
デベロッパーガイド

AWS データベース暗号化 SDK

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS データベース暗号化 SDK デベロッパーガイド

AWS データベース暗号化 SDK: デベロッパーガイド

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon の商標およびトレードドレスはAmazon 以外の製品およびサービスに使用することはできま
せん。また、お客様に誤解を与える可能性がある形式で、または Amazon の信用を損なう形式で使
用することもできません。Amazon が所有していないその他のすべての商標は Amazon との提携、
関連、支援関係の有無にかかわらず、それら該当する所有者の資産です。

AWS データベース暗号化 SDK デベロッパーガイド

Table of Contents
AWS Database Encryption SDK とは .. 1

オープンソースリポジトリで開発 ... 3
サポートとメンテナンス .. 3
フィードバックを送る ... 3
概念 .. 4

エンベロープ暗号化 .. 5
データキー .. 6
ラッピングキー ... 7
キーリング .. 8
暗号化アクション .. 8
マテリアル記述 ... 9
暗号化コンテキスト .. 10
暗号化マテリアルマネージャー .. 10
対称暗号化と非対称暗号化 ... 11
キーコミットメント .. 11
デジタル署名 ... 12

仕組み .. 13
暗号化および署名 .. 14
復号および検証 ... 15

サポートされているアルゴリズムスイート ... 16
デフォルトのアルゴリズムスイート ... 19
ECDSA デジタル署名を使用しない AES-GCM ... 20

の操作 AWS KMS .. 22
SDK の設定 .. 24

プログラミング言語の選択 .. 24
ラッピングキーの選択 ... 24
検出フィルターの作成 ... 26
マルチテナンシーデータベースの使用 .. 27
署名付きビーコンの作成 .. 28

キーストア .. 35
キーストアの用語と概念 .. 35
最小特権のアクセス許可の実装 ... 36
キーストアを作成する ... 37
キーストアアクションを設定する ... 38

iii

AWS データベース暗号化 SDK デベロッパーガイド

キーストアアクションを設定する .. 39
ブランチキーを作成する .. 42
アクティブなブランチキーをローテーションする .. 45

キーリング .. 48
キーリングのしくみ ... 49
AWS KMS キーリング .. 50

AWS KMS キーリングに必要なアクセス許可 .. 51
AWS KMS キーリング AWS KMS keys での の識別 .. 51
AWS KMS キーリングの作成 ... 52
マルチリージョンの使用 AWS KMS keys .. 55
AWS KMS 検出キーリングの使用 .. 58
AWS KMS リージョン検出キーリングの使用 .. 60

AWS KMS 階層キーリング ... 62
仕組み .. 64
前提条件 .. 66
必要なアクセス許可 .. 67
キャッシュを選択する .. 67
階層キーリングを作成する ... 77
検索可能な暗号化のための階層キーリングの使用 ... 83

AWS KMS ECDH キーリング ... 87
AWS KMS ECDH キーリングに必要なアクセス許可 .. 88
AWS KMS ECDH キーリングの作成 ... 88
AWS KMS ECDH 検出キーリングの作成 .. 92

Raw AES キーリング .. 95
Raw RSA キーリング .. 97
Raw ECDH キーリング ... 101

Raw ECDH キーリングの作成 .. 102
マルチキーリング .. 111

検索可能な暗号化 ... 116
ビーコンが適しているデータセット .. 117
検索可能な暗号化のシナリオ .. 120
ビーコン ... 121

標準ビーコン ... 122
複合ビーコン ... 124

ビーコンの計画 .. 125
マルチテナンシーデータベースに関する考慮事項 ... 126

iv

AWS データベース暗号化 SDK デベロッパーガイド

ビーコンのタイプの選択 ... 126
ビーコンの長さの選択 .. 133
ビーコン名の選択 .. 139

ビーコンの設定 .. 140
標準ビーコンの設定 .. 141
複合ビーコンの設定 .. 150
設定例 .. 161

ビーコンの使用 .. 166
ビーコンのクエリ .. 169

マルチテナンシーデータベースの検索可能な暗号化 .. 170
マルチテナンシーデータベース内のビーコンのクエリ .. 173

Amazon DynamoDB ... 175
クライアント側とサーバー側の暗号化 .. 176
どのフィールドが暗号化および署名されますか? ... 178

暗号化の属性値 ... 179
項目の署名 .. 179

DynamoDB での検索可能な暗号化 ... 180
ビーコンを使用したセカンダリインデックスの設定 ... 180
ビーコン出力のテスト .. 182

データモデルの更新 ... 188
新しい ENCRYPT_AND_SIGN、SIGN_ONLY、および
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を追加する 189
既存の属性を削除する .. 190
既存のENCRYPT_AND_SIGN属性を SIGN_ONLYまたは に変更する
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT .. 191
既存の SIGN_ONLYまたは SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を に変
更する ENCRYPT_AND_SIGN .. 191
新しい DO_NOTHING 属性を追加する .. 192
既存の SIGN_ONLY 属性を SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT に変更す
る ... 193
既存の SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を SIGN_ONLY に変更す
る ... 193

プログラミング言語 ... 194
Java ... 194
.NET .. 230
Rust ... 246

v

AWS データベース暗号化 SDK デベロッパーガイド

レガシー ... 252
AWS Database Encryption SDK for DynamoDB バージョンのサポート 252
仕組み .. 253
概念 ... 256
暗号マテリアルプロバイダー .. 261
プログラミング言語 .. 291
データモデルの変更 .. 319
トラブルシューティング ... 324

DynamoDB Encryption Client の名前の変更 .. 328
参照資料 .. 330

マテリアルの説明の形式 .. 330
AWS KMS 階層キーリングの技術的な詳細 .. 333

ドキュメント履歴 ... 335
.. cccxxxvii

vi

AWS データベース暗号化 SDK デベロッパーガイド

AWS Database Encryption SDK とは

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

AWS Database Encryption SDK は、データベース設計にクライアント側の暗号化を含めることがで
きる一連のソフトウェアライブラリです。 AWS Database Encryption SDK は、レコードレベルの暗
号化ソリューションを提供します。どのフィールドを暗号化し、データの真正性を保証する署名に
どのフィールドを含めるかを指定します。伝送中および保管時の機密データを暗号化することで、
AWSなどのサードパーティーがお客様のプレーンテキストデータを使用することはできません。
AWS Database Encryption SDK は、Apache 2.0 ライセンスに基づいて、無償で提供されています。

このデベロッパーガイドでは、 AWS Database Encryption SDK の概念的な概要について説明しま
す。これには、アーキテクチャの概要、データを保護する方法の詳細、サーバー側の暗号化との違
い、使用開始に役立つアプリケーションの重要なコンポーネントの選択に関するガイダンスが含まれ
ます。

AWS Database Encryption SDK は、属性レベルの暗号化で Amazon DynamoDB をサポートしま
す。

AWS Database Encryption SDK には次の利点があります。

データベースアプリケーション向けに特別に設計

AWS Database Encryption SDK を使用するには、暗号化のエキスパートである必要はありませ
ん。この実装には、既存のアプリケーションで動作するように設計されたヘルパーメソッドが含
まれます。

必要なコンポーネントを作成して設定すると、暗号化クライアントは、データベースへの追加時
にレコードを透過的に暗号化して署名し、取得時に検証および復号します。

セキュアな暗号化と署名を含む

AWS Database Encryption SDK には、一意のデータ暗号化キーを使用して各レコードのフィール
ド値を暗号化し、フィールドの追加や削除、暗号化された値のスワップなどの不正な変更から保
護するためにレコードに署名する安全な実装が含まれています。

1

AWS データベース暗号化 SDK デベロッパーガイド

ソースの暗号化マテリアルを使用する

AWS Database Encryption SDK は、キーリングを使用して、レコードを保護する一意のデータ暗
号化キーを生成、暗号化、復号します。キーリングは、そのデータキーを暗号化するラッピング
キーを決定します。

AWS Key Management Service (AWS KMS) や AWS CloudHSM などの暗号化サービスを含む、
任意のソースからのラッピングキーを使用できます。 AWS Database Encryption SDK には、
AWS アカウント や AWS のサービスは必要ありません。

