
AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

AWS 規範ガイダンス

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

AWS 規範ガイダンス: AWS クラウド用の従来の Java EE アプリケー
ションのコンテナ化

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon の商標およびトレードドレスは Amazon 以外の製品およびサービスに使用することはでき
ません。また、お客様に誤解を与える可能性がある形式で、または Amazon の信用を損なう形式
で使用することもできません。Amazon が所有していないその他のすべての商標は Amazon との提
携、関連、支援関係の有無にかかわらず、それら該当する所有者の資産です。

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

Table of Contents
序章 ... 1

概要 .. 1
コンテナベースのアプリケーション設計 ... 3

リプラットフォームに関する課題 ... 3
ベストプラクティス ... 3

移行アプローチ ... 5
検出と計画 ... 5
クラスタリングオプション .. 5
ベンダー固有のパッケージ .. 5
ターゲットコンテナプラットフォーム .. 6
自動化テスト .. 6

技術領域 .. 7
1. セッション状態 .. 8
2. [エージェント] ... 9
3. アプリケーションサーバー .. 9
4. ファイルストア .. 10
5. 構築とデプロイのプロセス .. 11
6. データベースアクセス ... 11

その他の考慮事項 ... 12
小さなベースイメージ ... 12
コンテナ対応の JDK バージョン ... 12

リソース .. 13
リファレンス .. 13
ツール .. 13

ドキュメント履歴 ... 14
用語集 ... 15

... 15
A ... 16
B ... 19
C ... 21
D ... 24
E ... 28
F ... 30
G ... 31

iii

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

H ... 33
I .. 34
L ... 36
M .. 37
O ... 41
P ... 44
Q ... 47
R ... 47
S ... 50
T ... 54
U ... 55
V ... 56
W .. 56
Z ... 57

... lix

iv

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

AWS クラウド用の従来の Java EE アプリケーションのコン
テナ化

Mayuki Yamabe、Michal Urbaniak (Amazon Web Services (AWS))

2022 年 4 月 (ドキュメント履歴)

概要

Java Enterprise Edition (EE) はエンタープライズアプリケーションの主要なフレームワークですが、
アプリケーションのビジネスロジックやデータモデルをリファクタリングせずに、Java EE アプリ
ケーションを Amazon Web Services (AWS) Cloud に移行するのは難しい場合があります。このガイ
ドは、アプリケーションのサーバー側のビジネスロジックとデータモデルを維持しながら、Java EE
アプリケーションを AWS クラウドに移行するためのコンテナ化戦略を使用することで、この課題を
克服するのに役立ちます。この戦略は、アプリケーションをマイクロサービスにリファクタリング
し、そのアプリケーションをモダナイズされたコンテナプラットフォームで実行することに基づいて
います。

アプリケーションの「中心」はビジネスロジックとデータモデルであり、これらは長年にわたる
ビジネスルールやビジネス要件と緊密に結びついています。この密結合により、アプリケーション
のリファクタリングはより困難となります。このガイドでは、Amazon Elastic Container Service
(Amazon ECS) や Amazon Elastic Kubernetes Service (Amazon EKS) などの Docker コンテナとコン
テナオーケストレーションのプラットフォームを使用して、アプリケーションの基盤となるテクノロ
ジーをモダナイズしながら、サーバー側のビジネスロジックとデータモデルを可能な限り維持する戦
略をお勧めします。

次の図は、コンテナ化されたアプリケーションに、従来の Java EE アプリケーションをリファクタ
リングするための設計パターンを示しています。

概要 1

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

概要 2

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

コンテナベースのアプリケーション設計

Java EE のリプラットフォームに関する課題

Java EE アプリケーションを AWS クラウドのコンテナ化されたプラットフォームに移行すると、次
の課題に直面する可能性があります。

• ディスポーザビリティ — コンテナを「ステートレス」に保つために、セッション状態を外部デー
タベースに保存しなければならない場合があります。コンテナベースのアプリケーションでは、よ
り高速で小さいアプリケーションのランタイムが必要であり、Java EE アプリケーションサーバー
はコンテナ環境で実行できない場合があります。

• コンテナプラットフォームの互換性 — クラスタリング、アプリケーションのデプロイ、メモリレ
プリケーションなど、アプリケーションのランタイム固有の機能を減らさなければならない場合が
あります。

• ポータビリティ — コンテナベースのアプリケーションはアプリケーションのランタイムを使用し
てデプロイされますが、従来の Java EE アプリケーションはアプリケーションパッケージ (.jar ま
たは.war ファイル) を使用してデプロイされます。

コンテナベースのアプリケーション設計におけるベストプラクティ
ス

AWS クラウド用のコンテナベースの Java EE アプリケーションを設計するときは、次のベストプラ
クティスに従うことをお勧めします。

• コンテナインスタンスを作成後に変更することは避けてください。どうしても変更を加える必要が
ある場合は、新しいコンテナイメージを構築し、その新しいイメージをすべての環境で再利用して
ください。

• 永続的なデータをコンテナ内に保存することは避けてください。

• 1 つの目的に対応するようにコンテナを設計してください。

• 必要な API がすべてコンテナに実装されていることを確認してください。

• CPU 使用率、システムメモリ、永続ストレージを中心にシステム要件が構築されるようにコンテ
ナを設計してください。

リプラットフォームに関する課題 3

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

ベストプラクティスの詳細については、Kubernetes ドキュメントの「Principles of Container-based
Application Design」を参照してください。

ベストプラクティス 4

https://kubernetes.io/blog/2018/03/principles-of-container-app-design/
https://kubernetes.io/blog/2018/03/principles-of-container-app-design/

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

移行アプローチ

このセクションでは、 AWS クラウドで従来の Java EE アプリケーションをコンテナ化するための
アプローチについて説明します。より一般的な移行ガイドラインについては、 AWS 「 規範ガイダ
ンス」ドキュメントの「組織を動員して大規模な移行を加速する」を参照してください。

検出と計画のプロセスを開始する

Java EE アプリケーションの移行には、詳細なアプリケーションの検出が必要です。検出と計画プロ
セスの一環として、Java EE アプリケーションで次の項目を確認することをお勧めします。

• CPU の数

• メモリ要件とディスク要件

• Java EE、Java 開発キット (JDK)、およびアプリケーションサーバーのバージョン (Oracle
WebLogic Server 10 など)

高い可用性とスケーラビリティを実現するクラスタリングオプショ
ンを理解する

より多くの従来の Java EE アプリケーションが、アプリケーションの可用性とスケーラビリティを
向上させるベンダー固有のクラスタリングシステム上で実行されています。コンテナ化されたアプ
ローチでは、Amazon ECS や Amazon EKS などのコンテナオーケストレーションプラットフォーム
によって、クラスタリングが実行されます。コンテナオーケストレーションプラットフォームによっ
て実行されるクラスタリングと、現在のアプリケーションプラットフォームで実行されるクラスタリ
ングの違いを理解しておくことをお勧めします。

ベンダー固有のパッケージにおける互換性を評価する

アプリケーションサーバーのベンダーは、独自の Java EE パッケージを提供することができます。
コンテナ化された環境との互換性を確保するために、お客様のアプリケーションがアプリケーション
サーバーのベンダーが提供する Java EE パッケージを使用しているかどうかを確認してください。

検出と計画 5

https://docs.aws.amazon.com//prescriptive-guidance/latest/strategy-migration/welcome.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

ターゲットコンテナプラットフォームを選択する

ビジネスニーズに基づいて、Java EE に適したコンテナプラットフォームを選択します。一般的に
は、Docker Hub (GlassFish サーバーや WildFly、Open Liberty など) で配布されている、コンテナに
対応したオープンソース (場合によっては軽量) の Java EE プラットフォームが好まれます。本番稼
働レベルのテクニカルサポートとライセンスを提供する、コンテナプラットフォームを検討すること
をお勧めします。

自動化テストに備える

Java EE アプリケーションを新しいアプリケーションサーバーに移行するには、ビジネスロジック以
外のコードまたは設定の変更が必要になります。現在のアプリケーションのテストおよび構築プロセ
スが自動化されていなければ、コードや設定の変更が既存のビジネスロジックを損なわないことを検
証することはできません。プロジェクトの最初のフェーズで、構築とテストのパイプラインを自動
化することをお勧めします。これには、手動のテストプロセスや管理されていないアプリケーショ
ンのビルド設定 (Apache Ant の build.xml など) を Maven (Apache Maven ドキュメント) や Gradle
(Gradle ドキュメント) などのメインストリームビルドツールを使って最新化することが含まれま
す。詳細については、 AWS 「 規範ガイダンス」ドキュメントの「CI/CD パイプラインを使用して
Java アプリケーションを自動的に構築して Amazon EKS にデプロイする」を参照してください。

ターゲットコンテナプラットフォーム 6

https://maven.apache.org/
https://gradle.org/
https://docs.aws.amazon.com//prescriptive-guidance/latest/patterns/automatically-build-and-deploy-a-java-application-to-amazon-eks-using-a-ci-cd-pipeline.html
https://docs.aws.amazon.com//prescriptive-guidance/latest/patterns/automatically-build-and-deploy-a-java-application-to-amazon-eks-using-a-ci-cd-pipeline.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

技術領域

このセクションでは、コンテナ化の主な技術領域の概要を説明します。以下の図は、従来の Java EE
アプリケーションのアーキテクチャを示しています。

以下の図は、コンテナ化された Java EE アプリケーションのアーキテクチャを示しています。

7

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

1. セッション状態

ほとんどの場合、Java EE アプリケーションには、サーブレットや Enterprise Java Beans (EJB) ス
テートフルセッションの Cookie など、ユーザー要求に関連するセッションデータが保存されていま
す。コンテナはステートレスに保つ必要があるため、状態情報は Java 仮想マシン (JVM) メモリに保
存しないことをお勧めします。ディスポーザビリティの原則に関する詳細は、Red Hat ドキュメント
の「Principles of container-based application design」を参照してください。Java EE には、2 種類
のセッションデータがあります。HTTP セッションデータと EJB セッションデータです。HTTP と
EJB のセッションデータは、アプリケーションサーバーで保持することができます。RedHat JBoss
の Infinispan や IBM WebSphere Application Server の Data Replication Service など、複数の従来ア
プリケーションサーバーがメモリレプリケーションをサポートすることで、このセッションデータの
可用性を高めています。

メモリレプリケーションのメカニズムは、特定のサーバーセットが常にクラスター内に存在するか、
少数のサーバーがクラスターに参加、またはクラスターから離脱することを前提としています。これ
はコンテナ環境とは互換性がないため、メモリレプリケーションのメカニズムを削除することをお勧
めします。コンテナ環境では、コンテナイメージの新しいバージョンが構築されるとアプリケーショ
ンサーバーが再デプロイされます。つまり、複製されたメモリデータもすべて消去されます。

1. セッション状態 8

https://www.redhat.com/cms/managed-files/cl-cloud-native-container-design-whitepaper-f8808kc-201710-v3-en.pdf

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

2. [エージェント]

通常、次のような自動化タスクやユーティリティタスクを実行する複数のエージェントプロセス
が、1 台の物理サーバーまたは仮想サーバー上で実行されています。

1. 監視 — 従来の Java EE アプリケーション環境では、通常、監視専用のエージェントが使用され
ます。これらのエージェントは、サーバーの CPU、メモリ、ディスク使用量、JVM 内のメモリ
使用量、ログメッセージなどを監視する役割を担います。ただし、コンテナ環境で監視エージェ
ントを直接実行することはできません。監視エージェントは、Amazon CloudWatch や Amazon
CloudWatch Logs など、コンテナプラットフォームが提供するモニタリングメカニズムに置き換
える必要があります。

2. ジョブ (スケジュールされたタスク) — 従来の Java EE アプリケーション環境では、ジョブ実行
環境はアプリケーションサーバーと同じサーバー上にあることが多く、ユーザー要求とは別に長
時間実行されるバッチプロセスを処理します。例えば、ジョブコントローラによって制御される
バッチプロセスは、データベースにアクセスしてデータを取得し、レポートを作成します。この
ような複数のワークロードはコンテナ環境では共存できないため、ジョブとバッチの実行環境は
コンテナ環境とは別に構築する必要があります。

3. ファイル転送 — ファイル転送エージェントは通常、Java EE アプリケーション環境ではそれほ
ど一般的ではありませんが、外部アプリケーションとの間でファイルを交換する独立したプロセ
スとして、Java アプリケーションと同じオペレーティングシステム上で実行されることがありま
す。例えば、他のアプリケーションが使用するデータは毎日ファイルに転送され、データベース
に反映されます。ファイル転送エージェントは、コンテナ以外で実行することはできませんが、
データベースとファイルにアクセスできる別のサーバー上で実行する必要があります。

3. アプリケーションサーバー

コンテナ化における最も大きな課題は、アプリケーションサーバーの変更です。従来の Java EE 準
拠のアプリケーションサーバーは、静的なコンピューティング環境を前提としているため、コンテナ
環境での実行には適していない場合があります。つまり、物理サーバーまたは仮想サーバーは Java
EE アプリケーションのコンピューティング環境のエンティティとして見なされます。例えば、IBM
の WebSphere Application Server traditional (tWAS) や Oracle WebLogic Server など、独自の Java
EE アプリケーションサーバーには、独自のアプリケーションデプロイメカニズムがあります。

