SQL Reference

Amazon Kinesis Data Analytics SQL
Reference

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Amazon Kinesis Data Analytics SQL Reference: SQL Reference

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Table of Contents

SQL REFEIENCE ..ceuuerreeeerenneeeeneeeeeneeceessecsesseceesssecsssnssssssnnsans 1
Streaming SQL Language ELEMENLSceeeeeiiiiiiiiiiiiinneeennmnsisiesceeiesss 2
LAENEITIEIS ettt ettt sttt b e s e s s b et et s ae b et e sasbe st et esasensenassansansanans 2
DAt@ TYPES ettt ettt e st e s sae e s s s e s s a e s s a e e s bt s s e b e s et e s s ae e s e a e e e e s e e s e b e e e ssaessraeeesraasensnanes 3
NUMEriC TYPES @Nd PrECISION ...couieieieteteteceeee ettt te e s te e e e e e et e st e tesse s e s se e e s e e aesnensanean 9
Streaming SQL OPErators ..ttt sre et e s te s st e s saessseesaesssaesssessssssssessssssssessssssssesssesnes 11
[N OPEBFALON ..ttt re st e st e s sae e s sae s sae e sse s sseessbe s saesssas st asssessssesssessstesssessssessseessaessennns 12
EXISTS OPEIALOL ..ueeeiieiteeteecteste st esste et stessseessaessaeessaessseessassseasssesssaesssesssassssessssesssessssesssesssaennees 12
SCALAr OPEIALOIS ...ttt cte e s e s e e e e e e et et e s be st e s se s s e e s e esaesae st essansestassassaesesssensansansansan 12
ArthMETIC OPEIAtOIS ...ttt et e st e st e s aesaesseesa e e et e s estestassassessasnnensansans 13
STFING OPEIATOIS .ottt ettt s e et esstessae s s saessaeesssessseesssessssesssassseasssessssesssessseessaesses 14
LOGICAL OPEIALOIS ..ottt ettt te st et e st e e e et et e st et e s s e s e s seessasa e st essansassassassessaensansansansan 22
EXPresSions @nd LItEIaLS ...ttt ettt et e e e e et te b e s ae s e s se s e e e nnennanes 29
Monotonic EXpressions and OPEIratorsccccceceeeeeeieteeectesteseeee e e sessesaestessessesseeseesesaesaesaessessenes 32
MORNOTONIC COLUMNS ..ottt ettt ettt et e esae st e e st et et s e be st e e ssesaesassasessesasansassesansan 33
MONOTONIC EXPIrESSIONS ..ccuviieeeiieieieerteertereeessteestesstessseesssessseesssessssessessssesssesssaesssessssesssessssesssesssnasns 33
Rules for deducing MONOLONICILY ...cccviieieeecee ettt e s et saesranaens 34
CONAITION CLAUSE ..ottt ettt sttt st e st e st e st e st e e sseste st e e sastesaesassansenarsanes 35
TEMPOTAl PrEAICAtES ..ottt ettt te et e e et a e aesaesbe st e s se s e e e e e et et et e sassassnssnenaannans 36
SYNEAX ettt ettt e st s st e st e e st e st e s e e e e e e s e e e b e e a e e e b e e s a e e e b e e e s e e et e e aa e e beesse e taesreesstesnres 38
EXQIMIPLE ..ttt ettt et e st e st e st e et e s aeeae e e et et et et e s e seeaeeae e st et etetantanseeseeseenaantan 39
SAMPLE USE CASE ..ttt eteste st e teste s e e e e e e s et et et e b assessaesaasaesaessansansansassassaensessensansanes 40
Reserved Words and KEYWOIMSccceceeieeiieiceeceestectesesee et seetestestesses e esaeas s e saessessessassassassnensanes 40
Standard SQL OPerators ...ccccciiieeeeeeeeecissccccinenssne 48
CREATE STAt@MENTS ..ottt ettt st s ettt a e st s et e st s s st e s st s sae st e sessne st esnes 48
CREATE STREAM ..ottt ste et e sae st e e s te st et s e st et s e ssa st e e s s e st et ssasbastenassessensssassessesssensesssen 48
CREATE FUNUCTION ...ttt sestest et steste st e e ssastesessestesassassessesassessensssessensesessessessssensensosases 50
CREATE PUMP ...ttt sttt se st et sae st et s ste st et s e s et e e et e e ssassa st essssassestesasensessssensansesenne 51
INSERT ..ottt ettt st e s e sttt e st e st et et s e s b et e s e s be st et sse s b et esassestesessasastesassansentesassensensssensessesessan 53
SYNEAX ettt ettt sttt e s e st e st e st s e e e e e e s e e e b e e a e e e b e e s a e e e b e e e st e e b e e at e e teesraestaesreesstenares 53
PUMP SErEAM INSEIT ...ttt st s e e s re e s e e s sre s s e e s saeesaessaa s s b e ssaaessnessanassnasnns 53
QUETY ettt ettt e st srte s st e st e s s aa e st e s se e s s e e ssa e s s e e saasssaassaessseeseeesseessaessseessaessseessaessseesssesseesseennses 54
SYNEAX ettt ettt sttt e s e st e st e st s e e e e e e s e e e b e e a e e e b e e s a e e e b e e e st e e b e e at e e teesraestaesreesstenares 54

Amazon Kinesis Data Analytics SQL Reference SQL Reference

STrEaMING SEL OPEFALOIS ...cieeeiiiieeeeecteet ettt e e s sre e st e s st e s sae s aeessaesssasssaessnaesssasssaesssessaesnns 55
VALUES OPEIAtOr ittt st ste st ssae s sa e s sae s s e e sae s sa e s sae e st e s sae s saesssaessaasssasssassssassneans 56
SELECT SEQt@mMIENT ...ttt sttt sa e st s bttt e st e st s sbe st e nesnanne 57
SYNEAX ettt ettt e et s e e st e st e st s e e e e e e s e e e b e e s a e e e b e e s a e e e b e e e r e e e b e e at e e beeereeeaaesseesstennres 57
The STREAM keyword and the principle of streaming SQLcccoeoeeeeereeveeceeececececeeeeea, 57
SELECT ALL and SELECT DISTINGCT ...oooviviiirieirerentetneneesteesestesssessessessssessessssessessessssessenssessssessesees 58
SELECT CLAUSE ..ttt et st este st st s esbe st e s be st e e s s e s et s e ssa st e e ssesbestesassensenessansenssnesensenasans 60
FROM CLAUSE ...ttt sttt ettt s ettt et e a st et s e b et e e sba st et esessassesassansessesensn 63
JOIN CLAUSE ..ttt sttt ettt et ettt et et s et e st s s b e st st s et et e e be st e e ssestensssasanssnssansesessans 66
HAVING CLAUSE ...ttt sttt sttt ettt s st et e s b e st e e s e s b et ssasba st e e sassastenassansenssanes 83
GROUP BY CLAUSE ...ttt steste e st esseste st s e s e st s e ssaste st s e sse st esassassensssessesssssssassensesensn 84
WHERE CLAUSE ..ottt ettt sttt sttt st e sttt s st et et s et et s e saa st e st ssasaestesessensansssenes 87
WINDOW Clause (SldiNg WINAOWS)ccueeuereeieiiieieteieciestecteeee e seeeesessessessessessessessnesessessessansens 87
ORDER BY CLAUSE ..ottt sesiest et siesae st e e sse st e e s e sse st ssessestesassessesassassessessssassensesessessensssans 97
ROWTIME ...ttt sttt sttt e st ettt s et st s s b et s e s s et et e sa s et e st ssasbestssessassessssensensases 100
FUNCRIONS coiiiiiiiiiiiiiiiiiiiiiiiiiiinicsss 103
AGgregate FUNCLIONS ...ttt ee et e s ae e st e s sae s s e e s ae s e e e sae s saesssaesssessasasssessnaenees 103
Streaming Aggregation and ROWtimMe BoOUNScccveeeieeenenecececeetete et nenens 105
Aggregate FUNCLION LISt ...ttt sttt e s sae s sa e s sae e sa e s sae s saessaeesanessnasnns 105
Examples of Aggregate Queries on Streams (Streaming Aggregation)ccccceeveeveeveeeeeennnne 107
Windowed Aggregation 0N STrEAMSceciiciiiiecececeeerete ettt st e sae e ns 110
AVG ..ttt ettt sttt sttt ettt ettt e a e s et et A e b et e Rt e e e e R et et e R e e b et e e e s et et esantentesasen 116
COUNT ettt ettt st et st st st et s st et e s b e st e s s e b et e se s s et e st esessestesesbestentssensassensssansessesensensenes 121
COUNT_DISTINCT_ITEMS_TUMBLING FUNCLION ..cueriiiriirieiiirienteteeneenteesesseseeessesseessesseseesesees 125
EXP_AVG ..ttt ettt et s st et s st st st s s et et s st et e e s b et et s ae st et e st e s et e e e et et e sa s et e e esenes 128
FIRST_VALUE ...ttt ettt s et et se st e s e st et e e s s et e e s e sa e e e s sasbe st esassensensssassensesens 129
LAST_VALUE ...ttt sttt te st s et e st s st esa s et et s s s et et s s e s et e e ssesaesassassenssssnsansensssensenean 130
IMAX ettt sttt et s b et s sa et ettt e st et e e a et et e b et e R e R e b et e Rt b et et e R et et e s et et e e esente e esaan 130
IMIN Lottt ettt st et e ettt s b s ae st e st et e st e s et e st e s e s et ese e s e b et e e e s et et e seese st eseeaente st enaesetenaen 134
SUM Lottt ettt sttt sttt b ettt et et e R e b et et e R et et e ae et et e e se b et e s et et eaaeaanes 138
TOP_K_ITEMS_TUMBLING FUNCLION ..cutriiiiirieniertnenrentetsenietsestesteessestesesessessesessessessssessessesessens 142
ANALYTIC FUNCLIONS ..ttt a et e st e s tesae st e s e e e e e et e st et e bassessaesaesaensensansansensanes 145
RELATEA TOPICS cuveeeeieieteetee ettt e et et e st e st e st e st e e s e e e e e e e et e aa st e sassassasseensansansanean 146
BOOLEAN FUNCLIONS ...ttt sttt sttt st ettt et sae st e e s s b et s e s ba st s e s sasbe st esassassenasnnnns 146
ANY ettt ettt sttt et et e st e e A et et e R e b et e Rt e R et et e e e R et et e aeete s eseesententesatn 146
EVERY ..ottt ettt sttt ettt et st et et s b et s s s et et s s e et e s st et e e b et et e R e e b et e e e s et e st e sanbentesasn 147

Amazon Kinesis Data Analytics SQL Reference SQL Reference

CONVErSION FUNCLIONS ..ottt st st e st s s e e e ae e st e s sae s saessaeessaasssasssaesssessssasssessssensees 147
CA ST ettt ettt et e st e e st e st et e s e e st e et e et e e s e et e e e e s e et e et e ae e be et eese et e et asbe e te et easeeaeeatenseeaesaaans 148
Date and TimMeE FUNCLIONS ...ttt ettt ste st e e e e e e s et e b e sae s e saassessaesaennennanaan 170
THME ZONES .ottt ettt te e st e s st e s s st e st e e s st e st e s sa e s b e e s st asssesssaesssassssasssessssessseesseesssessssessseessaasns 171
Datetime Conversion FUNCLIONS ...ttt esseeeseessse s e esseeessnesssessssessasesssasssennns 171
Date, Timestamp, and INterval OPEratorscieceeececeeeeeerere e sa e saesaeseens 191
Date and TimE PAtLINS ... ettt e e et ste st e s aesae s e e e e e e e e enesantans 200
CURRENT_DATE ... otiteetestesteetesesstesste st estesaessssssessaessaessesssessssssesssassssssesssessasssesssessssssesssessesssessanses 205
CURRENT_ROW_TIMESTAMBP ... oteeeteeeectestestestestestsesaesae s e ssaesaesssssaes s essasssasnessssnsesnsansasnsannes 205
CURRENT_TIME .ttt et stesee s ae s ste s e s stessaessessae st essa st e s s essesssassaassasnsasssansesssesssansasssessaans 206
CURRENT_TIMESTAMP ...ttt st svestesaessaessaesseesse s s essassaessaassasssessaessssnsesssensasssassasssanns 206
EXTRACT ettt ste s ste st e te st e s te s te s e e saa e sae s e e s sa s s e s e e sa e sesssasseansesssassaassesnsesssansesnsessaensessesssanses 207
LOGCALTIME ... oiiteteeteeteetesesctesteseesste s e e s ae s te s s e ssessaessa s st e s e assaassa s s essaassasssasssassesssassesnsasnsensesssenssansen 208
LOCALTIMESTAMBP ...ttt cte st e st s sae st e s s s sae s s e sae st e s e e s sa e st e st e s sasse s st asssensasssensssnsasssanseensannes 209
TSDIFF ettt ettt e st et e s e e s ae st e st e st e e st e s s e s sa s b e ssa e se e s e s saessaassesstessaessessaaseasasstansaansessaansaans 209
NULL FUNCLIONS ettt e s e te e e e e et et e st e st e st e s b e s e e e e e esaessesaestesassansessassaenssnsensansans 210
COALESCE ...ttt et ste st sae s e e s ta s s ae st e s ta et e e e e s aa e s s e s s e ssa e s e s s e saensasssasseassasssasssansesnsenseessannes 210
NULLIF ettt ettt s e e s te st e st e sae e st e st e sae s st e s e e s sa et e e e e saasessaassaensasssassaassesssassaansesssenseansesssanses 211
NUMEFIC FUNCLIONS ...ttt st cste et e st ssae s stessae s s aessa e s s e s saeesssessssesssassseesssesssassssasssnesseannns 211
ABS ettt e s e st e st e et e b e et e e a e et e et e e ae et e et e e aeenae et eese e ta et esaaenseetesstensaentanes 212
CEIL / CEILING ..ottt te e stesteste s e s te s e e e e e eae st e st e sassassassaessasaensansansansansassassassassasssensensansan 213
E X P ettt sttt e et e e b e a et e e e e e e et e e ae e e e te et e e at e ae et e e st e te et eesaenreetenaaanees 214
FLOOR ..ttt ettt e ste st e st e s e st e s e e s e e st e st e s ae s e e s st e s e saaesse e se st e saesasnsasseansesssanssesesssanseensanses 215
LN ettt ettt ettt a e s e e e et e e e e b e et e e e e At et e e e e be e s e et e eree e e et e s e eate e teeseete et ensaenreetenaen 216
LOGTO ettt ste s e st e s ae e e e s ae et e st e s st s st e s e e saaeste s s e sse e se e s e saessesssassaansaessessaansesssanseensasssensasnsens 216
MOD ettt sttt e st e st e st e st et e st et e e s b e st e s s e et e e e et e et e e Rt e st et e e e e te e ae e Rt e re et e et enseeteeatenraetann 217
POWER ...ttt sttt et e st e s e e st e s e s ae st e e et e s s e s et e s ae s e e sa e se st e saassasstassaansasssensaensassaanes 218
STEP ettt ettt e e e et e s e e e e b e e e et e et e e s e et e e te et e ae et e et e e ae e teentenseenteenaensaaneans 218
LOG Parsing FUNCLIONS ..c..uiiiiieitectctecctetee st cste st e ee s et e s tessveesstesssaessaesssaessaessseasssesssaesssassseasssannns 222
FAST_REGEX_LOG_PARSER ... titeeetestectestestesteesaessesaessaesssesaessaessaessesses e essssssessssssesssassnensasnns 223
FIXED_COLUMN_LOG_PARSE ...ttt esteseeseessaessae s e e ste s s e ssessse st essesssessssssssssessnensasnns 229
REGEX_LOG_PARSE ...ttt s te st s te st e s e s sae s e e ssa s se s e e ssaesae s s esssssasssasssensesssassessesnnn 229
SYS_LOG_PARSE ...ttt et ste st s te s ste s e s ste s e e svessae st e s se et e s s e ssessses st assesnsesssensasssenssansessaessasns 233
VARIABLE_COLUMN_LOG_PARSE ... eeeeetecteceestestestesstestessessaessssssessaessaessesssessasssesssassasssenns 233
WZBC_LOG_PARSE ...ttt sttt sve s sae s e e s e s sae st e s te st e s e e se st e s e e saaesbe st essaassassaensaansessaansenn 235
SOFtING FUNCHIONS ettt ettt s e st e e sae s s e e s ae et essae s saessaaessaassaeasssesssaesssassseasssannns 247

Amazon Kinesis Data Analytics SQL Reference SQL Reference

GIOUP RANK ..ttt ste e e e e e sa e st et e st et e e e e e e e e e e s et et e sassessassaeseenaensansansansanes 247
Statistical Variance and Deviation FUNCLIONSccoviviviiiineneninencniceseniee s steesesee st sse e snenne 252
HOTSPOTS ..ottt ettt sttt st et s st et s e st e e s e s s et et s s e b et e sasbe st esassesansssesansasassansensses 253
RANDOM_CUT_FORESTutiirietetrenientsesentetsessestesessessesassessessessssassessesassessessssessensessssessessesessesseses 258
RANDOM_CUT_FOREST_WITH_EXPLANATIONcocoeirtetrentetrenentetsensesteessessesessessesesessessesene 265
STDDEV_POP ...ttt sttt sttt te st s e st et s e st et st s sae st s s s et e e s e be st e s ssassesaesessessesassansensons 275
STDDEV_SAMBP ...ttt ettt st et esae st st s et e st s e st et e e s sa b et s sasse st esassassestesassassensssesensesessans 279
VAR_POP ..ottt sttt ettt s s te st et s b st et s s be st e e s s e sae st s et et esessa st entesassesensesansassesarsansasaasen 282
VAR_SAMP ..ttt sttt ettt st sttt ettt s s b e st et s s et et e e b et e e s b et et s ae st et e sesae st et esententenas 286
Streaming SQL FUNCLIONS ..co.eviieieeeeeeetetect ettt et e s sae s saessae e s e e s ssesssaesssaessaessaesssaassnassnnanns 290
LAG oetiiiieieteesiet et et e e te st st et et s et et e sttt b et e s b et e e R et et e Rt e A et et e Reebe e e Rt e R et et eaeete e e e setentenn 290
MONOLONIC FUNCHION ..ttt ettt st ettt sene s b e st seeaee 293
NTH_VALUE ...ttt sttt e st et s st st et s e st et s st et et s s e sa st e e sassesassassensensssassessesensensesesen 294
String and SEArch FUNCLIONSc.uoeieeeeeeeeeecee ettt e ettt st e s be st e se e e nnennan 294
CHAR_LENGTH / CHARACTER_LENGTH ..ccootiirieirirenieteesientetsessestsessesseessessestesessessessssessessenees 295
INTTCAP ettt ettt ettt st et s st et st sa bt s st e st e s s et e st s s e b e st ssess et ensesassastesessansesesensensons 296
LOWER .ottt ettt sttt ettt ettt ettt st s a st et s b et et e st sba b et euesaestesassansestesassansensesenes 296
OVERLAY ..ottt ettt ettt s st e st et s et et e e s b et et s s e st e st ssassa st e st esabastesassansensesessansesessensensases 297
POSITION .ttt ettt sttt sa e st et s et et s e st et e s s e sbe st e e s s et esasaa s e st ssesasaeseesensentesesensenssenes 298
REGEX_REPLACEcueoteteteieteteenietetseste st sesteste st sseste st ssessessesassessessesassessensssessessessssassessessssansensesenss 299
SUBSTRING ...ttt estete e stesae e s e sse st s e ssessesassassestesassessenssssssessessssensessesessessensesessessesees 301
TRIM ettt ettt sttt st et e sttt s s b e st e e s b et e e e s e b et e se b et e st e R e ae s e e e s et et eseesenteneesanten 304
UPPER .ttt ettt ettt ettt st et e st et e e b et e e e st et e se et et e se e s e te st enesaentenaen 305
Kinesis Data Analytics Developer GUIAEccccciiiiiiiieennnneciiiicecinninneeeessssssssssssssssssssssssssssssssssssnss 307
(0T oYal 1Ty 1 L= 31 o 1T o oV UPTR 308

Vi

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Amazon Kinesis Data Analytics SQL Reference

(® Note

For new projects, we recommend that you use Kinesis Data Analytics Studio over Kinesis
Data Analytics for SQL Applications. Kinesis Data Analytics Studio combines ease of use
with advanced analytical capabilities, enabling you to build sophisticated stream processing
applications in minutes.

The Amazon Kinesis Data Analytics SQL Reference describes the SQL language elements that are
supported by Amazon Kinesis Data Analytics. The language is based on the SQL:2008 standard
with some extensions to enable operations on streaming data.

For information about developing Kinesis Data Analytics applications, see the Kinesis Data Analytics

Developer Guide.

This guide covers the following:

« Streaming SQL Language Elements — Data Types, Streaming SQL Operators, Functions.
« Standard SQL Operators — CREATE statements, SELECT statement.

» Operators for transforming and filtering incoming data - WHERE clause, JOIN clause, GROUP BY
clause, WINDOW Clause (Sliding Windows).

» Logical Operators — AS, AND, OR, etc.

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/what-is.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/what-is.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Streaming SQL Language Elements

The following topics discuss the language elements in Kinesis Data Analytics that underlie its
syntax and operations:

Topics
« |dentifiers

» Data Types
» Streaming SQL Operators

» Expressions and Literals

« Monotonic Expressions and Operators

e Condition Clause

« Temporal Predicates

» Reserved Words and Keywords

Identifiers

All identifiers may be up to 128 characters. Identifiers may be quoted (with case-sensitivity) by
enclosing them in double-quote marks ("), or unquoted (with implicit uppercasing before both
storage and lookup).

Unquoted identifiers must start with a letter or underscore, and be followed by letters, digits or
underscores; letters are all converted to upper case.

Quoted identifiers can contain other punctuation too (in fact, any Unicode character except control
characters: codes 0x0000 through 0x001F). You can include a double-quote in an identifier by
escaping it with another double-quote.

In the following example, a stream is created with an unquoted identifier, which is converted to
upper case before the stream definition is stored in the catalog. It can be referenced using its
upper-case name, or by an unquoted identifier which is implicitly converted to upper case.

-- Create a stream. Stream name specified without quotes,
-- which defaults to uppercase.
CREATE OR REPLACE STREAM ExampleStream (coll VARCHAR(4));

- example 1: OK, stream name interpreted as uppercase.

Identifiers 2

Amazon Kinesis Data Analytics SQL Reference SQL Reference

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO ExampleStream
SELECT * FROM SOURCE_SQL_STREAM_001;

- example 2: 0K, stream name interpreted as uppercase.
CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO examplestream
SELECT * FROM customerdata;

- example 3: Ok.
CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO EXAMPLESTREAM
SELECT * FROM customerdata;

- example 2: Not found. Quoted names are case-sensitive.
CREATE OR REPLACE PUMP "STREAM_PUMP"™ AS INSERT INTO "examplestream"
SELECT * FROM customerdata;

When objects are created in Amazon Kinesis Data Analytics, their names are implicitly quoted, so it
is easy to create identifiers that contain lowercase characters, spaces, dashes, or other punctuation.
If you reference those objects in SQL statements, you will need to quote their names.

Reserved Words and Keywords

Certain identifiers, called keywords, have special meaning if they occur in a particular place in a
streaming SQL statement. A subset of these key words are called reserved words and may not be
used as the name of an object, unless they are quoted. For more information, see Reserved Words
and Keywords.

Data Types

The following table summarizes the data types supported by Amazon Kinesis Data Analytics.

SQL Data Type JSON Data Type Description Notes
BIGINT number 64-bit signed integer
BINARY BASE64-encoded Binary (non character Substring works on
string) data BINARY. Concatena
tion does not work on
BINARY.

Data Types 3

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

SQL Data Type

BOOLEAN

CHAR (n)

DATE

DECIMAL
DEC
NUMERIC
DOUBLE

DOUBLE PRECISION

JSON Data Type

boolean

string

string

number

number

Description

TRUE, FALSE, or NULL

A character string
of fixed length n.
Also specifiable as
CHARACTER

A date is a calendar
day (year/month/
day).

A fixed point, with
up to 19 significant
digits.

A 64-bit floating
point number

Notes

Evaluates to
TRUE, FALSE, and
UNKNOWN.

n must be greater
than 0 and less than
65535.

Precision is day.
Range runs from
the largest value,
approximately +229
(in years) to the
smallest value, -229.

Can be specified with
DECIMAL, DEC, or
NUMERIC.

64-bit approx value;
-1.79E+308 to 1.79E
+308. Follows the ISO
DOUBLE PRECISION
data type, 53 bits
are used for the
number's mantissa

in scientific notation,
representing 15 digits
of precision and 8
bytes of storage.

Data Types

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

SQL Data Type
INTEGER

INT

INTERVAL <timeunit>
[TO <timeunit>]

<timeUnit>

SMALLINT

REAL

JSON Data Type

number

string

string

number

number

Description

Day-time intervals
supported, year-
month intervals not
supported

The units of a
INTERVAL value

16-bit signed integer

A 32-bit floating
point number

Notes

32-bit signed integer.
Range is -21474836
48 to 2147483647

[2*%(31) to 2**(31)-
1]

Allowed in an
expression in date
arithmetic, but
cannot be used as

a datatype for a
columnin a table or
stream.

Supported units are
YEAR, MONTH, DAY,
HOUR, MINUTE, and
SECOND

Range is -32768 to
32767

[2**(15) to 2**(15)-1]

Following the ISO
REAL data type, 24
bits are used for the
number's mantissa
in scientific notation,
representing 7 digits
of precision and 4
bytes of storage.
The minimum value
is -3.40E+38; the
maximum value is
3.40E+38.

Data Types

Amazon Kinesis Data Analytics SQL Reference SQL Reference

SQL Data Type JSON Data Type Description Notes

TIME string ATIME is a time Its precision is
in a day (hour:min milliseconds; its
ute:second). range is 00:00:00.

000 to 23:59:59.
999. Since the
system clock runs in
UTC, the timezone
used for values
stored in a TIME or
TIMESTAMP column
is not considered.

for values stored in a
TIME or TIMESTAMP
column.

Data Types 6

Amazon Kinesis Data Analytics SQL Reference SQL Reference

SQL Data Type JSON Data Type Description Notes

TIMESTAMP string A TIMESTAMP is a A TIMESTAMP value
combined DATE and always has a precision
TIME. of 1 millisecond. It

has no particular
timezone. Since the
system clock runs in
UTC, the timezone
used for values
stored in a TIME or
TIMESTAMP column
is not considered.

Its range runs from
the largest value,
approximately +229
(in years) to the
smallest value, -229.
Each timestamp is
stored as a signed
64-bit integer, with 0
representing the Unix
epoch (Jan 1, 1970
00:00am). This means
that the largest
TIMESTAMP value
represents approxima
tely 300 million
years after 1970,

and the smallest
value represents
approximately 300
million years before
1970. Following

the SQL standard,

a TIMESTAMP value

Data Types 7

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

SQL Data Type JSON Data Type Description
TINYINT number 8-bit signed integer
VARBINARY (n) BASE64-encoded Also specifiable as
string BINARY VARYING
VARCHAR (n) string Also specifiable as

CHARACTER VARYING

Notes

Regarding characters:

Notes

has an undefined
timezone.

Range is -128 to 127,

n must be greater
than 0 and less than
65535.

n must be greater
than 0 and less than
65535.

« Amazon Kinesis Data Analytics supports only Java single-byte CHARACTER SETs.

« Implicit type conversion is not supported. That is, characters are mutually assignable if and

only if they are taken from the same character repertoire and are values of the data types

CHARACTER or CHARACTER VARYING.

Regarding numbers:

« Numbers are mutually comparable and mutually assignable if they are values of the data types
NUMERIC, DECIMAL, INTEGER, BIGINT, SMALLINT, TINYINT, REAL, and DOUBLE PRECISION.

The following sets of data types are synonyms:

« DEC and DECIMAL

« DOUBLE PRECISION and DOUBLE

« CHARACTER and CHAR

« CHAR VARYING or CHARACTER VARYING and VARCHAR
« BINARY VARYING and VARBINARY

« INT and INTEGER

Data Types

Amazon Kinesis Data Analytics SQL Reference SQL Reference

« Binary values (data types BINARY and BINARY VARYING) are always mutually comparable and are
mutually assignable.
Regarding dates, times, and timestamps:

« Implicit type conversion is not supported (that is, datetime values are mutually assignable only if
the source and target of the assignment are both of type DATE, or both of type TIME, or both of
type TIMESTAMP).

« The Amazon Kinesis Data Analytics timezone is always UTC. The time functions, including the
Amazon Kinesis Data Analytics extension CURRENT_ROW_TIMESTAMP, return time in UTC.

Numeric Types and Precision

For DECIMAL we support a maximum of 18 digits for precision and scale.

Precision specifies the maximum number of decimal digits that can be stored in the column, both
to the right and to the left of the decimal point. You can specify precisions ranging from 1 digit to
18 digits or use the default precision of 18 digits.

Scale specifies the maximum number of digits that can be stored to the right of the decimal point.
Scale must be less than or equal to the precision. You can specify a scale ranging from 0 digits to
18 digits, or use the default scale of 0 digits.

Rule for Divide
Let p1, s1 be the precision and scale of the first operand, such as DECIMAL (10,1).
Let p2, s2 be the precision and scale of the second operand, such as DECIMAL (10,3).
Let p, s be the precision and scale of the result.
Let d be the number of whole digits in the result. Then, the result type is a decimal as shown
following:
d =pl - sl + s2 D=10-1+3

Number of whole digits in result = 6

Numeric Types and Precision 9

Amazon Kinesis Data Analytics SQL Reference SQL Reference

s <= MAX (6, s1 + p2 +1) S<=MAX(6,1+10+ 1)
Scale of result = 14

p=d+s Precision of result = 18

Precision and scale are capped at their maximum values (18, where scale cannot be larger than
precision).

Precedence is first giving at least the scale of the first argument (s >= s1) followed by enough
whole digits to represent the result without overflow

Rule for Multiply

Let p1, s1 be the precision and scale of the first operand DECIMAL (10,1).
Let p2, s2 be the precision and scale of the second operand DECIMAL (10,3).
Let p, s be the precision and scale of the result.

Then, the result type is a decimal as shown following:

p=p1+p2 p=10+10
Precision of result = 18
s=s1+s2 s=1+3

Scale of result = 4

Rule for Sum or Subtraction

Type-inference strategy whereby the result type of a call is the decimal sum of two exact numeric
operands where at least one of the operands is a decimal.

Let p1, s1 be the precision and scale of the first operand DECIMAL (10,1).
Let p2, s2 be the precision and scale of the second operand DECIMAL (10,3).

Let p, s be the precision and scale of the result, as shown following:

Numeric Types and Precision 10

Amazon Kinesis Data Analytics SQL Reference SQL Reference

s = max(s1, s2) s =max (1,3)
Scale of result = 3
p=max(p1-s1,p2-s2)+s+1 p = max(10-1,10-3) + 3 + 1

Precision of result = 11

s and p are capped at their maximum values

Streaming SQL Operators

Subquery Operators

Operators are used in queries and subqueries to combine or test data for various properties,
attributes, or relationships.

The available operators are described in the topics that follow, grouped into the following
categories:

» Scalar Operators

» Operator Types

+ Precedence

Arithmetic Operators

String Operators

» (Concatenation)
» LIKE patterns
o SIMILAR TO patterns

Date, Timestamp, and Interval Operators

Logical Operators

» 3-state boolean logic

o Examples

Streaming SQL Operators 11

Amazon Kinesis Data Analytics SQL Reference SQL Reference

IN Operator

As an operator in a condition test, IN tests a scalar or row value for membership in a list of values, a
relational expression, or a subquery.

Examples:
1. --- IF column IN ('A','B','C")
2. --- IF (coll, col2) IN (
select a, b from my_table
)

Returns TRUE if the value being tested is found in the list, in the result of evaluating the relational
expression, or in the rows returned by the subquery; returns FALSE otherwise.

(® Note
IN has a different meaning and use in CREATE FUNCTION.

EXISTS Operator

Tests whether a relational expression returns any rows; returns TRUE if any row is returned, FALSE
otherwise.

Scalar Operators

Operator Types
The two general classes of scalar operators are:

« unary: A unary operator operates on only one operand. A unary operator typically appears with
its operand in this format:

operator operand

« binary: A binary operator operates on two operands. A binary operator appears with its operands
in this format:

operandl operator operand2

IN Operator 12

Amazon Kinesis Data Analytics SQL Reference SQL Reference

A few operators that use a different format are noted specifically in the operand descriptions
below.

If an operator is given a null operand, the result is almost always null (see the topic on logical
operators for exceptions).

Precedence
Streaming SQL follows the usual precedence of operators:

1. Evaluate bracketed sub-expressions.
2. Evaluate unary operators (e.g., + or -, logical NOT).
3. Evaluate multiplication and divide (* and /).

4. Evaluate addition and subtraction (+ and -) and logical combination (AND and OR).

If one of the operands is NULL, the result is also NULL If the operands are of different but
comparable types, the result will be of the type with the greatest precision. If the operands are of
the same type, the result will be of the same type as the operands. For instance 5/2 = 2, not 2.5, as
5 and 2 are both integers.

Arithmetic Operators

Operator Unary/Binary Description

+ u Identity

- U Negation

+ B Addition

- B Subtraction

* B Multiplication
/ B Division

Each of these operators works according to normal arithmetic behavior, with the following caveats:

Arithmetic Operators 13

Amazon Kinesis Data Analytics SQL Reference SQL Reference

1. If one of the operands is NULL, the result is also NULL

2. If the operands are of different but comparable types, the result will be of the type with the
greatest precision.

3. If the operands are of the same type, the result will be of the same type as the operands. For
instance 5/2 = 2, not 2.5, as 5 and 2 are both integers.

Examples
Operation Result
1+1 2
20+2.0 4.0
3.0+2 5.0
5/2 2
50/2 2.500000000000
5*2+2 12

String Operators

You can use string operators for streaming SQL, including concatenation and string pattern
comparison, to combine and compare strings.

Operator Unary/Binary Description Notes
| B Concatenation Also applies to binary
types
LIKE B String pattern <string> LIKE <like
comparison pattern> [ESCAPE

<escape character>]

String Operators 14

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Operator Unary/Binary Description Notes
SIMILAR TO B String pattern <string> SIMILAR TO
comparison <similar to pattern>
[ESCAPE <escape
character>]
Concatenation

This operator is used to concatenate one or more strings as shown in the following table.

Operation Result

'SQL||'stream’ SQLstream
'SQL|"||'stream’ SQLstream
'SQL'||'stream’||' Incorporated' SQLstream Incorporated
<col1>||<col2>||<col3>||<col4> <col1><col2><col3><col4>

LIKE patterns

LIKE compares a string to a string pattern. In the pattern, the characters _ (underscore) and %
(percent) have special meaning.

Character in pattern Effect

Matches any single character

% Matches any substring, including the empty
string
<any other character> Matches only the exact same character

If either operand is NULL, the result of the LIKE operation is UNKNOWN.

String Operators 15

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

To explicitly match a special character in the character string, you must specify an escape character
using the ESCAPE clause. The escape character must then precede the special character in the

pattern. The following table lists examples.

Operation

‘a' LIKE ‘a'

'a' LIKE A’

'a' LIKE 'b’

‘ab' LIKE 'a_'

‘ab' LIKE 'a%'

‘ab' LIKE 'a_' ESCAPE '\
'ab' LIKE 'a\%"' ESCAPE '\'
'a_' LIKE 'a_' ESCAPE '\
'a%' LIKE 'a\%' ESCAPE '\
'a' LIKE 'a_'

‘a' LIKE 'a%'

'‘abced' LIKE 'a_'

‘abced' LIKE 'a%'

" LIKE "

"1a' LIKE '_a'

'"123aXYZ' LIKE '%a%'

"123aXYZ' LIKE '_%_a%_'

Result

TRUE

FALSE

FALSE

TRUE

TRUE

FALSE

FALSE

TRUE

TRUE

FALSE

TRUE

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

String Operators

16

Amazon Kinesis Data Analytics SQL Reference

SIMILAR TO patterns

SQL Reference

SIMILAR TO compares a string to a pattern. It is much like the LIKE operator, but more powerful, as
the patterns are regular expressions.

In the following SIMILAR TO table, seq means any sequence of characters explicitly specified, such
as '13aq'. Non-alphanumeric characters intended for matching must be preceded by an escape
character explicitly declared in the SIMILAR TO statement, such as '13aqg\!' SIMILAR TO '13aq\!24br
\!% ESCAPE '\' (This statement is TRUE).

When a range is indicated, as when a dash is used in a pattern, the current collating sequence is
used. Typical ranges are 0-9 and a-z. PostgreSQL provides a typical discussion of pattern-matching,
including ranges.

When a line requires multiple comparisons, the innermost pattern that can be matched will be
matched first, then the "next-innermost," etc.

Expressions and matching operations that are enclosed within parentheses are evaluated before
surrounding operations are applied, again by innermost-first precedence.

Delimiter

parentheses ()

brackets []

caret or circumflex

dash

Character in pattern

(seq)

[seq]

["seq]

[seq ” seq]

<character1>-<char
acter2>

Effect

Groups the seq
(used for defining
precedence of
pattern expressions)

Matches any single
character in the seq

Matches any single
character not in the
seq

Matches any single
character in seq and
not in seq

Specifies a range of
characters between

Rule ID

String Operators

17

https://www.postgresql.org/docs/7.3/static/functions-matching.html

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Delimiter

bar

asterisk

plus

braces

question-mark

underscore

percent

character

Character in pattern

[seq seq]

seq*

seq+

seq{<number>}

seq{<low number>,<
high number>}

seq?

%

<any other character
>

Effect

character1 and
character2

(using some known
sequence like 1-9 or
a-z)

Matches either seq or
seq

Matches zero or more
repetitions of seq

Matches one or more
repetitions of seq

Matches exactly
number repetitions of
seq

Matches low number
or more repetitions of
seq, to a maximum of
high number

Matches zero or one
instances of seq

Matches any single
character

Matches any
substring, including
the empty string

Matches only the
exact same character

Rule ID

10

11

12

13

14

String Operators

18

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Delimiter Character in pattern
NULL NULL
Non-alphanumeric Special characters

The following table lists examples.

Operation Result
'a' SIMILAR TO 'a' TRUE
'a' SIMILARTO ‘A FALSE
'a' SIMILAR TO 'b FALSE
'ab’ SIMILAR TO 'a_' TRUE
'ab’' SIMILAR TO 'a%!' TRUE
'a' SIMILARTO 'a_' FALSE
'a' SIMILAR TO 'a%' TRUE

Effect

If either operand
is NULL, the result
of the SIMILAR
TO operation is
UNKNOWN.

To explicitly match a
special character in
the character string,

that special character
must be preceded by
an escape character
defined using

an ESCAPE clause
specified at the end
of the pattern.

Rule
14
14
14
12

13

12& 14

13

Rule ID

15

16

String Operators

19

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Operation

'abcd' SIMILAR TO 'a_'
‘abced' SIMILAR TO 'a%'
"SIMILARTO "

"1a' SIMILAR TO '_a'
'"123aXYZ' SIMILARTO "

"123aXYZ' SIMILARTO '_%_a

%_"'
'xy' SIMILAR TO '(xy)'
'abd' SIMILAR TO '[ab][bcde]d'

'bdd' SIMILAR TO '[ab][bcd
eld'

'abd' SIMILAR TO '[ab]d"'

'cd' SIMILAR TO '[a-€]d"'

'cd' SIMILAR TO '[a-e~c]d'
'cd' SIMILAR TO '[*a-e)]d
'yd' SIMILAR TO '[*a-e)]d'
‘amy' SIMILAR TO 'amyfred'
'fred' SIMILAR TO 'amyfred'
'mike’ SIMILAR TO 'amyfred'
‘acd’ SIMILAR TO 'ab*c+d'

'‘accced' SIMILAR TO 'ab*c+d'

Result

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

FALSE

TRUE

FALSE

INVALID

INVALID

TRUE

TRUE

FALSE

TRUE

TRUE

Rule

12

13

14

12

14

13& 12

7&8

7&8

String Operators

20

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Operation Result Rule
'abd' SIMILAR TO 'ab*c+d' FALSE 7&8
‘aabc’ SIMILAR TO 'ab*c+d' FALSE

'abb’ SIMILAR TO 'a(b{3})' FALSE 9
‘abbb' SIMILAR TO 'a(b{3})' TRUE 9
‘abbbbb' SIMILAR TO 'a(b{3})' FALSE 9
‘abbbbb' SIMILAR TO 'ab{3,6}' TRUE 10
‘abbbbbbbb' SIMILAR TO FALSE 10
‘ab{3,6}'

" SIMILAR TO 'ab?' FALSE 11
" SIMILAR TO '(ab)?' TRUE 11
'a' SIMILAR TO 'ab?’ TRUE 11
‘a' SIMILAR TO '(ab)?' FALSE 11
'a' SIMILAR TO ‘'a(b?)' TRUE 11
'ab’ SIMILAR TO 'ab?’ TRUE 11
‘ab' SIMILAR TO ‘'a(b?)' TRUE 11
'abb' SIMILAR TO 'ab?" FALSE 11
'ab' SIMILAR TO 'a_' ESCAPE FALSE 16
\'

'ab' SIMILAR TO 'a\%' ESCAPE FALSE 16
\'

'a_' SIMILAR TO 'a_' ESCAPE TRUE 16
\'

String Operators 21

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Operation

'a%' SIMILAR TO 'a\%'
ESCAPE '\

‘a(b{3})' SIMILAR TO 'a(b{3})'

‘a(b{3})' SIMILAR TO 'a\(b\{3\
)" ESCAPE '\

Logical Operators

Result

TRUE

FALSE

TRUE

Logical operators let you establish conditions and test their results.

Operator Unary/Binary
NOT U
AND B
OR B
IS B
IS NOT UNKNOWN U
IS NULL U
IS NOT NULL U

Rule

16

16

16
Description Operands
Logical negation Boolean
Conjunction Boolean
Disjunction Boolean
Logical assertion Boolean
Negated unknown Boolean
comparison:
<expr> IS NOT
UNKNOWN
Null comparison: Any
<expr> IS NULL
Negated null Any

comparison:

<expr> IS NOT NULL

Logical Operators

22

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Operator Unary/Binary
= B

I= B

<> B

> B

>= B

< B

<= B
BETWEEN Ternary
IS DISTINCT FROM B

IS NOT DISTINCT B
FROM

Three State Boolean Logic

Description
Equality
Inequality
Inequality

Greater than

Greater than or equal
to (not less than)

Less than

Less than or equal to
(not more than)

Range comparison:

col1 BETWEEN expr1
AND expr2

Distinction

Negated distinction

Operands
Any
Any
Any

Ordered types
(Numeric, String,
Date, Time)

Ordered types

Ordered types

Ordered types

Ordered types

Any

Any

SQL boolean values have three possible states rather than the usual two: TRUE, FALSE, and
UNKNOWN, the last of which is equivalent to a boolean NULL. TRUE and FALSE operands generally
function according to normal two-state boolean logic, but additional rules apply when pairing
them with UNKNOWN operands, as the tables that follow will show.

Logical Operators

23

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

® Note

UNKOWN represents "maybe TRUE, maybe FALSE" or, to put it another way, "not definitely
TRUE and not definitely FALSE." This understanding may help you clarify why some of the

expressions in the tables evaluate as they do.

Negation (NOT)

Operation
NOT TRUE
NOT FALSE

NOT UNKNOWN

Conjunction (AND)

Operation

TRUE AND TRUE

TRUE AND FALSE
TRUE AND UNKNOWN
FALSE AND TRUE
FALSE AND FALSE
FALSE AND UNKNOWN
UNKNOWN AND TRUE
UNKNOWN AND FALSE

UNKNOWN AND UNKNOWN

Result

FALSE

TRUE

UNKNOWN

Result

TRUE

FALSE

UNKNOWN

FALSE

FALSE

FALSE

UNKNOWN

FALSE

UNKNOWN

Logical Operators

24

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Disjunction (OR)

Operation Result
TRUE OR TRUE TRUE
TRUE OR FALSE TRUE
TRUE OR UNKNOWN TRUE
FALSE OR TRUE TRUE
FALSE OR FALSE FALSE
FALSE OR UNKNOWN UNKNOWN
UNKNOWN OR TRUE TRUE
UNKNOWN OR FALSE UNKNOWN
UNKNOWN OR UNKNOWN UNKNOWN

Assertion (IS)

Operation Result
TRUE IS TRUE TRUE

TRUE IS FALSE FALSE
TRUE IS UNKNOWN FALSE
FALSE IS TRUE FALSE
FALSE IS FALSE TRUE

FALSE IS UNKNOWN FALSE
UNKNOWN IS TRUE FALSE
UNKNOWN IS FALSE FALSE

Logical Operators 25

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Operation

UNKNOWN IS UNKNOWN

IS NOT UNKNOWN

Operation

TRUE IS NOT UNKNOWN

FALSE IS NOT UNKNOWN

UNKNOWN IS NOT UNKNOWN

Result

TRUE

Result

TRUE

TRUE

FALSE

IS NOT UNKNOWN is a special operator in and of itself. The expression "x IS NOT UNKNOWN" is
equivalent to "(x IS TRUE) OR (x IS FALSE)", not "x IS (NOT UNKNOWN)". Thus, substituting in the

table above:

TRUE

FALSE

UNKNOWN

Operation

TRUE IS NOT
UNKNOWN

FALSE IS NOT
UNKNOWN

UNKNOWN IS
NOT UNKNOWN

Result

TRUE becomes
TRUE becomes
FALSE becomes

Result of

substituting for
x in "(x IS TRUE)
OR (x IS FALSE)"

"(TRUE IS TRUE)
OR (TRUE IS
FALSE)" -- hence
TRUE

"(FALSE IS TRUE)
OR (FALSE IS
FALSE)" -- hence
TRUE

"(UNKNOWN
IS TRUE) OR
(UNKNOWN IS

Logical Operators

26

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

X Operation Result

Result of

substituting for
x in "(x IS TRUE)
OR (x IS FALSE)"

FALSE)" -- hence
FALSE,

since UNKNOWN
is neither TRUE
not FALSE

Since IS NOT UNKNOWN is a special operator, the operations above are not transitive around the

word IS:

Operation
NOT UNKNOWN IS TRUE
NOT UNKNOWN IS FALSE

NOT UNKNOWN IS UNKNOWN

IS NULL and IS NOT NULL

Operation

UNKNOWN IS NULL
UNKNOWN IS NOT NULL
NULL IS NULL

NULL IS NOT NULL

Result

FALSE

FALSE

TRUE

Result

TRUE

FALSE

TRUE

FALSE

Logical Operators

27

Amazon Kinesis Data Analytics SQL Reference SQL Reference

IS DISTINCT FROM and IS NOT DISTINCT FROM

Operation Result
UNKNOWN IS DISTINCT FROM TRUE TRUE
UNKNOWN IS DISTINCT FROM FALSE TRUE
UNKNOWN IS DISTINCT FROM UNKNOWN FALSE
UNKNOWN IS NOT DISTINCT FROM TRUE FALSE
UNKNOWN IS NOT DISTINCT FROM FALSE FALSE
UNKNOWN IS NOT DISTINCT FROM TRUE
UNKNOWN

Informally, "x IS DISTINCT FROM y" is similar to "x <> y", except that it is true even when either x or
y (but not both) is NULL. DISTINCT FROM is the opposite of identical, whose usual meaning is that
a value (true, false, or unknown) is identical to itself, and distinct from every other value. The IS
and IS NOT operators treat UNKOWN in a special way, because it represents "maybe TRUE, maybe
FALSE".

Other Logical Operators

For all other operators, passing a NULL or UNKNOWN operand will cause the result to be
UNKNOWN (which is the same as NULL).

Examples
Operation Result
TRUE AND CAST(NULL AS BOOLEAN) UNKNOWN
FALSE AND CAST(NULL AS BOOLEAN) FALSE
1>2 FALSE
1<2 TRUE

Logical Operators 28

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Operation Result
'foo' = 'bar’ FALSE
'foo' <> 'bar’ TRUE
'foo' <= 'bar' FALSE
'foo' <= 'bar’ TRUE
3 BETWEEN 1 AND 5 TRUE
1 BETWEEN 3 AND 5 FALSE
3 BETWEEN 3 AND 5 TRUE
5 BETWEEN 3 AND 5 TRUE
1 1S DISTINCT FROM 1.0 FALSE
CAST(NULL AS INTEGER) IS NOT DISTINCT TRUE

FROM CAST (NULL AS INTEGER)

Expressions and Literals

Value expressions

Value expressions are defined by the following syntax:

value-expression := <character-expression > | <number-expression> | <datetime-

expression> | <interval-expression> | <boolean-expression>

Character (string) expressions

Character expressions are defined by the following syntax:

character-expression := <character-literal>
| <character-expression> || <character-expression>
| <character-function> (<parameters>)

character-literal := <quote> { <character> }* <quote>

Expressions and Literals

29

Amazon Kinesis Data Analytics SQL Reference SQL Reference

string-literal := <quote> { <character> }* <quote>
character-function 1= CAST | COALESCE | CURRENT_PATH
| FIRST_VALUE | INITCAP | LAST_VALUE
| LOWER | MAX | MIN | NULLIF
| OVERLAY | SUBSTRING| SYSTEM_USER
| TRIM | UPPER
| <user-defined-function>

Note that Amazon Kinesis Data Analytics streaming SQL supports unicode character literals, such
as u&'foo'. As in the use of regular literals, you can escape single quotes in these, such as u&'can"t'.
Unlike regular literals, you can have unicode escapes: e.g., u&'\0009' is a string consisting only

of a tab character. You can escape a \ with another \, such as u&'back\\slash'. Amazon Kinesis
Data Analytics also supports alternate escape characters, such as u&'0009!!" uescape " is a tab
character.

