aws

ユーザーガイド

AWS Site-to-Site VPN

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Site-to-Site VPN: ユーザーガイド

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon の商標およびトレードドレスはAmazon 以外の製品およびサービスに使用することはできま せん。また、お客様に誤解を与える可能性がある形式で、または Amazon の信用を損なう形式で使 用することもできません。Amazon が所有していないその他のすべての商標は Amazon との提携、 関連、支援関係の有無にかかわらず、それら該当する所有者の資産です。

Table of Contents

とは AWS Site-to-Site VPN	. 1
概念	. 1
Site-to-Site VPN 機能	. 2
Site-to-Site VPN の制限	. 2
Site-to-Site VPN リソース	. 3
料金	. 3
Site-to-Site VPN の仕組み	5
仮想プライベートゲートウェイ	5
トランジットゲートウェイ	. 6
カスタマーゲートウェイデバイス	. 7
カスタマーゲートウェイ	7
VPN トンネルオプション	. 8
VPN トンネル認証オプション	15
事前共有キー	15
からのプライベート証明書 AWS Private Certificate Authority	15
VPN トンネル開始オプション	16
VPN トンネル IKE 開始オプション	16
ルールと制限	17
VPN トンネル開始オプションの使用	17
エンドポイントの置換	18
お客様によるエンドポイントの置き換え	18
AWS マネージドのエンドポイントの置き換え	19
トンネルエンドポイントのライフサイクル	19
カスタマーゲートウェイのオプション	25
高速 VPN 接続	27
高速化を有効にする	28
ルールと制限	28
Site-to-Site VPN のルーティングオプション	29
静的および動的ルーティング	30
ルートテーブルとルーティングの優先度	30
VPN トンネルエンドポイント更新中のルーティング	33
IPv4 および IPv6 トラフィック	33
Site-to-Site VPN の使用を開始する	35
前提条件	35

カスタマーゲートウェイを作成する	. 37
ターゲットゲートウェイを作成する	. 38
仮想プライベートゲートウェイの作成	. 38
Transit Gateway を作成する	. 39
ルーティングを設定する	. 39
(仮想プライベートゲートウェイ) ルートテーブルでルート伝播を有効にする	. 39
(Transit Gateway) ルートテーブルにルートを追加します	. 41
セキュリティグループを更新する	. 41
VPN 接続を作成する	. 42
設定ファイルをダウンロードする	. 44
カスタマーゲートウェイデバイスを設定する	. 45
Site-to-Site VPN アーキテクチャシナリオ	. 46
単一および複数の VPN 接続	. 46
単一の Site-to-Site VPN 接続	. 47
トランジットゲートウェイを使用した単一の Site-to-Site VPN 接続	. 47
複数の Site-to-Site VPN 接続	. 48
トランジットゲートウェイを使用した複数の Site-to-Site VPN 接続	49
との Site-to-Site VPN 接続 AWS Direct Connect	. 50
とのプライベート IP Site-to-Site VPN 接続 AWS Direct Connect	. 51
VPN CloudHub を使用した VPN 接続間の安全な通信	. 52
概要	. 52
料金	. 54
冗長 VPN 接続	. 54
Site-to-Site VPN カスタマーゲートウェイデバイス	. 57
要件	. 58
ベストプラクティス	. 61
ファイアウォールルール	. 64
静的および動的ルーティング設定ファイル	. 66
ダウンロード可能な静的ルーティング設定ファイル	68
ダウンロード可能な動的設定ファイル	. 82
カスタマーゲートウェイデバイスとしての Windows サーバーを設定する	. 94
Windows インスタンスの設定	. 94
ステップ 1: VPN 接続を作成し、VPC を設定する	95
ステップ 2: VPN 接続の設定ファイルをダウンロードする	. 96
ステップ 3: Windows Server を設定する	. 99
ステップ 4: VPN トンネルを設定する	100

ステップ 5: 停止しているゲートウェイの検出を有効にする	108
ステップ 6: VPN 接続をテストする	108
カスタマーゲートウェイデバイスのトラブルシューティング	109
BGP を使用するデバイス	110
BGP なしのデバイス	113
Cisco ASA	116
Cisco IOS	121
BGP なしの Cisco IOS	127
Juniper JunOS	133
Juniper ScreenOS	137
Yamaha	141
Site-to-Site VPN を使用する	146
クラウド WAN の VPN アタッチメントを作成する	146
Transit Gateway VPN アタッチメントを作成する	148
VPN 接続をテストする	150
VPN 接続とゲートウェイを削除する	152
VPN 接続を削除する	152
カスタマーゲートウェイを削除する	153
仮想プライベートゲートウェイをデタッチおよび削除する	153
VPN 接続のターゲットゲートウェイを変更する	154
ステップ 1: 新しいターゲットゲートウェイを作成する	155
ステップ 2: 静的ルートを削除する (条件付き)	155
ステップ 3: 新しいゲートウェイに移行する	156
ステップ 4: VPC ルートテーブルを更新する	156
ステップ 5: ターゲットゲートウェイのルーティングを更新する (条件付き)	158
ステップ 6: カスタマーゲートウェイ ASN を更新する (条件付き)	158
VPN 接続オプションを変更する	158
VPN トンネルオプションを変更する	159
VPN 接続の静的ルートを編集する	160
VPN 接続のカスタマーゲートウェイを変更する	161
漏洩した認証情報を置き換える	162
VPN トンネルエンドポイント証明書をローテーションする	163
Direct Connect を使用したプライベート IP VPN	163
プライベート IP VPN の利点	163
プライベート IP VPN の仕組み	164
Direct Connect でプライベート IP VPN を作成する	165

セキュリティ	170
Secrets Manager を使用したセキュリティ機能の強化	170
Secrets Manager の事前共有キーを変更する	171
事前共有キーストレージモードを変更する	172
データ保護	173
インターネットトラフィックのプライバシー	174
Identity and Access Management	175
対象者	175
アイデンティティを使用した認証	176
ポリシーを使用したアクセスの管理	180
IAM での AWS Site-to-Site VPN の仕組み	182
アイデンティティベースのポリシーの例	189
トラブルシューティング	192
AWS マネージドポリシー	194
サービスにリンクされたロールの使用	196
耐障害性	198
VPN 接続ごとに 2 つのトンネル	198
冗長性	199
インフラストラクチャセキュリティ	199
Site-to-Site VPN 接続のモニタリング	200
モニタリングツール	201
自動モニタリングツール	201
手動モニタリングツール	201
Site-to-Site VPN ログ	202
Site-to-Site VPN ログの利点	203
Amazon CloudWatch Logs リソースポリシーのサイズ制限	203
Site-to-Site VPN ログの内容	204
CloudWatch Logs に発行するための IAM 要件	207
Site-to-Site VPN ログ設定を表示する	208
Site-to-Site VPN ログを有効にする	209
Site-to-Site VPN ログを無効にする	210
CloudWatch を使用して Site-to-Site VPN トンネルをモニタリングする	211
VPN のメトリクスとディメンション	211
VPN CloudWatch メトリクスの表示	213
VPN トンネルをモニタリングする CloudWatch アラームの作成	214
AWS Health および Site-to-Site VPN イベント	216

とは AWS Site-to-Site VPN

デフォルトでは、Amazon VPC 内で起動するインスタンスは、ローカル (AWS クラウド) ネット ワークやリモートデバイスと通信できません。たとえば、サイトやオンプレミスデバイスなどです。 AWS Site-to-Site VPN (Site-to-Site VPN) 接続を作成し、接続を介してトラフィックを渡すように ルーティングを設定することで、VPC からリモートデバイスへのアクセスを有効にできます。

VPN 接続という用語は一般的な用語ですが、このドキュメントでの VPN 接続は VPC とユーザーの オンプレミスネットワークの間の接続を指します。Site-to-Site VPN ではインターネットプロトコル セキュリティ (IPsec) VPN 接続がサポートされています。

内容

- 概念
- Site-to-Site VPN 機能
- ・ Site-to-Site VPN の制限
- Site-to-Site VPN リソース
- 料金

概念

Site-to-Site VPN の主な概念は次のとおりです。

- VPN 接続: オンプレミス機器と VPC 間の安全な接続。
- VPN トンネル: お客様のネットワークと AWSの間でデータを送受信できる暗号化されたリンク。

各 VPN 接続には、高可用性のために同時に使用できる 2 つの VPN トンネルが含まれています。

- カスタマーゲートウェイ: カスタマーゲートウェイデバイス AWS に関する情報を に提供する AWS リソース。
- カスタマーゲートウェイデバイス: Site-to-Site VPN 接続のユーザー側にある物理的なデバイスまたはソフトウェアアプリケーション。
- ターゲットゲートウェイ: Site-to-Site VPN 接続の Amazon 側にある VPN エンドポイントの総称。
- 仮想プライベートゲートウェイ: 仮想プライベートゲートウェイは、単一の VPC にアタッチできる Amazon 側の Site-to-Site VPN 接続の VPN エンドポイントです。
- 転送ゲートウェイ: 複数の VPC とオンプレミスネットワークを相互接続するために使用で
 き、Site-to-Site VPN 接続の Amazon 側の VPN エンドポイントとして使用できる転送ハブ。

Site-to-Site VPN 機能

AWS Site-to-Site VPN 接続では、次の機能がサポートされています。

- Internet Key Exchange バージョン 2 (IKEv 2)
- ・ NAT トラバーサル
- 仮想プライベートゲートウェイ (VGW) 構成の場合、1~2147483647 の範囲の 4 バイトの ASN。
 詳細については「<u>AWS Site-to-Site VPN 接続のカスタマーゲートウェイオプション</u>」を参照してください。
- 1~65535の範囲のカスタマーゲートウェイ (CGW) 用の2バイトの ASN。詳細については、 「AWS Site-to-Site VPN 接続のカスタマーゲートウェイオプション」を参照してください。
- ・ CloudWatch メトリクス
- カスタマーゲートウェイのための再利用可能な IP アドレス
- 追加の暗号化オプション (AES 256 ビット暗号化、SHA-2 ハッシュ、および追加の Diffie-Hellman グループ)
- 設定可能なトンネルオプション
- ・ Amazon 側の BGP セッションのためのカスタムプライベート ASN
- からの下位 CA からのプライベート証明書 AWS Private Certificate Authority
- トランジットゲートウェイでの VPN 接続の IPv6 トラフィックのサポート

Site-to-Site VPN の制限

Site-to-Site VPN 接続には次の制限があります。

- IPv6 トラフィックは、仮想プライベートゲートウェイの VPN 接続ではサポートされません。
- ・ AWS VPN 接続はパス MTU 検出をサポートしていません。

さらに、Site-to-Site VPN を使用する場合は次の点を考慮してください。

VPC を共通のオンプレミスネットワークに接続する場合は、ネットワークに重複しない CIDR ブロックを使用することをお勧めします。

Site-to-Site VPN リソース

次のインターフェイスのいずれかを使用して、Site-to-Site VPN リソースの作成、アクセス、管理を 行うことができます。

- AWS Management Console Site-to-Site VPN リソースへのアクセスに使用できるウェブイン ターフェイスを提供します。
- AWS Command Line Interface (AWS CLI) Amazon VPC を含む幅広い AWS サービスのコマ ンドを提供し、Windows、macOS、Linux でサポートされています。 AWS Site-to-Site VPN コマ ンドラインは、より大きな EC2 コマンドラインリファレンスに含まれています。
 - コマンドラインインターフェイスの一般的な情報については、「」を参照してください<u>AWS</u> Command Line Interface。
 - Site-to-Site VPN コマンドを含む使用可能な EC2 コマンドのリストについては、EC2 コマンド ラインリファレンス」を参照してください。

Note

コマンドラインリファレンスは、Site-to-Site VPN コマンドと EC2 コマンドのより大き なセットを区別しません。

- AWS SDKs 言語固有の APIsを提供し、署名の計算、リクエストの再試行の処理、エラー処理 など、接続の詳細の多くを処理します。詳細については、AWS SDK をご参照ください。
- クエリ API— HTTPS リクエストを使用して呼び出す低レベル API アクションを提供します。クエ リ API の使用は、Amazon VPC の最も直接的なアクセス方法ですが、リクエストに署名するハッ シュの生成やエラー処理など、低レベルの詳細な作業をアプリケーションで処理する必要がありま す。詳細については、Amazon EC2 API リファレンスを参照してください。

料金

VPN 接続がプロビジョニングされ、利用可能な VPN 接続時間ごとに課金されます。詳細について は、「<u>AWS Site-to-Site VPN および高速化された Site-to-Site VPN 接続の料金</u>」を参照してくださ い。

Amazon EC2 からインターネットへのデータ転送に対して課金されます。詳細については、 「Amazon EC2 オンデマンド料金」ページの「データ転送」を参照してください。 高速 VPN 接続を作成すると、2 つのアクセラレーターが作成および管理されます。アクセラレー ターごとに、時間単位の料金とデータ転送料金が課金されます。詳細については、<u>AWS Global</u> Accelerator 料金表を参照してください。

の AWS Site-to-Site VPN 仕組み

Site-to-Site VPN 接続は次のコンポーネントで構成されます。

- 仮想プライベートゲートウェイまたはトランジットゲートウェイ
- カスタマーゲートウェイデバイス
- カスタマーゲートウェイ

VPN 接続は、 AWS 側の仮想プライベートゲートウェイまたはトランジットゲートウェイと、オン プレミス側のカスタマーゲートウェイの間に 2 つの VPN トンネルを提供します。

Site-to-Site VPN クォータの詳細については、「<u>AWS Site-to-Site VPN クォータ</u>」を参照してください。

仮想プライベートゲートウェイ

仮想プライベートゲートウェイは、Site-to-Site VPN 接続の Amazon 側にある VPN コンセントレー タです。仮想プライベートゲートウェイを作成し、サイト間 VPN 接続にアクセスする必要があるリ ソースを含む仮想プライベートクラウド (VPC) にアタッチします。

次の図は、仮想プライベートゲートウェイを使用した VPC とオンプレミスネットワーク間の VPN 接続を示しています。

仮想プライベートゲートウェイを作成するとき、Amazon 側のゲートウェイのプライベート自律シス テム番号 (ASN) 指定できます。ASN を指定しない場合、仮想プライベートゲートウェイはデフォル トの ASN (64512) で作成されます。仮想プライベートゲートウェイの作成後に ASN を変更すること はできません。仮想プライベートゲートウェイの ASN を確認するには、Amazon VPC コンソールの [仮想プライベートゲートウェイ] ページで詳細を表示するか、<u>describe-vpn-gateways</u> AWS CLI コマ ンドを使用します。

トランジットゲートウェイ

トランジットゲートウェイは、VPC とオンプレミスネットワークを相互接続するために使用できる 中継ハブです。詳細については、「<u>Amazon VPC Transit Gateway</u>」を参照してください。Site-to-Site VPN 接続は、トランジットゲートウェイのアタッチメントとして作成できます。

次の図は、トランジットゲートウェイを使用した複数の VPC とオンプレミスネットワーク間の VPN 接続を示しています。トランジットゲートウェイには、3 つの VPC アタッチメントと 1 つの VPN アタッチメントがあります。

トランジットゲートウェイの Site-to-Site VPN 接続は、VPN トンネル内の IPv4 トラフィックまた は IPv6 トラフィックのいずれかをサポートできます。詳細については、「<u>の IPv4 および IPv6 トラ</u> フィック AWS Site-to-Site VPN」を参照してください。

Site-to-Site VPN のターゲットゲートウェイ接続を、仮想プライベートゲートウェイからトランジッ トゲートウェイに修正できます。詳細については、「<u>the section called "VPN 接続のターゲットゲー</u> <u>トウェイを変更する"</u>」を参照してください。

カスタマーゲートウェイデバイス

カスタマーゲートウェイデバイスは、Site-to-Site VPN 接続のユーザー側にある物理的なデバイスま たはソフトウェアアプリケーションです。Site-to-Site VPN 接続で動作するようデバイスを構成しま す。詳細については、「<u>AWS Site-to-Site VPN カスタマーゲートウェイデバイス</u>」を参照してくだ さい。

デフォルトでは、カスタマーゲートウェイデバイスは、トラフィックを生成して Internet Key Exchange (IKE) ネゴシエーションプロセスを開始することで、Site-to-Site VPN 接続のトンネルを開 始する必要があります。Site-to-Site VPN 接続の設定で、代わりに AWS が IKE ネゴシエーションプ ロセスを開始するように指定することもできます。詳細については、「<u>AWS Site-to-Site VPN トン</u> ネル開始オプション」を参照してください。

カスタマーゲートウェイ

カスタマーゲートウェイは、 AWS に作成するリソースで、オンプレミスネットワーク内のカスタ マーゲートウェイデバイスを表します。カスタマーゲートウェイを作成するときは、デバイスに関 する情報を提供します AWS。詳細については、「<u>the section called "カスタマーゲートウェイのオプ</u> ション"」を参照してください。

また、Site-to-Site VPN 接続で Amazon VPC を使用するには、ユーザー自身またはネットワーク管 理者がリモートネットワークのカスタマーゲートウェイデバイスまたはアプリケーションを設定す る必要があります。Site-to-Site VPN 接続を作成するときに、設定に必要な情報が提供され、通常は ネットワーク管理者がこの設定を行います。カスタマーゲートウェイの要件および設定については、 「AWS Site-to-Site VPN カスタマーゲートウェイデバイス」を参照してください。

AWS Site-to-Site VPN 接続のトンネルオプション

リモートネットワークを VPC に接続するには、Site-to-Site VPN 接続を使用します。各 Site-to-Site VPN 接続には 2 つのトンネルがあり、それぞれのトンネルが固有のパブリック IP アドレスを使用し ます。冗長性を確保するために両方のトンネルを設定することが重要です。1 つのトンネルが使用で きなくなったとき (たとえばメンテナンスのために停止)、ネットワークトラフィックはその特定の Site-to-Site VPN 接続用に使用可能なトンネルへ自動的にルーティングされます。

以下の図は、VPN 接続の 2 つのトンネルを示しています。可用性を高めるため、各トンネルは異な るアベイラビリティーゾーンで終了します。オンプレミスネットワークから へのトラフィックは、 両方のトンネル AWS を使用します。からオンプレミスネットワーク AWS へのトラフィックは、い ずれかのトンネルを優先しますが、 AWS 側で障害が発生した場合は、自動的にもう一方のトンネル にフェイルオーバーできます。

Site-to-Site VPN 接続を作成するとき、カスタマーゲートウェイデバイスに固有の、デバイスを設定 するための情報、および各トンネルの設定のための情報を含んだ設定ファイルをダウンロードしま す。Site-to-Site VPN 接続を作成するとき、オプションで、いくつかのトンネルオプションを独自に 指定することができます。そうしない場合、 AWS によりデフォルト値が指定されます。

Note

Site-to-Site VPN トンネルエンドポイントは、カスタマーゲートウェイからの提案の順序に 関係なく、以下のリストの最小設定値から順に、カスタマーゲートウェイからの提案を評価 します。modify-vpn-connection-options コマンドを使用して、 AWS エンドポイン トが受け入れるオプションのリストを制限できます。詳細については、Amazon EC2 コマン ドラインリファレンスの「modify-vpn-connection-options」をご参照ください。

設定できるトンネルオプションは以下のとおりです。

Note

一部のトンネルオプションには複数のデフォルト値があります。例えば、IKE バージョンに は ikev1 と ikev2 の 2 つのデフォルトのトンネルオプション値があります。特定の値を選 択しない場合、すべてのデフォルト値はそのトンネルオプションに関連付けられます。トン ネルオプションに関連付けたくないデフォルト値があれば、クリックして削除します。例え ば、IKE バージョンに ikev1 のみを使用する場合は、ikev2 をクリックして削除します。

デッドピア検出 (DPD) タイムアウト

DPD タイムアウトが発生するまでの秒数。DPD タイムアウトが 30 秒の場合、VPN エンドポイ ントは、最初のキープアライブの失敗から 30 秒後にピアがデッドと見なします。30 以上を指定 できます。

デフォルト: 40

DPD タイムアウトアクション

デッドピア検出 (DPD) タイムアウトが発生した後に実行するアクション。以下を指定することが できます。

- Clear: DPD タイムアウトが発生したときに IKE セッションを終了する (トンネルを停止して ルートをクリアする)
- None: DPD タイムアウトが発生しても何もアクションを実行しない
- Restart: DPD タイムアウトが発生したときに IKE セッションを再起動する

詳細については、「AWS Site-to-Site VPN トンネル開始オプション」を参照してください。

デフォルト: Clear

VPN ログ記録オプション

Site-to-Site VPN ログを使用すると、IP セキュリティ (IPsec) トンネル確立、インターネットキー 交換 (IKE) ネゴシエーション、およびデッドピア検出 (DPD) プロトコルメッセージの詳細にアク セスできます。

詳細については、「AWS Site-to-Site VPN ログ」を参照してください。

使用可能なログ形式: json、text

IKE バージョン

VPN トンネルで許可される IKE バージョン。1 つ以上のデフォルト値を指定できます。

デフォルト: ikev1、ikev2

トンネル内部 IPv4 CIDR

VPN トンネルの内部 (内部) IPv4 アドレスの範囲です。169.254.0.0/16 範囲からのサイズ /30 の CIDR ブロックを指定できます。CIDR ブロックは、同じ仮想プライベートゲートウェイを使 用するすべての Site-to-Site VPN 接続にわたって一意である必要があります。

Note

CIDR ブロックは、トランジットゲートウェイ上のすべての接続にわたって一意である必要はありません。ただし、一意でない場合は、カスタマーゲートウェイで競合が発生する可能性があります。トランジットゲートウェイ上の Site-to-Site VPN 接続で同じ CIDR ブロックを再使用する場合は、慎重に進めてください。

以下の CIDR ブロックは予約済みで使用できません。

- 169.254.0.0/30
- 169.254.1.0/30
- 169.254.2.0/30
- 169.254.3.0/30
- 169.254.4.0/30
- 169.254.5.0/30
- 169.254.169.252/30

デフォルト: 169.254.0.0/16 範囲からのサイズ /30 の IPv4 CIDR ブロック。 事前共有キーストレージ

事前共有キーのストレージのタイプ:

- 標準 事前共有キーは Site-to-Site VPN サービスに直接保存されます。
- Secrets Manager 事前共有キーは を使用して保存されます AWS Secrets Manager。Secrets Manager の詳細については、「」を参照してください<u>Secrets Manager を</u> 使用したセキュリティ機能の強化。

トンネル内部 IPv6 CIDR

(IPv6 VPN 接続のみ) VPN トンネルの内部 (内部) IPv6 アドレスの範囲。ローカル fd00::/8 範 囲からのサイズ /126 の CIDR ブロックを指定できます。CIDR ブロックは、同じトランジット ゲートウェイを使用するすべての Site-to-Site VPN 接続にわたって一意であることが必要です。

デフォルト: ローカル fd00**::**/8 範囲からのサイズ /126 の IPv6 CIDR ブロック。

ローカル IPv4 ネットワーク CIDR

(IPv4 VPN 接続のみ) VPN トンネルの顧客 (オンプレミス) 側の IKE フェーズ 2 ネゴシエーション 中に使用される CIDR 範囲。この範囲はルートを提案するために使用されますが、 はルートベー スの VPNsのみ AWS を使用するため、トラフィック制限は適用されません。ポリシーベースの VPNs は、動的ルーティングプロトコルとマルチリージョンアーキテクチャをサポートする AWS 機能を制限するため、サポートされていません。これには、VPN トンネル経由で通信する必要が あるオンプレミスネットワークの IP 範囲を含める必要があります。実際のトラフィックフローを 制御するには、適切なルートテーブル設定、NACLs、およびセキュリティグループを使用する必 要があります。

デフォルト: 0.0.0.0/0

リモート IPv4 ネットワーク CIDR

(IPv4 VPN 接続のみ) VPN トンネルの AWS 側の IKE フェーズ 2 ネゴシエーション中に使用 される CIDR 範囲。この範囲はルートを提案するために使用されますが、AWS はルートベー スの VPNsのみを使用するため、トラフィック制限は適用されません。AWS は、複雑なルー ティングシナリオに必要な柔軟性がなく、トランジットゲートウェイや VPNs Equal Cost Multi-Path (ECMP) などの機能と互換性がないため、ポリシーベースの VPN をサポートしていませ ん。VPCs、これは通常 VPC の CIDR 範囲です。トランジットゲートウェイの場合、これには、 アタッチされた VPCsまたは他のネットワークからの複数の CIDR 範囲が含まれる場合がありま す。 デフォルト: 0.0.0.0/0

ローカル IPv6 ネットワーク CIDR

(IPv6 VPN 接続のみ) VPN トンネルを介した通信が許可される、カスタマーゲートウェイ (オンプレミス) 側の IPv6 CIDR 範囲。

デフォルト:::/0

リモート IPv6 ネットワーク CIDR

(IPv6 VPN 接続のみ) VPN トンネルを介した通信が許可されている AWS 側の IPv6 CIDR 範囲。

デフォルト:::/0

フェーズ 1 Diffie-Hellman (DH) グループ番号

フェーズ1IKE ネゴシエーションで VPN トンネルに対して許可される Diffie-Hellman グループ番 号。1 つ以上のデフォルト値を指定できます。

デフォルト: 2、14、15、16、17、18、19、20、21、22、23、24 フェーズ 2 Diffie-Hellman (DH) グループ番号

フェーズ 2 IKE ネゴシエーションで VPN トンネルに対して許可される Diffie-Hellman グループ番 号。1 つ以上のデフォルト値を指定できます。

デフォルト: 2、5、14、15、16、17、18、19、20、21、22、23、24 フェーズ 1 暗号化アルゴリズム

フェーズ1IKE ネゴシエーションで VPN トンネルで許可される暗号化アルゴリズム。1 つ以上の デフォルト値を指定できます。

デフォルト: AES128、AES256、AES128-GCM-16、AES256-GCM-16 フェーズ 2 暗号化アルゴリズム

フェーズ 2 IKE ネゴシエーションで VPN トンネルで許可される暗号化アルゴリズム。1 つ以上の デフォルト値を指定できます。

デフォルト: AES128、AES256、AES128-GCM-16、AES256-GCM-16 フェーズ 1 整合性アルゴリズム

フェーズ 1 IKE ネゴシエーションで VPN トンネルで許可される整合性アルゴリズム。1 つ以上の デフォルト値を指定できます。 デフォルト: SHA-1、SHA2-256、SHA2-384、SHA2-512

フェーズ2整合性アルゴリズム

フェーズ 2 IKE ネゴシエーションで VPN トンネルで許可される整合性アルゴリズム。1 つ以上の デフォルト値を指定できます。

デフォルト: SHA-1、SHA2-256、SHA2-384、SHA2-512

フェーズ 1 ライフタイム

Note

AWS は、フェーズ1の有効期間フィールドとフェーズ2の有効期間フィールドで設定されたタイミング値を使用して再キーを開始します。このようなライフタイムがネゴシエートされたハンドシェイク値と異なる場合、トンネル接続が中断される可能性があります。

フェーズ1IKE ネゴシエーションのライフタイム (秒)。値は 900 から 28,800 まで指定できま す。

デフォルト: 28,800 (8 時間)

フェーズ2ライフタイム

Note

AWSは、フェーズ1の有効期間フィールドとフェーズ2の有効期間フィールドで設定されたタイミング値を使用して再キーを開始します。このようなライフタイムがネゴシエートされたハンドシェイク値と異なる場合、トンネル接続が中断される可能性があります。

フェーズ 2 IKE ネゴシエーションのライフタイム (秒)。値は 900 から 3,600 まで指定できます。 指定する値は、フェーズ 1 のライフタイムの秒数よりも小さくする必要があります。

デフォルト: 3,600 (1 時間)

事前共有キー (PSK)

ターゲットゲートウェイとカスタマーゲートウェイ間に最初の Internet Key Exchange (IKE) Security Association を確立するための事前共有キー (PSK)。 PSK は、8 ~ 64 文字の長さにする必要があり、ゼロ (0) から始めることはできません。使用で きる文字は、英数字、ピリオド (.)、および下線 () です。

デフォルト: 32 文字の英数字の文字列。

キー再生成ファズ

キー再生成時間がランダムに選択される、キー再生成ウィンドウ(キー再生成マージン時間に よって決定される)の割合。

0~100のパーセント値を指定できます。

デフォルト: 100

キー再生成のマージンタイム

フェーズ1とフェーズ2の有効期間が終了する前の秒単位のマージン時間。その間、VPN 接続の AWS 側が IKE リキーを実行します。

60 からフェーズ 2 のライフタイム秒の値の半分までの数値を指定できます。

キー再生成の正確な時間は、キー再生成ファズの値に基づいてランダムに選択されます。

デフォルト: 270 (4.5 分)

再生ウィンドウのサイズパケット

IKE 再生ウィンドウ内のパケット数。

64 から 2048 までの値を指定できます。

デフォルト: 1024

開始アクション

VPN 接続のトンネルを確立するときに実行するアクション。以下を指定することができます。

- Start: IKE ネゴシエーション AWS を開始してトンネルを起動します。カスタマーゲートウェ イが IP アドレスで設定されている場合にのみサポートされます。
- Add: カスタマーゲートウェイデバイスが IKE ネゴシエーションを開始してトンネルを開始する

詳細については、「AWS Site-to-Site VPN トンネル開始オプション」を参照してください。

デフォルト: Add

トンネルエンドポイントのライフサイクル制御

トンネルエンドポイントのライフサイクル制御により、エンドポイントの置き換えスケジュール を制御できます。

詳細については、「<u>AWS Site-to-Site VPN トンネルエンドポイントのライフサイクル制御</u>」を参 照してください。

デフォルト: Off

Site-to-Site VPN 接続の作成時にトンネルオプションを指定するか、既存の VPN 接続のトンネルオ プションを変更できます。詳細については、以下の各トピックを参照してください。

- ステップ 5: VPN 接続を作成する
- AWS Site-to-Site VPN トンネルオプションの変更

AWS Site-to-Site VPN トンネル認証オプション

事前共有キーまたは証明書を使用して、Site-to-Site VPN トンネルエンドポイントを認証できます。

事前共有キー

Site-to-Site VPN トンネルのデフォルトの認証オプションは、事前共有キー (PSK) です。トンネルを 作成するときは、独自の PSK を指定するか、 AWS に自動生成を許可できます。PSK は、次のいず れかの方法を使用して保存されます。

- Site-to-Site VPN サービスで直接。詳細については、「<u>Site-to-Site VPN カスタマーゲートウェイ</u> デバイス」を参照してください。
- セキュリティを強化 AWS Secrets Manager するために。Secrets Manager を使用して PSK を保 存する方法の詳細については、「」を参照してください<u>Secrets Manager を使用したセキュリティ</u> 機能の強化。

その後、PSK 文字列はカスタマーゲートウェイデバイスを設定するときに使用されます。

からのプライベート証明書 AWS Private Certificate Authority

事前共有キーを使用しない場合は、 AWS Private Certificate Authority からのプライベート証明書を 使用して VPN を認証できます。 AWS Private Certificate Authority (AWS Private CA) を使用して、下位 CA からプライベート証明書 を作成する必要があります。ACM 下位 CA に署名するために、ACM ルート CA または外部 CA を使 用できます。プライベート証明書の作成の詳細については、AWS Private Certificate Authority ユー ザーガイドの「プライベート CA の作成と管理」を参照してください。

Site-to-Site VPN トンネルエンドポイントの AWS 側の証明書を生成して使用するには、サービスリ ンクロールを作成する必要があります。詳細については、「<u>the section called "サービスにリンクさ</u> れた役割"」を参照してください。

Note

シームレスな証明書ローテーションを容易にするために、CreateCustomerGatewayAPI コールで最初に指定されたものと同じ認証機関チェーンを持つ証明書があれば、VPN 接続を 確立するために十分です。

カスタマーゲートウェイデバイスの IP アドレスを指定しない場合、IP アドレスは確認されません。 このオペレーションにより、VPN 接続を再設定することなく、カスタマーゲートウェイデバイスを 別の IP アドレスに移動できます。

Site-to-Site VPN は、証明書 VPN を作成するときにカスタマーゲートウェイ証明書に対して証明書 チェーン検証を実行します。Site-to-Site VPN は、基本的な CA と有効性チェックに加えて、権限 キー識別子、サブジェクトキー識別子、基本制約など、X.509 拡張機能が存在するかどうかを確認し ます。

AWS Site-to-Site VPN トンネル開始オプション

デフォルトでは、カスタマーゲートウェイデバイスは、トラフィックを生成して Internet Key Exchange (IKE) ネゴシエーションプロセスを開始することで、Site-to-Site VPN 接続のトンネルを開 始する必要があります。VPN トンネルを設定して、代わりに が IKE ネゴシエーションプロセスを開 始または再起動 AWS する必要があることを指定できます。

VPN トンネル IKE 開始オプション

以下の IKE 開始オプションを使用できます。Site-to-Site VPN 接続のトンネルの一方または両方に対 して、1 つまたは両方のオプションを設定できます。これらの設定やその他のトンネルオプション設 定の詳細については、「VPN トンネルオプション」を参照してください。

- 開始アクション:新規または変更された VPN 接続の VPN トンネルを確立するときに実行するアクション。デフォルトでは、カスタマーゲートウェイデバイスが IKE ネゴシエーションプロセスを開始してトンネルを開始します。代わりに、が IKE ネゴシエーションプロセスを開始 AWS する必要があることを指定できます。
- DPD タイムアウトアクション: デッドピア検出 (DPD) タイムアウトが発生した後に実行するアクション。デフォルトでは、IKE セッションが停止し、トンネルが停止して、ルートが削除されます。DPD タイムアウトが発生したときに が IKE セッションを再起動 AWS するように指定することも、DPD タイムアウトが発生したときに AWS がアクションを実行しないように指定することもできます。

ルールと制限

以下のルールと制限が適用されます。

- IKE ネゴシエーションを開始するには、カスタマーゲートウェイデバイスのパブリック IP アドレス AWS が必要です。VPN 接続に証明書ベースの認証を設定し、 でカスタマーゲートウェイリソースを作成したときに IP アドレスを指定しなかった場合は AWS、新しいカスタマーゲートウェイを作成して IP アドレスを指定する必要があります。その後、VPN 接続を変更し、新しいカスタマーゲートウェイを指定します。詳細については、「AWS Site-to-Site VPN 接続のカスタマーゲートウェイを変更する」を参照してください。
- VPN 接続の AWS 側からの IKE 開始 (起動アクション) は、IKEv2 でのみサポートされています。
- VPN 接続の AWS 側から IKE 開始を使用する場合、タイムアウト設定は含まれません。接続が確 立されるまで、継続して接続が試みられます。さらに、VPN 接続の AWS 側は、カスタマーゲー トウェイから SA の削除メッセージを受信すると、IKE ネゴシエーションを再開します。
- カスタマーゲートウェイデバイスがネットワークアドレス変換 (NAT) を使用するファイアウォー ルまたはその他のデバイスの背後にある場合は、ID (IDr) を設定する必要があります。IDr の詳細 については、RFC 7296 を参照してください。

VPN トンネルの AWS 側から IKE 開始を設定せず、VPN 接続でアイドル時間 (通常は設定に応じて 10 秒) が発生すると、トンネルがダウンする可能性があります。この問題が発生しないように、ネッ トワークモニタリングツールを使用してキープアライブ ping を生成できます。

VPN トンネル開始オプションの使用

VPN トンネル開始オプションの使用の詳細については、以下のトピックを参照してください。

- 新しい VPN 接続を作成し、VPN トンネル開始オプションを指定するには: ステップ 5: VPN 接続 を作成する
- 既存の VPN 接続の VPN トンネル開始オプションを変更するには: <u>AWS Site-to-Site VPN トンネル</u> オプションの変更

AWS Site-to-Site VPN トンネルエンドポイントの置き換え

Site-to-Site VPN 接続は、冗長性のために 2 つの VPN トンネルで構成されます。がトンネルの更新 AWS を実行するとき、または VPN 接続を変更するときに、VPN トンネルエンドポイントの一方ま たは両方が置き換えられることがあります。トンネルエンドポイントの置換中に、新しいトンネル エンドポイントがプロビジョニングされている間、トンネルを介した接続が中断されることがありま す。

トピック

- お客様によるエンドポイントの置き換え
- AWS マネージドのエンドポイントの置き換え
- AWS Site-to-Site VPN トンネルエンドポイントのライフサイクル制御

お客様によるエンドポイントの置き換え

VPN 接続の以下のコンポーネントを変更すると、トンネルエンドポイントの一方または両方が置き 換えられます。

変更	API アクション	トンネルインパクト
<u>VPN 接続のターゲットゲート</u> <u>ウェイを変更する</u>	ModifyVpnConnection	新しいトンネルエンドポイン トがプロビジョニングされて いる間は、どちらのトンネル も使用できません。
<u>VPN 接続のカスタマーゲート</u> <u>ウェイを変更する</u>	ModifyVpnConnection	新しいトンネルエンドポイン トがプロビジョニングされて いる間は、どちらのトンネル も使用できません。

変更	API アクション	トンネルインパクト
<u>VPN 接続オプションを変更す</u> <u>る</u>	ModifyVpnConnectionOptions	新しいトンネルエンドポイン トがプロビジョニングされて いる間は、どちらのトンネル も使用できません。
<u>VPN トンネルオプションを変</u> 更する	ModifyVpnTunnelOptions	更新中は、変更されたトンネ ルを使用できません。

AWS マネージドのエンドポイントの置き換え

AWS Site-to-Site VPN はマネージドサービスであり、VPN トンネルエンドポイントに定期的に更新 を適用します。これらの更新は、以下のようなさまざまな理由で発生します。

- パッチ、回復性の向上、その他の機能強化など、一般的なアップグレードを適用するため
- 基盤となるハードウェアをリタイアするため

VPN トンネルエンドポイントが非正常であることが自動モニタリングによって判断された場合

AWS は、一度に VPN 接続の 1 つのトンネルにトンネルエンドポイントの更新を適用します。トン ネルエンドポイントの更新中、VPN 接続の冗長性が短時間失われる可能性があります。したがっ て、高可用性を実現するために、VPN 接続で両方のトンネルを設定することが重要です。

AWS Site-to-Site VPN トンネルエンドポイントのライフサイクル制御

トンネルエンドポイントのライフサイクル制御は、エンドポイント交換のスケジュールを制御し、 AWS マネージドトンネルエンドポイント交換中の接続中断を最小限に抑えるのに役立ちます。この 機能を使用すると、ビジネスに最適なタイミングでトンネルエンドポイントへの AWS マネージド更 新を受け入れることができます。この機能は、短期的なビジネスニーズがある場合や、VPN 接続ご とに 1 つのトンネルのみサポートできる場合に使用します。

Note

まれに、トンネルエンドポイントのライフサイクル制御機能が有効になっている場合でも、 はトンネルエンドポイントに重要な更新をすぐに適用 AWS することがあります。

トピック

- トンネルエンドポイントのライフサイクル制御の仕組み
- AWS Site-to-Site VPN トンネルエンドポイントのライフサイクル制御を有効にする
- <u>AWS Site-to-Site VPN トンネルエンドポイントのライフサイクル制御が有効になっているかどう</u>かを確認する
- 利用可能な AWS Site-to-Site VPN トンネルの更新を確認する
- AWS Site-to-Site VPN トンネルメンテナンスの更新を受け入れる
- AWS Site-to-Site VPN トンネルエンドポイントのライフサイクル制御をオフにする

トンネルエンドポイントのライフサイクル制御の仕組み

VPN 接続内の個々のトンネルに対してトンネルエンドポイントのライフサイクル制御機能を有効に します。VPN の作成時に有効にするか、既存の VPN 接続のトンネルオプションを変更することで有 効にすることができます。

トンネルエンドポイントのライフサイクル制御を有効にすると、次の2つの方法で今後のトンネル メンテナンスイベントをより詳細に把握できます。

- 今後のトンネルエンドポイントの置き換えに関する AWS Health 通知が届きます。
- 保留中のメンテナンスのステータスは、メンテナンスの自動適用後および最終メンテナンス適用タイムスタンプとともに、で確認するか、get-vpn-tunnel-replacement-status AWS CLI コマンド AWS Management Console を使用して確認できます。

トンネルエンドポイントのメンテナンスが利用可能な場合、指定したメンテナンスを自動的に適用す るタイムスタンプの前に、都合の良いタイミングで更新を受け入れる機会があります。

メンテナンスの自動適用日より前に更新を適用しない場合、 AWS は定期的なメンテナンス更新サイ クルの一環として、トンネルエンドポイントの置き換えを直後に自動的に実行します。

AWS Site-to-Site VPN トンネルエンドポイントのライフサイクル制御を有効にする

エンドポイントライフサイクル制御は、既存または新しい VPN 接続で有効にできます。これは、 AWS Management Console または を使用して実行できます AWS CLI。

Note

デフォルトでは、この機能を既存の VPN 接続で有効にすると、トンネルエンドポイントの 置き換えが同時に開始されます。この機能を有効にしても、トンネルエンドポイントの置き 換えをすぐに開始しない場合は、[トンネルの置き換えをスキップ] オプションを使用できま す。

Existing VPN connection

以下の手順は、既存の VPN 接続でトンネルエンドポイントのライフサイクル制御を有効にする 方法を示しています。

AWS Management Consoleを使用してトンネルエンドポイントのライフサイクル制御を有効にす るには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. 左側のナビゲーションペインで、[Site-to-Site VPN 接続]を選択します。
- 3. [VPN 接続] で適切な接続を選択します。
- 4. [アクション]、[VPN トンネルオプションを変更] の順に選択します。
- 5. 適切な [IP アドレス外の VPN トンネル] を選択し、変更するトンネルを選択します。
- [トンネルエンドポイントのライフサイクル制御] で、[有効化] チェックボックスをオンにします。
- 7. (オプション)[トンネルの置き換えをスキップ]を選択します。
- 8. [変更の保存]をクリックします。

AWS CLIを使用してトンネルエンドポイントのライフサイクル制御を有効にするには

<u>modify-vpn-tunnel-options</u> コマンドを使用して、トンネルエンドポイントのライフサイクル制御 を有効にします。

New VPN connection

以下の手順は、新しい VPN 接続の作成時にトンネルエンドポイントのライフサイクル制御を有 効にする方法を示しています。 を使用して新しい VPN 接続の作成時にトンネルエンドポイントのライフサイクル制御を有効に するには AWS Management Console

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. ナビゲーションペインで、[Site-to-Site VPN Connections] (Site-to-Site VPN 接続) を選択しま す。
- 3. [Create VPN connection] (VPN 接続の作成) を選択します。
- [トンネル1のオプション] セクションと [トンネル2のオプション] セクションの [トンネル エンドポイントのライフサイクル制御] で、[有効化] を選択します。
- 5. [VPN 接続の作成]を選択します。

を使用して新しい VPN 接続の作成時にトンネルエンドポイントのライフサイクル制御を有効に するには AWS CLI

<u>create-vpn-connection</u> コマンドを使用して、トンネルエンドポイントのライフサイクル制御を有 効にします。

AWS Site-to-Site VPN トンネルエンドポイントのライフサイクル制御が有効になって いるかどうかを確認する

AWS Management Console または CLI を使用して、既存の VPN トンネルでトンネルエンドポイン トのライフサイクル制御が有効になっているかどうかを確認できます。

- トンネルエンドポイントライフサイクル制御が無効になっていて有効にする場合は、「<u>トンネル</u> エンドポイントのライフサイクル制御を有効にする」を参照してください。
- トンネルエンドポイントのライフサイクル制御が有効になっていて無効にする場合は、「<u>トンネ</u> ルエンドポイントのライフサイクル制御をオフにする」を参照してください。

AWS Management Consoleを使用してトンネルエンドポイントのライフサイクル制御が有効になっ ているかどうかを確認するには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. 左側のナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- 3. [VPN 接続] で適切な接続を選択します。
- 4. [トンネルの詳細] タブを選択します。

5. トンネルの詳細で、[トンネルエンドポイントのライフサイクル制御] を探し、この機能が [有効] になっているか、[無効] になっているかを確認します。

AWS CLIを使用してトンネルエンドポイントのライフサイクル制御が有効になっているかどうかを 確認するには

<u>describe-vpn-connections</u> コマンドを使用して、トンネルエンドポイントのライフサイクル制御が有 効になっているかどうかを確認します。

利用可能な AWS Site-to-Site VPN トンネルの更新を確認する

トンネルエンドポイントのライフサイクル制御機能を有効にすると、AWS Management Console ま たは CLI を使用して VPN 接続のメンテナンス更新が利用可能かどうかを確認できます。利用可能な Site-to-Site VPN トンネルの更新を確認しても、更新は自動的にダウンロードおよびデプロイされま せん。デプロイするタイミングを選択できます。更新をダウンロードしてデプロイする手順について は、「<u>メンテナンス更新を受け入れる</u>」を参照してください。

を使用して利用可能な更新を確認するには AWS Management Console

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. 左側のナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- 3. [VPN 接続] で適切な接続を選択します。
- 4. [トンネルの詳細] タブを選択します。
- 5. [保留中のメンテナンス] 列を確認します。ステータスは [利用可能] または [なし] のいずれかで す。

を使用して利用可能な更新を確認するには AWS CLI

<u>get-vpn-tunnel-replacement-status</u> コマンドを使用して、利用可能な更新があるかどうかを確認しま す。

AWS Site-to-Site VPN トンネルメンテナンスの更新を受け入れる

メンテナンス更新が利用可能になったら、 AWS Management Console または CLI を使用して受け入 れることができます。Site-to-Site VPN トンネルのメンテナンス更新を都合の良いタイミングで受け 入れることができます。メンテナンスの更新を受け入れると、デプロイされます。 Note

メンテナンス更新を受け入れない場合、 AWS は定期的なメンテナンス更新サイクル中に自 動的にデプロイします。

を使用して利用可能なメンテナンス更新を受け入れるには AWS Management Console

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. 左側のナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- 3. [VPN 接続] で適切な接続を選択します。
- 4. [アクション]、[VPN トンネルを置き換え] の順に選択します。
- 5. 適切な [IP アドレス外の VPN トンネル] を選択し、置き換えるトンネルを選択します。
- 6. [置換]を選択します。

を使用して利用可能なメンテナンス更新を受け入れるには AWS CLI

replace-vpn-tunnel コマンドを使用して、利用可能なメンテナンス更新を受け入れます。

AWS Site-to-Site VPN トンネルエンドポイントのライフサイクル制御をオフにする

トンネルエンドポイントのライフサイクル制御機能が不要になった場合は、 AWS Management Console または を使用して無効にできます AWS CLI。この機能をオフにすると、 AWS は、メンテ ナンス更新を定期的に自動デプロイし、これらの更新を営業時間中に行う場合があります。ビジネス への影響を回避するために、VPN 接続で両方のトンネルを設定して高可用性を確保することを強く お勧めします。

Note

保留中の利用可能なメンテナンスがある場合、この機能をオフにしている間は、[トンネルの 置き換えをスキップ] オプションを指定することはできません。スキップトンネル置換オプ ションを使用せずにいつでもこの機能をオフにできますが、トンネルエンドポイント置換を すぐに開始することで、利用可能な保留中のメンテナンス更新を自動的にデプロイ AWS し ます。 を使用してトンネルエンドポイントのライフサイクル制御を無効にするには AWS Management Console

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. 左側のナビゲーションペインで、[Site-to-Site VPN 接続]を選択します。
- 3. [VPN 接続] で適切な接続を選択します。
- 4. [アクション]、[VPN トンネルオプションを変更] の順に選択します。
- 5. 適切な [IP アドレス外の VPN トンネル] を選択し、変更するトンネルを選択します。
- トンネルエンドポイントのライフサイクル制御をオフにするには、[トンネルエンドポイントの ライフサイクル制御]の[有効化]チェックボックスをオフにします。
- 7. (オプション)[トンネルの置き換えをスキップ]を選択します。
- 8. [Save changes] (変更の保存) をクリックします。

を使用してトンネルエンドポイントのライフサイクル制御を無効にするには AWS CLI

<u>modify-vpn-tunnel-options</u> コマンドを使用して、トンネルエンドポイントのライフサイクル制御をオ フにします。

AWS Site-to-Site VPN 接続のカスタマーゲートウェイオプション

次の表は、でカスタマーゲートウェイリソースを作成するのに必要な情報を示しています AWS

項目	説明
(オプション) 名前タグ。	「名前」のキーと指定した値を含むタグを作成 します。
(動的ルーティングのみ) カスタマーゲートウェ イのボーダーゲートウェイプロトコル (BGP) 自律システム番号 (ASN) です。	1~4、294、967、295 の範囲の ASN がサポー トされています。ネットワークに割り当てら れている既存のパブリック ASN を使用できま す。ただし、次の場合を除きます。
	・ 7224 - すべてのリージョンで予約されていま す
	・ 9059 - eu-west-1 リージョンで予約され ています

項目	説明
	 10124 - ap-northeast-1 リージョンで予約されています 17943 - ap-southeast-1 リージョンで予約されています 既存の ASN がない場合は、プライベート ASN (64,512~65,534、または 4,200,000,000~4,29 4,967,294 の範囲)を使用できます。デフォルトの ASN は 64512 です。ルーティングの詳細については、「AWS Site-to-Site VPN ルーティ
	<u>ングオプション</u> 」を参照してください。
カスタマーゲートウェイデバイスの外部イン ターフェイスの IP アドレス。	IP アドレスは静的である必要があります。 カスタマーゲートウェイデバイスがネットワー クアドレス変換 (NAT) の背後にある場合は 、NAT デバイスの IP アドレスを使用します。 また、ポート 500 (および NAT トラバーサルが 使用されている場合はポート 4500) の UDP パ ケットがネットワークと AWS Site-to-Site VPN エンドポイント間で通過できることを確認しま す。詳細については、「ファイアウォールルー ル」を参照してください。 AWS Private Certificate Authority およびパブ リック VPN からのプライベート証明書を使用 している場合、IP アドレスは必須ではありま