コンテナ環境の場合は状況が異なります。この環境では、コンテナにはアプリケーションのビルド
パッケージ (.war ファイルや.jar ファイルなど) を含むアプリケーションサーバーとランタイムが含
まれており、Amazon ECS や Amazon EKS などのコンテナプラットフォームにデプロイされます。

2. [エージェント] 9

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

アプリケーションを環境にデプロイするには、コンテナプラットフォームメカニズムを使用するこ
とをお勧めします。アプリケーションサーバーはコンテナとともにデプロイされることが多いため、
サイズが小さく (500 MB 未満)、すぐに起動できるものでなければなりません。この要件を満たすに
は、従来のアプリケーションサーバーを変更して、よりコンテナに対応したアプリケーションサー
バーに移行する必要があります。IBM WebSphere Application Server から IBM WebSphere Liberty、
または JBoss Enterprise Application Platform (EAP) から WildFly への移行が必要になる可能性があ
ります。

アプリケーションサーバーの変更には、以下のような影響の可能性があることにご留意ください。

1. 環境変数による構成インジェクション (web.xml のような構成をファイルに保存する従来の Java
EE アプリケーションとは異なります)

2. Java EE 機能との互換性

3. JVM バージョン

4. ファイルストア

従来の Java EE アプリケーションで最も一般的に使用されているファイルストアは、ローカルファ
イルシステムです。最も一般的な使用例は、アプリケーションログファイル、ビジネスレポートなど
のアプリケーション生成ファイル、ユーザーがアップロードしたコンテンツなどがあります。コンテ
ナはステートレスであり、コンテナ化するにはファイルストアを外部化する必要があるため、コンテ
ナ内にファイルを保存しないことをお勧めします。

以下のコンテナ化オプションをご検討ください。

1. Amazon Elastic File System (Amazon EFS) — Amazon EFS は、コンテナからアクセスできるマ
ネージド型 NFS サービスです。Amazon EFS は Amazon ECS および Amazon EKS に統合され
ています。Amazon EFS を使用する場合は、EFS ボリュームをコンテナにマウントするための
カスタムスクリプトは記述する必要はありません。このオプションでは最初に、読み取りや書き
込みに使用されるアプリケーションのすべてのファイルシステムパスを一覧表示します。保持す
るファイルシステムパスを特定したら、そのファイルシステムパスを EFS ファイルシステムパ
スにマッピングすることができます。詳細については、Amazon ECS ドキュメントの「Tutorial:
Using Amazon EFS file systems with Amazon ECS」を参照してください。すべてのパス (特に
アプリケーションログファイル) を保持する必要はありません。ほとんどのエンタープライズア
プリケーションは、ログファイルをローカルファイルシステムに書き込みます。コンテナ化プ
ロセスの一環として、標準出力と標準エラーを使用するようにロギング先の変更を検討するこ
とをお勧めします。こうすることで、ログストレージのサイズやパフォーマンスを管理しなくて

4. ファイルストア 10

https://docs.aws.amazon.com//efs/latest/ug/whatisefs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/tutorial-efs-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/tutorial-efs-volumes.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

も、CloudWatch Logs への出力をすべてキャプチャすることができます。Amazon ECS でのログ
記録に関する詳細は、Amazon ECS ドキュメントの「Using the awslogs log driver」を参照してく
ださい。

2. Amazon Simple Storage Service (Amazon S3) — Amazon S3 は Amazon EFS よりも安価で、か
つ広い帯域幅に対応していますが、Amazon S3 では Amazon EFS よりも幅広いアプリケーショ
ンコードの変更が必要です。これは、Amazon S3 がファイルシステムではないためです。

5. 構築とデプロイのプロセス

コンテナ化プロセスには、アプリケーション配信プロセスの変更と拡張があります。従来の環境で
は、アプリケーション配信プロセスは主に Java アーティファクト (.war ファイルや .ear ファイル
など) が含まれます。コンテナ環境では、コンテナイメージが配信ユニットです。既存の Java アー
ティファクトを構築するプロセスに加えて、Docker コンテナの構築と配信プロセスを構築する必
要があります。パイプラインプロセスの詳細については、 AWS 「 規範ガイダンス」ドキュメント
の「CI/CD パイプラインを使用して Java アプリケーションを自動的にビルドして Amazon EKS に
デプロイする」を参照してください。

6. データベースアクセス

従来のアプリケーションのコンテナ化は、多くの場合、データベースの移行が伴います。移行リ
スクを軽減するために、リレーショナルデータベースの移行戦略 (AWS 規範ガイダンス) に従うこ
とをお勧めします。コンテナ化された環境では、データベース接続文字列を含む外部設定が必要で
す。Spring Cloud Config (GitHub リポジトリ) などのツールを使用して、分散環境の Java アプリ
ケーション設定を外部化することができます。

5. 構築とデプロイのプロセス 11

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_awslogs.html
https://docs.aws.amazon.com//AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com//prescriptive-guidance/latest/patterns/automatically-build-and-deploy-a-java-application-to-amazon-eks-using-a-ci-cd-pipeline.html
https://docs.aws.amazon.com//prescriptive-guidance/latest/patterns/automatically-build-and-deploy-a-java-application-to-amazon-eks-using-a-ci-cd-pipeline.html
https://docs.aws.amazon.com//prescriptive-guidance/latest/strategy-database-migration/welcome.html
https://github.com/spring-cloud/spring-cloud-config

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

その他の考慮事項
このセクションでは、Java EE アプリケーション固有ではない Java コンテナ化に関する一般的な考
慮事項について説明します。

小さなベースイメージを使用する
小さいサイズで (500 MB 未満)、よく管理されたベースイメージを作成することをお勧めします。
ベースイメージのサイズを小さくすると、ネットワークコストや運用コストを削減できます。ま
た、ベースイメージを小さくするほど、悪用される可能性のあるコンポーネントの数が減り、セ
キュリティも向上します。Debian ベースの distroless イメージから 1 つ使用することができます。
イメージには最小限のツールがインストールされており、パッケージマネージャーやシェルは含ま
れていません。これら distroless イメージは、攻撃の対象範囲も全体的に縮小させることができま
す。distroless イメージは 150 MB 未満のサイズになります。詳細については、GitHub リポジトリの
「"Distroless" Container Images」を参照してください。

ベストプラクティスは、廃棄容易性の原則に従い、コンテナイメージの起動時間を短縮すること
です。ahead-of-time-compilation (OpenJDK のドキュメント) または application class data sharing
(OpenJDK のドキュメント) のようなテクニックを使って、仮想マシンを起動する前に Java クラス
をネイティブコードにコンパイルし、クラスのセットを共有アーカイブファイルに事前処理するこ
とで、全体的な起動時間を短縮させることができます。また、GraalVM を使用して Java アプリケー
ション用に最小限の Docker イメージを構築することもできます。詳細については、GraalVM を使用
して Java アプリケーション用の最小限の Docker イメージを構築する AWS ブログ記事を参照して
ください。

コンテナ対応の JDK バージョンにアップグレードする
JDK 8u131 以前のバージョンでは、JVM は Docker エンジンがフラグを使用して設定したメモリ、
または CPU の制限を認識していませんでした。つまり、アプリケーションをコンテナ内で実行する
たびに、JVM はシステム、または仮想マシンの場合は仮想システム上で、使用可能なプロセッサの
総数を「認識」することになります。デフォルトのメモリ制限についても同じことが言えます。JVM
はホストのメモリ全体を見て、そのメモリを使ってデフォルトを設定します。そのため、JVM は
コンテナプラットフォームで許可されているよりも多くのメモリを要求する可能性があり、その結
果、コンテナプラットフォーム (Docker) によって Java プロセスが終了することになります。この
問題の 1 つの解決策としては、コンテナ化する前に Java アプリケーションを Java 9 もしくは Java
8u131 以上のバージョンに移行することです。Java 10 以降のバージョンでは、コンテナを完全に認
識してサポートしています。

小さなベースイメージ 12

https://github.com/GoogleContainerTools/distroless
https://openjdk.java.net/jeps/295
https://openjdk.java.net/jeps/310
https://aws.amazon.com//blogs/opensource/using-graalvm-build-minimal-docker-images-java-applications/
https://aws.amazon.com//blogs/opensource/using-graalvm-build-minimal-docker-images-java-applications/

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

リソース

リファレンス

• Principles of container-based application design

• Mobilize your organization to accelerate large-scale migrations

• Automatically build and deploy a Java application to Amazon EKS using a CI/CD pipeline

• Migration strategy for relational databases

• Using GraalVM to Build Minimal Docker Images for Java Applications

ツール

• AWS App2Container

リファレンス 13

https://kubernetes.io/blog/2018/03/principles-of-container-app-design/
https://docs.aws.amazon.com//prescriptive-guidance/latest/strategy-migration/welcome.html
https://docs.aws.amazon.com//prescriptive-guidance/latest/patterns/automatically-build-and-deploy-a-java-application-to-amazon-eks-using-a-ci-cd-pipeline.html
https://docs.aws.amazon.com//prescriptive-guidance/latest/strategy-database-migration/welcome.html
https://aws.amazon.com//blogs/opensource/using-graalvm-build-minimal-docker-images-java-applications/
https://aws.amazon.com//app2container/

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

ドキュメント履歴
以下の表は、本ガイドの重要な変更点について説明したものです。今後の更新に関する通知を受け取
る場合は、RSS フィード をサブスクライブできます。

変更 説明 日付

初版発行 — 2022 年 4 月 11 日

14

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-net-applications/modernization-net-applications.rss

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

AWS 規範ガイダンスの用語集
以下は、 AWS 規範ガイダンスによって提供される戦略、ガイド、パターンで一般的に使用される用
語です。エントリを提案するには、用語集の最後のフィードバックの提供リンクを使用します。

数字

7 Rs

アプリケーションをクラウドに移行するための 7 つの一般的な移行戦略。これらの戦略は、ガー
トナーが 2011 年に特定した 5 Rs に基づいて構築され、以下で構成されています。

• リファクタリング/アーキテクチャの再設計 — クラウドネイティブ特徴を最大限に活用して、
俊敏性、パフォーマンス、スケーラビリティを向上させ、アプリケーションを移動させ、アー
キテクチャを変更します。これには、通常、オペレーティングシステムとデータベースの移植
が含まれます。例: オンプレミスの Oracle データベースを Amazon Aurora PostgreSQL 互換エ
ディションに移行します。

• リプラットフォーム (リフトアンドリシェイプ) — アプリケーションをクラウドに移行し、クラ
ウド機能を活用するための最適化レベルを導入します。例: オンプレミスの Oracle データベー
スを の Oracle 用 Amazon Relational Database Service (Amazon RDS) に移行します AWS ク
ラウド。

• 再購入 (ドロップアンドショップ) — 通常、従来のライセンスから SaaS モデルに移行し
て、別の製品に切り替えます。例: カスタマーリレーションシップ管理 (CRM) システムを
Salesforce.com に移行します。

• リホスト (リフトアンドシフト) — クラウド機能を活用するための変更を加えずに、アプリケー
ションをクラウドに移行します。例: オンプレミスの Oracle データベースを の EC2 インスタ
ンス上の Oracle に移行します AWS クラウド。

• 再配置 (ハイパーバイザーレベルのリフトアンドシフト) – 新しいハードウェアを購入したり、
アプリケーションを書き換えたり、既存の運用を変更したりすることなく、インフラストラク
チャをクラウドに移行できます。オンプレミスプラットフォームから同じプラットフォームの
クラウドサービスにサーバーを移行します。例: Microsoft Hyper-Vアプリケーションを に移行
します AWS。

• 保持 (再アクセス) — アプリケーションをお客様のソース環境で保持します。これには、主要な
リファクタリングを必要とするアプリケーションや、お客様がその作業を後日まで延期したい
アプリケーション、およびそれらを移行するためのビジネス上の正当性がないため、お客様が
保持するレガシーアプリケーションなどがあります。

15

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

• 使用停止 — お客様のソース環境で不要になったアプリケーションを停止または削除します。

A

ABAC

「属性ベースのアクセスコントロール」を参照してください。

抽象化されたサービス

「 マネージドサービス」を参照してください。

ACID

アトミック性、一貫性、分離性、耐久性を参照してください。

アクティブ - アクティブ移行

(双方向レプリケーションツールまたは二重書き込み操作を使用して) ソースデータベースとター
ゲットデータベースを同期させ、移行中に両方のデータベースが接続アプリケーションからのト
ランザクションを処理するデータベース移行方法。この方法では、1 回限りのカットオーバーの
必要がなく、管理された小規模なバッチで移行できます。より柔軟ですが、アクティブ/パッシブ
移行よりも多くの作業が必要です。

アクティブ - パッシブ移行

ソースデータベースとターゲットデータベースが同期されるデータベース移行方法。ただし、
データがターゲットデータベースにレプリケートされている間、ソースデータベースのみが接続
アプリケーションからのトランザクションを処理します。移行中、ターゲットデータベースはト
ランザクションを受け付けません。