Numeric expressions

Numeric expressions are defined by the following syntax:

number-expression := <number-literal>
| <number-unary-oper> <number-expression>
| <number-expression> <number-operator> <number-expression>
| <number-function> [(<parameters>)]
number-literal := <UNSIGNED_INTEGER_LITERAL> | <DECIMAL_NUMERIC_LITERAL>
| <APPROX_NUMERIC_LITERAL>

--Note: An <APPROX_NUMERIC_LITERAL> is a number in scientific notation, such as with
an

--exponent, such as le2 or -1.5E-6.

number-unary-oper := + | -

number-operator 1= + |1 -1/71*

number-function ABS | AVG | CAST | CEIL
CEILING | CHAR_LENGTH
CHARACTER_LENGTH | COALESCE
COUNT | EXP | EXTRACT
FIRST_VALUE

FLOOR | LAST_VALUE

LN | LOG10
MAX | MIN | MOD
NULLIF

Expressions and Literals 30

Amazon Kinesis Data Analytics SQL Reference SQL Reference

| POSITION | POWER
| SUM| <user-defined-function>

Date / Time expressions

Date / Time expressions are defined by the following syntax:

datetime-expression := <datetime-literal>

| <datetime-expression> [+ | -] <number-expression>

| <datetime-function> [(<parameters>)]
<left_brace> { <character-literal> } * <right_brace>

| <DATE> { <character-literal> } *

| <TIME> { <character-literal> } *

| <TIMESTAMP> { <character-literal> } *

CAST | CEIL | CEILING

| CURRENT_DATE | CURRENT_ROW_TIMESTAMP

| CURRENT_ROW_TIMESTAMP
| FIRST_VALUE| FLOOR
I
I
I

datetime-literal

datetime-function

LAST_VALUE | LOCALTIME
LOCALTIMESTAMP | MAX | MIN
NULLIF | ROWTIME
| <user-defined-function>
YEAR | MONTH | DAY | HOUR | MINUTE | SECOND

<time unit>

Interval Expression

Interval expressions are defined by the following syntax:

interval-expression := <interval-literal>
| <interval-function>
interval-literal = <INTERVAL> (<MINUS> | <PLUS>) <QUOTED_STRING>
<IntervalQualifier>
IntervalQualifier := <YEAR> (<UNSIGNED_INTEGER_LITERAL>)

| <YEAR> (<UNSIGNED_INTEGER_LITERAL>) <TO> <MONTH>
| <MONTH> [(<UNSIGNED_INTEGER_LITERAL>)]
| <DAY> [(<UNSIGNED_INTEGER_LITERAL>)]
| <DAY> [(<UNSIGNED_INTEGER_LITERAL>)] <TO>
{ <HOUR> | <MINUTE> | <SECOND>
[(<UNSIGNED_INTEGER_LITERAL>)] }
| <HOUR> [(<UNSIGNED_INTEGER_LITERAL>)]
| <HOUR> [(<UNSIGNED_INTEGER_LITERAL>)] <TO>
{ <MINUTE> | <SECOND>
[<UNSIGNED_INTEGER_LITERAL>] }

Expressions and Literals 31

Amazon Kinesis Data Analytics SQL Reference SQL Reference

| <MINUTE> [(<UNSIGNED_INTEGER_LITERAL>)]
| <MINUTE> [(<UNSIGNED_INTEGER_LITERAL>)] <TO>
<SECOND> [(<UNSIGNED_INTEGER_LITERAL>)]
| <SECOND> [(<UNSIGNED_INTEGER_LITERAL>)]
ABS | CAST | FIRST_VALUE
| LAST_VALUE | MAX | MIN
| NULLIF| <user-defined-function>

interval-function

Boolean expression

Boolean expressions are defined by the following syntax:

boolean-expression := <boolean-literal>
| <boolean-expression> <boolean-operator> <boolean-expression>
| <boolean-unary-oper> <boolean-expression>
| <boolean-function> (<parameters>)
| (<boolean-expression>)

boolean-literal = TRUE | FALSE
boolean-operator = AND | OR
boolean-unary-oper := NOT

boolean-function CAST | FIRST_VALUE | LAST_VALUE

| NULLIF | <user-defined-function>

Monotonic Expressions and Operators

Since Amazon Kinesis Data Analytics queries operate on infinite streams of rows, some operations
are only possible if something is known about those streams.

For example, given a stream of orders, it makes sense to ask for a stream summarizing orders by
day and product (because day is increasing) but not to ask for a stream summarizing orders by
product and shipping state. We can never complete the summary of, say Widget X to Oregon,
because we never see the 'last' order of a Widget to Oregon.

This property, of a stream being sorted by a particular column or expression, is called monotonicity.
Some time-related definitions:

» Monotonic. An expression is monotonic if it is ascending or descending. An equivalent phrasing is
"non-decreasing or non-increasing."

« Ascending. An expression e is ascending within a stream if the value of e for a given row is
always greater than or equal to the value in the previous row.

Monotonic Expressions and Operators 32

Amazon Kinesis Data Analytics SQL Reference SQL Reference

» Descending. An expression e is descending within a stream if the value of e for a given row is
always less than or equal to the value in the previous row.

« Strictly Ascending. An expression e is strictly ascending within a stream if for the value of e for a
given row is always greater than the value in the previous row.

 Strictly Descending. An expression e is strictly descending within a stream if the value of e for a
given row is always less than the value in the previous row.

« Constant. An expression e is constant within a stream if the value of e for a given row is always
equal to the value in the previous row.

Note that by this definition, a constant expression is considered monotonic.

Monotonic columns

The ROWTIME system column is ascending. The ROWTIME column is not strictly ascending: it is
acceptable for consecutive rows to have the same timestamp.

Amazon Kinesis Data Analytics prevents a client from inserting a row into a stream whose
timestamp is less than the previous row it wrote into the stream. Amazon Kinesis Data Analytics
also ensures that if multiple clients are inserting rows into the same stream, the rows are merged
so that the ROWTIME column is ascending.

Clearly it would be useful to assert, for instance, that the orderld column is ascending; or that
no orderld is ever more than 100 rows from sorted order. However, declared sort keys are not
supported in the current release.

Monotonic expressions

Amazon Kinesis Data Analytics can deduce that an expression is monotonic if it knows that its
arguments are monotonic. (See also the Monotonic Function.)

Another definition:
Functions or operators that are monotonic

A function or operator is monotonic if, when applied to a strictly increasing sequence of values, it
yields a monotonic sequence of results.

For example, the FLOOR function, when applied to the ascending inputs {1.5, 3, 5, 5.8, 6.3}, yields
{1, 3,5, 5, 6}. Note that the input is strictly ascending, but the output is merely ascending (includes
duplicate values).

Monotonic columns 33

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Rules for deducing monotonicity

Amazon Kinesis Data Analytics requires that one or more grouping expressions are valid in order

for a streaming GROUP BY statement to be valid. In other cases, Amazon Kinesis Data Analytics

may be able to operate more efficiently if it knows about monotonicity; for example it may be able

to remove entries from a table of windowed aggregate totals if it knows that a particular key will

never be seen on the stream again.

In order to exploit monotonicity in this way, Amazon Kinesis Data Analytics uses a set of rules for
deducing the monotonicity of an expression. Here are the rules for deducing monotonicity:

Expression

FLOOR(m)

CEIL / CEILING(m)

CEIL / CEILING(m TO timeUnit)

FLOOR(m TO timeUnit)
SUBSTRING(m FROM 0 FOR ¢)

+m

Monotonicity

Constant

Same as m, but not strict
Same as m, but not strict
Same as m, but not strict
Same as m, but not strict
Same as m, but not strict
Same as m

Reverse of m

Same as m

Same as m1, if m1 and m2 have same
direction;

otherwise not monotonic
Reverse of m

Same as m if c is positive;

Rules for deducing monotonicity

34

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Expression Monotonicity
c*m reverse of m is c is negative; constant (0) cis O
c/m Same as m if m is always positive or always

negative, and c and m have same sign;

reverse of m if m is always positive or always
negative, and c and m have different sign;

otherwise not monotonic
Constant
LOCALTIME Ascending

LOCALTIMESTAMP

CURRENT_ROW_TIMESTAMP

CURRENT_DATE

Throughout the table, c is a constant, and m (also m1 and m2) is a monotonic expression.

Condition Clause

Referenced by:

e SELECT clauses: HAVING clause, WHERE clause, and JOIN clause. (See also the SELECT chart and
its SELECT clause.)

o DELETE

A condition is any value expression of type BOOLEAN, such as the following examples:

e 2<4

TRUE

FALSE

expr_17 1S NULL

Condition Clause 35

Amazon Kinesis Data Analytics SQL Reference SQL Reference

o NOT expr_19 IS NULL AND expr_23 < expr>29
o expr_17 IS NULL OR (NOT expr_19 IS NULL AND expr_23 < expr>29)

Temporal Predicates

The following table shows a graphic representation of temporal predicates supported by standard
SQL and extensions to the SQL standard supported by Amazon Kinesis Data Analytics. It shows the
relationships that each predicate covers. Each relationship is represented as an upper interval and a
lower interval with the combined meaning upperinterval predicate lowerinterval evaluates to TRUE.
The first 7 predicates are standard SQL. The last 10 predicates, shown in bold text, are Amazon
Kinesis Data Analytics extensions to the SQL standard.

Pre Covered Relationships

SU(— —|
LY
PRE
LY
SU(

Temporal Predicates 36

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Pre Covered Relationships

COl

STF
ov

PRI

SU(

STF
LE/

STF
LAC

IMP
LY
LE/

IM?
LY
LAC

To enable concise expressions, Amazon Kinesis Data Analytics also supports the following
extensions:

« Optional PERIOD keyword — The PERIOD keyword can be omitted.

« Compact chaining - If two of these predicates occur back to back, separated by an AND, the
AND can be omitted provided that the right interval of the first predicate is identical to the left
interval of the second predicate.

« TSDIFF - This function takes two TIMESTAMP arguments and returns their difference in
milliseconds.

Temporal Predicates 37

Amazon Kinesis Data Analytics SQL Reference SQL Reference

For example, you can write the following expression:

PERIOD (sl,el) PRECEDES PERIOD(s2,e2)
AND PERIOD(s2, e2) PRECEDES PERIOD(s3,e3)

More concisely as follows:

(s1,el) PRECEDES (s2,e2) PRECEDES PERIOD(s3,e3)

The following concise expression:

TSDIFF(s,e)

Means the following:

CAST((e - s) SECOND(1@, 3) * 1000 AS BIGINT)

Finally, standard SQL allows the CONTAINS predicate to take a single TIMESTAMP as its right-hand
argument. For example, the following expression:

PERIOD(s, e) CONTAINS t

Is equivalent to the following:

s <=t AND t < e

Syntax

Temporal predicates are integrated into a new BOOLEAN valued expression:

<period-expression> :=
<left-period> <half-period-predicate> <right-period>

<half-period-predicate> :=
<period-predicate> [<left-period> <half-period-predicate>]

<period-predicate> :=
EQUALS
| [STRICTLY] CONTAINS
| [STRICTLY] OVERLAPS

Syntax 38

Amazon Kinesis Data Analytics SQL Reference SQL Reference

| [STRICTLY | IMMEDIATELY] PRECEDES
| [STRICTLY | IMMEDIATELY] SUCCEEDS
| [STRICTLY | IMMEDIATELY] LEADS
| [STRICTLY | IMMEDIATELY] LAGS
<left-period> := <bounded-period>
<right-period> := <bounded-period> | <timestamp-expression>

<bounded-period> := [PERIOD] (<start-time>, <end-time>)
<start-time> := <timestamp-expression>
<end-time> := <timestamp-expression>

<timestamp-expression> :=
an expression which evaluates to a TIMESTAMP value

where <right-period> may evaluate to a <timestamp-expression> only if
the immediately preceding <period-predicate> is [STRICTLY] CONTAINS

This Boolean expression is supported by the following builtin function:

BIGINT tsdiff(startTime TIMESTAMP, endTime TIMESTAMP)

Returns the value of (endTime - startTime) in milliseconds.

Example

The following example code records an alarm if a window is open while the air conditioning is on:

create or replace pump alarmPump stopped as
insert into alarmStream(houseID, roomID, alarmTime, alarmMessage)
select stream w.houseID, w.roomID, current_timestamp,
'Window open while air conditioner is on.'

from

windowIsOpenEvents over (range interval 'l' minute preceding) w
join

acIsOnEvents over (range interval 'l' minute preceding) h
on w.houseID = h.houselID
where (h.startTime, h.endTime) overlaps (w.startTime, w.endTime);

Example 39

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Sample Use Case

The following query uses a temporal predicate to raise a fraud alarm when two people try to use
the same credit card simultaneously at two different locations:

create pump creditCardFraudPump stopped as
insert into alarmStream
select stream
current_timestamp, creditCardNumber, registerIDl, registerID2
from transactionsPerCreditCard
where registerIDl <> registerID2
and (startTimel, endTimel) overlaps (startTime2, endTime2)

The preceding code example uses an input stream with the following dataset:

(current_timestamp TIMESTAMP,
creditCardNumber VARCHAR(16),

registerIDl VARCHAR(16),
registerID2 VARCHAR(16),
startTimel TIMESTAMP,
endTimel TIMESTAMP,
startTime2 TIMESTAMP,
endTime2 TIMESTAMP)

Reserved Words and Keywords

Reserved Words

The following is a list of reserved words in Amazon Kinesis Data Analytics applications as of version

5.0.1.
A
ABS ALL ALLOCATE
ALLOW ALTER ANALYZE

Sample Use Case

40

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

AND
ARE
ASENSITIVE

ATOMIC

BEGIN
BINARY

BOOLEAN

CALL
CASCADED
CEIL
CHARACTER
CHECK
CLOSE
COLLATE
COMMIT
CONSTRAINT
CORRESPONDING
COVAR_SAMP

CUBE

ANY

ARRAY

ASYMMETRIC

AUTHORIZATION
B

BETWEEN

BIT

BOTH

CALLED

CASE
CEILING
CHARACTER_LENGTH
CHECKPOINT
CLUSTERED
COLLECT
CONDITION
CONVERT
COUNT
CREATE

CUME_DIST

APPROXIMATE_ARRIVAL_TIME
AS
AT

AVG

BIGINT
BLOB

BY

CARDINALITY
CAST

CHAR
CHAR_LENGTH
CLOB
COALESCE
COLUMN
CONNECT
CORR
COVAR_POP
CROSS

CURRENT

Reserved Words and Keywords

41

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

CURRENT_CATALOG

CURRENT_PATH

CURRENT_TIME

CURRENT_USER

DATE

DEC
DEFAULT
DEREF
DISALLOW

DOUBLE

EACH
END
EVERY
EXECUTE
EXPLAIN

EXTRACT

FALSE

CURRENT_DATE

CURRENT_ROLE

CURRENT_TIMESTAMP

CURSOR

DAY

DECIMAL

DELETE

DESCRIBE

DISCONNECT

DROP

ELEMENT

END-EXEC

EXCEPT

EXISTS

EXP_AVG

FETCH

CURRENT_DEFAULT_TR

ANSFORM_GROUP

CURRENT_SCHEMA

CURRENT_TRANSFORM_

GROUP_FOR_TYPE

CYCLE

DEALLOCATE
DECLARE
DENSE_RANK
DETERMINISTIC
DISTINCT

DYNAMIC

ELSE
ESCAPE
EXEC
EXP

EXTERNAL

FILTER

Reserved Words and Keywords

42

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

FIRST_VALUE
FOR
FROM

FUSION

GET

GROUP

HAVING

IDENTITY
IN

INNER
INSERT
INTERSECT

INTO

JOIN

LANGUAGE

LATERAL

FLOAT

FOREIGN

FULL

GLOBAL

GROUPING

HOLD

IGNORE

INDICATOR

INOUT

INT

INTERSECTION

IS

LARGE

LEADING

FLOOR
FREE

FUNCTION

GRANT

HOUR

IMPORT
INITCAP
INSENSITIVE
INTEGER

INTERVAL

LAST_VALUE

LEFT

Reserved Words and Keywords

43

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

LIKE
LOCAL

LOWER

MATCH
MERGE
MINUTE

MODULE

NATIONAL
NCLOB
NODE
NOT

NULLIF

OCTET_LENGTH
ON

OR

OUTER

OVERLAY

LIMIT

LOCALTIME

MAX

METHOD

MOD

MONTH

NATURAL

NEW

NONE

NTH_VALUE

NUMERIC

OF

ONLY

ORDER

OVER

LN

LOCALTIMESTAMP

MEMBER

MIN

MODIFIES

MULTISET

NCHAR

NO

NORMALIZE

NULL

OLD

OPEN

ouT

OVERLAPS

Reserved Words and Keywords

44

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

PARAMETER
PARTITION_KEY
PERCENT_RANK
PRECISION

PROCEDURE

RANGE

REAL
REFERENCES
REGR_AVGY
REGR_R2
REGR_SXY
RESULT
REVOKE
ROLLUP

ROWTIME

SAVEPOINT
SEARCH
SENSITIVE

SET

PARTITION
PERCENTILE_CONT
POSITION

PREPARE

RANK
RECURSIVE
REFERENCING
REGR_COUNT
REGR_SLOPE
RELEASE
RETURN
RIGHT

ROW

ROW_NUMBER

SCOPE

SECOND

SEQUENCE_NUMBER

SHARD_ID

PARTITION_ID
PERCENTILE_DISC
POWER

PRIMARY

READS

REF

REGR_AVGX
REGR_INTERCEPT
REGR_SXX
RESPECT
RETURNS
ROLLBACK

ROWS

SCROLL
SELECT
SESSION_USER

SIMILAR

Reserved Words and Keywords

45

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

SMALLINT
SPECIFIC
SQLSTATE
START
STDDEV_POP
STREAM

SUM

SYSTEM_USER

TABLE

TIME
TIMEZONE_MINUTE
TRAILING

TREAT

TRUE

UESCAPE

UNKNOWN

UPPER

VALUE

SOME

SQL
SQLWARNING
STATIC
STDDEV_SAMP
SUBMULTISET

SYMMETRIC

TABLESAMPLE
TIMESTAMP
TINYINT
TRANSLATE
TRIGGER

TRUNCATE

UNION

UNNEST

USER

VALUES

SORT
SQLEXCEPTION
SQRT

STDDEV

STOP
SUBSTRING

SYSTEM

THEN
TIMEZONE_HOUR
TO

TRANSLATION

TRIM

UNIQUE
UPDATE

USING

VARBINARY

Reserved Words and Keywords

46

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

VARCHAR

VAR_SAMP

WHEN

WIDTH_BUCKET

WITHIN

YEAR

VARYING

WHENEVER

WINDOW

WITHOUT

VAR_POP

WHERE

WITH

Reserved Words and Keywords

47

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Standard SQL Operators

The following topics discuss standard SQL operators:

Topics

« CREATE statements

o INSERT

e Query
e SELECT statement

CREATE statements

You can use the following CREATE statements with Amazon Kinesis Data Analytics:

« CREATE FUNCTION

« CREATE PUMP

o CREATE STREAM

CREATE STREAM

The CREATE STREAM statement creates a (local) stream. The name of the stream must be distinct
from the name of any other stream in the same schema. It is good practice to include a description
of the stream.

Like tables, streams have columns, and you specify the data types for these in the CREATE STREAM
statement. These should map to the data source for which you are creating the stream. For
column_name, any valid non-reserved SQL name is usable. Column values cannot be null.

 Specifying OR REPLACE re-creates the stream if it already exists, enabling a definition change
for an existing object, implicitly dropping it without first needing to use a DRP command. Using
CREATE OR REPLACE on a stream that already has data in flight kills the stream and loses all
history.

« RENAME can be specified only if OR REPLACE has been specified.

CREATE statements 48

Amazon Kinesis Data Analytics SQL Reference SQL Reference

» For the complete list of types and values in type_specification, such as TIMESTAMP, INTEGER, or
varchar(2), see the topic Amazon Kinesis Data Analytics Data Types in the Amazon Kinesis Data
Analytics SQL Reference Guide.

« For option_value, any string can be used.

Simple stream for unparsed log data

CREATE OR REPLACE STREAM logStream (
source VARCHAR(20),
message VARCHAR(3072))
DESCRIPTION 'Head of webwatcher stream processing';

Stream capturing sensor data from Intelligent Travel System pipeline

CREATE OR REPLACE STREAM "LaneData" (
-- ROWTIME is time at which sensor data collected
LDS_ID INTEGER, -- loop-detector ID
LNAME VARCHAR(12),
LNUM VARCHAR(4),
0CC SMALLINT,
VOL SMALLINT,
SPEED DECIMAL(4,2)
) DESCRIPTION 'Conditioned LaneData for analysis queries';

Stream capturing order data from e-commerce pipeline

CREATE OR REPLACE STREAM "OrderData" (

"key_order" BIGINT NOT NULL,
"key_user" BIGINT,
"country" SMALLINT,
"key_product" INTEGER,
"quantity" SMALLINT,

"eur" DECIMAL(19,5),
"usd" DECIMAL(19,5)

) DESCRIPTION 'conditioned order data, ready for analysis';

CREATE STREAM 49

Amazon Kinesis Data Analytics SQL Reference SQL Reference

CREATE FUNCTION

Amazon Kinesis Data Analytics provides a number of Functions, and also allows users to extend its
capabilities by means of user-defined functions (UDFs). Amazon Kinesis Data Analytics supports
UDFs defined in SQL only.

User-defined functions may be invoked using either the fully-qualified name or by the function
name alone.

Values passed to (or returned from) a user-defined function or transformation must be exactly the
same data types as the corresponding parameter definitions. In other words, implicit casting is not
allowed in passing parameters to (or returning values from) a user-defined function.

User-Defined Function (UDF)

A user-defined function can implement complex calculations, taking zero or more scalar
parameters and returning a scalar result. UDFs operate like built-in functions such as FLOOR() or
LOWER(). For each occurrence of a user-defined function within a SQL statement, that UDF is called
once per row with scalar parameters: constants or column values in that row.

Syntax

CREATE FUNCTION ''<function_name>'"' (''<parameter_list>'"')
RETURNS ''<data type>''

LANGUAGE SQL

[SPECIFIC ''<specific_function_name>'"' | [NOT] DETERMINISTIC]
CONTAINS SQL

[READS SQL DATA]

[MODIFIES SQL DATA]

[RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT]

RETURN ''<SQL-defined function body>""'

SPECIFIC assigns a specific function name that is unique within the application. Note that the
regular function name does not need to be unique (two or more functions may share the same
name, as long as they are distinguishable by their parameter list).

DETERMINISTIC / NOT DETERMINISTIC indicates whether a function will always return the
same result for a given set of parameter values. This may be used by your application for query
optimization.

CREATE FUNCTION 50

Amazon Kinesis Data Analytics SQL Reference SQL Reference

READS SQL DATA and MODIFIES SQL DATA indicate whether the function potentially reads or
modifies SQL data, respectively. If a function attempts to read data from tables or streams without
READS SQL DATA being specified, or insert to a stream or modify a table without MODIFIES SQL
DATA being specified, an exception will be raised.

RETURNS NULL ON NULL INPUT and CALLED ON NULL INPUT indicate whether the function is
defined as returning null if any of its parameters are null. If left unspecified, the default is CALLED
ON NULL INPUT.

A SQL-defined function body consists only of a single RETURN statement.

Examples

CREATE FUNCTION get_fraction(degrees DOUBLE)
RETURNS DOUBLE
CONTAINS SQL
RETURN degrees - FLOOR(degrees)

CREATE PUMP

A pump is an Amazon Kinesis Data Analytics Repository Object (an extension of the SQL standard)
that provides a continuously running INSERT INTO stream SELECT ... FROM query functionality,
thereby enabling the results of a query to be continuously entered into a named stream.

You need to specify a column list for both the query and the named stream (these imply a set of
source-target pairs). The column lists need to match in terms of datatype, or the SQL validator will
reject them. (These need not list all columns in the target stream; you can set up a pump for one
column.)

For more information, see SELECT statement.

The following code first creates and sets a schema, then creates two streams in this schema:

» "OrderDataWithCreateTime" which will serve as the origin stream for the pump.

« "OrderData" which will serve as the destination stream for the pump.

CREATE OR REPLACE STREAM "OrderDataWithCreateTime" (
"key_order" VARCHAR(20),

CREATE PUMP 51

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

"key_user" VARCHAR(20),
"key_billing_country" VARCHAR(20),
"key_product" VARCHAR(20),
"quantity" VARCHAR(20),

"eur" VARCHAR(20),

"usd" VARCHAR(20))

DESCRIPTION 'Creates origin stream for pump';

CREATE OR REPLACE STREAM "OrderData" (
"key_order" VARCHAR(20),

"key_user" VARCHAR(20),

"country" VARCHAR(20),

"key_product" VARCHAR(20),

"quantity" VARCHAR(20),

"eur" INTEGER,

"usd" INTEGER)

DESCRIPTION 'Creates destination stream for pump';

The following code uses these two streams to create a pump. Data is selected from
"OrderDataWithCreateTime" and inserted into "OrderData".

CREATE OR REPLACE PUMP "200-ConditionedOrdersPump" AS

INSERT INTO "OrderData" (
"key_order", "key_user", "country",
"key_product", "quantity", "

SELECT STREAM

"key_order", "key_user", "key_billing_country",

"key_product", "quantity",

FROM "OrderDataWithCreateTime";

eUI", "USd")
//note that this list matches that of the query

eur", "usd"
//note that this list matches that of the insert statement

For more detail, see the topic In-Application Streams and Pumps in the Amazon Managed Service

for Apache Flink Developer Guide.

Syntax

CREATE [OR REPLACE] PUMP <qualified-pump-name>
[DESCRIPTION '<string-literal>'] AS <streaming-insert>

where streaming-insert is an insert statement such as:

CREATE PUMP

52

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/streams-pumps.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

INSERT INTO ''stream-name'' SELECT "columns" FROM <source stream>

INSERT

INSERT is used to insert rows into a stream. It can also be used in a pump to insert the output of
one stream into another.

Syntax

<insert statement> :=
INSERT [EXPEDITED]
INTO <table-name > [(insert-column-specification)]
< query >
<insert-column-specification> := < simple-identifier-list >
<simple-identifier-list> :=
<simple-identifier> [, < simple-identifier-list >]

For a discussion of VALUES, see SELECT statement.

Pump Stream Insert

INSERT may also be specified as part of a CREATE PUMP statement.

CREATE PUMP "HighBidsPump'" AS INSERT INTO "highBids" ("ticker", "shares", "price")
SELECT "ticker", "shares", "price"

FROM SALES.bids

WHERE "shares"*"price">100000

Here the results to be inserted into the "highBids" stream should come from a UNION ALL
expression that evaluates to a stream. This will create a continuously running stream insert.
Rowtimes of the rows inserted will be inherited from the rowtimes of the rows output from the
select or UNION ALL. Again rows may be initially dropped if other inserters, ahead of this inserter,
have inserted rows with rowtimes later than those initially prepared by this inserter, since the latter
would then be out of time order. See the topic CREATE PUMP in this guide.

INSERT 53

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Query

Syntax

<query> :=
<select>
| <query> <set-operator> [ALL] <query>
| VALUES <row-constructor> { , <row-constructor> }...
| "(" <query> ')’
<set-operator> :=
EXCEPT
| INTERSECT
| UNION
<row-constructor> :=
[ROW J (<expression> { , <expression> }...)

select

The select box in the chart above represents any SELECT command; that command is described in
detail on its own page.

Set operators (EXCEPT, INTERSECT, UNION)

Set operators combine rows produced by queries using set operations:

o EXCEPT returns all rows that are in the first set but not in the second
o INTERSECT returns all rows that are in both first and second sets

« UNION returns all rows that are in either set

In all cases, the two sets must have the same number of columns, and the column types must be
assignment-compatible. The column names of the resulting relation are the names of the columns
of the first query.

With the ALL keyword, the operators use the semantics of a mathematical Multiset , meaning that
duplicate rows are not eliminated. For example, if a particular row occurs 5 times in the first set
and 2 times in the second set, then UNION ALL will emit the row 3 + 2 =5 times.

ALL is not currently supported for EXCEPT or INTERSECT.

Query 54

https://en.wikipedia.org/wiki/Multiset

Amazon Kinesis Data Analytics SQL Reference SQL Reference

All operators are left-associative, and INTERSECT has higher precedence than EXCEPT or UNION,
which have the same precedence. To override default precedence, you can use parentheses. For
example:

SELECT * FROM a
UNION

SELECT * FROM b
INTERSECT
SELECT * FROM c
EXCEPT

SELECT * FROM d
EXCEPT

SELECT * FROM E

is equivalent to the fully-parenthesized query

((SELECT * FROM a

UNION
(SELECT * FROM b
INTERSECT
SELECT * FROM c))
EXCEPT
SELECT * FROM d)
EXCEPT

SELECT * FROM e

Streaming set operators

UNION ALL is the only set operator that can be applied to streams. Both sides of the operator must
be streames; it is an error if one side is a stream and the other is a relation.

For example, the following query produces a stream of orders taken over the phone or via the web:

SELECT STREAM *
FROM PhoneOxrders

UNION ALL

SELECT STREAM *
FROM WebOrders

Rowtime generation. The rowtime of a row emitted from streaming UNION ALL is the same as the
timestamp of the input row.

Streaming set operators 55

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Rowtime bounds: A rowtime bound is an assertion about the future contents of a stream. It states
that the next row in the stream will have a ROWTIME no earlier than the value of the bound. For
example, if a rowtime bound is 2018-12-0223:23:07, this tells the system that the next row will
arrive no earlier than 2018-12-0223:23:07. Rowtime bounds are useful in managing gaps in data
flow, such as those left overnight on a stock exchange.

Amazon Kinesis Data Analytics ensures that the ROWTIME column is ascending by merging the
incoming rows on the basis of the time stamp. If the first set has rows that are timestamped 10:00
and 10:30, and the second set has only reached 10:15, Kinesis Data Analytics pauses the first set
and waits for the second set to reach 10:30. In this case, it would be advantageous if the producer
of the second set were to send a rowtime bound.

VALUES operator

The VALUES operator expresses a constant relation in a query. (See also the discussion of VALUES
in the topic SELECT in this guide.)

VALUES can be used as a top-level query, as follows:

VALUES 1 + 2 > 3;
EXPR$0

FALSE
VALUES
(42, 'Fred'),
(34, 'Wilma');
EXPR$@ EXPR$1

42 Fred
34 Wilma

Note that the system has generated arbitrary column names for anonymous expressions. You can
assign column names by putting VALUES into a subquery and using an AS clause:

SELECT *
FROM (
VALUES
(42, 'Fred'),
(34, 'Wilma')) AS t (age, name);
AGE NAME

VALUES operator 56

Amazon Kinesis Data Analytics SQL Reference SQL Reference

42 Fred
34 Wilma

SELECT statement

SELECT retrieves rows from streams. You can use SELECT as a top-level statement, or as part of
a query involving set operations, or as part of another statement, including (for example) when
passed as a query into a UDX. For examples, see the topics INSERT, IN, EXISTS, CREATE PUMP in
this guide.

The subclauses of the SELECT statement are described in the topics SELECT clause, GROUP BY
clause, Streaming GROUP BY, ORDER BY clause, HAVING clause, WINDOW Clause (Sliding Windows)
and WHERE clause in this guide.

Syntax

<select> :=
SELECT [STREAM] [DISTINCT | ALL]
<select-clause>
FROM <from-clause>
<where-clause>]
<group-by-clause>]
<having-clause>]
<window-clause>]
<order-by-clause>]

| s B e B e B e B e |

The STREAM keyword and the principle of streaming SQL

The SQL query language was designed for querying stored relations, and producing finite relational
results.

The foundation of streaming SQL is the STREAM keyword, which tells the system to compute the
time differential of a relation. The time differential of a relation is the change of the relation with
respect to time. A streaming query computes the change in a relation with respect to time, or the
change in an expression computed from several relations.

To ask for the time-differential of a relation in Amazon Kinesis Data Analytics, we use the STREAM
keyword:

SELECT statement 57

Amazon Kinesis Data Analytics SQL Reference SQL Reference

SELECT STREAM * FROM Orders

If we start running that query at 10:00, it will produce rows at 10:15 and 10:25. At 10:30 the query
is still running, waiting for future orders:

ROWTIME orderId custName product quantity

10:15:00 102 Ivy Black Rice 6
10:25:00 103 John Wu Apples 3

Here, the system is saying 'At 10:15:00 | executed the query SELECT * FROM Orders and found

one row in the result that was not present at 10:14:59.999'. It generates the row with a value of
10:15:00 in the ROWTIME column because that is when the row appeared. This is the core idea of a
stream: a relation that keeps updating over time.

You can apply this definition to more complicated queries. For example, the stream

SELECT STREAM * FROM Orders WHERE quantity > 5

has a row at 10:15 but no row at 10:25, because the relation

SELECT * FROM Orders WHERE quantity > 5

goes from empty to one row when order 102 is placed at 10:15, but is not affected when order 103
is placed at 10:25.

We can apply the same logic to queries involving any combination of SQL operators. Queries
involving JOIN, GROUP BY, subqueries, set operations UNION, INTERSECT, EXCEPT, and even
qualifiers such as IN and EXISTS, are well-defined when converted to streams. Queries combining
streams and stored relations are also well-defined.

SELECT ALL and SELECT DISTINCT

If the ALL keyword is specified, the query does not eliminate duplicate rows. This is the default
behavior if neither ALL nor DISTINCT is specified.

If the DISTINCT keyword is specified, a query eliminates rows that are duplicates according to the
columns in the SELECT clause.

SELECT ALL and SELECT DISTINCT 58

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Note that for these purposes, the value NULL is considered equal to itself and not equal to any
other value. These are the same semantics as for GROUP BY and the IS NOT DISTINCT FROM
operator.

Streaming SELECT DISTINCT

SELECT DISTINCT can be used with streaming queries as long as there is a non-constant monotonic
expression in the SELECT clause. (The rationale for the non-constant monotonic expression is the
same as for streaming GROUP BY.) Amazon Kinesis Data Analytics emits rows for SELECT DISTINCT
as soon as they are ready.

If ROWTIME is one of the columns in the SELECT clause, it is ignored for the purposes of duplicate-
elimination. Duplicates are eliminated on the basis of the other columns in the SELECT clause.

For example:

SELECT STREAM DISTINCT ROWTIME, prodId, FLOOR(Orders.ROWTIME TO DAY)
FROM Orders

displays the set of unique products that are ordered in any given day.

If you are doing "GROUP BY floor(ROWTIME TO MINUTE)" and there are two rows in a given minute
-- say 22:49:10 and 22:49:15 -- then the summary of those rows is going to come out timestamped
22:50:00. Why? Because that is the earliest time that row is complete.

Note: "GROUP BY ceil(ROWTIME TO MINUTE)" or "GROUP BY floor(ROWTIME TO MINUTE) -
INTERVAL '1' DAY" would give identical behavior.

It is not the value of the grouping expression that determines row completion, it's when that
expression changes value.

If you want the rowtimes of the output rows to be the time they are emitted, then in the following
example you would need to change from form 1 to use form 2 instead:

(Form 1)
select distinct floor(s.rowtime to hour), a,b,c
from s
(Form 2)
select min(s.rowtime) as rowtime, floor(s.rowtime to hour), a, b, c
from s
group by floor(s.rowtime to hour), a, b, c

SELECT ALL and SELECT DISTINCT 59

Amazon Kinesis Data Analytics SQL Reference SQL Reference

SELECT clause

The <select-clause> uses the following items after the STREAM keyword:

<select-list> :=

<select-item> { , <select-item> }...
<select-item> :=

<select-expression> [[AS] <simple-identifier>]
<simple-identifier> :=

<identifier> | <quoted-identifier>
<select-expression> :=

<identifier> . * | * | <expression>

Expressions
Each of these expressions may be:

a scalar expression

a call to an Aggregate Functions, if this is an aggregating query (see GROUP BY clause)

a call to an Analytic Functions, if this is not an aggregating query

the wildcard expression * expands to all columns of all relations in the FROM clause

the wildcard expression alias.* expands to all columns of the relation named alias
the ROWTIME

a CASE expression

Each expression may be assigned an alias, using the AS column_name syntax. This is the name of
the column in the result set of this query. If this query is in the FROM clause of an enclosing query,
this will be the name that will be used to reference the column. The number of columns specified
in the AS clause of a stream reference must match the number of columns defined in the original
stream.

Amazon Kinesis Data Analytics has a few simple rules to derive the alias of an expression that does
not have an alias. The default alias of a column expression is the name of the column: for example,
EMPS.DEPTNO is aliased DEPTNO by default. Other expressions are given an alias like EXPR$0. You
should not assume that the system will generate the same alias each time.

In a streaming query, aliasing a column AS ROWTIME has a special meaning: For more information,
see ROWTIME.

SELECT clause 60

Amazon Kinesis Data Analytics SQL Reference SQL Reference

® Note

All streams have an implicit column called ROWTIME. This column may impact your use of
the syntax 'AS t(c1, c2, ...)' that is now supported by SQL:2008. Previously in a FROM clause
you could only write

SELECT ... FROM rl1 AS t1 JOIN r2 as t2

but t1 and t2 would have the same columns as r1 and t2. The AS syntax enables you to rename r1's
columns by writing the following:

SELECT ... FROM rl AS tl(a, b, c)

(r1 must have precisely 3 columns for this syntax to work).

If r1 is a stream, then ROWTIME is implicitly included, but it doesn't count as a column. As a result,
if a stream has 3 columns without including ROWTIME, you cannot rename ROWTIME by specifying
4 columns. For example, if the stream Bids has three columns, the following code is invalid.

SELECT STREAM * FROM Bids (a, b, c, d)
It is also invalid to rename another column ROWTIME, as in the following example.

SELECT STREAM * FROM Bids (ROWTIME, a, b)

because that would imply renaming another column to ROWTIME. For more information about
expressions and literals, see Expressions and Literals.

CASE expression

The CASE expression enables you to specify a set of discrete test expressions and a specific return-
value (expression) for each such test. Each test expression is specified in a WHEN clause; each
return-value expression is specified in the corresponding THEN clause. Multiple such WHEN-THEN
pairs can be specified.

If you specify a comparison-test-expression before the first WHEN clause, then each expression
in @ WHEN clause is compared to that comparison-test-expression. The first one to match the

SELECT clause 61

Amazon Kinesis Data Analytics SQL Reference SQL Reference

comparison-test-expression causes the return-value from its corresponding THEN clause to be
returned. If no WHEN clause expression matches the comparison-test-expression, the return-
value is null unless an ELSE clause is specified, in which case the return-value in that ELSE clause is
returned.

If you do not specify a comparison-test-expression before the first WHEN clause, then each
expression in @ WHEN clause is evaluated (left to right) and the first one to be true causes the
return-value from its corresponding THEN clause to be returned. If no WHEN clause expression is
true, the return-value is null unless an ELSE clause is specified, in which case the return-value in
that ELSE clause is returned.

VALUES

VALUES uses expressions to calculate one or more row values, and is often used within a larger
command. When creating more than one row, the VALUES clause must specify the same number

of elements for every row. The resulting table-columns data-types are derived from the explicit

or inferred types of the expressions appearing in that column. VALUES is allowed syntactically
wherever SELECT is permitted. See also the discussion of VALUES as an operator, in the topic Query

in this guide.
SYNTAX
VALUES (expression [, ...1) [, ...]
[ORDER BY sort_expression [ASC | DESC | USING operator] [, ...]1 1]

VALUES is a SQL operator, on a par with SELECT and UNION, enabling the following types of
actions:

» You can write VALUES (1), (2) to return two rows each with a single anonymous column.
« You can write VALUES (1, 'a'), (2, 'b') to return two rows of two columns.

« You can name the columns using AS, as in the following example:

SELECT * FROM (VALUES (1, 'a'), (2, 'b")) AS t(x, y)

The most important use of VALUES is in an INSERT statement, to insert a single row:

INSERT INTO emps (empno, name, deptno, gender)
VALUES (107, 'Jane Costa', 22, 'F');

SELECT clause 62

Amazon Kinesis Data Analytics SQL Reference SQL Reference

However, you can also insert multiple rows:

INSERT INTO Trades (ticker, price, amount)
VALUES ('MSFT', 30.5, 1000),
('ORCL', 20.25, 2000);

When you use VALUES in the FROM clause of a SELECT statement, the entire VALUES clause
must be enclosed in parentheses, consistent with the fact that it operates as a query, not a table
expression. For additional examples, see FROM clause.

® Note

Using INSERT with streams engages some additional considerations as to rowtimes, pumps,
and INSERT EXPEDITED. For more information, see INSERT.

FROM clause
The FROM clause is the source of rows for a query.

<from-clause> :=
FROM <table-reference> { , <table-reference> }...
<table-reference> :=
<table-name> [<table-name>] [<correlation>]
| <joined-table>
<table-name> := <identifier>
<table-over> := OVER <window-specification>
<window-specification> :=
(<window-name>
| <query_partition_clause>
| ORDER BY <order_by_clause>
| <windowing_clause>
)
<windowing-clause> :=
{ ROWS | RANGE }
{ BETWEEN
{ UNBOUNDED PRECEDING
| CURRENT ROW
| <value-expression> { PRECEDING | FOLLOWING }

AND
{ UNBOUNDED FOLLOWING

FROM clause 63

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

| CURRENT ROW

| <value-expression> { PRECEDING | FOLLOWING }
}
| { UNBOUNDED { PRECEDING | FOLLOWING }

| CURRENT ROW

| <value-expression> { PRECEDING | FOLLOWING }

For charts on window-specification and windowing-clause, see the WINDOW Clause (Sliding
Windows) under the Window statement.

<correlation> :=
[AS] <correlation-name> ['(' <column> { , <column> }... ')']
<joined-table> :=
<table-reference> CROSS JOIN <table-reference>
| <table-reference> NATURAL <join-type> JOIN <table-reference>
| <table-reference> <join-type> JOIN <table-reference>

[USING '(' <column> { , <column>}... ')'
| ON <condition>
]
<join-type> :=
INNER

| <outer-join-type> [OUTER]
<outer-join-type> :=
LEFT
| RIGHT
| FULL

Relations

Several types of relation can appear in a FROM clause:

A named relation (table, stream)
A subquery enclosed in parentheses.
A join combining two relations (see the topic JOIN in this guide).

A transform expression.

Subqueries are described in more detail in the topic Query in this guide.

Here are some examples of subqueries:

FROM clause

64

Amazon Kinesis Data Analytics SQL Reference SQL Reference

// set operation as subquery
// (finds how many departments have no employees)
SELECT COUNT(*)
FROM (
SELECT deptno FROM Dept
EXCEPT
SELECT deptno FROM Emp);
// table-constructor as a subquery,
// combined with a regqular table in a join
SELECT *
FROM Dept AS d
JOIN (VALUES ('Fred', 10), ('Bill', 20)) AS e (name, deptno)
ON d.deptno = e.deptno;

Unlike subqueries in other parts of the SELECT statement, such as in the WHERE clause clause

(WHERE Condition Clause), a subquery in the FROM clause cannot contain correlating variables. For

example:

// Invalid query. Dept.deptno is an illegal reference to
// a column of another table in the enclosing FROM clause.
SELECT *
FROM Dept,

(SELECT *

FROM Emp

WHERE Emp.deptno = Dept.Deptno)

FROM clause with multiple relations

If a FROM clause contains multiple, comma-separated relations, the query constructs the cartesian
product of those relations; that is, it combines each row from each relation with each row from
every other relation.

The comma in the FROM clause is therefore equivalent to the CROSS JOIN operator.
Correlation names

Each relation in the FROM clause can have a correlation name assigned using AS correlation-
name. This name is an alternative name by which the relation can be referenced in expressions
throughout the query. (Even though the relation may be a subquery or stream, it is conventionally
called a 'table alias' to distinguish it from column aliases defined in the SELECT clause.)

FROM clause 65

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Without an AS clause, a named relation's name becomes its default alias. (In streaming queries, the
OVER clause does not prevent this default assignment from happening.)

An alias is necessary if a query uses the same named relation more than once, or if any of the
relations are subqueries or table expressions.

For example, in the following query, the named relation EMPS is used twice; once with its default
alias EMPS, and once with an assigned alias MANAGERS:

SELECT EMPS.NAME || ' is managed by ' || MANAGERS.NAME
FROM LOCALDB.Sales.EMPS,

LOCALDB.Sales.EMPS AS MANAGERS
WHERE MANAGERS.EMPNO = EMPS.MGRNO

An alias can optionally be followed by a list of columns:

SELECT e.empname,
FROM LOCALDB.Sales.EMPS AS e(empname, empmgrno)

OVER clause

The OVER clause is only applicable for streaming joins. For more detail, see the topic JOIN clause in
this guide.

JOIN clause

The JOIN clause in a SELECT statement combines columns from one or more streams or reference
tables.

Topics

e Stream-to-Stream Joins

« Stream-to-Table Joins

Stream-to-Stream Joins

Amazon Kinesis Data Analytics supports joining an in-application stream with another in-
application stream using SQL, bringing this important traditional database functionality into the
streaming context.

JOIN clause 66

Amazon Kinesis Data Analytics SQL Reference SQL Reference

This section describes the types of joins that Kinesis Data Analytics supports, including time-based
and row-based window joins, and the details about streaming joins.

Join Types

There are five types of joins:

INNER JOIN (or just JOIN) Returns all pairs of rows from the left and
from the right for which the join condition
evaluates to TRUE.

LEFT OUTER JOIN (or just LEFT JOIN) As INNER JOIN, but rows from the left are kept

even if they don't match any rows on the right.
NULL values are generated on the right.

RIGHT OUTER JOIN (or just RIGHT JOIN) As INNER JOIN, but rows from the right are
kept even if they don't match any rows on the
left. NULL values are generated on the left for
these rows.

FULL OUTER JOIN (or just FULL JOIN) As INNER JOIN, but rows from both sides are
kept even if they don't match any rows on the
other side. NULL values are generated on the
other side for these rows.

CROSS JOIN Returns the Cartesian product of the inputs:
Every row from the left is paired with every
row from the right.

Time-Based Window vs. Row-Based Window Joins

It isn't practical to join the entire history of the left stream to the entire history of the right.
Therefore, you must restrict at least one stream to a time window by using an OVER clause. The
OVER clause defines a window of rows that are to be considered for joining at a given time.

The window can be time-based or row-based:

A time-based window uses the RANGE keyword. It defines the window as the set of rows whose
ROWTIME column falls within a particular time interval of the query's current time.

JOIN clause 67

Amazon Kinesis Data Analytics SQL Reference SQL Reference

For example, the following clause specifies that the window contains all rows whose ROWTIMEs
are within the hour preceding the stream's current time:

OVER (RANGE INTERVAL '1' HOUR PRECEDING)

« A row-based window uses the ROWS keyword. It defines the window as a given count of rows
before or after the row with the current time stamp.

For example, the following clause specifies that only the latest 10 rows be included in the
window:

OVER (ROWS 10 PRECEDING)

(® Note

If no time window or row-based window is specified on the side of a join, then only the
current row from that side participates in the join evaluation.

Examples of Stream-to-Stream Joins

The following examples demonstrate how an in-application stream-to-stream join works, when the
results of the join are returned, and what the row times of the join results are.

Topics

o Example Dataset

o Example 1: Time Window on One Side of a JOIN (INNER JOIN)

o Example 2: Time Windows on Both Sides of a JOIN (INNER JOIN)

o Example 3: Time Window on One Side of a RIGHT JOIN (RIGHT OUTER JOIN)

o Example 4: Time Windows on Both Sides of a RIGHT JOIN (RIGHT OUTER JOIN)

o Example 5: Time Window on One Side of a LEFT JOIN (LEFT OUTER JOIN)

o Example 6: Time Windows on Both Sides of a LEFT JOIN (LEFT OUTER JOIN)

e Summary

JOIN clause 68

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Example Dataset
The examples in this section are based on the following datasets and stream definitions:

Sample of Orders Data

"orderid":"101",
"orders":"1"

Sample of Shipments Data

"orderid":"101",
"shipments":"2"

Creating the ORDERS_STREAM In-Application Stream

CREATE OR REPLACE STREAM "ORDERS_STREAM" ("orderid" int, "orderrowtime" timestamp);
CREATE OR REPLACE PUMP "ORDERS_STREAM_PUMP" AS INSERT INTO "ORDERS_STREAM"

SELECT STREAM "orderid", "ROWTIME"

FROM "SOURCE_SQL_STREAM_001" WHERE "orders" = 1;

Creating the SHIPMENTS_STREAM In-Application Stream

CREATE OR REPLACE STREAM "SHIPMENTS_STREAM" ("orderid" int, "shipmentrowtime"
timestamp);

CREATE OR REPLACE PUMP "SHIPMENTS_STREAM_PUMP" AS INSERT INTO "SHIPMENTS_STREAM"
SELECT STREAM "orderid", "ROWTIME"

FROM "SOURCE_SQL_STREAM_00@1" WHERE "shipments" = 2;

Example 1: Time Window on One Side of a JOIN (INNER JOIN)

This example demonstrates a query that returns all orders with shipments that executed in the last
minute.

Join Query

CREATE OR REPLACE STREAM "OUTPUT_STREAM" ("resultrowtime" timestamp, "orderid" int,
"shipmenttime" timestamp, "ordertime" timestamp);

JOIN clause 69

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

CREATE OR REPLACE PUMP "OUTPUT_STREAM_PUMP" AS
INSERT INTO "OUTPUT_STREAM"

SELECT STREAM ROWTIME as "resultrowtime", s."orderid", s.rowtime as "shipmenttime",
ME as "ordertime"
FROM ORDERS_STREAM OVER (RANGE INTERVAL '1l' MINUTE PRECEDING) AS o

0.ROWTI

JOIN SHIPMENTS_STREAM AS s

ON o."orderid" = s."orderid";

Query Results

ORDERS_STREAM

ROWTIME orderid

10:00:00

10:00:20

10:00:30

10:00:40

10:00:45

101

102

103

104

100*

SHIPMENTS
_STREAM

ROWTIME orderid resultrow

10:00:00

10:00:45

10:00:50

time
100
104

10:00:45
105

OUTPUT_STREAM

orderid

104

* - Record with orderid = 100 is a late event in the Orders stream.

Visual Representation of the Join

shipmentt OrderTime
ime

10:00:45 10:00:40

The following diagram represents a query that returns all orders with shipments that executed in
the last minute.

JOIN clause

70

Amazon Kinesis Data Analytics SQL Reference SQL Reference

ORDERS_STREAM SHIPMENTS_STREAM

4|—> Join Window *

v v

e ———————|

Current Row —»

Triggering of Results
The following describes the events that trigger results from the query.

» Because no time or row window is specified on the Shipments stream, only the current row of
the Shipments stream participates in the join.

» Because the query on the Orders stream specifies a one-minute preceding window, the rows in
the Orders stream with a ROWTIME in the last minute participate in the join.

« When the record in the Shipments stream arrived at 10:00:45 for orderid 104, the JOIN result
was triggered because there is a match on orderid in the Orders stream in the preceding minute.

» The record in the Orders stream with orderid 100 arrived late, so the corresponding record in the
Shipments stream was not the latest record. Because no window was specified on the Shipments
stream, only the current row of the Shipments stream participates in the join. As a result, no
records are returned by the JOIN statement for orderid 100. For information about including late
rows in a JOIN statement, see Example 2.

» Because there is no matching record in the Shipments stream for orderid 105, no results are
emitted, and the record is ignored.
ROWTIMES of Results

« The ROWTIME of the record in the output stream is the later of the ROWTIMEs of the rows that
matched the join.