項目	説明
(オプション) AWS Certificate Manager (ACM) を使用した下位 CA からのプライベート証明 書。	証明書ベースの認証を使用する場合は、カスタ マーゲートウェイデバイスで使用される ACM プライベート証明書の ARN を指定します。
	カスタマーゲートウェイを作成するときに、 AWS Private Certificate Authority プライベート 証明書を使用して Site-to-Site VPN を認証する ようにカスタマーゲートウェイを設定できま す。
	このオプションを使用する場合は、組織内で使 用するために AWS、完全にホストされたプラ イベート認証機関 (CA) を作成します。ルート CA 証明書と下位 CA 証明書の両方が によって 保存および管理されます AWS Private CA。
	カスタマーゲートウェイを作成する前に、を 使用して下位 CA からプライベート証明書を作 成し AWS Private Certificate Authority、カスタ マーゲートウェイを設定するときに証明書を指 定します。プライベート証明書の作成の詳細 については、AWS Private Certificate Authority ユーザーガイドの「プライベート CA の作成と 管理」を参照してください。
(オプション) デバイス。	このカスタマーゲートウェイに関連するカスタ マーゲートウェイデバイスの名前。

高速 AWS Site-to-Site VPN 接続

オプションで、Site-to-Site VPN 接続のアクセラレーションを有効にできます。高速 Site-to-Site VPN 接続 (高速 VPN 接続) は AWS Global Accelerator 、 を使用してオンプレミスネットワークから カスタマーゲートウェイデバイスに最も近い AWS エッジロケーションにトラフィックをルーティ ングします。 は、輻輳のない AWS グローバルネットワークを使用して、最適なアプリケーショ ンパフォーマンスを提供するエンドポイントにトラフィックをルーティングし、ネットワークパス AWS Global Accelerator を最適化します (詳細については、「」を参照してください<u>AWS Global</u> <u>Accelerator</u>)。高速 VPN 接続を使用すると、トラフィックがパブリックインターネット経由でルー ティングされるときに発生する可能性のあるネットワークの中断を回避できます。

高速 VPN 接続を作成すると、VPN トンネルごとに 1 つずつ、2 つのアクセラレーターが作成および 管理されます。 AWS Global Accelerator コンソールまたは APIs を使用して、これらのアクセラレー ターを自分で表示または管理することはできません。

高速 VPN 接続をサポートする AWS リージョンの詳細については、<u>AWS 「高速 Site-to-Site VPN に</u> 関するFAQs」を参照してください。

高速化を有効にする

デフォルトでは、Site-to-Site VPN 接続を作成すると、アクセラレーションは無効になります。トラ ンジットゲートウェイ上に新しいSite-to-Site VPN アタッチメントを作成する際に、オプションでア クセラレーションを有効にすることができます。詳細と手順については、「<u>Transit Gateway AWS</u> Site-to-Site VPN アタッチメントを作成する」を参照してください。

高速 VPN 接続では、トンネルエンドポイント IP アドレス用に別個の IP アドレスのプールが使用さ れます。2 つの VPN トンネルの IP アドレスは、2 つの別々の<u>ネットワークゾーン</u>から選択されま す。

ルールと制限

高速 VPN 接続を使用する場合は、次のルールが適用されます。

- アクセラレーションは、トランジットゲートウェイにアタッチされている Site-to-Site VPN接続でのみサポートされます。仮想プライベートゲートウェイは、高速化 VPN 接続をサポートしません。
- 高速 Site-to-Site VPN 接続は、 AWS Direct Connect パブリック仮想インターフェイスでは使用で きません。
- 既存のサイト間 VPN 接続のアクセラレーションを有効または無効にすることはできません。代わりに、必要に応じてアクセラレーションを有効または無効にして、新しいサイト間 VPN 接続を作成することができます。次に、新しい Site-to-Site VPN 接続を使用するようにカスタマーゲートウェイデバイスを設定し、古い Site-to-Site VPN 接続を削除します。
- 高速化 VPN 接続には、NAT トラバーサル (NAT-T) が必要であり、デフォルトで有効になってい ます。Amazon VPC コンソールから設定ファイルをダウンロードした場合は、NAT-T 設定を確認 し、必要に応じて調整します。

- 高速 VPN トンネルの IKE ネゴシエーションをカスタマーゲートウェイデバイスから開始する 必要があります。この動作に影響する2つのトンネルオプションは Startup Action と DPD Timeout Action です。詳細については、「<u>VPN トンネルオプション」と「VPN トンネル開始</u> オプション」を参照してください。
- 証明書ベースの認証を使用する Site-to-Site VPN 接続は、Global Accelerator でのパケットフラグ メント化のサポートが制限されているため AWS Global Accelerator、 と互換性がない可能性があ ります。詳細については、AWS Global Accelerator の仕組みを参照してください。証明書ベース の認証を使用する高速 VPN 接続が必要な場合は、カスタマーゲートウェイデバイスが IKE の断片 化をサポートしている必要があります。それ以外の場合は、VPN の高速化を有効にしないでくだ さい。

AWS Site-to-Site VPN ルーティングオプション

AWS では、仮想プライベートゲートウェイでのルーティングの決定に影響を与えるために、特定の BGP ルートをアドバタイズすることを推奨しています。お使いのデバイス特有のコマンドについて は、ベンダーのマニュアルを参照してください。

複数の VPN 接続を作成すると、仮想プライベートゲートウェイは静的に割り当てられたルートを使 用するか、BGP ルートアドバタイズを使用して、適切な VPN 接続にネットワークトラフィックを送 信します。どちらのルートを使用するかは、VPN 接続がどのように設定されているかによって決ま ります。仮想プライベートゲートウェイに同一のルートが存在している場合は、BGP でアドバタイ ズされるルートよりも、静的に割り当てられたルートの方が適しています。BGP アドバタイズを使 用するオプションを選択している場合は、静的ルートを指定できません。

ルーティングの優先度の詳細については、「<u>ルートテーブルとルーティングの優先度</u>」 を参照して ください。

Site-to-Site VPN 接続を作成する場合、以下を実行する必要があります。

- 使用予定のルーティングのタイプ(静的または動的)を指定する
- サブネットのルートテーブルを更新する

ルートテーブルに追加できるルートの数にはクォータがあります。詳細については、「Amazon VPC ユーザーガイド」で、「<u>Amazon VPC クォータ</u>」の「ルートテーブル」セクションを参照してくだ さい。

トピック
- での静的ルーティングと動的ルーティング AWS Site-to-Site VPN
- ・ ルートテーブルと AWS Site-to-Site VPN ルーティングの優先度
- VPN トンネルエンドポイント更新中のルーティング
- ・の IPv4 および IPv6 トラフィック AWS Site-to-Site VPN

での静的ルーティングと動的ルーティング AWS Site-to-Site VPN

選択するルーティングのタイプは、カスタマーゲートウェイデバイスの製造元とモデルによって異な ります。カスタマーゲートウェイデバイスがボーダーゲートウェイプロトコル (BGP) をサポートし ている場合は、Site-to-Site VPN 接続を設定するときに動的ルーティングを指定します。カスタマー ゲートウェイデバイスが BGP をサポートしていない場合は、静的ルーティングを指定します。

BGP アドバタイズメントをサポートしているデバイスを使用する場合は、BGP を使用してデバイス から仮想プライベートゲートウェイにルートがアドバタイズされるため、Site-to-Site VPN 接続への 静的ルートを指定しません。BGP アドバタイズメントをサポートしていないデバイスを使用する場 合は、静的ルーティングを選択し、仮想プライベートゲートウェイに通知するネットワークのルート (IP プレフィックス) を入力する必要があります。

使用可能な場合は BGP に対応したデバイスを使用することをお勧めします。BGP プロトコルは安 定したライブ状態検出チェックが可能であり、1 番目のトンネル停止時の 2 番目の VPN トンネルへ のフェイルオーバーに役立ちます。BGP をサポートしていないデバイスでも、ヘルスチェックを実 行することによって、必要時に 2 番目のトンネルへのフェイルオーバーを支援できます。

オンプレミスのネットワークから Site-to-Site VPN 接続にトラフィックがルーティングされるよう に、カスタマーゲートウェイデバイスを設定する必要があります。設定は、デバイスの製造元とモデ ルによって異なります。詳細については、「<u>AWS Site-to-Site VPN カスタマーゲートウェイデバイ</u> ス」を参照してください。

ルートテーブルと AWS Site-to-Site VPN ルーティングの優先度

<u>ルートテーブル</u>は、VPC からのネットワークトラフィックの転送先を指定します。VPC ルートテー ブルで、リモートネットワークのルートを追加し、仮想プライベートゲートウェイをターゲットと して指定する必要があります。これにより、リモートネットワーク向けの VPC からのトラフィック が、仮想プライベートゲートウェイおよび、いずれかの VPN トンネルを経由してルーティングされ ます。ルートテーブルのルート伝播を有効にすると、ネットワークルートは自動的にテーブルに伝播 されます。 トラフィックと一致する最も具体的なルートをルートテーブルで使用して、トラフィックをルーティ ングする方法を決定します (最長プレフィックス一致)。ルートテーブルに重複または一致するルート がある場合は、次のルールが適用されます。

- Site-to-Site VPN 接続または AWS Direct Connect 接続から伝播されたルートが VPC のローカル ルートと重複する場合は、伝播されたルートがより具体的であっても、ローカルルートが最適で す。
- Site-to-Site VPN 接続または AWS Direct Connect 接続から伝播されたルートが、他の既存の静的 ルートと同じ送信先 CIDR ブロックを持つ場合 (プレフィックスの最長一致は適用できません)、 ターゲットがインターネットゲートウェイ、仮想プライベートゲートウェイ、ネットワークイン ターフェイス、インスタンス ID、VPC ピアリング接続、NAT ゲートウェイ、トランジットゲート ウェイ、またはゲートウェイ VPC エンドポイントである静的ルートが優先されます。

たとえば、次のルートテーブルにはインターネットゲートウェイへの静的ルート、および仮想 プライベートゲートウェイへの伝播されたルートがあります。両方のルートとも、送信先は 172.31.0.0/24 です。この場合、172.31.0.0/24 を送信先とするすべてのトラフィックはイン ターネットゲートウェイにルーティングされます。これは静的ルートであるため、伝達されたルート よりも優先順位が高くなります。

送信先	ターゲット
10.0.0/16	ローカル
172.31.0.0/24	vgw-11223344556677889(伝達済み)
172.31.0.0/24	igw-12345678901234567(静的)

BGP アドバタイズ経由または静的ルートエントリ経由かを問わず、VPC からのトラフィックを受 信できるのは、仮想プライベートゲートウェイに対して既知の IP プレフィックスのみです。仮想プ ライベートゲートウェイでは、受信した BGP アドバタイズ、静的なルートエントリ、またはアタッ チされた VPC CIDR の外部向けの他のトラフィックはルーティングされません。仮想プライベート ゲートウェイは IPv6 トラフィックをサポートしません。

仮想プライベートゲートウェイはルーティング情報を受け取ると、パスを選択してトラフィックを ルーティングする方法を指定します。すべてのエンドポイントが正常であれば、最も長いプレフィッ クスー致が適用されます。トンネルエンドポイントの状態は、他のルーティング属性よりも優先され ます。この優先は、仮想プライベートゲートウェイとトランジットゲートウェイ上の VPN に適用さ れます。プレフィックスが同じである場合、仮想プライベートゲートウェイは、次のようにルートに 優先順位を付けます (優先度の高い順)。

AWS Direct Connect 接続からの BGP 伝達ルート

ブラックホールルートは、BGP 経由で Site-to-Site VPN カスタマーゲートウェイに伝播されません。

- Site-to-Site VPN 接続用に手動で追加された静的ルート
- Site-to-Site VPN 接続から BGP で伝播されたルート
- 各 Site-to-Site VPN 接続が BGP を使用しているプレフィックスのマッチングでは、AS PATH が 比較され、最短の AS PATH を持っているプレフィックスが優先されます。

Note

AWS では、非対称ルーティングをサポートするカスタマーゲートウェイデバイスを使用 することを強くお勧めします。 非対称ルーティングをサポートするカスタマーゲートウェイデバイスを使用する場合、 両方のトンネルの AS PATH を等しくするために、AS PATH の付加をお勧めしません。 これにより、<u>VPN トンネルエンドポイントの更新</u>中にトンネルに設定した multi-exit discriminator (MED) 値を使用して、トンネルの優先度を決定できます。 非対称ルーティングをサポートしていないカスタマーゲートウェイデバイスを使用する場 合は、AS PATH プリペンドとローカル設定を使用して、一方のトンネルを他のトンネル よりも優先できます。ただし、出力パスが変更されると、これによりトラフィックがド ロップする可能性があります。

 AS PATH が同じ長さで、AS_SEQUENCE 内の最初の AS が複数のパスで同じである場合、multiexit discriminators (MED) が比較されます。最小の MED 値を持つパスが優先されます。

ルーティングの優先度は、VPN トンネルエンドポイントの更新中に影響を受けます。

Site-to-Site VPN 接続では、2 つの冗長トンネルのいずれかをプライマリ出力パスとして AWS 選択 します。この選択は、ときどき変更される場合があるため、両方のトンネルの可用性を高めるよう設 定し、非対称ルーティングを許可することを強くお勧めします。トンネルエンドポイントの状態は、 他のルーティング属性よりも優先されます。この優先は、仮想プライベートゲートウェイとトラン ジットゲートウェイ上の VPN に適用されます。

仮想プライベートゲートウェイの場合、ゲートウェイ上のすべての Site-to-Site VPN 接続にまたがる 1 つのトンネルが選択されます。複数のトンネルを使用するには、トランジットゲートウェイ上

の Site-to-Site VPN 接続でサポートされる Equal Cost Multipath (ECMP) について検討することをお 勧めします。詳細については、「Amazon VPC Transit Gateway」の「<u>Transit Gateway</u>」を参照して ください。ECMP は、仮想プライベートゲートウェイの Site-to-Site VPN 接続ではサポートされませ ん。

BGP を使用する Site-to-Site VPN 接続の場合、プライマリトンネルは multi-exit discriminator (MED) 値で識別できます。ルーティングの決定に影響を与えるために、より具体的な BGP ルートをアドバ タイズすることをお勧めします。

静的ルーティングを使用する Site-to-Site VPN 接続の場合、プライマリトンネルはトラフィック統計 情報またはメトリクスによって識別できます。

VPN トンネルエンドポイント更新中のルーティング

Site-to-Site VPN 接続は、カスタマーゲートウェイデバイスと仮想プライベートゲートウェイまたは トランジットゲートウェイの間の2つの VPN トンネルで構成されます。両方のトンネルに冗長性を 設定することをお勧めします。は、VPN 接続の定期メンテナンス AWS も実行するため、VPN 接続 の2つのトンネルのいずれかが一時的に無効になる場合があります。詳細については、「<u>トンネル</u> エンドポイント交換通知」を参照してください。

一方の VPN トンネルで更新を実行する場合、もう一方のトンネルでアウトバウンド multi-exit discriminator (MED) の値を低く設定します。両方のトンネルを使用するようにカスタマーゲート ウェイデバイスを設定している場合、VPN 接続はトンネルエンドポイント更新プロセス中にもう一 方の (アップ) トンネルを使用します。

Note

 MED の低いアップトンネルが優先されるようにするには、カスタマーゲートウェイデバイ スで、両方のトンネルに対して同じ重みおよびローカル優先設定の値が使用されていることを確認します (重みおよびローカル優先設定は MED よりも優先度が高くなります)。

の IPv4 および IPv6 トラフィック AWS Site-to-Site VPN

トランジットゲートウェイの Site-to-Site VPN 接続は、VPN トンネル内の IPv4 トラフィックまたは IPv6 トラフィックのいずれかをサポートできます。デフォルトでは、Site-to-Site VPN 接続は VPN トンネル内の IPv4 トラフィックをサポートします。VPN トンネル内の IPv6 トラフィックをサポー トするように新しい Site-to-Site VPN 接続を設定できます。この場合、VPC とオンプレミスネット ワークを IPv6 アドレス指定用に設定すると、VPN 接続を介して IPv6 トラフィックを送信できます。

Site-to-Site VPN 接続で VPN トンネルの IPv6 を有効にすると、各トンネルに 2 つの CIDR ブロック が割り当てられます。1 つはサイズ /30 の IPv4 CIDR ブロックで、もう 1 つはサイズ /126 の IPv6 CIDR ブロックです。

以下のルールが適用されます。

- IPv6 アドレスは、VPN トンネルの内部 IP アドレスでのみサポートされます。 AWS エンドポイン トの外部トンネル IP アドレスは IPv4 アドレスであり、カスタマーゲートウェイのパブリック IP アドレスは IPv4 アドレスである必要があります。
- ・ 仮想プライベートゲートウェイの Site-to-Site VPN 接続は IPv6 をサポートしません。
- 既存の Site-to-Site VPN 接続に対して IPv6 サポートを有効にすることはできません。
- Site-to-Site VPN 接続は、IPv4 トラフィックと IPv6 トラフィックの両方はサポートできません。

VPN 接続の作成の詳細については、「ステップ 5: VPN 接続を作成する」を参照してください。

の使用を開始する AWS Site-to-Site VPN

AWS Site-to-Site VPN 接続を設定するには、次の手順に従います。作成時に、ターゲットゲート ウェイタイプに仮想プライベートゲートウェイ、トランジットゲートウェイで、または「関連付け られていない」を指定します。「関連付けられていない」を指定した場合は、後でターゲットゲー トウェイタイプを選択するか、 AWS Cloud WAN の VPN アタッチメントとして使用できます。この チュートリアルは、仮想プライベートゲートウェイを使用して VPN 接続を作成する方法について説 明します。1 つ以上のサブネットを持つ既存の VPC があることを前提としています。

仮想プライベートゲートウェイを使用して VPN 接続を設定するには、以下のステップを実行しま す。

タスク

• 前提条件

- ステップ 1: カスタマーゲートウェイを作成する
- ステップ 2: ターゲットゲートウェイを作成する
- ステップ 3: ルーティングを設定する
- ステップ 4: セキュリティグループを更新する
- ステップ 5: VPN 接続を作成する
- ステップ 6: 設定ファイルをダウンロードする
- ステップ 7: カスタマーゲートウェイデバイスを設定する

関連タスク

- ・ AWS クラウド WAN の VPN 接続を作成するには、「」を参照してください<u>クラウド WAN の</u> VPN アタッチメントを作成する。
- トランジットゲートウェイで VPN 接続を作成するには、「<u>Transit Gateway VPN アタッチメント</u> を作成する」を参照してください。

前提条件

VPN 接続のコンポーネントを設定および構成するには、次の情報が必要です。

項目	情報
カスタマーゲートウェイデバイス	VPN 接続のお客様側にある物理デバイスまた はソフトウェアデバイス。ベンダー (Cisco な ど)、プラットフォーム (ISR シリーズルーター など)、およびソフトウェアバージョン (IOS 12.4 など) が必要です。
カスタマーゲートウェイ	でカスタマーゲートウェイリソースを作成する には AWS、次の情報が必要です。 ・ デバイスの外部インターフェイス用のイン ターネットルーティングが可能な IP アドレ ス。 ・ ルーティングのタイプ: 静的または動的 ・ 動的ルーティングの場合、ボーダーゲート ウェイプロトコル (BGP) 自律システム番号 (ASN) ・ (オプション) VPN を認証 AWS Private Certificate Authority するための からのプラ イベート証明書
	<u>オプション</u> 」を参照してください。
(オプション) BGP セッションの AWS 側の ASN	これは、仮想プライベートゲートウェイまた は Transit Gateway を作成するときに指定しま す。値を指定していない場合、デフォルトの ASN が適用されます。詳細については、「 <u>仮</u> <u>想プライベートゲートウェイ</u> 」を参照してくだ さい。
VPN 接続	 VPN 接続を作成するには、次の情報が必要です。 ・静的ルーティングの場合、プライベートネットワークの IP プレフィックス。

項目	情報
	・ (オプション) 各 VPN トンネルのトンネルオ プション。詳細については、「 <u>AWS Site-to-</u> <u>Site VPN 接続のトンネルオプション</u> 」を参 照してください。

ステップ 1: カスタマーゲートウェイを作成する

カスタマーゲートウェイは、カスタマーゲートウェイデバイスまたはソフトウェアアプリケーション AWS に関する情報を に提供します。詳細については、「<u>カスタマーゲートウェイ</u>」を参照してくだ さい。

プライベート証明書を使用して VPN を認証する場合は、 を使用して下位 CA からプライベート証 明書を作成します AWS Private Certificate Authority。プライベート証明書の作成の詳細について は、AWS Private Certificate Authority ユーザーガイドの「<u>プライベート CA の作成と管理</u>」を参照し てください。

Note

プライベート証明書の IP アドレスまたは Amazon リソース名を指定する必要があります。

コンソールを使用してカスタマーゲートウェイを作成するには

- 1. Amazon VPC コンソールの https://console.aws.amazon.com/vpc/ を開いてください。
- 2. ナビゲーションペインで、[カスタマーゲートウェイ] を選択します。
- 3. [カスタマーゲートウェイの作成]]を選択します。
- (オプション) [名前] には、カスタマーゲートウェイの名前を入力します。これにより、Name というキーと指定した値を含むタグが作成されます。
- 5. [BGP ASN] に、カスタマーゲートウェイのボーダーゲートウェイプロトコル (BGP) 自律システ ム番号 (ASN) を入力します。
- (オプション) [IP アドレス] に、カスタマーゲートウェイデバイスのインターネットルーティン グ可能な静的 IP アドレスを入力します。カスタマーゲートウェイデバイスが NAT-T が有効な NAT デバイスの内側にある場合は、NAT デバイスのパブリック IP アドレスを使用します。

- 7. (オプション) プライベート証明書を使用する場合は、[Certificate ARN (証明書 ARN)] で、プライ ベート証明書の Amazon リソース名を選択します。
- 8. (オプション) [デバイス] には、このカスタマーゲートウェイに関連するカスタマーゲートウェイ デバイスの名前を入力します。
- 9. [カスタマーゲートウェイの作成]]を選択します。

コマンドラインまたは API を使用してカスタマーゲートウェイを作成するには

- CreateCustomerGateway (Amazon EC2 Query API)
- create-customer-gateway (AWS CLI)
- New-EC2CustomerGateway (AWS Tools for Windows PowerShell)

ステップ 2: ターゲットゲートウェイを作成する

VPC とオンプレミスネットワーク間の VPN 接続を確立するには、接続の AWS 側にターゲットゲートウェイを作成する必要があります。ターゲットゲートウェイは、仮想プライベートゲートウェイまたは Transit Gateway にすることができます。

仮想プライベートゲートウェイの作成

仮想プライベートゲートウェイを作成するときは、Amazon 側のゲートウェイのカスタムプライベー ト自律システム番号 (ASN) 指定するか、Amazon のデフォルト ASN を使用できます。ASN は、カ スタマーゲートウェイに指定した ASN とは異なっている必要があります。

仮想プライベートゲートウェイを作成した後は、VPC にアタッチする必要があります。

仮想プライベートゲートウェイを作成して VPC にアタッチするには

- 1. ナビゲーションペインで [仮想プライベートゲートウェイ] を選択します。
- 2. [Create virtual private gateway] (仮想プライベートゲートウェイの作成) を選択します。
- (オプション) [名前タグ] に仮想プライベートゲートウェイの名前を入力します。これにより、Name というキーと指定した値を含むタグが作成されます。
- [AS 番号 (ASN)] では、デフォルトの選択を使用するために、デフォルトの選択 [Amazon のデフォルト ASN] のままにします。それ以外の場合は、[カスタム ASN] を選択して値を入力します。16 ビット ASN では、値は 64512 から 65534 の範囲内である必要があります。32 ビット ASN では、値は 420000000 から 4294967294 の範囲内である必要があります。

- 5. [Create virtual private gateway] (仮想プライベートゲートウェイの作成) を選択します。
- 6. 作成した仮想プライベートゲートウェイを選択した後、[Actions] (アクション)、[Attach to VPC] (VPC にアタッチ) の順に選択します。
- 7. [使用可能な VPC] で VPC を選択し、次に [VPC にアタッチ] を選択します。

コマンドラインまたは API を使用して仮想プライベートゲートウェイを作成するには

- CreateVpnGateway (Amazon EC2 Query API)
- create-vpn-gateway (AWS CLI)
- New-EC2VpnGateway (AWS Tools for Windows PowerShell)

コマンドラインまたは API を使用して仮想プライベートゲートウェイを VPC にアタッチするには

- AttachVpnGateway (Amazon EC2 Query API)
- attach-vpn-gateway (AWS CLI)
- Add-EC2VpnGateway (AWS Tools for Windows PowerShell)

Transit Gateway を作成する

Transit Gateway の作成の詳細については、Amazon VPC Transit Gatewayの「<u>Transit Gateway</u>」を 参照してください。

ステップ 3: ルーティングを設定する

VPC のインスタンスがカスタマーゲートウェイに到達できるようにするには、VPN 接続で使用され るルートがルートテーブルに含まれるようにし、仮想プライベートゲートウェイまたはトランジット ゲートウェイを指すように設定する必要があります。

(仮想プライベートゲートウェイ) ルートテーブルでルート伝播を有効にす る

ルートテーブルのルート伝播を有効にして、Site-to-Site VPN ルートを自動的に伝播することができ ます。

静的ルーティングでは、VPN 接続の状態が UP であるときに、VPN 設定に指定した静的 IP プレ フィックスがルートテーブルに伝播されます。同様に、動的なルーティングでは、VPN 接続の状態 が UP のときに、カスタマーゲートウェイから BGP でアドバタイズされたルートがルートテーブル に伝播されます。

Note

接続が中断されても、VPN 接続が UP のままの場合、ルートテーブルにある伝播されたルートは自動的に削除されません。たとえば、トラフィックを静的ルートにフェイルオーバーする場合は、この点に注意してください。その場合、伝播されたルートを削除するには、ルートの伝播を無効にする必要があります。

コンソールを使用してルート伝達を有効にするには

- 1. ナビゲーションペインで、[Route tables] (ルートテーブル) を選択します。
- 2. サブネットに関連付けられたルートテーブルを選択します。
- [ルート伝播] タブで、[ルート伝達の編集] を選択します。前の手順で作成した仮想プライベート キーファイルを選択してから、[保存] を選択します。

Note

ルート伝播を有効にしない場合、VPN 接続で使用される静的ルートを手動で入力する必要 があります。これを行うには、ルートテーブルを選択し、[Routes]、[Edit] を選択します。 [Destination (送信先)] では、Site-to-Site VPN 接続で使用される静的ルートを追加します。 [Target] では、仮想プライベートゲートウェイ ID を選択し、[Save] を選択します。

コンソールを使用してルート伝達を無効にするには

- 1. ナビゲーションペインで、[Route tables] (ルートテーブル) を選択します。
- 2. サブネットに関連付けられたルートテーブルを選択します。
- [ルート伝播] タブで、[ルート伝達の編集] を選択します。仮想プライベートゲートウェイの [伝播] チェックボックスをオフにします。
- 4. [保存]を選択します。

コマンドラインまたは API を使用してルート伝達を有効にするには

EnableVgwRoutePropagation (Amazon EC2 Query API)

- enable-vgw-route-propagation (AWS CLI)
- Enable-EC2VgwRoutePropagation (AWS Tools for Windows PowerShell)

コマンドラインまたは API を使用してルート伝達を無効にするには

- DisableVgwRoutePropagation (Amazon EC2 Query API)
- disable-vgw-route-propagation (AWS CLI)
- Disable-EC2VgwRoutePropagation (AWS Tools for Windows PowerShell)

(Transit Gateway) ルートテーブルにルートを追加します

Transit Gateway のルートテーブルの伝播を有効にした場合、VPN アタッチメントのルート は Transit Gateway のルートテーブルに伝播されます。詳細については、Amazon VPC Transit Gatewaysの「ルーティング」を参照してください。

VPC を Transit Gateway にアタッチし、VPC 内のリソースがカスタマーゲートウェイに到達できる ようにするには、サブネットルートテーブルにルートを追加して、Transit Gateway を指すようにす る必要があります。

ルートを VPC ルートテーブルに追加するには

- 1. ナビゲーションペインで、[ルートテーブル]を選択します。
- 2. VPC に関連付けられているルートテーブルを選択します。
- 3. [ルーター] タブで、[ルーター編集] を選択してください。
- 4. [Add Rule (ルートの追加)] を選択します。
- 5. [送信先] に、送信先の IP アドレス範囲を入力します。[Target (ターゲット)] で、Transit Gateway を選択します。
- 6. [Save changes] (変更の保存) をクリックします。

ステップ 4: セキュリティグループを更新する

ネットワークから VPC 内のインスタンスにアクセスするのを許可するには、セキュリティグループ のルールを更新して、インバウンド SSH、RDP、および ICMP アクセスを有効にする必要がありま す。 セキュリティグループにルールを追加して、アクセスを有効にするには

- 1. ナビゲーションペインで、[セキュリティグループ]を選択します。
- 2. アクセスを許可する VPC 内のインスタンスのセキュリティグループを選択します。
- 3. [インバウンドルール] タブで、[インバウンドルールの編集] を選択します。
- ネットワークからのインバウンド SSH、RDP、ICMP アクセスを許可するルール追加 し、[Save] を選択します。詳細については、「Amazon VPC ユーザーガイド」の「セキュリ ティグループの操作」を参照してください。

ステップ 5: VPN 接続を作成する

カスタマーゲートウェイと、前に作成した仮想プライベートゲートウェイまたは Transit Gateway を 組み合わせて VPN 接続を作成します。

VPN 接続を作成するには

- 1. ナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- 2. [Create VPN connection] (VPN 接続の作成) を選択します。
- 3. (オプション) [名前タグ] には、VPN 接続の名前を入力します。これにより、Name というキーと 指定した値を含むタグが作成されます。
- [Target gateway type] (ターゲットゲートウェイタイプ) で、[仮想プライベートゲートウェイ] または [Transit gateway] (転送ゲートウェイ) を選択します。次に、以前に作成した仮想プライ ベートゲートウェイまたは Transit Gateway を選択します。
- 5. [カスタマーゲートウェイ] で [既存] を選択し、[カスタマーゲートウェイ ID] から、前に作成し たカスタマーゲートウェイを選択します。
- カスタマーゲートウェイデバイスがボーダーゲートウェイプロトコル (BGP) をサポートしてい るかどうかに基づいて、ルーティングオプションのいずれかを選択します。
 - カスタマーゲートウェイデバイスが BGP をサポートしている場合は、[動的 (BGP が必要)] を 選択します。
 - カスタマーゲートウェイデバイスが BGP をサポートしていない場合は、[静的] を選択します。[静的 IP プレフィックス] で、VPN 接続のプライベートネットワークのそれぞれの IP プレフィックスを指定します。
- 7. 事前共有キーストレージタイプを選択します。
 - 標準 事前共有キーは Site-to-Site VPN サービスに直接保存されます。

- Secrets Manager 事前共有キーは を使用して保存されます AWS Secrets Manager。Secrets Manager の詳細については、「」を参照してください<u>Secrets Manager を</u> 使用したセキュリティ機能の強化。
- ターゲットゲートウェイタイプが転送ゲートウェイの場合、[トンネル内部 IP バージョン]
 で、VPN トンネルが IPv4 トラフィックをサポートするか、IPv6 トラフィックをサポートする かを指定します。IPv6 トラフィックは、Transit Gateway の VPN 接続でのみサポートされま す。
- IP バージョン内で IPv4 for Tunnel を指定した場合、オプションで、VPN トンネル経由で通信で きるカスタマーゲートウェイと AWS サイドの IPv4 CIDR 範囲を指定できます。 デフォルトは 0.0.0.0/0 です。

IP バージョン内で IPv6 for Tunnel を指定した場合、オプションで、VPN トンネル経由で通信で きるカスタマーゲートウェイと AWS サイドの IPv6 CIDR 範囲を指定できます。 両方の範囲の デフォルトは : : /0 です。

- 10. [外部 IP アドレスのタイプ] については、デフォルトオプションの [PublicIpv4] のままにしま す。
- 11. (オプション) [トンネルオプション] では、トンネルごとに次の情報を指定できます。
 - トンネル内部 IPv4 アドレスの 169.254.0.0/16 範囲からサイズ /30 の IPv4 CIDR ブロック。
 - [トンネル内部 IP バージョン] で [IPv6] を指定した場合は、トンネル内部 IPv6 アドレスの fd00::/8 範囲から /126 の IPv6 CIDR ブロック。
 - ・ IKE 事前共有キー (PSK)。IKEv1 または IKEv2 バージョンがサポートされています。
 - トンネルの詳細オプションを編集するには、[トンネルのオプションを編集する]を選択します。詳細については、「VPN トンネルオプション」を参照してください。
- 12. [Create VPN connection] (VPN 接続の作成) を選択します。VPN 接続の作成には数分かかる場合 があります。

コマンドラインまたは API を使用して VPN 接続を作成するには

- CreateVpnConnection (Amazon EC2 Query API)
- create-vpn-connection (AWS CLI)
- <u>New-EC2VpnConnection</u> (AWS Tools for Windows PowerShell)

ステップ 6: 設定ファイルをダウンロードする

VPN 接続を作成した後、サンプル設定ファイルをダウンロードして、カスタマーゲートウェイデバ イスを設定できます。

▲ Important

設定ファイルはほんの一例です。ユーザーの想定する VPN 接続設定とすべては一致しない 場合があります。ほとんどの AWS リージョンで AES128, SHA1、Diffie-Hellman グループ 2、AWS GovCloud リージョンで AES128, SHA2、および Diffie-Hellman グループ 14 の VPN 接続の最小要件を指定します。また、認証用の事前共有キーも指定します。追加のセ キュリティアルゴリズム、Diffie-Hellman グループ、プライベート証明書、IPv6 トラフィッ クを活用するには、サンプル設定ファイルを変更する必要があります。 多くの一般的なカスタマーゲートウェイデバイスの設定ファイルに IKEv2 サポートが導入 されており、時間の経過とともにファイルを追加していきます。IKEv2 をサポートする設定 ファイルのリストは、「<u>AWS Site-to-Site VPN カスタマーゲートウェイデバイス</u>」を参照し てください。

アクセス許可

からダウンロード設定画面を適切にロードするには AWS Management Console、IAM ロールまたはユーザーに次の Amazon EC2 APIsのアクセス許可が あることを確認する必要があります: GetVpnConnectionDeviceTypesおよび GetVpnConnectionDeviceSampleConfiguration。

コンソールを使用して設定ファイルをダウンロードするには

- 1. Amazon VPC コンソールの https://console.aws.amazon.com/vpc/ を開いてください。
- 2. ナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- 3. VPN 接続を選択してから、[設定をダウンロード] を選択します。
- カスタマーゲートウェイデバイスに対応する [ベンダー]、[プラットフォーム]、[ソフトウェア] および [IKE バージョン] を選択します。デバイスが一覧にない場合は、[Generic (汎用)] を選択 します。
- 5. [Download] を選択します。

コマンドラインまたは API を使用して、サンプル設定ファイルをダウンロードするには

- GetVpnConnectionDeviceTypes (Amazon EC2 API)
- ・ GetVpnConnectionDeviceSampleConfiguration (Amazon EC2 クエリ API)
- get-vpn-connection-device-types (AWS CLI)
- get-vpn-connection-device-sample-configuration (AWS CLI)

ステップ 7: カスタマーゲートウェイデバイスを設定する

サンプル設定ファイルを使用して、カスタマーゲートウェイデバイスを設定します。カスタマーゲートウェイデバイスは、VPN 接続のお客様側の物理アプライアンスまたはソフトウェアアプライアン スです。詳細については、「<u>AWS Site-to-Site VPN カスタマーゲートウェイデバイス</u>」を参照して ください。

AWS Site-to-Site VPN アーキテクチャシナリオ

次に、1 つ以上のカスタマーゲートウェイデバイスを使用して複数の VPN 接続を作成するシナリオ を示します。

同じカスタマーゲートウェイデバイスを使用した複数の VPN 接続

同じカスタマーゲートウェイデバイスを使用して、オンプレミスの場所から他の VPC に追加の VPN 接続を作成できます。それらの VPN 接続ごとに同じカスタマーゲートウェイ IP アドレスを再利用 できます。

単一の仮想プライベートゲートウェイ (AWS VPN CloudHub) への複数のカスタマーゲートウェイデ バイス

複数のカスタマーゲートウェイデバイスから。単一の仮想プライベートゲートウェイに対して、複数 の VPN 接続を確立できます。これにより、複数のロケーションを AWS VPN CloudHub に接続でき ます。詳細については、「<u>VPN CloudHub を使用した AWS Site-to-Site VPN 接続間の安全な通信</u>」 を参照してください。複数の地理的ロケーションにカスタマーゲートウェイエバイスがある場合、各 デバイスは、ロケーションに固有の一意な IP 範囲のセットをアドバタイズする必要があります。

2番目のカスタマーゲートウェイデバイスを使用した冗長 VPN 接続

カスタマーゲートウェイデバイスが使用できなくなった場合に接続が失われるのを防ぐために、2番目のカスタマーゲートウェイデバイスを使用して、2番目の VPN 接続を設定できます。詳細については、「フェイルオーバー用の冗長 AWS Site-to-Site VPN 接続」を参照してください。1 つの場所に冗長なカスタマーゲートウェイデバイスを確立した場合は、両方のデバイスが同じ IP 範囲をアドバタイズする必要があります。

Site-to-Site VPN の一般的なアーキテクチャは以下のとおりです。

- 単一および複数の VPN 接続
- the section called "冗長 VPN 接続"
- VPN CloudHub を使用した VPN 接続間の安全な通信

AWS Site-to-Site VPN 単一および複数の VPN 接続の例

次の図に単一および複数の Site-to-Site VPN 接続を示します。

例

- 単一の Site-to-Site VPN 接続
- トランジットゲートウェイを使用した単一の Site-to-Site VPN 接続
- ・ 複数の Site-to-Site VPN 接続
- トランジットゲートウェイを使用した複数の Site-to-Site VPN 接続
- ・との Site-to-Site VPN 接続 AWS Direct Connect
- とのプライベート IP Site-to-Site VPN 接続 AWS Direct Connect

単一の Site-to-Site VPN 接続

VPC には仮想プライベートゲートウェイが関連付けられていて、オンプレミス (リモート) ネッ トワークにはカスタマーゲートウェイが使用されています。カスタマーゲートウェイデバイス は、VPN 接続を有効にするように設定する必要があります。VPC ルートテーブルを更新して、VPC からユーザーネットワークに向けてのトラフィックが仮想プライベートゲートウェイに流れるように します。

このシナリオを設定するステップについては、「<u>の使用を開始する AWS Site-to-Site VPN</u>」を参照 してください。

トランジットゲートウェイを使用した単一の Site-to-Site VPN 接続

VPC にはトランジットゲートウェイがアタッチされていて、オンプレミス (リモート) ネットワー クにはカスタマーゲートウェイデバイスが使用されています。カスタマーゲートウェイデバイス は、VPN 接続を有効にするように設定する必要があります。VPC ルートテーブルを更新して、VPC からユーザーネットワークに向けてのトラフィックがトランジットゲートウェイに流れるようにする 必要があります。

このシナリオを設定するステップについては、「<u>の使用を開始する AWS Site-to-Site VPN</u>」を参照 してください。

複数の Site-to-Site VPN 接続

VPC には仮想プライベートゲートウェイがアタッチされていて、複数のオンプレミスの場所への複数の Site-to-Site VPN 接続があります。ルーティングを設定して、VPC からユーザーネットワーク に向けてのトラフィックが仮想プライベートゲートウェイにルーティングされるようにします。

単一の VPC に対して複数の Site-to-Site VPN 接続を作成する場合、2 番目のカスタマーゲートウェ イを設定して、外部にある同一の場所への冗長な接続を作成できます。詳細については、「<u>フェイル</u> オーバー用の冗長 AWS Site-to-Site VPN 接続」を参照してください。

このシナリオを使用して、複数の地理的位置への Site-to-Site VPN 接続を作成し、サイト間の安全 な通信を提供することもできます。詳細については、「<u>VPN CloudHub を使用した AWS Site-to-Site</u> VPN 接続間の安全な通信」を参照してください。

トランジットゲートウェイを使用した複数の Site-to-Site VPN 接続

VPC にはトランジットゲートウェイがアタッチされていて、複数のオンプレミスの場所への複数の Site-to-Site VPN 接続があります。ルーティングを設定して、VPC からユーザーネットワークに向け てのトラフィックがトランジットゲートウェイにルーティングされるようにします。

1 つのトランジットゲートウェイに対して複数の Site-to-Site VPN 接続を作成する場合、2 番目のカ スタマーゲートウェイを設定して、外部にある同一の場所への冗長な接続を作成できます。

このシナリオを使用して、複数の地理的位置への Site-to-Site VPN 接続を作成し、サイト間の安全な 通信を提供することもできます。

との Site-to-Site VPN 接続 AWS Direct Connect

VPC には仮想プライベートゲートウェイがアタッチされており、 を介してオンプレミス (リモート) ネットワークに接続します AWS Direct Connect。 AWS Direct Connect パブリック仮想インター フェイスを設定して、仮想プライベートゲートウェイを介してネットワークとパブリック AWS リ ソース間の専用ネットワーク接続を確立できます。VPC からのネットワークへのトラフィックが仮 想プライベートゲートウェイと AWS Direct Connect 接続にルーティングされるようにルーティング を設定します。

とのプライベート IP Site-to-Site VPN 接続 AWS Direct Connect

Region

private

gateway

Direct Connect

Customer gateway

AWS Direct Connect と VPN 接続の両方が同じ仮想プライベートゲートウェイで設定されている 場合、オブジェクトを追加または削除すると、仮想プライベートゲートウェイが「アタッチ中」状 態になる可能性があります。これは、中断とパケット損失を最小限に抑えるために、 AWS Direct Connect と VPN 接続を切り替える内部ルーティングに変更が加えられようとしていることを示して います。これが完了すると、仮想プライベートゲートウェイは「アタッチ済み」状態に戻ります。

とのプライベート IP Site-to-Site VPN 接続 AWS Direct Connect

VPN connection

プライベート IP Site-to-Site VPN を使用すると、パブリック IP アドレスを使用 AWS せずに、オン プレミスネットワークと 間の AWS Direct Connect トラフィックを暗号化できます。を介したプライ ベート IP VPN により、 AWS とオンプレミスネットワーク間のトラフィックが安全でプライベート AWS Direct Connect であることが保証され、お客様は規制およびセキュリティ上の義務に準拠でき ます。

詳細については、ブログ記事「<u>Introducing AWS Site-to-Site VPN Private IP VPNs</u>」を参照してくだ さい。

VPN CloudHub を使用した AWS Site-to-Site VPN 接続間の安全な 通信

複数の AWS Site-to-Site VPN 接続がある場合は、 AWS VPN CloudHub を使用してサイト間の安 全な通信を提供できます。これで、サイトは VPC のリソースのみとではなく、相互に通信できま す。VPN CloudHub は、VPC の有無にかかわらず使用できるシンプルなハブアンドスポークモデル で動作します。この設計は、複数のブランチオフィスと既存のインターネット接続があり、これらの サイト間でプライマリ接続またはバックアップ接続を実現するために、便利でコストを抑えられる可 能性のあるハブアンドスポークモデルを実装したいと考えている場合に適しています。

概要

VPN CloudHub アーキテクチャを次の図に示します。破線は、VPN 接続を介してルーティングされ るリモートサイト間のネットワークトラフィックを示しています。サイト間で IP 範囲が重複するこ とは許可されません。

このシナリオでは、次の操作を行います。

- 1. 単一の仮想プライベートゲートウェイを作成します。
- 2. ゲートウェイのパブリック IP アドレスを持つ複数のカスタマーゲートウェイを作成します。カス タマーゲートウェイの一意のボーダーゲートウェイプロトコル (BGP) 自律システム番号 (ASN) を 使用する必要があります。
- 各カスタマーゲートウェイから一般的な仮想プライベートゲートウェイに動的にルーティングされる Site-to-Site VPN 接続を作成します。
- 仮想プライベートゲートウェイにサイト固有のプレフィックス (10.0.0.0/24、10.0.1.0/24 など) をアドバタイズするように、カスタマーゲートウェイデバイスを設定します。これらのルーティ ングアドバタイズメントが受信され、各 BGP ピアに再アドバタイズされることで、サイト間で のデータの送受信か可能になります。これを行うには、Site-to-Site VPN 接続の VPN 設定ファイ ルでネットワークステートメントを使用します。ネットワークステートメントは、使用するルー ターの種類によって少し違いがあります。
- 5. サブネットルートテーブルのルートを設定して、VPC のインスタンスがサイトと通信できるようにします。詳細については、「(仮想プライベートゲートウェイ) ルートテーブルでルート伝播を 有効にする」を参照してください。ルートテーブルに集約ルート (10.0.0.0/16 など) を設定できます。カスタマーゲートウェイデバイスと仮想プライベートゲートウェイ間により具体的なプレフィックスを使用します。

仮想プライベートゲートウェイ AWS Direct Connect への接続を使用するサイトは、 AWS VPN CloudHub の一部にすることもできます。例えば、ニューヨーク本社で VPC への AWS Direct Connect 接続を確立しながら、ブランチオフィスで VPC への Site-to-Site VPN 接続を使用できま す。ロサンゼルスとマイアミのブランチオフィスは、 AWS VPN CloudHub を使用して、相互に、ま た本社とデータを送受信できます。

料金

AWS VPN CloudHub を使用するには、一般的な Amazon VPC Site-to-Site VPN 接続料金を支払いま す。各 VPN が仮想プライベートゲートウェイに接続されている間は、1 時間ごとに接続料金が発生 します。 AWS VPN CloudHub を使用して 1 つのサイトから別のサイトにデータを送信する場合、サ イトから仮想プライベートゲートウェイにデータを送信するためのコストはかかりません。仮想プラ イベートゲートウェイからエンドポイントに中継されるデータに対しては、標準の AWS データ転送 料金のみがかかります。

たとえば、ロサンゼルスとニューヨークのそれぞれにサイトがあり、両方のサイトに、仮想プライ ベートゲートウェイへの Site-to-Site VPN 接続が存在する場合は、Site-to-Site VPN 接続ごとに支払 いが発生します (0.05 USD/時間の場合、合計 0.10 USD/時間)。また、各 Site-to-Site VPN 接続を通 過するロサンゼルスからニューヨーク (およびその逆) に送信するすべてのデータに対して、標準の AWS データ転送料金を支払います。Site-to-Site VPN 接続を介して仮想プライベートゲートウェイ に送信されるネットワークトラフィックは無料ですが、仮想プライベートゲートウェイからエンドポ イントに Site-to-Site VPN 接続を介して送信されるネットワークトラフィックは、標準の AWS デー タ転送レートで請求されます。

詳細については、「Site-to-Site VPN 接続料金」を参照してください。

フェイルオーバー用の冗長 AWS Site-to-Site VPN 接続

カスタマーゲートウェイデバイスが使用できなくなった場合に接続が失われるのを防ぐために、2番目のカスタマーゲートウェイデバイスを追加して、VPC および仮想プライベートゲートウェイへの2番目の Site-to-Site VPN 接続を設定できます。冗長な VPN 接続とカスタマーゲートウェイデバイスを使用すれば、1つのデバイスでメンテナンスを実行しながら、2番目の VPN 接続を通してトラフィックの送信を継続することができます。

2 つの VPN 接続は、以下の図のようになります。各 VPN 接続には、独自のトンネルと独自のカス タマーゲートウェイがあります。

このシナリオでは、次の操作を行います。

- 同じ仮想プライベートゲートウェイを使用し、新しいカスタマーゲートウェイを作成して、2番目の Site-to-Site VPN 接続をセットアップします。2番目の Site-to-Site VPN 接続用カスタマーゲートウェイの IP アドレスは、パブリックにアクセス可能である必要があります。
- 2 つ目のカスタマーゲートウェイデバイスを設定します。どちらのデバイスも、同じ IP 範囲を仮 想プライベートゲートウェイにアドバタイズする必要があります。当社は BGP ルーティングを使 用してトラフィックのパスを特定しています。1 つのカスタマーゲートウェイデバイスが失敗した 場合、仮想プライベートゲートウェイが、すべてのトラフィックを動作中のカスタマーゲートウェ イデバイスに送信します。

動的にルーティングされる Site-to-Site VPN 接続では、ボーダーゲートウェイプロトコル (BGP) を 使用して、カスタマーゲートウェイと仮想プライベートゲートウェイ間で情報をルーティングしま す。静的にルーティングされる Site-to-Site VPN 接続では、カスタマーゲートウェイのユーザー側で リモートネットワークの静的ルートを入力する必要があります。BGP でアドバタイズされ、静的に 入力されたルート情報によって、双方のゲートウェイで使用可能なトンネルが判別され、障害発生時 にトラフィックが再ルーティングされます。BGP (使用可能な場合) で提供されるルーティング情報 を使用して使用可能なパスを選択するようネットワークを設定することをお勧めします。正確な設定 はネットワークのアーキテクチャーによって異なります。 カスタマーゲートウェイと Site-to-Site VPN 接続の作成および設定の詳細については、「<u>の使用を開</u> <u>始する AWS Site-to-Site VPN</u>」を参照してください。

AWS Site-to-Site VPN カスタマーゲートウェイデバイス

カスタマーゲートウェイデバイスは、オンプレミスネットワーク (Site-to-Site VPN 接続のユーザー 側) で所有または管理している物理アプライアンスまたはソフトウェアアプライアンスです。ユー ザーまたはネットワーク管理者は、Site-to-Site VPN 接続で動作するようにデバイスを設定する必要 があります。

次の図は、ネットワーク、カスタマーゲートウェイデバイス、および VPC にアタッチされている仮 想プライベートゲートウェイへの VPN 接続を示しています。カスタマーゲートウェイと仮想プライ ベートゲートウェイ間の 2 つの線は、VPN 接続のトンネルを表しています。内にデバイス障害が発 生した場合 AWS、VPN 接続は自動的に 2 番目のトンネルにフェイルオーバーするため、アクセスが 中断されることはありません。は、VPN 接続の定期メンテナンス AWS も随時実行します。これに より、VPN 接続の 2 つのトンネルのいずれかが一時的に無効になる場合があります。詳細について は、「AWS Site-to-Site VPN トンネルエンドポイントの置き換え」を参照してください。したがっ て、カスタマーゲートウェイデバイスを設定するときは、両方のトンネルを使用するように設定する ことが重要です。