集計関数

行のグループで動作し、グループの単一の戻り値を計算する SQL 関数。集計関数の例として
は、 SUMや などがありますMAX。

AI

「人工知能」を参照してください。

AIOps

「人工知能オペレーション」を参照してください。

A 16

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

匿名化

データセット内の個人情報を完全に削除するプロセス。匿名化は個人のプライバシー保護に役立
ちます。匿名化されたデータは、もはや個人データとは見なされません。

アンチパターン

繰り返し起こる問題に対して頻繁に用いられる解決策で、その解決策が逆効果であったり、効果
がなかったり、代替案よりも効果が低かったりするもの。

アプリケーションコントロール

マルウェアからシステムを保護するために、承認されたアプリケーションのみを使用できるよう
にするセキュリティアプローチ。

アプリケーションポートフォリオ

アプリケーションの構築と維持にかかるコスト、およびそのビジネス価値を含む、組織が使用す
る各アプリケーションに関する詳細情報の集まり。この情報は、ポートフォリオの検出と分析プ
ロセス の需要要素であり、移行、モダナイズ、最適化するアプリケーションを特定し、優先順位
を付けるのに役立ちます。

人工知能 (AI)

コンピューティングテクノロジーを使用し、学習、問題の解決、パターンの認識など、通常は
人間に関連づけられる認知機能の実行に特化したコンピュータサイエンスの分野。詳細について
は、「人工知能 (AI) とは何ですか?」を参照してください。

AI オペレーション (AIOps)

機械学習技術を使用して運用上の問題を解決し、運用上のインシデントと人の介入を減らし、
サービス品質を向上させるプロセス。 AWS 移行戦略での AIOps の使用方法については、オペ
レーション統合ガイド を参照してください。

非対称暗号化

暗号化用のパブリックキーと復号用のプライベートキーから成る 1 組のキーを使用した、暗号化
のアルゴリズム。パブリックキーは復号には使用されないため共有しても問題ありませんが、プ
ライベートキーの利用は厳しく制限する必要があります。

原子性、一貫性、分離性、耐久性 (ACID)

エラー、停電、その他の問題が発生した場合でも、データベースのデータ有効性と運用上の信頼
性を保証する一連のソフトウェアプロパティ。

A 17

https://docs.aws.amazon.com/prescriptive-guidance/latest/application-portfolio-assessment-guide/introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/application-portfolio-assessment-guide/introduction.html
https://aws.amazon.com/what-is/artificial-intelligence/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/aiops.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/aiops.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

属性ベースのアクセス制御 (ABAC)

部署、役職、チーム名など、ユーザーの属性に基づいてアクセス許可をきめ細かく設定する方
法。詳細については、 AWS Identity and Access Management (IAM) ドキュメントの「 の ABAC
AWS」を参照してください。

信頼できるデータソース

最も信頼性のある情報源とされるデータのプライマリーバージョンを保存する場所。匿名化、編
集、仮名化など、データを処理または変更する目的で、信頼できるデータソースから他の場所に
データをコピーすることができます。

アベイラビリティーゾーン

他のアベイラビリティーゾーンの障害から AWS リージョン 隔離され、同じリージョン内の他の
アベイラビリティーゾーンへの低コストで低レイテンシーのネットワーク接続を提供する 内の別
の場所。

AWS クラウド導入フレームワーク (AWS CAF)

組織がクラウドへの移行を成功させるための効率的で効果的な計画を立て AWS るための、 のガ
イドラインとベストプラクティスのフレームワークです。 AWS CAF は、ビジネス、人材、ガバ
ナンス、プラットフォーム、セキュリティ、運用という 6 つの重点分野にガイダンスを整理して
います。ビジネス、人材、ガバナンスの観点では、ビジネススキルとプロセスに重点を置き、プ
ラットフォーム、セキュリティ、オペレーションの視点は技術的なスキルとプロセスに焦点を当
てています。例えば、人材の観点では、人事 (HR)、人材派遣機能、および人材管理を扱うステー
クホルダーを対象としています。この観点から、 AWS CAF は、クラウド導入を成功させるため
の組織の準備に役立つ人材開発、トレーニング、コミュニケーションのためのガイダンスを提供
します。詳細については、AWS CAF ウェブサイト と AWS CAF のホワイトペーパー を参照して
ください。

AWS ワークロード認定フレームワーク (AWS WQF)

データベース移行ワークロードを評価し、移行戦略を推奨し、作業見積もりを提供するツール。
AWS WQF は AWS Schema Conversion Tool (AWS SCT) に含まれています。データベースス
キーマとコードオブジェクト、アプリケーションコード、依存関係、およびパフォーマンス特性
を分析し、評価レポートを提供します。

A 18

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://aws.amazon.com/cloud-adoption-framework/
https://d1.awsstatic.com/whitepapers/aws_cloud_adoption_framework.pdf

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

B

不正なボット

個人や組織を混乱させたり、損害を与えたりすることを意図したボット。

BCP

「事業継続計画」を参照してください。

動作グラフ

リソースの動作とインタラクションを経時的に示した、一元的なインタラクティブ
ビュー。Amazon Detective の動作グラフを使用すると、失敗したログオンの試行、不審な API
呼び出し、その他同様のアクションを調べることができます。詳細については、Detective ドキュ
メントのData in a behavior graphを参照してください。

ビッグエンディアンシステム

最上位バイトを最初に格納するシステム。エンディアン性も参照してください。

二項分類

バイナリ結果 (2 つの可能なクラスのうちの 1 つ) を予測するプロセス。例えば、お客様の機械学
習モデルで「この E メールはスパムですか、それともスパムではありませんか」などの問題を予
測する必要があるかもしれません。または「この製品は書籍ですか、車ですか」などの問題を予
測する必要があるかもしれません。

ブルームフィルター

要素がセットのメンバーであるかどうかをテストするために使用される、確率的でメモリ効率の
高いデータ構造。

ブルー/グリーンデプロイ

2 つの異なる同一の環境を作成するデプロイ戦略。現在のアプリケーションバージョンを 1 つの
環境 (青) で実行し、新しいアプリケーションバージョンを別の環境 (緑) で実行します。この戦略
は、最小限の影響で迅速にロールバックするのに役立ちます。

ボット

インターネット経由で自動タスクを実行し、人間のアクティビティややり取りをシミュレートす
るソフトウェアアプリケーション。インターネット上の情報のインデックスを作成するウェブク
ローラーなど、一部のボットは有用または有益です。悪質なボットと呼ばれる他のボットの中に
は、個人や組織を混乱させたり、損害を与えたりすることを意図したものもあります。

B 19

https://docs.aws.amazon.com/detective/latest/userguide/behavior-graph-data-about.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

ボットネット

マルウェアに感染し、ボットハーダーまたはボットオペレーターとして知られる単一の当事者に
よって制御されているボットのネットワーク。ボットは、ボットとその影響をスケールするため
の最もよく知られているメカニズムです。

ブランチ

コードリポジトリに含まれる領域。リポジトリに最初に作成するブランチは、メインブランチと
いいます。既存のブランチから新しいブランチを作成し、その新しいブランチで機能を開発した
り、バグを修正したりできます。機能を構築するために作成するブランチは、通常、機能ブラン
チと呼ばれます。機能をリリースする準備ができたら、機能ブランチをメインブランチに統合し
ます。詳細については、「ブランチの概要」(GitHub ドキュメント) を参照してください。

ブレークグラスアクセス

例外的な状況では、承認されたプロセスを通じて、ユーザーが AWS アカウント 通常アクセス許
可を持たない にすばやくアクセスできるようにします。詳細については、 Well-Architected ガイ
ダンスの「ブレークグラス手順の実装」インジケータ AWS を参照してください。

ブラウンフィールド戦略

環境の既存インフラストラクチャ。システムアーキテクチャにブラウンフィールド戦略を導入す
る場合、現在のシステムとインフラストラクチャの制約に基づいてアーキテクチャを設計しま
す。既存のインフラストラクチャを拡張している場合は、ブラウンフィールド戦略とグリーン
フィールド戦略を融合させることもできます。

バッファキャッシュ

アクセス頻度が最も高いデータが保存されるメモリ領域。

ビジネス能力

価値を生み出すためにビジネスが行うこと (営業、カスタマーサービス、マーケティングなど)。
マイクロサービスのアーキテクチャと開発の決定は、ビジネス能力によって推進できます。詳細
については、ホワイトペーパー AWSでのコンテナ化されたマイクロサービスの実行 の ビジネス
機能を中心に組織化 セクションを参照してください。

ビジネス継続性計画 (BCP)

大規模移行など、中断を伴うイベントが運用に与える潜在的な影響に対処し、ビジネスを迅速に
再開できるようにする計画。

B 20

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-branches
https://docs.aws.amazon.com/wellarchitected/latest/devops-guidance/ag.sad.5-implement-break-glass-procedures.html
https://docs.aws.amazon.com/wellarchitected/latest/devops-guidance/ag.sad.5-implement-break-glass-procedures.html
https://docs.aws.amazon.com//whitepapers/latest/running-containerized-microservices/welcome.html
https://docs.aws.amazon.com//whitepapers/latest/running-containerized-microservices/organized-around-business-capabilities.html
https://docs.aws.amazon.com//whitepapers/latest/running-containerized-microservices/organized-around-business-capabilities.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

C

CAF

AWS 「クラウド導入フレームワーク」を参照してください。

Canary デプロイ

エンドユーザーへのバージョンのスローリリースと増分リリース。確信できたら、新しいバー
ジョンをデプロイし、現在のバージョン全体を置き換えます。

CCoE

「Cloud Center of Excellence」を参照してください。

CDC

「データキャプチャの変更」を参照してください。

変更データキャプチャ (CDC)

データソース (データベーステーブルなど) の変更を追跡し、その変更に関するメタデータを記録
するプロセス。CDC は、ターゲットシステムでの変更を監査またはレプリケートして同期を維持
するなど、さまざまな目的に使用できます。

カオスエンジニアリング

障害や破壊的なイベントを意図的に導入して、システムの耐障害性をテストします。AWS Fault
Injection Service (AWS FIS) を使用して、 AWS ワークロードにストレスを与え、その応答を評価
する実験を実行できます。

CI/CD

「継続的インテグレーションと継続的デリバリー」を参照してください。

分類

予測を生成するのに役立つ分類プロセス。分類問題の機械学習モデルは、離散値を予測します。
離散値は、常に互いに区別されます。例えば、モデルがイメージ内に車があるかどうかを評価す
る必要がある場合があります。

クライアント側の暗号化

ターゲットがデータ AWS のサービス を受信する前のローカルでのデータの暗号化。

C 21

https://docs.aws.amazon.com/fis/latest/userguide/what-is.html
https://docs.aws.amazon.com/fis/latest/userguide/what-is.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

Cloud Center of Excellence (CCoE)

クラウドのベストプラクティスの作成、リソースの移動、移行のタイムラインの確立、大規模変
革を通じて組織をリードするなど、組織全体のクラウド導入の取り組みを推進する学際的なチー
ム。詳細については、 AWS クラウド エンタープライズ戦略ブログの CCoE 投稿を参照してくだ
さい。

クラウドコンピューティング

リモートデータストレージと IoT デバイス管理に通常使用されるクラウドテクノロジー。クラウ
ドコンピューティングは、一般的にエッジコンピューティングテクノロジーに接続されていま
す。

クラウド運用モデル

IT 組織において、1 つ以上のクラウド環境を構築、成熟、最適化するために使用される運用モデ
ル。詳細については、「クラウド運用モデルの構築」 を参照してください。

導入のクラウドステージ

組織が に移行するときに通常実行する 4 つのフェーズ AWS クラウド:

• プロジェクト — 概念実証と学習を目的として、クラウド関連のプロジェクトをいくつか実行
する

• 基礎固め — お客様のクラウドの導入を拡大するための基礎的な投資 (ランディングゾーンの作
成、CCoE の定義、運用モデルの確立など)

• 移行 — 個々のアプリケーションの移行

• 再発明 — 製品とサービスの最適化、クラウドでのイノベーション

これらのステージは、 AWS クラウド エンタープライズ戦略ブログのブログ記事「クラウド
ファーストへのジャーニー」と「導入のステージ」で Stephen Orban によって定義されました。
AWS 移行戦略とどのように関連しているかについては、「移行準備ガイド」を参照してくださ
い。

CMDB

「設定管理データベース」を参照してください。

コードリポジトリ

ソースコードやその他の資産 (ドキュメント、サンプル、スクリプトなど) が保存され、バージョ
ン管理プロセスを通じて更新される場所。一般的なクラウドリポジトリには、 GitHubまたは が
含まれますBitbucket Cloud。コードの各バージョンはブランチと呼ばれます。マイクロサービス

C 22

https://aws.amazon.com/blogs/enterprise-strategy/tag/ccoe/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-cloud-operating-model/introduction.html
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

の構造では、各リポジトリは 1 つの機能専用です。1 つの CI/CD パイプラインで複数のリポジト
リを使用できます。

コールドキャッシュ

空である、または、かなり空きがある、もしくは、古いデータや無関係なデータが含まれている
バッファキャッシュ。データベースインスタンスはメインメモリまたはディスクから読み取る必
要があり、バッファキャッシュから読み取るよりも時間がかかるため、パフォーマンスに影響し
ます。