暗号マテリアルのキャッシュのサポート

AWS KMS 階層キーリングは、Amazon DynamoDB テーブルに保持されている AWS KMS 保護
されたブランチキーを使用し、暗号化および復号オペレーションで使用されるブランチキーマテ
リアルをローカルにキャッシュすることで AWS KMS 、呼び出しの数を減らす暗号化マテリア
ルキャッシュソリューションです。これにより、レコードを暗号化または復号 AWS KMS する
たびに を呼び出すことなく、対称暗号化 KMS キーで暗号化マテリアルを保護できます。 AWS
KMS 階層キーリングは、呼び出しを最小限に抑える必要があるアプリケーションに適しています
AWS KMS。

検索可能な暗号化

データベース全体を復号せずに、暗号化されたレコードを検索できるデータベースを設計できま
す。脅威モデルとクエリ要件に応じて、検索可能な暗号化を使用して、暗号化されたデータベー
スに対して完全一致検索やよりカスタマイズされた複雑なクエリを実行できます。

マルチテナンシーデータベーススキーマのサポート

AWS Database Encryption SDK を使用すると、各テナントを個別の暗号化マテリアルで分離する
ことで、共有スキーマを使用してデータベースに保存されているデータを保護できます。データ
ベース内で暗号化オペレーションを実行するユーザーが複数いる場合は、いずれかの AWS KMS
キーリングを使用して、暗号化オペレーションで使用する個別のキーを各ユーザーに提供しま
す。詳細については、「マルチテナンシーデータベースの使用」を参照してください。

シームレスなスキーマ更新のサポート

AWS Database Encryption SDK を設定するときは、暗号化および署名するフィールド、署名する
フィールド (暗号化しない）、無視するフィールドをクライアントに伝える暗号化アクションを
提供します。 AWS Database Encryption SDK を使用してレコードを保護した後でも、データモ
デルを変更できます。暗号化されたフィールドの追加や削除などの暗号化アクションを単一のデ
プロイで更新できます。

2

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS データベース暗号化 SDK デベロッパーガイド

オープンソースリポジトリで開発

AWS Database Encryption SDK は、GitHub のオープンソースリポジトリで開発されています。これ
らのリポジトリを使用して、コードを表示したり、問題を読んで送信したりできるほか、実装に固有
の情報を検索することもできます。

Database AWS Encryption SDK for DynamoDB

• GitHub の aws-database-encryption-sdk-dynamodb リポジトリは、Java、.NET、Rust の AWS
Database Encryption SDK for DynamoDB の最新バージョンをサポートしています。

AWS Database Encryption SDK for DynamoDB は、Dafny の製品です。Dafny は、仕様、実装す
るコード、およびテストするための証明を記述する検証対応言語です。その結果、機能の正確性を
保証するフレームワークで AWS Database Encryption SDK for DynamoDB の機能を実装するライ
ブラリが作成されます。

サポートとメンテナンス

AWS Database Encryption SDK は、バージョニングやライフサイクルフェーズを含め、 AWS SDK
とツールが使用するのと同じメンテナンスポリシーを使用します。ベストプラクティスとして、デー
タベースの実装には AWS Database Encryption SDK の利用可能な最新バージョンを使用し、新しい
バージョンがリリースされたらアップグレードすることをお勧めします。

詳細については、AWS SDKs とツールのリファレンスガイド」の「 SDK とツールのメンテナンスポ
リシー AWS SDKs 」を参照してください。

フィードバックを送る

当社では、お客様からのフィードバックをお待ちしております。質問、コメント、ご報告いただく問
題がある場合は、以下のリソースをご利用ください。

AWS Database Encryption SDK で潜在的なセキュリティ脆弱性が見つかった場合は、AWS セキュリ
ティに通知してください。GitHub で公開されている問題はご報告いただく必要はありません。

このドキュメントに関するフィードバックを提供するには、任意のページのフィードバックリンクを
使用します。

オープンソースリポジトリで開発 3

https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/dafny-lang/dafny/blob/master/README.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://aws.amazon.com/security/vulnerability-reporting/
https://aws.amazon.com/security/vulnerability-reporting/

AWS データベース暗号化 SDK デベロッパーガイド

AWS Database Encryption SDK の概念

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

このトピックでは、 AWS Database Encryption SDK で使用される概念と用語について説明します。

AWS Database Encryption SDK のコンポーネントがどのように相互作用するかについては、「」を
参照してくださいAWS Database Encryption SDK の仕組み。

AWS Database Encryption SDK の詳細については、以下のトピックを参照してください。

• AWS Database Encryption SDK がエンベロープ暗号化を使用してデータを保護する方法について
説明します。

• エンベロープ暗号化の要素、レコードを保護するデータキーおよびデータキーを保護するラッピン
グキーについての説明。

• どのラッピングキーを使用するかを決めるキーリングについての説明。

• 暗号化プロセスの整合性を向上させる暗号化コンテキストについての説明。

• 暗号化メソッドがレコードに追加するマテリアルの説明について説明します。

• どのフィールドを暗号化して署名するかを AWS Database Encryption SDK に指示する暗号化アク
ションについて説明します。

トピック

• エンベロープ暗号化

• データキー

• ラッピングキー

• キーリング

• 暗号化アクション

• マテリアル記述

• 暗号化コンテキスト

• 暗号化マテリアルマネージャー

• 対称暗号化と非対称暗号化

概念 4

AWS データベース暗号化 SDK デベロッパーガイド

• キーコミットメント

• デジタル署名

エンベロープ暗号化

暗号化されたデータのセキュリティは、復号できるデータキーを保護することによって部分的に異
なります。1 つの受け入れられているデータキーを保護するベストプラクティスは暗号化することで
す。これを行うには、キー暗号化キーつまりラッピングキーと呼ばれる別の暗号化キーが必要です。
データキーを暗号化するためにラッピングキーを使用するこの方法はエンベロープ暗号化と呼ばれて
います。

データキーの保護

AWS Database Encryption SDK は、各フィールドを一意のデータキーで暗号化します。その後、
指定したラッピングキーで各データキーを暗号化します。暗号化されたデータキーをマテリアル
の説明に格納します。

ラッピングキーを指定するには、キーリングを使用します。

複数のラッピングキーで同じデータを暗号化する

複数のラッピングキーを使用してデータキーを暗号化できます。ユーザーごとに異なるラッピン
グキーを指定したり、異なるタイプのラッピングキーを指定したり、場所ごとにそのように指
定したい場合があります。各ラッピングキーでは、それぞれ同じデータキーを暗号化します。
AWS Database Encryption SDK は、暗号化されたすべてのデータキーを暗号化されたフィールド
とともにマテリアルの説明に保存します。

エンベロープ暗号化 5

AWS データベース暗号化 SDK デベロッパーガイド

データを復号するには、この暗号化されたデータキーを復号できる少なくとも 1 つのラッピング
キーを指定する必要があります。

複数のアルゴリズムの強度の結合

デフォルトでは、 AWS Database Encryption SDK は、AES-GCM 対称暗号化、HMAC ベース
のキー取得関数 (HKDF)、および ECDSA 署名を使用するアルゴリズムスイートを使用します。
データキーを暗号化するには、ラッピングキーに適した対称または非対称の暗号化アルゴリズ
ムを指定できます。

一般的に、対称キー暗号化アルゴリズムは迅速で、非対称またはパブリックキー暗号化よりも小
さい暗号化テキストが生成されます。ただし、パブリックキーアルゴリズムはロールの本質的
な分離を提供します。それぞれの長所を組み合わせるために、パブリックキー暗号化を使用して
データキーを暗号化できます。

可能な限り、いずれかの AWS KMS キーリングを使用することをお勧めします。AWS KMS キー
リングを使用する場合、ラッピングキー AWS KMS key として非対称 RSA を指定することで、
複数のアルゴリズムの長所を組み合わせることができます。また、対称暗号化 KMS キーを使用
することもできます。

