
SDK version 1.x のデベロッパーガイド

AWS SDK for Java 1.x

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

AWS SDK for Java 1.x: SDK version 1.x のデベロッパーガイド

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Table of Contents
.. viii
AWS SDK for Java 1.x ... 1

SDK のバージョン 2 をリリースしました .. 1
その他のドキュメントとリソース ... 1
Eclipse IDE サポート .. 2
Android 向けアプリケーションの開発 ... 2
SDK の改訂履歴の表示 .. 2
旧バージョンの SDK 用の Java リファレンスドキュメントのビルド ... 2

開始方法 .. 4
基本セットアップ .. 4

概要 ... 4
AWS アクセスポータルにサインインします。 .. 5
共有設定ファイルを設定します。 .. 5
Java 開発環境をインストールします。 ... 7

AWS SDK for Java 取得方法 .. 7
前提条件 .. 7
構築ツールの使用 .. 8
構築済みの jar をダウンロードする ... 8
ソースからビルドする .. 9

構築ツールの使用 .. 9
Apache Maven で SDK を使用する ... 10
Gradle とともに SDK を使用する .. 13

一時的な認証情報、リージョン ... 17
一時的な認証情報の設定 ... 17
IMDS 認証情報の更新 ... 18
AWS リージョン の設定 ... 19

の使用 AWS SDK for Java .. 20
を使用した AWS 開発のベストプラクティス AWS SDK for Java ... 20

S3 .. 20
サービスクライアントの作成 .. 21

クライアントビルダーの取得 .. 21
非同期クライアントの作成 ... 23
DefaultClient の使用 .. 23
クライアントのライフサイクル .. 24

iii

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

一時的な認証情報の提供 .. 24
デフォルトの認証情報プロバイダチェーンの使用 ... 24
認証情報プロバイダーまたはプロバイダーチェーンの指定 ... 28
一時的な認証情報を明示的に指定する ... 29
詳細情報 .. 29

AWS リージョン 選択 ... 29
リージョンでのサービス可用性の確認 ... 29
リージョンを選択する .. 30
特定のエンドポイントの選択 .. 31
環境に基づくリージョンの自動的な決定 .. 31

例外処理 ... 33
非チェック例外を使用する理由 .. 33
AmazonServiceException (およびサブクラス) ... 33
AmazonClientException .. 34

非同期プログラミング ... 34
Java Future ... 34
非同期コールバック .. 36
ベストプラクティス .. 38

AWS SDK for Java 通話のログ記録 ... 38
Log4J JAR のダウンロード .. 39
クラスパスの設定 .. 39
サービス固有のエラーと警告 .. 40
リクエストおよびレスポンスの概要のログ記録 ... 40
詳細なワイヤログ記録 .. 41
レイテンシーメトリクスのログ記録 ... 42

クライアント設定 .. 42
プロキシ設定 ... 43
HTTP トランスポートの設定 .. 43
TCP ソケットバッファのサイズに関するヒント ... 44

アクセスコントロールポリシー ... 45
Amazon S3 例 .. 46
Amazon SQS 例 ... 46
Amazon SNS の例 .. 47

DNS 名参照用の JVM TTL を設定する ... 47
JVM TTL を設定する方法 ... 47

のメトリクスの有効化 AWS SDK for Java ... 48

iv

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Java SDK メトリクス生成を有効にする方法 ... 48
利用可能なメトリクスのタイプ .. 50
詳細情報 .. 52

コードの例 .. 54
AWS SDK for Java 2.x .. 54
Amazon CloudWatch の例 ... 54

CloudWatch からのメトリクスの取得 .. 55
カスタムメトリクスデータを発行する .. 57
CloudWatch アラームの使用 .. 58
CloudWatch でのアラームアクションの使用 ... 61
CloudWatch にイベントを送信する ... 63

Amazon DynamoDB の例 .. 66
AWS アカウントベースのエンドポイントの使用 .. 66
DynamoDB でのテーブルの操作 .. 67
DynamoDB での項目の操作 ... 74

Amazon EC2 の例 .. 81
チュートリアル: EC2 インスタンスの開始 .. 82
Amazon EC2 での IAM ロールを使用した AWS リソースへのアクセスの許可 87
チュートリアル: Amazon EC2 スポットインスタンス .. 93
チュートリアル: Amazon EC2 スポットリクエストの高度な管理 .. 105
Amazon EC2 インスタンスの管理 ... 122
Amazon EC2 の Elastic IP アドレスの使用 ... 127
リージョンとアベイラビリティーゾーンを使用する ... 131
Amazon EC2 キーペアでの作業 ... 134
Amazon EC2 でセキュリティグループを操作する .. 136

AWS Identity and Access Management (IAM) の例 .. 139
IAM アクセスキーの管理 .. 140
IAM ユーザーの管理 ... 145
IAM アカウントエイリアスの使用 .. 148
IAM ポリシーの使用 ... 150
IAM サーバー証明書の使用 ... 155

Amazon Lambda の例 ... 159
サービスオペレーション ... 159

Amazon Pinpoint の例 .. 163
Amazon Pinpoint のアプリの作成および削除 .. 163
Amazon Pinpoint でのエンドポイントの作成 .. 165

v

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Amazon Pinpoint でのセグメントの作成 .. 167
Amazon Pinpoint でのキャンペーンの作成 .. 169
Amazon Pinpoint のチャネルの更新 ... 170

Amazon S3 の例 .. 172
Amazon S3 バケットの作成、一覧表示、削除 .. 172
Amazon S3 オブジェクトに対する操作の実行 .. 177
バケットおよびオブジェクトの Amazon S3 アクセス許可の管理 .. 183
バケットポリシーを使用した Amazon S3 バケットへのアクセス管理 187
Amazon S3 操作の TransferManager の使用 ... 190
ウェブサイトとしての Amazon S3 バケットの設定 .. 203
Amazon S3 クライアント側の暗号化を使用する ... 206

Amazon SQS の例 ... 212
Amazon SQS メッセージキューの使用 ... 213
Amazon SQS メッセージの送信、受信、削除 ... 216
Amazon SQS メッセージキューのロングポーリングの有効化 .. 218
Amazon SQS で可視性タイムアウトを設定する ... 221
Amazon SQS でのデッドレターキューの使用 ... 223

Amazon SWF の例 ... 225
SWF の基本 .. 226
シンプルな Amazon SWF アプリケーションの構築 .. 228
Lambda タスク ... 247
アクティビティおよびワークフローワーカーの適切なシャットダウン 252
ドメインの登録 ... 255
ドメインの一覧表示 .. 256

SDK に含まれるコードサンプル ... 256
サンプルの入手方法 .. 257
コマンドラインを使用したサンプルのビルドと実行 ... 257
Eclipse IDE を使用したサンプルのビルドと実行 ... 258

セキュリティ .. 260
データ保護 ... 260
最小 TLS バージョンの適用 .. 261

TLS のバージョンを確認する方法 .. 262
最小 TLS バージョンの適用 ... 262

Identity and Access Management ... 262
オーディエンス ... 263
アイデンティティを使用した認証 .. 263

vi

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ポリシーを使用したアクセスの管理 ... 265
IAM AWS のサービス の操作方法 .. 267
AWS ID とアクセスのトラブルシューティング ... 267

コンプライアンス検証 ... 269
耐障害性 ... 269
インフラストラクチャセキュリティ .. 270
S3 暗号化クライアント移行 .. 271

前提条件 .. 271
移行の概要 .. 271
新しいフォーマットを読み取るために既存のクライアントを更新する 272
暗号化および復号クライアントを V2 に移行する ... 273
その他の例 .. 275

OpenPGP 鍵 ... 277
現在のキー ... 277
以前のキー ... 283

ドキュメント履歴 ... 290

vii

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

AWS SDK for Java 1.x は 2025 年 12 月 31 日にend-of-supportしました。新しい機能、可用性の向
上、セキュリティ更新のために、AWS SDK for Java 2.x に移行することをお勧めします。

翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛
盾がある場合、英語版が優先します。

viii

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/home.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

デベロッパーガイド - AWS SDK for Java 1.x

AWS SDK for Java は AWS のサービス用の Java API を提供します。この SDK を使用する
と、Amazon S3、Amazon EC2、DynamoDB などで動作する Java アプリケーションを簡単に構築
できます。AWS SDK for Java には、新しいサービスのサポートが定期的に追加されています。サ
ポートされるサービスと、SDK の各リリースに含まれる API バージョンのリストについては、使用
しているバージョンのリリースノートを参照してください。

SDK のバージョン 2 をリリースしました

https://github.com/aws/aws-sdk-java-v2/ で新しい AWS SDK for Java 2.x をご覧ください。HTTP 実
装をプラグインする方法など、待望の機能が含まれています。開始するには、「AWS SDK for Java
2.x のデベロッパーガイド」を参照してください。

その他のドキュメントとリソース

このガイドに加えて、以下の AWS SDK for Java 開発者のための貴重なオンラインリソースもありま
す。

• AWS SDK for Java API リファレンス

• Java 開発者ブログ

• Java 開発者フォーラム

• GitHub:

• ドキュメントソース

• ドキュメントに関する問題

• SDK ソース

• SDK に関する問題

• SDK サンプル

• Gitter チャネル

• AWS Code Sample Catalog

• @awsforjava (Twitter)

• リリースノート
SDK のバージョン 2 をリリースしました 1

https://aws.amazon.com/sdk-for-java/
https://github.com/aws/aws-sdk-java#release-notes
https://github.com/aws/aws-sdk-java-v2/
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://aws.amazon.com/blogs/developer/category/java
https://forums.aws.amazon.com/forum.jspa?forumID=70
https://github.com/awsdocs/aws-java-developer-guide
https://github.com/awsdocs/aws-java-developer-guide/issues
https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java/issues
https://github.com/aws/aws-sdk-java/tree/master/src/samples
https://gitter.im/aws/aws-sdk-java
https://docs.aws.amazon.com/code-samples/latest/catalog/
https://twitter.com/awsforjava
https://github.com/aws/aws-sdk-java#release-notes

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Eclipse IDE サポート

Eclipse IDE を使用してコードを開発する場合は、AWS Toolkit for Eclipse を使用して、既存の
Eclipse プロジェクトに AWS SDK for Java を追加したり、新しい AWS SDK for Java プロジェクト
を作成したりできます。このツールキットでは、Lambda 関数の作成およびアップロード、Amazon
EC2 インスタンスの起動およびモニタリング、IAM ユーザーおよびセキュリティグループの管
理、AWS CloudFormation テンプレートエディタなどもサポートされています。

詳細なドキュメントについては、「AWS Toolkit for Eclipse ユーザーガイド」を参照してください。

Android 向けアプリケーションの開発

Amazon Web Services では、Android 開発者向けに、Android 開発専用の SDK である Amplify
Android (AWS Mobile SDK for Android) を提供しています。

SDK の改訂履歴の表示

SDK バージョンごとの変更とサポートされるサービスを含む、AWS SDK for Java のリリース履歴
を確認するには、SDK のリリースノートを参照してください。

旧バージョンの SDK 用の Java リファレンスドキュメントのビル
ド

AWS SDK for Java API リファレンスは、SDK のバージョン 1.x の最新ビルドを表しています。1.x
バージョンの旧ビルドを使用している場合、使用しているバージョンに合った SDK リファレンスド
キュメントにアクセスできます。

ドキュメントをビルドする最も簡単な方法は、Apache の Maven ビルドツールを使用することで
す。システムに Maven がインストールされていない場合は、まず Maven をダウンロードしてイン
ストールして、以下の手順に従ってリファレンスドキュメントをビルドします。

1. GitHub の SDK リポジトリの [Releases] ページで、使用している SDK バージョンを見つけて選
択します。

2. zip (Windows を含むほとんどのプラットフォーム) または tar.gz (Linux、macOS、または
Unix) のいずれかのリンクを選択し、SDK を自分のコンピュータにダウンロードします。

3. そのアーカイブをローカルディレクトリに解凍します。

Eclipse IDE サポート 2

https://aws.amazon.com/eclipse/
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/
https://docs.aws.amazon.com/sdk-for-android/index.html
https://docs.aws.amazon.com/sdk-for-android/index.html
https://github.com/aws/aws-sdk-java#release-notes
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://maven.apache.org/
https://github.com/aws/aws-sdk-java/releases

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

4. コマンドラインで、アーカイブを解凍したディレクトリに移動して以下のコマンドを入力しま
す。

mvn javadoc:javadoc

5. ビルドが完了すると、aws-java-sdk/target/site/apidocs/ ディレクトリに HTML ドキュ
メントが生成されています。

旧バージョンの SDK 用の Java リファレンスドキュメントのビルド 3

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

開始方法
このセクションでは、AWS SDK for Java のインストール方法、セットアップ方法、および使用方法
に関する情報を示します。

トピック

• AWS のサービス の使用に必要な基本設定

• AWS SDK for Java 取得方法

• 構築ツールの使用

• 開発用の AWS 認証情報と AWS リージョン のセットアップ

AWS のサービス の使用に必要な基本設定

概要

AWS SDK for Java で AWS のサービス を使用してアクセスするアプリケーションを正常に開発する
には、次の条件が必要です。

• AWS IAM アイデンティティセンター にある AWS アクセスポータルにサインインできる必要があ
ります。

• SDK 用に設定された IAM ロールのアクセス許可により、アプリケーションが必要とする AWS の
サービス へのアクセスが許可されている必要があります。PowerUserAccess AWS 管理ポリシー
に関連するアクセス許可は、ほとんどの開発ニーズに十分対応できます。

• 次の要素を備えた開発環境:

• 以下の方法で設定される共有設定ファイル。

• config ファイルには、AWS リージョン を指定するデフォルトプロファイルが含まれていま
す。

• credentials ファイルには、デフォルトプロファイルの一部として一時的な認証情報が含ま
れています。

• 適切な Java インストール。

• Maven や Gradle などの構築オートメーションツール。

• コードを使用するテキストエディター。

• (オプションだが推奨) IntelliJ IDEA、Eclipse、NetBeans などの IDE (統合開発環境)。

基本セットアップ 4

https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://maven.apache.org/download.cgi
https://gradle.org/install/
https://www.jetbrains.com/idea/download/#section=windows
https://www.eclipse.org/ide/
https://netbeans.org/downloads/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

IDE を使用すると、AWS Toolkit を統合してより簡単に AWS のサービス を使用することもでき
ます。AWS Toolkit for IntelliJ と、AWS Toolkit for Eclipse は Java 開発に使用できる 2 つのツー
ルキットです。

Important

このセットアップセクションの手順は、ユーザーまたは組織が IAM アイデンティティセン
ターを使用していることを前提としています。組織が IAM アイデンティティセンターとは
独立して機能する外部 ID プロバイダーを使用している場合は、SDK for Java で使用するた
めの一時的な認証情報を取得する方法をご確認ください。以下の手順に従って、~/.aws/
credentials ファイルに一時的な認証情報を追加します。
ID プロバイダーが一時的な認証情報を ~/.aws/credentials ファイルに自動的に追加す
る場合は、SDK または AWS CLI にプロファイル名を指定する必要がないように、プロファ
イル名が [default] であることを確認してください。

AWS アクセスポータルにサインインします。

AWS アクセスポータルは、IAM アイデンティティセンターに手動でサインインするウェ
ブ上の場所です。URL のフォーマットは d-xxxxxxxxxx.awsapps.com/start、または
your_subdomain.awsapps.com/start です。

AWS アクセスポータルに慣れていない場合は、AWS SDK およびツールリファレンスガイドの IAM
アイデンティティセンターのアクセス権限トピックのステップ 1 にあるアカウントアクセスに関す
るガイダンスに従ってください。ステップ 2 には従わないでください。AWS SDK for Java 1.x で
は、ステップ 2 で説明されている SDK の自動トークン更新や SDK の一時的な認証情報の自動取得
がサポートされていないためです。

共有設定ファイルを設定します。

共有設定ファイルは開発ワークステーションにあり、すべての AWS SDK と AWS Command Line
Interface (CLI) で使用される基本設定が含まれています。共有設定ファイルには多数の設定を含める
ことができますが、これらの手順は SDK を使用するために必要な基本要素を設定します。

共有 config ファイルをセットアップする

共有 config ファイルの内容の例を以下に示します。

AWS アクセスポータルにサインインします。 5

https://docs.aws.amazon.com/toolkit-for-jetbrains/latest/userguide/welcome.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/welcome.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html#idcGettingStarted
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html#idcGettingStarted
https://docs.aws.amazon.com/sdkref/latest/guide/settings-reference.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

[default]
region=us-east-1
output=json

開発目的では、コードを実行する予定の AWS リージョン に最も近い場所を使用してくださ
い。config ファイルで使用するリージョンコードのリストについては、「Amazon Web Services
全般のリファレンス ガイド」を参照してください。出力形式の json 設定は、いくつかの可能な
値のうちの 1 つです。

このセクションのガイダンスに従って config ファイルを作成します。

SDK の一時的な認証情報を設定します。

AWS アクセスポータルから AWS アカウント と IAM ロールにアクセスできるようになった
ら、SDK がアクセスするための一時的な認証情報を使用して開発環境を設定します。

一時的な認証情報を使用してローカル credentials ファイルを設定する手順

1. 共有 credentials ファイルを作成します。

2. credentials ファイルに、作業用の一時認証情報を貼り付けるまで次のプレースホルダーテキ
ストを貼り付けます。

[default]
aws_access_key_id=<value from AWS access portal>
aws_secret_access_key=<value from AWS access portal>
aws_session_token=<value from AWS access portal>

3. ファイルを保存します。これで、ファイル ~/.aws/credentials はローカルの開発システム
に存在しているはずです。このファイルには、特定の名前付きプロファイルが指定されていない
場合に SDK for Java が使用する [default] プロファイルが含まれています。

4. AWS アクセスポータルにサインインします。

5. AWS アクセスポータルから IAM ロール認証情報をコピーするには、「手動での認証情報更新」
にある次の手順を行います。

a. リンク先の手順のステップ 4 で、開発ニーズに合ったアクセスを許可する IAM ロールの名
前を選択します。通常、このロールには PowerUserAccess や Developer などの名前が付い
ています。

b. ステップ 7 で、[AWS 認証情報ファイルにプロファイルを手動で追加] オプションを選択
し、内容をコピーします。

共有設定ファイルを設定します。 6

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://docs.aws.amazon.com/general/latest/gr/rande.html#region-names-codes
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-output-format.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-output-format.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html#file-format-profile
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtosignin.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html#how-to-get-temp-credentials

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

6. コピーした認証情報をローカル credentials ファイルに貼り付け、貼り付けたプロファイル
名をすべて削除します。ファイルは以下のようになります。

[default]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
aws_session_token=IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZVERYLONGSTRINGEXAMPLE

7. credentials ファイルを保存します。

SDK for Java は、サービスクライアントを作成するときにこれらの一時的な認証情報にアクセス
し、各リクエストに使用します。ステップ 5a で選択した IAM ロールの設定により、一時的な認証情
報の有効期間が決まります。最大期間は 12 時間です。

一時的な認証情報の有効期限が切れたら、ステップ 4～7 を繰り返します。

Java 開発環境をインストールします。

AWS SDK for Java V1 には Java 7 JDK 以降が必要です。また、すべての Java LTS (長期サポート)
JDK バージョンがサポートされています。SDK のバージョン 1.12.767 以前を使用している場合は
Java 7 を使用できますが、SDK のバージョン 1.12.768 以降を使用している場合は Java 8 が必要で
す。Maven 中央リポジトリに、SDK for Java の最新バージョンが記載されています。

AWS SDK for Java は、Oracle Java SE Development Kit、および 、 Amazon Corretto、Red Hat
OpenJDK、Adoptium などの Open Java Development Kit (OpenJDK) のディストリビューションで
動作します。

AWS SDK for Java 取得方法

前提条件

AWS SDK for Java を使用するには、以下が必要です。

• AWS IAM アイデンティティセンター にある AWS アクセスポータルにサインインできる必要があ
ります。

• 適切な Java インストール。

• ローカル共有 credentials ファイルに設定された一時的な認証情報。

Java 開発環境をインストールします。 7

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtosessionduration.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtosessionduration.html
https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom
https://www.oracle.com/java/technologies/downloads/
https://aws.amazon.com/corretto
https://developers.redhat.com/products/openjdk/overview
https://developers.redhat.com/products/openjdk/overview
https://adoptium.net/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

SDK for Java を使用するための設定方法については、the section called “基本セットアップ” トピッ
クを参照してください。

構築ツールを使用して SDK for Java の依存関係を管理する (推奨)

SDK for Java の必要な依存関係にアクセスするには、プロジェクトで Apache Maven または Gradle
を使用することをお勧めします。このセクションでは、それらのツールを使用する方法について説明
します。

SDK をダウンロードして解凍する (非推奨)

プロジェクトの SDK にアクセスするには構築ツールを使用することをお勧めしますが、最新バー
ジョンの SDK のビルド済み jar をダウンロードすることもできます。

Note

以前のバージョンの SDK のダウンロードおよび構築方法の詳細については、「以前のバー
ジョンの SDK のインストール」を参照してください。

1. https://sdk-for-java.amazonwebservices.com/latest/aws-java-sdk.zip から SDK をダウンロードし
ます。

2. SDK をダウンロードしたら、そのコンテンツをローカルディレクトリに抽出します。

SDK には次のディレクトリが含まれます。

• documentation - API ドキュメントが含まれます (ウェブの AWS SDK for Java API リファレン
スにも掲載されています)。

• lib - SDK の .jar ファイルが置かれています。

• samples - SDK の使用方法を示す作業サンプルコードが置かれています。

• third-party/lib - Apache Commons Logging、AspectJ、Spring framework など、SDK で使用
されているサードパーティーライブラリが置かれています。

SDK を使用するには、lib と third-party ディレクトリの完全パスをビルドファイルの依存関係
に追加し、コードを実行する Java の CLASSPATH にそれらを追加します。

構築ツールの使用 8

https://sdk-for-java.amazonwebservices.com/latest/aws-java-sdk.zip
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

SDK の以前のバージョンをソースから構築 (非推奨)

完全な SDK の最新バージョンのみ、ダウンロード可能な jar として構築済みの形で提供されます。
ただし、Apache Maven (オープンソース) を使用して、以前のバージョンの SDK を構築できま
す。Maven が、必要なすべての依存関係をダウンロードし、1 つのステップで SDK を構築およびイ
ンストールします。インストールの手順と詳細については、http://maven.apache.org/ を参照してく
ださい。

1. SDK の GitHub ページ AWS SDK for Java (GitHub) に移動します。

2. 使用する SDK のバージョン番号に該当するタグを選択します。例えば、1.6.10。

3. [Download ZIP] ボタンをクリックして、選択したバージョンの SDK をダウンロードします。

4. 開発システムのディレクトリにファイルを解凍します。多くのシステムでは、グラフィカルな
ファイルマネージャーを使用してこれを行うことができます。または、ターミナルウィンドウで
unzip ユーティリティを使用できます。

5. ターミナルウィンドウで、SDK ソースを解凍したディレクトリに移動します。

6. 次のコマンドを実行 (Maven が必要) して SDK をビルドおよびインストールします。

mvn clean install -Dgpg.skip=true

.jar ファイルが target ディレクトリで構築されます。

7. (オプション) 次のコマンドを使用して API リファレンスのドキュメントを構築します。

mvn javadoc:javadoc

ドキュメントは target/site/apidocs/ ディレクトリに構築されます。

構築ツールの使用

構築ツールを使用すると、Java プロジェクトの開発を管理しやすくなります。構築ツールはいくつ
かありますが、ここでは一般的な 2 つの構築ツール (Maven と Gradle) を使って起動して実行する方
法を説明します。このトピックでは、これらの構築ツールを使用して、プロジェクトに必要な SDK
for Java の依存関係を管理する方法を説明します。

トピック

• Apache Maven で SDK を使用する

ソースからビルドする 9

http://maven.apache.org/
https://github.com/aws/aws-sdk-java
https://maven.apache.org/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

• Gradle とともに SDK を使用する

Apache Maven で SDK を使用する

Apache Maven を使用して、AWS SDK for Java プロジェクトの設定およびビルド、SDK 自体のビル
ドを行うことができます。

Note

このトピックのガイダンスを使用するには、Maven をインストールしている必要がありま
す。まだインストールしていない場合は、http://maven.apache.org/ にアクセスし、ダウン
ロードしてインストールしてください。

新しい Maven パッケージを作成する

Maven の基本パッケージを作成するには、ターミナル (コマンドライン) ウィンドウを開いて次のコ
マンドを実行します。

mvn -B archetype:generate \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DgroupId=org.example.basicapp \
 -DartifactId=myapp

org.example.basicapp はアプリケーションの完全パッケージ名前空間に置き換え、myapp はプロ
ジェクト名 (これがプロジェクトのディレクトリ名になります) に置き換えます。

デフォルトで、quickstart アーキタイプを使用してプロジェクトテンプレートが作成されます。この
テンプレートは、多くのプロジェクトで手始めとして使用できます。使用できるアーキタイプは他に
もあります。Maven アーキタイプのページでは、次でパッケージ化されているアーキタイプの一覧
を参照できます。-DarchetypeArtifactId コマンドに archetype:generate 引数を追加する
と、特定のアーキタイプを選択して使用できます。例:

mvn archetype:generate \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DarchetypeArtifactId=maven-archetype-webapp \
 -DgroupId=org.example.webapp \
 -DartifactId=mywebapp

Apache Maven で SDK を使用する 10

https://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/archetypes/maven-archetype-quickstart/
https://maven.apache.org/archetypes/index.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Note

プロジェクトの作成と設定に関する詳細情報は、Maven の開始方法ガイドで提供されていま
す。

SDK を Maven 依存関係に設定する

プロジェクトで AWS SDK for Java を使用するには、プロジェクトの pom.xml ファイルで SDK を
依存関係として宣言する必要があります。バージョン 1.9.0 以降では、個々のコンポーネントまたは
SDK 全体をインポートできます。

個別の SDK モジュールの指定

個々 SDK モジュールを選択するには、AWS SDK for Java の Maven 用の部品表 (BOM) を使用しま
す。そうすることによって、指定したモジュールで同じバージョンの SDK が使用され、それらは互
いに互換性があることが保証されます。

BOM を使用するには、アプリケーションの <dependencyManagement> ファイルに pom.xml セ
クションを追加し、そのセクションで aws-java-sdk-bom を依存関係として追加し、使用する
SDK のバージョンを指定します。

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.11.1000</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Maven Central で使用可能な最新バージョンの AWS SDK for Java BOM を表示するには、https://
mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom を参照してください。どのモジュー
ル (依存関係) が、プロジェクトの <dependencies> ファイルの pom.xml セクション内に含めるこ
とができる BOM により管理されるのかを確認するには、このページを参照してください。

Apache Maven で SDK を使用する 11

https://maven.apache.org/guides/getting-started/
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

これで、アプリケーションで使用する個々のモジュールを SDK から選択できるようになりまし
た。BOM で SDK バージョンを既に宣言しているため、各コンポーネントのバージョン番号を指定
する必要はありません。

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-s3</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-dynamodb</artifactId>
 </dependency>
</dependencies>

AWS Code Sample Catalog を参照して、特定の AWS のサービス で使用する依存関係を確認するこ
ともできます。特定のサービス例の下の POM ファイルを参照してください。例えば、AWS S3 サー
ビスの依存関係に関心がある場合は、GitHub の完全な例を参照してください (/java/example_code/
s3 の下の POM を参照してください)。

すべての SDK モジュールのインポート

SDK 全体を依存関係にする場合は、BOM による方法を使用せずに、pom.xml で次のように宣言す
るだけです。

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.11.1000</version>
 </dependency>
</dependencies>

プロジェクトを構築する

プロジェクトのセットアップが完了したら、Maven の package コマンドを使用してアプリケー
ションをビルドできます。

mvn package

このコマンドでは、0jar ディレクトリに target ファイルが作成されます。

Apache Maven で SDK を使用する 12

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Maven を使用して SDK をビルドする

Apache Maven を使用して、SDK をソースからビルドできます。そのためには、GitHub から SDK
コードをダウンロードし、ローカルに解凍して、次の Maven コマンドを実行します。

mvn clean install

Gradle とともに SDK を使用する

Gradle プロジェクトの SDK 依存関係を管理するには、AWS SDK for Java の Maven BOM をアプリ
ケーションの build.gradle ファイルにインポートします。

Note

次の例では、構築ファイルの 1.12.529 を有効なバージョンの AWS SDK for Java に置き換
えます。Maven Central リポジトリで最新バージョンを検索してください。

Gradle 4.6 以降のプロジェクト設定

Gradle 4.6 以降、BOM で依存関係を宣言することにより、Gradle の改善された POM サポート機能
を使用して部品表 (BOM) ファイルをインポートできます。

1. Gradle 5.0 以降を使用している場合は、ステップ 2 に進みます。それ以外の場合
は、settings.gradle ファイルで IMPROVED_POM_SUPPORT 機能を有効にします。

enableFeaturePreview('IMPROVED_POM_SUPPORT')

2. アプリケーションの build.gradle ファイルの dependencies セクションに BOM を追加しま
す。

...
dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')

 // Declare individual SDK dependencies without version
 ...
}

Gradle とともに SDK を使用する 13

https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java
https://gradle.com/
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://docs.gradle.org/4.6/release-notes.html#bom-import

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

3. dependencies セクションで使用する SDK モジュールを指定します。たとえば、次の例には
Amazon Simple Storage Service (Amazon S3) の依存関係が含まれています。

...
dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')
 implementation 'com.amazonaws:aws-java-sdk-s3'
 ...
}

Gradle は BOM の情報を使用して、正しいバージョンの SDK 依存関係を自動的に解決します。

以下に、build.gradle の依存関係を含む完全な Amazon S3 ファイルの例を示します。

group 'aws.test'
version '1.0-SNAPSHOT'

apply plugin: 'java'

sourceCompatibility = 1.8

repositories {
 mavenCentral()
}

dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')
 implementation 'com.amazonaws:aws-java-sdk-s3'
}

Note

前の例で、Amazon S3 の依存関係を、プロジェクトで使用する AWS のサービスの依存関
係に置き換えます。AWS SDK for Java BOM によって管理されるモジュール (依存関係) は
Maven Central リポジトリに一覧表示されます。

Gradle とともに SDK を使用する 14

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

4.6 より前の Gradle バージョンのプロジェクト設定

4.6 より前の Gradle バージョンでは、ネイティブ BOM がサポートされていません。プロジェクト
の AWS SDK for Java 依存関係を管理するには、Spring の Gradle 用依存関係管理プラグインを使用
して、SDK の Maven BOM をインポートします。

1. ご自身のアプリケーションの build.gradle ファイルに依存関係管理プラグインを追加します。

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "io.spring.gradle:dependency-management-plugin:1.0.9.RELEASE"
 }
}

apply plugin: "io.spring.dependency-management"

2. ファイルの dependencyManagement セクションに BOM を追加します。

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.12.529'
 }
}

3. dependencies セクションで使用する SDK モジュールを指定します。たとえば次の例に
は、Amazon S3 の依存関係が含まれています。

dependencies {
 compile 'com.amazonaws:aws-java-sdk-s3'
}

Gradle は BOM の情報を使用して、正しいバージョンの SDK 依存関係を自動的に解決します。

以下に、build.gradle の依存関係を含む完全な Amazon S3 ファイルの例を示します。

group 'aws.test'
version '1.0'

Gradle とともに SDK を使用する 15

https://github.com/spring-gradle-plugins/dependency-management-plugin

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

apply plugin: 'java'

sourceCompatibility = 1.8

repositories {
 mavenCentral()
}

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "io.spring.gradle:dependency-management-plugin:1.0.9.RELEASE"
 }
}

apply plugin: "io.spring.dependency-management"

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.12.529'
 }
}

dependencies {
 compile 'com.amazonaws:aws-java-sdk-s3'
 testCompile group: 'junit', name: 'junit', version: '4.11'
}

Note

前の例で、Amazon S3 の依存関係を、プロジェクトで使用する AWS のサービスの依存関
係に置き換えます。AWS SDK for Java BOM によって管理されるモジュール (依存関係) は
Maven Central リポジトリに一覧表示されます。

BOM を使用した SDK の依存関係の指定の詳細については、Apache Maven とともに SDK を使用す
るを参照してください。

Gradle とともに SDK を使用する 16

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

開発用の AWS 認証情報と AWS リージョン のセットアップ

AWS SDK for Java でサポートされている任意のサービスに接続するには、AWS の一時的な認証情
報を指定する必要があります。AWS SDK と CLI では、プロバイダーチェーンを使用して、システム
またはユーザーの環境変数やローカルの AWS 設定ファイルなど、いくつかの場所にある AWS の一
時的な認証情報が検索されます。

このトピックでは、AWS SDK for Java を使用して、ローカルアプリケーション開発用に AWS の一
時的な認証情報をセットアップするための基本情報について説明します。EC2 インスタンス内で使
用するための認証情報をセットアップする必要がある場合、または開発に Eclipse IDE を使用してい
る場合は、代わりに以下のトピックを参照してください。

• EC2 インスタンスを使用している場合は、Amazon EC2 での IAM ロールを使用した AWS リソー
スへの許可の付与での説明に従って、IAM ロールを作成し、そのロールへのアクセス権を EC2 イ
ンスタンスに付与します。

• AWS Toolkit for Eclipse を使用して Eclipse 内で AWS 認証情報を設定します。詳細については、
「AWS Toolkit for Eclipse ユーザーガイド」の「Set up AWS Credentials」を参照してください。

一時的な認証情報の設定

AWS SDK for Java の一時的な認証情報の設定はさまざまな方法で行うことができますが、推奨され
る手法を次に示します。

• 次の場所にあるローカルシステム上の AWS の一時的な認証情報プロファイルファイルで認証情報
を設定します。

• ~/.aws/credentialsLinux、macOS、Unix の場合は

• C:\Users\USERNAME\.aws\credentialsWindows の

一時的な認証情報を取得する方法については、本ガイドの「the section called “SDK の一時的な認
証情報を設定します。”」を参照してください。

• AWS_ACCESS_KEY_ID、AWS_SECRET_ACCESS_KEY、および AWS_SESSION_TOKEN 環境変数を
設定します。

これらの変数を Linux、macOS、または Unix で設定するには、 を使用します。

export AWS_ACCESS_KEY_ID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key

一時的な認証情報、リージョン 17

https://aws.amazon.com/eclipse/
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/setup-credentials.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

export AWS_SESSION_TOKEN=your_session_token

Windows でこれらの変数を設定するには、 を使用します。

set AWS_ACCESS_KEY_ID=your_access_key_id
set AWS_SECRET_ACCESS_KEY=your_secret_access_key
set AWS_SESSION_TOKEN=your_session_token

• EC2 インスタンスの場合、IAM ロールを指定し、そのロールへのアクセスを EC2 インスタンスに
提供します。これがどのように機能するかについての詳細な説明については、「Linux インスタン
ス用 Amazon EC2 ユーザーガイド」の「IAM Roles for Amazon EC2」を参照してください。

これらの方法のいずれかを使用して AWS の一時的な認証情報を設定すると、デフォルトの認証情
報プロバイダチェーンを使用して AWS SDK for Java によって自動的にロードされます。Java アプ
リケーションでの AWS 認証情報の使用の詳細については、AWS 認証情報の使用を参照してくださ
い。

IMDS 認証情報の更新

AWS SDK for Java は、認証情報の有効期限に関係なく、バックグラウンドで 1 分ごとに IMDS 認証
情報を更新するオプトインをサポートしています。これにより、認証情報をより頻繁に更新できるよ
うになり、IMDS に到達できないことで認識される AWS の可用性に影響が出る可能性が低くなりま
す。

 1. // Refresh credentials using a background thread, automatically every minute. This
 will log an error if IMDS is down during
 2. // a refresh, but your service calls will continue using the cached credentials
 until the credentials are refreshed
 3. // again one minute later.
 4.
 5. InstanceProfileCredentialsProvider credentials =
 6. InstanceProfileCredentialsProvider.createAsyncRefreshingProvider(true);
 7.
 8. AmazonS3Client.builder()
 9. .withCredentials(credentials)
 10. .build();
 11.
 12. // This is new: When you are done with the credentials provider, you must close it
 to release the background thread.
 13. credentials.close();

IMDS 認証情報の更新 18

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

AWS リージョン の設定

AWS SDK for Java で AWS のサービスにアクセスするために使用するデフォルトの AWS リージョ
ン を設定する必要があります。最適なパフォーマンスを得るために、地理的に近いリージョンを選
択します。各サービスのリージョンのリストについては、Amazon Web Services の全般のリファレ
ンスのリージョンとエンドポイントを参照してください。

Note

リージョンを選択しないと、デフォルトで us-east-1 が使用されます。

認証情報の設定と同様の方法でデフォルトの AWS リージョンを設定できます。

• ローカルシステムの次の場所にある AWS Config ファイルで AWS リージョン を設定します。

• Linux、macOS、または Unix の ~/.aws/config

• Windows の C:\Users\USERNAME\.aws\config

このファイルには以下の形式の行が含まれている必要があります。

+

[default]
region = your_aws_region

+

your_aws_region を目的の AWS リージョン (「us-west-1」など) に置き換えます。

• AWS_REGION 環境変数を設定します。

Linux、macOS、または Unix では、 を使用してください:

export AWS_REGION=your_aws_region

Windows では、 を使用します。

set AWS_REGION=your_aws_region

your_aws_region は目的の AWS リージョン 名です。

AWS リージョン の設定 19

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

の使用 AWS SDK for Java
このセクションでは、 SDK で使用するすべてのサービスに適用される AWS SDK for Java を使用し
たプログラミングに関する重要な一般情報を提供します。

サービス固有のプログラミング情報と例 (など) については Amazon EC2 Amazon S3 Amazon
SWF、AWS SDK for Java 「コード例」を参照してください。

トピック

• を使用した AWS 開発のベストプラクティス AWS SDK for Java

• サービスクライアントの作成

• に一時的な認証情報を提供する AWS SDK for Java

• AWS リージョン 選択

• 例外処理

• 非同期プログラミング

• AWS SDK for Java 通話のログ記録

• クライアント設定

• アクセスコントロールポリシー

• DNS 名参照用の JVM TTL を設定する

• のメトリクスの有効化 AWS SDK for Java

を使用した AWS 開発のベストプラクティス AWS SDK for Java

以下のベストプラクティスは、 を使用して AWS アプリケーションを開発する際の問題や問題を回
避するのに役立ちます AWS SDK for Java。ベストプラクティスはサービスごとに整理してありま
す。

S3

ResetExceptions の回避

ストリーム Amazon S3 を使用して (AmazonS3クライアントまたは を介してTransferManager)
オブジェクトを にアップロードすると、ネットワーク接続またはタイムアウトの問題が発生する可
能性があります。デフォルトでは、 は転送の開始前に入力ストリームをマークし、 AWS SDK for
Java 再試行する前にリセットすることで、失敗した転送を再試行しようとします。

を使用した AWS 開発のベストプラクティス AWS SDK for Java 20

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ストリームが mark と reset をサポートしていない場合、一時的なエラーが発生して再試行が有効に
なると、SDK は ResetException をスローします。

ベストプラクティス

mark オペレーションと reset オペレーションをサポートするストリームを使用することをお勧めし
ます。

ResetException を回避する最も信頼性の高い方法は、File または FileInputStream を使用してデータ
を提供することです。これは、 がマークとリセットの制限に制約されることなく処理 AWS SDK for
Java できます。

ストリームが FileInputStream でないものの mark と reset をサポートしている場合
は、RequestClientOptions の setReadLimit メソッドを使用して mark の制限を設定できます。デ
フォルト値は 128 KB です。読み取り制限値をストリームのサイズより 1 バイト大きく設定すると、
信頼できる方法で ResetException を回避できます。

たとえば、ストリームの最大予想サイズが 100,000 バイトである場合、読み取り制限を 100,001
(100,000 + 1) バイトに設定します。mark と reset は常に 100,000 バイト以下で動作します。これに
より、一部のストリームではそのバイト数がメモリにバッファされる場合があることに注意してくだ
さい。

サービスクライアントの作成

にリクエストを行うには Amazon Web Services、まずサービスクライアントオブジェクトを作成し
ます。推奨される方法は、サービスクライアントビルダーを使用することです。

各 AWS のサービス には、サービス API の各アクションのメソッドを含むサービスインターフェイ
スがあります。たとえば、DynamoDB のサービスインターフェイスは、AmazonDynamoDBClient と
いう名前です。各サービスインターフェイスに対応するクライアントビルダーがあり、サービスイ
ンターフェイスの実装を構築する際に使用できます。のクライアントビルダークラス DynamoDB は
AmazonDynamoDBClientBuilder という名前です。

クライアントビルダーの取得

クライアントビルダーのインスタンスを取得するには、次の例に示す静的ファクトリメソッド
standard を使用します。

AmazonDynamoDBClientBuilder builder = AmazonDynamoDBClientBuilder.standard();

サービスクライアントの作成 21

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/FileInputStream.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/FileInputStream.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/RequestClientOptions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/AmazonDynamoDBClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDBClientBuilder.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ビルダーを取得すると、ビルダー API で多数の fluent setter を使用して、クライアントのプロパティ
をカスタマイズできます。たとえば、カスタムリージョンおよびカスタム認証情報プロバイダーは以
下のように設定できます。

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .build();

Note

fluent withXXX メソッドは builder オブジェクトを返し、メソッドの呼び出しを連鎖
させて利便性とコードの可読性を向上させることができます。必要なプロパティを設定
後、build メソッドを呼び出してクライアントを作成することができます。作成後のクライ
アントはイミュータブルで、setRegion または setEndpoint の呼び出しはすべて失敗し
ます。

ビルダーでは、同じ構成で複数のクライアントを作成できます。アプリケーションを記述している場
合、ビルダーがミュータブルであり、スレッドセーフでないことに注意してください。

次のコードでは、クライアントインスタンスのファクトリとしてビルダーが使用されます。

public class DynamoDBClientFactory {
 private final AmazonDynamoDBClientBuilder builder =
 AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"));

 public AmazonDynamoDB createClient() {
 return builder.build();
 }
}

ビルダーは、ClientConfiguration および RequestMetricCollector の fluent setter、および
RequestHandler2 のカスタムリストも公開します。

すべての設定可能なプロパティをオーバーライドする完全な例を次に示します。

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.standard()

クライアントビルダーの取得 22

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/metrics/RequestMetricCollector.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/handlers/RequestHandler2.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .withClientConfiguration(new ClientConfiguration().withRequestTimeout(5000))
 .withMetricsCollector(new MyCustomMetricsCollector())
 .withRequestHandlers(new MyCustomRequestHandler(), new
 MyOtherCustomRequestHandler)
 .build();

非同期クライアントの作成

AWS SDK for Java には、すべてのサービス (を除く) に非同期 (または非同期 Amazon S3) クライア
ントがあり、すべてのサービスに対応する非同期クライアントビルダーがあります。

非同期 DynamoDB クライアントをデフォルトの ExecutorService で作成するには

AmazonDynamoDBAsync ddbAsync = AmazonDynamoDBAsyncClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .build();

同期クライアントビルダーがサポートする構成オプションに加え、非同期クライアントでは、カスタ
ム ExecutorFactory を設定して、非同期クライアントが使用する ExecutorService を変更するこ
とができます。ExecutorFactory は関数型インターフェイスであり、Java 8 ラムダ式表現および
メソッド参照とともに使用することができます。

非同期クライアントをカスタムエグゼキューターで作成するには

AmazonDynamoDBAsync ddbAsync = AmazonDynamoDBAsyncClientBuilder.standard()
 .withExecutorFactory(() -> Executors.newFixedThreadPool(10))
 .build();

DefaultClient の使用

同期クライアントビルダーと非同期クライアントビルダーの両方に、defaultClient という名前
の別のファクトリメソッドがあります。このメソッドは、デフォルトプロバイダチェーンを使用し
て認証情報と AWS リージョンをロードすることで、デフォルト構成を持つサービスクライアントを
作成します。アプリケーションを実行している環境から認証情報またはリージョンが決定できない場
合、defaultClient の呼び出しは失敗します。AWS 認証情報とリージョンの決定方法の詳細につ
いては、「認証情報の使用とAWS リージョン 選択」を参照してください。

非同期クライアントの作成 23

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/client/builder/ExecutorFactory.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

デフォルトサービスクライアントを作成するには

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

クライアントのライフサイクル

SDK のサービスクライアントはスレッドセーフであり、最大のパフォーマンスを得るには、存続期
間の長いオブジェクトとしてこれらを処理する必要があります。各クライアントは独自の接続プール
リソースを備えています。リソースリークを回避するために、不要になったときは明示的にクライア
ントをシャットダウンしてください。

明示的にクライアントをシャットダウンする場合は、shutdown メソッドを呼び出しま
す。shutdown の呼び出し後は、すべてのクライアントリソースが解放され、クライアントが使用
できなくなります。

クライアントをシャットダウンするには

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();
ddb.shutdown();
// Client is now unusable

に一時的な認証情報を提供する AWS SDK for Java

にリクエストを行うには Amazon Web Services、 が サービスを呼び出すときに AWS SDK for Java
使用する AWS 一時的な認証情報を指定する必要があります。これは以下の方法で対応できます。

• デフォルトの認証情報プロバイダーチェーンを使用する (推奨)。

• 特定の認証情報プロバイダーまたはプロバイダーチェーンを使用する (または独自のものを作成す
る)。

• 一時的な認証情報はご自分でコードに入力してください。

デフォルトの認証情報プロバイダチェーンの使用

引数を指定せずに新しいサービスクライアントを初期化すると、 は
DefaultAWSCredentialsProviderChain クラスによって実装されたデフォルトの認証情報プロバイ
ダーチェーンを使用して一時的な認証情報を検索 AWS SDK for Java しようとします。デフォルトの
認証情報プロバイダーチェーンは、次の順序で認証情報を検索します。

クライアントのライフサイクル 24

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/DefaultAWSCredentialsProviderChain.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

1. 環境変数 - AWS_ACCESS_KEY_ID AWS_SECRET_KEY、またはAWS_SECRET_ACCESS_KEY および
AWS_SESSION_TOKEN。 AWS SDK for Java は、EnvironmentVariableCredentialsProvider クラス
を使用してこれらの認証情報をロードします。

2. Java システムプロパティ - aws.accessKeyId、 aws.secretKey (ただし、
aws.secretAccessKey ではありません)、および aws.sessionToken。 AWS SDK for Java
は SystemPropertiesCredentialsProvider を使用してこれらの認証情報を読み込みます。

3. 環境またはコンテナからのウェブアイデンティティトークンの認証情報。

4. デフォルトの認証情報プロファイルファイル - 通常、 に配置され ~/.aws/credentials (場所
はプラットフォームによって異なります）、多くの AWS SDKsと によって共有されます AWS
CLI。 AWS SDK for Java は ProfileCredentialsProvider を使用してこれらの認証情報をロードしま
す。

が提供する aws configure コマンドを使用して認証情報ファイルを作成することも AWS CLI、
テキストエディタでファイルを編集して作成することもできます。認証情報ファイル形式に関す
る情報については、「AWS Credentials File Format」を参照してください。

5. Amazon ECS コンテナの認証情報 - 環境変数 AWS_CONTAINER_CREDENTIALS_RELATIVE_URI
が設定されている場合に、Amazon ECS からロードされます。 AWS SDK for Java は
ContainerCredentialsProvider を使用してこれらの認証情報をロードします。この値の IP アドレ
スを指定できます。

6. インスタンスプロファイル認証情報 - EC2 インスタンスで使用され、 Amazon EC2 メタデータ
サービスを介して配信されます。 AWS SDK for Java は InstanceProfileCredentialsProvider を使
用してこれらの認証情報をロードします。この値の IP アドレスを指定できます。

Note

インスタンスプロファイル認証情報
は、AWS_CONTAINER_CREDENTIALS_RELATIVE_URI が設定されていない場合にのみ使
用されます。詳細については、「EC2ContainerCredentialsProviderWrapper」を参照して
ください。

一時的な認証情報の設定

AWS 一時的な認証情報を使用するには、前述の場所の少なくとも 1 つに設定する必要があります。
認証情報の設定の詳細については、以下のトピックを参照してください。

デフォルトの認証情報プロバイダチェーンの使用 25

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/EnvironmentVariableCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/SystemPropertiesCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/profile/ProfileCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/ContainerCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/InstanceProfileCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/EC2ContainerCredentialsProviderWrapper.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

• 環境またはデフォルトの認証情報プロファイルファイルでの認証情報の指定については、「the
section called “一時的な認証情報の設定”」を参照してください。

• Java システムプロパティの設定については、公式の Java Tutorials ウェブサイトにある「System
Properties」チュートリアルを参照してください。

• EC2 インスタンスでインスタンスプロファイル認証情報をセットアップして使用するには、「IAM
ロールを使用して の AWS リソースへのアクセスを許可する Amazon EC2」を参照してくださ
い。

別の認証情報プロファイルの設定

はデフォルトでデフォルトのプロファイル AWS SDK for Java を使用しますが、認証情報ファイルか
ら取得されるプロファイルをカスタマイズする方法があります。

AWS プロファイル環境変数を使用して、SDK によってロードされたプロファイルを変更できます。

例えば、Linux、macOS、または Unix の場合は、次のコマンドを実行してプロファイルを myProfile
に変更します。

export AWS_PROFILE="myProfile"

Windows の場合は次のコマンドを使用します。

set AWS_PROFILE="myProfile"

AWS_PROFILE 環境変数を設定すると、正式にサポートされているすべての AWS SDKsとツー
ル (AWS CLI と を含む AWS Tools for Windows PowerShell) の認証情報のロードに影響しま
す。Java アプリケーションのプロファイルだけを変更する場合は、代わりにシステムプロパティ
aws.profile を使用できます。

Note

環境変数はシステムプロパティより優先されます。

別の認証情報ファイルの場所を設定する

は、デフォルトの認証情報ファイルの場所から AWS 一時的な認証情報を自動的に
AWS SDK for Java ロードします。ただし、認証情報ファイルへのフルパスを使用して

デフォルトの認証情報プロバイダチェーンの使用 26

http://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

AWS_CREDENTIAL_PROFILES_FILE 環境変数を設定することで、場所を指定することもできま
す。

この機能を使用して、 が認証情報ファイル AWS SDK for Java を検索する場所を一時的に変更でき
ます (たとえば、この変数をコマンドラインで設定するなど）。または、ユーザー環境やシステム環
境で環境変数を設定して、ユーザーやシステム全体に対して変数を変更できます。

認証情報ファイルのデフォルトの場所を上書きするには

• AWS_CREDENTIAL_PROFILES_FILE 環境変数を AWS 認証情報ファイルの場所に設定します。

• Linux、macOS、または Unix では、次を使用します。

export AWS_CREDENTIAL_PROFILES_FILE=path/to/credentials_file

• Windows では、次を使用します。

set AWS_CREDENTIAL_PROFILES_FILE=path/to/credentials_file

Credentials ファイル形式

このガイドの基本設定の指示に従うと、認証情報ファイルは次の基本形式になります。

[default]
aws_access_key_id=<value from AWS access portal>
aws_secret_access_key=<value from AWS access portal>
aws_session_token=<value from AWS access portal>

[profile2]
aws_access_key_id=<value from AWS access portal>
aws_secret_access_key=<value from AWS access portal>
aws_session_token=<value from AWS access portal>

プロファイル名では角括弧 (例: [default]) に続いて、キーと値のペアとして、そのプロファイル
の設定可能なフィールドを指定します。credentials ファイルで複数のプロファイルを持つことが
でき、それらは aws configure --profile PROFILE_NAME を使用して設定するプロファイル
を選択することで追加または編集できます。

metadata_service_timeout、metadata_service_num_attempts などの追加のフィールド
を指定できます。これらは、CLI で設定可能ではなく、使用する場合は手動でファイルを編集する必

デフォルトの認証情報プロバイダチェーンの使用 27

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

要があります。設定ファイルとその使用可能なフィールドの詳細については、 AWS Command Line
Interface ユーザーガイドの「 の設定 AWS Command Line Interface」を参照してください。

認証情報の読み込み

一時的な認証情報を設定した後は、SDK はデフォルトの認証情報プロバイダーチェーンを使用して
その認証情報をロードします。

これを行うには、次のように、ビルダーに認証情報を明示的に提供せずに AWS のサービス クライ
アントをインスタンス化します。

AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .build();

認証情報プロバイダーまたはプロバイダーチェーンの指定

クライアントビルダーを使用して、デフォルトの認証情報プロバイダーチェーンとは異なる認証情報
プロバイダーを指定できます。

AWSCredentialsProvider インターフェイスを入力として受け取るクライアントビルダーに、認証情
報プロバイダーまたはプロバイダーチェーンのインスタンスを指定します。以下の例は、環境認証情
報を具体的に使用する方法を示しています。

AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new EnvironmentVariableCredentialsProvider())
 .build();

AWS SDK for Java提供された認証情報プロバイダーとプロバイダーチェーンの完全なリストについ
ては、AWSCredentialsProvider のすべての既知の実装クラス」を参照してください。

Note

この手法を使用して、AWSCredentialsProvider インターフェイスを実装する独自の認
証情報プロバイダーを使用するか、AWSCredentialsProviderChain クラスをサブクラス化し
て、作成する認証情報プロバイダーまたはプロバイダーチェーンを指定できます。

認証情報プロバイダーまたはプロバイダーチェーンの指定 28

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProviderChain.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

一時的な認証情報を明示的に指定する

デフォルトの認証情報チェーンまたは特定あるいはカスタムのプロバイダーやプロバイダーチェーン
がコードに対して機能しない場合は、明示的に指定する認証情報を設定できます。を使用して一時的
な認証情報を取得した場合は AWS STS、この方法を使用して AWS アクセス用の認証情報を指定し
ます。

1. BasicSessionCredentials クラスをインスタンス化し、SDK が接続に使用するアクセスキー、
AWS シークレットキー、 AWS セッショントークンを提供します AWS 。

2. オブジェクトを使用して AWSStaticCredentialsProviderAWSCredentials を作成します。

3. AWSStaticCredentialsProvider を使用してクライアントビルダーを設定し、クライアント
をビルドします。

以下に例を示します。

BasicSessionCredentials awsCreds = new BasicSessionCredentials("access_key_id",
 "secret_key_id", "session_token");
AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new AWSStaticCredentialsProvider(awsCreds))
 .build();

詳細情報

• にサインアップ AWS して IAM ユーザーを作成する

• 開発用の AWS 認証情報とリージョンを設定する

• IAM ロールを使用して の AWS リソースへのアクセスを許可する Amazon EC2

AWS リージョン 選択

リージョンを使用すると、特定の地域に物理的に存在する AWS サービスにアクセスできます。これ
は、冗長性と、ユーザーがアクセスする場所の近くでのデータとアプリケーションの実行を維持する
ために有効です。

リージョンでのサービス可用性の確認

特定の AWS のサービス がリージョンで使用できるかどうかを確認するには、使用するリージョン
で isServiceSupportedメソッドを使用します。

一時的な認証情報を明示的に指定する 29

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/BasicSessionCredentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSStaticCredentialsProvider.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Region.getRegion(Regions.US_WEST_2)
 .isServiceSupported(AmazonDynamoDB.ENDPOINT_PREFIX);

指定できるリージョンに関しては、「Regions」クラスのドキュメントを参照して、サービスのエン
ドポイントプレフィックスを使用してクエリを実行します。各サービスのエンドポイントプレフィッ
クスはサービスインターフェイスで定義されています。たとえば、 DynamoDB エンドポイントプレ
フィックスは AmazonDynamoDB で定義されます。

リージョンを選択する

のバージョン 1.4 以降では AWS SDK for Java、リージョン名を指定でき、SDK は自動的に適切なエ
ンドポイントを選択します。自分でエンドポイントを選択する場合は、「特定のエンドポイントの選
択」を参照してください。

リージョンを明示的に設定するには、「Regions」列挙型を使用することをお勧めします。これは、
公開されている利用可能なすべてのリージョンを列挙したものです。その列挙型からリージョンを使
用してクライアントを作成するには、以下のコードを使用します。

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .build();

使用するリージョンが Regions 列挙型にない場合は、リージョンの名前を示す string を使用して
リージョンを設定できます。

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withRegion("{region_api_default}")
 .build();

Note

ビルダーを使用してクライアントをビルドした後、そのクライアントはイミュータブルとな
り、リージョンは変更不可能です。同じサービス AWS リージョン で複数の を使用している
場合は、リージョンごとに 1 つずつ、複数のクライアントを作成する必要があります。

リージョンを選択する 30

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/regions/Regions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/regions/Regions.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

特定のエンドポイントの選択

各 AWS クライアントは、クライアントの作成時に withEndpointConfigurationメソッドを呼
び出すことで、リージョン内の特定のエンドポイントを使用するように設定できます。

たとえば、欧州 (アイルランド) リージョンを使用するように Amazon S3 クライアントを設定するに
は、次のコードを使用します。

AmazonS3 s3 = AmazonS3ClientBuilder.standard()
 .withEndpointConfiguration(new EndpointConfiguration(
 "https://s3.eu-west-1.amazonaws.com",
 "eu-west-1"))
 .withCredentials(CREDENTIALS_PROVIDER)
 .build();

すべての AWS サービスのリージョンと対応するエンドポイントの現在のリストについては、「リー
ジョンとエンドポイント」を参照してください。

環境に基づくリージョンの自動的な決定

Important

このセクションは、クライアントビルダーを使用して AWS services. AWS clients にアクセ
スする場合にのみ適用されます。クライアントコンストラクタを使用して作成されたクライ
アントは、環境からリージョンを自動的に決定せず、代わりにデフォルトの SDK リージョ
ン (USEast1) を使用します。

Amazon EC2 または Lambda で実行する場合、コードが実行されているリージョンと同じリージョ
ンを使用するようにクライアントを設定することもできます。そうすることによって、コードとそれ
が実行される環境が分離され、レイテンシーの低減や冗長化のために複数のリージョンにデプロイす
ることが容易になります。

コードが実行されているリージョンを SDK で自動的に検出するには、クライアントビルダーを使用
する必要があります。

認証情報/リージョンのデフォルトプロバイダーチェーンを使用して環境からリージョンを決定する
には、クライアントビルダーの defaultClient メソッドを使用します。

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

特定のエンドポイントの選択 31

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

これは、standard に続けて build を使用するのと同じです。

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .build();

withRegion メソッドを使用してリージョンを明示的に設定しない場合は、SDK がリージョンのデ
フォルトプロバイダーチェーンに問い合わせて、使用するリージョンを決定しようとします。

デフォルトリージョンプロバイダーチェーン

リージョンルックアップ手順は以下のとおりです。

1. ビルダー自体で withRegion または setRegion を使用して設定されている明示的なリージョン
は、その他の設定より優先されます。

2. AWS_REGION 環境変数が確認されます。設定されている場合は、そのリージョンを使用してクラ
イアントが設定されます。

Note

この環境変数は Lambda コンテナによって設定されます。

3. SDK は、 AWS 共有設定ファイル (通常は にあります~/.aws/config) をチェックします。リー
ジョンプロパティがあると、SDK はこのプロパティを使用します。

• AWS_CONFIG_FILE 環境変数を使用すると、共有設定ファイルの場所をカスタマイズできま
す。

• AWS_PROFILE 環境変数または aws.profile システムプロパティを使用すると、SDK によっ
てロードされるプロファイルをカスタマイズできます。

4. SDK は、 Amazon EC2 インスタンスメタデータサービスを使用して、現在実行中の Amazon
EC2 インスタンスのリージョンを決定しようとします。

5. この時点で SDK によってリージョンがまだ見つかっていない場合は、クライアント作成が失敗
し、例外が発生します。

AWS アプリケーションを開発する場合の一般的なアプローチは、共有設定ファイル (デフォルトの
認証情報プロバイダーチェーンの使用で説明) を使用してローカル開発用のリージョンを設定し、
AWS インフラストラクチャで実行するときにデフォルトのリージョンプロバイダーチェーンに依存
してリージョンを決定することです。これによって、クライアントの作成が大幅に簡略化され、アプ
リケーションの性が維持されます。

環境に基づくリージョンの自動的な決定 32

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

例外処理

が例外を AWS SDK for Java スローする方法とタイミングを理解することは、 SDK を使用して高品
質のアプリケーションを構築する上で重要です。以下のセクションでは、SDK によってスローされ
る例外のさまざまなケース、および例外の適切な処理方法について説明します。

非チェック例外を使用する理由

は、次の理由により、チェック例外の代わりにランタイム (または未チェック) 例外 AWS SDK for
Java を使用します。

• 懸念がない場合には例外ケースの処理を強制的に適用せずに (さらにコードを冗長にすることな
く)、開発者がエラーを細かく制御できるようにするため。

• サイズの大きいアプリケーションで、チェック例外に関連する拡張性の問題が発生するのを防ぐた
め。

一般的に、チェック例外は小規模なアプリケーションでは役立ちますが、アプリケーションのサイズ
が大きくなり、複雑化すると、チェック例外が問題となる場合があります。

チェック例外と非チェック例外の使用方法の詳細については、以下を参照してください。

• 非チェック例外に関する論争

• チェック例外に関連する問題点

• Java のチェック例外の誤り (およびその対処方法)

AmazonServiceException (およびサブクラス)

AmazonServiceException は、 AWS SDK for Javaを使用する場合に最も多く発生する例外です。こ
の例外は、 AWS のサービスからのエラーレスポンスを表します。たとえば、存在しない Amazon
EC2 インスタンスを終了しようとすると、EC2 はエラーレスポンスを返し、そのエラーレスポ
ンスのすべての詳細がスローAmazonServiceExceptionされる に含まれます。場合によって
は、AmazonServiceException のサブクラスがスローされ、開発者は catch ブロックを使用し
て、エラーケースの処理を細かく制御できるようになります。