コールドデータ

めったにアクセスされず、通常は過去のデータです。この種類のデータをクエリする場合、通常
は低速なクエリでも問題ありません。このデータを低パフォーマンスで安価なストレージ階層ま
たはクラスに移動すると、コストを削減することができます。

コンピュータビジョン (CV)

機械学習を使用してデジタルイメージやビデオなどのビジュアル形式から情報を分析および抽
出する AI の分野。例えば、Amazon SageMaker AI は CV 用の画像処理アルゴリズムを提供しま
す。

設定ドリフト

ワークロードの場合、設定が想定状態から変化します。これにより、ワークロードが非準拠にな
る可能性があり、通常は段階的かつ意図的ではありません。

構成管理データベース（CMDB）

データベースとその IT 環境 (ハードウェアとソフトウェアの両方のコンポーネントとその設定を
含む) に関する情報を保存、管理するリポジトリ。通常、CMDB のデータは、移行のポートフォ
リオの検出と分析の段階で使用します。

コンフォーマンスパック

コンプライアンスチェックとセキュリティチェックをカスタマイズするためにアセンブルでき
る AWS Config ルールと修復アクションのコレクション。YAML テンプレートを使用して、コン
フォーマンスパックを AWS アカウント および リージョンの単一のエンティティとしてデプロイ
することも、組織全体にデプロイすることもできます。詳細については、 AWS Config ドキュメ
ントの「コンフォーマンスパック」を参照してください。

継続的インテグレーションと継続的デリバリー (CI/CD)

ソフトウェアリリースプロセスのソース、ビルド、テスト、ステージング、本番の各ステージを
自動化するプロセス。CI/CD は一般的にパイプラインと呼ばれます。プロセスの自動化、生産性

C 23

https://docs.aws.amazon.com/config/latest/developerguide/conformance-packs.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

の向上、コード品質の向上、配信の加速化を可能にします。詳細については、「継続的デリバ
リーの利点」を参照してください。CD は継続的デプロイ (Continuous Deployment) の略語でも
あります。詳細については「継続的デリバリーと継続的なデプロイ」を参照してください。

CV

「コンピュータビジョン」を参照してください。

D

保管中のデータ

ストレージ内にあるデータなど、常に自社のネットワーク内にあるデータ。

データ分類

ネットワーク内のデータを重要度と機密性に基づいて識別、分類するプロセス。データに適した
保護および保持のコントロールを判断する際に役立つため、あらゆるサイバーセキュリティのリ
スク管理戦略において重要な要素です。データ分類は、 AWS Well-Architected フレームワークの
セキュリティの柱のコンポーネントです。詳細については、データ分類を参照してください。

データドリフト

実稼働データと ML モデルのトレーニングに使用されたデータとの間に有意な差異が生じたり、
入力データが時間の経過と共に有意に変化したりすることです。データドリフトは、ML モデル
予測の全体的な品質、精度、公平性を低下させる可能性があります。

転送中のデータ

ネットワーク内 (ネットワークリソース間など) を活発に移動するデータ。

データメッシュ

一元管理とガバナンスを備えた分散型の分散型データ所有権を提供するアーキテクチャフレーム
ワーク。

データ最小化

厳密に必要なデータのみを収集し、処理するという原則。でデータ最小化を実践 AWS クラウド
することで、プライバシーリスク、コスト、分析のカーボンフットプリントを削減できます。

D 24

https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/benefits-of-continuous-delivery.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/benefits-of-continuous-delivery.html
https://aws.amazon.com/devops/continuous-delivery/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/data-classification.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

データ境界

AWS 環境内の一連の予防ガードレール。信頼された ID のみが、期待されるネットワークから信
頼されたリソースにアクセスできるようにします。詳細については、「 でのデータ境界の構築
AWS」を参照してください。

データの前処理

raw データをお客様の機械学習モデルで簡単に解析できる形式に変換すること。データの前処理
とは、特定の列または行を削除して、欠落している、矛盾している、または重複する値に対処す
ることを意味します。

データ出所

データの生成、送信、保存の方法など、データのライフサイクル全体を通じてデータの出所と履
歴を追跡するプロセス。

データ件名

データを収集、処理している個人。

データウェアハウス

分析などのビジネスインテリジェンスをサポートするデータ管理システム。データウェアハウス
には通常、大量の履歴データが含まれており、通常はクエリや分析に使用されます。

データベース定義言語 (DDL)

データベース内のテーブルやオブジェクトの構造を作成または変更するためのステートメントま
たはコマンド。

データベース操作言語 (DML)

データベース内の情報を変更 (挿入、更新、削除) するためのステートメントまたはコマンド。

DDL

「データベース定義言語」を参照してください。

ディープアンサンブル

予測のために複数の深層学習モデルを組み合わせる。ディープアンサンブルを使用して、より正
確な予測を取得したり、予測の不確実性を推定したりできます。

ディープラーニング

人工ニューラルネットワークの複数層を使用して、入力データと対象のターゲット変数の間の
マッピングを識別する機械学習サブフィールド。

D 25

https://docs.aws.amazon.com/whitepapers/latest/building-a-data-perimeter-on-aws/building-a-data-perimeter-on-aws.html
https://docs.aws.amazon.com/whitepapers/latest/building-a-data-perimeter-on-aws/building-a-data-perimeter-on-aws.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

多層防御

一連のセキュリティメカニズムとコントロールをコンピュータネットワーク全体に層状に重ね
て、ネットワークとその内部にあるデータの機密性、整合性、可用性を保護する情報セキュリ
ティの手法。この戦略を採用するときは AWS、 AWS Organizations 構造の異なるレイヤーに複
数のコントロールを追加して、リソースの安全性を確保します。たとえば、多層防御アプローチ
では、多要素認証、ネットワークセグメンテーション、暗号化を組み合わせることができます。

委任管理者

では AWS Organizations、互換性のあるサービスが AWS メンバーアカウントを登録して組織
のアカウントを管理し、そのサービスのアクセス許可を管理できます。このアカウントを、
そのサービスの委任管理者と呼びます。詳細、および互換性のあるサービスの一覧は、 AWS
Organizations ドキュメントのAWS Organizationsで使用できるサービスを参照してください。

デプロイ

アプリケーション、新機能、コードの修正をターゲットの環境で利用できるようにするプロセ
ス。デプロイでは、コードベースに変更を施した後、アプリケーションの環境でそのコードベー
スを構築して実行します。

開発環境

「環境」を参照してください。

検出管理

イベントが発生したときに、検出、ログ記録、警告を行うように設計されたセキュリティコント
ロール。これらのコントロールは副次的な防衛手段であり、実行中の予防的コントロールをすり
抜けたセキュリティイベントをユーザーに警告します。詳細については、Implementing security
controls on AWSのDetective controlsを参照してください。

開発バリューストリームマッピング (DVSM)

ソフトウェア開発ライフサイクルのスピードと品質に悪影響を及ぼす制約を特定し、優先順位を
付けるために使用されるプロセス。DVSM は、もともとリーンマニュファクチャリング・プラク
ティスのために設計されたバリューストリームマッピング・プロセスを拡張したものです。ソフ
トウェア開発プロセスを通じて価値を創造し、動かすために必要なステップとチームに焦点を当
てています。

デジタルツイン

建物、工場、産業機器、生産ラインなど、現実世界のシステムを仮想的に表現したものです。デ
ジタルツインは、予知保全、リモートモニタリング、生産最適化をサポートします。

D 26

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services_list.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/detective-controls.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

ディメンションテーブル

スタースキーマでは、ファクトテーブル内の量的データに関するデータ属性を含む小さなテーブ
ル。ディメンションテーブル属性は通常、テキストフィールドまたはテキストのように動作する
離散数値です。これらの属性は、クエリの制約、フィルタリング、結果セットのラベル付けに一
般的に使用されます。

ディザスタ

ワークロードまたはシステムが、導入されている主要な場所でのビジネス目標の達成を妨げるイ
ベント。これらのイベントは、自然災害、技術的障害、または意図しない設定ミスやマルウェア
攻撃などの人間の行動の結果である場合があります。

ディザスタリカバリ (DR)

災害によるダウンタイムとデータ損失を最小限に抑えるために使用する戦略とプロセス。詳細に
ついては、 AWS Well-Architected フレームワークの「 でのワークロードのディザスタリカバリ
AWS: クラウドでのリカバリ」を参照してください。

DML

「データベース操作言語」を参照してください。

ドメイン駆動型設計

各コンポーネントが提供している変化を続けるドメイン、またはコアビジネス目標にコンポーネ
ントを接続して、複雑なソフトウェアシステムを開発するアプローチ。この概念は、エリック・
エヴァンスの著書、Domain-Driven Design: Tackling Complexity in the Heart of Software (ドメ
イン駆動設計:ソフトウェアの中心における複雑さへの取り組み) で紹介されています (ボストン:
Addison-Wesley Professional、2003)。strangler fig パターンでドメイン駆動型設計を使用する方
法の詳細については、コンテナと Amazon API Gateway を使用して、従来の Microsoft ASP.NET
(ASMX) ウェブサービスを段階的にモダナイズ を参照してください。

DR

「ディザスタリカバリ」を参照してください。

ドリフト検出

ベースライン設定からの偏差を追跡します。たとえば、 AWS CloudFormation を使用してシステ
ムリソースのドリフトを検出したり、 を使用して AWS Control Tower 、ガバナンス要件への準
拠に影響するランディングゾーンの変更を検出したりできます。

DVSM

「開発値ストリームマッピング」を参照してください。

D 27

https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.html
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html
https://docs.aws.amazon.com/controltower/latest/userguide/drift.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

E

EDA

「探索的データ分析」を参照してください。

EDI

「電子データ交換」を参照してください。

エッジコンピューティング

IoT ネットワークのエッジにあるスマートデバイスの計算能力を高めるテクノロジー。クラウド
コンピューティングと比較すると、エッジコンピューティングは通信レイテンシーを短縮し、応
答時間を短縮できます。

電子データ交換 (EDI)

組織間のビジネスドキュメントの自動交換。詳細については、「電子データ交換とは」を参照し
てください。

暗号化

人間が読み取り可能なプレーンテキストデータを暗号文に変換するコンピューティングプロセ
ス。

暗号化キー

暗号化アルゴリズムが生成した、ランダム化されたビットからなる暗号文字列。キーの長さは決
まっておらず、各キーは予測できないように、一意になるように設計されています。

エンディアン

コンピュータメモリにバイトが格納される順序。ビッグエンディアンシステムでは、最上位バイ
トが最初に格納されます。リトルエンディアンシステムでは、最下位バイトが最初に格納されま
す。

エンドポイント

「サービスエンドポイント」を参照してください。

エンドポイントサービス

仮想プライベートクラウド (VPC) 内でホストして、他のユーザーと共有できるサービス。を使
用してエンドポイントサービスを作成し AWS PrivateLink 、他の AWS アカウント または AWS

E 28

https://aws.amazon.com/what-is/electronic-data-interchange/

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

Identity and Access Management (IAM) プリンシパルにアクセス許可を付与できます。これら
のアカウントまたはプリンシパルは、インターフェイス VPC エンドポイントを作成すること
で、エンドポイントサービスにプライベートに接続できます。詳細については、Amazon Virtual
Private Cloud (Amazon VPC) ドキュメントの「エンドポイントサービスを作成する」を参照して
ください。

エンタープライズリソースプランニング (ERP)

エンタープライズの主要なビジネスプロセス (会計、MES、プロジェクト管理など) を自動化およ
び管理するシステム。

エンベロープ暗号化

暗号化キーを、別の暗号化キーを使用して暗号化するプロセス。詳細については、 AWS Key
Management Service (AWS KMS) ドキュメントの「エンベロープ暗号化」を参照してください。

環境

実行中のアプリケーションのインスタンス。クラウドコンピューティングにおける一般的な環境
の種類は以下のとおりです。

• 開発環境 — アプリケーションのメンテナンスを担当するコアチームのみが使用できる、実行
中のアプリケーションのインスタンス。開発環境は、上位の環境に昇格させる変更をテストす
るときに使用します。このタイプの環境は、テスト環境と呼ばれることもあります。

• 下位環境 — 初期ビルドやテストに使用される環境など、アプリケーションのすべての開発環
境。

• 本番環境 — エンドユーザーがアクセスできる、実行中のアプリケーションのインスタン
ス。CI/CD パイプラインでは、本番環境が最後のデプロイ環境になります。

• 上位環境 — コア開発チーム以外のユーザーがアクセスできるすべての環境。これには、本番
環境、本番前環境、ユーザー承認テスト環境などが含まれます。

エピック

アジャイル方法論で、お客様の作業の整理と優先順位付けに役立つ機能カテゴリ。エピックで
は、要件と実装タスクの概要についてハイレベルな説明を提供します。例えば、 AWS CAF セ
キュリティエピックには、ID とアクセスの管理、検出コントロール、インフラストラクチャセ
キュリティ、データ保護、インシデント対応が含まれます。 AWS 移行戦略のエピックの詳細に
ついては、プログラム実装ガイド を参照してください。