JOIN clause 71

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Example 2: Time Windows on Both Sides of a JOIN (INNER JOIN)

This example demonstrates a query that returns all orders that executed in the last minute, with
shipments that executed in the last minute.

Join Query

CREATE OR REPLACE STREAM "OUTPUT_STREAM" ("resultrowtime" timestamp, "orderid" int,
"shipmenttime" timestamp, "ordertime" timestamp);
CREATE OR REPLACE PUMP "QUTPUT_STREAM_PUMP" AS INSERT INTO "OUTPUT_STREAM"

SELECT STREAM ROWTIME as "resultrowtime", s."orderid", s.rowtime as "shipmenttime",
0.ROWTIME as "ordertime"

FROM ORDERS_STREAM OVER (RANGE INTERVAL '1' MINUTE PRECEDING) AS o
JOIN SHIPMENTS_STREAM OVER (RANGE INTERVAL '1' MINUTE PRECEDING) AS s
ON o."orderid" = s."orderid";

Query Results

ORDERS_STREAM SHIPMENTS OUTPUT_STREAM
_STREAM

ROWTIME orderid ROWTIME orderid resultrow orderid shipmentt OrderTime

time ime
10:00:00 101 10:00:00 100
10:00:20 102
10:00:30 103
10:00:40 104
10:00:45 104
10:00:45 100* 10:00:45 104 10:00:45 10:00:40
10:00:45 100 10:00:00 10:00:45

10:00:50 105

* - Record with orderid = 100 is a late event in the Orders stream.

JOIN clause 72

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Visual Representation of the Join

The following diagram represents a query that returns all orders that executed in the last minute,
with shipments that executed in the last minute.

ORDERS_STREAM SHIPMENTS_STREAM

rowtimes rowtimes

v v

Current Row > <4— Current Row

Triggering of Results

The following describes the events that trigger results from the query.

» Windows are specified on both sides of the join. So all the rows in the minute preceding the
current row of both the Orders stream and the Shipments stream participate in the join.

« When the record in the Shipments stream for orderid 104 arrived, the corresponding record in
the Orders stream was within the one-minute window. So a record was returned to the Output
stream.

« Even though the order event for orderid 100 arrived late in the Orders stream, the join result
was returned. This is because the window in the Shipments stream includes the past minute of
orders, which includes the corresponding record.

» Having a window on both sides of the join is helpful for including late-arriving records on either
side of the join; for example, if an order or shipment record is received late or out of order.

JOIN clause 73

Amazon Kinesis Data Analytics SQL Reference SQL Reference

ROWTIMEs of Results

o The ROWTIME of the record in the output stream is the later of the ROWTIMEs of the rows that
matched the join.

Example 3: Time Window on One Side of a RIGHT JOIN (RIGHT OUTER JOIN)

This example demonstrates a query that returns all shipments that executed in the last minute,
whether or not there are corresponding orders in the last minute.

Join Query

CREATE OR REPLACE STREAM "OUTPUT_STREAM" ("resultrowtime" timestamp, "orderid" int,
"ordertime" timestamp);
CREATE OR REPLACE PUMP "QUTPUT_STREAM_PUMP" AS INSERT INTO "OUTPUT_STREAM"
SELECT STREAM ROWTIME as "resultrowtime", s."orderid", o.ROWTIME as "ordertime"
FROM ORDERS_STREAM OVER (RANGE INTERVAL '1' MINUTE PRECEDING) AS o
RIGHT JOIN SHIPMENTS_STREAM AS s
ON o."orderid" = s."orderid";

Query Results

ORDERS_STREAM SHIPMENTS_STREAM OUTPUT_STREAM
ROWTIME orderid ROWTIME orderid resultrow orderid OrderTime
time
10:00:00 101 10:00:00 100
10:00:00 100 null

10:00:20 102

10:00:30 103

10:00:40 104

10:00:45 104

10:00:45 100* 10:00:45 104 10:00:40

JOIN clause 74

Amazon Kinesis Data Analytics SQL Reference SQL Reference

ORDERS_STREAM SHIPMENTS_STREAM OUTPUT_STREAM
10:00:50 105

10:00:50 105 null

* - Record with orderid = 100 is a late event in the Orders stream.
Visual Representation of the Join

The following diagram represents a query that returns all shipments that executed in the last
minute, whether or not there are corresponding orders in the last minute.

ORDERS_STREAM SHIPMENTS_STREAM

rowtimes

<|—> Join Window 7

v

1

1

1

1

1

1

1

1

1

1

1 .
| rowtimes
1

1

1

1

1

1

1

i v
1

1

___posssssssmmnn| <« Current Row

Current Row —»

Triggering of Results

The following describes the events that trigger results from the query.

« When a record in the Shipments stream arrived for orderid 104, a result in the Output stream
was emitted.

« As soon as the record in the Shipments stream arrived for orderid 105, a record was emitted in
the Output stream. However, there is no matching record in the Orders stream, so the OrderTime
value is null.

JOIN clause 75

Amazon Kinesis Data Analytics SQL Reference SQL Reference

ROWTIMEs of Results

o The ROWTIME of the record in the output stream is the later of the ROWTIMEs of the rows that
matched the join.

» Because the right side of the join (the Shipments stream) has no window, the ROWTIME of the
result with an unmatched join is the ROWTIME of the unmatched row.

Example 4: Time Windows on Both Sides of a RIGHT JOIN (RIGHT OUTER JOIN)

This example demonstrates a query that returns all shipments that executed in the last minute,
whether or not they have corresponding orders.

Join Query

CREATE OR REPLACE STREAM "OUTPUT_STREAM" ("resultrowtime" timestamp, "orderid" int,
"shipmenttime" timestamp, "ordertime" timestamp);
CREATE OR REPLACE PUMP "OUTPUT_STREAM_PUMP" AS INSERT INTO "OUTPUT_STREAM"

SELECT STREAM ROWTIME as "resultrowtime", s."orderid", s.ROWTIME as "shipmenttime",
0.ROWTIME as "ordertime"

FROM ORDERS_STREAM OVER (RANGE INTERVAL '1' MINUTE PRECEDING) AS o
RIGHT JOIN SHIPMENTS_STREAM OVER (RANGE INTERVAL '1' MINUTE PRECEDING) AS s
ON o."orderid" = s."orderid";

Query Results

ORDERS_STREAM SHIPMENTS OUTPUT_STREAM
_STREAM

ROWTIME orderid ROWTIME orderid resultrow orderid shipmentt OrderTime

time ime
10:00:00 101 10:00:00 100
10:00:20 102
10:00:30 103

10:00:40 104

JOIN clause 76

Amazon Kinesis Data Analytics SQL Reference SQL Reference

ORDERS_STREAM SHIPMENTS OUTPUT_STREAM
_STREAM
10:00:45 104
10:00:45 100* 10:00:45 104 10:00:40 10:00:45
10:00:45 100 10:00:45 10:00:00
10:00:50 105
10:01:50 105 10:00:50 null

* - Record with orderid = 100 is a late event in the Orders stream.
Visual Representation of the Join

The following diagram represents a query that returns all shipments that executed in the last
minute, whether or not they have corresponding orders.

ORDERS_STREAM SHIPMENTS_STREAM

rowtimes rowtimes

v v

Current Row —» 44— Current Row

Triggering of Results

The following describes the events that trigger results from the query.

JOIN clause 77

Amazon Kinesis Data Analytics SQL Reference SQL Reference

« When a record in the Shipments stream arrived for orderid 104, a result in the Output stream
was emitted.

« Even though the order event for orderid 100 arrived late in the Orders stream, the join result
is returned. This is because the window in the Shipments stream includes the past minute of
orders, which includes the corresponding record.

» For the shipment for which the order is not found (for orderid 105), the result is not emitted to
the Output stream until the end of the one-minute window on the Shipments stream.

ROWTIMEs of Results

o The ROWTIME of the record in the output stream is the later of the ROWTIMEs of the rows that
matched the join.

» For shipment records with no matching order record, the ROWTIME of the result is the ROWTIME
of the end of the window. This is because the right side of the join (from the Shipments stream)
is now a one-minute window of events, and the service is waiting for the end of the window
to determine whether any matching records arrive. When the window ends and no matching
records are found, the result is emitted with a ROWTIME corresponding to the end of the
window.

Example 5: Time Window on One Side of a LEFT JOIN (LEFT OUTER JOIN)

This example demonstrates a query that returns all orders that executed in the last minute,
whether or not there are corresponding shipments in the last minute.

Join Query

CREATE OR REPLACE STREAM "OUTPUT_STREAM" ("resultrowtime" timestamp, "orderid" int,
"ordertime" timestamp);
CREATE OR REPLACE PUMP "OUTPUT_STREAM_PUMP" AS INSERT INTO "OUTPUT_STREAM"
SELECT STREAM ROWTIME as "resultrowtime", o."orderid", o.ROWTIME as "ordertime"
FROM ORDERS_STREAM OVER (RANGE INTERVAL '1' MINUTE PRECEDING) AS o
LEFT JOIN SHIPMENTS_STREAM AS s
ON o."orderid" = s."orderid";

JOIN clause 78

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Query Results

ORDERS_STREAM SHIPMENTS_STREAM OUTPUT_STREAM
ROWTIME orderid ROWTIME orderid resultrow orderid OrderTime
time
10:00:00 101 10:00:00 100

10:00:20 102

10:00:30 103

10:00:40 104

10:00:45 104

10:00:45 100* 10:00:45 104 10:00:40

10:00:50 105

10:01:00 101 10:00:00
10:01:20 102 10:00:20
10:01:30 103 10:00:30
10:01:40 104 10:00:40
10:01:45 100 10:00:45

* - Record with orderid = 100 is a late event in the Orders stream.
Visual Representation of the Join

The following diagram represents a query that returns all orders that executed in the last minute,
whether or not there are corresponding shipments in the last minute.

JOIN clause 79

Amazon Kinesis Data Analytics SQL Reference SQL Reference

ORDERS_STREAM SHIPMENTS_STREAM

rowtimes

rowtimes Join Window 7

v v

e ————————————

Current Row —»

Triggering of Results

The following describes the events that trigger results from the query.
» When a record in the Shipments stream arrived for orderid 104, a result in the Output stream is
emitted.

» For records in the Orders stream with no corresponding record in the Shipments stream, records
are not emitted to the Output stream until the end of the one-minute window. This is because
the service is waiting until the end of the window for matching records.

ROWTIMEs of Results

o The ROWTIME of the record in the output stream is the later of the ROWTIMEs of the rows that
matched the join.

» For records in the Orders stream with no corresponding record in the Shipments stream, the
ROWTIMEs of the results are the ROWTIMEs of the end of the current window.

Example 6: Time Windows on Both Sides of a LEFT JOIN (LEFT OUTER JOIN)

This example demonstrates a query that returns all orders that executed in the last minute,
whether or not they have corresponding shipments.

JOIN clause 80

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Join Query

CREATE OR REPLACE STREAM "OUTPUT_STREAM" ("resultrowtime" timestamp, "orderid" int,
"shipmenttime" timestamp, "ordertime" timestamp);
CREATE OR REPLACE PUMP "OUTPUT_STREAM_PUMP" AS INSERT INTO "OUTPUT_STREAM"

SELECT STREAM ROWTIME as "resultrowtime", s."orderid", s.ROWTIME as "shipmenttime",
0.ROWTIME as "ordertime"

FROM ORDERS_STREAM OVER (RANGE INTERVAL '1l' MINUTE PRECEDING) AS o
LEFT JOIN SHIPMENTS_STREAM OVER (RANGE INTERVAL '1l' MINUTE PRECEDING) AS s
ON o."orderid" = s."orderid";

Query Results

ORDERS_STREAM SHIPMENTS OUTPUT_STREAM
_STREAM

ROWTIME orderid ROWTIME orderid resultrow orderid shipmentt OrderTime

time ime
10:00:00 101 10:00:00 100
10:00:20 102
10:00:30 103
10:00:40 104
10:00:45 104
10:00:45 100* 10:00:45 104 10:00:40 10:00:45
10:00:50 105 10:00:45 100 10:00:00 10:00:45
10:01:00 101 null 10:00:00
10:01:20 102 null 10:00:20
10:01:30 103 null 10:00:30

JOIN clause 81

Amazon Kinesis Data Analytics SQL Reference SQL Reference

ORDERS_STREAM SHIPMENTS OUTPUT_STREAM
_STREAM
10:01:40 104 null 10:00:40
10:01:45 100 null 10:00:45

* - Record with orderid = 100 is a late event in the Orders stream.
Visual Representation of the Join

The following diagram represents a query that returns all orders that executed in the last minute,
whether or not they have corresponding shipments.

ORDERS_STREAM SHIPMENTS_STREAM

. rowtimes
rowtimes

<|—> Join Window Q—L

v v

c ‘R 4—— Current Row
urrent Row —»

Triggering of Results
The following describes the events that trigger results from the query.

« When a record in the Shipments stream arrived for orderids 104 and 100, a result in the Output
stream was emitted. This occurred even though the record in the Orders stream for orderid 100
arrived late.

» Records in the Orders stream with no corresponding record in the Shipments stream are emitted
in the Output stream at the end of the one-minute window. This is because the service waits
until the end of the window for corresponding records in the Shipments stream.

JOIN clause 82

Amazon Kinesis Data Analytics SQL Reference SQL Reference

ROWTIMEs of Results

o The ROWTIME of the record in the Output stream is the later of the ROWTIMEs of the rows that
matched the join.

» For records in the Orders stream with no corresponding record in the Shipments stream, the
ROWTIMEs of the orders is the ROWTIME corresponding to the end of the window.

Summary

« Kinesis Data Analytics always returns rows from joins in ascending order of ROWTIME.

« For aninner join, the ROWTIME of an output row is the later of the ROWTIMEs of the two input
rows. This is also true for an outer join for which matching input rows are found.

» For outer joins for which a match is not found, the ROWTIME of an output row is the later of the
following two times:

o The ROWTIME of the input row for which a match was not found.

« The later bound of the window of the other input stream at the point any possible match
could have been found.

Stream-to-Table Joins

If one of the relations is a stream and the other is a finite relation, it is referred to as a stream-table
join. For each row in the stream, the query looks up the row or rows in the table that match the join
condition.

For example, Orders is a stream and PriceList is a table. The effect of the join is to add price list
information to the order.

For information about creating a reference data source and joining a stream to a reference table,
see Example: Add Reference Data Source in the Amazon Kinesis Data Analytics Developer Guide.

HAVING clause

The HAVING clause in a SELECT specifies a condition to apply within a group or aggregate. In other
words, HAVING filters rows after the aggregation of the GROUP BY clause has been applied. Since
HAVING is evaluated after GROUP BY, it can only reference expressions constructed (or derivable)
from grouping keys, aggregate expressions, and constants. (These are the same rules that apply

to expressions in the SELECT clause of a GROUP BY query.) A HAVING clause must come after any

HAVING clause 83

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/app-add-reference-data.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

GROUP BY clause and before any ORDER BY clause. HAVING is like WHERE clause, but applies
to groups. Results from a HAVING clause represent groupings or aggregations of original rows,
whereas results from a WHERE clause are individual original rows.

In non-streaming applications, if there is no GROUP BY clause, GROUP BY () is assumed (though
since there are no grouping expressions, expressions can consist only of constants and aggregate
expressions). In streaming queries, HAVING cannot be used without a GROUP BY clause.

WHERE and HAVING can both appear in a single SELECT statement. The WHERE selects from the
stream or table those individual rows that satisfy its condition (the WHERE-condition). The GROUP
BY criteria apply only to the rows selected by the WHERE condition.

Such a grouping, for example "GROUP BY CustomerID", can be further qualified by a HAVING-
condition, which then selects aggregations of rows satisfying its condition within the specified
grouping. For example, "GROUP BY ClientID HAVING SUM(ShipmentValue) > 3600" would select
only those clients whose various shipments that fit the WHERE criteria also had values that added
up to exceed 3600.

See the WHERE clause syntax chart for the conditions, which applies to both HAVING and WHERE
clauses.

The condition must be a Boolean predicate expression. The query returns only rows for which the
predicate evaluates to TRUE.

The example below shows a streaming query that displays products for which there are more than
$1000 of orders in the past hour.

SELECT STREAM "prodId"

FROM "Orders"

GROUP BY FLOOR("Orders".ROWTIME TO HOUR), "prodId"
HAVING SUM("quantity" * "price") > 1000;

GROUP BY clause

Syntax Chart for the GROUP BY Clause

(To see where this clause fits, see SELECT statement)

For example, GROUP BY <column name-or-expression>, where:

GROUP BY clause 84

Amazon Kinesis Data Analytics SQL Reference SQL Reference

» the expression can be an aggregate; and,

« any column name used in the GROUP BY clause must also be in the SELECT statement.

Additionally, a column that is not named in or derivable from the GROUP BY clause cannot appear
in the SELECT statement except within aggregations, such as SUM (allOrdersValue).

What derivable means is that a column specified in the GROUP BY clause enables access to the
column you want to include in the SELECT clause. If a column is derivable, the SELECT statement
can specify it even though it is not explicitly named in the GROUP BY clause.

Example: If the key to a table is in the GROUP BY clause, then any of that table's columns can
appear in the select-list because, given that key, such columns are considered accessible.

The GROUP BY clause groups selected rows based on the value of the grouping expressions,
returning a single summary row of information for each group of rows that have identical values in
all columns.

Note that for these purposes, the value NULL is considered equal to itself and not equal to any
other value. These are the same semantics as for the IS NOT DISTINCT FROM operator.

Streaming GROUP BY

GROUP BY can be used in a streaming query as long as one of the grouping expressions is a non-
constant monotonic or time-based expression. This requirement is necessary in order for Amazon
Kinesis Data Analytics to make progress, as explained below.

A monotonic expression is one that always moves in the same direction: it either ascends-or-stays-
the-same, or it descends-or-stays the same; it doesn't reverse direction. It does not need to be
strictly ascending or strictly descending, that is, every value always above the previous one or every
value always below the previous one. A constant expression falls under the definition of monotonic
-- it is technically both ascending and descending -- but is clearly unsuitable for these purposes.
For more information about monotonicity, see Monotonic Expressions and Operators.

Consider the following query:

SELECT STREAM prodId, COUNT(*)
FROM Orders
GROUP BY prodId

GROUP BY clause 85

Amazon Kinesis Data Analytics SQL Reference SQL Reference

The query is intended to compute the number of orders for each product, as a stream. However,
since Orders is an infinite stream, Amazon Kinesis Data Analytics can never know that it has seen
all orders for a given product, can never complete a particular row's total, and therefore can never
output a row. Rather than allow a query that can never emit a row, the Amazon Kinesis Data
Analytics validator rejects the query.

The syntax for streaming GROUP BY is as follows:
GROUP BY <monotonic or time-based expression> ,

<column name-or-expression, ...>

where any column name used in the GROUP BY clause needs to be in the SELECT statement; the
expression can be an aggregate. Additionally, a column name that does not appear in the GROUP
BY clause cannot appear in the SELECT statement except within aggregations, or if, as above,
access to the column can be created from column that you specify in the GROUP BY clause.

For example, the following query, which computes the product counts per hour, uses the
monotonic expression FLOOR(Orders.ROWTIME TO HOUR) is therefore valid:

SELECT STREAM FLOOR(Orders.ROWTIME TO HOUR) AS theHour, prodId, COUNT(*)
FROM Orders
GROUP BY FLOOR(Orders.ROWTIME TO HOUR), prodId

One of the expressions in the GROUP BY must be monotonic or time-based. For example GROUP
BY FLOOR(S.ROWTIME) TO HOUR will yield one output row per hour for the previous hour's
input rows. The GROUP BY can specify additional partitioning terms. For example, GROUP BY
FLOOR(S.ROWTIME) TO HOUR, USERID will yield one output row per hour per USERID value. If
you know for a fact that an expression is monotonic, you can declare it so by using the Monotonic
Function. If the actual data are not monotonic, the resulting system behavior is indeterminate:
results may not be as expected or desired.

See the topic Monotonic Function in this guide for more details.

Duplicate rowtimes can occur in a stream, and as long as the ROWTIME value is the same, the
GROUP BY operation will keep accumulating rows. In order to emit a row, the ROWTIME value has
to change at some point.

GROUP BY clause 86

Amazon Kinesis Data Analytics SQL Reference SQL Reference

WHERE clause

The WHERE clause extracts records that meet a specified condition. The condition can be a numeric
or string comparison, or use the BETWEEN, LIKE, OR IN operators: see Streaming SQL Operators.

Conditions can be combined using logical operators such as AND, OR, and NOT.

The WHERE clause is like the HAVING clause clause. It applies to groups, that is, results from

a WHERE clause are individual original rows, whereas results from a HAVING clause represent
groupings or aggregations of original rows.

WHERE and HAVING can both appear in a single SELECT statement. The WHERE selects from the
stream or table those individual rows that satisfy its condition (the WHERE-condition). The GROUP
BY criteria apply only to the rows selected by the WHERE condition. Such a grouping, for example
"GROUP BY CustomerID", can be further qualified by a HAVING-condition, which then selects
aggregations of rows satisfying its condition within the specified grouping. For example, "GROUP
BY ClientID HAVING SUM(ShipmentValue) > 3600" would select only those clients whose various
shipments that fit the WHERE criteria also had values that added up to exceed 3600.

To see where this clause fits into the SELECT statement, see SELECT statement.

The condition must be a Boolean predicate expression. The query returns only rows for which the
predicate evaluates to TRUE; if the condition evaluates to NULL, the row is not emitted.

The condition in the WHERE clause cannot contain windowed aggregation expressions, because if
the where clause condition caused rows to be dropped, it would alter the contents of the window.

WHERE is also discussed in the topics JOIN clause and HAVING clause in this guide.

WINDOW Clause (Sliding Windows)

The WINDOW clause for a sliding windowed query specifies the rows over which analytic functions
are computed across a group of rows in relation to the current row. These aggregate functions
produce an output row aggregated by the keys in one or more columns for each input row. The
WINDOW clause in a query specifies records in a stream partitioned by the time range interval or the
number of rows, and an additional optional set of columns specified by the PARTITION BY clause.
You can define named or inline window specifications that can be used in analytic functions and
streaming JOIN clauses. For more information about analytic functions, see Analytic Functions.

Aggregate functions in a sliding window query are performed over each column specified in the
OVER clause. The OVER clause can reference a named window specification or can be inline as part

WHERE clause 87

Amazon Kinesis Data Analytics SQL Reference SQL Reference

of the SELECT statement for a pump. The following examples show how to use the OVER clause to
reference a named window specification and inline in the SELECT statement.

Syntax

[WINDOW window_name AS

(

{PARTITION BY partition_name
RANGE INTERVAL 'interval' {{SECOND | MINUTE | HOUR} PRECEDING |
ROWS number PRECEDING

—
)

OVER Clause

The examples following show you how to use the OVER clause to reference a named window
specification.

Example 1: OVER Referencing a Named Window Specification

The following example shows an aggregate function that references the window specification
with the name W1. In this example, the average price is calculated over the set of records specified
by the W1 window specification. To learn more about how to use the OVER clause with a window
specification, see Examples, following.

AVG(price) OVER W1l AS avg_price

Example 2: OVER Referencing an Inline Window Specification

The following example shows an aggregate function that references an inline window specification.
In this example, the average price is calculated over each input row with an inline window
specification. To learn more about how to use the OVER clause with a window specification, see

Examples, following.

AVG(price) OVER (

WINDOW Clause (Sliding Windows) 88

Amazon Kinesis Data Analytics SQL Reference SQL Reference

PARTITION BY ticker_symbol
RANGE INTERVAL '1l' HOUR PRECEDING) AS avg_price

For more information about aggregate functions and the OVER clause, see Aggregate Functions.

Parameters
window-name

Specifies a unique name that can be referenced from OVER clauses or subsequent window
definitions. The name is used in analytic functions and streaming JOIN clauses. For more
information about analytic functions, see Analytic Functions.

AS
Defines the named window specification for the WINDOW clause.
PARTITION BY partition-name

Divides rows into groups that share the same values. After rows are partitioned, the window
function computes all rows that fall into the same partition as the current row.

RANGE INTERVAL 'interval’' {SECOND | MINUTE | HOUR} PRECEDING

Specifies the window boundaries from the time range interval. The window function computes all
rows that fall into the same time interval as the current row.

ROWS number PRECEDING

Specifies the window boundaries from the number of rows. The window function computes all
rows that fall into the same number of rows.

Examples

Example Dataset

The examples following are based on the sample stock dataset that is part of Getting Started in
the Amazon Kinesis Analytics Developer Guide. To run each example, you need an Amazon Kinesis

Analytics application that has the sample stock ticker input stream. To learn how to create an

WINDOW Clause (Sliding Windows) 89

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Analytics application and configure the sample stock ticker input stream, see Getting Started in the

Amazon Kinesis Analytics Developer Guide. For additional samples, see Sliding Windows.

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

Example 1: Time-Based Sliding Window That References a Named Window Specification

This example defines a named window specification with a partition boundary of one minute
preceding the current row. The OVER clause of the SELECT statement for the pump references the
named window specification.

WINDOW W1 AS (
PARTITION BY ticker_symbol
RANGE INTERVAL '1' MINUTE PRECEDING);

To run this example, create the stock sample application and run and save the SQL code following.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),

min_price DOUBLE,
max_price DOUBLE,
avg_price DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol,
MIN(price) OVER W1l AS min_price,
MAX(price) OVER W1 AS max_price,
AVG(price) OVER W1 AS avg_price

FROM "SOURCE_SQL_STREAM_001"

WINDOW W1 AS (
PARTITION BY ticker_symbol
RANGE INTERVAL '1' MINUTE PRECEDING);

WINDOW Clause (Sliding Windows) 90

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/sliding-window-concepts.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

The preceding example outputs a stream similar to the following.

ROWTIME TICKER_SYMBOL MIN_PRICE MAX_PRICE AVG_PRICE
2017-01-31 23:30:11.661 QXZ 215.0399932861328 215.0399932861328 215.0399932861328
2017-01-31 23:30:16.673 IOP 118.41999816894531 118.0999984741211 118.75999450683594
2017-01-31 23:30:16.673 AMZN 727 469970703125 T27.469970703125 727.469970703125
2017-01-31 23:30:16.673 AMZN 713.0900268554688 727.469970703125 720.280029296875
2017-01-31 23:30:16.673 TBY 164.00999450683594 178.77999877929688 169.69332580566406

Example 2: Row-Based Sliding Window That References a Named Window Specification

This example defines a named window specification with a partition boundary of two rows
preceding the current row and ten rows preceding the current row. The OVER clause of the SELECT
statement for the pump references the named window specification.

WINDOW
last2rows AS (PARTITION BY ticker_symbol ROWS 2 PRECEDING),
lastl@rows AS (PARTITION BY ticker_symbol ROWS 1@ PRECEDING);

To run this example, create the stock sample application and run and save the SQL code following.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (

ticker_symbol VARCHAR(4),
price DOUBLE,
avg_last2rows DOUBLE,
avg_Lastl0rows DOUBLE);

CREATE OR REPLACE PUMP "myPump" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol,
price,
AVG(price) OVER last2rows,
AVG(price) OVER lastl@rows
FROM SOURCE_SQL_STREAM_001
WINDOW
last2rows AS (PARTITION BY ticker_symbol ROWS 2 PRECEDING),
lastl@rows AS (PARTITION BY ticker_symbol ROWS 1@ PRECEDING);

WINDOW Clause (Sliding Windows) 91

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

The preceding example outputs a stream similar to the following.

ROWTIME

2017-01-31 23:43:06.414

TICKER_SYMBOL PRICE

Qxz

75.33999633789062

AVERAGE_LAST2ROWS

114.7199935913086

AVERAGE_LAST10ROWS

100.65363311767578

2017-01-31 23:43:06.414 SLW 75.44000244140625 77.4233169595664 85.00454711914062
2017-01-31 23:43:06.414 SAC 41.709999084472656 42.95000076293945 4418454360961914
2017-01-31 23:43:06.414 QWE 223.1999969482422 221.07000732421875 223.96910095214844
2017-01-31 23:43:06.414 WAS 14.0399989961853027 13.993332862854004 13.739998817443848

Example 3: Time-Based Sliding Window with Inline Window Specification

This example defines an inline window specification with a partition boundary of one minute
preceding the current row. The OVER clause of the SELECT statement for the pump uses the inline
window specification.

To run this example, create the stock sample application and run and save the SQL code following.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
price DOUBLE,
avg_price DOUBLE);
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol, price,
AVG(Price) OVER (
PARTITION BY ticker_symbol
RANGE INTERVAL '1l' HOUR PRECEDING) AS avg_price
FROM "SOURCE_SQL_STREAM_001"

The preceding example outputs a stream similar to the following.

ROWTIME TICKER_SYMBOL PRICE AVG_PRICE
2017-02-02 19:41:21.621 TBV 159.39999389648438 172.16751098632812
2017-02-02 19:41:21.621 JKL 15.300000190734863 15.295000076293945
2017-02-02 19:41:21.621 JKL 15.140000343322754 15.243332862854004
2017-02-02 19:41:21.621 QXZ 52.060001373291016 108.17571258544922
2017-02-02 19:41:21.621 WSB 8.430000305175781 8.569999694824219

WINDOW Clause (Sliding Windows) 92

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Usage Notes

For the WINDOW clause and endpoints, Amazon Kinesis Analytics SQL follows SQL-2008 standards
for windows over a range.

To include the endpoints of an hour, you can use the window syntax following.

WINDOW HOUR AS (RANGE INTERVAL '1' HOUR PRECEDING)

To not include the endpoints of the previous hour, you can use the window syntax following.

WINDOW HOUR AS (RANGE INTERVAL '59:59.999' MINUTE TO SECOND(3) PRECEDING);

For more information, see Allowed and Disallowed Window Specifications.

Related Topics

Sliding Windows in the Kinesis Developer Guide

Aggregate Functions

SELECT statement

CREATE STREAM statement

CREATE PUMP statement

Allowed and Disallowed Window Specifications
Amazon Kinesis Data Analytics supports nearly all windows that end with the current row.

You cannot define an infinite window, a negative-sized window, or use negative integers in the
window specification. Offset windows are currently unsupported.

« Infinite windows are windows with no bounds. Typically these point into the future, which
for streams is infinite. For example "ROWS BETWEEN CURRENT ROW AND UNBOUNDED
FOLLOWING" is not supported, because in a streaming context such a query would not produce

WINDOW Clause (Sliding Windows) 93

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/sliding-window-concepts.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

a result, since streams are continually expanding as new data arrives. All uses of UNBOUNDED
FOLLOWING are unsupported.

« Negative windows . For example, "ROWS BETWEEN O PRECEDING AND 4 PRECEDING" is a
window of negative size and is therefore illegal. Instead, you would use: "ROWS BETWEEN 4
PRECEDING AND O PRECEDING" in this case.

» Offset windows are windows that do not end with CURRENT ROW. These are not supported
in the current release. For example, "ROWS BETWEEN UNBOUNDED PRECEDING AND 4
FOLLOWING" is not supported. (Window spans CURRENT ROW rather than starting or ending
there.)

« Windows defined with negative integers. For example, "ROWS BETWEEN -4 PRECEDING AND
CURRENT ROW" is invalid because negative integers are disallowed.

Also, the special case of ... 0 PRECEDING (and ... 0 FOLLOWING) cannot be used for windowed
aggregation; instead, the synonym CURRENT ROW can be used.

For windowed aggregation, partitioned windows are allowed, but ORDER BY must not be present.

For windowed join, partitioned windows are NOT allowed, but ORDER BY can be present if it sorts
by the ROWTIME column of one of the inputs.

Window examples

The following examples show a sample input data set, the definitions for several windows, and
the contents of those windows at various times after 10:00, the time data starts to arrive for this
example.

The windows are defined as follows:

SELECT STREAM
ticker,
sum(amount) OVER lastHour,
count(*) OVER lastHour
sum(amount) OVER lastThree
FROM Trades
WINDOW
lastHour AS (RANGE INTERVAL '1' HOUR PRECEDING),

WINDOW Clause (Sliding Windows) 94

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

lastThree AS (ROWS 3 PRECEDING),
lastZeroRows AS (ROWS CURRENT ROW),
lastZeroSeconds AS (RANGE CURRENT ROW),
lastTwoSameTicker AS (PARTITION BY ticker ROWS 2 PRECEDING),

lastHourSameTicker AS (PARTITION BY ticker RANGE INTERVAL 'l' HOUR PRECEDING)

First Example: time-based windows versus row-based windows

As shown on the right side of the figure below, the time-based lastHour window contains varying

numbers of rows, because window membership is defined by time range.

Figura 1: Window axamples

lastThrese for row
10:101BM

lastThree for row
11:15 YHOO

|=stThrae for row
11:15 IBM

EOWTIME ticker amount

10:00 ORCL 20
10:10 IBM 10
10:10 CRCL 15
10:40 IEM 40
11:05 IEM 10
11:10 YHOO 15
11:13 YHOO 25
11:15 I1BM 20
11:20 GO0G a0
11:25 ORCL 5
11:25 IBM 15

lastHour at
11:05

lastHour at
11:15

lastHour at
11:25

Examples of windows containing rows

The row-based lastThree window generally contains four rows: the three preceding and the current

row. However for the row 10:10 IBM, it only contains two rows, because there is no data before

10:00.

A row-based window can contain several rows whose ROWTIME value is the same, though they

arrive at different times (wall-clock times). The order of such a row in the row-based window

depends on its arrival time; indeed, the row's arrival time can determine which window includes it.

For example, the middle lastThree window in Figure 1 shows the arrival of a YHOO trade with
ROWTIME 11:15 (and the last three trades before it). However, this window excludes the next trade,
for IBM, whose ROWTIME is also 11:15 but which must have arrived later than the YHOO trade.

WINDOW Clause (Sliding Windows)

95

Amazon Kinesis Data Analytics SQL Reference SQL Reference

This 11:15 IBM trade is included in the 'next' window, as is the 11:15 YHOO trade, its immediate
predecessor.

Second Example: zero width windows, row-based and time-based

Figure 2: Examples of zero-width windows shows row-based and time-based windows of zero
width. The row-based window lastZeroRows includes just the current row, and therefore always
contains precisely one row. Note that ROWS CURRENT ROW is equivalent to ROWS 0 PRECEDING.

The time-based window lastZeroSeconds contains all rows with the same timestamp, of which
there may be several. Note that RANGE CURRENT ROW is equivalent to RANGE INTERVAL '0'
SECOND PRECEDING.

Figura 2; Examgles of zerc-widlh windows
EOWTIME ticker amount
10:00 ORCL 20
lastferoRows for row - S lastferoSeconds
10:40 IBM 1 |:_| s 1 I:I I BI“"] _J‘ r__l at 1105
10:10 CRCL 15
10:40 IBM 410
lastZeroRows for row 11 ' -
[11:15 YHOO 11:05 IBM 10
11:110 YHOO 15 lastHour at
11:15
11:15 YHOO 55 !
7 eroRows for row 11:15 IBM 20
11:15 IBM 11:20 GOOG S0
11:25 CRCL 5
11:25 IBM 15

Third Example: Partitioning applied to row-based and time-based windows

Figure 3 shows windows that are similar to those in Figure 1 but with a PARTITION BY clause.

For time-based window lastTwoSameTicker and the row-based window lastHourSameTicker, the
window contains rows that meet the window criteria and have the same value of the ticker column.
Note: Partitions are evaluated before windows.

WINDOW Clause (Sliding Windows) 96

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Figura 1; Examplas of parlitionsd windows
EOWTIME ticker amount
1000 ORCL 20 e
. lastHourSameTicker for row
lastTwoSameTicker - S)
E‘“ row 1105 IBM 10:10 IBM 30 | 110s518M
10:10 CRCL 15
10:40 IBM 40
lastTwoSameTicker for 19 1y ' -
[n:uw 115 YHOO l l . h ’ ' ElH,n. l : Hﬂuur&iﬂmﬂicker for row
11:10 YHOU 15 iy 11:15 YHOO
11:15 YHOO o5 —
11:15 IEM 20
11:20 GOOG g0
11:25 CRCL 5
11:25 IBM 15

ORDER BY clause

A streaming query can use ORDER BY if its leading expression is time-based and monotonic. For
example, a streaming query whose leading expression is based on the ROWTIME column can use
ORDER BY to do the following operations:

» Sort the results of a streaming GROUP BY.
« Sort a batch of rows arriving within a fixed time window of a stream.

» Perform streaming ORDER BY on windowed-joins.

The "time-based and monotonic" requirement on the leading expression means that the query

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM DISTINCT ticker FROM trades ORDER BY ticker

will fail, but the query

CREATE OR REPLACE PUMP "STREAM_PUMP"™ AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM DISTINCT rowtime, ticker FROM trades ORDER BY ROWTIME, ticker

will succeed.

ORDER BY clause 97

Amazon Kinesis Data Analytics SQL Reference SQL Reference

® Note

The preceding examples use the DISTINCT clause to remove duplicate instances of the
same ticker symbol from the result set, so that the results will be monotonic.

Streaming ORDER BY sorts rows using SQL-2008 compliant syntax for the ORDER BY clause. It can
be combined with a UNION ALL statement, and can sort on expressions, such as:

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM x, y FROM t1

UNION ALL

SELECT STREAM a, b FROM t2 ORDER BY ROWTIME, MOD(x, 5)

The ORDER BY clause can specify ascending or descending sort order, and can use column ordinals,
as well as ordinals specifying (referring to) the position of items in the select list.

(® Note

The UNION statement in the preceding query collects records from two separate streams
for ordering.

Streaming ORDER BY SQL Declarations
The streaming ORDER BY clause includes the following functional attributes:

« Gathers rows until the monotonic expression in streaming ORDER BY clause does not change.
» Does not require streaming GROUP BY clause in the same statement.

« Can use any column with a basic SQL data type of TIMESTAMP, DATE, DECIMAL, INTEGER, FLOAT,
CHAR, VARCHAR.

» Does not require that columns/expressions in the ORDER BY clause be present in the SELECT list
of the statement.

« Applies all the standard SQL validation rules for ORDER BY clause.

The following query is an example of streaming ORDER BY:

ORDER BY clause 98

Amazon Kinesis Data Analytics SQL Reference SQL Reference

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM state, city, SUM(amount)

FROM orders

GROUP BY FLOOR(ROWTIME TO HOUR), state, city

ORDER BY FLOOR(ROWTIME TO HOUR), state, SUM(amount)

T-sorting Stream Input

Amazon Kinesis Data Analytics real-time analytics use the fact that arriving data is ordered by
ROWTIME. However, sometimes data arriving from multiple sources may not be time-synchronized.

While Amazon Kinesis Data Analytics can sort data from individual data sources that have
been independently inserted into Amazon Kinesis Data Analytics application's native stream, in
some cases such data may have already combined from multiple sources (such as for efficient
consumption at an earlier stage in processing). At other times, high volume data sources could
make direct insertion impossible.

In addition, an unreliable data source could block progress by forcing Amazon Kinesis Data
Analytics application to wait indefinitely, unable to proceed until all connected data sources deliver.
In this case, data from this source could be unsynchronized.

You can use the ORDER BY clause to resolve these issues. Amazon Kinesis Data Analytics uses a
sliding time-based window of incoming rows to reorder those rows by ROWTIME.

Syntax

You specify the time-based parameter for sorting and the time-based window in which the
streaming rows are to be time-sorted, using the following syntax:

ORDER BY <timestamp_expr> WITHIN
<interval_literal>

Restrictions
The T-sort has the following restrictions:

» The datatype of the ORDER BY expression must be timestamp.

» The partially-ordered expression <timestamp_expr> must be present in the select list of the
query with the alias ROWTIME.

ORDER BY clause 99

Amazon Kinesis Data Analytics SQL Reference SQL Reference

» The leading expression of the ORDER BY clause must not contain the ROWTIME function and
must not use the DESC keyword.

o The ROWTIME column needs to be fully qualified. For example:

« ORDER BY FLOOR(ROWTIME TO MINUTE), ... fails.
« ORDER BY FLOOR(s.ROWTIME TO MINUTE), ... works.

If any of these requirements are not met, the statement will fail with errors.
Additional notes:

» You cannot use incoming rowtimebounds. These are ignored by the system.

o If <timestamp_expr> evaluates to NULL, the corresponding row is discarded.

ROWTIME

ROWTIME is an operator and system column that returns the time at which a particular row of a
stream was created.

It is used in four distinct ways:

As an operator

As a system column of a stream

As a column alias, to override the timestamp on the current row

As an ordinary column in a table

For more details, see the topics Timestamp, ROWTIME, and CURRENT_ROW_TIMESTAMP in this
guide.

ROWTIME operator

When used in the SELECT clause of a streaming query, without being qualified by a preceding
‘alias.', ROWTIME is an operator that evaluates to the timestamp of the row that is just about to be
generated.

Its type is always TIMESTAMP NOT NULL.

ROWTIME 100

Amazon Kinesis Data Analytics SQL Reference SQL Reference

ROWTIME system column

Every stream has a ROWTIME column. To reference this column from within a query, qualify it with
the stream name (or alias). For example, the following join query returns three timestamp columns:
the system columns of its input streams, and the timestamp of the generated row.

SELECT STREAM
0.ROWTIME AS leftRowtime,
s.ROWTIME AS rightRowtime,
ROWTIME AS joinRowtime
FROM Orders AS o
JOIN Shipments OVER (RANGE INTERVAL '1' HOUR FOLLOWING) AS s
ON o.orderId = s.orderlId

leftRowtime rightRowtime joinRowtime

2008-02-20 10:15:00 2008-02-20 10:30:00 2008-02-20 10:15:00
2008-02-20 10:25:00 2008-02-20 11:15:00 2008-02-20 10:25:00
2008-02-20 10:25:30 2008-02-20 11:05:00 2008-02-20 10:25:30

As it happens, leftRowtime is always equal to joinRowtime, because the join is specified such that
the output row timestamp is always equal to the ROWTIME column from the Orders stream.

It follows that every streaming query has a ROWTIME column. However, the ROWTIME column is
not returned from a top-level JDBC query unless you explicitly include it in the SELECT clause. For
example:

CREATE STREAM Orders(
"orderId" INTEGER NOT NULL,
"custId" INTEGER NOT NULL);

SELECT columnName

FROM ALL_STREAMS;

columnName

orderId
custId

SELECT STREAM *
FROM Orders;

ROWTIME 101

Amazon Kinesis Data Analytics SQL Reference SQL Reference

orderId custId

100 501
101 22
102 699

SELECT STREAM ROWTIME, *
FROM Orders;

ROWTIME orderId custId
2008-02-20 10:15:00 100 501
2008-02-20 10:25:00 101 22
2008-02-20 10:25:30 102 699

This is mainly to ensure compatibility with JDBC: the stream Orders declares two columns, so it
makes sense that "SELECT STREAM *" should return two columns.

ROWTIME 102

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Functions

The topics in this section describe functions supported by streaming SQL.

Topics

» Aggregate Functions

 Analytic Functions

« Boolean Functions

« Conversion Functions

« Date and Time Functions

¢ Null Functions

« Numeric Functions

« Log Parsing Functions

« Sorting Functions

« Statistical Variance and Deviation Functions

» Streaming SQL Functions

» String and Search Functions

Aggregate Functions

Instead of returning a result calculated from a single row, an aggregate function returns a result
calculated from aggregated data contained in a finite set of rows, or from information about a
finite set of rows. An aggregate function may appear in any of the following:

» <selection list> portion of a SELECT clause

« ORDER BY clause

+« HAVING clause

An aggregate function is different from Analytic Functions, which are always evaluated relative to a

window that must be specified, and so they can't appear in a HAVING clause. Other differences are
described in the table later in this topic.

Aggregate Functions 103

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Aggregate functions operate slightly differently in aggregate queries on tables than when you
use them in aggregate queries on streams, as follows. If an aggregate query on tables contains a
GROUP BY clause, the aggregate function returns one result per group in the set of input rows.
Lacking an explicit GROUP BY clause is equivalent to GROUP BY (), and returns only one result for
the entire set of input rows.

On streams, an aggregate query must contain an explicit GROUP BY clause on a monotonic
expression based on rowtime. Without one, the sole group is the whole stream, which never ends,
preventing any result from being reported. Adding a GROUP BY clause based on a monotonic
expression breaks the stream into finite sets of rows, contiguous in time, and each such set can
then be aggregated and reported.

Whenever a row arrives that changes the value of the monotonic grouping expression, a new group
is started and the previous group is considered complete. Then, the Amazon Kinesis Data Analytics
application outputs the value of the aggregate functions. Note that the GROUP BY clause may also
include other non-monotonic expressions, in which case more than one result per set of rows may
be produced.

Performing an aggregate query on streams is often referred to as streaming aggregation,
as distinct from the windowed aggregation discussed in Analytic Functions and Windowed
Aggregation on Streams. For more information about stream-to-stream joins, see JOIN clause.

If an input row contains a null in a column used as an input to a data analysis function, the data
analysis function ignores the row (except for COUNT).

Differences Between Aggregate and Analytic Functions

Function Type Outputs Rows or Windows Notes
Used

Aggregate Functions One output row per All output columns COUNT DISTINCT
group of input rows. are calculated over is not allowed in
the same window or streaming aggregati
same group of rows. on. Statements of the
following type are
not allowed:

Aggregate Functions 104

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Function Type

Analytic Functions

Outputs

One output row for
each input row.

Rows or Windows
Used

Each output column
may be calculate
d using a different

window or partition.

Notes

SELECT COUNT(DIS
TINCT x) ... FROM ...
GROUP BY ...

COUNT DISTINCT
can't be used as
Analytic Functions

or in windowed

aggregation.

Streaming Aggregation and Rowtime Bounds

Normally, an aggregate query generates a result when a row arrives that changes the value of the
monotonic expression in the GROUP BY. For example, if the query is grouped by FLOOR(rowtime
TO MINUTE), and the rowtime of the current row is 9:59.30, then a new row with a rowtime of
10:00.00 will trigger the result.

Alternately, a rowtime bound can be used to advance the monotonic expression and enable the
query to return a result. For example, if the query is grouped by FLOOR(rowtime TO MINUTE), and
the rowtime of the current row is 9:59.30, then an incoming rowtime bound of 10:00.00 the query
to return a result.

Aggregate Function List

Amazon Kinesis Data Analytics supports the following aggregate functions:

« AVG
o« COUNT
o« COUNT_DISTINCT_ITEMS_TUMBLING Function

« EXP_AVG

e FIRST_VALUE
e LAST_VALUE
. MAX

Streaming Aggregation and Rowtime Bounds 105

Amazon Kinesis Data Analytics SQL Reference SQL Reference

« MIN
« SUM
o« TOP_K_ITEMS_TUMBLING Function

The following SQL uses the AVG aggregate function as part of a query to find the average age of
all employees:

SELECT
AVG(AGE) AS AVERAGE_AGE
FROM SALES.EMPS;

Result:

AVERAGE_AGE

38

To find the average age of employees in each department, we can add an explicit GROUP BY clause
to the query:

SELECT

DEPTNO,

AVG(AGE) AS AVERAGE_AGE
FROM SALES.EMPS
GROUP BY DEPTNO;

Returns:
DEPTNO AVERAGE_AGE
10 30
20 25
30 40

Aggregate Function List 106

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

DEPTNO

40

AVERAGE_AGE

Examples of Aggregate Queries on Streams (Streaming Aggregation)

For this example, assume that the data in the following table is flowing through the stream called

WEATHERSTREAM.

ROWTIME

2018-11-01 01:00:00.0

2018-11-01 01:00:00.0

2018-11-01 06:00:00.0

2018-11-01 07:00:00.0

2018-11-01 09:00:00.0

2018-11-01 13:00:00.0

2018-11-01 17:00:00.0

2018-11-01 18:00:00.0

2018-11-01 19:00:00.0

2018-11-02 01:00:00.0

2018-11-02 01:00:00.0

2018-11-02 07:00:00.0

2018-11-02 09:00:00.0

2018-11-02 13:00:00.0

2018-11-02 17:00:00.0

CITY
Denver
Anchorage
Miami
Denver
Anchorage
Denver
Anchorage
Miami
Denver
Anchorage
Denver
Denver
Anchorage
Denver

Anchorage

TEMP

29

65

32

50

10

71

43

39

46

56

Examples of Aggregate Queries on Streams (Streaming Aggregation)

107

Amazon Kinesis Data Analytics SQL Reference SQL Reference

ROWTIME CITY TEMP
2018-11-02 19:00:00.0 Denver 50
2018-11-03 01:00:00.0 Denver 36
2018-11-03 01:00:00.0 Anchorage 1

If you want to find the minimum and maximum temperature recorded anywhere each day (globally
regardless of city), the minimum and maximum temperature can be calculated using the aggregate
functions MIN and MAX respectively. To indicate that we want this information on a per-day basis
(and to provide a monotonic expression as the argument of the GROUP BY clause), we use the
FLOOR function to round each row's rowtime down to the nearest day:

SELECT STREAM
FLOOR(WEATHERSTREAM.ROWTIME to DAY) AS FLOOR_DAY,
MIN(TEMP) AS MIN_TEMP,
MAX(TEMP) AS MAX_TEMP

FROM WEATHERSTREAM

GROUP BY FLOOR(WEATHERSTREAM.ROWTIME TO DAY);

The result of the aggregate query is shown in the following table.

FLOOR_DAY MIN_TEMP MAX_TEMP
2018-11-01 00:00:00.0 2 71
2018-11-02 00:00:00.0 2 56

There is no row for 2018-11-03, even though the example data does include temperature
measurements on that day. This is because the rows for 2018-11-03 cannot be aggregated until
all rows for that day are known to have arrived, and that will only happen when either a row with
a rowtime of 2018-11-04 00:00:00.0 (or later) or a rowtime bound of 2018-11-04 00:00:00.0 (or
later) arrives. If and when either did arrive, the next result would be as described in the following
table.

Examples of Aggregate Queries on Streams (Streaming Aggregation) 108

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

FLOOR_DAY MIN_TEMP MAX_TEMP

2018-11-03 00:00:00.0 1 36

Let's say that instead of finding the global minimum and maximum temperatures each day, we

want to find the minimum, maximum, and average temperature for each city each day. To do this,

we use the SUM and COUNT aggregate functions to compute the average, and add CITY to the

GROUP BY clause, as shown following:

SELECT STREAM
FLOOR(WEATHERSTREAM.ROWTIME TO DAY) AS FLOOR_DAY,

CITY,
MIN(TEMP) AS MIN_TEMP,
MAX(TEMP) AS MAX_TEMP,
SUM(TEMP)/COUNT(TEMP) AS AVG_TEMP
FROM WEATHERSTREAM
GROUP BY FLOOR(WEATHERSTREAM.ROWTIME TO DAY), CITY;

The result of the aggregate query is shown in the following table.