が発生するとAmazonServiceException、リクエストは に正常に送信されました AWS のサービ
ス が、正常に処理できなかったことがわかります。これは、リクエストのパラメータに含まれるエ
ラーまたはサービス側の問題が原因です。

例外処理 33

http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://www.artima.com/intv/handcuffs2.html
http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonServiceException.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

AmazonServiceException では次のような情報がわかります。

• 返された HTTP ステータスコード

• 返された AWS エラーコード

• サービスからの詳細なエラーメッセージ

• AWS 失敗したリクエストのリクエスト ID

AmazonServiceException には、失敗したリクエストが発信者の障害 (不正な値を含むリクエス
ト) であるか、 の障害 (内部サービスエラー) AWS のサービスであるかに関する情報も含まれていま
す。

AmazonClientException

AmazonClientException は、 へのリクエストの送信中またはレスポンスの解析 AWS 中に、Java ク
ライアントコード内で問題が発生したことを示します AWS。AmazonClientException は通常、
よりも深刻でありAmazonServiceException、クライアントが のサービス呼び出しを実行できな
い大きな問題を示します AWS 。たとえば、いずれかのクライアントで オペレーションを呼び出そ
うとすると、ネットワーク接続が利用AmazonClientExceptionできない場合、 は を AWS SDK
for Java スローします。

非同期プログラミング

同期メソッドまたは非同期メソッドを使用して、 AWS サービスの オペレーションを呼び出すこと
ができます。同期メソッドは、クライアントがサービスからのレスポンスを受信するまでスレッド
の実行をブロックします。非同期メソッドはすぐに応答を返し、レスポンスを待機せずに呼び出しス
レッドに制御を戻します。

非同期メソッドはレスポンスが可能になる前に応答を返すため、準備ができたらレスポンスを得る
ための手段が必要になります。 AWS SDK for Java には、将来のオブジェクトとコールバックメソッ
ドの 2 つの方法があります。

Java Future

の非同期メソッドは、将来の非同期オペレーションの結果を含む Future オブジェクト AWS SDK for
Java を返します。

Future isDone() メソッドを呼び出し、サービスが既に応答オブジェクトを提供したかどうかを確
認します。レスポンスの準備が整うと、Future get() メソッドを呼び出して応答オブジェクトを

AmazonClientException 34

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonClientException.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/Future.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

取得できます。このメカニズムを使用して、アプリケーションで他の動作を続行しながら、定期的に
非同期オペレーションの結果をポーリングすることができます。

InvokeResult オブジェクトを保持Futureできる を受け取る Lambda 関数を呼び出す非同期オペ
レーションの例を次に示します。InvokeResult オブジェクトは、isDone() が true になった後
に限り取得されます。

import com.amazonaws.services.lambda.AWSLambdaAsyncClient;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import java.nio.ByteBuffer;
import java.util.concurrent.Future;
import java.util.concurrent.ExecutionException;

public class InvokeLambdaFunctionAsync
{
 public static void main(String[] args)
 {
 String function_name = "HelloFunction";
 String function_input = "{\"who\":\"SDK for Java\"}";

 AWSLambdaAsync lambda = AWSLambdaAsyncClientBuilder.defaultClient();
 InvokeRequest req = new InvokeRequest()
 .withFunctionName(function_name)
 .withPayload(ByteBuffer.wrap(function_input.getBytes()));

 Future<InvokeResult> future_res = lambda.invokeAsync(req);

 System.out.print("Waiting for future");
 while (future_res.isDone() == false) {
 System.out.print(".");
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.err.println("\nThread.sleep() was interrupted!");
 System.exit(1);
 }
 }

 try {
 InvokeResult res = future_res.get();
 if (res.getStatusCode() == 200) {

Java Future 35

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeResult.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 System.out.println("\nLambda function returned:");
 ByteBuffer response_payload = res.getPayload();
 System.out.println(new String(response_payload.array()));
 }
 else {
 System.out.format("Received a non-OK response from {AWS}: %d\n",
 res.getStatusCode());
 }
 }
 catch (InterruptedException | ExecutionException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }

 System.exit(0);
 }
}

非同期コールバック

Java Future オブジェクトを使用して非同期リクエストのステータスをモニタリングすること
に加え、SDK には AsyncHandler インターフェイスを使用するクラスを実装することができま
す。AsyncHandler では、リクエストがどのように完了したかに応じて呼び出される 2 つのメソッ
ド、onSuccess および onError が提供されます。

コールバックインターフェイスアプローチの主な利点は、リクエストがいつ完了したかを調べるため
に Future オブジェクトをポーリングする必要がなくなることです。コードによってすぐに次のア
クティビティを開始でき、また SDK に依存してハンドラを適時に呼び出すことができます。

import com.amazonaws.services.lambda.AWSLambdaAsync;
import com.amazonaws.services.lambda.AWSLambdaAsyncClientBuilder;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import com.amazonaws.handlers.AsyncHandler;
import java.nio.ByteBuffer;
import java.util.concurrent.Future;

public class InvokeLambdaFunctionCallback
{
 private class AsyncLambdaHandler implements AsyncHandler<InvokeRequest,
 InvokeResult>
 {

非同期コールバック 36

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/handlers/AsyncHandler.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 public void onSuccess(InvokeRequest req, InvokeResult res) {
 System.out.println("\nLambda function returned:");
 ByteBuffer response_payload = res.getPayload();
 System.out.println(new String(response_payload.array()));
 System.exit(0);
 }

 public void onError(Exception e) {
 System.out.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void main(String[] args)
 {
 String function_name = "HelloFunction";
 String function_input = "{\"who\":\"SDK for Java\"}";

 AWSLambdaAsync lambda = AWSLambdaAsyncClientBuilder.defaultClient();
 InvokeRequest req = new InvokeRequest()
 .withFunctionName(function_name)
 .withPayload(ByteBuffer.wrap(function_input.getBytes()));

 Future<InvokeResult> future_res = lambda.invokeAsync(req, new
 AsyncLambdaHandler());

 System.out.print("Waiting for async callback");
 while (!future_res.isDone() && !future_res.isCancelled()) {
 // perform some other tasks...
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.err.println("Thread.sleep() was interrupted!");
 System.exit(0);
 }
 System.out.print(".");
 }
 }
}

非同期コールバック 37

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ベストプラクティス

コールバックの実行

AsyncHandler の実装は、非同期クライアントが所有するスレッドプール内で実行されます。素早
く実行される短いコードが AsyncHandler 実装内で最も適しています。ハンドラメソッド内の長期
実行コードまたはブロックコードにより、非同期クライアントが使用するスレッドプールの競合が起
こり、クライアントのリクエスト実行が妨げられる場合があります。コールバックで始める必要があ
る長期実行タスクがある場合は、コールバックを新しいスレッドで、またはアプリケーションが管理
するスレッドプールで実行します。

スレッドプールの構成

の非同期クライアントは、ほとんどのアプリケーションで機能するデフォルトのスレッドプール
AWS SDK for Java を提供します。カスタム ExecutorService を実装し、 AWS SDK for Java 非同期
クライアントに渡して、スレッドプールの管理方法をより詳細に制御できます。

たとえば、カスタムの ExecutorServiceThreadFactory を使用する 実装を提供し、プールのス
レッドの命名方法を制御したり、スレッドの使用に関する追加情報のログを記録したりできます。

非同期アクセス

SDK の TransferManager クラスは、 を操作するための非同期サポートを提供します Amazon S3。
は非同期アップロードとダウンロードTransferManagerを管理し、転送に関する詳細な進行状況レ
ポートを提供し、さまざまなイベントへのコールバックをサポートします。

AWS SDK for Java 通話のログ記録

AWS SDK for Java には Apache Commons Logging が実装されています。これは、実行時に複数の
ロギングシステムのいずれかを使用できるようにする抽象化レイヤーです。

サポートされるログ記録システムには、Java ロギング フレームワークや Apache Log4j などがあり
ます。このトピックでは Log4j の使用方法を示します。SDK のログ記録機能は、アプリケーション
コードを変更せずに使用できます。

Log4j の詳細については、Apache ウェブサイトを参照してください。

ベストプラクティス 38

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ThreadFactory.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/TransferManager.html
http://commons.apache.org/proper/commons-logging/guide.html
http://logging.apache.org/log4j/2.x/
http://www.apache.org/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Note

このトピックでは、Log4j 1.x について説明します。Log4j2 は Apache Commons のログ記
録を直接サポートしませんが、Apache Commons ログ記録インターフェイスを使用して
Log4j2 にログ記録呼び出しを自動的にダイレクトするアダプターを提供します。詳細につい
ては、Log4j2 のドキュメントの「Commons Logging Bridge」を参照してください。

Log4J JAR のダウンロード

SDK で Log4j を使用するには、Apache ウェブサイトで Log4j JAR をダウンロードする必要があり
ます。SDK に JAR は含まれていません。クラスパス上の場所に JAR ファイルをコピーします。

Log4j では、設定ファイル log4j.properties を使用します。設定ファイルの例を次に示します。クラ
スパス上のディレクトリに、この設定ファイルをコピーします。Log4j JAR と log4j.properties ファ
イルは、同じディレクトリに配置しないでください。

log4j.properties 設定ファイルは、ログ記録レベル、ログ記録出力の送信先 (たとえばファイルやコン
ソール)、出力形式などのプロパティを指定します。ログ記録レベルは、ロガーによって生成される
出力の詳細度です。Log4j では、複数のログ記録階層の概念をサポートしています。ログ記録レベル
は、階層ごとに個別に設定されます。次の 2 つのログ記録階層が AWS SDK for Javaで使用できま
す。

• log4j.logger.com.amazonaws

• log4j.logger.org.apache.http.wire

クラスパスの設定

Log4j JAR および log4j.properties ファイルは、クラスパス上に配置する必要があります。Apache
Ant を使用している場合は、Ant ファイルの path 要素でクラスパスを設定します。以下の例で
は、SDK に含まれている Amazon S3 サンプル用の Ant ファイルにある path 要素を示します。

<path id="aws.java.sdk.classpath">
 <fileset dir="../../third-party" includes="**/*.jar"/>
 <fileset dir="../../lib" includes="**/*.jar"/>
 <pathelement location="."/>
</path>

Log4J JAR のダウンロード 39

https://logging.apache.org/log4j/2.x/log4j-jcl.html
http://logging.apache.org/log4j/2.x/manual/configuration.html#Loggers
http://logging.apache.org/log4j/2.x/manual/appenders.html
http://logging.apache.org/log4j/2.x/manual/appenders.html
http://logging.apache.org/log4j/2.x/manual/layouts.html
http://ant.apache.org/manual/
http://ant.apache.org/manual/
https://github.com/aws/aws-sdk-java/blob/master/src/samples/AmazonS3/build.xml

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Eclipse IDE を使用している場合は、メニューを開き、[Project (プロジェクト)] | [Properties (プロパ
ティ)] | [Java Build Path] に移動して、クラスパスを設定します。

サービス固有のエラーと警告

クライアントライブラリからの重要なメッセージを取得するために、"com.amazonaws" ロガー階層
は必ず "WARN" に設定しておくことをお勧めします。たとえば、アプリケーションが を適切に閉じ
ておらず、リソースがリークしているInputStream可能性があることを Amazon S3 クライアント
が検出した場合、S3 クライアントは警告メッセージを通じてログに報告します。これにより、リク
エストやレスポンスの処理でクライアントに問題が発生した場合、メッセージが必ずログに記録され
ます。

次の log4j.properties ファイルでは、rootLogger が WARN に設定されています。これによ
り、"com.amazonaws" 階層のすべてのロガーで生成された警告とエラーメッセージが取り込まれま
す。また、com.amazonaws ロガーを WARN に明示的に設定することもできます。

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Or you can explicitly enable WARN and ERROR messages for the {AWS} Java clients
log4j.logger.com.amazonaws=WARN

リクエストおよびレスポンスの概要のログ記録

へのすべてのリクエストは一意の AWS リクエスト ID AWS のサービス を生成します。これは、
AWS のサービス がリクエストを処理する方法に問題がある場合に便利です。 AWS リクエスト IDs
は、失敗したサービス呼び出しに対して SDK の例外オブジェクトを介してプログラムでアクセスで
き、「com.amazonaws.request」ロガーの DEBUG ログレベルを介して報告することもできます。

次の log4j.properties ファイルは、リクエスト IDs を含む AWS リクエストとレスポンスの概要を有
効にします。

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Turn on DEBUG logging in com.amazonaws.request to log
a summary of requests/responses with {AWS} request IDs
log4j.logger.com.amazonaws.request=DEBUG

サービス固有のエラーと警告 40

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ログ出力の例を次に示します。

2009-12-17 09:53:04,269 [main] DEBUG com.amazonaws.request - Sending
Request: POST https://rds.amazonaws.com / Parameters: (MaxRecords: 20,
Action: DescribeEngineDefaultParameters, SignatureMethod: HmacSHA256,
AWSAccessKeyId: ACCESSKEYID, Version: 2009-10-16, SignatureVersion: 2,
Engine: mysql5.1, Timestamp: 2009-12-17T17:53:04.267Z, Signature:
q963XH63Lcovl5Rr71APlzlye99rmWwT9DfuQaNznkD,) 2009-12-17 09:53:04,464
[main] DEBUG com.amazonaws.request - Received successful response: 200, {AWS}
Request ID: 694d1242-cee0-c85e-f31f-5dab1ea18bc6 2009-12-17 09:53:04,469
[main] DEBUG com.amazonaws.request - Sending Request: POST
https://rds.amazonaws.com / Parameters: (ResetAllParameters: true, Action:
ResetDBParameterGroup, SignatureMethod: HmacSHA256, DBParameterGroupName:
java-integ-test-param-group-0000000000000, AWSAccessKeyId: ACCESSKEYID,
Version: 2009-10-16, SignatureVersion: 2, Timestamp:
2009-12-17T17:53:04.467Z, Signature:
9WcgfPwTobvLVcpyhbrdN7P7l3uH0oviYQ4yZ+TQjsQ=,)

2009-12-17 09:53:04,646 [main] DEBUG com.amazonaws.request - Received
successful response: 200, {AWS} Request ID:
694d1242-cee0-c85e-f31f-5dab1ea18bc6

詳細なワイヤログ記録

場合によっては、 が AWS SDK for Java 送受信する正確なリクエストとレスポンスを確認すると便
利です。大規模なリクエスト (アップロード先のファイルなど Amazon S3) やレスポンスを書き出す
と、アプリケーションが大幅に遅くなる可能性があるため、本番システムでこのログ記録を有効にし
ないでください。この情報にアクセスする必要がある場合は、Apache HttpClient 4 ロガーを使用し
て、一時的に有効にすることができます。org.apache.http.wire ロガーの DEBUG レベルを有
効にすると、すべてのリクエストデータとレスポンスデータに対するログ記録が有効になります。

次の log4j.properties ファイルでは、Apache HttpClient 4 で完全なワイヤログ記録が有効になってい
ますが、アプリケーションのパフォーマンスに重大な影響が及ぶため、一時的にのみ有効にする必要
があります。

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Log all HTTP content (headers, parameters, content, etc) for
all requests and responses. Use caution with this since it can
be very expensive to log such verbose data!

詳細なワイヤログ記録 41

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

log4j.logger.org.apache.http.wire=DEBUG

レイテンシーメトリクスのログ記録

トラブルシューティングを行っていて、処理に最も時間がかかっているプロセスを示すメトリク
スや、サーバー側またはクライアント側のどちらに大きなレイテンシーが発生しているかを示す
メトリクスなどを確認する場合、レイテンシーロガーが役立ちます。このロガーを有効にするに
は、com.amazonaws.latency ロガーを DEBUG に設定します。

Note

このロガーは、SDK メトリクスが有効な場合のにみ使用できます。SDK メトリクスパッ
ケージの詳細については、「Enabling Metrics for the AWS SDK for Java」を参照してくださ
い。

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
log4j.logger.com.amazonaws.latency=DEBUG

ログ出力の例を次に示します。

com.amazonaws.latency - ServiceName=[{S3}], StatusCode=[200],
ServiceEndpoint=[https://list-objects-integ-test-test.s3.amazonaws.com],
RequestType=[ListObjectsV2Request], AWSRequestID=[REQUESTID],
 HttpClientPoolPendingCount=0,
RetryCapacityConsumed=0, HttpClientPoolAvailableCount=0, RequestCount=1,
HttpClientPoolLeasedCount=0, ResponseProcessingTime=[52.154],
 ClientExecuteTime=[487.041],
HttpClientSendRequestTime=[192.931], HttpRequestTime=[431.652],
 RequestSigningTime=[0.357],
CredentialsRequestTime=[0.011, 0.001], HttpClientReceiveResponseTime=[146.272]

クライアント設定

AWS SDK for Java では、デフォルトのクライアント設定を変更できます。これは、次の場合に便利
です。

レイテンシーメトリクスのログ記録 42

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

• プロキシを使用したインターネットへの接続

• HTTP トランスポートの設定 (接続タイムアウトやリクエスト再試行など) の変更

• TCP ソケットバッファのサイズに関するヒントの指定

プロキシ設定

クライアントオブジェクトを構築する場合、オプションの ClientConfiguration オブジェクトを渡し
て、クライアントの設定をカスタマイズできます。

プロキシサーバーを使用してインターネットに接続する場合は、ClientConfiguration オブジェ
クトを使用して、プロキシサーバーの設定 (プロキシホスト、ポート、ユーザー名やパスワード) を
指定する必要があります。

HTTP トランスポートの設定

ClientConfiguration オブジェクトを使用して、複数の HTTP トランスポートオプションを設定できま
す。新しいオプションが追加されることがあります。取得または設定できるオプションの完全なリス
トを確認するには、 AWS SDK for Java API リファレンスを参照してください。

Note

設定可能な各値には、定数によって定義されるデフォルト値があります。の定数値のリスト
についてはClientConfiguration、 AWS SDK for Java API リファレンスの「定数フィー
ルド値」を参照してください。

最大接続数

ClientConfiguration.setMaxConnections メソッドを使用して、開くことができる HTTP 接続の最大数
を設定できます。

Important

同時トランザクション数に最大接続数を設定します。接続の競合およびパフォーマンスの低
下を回避します。デフォルトの最大接続値については、 AWS SDK for Java API リファレン
スの「定数フィールド値」を参照してください。

プロキシ設定 43

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/constant-values.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/constant-values.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setMaxConnections-int-
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/constant-values.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

タイムアウトとエラー処理

HTTP 接続でのタイムアウトとエラー処理に関連するオプションを設定できます。

• 接続タイムアウト

接続タイムアウトは、接続を確立するまでに HTTP 接続が待機する時間 (ミリ秒単位) です。デ
フォルトは 10,000 ミリ秒です。

この値を自分で設定するには、ClientConfiguration.setConnectionTimeout メソッドを使用しま
す。

• 接続有効期限 (TTL)

デフォルトで、SDK は HTTP 接続を可能な限り長い時間再利用しようとします。サービスが停止
したサーバーに対して接続が確立される失敗の状況では、有限の TTL がアプリケーション復旧に
役立つ場合があります。たとえば、15 分の TTL を設定すれば、問題が発生しているサーバーに対
して接続が確立されていても、15 分以内に新しいサーバーに接続を再確立できます。

HTTP 接続の TTL を設定するには、ClientConfiguration.setConnectionTTL メソッドを使用しま
す。

• エラーの最大再試行回数

デフォルトの再試行可能なエラーの最大再試行回数は 3 です。別の値を設定するに
は、ClientConfiguration.setMaxErrorRetry メソッドを使用します。

ローカルアドレス

HTTP クライアントのバインド先となるローカルアドレスを設定するに
は、ClientConfiguration.setLocalAddress を使用します。

TCP ソケットバッファのサイズに関するヒント

低レベルの TCP パラメーターを調整する必要がある上級ユーザーは、ClientConfiguration オブジェ
クトを使用して、TCP バッファサイズに関するヒントを追加で設定できます。ほとんどのユーザー
はこれらの値を微調整する必要はありません。これらの値は上級ユーザー向けの値です。

アプリケーションに最適な TCP バッファサイズは、ネットワークやオペレーティングシステムの設
定と機能に大きく依存します。たとえば、最新のオペレーティングシステムのほとんどでは、TCP
バッファサイズを自動的にチューニングするロジックが組み込まれています。このロジックは TCP

TCP ソケットバッファのサイズに関するヒント 44

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setConnectionTimeout-int-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setConnectionTTL-long-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setMaxErrorRetry-int-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setLocalAddress-java.net.InetAddress-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

接続のパフォーマンスに大きな影響を与える可能性があります。自動チューニングロジックでバッ
ファサイズを最適化するために、TCP 接続を長い時間開いたままにしておくためです。

バッファサイズを大きくすると (2 MB など)、リモートサーバーでその情報の受信を確認しなくても
オペレーティングシステムでメモリにバッファできるデータが多くなるため、ネットワークのレイテ
ンシーが高い場合に役立ちます。

これはヒントのみです。そのヒントを採用するかどうかはオペレーティングシステムが決定します。
このオプションを使用する場合、ユーザーはオペレーティングシステムで設定されている制限とデ
フォルト値を必ず確認する必要があります。ほとんどのオペレーティングシステムでは、最大 TCP
バッファサイズの制限が設定されており、最大 TCP バッファサイズの制限を明示的に引き上げない
限り、その制限を超えることはできません。

TCP バッファサイズおよびオペレーティングシステムに固有の TCP 設定を指定するために、次を含
む多数のリソースが利用できます。

• ホストのチューニング

アクセスコントロールポリシー

AWS アクセスコントロールポリシーを使用すると、 AWS リソースにきめ細かなアクセスコント
ロールを指定できます。アクセスコントロールポリシーは、次のフォームを持つステートメントのコ
レクションで構成されます。

アカウント A は、アクション B をリソース C に対して実行する権限があります (条件 D に該当する
場合)。

コードの説明は以下のとおりです。

• はプリンシパル - AWS リソースの 1 つへのアクセスまたは変更をリクエスト AWS アカウント し
ている です。

• B はアクション - Amazon SQS キューへのメッセージの送信や Amazon S3 バケットへのオブジェ
クトの保存など、 AWS リソースにアクセスまたは変更する方法。

• C はリソース - Amazon SQS キューや保存されているオブジェクトなど、プリンシパルがアクセ
スする AWS エンティティ Amazon S3です。

• D は一連の条件 - プリンシパルがリソースにアクセスすることを許可または拒否するタイミングを
指定するオプションの制約。さまざまな表記の条件を使用できます。条件によっては、サービス

アクセスコントロールポリシー 45

http://fasterdata.es.net/host-tuning/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ごとに固有な条件もあります。たとえば、日付条件を使用して、特定の時刻の前または後でのみリ
ソースへのアクセスを許可することができます。

Amazon S3 例

次の例は、バケット内のすべてのオブジェクトを読み取るアクセスをすべてのユーザーに許可する
が、そのバケットへのオブジェクトのアップロードへのアクセスを (バケット所有者のアカウントに
加えて) 2 AWS アカウントつの特定の に制限するポリシーを示しています。

Statement allowPublicReadStatement = new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(S3Actions.GetObject)
 .withResources(new S3ObjectResource(myBucketName, "*"));
Statement allowRestrictedWriteStatement = new Statement(Effect.Allow)
 .withPrincipals(new Principal("123456789"), new Principal("876543210"))
 .withActions(S3Actions.PutObject)
 .withResources(new S3ObjectResource(myBucketName, "*"));

Policy policy = new Policy()
 .withStatements(allowPublicReadStatement, allowRestrictedWriteStatement);

AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
s3.setBucketPolicy(myBucketName, policy.toJson());

Amazon SQS 例

ポリシーの一般的な用途の 1 つは、Amazon SNS トピックからメッセージを受信することを
Amazon SQS キューに許可することです。

Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(SQSActions.SendMessage)
 .withConditions(ConditionFactory.newSourceArnCondition(myTopicArn)));

Map queueAttributes = new HashMap();
queueAttributes.put(QueueAttributeName.Policy.toString(), policy.toJson());

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
sqs.setQueueAttributes(new SetQueueAttributesRequest(myQueueUrl, queueAttributes));

Amazon S3 例 46

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Amazon SNS の例

一部のサービスには、ポリシーで使用できる追加条件があります。Amazon SNS は、トピックへの
サブスクライブリクエストのプロトコル (E メール、HTTP、HTTPS など Amazon SQS) とエンドポ
イント (E メールアドレス、URL、 Amazon SQS ARN など) に基づいて、SNS トピックへのサブス
クリプションを許可または拒否するための条件を提供します。

Condition endpointCondition =
 SNSConditionFactory.newEndpointCondition("*@mycompany.com");

Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(SNSActions.Subscribe)
 .withConditions(endpointCondition));

AmazonSNS sns = AmazonSNSClientBuilder.defaultClient();
sns.setTopicAttributes(
 new SetTopicAttributesRequest(myTopicArn, "Policy", policy.toJson()));

DNS 名参照用の JVM TTL を設定する

Java 仮想マシン (JVM) は DNS 名参照をキャッシュします。JVM がホスト名を IP アドレスに変換
するとき、time-to-live (TTL) と呼ばれる指定期間 IP アドレスをキャッシュします。

AWS リソースは DNS 名エントリを使用するため、TTL 値を 5 秒に設定することをお勧めします。
これにより、リソースの IP アドレスが変更されたときに、アプリケーションは DNS に対して再度
クエリを実行することで、リソースの新しい IP アドレスを取得し、使用できるようになります。

一部の Java 設定では JVM のデフォルトの TTL が設定されるため、JVM が再起動されるまで、DNS
エントリが更新されることはありません。したがって、アプリケーションの実行中に AWS リソース
の IP アドレスが変更された場合、JVM を手動で再起動し、キャッシュされた IP 情報が更新される
まで、そのリソースを使用することはできません。この場合、キャッシュされた IP 情報が定期的に
更新されるように JVM の TTL を設定することが極めて重要です。

JVM TTL を設定する方法

JVM の TTL を変更するには、networkaddress.cache.ttl セキュリティプロパティ値を設定し、Java 8
の場合は $JAVA_HOME/jre/lib/security/java.security ファイルに、Java 11 以降の場合は

Amazon SNS の例 47

https://docs.oracle.com/en/java/javase/17/core/java-networking.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

$JAVA_HOME/conf/security/java.security ファイルに networkaddress.cache.ttl プ
ロパティを設定します。

以下は、TTL キャッシュが 5 秒に設定された java.security ファイルからのスニペットです。

#
This is the "master security properties file".
#
An alternate java.security properties file may be specified
...
The Java-level namelookup cache policy for successful lookups:
#
any negative value: caching forever
any positive value: the number of seconds to cache an address for
zero: do not cache
...
networkaddress.cache.ttl=5
...

$JAVA_HOME 環境変数で表される JVM で実行されるすべてのアプリケーションは、この設定を使用
します。

のメトリクスの有効化 AWS SDK for Java
は、以下を測定する Amazon CloudWatch を使用して可視化とモニタリングのメトリクスを生成
AWS SDK for Java できます。

• アクセス時のアプリケーションのパフォーマンス AWS

• で使用した場合の JVMsのパフォーマンス AWS

• ヒープメモリ、スレッド数、開かれたファイル記述子などのランタイム環境の詳細

Java SDK メトリクス生成を有効にする方法

SDK が CloudWatch にメトリクスを送信できるようにするには、次の Maven 依存関係を追加する必
要があります。

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>

のメトリクスの有効化 AWS SDK for Java 48

https://aws.amazon.com/cloudwatch/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.12.490*</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>
<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-cloudwatchmetrics</artifactId>
 <scope>provided</scope>
 </dependency>
 <!-- Other SDK dependencies. -->
</dependencies>

* バージョン番号を Maven Central で入手可能な SDK の最新バージョンに置き換えてください。

AWS SDK for Java メトリクスはデフォルトで無効になっています。これをローカル開発環境で有効
にするには、JVM の起動時に AWS セキュリティ認証情報ファイルをポイントするシステムプロパ
ティを含めます。例:

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/aws.properties

後の分析用に SDK が収集されたデータポイントを CloudWatch にアップロードできるよう、認証情
報ファイルへのパスを指定する必要があります。

Note

Amazon EC2 インスタンスメタデータサービスを使用して Amazon EC2 インスタンス AWS
から にアクセスする場合は、認証情報ファイルを指定する必要はありません。この場合、指
定する必要があるのは以下だけです。

-Dcom.amazonaws.sdk.enableDefaultMetrics

でキャプチャされたすべてのメトリクス AWS SDK for Java は、AWSSDK/Java という名前空間
にあり、CloudWatch のデフォルトリージョン (us-east-1) にアップロードされます。リージョン
を変更するには、システムプロパティの cloudwatchRegion 属性を使用して指定します。例え
ば、CloudWatch リージョンを us-east-1 に設定するには、次を使用します。

Java SDK メトリクス生成を有効にする方法 49

https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/
aws.properties,cloudwatchRegion={region_api_default}

この機能を有効にすると、 AWS から へのサービスリクエストがあるたびに AWS SDK for Java、
メトリクスデータポイントが生成され、統計概要のためにキューに入れられ、約 1 分に 1 回
CloudWatch に非同期でアップロードされます。メトリクスがアップロードされたら、AWS マネジ
メントコンソール を使用して可視化し、メモリリーク、ファイル記述子リークなどの潜在的な問題
にアラームを設定できます。

利用可能なメトリクスのタイプ

デフォルトのメトリクスのセットは 3 つの主要なカテゴリに分かれています。

AWS リクエストメトリクス

• HTTP リクエスト/応答のレイテンシー、リクエスト数、例外および再試行などのエリアを扱い
ます。

利用可能なメトリクスのタイプ 50

https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

AWS のサービス メトリクス

• S3 のアップロードとダウンロードのスループットやバイト数など、インクルード AWS のサー
ビス固有のデータ。

マシンメトリクス

• ヒープメモリ、スレッド数、および開いているファイル記述子を含むランタイム環境を扱いま
す。

利用可能なメトリクスのタイプ 51

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

マシンメトリクスを除外する場合は、システムプロパティに excludeMachineMetrics を追
加します。

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/
aws.properties,excludeMachineMetrics

詳細情報

• 事前定義されたコアメトリクスタイプの詳細な一覧については、amazonaws/metrics package
summary を参照してください。

• を使用した CloudWatch の操作については、「 を使用した CloudWatch の例 AWS SDK for Java
AWS SDK for Java 」を参照してください。

詳細情報 52

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/metrics/package-summary.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/metrics/package-summary.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

• パフォーマンスチューニングの詳細については、「 のチューニング AWS SDK for Java による回
復力の向上」ブログ記事を参照してください。

詳細情報 53

https://aws.amazon.com/blogs/developer/tuning-the-aws-sdk-for-java-to-improve-resiliency
https://aws.amazon.com/blogs/developer/tuning-the-aws-sdk-for-java-to-improve-resiliency

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

AWS SDK for Java コードの例

このセクションでは、AWS SDK for Java v1 を使用して AWS のサービスをプログラミングするため
のチュートリアルおよび例を示します。

これらの例などのソースコードについては、AWS ドキュメントの code examples repository on
GitHub を参照してください。

AWS ドキュメントチームに作成を検討してもらう新しいコード例を提案するには、新しいリクエス
トを作成します。チームは、個々の API 呼び出しのみを対象とするシンプルなコードスニペットよ
りは、より広範なシナリオやユースケースを対象とするコード例を作成しようとしています。手順に
ついては、GitHub のコード例リポジトリにある「Contributing guidelines」を参照してください。

AWS SDK for Java 2.x

2018 年、AWS は AWS SDK for Java 2.x をリリースしました。このガイドには、最新の Java SDK
の使用方法と、サンプルコードが記載されています。

Note

開発者が利用できるその他の例と追加のリソースについては、「その他のドキュメントとリ
ソースAWS SDK for Java」を参照してください。

AWS SDK for Java を使用した CloudWatch の例

このセクションでは、AWS SDK for Java を使用して CloudWatch をプログラムする例を示します。

Amazon CloudWatch は、Amazon Web Services (AWS) のリソースおよび AWS で実行している
アプリケーションをリアルタイムでモニタリングします。CloudWatch を使用してメトリクスを収
集し、追跡できます。メトリクスとは、リソースやアプリケーションに関して測定できる変数で
す。CloudWatch アラームは、ユーザーが定義したルールに基づいて、通知を送信したり、モニタリ
ングしているリソースに自動的に変更を加えたりします。

CloudWatch については、「Amazon CloudWatch User Guide」を参照してください。

AWS SDK for Java 2.x 54

https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/CONTRIBUTING.md
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/home.html
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Note

例には各手法を示すのに必要なコードのみが含まれます。完全なサンプルコードは GitHub
で入手できます。そこから、単一のソースファイルをダウンロードするかリポジトリをロー
カルにクローン作成して、ビルドし実行するためのすべての例を取得できます。

トピック

• CloudWatch からのメトリクスの取得

• カスタムメトリクスデータを発行する

• CloudWatch アラームの使用

• CloudWatch でのアラームアクションの使用

• CloudWatch にイベントを送信する

CloudWatch からのメトリクスの取得

メトリクスの一覧表示

CloudWatch メトリクスを一覧表示するには、ListMetricsRequest を作成して
AmazonCloudWatchClient の listMetrics メソッドを呼び出します。ListMetricsRequest を
使用して、名前空間、メトリクス名、またはディメンションで返されたメトリクスをフィルタリング
できます。

Note

AWS のサービスによって投稿されるメトリクスとディメンションのリストは、Amazon
CloudWatch ユーザーガイドの {https---docs-aws-amazon-com-AmazonCloudWatch-latest-
monitoring-CW-Support-For-AWS-html}[Amazon CloudWatch のメトリクスおよびディメン
ションのリファレンス] に記載されています。

インポート

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.ListMetricsRequest;

CloudWatch からのメトリクスの取得 55

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/ListMetricsRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

import com.amazonaws.services.cloudwatch.model.ListMetricsResult;
import com.amazonaws.services.cloudwatch.model.Metric;

コード

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

ListMetricsRequest request = new ListMetricsRequest()
 .withMetricName(name)
 .withNamespace(namespace);

boolean done = false;

while(!done) {
 ListMetricsResult response = cw.listMetrics(request);

 for(Metric metric : response.getMetrics()) {
 System.out.printf(
 "Retrieved metric %s", metric.getMetricName());
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

メトリクスは、getMetrics メソッドを呼び出すことによって ListMetricsResult 内で返されます。
結果はページ分割される場合があります。結果の次のバッチを取得するには、setNextToken オ
ブジェクトの ListMetricsResult メソッドの戻り値を使用して元のリクエストオブジェクトで
getNextToken を呼び出し、変更したリクエストオブジェクトを listMetrics の再呼び出しに渡
します。

詳細情報

• Amazon CloudWatch API リファレンスの ListMetrics

CloudWatch からのメトリクスの取得 56

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/ListMetricsResult.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_ListMetrics.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

カスタムメトリクスデータを発行する

複数の AWS のサービスが「AWS」で始まる名前空間で独自のメトリクスを発行します。(「AWS」で
始まらない限り) 独自の名前空間を使用してカスタムメトリクスデータを発行することもできます。

カスタムメトリクスデータを発行する

独自のメトリクスデータを発行するには、AmazonCloudWatchClient の putMetricData メソッド
を PutMetricDataRequest で呼び出します。PutMetricDataRequest には、データ用に使用するカ
スタム名前空間と、MetricDatum オブジェクト内のデータポイント自体に関する情報が含まれている
必要があります。

Note

「AWS」で始まる名前空間を指定することはできません。「AWS」で始まる名前空間
は、Amazon Web Services 製品による利用のために予約されています。

インポート

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.Dimension;
import com.amazonaws.services.cloudwatch.model.MetricDatum;
import com.amazonaws.services.cloudwatch.model.PutMetricDataRequest;
import com.amazonaws.services.cloudwatch.model.PutMetricDataResult;
import com.amazonaws.services.cloudwatch.model.StandardUnit;

コード

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

Dimension dimension = new Dimension()
 .withName("UNIQUE_PAGES")
 .withValue("URLS");

MetricDatum datum = new MetricDatum()
 .withMetricName("PAGES_VISITED")
 .withUnit(StandardUnit.None)
 .withValue(data_point)

カスタムメトリクスデータを発行する 57

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricDataRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/MetricDatum.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 .withDimensions(dimension);

PutMetricDataRequest request = new PutMetricDataRequest()
 .withNamespace("SITE/TRAFFIC")
 .withMetricData(datum);

PutMetricDataResult response = cw.putMetricData(request);

詳細情報

• Amazon CloudWatch ユーザーガイドの Amazon CloudWatch メトリクスの使用。

• Amazon CloudWatch ユーザーガイドの AWS 名前空間。

• Amazon CloudWatch API リファレンスの PutMetricData

CloudWatch アラームの使用

アラームの作成

CloudWatch メトリクスに基づいてアラームを作成するには、AmazonCloudWatchClient の
putMetricAlarm メソッドをアラーム条件に満たされた PutMetricAlarmRequest で呼び出します。

インポート

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.ComparisonOperator;
import com.amazonaws.services.cloudwatch.model.Dimension;
import com.amazonaws.services.cloudwatch.model.PutMetricAlarmRequest;
import com.amazonaws.services.cloudwatch.model.PutMetricAlarmResult;
import com.amazonaws.services.cloudwatch.model.StandardUnit;
import com.amazonaws.services.cloudwatch.model.Statistic;

コード

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

Dimension dimension = new Dimension()
 .withName("InstanceId")
 .withValue(instanceId);

CloudWatch アラームの使用 58

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricData.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricAlarmRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

PutMetricAlarmRequest request = new PutMetricAlarmRequest()
 .withAlarmName(alarmName)
 .withComparisonOperator(
 ComparisonOperator.GreaterThanThreshold)
 .withEvaluationPeriods(1)
 .withMetricName("CPUUtilization")
 .withNamespace("{AWS}/EC2")
 .withPeriod(60)
 .withStatistic(Statistic.Average)
 .withThreshold(70.0)
 .withActionsEnabled(false)
 .withAlarmDescription(
 "Alarm when server CPU utilization exceeds 70%")
 .withUnit(StandardUnit.Seconds)
 .withDimensions(dimension);

PutMetricAlarmResult response = cw.putMetricAlarm(request);

アラームの一覧表示

作成した CloudWatch アラームを一覧表示するには、AmazonCloudWatchClient
の describeAlarms メソッドを、結果のオプションを設定するのに使用できる
DescribeAlarmsRequest で呼び出します。

インポート

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DescribeAlarmsRequest;
import com.amazonaws.services.cloudwatch.model.DescribeAlarmsResult;
import com.amazonaws.services.cloudwatch.model.MetricAlarm;

コード

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

boolean done = false;
DescribeAlarmsRequest request = new DescribeAlarmsRequest();

while(!done) {

CloudWatch アラームの使用 59

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DescribeAlarmsRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 DescribeAlarmsResult response = cw.describeAlarms(request);

 for(MetricAlarm alarm : response.getMetricAlarms()) {
 System.out.printf("Retrieved alarm %s", alarm.getAlarmName());
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

アラームのリストは getMetricAlarms を により返される
DescribeAlarmsResultdescribeAlarms で呼び出すことで取得できます。

結果はページ分割される場合があります。結果の次のバッチを取得するには、setNextToken オブ
ジェクトの DescribeAlarmsResult メソッドの戻り値を使用して元のリクエストオブジェクトで
getNextToken を呼び出し、変更したリクエストオブジェクトを describeAlarms の再呼び出し
に渡します。

Note

また、特定のメトリクスのアラームを取得するには、AmazonCloudWatchClient の
describeAlarmsForMetric メソッドを使用します。使用方法は describeAlarms と同
様です。

アラームの削除

CloudWatch アラームを削除するには、AmazonCloudWatchClient の deleteAlarms メソッドを、
削除するアラームの名前を 1 つ以上含む DeleteAlarmsRequest で呼び出します。

インポート

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DeleteAlarmsRequest;
import com.amazonaws.services.cloudwatch.model.DeleteAlarmsResult;

CloudWatch アラームの使用 60

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DescribeAlarmsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DeleteAlarmsRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

コード

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

DeleteAlarmsRequest request = new DeleteAlarmsRequest()
 .withAlarmNames(alarm_name);

DeleteAlarmsResult response = cw.deleteAlarms(request);

詳細情報

• Amazon CloudWatch ユーザーガイドの Amazon CloudWatch アラームの作成

• Amazon CloudWatch API リファレンスの PutMetricAlarm

• Amazon CloudWatch API リファレンスの DescribeAlarms

• Amazon CloudWatch API リファレンスの DeleteAlarms

CloudWatch でのアラームアクションの使用

CloudWatch アラームアクションを使用して、Amazon EC2 インスタンスを自動的に停止、終了、再
起動、または復旧するといったアクションを実行するアラームを作成できます。

Note

アラームの作成時に setAlarmActionsPutMetricAlarmRequest の メソッドを使用するこ
とで、アラームアクションをアラームに追加することができます。

アラームアクションの有効化

CloudWatch アラームのアラームアクションを有効化するには、アクションを有効にしたい 1
つ以上のアラームの名前を含む EnableAlarmActionsRequest で AmazonCloudWatchClient の
enableAlarmActions を呼び出します。

インポート

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;

CloudWatch でのアラームアクションの使用 61

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DescribeAlarms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DeleteAlarms.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricAlarmRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/EnableAlarmActionsRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

import com.amazonaws.services.cloudwatch.model.EnableAlarmActionsRequest;
import com.amazonaws.services.cloudwatch.model.EnableAlarmActionsResult;

コード

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

EnableAlarmActionsRequest request = new EnableAlarmActionsRequest()
 .withAlarmNames(alarm);

EnableAlarmActionsResult response = cw.enableAlarmActions(request);

アラームアクションの無効化

CloudWatch アラームのアラームアクションを無効化するには、アクションを無効にしたい 1
つ以上のアラームの名前を含む DisableAlarmActionsRequest で AmazonCloudWatchClient の
disableAlarmActions を呼び出します。

インポート

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DisableAlarmActionsRequest;
import com.amazonaws.services.cloudwatch.model.DisableAlarmActionsResult;

コード

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

DisableAlarmActionsRequest request = new DisableAlarmActionsRequest()
 .withAlarmNames(alarmName);

DisableAlarmActionsResult response = cw.disableAlarmActions(request);

詳細情報

• Amazon CloudWatch ユーザーガイドのインスタンスを停止、終了、再起動、または復旧するア
ラームを作成する

CloudWatch でのアラームアクションの使用 62

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DisableAlarmActionsRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/UsingAlarmActions.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/UsingAlarmActions.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

• Amazon CloudWatch API リファレンスの PutMetricAlarm

• Amazon CloudWatch API リファレンスの EnableAlarmActions

• Amazon CloudWatch API リファレンスの DisableAlarmActions

CloudWatch にイベントを送信する

CloudWatch Events は、AWS リソースの変更を示すシステムイベントのほぼリアルタイムのスト
リームを、Amazon EC2 インスタンス、Lambda 関数、Kinesis ストリーム、Amazon ECS タス
ク、Step Functions ステートマシン、Amazon SNS トピック、Amazon SQS キュー、または組み込
みターゲットに振り分けます。簡単なルールを使用して、一致したイベントを 1 つ以上のターゲッ
ト関数またはストリームに振り分けることができます。

イベントの追加

カスタム CloudWatch イベントを追加するには、各イベントに関する詳細情報を提供している
PutEventsRequestEntry オブジェクトを 1 つ以上含む PutEventsRequest オブジェクトを使用して
AmazonCloudWatchEventsClient の putEvents メソッドを呼び出します。イベントのソースとタイ
プ、イベントに関連付けられたリソースなど、エントリの複数のパラメータを指定できます。

Note

putEvents への呼び出しごとに最大 10 個のイベントを指定できます。

インポート

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutEventsRequest;
import com.amazonaws.services.cloudwatchevents.model.PutEventsRequestEntry;
import com.amazonaws.services.cloudwatchevents.model.PutEventsResult;

コード

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

CloudWatch にイベントを送信する 63

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_EnableAlarmActions.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DisableAlarmActions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutEventsRequestEntry.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutEventsRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

final String EVENT_DETAILS =
 "{ \"key1\": \"value1\", \"key2\": \"value2\" }";

PutEventsRequestEntry request_entry = new PutEventsRequestEntry()
 .withDetail(EVENT_DETAILS)
 .withDetailType("sampleSubmitted")
 .withResources(resource_arn)
 .withSource("aws-sdk-java-cloudwatch-example");

PutEventsRequest request = new PutEventsRequest()
 .withEntries(request_entry);

PutEventsResult response = cwe.putEvents(request);

ルールの追加

ルールを作成または更新するには、ルールの名前を含む PutRuleRequest と、イベントパターン、
ルールと関連付ける IAM ロール、およびルールの実行頻度を説明するスケジュール式などを含む任
意指定のパラメータを AmazonCloudWatchEventsClient の putRule メソッドを使用して呼び出し
ます。

インポート

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutRuleRequest;
import com.amazonaws.services.cloudwatchevents.model.PutRuleResult;
import com.amazonaws.services.cloudwatchevents.model.RuleState;

コード

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

PutRuleRequest request = new PutRuleRequest()
 .withName(rule_name)
 .withRoleArn(role_arn)
 .withScheduleExpression("rate(5 minutes)")
 .withState(RuleState.ENABLED);

PutRuleResult response = cwe.putRule(request);

CloudWatch にイベントを送信する 64

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutRuleRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ターゲットの追加

ターゲットは、ルールがトリガーされたときに呼び出されるリソースです。ターゲット例に
は、Amazon EC2 インスタンス、Lambda 関数、Kinesis ストリーム、Amazon ECS タスク、Step
Functions ステートマシン、組み込みターゲットが含まれます。

ルールにターゲットを追加するには、更新するルールを含む PutTargetsRequest とルールに追加す
るターゲットのリストを使用して AmazonCloudWatchEventsClient の putTargets メソッドを呼び
出します。

インポート

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutTargetsRequest;
import com.amazonaws.services.cloudwatchevents.model.PutTargetsResult;
import com.amazonaws.services.cloudwatchevents.model.Target;

コード

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

Target target = new Target()
 .withArn(function_arn)
 .withId(target_id);

PutTargetsRequest request = new PutTargetsRequest()
 .withTargets(target)
 .withRule(rule_name);

PutTargetsResult response = cwe.putTargets(request);

詳細情報

• Amazon CloudWatch Events ユーザーガイドの PutEvents を使用したイベントの追加

• Amazon CloudWatch Events ユーザーガイドのルールのスケジュール式

• Amazon CloudWatch Events ユーザーガイドの CloudWatch イベントのイベントタイプ

• Amazon CloudWatch Events ユーザーガイドのイベントとイベントパターン

CloudWatch にイベントを送信する 65

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutTargetsRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/AddEventsPutEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/EventTypes.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

• Amazon CloudWatch Events API リファレンスの PutEvents

• Amazon CloudWatch Events API リファレンスの PutTargets

• Amazon CloudWatch Events API リファレンスの PutRule

DynamoDB を使用した例AWS SDK for Java

このセクションでは、AWS SDK for Java を使用して DynamoDB をプログラムする例を示します。

Note

例には各手法を示すのに必要なコードのみが含まれます。完全なサンプルコードは GitHub
で入手できます。そこから、単一のソースファイルをダウンロードするかリポジトリをロー
カルにクローン作成して、ビルドし実行するためのすべての例を取得できます。

トピック

• AWS アカウントベースのエンドポイントの使用

• DynamoDB でのテーブルの操作

• DynamoDB での項目の操作

AWS アカウントベースのエンドポイントの使用

DynamoDB では、AWS アカウント ID を使用してリクエストのルーティングを効率化することでパ
フォーマンスを向上させる AWS アカウントベースのエンドポイントが提供されています。

この機能を利用するには、AWS SDK for Java のバージョン 1 のバージョン 1.12.771 以降を使用す
る必要があります。Maven 中央リポジトリで SDK の最新バージョンを検索できます。サポートされ
ているバージョンの SDK がアクティブになると、新しいエンドポイントが自動的に使用されます。

アカウントベースのルーティングをオプトアウトするには、次の 4 つのオプションがあります。

• AccountIdEndpointMode を DISABLED に設定して DynamoDB サービスクライアントを構成す
る。

• 環境変数を設定する。

• JVM システムプロパティを設定する。

Amazon DynamoDB の例 66

https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutTargets.html
https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutRule.html
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/dynamodb/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.SDKOverview.html#Programming.SDKs.endpoints
https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

• 共有 AWS 設定ファイルを更新する。

次のスニペットは、DynamoDB サービスクライアントを設定してアカウントベースのルーティング
を無効にする方法の例です。

ClientConfiguration config = new ClientConfiguration()
 .withAccountIdEndpointMode(AccountIdEndpointMode.DISABLED);
AWSCredentialsProvider credentialsProvider = new
 EnvironmentVariableCredentialsProvider();

AmazonDynamoDB dynamodb = AmazonDynamoDBClientBuilder.standard()
 .withClientConfiguration(config)
 .withCredentials(credentialsProvider)
 .withRegion(Regions.US_WEST_2)
 .build();

AWS SDK およびツールリファレンスガイドには、後半 3 つの設定オプションに関する詳細が記載さ
れています。

DynamoDB でのテーブルの操作

テーブルは、DynamoDB データベースのすべての項目のコンテナです。DynamoDB のデータの追加
または削除を行う前に、テーブルを作成する必要があります。

テーブルごとに、以下を定義する必要があります。

• アカウントおよびリージョンに一意であるテーブル名。

• プライマリキー。すべての値は一意でなければならず、テーブル内のどの 2 つの項目も同じプラ
イマリキー値を持つことはできません。

プライマリキーは、単一のパーティション (ハッシュ) キーで構成されるシンプルなプライマリ
キーにするか、パーティションとソート (範囲) キーで構成される複合プライマリキーにすること
ができます。

各キーバリューには、ScalarAttributeType クラスによって列挙されるデータ型が関連付けられ
ています。キー値は、バイナリ (B)、数値 (N)、または文字列 (S) になります。詳細について
は、Amazon DynamoDB デベロッパーガイドの命名規則とデータ型を参照してください。

• テーブル用に予約された読み込み/書き込みキャパシティーユニットの数を定義するプロビジョニ
ングされたスループットの値。

DynamoDB でのテーブルの操作 67

https://docs.aws.amazon.com/sdkref/latest/guide/feature-account-endpoints.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ScalarAttributeType.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Note

Amazon DynamoDB の料金は、テーブルに設定したプロビジョニングされたスループット
値に基づくため、テーブルに必要と予想される分だけの容量を予約します。

テーブルのプロビジョニングされたスループットはいつでも変更できるため、必要に応じてキャパシ
ティーを調整できます。

テーブルを作成する

新しい DynamoDB テーブルを作成するには、DynamoDB クライアントの createTable メソッド
を使用します。テーブルのプライマリキーを識別するために使用する、テーブル属性とテーブルス
キーマを構築する必要があります。また、最初のプロビジョニングされたスループット値およびテー
ブル名を指定する必要があります。DynamoDB テーブルの作成時に、キーテーブルの属性のみを定
義します。

Note

選択した名前のテーブルが既に存在している場合は、AmazonServiceException がスローさ
れます。

インポート。

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.CreateTableRequest;
import com.amazonaws.services.dynamodbv2.model.CreateTableResult;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.services.dynamodbv2.model.ScalarAttributeType;

シンプルプライマリキーを使用してテーブルを作成する

このコードでは、シンプルプライマリキー (「Name」) を持つテーブルを作成します。

DynamoDB でのテーブルの操作 68

https://aws.amazon.com/dynamodb/pricing/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonServiceException.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Code

CreateTableRequest request = new CreateTableRequest()
 .withAttributeDefinitions(new AttributeDefinition(
 "Name", ScalarAttributeType.S))
 .withKeySchema(new KeySchemaElement("Name", KeyType.HASH))
 .withProvisionedThroughput(new ProvisionedThroughput(
 new Long(10), new Long(10)))
 .withTableName(table_name);

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 CreateTableResult result = ddb.createTable(request);
 System.out.println(result.getTableDescription().getTableName());
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

GitHub で完全な例をご覧ください。

複合プライマリキーを使用してテーブルを作成する

別の AttributeDefinition および KeySchemaElement を CreateTableRequest に追加します。

Code

CreateTableRequest request = new CreateTableRequest()
 .withAttributeDefinitions(
 new AttributeDefinition("Language", ScalarAttributeType.S),
 new AttributeDefinition("Greeting", ScalarAttributeType.S))
 .withKeySchema(
 new KeySchemaElement("Language", KeyType.HASH),
 new KeySchemaElement("Greeting", KeyType.RANGE))
 .withProvisionedThroughput(
 new ProvisionedThroughput(new Long(10), new Long(10)))
 .withTableName(table_name);

GitHub で完全な例をご覧ください。

DynamoDB でのテーブルの操作 69

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/CreateTable.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/AttributeDefinition.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/KeySchemaElement.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/CreateTableRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/CreateTableCompositeKey.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

テーブルの一覧表示

特定のリージョンのテーブルを一覧表示するには、DynamoDB クライアントの listTables メソッ
ドを呼び出します。

Note

指定したテーブルがアカウントやリージョンにない場合は、ResourceNotFoundException が
スローされます。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.ListTablesRequest;
import com.amazonaws.services.dynamodbv2.model.ListTablesResult;

コード

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

ListTablesRequest request;

boolean more_tables = true;
String last_name = null;

while(more_tables) {
 try {
 if (last_name == null) {
 request = new ListTablesRequest().withLimit(10);
 }
 else {
 request = new ListTablesRequest()
 .withLimit(10)
 .withExclusiveStartTableName(last_name);
 }

 ListTablesResult table_list = ddb.listTables(request);
 List<String> table_names = table_list.getTableNames();

DynamoDB でのテーブルの操作 70

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 if (table_names.size() > 0) {
 for (String cur_name : table_names) {
 System.out.format("* %s\n", cur_name);
 }
 } else {
 System.out.println("No tables found!");
 System.exit(0);
 }

 last_name = table_list.getLastEvaluatedTableName();
 if (last_name == null) {
 more_tables = false;
 }

デフォルトでは、1 回の呼び出しで最大 100 個のテーブルが返されます。評価され
た最後のテーブルを取得するには、返された ListTablesResult オブジェクトに対して
getLastEvaluatedTableName を使用します。この値を使用して、前回の一覧表示で返された最
後の値以降から、一覧表示を開始できます。

GitHub で完全な例をご覧ください。

テーブルの説明 (テーブルに関する情報の取得)

DynamoDB クライアントの describeTable メソッドを呼び出します。

Note

指定したテーブルがアカウントやリージョンにない場合は、ResourceNotFoundException が
スローされます。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughputDescription;
import com.amazonaws.services.dynamodbv2.model.TableDescription;

Code

DynamoDB でのテーブルの操作 71

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/model/ListTablesResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/ListTables.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 TableDescription table_info =
 ddb.describeTable(table_name).getTable();

 if (table_info != null) {
 System.out.format("Table name : %s\n",
 table_info.getTableName());
 System.out.format("Table ARN : %s\n",
 table_info.getTableArn());
 System.out.format("Status : %s\n",
 table_info.getTableStatus());
 System.out.format("Item count : %d\n",
 table_info.getItemCount().longValue());
 System.out.format("Size (bytes): %d\n",
 table_info.getTableSizeBytes().longValue());

 ProvisionedThroughputDescription throughput_info =
 table_info.getProvisionedThroughput();
 System.out.println("Throughput");
 System.out.format(" Read Capacity : %d\n",
 throughput_info.getReadCapacityUnits().longValue());
 System.out.format(" Write Capacity: %d\n",
 throughput_info.getWriteCapacityUnits().longValue());

 List<AttributeDefinition> attributes =
 table_info.getAttributeDefinitions();
 System.out.println("Attributes");
 for (AttributeDefinition a : attributes) {
 System.out.format(" %s (%s)\n",
 a.getAttributeName(), a.getAttributeType());
 }
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

GitHub で完全な例をご覧ください。

DynamoDB でのテーブルの操作 72

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/DescribeTable.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

テーブルの変更 (更新)

DynamoDB クライアントの updateTable メソッドを呼び出すことで、テーブルのプロビジョニン
グされたスループット値を随時変更できます。

Note

指定したテーブルがアカウントやリージョンにない場合は、ResourceNotFoundException が
スローされます。

インポート

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.AmazonServiceException;

Code

ProvisionedThroughput table_throughput = new ProvisionedThroughput(
 read_capacity, write_capacity);

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.updateTable(table_name, table_throughput);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

GitHub で完全な例をご覧ください。

テーブルの削除

DynamoDB クライアントの deleteTable メソッドを呼び出し、それにテーブルの名前を渡しま
す。

DynamoDB でのテーブルの操作 73

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UpdateTable.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Note

指定したテーブルがアカウントやリージョンにない場合は、ResourceNotFoundException が
スローされます。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;

Code

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.deleteTable(table_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

GitHub で完全な例をご覧ください。

詳細

• Amazon DynamoDB デベロッパーガイドのテーブルの操作のガイドライン

• Amazon DynamoDB デベロッパーガイドの DynamoDB のテーブルの操作

DynamoDB での項目の操作

DynamoDB で、項目とは、属性のコレクションで、それぞれに名前と値があります。属性値はス
カラー型、セット型、ドキュメント型のいずれかです。詳細については、Amazon DynamoDB デベ
ロッパーガイドの命名規則とデータ型を参照してください。

DynamoDB での項目の操作 74

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/DeleteTable.java
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

テーブルからの項目の取り出し (取得)

AmazonDynamoDB の getItem メソッドを呼び出して、指定する項目のテーブル名とプライマリ
キーバリューを持つ GetItemRequest オブジェクトを渡します。GetItemResult オブジェクトが返さ
れます。

返された GetItemResult オブジェクトの getItem() メソッドを使用して、項目に関連付けられ
ているキー (String) と値 (AttributeValue) のペアの Map を取得できます。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.GetItemRequest;
import java.util.HashMap;
import java.util.Map;

Code

HashMap<String,AttributeValue> key_to_get =
 new HashMap<String,AttributeValue>();

key_to_get.put("DATABASE_NAME", new AttributeValue(name));

GetItemRequest request = null;
if (projection_expression != null) {
 request = new GetItemRequest()
 .withKey(key_to_get)
 .withTableName(table_name)
 .withProjectionExpression(projection_expression);
} else {
 request = new GetItemRequest()
 .withKey(key_to_get)
 .withTableName(table_name);
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 Map<String,AttributeValue> returned_item =
 ddb.getItem(request).getItem();

DynamoDB での項目の操作 75

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/GetItemRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/GetItemResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/AttributeValue.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Map.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 if (returned_item != null) {
 Set<String> keys = returned_item.keySet();
 for (String key : keys) {
 System.out.format("%s: %s\n",
 key, returned_item.get(key).toString());
 }
 } else {
 System.out.format("No item found with the key %s!\n", name);
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);

GitHub で完全な例をご覧ください。

テーブルへの新しい項目の追加

項目の属性を表すキーと値のペアのマップを作成します。これらには、テーブルのプライマリキー
フィールドの値を含める必要があります。プライマリキーで特定される項目がすでにある場合、
フィールドはリクエストによって更新されます。

Note

指定したテーブルがアカウントやリージョンにない場合は、ResourceNotFoundException が
スローされます。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.ResourceNotFoundException;
import java.util.ArrayList;

Code

HashMap<String,AttributeValue> item_values =
 new HashMap<String,AttributeValue>();

DynamoDB での項目の操作 76

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/GetItem.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Map.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

item_values.put("Name", new AttributeValue(name));

for (String[] field : extra_fields) {
 item_values.put(field[0], new AttributeValue(field[1]));
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.putItem(table_name, item_values);
} catch (ResourceNotFoundException e) {
 System.err.format("Error: The table \"%s\" can't be found.\n", table_name);
 System.err.println("Be sure that it exists and that you've typed its name
 correctly!");
 System.exit(1);
} catch (AmazonServiceException e) {
 System.err.println(e.getMessage());
 System.exit(1);

GitHub で完全な例をご覧ください。

テーブルの既存の項目の更新

テーブルに既に存在する項目の属性を更新するには、AmazonDynamoDB の updateItem メソッド
を呼び出して、テーブル名、プライマリキーバリュー、更新するフィールドのマップを渡します。

Note

指定したテーブルがアカウントやリージョンにない場合、または渡したプライマリキーで特
定される項目がない場合、ResourceNotFoundException がスローされます。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeAction;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.AttributeValueUpdate;
import com.amazonaws.services.dynamodbv2.model.ResourceNotFoundException;
import java.util.ArrayList;

DynamoDB での項目の操作 77

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/PutItem.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Code

HashMap<String,AttributeValue> item_key =
 new HashMap<String,AttributeValue>();

item_key.put("Name", new AttributeValue(name));

HashMap<String,AttributeValueUpdate> updated_values =
 new HashMap<String,AttributeValueUpdate>();

for (String[] field : extra_fields) {
 updated_values.put(field[0], new AttributeValueUpdate(
 new AttributeValue(field[1]), AttributeAction.PUT));
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.updateItem(table_name, item_key, updated_values);
} catch (ResourceNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
} catch (AmazonServiceException e) {
 System.err.println(e.getMessage());
 System.exit(1);

GitHub で完全な例をご覧ください。

DynamoDBMapper クラスの使用

AWS SDK for Java には DynamoDBMapper クラスが用意されているため、クライアント側のクラ
スを Amazon DynamoDB テーブルにマッピングできます。DynamoDBMapper クラスを使用するに
は、注釈を使用して、DynamoDB テーブルの項目とコード内のそれに対応するオブジェクトインス
タンスの間の関係を定義します (次のコード例を参照)。DynamoDBMapper クラスでは、テーブルへ
のアクセス、さまざまな作成、読み取り、更新、削除 (CRUD) オペレーションの実行、およびクエ
リを行うことができます。

Note

DynamoDBMapper クラスでは、テーブルを作成、更新、または削除することはできませ
ん。

DynamoDB での項目の操作 78

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UpdateItem.java
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

