-decrypt - 7| {2 %
o ztH|gi0| | 3tEHLICE. O] 22 ™ 2.1.x0 =

« require-encrypt-require-decrypt(Z|£%}) - 7| 74!
Ct. O 22 A 2.1.x0f| E/E|R&LICH Ol= BT 2.1.x O] 7
&5tHM AWS Encryption CLI= O|T™ TS| 2 &S 3tEl AIO|HEIAE
AWS Encryption SDK.

715 & Mo CHEt AHAISH L& 2 0Fo| 12| 0] AWS Encryption SDK AME R ZSHAM2.

--encryption-context (-c)

ztdo| of

L

ok

st ZHEIAE S XIGELICH o] meto|eE Ea= ot X|gh HEELICH
o

— = o
« --encrypt B0l 5tLt 0|4 2| name=value H0{E LT LICt SHMS ALE5t0{ HO{E 71&

gl
« --decrypt BHEO|M name=value H04, Z2t0| = name 24 E= & CHE I LICH
name=value H0{2| name == value0l SEHO|L} Ex EXI7F ZEE A< A Ho{E
A 2352 FALICH € £04 --encryption-context "department=software

development" L|C}.
--buffer (-b)[HHT 1.9.x & 2.2.x0{| = IE]

CIX|™E MEO| JU=X| &Eelst= S &2
--max-encrypted-data-keys[tH™ 1.9.x

HEl HIAIX|S| & 2 3HEl HolE 7]2o] 2[c ~& XIFEfLICH o] mEt0IE{= ME AFE iL|CE.

FOI'
ol

& & 2h2 1~65,535Q4LICt. O Tt2tO|E{E 4=f5HH AWS Encryption CLIE 2|CHZt S M &3t
cfgLct &3t HAIX|E £|CH 65,535(2M6 - 1)7He| Z 2 3HE CIOIE] 7|18 BRE & AULL

EtOIEE A8 5tod R E Aol HAIXIE SX|E = U&LICH 553 B
HAIXIE B XIstT S35t + i dE3tE HlolE 7(7t Bfol & & o
AR 25 5HE WXE = U&LICH RHMlEH HE Y ollde 2= 8HE olo|H 7| MEt Mg Fx
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--version
AWS Encryption CLI2| HEE 7}XdSLIC}.
-V | -vV | -vwV | -vvvv

DIAIXI AIéH—IEP ’E‘E'.QI Mg HE &= 2tolefel v 7isof a2t
L A5t ZE T4 2 A0 A

CIHZ =& OIo|IE & ._F%E*LIEL
--quiet (-q)

= otUE FHoi{& mf LIEHLHE HIAIX|QE 22 B HAIX|IE EAlSHX| St& LIt

=

T

--master-keys (-m)[ O|&f AFSE|X| £ 2]

(® Note
--master-keys It2t0|E{= HT 1.8.x0{ A O 0| AFS E[X| St HA 2.1.x0 M A7
R&Lict Al --wrapping-keys Zt2tO|E{E A EHLIC}.

ot 535t 2l 255t S0l ALBEIE OAE 718 XIFELICH ZF HoiA 042 OtAE 7| ThatolE
g A 2

1| =
= 1
g + A&LICH

--master-keys IZtO/EH= =35 & E A EELICt o] mtetolE{E AFSXE X|E(HI
AWS KMS) OtAE 7| SZXE AHE S B S35 BP0 EFEA| 2Lt

44 --master-keys I2t0/E{Q] 242 OHS 422 THELICH HA2

attribute_name=value&lL|C}.

key

ok

5 s

stofofl AFSE BT 7|8 AHBILICH HAIR key=ID HOIRILICH key 4442 BE o
H

255t HH AWS KMS key HIME AtE35t= B2 7|1 £482| 4f2 7| ID, 7| ARN, EE 0]
& E= EWE ARNY = J&LICH AWS KMS 7| AlExtof CHEF REAIEH LI 2 AWS Key
Management Service 7H X} QHLHA{ Q| 7| A|HEXIE R T SHMIL.

key &4 OFAE] 7| 22 X7 AWS KMS7} o &

[} =53 B0 T AP QULICH key &
2 AWS KMS keyoll M &= 3tEl CIO|EHE =585

= BEol= 518 E/X| ef&LIC

e R .


https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
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AWS Encryption SDK

U&LICH ae{Lt 2 E provider,

A
T AAHE

Zt --master-keys It2tO|E Zfof 042 key SHE X|HE
70 MBELICH MECOHE S92

=
region 2! profile &4 s ut2t0|E 2ol 2 & OFAE
2 OtAEH 7|18 X|H5t2{™ B 0|AM 048] --master-keys II2tO|EHE AFSFLICH

provider

LICt A2 provider=ID H0{LIC}. 7|27, 2! aws-kms=E& LIE}
S AH7E7F ot Bofok e FL|CH AWS KMS.

T

4

Al
=
2
=

OlAE 7| 3=2AHE 4
H|C AWS KMS. 0

2|

AWS 2| o|E AlEEFLICH AWS KMS key. O] 42 ofEF & LICH AWS KMS keys. O] &
2 key AERtol| 2[H0] X|IHEIX| k2 T2 Bol= FAIELICH A
& A AWS CLI BEE Z=zntao| 7|& EIE% H’ES'_QI&*LIEP.

profile

-

2 ot S EELICH AWS KMS keys.
0] region /50| Q12 MEH ALS

AWS CLI O|§ 0| X|HEl =20t S AlHEFLICE o] &4
F 11 0

-1 =
ol Zzzdo| g™ 7| AEXRtof 20| X|HEIX] &

| B

Lot

o2 o2to|E

--algorithm

CHAM 20 2[E MEZ S XIEEELICH o] mheto|EE ME A0l 253 BE

O| Z2tO|E{E M=F3tH AWS Encryption CLIE EH7 1.8.x0| AWS Encryption SDK = 1 El0| CH3t

7|8 &D2E MER S SHLE MSFLICH F 7|2 g2 25 HKDF, ECDSA A & 256H]|

E 2t 33t 7|9 &7H AES-GCME AF & LCt. stLtE 7| A2 AFS5tn CHE StLteE AFESHK|
L|Ct

7|2 dnelE MEZ ME2 FEol et 75! ZAof et Z-EE LI

Zt 222 2M 2ol

--frame-length

AEE e dolz EE YEgLICH o] mEt0IEE M AL ol 2f 33 BHo|MEF 7
L|C.
1dL[Ct. Z240] 0017 =B Mel=lX|

gt2 HIO|E Bt (2 Y™BfLICH R & 242 0 & 1~2731 -
ol 2 CIOIE{E LIEHELICE 7[= 22 4096(HIO|E) LICt.
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https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html
https://en.wikipedia.org/wiki/HKDF
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/index.html#execution
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® Note

JtsstH =8| MEIE CIOIEIE AH8SHMIR. £ BllHAIl S 20 =7 X2|=X| 2t

CIO|E{& AWS Encryption SDK K| B LICH o Y 0] 7342 05| Z 2| X2 K|

of2 ALO|HEIAE & M8 AWS Encryption SDK == 4 &LILCH. |’°."_4E|E DE 2o 73
E

2 =Zoe XM2lE MO|HEAESL Z7Q X{2|ZIX| 2f2 AtO|{E S35 = UE
LICH
max-length

12! XEIZ|X| 2t 2 HIAIX|Q]
H =53 HHo|H2t REEL
2l MAH xR &LICE

E
=3
X
ruO
mlo
2
Im
A
Hfo
lo
ﬁ
- 4
|K
o}
°
L
|
A
rr
o [H
o

Zf2 HIO|E B2 U2iFtL|Ct of mZtO|EE MEfstHe 5538 Al = 37|18 FMEHsHX|
AWS Encryption SDK St &L|C}.

--caching
ZF 2123 mtdod| ciall Mf Cllo|E| 7|1& st CHAl O|o|E| 7|& ZHALE St HIOIE 7| e 7IsE
gdstef ol metn|BE g AUE[2E X[EfLICH o] 7IsE Ar&st7| Zoi ClolH 7| 7K

2 dsErLICt
A HEME oM.

--caching ZlZt0|E{0l & CHS

1

4ol A&LC

FHAl S =0l FHAloll FIHE AIFFE AlEetod FHA| 5o A& AlZh(F)E ZAEELICH

OLCH & 2t U LICH =[CHZt2 g Lo

K
>
10
0%
I
i)
o
o
o
¥
»
I'| r
b

ICH HIAIXR] =& 2EE LI

FES U2 1~2r32L|C} Z7|EZf2 HIAIX]| 243270 LICE.
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JHeER 7Hol=

max_bytes_encrypted(ME AF&H)

HAIE S50l EeE +~ U= 2|0 HHO|E =8 ZAFELICH

RESH U2 0 L 1~2763 - 1LICE 7|22t2 HIAIX] 2763 - 170 IL|Ct Z2f0] 00| Hl HIA[X]
EAEE F5Etstes BB OIOIE 7| 7HeE ALSE + U&LICH

AWS 253t CLI B{7

Z| 4

®

EHZ1 2] AWS Encryption CLIE AF235HE Zd0| E&LICH

Note

4.0.0 0| 2| AWS Encryption CLI EHE2 end-of-support £ 74|04 Q4 & LICt.

EL} Olo|E{E ¥HZA5HK| o1 {7 2.1.x 0|40 A AWS Encryption CLIS| Z|&l HHE S Z ©F
Mol H do|o|EE £ U&L|ch 2Lt A 2.1.x0ll EUE ME2 22 7|52 o6t Xt
2tE|X| et &LICH BT 1.7.x 0|50l A 0| E5t2{TH T1X{ AWS Encryption CLIS| Z| &1 1.x
Mo 2 d|o|Esfof gLict. REMIEH LI 2 nfo|1e|o|A AWS Encryption SDK2 & =3t
M.

MZ& 29 7|52 el AWS Encryption CLI & 1.7.x 2 2.0.x0IMH RZ|AER&LICH 2
24Lt AWS Encryption CLI HH 1.8.x&= H& 1.7.xE& CHA 5t AWS Encryption CLI 2.1.x&
2.0.xE CHA|EFLICH REAIEF LHE 2 GitHub2| aws-encryption-sdk-cli 2| ZX|E2[0fMH &Ed £
ot HIE FESHML.

k

9| 2 HToi| CHEt RFMIEH LI 2 M2 AWS Encryption SDKEF Z M| 2 2| {1 AWS Encryption

SDK.
04FH
AWS

7T

Encryption CLI2| %Al HAM S 2 oto|ad|o|MEfL|Ct A 2.1.x O] 4

g A

%

fjo

ALE3H{oF StLER7?

b
>

Encryption CLIE M& AtE5t= 8% X4 HAE AFE LY.

1.7.x AWS Encryption SDK 0| X2 2 ¢t 3 31 E O|0|E|E 55 3t 6t2{t HA| AWS
(=]

HxotMlR.

g2 HEELICH AFMIE L& 2 0ro|a 8|0l AWS Encryption SDK

XM G| otE 7|

o B4 AbErol CHEF REMEF LH& T, A -HM S 2 Oto|ag|o|M5t 7| |8t X|EI2 0to|z 80|44 AWS

Encryption SDK MME & XML,

2 YHIo|ES 7| M| ZE H
=

B
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https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
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- ME& AWS Encryption CLI Tt2}0[E L £4oi CHet dB2 MM E FH XM LAWS Encryption
SDK CLI #& 2 metoje F=E.

Ct

0jo

2=
=/

rlo

7 1.8.x 2! 2.1.x0{ A AWS Encryption CLIS| B4 AlgtS ML |CH

AWS 253t CLI T 1.8.x 48 AtE

« --master-keys It2t0|E{E O O|&f AL SHX| b &LICH CHAl --wrapping-keys It2tO|E{E Al
ot

« --wrapping-keys(-w) Zt2t0|E{E FI7+EILICE --master-keys LiEtO|E{C| R E &4 X|§E
LICt EE3 AWS KMS keysE AFE35t0o 5558 Mot R &8 O30 22 MEIM 42 FIHEL
Ct.

 discovery

« discovery-partition

« discovery-account

A8X XIH OtAE 7| 32X B2 --encrypt & --decrypt WA= --wrapping-keys &
= --master-keys It2t0|E{ 7t e LICHE Ch= OtE). £8HE A& StE --encrypt BHEM=

--wrapping-keys I}2I0|E{ EE& --master-keys ZF2FOIE{7} AWS KMS keys Z & LICHE
Ct ot'el).

E M83tE --decrypt BA0I|A AWS KMS keys--wrapping-keys It2tO|E{= B4 A& O|X|
Ok ™ 2.1.x0H 2est22 HEELICH 0|2 AF88tE B2 key £ EE£ discovery 54 & &t
LIE true 2422 X|H5HoF &LICHEZ Ct= ot H).

« --commitment-policy Lt2tO|E{E FIIELICH St & 22 forbid-encrypt-allow-
decryptLIC} forbid-encrypt-allow-decrypt 743! A2 nE 53| 3l 253 Ho]

AtSELICH

A 1.8.x0M --wrapping-keys I2t0|E{E AL E M= forbid-encrypt-allow-decrypt
Ztol Q& --commitment-policy HEtO|E{7} ZRBtLICH O] Zt2 BAIMHo 2 MAsHH B
21x2 Yado|l=8 m 73! A0 RS2 ZE require-encrypt-require-decrypt® G E|

£ RE YX|g + JA&LIch

AWS Encryption CLI & 2.1.x 8473 AtE

« --master-keys Lt2t0O|E{E NMHELICt CHAl --wrapping-keys It2tO|EHE AMS & LICE.

EHH 339



AWS Encryption SDK JHEER} 70| =

« --wrapping-keys IIZl0/HE 2E &E38 L 5535 BHO| BHEA| ERELICH key HH E=
discovery &4 & StLIE true Zt2 2 X|™HaloF ELICHE CHe oFH).

« --commitment-policy It2t0|E{= CtEt 22 Zf2 KI@ELICH RHAME LHE2 7HS! EA A
X-IO 7<I-7<o|.k||o

« forbid-encrypt-allow-decrypt
* require-encrypt-allow-decrypt
- require-encrypt-require decrypt(ZI£%})
« --commitment-policy It2tO|E{E= A 2.1x0| A ME4 At IL|Ct 7|24 2 require-
encrypt-require-decrypt&lL|C}H.

AWS Encryption CLIOJ| CHEt EHF 1.9.x 2 2.2.x 843 ALE

N
N
b
jo
2
>
Q'I_l
=
FO

« --decrypt-unsigned It2}O|E{E FItEFLICH RHAIEH LHE2 HT 2.2.
o --buffer WEtO|EHE FIHELICE RHAIEH LIE 2 HT 2.2.x8 B ETHAMIL.

« --max-encrypted-data-keys It2tO|EHE F7teFLICH AtAEH LI 2 2= 3= HIO|H 7| A

g% AXSML.