FLOOR_DAY CITY MIN_TEMP MAX_TEMP
2018-11-01 Anchorage 2 10
00:00:00.0

2018-11-01 Denver 29 50
00:00:00.0

2018-11-01 Miami 65 71
00:00:00.0

2018-11-02 Anchorage 2 4
00:00:00.0

2018-11-02 Denver 39 56
00:00:00.0

AVG_TEMP

7

38

68

47

Examples of Aggregate Queries on Streams (Streaming Aggregation)

109

Amazon Kinesis Data Analytics SQL Reference SQL Reference

In this case, the arrival of rows for a new day's temperature measurements triggers the aggregation
of the previous day's data, grouped by CITY, which then results in one row being produced per city
included in the day's measurements.

Here again, a rowtime bound 2018-11-04 00:00:00.0 could be used to prompt a result for
2018-11-03 prior to any actual measurements for 2018-11-04 coming in is shown in the following
table.

FLOOR_DAY CTy MIN_TEMP MAX_TEMP AVG_TEMP
2018-11-03 Anchorage 1 1 1
00:00:00.0

2018-11-03 Denver 36 36 36
00:00:00.0

Windowed Aggregation on Streams

To illustrate how windowed aggregation works on Amazon Kinesis data streams, assume that the
data in the following table is flowing through a stream called WEATHERSTREAM.

ROWTIME Ty TEMP
2018-11-01 01:00:00.0 Denver 29
2018-11-01 01:00:00.0 Anchorage 2
2018-11-01 06:00:00.0 Miami 65
2018-11-01 07:00:00.0 Denver 32
2018-11-01 09:00:00.0 Anchorage 9
2018-11-01 13:00:00.0 Denver 50
2018-11-01 17:00:00.0 Anchorage 10
2018-11-01 18:00:00.0 Miami 71

Windowed Aggregation on Streams

110

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

ROWTIME

2018-11-01 19:00:00.0

2018-11-02 01:00:00.0

2018-11-02 01:00:00.0

2018-11-02 07:00:00.0

2018-11-02 09:00:00.0

2018-11-02 13:00:00.0

2018-11-02 17:00:00.0

2018-11-02 19:00:00.0

2018-11-03 01:00:00.0

2018-11-03 01:00:00.0

CITY
Denver
Anchorage
Denver
Denver
Anchorage
Denver
Anchorage
Denver
Denver

Anchorage

TEMP

43

39

46

56

50

36

Suppose that you want to find the minimum and maximum temperature recorded in the 24-hour

period prior to any given reading, globally, regardless of city. To do this, you define a window of
RANGE INTERVAL '1' DAY PRECEDING, and use it in the OVER clause for the MIN and MAX

analytic functions:

SELECT STREAM
ROWTIME,

MIN(TEMP) OVER W1 AS WMIN_TEMP,
MAX(TEMP) OVER W1 AS WMAX_TEMP

FROM WEATHERSTREAM
WINDOW W1 AS (

RANGE INTERVAL '1' DAY PRECEDING

);

Windowed Aggregation on Streams

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Results

ROWTIME

2018-11-01 01:00:00.0
2018-11-01 01:00:00.0
2018-11-01 06:00:00.0
2018-11-01 07:00:00.0
2018-11-01 09:00:00.0
2018-11-01 13:00:00.0
2018-11-01 17:00:00.0
2018-11-01 18:00:00.0
2018-11-01 19:00:00.0
2018-11-02 01:00:00.0
2018-11-02 01:00:00.0
2018-11-02 07:00:00.0
2018-11-02 09:00:00.0
2018-11-02 13:00:00.0
2018-11-02 17:00:00.0
2018-11-02 19:00:00.0
2018-11-03 01:00:00.0

2018-11-03 01:00:00.0

WMIN_TEMP
29

2

WMAX_TEMP
29
29
65
65
65
65
65
71
71
71
71
71
71
71
71
56
56

56

Windowed Aggregation on Streams

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Now, assume that you want to find the minimum, maximum, and average temperature recorded

in the 24-hour period prior to any given reading, broken down by city. To do this, you add a

PARTITION BY clause on CITY to the window specification, and add the AVG analytic function

over the same window to the selection list:

SELECT STREAM
ROWTIME,
CITY,
MIN(TEMP) over W1l AS WMIN_TEMP,
MAX(TEMP) over W1 AS WMAX_TEMP,
AVG(TEMP) over W1l AS WAVG_TEMP
FROM AGGTEST.WEATHERSTREAM
WINDOW W1 AS (
PARTITION BY CITY
RANGE INTERVAL '1' DAY PRECEDING

);

Results
ROWTIME CITY WMIN_TEMP
2018-11-01 Denver 29
01:00:00.0
2018-11-01 Anchorage 2
01:00:00.0
2018-11-01 Miami 65
06:00:00.0
2018-11-01 Denver 29
07:00:00.0
2018-11-01 Anchorage 2
09:00:00.0
2018-11-01 Denver 29
13:00:00.0

WMAX_TEMP

29

65

32

50

WAVG_TEMP

29

65

30

37

Windowed Aggregation on Streams

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

ROWTIME

2018-11-01
17:00:00.0

2018-11-01
18:00:00.0

2018-11-01
19:00:00.0

2018-11-02
01:00:00.0

2018-11-02
01:00:00.0

2018-11-02
07:00:00.0

2018-11-02
09:00:00.0

2018-11-02
13:00:00.0

2018-11-02
17:00:00.0

2018-11-02
19:00:00.0

2018-11-03
01:00:00.0

2018-11-03
01:00:00.0

CITY

Anchorage

Miami

Denver

Anchorage

Denver

Denver

Anchorage

Denver

Anchorage

Denver

Denver

Anchorage

WMIN_TEMP

2

65

29

29

32

39

39

36

WMAX_TEMP

10

71

50

10

50

50

10

56

10

56

56

WAVG_TEMP

7

68

38

38

42

46

46

45

Windowed Aggregation on Streams

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Examples of Rowtime Bounds and Windowed Aggregation

This is an example of a windowed aggregate query:

SELECT STREAM ROWTIME, ticker, amount, SUM(amount)
OVER (
PARTITION BY ticker
RANGE INTERVAL '1' HOUR PRECEDING)
AS hourlyVolume
FROM Trades

Because this is a query on a stream, rows pop out of this query as soon as they go in. For example,
given the following inputs:

Trades: IBM 10 10 10:00:00
Trades: ORCL 20 10:10:00
Trades.bound: 10:15:00
Trades: ORCL 15 10:25:00
Trades: IBM 30 11:05:00
Trades.bound: 11:10:00

In this example, the output is as follows:

Trades: IBM 10 10 10:00:00
Trades: ORCL 20 20 10:10:00
Trades.bound: 10:15:00
Trades: ORCL 15 35 10:25:00
Trades: IBM 30 30 11:05:00
Trades.bound: 11:10:00

The rows still hang around behind the scenes for an hour, and thus the second ORCL row output
has a total of 35; but the original IBM trade falls outside the "hour preceding" window, and so it is
excluded from the IBM sum.

Example

Some business problems seem to need totals over the whole history of a stream, but this is usually
not practical to compute. However, such business problems are often solvable by looking at the
last day, the last hour, or the last N records. Sets of such records are called windowed aggregates.

Windowed Aggregation on Streams 115

Amazon Kinesis Data Analytics SQL Reference SQL Reference

They are easy to compute in a stream database, and can be expressed in ANSI (SQL:2008) standard
SQL as follows:

SELECT STREAM ticker,
avg(price) OVER lastHour AS avgPrice,
max(price) OVER lastHour AS maxPrice
FROM Bids
WINDOW lastHour AS (
PARTITION BY ticker
RANGE INTERVAL '1l' HOUR PRECEDING)

@ Note

The Interval_clause must be of one of the following appropriate types:

« Integer literal with ROWS
e Numeric value for RANGE over a numeric column

» INTERVAL for a RANGE over a date/time/timestamp

AVG

Returns the average of a group of values from a windowed query. A windowed query is defined in
terms of time or rows. For information about windowed queries, see Windowed Queries. To return

an exponentially weighted average of a stream of value expressions selected in a specified time
window, see EXP_AVG.

When you use AVG, be aware of the following:

 If you don't use the OVER clause, AVG is calculated as an aggregate function. In this case, the
aggregate query must contain a GROUP BY clause on a monotonic expression based on ROWTIME

that groups the stream into finite rows. Otherwise, the group is the infinite stream, and the
query will never complete and no rows will be emitted. For more information, see Aggregate
Functions.

« A windowed query that uses a GROUP BY clause processes rows in a tumbling window. For more
information, see Tumbling Windows (Aggregations Using GROUP BY).

« If you use the OVER clause, AVG is calculated as an analytic function. For more information, see
Analytic Functions.

AVG 116

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/windowed-sql.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

« A windowed query that uses an OVER clause processes rows in a sliding window. For more
information, see Sliding Windows

Syntax

Tumbling Windowed Query

AVG(number-expression) ... GROUP BY monotonic-expression | time-based-expression

Sliding Windowed Query

AVG([DISTINCT | ALL] number-expression) OVER window-specification

Parameters

DISTINCT

Performs the aggregate function only on each unique instance of a value.
ALL

Performs the aggregate function on all values. ALL is the default.
number-expression

Specifies the value expressions evaluated for each row in the aggregation.
OVER window-specification

Divides records in a stream partitioned by the time range interval or the number of rows. A window
specification defines how records in the stream are partitioned by the time range interval or the
number of rows.

GROUP BY monotonic-expression | time-based-expression

Groups records based on the value of the grouping expression, returning a single summary row for
each group of rows that has identical values in all columns.

AVG 117

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/sliding-window-concepts.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Examples
Example Dataset

The examples following are based on the sample stock dataset that is part of the Getting Started
Exercise in the Amazon Kinesis Analytics Developer Guide. To run each example, you need an
Amazon Kinesis Analytics application that has the sample stock ticker input stream. To learn how
to create an Analytics application and configure the sample stock ticker input stream, see Getting
Started in the Amazon Kinesis Analytics Developer Guide.

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

Example 1: Return the Average of Values Using the GROUP BY Clause

In this example, the aggregate query has a GROUP BY clause on ROWTIME that groups the stream
into finite rows. The AVG function is then calculated from the rows returned by the GROUP BY
clause.

Using STEP (Recommended)

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
avg_price DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"

SELECT STREAM
ticker_symbol,
AVG(price) AS avg_price

FROM "SOURCE_SQL_STREAM_001"

GROUP BY ticker_symbol,
STEP("SOURCE_SQL_STREAM_0@01" .ROWTIME BY INTERVAL '6@' SECOND);

AVG 118

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Using FLOOR

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
avg_price DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"

SELECT STREAM
ticker_symbol,
AVG(price) AS avg_price

FROM "SOURCE_SQL_STREAM_001"

GROUP BY ticker_symbol,
FLOOR("SOURCE_SQL_STREAM_0@1" .ROWTIME TO MINUTE);

Results

The preceding examples output a stream similar to the following.

ROWTIME TICKER_SYMBOL AVG_PRICE
2017-02-16 21:46:00.0 NFS 85.84222412109373
2017-02-16 21:47:00.0 WAS 16.45800018310547
2017-02-16 21:47:00.0 PPL 23.33571434020096
2017-02-16 21:47:00.0 ALY 76.0909984741211

Example 2: Return the Average of Values Using the OVER Clause

In this example, the OVER clause divides records in a stream partitioned by the time range interval
of '"1" hour preceding. The AVG function is then calculated from the rows returned by the OVER
clause.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
avg_price DOUBLE);
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol,
AVG(price) OVER (

AVG 119

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

PARTITION BY ticker_symbol

RANGE INTERVAL '1' HOUR PRECEDING) AS avg_price

FROM "SOURCE_SQL_STREAM_001"

The preceding example outputs a stream similar to the following.

ROWTIME

2017-02-16 21:57:25.509
2017-02-16 21:57:25.509
2017-02-16 21:57:25.509
2017-02-16 21:57:25.509

Usage Notes

TICKER_SYMBOL

AAPL
TGT
RFV
SAC

AVG_PRICE

110.0180892944336
94.96333312988281
45.46332931518555
17.972999572753906

Amazon Kinesis Analytics doesn't support AVG applied to interval types. This functionality is a

departure from the SQL:2008 standard.

When used as an analytic function, AVG returns null if the window being evaluated contains no

rows, or if all rows contain null values. For more information, see Analytic Functions. AVG also

returns null for a PARTITION BY clause for which the partition within the window matching the

input row contains no rows or all rows are null. For more information about PARTITION BY, see

WINDOW Clause (Sliding Windows).

AVG ignores null values from the set of values or a numeric expression. For example, each of the

following return the value of 2:

« AVG(1,2,3)=2

e AVG(1,null, 2, null, 3, null) =2

Related Topics

Windowed Queries

EXP_AVG

Aggregate Functions

GROUP BY clause

Analytic Functions

AVG

120

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/windowed-sql.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

» Getting Started Exercise

o WINDOW Clause (Sliding Windows)

COUNT

Returns the number of qualifying rows of a group of values from a windowed query. A windowed
query is defined in terms of time or rows. For information about windowed queries, see Windowed
Queries.

When you use COUNT, be aware of the following:

 If you don't use the OVER clause, COUNT is calculated as an aggregate function. In this case, the
aggregate query must contain a GROUP BY clause on a monotonic expression based on ROWTIME
that groups the stream into finite rows. Otherwise, the group is the infinite stream, and the
query will never complete and no rows will be emitted. For more information, see Aggregate
Functions.

« A windowed query that uses a GROUP BY clause processes rows in a tumbling window. For more
information, see Tumbling Windows (Aggregations Using GROUP BY).

« If you use the OVER clause, COUNT is calculated as an analytic function. For more information, see
Analytic Functions.

« A windowed query that uses an OVER clause processes rows in a sliding window. For more
information, see Sliding Windows

Syntax

Tumbling Windowed Query

COUNT(number-expression) ... GROUP BY monotonic-expression | time-based-expression

Sliding Windowed Query

COUNT(* | ALL number-expression) OVER window-specification

COUNT 121

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/windowed-sql.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/windowed-sql.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/sliding-window-concepts.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Parameters

Counts all rows.

ALL

Counts all rows. ALL is the default.

number-expression

Specifies the value expressions evaluated for each row in the aggregation.
OVER window-specification

Divides records in a stream partitioned by the time range interval or the number of rows. A window
specification defines how records in the stream are partitioned by the time range interval or the
number of rows.

GROUP BY monotonic-expression | time-based-expression

Groups records based on the value of the grouping expression returning a single summary row for
each group of rows that has identical values in all columns.

Examples

Example Dataset

The examples following are based on the sample stock dataset that is part of Getting Started in
the Amazon Kinesis Analytics Developer Guide. To run each example, you need an Amazon Kinesis
Analytics application that has the sample stock ticker input stream. To learn how to create an
Analytics application and configure the sample stock ticker input stream, see Getting Started in the
Amazon Kinesis Analytics Developer Guide.

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

COUNT 122

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Example 1: Return the Number of Values Using the GROUP BY Clause

In this example, the aggregate query has a GROUP BY clause on ROWTIME that groups the stream
into finite rows. The COUNT function is then calculated from the rows returned by the GROUP BY
clause.

Using STEP (Recommended)

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
count_price DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM
ticker_symbol,
COUNT(Price) AS count_price
FROM "SOURCE_SQL_STREAM_001"

GROUP BY ticker_symbol, STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '60'
SECOND) ;

Using FLOOR

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
count_price DOUBLE);
-- CREATE OR REPLACE PUMP to insert into output
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM
ticker_symbol,
COUNT(Price) AS count_price
FROM "SOURCE_SQL_STREAM_001"
GROUP BY ticker_symbol, FLOOR("SOURCE_SQL_STREAM_0@1".ROWTIME TO MINUTE);

Results

The preceding examples output a stream similar to the following.

COUNT 123

Amazon Kinesis Data Analytics SQL Reference SQL Reference

ROWTIME TICKER_SYMEOL COUNT_PRICE
2017-02-16 23:30:00.0 AAPL 9.0
2017-02-16 23:31:00.0 WSB 8.0
2017-02-16 23:31:00.0 AAPL 6.0
2017-02-16 23:31:00.0 UHM 9.0

Example 2: Return the Number of Values Using the OVER Clause

In this example, the OVER clause divides records in a stream partitioned by the time range interval
of '"1" hour preceding. The COUNT function is then calculated from the rows returned by the OVER
clause.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
count_price DOUBLE);
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol,
COUNT(price) OVER (
PARTITION BY ticker_symbol
RANGE INTERVAL '1l' HOUR PRECEDING) AS count_price
FROM "SOURCE_SQL_STREAM_001"

The preceding example outputs a stream similar to the following.

ROWTIME TICKER_SYMBOL COUNT_PRICE
2017-02-16 23:36:16.729 WMT 3.0
2017-02-16 23:36:16.729 DFG 2.0
2017-02-16 23:36:16.729 RFV 4.0
2017-02-16 23:36:16.729 TGH 3.0

Usage Notes

Amazon Kinesis Analytics doesn't support the FILTER clause of the COUNT function or the use
of COUNT DISTINCT in either aggregate functions or analytic functions. For more information
on aggregate and analytic functions, see Aggregate Functions and Analytic Functions. This
functionality is a departure from the SQL:2008 standard.

COUNT 124

Amazon Kinesis Data Analytics SQL Reference SQL Reference

When used as an analytic function, COUNT returns zero if the window being evaluated contains

no rows. For more information, see Analytic Functions. COUNT also returns zero for a PARTITION
BY clause for which the partition within the window matching the input row contains no rows. For
more information about PARTITION BY, see WINDOW Clause (Sliding Windows).

COUNT ignores null values from the set of values or a numeric expression. For example, each of the
following return the value of 3:

« COUNT(1,2,3)=3
« COUNT(1,null, 2, null, 3, null) = 3

Related Topics

« Windowed Queries

» Aggregate Functions

« GROUP BY clause

« Analytic Functions

» Getting Started Exercise

« WINDOW Clause (Sliding Windows)

COUNT_DISTINCT_ITEMS_TUMBLING Function

Returns a count of the number of distinct items in the specified in-application stream column
over a tumbling window. The resulting count is approximate; the function uses the HyperLoglLog
algorithm.

For more information, see HyperLogLog.

When you use COUNT_DISTINCT_ITEMS_TUMBLING, be aware of the following:

» When there are less than or equal to 10,000 items in the window, the function returns an exact
count.

» Getting an exact count of the number of distinct items can be inefficient and costly. Therefore,
this function approximates the count. For example, if there are 100,000 distinct items, the
algorithm may return 99,700. If cost and efficiency is not a consideration, you can write your own
SELECT statement to get the exact count.

COUNT_DISTINCT_ITEMS_TUMBLING Function 125

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/windowed-sql.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://en.wikipedia.org/wiki/HyperLogLog

Amazon Kinesis Data Analytics SQL Reference SQL Reference

The following example demonstrates how to get an exact count of distinct rows for each ticker

symbol in a five second tumbling window. The SELECT statement uses all of the columns (except
ROWTIME) in determining the uniqueness.

CREATE OR REPLACE STREAM output_stream (ticker_symbol VARCHAR(4), unique_count
BIGINT);

CREATE OR REPLACE PUMP stream_pump AS
INSERT INTO output_stream

SELECT STREAM TICKER_SYMBOL, COUNT(distinct_stream.price) AS unique_count
FROM (

SELECT STREAM DISTINCT rowtime as window_time,

TICKER_SYMBOL,
CHANGE,
PRICE,

STEP((SOURCE_SQL_STREAM_0@0@1.rowtime) BY INTERVAL '5' SECOND)

FROM SOURCE_SQL_STREAM_@@1) as distinct_stream
GROUP BY TICKER_SYMBOL,

STEP((distinct_stream.window_time) BY INTERVAL '5' SECOND);

The function operates on a tumbling window. You specify the size of the tumbling window as a
parameter.

Syntax

COUNT_DISTINCT_ITEMS_TUMBLING (

in-application-streamPointer,
'columnName',
windowSize

Parameters

The following sections describe the parameters.

COUNT_DISTINCT_ITEMS_TUMBLING Function 126

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

in-application-streamPointer

Using this parameter, you provide a pointer to an in-application stream. You can set a pointer using
the CURSOR function. For example, the following statement sets a pointer to InputStream.

CURSOR(SELECT STREAM * FROM InputStream)

columnName

Column name in your in-application stream that you want the function to use to count distinct
values. Note the following about the column name:

« Must appear in single quotation marks (‘). For example, 'columnl'.

windowSize

Size of the tumbling window in seconds. The size should be at least 1 second and should not
exceed 1 hour = 3600 seconds.

Examples

Example Dataset

The examples following are based on the sample stock dataset that is part of Getting Started in

the Amazon Kinesis Analytics Developer Guide. To run each example, you need an Amazon Kinesis
Analytics application that has the sample stock ticker input stream. To learn how to create an
Analytics application and configure the sample stock ticker input stream, see Getting Started in the

Amazon Kinesis Analytics Developer Guide.

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

COUNT_DISTINCT_ITEMS_TUMBLING Function 127

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Example 1: Approximate the number of distinct values in a column

The following example demonstrates how to use the COUNT_DISTINCT_ITEMS_TUMBLING
function to approximate the number of distinct TICKER_SYMBOL values in the current tumbling
window of the in-application stream. For more information about tumbling windows, see Tumbling
Windows.

CREATE OR REPLACE STREAM DESTINATION_SQL_STREAM (
NUMBER_OF_DISTINCT_ITEMS BIGINT);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM *
FROM TABLE(COUNT_DISTINCT_ITEMS_TUMBLING(

CURSOR(SELECT STREAM * FROM "SOURCE_SQL_STREAM_@@1"), -- pointer to the data
stream
'TICKER_SYMBOL', -- name of column in
single quotes
60 -- tumbling window

size in seconds
)
);

The preceding example outputs a stream similar to the following:

T

ROWTIME NUMBER_OF_DISTINCT_ITEMS
2017-03-16 21:22:57.49 47

2017-03-16 21:23:57.49 47

2017-03-16 21:24:57 .49 47

2017-03-16 21:25:57 .49 47

EXP_AVG (expression, <time-interval>)

EXP_AVG 128

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

EXP_AVG returns an exponentially-weighted average (exponential moving average) of a stream

of value expressions selected in a specified time window. EXP_AVG divides the specified window
into intervals based on the value of <time-interval>. The values of the specified expression are
weighted the most heavily for the most recent time-intervals and exponentially less heavily for
earlier intervals.

Example

This example creates an exponentially-weighted average of the price of each stock ticker over
a 30-second window such that the prices (for that ticker symbol) in the most recent 10-second
subwindow carry double the weight of the prices in the middle 10-second subwindow and four
times the weight of the prices in the oldest 10-second subwindow.

select stream t.rowtime, ticker, price,

exp_avg(price, INTERVAL '1@' SECOND) over w as avgPrice

from t

window w as (partition by ticker range interval '30' second preceding);

In this example, 10 seconds is the half-life of the decay function, that is, the period over which the
weights applied to the prices being averaged decrease by a factor of two. In other words, the older
one will be given half as much weight as the newer one. It is specified as the time_interval in the
call to EXP_AVG as interval '10' second .

FIRST_VALUE

FIRST_VALUE(<value-expression>) <null treatment> OVER <window-specification>

FIRST_VALUE returns the evaluation of the <value expression> from the first row that qualifies for
the aggregate. FIRST_VALUE requires the OVER clause, and is considered an Analytic Functions.
FIRST_VALUE has a null treatment option defined in the following table.

Null treatment option Effect

FIRST_VALUE(x) IGNORE NULLS OVER Returns first non null value of x in <window-s
<window-specification> pecification>

FIRST_VALUE(x) RESPECT NULLS OVER Returns first value, including null of x in
<window-specification> <window-specification>

FIRST_VALUE 129

https://en.wikipedia.org/wiki/Moving_average

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Null treatment option Effect

FIRST_VALUE(x) OVER <window-specification> Returns first value, including null of x in
<window-specification>

LAST_VALUE

LAST_VALUE (<value-expression>) OVER <window-specification>

LAST_VALUE returns the evaluation of the <value expression> from the last row that qualifies for
the aggregate.

Null Treatment Option Effect

LAST_VALUE(x) IGNORE NULLS OVER Returns last non null value of x in <window-s
<window-specification> pecification>

LAST_VALUE(x) RESPECT NULLS OVER Returns last value, including null of x in
<window-specification> <window-specification>

LAST_VALUE(x) OVER <window-specification> Returns last value, including null of x in
<window-specification>

MAX

Returns the maximum value of a group of values from a windowed query. A windowed query is
defined in terms of time or rows. For information about window queries, see Windowed Queries.

When you use MAX, be aware of the following:

« If you don't use the OVER clause, MAX is calculated as an aggregate function. In this case, the
aggregate query must contain a GROUP BY clause on a monotonic expression based on ROWTIME
that groups the stream into finite rows. Otherwise, the group is the infinite stream, and the
query will never complete and no rows will be emitted. For more information, see Aggregate

Functions.

LAST_VALUE 130

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/windowed-sql.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

« A windowed query that uses a GROUP BY clause processes rows in a tumbling window. For more
information, see Tumbling Windows (Aggregations Using GROUP BY).

« If you use the OVER clause, MAX is calculated as an analytic function. For more information, see
Analytic Functions.

« A windowed query that uses an OVER clause processes rows in a sliding window. For more
information, see Sliding Windows

Syntax

Tumbling Windowed Query

MAX(number-expression) ... GROUP BY monotonic-expression | time-based-expression

Sliding Windowed Query

MAX(number-expression) OVER window-specification

Parameters

number-expression

Specifies the value expressions evaluated for each row in the aggregation.
OVER window-specification

Divides records in a stream partitioned by the time range interval or the number of rows. A window
specification defines how records in the stream are partitioned by the time range interval or the
number of rows.

GROUP BY monotonic-expression | time-based-expression

Groups records based on the value of the grouping expression returning a single summary row for
each group of rows that has identical values in all columns.

MAX 131

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/sliding-window-concepts.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Examples

Example Dataset

The examples following are based on the sample stock dataset that is part of Getting Started in
the Amazon Kinesis Analytics Developer Guide. To run each example, you need an Amazon Kinesis
Analytics application that has the sample stock ticker input stream. To learn how to create an
Analytics application and configure the sample stock ticker input stream, see Getting Started in the
Amazon Kinesis Analytics Developer Guide.

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

Example 1: Return the Maximum Value Using the GROUP BY Clause

In this example, the aggregate query has a GROUP BY clause on ROWTIME that groups the stream
into finite rows. The MAX function is then calculated from the rows returned by the GROUP BY
clause.

Using STEP (recommended)

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
max_price DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM
ticker_symbol,
MAX(Price) AS max_price
FROM "SOURCE_SQL_STREAM_001"
GROUP BY ticker_symbol, STEP("SOURCE_SQL_STREAM_0Q01".ROWTIME BY INTERVAL '60'
SECOND);

MAX 132

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Using FLOOR

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
max_price DOUBLE);
-- CREATE OR REPLACE PUMP to insert into output
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM
ticker_symbol,
MAX(Price) AS max_price
FROM "SOURCE_SQL_STREAM_001"
GROUP BY ticker_symbol, FLOOR('"SOURCE_SQL_STREAM_@@1".ROWTIME TO MINUTE);

Results

The preceding examples output a stream similar to the following.

ROWTIME TICKER_SYMEBOL MAX_PRICE
2017-02-17 00:34:00.0 ASD 67.19999694824219
2017-02-17 00:35:00.0 BNM 179.3300018310547
2017-02-17 D0:35:00.0 PPL 39.47999054223633
2017-02-17 00:35:00.0 QXZ 222 .89999389648438

Example 2: Return the Maximum Value Using the OVER Clause

In this example, the OVER clause divides records in a stream partitioned by the time range interval
of "1 hour preceding. The MAX function is then calculated from the rows returned by the OVER
clause.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
max_price DOUBLE);
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol,
MAX(price) OVER (
PARTITION BY ticker_symbol

MAX 133

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

RANGE INTERVAL '1' HOUR PRECEDING) AS max_price

FROM "SOURCE_SQL_STREAM_001"

The preceding example outputs a stream similar to the following.

ROWTIME

2017-02-17 00:36:44 854
2017-02-17 00:36:50.796
2017-02-17 00:36:50.796

2017-02-17 00:36:50.796

TICKER_SYMBOL

QAZ
QXZ
MM

WsB

MAX_PRICE

198.2100067138672
232.49000549316406
187.6999960482422
101.0

Usage Notes
For string values, MAX is determined by which string is last in the collating sequence.

If MAX is used as an analytic function and the window being evaluated contains no rows, MAX
returns null. For more information, see Analytic Functions.

Related Topics

« Windowed Queries

« Aggregate Functions

« GROUP BY clause

« Analytic Functions

» Getting Started Exercise
o WINDOW Clause (Sliding Windows)

MIN

Returns the minimum value of a group of values from a windowed query. A windowed query is
defined in terms of time or rows. For information about windowed queries, see Windowed Queries.

When you use MIN, be aware of the following:

« If you don't use the OVER clause, MIN is calculated as an aggregate function. In this case, the
aggregate query must contain a GROUP BY clause on a monotonic expression based on ROWTIME

that groups the stream into finite rows. Otherwise, the group is the infinite stream, and the

MIN 134

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/windowed-sql.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/windowed-sql.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

query will never complete and no rows will be emitted. For more information, see Aggregate
Functions.

« A windowed query that uses a GROUP BY clause processes rows in a tumbling window. For more
information, see Tumbling Windows (Aggregations Using GROUP BY).

« If you use the OVER clause, MIN is calculated as an analytic function. For more information, see
Analytic Functions.

« A windowed query that uses an OVER clause processes rows in a sliding window. For more
information, see Sliding Windows

Syntax

Tumbling Windowed Query

MIN(number-expression) ... GROUP BY monotonic-expression | time-based-expression

Sliding Windowed Query

MIN(number-expression) OVER window-specification

Parameters

number-expression

Specifies the value expressions evaluated for each row in the aggregation.
OVER window-specification

Divides records in a stream partitioned by the time range interval or the number of rows. A window
specification defines how records in the stream are partitioned by the time range interval or the
number of rows.

GROUP BY monotonic-expression | time-based-expression

Groups records based on the value of the grouping expression returning a single summary row for
each group of rows that has identical values in all columns.

MIN 135

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/sliding-window-concepts.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Examples
Example Dataset

The examples following are based on the sample stock dataset that is part of the Getting Started
Exercise in the Amazon Kinesis Analytics Developer Guide. To run each example, you need an
Amazon Kinesis Analytics application that has the sample stock ticker input stream. To learn how
to create an Analytics application and configure the sample stock ticker input stream, see Getting
Started in the Amazon Kinesis Analytics Developer Guide.

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

Example 1: Return the Minimum Value Using the GROUP BY Clause

In this example, the aggregate query has a GROUP BY clause on ROWTIME that groups the stream
into finite rows. The MIN function is then calculated from the rows returned by the GROUP BY
clause.

Using STEP (Recommended)

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
min_price DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM
ticker_symbol,
MIN(Price) AS min_price
FROM "SOURCE_SQL_STREAM_001"
GROUP BY ticker_symbol, STEP("SOURCE_SQL_STREAM_0Q01".ROWTIME BY INTERVAL '60'
SECOND);

MIN 136

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Using FLOOR

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
min_price DOUBLE);
-- CREATE OR REPLACE PUMP to insert into output
CREATE OR REPLACE PUMP "STREAM_PUMP'" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM
ticker_symbol,
MIN(Price) AS min_price
FROM "SOURCE_SQL_STREAM_001"
GROUP BY ticker_symbol, FLOOR('"SOURCE_SQL_STREAM_@@1".ROWTIME TO MINUTE);

Results

The preceding examples output a stream similar to the following.

ROWTIME TICKER_SYMBOL MIN_PRICE
2017-02-17 22:45:00.0 Qxz 48.970001220703125
2017-02-17 22:46:00.0 WMT 62.540000915527344
2017-02-17 22:46:00.0 QwWE 214.2100067138672
2017-02-17 22:46:00.0 CRM 2B8.260000228881836

Example 2: Return the Minimum Value Using the OVER Clause

In this example, the OVER clause divides records in a stream partitioned by the time range interval
of 1" hour preceding. The MIN function is then calculated from the rows returned by the OVER
clause.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
min_price DOUBLE);
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol,
MIN(price) OVER (
PARTITION BY ticker_symbol
RANGE INTERVAL '1l' HOUR PRECEDING) AS min_price

MIN 137

Amazon Kinesis Data Analytics SQL Reference SQL Reference

FROM "SOURCE_SQL_STREAM_001"

The preceding example outputs a stream similar to the following.

ROWTIME TICKER_SYMBOL MIN_PRICE
2017-02-17 22:49:51 147 NFS 84.94000244140625
2017-02-17 22:49:59.058 NFLX 112.37000274658203
2017-02-17 22:49:59.038 ASD 57.790000915527344
2017-02-17 22:49:59.038 DFG 147.3000030517578

Usage Notes
For string values, MIN is determined by which string is last in the collating sequence.

If MIN is used as an analytic function and the window being evaluated contains no rows, MIN
returns null. For more information, see Analytic Functions.

Related Topics

« Windowed Queries

« Aggregate Functions
« GROUP BY clause

« Analytic Functions

» Getting Started Exercise
o WINDOW Clause (Sliding Windows)

SUM

Returns the sum of a group of values from a windowed query. A windowed query is defined in
terms of time or rows. For information about windowed queries, see Windowed Queries.

When you use SUM, be aware of the following:

« If you don't use the OVER clause, SUM is calculated as an aggregate function. In this case, the
aggregate query must contain a GROUP BY clause on a monotonic expression based on ROWTIME
that groups the stream into finite rows. Otherwise, the group is the infinite stream, and the

query will never complete and no rows will be emitted. For more information, see Aggregate
Functions.

SUM 138

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/windowed-sql.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/windowed-sql.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

« A windowed query that uses a GROUP BY clause processes rows in a tumbling window. For more
information, see Tumbling Windows (Aggregations Using GROUP BY).

« If you use the OVER clause, SUM is calculated as an analytic function. For more information, see
Analytic Functions.

« A windowed query that uses an OVER clause processes rows in a sliding window. For more
information, see Sliding Windows

Syntax

Tumbling Windowed Query

SUM(number-expression) ... GROUP BY monotonic-expression | time-based-expression

Sliding Windowed Query

SUM([DISTINCT | ALL] number-expression) OVER window-specification

Parameters

DISTINCT

Counts only distinct values.

ALL

Counts all rows. ALL is the default.

number-expression

Specifies the value expressions evaluated for each row in the aggregation.
OVER window-specification

Divides records in a stream partitioned by the time range interval or the number of rows. A window
specification defines how records in the stream are partitioned by the time range interval or the
number of rows.

SUM 139

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/sliding-window-concepts.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

GROUP BY monotonic-expression | time-based-expression

Groups records based on the value of the grouping expression returning a single summary row for
each group of rows that has identical values in all columns.

Examples
Example Dataset

The examples following are based on the sample stock dataset that is part of the Getting Started
Exercise in the Amazon Kinesis Analytics Developer Guide. To run each example, you need an
Amazon Kinesis Analytics application that has the sample stock ticker input stream. To learn how
to create an Analytics application and configure the sample stock ticker input stream, see Getting
Started in the Amazon Kinesis Analytics Developer Guide.

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

Example 1: Return the Sum of Values Using the GROUP BY Clause

In this example, the aggregate query has a GROUP BY clause on ROWTIME that groups the stream
into finite rows. The SUM function is then calculated from the rows returned by the GROUP BY
clause.

Using STEP (Recommended)

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
sum_price DOUBLE);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM
ticker_symbol,

SUM 140

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

SUM(price) AS sum_price
FROM "SOURCE_SQL_STREAM_001"

GROUP BY ticker_symbol, STEP("SOURCE_SQL_STREAM_00@1".ROWTIME BY INTERVAL '60'

SECOND);

Using FLOOR

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (

ticker_symbol VARCHAR(4),
sum_price

-- CREATE OR REPLACE PUMP to insert into output

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM
ticker_symbol,
SUM(price) AS sum_price
FROM "SOURCE_SQL_STREAM_001"

GROUP BY ticker_symbol, FLOOR('"SOURCE_SQL_STREAM_0@1".ROWTIME TO MINUTE);

Results

The preceding examples output a stream similar to the following.

ROWTIME

2017-02-18 00:28:00.0
2017-02-18 00:29:00.0
2017-02-18 00:29:00.0

2017-02-18 00:29:00.0

Usage Notes

TICKER_SYMBOL

KIN

VWS
HJK
KFU

SUM_PRICE

32.630001068115234
50.400906032714844
34.81999969482422

356.6899719238281

Amazon Kinesis Analytics doesn't support SUM applied to interval types. This functionality is a

departure from the SQL:2008 standard.

SUM ignores null values from the set of values or a numeric expression. For example, each of the

following return the value of 6:

« SUM(1,2,3)=6
e SUM(1,null, 2, null, 3, null) =6

SUM

141

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Related Topics

o Windowed Queries

» Aggregate Functions

« GROUP BY clause

« Analytic Functions

» Getting Started Exercise
o WINDOW Clause (Sliding Windows)

TOP_K_ITEMS_TUMBLING Function

Returns the most frequently occurring values in the specified in-application stream column over a
tumbling window. This can be used to find trending (most popular) values in a specified column.

For example, the Getting Started exercise uses a demo stream that provides continuous stock price
updates (ticker_symbol, price, change, and other columns). Suppose you want to find the three
most frequently traded stocks in each 1-minute tumbling window. You can use this function to find
those ticker symbols.

When you use TOP_K_ITEMS_TUMBLING, be aware of the following:

» Counting each incoming record on your streaming source is not efficient, therefore the function
approximates the most frequently occurring values. For example, when seeking the three most
traded stocks, the function may return three of the five most traded stocks.

The function operates on a tumbling window. You specify the window size as a parameter.

For a sample application with step-by-step instructions, see Most Frequently Occurring Values.

Syntax

TOP_K_ITEMS_TUMBLING (
in-application-streamPointer,
'columnName' ,

K,
windowSize,

TOP_K_ITEMS_TUMBLING Function 142

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/windowed-sql.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/top-k-example.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Parameters
The following sections describe the parameters.
in-application-streamPointer

Pointer to an in-application stream. You can set a pointer using the CURSOR function. For example,
the following statement sets a pointer to InputStream.

CURSOR(SELECT STREAM * FROM InputStream)

columnName

Column name in your in-application stream that you want to use to compute the topK values. Note
the following about the column name:

® Note

The column name must appear in single quotation marks ('). For example, 'columnl’'.

K

Using this parameter, you specify how many of the most frequently occurring values from a specific
column you want returned. The value K must be greater than or equal to one and cannot exceed
100,000.

windowSize

Size of the tumbling window in seconds. The size must be greater than or equal to one second and
must not exceed 3600 seconds (one hour).

Examples

Example Dataset

The examples following are based on the sample stock dataset that is part of Getting Started in

the Amazon Kinesis Analytics Developer Guide. To run each example, you need an Amazon Kinesis
Analytics application that has the sample stock ticker input stream. To learn how to create an
Analytics application and configure the sample stock ticker input stream, see Getting Started in the

Amazon Kinesis Analytics Developer Guide.

TOP_K_ITEMS_TUMBLING Function 143

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

Example 1: Return the Most Frequently Occurring Values

The following example retrieves the most frequently occuring values in the sample stream created
in the Getting Started tutorial.

CREATE OR REPLACE STREAM DESTINATION_SQL_STREAM (
"TICKER_SYMBOL" VARCHAR(4),
"MOST_FREQUENT_VALUES" BIGINT

);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM *
FROM TABLE (TOP_K_ITEMS_TUMBLING(
CURSOR(SELECT STREAM * FROM "SOURCE_SQL_STREAM_001"),

'TICKER_SYMBOL', -- name of column in single quotes

5, -- number of the most frequently occurring values
60 -- tumbling window size in seconds

)

);

The preceding example outputs a stream similar to the following.

T

ROWTIME TICKER_SYMEOL MOST FREQUENT VALUES
2017-04-12 17:14:45.305 QxZ 17

2017-04-12 17:15:45.305 QxZ 21

2017-04-12 17:15:45.305 AAPL 11

2017-04-12 17:15:45.305 DFT]

TOP_K_ITEMS_TUMBLING Function 144

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/getting-started.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Analytic Functions

An analytic function is one that returns a result calculated from data in (or about) a finite set of
rows identified by a SELECT clause or in the ORDER BY clause.

The SELECT topic explains the order-by clause, showing the order-by chart, as well as the
windowing clause (and window-specification chart). To see where an order-by clause is used in
Select statements, see the Select chart in the SELECT topic of this guide.

1. Analytic functions must specify a window. Since there are a few restrictions on window
specifications, and a few differences between specifying windows for windowed aggregation and
windowed join, please see Allowed and Disallowed Window Specifications for explanations.

2. Analytic functions may only appear in the <selection list> portion of a SELECT clause or in the
ORDER BY clause.
Other differences are described in the table later in this topic.

Performing queries using analytic functions is commonly referred to as windowed aggregation
(discussed below), as distinct from Aggregate Functions.

Because of the presence of the window specification, queries that use analytic functions produce
results in a different manner than do aggregate queries. For each row in the input set, the window
specification identifies a different set of rows on which the analytic function operates. If the
window specification also includes a PARTITION BY clause, then the only rows in the window that
will be considered in producing a result will be those that share the same partition as the input row.

If an input row contains a null in a column used as an input to an analytic function, the analytic
function ignores the row, except for COUNT, which does count rows with null values. In cases where
the window (or in the case of a PARTITION BY, a partition within the window) contains no rows, an
analytic function will return null. The exception to this is COUNT, which returns zero.

Differences Between Aggregate and Analytic Functions

Function Type Outputs Rows or Windows Notes
Used

Aggregate Functions One output row per All output columns COUNT DISTINCT
group of input rows. are calculated over is not allowed in

Aggregate Functions

Analytic Functions 145

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Function Type

Analytic Functions

Related Topics

Outputs

One output row for
each input row.

» Windowed Aggregation on Streams

o SELECT statement

o SELECT clause

Boolean Functions

Rows or Windows
Used

the same window or
same group of rows.

Each output column
may be calculate
d using a different

window or partition.

Notes

. Statements of the
following type are
not allowed:

SELECT COUNT(DIS
TINCT x) ... FROM ...
GROUP BY ...

COUNT DISTINCT
can't be used as
analytic functions
or in windowed
aggregation.

The topics in this section describe the boolean functions for Amazon Kinesis Data Analytics

streaming SQL.

Topics
« ANY
o EVERY

ANY

ANY (<boolean_expression>)

Related Topics

Amazon Kinesis Data Analytics SQL Reference SQL Reference

ANY returns true if the supplied boolean_expression is true in any of the selected rows. Returns
false if the supplied boolean_expression is true in none of the selected rows.

Example

The following SQL snippet returns 'true’ if the price for any ticker in the stream of trades is below 1.
Returns 'false’ if every price in the stream is 1 or greater.

SELECT STREAM ANY (price < 1) FROM trades
GROUP BY (FLOOR trades.rowtime to hour)

EVERY

EVERY (<boolean_expression>)

EVERY returns true if the supplied boolean_expression is true in all of the selected rows. Returns
false if the supplied boolean_expression is false in any of the selected rows.

Example

The following SQL snippet returns 'true' if the price for every ticker in the stream of trades is below
1. Returns 'false' if any price is 1 or greater.

SELECT STREAM EVERY (price < 1) FROM trades
GROUP BY (FLOOR trades.rowtime to hour)

Conversion Functions

The topics in this section describe the conversion functions for Amazon Kinesis Data Analytics
streaming SQL.

For functions that convert to and from Datetime and Timestamp values, see Datetime Conversion

Functions.

Topics

o CAST

EVERY 147

Amazon Kinesis Data Analytics SQL Reference SQL Reference

CAST

CAST lets you convert one value expression or data type to another value expression or data type.

CAST (<cast-operand> AS <cast-target>)
<cast-operand> := <value-expression>
<cast-target> := <data-type>

Valid Conversions

Using CAST with source operands of the types listed in the first column below can create cast
target types as listed in the second column, without restriction. Other target types are not
supported.

Source Operand Types Target Operand Types

Any numeric type (NUMERIC, DECIMAL, VARCHAR, CHAR, or any numeric type (See
SMALLINT, INTEGER, BIGINT, REAL, DOUBLE) Note A.)

VARCHAR, CHAR All of the above, plus, DATE, TIME, TIMESTAMP
, DAY-TIME INTERVAL, BOOLEAN

DATE DATE, VARCHAR, CHAR, TIMESTAMP
TIME TIME, VARCHAR, CHAR, TIMESTAMP
TIMESTAMP TIME, VARCHAR, CHAR, TIMESTAMP, DATE
DAY-TIME INTERVAL DAY-TIME INTERVAL, BIGINT, DECIMAL, CHAR,
VARCHAR

BOOLEAN VARCHAR, CHAR, BOOLEAN
BINARY, VARBINARY BINARY, VARBINARY

Examples

2.1 DATE to CHAR/VARCHAR

CAST 148

Amazon Kinesis Data Analytics SQL Reference SQL Reference

| EXPR$0 |

1 row selected

(Note that if an inadequate output specification is supplied, no rows are selected:

values(cast(date'2008-08-23' as varchar(9)));
"EXPR$0'
No rows selected

(Because the date literal requires 10 characters)

In the next case, the date is blank-padded on the right (because of the semantics of the CHAR
datatype):

L T T +
| EXPR$0 |
L T T +
| 2008-08-23 |
L T T +

1 row selected

REAL to INTEGER

The real (NUMERIC or DECIMAL) is rounded by the cast:

R +
| EXPR$O |
R +
| -2 I
R +

1 row selected

STRING to TIMESTAMP

There are two ways to convert a string to a timestamp. The first uses CAST, as shown in the next
topic. The other uses Char To Timestamp(Sys).

CAST 149

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Using CAST to Convert a String to a Timestamp

The example below illustrates this method for conversion:

'EXPR$0'
'2007-02-19 21:23:45"
1 row selected

If the input string lacks any one of the six fields (year, month, day, hours, minutes, seconds), or uses
any delimiters different from those shown above, CAST will not return a value. (Fractional seconds
are disallowed.)

If the input string is thus not in the appropriate format to be CAST, then to convert the string to a
timestamp, you must use the CHAR_TO_TIMESTAMP method.

Using CHAR_TO_TIMESTAMP to convert a String to a Timestamp

When the input string is not in the appropriate format to be CAST, you can use the
CHAR_TO_TIMESTAMP method. It has the additional advantage that you can specify which parts
of the timestamp string you wish to use in subsequent processing, and create a TIMESTAMP value
containing only those. To do so, you specify a template that identifies which parts you want, such
as 'yyyy-MM' to use only the year and month parts.

The input-date-time string-to-be-converted can contain all or any parts of a full timestamp, that
is, values for any or all of the standard elements ('yyyy-MM-dd hh:mm:ss'). If all these elements
are present in your input string, and 'yyyy-MM-dd hh:mm:ss' is the template you supply, then the
input-string elements are interpreted in that order as year, month, day, hour, minute, and seconds,
such as in '2009-09-16 03:15:24". The yyyy cannot be uppercase; the hh can be uppercase to mean
using a 24-hour clock. For many examples of valid specifiers, see the table and examples later in
this topic. For the full range of valid specifiers, see Class SimpleDateFormat on the Oracle website.

CHAR_TO_TIMESTAMP uses the template you specify as a parameter in the function call. The
template causes the TIMESTAMP result to use only the parts of the input-date-time value that
you specified in the template. Those fields in the resulting TIMESTAMP will then contain the
corresponding data taken from your input-date-time string; fields not specified in your template
will use default values (see below). The format of the template used by CHAR_TO_TIMESTAMP is
defined by Class SimpleDateFormat, at which link all the specifiers are listed, some with examples.

For more information, see Date and Time Patterns.

The function-call syntax is as follows:

CAST 150

http://docs.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

CHAR_TO_TIMESTAMP('<format_string>"', '<input_date_time_string>')

Where <format_ string> is the template you specify for the parts of <date_time_string> you want,
and <input_date_time_string> is the original string that is being converted to a TIMESTAMP result.

Each string must be enclosed in single quotes, and each element of the <input_date_time_string>
must be in the range for its corresponding element in the template. Otherwise, no result is
returned.

Example 1

« The input-string-element whose position corresponds with MM must be an integer from 1 to 12,
because anything else does not represent a valid month.

« The input-string-element whose position corresponds with dd must be an integer from 1 to 31,
because anything else does not represent a valid day.

« However, if MM is 2, dd cannot be 30 or 31, because February never has such days.

However, for months or days, the default starting value substituted for the omitted parts is 01.

For example, using '2009-09-16 03:15:24' as your input string, you can obtain a TIMESTAMP
containing only the date, with zeros for the other fields such as hours, minutes, or seconds, by
specifying

CHAR_TO_TIMESTAMP('yyyy-MM-dd', '2009-09-16 03:15:24').
The result would be the TIMESTAMP 2009-09-16 00:00:00.

Example 2

« If the call had kept hours and minutes in the template while omitting months, days, and seconds,

as illustrated in the following call --- --- CHAR_TO_TIMESTAMP('yyyy-hh-mm','2009-09-16
03:15:24') --- --- then the resulting TIMESTAMP would be 2009-01-01 03:15:00.
Template Input String Output TIMESTAMP Notes
'yyyy-MM-dd '2009-09-16 '2009-09-16 Input string MUST
hh:mm:ss' 03:15:24" 03:15:24" use the form 'yyyy-

CAST 151

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Template

'yyyy-mm'

Input String

'2012-02-08
07:23:19'

Output TIMESTAMP

'2012-01-01
00:02:00'

Notes

MM-dd hh:mm:ss' or
a subset or reorderin
g thereof; using

an input string like
'Wednesday, 16
September 2009
03:15:24" will NOT
work, meaning that

no output will result.

The template above
specifies only year
first and minutes

second, so the second

element in the input
string ("02") is used
as minutes.

Default values are
used for Month and
Day ("01") and for
hours and seconds
("oQ").

CAST

152

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Template Input String
'yyyy-ss-mm' '2012-02-08
07:23:19'

"MMM dd, yyyy' "March 7, 2010'

Output TIMESTAMP

'2012-01-01
00:08:02'

'2010-03-07
00:00:00'

Notes

The template above
specifies only

year, seconds, and
minutes, in that
order, so the second
element in the input
string ("02") is used
as seconds and the
third as minutes
("08"). Default values
are used for Month
and Day ("01") and
for hours ("00").

MMM in the template
above matches
"March"; the
template's '‘comma
space' matches the
input string.

—————— If the template
lacks the comma, so

must the input string,
or there is no output;

—————— If the input
string lacks the
comma, so must the
template.