インポート

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBAttribute;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBHashKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBMapper;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBTable;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBRangeKey;
import com.amazonaws.services.dynamodbv2.model.AmazonDynamoDBException;

コード

次の Java サンプルコードは、DynamoDBMapper クラスを使用して Music テーブルにコンテン
ツを追加する方法を示しています。コンテンツがテーブルに追加されると、Partition キーと Sort
キーを使用して項目がロードされることに注意してください。その後、Awards 項目が更新されま
す。Music テーブルの作成については、Amazon DynamoDB デベロッパーガイドのテーブルの作
成を参照してください。

 AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
 MusicItems items = new MusicItems();

 try{
 // Add new content to the Music table
 items.setArtist(artist);
 items.setSongTitle(songTitle);
 items.setAlbumTitle(albumTitle);
 items.setAwards(Integer.parseInt(awards)); //convert to an int

 // Save the item
 DynamoDBMapper mapper = new DynamoDBMapper(client);
 mapper.save(items);

 // Load an item based on the Partition Key and Sort Key
 // Both values need to be passed to the mapper.load method
 String artistName = artist;
 String songQueryTitle = songTitle;

 // Retrieve the item
 MusicItems itemRetrieved = mapper.load(MusicItems.class, artistName,
 songQueryTitle);
 System.out.println("Item retrieved:");

DynamoDB での項目の操作 79

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 System.out.println(itemRetrieved);

 // Modify the Award value
 itemRetrieved.setAwards(2);
 mapper.save(itemRetrieved);
 System.out.println("Item updated:");
 System.out.println(itemRetrieved);

 System.out.print("Done");
 } catch (AmazonDynamoDBException e) {
 e.getStackTrace();
 }
 }

 @DynamoDBTable(tableName="Music")
 public static class MusicItems {

 //Set up Data Members that correspond to columns in the Music table
 private String artist;
 private String songTitle;
 private String albumTitle;
 private int awards;

 @DynamoDBHashKey(attributeName="Artist")
 public String getArtist() {
 return this.artist;
 }

 public void setArtist(String artist) {
 this.artist = artist;
 }

 @DynamoDBRangeKey(attributeName="SongTitle")
 public String getSongTitle() {
 return this.songTitle;
 }

 public void setSongTitle(String title) {
 this.songTitle = title;
 }

 @DynamoDBAttribute(attributeName="AlbumTitle")
 public String getAlbumTitle() {
 return this.albumTitle;

DynamoDB での項目の操作 80

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 }

 public void setAlbumTitle(String title) {
 this.albumTitle = title;
 }

 @DynamoDBAttribute(attributeName="Awards")
 public int getAwards() {
 return this.awards;
 }

 public void setAwards(int awards) {
 this.awards = awards;
 }
 }

GitHub で完全な例をご覧ください。

詳細

• Amazon DynamoDB デベロッパーガイドの項目の操作のガイドライン

• Amazon DynamoDB デベロッパーガイドの DynamoDB の項目の操作

Amazon EC2 を使用した例AWS SDK for Java

このセクションでは、AWS SDK for Java で Amazon EC2 をプログラムする例を示します。

トピック

• チュートリアル: EC2 インスタンスの開始

• Amazon EC2 での IAM ロールを使用した AWS リソースへのアクセスの許可

• チュートリアル: Amazon EC2 スポットインスタンス

• チュートリアル: Amazon EC2 スポットリクエストの高度な管理

• Amazon EC2 インスタンスの管理

• Amazon EC2 の Elastic IP アドレスの使用

• リージョンとアベイラビリティーゾーンを使用する

• Amazon EC2 キーペアでの作業

• Amazon EC2 でセキュリティグループを操作する

Amazon EC2 の例 81

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UseDynamoMapping.java
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForItems.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
https://aws.amazon.com/ec2/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

チュートリアル: EC2 インスタンスの開始

このチュートリアルでは、AWS SDK for Java を使用して EC2 インスタンスを開始する方法を示し
ます。

トピック

• 前提条件

• Amazon EC2 セキュリティグループを作成する

• キーペアの作成

• Amazon EC2 インスタンスを実行する

前提条件

開始する前に、AWS アカウント を作成したこと、および AWS 認証情報を設定したことを確認しま
す。詳細については、「はじめに」を参照してください。

Amazon EC2 セキュリティグループを作成する

EC2-Classic は廃止されます

Warning

2022 年 8 月 15 日に、EC2-Classic の提供を終了しｈます。EC2-Classic は、VPC への移行
をお勧めします。詳細については、ブログ記事EC2-Classic-Classic Networking is Retiring –
Here's How to Prepareを参照してください。

セキュリティグループを作成します。セキュリティグループは、1 つ以上の EC2 インスタンス
のネットワークトラフィックを制御する仮想ファイアウォールとして機能します。デフォルトで
は、Amazon EC2 はインバウンドトラフィックを許可しないセキュリティグループとインスタンス
を関連付けます。EC2 インスタンスが特定のトラフィックを受け付けるようにするセキュリティ
グループを作成できます。たとえば、Linux インスタンスに接続する必要がある場合は、SSH トラ
フィックを許可するようにセキュリティグループを設定する必要があります。セキュリティグループ
は、Amazon EC2 コンソールまたは AWS SDK for Java を使って作成できます。

EC2-Classic または EC2-VPC で使用するセキュリティグループを作成します。EC2-Classic と EC2-
VPC の詳細については、Amazon EC2 Linux インスタンス用ユーザーガイドのサポートされるプ
ラットフォームを参照してください。

チュートリアル: EC2 インスタンスの開始 82

https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Amazon EC2 コンソールを使用したセキュリティグループの作成の詳細については、「Linux インス
タンス用 Amazon EC2 ユーザーガイド」の「Amazon EC2 セキュリティグループ」を参照してくだ
さい。

1. CreateSecurityGroupRequest インスタンスを作成し、初期化します。 withGroupName メソッド
を使用してセキュリティグループの名前を設定し、 withDescription メソッドを使用してセキュリ
ティグループの説明を設定します。次に例を示します。

CreateSecurityGroupRequest csgr = new CreateSecurityGroupRequest();
csgr.withGroupName("JavaSecurityGroup").withDescription("My security group");

セキュリティグループ名は、Amazon EC2 クライアントを初期化する AWS リージョン内で一意
である必要があります。セキュリティグループの名前と説明には、US-ASCII 文字を使用する必要
があります。

2. リクエストオブジェクトをパラメータとして createSecurityGroup メソッドに渡します。このメ
ソッドは CreateSecurityGroupResult オブジェクトを返します。次に例を示します。

CreateSecurityGroupResult createSecurityGroupResult =
 amazonEC2Client.createSecurityGroup(csgr);

既存のセキュリティグループと同じ名前でセキュリティグループを作成しようとする
と、createSecurityGroup によって例外がスローされます。

デフォルトでは、新しいセキュリティグループは Amazon EC2 インスタンスへのインバウンドトラ
フィックを許可しません。インバウンドトラフィックを許可するには、セキュリティグループの進入
を明示的に承認する必要があります。個々の IP アドレス、IP アドレスの範囲、特定のプロトコル、
および TCP/UDP ポートに対して進入を承認することができます。

1. IpPermission インスタンスを作成し、初期化します。withIpv4Ranges メソッドを使用して、進入
の承認対象となる IP アドレスの範囲を設定し、withIpProtocol メソッドを使用して、IP プロトコ
ルを設定します。withFromPort メソッドと withToPort メソッドを使用して、進入の承認対象とな
るポートの範囲を指定します。次に例を示します。

IpPermission ipPermission =
 new IpPermission();

IpRange ipRange1 = new IpRange().withCidrIp("111.111.111.111/32");
IpRange ipRange2 = new IpRange().withCidrIp("150.150.150.150/32");

チュートリアル: EC2 インスタンスの開始 83

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html#withGroupName-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html#withDescription-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2.html#createSecurityGroup-com.amazonaws.services.ec2.model.CreateSecurityGroupRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withIpv4Ranges-java.util.Collection-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withIpProtocol-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withFromPort-java.lang.Integer-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withToPort-java.lang.Integer-

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ipPermission.withIpv4Ranges(Arrays.asList(new IpRange[] {ipRange1, ipRange2}))
 .withIpProtocol("tcp")
 .withFromPort(22)
 .withToPort(22);

進入が許可されるには、IpPermission オブジェクトで指定したすべての条件を満たしている必
要があります。

CIDR 表記を使用して IP アドレスを指定します。プロトコルを TCP/UDP として指定した場合
は、送信元ポートと送信先ポートを指定する必要があります。ポートを承認できるのは、TCP ま
たは UDP を指定した場合のみです。

2. AuthorizeSecurityGroupIngressRequest インスタンスを作成し、初期化します。withGroupName
メソッドを使用して、セキュリティグループの名前を指定し、前に初期化した IpPermission オ
ブジェクトを withIpPermissions メソッドに渡します。次に例を示します。

AuthorizeSecurityGroupIngressRequest authorizeSecurityGroupIngressRequest =
 new AuthorizeSecurityGroupIngressRequest();

authorizeSecurityGroupIngressRequest.withGroupName("JavaSecurityGroup")
 .withIpPermissions(ipPermission);

3. リクエストオブジェクトを authorizeSecurityGroupIngress メソッドに渡します。次に例を示しま
す。

amazonEC2Client.authorizeSecurityGroupIngress(authorizeSecurityGroupIngressRequest);

進入がすでに承認されている IP アドレスを使用して authorizeSecurityGroupIngress を
呼び出すと、メソッドによって例外がスローされます。IpPermission を呼び出す前に、新し
い AuthorizeSecurityGroupIngress オブジェクトを作成し、初期化して、異なる IP、ポー
ト、プロトコルに対して進入を承認します。

authorizeSecurityGroupIngress メソッドまたは authorizeSecurityGroupEgress メソッドを呼び出す
と、セキュリティグループにルールが追加されます。

キーペアの作成

EC2 インスタンスを起動するときはキーペアを指定し、インスタンスに接続するときはキーペアの
プライベートキーを指定する必要があります。キーペアを作成することも、他のインスタンスの起動

チュートリアル: EC2 インスタンスの開始 84

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html#withIpPermissions-com.amazonaws.services.ec2.model.IpPermission%E2%80%A6%E2%80%8B-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupIngress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupIngress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupEgress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupEgressRequest-

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

時に使用した既存のキーペアを使用することもできます。詳細については、「Linux インスタンス用
Amazon EC2 ユーザーガイド」の「Amazon EC2 Key Pairs」を参照してください。

1. CreateKeyPairRequest インスタンスを作成し、初期化します。withKeyName メソッドを使用し
て、キーペアの名前を設定します。次に例を示します。

CreateKeyPairRequest createKeyPairRequest = new CreateKeyPairRequest();

createKeyPairRequest.withKeyName(keyName);

Important

キーペア名は一意である必要があります。既存のキーペアと同じキー名でキーペアを作成
しようとすると、例外が発生します。

2. createKeyPair メソッドにリクエストオブジェクトを渡します。このメソッドは、
CreateKeyPairResult インスタンスを返します。次に例を示します。

CreateKeyPairResult createKeyPairResult =
 amazonEC2Client.createKeyPair(createKeyPairRequest);

3. 結果のオブジェクトの getKeyPair メソッドを呼び出して、KeyPair オブジェクトを取得しま
す。KeyPair オブジェクトの getKeyMaterial メソッドを呼び出して、暗号化されていない PEM
エンコード形式のプライベートキーを取得します。次に例を示します。

KeyPair keyPair = new KeyPair();

keyPair = createKeyPairResult.getKeyPair();

String privateKey = keyPair.getKeyMaterial();

Amazon EC2 インスタンスを実行する

同じ Amazon Machine Image (AMI) から全く同じに設定された 1 つ以上の EC2 インスタンスを起動
するには、以下の手順を使用します。EC2 インスタンスを作成した後は、ステータスを確認できま
す。EC2 インスタンスが実行した後は、それに接続できます。

チュートリアル: EC2 インスタンスの開始 85

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html#withKeyName-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2.html#createKeyPair-com.amazonaws.services.ec2.model.CreateKeyPairRequest--
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairResult.html#getKeyPair--
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPair.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPair.html#getKeyMaterial--

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

1. RunInstancesRequest インスタンスを作成し、初期化します。指定した AMI、キーペア、および
セキュリティグループが、クライアントオブジェクトを作成したときに指定したリージョンに存
在することを確認します。

RunInstancesRequest runInstancesRequest =
 new RunInstancesRequest();

runInstancesRequest.withImageId("ami-a9d09ed1")
 .withInstanceType(InstanceType.T1Micro)
 .withMinCount(1)
 .withMaxCount(1)
 .withKeyName("my-key-pair")
 .withSecurityGroups("my-security-group");

withImageId

• AMI の ID。Amazon から提供されるパブリック AMI を見つける方法や独自の AMI を作成す
る方法については、「Amazon マシンイメージ (AMI)」を参照してください。

withInstanceType

• 指定した AMI と互換性のあるインスタンスタイプ。詳細については、Amazon EC2 Linux イ
ンスタンス用ユーザーガイドのインスタンスタイプを参照してください。

withMinCount

• 起動する EC2 インスタンスの最小数。ターゲットアベイラビリティーゾーンで Amazon
EC2 が起動できるインスタンスより多い場合、Amazon EC2 はインスタンスを起動しませ
ん。

withMaxCount

• 起動する EC2 インスタンスの最大数。ターゲットアベイラビリティーゾーンで Amazon
EC2 が起動できるインスタンスより多い場合、Amazon EC2 は MinCount より多くて可能
な最大数のインスタンスを起動します。1 から、インスタンスタイプに対して許可されてい
るインスタンスの最大数の間で起動できます。詳細については、Amazon EC2 の一般的なよ
くある質問の Amazon EC2 でいくつインスタンスを実行できますか? を参照してください。

withKeyName

• EC2 キーペアの名前。キーペアを指定せずにインスタンスを起動すると、接続できません。
詳細については、「キーペアの作成」を参照してください。

withSecurityGroups

• 1 つまたは複数のセキュリティグループ。詳細については、Amazon EC2 セキュリティグ
ループの作成を参照してください。

チュートリアル: EC2 インスタンスの開始 86

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withImageId-java.lang.String-
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withInstanceType-java.lang.String-
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withMinCount-java.lang.Integer-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withMaxCount-java.lang.Integer-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withKeyName-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withSecurityGroups-java.util.Collection-

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

2. リクエストオブジェクトを runInstances メソッドに渡してインスタンスを起動します。このメ
ソッドは、RunInstancesResult オブジェクトを返します。次に例を示します。

RunInstancesResult result = amazonEC2Client.runInstances(
 runInstancesRequest);

インスタンスの実行後は、キーペアを使用してインスタンスにリモート接続することができます。詳
細については、Amazon EC2 Linux インスタンス用ユーザーガイドの Linux インスタンスへの接続を
参照してください。

Amazon EC2 での IAM ロールを使用した AWS リソースへのアクセスの許
可

Amazon Web Services (AWS) へのリクエストはすべて、AWS が発行した認証情報を使用して暗号
で署名される必要があります。IAM ロールを使用することで、Amazon EC2 インスタンスから AWS
リソースへのセキュアなアクセスを簡単に付与できます。

このトピックでは、Amazon EC2 で実行されている Java SDK アプリケーションで IAM ロールを
使用する方法について説明します。IAM インスタンスの詳細については、「Linux インスタンス用
Amazon EC2 ユーザーガイドの IAM Roles for Amazon EC2」を参照してください。

デフォルトプロバイダチェーンと EC2 インスタンスプロファイル

アプリケーションでデフォルトのコンストラクタを使用して AWS クライアントを作成する場合、そ
のクライアントはデフォルトの認証情報プロバイダチェーンを使用して次の順序で認証情報を検索し
ます。

1. Java のシステムプロパティ: aws.accessKeyId と aws.secretKey。

2. システム環境変数: AWS_ACCESS_KEY_ID と AWS_SECRET_ACCESS_KEY。

3. デフォルトの認証情報ファイル (このファイルの場所はプラットフォームによって異なります)。

4. AWS_CONTAINER_CREDENTIALS_RELATIVE_URI 環境変数が設定されていて、セキュリティマ
ネージャーが変数にアクセスするアクセス権限を持っている場合、Amazon EC2 コンテナサービ
スを介して配信される認証情報。

5. インスタンスプロファイル認証情報。EC2 インスタンスの IAM ロールに関連付けられたインスタ
ンスメタデータ内にあります。

6. 環境またはコンテナからのウェブアイデンティティトークンの認証情報。

Amazon EC2 での IAM ロールを使用した AWS リソースへのアクセスの許可 87

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#runInstances-com.amazonaws.services.ec2.model.RunInstancesRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesResult.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

デフォルトのプロバイダチェーンのインスタンスプロファイル認証情報ステップは、アプリ
ケーションを Amazon EC2 インスタンスで実行する場合にのみ使用できます。Amazon EC2
インスタンスを使用する場合にもっとも使い方が簡単でセキュリティに優れた方法です。ま
た、InstanceProfileCredentialsProvider インスタンスを直接クライアントコンストラクタに渡して、
デフォルトプロバイダーチェーン全体を経ることなく、インスタンスプロファイル認証情報を取得す
ることもできます。

例:

AmazonS3 s3 = AmazonS3ClientBuilder.standard()
 .withCredentials(new InstanceProfileCredentialsProvider(false))
 .build();

この方法を使用する場合、SDK はインスタンスプロファイル内の Amazon EC2 インス
タンスに関連付けられている IAM ロールに関連付けられたのと同じ許可を持つ一時的な
AWS 認証情報を取得します。これらの認証情報は一時的なもので、最終的には失効します
が、InstanceProfileCredentialsProvider によって定期的に更新されるため、取得済みの認
証情報で引き続き AWS にアクセスできます。

Important

認証情報の自動更新は、デフォルトのプロバイダーチェーンの一部として独自の
InstanceProfileCredentialsProvider を作成するデフォルトのクライアントコンス
トラクターを使用する場合、または InstanceProfileCredentialsProvider インスタ
ンスをクライアントコンストラクターに直接渡す場合にのみ行われます。その他の手段でイ
ンスタンスプロファイル認証情報を取得または渡す場合は、お客様自身で期限切れ認証情報
を確認し更新する必要があります。

クライアントコンストラクタが認証情報プロバイダチェーンを使用して証明書を見つけられない場
合、AmazonClientException がスローされます。

ウォークスルー: EC2 インスタンスでの IAM ロールの使用

以下のウォークスルーでは、アクセス権を管理するために IAM ロールを使用して Amazon S3 から
オブジェクトを取得する方法を示します。

IAM ロールを作成します。

Amazon S3 に読み取り専用アクセスを付与する IAM ロールを作成します。

Amazon EC2 での IAM ロールを使用した AWS リソースへのアクセスの許可 88

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/InstanceProfileCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonClientException.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

1. [IAM コンソール] を開きます。

2. ナビゲーションペインで [Roles]、[Create New Role] の順に選択します。

3. ロールの名前を入力し、[Next Step] (次のステップ) を選択します。この名前は Amazon EC2 イン
スタンスを起動するときに必要になるため、覚えておいてください。

4. [ロールタイプの選択] ページの [AWS のサービス ロール] で、[Amazon EC2] を選択します。

5. [許可を設定] ページの [ポリシーテンプレートの選択] で、[Amazon S3 読み取り専用アクセス] を
選択して、[次のステップ] を選択します。

6. [Review] ページで、[Create Role] を選択します。

EC2 インスタンスを起動して IAM ロールを指定する

Amazon EC2 コンソールまたは AWS SDK for Java を使用して、IAM ロールで Amazon EC2 インス
タンスを起動できます。

• コンソールを使用して Amazon EC2 インスタンスを起動するには、Amazon EC2 Linux インスタ
ンス用ユーザーガイドの Amazon EC2 Linux インスタンスの開始方法の指示に従います。

[Review Instance Launch (インスタンス作成の確認)] ページを開いたら、[Edit instance details (イ
ンスタンスの詳細の編集)] を選択します。[IAM role] (IAM ロール) で、前に作成した IAM ロールを
選択します。指示にしたがって手順を完了します。

Note

そのインスタンスに接続するには、セキュリティグループとキーペアを作成するか、また
は既存のものを使用する必要があります。

• AWS SDK for Java を使用して IAM ロールを使用する Amazon EC2 インスタンスを起動するに
は、Amazon EC2 インスタンスの実行を参照してください。

アプリケーションを作成する

EC2 インスタンスで実行するサンプルアプリケーションを作成してみましょう。まず、チュートリ
アルファイルを保存するために使用できるディレクトリを作成します (例: GetS3ObjectApp)。

次に、新しく作成したディレクトリに AWS SDK for Java ライブラリをコピーします。AWS SDK
for Java を ~/Downloads ディレクトリにダウンロードした場合は、次のコマンドを使用してそれら
のライブラリをコピーできます。

Amazon EC2 での IAM ロールを使用した AWS リソースへのアクセスの許可 89

https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

cp -r ~/Downloads/aws-java-sdk-{1.7.5}/lib .
cp -r ~/Downloads/aws-java-sdk-{1.7.5}/third-party .

新規ファイルを開き、GetS3Object.java と名付け、次のコードを追加します。

import java.io.*;

import com.amazonaws.auth.*;
import com.amazonaws.services.s3.*;
import com.amazonaws.services.s3.model.*;
import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;

public class GetS3Object {
 private static final String bucketName = "text-content";
 private static final String key = "text-object.txt";

 public static void main(String[] args) throws IOException
 {
 AmazonS3 s3Client = AmazonS3ClientBuilder.defaultClient();

 try {
 System.out.println("Downloading an object");
 S3Object s3object = s3Client.getObject(
 new GetObjectRequest(bucketName, key));
 displayTextInputStream(s3object.getObjectContent());
 }
 catch(AmazonServiceException ase) {
 System.err.println("Exception was thrown by the service");
 }
 catch(AmazonClientException ace) {
 System.err.println("Exception was thrown by the client");
 }
 }

 private static void displayTextInputStream(InputStream input) throws IOException
 {
 // Read one text line at a time and display.
 BufferedReader reader = new BufferedReader(new InputStreamReader(input));
 while(true)
 {
 String line = reader.readLine();
 if(line == null) break;

Amazon EC2 での IAM ロールを使用した AWS リソースへのアクセスの許可 90

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 System.out.println(" " + line);
 }
 System.out.println();
 }
}

新規ファイルを開き、build.xml と名付け、次の行を追加します。

<project name="Get {S3} Object" default="run" basedir=".">
 <path id="aws.java.sdk.classpath">
 <fileset dir="./lib" includes="**/*.jar"/>
 <fileset dir="./third-party" includes="**/*.jar"/>
 <pathelement location="lib"/>
 <pathelement location="."/>
 </path>

 <target name="build">
 <javac debug="true"
 includeantruntime="false"
 srcdir="."
 destdir="."
 classpathref="aws.java.sdk.classpath"/>
 </target>

 <target name="run" depends="build">
 <java classname="GetS3Object" classpathref="aws.java.sdk.classpath" fork="true"/>
 </target>
</project>

変更を加えたプログラムを構築し、実行します。プログラムには認証情報は保存され
ていません。このため、AWS 認証情報が既に指定されていない場合、コードによって
AmazonServiceException がスローされます。例:

$ ant
Buildfile: /path/to/my/GetS3ObjectApp/build.xml

build:
 [javac] Compiling 1 source file to /path/to/my/GetS3ObjectApp

run:
 [java] Downloading an object
 [java] AmazonServiceException

Amazon EC2 での IAM ロールを使用した AWS リソースへのアクセスの許可 91

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

BUILD SUCCESSFUL

EC2 インスタンスへのコンパイルしたプログラムの転送

Secure Copy (Amazon EC2) を使用して、 ライブラリとともに AWS SDK for Java インスタンスに
プログラムを転送します。一連のコマンドは、次のようになります。

scp -p -i {my-key-pair}.pem GetS3Object.class ec2-user@{public_dns}:GetS3Object.class
scp -p -i {my-key-pair}.pem build.xml ec2-user@{public_dns}:build.xml
scp -r -p -i {my-key-pair}.pem lib ec2-user@{public_dns}:lib
scp -r -p -i {my-key-pair}.pem third-party ec2-user@{public_dns}:third-party

Note

使用した Linux ディストリビューションに応じて、ユーザー名は「ec2-user」、「root」、
「ubuntu」のいずれかになります。インスタンスのパブリック DNS 名を取得するに
は、EC2 コンソールを開き、[Description] (説明) タブで [Public DNS] (パブリック DNS) 値
を探します (例: ec2-198-51-100-1.compute-1.amazonaws.com)。

上記のコマンドでは:

• GetS3Object.class はコンパイルされたプログラム、

• build.xml はプログラムを構築して実行するために使用する ant ファイル、

• lib ディレクトリと third-party ディレクトリは、AWS SDK for Java の対応するライブラリ
フォルダです。

• -r スイッチは、scp が library ディストリビューションの third-party ディレクトリと
AWS SDK for Java ディレクトリのすべてのコンテンツについて、再帰的なコピーを実行すること
を示しています。

• -p スイッチは、ソースファイルがコピー先にコピーされるときに、scp ではソースファイルのア
クセス許可が維持されることを示しています。

Amazon EC2 での IAM ロールを使用した AWS リソースへのアクセスの許可 92

https://console.aws.amazon.com/ec2/home

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Note

この -p スイッチは、Linux、macOS、または Unix でのみ機能します。Windows からファ
イルをコピーする場合、必要に応じて次のコマンドを使用し、インスタンスでのファイル
へのアクセス許可を修正します。

chmod -R u+rwx GetS3Object.class build.xml lib third-party

EC2 インスタンスでサンプルプログラムを実行する

プログラムを実行するには、Amazon EC2 インスタンスに接続します。詳細については、Amazon
EC2 Linux インスタンス用ユーザーガイドの Linux インスタンスへの接続を参照してください。

ant がインスタンスで使用できない場合は、次のコマンドを使用してインストールします。

sudo yum install ant

次に、ant を使用して次のようにプログラムを実行します。

ant run

プログラムでは、Amazon S3 オブジェクトのコンテンツがコマンドウィンドウに表示されます。

チュートリアル: Amazon EC2 スポットインスタンス

概要

スポットインスタンスとは、Amazon Elastic Compute Cloud (Amazon EC2) の未使用キャパシティ
に対してお客様から価格を提示していただき、入札価格がその時点のスポット料金を上回っている限
り、お客様がそのインスタンスを取得し、実行できるというシステムです。Amazon EC2 のスポッ
ト料金は、需要と供給に基づいて定期的に変動しますが、お客様の入札価格がその価格以上ならば、
空いているスポットインスタンスにアクセスできます。オンデマンドインスタンスやリザーブドイン
スタンスと同様に、スポットインスタンスは計算キャパシティを増やしたいときの選択肢の 1 つと
なります。

スポットインスタンスを利用すると、Amazon EC2 によるバッチ処理、科学研究、画像処理、動画
エンコーディング、データと Web のクローリング、財務分析、テストなどのコストの大幅削減を期

チュートリアル: Amazon EC2 スポットインスタンス 93

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

待できます。加えて、スポットインスタンスは、大量の追加計算キャパシティが必要であるけれども
その緊急性が低いという場合にも適しています。

スポットインスタンスを使用するには、スポットインスタンスリクエストを提出し、このときにイン
スタンス時間当たりいくらまで支払えるかを指定します。これが入札価格です。入札価格がその時点
のスポット価格を超えている場合は、リクエストが受理されてインスタンスを実行できるようになり
ます。このインスタンスの実行は、お客様がインスタンスを終了した時点と、スポット価格が入札価
格を上回った時点のいずれか早い方までとなります。

次のことに注意することが重要です。

• 時間当たりの支払い金額が入札価格を下回ることもよくあります。Amazon EC2 のスポット料金
は、提出されるリクエストや空きインスタンスの変動に応じて、定期的に変更されます。お客様そ
れぞれの入札価格の方が上かどうかにかかわらず、どのお客様もその期間の同一のスポット料金を
お支払いいただきます。したがって、お客様が支払う金額は入札価格を下回ることもありますが、
入札価格を超えることはありません。

• スポットインスタンスを実行しているときに、お客様の入札価格がその時点のスポット料金以上
ではなくなった場合は、そのインスタンスは終了となります。つまり、この変動性の高いキャパシ
ティを活用できる、柔軟性の高いワークロードとアプリケーションに限ってスポットインスタンス
を利用することをお勧めします。

スポットインスタンスは稼働中、他の Amazon EC2 インスタンスとまったく同じように動作しま
す。そして他の Amazon EC2 インスタンスと同様に、スポットインスタンスは必要がなくなった場
合に終了することができます。お客様がインスタンスを終了した場合は、使用時間の端数分につい
ても料金をいただきます (オンデマンドやリザーブドのインスタンスと同様です)。ただし、スポット
価格がお客様の入札価格を超えたためにインスタンスが Amazon EC2 によって終了させられた場合
は、使用時間の端数分の料金は発生しません。

このチュートリアルでは、AWS SDK for Java を使用して以下を行う方法について説明します。

• スポットリクエストを提出する

• スポットリクエストが受理されたかどうかを判断する

• スポットリクエストをキャンセルする

• 関連するインスタンスを終了させる

チュートリアル: Amazon EC2 スポットインスタンス 94

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

前提条件

このチュートリアルを使用するには、AWS SDK for Java がインストールされており、基本イン
ストール前提条件を満たしている必要があります。詳細については、「Set up the AWS SDK for
Java」を参照してください。

ステップ 1: 認証情報のセットアップ

このサンプルコードの使用を開始するには、AWS 認証情報を設定する必要があります。その方法に
ついては、開発用の AWS 認証情報とリージョンのセットアップを参照してください。

Note

IAM ユーザーの認証情報を使用してこれらの値を指定することをお勧めします。詳細につい
ては、AWS にサインアップし、IAM ユーザーを作成するを参照してください。

これで設定が完了したので、例に示すコードを使用できるようになります。

ステップ 2: セキュリティグループのセットアップ

セキュリティグループとは、ファイアウォールとしての役割を果たすものであり、インスタンスのグ
ループに対してどのトラフィックの送受信を許可するかを制御します。デフォルトでは、インスタン
スの起動時にセキュリティグループは何も設定されていません。つまり、着信 IP トラフィックは、
どの TCP ポートであってもすべて拒否されます。したがって、ここでは、スポットリクエストを提
出する前に、必要なネットワークトラフィックを許可するセキュリティグループをセットアップす
ることにします。このチュートリアルの目的に合わせて、ここでは新しいセキュリティグループを
「GettingStarted」という名前で作成します。このグループでは、自分のアプリケーションを実行す
る IP アドレスからの Secure Shell (SSH) トラフィックを許可します。新しいセキュリティグループ
をセットアップするには、次に示すコードサンプルをインクルードするか実行する必要があります。
このコードは、セキュリティグループをプログラムからセットアップするためのものです。

AmazonEC2 クライアントオブジェクトを作成した後で、CreateSecurityGroupRequest オブ
ジェクトを作成し、「GettingStarted」という名前と、セキュリティグループの説明を指定します。
その後で、ec2.createSecurityGroup API を呼び出してグループを作成します。

このグループにアクセスできるようにするために、ipPermission オブジェクトを作成しま
す。IP アドレス範囲は、ローカルコンピュータのサブネット (CIDR 表現) で設定します。IP

チュートリアル: Amazon EC2 スポットインスタンス 95

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

アドレスの「/10」というサフィックスが、指定した IP アドレスのサブネットを示します。ま
た、ipPermission オブジェクトを設定して TCP プロトコルとポート 22 (SSH) を指定します。最
後のステップは、ec2.authorizeSecurityGroupIngress を呼び出すことです。このときに、
作成したセキュリティグループの名前と ipPermission オブジェクトを指定します。

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Create a new security group.
try {
 CreateSecurityGroupRequest securityGroupRequest = new
 CreateSecurityGroupRequest("GettingStartedGroup", "Getting Started Security Group");
 ec2.createSecurityGroup(securityGroupRequest);
} catch (AmazonServiceException ase) {
 // Likely this means that the group is already created, so ignore.
 System.out.println(ase.getMessage());
}

String ipAddr = "0.0.0.0/0";

// Get the IP of the current host, so that we can limit the Security
// Group by default to the ip range associated with your subnet.
try {
 InetAddress addr = InetAddress.getLocalHost();

 // Get IP Address
 ipAddr = addr.getHostAddress()+"/10";
} catch (UnknownHostException e) {
}

// Create a range that you would like to populate.
ArrayList<String> ipRanges = new ArrayList<String>();
ipRanges.add(ipAddr);

// Open up port 22 for TCP traffic to the associated IP
// from above (e.g. ssh traffic).
ArrayList<IpPermission> ipPermissions = new ArrayList<IpPermission> ();
IpPermission ipPermission = new IpPermission();
ipPermission.setIpProtocol("tcp");
ipPermission.setFromPort(new Integer(22));
ipPermission.setToPort(new Integer(22));
ipPermission.setIpRanges(ipRanges);
ipPermissions.add(ipPermission);

チュートリアル: Amazon EC2 スポットインスタンス 96

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

try {
 // Authorize the ports to the used.
 AuthorizeSecurityGroupIngressRequest ingressRequest =
 new AuthorizeSecurityGroupIngressRequest("GettingStartedGroup",ipPermissions);
 ec2.authorizeSecurityGroupIngress(ingressRequest);
} catch (AmazonServiceException ase) {
 // Ignore because this likely means the zone has
 // already been authorized.
 System.out.println(ase.getMessage());
}

このアプリケーションを実行して新しいセキュリティグループを作成する必要があるのは 1 回のみ
です。

また、AWS Toolkit for Eclipse を使用してセキュリティグループを作成することもできます。詳細に
ついては、「Managing Security Groups from AWS Cost Explorer」を参照してください。

ステップ 3: スポットリクエストを提出する

スポットリクエストを提出するには、最初に、使用するインスタンスタイプ、Amazon マシンイメー
ジ (AMI)、最高入札価格を決定する必要があります。前のステップで設定したセキュリティグループ
も指定する必要があります。これは、必要に応じてインスタンスにログインできるようにするためで
す。

選択できるインスタンスタイプにはさまざまなものがあります。すべての一覧については、Amazon
EC2 インスタンスタイプのページを参照してください。このチュートリアルでは、最も低価格のイ
ンスタンスタイプである t1.micro を使用します。次に、使用する AMI のタイプを決定します。こ
こでは、ami-a9d09ed1 を使用します。これは、このチュートリアルの執筆時点で最新の Amazon
Linux AMI です。最新の AMI は時間の経過と共に変化する可能性がありますが、次のステップを実
行することで最新バージョンの AMI であることを常に判断できます。

1. Amazon EC2 コンソールを開きます。

2. [Launch Instance (インスタンスの起動)] ボタンを選択します。

3. 最初のウィンドウには、利用可能な AMI が表示されます。各 AMI のタイトルの横には、AMI の
ID が表示されます。DescribeImages API を使用することもできますが、このコマンドの利用
方法は、このチュートリアルでは取り上げません。

スポットインスタンス入札のアプローチは多数あります。さまざまなアプローチの概要について
は、スポットインスタンスの入札の動画をご覧ください。ただし、ここでは初めての方のために、3

チュートリアル: Amazon EC2 スポットインスタンス 97

https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html
https://console.aws.amazon.com/ec2/home
https://www.youtube.com/watch?v=WD9N73F3Fao&feature=player_embedded

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

つの一般的な戦略について説明します。その 3 つとは、「コストがオンデマンド価格より低くなる
ように入札する」、「計算処理の結果の価値に基づいて入札する」、「できるだけ早くコンピュー
ティング性能を獲得できるように入札する」です。

• コストをオンデマンドよりも低くする 実行完了までに何時間も、あるいは何日間もかかるバッチ
処理ジョブがあるとします。ただし、いつ開始していつ完了するかについては、特に決められてい
ないものとします。このジョブを完了するためのコストを、オンデマンドインスタンスを使用する
場合よりも低くできるかどうかを考えます。インスタンスタイプのスポット価格の履歴を、AWS
マネジメントコンソール または Amazon EC2 API を使用して調べます。詳細については、「ス
ポット価格の履歴の表示」を参照してください。使用したいインスタンスタイプの、特定のアベイ
ラビリティーゾーンでの価格履歴を分析した後は、入札のアプローチとして次の 2 つも考えられ
ます。

• スポット料金の範囲の上限（ただしオンデマンド価格よりは下）で入札します。このようにすれ
ば、この 1 回限りのスポットリクエストが受理される可能性が高くなり、ジョブが完了するま
で連続して実行できるからです。

• または、スポットインスタンスに対して支払う金額をオンデマンドインスタンス料金の % で指
定し、1 つの永続リクエストで次々とインスタンスを起動することを計画できます。指定された
料金を超えた場合、スポットインスタンスは終了します。(この作業を自動化する方法について
は、このチュートリアルで後ほど説明します。)

• 結果の価値以上は支払わない データ処理ジョブを実行するとします。このジョブの結果の価値は
判明しており、計算コストに換算してどれくらいになるかもわかっています。使用するインスタン
スタイプのスポット料金履歴の分析が完了した後で、入札価格を選択します。コンピューティング
時間のコストがこのジョブの結果の価値を上回ることがないように、価格を決定します。永続リク
エストを作成し、スポット料金が入札価格以下となったときに断続的に実行するよう設定します。

• 計算キャパシティをすぐに獲得する 追加のキャパシティが突然、短期間だけ必要になることがあ
り、オンデマンドインスタンスではそのキャパシティを獲得できないとします。使用するインスタ
ンスタイプのスポット料金履歴の分析が完了した後で、履歴の価格の最大値を超える価格で入札し
ます。このようにすれば、リクエストがすぐに受理される可能性が高まり、完了するまで連続して
計算できるようになります。

入札価格を選択すると、スポットインスタンスをリクエストできる状態になります。ここでは、
このチュートリアルの目的に合わせて、オンデマンド価格 (0.03 USD) で入札します。これは、
受理される可能性を最大にするためです。利用できるインスタンスのタイプと、インスタンス
のオンデマンド料金を調べるには、Amazon EC2 の料金のページを参照してください。スポッ
トインスタンスの実行中は、インスタンスが実行された期間で有効なスポット料金を支払い続
けます。スポットインスタンス料金は Amazon EC2 で設定され、長期の需要と供給応じて、ス

チュートリアル: Amazon EC2 スポットインスタンス 98

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ポットインスタンス容量に合わせて緩やかに調整されます。また、スポットインスタンスに対
して支払う金額をオンデマンドインスタンス料金の % で指定することもできます。スポットイ
ンスタンスをリクエストするには、先ほど選択したパラメータを使用してリクエストを構築す
るだけです。初めに、RequestSpotInstanceRequest オブジェクトを作成します。このリ
クエストオブジェクトには、起動したいインスタンスの数と入札価格が必要です。さらに、リ
クエストの LaunchSpecification を設定する必要があります。この内容は、インスタンス
タイプ、AMI ID、および使用するセキュリティグループです。リクエストの内容が入力された
ら、requestSpotInstances オブジェクトの AmazonEC2Client メソッドを呼び出します。次の
例で、スポットインスタンスをリクエストする方法を示します。

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Setup the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specifications to the request.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);

このコードを実行すると、新しいスポットインスタンスリクエストが発行されます。他にも、ス
ポットリクエストの設定に使用できるオプションがあります。詳細については、チュートリアル:

チュートリアル: Amazon EC2 スポットインスタンス 99

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Amazon EC2 スポットリクエストの高度な管理または AWS SDK for Java API リファレンスの
RequestSpotInstances クラスにアクセスしてください。

Note

スポットインスタンスが実際に起動されるとお客様への課金が発生するので、料金を抑える
ために、リクエストを作成した場合はキャンセルし、インスタンスを起動した場合は終了し
てください。

ステップ 4: スポットリクエストの状態を特定する

次に、最後のステップに進む前にスポットリクエストの状態が「アクティブ」になるのを
待つようにするコードを作成する必要があります。スポットリクエストの状態を特定するに
は、describeSpotInstanceRequests メソッドをポーリングすることによって、モニタリング対象の
スポットリクエスト ID の状態を調べます。

ステップ 2 で作成したリクエスト ID は、requestSpotInstances リクエストへのレスポンスに埋
め込まれています。次に示すコード例では、リクエスト ID を requestSpotInstances レスポン
スから取り出して ArrayList への入力に使用する方法を示します。

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);
List<SpotInstanceRequest> requestResponses = requestResult.getSpotInstanceRequests();

// Setup an arraylist to collect all of the request ids we want to
// watch hit the running state.
ArrayList<String> spotInstanceRequestIds = new ArrayList<String>();

// Add all of the request ids to the hashset, so we can determine when they hit the
// active state.
for (SpotInstanceRequest requestResponse : requestResponses) {
 System.out.println("Created Spot Request:
 "+requestResponse.getSpotInstanceRequestId());
 spotInstanceRequestIds.add(requestResponse.getSpotInstanceRequestId());
}

リクエスト ID をモニタリングするには、describeSpotInstanceRequests メソッドを呼び出し
てリクエストの状態を特定します。その後で、リクエストが「オープン」状態でなくなるまでループ
を繰り返します。状態が、例えば「アクティブ」ではなく、「オープン」以外かどうかをモニタリン

チュートリアル: Amazon EC2 スポットインスタンス 100

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RequestSpotInstancesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#describeSpotInstanceRequests

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

グするのは、リクエストが直接「クローズ済み」に遷移することもあるからです (リクエストの引数
に問題がある場合)。次に示すコード例では、このことを実現する具体的な方法を示します。

// Create a variable that will track whether there are any
// requests still in the open state.
boolean anyOpen;

do {
 // Create the describeRequest object with all of the request ids
 // to monitor (e.g. that we started).
 DescribeSpotInstanceRequestsRequest describeRequest = new
 DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 // Initialize the anyOpen variable to false - which assumes there
 // are no requests open unless we find one that is still open.
 anyOpen=false;

 try {
 // Retrieve all of the requests we want to monitor.
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);
 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // Look through each request and determine if they are all in
 // the active state.
 for (SpotInstanceRequest describeResponse : describeResponses) {
 // If the state is open, it hasn't changed since we attempted
 // to request it. There is the potential for it to transition
 // almost immediately to closed or cancelled so we compare
 // against open instead of active.
 if (describeResponse.getState().equals("open")) {
 anyOpen = true;
 break;
 }
 }
} catch (AmazonServiceException e) {
 // If we have an exception, ensure we don't break out of
 // the loop. This prevents the scenario where there was
 // blip on the wire.
 anyOpen = true;
 }

チュートリアル: Amazon EC2 スポットインスタンス 101

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 try {
 // Sleep for 60 seconds.
 Thread.sleep(60*1000);
 } catch (Exception e) {
 // Do nothing because it woke up early.
 }
} while (anyOpen);

このコードを実行すると、スポットインスタンスリクエストは完了するか、エラーありで失敗し、そ
のエラーが画面に出力されます。どちらの場合も、次のステップに進んで、アクティブなリクエスト
がある場合はクリーンアップし、実行中のインスタンスがある場合は終了させてください。

ステップ 5: スポットリクエストとインスタンスをクリーンアップする

最後に、リクエストとインスタンスをクリーンアップする必要があります。未完了リクエストのキャ
ンセルと、インスタンスの削除の両方を行うことが重要です。リクエストをキャンセルするだけでは
インスタンスは終了しないので、引き続きお客様への課金が発生することになります。インスタンス
を削除すると、スポットリクエストがキャンセルされることもありますが、場合によっては (持続的
入札を使用した場合など)、インスタンスを終了しただけでは、リクエストが再度受理されるのを停
止できないことがあります。したがって、アクティブな入札のキャンセルと実行中インスタンスの削
除の両方を行うことをお勧めします。

次のコードでは、リクエストをキャンセルする方法を示します。

try {
 // Cancel requests.
 CancelSpotInstanceRequestsRequest cancelRequest =
 new CancelSpotInstanceRequestsRequest(spotInstanceRequestIds);
 ec2.cancelSpotInstanceRequests(cancelRequest);
} catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error cancelling instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

稼働中のインスタンスを終了させるには、そのインスタンスを起動したリクエストに関連付けられて
いるインスタンス ID が必要です。次のコード例は、前に示したインスタンスをモニタリングするた

チュートリアル: Amazon EC2 スポットインスタンス 102

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

めのコードに ArrayList を追加したものです。この中に、describeInstance レスポンスに関連
付けられているインスタンス ID を格納します。

// Create a variable that will track whether there are any requests
// still in the open state.
boolean anyOpen;
// Initialize variables.
ArrayList<String> instanceIds = new ArrayList<String>();

do {
 // Create the describeRequest with all of the request ids to
 // monitor (e.g. that we started).
 DescribeSpotInstanceRequestsRequest describeRequest = new
 DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 // Initialize the anyOpen variable to false, which assumes there
 // are no requests open unless we find one that is still open.
 anyOpen = false;

 try {
 // Retrieve all of the requests we want to monitor.
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);

 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // Look through each request and determine if they are all
 // in the active state.
 for (SpotInstanceRequest describeResponse : describeResponses) {
 // If the state is open, it hasn't changed since we
 // attempted to request it. There is the potential for
 // it to transition almost immediately to closed or
 // cancelled so we compare against open instead of active.
 if (describeResponse.getState().equals("open")) {
 anyOpen = true; break;
 }
 // Add the instance id to the list we will
 // eventually terminate.
 instanceIds.add(describeResponse.getInstanceId());
 }
 } catch (AmazonServiceException e) {

チュートリアル: Amazon EC2 スポットインスタンス 103

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 // If we have an exception, ensure we don't break out
 // of the loop. This prevents the scenario where there
 // was blip on the wire.
 anyOpen = true;
 }

 try {
 // Sleep for 60 seconds.
 Thread.sleep(60*1000);
 } catch (Exception e) {
 // Do nothing because it woke up early.
 }
} while (anyOpen);

この ArrayList に格納されているインスタンス ID を使用して、稼働中のインスタンスを終了させ
ます。コードは次のとおりです。

try {
 // Terminate instances.
 TerminateInstancesRequest terminateRequest = new
 TerminateInstancesRequest(instanceIds);
 ec2.terminateInstances(terminateRequest);
} catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

ステップの集約

これまでに説明したステップは、よりオブジェクト指向的なアプローチをとって 1 つに集約するこ
とができます。このステップとは、EC2 クライアントの初期化、スポットリクエストの提出、ス
ポットリクエストがオープン状態でなくなったかどうかの特定、および未完了のスポットリクエスト
や関連するインスタンスのクリーンアップです。これらのすべてを実行する、Requests というク
ラスを作成します。

さらに、GettingStartedApp というクラスも作成します。ここにメインメソッドがあり、ここで
高レベルの関数呼び出しを実行します。具体的には、既に説明した Requests オブジェクトを初期

チュートリアル: Amazon EC2 スポットインスタンス 104

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

化します。スポットインスタンスリクエストを提出します。その後は、スポットリクエストが「アク
ティブ」状態になるまで待ちます。最後に、リクエストとインスタンスをクリーンアップします。

この例の完全なソースコードは、GitHub で確認またはダウンロードできます。

お疲れ様でした。これで、AWS SDK for Java を使用したスポットインスタンスソフトウェア開発の
入門チュートリアルは終了です。

次のステップ

チュートリアル: Amazon EC2 スポットリクエストの高度な管理に進みます。

チュートリアル: Amazon EC2 スポットリクエストの高度な管理

Amazon EC2 スポットインスタンスとは、Amazon EC2 の未使用キャパシティに対してお客様から
価格を提示していただき、入札値段がその時点のスポット料金を上回っている限り、お客様がイン
スタンスを実行できるというシステムです。Amazon EC2 のスポット料金は、需要と供給に応じて
定期的に変動します。スポットインスタンスの詳細については、Amazon EC2 Linux インスタンス用
ユーザーガイドのスポットインスタンスを参照してください。

前提条件

このチュートリアルを使用するには、AWS SDK for Java がインストールされており、基本イン
ストール前提条件を満たしている必要があります。詳細については、「Set up the AWS SDK for
Java」を参照してください。

認証情報のセットアップ

このサンプルコードの使用を開始するには、AWS 認証情報を設定する必要があります。その方法に
ついては、開発用の AWS 認証情報とリージョンのセットアップを参照してください。

Note

IAM ユーザーの認証情報を使用してこれらの値を指定することをお勧めします。詳細につい
ては、AWS にサインアップし、IAM ユーザーを作成するを参照してください。

これで設定が完了したので、例に示すコードを使用できるようになります。

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 105

https://github.com/aws/aws-sdk-java/tree/master/src/samples/AmazonEC2SpotInstances-GettingStarted
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

セキュリティグループのセットアップ

セキュリティグループとは、ファイアウォールとしての役割を果たすものであり、インスタンスのグ
ループに対してどのトラフィックの送受信を許可するかを制御します。デフォルトでは、インスタン
スの起動時にセキュリティグループは何も設定されていません。つまり、着信 IP トラフィックは、
どの TCP ポートであってもすべて拒否されます。したがって、ここでは、スポットリクエストを提
出する前に、必要なネットワークトラフィックを許可するセキュリティグループをセットアップす
ることにします。このチュートリアルの目的に合わせて、ここでは新しいセキュリティグループを
「GettingStarted」という名前で作成します。このグループでは、自分のアプリケーションを実行す
る IP アドレスからの Secure Shell (SSH) トラフィックを許可します。新しいセキュリティグループ
をセットアップするには、次に示すコードサンプルをインクルードするか実行する必要があります。
このコードは、セキュリティグループをプログラムからセットアップするためのものです。

AmazonEC2 クライアントオブジェクトを作成した後で、CreateSecurityGroupRequest オブ
ジェクトを作成し、「GettingStarted」という名前と、セキュリティグループの説明を指定します。
その後で、ec2.createSecurityGroup API を呼び出してグループを作成します。

このグループにアクセスできるようにするために、ipPermission オブジェクトを作成しま
す。IP アドレス範囲は、ローカルコンピュータのサブネット (CIDR 表現) で設定します。IP
アドレスの「/10」というサフィックスが、指定した IP アドレスのサブネットを示します。ま
た、ipPermission オブジェクトを設定して TCP プロトコルとポート 22 (SSH) を指定します。最
後のステップは、ec2 .authorizeSecurityGroupIngress を呼び出すことです。このときに、
作成したセキュリティグループの名前と ipPermission オブジェクトを指定します。

(次に示すコードは、最初のチュートリアルで使用したのと同じものです)

// Create the AmazonEC2Client object so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withCredentials(credentials)
 .build();

// Create a new security group.
try {
 CreateSecurityGroupRequest securityGroupRequest =
 new CreateSecurityGroupRequest("GettingStartedGroup",
 "Getting Started Security Group");
 ec2.createSecurityGroup(securityGroupRequest);
} catch (AmazonServiceException ase) {
 // Likely this means that the group is already created, so ignore.
 System.out.println(ase.getMessage());
}

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 106

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

String ipAddr = "0.0.0.0/0";

// Get the IP of the current host, so that we can limit the Security Group
// by default to the ip range associated with your subnet.
try {
 // Get IP Address
 InetAddress addr = InetAddress.getLocalHost();
 ipAddr = addr.getHostAddress()+"/10";
}
catch (UnknownHostException e) {
 // Fail here...
}

// Create a range that you would like to populate.
ArrayList<String> ipRanges = new ArrayList<String>();
ipRanges.add(ipAddr);

// Open up port 22 for TCP traffic to the associated IP from
// above (e.g. ssh traffic).
ArrayList<IpPermission> ipPermissions = new ArrayList<IpPermission> ();
IpPermission ipPermission = new IpPermission();
ipPermission.setIpProtocol("tcp");
ipPermission.setFromPort(new Integer(22));
ipPermission.setToPort(new Integer(22));
ipPermission.setIpRanges(ipRanges);
ipPermissions.add(ipPermission);

try {
 // Authorize the ports to the used.
 AuthorizeSecurityGroupIngressRequest ingressRequest =
 new AuthorizeSecurityGroupIngressRequest(
 "GettingStartedGroup",ipPermissions);
 ec2.authorizeSecurityGroupIngress(ingressRequest);
}
catch (AmazonServiceException ase) {
 // Ignore because this likely means the zone has already
 // been authorized.
 System.out.println(ase.getMessage());
}

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 107

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

このコードサンプル全体を見るには、advanced.CreateSecurityGroupApp.java コードサンプ
ルを参照してください。このアプリケーションを実行して新しいセキュリティグループを作成する必
要があるのは 1 回のみです。

Note

また、AWS Toolkit for Eclipse を使用してセキュリティグループを作成することもできま
す。詳細については、「AWS Toolkit for Eclipse ユーザーガイド」の「Managing Security
Groups from AWS Cost Explorer」を参照してください。

スポットインスタンスリクエスト作成の詳細なオプション

チュートリアル: Amazon EC2 スポットインスタンスで説明したように、リクエストを作成してイン
スタンスタイプ、Amazon Machine Image (AMI)、および最高入札価格を指定する必要があります。

初めに、RequestSpotInstanceRequest オブジェクトを作成します。このリクエスト
オブジェクトには、必要なインスタンスの数と入札価格が必要です。さらに、リクエスト
の LaunchSpecification も設定する必要があります。この内容は、インスタンスタイ
プ、AMI ID、および使用するセキュリティグループです。リクエストの内容が入力された
ら、requestSpotInstances オブジェクトの AmazonEC2Client メソッドを呼び出します。ス
ポットインスタンスをリクエストする方法の例を次に示します。

(次に示すコードは、最初のチュートリアルで使用したのと同じものです)

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 108

https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

永続リクエストと 1 回限りのリクエスト

スポットリクエストを作成するときは、複数の任意パラメータを指定できます。最初のパラメータ
は、そのリクエストが 1 回限りか持続的なものかを指定するためのものです。デフォルトでは、リ
クエストは 1 回限りとなります。1 回限りのリクエストが受理されるのは 1 回だけであり、リクエ
ストしたインスタンスが終了すると、そのリクエストはクローズ済みとなります。永続リクエスト
は、同じリクエストで実行されているスポットインスタンスがない限り、常に受理の対象となりま
す。リクエストのタイプを指定するには、スポットリクエストの Type を設定します。このことを行
うコードを次に示します。

// Retrieves the credentials from an AWSCredentials.properties file.
AWSCredentials credentials = null;
try {
 credentials = new PropertiesCredentials(
 GettingStartedApp.class.getResourceAsStream("AwsCredentials.properties"));
}
catch (IOException e1) {
 System.out.println(
 "Credentials were not properly entered into AwsCredentials.properties.");
 System.out.println(e1.getMessage());
 System.exit(-1);
}

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 109

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

RequestSpotInstancesRequest requestRequest =
 new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set the type of the bid to persistent.
requestRequest.setType("persistent");

// Set up the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

リクエストの期間の制限

また、リクエストの有効期間もオプションで指定できます。その期間の開始時点と終了時点の両方を
指定できます。デフォルトでは、スポットリクエストが受理の対象とみなされるのは、作成された時
点から、そのリクエストが受理されるか作成者によってキャンセルされるまでの間となります。ただ
し、必要であれば、作成時に有効期間を指定できます。この期間を指定する方法の例を次のコードに
示します。

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 110

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set the valid start time to be two minutes from now.
Calendar cal = Calendar.getInstance();
cal.add(Calendar.MINUTE, 2);
requestRequest.setValidFrom(cal.getTime());

// Set the valid end time to be two minutes and two hours from now.
cal.add(Calendar.HOUR, 2);
requestRequest.setValidUntil(cal.getTime());

// Set up the specifications of the launch. This includes
// the instance type (e.g. t1.micro)

// and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon
// Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType("t1.micro");

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);

Amazon EC2 スポットインスタンスリクエストのグループ化

スポットインスタンスリクエストには、いくつか異なる方法でグループ化するオプションがありま
す。ここでは、起動グループ、アベイラビリティーゾーングループ、およびプレイスメントグループ
の利点について説明します。

リクエストしたスポットインスタンスがすべて同時に起動され、同時に終了するようにしたい場合
は、起動グループを利用します。起動グループとは、1 つにまとめる入札のグループに付けられるラ

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 111

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ベルです。同じ起動グループ内のインスタンスはすべて、同時に起動されて同時に終了します。な
お、起動グループ内のインスタンスが受理済みの場合に、その同じ起動グループで起動される新しい
インスタンスも受理されるという保証はありません。起動グループを設定する方法の例を次のコード
サンプルで示します。

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 5 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(5));

// Set the launch group.
requestRequest.setLaunchGroup("ADVANCED-DEMO-LAUNCH-GROUP");

// Set up the specifications of the launch. This includes
// the instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

1 つのリクエスト内のすべてのインスタンスが同じアベイラビリティーゾーン内で起動されるように
する必要があるが、どのアベイラビリティーゾーンでもかまわない場合は、アベイラビリティーゾー
ングループを利用します。アベイラビリティーゾーングループとは、同じアベイラビリティーゾーン
にまとめるインスタンスのグループに付けられるラベルです。同じアベイラビリティーゾーングルー

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 112

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

プに属し、同時に受理されたインスタンスはすべて、同じアベイラビリティーゾーンで起動されま
す。アベイラビリティーゾーングループを設定する方法の例を次に示します。

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 5 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(5));

// Set the availability zone group.
requestRequest.setAvailabilityZoneGroup("ADVANCED-DEMO-AZ-GROUP");

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

リクエストするスポットインスタンスをどのアベイラビリティーゾーンで起動したいかを指定できま
す。次のコードサンプルでは、アベイラビリティーゾーンの設定方法を示します。

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 113

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Set up the availability zone to use. Note we could retrieve the
// availability zones using the ec2.describeAvailabilityZones() API. For
// this demo we will just use us-east-1a.
SpotPlacement placement = new SpotPlacement("us-east-1b");
launchSpecification.setPlacement(placement);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

最後のプレイスメントグループは、ハイパフォーマンスコンピューティング (HPC) スポットインス
タンス (クラスターコンピュートインスタンスやクラスター GPU インスタンスなど) を使用する場合
に指定できます。プレイスメントグループを利用すると、低レイテンシー、高帯域幅でインスタンス
間を接続できます。プレイスメントグループを設定する方法の例を次に示します。

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 114

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.

LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Set up the placement group to use with whatever name you desire.
// For this demo we will just use "ADVANCED-DEMO-PLACEMENT-GROUP".
SpotPlacement placement = new SpotPlacement();
placement.setGroupName("ADVANCED-DEMO-PLACEMENT-GROUP");
launchSpecification.setPlacement(placement);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

このセクションで示したパラメータはいずれも、省略可能です。また、これらのパラメータのほと
んど (入札が 1 回限りであるか永続的であるかを除く) により、入札が履行される可能性を低減でき
ることを理解することも重要です。したがって、これらのオプションは、そのオプションが必要な
場合に限って使用することが重要です。これまでに示したコード例すべてを 1 つにまとめたものが
com.amazonaws.codesamples.advanced.InlineGettingStartedCodeSampleApp.java
クラスの中にあります。

中断または終了の後もルートパーティションを永続化する方法

スポットインスタンスの中断を管理する最も簡単な方法は、データのチェックポイントを作成して
Amazon Elastic Block Store (Amazon Amazon EBS) ボリュームに保存するという処理を定期的に行

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 115

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

うことです。チェックポイントを定期的に作成しておくと、中断が発生したときでも、データが失
われるのは最後のチェックポイント以降に作成された分だけになります（その間に他の非べき等アク
ションが実行されていないことを前提とします）。このプロセスを容易にするには、スポットリクエ
ストを設定するときに、中断時や終了時にルートパーティションを削除しないことを指定します。こ
のシナリオを実現する方法を示す新しいコードが、次の例に挿入されています。

追加されたコードの中では、BlockDeviceMapping オブジェクトを作成し、対応する Amazon
Elastic Block Store (Amazon EBS) を Amazon EBS オブジェクトに設定しています (このオブジェ
クトは、スポットインスタンスが終了しても削除しない (not) よう設定済みです)。その後で、この
BlockDeviceMapping をマッピングの ArrayList に追加し、起動指定の中でこのマッピングを指定
します。

// Retrieves the credentials from an AWSCredentials.properties file.
AWSCredentials credentials = null;
try {
 credentials = new PropertiesCredentials(
 GettingStartedApp.class.getResourceAsStream("AwsCredentials.properties"));
}
catch (IOException e1) {
 System.out.println(
 "Credentials were not properly entered into AwsCredentials.properties.");
 System.out.println(e1.getMessage());
 System.exit(-1);
}

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 116

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Create the block device mapping to describe the root partition.
BlockDeviceMapping blockDeviceMapping = new BlockDeviceMapping();
blockDeviceMapping.setDeviceName("/dev/sda1");

// Set the delete on termination flag to false.
EbsBlockDevice ebs = new EbsBlockDevice();
ebs.setDeleteOnTermination(Boolean.FALSE);
blockDeviceMapping.setEbs(ebs);

// Add the block device mapping to the block list.
ArrayList<BlockDeviceMapping> blockList = new ArrayList<BlockDeviceMapping>();
blockList.add(blockDeviceMapping);

// Set the block device mapping configuration in the launch specifications.
launchSpecification.setBlockDeviceMappings(blockList);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

このボリュームがインスタンスの起動時に再度接続されるようにしたい場合は、ブロックデバイス
マッピング設定を使用することもできます。別の方法としては、ルート以外のパーティションを接
続する場合に、どの Amazon Amazon EBS ボリュームをスポットインスタンス再開後にインスタン
スに接続するかを指定できます。このようにするには、スナップショット ID を EbsBlockDevice
オブジェクトで指定し、代替デバイス名を BlockDeviceMapping オブジェクトで指定します。ブ
ロックデバイスマッピングを利用すると、インスタンスのブートストラップが容易になります。

ルートパーティションを使用して重要なデータのチェックポイントを作成しておくと、インスタンス
の中断の可能性を管理するうえで大いに役立ちます。中断の可能性を管理するその他の方法について
は、中断の管理についての動画をご覧ください。

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 117

https://www.youtube.com/watch?feature=player_embedded&v=wcPNnUo60pc

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

スポットリクエストとインスタンスにタグを付加する方法

Amazon EC2 リソースにタグを追加すると、クラウドインフラストラクチャの管理を簡略化できま
す。タグとは、メタデータの形を取るものであり、わかりやすい名前を付けるのに使用できます。
また、検索がしやすくなり、複数ユーザー間での共同作業にも役立ちます。タグは、プロセスのス
クリプトや各部分の自動化にも使用できます。Amazon EC2 リソースのタグ付けの詳細について
は、Amazon EC2 Linux インスタンス用ユーザーガイドのタグの使用を参照してください。

リクエストのタグ付け

使用するスポットリクエストにタグを追加するには、リソースをリクエストした後でタグを付ける必
要があります。requestSpotInstances() からの戻り値によって、タグ付けのためのスポットリ
クエスト ID を取得する際に使用できる RequestSpotInstancesResult オブジェクトが提供されます。

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);
List<SpotInstanceRequest> requestResponses = requestResult.getSpotInstanceRequests();

// A list of request IDs to tag
ArrayList<String> spotInstanceRequestIds = new ArrayList<String>();

// Add the request ids to the hashset, so we can determine when they hit the
// active state.
for (SpotInstanceRequest requestResponse : requestResponses) {
 System.out.println("Created Spot Request:
 "+requestResponse.getSpotInstanceRequestId());
 spotInstanceRequestIds.add(requestResponse.getSpotInstanceRequestId());
}

ID を取得したら、CreateTagsRequest に ID を追加し、Amazon EC2 クライアントの
createTags() メソッドを呼び出してリクエストにタグを追加できます。

// The list of tags to create
ArrayList<Tag> requestTags = new ArrayList<Tag>();
requestTags.add(new Tag("keyname1","value1"));

// Create the tag request
CreateTagsRequest createTagsRequest_requests = new CreateTagsRequest();
createTagsRequest_requests.setResources(spotInstanceRequestIds);
createTagsRequest_requests.setTags(requestTags);

// Tag the spot request

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 118

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RequestSpotInstancesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateTagsRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

try {
 ec2.createTags(createTagsRequest_requests);
}
catch (AmazonServiceException e) {
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

インスタンスにタグを付ける

同様に、スポットリクエスト自体に対し、インスタンスの作成後 1 つのインスタンスのみにタグを
追加でき、またそのタグはスポットリクエストに一致する場合のみ追加されます (オープン状態では
なくなります)。

Amazon EC2 クライアントの describeSpotInstanceRequests()メソッドを
DescribeSpotInstanceRequestsRequest オブジェクトとともに呼び出し、リクエストのステータス
を確認できます。返される DescribeSpotInstanceRequestsResult オブジェクトには、スポットリク
エストのステータスをクエリし、open 状態でなくなったときにインスタンス ID を取得するために
使用できる SpotInstanceRequest オブジェクトのリストが含まれています。

スポットリクエストがオープン状態でなくなると、SpotInstanceRequest メソッドを呼び出すこ
とで、そのインスタンス ID を getInstanceId() オブジェクトから取得できます。

boolean anyOpen; // tracks whether any requests are still open

// a list of instances to tag.
ArrayList<String> instanceIds = new ArrayList<String>();

do {
 DescribeSpotInstanceRequestsRequest describeRequest =
 new DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 anyOpen=false; // assume no requests are still open

 try {
 // Get the requests to monitor
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 119

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSpotInstanceRequestsRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSpotInstanceRequestsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/SpotInstanceRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // are any requests open?
 for (SpotInstanceRequest describeResponse : describeResponses) {
 if (describeResponse.getState().equals("open")) {
 anyOpen = true;
 break;
 }
 // get the corresponding instance ID of the spot request
 instanceIds.add(describeResponse.getInstanceId());
 }
 }
 catch (AmazonServiceException e) {
 // Don't break the loop due to an exception (it may be a temporary issue)
 anyOpen = true;
 }

 try {
 Thread.sleep(60*1000); // sleep 60s.
 }
 catch (Exception e) {
 // Do nothing if the thread woke up early.
 }
} while (anyOpen);

ここで、返されるインスタンスにタグを追加できます。

// Create a list of tags to create
ArrayList<Tag> instanceTags = new ArrayList<Tag>();
instanceTags.add(new Tag("keyname1","value1"));

// Create the tag request
CreateTagsRequest createTagsRequest_instances = new CreateTagsRequest();
createTagsRequest_instances.setResources(instanceIds);
createTagsRequest_instances.setTags(instanceTags);

// Tag the instance
try {
 ec2.createTags(createTagsRequest_instances);
}
catch (AmazonServiceException e) {

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 120

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 // Write out any exceptions that may have occurred.
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

スポットリクエストのキャンセルとインスタンスの削除

スポットリクエストのキャンセル

スポットインスタンスリクエストをキャンセルするには、Amazon EC2 クライアントの
cancelSpotInstanceRequests を CancelSpotInstanceRequestsRequest オブジェクトとともに
呼び出します。

try {
 CancelSpotInstanceRequestsRequest cancelRequest = new
 CancelSpotInstanceRequestsRequest(spotInstanceRequestIds);
 ec2.cancelSpotInstanceRequests(cancelRequest);
} catch (AmazonServiceException e) {
 System.out.println("Error cancelling instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

スポットインスタンスの削除

Amazon EC2 クライアントの terminateInstances() メソッドに ID を渡すことで、実行中のす
べてのスポットインスタンスを終了できます。

try {
 TerminateInstancesRequest terminateRequest = new
 TerminateInstancesRequest(instanceIds);
 ec2.terminateInstances(terminateRequest);
} catch (AmazonServiceException e) {
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());

チュートリアル: Amazon EC2 スポットリクエストの高度な管理 121

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CancelSpotInstanceRequestsRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 System.out.println("Request ID: " + e.getRequestId());
}

ステップの集約

これまでに説明したステップは、よりオブジェクト指向的なアプローチをとって 1 つのクラスに集
約し、利便性を高めることができます。Requests という名前のクラスをインスタンス化すると、
これらのアクションを実行できます。さらに、GettingStartedApp というクラスも作成します。
ここにメインメソッドがあり、ここで高レベルの関数呼び出しを実行します。

この例の完全なソースコードは、GitHub で確認またはダウンロードできます。

お疲れ様でした。これで、AWS SDK for Java を使用してスポットインスタンスソフトウェアを開発
するための、高度なリクエスト機能のチュートリアルは終了です。

Amazon EC2 インスタンスの管理

インスタンスを作成する

新しい Amazon EC2 インスタンスを作成するには、AmazonEC2Client の runInstances メソッ
ドを呼び出して、使用する Amazon マシンイメージ (AMI)、およびインスタンスタイプを含む
RunInstancesRequest を指定します。

インポート

import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.InstanceType;
import com.amazonaws.services.ec2.model.RunInstancesRequest;
import com.amazonaws.services.ec2.model.RunInstancesResult;
import com.amazonaws.services.ec2.model.Tag;

コード

RunInstancesRequest run_request = new RunInstancesRequest()
 .withImageId(ami_id)
 .withInstanceType(InstanceType.T1Micro)
 .withMaxCount(1)
 .withMinCount(1);

RunInstancesResult run_response = ec2.runInstances(run_request);

Amazon EC2 インスタンスの管理 122

https://github.com/aws/aws-sdk-java/tree/master/src/samples/AmazonEC2SpotInstances-Advanced
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

String reservation_id =
 run_response.getReservation().getInstances().get(0).getInstanceId();

完全な例をご覧ください。

インスタンスの起動

Amazon EC2 インスタンスを起動するには、AmazonEC2Client の startInstances メソッドを呼
び出して、開始するインスタンスの ID を含む StartInstancesRequest 指定します。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.StartInstancesRequest;

コード

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

StartInstancesRequest request = new StartInstancesRequest()
 .withInstanceIds(instance_id);

ec2.startInstances(request);

完全な例をご覧ください。

インスタンスの停止

Amazon EC2 インスタンスを停止するには、AmazonEC2Client の stopInstances メソッドを呼び
出して、停止するインスタンスの ID を含む StopInstancesRequest 指定します。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.StopInstancesRequest;

コード

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

Amazon EC2 インスタンスの管理 123

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/StartInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/StartStopInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/StopInstancesRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

StopInstancesRequest request = new StopInstancesRequest()
 .withInstanceIds(instance_id);

ec2.stopInstances(request);

完全な例をご覧ください。

インスタンスの再起動

Amazon EC2 インスタンスを再起動するには、AmazonEC2Client の rebootInstancesメソッドを
呼び出して、再起動するインスタンスの ID を含む RebootInstancesRequest を指定します。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.RebootInstancesRequest;
import com.amazonaws.services.ec2.model.RebootInstancesResult;

コード

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

RebootInstancesRequest request = new RebootInstancesRequest()
 .withInstanceIds(instance_id);

RebootInstancesResult response = ec2.rebootInstances(request);

完全な例をご覧ください。

インスタンスの説明

インスタンスをリスト表示するには、DescribeInstancesRequest を作成し、AmazonEC2Client の
describeInstances メソッドを呼び出します。お客様のアカウントとリージョンの インスタン
スをリスト表示するのに使用できる DescribeInstancesResultAmazon EC2 オブジェクトが返されま
す。

インスタンスは予約ごとにグループ化されています。それぞれの予約は、インスタンスを起動
した startInstances の呼び出しに対応しています。インスタンスをリスト表示するには、ま

Amazon EC2 インスタンスの管理 124

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/StartStopInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RebootInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/RebootInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeInstancesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeInstancesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeInstancesResult.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ず DescribeInstancesResult クラスの getReservations' method, and then call
`getInstances予約オブジェクトごとにメソッド名 getInstances を呼び出します。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeInstancesRequest;
import com.amazonaws.services.ec2.model.DescribeInstancesResult;
import com.amazonaws.services.ec2.model.Instance;
import com.amazonaws.services.ec2.model.Reservation;

コード

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();
boolean done = false;

DescribeInstancesRequest request = new DescribeInstancesRequest();
while(!done) {
 DescribeInstancesResult response = ec2.describeInstances(request);

 for(Reservation reservation : response.getReservations()) {
 for(Instance instance : reservation.getInstances()) {
 System.out.printf(
 "Found instance with id %s, " +
 "AMI %s, " +
 "type %s, " +
 "state %s " +
 "and monitoring state %s",
 instance.getInstanceId(),
 instance.getImageId(),
 instance.getInstanceType(),
 instance.getState().getName(),
 instance.getMonitoring().getState());
 }
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }

Amazon EC2 インスタンスの管理 125

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Reservation.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

}

結果はページ分割されます。さらに結果を取得するには、結果オブジェクトの getNextToken メ
ソッドから返された値を元のリクエストオブジェクトの setNextToken メソッドに渡した後、次の
describeInstances の呼び出しで同じリクエストオブジェクトを使用します。

完全な例をご覧ください。

インスタンスの監視

CPU やネットワークの使用率、使用可能なメモリ、ディスクの残り容量など、Amazon EC2 インス
タンスのさまざまな側面を監視できます。インスタンスのモニタリングの詳細については、「Linux
インスタンス用 Amazon EC2 ユーザーガイド」の「Monitoring Amazon EC2」を参照してくださ
い。

インスタンスのモニタリングを開始するには、モニタリングするインスタンスの ID で
MonitorInstancesRequest を作成し、AmazonEC2Client の monitorInstances メソッドに渡しま
す。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.MonitorInstancesRequest;

コード

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

MonitorInstancesRequest request = new MonitorInstancesRequest()
 .withInstanceIds(instance_id);

ec2.monitorInstances(request);

完全な例をご覧ください。

インスタンス監視の停止

インスタンスのモニタリングを停止するには、モニタリングを停止するインスタンスの ID で
UnmonitorInstancesRequest を作成し、AmazonEC2Client の unmonitorInstances メソッドに渡
します。

Amazon EC2 インスタンスの管理 126

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeInstances.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_ec2.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/MonitorInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/MonitorInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/UnmonitorInstancesRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.UnmonitorInstancesRequest;

コード

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

UnmonitorInstancesRequest request = new UnmonitorInstancesRequest()
 .withInstanceIds(instance_id);

ec2.unmonitorInstances(request);

完全な例をご覧ください。

詳細情報

• Amazon EC2 API リファレンスの RunInstances

• Amazon EC2 API リファレンスの DescribeInstances

• Amazon EC2 API リファレンスの StartInstances

• Amazon EC2 API リファレンスの StopInstances

• Amazon EC2 API リファレンスの RebootInstances

• Amazon EC2 API リファレンスの MonitorInstances

• Amazon EC2 API リファレンスの UnmonitorInstances

Amazon EC2 の Elastic IP アドレスの使用

EC2-Classic は廃止されます

Warning

2022 年 8 月 15 日に、EC2-Classic の提供を終了しｈます。EC2-Classic は、VPC への移行
をお勧めします。詳細については、ブログ記事EC2-Classic-Classic Networking is Retiring –
Here's How to Prepareを参照してください。

Amazon EC2 の Elastic IP アドレスの使用 127

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/MonitorInstance.java
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RunInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_StartInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_StopInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RebootInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_MonitorInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_UnmonitorInstances.html
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Elastic IP アドレスの割り当て

Elastic IP アドレスを使用するにはまずアカウントに 1 つ割り当ててから、それをインスタンスまた
はネットワークインターフェイスに関連付けます。

Elastic IP アドレスを割り当てるには、ネットワークタイプ (Classic EC2 または VPC) が含まれる
AllocateAddressRequest オブジェクトを使用して AmazonEC2Client の allocateAddress メソッ
ドを呼び出します。

返される AllocateAddressResult には、AssociateAddressRequest のアロケーション ID とインスタ
ンス ID を AmazonEC2Client の associateAddress メソッドに渡すことで、アドレスをインスタ
ンスに関連付けるために使用できるアロケーション ID が含まれます。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.AllocateAddressRequest;
import com.amazonaws.services.ec2.model.AllocateAddressResult;
import com.amazonaws.services.ec2.model.AssociateAddressRequest;
import com.amazonaws.services.ec2.model.AssociateAddressResult;
import com.amazonaws.services.ec2.model.DomainType;

コード

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

AllocateAddressRequest allocate_request = new AllocateAddressRequest()
 .withDomain(DomainType.Vpc);

AllocateAddressResult allocate_response =
 ec2.allocateAddress(allocate_request);

String allocation_id = allocate_response.getAllocationId();

AssociateAddressRequest associate_request =
 new AssociateAddressRequest()
 .withInstanceId(instance_id)
 .withAllocationId(allocation_id);

AssociateAddressResult associate_response =

Amazon EC2 の Elastic IP アドレスの使用 128

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AllocateAddressRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AllocateAddressResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AssociateAddressRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 ec2.associateAddress(associate_request);

完全な例をご覧ください。

Elastic IP アドレスの説明

アカウントに割り当てられた Elastic IP アドレスを一覧表示するには AmazonEC2Client の
describeAddresses メソッドを呼び出します。返される DescribeAddressesResult を使用して、
アカウントの Elastic IP アドレスを表す Address オブジェクトのリストを取得できます。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.Address;
import com.amazonaws.services.ec2.model.DescribeAddressesResult;

コード

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DescribeAddressesResult response = ec2.describeAddresses();

for(Address address : response.getAddresses()) {
 System.out.printf(
 "Found address with public IP %s, " +
 "domain %s, " +
 "allocation id %s " +
 "and NIC id %s",
 address.getPublicIp(),
 address.getDomain(),
 address.getAllocationId(),
 address.getNetworkInterfaceId());
}

完全な例をご覧ください。

Elastic IP アドレスを解放する

Elastic IP アドレスを解放するには、AmazonEC2Client の releaseAddress メソッドを呼び出し
て、解放する Elastic IP アドレスのアロケーション ID を含む ReleaseAddressRequest を渡します。

Amazon EC2 の Elastic IP アドレスの使用 129

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/AllocateAddress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAddressesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Address.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeAddresses.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/ReleaseAddressRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.ReleaseAddressRequest;
import com.amazonaws.services.ec2.model.ReleaseAddressResult;

コード

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

ReleaseAddressRequest request = new ReleaseAddressRequest()
 .withAllocationId(alloc_id);

ReleaseAddressResult response = ec2.releaseAddress(request);

Elastic IP アドレスを解放すると、その IP アドレスは AWS IP アドレスプールに解放され、後で使用
できないことがあります。DNS レコード、およびそのアドレスと通信するすべてのサーバーまたは
デバイスを更新してください。既に解放済みの Elastic IP アドレスを解放しようとした場合に、その
アドレスが既に別の AWS アカウント に割り当てられていると AuthFailure エラーが発生します。

EC2-Classic またはデフォルト VPC を使用している場合、Elastic IP アドレスを解放すると関連付け
られているすべてのインスタンスからの関連付けが自動的に解除されます。Elastic IP アドレスを開
放せずに関連付けを解除するには、AmazonEC2Client の disassociateAddress メソッドを使用
します。

デフォルト以外の VPC を使用している場合は、開放しようとする前に必ず
disassociateAddress を使用して Elastic IP アドレスの関連付けを解除する必要があります。そ
うでない場合は、Amazon EC2 からエラー (InvalidIPAddress.InUse) が返ります。

完全な例をご覧ください。

詳細情報

• Amazon EC2 Linux インスタンス用ユーザーガイドの Elastic IP アドレス

• Amazon EC2 API リファレンスの AllocateAddress

• Amazon EC2 API リファレンスの DescribeAddresses

• Amazon EC2 API リファレンスの ReleaseAddress

Amazon EC2 の Elastic IP アドレスの使用 130

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/ReleaseAddress.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AllocateAddress.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAddresses.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_ReleaseAddress.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

リージョンとアベイラビリティーゾーンを使用する

リージョンの詳細を表示する

アカウントに使用可能なリージョンを一覧表示するには、AmazonEC2Client の describeRegions
メソッドを呼び出します。DescribeRegionsResult が返されます。返されたオブジェクトの
getRegions メソッドを呼び出して、各リージョンを表す Region オブジェクトの一覧を取得しま
す。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeRegionsResult;
import com.amazonaws.services.ec2.model.Region;
import com.amazonaws.services.ec2.model.AvailabilityZone;
import com.amazonaws.services.ec2.model.DescribeAvailabilityZonesResult;

コード

DescribeRegionsResult regions_response = ec2.describeRegions();

for(Region region : regions_response.getRegions()) {
 System.out.printf(
 "Found region %s " +
 "with endpoint %s",
 region.getRegionName(),
 region.getEndpoint());
}

完全な例をご覧ください。

アベイラビリティーゾーンの詳細を表示する

アカウントに使用可能な各アベイラビリティーゾーンを一覧表示するには、AmazonEC2Client の
describeAvailabilityZones メソッドを呼び出します。DescribeAvailabilityZonesResult が返さ
れます。それの getAvailabilityZones メソッドを呼び出して、各アベイラビリティーゾーンを
表す AvailabilityZone オブジェクトの一覧を取得します。

インポート

リージョンとアベイラビリティーゾーンを使用する 131

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeRegionsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Region.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeRegionsAndZones.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAvailabilityZonesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AvailabilityZone.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeRegionsResult;
import com.amazonaws.services.ec2.model.Region;
import com.amazonaws.services.ec2.model.AvailabilityZone;
import com.amazonaws.services.ec2.model.DescribeAvailabilityZonesResult;

コード

DescribeAvailabilityZonesResult zones_response =
 ec2.describeAvailabilityZones();

for(AvailabilityZone zone : zones_response.getAvailabilityZones()) {
 System.out.printf(
 "Found availability zone %s " +
 "with status %s " +
 "in region %s",
 zone.getZoneName(),
 zone.getState(),
 zone.getRegionName());
}

完全な例をご覧ください。

アカウントの説明

アカウントの詳細を表示するには、AmazonEC2Client の describeAccountAttributes メソッド
を呼び出します。このメソッドは、DescribeAccountAttributesResult オブジェクトを返します。この
オブジェクト getAccountAttributes メソッドを呼び出して、AccountAttribute オブジェクトの
リストを取得します。リストを反復処理して、AccountAttribute オブジェクトを取得できます。

アカウントの属性値は、AccountAttribute オブジェクトの getAttributeValues メソッドを呼び
出すことで取得できます。このメソッドは、AccountAttributeValue オブジェクトのリストを返しま
す。この 2 番目のリストを反復処理して、属性の値を表示できます (次のコード例を参照)。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.AccountAttributeValue;

リージョンとアベイラビリティーゾーンを使用する 132

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeRegionsAndZones.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAccountAttributesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttributeValue.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

import com.amazonaws.services.ec2.model.DescribeAccountAttributesResult;
import com.amazonaws.services.ec2.model.AccountAttribute;
import java.util.List;
import java.util.ListIterator;

Code

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

try{
 DescribeAccountAttributesResult accountResults = ec2.describeAccountAttributes();
 List<AccountAttribute> accountList = accountResults.getAccountAttributes();

 for (ListIterator iter = accountList.listIterator(); iter.hasNext();) {

 AccountAttribute attribute = (AccountAttribute) iter.next();
 System.out.print("\n The name of the attribute is
 "+attribute.getAttributeName());
 List<AccountAttributeValue> values = attribute.getAttributeValues();

 //iterate through the attribute values
 for (ListIterator iterVals = values.listIterator(); iterVals.hasNext();) {
 AccountAttributeValue myValue = (AccountAttributeValue) iterVals.next();
 System.out.print("\n The value of the attribute is
 "+myValue.getAttributeValue());
 }
 }
 System.out.print("Done");
}
catch (Exception e)
{
 e.getStackTrace();
}

GitHub で完全な例をご覧ください。

詳細情報

• Amazon EC2 Linux インスタンス用ユーザーガイドのリージョンとアベイラビリティーゾーン

• Amazon EC2 API リファレンスの DescribeRegions

• Amazon EC2 API リファレンスの DescribeAvailabilityZones

リージョンとアベイラビリティーゾーンを使用する 133

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeAccount.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeRegions.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAvailabilityZones.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Amazon EC2 キーペアでの作業

キーペアを作成する

キーペアを作成するには、そのキーの名前を含む CreateKeyPairRequest を使用して
AmazonEC2Client の createKeyPair メソッドを呼び出します。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateKeyPairRequest;
import com.amazonaws.services.ec2.model.CreateKeyPairResult;

コード

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

CreateKeyPairRequest request = new CreateKeyPairRequest()
 .withKeyName(key_name);

CreateKeyPairResult response = ec2.createKeyPair(request);

完全な例をご覧ください。

キーペアの詳細を表示する

キーペアを一覧表示したりキーペアに関する情報を入手するには、AmazonEC2Client の
describeKeyPairs メソッドを呼び出します。 メソッドを呼び出すことでキーペアの一覧にアク
セスするのに使用できる DescribeKeyPairsResultgetKeyPairs が返され、それにより KeyPairInfo
オブジェクトの一覧が返されます。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeKeyPairsResult;
import com.amazonaws.services.ec2.model.KeyPairInfo;

コード

Amazon EC2 キーペアでの作業 134

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateKeyPair.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeKeyPairsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeKeyPairsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPairInfo.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DescribeKeyPairsResult response = ec2.describeKeyPairs();

for(KeyPairInfo key_pair : response.getKeyPairs()) {
 System.out.printf(
 "Found key pair with name %s " +
 "and fingerprint %s",
 key_pair.getKeyName(),
 key_pair.getKeyFingerprint());
}

完全な例をご覧ください。

キーペアを削除する

キーペアを削除するには、AmazonEC2Client の deleteKeyPair メソッドを呼び出し、それに削除
するキーペアの名前を含む DeleteKeyPairRequest を渡します。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DeleteKeyPairRequest;
import com.amazonaws.services.ec2.model.DeleteKeyPairResult;

コード

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DeleteKeyPairRequest request = new DeleteKeyPairRequest()
 .withKeyName(key_name);

DeleteKeyPairResult response = ec2.deleteKeyPair(request);

完全な例をご覧ください。

詳細情報

• 「Linux インスタンス用 Amazon EC2 ユーザーガイド」の Amazon EC2 キーペア

• Amazon EC2 API リファレンスの CreateKeyPair

Amazon EC2 キーペアでの作業 135

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeKeyPairs.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DeleteKeyPairRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DeleteKeyPair.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateKeyPair.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

• Amazon EC2 API リファレンスの DescribeKeyPairs

• Amazon EC2 API リファレンスの DeleteKeyPair

Amazon EC2 でセキュリティグループを操作する

セキュリティグループを作成する

セキュリティグループを作成するには、そのキーの名前を含む CreateSecurityGroupRequest を使用
して AmazonEC2Client の createSecurityGroup メソッドを呼び出します。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupResult;

コード

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

CreateSecurityGroupRequest create_request = new
 CreateSecurityGroupRequest()
 .withGroupName(group_name)
 .withDescription(group_desc)
 .withVpcId(vpc_id);

CreateSecurityGroupResult create_response =
 ec2.createSecurityGroup(create_request);

完全な例をご覧ください。

セキュリティグループを設定する

セキュリティグループは、Amazon EC2 インスタンスへのインバウンド (ingress) とアウトバウンド
(egress) トラフィックの両方を制御できます。

セキュリティグループに Ingress ルールを追加するには、AmazonEC2Client の
authorizeSecurityGroupIngress メソッドを使用して、セキュリティグループの名前と

Amazon EC2 でセキュリティグループを操作する 136

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeKeyPairs.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteKeyPair.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateSecurityGroup.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

AuthorizeSecurityGroupIngressRequest オブジェクト内で割り当てるアクセスルール (IpPermission)
を指定します。以下の例では、セキュリティグループへの IP のアクセス許可の追加方法を説明しま
す。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupResult;

コード

IpRange ip_range = new IpRange()
 .withCidrIp("0.0.0.0/0");

IpPermission ip_perm = new IpPermission()
 .withIpProtocol("tcp")
 .withToPort(80)
 .withFromPort(80)
 .withIpv4Ranges(ip_range);

IpPermission ip_perm2 = new IpPermission()
 .withIpProtocol("tcp")
 .withToPort(22)
 .withFromPort(22)
 .withIpv4Ranges(ip_range);

AuthorizeSecurityGroupIngressRequest auth_request = new
 AuthorizeSecurityGroupIngressRequest()
 .withGroupName(group_name)
 .withIpPermissions(ip_perm, ip_perm2);

AuthorizeSecurityGroupIngressResult auth_response =
 ec2.authorizeSecurityGroupIngress(auth_request);

セキュリティグループに egress ルールを追加するには、同様のデータを AmazonEC2Client の
authorizeSecurityGroupEgress メソッドに AuthorizeSecurityGroupEgressRequest で指定し
ます。

完全な例をご覧ください。

Amazon EC2 でセキュリティグループを操作する 137

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupIngressRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateSecurityGroup.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

セキュリティグループについて説明する

セキュリティグループについて記述、またはそれらに関する情報を収集するに
は、AmazonEC2Client の describeSecurityGroups メソッドを呼び出しま
す。getSecurityGroupsメソッドを呼び出すことでセキュリティグループの一覧にアクセスする
のに使用できる DescribeSecurityGroupsResult が返され、それにより SecurityGroup オブジェクト
の一覧が返されます。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeSecurityGroupsRequest;
import com.amazonaws.services.ec2.model.DescribeSecurityGroupsResult;

コード

final String USAGE =
 "To run this example, supply a group id\n" +
 "Ex: DescribeSecurityGroups <group-id>\n";

if (args.length != 1) {
 System.out.println(USAGE);
 System.exit(1);
}

String group_id = args[0];

完全な例をご覧ください。

セキュリティグループの削除

セキュリティグループを削除するには、AmazonEC2Client の deleteSecurityGroup メソッドを
呼び出し、それに削除するセキュリティグループの ID を含む DeleteSecurityGroupRequest を渡し
ます。

インポート

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;

Amazon EC2 でセキュリティグループを操作する 138

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSecurityGroupsResult.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/SecurityGroup.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeSecurityGroups.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DeleteSecurityGroupRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

import com.amazonaws.services.ec2.model.DeleteSecurityGroupRequest;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupResult;

コード

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DeleteSecurityGroupRequest request = new DeleteSecurityGroupRequest()
 .withGroupId(group_id);

DeleteSecurityGroupResult response = ec2.deleteSecurityGroup(request);

完全な例をご覧ください。

詳細情報

• 「Linux インスタンス用 Amazon EC2 ユーザーガイド」の Amazon EC2 セキュリティグループ

• Amazon EC2 Linux インスタンス用ユーザーガイドでの Linux インスタンスのインバウンドトラ
フィックの承認

• Amazon EC2 API リファレンスの CreateSecurityGroup

• Amazon EC2 API リファレンスの DescribeSecurityGroups

• Amazon EC2 API リファレンスの DeleteSecurityGroup

• Amazon EC2 API リファレンスの AuthorizeSecurityGroupIngress

AWS SDK for Java を使用した IAM の例

このセクションでは、AWS SDK for Java を使用して IAM をプログラムする例を示します。

AWS Identity and Access Management (IAM) を使用すると、AWS のサービスおよびリソースに
対するお客様のユーザーのアクセスを安全にコントロールすることができます。IAM を使用する
と、AWS のユーザーとグループを作成および管理し、許可を使用して AWS リソースへのアクセス
を許可および拒否できます。IAM の詳細なガイドについては、「IAM ユーザーガイド」を参照して
ください。

AWS Identity and Access Management (IAM) の例 139

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DeleteSecurityGroup.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateSecurityGroup.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteSecurityGroup.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AuthorizeSecurityGroupIngress.html
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Note

例には各手法を示すのに必要なコードのみが含まれます。完全なサンプルコードは GitHub
で入手できます。そこから、単一のソースファイルをダウンロードするかリポジトリをロー
カルにクローン作成して、ビルドし実行するためのすべての例を取得できます。

トピック

• IAM アクセスキーの管理

• IAM ユーザーの管理

• IAM アカウントエイリアスの使用

• IAM ポリシーの使用

• IAM サーバー証明書の使用

IAM アクセスキーの管理

アクセスキーの作成

IAM アクセスキーを作成するには、AmazonIdentityManagementClientcreateAccessKey メソッド
を CreateAccessKeyRequest オブジェクトを使用して呼び出します。

CreateAccessKeyRequest には 2 つのコンストラクタ、すなわち、ユーザー名を取るも
のとパラメータのないものとがあります。パラメータを取らないバージョンを使用する場
合、withUserName メソッドに渡す前に createAccessKey setter メソッドを使用してユーザー名
を設定する必要があります。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.CreateAccessKeyResult;

Code

final AmazonIdentityManagement iam =

IAM アクセスキーの管理 140

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateAccessKeyRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 AmazonIdentityManagementClientBuilder.defaultClient();

CreateAccessKeyRequest request = new CreateAccessKeyRequest()
 .withUserName(user);

CreateAccessKeyResult response = iam.createAccessKey(request);

GitHub で完全な例をご覧ください。

アクセスキーの一覧表示

特定のユーザーのアクセスキーを一覧表示するには、キーの一覧表示の対象となるユーザー名を含
む ListAccessKeysRequest オブジェクトを作成し、それを AmazonIdentityManagementClient の
listAccessKeys メソッドに渡します。

Note

ユーザー名を listAccessKeys に渡さない場合は、リクエストに署名した AWS アカウン
ト に関連付けられているアクセスキーの一覧表示を試行します。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.AccessKeyMetadata;
import com.amazonaws.services.identitymanagement.model.ListAccessKeysRequest;
import com.amazonaws.services.identitymanagement.model.ListAccessKeysResult;

コード

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListAccessKeysRequest request = new ListAccessKeysRequest()
 .withUserName(username);

while (!done) {

IAM アクセスキーの管理 141

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateAccessKey.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAccessKeysRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 ListAccessKeysResult response = iam.listAccessKeys(request);

 for (AccessKeyMetadata metadata :
 response.getAccessKeyMetadata()) {
 System.out.format("Retrieved access key %s",
 metadata.getAccessKeyId());
 }

 request.setMarker(response.getMarker());

 if (!response.getIsTruncated()) {
 done = true;
 }
}

listAccessKeys の結果はページ分割されます (デフォルトで最大 1 回の呼び出しごとに 100
レコード)。返された ListAccessKeysResult オブジェクトで getIsTruncated を呼び出し、よ
り少ない結果を返されたクエリが利用可能かどうか確認することができます。利用可能な場合
は、setMarker で ListAccessKeysRequest を呼び出し、それを listAccessKeys の次の呼び
出しに返します。

GitHub で完全な例をご覧ください。

アクセスキーの最終使用時刻の取得

アクセスキーが最後に使用された時刻を取得するには、そのアクセスキーの ID で
AmazonIdentityManagementClient の getAccessKeyLastUsed メソッドを呼び出します。アクセ
スキーの ID は GetAccessKeyLastUsedRequest オブジェクトを使用して、またはアクセスキー ID
を直接取るオーバーロードへ直接渡すことができます。

その後返された GetAccessKeyLastUsedResult オブジェクトを使用して、キーの最終使用時刻を取
得できます。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetAccessKeyLastUsedRequest;
import com.amazonaws.services.identitymanagement.model.GetAccessKeyLastUsedResult;

Code

IAM アクセスキーの管理 142

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAccessKeysResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListAccessKeys.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetAccessKeyLastUsedRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetAccessKeyLastUsedResult.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetAccessKeyLastUsedRequest request = new GetAccessKeyLastUsedRequest()
 .withAccessKeyId(access_id);

GetAccessKeyLastUsedResult response = iam.getAccessKeyLastUsed(request);

System.out.println("Access key was last used at: " +
 response.getAccessKeyLastUsed().getLastUsedDate());

GitHub で完全な例をご覧ください。

アクセスキーのアクティブ化や非アクティブ化

アクセスキーをアクティブ化または非アクティブ化するには、UpdateAccessKeyRequest オブジェ
クトを作成し、アクセスキー ID、オプションでユーザー名、また目的のステータスを渡して、次に
そのリクエストオブジェクトを AmazonIdentityManagementClient の updateAccessKey メソッド
に渡します。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.UpdateAccessKeyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateAccessKeyRequest request = new UpdateAccessKeyRequest()
 .withAccessKeyId(access_id)
 .withUserName(username)
 .withStatus(status);

UpdateAccessKeyResult response = iam.updateAccessKey(request);

GitHub で完全な例をご覧ください。

IAM アクセスキーの管理 143

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AccessKeyLastUsed.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateAccessKeyRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/StatusType.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateAccessKey.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

アクセスキーの削除

アクセスキーを完全に削除するには、AmazonIdentityManagementClient の deleteKey メソッドを
呼び出し、それにアクセスキーの ID とユーザーネームを含む DeleteAccessKeyRequest を渡しま
す。

Note

削除してしまうと、キーは取得することも使用することもできなくなります。後で再度アク
ティブ化できるようキーを一時的に非アクティブ化するには、代わりに updateAccessKey
メソッドを使用します。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.DeleteAccessKeyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteAccessKeyRequest request = new DeleteAccessKeyRequest()
 .withAccessKeyId(access_key)
 .withUserName(username);

DeleteAccessKeyResult response = iam.deleteAccessKey(request);

GitHub で完全な例をご覧ください。

詳細情報

• IAM API リファレンスの CreateAccessKey

• IAM API リファレンスの ListAccessKeys

• IAM API リファレンスの GetAccessKeyLastUsed

• IAM API リファレンスの UpdateAccessKey

IAM アクセスキーの管理 144

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteAccessKeyRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteAccessKey.java
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccessKeys.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

• IAM API リファレンスの DeleteAccessKey

IAM ユーザーの管理

ユーザーの作成

新しい IAM ユーザーを作成するには、直接、またはユーザー名を含む CreateUserRequest オブジェ
クトを使用して、AmazonIdentityManagementClient の createUser メソッドにユーザー名を渡し
ます。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateUserRequest;
import com.amazonaws.services.identitymanagement.model.CreateUserResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateUserRequest request = new CreateUserRequest()
 .withUserName(username);

CreateUserResult response = iam.createUser(request);

GitHub で完全な例をご覧ください。

ユーザーの一覧表示

アカウントの IAM ユーザーを一覧表示するには、新しい ListUsersRequest を作成して、それを
AmazonIdentityManagementClient の listUsers メソッドに渡します。返された ListUsersResult
オブジェクトで getUsers を呼び出すことでユーザーのリストを取得できます。

listUsers によって返されたユーザーのリストはページ分割されます。取得できる結果がさらにあ
ることを確認するには、応答オブジェクトの getIsTruncated メソッドを呼び出します。true が
返ってきた場合、リクエストオブジェクトの setMarker() メソッドを呼び出し、それに応答オブ
ジェクトの getMarker() メソッドの戻り値を渡します。

IAM ユーザーの管理 145

https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccessKey.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateUserRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateUser.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListUsersRequest.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/identitymanagement/model/ListUsersResult.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListUsersRequest;
import com.amazonaws.services.identitymanagement.model.ListUsersResult;
import com.amazonaws.services.identitymanagement.model.User;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListUsersRequest request = new ListUsersRequest();

while(!done) {
 ListUsersResult response = iam.listUsers(request);

 for(User user : response.getUsers()) {
 System.out.format("Retrieved user %s", user.getUserName());
 }

 request.setMarker(response.getMarker());

 if(!response.getIsTruncated()) {
 done = true;
 }
}

GitHub で完全な例をご覧ください。

ユーザーの更新

ユーザーを更新するには、AmazonIdentityManagementClient オブジェクトの updateUser メソッ
ドを呼び出し、それが取得する UpdateUserRequest オブジェクトを使用して、ユーザーの名前また
はパスを変更します。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;

IAM ユーザーの管理 146

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListUsers.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateUserRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

import com.amazonaws.services.identitymanagement.model.UpdateUserRequest;
import com.amazonaws.services.identitymanagement.model.UpdateUserResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateUserRequest request = new UpdateUserRequest()
 .withUserName(cur_name)
 .withNewUserName(new_name);

UpdateUserResult response = iam.updateUser(request);

GitHub で完全な例をご覧ください。

ユーザーの削除

ユーザーを削除するには、UpdateUserRequest オブジェクトに削除するユーザー名を設定し
て、AmazonIdentityManagementClient の deleteUser リクエストを呼び出します。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteConflictException;
import com.amazonaws.services.identitymanagement.model.DeleteUserRequest;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteUserRequest request = new DeleteUserRequest()
 .withUserName(username);

try {
 iam.deleteUser(request);
} catch (DeleteConflictException e) {
 System.out.println("Unable to delete user. Verify user is not" +
 " associated with any resources");
 throw e;

IAM ユーザーの管理 147

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateUser.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateUserRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

}

GitHub で完全な例をご覧ください。

詳細情報

• IAM ユーザーガイドの IAM ユーザー

• IAM ユーザーガイドの IAM ユーザーの管理

• IAM API リファレンスの CreateUser

• IAM API リファレンスの ListUsers

• IAM API リファレンスの UpdateUser

• IAM API リファレンスの DeleteUser

IAM アカウントエイリアスの使用

サインインページの URL に、AWS アカウント ID ではなく企業の名前または他のわかりやすい識別
子を含めるには、AWS アカウント のエイリアスを作成します。

Note

AWS ではアカウントごとに 1 つのアカウントのエイリアスのみがサポートされます。

アカウントエイリアスの作成

アカウントエイリアスを作成するには、そのエイリアス名が含まれる CreateAccountAliasRequest
オブジェクトを使用して AmazonIdentityManagementClient の createAccountAlias メソッドを
呼び出します。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateAccountAliasRequest;
import com.amazonaws.services.identitymanagement.model.CreateAccountAliasResult;

Code

IAM アカウントエイリアスの使用 148

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteUser.java
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUser.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateAccountAliasRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateAccountAliasRequest request = new CreateAccountAliasRequest()
 .withAccountAlias(alias);

CreateAccountAliasResult response = iam.createAccountAlias(request);

GitHub で完全な例をご覧ください。

アカウントエイリアスを一覧表示する

アカウントエイリアスを一覧表示するには、AmazonIdentityManagementClient の
listAccountAliases メソッドを呼び出します。

Note

返される ListAccountAliasesResult は、他の AWS SDK for Java list メソッドと同じ
getIsTruncated および getMarker メソッドがサポートされますが、AWS アカウント で
使用できるアカウントエイリアスは 1 つのみです。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListAccountAliasesResult;

コード

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

ListAccountAliasesResult response = iam.listAccountAliases();

for (String alias : response.getAccountAliases()) {
 System.out.printf("Retrieved account alias %s", alias);
}

GitHub で完全な例をご覧ください。

IAM アカウントエイリアスの使用 149

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateAccountAlias.java
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/identitymanagement/model/ListAccountAliasesResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListAccountAliases.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

アカウントエイリアスを削除する

アカウントエイリアスを削除するには、AmazonIdentityManagementClient の
deleteAccountAlias メソッドを呼び出します。アカウントエイリアスを削除する場合
は、DeleteAccountAliasRequest オブジェクトを使用してその名前を指定する必要があります。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteAccountAliasRequest;
import com.amazonaws.services.identitymanagement.model.DeleteAccountAliasResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteAccountAliasRequest request = new DeleteAccountAliasRequest()
 .withAccountAlias(alias);

DeleteAccountAliasResult response = iam.deleteAccountAlias(request);

GitHub で完全な例をご覧ください。

詳細情報

• IAM ユーザーガイドの AWS アカウント ID とそのエイリアス

• IAM API リファレンスの CreateAccountAlias

• IAM API リファレンスの ListAccountAliases

• IAM API リファレンスの DeleteAccountAlias

IAM ポリシーの使用

ポリシーの作成

新しいポリシーを作成するには、CreatePolicyRequest 内のポリシーの名前および JSON 形式のポリ
シードキュメントを AmazonIdentityManagementClient の createPolicy メソッドに渡します。

インポート

IAM ポリシーの使用 150

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteAccountAliasRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteAccountAlias.java
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccountAlias.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccountAliases.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccountAlias.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreatePolicyRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreatePolicyRequest;
import com.amazonaws.services.identitymanagement.model.CreatePolicyResult;

コード

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreatePolicyRequest request = new CreatePolicyRequest()
 .withPolicyName(policy_name)
 .withPolicyDocument(POLICY_DOCUMENT);

CreatePolicyResult response = iam.createPolicy(request);

IAM ポリシードキュメントは文書による十分な裏づけのある構文を持つ JSON 文字列で
す。DynamoDB に特定のリクエストをするためのアクセスを提供する例を以下に示します。

public static final String POLICY_DOCUMENT =
 "{" +
 " \"Version\": \"2012-10-17\", " +
 " \"Statement\": [" +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": \"logs:CreateLogGroup\"," +
 " \"Resource\": \"%s\"" +
 " }," +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": [" +
 " \"dynamodb:DeleteItem\"," +
 " \"dynamodb:GetItem\"," +
 " \"dynamodb:PutItem\"," +
 " \"dynamodb:Scan\"," +
 " \"dynamodb:UpdateItem\"" +
 "]," +
 " \"Resource\": \"RESOURCE_ARN\"" +
 " }" +
 "]" +
 "}";

IAM ポリシーの使用 151

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_grammar.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

GitHub で完全な例をご覧ください。

ポリシーの取得

既存のポリシーを取得するには、AmazonIdentityManagementClient の getPolicy メソッドを呼び
出して、GetPolicyRequest オブジェクト内のポリシーの ARN を渡します。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetPolicyRequest;
import com.amazonaws.services.identitymanagement.model.GetPolicyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetPolicyRequest request = new GetPolicyRequest()
 .withPolicyArn(policy_arn);

GetPolicyResult response = iam.getPolicy(request);

GitHub で完全な例をご覧ください。

ロールポリシーのアタッチ

ポリシーを IAMhttp://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html[ロール] にア
タッチするには、AmazonIdentityManagementClient の attachRolePolicy メソッドを呼び出
し、AttachRolePolicyRequest でロール名とポリシー ARN を指定します。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.AttachRolePolicyRequest;
import com.amazonaws.services.identitymanagement.model.AttachedPolicy;

Code

final AmazonIdentityManagement iam =

IAM ポリシーの使用 152

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreatePolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetPolicyRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/GetPolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/AttachRolePolicyRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 AmazonIdentityManagementClientBuilder.defaultClient();

AttachRolePolicyRequest attach_request =
 new AttachRolePolicyRequest()
 .withRoleName(role_name)
 .withPolicyArn(POLICY_ARN);

iam.attachRolePolicy(attach_request);

GitHub で完全な例をご覧ください。

アタッチ済みロールポリシーの一覧表示

ロールのアタッチ済みポリシーを一覧表示するには、AmazonIdentityManagementClient の
listAttachedRolePolicies メソッドを呼び出します。このメソッドは、ポリシーを一覧表示す
るロール名を含む ListAttachedRolePoliciesRequest オブジェクトを受け取ります。

返された ListAttachedRolePoliciesResult オブジェクトで getAttachedPolicies を呼び
出してアタッチ済みポリシーのリストを取得します。結果は切り捨てられる場合がありま
す。ListAttachedRolePoliciesResult オブジェクトの getIsTruncated メソッドが true
を返す場合は、ListAttachedRolePoliciesRequest オブジェクトの setMarker メソッドを呼
び出し、それを使用して listAttachedRolePolicies を再び呼び出し、結果の次のバッチを取得
します。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListAttachedRolePoliciesRequest;
import com.amazonaws.services.identitymanagement.model.ListAttachedRolePoliciesResult;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

ListAttachedRolePoliciesRequest request =
 new ListAttachedRolePoliciesRequest()
 .withRoleName(role_name);

IAM ポリシーの使用 153

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AttachRolePolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAttachedRolePoliciesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAttachedRolePoliciesResult.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

List<AttachedPolicy> matching_policies = new ArrayList<>();

boolean done = false;

while(!done) {
 ListAttachedRolePoliciesResult response =
 iam.listAttachedRolePolicies(request);

 matching_policies.addAll(
 response.getAttachedPolicies()
 .stream()
 .filter(p -> p.getPolicyName().equals(role_name))
 .collect(Collectors.toList()));

 if(!response.getIsTruncated()) {
 done = true;
 }
 request.setMarker(response.getMarker());
}

GitHub で完全な例をご覧ください。

ロールポリシーのデタッチ

ロールからポリシーをデタッチするには、AmazonIdentityManagementClient の
detachRolePolicy メソッドを呼び出し、それに DetachRolePolicyRequest 内のロール名および
ポリシー ARN を渡します。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DetachRolePolicyRequest;
import com.amazonaws.services.identitymanagement.model.DetachRolePolicyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DetachRolePolicyRequest request = new DetachRolePolicyRequest()
 .withRoleName(role_name)

IAM ポリシーの使用 154

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AttachRolePolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DetachRolePolicyRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 .withPolicyArn(policy_arn);

DetachRolePolicyResult response = iam.detachRolePolicy(request);

GitHub で完全な例をご覧ください。

詳細情報

• IAM ユーザーガイドの IAM ポリシーの概要。

• IAM ユーザーガイドの AWS IAM ポリシーのリファレンス。

• IAM API リファレンスの CreatePolicy

• IAM API リファレンスの GetPolicy

• IAM API リファレンスの AttachRolePolicy

• IAM API リファレンスの ListAttachedRolePolicies

• IAM API リファレンスの DetachRolePolicy

IAM サーバー証明書の使用

AWS でウェブサイトまたはアプリケーションへの HTTPS 接続を有効にするには、SSL/TLS サー
バー証明書が必要です。AWS Certificate Manager から提供されたサーバー証明書、または外部プロ
バイダーから入手したサーバー証明書を使用できます。

ACM を使用してサーバー証明書のプロビジョニング、管理、デプロイを行うことをお勧めしま
す。ACM を使用すると、証明書をリクエストし、それを AWS リソースにデプロイして、証明書の
更新を ACM で処理できます。ACM で提供される証明書は無料です。ACM の詳細については、ACM
ユーザーガイドを参照してください。

サーバー証明書の取得

サーバー証明書を取得するには、AmazonIdentityManagementClient の getServerCertificate
メソッドを呼び出し、それに証明書の名前を含む GetServerCertificateRequest を渡します。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.GetServerCertificateResult;

IAM サーバー証明書の使用 155

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DetachRolePolicy.java
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachRolePolicy.html
https://docs.aws.amazon.com/acm/latest/userguide/
https://docs.aws.amazon.com/acm/latest/userguide/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetServerCertificateRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetServerCertificateRequest request = new GetServerCertificateRequest()
 .withServerCertificateName(cert_name);

GetServerCertificateResult response = iam.getServerCertificate(request);

GitHub で完全な例をご覧ください。

サーバー証明書の一覧表示

サーバー証明書を一覧表示するには、AmazonIdentityManagementClient の
listServerCertificates メソッドを呼び出し、ListServerCertificatesRequest を渡しま
す。ListServerCertificatesResult が返されます。

返された ListServerCertificateResult オブジェクトの
getServerCertificateMetadataList メソッドを呼び出して、各証明書についての情報を取得
するために使用できる ServerCertificateMetadata オブジェクトの一覧を取得します。

結果は切り捨てられる場合があります。ListServerCertificateResult オブジェクトの
getIsTruncated メソッドが true を返す場合は、ListServerCertificatesRequest オブ
ジェクトの setMarker メソッドを呼び出し、それを使用して listServerCertificates を再び
呼び出し、結果の次のバッチを取得します。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListServerCertificatesRequest;
import com.amazonaws.services.identitymanagement.model.ListServerCertificatesResult;
import com.amazonaws.services.identitymanagement.model.ServerCertificateMetadata;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListServerCertificatesRequest request =

IAM サーバー証明書の使用 156

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/GetServerCertificate.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListServerCertificatesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListServerCertificatesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ServerCertificateMetadata.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 new ListServerCertificatesRequest();

while(!done) {

 ListServerCertificatesResult response =
 iam.listServerCertificates(request);

 for(ServerCertificateMetadata metadata :
 response.getServerCertificateMetadataList()) {
 System.out.printf("Retrieved server certificate %s",
 metadata.getServerCertificateName());
 }

 request.setMarker(response.getMarker());

 if(!response.getIsTruncated()) {
 done = true;
 }
}

GitHub で完全な例をご覧ください。

サーバー証明書の更新

サーバー証明書の名前やパスを更新するには、AmazonIdentityManagementClient の
updateServerCertificate メソッドを呼び出します。サーバー証明書の現在の名前および使用
する新しい名前か新しいパスのいずれかを使って設定した UpdateServerCertificateRequest オブジェ
クトが使用されます。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.UpdateServerCertificateResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateServerCertificateRequest request =

IAM サーバー証明書の使用 157

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListServerCertificates.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateServerCertificateRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 new UpdateServerCertificateRequest()
 .withServerCertificateName(cur_name)
 .withNewServerCertificateName(new_name);

UpdateServerCertificateResult response =
 iam.updateServerCertificate(request);

GitHub で完全な例をご覧ください。

サーバー証明書の削除

サーバー証明書を削除するには、証明書の名前を含む DeleteServerCertificateRequest を使用し
て、AmazonIdentityManagementClient の deleteServerCertificate メソッドを呼び出します。

インポート

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.DeleteServerCertificateResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteServerCertificateRequest request =
 new DeleteServerCertificateRequest()
 .withServerCertificateName(cert_name);

DeleteServerCertificateResult response =
 iam.deleteServerCertificate(request);

GitHub で完全な例をご覧ください。

詳細情報

• IAM ユーザーガイドのサーバー証明書の使用

• IAM API リファレンスの GetServerCertificate

• IAM API リファレンスの ListServerCertificates

• IAM API リファレンスの UpdateServerCertificate

IAM サーバー証明書の使用 158

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateServerCertificate.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteServerCertificateRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteServerCertificate.java
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServerCertificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListServerCertificates.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateServerCertificate.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

• IAM API リファレンスの DeleteServerCertificate

• ACM ユーザーガイド

Lambda を使用した例AWS SDK for Java

このセクションでは、Lambda を使用して AWS SDK for Java をプログラムする例を示します。

Note

例には各手法を示すのに必要なコードのみが含まれます。完全なサンプルコードは GitHub
で入手できます。そこから、単一のソースファイルをダウンロードするかリポジトリをロー
カルにクローン作成して、ビルドし実行するためのすべての例を取得できます。

トピック

• Lambda 関数の呼び出し、一覧表示、および削除

Lambda 関数の呼び出し、一覧表示、および削除

このセクションでは、AWS SDK for Java を使用した Lambda のサービスのクライアントでのプログ
ラミングの例を示します。Lambda 関数の作成方法については、AWS Lambda 関数の作成方法を参
照してください。

トピック

• 関数を呼び出す

• 関数の一覧表示

• 関数を削除する

関数を呼び出す

AWSLambda オブジェクトを作成し、その invoke メソッドを呼び出すことによって、Lambda
関数を呼び出すことができます。InvokeRequest オブジェクトを作成して、Lambda 関数
に渡す関数名やペイロードなどの追加情報を指定します。関数名は、arn:aws:lambda:us-
east-1:555556330391:function:HelloFunction と表示されます。AWS マネジメントコンソール で関数
を確認することで、値を取得できます。

Amazon Lambda の例 159

https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteServerCertificate.html
https://docs.aws.amazon.com/acm/latest/userguide/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/lambda-tutorial.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ペイロードデータを関数に渡すには、次のコード例に示すように、InvokeRequest オブジェクトの
withPayload メソッドを呼び出し、JSON 形式の文字列を指定します。

インポート

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import com.amazonaws.services.lambda.model.ServiceException;

import java.nio.charset.StandardCharsets;

コード

次のコード例は、Lambda 関数を呼び出す方法を示しています。

 String functionName = args[0];

 InvokeRequest invokeRequest = new InvokeRequest()
 .withFunctionName(functionName)
 .withPayload("{\n" +
 " \"Hello \": \"Paris\",\n" +
 " \"countryCode\": \"FR\"\n" +
 "}");
 InvokeResult invokeResult = null;

 try {
 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 invokeResult = awsLambda.invoke(invokeRequest);

 String ans = new String(invokeResult.getPayload().array(),
 StandardCharsets.UTF_8);

 //write out the return value
 System.out.println(ans);

 } catch (ServiceException e) {

サービスオペレーション 160

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 System.out.println(e);
 }

 System.out.println(invokeResult.getStatusCode());

GitHub で完全な例をご覧ください。

関数の一覧表示

AWSLambda オブジェクトを構築し、その listFunctions メソッドを呼び出します。このメソッ
ドは、ListFunctionsResult オブジェクトを返します。このオブジェクトの getFunctions メソッド
を呼び出して、FunctionConfiguration オブジェクトのリストを返すことができます。リストを反復
処理して、関数に関する情報を取得できます。たとえば、次の Java コード例は、各関数名を取得す
る方法を示しています。

インポート

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.FunctionConfiguration;
import com.amazonaws.services.lambda.model.ListFunctionsResult;
import com.amazonaws.services.lambda.model.ServiceException;
import java.util.Iterator;
import java.util.List;

コード

次の Java コード例は、Lambda 関数名のリストを取得する方法を示しています。

 ListFunctionsResult functionResult = null;

 try {
 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 functionResult = awsLambda.listFunctions();

 List<FunctionConfiguration> list = functionResult.getFunctions();

サービスオペレーション 161

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/LambdaInvokeFunction.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/ListFunctionsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/FunctionConfiguration.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 for (Iterator iter = list.iterator(); iter.hasNext();) {
 FunctionConfiguration config = (FunctionConfiguration)iter.next();

 System.out.println("The function name is "+config.getFunctionName());
 }

 } catch (ServiceException e) {
 System.out.println(e);
 }

GitHub で完全な例をご覧ください。

関数を削除する

AWSLambda オブジェクトを構築し、その deleteFunction メソッドを呼び出しま
す。DeleteFunctionRequest オブジェクトを作成し、deleteFunction メソッドに渡し
ます。このオブジェクトには、削除する関数の名前などの情報が含まれています。関数名
は、arn:aws:lambda:us-east-1:555556330391:function:HelloFunction と表示されます。AWS マネジ
メントコンソール で関数を確認することで、値を取得できます。

インポート

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.ServiceException;
import com.amazonaws.services.lambda.model.DeleteFunctionRequest;

コード

次の Java コードは、Lambda 関数を削除する方法を示しています。

 String functionName = args[0];
 try {
 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 DeleteFunctionRequest delFunc = new DeleteFunctionRequest();
 delFunc.withFunctionName(functionName);

 //Delete the function

サービスオペレーション 162

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/ListFunctions.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/DeleteFunctionRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 awsLambda.deleteFunction(delFunc);
 System.out.println("The function is deleted");

 } catch (ServiceException e) {
 System.out.println(e);
 }

GitHub で完全な例をご覧ください。

Amazon Pinpoint を使用した例AWS SDK for Java
このセクションでは、AWS SDK for Java を使用して Amazon Pinpoint をプログラムする例を示しま
す。

Note

例には各手法を示すのに必要なコードのみが含まれます。完全なサンプルコードは GitHub
で入手できます。そこから、単一のソースファイルをダウンロードするかリポジトリをロー
カルにクローン作成して、ビルドし実行するためのすべての例を取得できます。

トピック

• Amazon Pinpoint のアプリの作成および削除

• Amazon Pinpoint でのエンドポイントの作成

• Amazon Pinpoint でのセグメントの作成

• Amazon Pinpoint でのキャンペーンの作成

• Amazon Pinpoint のチャネルの更新

Amazon Pinpoint のアプリの作成および削除

アプリとは、個別のアプリケーションのオーディエンスを定義する Amazon Pinpoint のプロジェク
トです。このオーディエンスにカスタマイズされたメッセージを使用して働きかけます。このページ
の例では、新しいアプリの作成方法や既存のアプリの削除方法を説明します。

アプリの作成

アプリ名を CreateAppRequest オブジェクトに指定し、そのオブジェクトを AmazonPinpointClient
の createApp メソッドに渡して、Amazon Pinpoint に新しいアプリケーションを作成します。

Amazon Pinpoint の例 163

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/DeleteFunction.java
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/pinpoint/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/CreateAppRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

インポート

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateAppRequest;
import com.amazonaws.services.pinpoint.model.CreateAppResult;
import com.amazonaws.services.pinpoint.model.CreateApplicationRequest;

Code

CreateApplicationRequest appRequest = new CreateApplicationRequest()
 .withName(appName);

CreateAppRequest request = new CreateAppRequest();
request.withCreateApplicationRequest(appRequest);
CreateAppResult result = pinpoint.createApp(request);

GitHub で完全な例をご覧ください。

アプリの削除

アプリケーションを削除するには、削除するアプリケーション名を設定した DeleteAppRequest オブ
ジェクトを指定して AmazonPinpointClient の deleteApp リクエストを呼び出します。

インポート

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;

Code

DeleteAppRequest deleteRequest = new DeleteAppRequest()
 .withApplicationId(appID);

pinpoint.deleteApp(deleteRequest);

GitHub で完全な例をご覧ください。

詳細情報

• Amazon Pinpoint API リファレンスのアプリケーション

Amazon Pinpoint のアプリの作成および削除 164

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateApp.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/DeleteAppRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/DeleteApp.java
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apps.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

• Amazon Pinpoint API リファレンスのアプリケーション

Amazon Pinpoint でのエンドポイントの作成

エンドポイントでユーザーデバイスを一意に識別し、Amazon Pinpoint でプッシュ通知を送信する
ことができます。アプリで Amazon Pinpoint サポートが有効になっている場合、アプリは、新しい
ユーザーがアプリを開いたときに Amazon Pinpoint で自動的にエンドポイントを登録します。次の
例では、プログラムで新しいエンドポイントを追加する方法について説明します。

エンドポイントの作成

Amazon Pinpoint で新しいエンドポイントを作成するには、EndpointRequest オブジェクトにエンド
ポイントデータを指定します。

インポート

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.UpdateEndpointRequest;
import com.amazonaws.services.pinpoint.model.UpdateEndpointResult;
import com.amazonaws.services.pinpoint.model.EndpointDemographic;
import com.amazonaws.services.pinpoint.model.EndpointLocation;
import com.amazonaws.services.pinpoint.model.EndpointRequest;
import com.amazonaws.services.pinpoint.model.EndpointResponse;
import com.amazonaws.services.pinpoint.model.EndpointUser;
import com.amazonaws.services.pinpoint.model.GetEndpointRequest;
import com.amazonaws.services.pinpoint.model.GetEndpointResult;

コード

HashMap<String, List<String>> customAttributes = new HashMap<>();
List<String> favoriteTeams = new ArrayList<>();
favoriteTeams.add("Lakers");
favoriteTeams.add("Warriors");
customAttributes.put("team", favoriteTeams);

EndpointDemographic demographic = new EndpointDemographic()
 .withAppVersion("1.0")
 .withMake("apple")
 .withModel("iPhone")
 .withModelVersion("7")

Amazon Pinpoint でのエンドポイントの作成 165

https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-app.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/EndpointRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 .withPlatform("ios")
 .withPlatformVersion("10.1.1")
 .withTimezone("America/Los_Angeles");

EndpointLocation location = new EndpointLocation()
 .withCity("Los Angeles")
 .withCountry("US")
 .withLatitude(34.0)
 .withLongitude(-118.2)
 .withPostalCode("90068")
 .withRegion("CA");

Map<String,Double> metrics = new HashMap<>();
metrics.put("health", 100.00);
metrics.put("luck", 75.00);

EndpointUser user = new EndpointUser()
 .withUserId(UUID.randomUUID().toString());

DateFormat df = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm'Z'"); // Quoted "Z" to
 indicate UTC, no timezone offset
String nowAsISO = df.format(new Date());