VPN 接続を設定するステップについては、「<u>の使用を開始する AWS Site-to-Site VPN</u>」を参照して ください。このプロセス中に、 でカスタマーゲートウェイリソースを作成します。このリソースは AWS、パブリック IP アドレスなど、デバイス AWS に関する情報を に提供します。詳細について は、「<u>AWS Site-to-Site VPN 接続のカスタマーゲートウェイオプション</u>」を参照してください。の カスタマーゲートウェイリソース AWS は、カスタマーゲートウェイデバイスを設定または作成しま せん。このデバイスは、自分で設定する必要があります。

AWS Marketplace でソフトウェア VPN アプライアンスを検索することもできます。

AWS Site-to-Site VPN カスタマーゲートウェイデバイスの要件

AWS は、ダウンロード可能な設定ファイルを提供する Site-to-Site VPN カスタマーゲートウェイデ バイスを多数サポートしています。サポートされているデバイスのリスト、および設定ファイルを ダウンロードする手順については、「」を参照してください<u>静的および動的ルーティング設定ファイ</u> ル。

サポートされているデバイスのリストにないデバイスがある場合、次のセクションでは、Site-to-Site VPN 接続を確立するためにデバイスが満たす必要がある要件について説明します。

カスタマーゲートウェイデバイスの設定には、4 つの主要部分があります。次の記号は、構成の各部 分を表しています。

IKE	インターネットキー交換 (IKE) セキュリティアソシエーション。IPsec セキュリティ アソシエーションを確立するために使用されるキーの交換に必要です。
IPsec	IPsec セキュリティアソシエーション。これは、トンネルの暗号化、認証などを処理 します。
Tunnel	トンネルインターフェイス。トンネルを通じて送受信されるトラフィックを受け取 ります。
BGP	(オプション) Border Gateway Protocol (BGP) ピア接続。BGP を使用するデバイスの 場合、カスタマーゲートウェイデバイスと仮想プライベートゲートウェイ間でルー トを交換します。

次の表は、カスタマーゲートウェイデバイスの要件、関連する RFC (参照用)、および要件に関する コメントの一覧です。

各 VPN 接続は 2 つの個別のトンネルで構成されています。各トンネルには、IKE セキュリティアソ シエーション、IPsec セキュリティアソシエーション、および BGP ピア接続が含まれています。ト ンネルごとに 1 つの一意のセキュリティアソシエーション (SA) ペア (受信用に 1 つと送信用に 1 つ) に制限されるため、2 つのトンネルで合計 2 つの一意の SA ペア (4 つの SA) になります。一部のデ バイスは、ポリシーベースの VPN を使用して、ACL エントリと同数の SA を作成します。そのた め、不要なトラフィックを許可しないように、ルールを統合してからフィルタリングする必要がある 場合があります。 デフォルトでは、トラフィックが生成され、VPN 接続のユーザー側から IKE ネゴシエーションが開始されると、VPN トンネルが開始されます。代わりに、接続の AWS 側から IKE ネゴシエーション を開始するように VPN 接続を設定できます。詳細については、「<u>AWS Site-to-Site VPN トンネル開</u> 始オプション」を参照してください。

VPN エンドポイントはキー再生成をサポートしており、カスタマーゲートウェイデバイスが再ネ ゴシエーショントラフィックを送信しなくなってフェーズ1の期限が切れそうになると、再ネゴシ エーションを開始できます。

要件	RFC	コメント
IKE セキュリティアソシ エーションを確立する	<u>RFC 7296</u>	 IKE セキュリティの関連付けは、が認証ツール AWS Private Certificate Authority として使用する事前共有 キーまたはプライベート証明書を使用して、仮想プ ライベートゲートウェイとカスタマーゲートウェイデ バイスの間で最初に確立されます。IKE は確立される と、一時キーをネゴシエートして今後の IKE メッセージを保護します。暗号化パラメータや認証パラメータ など、パラメータ間で完全な合意が必要です。 で VPN 接続を作成するときに AWS、トンネルごとに 独自の事前共有キーを指定するか、で AWS 生成でき ます。または、AWS Private Certificate Authority を使 用してカスタマーゲートウェイデバイスに使用するプ ライベート証明書を指定することもできます。VPN トンネルの設定の詳細については、「AWS Site-to-Site VPN 接続のトンネルオプション」を参照してください。 IKEv1 および IKEv2 バージョンがサポートされています。 メインモードは IKEv1 でのみサポートされています。 Site-to-Site VPN サービスは、ルートベースのソ リューションです。ポリシーベースの設定を使用する 場合は、設定を1つのセキュリティアソシエーション (SA) に制限する必要があります。

AWS Site-to-Site VPN

要件	RFC	コメント
トンネルモードで IPsec セキュリティアソシエー ションを確立する IPsec	<u>RFC 4301</u>	IKE の一時キーを使用すると、IPsec セキュリティア ソシエーション (SA) を形成するために、仮想プライ ベートゲートウェイとカスタマーゲートウェイデバ イス間でキーが確立されます。この SA を使用して、 ゲートウェイ間のトラフィックの暗号化および暗号化 の解除を行います。IPsec SA 内のトラフィックの暗号 化に使用される一時キーは、通信の機密性を確保する ために、定期的なローテーションで IKE によって自動 的に変更されます。
AES 128 ビット暗号化ま たは AES 256 ビット暗号 化関数を使用する	<u>RFC 3602</u>	この暗号化機能は、IKE と IPsec の両方のセキュリテ ィアソシエーションでプライバシーを確保するために 使用されます。
SHA-1 または SHA-2 (256) ハッシュ関数を使 用する	<u>RFC 2404</u>	このハッシュ関数は、IKE と IPsec の両方のセキュリ ティアソシエーションを認証するために使用されま す。
Diffie-Hellman Perfect Forward Secrecy を使用 する。	<u>RFC 2409</u>	IKE は、カスタマーゲートウェイデバイスと仮想プラ イベートゲートウェイ間のすべての通信を保護するた めに、Diffie-Hellman を使用して一時キーを確立しま す。 以下のグループがサポートされます。 ・フェーズ1グループ:2、14~24 ・フェーズ2グループ:2、5、14~24
(動的にルーティングされ た VPN 接続) IPsec Dead Peer Detection を使用す る	<u>RFC 3706</u>	Dead Peer Detection を使用すると、VPN デバイス は、ネットワークの状態によりインターネットでのパ ケット配信が妨げられていることをすばやく特定でき ます。この場合、ゲートウェイはセキュリティアソシ エーションを削除し、新しいアソシエーションを作成 しようとします。このプロセス中、可能であれば、代 わりの IPsec トンネルが使用されます。

AWS Site-to-Site VPN

要件	RFC	コメント
(動的にルーティングさ れた VPN 接続) トンネル を論理インターフェイス にバインドする (ルート ベースの VPN)	なし	デバイスは、IPsec トンネルを論理インターフェイス にバインドできる必要があります。論理インターフェ イスには、仮想プライベートゲートウェイへの BGP ピア接続を確立するために使用される IP アドレスが 含まれています。この論理インターフェイスは、追加 のカプセル化 (たとえば、GRE、IP in IP) を実行しな いでください。インターフェイスは、1399 バイトの 最大送信単位 (MTU) に設定する必要があります。
(動的にルーティングされ た VPN 接続) BGP ピア 接続を確立する BGP	<u>RFC 4271</u>	BGP は、カスタマーゲートウェイデバイスと BGP を 使用するデバイスの仮想プライベートゲートウェイ間 でルートを交換するために使用されます。すべての BGP トラフィックは、IPsec Security Association を 通じて暗号化され、送信されます。BGP は、両方の ゲートウェイが IPsec SA を通じて到達可能な IP プレ フィックスを交換するために必要です。

AWS VPN 接続は、パス MTU 検出 (RFC 1191) をサポートしていません。

カスタマーゲートウェイデバイスとインターネット間にファイアウォールがある場合は、「<u>AWS</u> <u>Site-to-Site VPN カスタマーゲートウェイデバイスのファイアウォールルール</u>」を参照してくださ い。

AWS Site-to-Site VPN カスタマーゲートウェイデバイスのベスト プラクティス

IKEv2 を使用する

Site-to-Site VPN 接続に IKEv2 を使用することを強くお勧めします。IKEv2 は、IKEv1 よりもシンプ ルで堅牢、安全なプロトコルです。カスタマーゲートウェイデバイスが IKEv2 をサポートしていな い場合にのみ、IKEv1 を使用してください。IKEv1 と IKEv2 の違いの詳細については、「<u>RFC7296</u> の付録 A」を参照してください。

パケットの [フラグメント化しない] フラグをリセットする

一部のパケットには、フラグメント化しない (DF) と呼ばれるフラグがあり、パケットがフラグメン ト化されないように指示することができます。パケットにフラグが設定されていれば、ゲートウェイ は ICMP Path MTU Exceeded メッセージを生成します。場合によっては、これらの ICMP メッセー ジを処理し、各パケットで送信されるデータの量を削減するための適切な仕組みがアプリケーション に備わっていません。一部の VPN デバイスでは、必要に応じて DF フラグをオーバーライドし、無 条件でパケットをフラグメント化できます。カスタマーゲートウェイデバイスにこの機能がある場合 は、必要に応じてこの機能を使用することをお勧めします。詳細については「<u>RFC 791</u>」を参照して ください。

暗号化前に IP パケットをフラグメント化する

Site-to-Site VPN 接続経由で送信されるパケットが MTU サイズを超える場合は、フラグメント化す る必要があります。パフォーマンスの低下を避けるため、パケットが暗号化される前に、パケットを フラグメント化するようにカスタマーゲートウェイデバイスを設定することをお勧めします。Siteto-Site VPN は、フラグメント化されたパケットを次の宛先に転送する前に再アセンブルし、 AWS ネットワークを通過する packet-per-secondフローを増やします。詳細については「<u>RFC 4459</u>」を 参照してください。

送信先ネットワークのパケットサイズが MTU を超えないようにする

Site-to-Site VPN は、次の送信先に転送する前にカスタマーゲートウェイデバイスから受信したフラ グメント化されたパケットを再アセンブルするため、これらのパケットが次に転送される送信先ネッ トワークには、 経由、 AWS Direct Connectまたは Radius などの特定のプロトコルでパケットサイ ズ/MTU に関する考慮事項がある場合があります。

使用中のアルゴリズムに従って MTU および MSS サイズを調整する

多くの場合、TCP パケットは IPsec トンネル間で最も一般的なタイプのパケットです。Site-to-Site VPN は 1446 バイトの最大伝送ユニット(MTU)と 1406 バイトの対応する最大セグメントサイズ (MSS)をサポートします。ただし、暗号化アルゴリズムにはさまざまなヘッダーサイズがあり、 これらの最大値を達成できない可能性があります。フラグメンテーションを回避して最適なパフォー マンスを得るには、使用するアルゴリズムに基づいて MTU と MSS を設定することをお勧めしま す。

次の表を使用して、フラグメンテーションを回避し、最適なパフォーマンスを実現するように MTU/ MSS を設定します。

暗号化アルゴ リズム	ハッシュ生成 アルゴリズム	NAT トラ バーサル	MTU	MSS (IPv4)	MSS (IPv6- in-IPv4)
AES-GCM-16	該当なし	無効	1446	1406	1386
AES-GCM-16	該当なし	有効	1438	1398	1378
AES-CBC	SHA1/SHA2 -256	無効	1438	1398	1378
AES-CBC	SHA1/SHA2 -256	有効	1422	1382	1362
AES-CBC	SHA2-384	無効	1422	1382	1362
AES-CBC	SHA2-384	有効	1422	1382	1362
AES-CBC	SHA2-512	無効	1422	1382	1362
AES-CBC	SHA2-512	有効	1406	1366	1346

Note

AES-GCM アルゴリズムは暗号化と認証の両方をカバーするため、MTU に影響する明確な認 証アルゴリズムの選択はありません。

IKE の一意の ID を無効にする

ー部のカスタマーゲートウェイデバイスは、トンネル設定ごとに最大1つのフェーズ1セキュリ ティ関連付けが存在するようにする設定をサポートしています。この設定により、VPN ピア間で フェーズ2の状態が一致しない可能性があります。カスタマーゲートウェイデバイスがこの設定を サポートしている場合は、無効にすることをお勧めします。

AWS Site-to-Site VPN カスタマーゲートウェイデバイスのファイ アウォールルール

カスタマーゲートウェイデバイスをエンドポイントに接続する IPsec トンネルのエンドポイントと して使用する静的 IP アドレスが必要です。 AWS Site-to-Site VPN AWS とカスタマーゲートウェイ デバイスの間にファイアウォールがある場合、IPsec トンネルを確立するために、次の表のルールを 設定する必要があります。 AWS側の IP アドレスは設定ファイルにあります。

インバウンド (インターネットから)

入力ルール I1

[Source IP] (送信元 IP)	Tunnel1 外部 IP
送信先 IP	カスタマーゲートウェイ
プロトコル	UDP
ソースポート	500
送信先	500
入力ルール I2	
[Source IP] (送信元 IP)	Tunnel2 外部 IP
送信先 IP	カスタマーゲートウェイ
プロトコル	UDP
ソースポート	500
発信先ポート	500
入力ルール I3	
[Source IP] (送信元 IP)	Tunnel1 外部 IP
送信先 IP	カスタマーゲートウェイ
プロトコル	IP 50 (ESP)

入力ルール 14	
[Source IP] (送信元 IP)	Tunnel2 外部 IP
送信先 IP	カスタマーゲートウェイ
プロトコル	IP 50 (ESP)
アウトバウンド (インターネットへ)	
出力ルール O1	
[Source IP] (送信元 IP)	カスタマーゲートウェイ
送信先 IP	Tunnel1 外部 IP
プロトコル	UDP
ソースポート	500
発信先ポート	500
出力ルール O2	
[Source IP] (送信元 IP)	カスタマーゲートウェイ
送信先 IP	Tunnel2 外部 IP
プロトコル	UDP
ソースポート	500
発信先ポート	500
出力ルール O3	
[Source IP] (送信元 IP)	カスタマーゲートウェイ
送信先 IP	Tunnel1 外部 IP
プロトコル	IP 50 (ESP)
出力ルール O4

[Source IP] (送信元 IP)

送信先 IP

プロトコル

カスタマーゲートウェイ

Tunnel2 外部 IP

IP 50 (ESP)

ルール I1、I2、O1、および O2 は、IKE パケットの送信を有効にします。ルール I3、I4、O3、およ び O4 は、暗号化されたネットワークトラフィックを含む IPsec パケットの送信を有効にします。

Note

デバイスで NAT トラバーサル (NAT-T) を使用している場合は、ポート 4500 の UDP トラ フィックもネットワークと AWS Site-to-Site VPN エンドポイント間で通過できることを確認 してください。デバイスが NAT-T をアドバタイズしているかどうかを確認します。

AWS Site-to-Site VPN カスタマーゲートウェイデバイスの静的お よび動的設定ファイル

VPN 接続を作成すると、Amazon VPC コンソールから、または EC2 API を使用して、 AWSが提供 するサンプル設定ファイルをダウンロードするオプションが追加されます。詳細については「<u>ステッ</u> <u>プ 6: 設定ファイルをダウンロードする</u>」を参照してください。静的ルーティングと動的ルーティン グ専用のサンプル設定の.zip ファイルをそれぞれのページでダウンロードすることもできます。

AWSが提供するサンプル設定ファイルには、カスタマーゲートウェイデバイスの設定に使用できる VPN 接続に固有の情報が含まれています。場合によっては、AWS でテスト済みのデバイス用に、デ バイス固有の設定ファイルが用意されています。特定のカスタマーゲートウェイデバイスが一覧に表 示されていない場合は、汎用設定ファイルをダウンロードして開始できます。

▲ Important

この設定ファイルはあくまでも一例です。お客様が想定する Site-to-Site VPN 接続設定とは 一致しない場合があります。ほとんどの AWS リージョンで AES128, SHA1、および Diffie-Hellman グループ 2、 AWS GovCloud リージョンで AES128, SHA2、および Diffie-Hellman グループ 14 の Site-to-Site VPN 接続の最小要件を指定します。また、認証用の事前共有キー も指定します。追加のセキュリティアルゴリズム、Diffie-Hellman グループ、プライベート 証明書、IPv6 トラフィックを活用するには、サンプル設定ファイルを変更する必要がありま す。

Note

これらのデバイス固有の設定ファイルは、ベストエフォートベース AWS で から提供されま す。によってテストされていますが AWS、このテストは制限されています。設定ファイル に問題がある場合は、特定のベンダーに問い合わせて、追加のサポートを依頼する必要があ ります。

次の表に、IKEv2 をサポートするように更新された、ダウンロード可能な設定ファイルの例がある デバイスのリストを示します。多くの一般的なカスタマーゲートウェイデバイスの設定ファイルに IKEv2 サポートが導入されており、時間の経過とともにファイルを追加していきます。このリスト は、設定ファイルの例が追加されると更新されます。

Vendor	プラットフォーム	ソフトウェア
Checkpoint	Gaia	R80.10+
Cisco Meraki	MX シリーズ	15.12+ (WebUI)
Cisco Systems, Inc。	ASA 5500 シリーズ	ASA 9.7+ VTI
Cisco Systems, Inc。	CSRv AMI	IOS 12.4 以降
Fortinet	FortiGate 40+ シリーズ	FortiOS 6.4.4+ (GUI)
Juniper Networks, Inc。	Jシリーズルーター	JunOS 9.5 以降
Juniper Networks, Inc。	SRX ルーター	JunOS 11.0 以降
Mikrotik	RouterOS	6.44.3
Palo Alto Networks	PA シリーズ	PANOS 7.0 以降
SonicWall	NSA、TZ	OS 6.5

AWS Site-to-Site VPN

Vendor	プラットフォーム	ソフトウェア
Sophos	Sophos ファイアウォール	v19+
Strongswan	Ubuntu 16.04	Strongswan 5.5.1+
Yamaha	RTX ルーター	Rev.10.01.16 以降

AWS Site-to-Site VPN カスタマーゲートウェイデバイスのダウンロード可能な静的ルーティング設定ファイル

Site-to-Site VPN 接続設定に固有の値を含むサンプル設定ファイルをダウンロードするに は、Amazon VPC コンソール、 AWS コマンドライン、または Amazon EC2 API を使用します。詳 細については、「ステップ 6: 設定ファイルをダウンロードする」を参照してください。

また、Site-to-Site VPN 接続設定に固有の値を含まないスタティックルーティング用の汎用設定ファ イルの例をダウンロードすることもできます。static-routing-examples.zip

これらのファイルは、一部のコンポーネントにプレースホルダー値を使用します。たとえば、以下を 使用します。

- VPN 接続 ID、カスタマーゲートウェイ ID および仮想プライベートゲートウェイ ID の値の例
- リモート (外部) IP アドレス AWS エンドポイントのプレースホルダー (AWS_ENDPOINT_1 および AWS_ENDPOINT_2)
- カスタマーゲートウェイデバイスのインターネットルーティング可能な外部インターフェイスの IP アドレスのプレースホルダー (your-cgw-ip-address)
- 事前共有キー値のプレースホルダ (事前共有キー)
- トンネルの内部 IP アドレスの値の例。
- MTU 設定の値の例。

Note

サンプルコンフィギュレーションファイルで提供されている MTU 設定は、例にすぎません。状況に応じた最適な MTU 値の設定については、「<u>AWS Site-to-Site VPN カスタマー</u> <u>ゲートウェイデバイスのベストプラクティス</u>」を参照してください。 プレースホルダー値を指定することに加えて、ファイルは、ほとんどの AWS リージョンで AES128, SHA1、および Diffie-Hellman グループ 2 の Site-to-Site VPN 接続、 AWS GovCloud リー ジョンで AES128, SHA2、および Diffie-Hellman グループ 14 の最小要件を指定します。また、認 証用の事前共有キーも指定します。追加のセキュリティアルゴリズム、Diffie-Hellman グループ、プ ライベート証明書、IPv6 トラフィックを活用するには、サンプル設定ファイルを変更する必要があ ります。

次の図は、カスタマーゲートウェイデバイスに設定されているさまざまなコンポーネントの概要を示 しています。これには、トンネルインターフェイスの IP アドレスの値の例が含まれます。

Customer gateway device

AWS Site-to-Site VPN カスタマーゲートウェイデバイスの静的ルーティングを設定す る

以下は、ユーザーインターフェイス (使用可能な場合) を使用してカスタマーゲートウェイデバイス を設定する手順の例です。

Check Point

以下は、デバイスが R77.10 以降を実行する Check Point Security Gateway デバイスで、デバイ スが Gaia オペレーティングシステムと Check Point SmartDashboard を使用している場合に、カ スタマーゲートウェイデバイスを設定するステップです。Check Point Support Center の <u>Check</u> Point Security Gateway IPsec VPN to Amazon Web Services VPC の記事も参照できます。

トンネルインターフェイスを設定するには

最初のステップは、VPN トンネルを作成し、各トンネル用のカスタマーゲートウェイと仮想プラ イベートゲートウェイのプライベート (内部) IP アドレスを提供することです。最初のトンネル を作成するには、設定ファイルの IPSec Tunnel #1 セクションで提供される情報を使用しま す。2 番目のトンネルを作成するには、設定ファイルの IPSec Tunnel #2 セクションで提供さ れる値を使用します。

- 1. Check Point Security Gateway デバイスの Gaia ポータルを開きます。
- 2. [Network Interfaces]、[Add]、[VPN tunnel] の順に選択します。
- 3. ダイアログボックスで次のように設定し、完了したら [OK] を選択します。
 - [VPN Tunnel ID] には、1 など一意の値を入力します。
 - [Peer] には、AWS_VPC_Tunnel_1 または AWS_VPC_Tunnel_2 など、トンネル用の一意の名前を入力します。
 - [Numbered] が選択されていることを確認して、[Local Address (ローカルアドレス)] に設 定ファイルの CGW Tunnel IP で指定されている IP アドレス (例: 169.254.44.234) を 入力します。
 - [Remote Address] には、設定ファイルの VGW Tunnel IP に指定された IP アドレス (例: 169.254.44.233) を入力します。

Add VPN Tunnel Type: Stress VPN-Tunnel Enable: Comment:	×
VPN Tunnel D: 1	
VPN Tunnel Type	O Unnumbered
Local Address: 169 . 254 . 44 . 234 Remote Address: 169 . 254 . 44 . 233	Physical device: Select
	OK Cancel

- 4. SSH でセキュリティゲートウェイに接続します。デフォルト以外のシェルを使用している場合は、次のコマンドを実行して、clish に変更します。clish
- 5. トンネル1の場合は、次のコマンドを実行します。

set interface vpnt1 mtu 1436

トンネル2の場合は、次のコマンドを実行します。

set interface vpnt2 mtu 1436

 2番目のトンネルを作成するには、設定ファイルの IPSec Tunnel #2 セクション内の情報 を使用して、ステップを繰り返します。

静的ルートを設定するには

このステップでは、各トンネルで VPC のサブネットへの静的ルートを指定し、トラフィックを トンネルインターフェイス経由で送信できるようにします。2 番目のトンネルにより、最初のト ンネルに問題がある場合のフェイルオーバーが可能になります。問題が検出されると、ポリシー ベースの静的ルートがルーティングテーブルから削除され、2 番目のルートが有効化されます。 また、トンネルのもう一方の端に ping を打ち、トンネルが稼働しているかどうかを確認するため に、Check Point ゲートウェイを有効にする必要があります。

- 1. Gaia ポータルで、[IPv4 Static Routes]、[Add] の順に選択します。
- 2. サブネットの CIDR (例: 10.28.13.0/24) を指定します。
- 3. [Add Gateway]、[IP Address] の順に選択します。
- 4. 設定ファイルの VGW Tunnel IP に指定された IP アドレス (例: 169 . 254 . 44 . 233) を入力 し、優先順位を 1 にします。
- 5. [Ping] を選択します。
- 2 つめのトンネルに対して、設定ファイルの VGW Tunnel IP セクションにある IPSec Tunnel #2 の値を使用してステップ 3 および 4 を繰り返します。優先順位を 2 にします。

Edit Destination Rout	e: 10.28.13.0/24		×
Destination:	10.28.13.0/24		
Next Hop Type:	Normal	•	
Normal: Acc Reject: Drop Black Hole:	ept and forward packets. packets, and send <i>unreachai</i> Drop packets, but don't send (ble messages. unreachable messages.	
Rank:	Default: 60		
Local Scope:			
Comment			
Add Gateway			
Add Gateway -	Edit Delete		
Gateway	Prior	ity 🛌	
169.254.44.233	-	1	
169.254.44.5	:	2	
		Save Car	ncel

7. [Save] を選択します。

クラスターを使用している場合は、クラスターの他のメンバーで上記のステップを繰り返しま す。 新しいネットワークオブジェクトを定義するには

このステップでは、仮想プライベートゲートウェイのパブリック (外部) IP アドレスを指定する ことで各 VPN トンネル用のネットワークオブジェクトを作成します。後で、VPN コミュニティ のサテライトゲートウェイとしてこれらのオブジェクトを追加します。また、VPN ドメインのプ レースホルダーとして機能する空グループを作成する必要があります。

- 1. Check Point SmartDashboard を開きます。
- [Groups] では、コンテキストメニューを開き、[Groups]、[Simple Group] の順に選択します。各ネットワークオブジェクトに対して同じグループを使用できます。
- [Network Objects] では、コンテキストメニュー (右クリック)を開き、[New]、[Interoperable Device] の順に選択します。
- [Name (名前)] には、トンネル用に指定した名前 (例: AWS_VPC_Tunnel_1 または AWS_VPC_Tunnel_2) を入力します。
- 5. [IPv4 Address] には、設定ファイルで提供される仮想プライベートゲートウェイの外部 IP ア ドレス (例: 54.84.169.196) を入力します。設定を保存して、このダイアログボックスを 閉じます。

	In	teroperable Device - AWS_VPC_Tune	nel_1 ? ×
General Properties - Topology II-IPSec VPN	Interoperable Dev	ice - General Properties	
	Name:	AWS_VPC_Tunnel_1	Color: Black 🗸
	IPv4 Address:	54.84.169.196 Resolve from Name	Dynamic Address
	IPv6 Address:		
	Comment:		
	Products:	rvers	

- 6. SmartDashboard でゲートウェイのプロパティを開き、カテゴリーペインで [Topology] を選 択します。
- 7. インターフェイス設定を取得するには、[Get Topology] を選択します。
- 8. [VPN Domain (VPN ドメイン)] セクションで、[Manually defined (手動で定義)] を選択し、ス テップ 2 で作成した空のシンプルなグループを参照して選択します。[OK] を選択します。

Note

設定済みの既存の VPN ドメインは保持できます。ただし、特に VPN ドメインが自 動的に取得されている場合は、新しい VPN 接続で使用または提供されるドメインと ホストがその VPN ドメインで宣言されていないことを確認してください。

 2番目のネットワークオブジェクトを作成するには、設定ファイルの IPSec Tunnel #2 セ クション内の情報を使用して、ステップを繰り返します。

Note

クラスターを使用している場合は、トポロジーを編集してインターフェイスをクラスター インターフェイスとして定義します。設定ファイルで指定された IP アドレスを使用しま す。

VPN コミュニティ、IKE、および IPsec 設定の作成と設定

このステップでは、Check Point ゲートウェイに VPN コミュニティを作成し、そこに各トンネル のネットワークオブジェクト (相互運用デバイス) を追加します。また、Internet Key Exchange (IKE) および IPsec を設定します。

- 1. ゲートウェイのプロパティから、カテゴリーペインの [IPSec VPN] を選択します。
- 2. [Communities]、[New]、[Star Community] の順に選択します。
- 3. コミュニティの名前 (例: AWS_VPN_Star) を指定し、カテゴリーペインの [Center Gateways] を選択します。
- [Add] を選択して、ゲートウェイまたはクラスターを参加ゲートウェイのリストに追加します。
- 5. カテゴリーペインで、[Satellite Gateways]、[Add (追加)] の順に選択し、先に作成した相互運 用デバイス (AWS_VPC_Tunnel_1 および AWS_VPC_Tunnel_2) を参加ゲートウェイのリス トに追加します。
- カテゴリーペインで、[Encryption] を選択します。[Encryption Method] セクション で、[IKEv1 only] を選択します。[Encryption Suite] セクションで、[Custom]、[Custom Encryption] の順に選択します。

- ダイアログボックスで次のように暗号化プロパティを設定し、完了したら [OK] を選択します。
 - ・ IKE Security Association (フェーズ 1) のプロパティ
 - Perform key exchange encryption with: AES-128
 - Perform data integrity with: SHA-1
 - IPsec Security Association (フェーズ 2) のプロパティ
 - Perform IPsec data encryption with: AES-128
 - Perform data integrity with: SHA-1
- 8. カテゴリーペインで [Tunnel Management] を選択します。[Set Permanent Tunnels]、[On all tunnels in the community] の順に選択します。[VPN Tunnel Sharing] セクションで、[One VPN tunnel per Gateway pair] を選択します。
- 9. カテゴリーペインで [Advanced Settings] を展開し、[Shared Secret] を選択します。
- 10. 最初のトンネルのピア名を選択し、[Edit (編集)] を選択して、設定ファイルの IPSec Tunnel #1 セクションで指定されている事前共有キーを入力します。
- 11. 2 番目のトンネルのピア名を選択し、[Edit (編集)] を選択して、設定ファイルの IPSec Tunnel #2 セクションで指定されている事前共有キーを入力します。

	Star Community Properties	- AWS_VPN_Star ? ×
General Certer Gateways Satelite Gateways Encryption Tunnel Management Advanced Settings VPN Routing MEP (Multiple Entry Excluded Services Gateway Server)	Shared Secret Use only Shared Secret for all 5 Each External member will have secret with all internal members in	Edemailmembers the following n this community.
- Advanced VPN Pr	Peer Name 5 AWS_VPC_Tunnel_1 * AWS_VPC_Tunnel_2 *	Praved Secret
	Edt	Remove
< III >		OK Cancel

12. さらに [Advanced Settings (詳細設定)] カテゴリで [Advanced VPN Properties (詳細な VPN プロパティ)] を選択し、プロパティを次のように設定して、完了したら [OK] を選択します。

- IKE (フェーズ 1):
 - Use Diffie-Hellman group: Group 2
 - · Renegotiate IKE security associations every 480 minutes
- IPsec (フェーズ 2):
 - [Use Perfect Forward Secrecy] を選択します。
 - Use Diffie-Hellman group: Group 2
 - Renegotiate IPsec security associations every 3600 seconds

ファイアウォールルールを作成するには

このステップでは、ファイアウォールルールとディレクショナルマッチルールを使用し、VPC と ローカルネットワーク間での通信を許可するポリシーを設定します。その後、ゲートウェイにポ リシーをインストールします。

- SmartDashboard で、ゲートウェイの [Global Properties] を選択します。カテゴリーペイン で [VPN] を展開し、[Advanced] を選択します。
- 2. [Enable VPN Directional Match in VPN Column]を選択し、変更を保存します。
- 3. SmartDashboard で [Firewall] を選択し、次のルールでポリシーを作成します。
 - VPC サブネットに対して必須プロトコル経由でのローカルネットワークとの通信を許可する。
 - ローカルネットワークに対して必須プロトコル経由での VPC サブネットとの通信を許可する。
- 4. VPN 列のセルのコンテキストメニューを開いて、[Edit Cell] を選択します。
- 5. [VPN Match Conditions] ダイアログボックスで、[Match traffic in this direction only] を選択 します。それぞれで [Add] を選択してディレクショナルマッチルールを作成し、完了したら [OK] を選択します。
 - internal_clear > VPN コミュニティ (先に作成した VPN スターコミュニティ。例: AWS_VPN_Star)
 - VPN コミュニティ > VPN コミュニティ
 - VPN コミュニティ > internal_clear
- 6. SmartDashboard で、[Policy]、[Install] の順に選択します。

ダイアログボックスでゲートウェイを選択し、[OK] を選択してポリシーをインストールします。

tunnel_keepalive_method プロパティを変更するには

Check Point ゲートウェイでは、IKE の関連付けが停止したときに Dead Peer Detection (DPD) を使用して識別できます。永続トンネルに DPD を設定するには、永続トンネルを AWS VPN コ ミュニティで設定する必要があります (ステップ 8 を参照)。

デフォルトでは、VPN ゲートウェイの tunnel_keepalive_method プロパティは tunnel_test に設定されます。この値を dpd に変更する必要があります。DPD モニタリング が必要な VPN コミュニティ内の各 VPN ゲートウェイは、サードパーティー製 VPN ゲートウェ イを含め、tunnel_keepalive_method プロパティで設定する必要があります。同じゲート ウェイに対して異なるモニタリングメカニズムを設定することはできません。

GuiDBedit ツールを使用して tunnel_keepalive_method プロパティを更新できます。

- 1. Check Point SmartDashboard を開き、[Security Management Server]、[Domain Management Server] の順に選択します。
- [File]、[Database Revision Control...] の順に選択し、リビジョンのスナップショットを作成 します。
- 3. SmartDashboard、SmartView Tracker、SmartView Monitor など、すべての SmartConsole ウィンドウを閉じます。
- GuiBDedit ツールを起動します。詳細については、Check Point サポートセンターの「<u>Check</u> <u>Point Database Tool</u>」という記事を参照してください。
- 5. [Security Management Server]、[Domain Management Server] の順に選択します。
- 6. 左上のペインで、[Table]、[Network Objects]、[network_objects] の順に選択します。
- 7. 右上のペインで、関連する [Security Gateway]、[Cluster] オブジェクトを選択します。
- 8. Ctrl+F キーを押すか、[Search] メニューを使用して以下を検索します。tunnel_keepalive_method
- 下のペインで、[tunnel_keepalive_method] のコンテキストメニューを開き、[Edit... (編 集...)] を選択します。[dpd] を選択し、[OK] を選択します。
- 10. AWS VPN コミュニティの一部である各ゲートウェイに対して、ステップ 7~9 を繰り返し ます。
- 11. [File]、[Save All] の順に選択します。

- 12. GuiDBedit ツールを閉じます。
- 13. Check Point SmartDashboard を開き、[Security Management Server]、[Domain Management Server] の順に選択します。
- 14. 関連する [Security Gateway]、[Cluster] オブジェクトにポリシーをインストールします。

詳細については、Check Point Support Center の「<u>New VPN features in R77.10</u>」という記事を参 照してください。

TCP MSS クランプを有効にするには

TCP MSS クランプは TCP パケットの最大セグメントサイズを小さくしてパケット断片化を防ぎ ます。

- 次のディレクトリに移動します。C:\Program Files (x86)\CheckPoint \SmartConsole\R77.10\PROGRAM\
- 2. GuiDBEdit.exe ファイルを実行して Check Point Database Tool を開きます。
- 3. [Table]、[Global Properties]、[properties] の順に選択します。
- 4. fw_clamp_tcp_mss で、[Edit] を選択します。値を true に変更し、[OK] を選択します。

トンネルのステータスを確認するには

エキスパートモードのコマンドラインツールから次のコマンドを実行して、トンネルの状態を確 認できます。

vpn tunnelutil

表示されたオプションで、IKE 関連付けを検証するには [1] を、IPsec 関連付けを検証するには [2] を選択します。

また、Check Point Smart Tracker Log を使用して、接続内のパケットが暗号化されていることを 検証できます。たとえば次のログは、VPC へのパケットがトンネル 1 経由で送信され、暗号化さ れていることを示します。

Log Info		Rule	
Product	Security	Action	🔒 Encrypt
	Gateway/Management	Rule	4
Date	4Nov2015	Current Rule Number	4-Standard
Time	9:42:01	Rule Name	
Number	21254	User	
Туре	🗏 Log		
Origin	cpgw-997695	More	
Traffic		Rule UID	{0AA18015-FF7B-4650-B0CE- 3989E658CF04}
Source	Management_PC	Community	AWS_VPN_Star
	(192.168.1.116)	Encryption Scheme	⊠ IKE
Destination	10.28.13.28	Data Encryption	ESP: AES-128 + SHA1 + PFS
Service		Methods	(group 2)
Protocol	01P icmp	VPN Peer Gateway	AWS_VPC_Tunnel_1 (54.84.169.196)
Interface	\Xi eth0	Subproduct	(04.04.100.100)
Source Port		Subproduct	U VPN
Delley		VPN Feature	VPN
Policy		Product Family	Retwork
Policy Name	Standard	Information	service_id: icmp-proto
Policy Date	Tue Nov 03 11:33:45 2015		ICMP: Echo Request
Policy Management	cpgw-997695		ICMP Code: 0

SonicWALL

次の手順では、SonicOS 管理インターフェイスを使用して SonicWALL デバイスに VPN トンネ ルを設定する方法を説明します。

トンネルを設定するには

- 1. SonicWALL SonicOS 管理インターフェイスを開きます。
- 2. 左側のペインで、[VPN]、[Settings] の順に選択します。[VPN Policies] の下で、[Add...] を選 択します。
- 3. [General] タブの VPN ポリシーウィンドウで、次の情報を入力します。
 - [Policy Type: [Tunnel Interface] を選択します。
 - ・ [Authentication Method]: [IKE using Preshared Secret] を選択します。
 - [Name]: VPN ポリシーの名前を入力します。設定ファイルに記載されている通り、VPN ID 名を使用することをお勧めします。
 - IPsec Primary Gateway Name or Address: 設定ファイルに記載されている通り、仮想プラ イベートゲートウェイの IP アドレス (例: 72.21.209.193) を入力します。
 - IPsec Secondary Gateway Name or Address: デフォルト値のままにします。

- Shared Secret: 設定ファイルに記載されている通りに事前共有キーを入力後、[Confirm Shared Secret] で再入力します。
- Local IKE ID: カスタマーゲートウェイ (SonicWALL デバイス) の IPv4 アドレスを入力します。
- Peer IKE ID: 仮想プライベートゲートウェイの IPv4 アドレスを入力します。
- 4. [Network] タブで、次の情報を入力します。
 - [Local Networks] で、[Any address] を選択します。このオプションを使用して、ローカル ネットワーク接続の問題を防ぐことをお勧めします。
 - [Remote Networks] で、[Choose a destination network from list] を選択します。 AWS内に VPC の CIDR を持つアドレスオブジェクトを作成します。
- 5. [Proposals (提案)] タブで、次の情報を入力します。
 - [IKE (Phase 1) Proposal] で、以下の作業を行います。
 - Exchange: [Main Mode] を選択します。
 - DH Group: Diffie-Hellman Group の値 (例: 2) を入力します。
 - Encryption: [AES-128] または [AES-256] を選択します。
 - Authentication: [SHA1] または [SHA256] を選択します。
 - Life Time: 28800 と入力します。
 - [IKE (Phase 2) Proposal] で、以下の作業を行います。
 - Protocol: [ESP] を選択します。
 - Encryption: [AES-128] または [AES-256] を選択します。
 - Authentication: [SHA1] または [SHA256] を選択します。
 - [Enable Perfect Forward Secrecy] チェックボックスをオンにし、Diffie-Hellman group を選択します。
 - Life Time: 3600 と入力します。

▲ Important

仮想プライベートゲートウェイを作成したのが 2015 年 10 月より前の場合は、両 方のフェーズで Diffie-Hellman group 2、AES-128、SHA1 を指定する必要がありま す。

6. [Advanced] タブで、次の情報を入力します。

- [Enable Keep Alive] を選択します。
- [Enable Phase2 Dead Peer Detection] を選択し、次のように入力します。
 - [Dead Peer Detection Interval] に、60 (SonicWALL デバイスで入力可能な最小値) と入 力します。
 - [Failure Trigger Level] で、3 と入力します。
- [VPN Policy bound to] で、[Interface X1] を選択します。パブリック IP アドレスで一般的 に指定されたインターフェイスです。
- [OK] を選択します。[Settings] ページで、トンネルの [Enable] チェックボックスをデフォル トでオンにします。緑の点は、トンネルが稼働していることを表します。

Cisco デバイス: 追加情報

一部の Cisco ASA ではアクティブ/スタンバイモードのみがサポートされています。これらの Cisco ASA を使用する場合は、アクティブなトンネルを一度に 1 個のみ保持できます。最初のトンネルが 利用不可になった場合は、他方のスタンバイトンネルがアクティブになります。この冗長化では、常 にいずれかのトンネルを経由して VPC への接続を保持する必要があります。

バージョン 9.7.1 以降の Cisco ASA は、アクティブ/アクティブモードをサポートします。これらの Cisco ASA を使用する場合は、両方のトンネルを同時にアクティブにすることができます。この冗 長化では、常にいずれかのトンネルを経由して VPC への接続を保持する必要があります。

Cisco デバイスの場合は、次の作業を行う必要があります。

- 外部インターフェイスを設定します。
- Crypto ISAKMP Policy Sequence の数値が一意であることを確認します。
- Crypto List Policy Sequence の数値が一意であることを確認します。
- Crypto IPsec Transform Set および Crypto ISAKMP Policy Sequence と、デバイスに設定された他のすべての IPsec トンネルの整合性が確保されていることを確認します。
- SLA モニタリング番号が一意であることを確認します。
- カスタマーゲートウェイデバイスとローカルネットワークとの間でトラフィックを動かす内部ルー ティングをすべて設定します。

AWS Site-to-Site VPN カスタマーゲートウェイデバイス用のダウンロード 可能な動的ルーティング設定ファイル

Site-to-Site VPN 接続設定に固有の値を含むサンプル設定ファイルをダウンロードするに は、Amazon VPC コンソール、 AWS コマンドライン、または Amazon EC2 API を使用します。詳 細については、「ステップ 6: 設定ファイルをダウンロードする」を参照してください。

また、Site-to-Site VPN 接続設定に固有の値を含まないダイナミックルーティング用の汎用設定ファ イルの例をダウンロードすることもできます。dynamic-routing-examples.zip

これらのファイルは、一部のコンポーネントにプレースホルダー値を使用します。たとえば、以下を 使用します。

- VPN 接続 ID、カスタマーゲートウェイ ID および仮想プライベートゲートウェイ ID の値の例
- リモート (外部) IP アドレス AWS エンドポイントのプレースホルダー (AWS_ENDPOINT_1 および AWS_ENDPOINT_2)
- カスタマーゲートウェイデバイスのインターネットルーティング可能な外部インターフェイスの IP アドレスのプレースホルダー (your-cgw-ip-address)
- 事前共有キー値のプレースホルダ (事前共有キー)
- トンネルの内部 IP アドレスの値の例。
- MTU 設定の値の例。

Note

サンプルコンフィギュレーションファイルで提供されている MTU 設定は、例にすぎませ ん。状況に応じた最適な MTU 値の設定については、「<u>AWS Site-to-Site VPN カスタマー</u> <u>ゲートウェイデバイスのベストプラクティス</u>」を参照してください。

プレースホルダー値を指定することに加えて、ファイルは、ほとんどの AWS リージョンで AES128, SHA1、および Diffie-Hellman グループ 2 の Site-to-Site VPN 接続、 AWS GovCloud リー ジョンで AES128, SHA2、および Diffie-Hellman グループ 14 の最小要件を指定します。また、認 証用の事前共有キーも指定します。追加のセキュリティアルゴリズム、Diffie-Hellman グループ、プ ライベート証明書、IPv6 トラフィックを活用するには、サンプル設定ファイルを変更する必要があ ります。

次の図は、カスタマーゲートウェイデバイスに設定されているさまざまなコンポーネントの概要を示 しています。これには、トンネルインターフェイスの IP アドレスの値の例が含まれます。

Customer gateway device

AWS Virtual Private Network カスタマーゲートウェイデバイスの動的ルーティングを 設定する

以下は、ユーザーインターフェイス (使用可能な場合) を使用してカスタマーゲートウェイデバイス を設定する手順の例です。

Check Point

以下は、Gaia ウェブポータルと Check Point SmartDashboard を使用して、R77.10 以降を実 行する Check Point Security Gateway デバイスを設定するステップです。また、Check Point Support Center の Amazon Web Services (AWS) VPN BGP の記事も参照してください。

トンネルインターフェイスを設定するには

最初のステップは、VPN トンネルを作成し、各トンネル用のカスタマーゲートウェイと仮想プラ イベートゲートウェイのプライベート (内部) IP アドレスを提供することです。最初のトンネル を作成するには、設定ファイルの IPSec Tunnel #1 セクションで提供される情報を使用しま す。2 番目のトンネルを作成するには、設定ファイルの IPSec Tunnel #2 セクションで提供さ れる値を使用します。

- SSH でセキュリティゲートウェイに接続します。デフォルト以外のシェルを使用している場合は、次のコマンドを実行して、clish に変更します。clish
- 次のコマンドを実行して、カスタマーゲートウェイ ASN (カスタマーゲートウェイの作成時 に提供された ASN AWS) を設定します。

set as 65000

 設定ファイルの IPSec Tunnel #1 セクションで提供されている情報を使用して、最初の トンネル用のトンネルインターフェイスを作成します。AWS_VPC_Tunnel_1 など、トンネ ルに一意の名前をつけます。

add vpn tunnel 1 type numbered local 169.254.44.234 remote 169.254.44.233
peer AWS_VPC_Tunnel_1
set interface vpnt1 state on
set interface vpnt1 mtu 1436

2番目のトンネルを作成するには、設定ファイルの IPSec Tunnel #2 セクションで提供されている情報を使用して、コマンドを繰り返します。AWS_VPC_Tunnel_2 など、トンネルに一意の名前をつけます。

```
add vpn tunnel 1 type numbered local 169.254.44.38 remote 169.254.44.37
peer AWS_VPC_Tunnel_2
set interface vpnt2 state on
set interface vpnt2 mtu 1436
```

5. 仮想プライベートゲートウェイ ASN を設定します。

set bgp external remote-as 7224 on

最初のトンネルの BGP を、設定ファイルの IPSec Tunnel #1 セクションで提供される情報を使用して設定します。

set bgp external remote-as 7224 peer 169.254.44.233 on set bgp external remote-as 7224 peer 169.254.44.233 holdtime 30 set bgp external remote-as 7224 peer 169.254.44.233 keepalive 10 7. 2番目のトンネルの BGP を、設定ファイルの IPSec Tunnel #2 セクションで提供される 情報を使用して設定します。

set bgp external remote-as 7224 peer 169.254.44.37 on
set bgp external remote-as 7224 peer 169.254.44.37 holdtime 30
set bgp external remote-as 7224 peer 169.254.44.37 keepalive 10

8. 設定を保存します。

save config

BGP ポリシーを作成するには

次に、 AWSによってアドバタイズされたルートのインポートを許可する BGP ポリシーを作成し ます。次に、ローカルルートを AWSにアドバタイズするようにカスタマーゲートウェイを設定 します。

- 1. Gaia WebUI で、[Advanced Routing]、[Inbound Route Filters] を選択します。[Add] を選択 し、[Add BGP Policy (Based on AS)] を選択します。
- [Add BGP Policy (BGP ポリシーの追加)] の最初のフィールドで 512 から 1024 までの範囲の 値を選択し、2 番目のフィールドに仮想プライベートゲートウェイ ASN (例: 7224) を入力し ます。
- 3. [Save]を選択します。

ローカルルートをアドバタイズするには

次のステップは、ローカルインターフェイスルートを分散するためのものです。また、静的ルー ティングや、動的ルーティングプロトコルによって得られたルーティングなど、さまざまなソー スからのルートを再分散できます。詳細については、「<u>Gaia Advanced Routing R77 Versions</u> Administration Guide」を参照してください。

- 1. Gaia WebUI で、[Advanced Routing]、[Routing Redistribution] の順に選択します。[Add Redistribution From]、[Interface (インターフェイス)] の順に選択します。
- 2. [To Protocol] で、仮想プライベートゲートウェイ ASN; (例: 7224) を選択します。
- 3. [Interface] では内部インターフェイスを選択します。[Save] を選択します。

新しいネットワークオブジェクトを定義するには

次に、仮想プライベートゲートウェイのパブリック (外部) IP アドレスを指定して、各 VPN トン ネル用のネットワークオブジェクトを作成します。後で、VPN コミュニティのサテライトゲート ウェイとしてこれらのオブジェクトを追加します。また、VPN ドメインのプレースホルダーとし て機能する空グループを作成する必要があります。

- 1. Check Point SmartDashboard を開きます。
- [Groups] では、コンテキストメニューを開き、[Groups]、[Simple Group] の順に選択します。各ネットワークオブジェクトに対して同じグループを使用できます。
- 3. [Network Objects] では、コンテキストメニュー (右クリック) を開き、[New]、[Interoperable Device] の順に選択します。
- 4. [Name (名前)] には、ステップ 1 でトンネル用に指定した名前 (例: AWS_VPC_Tunnel_1 ま たは AWS_VPC_Tunnel_2) を入力します。
- 5. [IPv4 Address] には、設定ファイルで提供される仮想プライベートゲートウェイの外部 IP ア ドレス (例: 54.84.169.196) を入力します。設定を保存して、このダイアログボックスを 閉じます。

	In	teroperable Device -AWS_VPC_T	unnel_1	? X
General Properties - Topology III-IPSec VPN	Interoperable Devi	ce - General Properties		
	IPv4 Address: IPv6 Address: Comment:	54.84.169.196 Resolve from N	ame Dynamic Address	380X V
	Products:	vers		

- 6. 左のカテゴリーペインで、[Topology] を選択します。
- 7. [VPN Domain (VPN ドメイン)] セクションで、[Manually defined (手動で定義)] を選択し、ス テップ 2 で作成した空のシンプルなグループを参照して選択します。[OK] を選択します。
- 2番目のネットワークオブジェクトを作成するには、設定ファイルの IPSec Tunnel #2 セクション内の情報を使用して、ステップを繰り返します。
- ゲートウェイネットワークオブジェクトに移動してゲートウェイまたはクラスターオブジェ クトを開き、[Topology] を選択します。
- 10. [VPN Domain (VPN ドメイン)] セクションで、[Manually defined (手動で定義)] を選択し、ス テップ 2 で作成した空のシンプルなグループを参照して選択します。[OK] を選択します。