CAST

153

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Template Input String

"MMM dd, ' '"March 7, 2010'
'"MMM dd,y' '"March 7, 2010'
"M-d' '2-8"

Output TIMESTAMP

'1970-03-07
00:00:00'

'2010-03-07
00:00:00'

'1970-02-08
00:00:00'

Notes

Note that the
template above
doesn't use a year
specifier, causing the
output TIMESTAMP
to use the earliest
year in this epoch,
1970.

Using the template
above, if the input
string were 'March
7, 10, the output
TIMESTAMP would
be '0010-03-07
00:00:00'.

Absent a yyyy
specifier in the
template, as above,
the earliest year in
this epoch (1970) is
used.

An input string of
'2-8-2012" would give
the same result; using
'2012-2-8"' would give
no result because
2012 is not a valid
month.

CAST

154

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Template Input String Output TIMESTAMP Notes
'"MM-dd-yyyy' '06-23-2012 '2012-06-23 Dashes as delimiter
10:11:12" 00:00:00" s (as above) are fine,

if template and input
both use them in the
same positions. Since
the template omits
hours, minutes, and
seconds, zeroes are
used in the output

TIMESTAMP.
'dd-MM-yy '23-06-11 '2011-06-23 You can have the
hh:mm:ss' 10:11:12' 10:11:12"' specifiers in any

order as long as

that order matches
the meaning of the
input string you
supply, as above. The
template and input
string of the next
example below have
the same meaning
(and the same output
TIMESTAMP) as

this example, but
they specify months
before days and
seconds before hours.

CAST 155

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Template Input String Output TIMESTAMP Notes
'MM-dd-yy '06-23-11 '2011-06-23 In the template used
ss:hh:mm' 12:10:11" 10:11:12' above, the order

of the month and
day specifiers is
reversed from the
example just above,
and the specifier for
seconds is before
hours instead of after
minutes; but because
the input string also
puts months before
days and seconds
before hours, the
meaning (and the
output TIMESTAMP

) is the same as the
example ABOVE.

'yy-dd-MM '06-23-11 '2006-11-23 The template used

ss:hh:mm' 12:10:11" 190:11:12" above reverses
(compared to the
prior example above)
the years and months
specifiers, while the
input string remains
the same. In this
case, the output
TIMESTAMP uses the
first element of the
input string as the
years, the second
as the days, and the
third as the months.

CAST 156

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Template Input String
'dd-MM-yy hh:mm' '23-06-11
10:11:12"
"MM/dd/yy '12/19/11
hh:mm:ss' 10:11:12"'
'12/19/11
12:11:10'

Output TIMESTAMP

'2011-06-23
10:11:00"

'2011-12-19
10:11:12"

'2011-12-19
00:11:10'

Notes

With seconds omitted
in the template, as
above, the output
TIMESTAMP uses

00 seconds. Any
number of y specifier
s produces the

same result; but

if the input string
inadvertently uses a 1
instead of 11 for the
year, as in '23-06-1
10:11:12', then the
output TIMESTAMP
becomes '0001-06-23
10:11:00".

Slashes as delimiter

s are fine, if template
and input both use
them in the same
positions, as above;
otherwise, no output.

Using specifier

hh, input times

of 12:11:10 and
00:11:10 have the
same meaning as a
time in the morning.

CAST

157

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Template Input String
'MM/dd/yy '12/19/11
HH:mm:ss' 12:59:59'
'12/19/11
21:08:07'

Output TIMESTAMP

'2011-12-
19 12:59:59'
'2011-12-19
21:08:07'

Notes

The input-string
values '2011-12-

19 00:11:12' or
'2011-12-19
12:11:12" would fail
with this template
because '2011' is not
a month, as required/
expected by the
template-string 'MM/
dd/yy HH:mm:ss'.

However, changing
the template gives
useful output:

values(c
ast(CHAR_
TO_TIMEST
AMP('y/MM/dd
HH:mm:ss',
'2011/12/19
00:11:12') as
varchar(19)));
"EXPR$0'
'2011-12-19
00:11:12'
1 row selected

'12/19/11
00:11:12' would
fail with the above
template ('y/
MM/dd'), since

19 is not a valid
month; supplying

CAST

158

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Template

Input String

Output TIMESTAMP

Notes

'12/11/19
00:11:12"

works. '2011-12-
19 12:11:12"
would fail as input
because dashes don't
match the slashes

in the template ;
'2011/12/19
12:11:12"' works.

Note that for times
after 12 noon, that
is, for afternoon and
evening times, the
hours specifier must
be HH instead of hh,
and the input string
must specify the
afternoon or evening
hour in 24-hour clock
time, hours running
from 00 to 23.

—————— Using specifier
HH, input times

of 12:11:10 and
00:11:10 have
different meanings,
the first as a time in
the afternoon and
the second as a time
in the morning.

—————— Using the
specifier hh, the

CAST

159

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Template Input String Output TIMESTAMP Notes

times from 12:00
through 11:59:59 are
morning times:

the specifiers
hh:mm:ss, the output
TIMESTAMP will
include '00:09:08' in
the morning for both
input string '12:09:08
"and input string
'00:09:08";

—————— whereas

the specifiers
HH:mm:ss, the output
TIMESTAMP for input
string '00:09:08' in
the morning will
include '00:09:08'

------ and the output
TIMESTAMP for input
string '12:09:08' in
the afternoon will
include '12:09:08".

Further examples

The examples below illustrate using various templates with CHAR_TO_TIMESTAMP, including some
common misunderstandings.

values (CHAR_TO_TIMESTAMP('yyyy-hh-mm', '2009-09-16 03:15:24'));

CAST 160

Amazon Kinesis Data Analytics SQL Reference SQL Reference

'EXPR$0'
'2009-01-01 09:16:00'
1 row selected

Note that the fields in the input string above were used in the order given by the specifiers in the
template, as defined by the dashes-as-delimiters in both template and input string: years first,
then hours, then minutes. Since the specifiers for months and days are not present in the template,
their values in the input string were ignored, with 01 substituted for both values in the output
TIMESTAMP. The template specified hours and minutes as the second and third input values, so

09 became the hours and 16 became the minutes. No specifier was present for seconds, so 00 was
used.

The years specifier can be alone or, after a delimiter matching the input string shows the end of the
years specifier, with one of the hours:minutes:seconds specifiers:

values (CHAR_TO_TIMESTAMP('yyyy', '2009-09-16 03:15:24'));
"EXPR$0'

'2009-01-01 00:00:00'

1 row selected

values (CHAR_TO_TIMESTAMP('yyyy hh', '2009-09-16 03:15:24'));
'"EXPR$0'

No rows selected

The template above fails because it has a space-as-delimiter before the "hh" rather than the dash
delimiter used in the input string's date specification;

whereas the four templates below work because they use the same delimiter to separate the years
specifier from the next specifier as is used in the input string's date specification (dash in the first
case, space in the second, slash in the third, and dash in the fourth).

values (CHAR_TO_TIMESTAMP('yyyy-hh', '2009-09-16 03:15:24'));
"EXPR$0'

'2009-01-01 09:00:00"

1 row selected

values (CHAR_TO_TIMESTAMP('yyyy hh', '2009 @9 16 03:15:24'));
"EXPR$0'

'2009-01-01 09:00:00"

1 row selected

values (CHAR_TO_TIMESTAMP('yyyy/hh','2009/09/16 03:15:24'));
"EXPR$0'

'2009-01-01 09:00:00"

CAST 161

Amazon Kinesis Data Analytics SQL Reference SQL Reference

1 row selected

values (CHAR_TO_TIMESTAMP('yyyy-mm', '2009-09-16 03:15:24'));
"EXPR$Q'

'2009-01-01 00:09:00'
1 row selected

However, if the template specifies months (MM), it cannot then specify hours, minutes, or seconds
unless days are also specified:

Template specifying years and months only, thus omitting days/hours/minutes/seconds from the
resulting TIMESTAMP:

values (CHAR_TO_TIMESTAMP('yyyy-MM',6 '2009-09-16 03:15:24'));
"EXPR$0Q'

'2009-09-01 00:00:00'"
1 row selected

The next two templates fail, lacking a 'days' specifier:

values (CHAR_TO_TIMESTAMP('yyyy-MM hh', '2009-09-16 03:15:24'));
"EXPR$0"

No rows selected

values (CHAR_TO_TIMESTAMP('yyyy-MM hh:', '2009-09-16 03:15:24'));
"EXPR$0"

No rows selected

The next three succeed, using a 'days' specifier:

values (CHAR_TO_TIMESTAMP('yyyy-MM-dd hh', '2009-09-16 03:15:24'));
"EXPR$0Q’

'2009-09-16 03:00:00'
1 row selected

The template above, 'yyyy-MM-dd hh', specifies only hours (hh) without minutes or seconds. Since
hh is the 4th token/element of the template, its value is to be taken from the 4th token/element
of the input string '2009-09-16 03:15:24'; and that 4th element is 03, then used as the value
output for hours. Since neither mm or ss is specified, the default or initial values defined as the
starting point for mm and ss are used, which are zeroes.

values (CHAR_TO_TIMESTAMP('yyyy-MM-dd ss', '2009-09-16 03:15:24'));
"EXPR$Q'

CAST 162

Amazon Kinesis Data Analytics SQL Reference SQL Reference

'2009-09-16 00:00:03'
1 row selected

The template above, 'yyyy-MM-dd ss', specifies that the 4th token/element of the input string is
to be used as seconds (ss). The 4th element of the input string '2009-09-16 03:15:24" is 03, which
becomes the value output for seconds as specified in the template; and since neither hh nor mm is
specified in the template, their default or initial values are used, which are zeroes.

values (CHAR_TO_TIMESTAMP('yyyy-MM-dd mm', '2009-09-16 03:15:24'));
"EXPR$0'

'2009-09-16 00:03:00"

1 row selected

The template above, 'yyyy-MM-dd mm/, specifies that the 4th token/element of the input string

is to be used as minutes (mm). The 4th element of the input string '2009-09-16 03:15:24'" is 03,
which becomes the value output for minutes as specified in the template; and since neither hh nor
ss is specified in the template, their default or initial values are used, which are zeroes.

Further failures, lacking a 'days' specifier:

values (CHAR_TO_TIMESTAMP('yyyy-MM- mm', '2009-09-16 03:15:24'));

"EXPR$0'

No rows selected

values (CHAR_TO_TIMESTAMP('yyyy-MM mm','2009-09-16 03:15:24'));
"EXPR$0'

No rows selected

values (CHAR_TO_TIMESTAMP('yyyy-MM hh', '2009-09-16 ©03:15:24"'));
"EXPR$0'

No rows selected

About Delimiters and Values

Delimiters in the template must match those in the input string; values in the input string must be
acceptable for the template specifiers to which they correspond.

As a general convention, a colon is used to separate hours from minutes, and minutes from
seconds. Similarly, the general convention is to use a dash or slash to separate years from months
and months from days. Any parallel usage seems to work, and the examples that follow illustrate
this.

values (CHAR_TO_TIMESTAMP('MM/dd/yy hh:mm:ss', '2009/09/16 ©3:15:24'));

CAST 163

Amazon Kinesis Data Analytics SQL Reference SQL Reference

'"EXPR$0'
No rows selected

The example above fails because 2009 is not an acceptable value for months, which is the first
specifier (MM) in the template.

values (CHAR_TO_TIMESTAMP('MM/dd/yy hh:mm:ss', '09/16/11 03:15:24'));
"EXPR$0'

'2011-09-16 03:15:24"

1 row selected

The example above succeeds because the delimiters are parallel (slashes to slashes, colons to
colons) and each value is acceptable for the corresponding specifier.

values (CHAR_TO_TIMESTAMP('MM/dd/yy hh/mm/ss', '@9/16/11 03/15/24'));
"EXPR$0'

'2011-09-16 03:15:24"

1 row selected

The example above succeeds because the delimiters are parallel (all slashes) and each value is
acceptable for the corresponding specifier.

values (CHAR_TO_TIMESTAMP('MM/dd/yy hh-mm-ss', '09/16/11 @3-15-24'));
"EXPR$Q'

'2011-09-16 03:15:24'

1 row selected

values (CHAR_TO_TIMESTAMP('yyyy|MM|dd hh|mm|ss', '2009|@9]|16 03|15]|24'));
"EXPR$Q'

'2009-09-16 03:15:24'

1 row selected

values (CHAR_TO_TIMESTAMP('yyyy@MM@dd hhemm@ss', '2009@09@l6 03@15@24'));
"EXPR$Q'

'2009-09-16 03:15:24'

1 row selected

The examples above succeed because the delimiters are parallel and the values are acceptable per
specifier.

In the following examples, note that omissions in the supplied string can cause the template value
'yyyy' to produce logical but unintended or unexpected results. The value given as the year in the
resulting TIMESTAMP value derives directly from the first element in the supplied string.

CAST 164

Amazon Kinesis Data Analytics SQL Reference SQL Reference

VALUES(CHAR_TO_TIMESTAMP('yyyy', '09-16 03:15"'));
"EXPR$0'

'0009-01-01 00:00:00'

1 row selected

VALUES(CHAR_TO_TIMESTAMP('yyyy','16 03:15'));
"EXPR$0'

'0016-01-01 00:00:00'

1 row selected

TIMESTAMP to STRING

values(cast(TIMESTAMP '2007-02-19 21:25:35' AS VARCHAR(25)));
"EXPR$0'

'2007-02-19 21:25:35"

1 row selected

Note that CAST requires a TIMESTAMP-literal to have literally the full format of 'yyyy-mm-dd
hh:mm:ss'. If any part of that full format is missing, the literal is rejected as illegal, as seen below:

values(TIMESTAMP '2007-02-19 21:25');
Error: Illegal TIMESTAMP literal '2007-02-19 21:25':
not in format 'yyyy-MM-dd HH:mm:ss' (state=,code=0)
values(TIMESTAMP '2007-02-19 21:25:00');
"EXPR$0Q'
'2007-02-19 21:25:00'
1 row selected

Also, if an inadequate output specification is supplied, no rows are selected:

values(cast(TIMESTAMP '2007-02-19 21:25:35' AS VARCHAR(18)));
"EXPR$0Q'

No rows selected

(Because the timestamp literal requires 19 characters)

These restrictions apply similarly to CASTing to TIME or DATE types.

STRING to TIME

values(cast(' 21:23:45.0' AS TIME));

CAST 165

Amazon Kinesis Data Analytics SQL Reference SQL Reference

'EXPR$0'
'21:23:45"
1 row selected

For more information, see Note A.

STRING to DATE

values(cast('2007-02-19' AS DATE));
"EXPR$0'

'2007-02-19"

1 row selected

(@ Note A

Note that CAST for strings requires that the string operand for casting to TIME or DATE
have the exact form required to represent a TIME or DATE, respectively.

As shown below, the cast fails if:

« the string operand includes data extraneous to the targeted type, or

» the INTERVAL operand ('day hours:minutes:seconds.milliseconds') does not include necessary
data, or

« the specified output field is too small to hold the conversion results.

values(cast('2007-02-19 21:23:45.0' AS TIME));
"EXPR$0Q'
No rows selected

Fails because it includes date information not allowed as a TIME.

values(cast('2007-02-19 21:23:45.0' AS DATE));
"EXPR$0Q'
No rows selected

Fails because it includes time information not allowed as a DATE.

CAST 166

Amazon Kinesis Data Analytics SQL Reference SQL Reference

values(cast('2007-02-19 21' AS DATE));
"EXPR$0'
No rows selected

Fails because it includes time information not allowed as a DATE.

values(cast('2009-02-28"' AS DATE));
"EXPR$0'

'2009-02-28"

1 row selected

Succeeds because it includes a correct representation of date string.

values(CAST (cast('2007-02-19 21:23:45.0' AS TIMESTAMP) AS DATE));
"EXPR$Q'

'2007-02-19'

1 row selected

Succeeds because it correctly converts string to TIMESTAMP before casting to DATE.

values(cast('21:23' AS TIME));
"EXPR$0'
No rows selected

Fails because it lacks time information (seconds) required for a TIME.
(Specifying fractional seconds is allowed but not required.)
values(cast('21:23:34:11' AS TIME));

"EXPR$0'
No rows selected

Fails because it includes incorrect representation of fractional seconds.

values(cast('21:23:34.11"' AS TIME));
"EXPR$0'
'21:23:34"

CAST 167

Amazon Kinesis Data Analytics SQL Reference SQL Reference

1 row selected

Succeeds because it includes correct representation of fractional seconds.

values(cast('21:23:34' AS TIME));
"EXPR$0'

'21:23:34"

1 row selected

This example succeeds because it includes correct representation of seconds without fractions of a
second.

INTERVAL to exact numerics

CAST for intervals requires that the INTERVAL operand have only one field in it, such as MINUTE,
HOUR, SECOND.

If the INTERVAL operand has more than one field, such as MINUTE TO SECOND, the cast fails, as
shown below:

values (cast (INTERVAL '120' MINUTE(3) as decimal(4,2)));

Fem - +
| EXPR$Q |
Fem - +
Feme———— +

No rows selected

values (cast (INTERVAL '120' MINUTE(3) as decimal(4)));

R +
| EXPR$O |
R +
| 120 |
R +

1 row selected

values (cast (INTERVAL '120' MINUTE(3) as decimal(3)));

R +
| EXPR$O |
R +
| 120 |
R +

1 row selected

CAST 168

Amazon Kinesis Data Analytics SQL Reference SQL Reference

values (cast (INTERVAL '120' MINUTE(3) as decimal(2)));

Femm - +
| EXPR$O |
Femm - +
[T +

No rows selected

values cast(interval '1l.1' second(1,1) as decimal(2,1));

R +
| EXPR$Q |
R +
| 1.1 |
R +

1 row selected

values cast(interval '1l.1' second(1,1) as decimal(1,1));

R +
| EXPR$O |
R +
Fem - +

No rows selected

For year, decimal fractions are disallowed as input and as output.

values cast(interval '1.1' year (1,1) as decimal(2,1));
Error: org.eigenbase.sql.parser.SqlParseException: Encountered "," at line 1, column
35.
Was expecting:
")" ... (state=,code=0)
values cast(interval 'l.1' year (1) as decimal(2,1));
Error: From line 1, column 13 to line 1, column 35:
Illegal interval literal format '1l.1' for INTERVAL YEAR(1)
(state=, code=0)
values cast(interval 'l.' year (1) as decimal(2,1));
Error: From line 1, column 13 to line 1, column 34:
Illegal interval literal format 'l.' for INTERVAL YEAR(1l) (state=,code=0)
values cast(interval 'l' year (1) as decimal(2,1));

Fem - +
| EXPR$Q |
Fem - +
| 1.0 |
Fem - +

1 row selected

CAST 169

Amazon Kinesis Data Analytics SQL Reference SQL Reference

For additional examples, see SQL Operators: Further examples.
Limitations

Amazon Kinesis Data Analytics does not support directly casting numeric values to interval values.
This is a departure from the SQL:2008 standard. The recommended way to convert a numeric to an
interval is to multiply the numeric value against a specific interval value. For example, to convert
the integer time_in_millis to a day-time interval:

time_in_millis * INTERVAL 'Q 00:00:00.001' DAY TO SECOND

For example:

values cast(5000 * (INTERVAL 'Q 00:00:00.001' DAY TO SECOND) as varchar(1l));
"EXPR$0Q'

'5000'

1 row selected

Date and Time Functions

The following built-in functions relate to dates and time.

Topics
e« Time Zones

« Datetime Conversion Functions

» Date, Timestamp, and Interval Operators

+ Date and Time Patterns

« CURRENT_DATE

o CURRENT_ROW_TIMESTAMP

o CURRENT_TIME

o CURRENT_TIMESTAMP

o EXTRACT
« LOCALTIME
o LOCALTIMESTAMP

Date and Time Functions 170

Amazon Kinesis Data Analytics SQL Reference SQL Reference

o TSDIFF

Of these, the SQL extension CURRENT_ROW_TIMESTAMP is the most useful for a streaming
context, because it gives you information about the times of streaming data as it emerges, not
just when the query is run. This is a key difference between a streaming query and a traditional
RDMS query: streaming queries remain "open," producing more data, so the timestamp for when
the query was run does not offer good information.

LOCALTIMESTAMP, LOCALTIME, CURRENT_DATE, and CURRENT_TIMESTAMP all produce results
which are set to values at the time the query first executes. Only CURRENT_ROW_TIMESTAMP
generates a row with a unique timestamp (date and time) for each row.

A query run with LOCALTIMESTAMP (or CURRENT_TIMESTAMP or CURRENT_TIME) as one of the
columns puts into all output rows the time the query is first run. If that column instead contains
CURRENT_ROW_TIMESTAMP, each output row gets a newly-calculated value of TIME representing
when that row was output.

To return a part (such as the day of the month) from a Datetime value, use EXTRACT
Time Zones

Amazon Kinesis Data Analytics runs in UTC. As a result, all time functions return time in UTC.

Datetime Conversion Functions

You specify date and time formats using patterned letters. Date and time pattern strings use
unquoted letters from 'A' to 'Z' and from 'a' to 'z', with each letter representing a formatting
element.

For more information, see Class SimpleDateFormat on the Oracle website.

(® Note

If you include other characters, they will be incorporated into the output string during
formatting or compared to the input string during parsing.

The pattern letters in the following table are defined (all other characters from 'A' to 'Z' and from
'a' to 'z' are reserved).

Time Zones 171

http://docs.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Letter Date or Time Presentation Examples
Component
y Year Year yyyy; yy 2018;18
Y Week year Year YYYY; YY 2009; 09
M Month in year Month MMM:MM:MM
July; Jul; 07
w Week in year Number ww; 27
w Week in month Number w2
D Day in year Number DDD 321
d Day in month Number dd 10
F Day of week in month Number F2
E Day name in week Text Tuesday; Tue
u Day number of week Number 1
(1 =Monday, ..., 7 =
Sunday)
a Am/pm marker Text PM
H Hour in day (0-23) Number 0
k Hour in day (1-24) Number 24
K Hour in am/pm Number 0
(0-11)
h Hour in am/pm Number 12
(1-12)
m Minute in hour Number 30
S Second in minute Number 55

Datetime Conversion Functions 172

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Letter Date or Time Presentation Examples
Component

S Millisecond Number 978

Z Time zone General time zone Pacific Standard

Time; PST; GMT-08:00
Z Time zone RFC 822 time zone -0800

X Time zone ISO 8601 time zone -08; -0800; -08:00

You determine the exact presentation by repeating pattern letters, along the lines of YYYY.
Text

If the number of repeated pattern letters is 4 or more, the full form is used; otherwise a short or
abbreviated form is used if available. For parsing, both forms are accepted, independent of the
number of pattern letters.

Number

For formatting, the number of pattern letters is the minimum number of digits, and shorter
numbers are zero-padded to this amount. For parsing, the number of pattern letters is ignored
unless it's needed to separate two adjacent fields.

Year

If the formatter's Calendar is the Gregorian calendar, the following rules are applied.

« For formatting, if the number of pattern letters is 2, the year is truncated to 2 digits; otherwise it
is interpreted as a number.

« For parsing, if the number of pattern letters is more than 2, the year is interpreted literally,
regardless of the number of digits. So using the pattern "MM/dd/yyyy", "01/11/12" parses to Jan
11,12 A.D.

For parsing with the abbreviated year pattern ("y" or "yy"), SimpleDateFormat must interpret
the abbreviated year relative to some century. It does this by adjusting dates to be within 80
years before and 20 years after the time the SimpleDateFormat instance is created. For example,

Datetime Conversion Functions 173

Amazon Kinesis Data Analytics SQL Reference SQL Reference

using a pattern of "MM/dd/yy" and a SimpleDateFormat instance created on Jan 1, 2018, the
string "01/11/12" would be interpreted as Jan 11, 2012 while the string "05/04/64" would be
interpreted as May 4, 1964. During parsing, only strings consisting of exactly two digits, as defined
by Character.isDigit(char), will be parsed into the default century. Any other numeric string, such as
a one digit string, a three or more digit string, or a two digit string that isn't all digits (for example,
"-1"), is interpreted literally. So "01/02/3" or "01/02/003" are parsed, using the same pattern, as
Jan 2, 3 AD. Likewise, "01/02/-3" is parsed as Jan 2, 4 BC.

Otherwise, calendar system specific forms are applied. For both formatting and parsing, if the
number of pattern letters is 4 or more, a calendar specific long form is used. Otherwise, a calendar
specific short or abbreviated form is used.

Char To Timestamp(Sys)

The Char to Timestamp function is one of the most frequently-used system functions, because it
lets you create a timestamp out of any correctly formatted input string. Using this function, you
can specify which parts of the timestamp string you wish to use in subsequent processing, and
create a TIMESTAMP value containing only those. To do so, you specify a template that identifies
the parts of the timestamp you want. For example, to use only year and month, you would specify

'yyyy-MM',

The input date-time string can contain any parts of a full timestamp ('yyyy-MM-dd hh:mm:ss'). If
all these elements are present in your input string, and 'yyyy-MM-dd hh:mm:ss' is the template
you supply, then the input-string elements are interpreted in that order as year, month, day, hour,
minute, and seconds, such as in '2009-09-16 03:15:24'". The yyyy cannot be uppercase; the hh can
be uppercase to mean using a 24-hour clock.

For the full range of valid specifiers, see Class SimpleDateFormat on the Oracle website.

CHAR_TO_TIMESTAMP uses the template you specify as a parameter in the function call. The
template causes the TIMESTAMP result to use only the parts of the input-date-time value that you
specified in the template. Those fields in the resulting TIMESTAMP contain the corresponding data
taken from your input-date-time string. Fields not specified in your template will use default values
(see below). The format of the template used by CHAR_TO_TIMESTAMP is defined by the Class
SimpleDateFormat on the Oracle website. For more information, see Date and Time Patterns.

The function-call syntax is as follows:

CHAR_TO_TIMESTAMP('<format_string>"', '<input_date_time_string>')

Datetime Conversion Functions 174

http://docs.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Where <format_ string> is the template you specify for the parts of <date_time_string> you want,
and <input_date_time_string> is the original string that is being converted to a TIMESTAMP result.

Note that each string must be enclosed in single quotes and each element of the
<input_date_time_string> must be in the range for its corresponding element in the template,
otherwise no result is returned.

For example, the input-string-element whose position corresponds with MM must be an integer
from 1 to 12, because anything else does not represent a valid month. Similarly, the input-string-
element whose position corresponds with dd must be an integer from 1 to 31, because anything
else does not represent a valid day. (However, if MM is 2, dd cannot be 30 or 31, because February
never has such days.)

For hours, minutes, or seconds, the default starting value is zero, so when those specifiers are
omitted from the template, zeroes are substituted. For months or days, the default starting value
substituted for the omitted parts is 01.

For example, using '2009-09-16 03:15:24" as your input string, you can obtain a TIMESTAMP
containing only the date, with zeros for the other fields such as hours, minutes, or seconds.

CHAR_TO_TIMESTAMP('yyyy-MM-dd', '2009-09-16 03:15:24').

The result would is TIMESTAMP 2009-09-16 00:00:00.

If the call had kept hours and minutes in the template while omitting months, days, and seconds,
as illustrated in the following call.

------ CHAR_TO_TIMESTAMP('yyyy-hh-mm', '2009-09-16 ©03:15:24")

Then, the resulting TIMESTAMP would be 2009-01-01 03:15:00.

Template Strings to Create Specific Output Timestamps shows further illustrative examples of
templates and input strings used to create the indicated output TIMESTAMPs.

(® Note

Input string MUST use the form 'yyyy-MM-dd hh:mm:ss' or a subset or reordering thereof.
As a result, using an input string like 'Wednesday, 16 September 2009 03:15:24" will NOT
work, meaning that no output will result.

Datetime Conversion Functions 175

Amazon Kinesis Data Analytics SQL Reference SQL Reference

About Delimiters and Values

Delimiters in the template must match those in the input string and values in the input string must
be acceptable for the template specifiers to which they correspond.

As a general convention, a colon is used to separate hours from minutes, and minutes from
seconds. Similarly, the general convention is to use a dash or slash to separate years from months
and months from days.

For example, the following template has values that line up correctly with the input string.

values (CHAR_TO_TIMESTAMP('MM/dd/yy hh:mm:ss', '09/16/11 03:15:24'));
"EXPR$0Q'

'2011-09-16 03:15:24"

1 row selected

If values in the input string are not acceptable for the template specifiers to which they correspond,
the result fails, as in the following example.

values (CHAR_TO_TIMESTAMP('MM/dd/yy hh:mm:ss', '2009/09/16 ©3:15:24'));
"EXPR$0'
No rows selected

This example returns no rows because 2009 is not an acceptable value for months, which is the
first specifier (MM) in the template.

Omissions in the supplied string can cause the template value 'yyyy' to produce logical but
unintended or unexpected results. The following examples each return an erroneous year, but one
that derives directly from the first element in the supplied string.

VALUES(CHAR_TO_TIMESTAMP('yyyy', '09-16 03:15"'));
"EXPR$0'
'0009-01-01 00:00:00'
1 row selected
VALUES(CHAR_TO_TIMESTAMP('yyyy','16 03:15'));
"EXPR$0'
'0016-01-01 00:00:00'
1 row selected

Datetime Conversion Functions 176

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Examples Using Templates to Create TIMESTAMPS

The order of the template must match the input string. That means that you cannot specify "hh"
after "yyyy" and expect the method to find the hour automatically. For example, the following
template specifies years first, then hours, then minutes, and returns an erroneous result.

values (CHAR_TO_TIMESTAMP('yyyy-hh-mm', '2009-09-16 03:15:24'));
"EXPR$0'

'2009-01-01 09:16:00"

1 row selected

Since the specifiers for months and days are not present in the template, their values in the input
string were ignored, with 071 substituted for both values in the output TIMESTAMP. The template
specified hours and minutes as the second and third input values, so 09 became the hours and 16
became the minutes. No specifier was present for seconds, so 00 was used.

The years specifier can be alone or after a delimiter matching the input string shows the end of the
years specifier, with one of the hours:minutes:seconds specifiers.

values (CHAR_TO_TIMESTAMP('yyyy', '2009-09-16 03:15:24'));
"EXPR$0'

'2009-01-01 00:00:00"

1 row selected

In contrast, the template below fails because it has a space-as-delimiter before the "hh" rather than
the dash delimiter used in the input string's date specification.

values (CHAR_TO_TIMESTAMP('yyyy hh', '2009-09-16 03:15:24'));
"EXPR$0Q'
No rows selected

The four templates below work because they use the same delimiter to separate the years specifier
from the next specifier as is used in the input string's date specification (dash in the first case, space
in the second, slash in the third, and dash in the fourth).

values (CHAR_TO_TIMESTAMP('yyyy-hh', '2009-09-16 03:15:24'));
"EXPR$Q'

'2009-01-01 09:00:00'

1 row selected

values (CHAR_TO_TIMESTAMP('yyyy hh','2009 @9 16 03:15:24'));
"EXPR$Q'

Datetime Conversion Functions 177

Amazon Kinesis Data Analytics SQL Reference SQL Reference

'2009-01-01 09:00:00"

1 row selected

values (CHAR_TO_TIMESTAMP('yyyy/hh','2009/09/16 03:15:24'));
"EXPR$0'

'2009-01-01 09:00:00"

1 row selected

values (CHAR_TO_TIMESTAMP('yyyy-mm', '2009-09-16 03:15:24'));
"EXPR$0'

'2009-01-01 00:09:00"

1 row selected

However, if the template specifies months (MM), it cannot then specify hours, minutes, or seconds
unless days are also specified.

Template Strings to Create Specific Output Timestamps

Template Input String Output TIMESTAMP Notes

'yyyy-MM-dd '2009-09-16 '2009-09-16

hh:mm:ss' 03:15:24"' 03:15:24"

'yyyy-mm' '2011-02-08 '2011-01-01 The template above
07:23:19' 00:02:00' specifies only year

first and minutes
second, so the second
element in the input
string ("02") is used
as minutes. Default
values are used for
Month and Day ("01")
and for hours and
seconds ("00").

"MMM dd, yyyy' '"March 7, 2010' '2010-03-07 MMM in the template
00:00:00' above matches
"March"; the

template's '‘comma
space' matches the
input string.

Datetime Conversion Functions 178

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Template

'"MMM dd, '

'MMM dd,y"

Input String Output TIMESTAMP

'March 7, 2010’ '1970-03-07
00:00:00'

'"March 7, 2010’ '2010-03-07
00:00:00'

Notes

If the template lacks
the comma, so must
the input string, or
there is no output;

If the input string
lacks the comma, so
must the template.

Note that the
template above
doesn't use a year
specifier, causing the
output TIMESTAMP
to use the earliest
year in this epoch,
1970.

Using the template
above, if the input
string were 'March
7, 10, the output
TIMESTAMP would
be '0010-03-07
00:00:00'".

Datetime Conversion Functions

179

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Template Input String

1 M_d 1 1 2_8 1

"MM-dd-yyyy' '06-23-2011
10:11:12'

Output TIMESTAMP

'1970-02-08
00:00:00'

'2011-06-23
00:00:00'

Notes

Absent a yyyy
specifier in the
template, as above,
the earliest year in
this epoch (1970) is
used.

An input string of
'2-8-2011" would
give the same result;
using '2011-2-8'
would give no result
because 2011 is not a
valid month.

Dashes as delimiter

s (as above) are fine,
if template and input
both use them in the
same positions. Since
the template omits
hours, minutes, and
seconds, zeroes are
used in the output
TIMESTAMP.

Datetime Conversion Functions

180

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Template Input String Output TIMESTAMP Notes
'dd-MM-yy '23-06-11 '2011-06-23 You can have the
hh:mm:ss' 10:11:12' 190:11:12" specifiers in any

order as long as that
order matches the
meaning of the input
string you supply. The
template and input
string of the next
example below have
the same meaning
(and the same output
TIMESTAMP) as

this example, but
they specify months
before days and
seconds before hours.

Datetime Conversion Functions 181

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Template Input String Output TIMESTAMP Notes
'MM-dd-yy '06-23-11 '2011-06-23 In the template used
ss:hh:mm' 12:10:11' 10:11:12' above, the order

of the month and
day specifiers is
reversed from the
example just above,
and the specifier for
seconds is before
hours instead of after
minutes; but because
the input string also
puts months before
days and seconds
before hours, the
meaning (and the
output TIMESTAMP

) is the same as the
example ABOVE.

'yy-dd-MM '06-23-11 '2006-11-23 The template used

ss:hh:mm' 12:10:11"' 190:11:12"' above reverses
(compared to the
prior example above)
the years and months
specifiers, while the
input string remains
the same. In this
case, the output
TIMESTAMP uses the
first element of the
input string as the
years, the second
as the days, and the
third as the months.

Datetime Conversion Functions 182

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Template Input String
'dd-MM-yy hh:mm' '23-06-11
10:11:12"
'MM/dd/yy '12/19/11
hh:mm:ss' 10:11:12"'
'12/19/11
12:11:12"

Output TIMESTAMP

'2011-06-23
10:11:00"

'2011-12-19
10:11:12"

'12/19/11
00:11:12'

Notes

With seconds omitted
in the template, as
above, the output
TIMESTAMP uses

00 seconds. Any
number of y specifier
s produces the

same result; but

if the input string
inadvertently uses a 1
instead of 11 for the
year, as in '23-06-1
10:11:12', then the
output TIMESTAMP
becomes '0001-06-23
10:11:00".

Slashes as delimiter
s are fine, if template
and input both use
them in the same
positions, as above.
Using specifier

hh, input times

of 12:11:10 and
00:11:10 have the
same meaning as a
time in the morning.

Datetime Conversion Functions

183

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Template

"MM/dd/yy
HH:mm:ss'

Input String

'12/19/11
12:59:59"

'12/19/11
21:08:07"
'2011-12-19
00:11:12"

'2011-12-19
12:11:12"

Output TIMESTAMP

'2011-12-19
12:59:59'

'2011-12-19
21:08:07'

Notes

The input-string
values '2011-12-
19 00:11:12"'

or '2011-12-
19 12:11:12"
would fail with this
template because
'2011"' isnota
month, as required/
expected by the
template-string 'MM/
dd/yy HH:mm:ss'

However, changing
the template gives
useful output:

values(ca

st (CHAR_T
O_TIMESTAMP('y/
MM/dd HH:mm:ss'
, '2011/12/19
00:11:12') as
varchar(19)));
"EXPR$Q'
'2011-12-19
00:11:12"

1 row selected

'12/19/11
00:11:12' would
fail with the above
template ('y/MM/
dd'), since 19 is

Datetime Conversion Functions

184

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Template Input String Output TIMESTAMP Notes

not a valid month;
supplying '12/11/19
00:11:12' works.

'2011-12-19
12:11:12"

would fail as input
because dashes don't
match the slashes

in the template,
'2011/12/19
12:11:12" works.

Note that for times
after 12 noon (that
is, for afternoon and
evening times), the
hours specifier must
be HH instead of hh,
and the input string
must specify the
afternoon or evening
hour in 24-hour clock
time, hours running
from 00 to 23.

Using specifier

HH, input times

of 12:11:10 and
00:11:10 have
different meanings,
the first as a time in
the afternoon and
the second as a time
in the morning.

Datetime Conversion Functions 185

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Template

Input String

Output TIMESTAMP

Notes

Using the specifier
hh, the times from
12:00 through
11:59:59 are morning
times:

» Given the specifier
s hh:mm:ss, the
output TIMESTAMP
will include
'00:09:08'"
in the morning
for both input
string '12:09:08
"and input string
'00:09:08"' ;
whereas,

» Given the specifier
s HH:mm:ss, the
output TIMESTAMP
for input string
'00:09:08' in
the morning will
include '00:09:08

and the output
TIMESTAMP

for input string
'12:09:08' in
the afternoon will
include '12:09:08

Datetime Conversion Functions

186

Amazon Kinesis Data Analytics SQL Reference SQL Reference

CHAR_TO_DATE

Converts a string to a date, according to the specified format string.
CHAR_TO_DATE(format,dateString);

CHAR_TO_TIME

Converts a string to a date, according to the specified format string
CHAR_TO_TIME(format,dateString);

DATE_TO_CHAR

The DATE_TO_CHAR converts a date to a string.
DATE_TO_CHAR(format,d);

Where d is a date that will be converted to a string.

TIME_TO_CHAR

Uses a format string to format a time. Returns the formatted time or portion of a time as a string.

TIME_TO_CHAR(format,time);

TIMESTAMP_TO_CHAR

Uses a format string to format a timestamp as char. Returns the timestamp as a string.

TIMESTAMP_TO_CHAR(format, ts);

Where ts is timestamp.

(® Note
If the input is null, the output will be the string "null".

Datetime Conversion Functions 187

Amazon Kinesis Data Analytics SQL Reference SQL Reference

TO_TIMESTAMP

Converts a Unix timestamp to a SQL timestamp in 'YYYY-MM-DD HH:MM:SS' format.

Syntax

TO_TIMESTAMP(unixEpoch)

Parameters
unixEpoch

A Unix timestamp in the format milliseconds since '1970-01-01 00:00:00' UTC, expressed as a
BIGINT.

Example
Example Dataset

The examples following are based on the sample stock dataset that is part of Getting Started

Exercise in the Amazon Kinesis Analytics Developer Guide.

(® Note
The sample dataset has been modified to include a Unix timestamp value (CHANGE_TIME).

To run each example, you need an Amazon Kinesis Analytics application that has the input stream
for the sample stock ticker. To learn how to create an Analytics application and configure the input
stream for the sample stock ticker, see Getting Started Exercise in the Amazon Kinesis Analytics
Developer Guide.

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
change_time BIGINT, --The UNIX timestamp value

Datetime Conversion Functions 188

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

price REAL)

Example 1: Convert a Unix Timestamp to a SQL Timestamp

In this example, the change_time value in the source stream is converted to a SQL TIMESTAMP
value in the in-application stream.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
sector VARCHAR(64),
change REAL,
change_time TIMESTAMP,
price REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM TICKER_SYMBOL,

SECTOR,

CHANGE,

TO_TIMESTAMP(CHANGE_TIME),

PRICE

FROM "SOURCE_SQL_STREAM_001"

The preceding example outputs a stream similar to the following.

ok

M J
™~

ROWTIME TICKER_SYMBOL SECTOR CHANGE CHANGE TIME PRICE {
2017-05-16 19:07:24.551 UHN RETAIL 15 2017-05-16 19:07:12.212 7540 i

4

2017-05-16 10-07-25.454 MJN RETAIL 151 2017-05-16 10:07-24.727 3000 {
2017-05-16 10:07:25.454 DEG RETAIL 083 2017-05-16 19:07:25.213 6040 ‘;
2017-05-16 10:07:26.434 QXZ RETAIL -0.33 2017-05-16 10:07:25.608 5190 i
. s e B et I b B Bt T ety g bt

Notes

TO_TIMESTAMP is not part of the SQL:2008 standard. It is an Amazon Kinesis Data Analytics
streaming SQL extension.

Datetime Conversion Functions 189

Amazon Kinesis Data Analytics SQL Reference SQL Reference

UNIX_TIMESTAMP

Converts a SQL timestamp to a Unix timestamp that is expressed in milliseconds since '1970-01-01
00:00:00' UTC and that is a BIGINT.

Syntax

UNIX_TIMESTAMP(timeStampExpr)

Parameters
timeStampExpr

A SQL TIMESTAMP value.
Example

Example Dataset

The examples following are based on the sample stock dataset that is part of Getting Started
Exercise in the Amazon Kinesis Analytics Developer Guide.

(® Note
The sample dataset has been modified to include a Timestamp value (CHANGE_TIME).

To run each example, you need an Amazon Kinesis Analytics application that has the input stream
for the sample stock ticker. To learn how to create an Analytics application and configure the input
stream for the sample stock ticker, see Getting Started Exercise in the Amazon Kinesis Analytics

Developer Guide.

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),

change REAL,

change_time TIMESTAMP, --The timestamp value to convert
price REAL)

Datetime Conversion Functions 190

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Example 1: Convert a Timestamp to a UNIX Timestamp

In this example, the change_time value in the source stream is converted to a TIMESTAMP value

in the in-application stream.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
SECTOR VARCHAR(16),
CHANGE REAL,
CHANGE_TIME BIGINT,
PRICE REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"

SELECT STREAM TICKER_SYMBOL,
SECTOR,
CHANGE,
UNIX_TIMESTAMP(CHANGE_TIME),
PRICE

FROM "SOURCE_SQL_STREAM_0@1"

The preceding example outputs a stream similar to the following.

T

ROWTIME TICKER_SYMEOL SECTOR CHANGE

2017-05-16 19:558:46 945 TBY ENERGY -0.33

2017-05-16 19:558:47 945 HJV RETAIL -0.33

2017-05-16 19:558:48 947 SLW FINANCIAL -1.51

2017-05-16 19:58:49 949 ASD RETAIL -0.48

_-___'.r-—""‘" e e W mee m me e VT B TP~

Notes

CHANGE TIME

1494914326000
1494914327000
1494914328000

1494914329000

i

¥

~ 1

PRICE ;
1

810.0]
{

251.0 3
28.0 ;:
461.0 .
W

UNIX_TIMESTAMP is not part of the SQL:2008 standard. It is an Amazon Kinesis Data Analytics

streaming SQL extension.

Date, Timestamp, and Interval Operators

The arithmetic operators +, -, *, and / are binary operators.

Date, Timestamp, and Interval Operators

191

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Operator

+

Examples

Example

1

Description

Addition

Subtraction

Multiplication

Division

Operation

INTERVAL '1' DAY + INTERVAL
'3' DAY

INTERVAL '1' DAY + INTERVAL
'3 4' DAY TO HOUR

INTERVAL '1' DAY - INTERVAL
'3 4' DAY TO HOUR

Notes
interval + interval = interval

interval + datetime =
datetime

datetime + interval =
datetime

interval - interval = interval
datetime - interval = datetime

(<datetime> - <datetime>)
Date, Timestamp, and Interval
Operators <interval qualifier>
= interval

interval * numeric = interval
numeric * interval = interval

interval / numeric = interval

Result

INTERVAL '4' DAY

INTERVAL '+4 04' DAY TO
HOUR

INTERVAL '-2 04' DAY TO
HOUR

Date, Timestamp, and Interval Operators

192

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Example Operation Result

4 INTERVAL '1' YEAR + INTERVAL '+4-04' YEAR TO
INTERVAL '3-4' YEAR TO MONTH
MONTH

5 2 *INTERVAL '3 4' DAY TO INTERVAL '6 8' DAY TO HOUR
HOUR

6 INTERVAL '3 4' DAY TO INTERVAL ' 1 14' DAY TO
HOUR / 2 HOUR

In the example 3, '3 4 DAY means 3 days and 4 hours, so the result in that row means 24 hours
minus 76 hours, resulting in minus 52 hours, which is a negative 2 days and 4 hours.

Example 4 uses TO MONTH rather than TO HOUR, so the INTERVAL specified as '3-4' means 3 years
and 4 months, or 40 months.

In example 6, the "/2" applies to the INTERVAL '3 4', which is 76 hours, half of which is 38, or 1 day
and 14 hours.

Further Examples of Interval Operations

Streaming SQL also supports subtracting two datetimes, giving an interval. You specify what kind
of interval you want for the result, as shown following:

(<datetime> - <datetime>) <interval qualifier>

The following examples show operations that can be useful in Amazon Kinesis Data Analytics
applications.

Example 1 - Time Difference (as minutes to the nearest second or as seconds)

values cast ((time '12:03:34' - time '11:57:23') minute to second as varchar(8));

1 row selected

Date, Timestamp, and Interval Operators 193

Amazon Kinesis Data Analytics SQL Reference SQL Reference

............... 6 minutes, 11 seconds
or
values cast ((time '12:03:34' - time '11:57:23') second as varchar(8));

1 row selected

Example 2 - Time Difference (as minutes only)

values cast ((time '12:03:34' - time '11:57:23') minute as varchar(8));

............... 6 minutes; seconds ignored.
values cast ((time '12:03:23' - time '11:57:23') minute as varchar(8));

............... 6 minutes

Example 3 - Time-to-Timestamp Difference (as days to the nearest second) Invalid

values cast ((time '12:03:34'-timestamp '2004-04-29 11:57:23') day to second as
varchar(8));
Error: From line 1, column 14 to line 1, column 79: Parameters must be of the same type

Example 4 - Timestamp difference (as days to the nearest second)

values cast ((timestamp '2004-05-01 12:03:34' - timestamp '2004-04-29 11:57:23') day
to
second as varchar(8));

EXPR$0

Date, Timestamp, and Interval Operators 194

Amazon Kinesis Data Analytics SQL Reference SQL Reference

............... 2 days, 6 minutes
............... Although "second" was specified above, the varchar(8) happens to allow
only room enough to show only the minutes, not the seconds.
The example below expands to varchar(1ll), showing the full result:
values cast ((timestamp '2004-05-01 12:03:34' - timestamp '2004-04-29 11:57:23') day
to

second as varchar(1l));

R e +
EXPR$0
R e +
+2 00:06:11
R e +

............... 2 days, 6 minutes, 11 seconds

Example 5 - Timestamp Difference (as days to the nearest second)

values cast ((timestamp '2004-05-01 1:03:34' - timestamp '2004-04-29 11:57:23') day to
second as varchar(11));

R e e +
EXPR$0
R e e +
+1 13:06:11
R e e +

............... 1 day, 13 hours, 6 minutes, 11 seconds
values cast ((timestamp '2004-05-01 13:03:34' - timestamp '2004-04-29 11:57:23') day
to
second as varchar(11));

R e e +
EXPR$0
R e e +
+2 01:06:11
R e e +

............... 2 days, 1 hour, 6 minutes, 11 seconds

Date, Timestamp, and Interval Operators 195

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Example 6 - Timestamp Difference (as days)

values cast ((timestamp '2004-05-01 12:03:34' - timestamp '2004-04-29 11:57:23') day
as varchar(8));

Pocoooooos +
EXPR$0
Pocoooooos +
+2
Pocoooooos +

Example 7 - Time Difference (as days)

values cast ((date '2004-12-02 ' - date '2003-12-01 ') day as varchar(8));
Error: Illegal DATE literal '2004-12-02 ': not in format 'yyyy-MM-dd'
.............. Both date literals end with a space; disallowed.

values cast ((date '2004-12-02' - date '2003-12-01 ') day as varchar(8));
Error: Illegal DATE literal '2003-12-01 ': not in format 'yyyy-MM-dd'
.............. Second date literal still ends with a space; disallowed.
values cast ((date '2004-12-02' - date '2003-12-01') day as varchar(8));

Example 8 - Not Supported (Simple Difference of Dates)

If you don't specify "day" as the intended unit, as shown following, the subtraction is not
supported.

values cast ((date '2004-12-02' - date '2003-12-01') as varchar(8));
Error: From line 1, column 15 to line 1, column 51:
Cannot apply '-' to arguments of type '<DATE> - <DATE>'.
Supported form(s): '<NUMERIC> - <NUMERIC>'
'<DATETIME_INTERVAL> - <DATETIME_INTERVAL>'
'<DATETIME> - <DATETIME_INTERVAL>'

Date, Timestamp, and Interval Operators 196

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Why Use "as varchar" in Conversion Examples?

The reason for using the "values cast (<expression> AS varchar(N))" syntax in the examples above is
that while the SQLline client used above (with Amazon Kinesis Data Analytics running) does return
an interval, JDBC does not support returning that result so as to display it. Therefore, that "values"
syntax is used to see/show it.

If you close the Amazon Kinesis Data Analytics (with a kill command) or if you don't start it before
running SQLLline, then you can run the sqllineEngine (rather than the sqllineClient) from the bin
subdirectory of your Amazon Kinesis Data Analytics home, which can show your results without the
Amazon Kinesis Data Analytics application or JDBC:

Rules for Specifying Intervals

A Day-Time Interval Literal is a string that denotes a single interval value: for example '10'
SECONDS. Note it has two parts: the value (which must always be in single-quotes) and the
qualifier (here, SECONDS), which give the units for the value.

The qualifier takes the following form:

DAY HOUR MINUTE SECOND [TO HOUR MINUTE SECOND]

(® Note

YEAR TO MONTH intervals require a dash separating the values, whereas DAY TO HOUR
intervals use a space to separate the values, as seen in the 2nd, 3rd, 5th, and 6th examples
in that topic.

In addition, the leading term has to be of greater significance than the optional trailing term, so
this means you can only specify:

DAY

HOUR

MINUTE

SECOND

DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND

Date, Timestamp, and Interval Operators 197

Amazon Kinesis Data Analytics SQL Reference SQL Reference

MINUTE TO SECOND

The easiest way to understand these may be to translate X TO Y as "Xs to the nearest Y". Hence,
DAY TO HOUR is "days to the nearest hour".