EndpointRequest endpointRequest = new EndpointRequest()
 .withAddress(UUID.randomUUID().toString())
 .withAttributes(customAttributes)
 .withChannelType("APNS")
 .withDemographic(demographic)
 .withEffectiveDate(nowAsISO)
 .withLocation(location)
 .withMetrics(metrics)
 .withOptOut("NONE")
 .withRequestId(UUID.randomUUID().toString())
 .withUser(user);

次に、その EndpointRequest オブジェクトを使用して UpdateEndpointRequest オブジェク
トを作成します。最後に、UpdateEndpointRequest オブジェクトを AmazonPinpointClient の
updateEndpoint メソッドに渡します。

Code

UpdateEndpointRequest updateEndpointRequest = new UpdateEndpointRequest()
 .withApplicationId(appId)

Amazon Pinpoint でのエンドポイントの作成 166

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/UpdateEndpointRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 .withEndpointId(endpointId)
 .withEndpointRequest(endpointRequest);

UpdateEndpointResult updateEndpointResponse =
 client.updateEndpoint(updateEndpointRequest);
System.out.println("Update Endpoint Response: " +
 updateEndpointResponse.getMessageBody());

GitHub で完全な例をご覧ください。

詳細情報

• Amazon Pinpoint デベロッパーガイドのエンドポイントの追加

• Amazon Pinpoint API リファレンスのエンドポイント

Amazon Pinpoint でのセグメントの作成

ユーザーセグメントは、ユーザーが最近いつ頃アプリを開いたか、またはどのデバイスを使用してい
るか、などの共有特性に基づくユーザーのサブセットを表します。次の例では、ユーザーのセグメン
トを定義する方法を示しています。

セグメントの作成

Amazon PinpointSegmentDimensions オブジェクトでセグメントのディメンションを定義すること
で、 に新しいセグメントを作成します。

インポート

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateSegmentRequest;
import com.amazonaws.services.pinpoint.model.CreateSegmentResult;
import com.amazonaws.services.pinpoint.model.AttributeDimension;
import com.amazonaws.services.pinpoint.model.AttributeType;
import com.amazonaws.services.pinpoint.model.RecencyDimension;
import com.amazonaws.services.pinpoint.model.SegmentBehaviors;
import com.amazonaws.services.pinpoint.model.SegmentDemographics;
import com.amazonaws.services.pinpoint.model.SegmentDimensions;
import com.amazonaws.services.pinpoint.model.SegmentLocation;
import com.amazonaws.services.pinpoint.model.SegmentResponse;
import com.amazonaws.services.pinpoint.model.WriteSegmentRequest;

Amazon Pinpoint でのセグメントの作成 167

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateEndpoint.java
https://docs.aws.amazon.com/pinpoint/latest/developerguide/endpoints.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-endpoint.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/SegmentDimensions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/SegmentDimensions.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

コード

Pinpoint pinpoint =
 AmazonPinpointClientBuilder.standard().withRegion(Regions.US_EAST_1).build();
Map<String, AttributeDimension> segmentAttributes = new HashMap<>();
segmentAttributes.put("Team", new
 AttributeDimension().withAttributeType(AttributeType.INCLUSIVE).withValues("Lakers"));

SegmentBehaviors segmentBehaviors = new SegmentBehaviors();
SegmentDemographics segmentDemographics = new SegmentDemographics();
SegmentLocation segmentLocation = new SegmentLocation();

RecencyDimension recencyDimension = new RecencyDimension();
recencyDimension.withDuration("DAY_30").withRecencyType("ACTIVE");
segmentBehaviors.setRecency(recencyDimension);

SegmentDimensions dimensions = new SegmentDimensions()
 .withAttributes(segmentAttributes)
 .withBehavior(segmentBehaviors)
 .withDemographic(segmentDemographics)
 .withLocation(segmentLocation);

次に SegmentDimensions オブジェクトを WriteSegmentRequest に設定します。これは
CreateSegmentRequest オブジェクトの作成に使用されます。その後、CreateSegmentRequest オブ
ジェクトを AmazonPinpointClient の createSegment メソッドに渡します。

Code

WriteSegmentRequest writeSegmentRequest = new WriteSegmentRequest()
 .withName("MySegment").withDimensions(dimensions);

CreateSegmentRequest createSegmentRequest = new CreateSegmentRequest()
 .withApplicationId(appId).withWriteSegmentRequest(writeSegmentRequest);

CreateSegmentResult createSegmentResult = client.createSegment(createSegmentRequest);

GitHub で完全な例をご覧ください。

詳細情報

• Amazon Pinpoint ユーザーガイドの Amazon Pinpoint セグメント

• Amazon Pinpoint デベロッパーガイドのセグメントの作成

Amazon Pinpoint でのセグメントの作成 168

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/SegmentDimensions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteSegmentRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/CreateSegmentRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateSegment.java
https://docs.aws.amazon.com/pinpoint/latest/userguide/segments.html
https://docs.aws.amazon.com/pinpoint/latest/developerguide/segments.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

• Amazon Pinpoint API リファレンスのセグメント

• Amazon Pinpoint API リファレンスのセグメント

Amazon Pinpoint でのキャンペーンの作成

キャンペーンを使用して、ユーザーとアプリケーション間の関与を向上させることができます。キャ
ンペーンを作成すると、ユーザーのセグメントに合わせてカスタマイズされたメッセージまたは特別
なプロモーションを使用してユーザーに連絡できます。この例では、指定されたセグメントにカスタ
マイズされたプッシュ通知を送信する標準的なキャンペーンを新しく作成する方法を説明します。

キャンペーンの作成

新しいキャンペーンを作成する前に、スケジュールとメッセージを定義し、WriteCampaignRequest
オブジェクトでこれらの値を設定する必要があります。

インポート

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateCampaignRequest;
import com.amazonaws.services.pinpoint.model.CreateCampaignResult;
import com.amazonaws.services.pinpoint.model.Action;
import com.amazonaws.services.pinpoint.model.CampaignResponse;
import com.amazonaws.services.pinpoint.model.Message;
import com.amazonaws.services.pinpoint.model.MessageConfiguration;
import com.amazonaws.services.pinpoint.model.Schedule;
import com.amazonaws.services.pinpoint.model.WriteCampaignRequest;

コード

Schedule schedule = new Schedule()
 .withStartTime("IMMEDIATE");

Message defaultMessage = new Message()
 .withAction(Action.OPEN_APP)
 .withBody("My message body.")
 .withTitle("My message title.");

MessageConfiguration messageConfiguration = new MessageConfiguration()
 .withDefaultMessage(defaultMessage);

Amazon Pinpoint でのキャンペーンの作成 169

https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-segments.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-segment.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/Schedule.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/Message.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteCampaignRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

WriteCampaignRequest request = new WriteCampaignRequest()
 .withDescription("My description.")
 .withSchedule(schedule)
 .withSegmentId(segmentId)
 .withName("MyCampaign")
 .withMessageConfiguration(messageConfiguration);

次に、Amazon PinpointCreateCampaignRequest オブジェクトに WriteCampaignRequest をキャン
ペーン設定とともに指定し、 で新規キャンペーンを作成します。最後に、CreateCampaignRequest
オブジェクトを AmazonPinpointClient の createCampaign メソッドに渡します。

Code

CreateCampaignRequest createCampaignRequest = new CreateCampaignRequest()
 .withApplicationId(appId).withWriteCampaignRequest(request);

CreateCampaignResult result = client.createCampaign(createCampaignRequest);

GitHub で完全な例をご覧ください。

詳細情報

• Amazon Pinpoint ユーザーガイドの Amazon Pinpoint キャンペーン

• Amazon Pinpoint デベロッパーガイドのキャンペーンの作成

• Amazon Pinpoint API リファレンスのキャンペーン

• Amazon Pinpoint API リファレンスのキャンペーン

• Amazon Pinpoint API リファレンスのキャンペーンアクティビティ

• Amazon Pinpoint API リファレンスのキャンペーンバージョン

• Amazon Pinpoint API リファレンスのキャンペーンバージョン

Amazon Pinpoint のチャネルの更新

チャネルはメッセージを配信するプラットフォームのタイプを定義します。この例は、APN チャネ
ルを使用してメッセージを送信する方法を示しています。

チャネルの更新

アプリ ID と更新するチャネルタイプのリクエストオブジェクトを指定して、Amazon Pinpoint
のチャネルを有効にします。この例では、APNSChannelRequest オブジェクトを要求する APN

Amazon Pinpoint のチャネルの更新 170

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteCampaignRequest.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/pinpoint/model/CreateCampaignRequest.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/pinpoint/model/CreateCampaignRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateApp.java
https://docs.aws.amazon.com/pinpoint/latest/userguide/campaigns.html
https://docs.aws.amazon.com/pinpoint/latest/developerguide/campaigns.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaigns.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign-activities.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign-versions.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign-version.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/APNSChannelRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

チャネルが更新されます。これらを UpdateApnsChannelRequest に設定し、そのオブジェクトを
AmazonPinpointClient の updateApnsChannel メソッドに渡します。

インポート

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.APNSChannelRequest;
import com.amazonaws.services.pinpoint.model.APNSChannelResponse;
import com.amazonaws.services.pinpoint.model.GetApnsChannelRequest;
import com.amazonaws.services.pinpoint.model.GetApnsChannelResult;
import com.amazonaws.services.pinpoint.model.UpdateApnsChannelRequest;
import com.amazonaws.services.pinpoint.model.UpdateApnsChannelResult;

Code

APNSChannelRequest request = new APNSChannelRequest()
 .withEnabled(enabled);

UpdateApnsChannelRequest updateRequest = new UpdateApnsChannelRequest()
 .withAPNSChannelRequest(request)
 .withApplicationId(appId);
UpdateApnsChannelResult result = client.updateApnsChannel(updateRequest);

GitHub で完全な例をご覧ください。

詳細情報

• Amazon Pinpoint ユーザーガイドの Amazon Pinpoint チャネル

• Amazon Pinpoint API リファレンスの ADM チャネル

• Amazon Pinpoint API リファレンスの APN チャネル

• Amazon Pinpoint API リファレンスの APN サンドボックスチャネル

• Amazon Pinpoint API リファレンスの APN VoIP チャネル

• Amazon Pinpoint API リファレンスの APNs VoIP サンドボックスチャネル

• Amazon Pinpoint API リファレンスの Baidu チャネル

• Amazon Pinpoint API リファレンスの E メールチャネル

• Amazon Pinpoint API リファレンスの GCM チャネル

• Amazon Pinpoint API リファレンスの SMS チャネル

Amazon Pinpoint のチャネルの更新 171

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/UpdateApnsChannelRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/UpdateChannel.java
https://docs.aws.amazon.com/pinpoint/latest/userguide/channels.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-adm-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-sandbox-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-voip-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-voip-sandbox-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-baidu-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-email-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-gcm-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-sms-channel.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Amazon S3 を使用した例AWS SDK for Java

このセクションでは、AWS SDK for Java を使用して Amazon S3 をプログラムする例を示します。

Note

例には各手法を示すのに必要なコードのみが含まれます。完全なサンプルコードは GitHub
で入手できます。そこから、単一のソースファイルをダウンロードするかリポジトリをロー
カルにクローン作成して、ビルドし実行するためのすべての例を取得できます。

トピック

• Amazon S3 バケットの作成、一覧表示、削除

• Amazon S3 オブジェクトに対する操作の実行

• バケットおよびオブジェクトの Amazon S3 アクセス許可の管理

• バケットポリシーを使用した Amazon S3 バケットへのアクセス管理

• Amazon S3 操作の TransferManager の使用

• ウェブサイトとしての Amazon S3 バケットの設定

• Amazon S3 クライアント側の暗号化を使用する

Amazon S3 バケットの作成、一覧表示、削除

Amazon S3 の各オブジェクト (ファイル) は、オブジェクトのコレクション (コンテナ) を表すバケッ
ト内に存在している必要があります。各バケットはキー (名前) で識別され、それは一意である必要
があります。バケットおよびその設定についての詳細は、Amazon Simple Storage Service ユーザー
ガイドの Amazon S3 バケットの使用を参照してください。

Note

ベストプラクティス
バケットで AbortIncompleteMultipartUploadAmazon S3 ライフサイクルルールを有効にする
ことをお勧めします。
このルールは、開始後、指定された日数内に完了しないマルチパートアップロードを中止す
るよう Amazon S3 に指示できます。設定した時間制限を超えると、Amazon S3 はアップ
ロードを中止して、不完全なアップロードデータを削除します。

Amazon S3 の例 172

https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/s3/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

詳細については、Amazon S3 ユーザーガイドのバージョニングを使用したバケットのライフ
サイクル設定を参照してください。

Note

これらのコード例では、ユーザーが AWS SDK for Java の使用の内容を理解し、開発用の
AWS 認証情報とリージョンのセットアップの情報を使用してデフォルトの AWS 認証情報を
設定していることを前提としています。

バケットの作成

AmazonS3 クライアントの createBucket メソッドを使用します。新しいバケットが返されま
す。createBucket メソッドでは、バケットが既に存在する場合、例外が発生します。

Note

同じ名前のバケットを作成する前にバケットが既に存在するかどうかを確認するに
は、doesBucketExist メソッドを呼び出してください。バケットが存在する場合は true
を返し、それ以外の場合は false を返します。

インポート

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AmazonS3Exception;
import com.amazonaws.services.s3.model.Bucket;

import java.util.List;

Code

if (s3.doesBucketExistV2(bucket_name)) {
 System.out.format("Bucket %s already exists.\n", bucket_name);
 b = getBucket(bucket_name);

Amazon S3 バケットの作成、一覧表示、削除 173

https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Bucket.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

} else {
 try {
 b = s3.createBucket(bucket_name);
 } catch (AmazonS3Exception e) {
 System.err.println(e.getErrorMessage());
 }
}
return b;

GitHub で完全な例をご覧ください。

バケットの一覧表示

AmazonS3 クライアントの listBucket メソッドを使用します。成功すると、バケットのリストが
返されます。

インポート

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.Bucket;

import java.util.List;

Code

List<Bucket> buckets = s3.listBuckets();
System.out.println("Your {S3} buckets are:");
for (Bucket b : buckets) {
 System.out.println("* " + b.getName());
}

GitHub で完全な例をご覧ください。

バケットの削除

Amazon S3 バケットを削除する前に、バケットが空であることを必ず確認してください。空になっ
ていないとエラーが発生します。バージョニングされたバケットがある場合は、このバケットに関連
付けられているすべてのバージョニングされたオブジェクトも削除する必要があります。

Amazon S3 バケットの作成、一覧表示、削除 174

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/CreateBucket.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Bucket.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/ListBuckets.java
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Note

完全な例には、これらの各ステップが順に含まれており、Amazon S3 バケットとそのコンテ
ンツを削除するための完全なソリューションを提供しています。

トピック

• バケットを削除する前にバージョニングされていないバケットからオブジェクトを削除する

• バケットを削除する前にバージョニングされているバケットからオブジェクトを削除する

• 空のバケットを削除する

バケットを削除する前にバージョニングされていないバケットからオブジェクトを削除する

AmazonS3 クライアントの listObjects メソッドを使用してオブジェクトのリストおよび
deleteObject を取得し、それぞれを削除します。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

Code

System.out.println(" - removing objects from bucket");
ObjectListing object_listing = s3.listObjects(bucket_name);
while (true) {
 for (Iterator<?> iterator =
 object_listing.getObjectSummaries().iterator();
 iterator.hasNext();) {
 S3ObjectSummary summary = (S3ObjectSummary) iterator.next();
 s3.deleteObject(bucket_name, summary.getKey());
 }

 // more object_listing to retrieve?
 if (object_listing.isTruncated()) {

Amazon S3 バケットの作成、一覧表示、削除 175

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 object_listing = s3.listNextBatchOfObjects(object_listing);
 } else {
 break;
 }
}

GitHub で完全な例をご覧ください。

バケットを削除する前にバージョニングされているバケットからオブジェクトを削除する

バージョニングされたバケットを使用している場合は、バケットを削除する前に、バケットに保存さ
れているすべてのバージョンのオブジェクトも削除する必要があります。

バケット内のオブジェクトを削除する際に使用したのと同じような方法で、バージョニングされたオ
ブジェクトを削除します。まず、AmazonS3 クライアントの listVersions メソッドを使用してす
べてのバージョニングされたオブジェクトを一覧表示し、次に deleteVersion を使用して各オブ
ジェクトを削除します。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

Code

System.out.println(" - removing versions from bucket");
VersionListing version_listing = s3.listVersions(
 new ListVersionsRequest().withBucketName(bucket_name));
while (true) {
 for (Iterator<?> iterator =
 version_listing.getVersionSummaries().iterator();
 iterator.hasNext();) {
 S3VersionSummary vs = (S3VersionSummary) iterator.next();
 s3.deleteVersion(
 bucket_name, vs.getKey(), vs.getVersionId());
 }

 if (version_listing.isTruncated()) {

Amazon S3 バケットの作成、一覧表示、削除 176

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 version_listing = s3.listNextBatchOfVersions(
 version_listing);
 } else {
 break;
 }
}

GitHub で完全な例をご覧ください。

空のバケットを削除する

バケットからオブジェクト (すべてのバージョニングされたオブジェクトを含む) を削除した
ら、AmazonS3 クライアントの deleteBucket メソッドを使用してバケット自体を削除できます。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

Code

System.out.println(" OK, bucket ready to delete!");
s3.deleteBucket(bucket_name);

GitHub で完全な例をご覧ください。

Amazon S3 オブジェクトに対する操作の実行

Amazon S3 オブジェクトは、ファイルまたはデータの集合を表します。すべてのオブジェクトがバ
ケット内にある必要があります。

Note

これらのコード例では、ユーザーが AWS SDK for Java の使用の内容を理解し、開発用の
AWS 認証情報とリージョンのセットアップの情報を使用してデフォルトの AWS 認証情報を
設定していることを前提としています。

Amazon S3 オブジェクトに対する操作の実行 177

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

トピック

• オブジェクトのアップロード

• オブジェクトのリスト化

• オブジェクトのダウンロード

• オブジェクトのコピー、移動、または名前の変更

• オブジェクトの削除

• 複数オブジェクトの一括削除

オブジェクトのアップロード

AmazonS3 クライアントの putObject メソッドを使用して、バケット名、キー名、アップロード
するファイルを指定します。バケットが存在している必要があり、存在しない場合はエラーが発生し
ます。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

コード

System.out.format("Uploading %s to S3 bucket %s...\n", file_path, bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.putObject(bucket_name, key_name, new File(file_path));
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

GitHub で完全な例をご覧ください。

オブジェクトのリスト化

バケット内のオブジェクトのリストを取得するには、AmazonS3 クライアントの listObjects メ
ソッドを使用して、バケット名を指定します。

Amazon S3 オブジェクトに対する操作の実行 178

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/PutObject.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

listObjects メソッドは、バケットのオブジェクトに関する情報を提供する ObjectListing オブ
ジェクトを返します。オブジェクト名 (キー) を一覧表示するには、getObjectSummaries メソッ
ドを使用して、それぞれがバケット内の単一のオブジェクトを表す S3ObjectSummary オブジェク
トのリストを取得し、 メソッドを呼び出してオブジェクト名を取得します。それから、getKey メ
ソッドを呼び出してオブジェクト名を取得します。

インポート

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ListObjectsV2Result;
import com.amazonaws.services.s3.model.S3ObjectSummary;

コード

System.out.format("Objects in S3 bucket %s:\n", bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
ListObjectsV2Result result = s3.listObjectsV2(bucket_name);
List<S3ObjectSummary> objects = result.getObjectSummaries();
for (S3ObjectSummary os : objects) {
 System.out.println("* " + os.getKey());
}

GitHub で完全な例をご覧ください。

オブジェクトのダウンロード

AmazonS3 クライアントの getObject メソッドを使用して、ダウンロードするバケットの名前と
オブジェクトを渡します。成功すると、このメソッドによって S3Object が返されます。指定された
バケットとオブジェクトキーが存在している必要があり、存在しない場合エラーが発生します。

オブジェクトのコンテンツは、getObjectContent の S3Object を呼び出して取得できます。こ
れにより、標準の Java InputStream オブジェクトとして動作する S3ObjectInputStream が返され
ます。

次の例では、S3 からオブジェクトをダウンロードし、そのコンテンツをファイルに保存します (オ
ブジェクトキーと同じ名前を使用)。

インポート

Amazon S3 オブジェクトに対する操作の実行 179

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/ObjectListing.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3ObjectSummary.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/ListObjects.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3Object.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3ObjectInputStream.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.S3Object;
import com.amazonaws.services.s3.model.S3ObjectInputStream;

import java.io.File;

コード

System.out.format("Downloading %s from S3 bucket %s...\n", key_name, bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 S3Object o = s3.getObject(bucket_name, key_name);
 S3ObjectInputStream s3is = o.getObjectContent();
 FileOutputStream fos = new FileOutputStream(new File(key_name));
 byte[] read_buf = new byte[1024];
 int read_len = 0;
 while ((read_len = s3is.read(read_buf)) > 0) {
 fos.write(read_buf, 0, read_len);
 }
 s3is.close();
 fos.close();
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
} catch (FileNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
} catch (IOException e) {
 System.err.println(e.getMessage());
 System.exit(1);
}

GitHub で完全な例をご覧ください。

Amazon S3 オブジェクトに対する操作の実行 180

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetObject.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

オブジェクトのコピー、移動、または名前の変更

AmazonS3 クライアントの copyObject メソッドを使用して、1 つのバケットから別のバケットへ
オブジェクトをコピーできます。コピー元のバケットの名前、コピーするオブジェクト、およびコ
ピー先バケットの名前が継承されます。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;

コード

try {
 s3.copyObject(from_bucket, object_key, to_bucket, object_key);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
System.out.println("Done!");

GitHub で完全な例をご覧ください。

Note

copyObject を deleteObject とともに使用して、最初にオブジェクトを新しい名前でコピー
し (コピー元とコピー先の両方に同じバケットの使用が可能)、元の場所からそのオブジェク
トを削除することで、オブジェクトの移動または名前変更ができます。

オブジェクトの削除

AmazonS3 クライアントの deleteObject メソッドを使用して、削除するバケットの名前とオブ
ジェクトを渡します。指定されたバケットとオブジェクトキーが存在している必要があり、存在しな
い場合エラーが発生します。

インポート

import com.amazonaws.AmazonServiceException;

Amazon S3 オブジェクトに対する操作の実行 181

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/CopyObject.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

import com.amazonaws.regions.Regions;

コード

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.deleteObject(bucket_name, object_key);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

GitHub で完全な例をご覧ください。

複数オブジェクトの一括削除

AmazonS3 クライアントの deleteObjects メソッドを使用すると、link:sdk-for-java/v1/reference/
com/amazonaws/services/s3/model/DeleteObjectsRequest.html メソッドに名前を渡すことで、同じ
バケットから複数のオブジェクトを削除できます。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

コード

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 DeleteObjectsRequest dor = new DeleteObjectsRequest(bucket_name)
 .withKeys(object_keys);
 s3.deleteObjects(dor);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

GitHub で完全な例をご覧ください。

Amazon S3 オブジェクトに対する操作の実行 182

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteObject.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteObjects.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

バケットおよびオブジェクトの Amazon S3 アクセス許可の管理

Amazon S3 バケットとオブジェクトのアクセスコントロールリスト (ACL) を使用して、Amazon S3
リソースをきめ細かく制御することができます。

Note

これらのコード例では、ユーザーが AWS SDK for Java の使用の内容を理解し、開発用の
AWS 認証情報とリージョンのセットアップの情報を使用してデフォルトの AWS 認証情報を
設定していることを前提としています。

バケットのアクセスコントロールリストの取得

バケットの現在の ACL を取得するには、AmazonS3 の getBucketAcl メソッドを呼び出して、そ
れにクエリを実行するバケット名を渡します。このメソッドは、AccessControlList オブジェクトを
返します。リスト内の各アクセス権を取得するには、その getGrantsAsList メソッドを呼び出し
ます。これにより、Grant オブジェクトの標準 Java リストが返されます。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.Grant;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 AccessControlList acl = s3.getBucketAcl(bucket_name);
 List<Grant> grants = acl.getGrantsAsList();
 for (Grant grant : grants) {
 System.out.format(" %s: %s\n", grant.getGrantee().getIdentifier(),
 grant.getPermission().toString());
 }
} catch (AmazonServiceException e) {

バケットおよびオブジェクトの Amazon S3 アクセス許可の管理 183

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grant.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 System.err.println(e.getErrorMessage());
 System.exit(1);
}

GitHub で完全な例をご覧ください。

バケットのアクセスコントロールリストの設定

バケットの ACL に許可の追加や変更をするには、AmazonS3 の setBucketAcl メソッドを呼び出
します。設定する被付与者やアクセスレベルのリストを含む AccessControlList オブジェクトが使用
されます。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.EmailAddressGrantee;

コード

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 // get the current ACL
 AccessControlList acl = s3.getBucketAcl(bucket_name);
 // set access for the grantee
 EmailAddressGrantee grantee = new EmailAddressGrantee(email);
 Permission permission = Permission.valueOf(access);
 acl.grantPermission(grantee, permission);
 s3.setBucketAcl(bucket_name, acl);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

バケットおよびオブジェクトの Amazon S3 アクセス許可の管理 184

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Note

Grantee クラスを使用して直接被付与者の一意の識別子を提供するか、ここで行ったよう
に、EmailAddressGrantee クラスを使用して被付与者を E メールで設定することができま
す。

GitHub で完全な例をご覧ください。

オブジェクトのアクセスコントロールリストの取得

オブジェクトの現在の ACL を取得するには、AmazonS3 の getObjectAcl メソッドを呼び出し
て、それにクエリを実行するバケット名およびオブジェクト名を渡します。getBucketAcl と同様
に、このメソッドは各権限を調べるのに使用できる AccessControlList オブジェクトを返します。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.Grant;

Code

try {
 AccessControlList acl = s3.getObjectAcl(bucket_name, object_key);
 List<Grant> grants = acl.getGrantsAsList();
 for (Grant grant : grants) {
 System.out.format(" %s: %s\n", grant.getGrantee().getIdentifier(),
 grant.getPermission().toString());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

GitHub で完全な例をご覧ください。

バケットおよびオブジェクトの Amazon S3 アクセス許可の管理 185

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grantee.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/EmailAddressGrantee.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetAcl.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grant.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

オブジェクトのアクセスコントロールリストの設定

オブジェクトの ACL に許可の追加や変更をするには、AmazonS3 の setObjectAcl メソッドを呼
び出します。設定する被付与者やアクセスレベルのリストを含む AccessControlList オブジェクトが
使用されます。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.EmailAddressGrantee;

コード

 try {
 // get the current ACL
 AccessControlList acl = s3.getObjectAcl(bucket_name, object_key);
 // set access for the grantee
 EmailAddressGrantee grantee = new EmailAddressGrantee(email);
 Permission permission = Permission.valueOf(access);
 acl.grantPermission(grantee, permission);
 s3.setObjectAcl(bucket_name, object_key, acl);
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }
}

Note

Grantee クラスを使用して直接被付与者の一意の識別子を提供するか、ここで行ったよう
に、EmailAddressGrantee クラスを使用して被付与者を E メールで設定することができま
す。

GitHub で完全な例をご覧ください。

バケットおよびオブジェクトの Amazon S3 アクセス許可の管理 186

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grantee.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/EmailAddressGrantee.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetAcl.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

詳細情報

• Amazon S3 API リファレンスの GET Bucket acl

• Amazon S3 API リファレンスの PUT Bucket acl

• Amazon S3 API リファレンスの GET Object acl

• Amazon S3 API リファレンスの PUT Object acl

バケットポリシーを使用した Amazon S3 バケットへのアクセス管理

バケットポリシーを設定、取得、または削除して、Amazon S3 バケットへのアクセスを管理できま
す。

バケットポリシーの設定

特定の S3 バケットにバケットポリシーを設定するには。

• AmazonS3 クライアントの setBucketPolicy を呼び出し、SetBucketPolicyRequest を渡しま
す。

• バケット名とポリシーテキスト (JSON 形式) を受け取る setBucketPolicy オーバーロードを使
用して、直接ポリシーを設定します。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.policy.Policy;
import com.amazonaws.auth.policy.Principal;

コード

 s3.setBucketPolicy(bucket_name, policy_text);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Policy クラスを使用してポリシーを生成または検証する

バケットポリシーを setBucketPolicy に渡す場合、以下のことができます。

バケットポリシーを使用した Amazon S3 バケットへのアクセス管理 187

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/SetBucketPolicyRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

• ポリシーを JSON 形式のテキスト文字列として直接指定できます。

• Policy クラスを使用してポリシーを構築できます。

Policy クラスを使用することで、テキスト文字列を正しくフォーマットすることについて心配する
必要はありません。Policy クラスから JSON ポリシーテキストを取得するには、その toJson メ
ソッドを使用します。

インポート

import com.amazonaws.auth.policy.Resource;
import com.amazonaws.auth.policy.Statement;
import com.amazonaws.auth.policy.actions.S3Actions;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

コード

 new Statement(Statement.Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(S3Actions.GetObject)
 .withResources(new Resource(
 "{region-arn}s3:::" + bucket_name + "/*")));
return bucket_policy.toJson();

Policy クラスは、渡された JSON 文字列を使用してポリシーの構築を試行できる fromJson メ
ソッドも提供します。このメソッドは、確実にテキストが有効なポリシー構造へと変換できることを
検証し、ポリシーテキストが無効な場合には IllegalArgumentException エラーとなります。

Policy bucket_policy = null;
try {
 bucket_policy = Policy.fromJson(file_text.toString());
} catch (IllegalArgumentException e) {
 System.out.format("Invalid policy text in file: \"%s\"",
 policy_file);
 System.out.println(e.getMessage());
}

この方法を使用して、ファイルやその他の手段から読み取るポリシーを事前に検証できます。

バケットポリシーを使用した Amazon S3 バケットへのアクセス管理 188

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/policy/Policy.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

GitHub で完全な例をご覧ください。

バケットポリシーの取得

Amazon S3 バケットのポリシーを取得するには、AmazonS3 クライアントの getBucketPolicy
メソッドを呼び出し、それにポリシーの取得元であるバケットの名前を渡します。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

コード

 try {
 BucketPolicy bucket_policy = s3.getBucketPolicy(bucket_name);
 policy_text = bucket_policy.getPolicyText();
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }

その名前のバケットが存在しない場合、バケットへのアクセス権がない場合、またはバケットポリ
シーがない場合は、AmazonServiceException がスローされます。

GitHub で完全な例をご覧ください。

バケットポリシーの削除

バケットポリシーを削除するには、AmazonS3 クライアントの deleteBucketPolicy を呼び出し
て、それにバケット名を渡します。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

バケットポリシーを使用した Amazon S3 バケットへのアクセス管理 189

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetBucketPolicy.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetBucketPolicy.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

コード

 try {
 s3.deleteBucketPolicy(bucket_name);
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }

このメソッドは、バケットにまだポリシーがない場合でも成功します。指定した名前のバケットが存
在していないか、バケットへのアクセス権がない場合は、AmazonServiceException がスローさ
れます。

GitHub で完全な例をご覧ください。

詳細

• Amazon Simple Storage Service ユーザーガイドのアクセスポリシー言語の概要

• Amazon Simple Storage Service ユーザーガイドのバケットポリシーの例

Amazon S3 操作の TransferManager の使用

AWS SDK for Java TransferManager クラスを使用して、ローカル環境から Amazon S3へファイル
を確実に転送し、S3 の複数の場所間でオブジェクトをコピーします。TransferManager は、転送
の進行状況を取得し、アップロードとダウンロードの一時停止/再開を行うことができます。

Note

ベストプラクティス
バケットで AbortIncompleteMultipartUploadAmazon S3 ライフサイクルルールを有効にする
ことをお勧めします。
このルールは、開始後、指定された日数内に完了しないマルチパートアップロードを中止す
るよう Amazon S3 に指示できます。設定した時間制限を超えると、Amazon S3 はアップ
ロードを中止して、不完全なアップロードデータを削除します。
詳細については、Amazon S3 ユーザーガイドのバージョニングを使用したバケットのライフ
サイクル設定を参照してください。

Amazon S3 操作の TransferManager の使用 190

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucketPolicy.java
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-policy-language-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Note

これらのコード例では、ユーザーが AWS SDK for Java の使用の内容を理解し、開発用の
AWS 認証情報とリージョンのセットアップの情報を使用してデフォルトの AWS 認証情報を
設定していることを前提としています。

ファイルとディレクトリのアップロード

TransferManager は、以前に作成した Amazon S3 バケットのいずれに対してもファイル、ファイル
リスト、ディレクトリをアップロードできます。

トピック

• 1 つのファイルのアップロード

• ファイルのリストのアップロード

• ディレクトリのアップロード

1 つのファイルのアップロード

TransferManager の upload メソッドを呼び出し、Amazon S3 バケット名、キー (オブジェクト)
名、アップロードするファイルを表す標準 Java ファイルオブジェクトを指定します。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

コード

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();

Amazon S3 操作の TransferManager の使用 191

https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

try {
 Upload xfer = xfer_mgr.upload(bucket_name, key_name, f);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

upload メソッドは、即座に返され、転送の状態を確認する、または、転送が完了するまで待機する
ための Upload オブジェクトが提供されます。

waitForCompletion を使用して、転送が正常に完了した後に TransferManager の shutdownNow
メソッドを呼び出すことの詳細については、転送の完了の待機を参照してください。転送の完了を待
ちながら、転送の状態や進行状況に関する更新情報をポーリングまたはリスンできます。詳細につい
ては、「転送の状態と進行状況の取得」を参照してください。

GitHub で完全な例をご覧ください。

ファイルのリストのアップロード

複数のファイルを一括してアップロードするには、TransferManageruploadFileList メソッドを
呼び出して、以下を指定します。

• Amazon S3 バケット名

• 作成したオブジェクトの名前の前に付加されるキープレフィックス (オブジェクトを置くバケット
内のパス)

• ファイルパスの作成元の相対ディレクトリを表すファイルオブジェクト

• リストオブジェクト (アップロードする一連のファイルオブジェクトを含む)

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

Amazon S3 操作の TransferManager の使用 192

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/List.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

コード

ArrayList<File> files = new ArrayList<File>();
for (String path : file_paths) {
 files.add(new File(path));
}

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 MultipleFileUpload xfer = xfer_mgr.uploadFileList(bucket_name,
 key_prefix, new File("."), files);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

waitForCompletion を使用して、転送が正常に完了した後に TransferManager の shutdownNow
メソッドを呼び出すことの詳細については、転送の完了の待機を参照してください。転送の完了を待
ちながら、転送の状態や進行状況に関する更新情報をポーリングまたはリスンできます。詳細につい
ては、「転送の状態と進行状況の取得」を参照してください。

uploadFileList から返される MultipleFileUpload オブジェクトを使用して、転送の状態
や進行状況をクエリできます。詳細については、「転送の現在の進行状況のポーリング」と
「ProgressListener による転送の進行状況の取得」を参照してください。

MultipleFileUpload の getSubTransfers メソッドを使用して、転送中の各ファイルについて
個別の Upload オブジェクトを取得することもできます。詳細については、「サブ転送の進行状況
の取得」を参照してください。

GitHub で完全な例をご覧ください。

Amazon S3 操作の TransferManager の使用 193

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ディレクトリのアップロード

TransferManager の uploadDirectory メソッドを使用して、ファイルのディレクトリ全体をアッ
プロードし、オプションとしてファイルをサブディレクトリに再帰的にコピーできます。このメソッ
ドに、Amazon S3 バケット名、S3 キープレフィックス、コピーするローカルディレクトリを表す
File オブジェクト、およびサブディレクトリに再帰的にコピーするかどうか (booleantrue または
false) を示す 値を渡します。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

コード

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 MultipleFileUpload xfer = xfer_mgr.uploadDirectory(bucket_name,
 key_prefix, new File(dir_path), recursive);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

waitForCompletion を使用して、転送が正常に完了した後に TransferManager の shutdownNow
メソッドを呼び出すことの詳細については、転送の完了の待機を参照してください。転送の完了を待
ちながら、転送の状態や進行状況に関する更新情報をポーリングまたはリスンできます。詳細につい
ては、「転送の状態と進行状況の取得」を参照してください。

Amazon S3 操作の TransferManager の使用 194

https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

uploadFileList から返される MultipleFileUpload オブジェクトを使用して、転送の状態
や進行状況をクエリできます。詳細については、「転送の現在の進行状況のポーリング」と
「ProgressListener による転送の進行状況の取得」を参照してください。

MultipleFileUpload の getSubTransfers メソッドを使用して、転送中の各ファイルについて
個別の Upload オブジェクトを取得することもできます。詳細については、「サブ転送の進行状況
の取得」を参照してください。

GitHub で完全な例をご覧ください。

ファイルまたはディレクトリのダウンロード

TransferManager クラスを使用して、1 つのファイル (Amazon S3 オブジェクト) またはディレクト
リ (Amazon S3 バケット名とオブジェクトプレフィックス) を Amazon S3 からダウンロードできま
す。

トピック

• 1 つのファイルのダウンロード

• ディレクトリのダウンロード

1 つのファイルのダウンロード

TransferManager の download メソッドを使用して、ダウンロードするオブジェクトが含まれてい
る Amazon S3 バケット名、キー (オブジェクト) 名、およびローカルシステムで作成するファイルを
表すファイルオブジェクトを渡します。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Download;
import com.amazonaws.services.s3.transfer.MultipleFileDownload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

import java.io.File;

コード

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();

Amazon S3 操作の TransferManager の使用 195

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

try {
 Download xfer = xfer_mgr.download(bucket_name, key_name, f);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

waitForCompletion を使用して、転送が正常に完了した後に TransferManager の shutdownNow
メソッドを呼び出すことの詳細については、転送の完了の待機を参照してください。転送の完了を待
ちながら、転送の状態や進行状況に関する更新情報をポーリングまたはリスンできます。詳細につい
ては、「転送の状態と進行状況の取得」を参照してください。

GitHub で完全な例をご覧ください。

ディレクトリのダウンロード

同じキープレフィックス (ファイルシステムのディレクトリに相当) を共有するファイルのセットを
Amazon S3 からダウンロードするには、TransferManagerdownloadDirectory メソッドを呼び出
します。このメソッドに、ダウンロードするオブジェクトが含まれている Amazon S3 バケットの名
前、すべてのオブジェクトに共有されているオブジェクトプレフィックス、およびローカルシステム
にファイルをダウンロードする先のディレクトリを表す ファイル オブジェクトを渡します。指定し
たディレクトリがまだない場合は、自動的に作成されます。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Download;
import com.amazonaws.services.s3.transfer.MultipleFileDownload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

import java.io.File;

コード

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();

Amazon S3 操作の TransferManager の使用 196

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrDownload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

try {
 MultipleFileDownload xfer = xfer_mgr.downloadDirectory(
 bucket_name, key_prefix, new File(dir_path));
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

waitForCompletion を使用して、転送が正常に完了した後に TransferManager の shutdownNow
メソッドを呼び出すことの詳細については、転送の完了の待機を参照してください。転送の完了を待
ちながら、転送の状態や進行状況に関する更新情報をポーリングまたはリスンできます。詳細につい
ては、「転送の状態と進行状況の取得」を参照してください。

GitHub で完全な例をご覧ください。

オブジェクトのコピー

S3 バケット間でオブジェクトをコピーするには、TransferManagercopy メソッドを使用します。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Copy;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

Code

System.out.println("Copying s3 object: " + from_key);
System.out.println(" from bucket: " + from_bucket);
System.out.println(" to s3 object: " + to_key);
System.out.println(" in bucket: " + to_bucket);

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Copy xfer = xfer_mgr.copy(from_bucket, from_key, to_bucket, to_key);

Amazon S3 操作の TransferManager の使用 197

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrDownload.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

GitHub で完全な例をご覧ください。

転送が完了するまで待つ

転送が完了するまでアプリケーション (またはスレッド) がブロックできる場合、Transfer インター
フェイスの waitForCompletion メソッドを使用して転送が完了するまでブロックします。ブロッ
クしないと、例外が発生します。

try {
 xfer.waitForCompletion();
} catch (AmazonServiceException e) {
 System.err.println("Amazon service error: " + e.getMessage());
 System.exit(1);
} catch (AmazonClientException e) {
 System.err.println("Amazon client error: " + e.getMessage());
 System.exit(1);
} catch (InterruptedException e) {
 System.err.println("Transfer interrupted: " + e.getMessage());
 System.exit(1);
}

を呼び出す前にwaitForCompletionイベントをポーリングする場合、別個のスレッドにポーリン
グ機構を実装する場合、または ProgressListener を使用して非同期的に進行状況の更新を受け取る
場合は、転送の進行状況が取得されます。

GitHub で完全な例をご覧ください。

転送の状態および進行状況の取得

TransferManagerupload*、download*、copy メソッドから返される各クラスは、1 つのファイル
または複数のファイルの操作であるかどうかに応じて、以下のクラスのいずれかのインスタンスを返
します。

Amazon S3 操作の TransferManager の使用 198

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrCopy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Class 返すクラス

Copy] (コピー copy

をダウンロードします。 download

MultipleFileDownload downloadDirectory

アップロード upload

MultipleFileUpload uploadFileList , uploadDirectory

これらすべてのクラスは、Transfer インターフェイスを実装します。Transfer は、転送の進行状
況の取得や転送の一時停止/再開、および、転送の現在や最終ステータスを取得するのに役立つメ
ソッドを提供します。

トピック

• 転送の現在の進行状況のポーリング

• ProgressListener による転送の進行状況の取得

• サブ転送の進行状況の取得

転送の現在の進行状況のポーリング

このループでは、転送の進行状況を出力し、実行時は現在の進行状況を確認し、完了時は最終の状態
を出力します。

インポート

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

Amazon S3 操作の TransferManager の使用 199

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Copy.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Download.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileDownload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Upload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Code

// print the transfer's human-readable description
System.out.println(xfer.getDescription());
// print an empty progress bar...
printProgressBar(0.0);
// update the progress bar while the xfer is ongoing.
do {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 return;
 }
 // Note: so_far and total aren't used, they're just for
 // documentation purposes.
 TransferProgress progress = xfer.getProgress();
 long so_far = progress.getBytesTransferred();
 long total = progress.getTotalBytesToTransfer();
 double pct = progress.getPercentTransferred();
 eraseProgressBar();
 printProgressBar(pct);
} while (xfer.isDone() == false);
// print the final state of the transfer.
TransferState xfer_state = xfer.getState();
System.out.println(": " + xfer_state);

GitHub で完全な例をご覧ください。

ProgressListener による転送の進行状況の取得

Transfer インターフェイスの addProgressListener メソッドを使用して、ProgressListener を任
意の転送にアタッチできます。

ProgressListener は、メソッドとして progressChanged だけを必要とし、このメソッドに
ProgressEvent オブジェクトを渡します。このオブジェクトでは、その getBytes メソッドを呼び
出してオペレーションの総バイト数を取得できます。また、getBytesTransferred を呼び出して
それまでに転送されたバイト数を取得できます。

インポート

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;

Amazon S3 操作の TransferManager の使用 200

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressEvent.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

Code

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Upload u = xfer_mgr.upload(bucket_name, key_name, f);
 // print an empty progress bar...
 printProgressBar(0.0);
 u.addProgressListener(new ProgressListener() {
 public void progressChanged(ProgressEvent e) {
 double pct = e.getBytesTransferred() * 100.0 / e.getBytes();
 eraseProgressBar();
 printProgressBar(pct);
 }
 });
 // block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(u);
 // print the final state of the transfer.
 TransferState xfer_state = u.getState();
 System.out.println(": " + xfer_state);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

GitHub で完全な例をご覧ください。

サブ転送の進行状況の取得

MultipleFileUpload クラスは、その getSubTransfers メソッドを呼び出してサブ転送に関する情
報を返すことができます。アップロードオブジェクトの変更不能なコレクションを返して、サブ転送
ごとの転送の状態と進行状況を提供します。

Amazon S3 操作の TransferManager の使用 201

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Upload.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Collection.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

インポート

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

Code

Collection<? extends Upload> sub_xfers = new ArrayList<Upload>();
sub_xfers = multi_upload.getSubTransfers();

do {
 System.out.println("\nSubtransfer progress:\n");
 for (Upload u : sub_xfers) {
 System.out.println(" " + u.getDescription());
 if (u.isDone()) {
 TransferState xfer_state = u.getState();
 System.out.println(" " + xfer_state);
 } else {
 TransferProgress progress = u.getProgress();
 double pct = progress.getPercentTransferred();
 printProgressBar(pct);
 System.out.println();
 }
 }

 // wait a bit before the next update.
 try {
 Thread.sleep(200);
 } catch (InterruptedException e) {
 return;
 }
} while (multi_upload.isDone() == false);
// print the final state of the transfer.
TransferState xfer_state = multi_upload.getState();
System.out.println("\nMultipleFileUpload " + xfer_state);

Amazon S3 操作の TransferManager の使用 202

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

GitHub で完全な例をご覧ください。

詳細

• Amazon Simple Storage Service ユーザーガイドのオブジェクトキー

ウェブサイトとしての Amazon S3 バケットの設定

Amazon S3 バケットを、ウェブサイトのように機能させるよう設定できます。これを行うには、
ウェブサイト設定をセットする必要があります。

Note

これらのコード例では、ユーザーが AWS SDK for Java の使用の内容を理解し、開発用の
AWS 認証情報とリージョンのセットアップの情報を使用してデフォルトの AWS 認証情報を
設定していることを前提としています。

バケットのウェブサイト設定をセットする

Amazon S3 バケットのウェブサイト設定をセットするには、AmazonS3 の
setWebsiteConfiguration メソッドを設定するバケット名で呼び出し、バケットのウェブサイ
ト設定が含まれる BucketWebsiteConfiguration オブジェクトを呼び出します。

インデックスドキュメントの設定は必要ですが、他のすべてのパラメータはオプションです。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;

コード

 String bucket_name, String index_doc, String error_doc) {
BucketWebsiteConfiguration website_config = null;

ウェブサイトとしての Amazon S3 バケットの設定 203

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/BucketWebsiteConfiguration.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

if (index_doc == null) {
 website_config = new BucketWebsiteConfiguration();
} else if (error_doc == null) {
 website_config = new BucketWebsiteConfiguration(index_doc);
} else {
 website_config = new BucketWebsiteConfiguration(index_doc, error_doc);
}

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.setBucketWebsiteConfiguration(bucket_name, website_config);
} catch (AmazonServiceException e) {
 System.out.format(
 "Failed to set website configuration for bucket '%s'!\n",
 bucket_name);
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Note

ウェブサイト設定をセットしても、バケットのアクセス権限は変更されません。ウェブ上で
ファイルが表示されるようにするには、バケットのファイルにパブリック読み取りアクセ
スを許可するバケットポリシーも設定する必要があります。詳細については、バケットポリ
シーを使用した Amazon S3 バケットへのアクセス管理を参照してください。

GitHub で完全な例をご覧ください。

バケットのウェブサイト設定を取得する

Amazon S3 バケットのウェブサイト設定を取得するには、AmazonS3 の
getWebsiteConfiguration メソッドを、設定を取得するバケットの名前で呼び出します。

この設定は BucketWebsiteConfiguration オブジェクトとして返されます。バケットのウェブサイト
設定がない場合は、null が返されます。

インポート

import com.amazonaws.AmazonServiceException;

ウェブサイトとしての Amazon S3 バケットの設定 204

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetWebsiteConfiguration.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/BucketWebsiteConfiguration.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 BucketWebsiteConfiguration config =
 s3.getBucketWebsiteConfiguration(bucket_name);
 if (config == null) {
 System.out.println("No website configuration found!");
 } else {
 System.out.format("Index document: %s\n",
 config.getIndexDocumentSuffix());
 System.out.format("Error document: %s\n",
 config.getErrorDocument());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.out.println("Failed to get website configuration!");
 System.exit(1);
}

GitHub で完全な例をご覧ください。

バケットのウェブサイト設定を削除する

Amazon S3 バケットのウェブサイト設定を削除するには、AmazonS3 の
deleteWebsiteConfiguration メソッドを、設定を削除するバケットの名前で呼び出します。

インポート

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

Code

ウェブサイトとしての Amazon S3 バケットの設定 205

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetWebsiteConfiguration.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.deleteBucketWebsiteConfiguration(bucket_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.out.println("Failed to delete website configuration!");
 System.exit(1);
}

GitHub で完全な例をご覧ください。

詳細情報

• Amazon S3 API リファレンスの PUT Bucket ウェブサイト

• Amazon S3 API リファレンスの GET Bucket ウェブサイト

• Amazon S3 API リファレンスの DELETE Bucket ウェブサイト

Amazon S3 クライアント側の暗号化を使用する

Amazon S3 暗号化クライアントを使用したデータの暗号化は、Amazon S3 に保存された機密情報
に保護レイヤーを追加するための 1 つの方法です。このセクションの例では、アプリケーションの
Amazon S3 暗号化クライアントを作成および設定する方法を示しています。

暗号化を初めて使用する場合は、AWS KMS デベロッパーガイドの暗号化の基礎で暗号化の用語や
アルゴリズムの基本的な概要を参照してください。AWS SDK 全体の暗号化のサポートの詳細につい
ては、「Amazon Web Services 全般のリファレンス」の「AWS SDK Support for Amazon S3 Client-
Side Encryption」を参照してください。

Note

これらのコード例では、ユーザーが AWS SDK for Java の使用の内容を理解し、開発用の
AWS 認証情報とリージョンのセットアップの情報を使用してデフォルトの AWS 認証情報を
設定していることを前提としています。

AWS SDK for Java のバージョン 1.11.836 以前を使用している場合は、アプリケーションをそれ以
降のバージョンに移行する方法について、「Amazon S3 Encryption Client Migration」を参照してく
ださい。移行できない場合は、GitHub でこの完全な例を参照してください。

Amazon S3 クライアント側の暗号化を使用する 206

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteWebsiteConfiguration.java
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEwebsite.html
https://docs.aws.amazon.com/kms/latest/developerguide/crypto-intro.html
https://docs.aws.amazon.com/general/latest/gr/aws_sdk_cryptography.html
https://docs.aws.amazon.com/general/latest/gr/aws_sdk_cryptography.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/S3Encrypt.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

それ以外の場合であって、AWS SDK for Java のバージョン 1.11.837 以降を使用しているときは、
以下にリストされているトピックの例を調べて、Amazon S3 クライアント側の暗号化を使用してく
ださい。

トピック

• Amazon S3クライアントマスターキーを使用した クライアント側の暗号化

• AWS KMS マネージドキーを使用した Amazon S3 クライアント側の暗号化

Amazon S3クライアントマスターキーを使用した クライアント側の暗号化

次の例では、AmazonS3EncryptionClientV2Builder クラスを使用して、クライアント側の暗号化が
有効になった Amazon S3 クライアントを作成します。有効にすると、このクライアントを使用して
Amazon S3 にアップロードするすべてのオブジェクトが暗号化されます。このクライアントを使用
して Amazon S3 から取得したオブジェクトは、自動的に復号化されます。

Note

次の例では、カスタマー管理のクライアントマスターキーを使用した Amazon S3 クライア
ント側の暗号化の使用方法を説明します。AWS KMS マネージドの暗号化キーを使用する方
法については、「Amazon S3 client-side encryption with AWS KMS managed keys」を参照
してください。

クライアント側の Amazon S3 暗号化を有効にする際に、厳格な認証済みまたは認証済みの 2 つの暗
号化モードから選択できます。以下のセクションで、各タイプを有効にする方法を説明します。各
モードで使用されるアルゴリズムについては、CryptoMode の定義を参照してください。

必須のインポート

これらの例では、次のクラスをインポートします。

インポート。

import com.amazonaws.ClientConfiguration;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3EncryptionClientV2Builder;
import com.amazonaws.services.s3.AmazonS3EncryptionV2;
import com.amazonaws.services.s3.model.CryptoConfigurationV2;
import com.amazonaws.services.s3.model.CryptoMode;
import com.amazonaws.services.s3.model.EncryptionMaterials;

Amazon S3 クライアント側の暗号化を使用する 207

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/AmazonS3EncryptionClientV2Builder.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoMode.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

import com.amazonaws.services.s3.model.StaticEncryptionMaterialsProvider;

厳格な認証済み暗号化

厳密に認証された暗号化は、CryptoMode が指定されていない場合のデフォルトのモードです。

このモードを明示的に有効にするには、StrictAuthenticatedEncryption 値を
withCryptoConfiguration メソッドに指定します。

Note

クライアント側で認証済み暗号化を使用するには、最新の Bouncy Castle jar ファイルをアプ
リケーションのクラスパスに含める必要があります。

コード

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.StrictAuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY2, "This is the 2nd content to
 encrypt");

認証済み暗号化モード

AuthenticatedEncryption モードを使用すると、暗号化中に適用されるキーのラップアルゴリ
ズムが強化されます。このモードで復号化するときは、アルゴリズムによって復号化されたオブジェ
クトの整合性が検証され、チェックが失敗した場合は例外がスローされます。認証済み暗号化の動作
の詳細については、「Amazon S3 Client-Side Authenticated Encryption」というブログ記事を参照し
てください。

Note

クライアント側で認証済み暗号化を使用するには、最新の Bouncy Castle jar ファイルをアプ
リケーションのクラスパスに含める必要があります。

Amazon S3 クライアント側の暗号化を使用する 208

https://www.bouncycastle.org/download/bouncy-castle-java/
https://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://www.bouncycastle.org/download/bouncy-castle-java/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

このモードを有効にするには、AuthenticatedEncryption 値を withCryptoConfiguration
メソッドに指定します。

コード

AmazonS3EncryptionV2 s3EncryptionClientV2 =
 AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.DEFAULT_REGION)
 .withClientConfiguration(new ClientConfiguration())
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode(CryptoMode.AuthenticatedEncryption))
 .withEncryptionMaterialsProvider(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

s3EncryptionClientV2.putObject(bucket_name, ENCRYPTED_KEY1, "This is the 1st content to
 encrypt");

AWS KMS マネージドキーを使用した Amazon S3 クライアント側の暗号化

次の例では、AmazonS3EncryptionClientV2Builder クラスを使用して、クライアント側の暗号化が有
効になった Amazon S3 クライアントを作成します。この設定を行うと、このクライアントを使用し
て Amazon S3 にアップロードするすべてのオブジェクトが暗号化されます。このクライアントを使
用して Amazon S3 から取得したオブジェクトは、自動的に復号化されます。

Note

次の例では、AWS KMS マネージドキーを使用した Amazon S3 クライアント側の暗号化の
使用方法を説明します。独自の暗号化キーを使用する方法については、「Amazon S3 client-
side encryption with client master keys」を参照してください。

クライアント側の Amazon S3 暗号化を有効にする際に、厳格な認証済みまたは認証済みの 2 つの暗
号化モードから選択できます。以下のセクションで、各タイプを有効にする方法を説明します。各
モードで使用されるアルゴリズムについては、CryptoMode の定義を参照してください。

必須のインポート

これらの例では、次のクラスをインポートします。

インポート。

Amazon S3 クライアント側の暗号化を使用する 209

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/AmazonS3EncryptionClientV2Builder.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoMode.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

import com.amazonaws.ClientConfiguration;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.kms.AWSKMS;
import com.amazonaws.services.kms.AWSKMSClientBuilder;
import com.amazonaws.services.kms.model.GenerateDataKeyRequest;
import com.amazonaws.services.kms.model.GenerateDataKeyResult;
import com.amazonaws.services.s3.AmazonS3EncryptionClientV2Builder;
import com.amazonaws.services.s3.AmazonS3EncryptionV2;
import com.amazonaws.services.s3.model.CryptoConfigurationV2;
import com.amazonaws.services.s3.model.CryptoMode;
import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.KMSEncryptionMaterialsProvider;

厳格な認証済み暗号化

厳密に認証された暗号化は、CryptoMode が指定されていない場合のデフォルトのモードです。

このモードを明示的に有効にするには、StrictAuthenticatedEncryption 値を
withCryptoConfiguration メソッドに指定します。

Note

クライアント側で認証済み暗号化を使用するには、最新の Bouncy Castle jar ファイルをアプ
リケーションのクラスパスに含める必要があります。

コード

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.StrictAuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY3, "This is the 3rd content to encrypt
 with a key created in the {console}");
System.out.println(s3Encryption.getObjectAsString(bucket_name, ENCRYPTED_KEY3));

putObject 暗号化クライアントで Amazon S3 メソッドを呼び出して、オブジェクトをアップロー
ドします。

Amazon S3 クライアント側の暗号化を使用する 210

https://www.bouncycastle.org/download/bouncy-castle-java/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

コード

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY3, "This is the 3rd content to encrypt
 with a key created in the {console}");

同じクライアントを使用してオブジェクトを取得できます。この例では、getObjectAsString メ
ソッドを使用して保存された文字列を取得しています。

コード

System.out.println(s3Encryption.getObjectAsString(bucket_name, ENCRYPTED_KEY3));

認証済み暗号化モード

AuthenticatedEncryption モードを使用すると、暗号化中に適用されるキーのラップアルゴリ
ズムが強化されます。このモードで復号化するときは、アルゴリズムによって復号化されたオブジェ
クトの整合性が検証され、チェックが失敗した場合は例外がスローされます。認証済み暗号化の動作
の詳細については、「Amazon S3 Client-Side Authenticated Encryption」というブログ記事を参照し
てください。

Note

クライアント側で認証済み暗号化を使用するには、最新の Bouncy Castle jar ファイルをアプ
リケーションのクラスパスに含める必要があります。

このモードを有効にするには、AuthenticatedEncryption 値を withCryptoConfiguration
メソッドに指定します。

コード

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.AuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

Amazon S3 クライアント側の暗号化を使用する 211

https://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://www.bouncycastle.org/download/bouncy-castle-java/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

AWS KMS クライアントの設定

Amazon S3 暗号化クライアントは、明示的に指定されていない限り、デフォルトで AWS KMS クラ
イアントを作成します。

この自動作成された AWS KMS クライアントのリージョンを設定するには、awsKmsRegion を設定
します。

コード

Region kmsRegion = Region.getRegion(Regions.AP_NORTHEAST_1);

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withAwsKmsRegion(kmsRegion))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

または、独自の AWS KMS クライアントを使用して暗号化クライアントを初期化することもできま
す。

コード

AWSKMS kmsClient = AWSKMSClientBuilder.standard()
 .withRegion(Regions.US_WEST_2);
 .build();

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withKmsClient(kmsClient)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.AuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

Amazon SQS を使用した例AWS SDK for Java

このセクションでは、AWS SDK for Java を使用して Amazon SQS をプログラムする例を示しま
す。

Amazon SQS の例 212

https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sqs/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Note

例には各手法を示すのに必要なコードのみが含まれます。完全なサンプルコードは GitHub
で入手できます。そこから、単一のソースファイルをダウンロードするかリポジトリをロー
カルにクローン作成して、ビルドし実行するためのすべての例を取得できます。

トピック

• Amazon SQS メッセージキューの使用

• Amazon SQS メッセージの送信、受信、削除

• Amazon SQS メッセージキューのロングポーリングの有効化

• Amazon SQS で可視性タイムアウトを設定する

• Amazon SQS でのデッドレターキューの使用

Amazon SQS メッセージキューの使用

メッセージキューは、Amazon SQS でメッセージを確実に送信するために使用する論理コンテナで
す。キューには、標準と先入れ先出し (FIFO) の 2 種類があります。キューおよびキュータイプ間の
相違点の詳細については、「Amazon SQS デベロッパーガイド」を参照してください。

このトピックでは、Amazon SQS を使用して AWS SDK for Java キューの URL の作成、一覧表示、
削除、および取得を行う方法について説明します。

キューの作成

AmazonSQS クライアントの createQueue メソッドを使用し、キューのパラメータを記述する
CreateQueueRequest オブジェクトを渡します。

インポート

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.CreateQueueRequest;

コード

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

Amazon SQS メッセージキューの使用 213

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/CreateQueueRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

CreateQueueRequest create_request = new CreateQueueRequest(QUEUE_NAME)
 .addAttributesEntry("DelaySeconds", "60")
 .addAttributesEntry("MessageRetentionPeriod", "86400");

try {
 sqs.createQueue(create_request);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

キュー名だけを必要とする簡略化された形式の createQueue を使用して、標準キューを作成でき
ます。

sqs.createQueue("MyQueue" + new Date().getTime());

GitHub で完全な例をご覧ください。

キューの一覧表示

アカウントの Amazon SQS キューを一覧表示するには、AmazonSQS クライアントの listQueues
メソッドを呼び出します。

インポート

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ListQueuesResult;

コード

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
ListQueuesResult lq_result = sqs.listQueues();
System.out.println("Your SQS Queue URLs:");
for (String url : lq_result.getQueueUrls()) {
 System.out.println(url);
}

パラメータなしで listQueues オーバーロードを使用すると、すべてのキューが返されます。返さ
れた結果は、ListQueuesRequest オブジェクトに渡すことでフィルタできます。

Amazon SQS メッセージキューの使用 214

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

インポート

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ListQueuesRequest;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
String name_prefix = "Queue";
lq_result = sqs.listQueues(new ListQueuesRequest(name_prefix));
System.out.println("Queue URLs with prefix: " + name_prefix);
for (String url : lq_result.getQueueUrls()) {
 System.out.println(url);
}

GitHub で完全な例をご覧ください。

キューの URL の取得

AmazonSQS クライアントの getQueueUrl メソッドを呼び出します。

インポート

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
String queue_url = sqs.getQueueUrl(QUEUE_NAME).getQueueUrl();

GitHub で完全な例をご覧ください。

キューの削除

キューの URL を AmazonSQS クライアントの deleteQueue メソッドに渡します。

インポート

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Amazon SQS メッセージキューの使用 215

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
sqs.deleteQueue(queue_url);