データキー

データキーは、 AWS Database Encryption SDK が暗号化アクションENCRYPT_AND_SIGNでマーク
されたレコード内のフィールドを暗号化するために使用する暗号化キーです。各データキーは、暗号
化キーの要件に準拠したバイト配列です。 AWS Database Encryption SDK は、一意のデータキーを
使用して各属性を暗号化します。

データキーを指定、生成、実装、拡張、保護、使用する必要はありません。 AWS Database
Encryption SDK で暗号化オペレーションや復号オペレーションを呼び出しても、上記のアクション
は行われません。

データキーを保護するために、 AWS Database Encryption SDK はラッピングキーと呼ばれる 1 つ以
上のキー暗号化キーでデータキーを暗号化します。 AWS Database Encryption SDK は、プレーンテ
キストのデータキーを使用してデータを暗号化した後、できるだけ早くメモリから削除します。その
後、暗号化されたデータキーをマテリアルの説明に格納します。詳細については、「AWS Database
Encryption SDK の仕組み」を参照してください。

データキー 6

AWS データベース暗号化 SDK デベロッパーガイド

Tip

AWS Database Encryption SDK では、データキーとデータ暗号化キーを区別します。ベスト
プラクティスとして、サポートされているすべてのアルゴリズムスイートは鍵導出関数を使
用します。鍵導出関数は、データキーを入力として受け取り、レコードの暗号化に実際に使
用されたデータ暗号化キーを返します。そのため、データは、データキー「によって」暗号
化されているというよりは、データキーの「下で」暗号化されていると言えます。

暗号化された各データキーには、暗号化したラッピングキーの識別子を含むメタデータが含まれま
す。このメタデータにより、 AWS Database Encryption SDK は復号時に有効なラッピングキーを識
別できます。

ラッピングキー

ラッピングキーは、 AWS Database Encryption SDK がレコードを暗号化するデータキーを暗号化す
るために使用するキー暗号化キーです。各データキーは、1 つまたは複数のラッピングキーで暗号化
することができます。キーリングの設定時に、データの保護に使用するラッピングキーを決定しま
す。

AWS Database Encryption SDK は、 AWS Key Management Service (AWS KMS) 対称暗号化 KMS
キー (マルチリージョンキーを含む AWS KMS) と非対称 RSA KMS キー、raw AES-GCM (Advanced
Encryption Standard/Galois Counter Mode) キー、raw RSA キーなど、一般的に使用されるラッピン
グキーをいくつかサポートしています。可能な場合は常に、KMS キーを使用することをお勧めしま
す。どのラッピングキーを使用すべきかを知るには、「ラッピングキーの選択」を参照してくださ
い。

エンベロープ暗号化を使用する場合は、認可されていないアクセスからラッピングキーを保護する必
要があります。これは、次のいずれかの方法で行うことができます。

• この目的のために設計された AWS Key Management Service (AWS KMS) などのサービスを使用
します。

ラッピングキー 7

https://en.wikipedia.org/wiki/Key_derivation_function
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/asymmetric-key-specs.html#key-spec-rsa
https://aws.amazon.com/kms/

AWS データベース暗号化 SDK デベロッパーガイド

• https://en.wikipedia.org/wiki/Hardware_security_module によって提供されているようなAWS
CloudHSMハードウェアセキュリティモジュール (HSM) を使用します。

• 他のキー管理ツールやサービスを使用します。

キー管理システムがない場合は、 をお勧めします AWS KMS。 AWS Database Encryption SDK は
と統合 AWS KMS され、ラッピングキーの保護と使用に役立ちます。

キーリング

暗号化と復号に使用するラッピングキーを指定するには、キーリングを使用します。 AWS
Database Encryption SDK が提供するキーリングを使用することも、独自の実装を設計することもで
きます。

キーリングは、データキーの生成、暗号化、復号を行います。また、署名内の Hash-Based
Message Authentication Code (HMAC) を計算するために使用される MAC キーも生成します。キー
リングを定義するとき、データキーを暗号化するラッピングキーを指定できます。ほとんどのキー
リングは、少なくとも 1 つのラッピングキーを指定するか、ラッピングキーを提供および保護する
サービスを指定します。暗号化時に、 AWS Database Encryption SDK はキーリングで指定されたす
べてのラッピングキーを使用してデータキーを暗号化します。 AWS Database Encryption SDK が定
義するキーリングの選択と使用については、「キーリングの使用」を参照してください。

暗号化アクション

暗号化アクションは、レコード内の各フィールドに対してどのアクションを実行するかを暗号化プロ
グラムに指示します。

暗号化アクションの値は次のいずれかになります。

• [暗号化して署名] – フィールドを暗号化します。暗号化されたフィールドを署名に含めます。

• [署名のみ] – 署名にフィールドを含めます。

• 署名して暗号化コンテキストに含める – 署名と暗号化コンテキストに フィールドを含めます。

デフォルトでは、暗号化コンテキストに含まれる属性はパーティションキーとソートキーのみで
す。AWS KMS 階層キーリングのブランチキー ID サプライヤーが暗号化コンテキストからの復号
化に必要なブランチキーを識別SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTできるように、
追加のフィールドを として定義することを検討してください。詳細については、「ブランチキー
ID サプライヤー」を参照してください。

キーリング 8

https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/cloudhsm/

AWS データベース暗号化 SDK デベロッパーガイド

Note

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 暗号化アクションを使用するには、
AWS Database Encryption SDK のバージョン 3.3 以降を使用する必要があります。デー
タモデルを更新して を含める前に、すべてのリーダーに新しいバージョンをデプロイしま
すSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

• [何もしない] – フィールドを暗号化したり、署名に含めたりしません。

機密データを格納できるすべてのフィールドは、暗号化と署名を使用します。プライマリキー値
(DynamoDB テーブルのパーティションキーやソートキーなど) には、署名のみまたは署名を使用し
て暗号化コンテキストに を含めます。Sign を指定し、暗号化コンテキスト属性に含める場合、パー
ティション属性とソート属性も Sign で、暗号化コンテキストに含める必要があります。マテリアル
の説明に暗号化アクションを指定する必要はありません。 AWS Database Encryption SDK は、マテ
リアルの説明が保存されているフィールドに自動的に署名します。

暗号化アクションは慎重に選択してください。不確かな場合は、暗号化
と署名を使用します。 AWS Database Encryption SDK を使用してレコー
ドを保護すると、既存の ENCRYPT_AND_SIGN、SIGN_ONLY、または
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTフィールドを に変更したりDO_NOTHING、既存
のDO_NOTHINGフィールドに割り当てられた暗号化アクションを変更したりすることはできません。
ただし、データモデルに他の変更を加えることはできます。例えば、単一のデプロイで暗号化フィー
ルドを追加または削除できます。

マテリアル記述

マテリアルの説明は、暗号化されたレコードのヘッダーとして機能します。 AWS Database
Encryption SDK を使用してフィールドを暗号化して署名すると、エンクリプタは暗号化マテリア
ルをアセンブルするときにマテリアルの説明を記録し、エンクリプタがレコードに追加する新しい
フィールド (aws_dbe_head) にマテリアルの説明を保存します。

マテリアルの説明は、データキーの暗号化されたコピーと、暗号化アルゴリズム、暗号化コンテキス
ト、暗号化と署名の命令などの他の情報を含む、ポータブルな形式のデータ構造です。暗号化プログ
ラムは、暗号化および署名のために暗号マテリアルをアセンブルする際に、マテリアルの説明を記録
します。後で、フィールドを検証および復号するために暗号マテリアルをアセンブルする必要がある
場合は、そのマテリアルの説明をガイドとして使用します。

マテリアル記述 9

AWS データベース暗号化 SDK デベロッパーガイド

暗号化されたデータキーを暗号化されたフィールドと一緒に格納すると、復号オペレーションが合理
化され、暗号化されたデータキーを、そのキーで暗号化したデータとは別に格納および管理する必要
がなくなります。

マテリアルの説明に関する技術的な情報については、「マテリアルの説明の形式」を参照してくださ
い。

暗号化コンテキスト

暗号化オペレーションのセキュリティを向上させるために、 AWS Database Encryption SDK には、
レコードを暗号化して署名するためのすべてのリクエストに暗号化コンテキストが含まれています。