AWS Encryption CLI {71 3.0.x 473 AtE

« AWS KMS C}& 2| 7|0 cist X[

fjo

FIHELICH KA LI 2 CHE 2[T AHE AWS KMS keys

B
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CIlOIE 7| 7H &

Clo|E 7| 7H&l2 CI|O|H 7| & 2t A S35t RE2 & FHA|of KA ELICH CO|EE 2f =38t 6t7{Lt sH=E
= FHAIIAM L x|5HE OIOIE| 7|2 AWS Encryption SDK 3t&LICH Yx|5HE CIOIE| 7|18 &t 'F'_

7|18 d4M35t= Cial FHAIE CIOIE 7|18 ASELICE CIOIE 7| FH 42 HsS 7HMst HIE S
H oHZ2[AH 0| & &rof| [HE MH|A BtE LHMAM XI5t Ol =S 0| ELIC.

o
. 2E3 RS S 4 9i8 HER SE7L, HISO| B0l SHLL, MEHE0| AL, Blas FlorE

7 &2 AWS Key Management Service ()2 242 253 HHIAS A2 ELU = JUELICIAWS
KMS. AWS KMS =4 @3 = st o 28t B2 7&o| REE & UA&LICt o EE(7|0[M2 74
AlEl 7|18 AE5I0iE &5t TiAl LR TIOIH 7| REE XMEIE = U&LICH AWS KMS. (AWS
Support Center0l| M ALHIE MAM5t0 HH - E =L =% J&LICtH)

|E{ 7| FHAIE M5t D B2lst= ol AWS Encryption SDK =2 0| ELICH 2Z FHA|2}, FHA|SF
A% 25t AAEX7E MYE 2ot A2 M85t A 25 st At HEIXHIHA CMM)E MBS
ZLICH o243t 718 QLA E EH AH85tH A|AR HotZ RX[SHHMCIOIE] 7|18 E2MHoE MALS
S o

ololE] 7| FH A2 F 2|l ok AWS Encryption SDK &t=2| MEHX 7|52lLICt J7|[EMHozE
3} =hedoll CHall A CilO|E] 7|2 AWS Encryption SDK A§438tL|C} 0] 7|82 535 28 Ab
22 ClolEe 7|8 Bt A8 6 K| &t =5 gLt YEtAo 2 HolE 7| FHA2

Mete o 28t Zoloh ASELICE O3 oS dlolE 7| FHA 2ot AAHZLE A8 3tod HIE 2

EE HYste ol 228 z2|adto| 7fdE AL st=X| HIE LI

JlOII

™ 3.x= 7|13 QE{mH0|A T} ofl BI7HA| OFAE 7| S X QIE{H 0|A & AHEshE i) CMM AWS
Encryption SDK for Java BF X|48fL|Ct 2L} .NET AWS Encryption SDK 82| {71 4.x,2| ™ 3.x
AWS Encryption SDK for Java, Rust AWS Encryption SDK & 2| {7 4.x AWS Encryption SDK for
Python, Go AWS Encryption SDK 82| H& 1.x= CHAl| 2535t RI2 7|4 £F M2 AWS KMS A X
7|22 K|HELICH AWS KMS HEZHM 7|22 255tE 2EIA= AWS KMS HEH 7|7 2Rt 5

Z3te = &Lt
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https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/
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Olz{8t 2ot ERflo|l=E=of CHEH At LHE 2 AWS E2F E 29| AWS Encryption SDK: H|O|E
H =2

7| 74 &0l of E 2|7 ol Moil Mef et x| Z 86t EH

|

 HIOIE 7| FH& ALS HE

« AL EoF A EFE
X

_|
=
« OOl 7| S MR BE

« OlO|E{ 7| 7HA! of A

CIOIE 7| 7 AtE L

O| &AM M= oHEE|Fo|Mofl M H|O|E] 7| FHAE AL 5= WS Eod
2 OrLHELICH O CHE, 2o TlO|E] 7| FHAlE AF235lo 2RI S
EHESE Zgereiuct

LICt T2 MAE B
2 35t5t= ZHEE oA 2

no I

o| MiAd0| of Mol ME 2.0.x 0|4 HHE 2| AWS Encryption SDKE Al 6tE #Hg HoiELICt olst
-|7"|° AME5t= oAe] A2 ZZ el 21010 CHE GitHubl| ElZX|E2|e] EE|A FSFo|AM sHE

ol M CIo|E 7| FHAIE Ab85tE A oKt ElAE & of|MlE CH2 2 AWS Encryption SDKZEFZ 5HA|
o

.

* C/C++: caching_cmm.cpp

Java: SimpleDataKeyCachingExample.java

JavaScript 22} X: caching_cmm.ts

JavaScript Node.js: caching_cmm.ts

Python: data_key _caching_basic.py

AWS Encryption SDK for NET2 Cl|O|E 7| FH &2 XI5t X| f&LC.

|

- HlolH 7| e ALS: EHAIE

o CIOIE{ 7| ZHA oKX 2XYE & 55
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https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py
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CIOIE 7| 7H &) AFS: EF AL

Ol EHAlE XIZI2 ClOJE| 7| HAIS FH3HE o WR# 74 24

=1L L

- OOl 7| FHAIE B LICt. O] oMol M =7 AWS Encryption SDK X3
LICt FHAIE 107HQ| CIO|E 7|2 A|EHErLCt.

9'|_|
rir
[
=
L

E Al23t

C
// Cache capacity (maximum number of entries) is required
size_t cache_capacity = 10;
struct aws_allocator *allocator = aws_default_allocator();
struct aws_cryptosdk_materials_cache *cache =
aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);
Java

CHS Ao M=l ™ 2.xE AFEFLICH AWS Encryption SDK for Java. ™ 3.x= HO|E 7|
714 CMME 4 AWS Encryption SDK for Java O|4 AF&35HX| E&LICH B 3.x0i A= CHAI &
I.

Z3 AR A SFEMOIAWS KMS AISAH 7|22 A8 £ &L|Ct

// Cache capacity (maximum number of entries) is required
int MAX_CACHE_SIZE = 10;

CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(MAX_CACHE_SIZE);

JavaScript Browser
const capacity = 10
const cache = getlLocalCryptographicMaterialsCache(capacity)

JavaScript Node.js

const capacity = 10

const cache = getlLocalCryptographicMaterialsCache(capacity)

ClolEe 7| 7H& AMS: BHAE 343
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Python

# Cache capacity (maximum number of entries) is required
MAX_CACHE_SIZE = 10

cache = aws_encryption_sdk.LocalCryptoMaterialsCache(MAX_CACHE_SIZE)

- OtAH 7| = XH(Java & Python) == 7|2(C & JavaScript)2 Mg LICH O oMo M= AWS
Key Management Service (AWS KMS) OtAH 7| 3FAt &= S8 E[= AWS KMS 7|22 AFSE
L|CF.

C
// Create an AWS KMS keyring
// The input is the Amazon Resource Name (ARN)
// of an AWS KMS key
struct aws_cryptosdk_keyring *kms_keyring =
ws: :Cryptosdk: :KmsKeyring: :Builder().Build(kms_key_arn);
Java

CtS oA =2 T 2.xE AFE & LICH AWS Encryption SDK for Java. HH 3.x= Cl|O|E 7|
714 CMM2 [ AWS Encryption SDK for Java O|&F AFE5HX| E&LICH BT 3.x0I M= CHAY &
5 AR A £F MR AWS KMS ASH 7|22 A8 £ &LCt

// Create an AWS KMS master key provider

// The input is the Amazon Resource Name (ARN)

// of an AWS KMS key

MasterKeyProvider<KmsMasterKey> keyProvider =
KmsMasterKeyProvider.builder().buildStrict(kmsKeyAzrn);

JavaScript Browser

= HEte Al 20t 2152 2ol

"Hetx{o| 2ot Q15 S ot st A l=3aHof &LICt of o G
webpack(kms.webpack.config)oil A 2ot 15 & HolgfL|Ct. AWS KMS E20|HE I R4
PHolM AWS KMS 220 E SZX QATHAE HMHELICH O CHE 7122 MEg M 2

O|HE ZZXHE AWS KMS key (generatorkKeyId).
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const { accessKeylId, secretAccessKey, sessionToken } = credentials

const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken
}
1)

/* Create an AWS KMS keyring
*  You must configure the AWS KMS keyring with at least one AWS KMS key
* The input is the Amazon Resource Name (ARN)
*/ of an AWS KMS key
const keyring = new KmsKeyringBrowser({
clientProvider,
generatorKeyId,
keyIds,
b

JavaScript Node.js

/* Create an AWS KMS keyring
& The input is the Amazon Resource Name (ARN)
*x/ of an AWS KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

Python

# Create an AWS KMS master key provider

# The input is the Amazon Resource Name (ARN)

# of an AWS KMS key

key_provider =
aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

- I 5 E Atz 2EIRHFHE CMM)E ' LICH
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e CMME FHA| & OtAE 7| SSX B 7120 A LICEH 23 OFS 71 CMMOIM FHA &

of dAlat s HEELCH

C
oA 7|2 cvMmT 22 7|2 CMM E= Z|=2IoAM FHA cMME M 44& AWS Encryption SDK for
C= U&LICH o]l o= ZIR oM &l CMME A/ EdEFLICEH
e cMME et = 7(2 A FHAlof CHet X E ZEIAE = U&LICH REMIEH L& 2 the
section called ‘&t = 72 E"2 & ESIMIL.
// Create the caching CMM
// Set the partition ID to NULL.
//  Set the required maximum age value to 60 seconds.
struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL,
60, AWS_TIMESTAMP_SECS);
// Add an optional message threshold
// The cached data key will not be used for more than 10 messages.
aws_status = aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, 10);
// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);
Java

CHZ oMM =S HE 2.xE AFS & LICH AWS Encryption SDK for Java. EH™ 3.x AWS
Encryption SDK for Java &= OIO|E{ 7| FHAS X|&5tX| L XD CHA| 531 A2 71 & £F M2l
AWS KMS A5 7|2l X|dgrL|ct.

/*
* Security thresholds
* Max entry age is required.

£ Max messages (and max bytes) per entry are optional

*/
int MAX_ENTRY_AGE_SECONDS = 60;
int MAX_ENTRY_MSGS = 10;
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//Create a caching CMM
CryptoMaterialsManager cachingCmm =
CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)
.withCache(cache)
.withMaxAge(MAX_ENTRY_AGE_SECONDS,
TimeUnit.SECONDS)

.withMessageUselLimit(MAX_ENTRY_MSGS)
.build();

JavaScript Browser

/-k
* Security thresholds
*  Max age (in milliseconds) is required.
* Max messages (and max bytes) per entry are optional.
*/
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new WebCryptoCachingMaterialsManager({
backingMaterials: keyring,
cache,
maxAge,
maxMessagesEncrypted

1)

JavaScript Node.js

/*
* Security thresholds
& Max age (in milliseconds) is required.
& Max messages (and max bytes) per entry are optional.
*/
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new NodeCachingMaterialsManager({
backingMaterials: keyring,
cache,
maxAge,
maxMessagesEncrypted
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1)

Python

# Security thresholds

# Max entry age is required.

#  Max messages (and max bytes) per entry are optional
#

MAX_ENTRY_AGE_SECONDS = 60.0

MAX_ENTRY_MESSAGES = 10

# Create a caching CMM

caching_cmm = CachingCryptoMaterialsManagex(
master_key_provider=key_provider,
cache=cache,
max_age=MAX_ENTRY_AGE_SECONDS,
max_messages_encrypted=MAX_ENTRY_MESSAGES
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/* Create a session with the caching CMM. Set the session mode to encrypt. */
struct aws_cryptosdk_session *session =

aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
caching_cmm);

/* Set a message bound of 1000 bytes */
aws_status = aws_cryptosdk_session_set_message_bound(session, 1000);

/* Encrypt the message using the session with the caching CMM */
aws_status = aws_cryptosdk_session_process(

session, output_buffer, output_capacity, &output_produced,
input_buffer, input_len, &input_consumed);

/* Release your references to the caching CMM and the session. */
aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_session_destroy(session);

Java

CHS Aol M =2l ™ 2.xE AF EFLICH AWS Encryption SDK for Java. ™ 3.x= Cl|O|E{ 7| 7Y
4 CMMZ [ AWS Encryption SDK for Java O|& AF&3tX| o &LICH B 3.x0HE CHAl & =35t
A2 I EFMRAAWS KMS ASH 7|22 A" =& /U&LCH

// When the call to encryptData specifies a caching CMM,

// the encryption operation uses the data key cache

final AwsCrypto encryptionSdk = AwsCrypto.standard();

return encryptionSdk.encryptData(cachingCmm, plaintext_source).getResult();

JavaScript Browser

const { result } = await encrypt(cachingCmm, plaintext)

JavaScript Node.js

AWS Encryption SDK for JavaScript for Node.jsOll M 714 CMME AtE35t= B2 encrypt HAME
ol gt HlAE o] Zo|7t HELCt MSetx| &t C|o|E| 7|7t FHA|ZIX| §f&LICH HOol=

Ls H
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const { result } = await encrypt(cachingCmm, plaintext, { plaintextLength:
plaintext.length })

Python

# Set up an encryption client
client = aws_encryption_sdk.EncryptionSDKClient()

# When the call to encrypt specifies a caching CMM,

# the encryption operation uses the data key cache

#

encrypted_message, header = client.encrypt(
source=plaintext_source,
materials_manager=caching_cmm
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/*
* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
* this file except in compliance with the License. A copy of the License is
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*

located at

*

http://aws.amazon.com/apache2.0/

* or in the "license" file accompanying this file. This file is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied. See the License for the specific language governing permissions and

* limitations under the License.

*/

#include <aws/cryptosdk/cache.h>
#include <aws/cryptosdk/cpp/kms_keyring.h>
#include <aws/cryptosdk/session.h>

void encrypt_with_caching(
uint8_t *ciphertext, // output will go here (assumes ciphertext_capacity
bytes already allocated)
size_t *ciphertext_len, // length of output will go here
size_t ciphertext_capacity,
const char *kms_key_arn,
int max_entry_age,
int cache_capacity) {
const uint64_t MAX_ENTRY_MSGS = 100;

struct aws_allocator *allocator = aws_default_allocator();

// Load error strings for debugging
aws_cryptosdk_load_error_strings();

// Create a keyring
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(kms_key_azrn);

// Create a cache
struct aws_cryptosdk_materials_cache *cache =
aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);

// Create a caching CMM
struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(
allocator, cache, kms_keyring, NULL, max_entry_age, AWS_TIMESTAMP_SECS);
if (!caching_cmm) abort();

HiolEf 7| e oflAMl: EXtL &= 3 351



AWS Encryption SDK JHEER} 70| =

if (aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, MAX_ENTRY_MSGS))
abort();

// Create a session
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
caching_cmm);
if (!session) abort();

// Encryption context

struct aws_hash_table *enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

if (!enc_ctx) abort();

AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key, "purpose");

AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value, "test");

if (aws_hash_table_put(enc_ctx, enc_ctx_key, (void *)enc_ctx_value, NULL))
abort();

// Plaintext data to be encrypted

const char *my_data = "My plaintext data";

size_t my_data_len = strlen(my_data);

if (aws_cryptosdk_session_set_message_size(session, my_data_len)) abort();

// When the session uses a caching CMM, the encryption operation uses the data
key cache
// specified in the caching CMM.
size_t bytes_read;
if (aws_cryptosdk_session_process(
session,
ciphertext,
ciphertext_capacity,
ciphertext_len,
(const uint8_t *)my_data,
my_data_len,
&bytes_read))
abort();
if (laws_cryptosdk_session_is_done(session) || bytes_read != my_data_len)
abort();

aws_cryptosdk_session_destroy(session);
aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);
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Java
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// Copyright Amazon.com Inc.
// SPDX-License-Identifier: Apache-

7H

| &2 MO AWS KMS HSX 7|22 Al £ & LCt.

or its affiliates. All Rights Reserved.