When DAY, HOUR, or MINUTE is the leading term, you can specify a precision, e.g., DAY(3) TO
HOUR, indicating the number of digits the associated field in the value can have. The maximum
precision is 10, and the default is 2. You can't specify precision for HOUR, OR MINUTE in the
trailing term - they are always of precision 2. So for example, HOUR(3) TO MINUTE is legal, HOUR
TO MINUTE(3) is not.

SECOND can also take a precision, but the way it is specified differs depending on whether it is the
leading or trailing field.

« If SECOND is the leading field, you can specify the digits before and after the decimal point.
For example, SECOND(3,3) would allow you to specify up to 999.999 seconds. The default is
(2,3), which is actually a deviation from the SQL:2008 spec (it should be (2,6), but we only have
millisecond precision).

« If SECOND is the trailing field, you can only specify precision for the fractional seconds, that is,
the part shown after the seconds' decimal point below. For example, SECOND(3) would indicate
milliseconds. The default is 3 digits after the decimal point, but as above this is a deviation from
the standard of 6.

As for the value, it takes the general form of:

[+-]1'[+-]1DD HH:MM:SS.SSS'

Where DD are digits indicating days, HH hours, MM minutes, and SS.SSS is seconds (adjust the
number of digits appropriately if precision is explicitly specified).

Not all values have to include all fields—you can trim from both front or back, but not from in the
middle. So you could make it 'DD HH' or 'MM:SS.SSS', but not 'DD MM'.

However you write it, though, the value must match the qualifier, as shown following:

INTERVAL '25 3' DAY to HOUR ------ > legal
INTERVAL '3:45:04.0' DAY TO HOUR --> illegal

As stated in the SQL spec, if the precision is not explicitly specified, it is implied to be 2. Thus:

Date, Timestamp, and Interval Operators 198

Amazon Kinesis Data Analytics SQL Reference SQL Reference

o INTERVAL '120"' MINUTE is an illegal interval. The legal form for the desired interval is INTERVAL
120" MINUTE(2)

and

« INTERVAL '120' SECOND is not legal. The legal form for the desired interval is INTERVAL '120'
SECOND(3).

values INTERVAL '120' MINUTE(2);
Error: From line 1, column 8 to line 1, column 31:
Interval field value 120 exceeds precision of MINUTE(2) field
values INTERVAL '120' MINUTE(3);
Conversion not supported

Also, if HOUR, MINUTE, or SECOND are not the leading field, they must fall in the following ranges
(taken from Table 6 in topic 4.6.3 of the SQL:2008 foundation spec), as shown following:

HOUR: 0-23
MINUTE: @-59
SECOND: ©0-59.999

Year-month intervals are similar, except that the qualifiers are as shown following:

YEAR
MONTH
YEAR TO MONTH

Precision can be specified just as with DAY and HOUR, and the max of 10 and default of 2 is the
same.

The value format for year-month is: 'YY-MM'. If MONTH is the trailing field, it must fall in the range
0-11.

<interval qualifier> := <start field> TO <end field> <single datetime field>

<start field> := <non-second primary datetime field> [<left paren> <interval leading
field precision> <right paren>]

<end field> := <non-second primary datetime field> SECOND [<left paren> <interval
fractional seconds precision> <right paren>]

Date, Timestamp, and Interval Operators 199

Amazon Kinesis Data Analytics SQL Reference SQL Reference

<single datetime field> := <non-second primary datetime field> [<left paren> <interval
leading field precision> <right paren>]
SECOND [<left paren> <interval leading field precision>
[<comma> <interval fractional seconds precision>] <right paren>]

<primary datetime field> := <non-second primary datetime field> SECOND
<non-second primary datetime field> := YEAR MONTH DAY HOUR MINUTE
<interval fractional seconds precision> := <unsigned integer>

<interval leading field precision> := <unsigned integer>

Date and Time Patterns

Date and time formats are specified by date and time pattern strings. In these pattern strings,
unquoted letters from A to Z and from a to z represent components of a data or time value. If a
letter or text string is enclosed within a pair of single quotes, that letter or text is not interpreted
but rather used as is, as are all other characters in the pattern string. During printing, that letter or
text is copied as is to the output string; during parsing, they are matched against the input string.
""" represents a single quote.

The following pattern letters are defined for the indicated Date or Time Component. All other
characters from 'A' to 'Z' and from 'a' to 'z' are reserved. For an alphabetic ordering of the pattern
letters, see Date and Time Pattern Letters in Alphabetic Order.

Date or Time Pattern Letter Presentation as text Examples
Component or number

Era designator G Text AD

Year y Year 1996; 96
Month in year M Month July; Jul; 07
Week in year w Number 27

Week in month W Number 2

Day in year D Number 189

Day in month d Number 10

Day of week in month F Number 2

Date and Time Patterns 200

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Date or Time
Component

Day in week

Am/pm marker
Hour in day (0-23)
Hour in day (1-24)

Hour in am/pm
(0-11)

Hour in am/pm
(1-12)

Minute in hour
Second in minute
Millisecond

Time zone

Time zone

Pattern Letter

Presentation as text
or number

Text

Text
Number
Number

Number

Number

Number
Number
Number

General

RFC

Examples

EE=Tu; EEE=Tue;
EEEE=Tuesday

PM
0

24

12

30
55
978

Pacific Standard
Time; PST;
GMT-08:00

-0800

Pattern letters are usually repeated, as their number determines the exact presentation:

Text

For formatting, if the number of pattern letters is 4 or more, the full form is used; otherwise a

short or abbreviated form is used if available. For parsing, both forms are accepted, independent of

the number of pattern letters.

Date and Time Patterns

201

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Number

For formatting, the number of pattern letters is the minimum number of digits, and shorter
numbers are zero-padded to this amount. For parsing, the number of pattern letters is ignored
unless it's needed to separate two adjacent fields.

Year

Time zones are interpreted as text if they have names. For time zones representing a GMT offset
value, the following syntax is used:

GMTOffsetTimeZone:
GMT Sign Hours : Minutes
Sign: one of

+ -

Hours:

Digit

Digit Digit
Minutes:

Digit Digit

Digit: one of
0123456789

Hours must be between 0 and 23, and Minutes must be between 00 and 59. The format is locale
independent and digits must be taken from the Basic Latin block of the Unicode standard.

For parsing, RFC 822 time zones are also accepted.
RFC 822 time zone

For formatting, the RFC 822 4-digit time zone format is used:

RFC822TimeZone:

Sign TwoDigitHours Minutes
TwoDigitHours:

Digit Digit

TwoDigitHours must be between 00 and 23. Other definitions are as for general time zones.

For parsing, general time zones are also accepted.

Date and Time Patterns 202

Amazon Kinesis Data Analytics SQL Reference SQL Reference

SimpleDateFormat also supports "localized date and time pattern" strings. In these strings, the
pattern letters described above may be replaced with other, locale dependent, pattern letters.
SimpleDateFormat does not deal with the localization of text other than the pattern letters; that's
up to the client of the class.

Examples

The following examples show how date and time patterns are interpreted in the U.S. locale. The
given date and time are 2001-07-04 12:08:56 local time in the U.S. Pacific time zone.

Date and Time Pattern Result

"yyyy.MM.dd G 'at' HH:mm:ss z" 2001.07.04 AD at 12:08:56 PDT
"EEE, MMM d, "yy" Wed, Jul 4, '01

"h:mm a" 12:08 PM

"hh 'o"clock' a, zzzz" 12 o'clock PM, Pacific Daylight Time
"K:mm a, z" 0:08 PM, PDT

"yyyyy.MMMMM.dd GGG hh:mm aaa" 02001.July.04 AD 12:08 PM

"EEE, d MMM yyyy HH:mm:ss Z" Wed, 4 Jul 2001 12:08:56 -0700
"yyMMddHHmMmssZ" 010704120856-0700
"yyyy-MM-dd'T'"HH:mm:ss.SSSZ" 2001-07-04T12:08:56.235-0700

Date and Time Pattern Letters in Alphabetic Order

The same pattern letters shown at first, above, in Date or Time Component order are shown below
in alphabetic order for easy reference.

Pattern Letter Date or Time Presentation as text Examples
Component or number
a Am/pm marker Text PM

Date and Time Patterns 203

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Pattern Letter

Date or Time
Component

Day in year
Day in month

Day in week

Day of week in month
Era designator
Hour in day (0-23)

Hour in am/pm
(1-12)

Hour in day (1-24)

Hour in am/pm
(0-11)

Month in year
Minute in hour
Second in minute
Millisecond
Week in year
Week in month
Year

Time zone

Presentation as text
or number

Number

Number

Text

Number

Text

Number

Number

Number

Number

Month

Number

Number

Number

Number

Number

Year

General

Examples

189
10

EE=Tu; EEE=Tue;
EEEE=Tuesday

2
AD
0

12

24

July; Jul; 07
30

55

978

27

2

1996; 96

Pacific Standard
Time; PST;
GMT-08:00

Date and Time Patterns

204

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Pattern Letter Date or Time Presentation as text Examples
Component or number
Z Time zone RFC -0800

CURRENT_DATE

Returns the current Amazon Kinesis Data Analytics system date when the query executes as YYYY-
MM-DD when the query executes.

For more information, see CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIMESTAMP, LOCALTIME,
and CURRENT_ROW_TIMESTAMP.

Example
Fem - == +
| CURRENT_DATE |
Fem - == +
| 2008-08-27 |
Fem - == +

CURRENT_ROW_TIMESTAMP

CURRENT_ROW_TIMESTAMP is an Amazon Kinesis Data Analytics extension to the SQL:2008
specification. This function returns the current timestamp as defined by the environment on which
the Amazon Kinesis Data Analytics application is running. CURRENT_ROW_TIMESTAMP is always
returned as UTC, not the local timezone.

CURRENT_ROW_TIMESTAMP is similar to LOCALTIMESTAMP, but returns a new timestamp for each
row in a stream.

A query run with LOCALTIMESTAMP (or CURRENT_TIMESTAMP or CURRENT_TIME) as one of the
columns puts into all output rows the time the query is first run.

If that column instead contains CURRENT_ROW_TIMESTAMP, each output row gets a newly-
calculated value of TIME representing when that row was output.

CURRENT_DATE 205

Amazon Kinesis Data Analytics SQL Reference SQL Reference

® Note

CURRENT_ROW_TIMESTAMP is not defined in the SQL:2008 specification; it is an Amazon
Kinesis Data Analytics extension.

For more information, see CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP,
LOCALTIMESTAMP, LOCALTIME, and CURRENT_ROW_TIMESTAMP.

CURRENT_TIME

Returns the current Amazon Kinesis Data Analytics system time when the query executes. Time is in
UTC, not the local time zone.

For more information, see CURRENT_TIMESTAMP, LOCALTIMESTAMP, LOCALTIME,
CURRENT_ROW_TIMESTAMP, and CURRENT_DATE.

Example
L e +
| CURRENT_TIME |
L e +
| 20:52:05 |

CURRENT_TIMESTAMP

Returns the current database system timestamp (as defined on the environment on which Amazon
Kinesis Data Analytics is running) as a datetime value.

For more information, see CURRENT_TIME, CURRENT_DATE, LOCALTIME, LOCALTIMESTAMP, and
CURRENT_ROW_TIMESTAMP.

Example
R e +
| CURRENT_TIMESTAMP |
R e +
| 20:52:05 |

CURRENT_TIME 206

Amazon Kinesis Data Analytics SQL Reference SQL Reference

EXTRACT

EXTRACT(YEAR|MONTH | DAY |HOUR|MINUTE |SECOND FROM <datetime expression>|<interval
expression>)

The EXTRACT function extracts one field from a DATE, TIME, TIMESTAMP or INTERVAL expression.
Returns BIGINT for all fields other than SECOND. For SECOND it returns DECIMAL(5,3) and includes
milliseconds.

Syntax
Examples
Function Result
EXTRACT(DAY FROM INTERVAL '2 3:4:5.678 2
' DAY TO SECOND)
EXTRACT(HOUR FROM INTERVAL '2 £
3:4:5.678' DAY TO SECOND)
EXTRACT(MINUTE FROM INTERVAL '2 &
3:4:5.678"' DAY TO SECOND)
EXTRACT(SECOND FROM INTERVAL '2 =
3:4:5.678' DAY TO SECOND)
29
EXTRACT(MINUTE FROM CURRENT_R
OW_TIMESTAMP)
where CURRENT_ROW_TIMESTAMP is
2016-09-23 04:29:26.234
4

EXTRACT (HOUR FROM CURRENT_ROW_TIMEST
AMP)

EXTRACT 207

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Function Result

where CURRENT_ROW_TIMESTAMP is
2016-09-23 04:29:26.234

Use in Function

EXTRACT can be used for conditioning data, as in the following function which returns a 30 minute
floor when CURRENT_ROW_TIMESTAMP is input for p_time.

CREATE or replace FUNCTION FLOOR3@MIN(p_time TIMESTAMP)

RETURNS TIMESTAMP

CONTAINS SQL

RETURNS NULL ON NULL INPUT

RETURN floor(p_time to HOUR) + ((EXTRACT (MINUTE FROM p_time) / 30)* INTERVAL
'30' MINUTE) ;

You would implement this function using code along the following lines:

SELECT stream FLOOR3@QMIN(CURRENT_ROW_TIMESTAMP) as ROWTIME , * from "MyStream") over
(range current row) as r

® Note

The code above assumes that you have previously created a stream called "MyStream."

LOCALTIME

Returns the current time when the query executes as defined by the environment on which
Amazon Kinesis Data Analytics is running. LOCALTIME is always returned as UTC (GMT), not the
local timezone.

For more information, see CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP,
LOCALTIMESTAMP, and CURRENT_ROW_TIMESTAMP.

Example

VALUES localtime;

LOCALTIME 208

Amazon Kinesis Data Analytics SQL Reference SQL Reference

R +
| LOCALTIME |
R +
| 01:11:15 |
R +

1 row selected (1.558 seconds)

Limitations

Amazon Kinesis Data Analytics does not support the optional <time precision> parameter specified
in SQL:2008. This is a departure from the SQL:2008 standard.

LOCALTIMESTAMP

Returns the current timestamp as defined by the environment on Amazon Kinesis Data Analytics
application is running. Time is always returned as UTC (GMT), not the local timezone.

For more information, see CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP, LOCALTIME,
and CURRENT_ROW_TIMESTAMP.

Example

values localtimestamp;

B T T T I +
| LOCALTIMESTAMP |
B T T T I +
| 2008-08-27 01:13:42.206 |
B T T T I +

1 row selected (1.133 seconds)

Limitations

Amazon Kinesis Data Analytics does not support the optional <timestamp precision> parameter
specified in SQL:2008. This is a departure from the SQL:2008 standard.

TSDIFF

Returns NULL if any of the arguments is null.

Otherwise returns the difference between the two timestamps in milliseconds.

LOCALTIMESTAMP

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Syntax

TSDIFF(startTime, endTime)

Parameters
startTime

A Unix timestamp in the format milliseconds since '1970-01-01 00:00:00' UTC, expressed as a
BIGINT.

endTime
A Unix timestamp in the format milliseconds since '1970-01-01 00:00:00' UTC, expressed as a

BIGINT.

Null Functions
The topics in this section describe the null functions for Amazon Kinesis Data Analytics streaming
SQL.

Topics
o COALESCE
« NULLIF

COALESCE

COALESCE (
<value-expression>
{,<value-expression>}...)

The COALESCE function takes a list of expressions (all of which must be of the same type) and
returns the first non-null argument from the list. If all of the expressions are null, COALESCE
returns null.

Null Functions 210

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Examples
Expression Result
COALESCE('chair") chair
COALESCE('chair', null, 'sofa') chair
COALESCE(null, null, 'sofa') sofa
COALESCE(null, 2, 5) 2
NULLIF

NULLIF (<value-expression>, <value-expression>)

Returns null if the two input arguments are equal, otherwise returns the first value. Both
arguments must be of comparable type, or an exception is raised.

Examples
Function Result
NULLIF(4,2) 4
NULLIF(4,4) <null>
NULLIF('amy','fred’) amy
NULLIF('amy', cast(null as varchar(3))) amy
NULLIF(cast(null as varchar(3)),'fred’) <null>

Numeric Functions

The topics in this section describe the numeric functions for Amazon Kinesis Data Analytics
streaming SQL.

NULLIF 211

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Topics

+ ABS

o CEIL / CEILING
« EXP

« FLOOR

. LN

« LOG10

+ MOD

» POWER

» STEP

ABS

Returns the absolute value of the input argument. Returns null if the input argument is null.

ABS (<numeric-expression> <interval-expression>

)
Examples
Function Result
ABS(2.0) 2.0
ABS(-1.0) 1.0
ABS(0) 0
ABS(-3 * 3) 9
ABS(INTERVAL '-3 4:20' DAY TO MINUTE) INTERVAL '3 4:20' DAY TO MINUTE

If you use cast as VARCHAR in SQLline to show the output, the value is returned as +3 04: 20.

values(cast(ABS(INTERVAL '-3 4:20' DAY TO MINUTE) AS VARCHAR(8)));

ABS 212

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

EXPR$0

1 row selected

CEIL / CEILING

CEIL
CEIL
CEIL
CEIL

CEILING (<number-expression>)

CEILING (<datetime-expression> TO <time-unit>)
CEILING (<number-expression>)

CEILING (<datetime-expression> TO <[[time-unit>)

When called with a numeric argument, CEILING returns the smallest integer equal to or larger than

the input argument.

When called with a date, time, or timestamp expression, CEILING returns the smallest value equal

to or larger than the input, subject to the precision specified by the <time unit>.

Returns null if any input argument is null.

Examples

Function
CEIL(2.0)
CEIL(-1.0)
CEIL(5.2)
CEILING(-3.3)

CEILING(-3 * 3.1)

CEILING(TIMESTAMP '2004-09-30 13:48:23'

TO HOUR)

CEILING(TIMESTAMP '2004-09-30 13:48:23'

TO MINUTE)

Result

2

TIMESTAMP '2004-09-30 14:00:00"

TIMESTAMP '2004-09-30 13:49:00'

CEIL / CEILING

213

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Function Result
CEILING(TIMESTAMP '2004-09-30 13:48:23' TIMESTAMP '2004-10-01 00:00:00.0'
TO DAY)
CEILING(TIMESTAMP '2004-09-30 13:48:23' TIMESTAMP '2005-01-01 00:00:00.0'
TO YEAR)

Notes

« CEIL and CEILING are synonyms for this function provided by the SQL:2008 standard.

o CEIL(<datetime value expression> TO <time unit>) is an Amazon Kinesis Data Analytics
extension.

o For more information, see FLOOR.

EXP

EXP (<number-expression>)

Returns the value of e (approximately 2.7182818284590455) raised to the power of the input
argument. Returns null if the input argument is null.

Examples
Function Result
EXP(1) 2.7182818284590455
EXP(0) 1.0
EXP(-1) 0.36787944117144233
EXP(10) 22026.465794806718
EXP(2.5) 12.182493960703473

EXP 214

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

FLOOR

FLOOR (<time-unit>)

When called with a numeric argument, FLOOR returns the largest integer equal to or smaller than

the input argument.

When called with a date, time, or timestamp expression, FLOOR returns the largest value equal to

or smaller than the input, subject to the precision specified by <time unit>.

FLOOR returns null if any input argument is null.

Examples
Function Result
FLOOR(2.0) 2
FLOOR(-1.0) -1
FLOOR(5.2) 5
FLOOR(-3.3) -4
FLOOR(-3 * 3.1) -10

FLOOR(TIMESTAMP '2004-09-30 13:48:23' TO TIMESTAMP '2004-09-30 13:00:00'
HOUR)

FLOOR(TIMESTAMP '2004-09-30 13:48:23' TO TIMESTAMP '2004-09-30 13:48:00"
MINUTE)

FLOOR(TIMESTAMP '2004-09-30 13:48:23' TO TIMESTAMP '2004-09-30 00:00:00.0'
DAY)

FLOOR(TIMESTAMP '2004-09-30 13:48:23' TO TIMESTAMP '2004-01-01 00:00:00.0'
YEAR)

FLOOR

215

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Notes

(® Note

FLOOR (<datetime expression> TO <timeunit>) is an Amazon Kinesis Data Analytics

extension.
The STEP function is similar to FLOOR but can round values down to arbitrary intervals,

such as 30 seconds. For more information, see STEP.

LN

LN (<number-expression>)

Returns the natural log (that is, the log with respect to base e) of the input argument. If the
argument is negative or 0, an exception is raised. Returns null if the input argument is null.

For more information, see LOG10 and EXP.

Examples
Function Result
LN(1) 0.0
LN(10) 2.302585092994046
LN(2.5) 0.9162907318741551
LOG10

L0G1® (<number-expression>)

Returns the base 10 logarithm of the input argument. If the argument is negative or 0, an
exception is raised. Returns null if the input argument is null.

LN 216

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Examples

Function
LOG10(1)
LOG10(100)

log10(cast('23' as decimal))

(® Note

Result

0.0

2.0

1.3617278360175928

LOG10 is not a SQL:2008 standard function; it is an Amazon Kinesis Data Analytics

extension to the standard.

MOD
MOD (<dividend>, <divisor>)
<dividend> := <integer-expression>
<divisor> := <integer-expression>

Returns the remainder when the first argument (the dividend is divided by the second numeric

argument (the divisor). If the divisor is zero, a divide by zero error is raised.

Examples

Function
MOD(4,2)
MOD(5,3)
MOD(-4,3)

MOD(5,12)

Result

MOD

217

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Limitations

The Amazon Kinesis Data Analytics MOD function only supports arguments of scale O (integers).
This is a departure from the SQL:2008 standard, which supports any numeric argument. Other
numeric arguments can be CAST to an integer, of course.

POWER

POWER (<base>, <exponent>)
<base> := <number-expression>
<exponent> := <number-expression>

Returns the value of the first argument (the base) raised to the power of the second argument (the
exponent). Returns null if either the base or the exponent is null, and raises an exception if the base
is zero and the exponent is negative, or if the base is negative and the exponent is not a whole
number.

Examples
Function Result
POWER(3,2) 9
POWER(-2,3) -8
POWER(4,-2) 1/16 ..or.. 0.0625
POWER(10.1,2.5) 324.19285157140644
STEP

STEP (<time-unit> BY INTERVAL '<integer-literal>' <interval-literal>)
STEP (<integer-expression> BY <integer-literal>)

STEP rounds down the input value (<time-unit> or <integer-expression>) to the nearest multiple of
<integer-literal>.

POWER 218

Amazon Kinesis Data Analytics SQL Reference SQL Reference

The STEP function works on datetime data types or integer types. STEP is a scalar function that
performs an operation similar to FLOOR. However, by using STEP you can specify an arbitrary time
or integer interval for rounding down the first argument.

STEP returns null if any input argument is null.
STEP with an Integer Argument

When called with an integer argument, STEP returns the largest integer multiple of the <interval-
literal> argument equal to or smaller than the <integer-expression> argument. For example,
STEP(23 BY 5) returns 20, because 20 is the greatest multiple of 5 that is less than 23.

STEP (<integer-expression > BY <integer-literal>) is equivalent to the following.
(<integer-expression> / <integer-literal>) * <integer-literal>

Examples

In the following examples, the return value is the largest multiple of <integer-literal> that is equal
to or less than <integer-expression>.

Function Result
STEP(23 BY 5) 20
STEP(30 BY 10) 30

STEP with a Date Type Argument

When called with a date, time, or timestamp argument, STEP returns the largest value equal to or
smaller than the input, subject to the precision specified by <time unit>.

STEP(<datetimeExpression> BY <intervallLiteral>) is equivalent to the following.

(<datetimeExpression> - timestamp '1970-01-01 00:00:00') / <intervalliteral>) *
<intervalliteral> + timestamp '1970-01-01 00:00:00'

<intervalLiteral> can be one of the following:

 YEAR

STEP 219

Amazon Kinesis Data Analytics SQL Reference SQL Reference

« MONTH
« DAY

« HOUR
« MINUTE
« SECOND

Examples
In the following examples, the return value is the latest multiple of <integer-literal> of the unit
specified by <intervalLiteral> that is equal to or earlier than <datetime-expression>.

Function Result

STEP(CAST('2004-09-30 13:48:23' as '2004-09-30 13:48:20"
TIMESTAMP) BY INTERVAL '10' SECOND)

STEP(CAST('2004-09-30 13:48:23' as '2004-09-30 12:00:00
TIMESTAMP) BY INTERVAL '2' HOUR)

STEP(CAST('2004-09-30 13:48:23' as '2004-09-30 13:45:00'
TIMESTAMP) BY INTERVAL '5' MINUTE)

STEP(CAST('2004-09-27 13:48:23' as '2004-09-25 00:00:00.0'
TIMESTAMP) BY INTERVAL '5' DAY)

STEP(CAST('2004-09-30 13:48:23' as '2004-01-01 00:00:00.0'
TIMESTAMP) BY INTERVAL '1' YEAR)

STEP in a GROUP BY clause (tumbling window)

In this example, an aggregate query has a GROUP BY clause with STEP applied to ROWTIME that
groups the stream into finite rows.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
sum_price DOUBLE);

STEP 220

Amazon Kinesis Data Analytics SQL Reference SQL Reference

-- CREATE OR REPLACE PUMP to insert into output
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM
ticker_symbol,
SUM(price) AS sum_price
FROM "SOURCE_SQL_STREAM_001"
GROUP BY ticker_symbol, STEP("SOURCE_SQL_STREAM_0Q@1".ROWTIME BY INTERVAL '60'
SECOND);

Results

The preceding example outputs a stream similar to the following.

{

A 1
{

1

ROWTIME TICKER_SYMEBOL SUM_PRICE j
2017-07-26 20:23:00.0 MMEB 62.11000061035156 ;
2017-07-26 20:24:00.0 HJW 1968.909912109375 f
4

2017-07-26 20:24:00.0 MMB 69.8800048828125 f
b

2017-07-26 20:24:00.0 CEM 200.12998962402344 4
e _—— PR B i o, e r ___'__h_‘.____,..a_'.___..l

STEP in an OVER clause (sliding window)

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ingest_time TIMESTAMP,
ticker_symbol VARCHAR(4),
ticker_symbol_count integer);

--Create pump data into output
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
-- select the ingest time used in the GROUP BY clause
SELECT STREAM STEP(source_sql_stream_001.approximate_arrival_time BY INTERVAL '10Q'
SECOND) as ingest_time,
ticker_symbol,
count(*) over wl as ticker_symbol_count
FROM source_sql_stream_001

STEP 221

Amazon Kinesis Data Analytics SQL Reference SQL Reference

WINDOW wl AS (
PARTITION BY ticker_symbol,
-- aggregate records based upon ingest time
STEP(source_sql_stream_001.approximate_arrival_time BY INTERVAL '10' SECOND)
-- use process time as a trigger, which can be different time window as the
aggregate
RANGE INTERVAL '10' SECOND PRECEDING);

Results

The preceding example outputs a stream similar to the following.

!

Y 1
i

1

ROWTIME INGEST TIME TICKER_SYMBOL TICKER_SYMBOL COUNT ;
b |

2017-07-26 2017:30.472 2017-07-26 2017:20.0 CRM 1 f
2017-07-26 2017:30.472 2017-07-26 2017:20.0 BAC 1 ;
2017-07-26 2017:30.472 2017-07-26 2017:20.0 UHM 1 j
2017-07-26 2017:30.472 2017-07-26 2017:20.0 PPL 1 1
__F‘__F‘,_*-._‘___.w—h--"‘ o et b gt P T __‘...-!-.-.l-l'-"'-\.\,_p_ ——— —.__J

Notes

STEP (<datetime expression> BY <literal expression>) is an Amazon Kinesis Data Analytics
extension.

You can use STEP to aggregate results using tumbling windows. For more information on tumbling
windows, see Tumbling Window Concepts.

Log Parsing Functions
Amazon Kinesis Data Analytics features the following functions for log parsing:

o FAST_REGEX_LOG_PARSER works similarly to the regex parser, but takes several "shortcuts" to
ensure faster results. For example, the fast regex parser stops at the first match it finds (known
as "lazy" semantics.)

o FIXED_COLUMN_LOG_PARSE parses fixed-width fields and automatically converts them to the
given SQL types.

Log Parsing Functions 222

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

o REGEX_LOG_PARSE uses the default Java regular expression parser. For more information about
this parser, see Pattern in the Java Platform documentation on the Oracle website.

o SYS_LOG_PARSE processes entries commonly found in UNIX/Linux system logs.

o VARIABLE_COLUMN_LOG_PARSE splits an input string (its first argument, <character-
expression>) into fields separated by a delimiter character or delimiter string.

o W3C_LOG_PARSE processes entries in W3C-predefined-format logs.

FAST_REGEX_LOG_PARSER
FAST_REGEX_LOG_PARSE('input_string', 'fast_regex_pattern')

The FAST_REGEX_LOG_PARSE works by first decomposing the regular expression into a series of
regular expressions, one for each expression inside a group and one for each expression outside

a group. Any fixed length portions at the start of any expressions are moved to the end of the
previous expression. If any expression is entirely fixed length, it is merged with the previous
expression. The series of expressions is then evaluated using lazy semantics with no backtracking.
(In regular expression parsing parlance, "lazy" means don't parse more than you need to at each
step. "Greedy" means parse as much as you can at each step.)

The columns returned will be COLUMN1 through COLUMNR, where n is the number of groups in
the regular expression. The columns will be of type varchar(1024). See sample usage below at First
FRLP Example and at Further FRLP Examples.

FAST_REGEX_LOG_PARSER (FRLP)

FAST_REGEX_LOG_PARSER uses a lazy search - it stops at the first match. By contrast, the
REGEX_LOG_PARSE is greedy unless possessive quantifiers are used.

FAST_REGEX_LOG_PARSE scans the supplied input string for all the characters specified by the Fast
Regex pattern.

« All characters in that input string must be accounted for by the characters and scan groups
defined in the Fast Regex pattern. Scan groups define the fields-or-columns resulting when a
scan is successful.

« If all characters in the input_string are accounted for when the Fast Regex pattern is applied,
then FRLP creates an output field (column) from each parenthetical expression in that Fast
Regex pattern, in left-to-right order. The first (leftmost) parenthetical expression creates the

FAST_REGEX_LOG_PARSER 223

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

first output field, the next (second) parenthetical expression creates the second output field, up

through the last parenthetical expression creating the last output field.

o If the input_string contains any characters not accounted for (matched) by applying Fast Regex

pattern, then FRLP returns no fields at all.

Character Class Symbols for Fast Regex

Fast Regex uses a different set of character class symbols from the regular regex parser:

Symbol or Construct

[charclasses]

[~ charclasses]

&

{n}
{n}

{n,m}

#

@

"<Unicode string without double-quotes>"

Meaning

Character range, including endpoints
Character class

Negated character class

Union

Intersection

Zero or one occurrence

Zero or more occurrences

One or more occurrences

n occurrences

N or more occurrences

n to m occurrences, including both
Any single character

The empty language

Any string

A string)

FAST_REGEX_LOG_PARSER

224

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Symbol or Construct

()

(unionexp)

< <identifier> >

<n-m>

charexp:=<Unicode character>

\ <Unicode character>

Meaning

The empty string)

Precedence override

Named pattern

Numerical interval

A single non-reserved character

A single character)

We support the following POSIX standard identifiers as named patterns:

<Digit> - "[0-9]"

<Upper> - "[A-Z]"

<Lower> - "[a-z]"

<ASCII> - "[\u0000-\uOO7F]"
<Alpha> - "<Lower>|<Upper>"
<Alnum> - "<Alpha>|<Digit>"

<Punct> - "[N\"#$%&'()*+,-./5<=>2@[\\\]*_ " {|}~1"

<Blank> - "[\t]"

<Space> - "[\t\n\f\r\uOOOB]"
<Cntrl> - "[\uOOOO-\uOO1F\uOO7F]"
<XDigit> - "0-9a-fA-F"

<Print> - "<Alnum>|<Punct>"
<Graph> - "<Print>"

FAST_REGEX_LOG_PARSER

225

Amazon Kinesis Data Analytics SQL Reference SQL Reference

First FRLP Example

This first example uses the Fast Regex pattern '(.*)_(._.*)_.*'

select t.r."COLUMN1", t.r."COLUMN2" from
.> (values (FAST_REGEX_LOG_PARSE('Mary_had_a_little_lamb',

G F) . *) t(x);

Fer e - = - Fer e - - - +
| COLUMN1 | COLUMN2 |
Fer e - = - Fer e - - - +
| Mary_had | a_little_lamb |
Fer e - = - Fer e - - - +

1 row selected

1. The scan of input_string ('"Mary_had_a_little_lamb') begins with the 1st group defined in Fast
Regex pattern: (.*), which means "find any character O or more times."

(F)_ ()

2. This group specification, defining the first column to be parsed, asks the Fast Regex Log Parser
to accept input string characters starting from the input string's first character until it finds the
next group in the Fast Regex Pattern or the next literal character or string that is not inside a
group (not in parentheses). In this example, the next literal character after the first group is an

underscore:

()
3. The parser scans each character in the input string until it finds the next specification in the Fast

Regex pattern: an underscore:

() ()
4. Group-2 thus begins with "a_l". Next, the parser needs to determine the end of this group, using
the remaining specification in the pattern:

() (o)

(® Note
Character-strings or literals specified in the pattern but not inside a group must be found in
the input string but will not be included in any output field.

FAST_REGEX_LOG_PARSER 226

Amazon Kinesis Data Analytics SQL Reference SQL Reference

If the Fast Regex pattern had omitted the final asterisk, no results would be obtained.

Further FRLP Examples

The next example uses a "+", which means repeat the last expression 1 or more times ("*" means 0
or more times).

Example A

In this case, the longest prefix is the first underscore. The first field/column group will match on
"Mary" and the second will not match.

select t.r."COLUMN1", t.r."COLUMN2" from
e e e e e e e .> (values
(FAST_REGEX_LOG_PARSE('Mary_had_a_little_lamb',
"G+ %)) t(x);

Fem == +
| COLUMN1 | COLUMN2 |
+

No rows selected

The preceding example returns no fields because the "+" required there be at least one more
underscore-in-a-row; and the input_string does not have that.

Example B

In the following case, the '+' is superfluous because of the lazy semantics:

select t.r."COLUMN1", t.r."COLUMN2" from
e e e e e e e .> (values
(FAST_REGEX_LOG_PARSE('Mary____ had_a_little_lamb',
"Co)_+(.*) 1)) t(x);

1 row selected

FAST_REGEX_LOG_PARSER 227

Amazon Kinesis Data Analytics SQL Reference SQL Reference

The preceding example succeeds in returning two fields because after finding the multiple
underscores required by the "_+" specification, the group-2 specification (.*) accepts all remaining
characters in the .input_string. Underscores do not appear trailing "Mary" nor leading "had"
because the "_+" specification is not enclosed in parentheses.

As mentioned in the introduction, "lazy" in regular expression parsing parlance means don't parse
more than you need to at each step; "Greedy" means parse as much as you can at each step.

The first case in this topic, A, fails because when it gets to the first underscore, the regex processor
has no way of knowing without backtracking that it can't use the underscore to match "_+", and
FRLP doesn't backtrack, whereas REGEX_LOG_PARSE does.

The search directly above, B, gets turned into three searches:

(.*)_
(._

)

Notice that the second field group gets split between the second and third searches, also that "_
+" is considered the same as "__*" (that is, it considers "underscore repeat-underscore-1-or-more-
times" the same as "underscore underscore repeat-underscore-0-or-more-times".)

Case A demonstrates the main difference between REGEX_LOG_PARSE and
FAST_REGEX_LOG_PARSE, because the search in A would work under REGEX_LOG_PARSE because
that function would use backtracking.

Example C

In the following example, the plus is not superfluous, because the "<Alpha> (any alphabetic char) is
fixed length thus will be used as a delimiter for the " +" search.

select t.r."COLUMN1", t.r."COLUMN2" from
e e e e e e e .> (values (FAST_REGEX_LOG_PARSE('Mary had_a_little_lamb',
"(.*)_*+(<Alpha>.*)"))) t(r);

1 row selected

FAST_REGEX_LOG_PARSER 228

Amazon Kinesis Data Analytics SQL Reference SQL Reference

'"(.*) +(<Alpha>.*)' gets converted into three regular expressions:
%

' *<Alpha>’
I.*$I

Each is matched in turn using lazy semantics.

The columns returned will be COLUMN1 through COLUMNR, where n is the number of groups in
the regular expression. The columns will be of type varchar(1024).

FIXED_COLUMN_LOG_PARSE

Parses fixed-width fields and automatically converts them to the given SQL types.

FIXED_COLUMN_LOG_PARSE (<string value expression>, <column description string
expression>)
<column description string expression> := '<column description> [,...]"
<column description> :=

<identifier> TYPE <data type> [NOT NULL]

START <numeric value expression> [FOR <numeric constant expression>]

Starting position of column is 0. Column specifications for types DATE, TIME and TIMESTAMP
support a format parameter allowing the user to specify exact time component layout. The parser
uses the Java class java.lang.SimpleDateFormat to parse the strings for types DATE, TIME and
TIMESTAMP. The Date and Time Patterns topic gives a full description and examples of timestamp
format strings. The following is an example of a column definition with a format string:

"name" TYPE TIMESTAMP 'dd/MMM/yyyy:HH:mm:ss'

Related Topics

REGEX_LOG_PARSE

REGEX_LOG_PARSE

REGEX_LOG_PARSE (<character-expression>,<regex-pattern>,<columns>)<regex-pattern> :=
<character-expression>[0BJECT] <columns> := <columnname> [<datatype>] {,
<columnname> <datatype> }*

FIXED_COLUMN_LOG_PARSE 229

http://docs.oracle.com/javase/1.5.0/docs/api/java/text/SimpleDateFormat.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Parses a character string based on Java Regular Expression patterns as defined in
java.util.regex.pattern.

Columns are based on match groups defined in the regex-pattern. Each group defines a column,
and the groups are processed from left to right. Failure to match produces a NULL value result: If
the regular expression does not match the string passed as the first parameter, NULL is returned.

The columns returned will be COLUMN1 through COLUMNRN, where n is the number of groups in
the regular expression. The columns will be of type varchar(1024).

Examples
Example Dataset

The examples following are based on the sample stock dataset that is part of the Getting Started

Exercise in the Amazon Kinesis Analytics Developer Guide. To run each example, you need an
Amazon Kinesis Analytics application that has the sample stock ticker input stream. To learn how
to create an Analytics application and configure the sample stock ticker input stream, see the
Getting Started Exercise in the Amazon Kinesis Analytics Developer Guide.

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

Example 1: Return results from two capture groups

The following code example searches the contents of the sector field for a letter E and the
character that follows it, and then searches for a letter R, and returns it and all characters following
it:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (matchl VARCHAR(1024), match2
VARCHAR(1024));

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM T.REC.COLUMN1, T.REC.COLUMN2

REGEX_LOG_PARSE 230

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

FROM
(SELECT STREAM SECTOR,
REGEX_LOG_PARSE(SECTOR, '.*([E].).*([R].*)"') AS REC
FROM SOURCE_SQL_STREAM_001) AS T;

The preceding code example produces results similar to the following:

4
T
A

ROWTIME MATCHA1 MATCH2 l
201 7-08-08 22:10:35.402 EMN RGEY }

1
2017-08-08 22:10:40.407 EN RGY :
201 7-08-08 22:10:40.407 EA RE !
201 7-08-08 22:10:40.407 EM RGY ’
Y P S e

Example 2: Return a stream field and results from two capture groups

The following code example returns the sector field, and searches the contents of the sector
field for a letter E and returns it and the character that follows it, and then searches for a letter R,
and returns it and all characters following it:

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (sector VARCHAR(24), matchl
VARCHAR(24), match2 VARCHAR(24));

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM T.SECTOR, T.REC.COLUMN1, T.REC.COLUMN2
FROM
(SELECT STREAM SECTOR,
REGEX_LOG_PARSE(SECTOR, '.*([E].).*([R].*)') AS REC
FROM SOURCE_SQL_STREAM_001) AS T;

The preceding code example produces results similar to the following:

REGEX_LOG_PARSE 231

Amazon Kinesis Data Analytics SQL Reference SQL Reference

T i

~

ROWTIME SECTOR MATCH1 MATCH2 i

L

2017-08-08 22:13:56.126 HEALTHCARE EA RE i

2017-08-08 22:14:01.138 HEALTHCARE EA RE i

2017-08-08 22:14:01.138 ENERGY EN RGY 4
2017-08-08 22:14:01.138 EMERGY EMN RGY

e e n i b | e n Rl i R B ot B ppitntn | gl #‘J

For more information, see FAST_REGEX_LOG_PARSER.

Quick Regex Reference

For full details on Regex, see java.util.regex.pattern

[xyz] Find single character of: x, y or z \w Find any word character (letter, number,
underscore)

[~abc] Find any single character except: x, y, or

z \W Find any non-word character

[r-z] Find any single character between r-z \b Find any word boundary

[r-zR-Z] Find any single character between r-z (...) Capture everything enclosed

or R-Z
(x]y) Find x or y (also works with symbols such

A Start of line as \d or \s)

$ End of line x? Find zero or one of x (also works with

symbols such as \d or \s)
\A Start of string

x* Find zero or more of x (also works with

\z End of string symbols such as \d or \s)

- Any single character x+ Find one or more of x (also works with
\s Find any whitespace character Sl el S 25 Vel O S,

\S Find any non-whitespace character

REGEX_LOG_PARSE 232

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

\d Find any digit x{3} Find exactly 3 of x (also works with

symbols such as \d or \s)
\D Find any non-digit

x{3,} Find 3 or more of x (also works with
symbols such as \d or \s)

x{3,6} Find between 3 and 6 of x (also works
with symbols such as \d or \s)

SYS_LOG_PARSE

Parses the standard syslog format:

Mon DD HH:MM:SS server message

SYS_LOG_PARSE processes entries commonly found in UNIX/Linux system logs. System log entries
start with a timestamp and are followed with a free form text field. SYS_LOG_PARSE output
consists of two columns. The first column is named "COLUMN1" and is SQL data type TIMESTAMP.
The second column is named "COLUMN2" and is SQL type VARCHAR().

(@ Note

For more information about SYSLOG, see IETF RFC3164. For more information about date-
time patterns and matching, see Date and Time Patterns.

VARIABLE_COLUMN_LOG_PARSE

VARIABLE_COLUMN_LOG_PARSE(
<character-expression>, <columns>, <delimiter-string>
[, <escape-string>, <quote-string>])

<columns> := <number of columns> | <list of columns>

<number of columns> := <numeric value expression>

<list of columns> := '<column description>[, ...]'

<column description> := <identifier> TYPE <data type> [NOT NULL]
<delimiter string> := <character-expression>

<escape-string> := <character-expression>

<quote-string> := '<begin quote character> [<end quote character>]'

SYS_LOG_PARSE 233

https://tools.ietf.org/html/rfc3164

Amazon Kinesis Data Analytics SQL Reference SQL Reference

VARIABLE_COLUMN_LOG_PARSE splits an input string (its first argument, <character-expression>)
into fields separated by a delimiter character or delimiter string. Thus it handles comma-separated
values or tab-separated values. It can be combined with FIXED_COLUMN_LOG_PARSE to handle
something like maillog, where some fields are fixed-length and others are variable-length.

(® Note

Parsing of binary files is not supported.

The arguments <escape-string> and <quote-string> are optional. Specifying an <escape-

string> allows the value of a field to contain an embedded delimiter. As a simple example, if the
<delimiter-string> specified a comma, and the <escape-string> specified a backslash, then an input
of "a,b" would be split into two fields "a" and "b", but an input of "a\,b" would result in a single field
"a,b".

Since Amazon Kinesis Data Analytics supports Expressions and Literals, a tab can also be a

delimiter, specified using a unicode escape, e.g., u&'\0009', which is a string consisting only of a tab
character.

Specifying a <quote-string> is another way to hide an embedded delimiter. The <quote-string>
should be a one or two character expression: the first is used as the <begin quote character>
character; the second, if present, is used as the <end quote character> character. If only one
character is supplied, it is used as both to begin and to end quoted strings. When the input includes
a quoted string, that is, a string enclosed in the characters specified as <quote-string>, then that
string appears in one field, even if it contains a delimiter.

Note that the <begin quote character> and <end quote character> are single characters and can
be different. The <begin quote character> can be used to start and end the quoted string, or the
<begin quote character> can start the quoted string and the <end quote character> used to end
that quoted string.

When a list of columns <list of columns> is supplied as the second parameter <columns>, the
column specifications (<column description>) for types DATE, TIME, and TIMESTAMP support a
format parameter allowing the user to specify exact time component layout. The parser uses the
Java class java.lang.SimpleDateFormat to parse the strings for those types. Date and Time Patterns

gives a full description of timestamp format strings, with examples. The following is an example of
a column definition with a format string:

VARIABLE_COLUMN_LOG_PARSE 234

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

"name" TYPE TIMESTAMP 'dd/MMM/yyyy:HH:mm:ss'

By default, the output columns are named COLUMN1, COLUMNZ2, COLUMN3, etc., each of SQL data
type VARCHAR(1024).

W3C_LOG_PARSE

W3C_LOG_PARSE(<character-expression>, <format-string>)
<format-string> := '<predefined-format> | <custom-format>'
<predefined format> :=
COMMON
COMMON WITH VHOST
NCSA EXTENDED
REFERER
AGENT
| IIS
<custom-format> := [an Apache log format specifier]

W3C Predefined Formats

Specifying the following W3C-predefined-format names summarizes using the format specifiers
indicated, as shown in the following statement:

select stream W3C_LOG_PARSE(message, 'COMMON') r from w3ccommon t;

Format Name W3C Name Format Specifiers

COMMON Common Log Format (CLF) %h %l %u %t "%r" %>s %b

COMMON WITH VHOST Common Log Format with %V %h %l %u %t "%r" %>s
Virtual Host %Db

NCSA EXTENDED NCSA extended/combined log %h %l %u %t "%r" %>s
format %b "%][Referer]i" "%[User-a

gent]i"
REFERER Referer log format %[Referer]i ---> %U

W3C_LOG_PARSE 235

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Format Name W3C Name Format Specifiers

AGENT Agent (Browser) log format %l[User-agent]i

W3C Format Specifiers

The format specifiers are listed below. W3C_LOG_PARSE automatically detects these specifiers
and output records with one column for each specifier. The column's type is automatically chosen
based on the possible outputs of the specifier. For example, %b represents the number of bytes
sent in processing an HTTP request, so the column type is numeric. For %B, however, zero bytes is

represented by a dash - forcing the column type to be text. Note A explains what the "..." and "<" or
">" markings shown in the specifier table mean.

The following table lists W3C format specifiers alphabetically by command.

Format Specifier Explanation

% The percent sign (Apache 2.0.44 and later)

%...a Remote IP-address

%...A Local IP-address

%...B Size of response in bytes, excluding HTTP
headers.

%...b Size of response in bytes, excluding HTTP

headers, in CLF format, which means that
when no bytes are sent, uses a '-' rather than a
0.

%...[Customerdata]C The contents of cookie Customerdata in the
request sent to the server.

%...D The time taken to serve the request, in
microseconds.

W3C_LOG_PARSE 236

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Format Specifier

%...[CUSTOMERDATA]e

%...f
%...h
%...H

%...[Customerdatali

o

%...l
%...m

%...[Customerdata]n

%...[Customerdata]o

%...p

%...P

%...[format]P

%...q

%...r

Explanation

The contents of the environment variable
CUSTOMERDATA

Filename
Remote host
The request protocol

The contents of Customerdata: header line(s)
in the request sent to the server.

Remote logname (from identd, if supplied)
The request method

The contents of note Customerdata from
another module.

The contents of Customerdata: header line(s)
in the reply.

The canonical port of the server serving the
request

The process ID of the child that serviced the
request.

The process ID or thread id of the child that
serviced the request. Valid formats are pid and
tid. (Apache 2.0.46 and later)

The query string (prepended with a ? if a query
string exists, otherwise an empty string)

First line of request

W3C_LOG_PARSE

237

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Format Specifier

%..

%...

%..

%...

%...

%...

%...

%...

)

[format]t

Explanation

Status. For requests that got internally
redirected, this is the status of the *original*
request --- %...>s for the last.

Time, in common log format time format
(standard English format)

The time, in the form given by format, which
should be in strimmer(3) format. (potentially
localized)

The time taken to serve the request, in
seconds.

Remote user (from auth; may be bogus if
return status (%s) is 401)

The URL path requested, not including any
query string.

The canonical ServerName of the server
serving the request.

The server name according to the UseCanoni
calName setting.

W3C_LOG_PARSE

238

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Format Specifier Explanation
%...X Connection status when response is
completed

X = connection aborted before the response
completed.

+ = connection may be kept alive after the
response is sent.

- = connection will be closed after the
response is sent.

(The %..X directive was %...c in late versions of
Apache 1.3,

but this conflicted with the historical ssl %...
[var]c syntax.)

%...l: Bytes received, including request and headers,
cannot be zero. You need to enable mod_logio
to use this.

:%...0: Bytes sent, including headers, cannot be zero.

You need to enable mod_logio to use this.

(® Note

Some W3C format specifiers are shown as containing a "..." indication or a "<" or ">", which
are optional controls on suppressing or redirecting the output of that specifier. The "..." can
either be empty (as in the COMMON specification "\%h %u %r \%s %b") or it can indicate
conditions for including the item. The conditions are a list of HTTP status codes, possibly
preceded by "!", and if the specified condition is not met, then the column or field returned
shows "-".

For example, as described in the Apache documentation, specifying "%400,501[User-

agent]i" will log the User-agent only on 400 errors and 501 errors (Bad Request, Not

W3C_LOG_PARSE 239

http://httpd.apache.org/docs/2.0/mod/mod_logio.html
http://httpd.apache.org/docs/2.0/mod/mod_logio.html
http://httpd.apache.org/docs/2.0/mod/mod_logio.html
http://httpd.apache.org/docs/2.0/mod/mod_log_config.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Implemented). Similarly, "%!200,304,302[Referer]i" will log the Referer: on all requests that
fail to return some sort of normal status.

The modifiers "<" and ">" can be used to choose whether the original or final (respectively)
request should be consulted when a request has been internally redirected. By default,

the % directives %s, %U, %T, %D, and %r look at the original request while all others

look at the final request. So for example, %>s can be used to record the final status of the
request and %-<u can be used to record the original authenticated user on a request that is
internally redirected to an unauthenticated resource.

For security reasons, starting with Apache 2.0.46, non-printable and other special
characters are escaped mostly by using \xhh sequences, where hh stands for the
hexadecimal representation of the raw byte. Exceptions from this rule are " and \ which

are escaped by prepending a backslash, and all white space characters which are written

in their C-style notation (\n, \t etc). In httpd 2.0 versions prior to 2.0.46, no escaping was
performed on the strings from %...r, %...i and %...0, so great care was needed when dealing
with raw log files, since clients could have inserted control characters into the log.