暗号化コンテキストは、任意のシークレットではない追加認証データを含む名前と値のペアの
セットです。 AWS Database Encryption SDK には、データベースの論理名とプライマリキー値
(DynamoDB テーブルのパーティションキーやソートキーなど) が暗号化コンテキストに含まれま
す。フィールドを暗号化して、これに署名する場合、暗号化コンテキストは暗号化されたレコードに
暗号化されてバインドされます。これにより、フィールドを復号するために同じ暗号化コンテキスト
が必要になります。

AWS KMS キーリングを使用する場合、 AWS Database Encryption SDK は暗号化コンテキストも使
用して、キーリングが行う呼び出しで追加の認証データ (AAD) を提供します AWS KMS。

デフォルトのアルゴリズムスイートを使用するたびに、暗号マテリアルマネージャー (CMM) は、予
約名 aws-crypto-public-key と、パブリック検証キーを表す値で構成される名前と値のペアを
暗号化コンテキストに追加します。パブリック検証キーはマテリアルの説明に格納されます。

暗号化マテリアルマネージャー

暗号マテリアルマネージャー (CMM) は、データの暗号化、復号、署名に使用される暗号マテリア
ルを組み立てます。デフォルトのアルゴリズムスイートを使用する場合、暗号マテリアルには、プ
レーンテキストおよび暗号化されたデータキー、対称署名キー、および非対称署名キーが含まれま
す。CMM を直接操作することは決してありません。このためには、暗号化メソッドおよび復号メ
ソッドを使用します。

CMM は AWS Database Encryption SDK とキーリングの間の連絡係として機能するため、ポリシー
の適用のサポートなど、カスタマイズと拡張に最適なポイントです。CMM を明示的に指定すること
はできますが、必須ではありません。キーリングを指定すると、 AWS Database Encryption SDK は
デフォルトの CMM を作成します。デフォルトの CMM は、指定したキーリングから暗号化マテリア
ルまたは復号マテリアルを取得します。これには、AWS Key Management Service (AWS KMS) など
の暗号化サービスの呼び出しが含まれる場合があります。

暗号化コンテキスト 10

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS データベース暗号化 SDK デベロッパーガイド

対称暗号化と非対称暗号化

対称暗号化では、データの暗号化と復号化に同じキーが使用されます。

非対称暗号化では、数学的に関連するデータキーペアが使用されます。ペアの 1 つのキーでデータ
が暗号化され、ペアの他のキーだけでデータが復号されます。

AWS Database Encryption SDK はエンベロープ暗号化を使用します。データは対称データキーで暗
号化されます。対称データキーを 1 つ以上の対称または非対称のラッピングキーで暗号化します。
データキーの暗号化されたコピーを少なくとも 1 つ含むマテリアルの説明をレコードに追加しま
す。

データの暗号化 (対称暗号化)

AWS Database Encryption SDK は、データを暗号化するために、対称データキーと、対称暗号
化アルゴリズムを含むアルゴリズムスイートを使用します。データを復号するために、 AWS
Database Encryption SDK は同じデータキーと同じアルゴリズムスイートを使用します。

データキーの暗号化 (対称暗号化または非対称暗号化)

暗号化および復号のオペレーションに指定するキーリングにより、対称データキーの暗号化およ
び復号方法が決まります。対称暗号化 KMS キーを持つ キーリングなどの対称暗号化を使用する
AWS KMS キーリング、または非対称 RSA KMS キーを持つ キーリングなどの AWS KMS 非対
称暗号化を使用するキーリングを選択できます。

キーコミットメント

AWS Database Encryption SDK は、キーコミットメント (堅牢性とも呼ばれます) をサポートしま
す。これは、各暗号文を 1 つのプレーンテキストにのみ復号化できるようにするセキュリティプロ
パティです。これを実行するために、キーコミットメントを使用することで、レコードを暗号化した
データキーのみが復号に使用されるようになります。 AWS Database Encryption SDK には、すべて
の暗号化および復号オペレーションに対するキーコミットメントが含まれています。

最新の対称暗号 (AES を含む) のほとんどは、 AWS Database Encryption SDK がレコー
ドENCRYPT_AND_SIGNでマークされた各プレーンテキストフィールドを暗号化するために使用す
る一意のデータキーなど、単一のシークレットキーでプレーンテキストを暗号化します。同じデー
タキーでこのレコードを復号すると、元のデータと同じプレーンテキストが返されます。別のキーで
復号化すると、通常は失敗します。2 つの異なるキーを使用して暗号文を復号することは難しいです
が、技術的には可能です。まれに、数バイトの暗号化テキストを別の理解可能なプレーンテキストに
部分的に複号できるキーを見つけることは可能です。

対称暗号化と非対称暗号化 11

AWS データベース暗号化 SDK デベロッパーガイド

AWS Database Encryption SDK は、常に 1 つの一意のデータキーで各属性を暗号化します。複数の
ラッピングキーでそのデータキーを暗号化する場合がありますが、ラッピングキーは常に同じデー
タキーを暗号化します。ただし、手動で作成した高度な暗号化されたレコードには、実際には異な
るデータキーが含まれて、それぞれ異なるラッピングキーによって暗号化されることがあります。例
えば、あるユーザーが暗号化されたレコードを復号すると 0x0 (false) を返し、同じ暗号化されたレ
コードを別のユーザーが復号すると 0x1 (true) となることがあります。

このシナリオを防ぐために、 AWS Database Encryption SDK には暗号化および復号時にキーコミッ
トメントが含まれています。暗号化メソッドは、暗号文を生成した一意のデータキーを、データ
キーの導出を使用してマテリアルの説明に基づいて計算された Hash-based Message Authentication
Code (HMAC) であるキーコミットメントに暗号的にバインドします。その後、キーコミットメン
トをマテリアルの説明に格納します。キーコミットメントを使用してレコードを復号すると、 AWS
Database Encryption SDK は、データキーがその暗号化されたレコードの唯一のキーであることを確
認します。データキーの検証が失敗すると、復号オペレーションは失敗します。

デジタル署名

AWS Database Encryption SDK は、認証された暗号化アルゴリズム、AES-GCM、および復号プロ
セスを使用してデータを暗号化し、デジタル署名を使用せずに暗号化されたメッセージの整合性と信
頼性を検証します。しかし、AES-GCM は対称キーを使用するため、暗号化テキストの復号化に使用
されるデータキーを復号できる人は誰でも、新しい暗号化された暗号化テキストを手動で作成できる
ようになり、セキュリティ上の懸念が生じる可能性があります。たとえば、 をラッピングキー AWS
KMS key として使用すると、 アクセスkms:Decrypt許可を持つユーザーは、 を呼び出さずに暗号
化された暗号文を作成できますkms:Encrypt。

この問題を回避するために、デフォルトのアルゴリズムスイートは、暗号化されたレコードに
Elliptic Curve Digital Signature Algorithm (ECDSA) 署名を追加します。デフォルトのアルゴリズム
スイートは、認証された暗号化アルゴリズムである AES-GCM を使用して ENCRYPT_AND_SIGN と
マークされたレコード内のフィールドを暗号化します。次に、、、および とマークされたレコード
のフィールドでSIGN_ONLY、ハッシュベースのメッセージ認証コード (HMACs) と非対称 ECDSA
ENCRYPT_AND_SIGN署名の両方を計算しますSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。
復号プロセスでは、署名を使用して、認可されたユーザーがレコードを暗号化したことを検証しま
す。

デフォルトのアルゴリズムスイートを使用すると、 AWS Database Encryption SDK は暗号化された
レコードごとに一時的なプライベートキーとパブリックキーのペアを生成します。 AWS Database
Encryption SDK は、パブリックキーをマテリアルの説明に保存し、プライベートキーを破棄しま
す。これにより、パブリックキーで検証する別の署名を誰も作成できなくなります。このアルゴリ

デジタル署名 12

AWS データベース暗号化 SDK デベロッパーガイド

ズムは、マテリアルの説明で、暗号化されたデータキーを追加の認証済みデータとしてバインドし、
フィールドを復号化できるユーザーがパブリックキーを変更したり、署名の検証に影響を与えたりす
るのを防ぎます。