Note

設定済みの既存の VPN ドメインは保持できます。ただし、特に VPN ドメインが自動的に取得されている場合は、新しい VPN 接続で使用または提供されるドメインと ホストがその VPN ドメインで宣言されていないことを確認してください。

Note

クラスターを使用している場合は、トポロジーを編集してインターフェイスをクラスター インターフェイスとして定義します。設定ファイルで指定された IP アドレスを使用しま す。

VPN コミュニティ、IKE、および IPsec 設定の作成と設定

次に、Check Point ゲートウェイに VPN コミュニティを作成し、そこに各トンネルのネットワー クオブジェクト (相互運用デバイス) を追加します。また、Internet Key Exchange (IKE) および IPsec を設定します。

- 1. ゲートウェイのプロパティから、カテゴリーペインの [IPSec VPN] を選択します。
- 2. [Communities]、[New]、[Star Community] の順に選択します。
- 3. コミュニティの名前 (例: AWS_VPN_Star) を指定し、カテゴリーペインの [Center Gateways] を選択します。
- [Add] を選択して、ゲートウェイまたはクラスターを参加ゲートウェイのリストに追加します。
- 5. カテゴリーペインで、[Satellite Gateways]、[Add (追加)] の順に選択し、先に作成した相互運 用デバイス (AWS_VPC_Tunnel_1 および AWS_VPC_Tunnel_2) を参加ゲートウェイのリス トに追加します。
- カテゴリーペインで、[Encryption] を選択します。[Encryption Method] セクションで、
 [IKEv1 for IPv4 and IKEv2 for IPv6] を選択します。[Encryption Suite] セクションで、
 [Custom]、[Custom Encryption] の順に選択します。

1 Note

IKEv1 機能の [IKEv1 for IPv4 and IKEv2 for IPv6] オプションを選択します。

- ダイアログボックスで次のように暗号化プロパティを設定し、完了したら [OK] を選択します。
 - ・ IKE Security Association (フェーズ 1) のプロパティ
 - Perform key exchange encryption with: AES-128
 - Perform data integrity with: SHA-1
 - ・ IPsec Security Association (フェーズ 2) のプロパティ
 - Perform IPsec data encryption with: AES-128
 - · Perform data integrity with: SHA-1
- 8. カテゴリーペインで [Tunnel Management] を選択します。[Set Permanent Tunnels]、[On all tunnels in the community] の順に選択します。[VPN Tunnel Sharing] セクションで、[One VPN tunnel per Gateway pair] を選択します。
- 9. カテゴリーペインで [Advanced Settings] を展開し、[Shared Secret] を選択します。
- 10. 最初のトンネルのピア名を選択し、[Edit (編集)] を選択して、設定ファイルの IPSec Tunnel #1 セクションで指定されている事前共有キーを入力します。
- 11. 2 番目のトンネルのピア名を選択し、[Edit (編集)] を選択して、設定ファイルの IPSec Tunnel #2 セクションで指定されている事前共有キーを入力します。

General — Certer Gateways — Satelite Gateways — Encyption — Turnel Management — Advanced Settings — UPN Routing — MEP (Multiple Entr — Excluded Services	Star Community Properties - AWS_VPN_Star ? × Shared Secret Image: Community Shared Secret for all External members Each External member will have the following secret with all internal members in this community.
- Advanced VPN Pr - Wire Mode	Peer Name Shared Secret AWS_VPC_Tunnel_1
< III >	Edt Piemove DK. Cancel

- 12. さらに [Advanced Settings (詳細設定)] カテゴリで [Advanced VPN Properties (詳細な VPN プロパティ)] を選択し、プロパティを次のように設定して、完了したら [OK] を選択します。
 - IKE (フェーズ 1):
 - Use Diffie-Hellman group: Group 2 (1024 bit)
 - Renegotiate IKE security associations every 480 minutes
 - IPsec (フェーズ 2):
 - [Use Perfect Forward Secrecy] を選択します。
 - Use Diffie-Hellman group: Group 2 (1024 bit)
 - Renegotiate IPsec security associations every 3600 seconds

ファイアウォールルールを作成するには

次に、ファイアウォールルールとディレクショナルマッチルールを使用し、VPC とローカルネットワーク間での通信を許可するポリシーを設定します。その後、ゲートウェイにポリシーをイン ストールします。

- SmartDashboard で、ゲートウェイの [Global Properties] を選択します。カテゴリーペイン で [VPN] を展開し、[Advanced] を選択します。
- 2. [Enable VPN Directional Match in VPN Column] を選択し、[OK] を選択します。

- 3. SmartDashboard で [Firewall] を選択し、次のルールでポリシーを作成します。
 - VPC サブネットに対して必須プロトコル経由でのローカルネットワークとの通信を許可する。
 - ローカルネットワークに対して必須プロトコル経由での VPC サブネットとの通信を許可する。
- 4. VPN 列のセルのコンテキストメニューを開いて、[Edit Cell] を選択します。
- 5. [VPN Match Conditions] ダイアログボックスで、[Match traffic in this direction only] を選択し ます。それぞれで [Add (追加)] を選択して以下のディレクショナルマッチルールを作成し、 完了したら [OK] を選択します。
 - internal_clear > VPN コミュニティ (先に作成した VPN スターコミュニティ。例: AWS_VPN_Star)
 - VPN コミュニティ > VPN コミュニティ
 - VPN コミュニティ > internal_clear
- 6. SmartDashboard で、[Policy]、[Install] の順に選択します。
- ダイアログボックスでゲートウェイを選択し、[OK] を選択してポリシーをインストールします。

tunnel_keepalive_method プロパティを変更するには

Check Point ゲートウェイでは、IKE の関連付けが停止したときに Dead Peer Detection (DPD) を使用して識別できます。永続トンネルに DPD を設定するには、永続トンネルを AWS VPN コ ミュニティで設定する必要があります。

デフォルトでは、VPN ゲートウェイの tunnel_keepalive_method プロパティは tunnel_test に設定されます。この値を dpd に変更する必要があります。DPD モニタリング が必要な VPN コミュニティ内の各 VPN ゲートウェイは、サードパーティー製 VPN ゲートウェ イを含め、tunnel_keepalive_method プロパティで設定する必要があります。同じゲート ウェイに対して異なるモニタリングメカニズムを設定することはできません。

GuiDBedit ツールを使用して tunnel_keepalive_method プロパティを更新できます。

- 1. Check Point SmartDashboard を開き、[Security Management Server]、[Domain Management Server] の順に選択します。
- 2. [File]、[Database Revision Control...] の順に選択し、リビジョンのスナップショットを作成 します。

- 3. SmartDashboard、SmartView Tracker、SmartView Monitor など、すべての SmartConsole ウィンドウを閉じます。
- 4. GuiBDedit ツールを起動します。詳細については、Check Point サポートセンターの「<u>Check</u> Point Database Tool」という記事を参照してください。
- 5. [Security Management Server]、[Domain Management Server] の順に選択します。
- 6. 左上のペインで、[Table]、[Network Objects]、[network_objects] の順に選択します。
- 7. 右上のペインで、関連する [Security Gateway]、[Cluster] オブジェクトを選択します。
- 8. Ctrl+F キーを押すか、[Search] メニューを使用して以下を検索しま す。tunnel_keepalive_method
- 下のペインで、[tunnel_keepalive_method] のコンテキストメニューを開き、[Edit...] を 選択します。[dpd]、[OK] の順に選択します。
- 10. AWS VPN コミュニティの一部である各ゲートウェイに対して、ステップ 7~9 を繰り返し ます。
- 11. [File]、[Save All] の順に選択します。
- 12. GuiDBedit ツールを閉じます。
- 13. Check Point SmartDashboard を開き、[Security Management Server]、[Domain Management Server] の順に選択します。
- 14. 関連する [Security Gateway]、[Cluster] オブジェクトにポリシーをインストールします。

詳細については、Check Point Support Center の「<u>New VPN features in R77.10</u>」という記事を参 照してください。

TCP MSS クランプを有効にするには

TCP MSS クランプは TCP パケットの最大セグメントサイズを小さくしてパケット断片化を防ぎ ます。

- 次のディレクトリに移動します。C:\Program Files (x86)\CheckPoint \SmartConsole\R77.10\PROGRAM\
- 2. GuiDBEdit.exe ファイルを実行して Check Point Database Tool を開きます。
- 3. [Table]、[Global Properties]、[properties] の順に選択します。
- 4. fw_clamp_tcp_mss で、[Edit]を選択します。値を true に変更し、[OK] を選択します。

トンネルのステータスを確認するには

エキスパートモードのコマンドラインツールから次のコマンドを実行して、トンネルの状態を確認できます。

vpn tunnelutil

表示されたオプションで、IKE 関連付けを検証するには [1] を、IPsec 関連付けを検証するには [2] を選択します。

また、Check Point Smart Tracker Log を使用して、接続内のパケットが暗号化されていることを 検証できます。たとえば次のログは、VPC へのパケットがトンネル 1 経由で送信され、暗号化さ れていることを示します。

Log info		Rule	
Product	Security Gateway/Management	Action	C Encrypt
Date	4Nov2015	Current Rule Number	4-Standard
Time	9:42:01	Rule Name	
Number	21254	User	
Туре	E Log		
Origin	cpgw-997695	More	
Traffic		Rule UID	{0AA18015-FF7B-4650-B0CE- 3989E658CF04}
Source	Management_PC (192.168.1.116)	Community	AWS_VPN_Star
		Encryption Scheme	ĭ IKE
Destination	10.28.13.28	Data Encryption	ESP: AES-128 + SHA1 + PFS
Service	***	Methods	(group 2)
Protocol	101P icmp	VPN Peer Gateway	AWS_VPC_Tunnel_1 (54.84.169.196)
Interface	🖶 eth0	Subproduct	M VPN
Source Port		VPN Feature	VPN
Policy		Product Family	R Network
Policy Name	Standard	Information	service id icmp-proto
Policy Date	Tue Nov 03 11:33:45 2015		ICMP: Echo Request
Policy Management	cpgw-997695		ICMP Type: 8 ICMP Code: 0

SonicWALL

SonicOS 管理インターフェイスを使用して SonicWALL デバイスを設定できます。トンネルの設 定方法の詳細については、「<u>AWS Site-to-Site VPN カスタマーゲートウェイデバイスの静的ルー</u> ティングを設定する」を参照してください。

このSonicOS 管理インターフェイスを使用して、デバイスの BGP を設定することはできません。代わりに、設定ファイル例の [BGP] というセクションの下にあるコマンドライン手順を使用 します。

Cisco デバイス: 追加情報

一部の Cisco ASA ではアクティブ/スタンバイモードのみがサポートされています。これらの Cisco ASA を使用する場合は、アクティブなトンネルを一度に 1 個のみ保持できます。最初のトンネルが 利用不可になった場合は、他方のスタンバイトンネルがアクティブになります。この冗長化では、常 にいずれかのトンネルを経由して VPC への接続を保持する必要があります。

バージョン 9.7.1 以降の Cisco ASA は、アクティブ/アクティブモードをサポートします。これらの Cisco ASA を使用する場合は、両方のトンネルを同時にアクティブにすることができます。この冗 長化では、常にいずれかのトンネルを経由して VPC への接続を保持する必要があります。

Cisco デバイスの場合は、次の作業を行う必要があります。

- 外部インターフェイスを設定します。
- Crypto ISAKMP Policy Sequence の数値が一意であることを確認します。
- Crypto List Policy Sequence の数値が一意であることを確認します。
- Crypto IPsec Transform Set および Crypto ISAKMP Policy Sequence と、デバイスに設定された他のすべての IPsec トンネルの整合性が確保されていることを確認します。
- SLA モニタリング番号が一意であることを確認します。
- カスタマーゲートウェイデバイスとローカルネットワークとの間でトラフィックを動かす内部ルー ティングをすべて設定します。

Juniper デバイス: 追加情報

次の情報は、Juniper J シリーズおよび SRX カスタマーゲートウェイデバイスの設定ファイルの例に 適用されます。

- 外部インターフェイスは ge-0/0/0.0 と呼ばれます。
- トンネルインターフェイス ID は st0.1 および st0.2 と呼ばれます。
- アップリンクインターフェイスのセキュリティゾーンを確実に特定します (設定情報ではデフォル トゾーンの 'untrust' を使用します)。
- 内部インターフェイスのセキュリティゾーンを確実に特定します (設定情報ではデフォルトゾーンの 'trust' を使用します)。

Windows Server を AWS Site-to-Site VPN カスタマーゲートウェイ デバイスとして設定する

Windows Server を実行するサーバーを VPC のカスタマーゲートウェイデバイスとして設定できます。Windows Server を VPC 内の EC2 インスタンスで実行しているか独自のサーバーで実行しているかに関わらず、次のプロセスを使用します。次の手順は、Windows Server 2012 R2 以降に適用されます。

内容

- Windows インスタンスの設定
- ステップ 1: VPN 接続を作成し、VPC を設定する
- ステップ 2: VPN 接続の設定ファイルをダウンロードする
- ステップ 3: Windows Server を設定する
- ステップ 4: VPN トンネルを設定する
- ステップ 5: 停止しているゲートウェイの検出を有効にする
- ステップ 6: VPN 接続をテストする

Windows インスタンスの設定

Windows AMI から起動した EC2 インスタンスで Windows Server を設定する場合は、次の手順を実行します。

- インスタンスの送信元/送信先チェックを無効にします。
 - 1. Amazon EC2 コンソール (https://console.aws.amazon.com/ec2/) を開きます。
 - 2. Windows Server インスタンスを選択して、[Actions]、[Networking]、[Change source/ destination check] と選択します。[Stop] を選択してから、[Save] を選択します。
- 他のインスタンスからトラフィックをルーティングできるように、アダプタの設定を更新します。
 - 1. Windows インスタンスに接続します。詳細については、「<u>Windows インスタンスへの接続</u>」を 参照してください。
 - 2. [コントロールパネル] を開き、[デバイスマネージャー] を起動します。
 - 3. [ネットワークアダプター] ノードを展開します。
 - 4. ネットワークアダプタ (インスタンスタイプに応じて、Amazon Elastic ネットワークアダプタま たは Intel 82599 仮想関数) を選択し、[Action]、[Properties] の順に選択します。

- 5. [詳細設定] タブで、[IPv4 Checksum Offload]、[TCP Checksum Offload (IPv4)]、および [UDP Checksum Offload (IPv4)] の各プロパティを無効にし、[OK] を選択します。
- Elastic IP アドレスをアカウントに割り当てて、インスタンスに関連付けます。詳細については、 「Amazon EC2 ユーザーガイド」の「<u>Elastic IP アドレス</u>」を参照してください。このアドレスを メモしておきます。カスタマーゲートウェイを作成するときに必要になります。
- インスタンスのセキュリティグループのルールでアウトバウンドの IPsec トラフィックが許可されていることを確認します。デフォルトでは、セキュリティグループは、すべてのアウトバウンドトラフィックを許可します。ただし、セキュリティグループのアウトバウンドルールが元の状態から変更されている場合、IPsec トラフィック用にアウトバウンドのカスタムプロトコルルール (IP プロトコル 50、IP プロトコル 51、UDP 500)を作成する必要があります。

Windows インスタンスが配置されているネットワークの CIDR 範囲 (172.31.0.0/16 など) を書き 留めます。

ステップ 1: VPN 接続を作成し、VPC を設定する

VPC から VPN 接続を作成するには、次の手順を実行します。

- 1. 仮想プライベートゲートウェイを作成し、VPC にアタッチします。詳細については、「<u>仮想プラ</u> イベートゲートウェイの作成」を参照してください。
- 2. VPN 接続と新しいカスタマーゲートウェイを作成します。カスタマーゲートウェイの場合、Windows Server のパブリック IP アドレスを指定します。VPN 接続の場合は、静的 ルーティングを選択し、Windows Server が配置されているネットワークの CIDR 範囲 (例: 172.31.0.0/16)を入力します。詳細については、「ステップ 5: VPN 接続を作成する」を参照 してください。

VPN 接続を作成したら、VPN 接続を介した通信を有効にするように VPC を設定します。

VPC を設定するには

Windows Server と通信するインスタンスを起動するためのプライベートサブネットを VPC で作成します (まだ、ない場合)。詳細については、「<u>VPC でサブネットを作成する</u>」を参照してください。

Note

プライベートサブネットは、インターネットゲートウェイへのルートがないサブネットで す。このサブネットのルーティングについては、次の項目で説明します。

- VPN 接続のルートテーブルを更新します。
 - 仮想プライベートゲートウェイをターゲットに指定し、Windows Server のネットワーク (CIDR 範囲) を宛先に指定して、プライベートサブネットのルートテーブルにルートを追加します。詳 細については、「Amazon VPC ユーザーガイド」の「<u>ルートテーブルでルートを追加および削</u> 除する」を参照してください。
 - 仮想プライベートゲートウェイのルート伝達を有効にします。詳細については、「(仮想プライ ベートゲートウェイ) ルートテーブルでルート伝播を有効にする」を参照してください。
- VPC とネットワーク間の通信を許可する、インスタンスのセキュリティグループを作成します。
 - ネットワークからのインバウンド RDP または SSH アクセスを許可するルールを追加します。 これにより、ネットワークから VPC のインスタンスに接続できます。たとえば、ネットワーク のコンピュータが VPC 内の Linux インスタンスにアクセスできるようにするには、SSH タイ プのインバウンドルールを作成し、ソースをネットワークの CIDR 範囲 (例: 172.31.0.0/16) に設定します。詳細については、Amazon VPC ユーザーガイドの「<u>VPC のセキュリティグルー</u> プ」を参照してください。
 - ネットワークからのインバウンド ICMP アクセスを許可するルールを追加します。これにより、Windows Server から VPC 内のインスタンスへの ping を実行して、VPN 接続をテストできます。

ステップ 2: VPN 接続の設定ファイルをダウンロードする

Amazon VPC コンソールを使用して、VPN 接続用の Windows Server 設定ファイルをダウンロード できます。

設定ファイルをダウンロードするには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. ナビゲーションペインで、[Site-to-Site VPN Connections (Site-to-Site VPN 接続)] を選択します。
- 3. VPN 接続を選択してから、[設定のダウンロード] を選択します。

 ベンダーとして [Microsoft]、プラットフォームとして [Windows Server]、ソフトウェアとして [2012 R2] を選択します。[ダウンロード] を選択します。ファイルを開くか保存できます。

設定ファイルには、次の例のような情報のセクションが含まれています。この情報はトンネルごとに 1 回ずつ 2 回表示されます。

vgw-1a2b3c4d Tunnel1	
Local Tunnel Endpoint:	203.0.113.1
Remote Tunnel Endpoint:	203.83.222.237
Endpoint 1:	[Your_Static_Route_IP_Prefix]
Endpoint 2:	[Your_VPC_CIDR_Block]
Preshared key:	xCjNLsLoCmKsakwcdoR9yX6GsEXAMPLE

Local Tunnel Endpoint

VPN 接続の作成時にカスタマーゲートウェイ用に指定した IP アドレスです。

Remote Tunnel Endpoint

接続の AWS 側で VPN 接続を終了する仮想プライベートゲートウェイの 2 つの IP アドレスのう ちの 1 つ。

Endpoint 1

VPN 接続を作成したときに静的ルートとして指定した IP プレフィックスです。VPN 接続を使用 して VPC にアクセスすることを許可された、ネットワークの IP アドレスです。

Endpoint 2

仮想プライベートゲートウェイにアタッチされた VPC の IP アドレス範囲 (CIDR ブロック) (例: 10.0.0.0/16) です。

Preshared key

Local Tunnel Endpoint と Remote Tunnel Endpoint との間で IPsec VPN 接続を確立す るために使用される事前共有キーです。

VPN 接続の一部として両方のトンネルを設定することをお勧めします。各トンネルは、VPN 接続の Amazon 側の個別の VPN コンセントレータに接続します。一度に起動できるトンネルは 1 つだけで すが、1 番目のトンネルが停止すると、2 番目のトンネルが自動的に接続を確立します。冗長トンネ ルを設定すると、デバイスが故障した場合でも継続的な可用性を確保できます。一度に使用できるト ンネルは 1 つだけであるため、その 1 つのトンネルが停止したことが VPC コンソールに表示されま す。これは予期されている動作のため、お客様が操作を行う必要はありません。

2 つのトンネルを設定すると、 内でデバイス障害が発生した場合 AWS、VPN 接続は数分以内に仮 想プライベートゲートウェイの 2 番目のトンネルに自動的にフェイルオーバーします。カスタマー ゲートウェイデバイスを設定するときは、両方のトンネルを設定することが重要です。

Note

は、仮想プライベートゲートウェイで定期メンテナンスを随時 AWS 実行します。このメン テナンスにより、VPN 接続 の 2 つのトンネルのうち 1 つが短時間無効になることがありま す。このメンテナンスの実行中、VPN 接続は自動的に 2 番目のトンネルにフェイルオーバー します。

Internet Key Exchange (IKE) および IPsec Security Associations (SA) についての追加情報が、ダウ ンロードした設定ファイルに記述されています。

MainModeSecMethods:	DHGroup2-AES128-SHA1
MainModeKeyLifetime:	480min,0sess
QuickModeSecMethods:	ESP:SHA1-AES128+60min+100000kb
QuickModePFS:	DHGroup2

MainModeSecMethods

IKE SA 用の暗号化および認証のアルゴリズムです。これらは、VPN 接続用の推奨設定 と、Windows Server IPsec VPN 接続用のデフォルト設定です。

MainModeKeyLifetime

IKE SA キーの有効期間です。 これは VPN 接続用の推奨設定であり、Windows Server IPsec VPN 接続用のデフォルト設定です。

QuickModeSecMethods

IPsec SA 用の暗号化および認証のアルゴリズムです。これらは、VPN 接続用の推奨設定 と、Windows Server IPsec VPN 接続用のデフォルト設定です。

QuickModePFS

IPsec セッションにはマスターキー PFS (Perfect Forward Secrecy) を使用することを推奨します。

ステップ 3: Windows Server を設定する

VPN トンネルを設定する前に、Windows Server でルーティングとリモートアクセスサービスをイン ストールして設定する必要があります。これにより、リモートユーザーがお客様のネットワーク上の リソースにアクセスできるようになります。

ルーティングおよびリモートアクセスサービスをインストールするには

- 1. Windows Server にログオンします。
- 2. [Start] メニューに移動し、[Server Manager] を選択します。
- 3. ルーティングおよびリモートアクセスサービスをインストールします。
 - a. [Manage]メニューから、[Add Roles and Features] を選択します。
 - b. [Before You Begin] ページで、サーバーが前提条件を満たしていることを確認し、[Next] を 選択します。
 - c. [Role-based or feature-based installation] を選択し、次に [Next] を選択します。
 - d. [Select a server from the server pool] を選択し、Windows Server を選択して [Next] を選択 します。
 - e. リストで [Network Policy and Access Services] を選択します。表示されるダイアログボッ クスで、[Add Features] を選択してこのロールに必要な機能を確認します。
 - f. 同じリストで、[リモート アクセス]、[次へ] の順に選択します。
 - g. [Select features] (機能を選択) ページで、[Next] (次へ) を選択します。
 - h. [Network Policy and Access Services] ページで、[Next] を選択します。
 - i. [Remote Access] ページで、[Next] を選択します。次のページで、[DirectAccess and VPN (RAS)] を選択します。表示されるダイアログボックスで、[Add Features] を選択してこのロールサービスに必要な機能を確認します。同じリストで、[Routing] を選択し、次に [Next] を選択します。
 - j. [Web Server Role (IIS)] ページで、[Next] を選択します。デフォルトの選択のまま残して、 [Next] を選択します。
 - k. [インストール]を選択します。インストールが完了したら、[Close] を選択してください。

ルーティングおよびリモートアクセスサーバーを設定して有効にするには

- ダッシュボードで、[Notifications] (フラグのアイコン) を選択します。デプロイ後の設定を完了 するためのタスクが必要になる場合があります。[Open the Getting Started Wizard] リンクを選 択します。
- 2. [Deploy VPN only] を選択します。
- [Routing and Remote Access] ダイアログボックスで、サーバー名を選択します。さらに [アクション] を選択して [Configure and Enable Routing and Remote Access (Routing and Remote Access の設定と有効化)] を選択します。
- 4. [Routing and Remote Access Server Setup Wizard] の最初のページで、[Next] を選択します。
- 5. [構成]ページで、[カスタム構成]、[次へ]の順に選択します。
- 6. [LAN ルーティング]、[次へ]、[完了] の順に選択します。
- [Routing and Remote Access] ダイアログボックスにメッセージが表示されたら、[Start service]
 を選択します。

ステップ 4: VPN トンネルを設定する

ダウンロードした設定ファイルに含まれている netsh スクリプトを実行するか、Windows Server の ユーザーインターフェイスを使用して、VPN トンネルを設定できます。

A Important

IPsec セッションにはマスターキーの完全前方秘匿性 (PFS) を使用することをお勧めしま す。netsh スクリプトを実行する場合は、PFS (qmpfs=dhgroup2) を有効にするパラメータ が含まれます。Windows のユーザーインターフェイスを使用して PFS を有効にすることは できません。コマンドラインを使用して有効にする必要があります。

オプション

- オプション 1: netsh スクリプトを実行する
- ・オプション 2: Windows Server ユーザーインターフェイスを使用する

オプション 1: netsh スクリプトを実行する

ダウンロードした設定ファイルから netsh スクリプトをコピーし、変数を置き換えます。スクリプト の例を次に示します。 netsh advfirewall consec add rule Name="vgw-1a2b3c4d Tunnel 1" ^
Enable=Yes Profile=any Type=Static Mode=Tunnel ^
LocalTunnelEndpoint=Windows_Server_Private_IP_address ^
RemoteTunnelEndpoint=203.83.222.236 Endpoint1=Your_Static_Route_IP_Prefix ^
Endpoint2=Your_VPC_CIDR_Block Protocol=Any Action=RequireInClearOut ^
Auth1=ComputerPSK Auth1PSK=xCjNLsLoCmKsakwcdoR9yX6GsEXAMPLE ^
QMSecMethods=ESP:SHA1-AES128+60min+10000kb ^
ExemptIPsecProtectedConnections=No ApplyAuthz=No QMPFS=dhgroup2

[Name]: 推奨された名前 (vgw-1a2b3c4d Tunnel 1)) を選択した名前で置き換えることができま す。

[LocalTunnelEndpoint]: ネットワークの Windows Server のプライベート IP アドレスを入力します。

[Endpoint1]: Windows Server が存在するネットワークの CIDR ブロック (たとえば、172.31.0.0/16) です。この値を二重引用符 (") で囲みます。

[Endpoint2]: VPC または VPC のサブネットの CIDR ブロック (たとえば、10.0.0.0/16) です。こ の値を二重引用符 (") で囲みます。

更新したスクリプトを Windows Server のコマンドプロンプトウィンドウで実行します。(^ を使用す ると、コマンド行で折り返しテキストの切り取りと貼り付けができます)。この VPN 接続に 2 番目 の VPN トンネルを設定するには、設定ファイルにある 2 番目の netsh スクリプトを使用してこのプ ロセスを繰り返します。

作業が終了したら、「Windows ファイアウォールを設定する」を参照してください。

netsh パラメータの詳細については、「Microsoft TechNet ライブラリ」の「<u>Netsh AdvFirewall</u> Consec Commands」を参照してください。

オプション 2: Windows Server ユーザーインターフェイスを使用する

Windows Server ユーザーインターフェイスを使用して VPN トンネルを設定することもできます。

A Important

Windows Server ユーザーインターフェイスを使用してマスターキー PFS (Perfect Forward Secrecy) を有効にすることはできません。PFS を有効にするには、「<u>マスターキー PFS</u> (<u>Perfect Forward Secrecy</u>) を有効にする」で説明されているように、コマンドラインを使う 必要があります。
タスク

- VPN トンネル用のセキュリティルールを設定する
- トンネルの設定を確認する
- マスターキー PFS (Perfect Forward Secrecy) を有効にする
- ・ Windows ファイアウォールを設定する

VPN トンネル用のセキュリティルールを設定する

このセクションでは、Windows Server のセキュリティルールを設定して VPN トンネルを作成しま す。

VPN トンネル用のセキュリティルールを設定するには

- 1. Server Manager を開き、[Tools] を選択し、[Windows Defender Firewall with Advanced Security] を選択します。
- 2. [Connection Security Rules] を選択し、[Action] を選択して [New Rule] を選択します。
- 3. [New Connection Security Rule] ウィザードの [Rule Type] ページで、[Tunnel] を選択し、[Next] を選択します。
- 4. [Tunnel Type] ページの [What type of tunnel would you like to create] で、[Custom Configuration] を選択します。[Would you like to exempt IPsec-protected connections from this tunnel] で、デフォルト値を選択したまま ([No. Send all network traffic that matches this connection security rule through the tunnel]) にして、[Next] を選択します。
- 5. [要件] ページで、[インバウンド接続の認証情報を要求する] を選択します。[アウトバウンド接続 のトンネルを確立しない] を選択し、[次へ] を選択します。
- [Tunnel Endpoints (トンネルエンドポイント)] ページの [Which computers are in Endpoint 1 (Endpoint 1 のコンピュータ)] で、[Add (追加)] を選択します。ネットワーク (Windows Server カ スタマーゲートウェイデバイスの背後にある) の CIDR 範囲 (172.31.0.0/16 など) を入力し、 [OK] を選択します。この範囲にはカスタマーゲートウェイデバイスの IP アドレスを含めること ができます。
- 7. [What is the local tunnel endpoint (closest to computer in Endpoint 1)] で、[Edit] を選択します。 [IPv4 address] フィールドに Windows Server のプライベート IP アドレスを入力し、[OK] を選 択します。
- 8. [What is the remote tunnel endpoint (closest to computers in Endpoint 2)] で、[Edit] を選択しま す。[IPv4 address] フィールドに、設定ファイルにあるトンネル 1 の仮想プライベートゲート

ウェイの IP アドレス (「Remote Tunnel Endpoint」を参照)を入力し、[OK]を選択します。

Important

トンネル 2 に対してこの手順を繰り返す場合は、トンネル 2 のエンドポイントを選択し てください。

9. [Which computers are in Endpoint 2] で、[Add] を選択します。[This IP address or subnet field] に VPC の CIDR ブロックを入力して、[OK] を選択します。

▲ Important

[Which computers are in Endpoint 2] が表示されるまでダイアログボックスをスクロール します。このステップが完了するまで、[Next] を選択しないでください。サーバーに接 続できなくなります。

@	New Connection Security Rule Wizard	x
Tunnel Endpoints Specify the endpoints for the IPs	sec tunnel defined by this rule.	
Steps:	Which computers are in Endpoint 1?	^
Rule Type Tunnel Type Requirements	Add	
Tunnel Endpoints Authentication Method Profile	What is the local tunnel endpoint (closest to computers in Endpoint 1)?	
Name	IPv4 address: 172.31.13.36 Edit IPv6 address:	=
	What is the remote tunnel endpoint (closest to computers in Endpoint 2)? IPv4 address: 54.240.204.89 IPv6 address: Edit	
	Which computers are in Endpoint 2? 10.0.0.0/16 Add	~
	< Back Next > Cance	ł

- 10. 指定したすべての設定が正しいことを確認し、[次へ]を選択します。
- 11. [認証方法] ページで、[詳細設定]、[カスタマイズ] の順に選択します。
- 12. [First authentication methods] で、[Add] を選択します。
- 13. [Preshared key (事前共有キー)] を選択し、設定ファイルにある事前共有キーの値を入力して、 [OK] を選択します。

トンネル2に対してこの手順を繰り返す場合は、トンネル2の事前共有キーを選択して ください。

- 14. [First authentication is optional] が選択されていないことを確認し、[OK] を選択します。
- 15. [Next (次へ)] を選択します。

Important

- 16. [プロファイル] ページで、[ドメイン]、[プライベート]、[パブリック] の 3 つのチェックボックス をすべてオンにします。[Next (次へ)] を選択します。
- 17. [Name] ページで、接続ルールの名前 (VPN to Tunnel 1など) を入力し、[完了] を選択しま す。

上記の手順を繰り返し、設定ファイルにあるトンネル2のデータを指定します。

完了すると、VPN 接続に 2 つのトンネルが設定されます。

トンネルの設定を確認する

トンネルの設定を確認するには

- 1. Server Manager を開き、[Tools] を選択して、[Windows Firewall with Advanced Security] を選択 します。次に [Connection Security Rules] を選択します。
- 2. 両方のトンネルについて次の設定を確認します。
 - ・ [Enabled] は Yes。
 - [Endpoint 1] はネットワークの CIDR ブロックです。
 - ・ [Endpoint 2] は VPC の CIDR ブロックです。
 - 認証モードは Require inbound and clear outboundです
 - [Authentication method] は Custom。
 - ・ [Endpoint 1 port] は Any。
 - ・ [Endpoint 2 port] は Any。
 - ・ [Protocol] は Any。
- 3. 最初のルールを選択し、[Properties]を選択します。
- [Authentication (認証)] タブの [Method (方法)] で、[Customize (カスタマイズ)] を選択します。
 [First authentication methods (最初の認証方法)] に、設定ファイルにあるトンネルの正しい事前 共有キーが指定されていることを確認し、[OK] を選択します。
- 5. [Advanced] タブで、[Domain]、[Private]、および [Public] がすべて選択されていることを確認し ます。
- 6. [IPsec tunneling] の [Customize] を選択します。IPsec トンネリングが次のように設定されてい ることを確認して [OK] を選択します。再度 [OK] を選択してダイアログボックスを閉じます。

• [Use IPsec tunneling] が選択されている。

- [Local tunnel endpoint (closest to Endpoint 1)] に、Windows Server の IP アドレスが設定されている。カスタマーゲートウェイデバイスが EC2 インスタンスである場合、これはインスタンスのプライベート IP アドレスです。
- [Remote tunnel endpoint (closest to Endpoint 2)] に、このトンネルの仮想プライベートゲート ウェイの IP アドレスが設定されている。
- 7. 2番目のトンネルのプロパティを開きます。このトンネルに対してステップ4から7までを繰り返します。

マスターキー PFS (Perfect Forward Secrecy) を有効にする

マスターキー PFS (Perfect Forward Secrecy) を有効にするにはコマンドラインを使用できます。 ユーザーインターフェイスを使用してこの機能を有効にすることはできません。

マスターキー PFS (Perfect Forward Secrecy) を有効にするには

- 1. Windows Server で、新しいコマンドプロンプトウィンドウを開きます。
- 2. 次のコマンドを入力します。rule_name は最初の接続ルールに指定した名前に置き換えます。

netsh advfirewall consec set rule name="rule_name" new QMPFS=dhgroup2
 QMSecMethods=ESP:SHA1-AES128+60min+100000kb

 2番目のトンネルにステップ2を繰り返します。今回は rule_name を2番目の接続ルールに 指定した名前に置き換えます。

Windows ファイアウォールを設定する

サーバーのセキュリティルールを設定した後、仮想プライベートゲートウェイと連動するように基本 的な IPsec 設定を行います。

Windows ファイアウォールを設定するには

- 1. Server Manager を開き、[Tools] を選択して [Windows Defender Firewall with Advanced Security] を選択します。次に [Properties] を選択します。
- 2. [IPsec Settings] タブの [IPsec exemptions] で、[Exempt ICMP from IPsec] が [No (default)] に なっていることを確認します。[IPsec tunnel authorization] が [None] であることを確認します。
- 3. [IPsec defaults] の [Customize] を選択します。
- 4. [Key exchange (Main Mode)]の [Advanced]を選択し、[Customize]を選択します。

- [Customize Advanced Key Exchange Settings (キー交換の詳細設定のカスタマイズ)] の [Security Method (セキュリティメソッド)] で、最初のエントリに次のデフォルト値が使用されていること を確認します。
 - 整合性: SHA-1
 - 暗号化: AES-CBC 128
 - キー交換アルゴリズム: Diffie-Hellman Group 2
 - [Key lifetimes] で、[Minutes] が 480 で [Sessions] が 0 であることを確認します。

これらの設定は、設定ファイルの次のエントリに対応します。

MainModeSecMethods: DHGroup2-AES128-SHA1,DHGroup2-3DES-SHA1
MainModeKeyLifetime: 480min,0sec

- 6. [Key exchange options] の [Use Diffie-Hellman for enhanced security] を選択し、[OK] を選択し ます。
- 7. [Data protection (Quick Mode)] の [Advanced] を選択し、[Customize] を選択します。
- 8. [Require encryption for all connection security rules that use these settings] を選択します。
- 9. [Data integrity and encryption]は次のようにデフォルト値のままにします。
 - ・プロトコル: ESP
 - 整合性: SHA-1
 - 暗号化: AES-CBC 128
 - 有効期間: 60 分

これらの値は設定ファイルの以下のエントリに対応します。

QuickModeSecMethods: ESP:SHA1-AES128+60min+100000kb

10. [OK] を選択して [IPsec の設定のカスタマイズ] ダイアログボックスに戻り、再度 [OK] を選択し て設定を保存します。

ステップ 5: 停止しているゲートウェイの検出を有効にする

次に、ゲートウェイが使用できなくなったら検出するように TCP を設定します。それには、レジス トリキー HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters を変更します。 このステップは、これより前のセクションを完了してから実行してください。レジストリキーの変更 後、サーバーを再起動する必要があります。

停止しているゲートウェイを検出するには

- Windows Server でコマンドプロンプトまたは PowerShell セッションを起動し、regedit と入力 してレジストリエディタを起動します。
- 2. [HKEY_LOCAL_MACHINE]、[SYSTEM]、[CurrentControlSet]、[Services]、[Tcpip]、 [Parameters] の順に展開します。
- 3. [Edit] メニューの [New] を選択し、[DWORD (32-bit) Value] を選択します。
- 4. 名前として [EnableDeadGWDetect] を入力します。
- 5. [EnableDeadGWDetect] を選択してから、[編集]、[変更] を選択します。
- 6. [Value data] に「1」と入力し、[OK] を選択します。
- 7. レジストリエディタを終了し、サーバーを再起動します。

詳細については、「Microsoft TechNet ライブラリ」の「<u>EnableDeadGWDetect</u>」を参照してくださ い。

ステップ 6: VPN 接続をテストする

VPN 接続が正常に動作していることテストするには、インスタンスを VPC 内で起動し、インター ネットに接続されていないことを確認します。インスタンスを起動した後、Windows Server からプ ライベート IP アドレスに対して ping を実行します。VPN トンネルは、カスタマーゲートウェイデ バイスからトラフィックが生成されるときに開始されます。したがって、ping コマンドも VPN 接続 を開始します。

VPN 接続をテストするステップについては、「<u>AWS Site-to-Site VPN 接続をテストする</u>」を参照し てください。

ping コマンドが失敗した場合、次の情報を確認します。

 VPC 内のインスタンスに対して ICMP が許容されるように、セキュリティグループのルールが 設定されていることを確認します。Windows Server が EC2 インスタンスである場合は、セキュ リティグループのアウトバウンドルールで IPsec トラフィックが許可されていることを確認しま す。詳細については、「Windows インスタンスの設定」を参照してください。

- ping 対象のインスタンスのオペレーティングシステムが ICMP に応答するように設定されている ことを確認します。Amazon Linux AMI のいずれかを使用することをお勧めします。
- ping 対象のインスタンスが Windows インスタンスである場合は、そのインスタンスに接続し、Windows ファイアウォールでインバウンド ICMPv4 を有効にします。
- VPC またはサブネットのルートテーブルが正しく設定されていることを確認します。詳細については、「ステップ 1: VPN 接続を作成し、VPC を設定する」を参照してください。
- カスタマーゲートウェイデバイスが EC2 インスタンスである場合は、インスタンスに対して送信 元/送信先チェックが無効になっていることを確認します。詳細については、「<u>Windows インスタ</u> ンスの設定」を参照してください。

Amazon VPC コンソールの [VPN Connections] ページで、使用している VPN 接続を選択します。1 番目のトンネルは起動状態です。2 番目のトンネルは、最初のトンネルが停止するまで使用されませ んが、設定は必要です。暗号化されたトンネルを確立するのに数分かかることがあります。

AWS Site-to-Site VPN カスタマーゲートウェイデバイスのトラブ ルシューティング

カスタマーゲートウェイデバイスの問題をトラブルシューティングするときは、構造化されたアプ ローチを取ることが重要です。このセクションの最初の2つのトピックでは、動的ルーティング用 に設定されたデバイス (BGP が有効) と静的ルーティング用に設定されたデバイス (BGP が有効でな い) をそれぞれ使用する際の問題をトラブルシューティングするための一般的なフローチャートを提 供します。これらのトピックでは、Cisco、Juniper、および Yamaha カスタマーゲートウェイデバ イス向けのデバイス固有のトラブルシューティングガイドについて説明します。

このセクションのトピック以外にも、<u>AWS Site-to-Site VPN ログ</u>を有効にすると、VPN 接続の問題 のトラブルシューティングや解決に非常に役立つ場合があります。一般的なテストの説明について は、「AWS Site-to-Site VPN 接続をテストする」も参照してください。

トピック

- ボーダーゲートウェイプロトコルを使用する際 AWS Site-to-Site VPN の接続のトラブルシュー ティング
- ボーダーゲートウェイプロトコルを使用しない AWS Site-to-Site VPN 接続のトラブルシューティング

- <u>Cisco ASA カスタマーゲートウェイデバイスと AWS Site-to-Site VPN の接続のトラブルシュー</u> ティング
- <u>Cisco IOS カスタマーゲートウェイデバイスと AWS Site-to-Site VPN の接続のトラブルシュー</u> ティング
- ボーダーゲートウェイプロトコルを使用しない Cisco IOS カスタマーゲートウェイデバイス AWS
 Site-to-Site VPN への接続のトラブルシューティング
- Juniper JunOS カスタマーゲートウェイデバイスと AWS Site-to-Site VPN の接続のトラブル シューティング
- Juniper ScreenOS カスタマーゲートウェイデバイスと AWS Site-to-Site VPN の接続のトラブル シューティング
- Yamaha カスタマーゲートウェイデバイスと AWS Site-to-Site VPN の接続のトラブルシューティ ング

追加リソース

- Amazon VPC フォーラム
- <u>Amazon VPC への VPN トンネル接続の問題をトラブルシューティングするにはどうすればよいで</u> <u>すか?</u>

ボーダーゲートウェイプロトコルを使用する際 AWS Site-to-Site VPN の接 続のトラブルシューティング

次の図と表は、ボーダーゲートウェイプロトコル (BGP) を使用するカスタマーゲートウェイデバイ スをトラブルシューティングする、一般的な手順を示しています。また、デバイスのデバッグ機能を 有効にすることをお勧めします。詳細については、ゲートウェイデバイスのベンダーに問い合わせて ください。

111

IKE IKE Security Association が存在するかどうかを確認します。

IKE Security Association は、IPsec Security Association を確立するために使用され るキーの交換に必要です。

IKE Security Association がない場合は、IKE 設定を確認します。設定ファイルに示 されている、暗号化、認証、Perfect Forward Secrecy、およびモードのパラメータ を設定する必要があります。

IKE Security Association が存在する場合は、「IPsec」に進みます。

IPsec IPsec Security Association (SA) が存在するかどうかを確認します。

IPsec SA はトンネル自体です。カスタマーゲートウェイデバイスにクエリを実行 し、IPsec SA がアクティブかどうかを確認します。設定ファイルに示されている、 暗号化、認証、Perfect Forward Secrecy、およびモードのパラメータが設定されて いることを確認します。

IPsec SA が存在しない場合は、IPsec 設定を確認します。

IPsec SA が存在する場合は、「トンネル」に進みます。

トンネル 必須のファイアウォールルールがセットアップされていることを確認します (ルール のリストについては、「<u>AWS Site-to-Site VPN カスタマーゲートウェイデバイスの</u> <u>ファイアウォールルール</u>」を参照)。セットアップされている場合は、次に進みます

トンネル経由の IP 接続があるかどうかを確認します。

トンネルのそれぞれの側に、設定ファイルで指定された IP アドレスが含まれます。 仮想プライベートゲートウェイアドレスは、BGP ネイバーアドレスとして使用さ れます。カスタマーゲートウェイデバイスから、このアドレスに対する ping を実 行し、IP トラフィックが正しく暗号化および復号化されているかどうかを確認しま す。

ping が失敗した場合は、トンネルインターフェイス設定を確認し、正しい IP アドレ スが設定されていることを確認します。

ping が成功した場合は、「BGP」に進みます。

 BGP
 BGP ピアリングセッションがアクティブかどうかを確認します。

 各トンネルについて、以下を実行します。

 ・カスタマーゲートウェイデバイスで、BGP ステータスが Active または Established であるかどうかを確認します。BGP ピアがアクティブになるま で約 30 秒かかる場合があります。

 ・カスタマーゲートウェイデバイスが仮想プライベートゲートウェイへのデフォル トルート (0.0.0.0/0)をアドバタイズしていることを確認します。

 トンネルがこの状態にない場合は、BGP 設定を確認します。

 BGP ピアが確立された場合は、プレフィックスを受け取り、プレフィックスをアド

BGP ビアが確立された場合は、プレフィックスを受け取り、プレフィックスをアド バタイズして、トンネルが正しく設定されます。両方のトンネルがこの状態である ことを確認します。

ボーダーゲートウェイプロトコルを使用しない AWS Site-to-Site VPN 接続 のトラブルシューティング

次の図と表は、ボーダーゲートウェイプロトコル (BGP) を使用しないカスタマーゲートウェイデバ イスをトラブルシューティングする、一般的な手順を示しています。また、デバイスのデバッグ機能 を有効にすることをお勧めします。詳細については、ゲートウェイデバイスのベンダーに問い合わせ てください。

IKE IKE Security Association が存在するかどうかを確認します。

IKE Security Association は、IPsec Security Association を確立するために使用され るキーの交換に必要です。

IKE Security Association がない場合は、IKE 設定を確認します。設定ファイルに示 されている、暗号化、認証、Perfect Forward Secrecy、およびモードのパラメータ を設定する必要があります。

IKE Security Association が存在する場合は、「IPsec」に進みます。

IPsec IPsec Security Association (SA) が存在するかどうかを確認します。

IPsec SA はトンネル自体です。カスタマーゲートウェイデバイスにクエリを実行 し、IPsec SA がアクティブかどうかを確認します。設定ファイルに示されている、 暗号化、認証、Perfect Forward Secrecy、およびモードのパラメータが設定されて いることを確認します。

IPsec SA が存在しない場合は、IPsec 設定を確認します。

IPsec SA が存在する場合は、「トンネル」に進みます。

トンネル 必須のファイアウォールルールがセットアップされていることを確認します (ルール のリストについては、「<u>AWS Site-to-Site VPN カスタマーゲートウェイデバイスの</u> <u>ファイアウォールルール</u>」を参照)。セットアップされている場合は、次に進みます

トンネル経由の IP 接続があるかどうかを確認します。

トンネルのそれぞれの側に、設定ファイルで指定された IP アドレスが含まれます。 仮想プライベートゲートウェイアドレスは、BGP ネイバーアドレスとして使用さ れます。カスタマーゲートウェイデバイスから、このアドレスに対する ping を実 行し、IP トラフィックが正しく暗号化および復号化されているかどうかを確認しま す。

ping が失敗した場合は、トンネルインターフェイス設定を確認し、正しい IP アドレ スが設定されていることを確認します。

ping が成功した場合は、「静的ルート」に進みます。

静的ルー 各トンネルについて、以下を実行します。 ト

- トンネルで次のホップとして VPC CIDR への静的ルートが追加されていることを 確認します。
- Amazon VPC コンソールで静的ルートが追加されていることを確認し、トラ フィックを内部ネットワークにルーティングするように仮想プライベートゲート ウェイに指示します。

トンネルがこの状態にない場合は、デバイス設定を確認します。

トンネルがいずれもこの状態であることを確認したら、終了です。

Cisco ASA カスタマーゲートウェイデバイスと AWS Site-to-Site VPN の接 続のトラブルシューティング

Cisco のカスタマーゲートウェイデバイスの接続をトラブルシューティングする場合 は、IKE、IPsec、ルーティングを考慮します。これらの領域を任意の順序でトラブルシューティン グできますが、IKE から (ネットワークスタックの下から) 開始して上に進むことをお勧めします。

▲ Important

ー部の Cisco ASA ではアクティブ/スタンバイモードのみがサポートされています。これ らの Cisco ASA を使用する場合は、アクティブなトンネルを一度に 1 個のみ保持できま す。最初のトンネルが利用不可になった場合にのみ、他方のスタンバイトンネルがアク ティブになります。スタンバイトンネルは、ログファイルで次のエラーを生成する場合が ありますが、このエラーは無視できます。Rejecting IPSec tunnel: no matching crypto map entry for remote proxy 0.0.0.0/0.0.0.0/0/0 local proxy 0.0.0.0/0.0.0/0/0 on interface outside

IKE

以下のコマンドを使用します。このレスポンスは、IKE が正しく設定されたカスタマーゲートウェイ デバイスを示しています。

ciscoasa# show crypto isakmp sa

/	Active SA	:	2											
I	Rekey SA:	(0 (A	tunnel	will	report	1	Active	and	1	Rekey	SA	during	rekey)
Tota	al IKE SA	:	2											
1	IKE Peer	:	AWS_	ENDPOIN	IT_1									
	Туре	:	L2L			Role	:	: initia	ator					
	Rekey	:	no			State	:	: MM_ACT	IVE					

トンネル内で指定されたリモートゲートウェイの src 値を含む 1 つ以上の行が表示されま す。state は MM_ACTIVE、status は ACTIVE となります。エントリがない場合、またはエントリ が別の状態になっている場合は、IKE が正しく設定されていないことを示しています。