GitHub で完全な例をご覧ください。

詳細

• Amazon SQS デベロッパーガイドの Amazon SQS キューの仕組み

• Amazon SQS API リファレンスの CreateQueue

• Amazon SQS API リファレンスの GetQueueUrl

• Amazon SQS API リファレンスの ListQueues

• Amazon SQS API リファレンスの DeleteQueues

Amazon SQS メッセージの送信、受信、削除

このトピックでは、Amazon SQS メッセージを送信、受信、削除する方法について説明します。
メッセージは、常に SQS キューを使用して提供されます。

メッセージの送信

Amazon SQS キューに 1 つのメッセージ追加するには、AmazonSQS クライアントの
sendMessage メソッドを呼び出します。キューの URL、メッセージ本文、およびオプションの遅
延値 (秒単位) が含まれる SendMessageRequest オブジェクトを指定します。

インポート

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.SendMessageRequest;

Code

SendMessageRequest send_msg_request = new SendMessageRequest()
 .withQueueUrl(queueUrl)
 .withMessageBody("hello world")
 .withDelaySeconds(5);
sqs.sendMessage(send_msg_request);

Amazon SQS メッセージの送信、受信、削除 216

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueues.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

GitHub で完全な例をご覧ください。

一度に複数のメッセージを送信する

複数のメッセージを 1 回のリクエストで送信できます。複数のメッセージを送信するに
は、AmazonSQS クライアントの sendMessageBatch メソッドを呼び出して、キュー URL
と送信するメッセージのリスト (各メッセージが SendMessageBatchRequestEntry) を含む
SendMessageBatchRequest を渡します。メッセージごとにオプションの遅延値を設定することもで
きます。

インポート

import com.amazonaws.services.sqs.model.SendMessageBatchRequest;
import com.amazonaws.services.sqs.model.SendMessageBatchRequestEntry;

Code

SendMessageBatchRequest send_batch_request = new SendMessageBatchRequest()
 .withQueueUrl(queueUrl)
 .withEntries(
 new SendMessageBatchRequestEntry(
 "msg_1", "Hello from message 1"),
 new SendMessageBatchRequestEntry(
 "msg_2", "Hello from message 2")
 .withDelaySeconds(10));
sqs.sendMessageBatch(send_batch_request);

GitHub で完全な例をご覧ください。

メッセージを受信する

キューに現在含まれているメッセージを取得するには、AmazonSQS クライアントの
receiveMessage メソッドを呼び出して、キューの URL を渡します。メッセージは、Message オ
ブジェクトのリストとして返されます。

インポート

import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.SendMessageBatchRequest;

コード

Amazon SQS メッセージの送信、受信、削除 217

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageBatchRequestEntry.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageBatchRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/Message.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

List<Message> messages = sqs.receiveMessage(queueUrl).getMessages();

受信後にメッセージを削除する

メッセージを受信し、その内容を処理した後で、メッセージをキューから削除するには、メッセージ
の受信ハンドルとキュー URL を AmazonSQS クライアントの deleteMessage メソッドに送信し
ます。

Code

for (Message m : messages) {
 sqs.deleteMessage(queueUrl, m.getReceiptHandle());
}

GitHub で完全な例をご覧ください。

詳細

• Amazon SQS デベロッパーガイドの Amazon SQS キューの仕組み

• Amazon SQS API リファレンスの SendMessage

• Amazon SQS API リファレンスの SendMessageBatch

• Amazon SQS API リファレンスの ReceiveMessage

• Amazon SQS API リファレンスの DeleteMessage

Amazon SQS メッセージキューのロングポーリングの有効化

Amazon SQS はデフォルトでショートポーリングを使用して、サーバーのサブセットだけに対して
(重み付けされたランダムディストリビューションに基づいて) クエリを実行し、レスポンスに含める
ことができるメッセージがあるかどうかを調べます。

ロングポーリングは、Amazon SQS キューに送信された ReceiveMessage リクエストに応答して返
信するメッセージがない場合に、偽の空のレスポンスを排除して空のレスポンスの数を減らすこと
で、Amazon SQS の使用コストを削減します。

Note

1～20 秒でロングポーリング頻度を設定できます。

Amazon SQS メッセージキューのロングポーリングの有効化 218

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

キューの作成時にロングポーリングを有効化する

Amazon SQS キューを作成するときにロングポーリングを有効にするには、AmazonSQS
クラスの createQueue メソッドを呼び出す前に CreateQueueRequest オブジェクトの
ReceiveMessageWaitTimeSeconds 属性を設定します。

インポート

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.CreateQueueRequest;

Code

final AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Enable long polling when creating a queue
CreateQueueRequest create_request = new CreateQueueRequest()
 .withQueueName(queue_name)
 .addAttributesEntry("ReceiveMessageWaitTimeSeconds", "20");

try {
 sqs.createQueue(create_request);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

GitHub で完全な例をご覧ください。

既存のキューでロングポーリングを有効にする

キューを作成するときにロングポーリングを有効にすることに加えて、AmazonSQS クラ
スの setQueueAttributes メソッドを呼び出す前に、SetQueueAttributesRequest で
ReceiveMessageWaitTimeSeconds を設定することで既存のキューでも有効にできます。

インポート

import com.amazonaws.services.sqs.model.SetQueueAttributesRequest;

Amazon SQS メッセージキューのロングポーリングの有効化 219

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/CreateQueueRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SetQueueAttributesRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Code

SetQueueAttributesRequest set_attrs_request = new SetQueueAttributesRequest()
 .withQueueUrl(queue_url)
 .addAttributesEntry("ReceiveMessageWaitTimeSeconds", "20");
sqs.setQueueAttributes(set_attrs_request);

GitHub で完全な例をご覧ください。

メッセージ受信時のロングポーリングを有効にする

メッセージを受信した時にロングポーリングを有効にするには、AmazonSQS クラスの
receiveMessage メソッドに提供する ReceiveMessageRequest の待機時間を秒単位で設定しま
す。

Note

次のポーリングイベントの待機中に receiveMessage リクエストがタイムアウトしないよ
うに、AWS クライアントのリクエストのタイムアウトがロングポーリングの最大値 (20 秒)
より長いことを確認します。

インポート

import com.amazonaws.services.sqs.model.ReceiveMessageRequest;

Code

ReceiveMessageRequest receive_request = new ReceiveMessageRequest()
 .withQueueUrl(queue_url)
 .withWaitTimeSeconds(20);
sqs.receiveMessage(receive_request);

GitHub で完全な例をご覧ください。

詳細

• Amazon SQS デベロッパーガイドの Amazon SQS ロングポーリング

• Amazon SQS API リファレンスの CreateQueue

Amazon SQS メッセージキューのロングポーリングの有効化 220

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

• Amazon SQS API リファレンスの ReceiveMessage

• Amazon SQS API リファレンスの SetQueueAttributes

Amazon SQS で可視性タイムアウトを設定する

Amazon SQS でメッセージを受信すると、受信確認のために、削除されるまでキューに残ります。
削除されなかった受信メッセージは、指定された可視性タイムアウトの後に以降のリクエストで使用
でき、メッセージが処理および削除される前に複数回受信することを防ぎます。

Note

標準キューを使用している場合、可視性タイムアウトはメッセージを 2 回受信しない保証に
はなりません。標準キューを使用している場合は、同じメッセージが複数回配信されるケー
スをコードが処理できることを確認してください。

単一のメッセージのメッセージ可視性タイムアウトを設定する

メッセージを受信したとき、渡したい ChangeMessageVisibilityRequest の受信ハンドルを
AmazonSQS クラスの changeMessageVisibility メソッドに渡すことで、可視性タイムアウト
を変更することができます。

インポート

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Get the receipt handle for the first message in the queue.
String receipt = sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle();

sqs.changeMessageVisibility(queue_url, receipt, timeout);

Amazon SQS で可視性タイムアウトを設定する 221

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ChangeMessageVisibilityRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

GitHub で完全な例をご覧ください。

複数のメッセージのメッセージ可視性タイムアウトを同時に設定する

複数のメッセージのメッセージ可視性タイムアウトを設定するには、それぞれに一意の ID 文字列と
受信ハンドルを含む ChangeMessageVisibilityBatchRequestEntry オブジェクトのリストを作成しま
す。次に、リストを Amazon SQS クライアントクラスの changeMessageVisibilityBatch メ
ソッドに渡します。

インポート

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ChangeMessageVisibilityBatchRequestEntry;
import java.util.ArrayList;
import java.util.List;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

List<ChangeMessageVisibilityBatchRequestEntry> entries =
 new ArrayList<ChangeMessageVisibilityBatchRequestEntry>();

entries.add(new ChangeMessageVisibilityBatchRequestEntry(
 "unique_id_msg1",
 sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle())
 .withVisibilityTimeout(timeout));

entries.add(new ChangeMessageVisibilityBatchRequestEntry(
 "unique_id_msg2",
 sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle())
 .withVisibilityTimeout(timeout + 200));

sqs.changeMessageVisibilityBatch(queue_url, entries);

Amazon SQS で可視性タイムアウトを設定する 222

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/VisibilityTimeout.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ChangeMessageVisibilityBatchRequestEntry.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

GitHub で完全な例をご覧ください。

詳細

• Amazon SQS デベロッパーガイドの可視性タイムアウト

• Amazon SQS API リファレンスの SetQueueAttributes

• Amazon SQS API リファレンスの GetQueueAttributes

• Amazon SQS API リファレンスの ReceiveMessage

• Amazon SQS API リファレンスの ChangeMessageVisibility

• Amazon SQS API リファレンスの ChangeMessageVisibilityBatch

Amazon SQS でのデッドレターキューの使用

Amazon SQS では、デッドレターキューがサポートされます。デッドレターキューは、正常に処
理できないメッセージの送信先として他の (送信元) キューが使用できるキューです。これらのメッ
セージは、処理が成功しなかった理由を判断するためにデッドレターキューに分離できます。

デッドレターキューの作成

デッドレターキューは、通常のキューと同じ方法で作成されますが、次の制限があります。

• デッドレターキューは、ソースキューと同じタイプのキュー (FIFO または標準) である必要があり
ます。

• デッドレターキューは、ソースキューと同じ AWS アカウント およびリージョンを使用して作成
する必要があります。

ここで 2 つの同一の Amazon SQS キューを作成し、そのうちの 1 つがデッドレターキューとして機
能します。

インポート

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;

Code

final AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

Amazon SQS でのデッドレターキューの使用 223

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/VisibilityTimeout.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

// Create source queue
try {
 sqs.createQueue(src_queue_name);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

// Create dead-letter queue
try {
 sqs.createQueue(dl_queue_name);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

GitHub で完全な例をご覧ください。

ソースキューに対するデッドレターキューの指定

デッドレターキューを指定するには、まず再処理ポリシーを作成し、次にキューの属性でそのポリ
シーを設定します。再処理ポリシーは JSON で指定され、デッドレターキューの ARN、およびメッ
セージがデッドレターキューに送信される前に受信できて処理できない最大回数を指定します。

ソースキューに再処理ポリシーを設定するには、JSON 再処理ポリシーで RedrivePolicy 属
性を設定した SetQueueAttributesRequest オブジェクトを使用して、AmazonSQS クラスの
setQueueAttributes メソッドを呼び出します。

インポート

import com.amazonaws.services.sqs.model.GetQueueAttributesRequest;
import com.amazonaws.services.sqs.model.GetQueueAttributesResult;
import com.amazonaws.services.sqs.model.SetQueueAttributesRequest;

Code

String dl_queue_url = sqs.getQueueUrl(dl_queue_name)
 .getQueueUrl();

Amazon SQS でのデッドレターキューの使用 224

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/DeadLetterQueues.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SetQueueAttributesRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

GetQueueAttributesResult queue_attrs = sqs.getQueueAttributes(
 new GetQueueAttributesRequest(dl_queue_url)
 .withAttributeNames("QueueArn"));

String dl_queue_arn = queue_attrs.getAttributes().get("QueueArn");

// Set dead letter queue with redrive policy on source queue.
String src_queue_url = sqs.getQueueUrl(src_queue_name)
 .getQueueUrl();

SetQueueAttributesRequest request = new SetQueueAttributesRequest()
 .withQueueUrl(src_queue_url)
 .addAttributesEntry("RedrivePolicy",
 "{\"maxReceiveCount\":\"5\", \"deadLetterTargetArn\":\""
 + dl_queue_arn + "\"}");

sqs.setQueueAttributes(request);

GitHub で完全な例をご覧ください。

詳細

• Amazon SQS デベロッパーガイドでの Amazon SQSデッドレターキューの使用

• Amazon SQS API リファレンスの SetQueueAttributes

Amazon SWF を使用した例AWS SDK for Java

Amazon SWF は、アクティビティ、子ワークフロー、または Lambda タスクで構成される並列また
はシーケンシャルステップを持つことができる分散ワークフローをデベロッパーが構築およびスケー
ルできるようにする、ワークフロー管理サービスです。

AWS SDK for Java を使用して Amazon SWF を操作する方法は 2 つあります。SWF クライアン
トオブジェクトを使用する方法と、AWS Flow Framework for Java を使用する方法です。AWS
Flow Framework for Java は注釈を多用し、AspectJ や Spring Framework などの追加のライブラ
リに依存するため、初期設定がより難しくなります。ただし、大量または複雑なプロジェクトで
は、AWS Flow Framework for Java を使用すると時間を節約できます。詳細については、「AWS
Flow Framework for Java デベロッパーガイド」を参照してください。

このセクションでは、Amazon SWF クライアントを直接使用することにより、AWS SDK for Java
をプログラミングする例を示します。

Amazon SWF の例 225

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/DeadLetterQueues.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://aws.amazon.com/swf/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

トピック

• SWF の基本

• シンプルな Amazon SWF アプリケーションの構築

• Lambda タスク

• アクティビティおよびワークフローワーカーの適切なシャットダウン

• ドメインの登録

• ドメインの一覧表示

SWF の基本

以下は、Amazon SWF を使用して AWS SDK for Java を操作する一般的なパターンです。主に参照
用です。より詳細な入門チュートリアルについては、シンプルな Amazon SWF アプリケーションの
構築を参照してください。

依存関係

基本的な Amazon SWF アプリケーションでは、次の依存関係が必要です (AWS SDK for Java に含
まれています)。

• aws-java-sdk-1.12.*.jar

• commons-logging-1.2.*.jar

• httpclient-4.3.*.jar

• httpcore-4.3.*.jar

• jackson-annotations-2.12.*.jar

• jackson-core-2.12.*.jar

• jackson-databind-2.12.*.jar

• joda-time-2.8.*.jar

Note

これらのパッケージのバージョン番号はお手持ちの SDK のバージョンによって異なります
が、SDK で提供するバージョンは互換性についてテスト済みで、使用するバージョンです。

SWF の基本 226

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

AWS Flow Framework for Java アプリケーションでは、追加のセットアップおよび追加の依存関係
が必要です。フレームワークの使用の詳細については、「AWS Flow Framework for Java デベロッ
パーガイド」を参照してください。

インポート

一般的に、コード開発には次のインポートを使用できます。

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

ただし、必要なクラスのみをインポートすることをお勧めしま
す。com.amazonaws.services.simpleworkflow.model ワークスペースで、特定のクラスを
指定することになる可能性があります。

import com.amazonaws.services.simpleworkflow.model.PollForActivityTaskRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskCompletedRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskFailedRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;

AWS Flow Framework for Java を使用している場合
は、com.amazonaws.services.simpleworkflow.flow ワークスペースからクラスをインポー
トします。例:

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

Note

AWS Flow Framework for Java には、AWS SDK for Java の基本的な要件に加えて追加の要
件があります。詳細については、「AWS Flow Framework for Java デベロッパーガイド」を
参照してください。

SWF クライアントクラスの使用

Amazon SWF の基本的なインターフェイスは、AmazonSimpleWorkflowClient または
AmazonSimpleWorkflowAsyncClient クラスを通じて提供されます。これらの主な違い

SWF の基本 227

https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowAsyncClient.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

は、*AsyncClient クラスは同時 (非同期) プログラミング用に Future オブジェクトを返すことで
す。

AmazonSimpleWorkflowClient swf = AmazonSimpleWorkflowClientBuilder.defaultClient();

シンプルな Amazon SWF アプリケーションの構築

このトピックでは、AWS SDK for Java を使用した Amazon SWF アプリケーションのプログラミン
グについて、重要な概念を示しながら説明します。

例について

例のプロジェクトでは、AWS クラウドを通じて渡されるワークフローデータを受け入れる 1 つのア
クティビティでワークフローを作成し (HelloWorld では、いつものように、あいさつする相手の名前
になります)、応答であいさつを出力します。

これは表面的には非常に単純に見えますが、Amazon SWF アプリケーションは連携して動作する数
多くの部分で構成されます。

• ワークフロー実行データの論理コンテナとして使用されるドメイン。

• ワークフローのアクティビティと子ワークフローの実行の論理的順序を定義するコードコンポーネ
ントを表す 1 つ以上のワークフロー。

• 決定タスクをポーリングし、それに応じてアクティビティまたは子ワークフローをスケジュールす
るワークフローワーカー (ディサイダーとも呼ばれる)。

• それぞれがワークフローのワークの単位を表す、1 つ以上のアクティビティ。

• アクティビティタスクをポーリングし、それに応じてアクティビティメソッドを実行するアクティ
ビティワーカー。

• ワークフローとアクティビティワーカーにリクエストを発行するために使用される によって管理
されるキューである、1 つ以上のタスクリストAmazon SWF。ワークフローワーカーを想定した
タスクリスト内のタスクは、決定タスクと呼ばれます。アクティビティワーカーを想定したもの
は、アクティビティタスクと呼ばれます。

• ワークフローの実行を開始するワークフロースターター。

バックグラウンドでは、Amazon SWF がこれらのコンポーネントの操作を調整して、AWS クラウド
からのフローの連携、それらの間のデータの受け渡し、タイムアウトとハートビート通知の処理、お
よびワークフロー実行履歴のログ記録を行います。

シンプルな Amazon SWF アプリケーションの構築 228

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/Future.html
https://aws.amazon.com/swf/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

前提条件

デベロッパー環境

このチュートリアルで使用する開発環境は、以下で構成されます。

• AWS SDK for Java。

• Apache Maven (3.3.1)。

• JDK 1.7 以降。このチュートリアルは JDK 1.8.0 を使用して開発され、テスト済みです。

• 適切な Java テキストエディター (任意の選択)。

Note

Maven とは異なるビルドシステムを使用する場合、環境に適したステップを使用してプロ
ジェクトを作成し、ここに示されている概念を使用して作業を行うことができます。さまざ
まな構築システムでの AWS SDK for Java の設定と使用の詳細は、「はじめに」で示されて
います。
同様に (より多くの努力が必要ですが)、ここに示すステップは、Amazon SWF をサポートし
ている任意の AWS SDK を使用して実装できます。

すべての必要な外部依存関係は AWS SDK for Java に含まれているため、追加でダウンロードするも
のはありません。

AWS アクセス

このチュートリアルを正常に進めるには、このガイドの基本設定セクションで説明されている AWS
アクセスポータルにアクセスできる必要があります。

手順には、ローカル共有 credentials ファイルにコピーして貼り付ける一時的な認証情報にアク
セスする方法が記載されています。貼り付ける一時的な認証情報は、Amazon SWF へのアクセス権
限を持つ IAM ロールに AWS IAM アイデンティティセンター で関連付けられている必要がありま
す。一時的な認証情報を貼り付けると、credentials ファイルは次のようになります。

[default]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
aws_session_token=IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZVERYLONGSTRINGEXAMPLE

シンプルな Amazon SWF アプリケーションの構築 229

https://aws.amazon.com/sdk-for-java/
http://maven.apache.org/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

これらの一時的な認証情報は、default プロファイルに関連付けられます。

SWF プロジェクトの作成

1. Maven での新しいプロジェクトの開始

mvn archetype:generate -DartifactId=helloswf \
-DgroupId=aws.example.helloswf -DinteractiveMode=false

これにより、標準の Maven プロジェクト構造を持つ新しいプロジェクトが作成されます。

helloswf
pom.xml
src
 ### main
 # ### java
 # ### aws
 # ### example
 # ### helloswf
 # ### App.java
 ### test
 ### ...

test ディレクトリとそれに含まれるすべては、このチュートリアルでは使用しないため、無視ま
たは削除できます。また、新しいクラスに置き換えるため、App.java も削除できます。

2. <dependencies> ブロック内で依存関係を追加することで、プロジェクトの pom.xml ファイル
を編集して aws-java-sdk-simpleworkflow モジュールを追加します。

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-simpleworkflow</artifactId>
 <version>1.11.1000</version>
 </dependency>
</dependencies>

3. Maven によって JDK 1.7 以降のサポートがあるプロジェクトが構築されることを確認します。プ
ロジェクトの <dependencies> に以下を追加します (pom.xml ブロックの前または後)。

<build>
 <plugins>

シンプルな Amazon SWF アプリケーションの構築 230

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.6.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>
</build>

プロジェクトのコーディング

サンプルプロジェクトは 4 つの個別のアプリケーションで構成されます。それらについて 1 つずつ
説明します。

• HelloTypes.java--プロジェクトのドメイン、アクティビティ、およびワークフロータイプデータが
含まれ、他のコンポーネントと共有されます。また、SWF でのこれらのタイプの登録も処理され
ます。

• ActivityWorker.java--アクティビティタスクをポーリングし、それに応じてアクティビティを実行
するアクティビティワーカーを含みます。

• WorkflowWorker.java--決定タスクをポーリングし、新しいアクティビティをスケジュールする
ワークフローワーカー (ディサイダー) を含みます。

• WorkflowStarter.java--新しいワークフローの実行を開始するワークフロースターターを含みます。
ワークフロースターターにより、SWF はワーカーが使用する決定とワークフロータスクを生成し
ます。

すべてのソースファイルに共通のステップ

Java クラスを格納するために作成するすべてのファイルには、いくつか共通の事柄があります。時
間を節約するため、これらのステップはプロジェクトに新しいファイルを追加するたびに暗黙的に示
されます。

1. プロジェクトの src/main/java/aws/example/helloswf/ ディレクトリでファイルを作成し
ます。

2. 各ファイルの先頭に package 宣言を追加して名前空間を宣言します。サンプルプロジェクトでは
以下を使用します。

シンプルな Amazon SWF アプリケーションの構築 231

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

package aws.example.helloswf;

3. AmazonSimpleWorkflowClient クラスおよび
com.amazonaws.services.simpleworkflow.model 名前空間内の複数のクラスの import
宣言を追加します。作業を簡素化するため、以下を使用します。

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

ドメイン、ワークフロー、およびアクティビティタイプの登録

最初に、新しい実行可能クラス HelloTypes.java を作成します。このファイルには、ワークフ
ローの各部分必要となる共有データ (アクティビティとワークフロータイプの名前とバージョン、ド
メイン名、タスクリスト名など) が含まれます。

1. テキストエディターを開き、ファイル HelloTypes.java を作成して、共通のステップに従って
パッケージ宣言とインポートを追加します。

2. HelloTypes クラスを宣言し、登録されたアクティビティとワークフロータイプで使用する値を
指定します。

 public static final String DOMAIN = "HelloDomain";
 public static final String TASKLIST = "HelloTasklist";
 public static final String WORKFLOW = "HelloWorkflow";
 public static final String WORKFLOW_VERSION = "1.0";
 public static final String ACTIVITY = "HelloActivity";
 public static final String ACTIVITY_VERSION = "1.0";

これらの値は、コード全体で使用されます。

3. 文字列を宣言したら、AmazonSimpleWorkflowClient クラスのインスタンスを作成します。これ
は、Amazon SWF で提供される AWS SDK for Java メソッドの基本インタフェースです。

private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

シンプルな Amazon SWF アプリケーションの構築 232

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

前述のスニペットでは、一時的な認証情報が default プロファイルに関連付けられているこ
とを前提としています。別のプロファイルを使用する場合は、上記のコードを次のように変更
し、profile_name を実際のプロファイル名の名前に置き換えてください。

private static final AmazonSimpleWorkflow swf =
 AmazonSimpleWorkflowClientBuilder
 .standard()
 .withCredentials(new ProfileCredentialsProvider("profile_name"))
 .withRegion(Regions.DEFAULT_REGION)
 .build();

4. SWF ドメインを登録するための新しい関数を追加します。ドメインは、数多くの関連 SWF アク
ティビティおよびワークフロータイプ用の論理コンテナです。SWF コンポーネントは、同じドメ
イン内に存在する場合にのみ相互に通信できます。

 try {
 System.out.println("** Registering the domain '" + DOMAIN + "'.");
 swf.registerDomain(new RegisterDomainRequest()
 .withName(DOMAIN)
 .withWorkflowExecutionRetentionPeriodInDays("1"));
 } catch (DomainAlreadyExistsException e) {
 System.out.println("** Domain already exists!");
 }

ドメインを登録する場合、名前 (:、/、| を除く 1～256 文字、制御文字、またはリテラル文字列
「arn」の任意のセット) と保持期間を指定します。保持期間は、ワークフローの実行が完了して
から Amazon SWF がワークフローの実行履歴データを保持する日数です。ワークフロー実行の最
大保持期間は 90 日です。詳細については、「RegisterDomainRequest」を参照してください。

その名前のドメインがすでに存在する場合、DomainAlreadyExistsException が発生します。ドメ
インがすでに作成されているかどうかは問題ではないため、この例外は無視できます。

Note

このコードは、AWS SDK for Java のメソッドを使用する場合の一般的なパター
ン、simpleworkflow.model 名前空間のクラスで提供されるメソッドのデータを示しま
す。これは、チェーン可能な 0with* メソッドを使用してインスタンス化および入力しま
す。

シンプルな Amazon SWF アプリケーションの構築 233

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterDomainRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainAlreadyExistsException.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

5. 新しいアクティビティタイプを登録する関数を追加します。アクティビティはワークフローの
ワークの単位を表します。

 try {
 System.out.println("** Registering the activity type '" + ACTIVITY +
 "-" + ACTIVITY_VERSION + "'.");
 swf.registerActivityType(new RegisterActivityTypeRequest()
 .withDomain(DOMAIN)
 .withName(ACTIVITY)
 .withVersion(ACTIVITY_VERSION)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskScheduleToStartTimeout("30")
 .withDefaultTaskStartToCloseTimeout("600")
 .withDefaultTaskScheduleToCloseTimeout("630")
 .withDefaultTaskHeartbeatTimeout("10"));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("** Activity type already exists!");
 }

アクティビティタイプは名前およびバージョンによって識別されます。これらは、登録されてい
るドメインでこのアクティビティを他のアクティビティから一意に識別するために使用されま
す。アクティビティには、SWF からタスクとデータを受け取るために使用されるデフォルトの
タスクリスト、アクティビティ実行の各部分にかかる時間に対する制約適用に使用できるさま
ざまなタイムアウトなど、数多くのオプションパラメーターも含まれます。詳細については、
「RegisterActivityTypeRequest」を参照してください。

Note

すべてタイムアウト値は秒単位で指定されます。タイムアウトのワークフローの実行への
影響の詳細については、「Amazon SWF Timeout Types」を参照してください。

登録しようとしているアクティビティタイプが既に存在する場合は、TypeAlreadyExistsException
が発生します。新しいワークフロータイプを登録する関数を追加します。ワークフローはディサイ
ダーとも呼ばれ、ワークフロー実行のロジックを表します。

+

 try {
 System.out.println("** Registering the workflow type '" + WORKFLOW +

シンプルな Amazon SWF アプリケーションの構築 234

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterActivityTypeRequest.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-timeout-types.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/TypeAlreadyExistsException.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 "-" + WORKFLOW_VERSION + "'.");
 swf.registerWorkflowType(new RegisterWorkflowTypeRequest()
 .withDomain(DOMAIN)
 .withName(WORKFLOW)
 .withVersion(WORKFLOW_VERSION)
 .withDefaultChildPolicy(ChildPolicy.TERMINATE)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskStartToCloseTimeout("30"));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("** Workflow type already exists!");
 }

+

アクティビティタイプと同様に、ワークフロータイプは名前とバージョンによって識別され、設定可
能なタイムアウトがあります。詳細については、「RegisterWorkflowTypeRequest」を参照してくだ
さい。

+

登録しようとしているワークフロータイプが既に存在する場合は、TypeAlreadyExistsException が
発生します。最後に、main メソッドを提供してクラスを実行可能にします。これはドメイン、アク
ティビティタイプ、およびワークフロータイプを登録します。

+

 registerDomain();
 registerWorkflowType();
 registerActivityType();

ここで、アプリケーションを構築および実行して登録スクリプトを実行するか、アクティビティと
ワークフローワーカーのコーディングを続行できます。ドメイン、ワークフロー、およびアクティビ
ティが登録されたら、これを再度実行する必要はありません。これらのタイプは、ユーザーが自ら非
推奨とするまで保持されます。

アクティビティワーカーの実装

アクティビティは、ワークフローのワークの基本的な単位です。ワークフローは、ディシジョンタス
クに応じて、ロジック、実行するスケジュールアクティビティ (または実行するその他のアクション)
を提供します。通常、一般的なワークフローは、同期、非同期、またはそれらの組み合わせで実行で
きる数多くのアクティビティで構成されます。

シンプルな Amazon SWF アプリケーションの構築 235

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterWorkflowTypeRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/TypeAlreadyExistsException.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

アクティビティワーカーは、ワークフローの決定に応じて Amazon SWF によって生成されるアク
ティビティタスクをポーリングするコードです。アクティビティタスクを受け取ると、対応するアク
ティビティを実行し、ワークフローに成功/失敗の応答を返します。

単一のアクティビティを駆動するシンプルなアクティビティワーカーを実装します。

1. テキストエディターを開き、ファイル ActivityWorker.java を作成して、共通のステップに
従ってパッケージ宣言とインポートを追加します。

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

2. ActivityWorker クラスをファイルに追加し、Amazon SWF を操作するために使用する SWF
クライアントを保持するためのデータメンバーを提供します。

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

3. アクティビティとして使用するメソッドを追加します。

private static String sayHello(String input) throws Throwable {
 return "Hello, " + input + "!";
}

アクティビティは単純に文字列を受け取り、それをあいさつに組み合わせて、結果を返します。
このアクティビティで例外が発生する可能性はほとんどありませんが、何か問題が発生した場合
にエラーを発生させるアクティビティを設計することをお勧めします。

4. アクティビティタスクのポーリングメソッドとして使用する main メソッドを追加します。最初
に、アクティビティタスクについてタスクリストをポーリングするコードを追加します。

 System.out.println("Polling for an activity task from the tasklist '"
 + HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 ActivityTask task = swf.pollForActivityTask(
 new PollForActivityTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(

シンプルな Amazon SWF アプリケーションの構築 236

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 new TaskList().withName(HelloTypes.TASKLIST)));

 String task_token = task.getTaskToken();

アクティビティは SWF クライアントの pollForActivityTask メソッドを呼び出して Amazon
SWF からタスクを受け取り、渡された PollForActivityTaskRequest で使用するドメインとタスク
リストを指定します。

タスクを受け取ったら、タスクの getTaskToken メソッドを呼び出して、その固有の識別子を取
得します。

5. 次に、入ってきたタスクを処理するコードを記述します。main メソッドで、タスクをポーリング
し、タスクトークンを取得するコードの直後に以下を追加します。

 if (task_token != null) {
 String result = null;
 Throwable error = null;

 try {
 System.out.println("Executing the activity task with input '" +
 task.getInput() + "'.");
 result = sayHello(task.getInput());
 } catch (Throwable th) {
 error = th;
 }

 if (error == null) {
 System.out.println("The activity task succeeded with result '"
 + result + "'.");
 swf.respondActivityTaskCompleted(
 new RespondActivityTaskCompletedRequest()
 .withTaskToken(task_token)
 .withResult(result));
 } else {
 System.out.println("The activity task failed with the error '"
 + error.getClass().getSimpleName() + "'.");
 swf.respondActivityTaskFailed(
 new RespondActivityTaskFailedRequest()
 .withTaskToken(task_token)
 .withReason(error.getClass().getSimpleName())
 .withDetails(error.getMessage()));
 }

シンプルな Amazon SWF アプリケーションの構築 237

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/PollForActivityTaskRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 }

タスクトークンが null でない場合、アクティビティメソッド (sayHello) の実行を開始し、タ
スクとともに送信された入力データを指定することができます。

タスクが成功した場合 (エラーが生成されなかった場合)、ワーカーは、タスクトークンとアク
ティビティの結果データを含む RespondActivityTaskCompletedRequest オブジェクトを使用
して SWF クライアントの respondActivityTaskCompleted メソッドを呼び出すことによ
り、SWF に応答します。

一方、タスクが失敗した場
合、respondActivityTaskFailedRespondActivityTaskFailedRequest オブジェクトとともに
メソッドを呼び出し、タスクトークンとエラーに関する情報を渡して応答します。

Note

このアクティビティは、強制終了した場合は適切にシャットダウンしません。このチュート
リアルの対象外ですが、このアクティビティワーカーの代替の実装が、付随するトピック
「アクティビティおよびワークフローワーカーの適切なシャットダウン」で示されていま
す。

ワークフローワーカーの実装

ワークフローは、ワークフローワーカーと呼ばれるコードに置かれます。ワークフローワーカーは、
ドメイン内の Amazon SWF によって送信され、ワークフロータイプが登録されたデフォルトのタス
クリスト上にある決定タスクをポーリングします。

ワークフローワーカーがタスクを受信すると、何らかの決定 (通常は新しいアクティビティタスクを
スケジュールするかどうか) を行い、適切なアクション (アクティビティのスケジューリングなど) を
実行します。

1. テキストエディターを開き、ファイル WorkflowWorker.java を作成して、共通のステップに
従ってパッケージ宣言とインポートを追加します。

2. いくつかのインポートをファイルに追加します。

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;

シンプルな Amazon SWF アプリケーションの構築 238

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RespondActivityTaskCompletedRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RespondActivityTaskFailedRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;

3. WorkflowWorker クラスを宣言し、SWF メソッドへのアクセスに使用する
AmazonSimpleWorkflowClient クラスのインスタンスを作成します。

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

4. main メソッドを追加します。このメソッドは連続してループし、SWF クライア
ントの pollForDecisionTask メソッドを使用して決定タスクをポーリングしま
す。PollForDecisionTaskRequest によって詳細が提供されます。

 PollForDecisionTaskRequest task_request =
 new PollForDecisionTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(new TaskList().withName(HelloTypes.TASKLIST));

 while (true) {
 System.out.println(
 "Polling for a decision task from the tasklist '" +
 HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 DecisionTask task = swf.pollForDecisionTask(task_request);

 String taskToken = task.getTaskToken();
 if (taskToken != null) {
 try {
 executeDecisionTask(taskToken, task.getEvents());
 } catch (Throwable th) {
 th.printStackTrace();
 }
 }
 }

タスクを受け取ったら、その getTaskToken メソッドを呼び出します。これにより、
タスクの識別に使用できる文字列が返されます。返されたトークンが null でない場

シンプルな Amazon SWF アプリケーションの構築 239

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/PollForDecisionTaskRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

合、executeDecisionTask メソッドでさらに処理し、タスクトークンおよびそのタスクで送信
された HistoryEvent オブジェクトのリストを渡します。

5. executeDecisionTask メソッドを追加し、タスクトークン (String) および HistoryEvent
リストを受け取ります。

 List<Decision> decisions = new ArrayList<Decision>();
 String workflow_input = null;
 int scheduled_activities = 0;
 int open_activities = 0;
 boolean activity_completed = false;
 String result = null;

また、以下のような項目を追跡するためにいくつかのデータメンバーを設定します。

• タスクの処理結果を報告するために使用される Decision オブジェクトのリスト。

• "WorkflowExecutionStarted" イベントによって提供されるワークフロー入力を保持する文字列。

• すでにスケジュールされているか、現在実行中の場合に、同じアクティビティのスケジュール
を回避するためにスケジュールされ、開いている (実行中) のアクティビティの数。

• アクティビティが完了したことを示すブール。

• ワークフローの結果として返すためにアクティビティの結果を保持する文字列。

6. 次に、executeDecisionTask メソッドによって報告されたイベントタイプに基づいて、タスク
とともに送信された HistoryEvent オブジェクトを処理するコードを getEventType に追加し
ます。

System.out.println("Executing the decision task for the history events: [");
for (HistoryEvent event : events) {
 System.out.println(" " + event);
 switch(event.getEventType()) {
 case "WorkflowExecutionStarted":
 workflow_input =
 event.getWorkflowExecutionStartedEventAttributes()
 .getInput();
 break;
 case "ActivityTaskScheduled":
 scheduled_activities++;
 break;
 case "ScheduleActivityTaskFailed":
 scheduled_activities--;
 break;
 case "ActivityTaskStarted":

シンプルな Amazon SWF アプリケーションの構築 240

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Decision.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 scheduled_activities--;
 open_activities++;
 break;
 case "ActivityTaskCompleted":
 open_activities--;
 activity_completed = true;
 result = event.getActivityTaskCompletedEventAttributes()
 .getResult();
 break;
 case "ActivityTaskFailed":
 open_activities--;
 break;
 case "ActivityTaskTimedOut":
 open_activities--;
 break;
 }
}
System.out.println("]");

ワークフローでは、以下が最も重要です。

• ワークフローの実行が開始したことを示し (通常はワークフローの最初のアクティビティ
を実行する必要があることを意味します)、ワークフローに渡される最初の入力を提供す
る、"WorkflowExecutionStarted" イベント。この場合、これはあいさつの名前部分であるため、
アクティビティの実行をスケジュールするときに使用する文字列に保存されます。

• スケジュールされたアクティビティが完了すると送信される、"ActivityTaskCompleted" イベン
ト。イベントデータには、完了したアクティビティの戻り値も含まれます。1 つのアクティビ
ティのみがあるため、この値をワークフロー全体の結果として使用します。

他のイベントタイプは、ワークフローで必要な場合に使用できます。各イベントタイプの詳細に
ついては、HistoryEvent クラスの説明を参照してください。

+ 注: switch ステートメントの文字列は Java 7 で導入されました。以前のバージョンの Java を
使用している場合は、EventType クラスを使用して、history_event.getType() で返される
String を列挙値に変換し、必要に応じて String に戻すことができます。

EventType et = EventType.fromValue(event.getEventType());

1. switch ステートメントの後で、受け取ったタスクに応じて、適切な決定を使用して応答する
コードを追加します。

シンプルな Amazon SWF アプリケーションの構築 241

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/model/EventType.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

if (activity_completed) {
 decisions.add(
 new Decision()
 .withDecisionType(DecisionType.CompleteWorkflowExecution)
 .withCompleteWorkflowExecutionDecisionAttributes(
 new CompleteWorkflowExecutionDecisionAttributes()
 .withResult(result)));
} else {
 if (open_activities == 0 && scheduled_activities == 0) {

 ScheduleActivityTaskDecisionAttributes attrs =
 new ScheduleActivityTaskDecisionAttributes()
 .withActivityType(new ActivityType()
 .withName(HelloTypes.ACTIVITY)
 .withVersion(HelloTypes.ACTIVITY_VERSION))
 .withActivityId(UUID.randomUUID().toString())
 .withInput(workflow_input);

 decisions.add(
 new Decision()
 .withDecisionType(DecisionType.ScheduleActivityTask)
 .withScheduleActivityTaskDecisionAttributes(attrs));
 } else {
 // an instance of HelloActivity is already scheduled or running. Do nothing,
 another
 // task will be scheduled once the activity completes, fails or times out
 }
}

System.out.println("Exiting the decision task with the decisions " + decisions);

• まだアクティビティがスケジュールされていない場合、ScheduleActivityTask
決定で応答します。これにより、Amazon SWF が次にスケジュールするアクティ
ビティに関する情報が、Amazon SWF がアクティビティに送信するデータを含め
て、ScheduleActivityTaskDecisionAttributes 構造で提供されます。

• アクティビティが完了すると、全体のワークフローが完了した
と見なし、CompletedWorkflowExecution 決定で応答しま
す。CompleteWorkflowExecutionDecisionAttributes 構造に入力し、完了したワークフローに関
する詳細を提供します。この場合、アクティビティの結果を返します。

いずれの場合も、メソッドの先頭で Decision リストに決定情報が追加されます。

シンプルな Amazon SWF アプリケーションの構築 242

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ScheduleActivityTaskDecisionAttributes.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/CompleteWorkflowExecutionDecisionAttributes.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

2. タスクの処理中に収集された Decision オブジェクトのリストを返して、決定タスクを完了しま
す。このコードを、これまで記述した executeDecisionTask メソッドの最後に追加します。

swf.respondDecisionTaskCompleted(
 new RespondDecisionTaskCompletedRequest()
 .withTaskToken(taskToken)
 .withDecisions(decisions));

SWF クライアントの respondDecisionTaskCompleted メソッドは、タスクと、Decision
オブジェクトのリストを識別するタスクトークンを受け取ります。

ワークフロースターターの実装

最後に、ワークフロー実行を開始するコードを書きます。

1. テキストエディターを開き、ファイル WorkflowStarter.java を作成して、共通のステップに
従ってパッケージ宣言とインポートを追加します。

2. WorkflowStarter クラスを追加します。

package aws.example.helloswf;

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

public class WorkflowStarter {
 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
 public static final String WORKFLOW_EXECUTION = "HelloWorldWorkflowExecution";

 public static void main(String[] args) {
 String workflow_input = "{SWF}";
 if (args.length > 0) {
 workflow_input = args[0];
 }

 System.out.println("Starting the workflow execution '" + WORKFLOW_EXECUTION +
 "' with input '" + workflow_input + "'.");

シンプルな Amazon SWF アプリケーションの構築 243

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 WorkflowType wf_type = new WorkflowType()
 .withName(HelloTypes.WORKFLOW)
 .withVersion(HelloTypes.WORKFLOW_VERSION);

 Run run = swf.startWorkflowExecution(new StartWorkflowExecutionRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withWorkflowType(wf_type)
 .withWorkflowId(WORKFLOW_EXECUTION)
 .withInput(workflow_input)
 .withExecutionStartToCloseTimeout("90"));

 System.out.println("Workflow execution started with the run id '" +
 run.getRunId() + "'.");
 }
}

WorkflowStarter クラスは単一のメソッド main で構成されます。このメソッドはコマンドラ
インで渡されたオプションの引数を、ワークフローの入力データとして受け取ります。

SWF のクライアントメソッド startWorkflowExecution は、StartWorkflowExecutionRequest
オブジェクトを入力として受け取ります。ここで、ドメインと実行するワークフロータイプの指
定に加えて、以下を指定します。

• 人間が読み取れるワークフロー実行の名前

• ワークフローの入力データ (この例のコマンドラインで提供)

• ワークフロー全体の実行時間 (秒単位) を表すタイムアウト値

が返す RunstartWorkflowExecution オブジェクトは、実行 ID を提供します。これは、ワー
クフロー実行の Amazon SWF の履歴でこの特定のワークフロー実行を識別するために使用できる
値です。

+ 注: 実行 ID は Amazon SWF によって生成され、ワークフローの実行を開始するときに渡すワー
クフロー実行名と同じではありません。

例の作成

Maven でサンプルプロジェクトを構築するには、helloswf ディレクトリに移動し、次のように入
力します。

シンプルな Amazon SWF アプリケーションの構築 244

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/StartWorkflowExecutionRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Run.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

mvn package

結果的に生じる helloswf-1.0.jar が target ディレクトリに生成されます。

例の実行

この例は、4 つの異なる実行可能クラスで構成されます。これらは互いに独立して実行されます。

Note

Linux、macOS、または Unix システムを使用している場合、それらのすべてを 1 つずつ、1
つのターミナルウィンドウで実行できます。Windows を実行している場合は、2 つの追加イ
ンスタンスのコマンドラインを開き、それぞれの helloswf ディレクトリに移動します。

Java クラスパスの設定

Maven によって依存関係が処理されましたが、この例を実行するには、Java のクラスパスで AWS
SDK ライブラリとその依存関係を指定する必要があります。CLASSPATH 環境変数を AWS SDK ラ
イブラリの場所に設定し、必要な依存関係を含む SDK の third-party/lib ディレクトリに設定
できます。

export CLASSPATH='target/helloswf-1.0.jar:/path/to/sdk/lib/*:/path/to/sdk/third-party/
lib/*'
java example.swf.hello.HelloTypes

または、 java コマンドの -cp オプションを使用して、各アプリケーションの実行中にクラスパ
スを設定できます。

java -cp target/helloswf-1.0.jar:/path/to/sdk/lib/*:/path/to/sdk/third-party/lib/* \
 example.swf.hello.HelloTypes

使用するスタイルはユーザーが選択できます。コードが問題なく作成されても、例を実行しようとす
ると一連の "NoClassDefFound" エラーが表示される場合、クラスパスが正しく設定されていない可
能性があります。

シンプルな Amazon SWF アプリケーションの構築 245

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ドメイン、ワークフロー、およびアクティビティタイプの登録

ワーカーおよびワークフロースターターを実行する前に、ドメイン、ワークフロータイプ、およびア
クティビティタイプを登録する必要があります。これを行うコードは、ドメイン、ワークフロー、お
よびアクティビティタイプの登録で実装しました。

構築後に CLASSPATH を設定した場合、次のコマンドを実行して登録コードを実行できます。

 echo 'Supply the name of one of the example classes as an argument.'

アクティビティおよびワークフローワーカーの開始

これでタイプが登録されたため、アクティビティとワークフローワーカーを開始できます。これらは
継続して実行され、強制終了されるまでタスクをポーリングするため、別のターミナルウィンドウで
実行するか、Linux、macOS、または Unix で実行している場合は & 演算子を使用して、実行時にそ
れぞれが別のプロセスとして生成されるようにできます。

 echo 'If there are arguments to the class, put them in quotes after the class
 name.'
 exit 1

別のウィンドウでこれらのコマンドを実行している場合は、各行から最終的な & 演算子を省略しま
す。

ワークフロー実行の開始

これでアクティビティとワークフローワーカーがポーリングを実行しているため、ワークフロー実行
を開始できます。このプロセスは、ワークフローが完了したステータスを返すまで実行されます。(&
オペレーターを使用して新しく生成されたプロセスとしてワーカーを実行していない限り) このプロ
セスは新しいターミナルウィンドウで実行する必要があります。

fi

Note

独自の入力データを提供する場合 (最初にワークフロー、次にアクティビティに渡されま
す)、コマンドラインに追加します。例:

echo "## Running $className..."

シンプルな Amazon SWF アプリケーションの構築 246

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ワークフロー実行を開始すると、両方のワーカーおよびワークフロー実行そのものによって提供され
た出力が表示され始めます。ワークフローが最終的に完了すると、その出力が画面に表示されます。

この例の完全なソース。

この例の完全なソースは、Github の aws-java-developer-guide レポジトリで参照できます。

詳細については

• ここに示すワーカーにより、ワークフローポーリングがまだ行われている間にシャットダウンされ
た場合、タスクが失われる可能性があります。ワーカーを適切にシャットダウンする方法を確認す
るには、「アクティビティおよびワークフローワーカーの適切なシャットダウン」を参照してくだ
さい。

• Amazon SWF の詳細については、Amazon SWF のホームページにアクセスするか、「Amazon
SWF デベロッパーガイド」を参照してください。

• AWS Flow Framework for Java を使用すると、注釈を使ってスマートな Java スタイルでより複
雑なワークフローを記述できます。詳細については、「AWS Flow Framework for Java デベロッ
パーガイド」を参照してください。

Lambda タスク

Amazon SWF アクティビティの代わりに、またはこれに併せて Lambda 関数を使用してワークフ
ローの作業単位を表し、それらをアクティビティに合わせて同様にスケジュールできます。

このトピックでは、AWS SDK for Java を使用して Amazon SWF Lambda タスクを実装する方法に
ついて説明します。一般的な Lambda タスクの詳細については、「Amazon SWF デベロッパーガイ
ド」の「AWS Lambda Tasks」を参照してください。

Lambda 関数を実行するサービス間 IAM ロールの設定

Amazon SWF が Lambda 関数を実行するには、事前に、ユーザーに代わって Lambda 関数を実行す
るための Amazon SWF 許可を付与するよう IAM ロールを設定する必要があります。これを行う方
法に関する詳細については、「AWS Lambda Tasks」を参照してください。

Lambda タスクを使用するワークフローを登録するときに、この IAM ロールの Amazon リソース
ネーム (ARN) が必要になります。

Lambda タスク 247

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java/example_code/swf
https://aws.amazon.com/swf/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/lambda-task.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/lambda-task.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

Lambda 関数の作成

Java を含め、多数の異なる言語で Lambda 関数を記述できます。Lambda 関数の作成、デプロイ、
および使用の詳細については、「AWS Lambda デベロッパーガイド」を参照してください。

Note

Lambda 関数の記述に使用する言語は何であってもかまいません。ワークフローコードが記
述されている言語にかかわらず、任意の Amazon SWF ワークフローによってスケジュール
および実行できます。Amazon SWF は関数の実行の詳細を処理し、データをやり取りしま
す。

シンプルな Amazon SWF アプリケーションの構築のアクティビティの代わりに使用できるシンプル
な Lambda 関数を次に示します。

• このバージョンは JavaScript で書かれており、AWS マネジメントコンソールを使用して直接入力
できます。

exports.handler = function(event, context) {
 context.succeed("Hello, " + event.who + "!");
};

• 次に示すのは、Java で書かれた同じ関数です。これも Lambda でデプロイして実行できます。

package example.swf.hellolambda;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.util.json.JSONException;
import com.amazonaws.util.json.JSONObject;

public class SwfHelloLambdaFunction implements RequestHandler<Object, Object> {
 @Override
 public Object handleRequest(Object input, Context context) {
 String who = "{SWF}";
 if (input != null) {
 JSONObject jso = null;
 try {
 jso = new JSONObject(input.toString());
 who = jso.getString("who");

Lambda タスク 248

https://docs.aws.amazon.com/lambda/latest/dg/
https://console.aws.amazon.com/console/home

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 } catch (JSONException e) {
 e.printStackTrace();
 }
 }
 return ("Hello, " + who + "!");
 }
}

Note

Java 関数の Lambda へのデプロイの詳細については、AWS Lambda デベロッパーガイド
のデプロイパッケージの作成 (Java) を参照してください。また、Java で Lambda 関数を
作成するためのプログラミングモデルというタイトルのセクションも参照することをお勧
めします。

Lambda 関数は、event または input オブジェクトを最初のパラメータとして受け取り、context オブ
ジェクトを 2 番目のパラメータとして受け取ります。このオブジェクトは、Lambda 関数を実行する
リクエストに関する情報を提供します。この特定の関数は、入力が JSON で、who フィールドがあ
いさつの作成に使用される名前に設定されていることを想定しています。

Lambda で使用するワークフローを登録する

ワークフローで Lambda 関数をスケジュールするには、Amazon SWF 関数を呼び出す
アクセス権限を Lambda に提供する IAM ロールの名前を指定する必要があります。これ
は、withDefaultLambdaRoleRegisterWorkflowTypeRequestsetDefaultLambdaRole の また
は メソッドを使用して、ワークフロー登録中に設定できます。

System.out.println("** Registering the workflow type '" + WORKFLOW + "-" +
 WORKFLOW_VERSION
 + "'.");
try {
 swf.registerWorkflowType(new RegisterWorkflowTypeRequest()
 .withDomain(DOMAIN)
 .withName(WORKFLOW)
 .withDefaultLambdaRole(lambda_role_arn)
 .withVersion(WORKFLOW_VERSION)
 .withDefaultChildPolicy(ChildPolicy.TERMINATE)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskStartToCloseTimeout("30"));
}

Lambda タスク 249

https://docs.aws.amazon.com/lambda/latest/dg/lambda-java-how-to-create-deployment-package.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterWorkflowTypeRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterWorkflowTypeRequest.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

catch (TypeAlreadyExistsException e) {

Lambda タスクのスケジュール

Lambda タスクのスケジュールは、アクティビティのスケジュールに似ていま
す。`ScheduleLambdaFunction`DecisionType と ScheduleLambdaFunctionDecisionAttributes を使用
して Decision を提供します。

running_functions == 0 && scheduled_functions == 0) {
AWSLambda lam = AWSLambdaClientBuilder.defaultClient();
GetFunctionConfigurationResult function_config =
 lam.getFunctionConfiguration(
 new GetFunctionConfigurationRequest()
 .withFunctionName("HelloFunction"));
String function_arn = function_config.getFunctionArn();

ScheduleLambdaFunctionDecisionAttributes attrs =
 new ScheduleLambdaFunctionDecisionAttributes()
 .withId("HelloFunction (Lambda task example)")
 .withName(function_arn)
 .withInput(workflow_input);

decisions.add(

ScheduleLambdaFuntionDecisionAttributes で、呼び出す Lambda 関数の ARN である
name と、履歴ログで Lambda 関数を識別するために Amazon SWF が使用する名前である id を指定
する必要があります。

また、Lambda 関数のオプションの input を指定し、その start to close timeout 値を設定できます。
これは、LambdaFunctionTimedOut イベントを生成する前に Lambda 関数に実行が許可される秒
数です。

Note

このコードは、AWSLambdaClient を使用して、関数名が指定されると Lambda 関数の ARN
を取得します。この手法を使用すれば、コードで完全な ARN のハードコーディング (AWS
アカウント ID を含む) を行わなくても済みます。

Lambda タスク 250

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DecisionType.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ScheduleLambdaFunctionDecisionAttributes.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Decision.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambdaClient.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ディサイダーでの Lambda 関数イベントの処理

Lambda タスクでは、ワークフローワーカーの決定タスクでポーリングを行うと
きにアクションを実行できる数多くのイベントを生成します。これらは、Lambda
タスクのライフサイクルに対応し、、、LambdaFunctionScheduled などの
LambdaFunctionStartedEventTypeLambdaFunctionCompleted 値を取ります。Lambda
関数が失敗するか、設定されたタイムアウト値よりも長い時間がかかる場合、それぞれ
LambdaFunctionFailed または LambdaFunctionTimedOut イベントタイプを受け取ります。

boolean function_completed = false;
String result = null;

System.out.println("Executing the decision task for the history events: [");
for (HistoryEvent event : events) {
 System.out.println(" " + event);
 EventType event_type = EventType.fromValue(event.getEventType());
 switch(event_type) {
 case WorkflowExecutionStarted:
 workflow_input =
 event.getWorkflowExecutionStartedEventAttributes()
 .getInput();
 break;
 case LambdaFunctionScheduled:
 scheduled_functions++;
 break;
 case ScheduleLambdaFunctionFailed:
 scheduled_functions--;
 break;
 case LambdaFunctionStarted:
 scheduled_functions--;
 running_functions++;
 break;
 case LambdaFunctionCompleted:
 running_functions--;
 function_completed = true;
 result = event.getLambdaFunctionCompletedEventAttributes()
 .getResult();
 break;
 case LambdaFunctionFailed:
 running_functions--;
 break;
 case LambdaFunctionTimedOut:
 running_functions--;

Lambda タスク 251

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/EventType.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 break;

Lambda 関数からの出力の受け取り

LambdaFunctionCompletedEventAttributes オブジェクトを取得するために HistoryEvent で
LambdaFunctionCompleted`EventType, you can retrieve your 0 function’s
return value by first calling `getLambdaFunctionCompletedEventAttributes を
受け取り、getResult メソッドを呼び出して Lambda 関数の出力を取得する場合は以下のようにな
ります。

 LambdaFunctionCompleted:
running_functions--;

この例の完全なソース。

この例の完全なソース :github:`<awsdocs/aws-java-developer-guide/tree/master/doc_source/
snippets/helloswf_lambda/> は、Github の aws-java-developer-guide レポジトリで参照できます。

アクティビティおよびワークフローワーカーの適切なシャットダウン

シンプルな Amazon SWF アプリケーションの構築のトピックでは、登録アプリケーション、アク
ティビティとワークフローワーカー、およびワークフロースターターで構成されるシンプルなワーク
フローアプリケーションの完全な実装について説明しました。

ワーカークラスは、アクティビティを実行したり、決定を返したりするため継続して実行
し、Amazon SWF によって送信されたタスクをポーリングするよう設計されています。ポーリング
リクエストが行われると、Amazon SWF はポーリング元を記録し、それにタスクを割り当てるよう
試みます。

長いポーリング中にワークフローワーカーが終了すると、Amazon SWF は終了したワーカーへタ
スクの送信を引き続き試み、その結果 (タスクのタイムアウトまで) タスクが失われる場合がありま
す。

この状況に対応する 1 つの方法は、ワーカーが終了する前に、すべての長いポーリングリクエスト
が戻るのを待つことです。

このトピックでは、Java のシャットダウンフックを使用してアクティビティワーカーの適切な
シャットダウンを試み、helloswf からのアクティビティワーカーを再記述します。

アクティビティおよびワークフローワーカーの適切なシャットダウン 252

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/LambdaFunctionCompletedEventAttributes.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/EventType.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

完全なコードは次のとおりです。

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.ActivityTask;
import com.amazonaws.services.simpleworkflow.model.PollForActivityTaskRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskCompletedRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskFailedRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;

public class ActivityWorkerWithGracefulShutdown {

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
 private static final CountDownLatch waitForTermination = new CountDownLatch(1);
 private static volatile boolean terminate = false;

 private static String executeActivityTask(String input) throws Throwable {
 return "Hello, " + input + "!";
 }

 public static void main(String[] args) {
 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 try {
 terminate = true;
 System.out.println("Waiting for the current poll request" +
 " to return before shutting down.");
 waitForTermination.await(60, TimeUnit.SECONDS);
 }
 catch (InterruptedException e) {
 // ignore
 }
 }
 });
 try {
 pollAndExecute();
 }

アクティビティおよびワークフローワーカーの適切なシャットダウン 253

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 finally {
 waitForTermination.countDown();
 }
 }

 public static void pollAndExecute() {
 while (!terminate) {
 System.out.println("Polling for an activity task from the tasklist '"
 + HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 ActivityTask task = swf.pollForActivityTask(new
 PollForActivityTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(new TaskList().withName(HelloTypes.TASKLIST)));

 String taskToken = task.getTaskToken();

 if (taskToken != null) {
 String result = null;
 Throwable error = null;

 try {
 System.out.println("Executing the activity task with input '"
 + task.getInput() + "'.");
 result = executeActivityTask(task.getInput());
 }
 catch (Throwable th) {
 error = th;
 }

 if (error == null) {
 System.out.println("The activity task succeeded with result '"
 + result + "'.");
 swf.respondActivityTaskCompleted(
 new RespondActivityTaskCompletedRequest()
 .withTaskToken(taskToken)
 .withResult(result));
 }
 else {
 System.out.println("The activity task failed with the error '"
 + error.getClass().getSimpleName() + "'.");
 swf.respondActivityTaskFailed(
 new RespondActivityTaskFailedRequest()

アクティビティおよびワークフローワーカーの適切なシャットダウン 254

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

 .withTaskToken(taskToken)
 .withReason(error.getClass().getSimpleName())
 .withDetails(error.getMessage()));
 }
 }
 }
 }
}

このバージョンでは、元のバージョンの main 関数にあったポーリングコードが、独自のメソッドに
移動されました。pollAndExecute

main 関数は CountDownLatch をシャットダウンフックとともに使用して、終了がリクエストされた
後で最大 60 秒待ってから、スレッドをシャットダウンさせます。

ドメインの登録

Amazon SWF の各ワークフローとアクティビティでは、実行するドメインが必要です。

1. 新しい RegisterDomainRequest オブジェクトを作成し、これに少なくともドメイン名とワークフ
ロー実行保持期間を指定します (これらのパラメーターは両方とも必須です)。

2. AmazonSimpleWorkflowClient.registerDomain メソッドを、RegisterDomainRequest オブジェク
トで呼び出します。

3. リクエストしているドメインがすでに存在している場合 (その場合、アクションは通常必要ありま
せん)、DomainAlreadyExistsException をキャッチします。

次のコードは、この手順を示しています。

public void register_swf_domain(AmazonSimpleWorkflowClient swf, String name)
{
 RegisterDomainRequest request = new RegisterDomainRequest().withName(name);
 request.setWorkflowExecutionRetentionPeriodInDays("10");
 try
 {
 swf.registerDomain(request);
 }
 catch (DomainAlreadyExistsException e)
 {
 System.out.println("Domain already exists!");
 }

ドメインの登録 255

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/CountDownLatch.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/lang/Runtime.html
https://aws.amazon.com/swf/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterDomainRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html#registerDomain-com.amazonaws.services.simpleworkflow.model.RegisterDomainRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainAlreadyExistsException.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

}

ドメインの一覧表示

登録タイプ別に、アカウントと AWS リージョンに関連付けられた Amazon SWF ドメインを一覧表
示できます。

1. ListDomainsRequest オブジェクトを作成し、関心のあるドメインの登録ステータスを指定しま
す。これは必須です。

2. AmazonSimpleWorkflowClient.listDomains を ListDomainRequest オブジェクトで呼び出します。
結果は DomainInfos オブジェクトで示されます。

3. 返されたオブジェクトで getDomainInfos を呼び出して、DomainInfo オブジェクトの一覧を取得
します。

4. 各 DomainInfo オブジェクトで getName を呼び出して、その名前を取得します。

次のコードは、この手順を示しています。

public void list_swf_domains(AmazonSimpleWorkflowClient swf)
{
 ListDomainsRequest request = new ListDomainsRequest();
 request.setRegistrationStatus("REGISTERED");
 DomainInfos domains = swf.listDomains(request);
 System.out.println("Current Domains:");
 for (DomainInfo di : domains.getDomainInfos())
 {
 System.out.println(" * " + di.getName());
 }
}

SDK に含まれるコードサンプル

AWS SDK for Java は、SDK のビルドおよび実行可能なプログラムの多くの機能を示す多数のコー
ドサンプルでパッケージ化されています。AWS SDK for Java を使用して独自の AWS ソリューショ
ンを実装する際に、これらを検討または変更できます。

ドメインの一覧表示 256

https://aws.amazon.com/swf/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ListDomainsRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html#listDomains-com.amazonaws.services.simpleworkflow.model.ListDomainsRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfos.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfos.html#getDomainInfos--
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfo.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfo.html#getName--

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

サンプルの入手方法

AWS SDK for Java コードサンプルは、SDK のサンプルディレクトリで提供されています。AWS
SDK for Javaのセットアップでの説明に従って SDK をダウンロードおよびインストールしていれ
ば、サンプルは既にシステムに存在しています。

また、AWS SDK for Java の GitHub リポジトリの src/samples ディレクトリで、最新のサンプルを
確認することもできます。

コマンドラインを使用したサンプルのビルドと実行

サンプルには Ant ビルドスクリプトが含まれているため、コマンドラインからこれらを簡単にビル
ドおよび実行できます。また、各サンプルには、各サンプルに固有の情報を含む README ファイル
が HTML 形式で含まれています。

Note

GitHub でサンプルコードを参照している場合は、サンプルの README.html ファイルを表示
するときに、ソースコード表示の [Raw] ボタンをクリックします。raw モードでは、HTML
はお使いのブラウザで目的どおりにレンダリングされます。

前提条件

AWS SDK for Java のサンプルを実行する前に、開発用の AWS 認証情報とリージョンのセットアッ
プでの説明に従って、環境 または AWS CLI で AWS 認証情報を設定する必要があります。サンプル
は、可能な限りデフォルトの認証情報プロバイダチェーンを使用します。そのため、この方法で認証
情報を設定することにより、ソースコードディレクトリ内のファイルに AWS 認証情報を挿入するリ
スクの高い方法を回避できます (この方法では、意図せずにファイルにチェックインし、ファイルを
公開する可能性があります)。

サンプルの実行

1. サンプルのコードを含むディレクトリに変更します。例えば、AWS SDK ダウンロードのルート
ディレクトリで AwsConsoleApp サンプルを実行する場合は、次のように入力します。

cd samples/AwsConsoleApp

2. Ant を使用してサンプルをビルドおよび実行します。デフォルトのビルドターゲットでは両方のア
クションが実行されるため、次のように入力できます。

サンプルの入手方法 257

https://github.com/aws/aws-sdk-java/tree/master/src/samples
http://ant.apache.org/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ant

サンプルは、情報を標準出力に出力します。以下に例を示します。

===

Welcome to the {AWS} Java SDK!