AWS Database Encryption SDK には、常に HMAC 検証が含まれています。ECDSA デジタル署名は
デフォルトで有効になっていますが、必須ではありません。データを暗号化するユーザーとデータを
復号するユーザーが同等に信頼されている場合は、パフォーマンスを改善するためにデジタル署名を
含まないアルゴリズムスイートの使用を検討することをお勧めします。代替アルゴリズムスイートの
選択の詳細については、「アルゴリズムスイートの選択」を参照してください。

Note

キーリングがエンクリプタと復号器を区別しない場合、デジタル署名は暗号化値を提供しま
せん。

非対称 RSA AWS KMS キーリングを含む AWS KMS キーリングは、 AWS KMS キーポリシーと
IAM ポリシーに基づいて、エンクリプタと復号子を区別できます。

暗号化の性質上、次のキーリングはエンクリプタと復号器を区別できません。

• AWS KMS 階層キーリング

• AWS KMS ECDH キーリング

• Raw AES キーリング

• Raw RSA キーリング

• Raw ECDH キーリング

AWS Database Encryption SDK の仕組み

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

AWS Database Encryption SDK は、データベースに保存するデータを保護するために特別に設計さ
れたクライアント側の暗号化ライブラリを提供します。ライブラリには、拡張が可能でまた変更な

仕組み 13

AWS データベース暗号化 SDK デベロッパーガイド

しで使用できる安全な実装が含まれています。カスタムコンポーネントの定義と使用の詳細について
は、データベース実装の GitHub リポジトリを参照してください。

このセクションのワークフローでは、 AWS Database Encryption SDK がデータベース内のデータを
暗号化、署名、復号化、検証する方法について説明します。これらのワークフローは、抽象的な要素
とデフォルト機能を使用した基本的なプロセスを表します。 AWS Database Encryption SDK がデー
タベース実装と連携する方法の詳細については、「データベースの暗号化された内容」トピックを参
照してください。

AWS Database Encryption SDK は、エンベロープ暗号化を使用してデータを保護します。各レコー
ドは一意のデータキーで暗号化されます。データキーは、暗号化アクションで ENCRYPT_AND_SIGN
とマークされた各フィールドの一意のデータ暗号化キーを導出するために使用されます。その後、
データキーのコピーが、指定したラッピングキーによって暗号化されます。暗号化されたレコードを
復号するために、 AWS Database Encryption SDK は、指定したラッピングキーを使用して、少なく
とも 1 つの暗号化されたデータキーを復号します。その後、暗号文を復号し、プレーンテキストの
エントリを返すことができます。

AWS Database Encryption SDK で使用される用語の詳細については、「」を参照してくださいAWS
Database Encryption SDK の概念。

暗号化および署名

Database AWS Encryption SDK は、データベース内のレコードを暗号化、署名、検証、復号するレ
コードエンクリプタです。レコードに関する情報と、暗号化して署名するフィールドに関する指示が
取り込まれます。指定したラッピングキーから設定された暗号マテリアルマネージャーから、暗号マ
テリアルとその使用方法に関する指示を取得します。

次のチュートリアルでは、 AWS Database Encryption SDK がデータエントリを暗号化して署名する
方法について説明します。

1. 暗号化マテリアルマネージャーは、 AWS Database Encryption SDK に、1 つのプレーンテキス
トデータキー、指定されたラッピングキーで暗号化されたデータキーのコピー、MAC キーとい
う一意のデータ暗号化キーを提供します。 ???

Note

複数のラッピングキーでデータキーを暗号化できます。各ラッピングキーは、データ
キーの個別のコピーを暗号化します。 AWS Database Encryption SDK は、暗号化され
たすべてのデータキーをマテリアルの説明に保存します。 AWS Database Encryption

暗号化および署名 14

AWS データベース暗号化 SDK デベロッパーガイド

SDK は、マテリアルの説明を格納するレコードに新しいフィールド (aws_dbe_head)
を追加します。
MAC キーは、データキーの暗号化された各コピーについて導出されます。MAC キー
は、マテリアルの説明には格納されません。代わりに、復号メソッドは、ラッピング
キーを使用して MAC キーを再度導出します。

2. 暗号化メソッドは、指定した暗号化アクションで ENCRYPT_AND_SIGN とマークされた各
フィールドを暗号化します。

3. 暗号化メソッドは、データキーから commitKey を導出し、それを使用してキーコミットメント
の値を生成して、その後にデータキーを破棄します。

4. 暗号化メソッドは、マテリアルの説明をレコードに追加します。マテリアルの説明には、暗号化
されたデータキーと、暗号化されたレコードに関する他の情報が含まれます。マテリアルの説明
に含まれる情報の詳細なリストについては、「マテリアルの説明の形式」を参照してください。

5. 暗号化メソッドは、ステップ 1 で返された MAC キーを使用して、マテリアルの説明、暗号化
コンテキスト、および暗号化アクションSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTで
ENCRYPT_AND_SIGN、SIGN_ONLY、または とマークされた各フィールドの正規化における
Hash-Based Message Authentication Code (HMAC) 値を計算します。HMAC の値は、暗号化メ
ソッドがレコードに追加する新しいフィールド (aws_dbe_foot) に格納されます。

6. 暗号化メソッドは、マテリアルの説明、暗号化コンテキスト、および ENCRYPT_AND_SIGN、、
または とマークされた各フィールドの正規化にわたって ECDSA 署名を計
算SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTしSIGN_ONLY、ECDSA 署名を
aws_dbe_footフィールドに保存します。

Note

ECDSA 署名はデフォルトで有効になっていますが、必須ではありません。

7. 暗号化メソッドは、暗号化および署名されたレコードをデータベースに格納します。

復号および検証

1. 暗号マテリアルマネージャー (CMM) は、プレーンテキストのデータキーおよび関連付けられた
MAC キーを含む、マテリアルの説明に格納されている復号マテリアルを復号メソッドに提供し
ます。

復号および検証 15

AWS データベース暗号化 SDK デベロッパーガイド

• CMM は、指定されたキーリング内のラッピングキーを使用して暗号化されたデータキーを
復号し、プレーンテキストのデータキーを返します。

2. 復号メソッドは、マテリアルの説明内のキーコミットメントの値を比較および検証します。

3. 復号メソッドは、署名フィールド内の署名を検証します。

これはENCRYPT_AND_SIGN、定義した許可された認証されていないフィール
ドのリストから、、SIGN_ONLY、または とマークされているフィールドを識
別SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTします。 ???復号メソッドは、ス
テップ 1 で返された MAC キーを使用して、ENCRYPT_AND_SIGN、、SIGN_ONLYま
たは とマークされたフィールドの HMAC 値を再計算して比較しま
すSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。その後、暗号化コンテキストに格納され
ているパブリックキーを使用して ECDSA 署名を検証します。

4. 復号メソッドは、プレーンテキストデータキーを使用して、ENCRYPT_AND_SIGN とマークさ
れた各値を復号します。その後、 AWS Database Encryption SDK はプレーンテキストのデータ
キーを破棄します。

5. 復号方法は、プレーンテキストレコードを返します。

AWS Database Encryption SDK でサポートされているアルゴリズ
ムスイート

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

アルゴリズムスイートは、暗号化アルゴリズムと関連する値の集合です。暗号化システムは、アルゴ
リズムの実装を使用して暗号文を生成します。

AWS Database Encryption SDK は、アルゴリズムスイートを使用してデータベース内のフィールド
を暗号化して署名します。サポートされているすべてのアルゴリズムスイートは、AES-GCM と呼ば
れる Galois/Counter Mode (GCM) を備えた Advanced Encryption Standard (AES) アルゴリズムを使
用して、raw データを暗号化します。 AWS Database Encryption SDK は、256 ビットの暗号化キー
をサポートしています。認証タグの長さは常に 16 バイトです。

サポートされているアルゴリズムスイート 16

AWS データベース暗号化 SDK デベロッパーガイド

AWS Database Encryption SDK アルゴリズムスイート

アルゴリズ
ム

暗号化アル
ゴリズム

データキー
の長さ
(ビット)