2.0

package com.amazonaws.crypto.examples;

import
import
import
import
import
import
import
import
import
import
import
import

/**

* <p>

com.
com.
com.
com.
com.
com.
com.
com.

java.

java

java.
java.

* Encrypts

* <p>

amazonaws.
amazonaws.
amazonaws.
amazonaws.

amazonaws
amazonaws
amazonaws

amazonaws.

encryptionsdk.
encryptionsdk.
encryptionsdk.
encryptionsdk.
.encryptionsdk.
.encryptionsdk.
.encryptionsdk.
encryptionsdk.
nio.charset.StandardCharsets;

.util.Collections;

util.Map;
util.concurrent.TimeUnit;

AwsCrypto;

CryptoMaterialsManager;
MasterKeyProvider;
caching.CachingCryptoMaterialsManager;
caching.CryptoMaterialsCache;
caching.LocalCryptoMaterialsCache;
kmssdkv2.KmsMasterKey;
kmssdkv2.KmsMasterKeyProvider;

a string using an &KMS; key and data key caching

* Arguments:

* <ol>

* <]i>KMS Key ARN: To find the Amazon Resource Name of your &KMS; key,
see 'Find the key ID and ARN' at https://docs.aws.amazon.com/kms/latest/

*

developerguide/find-cmk-id-arn.html
* <]i>Max entry age:

Maximum time

(in seconds) that a cached entry can be used

* <li>Cache capacity: Maximum number of entries in the cache
* </ol>

*/

public class SimpleDataKeyCachingExample {

/*
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* Security thresholds

Max entry age is required.
Max messages (and max bytes) per data key are optional

private static final int MAX_ENTRY_MSGS = 100;

public static byte[] encryptWithCaching(String kmsKeyArn, int maxEntryAge, int
cacheCapacity) {

// Plaintext data to be encrypted
byte[] myData = "My plaintext data".getBytes(StandardCharsets.UTF_8);

// Encryption context

// Most encrypted data should have an associated encryption context

// to protect integrity. This sample uses placeholder values.

// For more information see:

// blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-

Integrity-of-Your-Encrypted-Data-by-Using-AWS-Key-Management

final Map<String, String> encryptionContext =

Collections.singletonMap("purpose", "test");

// Create a master key provider
MasterKeyProvider<KmsMasterKey> keyProvider =

KmsMasterKeyProvider.builder()

.buildStrict(kmsKeyArn);

// Create a cache
CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(cacheCapacity);

// Create a caching CMM
CryptoMaterialsManager cachingCmm =

CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)

.withCache(cache)

.withMaxAge(maxEntryAge, TimeUnit.SECONDS)
.withMessageUselLimit (MAX_ENTRY_MSGS)
.build();

// When the call to encryptData specifies a caching CMM,
// the encryption operation uses the data key cache
final AwsCrypto encryptionSdk = AwsCrypto.standard();
return encryptionSdk.encryptData(cachingCmm, myData,

encryptionContext).getResult();

}
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}

JavaScript Browser

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

/* This is a simple example of using a caching CMM with a KMS keyring
* to encrypt and decrypt using the AWS Encryption SDK for Javascript in a browser.

*/

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
WebCryptoCachingMaterialsManager,
getLocalCryptographicMaterialsCache,
} from '@aws-crypto/client-browser’
import { toBase64 } from 'eaws-sdk/util-base64-browser'

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,
* which enforces that this client only encrypts using committing algorithm suites
* and enforces that this client
* will only decrypt encrypted messages
* that were created with a committing algorithm suite.
* This is the default commitment policy
* if you build the client with “buildClient()".
*/

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

/* This is injected by webpack.
* The webpack.DefinePlugin or eaws-sdk/karma-credential-loader will replace the
values when bundling.
* The credential values are pulled from eaws-sdk/credential-provider-node
* Use any method you like to get credentials into the browser.
* See kms.webpack.config
*/

declare const credentials: {
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accessKeyId: string
secretAccessKey: string
sessionToken: string

/* This is done to facilitate testing. */
export async function testCachingCMMExample() {
/* This example uses an &KMS; keyring. The generator key in a &KMS; keyring
generates and encrypts the data key.
* The caller needs kms:GenerateDataKey permission on the &KMS; key in
generatorKeyId.
*/
const generatorKeyId =
'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt’

/* Adding additional KMS keys that can decrypt.
* The caller must have kms:Encrypt permission for every &KMS; key in keyIds.
* You might list several keys in different AWS Regions.
* This allows you to decrypt the data in any of the represented Regions.
* In this example, the generator key
* and the additional key are actually the same &KMS; key.
* In “generatorId’, this &KMS; key is identified by its alias ARN.
* In “keyIds®, this &KMS; key is identified by its key ARN.
* In practice, you would specify different &KMS; keys,
* or omit the “keyIds® parameter.
* This is *only* to demonstrate how the &KMS; key ARNs are configured.
*/
const keyIds = [
'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f",

/* Need a client provider that will inject correct credentials.

* The credentials here are injected by webpack from your environment bundle is
created

* The credential values are pulled using eaws-sdk/credential-provider-node.

* See kms.webpack.config

* You should inject your credential into the browser in a secure manner

* that works with your application.

*/

const { accessKeylId, secretAccessKey, sessionToken } = credentials

/* getClient takes a KMS client constructor
* and optional configuration values.
* The credentials can be injected here,
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* because browsers do not have a standard credential discovery process the way
Node.js does.
*/
const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken,
1,
1)

/* You must configure the KMS keyring with your &KMS; keys */
const keyring = new KmsKeyringBrowser({

clientProvider,

generatorKeylId,

keyIds,
1))

/* Create a cache to hold the data keys (and related cryptographic material).
* This example uses the local cache provided by the Encryption SDK.
* The “capacity’ value represents the maximum number of entries
* that the cache can hold.
* To make room for an additional entry,
* the cache evicts the oldest cached entry.

* Both encrypt and decrypt requests count independently towards this threshold.

* Entries that exceed any cache threshold are actively removed from the cache.
* By default, the SDK checks one item in the cache every 60 seconds (60,000
milliseconds).
* To change this frequency, pass in a “proactiveFrequency’ value
* as the second parameter. This value is in milliseconds.
*/
const capacity = 100
const cache = getLocalCryptographicMaterialsCache(capacity)

/* The partition name lets multiple caching CMMs share the same local
cryptographic cache.

* By default, the entries for each CMM are cached separately. However, if you
want these CMMs to share the cache,

* use the same partition name for both caching CMMs.

* If you don't supply a partition name, the Encryption SDK generates a random
name for each caching CMM.

* As a result, sharing elements in the cache MUST be an intentional operation.

*/

const partition = 'local partition name'
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/* maxAge is the time in milliseconds that an entry will be cached.
* Elements are actively removed from the cache.
*/

const maxAge = 1000 * 60

/* The maximum number of bytes that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest practical value.
*/

const maxBytesEncrypted = 100

/* The maximum number of messages that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest practical value.
*/

const maxMessagesEncrypted = 10

const cachingCMM = new WebCryptoCachingMaterialsManagexr({
backingMaterials: keyring,
cache,
partition,
maxAge,
maxBytesEncrypted,
maxMessagesEncrypted,

/* Encryption context is a *very* powerful tool for controlling

* and managing access.

* When you pass an encryption context to the encrypt function,

* the encryption context is cryptographically bound to the ciphertext.

* If you don't pass in the same encryption context when decrypting,

* the decrypt function fails.

* The encryption context is ***not*** secret!

* Encrypted data is opaque.

* You can use an encryption context to assert things about the encrypted data.

* The encryption context helps you to determine

* whether the ciphertext you retrieved is the ciphertext you expect to decrypt.

* For example, if you are are only expecting data from 'us-west-2',

* the appearance of a different AWS Region in the encryption context can indicate
malicious interference.

* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/

concepts.html#encryption-context
*

HiolEf 7| e oflAMl: EXtL &= 3 358



AWS Encryption SDK JHEER} 70| =

* Also, cached data keys are reused ***only*** when the encryption contexts
passed into the functions are an exact case-sensitive match.
* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context
*/
const encryptionContext = {
stage: 'demo',
purpose: 'simple demonstration app',
origin: 'us-west-2',

}

/* Find data to encrypt. */
const plainText = new Uint8Array([1l, 2, 3, 4, 5])

/* Encrypt the data.

* The caching CMM only reuses data keys

* when it know the length (or an estimate) of the plaintext.

* However, in the browser,

* you must provide all of the plaintext to the encrypt function.

* Therefore, the encrypt function in the browser knows the length of the
plaintext

* and does not accept a plaintextLength option.

*/
const { result } = await encrypt(cachingCMM, plainText, { encryptionContext })

/* Log the plain text

* only for testing and to show that it works.

*/

console.log('plainText:', plainText)
document.write('</br>plainText:' + plainText + '</br>")

/* Log the baseb4-encoded result
* so that you can try decrypting it with another AWS Encryption SDK
implementation.
*/
const resultBase64 = toBase64(result)
console.log(resultBase64)
document.write(resultBaseb4)

/* Decrypt the data.
* NOTE: This decrypt request will not use the data key
* that was cached during the encrypt operation.
* Data keys for encrypt and decrypt operations are cached separately.

*/
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const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

/* Grab the encryption context so you can verify it. */
const { encryptionContext: decryptedContext } = messageHeader

/* Verify the encryption context.

* If you use an algorithm suite with signing,

* the Encryption SDK adds a name-value pair to the encryption context that
contains the public key.

* Because the encryption context might contain additional key-value pairs,

* do not include a test that requires that all key-value pairs match.

* Instead, verify that the key-value pairs that you supplied to the “encrypt’
function are included in the encryption context that the “decrypt’™ function

returns.
*/

Object.entries(encryptionContext).forEach(([key, value]) => {
if (decryptedContext[key] !== value)

throw new Error('Encryption Context does not match expected values')

1)

/* Log the clear message
* only for testing and to show that it works.
*/
document.write('</br>Decrypted:' + plaintext)
console.log(plaintext)

/* Return the values to make testing easy. */
return { plainText, plaintext }

JavaScript Node.js

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
NodeCachingMaterialsManager,
getLocalCryptographicMaterialsCache,
} from '@aws-crypto/client-node'
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/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,
* which enforces that this client only encrypts using committing algorithm suites
* and enforces that this client
* will only decrypt encrypted messages
* that were created with a committing algorithm suite.
* This is the default commitment policy
* if you build the client with “buildClient() .
*/

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

export async function cachingCMMNodeSimpleTest() {
/* An &KMS; key is required to generate the data key.
* You need kms:GenerateDataKey permission on the &KMS; key in generatorKeyId.
*/
const generatorKeyld =
'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt’

/* Adding alternate &KMS; keys that can decrypt.
* Access to kms:Encrypt is required for every &KMS; key in keyIds.
* You might list several keys in different AWS Regions.
* This allows you to decrypt the data in any of the represented Regions.
* In this example, the generator key
* and the additional key are actually the same &KMS; key.
* In “generatorId’, this &KMS; key is identified by its alias ARN.
* In “keyIds', this &KMS; key is identified by its key ARN.
* In practice, you would specify different &KMS; keys,
* or omit the “keyIds' parameter.
* This is *only* to demonstrate how the &KMS; key ARNs are configured.
*/
const keyIds = [
'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f",

/* The &KMS; keyring must be configured with the desired &KMS; keys
* This example passes the keyring to the caching CMM
* instead of using it directly.
*/

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

/* Create a cache to hold the data keys (and related cryptographic material).
* This example uses the local cache provided by the Encryption SDK.
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* The “capacity’ value represents the maximum number of entries
* that the cache can hold.
* To make room for an additional entry,
* the cache evicts the oldest cached entry.
* Both encrypt and decrypt requests count independently towards this threshold.
* Entries that exceed any cache threshold are actively removed from the cache.
* By default, the SDK checks one item in the cache every 60 seconds (60,000
milliseconds).
* To change this frequency, pass in a “proactiveFrequency’ value
* as the second parameter. This value is in milliseconds.
*/
const capacity = 100
const cache = getlLocalCryptographicMaterialsCache(capacity)

/* The partition name lets multiple caching CMMs share the same local
cryptographic cache.

* By default, the entries for each CMM are cached separately. However, if you
want these CMMs to share the cache,

* use the same partition name for both caching CMMs.

* If you don't supply a partition name, the Encryption SDK generates a random
name for each caching CMM.

* As a result, sharing elements in the cache MUST be an intentional operation.

*/

const partition = 'local partition name'

/* maxAge is the time in milliseconds that an entry will be cached.
* Elements are actively removed from the cache.
*/

const maxAge = 1000 * 60

/* The maximum amount of bytes that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest value possible.
*/

const maxBytesEncrypted = 100

/* The maximum number of messages that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest value possible.
*/

const maxMessagesEncrypted = 10

const cachingCMM = new NodeCachingMaterialsManagexr({
backingMaterials: keyring,
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cache,

partition,

maxAge,
maxBytesEncrypted,
maxMessagesEncrypted,

/* Encryption context is a *very* powerful tool for controlling

* and managing access.

* When you pass an encryption context to the encrypt function,

* the encryption context is cryptographically bound to the ciphertext.

* If you don't pass in the same encryption context when decrypting,

* the decrypt function fails.

* The encryption context is ***not*** secret!

* Encrypted data is opaque.

* You can use an encryption context to assert things about the encrypted data.

* The encryption context helps you to determine

* whether the ciphertext you retrieved is the ciphertext you expect to decrypt.

* For example, if you are are only expecting data from 'us-west-2',

* the appearance of a different AWS Region in the encryption context can indicate
malicious interference.

* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
concepts.html#encryption-context

*

* Also, cached data keys are reused ***only*** when the encryption contexts
passed into the functions are an exact case-sensitive match.

* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context

*/

const encryptionContext = {

stage: 'demo',

purpose: 'simple demonstration app',

origin: 'us-west-2',

/* Find data to encrypt. A simple string. */
const cleartext = 'asdf'

/* Encrypt the data.
* The caching CMM only reuses data keys
* when it know the length (or an estimate) of the plaintext.
* If you do not know the length,
* because the data is a stream
* provide an estimate of the largest expected value.
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*

*

If your estimate is smaller than the actual plaintext length
* the AWS Encryption SDK will throw an exception.

* If the plaintext is not a stream,
* the AWS Encryption SDK uses the actual plaintext length
* instead of any length you provide.

*/

const { result } = await encrypt(cachingCMM, cleartext, {
encryptionContext,
plaintextLength: 4,

1)

/* Decrypt the data.
* NOTE: This decrypt request will not use the data key
* that was cached during the encrypt operation.
* Data keys for encrypt and decrypt operations are cached separately.
*/

const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

/* Grab the encryption context so you can verify it. */
const { encryptionContext: decryptedContext } = messageHeader

/* Verify the encryption context.

* If you use an algorithm suite with signing,

* the Encryption SDK adds a name-value pair to the encryption context that
contains the public key.