さらにトラブルシューティングする場合は、次のコマンドを実行して診断情報を提供するログメッ セージを有効にします。

router# term mon
router# debug crypto isakmp

デバッグを無効にするには、次のコマンドを使用します。

router# no debug crypto isakmp

IPsec

以下のコマンドを使用します。このレスポンスは、IPsec が正しく設定されたカスタマーゲートウェ イデバイスを示しています。

ciscoasa# show crypto ipsec sa

```
interface: outside
Crypto map tag: VPN_crypto_map_name, seq num: 2, local addr: 172.25.50.101
access-list integ-ppe-loopback extended permit ip any vpc_subnet subnet_mask
local ident (addr/mask/prot/port): (0.0.0.0/0.0.0/0/0)
remote ident (addr/mask/prot/port): (vpc_subnet/subnet_mask/0/0)
current_peer: integ-ppe1
#pkts encaps: 0, #pkts encrypt: 0, #pkts digest: 0
#pkts decaps: 0, #pkts decrypt: 0, #pkts verify: 0
#pkts compressed: 0, #pkts decompressed: 0
```

```
#pkts not compressed: 0, #pkts comp failed: 0, #pkts decomp failed: 0
  #pre-frag successes: 0, #pre-frag failures: 0, #fragments created: 0
  #PMTUs sent: 0, #PMTUs rcvd: 0, #decapsulated frgs needing reassembly: 0
 #send errors: 0, #recv errors: 0
 local crypto endpt.: 172.25.50.101, remote crypto endpt.: AWS_ENDPOINT_1
  path mtu 1500, ipsec overhead 74, media mtu 1500
  current outbound spi: 6D9F8D3B
  current inbound spi : 48B456A6
inbound esp sas:
  spi: 0x48B456A6 (1219778214)
    transform: esp-aes esp-sha-hmac no compression
    in use settings ={L2L, Tunnel, PFS Group 2, }
     slot: 0, conn_id: 4710400, crypto-map: VPN_cry_map_1
    sa timing: remaining key lifetime (kB/sec): (4374000/3593)
    IV size: 16 bytes
    replay detection support: Y
    Anti replay bitmap:
     0x0000000 0x0000001
outbound esp sas:
  spi: 0x6D9F8D3B (1839172923)
    transform: esp-aes esp-sha-hmac no compression
    in use settings ={L2L, Tunnel, PFS Group 2, }
    slot: 0, conn_id: 4710400, crypto-map: VPN_cry_map_1
    sa timing: remaining key lifetime (kB/sec): (4374000/3593)
    IV size: 16 bytes
    replay detection support: Y
    Anti replay bitmap:
     0x00000000 0x00000001
```

各トンネルインターフェイスに対して、inbound esp sas と outbound esp sas がいずれも表 示されます。これは、SA が示され (例: spi: 0x48B456A6)、IPsec が正しく設定されていることを 前提としています。

Cisco ASA では、IPsec は、対象となるトラフィック (暗号化する必要があるトラフィック) が送信 された場合にのみ表示されます。IPsec を常にアクティブにするには、SLA モニターを設定するこ とをお勧めします。SLA モニターは、対象となるトラフィックを引き続き送信し、IPsec を常にアク ティブにします。

また、次の ping コマンドを使用して、ネゴシエーションを開始して上に移動することを IPsec に強 制することもできます。 ping ec2_instance_ip_address

Pinging ec2_instance_ip_address with 32 bytes of data:

```
Reply from ec2_instance_ip_address: bytes=32 time<1ms TTL=128
Reply from ec2_instance_ip_address: bytes=32 time<1ms TTL=128
Reply from ec2_instance_ip_address: bytes=32 time<1ms TTL=128
```

```
Ping statistics for 10.0.0.4:
Packets: Sent = 3, Received = 3, Lost = 0 (0% loss),
```

```
Approximate round trip times in milliseconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

さらにトラブルシューティングする場合は、次のコマンドを使用してデバッグを有効にします。

router# debug crypto ipsec

デバッグを無効にするには、次のコマンドを使用します。

router# no debug crypto ipsec

ルーティング

トンネルのもう一方の端で ping を実行します。機能している場合は、IPsec を確立する必要があり ます。機能していない場合は、アクセスリストを確認し、前の IPsec セクションを参照します。

インスタンスに到達できない場合は、次の情報を確認します。

1. アクセスリストが、暗号化マップに関連付けられたトラフィックを許可するように設定されてい ることを確認します。

これを行うには、次のコマンドを実行します。

ciscoasa# show run crypto

```
crypto ipsec transform-set transform-amzn esp-aes esp-sha-hmac
crypto map VPN_crypto_map_name 1 match address access-list-name
crypto map VPN_crypto_map_name 1 set pfs
```

```
crypto map VPN_crypto_map_name 1 set peer AWS_ENDPOINT_1 AWS_ENDPOINT_2
crypto map VPN_crypto_map_name 1 set transform-set transform-amzn
crypto map VPN_crypto_map_name 1 set security-association lifetime seconds 3600
```

2. 次のコマンドを使用して、アクセスリストを確認します。

ciscoasa# show run access-list access-list-name

access-list access-list-name extended permit ip any vpc_subnet subnet_mask

 アクセスリストが正しいことを確認します。次のアクセスリスト例では、VPC サブネット 10.0.0.0/16 へのすべての内部トラフィックを許可しています。

access-list access-list-name extended permit ip any 10.0.0.0 255.255.0.0

Cisco ASA デバイスから traceroute を実行し、Amazon ルーター (たとえば、AWS_ENDPOINT_1/AWS_ENDPOINT_2) に到達するかどうかを確認します。

これが Amazon ルーターに到達したら、Amazon VPC コンソールで追加した静的ルートと、特定のインスタンスのセキュリティグループを確認します。

5. さらにトラブルシューティングする場合は、設定を確認します。

トンネルインターフェイスをバウンスする

トンネルが稼働しているように見えるが、トラフィックが適切に流れていない場合、トンネルイン ターフェイスを跳ね返す (無効化および再有効化する) と、多くの場合、接続の問題を解決できま す。Cisco ASA でトンネルインターフェイスをバウンスするには:

1. 下記を実行します。

```
ciscoasa# conf t
ciscoasa(config)# interface tunnel X (where X is your tunnel ID)
ciscoasa(config-if)# shutdown
ciscoasa(config-if)# no shutdown
ciscoasa(config-if)# end
```

または、単一行コマンドを使用できます。

ciscoasa# conf t ; interface tunnel X ; shutdown ; no shutdown ; end

 インターフェイスをバウンスした後、VPN 接続が再確立されたかどうか、およびトラフィック が正しく流れているかどうかを確認します。

Cisco IOS カスタマーゲートウェイデバイスと AWS Site-to-Site VPN の接 続のトラブルシューティング

Cisco のカスタマーゲートウェイデバイスの接続をトラブルシューティングする場合 は、IKE、IPsec、トンネル、BGP の 4 つの要素を考慮します。これらの領域を任意の順序でトラブ ルシューティングできますが、IKE から (ネットワークスタックの下から) 開始して上に進むことを お勧めします。

IKE

以下のコマンドを使用します。このレスポンスは、IKE が正しく設定されたカスタマーゲートウェイ デバイスを示しています。

router# show crypto isakmp sa

IPv4 Crypto ISAKMP SA										
dst	src	state	conn-id	slot	status					
192.168.37.160	72.21.209.193	QM_IDLE	2001	0	ACTIVE					
192.168.37.160	72.21.209.225	QM_IDLE	2002	0	ACTIVE					

トンネル内で指定されたリモートゲートウェイの src 値を含む 1 つ以上の行が表示されま す。state は QM_IDLE、status は ACTIVE となります。エントリがない場合、またはエントリが 別の状態になっている場合は、IKE が正しく設定されていないことを示しています。

さらにトラブルシューティングする場合は、次のコマンドを実行して診断情報を提供するログメッ セージを有効にします。

router# term mon
router# debug crypto isakmp

デバッグを無効にするには、次のコマンドを使用します。

router# no debug crypto isakmp

IPsec

以下のコマンドを使用します。このレスポンスは、IPsec が正しく設定されたカスタマーゲートウェ イデバイスを示しています。

```
router# show crypto ipsec sa
```

```
interface: Tunnel1
    Crypto map tag: Tunnel1-head-0, local addr 192.168.37.160
    protected vrf: (none)
    local ident (addr/mask/prot/port): (0.0.0.0/0.0.0.0/0/0)
    remote ident (addr/mask/prot/port): (0.0.0.0/0.0.0.0/0/0)
    current_peer 72.21.209.225 port 500
    PERMIT, flags={origin_is_acl,}
    #pkts encaps: 149, #pkts encrypt: 149, #pkts digest: 149
    #pkts decaps: 146, #pkts decrypt: 146, #pkts verify: 146
     #pkts compressed: 0, #pkts decompressed: 0
     #pkts not compressed: 0, #pkts compr. failed: 0
    #pkts not decompressed: 0, #pkts decompress failed: 0
    #send errors 0, #recv errors 0
    local crypto endpt.: 174.78.144.73, remote crypto endpt.: 72.21.209.225
     path mtu 1500, ip mtu 1500, ip mtu idb FastEthernet0
     current outbound spi: 0xB8357C22(3090512930)
     inbound esp sas:
      spi: 0x6ADB173(112046451)
      transform: esp-aes esp-sha-hmac ,
      in use settings ={Tunnel, }
      conn id: 1, flow_id: Motorola SEC 2.0:1, crypto map: Tunnel1-head-0
      sa timing: remaining key lifetime (k/sec): (4467148/3189)
      IV size: 16 bytes
      replay detection support: Y replay window size: 128
      Status: ACTIVE
     inbound ah sas:
    inbound pcp sas:
    outbound esp sas:
      spi: 0xB8357C22(3090512930)
      transform: esp-aes esp-sha-hmac ,
```

```
in use settings ={Tunnel, }
       conn id: 2, flow_id: Motorola SEC 2.0:2, crypto map: Tunnel1-head-0
       sa timing: remaining key lifetime (k/sec): (4467148/3189)
       IV size: 16 bytes
       replay detection support: Y replay window size: 128
       Status: ACTIVE
     outbound ah sas:
     outbound pcp sas:
interface: Tunnel2
     Crypto map tag: Tunnel2-head-0, local addr 174.78.144.73
     protected vrf: (none)
     local ident (addr/mask/prot/port): (0.0.0.0/0.0.0.0/0/0)
     remote ident (addr/mask/prot/port): (0.0.0.0/0.0.0.0/0/0)
     current_peer 72.21.209.193 port 500
      PERMIT, flags={origin_is_acl,}
     #pkts encaps: 26, #pkts encrypt: 26, #pkts digest: 26
     #pkts decaps: 24, #pkts decrypt: 24, #pkts verify: 24
     #pkts compressed: 0, #pkts decompressed: 0
     #pkts not compressed: 0, #pkts compr. failed: 0
     #pkts not decompressed: 0, #pkts decompress failed: 0
     #send errors 0, #recv errors 0
     local crypto endpt.: 174.78.144.73, remote crypto endpt.: 72.21.209.193
     path mtu 1500, ip mtu 1500, ip mtu idb FastEthernet0
     current outbound spi: 0xF59A3FF6(4120526838)
     inbound esp sas:
      spi: 0xB6720137(3060924727)
      transform: esp-aes esp-sha-hmac ,
       in use settings ={Tunnel, }
       conn id: 3, flow_id: Motorola SEC 2.0:3, crypto map: Tunnel2-head-0
       sa timing: remaining key lifetime (k/sec): (4387273/3492)
       IV size: 16 bytes
       replay detection support: Y replay window size: 128
       Status: ACTIVE
     inbound ah sas:
     inbound pcp sas:
```

outbound esp sas: spi: 0xF59A3FF6(4120526838) transform: esp-aes esp-sha-hmac , in use settings ={Tunnel, } conn id: 4, flow_id: Motorola SEC 2.0:4, crypto map: Tunnel2-head-0 sa timing: remaining key lifetime (k/sec): (4387273/3492) IV size: 16 bytes replay detection support: Y replay window size: 128 Status: ACTIVE outbound ah sas: outbound pcp sas:

各トンネルインターフェイスに対して、inbound esp sas と outbound esp sas がいずれも表 示されます。SA が示され (例: spi: 0xF95D2F3C)、Status が ACTIVE となっていれば、IPsec は 正しく設定されています。

さらにトラブルシューティングする場合は、次のコマンドを使用してデバッグを有効にします。

router# debug crypto ipsec

次のコマンドを使用して、デバッグを無効にします。

router# no debug crypto ipsec

トンネル

最初に、必要なファイアウォールルールがあることを確認します。詳細については、「<u>AWS Site-to-</u> Site VPN カスタマーゲートウェイデバイスのファイアウォールルール」を参照してください。

ファイアウォールルールが正しくセットアップされた場合は、次のコマンドでトラブルシューティン グを継続します。

router# show interfaces tun1

```
Tunnel1 is up, line protocol is up
Hardware is Tunnel
Internet address is 169.254.255.2/30
```

MTU 17867 bytes, BW 100 Kbit/sec, DLY 50000 usec, reliability 255/255, txload 2/255, rxload 1/255 Encapsulation TUNNEL, loopback not set Keepalive not set Tunnel source 174.78.144.73, destination 72.21.209.225 Tunnel protocol/transport IPSEC/IP Tunnel TTL 255 Tunnel transport MTU 1427 bytes Tunnel transmit bandwidth 8000 (kbps) Tunnel receive bandwidth 8000 (kbps) Tunnel protection via IPSec (profile "ipsec-vpn-92df3bfb-0") Last input never, output never, output hang never Last clearing of "show interface" counters never Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/0 (size/max) 5 minute input rate 0 bits/sec, 1 packets/sec 5 minute output rate 1000 bits/sec, 1 packets/sec 407 packets input, 30010 bytes, 0 no buffer Received 0 broadcasts, 0 runts, 0 giants, 0 throttles

line protocol が実行されていることを確認します。トンネルのソース IP アドレス、ソースイン ターフェイス、および宛先がそれぞれ、IP アドレス外部のカスタマーゲートウェイデバイス、イン ターフェイス、および IP アドレス外部の仮想プライベートゲートウェイのトンネル設定に対応する ことを確認します。Tunnel protection via IPSec が存在することを確認します。両方のトン ネルインターフェイスでコマンドを実行します。問題を解決するには、設定を確認し、カスタマー ゲートウェイデバイスへの物理的な接続を確認します。

また、次のコマンドを使用して、169 . 254 . 255 . 1 を仮想プライベートゲートウェイの内部 IP アド レスで置き換えます。

router# ping 169.254.255.1 df-bit size 1410

Type escape sequence to abort. Sending 5, 1410-byte ICMP Echos to 169.254.255.1, timeout is 2 seconds: Packet sent with the DF bit set !!!!!

5個の感嘆符が表示されます。

さらにトラブルシューティングする場合は、設定を確認します。

BGP

以下のコマンドを使用します。

router# show ip bgp summary

BGP router identifier 192.168.37.160, local AS number 65000
BGP table version is 8, main routing table version 8
2 network entries using 312 bytes of memory
2 path entries using 136 bytes of memory
3/1 BGP path/bestpath attribute entries using 444 bytes of memory
1 BGP AS-PATH entries using 24 bytes of memory
0 BGP route-map cache entries using 0 bytes of memory
0 BGP filter-list cache entries using 0 bytes of memory
Bitfield cache entries: current 1 (at peak 2) using 32 bytes of memory
BGP activity 4/1 prefixes, 4/1 paths, scan interval 15 secs

Neighbor	V	AS	MsgRcvd	MsgSent	TblVer	InQ	OutQ	Up/Down	State/PfxRcd
169.254.255.1	4	7224	363	323	8	0	0	00:54:21	1
169.254.255.5	4	7224	364	323	8	0	0	00:00:24	1

両方のネイバーが表示されます。それぞれに対して、1の State/PfxRcd 値が表示されます。

BGP ピアリングが起動している場合は、カスタマーゲートウェイデバイスが VPC へのデフォルト ルート (0.0.0/0) をアドバタイズしていることを確認します。

router# show bgp all neighbors 169.254.255.1 advertised-routes

For address family: IPv4 Unicast BGP table version is 3, local router ID is 174.78.144.73 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, r RIB-failure, S Stale Origin codes: i - IGP, e - EGP, ? - incomplete Originating default network 0.0.0.0 Network Next Hop Metric LocPrf Weight Path *> 10.120.0.0/16 169.254.255.1 100 0 7224 i Total number of prefixes 1

さらに、VPC に対応するプレフィックスを仮想プライベートゲートウェイから受け取っていること を確認します。

router# show ip route bgp

10.0.0/16 is subnetted, 1 subnets B 10.255.0.0 [20/0] via 169.254.255.1, 00:00:20

さらにトラブルシューティングする場合は、設定を確認します。

ボーダーゲートウェイプロトコルを使用しない Cisco IOS カスタマーゲー トウェイデバイス AWS Site-to-Site VPN への接続のトラブルシューティン グ

Cisco のカスタマーゲートウェイデバイスの接続をトラブルシューティングする場合 は、IKE、IPsec、トンネルの 3 つの要素を考慮します。これらの領域を任意の順序でトラブル シューティングできますが、IKE から (ネットワークスタックの下から) 開始して上に進むことをお 勧めします。

IKE

以下のコマンドを使用します。このレスポンスは、IKE が正しく設定されたカスタマーゲートウェイ デバイスを示しています。

router# show crypto isakmp sa

IPv4 Crypto IS	SAKMP SA			
dst	src	state	conn-id	slot status
174.78.144.73	205.251.233.121	QM_IDLE	2001	0 ACTIVE
174.78.144.73	205.251.233.122	QM_IDLE	2002	0 ACTIVE

トンネル内で指定されたリモートゲートウェイの src 値を含む 1 つ以上の行が表示されま す。state は QM_IDLE、status は ACTIVE となります。エントリがない場合、またはエントリが 別の状態になっている場合は、IKE が正しく設定されていないことを示しています。

さらにトラブルシューティングする場合は、次のコマンドを実行して診断情報を提供するログメッ セージを有効にします。

router# term mon

デバッグを無効にするには、次のコマンドを使用します。

router# no debug crypto isakmp

IPsec

以下のコマンドを使用します。このレスポンスは、IPsec が正しく設定されたカスタマーゲートウェ イデバイスを示しています。

router# show crypto ipsec sa

```
interface: Tunnel1
    Crypto map tag: Tunnel1-head-0, local addr 174.78.144.73
    protected vrf: (none)
    local ident (addr/mask/prot/port): (0.0.0.0/0.0.0.0/0/0)
    remote ident (addr/mask/prot/port): (0.0.0.0/0.0.0.0/0/0)
    current_peer 72.21.209.225 port 500
     PERMIT, flags={origin_is_acl,}
    #pkts encaps: 149, #pkts encrypt: 149, #pkts digest: 149
     #pkts decaps: 146, #pkts decrypt: 146, #pkts verify: 146
     #pkts compressed: 0, #pkts decompressed: 0
     #pkts not compressed: 0, #pkts compr. failed: 0
     #pkts not decompressed: 0, #pkts decompress failed: 0
     #send errors 0, #recv errors 0
     local crypto endpt.: 174.78.144.73, remote crypto endpt.: 205.251.233.121
     path mtu 1500, ip mtu 1500, ip mtu idb FastEthernet0
     current outbound spi: 0xB8357C22(3090512930)
     inbound esp sas:
      spi: 0x6ADB173(112046451)
      transform: esp-aes esp-sha-hmac ,
       in use settings ={Tunnel, }
       conn id: 1, flow_id: Motorola SEC 2.0:1, crypto map: Tunnel1-head-0
       sa timing: remaining key lifetime (k/sec): (4467148/3189)
       IV size: 16 bytes
       replay detection support: Y replay window size: 128
       Status: ACTIVE
```

```
inbound ah sas:
     inbound pcp sas:
     outbound esp sas:
      spi: 0xB8357C22(3090512930)
       transform: esp-aes esp-sha-hmac ,
       in use settings ={Tunnel, }
       conn id: 2, flow_id: Motorola SEC 2.0:2, crypto map: Tunnel1-head-0
       sa timing: remaining key lifetime (k/sec): (4467148/3189)
       IV size: 16 bytes
       replay detection support: Y replay window size: 128
       Status: ACTIVE
     outbound ah sas:
     outbound pcp sas:
interface: Tunnel2
     Crypto map tag: Tunnel2-head-0, local addr 205.251.233.122
     protected vrf: (none)
     local ident (addr/mask/prot/port): (0.0.0.0/0.0.0.0/0/0)
     remote ident (addr/mask/prot/port): (0.0.0.0/0.0.0.0/0/0)
     current_peer 72.21.209.193 port 500
      PERMIT, flags={origin_is_acl,}
     #pkts encaps: 26, #pkts encrypt: 26, #pkts digest: 26
     #pkts decaps: 24, #pkts decrypt: 24, #pkts verify: 24
     #pkts compressed: 0, #pkts decompressed: 0
     #pkts not compressed: 0, #pkts compr. failed: 0
     #pkts not decompressed: 0, #pkts decompress failed: 0
     #send errors 0, #recv errors 0
     local crypto endpt.: 174.78.144.73, remote crypto endpt.: 205.251.233.122
     path mtu 1500, ip mtu 1500, ip mtu idb FastEthernet0
     current outbound spi: 0xF59A3FF6(4120526838)
     inbound esp sas:
      spi: 0xB6720137(3060924727)
       transform: esp-aes esp-sha-hmac ,
       in use settings ={Tunnel, }
       conn id: 3, flow_id: Motorola SEC 2.0:3, crypto map: Tunnel2-head-0
       sa timing: remaining key lifetime (k/sec): (4387273/3492)
       IV size: 16 bytes
```

```
replay detection support: Y replay window size: 128
Status: ACTIVE
inbound ah sas:
inbound pcp sas:
outbound esp sas:
spi: 0xF59A3FF6(4120526838)
transform: esp-aes esp-sha-hmac ,
in use settings ={Tunnel, }
conn id: 4, flow_id: Motorola SEC 2.0:4, crypto map: Tunnel2-head-0
sa timing: remaining key lifetime (k/sec): (4387273/3492)
IV size: 16 bytes
replay detection support: Y replay window size: 128
Status: ACTIVE
outbound ah sas:
outbound ah sas:
```

各トンネルインターフェイスに対して、インバウンドの esp sas とアウトバウンドの esp sas がいずれも表示されます。これは、SA が示され (例: spi: 0x48B456A6)、ステータスが ACTIVE で、IPsec が正しく設定されていることを前提としています。

さらにトラブルシューティングする場合は、次のコマンドを使用してデバッグを有効にします。

router# debug crypto ipsec

デバッグを無効にするには、次のコマンドを使用します。

router# no debug crypto ipsec

トンネル

最初に、必要なファイアウォールルールがあることを確認します。詳細については、「<u>AWS Site-to-</u> Site VPN カスタマーゲートウェイデバイスのファイアウォールルール」を参照してください。

ファイアウォールルールが正しくセットアップされた場合は、次のコマンドでトラブルシューティン グを継続します。 router# show interfaces tun1

```
Tunnel1 is up, line protocol is up
  Hardware is Tunnel
  Internet address is 169.254.249.18/30
  MTU 17867 bytes, BW 100 Kbit/sec, DLY 50000 usec,
    reliability 255/255, txload 2/255, rxload 1/255
  Encapsulation TUNNEL, loopback not set
  Keepalive not set
  Tunnel source 174.78.144.73, destination 205.251.233.121
  Tunnel protocol/transport IPSEC/IP
  Tunnel TTL 255
  Tunnel transport MTU 1427 bytes
  Tunnel transmit bandwidth 8000 (kbps)
  Tunnel receive bandwidth 8000 (kbps)
  Tunnel protection via IPSec (profile "ipsec-vpn-92df3bfb-0")
  Last input never, output never, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/0 (size/max)
  5 minute input rate 0 bits/sec, 1 packets/sec
  5 minute output rate 1000 bits/sec, 1 packets/sec
    407 packets input, 30010 bytes, 0 no buffer
    Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
```

line protocol が実行されていることを確認します。トンネルのソース IP アドレス、ソースインター フェイス、および宛先がそれぞれ、IP アドレス外部のカスタマーゲートウェイデバイス、インター フェイス、および IP アドレス外部の仮想プライベートゲートウェイのトンネル設定に対応すること を確認します。Tunnel protection through IPSec が存在することを確認します。両方のトン ネルインターフェイスでコマンドを実行します。問題を解決するには、設定を確認し、カスタマー ゲートウェイデバイスへの物理的な接続を確認します。

また、次のコマンドを使用して、169․254․249․18 を仮想プライベートゲートウェイの内部 IP ア ドレスで置き換えます。

router# ping 169.254.249.18 df-bit size 1410

Type escape sequence to abort. Sending 5, 1410-byte ICMP Echos to 169.254.249.18, timeout is 2 seconds: Packet sent with the DF bit set !!!!!

5個の感嘆符が表示されます。

ルーティング

静的ルートテーブルを表示するには、次のコマンドを使用します。

router# sh ip route static

1.0.0.0/8 is variably subnetted
S 10.0.0/16 is directly connected, Tunnel1
is directly connected, Tunnel2

両方のトンネルを経由した VPC CIDR の静的ルートが存在していることを確認します。存在しない 場合は、次に示すように静的ルートを追加します。

router# ip route 10.0.0.0 255.255.0.0 Tunnel1 track 100 router# ip route 10.0.0.0 255.255.0.0 Tunnel2 track 200

SLA モニターの確認

router# show ip sla statistics 100

IPSLAs Latest Operation Statistics
IPSLA operation id: 100
Latest RTT: 128 milliseconds
Latest operation start time: *18:08:02.155 UTC Wed Jul 15 2012
Latest operation return code: OK
Number of successes: 3
Number of failures: 0
Operation time to live: Forever

router# show ip sla statistics 200

IPSLAs Latest Operation Statistics

IPSLA operation id: 200

Latest RTT: 128 milliseconds Latest operation start time: *18:08:02.155 UTC Wed Jul 15 2012 Latest operation return code: OK Number of successes: 3 Number of failures: 0 Operation time to live: Forever

Number of successesの値は、SLAモニターが正常にセットアップされたかどうかを示します。

さらにトラブルシューティングする場合は、設定を確認します。

Juniper JunOS カスタマーゲートウェイデバイスと AWS Site-to-Site VPN の接続のトラブルシューティング

Juniper のカスタマーゲートウェイデバイスの接続をトラブルシューティングする場合 は、IKE、IPsec、トンネル、BGP の 4 つの要素を考慮します。これらの領域を任意の順序でトラブ ルシューティングできますが、IKE から (ネットワークスタックの下から) 開始して上に進むことを お勧めします。

IKE

以下のコマンドを使用します。このレスポンスは、IKE が正しく設定されたカスタマーゲートウェイ デバイスを示しています。

user@router> show security ike security-associations

Index	Remote Address	State	Initiator cookie	Responder cookie	Mode
4	72.21.209.225	UP	c4cd953602568b74	0d6d194993328b02	Main
3	72.21.209.193	UP	b8c8fb7dc68d9173	ca7cb0abaedeb4bb	Main

トンネル内で指定されたリモートゲートウェイのリモートアドレスを含む1つ以上の行が表示され ます。State は UP になっている必要があります。エントリがない場合、またはエントリが別の状 態になっている場合 (DOWN など) は、IKE が正しく設定されていないことを示しています。

さらにトラブルシューティングする場合は、設定ファイルの例で推奨されているように、IKE トレー スオプションを有効にします。次に、以下のコマンドを実行すると、さまざまなデバッグメッセージ が画面に表示されます。

user@router> monitor start kmd

.

外部ホストから、次のコマンドでログファイル全体を取得できます。

scp username@router.hostname:/var/log/kmd

IPsec

以下のコマンドを使用します。このレスポンスは、IPsec が正しく設定されたカスタマーゲートウェ イデバイスを示しています。

user@router> show security ipsec security-associations

lotal a	ctive tunnels:	2					
ID	Gateway	Port	Algorithm	SPI	Life:sec/kb	Mon	vsys
<131073	72.21.209.225	500	ESP:aes-128/sha1	df27aae4	326/ unlim	-	0
>131073	72.21.209.225	500	ESP:aes-128/sha1	5de29aa1	326/ unlim	-	0
<131074	72.21.209.193	500	ESP:aes-128/sha1	dd16c453	300/ unlim	-	0
>131074	72.21.209.193	500	ESP:aes-128/sha1	c1e0eb29	300/ unlim	-	0

具体的には、(リモートゲートウェイに対応する) ゲートウェイアドレスごとに 2 行以上が表示さ れます。各行の先頭にあるキャレット (< >) は、特定のエントリのトラフィックの方向を示してい ます。出力には、インバウンドトラフィック (仮想プライベートゲートウェイからこのカスタマー ゲートウェイデバイスへのトラフィック、「<」で表されます) およびアウトバウンドトラフィック (「>」で表されます) が別々の行として含まれます。

さらにトラブルシューティングする場合は、IKE のトレースオプションを有効にします (詳細につい ては、IKE に関する前のセクションを参照してください)。

トンネル

最初に、必要なファイアウォールルールがあることをもう一度確認します。ルールのリストについて は、「<u>AWS Site-to-Site VPN カスタマーゲートウェイデバイスのファイアウォールルール</u>」を参照 してください。

ファイアウォールルールが正しくセットアップされた場合は、次のコマンドでトラブルシューティン グを継続します。

user@router> show interfaces st0.1

```
Logical interface st0.1 (Index 70) (SNMP ifIndex 126)
Flags: Point-To-Point SNMP-Traps Encapsulation: Secure-Tunnel
```

Input packets : 8719
Output packets: 41841
Security: Zone: Trust
Allowed host-inbound traffic : bgp ping ssh traceroute
Protocol inet, MTU: 9192
Flags: None
Addresses, Flags: Is-Preferred Is-Primary
Destination: 169.254.255.0/30, Local: 169.254.255.2

Security: Zone が正しいことを確認し、Local のアドレスがカスタマーゲートウェイデバイスの トンネル内部のアドレスと一致することを確認します。

次に、以下のコマンドを使用して、169.254.255.1 を仮想プライベートゲートウェイの内部 IP ア ドレスで置き換えます。次に示すようなレスポンスが結果として返されます。

user@router> ping 169.254.255.1 size 1382 do-not-fragment

PING 169.254.255.1 (169.254.255.1): 1410 data bytes 64 bytes from 169.254.255.1: icmp_seq=0 ttl=64 time=71.080 ms 64 bytes from 169.254.255.1: icmp_seq=1 ttl=64 time=70.585 ms

さらにトラブルシューティングする場合は、設定を確認します。

BGP

以下のコマンドを実行してください。

user@router> show bgp summary

Groups: 1 Peers: 2 Down peers: 0											
Table	Tot Paths	Act	Paths	Suppres	sed	History	Damp St	ate	Pendir	ng	
inet.0	2		1		0	0		0		0	
Peer		AS	InP	kt	0utPkt	0utQ	Flaps	Last	Up/Dwn	State	
#Active/Receive	ed/Accepted	d/Damp	ed								
169.254.255.1	72	224		9	10	0	Ø)	1:00	1/1/1/0	
0/0	0/0/0										
169.254.255.5	72	224		8	9	0	Ø)	56	0/1/1/0	
0/0	0/0/0										

さらにトラブルシューティングする場合は、次のコマンドを使用して、169.254.255.1 を仮想プ ライベートゲートウェイの内部 IP アドレスで置き換えます。 user@router> show bgp neighbor 169.254.255.1

```
Peer: 169.254.255.1+179 AS 7224 Local: 169.254.255.2+57175 AS 65000
                    State: Established
                                          Flags: <ImportEval Sync>
  Type: External
  Last State: OpenConfirm Last Event: RecvKeepAlive
  Last Error: None
  Export: [ EXPORT-DEFAULT ]
  Options: < Preference HoldTime PeerAS LocalAS Refresh>
  Holdtime: 30 Preference: 170 Local AS: 65000 Local System AS: 0
  Number of flaps: 0
  Peer ID: 169.254.255.1
                            Local ID: 10.50.0.10
                                                       Active Holdtime: 30
  Keepalive Interval: 10
                                 Peer index: 0
  BFD: disabled, down
  Local Interface: st0.1
  NLRI for restart configured on peer: inet-unicast
  NLRI advertised by peer: inet-unicast
  NLRI for this session: inet-unicast
  Peer supports Refresh capability (2)
  Restart time configured on the peer: 120
  Stale routes from peer are kept for: 300
  Restart time requested by this peer: 120
  NLRI that peer supports restart for: inet-unicast
  NLRI that restart is negotiated for: inet-unicast
  NLRI of received end-of-rib markers: inet-unicast
  NLRI of all end-of-rib markers sent: inet-unicast
  Peer supports 4 byte AS extension (peer-as 7224)
  Table inet.0 Bit: 10000
    RIB State: BGP restart is complete
    Send state: in sync
    Active prefixes:
                                  1
    Received prefixes:
                                  1
    Accepted prefixes:
                                  1
    Suppressed due to damping:
                                  0
    Advertised prefixes:
                                  1
Last traffic (seconds): Received 4
                                                Checked 4
                                      Sent 8
Input messages: Total 24
                                              Refreshes 0
                                                              Octets 505
                              Updates 2
Output messages: Total 26
                                              Refreshes Ø
                                                              Octets 582
                              Updates 1
Output Queue[0]: 0
```

ここでは、Received prefixes および Advertised prefixes がそれぞれ1になっています。 これは、Table inet.0 セクション内にあります。 State が Established でない場合は、Last State および Last Error を確認し、問題の修正 に必要なことを詳しく確認します。

BGP ピアリングが起動している場合は、カスタマーゲートウェイデバイスが VPC へのデフォルト ルート (0.0.0/0) をアドバタイズしていることを確認します。

user@router> show route advertising-protocol bgp 169.254.255.1

<pre>inet.0: 10 destinations,</pre>	11 routes (10 active,	0 holddown, 0 hidd	en)
Prefix	Nexthop	MED Lclpref	AS path
* 0.0.0.0/0	Self		I

さらに、VPC に対応するプレフィックスを仮想プライベートゲートウェイから受け取っていること を確認します。

user@router> show route receive-protocol bgp 169.254.255.1

inet.0: 10 destinations,	11 routes (10 active,	0 holdd	own, 0 hidd	en)
Prefix	Nexthop	MED	Lclpref	AS path
* 10.110.0.0/16	169.254.255.1	100		7224 I

Juniper ScreenOS カスタマーゲートウェイデバイスと AWS Site-to-Site VPN の接続のトラブルシューティング

Juniper ScreenOS ベースのカスタマーゲートウェイデバイスの接続をトラブルシューティングする 場合は、IKE、IPsec、トンネル、BGP の 4 つの要素を考慮します。これらの領域を任意の順序でト ラブルシューティングできますが、IKE から (ネットワークスタックの下から) 開始して上に進むこ とをお勧めします。

IKE と IPsec

以下のコマンドを使用します。このレスポンスは、IKE が正しく設定されたカスタマーゲートウェイ デバイスを示しています。

ssg5-serial-> get sa
total configured sa: 2
HEX ID Gateway Port Algorithm SPI Life:sec kb Sta PID vsys
00000002<	72.21.209.225	500 esp:a128/sha1	80041ca4	3385 unlim A/-	-1 0
00000002>	72.21.209.225	500 esp:a128/sha1	8cdd274a	3385 unlim A/-	-1 0
0000001<	72.21.209.193	500 esp:a128/sha1	ecf0bec7	3580 unlim A/-	-1 0
0000001>	72.21.209.193	500 esp:a128/sha1	14bf7894	3580 unlim A/-	-1 0

トンネル内で指定されたリモートゲートウェイのリモートアドレスを含む1つ以上の行が表示され ます。Sta 値は A/-、SPI は 00000000 以外の 16 進数になっている必要があります。その他の状 態のエントリは、IKE が正しく設定されていないことを示しています。

さらにトラブルシューティングする場合は、設定ファイルの例で推奨されているように、IKE トレー スオプションを有効にします。

トンネル

最初に、必要なファイアウォールルールがあることをもう一度確認します。ルールのリストについて は、「<u>AWS Site-to-Site VPN カスタマーゲートウェイデバイスのファイアウォールルール</u>」を参照 してください。

ファイアウォールルールが正しくセットアップされた場合は、次のコマンドでトラブルシューティン グを継続します。

ssg5-serial-> get interface tunnel.1

```
Interface tunnel.1:
description tunnel.1
number 20, if_info 1768, if_index 1, mode route
link ready
vsys Root, zone Trust, vr trust-vr
admin mtu 1500, operating mtu 1500, default mtu 1500
*ip 169.254.255.2/30
*manage ip 169.254.255.2
route-deny disable
bound vpn:
  IPSEC-1
Next-Hop Tunnel Binding table
Flag Status Next-Hop(IP)
                           tunnel-id VPN
pmtu-v4 disabled
ping disabled, telnet disabled, SSH disabled, SNMP disabled
web disabled, ident-reset disabled, SSL disabled
```

OSPF disabled BGP enabled RIP disabled RIPng disabled mtrace disabled PIM: not configured IGMP not configured NHRP disabled bandwidth: physical 0kbps, configured egress [gbw 0kbps mbw 0kbps] configured ingress mbw 0kbps, current bw 0kbps total allocated gbw 0kbps

link:ready が表示され、IP アドレスがカスタマーゲートウェイデバイスのトンネルの内部のアド レスと一致することを確認します。

次に、以下のコマンドを使用して、169.254.255.1 を仮想プライベートゲートウェイの内部 IP ア ドレスで置き換えます。次に示すようなレスポンスが結果として返されます。

ssg5-serial-> ping 169.254.255.1

Type escape sequence to abort

Sending 5, 100-byte ICMP Echos to 169.254.255.1, timeout is 1 seconds
!!!!!
Success Rate is 100 percent (5/5), round-trip time min/avg/max=32/32/33 ms

さらにトラブルシューティングする場合は、設定を確認します。

BGP

以下のコマンドを実行してください。

ssg5-serial-> get vrouter trust-vr protocol bgp neighbor

 Peer AS Remote IP
 Local IP
 Wt Status
 State
 ConnID Up/Down

 7224 169.254.255.1
 169.254.255.2
 100 Enabled
 ESTABLISH
 10 00:01:01

 7224 169.254.255.5
 169.254.255.6
 100 Enabled
 ESTABLISH
 11 00:00:59

両方の BGP ピアの状態が ESTABLISH である必要があります。これは、仮想プライベートゲート ウェイへの BGP 接続がアクティブであることを示します。

さらにトラブルシューティングする場合は、次のコマンドを使用して、169.254.255.1 を仮想プ ライベートゲートウェイの内部 IP アドレスで置き換えます。 ssq5-serial-> get vr trust-vr prot bgp neigh 169.254.255.1

```
peer: 169.254.255.1, remote AS: 7224, admin status: enable
type: EBGP, multihop: 0(disable), MED: node default(0)
connection state: ESTABLISH, connection id: 18 retry interval: node default(120s), cur
retry time 15s
configured hold time: node default(90s), configured keepalive: node default(30s)
configured adv-interval: default(30s)
designated local IP: n/a
local IP address/port: 169.254.255.2/13946, remote IP address/port: 169.254.255.1/179
router ID of peer: 169.254.255.1, remote AS: 7224
negotiated hold time: 30s, negotiated keepalive interval: 10s
route map in name: , route map out name:
weight: 100 (default)
self as next hop: disable
send default route to peer: disable
ignore default route from peer: disable
send community path attribute: no
reflector client: no
Neighbor Capabilities:
  Route refresh: advertised and received
  Address family IPv4 Unicast: advertised and received
force reconnect is disable
total messages to peer: 106, from peer: 106
update messages to peer: 6, from peer: 4
Tx queue length 0, Tx queue HWM: 1
route-refresh messages to peer: 0, from peer: 0
last reset 00:05:33 ago, due to BGP send Notification(Hold Timer Expired)(code 4 :
subcode 0)
number of total successful connections: 4
connected: 2 minutes 6 seconds
Elapsed time since last update: 2 minutes 6 seconds
```

BGP ピアリングが起動している場合は、カスタマーゲートウェイデバイスが VPC へのデフォルト ルート (0.0.0.0/0) をアドバタイズしていることを確認します。このコマンドは、ScreenOS バージョ ン 6.2.0 以降に適用されます。

ssg5-serial-> get vr trust-vr protocol bgp rib neighbor 169.254.255.1 advertised

```
i: IBGP route, e: EBGP route, >: best route, *: valid route
Prefix Nexthop Wt Pref Med Orig AS-Path
```

>i	0.0.0/0	0.0.0.0	32768	100	0	IGP
Total IPv4	routes advertised:	1				

さらに、VPC に対応するプレフィックスを仮想プライベートゲートウェイから受け取っていること を確認します。このコマンドは、ScreenOS バージョン 6.2.0 以降に適用されます。

ssg5-serial-> get vr trust-vr protocol bgp rib neighbor 169.254.255.1 received

Yamaha カスタマーゲートウェイデバイスと AWS Site-to-Site VPN の接続 のトラブルシューティング

Yamaha のカスタマーゲートウェイデバイスの接続をトラブルシューティングする場合 は、IKE、IPsec、トンネル、BGP の 4 つの要素を考慮します。これらの領域を任意の順序でトラブ ルシューティングできますが、IKE から (ネットワークスタックの下から) 開始して上に進むことを お勧めします。

1 Note

IKE のフェーズ 2 で使用される proxy ID 設定は、Yamaha ルーターではデフォルトで無 効になっています。これにより、Site-to-Site VPN への接続で問題が発生する可能性があり ます。proxy ID がルーターで設定されていない場合は、Yamaha が正しく設定できるよう に、 AWSが提供する設定ファイルの例を参照してください。

IKE

以下のコマンドを実行してください。このレスポンスは、IKE が正しく設定されたカスタマーゲート ウェイデバイスを示しています。

show ipsec sa gateway 1

sgw	flags	local-id	remote-id	# of sa
1	UΚ	YOUR_LOCAL_NETWORK_ADDRESS	72.21.209.225	i:2 s:1 r:1

トンネル内で指定されたリモートゲートウェイの remote-id 値を含む行が表示されます。トンネル 番号を省略すると、すべての Security Association (SA) を表示できます。

さらにトラブルシューティングする場合は、次のコマンドを実行して、診断情報を提供する DEBUG レベルログメッセージを有効にします。

syslog debug on
ipsec ike log message-info payload-info key-info

ログに記録された項目をキャンセルするには、次のコマンドを実行します。

no ipsec ike log
no syslog debug on

IPsec

以下のコマンドを実行してください。このレスポンスは、IPsec が正しく設定されたカスタマーゲー トウェイデバイスを示しています。

show ipsec sa gateway 1 detail

```
SA[1] Duration: 10675s
Local ID: YOUR_LOCAL_NETWORK_ADDRESS
Remote ID: 72.21.209.225
Protocol: IKE
Algorithm: AES-CBC, SHA-1, MODP 1024bit
SPI: 6b ce fd 8a d5 30 9b 02 0c f3 87 52 4a 87 6e 77
Key: ** ** ** ** (confidential) ** ** ** ** **
SA[2] Duration: 1719s
Local ID: YOUR_LOCAL_NETWORK_ADDRESS
Remote ID: 72.21.209.225
Direction: send
Protocol: ESP (Mode: tunnel)
Algorithm: AES-CBC (for Auth.: HMAC-SHA)
```

AWS Site-to-Site VPN

SPI: a6 67 47 47 Kev: ** ** ** ** (confidential) . _ _ _ _ _ _ _ _ _ _ _ SA[3] Duration: 1719s Local ID: YOUR_LOCAL_NETWORK_ADDRESS Remote ID: 72.21.209.225 Direction: receive Protocol: ESP (Mode: tunnel) Algorithm: AES-CBC (for Auth.: HMAC-SHA) SPI: 6b 98 69 2b Kev: ** ** ** ** (confidential) * * SA[4] Duration: 10681s Local ID: YOUR_LOCAL_NETWORK_ADDRESS Remote ID: 72.21.209.225 Protocol: IKE Algorithm: AES-CBC, SHA-1, MODP 1024bit SPI: e8 45 55 38 90 45 3f 67 a8 74 ca 71 ba bb 75 ee Key: ** ** ** ** ** (confidential) ** ** ** ** **

各トンネルインターフェイスに対して、receive sas と send sas がいずれも表示されます。

さらにトラブルシューティングする場合は、次のコマンドを使用してデバッグを有効にします。

syslog debug on
ipsec ike log message-info payload-info key-info

次のコマンドを実行して、デバッグを無効にします。

no ipsec ike log
no syslog debug on

トンネル

最初に、必要なファイアウォールルールがあることを確認します。ルールのリストについては、 「<u>AWS Site-to-Site VPN カスタマーゲートウェイデバイスのファイアウォールルール</u>」を参照して ください。

ファイアウォールルールが正しくセットアップされた場合は、次のコマンドでトラブルシューティン グを継続します。

show status tunnel 1

```
TUNNEL[1]:
Description:
Interface type: IPsec
Current status is Online.
from 2011/08/15 18:19:45.
5 hours 7 minutes 58 seconds connection.
Received: (IPv4) 3933 packets [244941 octets]
(IPv6) 0 packet [0 octet]
Transmitted: (IPv4) 3933 packets [241407 octets]
(IPv6) 0 packet [0 octet]
```

current status 値がオンラインで Interface type が IPsec になっていることを確認します。 両方のトンネルインターフェイスでコマンドを実行することを確認します。ここですべての問題を解 決するには、設定を確認します。

BGP

以下のコマンドを実行してください。

show status bgp neighbor