キー導出ア
ルゴリズム

対称署名ア
ルゴリズム

対称署名ア
ルゴリズム

キーコミッ
トメント

デフォルト
値

AES-GCM 256 SHA-512
を使用する
HKDF

HMAC-
SHA-384

P-384
および
SHA-384
を使用する
ECDSA

SHA-512
を使用する
HKDF

ECDSA デ
ジタル署
名を使用し
ない AES-
GCM

AES-GCM 256 SHA-512
を使用する
HKDF

HMAC-
SHA-384

なし SHA-512
を使用する
HKDF

暗号化アルゴリズム

使用する暗号化アルゴリズムの名前とモード。 AWS Database Encryption SDK のアルゴリズム
スイートは、Galois/Counter Mode (GCM) で Advanced Encryption Standard (AES) アルゴリズム
を使用します。

データキーの長さ

データキーの長さ (ビット単位)。 AWS Database Encryption SDK は、256 ビットのデータキー
をサポートしています。データキーは、HMAC ベースのextract-and-expandキー取得関数 (HKDF)
への入力として使用されます。HKDF の出力は、暗号化アルゴリズムのデータ暗号化キーとして
使用されます。

キー導出アルゴリズム

データ暗号化キーを取得するために使用される、HMAC ベースの抽出および展開キー取得関数
(HKDF)。 AWS Database Encryption SDK は、RFC 5869 で定義された HKDF を使用します。

• 使用されるハッシュ関数は SHA-512 です

• 抽出ステップの場合

• ソルトは使用されません。RFC の場合、ソルトはゼロの文字列に設定されます。

サポートされているアルゴリズムスイート 17

https://tools.ietf.org/html/rfc5869

AWS データベース暗号化 SDK デベロッパーガイド

• 入力キーマテリアルは、キーリングのデータキーです。

• 展開ステップの場合

• 入力疑似ランダムキーは抽出ステップからの出力です。

• キーラベルは、ビッグエンディアンバイト順序の DERIVEKEY 文字列を UTF-8 でエンコード
したバイトです。

• 入力情報は、アルゴリズム ID とキー ラベルの連結です (この順序)。

• 出力キーマテリアルの長さはデータキーの長さです。この出力は、暗号化アルゴリズムの
データ暗号化キーとして使用されます。

対称署名アルゴリズム

対称署名の生成に使用される Hash-Based Message Authentication Code (HMAC) アルゴリズ
ム。サポートされているすべてのアルゴリズムスイートには、HMAC 検証が含まれています。

AWS Database Encryption SDK は、マテリアルの説明
と、ENCRYPT_AND_SIGN、、SIGN_ONLYまたは とマークされたすべてのフィールドをシリアル
化しますSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。次に、暗号化ハッシュ関数アルゴ
リズム (SHA-384) で HMAC を使用して正規化に署名します。

対称 HMAC 署名は、 AWS Database Encryption SDK がレコードに追加する新しいフィールド
(aws_dbe_foot) に保存されます。

対称署名アルゴリズム

非対称デジタル署名を生成するために使用される署名アルゴリズム。

AWS Database Encryption SDK は、マテリアルの説明
と、ENCRYPT_AND_SIGN、、SIGN_ONLYまたは とマークされたすべてのフィールドをシリアル
化しますSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。次に、楕円曲線デジタル署名アル
ゴリズム (ECDSA) を以下の詳細とともに使用して正規化に署名します。

• 使用される楕円曲線は、デジタル署名標準 (DSS) (FIPS PUB 186-4) で定義されている P-384
です。 http://doi.org/10.6028/NIST.FIPS.186-4

• 使用されるハッシュ関数は SHA-384 です。

非対称 ECDSA 署名は、 aws_dbe_footフィールドに対称 HMAC 署名とともに保存されます。

ECDSA デジタル署名はデフォルトで含まれていますが、必須ではありません。

キーコミットメント

コミットキーの取得に使用される HMAC extract-and-expandキー取得関数 (HKDF)。

サポートされているアルゴリズムスイート 18

http://doi.org/10.6028/NIST.FIPS.186-4

AWS データベース暗号化 SDK デベロッパーガイド

• 使用されるハッシュ関数は SHA-512 です

• 抽出ステップの場合

• ソルトは使用されません。RFC の場合、ソルトはゼロの文字列に設定されます。

• 入力キーマテリアルは、キーリングのデータキーです。

• 展開ステップの場合

• 入力疑似ランダムキーは抽出ステップからの出力です。

• 入力情報は、COMMITKEY文字列の UTF-8-encodedされたバイトをビッグエンディアンバイ
トの順序で表したものです。

• 出力キーマテリアルの長さは 256 ビットです。この出力はコミットキーとして使用されま
す。

コミットキーは、マテリアルの説明に対するレコードコミットメント、つまり個別の 256 ビット
のハッシュベースメッセージ認証コード (HMAC) ハッシュを計算します。アルゴリズムスイート
へのキーコミットメントの追加に関する技術的な説明については、Cryptology ePrint Archiveの
「Key Committing AEADs」を参照してください。

デフォルトのアルゴリズムスイート

デフォルトでは、 AWS Database Encryption SDK は、AES-GCM、HMAC extract-and-expandキー
取得関数 (HKDF)、HMAC 検証、ECDSA デジタル署名、キーコミットメント、および 256 ビット暗
号化キーを備えたアルゴリズムスイートを使用します。

デフォルトのアルゴリズムスイートには、HMAC 検証 (対称署名) と ECDSA デジタル署名 (非対称
署名) が含まれます。これらの署名は、 AWS Database Encryption SDK がレコードに追加する新し
いフィールド (aws_dbe_foot) に保存されます。ECDSA デジタル署名は、承認ポリシーで 1 つの
ユーザーのセットにデータの暗号化を許可し、別のユーザーのセットにデータの復号を許可する場合
に特に便利です。

デフォルトのアルゴリズムスイートは、データキーをレコードに結び付ける HMAC ハッシュである
キーコミットメントも取得します。キーコミットメント値は、マテリアルの説明とコミットキーから
計算された HMAC です。その後、キーコミットメントの値は、マテリアルの説明に格納されます。
キーのコミットメントにより、各暗号文は 1 つのプレーンテキストのみに確実に復号されます。こ
れは、暗号化アルゴリズムへの入力として使用されるデータキーを検証することによって行います。
暗号化時に、アルゴリズムスイートはキーコミットメント HMAC を取得します。復号する前に、
データキーが同じキーコミットメント HMAC を生成することを検証します。一致しない場合、復号
呼び出しは失敗します。

デフォルトのアルゴリズムスイート 19

https://eprint.iacr.org/2020/1153

AWS データベース暗号化 SDK デベロッパーガイド

ECDSA デジタル署名を使用しない AES-GCM

デフォルトのアルゴリズムスイートはほとんどのアプリケーションに適していますが、代替アルゴリ
ズムスイートを選択できます。例えば、一部の信頼モデルは、ECDSA デジタル署名のないアルゴリ
ズムスイートによって満たされます。このスイートは、データを暗号化するユーザーと復号するユー
ザーが同等に信頼されている場合にのみ使用してください。

すべての AWS Database Encryption SDK アルゴリズムスイートには、HMAC 検証 (対称署名) が含
まれています。唯一の違いは、ECDSA デジタル署名のない AES-GCM アルゴリズムスイートには、
信頼性と非否認のレイヤーを追加する非対称署名がないことです。

例えば、キーリング 、、wrappingKeyAwrappingKeyBおよび に複数のラッピングキーがあ
りwrappingKeyC、 を使用してレコードを復号する場合wrappingKeyA、HMAC 対称署名は、レ
コードが にアクセスできるユーザーによって暗号化されたことを確認しますwrappingKeyA。デ
フォルトのアルゴリズムスイートを使用した場合、HMACs の同じ検証を提供しwrappingKeyA、さ
らに ECDSA デジタル署名を使用して、レコードが の暗号化アクセス許可を持つユーザーによって
暗号化されたことを確認しますwrappingKeyA。