ERP

「エンタープライズリソース計画」を参照してください。

E 29

https://docs.aws.amazon.com/vpc/latest/privatelink/create-endpoint-service.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-program-implementation/

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

探索的データ分析 (EDA)

データセットを分析してその主な特性を理解するプロセス。お客様は、データを収集または集計
してから、パターンの検出、異常の検出、および前提条件のチェックのための初期調査を実行し
ます。EDA は、統計の概要を計算し、データの可視化を作成することによって実行されます。

F

ファクトテーブル

星スキーマの中央テーブル。事業運営に関する量的データを保存します。通常、ファクトテーブ
ルには、メジャーを含む列とディメンションテーブルへの外部キーを含む列の 2 つのタイプの列
が含まれます。

フェイルファスト

開発ライフサイクルを短縮するために頻繁で段階的なテストを使用する哲学。これはアジャイル
アプローチの重要な部分です。

障害分離の境界

では AWS クラウド、障害の影響を制限し、ワークロードの耐障害性を高めるのに役立つアベイ
ラビリティーゾーン AWS リージョン、コントロールプレーン、データプレーンなどの境界。詳
細については、AWS 「障害分離境界」を参照してください。

機能ブランチ

「ブランチ」を参照してください。

特徴量

お客様が予測に使用する入力データ。例えば、製造コンテキストでは、特徴量は製造ラインから
定期的にキャプチャされるイメージの可能性もあります。

特徴量重要度

モデルの予測に対する特徴量の重要性。これは通常、Shapley Additive Deskonations (SHAP) や
積分勾配など、さまざまな手法で計算できる数値スコアで表されます。詳細については、「 を使
用した機械学習モデルの解釈可能性 AWS」を参照してください。

機能変換

追加のソースによるデータのエンリッチ化、値のスケーリング、単一のデータフィールドからの
複数の情報セットの抽出など、機械学習プロセスのデータを最適化すること。これにより、機械

F 30

https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/abstract-and-introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/overview.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/overview.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

学習モデルはデータの恩恵を受けることができます。例えば、「2021-05-27 00:15:37」の日付を
「2021 年」、「5 月」、「木」、「15」に分解すると、学習アルゴリズムがさまざまなデータコ
ンポーネントに関連する微妙に異なるパターンを学習するのに役立ちます。

数ショットプロンプト

同様のタスクの実行を求める前に、タスクと必要な出力を示す少数の例を LLM に提供します。こ
の手法は、プロンプトに埋め込まれた例 (ショット) からモデルが学習するコンテキスト内学習の
アプリケーションです。少数ショットプロンプトは、特定のフォーマット、推論、またはドメイ
ンの知識を必要とするタスクに効果的です。「ゼロショットプロンプト」も参照してください。

FGAC

「きめ細かなアクセスコントロール」を参照してください。

きめ細かなアクセス制御 (FGAC)

複数の条件を使用してアクセス要求を許可または拒否すること。

フラッシュカット移行

段階的なアプローチを使用する代わりに、変更データキャプチャによる継続的なデータレプリ
ケーションを使用して、可能な限り短時間でデータを移行するデータベース移行方法。目的はダ
ウンタイムを最小限に抑えることです。

FM

「基盤モデル」を参照してください。

基盤モデル (FM)

一般化およびラベル付けされていないデータの大規模なデータセットでトレーニングされている
大規模な深層学習ニューラルネットワーク。FMs は、言語の理解、テキストと画像の生成、自然
言語の会話など、さまざまな一般的なタスクを実行できます。詳細については、「基盤モデルと
は」を参照してください。

G

生成 AI

大量のデータでトレーニングされ、シンプルなテキストプロンプトを使用してイメージ、動画、
テキスト、オーディオなどの新しいコンテンツやアーティファクトを作成できる AI モデルのサブ
セット。詳細については、「生成 AI とは」を参照してください。

G 31

https://aws.amazon.com/what-is/foundation-models/
https://aws.amazon.com/what-is/foundation-models/
https://aws.amazon.com/what-is/generative-ai/

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

ジオブロッキング

地理的制限を参照してください。

地理的制限 (ジオブロッキング)

特定の国のユーザーがコンテンツ配信にアクセスできないようにするための、Amazon
CloudFront のオプション。アクセスを許可する国と禁止する国は、許可リストまたは禁止リスト
を使って指定します。詳細については、CloudFront ドキュメントのコンテンツの地理的ディスト
リビューションの制限を参照してください。

Gitflow ワークフロー

下位環境と上位環境が、ソースコードリポジトリでそれぞれ異なるブランチを使用する方
法。Gitflow ワークフローはレガシーと見なされ、トランクベースのワークフローはモダンで推奨
されるアプローチです。

ゴールデンイメージ

そのシステムまたはソフトウェアの新しいインスタンスをデプロイするためのテンプレートとし
て使用されるシステムまたはソフトウェアのスナップショット。例えば、製造では、ゴールデ
ンイメージを使用して複数のデバイスにソフトウェアをプロビジョニングし、デバイス製造オペ
レーションの速度、スケーラビリティ、生産性を向上させることができます。

グリーンフィールド戦略

新しい環境に既存のインフラストラクチャが存在しないこと。システムアーキテクチャにグリー
ンフィールド戦略を導入する場合、既存のインフラストラクチャ (別名ブラウンフィールド) との
互換性の制約を受けることなく、あらゆる新しいテクノロジーを選択できます。既存のインフラ
ストラクチャを拡張している場合は、ブラウンフィールド戦略とグリーンフィールド戦略を融合
させることもできます。

ガードレール

組織単位 (OU) 全般のリソース、ポリシー、コンプライアンスを管理するのに役立つ概略的な
ルール。予防ガードレールは、コンプライアンス基準に一致するようにポリシーを実施します。
これらは、サービスコントロールポリシーと IAM アクセス許可の境界を使用して実装されます。
検出ガードレールは、ポリシー違反やコンプライアンス上の問題を検出し、修復のためのアラー
トを発信します。これらは AWS Config、、 AWS Security Hub CSPM、Amazon GuardDuty、、
AWS Trusted Advisor Amazon Inspector、およびカスタム AWS Lambda チェックを使用して実
装されます。

G 32

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/georestrictions.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/georestrictions.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

H

HA

「高可用性」を参照してください。

異種混在データベースの移行

別のデータベースエンジンを使用するターゲットデータベースへお客様の出典データベースの移
行 (例えば、Oracle から Amazon Aurora)。異種間移行は通常、アーキテクチャの再設計作業の一
部であり、スキーマの変換は複雑なタスクになる可能性があります。AWS は、スキーマの変換
に役立つ AWS SCTを提供します。

ハイアベイラビリティ (HA)

課題や災害が発生した場合に、介入なしにワークロードを継続的に運用できること。HA システ
ムは、自動的にフェイルオーバーし、一貫して高品質のパフォーマンスを提供し、パフォーマン
スへの影響を最小限に抑えながらさまざまな負荷や障害を処理するように設計されています。

ヒストリアンのモダナイゼーション

製造業のニーズによりよく応えるために、オペレーションテクノロジー (OT) システムをモダナ
イズし、アップグレードするためのアプローチ。ヒストリアンは、工場内のさまざまなソースか
らデータを収集して保存するために使用されるデータベースの一種です。

ホールドアウトデータ

機械学習モデルのトレーニングに使用されるデータセットから保留される、ラベル付きの履歴
データの一部。モデル予測をホールドアウトデータと比較することで、ホールドアウトデータを
使用してモデルのパフォーマンスを評価できます。

同種データベースの移行

お客様の出典データベースを、同じデータベースエンジンを共有するターゲットデータベース
(Microsoft SQL Server から Amazon RDS for SQL Server など) に移行する。同種間移行は、通
常、リホストまたはリプラットフォーム化の作業の一部です。ネイティブデータベースユーティ
リティを使用して、スキーマを移行できます。

ホットデータ

リアルタイムデータや最近の翻訳データなど、頻繁にアクセスされるデータ。通常、このデータ
には高速なクエリ応答を提供する高性能なストレージ階層またはクラスが必要です。

H 33

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

ホットフィックス

本番環境の重大な問題を修正するために緊急で配布されるプログラム。緊急性が高いため、通常
の DevOps のリリースワークフローからは外れた形で実施されます。

ハイパーケア期間

カットオーバー直後、移行したアプリケーションを移行チームがクラウドで管理、監視して問題
に対処する期間。通常、この期間は 1～4 日です。ハイパーケア期間が終了すると、アプリケー
ションに対する責任は一般的に移行チームからクラウドオペレーションチームに移ります。

I

IaC

「Infrastructure as Code」を参照してください。

ID ベースのポリシー

AWS クラウド 環境内のアクセス許可を定義する 1 つ以上の IAM プリンシパルにアタッチされた
ポリシー。

アイドル状態のアプリケーション

90 日間の平均的な CPU およびメモリ使用率が 5～20% のアプリケーション。移行プロジェクト
では、これらのアプリケーションを廃止するか、オンプレミスに保持するのが一般的です。

IIoT

「産業用モノのインターネット」を参照してください。

イミュータブルインフラストラクチャ

既存のインフラストラクチャを更新、パッチ適用、または変更する代わりに、本番環境のワーク
ロードに新しいインフラストラクチャをデプロイするモデル。イミュータブルインフラストラ
クチャは、本質的にミュータブルインフラストラクチャよりも一貫性、信頼性、予測性が高くな
ります。詳細については、 AWS 「 Well-Architected Framework」の「Deploy using immutable
infrastructure best practice」を参照してください。

インバウンド (受信) VPC

AWS マルチアカウントアーキテクチャでは、アプリケーションの外部からネットワーク接続を
受け入れ、検査し、ルーティングする VPC。AWS Security Reference Architecture では、アプリ

I 34

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/rel_tracking_change_management_immutable_infrastructure.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/rel_tracking_change_management_immutable_infrastructure.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

ケーションとより広範なインターネット間の双方向のインターフェイスを保護するために、イン
バウンド、アウトバウンド、インスペクションの各 VPC を使用してネットワークアカウントを
設定することを推奨しています。

増分移行

アプリケーションを 1 回ですべてカットオーバーするのではなく、小さい要素に分けて移行する
カットオーバー戦略。例えば、最初は少数のマイクロサービスまたはユーザーのみを新しいシス
テムに移行する場合があります。すべてが正常に機能することを確認できたら、残りのマイクロ
サービスやユーザーを段階的に移行し、レガシーシステムを廃止できるようにします。この戦略
により、大規模な移行に伴うリスクが軽減されます。

インダストリー 4.0

2016 年に Klaus Schwab によって導入された用語で、接続、リアルタイムデータ、オートメー
ション、分析、AI/ML の進歩によるビジネスプロセスのモダナイゼーションを指します。

インフラストラクチャ

アプリケーションの環境に含まれるすべてのリソースとアセット。

Infrastructure as Code (IaC)

アプリケーションのインフラストラクチャを一連の設定ファイルを使用してプロビジョニング
し、管理するプロセス。IaC は、新しい環境を再現可能で信頼性が高く、一貫性のあるものにす
るため、インフラストラクチャを一元的に管理し、リソースを標準化し、スケールを迅速に行え
るように設計されています。

産業分野における IoT (IIoT)

製造、エネルギー、自動車、ヘルスケア、ライフサイエンス、農業などの産業部門におけるイン
ターネットに接続されたセンサーやデバイスの使用。詳細については、「Building an industrial
Internet of Things (IIoT) digital transformation strategy」を参照してください。

インスペクション VPC

AWS マルチアカウントアーキテクチャでは、VPC (同一または異なる 内 AWS リージョン)、イ
ンターネット、オンプレミスネットワーク間のネットワークトラフィックの検査を管理する一元
化された VPCs。AWS Security Reference Architecture では、アプリケーションとより広範なイ
ンターネット間の双方向のインターフェイスを保護するために、インバウンド、アウトバウン
ド、インスペクションの各 VPC を使用してネットワークアカウントを設定することを推奨して
います。

I 35

https://www.weforum.org/about/klaus-schwab/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-iiot-transformation/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-iiot-transformation/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

IoT

インターネットまたはローカル通信ネットワークを介して他のデバイスやシステムと通信する、
センサーまたはプロセッサが組み込まれた接続済み物理オブジェクトのネットワーク。詳細につ
いては、「IoT とは」を参照してください。

解釈可能性

機械学習モデルの特性で、モデルの予測がその入力にどのように依存するかを人間が理解できる
度合いを表します。詳細については、「 を使用した機械学習モデルの解釈可能性 AWS」を参照
してください。

IoT

「モノのインターネット」を参照してください。

IT 情報ライブラリ (ITIL)

IT サービスを提供し、これらのサービスをビジネス要件に合わせるための一連のベストプラク
ティス。ITIL は ITSM の基盤を提供します。

IT サービス管理 (ITSM)

組織の IT サービスの設計、実装、管理、およびサポートに関連する活動。クラウドオペレーショ
ンと ITSM ツールの統合については、オペレーション統合ガイド を参照してください。

ITIL

「IT 情報ライブラリ」を参照してください。

ITSM

「IT サービス管理」を参照してください。

L

ラベルベースアクセス制御 (LBAC)