```
BGP neighbor is 169.254.255.1, remote AS 7224, local AS 65000, external link
  BGP version 0, remote router ID 0.0.0.0
  BGP state = Active
  Last read 00:00:00, hold time is 0, keepalive interval is 0 seconds
  Received 0 messages, 0 notifications, 0 in queue
  Sent 0 messages, 0 notifications, 0 in queue
  Connection established 0; dropped 0
  Last reset never
Local host: unspecified
Foreign host: 169.254.255.1, Foreign port: 0
BGP neighbor is 169.254.255.5, remote AS 7224, local AS 65000, external link
  BGP version 0, remote router ID 0.0.0.0
  BGP state = Active
  Last read 00:00:00, hold time is 0, keepalive interval is 0 seconds
  Received 0 messages, 0 notifications, 0 in queue
  Sent 0 messages, 0 notifications, 0 in queue
  Connection established 0; dropped 0
```

Last reset never Local host: unspecified Foreign host: 169.254.255.5, Foreign port:

両方のネイバーが表示されます。それぞれに対して、ActiveのBGP state値が表示されます。

BGP ピアリングが起動している場合は、カスタマーゲートウェイデバイスが VPC へのデフォルト ルート (0.0.0.0/0) をアドバタイズしていることを確認します。

show status bgp neighbor 169.254.255.1 advertised-routes

<pre>*: valid route</pre>			
Network	Next Hop	Metric LocPrf	F Path
* default	0.0.0.0	0	IGP

さらに、VPC に対応するプレフィックスを仮想プライベートゲートウェイから受け取っていること を確認します。

show ip route

Destination	Gateway	Interface	Kind Additional Info.
default	***.***.***.***	LAN3(DHCP)	static
10.0.0/16	169.254.255.1	TUNNEL[1]	BGP path=10124

の使用 AWS Site-to-Site VPN

Amazon VPC コンソールまたは AWS CLIを使用して、Site-to-Site VPN リソースを操作できます。

内容

- AWS Cloud WAN の AWS Site-to-Site VPN アタッチメントを作成する
- Transit Gateway AWS Site-to-Site VPN アタッチメントを作成する
- AWS Site-to-Site VPN 接続をテストする
- AWS Site-to-Site VPN 接続とゲートウェイを削除する
- AWS Site-to-Site VPN 接続のターゲットゲートウェイを変更する
- <u>AWS Site-to-Site VPN 接続オプションの変更</u>
- AWS Site-to-Site VPN トンネルオプションの変更
- AWS Site-to-Site VPN 接続の静的ルートを編集する
- AWS Site-to-Site VPN 接続のカスタマーゲートウェイを変更する
- <u>AWS Site-to-Site VPN 接続の侵害された認証情報を置き換える</u>
- AWS Site-to-Site VPN トンネルエンドポイント証明書のローテーション
- AWS Site-to-Site VPN を使用したプライベート IP AWS Direct Connect

AWS Cloud WAN の AWS Site-to-Site VPN アタッチメントを作成 する

次の手順を使用して、 AWS Cloud WAN 用の Site-to-Site VPN アタッチメントを作成できます。 下の手順に従って、クラウド WAN の VPN アタッチメントを作成します。VPN アタッチメントと Cloud WAN の詳細については、<u>AWS 「Cloud WAN ユーザーガイド」の「Cloud WAN の Site-to-</u> <u>site VPN アタッチメント</u>」を参照してください。 AWS

コンソールを使用して AWS Cloud WAN の VPN アタッチメントを作成するには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. ナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- 3. [Create VPN connection] (VPN 接続の作成)を選択します。
- (オプション) [名前タグ] には、接続の名前を入力します。これにより、Name というキーと指定 した値を含むタグが作成されます。

- 5. [ターゲットゲートウェイタイプ] で、[Not associated] (関連付けられていません) を選択しま す。
- 6. [カスタマーゲートウェイ] で、以下のいずれかを実行します。
 - 既存のカスタマーゲートウェイを使用するには、[既存]を選択してから、カスタマーゲート ウェイを選択します。
 - カスタマーゲートウェイを作成するには、[New (新規)] を選択します。[IP address] (IP アドレス) に、静的パブリック IP アドレスを入力します。[Certificate ARN (証明書 ARN)] で、 プライベート証明書の ARN を選択します (証明書ベースの認証を使用している場合)。[BGP ASN] に、カスタマーゲートウェイのボーダーゲートウェイプロトコル (BGP) 自律システム 番号 (ASN) を入力します。詳細については、「<u>カスタマーゲートウェイのオプション</u>」を 参照してください。
- 7. [ルーティングオプション]で、[動的]と[静的]のどちらを使用するかを選択します。
- 8. [トンネル内部の IP バージョン] で、[IPv4] または [IPv6] を選択します。
- 9. (オプション) [Enable acceleration] (アクセラレーションの有効化) で、チェックボックスをオン にしてアクセラレーションを有効にします。詳細については、「<u>高速 VPN 接続</u>」を参照してく ださい。

アクセラレーションを有効にすると、VPN 接続で使用されるアクセラレーターが 2 つ作成され ます。別途 料金がかかります。

10. (オプション) [Local IPv4 network CIDR] (ローカル IPv4 ネットワーク CIDR) で、VPN トンネル を介した通信を許可するカスタマーゲートウェイ (オンプレミス) 側の IPv4 CIDR 範囲を指定し ます。デフォルト: 0.0.0.0/0。

リモート IPv4 ネットワーク CIDR では、VPN トンネルを介した通信が許可されている AWS 側の IPv4 CIDR 範囲を指定します。デフォルト: 0.0.0.0/0。

IP バージョン内で IPv6 for Tunnel を指定した場合は、VPN トンネルを介した通信が許可され ているカスタマーゲートウェイ側と AWS 側の IPv6 CIDR 範囲を指定します。 両方の範囲のデ フォルトは ::/0 です。

- 11. (オプション)[トンネルオプション]では、トンネルごとに次の情報を指定できます。
 - ・ トンネル内部 IPv4 アドレスの 169.254.0.0/16 範囲からサイズ /30 の IPv4 CIDR ブロッ ク。
 - [トンネル内部 IP バージョン] で [IPv6] を指定した場合は、トンネル内部 IPv6 アドレスの fd00::/8 範囲から /126 の IPv6 CIDR ブロック。
 - ・ IKE 事前共有キー (PSK)。IKEv1 または IKEv2 バージョンがサポートされています。

- トンネルの詳細オプションを編集するには、[トンネルのオプションを編集する]を選択します。詳細については、「VPN トンネルオプション」を参照してください。
- 12. [Create VPN connection] (VPN 接続の作成)を選択します。

コマンドラインまたは API を使用して Site-to-Site VPN 接続を作成するには

- CreateVpnConnection (Amazon EC2 Query API)
- create-vpn-connection (AWS CLI)

Transit Gateway AWS Site-to-Site VPN アタッチメントを作成する

トランジットゲートウェイで VPN アタッチメントを作成するには、トランジットゲートウェイとカ スタマーゲートウェイを指定する必要があります。この手順を実行する前に、トランジットゲート ウェイを作成する必要があります。Transit Gateway の作成の詳細については、Amazon VPC Transit Gatewayの「Transit Gateway」を参照してください。

コンソールを使用してトランジットゲートウェイで VPN アタッチメントを作成するには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. ナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- 3. [Create VPN connection] (VPN 接続の作成)を選択します。
- (オプション) [名前タグ] には、接続の名前を入力します。これにより、Name というキーと指定した値を含むタグが作成されます。
- [ターゲットゲートウェイタイプ] で、[トランジットゲートウェイ] を選択してから、トランジットゲートウェイを選択します。
- 6. [カスタマーゲートウェイ] で、以下のいずれかを実行します。
 - 既存のカスタマーゲートウェイを使用するには、[既存]を選択してから、カスタマーゲート ウェイを選択します。

カスタマーゲートウェイが NAT トラバーサル (NAT-T) が有効になっているネットワーク アドレス変換 (NAT) の内側にある場合は、NAT デバイスのパブリック IP アドレスを使用 し、UDP ポート 4500 をブロックしないようにファイアウォールルールを調整します。

 カスタマーゲートウェイを作成するには、[New (新規)] を選択します。[IP Address (IP アドレス)] に、静的パブリック IP アドレスを入力します。[Certificate ARN (証明書 ARN)] で、 プライベート証明書の ARN を選択します (証明書ベースの認証を使用している場合)。[BGP ASN] に、カスタマーゲートウェイのボーダーゲートウェイプロトコル (BGP) 自律システム 番号 (ASN) を入力します。詳細については、「<u>カスタマーゲートウェイのオプション</u>」を 参照してください。

- 7. [ルーティングオプション]で、[動的]と[静的]のどちらを使用するかを選択します。
- 8. [トンネル内部 IP バージョン] で、VPN トンネルが IPv4 トラフィックをサポートするか、IPv6 トラフィックをサポートするかを指定します。IPv6 トラフィックは、Transit Gateway の VPN 接続でのみサポートされます。
- 9. (オプション) [Enable acceleration] (アクセラレーションの有効化) で、チェックボックスをオン にしてアクセラレーションを有効にします。詳細については、「<u>高速 VPN 接続</u>」を参照してく ださい。

アクセラレーションを有効にすると、VPN 接続で使用されるアクセラレーターが 2 つ作成され ます。別途 料金がかかります。

10. (オプション) [Local IPv4 network CIDR] (ローカル IPv4 ネットワーク CIDR) で、VPN トンネル を介した通信を許可するカスタマーゲートウェイ (オンプレミス) 側の IPv4 CIDR 範囲を指定し ます。デフォルト: 0.0.0.0/0。

リモート IPv4 ネットワーク CIDR では、VPN トンネルを介した通信が許可されている AWS 側の IPv4 CIDR 範囲を指定します。デフォルト: 0.0.0.0/0。

IP バージョン内で IPv6 for Tunnel を指定した場合は、VPN トンネルを介した通信が許可され ているカスタマーゲートウェイ側と AWS 側の IPv6 CIDR 範囲を指定します。 両方の範囲のデ フォルトは ::/0 です。

- 11. (オプション)[トンネルオプション]では、トンネルごとに次の情報を指定できます。
 - ・ トンネル内部 IPv4 アドレスの 169.254.0.0/16 範囲からサイズ /30 の IPv4 CIDR ブロッ ク。
 - [トンネル内部 IP バージョン] で [IPv6] を指定した場合は、トンネル内部 IPv6 アドレスの fd00::/8 範囲から /126 の IPv6 CIDR ブロック。
 - ・ IKE 事前共有キー (PSK)。IKEv1 または IKEv2 バージョンがサポートされています。
 - トンネルの詳細オプションを編集するには、[トンネルのオプションを編集する]を選択します。詳細については、「VPN トンネルオプション」を参照してください。
- 12. [Create VPN connection] (VPN 接続の作成)を選択します。

を使用して VPN アタッチメントを作成するには AWS CLI

<u>create-vpn-connection</u> コマンドを使用して、- - transit - gateway - id オプションのトランジット ゲートウェイ ID を指定します。

AWS Site-to-Site VPN 接続をテストする

AWS Site-to-Site VPN 接続を作成してカスタマーゲートウェイを設定したら、インスタンスを起動 し、インスタンスに ping を送信して接続をテストできます。

開始する前に、以下を確認してください。

- ping リクエストに応答する AMI を使用します。Amazon Linux AMI のいずれかを使用することを お勧めします。
- インバウンドおよびアウトバウンドの ICMP トラフィックを許可するために、インスタンスへの トラフィックをフィルタリングするセキュリティグループまたはネットワーク ACL を VPC 内に 設定します。これにより、インスタンスは ping リクエストを受信できるようになります。
- ご使用のインスタンスで Windows Server を実行している場合、インスタンスへの ping を実行す るには、インスタンスに接続し、Windows ファイアウォールでインバウンド ICMPv4 を有効にす る必要があります。
- (静的ルーティング) カスタマーゲートウェイデバイスに VPC への静的ルートがあり、VPN 接続に 静的ルートがあり、トラフィックがカスタマーゲートウェイデバイスに戻れることを確認します。
- (動的ルーティング) カスタマーゲートウェイデバイスの BGP ステータスが確立されていることを 確認します。BGP ピアセッションが確立されるまでに約 30 秒かかります。トラフィックがカス タマーゲートウェイに戻ることができるように、ルートが BGP を使用して正しくアドバタイズさ れ、サブネットルートテーブルに表示されることを確認します。両方のトンネルが BGP ルーティ ングを使用して設定されていることを確認します。
- VPN 接続のサブネットルートテーブルでルーティングが設定されていることを確認します。

接続をテストするには

- 1. Amazon EC2 コンソール (https://console.aws.amazon.com/ec2/) を開きます。
- 2. ダッシュボードで、[Launch Instance (インスタンスの起動)] を選択してください。
- 3. (オプション)[名前]に、インスタンスのわかりやすい名前を入力します。
- [アプリケーションおよび OS イメージ (Amazon マシンイメージ)] で、[クイックスタート] を選択し、インスタンスのオペレーティングシステムを選択します。
- 5. [キーペア名] で、既存のキーペアを使用するか、新しいキーペアを作成するかを選択します。

- 6. [ネットワーク設定] で [既存のセキュリティグループの選択] を選択してから、設定済みのセキュ リティグループを選択します。
- 7. [Summary] (サマリー) パネルで、[Launch instance] (インスタンスの起動) を選択してください。
- 8. インスタンスが実行中になった後、そのプライベート IP アドレス (たとえば 10.0.0.4) を取得し ます。Amazon EC2 コンソールにインスタンスの詳細の一部としてアドレスが表示されます。
- ネットワークでカスタマーゲートウェイデバイスの背後にあるコンピュータから、インスタンスのプライベート IP アドレスを指定して ping コマンドを実行します。

ping 10.0.0.4

正常な応答は次のようになります。

```
Pinging 10.0.0.4 with 32 bytes of data:
Reply from 10.0.0.4: bytes=32 time<1ms TTL=128
Reply from 10.0.0.4: bytes=32 time<1ms TTL=128
Reply from 10.0.0.4: bytes=32 time<1ms TTL=128
Ping statistics for 10.0.0.4:
Packets: Sent = 3, Received = 3, Lost = 0 (0% loss),
Approximate round trip times in milliseconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

トンネルフェイルオーバーをテストするため、カスタマーゲートウェイデバイスのトンネルの1 つを一時的に無効化し、このステップを繰り返すことができます。VPN 接続の AWS 側のトン ネルを無効化することはできません。

 からオンプレミスネットワーク AWS への接続をテストするには、SSH または RDP を使用して ネットワークからインスタンスに接続できます。次に、ネットワーク内の別のコンピュータのプ ライベート IP アドレスを使用して ping コマンドを実行し、接続の両側でリクエストを開始お よび受信できることを検証します。

Linux インスタンスに接続する方法については、「Amazon EC2 ユーザーガイド」の「<u>Linux インスタンスに接続する</u>」を参照してください。Windows インスタンスに接続する方法の詳細に ついては、「Amazon EC2 ユーザーガイド」の「<u>Windows インスタンスに接続する</u>」を参照し てください。

AWS Site-to-Site VPN 接続とゲートウェイを削除する

AWS Site-to-Site VPN 接続が不要になった場合は、削除できます。Site-to-Site VPN 接続を削除した 場合、Site-to-Site VPN 接続に関連付けられていたカスタマーゲートウェイや仮想プライベートゲー トウェイは削除されません。カスタマーゲートウェイと仮想プライベートゲートウェイが不要になっ た場合は、それらを削除できます。

▲ Warning

Site-to-Site VPN 接続を削除してから新しい VPN 接続を作成する場合は、新しい設定ファイルをダウンロードして、カスタマーゲートウェイデバイスを再設定する必要があります。

タスク

- AWS Site-to-Site VPN 接続を削除する
- AWS Site-to-Site VPN カスタマーゲートウェイを削除する
- で仮想プライベートゲートウェイをデタッチおよび削除する AWS Site-to-Site VPN

AWS Site-to-Site VPN 接続を削除する

Site-to-Site VPN 接続を削除すると、しばらくの間、deleted の状態が表示されたままになり、その後、エントリは自動的に削除されます。

コンソールを使用して VPN 接続を削除するには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. ナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- 3. VPN 接続を選択し、[アクション]、[VPN 接続を削除] の順に選択します。
- 4. 確認を求められたら、deleteと入力し、[削除]を選択します。

コマンドラインまたは API を使用して VPN 接続を削除するには

- DeleteVpnConnection (Amazon EC2 クエリ API)
- delete-vpn-connection (AWS CLI)
- Remove-EC2VpnConnection (AWS Tools for Windows PowerShell)

AWS Site-to-Site VPN カスタマーゲートウェイを削除する

不要になったカスタマーゲートウェイは削除できます。Site-to-Site VPN 接続で使用されているカス タマーゲートウェイを削除することはできません。

コンソールを使用してカスタマーゲートウェイを削除するには

- 1. ナビゲーションペインで、[カスタマーゲートウェイ] を選択します。
- 2. 削除するカスタマーゲートウェイを選択し、[アクション]、[カスタマーゲートウェイを削除] を選 択します。
- 3. 確認を求められたら、deleteと入力し、[削除]を選択します。

コマンドラインまたは API を使用してカスタマーゲートウェイを削除するには

- DeleteCustomerGateway (Amazon EC2 クエリ API)
- delete-customer-gateway (AWS CLI)
- Remove-EC2CustomerGateway (AWS Tools for Windows PowerShell)

で仮想プライベートゲートウェイをデタッチおよび削除する AWS Site-to-Site VPN

VPC 用の仮想プライベートゲートウェイが不要になった場合には、VPC からそれをデタッチできます。

コンソールを使用して仮想プライベートゲートウェイをデタッチするには

- 1. ナビゲーションペインで [仮想プライベートゲートウェイ] を選択します。
- 2. 仮想プライベートゲートウェイを選択し、[Actions]、[Detach from VPC] を選択します。
- 3. [仮想プライベートゲートウェイのデタッチ]を選択します。

デタッチした仮想プライベートゲートウェイが不要になった場合は、削除することができま す。VPC にアタッチされている仮想プライベートゲートウェイを削除することはできません。仮想 プライベートゲートウェイを削除すると、しばらくの間、deleted の状態が表示されたままとなり ます。クリックすると、エントリは自動的に削除されます。 コンソールを使用して仮想プライベートゲートウェイを削除するには

- 1. ナビゲーションペインで [仮想プライベートゲートウェイ] を選択します。
- 2. 削除する仮想プライベートゲートウェイを選択し、[アクション]、[仮想プライベートゲートウェ イの削除] を選択します。
- 3. 確認を求められたら、deleteと入力し、[削除]を選択します。

コマンドラインまたは API を使用して仮想プライベートゲートウェイをデタッチするには

- DetachVpnGateway (Amazon EC2 クエリ API)
- detach-vpn-gateway (AWS CLI)
- Dismount-EC2VpnGateway (AWS Tools for Windows PowerShell)

コマンドラインまたは API を使用して仮想プライベートゲートウェイを削除するには

- DeleteVPNGateway (Amazon EC2 クエリ API)
- delete-vpn-gateway (AWS CLI)
- Remove-EC2VpnGateway (AWS Tools for Windows PowerShell)

AWS Site-to-Site VPN 接続のターゲットゲートウェイを変更する

AWS Site-to-Site VPN 接続のターゲットゲートウェイを変更できます。以下の移行オプションを使 用できます。

- トランジットゲートウェイへの既存の仮想プライベートゲートウェイ
- 別の仮想プライベートゲートウェイへの既存の仮想プライベートゲートウェイ
- 別のトランジットゲートウェイへの既存のトランジットゲートウェイ
- 仮想プライベートゲートウェイへの既存のトランジットゲートウェイ

ターゲットゲートウェイの変更後、新しいエンドポイントのプロビジョニング中に短時間、Site-to-Site VPN 接続が一時的に利用できなくなります。

以下のタスクは、新しいゲートウェイへの移行を完了するのに役立ちます。

タスク

VPN 接続のターゲットゲートウェイを変更する

- ステップ 1: 新しいターゲットゲートウェイを作成する
- ステップ 2: 静的ルートを削除する (条件付き)
- ステップ 3: 新しいゲートウェイに移行する
- ステップ 4: VPC ルートテーブルを更新する
- ステップ 5: ターゲットゲートウェイのルーティングを更新する (条件付き)
- ステップ 6: カスタマーゲートウェイ ASN を更新する (条件付き)

ステップ 1: 新しいターゲットゲートウェイを作成する

新しいターゲットゲートウェイへの移行を実行する前に、まず新しいゲートウェイを設定する必要 があります。仮想プライベートゲートウェイを追加する方法については、「<u>the section called "仮想</u> <u>プライベートゲートウェイの作成"</u>」を参照してください。トランジットゲートウェイの追加の詳細 については、「Amazon VPC Transit Gateway」の「<u>Transit Gatewayを作成する</u>」を参照してくださ い。

新しいターゲットゲートウェイがトランジットゲートウェイの場合は、VPC をトランジットゲー トウェイにアタッチします。VPC アタッチメントの詳細については、「Amazon VPC Transit Gateway」の「VPC への Transit Gateway アタッチメント」を参照してください。

仮想プライベートゲートウェイからトランジットゲートウェイにターゲットを変更する場合、オプ ションでトランジットゲートウェイ ASN を仮想プライベートゲートウェイ ASN と同じ値に設定 できます。別の ASN を使用する場合は、カスタマーゲートウェイデバイスの ASN をトランジット ゲートウェイ ASN に設定する必要があります。詳細については、「<u>the section called "ステップ 6:</u> カスタマーゲートウェイ ASN を更新する (条件付き)"」を参照してください。

ステップ 2: 静的ルートを削除する (条件付き)

このステップは、静的ルートを持つ仮想プライベートゲートウェイからトランジットゲートウェイに 移行する際に必要になります。

新しいゲートウェイに移行する前に静的ルートを削除する必要があります。

🚺 Tip

静的ルートを削除する前に、必ずコピーを取ってください。VPN 接続の移行が完了した後、 これらのルートをトランジットゲートウェイに再度追加する必要が出てきます。 ルートをルートテーブルから削除するには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. ナビゲーションペインで [ルートテーブル] (Route tables) を選択して、ルートテーブルを選択し ます。
- 3. [ルーター] タブで、[ルーター編集] を選択してください。
- 4. 仮想プライベートゲートウェイへの静的ルートで [削除] を選択します。
- 5. [Save changes] (変更の保存) をクリックします。

ステップ 3: 新しいゲートウェイに移行する

ターゲットゲートウェイを変更するには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. ナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- 3. VPN 接続を選択して、[アクション]、[VPN 接続を変更] の順に選択します。
- 4. [ターゲットタイプ]でゲートウェイタイプを選択します。
 - a. 新しいターゲットゲートウェイが仮想プライベートゲートウェイの場合は、[VPN ゲート ウェイ] を選択します。
 - b. 新しいターゲットゲートウェイがトランジットゲートウェイの場合は、[トランジットゲートウェイ]を選択します。
- 5. [Save changes] (変更の保存) をクリックします。

コマンドラインまたは API を使用して Site-to-Site VPN 接続を変更するには

- ModifyVpnConnection (Amazon EC2 Query API)
- modify-vpn-connection (AWS CLI)

ステップ 4: VPC ルートテーブルを更新する

新しいゲートウェイに移行した後、VPC のルートテーブルを変更する必要がある場合があります。 詳細については、Amazon VPC ユーザーガイドの「<u>ルートテーブル</u>」を参照してください。 次の表に、VPN ゲートウェイターゲットを変更した後に実行する VPC ルートテーブルの更新に関す る情報を示します。

既存のゲートウェイ	新しいゲートウェイ	VPC のルートテーブルの変更
伝播されたルートを持つ仮想 プライベートゲートウェイ	トランジットゲートウェイ	トランジットゲートウェイの ID が格納されているルートを 削除します。
伝播されたルートを持つ仮想 プライベートゲートウェイ	伝播されたルートを持つ仮想 プライベートゲートウェイ	必要なアクションはありませ ん。
伝播されたルートを持つ仮想 プライベートゲートウェイ	静的ルートを持つ仮想プライ ベートゲートウェイ	新しい仮想プライベートゲー トウェイの ID が格納されてい るルートを追加します。
静的ルートを持つ仮想プライ ベートゲートウェイ	トランジットゲートウェイ	トランジットゲートウェイの ID への仮想プライベートゲー トウェイの ID を格納するルー トを更新します。
静的ルートを持つ仮想プライ ベートゲートウェイ	静的ルートを持つ仮想プライ ベートゲートウェイ	新しい仮想プライベートゲー トウェイの ID への仮想プライ ベートゲートウェイの ID を格 納するルートを更新します。
静的ルートを持つ仮想プライ ベートゲートウェイ	伝播されたルートを持つ仮想 プライベートゲートウェイ	仮想プライベートゲートウェ イの ID を含むルートを削除し ます。
トランジットゲートウェイ	静的ルートを持つ仮想プライ ベートゲートウェイ	仮想プライベートゲートウェ イの ID へのトランジットゲー トウェイの ID を格納するルー トを更新します。
トランジットゲートウェイ	伝播されたルートを持つ仮想 プライベートゲートウェイ	トランジットゲートウェイの ID を含むルートを削除しま す。

既存のゲートウェイ	新しいゲートウェイ	VPC のルートテーブルの変更
トランジットゲートウェイ	トランジットゲートウェイ	新しいトランジットゲート ウェイの ID へのトランジット ゲートウェイの ID を格納する ルートを更新します。

ステップ 5: ターゲットゲートウェイのルーティングを更新する (条件付き)

新しいゲートウェイがトランジットゲートウェイである場合、トランジットゲートウェイのルート テーブルを変更して VPC と Site-to-Site VPN 間のトラフィックを許可します。詳細については、 「Amazon VPC Transit Gateway」の「<u>Transit Gateway ルートテーブル</u>」を参照してください。

VPN 静的ルートを削除した場合、トランジットゲートウェイルートテーブルに静的ルートを追加す る必要があります。

仮想プライベートゲートウェイとは異なり、トランジットゲートウェイは VPN 添付のすべてのトン ネルでマルチエグジット識別子(MED)に同じ値を設定します。仮想プライベートゲートウェイか らトランジットゲートウェイに移行し、トンネル選択の MED 値に依存している場合は、接続の問題 を回避するためにルーティングを変更することをお勧めします。例えば、トランジットゲートウェ イで特定のルートをアドバタイズできます。詳細については、「<u>ルートテーブルと AWS Site-to-Site</u> VPN ルーティングの優先度」を参照してください。

ステップ 6: カスタマーゲートウェイ ASN を更新する (条件付き)

新しいゲートウェイに古いゲートウェイとは異なる ASN がある場合は、新しい ASN を指すよう にカスタマーゲートウェイデバイスの ASN を更新する必要があります。詳細については、「<u>AWS</u> Site-to-Site VPN 接続のカスタマーゲートウェイオプション」を参照してください。

AWS Site-to-Site VPN 接続オプションの変更

Site-to-Site VPN 接続の接続オプションを変更できます。以下のオプションを変更できます。

- VPN トンネルを介して通信できる VPN 接続のローカル (カスタマーゲートウェイ) 側とリモート (AWS) 側の IPv4 CIDR 範囲。両方の範囲のデフォルトは 0.0.0.0/0 です。
- VPN トンネルを介して通信できる VPN 接続のローカル (カスタマーゲートウェイ) 側とリモート (AWS) 側の IPv6 CIDR 範囲。両方の範囲のデフォルトは::/0 です。

VPN 接続オプションを変更しても、 AWS 側の VPN エンドポイント IP アドレスは変更されず、ト ンネルオプションも変更されません。VPN 接続が更新されている間、VPN 接続は一時的に利用でき なくなります。

コンソールを使用して VPN 接続オプションを変更するには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. ナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- 3. VPN 接続を選択し、[アクション]、[VPN 接続オプションを変更] の順に選択します。
- 4. 必要に応じて、新しい CIDR 範囲を入力します。
- 5. [Save changes] (変更の保存) をクリックします。

コマンドラインまたは API を使用して VPN 接続オプションを変更するには

- modify-vpn-connection-options (AWS CLI)
- ModifyVpnConnectionOptions (Amazon EC2 Query API)

AWS Site-to-Site VPN トンネルオプションの変更

Site-to-Site VPN 接続の VPN トンネルのトンネルオプションを変更できます。一度に 1 つの VPN ト ンネルを変更できます。

A Important

VPN トンネルを変更すると、トンネル経由の接続が最大数分間中断されます。予期されるダ ウンタイムのために必ず計画を立ててください。

コンソールを使用して VPN トンネルオプションを変更するには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. ナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- Site-to-Site VPN 接続を選択して、[アクション]、[VPN トンネルオプションを変更] の順に選択 します。
- 4. [VPN トンネル外部 IP アドレス] で、VPN トンネルのトンネルエンドポイント IP を選択します。

5. 必要に応じて、トンネルオプションの新しい値を選択または入力します。トンネルオプションの 詳細については、「VPN トンネルオプション」を参照してください。

Note

ー部のトンネルオプションには複数のデフォルト値があります。削除したいデフォルト 値をクリックします。そのデフォルト値はトンネルオプションから削除されます。

6. [Save changes] (変更の保存) をクリックします。

コマンドラインまたは API を使用して VPN トンネルオプションを変更するには

- (AWS CLI) 現在のトンネルオプションを表示するには <u>describe-vpn-connections</u> を使用し、トンネ ルオプションを変更するには modify-vpn-tunnel-options を使用します。
- (Amazon EC2 Query API) 現在のトンネルオプションを表示するには <u>DescribeVpnConnections</u> を 使用し、トンネルオプションを変更するには ModifyVpnTunnelOptions を使用します。

AWS Site-to-Site VPN 接続の静的ルートを編集する

静的ルーティング用に設定された仮想プライベートゲートウェイ上の Site-to-Site VPN 接続の場合 は、VPN 設定の静的ルートを追加、変更、または削除できます。

コンソールを使用して静的ルートを追加または削除するには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. ナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- 3. VPN 接続を選択します。
- 4. [静的ルートの編集]を選択します。
- 5. 必要に応じて、ルートを追加または削除します。
- 6. [Save changes] (変更の保存) をクリックします。
- ルートテーブルでルート伝播を有効にしていない場合、ルートテーブルで手動でルートを更新し、更新された静的 IP プレフィックスを VPN 接続に反映する必要があります。詳細については、「(仮想プライベートゲートウェイ) ルートテーブルでルート伝播を有効にする」を参照してください。

 トランジットゲートウェイ上の VPN 接続の場合は、トランジットゲートウェイルートテーブ ルで静的ルートを追加、変更、または削除します。詳細については、「Amazon VPC Transit Gateway」の「Transit Gateway ルートテーブル」を参照してください。

コマンドラインまたは API を使用して静的ルートを追加するには

- CreateVpnConnectionRoute (Amazon EC2 Query API)
- create-vpn-connection-route (AWS CLI)
- <u>New-EC2VpnConnectionRoute</u> (AWS Tools for Windows PowerShell)

コマンドラインまたは API を使用して静的ルートを削除するには

- DeleteVpnConnectionRoute (Amazon EC2 Query API)
- delete-vpn-connection-route (AWS CLI)
- Remove-EC2VpnConnectionRoute (AWS Tools for Windows PowerShell)

AWS Site-to-Site VPN 接続のカスタマーゲートウェイを変更する

Amazon VPC コンソールまたはコマンドラインツールを使用して、Site-to-Site VPN 接続のカスタ マーゲートウェイを変更できます。

カスタマーゲートウェイの変更後、新しいエンドポイントのプロビジョニング中に短時間、VPN 接 続が一時的に利用できなくなります。

コンソールを使用してカスタマーゲートウェイを変更するには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. ナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- 3. VPN 接続を選択します。
- 4. [アクション]、[VPN 接続を変更] を選択します。
- 5. [ターゲットタイプ] で、[カスタマーゲートウェイ] を選択します。
- 6. [ターゲットカスタマーゲートウェイ]では、新しいカスタマーゲートウェイを選択します。
- 7. [Save changes] (変更の保存) をクリックします。

コマンドラインまたは API を使用してカスタマーゲートウェイを変更するには

- ModifyVpnConnection (Amazon EC2 Query API)
- modify-vpn-connection (AWS CLI)

AWS Site-to-Site VPN 接続の侵害された認証情報を置き換える

Site-to-Site VPN 接続のトンネル認証情報が漏洩したと思われる場合は、IKE 事前共有キーを変更す るか、ACM 証明書を変更できます。使用する方法は、VPN トンネルに使用した認証オプションに よって異なります。詳細については、「<u>AWS Site-to-Site VPN トンネル認証オプション</u>」を参照し てください。

IKE 事前共有キーを変更するには

VPN 接続のトンネルオプションを変更し、トンネルごとに新しい IKE 事前共有キーを指定できま す。詳細については、「AWS Site-to-Site VPN トンネルオプションの変更」を参照してください。

または、VPN 接続を削除することもできます。詳細については、「<u>VPN 接続とゲートウェイを削</u> 除する」を参照してください。VPC または仮想プライベートゲートウェイを削除する必要はありま せん。次に、同じ仮想プライベートゲートウェイを使用して新しい VPN 接続を作成し、カスタマー ゲートウェイデバイスに新しいキーを設定します。トンネルに独自の事前共有キーを指定するか、 で新しい事前共有キー AWS を生成できます。VPN 接続の作成の詳細については、「<u>VPN 接続を作</u> 成する」を参照してください。VPN 接続を再作成すると、トンネルの内部アドレスと外部アドレス が変更されることがあります。

トンネルエンドポイントの AWS 側の証明書を変更するには

証明書を更新します。詳細については、「<u>VPN トンネルエンドポイント証明書をローテーションす</u> る」を参照してください。

カスタマーゲートウェイデバイスの証明書を変更するには

- 新しい証明書を作成します。詳細については、AWS Certificate Manager ユーザーガイドの「証明書の発行と管理」を参照してください。
- 2. カスタマーゲートウェイデバイスに証明書を追加します。

AWS Site-to-Site VPN トンネルエンドポイント証明書のローテー ション

Amazon VPC コンソールを使用して、 AWS 側のトンネルエンドポイントで証明書をローテーショ ンできます。トンネルエンドポイントの証明書の有効期限が近づくと、 はサービスにリンクされた ロールを使用して証明書 AWS を自動的にローテーションします。詳細については、「<u>the section</u> called "サービスにリンクされた役割"」を参照してください。

コンソールを使用して Site-to-Site VPN トンネルエンドポイント証明書を更新するには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. ナビゲーションペインで、[Site-to-Site VPN 接続]を選択します。
- 3. Site-to-Site VPN 接続を選択し、[アクション]、[VPN トンネル証明書を変更] を選択します。
- 4. トンネルエンドポイントを選択します。
- 5. [Save] を選択します。

を使用して Site-to-Site VPN トンネルエンドポイント証明書を更新するには AWS CLI

modify-vpn-tunnel-certificate コマンドを使用します。

AWS Site-to-Site VPN を使用したプライベート IP AWS Direct

Connect

プライベート IP VPN を使用すると、パブリック IP アドレスや追加のサードパーティー VPN 機器 を使用せずに AWS Direct Connect、オンプレミスネットワークと 間のトラフィックを暗号化して AWS、 経由で IPsec VPN をデプロイできます。

を介したプライベート IP VPN の主なユースケースの 1 つは、金融、医療、連邦業界のお客様が規制 およびコンプライアンスの目標を達成できるように支援 AWS Direct Connect することです。を介し たプライベート IP VPN により、 AWS とオンプレミスネットワーク間のトラフィックが安全でプラ イベート AWS Direct Connect であることが保証され、お客様は規制およびセキュリティ上の義務に 準拠できます。

プライベート IP VPN の利点

 ネットワーク管理と運用の簡素化:プライベート IP VPN を使用しない場合、お客様はサード パーティーの VPN とルーターをデプロイして、 AWS Direct Connect ネットワーク経由でプライ ベート VPNsを実装する必要があります。プライベート IP VPN 機能を使用すると、お客様は独 自の VPN インフラストラクチャをデプロイして管理する必要はありません。これにより、ネット ワークオペレーションが簡素化され、コストが削減されます。

- セキュリティ体制の向上:以前は、お客様は 経由のトラフィックの暗号化にパブリック AWS Direct Connect 仮想インターフェイス (VIF) を使用する必要がありました。そのため AWS Direct Connectには、VPN エンドポイントのパブリック IP アドレスが必要です。パブリック IP を使用 すると、外部 (DOS) 攻撃の可能性が高まり、その結果、お客様はネットワーク保護のために追加 のセキュリティギアをデプロイする必要があります。また、パブリック VIF は、すべての AWS パ ブリックサービスとお客様のオンプレミスネットワーク間のアクセスを開き、リスクの重大度を 高めます。プライベート IP VPN 機能を使用すると、プライベート IP VIFs ではなく) AWS Direct Connect トランジット VIFs での暗号化が可能になります。 IPs これにより、暗号化に加えてエン ドツーエンドのプライベート接続が提供され、全体的なセキュリティ体制が強化されます。
- 高いルートスケール: プライベート IP VPN 接続は、現在アウトバウンドルートが 200 個、イン バウンドルートが 100 個という制限がある AWS Direct Connect 単独の場合と比較して、高いルー ト制限 (アウトバウンドルートが 5,000 個、インバウンドルートが 1,000 個)を提供します。

プライベート IP VPN の仕組み

プライベート IP Site-to-Site VPN は、 AWS Direct Connect トランジット仮想インターフェイス (VIF) で動作します。 AWS Direct Connect ゲートウェイとトランジットゲートウェイを使用して、 オンプレミスネットワークと AWS VPC を相互接続します。プライベート IP VPN 接続には、 AWS 側のトランジットゲートウェイと、オンプレミス側のカスタマーゲートウェイデバイスに終了ポイン トがあります。プライベート IP アドレスは、IPsec トンネルの Transit Gateway とカスタマーゲー トウェイデバイスの両端に割り当てることができます。プライベート IP アドレスは、RFC1918 ま たは RFC6598 のプライベート IPv4 アドレス範囲から使用できます。

トランジットゲートウェイにプライベート IP VPN 接続をアタッチします。そして、VPN アタッチ メントと、トランジットゲートウェイにアタッチされている VPC (または他のネットワーク) の間で トラフィックをルーティングします。これを行うには、ルートテーブルを VPN アタッチメントに関 連付けます。逆方向では、VPC に関連付けられているルートテーブルを使用して、VPC からプライ ベート IP VPN アタッチメントにトラフィックをルーティングできます。

VPN アタッチメントに関連付けられているルートテーブルは、基盤となる AWS Direct Connect ア タッチメントに関連付けられているルートテーブルと同じでも異なっていてもかまいません。これに より、VPC とオンプレミスのネットワーク間で、暗号化されたトラフィックと暗号化されていない トラフィックの両方を同時にルーティングできます。 VPN を離れるトラフィックパスの詳細については、「AWS Direct Connect ユーザーガイド」の「<u>プ</u> <u>ライベート仮想インターフェイスとトランジット仮想インターフェイスのルーティングポリシー</u>」を 参照してください。

タスク

• AWS Site-to-Site VPN 経由でプライベート IP を作成する AWS Direct Connect

AWS Site-to-Site VPN 経由でプライベート IP を作成する AWS Direct Connect

を使用してプライベート IP VPN を作成するには、 AWS Direct Connect 次の手順に従いま す。Direct Connect でプライベート IP VPN を作成する前に、Transit Gateway と Direct Connect ゲートウェイを最初に作成しておく必要があります。2 つのゲートウェイを作成したら、2 つのゲー トウェイの関連付けを作成する必要があります。次の表にこれらの前提条件の説明を示します。2 つ のゲートウェイを作成して関連付けたら、その関連付けを使用して VPN カスタマーゲートウェイと 接続を作成します。

前提条件

次の表は、Direct Connect でプライベート IP VPN を作成する前の前提条件を示しています。

項目	ステップ	情報
Site-to-Site VPN の Transit Gateway を準備します。	Amazon Virtual Private Cloud (VPC) コンソールを使用する か、コマンドラインまたは API を使用してトランジット ゲートウェイを作成します。 「Amazon VPC Transit Gateways ガイド」の 「 <u>Transit Gateways</u> 」を参照 してください。	トランジットゲートウェイ は、VPC とオンプレミスネッ トワークを相互接続するため に使用できるネットワークの 中継ハブです。プライベート IP VPN 接続には、新しいト ランジットゲートウェイを作 成するか、既存のトランジッ トゲートウェイを使用できま す。トランジットゲートウェ イを作成するとき、または既 存のトランジットゲートウェ イを変更する場合は、接続の

項目	ステップ	情報
- 項日	ステッノ	「fw ためのプライベート IP CIDR ブロックを指定します。
		ゲートウェイ上の他の ネットワークアタッチ メントの IP アドレス と重複しないようにし てください。IP CIDR ブロックが重複してい る場合は、カスタマー ゲートウェイデバイス で設定上の問題が発生 する可能性がありま す。
Site-to-Site VPN の AWS Direct Connect ゲートウェイ を作成します。	Direct Connect コンソールを 使用するか、コマンドライン または API を使用して Direct Connect ゲートウェイを作成 します。 AWS Direct Connect 「ユー ザーガイド」の <u>AWS「Direct</u> <u>Connect ゲートウェイの作成</u> 」を参照してください。	Direct Connect ゲートウェイ を使用すると、複数の AWS リージョンに仮想インター フェイス (VIFs) を接続できま す。このゲートウェイは VIF への接続に使用されます。

項目	ステップ	情報
Site-to-Site VPN の Transit Gateway の関連付けを作成し ます。	Direct Connect コンソールを 使用するか、コマンドライン または API を使用して、Dir ect Connect ゲートウェイと Transit Gateway 間の関連付け を作成します。 AWS Direct Connect <u>「ユー</u> ザーガイド」の「トランジッ トゲートウェイ AWS Direct Connect との関連付けまたは 関連付け解除」を参照してく ださい。	AWS Direct Connect ゲート ウェイを作成したら、ゲート ウェイのトランジット AWS Direct Connect ゲートウェイ の関連付けを作成します。許 可されたプレフィックスリス トで以前に識別されたトラン ジットゲートウェイのプライ ベート IP CIDR を指定しま す。

Site-to-Site VPN のカスタマーゲートウェイと接続を作成する

カスタマーゲートウェイは、作成するリソースです AWS。オンプレミスネットワーク内のカスタ マーゲートウェイデバイスを表します。カスタマーゲートウェイを作成するときは、デバイスに関す る情報を に提供します AWS。詳細については、「カスタマーゲートウェイ」を参照してください。

コンソールを使用してカスタマーゲートウェイを作成するには

- 1. Amazon VPC コンソールの https://console.aws.amazon.com/vpc/ を開いてください。
- 2. ナビゲーションペインで、[カスタマーゲートウェイ]を選択します。
- 3. [カスタマーゲートウェイの作成]]を選択します。
- (オプション) [名前] には、カスタマーゲートウェイの名前を入力します。これにより、Name というキーと指定した値を含むタグが作成されます。
- 5. [BGP ASN] に、カスタマーゲートウェイのボーダーゲートウェイプロトコル (BGP) 自律システ ム番号 (ASN) を入力します。
- 6. IP アドレスで、カスタマーゲートウェイデバイスのプライベート IP アドレスを入力します。

▲ Important

AWS プライベート IP を設定するときは AWS Site-to-Site VPN、RFC 1918 アドレスを 使用して独自のトンネルエンドポイント IP アドレスを指定する必要があります。カスタ マーゲートウェイルーターと AWS Direct Connect エンドポイント間の eBGP ピアリン グにpoint-to-point IP アドレスを使用しないでください。 AWS では、point-to-point接続 の代わりに、カスタマーゲートウェイルーターのループバックまたは LAN インターフェ イスをソースまたは宛先アドレスとして使用することをお勧めします。 RFC 1918 の詳細については、「<u>プライベートインターネットのアドレス割り当て</u>」を 参照してください。

- 7. (オプション) [デバイス] に、このカスタマーゲートウェイをホストするデバイスの名前を入力し ます。
- 8. [カスタマーゲートウェイの作成]]を選択します。
- 9. ナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- 10. [Create VPN connection] (VPN 接続の作成) を選択します。
- 11. (オプション) [名前タグ] には、Site-to-Site VPN 接続の名前を入力します。これにより、Name と いうキーと指定した値を含むタグが作成されます。
- 12. [Target gateway type] (ターゲットゲートウェイタイプ) で、[Transit gateway] (転送ゲートウェ イ) を選択します。次に、以前に特定したトランジットゲートウェイを選択します。
- 13. [Customer gateway] (カスタマーゲートウェイ) で、[Existing] (既存) を選択します。次に、前の 手順で作成したカスタマーゲートウェイを選択します。
- 14. カスタマーゲートウェイデバイスがボーダーゲートウェイプロトコル (BGP) をサポートしてい るかどうかに基づいて、ルーティングオプションのいずれかを選択します。
 - カスタマーゲートウェイデバイスが BGP をサポートしている場合は、[動的 (BGP が必要)] を 選択します。
 - カスタマーゲートウェイデバイスが BGP をサポートしていない場合は、[静的] を選択します。
- 15. [トンネル内部 IP バージョン] で、VPN トンネルが IPv4 トラフィックをサポートするか、IPv6 トラフィックをサポートするかを指定します。
- (オプション) IP バージョン内でトンネルに IPv4 を指定した場合、オプションで、VPN トンネル経由で通信できるカスタマーゲートウェイと AWS サイドの IPv4 CIDR 範囲を指定できます。 デフォルトは 0.0.0.0/0 です。

IP バージョン内で IPv6 for Tunnel を指定した場合、オプションで、VPN トンネル経由で通信で きるカスタマーゲートウェイと AWS サイドの IPv6 CIDR 範囲を指定できます。 両方の範囲の デフォルトは : : /0 です。

- 17. [外部 IP アドレスのタイプ] で、[Privatelpv4] を選択します。
- 18. トランスポートアタッチメント ID で、適切なゲートウェイのトランジット AWS Direct Connect ゲートウェイアタッチメントを選択します。
- 19. [Create VPN connection] (VPN 接続の作成) を選択します。

Note

[Enable acceleration] (アクセラレーションを有効にする) オプションは、 AWS Direct Connect経由の VPN 接続には適用されません。

コマンドラインまたは API を使用してカスタマーゲートウェイを作成するには

- CreateCustomerGateway (Amazon EC2 Query API)
- create-customer-gateway (AWS CLI)

in AWS Site-to-Site VPN のセキュリティ

のクラウドセキュリティが最優先事項 AWS です。お客様は AWS 、セキュリティを最も重視する組 織の要件を満たすように構築されたデータセンターとネットワークアーキテクチャを活用できます。

セキュリティは、 AWS お客様とお客様の間の責任共有です。<u>責任共有モデル</u>では、これをクラウ ドのセキュリティおよびクラウド内のセキュリティと説明しています。

- クラウドのセキュリティ AWS は、で AWS サービスを実行するインフラストラクチャを保護 する責任を担います AWS クラウド。は、お客様が安全に使用できるサービス AWS も提供しま す。サードパーティーの監査者は、AWS コンプライアンスプログラム コンプライアンスプログラ ムの一環として、当社のセキュリティの有効性を定期的にテストおよび検証。AWS Site-to-Site VPN に適用されるコンプライアンスプログラムの詳細については、「コンプライアンスプログラ ムAWS による対象範囲内のサービスコンプライアンスプログラム」を参照してください。
- クラウドのセキュリティ お客様の責任は、使用する AWS サービスによって決まります。また、ユーザーは、データの機密性、会社の要件、適用される法律や規制など、その他の要因についても責任を負います。

このドキュメントは、Site-to-Site VPN を使用する際の責任共有モデルの適用方法を理解するのに 役立ちます。以下のトピックでは、セキュリティおよびコンプライアンスの目的を達成するように Site-to-Site VPN を設定する方法について説明します。また、Site-to-Site VPN リソースのモニタリ ングや保護に役立つ他の AWS のサービスの使用方法についても説明します。

内容

- Secrets Manager を使用した AWS Site-to-Site VPN セキュリティ機能の強化
- AWS Site-to-Siteでのデータ保護
- ・ AWS Site-to-Site VPN の Identity and Access Management
- ・の耐障害性 AWS Site-to-Site VPN
- <u>AWS Site-to-Site VPN のインフラストラクチャセキュリティ</u>

Secrets Manager を使用した AWS Site-to-Site VPN セキュリティ 機能の強化

AWS Site-to-Site VPN のセキュリティ再ベース機能は、VPN 接続をより詳細に制御および可視化で きる強化されたセキュリティ機能を提供します。主な改善点は、Site-to-Site VPN サービスに直接保 存する AWS Secrets Manager のではなく、事前共有キー (PSKs) を に保存できることです。これに より、シークレット管理とセキュリティのベストプラクティスへの準拠が向上します。この機能に は、両方の IKE フェーズの暗号化アルゴリズム、整合性アルゴリズム、Diffie-Hellman グループな ど、アクティブな VPN トンネルで使用されているセキュリティパラメータをリアルタイムで可視化 する GetActiveVpnTunnelStatus API も含まれています。さらに、IKEv1 などのレガシーオプ ションを除外することで、最新のプロトコルの使用を強制する推奨セキュリティ設定を生成できる ようになりました。これらの機能強化は、組織が厳格なセキュリティ標準を維持する必要がある場 合、VPN 設定の詳細な監査証跡が必要な場合、または VPN 接続が利用可能な最も安全なプロトコル を使用していることを確認する場合に特に役立ちます。

内容

- で Secrets Manager の事前共有キーを変更する AWS Site-to-Site VPN
- で事前共有キーストレージモードを変更する AWS Site-to-Site VPN

で Secrets Manager の事前共有キーを変更する AWS Site-to-Site VPN

Secrets Manager でトンネルにアクセスできない場合は、そのトンネルの事前共有キーを変更できます。

Note

- 事前共有キーを変更するときは、両方の Secrets Manager サービスに必要な IAM アクセス 許可があることを確認してください。
- VPN トンネルの事前共有キーを変更した後、接続は最大数分間中断されます。予想される ダウンタイムを計画してください。

VPN トンネルの Secrets Manager 事前共有キーを変更するには

- 1. Amazon VPC コンソールの https://console.aws.amazon.com/vpc/ を開いてください。
- 2. ナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- Site-to-Site VPN 接続を選択して、[アクション]、[VPN トンネルオプションを変更] の順に選択 します。
- 4. [VPN トンネル外部 IP アドレス] で、VPN トンネルのトンネルエンドポイント IP を選択しま す。
- 5. 新しい事前共有キーで、新しい事前共有キーを選択します。

Note

このオプションは、Secrets Manager に保存されているキーでのみ使用できます。

- 6. [Save changes] (変更の保存) をクリックします。
- 7. 他のトンネルについても、この手順を繰り返します。

で事前共有キーストレージモードを変更する AWS Site-to-Site VPN

既存の VPN トンネルの事前共有キーストレージモードを変更します。

Note

- ストレージモードを変更するときは、Site-to-Site VPN サービスと Secrets Manager サービスの両方に必要な IAM アクセス許可があることを確認してください。
- VPN トンネルのストレージモードを変更した後、接続は最大数分間中断されます。予想されるダウンタイムを計画してください。

事前共有キーストレージモードを変更するには

- 1. Amazon VPC コンソールの https://console.aws.amazon.com/vpc/ を開いてください。
- 2. ナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- Site-to-Site VPN 接続を選択して、[アクション]、[VPN トンネルオプションを変更] の順に選択 します。
- 4. [VPN トンネル外部 IP アドレス] で、VPN トンネルのトンネルエンドポイント IP を選択しま す。
- 5. 事前共有キーストレージで、次のいずれかの事前共有キーストレージタイプを選択します。
 - 標準 事前共有キーは Site-to-Site VPN サービスに直接保存されます。
 - Secrets Manager 事前共有キーは を使用して保存されます AWS Secrets Manager。Secrets Manager の詳細については、「」を参照してください<u>Secrets Manager を</u> 使用したセキュリティ機能の強化。
- 6. [Save changes] (変更の保存) をクリックします。

ストレージモードを Secrets Manager から Standard に変更する場合:

- 事前共有キーは Secrets Manager から削除され、Site-to-Site VPN サービスに移動されます。
- トンネルのエントリは Secrets Manager シークレットから削除されます。

ストレージモードを Standard から Secrets Manager に変更する場合:

- 事前共有キーが Site-to-Site VPN サービスから削除されます
- まだ存在しない場合は、新しい Secrets Manager シークレットが作成されます。
- 新しい事前共有キーは Secrets Manager に保存されます。

AWS Site-to-Siteでのデータ保護

責任 AWS <u>共有モデル</u>、 AWS Site-to-Site VPN でのデータ保護に適用されます。このモデルで説明 されているように、 AWS はすべての を実行するグローバルインフラストラクチャを保護する責任 があります AWS クラウド。ユーザーは、このインフラストラクチャでホストされるコンテンツに 対する管理を維持する責任があります。また、使用する「 AWS のサービス 」のセキュリティ設定 と管理タスクもユーザーの責任となります。データプライバシーの詳細については、<u>データプライ</u> <u>バシーに関するよくある質問</u>を参照してください。欧州でのデータ保護の詳細については、AWS セ キュリティブログに投稿された <u>AWS 責任共有モデルおよび GDPR</u> のブログ記事を参照してくださ い。

データ保護の目的で、認証情報を保護し AWS アカウント 、 AWS IAM Identity Center または AWS Identity and Access Management (IAM) を使用して個々のユーザーを設定することをお勧めします。 この方法により、それぞれのジョブを遂行するために必要な権限のみが各ユーザーに付与されます。 また、次の方法でデータを保護することもお勧めします:

- 各アカウントで多要素認証 (MFA) を使用します。
- SSL/TLS を使用して AWS リソースと通信します。TLS 1.2 が必須で、TLS 1.3 をお勧めします。
- で API とユーザーアクティビティのログ記録を設定します AWS CloudTrail。CloudTrail 証跡を使用して AWS アクティビティをキャプチャする方法については、「AWS CloudTrail ユーザーガイド」のCloudTrail 証跡の使用」を参照してください。
- AWS 暗号化ソリューションと、内のすべてのデフォルトのセキュリティコントロールを使用します AWS のサービス。
- Amazon Macie などの高度な管理されたセキュリティサービスを使用します。これらは、Amazon S3 に保存されている機密データの検出と保護を支援します。
コマンドラインインターフェイスまたは API AWS を介して にアクセスするときに FIPS 140-3 検 証済み暗号化モジュールが必要な場合は、FIPS エンドポイントを使用します。利用可能な FIPS エンドポイントの詳細については、「連邦情報処理規格 (FIPS) 140-3」を参照してください。

お客様のEメールアドレスなどの極秘または機密情報を、タグ、または[名前]フィールドなどの自 由形式のテキストフィールドに含めないことを強くお勧めします。これは、コンソール、API、また は SDK を使用して Site-to-Site VPN AWS CLIまたは他の AWS のサービス を使用する場合も同様 です。 AWS SDKs タグ、または名前に使用される自由記述のテキストフィールドに入力したデー タは、請求または診断ログに使用される場合があります。外部サーバーに URL を提供する場合、そ のサーバーへのリクエストを検証できるように、認証情報を URL に含めないことを強くお勧めしま す。