デジタル署名なしで AES-GCM アルゴリズムスイートを選択するには、暗号化設定に次のスニペッ
トを含めます。

Java

次のスニペットは、ECDSA デジタル署名のない AES-GCM アルゴリズムスイートを指定しま
す。詳細については、「the section called “暗号化設定”」を参照してください。

.algorithmSuiteId(
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384)

C# / .NET

次のスニペットは、ECDSA デジタル署名のない AES-GCM アルゴリズムスイートを指定しま
す。詳細については、「the section called “暗号化設定”」を参照してください。

AlgorithmSuiteId =
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384

Rust

次のスニペットは、ECDSA デジタル署名のない AES-GCM アルゴリズムスイートを指定しま
す。詳細については、「the section called “暗号化設定”」を参照してください。

ECDSA デジタル署名を使用しない AES-GCM 20

AWS データベース暗号化 SDK デベロッパーガイド

.algorithm_suite_id(
 DbeAlgorithmSuiteId::AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)

ECDSA デジタル署名を使用しない AES-GCM 21

AWS データベース暗号化 SDK デベロッパーガイド

での AWS Database Encryption SDK の使用 AWS KMS

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

AWS Database Encryption SDK を使用するには、キーリングを設定し、1 つ以上のラッピングキー
を指定する必要があります。キーのインフラストラクチャがない場合は、AWS Key Management
Service (AWS KMS) を使用することをお勧めします。

AWS Database Encryption SDK は、2 種類の AWS KMS キーリングをサポートしています。従来の
AWS KMS キーリングは、データキーを生成、暗号化、復号するために AWS KMS keys を使用しま
す。対称暗号化 (SYMMETRIC_DEFAULT) または非対称 RSA KMS キーのいずれかを使用できます。
AWS Database Encryption SDK は一意のデータキーを使用してすべてのレコードを暗号化および署
名するため、 AWS KMS キーリングは暗号化および復号オペレーション AWS KMS のたびに を呼
び出す必要があります。への呼び出し数を最小限に抑える必要があるアプリケーションの場合 AWS
KMS、 AWS Database Encryption SDK はAWS KMS 階層キーリングもサポートします。階層キーリ
ングは、Amazon DynamoDB テーブルに保持されている AWS KMS 保護されたブランチキーを使用
し、暗号化および復号オペレーションで使用されるブランチキーマテリアルをローカルにキャッシュ
することで、 AWS KMS 呼び出しの数を減らす暗号化マテリアルキャッシュソリューションです。
可能な限り AWS KMS キーリングを使用することをお勧めします。

Database Encryption SDK AWS を操作するには AWS KMS、 の AWS KMS モジュールが必要です
AWS SDK for Java。

で AWS Database Encryption SDK を使用する準備をするには AWS KMS

1. を作成します AWS アカウント。方法については、 AWS ナレッジセンターの「新しい Amazon
Web Services アカウントを作成してアクティブ化する方法」を参照してください。

2. 対称暗号化を作成します AWS KMS key。ヘルプについては、「AWS Key Management Service
デベロッパーガイド」の「キーの作成」を参照してください。

Tip

AWS KMS key プログラムで を使用するには、 の Amazon リソースネーム (ARN)
が必要です AWS KMS key。 AWS KMS keyの ARN を見つけるには、「AWS Key

22

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS データベース暗号化 SDK デベロッパーガイド

Management Service デベロッパーガイド」の「キー ID と ARN を検索する」を参照し
てください。

3. アクセスキー ID とセキュリティアクセスキーを生成します。IAM ユーザーのアクセスキー ID
とシークレットアクセスキーを使用するか、 を使用して AWS Security Token Service 、アク
セスキー ID、シークレットアクセスキー、セッショントークンを含む一時的なセキュリティ認
証情報を使用して新しいセッションを作成できます。セキュリティのベストプラクティスとし
て、IAM ユーザーまたは AWS （ルート) ユーザーアカウントに関連付けられた長期的な認証情
報の代わりに一時的な認証情報を使用することをお勧めします。

アクセスキーを使用して IAM ユーザーを作成するには、「IAM ユーザーガイド」の「IAM ユー
ザーの作成」を参照してください。

一時的なセキュリティ認証情報を生成するには、「IAM ユーザーガイド」の「一時的なセキュ
リティ認証情報のリクエスト」を参照してください。

4. の手順AWS SDK for Javaと、ステップ 3 で生成したアクセスキー ID とシークレットアクセス
キーを使用して、 AWS 認証情報を設定します。一時的な認証情報を生成した場合は、セッショ
ントークンも指定する必要があります。　

この手順により、 AWS SDKs へのリクエストに署名 AWS できます。とやり取りする AWS
Database Encryption SDK のコードサンプルは、このステップを完了したことを AWS KMS 前
提としています。

23

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html

AWS データベース暗号化 SDK デベロッパーガイド

AWS Database Encryption SDK の設定

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

AWS Database Encryption SDK は、使いやすいように設計されています。 AWS Database
Encryption SDK にはいくつかの設定オプションがありますが、デフォルト値はほとんどのアプリ
ケーションで実用的で安全になるように慎重に選択されています。ただし、パフォーマンスを改善す
るために構成を調整したり、設計にカスタム機能を追加したりしたい場合があります。

トピック

• プログラミング言語の選択

• ラッピングキーの選択

• 検出フィルターの作成

• マルチテナンシーデータベースの使用

• 署名付きビーコンの作成

プログラミング言語の選択

AWS Database Encryption SDK for DynamoDB は、複数のプログラミング言語で利用できます。言
語の実装は、完全に相互運用可能で、同じ機能を提供するように設計されていますが、異なる方法で
実装される可能性があります。通常は、アプリケーションと互換性のあるライブラリを使用します。

ラッピングキーの選択

AWS Database Encryption SDK は、各フィールドを暗号化するための一意の対称データキーを生成
します。データキーを設定、管理、または使用する必要はありません。 AWS Database Encryption
SDK がこれを行います。

ただし、各データキーを暗号化するには、1 つ以上のラッピングキーを選択する必要があります。
AWS Database Encryption SDK は、AWS Key Management Service (AWS KMS) 対称暗号化 KMS
キーと非対称 RSA KMS キーをサポートします。また、さまざまなサイズで提供する AES 対称キー
と RSA 非対称キーもサポートします。ラッピングキーの安全性と耐久性はお客様の責任となりま

プログラミング言語の選択 24

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS データベース暗号化 SDK デベロッパーガイド

す。そのため、ハードウェアセキュリティモジュールまたは などのキーインフラストラクチャサー
ビスで暗号化キーを使用することをお勧めします AWS KMS。

暗号化と復号のためにラッピングキーを指定するには、キーリングを使用します。使用するキーリン
グのタイプに応じて、1 つのラッピングキー、または同じタイプもしくは異なるタイプの複数のラッ
ピングキーを指定できます。複数のラッピングキーを使用してデータキーをラップする場合、各ラッ
ピングキーは同じデータキーのコピーを暗号化します。暗号化されたデータキー (ラッピングキーご
とに 1 つ) は、暗号化されたフィールドと一緒に格納されるマテリアルの説明に格納されます。デー
タを復号するには、 AWS Database Encryption SDK はまずラッピングキーのいずれかを使用して暗
号化されたデータキーを復号する必要があります。

可能な限り、いずれかの AWS KMS キーリングを使用することをお勧めします。 AWS Database
Encryption SDK は、 AWS KMS キーリングと AWS KMS 階層キーリングを提供し、 への呼び出し
の数を減らします AWS KMS。キーリング AWS KMS key で を指定するには、サポートされている
AWS KMS キー識別子を使用します。 AWS KMS 階層キーリングを使用する場合は、キー ARN を指
定する必要があります。キーの AWS KMS キー識別子の詳細については、「 AWS Key Management
Service デベロッパーガイド」の「キー識別子」を参照してください。

• AWS KMS キーリングで暗号化する場合、対称暗号化 KMS キーの有効なキー識別子 (キー ARN、
エイリアス名、エイリアス ARN、またはキー ID) を指定できます。非対称 RSA KMS キーを使用
する場合は、キー ARN を指定する必要があります。