* Because the encryption context might contain additional key-value pairs,

* do not include a test that requires that all key-value pairs match.

* Instead, verify that the key-value pairs that you supplied to the “encrypt’
function are included in the encryption context that the “decrypt’™ function

returns.
*/

Object.entries(encryptionContext).forEach(([key, value]) => {
if (decryptedContext[key] !== value)

throw new Error('Encryption Context does not match expected values')

1)

/* Return the values so the code can be tested. */
return { plaintext, result, cleartext, messageHeader }
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Python

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You
may not use this file except in compliance with the License. A copy of
the License is located at

#

#

#

#

#

#

# http://aws.amazon.com/apache2.0/

#

# or in the "license" file accompanying this file. This file is

# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Example of encryption with data key caching."""

import aws_encryption_sdk

from aws_encryption_sdk import CommitmentPolicy

def encrypt_with_caching(kms_key_arn, max_age_in_cache, cache_capacity):
"""Encrypts a string using an &KMS; key and data key caching.

:param str kms_key_arn: Amazon Resource Name (ARN) of the &KMS; key

:param float max_age_in_cache: Maximum time in seconds that a cached entry can
be used

:param int cache_capacity: Maximum number of entries to retain in cache at once

# Data to be encrypted

my_data = "My plaintext data"

# Security thresholds
#  Max messages (or max bytes per) data key are optional
MAX_ENTRY_MESSAGES = 100

# Create an encryption context
encryption_context = {"purpose": "test"}

# Set up an encryption client with an explicit commitment policy. Note that if
you do not explicitly choose a

# commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default.

client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F

# Create a master key provider for the &KMS; key
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key_provider =
aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

# Create a local cache
cache = aws_encryption_sdk.LocalCryptoMaterialsCache(cache_capacity)

# Create a caching CMM

caching_cmm = aws_encryption_sdk.CachingCryptoMaterialsManager/(
master_key_provider=key_provider,
cache=cache,
max_age=max_age_in_cache,
max_messages_encrypted=MAX_ENTRY_MESSAGES,

# When the call to encrypt data specifies a caching CMM,
# the encryption operation uses the data key cache specified
# in the caching CMM
encrypted_message, _header = client.encrypt(
source=my_data, materials_manager=caching_cmm,
encryption_context=encryption_context

)

return encrypted_message
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https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/ParsedCiphertext.html
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/serialize/src/types.ts#L21
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/lambda/
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https://aws.github.io/aws-encryption-sdk-java/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
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C/C++: caching_cmm.cpp

« Java: SimpleDataKeyCachingExample.java

JavaScript 22} Xq: caching_cmm.ts

» JavaScript Node.js: caching_cmm.ts

» Python: data_key caching_basic.py

S J7tX{Qt JSONS 2 #8611, AWS Encryption SDK £ At&35l0{ &t 5 5t6t 11, ALO|T{E
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/*
* Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

*

* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
this file except

* in compliance with the License. A copy of the License is located at
*

* http://aws.amazon.com/apache2.0

*

* or in the "license" file accompanying this file. This file is distributed on an
"AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

* specific language governing permissions and limitations under the License.

*/

package com.amazonaws.crypto.examples.kinesisdatakeycaching;
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https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py
https://aws.amazon.com/kinesis/streams/
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import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

/**

com.
com.
com.
com.
com.
com.
com.
com.
com.
com.

java.
java.
java.
java.
java.
java.

amazonaws.encryptionsdk.AwsCrypto;
amazonaws.encryptionsdk.CommitmentPolicy;
amazonaws.encryptionsdk.CryptoResult;
amazonaws.encryptionsdk.MasterKeyProvider;
amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
amazonaws.encryptionsdk.kmssdkv2.KmsMasterKey;
amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
amazonaws.encryptionsdk.multi.MultipleProviderFactory;
amazonaws.util. json.Jackson;

util.Arraylist;
util.HashMap;

util.List;

util.Map;

util.UUID;
util.concurrent.TimeUnit;

software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
software.amazon.awssdk.core.SdkBytes;
software.amazon.awssdk.regions.Region;
software.amazon.awssdk.services.kinesis.KinesisClient;

software.amazon.awssdk.services.kms.KmsClient;

* Pushes data to Kinesis Streams in multiple Regions.

*/

public class MultiRegionRecordPusher {

private
private
private
private
private
private
private

/**

static final long MAX_ENTRY_AGE_MILLISECONDS = 300000;

static final long MAX_ENTRY_USES = 100;

static final int MAX_CACHE_ENTRIES = 100;

final String streamName_;

final Arraylist<KinesisClient> kinesisClients_;

final CachingCryptoMaterialsManager cachingMaterialsManager_;
final AwsCrypto crypto_;

* Creates an instance of this object with Kinesis clients for all target
Regions and a cached
* key provider containing KMS master keys in all target Regions.

*/
public MultiRegionRecordPusher(final Region[] regions, final String
kmsAliasName,
X 2= 378
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final String streamName) {

streamName_ = streamName;

crypto_ = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

kinesisClients_ = new ArraylList<>();

AwsCredentialsProvider credentialsProvider =
DefaultCredentialsProvider.builder().build();

// Build KmsMasterKey and AmazonKinesisClient objects for each target region
List<KmsMasterKey> masterKeys = new ArraylList<>();
for (Region region : regions) {
kinesisClients_.add(KinesisClient.buildexr()
.credentialsProvider(credentialsProvider)
.region(region)
.build());

KmsMasterKey regionMasterKey = KmsMasterKeyProvider.builder()
.defaultRegion(region)
.builderSuppliexr(() ->
KmsClient.builder().credentialsProvider(credentialsProvider))
.buildStrict(kmsAliasName)
.getMasterKey(kmsAliasName);

masterKeys.add(regionMasterKey);

// Collect KmsMasterKey objects into single provider and add cache
MasterKeyProvider<?> masterKeyProvider =
MultipleProviderFactory.buildMultiProvider(
KmsMasterKey.class,
masterKeys

);

cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()
.withMasterKeyProvider(masterKeyProvider)
.withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
.withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
.withMessageUseLimit(MAX_ENTRY_USES)
.build();

/**
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* JSON serializes and encrypts the received record data and pushes it to all
target streams.
*/
public void putRecord(final Map<Object, Object> data) {
String partitionKey = UUID.randomUUID().toString();
Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("stream", streamName_);

// JSON serialize data
String jsonData = Jackson.toJsonString(data);

// Encrypt data

CryptoResult<byte[], ?> result = crypto_.encryptData(
cachingMaterialsManager_,
jsonData.getBytes(),
encryptionContext

);

byte[] encryptedData = result.getResult();

// Put records to Kinesis stream in all Regions
for (KinesisClient regionalKinesisClient : kinesisClients_) {
regionalKinesisClient.putRecord(builder ->
builder.streamName(streamName_)
.data(SdkBytes.fromByteArray(encryptedData))
.partitionKey(partitionKey));

Python

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
file except

in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
IS" BASIS,
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WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

specific language governing permissions and limitations under the License.

import json

import uuid

from aws_encryption_sdk import EncryptionSDKClient, StrictAwsKmsMasterKeyProvider,
CachingCryptoMaterialsManager, LocalCryptoMaterialsCache, CommitmentPolicy

from aws_encryption_sdk.key_providers.kms import KMSMasterKey

import boto3

class MultiRegionRecordPusher(object):
"""Pushes data to Kinesis Streams in multiple Regions.
CACHE_CAPACITY = 100
MAX_ENTRY_AGE_SECONDS = 300.0
MAX_ENTRY_MESSAGES_ENCRYPTED = 100

def __init_ (self, regions, kms_alias_name, stream_name):
self._kinesis_clients = []
self._stream_name = stream_name

# Set up EncryptionSDKClient
_client =
EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

# Set up KMSMasterKeyProvider with cache
_key_provider = StrictAwsKmsMasterKeyProvider(kms_alias_name)

# Add MasterKey and Kinesis client for each Region
for region in regions:
self._kinesis_clients.append(boto3.client('kinesis’,
region_name=region))
regional_master_key = KMSMasterKey(
client=boto3.client('kms', region_name=region),
key_id=kms_alias_name
)

_key_provider.add_master_key_provider(regional_master_key)

cache = LocalCryptoMaterialsCache(capacity=self.CACHE_CAPACITY)
self._materials_manager = CachingCryptoMaterialsManager(
master_key_provider=_key_provider,
cache=cache,
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max_age=self.MAX_ENTRY_AGE_SECONDS,
max_messages_encrypted=self.MAX_ENTRY_MESSAGES_ENCRYPTED

def put_record(self, record_data):

"""JSON serializes and encrypts the received record data and pushes it to

all target streams.

:param dict record_data: Data to write to stream
# Kinesis partition key to randomize write load across stream shards
partition_key = uuid.uuid4().hex

encryption_context = {'stream': self._stream_name}

# JSON serialize data
json_data = json.dumps(record_data)

# Encrypt data

encrypted_data, _header = _client.encrypt(
source=json_data,
materials_manager=self._materials_manager,
encryption_context=encryption_context

# Put records to Kinesis stream in all Regions
for client in self._kinesis_clients:
client.put_record(
StreamName=self._stream_name,
Data=encrypted_data,
PartitionKey=partition_key

A H| R}
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https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/
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/*
* Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
this file except
* in compliance with the License. A copy of the License is located at

*

* http://aws.amazon.com/apache2.0

*

* or in the "license" file accompanying this file. This file is distributed on an
"AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

* specific language governing permissions and limitations under the License.

*/

package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoResult;

import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;

import com.amazonaws.services.lambda.runtime.Context;

import com.amazonaws.services.lambda.runtime.events.KinesisEvent;

import com.amazonaws.services.lambda.runtime.events.KinesisEvent.KinesisEventRecord;
import com.amazonaws.util.BinaryUtils;

import java.io.UnsupportedEncodingException;

import java.nio.ByteBuffer;
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import java.nio.charset.StandardCharsets;

import java.util.concurrent.TimeUnit;

import software.amazon.awssdk.enhanced.dynamodb.DynamoDbEnhancedClient;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbTable;

import software.amazon.awssdk.enhanced.dynamodb.TableSchema;

/**
* Decrypts all incoming Kinesis records and writes records to DynamoDB.
*/

public class LambdaDecryptAndWrite {

private static final long MAX_ENTRY_AGE_MILLISECONDS = 600000;
private static final int MAX_CACHE_ENTRIES = 100;

private final CachingCryptoMaterialsManager cachingMaterialsManager_;
private final AwsCrypto crypto_;

private final DynamoDbTable<Item> table_;

/**
* Because the cache is used only for decryption, the code doesn't set the max
bytes or max
* message security thresholds that are enforced only on on data keys used for
encryption.
*/
public LambdaDecryptAndwWrite() {
String kmsKeyArn = System.getenv("CMK_ARN");
cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()

.withMasterKeyProvider(KmsMasterKeyProvider.builder().buildStrict(kmsKeyArn))
.withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
.withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
.build();

crypto_ = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

String tableName = System.getenv("TABLE_NAME");
DynamoDbEnhancedClient dynamodb = DynamoDbEnhancedClient.builder().build();
table_ = dynamodb.table(tableName, TableSchema.fromClass(Item.class));

/**
* @param event
* @param context
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*/
public void handleRequest(KinesisEvent event, Context context)
throws UnsupportedEncodingException {
for (KinesisEventRecord record : event.getRecords()) {
ByteBuffer ciphertextBuffer = record.getKinesis().getData();
byte[] ciphertext = BinaryUtils.copyAllBytesFrom(ciphertextBuffer);

// Decrypt and unpack record
CryptoResult<byte[], ?> plaintextResult =
crypto_.decryptData(cachingMaterialsManager_,
ciphertext);

// Verify the encryption context value
String streamArn = record.getEventSourceARN();
String streamName = streamArn.substring(streamArn.indexOf("/") + 1);
if (!
streamName.equals(plaintextResult.getEncryptionContext().get("stream"))) {
throw new IllegalStateException("Wrong Encryption Context!");

// Write record to DynamoDB

String jsonItem = new String(plaintextResult.getResult(),
StandardCharsets.UTF_8);

System.out.println(jsonItem);

table_.putItem(Item.fromJSON(jsonItem));

private static class Item {

static Item fromJSON(String jsonText) {
// Parse JSON and create new Item
return new Item();

Python

O| Python ZE&= AM RE0M OtAH 7| SSXAHE AHE 5104 %EiP%*L—IEP Ol H| oF‘:"' AWS

|
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Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
file except
in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

specific language governing permissions and limitations under the License.

import baseb4

import json

import logging

import os

from aws_encryption_sdk import EncryptionSDKClient,
DiscoveryAwsKmsMasterKeyProvider, CachingCryptoMaterialsManager,
LocalCryptoMaterialsCache, CommitmentPolicy

import boto3

_LOGGER = logging.getlLogger(__name__)
_is_setup = False

CACHE_CAPACITY = 100
MAX_ENTRY_AGE_SECONDS = 600.0

def setup():
"""Sets up clients that should persist across Lambda invocations.
global encryption_sdk_client
encryption_sdk_client =
EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

global materials_manager
key_provider = DiscoveryAwsKmsMasterKeyProvider()
cache = LocalCryptoMaterialsCache(capacity=CACHE_CAPACITY)

# Because the cache is used only for decryption, the code doesn't set
#  the max bytes or max message security thresholds that are enforced
# only on on data keys used for encryption.
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materials_manager = CachingCryptoMaterialsManager(
master_key_provider=key_provider,
cache=cache,
max_age=MAX_ENTRY_AGE_SECONDS
)
global table
table_name = os.environ.get('TABLE_NAME')
table = boto3.resource('dynamodb').Table(table_name)
global _is_setup
_is_setup = True

def lambda_handler(event, context):
"""Decrypts all incoming Kinesis records and writes records to DynamoDB."""
_LOGGER.debug('New event:"')
_LOGGER.debug(event)
if not _is_setup:
setup()
with table.batch_writer() as batch:
for record in event.get('Records', []):
# Record data baseb4-encoded by Kinesis
ciphertext = baseb64.b64decode(record['kinesis']J['data'])

# Decrypt and unpack record

plaintext, header = encryption_sdk_client.decrypt(
source=ciphertext,
materials_manager=materials_manager

)

item = json.loads(plaintext)

# Verify the encryption context value

stream_name = record['eventSourceARN'].split('/', 1)[1]

if stream_name != header.encryption_context['stream']:
raise ValueError('Wrong Encryption Context!')

# Write record to DynamoDB
batch.put_item(Item=item)
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HlOlE] 7| 7HA o Al: CloudFormation template

O| CloudFormation ElZ &2 O|0|E 7| 7H & of|XM|E A{Ed5t= O| 2R st ZE AWS E2[AAE M- e
Ct.