Also, in httpd 2.0, the B format strings represent simply the size in bytes of the HTTP
response (which will differ, for instance, if the connection is aborted, or if SSL is used).

For the actual number of bytes sent over the network to the client, use the %0 format

provided by mod_logio.

W3C Format Specifiers by Function or Category

The categories are bytes sent, connection status, content of environmental variable, filename, host,

IP, notes, protocol, query string, replies, requests, and time. For the markings "..." or "<" or "<", see
the previous note.

Function or Category W3C Format Specifiers
Bytes sent, excluding HTTP headers

with a "0" when no bytes are sent %...B

with a "-" (CLF format) when no bytes are sent %...b

Bytes received, including request and headers, :% ... I
cannot be zero

W3C_LOG_PARSE 240

http://httpd.apache.org/docs/2.0/mod/mod_logio.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Function or Category W3C Format Specifiers

Must enable mod_logio to use this.
Bytes sent, including headers, cannot be zero :%... O:
Must enable mod_logio to use this.

Connection status when response is completed

Connection aborted before the response X
completed
Connection may be kept alive after the +

response is sent
Connection will be closed after the responseis -

sent

(® Note

The %..X directive was %...c in late versions of Apache 1.3, but this conflicted with the
historical ssl %...[var]c syntax.

Environment variable CUSTOMERDATA

contents %...[CUSTOMERDATA]e
Filename %...f
Host (remote) %...h
Protocol %...H

IP addresses

Remote %...a
Local %...A
Notes

W3C_LOG_PARSE 241

http://httpd.apache.org/docs/2.0/mod/mod_logio.html
http://httpd.apache.org/docs/2.0/mod/mod_logio.html

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Function or Category

Contents of note Customerdata from another
module

Protocol (request)
Query string

(® Note

If query exists, prepended with a ?
If not, the empty string.

Replies

Contents of Customerdata (header lines in the

reply)

The W3C format specifiers for the response and time categories are listed following table.

Function or Category
Requests

Canonical port of the server serving the
request

Contents of cookie Customerdata in the
request sent to server

Contents of BAR:header line(s)
First line sent:
Microseconds taken to serve a request

Protocol

W3C Format Specifiers

%...[Customerdata]n

%...H

%...q

%...[Customerdata]o

W3C Format Specifiers

%...p

%... [Customerdata]C

%... [BAR]i
%...r
%...D

%...H

W3C_LOG_PARSE

242

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Function or Category W3C Format Specifiers
Process ID of the child that serviced the %...P

request

Process ID or thread id of the child that %...[format]P

serviced the request.

Valid formats are pid and tid. (Apache 2.0.46

and later)
Remote logname (from identd, if supplied) %...l
Remote user: (from auth; may be bogus if %...u

return status (%s) is 401)

Server (canonical ServerName) serving the %...v
request

Server name by the UseCanonicalName %...V
setting

Request method %...m
Return status %s
Seconds taken to serve the request %...T
Status of the *original* request that was %...s

internally redirected
Status of the last request %...>s

URL path requested, not including any query %...U
string

Time

Common log format time format (standard %...t
English format)

W3C_LOG_PARSE 243

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Function or Category W3C Format Specifiers
Time in strftime(3) format, potentially %...[format]t

localized

Seconds taken to serve the request %...T

W3C Examples

W3C_LOG_PARSE supports access to logs generated by W3C-compliant applications like the
Apache web server, producing output rows with one column for each specifier. The data types are
derived from the log entry description specifiers listed in the Apache mod_log_config specification.

Example 1

The input in this example is taken from an Apache log file and is representative of the COMMON
log format.

Input

(192.168.254.30 - John [24/May/2004:22:01:02 -0700]

"GET /icons/apache_pb.gif HTTP/1.1" 304 0),
(192.168.254.30 - Jane [24/May/2004:22:01:02 -0700]

"GET /icons/small/dir.gif HTTP/1.1" 304 0);

DDL

CREATE OR REPLACE PUMP weblog AS
SELECT STREAM

1.r.COLUMNL,
.COLUMNZ2,
.COLUMN3,
.COLUMN4&,
.COLUMNS5,
.COLUMN®G6,
.T.COLUMN7
FROM (SELECT STREAM W3C_LOG_PARSE(message, 'COMMON')

FROM "weblog_read) AS 1(r);

H o
H H H H H H

W3C_LOG_PARSE 244

http://httpd.apache.org/docs/2.0/mod/mod_log_config.html?#formats

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Output

192.168.254.30 - John [24/May/2004:22:01:02 -0700] GET /icons/apache_pb.gif HTTP/1.1
304 0O
192.168.254.30 - Jane [24/May/2004:22:01:02 -0700] GET /icons/small/dir.gif HTTP/1.1
304 0O

The specification of COMMON in the FROM clause means the Common Log Format (CLF), which
uses the specifiers %h %l %u %t "%r" %>s %b.

The W3C-predefined formats shows the COMMON and other predefined specifier sets.

The specification of COMMON in the FROM clause means the Common Log Format (CLF), which
uses the specifiers %h %l %u %t "%r" %>s %b.

The table below, Specifiers used by the Common Log Format, describes the specifiers used by
COMMON in the FROM clause.

Specifiers Used by the Common Log Format

Output Column Format Specifier Returns

COLUMN1 %h The IP address of the remote
host

COLUMNZ2 %l The remote logname

COLUMN3 %u The remote user

COLUMN4 %t The time

COLUMNS "%r" The first line of the request

COLUMNSG6 %>s The status: For internally

redirected requests,

the status of the *original*
request

--- %...>s for the last.

W3C_LOG_PARSE 245

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sql-reference-w3c-log-parse.html#sql-reference-w3c-log-parse-predefined

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Output Column Format Specifier Returns

COLUMN7 %b The number of bytes sent,
excluding HTTP headers

Example 2
The DDL in this example shows how to rename output columns and filter out unneeded columns.

DDL

CREATE OR REPLACE VIEW "Schemal".weblogreduced AS
SELECT STREAM CAST(s.COLUMN3 AS VARCHAR(5)) AS LOG_USER,
CAST(s.COLUMN1 AS VARCHAR(15)) AS ADDRESS,
CAST(s.COLUMN4 AS VARCHAR(3@)) as TIME_DATES
FROM "Schemal".weblog s;

Output
e R et e +
| LOG_USER | ADDRESS | TIME_DATES |
| | | |
Femm - = Fer - - F e - - +
| Jane | 192.168.254.30 | [24/May/2004:22:01:02 -0700] |
I I I I
| John | 192.168.254.30 | [24/May/2004:22:01:02 -0700] |
Femm - = Fer - - F e - - +

W3C Customized Formats

The same results would be created by naming the specifiers directly rather than using the
"COMMON" name, as shown following:

CREATE OR REPLACE FOREIGN STREAM schemal.weblog
SERVER logfile_server
OPTIONS (LOG_PATH '/path/to/logfile’,
ENCODING 'UTF-8',
SLEEP_INTERVAL '10000',
MAX_UNCHANGED_STATS '10°',
PARSER 'W3C',

W3C_LOG_PARSE 246

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

or

CREATE FOREIGN STREAM "Schemal".weblog_read
SERVER "logfile_server"
OPTIONS (log_path '/path/to/logfile’,

PARSER_FORMAT '%h %1 %u %t \"%r\" %>s %b');

encoding 'UTF-8',

sleep_interval '10000',
max_unchanged_stats '10');
CREATE OR REPLACE VIEW "Schemal".weblog AS

SELECT STREAM

1L

N
H H H H H

. I

(® Note

.COLUMN1,
.COLUMN2,
.COLUMN3,
.COLUMN4,
.COLUMNS5,
.COLUMNG6
FROM (SELECT STREAM W3C_LOG_PARSE(message,

FROM "Schemal".weblog_read) AS 1(r);

"%h %1 %u %t \"Sr\" %>s %b')

If you change %t to [%t], the date column contains the following:

24/May/2004:22:01:02 -0700

(instead of [24/May/2004:22:01:02 -0700])

Sorting Functions

The topics in this section describe the sorting functions for Amazon Kinesis Data Analytics

streaming SQL.

Topics

« Group Rank

Group Rank

This function applies a RANK() function to logical groups of rows and optionally delivers the group

in sorted order.

Sorting Functions

247

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Applications of group_rank include the following:

» To sort results of a streaming GROUP BY.

» To determine a relationship within the results of a group.

Group Rank can do the following actions:

» Apply rank to a specified input column.
» Supply either sorted or unsorted output.

» Enable the user to specify a period of inactivity for data flush.

SQL Declarations
The functional attributes and DDL are described in the sections that follow.
Functional Attributes for Group_Rank

This function acts as follows:

« Gathers rows until either a rowtime change is detected or a specified idle-time limit is exceeded.
» Accepts any streaming rowset.

« Uses any column with a basic SQL data type of INTEGER, CHAR, VARCHAR as the column by
which to do the ranking.

« Orders the output rows either in the order received or in ascending or descending order of values
in the selected column.

DDL for Group_Rank

group_rank(c cursor, rankByColumnName VARCHAR(128),
rankOutColumnName VARCHAR(128), sortOrder VARCHAR(1Q), outputOrder VARCHAR(10Q),
maxIdle INTEGER, outputMax INTEGER)

returns table(c.*, "groupRank" INTEGER)

The parameters to the function are listed in the following table.

Group Rank 248

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Parameter

rankByColumnName

rankOutColumnName

sortOrder

outputOrder

maxIdle

outputMax

Description
CURSOR to Streaming Result Set

String naming the column to use for ranking
the group.

String naming the column to use for returning
the rank.

This string must match the name of the
groupRank column in the RETURNS clause
of the CREATE FUNCTION statement.

Controls ordering of rows for rank assignment.
Valid values are as follows:

 'asc' - Ascending based on the rank.

» 'desc' - Descending based on the rank.

Controls ordering of output. Valid values are
as follows:

 'asc' - Ascending based on the rank.

 'desc' - Descending based on the rank.

Time limit in milliseconds for holding a group
for ranking.

When maxIdle expires, the current group
is released to the stream. A value of zero
indicates no idle timeout.

Maximum number of rows the function
outputs in a given group.

A value of 0 indicates no limit.

Group Rank

249

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Example
Example Dataset

The following example is based on the sample stock dataset that is part of the Getting Started
Exercise in the Amazon Kinesis Data Analytics Developer Guide. To run each example, you need an
Amazon Kinesis Data Analytics application that has the sample stock ticker input stream. To learn
how to create an analytics application and configure the sample stock ticker input stream, see
Getting Started in the Amazon Kinesis Data Analytics Developer Guide.

The sample stock dataset has the following schema:

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

Example 1: Sort the Results of a GROUP BY Clause

In this example, the aggregate query has a GROUP BY clause on ROWTIME that groups the stream
into finite rows. The GROUP_RANK function then sorts the rows returned by the GROUP BY clause.

CREATE OR REPLACE STREAM "ticker_grouped" (
"group_time" TIMESTAMP,
"ticker" VARCHAR(65520),
"ticker_count" INTEGER);

CREATE OR REPLACE STREAM "destination_sql_stream" (
"group_time" TIMESTAMP,
"ticker" VARCHAR(65520),
"ticker_count" INTEGER,
"group_rank" INTEGER);

CREATE OR REPLACE PUMP "ticker_pump" AS
INSERT INTO "ticker_grouped"
SELECT STREAM
FLOOR(SOURCE_SQL_STREAM_00@1.ROWTIME TO SECOND),
"TICKER_SYMBOL",
COUNT(TICKER_SYMBOL)
FROM SOURCE_SQL_STREAM_001

Group Rank 250

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

GROUP BY FLOOR(SOURCE_SQL_STREAM_0@1.ROWTIME TO SECOND), TICKER_SYMBOL;

CREATE OR REPLACE PUMP DESTINATION_SQL_STREAM_PUMP AS
INSERT INTO "destination_sql_stream"

SELECT STREAM

"group_time",

"ticker",

"ticker_count",
"groupRank"

FROM TABLE(

GROUP_RANK(

CURSOR(SELECT STREAM * FROM "ticker_grouped"),
'ticker_count',
'groupRank’,

'desc’,

'asc',
5,
0));

Results

The preceding examples output a stream similar to the following.

T

ROWTIME

2017-12-2918:07:42.0
2017-12-2918:07:42.0
2017-12-2918:07:42.0

2017-12-2918:07:42.0

Y M.—*—'ﬂ—- o, S

Operational Overview

group time

2017-12-2918:07:41.0
2017-12-2918:07:41.0
2017-12-2918:07:41.0

2017-12-2918:07:41.0

a—

{

1
ficker ticker count group rank) !
UHN 2 1 i
KM 1 3 il
WE 1 3 1
JYB 1 3

Rows are buffered from the input cursor for each group (that is, rows with the same rowtimes).

Ranking of the rows is done either after the arrival of a row with a different rowtime (or when the

idle timeout occurs). Rows continue to be read while ranking is performed on the group of rows

with the same rowtime.

Group Rank

251

Amazon Kinesis Data Analytics SQL Reference SQL Reference

The outputMax parameter specifies the maximum number of rows to be returned for each group
after ranks are assigned.

By default, group_rank supports column pass through, as the example illustrates by using c. * as
the standard shortcut directing pass through of all input columns in the order presented. You can,
instead, name a subset using the notation "c.columName", allowing you to reorder the columns.
However, using specific column names ties the UDX to a specific input set, whereas using the c. *
notation allows the UDX to handle any input set.

The rankOutColumnName parameter specifies the output column used to return ranks. This

column name must match the column name specified in the RETURNS clause of the CREATE

FUNCTION statement.

Statistical Variance and Deviation Functions

Each of these functions takes a set of numbers, ignores nulls, and can be used as either an

aggregate function or an analytical function. For more information, see Aggregate Functions and

Analytic Functions.

The relationships among these functions are described in the following table.

Function purpose Function name

Hotspots HOTSPOTS (expr)

Random Cut Forest RANDOM_CU

T_FOREST (expr)

Random Cut Forest RANDOM_CU

with Explanation T_FOREST_
WITH_EXPLANATION
(expr)

Formula Comments

Detects hotspots of
frequently occurring
data in the data
stream.

Detects anomalies in
the data stream.

Detects anomalies in
the data stream, and
returns an attribution
score based on how
anomalous the data
in each column is.

Statistical Variance and Deviation Functions

252

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Function purpose

Population variance

Population standard

deviation

Sample variance

Sample standard
deviation

HOTSPOTS

Function name

VAR_POP(expr)

STDDEV_POP

VAR_SAMP

STDDEV_SAMP (expr)

Formula

(SUM(expr*expr) -
SUM(expr)*SUM(expr
) / COUNT(expr)) /
COUNT(expr)

Square root of the
population variance
(VAR_POP).

(SUM(expr*expr) -
SUM(expr)*SUM(expr
) / COUNT(expr)) /
(COUNT(expr)-1)

Square root of the
sample variance
(VAR_SAMP).

Comments

Applied to an empty
set, it returns null.

When VAR_POP
returns null,
STDDEV_POP returns
null.

Applied to an empty
set, it returns null.

Applied to an input
set of one element,
VAR_SAMP returns
null.

Applied to only 1
row of input data,
STDDEV_SAMP
returns null.

Detects hotspots, or regions of activity that is significantly higher than the norm, in your data

stream. A hotspot is defined as a small region of space that is relatively dense with data points.

Using the HOTSPOTS function, you can use a simple SQL function to identify relatively dense

regions in your data without having to explicitly build and train complicated machine learning

models. You can then identify subsections of your data that need attention so that you can take

immediate action.

For example, hotspots in your data might indicate a collection of overheated servers in a data

center, a high concentration of vehicles indicating a traffic bottleneck, ride share rides in a certain

HOTSPOTS

253

Amazon Kinesis Data Analytics SQL Reference SQL Reference

area indicating a high-traffic event, or increased sales of products in a category that share similar
features.

(® Note

The ability of the HOTSPOTS function to detect frequent data points is application-
dependent. To cast your business problem so that it can be solved with this function
requires domain expertise. For example, you might want to determine which combination
of columns in your input stream to pass to the function, and how to normalize the data if
necessary.

The algorithm accepts the DOUBLE, INTEGER, FLOAT, TINYINT, SMALLINT, REAL, and BIGINT
data types. DECIMAL is not a supported type. Use DOUBLE instead.

(® Note

The HOTSPOT function does not return the records that make up a hotspot. You can use the
ROWTIME column to determine which records belong to a given hotspot.

Syntax

HOTSPOTS (inputStream,
windowSize,
scanRadius,
minimumNumberOfPointsInAHotspot)

Parameters
The following sections describe HOTSPOT function parameters.
inputStream

Pointer to your input stream. You set a pointer using the CURSOR function. For example, the
following statements set a pointer to InputStream:

HOTSPOTS 254

Amazon Kinesis Data Analytics SQL Reference SQL Reference

--Select all columns from input stream

CURSOR(SELECT STREAM * FROM InputStream)

--Select specific columns from input stream

CURSOR(SELECT STREAM PRICE, CHANGE FROM InputStream)

--— Normalize the column X value.

CURSOR(SELECT STREAM IntegerColumnX / 100, IntegerColumnY FROM InputStream)
-- Combine columns before passing to the function.

CURSOR(SELECT STREAM IntegerColumnX - IntegerColumnY FROM InputStream)

(® Note

Only numeric columns from the input stream will be analyzed for hotspots. The HOTSPOTS
function ignores other columns included in the cursor.

windowSize

Specifies the number of records that are considered for each timestep by the sliding window over
the stream.

You can set this value between 100 and 1000 inclusive.

By increasing the window size, you can get a better estimate of hotspot position and density
(relevance), but this also increases the running time.

scanRadius
Specifies the typical distance between a hotspot point and its nearest neighbors.
This parameter is analogous to the € value in the DBSCAN algorithm.

Set this parameter to a value that is smaller than the typical distance between points that are not
in a hotspot, but large enough so that points in a hotspot have neighbors within this distance.

You can set this value to any double value greater than zero. The lower the value for scanRadius,
the more similar any two records belonging to the same hotspot are. However, low values for
scanRadius also increase running time. Lower values of scanRadius result in hotspots that are
smaller but more numerous.

HOTSPOTS 255

https://en.wikipedia.org/wiki/DBSCAN

Amazon Kinesis Data Analytics SQL Reference SQL Reference

minimumNumberOfPointsinAHotspot

Specifies the number of records that are required for the records to form a hotspot.

(® Note

This parameter should be set in consideration with windowSize. It is best to think of
minimumNumberOfPointsInAHotspot as some fraction of windowSize. The exact
fraction is discoverable through experimentation.

You can set this value between 2 and your configured value for window size inclusive. Choose a

value that best models the problem you are solving in light of your chosen value for window size.

Output

The output of the HOTSPOTS function is a table object that has the same schema as the input,
with the following additional column:

HOTSPOT_RESULTS

A JSON string describing all the hotspots found around the record. The function returns all
potential hotspots; you can filter out hotspots below a certain density threshold in your
application. The field has the following nodes, with values for each of the input columns:

« density: The number of records in the hotspot divided by the hotspot size. You can use this
value to determine the relative relevance of the hotspot.

« maxValues: The maximum values for the records in the hotspot for each data column.

« minValues: The minimum values for the records in the hotspot for each data column.

Data type: VARCHAR.

(® Note

The trends that machine learning functions use to determine analysis scores are
infrequently reset when the Kinesis Data Analytics service performs service maintenance.
You might unexpectedly see analysis scores of O after service maintenance occurs. We
recommend you set up filters or other mechanisms to treat these values appropriately as
they occur.

HOTSPOTS

256

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Example

The following example executes the HOTSPOTS function on the demo stream, which contains
random data without meaningful hotspots. For an example that executes the HOTSPOTS function
on a custom data stream with meaningful data hotspots, see Example: Detect Hotspots.

Example Dataset

The example following is based on the sample stock dataset that is part of the Getting Started
Exercise in the Amazon Kinesis Data Analytics Developer Guide. To run the example, you need an
Kinesis Data Analytics application that has the sample stock ticker input stream. To learn how to
create a Kinesis Data Analytics application and configure the sample stock ticker input stream, see
Getting Started in the Amazon Kinesis Data Analytics Developer Guide.

The sample stock dataset has the following schema:

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

Example 1: Return Hotspots on the Sample Data Stream

In this example, a destination stream is created for the output of the HOTSPOTS function. A
pump is then created that runs the HOTSPOTS function on the specified values in the sample data
stream.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM"(
CHANGE REAL,
PRICE REAL,
HOTSPOTS_RESULT VARCHAR(10000));

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT
"CHANGE",
"PRICE",
"HOTSPOTS_RESULT"

HOTSPOTS 257

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/app-hotspots-detection.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

FROM TABLE (

HOTSPOTS(
CURSOR(SELECT STREAM "CHANGE", "PRICE" FROM "SOURCE_SQL_STREAM_001"),
100,
0.013,
20)
)5

Results

This example outputs a stream similar to the following.

- 1
4
~ {

ROWTIME CHANGE PRICE HOTSPOTS_RESULT
1
2018-03-16 22:43:45681 214 531.16 ["hotspots™[{"density™ 1.2859434343255243 "minValues":[-0.930000007 1525565,9.659999847412106],"maxValues'":[0.6000000238418584,21.350000381469723]} {"density":0.01141719498" ’
2018-03-16 22:43:45.681 -0.3 62.19 {"hotspots™[{"density™: 1.28594 34343255243 "minValues":[-0.930000007 1525565,9.659999847412106],"maxValues":[0.6000000238418584,21.350000381469723]} {"density":0.01094 147852 I
2018-03-16 22:43:45.681 0.83 38.64 {"hotspots™[{"density™ 1.2859434343255243 "minValues":[-0.930000007 1525565,9.659999847412106],"maxValues":[0.6000000238418584,21.350000381469723]} {"density":0.01046576207 !
2018-03-16 22:43:45 681 043 572 {"hotspots"[{"density™1.28569434343255243 "minValues":[-0.930000007 1525565,9.6569999847412106],"maxValues":[0.6000000238418584,21.350000381469723]} {"density":0.00999004561 i
R — T s e e P I ST ST S~ S W e R e TR

RANDOM_CUT_FOREST

Detects anomalies in your data stream. A record is an anomaly if it is distant
from other records. To detect anomalies in individual record columns, see
RANDOM_CUT_FOREST_WITH_EXPLANATION.

® Note

The RANDOM_CUT_FOREST function's ability to detect anomalies is application-
dependent. To cast your business problem so that it can be solved with this function
requires domain expertise. For example, determining which combination of columns in
your input stream to pass to the function and potentially normalize the data. For more
information, see inputStream.

A stream record can have non-numeric columns, but the function uses only numeric columns
to assign an anomaly score. A record can have one or more numeric columns. The algorithm
uses all of the numeric data in computing an anomaly score. If a record has n numeric columns,
the underlying algorithm assumes each record is a point in n-dimensional space. A point in n-
dimensional space that is distant from other points receives a higher anomaly score.

RANDOM_CUT_FOREST 258

Amazon Kinesis Data Analytics SQL Reference SQL Reference

The algorithm starts developing the machine learning model using current records in the stream
when you start the application. The algorithm does not use older records in the stream for machine
learning, nor does it use statistics from previous executions of the application.

The algorithm accepts the DOUBLE, INTEGER, FLOAT, TINYINT, SMALLINT, REAL, and BIGINT
data types.

® Note
DECIMAL is not a supported type. Use DOUBLE instead.

The following is an example of anomaly detection. The diagram shows three clusters and a few
anomalies randomly interjected. The red squares show the records that received the highest
anomaly score according to the RANDOM_CUT_FOREST function. The blue diamonds represent the
remaining records. Note how the highest scoring records tend to be outside the clusters.

e <

40
* |
35
30
25
|
20
15
» |
10
|
5
1]
1] 10 20 30 40 50 60
BTop 10 Highest Ancmaly Scores # Lower Anomaly Scores
. r

For a sample application with step-by-step instructions, see Detect Anomalies.

Syntax

RANDOM_CUT_FOREST 259

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/app-anomaly-detection.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

RANDOM_CUT_FOREST (inputStream,
numberOfTrees,
subSampleSize,
timeDecay,
shingleSize)

Parameters
The following sections describe the parameters.
inputStream

Pointer to your input stream. You set a pointer using the CURSOR function. For example, the
following statements sets a pointer to InputStream.

CURSOR(SELECT STREAM * FROM InputStream)

CURSOR(SELECT STREAM IntegerColumnX, IntegerColumnY FROM InputStream)

-- Perhaps normalize the column X value.

CURSOR(SELECT STREAM IntegerColumnX / 100, IntegerColumnY FROM InputStream)
-- Combine columns before passing to the function.

CURSOR(SELECT STREAM IntegerColumnX - IntegerColumnY FROM InputStream)

The CURSOR function is the only required parameter for the RANDOM_CUT_FOREST function. The
function assumes the following default values for the other parameters:

numberOfTrees = 100

subSampleSize = 256

timeDecay = 100,000

shingleSize = 1

When using this function, your input stream can have up to 30 numeric columns.
numberOfTrees

Using this parameter, you specify the number of random cut trees in the forest.

RANDOM_CUT_FOREST 260

Amazon Kinesis Data Analytics SQL Reference SQL Reference

® Note

By default, the algorithm constructs a number of trees, each constructed using a given
number of sample records (see subSampleSize later in this list) from the input stream.
The algorithm uses each tree to assign an anomaly score. The average of all these scores is
the final anomaly score.

The default value for numberOfTrees is 100. You can set this value between 1 and 1,000
(inclusive). By increasing the number of trees in the forest, you can get a better estimate of the
anomaly score, but this also increases the running time.

subSampleSize

Using this parameter, you can specify the size of the random sample that you want the algorithm
to use when constructing each tree. Each tree in the forest is constructed with a (different) random
sample of records. The algorithm uses each tree to assign an anomaly score. When the sample
reaches subSampleSize records, records are removed randomly, with older records having a
higher probability of removal than newer records.

The default value for subSampleSize is 256. You can set this value between 10 and 1,000
(inclusive).

Note that the subSampleSize must be less than the timeDecay parameter (which is set to
100,000 by default). Increasing the sample size provides each tree a larger view of the data, but
also increases the running time.

® Note

The algorithm returns zero for the first subSampleSize records while the machine
learning model is trained.

timeDecay

The timeDecay parameter allows you to specify how much of the recent past to consider when
computing an anomaly score. This is because data streams naturally evolve over time. For example,
an eCommerce website's revenue may continuously increase, or global temperatures may rise over

RANDOM_CUT_FOREST 261

Amazon Kinesis Data Analytics SQL Reference SQL Reference

time. In such situations, we want an anomaly to be flagged relative to recent data, as opposed to
data from the distant past.

The default value is 100,000 records (or 100,000 shingles if shingling is used, as described in
the following section). You can set this value between 1 and the maximum integer (that is,
2147483647). The algorithm exponentially decays the importance of older data.

If you choose the timeDecay default of 100,000, the anomaly detection algorithm does the
following:

» Uses only the most recent 100,000 records in the calculations (and ignores older records).

« Within the most recent 100,000 records, assigns exponentially more weight to recent records and
less to older records in anomaly detection calculations.

If you don't want to use the default value, you can calculate the number of records to use in the
algorithm. To do this, multiply the number of expected records per day by the number of days you
want the algorithm to consider. For example, if you expect 1,000 records per day, and you want to
analyze 7 days of records, set this parameter to 7,000 (1,000 * 7).

The timeDecay parameter determines the maximum quantity of recent records kept in the
working set of the anomaly detection algorithm. Smaller timeDecay values are desirable if the
data is changing rapidly. The best timeDecay value is application-dependent.

shingleSize

The explanation given here is for a one-dimensional stream (that is, a stream with one numeric
column), but it can also be used for multi-dimensional streams.

A shingle is a consecutive sequence of the most recent records. For example, a shingleSize of
10 at time t corresponds to a vector of the last 10 records received up to and including time t. The
algorithm treats this sequence as a vector over the last shingleSize number of records.

If data is arriving uniformly in time, a shingle of size 10 at time t corresponds to the data received
at time t-9, t-8,...,t. Attime t+17, the shingle slides over one unit and consists of data from time
t-8,t-7, ..., t, t+1. These shingled records gathered over time correspond to a collection of 10-
dimensional vectors over which the anomaly detection algorithm runs.

RANDOM_CUT_FOREST 262

Amazon Kinesis Data Analytics SQL Reference SQL Reference

The intuition is that a shingle captures the shape of the recent past. Your data may have a typical
shape. For example, if your data is collected hourly, a shingle of size 24 may capture the daily
rhythm of your data.

The default shingleSize is one record (because shingle size is data dependent). You can set this
value between 1 and 30 (inclusive).

Note the following about setting the shingleSize:

 If you set the shingleSize too small, the algorithm will be more susceptible to minor
fluctuations in the data, leading to high-anomaly scores for records that are not anomalous.

« If you set the shingleSize too large, it may take more time to detect anomalous records
because there are more records in the shingle that are not anomalous. It may also take more
time to determine that the anomaly has ended.

« Identifying the right shingle size is application-dependent. Experiment with different shingle
sizes to ascertain the effect.

The following example illustrates how you can catch anomalies when you monitor the records with
the highest anomaly score. In this particular example, the two highest anomaly scores also signal
the beginning and end of an artificially injected anomaly.

Consider this stylized one-dimensional stream represented as a sine wave, intended to capture
a circadian rhythm. This curve illustrates the typical number of orders that an eCommerce site
receives per hour, the number of users logged into a server, the number of ad clicks received per
hour, etc. A severe dip of 20 consecutive records is artificially injected in the middle of the plot.

RANDOM_CUT_FOREST 263

Amazon Kinesis Data Analytics SQL Reference SQL Reference

e

.
—Sine Wave with Anomaly
180
140
120
100
q 80
{
i
40
20
| "R ¥IReg8aRA1A0RaARA RARANRRANA RAGNGARANEC 0U0EE453007900085020c3300C88RRRRA

We ran the RANDOM_CUT_FOREST function with a shingle size of four records. The result is shown

below. The red line shows the anomaly score. Note that the beginning and the end of the anomaly
received high scores.