強制アクセス制御 (MAC) の実装で、ユーザーとデータ自体にそれぞれセキュリティラベル値が明
示的に割り当てられます。ユーザーセキュリティラベルとデータセキュリティラベルが交差する
部分によって、ユーザーに表示される行と列が決まります。

ランディングゾーン

ランディングゾーンは、スケーラブルで安全な、適切に設計されたマルチアカウント AWS 環境
です。これは、組織がセキュリティおよびインフラストラクチャ環境に自信を持ってワークロー

L 36

https://aws.amazon.com/what-is/iot/
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/tools-integration.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

ドとアプリケーションを迅速に起動してデプロイできる出発点です。ランディングゾーンの詳細
については、安全でスケーラブルなマルチアカウント AWS 環境のセットアップ を参照してくだ
さい。

大規模言語モデル (LLM)

大量のデータに対して事前トレーニングされた深層学習 AI モデル。LLM は、質問への回答、ド
キュメントの要約、テキストの他の言語への翻訳、文の完了など、複数のタスクを実行できま
す。詳細については、LLMs」を参照してください。

大規模な移行

300 台以上のサーバの移行。

LBAC

「ラベルベースのアクセスコントロール」を参照してください。

最小特権

タスクの実行には必要最低限の権限を付与するという、セキュリティのベストプラクティス。詳
細については、IAM ドキュメントの最小特権アクセス許可を適用するを参照してください。

リフトアンドシフト

「7 Rs」を参照してください。

リトルエンディアンシステム

最下位バイトを最初に格納するシステム。エンディアン性も参照してください。

LLM

「大規模言語モデル」を参照してください。

下位環境

???「環境」を参照してください。

M

機械学習 (ML)

パターン認識と学習にアルゴリズムと手法を使用する人工知能の一種。ML は、モノのインター
ネット (IoT) データなどの記録されたデータを分析して学習し、パターンに基づく統計モデルを
生成します。詳細については、「機械学習」を参照してください。

M 37

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://aws.amazon.com/what-is/large-language-model/
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://aws.amazon.com/what-is/machine-learning/

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

メインブランチ

「ブランチ」を参照してください。

マルウェア

コンピュータのセキュリティまたはプライバシーを侵害するように設計されたソフトウェア。マ
ルウェアは、コンピュータシステムの中断、機密情報の漏洩、不正アクセスにつながる可能性が
あります。マルウェアの例としては、ウイルス、ワーム、ランサムウェア、トロイの木馬、スパ
イウェア、キーロガーなどがあります。

マネージドサービス

AWS のサービス はインフラストラクチャレイヤー、オペレーティングシステム、プラッ
トフォーム AWS を運用し、エンドポイントにアクセスしてデータを保存および取得しま
す。Amazon Simple Storage Service (Amazon S3) と Amazon DynamoDB は、マネージドサービ
スの例です。これらは抽象化されたサービスとも呼ばれます。

製造実行システム (MES)

生産プロセスを追跡、モニタリング、文書化、制御するためのソフトウェアシステムで、原材料
を工場の完成製品に変換します。

MAP

「移行促進プログラム」を参照してください。

メカニズム

ツールを作成し、ツールの導入を推進し、調整を行うために結果を検査する完全なプロセス。
メカニズムは、動作中にそれ自体を強化して改善するサイクルです。詳細については、 AWS
「 Well-Architected フレームワーク」の「メカニズムの構築」を参照してください。

メンバーアカウント

組織の一部である管理アカウント AWS アカウント 以外のすべて AWS Organizations。 アカウン
トが 組織のメンバーになることができるのは、一度に 1 つのみです。

MES

「製造実行システム」を参照してください。

メッセージキューイングテレメトリトランスポート (MQTT)

リソースに制約のある IoT デバイス用の、パブリッシュ/サブスクライブパターンに基づく軽量
machine-to-machine (M2M) 通信プロトコル。

M 38

https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/building-mechanisms.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

マイクロサービス

明確に定義された API を介して通信し、通常は小規模な自己完結型のチームが所有する、小規
模で独立したサービスです。例えば、保険システムには、販売やマーケティングなどのビジネス
機能、または購買、請求、分析などのサブドメインにマッピングするマイクロサービスが含まれ
る場合があります。マイクロサービスの利点には、俊敏性、柔軟なスケーリング、容易なデプロ
イ、再利用可能なコード、回復力などがあります。詳細については、AWS 「サーバーレスサー
ビスを使用したマイクロサービスの統合」を参照してください。

マイクロサービスアーキテクチャ

各アプリケーションプロセスをマイクロサービスとして実行する独立したコンポーネントを使用
してアプリケーションを構築するアプローチ。これらのマイクロサービスは、軽量 API を使用し
て、明確に定義されたインターフェイスを介して通信します。このアーキテクチャの各マイクロ
サービスは、アプリケーションの特定の機能に対する需要を満たすように更新、デプロイ、およ
びスケーリングできます。詳細については、「 でのマイクロサービスの実装 AWS」を参照して
ください。

Migration Acceleration Program (MAP)

組織がクラウドに移行するための強力な運用基盤を構築し、移行の初期コストを相殺するのに役
立つコンサルティングサポート、トレーニング、サービスを提供する AWS プログラム。MAP に
は、組織的な方法でレガシー移行を実行するための移行方法論と、一般的な移行シナリオを自動
化および高速化する一連のツールが含まれています。

大規模な移行

アプリケーションポートフォリオの大部分を次々にクラウドに移行し、各ウェーブでより多くの
アプリケーションを高速に移動させるプロセス。この段階では、以前の段階から学んだベストプ
ラクティスと教訓を使用して、移行ファクトリー チーム、ツール、プロセスのうち、オートメー
ションとアジャイルデリバリーによってワークロードの移行を合理化します。これは、AWS 移
行戦略 の第 3 段階です。

移行ファクトリー

自動化された俊敏性のあるアプローチにより、ワークロードの移行を合理化する部門横断的な
チーム。移行ファクトリーチームには、通常、運用、ビジネスアナリストおよび所有者、移行
エンジニア、デベロッパー、およびスプリントで作業する DevOps プロフェッショナルが含ま
れます。エンタープライズアプリケーションポートフォリオの 20～50% は、ファクトリーのア
プローチによって最適化できる反復パターンで構成されています。詳細については、このコンテ
ンツセットの移行ファクトリーに関する解説とCloud Migration Factory ガイドを参照してくださ
い。

M 39

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.amazon.com//whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-factory-cloudendure/welcome.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

移行メタデータ

移行を完了するために必要なアプリケーションおよびサーバーに関する情報。移行パターンご
とに、異なる一連の移行メタデータが必要です。移行メタデータの例としては、ターゲットサブ
ネット、セキュリティグループ、 AWS アカウントなどがあります。

移行パターン

移行戦略、移行先、および使用する移行アプリケーションまたはサービスを詳述する、反復可能
な移行タスク。例: AWS Application Migration Service を使用して Amazon EC2 への移行をリホ
ストします。

Migration Portfolio Assessment (MPA)

に移行するためのビジネスケースを検証するための情報を提供するオンラインツール AWS ク
ラウド。MPA は、詳細なポートフォリオ評価 (サーバーの適切なサイジング、価格設定、TCO
比較、移行コスト分析) および移行プラン (アプリケーションデータの分析とデータ収集、アプ
リケーションのグループ化、移行の優先順位付け、およびウェーブプランニング) を提供しま
す。MPA ツール (ログインが必要) は、すべての AWS コンサルタントと APN パートナーコンサ
ルタントが無料で利用できます。

移行準備状況評価 (MRA)

AWS CAF を使用して、組織のクラウド準備状況に関するインサイトを取得し、長所と短所を特
定し、特定されたギャップを埋めるためのアクションプランを構築するプロセス。詳細について
は、移行準備状況ガイド を参照してください。MRA は、AWS 移行戦略の第一段階です。

移行戦略

ワークロードを に移行するために使用するアプローチ AWS クラウド。詳細については、この用
語集の「7 Rs エントリ」と「組織を動員して大規模な移行を加速する」を参照してください。

ML

???「機械学習」を参照してください。

モダナイゼーション

古い (レガシーまたはモノリシック) アプリケーションとそのインフラストラクチャをクラウド
内の俊敏で弾力性のある高可用性システムに変換して、コストを削減し、効率を高め、イノベー
ションを活用します。詳細については、「」の「アプリケーションをモダナイズするための戦略
AWS クラウド」を参照してください。

M 40

https://mpa.accelerate.amazonaws.com/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-modernizing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-modernizing-applications/

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

モダナイゼーション準備状況評価

組織のアプリケーションのモダナイゼーションの準備状況を判断し、利点、リスク、依存関係を
特定し、組織がこれらのアプリケーションの将来の状態をどの程度適切にサポートできるかを
決定するのに役立つ評価。評価の結果として、ターゲットアーキテクチャのブループリント、
モダナイゼーションプロセスの開発段階とマイルストーンを詳述したロードマップ、特定され
たギャップに対処するためのアクションプランが得られます。詳細については、『』の「アプリ
ケーションのモダナイゼーション準備状況の評価 AWS クラウド」を参照してください。

モノリシックアプリケーション (モノリス)

緊密に結合されたプロセスを持つ単一のサービスとして実行されるアプリケーション。モノリ
シックアプリケーションにはいくつかの欠点があります。1 つのアプリケーション機能エクスペ
リエンスの需要が急増する場合は、アーキテクチャ全体をスケーリングする必要があります。モ
ノリシックアプリケーションの特徴を追加または改善することは、コードベースが大きくなると
複雑になります。これらの問題に対処するには、マイクロサービスアーキテクチャを使用できま
す。詳細については、モノリスをマイクロサービスに分解する を参照してください。

MPA

「移行ポートフォリオ評価」を参照してください。

MQTT

「Message Queuing Telemetry Transport」を参照してください。

多クラス分類

複数のクラスの予測を生成するプロセス (2 つ以上の結果の 1 つを予測します)。例えば、機械学
習モデルが、「この製品は書籍、自動車、電話のいずれですか?」 または、「このお客様にとっ
て最も関心のある商品のカテゴリはどれですか?」と聞くかもしれません。

ミュータブルインフラストラクチャ

本番ワークロードの既存のインフラストラクチャを更新および変更するモデル。Well-Architected
AWS フレームワークでは、一貫性、信頼性、予測可能性を向上させるために、イミュータブル
インフラストラクチャの使用をベストプラクティスとして推奨しています。

O

OAC

「オリジンアクセスコントロール」を参照してください。

O 41

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-assessing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-assessing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

OAI

「オリジンアクセスアイデンティティ」を参照してください。

OCM

「組織の変更管理」を参照してください。

オフライン移行

移行プロセス中にソースワークロードを停止させる移行方法。この方法はダウンタイムが長くな
るため、通常は重要ではない小規模なワークロードに使用されます。

OI

「 オペレーションの統合」を参照してください。

OLA

「運用レベルの契約」を参照してください。

オンライン移行

ソースワークロードをオフラインにせずにターゲットシステムにコピーする移行方法。ワーク
ロードに接続されているアプリケーションは、移行中も動作し続けることができます。この方法
はダウンタイムがゼロから最小限で済むため、通常は重要な本番稼働環境のワークロードに使用
されます。

OPC-UA

「Open Process Communications - Unified Architecture」を参照してください。

オープンプロセス通信 - 統合アーキテクチャ (OPC-UA)

産業用オートメーション用のmachine-to-machine (M2M) 通信プロトコル。OPC-UA は、データ
の暗号化、認証、認可スキームとの相互運用性標準を提供します。

オペレーショナルレベルアグリーメント (OLA)

サービスレベルアグリーメント (SLA) をサポートするために、どの機能的 IT グループが互いに
提供することを約束するかを明確にする契約。

運用準備状況レビュー (ORR)

インシデントや潜在的な障害の理解、評価、防止、または範囲の縮小に役立つ質問とそれに関連
するベストプラクティスのチェックリスト。詳細については、 AWS Well-Architected フレーム
ワークの「Operational Readiness Reviews (ORR)」を参照してください。

O 42

https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/wa-operational-readiness-reviews.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

運用テクノロジー (OT)

産業オペレーション、機器、インフラストラクチャを制御するために物理環境と連携するハード
ウェアおよびソフトウェアシステム。製造では、OT と情報技術 (IT) システムの統合が、Industry
4.0 変換の主な焦点です。

オペレーション統合 (OI)

クラウドでオペレーションをモダナイズするプロセスには、準備計画、オートメーション、統合
が含まれます。詳細については、オペレーション統合ガイド を参照してください。

組織の証跡

組織 AWS アカウント 内のすべての のすべてのイベント AWS CloudTrail をログに記録する、 に
よって作成された証跡 AWS Organizations。証跡は、組織に含まれている各 AWS アカウント に
作成され、各アカウントのアクティビティを追跡します。詳細については、CloudTrail ドキュメ
ントの組織の証跡の作成を参照してください。

組織変更管理 (OCM)