JSON
{
"Parameters": {
"SourceCodeBucket": {
"Type": "String",
"Description": "S3 bucket containing Lambda source code zip files"
1,
"PythonLambdaS3Key": {
"Type": "String",
"Description": "S3 key containing Python Lambda source code zip file"
1,
"PythonLambdaObjectVersionId": {
"Type": "String",
"Description": "S3 version id for S3 key containing Python Lambda source
code zip file"
I
"JavalLambdaS3Key": {
"Type": "String",
"Description": "S3 key containing Python Lambda source code zip file"
I
"JavalLambdaObjectVersionId": {
"Type": "String",
"Description": "S3 version id for S3 key containing Python Lambda source
code zip file"
1,
"KeyAliasSuffix": {
"Type": "String",
"Description": "Suffix to use for KMS key Alias (ie: alias/
KeyAliasSuffix)"

I
"StreamName": {
"Type": "String",
"Description'": "Name to use for Kinesis Stream"

o
"Resources": {
"InputStream": {
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"Type": "AWS::Kinesis::Stream",
"Properties": {
"Name": {
"Ref": "StreamName"
},
"ShardCount": 2

iy
"PythonLambdaOutputTable": {

"Type": "AWS::DynamoDB: :Table",
"Properties": {
"AttributeDefinitions": [

{
"AttributeName": "id",
"AttributeType": "S"
}
1,
"KeySchema": [
{
"AttributeName": "id",
"KeyType": "HASH"
}
1,

"ProvisionedThroughput": {
"ReadCapacityUnits": 1,
"WriteCapacityUnits": 1

},
"PythonLambdaRole": {
"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
I
"Action": "sts:AssumeRole"
}

iy
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"ManagedPolicyArns": [
"arn:aws:iam::aws:policy/service-role/
AwSLambdaBasicExecutionRole"
1,
"Policies": [
{
"PolicyName": "PythonLambdaAccess",
"PolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"dynamodb:DescribeTable",
"dynamodb:BatchWriteItem"

1,

"Resource": {

"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${PythonLambdaOutputTable}"

}

},
{

"Effect": "Allow",

"Action": [
"dynamodb:PutItem"

1,

"Resource": {

"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${PythonLambdaOutputTable}*"

}

},
{

"Effect": "Allow",

"Action": [
"kinesis:GetRecords",
"kinesis:GetShardIterator",
"kinesis:DescribeStream",
"kinesis:ListStreams"

1,

"Resource": {

"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}"

}
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I
"PythonLambdaFunction": {
"Type": "AWS::Lambda::Function",
"Properties": {
"Description": "Python consumer",
"Runtime": "python2.7",
"MemorySize": 512,
"Timeout": 90,
"Role": {
"Fn::GetAtt": [
"PythonLambdaRole",

"Arn"
]
},
"Handler":
"aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler",
"Code": {
"S3Bucket": {
"Ref": "SourceCodeBucket"
},
"S3Key": {
"Ref": "PythonLambdaS3Key"
I
"S30bjectVersion": {
"Ref": "PythonLambdaObjectVersionId"
}
I

"Environment": {
"Variables": {
"TABLE_NAME": {
"Ref": "PythonLambdaOutputTable"

},

"PythonLambdaSourceMapping": {
"Type": "AWS::Lambda::EventSourceMapping",
"Properties": {
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"BatchSize": 1,
"Enabled": true,
"EventSourceArn": {
"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}"
.
"FunctionName": {
"Ref": "PythonLambdaFunction"
},
"StartingPosition": "TRIM_HORIZON"

I
"JavalLambdaOutputTable": {
"Type": "AWS::DynamoDB: :Table",
"Properties": {
"AttributeDefinitions": [

{
"AttributeName": "id",
"AttributeType": "S"
}
1,
"KeySchema": [
{
"AttributeName": "id",
"KeyType": "HASH"
}
1,

"ProvisionedThroughput": {
"ReadCapacityUnits": 1,
"WriteCapacityUnits": 1

},
"JavaLambdaRole": {
"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"

iy
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"Action":

iy

"ManagedPolicyArns":

"sts:AssumeRole"

L

"arn:aws:iam::aws:policy/service-role/

AWSLambdaBasicExecutionRole"

15
"Policies": [

{

"PolicyName": "JavalLambdaAccess",
"PolicyDocument": {

"Version":

"2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [
"dynamodb:DescribeTable",
"dynamodb:BatchWriteItem"

1,

"Resource": {

${AWS: :AccountId}:table/${JavaLambdaOutputTable}"

}I
{

"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
}
"Effect": "Allow",
"Action": [
"dynamodb:PutItem"
15

"Resource": {
"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:

${AWS: :AccountId}:table/${JavaLambdaOutputTable}*"

}I
{

}

"Effect": "Allow",

"Action": [
"kinesis:GetRecords",
"kinesis:GetShardIterator",
"kinesis:DescribeStream",
"kinesis:ListStreams"

1,

"Resource": {
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"Fn::Sub": "arn:aws:kinesis:${AWS::
${AWS: :AccountId}:stream/${InputStream}"

}
}
]
}
}
]

}
I
"JavalLambdaFunction": {

"Type": "AWS::Lambda::Function",

"Properties": {
"Description":
"Runtime":

"Java consumer",
"java8",
"MemorySize": 512,
"Timeout": 90,
"Role": {
"Fn::GetAtt": [
"JavalLambdaRole",
"Arn"

3,
"Handler":
crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite
"Code": {
"S3Bucket":
"Ref":

""com.amazonaws.

{

"SourceCodeBucket"
1,
"S3Key": {

"Ref": "JavalLambdaS3Key"

iy
"S30bjectVersion": {

"Ref": "JavalLambdaObjectVersionId"

}
I
"Environment": {
"Variables": {
"TABLE_NAME": {
"Ref": "JavalLambdaOutputTable"
},
"CMK_ARN": {

"Fn::GetAtt": [
"RegionKinesisCMK",

Region}:

: :handleRequest",

2|
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},
"JavalLambdaSourceMapping": {
"Type": "AWS::Lambda::EventSourceMapping",
"Properties": {
"BatchSize": 1,
"Enabled": true,
"EventSourceArn": {
"Fn::Sub": "arn:aws:kinesis:${AWS: :Region}:
${AWS: :AccountId}:stream/${InputStream}"

1,
"FunctionName": {

"Ref": "JavalLambdaFunction"
I

"StartingPosition": "TRIM_HORIZON"

I
"RegionKinesisCMK": {
"Type": "AWS: :KMS::Key",
"Properties": {
"Description": "Used to encrypt data passing through Kinesis Stream
in this region",
"Enabled": true,
"KeyPolicy": {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": {
"Fn::Sub": "arn:aws:iam::${AWS: :AccountId}:root"

I

"Action": [
"kms:Encrypt",
"kms:GenerateDataKey",
"kms:CreateAlias",
"kms:DeleteAlias",
"kms:DescribeKey",
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"kms:DisableKey",
"kms:EnableKey",
"kms:PutKeyPolicy",
"kms:ScheduleKeyDeletion",
"kms:UpdateAlias",

"kms :UpdateKeyDescription"

1,
"Resource": "*"
},
{
"Effect": "Allow",
"Principal": {
"AWS": [
{
"Fn::GetAtt": [
"PythonLambdaRole",
"Arn"
]
},
{
"Fn::GetAtt": [
"JavalLambdaRole",
"Arn"
]
}
]
},
"Action": "kms:Decrypt",
"Resource": "*"
}

iy

"RegionKinesisCMKAlias": {
"Type": "AWS::KMS::Alias",
"Properties": {
"AliasName": {
"Fn::Sub": "alias/${KeyAliasSuffix}"
I
"TargetKeyId": {
"Ref": "RegionKinesisCMK"
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}

YAML

Parameters:
SourceCodeBucket:
Type: String
Description: S3 bucket containing Lambda source code zip files
PythonLambdaS3Key:
Type: String
Description: S3 key containing Python Lambda source code zip file
PythonLambdaObjectVersionId:
Type: String
Description: S3 version id for S3 key containing Python Lambda source code
zip file
JavalLambdaS3Key:
Type: String
Description: S3 key containing Python Lambda source code zip file
JavaLambdaObjectVersionId:
Type: String
Description: S3 version id for S3 key containing Python Lambda source code
zip file
KeyAliasSuffix:
Type: String
Description: 'Suffix to use for KMS CMK Alias (ie: alias/<KeyAliasSuffix>)'
StreamName:
Type: String
Description: Name to use for Kinesis Stream
Resources:
InputStream:
Type: AWS::Kinesis::Stream
Properties:
Name: !Ref StreamName
ShardCount: 2
PythonLambdaOutputTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
AttributeName: id
AttributeType: S

CloudFormation & Z 3!

397



AWS Encryption SDK

JHeER 7Hol=

KeySchema:
AttributeName: id
KeyType: HASH
ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1

PythonLambdaRole:

Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:
Service: lambda.amazonaws.com
Action: sts:AssumeRole
ManagedPolicyArns:

- arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

Policies:
PolicyName: PythonLambdaAccess
PolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Action:
- dynamodb:DescribeTable
- dynamodb:BatchWriteItem
Resource: !Sub arn:aws:dynamodb:${AWS

${AWS: :AccountId}:table/${PythonLambdaOutputTable}

Effect: Allow
Action:
- dynamodb:PutItem
Resource: !Sub arn:aws:dynamodb:${AWS

${AWS: :AccountId}:table/${PythonLambdaOutputTable}*

Effect: Allow
Action:
- kinesis:GetRecords
- kinesis:GetShardIterator

: :Region}:

: :Region}:
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- kinesis:DescribeStream
- kinesis:ListStreams
Resource: !Sub arn:aws:kinesis:${AWS
${AWS: :AccountId}:stream/${InputStream}
PythonLambdaFunction:
Type: AWS::Lambda::Function
Properties:
Description: Python consumer
Runtime: python2.7
MemorySize: 512
Timeout: 90
Role: !GetAtt PythonLambdaRole.Azrn
Handler:
aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler
Code:
S3Bucket: !Ref SourceCodeBucket
S3Key: !Ref PythonLambdaS3Key
S30bjectVersion: !Ref PythonlLambdaObjectVersionId
Environment:
Variables:
TABLE_NAME: !'Ref PythonLambdaOutputTable
PythonLambdaSourceMapping:
Type: AWS::Lambda::EventSourceMapping
Properties:
BatchSize: 1
Enabled: true
EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}
FunctionName: !Ref PythonLambdaFunction
StartingPosition: TRIM_HORIZON
JavalambdaOutputTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
AttributeName: id
AttributeType: S
KeySchema:
AttributeName: id
KeyType: HASH
ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1

: :Region}:
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JavalLambdaRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:
Service: lambda.amazonaws.com
Action: sts:AssumeRole
ManagedPolicyArns:
- arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
Policies:
PolicyName: JavalLambdaAccess
PolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Action:
- dynamodb:DescribeTable
- dynamodb:BatchWriteItem
Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS: :AccountId}:table/${JavalLambdaOutputTable}
Effect: Allow
Action:
- dynamodb:PutItem
Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS: :AccountId}:table/${JavalLambdaOutputTable}*
Effect: Allow
Action:

- kinesis:GetRecords
kinesis:GetShardIterator
kinesis:DescribeStream
kinesis:ListStreams

Resource: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}
JavalLambdaFunction:
Type: AWS::Lambda::Function
Properties:
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Description: Java consumer
Runtime: java8
MemorySize: 512
Timeout: 90
Role: !GetAtt JavalLambdaRole.Arn
Handler:
com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndwWrite: :handleRequest
Code:
S3Bucket: !Ref SourceCodeBucket
S3Key: !Ref JavalambdaS3Key
S30bjectVersion: !Ref JavalLambdaObjectVersionId
Environment:
Variables:
TABLE_NAME: !Ref JavalLambdaOutputTable
CMK_ARN: !GetAtt RegionKinesisCMK.Azrn
JavalLambdaSourceMapping:
Type: AWS::Lambda::EventSourceMapping
Properties:
BatchSize: 1
Enabled: true
EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}
FunctionName: !Ref JavalLambdaFunction
StartingPosition: TRIM_HORIZON
RegionKinesisCMK:
Type: AWS::KMS: :Key
Properties:
Description: Used to encrypt data passing through Kinesis Stream in this
region
Enabled: true
KeyPolicy:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:
AWS: !Sub arn:aws:iam::${AWS::AccountId}:root
Action:
# Data plane actions
- kms:Encrypt
- kms:GenerateDataKey
# Control plane actions
- kms:CreateAlias
- kms:DeleteAlias
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- kms:DescribeKey

- kms:DisableKey

- kms:EnableKey

- kms:PutKeyPolicy

- kms:ScheduleKeyDeletion

- kms:UpdateAlias

- kms:UpdateKeyDescription
Resource: '*'

Effect: Allow
Principal:
AWS:
- !GetAtt PythonLambdaRole.Arn
- lGetAtt JavalLambdaRole.Arn
Action: kms:Decrypt
Resource: '*'
RegionKinesisCMKAlias:
Type: AWS::KMS::Alias
Properties:
AliasName: !Sub alias/${KeyAliasSuffix}
TargetKeyId: !Ref RegionKinesisCMK
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1.7 Updates to the AWS
Encryption SDK that
help users of earlier
versions upgrade
to versions 2.0.x
and later. For more
information, see HH{%1

2.X 2.0 Updates to the AWS End-of-Support £t 7|
Encryption SDK. For

more information, see
B 2.0.x.

2.2 Improvements to the
message decryption
process.
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https://docs.python.org/3/library/warnings.html
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https://docs.python.org/3/library/warnings.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
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Java

O| oi| A= AWS Encryption SDK for Javal| {71 1.6.2 0|3t HHEE AL 35l= OHEE[FH0lMo ZE
£ LtEHL(CE

O] ZE &= KmsMasterKeyProvider.builder() HIAMEE At835t0{ OtAE 7| SZAHE ¥ 7
AWS KMS key 2 AFE35HE AWS KMS OIAE 7| B2 XHE QIABHASSFLICEH

// Create a master key provider

// Replace the example key ARN with a valid one

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.withKeysForEncryption(awsKmsKey)
.build();

O| od| A= AWS Encryption SDK for Java 2| HHT 1.7.x O|4 HHEE AL 35l= OHEE[FH 0lMo ZE
£ LIEbLIC ™A oMl = BasicEncryptionExample.javaZ & ZE5HMIL.
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https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicEncryptionExample.java
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O|™ oMol M AFR El Builder.build() ! Builder.withKeysForEncryption() HMEE
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A 2= OtAE 7| SZAE YHI0|ESHT| l6H 0l ZE= O Ol AHE EIX| i= HIMEo] CHEt
5Z8 MBuilder.buildStrict() HIMEoO| CHet =2 CHA|ELICE O] MM E EHE 7|
AWS KMS key 2 5tLIE X85 X[t Builder.buildStrict() HIMEE o{3{e| SE 7t
&= & LICH AWS KMS keys.

// Create a master key provider in strict mode

// Replace the example key ARN with a valid one from your AWS ##.
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

Python

O| of|M|= AWS Encryption SDK for Python2| T 1.4.12 At&5t= OfEE[AH|0|Me| 2=

£ LIEPHLICH ol 2EE BT 1.7.x0llM o] o4 AL E|X| etom M 2.0.x01 M & 7HE
KMSMasterKeyProviderE AFEELICIH 23538 Al AWS KMS keys X|&8tol| &t74|Qi0] Ti|O|E]
7|2 & 53t AWS KMS key BHE AFSEFLICE.