—Sine Wave with Anomaly —Anomaly Score with Shingle Size=4

| 180

i 140

~~~~~~~~~~~~~~~~~~~

645
GEE
BT
ETE
BES
G54
J03
Tz
T
730
739

When you use this function, we recommend that you investigate the highest scoring points as
potential anomalies.

RANDOM_CUT_FOREST 264



Amazon Kinesis Data Analytics SQL Reference SQL Reference

® Note

The trends that machine learning functions use to determine analysis scores are
infrequently reset when the Kinesis Data Analytics service performs service maintenance.
You might unexpectedly see analysis scores of O after service maintenance occurs. We
recommend you set up filters or other mechanisms to treat these values appropriately as
they occur.

For more information, see the Robust Random Cut Forest Based Anomaly Detection On Streams

white paper at the Journal of Machine Learning Research website.

RANDOM_CUT_FOREST_WITH_EXPLANATION

Computes an anomaly score and explains it for each record in your data stream. The anomaly score
for a record indicates how different it is from the trends that have recently been observed for your
stream. The function also returns an attribution score for each column in a record, based on how
anomalous the data in that column is. For each record, the sum of the attribution scores of all
columns is equal to the anomaly score.

You also have the option of getting information about the direction in which a given column is
anomalous (whether it's high or low relative to the recently observed data trends for that column
in the stream).

For example, in e-commerce applications, you might want to know when there's a change in the
recently observed pattern of transactions. You also might want to know how much of the change
is due to a change in the number of purchases made per hour, and how much is due to a change
in the number of carts abandoned per hour—information that is represented by the attribution
scores. You also might want to look at directionality to know whether you're being notified of the
change due to an increase or a decrease in each of those values.

(@ Note

The RANDOM_CUT_FOREST_WITH_EXPLANATION function's ability to detect anomalies
is application-dependent. Casting your business problem so that it can be solved with
this function requires domain expertise. For example, you may need to determine which

RANDOM_CUT_FOREST_WITH_EXPLANATION 265


http://proceedings.mlr.press/v48/guha16.pdf

Amazon Kinesis Data Analytics SQL Reference SQL Reference

combination of columns in your input stream to pass to the function, and you may
potentially benefit from normalizing the data. For more information, see inputStream.

A stream record can have non-numeric columns, but the function uses only numeric columns to
assign an anomaly score. A record can have one or more numeric columns. The algorithm uses all
the numeric data in computing an anomaly score.

The algorithm starts developing the machine learning model using current records in the stream
when you start the application. The algorithm does not use older records in the stream for machine
learning, nor does it use statistics from previous executions of the application.

The algorithm accepts the DOUBLE, INTEGER, FLOAT, TINYINT, SMALLINT, REAL, and BIGINT
data types.

® Note
DECIMAL is not a supported type. Use DOUBLE instead.

The following is a simple visual example of anomaly detection with different attribution scores in
two-dimensional space. The diagram shows a cluster of blue data points and four outliers shown
as red points. The red points have similar anomaly scores, but these four points are anomalous for
different reasons. For points A1 and A2, most of the anomaly is attributable to their outlying y-
values. In the case of A3 and A4, you can attribute most of the anomaly to their outlying x-values.
Directionality is LOW for the y-value of A1, HIGH for the y-value of A2, HIGH for the x-value of A3,
and LOW for the x-value of A4.

RANDOM_CUT_FOREST_WITH_EXPLANATION 266



Amazon Kinesis Data Analytics SQL Reference SQL Reference

4 - ' - - ' ' 0.36
AZ:(y: 99%, x: 1%)
3 g 1 0.32
2 -
H0.28
1t
10.24
Ad:(x: 100%, y: 0%) A3:(x: 99%, y: 1%)
= 0f @ @
{0.20
-1
{016
-2
0.12
-3
0.08
-4
-4 -3 =2 -1 0 1 2 3 4
X
Syntax

RANDOM_CUT_FOREST_WITH_EXPLANATION (inputStream,

numberOfTrees,
subSampleSize,
timeDecay,
shingleSize,
withDirectionality
)
Parameters

The following sections describe the parameters of the
RANDOM_CUT_FOREST_WITH_EXPLANATION function.

RANDOM_CUT_FOREST_WITH_EXPLANATION 267



Amazon Kinesis Data Analytics SQL Reference SQL Reference

inputStream

Pointer to your input stream. You set a pointer using the CURSOR function. For example, the
following statements set a pointer to InputStream.

CURSOR(SELECT STREAM * FROM InputStream)

CURSOR(SELECT STREAM IntegerColumnX, IntegerColumnY FROM InputStream)

-- Perhaps normalize the column X value.

CURSOR(SELECT STREAM IntegerColumnX / 100, IntegerColumnY FROM InputStream)
-- Combine columns before passing to the function.

CURSOR(SELECT STREAM IntegerColumnX - IntegerColumnY FROM InputStream)

The CURSOR function is the only required parameter for the
RANDOM_CUT_FOREST_WITH_EXPLANATION function. The function assumes the following default
values for the other parameters:

numberOfTrees = 100

subSampleSize = 256

timeDecay = 100,000

shingleSize =1

withDirectionality = FALSE

When you use this function, your input stream can have up to 30 numeric columns.
numberOfTrees

Using this parameter, you specify the number of random cut trees in the forest.

(® Note

By default, the algorithm constructs a number of trees, each constructed using a given
number of sample records (see subSampleSize later in this list) from the input stream.
The algorithm uses each tree to assign an anomaly score. The average of all these scores is
the final anomaly score.

RANDOM_CUT_FOREST_WITH_EXPLANATION 268



Amazon Kinesis Data Analytics SQL Reference SQL Reference

The default value for numberOfTrees is 100. You can set this value between 1 and 1,000
(inclusive). By increasing the number of trees in the forest, you can get a better estimate of the
anomaly and attribution scores, but this also increases the running time.

subSampleSize

Using this parameter, you can specify the size of the random sample that you want the algorithm
to use when constructing each tree. Each tree in the forest is constructed with a (different) random
sample of records. The algorithm uses each tree to assign an anomaly score. When the sample
reaches subSampleSize records, records are removed randomly, with older records having a
higher probability of removal than newer records.

The default value for subSampleSize is 256. You can set this value between 10 and 1,000
(inclusive).

The subSampleSize must be less than the timeDecay parameter (which is set to 100,000
by default). Increasing the sample size provides each tree a larger view of the data, but it also
increases the running time.

(® Note

The algorithm returns zero for the first subSampleSize records while the machine
learning model is trained.

timeDecay

You can use the timeDecay parameter to specify how much of the recent past to consider

when computing an anomaly score. Data streams naturally evolve over time. For example, an e-
commerce website's revenue might continuously increase, or global temperatures might rise over
time. In such situations, you want an anomaly to be flagged relative to recent data, as opposed to
data from the distant past.

The default value is 100,000 records (or 100,000 shingles if shingling is used, as described in
the following section). You can set this value between 1 and the maximum integer (that is,
2147483647). The algorithm exponentially decays the importance of older data.

If you choose the timeDecay default of 100,000, the anomaly detection algorithm does the
following:

RANDOM_CUT_FOREST_WITH_EXPLANATION 269



Amazon Kinesis Data Analytics SQL Reference SQL Reference

» Uses only the most recent 100,000 records in the calculations (and ignores older records).

« Within the most recent 100,000 records, assigns exponentially more weight to recent records and
less to older records in anomaly detection calculations.

The timeDecay parameter determines the maximum quantity of recent records kept in the
working set of the anomaly detection algorithm. Smaller timeDecay values are desirable if the
data is changing rapidly. The best timeDecay value is application-dependent.

shingleSize

The explanation given here applies to a one-dimensional stream (that is, a stream with one
numeric column), but shingling can also be used for multi-dimensional streams.

A shingle is a consecutive sequence of the most recent records. For example, a shingleSize of
10 at time t corresponds to a vector of the last 10 records received up to and including time t. The
algorithm treats this sequence as a vector over the last shingleSize number of records.

If data is arriving uniformly in time, a shingle of size 10 at time t corresponds to the data received
at time t-9, t-8,...,t. At time t+7, the shingle slides over one unit and consists of data from time
t-8,t-7, ..., t, t+1. These shingled records gathered over time correspond to a collection of 10-
dimensional vectors over which the anomaly detection algorithm runs.

The intuition is that a shingle captures the shape of the recent past. Your data might have a typical
shape. For example, if your data is collected hourly, a shingle of size 24 might capture the daily
rhythm of your data.

The default shingleSize is one record (because shingle size is data-dependent). You can set this
value between 1 and 30 (inclusive).

Note the following about setting the shingleSize:

« If you set the shingleSize too small, the algorithm is more susceptible to minor fluctuations in
the data, leading to high anomaly scores for records that are not anomalous.

« If you set the shingleSize too large, it might take more time to detect anomalous records
because there are more records in the shingle that are not anomalous. It also might take more
time to determine that the anomaly has ended.

« Identifying the right shingle size is application-dependent. Experiment with different shingle
sizes to determine the effects.

RANDOM_CUT_FOREST_WITH_EXPLANATION 270



Amazon Kinesis Data Analytics SQL Reference SQL Reference

withDirectionality

A Boolean parameter that defaults to false. When set to true, it tells you the direction in which
each individual dimension makes a contribution to the anomaly score. It also provides the strength
of the recommendation for that directionality.

Results

The function returns an anomaly score of O or more and an explanation in JSON format.

The anomaly score starts out at O for all the records in the stream while the algorithm goes
through the learning phase. You then start to see positive values for the anomaly score. Not all
positive anomaly scores are significant; only the highest ones are. To get a better understanding of
the results, look at the explanation.

The explanation provides the following values for each column in the record:

« Attribution score: A nonnegative number that indicates how much this column has contributed
to the anomaly score of the record. In other words, it indicates how different the value of this
column is from what's expected based on the recently observed trend. The sum of the attribution
scores of all columns for the record is equal to the anomaly score.

« Strength: A nonnegative number representing the strength of the directional recommendation.
A high value for strength indicates a high confidence in the directionality that is returned by the
function. During the learning phase, the strength is O.

« Directionality: This is either HIGH if the value of the column is above the recently observed
trend or LOW if it's below the trend. During the learning phase, this defaults to LOW.

(® Note

The trends that machine learning functions use to determine analysis scores are
infrequently reset when the Kinesis Data Analytics service performs service maintenance.
You might unexpectedly see analysis scores of 0 after service maintenance occurs. We
recommend you set up filters or other mechanisms to treat these values appropriately as
they occur.

RANDOM_CUT_FOREST_WITH_EXPLANATION 271



Amazon Kinesis Data Analytics SQL Reference SQL Reference

Examples
Stock Ticker Data Example

This example is based on the sample stock dataset that is part of the Getting Started Exercise

in the Amazon Kinesis Analytics Developer Guide. To run the example, you need a Kinesis Data
Analytics application that has the sample stock ticker input stream. To learn how to create a Kinesis
Data Analytics application and configure the sample stock ticker input stream, see Getting Started
in the Amazon Kinesis Analytics Developer Guide.

The sample stock dataset has the following schema:

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

In this example, the application calculates an anomaly score for the record and an attribution score
for the PRICE and CHANGE columns, which are the only numeric columns in the input stream.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (anomaly REAL, ANOMALY_EXPLANATION
VARCHAR(20480));

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"

SELECT "ANOMALY_SCORE", "ANOMALY_EXPLANATION" FROM TABLE
(RANDOM_CUT_FOREST_WITH_EXPLANATION(CURSOR(SELECT STREAM * FROM
"SOURCE_SQL_STREAM_001"), 100, 256, 100000, 1, true)) WHERE ANOMALY_SCORE > 0

The preceding example outputs a stream similar to the following.

RANDOM_CUT_FOREST_WITH_EXPLANATION 272


https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

T

ROWTIME ANOMALY ANOMALY_EXPLANATION

2017-10-23 20:08:

e

{"CHANGE":{"DIRECTION""LOW" "STRENGTH""0. 4824" "ATTRIBUTION_SCORE™"0.3780}, "PRICE™:{"DIRECTION™"HIGH" "STRENGTH""0.0675","ATTRIBUTION_SCORE™"0.1953"}}

2017-10-23 20:08:

e

{"CHANGE"{"DIRECTION""HIGH","STRENGTH™"0.3178" "ATTRIBUTION_SCORE™"0.3757"},"PRICE™{"DIRECTION"."HIGH" "STRENGTH"."0.1& ATTRIBUTION_SCORE™™0.36167}}

2017-10-23 20:08:

{"CHANGE™{"DIRECTION""HIGH","STRENGTH™"0.1731" "ATTRIBUTION_SCORE™"0. ,"PRICE™{"DIRECTION™"LOW" "STRENGTH™"0.23 ATTRIBUTION_SCORE™"0.30487}}

201M7-10-23 20:08:

{"CHANGE™{"DIRECTION™"HIGH" "STRENGTH™"0.0888" "ATTRIBUTION_SCORE™ PRICE™{"DIRECTION™"LOW" "STRENGTH™"0.1285","ATTRIBUTION_SCORE™"0.3216"}}

2017-10-23 20:08:

{"CHANGE™:{"DIRECTION""HIGH","STRENGTH""0.03 TTRIBUTION_SCORE™ PRICE™{"DIRECTION""HIGH" "STRENGTH"."0.020&","ATTRIBUTION_SCORE™"0.2

2017-10-23 20:08:

{"CHANGE":{"DIRECTION""HIGH","STRENGTH""0.3364" "ATTRIBUTION_SCORE™"0.3058"}, "PRICE":{"DIRECTION™"LOW" "STRENGTH""0.2080","ATTRIBUTION_SCORE™"0.3

2017-10-23 20:08: {"CHANGE":{"DIRECTION""HIGH","STRENGTH""0.2020" "ATTRIBUTION_SCORE™"0.3746"}, "PRICE™{"DIRECTION™"HIGH" "STRENGTH"."0.0107","ATTRIBUTION_SCORE™"0.27

2017-10-23 20:08:

{"CHANGE™{"DIRECTION""HIGH","STRENGTH™"0.01 77" "ATTRIBUTION_SCORE™"0. "PRICE™{"DIRECTION™"LOW" "STRENGTH""0.0204","ATTRIBUTION_SCORE™"0.5

2017-10-23 20:08:

.

{"CHANGE™{"DIRECTION™"HIGH" "STRENGTH""0.2364" "ATTRIBUTION_SCORE™"0. 2295}, "PRICE":{"DIRECTION™"LOW" "STRENGTH™"0.3877","ATTRIBUTION_SCORE™"0.7047"}

2017-10-23 20:08:

{"CHANGE":{"DIRECTION""HIGH","STRENGTH""0.0357" "ATTRIBUTION_SCORE™"0. "PRICE™{"DIRECTION™"HIGH" "STRENGTH""0.0631","ATTRIBUTION_SCORE™"0.3

2017-10-23 20:08:

{"CHANGE™{"DIRECTION""LOW" "STRENGTH™"0.0571" "ATTRIBUTION_SCORE™"0.3 ,"PRICE™{"DIRECTION™"HIGH" "STRENGTH™."0.1% ATTRIBUTION_SCORE™™0.3

PR3 R3 | RIRYRY ORI R R3O RYRY R

2017-10-23 20:08: {"CHANGE":{"DIRECTION""HIGH","STRENGTH"."0.1851" "ATTRIBUTION_SCORE™ b, "PRICE™{"DIRECTION™"HIGH" "STRENGTH"."0.0564" "ATTRIBUTION_SCORE":"0.53617}}

Network and CPU Utilization Example

This theoretical example shows two sets of data that follow an oscillating pattern. In the following
graph, they're represented by the red and blue curves at the top. The red curve shows network
utilization over time, and the blue curve shows idle CPU over time for the same computer system.
The two signals, which are out of phase with each other, are regular most of the time. But they
both also show occasional anomalies, which appear as irregularities in the graph. The following is
an explanation of what the curves in the graph represent from the top curve to the bottom curve.

» The top curve, which is red, represents network utilization over time. It follows a cyclical pattern
and is regular most of the time, except for two anomalous periods, each representing a drop in
utilization. The first anomalous period occurs between time values 500 and 1,000. The second
anomalous period occurs between time values 1,500 and 2,000.

» The second curve from the top (blue in color) is idle CPU over time. It follows a cyclical pattern
and is regular most of the time, with the exception of two anomalous periods. The first
anomalous period occurs between time values 1,000 and 1,500 and shows a drop in idle CPU
time. The second anomalous period occurs between time values 1,500 and 2,000 and shows an
increase in idle CPU time.

« The third curve from the top shows the anomaly score. At the beginning, there's a learning phase
during which the anomaly score is 0. After the learning phase, there's steady noise in the curve,
but the anomalies stand out.

The first anomaly, which is marked in red on the black anomaly score curve, is more attributable
to the network utilization data. The second anomaly, marked in blue, is more attributable to
the CPU data. The red and blue markings are provided in this graph as a visual aide. They aren't

RANDOM_CUT_FOREST_WITH_EXPLANATION 273



Amazon Kinesis Data Analytics SQL Reference SQL Reference

produced by the RANDOM_CUT_FOREST_WITH_EXPLANATION function. Here's how we obtained
these red and blue markings:

« After running the function, we selected the top 20 anomaly score values.

« From this set of top 20 anomaly score values, we selected those values for which the network
utilization had an attribution greater than or equal to 1.5 times the attribution for CPU. We
colored the points in this new set with red markers in the graph.

» We colored with blue markers the points for which the CPU attribution score was greater than
or equal to 1.5 times the attribution for network utilization.

» The second curve from the bottom is a graphical representation of directionality for the network
utilization signal. We obtained this curve by running the function, multiplying the strength by -1
for LOW directionality and by +1 for HIGH directionality, and plotting the results against time.

When there's a drop in the cyclical pattern of network utilization, there's a corresponding
negative spike in directionality. When network utilization shows an increase back to the reqular
pattern, directionality shows a positive spike corresponding to that increase. Later on, there's
another negative spike, followed closely by another positive spike. Together they represent the
second anomaly seen in the network utilization curve.

» The bottom curve is a graphical representation of directionality for the CPU signal. We obtained
it by multiplying the strength by -1 for LOW directionality and by +1 for HIGH directionality, and
then plotting the results against time.

With the first anomaly in the idle CPU curve, this directionality curve shows a negative spike
followed immediately by a smaller, positive spike. The second anomaly in the idle CPU curve
produces a positive spike followed by a negative spike in directionality.

RANDOM_CUT_FOREST_WITH_EXPLANATION 274



Amazon Kinesis Data Analytics SQL Reference SQL Reference

Network Utilization Per Minute (Stylized)

JAVAVAVAVAVAVAN

dle CPU Per Minute (Stylized)

VAVAVAVAVANAYAVA

Anomaly Score with Explanation

20

Directionality Network Utilization
151
Bl |

or [ Y

= ‘ Directionaﬁ'ty Idle CPU

500 1000 1500 2000

Blood Pressure Example

For a more detailed example, with code that detects and explains anomalies in blood pressure
readings, see Example: Detecting Data Anomalies and Getting an Explanation.

STDDEV_POP

Returns the square root of the VAR_POP population variance for <number expression>, evaluated
for each row remaining in the group.

When you use STDDEV_POP, be aware of the following:

« When the input set has no non-null data, STDDEV_POP returns NULL.

 If you don't use the OVER clause, STDDEV_POP is calculated as an aggregate function. In this
case, the aggregate query must contain a GROUP BY clause on a monotonic expression based on

ROWT IME that groups the stream into finite rows. Otherwise, the group is the infinite stream, and
the query will never complete and no rows will be emitted. For more information, see Aggregate
Functions.

« A windowed query that uses a GROUP BY clause processes rows in a tumbling window. For more
information, see Tumbling Windows (Aggregations Using GROUP BY).

STDDEV_POP 275


https://docs.aws.amazon.com/kinesisanalytics/latest/dev/app-anomaly-detection-with-explanation.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

« If you use the OVER clause, STDDEV_POP is calculated as an analytic function. For more
information, see Analytic Functions.

« A windowed query that uses an OVER clause processes rows in a sliding window. For more
information, see Sliding Windows

Syntax

STDDEV_POP ( [DISTINCT | ALL] number-expression )

Parameters

ALL

Includes duplicate values in the input set. ALL is the default.
DISTINCT

Excludes duplicate values in the input set.

Examples

Example Dataset

The examples following are based on the sample stock dataset that is part of the Getting Started

Exercise in the Amazon Kinesis Analytics Developer Guide. To run each example, you need an
Amazon Kinesis Analytics application that has the sample stock ticker input stream. To learn how
to create an Analytics application and configure the sample stock ticker input stream, see Getting
Started in the Amazon Kinesis Analytics Developer Guide.

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

STDDEV_POP 276


https://docs.aws.amazon.com/kinesisanalytics/latest/dev/sliding-window-concepts.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Example 1: Determine the standard deviation of the population in a column in a tumbling
window query

The following example demonstrates how to use the STDDEV_POP function to determine the
standard deviation of the values in a tumbling window of the PRICE column of the example
dataset. DISTINCT is not specified, so duplicate values are included in the calculation.

Using STEP (Recommended)

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
stddev_pop_price REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol, STDDEV_POP(price) AS stddev_pop_price
FROM "SOURCE_SQL_STREAM_001"

GROUP BY ticker_symbol, STEP(("SOURCE_SQL_STREAM_001".ROWTIME) BY INTERVAL '60'
SECOND);

Using FLOOR

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
stddev_pop_price REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol, STDDEV_POP(price) AS stddev_pop_price
FROM "SOURCE_SQL_STREAM_001"

GROUP BY ticker_symbol, FLOOR(("SOURCE_SQL_STREAM_0@1".ROWTIME - TIMESTAMP
'1970-01-01 00:00:00') SECOND / 10 TO SECOND);

Results

The preceding examples output a stream similar to the following:

STDDEV_POP 277



Amazon Kinesis Data Analytics SQL Reference SQL Reference

v i
ROWTIME TICKER_SYMBOL STDDEV_POP_PRICE 3
2017-03-29 20:06:10.0 SLW 0.0 i
2017-03-20 20:06:20.0 AMZN 0.0 }
2017-03-20 20:06:20.0 CVB 0.21537577 '
2017-03-20 20:06:20.0 BFH 0.08002863

AR R o e ot ok Al e B B et B el e ettt B e B i, e, s e o b gt g

Example 2: Determine the standard deviation of the population of the values in a column in a
sliding window query

The following example demonstrates how to use the STDDEV_POP function to determine the
standard deviation of the values in a sliding window of the PRICE column of the example dataset.
DISTINCT is not specified, so duplicate values are included in the calculation.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
stddev_pop_price REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol, STDDEV_POP(price) OVER TEN_SECOND_SLIDING_WINDOW AS
stddev_pop_price

FROM "SOURCE_SQL_STREAM_001"

WINDOW TEN_SECOND_SLIDING_WINDOW AS (

PARTITION BY ticker_symbol
RANGE INTERVAL '1@' SECOND PRECEDING);

The preceding example outputs a stream similar to the following:

STDDEV_POP 278



Amazon Kinesis Data Analytics SQL Reference SQL Reference

i

! !

{

ROWTIME TICKER_SYMBOL STDDEV_POP_PRICE i

2017-03-29 20:09:11.957 UHM 11.155467 ‘1

2017-03-29 20:00:11.957 RFV 0.86669914 r

2017-03-29 20:09:11.957 PN 0.6344981 i
2017-03-29 20:09:11.957 BMM 2.418462

"

I I e e i

See Also

« Sample standard deviation: STDDEV_SAMP
« Sample variance: VAR_SAMP

» Population variance: VAR_POP

STDDEV_SAMP

Returns the statistical standard deviation of all values in <number-expression>, evaluated for each
row remaining in the group and defined as the square root of the VAR_SAMP.

When you use STDDEV_SAMP, be aware of the following:

o When the input set has no non-null data, STDDEV_SAMP returns NULL.

 If you don't use the OVER clause, STDDEV_SAMP is calculated as an aggregate function. In this
case, the aggregate query must contain a GROUP BY clause on a monotonic expression based on
ROWT IME that groups the stream into finite rows. Otherwise, the group is the infinite stream, and
the query will never complete and no rows will be emitted. For more information, see Aggregate
Functions.

« A windowed query that uses a GROUP BY clause processes rows in a tumbling window. For more
information, see Tumbling Windows (Aggregations Using GROUP BY).

« If you use the OVER clause, STDDEV_SAMP is calculated as an analytic function. For more
information, see Analytic Functions.

« A windowed query that uses an OVER clause processes rows in a sliding window. For more
information, see Sliding Windows

STDDEV_SAMP 279


https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/sliding-window-concepts.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

« STD_DEV is an alias of STDDEV_SAMP.

Syntax

STDDEV_SAMP ( [DISTINCT | ALL] number-expression )

Parameters

ALL

Includes duplicate values in the input set. ALL is the default.
DISTINCT

Excludes duplicate values in the input set.

Examples

Example Dataset

The examples following are based on the sample stock dataset that is part of the Getting Started

Exercise in the Amazon Kinesis Analytics Developer Guide. To run each example, you need an
Amazon Kinesis Analytics application that has the sample stock ticker input stream. To learn how
to create an Analytics application and configure the sample stock ticker input stream, see Getting
Started in the Amazon Kinesis Analytics Developer Guide.

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

Example 1: Determine the statistical standard deviation of the values in a column in a tumbling
window query

The following example demonstrates how to use the STDDEV_SAMP function to determine the
standard deviation of the values in a tumbling window of the PRICE column of the example
dataset. DISTINCT is not specified, so duplicate values are included in the calculation.

STDDEV_SAMP 280


https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
stddev_samp_price REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol, STDDEV_SAMP(price) AS stddev_samp_price
FROM "SOURCE_SQL_STREAM_001"

GROUP BY ticker_symbol, FLOOR(("SOURCE_SQL_STREAM_0@1".ROWTIME - TIMESTAMP
'1970-01-01 00:00:00') SECOND / 10 TO SECOND);

Results

The preceding examples output a stream similar to the following:

v i
ROWTIME TICKER_SYMBOL STDDEV_SAMP_PRICE ]
2017-03-29 22:23:30.0 AMZM 7.6204384 ij
2017-03-29 22:23:30.0 WSB 5468945 L
2017-03-29 22:23230.0 JKL 0.08468548
2017-03-29 22:23:30.0 QXZ 68.81256

e B B et ol b, e Bt e e

Example 2: Determine the statistical standard deviation of the values in a columm in a sliding
window query

The following example demonstrates how to use the STDDEV_SAMP function to determine the
standard deviation of the values in a sliding window of the PRICE column of the example dataset.
DISTINCT is not specified, so duplicate values are included in the calculation.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
stddev_samp_price REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"

SELECT STREAM ticker_symbol, STDDEV_SAMP(price) OVER TEN_SECOND_SLIDING_WINDOW AS
stddev_samp_price
FROM "SOURCE_SQL_STREAM_001"

STDDEV_SAMP 281



Amazon Kinesis Data Analytics SQL Reference SQL Reference

WINDOW TEN_SECOND_SLIDING_WINDOW AS (
PARTITION BY ticker_symbol
RANGE INTERVAL '1@' SECOND PRECEDING);

The preceding example outputs a stream similar to the following:

T i
|
ROWTIME TICKER_SYMBOL STDDEV_SAMP_PRICE j
2017-03-29 20:02:58.683 SAC ]
2017-03-29 20:03:06.692 TGT 1.4704113 j
2017-03-29 20:03:06.692 QAZ 1.8484228 jg-l
2017-03-29 20:03:06.692 KM 0.41638766 ‘J
e T T,

See Also

» Population standard deviation: STDDEV_POP

o Sample variance: VAR_SAMP

» Population variance: VAR_POP

VAR_POP

Returns the population variance of a non-null set of numbers (nulls being ignored)

VAR_POP uses the following calculation:

o (SUM(expr*expr) - SUM(expr)*SUM(expr) / COUNT(expr)) / COUNT(expr)

In other words, for a given set of non-null values, using S1 as the sum of the values and S2 as the
sum of the squares of the values, VAR_POP returns the result (52-S1*S1/N)/N.

When you use VAR_POP, be aware of the following:

VAR_POP 282



Amazon Kinesis Data Analytics SQL Reference SQL Reference

« When the input set has no non-null data, or when applied to an empty set, VAR_POP returns
NULL.

« If you don't use the OVER clause, VAR_POP is calculated as an aggregate function. In this case,
the aggregate query must contain a GROUP BY clause on a monotonic expression based on

ROWTIME that groups the stream into finite rows. Otherwise, the group is the infinite stream, and
the query will never complete and no rows will be emitted. For more information, see Aggregate
Functions.

« A windowed query that uses a GROUP BY clause processes rows in a tumbling window. For more
information, see Tumbling Windows (Aggregations Using GROUP BY).

« If you use the OVER clause, VAR_POP is calculated as an analytic function. For more information,
see Analytic Functions.

« A windowed query that uses an OVER clause processes rows in a sliding window. For more
information, see Sliding Windows

Syntax

VAR_POP ( [DISTINCT | ALL] number-expression )

Parameters

ALL

Includes duplicate values in the input set. ALL is the default.
DISTINCT

Excludes duplicate values in the input set.

Examples

Example Dataset

The examples following are based on the sample stock dataset that is part of the Getting Started

Exercise in the Amazon Kinesis Analytics Developer Guide. To run each example, you need an
Amazon Kinesis Analytics application that has the sample stock ticker input stream. To learn how
to create an Analytics application and configure the sample stock ticker input stream, see Getting
Started in the Amazon Kinesis Analytics Developer Guide.

The sample stock dataset has the schema following.

VAR_POP 283


https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/sliding-window-concepts.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

Example 1: Determine the population variance in a column in a tumbling window query

The following example demonstrates how to use the VARPOP function to determine the population

variance of the values in a tumbling window of the PRICE column of the example dataset.

DISTINCT is not specified, so duplicate values are included in the calculation.

Using STEP (Recommended)

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
var_pop_price REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"

SELECT STREAM ticker_symbol, VAR_POP(price) AS var_pop_price
FROM "SOURCE_SQL_STREAM_001"

GROUP BY ticker_symbol, STEP(("SOURCE_SQL_STREAM_0@1".ROWTIME) BY INTERVAL '60'

SECOND);

Using FLOOR

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
var_pop_price REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol, VAR_POP(price) AS var_pop_price
FROM "SOURCE_SQL_STREAM_001"

GROUP BY ticker_symbol, FLOOR(("SOURCE_SQL_STREAM_00@1".ROWTIME - TIMESTAMP
'1970-01-01 00:00:00') SECOND / 10 TO SECOND);

Results

The preceding examples output a stream similar to the following:

VAR_POP

284



Amazon Kinesis Data Analytics SQL Reference SQL Reference

T i
ROWTIME TICKER_SYMBOL VAR_POP_PRICE j
2017-03-29 22:21:40.275 BMNM 0.0 1
2017-03-29 22:21:45.29 PN 0.0 ?
2017-03-29 22:21:45.29 MM 0.0 i

]

2017-03-29 22:21:45.29 PPL 0.0 i
e o e e e e A e e St e b B B o g——n

Example 2: Determine the population variance of the values in a columm in a sliding window
query

The following example demonstrates how to use the VARPOP function to determine the population
variance of the values in a sliding window of the PRICE column of the example dataset. DISTINCT
is not specified, so duplicate values are included in the calculation.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
var_pop_price REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"

SELECT STREAM ticker_symbol, VAR_POP(price) OVER TEN_SECOND_SLIDING_WINDOW AS
var_pop_price
FROM "SOURCE_SQL_STREAM_00@1"

WINDOW TEN_SECOND_SLIDING_WINDOW AS (

PARTITION BY ticker_symbol
RANGE INTERVAL '10' SECOND PRECEDING);

The preceding example outputs a stream similar to the following:

VAR_POP 285



Amazon Kinesis Data Analytics SQL Reference SQL Reference

T

ROWTIME TICKER_SYMBOL VAR_POP_PRICE 1
i

2017-03-29 20:26:00.258 ) 0.0 1

2017-03-29 20:26:00.258 ALY 0.0 {

2017-03-29 20:26:00.258 AZL 0.0 !1

2017-03-29 20:26:00.258 BMNM 0.0

"

PP W g v S P A N A R A Y S A P A A A N W AT S S W T ey

See Also

» Population standard deviation: STDDEV_POP
« Sample standard deviation: STDDEV_SAMP
« Sample variance: VAR_SAMP

VAR_SAMP

Returns the sample variance of a non-null set of numbers (nulls being ignored).
VAR_SAMP uses the following calculation:

o (SUM(expr*expr) - SUM(expr)*SUM(expr) / COUNT(expr)) / (COUNT(expr)-1)

In other words, for a given set of non-null values, using S1 as the sum of the values and S2 as the
sum of the squares of the values, VAR_SAMP returns the result (52-S1*S1/N)/(N-1).

When you use VAR_SAMP, be aware of the following:

« When the input set has no non-null data, VAR_SAMP returns NULL. Given an input set of null or
one element, VAR_SAMP returns null.

« If you don't use the OVER clause, VAR_SAMP is calculated as an aggregate function. In this case,
the aggregate query must contain a GROUP BY clause on a monotonic expression based on
ROWTIME that groups the stream into finite rows. Otherwise, the group is the infinite stream, and
the query will never complete and no rows will be emitted. For more information, see Aggregate

Functions.

VAR_SAMP 286



Amazon Kinesis Data Analytics SQL Reference SQL Reference

« A windowed query that uses a GROUP BY clause processes rows in a tumbling window. For more
information, see Tumbling Windows (Aggregations Using GROUP BY).

« If you use the OVER clause, VAR_SAMP is calculated as an analytic function. For more
information, see Analytic Functions.

« A windowed query that uses an OVER clause processes rows in a sliding window. For more
information, see Sliding Windows

Syntax

VAR_SAMP ( [DISTINCT | ALL] number-expression )

Parameters

ALL

Includes duplicate values in the input set. ALL is the default.
DISTINCT

Excludes duplicate values in the input set.

Examples

Example Dataset

The examples following are based on the sample stock dataset that is part of the Getting Started
Exercise in the Amazon Kinesis Analytics Developer Guide. To run each example, you need an
Amazon Kinesis Analytics application that has the sample stock ticker input stream. To learn how
to create an Analytics application and configure the sample stock ticker input stream, see Getting
Started in the Amazon Kinesis Analytics Developer Guide.

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

VAR_SAMP 287


https://docs.aws.amazon.com/kinesisanalytics/latest/dev/tumbling-window-concepts.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/sliding-window-concepts.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Example 1: Determine the sample variance in a column in a tumbling window query

The following example demonstrates how to use the VAR_SAMP function to determine the
sample variance of the values in a tumbling window of the PRICE column of the example dataset.
DISTINCT is not specified, so duplicate values are included in the calculation.

Using STEP (Recommended)

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
var_samp_price REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol, VAR_SAMP(price) AS var_samp_price
FROM "SOURCE_SQL_STREAM_001"

GROUP BY ticker_symbol, STEP(("SOURCE_SQL_STREAM_001".ROWTIME) BY INTERVAL '60'
SECOND);

Using FLOOR

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
var_samp_price REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol, VAR_SAMP(price) AS var_samp_price
FROM "SOURCE_SQL_STREAM_001"

GROUP BY ticker_symbol, FLOOR(("SOURCE_SQL_STREAM_00@1".ROWTIME - TIMESTAMP
'1970-01-01 00:00:00') SECOND / 10 TO SECOND);

Results

The preceding examples output a stream similar to the following:

VAR_SAMP 288



Amazon Kinesis Data Analytics SQL Reference SQL Reference

v b
i
ROWTIME TICKER_SYMBOL VAR_SAMP_PRICE 1
2017-03-29 20:16:30.0 DEG 0.3784485 :
2017-03-29 20:16:40.0 WMT 14
2017-03-29 20:16:40.0 QXZ 12260.502
2017-03-29 20:16:40.0 MNFLX

[y

R N A Yy ="

P S WV P S R SO g e A W S,

Example 2: Determine the sample variance of the values in a column in a sliding window query

The following example demonstrates how to use the VAR_SAMP function to determine the sample
variance of the values in a sliding window of the PRICE column of the example dataset. DISTINCT
is not specified, so duplicate values are included in the calculation.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4),
var_samp_price REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP"™ AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol, VAR_SAMP(price) OVER TEN_SECOND_SLIDING_WINDOW AS
var_samp_price

FROM "SOURCE_SQL_STREAM_001"

WINDOW TEN_SECOND_SLIDING_WINDOW AS (

PARTITION BY ticker_symbol
RANGE INTERVAL '1@' SECOND PRECEDING);

The preceding example outputs a stream similar to the following:

VAR_SAMP 289



Amazon Kinesis Data Analytics SQL Reference SQL Reference

Y {
f

ROWTIME TICKER_SYMBOL VAR_SAMP_PRICE j
2017-03-20 20:19:08.09 TBV 31.234375
2017-03-20 20:19:13.008 WMT 047305834
2017-03-20 20:19:13.008 SAC q
2017-03-20 20:19:13.008 CRM 021777344 ;
e e Bt Bl At e A e S ot e o S . el e i, e i e, el b B b e

See Also

» Population standard deviation: STDDEV_POP

« Sample standard deviation: STDDEV_SAMP

» Population variance:VAR_POP

Streaming SQL Functions

The topics in this section describe the streaming functions for Amazon Kinesis Data Analytics
streaming SQL.

Topics
« LAG

« Monotonic Function

« NTH_VALUE

LAG

LAG returns the evaluation of the expression (such as the name of a column) for the record that is
N records before the current record in a given window. Both offset and default are evaluated with
respect to the current record. If there is no such record, LAG instead returns a specified default
expression. LAG returns a value of the same type as the expression.

Streaming SQL Functions 290



Amazon Kinesis Data Analytics SQL Reference SQL Reference

Syntax

LAG(expr [ , N [ , defaultExpr]]) [ IGNORE NULLS | RESPECT NULLS ] OVER [ window-
definition ]

Parameters

expr

An expression that is evaluated on a record.

N

The number of records before the current record to query. The default is 1.
defaultExpr

An expression of the same type as expr that is returned if the record queried (n before the current
record) falls outside the window. If not specified, null is returned for values that fall outside the
window.

(® Note

The defaultExpr expression doesn't replace actual null values returned from the source
stream.

IGNORE NULLS

A clause that specifies that null values are not counted when determining the offset. For example,
suppose that LAG(expr, 1) is queried, and the previous record has a null value for expr. Then the
second record previous is queried, and so on.

RESPECT NULLS

A clause that specifies that null values are counted when determining the offset. This behavior is
the default.

OVER window-specification

LAG 291



Amazon Kinesis Data Analytics SQL Reference SQL Reference

A clause that divides records in a stream partitioned by the time range interval or the number of
records. A window specification defines how records in the stream are partitioned, whether by the
time range interval or the number of records.

Example
Example Dataset

The examples following are based on the sample stock dataset that is part of Getting Started

Exercise in the Amazon Kinesis Analytics Developer Guide. To run each example, you need an
Amazon Kinesis Analytics application that has the input stream for the sample stock ticker. To learn
how to create an Analytics application and configure the input stream for the sample stock ticker,
see Getting Started Exercise in the Amazon Kinesis Analytics Developer Guide.

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

Example 1: Return Values from Previous Records in an OVER Clause

In this example, the OVER clause divides records in a stream partitioned by the time range interval
of '"1' minute preceding. The LAG function then retrieves price values from the two previous records
that contain the given ticker symbol, skipping records if price is null.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
price DOUBLE,
previous_price DOUBLE,
previous_price_2 DOUBLE);
CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM ticker_symbol,
price,
LAG(price, 1, ©) IGNORE NULLS OVER (
PARTITION BY ticker_symbol
RANGE INTERVAL '1' MINUTE PRECEDING),
LAG(price, 2, ©) IGNORE NULLS OVER (

LAG 292


https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

PARTITION BY ticker_symbol
RANGE INTERVAL '1' MINUTE PRECEDING)
FROM "SOURCE_SQL_STREAM_001"

The preceding example outputs a stream similar to the following.

;
T i
j
E

Lal
ROWTIME TICKER_SYMBOL PRICE PREVIOUS_PRICE PREVIOUS_PRICE_2 }
2017-05-15 22:45:45 929 DFT 74.61000061035156 72.949996948624219 72.5 3'
2017-05-15 22-458°50 901 10P 107 80999755859375 108 73999786376953 110 8000030517578 :
2017-05-15 22:458:50.901 NGC 4.619999885559082 4.550000190734863 4.5100002258881836 f
2017-05-15 22:48°50 901 NFLX 101 54000091552734 101 76000213623047 102 19999694824219 :
T e o et s e e b, B b o oy i M b p ot R - M= . am R S P P

LAG is not part of the SQL:2008 standard. It is an Amazon Kinesis Data Analytics streaming SQL
extension.

Monotonic Function
MONOTONIC(<expression>)
Streaming GROUP BY requires that at least one of the grouped expressions be monotonic and non-

constant. The only column known in advance to be monotonic is ROWTIME. For more information,
see Monotonic Expressions and Operators.

The MONOTONIC function allows you to declare that a given expression is monotonic, enabling a
streaming GROUP BY to use that expression as a key.

The MONOTONIC function evaluates its argument and returns the result (as the same type as its
argument).

By enclosing an expression in MONOTONIC, you are asserting that values of that expression are
either non-increasing or non-decreasing and never change direction. For example, if you have a
stream LINEITEMS consisting of the line items of orders, and you wrote MONOTONIC(orderld),
you are asserting that line items are consecutive in the stream. It would be OK if there were line
items for order 1000, followed by line items for order 1001, followed by line items for order 1005.
It would be illegal if there were then a line item for order 1001 (that is, the line item sequence
became 1000, 1001, 1005, 1001). Similarly, a line item sequence of 987, 974, 823 would be legal,
but the following line item sequences would be illegal:

Monotonic Function 293



Amazon Kinesis Data Analytics SQL Reference SQL Reference

« 987,974, 823,973
« 987,974, 823, 1056

An expression declared monotonic can decrease, or even have arbitrary order.

Note that the definition of MONOTONIC is precisely what is needed for GROUP BY to make
progress.

If an expression declared monotonic is not monotonic (that is, if the assertion is not valid for the
actual data) then Amazon Kinesis Data Analytics behavior is unspecified.

In other words, if you are certain that an expression is monotonic, you can use this MONOTONIC
function to enable Amazon Kinesis Data Analytics to treat the expression as monotonic.

However, if you are mistaken and the values resulting from evaluating the expression change from
ascending to descending or from descending to ascending, unexpected results may arise. Amazon
Kinesis Data Analytics streaming SQL will take you at your word and operate on your assurance
that the expression is monotonic. But if in fact it is not monotonic, the resulting Amazon Kinesis
Data Analytics behavior cannot be determined in advance, and so results may not be as expected or
desired.

NTH_VALUE

NTH_VALUE(x, n) [ <from first or last> ] [ <null treatment> ] over w

Where:
<null treatment> := RESPECT NULLS | IGNORE NULL
<from first or last> := FROM FIRST | FROM LAST

NTH_VALUE returns the nth value of x from the first or last value in the window. Default is first. If
<null treatment> is set to IGNORE NULLS, then function will skip over nulls while counting.

If there aren't enough rows in the window to reach nth value, the function returns NULL.

String and Search Functions

The topics in this section describe the string and search functions for Amazon Kinesis Data
Analytics streaming SQL.

NTH_VALUE 294



Amazon Kinesis Data Analytics SQL Reference SQL Reference

Topics
CHAR_LENGTH / CHARACTER_LENGTH
o INITCAP

« LOWER

o OVERLAY

« POSITION

« REGEX_REPLACE

o SUBSTRING

- TRIM

« UPPER

CHAR_LENGTH / CHARACTER_LENGTH
CHAR_LENGTH | CHARACTER_LENGTH ( <character-expression> )

Returns the length in characters of the string passed as the input argument. Returns null if input
argument is null.

Examples

CHAR_LENGTH( 'one"') 3
[ ] 0
CHAR_LENGTH('")
CHARACTER_LENGTH( 'fred') 4
CHARACTER_LENGTH( cast (null as null
varchar(16) )
16

CHARACTER_LENGTH( cast ('fred' as
char(16) )

CHAR_LENGTH / CHARACTER_LENGTH 295



Amazon Kinesis Data Analytics SQL Reference SQL Reference

Limitations

Amazon Kinesis Data Analytics streaming SQL does not support the optional USING CHARACTERS |
OCTETS clause. This is a departure from the SQL:2008 standard.

INITCAP

INITCAP ( <character-expression> )

Returns a converted version of the input string such that the first character of each space-delimited
word is upper-cased, and all other characters are lower-cased.

Examples
Function Result
INITCAP('Each FIRST LEtTeR is cAPITALIZED') Each First Letter Is Capitalized
® Note

The INITCAP function is not part of the SQL:2008 standard. It is an Amazon Kinesis Data
Analytics extension.

LOWER

LOWER ( <character-expression> )

Converts a string to all lower-case characters. Returns null if input argument is null, and the empty
string if the input argument is an empty string.

Examples
Function Result
LOWER(‘abcDEFghi123’) abcdefghi123

INITCAP 296



Amazon Kinesis Data Analytics SQL Reference SQL Reference

OVERLAY

OVERLAY ( <original-string>
PLACING <replacement-string>
FROM <start-position>
[ FOR <string-length> ]

)
<original-string> := <character-expression>
<replacement-string> := <character-expression>
<start-position> := <integer-expression>
<string-length> := <integer-expression>

The OVERLAY function is used to replace a portion of the first string argument (the original string)

with the second string argument (the replacement string).

The start position indicates the character position in the original string where the replacement
string should be overlaid. The optional string length parameter determines how many characters
of the original string to replace (if not specified, it defaults to the length of the replacement

string). If there are more characters in the replacement string than are left in the original string, the

remaining characters are simply appended.

If the start position is greater than the length of the original string, the replacement string is
simply appended. If the start position is less than 1, then ( 1 - start position) characters of the
replacement string is prepended to the result, and the rest overlaid on the original (see examples
below).

If the string length is less than zero, an exception is raised.

If any of the input arguments are null, the result is null.

Examples
Function Result
OVERLAY ('12345' PLACING 'foo' FROM 1) foo45
OVERLAY ('12345' PLACING 'foo' FROM 0) foo345
OVERLAY ('12345' PLACING 'foo' FROM -2) foo12345
OVERLAY 297




Amazon Kinesis Data Analytics SQL Reference SQL Reference

Function Result
OVERLAY ('12345' PLACING 'foo' FROM 4) 123fo0
OVERLAY ('12345' PLACING 'foo' FROM 17) 12345foo

OVERLAY ('12345' PLACING 'foo' FROM 2 FOR  1f002345
0)

OVERLAY ('12345' PLACING 'foo' FROM 2 FOR  1fo045
2)

OVERLAY ('12345' PLACING 'foo' FROM 2 FOR  1foo
9)

Limitations

Amazon Kinesis Data Analytics does not support the optional USING CHARACTERS | OCTETS clause
defined in SQL:2008; USING CHARACTERS is simply assumed. Strict SQL:2008 also requires that a
start position less than 1 return a null result, rather than the behavior described above. These are
departures from the standard.

POSITION

POSITION ( <search-string> IN <source-string> )
search-string := <character-expression>
source-string := <character-expression>

The POSITION function searches for the first input argument (the search string) within the second
input argument (the source string).

If the search string is found within the source string, POSITION returns the character position of
the first instance of the search string (subsequent instances are ignored). If the search string is the
empty string, POSITION returns 1.

If the search string is not found, POSITION returns 0.

If either the search string or the source string is null, POSITION returns null.

POSITION 298



Amazon Kinesis Data Analytics SQL Reference SQL Reference

Examples
Function Result
POSITION (‘findme' IN '1234findmeXXX') 5
POSITION (‘findme' IN '1234not-hereXXX') 0
POSITION (1" IN '1234567") 1
POSITION ('7'IN '1234567') 7
POSITION ("IN '1234567') 1

Limitations

Amazon Kinesis Data Analytics streaming SQL does not support the optional USING CHARACTERS
| OCTETS clause defined in SQL:2008; USING CHARACTERS is simply assumed. This is a departure
from the standard.

REGEX_REPLACE

REGEX_REPLACE replaces a substring with an alternative substring. It returns the value of the
following Java expression.

java.lang.String.replaceAll(regex, replacement)

Syntax

REGEX_REPLACE(original VARCHAR(65535), regex VARCHAR(65535), replacement
VARCHAR(65535), startPosition int, occurence int)

RETURNS VARCHAR(65535)

Parameters
original

The string on which to execute the regex operation.

REGEX_REPLACE 299



Amazon Kinesis Data Analytics SQL Reference SQL Reference

regex

The reqular expression to match. If the encoding for regex doesn't match the encoding for original,
an error is written to the error stream.

replacement

The string to replace regex matches in the original string. If the encoding for replacement doesn't
match the encoding for original or regex, an error is written to the error stream.

startPosition

The first character in the original string to search. If startPosition is less than 1, an error is written
to the error stream. If startPosition is greater than the length of original, then original is returned.

occurence

The occurrence of the string that matches the regex expression to replace. If occurence is 0, all
substrings matching regex are replaced. If occurence is less than 0, an error is written to the error
stream.

Example
Example Dataset

The examples following are based on the sample stock dataset that is part of Getting Started

Exercise in the Amazon Kinesis Analytics Developer Guide.

To run each example, you need an Amazon Kinesis Analytics application that has the input stream
for the sample stock ticker. To learn how to create an Analytics application and configure the input
stream for the sample stock ticker, see Getting Started Exercise in the Amazon Kinesis Analytics

Developer Guide.

The sample stock dataset has the schema following.

(ticker_symbol VARCHAR(4),

sector VARCHAR(16),
change REAL,
price REAL)

REGEX_REPLACE 300


https://en.wikipedia.org/wiki/Regular_expression
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/get-started-exercise.html

Amazon Kinesis Data Analytics SQL Reference SQL Reference

Example 1: Replace All String Values in a Source String with a New Value

In this example, all character strings in the sector field are replaced if they match a regular
expression.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
ticker_symbol VARCHAR(4),
SECTOR VARCHAR(24),
CHANGE REAL,
PRICE REAL);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"

SELECT STREAM  TICKER_SYMBOL,
REGEX_REPLACE(SECTOR, 'TECHNOLOGY', 'INFORMATION TECHNOLOGY', 1, 0);
CHANGE,
PRICE

FROM "SOURCE_SQL_STREAM_001"

The preceding example outputs a stream similar to the following.

- L

n

ROWTIME TICKER_SYMBOL SECTOR CHANGE PRICE 1

2017-05-16 22:30:39 464 MMB ENERGY 072 3216 3

2017-05-16 22:30:39 464 TGT RETAIL 226 26877 31

2017-05-16 22:30:39 464 CvVB INFORMATION TECHNOLOGY 0.06 44 73 !

2017-05-16 22:30:39 464 PJN RETAIL -0.09 794 ;
e T NI e TP S e S e e e, _‘F_‘_,...n-—"'

Notes

REGEX_REPLACE is not part of the SQL:2008 standard. It is an Amazon Kinesis Data Analytics
streaming SQL extension.

REGEX_REPLACE returns null if any parameters are null.

SUBSTRING

SUBSTRING ( <source-string> FROM <start-position> [ FOR <string-length> ] )
SUBSTRING ( <source-string>, <start-position> [ , <string-length> ] )

SUBSTRING 301



Amazon Kinesis Data Analytics SQL Reference SQL Reference

SUBSTRING ( <source-string> SIMILAR <pattern> ESCAPE <escape-char> )
<source-string> := <character-expression>

<start-position> := <integer-expression>

<string-length> := <integer-expression>

<regex-expression> := <character-expression>

<pattern> := <character-expression>

<escape-char> := <character-expression>

SUBSTRING extracts a portion of the source string specified in the first argument. Extraction starts
at the value of start-position or the first expression matching the value of regex-expression.

If a value is specified for string-length, only that number of characters is returned. If there aren't
that many characters left in the string, only the characters that are left are returned. If string-
length is not specified, the string length defaults to the remaining length of the input string.

If the start position is less than 1, then the start position is interpreted as if it is 1 and the string
length is reduced by (1-start position). For examples, see following. If the start position is greater
than the number of characters in the string, or the length parameter is O, the result is an empty
string.

Parameters

source-string

The string to search for positional or regular-expression matches.
start-position

The first character of source-string to return. If start-position is greater than the length of source-
string, SUBSTRING returns null.

string-length

The number of characters from source-string to return.

regex-expression

A pattern of characters to match and return from source-string. Only the first match is returned.
pattern

A three-part pattern of characters that consists of the following:

» The string to be found before the returned substring

SUBSTRING 302



Amazon Kinesis Data Analytics SQL Reference SQL Reference

o The returned substring

o The string to be found after the returned substring

The parts are delimited by a double quotation mark (") and a specified escape character. For more
information, see Similar...Escape Samples following.

Examples

FROM/ FOR
Function Result
SUBSTRING('123456789' FROM 3 FOR 4) 3456
SUBSTRING('123456789' FROM 17 FOR 4) <empty string>
SUBSTRING('123456789' FROM -1 FOR 4) 12
SUBSTRING('123456789' FROM 6 FOR 0) <empty string>
SUBSTRING('123456789' FROM 8 FOR 4) 89

FROM Regex
Function Result

SUBSTRING('TECHNOLOGY' FROM 'L[A-Z]*) LOGY

SUBSTRING('TECHNOLOGY' FROM 'FOQ") null

SUBSTRING('TECHNOLOGY' FROM 'O[A-Z]") oL
Numeric

Function Result

SUBSTRING('123456789', 3, 4) 3456

SUBSTRING 303



Amazon Kinesis Data Analytics SQL Reference SQL Reference

Function Result
SUBSTRING('123456789', 7, 4) 789
SUBSTRING('123456789', 10, 4) null

Similar...Escape

Function Result

SUBSTRING('123456789' SIMILAR '23#"456# 456
"78' ESCAPE '#')

SUBSTRING('TECHNOLOGY' SIMILAR 'TECH NOLO
%"NOLO%"GY' ESCAPE '%')

Notes

« Amazon Kinesis Data Analytics streaming SQL doesn't support the optional 'USING CHARACTERS
| OCTETS' clause defined in SQL:2008. USING CHARACTERS is simply assumed.

« The second and third forms of the SUBSTRING function listed preceding (using a regular
expression, and using commas rather than FROM...FOR) are not part of the SQL:2008 standard.
They are part of the streaming SQL extension to Amazon Kinesis Data Analytics.

TRIM

TRIM ( [ [ <trim-specification> ] [ <trim-character> ] FROM ] <trim-source> )
<trim-specification> := LEADING | TRAILING | BOTH
<trim-character> := <character-expression>
<trim-source> := <character-expression>

TRIM removes instances of the specified trim-character from the beginning and/or end of the
trim-source string as dictated by the trim-specification (that is, LEADING, TRAILING, or BOTH). If
LEADING is specified, only repetitions of the trim character at the beginning of the source string
are removed. If TRAILING is specified, only repetitions of the trim character at the end of the source

TRIM 304



Amazon Kinesis Data Analytics SQL Reference SQL Reference

string are removed. If BOTH is specified, or the trim specifier is left out entirely, then repetitions are
removed from both the beginning and end of the source string.

If the trim-character is not explicitly specified, it defaults to the space character (' '). Only one trim

character is allowed; specifying an empty string or a string longer than one character results in an
exception.

If either input is null, null is returned.

Examples

Function Result

TRIM(' Trim front and back ') Trim front and back

TRIM (BOTH FROM ' Trim front and back Trim front and back

D)
TRIM (BOTH ' ' FROM ' Trim front and Trim front and back
back ')

1 . 0
TRIM (LEADING 'x' FROM 'xxxTrim Trim frontXXX

frontxxx')

1 5 1
TRIM (TRAILING 'x' FROM 'xxxTrimx xxxTrimxBack

Backxxx"')

1 . 1
TRIM (BOTH 'y' FROM 'xxxNo y to xxxNo y to trimxxx

trimxxx"')

UPPER

< UPPER ( <character-expression> )

UPPER 305



Amazon Kinesis Data Analytics SQL Reference SQL Reference

Converts a string to all upper-case characters. Returns null if the input argument is null, and the
empty string if the input argument is an empty string.

Examples
Function Result
UPPER(‘abcDEFghi123') ABCDEFGHI123
UPPER

306



Amazon Kinesis Data Analytics SQL Reference SQL Reference

Kinesis Data Analytics Developer Guide

For information about developing Kinesis Data Analytics applications, see the Kinesis Data
Analytics Developer Guide.

307


https://docs.aws.amazon.com/kinesisanalytics/latest/dev/what-is.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/what-is.html

Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Document History

The following table describes important changes to the documentation since the last release of the
Amazon Kinesis Data Analytics SQL Reference.

« API version: 2015-08-14

o Latest documentation update: March 19, 2018

Change

New HOTSPOTS function

Stream-to-stream JOIN
examples

New TSDIFF function

New RANDOM_CUT_FOREST _
WITH_EXPLANATION
function

New REGEX_LOG_PARSE
function

Description

Locate and return informati
on about relatively dense
regions in your data. For more
information, see HOTSPOTS.

Examples for JOIN clause
queries. For more informati
on, see JOIN clause.

Obtain the difference
between two time stamps.
For more information, see
TSDIFF.

Get an explanation of what
fields contribute to an
anomaly score in a data
stream. For more information,
see RANDOM_CUT_FOREST_
WITH_EXPLANATION.

Get regex matches from a
source string in columnar
format. For more information,
see REGEX_LOG_PARSE.

Date

March 19, 2018

February 28, 2018

December 11, 2017

November 2, 2017

August 21, 2017

308



Amazon Kinesis Data Analytics SQL Reference

SQL Reference

Change

Table of contents reorganiz
ation

New SQL functions

New guide

Description

Topic categories are now
more intuitive.

Addition of STEP, LAG,
TO_TIMESTAMP, UNIX_TIME
STAMP, REGEX_REPLACE, and
addition of regex support to
SUBSTRING

This is the first release of the
Amazon Kinesis Data Analytics
SQL Reference guide.

Date

August 18, 2017

August 3, 2017

August 11, 2016

309



	Amazon Kinesis Data Analytics SQL Reference
	Table of Contents
	Amazon Kinesis Data Analytics SQL Reference
	Streaming SQL Language Elements
	Identifiers
	Data Types
	Numeric Types and Precision

	Streaming SQL Operators
	IN Operator
	EXISTS Operator
	Scalar Operators
	Arithmetic Operators
	Examples

	String Operators
	Concatenation
	LIKE patterns
	SIMILAR TO patterns

	Logical Operators
	Three State Boolean Logic
	Other Logical Operators


	Expressions and Literals
	Monotonic Expressions and Operators
	Monotonic columns
	Monotonic expressions
	Rules for deducing monotonicity

	Condition Clause
	Temporal Predicates
	Syntax
	Example
	Sample Use Case

	Reserved Words and Keywords

	Standard SQL Operators
	CREATE statements
	CREATE STREAM
	Simple stream for unparsed log data
	Stream capturing sensor data from Intelligent Travel System pipeline
	Stream capturing order data from e-commerce pipeline

	CREATE FUNCTION
	User-Defined Function (UDF)
	Syntax
	Examples

	CREATE PUMP
	Syntax


	INSERT
	Syntax
	Pump Stream Insert

	Query
	Syntax
	select
	Streaming set operators
	VALUES operator

	SELECT statement
	Syntax
	The STREAM keyword and the principle of streaming SQL
	SELECT ALL and SELECT DISTINCT
	SELECT clause
	Expressions
	CASE expression
	VALUES

	FROM clause
	FROM clause with multiple relations
	Correlation names
	OVER clause

	JOIN clause
	Stream-to-Stream Joins
	Join Types
	Time-Based Window vs. Row-Based Window Joins
	Examples of Stream-to-Stream Joins
	Example Dataset
	Sample of Orders Data
	Sample of Shipments Data
	Creating the ORDERS_STREAM In-Application Stream
	Creating the SHIPMENTS_STREAM In-Application Stream

	Example 1: Time Window on One Side of a JOIN (INNER JOIN)
	Join Query
	Query Results
	Visual Representation of the Join
	Triggering of Results
	ROWTIMES of Results

	Example 2: Time Windows on Both Sides of a JOIN (INNER JOIN)
	Join Query
	Query Results
	Visual Representation of the Join
	Triggering of Results
	ROWTIMEs of Results

	Example 3: Time Window on One Side of a RIGHT JOIN (RIGHT OUTER JOIN)
	Join Query
	Query Results
	Visual Representation of the Join
	Triggering of Results
	ROWTIMEs of Results

	Example 4: Time Windows on Both Sides of a RIGHT JOIN (RIGHT OUTER JOIN)
	Join Query
	Query Results
	Visual Representation of the Join
	Triggering of Results
	ROWTIMEs of Results

	Example 5: Time Window on One Side of a LEFT JOIN (LEFT OUTER JOIN)
	Join Query
	Query Results
	Visual Representation of the Join
	Triggering of Results
	ROWTIMEs of Results

	Example 6: Time Windows on Both Sides of a LEFT JOIN (LEFT OUTER JOIN)
	Join Query
	Query Results
	Visual Representation of the Join
	Triggering of Results
	ROWTIMEs of Results

	Summary


	Stream-to-Table Joins

	HAVING clause
	GROUP BY clause
	Syntax Chart for the GROUP BY Clause
	Streaming GROUP BY

	WHERE clause
	

	WINDOW Clause (Sliding Windows)
	Syntax
	OVER Clause
	Parameters
	Examples
	Example Dataset
	Example 1: Time-Based Sliding Window That References a Named Window Specification
	Example 2: Row-Based Sliding Window That References a Named Window Specification
	Example 3: Time-Based Sliding Window with Inline Window Specification

	Usage Notes
	

	Related Topics
	Allowed and Disallowed Window Specifications
	Window examples
	First Example: time-based windows versus row-based windows
	Examples of windows containing rows
	Third Example: Partitioning applied to row-based and time-based windows


	ORDER BY clause
	T-sorting Stream Input

	ROWTIME


	Functions
	Aggregate Functions
	Streaming Aggregation and Rowtime Bounds
	Aggregate Function List
	Examples of Aggregate Queries on Streams (Streaming Aggregation)
	Windowed Aggregation on Streams
	Results
	Results

	Examples of Rowtime Bounds and Windowed Aggregation
	Example
	

	AVG
	Syntax
	Tumbling Windowed Query
	Sliding Windowed Query

	Parameters
	Examples
	Example Dataset
	Example 1: Return the Average of Values Using the GROUP BY Clause
	Using STEP (Recommended)
	Using FLOOR
	Results

	Example 2: Return the Average of Values Using the OVER Clause

	Usage Notes
	Related Topics

	COUNT
	Syntax
	Tumbling Windowed Query
	Sliding Windowed Query

	Parameters
	Examples
	Example Dataset
	Example 1: Return the Number of Values Using the GROUP BY Clause
	Using STEP (Recommended)
	Using FLOOR
	Results

	Example 2: Return the Number of Values Using the OVER Clause

	Usage Notes
	Related Topics

	COUNT_DISTINCT_ITEMS_TUMBLING Function
	Syntax
	Parameters
	in-application-streamPointer
	columnName
	windowSize

	Examples
	Example Dataset
	Example 1: Approximate the number of distinct values in a column


	EXP_AVG
	Example

	FIRST_VALUE
	LAST_VALUE
	MAX
	Syntax
	Tumbling Windowed Query
	Sliding Windowed Query

	Parameters
	Examples
	Example Dataset
	Example 1: Return the Maximum Value Using the GROUP BY Clause
	Using STEP (recommended)
	Using FLOOR
	Results

	Example 2: Return the Maximum Value Using the OVER Clause

	Usage Notes
	Related Topics

	MIN
	Syntax
	Tumbling Windowed Query
	Sliding Windowed Query

	Parameters
	Examples
	Example Dataset
	Example 1: Return the Minimum Value Using the GROUP BY Clause
	Using STEP (Recommended)
	Using FLOOR
	Results

	Example 2: Return the Minimum Value Using the OVER Clause

	Usage Notes
	Related Topics

	SUM
	Syntax
	Tumbling Windowed Query
	Sliding Windowed Query

	Parameters
	Examples
	Example Dataset
	Example 1: Return the Sum of Values Using the GROUP BY Clause
	Using STEP (Recommended)
	Using FLOOR
	Results


	Usage Notes
	Related Topics

	TOP_K_ITEMS_TUMBLING Function
	Syntax
	Parameters
	in-application-streamPointer
	columnName
	K
	windowSize

	Examples
	Example Dataset
	Example 1: Return the Most Frequently Occurring Values



	Analytic Functions
	Related Topics

	Boolean Functions
	ANY
	EVERY

	Conversion Functions
	CAST
	Valid Conversions
	Examples
	2.1 DATE to CHAR/VARCHAR
	REAL to INTEGER
	STRING to TIMESTAMP


	Using CAST to Convert a String to a Timestamp
	Using CHAR_TO_TIMESTAMP to convert a String to a Timestamp
	Example 1
	Example 2
	Further examples

	About Delimiters and Values
	TIMESTAMP to STRING
	STRING to TIME
	STRING to DATE
	INTERVAL to exact numerics
	Limitations


	Date and Time Functions
	Time Zones
	Datetime Conversion Functions
	Char To Timestamp(Sys)
	About Delimiters and Values
	Examples Using Templates to Create TIMESTAMPS
	Template Strings to Create Specific Output Timestamps

	CHAR_TO_DATE
	CHAR_TO_TIME
	DATE_TO_CHAR
	TIME_TO_CHAR
	TIMESTAMP_TO_CHAR
	TO_TIMESTAMP
	Syntax
	Parameters
	Example
	Example Dataset
	Example 1: Convert a Unix Timestamp to a SQL Timestamp

	Notes

	UNIX_TIMESTAMP
	Syntax
	Parameters
	Example
	Example Dataset
	Example 1: Convert a Timestamp to a UNIX Timestamp

	Notes


	Date, Timestamp, and Interval Operators
	Examples
	Further Examples of Interval Operations
	Why Use "as varchar" in Conversion Examples?
	Rules for Specifying Intervals


	Date and Time Patterns
	Text
	Number
	Year
	RFC 822 time zone
	Examples
	Date and Time Pattern Letters in Alphabetic Order

	CURRENT_DATE
	Example

	CURRENT_ROW_TIMESTAMP
	CURRENT_TIME
	Example

	CURRENT_TIMESTAMP
	Example

	EXTRACT
	Syntax
	Examples
	Use in Function


	LOCALTIME
	Example
	Limitations

	LOCALTIMESTAMP
	Example
	Limitations

	TSDIFF
	Syntax
	Parameters


	Null Functions
	COALESCE
	Examples

	NULLIF
	Examples


	Numeric Functions
	ABS
	Examples

	CEIL / CEILING
	Examples
	Notes

	EXP
	Examples

	FLOOR
	Examples
	Notes

	LN
	Examples

	LOG10
	Examples
	

	MOD
	Examples
	Limitations

	POWER
	Examples

	STEP
	STEP with an Integer Argument
	Examples

	STEP with a Date Type Argument
	Examples

	STEP in a GROUP BY clause (tumbling window)
	Results

	STEP in an OVER clause (sliding window)
	Results

	Notes


	Log Parsing Functions
	FAST_REGEX_LOG_PARSER
	FAST_REGEX_LOG_PARSER (FRLP)
	Character Class Symbols for Fast Regex
	Further FRLP Examples
	Example A
	Example B
	Example C


	FIXED_COLUMN_LOG_PARSE
	REGEX_LOG_PARSE
	Examples
	Example Dataset
	Example 1: Return results from two capture groups
	Example 2: Return a stream field and results from two capture groups

	
	Quick Regex Reference

	SYS_LOG_PARSE
	VARIABLE_COLUMN_LOG_PARSE
	W3C_LOG_PARSE
	W3C Predefined Formats
	W3C Format Specifiers
	W3C Format Specifiers by Function or Category
	W3C Examples
	Example 1
	Input
	DDL
	Output
	

	Specifiers Used by the Common Log Format
	Example 2
	DDL
	Output

	W3C Customized Formats


	Sorting Functions
	Group Rank
	SQL Declarations
	DDL for Group_Rank

	Example
	Example Dataset
	Example 1: Sort the Results of a GROUP BY Clause
	Results

	Operational Overview


	Statistical Variance and Deviation Functions
	HOTSPOTS
	Syntax
	Parameters
	inputStream
	windowSize
	scanRadius
	minimumNumberOfPointsInAHotspot

	Output
	HOTSPOT_RESULTS

	Example
	Example Dataset
	Example 1: Return Hotspots on the Sample Data Stream
	Results



	RANDOM_CUT_FOREST
	Syntax
	Parameters
	inputStream
	numberOfTrees
	subSampleSize
	timeDecay
	shingleSize


	RANDOM_CUT_FOREST_WITH_EXPLANATION
	Syntax
	Parameters
	inputStream
	numberOfTrees
	subSampleSize
	timeDecay
	shingleSize
	withDirectionality

	Results
	Examples
	Stock Ticker Data Example
	Network and CPU Utilization Example
	Blood Pressure Example


	STDDEV_POP
	Syntax
	Parameters
	ALL
	DISTINCT

	Examples
	Example Dataset
	Example 1: Determine the standard deviation of the population in a column in a tumbling window query
	Using STEP (Recommended)
	Using FLOOR
	Results

	Example 2: Determine the standard deviation of the population of the values in a column in a sliding window query

	See Also

	STDDEV_SAMP
	Syntax
	Parameters
	ALL
	DISTINCT

	Examples
	Example Dataset
	Example 1: Determine the statistical standard deviation of the values in a column in a tumbling window query
	Results
	Example 2: Determine the statistical standard deviation of the values in a columm in a sliding window query

	See Also

	VAR_POP
	Syntax
	Parameters
	ALL
	DISTINCT

	Examples
	Example Dataset
	Example 1: Determine the population variance in a column in a tumbling window query
	Using STEP (Recommended)
	Using FLOOR
	Results

	Example 2: Determine the population variance of the values in a columm in a sliding window query

	See Also

	VAR_SAMP
	Syntax
	Parameters
	ALL
	DISTINCT

	Examples
	Example Dataset
	Example 1: Determine the sample variance in a column in a tumbling window query
	Using STEP (Recommended)
	Using FLOOR
	Results

	Example 2: Determine the sample variance of the values in a column in a sliding window query

	See Also


	Streaming SQL Functions
	LAG
	Syntax
	Parameters
	Example
	Example Dataset
	Example 1: Return Values from Previous Records in an OVER Clause

	Notes

	Monotonic Function
	NTH_VALUE

	String and Search Functions
	CHAR_LENGTH / CHARACTER_LENGTH
	Examples
	Limitations

	INITCAP
	Examples
	

	LOWER
	Examples

	OVERLAY
	Examples
	Limitations

	POSITION
	Examples
	Limitations

	REGEX_REPLACE
	Syntax
	Parameters
	Example
	Example Dataset
	Example 1: Replace All String Values in a Source String with a New Value

	Notes

	SUBSTRING
	Parameters
	Examples
	FROM/ FOR
	FROM Regex
	Numeric
	Similar...Escape

	Notes

	TRIM
	Examples

	UPPER
	Examples



	Kinesis Data Analytics Developer Guide
	Document History