インターネットトラフィックのプライバシー

Site-to-Site VPN 接続は、VPC をオンプレミスネットワークにプライベートに接続します。お客様 の VPC とネットワーク間で転送されるデータは、転送中データの機密性と整合性を維持するため に、暗号化された VPN 接続を介してルーティングします。Amazon は、インターネットプロトコル セキュリティ (IPsec) VPN 接続をサポートしています。IPsec は、データストリームの各 IP パケッ トを認証して暗号化することによって、安全に IP 通信を行うためのプロトコルです。

各 Site-to-Site VPN 接続は、 AWS とネットワークをリンクする 2 つの暗号化された IPsec VPN ト ンネルで構成されます。各トンネルのトラフィックでは、暗号化に AES128 あるいは AES256 を、 キー交換に Diffie-Hellman グループを使用することで、Perfect Forward Secrecy を提供していま す。 AWS は SHA1 または SHA2 ハッシュ関数で認証します。

VPC のインスタンスでは、Site-to-Site VPN 接続の反対側のリソースに接続するためのパブリック IP アドレスは必要ありません。インスタンスは、Site-to-Site VPN 接続を介してインターネットトラ フィックをオンプレミスネットワークにルーティングできます。その後、既存のアウトバウンドトラ フィックポイントとネットワークセキュリティおよびモニタリングデバイスを介してインターネット にアクセスできます。

詳細については、以下のトピックを参照してください:

- <u>AWS Site-to-Site VPN 接続のトンネルオプション</u>: 各トンネルで使用できる IPsec および Internet Key Exchange (IKE) オプションに関する情報を提供します。
- <u>AWS Site-to-Site VPN トンネル認証オプション</u>: VPN トンネルエンドポイントの認証オプションに 関する情報を提供します。

- <u>AWS Site-to-Site VPN カスタマーゲートウェイデバイスの要件</u>: VPN 接続のユーザー側のカスタ マーゲートウェイデバイスの要件に関する情報を提供します。
- <u>VPN CloudHub を使用した AWS Site-to-Site VPN 接続間の安全な通信</u>: 複数の Site-to-Site VPN 接続がある場合は、 AWS VPN CloudHub を使用してオンプレミスサイト間の安全な通信を提供できます。

AWS Site-to-Site VPN の Identity and Access Management

AWS Identity and Access Management (IAM) は、管理者が AWS リソースへのアクセスを安全に制 御 AWS のサービス するのに役立つ です。IAM 管理者は、誰を認証 (サインイン) し、誰に Site-to-Site VPN リソースの使用を許可する (アクセス許可を持たせる) かを制御します。IAM は、追加料金 なしで使用できる AWS のサービス です。

トピック

- 対象者
- アイデンティティを使用した認証
- ・ポリシーを使用したアクセスの管理
- IAM での AWS Site-to-Site VPN の仕組み
- AWS Site-to-Site VPN のアイデンティティベースのポリシーの例
- Troubleshooting AWS Site-to-Site VPN のアイデンティティとアクセス
- AWS Site-to-Site VPN の マネージドポリシー
- Site-to-Site VPN のサービスにリンクされたロールの使用

対象者

AWS Identity and Access Management (IAM) の使用方法は、Site-to-Site VPN で行う作業によって異なります。

サービスユーザー - Site-to-Site VPN サービスを使用してジョブを実行する場合は、必要なアクセス 許可と認証情報を管理者が用意します。作業を実行するためにさらに多くの Site-to-Site VPN の機能 を使用するとき、追加の許可が必要になる場合があります。アクセスの管理方法を理解すると、管理 者に適切なアクセス許可をリクエストするのに役に立ちます。Site-to-Site VPN の機能にアクセスで きない場合は、「<u>Troubleshooting AWS Site-to-Site VPN のアイデンティティとアクセス</u>」を参照し てください。 サービス管理者 - 社内の Site-to-Site VPN リソースを担当している場合は、通常、Site-to-Site VPN へのフルアクセスがあります。サービスのユーザーがどの Site-to-Site VPN 機能やリソースにアクセ スするかを決めるのは管理者の仕事です。その後、IAM 管理者にリクエストを送信して、サービス ユーザーの権限を変更する必要があります。このページの情報を点検して、IAM の基本概念を理解 してください。お客様の会社で Site-to-Site VPN で IAM を利用する方法の詳細については、<u>IAM で</u> の AWS Site-to-Site VPN の仕組み をご参照ください。

IAM 管理者 - IAM 管理者は、Site-to-Site VPN へのアクセスを管理するポリシーの作成方法の詳細に ついて確認する場合があります。IAM で使用できる Site-to-Site VPN アイデンティティベースのポリ シーの例を表示するには、<u>AWS Site-to-Site VPN のアイデンティティベースのポリシーの例</u> を参照 してください。

アイデンティティを使用した認証

認証とは、ID 認証情報 AWS を使用して にサインインする方法です。として、IAM ユーザーとして AWS アカウントのルートユーザー、または IAM ロールを引き受けることによって、認証(にサイン イン AWS) される必要があります。

ID ソースを介して提供された認証情報を使用して、フェデレーティッド ID AWS として にサインイ ンできます。 AWS IAM Identity Center (IAM Identity Center) ユーザー、会社のシングルサインオン 認証、Google または Facebook 認証情報は、フェデレーティッド ID の例です。フェデレーティッド ID としてサインインする場合、IAM ロールを使用して、前もって管理者により ID フェデレーション が設定されています。フェデレーション AWS を使用して にアクセスすると、間接的にロールを引 き受けることになります。

ユーザーの種類に応じて、 AWS Management Console または AWS アクセスポータルにサインイン できます。へのサインインの詳細については AWS、「 AWS サインイン ユーザーガイド<u>」の「 への</u> サインイン AWS アカウント方法」を参照してください。

AWS プログラムで にアクセスする場合、 はソフトウェア開発キット (SDK) とコマンドラインイ ンターフェイス (CLI) AWS を提供し、認証情報を使用してリクエストを暗号化して署名します。 AWS ツールを使用しない場合は、自分でリクエストに署名する必要があります。リクエストに自分 で署名する推奨方法の使用については、「IAM ユーザーガイド」の「<u>API リクエストに対するAWS</u> Signature Version 4」を参照してください。

使用する認証方法を問わず、追加セキュリティ情報の提供をリクエストされる場合もあります。たと えば、 では、アカウントのセキュリティを高めるために多要素認証 (MFA) を使用する AWS ことを お勧めします。詳細については、「AWS IAM Identity Center ユーザーガイド」の「<u>多要素認証</u>」お よび「IAM ユーザーガイド」の「IAM のAWS 多要素認証」を参照してください。

AWS アカウント ルートユーザー

を作成するときは AWS アカウント、アカウント内のすべての およびリソースへの AWS のサービス 完全なアクセス権を持つ 1 つのサインインアイデンティティから始めます。この ID は AWS アカウ ント ルートユーザーと呼ばれ、アカウントの作成に使用した E メールアドレスとパスワードでサイ ンインすることでアクセスできます。日常的なタスクには、ルートユーザーを使用しないことを強く お勧めします。ルートユーザーの認証情報は保護し、ルートユーザーでしか実行できないタスクを実 行するときに使用します。ルートユーザーとしてサインインする必要があるタスクの完全なリストに ついては、「IAM ユーザーガイド」の「<u>ルートユーザー認証情報が必要なタスク</u>」を参照してくだ さい。

フェデレーティッドアイデンティティ

ベストプラクティスとして、管理者アクセスを必要とするユーザーを含む人間のユーザーに、ID プ ロバイダーとのフェデレーションを使用して一時的な認証情報 AWS のサービス を使用して にアク セスすることを要求します。

フェデレーティッド ID は、エンタープライズユーザーディレクトリ、ウェブ ID プロバイダー、、 AWS Directory Serviceアイデンティティセンターディレクトリ、または ID ソースを介して提供され た認証情報 AWS のサービス を使用して にアクセスするユーザーです。フェデレーティッド ID が にアクセスすると AWS アカウント、ロールを引き受け、ロールは一時的な認証情報を提供します。

アクセスを一元管理する場合は、AWS IAM Identity Centerを使用することをお勧めします。IAM Identity Center でユーザーとグループを作成するか、独自の ID ソースのユーザーとグループのセッ トに接続して同期し、すべての AWS アカウント とアプリケーションで使用できます。IAM Identity Center の詳細については、「AWS IAM Identity Center ユーザーガイド」の「<u>What is IAM Identity</u> <u>Center</u>?」(IAM Identity Center とは) を参照してください。

IAM ユーザーとグループ

IAM ユーザーは、単一のユーザーまたはアプリケーションに対して特定のアクセス許可 AWS アカウント を持つ 内の ID です。可能であれば、パスワードやアクセスキーなどの長期的な認証情報を保有する IAM ユーザーを作成する代わりに、一時的な認証情報を使用することをお勧めします。ただし、IAM ユーザーでの長期的な認証情報が必要な特定のユースケースがある場合は、アクセスキーをローテーションすることをお勧めします。詳細については、「IAM ユーザーガイド」の「長期的な認証情報を必要とするユースケースのためにアクセスキーを定期的にローテーションする」を参照してください。

IAM グループは、IAM ユーザーの集団を指定するアイデンティティです。グループとしてサインインすることはできません。グループを使用して、複数のユーザーに対して一度に権限を指定できま

す。多数のユーザーグループがある場合、グループを使用することで権限の管理が容易になります。 例えば、IAMAdmins という名前のグループを設定して、そのグループに IAM リソースを管理する許 可を与えることができます。

ユーザーは、ロールとは異なります。ユーザーは1人の人または1つのアプリケーションに一意に 関連付けられますが、ロールはそれを必要とする任意の人が引き受けるようになっています。ユー ザーには永続的な長期の認証情報がありますが、ロールでは一時認証情報が提供されます。詳細につ いては、「IAM ユーザーガイド」の「IAM ユーザーに関するユースケース」を参照してください。

IAM ロール

IAM ロールは、特定のアクセス許可 AWS アカウント を持つ 内の ID です。これは IAM ユーザーに 似ていますが、特定のユーザーには関連付けられていません。で IAM ロールを一時的に引き受ける には AWS Management Console、ユーザーから IAM ロール (コンソール) に切り替える ことができ ます。ロールを引き受けるには、または AWS API オペレーションを AWS CLI 呼び出すか、カスタ ム URL を使用します。ロールを使用する方法の詳細については、「IAM ユーザーガイド」の「ロー ルを引き受けるための各種方法」を参照してください。

IAM ロールと一時的な認証情報は、次の状況で役立ちます:

- フェデレーションユーザーアクセス フェデレーティッド ID に許可を割り当てるには、ロール を作成してそのロールの許可を定義します。フェデレーティッド ID が認証されると、その ID は ロールに関連付けられ、ロールで定義されている許可が付与されます。フェデレーションのロール については、「IAM ユーザーガイド」の「サードパーティー ID プロバイダー (フェデレーション) <u>用のロールを作成する</u>」を参照してください。IAM Identity Center を使用する場合は、許可セッ トを設定します。アイデンティティが認証後にアクセスできるものを制御するため、IAM Identity Center は、権限セットを IAM のロールに関連付けます。アクセス許可セットの詳細については、 「AWS IAM Identity Center User Guide」の「Permission sets」を参照してください。
- 一時的な IAM ユーザー権限 IAM ユーザーまたはロールは、特定のタスクに対して複数の異なる 権限を一時的に IAM ロールで引き受けることができます。
- クロスアカウントアクセス IAM ロールを使用して、自分のアカウントのリソースにアクセスすることを、別のアカウントの人物 (信頼済みプリンシパル) に許可できます。クロスアカウントアクセス権を付与する主な方法は、ロールを使用することです。ただし、一部の では AWS のサービス、(プロキシとしてロールを使用する代わりに) リソースに直接ポリシーをアタッチできます。クロスアカウントアクセスにおけるロールとリソースベースのポリシーの違いについては、「IAM ユーザーガイド」の「IAM でのクロスアカウントのリソースへのアクセス」を参照してください。

- クロスサービスアクセス 一部の は他の の機能 AWS のサービス を使用します AWS のサービ ス。例えば、あるサービスで呼び出しを行うと、通常そのサービスによって Amazon EC2 でアプ リケーションが実行されたり、Amazon S3 にオブジェクトが保存されたりします。サービスで は、呼び出し元プリンシパルの許可、サービスロール、またはサービスリンクロールを使用してこ れを行う場合があります。
 - 転送アクセスセッション (FAS) IAM ユーザーまたはロールを使用してアクションを実行すると AWS、プリンシパルと見なされます。一部のサービスを使用する際に、アクションを実行する ことで、別のサービスの別のアクションがトリガーされることがあります。FAS は、を呼び出 すプリンシパルのアクセス許可を AWS のサービス、ダウンストリームサービス AWS のサービ ス へのリクエストをリクエストする と組み合わせて使用します。FAS リクエストは、サービス が他の AWS のサービス またはリソースとのやり取りを完了する必要があるリクエストを受け 取った場合にのみ行われます。この場合、両方のアクションを実行するためのアクセス許可が必 要です。FAS リクエストを行う際のポリシーの詳細については、「転送アクセスセッション」 を参照してください。
 - サービスロール サービスがユーザーに代わってアクションを実行するために引き受ける IAM ロールです。IAM 管理者は、IAM 内からサービスロールを作成、変更、削除することができま す。詳細については、「IAM ユーザーガイド」の「AWS のサービスに許可を委任するロールを 作成する」を参照してください。
 - サービスにリンクされたロール サービスにリンクされたロールは、にリンクされたサービス ロールの一種です AWS のサービス。サービスは、ユーザーに代わってアクションを実行する ロールを引き受けることができます。サービスにリンクされたロールは に表示され AWS アカ ウント、サービスによって所有されます。IAM 管理者は、サービスリンクロールのアクセス許 可を表示できますが、編集することはできません。
- Amazon EC2 で実行されているアプリケーション IAM ロールを使用して、EC2 インスタンスで 実行され、AWS CLI または AWS API リクエストを行うアプリケーションの一時的な認証情報を 管理できます。これは、EC2 インスタンス内でのアクセスキーの保存に推奨されます。EC2 イン スタンスに AWS ロールを割り当て、そのすべてのアプリケーションで使用できるようにするに は、インスタンスにアタッチされたインスタンスプロファイルを作成します。インスタンスプロ ファイルにはロールが含まれ、EC2 インスタンスで実行されるプログラムは一時的な認証情報を 取得できます。詳細については、「IAM ユーザーガイド」の「<u>Amazon EC2 インスタンスで実行</u> されるアプリケーションに IAM ロールを使用して許可を付与する」を参照してください。

ポリシーを使用したアクセスの管理

でアクセスを制御する AWS には、ポリシーを作成し、ID AWS またはリソースにアタッチします。 ポリシーは AWS 、アイデンティティまたはリソースに関連付けられているときにアクセス許可を 定義する のオブジェクトです。 は、プリンシパル (ユーザー、ルートユーザー、またはロールセッ ション) がリクエストを行うときに、これらのポリシー AWS を評価します。ポリシーでの権限によ り、リクエストが許可されるか拒否されるかが決まります。ほとんどのポリシーは JSON ドキュメ ント AWS として に保存されます。JSON ポリシードキュメントの構造と内容の詳細については、 「IAM ユーザーガイド」の「JSON ポリシー概要」を参照してください。

管理者は JSON AWS ポリシーを使用して、誰が何にアクセスできるかを指定できます。つまり、ど のプリンシパルがどのリソースに対してどのような条件下でアクションを実行できるかということで す。

デフォルトでは、ユーザーやロールに権限はありません。IAM 管理者は、リソースで必要なアク ションを実行するための権限をユーザーに付与する IAM ポリシーを作成できます。その後、管理者 はロールに IAM ポリシーを追加し、ユーザーはロールを引き受けることができます。

IAM ポリシーは、オペレーションの実行方法を問わず、アクションの許可を定義します。例え ば、iam:GetRole アクションを許可するポリシーがあるとします。そのポリシーを持つユーザー は、 AWS Management Console、、 AWS CLIまたは AWS API からロール情報を取得できます。

アイデンティティベースのポリシー

アイデンティティベースポリシーは、IAM ユーザーグループ、ユーザーのグループ、ロールなど、 アイデンティティにアタッチできる JSON 許可ポリシードキュメントです。これらのポリシーは、 ユーザーとロールが実行できるアクション、リソース、および条件をコントロールします。アイデン ティティベースポリシーの作成方法については、「IAM ユーザーガイド」の「<u>カスタマー管理ポリ</u> シーでカスタム IAM アクセス許可を定義する」を参照してください。

アイデンティティベースのポリシーは、さらにインラインポリシーまたはマネージドポリシーに分類 できます。インラインポリシーは、単一のユーザー、グループ、またはロールに直接埋め込まれてい ます。管理ポリシーは、 内の複数のユーザー、グループ、ロールにアタッチできるスタンドアロン ポリシーです AWS アカウント。管理ポリシーには、 AWS 管理ポリシーとカスタマー管理ポリシー が含まれます。マネージドポリシーまたはインラインポリシーのいずれかを選択する方法について は、「IAM ユーザーガイド」の「<u>管理ポリシーとインラインポリシーのいずれかを選択する</u>」を参 照してください。

リソースベースのポリシー

リソースベースのポリシーは、リソースに添付する JSON ポリシードキュメントです。リソース ベースのポリシーには例として、IAM ロールの信頼ポリシーや Amazon S3 バケットポリシーがあげ られます。リソースベースのポリシーをサポートするサービスでは、サービス管理者はポリシーを 使用して特定のリソースへのアクセスを制御できます。ポリシーがアタッチされているリソースの 場合、指定されたプリンシパルがそのリソースに対して実行できるアクションと条件は、ポリシーに よって定義されます。リソースベースのポリシーでは、<u>プリンシパルを指定する</u>必要があります。プ リンシパルには、アカウント、ユーザー、ロール、フェデレーティッドユーザー、または を含める ことができます AWS のサービス。

リソースベースのポリシーは、そのサービス内にあるインラインポリシーです。リソースベースのポ リシーでは、IAM の AWS マネージドポリシーを使用できません。

アクセスコントロールリスト (ACL)

アクセスコントロールリスト (ACL) は、どのプリンシパル (アカウントメンバー、ユーザー、または ロール) がリソースにアクセスするための許可を持つかを制御します。ACL はリソースベースのポリ シーに似ていますが、JSON ポリシードキュメント形式は使用しません。

Amazon S3、および Amazon VPC は AWS WAF、ACLs。ACL の詳細については、「Amazon Simple Storage Service デベロッパーガイド」の「<u>アクセスコントロールリスト (ACL) の概要</u>」を参 照してください。

その他のポリシータイプ

AWS は、一般的でない追加のポリシータイプをサポートします。これらのポリシータイプでは、よ り一般的なポリシータイプで付与された最大の権限を設定できます。

- アクセス許可の境界 アクセス許可の境界は、アイデンティティベースポリシーによって IAM エンティティ (IAM ユーザーまたはロール) に付与できる権限の上限を設定する高度な機能です。エンティティにアクセス許可の境界を設定できます。結果として得られる権限は、エンティティのアイデンティティベースポリシーとそのアクセス許可の境界の共通部分になります。Principalフィールドでユーザーまたはロールを指定するリソースベースのポリシーでは、アクセス許可の境界は制限されません。これらのポリシーのいずれかを明示的に拒否した場合、権限は無効になります。アクセス許可の境界の詳細については、「IAM ユーザーガイド」の「IAM エンティティのアクセス許可の境界」を参照してください。
- サービスコントロールポリシー (SCPs) SCPsは、の組織または組織単位 (OU) の最大アクセス 許可を指定する JSON ポリシーです AWS Organizations。 AWS Organizations は、ビジネスが所

有する複数の AWS アカウント をグループ化して一元管理するためのサービスです。組織内のす べての機能を有効にすると、サービスコントロールポリシー (SCP) を一部またはすべてのアカウ ントに適用できます。SCP は、各 を含むメンバーアカウントのエンティティのアクセス許可を制 限します AWS アカウントのルートユーザー。Organizations と SCP の詳細については、「AWS Organizations ユーザーガイド」の「<u>サービスコントロールポリシー (SCP)</u>」を参照してくださ い。

- リソースコントロールポリシー (RCP) RCP は、所有する各リソースにアタッチされた IAM ポリ シーを更新することなく、アカウント内のリソースに利用可能な最大数のアクセス許可を設定する ために使用できる JSON ポリシーです。RCP は、メンバーアカウントのリソースのアクセス許可 を制限し、組織に属しているかどうかにかかわらず AWS アカウントのルートユーザー、を含む ID の有効なアクセス許可に影響を与える可能性があります。RCP をサポートする のリストを含む Organizations と RCP の詳細については、AWS Organizations RCPs<u>「リソースコントロールポリ</u> シー (RCPs」を参照してください。AWS のサービス
- セッションポリシー セッションポリシーは、ロールまたはフェデレーションユーザーの一時的な セッションをプログラムで作成する際にパラメータとして渡す高度なポリシーです。結果として セッションの権限は、ユーザーまたはロールのアイデンティティベースポリシーとセッションポ リシーの共通部分になります。また、リソースベースのポリシーから権限が派生する場合もありま す。これらのポリシーのいずれかを明示的に拒否した場合、権限は無効になります。詳細について は、「IAM ユーザーガイド」の「セッションポリシー」を参照してください。

複数のポリシータイプ

1 つのリクエストに複数のタイプのポリシーが適用されると、結果として作成される権限を理解する のがさらに難しくなります。が複数のポリシータイプが関与する場合にリクエストを許可するかどう か AWS を決定する方法については、「IAM ユーザーガイド」の<u>「ポリシー評価ロジック</u>」を参照し てください。

IAM での AWS Site-to-Site VPN の仕組み

IAM を使用して Site-to-Site VPN へのアクセスを管理する前に、Site-to-Site VPN で利用できる IAM の機能について学びます。

AWS Site-to-Site VPN で使用できる IAM 機能

IAM 機能	Site-to-Site VPN サポート
<u>アイデンティティベースポリシー</u>	はい
リソースベースのポリシー	いいえ
<u>ポリシーアクション</u>	はい
<u>ポリシーリソース</u>	はい
<u>ポリシー条件キー (サービス固有)</u>	はい
ACL	いいえ
<u>ABAC (ポリシー内のタグ)</u>	いいえ
一時的な認証情報	はい
<u>プリンシパル権限</u>	はい
サービスロール	はい
サービスリンクロール	はい

Site-to-Site VPN およびその他の AWS のサービスがほとんどの IAM 機能と連携する方法の概要については、IAM ユーザーガイドのAWS 「IAM と連携する のサービス」を参照してください。

Site-to-Site VPN のアイデンティティベースのポリシー

アイデンティティベースのポリシーのサポート: あり

アイデンティティベースポリシーは、IAM ユーザーグループ、ユーザーのグループ、ロールなど、 アイデンティティにアタッチできる JSON 許可ポリシードキュメントです。これらのポリシーは、 ユーザーとロールが実行できるアクション、リソース、および条件をコントロールします。ID ベー スのポリシーの作成方法については、「IAM ユーザーガイド」の「<u>カスタマー管理ポリシーでカス</u> タム IAM アクセス許可を定義する」を参照してください。

IAM アイデンティティベースのポリシーでは、許可または拒否するアクションとリソース、およ びアクションを許可または拒否する条件を指定できます。プリンシパルは、それが添付されている ユーザーまたはロールに適用されるため、アイデンティティベースのポリシーでは指定できませ ん。JSON ポリシーで使用できるすべての要素について学ぶには、「IAM ユーザーガイド」の「<u>IAM</u> JSON ポリシーの要素のリファレンス」を参照してください。

Site-to-Site VPN のアイデンティティベースのポリシーの例

Site-to-Site VPN アイデンティティベースのポリシーの例を表示するには、「<u>AWS Site-to-Site VPN</u> のアイデンティティベースのポリシーの例」を参照してください。

Site-to-Site VPN 内のリソースベースのポリシー

リソースベースのポリシーのサポート:なし

リソースベースのポリシーは、リソースに添付する JSON ポリシードキュメントです。リソース ベースのポリシーには例として、IAM ロールの信頼ポリシーや Amazon S3 バケットポリシーがあげ られます。リソースベースのポリシーをサポートするサービスでは、サービス管理者はポリシーを 使用して特定のリソースへのアクセスを制御できます。ポリシーがアタッチされているリソースの 場合、指定されたプリンシパルがそのリソースに対して実行できるアクションと条件は、ポリシーに よって定義されます。リソースベースのポリシーでは、<u>プリンシパルを指定する</u>必要があります。プ リンシパルには、アカウント、ユーザー、ロール、フェデレーティッドユーザー、または を含める ことができます AWS のサービス。

クロスアカウントアクセスを有効にするには、アカウント全体、または別のアカウントの IAM エン ティティをリソースベースのポリシーのプリンシパルとして指定します。リソースベースのポリシー にクロスアカウントのプリンシパルを追加しても、信頼関係は半分しか確立されない点に注意してく ださい。プリンシパルとリソースが異なる場合 AWS アカウント、信頼されたアカウントの IAM 管 理者は、プリンシパルエンティティ (ユーザーまたはロール) にリソースへのアクセス許可も付与す る必要があります。IAM 管理者は、アイデンティティベースのポリシーをエンティティにアタッチ することで権限を付与します。ただし、リソースベースのポリシーで、同じアカウントのプリンシパ ルへのアクセス権が付与されている場合は、アイデンティティベースのポリシーをさらに付与する必 要はありません。詳細については、「IAM ユーザーガイド」の「IAM でのクロスアカウントリソー スアクセス」を参照してください。

Site-to-Site VPN のポリシーアクション

ポリシーアクションのサポート:あり

管理者は JSON AWS ポリシーを使用して、誰が何にアクセスできるかを指定できます。つまり、ど のプリンシパルがどのリソースに対してどのような条件下でアクションを実行できるかということで す。 JSON ポリシーの Action 要素にはポリシー内のアクセスを許可または拒否するために使用できる アクションが記述されます。ポリシーアクションの名前は通常、関連付けられた AWS API オペレー ションと同じです。一致する API オペレーションのない許可のみのアクションなど、いくつかの例 外があります。また、ポリシーに複数のアクションが必要なオペレーションもあります。これらの追 加アクションは依存アクションと呼ばれます。

このアクションは関連付けられたオペレーションを実行するためのアクセス許可を付与するポリシー で使用されます。

Site-to-Site VPN アクションのリストを確認するには、「サービス認可リファレンス」の「<u>Actions</u> defined by AWS Site-to-Site VPN」を参照してください。

Site-to-Site VPN のポリシーアクションは、アクションの前に以下のプレフィックス を使用します。

ec2

単一のステートメントで複数のアクションを指定するには、アクションをカンマで区切ります。

```
"Action": [
"ec2:action1",
"ec2:action2"
]
```

Site-to-Site VPN アイデンティティベースのポリシーの例を表示するには、「<u>AWS Site-to-Site VPN</u> のアイデンティティベースのポリシーの例」を参照してください。

Site-to-Site VPN のポリシーリソース

ポリシーリソースのサポート: あり

管理者は JSON AWS ポリシーを使用して、誰が何にアクセスできるかを指定できます。つまり、ど のプリンシパルがどのリソースに対してどのような条件下でアクションを実行できるかということで す。

Resource JSON ポリシー要素はアクションが適用されるオブジェクトを指定します。ステートメ ントにはResource または NotResource 要素を含める必要があります。ベストプラクティスとし て、<u>Amazon リソースネーム (ARN)</u>を使用してリソースを指定します。これは、リソースレベルの 許可と呼ばれる特定のリソースタイプをサポートするアクションに対して実行できます。 オペレーションのリスト化など、リソースレベルの権限をサポートしないアクションの場合は、ス テートメントがすべてのリソースに適用されることを示すために、ワイルドカード (*) を使用しま す。

"Resource": "*"

Site-to-Site VPN リソースタイプとその ARNs<u>AWS Site-to-Site VPN で定義されるリソース</u>」を参照 してください。 各リソースの ARN を指定できるアクションについては、<u>AWS Site-to-Site VPN で</u> 定義されるアクション」を参照してください。

Site-to-Site VPN アイデンティティベースのポリシーの例を表示するには、「<u>AWS Site-to-Site VPN</u> <u>のアイデンティティベースのポリシーの例</u>」を参照してください。

Site-to-Site VPN のポリシー条件キー

サービス固有のポリシー条件キーのサポート:あり

管理者は JSON AWS ポリシーを使用して、誰が何にアクセスできるかを指定できます。つまり、ど のプリンシパルがどのリソースに対してどのような条件下でアクションを実行できるかということで す。

Condition 要素 (または Condition ブロック) を使用すると、ステートメントが有効な条件を指定 できます。Condition 要素はオプションです。イコールや未満などの <u>条件演算子</u> を使用して条件 式を作成して、ポリシーの条件とリクエスト内の値を一致させることができます。

1つのステートメントに複数の Condition 要素を指定する場合、または 1 つの Condition 要素に 複数のキーを指定する場合、 AWS では AND 論理演算子を使用してそれらを評価します。1 つの条 件キーに複数の値を指定すると、 は論理ORオペレーションを使用して条件 AWS を評価します。ス テートメントの権限が付与される前にすべての条件が満たされる必要があります。

条件を指定する際にプレースホルダー変数も使用できます。例えば IAM ユーザーに、IAM ユーザー 名がタグ付けされている場合のみリソースにアクセスできる権限を付与することができます。詳細 については、「IAM ユーザーガイド」の「<u>IAM ポリシーの要素: 変数およびタグ</u>」を参照してくださ い。

AWS は、グローバル条件キーとサービス固有の条件キーをサポートしています。すべての AWS グ ローバル条件キーを確認するには、「IAM ユーザーガイド」の<u>AWS 「グローバル条件コンテキスト</u> キー」を参照してください。 Site-to-Site VPN 条件キーのリストを確認するには、「サービス認可リファレンス」の<u>AWS Site-to-</u> <u>Site VPN の条件キー</u>」を参照してください。条件キーを使用できるアクションとリソースについて は、AWS Site-to-Site VPN で定義されるアクション」を参照してください。

Site-to-Site VPN アイデンティティベースのポリシーの例を表示するには、「<u>AWS Site-to-Site VPN</u> のアイデンティティベースのポリシーの例」を参照してください。

Site-to-Site VPN の ACL

ACL のサポート: なし

アクセスコントロールリスト (ACL) は、どのプリンシパル (アカウントメンバー、ユーザー、または ロール) がリソースにアクセスするための許可を持つかを制御します。ACL はリソースベースのポリ シーに似ていますが、JSON ポリシードキュメント形式は使用しません。

Site-to-Site VPN による ABAC

ABAC (ポリシー内のタグ) のサポート: なし

属性ベースのアクセス制御 (ABAC) は、属性に基づいてアクセス許可を定義する認可戦略です。では AWS、これらの属性はタグと呼ばれます。タグは、IAM エンティティ (ユーザーまたはロール) およ び多くの AWS リソースにアタッチできます。エンティティとリソースのタグ付けは、ABAC の最初 の手順です。その後、プリンシパルのタグがアクセスしようとしているリソースのタグと一致した場 合にオペレーションを許可するように ABAC ポリシーをします。

ABAC は、急成長する環境やポリシー管理が煩雑になる状況で役立ちます。

タグに基づいてアクセスを管理するには、aws:ResourceTag/*keyname*、aws:RequestTag/*key-name*、または aws:TagKeys の条件キーを使用して、ポリシーの 条件要素でタグ情報を提供します。

サービスがすべてのリソースタイプに対して3つの条件キーすべてをサポートする場合、そのサービスの値はありです。サービスが一部のリソースタイプに対してのみ3つの条件キーのすべてをサ ポートする場合、値は「部分的」になります。

ABAC の詳細については、「IAM ユーザーガイド」の「<u>ABAC 認可でアクセス許可を定義する</u>」 を参照してください。ABAC をセットアップするステップを説明するチュートリアルについては、 「IAM ユーザーガイド」の「<u>属性に基づくアクセスコントロール (ABAC) を使用する</u>」を参照してく ださい。 Site-to-Site VPN での一時的な認証の使用

一時的な認証情報のサポート:あり

ー部の AWS のサービス は、一時的な認証情報を使用してサインインすると機能しません。一時的 な認証情報 AWS のサービス を使用する などの詳細については、IAM ユーザーガイドの「IAM <u>AWS</u> のサービス と連携する 」を参照してください。

ユーザー名とパスワード以外の AWS Management Console 方法で にサインインする場合は、一時 的な認証情報を使用します。たとえば、会社のシングルサインオン (SSO) リンク AWS を使用して にアクセスすると、そのプロセスによって一時的な認証情報が自動的に作成されます。また、ユー ザーとしてコンソールにサインインしてからロールを切り替える場合も、一時的な認証情報が自動 的に作成されます。ロールの切り替えに関する詳細については、「IAM ユーザーガイド」の「ユー ザーから IAM ロールに切り替える (コンソール)」を参照してください。

一時的な認証情報は、 AWS CLI または AWS API を使用して手動で作成できます。その後、これら の一時的な認証情報を使用してアクセスすることができます AWS。長期的なアクセスキーを使用 する代わりに、一時的な認証情報を動的に生成 AWS することをお勧めします。詳細については、 「IAM の一時的セキュリティ認証情報」を参照してください。

Site-to-Site VPN のクロスサービスプリンシパル許可

転送アクセスセッション (FAS) のサポート: あり

IAM ユーザーまたはロールを使用して でアクションを実行すると AWS、プリンシパルと見なされま す。一部のサービスを使用する際に、アクションを実行することで、別のサービスの別のアクショ ンがトリガーされることがあります。FAS は、 を呼び出すプリンシパルのアクセス許可を AWS の サービス、ダウンストリームサービス AWS のサービス へのリクエストをリクエストする と組み合 わせて使用します。FAS リクエストは、サービスが他の AWS のサービス またはリソースとのやり 取りを完了する必要があるリクエストを受け取った場合にのみ行われます。この場合、両方のアク ションを実行するためのアクセス許可が必要です。FAS リクエストを行う際のポリシーの詳細につ いては、「転送アクセスセッション」を参照してください。

Site-to-Site VPN のサービスロール

サービスロールのサポート: あり

サービスロールとは、サービスがユーザーに代わってアクションを実行するために引き受ける <u>IAM</u> <u>ロール</u>です。IAM 管理者は、IAM 内からサービスロールを作成、変更、削除できます。詳細につい ては、「IAM ユーザーガイド」の「<u>AWS のサービスに許可を委任するロールを作成する</u>」を参照し てください。 ▲ Warning

サービスロールの許可を変更すると、Site-to-Site VPN の機能が破損する可能性がありま す。Site-to-Site VPN が指示する場合以外は、サービスロールを編集しないでください。

Site-to-Site VPN のサービスにリンクされたロール

サービスリンクロールのサポート: あり

サービスにリンクされたロールは、 にリンクされたサービスロールの一種です AWS のサービス。 サービスは、ユーザーに代わってアクションを実行するロールを引き受けることができます。サービ スにリンクされたロールは に表示され AWS アカウント 、サービスによって所有されます。IAM 管 理者は、サービスにリンクされたロールのアクセス許可を表示できますが、編集することはできませ ん。

サービスにリンクされたロールの作成または管理の詳細については、「<u>IAM と提携するAWS のサー</u> <u>ビス</u>」を参照してください。表の「サービスリンクロール」列に Yes と記載されたサービスを見つ けます。サービスにリンクされたロールに関するドキュメントをサービスで表示するには、[はい] リ ンクを選択します。

AWS Site-to-Site VPN のアイデンティティベースのポリシーの例

デフォルトでは、ユーザーおよびロールには Site-to-Site VPN リソースを作成または変更する許可は ありません。また、、 AWS Command Line Interface (AWS CLI) AWS Management Console、ま たは AWS API を使用してタスクを実行することはできません。IAM 管理者は、リソースで必要なア クションを実行するための権限をユーザーに付与する IAM ポリシーを作成できます。その後、管理 者はロールに IAM ポリシーを追加し、ユーザーはロールを引き継ぐことができます。

これらサンプルの JSON ポリシードキュメントを使用して、IAM アイデンティティベースのポリ シーを作成する方法については、「IAM ユーザーガイド」の「<u>IAM ポリシーを作成する (コンソー</u> ル)」を参照してください。

各リソースタイプの ARN の形式など、Site-to-Site VPN で定義されるアクションとリソースタイプ の詳細については、「サービス認可リファレンス」の<u>「Actions, resources, and condition keys for</u> <u>AWS Site-to-Site VPN」</u>を参照してください。 ARNs

トピック

ポリシーに関するベストプラクティス

- Site-to-Site VPN コンソールの使用
- 特定の Site-to-Site VPN 接続を説明する
- AWS Site-to-Site VPN 接続に必要なリソースを作成して記述する

ポリシーに関するベストプラクティス

アイデンティティベースのポリシーは、ユーザーのアカウントで誰かが Site-to-Site VPN リソースを 作成、アクセス、または削除できるどうかを決定します。これらのアクションを実行すると、 AWS アカウントに料金が発生する可能性があります。アイデンティティベースポリシーを作成したり編集 したりする際には、以下のガイドラインと推奨事項に従ってください:

- AWS 管理ポリシーを開始し、最小特権のアクセス許可に移行する ユーザーとワークロードにア クセス許可の付与を開始するには、多くの一般的なユースケースにアクセス許可を付与するAWS 管理ポリシーを使用します。これらは で使用できます AWS アカウント。ユースケースに固有の AWS カスタマー管理ポリシーを定義することで、アクセス許可をさらに減らすことをお勧めしま す。詳細については、「IAM ユーザーガイド」の「<u>AWS マネージドポリシー</u>」または「<u>ジョブ機</u> 能のAWS マネージドポリシー」を参照してください。
- ・最小特権を適用する IAM ポリシーで許可を設定する場合は、タスクの実行に必要な許可のみを 付与します。これを行うには、特定の条件下で特定のリソースに対して実行できるアクションを定 義します。これは、最小特権アクセス許可とも呼ばれています。IAM を使用して許可を適用する 方法の詳細については、「IAM ユーザーガイド」の「<u>IAM でのポリシーとアクセス許可</u>」を参照 してください。
- IAM ポリシーで条件を使用してアクセスをさらに制限する ポリシーに条件を追加して、アクションやリソースへのアクセスを制限できます。例えば、ポリシー条件を記述して、すべてのリクエストを SSL を使用して送信するように指定できます。条件を使用して、サービスアクションがなどの特定のを通じて使用されている場合に AWS のサービス、サービスアクションへのアクセスを許可することもできます AWS CloudFormation。詳細については、「IAM ユーザーガイド」の「IAM JSON ポリシー要素:条件」を参照してください。
- IAM Access Analyzer を使用して IAM ポリシーを検証し、安全で機能的な権限を確保する IAM Access Analyzer は、新規および既存のポリシーを検証して、ポリシーが IAM ポリシー言語 (JSON) および IAM のベストプラクティスに準拠するようにします。IAM アクセスアナライザーは 100 を超えるポリシーチェックと実用的な推奨事項を提供し、安全で機能的なポリシーの作成をサ ポートします。詳細については、「IAM ユーザーガイド」の「<u>IAM Access Analyzer でポリシーを</u> 検証する」を参照してください。
- 多要素認証 (MFA) を要求する で IAM ユーザーまたはルートユーザーを必要とするシナリオがある場合は AWS アカウント、MFA をオンにしてセキュリティを強化します。API オペレーション

が呼び出されるときに MFA を必須にするには、ポリシーに MFA 条件を追加します。詳細については、「IAM ユーザーガイド」の「MFA を使用した安全な API アクセス」を参照してください。

IAM でのベストプラクティスの詳細については、「IAM ユーザーガイド」の「<u>IAM でのセキュリ</u> ティベストプラクティス」を参照してください。

Site-to-Site VPN コンソールの使用

AWS Site-to-Site VPN コンソールにアクセスするには、最小限のアクセス許可のセットが必要で す。これらのアクセス許可により、 の Site-to-Site VPN リソースの詳細を一覧表示および表示でき ます AWS アカウント。最小限必要な許可よりも制限が厳しいアイデンティティベースのポリシーを 作成すると、そのポリシーを持つエンティティ (ユーザーまたはロール) に対してコンソールが意図 したとおりに機能しません。

AWS CLI または AWS API のみを呼び出すユーザーには、最小限のコンソールアクセス許可を付与 する必要はありません。代わりに、実行しようとしている API オペレーションに一致するアクショ ンのみへのアクセスが許可されます。

ユーザーとロールが引き続き Site-to-Site VPN コンソールを使用できるようにするには、エンティ ティに Site-to-Site VPN AmazonVPCFullAccessまたは AmazonVPCReadOnlyAccess AWS 管理 ポリシーもアタッチします。詳細については、「IAM ユーザーガイド」の「<u>ユーザーへの許可の追</u> 加」を参照してください。

特定の Site-to-Site VPN 接続を説明する

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
               "ec2:DescribeVpnConnections"
        ],
            "Resource": ["*"]
        }
    ]
}
```

AWS Site-to-Site VPN 接続に必要なリソースを作成して記述する