Et, KMSMasterKey= O O|4 AFEEIX| oLt MIHE|X| eEt&LICH 238t & =553 Al AWS
KMS key X|&38H Bt AbFLICH

# Create a master key provider

# Replace the example key ARN with a valid one

key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = KMSMasterKeyProvidex(
key_ids=[key_1, key_2]
)

O| of|M|= AWS Encryption SDK for Python2| H& 1.7 xE& A& 3t= o E 2|7 0|Me| I EE LIE}
HL|CEH M| oAM= basic_encryption.pyE & ZESHAML.
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https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/basic_encryption.py
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3 &8 StrictAwsKmsMasterKeyProvider()oll Cigt &2 CHAI|ELIC}.

# Create a master key provider in strict mode

# Replace the example key ARNs with valid values from your AWS ##

key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider
key_ids=[key_1, key_2]

StrictAwsKmsMasterKeyProvider(

AWS Encryption CLI

O of &0 M= Encryption CLI EHHT 1.1.7 O[5t & AFE35t04 AWS 535t U 55 3t5t= HHE E0q
ELct

1.1.7 Ol3t HHOI M= 2= 3HE [ stLt o|& ol OtAH Z|(E&= 2iE 7|)E RI™FELICH: AWS
KMS key). ALE AL X|H OFAH 7| SZAHE AHS6HX| e Bt 553 A| 2iE 7|E XIHY = &
LICt AWS 2t 23} CLI= CIO|E| 7|& 25 35tet ZE 2 7|18 ME8E = &Lt

\\ Replace the example key ARN with a valid one
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--master-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .
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O| of|M|of| A= AWS Encryption CLI {7 1.7.x O| & E AtE5t0] 538t A S5 35}5t= WS E 0]
ELICH MA oAM= AWS S35l CLISJ off MME R XML,
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LICt 253t U 5535 Hol 28 --wrapping-keys ItEHOIE{2 CHA| =IA& LICt. O] mtEtO|
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HA 22 YIdo|=E52dH --wrapping-keys T2FOIE{2] key M4 S AFE35t0q &
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\\ Replace the example key ARN with a valid value
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .
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Java

O| of M= AWS Encryption SDK for Java2| & 1.7.x 0|4 HTE ALE35lE ofZEE|FH0|Me] 2=
£ LIePHLICH ™A of M= DiscoveryDecryptionExample.javag & X 35HAM 2.

5352 Qe ¥4 R oM OtAE 7| B2XHE QIAEASSHZ| 2/8l o] HAoHE
Builder.buildStrict() HIMEE A+%°*LIE+ =) {3t AM 2EoM otAEH 7|
S2ZRE CIARHASEY| QIHME Builder.buildDiscovery() HAMEES AFSELICH.
Builder.buildDiscovery() HME= X|IHE AWS THE|M 2 HZH AWS KMS keys 0| AHE
AWS Encryption SDK 2 M|$tDiscoveryFilterst=& AFS & LICEH

s
Z3E

// Create a master key provider in strict mode for encrypting
// Replace the example alias ARN with a valid one from your AWS ##.
String awsKmsKey = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias";

KmsMasterKeyProvider encryptingKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Create a master key provider in discovery mode for decrypting

// Replace the example account IDs with valid values.

DiscoveryFilter accounts = new DiscoveryFilter("aws", Arrays.aslList("111122223333",
"'444455556666"));

KmsMasterKeyProvider decryptingKeyProvider = KmsMasterKeyProvider.builder()
.buildDiscovery(accounts);
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https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/
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Python

0| of| M= AWS Encryption SDK for Python 2| T 1.7.x O|& HHE AL 5l= ol Z2l7io|Mel 2
EE LtErHLICEH ™A o|Al= discovery_kms_provider.pyE & X 35HAML.

ASSE et YA 2™ OtAH 7| SZRHE HA5H7| f/sH o] oAM=
StrictAwsKmsMasterKeyProvider& A& LICH =53 E @2t AM ZEo|M OtAH 7| 3
ZAHE MME7| I XIHE AWS THE|M 2 A AWS KMS keys HIME AWS Encryption SDK
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Ct.

# Create a master key provider in strict mode

# Replace the example key ARN and alias ARNs with valid values from your AWS ##.
key_1 = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

key_2 = "arn:aws:kms:us-
west-2:444455556666:key/la2b3c4d-5e6f-1a2b-3c4d-5e6f1la2b3c4d"

aws_kms_master_key_provider = StrictAwsKmsMastexrKeyProvider(
key_ids=[key_1, key_2]

# Create a master key provider in discovery mode for decrypting
# Replace the example account IDs with valid values
accounts = DiscoveryFilter(
partition="aws",
account_ids=["111122223333", "444455556666"]
)
aws_kms_master_key_provider = DiscoveryAwsKmsMasterKeyProvidexr(
discovery_filter=accounts

AWS Encryption CLI

O of &0l A= AWS Encryption CLI HHT1 1.7.x O|&f 2 ALE35to] 53t 2 |5 35t6t= YHE
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https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py
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AMO

HE Z202t RE8LICH discovery-partition 2! discovery-account £42 &7 AIE
atof 5t & CF HSo 2= REHK| pi&Lch

\\ Replace the example key ARN with a valid value
$ keyAlias=arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyAlias \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext
\\ Replace the example account IDs with valid values
$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666 \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--output .

AWS KMS 7|2 d-|o|E

O] AWS KMS 7|3 AWS Encryption SDK for C, AWS Encryption SDK for NET & AWS Encryption
SDK for JavaScript= &3t L 553} Al 2iE 7|18 X|IHE = = x| 2H A E MBS et
AWS KMS M 7|28 ddste 32 HAMoE HEsHMIR.
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=X Lol E”,

OHZc|7o|Mof CHE ot 242 Z =T} g £ USLICE o]l HAoHE OIF ME(EIE)(us-west-2)
ZIZ1o| 2HE F|0F AF2E £ /= AWS KMS Z|T A 7|2l MAIgtL|Ct o] o|AMlE 1.7.x 0| AWS
Encryption SDK 2| I EE LIEFHLICH 3HX|EH 1.7.x Ol HEO|MHE 04™3| S E&LICH

C

struct aws_cryptosdk_keyring *kms_regional_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder ()
.WithKmsClient(create_kms_client(Aws: :Region::US_WEST_2)).BuildDiscovery());

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser({ clientProvider, discovery })
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JavaScript Node.js

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({ clientProvider, discovery })

HM 1.7 x5 2E AM 7|2l0] AWS KMS AM ZEE £ U&LICH o] ZM LE{=7l 5%
sloi AF2& AWS Encryption SDK = AWS KMS keys ME OE[M U AHHEHe| 2 AIsHgLCt.
O| ZEE AI83517| ol 2Rt A nE[ME HAS T oM H/H IDE |R&F8 W22 HIRAME.

C

A oAM= kms_discovery.cppE & E5HAIL.

std: :shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter(
KmsKeyring::DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.AddAccount("444455556666")
.Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
ws: :Cryptosdk: :KmsKeyring: :Buildex ()

WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery(discovery_filter))

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {

discovery,
discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:

'aws' }

1)

JavaScript Node.js

A olAl= kms_filtered_discovery.ts& & ZSHM L.
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AWS Encryption SDK JHEER} 70| =

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)

const keyring = new KmsKeyringNode({
clientProvider,

discovery,
discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:

'aws' }

7| HB 2 M85t 5 5tE HIOIE7t 84 S et HHAER 55 5HELICH HE 1.7.x82E0| 2
ot £ 42 NMIs5t7| flse 7| Aot & M €1 2[& ME =S AWS Encryption SDK A& & LTt

7|
COIEE &=3tetn S55+E M 7| HU AIS {2 E ZHstE{H HU H2 9 dHE M FLICH
7| HB S E HIO|EE Y3 35t5t 5556t 40| AWS Encryption SDK 28 Ab2| JL|C,

7] EH MHEH2 |41 1.x HH0| A BT AWS Encryption SDK 2.0.x O|& 22 oto|1el|o|Mst= Ot

M EZ2MAS F HH HAHM 528 FELICH HS g MH5tD HEs Foil= of
Zc|7lo|ldg Z2EM 2t Zof B St 7| ol HX{stAH HIAESHoF & LICH Oto|zsol4 X|&2 ot
O|za|o|M 2! Hi E ¥ AWS Encryption SDK AIME & X 5HM|2.

2.0.x O|& O 7HB! E& MHol|= Crta0t 22 M 71X &8 240] Q&L =& 1.x HH
(1.7x HHHEE{)0ol| A= ForbidEncryptAllowDecrypt Bt S &HL|CH

ncryption SDK &= gi&LICH &

m

« ForbidEncryptAllowDecrypt -& 7| HUSZE &S 358 AWS
SEl AIO|HEIAEE 7| Y AL 02 2 ZH7|gi0| 5

ok

Z|4 1 x HHO|M Ol RYUSHH &8 2tLICt O|E &3l 7| AN E S535tE &H|7| 2tT6]
2t2E|7| HK|= 7| AU R ¥ E 35K L E ELICH O] 2t BAMo=E 5t H 2.0.x O[4
HHMe 2 fado|l=g mf #HE! *—.OI XSS Z require-encrypt-require-decrypt® #HE3
El= R UX[E = UASLICH T, BAHXMo = 7S FAE oto|ao|ME = JU&LCh

r>

« RequireEncryptAllowDecrypt -= AWS Encryption SDK &4 7| 7SI 2 &t S35ttt &%
StE AIO|HEIAEE 7| 7 ALE 02 2 ZHAH|Q10| S 535 = JU&LICH 0] 2t2 BT 2.0.x0 =

==

7tEIR& LICH

« RequireEncryptRequireDecrypt -= AWS Encryption SDK &4 7| -I Sle2 ¢
LICt of 2t2 BT 2.0.x01 FIHE|{&LICE. Ol BT 2.0.x O|& 0l M 7|2 gt L.

HA —
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Z A x HHOM FU5HAH &8 HAU H™ ZL2 ForbidEncryptAllowDecrypt &L
Ct 2.0.x O|& HESE DFOIILEﬂOl.*_:'?_ Z ZHI7} e 02 AHO HHE EAxo = H
ag = JaLch 7| 75! gio] 23 3HE HIAIX|7 gl Z[ol & lx|7| Tol= 70! HAS
Requ1reEncryptRequ1reDecrypt§ UO[o|E5tK| OFM| L.

S dldlE 24 1.x HE & 2.0.x O HHTOIM S HAE HYst= S E EodELICH 7|2 &
2eiY dodof| et ek &L

oro|zz2llo|Mof CHal RtAIG| Y otE 7|

AWS Encryption SDK for Java AWS Encryption SDK for PythonZ! AWS ¢f £ 3} CLIS| B0l OtA

B 7| 32 Xto]| 2t A ALEof| CHSH 2ol & LICthe section called “AWS KMS OFAE] 7| 32X
HOIE”.

AWS Encryption SDK for C 22| Z< 9| 7|2loi| CiEt ME%] 4O|0|E0f| CHEH AWS Encryption SDK
for JavaScript2 Ot &= LICFAWS KMS 7|2 4H[0|E.

719! B MBS O ALSSHE Wi 2 olof 2H0icH 3 CHELICH O oMol ME B &t
o WS OB LICH HI HAS WSty | Fof 0Ho| T2 01M I HHE Weiol M CHEHA T2 WAIS
HESML

H™ 1.7 x5 E aws cryptosdk_session_set_commitment policy & =& AWS Encryption
SDK for CAF&35t04 &t 535} 3t Mol S HAg DL dEet A HA2 s Al
F

=z
MM ZEE RE 453 = 3t 2ol MEELCH

Jo Ji

wo )||

aws_cryptosdk_session_new_from_keyring &
aws_cryptosdk_session_new_from_cmm &£ B 1.7.x01A O
Old AHEEIX| efomd HH 2.0.x0 M M7HEIR}&LICH Ol2det &= Al
Mg vtetstE aws_cryptosdk_session_new_from_keyring_2 &
aws_cryptosdk_session_new_from_cmm_2 &= CHA|ELICH

N

Z| & 1.x 0| M aws_cryptosdk_session_new_from_keyring_
2! aws_cryptosdk_session_new_from_cmm_2Z A28 B2
COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT B! M™ Zf& Al &35}04

aws cryptosdk_se551on set_commitment_policy &+& S &5l 0k &LICH 2.0.x O|&F H
HMo| B O| 8 2&stes W2 ME AE0|H &8 22 ZF AFSE LT 2.0.x 0|4 HZHQ

7|2 78! 22 COMMITMENT _POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPTJLICE.
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Al .

M| of & 2 24H™ string.cppE B XE

o

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Create an AWS KMS keyring */

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;
struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* Create an encrypt session with a CommitmentPolicy setting */
struct aws_cryptosdk_session *encrypt_session =
aws_cryptosdk_session_new_from_keyring_2(
alloc, AWS_CRYPTOSDK_ENCRYPT, kms_keyring);

aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(encrypt_session,
COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

/* Encrypt your data */

size_t plaintext_consumed_output;

aws_cryptosdk_session_process(encrypt_session,
ciphertext_output,
ciphertext_buf_sz_output,
ciphertext_len_output,
plaintext_input,
plaintext_len_input,
&plaintext_consumed_output)

/* Create a decrypt session with a CommitmentPolicy setting */

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);
struct aws_cryptosdk_session *decrypt_session =
*aws_cryptosdk_session_new_from_keyring_2(
alloc, AWS_CRYPTOSDK_DECRYPT, kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(decrypt_session,
COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);
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https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp
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/* Decrypt your ciphertext */

size_t ciphertext_consumed_output;

aws_cryptosdk_session_process(decxrypt_session,
plaintext_output,
plaintext_buf_sz_output,
plaintext_len_output,
ciphertext_input,
ciphertext_len_input,
&ciphertext_consumed_output)

C#/ .NET

require-encrypt-require-decrypt Zt2 AWS Encryption SDK for .NET2| 2
= HTH0AM 7|2 70! EAULICH 2H MHE BAMo=E dHE &= UX|EH EH
Abgt2 oblL|ct 2Lt AWS Encryption SDK for NET2 AF&35t0d 7| {59! AWS
Encryption SDK 810[|2| Ct& 210 3o Z A S SHEI AO|HEIAEE iS5t &
< 71 M 7t 2 REQUIRE_ENCRYPT_ALLOW_DECRYPT == 2 #Z5H0k &L
CHFORBID_ENCRYPT_ALLOW_DECRYPT. O 24X| &t ™ AIO|HEIAE 5353 A= 7 AuiFict.

AWS Encryption SDK for .NETO|A{Q| QIAE A0 748! HAMM & MHEL|CH AWS Encryption SDK.
CommitmentPolicy I}2tO|E{E AF23104 AwsEncryptionSdkConfig ZH&|E QUAEASIS
o 74 U E AHE 3504 AWS Encryption SDK QIAEIAE MM3tLICH O™ CHS FMHE AWS
Encryption SDK QIAEAO| Encrypt() X Decrypt() HMEE & LICtH

O] ofloi = 748! HAHE require-encrypt-allow-decrypt2 AAELICH

// Instantiate the material providers
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig

{
CommitmentPolicy = CommitmentPolicy.REQUIRE_ENCRYPT_ALLOW_DECRYPT

};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

var encryptionContext = new Dictionary<string, string>()
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{

{"purpose", "test"}encryptionSdk

};

var createKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

var keyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

EncryptionContext = encryptionContext
};

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

// Decrypt your ciphertext
var decryptInput = new DecryptInput

{
Ciphertext = ciphertext,

Keyring = keyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

AWS & 53} CLIOIAM 8! HA g MXStEd™H --commitment-policy ItEO|EIE AFSEFLICEH
o| mlztOlEE A 1.8.x0 EUE|A&LICE.