===
You have access to 4 Availability Zones.

You have 0 {EC2} instance(s) running.

You have 13 Amazon SimpleDB domain(s) containing a total of 62 items.

You have 23 {S3} bucket(s), containing 44 objects with a total size of 154767691 bytes.

Eclipse IDE を使用したサンプルのビルドと実行

AWS Toolkit for Eclipse を使用する場合は、AWS SDK for Java に基づいて Eclipse で新しいプロ
ジェクトを開始したり、既存の Java プロジェクトに SDK を追加したりすることができます。

前提条件

AWS Toolkit for Eclipse をインストールした後で、セキュリティ認証情報を使用して Toolkit を設定
することをお勧めします。これは、Eclipse の [Window] メニューから [詳細設定] を選択し、[AWS
ツールキット] セクションを選択することで、いつでも実行できます。

サンプルの実行

1. Eclipse を開きます。

2. 新しい AWS Java プロジェクトを作成します。Eclipse の [File] メニューで [New] を選択し、
[Project] をクリックします。[New Project] ウィザードが起動します。

3. [AWS] カテゴリを展開し、[AWS Java プロジェクト] を選択します。

4. [次へ] を選択します。プロジェクトの設定ページが表示されます。

5. [Pattern Name] ボックスに名前を入力します。AWS SDK for Java サンプルグループに、既に説明
した SDK で使用できるサンプルが表示されます。

Eclipse IDE を使用したサンプルのビルドと実行 258

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

6. 各チェックボックスをオンにして、プロジェクトに含めるサンプルを選択します。

7. AWS 認証情報を入力します。認証情報を使用してすでに AWS Toolkit for Eclipse を設定している
場合、この情報は自動的に入力されます。

8. [Finish] を選択してください。プロジェクトが作成され、[Project Explorer] に追加されます。

9. 実行するサンプルの .java ファイルを選択します。たとえば、Amazon S3 サンプルの場合は
S3Sample.java を選択します。

10.[Run] メニューで、[Run] を選択します。

11.[Project Explorer] でプロジェクトを右クリックし、[Build Path] をポイントして、[Add Libraries]
を選択します。

12.[AWS Java SDK] を選択し、[Next] (次へ) を選択して、画面のその他の手順を実行します。

Eclipse IDE を使用したサンプルのビルドと実行 259

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

のセキュリティ AWS SDK for Java

クラウドセキュリティは Amazon Web Services (AWS) の最優先事項です。 AWS のお客様は、セ
キュリティを非常に重視する組織の要件を満たせるように構築されたデータセンターとネットワー
クアーキテクチャーから利点を得ます。セキュリティは、 AWS お客様とお客様の間の責任共有で
す。責任共有モデルでは、これをクラウドのセキュリティおよびクラウド内のセキュリティとして説
明しています。

クラウドのセキュリティ – AWS クラウドで提供されているすべてのサービスを実行するインフラス
トラクチャ AWS を保護し、安全に使用できるサービスを提供します。における当社のセキュリティ
責任は最優先事項であり AWS、当社のセキュリティの有効性は、AWS コンプライアンスプログラ
ムの一環としてサードパーティーの監査者によって定期的にテストおよび検証されます。

クラウド内のセキュリティ – お客様の責任は、使用している AWS サービス、データの機密性、組織
の要件、適用される法律や規制などのその他の要因によって決まります。

この AWS 製品またはサービスは、サポートする特定の Amazon Web Services (AWS) サービスを通
じて責任共有モデルに従います。 AWS サービスセキュリティ情報については、AWS 「サービスセ
キュリティドキュメント」ページとAWS 、コンプライアンスプログラムによる AWS コンプライア
ンスの取り組みの対象となるサービスを参照してください。

トピック

• AWS SDK for Java 1.x でのデータ保護

• AWS SDK for Java TLS のサポート

• Identity and Access Management

• この AWS 製品またはサービスのコンプライアンス検証

• この AWS 製品またはサービスの耐障害性

• この AWS 製品またはサービスのインフラストラクチャセキュリティ

• Amazon S3 暗号化クライアントの移行

AWS SDK for Java 1.x でのデータ保護

責任共有モデルは、この AWS 製品またはサービスのデータ保護に適用されます。このモデルで説明
されているように、 AWS はすべての AWS クラウドを実行するグローバルインフラストラクチャを

データ保護 260

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

保護する責任があります。ユーザーには、このインフラストラクチャでホストされているコンテンツ
に対する制御を維持する責任があります。このコンテンツには、使用する AWS のサービスに対する
セキュリティの設定と管理タスクが含まれます。データプライバシーの詳細については、「データプ
ライバシーのよくある質問」を参照してください。欧州でのデータ保護の詳細については、 AWS セ
キュリティブログの AWS 責任共有モデルと GDPR ブログ記事を参照してください。

データ保護の目的で、 () を使用して AWS アカウント 認証情報を保護し、個々のユーザーアカウン
トを設定することをお勧めします AWS Identity and Access Management IAM。この方法により、そ
れぞれのジョブを遂行するために必要なアクセス許可のみを各ユーザーに付与できます。また、次の
方法でデータを保護することをお勧めします。

• 各アカウントで多要素認証 (MFA) を使用します。

• SSL/TLS を使用して AWS リソースと通信します。

• で API とユーザーアクティビティのログ記録を設定します AWS CloudTrail。

• AWS 暗号化ソリューションを使用し、 AWS サービス内のすべてのデフォルトのセキュリティコ
ントロールを使用します。

• Amazon Macie などのアドバンストマネージドセキュリティサービスを使用します。これは、
Amazon S3に保存されている個人データの検出と保護を支援します。

• コマンドラインインターフェイスまたは API AWS を介して にアクセスするときに FIPS 140-2 検
証済み暗号化モジュールが必要な場合は、FIPS エンドポイントを使用します。利用可能な FIPS
エンドポイントの詳細については、「連邦情報処理規格 (FIPS) 140-2」 を参照してください。

顧客のアカウント番号などの機密の識別情報は、[Name] (名前)フィールドなどの自由形式のフィー
ルドに配置しないことを強くお勧めします。これは、コンソール、API、 AWS CLIまたは SDK を使
用して、この AWS 製品またはサービスまたは他の AWS のサービスを使用する場合も同様です。
AWS SDKs この AWS 製品またはサービスまたは他のサービスに入力したデータは、診断ログに取
り込まれる可能性があります。外部サーバーへの URL を指定するときは、そのサーバーへのリクエ
ストを検証するための認証情報を URL に含めないでください。

AWS SDK for Java TLS のサポート

以下の情報は、Java SSL 実装 (のデフォルトの SSL 実装) にのみ適用されます AWS SDK for
Java。別の SSL 実装を使用している場合は、その SSL 実装を参照して、TLS バージョンを適用す
る方法を確認してください。

最小 TLS バージョンの適用 261

https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr
https://aws.amazon.com/compliance/fips

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

TLS のバージョンを確認する方法

Java virtual machine (JVM) プロバイダーのマニュアルを参照して、ご使用のプラットフォームでサ
ポートされている TLS バージョンを確認してください。一部の JVM では、次のコードによってどの
SSL バージョンがサポートされているかが出力されます。

System.out.println(Arrays.toString(SSLContext.getDefault().getSupportedSSLParameters().getProtocols()));

動作中の SSL ハンドシェイクと使用されている TLS のバージョンを確認するには、システムプロパ
ティ javax.net.debug を使用します。

java app.jar -Djavax.net.debug=ssl

Note

TLS 1.3 は Java バージョン 1.9.5 ～ 1.10.31 の SDK と互換性がありません。詳細について
は、以下のブログ投稿を参照してください。
https://aws.amazon.com/blogs/developer/tls-1-3-incompatibility-with-aws-sdk-for-java-
versions-1-9-5-to-1-10-31/

最小 TLS バージョンの適用

SDK は常に、プラットフォームとサービスがサポートする最新の TLS バージョンを優先しま
す。特定の最小 TLS バージョンを強制する場合は、「JVM のドキュメント」を参照してくださ
い。OpenJDK ベースの JVM では、システムプロパティ jdk.tls.client.protocols を使用で
きます。

java app.jar -Djdk.tls.client.protocols=PROTOCOLS

サポートされている PROTOCOLS の値については、「JVM のドキュメント」を参照してくださ
い。

Identity and Access Management

AWS Identity and Access Management (IAM) は、管理者が AWS リソースへのアクセスを安全に制
御 AWS のサービス するのに役立つ です。IAM 管理者は、誰を認証 (サインイン) し、誰に AWS リ

TLS のバージョンを確認する方法 262

https://aws.amazon.com/blogs/developer/tls-1-3-incompatibility-with-aws-sdk-for-java-versions-1-9-5-to-1-10-31/
https://aws.amazon.com/blogs/developer/tls-1-3-incompatibility-with-aws-sdk-for-java-versions-1-9-5-to-1-10-31/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ソースの使用を許可する (アクセス許可を付与する) かを制御します。IAM は、追加料金なしで使用
できる AWS のサービス です。

トピック

• オーディエンス

• アイデンティティを使用した認証

• ポリシーを使用したアクセスの管理

• IAM AWS のサービス の操作方法

• AWS ID とアクセスのトラブルシューティング

オーディエンス

AWS Identity and Access Management (IAM) の使用方法は、 で行う作業によって異なります
AWS。

サービスユーザー – AWS のサービス を使用してジョブを実行する場合、管理者から必要な認証情報
とアクセス許可が提供されます。さらに多くの AWS 機能を使用して作業を行う場合は、追加のアク
セス許可が必要になることがあります。アクセスの管理方法を理解すると、管理者に適切なアクセス
許可をリクエストするのに役に立ちます。の機能にアクセスできない場合は AWS、 AWS のサービ
ス AWS ID とアクセスのトラブルシューティング「」または使用している のユーザーガイドを参照
してください。

サービス管理者 – 社内の AWS リソースを担当している場合は、通常、 へのフルアクセスがありま
す AWS。サービスユーザーがどの AWS 機能やリソースにアクセスするかを決めるのは管理者の仕
事です。その後、IAM 管理者にリクエストを送信して、サービスユーザーの権限を変更する必要が
あります。このページの情報を点検して、IAM の基本概念を理解してください。会社で IAM を使用
する方法の詳細については AWS、使用している AWS のサービス のユーザーガイドを参照してくだ
さい。

IAM 管理者 - 管理者は、 AWSへのアクセスを管理するポリシーの書き込み方法の詳細について確認
する場合があります。IAM で使用できる AWS アイデンティティベースのポリシーの例を表示するに
は、 AWS のサービス 使用している のユーザーガイドを参照してください。

アイデンティティを使用した認証

認証とは、ID 認証情報 AWS を使用して にサインインする方法です。、IAM ユーザー AWS アカウ
ントのルートユーザー、または IAM ロールを引き受けることで認証される必要があります。

オーディエンス 263

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

(AWS IAM アイデンティティセンター IAM Identity Center)、シングルサインオン認証、Google/
Facebook 認証情報などの ID ソースからの認証情報を使用して、フェデレーティッド ID としてサイ
ンインできます。サインインの詳細については、「AWS サインイン ユーザーガイド」の「AWS ア
カウントにサインインする方法」を参照してください。

プログラムによるアクセスの場合、 は SDK と CLI AWS を提供してリクエストを暗号化して署名し
ます。詳細については、「IAM ユーザーガイド」の「API リクエストに対するAWS 署名バージョン
4」を参照してください。

AWS アカウント ルートユーザー

を作成するときは AWS アカウント、すべての AWS のサービス および リソースへの完全なアクセ
ス権を持つ AWS アカウント ルートユーザーと呼ばれる 1 つのサインインアイデンティティから始
めます。日常的なタスクには、ルートユーザーを使用しないことを強くお勧めします。ルートユー
ザー認証情報を必要とするタスクについては、「IAM ユーザーガイド」の「ルートユーザー認証情
報が必要なタスク」を参照してください。

フェデレーテッドアイデンティティ

ベストプラクティスとして、人間のユーザーが一時的な認証情報 AWS のサービス を使用して にア
クセスするには、ID プロバイダーとのフェデレーションを使用する必要があります。

フェデレーティッド ID は、エンタープライズディレクトリ、ウェブ ID プロバイダー、または ID
Directory Service ソースの認証情報 AWS のサービス を使用して にアクセスするユーザーです。
フェデレーテッドアイデンティティは、一時的な認証情報を提供するロールを引き受けます。

アクセスを一元管理する場合は、 AWS IAM アイデンティティセンターをお勧めします。詳細につい
ては、「AWS IAM アイデンティティセンター ユーザーガイド」の「IAM アイデンティティセンター
とは」を参照してください。

IAM ユーザーとグループ

IAM ユーザーは、特定の個人やアプリケーションに対する特定のアクセス許可を持つアイデンティ
ティです。長期認証情報を持つ IAM ユーザーの代わりに一時的な認証情報を使用することをお勧め
します。詳細については、IAM ユーザーガイドの「ID プロバイダーとのフェデレーションを使用し
て にアクセスする必要がある AWS」を参照してください。

IAM グループは、IAM ユーザーの集合を指定し、大量のユーザーに対するアクセス許可の管理を容
易にします。詳細については、「IAM ユーザーガイド」の「IAM ユーザーに関するユースケース」
を参照してください。

アイデンティティを使用した認証 264

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

IAM ロール

IAM ロールは、特定のアクセス許可を持つアイデンティであり、一時的な認証情報を提供しま
す。ユーザーから IAM ロール (コンソール) に切り替えるか、 または API オペレーションを呼び出す
ことで、ロールを引き受けることができます。 AWS CLI AWS 詳細については、「IAM ユーザーガ
イド」の「ロールを引き受けるための各種方法」を参照してください。

IAM ロールは、フェデレーションユーザーアクセス、一時的な IAM ユーザーのアクセス許可、クロ
スアカウントアクセス、クロスサービスアクセス、および Amazon EC2 で実行するアプリケーショ
ンに役立ちます。詳細については、IAM ユーザーガイド の IAM でのクロスアカウントリソースアク
セス を参照してください。

ポリシーを使用したアクセスの管理

でアクセスを制御する AWS には、ポリシーを作成し、ID AWS またはリソースにアタッチします。
ポリシーは、アイデンティティまたはリソースに関連付けられたときにアクセス許可を定義します。
は、プリンシパルがリクエストを行うときにこれらのポリシー AWS を評価します。ほとんどのポリ
シーは JSON ドキュメント AWS として に保存されます。JSON ポリシードキュメントの詳細につ
いては、「IAM ユーザーガイド」の「JSON ポリシー概要」を参照してください。

管理者は、ポリシーを使用して、どのプリンシパルがどのリソースに対して、どのような条件でアク
ションを実行できるかを定義することで、誰が何にアクセスできるかを指定します。

デフォルトでは、ユーザーやロールにアクセス許可はありません。IAM 管理者は IAM ポリシーを作
成してロールに追加し、このロールをユーザーが引き受けられるようにします。IAM ポリシーは、
オペレーションの実行方法を問わず、アクセス許可を定義します。

アイデンティティベースのポリシー

アイデンティティベースのポリシーは、アイデンティティ (ユーザー、グループ、またはロール) に
アタッチできる JSON アクセス許可ポリシードキュメントです。これらのポリシーは、アイデン
ティティがどのリソースに対してどのような条件下でどのようなアクションを実行できるかを制御し
ます。アイデンティティベースポリシーの作成方法については、IAM ユーザーガイド の カスタマー
管理ポリシーでカスタム IAM アクセス許可を定義する を参照してください。

アイデンティティベースのポリシーは、インラインポリシー (単一の ID に直接埋め込む) または管理
ポリシー (複数の ID にアタッチされたスタンドアロンポリシー) にすることができます。管理ポリ
シーとインラインポリシーのいずれかを選択する方法については、「IAM ユーザーガイド」の「管
理ポリシーとインラインポリシーのいずれかを選択する」を参照してください。

ポリシーを使用したアクセスの管理 265

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

リソースベースのポリシー

リソースベースのポリシーは、リソースに添付する JSON ポリシードキュメントです。例として
は、IAM ロール信頼ポリシーや Amazon S3 バケットポリシーなどがあります。リソースベースのポ
リシーをサポートするサービスでは、サービス管理者はポリシーを使用して特定のリソースへのアク
セスを制御できます。リソースベースのポリシーでは、プリンシパルを指定する必要があります。

リソースベースのポリシーは、そのサービス内にあるインラインポリシーです。リソースベースのポ
リシーでは、IAM の AWS マネージドポリシーを使用できません。

アクセスコントロールリスト (ACL)

アクセスコントロールリスト (ACL) は、どのプリンシパル (アカウントメンバー、ユーザー、または
ロール) がリソースにアクセスするためのアクセス許可を持つかを制御します。ACL はリソースベー
スのポリシーに似ていますが、JSON ポリシードキュメント形式は使用しません。

Amazon S3、および Amazon VPC は AWS WAF、ACLs。ACL の詳細については、Amazon Simple
Storage Service デベロッパーガイド の アクセスコントロールリスト (ACL) の概要 を参照してくだ
さい。

その他のポリシータイプ

AWS は、より一般的なポリシータイプによって付与されるアクセス許可の上限を設定できる追加の
ポリシータイプをサポートしています。

• アクセス許可の境界 – アイデンティティベースのポリシーで IAM エンティティに付与することの
できるアクセス許可の数の上限を設定します。詳細については、「IAM ユーザーガイド」の「IAM
エンティティのアクセス許可境界」を参照してください。

• サービスコントロールポリシー (SCP) - AWS Organizations内の組織または組織単位の最大のアク
セス許可を指定します。詳細については、「AWS Organizations ユーザーガイド」の「サービスコ
ントロールポリシー」を参照してください。

• リソースコントロールポリシー (RCP) – は、アカウント内のリソースで利用できる最大数のアク
セス許可を定義します。詳細については、「AWS Organizations ユーザーガイド」の「リソースコ
ントロールポリシー (RCP)」を参照してください。

• セッションポリシー – ロールまたはフェデレーションユーザーの一時セッションを作成する際
にパラメータとして渡される高度なポリシーです。詳細については、「IAM ユーザーガイド」の
「セッションポリシー」を参照してください。

ポリシーを使用したアクセスの管理 266

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

複数のポリシータイプ

1 つのリクエストに複数のタイプのポリシーが適用されると、結果として作成されるアクセス許可を
理解するのがさらに難しくなります。が複数のポリシータイプが関与する場合にリクエストを許可す
るかどうか AWS を決定する方法については、「IAM ユーザーガイド」の「ポリシー評価ロジック」
を参照してください。

IAM AWS のサービス の操作方法

ほとんどの IAM 機能と AWS のサービス の連携方法の概要については、「IAM ユーザーガイド」
のAWS 「IAM と連携する のサービス」を参照してください。

IAM AWS のサービス で特定の を使用する方法については、関連するサービスのユーザーガイドの
セキュリティセクションを参照してください。

AWS ID とアクセスのトラブルシューティング

以下の情報は、 および IAM の使用時に発生する可能性がある一般的な問題の診断 AWS と修正に役
立ちます。

トピック

• でアクションを実行する権限がありません AWS

• iam:PassRole を実行する権限がありません

• 自分の 以外のユーザーに自分の AWS リソース AWS アカウント へのアクセスを許可したい

でアクションを実行する権限がありません AWS

アクションを実行する権限がないというエラーが表示された場合は、そのアクションを実行できるよ
うにポリシーを更新する必要があります。

次のエラー例は、mateojackson IAM ユーザーがコンソールを使用して、ある my-example-
widget リソースに関する詳細情報を表示しようとしたことを想定して、その際に必要な
awes:GetWidget アクセス許可を持っていない場合に発生するものです。

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 awes:GetWidget on resource: my-example-widget

この場合、awes:GetWidget アクションを使用して my-example-widget リソースへのアクセス
を許可するように、mateojackson ユーザーのポリシーを更新する必要があります。

IAM AWS のサービス の操作方法 267

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

サポートが必要な場合は、 AWS 管理者にお問い合わせください。サインイン認証情報を提供した担
当者が管理者です。

iam:PassRole を実行する権限がありません

iam:PassRole アクションを実行する権限がないというエラーが表示された場合は、ポリシーを更
新して AWSにロールを渡すことができるようにする必要があります。

一部の AWS のサービス では、新しいサービスロールまたはサービスにリンクされたロールを作成
する代わりに、既存のロールをそのサービスに渡すことができます。そのためには、サービスにロー
ルを渡す権限が必要です。

以下の例のエラーは、marymajor という IAM ユーザーがコンソールを使用して AWSでアクション
を実行しようとする場合に発生します。ただし、このアクションをサービスが実行するには、サービ
スロールから付与された権限が必要です。Mary には、ロールをサービスに渡すアクセス許可があり
ません。

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

この場合、Mary のポリシーを更新してメアリーに iam:PassRole アクションの実行を許可する必
要があります。

サポートが必要な場合は、 AWS 管理者にお問い合わせください。サインイン資格情報を提供した担
当者が管理者です。

自分の 以外のユーザーに自分の AWS リソース AWS アカウント へのアクセスを許可
したい

他のアカウントのユーザーや組織外の人が、リソースにアクセスするために使用できるロールを作成
できます。ロールの引き受けを委託するユーザーを指定できます。リソースベースのポリシーまた
はアクセスコントロールリスト (ACL) をサポートするサービスの場合、それらのポリシーを使用し
て、リソースへのアクセスを付与できます。

詳細については、以下を参照してください:

• がこれらの機能 AWS をサポートしているかどうかを確認するには、「」を参照してくださいIAM
AWS のサービス の操作方法。

AWS ID とアクセスのトラブルシューティング 268

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

• 所有 AWS アカウント している のリソースへのアクセスを提供する方法については、IAM ユー
ザーガイドの「所有 AWS アカウント している別の の IAM ユーザーへのアクセスを提供する」を
参照してください。

• リソースへのアクセスをサードパーティーに提供する方法については AWS アカウント、IAM ユー
ザーガイドの「サードパーティー AWS アカウント が所有する へのアクセスを提供する」を参照
してください。

• ID フェデレーションを介してアクセスを提供する方法については、IAM ユーザーガイド の 外部で
認証されたユーザー (ID フェデレーション) へのアクセスの許可 を参照してください。

• クロスアカウントアクセスにおけるロールとリソースベースのポリシーの使用方法の違いについて
は、IAM ユーザーガイド の IAM でのクロスアカウントのリソースへのアクセス を参照してくださ
い。

この AWS 製品またはサービスのコンプライアンス検証

AWS のサービス が特定のコンプライアンスプログラムの対象であるかどうかを確認するには、「コ
ンプライアンスAWS のサービス プログラムによる対象範囲内」の「コンプライアンス」を参照し、
関心のあるコンプライアンスプログラムを選択します。一般的な情報については、AWS 「コンプラ
イアンスプログラム」を参照してください。

を使用して、サードパーティーの監査レポートをダウンロードできます AWS Artifact。詳細について
は、「Downloading Reports in AWS Artifact」を参照してください。

を使用する際のお客様のコンプライアンス責任 AWS のサービス は、お客様のデータの機密性、貴
社のコンプライアンス目的、適用される法律および規制によって決まります。を使用する際のコンプ
ライアンス責任の詳細については AWS のサービス、AWS 「 セキュリティドキュメント」を参照し
てください。

この AWS 製品またはサービスは、サポートする特定の Amazon Web Services (AWS) サービスを通
じて責任共有モデルに従います。 AWS サービスセキュリティ情報については、AWS 「サービスセ
キュリティドキュメント」ページとAWS 、コンプライアンスプログラムによる AWS コンプライア
ンスの取り組みの対象となるサービスを参照してください。

この AWS 製品またはサービスの耐障害性

AWS グローバルインフラストラクチャは、 AWS リージョン およびアベイラビリティーゾーンを中
心に構築されています。

コンプライアンス検証 269

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/security/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

AWS リージョン は、複数の物理的に分離および分離されたアベイラビリティーゾーンを提供し、低
レイテンシー、高スループット、および高度に冗長なネットワークで接続されます。

アベイラビリティーゾーンでは、ゾーン間で中断することなく自動的にフェールオーバーするアプリ
ケーションとデータベースを設計および運用することができます。アベイラビリティーゾーンは、従
来の単一または複数のデータセンターインフラストラクチャよりも可用性、フォールトトレランス、
および拡張性が優れています。

AWS リージョンとアベイラビリティーゾーンの詳細については、AWS 「 グローバルインフラスト
ラクチャ」を参照してください。

この AWS 製品またはサービスは、サポートする特定の Amazon Web Services (AWS) サービスを通
じて責任共有モデルに従います。 AWS サービスセキュリティ情報については、AWS 「サービスセ
キュリティドキュメント」ページとAWS 、コンプライアンスプログラムによる AWS コンプライア
ンスの取り組みの対象となるサービスを参照してください。

この AWS 製品またはサービスのインフラストラクチャセキュリ
ティ

この AWS 製品またはサービスはマネージドサービスを使用するため、 グローバルネットワーク
セキュリティによって AWS 保護されています。 AWS セキュリティサービスと がインフラスト
ラクチャ AWS を保護する方法については、AWS 「 クラウドセキュリティ」を参照してくださ
い。インフラストラクチャセキュリティのベストプラクティスを使用して AWS 環境を設計するに
は、「Security Pillar AWS Well‐Architected Framework」の「Infrastructure Protection」を参照して
ください。

AWS 公開された API コールを使用して、ネットワーク経由でこの AWS 製品またはサービスにアク
セスします。クライアントは以下をサポートする必要があります。

• Transport Layer Security (TLS)。TLS 1.2 が必須で、TLS 1.3 をお勧めします。

• DHE (楕円ディフィー・ヘルマン鍵共有) や ECDHE (楕円曲線ディフィー・ヘルマン鍵共有) など
の完全前方秘匿性 (PFS) による暗号スイート。これらのモードは Java 7 以降など、ほとんどの最
新システムでサポートされています。

また、リクエストにはアクセスキー ID と、IAM プリンシパルに関連付けられているシークレットア
クセスキーを使用して署名する必要があります。または、AWS Security Token Service (AWS STS)
を使用して、一時的なセキュリティ認証情報を生成し、リクエストに署名することもできます。

インフラストラクチャセキュリティ 270

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

この AWS 製品またはサービスは、サポートする特定の Amazon Web Services (AWS) サービスを通
じて責任共有モデルに従います。 AWS サービスセキュリティ情報については、AWS 「サービスセ
キュリティドキュメント」ページとAWS 、コンプライアンスプログラムによる AWS コンプライア
ンスの取り組みの対象となるサービスを参照してください。

Amazon S3 暗号化クライアントの移行

このトピックでは、 Amazon Simple Storage Service () 暗号化クライアントのバージョン 1 (V1
Amazon S3) からバージョン 2 (V2) にアプリケーションを移行し、移行プロセス全体でアプリケー
ションの可用性を確保する方法について説明します。

前提条件

Amazon S3 クライアント側の暗号化には、以下が必要です。

• Java 8 以降がアプリケーション環境にインストールされていること。は、Oracle Java SE
Development Kit と、、Red Hat OpenJDKAmazon Corretto、AdoptOpenJDK などの Open Java
Development Kit (OpenJDK) のディストリビューションで AWS SDK for Java 動作します。
OpenJDK

• Bouncy Castle Crypto パッケージ。Bouncy Castle .jar ファイルをアプリケーション環境のクラス
パスに配置するか、artifactId bcprov-ext-jdk15on (org.bouncycastle の groupId を使用) に
おける依存関係を Maven pom.xml ファイルに追加できます。

移行の概要

この移行は 2 つのフェーズから構成されます。

1. 新しいフォーマットを読み取るために既存のクライアントを更新します。バージョン 1.11.837 以
降の を使用するようにアプリケーションを更新 AWS SDK for Java し、アプリケーションを再デ
プロイします。これにより、アプリケーションの Amazon S3 クライアント側の暗号化サービスク
ライアントは、V2 サービスクライアントによって作成されたオブジェクトを復号できます。アプ
リケーションで AWS SDKs、各 SDK を個別に更新する必要があります。

2. 暗号化および復号クライアントを V2 に移行します。すべての V1 暗号化クライアントが V2 暗号
化形式を読み取れるようになったら、アプリケーションコードの Amazon S3 クライアント側の暗
号化クライアントと復号クライアントを更新して V2 に相当するものを使用します。

S3 暗号化クライアント移行 271

https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-downloads.html
https://aws.amazon.com/corretto/
https://adoptopenjdk.net/
https://developers.redhat.com/products/openjdk
https://developers.redhat.com/products/openjdk
https://www.bouncycastle.org/download/bouncy-castle-java/

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

新しいフォーマットを読み取るために既存のクライアントを更新する

V2 暗号化クライアントは、 の古いバージョンではサポート AWS SDK for Java されていない暗号化
アルゴリズムを使用します。

移行の最初のステップは、 AWS SDK for Javaのバージョン 1.11.837 以降を使用するように V1 暗
号化クライアントを更新することです。(Java API リファレンスバージョン 1.x にある最新リリース
バージョンに更新することをお勧めします。) これを実行するには、プロジェクト設定の依存関係を
更新します。プロジェクト設定が更新されたら、プロジェクトを再構築して再デプロイします。

これらの手順を完了すると、アプリケーションの V1 暗号化クライアントは、V2 暗号化クライアン
トによって書き込まれたオブジェクトを読み取ることができるようになります。

プロジェクト設定の依存関係を更新する

プロジェクト設定ファイル (pom.xml や build.gradle など) を変更して、 AWS SDK for Javaのバー
ジョン 1.11.837 以降を使用します。その後、プロジェクトを再構築して再デプロイします。

新しいアプリケーションコードをデプロイする前にこのステップを完了すると、移行プロセス中にフ
リート全体で暗号化と復号の操作の一貫性を保つことができます。

Maven を使用した例

pom.xml ファイルからのスニペット:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.11.837</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Gradle を使用した例

build.gradle ファイルからのスニペット:

新しいフォーマットを読み取るために既存のクライアントを更新する 272

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.11.837')
 implementation 'com.amazonaws:aws-java-sdk-s3'
}

暗号化および復号クライアントを V2 に移行する

プロジェクトが最新の SDK バージョンで更新されたら、V2 クライアントを使用するようにアプリ
ケーションコードを変更できます。これを実行するには、新しいサービスクライアントビルダーを使
用するように、最初にコードを更新します。その後、名前が変更されたビルダーのメソッドを使用し
て暗号化マテリアルを提供し、必要に応じてサービスクライアントをさらに設定します。

これらのコードスニペットは、 でクライアント側の暗号化を使用する方法を示し AWS SDK for
Java、V1 暗号化クライアントと V2 暗号化クライアントの比較を提供します。

V1

// minimal configuration in V1; default CryptoMode.EncryptionOnly.
EncryptionMaterialsProvider encryptionMaterialsProvider = ...
AmazonS3Encryption encryptionClient = AmazonS3EncryptionClient.encryptionBuilder()
 .withEncryptionMaterials(encryptionMaterialsProvider)
 .build();

V2

// minimal configuration in V2; default CryptoMode.StrictAuthenticatedEncryption.
EncryptionMaterialsProvider encryptionMaterialsProvider = ...
AmazonS3EncryptionV2 encryptionClient = AmazonS3EncryptionClientV2.encryptionBuilder()
 .withEncryptionMaterialsProvider(encryptionMaterialsProvider)
 .withCryptoConfiguration(new CryptoConfigurationV2()
 // The following setting allows the client to read V1
 encrypted objects
 .withCryptoMode(CryptoMode.AuthenticatedEncryption)
)
 .build();

上記の例では、cryptoMode を AuthenticatedEncryption に設定しています。これは、V1 暗
号化クライアントによって書き込まれたオブジェクトを V2 暗号化クライアントが読み取ることを許
可する設定です。クライアントが V1 クライアントによって書き込まれたオブジェクトを読み取る機

暗号化および復号クライアントを V2 に移行する 273

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

能を必要としない場合は、代わりにデフォルト設定の StrictAuthenticatedEncryption を使用
することをお勧めします。

V2 暗号化クライアントをコンストラクトする

V2 暗号化クライアントは、 AmazonS3EncryptionClientV2.encryptionBuilder() を呼び出すことで構
築できます。

既存のすべての V1 暗号化クライアントを V2 暗号化クライアントに置き換えることができます。V2
暗号化クライアントは、`AuthenticatedEncryption`cryptoMode を使用するように V2 暗号化クライ
アントを設定することを通じて許可されている限り、V1 暗号化クライアントによって書き込まれた
すべてのオブジェクトを常に読み取ることができます。

新しい V2 暗号化クライアントの作成は、V1 暗号化クライアントの作成方法と非常によく似ていま
す。ただし、いくつか違いがあります。

• CryptoConfiguration オブジェクトの代わりに、CryptoConfigurationV2 オブジェクトを
使用してクライアントを設定します。このパラメータは必須です。

• V2 暗号化クライアントのデフォルトの cryptoMode 設定は
StrictAuthenticatedEncryption です。V1 暗号化クライアントの場合は EncryptionOnly
です。

• 暗号化クライアントビルダーのメソッドである withEncryptionMaterials() の名前
は、withEncryptionMaterialsProvider() に変更されました。これは、単に引数の型をより正確に反
映するための外観上の変更です。サービスクライアントを設定する際には、新しいメソッドを使用
する必要があります。

Note

AES-GCM で復号する場合は、復号されたデータの使用を開始する前に、オブジェクト全体
を最後まで読み取ります。これは、オブジェクトが暗号化されてから変更されていないこと
を確認するためものステップです。

暗号化マテリアルプロバイダーを使用する

V1 暗号化クライアントで既に使用しているものと同じ暗号化マテリアルプロバイダーおよび暗号化
マテリアルオブジェクトを引き続き使用できます。これらのクラスは、暗号化クライアントがデータ

暗号化および復号クライアントを V2 に移行する 274

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

を保護するために使用するキーを提供する役割を果たします。これらは、V2 および V1 暗号化クラ
イアントの両方と互換的に使用できます。

V2 暗号化クライアントを設定する

V2 暗号化クライアントは CryptoConfigurationV2 オブジェクトで設定されます。このオブジェ
クトは、デフォルトのコンストラクターを呼び出し、必要に応じてデフォルトからプロパティを変更
することで構築できます。

CryptoConfigurationV2 のデフォルト値は次のとおりです。

• cryptoMode = CryptoMode.StrictAuthenticatedEncryption

• storageMode = CryptoStorageMode.ObjectMetadata

• secureRandom = SecureRandom のインスタンス

• rangeGetMode = CryptoRangeGetMode.DISABLED

• unsafeUndecryptableObjectPassthrough = false

EncryptionOnly は V2 暗号化クライアントでサポートされている cryptoMode ではないことに注意
してください。V2 暗号化クライアントは、常に認証された暗号化を使用してコンテンツを暗号化
し、V2 KeyWrap オブジェクトを使用してコンテンツ暗号化キー (CEK) を保護します。

次の例は、V1 で暗号設定を指定する方法と、CryptoConfigurationV2 オブジェクトをインスタンス化
して V2 暗号化クライアントビルダーに渡す方法を示しています。

V1

CryptoConfiguration cryptoConfiguration = new CryptoConfiguration()
 .withCryptoMode(CryptoMode.StrictAuthenticatedEncryption);

V2

CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.StrictAuthenticatedEncryption);

その他の例

次の例は、V1 から V2 への移行に関連する特定のユースケースに対処する方法を示しています。

その他の例 275

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

V1 暗号化クライアントによって作成されたオブジェクトを読み取るようにサービスク
ライアントを設定する

以前に V1 暗号化クライアントを使用して作成されたオブジェクトを読み取るには、cryptoMode
を AuthenticatedEncryption に設定します。次のコードスニペットは、この設定で設定オブ
ジェクトを構築する方法を示しています。

CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.AuthenticatedEncryption);

オブジェクトのバイト範囲を取得するようにサービスクライアントを設定する

暗号化された S3 オブジェクトからバイト範囲を get できるようにするには、新しい設定
rangeGetMode を有効にします。この設定は、V2 暗号化クライアントではデフォルトで無効になっ
ています。有効になっている場合でも、範囲設定された get は、クライアントの cryptoMode 設定
でサポートされているアルゴリズムを使用して暗号化されたオブジェクトでのみ機能することに注意
してください。詳細については、 AWS SDK for Java API リファレンスのCryptoRangeGetMode」を
参照してください。

Amazon S3 TransferManager を使用して V2 暗号化クライアントを使用して暗号化された Amazon
S3 オブジェクトのマルチパートダウンロードを実行する場合は、まず V2 暗号化クライアントで
rangeGetMode設定を有効にする必要があります。

次のコードスニペットは、範囲設定された get を実行するために V2 クライアントを設定する方法
を示しています。

// Allows range gets using AES/CTR, for V2 encrypted objects only
CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withRangeGetMode(CryptoRangeGetMode.ALL);

// Allows range gets using AES/CTR and AES/CBC, for V1 and V2 objects
CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.AuthenticatedEncryption)
 .withRangeGetMode(CryptoRangeGetMode.ALL);

その他の例 276

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoRangeGetMode.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

AWS SDK for Java 用の OpenPGP 鍵
AWS SDK for Java 用に一般公開されている Maven アーティファクトはすべて OpenPGP 標準を使
用して署名されています。アーティファクトの署名を検証するのに必要な公開鍵については、以下の
セクションを参照してください。

現在のキー
次の表は、SDK for Java 1x と SDK for Java 2.x の最新リリースの OpenPGP 鍵情報を示していま
す。

キー ID 0xAC107B386692DADD

タイプ RSA

サイズ 4096/4096

作成 2016-06-30

有効期限 2026-09-27

ユーザー ID AWS SDK とツール <aws-dr-tools@amaz
on.com>

キーフィンガープリント FEB9 209F 2F2F 3F46 6484 1E55 AC10 7B38
6692 DADD

次の SDK for Java 用の OpenPGP 公開鍵をクリップボードにコピーするには、右上隅にある [コ
ピー] アイコンを選択します。

-----BEGIN PGP PUBLIC KEY BLOCK-----
Comment: Hostname:
Version: Hockeypuck 2.2

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej
kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV

現在のキー 277

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie
nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu
CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zSxBV1MgU0RLcyBhbmQgVG9vbHMgPGF3cy1kci10b29sc0BhbWF6b24uY29tPsLB
lAQTAQoAPgIbAwULCQgHAwUVCgkICwUWAgMBAAIeAQIXgBYhBP65IJ8vLz9GZIQe
VawQezhmktrdBQJo12ZrBQkTQxnmAAoJEKwQezhmktrdi18P/A3De83MBx8bdcWJ
Fot71Vk1TyBQFErgrtcytSU0czEHx3tGbzgQLbMlyzjirOT03usxEkOeqTVK+RU+
5uFXNZYQLwMJlHJ6S8tnfLe/ExM5WQ2KPwIUPfZs1GDDRQB2dIKSc+qYrP1O1vf4
O4iPgfLHMW2bFh3zjjxcaHCJyqc7Cau33eZFBAsRni1jOUo7MeyX0hlXfW8pd48Q
wZllQVZ/6KmDiFWA0CZ+2svJ5cL0tgPoh1OQjoz0nHpNfuDILMrZ+e7tx2VTlkGH
UGeNSydnrK8v9ztFn34KtU/k7NEWoVSyEi+5ICZL18FBwPqTwdVWXwXrqZCKiIpr
8ZdJWDz2sJfgDFNCC6rKgCQ6FrmaD9G76dYWkQ4AbZqABlUzU3q36W1K0r3iOAb5
G4tdOt4yqXHTe1x+ZUNaeW7gaCmtXAxLw0OfeJrcq/44b/SQP+qJ8sSOv76Yg2oF
BsF5DWOVUFghbTyokHAoVROyhBR4dUUisY39AqLSL8+Lp9Pr3wNuGl9GLrMD5701
piUb88B3Gwe1EiKV1gaKrvZ3mECDUiSMVO0Z5iG8E4QDpNmVbJbV1uT821ubvtOv
2Ko10Fa0uwCYGssdRGqEXNy6jz/Er8LAC3+nmGINDJQzrF+loYoSSkI2Nu7lhMuL
7iWwUPF7OhDXoVSAn4X3x6q2rGK0wsGUBBMBCgA+AhsDBQsJCAcDBRUKCQgLBRYC
AwEAAh4BAheAFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmjXZTsFCRNDGLYACgkQ
rBB7OGaS2t0/Ow//YIv51vHtD+kwMmIvk3zpizDHY0zW2dOezAo+C/DsSyC7wDll
Dixw34EQ1yLXH5xLR8CH1zupl3JmmEp1ucdQggoefbidxDl8Fld7tJOD1y3GGnTD
0jAl2ZC+W65Oh+wS1mD1FlaKjMGGkvJf0dA7RtU2T8dv3vt8dsxg76FMFS3+fqlC
FNOAsNTn9zWR1SqBIfkMJK83aq6s/rcEV9VrAYgDgqex58fygB5EuTf842/IF7WZ
Q9gd6fupB0mMZP5YWd2uj/vsBTYakG+mgQwDxZuKPeEzAqnqqS7biSQOUO6Wozlq
Yy4fSczE9GkBAvg0pGmbko+zHvpnjvX/h1CUpC6odvFyOAhZp6zyhs0QWz9thfqV
lU8WlbgJ2atFDn5GUSxF/fe0Yzovlbbs6sbYXuvMG9RiEOuJ1mBbZR3aIdZ1U6Do
BHc/vjc5mWcV7JQSP7i4W/8W7X3UAuN9LdxB+IvF3Cwrgtlw2BWvA5Alco5Tnz8t
P/CIVmBjk+sLme8W4kfLK3IWEbwClOdNnErI/MHRm65A2Y5EMIhwjrOi07SU1Pxa
nPpg3OYJCdvjzdB8QE3/DBiMfOl4dISfKDVEWnfK8mZaYd/BeRm2gUAa9UrqSFCG
BlA7Lg+eLI3US0FvwWJ4j5bBJqgLu+y7crIkiUOPAQuLk3lO+5uYU/I3DuLCwZQE
EwEKAD4CGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AWIQT+uSCfLy8/RmSEHlWs
EHs4ZpLa3QUCZwAXCAUJEWvKgwAKCRCsEHs4ZpLa3ZdTEACMBLg2q9zk8ZH02nDz
Sg5zc8Wlqq8WdxU0Pj8qx4UOrrMca7wyiUvrgoxPW5lh1RVNUeMkDRfu9pSXcOVI
V9LvmYE/WnwKROubgGbsC4T7M/LqV0/AulXil4d7IXcO6l4toa8LTNWtD5bODgrN
gvay1AzCU8kq1Qw1cKZ2gAfvA3Ba7PWyLeUN4HTlGrXcw73G+0CofY1L8wqWxHCJ
29XqQzeTEc6MDEeIlNlVdUcy8Qr5uwkEsl34H9AxS5F1opJ4TqvXiDZsrSRRv57R
XYmRZDWeYT+9PZaMsHXza5qgej7BfATxhYfICsNaY6MK3x6b+nDSKkoZgO+i09zh
1YjpahhQe6G336v/3mRj0dKGCRQ6znQ9ghUaB5z9zfvgH5AOEkTe3l8MqM+j5A6P
VjSBBJAHKejxr7+wKJKIA6P+DqpsYAunzftwUzrLVqb+BZQ+DcTmVrE7OPcMYJD5
QglX/Le+WmWZHI154NXgpWWUOUgZUbUge4DKrT+zCJ9iecPLKTW7OcULyXO+rjb8
8BGrD5GPlHB3dOUXXTlMKCqg3qy1Bu2KnZTQiaEEdZgSIGQbrW0JTMmmXJkKjokd
JMA4vYeg5en51G9nRQjScPngx77IxvByNyFWTJdG1ENpJpsK9TtmENcpyUJtJZTJ

現在のキー 278

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ZSOIRVPP5RzR5vInuXWq6VV0BMLBlAQTAQoAPgIbAwULCQgHAwUVCgkICwUWAgMB
AAIeAQIXgBYhBP65IJ8vLz9GZIQeVawQezhmktrdBQJlJEoiBQkPj/2dAAoJEKwQ
ezhmktrdx1YP/0vvym3jgX/pwnR7K1rafZMb1iKQBr0ISG8cdbaf4pqX5vuUZnyj
w9Cl/oONn7jJjnQxOIIzuBoxne2WN28ftM2w0nVXm85mAmz2fwQz/fdKDyonXcOh
pfD2iMqn7gESjhEgRE7wMDYMDuLdqHI7OKWGVfgrh7xEmKapLh45h7cnumo2VjL9
uDYY1aOBHz993T7oE41y43rhk+6kKbGFd2uuo7h5j1ZF8Lj6sYfcEzXOU1OhRlD0
nyBjDy9MYWu0YNouc70WgMceGx6hjvCAM/5fxP7SZFecZ7ePeB0GpvVA24hSNENE
0r3tUekuOf1I0FunMnMnbh7ZO9rPYqWvWDNIpU3S4CjFhY82L+IeKnmLy8N6ASRk
HsPiNCOHSK8C/0ynrd9xLhX8Jsk/TGiQYaleoHhWkNLlZsL86QHL8SKEqkqZCQf5
AEqghDP6NEGS7lnOenA7JjIrA9KLlT7fnNWZOwFi5X+o/CymE2ytEMS0Yf3nmY4U
n9x56Wgn6J2zqB5nqOXf6NxGdAIgOBm098YEnKCIFzk+yhoDlprVpHcnd2b5f6Oq
uh8KYOEbKgpMJ3zZuWSL5kwGF1nNoYiAkonMaz9H3pOQnOMVYCUeUTDRsiO/prrd
UhNlry4TAsBMpeXnFhdLVM3vFQZVpByadGOJNmnaN/Wavw2a00UGBFa4wsF9BBMB
CgAnAhsDBQsJCAcDBRUKCQgLBRYCAwEAAh4BAheABQJhMqGaBQkLnlUVAAoJEKwQ
ezhmktrd2sQP/3YHM+U+BbOy1nSEAfykZ71+uCM2hkHMLdxQYWB/rBWkmg/pbu+d
r4t45RsTASrNjRcZOntlPMQRIq973ymHfpmeS+noFwvTGH7zDv1BRBR9wPrd1XUz
iSuEUHGi/fqxUVXQ5mbonzfThX8tuXeuiQmeToqoB00FYlZm6xsNnEHcjVl66mC4
IPoJLWnZJs4rOCeoRf5XvDTgX6xt5/kLYRZf79qaWGFvaZpsc1CH+rQJUdVa/D4T
7pI7hX6zy0S91z4iuC5HZUiOTF+y5auEZHGTdTWNS1kvOvfcCTi0XK/GkGL82SZu
7X2VGnpCeUnFyViRGlk+KaDG1sVyDY+lcBPg6ilr45M6MQV0iHS5OF04QNXSKt5+
UnzJH7lldgNsR6ibRMyNV3k5v3fyUcSBvIYyLORTTBiVEjQDSbk1QNqbrQlX9CWz
+EJWn16BFTmMFvxBSWPm640GncHP5J3/0MbMw3Cm90x7k8UfNANIemcrJrSxIDwm
g9cVAg3a+D+wxjrVe8jGg0ejvECpm+0yswigj5x6Lqj09A4UgdjEauN+/pn0nhBo
Gv7DzMXtM/LoDtgp6wn93qZVN2TsuHnkEk4UyntB6eWJbBdXHWUr47exiWh0dvQN
tpwCWPT6I7ZTPtA5K/zx+q9m6797BLgAkTYc6gloQL3vs1Z1S3m/hZNawsF9BBMB
CgAnAhsDBQsJCAcDBRUKCQgLBRYCAwEAAh4BAheABQJgmrz2BQkLBnBxAAoJEKwQ
ezhmktrd36oP/2rB2EkwSOCKC4m0heWSfDWi6OBKoEbbDtFtc6/HwqBW8SPsiKlq
zV0e3qBY/LVju04+ktJEK+EGXLnC3iC36MegrQ8zt391kEx/Zv9LIuVOCX90QIAX
dL8MVUkkjRLCFFH8pTgRy1cJYWk1X4dYdXWYc29fCwNVartNdNBhsb2ht3VJeKDE
kUivBHmkjuISDPEnI1coY7Lj0ZtY5cHdRF2eZpB0RkTBpsIt18rCYyHkERZrhmvb
j3rOyPyvOa+1/dQS8/hv5pEmbKx8cy8RdJkmbUHYatPBsjHkJSWr7O7G9VFW4GoN
9CRAI4KkbDSEDjCL5dv2pq0Sew1MkLuWJGULAMgiIUlWcOs5SZZGFSksNQrtSFV9
Z/wGocecMGkGQNXQ06JV/Fry/TvyphBlmylEqL+NLqEcEjnlz90IVu+ZA+M09J96
UlHO7V5GvBgM+QK/q/dJeMHPWrNlo1gA6Nwl/HBdM0DqzdZ2jEPvsQSABvZrPMty
+BAqEar4wqY1AH4X5ccEjO7nJQoBQSDRSki1fkBsc1nx44N/m0kHdIa0Z/Y+Mw4v
WiZhREkOospG1I4lBa3CNTVAhSs9msGsYfkqvFJGHL7sZY8XSv82GBBvA0nUNrsJ
bLBwo2FaQG9eoatRAGkqp4b/OtNtBuGeiQoNwFGbfUZTAaStj5/zZj0swsF9BBMB
CgAnAhsDBQsJCAcDBRUKCQgLBRYCAwEAAh4BAheABQJe+9bwBQkJZ4plAAoJEKwQ
ezhmktrd+ScP/RoaUKriVVAgLHOGs+/mnfKtnfTlClzi5dsdI9/6H0vLpmSWK/Cl
2cT6gary45VMgAeVK+H1lQXafYj+FY++I5kYoe2GrSvIXhpjaFAJyNf/dKleTsqR
Tm371i8b3FDYs5kvy2CnTbmHB8MsOGxck8/YHd1x+g8WpO2IgF89yYCSF3CAdxC3
6bHbs6Z3C3lcM/3SoWF+Yie2P8XeBMPCGp/BcjQzUcHF6G06TwDDYhixucUi6vEY
EH5JtOwVVQ7bubT8OFeOoJwVxlzYz4UoqxjKDWymarTzu03AUIT0PXPece94bJAK
mSh68ItQe3H8tSPMubERWz2tEV3lVkChDGXcC7BYQmxHseolxz/qzCtJ0iX9BvZR

現在のキー 279

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

dniZNeNJ/Cu8M2pDp47zdNFXzf/Q/sQ9pQlws22G2g119rWDneBku9n1vTP80/er
SB+VLTBjDiArlCY5y9+BG8wbscExJySoQxkB9j/nlMzPY5rgk0SyxsNj9GbqH+hr
EjS3/uacNwSLxGcOT2E9Teot5pfTEO6fQVq+35QhfAlP8c8jze01W/+u+wXu1Ui9
azRSzYtCHanGyyet6U1mlBpAkqkZzH6t3CA5czc9i6FbzjvFVZnbRUZIRzfISYew
lF5WqgTn2iYVdxagPRvLF5kjd696brGW9d5HwirCVGaK04VsXWlAblB9wsF9BBMB
CgAnBQJXdYAFAhsDBQkHhh+ABQsJCAcDBRUKCQgLBRYCAwEAAh4BAheAAAoJEKwQ
ezhmktrdWigP/3QWl7aO81BUWyby4HEhN4SdAoWGY/FLqO4mCtuplcnMgRUCSiL9
l2BSCTMCtUcdSWtYwOgSChN2mMsdi1U2FNR5HvNunYR/pFdqjfQurf1ZmKVeG5/4
uuKaOxMw9e8pK5uYAfs+O7gr8gu/f6/Drp7NZk3/yVKpf4WCY9oX9TA1q9O/11nN
cwS45U/d7YP+N1YM9cBXa1DnDcdfm0BlykzouAF0qd1Lwi/tmLENvybD3+2c2WsE
rlFZGSa5ZafO0tTIWXh5k6wh5FdRRycrnSyRK3B9N9+yaXfMQ0XpOypa8dqQEnCi
IsngDCJPxtTrhMWKhBFRUMzK/WZTDboTQSQDK+YVRrE4K8MtoZSKwZLV2r9O3TpX
kpbKsPVYmexerfdMeZfjZMF1bC7BmEs7jciH6JjbqAoAPnHzN0481aeNarINSViX
PQWr2mp9qShei2/RavLtx2ZNrvmGW72ZKpF8E3WWUDpBJqFVeGNRvOm3aZj8o/Hl
ewtNjcT4ouJfqlfKiULv+g7ANEMDLQTFDTg5twRdvmZlB7oTBsavf+LwxPIXhH32
IR7TX7VeicMMxmZnmZK2ANT/QBi3laf+ojVHvB+f6D74eLNq0Zqjfi/3UFNYsYjg
E+YgCqEUBpHbl61nOHwGOSsQwfap2uKKlzukD/KxH5SPBC3DYGBI+KCbzsFNBFd1
gAUBEAC8zNArPWb3dPMThL2xAY+fS60vXdB1SkOtYJpDWpFgvo0d+VQ+hV6XulGA
HAS6xG1WHysPT9KejIRSgLG+e9CaM5yhsxNa1WFGUM4Q9ESo3t+a75Go7xHIxgFj
C046/O6Vh3g9N/PREeuG8zkZ3H2v5fmD+ejyPgk4W9sFL00zjRiZD0FKVYR/j9ue
nEC/2NBcLuFy3q6cDfmCoDEOO62kXMnaGz3knzEK/X1SkcjsxRDq7zaQlQ1Kou+3
dICwy4x5SJQ8jl+eeeEvF2C2/dXmDohb57tqUwioohMUQkmCtvZgEHjypUwgp0MT
o25gWxkvJlSJKUOb6b1786WNySIzF2gxqlkkEmBl4RAssQkeXjrSmGwsMDyHNqyJ
eYFusl8sPaSpo+V2n0z+2B070Uq+wmf1S5A5FpegH0PZzzoNZo8I6QxaZje9YSZU
ijGmZIdEBleRVt3Svhi8MYlnasd4bW2RK1sr7plkBf8QRe6biiQRF3KDOSn5CbmX
pAcHJ1ZHzRRdkXZDNQC6vCJxsy13O0TrhJtAV1Yq347uyUbVi291ISVgroUVtprs
mHoEk5GoOTHbg9SCSt+xi/FiJQC+ubWmIGXoFKMR3UmhDnnzobKcbnbs/Hd981Fd
VghYYvq//gTAkJk0WxfGqO30wtXRndPOA0T+qhP3TE+LtGRJ+wARAQABwsF8BBgB
CgAmAhsMFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmjXZm4FCRNDGegACgkQrBB7
OGaS2t3y5g/7BFXp/fdanzuQPToJTPen7AVwhLloKaiYhG3GjdXfMPLvu6UtaaGm
qynLolUNNooobptFqc1G9BKoAghQrta7CsDHtsQF2xyc3Mfu0gmpL/7X5a7sFIeJ
j08UjfweHx4DSG4LEZgNaAoWFjZltp4+8cqijkAHXt+r+1ayQG4VVHOWyXXqmSH4
9HqtbPcPyRzxdoVLeshZC9jmhHhhKqw/LwGyipWSOUKQDjWarBwdyhNmWCaLvxH1
ndMp4tq8DPGC3G4T9tYAbANrn7nKfZgHebMSzMw9kSp0L6QvwwTDjJyIWz85WyeH
WHeBysDaBOit3XDlehUew27y7N6a9hQSYjnXuwvre5mjDIOqJon/31R6ui2Z1y9P
a+bC11hbLXXh9tLCXRuoOt6thh9Cq5X1a76PPpEv30o3bpsb6l2hbrut1OKezwvK
l7txito/jfMiWfsZHA9O4SoM+8GnmVingHtZ805n1T4RddJvT/vaqplfI6zf7jmf
a69lALP420riFOQcwntNUM5tVmFUZsnFp2YRd4Ls7MiXVjtABahlSbb94l5WSVc0
jrOLDf94edvzk4R8i2Ob8CfVZNqEsTR6bHz8dT7Q+xQzEdjUujyyZY1UUl157Qeb
OsHjhCtuZYCI04X9hZ37nKnZXSxRlRDCnt5BEiyFu2WD1RscUe6PcVDCwXwEGAEK
ACYCGwwWIQT+uSCfLy8/RmSEHlWsEHs4ZpLa3QUCaNdlPQUJE0MYuAAKCRCsEHs4
ZpLa3XCpD/42DrcveE+q2ulrAIYPDlUlHiwIMejqBDRm6zmr1KSAeb4E6/MFcP4s
rXSSscMlrqG6NVynjNCXjD2YzWii68EwoXLJkgoD3r2ifzkV62EX2MIEeNZAVwuy
KNxorzmy6bhuWltRYNK/hITs2AG5orOk9ADEJ8PixKymrWlhesPaWX6Yhp9/tWaC