```
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Action": [
         "ec2:DescribeVpnConnections",
         "ec2:DescribeVpnGateways",
         "ec2:DescribeCustomerGateways",
         "ec2:CreateCustomerGateway",
         "ec2:CreateVpnGateway",
         "ec2:CreateVpnConnection"
         ],
         "Resource": [
            "*"
         ]
      },
   {
         "Effect": "Allow",
         "Action": "iam:CreateServiceLinkedRole",
         "Resource": "arn:aws:iam::*:role/aws-service-role/s2svpn.amazonaws.com/
AWSServiceRoleForVPCS2SVPNInternal",
         "Condition": {
            "StringLike": {
               "iam:AWSServiceName":"s2svpn.amazonaws.com"
            }
         }
      }
   ]
}
```

Troubleshooting AWS Site-to-Site VPN のアイデンティティとアクセス

次の情報は、Site-to-Site VPN と IAM の使用に伴って発生する可能性がある一般的な問題の診断や修 復に役立ちます。

トピック

Site-to-Site VPN でアクションを実行する権限がない

• iam:PassRole を実行する権限がありません

自分の 以外のユーザーに Site-to-Site VPN リソース AWS アカウント へのアクセスを許可したい

Site-to-Site VPN でアクションを実行する権限がない

アクションを実行する権限がないというエラーが表示された場合は、そのアクションを実行できるよ うにポリシーを更新する必要があります。

次のエラー例は、mateojackson IAM ユーザーがコンソールを使用して、ある *my-example-widget* リソースに関する詳細情報を表示しようとしたことを想定して、その際に必要 なec2:*GetWidget* アクセス許可を持っていない場合に発生するものです。

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: ec2:GetWidget on resource: my-example-widget

この場合、ec2:*GetWidget* アクションを使用して *my-example-widget*リソースへのアクセスを 許可するように、mateojackson ユーザーのポリシーを更新する必要があります。

サポートが必要な場合は、 AWS 管理者にお問い合わせください。サインイン認証情報を提供した担 当者が管理者です。

iam:PassRole を実行する権限がありません

iam:PassRole アクションを実行する権限がないというエラーが表示された場合は、ポリシーを更 新して Site-to-Site VPN にロールを渡せるようにする必要があります。

ー部の AWS のサービス では、新しいサービスロールまたはサービスにリンクされたロールを作成 する代わりに、そのサービスに既存のロールを渡すことができます。そのためには、サービスにロー ルを渡す権限が必要です。

以下のエラー例は、marymajor という名前の IAM ユーザーがコンソールを使用して Site-to-Site VPN でアクションを実行しようする場合に発生します。ただし、このアクションをサービスが実行 するには、サービスロールから付与された権限が必要です。メアリーには、ロールをサービスに渡す 許可がありません。

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: iam:PassRole

この場合、Mary のポリシーを更新してメアリーに iam:PassRole アクションの実行を許可する必 要があります。 サポートが必要な場合は、 AWS 管理者にお問い合わせください。サインイン資格情報を提供した担 当者が管理者です。

自分の 以外のユーザーに Site-to-Site VPN リソース AWS アカウント へのアクセスを 許可したい

他のアカウントのユーザーや組織外の人が、リソースにアクセスするために使用できるロールを作成 できます。ロールの引き受けを委託するユーザーを指定できます。リソースベースのポリシーまた はアクセスコントロールリスト (ACL) をサポートするサービスの場合、それらのポリシーを使用し て、リソースへのアクセスを付与できます。

詳細については、以下を参照してください:

- ・ Site-to-Site VPN がこれらの機能をサポートするかどうかについては、「<u>IAM での AWS Site-to-</u> Site VPN の仕組み」を参照してください。
- 所有 AWS アカウント している のリソースへのアクセスを提供する方法については、IAM ユー ザーガイドの「所有 AWS アカウント している別の の IAM ユーザーへのアクセスを提供する」を 参照してください。
- リソースへのアクセスをサードパーティーに提供する方法については AWS アカウント、IAM ユー ザーガイドの<u>「サードパーティー AWS アカウント が所有する へのアクセスを提供する</u>」を参照 してください。
- ID フェデレーションを介してアクセスを提供する方法については、「IAM ユーザーガイド」の 「外部で認証されたユーザー (ID フェデレーション) へのアクセスの許可」を参照してください。
- クロスアカウントアクセスにおけるロールとリソースベースのポリシーの使用方法の違いについては、「IAM ユーザーガイド」の「<u>IAM でのクロスアカウントのリソースへのアクセス</u>」を参照してください。

AWS Site-to-Site VPN の マネージドポリシー

ユーザー、グループ、ロールにアクセス許可を追加するには、自分でポリシーを記述するよりも AWS 管理ポリシーを使用する方が簡単です。チームに必要な権限のみを提供する <u>IAM カスタマーマ</u> <u>ネージドポリシーを作成する</u>には時間と専門知識が必要です。すぐに開始するには、 AWS マネージ ドポリシーを使用できます。これらのポリシーは一般的なユースケースを対象としており、 AWS ア カウントで利用できます。 AWS 管理ポリシーの詳細については、IAM ユーザーガイドの「 <u>AWS 管</u> 理ポリシー」を参照してください。 AWS サービスは、AWS 管理ポリシーを維持および更新します。AWS 管理ポリシーのアクセス許可は変更できません。サービスでは新しい機能を利用できるようにするために、AWS マネージドポリシーに権限が追加されることがあります。この種類の更新はポリシーがアタッチされている、すべてのアイデンティティ (ユーザー、グループおよびロール) に影響を与えます。新しい機能が立ち上げられた場合や、新しいオペレーションが使用可能になった場合に、各サービスが AWS マネージドポリシーを更新する可能性が最も高くなります。サービスは AWS マネージドポリシーからアクセス許可を削除しないため、ポリシーの更新によって既存のアクセス許可が損なわれることはありません。

さらに、は、複数の サービスにまたがるジョブ関数の マネージドポリシー AWS をサポートしてい ます。たとえば、 ReadOnlyAccess AWS 管理ポリシーは、すべての AWS サービスとリソースへ の読み取り専用アクセスを提供します。サービスが新機能を起動すると、 は新しいオペレーション とリソースの読み取り専用アクセス許可 AWS を追加します。ジョブ機能のポリシーの一覧および詳 細については、「IAM ユーザーガイド」の「<u>AWS のジョブ機能のマネージドポリシー</u>」を参照して ください。

AWS マネージドポリシー: AWSVPCS2SVpnServiceRolePolicy

AWSVPCS2SVpnServiceRolePolicy ポリシーを IAM アイデンティティにアタッチできます。こ のポリシーにより、Site-to-Site VPN は Site-to-Site VPN 内の AWS Secrets Manager シークレット を管理できます。詳細については、「<u>the section called "サービスにリンクされたロールの使用"</u>」を 参照してください。

このポリシーのアクセス許可を確認するには、「 AWS マネージドポリシーリファレンス」 のAWSVPCS2SVpnServiceRolePolicy」を参照してください。

AWS 管理ポリシーに対する Site-to-Site VPN の更新

Site-to-Site VPN の AWS マネージドポリシーの更新に関する詳細を、このサービスが 2025 年 5 月 にこれらの変更の追跡を開始してから表示します。

変更	説明	日付
<u>AWSVPCS2SVpnServic</u> <u>eRolePolicy</u> - ポリシーを更新 しました。	Site-to-Site VPN が VPN 接 続の AWS Secrets Manager s2svpnマネージドシークレッ トを管理できるようにする新 しいアクセス許可がポリシー に追加されました。	2025 年 5 月 14 日

Site-to-Site VPN のサービスにリンクされたロールの使用

AWS Site-to-Site VPN は AWS Identity and Access Management 、(IAM) サービスにリンクされた ロールを使用します。サービスにリンクされたロールは、Site-to-Site VPN に直接リンクされた一意 のタイプの IAM ロールです。サービスにリンクされたロールは Site-to-Site VPN によって事前定義 されており、サービスがユーザーに代わって他の AWS サービスを呼び出すために必要なすべてのア クセス許可が含まれています。

サービスにリンクされたロールを使用することで、必要なアクセス権限を手動で追加する必要がなく なるため、Site-to-Site VPN の設定が簡単になります。Site-to-Site VPN は、サービスにリンクされ たロールのアクセス許可を定義します。特に定義されている場合を除き、Site-to-Site VPN のみがそ のロールを引き受けることができます。定義される許可は信頼ポリシーと許可ポリシーに含まれてお り、その許可ポリシーを他の IAM エンティティにアタッチすることはできません。

サービスリンクロールを削除するには、最初に関連リソースを削除する必要があります。これにより、リソースへの意図しないアクセスによる許可の削除が防止され、Site-to-Site VPN リソースは保 護されます。

Site-to-Site VPN のサービスにリンクされたロールのアクセス許可

Site-to-Site VPN は、AWSServiceRoleForVPCS2SVPN という名前のサービスにリンクされたロール を使用します。これにより、Site-to-Site VPN は、ユーザーの VPN 接続に関連するリソースを作成 および管理できます。

AWSServiceRoleForVPCS2SVPN サービスにリンクされたロールは、次のサービスを信頼してロー ルを引き受けます。

s2svpn.amazonaws.com

このサービスにリンクされたロールは、管理ポリシー AWSVPCS2SVpnServiceRolePolicy を使用して、指定されたリソースに対して次のアクションを実行します。

- VPN 接続に証明書認証を使用する場合、 AWS Site-to-Site VPN は VPN トンネルエンドポイント で使用する VPN トンネル AWS Certificate Manager 証明書をエクスポートします。
- VPN 接続に証明書認証を使用する場合、は VPN トンネル AWS Certificate Manager 証明書の更新 AWS Site-to-Site VPN を管理します。
- VPN 接続に SecretsManager 事前共有キーストレージを使用する場合、 AWS Site-to-Site VPN は VPN 接続の s2svpn AWS Secrets Manager マネージドシークレットを管理します。

このポリシーのアクセス許可を確認するには、「AWS マネージドポリシーリファレンス」 のAWSVPCS2SVpnServiceRolePolicy」を参照してください。

Site-to-Site VPN のサービスにリンクされたロールを作成する

サービスリンクロールを手動で作成する必要はありません。 AWS Management Console、、 AWS CLIまたは AWS API で関連付けられた ACM プライベート証明書を持つカスタマーゲートウェイを 作成すると、Site-to-Site VPN によってサービスにリンクされたロールが作成されます。

このサービスリンクロールを削除した後で再度作成する必要が生じた場合は同じ方法でアカウント にロールを再作成できます。関連付けられた ACM プライベート証明書を使用してカスタマーゲー トウェイを作成すると、Site-to-Site VPN によってサービスにリンクされたロールが再度作成されま す。

Site-to-Site VPN のサービスにリンクされたロールを編集する

Site-to-Site VPN で、AWSServiceRoleForVPCS2SVPN のサービスにリンクされたロールを編集する ことはできません。サービスリンクロールの作成後は、さまざまなエンティティがロールを参照する 可能性があるため、ロール名を変更することはできません。ただし、IAM を使用してロールの説明 を編集することはできます。詳細については、「IAM ユーザーガイド」の「<u>サービスにリンクされ</u> たロールの編集」を参照してください。

Site-to-Site VPN のサービスにリンクされたロールを削除する

サービスリンクロールを必要とする機能やサービスが不要になった場合は、ロールを削除することを お勧めします。そうすることで、積極的にモニタリングまたは保守されていない未使用のエンティ ティを排除できます。ただし、手動で削除する前に、サービスリンクロールのリソースをクリーン アップする必要があります。

Note

リソースを削除する際に、Site-to-Site VPN サービスでそのロールが使用されている場合、 削除は失敗することがあります。失敗した場合は数分待ってから操作を再試行してくださ い。

AWSServiceRoleForVPCS2SVPN が使用する Site-to-Site VPN リソースを削除するには

このサービスにリンクされたロールは、関連付けられた ACM プライベート証明書を持つすべてのカ スタマーゲートウェイを削除した後にのみ削除できます。これにより、Site-to-Site VPN 接続で使用 されている ACM 証明書へのアクセス許可を誤って削除してしまうことがなくなります。

サービスリンクロールを IAM で手動削除するには

IAM コンソール、 AWS CLI、または AWS API を使用して、AWSServiceRoleForVPCS2SVPN サー ビスにリンクされたロールを削除します。詳細については、「IAM ユーザーガイド」の「<u>サービス</u> にリンクされたロールの削除」を参照してください。

の耐障害性 AWS Site-to-Site VPN

AWS グローバルインフラストラクチャは、AWS リージョンとアベイラビリティーゾーンを中心に 構築されています。AWS リージョンは、低レイテンシー、高スループット、および高度に冗長な ネットワークで接続された、物理的に分離された複数のアベイラビリティーゾーンを提供します。 アベイラビリティーゾーンでは、ゾーン間で中断することなく自動的にフェイルオーバーするアプリ ケーションとデータベースを設計および運用することができます。アベイラビリティーゾーンは、従 来の単一または複数のデータセンターインフラストラクチャよりも可用性が高く、フォールトトレラ ントで、スケーラブルです。

AWS リージョンとアベイラビリティーゾーンの詳細については、<u>AWS 「 グローバルインフラスト</u> ラクチャ」を参照してください。

Site-to-Site VPN には、 AWS グローバルインフラストラクチャに加えて、データの耐障害性とバッ クアップのニーズをサポートする機能が用意されています。

VPN 接続ごとに2つのトンネル

Site-to-Site VPN 接続は2つのトンネルで構成され、それぞれが異なるアベイラビリティーゾーンで 終端されるため、VPC の可用性が向上します。内にデバイス障害が発生した場合 AWS、VPN 接続 は自動的に2番目のトンネルにフェイルオーバーされ、アクセスが中断されることはありません。 は、VPN 接続の定期メンテナンス AWS も随時実行します。これにより、VPN 接続の2つのトンネ ルのいずれかが一時的に無効になる場合があります。詳細については、「<u>AWS Site-to-Site VPN ト</u> <u>ンネルエンドポイントの置き換え</u>」を参照してください。したがって、カスタマーゲートウェイを設 定するときは、両方のトンネルを設定することが重要です。

冗長性

カスタマーゲートウェイが使用できなくなった場合に接続が失われるのを防ぐために、2 つ目の Site-to-Site VPN 接続をセットアップできます。詳細については、次のドキュメントを参照してくだ さい。

- フェイルオーバー用の冗長 AWS Site-to-Site VPN 接続
- <u>Amazon Virtual Private Cloud の接続オプション</u>
- スケーラブルで安全なマルチ VPC AWS ネットワークインフラストラクチャの構築

AWS Site-to-Site VPN のインフラストラクチャセキュリティ

マネージドサービスである AWS Site-to-Site VPN は、 AWS グローバルネットワークセキュリティ で保護されています。 AWS セキュリティサービスと がインフラストラクチャ AWS を保護する方 法については、<u>AWS「 クラウドセキュリティ</u>」を参照してください。インフラストラクチャセキュ リティのベストプラクティスを使用して AWS 環境を設計するには、「Security Pillar AWS Well-Architected Framework」の「Infrastructure Protection」を参照してください。

AWS 公開された API コールを使用して、ネットワーク経由で Site-to-Site VPN にアクセスします。 クライアントは以下をサポートする必要があります。

- Transport Layer Security (TLS)。TLS 1.2 が必須で、TLS 1.3 をお勧めします。
- DHE (楕円ディフィー・ヘルマン鍵共有) や ECDHE (楕円曲線ディフィー・ヘルマン鍵共有) などの完全前方秘匿性 (PFS) による暗号スイート。これらのモードはJava 7 以降など、ほとんどの最新システムでサポートされています。

また、リクエストにはアクセスキー ID と、IAM プリンシパルに関連付けられているシークレットア クセスキーを使用して署名する必要があります。または、<u>AWS Security Token Service</u>AWS STSを 使用して、一時的なセキュリティ認証情報を生成し、リクエストに署名することもできます。

AWS Site-to-Site VPN 接続のモニタリング

モニタリングは、 AWS Site-to-Site VPN 接続の信頼性、可用性、パフォーマンスを維持する上で 重要な部分です。マルチポイント障害が発生した場合は、その障害をより簡単にデバッグできるよ うに、 ソリューションのすべての部分からモニタリングデータを収集する必要があります。ただ し、Site-to-Site VPN 接続のモニタリングを開始する前に、以下の質問に対する回答を反映したモニ タリング計画を作成する必要があります。

- どのような目的でモニタリングしますか?
- どのリソースをモニタリングしますか?
- どのくらいの頻度でこれらのリソースをモニタリングしますか?
- ・ どのモニタリングツールを利用しますか?
- 誰がモニタリングタスクを実行しますか?
- 問題が発生したときに誰が通知を受け取りますか?

次のステップでは、さまざまなタイミングと負荷条件でパフォーマンスを測定することにより、お客様の環境で通常の VPN パフォーマンスのベースラインを確定します。VPN のモニタリングでは、過 去のモニタリングデータを保存し、現在のパフォーマンスデータと比較することで、パフォーマンス の通常パターンと異常パターンを特定し、問題に対処する方法を考案できます。

ベースラインを確立するには、次の項目をモニタリングする必要があります。

- VPN トンネルの状態
- トンネルへのデータ
- トンネルからのデータ

トピック

- モニタリングツール
- ・ AWS Site-to-Site VPN ログ
- Amazon CloudWatch を使用して AWS Site-to-Site VPN トンネルをモニタリングする
- ・ AWS Health および AWS Site-to-Site VPN イベント

モニタリングツール

AWS には、Site-to-Site VPN 接続のモニタリングに使用できるさまざまなツールが用意されていま す。これらのツールの一部はモニタリングを行うように設定できますが、一部のツールは手動による 介入が必要です。モニタリングタスクをできるだけ自動化することをお勧めします。

自動モニタリングツール

次に示す自動化されたモニタリングツールを使用すると、Site-to-Site VPN 接続の監視が行われ、問 題が検出されたときにレポートが返されます。

- Amazon CloudWatch アラーム 指定した期間にわたって単一のメトリクスをモニタリングし、 複数の期間にわたる特定のしきい値に対するメトリクスの値に基づいて1つ以上のアクション を実行します。アクションは、Amazon SNSトピックに送信される通知です。CloudWatch のア ラームは、メトリクスが特定の状態になっただけではアクションを呼び出しません。アクション を呼び出すには、状態が変化して、指定した期間継続している必要があります。詳細については、 「<u>Amazon CloudWatch を使用して AWS Site-to-Site VPN トンネルをモニタリングする</u>」を参照 してください。
- AWS CloudTrail ログモニタリング アカウント間でログファイルを共有し、CloudWatch Logs に送信CloudWatch CloudTrail ログファイルをリアルタイムでモニタリングし、Java でログ処理ア プリケーションを書き込み、CloudTrail による配信後にログファイルが変更されていないことを確 認します。詳細については、Amazon EC2 <u>API リファレンス」の「を使用した API コールのログ AWS CloudTrail</u>記録」および<u>「ユーザーガイド」のCloudTrail ログファイルの操作</u>」を参照して ください。AWS CloudTrail
- AWS Health イベント Site-to-Site VPN トンネルの正常性の変化、ベストプラクティス設定の推奨事項、またはスケーリング制限に近づいたときに関連するアラートと通知を受信します。 Personal Health Dashboard のイベントを使用して、自動フェイルオーバーをトリガーしたり、トラブルシューティング時間を短縮したり、接続を最適化して高可用性を実現したりします。 詳細については、「AWS Health および AWS Site-to-Site VPN イベント」を参照してください。

手動モニタリングツール

Site-to-Site VPN 接続のモニタリングでもう 1 つ重要な点は、CloudWatch アラームの対象外の項目 を手動でモニタリングすることです。Amazon VPC および CloudWatch コンソールダッシュボード には、 AWS 環境の状態がat-a-glanceビューが表示されます。 Note

Amazon VPC コンソールでは、「ステータス」や「最終ステータス変更」などの Site-to-Site VPN トンネルの状態パラメータは、一時的な状態の変化や一時的なトンネルフラップを反映 していない場合があります。詳細なトンネル状態変化の最新情報については、CloudWatch メトリクスとログを使用することをお勧めします。

- Amazon VPC ダッシュボードには、次の内容が表示されます。
 - ・ リージョン別のサービス状態
 - Site-to-Site VPN 接続
 - VPN トンネルの状態 (ナビゲーションペインで、[Site-to-Site VPN Connections (Site-to-Site VPN 接続)]、サイト間 VPN 接続、[トンネル詳細] の順に選択します)
- CloudWatch のホームページには、以下の情報が表示されます。
 - 現在のアラームとステータス
 - アラームとリソースのグラフ
 - サービスのヘルスステータス

また、CloudWatch を使用して以下のことを行えます。

- 重視するサービスをモニタリングするためのカスタマイズしたダッシュボードを作成します
- メトリクスデータをグラフ化して、問題のトラブルシューティングを行い、傾向を確認する
- すべての AWS リソースメトリクスを検索して参照する
- 問題があることを通知するアラームを作成/編集する

AWS Site-to-Site VPN ログ

AWS Site-to-Site VPN ログを使用すると、Site-to-Site VPN デプロイをより詳細に可視化できます。 この機能を使用すると、IP セキュリティ (IPsec)トンネル確立、インターネットキー交換 (IKE) ネゴ シエーション、およびデッドピア検出 (DPD) プロトコルメッセージの詳細を示す Site-to-Site VPN 接続ログにアクセスできます。

Site-to-Site VPN ログは Amazon CloudWatch Logs に発行できます。この機能により、単一の一貫した方法で、すべての Site-to-Site VPN 接続の詳細なログにアクセスして分析できます。

トピック

- Site-to-Site VPN ログの利点
- Amazon CloudWatch Logs リソースポリシーのサイズ制限
- Site-to-Site VPN ログの内容
- CloudWatch Logs に発行するための IAM 要件
- AWS Site-to-Site VPN ログ設定の表示
- AWS Site-to-Site VPN ログを有効にする
- AWS Site-to-Site VPN ログを無効にする

Site-to-Site VPN ログの利点

- VPN のトラブルシューティングの簡素化: Site-to-Site VPN ログは、AWS とカスタマーゲートウェイデバイス間の設定の不一致を特定し、最初の VPN 接続の問題に対処するのに役立ちます。VPN 接続は、設定の誤り (不適切なタイムアウトの調整など) が原因で、時間の経過とともに断続的にフラップすることがあります。また、基盤となるトランスポートネットワークに問題 (インターネットの不安定など) が発生したり、ルーティングの変更やパスの障害によって VPN 経由の接続が中断されたりすることがあります。この機能により、断続的な接続障害の原因を正確に診断し、低レベルのトンネル設定を微調整して信頼性の高い動作を実現できます。
- 一元的な AWS Site-to-Site VPN 可視性: Site-to-Site VPN ログは、インターネットと AWS Direct Connect トランスポートの両方を使用する Virtual Gateway、Transit Gateway、CloudHub な ど、Site-to-Site VPN が接続されているさまざまな方法のトンネルアクティビティログを提供でき ます。この機能により、単一の一貫した方法で、すべての Site-to-Site VPN 接続の詳細なログにア クセスして分析できます。
- セキュリティとコンプライアンス: Site-to-Site VPN ログを Amazon CloudWatch Logs に送信して、VPN 接続のステータスと、時間の経過に伴うアクティビティを遡及的に分析できます。これはコンプライアンスおよび規制要件に準拠するのに役立ちます。

Amazon CloudWatch Logs リソースポリシーのサイズ制限

CloudWatch Logs リソースポリシーは 5120 文字に制限されています。CloudWatch Logs は、ポリ シーがこのサイズ制限に近づいていることを検出すると、/aws/vendedlogs/ でスタートするロ ググループを自動的に有効にします。ログ記録を有効にする場合、Site-to-Site VPN は、指定するロ ググループで CloudWatch Logs リソースポリシーを更新する必要があります。CloudWatch Logs リ ソースポリシーのサイズ制限に達しないようにするには、ロググループ名の先頭にプレフィックスと して /aws/vendedlogs/ を付けます。

Site-to-Site VPN ログの内容

Site-to-Site VPN トンネルのアクティビティログに含まれる情報は以下のとおりです。ログストリームファイル名は、VpnConnectionID と TunnelOutsideIPAddress を使用します。

フィールド	説明
<pre>VpnLogCreationTimestamp (event_tim estamp)</pre>	人間が読める形式でのログ作成タイムスタン プ。
TunnelDPDEnabled (dpd_enabled)	デッドピア検出プロトコルの有効ステータス (True/False)。
TunnelCGWNATTDetectionStatus (nat_t_det ected)	カスタマーゲートウェイデバイスでの NAT-T の検出 (True/False)。
TunnellKEPhase1State(ike_phase 1_state)	IKE フェーズ 1 プロトコル状態 (確立済み キー更新中 ネゴシエーション中 ダウン)。
TunnellKEPhase2State(ike_phase 2_state)	IKE フェーズ 2 プロトコル状態 (確立済み キー更新中 ネゴシエーション中 ダウン)。
VpnLogDetail(details)	IPsec、IKE、および DPD プロトコルの詳細メ ッセージ。

内容

- IKEv1 エラーメッセージ
- IKEv2 エラーメッセージ
- IKEv2 ネゴシエーションメッセージ

IKEv1 エラーメッセージ

メッセージ	説明
ピアが応答しない - ピア停止が宣言される	ピアが DPD メッセージに応答しなかったた め、DPD タイムアウトアクションが強制され ます。
AWS 事前共有キーが無効であるため、トンネ ルペイロードの復号に失敗しました	両方の IKE ピアに同じ事前共有キーを設定する 必要があります。
による提案一致が見つかりません AWS	フェーズ 1 で提案された属性 (暗号化、ハッ シュ、DH グループ) は AWS VPN エンドポイ ントではサポートされていません。例: 3DES。
ー致する提案が見つかりませんでした。「提案 が選択されていません」と通知される	IKE ピアのフェーズ 2 で正しい提案/ポリシー を設定する必要があることを通知するため、 「提案が選択されていません」というエラー メッセージがピア間で交換されます。
AWS SPI: xxxx のフェーズ 2 SA の DELETE を 受信したトンネル	CGW は、フェーズ2の Delete_SA メッセージ を送信しました。
AWS トンネルが CGW から IKE_SA の DELETE を受信しました	CGW は、フェーズ1の Delete_SA メッセージ を送信しました。

IKEv2 エラーメッセージ

メッセージ	説明
AWS {retry_count} の再送信後にトンネル DPD がタイムアウトしました	ピアが DPD メッセージに応答しなかったた め、DPD タイムアウトアクションが強制され ます。
AWS トンネルが CGW から IKE_SA の DELETE を受信しました	ピアが親/IKE_SA の Delete_SA メッセージを 送信しました。

メッセージ	説明
AWS SPI: xxxx のフェーズ 2 SA の DELETE を 受信したトンネル	ピアが CHILD_SA の Delete_SA メッセージを 送信しました。
AWS トンネルが (CHILD_REKEY) 衝突を CHILD_DELETE として検出しました	CGW は Active SA に Delete_SA メッセージを 送信しました。このメッセージはキー変更中で す。
AWS トンネル (CHILD_SA) の冗長 SA は、検 出された衝突のために削除されています	衝突により、冗長 SAs が生成された場合、ピ アは RFC に従ってノンス値を一致させた後に 冗長 SA を閉じます。
AWS トンネルフェーズ 2 がフェーズ 1 を維持 中に を確立できませんでした	提案の誤りなどのネゴシエーションエラーによ り、ピアは CHILD_SA を確立できませんでし た。
AWS: トラフィックセレクタ: TS_UNACCE PLABLE: レスポンダから受信	ピアが不正なトラフィックセレクタ/暗号化ド メインを提案しました。ピアは、同一の正しい CIDR で設定する必要があります。
AWS トンネルが応答として AUTHENTIC ATION_FAILED を送信しています	ピアは IKE_AUTH メッセージ内容の検証によ りピアを認証できません
AWS トンネルが cgw: xxxx との事前共有キー の不一致を検出しました	両方の IKE ピアに同じ事前共有キーを設定する 必要があります。
AWS トンネルタイムアウト: cgw: xxxx で確立 されていないフェーズ 1 IKE_SA を削除する	ピアがネゴシエーションを進めていないため、 半分開いている IKE_SA を削除しています
ー致する提案が見つかりませんでした。「提案 が選択されていません」と通知される	IKE ピアには正しい提案を設定する必要がある ことを通知する、「提案が選択されていませ ん」というエラーメッセージがピア間で交換さ れます。
による提案一致が見つかりません AWS	フェーズ1またはフェーズ2(暗号化、ハッ シュ、DH グループ) の提案された属性は AWS 、VPN エンドポイントではサポートされ ていません。たとえば、 です3DES。

IKEv2 ネゴシエーションメッセージ

メッセージ	説明
AWS CREATE_CHILD_SA のトンネル処理リ	AWS が CGW から CREATE_CHILD_SA リク
クエスト (id=xxx)	エストを受信しました。
AWS トンネルが CREATE_CHILD_SA のレス	AWS は CREATE_CHILD_SA レスポンスを
ポンス (id=xxx) を送信しています	CGW に送信しています。
AWS トンネルが CREATE_CHILD_SA のリク	AWS は CREATE_CHILD_SA リクエストを
エストを送信しています (id=xxx)	CGW に送信しています。
AWS CREATE_CHILD_SA のトンネル処理レ	AWS が CREATE_CHILD_SA レスポンス
スポンス (id=xxx)	フォーム CGW を受信しました。

CloudWatch Logs に発行するための IAM 要件

ログ機能が正しく動作するためには、機能の設定に使用されている IAM プリンシパルにアタッチさ れた IAM ポリシーに、少なくとも以下のアクセス許可が含まれている必要があります。詳細につい ては、Amazon CloudWatch Logs ユーザーガイド」の<u>「特定の AWS サービスからのログ記録の有効</u> 化」セクションにも記載されています。

```
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Action": [
        "logs:CreateLogDelivery",
        "logs:GetLogDelivery",
        "logs:UpdateLogDelivery",
        "logs:DeleteLogDelivery",
        "logs:ListLogDeliveries"
      ],
      "Resource": [
        "*"
      ],
      "Effect": "Allow",
      "Sid": "S2SVPNLogging"
```

```
},
{
    "Sid": "S2SVPNLoggingCWL",
    "Action": [
        "logs:PutResourcePolicy",
        "logs:DescribeResourcePolicies",
        "logs:DescribeLogGroups"
    ],
    "Resource": [
        "*"
    ],
    "Effect": "Allow"
    }
]
```

AWS Site-to-Site VPN ログ設定の表示

Site-to-Site VPN 接続のアクティビティログを表示します。ここでは、暗号化アルゴリズムなどの設 定の詳細や、トンネル VPN ログが有効になっているかどうかを確認できます。トンネルの状態を表 示することもできます。これにより、VPN 接続で発生する可能性のある問題や競合をより効果的に 追跡できます。

現在のトンネルログ記録設定を表示するには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. ナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- 3. 表示する VPN 接続を [VPN connections] (VPN 接続) リストから選択します。
- 4. [Tunnel details] (トンネルの詳細) タブを選択します。
- 5. [Tunnel 1 options] (トンネル 1 オプション) セクションと [Tunnel 2 options] (トンネル 2 オプ ション) セクションを展開して、すべてのトンネル設定詳細を表示します。
- ログ記録機能の現在のステータスは、[Tunnel VPN log] (トンネル VPN ログ) で確認できます。 また、現在設定されている CloudWatch ロググループ (ある場合)は、[CloudWatch log group] (CloudWatch ロググループ) で確認できます。

AWS コマンドラインまたは API を使用して Site-to-Site VPN 接続の現在のトンネルログ記録設定を 表示するには

DescribeVpnConnections (Amazon EC2 Query API)

describe-vpn-connections (AWS CLI)

AWS Site-to-Site VPN ログを有効にする

Site-to-Site VPN ログを有効にして、トンネルの状態やその他の詳細などの VPN アクティビティを 記録します。新しい接続でログ記録を有効にするか、既存の接続を変更してログ記録アクティビティ を開始できます。接続のログ記録を無効にする場合は、「<u>Site-to-Site VPN ログを無効にする</u>」を参 照してください。

Note

既存の VPN 接続トンネルで Site-to-Site VPN ログを有効にする場合、そのトンネルを介した 接続が数分間中断される可能性があります。ただし、各 VPN 接続は高可用性を確保するた めに 2 つのトンネルを提供しているため、一度に 1 つのトンネルでログ記録を有効にし、変 更していないトンネルを介して接続を維持できます。詳細については、「<u>AWS Site-to-Site</u> VPN トンネルエンドポイントの置き換え」を参照してください。

新しい Site-to-Site VPN 接続の作成中に VPN ログ記録を有効にするには

<u>ステップ 5: VPN 接続を作成する</u>の手順に従います。ステップ 9 の「トンネルオプション」では、両 方のトンネルで使用するすべてのオプション (VPN ログ記録オプションを含む) を指定できます。こ れらのパラメータの詳細については「<u>AWS Site-to-Site VPN 接続のトンネルオプション</u>」を参照し てください。

AWS コマンドラインまたは API を使用して新しい Site-to-Site VPN 接続でトンネルログ記録を有効 にするには

- CreateVpnConnection (Amazon EC2 Query API)
- create-vpn-connection (AWS CLI)

既存の Site-to-Site VPN 接続のトンネルログ記録を有効にするには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. ナビゲーションペインで、[Site-to-Site VPN 接続] を選択します。
- 3. 変更する VPN 接続を [VPN connections] (VPN 接続) リストから選択します。
- 4. [Actions] (アクション)、[Modify VPN tunnel options] (VPN トンネルオプションを変更) の順に選択します。
- 5. [VPN tunnel outside IP address] (IP アドレス外の VPN トンネル) リストから適切な IP アドレス を選択し、変更するトンネルを選択します。
- 6. [Tunnel activity log] (トンネルアクティビティログ) で、[Enable] (有効化) を選択します。
- 7. [Amazon CloudWatch log group] (Amazon CloudWatch ロググループ) で、ログを送信する先の Amazon CloudWatch ロググループを選択します。
- 8. (オプション) [Output format] (出力形式) で、希望するログ出力の形式 (json またはテキスト) を 選択します。
- 9. [Save Changes] (変更を保存)を選択します。
- 10. (オプション)必要に応じて、他のトンネルに対してステップ 4〜9 を繰り返します。

AWS コマンドラインまたは API を使用して既存の Site-to-Site VPN 接続でトンネルログ記録を有効 にするには

- ModifyVpnTunnelOptions (Amazon EC2 クエリ API)
- modify-vpn-tunnel-options (AWS CLI)

AWS Site-to-Site VPN ログを無効にする

その接続のアクティビティを追跡しなくなった場合は、その接続の VPN ログ記録を無効にします。 このアクションはログ記録のみを無効にするため、その接続の他のものには影響しません。接続で ログ記録を有効または再有効にするには、「<u>Site-to-Site VPN ログを有効にする</u>」を参照してくださ い。

Site-to-Site VPN 接続のトンネルログ記録を無効にするには

- 1. Amazon VPC コンソール (https://console.aws.amazon.com/vpc/) を開きます。
- 2. ナビゲーションペインで、[Site-to-Site VPN Connections] (Site-to-Site VPN 接続) を選択します。
- 3. 変更する VPN 接続を [VPN connections] (VPN 接続) リストから選択します。
- 4. [Actions] (アクション)、[Modify VPN tunnel options] (VPN トンネルオプションを変更) の順に選 択します。
- 5. [VPN tunnel outside IP address] (IP アドレス外の VPN トンネル) リストから適切な IP アドレス を選択し、変更するトンネルを選択します。

- 6. [Tunnel activity log] (トンネルアクティビティログ) で、[Enable] (有効化) を選択します。
- 7. [Save Changes] (変更を保存)を選択します。
- 8. (オプション)必要に応じて、他のトンネルに対してステップ 4〜7 を繰り返します。

AWS コマンドラインまたは API を使用して Site-to-Site VPN 接続のトンネルログ記録を無効にする には

- ModifyVpnTunnelOptions (Amazon EC2 クエリ API)
- modify-vpn-tunnel-options (AWS CLI)

Amazon CloudWatch を使用して AWS Site-to-Site VPN トンネル をモニタリングする

CloudWatch を使用して VPN トンネルをモニタリングすることで、VPN サービスから raw データを 収集し、リアルタイムに近い読み取り可能なメトリクスに加工することができます。これらの統計は 15 か月間記録されるため、履歴情報にアクセスしてウェブアプリケーションやサービスの動作をよ り的確に把握できます。VPN メトリクスデータは、利用可能になると自動的に CloudWatch に送信 されます。

詳細については、「Amazon CloudWatch ユーザーガイド」を参照してください。

内容

- VPN のメトリクスとディメンション
- •の Amazon CloudWatch Logs メトリクスを表示する AWS Site-to-Site VPN
- <u>AWS Site-to-Site VPN トンネルをモニタリングする Amazon CloudWatch アラームを作成する</u>

VPN のメトリクスとディメンション

Site-to-Site VPN 接続では、次の CloudWatch メトリクスを使用できます。

メトリクス	説明
TunnelState	トンネルの状態。静的 VPN の場合、0 は DOWN を示し、1 は UP を示します。BGP

メトリクス	説明
	VPN の場合、1 は ESTABLISHED を示し、0 は他のすべての状態に使用されます。どちらの タイプの VPN でも、0~1の値は、少なくとも 1 つのトンネルが UP 状態ではないことを示し ます。 単位: 0 から 1 までの少数値
TunnelDataIn †	カスタマーゲートウェイから VPN トンネルを 介して接続の AWS 側で受信したバイト数。各 メトリクスのデータポイントは、前のデータポ イント以降に受信されたバイトの数を表します 。該当期間中に受信されたバイトの総数を表示 するには Sum 統計を使用します。 このメトリクスは、復号化の後のデータをカウ ントします。 単位: バイト
TunnelDataOut †	VPN トンネルを介して接続の AWS 側からカ スタマーゲートウェイに送信されたバイト数。 各メトリクスのデータポイントは、前のデータ ポイント以降に送信されたバイトの数を表しま す。該当期間中に送信されたバイトの総数を表 示するには Sum 統計を使用します。 このメトリクスは、暗号化の前のデータをカウ ントします。

+ これらのメトリクスは、トンネルがダウンしている場合でも、ネットワーク使用状況をレポートで きます。これは、トンネルで定期的なステータスチェックが実行され、バックグラウンド ARP およ び BGP リクエストのためです。

メトリクスデータをフィルタリングするために以下のディメンションを使用します。

ディメンション	説明
VpnId	Site-to-Site VPN 接続 ID でメトリクスデータをフィルタリング します。
TunnelIpAddress	仮想プライベートゲートウェイのトンネルの IP アドレスでメト リクスデータをフィルタリングします。

の Amazon CloudWatch Logs メトリクスを表示する AWS Site-to-Site VPN

Site-to-Site VPN 接続を作成するときに、VPN サービスは VPN 接続に関するメトリクスが利用可 能になると、それを CloudWatch に送信します。次のように、VPN 接続のメトリクスを表示できま す。

CloudWatch コンソールを使用してメトリクスを表示するには

メトリクスはまずサービスの名前空間ごとにグループ化され、次に各名前空間内のさまざまなディメ ンションの組み合わせごとにグループ化されます。

- 1. CloudWatch コンソール (https://console.aws.amazon.com/cloudwatch/) を開きます。
- 2. ナビゲーションペインで [Metrics (メトリクス)] を選択します。
- 3. [All metrics] で、[VPN] メトリクス名前空間を選択します。
- メトリクスを表示するメトリクスディメンション (VPN トンネルメトリクス など) を選択します。

Note

VPN 名前空間は、表示している AWS リージョンで Site-to-Site VPN 接続が作成されるまで CloudWatch コンソールに表示されません。

を使用してメトリクスを表示するには AWS CLI

コマンドプロンプトで、次のコマンドを使用します。

aws cloudwatch list-metrics --namespace "AWS/VPN"

AWS Site-to-Site VPN トンネルをモニタリングする Amazon CloudWatch アラームを作成する

アラームの状態が変わったら、Amazon SNS メッセージを送信する Amazon CloudWatch のアラー ムを作成することができます。アラームは指定された期間にわたって単一のメトリクスをモニタリン グし、複数の期間にわたり既定のしきい値に関連するメトリクス値に基づいて Amazon SNS トピッ クに通知を送信します。

例えば、1 つのVPN トンネルの状態をモニタリングし、15 分以内に 3 つのデータポイントでトンネ ルがダウン状態になったときに通知を送信するようなアラームを作成できます。

1つのトンネル状態のアラームを作成するには

- 1. CloudWatch コンソール (https://console.aws.amazon.com/cloudwatch/)を開きます。
- 2. ナビゲーションペインで、[アラーム]を展開し、[すべてのアラーム]を選択します。
- 3. [アラームの作成]を選択し、[メトリクスの選択]を選択します。
- 4. [VPN] を選択し、[VPN トンネルのメトリクス] を選択します。
- 5. TunnelState メトリクスと同じ行で、目的のトンネルの IP アドレスを選択します。[メトリクスの選択] を選択します。
- 6. [TunnelState が次のときはいつでも...] で [より低い] を選択し、[次よりも...] の下の入力フィー ルドに「1」と入力します。
- 7. [追加設定]で、[アラーム対象のデータポイント]として「3 つのうち 3」と設定します。
- 8. [Next (次へ)] を選択します。
- 9. [通知を以下の SNS トピックに送信] で、既存の通知リストを選択するか、新しいリストを作成 します。
- 10. [Next (次へ)] を選択します。
- 11. アラームの名前を入力します。[Next (次へ)] を選択します。
- 12. アラームの設定を確認し、[アラームの作成] をクリックします。

Site-to-Site VPN 接続の状態を監視するアラームを作成できます。例えば、1 つまたは両方のトンネ ルのダウン状態が 5 分間 (1 つの期間) 連続した場合に通知を送信するアラームを作成できます。

Site-to-Site VPN 接続状態のアラームを作成するには

1. CloudWatch コンソール (https://console.aws.amazon.com/cloudwatch/) を開きます。

- 2. ナビゲーションペインで、[アラーム]を展開し、[すべてのアラーム]を選択します。
- 3. [アラームの作成]を選択し、[メトリクスの選択]を選択します。
- 4. [VPN] を選択し、[VPN 接続のメトリクス] を選択します。
- 5. Site-to-Site VPN 接続と [TunnelState] メトリクスを選択します。[メトリクスの選択] を選択します。
- 6. [統計] で、[最大] を指定します。

または、両方のトンネルがアップとなるように Site-to-Site VPN 接続を設定している場合は、 [最小] の統計を指定し、少なくとも 1 つのトンネルがダウンとなったときに通知を送信すること ができます。

- 7. [Whenever] (次の時) で、[Lower/Equal (<=)] (以下 (<=)) を選択し、0 と入力します (または、少 なくとも 1 つのトンネルがダウンしている場合は 0.5 と入力します)。[Next (次へ)] を選択しま す。
- 8. [SNS トピックの選択] で、既存の通知リストを選択するか、[新しいリスト] をクリックして新し いリストを作成します。[Next (次へ)] を選択します。
- 9. アラームの名前と説明を入力します。[Next (次へ)] を選択します。
- 10. アラームの設定を確認し、[アラームの作成] をクリックします。

VPN トンネルに出入りするトラフィックの量をモニタリングするアラームを作成することもできま す。たとえば、次のアラームはネットワークから VPN トンネルに入るトラフィックの量をモニタリ ングし、15 分の期間中にバイト数がしきい値の 5,000,000 に達したときに通知を送信します。

着信ネットワークトラフィック用のアラームを作成するには

- 1. CloudWatch コンソール (https://console.aws.amazon.com/cloudwatch/) を開きます。
- 2. ナビゲーションペインで、[アラーム] を展開し、[すべてのアラーム] を選択します。
- 3. [アラームの作成]を選択し、[メトリクスの選択]を選択します。
- 4. [VPN] を選択し、[VPN トンネルのメトリクス] を選択します。
- 5. VPN トンネルの IP アドレスと [TunnelDataIn] メトリクスを選択します。[メトリクスの選択] を 選択します。
- 6. [統計] で、[合計] を指定します。
- 7. [期間] で、[15 分] を選択します。
- 8. [Whenever] (次の時) で、[Greater/Equal(>=)] (以上 (>=)) を選択し、5000000 と入力します。 [Next (次へ)] を選択します。

- 9. [SNS トピックの選択] で、既存の通知リストを選択するか、[新しいリスト] をクリックして新し いリストを作成します。[Next (次へ)] を選択します。
- 10. アラームの名前と説明を入力します。[Next (次へ)] を選択します。
- 11. アラームの設定を確認し、[アラームの作成] をクリックします。

次のアラームは、VPN トンネルからネットワークに出るトラフィックの量をモニタリングし、15 分 の期間中にバイト数が 1,000,000 より少なくなると通知を送信します。

発信ネットワークトラフィック用のアラームを作成するには

- 1. CloudWatch コンソール (https://console.aws.amazon.com/cloudwatch/) を開きます。
- 2. ナビゲーションペインで、[アラーム]を展開し、[すべてのアラーム]を選択します。
- 3. [アラームの作成]を選択し、[メトリクスの選択]を選択します。
- 4. [VPN] を選択し、[VPN トンネルのメトリクス] を選択します。
- 5. VPN トンネルの IP アドレスと [TunnelDataOut] メトリクスを選択します。[メトリクスの選択] を選択します。
- 6. [統計] で、[合計] を指定します。
- 7. [期間] で、[15 分] を選択します。
- 8. [次の時] で、[以下 (<=)] を選択し、「1000000」と入力します。[Next (次へ)] を選択します。
- 9. [SNS トピックの選択] で、既存の通知リストを選択するか、[新しいリスト] をクリックして新し いリストを作成します。[Next (次へ)] を選択します。
- 10. アラームの名前と説明を入力します。[Next (次へ)] を選択します。
- 11. アラームの設定を確認し、[アラームの作成] をクリックします。

アラームの作成のその他の例については、Amazon CloudWatch ユーザーガイドの「<u>Amazon</u> CloudWatch アラームの作成」を参照してください。

AWS Health および AWS Site-to-Site VPN イベント

AWS Site-to-Site VPN は自動的に に通知を送信します<u>AWS Health Dashboard</u>。このダッシュボー ドはセットアップを必要とせず、認証された AWS ユーザーに使用できる状態です。 AWS Health Dashboardを使用して、イベント通知に対応して複数のアクションを設定できます

AWS Health Dashboard には、VPN 接続に関する次のタイプの通知が用意されています。

- トンネルエンドポイント交換通知
- 単ートンネル VPN 通知

トンネルエンドポイント交換通知

VPN 接続の VPN トンネルエンドポイントの一方または両方が置き換えられると、トンネルエンド ポイントの置き換え通知が に表示されます。 AWS Health Dashboard トンネルエンドポイントは、 AWS がトンネルの更新を実行するとき、または VPN 接続を変更したときに交換されます。詳細に ついては、「AWS Site-to-Site VPN トンネルエンドポイントの置き換え」を参照してください。

トンネルエンドポイントの置換が完了すると、 はイベントを通じてトンネルエンドポイントの置換 通知 AWS を送信します。 AWS Health Dashboard

単ートンネル VPN 通知

Site-to-Site VPN 接続は、冗長性のために2つのトンネルで構成されています。両方のトンネルの可 用性を高めるよう設定することを強くお勧めします。VPN 接続で1つのトンネルはアップしている が、もう1つが1日に1時間以上ダウンしている場合は、AWS Health Dashboard イベントを通じ て毎月、VPN 単ートンネル通知が送信されます。このイベントは、新しい VPN 接続が単ートンネ ルとして検出されると毎日更新され、通知は毎週送信されます。毎月新しいイベントが作成され、こ れによって単ートンネルとして検出されなくなった VPN 接続がすべてクリアされます。

AWS Site-to-Site VPN クォータ

AWS アカウントには、Site-to-Site VPN に関連する、以前は制限と呼ばれていた以下のクォータが あります。特に明記されていない限り、クォータは地域固有です。一部のクォータについては引き上 げをリクエストできますが、その他のクォータについては引き上げることはできません。

調整可能なクォータについて、クォータの引き上げをリクエストするには、[Adjustable] (調整可能) 列で [Yes] (はい) を選択します。詳細については「Service Quotas ユーザーガイド」の「<u>クォータの</u> <u>引き上げのリクエスト</u>」を参照してください。

Site-to-Site VPN リソース

名前	デフォルト	引き上げ可能
リージョンあたりのカスタマーゲートウェイの 数	50	<u>可能</u>
リージョンあたりの仮想プライベートゲート ウェイの数	5	<u>可能</u>
リージョンあたりの Site-to-Site VPN 接続の数	50	可能
仮想プライベートゲートウェイあたりの Site- to-Site VPN 接続の数	10	<u>可能</u>
リージョンあたりの高速化 Site-to-Site VPN 接 続の数	10	[Yes (はい)]
リージョンあたりの関連付けられていない Site-to-Site VPN 接続の数	10	[Yes (はい)]

Note

高速化接続と関連付けられていない接続の両方が、リージョンあたりの Site-to-Site VPN 接 続の合計数にカウントされます。 一度に VPC にアタッチできる仮想プライベートゲートウェイは 1 つです。同じ Site-to-Site VPN 接 続を複数の VPC に接続するには、代わりにトランジットゲートウェイを使用して調べることをお勧 めします。詳細については、「Amazon VPC Transit Gateway」の「<u>Transit Gateway</u>」を参照してく ださい。

トランジットゲートウェイの Site-to-Site VPN 接続は、トランジットゲートウェイアタッチメント の合計制限の対象となります。詳細については、「<u>Transit Gateway のクォータ</u>」を参照してくださ い。

ルート

アドバタイズされたルートソースには、VPC ルート、他の VPN ルート、および AWS Direct Connect 仮想インターフェイスからのルートが含まれます。アドバタイズされたルートは、VPN ア タッチメントに関連付けられているルートテーブルから取得されます。

Note

仮想プライベートゲートウェイを使用していて、VPC ルートテーブルでルート伝達が有効に なっている場合、動的ルートと静的ルートの両方が VPN 接続に自動的に追加されます (VPC のルートテーブルの上限まで)。詳細については、Amazon VPC ユーザーガイドの「<u>Amazon</u> <u>VPC クォータ</u>」を参照してください。

名前	デフォルト	引き上げ可能
カスタマーゲートウェイデバイスから仮想プラ イベートゲートウェイ上の Site-to-Site VPN 接 続にアドバタイズされる動的ルート	100	いいえ
仮想プライベートゲートウェイ上の Site-to-S ite VPN 接続からカスタマーゲートウェイデバ イスにアドバタイズされるルート	1,000	いいえ
カスタマーゲートウェイデバイスから Transit Gateway 上の Site-to-Site VPN 接続にアドバタ イズされる動的ルート	1,000	いいえ

名前	デフォルト	引き上げ可能
Transit Gateway 上の Site-to-Site VPN 接続か らカスタマーゲートウェイデバイスにアドバタ イズされるルート	5,000	いいえ
仮想プライベートゲートウェイ上のカスタマー ゲートウェイデバイスから Site-to-Site VPN 接 続への静的ルート	100	いいえ

帯域幅とスループット

Site-to-Site VPN 接続を通じて実現される帯域幅に影響を与える要因には、パケットサイズ、トラ フィックミックス (TCP/UDP)、中間ネットワークのシェーピングまたはスロットリングポリシー、 インターネットの状況、特定のアプリケーション要件を始めとして多くのものがあります。

名前	デフォルト	引き上げ可能
VPN トンネルごとの最大帯域幅	最大 1.25 Gbps	いいえ
VPN トンネルあたりの最大パケット/秒 (PPS)	最大 140,000	いいえ

トランジットゲートウェイ上の Site-to-Site VPN 接続の場合、ECMP を使用すると、複数の VPN ト ンネルを集約して、より高い VPN 帯域幅を確保できます。ECMP を使用するには、VPN 接続を動 的ルーティング用に設定する必要があります。ECMP は、静的ルーティングを使用する VPN 接続で はサポートされません。詳細については、「<u>トランジットゲートウェイ</u>」を参照してください。

最大送信単位 (MTU)

Site-to-Site VPN は 1446 バイトの最大伝送ユニット(MTU)と 1406 バイトの対応する最大セグメ ントサイズ(MSS)をサポートします。ただし、大きな TCP ヘッダーを使用する特定のアルゴリズ ムでは、その最大値を効果的に減らすことができます。フラグメンテーションを回避するには、選 択したアルゴリズムに基づいて MTU と MSS を設定することをお勧めします。MTU、MSS、および 最適値の詳細については、<u>AWS Site-to-Site VPN カスタマーゲートウェイデバイスのベストプラク</u> <u>ティス</u> を参照してください。 ジャンボフレームはサポートされていません。詳細については、「Amazon EC2 ユーザーガイド」 の「ジャンボフレーム (9001 MTU)」を参照してください。

Site-to-Site VPN 接続は、パス MTU 検出をサポートしていません。

その他のクォータリソース

トランジットゲートウェイのアタッチメントの数など、トランジットゲートウェイに関連するクォー タについては、「Amazon VPC Transit Gateway ガイド」の「<u>Transit Gateway のクォータ</u>」を参照 してください。

VPC のその他のクォータについては、 Amazon VPC ユーザーガイドの「<u>Amazon VPC のクォー</u> <u>タ</u>」を参照してください。

Site-to-Site VPN ユーザーガイドのドキュメント履歴

次の表に、 AWS Site-to-Site VPN ユーザーガイドの更新を示します。

変更	説明	日付
<u>AWSVPCS2SVpnServic</u> <u>eRolePolicy AWS 管理ポリ</u> シーを更新しました	Site-to-Site VPN が VPN 接続 の AWS マネージドシークレ ットを管理できるようにする 新しいアクセス許可が AWS Secrets Manager マネージド ポリシーに追加されました。	2025 年 5 月 27 日
<u>事前共有キーストレージオプ</u> <u>ションの更新</u>	Site-to-Site VPN AWS Secrets Manager で、事前共有キーの 保存がサポートされるように なりました。	2025 年 5 月 27 日
<u>クラシック VPN 情報が削除さ</u> <u>れました</u>	ガイドからクラシック VPN に 関する情報を削除しました。	2023 年 1 月 19 日
<u>VPN ログメッセージの例</u>	Site-to-Site VPN 接続のサンプ ルログを追加しました。	2022 年 12 月 9 日
<u>更新されたダウンロード設定</u> <u>ユーティリティ</u>	Site-to-Site VPN のお客様は、 互換性のあるカスタマーゲ ートウェイ (CGW) デバイ ス用の設定テンプレートを 生成できるため、AWSへの VPN 接続を簡単に作成でき ます。この更新プログラム は、多くの一般的な CGW デ バイスのインターネットキー エクスチェンジバージョン 2 (IKEv2) パラメーターのサ ポートを追加し、2 つの新し い API (GetVPnConnectionD	2021 年 9 月 21 日

	eviceTypes と GetVPnCon nectionDeviceSampleConfigur ation) が含まれています。	
<u>VPN 接続通知</u>	Site-to-Site VPN は、VPN 接 続に関する通知を AWS Health Dashboardに自動的に送信し ます。	2020 年 10 月 29 日
<u>VPN トンネルの開始</u>	がトンネル AWS を起動する ように VPN トンネルを設定で きます。	2020 年 8 月 27 日
<u>VPN 接続オプションを変更す</u> <u>る</u>	Site-to-Site VPN 接続の接続オ プションを変更できます。	2020 年 8 月 27 日
<u>追加のセキュリティアルゴリ</u> <u>ズム</u>	VPN トンネルに追加のセキュ リティアルゴリズムを適用で きます。	2020 年 8 月 14 日
<u>IPv6 サポート</u>	VPN トンネルは、トンネル内 の IPv6 トラフィックをサポー トできます。	2020 年 8 月 12 日
マージ AWS Site-to-Site VPN ガイド	このリリースでは、 AWS Site-to-Site VPN ネットワーク 管理者ガイドの内容をこのガ イドにマージします。	2020 年 3 月 31 日
<u>高速 AWS Site-to-Site VPN 接</u> 続	AWS Site-to-Site VPN 接続の 高速化を有効にできます。	2019 年 12 月 3 日
<u>AWS Site-to-Site VPN トンネ</u> ルオプションの変更	AWS Site-to-Site VPN 接続の VPN トンネルのオプションを 変更できます。追加のトンネ ルオプションを設定すること もできます。	2019 年 8 月 29 日

<u>AWS Private Certificate</u> <u>Authority プライベート証明書</u> <u>のサポート</u>	のプライベート証明書を使 用して VPN を AWS Private Certificate Authority 認証でき ます。	2019 年 8 月 15 日
<u>新しい Site-to-Site VPN ユー</u> <u>ザーガイド</u>	このリリースでは、AWS Site-to-Site VPN (以前は AWS Managed VPN と呼ば れていました) のコンテンツ を Amazon VPC ユーザーガイ ドから分離しています。	2018 年 12 月 18 日
<u>ターゲットゲートウェイの変</u> 更	AWS Site-to-Site VPN 接続の ターゲットゲートウェイを変 更できます。	2018 年 12 月 18 日
<u>カスタム ASN</u>	仮想プライベートゲートウェ イを作成するとき、Amazo n 側のゲートウェイのプラ イベート自律システム番号 (ASN) 指定できます。	2017 年 10 月 10 日
<u>VPN トンネルオプション</u>	VPN トンネルの内部トンネル CIDR ブロックとカスタム事前 共有キーを指定できます。	2017 年 10 月 3 日
VPN メトリクス	VPN 接続の CloudWatch メト リクスを表示できます。	2017 年 5 月 15 日

<u>VPN の機能強化</u>	VPN 接続では、接続のフ ェーズ 1 およびフェーズ 2 中 に、AES 256 ビットの暗号化 関数、SHA-256 ハッシュ関 数、NAT トラバーサル、お よび追加の Diffie-Hellman グ ループをサポートするように なりました。さらに、同じカ スタマーゲートウェイデバイ スを使用する各 VPN 接続用に 同じカスタマーゲートウェイ IP アドレスを使用できるよう になりました。	2015年10月28日
<u>静的なルーティング設定を使</u> <u>用した VPN 接続</u>	静的なルーティング設定を 使用して Amazon VPC への IPsec VPN 接続を作成できま す。以前は、VPN 接続には ボーダーゲートウェイプロト コル (BGP) を使用する必要が ありました。現在では両方の タイプの接続をサポートして おり、Cisco ASA や Microsoft Windows Server 2008 R2 な ど、BGP をサポートしていな いデバイスからの接続も可能 です。	2012年9月13日
<u>ルートの自動伝播</u>	VPN からのルートと VPC ルーティングテーブル AWS Direct Connect へのリンクの 自動伝播を設定できるように	2012 年 9 月 13 日

なりました。

2011年9月29日

 AWS VPN CloudHub と冗長
 VPC の有無にかかわらず、1

 VPN 接続
 つのサイトから別のサイトに 安全に通信できます。冗長な

 VPN 接続を使用して、VPC へのフォールトトレラントな接

続ができます。

翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛 盾がある場合、英語版が優先します。