Z A1 .x HHO| B --encrypt £E --decrypt BHOIA - -wrapping-keys T}ZO|E{E A
88 M= forbid-encrypt-allow-decrypt 20| Q= --commitment-policy Zt2tO|E{7}
ZIQgtLic aX| $2™ --commitment-policy ItEtO|E{7F R &K of A ElLICH

2.1.x L 0|4 H™O|AM = --commitment-policy Tt2tOIE{ 7} MEH ALEHO|H 7| 7! g0 &=
StEl ALO|HEIAEE A 3356t 7Lt £ 5356HK| &= require-encrypt-require-decrypt &t

ol 7= zteILict. 3HX|EH R &| BE| U X HH| TR0 TS DE 455 3 =55 SS0HM
7|0l MRS Ao 2 MEst= Zd0| E&LCH
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ol oflofl e 745! HAS MEIsfLict 3 1.8.x HMEE] --master-keys L2ZHO|E{E CHA|sHE
--wrapping-keys I2tOEAE AR LICH AFMIEH LEE 2 the section called “AWS KMS OFAE
7| 22 A UH|I0|E’E HXSIMIL. ™A o|Me AWS €53 CLIC| of MME B ESHAML.

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data - no change to algorithm suite used

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--commitment-policy forbid-encrypt-allow-decrypt \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext - supports key commitment on 1.7 and later

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--commitment-policy forbid-encrypt-allow-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \

--output .
Java
{7 1.7 x5 E{ AWS Encryption SDK Z2}0|21EE LIEHHE X AwsCryptoRlQ| QIAEIAO] 7
2 HAEZ AWS Encryption SDK for Javadd & efL|Ct O] 7S H& M2 ST Z2I0|MEHM =
EE DE 4535 2 553 2ol M ELICH

AwsCrypto() MEAt=9| |4 1.x HX|AM = O 0|4 AFE E|X| AWS Encryption

SDK for Java &t & 2.0.x0|MHE M7HELICH A Builder EciA,
Builder.withCommitmentPolicy() HIME, CommitmentPolicy €7 R Z Chx|E L
Ct.

Z[411.x H™ Q| Builder 2240 = Builder . .withCommitmentPolicy () HAME
@} CommitmentPolicy.ForbidEncryptAllowDecrypt QI=7F HBFLICH 2.0.x
™S E Builder.withCommitmentPolicy() HIMEE MEd AFEO|T 7|2

CommitmentPolicy.RequireEncryptRequireDecrypt®lL|C}.

A o|dl= SetCommitmentPolicyExample.javaZ® & Z35HM 2.
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// Instantiate the client
final AwsCrypto crypto = AwsCrypto.buildexr()

.withCommitmentPolicy(CommitmentPolicy.ForbidEncxryptAllowDecrypt)
.build();

// Create a master key provider in strict mode
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Encrypt your plaintext data
CryptoResult<byte[], KmsMasterKey> encryptResult
masterKeyProvider,
sourcePlaintext,
encryptionContext);
byte[] ciphertext = encryptResult.getResult();

crypto.encryptData(

// Decrypt your ciphertext

CryptoResult<byte[], KmsMasterKey> decryptResult = crypto.decryptData(
masterKeyProvider,
ciphertext);

byte[] decrypted = decryptResult.getResult();

JavaScript
A 1.7 x2E AWS Encryption SDK 2ZI0|HE & QAEASIS= M buildClient &+E =
£ m AU HME M E AWS Encryption SDK for Ja vaScrlpt—r A&LICH buildClient &%
= AU HAME LI = GHY 22 A SFLICH 2335t A 5535t Al 70! S HE5t= A
O|EE encrypt L decrypt &£ BHEHEFLICH

Z| M 1. x HAOME buildClient &0
CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT Ql47}
ZIQBrL|CH 2.0.x HHEE| 75! HA Q= MEH ALE 0|1 7|22

T = — HA -

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT®ILIC}.

ol xt2
=0]
o=

[ut
—
AL

WS MYste{H HHE

CH.

ol

Eli]
[ls]

o x
(S}
=

RotCte M2 X 2l5tH Node.js ZELQF HEFR X

T o

F

r|r —'—
ok J

o |r

CHS oMol A E AWS KMS 7|21 AL&5tod C|0|E{E 23 & 8tLIct Af buildClient B4 E 7
0! Z2HS FORBID_ENCRYPT_ALLOW_DECRYPTZ MH3IH Ol Z|Al 1.x H{E Q| 7|£ZLL]CH.
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buildClientOoAM EtetE|E 2O O|=E encrypt & decrypt &+ AFS K7 M&st 7{G]

Mg ML

import { buildClient } from '@aws-crypto/client-node'
const { encrypt, decrypt } =
buildClient(CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

// Create an AWS KMS keyring
const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias'

const keylIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"' ]
const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

// Encrypt your plaintext data
const { ciphertext } = await encrypt(keyring, plaintext, { encryptionContext:
context })

// Decrypt your ciphertext
const { decrypted, messageHeader } = await decrypt(keyring, ciphertext)

Python

™ 1.7 x5 E{ AWS Encryption SDK 22I0|HEE LIEILHE M Z&|EncryptionSDKClient !
O| QIAEAAO] 743! =S AWS Encryption SDK for Python & L|CH M 7{0! H=2 S

Z22I0|HE QIABAE MB5t= ZE encrypt 2 decrypt ZE0| M ELICH,

& 1.x Q| EncryptionSDKClient &A=
CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT ¥7HE 2t
O HRELICH 2.0x HTRH 7 HA il MEY AL Ol 7|24t2
(o]
=

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT |L|C}.
Of of&Aloi M= M EncryptionSDKClient MMXIE AFE5tT HU HAME 1.7.x 7|28
2 M™gLIch MAXHE AWS Encryption SDKE LIEHE Z2I0|HEE QIAEASIEL

Ct. o] 22+0|2E0|M encrypt, decrypt EEE stream HIMEE S &5H M s 7{4!
Aol M ELch E8to| dAMoME EE3t L =555t AWS KMS keys Al7|E X
StrictAwsKmsMasterKeyProvider Z2i4A 0| A MMXIE AFSELICH

0
9'|_l
rir

A oAM= set_commitment.pyE HZXSIMIL.

# Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_AL
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// Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

# Encrypt your plaintext data

ciphertext, encrypt_header = client.encrypt(
source=source_plaintext,
encryption_context=encryption_context,
master_key_provider=aws_kms_strict_master_key_provider

# Decrypt your ciphertext

decrypted, decrypt_header = client.decxypt(
source=ciphertext,
master_key_provider=aws_kms_strict_master_key_provider

Rust

require-encrypt-require-decrypt Zt2 AWS Encryption SDK for Rustl| 2 & HZT0{AM 7|
= U HAQULICH 2 At ZE BA[Mo 2 MHE = UK E AFE2 ofHL(C aeqLt AWS
Encryption SDK for RustE AF&3t0{ 7| 743! AWS Encryption SDK 810|2| CHE @10 3o =2 ¢f
SSHEl MO|HEIAEE Sl|Sdtes A< 713! A 212 REQUIRE_ENCRYPT_ALLOW_DECRYPT &£
= 2 475l ok BL|CHFORBID_ENCRYPT_ALLOW_DECRYPT. 12{X| oo™ AO|HEAE £5 35|
A7t AufEhLCt,

AWS Encryption SDK for Rustoi|A{2| @IAE A 0] 75! H2 S T LICH AWS Encryption SDK.
comitment_policy It2tO/E{E AF&3t04 AwsEncryptionSdkConfig ZHA|E QIARASIS
0 T A E AH8 3504 AWS Encryption SDK QIAEAE HMBHLICH O™ ChE FA4E AWS
Encryption SDK RIAEIAO| Encrypt() & Decrypt() HMEE ZE&LICEH

O] ofloi = 745! HAHE forbid-encrypt-allow-decryptE A& gL|Ct.

// Configure the commitment policy on the AWS Encryption SDK instance

let esdk_config = AwsEncryptionSdkConfig::buildexr()
.commitment_policy(ForbidEncryptAllowDecrypt)
.build()?;

let esdk_client = esdk_client::Client::from_conf(esdk_config)?;
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// Create an AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(kms_keyring.clone())
.encryption_context(encryption_context.clone())
.send()
.await?;

// Decrypt your ciphertext
let decryption_response = esdk_client.decrypt()
.ciphertext(ciphertext)
.keyring(kms_keyring)
// Provide the encryption context that was supplied to the encrypt method
.encryption_context(encryption_context)
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Go

.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
commitPolicyForbidEncryptAllowDecrypt :=
mpltypes.ESDKCommitmentPolicyForbidEncryptAllowDecrypt
encryptionClient, err :=
client.NewClient(esdktypes.AwsEncryptionSdkConfig{CommitmentPolicy:
&commitPolicyForbidEncryptAllowDecrypt})
if err !'= nil {
panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

)
// Optional: Create an encryption context
encryptionContext := map[string]lstring{
"encryption": "context",
"is not": "secret",
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"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create an AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: kmsKeyId,
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)

// Encrypt your plaintext data
res, err := forbidEncryptClient.Encrypt(context.Background(),
esdktypes.EncryptInput{

Plaintext: [1byte(exampleText),
EncryptionContext: encryptionContext,
Keyring: awsKmsKeyring,

1))

if err != nil {
panic(err)

}

// Decrypt your ciphertext
decryptOutput, err := forbidEncryptClient.Decrypt(context.Background(),
esdktypes.DecryptInput{
Ciphertext: res.Ciphertext,
EncryptionContext: encryptionContext,
Keyring: awsKmsKeyring,
b
if err !'= nil {
panic(err)
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JHEER}E 710l =
Field Z0|(HtO|E)
Signature 4 0| 2HIO|E 0] X|HE ZH(AME Lot S
Ugtct.
ME Zo|
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AWS Encryption SDK

JHeER 7Hol=

zod »2|E Slo|H(HIAIX| =

80
data)
0378
6E7COFBD 4DF4A999 717C22A2 DDFE1A27
008E
0004
0005
30746869 73
0002
6973
0003
31616E
000A
656E6372 79774690 6F6E
0008
32636F6E 74657874
0007
6578616D 706C65
0015
6177732D 63727970 746F2D70 75626C69
public-key")
632D6B65 79
0044
416A4173 7569326F 7430364C 4B77715A

58444A6E 552F4171 63327644 2B304F6B
704F5A31 63633854 67327164 37727335
614C5467 376C7666 5545572F 38362B2F
35773D3D
0002
0007

(7)
6177732D 6B6D73
kms™)

~

—

1)

ChE olXlE HIAIR] ZEA HA 10 =i 2|2 ololE{of cHeF HIAIX]

Version (1.0)
Type (128, customer authenticated encrypted

Alg EoiELich

Algorithm ID (see #### ##)
Message ID (random
Length (142)

AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD

Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value

Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair

128-bit value)

Count (4)

1,
1,
1,
1,
2,
2,
2,
2,
3,
3,
3,
3,
4,
4,

AAD Key-Value Pair 4,
AAD Key-Value Pair 4, Value
("AjAsui2ot@6LKwgzZXDInU/Aqc2vD+@0kp0Z1cc8Tg2qd7rs5aLTg71vfUEW/86+/5w=="")

Key Length (5)
Key ("@This")
Value Length (2)
Value ("is")

Key Length (3)
Key ("1lan")

Value Length (10)
Value ("encryption")
Key Length (8)
Key ("2context")
Value Length (7)
Value ("example")
Key Length (21)
Key ("aws-crypto-

Value Length (68)

EncryptedDataKeyCount (2)
Encrypted Data Key 1, Key Provider ID Length

Encrypted Data Key 1, Key Provider ID ("aws-

Z2f| Y ME2IE Clo[E(HAIX] F4| T 1)
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JHeER 7Hol=

004B
Information Length (75)
61726E3A 6177733A 6B6D733A

Information ("arn:aws:kms:

a755-138a6d9alle6")
6573742D 323A3131 31313232
33333A6B 65792F37 31356330
35383235 2D343234 352D6137
33386136 64396131 316536
00A7

Length (167)
01010200 7857A1C1
956C4702 23DCE8D7
02A4EF29 7F000000
86F70D01 Q0706A06F
092A8648 86F70D01
48016503 04012E30
7A12EB19 8BF2D802
A5474FBC 392360B5
A6BD7332 6BF86DAB
4707E356 ADA3735A
9F224BF9 E67E87
0007

(7)
6177732D
kms™)
004E

Information Length (78)
61726E3A 6177733A 6B6D733A

F7370545
16C59679
7E307C06
306D0201
0701301E
11040C3F
01108038
CB9997E0
60D8CCB8
7C52D778

6B6D73

Information ("arn:aws:kms:

be3435b423ff")
656E7472 616C2D31
32333333 333A6B65
34622D61 6663632D
372D6265 33343335
00A7

Length (167)
01010200 78FAFFFB
QE57BD87 3F6QF4E6
AF787150 69000000
86F70D01 Q0706A06F
092A8648 86F70D01
48016503 Q4012E30
D218B674 5BBC6102

3A313131
792F3962
34366138
62343233

DEDE@6AF
FD196144
7E307C06
306D0201
0701301E
11040C36
01108038

Encrypted

75732D77 Encrypted

Data Key 1, Key Provider

Data Key 1, Key Provider

us-west-2:111122223333:key/715c0818-5825-4245-

32323333
3831382D
35352D31

Encrypted

4LECA7C83
973E3CED
092A8648
00306806
06096086
F02C897B
24003D1F
6A17DE4C
8295DBE9S
B3135A47

Encrypted

Encrypted

Encrypted

Encrypted

63612D63 Encrypted

ca-central-1:111122223333:

31323232
31336361
2D616134
6666
Encrypted

AC72F79B
5A002C94
092A8648
00306806
06096086
CD985E12
0320E3CD

Encrypted

Data Key 1, Encrypted Data Key

Data Key 1, Encrypted Data Key

Data Key 2, Key Provider ID Length

Data Key 2, Key Provider ID ("aws-
Data Key 2, Key Provider

Data Key 2, Key Provider
key/9bl3casb-afcc-46a8-aas47-

Data Key 2, Encrypted Data Key

Data Key 2, Encrypted Data Key

Z2f| Y ME2IE Clo[E(HAIX] F4| T 1)
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E470AA27 DEAB660B 3EQCESEQ 8B1A89E4
57DCC69B AAB1294F 21202C01 SA50D323
72EBAAFD E24E3ED8 7168EQFA DB40Q508F
556FBD58 9E621C

02 Content Type (2, framed data)
00000000 Reserved

ocC IV Length (12)