現在のキー 280

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

RHOSRiLbRVaJ+7sqT88urLmkV9Hqx949Zxv4+cgBVUGL6WXKsfWhHjbDMNJnozWB
SZaIJznLApOM8z+1DNrqUYyfR8SkF4IOVmg6HDzoyuseJJ8JvMAlkvT6F9VBq/iE
yeDYdEEQxwHwozKrEx5Ybxl5mntbqwCXy6kHSx2+/3RZWpZQ8K29YP9QEk0KeGF8
9Vap3jjNrX4u3cuRNQpeblQc4uFn3Nzaj+cVV4YzcRw94NifecXpujSvk8XU2ytJ
/JgMBxPIBKglN4eEMet9b4FRB5XeBdPAm19/LXyb4IlIipGNXlgNz/HCuBzidzHT
QQdqfA9rZVx1hwFr7AJCVqWaXVsx1oEAhKqpTtsLMyj594DvnRuwKw5Vse+1eydW
MIHYdbxmJccsTGIt/hsOpc8zfm+QYk5752jshhOKEBy+Ey3QZI1WbO547NOb2Hwr
Pgt7fw2NCKMPElSu98zmneFPhqNHf7L5urBe5gADj81E8lm6t/oVxcLBfAQYAQoA
JgIbDBYhBP65IJ8vLz9GZIQeVawQezhmktrdBQJnABcLBQkRa8qFAAoJEKwQezhm
ktrde3MP/13CLWp99XvRROrzD/bWOfWjAenT2PE/tYdOY9YcTQFbnIUhaVUDWAo3
pibR3D4u9LlY4olpGfJ7BTIHFa9myfpaVvmrNjueYI4omli24JQ/CKqNdY8Qzxz+
/QyiNK7Aw5cEBWIu84WGB1SsefWWT3rZe9YBb77gNcWHZ15pXTXrcgUxGY4808MC
I9YFWq8EA0iHawtFnmB3UFfClWt37Hy3PKvr1is3uG60+ULI8RQz3/+ZwSG8U+xt
b+I7H9+gITc1eFCb+tIwp5xWflyxcFXYk6UzOL7y3Fg2tIEuSNtIHUC9NDVobf6c
I0KAzZcMvKiPQiuBnVOjgDLmCZM5H6axj9x+gi4oVh6ea3HLqMzyjm5JkeCGgKWv
H0gD3yGEZDvcbavkQOle5T+4JefndKzCPrluX0iyx+oQiiOL8WieSSkSB6BsZcUN
SeuGJwM79Y7Oqld/YVrQNBZj5Vz+m3nZ+0EWDDMI0hRgMpSEIc+dnTC0u103Z+Rc
c2IJq8INmU653sUcfCZE12ParW4rF7ib6kViYrABT8f4e2TP0aOyP5kp51ied9qL
azaBA6tt/C9X1V2EJZK4srXtmcZO2Im45RAiVXyfpBAmmiF3eZWCbKe7qBC4rDRh
LZG4RQW/S86Da0BID7gQz9IFSkaG504MsDhvnA7iAqaHUHUepCsiwsF8BBgBCgAm
AhsMFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmUkSiQFCQ+P/Z8ACgkQrBB7OGaS
2t3AwA/9GkXKUgvjKGCxwE4SdDt7c2jw6to2TTP9iFJ3Xbk3+5BURT3gkZCuu9D7
gt+97aVo/B4EM7Xz8DQKyY7Ic9VAwDRra/Hwi1V0hw1zyIWQ/gAnX3baU6qLRWHR
vVR5meV8r35C+rg9DaWFYmvS7PIv9LfxESwBPUjbmx8k4/5EJpHUwf12bzkTnot5
7q5lHxKQa6IvqQak+Hp9ZM2KPdsgKO2HWJJIIvYcI5byW9zBKV0O7YR8gtRAJKp9
IbtsXx0WT6cqHOFVc5SSzdcaMt0gLFl7BTnJyvKK2l9GABGBmzYDjeCyF2J+Ippf
oqxqfTe6EoOsuEMc2PbLTs9SsWjyCC2VGlX8+uUH9SoKwL0VQ6LFsP6fhkVKqi/a
rB6UuPR/iZnrKIuxMNQ4U+t2Q6UdMlmXsAXTNdkwzoK9oJRokIrH0ZV1KtH4sjjA
tCic+tOddq+GQLiKe2WpJfxlA0uESCB0TxjAwQmfn1H+dUhPeLlbNimHlH0/hXPd
ifuNGozzADIRseQDyzjl8xGL1qRZLD3cfmda6RyZ+S3dQRuaRrcFCDccpY/pO+F8
jbx64zyqqNs+KV+SkQGOcKFhWTZGCfQ/zMDtDmQKjb3eTAkv1zdEOMw9zEjjmS0q
8FNl+2wO3VnvXwvBbtDdVCIaIq+jVcsy5XtnnV+bJ19Q9yue/XvCwWUEGAEKAA8C
GwwFAmEyoZoFCQueVRUACgkQrBB7OGaS2t1uHBAAhOYVvrtchRmzCvdNER1DtkIs
bgQPJ9OxbyfvmvoD06qxH7PrycLZKbt7yYpAUU/CMc86GwaEe0I5Nm1CTs6NvDIv
g3e7EPIS859tyQflbM56NlwbsopCuoCJYknuroIf/M6dW6vJKNXLMmnL/AtalUBw
X+5pblmGUUJep49oTOxQEnvnuqyvaGjXgFXix5PVFJD2ed5NnQeFpvfCpc/ioNOj
z7ORO82j1ht5nWqPraXX5AYhQFM/kwR1cK4LV7gVDd/q+dfGYHzpxQ/HtyX/Lasi
N6I52QqA95SM1ZZLPFLaNh6EvnB7uC9pLCYS8nvilX7/cez5PFff1e1gXCOT0jv3
mJ2exLmXV0BbfKgjccFCxhrdRLtukfiDfJkySy1zdscnpfng8wJ3xKRv43cUTz7M
Z24OYNMqK26aJZVXEQUYjCwsBylY/F5wjYAwgwZ8yF5RFix28P/K8JsIHb3QrAJK
sNWQAb03ZWis3N3spR5M9Mw3VuDZ3WUXq7mxB5M3kpVoZ3vETU5cwTbADYNPf4Sw
BDK2uIVtxabezxSBtz0FcyYoF+OW8q7r4WvoyC9/+3GfnozZLJcEIVDk4W2pMW4A
UhG/6drKTm3HkSDWIDu7d1sHWMffLEYfUHtN5DKkDkGoPfHvZvu9teR5yLfUrPTf
ktihPn/JMrmwa9pwi8LCwWUEGAEKAA8CGwwFAmCavPcFCQsGcHIACgkQrBB7OGaS

現在のキー 281

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

2t0uaA//UWRaRiHEAKeRqBG/T2ak+XZJNu7QHfNgoUEAub9Zru8oPPXx2AJLcHEN
KWmeFlLxADdWOZs4Bm9oOew3VQnR/dBqjnXfob9Rc+eYUjA3rXazM/QrqcU8Syi3
MjNGUmjdL5aQF+IppAMgOBLG1TEnM7C5/PvrGJuYpGEnkKEwMK/GYhqg2V60pHEV
Pvs66mefJpCzbZSy56qtknSt6yBNWc14XgDX6VTn2kW4CV/3vVJUuvjvYs9SPyY8
mKEXa6QvUd3PcXv6RiWk4lGYuT1+jh2VkcFQ+JnUwv9TbKFB9b5jq1bvW9+LMDEl
YXux7pBP5RPk+OLpyiExIRFWhi3x7aMWOzQ+I9yuNTeYkTHiEAQRUhs/1Fh4oLgI
v9QZgC0mRSN3zm8plQdivs1ZlAosAqqkA9BQwqsgosQe7P92irYIJqay0si9wGCD
wSMsmeXdIF6wW3/UMJZl66aarPeiZApGX0QdTZwjMh/QK/8gTKyeZulKmNkNfwWq
O17OirWqLKssVHtg3VUM8EIdh+oNqDDXSeWtYUmpPpWp+yWZ0x1MFFZhUQHQZTGu
TIj4A92LQzbrfj/jXRvWm2SrJMivUoiDUn+qxKIpVwFlI5gVb+uyTFhw89PCkphr
JwRi052RLoU9yd6Ek46UH4XfZZWrZuzY+zzB7oqGONphLgi/h3DCwWUEGAEKAA8C
GwwFAl771b8FCQlniTUACgkQrBB7OGaS2t2/MxAAjoEGPdzavhsOlXdPCRd1D5QJ
r8T/NSEV2z1cp8ZvdrkjNF09TBP4qsBnKJiuvY1Iw7OGX9W2okvXxgJizE45v9MH
WEMz4hmIjmAfRwcqENgpOc1IY/T0/+kkCW8dB6d30J1kT0n2PCRzN9L5vPqZXGTG
mLvd9MOjH1256w4uxLb+e1HMDTCqEN1ppq9G+EAR/29q8JZWs1marbZZWxSWcg/E
1YYbNafzklgjq4CLh/j8AEWSvLr39zRy9uvQ/yqAKZ4K4aZfh/SPupGDvsD6ZK54
EPHxErQ7aiXTbUHtvwhxWLOP6WmxFA3Shr6L6YUb6jq+0PVliFC517g3mxFHJtwt
yXGNIKhmzmr0l9OlsHafulJ/9QPfK3Ce32SkPhW/11MYA8HzduMv5Arp7cBczXSP
EUTmNIVKv3gTjSQrzRhwhHmMuqyDZ/rXQQ1jl2sxIDjO4MUMvVjYKF+OCNm42gVs
8ca3/wN9ZNU6hyFWeKQDuCAqPPbT5GO/DKseFEwB+07wwyH1RXbyl0v4fneg605X
S7lqhNtw2p1hDL0HYHDiV+aPZ+LoOmX6+dmnqE6bQJaIlVb922KWmliO7F3DkqP7
0jFlhoE1gfiXWkxP4Gy8wOobNfEMgvz02djkGQy+oQqeNdIcZFZgzPTGKB/nVgpt
9CcRDWjPltFCd2e1FBbCwWUEGAEKAA8FAld1gAUCGwwFCQeGH4AACgkQrBB7OGaS
2t1PIQ//Qc5VYfBCxpaMysaPQ44wXPEZSjxIGZhhMGzb1UzzAEYOw+RgKN5nNTXq
L2KoOkOrGnKqZOKByMdXwIPH/rGwwEsbbIpopnibf5ic5B/+xCTIK+qLIwX2ZLuk
NhbL6Y+E+7DxMMh+KqBWHONKkgwVY+rFWOfoops839ABKvc9/Ry4/qqkcb40AzpD
l1iQJ5vK/DMuaDWxWeKXqJLIl3WMGPcPfheuBZL1u7LEEHYKMgzvpbF81WIn3MBo
8jvxf2/o+kMafSSDqgvOu6yu8GOhmScpCbRJn7jV/HrG+tM+zy48TN6/MkGWSR7q
TD34pqBjyatVfVl6dGD6xj/i/Emt5hZB6qXruCDH7AWMoNx+FkDubs4sc4PKysZU
Itya6KdQFo2UeYsNwZhdn6QwKhd85um4JUHJCY0mARvjsQgWXH/5MR40cow77bbE
vVq0XNd+QRVlyT42CEtnIUOFLeDVuZrum5Tuvvna6ImMDoi/z6QcNeL79XsY2m6I
QVRiHr1BDb/8JLkfnWiwL8GRv169Kf8unx0y5u1YBpcMYkyDD2+pnnk3TY0rR+8X
8goecaS8fbyu/Q48K85ZMD8wKW/bzLQ+tK9y8xed24u2QERftMhIw9b6f45Nrrf/
PhgV8RnuwUusSbdDe8kw3eYTmLdzD4kZc9K7SdO2CqT+hm//9JI=
=uGHC
-----END PGP PUBLIC KEY BLOCK-----

現在のキー 282

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

以前のキー

Important

新しいキーは、前のキーの有効期限が切れる前に作成されます。そのため、いつでも複数の
キーが有効になります。キーは、アーティファクトが作成された日から署名に使用されるた
め、キーの有効性が重複するときは最近発行されたキーを使用してください。

有効期限: 2025 年 10 月 4 日

キー ID 0xAC107B386692DADD

タイプ RSA

サイズ 4096/4096

作成 2016-06-30

有効期限日 2025-10-04

ユーザー ID AWS SDK とツール <aws-dr-tools@amaz
on.com>

キーフィンガープリント FEB9 209F 2F2F 3F46 6484 1E55 AC10 7B38
6692 DADD

次の SDK for Java 用の OpenPGP 公開鍵をクリップボードにコピーするには、右上隅にある [コ
ピー] アイコンを選択します。

-----BEGIN PGP PUBLIC KEY BLOCK-----
Comment: Hostname:
Version: Hockeypuck 2.2

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej
kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV

以前のキー 283

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie
nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu
CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zSxBV1MgU0RLcyBhbmQgVG9vbHMgPGF3cy1kci10b29sc0BhbWF6b24uY29tPsLB
lAQTAQoAPgIbAwULCQgHAwUVCgkICwUWAgMBAAIeAQIXgBYhBP65IJ8vLz9GZIQe
VawQezhmktrdBQJnABcIBQkRa8qDAAoJEKwQezhmktrdl1MQAIwEuDar3OTxkfTa
cPNKDnNzxaWqrxZ3FTQ+PyrHhQ6usxxrvDKJS+uCjE9bmWHVFU1R4yQNF+72lJdw
5UhX0u+ZgT9afApE65uAZuwLhPsz8upXT8C6VeKXh3shdw7qXi2hrwtM1a0Pls4O
Cs2C9rLUDMJTySrVDDVwpnaAB+8DcFrs9bIt5Q3gdOUatdzDvcb7QKh9jUvzCpbE
cInb1epDN5MRzowMR4iU2VV1RzLxCvm7CQSyXfgf0DFLkXWiknhOq9eINmytJFG/
ntFdiZFkNZ5hP709loywdfNrmqB6PsF8BPGFh8gKw1pjowrfHpv6cNIqShmA76LT
3OHViOlqGFB7obffq//eZGPR0oYJFDrOdD2CFRoHnP3N++AfkA4SRN7eXwyoz6Pk
Do9WNIEEkAcp6PGvv7AokogDo/4OqmxgC6fN+3BTOstWpv4FlD4NxOZWsTs49wxg
kPlCCVf8t75aZZkcjXng1eClZZQ5SBlRtSB7gMqtP7MIn2J5w8spNbs5xQvJc76u
NvzwEasPkY+UcHd05RddOUwoKqDerLUG7YqdlNCJoQR1mBIgZButbQlMyaZcmQqO
iR0kwDi9h6Dl6fnUb2dFCNJw+eDHvsjG8HI3IVZMl0bUQ2kmmwr1O2YQ1ynJQm0l
lMllI4hFU8/lHNHm8ie5darpVXQEwsGUBBMBCgA+AhsDBQsJCAcDBRUKCQgLBRYC
AwEAAh4BAheAFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmUkSiIFCQ+P/Z0ACgkQ
rBB7OGaS2t3HVg//S+/KbeOBf+nCdHsrWtp9kxvWIpAGvQhIbxx1tp/impfm+5Rm
fKPD0KX+g42fuMmOdDE4gjO4GjGd7ZY3bx+0zbDSdVebzmYCbPZ/BDP990oPKidd
w6Gl8PaIyqfuARKOESBETvAwNgwO4t2ocjs4pYZV+CuHvESYpqkuHjmHtye6ajZW
Mv24NhjVo4EfP33dPugTjXLjeuGT7qQpsYV3a66juHmPVkXwuPqxh9wTNc5TU6FG
UPSfIGMPL0xha7Rg2i5zvRaAxx4bHqGO8IAz/l/E/tJkV5xnt494HQam9UDbiFI0
Q0TSve1R6S45/UjQW6cycyduHtk72s9ipa9YM0ilTdLgKMWFjzYv4h4qeYvLw3oB
JGQew+I0I4dIrwL/TKet33EuFfwmyT9MaJBhqV6geFaQ0uVmwvzpAcvxIoSqSpkJ
B/kASqCEM/o0QZLuWc56cDsmMisD0ouVPt+c1Zk7AWLlf6j8LKYTbK0QxLRh/eeZ
jhSf3HnpaCfonbOoHmeo5d/o3EZ0AiA4GbT3xgScoIgXOT7KGgOWmtWkdyd3Zvl/
o6q6Hwpg4RsqCkwnfNm5ZIvmTAYXWc2hiICSicxrP0fek5Cc4xVgJR5RMNGyI7+m
ut1SE2WvLhMCwEyl5ecWF0tUze8VBlWkHJp0Y4k2ado39Zq/DZrTRQYEVrjCwX0E
EwEKACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAmEyoZoFCQueVRUACgkQ
rBB7OGaS2t3axA//dgcz5T4Fs7LWdIQB/KRnvX64IzaGQcwt3FBhYH+sFaSaD+lu
752vi3jlGxMBKs2NFxk6e2U8xBEir3vfKYd+mZ5L6egXC9MYfvMO/UFEFH3A+t3V
dTOJK4RQcaL9+rFRVdDmZuifN9OFfy25d66JCZ5OiqgHTQViVmbrGw2cQdyNWXrq
YLgg+gktadkmzis4J6hF/le8NOBfrG3n+QthFl/v2ppYYW9pmmxzUIf6tAlR1Vr8
PhPukjuFfrPLRL3XPiK4LkdlSI5MX7Llq4RkcZN1NY1LWS8699wJOLRcr8aQYvzZ
Jm7tfZUaekJ5ScXJWJEaWT4poMbWxXINj6VwE+DqKWvjkzoxBXSIdLk4XThA1dIq
3n5SfMkfuWV2A2xHqJtEzI1XeTm/d/JRxIG8hjIs5FNMGJUSNANJuTVA2putCVf0
JbP4QlafXoEVOYwW/EFJY+brjQadwc/knf/QxszDcKb3THuTxR80A0h6ZysmtLEg
PCaD1xUCDdr4P7DGOtV7yMaDR6O8QKmb7TKzCKCPnHouqPT0DhSB2MRq437+mfSe
EGga/sPMxe0z8ugO2CnrCf3eplU3ZOy4eeQSThTKe0Hp5YlsF1cdZSvjt7GJaHR2
9A22nAJY9PojtlM+0Dkr/PH6r2brv3sEuACRNhzqCWhAve+zVnVLeb+Fk1rCwX0E

以前のキー 284

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

EwEKACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAmCavPYFCQsGcHEACgkQ
rBB7OGaS2t3fqg//asHYSTBI4IoLibSF5ZJ8NaLo4EqgRtsO0W1zr8fCoFbxI+yI
qWrNXR7eoFj8tWO7Tj6S0kQr4QZcucLeILfox6CtDzO3f3WQTH9m/0si5U4Jf3RA
gBd0vwxVSSSNEsIUUfylOBHLVwlhaTVfh1h1dZhzb18LA1Vqu0100GGxvaG3dUl4
oMSRSK8EeaSO4hIM8ScjVyhjsuPRm1jlwd1EXZ5mkHRGRMGmwi3XysJjIeQRFmuG
a9uPes7I/K85r7X91BLz+G/mkSZsrHxzLxF0mSZtQdhq08GyMeQlJavs7sb1UVbg
ag30JEAjgqRsNIQOMIvl2/amrRJ7DUyQu5YkZQsAyCIhSVZw6zlJlkYVKSw1Cu1I
VX1n/Aahx5wwaQZA1dDTolX8WvL9O/KmEGWbKUSov40uoRwSOeXP3QhW75kD4zT0
n3pSUc7tXka8GAz5Ar+r90l4wc9as2WjWADo3CX8cF0zQOrN1naMQ++xBIAG9ms8
y3L4ECoRqvjCpjUAfhflxwSM7uclCgFBINFKSLV+QGxzWfHjg3+bSQd0hrRn9j4z
Di9aJmFESQ6iykbUjiUFrcI1NUCFKz2awaxh+Sq8UkYcvuxljxdK/zYYEG8DSdQ2
uwlssHCjYVpAb16hq1EAaSqnhv86020G4Z6JCg3AUZt9RlMBpK2Pn/NmPSzCwX0E
EwEKACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAl771vAFCQlnimUACgkQ
rBB7OGaS2t35Jw/9GhpQquJVUCAsc4az7+ad8q2d9OUKXOLl2x0j3/ofS8umZJYr
8KXZxPqBqvLjlUyAB5Ur4fWVBdp9iP4Vj74jmRih7YatK8heGmNoUAnI1/90qV5O
ypFObfvWLxvcUNizmS/LYKdNuYcHwyw4bFyTz9gd3XH6Dxak7YiAXz3JgJIXcIB3
ELfpsduzpncLeVwz/dKhYX5iJ7Y/xd4Ew8Ian8FyNDNRwcXobTpPAMNiGLG5xSLq
8RgQfkm07BVVDtu5tPw4V46gnBXGXNjPhSirGMoNbKZqtPO7TcBQhPQ9c95x73hs
kAqZKHrwi1B7cfy1I8y5sRFbPa0RXeVWQKEMZdwLsFhCbEex6iXHP+rMK0nSJf0G
9lF2eJk140n8K7wzakOnjvN00VfN/9D+xD2lCXCzbYbaDXX2tYOd4GS72fW9M/zT
96tIH5UtMGMOICuUJjnL34EbzBuxwTEnJKhDGQH2P+eUzM9jmuCTRLLGw2P0Zuof
6GsSNLf+5pw3BIvEZw5PYT1N6i3ml9MQ7p9BWr7flCF8CU/xzyPN7TVb/677Be7V
SL1rNFLNi0IdqcbLJ63pTWaUGkCSqRnMfq3cIDlzNz2LoVvOO8VVmdtFRkhHN8hJ
h7CUXlaqBOfaJhV3FqA9G8sXmSN3r3pusZb13kfCKsJUZorThWxdaUBuUH3CwX0E
EwEKACcFAld1gAUCGwMFCQeGH4AFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AACgkQ
rBB7OGaS2t1aKA//dBaXto7zUFRbJvLgcSE3hJ0ChYZj8Uuo7iYK26mVycyBFQJK
Iv2XYFIJMwK1Rx1Ja1jA6BIKE3aYyx2LVTYU1Hke826dhH+kV2qN9C6t/VmYpV4b
n/i64po7EzD17ykrm5gB+z47uCvyC79/r8Ouns1mTf/JUql/hYJj2hf1MDWr07/X
Wc1zBLjlT93tg/43Vgz1wFdrUOcNx1+bQGXKTOi4AXSp3UvCL+2YsQ2/JsPf7ZzZ
awSuUVkZJrllp87S1MhZeHmTrCHkV1FHJyudLJErcH0337Jpd8xDRek7Klrx2pAS
cKIiyeAMIk/G1OuExYqEEVFQzMr9ZlMNuhNBJAMr5hVGsTgrwy2hlIrBktXav07d
OleSlsqw9ViZ7F6t90x5l+NkwXVsLsGYSzuNyIfomNuoCgA+cfM3TjzVp41qsg1J
WJc9Bavaan2pKF6Lb9Fq8u3HZk2u+YZbvZkqkXwTdZZQOkEmoVV4Y1G86bdpmPyj
8eV7C02NxPii4l+qV8qJQu/6DsA0QwMtBMUNODm3BF2+ZmUHuhMGxq9/4vDE8heE
ffYhHtNftV6JwwzGZmeZkrYA1P9AGLeVp/6iNUe8H5/oPvh4s2rRmqN+L/dQU1ix
iOAT5iAKoRQGkduXrWc4fAY5KxDB9qna4oqXO6QP8rEflI8ELcNgYEj4oJvOwU0E
V3WABQEQALzM0Cs9Zvd08xOEvbEBj59LrS9d0HVKQ61gmkNakWC+jR35VD6FXpe6
UYAcBLrEbVYfKw9P0p6MhFKAsb570JoznKGzE1rVYUZQzhD0RKje35rvkajvEcjG
AWMLTjr87pWHeD0389ER64bzORncfa/l+YP56PI+CThb2wUvTTONGJkPQUpVhH+P
256cQL/Y0Fwu4XLerpwN+YKgMQ47raRcydobPeSfMQr9fVKRyOzFEOrvNpCVDUqi
77d0gLDLjHlIlDyOX5554S8XYLb91eYOiFvnu2pTCKiiExRCSYK29mAQePKlTCCn
QxOjbmBbGS8mVIkpQ5vpvXvzpY3JIjMXaDGqWSQSYGXhECyxCR5eOtKYbCwwPIc2
rIl5gW6yXyw9pKmj5XafTP7YHTvRSr7CZ/VLkDkWl6AfQ9nPOg1mjwjpDFpmN71h
JlSKMaZkh0QGV5FW3dK+GLwxiWdqx3htbZErWyvumWQF/xBF7puKJBEXcoM5KfkJ

以前のキー 285

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

uZekBwcnVkfNFF2RdkM1ALq8InGzLXc7ROuEm0BXVirfju7JRtWLb3UhJWCuhRW2
muyYegSTkag5MduD1IJK37GL8WIlAL65taYgZegUoxHdSaEOefOhspxuduz8d33z
UV1WCFhi+r/+BMCQmTRbF8ao7fTC1dGd084DRP6qE/dMT4u0ZEn7ABEBAAHCwXwE
GAEKACYCGwwWIQT+uSCfLy8/RmSEHlWsEHs4ZpLa3QUCZwAXCwUJEWvKhQAKCRCs
EHs4ZpLa3XtzD/9dwi1qffV70UTq8w/21jn1owHp09jxP7WHTmPWHE0BW5yFIWlV
A1gKN6Ym0dw+LvS5WOKJaRnyewUyBxWvZsn6Wlb5qzY7nmCOKJpYtuCUPwiqjXWP
EM8c/v0MojSuwMOXBAViLvOFhgdUrHn1lk962XvWAW++4DXFh2deaV0163IFMRmO
PNPDAiPWBVqvBANIh2sLRZ5gd1BXwpVrd+x8tzyr69YrN7hutPlCyPEUM9//mcEh
vFPsbW/iOx/foCE3NXhQm/rSMKecVn5csXBV2JOlMzi+8txYNrSBLkjbSB1AvTQ1
aG3+nCNCgM2XDLyoj0IrgZ1To4Ay5gmTOR+msY/cfoIuKFYenmtxy6jM8o5uSZHg
hoClrx9IA98hhGQ73G2r5EDpXuU/uCXn53Sswj65bl9IssfqEIoji/FonkkpEgeg
bGXFDUnrhicDO/WOzqpXf2Fa0DQWY+Vc/pt52ftBFgwzCNIUYDKUhCHPnZ0wtLtd
N2fkXHNiCavCDZlOud7FHHwmRNdj2q1uKxe4m+pFYmKwAU/H+Htkz9Gjsj+ZKedY
nnfai2s2gQOrbfwvV9VdhCWSuLK17ZnGTtiJuOUQIlV8n6QQJpohd3mVgmynu6gQ
uKw0YS2RuEUFv0vOg2tASA+4EM/SBUpGhudODLA4b5wO4gKmh1B1HqQrIsLBfAQY
AQoAJgIbDBYhBP65IJ8vLz9GZIQeVawQezhmktrdBQJlJEokBQkPj/2fAAoJEKwQ
ezhmktrdwMAP/RpFylIL4yhgscBOEnQ7e3No8OraNk0z/YhSd125N/uQVEU94JGQ
rrvQ+4Lfve2laPweBDO18/A0CsmOyHPVQMA0a2vx8ItVdIcNc8iFkP4AJ1922lOq
i0Vh0b1UeZnlfK9+Qvq4PQ2lhWJr0uzyL/S38REsAT1I25sfJOP+RCaR1MH9dm85
E56Lee6uZR8SkGuiL6kGpPh6fWTNij3bICjth1iSSCL2HCOW8lvcwSldDu2EfILU
QCSqfSG7bF8dFk+nKhzhVXOUks3XGjLdICxZewU5ycryitpfRgARgZs2A43gshdi
fiKaX6Ksan03uhKDrLhDHNj2y07PUrFo8ggtlRpV/PrlB/UqCsC9FUOixbD+n4ZF
Sqov2qwelLj0f4mZ6yiLsTDUOFPrdkOlHTJZl7AF0zXZMM6CvaCUaJCKx9GVdSrR
+LI4wLQonPrTnXavhkC4intlqSX8ZQNLhEggdE8YwMEJn59R/nVIT3i5WzYph5R9
P4Vz3Yn7jRqM8wAyEbHkA8s45fMRi9akWSw93H5nWukcmfkt3UEbmka3BQg3HKWP
6TvhfI28euM8qqjbPilfkpEBjnChYVk2Rgn0P8zA7Q5kCo293kwJL9c3RDjMPcxI
45ktKvBTZftsDt1Z718LwW7Q3VQiGiKvo1XLMuV7Z51fmydfUPcrnv17wsFlBBgB
CgAPAhsMBQJhMqGaBQkLnlUVAAoJEKwQezhmktrdbhwQAITmFb67XIUZswr3TREd
Q7ZCLG4EDyfTsW8n75r6A9OqsR+z68nC2Sm7e8mKQFFPwjHPOhsGhHtCOTZtQk7O
jbwyL4N3uxDyEvOfbckH5WzOejZcG7KKQrqAiWJJ7q6CH/zOnVurySjVyzJpy/wL
WpVAcF/uaW5ZhlFCXqePaEzsUBJ757qsr2ho14BV4seT1RSQ9nneTZ0Hhab3wqXP
4qDTo8+zkTvNo9YbeZ1qj62l1+QGIUBTP5MEdXCuC1e4FQ3f6vnXxmB86cUPx7cl
/y2rIjeiOdkKgPeUjNWWSzxS2jYehL5we7gvaSwmEvJ74pV+/3Hs+TxX39XtYFwj
k9I795idnsS5l1dAW3yoI3HBQsYa3US7bpH4g3yZMkstc3bHJ6X54PMCd8Skb+N3
FE8+zGduDmDTKitumiWVVxEFGIwsLAcpWPxecI2AMIMGfMheURYsdvD/yvCbCB29
0KwCSrDVkAG9N2VorNzd7KUeTPTMN1bg2d1lF6u5sQeTN5KVaGd7xE1OXME2wA2D
T3+EsAQytriFbcWm3s8Ugbc9BXMmKBfjlvKu6+Fr6Mgvf/txn56M2SyXBCFQ5OFt
qTFuAFIRv+nayk5tx5Eg1iA7u3dbB1jH3yxGH1B7TeQypA5BqD3x72b7vbXkeci3
1Kz035LYoT5/yTK5sGvacIvCwsFlBBgBCgAPAhsMBQJgmrz3BQkLBnByAAoJEKwQ
ezhmktrdLmgP/1FkWkYhxACnkagRv09mpPl2STbu0B3zYKFBALm/Wa7vKDz18dgC
S3BxDSlpnhZS8QA3VjmbOAZvaDnsN1UJ0f3Qao5136G/UXPnmFIwN612szP0K6nF
PEsotzIzRlJo3S+WkBfiKaQDIDgSxtUxJzOwufz76xibmKRhJ5ChMDCvxmIaoNle
tKRxFT77OupnnyaQs22UsueqrZJ0resgTVnNeF4A1+lU59pFuAlf971SVLr472LP
Uj8mPJihF2ukL1Hdz3F7+kYlpOJRmLk9fo4dlZHBUPiZ1ML/U2yhQfW+Y6tW71vf

以前のキー 286

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

izAxJWF7se6QT+UT5Pji6cohMSERVoYt8e2jFjs0PiPcrjU3mJEx4hAEEVIbP9RY
eKC4CL/UGYAtJkUjd85vKZUHYr7NWZQKLAKqpAPQUMKrIKLEHuz/doq2CCamstLI
vcBgg8EjLJnl3SBesFt/1DCWZeummqz3omQKRl9EHU2cIzIf0Cv/IEysnmbpSpjZ
DX8Fqjtezoq1qiyrLFR7YN1VDPBCHYfqDagw10nlrWFJqT6VqfslmdMdTBRWYVEB
0GUxrkyI+APdi0M2634/410b1ptkqyTIr1KIg1J/qsSiKVcBZSOYFW/rskxYcPPT
wpKYaycEYtOdkS6FPcnehJOOlB+F32WVq2bs2Ps8we6KhjjaYS4Iv4dwwsFlBBgB
CgAPAhsMBQJe+9W/BQkJZ4k1AAoJEKwQezhmktrdvzMQAI6BBj3c2r4bDpV3TwkX
dQ+UCa/E/zUhFds9XKfGb3a5IzRdPUwT+KrAZyiYrr2NSMOzhl/VtqJL18YCYsxO
Ob/TB1hDM+IZiI5gH0cHKhDYKTnNSGP09P/pJAlvHQend9CdZE9J9jwkczfS+bz6
mVxkxpi73fTDox9duesOLsS2/ntRzA0wqhDdaaavRvhAEf9vavCWVrNZmq22WVsU
lnIPxNWGGzWn85JYI6uAi4f4/ABFkry69/c0cvbr0P8qgCmeCuGmX4f0j7qRg77A
+mSueBDx8RK0O2ol021B7b8IcVizj+lpsRQN0oa+i+mFG+o6vtD1ZYhQude4N5sR
RybcLclxjSCoZs5q9JfTpbB2n7pSf/UD3ytwnt9kpD4Vv9dTGAPB83bjL+QK6e3A
XM10jxFE5jSFSr94E40kK80YcIR5jLqsg2f610ENY5drMSA4zuDFDL1Y2ChfjgjZ
uNoFbPHGt/8DfWTVOochVnikA7ggKjz20+RjvwyrHhRMAftO8MMh9UV28pdL+H53
oOtOV0u5aoTbcNqdYQy9B2Bw4lfmj2fi6Dpl+vnZp6hOm0CWiJVW/dtilppYjuxd
w5Kj+9IxZYaBNYH4l1pMT+BsvMDqGzXxDIL89NnY5BkMvqEKnjXSHGRWYMz0xigf
51YKbfQnEQ1oz5bRQndntRQWwsFlBBgBCgAPBQJXdYAFAhsMBQkHhh+AAAoJEKwQ
ezhmktrdTyEP/0HOVWHwQsaWjMrGj0OOMFzxGUo8SBmYYTBs29VM8wBGDsPkYCje
ZzU16i9iqDpDqxpyqmTigcjHV8CDx/6xsMBLG2yKaKZ4m3+YnOQf/sQkyCvqiyMF
9mS7pDYWy+mPhPuw8TDIfiqgVhzjSpIMFWPqxVjn6KKbPN/QASr3Pf0cuP6qpHG+
NAM6Q5dYkCebyvwzLmg1sVnil6iSyJd1jBj3D34XrgWS9buyxBB2CjIM76WxfNVi
J9zAaPI78X9v6PpDGn0kg6oLzrusrvBjoZknKQm0SZ+41fx6xvrTPs8uPEzevzJB
lkke6kw9+KagY8mrVX1ZenRg+sY/4vxJreYWQeql67ggx+wFjKDcfhZA7m7OLHOD
ysrGVCLcmuinUBaNlHmLDcGYXZ+kMCoXfObpuCVByQmNJgEb47EIFlx/+TEeNHKM
O+22xL1atFzXfkEVZck+NghLZyFDhS3g1bma7puU7r752uiJjA6Iv8+kHDXi+/V7
GNpuiEFUYh69QQ2//CS5H51osC/Bkb9evSn/Lp8dMubtWAaXDGJMgw9vqZ55N02N
K0fvF/IKHnGkvH28rv0OPCvOWTA/MClv28y0PrSvcvMXnduLtkBEX7TISMPW+n+O
Ta63/z4YFfEZ7sFLrEm3Q3vJMN3mE5i3cw+JGXPSu0nTtgqk/oZv//SS
=bboB
-----END PGP PUBLIC KEY BLOCK-----

有効期限: 2024 年 10 月 8 日

キー ID 0xAC107B386692DADD

タイプ RSA

サイズ 4096/4096

作成 2016-06-30

以前のキー 287

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

有効期限日 2024-10-08

ユーザー ID AWS SDK とツール <aws-dr-tools@amaz
on.com>

キーフィンガープリント FEB9 209F 2F2F 3F46 6484 1E55 AC10 7B38
6692 DADD

次の SDK for Java 用の OpenPGP 公開鍵をクリップボードにコピーするには、右上隅にある [コ
ピー] アイコンを選択します。

-----BEGIN PGP PUBLIC KEY BLOCK-----

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej
kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV
u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie
nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu
CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zsFNBFd1gAUBEAC8zNArPWb3dPMThL2xAY+fS60vXdB1SkOtYJpDWpFgvo0d+VQ+
hV6XulGAHAS6xG1WHysPT9KejIRSgLG+e9CaM5yhsxNa1WFGUM4Q9ESo3t+a75Go
7xHIxgFjC046/O6Vh3g9N/PREeuG8zkZ3H2v5fmD+ejyPgk4W9sFL00zjRiZD0FK
VYR/j9uenEC/2NBcLuFy3q6cDfmCoDEOO62kXMnaGz3knzEK/X1SkcjsxRDq7zaQ
lQ1Kou+3dICwy4x5SJQ8jl+eeeEvF2C2/dXmDohb57tqUwioohMUQkmCtvZgEHjy
pUwgp0MTo25gWxkvJlSJKUOb6b1786WNySIzF2gxqlkkEmBl4RAssQkeXjrSmGws
MDyHNqyJeYFusl8sPaSpo+V2n0z+2B070Uq+wmf1S5A5FpegH0PZzzoNZo8I6Qxa
Zje9YSZUijGmZIdEBleRVt3Svhi8MYlnasd4bW2RK1sr7plkBf8QRe6biiQRF3KD
OSn5CbmXpAcHJ1ZHzRRdkXZDNQC6vCJxsy13O0TrhJtAV1Yq347uyUbVi291ISVg
roUVtprsmHoEk5GoOTHbg9SCSt+xi/FiJQC+ubWmIGXoFKMR3UmhDnnzobKcbnbs
/Hd981FdVghYYvq//gTAkJk0WxfGqO30wtXRndPOA0T+qhP3TE+LtGRJ+wARAQAB
wsFlBBgBCgAPBQJXdYAFAhsMBQkHhh+AAAoJEKwQezhmktrdTyEP/0HOVWHwQsaW
jMrGj0OOMFzxGUo8SBmYYTBs29VM8wBGDsPkYCjeZzU16i9iqDpDqxpyqmTigcjH
V8CDx/6xsMBLG2yKaKZ4m3+YnOQf/sQkyCvqiyMF9mS7pDYWy+mPhPuw8TDIfiqg
VhzjSpIMFWPqxVjn6KKbPN/QASr3Pf0cuP6qpHG+NAM6Q5dYkCebyvwzLmg1sVni
l6iSyJd1jBj3D34XrgWS9buyxBB2CjIM76WxfNViJ9zAaPI78X9v6PpDGn0kg6oL
zrusrvBjoZknKQm0SZ+41fx6xvrTPs8uPEzevzJBlkke6kw9+KagY8mrVX1ZenRg

以前のキー 288

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

+sY/4vxJreYWQeql67ggx+wFjKDcfhZA7m7OLHODysrGVCLcmuinUBaNlHmLDcGY
XZ+kMCoXfObpuCVByQmNJgEb47EIFlx/+TEeNHKMO+22xL1atFzXfkEVZck+NghL
ZyFDhS3g1bma7puU7r752uiJjA6Iv8+kHDXi+/V7GNpuiEFUYh69QQ2//CS5H51o
sC/Bkb9evSn/Lp8dMubtWAaXDGJMgw9vqZ55N02NK0fvF/IKHnGkvH28rv0OPCvO
WTA/MClv28y0PrSvcvMXnduLtkBEX7TISMPW+n+OTa63/z4YFfEZ7sFLrEm3Q3vJ
MN3mE5i3cw+JGXPSu0nTtgqk/oZv//SS
=Z9u3
-----END PGP PUBLIC KEY BLOCK-----

以前のキー 289

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

ドキュメント履歴

このページでは、AWS SDK for Java 開発者ガイドの重要な変更を経時的にリストします。

このガイドは、2025 年 10 月 1 日に公開されました。

2025 年 10 月 1 日

2026 年 9 月 27 日に期限切れになる新しい PGP キーを追加しました。

2024 年 10 月 5 日

現在の OpenPGP キー情報を更新しました。

2024 年 9 月 4 日

DynamoDB のAWS アカウントベースのエンドポイントに関する情報を追加しました。「the
section called “AWS アカウントベースのエンドポイントの使用”」を参照してください。

2024 年 5 月 21 日

java コマンドラインシステムプロパティを使用して networkaddress.cache.ttl セキュリ
ティプロパティを設定する手順を削除しました。「JVM TTL を設定する方法」を参照してくださ
い。

2024-01-12

AWS SDK for Java v1.x のサポート終了を知らせるバナーを追加しました。

2023 年 12 月 6 日

• 現在の OpenPGP 鍵を指定します。

2023 年 3 月 14 日

• IAM ベストプラクティスに沿ってガイドを更新しました。詳細については、「IAM でのセキュ
リティのベストプラクティス」を参照してください。

2022 年 7 月 28 日

• 2022 年 8 月 15 日付けで EC2-Classic が廃止される旨のアラートを追加。

2018 年 3 月 22 日

• DynamoDB の例で Tomcat セッションの管理が削除されました。このツールはサポートされな
くなりました。

290

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

2017 年 11 月 2 日

• Amazon S3 暗号化クライアントの暗号化の例が追加されました。これには、次の新しいトピッ
クが含まれます。Amazon S3 クライアント側の暗号化の使用、AWS KMS マネージドキーを
使用した Amazon S3 クライアント側の暗号化、およびクライアントマスターキーを使用した
Amazon S3 クライアント側の暗号化。

2017 年 4 月 14 日

• AWS SDK for Java を使用した Amazon S3 の例のセクションに、新しいトピックであるバケッ
トとオブジェクト用の Amazon S3 アクセス許可の管理およびウェブサイトとしての Amazon
S3 バケットの設定を含むいくつもの更新がなされました。

2017 年 4 月 4 日

• 新しいトピックであるAWS SDK for Java のメトリクスを有効化では、AWS SDK for Java 用に
アプリケーションおよび SDK パフォーマンスメトリクスを生成する方法を説明しています。

2017 年 4 月 3 日

• 新しい CloudWatch の例が AWS SDK for Java を使用した CloudWatch の例のセクションに追
加されました。CloudWatch からの開始方法、カスタムメトリクスデータの発行、CloudWatch
Alarms の使用、CloudWatch でのアラームアクションの使用、および CloudWatch へのイベン
トの送信です。

2017 年 3 月 27 日

• AWS SDK for Java を使用した Amazon EC2 の例のセクションに、さらに Amazon EC2 の
例を追加しました: Amazon EC2 インスタンスの管理、Amazon EC2 での Elastic IP アド
レスの使用、リージョンとアベイラビリティーゾーンの使用、Amazon EC2 キーペアの使
用、Amazon EC2 のセキュリティグループの使用。

2017 年 3 月 21 日

• 新しい IAM の例のセットが AWS SDK for Java を使用した IAM の例のセクションに追加さ
れました。IAM アクセスキーの管理、IAM ユーザーの管理、IAM アカウントエイリアスの使
用、IAM ポリシーの使用、および IAM サーバー証明書の使用です。

2017 年 3 月 13 日

• Amazon SQS セクションに Amazon SQS メッセージキューのロングポーリングの有効
化、Amazon SQS での可視性タイムアウトの設定、および Amazon SQS でのデッドレター
キューの使用という 3 つの新しいトピックを追加しました。

291

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

2017 年 1 月 26 日

• 新しい Amazon S3 トピックである「Amazon S3 操作での TransferManager の使用」、および
「AWS SDK for Java の使用」セクション内のトピックである「AWS SDK for Java を使用した
新しい AWS 開発のベストプラクティス」を追加しました。

2017 年 1 月 16 日

• 新しい Amazon S3 トピックであるバケットポリシーを使用した Amazon S3 バケットへのアク
セス管理、および 2 つの新しい Amazon SQS トピックである Amazon SQS メッセージキュー
の使用および Amazon SQS メッセージの送信、受信、削除を追加しました。

2016 年 12 月 16 日

• DynamoDB の新しい例に関するトピックである DynamoDB でのテーブルの操作および
DynamoDB での項目の操作を追加しました。

2016 年 9 月 26 日

• アドバンストセクション内のトピックは、SDK を使用するにあたって重要なトピックのた
め、AWS SDK for Java の使用に移動されました。

2016 年 8 月 25 日

• 新しいトピックである「サービスクライアントの作成」が「AWS SDK for Java の使用」に追
加され、クライアントビルダーを使用して AWS のサービス クライアントの作成を簡素化する
方法を説明しました。

「AWS SDK for Java コードの例」セクションは、S3 の新しい例で更新され、完全なコード例
を含む GitHub のリポジトリでバッキングされています。

2016 年 5 月 02 日

• 新しいトピックである非同期プログラミングが AWS SDK for Java の使用セクションに追加さ
れ、Future オブジェクトを返す、または AsyncHandler を取る非同期クライアントメソッ
ドで作業する方法について説明しています。

2016 年 4 月 26 日

• 「SSL 証明書の要件」トピックは、関連性がなくなったため削除されました。SHA-1 署名証明
書のサポートは 2015 年に廃止され、テストスクリプトを保存したサイトが削除されました。

2016 年 3 月 14 日

• Amazon SWF セクションに新しいトピック「Lambda タスク」を追加しました。従来の
Amazon SWF アクティビティを使用する方法の代替として、タスクとして Lambda 関数を呼
び出す Amazon SWF ワークフローを実装する方法が説明されています。

292

https://github.com/awsdocs/aws-doc-sdk-examples

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

2016 年 3 月 4 日

• AWS SDK for Java を使用した Amazon SWF の例のセクションが新しい内容に更新されまし
た。

• Amazon SWF の基礎 - プロジェクトに SWF を含める方法に関する基本情報を提供します。

• シンプルな Amazon SWF アプリケーションの構築 - Amazon SWF を初めて使用する Java
デベロッパー向けにステップバイステップのガイダンスを提供する新しいチュートリアルで
す。

• アクティビティおよびワークフローワーカーの適切なシャットダウン - Java の同時実行クラ
スを使用して、Amazon SWF ワーカークラスを適切にシャットダウンする方法を説明しま
す。

2016 年 2 月 23 日

• AWS SDK for Java デベロッパーガイドのソースが aws-java-developer-guide に移動されまし
た。

2015 年 12 月 28 日

• the section called “DNS 名参照用の JVM TTL を設定する”は、アドバンストから「AWS SDK
for Java の使用」に移動され、わかりやすく改訂されました。

Apache Maven での SDK の使用が更新され、プロジェクトに SDK の部品表 (BOM) を含める
方法に関する情報が反映されました。

2015 年 8 月 4 日

• SSL 証明書の要件は、開始方法のセクションの新規トピックです。AWS の SSL 接続用の
SHA256 署名証明書への移行について、および 2015 年 9 月 30 日以降に AWS へのアクセス
で必要となる、以前の 1.6 と以前の Java 環境を修正してこれらの証明書を使用する方法につ
いて説明しています。

Note

Java 1.7+ はすでに SHA256 署名証明書を使用できます。

2014 年 5 月 14 日

• 概要および開始方法の内容が大幅に改訂され、新しいガイド構造をサポートするようになりま
した。これには開発用の AWS 認証情報とリージョンのセットアップを行う方法についてのガ
イダンスが含まれています。

293

https://github.com/awsdocs/aws-java-developer-guide

AWS SDK for Java 1.x SDK version 1.x のデベロッパーガイド

コードサンプルの説明が「その他のドキュメントとリソース」セクションの独自のトピックに
移動されました。

SDK の改訂履歴の表示方法に関する情報が、「はじめに」に移動されました。

2014 年 5 月 9 日

• AWS SDK for Java ドキュメントの全体的な構造が簡略化され、「ご利用開始にあたって」お
よび「その他のドキュメントとリソース」トピックが更新されました。

新しいトピックが追加されました。

• AWS 認証情報の使用 - AWS SDK for Java とともに使用する認証情報を指定するさまざまな
方法について説明します。

• Amazon EC2 での IAM ロールを使用した AWS リソースへの許可の付与 - EC2 インスタンス
で実行されるアプリケーションに認証情報を安全に指定する方法についての情報を提供しま
す。

2013 年 9 月 9 日

• このドキュメント履歴のトピックに、AWS SDK for Java デベロッパーガイドの変更が記載さ
れるようになりました。リリースノートの履歴とあわせて利用してください。

294

	AWS SDK for Java 1.x
	Table of Contents
	
	デベロッパーガイド - AWS SDK for Java 1.x
	SDK のバージョン 2 をリリースしました
	その他のドキュメントとリソース
	Eclipse IDE サポート
	Android 向けアプリケーションの開発
	SDK の改訂履歴の表示
	旧バージョンの SDK 用の Java リファレンスドキュメントのビルド

	開始方法
	AWS のサービス の使用に必要な基本設定
	概要
	AWS アクセスポータルにサインインします。
	共有設定ファイルを設定します。
	共有 config ファイルをセットアップする
	SDK の一時的な認証情報を設定します。

	Java 開発環境をインストールします。

	AWS SDK for Java 取得方法
	前提条件
	構築ツールを使用して SDK for Java の依存関係を管理する (推奨)
	SDK をダウンロードして解凍する (非推奨)
	SDK の以前のバージョンをソースから構築 (非推奨)

	構築ツールの使用
	Apache Maven で SDK を使用する
	新しい Maven パッケージを作成する
	SDK を Maven 依存関係に設定する
	個別の SDK モジュールの指定
	すべての SDK モジュールのインポート

	プロジェクトを構築する
	Maven を使用して SDK をビルドする

	Gradle とともに SDK を使用する
	Gradle 4.6 以降のプロジェクト設定
	4.6 より前の Gradle バージョンのプロジェクト設定

	開発用の AWS 認証情報と AWS リージョン のセットアップ
	一時的な認証情報の設定
	IMDS 認証情報の更新
	AWS リージョン の設定

	の使用 AWS SDK for Java
	を使用した AWS 開発のベストプラクティス AWS SDK for Java
	S3
	ResetExceptions の回避

	サービスクライアントの作成
	クライアントビルダーの取得
	非同期クライアントの作成
	非同期 DynamoDB クライアントをデフォルトの ExecutorService で作成するには
	非同期クライアントをカスタムエグゼキューターで作成するには

	DefaultClient の使用
	デフォルトサービスクライアントを作成するには

	クライアントのライフサイクル
	クライアントをシャットダウンするには

	に一時的な認証情報を提供する AWS SDK for Java
	デフォルトの認証情報プロバイダチェーンの使用
	一時的な認証情報の設定
	別の認証情報プロファイルの設定
	別の認証情報ファイルの場所を設定する
	認証情報ファイルのデフォルトの場所を上書きするには

	Credentials ファイル形式
	認証情報の読み込み

	認証情報プロバイダーまたはプロバイダーチェーンの指定
	一時的な認証情報を明示的に指定する
	詳細情報

	AWS リージョン 選択
	リージョンでのサービス可用性の確認
	リージョンを選択する
	特定のエンドポイントの選択
	環境に基づくリージョンの自動的な決定
	デフォルトリージョンプロバイダーチェーン

	例外処理
	非チェック例外を使用する理由
	AmazonServiceException (およびサブクラス)
	AmazonClientException

	非同期プログラミング
	Java Future
	非同期コールバック
	ベストプラクティス
	コールバックの実行
	スレッドプールの構成
	非同期アクセス

	AWS SDK for Java 通話のログ記録
	Log4J JAR のダウンロード
	クラスパスの設定
	サービス固有のエラーと警告
	リクエストおよびレスポンスの概要のログ記録
	詳細なワイヤログ記録
	レイテンシーメトリクスのログ記録

	クライアント設定
	プロキシ設定
	HTTP トランスポートの設定
	最大接続数
	タイムアウトとエラー処理
	ローカルアドレス

	TCP ソケットバッファのサイズに関するヒント

	アクセスコントロールポリシー
	Amazon S3 例
	Amazon SQS 例
	Amazon SNS の例

	DNS 名参照用の JVM TTL を設定する
	JVM TTL を設定する方法

	のメトリクスの有効化 AWS SDK for Java
	Java SDK メトリクス生成を有効にする方法
	利用可能なメトリクスのタイプ
	詳細情報

	AWS SDK for Java コードの例
	AWS SDK for Java 2.x
	AWS SDK for Java を使用した CloudWatch の例
	CloudWatch からのメトリクスの取得
	メトリクスの一覧表示
	詳細情報

	カスタムメトリクスデータを発行する
	カスタムメトリクスデータを発行する
	詳細情報

	CloudWatch アラームの使用
	アラームの作成
	アラームの一覧表示
	アラームの削除
	詳細情報

	CloudWatch でのアラームアクションの使用
	アラームアクションの有効化
	アラームアクションの無効化
	詳細情報

	CloudWatch にイベントを送信する
	イベントの追加
	ルールの追加
	ターゲットの追加
	詳細情報

	DynamoDB を使用した例AWS SDK for Java
	AWS アカウントベースのエンドポイントの使用
	DynamoDB でのテーブルの操作
	テーブルを作成する
	シンプルプライマリキーを使用してテーブルを作成する
	複合プライマリキーを使用してテーブルを作成する

	テーブルの一覧表示
	テーブルの説明 (テーブルに関する情報の取得)
	テーブルの変更 (更新)
	テーブルの削除
	詳細

	DynamoDB での項目の操作
	テーブルからの項目の取り出し (取得)
	テーブルへの新しい項目の追加
	テーブルの既存の項目の更新
	DynamoDBMapper クラスの使用
	詳細

	Amazon EC2 を使用した例AWS SDK for Java
	チュートリアル: EC2 インスタンスの開始
	前提条件
	Amazon EC2 セキュリティグループを作成する
	EC2-Classic は廃止されます

	キーペアの作成
	Amazon EC2 インスタンスを実行する

	Amazon EC2 での IAM ロールを使用した AWS リソースへのアクセスの許可
	デフォルトプロバイダチェーンと EC2 インスタンスプロファイル
	ウォークスルー: EC2 インスタンスでの IAM ロールの使用
	IAM ロールを作成します。
	EC2 インスタンスを起動して IAM ロールを指定する
	アプリケーションを作成する
	EC2 インスタンスへのコンパイルしたプログラムの転送
	EC2 インスタンスでサンプルプログラムを実行する

	チュートリアル: Amazon EC2 スポットインスタンス
	概要
	前提条件
	ステップ 1: 認証情報のセットアップ
	ステップ 2: セキュリティグループのセットアップ
	ステップ 3: スポットリクエストを提出する
	ステップ 4: スポットリクエストの状態を特定する
	ステップ 5: スポットリクエストとインスタンスをクリーンアップする
	ステップの集約
	次のステップ

	チュートリアル: Amazon EC2 スポットリクエストの高度な管理
	前提条件
	認証情報のセットアップ
	セキュリティグループのセットアップ
	スポットインスタンスリクエスト作成の詳細なオプション
	永続リクエストと 1 回限りのリクエスト
	リクエストの期間の制限
	Amazon EC2 スポットインスタンスリクエストのグループ化
	中断または終了の後もルートパーティションを永続化する方法
	スポットリクエストとインスタンスにタグを付加する方法
	リクエストのタグ付け
	インスタンスにタグを付ける

	スポットリクエストのキャンセルとインスタンスの削除
	スポットリクエストのキャンセル
	スポットインスタンスの削除

	ステップの集約

	Amazon EC2 インスタンスの管理
	インスタンスを作成する
	インスタンスの起動
	インスタンスの停止
	インスタンスの再起動
	インスタンスの説明
	インスタンスの監視
	インスタンス監視の停止
	詳細情報

	Amazon EC2 の Elastic IP アドレスの使用
	EC2-Classic は廃止されます
	Elastic IP アドレスの割り当て
	Elastic IP アドレスの説明
	Elastic IP アドレスを解放する
	詳細情報

	リージョンとアベイラビリティーゾーンを使用する
	リージョンの詳細を表示する
	アベイラビリティーゾーンの詳細を表示する
	アカウントの説明
	詳細情報

	Amazon EC2 キーペアでの作業
	キーペアを作成する
	キーペアの詳細を表示する
	キーペアを削除する
	詳細情報

	Amazon EC2 でセキュリティグループを操作する
	セキュリティグループを作成する
	セキュリティグループを設定する
	セキュリティグループについて説明する
	セキュリティグループの削除
	詳細情報

	AWS SDK for Java を使用した IAM の例
	IAM アクセスキーの管理
	アクセスキーの作成
	アクセスキーの一覧表示
	アクセスキーの最終使用時刻の取得
	アクセスキーのアクティブ化や非アクティブ化
	アクセスキーの削除
	詳細情報

	IAM ユーザーの管理
	ユーザーの作成
	ユーザーの一覧表示
	ユーザーの更新
	ユーザーの削除
	詳細情報

	IAM アカウントエイリアスの使用
	アカウントエイリアスの作成
	アカウントエイリアスを一覧表示する
	アカウントエイリアスを削除する
	詳細情報

	IAM ポリシーの使用
	ポリシーの作成
	ポリシーの取得
	ロールポリシーのアタッチ
	アタッチ済みロールポリシーの一覧表示
	ロールポリシーのデタッチ
	詳細情報

	IAM サーバー証明書の使用
	サーバー証明書の取得
	サーバー証明書の一覧表示
	サーバー証明書の更新
	サーバー証明書の削除
	詳細情報

	Lambda を使用した例AWS SDK for Java
	Lambda 関数の呼び出し、一覧表示、および削除
	関数を呼び出す
	関数の一覧表示
	関数を削除する

	Amazon Pinpoint を使用した例AWS SDK for Java
	Amazon Pinpoint のアプリの作成および削除
	アプリの作成
	アプリの削除
	詳細情報

	Amazon Pinpoint でのエンドポイントの作成
	エンドポイントの作成
	詳細情報

	Amazon Pinpoint でのセグメントの作成
	セグメントの作成
	詳細情報

	Amazon Pinpoint でのキャンペーンの作成
	キャンペーンの作成
	詳細情報

	Amazon Pinpoint のチャネルの更新
	チャネルの更新
	詳細情報

	Amazon S3 を使用した例AWS SDK for Java
	Amazon S3 バケットの作成、一覧表示、削除
	バケットの作成
	バケットの一覧表示
	バケットの削除
	バケットを削除する前にバージョニングされていないバケットからオブジェクトを削除する
	バケットを削除する前にバージョニングされているバケットからオブジェクトを削除する
	空のバケットを削除する

	Amazon S3 オブジェクトに対する操作の実行
	オブジェクトのアップロード
	オブジェクトのリスト化
	オブジェクトのダウンロード
	オブジェクトのコピー、移動、または名前の変更
	オブジェクトの削除
	複数オブジェクトの一括削除

	バケットおよびオブジェクトの Amazon S3 アクセス許可の管理
	バケットのアクセスコントロールリストの取得
	バケットのアクセスコントロールリストの設定
	オブジェクトのアクセスコントロールリストの取得
	オブジェクトのアクセスコントロールリストの設定
	詳細情報

	バケットポリシーを使用した Amazon S3 バケットへのアクセス管理
	バケットポリシーの設定
	Policy クラスを使用してポリシーを生成または検証する

	バケットポリシーの取得
	バケットポリシーの削除
	詳細

	Amazon S3 操作の TransferManager の使用
	ファイルとディレクトリのアップロード
	1 つのファイルのアップロード
	ファイルのリストのアップロード
	ディレクトリのアップロード

	ファイルまたはディレクトリのダウンロード
	1 つのファイルのダウンロード
	ディレクトリのダウンロード

	オブジェクトのコピー
	転送が完了するまで待つ
	転送の状態および進行状況の取得
	転送の現在の進行状況のポーリング
	ProgressListener による転送の進行状況の取得
	サブ転送の進行状況の取得

	詳細

	ウェブサイトとしての Amazon S3 バケットの設定
	バケットのウェブサイト設定をセットする
	バケットのウェブサイト設定を取得する
	バケットのウェブサイト設定を削除する
	詳細情報

	Amazon S3 クライアント側の暗号化を使用する
	Amazon S3クライアントマスターキーを使用した クライアント側の暗号化
	必須のインポート
	厳格な認証済み暗号化
	認証済み暗号化モード

	AWS KMS マネージドキーを使用した Amazon S3 クライアント側の暗号化
	必須のインポート
	厳格な認証済み暗号化
	認証済み暗号化モード
	AWS KMS クライアントの設定

	Amazon SQS を使用した例AWS SDK for Java
	Amazon SQS メッセージキューの使用
	キューの作成
	キューの一覧表示
	キューの URL の取得
	キューの削除
	詳細

	Amazon SQS メッセージの送信、受信、削除
	メッセージの送信
	一度に複数のメッセージを送信する

	メッセージを受信する
	受信後にメッセージを削除する
	詳細

	Amazon SQS メッセージキューのロングポーリングの有効化
	キューの作成時にロングポーリングを有効化する
	既存のキューでロングポーリングを有効にする
	メッセージ受信時のロングポーリングを有効にする
	詳細

	Amazon SQS で可視性タイムアウトを設定する
	単一のメッセージのメッセージ可視性タイムアウトを設定する
	複数のメッセージのメッセージ可視性タイムアウトを同時に設定する
	詳細

	Amazon SQS でのデッドレターキューの使用
	デッドレターキューの作成
	ソースキューに対するデッドレターキューの指定
	詳細

	Amazon SWF を使用した例AWS SDK for Java
	SWF の基本
	依存関係
	インポート
	SWF クライアントクラスの使用

	シンプルな Amazon SWF アプリケーションの構築
	例について
	前提条件
	デベロッパー環境
	AWS アクセス

	SWF プロジェクトの作成
	プロジェクトのコーディング
	すべてのソースファイルに共通のステップ
	ドメイン、ワークフロー、およびアクティビティタイプの登録
	アクティビティワーカーの実装
	ワークフローワーカーの実装
	ワークフロースターターの実装

	例の作成
	例の実行
	Java クラスパスの設定
	ドメイン、ワークフロー、およびアクティビティタイプの登録
	アクティビティおよびワークフローワーカーの開始
	ワークフロー実行の開始

	この例の完全なソース。
	詳細については

	Lambda タスク
	Lambda 関数を実行するサービス間 IAM ロールの設定
	Lambda 関数の作成
	Lambda で使用するワークフローを登録する
	Lambda タスクのスケジュール
	ディサイダーでの Lambda 関数イベントの処理
	Lambda 関数からの出力の受け取り
	この例の完全なソース。

	アクティビティおよびワークフローワーカーの適切なシャットダウン
	ドメインの登録
	ドメインの一覧表示

	SDK に含まれるコードサンプル
	サンプルの入手方法
	コマンドラインを使用したサンプルのビルドと実行
	前提条件
	サンプルの実行

	Eclipse IDE を使用したサンプルのビルドと実行
	前提条件
	サンプルの実行

	のセキュリティ AWS SDK for Java
	AWS SDK for Java 1.x でのデータ保護
	AWS SDK for Java TLS のサポート
	TLS のバージョンを確認する方法
	最小 TLS バージョンの適用

	Identity and Access Management
	オーディエンス
	アイデンティティを使用した認証
	AWS アカウント ルートユーザー
	フェデレーテッドアイデンティティ
	IAM ユーザーとグループ
	IAM ロール

	ポリシーを使用したアクセスの管理
	アイデンティティベースのポリシー
	リソースベースのポリシー
	アクセスコントロールリスト (ACL)
	その他のポリシータイプ
	複数のポリシータイプ

	IAM AWS のサービス の操作方法
	AWS ID とアクセスのトラブルシューティング
	でアクションを実行する権限がありません AWS
	iam:PassRole を実行する権限がありません
	自分の 以外のユーザーに自分の AWS リソース AWS アカウント へのアクセスを許可したい

	この AWS 製品またはサービスのコンプライアンス検証
	この AWS 製品またはサービスの耐障害性
	この AWS 製品またはサービスのインフラストラクチャセキュリティ
	Amazon S3 暗号化クライアントの移行
	前提条件
	移行の概要
	新しいフォーマットを読み取るために既存のクライアントを更新する
	プロジェクト設定の依存関係を更新する
	Maven を使用した例
	Gradle を使用した例

	暗号化および復号クライアントを V2 に移行する
	V2 暗号化クライアントをコンストラクトする
	暗号化マテリアルプロバイダーを使用する
	V2 暗号化クライアントを設定する

	その他の例
	V1 暗号化クライアントによって作成されたオブジェクトを読み取るようにサービスクライアントを設定する
	オブジェクトのバイト範囲を取得するようにサービスクライアントを設定する

	AWS SDK for Java 用の OpenPGP 鍵
	現在のキー
	以前のキー
	有効期限: 2025 年 10 月 4 日
	有効期限: 2024 年 10 月 8 日

	ドキュメント履歴