人材、文化、リーダーシップの観点から、主要な破壊的なビジネス変革を管理するためのフレー
ムワーク。OCM は、変化の導入を加速し、移行問題に対処し、文化や組織の変化を推進するこ
とで、組織が新しいシステムと戦略の準備と移行するのを支援します。 AWS 移行戦略では、ク
ラウド導入プロジェクトに必要な変化のスピードにより、このフレームワークは人材アクセラ
レーションと呼ばれます。詳細については、OCM ガイド を参照してください。

オリジンアクセスコントロール (OAC)

Amazon Simple Storage Service (Amazon S3) コンテンツを保護するための、CloudFront のア
クセス制限の強化オプション。OAC は AWS リージョン、すべての S3 バケット、 AWS KMS
(SSE-KMS) によるサーバー側の暗号化、S3 バケットへの動的 PUT および DELETEリクエストを
サポートします。

オリジンアクセスアイデンティティ (OAI)

CloudFront の、Amazon S3 コンテンツを保護するためのアクセス制限オプション。OAI を使用
すると、CloudFront が、Amazon S3 に認証可能なプリンシパルを作成します。認証されたプリ
ンシパルは、S3 バケット内のコンテンツに、特定の CloudFront ディストリビューションを介し
てのみアクセスできます。OACも併せて参照してください。OAC では、より詳細な、強化され
たアクセスコントロールが可能です。

ORR

「運用準備状況レビュー」を参照してください。

O 43

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-ocm/

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

OT

「運用テクノロジー」を参照してください。

アウトバウンド (送信) VPC

AWS マルチアカウントアーキテクチャでは、アプリケーション内から開始されたネットワーク
接続を処理する VPC。AWS Security Reference Architecture では、アプリケーションとより広範
なインターネット間の双方向のインターフェイスを保護するために、インバウンド、アウトバウ
ンド、インスペクションの各 VPC を使用してネットワークアカウントを設定することを推奨し
ています。

P

アクセス許可の境界

ユーザーまたはロールが使用できるアクセス許可の上限を設定する、IAM プリンシパルにアタッ
チされる IAM 管理ポリシー。詳細については、IAM ドキュメントのアクセス許可の境界を参照し
てください。

個人を特定できる情報 (PII)

直接閲覧した場合、または他の関連データと組み合わせた場合に、個人の身元を合理的に推測す
るために使用できる情報。PII の例には、氏名、住所、連絡先情報などがあります。

PII

個人を特定できる情報を参照してください。

プレイブック

クラウドでのコアオペレーション機能の提供など、移行に関連する作業を取り込む、事前定義さ
れた一連のステップ。プレイブックは、スクリプト、自動ランブック、またはお客様のモダナイ
ズされた環境を運用するために必要なプロセスや手順の要約などの形式をとることができます。

PLC

「プログラム可能なロジックコントローラー」を参照してください。

PLM

「製品ライフサイクル管理」を参照してください。

P 44

https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

ポリシー

アクセス許可を定義 (アイデンティティベースのポリシーを参照）、アクセス条件を指定 (リソー
スベースのポリシーを参照）、または の組織内のすべてのアカウントに対する最大アクセス許可
を定義 AWS Organizations (サービスコントロールポリシーを参照) できるオブジェクト。

多言語の永続性

データアクセスパターンやその他の要件に基づいて、マイクロサービスのデータストレージテク
ノロジーを個別に選択します。マイクロサービスが同じデータストレージテクノロジーを使用し
ている場合、実装上の問題が発生したり、パフォーマンスが低下する可能性があります。マイク
ロサービスは、要件に最も適合したデータストアを使用すると、より簡単に実装でき、パフォー
マンスとスケーラビリティが向上します。詳細については、マイクロサービスでのデータ永続性
の有効化 を参照してください。

ポートフォリオ評価

移行を計画するために、アプリケーションポートフォリオの検出、分析、優先順位付けを行うプ
ロセス。詳細については、「移行準備状況ガイド」を参照してください。

述語

true または を返すクエリ条件。一般的にfalseは WHERE句にあります。

述語プッシュダウン

転送前にクエリ内のデータをフィルタリングするデータベースクエリ最適化手法。これにより、
リレーショナルデータベースから取得して処理する必要があるデータの量が減少し、クエリのパ
フォーマンスが向上します。

予防的コントロール

イベントの発生を防ぐように設計されたセキュリティコントロール。このコントロールは、
ネットワークへの不正アクセスや好ましくない変更を防ぐ最前線の防御です。詳細について
は、Implementing security controls on AWSのPreventative controlsを参照してください。

プリンシパル

アクションを実行し AWS 、リソースにアクセスできる のエンティティ。このエンティティは
通常、、IAM AWS アカウントロール、またはユーザーのルートユーザーです。詳細について
は、IAM ドキュメントのロールに関する用語と概念内にあるプリンシパルを参照してください。

プライバシーバイデザイン

開発プロセス全体を通じてプライバシーを考慮するシステムエンジニアリングアプローチ。

P 45

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/preventative-controls.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

プライベートホストゾーン

1 つ以上の VPC 内のドメインとそのサブドメインへの DNS クエリに対し、Amazon Route 53 が
どのように応答するかに関する情報を保持するコンテナ。詳細については、Route 53 ドキュメン
トの「プライベートホストゾーンの使用」を参照してください。

プロアクティブコントロール

非準拠リソースのデプロイを防ぐように設計されたセキュリティコントロール。これらのコント
ロールは、プロビジョニング前にリソースをスキャンします。リソースがコントロールに準拠し
ていない場合、プロビジョニングされません。詳細については、 AWS Control Tower ドキュメン
トの「 コントロールリファレンスガイド」および「 セキュリティコントロールの実装」の「プ
ロアクティブコントロール」を参照してください。 AWS

製品ライフサイクル管理 (PLM)

設計、開発、発売から成長と成熟まで、製品のデータとプロセスのライフサイクル全体にわたる
管理。

本番環境

「環境」を参照してください。

プログラム可能なロジックコントローラー (PLC)

製造では、マシンをモニタリングし、製造プロセスを自動化する、信頼性の高い適応可能なコン
ピュータです。

プロンプトの連鎖

1 つの LLM プロンプトの出力を次のプロンプトの入力として使用して、より良いレスポンスを生
成します。この手法は、複雑なタスクをサブタスクに分割したり、事前レスポンスを繰り返し改
善または拡張したりするために使用されます。これにより、モデルのレスポンスの精度と関連性
が向上し、より詳細でパーソナライズされた結果が得られます。

仮名化

データセット内の個人識別子をプレースホルダー値に置き換えるプロセス。仮名化は個人のプラ
イバシー保護に役立ちます。仮名化されたデータは、依然として個人データとみなされます。

パブリッシュ/サブスクライブ (pub/sub)

マイクロサービス間の非同期通信を可能にするパターン。スケーラビリティと応答性を向上させ
ます。たとえば、マイクロサービスベースの MES では、マイクロサービスは他のマイクロサー

P 46

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html
https://docs.aws.amazon.com/controltower/latest/controlreference/controls.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/proactive-controls.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/proactive-controls.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

ビスがサブスクライブできるチャネルにイベントメッセージを発行できます。システムは、公開
サービスを変更せずに新しいマイクロサービスを追加できます。

Q

クエリプラン

SQL リレーショナルデータベースシステムのデータにアクセスするために使用される手順などの
一連のステップ。

クエリプランのリグレッション

データベースサービスのオプティマイザーが、データベース環境に特定の変更が加えられる前に
選択されたプランよりも最適性の低いプランを選択すること。これは、統計、制限事項、環境設
定、クエリパラメータのバインディングの変更、およびデータベースエンジンの更新などが原因
である可能性があります。

R

RACI マトリックス

責任、説明責任、相談、情報 (RACI) を参照してください。

RAG

「取得拡張生成」を参照してください。

ランサムウェア

決済が完了するまでコンピュータシステムまたはデータへのアクセスをブロックするように設計
された、悪意のあるソフトウェア。

RASCI マトリックス

責任、説明責任、相談、情報 (RACI) を参照してください。

RCAC

「行と列のアクセスコントロール」を参照してください。

リードレプリカ

読み取り専用に使用されるデータベースのコピー。クエリをリードレプリカにルーティングし
て、プライマリデータベースへの負荷を軽減できます。

Q 47

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

再設計

「7 Rs」を参照してください。

目標復旧時点 (RPO)

最後のデータリカバリポイントからの最大許容時間です。これにより、最後の回復時点からサー
ビスが中断されるまでの間に許容できるデータ損失の程度が決まります。

目標復旧時間 (RTO)

サービスの中断から復旧までの最大許容遅延時間。

リファクタリング

「7 Rs」を参照してください。

リージョン

地理的エリア内の AWS リソースのコレクション。各 AWS リージョン は、耐障害性、安定性、
耐障害性を提供するために、他の から分離され、独立しています。詳細については、AWS リー
ジョン 「アカウントで使用できる を指定する」を参照してください。

回帰

数値を予測する機械学習手法。例えば、「この家はどれくらいの値段で売れるでしょうか?」と
いう問題を解決するために、機械学習モデルは、線形回帰モデルを使用して、この家に関する既
知の事実 (平方フィートなど) に基づいて家の販売価格を予測できます。

リホスト

「7 Rs」を参照してください。

リリース

デプロイプロセスで、変更を本番環境に昇格させること。

再配置

「7 Rs」を参照してください。

プラットフォーム変更

「7 Rs」を参照してください。

再購入

「7 Rs」を参照してください。

R 48

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

回復性

中断に抵抗または回復するアプリケーションの機能。高可用性とディザスタリカバリは、 で回復
性を計画する際の一般的な考慮事項です AWS クラウド。詳細については、AWS クラウド 「レ
ジリエンス」を参照してください。

リソースベースのポリシー

Amazon S3 バケット、エンドポイント、暗号化キーなどのリソースにアタッチされたポリシー。
このタイプのポリシーは、アクセスが許可されているプリンシパル、サポートされているアク
ション、その他の満たすべき条件を指定します。

実行責任者、説明責任者、協業先、報告先 (RACI) に基づくマトリックス

移行活動とクラウド運用に関わるすべての関係者の役割と責任を定義したマトリックス。マト
リックスの名前は、マトリックスで定義されている責任の種類、すなわち責任 (R) 、説明責任
(A) 、協議 (C) 、情報提供 (I) に由来します。サポート (S) タイプはオプションです。サポートを
含めると、そのマトリックスは RASCI マトリックスと呼ばれ、サポートを除外すると RACI マ
トリックスと呼ばれます。

レスポンシブコントロール

有害事象やセキュリティベースラインからの逸脱について、修復を促すように設計されたセキュ
リティコントロール。詳細については、Implementing security controls on AWSのResponsive
controlsを参照してください。

保持

「7 Rs」を参照してください。

廃止

「7 Rs」を参照してください。

取得拡張生成 (RAG)

LLM がレスポンスを生成する前にトレーニングデータソースの外部にある信頼できるデータソー
スを参照する生成 AI テクノロジー。例えば、RAG モデルは組織のナレッジベースまたはカスタ
ムデータのセマンティック検索を実行する場合があります。詳細については、「RAG とは」を参
照してください。

ローテーション

攻撃者が認証情報にアクセスすることをより困難にするために、シークレットを定期的に更新す
るプロセス。

R 49

https://aws.amazon.com/resilience/
https://aws.amazon.com/resilience/
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/responsive-controls.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/responsive-controls.html
https://aws.amazon.com/what-is/retrieval-augmented-generation/

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

行と列のアクセス制御 (RCAC)

アクセスルールが定義された、基本的で柔軟な SQL 表現の使用。RCAC は行権限と列マスクで
構成されています。

RPO

「目標復旧時点」を参照してください。

RTO

目標復旧時間を参照してください。

ランブック

特定のタスクを実行するために必要な手動または自動化された一連の手順。これらは通常、エ
ラー率の高い反復操作や手順を合理化するために構築されています。

S

SAML 2.0

多くの ID プロバイダー (IdP) が使用しているオープンスタンダード。この機能を使用すると、
フェデレーティッドシングルサインオン (SSO) が有効になるため、ユーザーは組織内のすべて
のユーザーを IAM で作成しなくても、 AWS マネジメントコンソール にログインしたり AWS 、
API オペレーションを呼び出すことができます。SAML 2.0 ベースのフェデレーションの詳細に
ついては、IAM ドキュメントのSAML 2.0 ベースのフェデレーションについてを参照してくださ
い。

SCADA

「監視コントロールとデータ取得」を参照してください。

SCP

「サービスコントロールポリシー」を参照してください。

シークレット

暗号化された形式で保存する AWS Secrets Managerパスワードやユーザー認証情報などの機密情
報または制限付き情報。シークレット値とそのメタデータで構成されます。シークレット値は、
バイナリ、1 つの文字列、または複数の文字列にすることができます。詳細については、Secrets
Manager ドキュメントの「Secrets Manager シークレットの内容」を参照してください。

S 50

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/whats-in-a-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/whats-in-a-secret.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

設計によるセキュリティ

開発プロセス全体でセキュリティを考慮するシステムエンジニアリングアプローチ。

セキュリティコントロール

脅威アクターによるセキュリティ脆弱性の悪用を防止、検出、軽減するための、技術上または管
理上のガードレール。セキュリティコントロールには、予防的、検出的、応答的、プロアクティ
ブの 4 つの主なタイプがあります。