00000100 Frame Length (256)

4ECBD5CO 9899CA65 923D2347 IV

0B896144 QCA27950 CA571201 4DA58029 Authentication Tag

Fem - +

| Body |

Fem - +

00000001 Frame 1, Sequence Number (1)
6BD3FE9C ADBCB213 5B89SESF1 Frame 1, IV

1F6471EQ@ AS51AF310 1QFA9EF6 FOC76EDF Frame 1, Encrypted Content

F5AFA33C 7D2E8C6C 9C5D5175 A212AF8E
FBDSA@C3 C6E3FB59 C125DBF2 89AC7939
BDEE43A8 OF0OQF49E ACBBD8B2 1C785089
A90DB923 699A1495 (C3B31B50 0A48A830
201E3AD9 1EA6DAl4 7F6496DB 6BCl04A4
DEB7F372 375ECB28 9BF84B6D 2863889F
CB80A167 9C361C4B S5ECQ7438 7A4822B4
A7DSD2CC 5150D414 AF75F509 FCE118BD
6D1E798B AEBA4CDB ADQ@OQSESF 1A571B77
0041BC78 3E5F2F41 8AF157FD 461E959A
BB732F27 D83DC36D CCOEBCO5 00D87803
57F2BB80 066971C2 DEEAQ62F 4F36255D
E866C042 E1382369 12E9926B BA4QE2FC
A820055F FB47E428 41876F14 3B6261D9
5262DB34 59F5D37E 76E46522 E8213640

Q4EE3CC5 379732B5 F56751FA 8ES5F26AD Frame 1, Authentication Tag
00000002 Frame 2, Sequence Number (2)
F1140984 FF25F943 959BES14 Frame 2, IV

216C7C6A 2234F395 F@D2D9B9 304670BF Frame 2, Encrypted Content

Al042608 8A8BCB3F B58CF384 D72EC004
A41455B4 9A78BACS 36ES54E68 2709B7BD
A884C1E1 705FF696 E540D297 446A8285
23DFEE28 E74B225A 732F2C0C 27C6BDA2
7597C901 65EF3502 546575D4 6D5EBF22
1FF787AB 2E38FD77 125D129C 43D44B96
778D7CEE 3C36625F FF3A985C 76F7D320
ED70B1F3 79729B47 E7D9B5FC 02FCESF5
C8760D55 7779520A 81D54F9B EC45219D

oY x2lE CIO[E|(HAIX] HA] HA 1) art
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JHeER 7Hol=

95941F7E
AC65B6EF
2A57F1FD
DF1172C2
3B16F868
FECDC4A4
A61FQA3B
FFFFFFFF
00000003
35F74F11
0000008E
F7A53D37
B965AD1F
BA9FA7C4
88859500
4ALE52A3
3A043180
CO51AD55
6ADCO17D
B66B6ASA
811234FD

0066

30640230
639AED00O
758B309F
5208B133
3C6A7D5E
7E06808D
A13762FF

5CBAEACS
08262D74
E7060503
FA63CF54
1BBC5E4D
8577F08B
A3E45A84

25410F01

2F467237
A910AAS5SF
B25AF82E
7096FABB
8E41484D
DF25E5C5
A437F6BC
BA41CDA4
80FDB433
8D589683
+

+

085C1D3C
F7624854
5EFD9D5D
02301DF7
4F8B894E
OFE79002
844D

CEC13B62 1464757D
44670624 A3657F7F
AC37E197 2F297A84
E6E2B9B6 A86F582B
0B6919B3 08D5ABCF
99D766A1 E5545670

4D151493 63ECA38F Frame 2, Authentication Tag
Final Frame, Sequence Number End
Final Frame, Sequence Number (3)
DDOEQ4BF Final Frame, IV
Final Frame, Encrypted Content Length (142)
6FBDOB57 D1DFE830 Final Frame, Encrypted Content
SEFFFFF4 BC7D431C

64A04E3A A0915526
3ACAD32A 75CFEDOC
270B7A0F ED61810C
3676E449 0986557F
139E9E55 6199FD60
CO9F17A83 3823F9EC
8A48D6A4 21CB

51F6F39A 040B3E3B Final Frame, Authentication Tag
Signature Length (102)

63424E15 B2244448 Signature

F8CF2203 D7198A28

2EQ7ADOB 467B8317
2DFC877A 66838028
83D98E7C E350F424
E24422B9 98A0D130

Z 3| %{2|E o o|E{(HIAIX| &4l HH 2)

CHS odlMlE HIAIX] &AL B E

02
0578

29| =g %2|E ClolEof CiEh HIAIX| @Al2 Eo{ELICH

Version (2.0)
Algorithm ID (see Algorithms reference)

122747eb 21dfe39b 38631c61 7fad7340

Z2f| Y ME2IE Slo[E(HAIX] S4| HH 2)
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cc621a30 32allcc3 216d0204 fd148459
008e

0004

0005

30546869 73

0002

6973

0003

31616e

000a

656e6372 79707469 6f6e

0008

32636f6e 74657874

0007

6578616d 706c65

0015

6177732d 63727970 746f2d70 75626c69
public-key")

632d6b65 79

0044

41746733 72703845 41345161 36706669

Message ID (random
AAD Length (142)

AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair
AAD Key-Value Pair

AAD Key-Value Pair
AAD Key-Value Pair

256-bit value)

Count (4)

1, Key Length (5)

1, Key ("@This™")

1, Value Length (2)

1, Value ("is")

2, Key Length (3)

2, Key ("lan")

2, Value Length (10)

2, Value ("encryption")
3, Key Length (8)

3, Key ("2context")

3, Value Length (7)

3, Value ("example")
4, Key Length (21)
4, Key ("aws-crypto-

4, Value Length (68)
4, Value

("QXRnM3JwOEVBNFFhNnBmaTk3MULTNTk3NHpOMn1ZWE5vSmtwRHFPc@dIYkVaVDRGMES0M1FKRStmbTFVY@1WdThnPTO=

39373149 53353937 347a4e32 7959584e
6T4abb70 44714f73 47486245 5a54346a
30Q4e4e32 5164452b 666d3155 634d5675
38673d3d
0001
0007
(7)
6177732d 6b6d73
kms™")
004b
Information Length (75)
61726e3a 6177733a 6b6d733a 75732d77

Encrypted Data Key
Encrypted Data Key

Encrypted Data Key

Encrypted Data Key

Encrypted Data Key

Count (1)
1, Key Provider ID Length

1, Key Provider ID ("aws-

1, Key Provider

1, Key

Provider Information ("arn:aws:kms:us-west-2:658956600833:key/b3537efl-

d8dc-4780-9f5a-55776cbb2f7f")

6573742d 32323635
33333a6b 6579262
64386463 2d343738
35373736 63626232
00a7
Length (167)

01010100 7840f38c
29515057 1964ada3

38393536 36303038
33353337 6566312d
302d3966 35612d35
663766

275e3109 7416c107
eflc2le9 4c8badbd

Encrypted Data Key 1, Encrypted Data Key

Encrypted Data Key 1, Encrypted Data Key

Z2f| Y ME2IE Slo[E(HAIX] S4| HH 2)
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JHeER 7Hol=

bc9dafb4
86f70d01
09228648
48016503
06063803
413196d2
eQ0ee216
ba62e9e4
cc9ee5cH
02

00001000
05cd@35b
634f7b2c
76cb339f

fEffffff
00000001
00000000
00000009
fabe39c6
f683a564

0067

30650230
ade70b3f
967d91d8
869cade2
e5054803
074217ea
3657e2b0

=3 &2 x| &2 ol ofE{(H AlX]

CHS oo = Z8Y

14000000
0706a06°f
86f70d01
04012e30
8460802
903bf1d7
74ecl349
f2ac8df6
7203bb

29d5499d
c3df2aa9
2536741f

00000000

02927399
405d68db

+

+

2ale47ad
2a2bc3b8
42d92baf
023100aa
110c9ed8
3b@1b660
9368hbd

7e307c06
306d0201
0701301e
11040c39
0110803b
3ed98fc8
12777577
bcb1758f

4587570b
88210105
59al1c202

00000001

3e
eeb0@656¢c

98867925
50eb9lef
357bba48
ael2desf
11b2e08a
534ac921

09228648
00306806
06096086
32d75294
2a46bc23
a94ac6ed
7fa@52a5
2ce@fb21

87502afe
4a2c7687
4f2594ab

d57c9eb0

cl712e8f
56cfdd18
f636c7a0
8a0afe85
c4a052a9
bf@91d12

Content Type (2, framed data)

Frame

Length (4096)

Algorithm Suite Data (key commitment)

Authentication Tag

Final
Final
Final
Final
Final
Final

Frame, Sequence Number End

Frame, Sequence Number (1)

Frame, IV

Frame, Encrypted Content Length (9)
Frame, Encrypted Content

Frame, Authentication Tag

Signature Length (103)

Signature
AT 1)

| ME|Z|x| &f 2 Ci|ol|Efoi| CHEF HIAIX] SAlE EoiE LI

Ze Y MeEl=l x|

o2 dllo[E(HIAIX] 4] BT 1)

474



AWS Encryption SDK
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® Note

st Ze| MEIE HIoIEE AL

StH2. = BlI7HAl S 28 =8| MEIZIX| &2 o]

E{€ AWS Encryption SDK K| EfLICt o LT o 72342 047‘* | =2l ME[=|X| ef2 At

O|T{=lAE & AAIE AWS Encryption SDK 4 UZLICH X|2Els 2E o] 28 zayl
*EIE AO|HEAE 9 ZE|Q XEIE/X| 2 AO|IHHMAES 2558 £ YALICH

| Header |

Fem - +

01 Version (1.0)

80 Type (128, customer authenticated encrypted
data)

0378 Algorithm ID (see #### ##)

B8929B01 753D4A45 C@217F39 404F70QFF Message ID (random 128-bit value)

008E AAD Length (142)

0004 AAD Key-Value Pair Count (4)

0005 AAD Key-Value Pair 1, Key Length (5)
30746869 73 AAD Key-Value Pair 1, Key ("QThis")
0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")

0003 AAD Key-Value Pair 2, Key Length (3)
31616E AAD Key-Value Pair 2, Key ("lan")

000A AAD Key-Value Pair 2, Value Length (10)
656E6372 79774690 6F6E AAD Key-Value Pair 2, Value ("encryption")
0008 AAD Key-Value Pair 3, Key Length (8)
32636F6E 74657874 AAD Key-Value Pair 3, Key ("2context")
0007 AAD Key-Value Pair 3, Value Length (7)
6578616D 706C65 AAD Key-Value Pair 3, Value ("example")
0015 AAD Key-Value Pair 4, Key Length (21)
6177732D 63727970 746F2D70 75626C69 AAD Key-Value Pair 4, Key ("aws-crypto-
public-key")

632D6B65 79

0044 AAD Key-Value Pair 4, Value Length (68)
41734738 67473949 6E4C5075 3136594B AAD Key-Value Pair 4, Value

("AsG89gGOINLPul6YK1qXTOD+nykG8YqHAhgecj8aXfD2e5B4gtVE73dZkyC1A+TAMOQ==")

6C715854
68716563
74564537
4F513D3D
0002

4F442B6E 796B4738 59714841
6A386158 66443265 35423467
33645A6B 79436C41 2B72414D

Encrypted Data Key Count (2)

Ze Y MeEl=l x|

o2 dllo[E(HIAIX] 4] BT 1) 475
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0007
(7)
6177732D 6B6D73
kms™)
004B

Encrypted

Encrypted

Encrypted

Information Length (75)

61726E3A 6177733A

Information ("arn:aws:kms:

6B6D733A 75732D77 Encrypted

a755-138a6d9alleb")

6573742D 323A3131
33333A6B 65792F37
35383235 2D343234
33386136 64396131
00A7

Length (167)
01010200 7857A1C1
956C4702 23DCESD7Y
Q2A4EF29 7F000000
86F70D01 Q0706A06F
092A8648 86F70D01
48016503 Q4012E30
OF2A0383 659EF802
3A33605C 48840656
ES9A33EBE 33F46461
418E1151 21311A75
3E2DEBD5 CB@@5D
0007

(7)
6177732D 6B6D73
kms™)
Q04E

31313232 32323333
31356330 3831382D
352D6137 35352D31
316536
Encrypted

F7370545 4ECA7C83 Encrypted
16C59679 973E3CED
7E307C06 ©092A8648
306D0201 00306806
0701301E 06096086
11040C28 4116449A
0110803B B23A8133
C38BCB1F 9CCE7369
O591FECA 947262F3
E575ECC5 61A286E0Q

Encrypted

Encrypted

Encrypted

Information Length (78)

61726E3A 6177733A

Information ("arn:aws:kms:ca-central-1:111122223333:

be3435b423ff")
656E7472 616C2D31
32333333 333A6B65
34622D61 6663632D
372D6265 33343335
00A7

Length (167)
01010200 78FAFFFB
QE57BD87 3F6QF4E6
AF787150 69000000

6B6D733A 63612D63 Encrypted

3A313131 31323232
792F3962 31336361
34366138 2D616134
62343233 6666
Encrypted

DEDE@6AF AC72F79B Encrypted
FD196144 5A002C94
7E307C06 092A8648

Data Key 1, Key Provider ID Length
Data Key 1, Key Provider ID ("aws-
Data Key 1, Key Provider

Data Key 1, Key Provider

us-west-2:111122223333:key/715c0818-5825-4245-

Data Key 1, Encrypted Data Key

Data Key 1, Encrypted Data Key

Data Key 2, Key Provider ID Length
Data Key 2, Key Provider ID ("aws-
Data Key 2, Key Provider

Data Key 2, Key Provider
key/9bl3casb-afcc-46a8-aas47-

Data Key 2, Encrypted Data Key

Data Key 2, Encrypted Data Key

Ze| Y MEl=x| of 2 ClOIB{(HIAIR] B4 HT 1)
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86F70D01
092A8648
48016503
76616EF2
FDD@1BD9S
3CC686D7
71F18A46
2A363C2A
01

00000000
oC

00000000
734C1BBE
2C82BB23

D39DD3E5
00000000
E8B6F955
5871BA4C
59455BD8
E4159DFE
6766ECD5
55FCDA5B
C7D75BCC
ECE10AA7
95FE9C58
31E4F48A
B48A2068
C9B21A10
9D86E334
54C0C231
B8178484
12B0000OC
A5BA8Q4F
A15D0551
5E2034DB
46B2C979
€2394012
C6FFB914
1BABBAE4
F3CB6B86
B731839B

0706A06F 306D020
86F70D01 0701301
04012E30 11040CB
A6B30D02 0110803
B0979082 @99FDBF
F3CF7C7A CCC5263
80QE2C43F A34COES
E11397

032F7025 84CDA9SD
4CBF4AAB 8F5C600

915E0201 77A4AB1
0000028E

B5F22FE4 FD89022
93F78436 1085E4F
D76479DF C28D2E0Q
C8A944B6 685643F

1 00306806
E 06096086
2 A820D0CC
B 8073D0OF1
C F7B13548
9 122A1495
8 11D05114

0
2 622E886C

1

4 4E1D5155
8 D61ECE28
B BDB3D5D3
C EA24122B

E3F54653 DF205D30 ©0081D2D8

9F5318BC F4265B0

6 2FE7C741

10FQ5EAS QE2F2F40 47A60344

559AF633 9DE2C21
€65329D1 377C4CD
9B1CCO47 EE5A071
8060DF60 B492A73
371E6179 78FAFBO
701E1442 EASDA28
AD43571A B907192
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