セキュリティ強化

アタックサーフェスを狭めて攻撃への耐性を高めるプロセス。このプロセスには、不要になった
リソースの削除、最小特権を付与するセキュリティのベストプラクティスの実装、設定ファイル
内の不要な機能の無効化、といったアクションが含まれています。

Security Information and Event Management (SIEM) システム

セキュリティ情報管理 (SIM) とセキュリティイベント管理 (SEM) のシステムを組み合わせたツー
ルとサービス。SIEM システムは、サーバー、ネットワーク、デバイス、その他ソースからデー
タを収集、モニタリング、分析して、脅威やセキュリティ違反を検出し、アラートを発信しま
す。

セキュリティレスポンスの自動化

セキュリティイベントに自動的に応答または修復するように設計された、事前定義されたプログ
ラムされたアクション。これらの自動化は、セキュリティのベストプラクティスを実装するのに
役立つ検出的または応答的な AWS セキュリティコントロールとして機能します。自動レスポン
スアクションの例としては、VPC セキュリティグループの変更、Amazon EC2 インスタンスへの
パッチ適用、認証情報の更新などがあります。

サーバー側の暗号化

送信先にあるデータの、それ AWS のサービス を受け取る による暗号化。

サービスコントロールポリシー (SCP)

AWS Organizationsの組織内の、すべてのアカウントのアクセス許可を一元的に管理するポリ
シー。SCP は、管理者がユーザーまたはロールに委任するアクションに、ガードレールを定義し
たり、アクションの制限を設定したりします。SCP は、許可リストまたは拒否リストとして、許
可または禁止するサービスやアクションを指定する際に使用できます。詳細については、 AWS
Organizations ドキュメントの「サービスコントロールポリシー」を参照してください。

S 51

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

サービスエンドポイント

のエントリポイントの URL AWS のサービス。ターゲットサービスにプログラムで接続するに
は、エンドポイントを使用します。詳細については、AWS 全般のリファレンスの「AWS のサー
ビス エンドポイント」を参照してください。

サービスレベルアグリーメント (SLA)

サービスのアップタイムやパフォーマンスなど、IT チームがお客様に提供すると約束したものを
明示した合意書。

サービスレベルインジケータ (SLI)

エラー率、可用性、スループットなど、サービスのパフォーマンス側面の測定。

サービスレベルの目標 (SLO)

サービスレベルのインジケータによって測定される、サービスの状態を表すターゲットメトリク
ス。

責任共有モデル

クラウドのセキュリティとコンプライアンス AWS について と共有する責任を説明するモデル。
AWS はクラウドのセキュリティを担当しますが、お客様はクラウドのセキュリティを担当しま
す。詳細については、責任共有モデルを参照してください。

SIEM

セキュリティ情報とイベント管理システムを参照してください。

単一障害点 (SPOF)

システムを中断する可能性のあるアプリケーションの 1 つの重要なコンポーネントの障害。

SLA

「サービスレベルアグリーメント」を参照してください。

SLI

「サービスレベルインジケータ」を参照してください。

SLO

「サービスレベルの目標」を参照してください。

スプリットアンドシードモデル

モダナイゼーションプロジェクトのスケーリングと加速のためのパターン。新機能と製品リリー
スが定義されると、コアチームは解放されて新しい製品チームを作成します。これにより、お

S 52

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

客様の組織の能力とサービスの拡張、デベロッパーの生産性の向上、迅速なイノベーションのサ
ポートに役立ちます。詳細については、『』の「アプリケーションをモダナイズするための段階
的アプローチ AWS クラウド」を参照してください。

SPOF

単一障害点を参照してください。

スタースキーマ

1 つの大きなファクトテーブルを使用してトランザクションデータまたは測定データを保存し、1
つ以上の小さなディメンションテーブルを使用してデータ属性を保存するデータベースの組織構
造。この構造は、データウェアハウスまたはビジネスインテリジェンスの目的で使用するように
設計されています。

strangler fig パターン

レガシーシステムが廃止されるまで、システム機能を段階的に書き換えて置き換えることによ
り、モノリシックシステムをモダナイズするアプローチ。このパターンは、宿主の樹木から根を
成長させ、最終的にその宿主を包み込み、宿主に取って代わるイチジクのつるを例えています。
そのパターンは、モノリシックシステムを書き換えるときのリスクを管理する方法として Martin
Fowler により提唱されました。このパターンの適用方法の例については、コンテナと Amazon
API Gateway を使用して、従来の Microsoft ASP.NET (ASMX) ウェブサービスを段階的にモダナ
イズを参照してください。

サブネット

VPC 内の IP アドレスの範囲。サブネットは、1 つのアベイラビリティーゾーンに存在する必要
があります。

監視コントロールとデータ取得 (SCADA)

製造では、ハードウェアとソフトウェアを使用して物理アセットと本番稼働をモニタリングする
システム。

対称暗号化

データの暗号化と復号に同じキーを使用する暗号化のアルゴリズム。

合成テスト

ユーザーとのやり取りをシミュレートして潜在的な問題を検出したり、パフォーマンスをモニ
タリングしたりする方法でシステムをテストします。Amazon CloudWatch Synthetics を使用し
て、これらのテストを作成できます。

S 53

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

システムプロンプト

動作を指示するために LLM にコンテキスト、指示、またはガイドラインを提供する手法。システ
ムプロンプトは、コンテキストを設定し、ユーザーとのやり取りのルールを確立するのに役立ち
ます。

T

tags

AWS リソースを整理するためのメタデータとして機能するキーと値のペア。タグは、 リソース
の管理、識別、整理、検索、フィルタリングに役立ちます。詳細については、「AWS リソース
のタグ付け」を参照してください。

ターゲット変数

監督された機械学習でお客様が予測しようとしている値。これは、結果変数 のことも指します。
例えば、製造設定では、ターゲット変数が製品の欠陥である可能性があります。

タスクリスト

ランブックの進行状況を追跡するために使用されるツール。タスクリストには、ランブックの概
要と完了する必要のある一般的なタスクのリストが含まれています。各一般的なタスクには、推
定所要時間、所有者、進捗状況が含まれています。

テスト環境

「環境」を参照してください。

トレーニング

お客様の機械学習モデルに学習するデータを提供すること。トレーニングデータには正しい答え
が含まれている必要があります。学習アルゴリズムは入力データ属性をターゲット (お客様が予
測したい答え) にマッピングするトレーニングデータのパターンを検出します。これらのパター
ンをキャプチャする機械学習モデルを出力します。そして、お客様が機械学習モデルを使用し
て、ターゲットがわからない新しいデータでターゲットを予測できます。

トランジットゲートウェイ

VPC とオンプレミスネットワークを相互接続するために使用できる、ネットワークの中継ハブ。
詳細については、 AWS Transit Gateway ドキュメントの「トランジットゲートウェイとは」を参
照してください。

T 54

https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

トランクベースのワークフロー

デベロッパーが機能ブランチで機能をローカルにビルドしてテストし、その変更をメインブラン
チにマージするアプローチ。メインブランチはその後、開発環境、本番前環境、本番環境に合わ
せて順次構築されます。

信頼されたアクセス

ユーザーに代わって AWS Organizations およびそのアカウントで組織内でタスクを実行するた
めに指定したサービスにアクセス許可を付与します。信頼されたサービスは、サービスにリンク
されたロールを必要なときに各アカウントに作成し、ユーザーに代わって管理タスクを実行しま
す。詳細については、 ドキュメントの「 を他の AWS のサービス AWS Organizations で使用す
る AWS Organizations 」を参照してください。

チューニング

機械学習モデルの精度を向上させるために、お客様のトレーニングプロセスの側面を変更する。
例えば、お客様が機械学習モデルをトレーニングするには、ラベル付けセットを生成し、ラベル
を追加します。これらのステップを、異なる設定で複数回繰り返して、モデルを最適化します。

ツーピザチーム

2 枚のピザで養うことができるくらい小さな DevOps チーム。ツーピザチームの規模では、ソフ
トウェア開発におけるコラボレーションに最適な機会が確保されます。

U

不確実性

予測機械学習モデルの信頼性を損なう可能性がある、不正確、不完全、または未知の情報を指す
概念。不確実性には、次の 2 つのタイプがあります。認識論的不確実性は、限られた、不完全な
データによって引き起こされ、弁論的不確実性 は、データに固有のノイズとランダム性によって
引き起こされます。詳細については、深層学習システムにおける不確実性の定量化 ガイドを参照
してください。

未分化なタスク

ヘビーリフティングとも呼ばれ、アプリケーションの作成と運用には必要だが、エンドユーザー
に直接的な価値をもたらさなかったり、競争上の優位性をもたらしたりしない作業です。未分化
なタスクの例としては、調達、メンテナンス、キャパシティプランニングなどがあります。

U 55

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

上位環境

「環境」を参照してください。

V

バキューミング

ストレージを再利用してパフォーマンスを向上させるために、増分更新後にクリーンアップを行
うデータベースのメンテナンス操作。

バージョンコントロール

リポジトリ内のソースコードへの変更など、変更を追跡するプロセスとツール。

VPC ピアリング

プライベート IP アドレスを使用してトラフィックをルーティングできる、2 つの VPC 間の接
続。詳細については、Amazon VPC ドキュメントの「VPC ピア機能とは」を参照してくださ
い。

脆弱性

システムのセキュリティを脅かすソフトウェアまたはハードウェアの欠陥。

W

ウォームキャッシュ

頻繁にアクセスされる最新の関連データを含むバッファキャッシュ。データベースインスタンス
はバッファキャッシュから、メインメモリまたはディスクからよりも短い時間で読み取りを行う
ことができます。

ウォームデータ

アクセス頻度の低いデータ。この種類のデータをクエリする場合、通常は適度に遅いクエリでも
問題ありません。

ウィンドウ関数

現在のレコードに何らかの形で関連する行のグループに対して計算を実行する SQL 関数。ウィ
ンドウ関数は、移動平均の計算や、現在の行の相対位置に基づく行の値へのアクセスなどのタス
クの処理に役立ちます。

V 56

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

ワークロード

ビジネス価値をもたらすリソースとコード (顧客向けアプリケーションやバックエンドプロセス
など) の総称。

ワークストリーム

特定のタスクセットを担当する移行プロジェクト内の機能グループ。各ワークストリームは独立
していますが、プロジェクト内の他のワークストリームをサポートしています。たとえば、ポー
トフォリオワークストリームは、アプリケーションの優先順位付け、ウェーブ計画、および移行
メタデータの収集を担当します。ポートフォリオワークストリームは、これらの設備を移行ワー
クストリームで実現し、サーバーとアプリケーションを移行します。

WORM

「書き込み 1 回」、「読み取り多数」を参照してください。

WQF

AWS 「ワークロード認定フレームワーク」を参照してください。

write once, read many (WORM)

データを 1 回書き込み、データの削除や変更を防ぐストレージモデル。承認されたユーザーは、
必要な回数だけデータを読み取ることができますが、変更することはできません。このデータス
トレージインフラストラクチャはイミュータブルと見なされます。

Z

ゼロデイエクスプロイト

ゼロデイ脆弱性を利用する攻撃、通常はマルウェア。

ゼロデイ脆弱性

実稼働システムにおける未解決の欠陥または脆弱性。脅威アクターは、このような脆弱性を利用
してシステムを攻撃する可能性があります。開発者は、よく攻撃の結果で脆弱性に気付きます。

ゼロショットプロンプト

LLM にタスクを実行する手順を提供しますが、タスクのガイドに役立つ例 (ショット) はありま
せん。LLM は、事前トレーニング済みの知識を使用してタスクを処理する必要があります。ゼロ
ショットプロンプトの有効性は、タスクの複雑さとプロンプトの品質によって異なります。「数
ショットプロンプト」も参照してください。

Z 57

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

ゾンビアプリケーション

平均 CPU およびメモリ使用率が 5% 未満のアプリケーション。移行プロジェクトでは、これら
のアプリケーションを廃止するのが一般的です。

Z 58

AWS 規範ガイダンス AWS クラウド用の従来の Java EE アプリケーションのコンテナ化

翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛
盾がある場合、英語版が優先します。

lix

	AWS 規範ガイダンス
	Table of Contents
	AWS クラウド用の従来の Java EE アプリケーションのコンテナ化
	概要

	コンテナベースのアプリケーション設計
	Java EE のリプラットフォームに関する課題
	コンテナベースのアプリケーション設計におけるベストプラクティス

	移行アプローチ
	検出と計画のプロセスを開始する
	高い可用性とスケーラビリティを実現するクラスタリングオプションを理解する
	ベンダー固有のパッケージにおける互換性を評価する
	ターゲットコンテナプラットフォームを選択する
	自動化テストに備える

	技術領域
	1. セッション状態
	2. [エージェント]
	3. アプリケーションサーバー
	4. ファイルストア
	5. 構築とデプロイのプロセス
	6. データベースアクセス

	その他の考慮事項
	小さなベースイメージを使用する
	コンテナ対応の JDK バージョンにアップグレードする

	リソース
	リファレンス
	ツール

	ドキュメント履歴
	AWS 規範ガイダンスの用語集
	数字
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	