暗号化時に KMS キーのエイリアス名またはエイリアス ARN を指定する場合、 AWS Database
Encryption SDK は、そのエイリアスに現在関連付けられているキー ARN を保存します。エイリア
スは保存されません。エイリアスの変更は、データキーの復号に使用される KMS キーには影響し
ません。

• デフォルトでは、 AWS KMS キーリングは strict モード (特定の KMS キーを指定する) でレコード
を復号します。復号のために AWS KMS keys を識別するにはキー ARN を使用する必要がありま
す。

AWS KMS キーリングで暗号化すると、 AWS Database Encryption SDK は暗号化されたデータ
キーを使用して のキー ARN をマテリアルの説明 AWS KMS key に保存します。Strict モードで復
号する場合、 AWS Database Encryption SDK は、ラッピングキーを使用して暗号化されたデー
タキーを復号しようとする前に、キーリングに同じキー ARN が表示されることを確認します。別
のキー識別子を使用する場合、識別子が同じキーを参照している場合でも AWS KMS key、 AWS
Database Encryption SDK は を認識または使用しません。

• 検出モードで復号する場合は、ラッピングキーを指定しません。まず、 AWS Database
Encryption SDK は、マテリアルの説明に保存されたキー ARN を使用してレコードの復号を試み

ラッピングキーの選択 25

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS データベース暗号化 SDK デベロッパーガイド

ます。これが機能しない場合、 AWS Database Encryption SDK は、その KMS キーを所有または
アクセスできるユーザーに関係なく、暗号化された KMS キーを使用してレコードを復号するよう
AWS KMS に求めます。

raw AES キーまたは raw RSA キーペアをキーリング内のラッピングキーとして指定するには、名前
空間と名前を指定する必要があります。復号する際には、暗号化の際に使用した各 raw ラッピング
キーとまったく同じ名前空間と名前を使用する必要があります。別の名前空間または名前を使用する
場合、 AWS Database Encryption SDK は、キーマテリアルが同じであっても、ラッピングキーを認
識または使用しません。

検出フィルターの作成
KMS キーを使用して暗号化されたデータを復号する場合は、厳格モードで復号する、つまり、使用
するラッピングキーを、指定したもののみに制限するのがベストプラクティスです。ただし、必要に
応じて、ラッピングキーを指定しない検出モードで復号することもできます。このモードでは、その
KMS キーを所有またはアクセスできるユーザーに関係なく、暗号化されたデータキーを暗号化した
KMS キーを使用して復号 AWS KMS できます。

検出モードで復号する必要がある場合は、常に検出フィルターを使用することをお勧めします。これ
により、使用できる KMS キーが、指定された AWS アカウント および パーティション内のキーに
制限されます。検出フィルターはオプションですが、ベストプラクティスです。

次の表を使用して、検出フィルターのパーティションの値を決定します。

リージョン パーティション

AWS リージョン aws

中国リージョン aws-cn

AWS GovCloud (US) Regions aws-us-gov

次の例は、検出フィルターを作成する方法を示しています。コードを使用する前に、サンプル値を
AWS アカウント および パーティションの有効な値に置き換えます。

Java

// Create the discovery filter

検出フィルターの作成 26

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS データベース暗号化 SDK デベロッパーガイド

DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();

C# / .NET

var discoveryFilter = new DiscoveryFilter
{
 Partition = "aws",
 AccountIds = 111122223333
};

Rust

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .partition("aws")
 .account_ids(111122223333)
 .build()?;

マルチテナンシーデータベースの使用

AWS Database Encryption SDK を使用すると、各テナントを個別の暗号化マテリアルで分離するこ
とで、共有スキーマを持つデータベースのクライアント側の暗号化を設定できます。マルチテナン
シーデータベースを検討する場合は、セキュリティ要件と、マルチテナンシーがそれらのセキュリ
ティ要件にどのように影響し得るかを確認してください。例えば、マルチテナントデータベースを使
用すると、 AWS Database Encryption SDK を別のサーバー側の暗号化ソリューションと組み合わせ
る能力に影響する可能性があります。

データベース内で複数のユーザーが暗号化オペレーションを実行している場合は、いずれかの AWS
KMS キーリングを使用して、暗号化オペレーションで使用する個別のキーを各ユーザーに提供でき
ます。マルチテナンシーのクライアント側の暗号化ソリューション用のデータキーの管理は複雑にな
る場合があります。可能な場合は常に、データをテナンシーごとに整理することをお勧めします。テ
ナンシーがプライマリキーの値 (Amazon DynamoDB テーブルのパーティションキーなど) によって
識別される場合、キーの管理は簡単になります。

AWS KMS キーリングを使用して、各テナントを個別の AWS KMS キーリング および で分離できま
す AWS KMS keys。テナントごとに行われた呼び出しの量 AWS KMS に基づいて、 AWS KMS 階層

マルチテナンシーデータベースの使用 27

AWS データベース暗号化 SDK デベロッパーガイド

キーリングを使用して呼び出しを最小限に抑えることができます AWS KMS。AWS KMS 階層キーリ
ングは、Amazon DynamoDB テーブルに保持されている AWS KMS 保護されたブランチキーを使用
し、暗号化および復号オペレーションで使用されるブランチキーマテリアルをローカルにキャッシュ
することで AWS KMS 、呼び出しの数を減らす暗号化マテリアルキャッシュソリューションです。
データベースに検索可能な暗号化を実装するには、 AWS KMS 階層キーリングを使用する必要があ
ります。

署名付きビーコンの作成
AWS Database Encryption SDK は、標準ビーコンと複合ビーコンを使用して、クエリされたデー
タベース全体を復号することなく、暗号化されたレコードを検索できる検索可能な暗号化ソリュー
ションを提供します。ただし、 AWS Database Encryption SDK は、プレーンテキストの署名付き
フィールドから完全に設定できる署名付きビーコンもサポートしています。署名付きビーコンは、
SIGN_ONLYフィールドと SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTフィールドに対してイ
ンデックスを作成し、複雑なクエリを実行する複合ビーコンの一種です。

例えば、マルチテナンシーデータベースがある場合、特定のテナンシーのキーによって暗号化された
レコードがあるかどうかを確認するために、データベースをクエリできるようにする署名付きビーコ
ンを作成することをお勧めします。詳細については、「マルチテナンシーデータベース内のビーコン
のクエリ」を参照してください。

署名付きビーコンを作成するには、 AWS KMS 階層キーリングを使用する必要があります。

署名付きビーコンを設定するには、次の値を指定します。

Java

複合ビーコン設定

次の の例では、署名付きビーコン設定内で署名付きパートリストをローカルに定義します。

List<CompoundBeacon> compoundBeaconList = new ArrayList<>();
CompoundBeacon exampleCompoundBeacon = CompoundBeacon.builder()
 .name("compoundBeaconName")
 .split(".")
 .signed(signedPartList)
 .constructors(constructorList)
 .build();
compoundBeaconList.add(exampleCompoundBeacon);

ビーコンバージョン定義

署名付きビーコンの作成 28

AWS データベース暗号化 SDK デベロッパーガイド

次の例では、ビーコンバージョンで署名付きパートリストをグローバルに定義します。ビーコン
バージョンの定義の詳細については、「ビーコンの使用」を参照してください。

 List<BeaconVersion> beaconVersions = new ArrayList<>();
beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .signedParts(signedPartList)
 .version(1) // MUST be 1
 .keyStore(keyStore)
 .keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branchKeyId)
 .cacheTTL(6000)
 .build())
 .build())
 .build()
);

C# / .NET

完全なコードサンプルを参照: BeaconConfig.cs

署名付きビーコン設定

次の の例では、署名付きビーコン設定内で署名付きパートリストをローカルに定義します。

var compoundBeaconList = new List<CompoundBeacon>();
var exampleCompoundBeacon = new CompoundBeacon
 {
 Name = "compoundBeaconName",
 Split = ".",
 Signed = signedPartList,
 Constructors = constructorList
 };
compoundBeaconList.Add(exampleCompoundBeacon);

ビーコンバージョン定義

次の例では、ビーコンバージョンで署名付きパートリストをグローバルに定義します。ビーコン
バージョンの定義の詳細については、「ビーコンの使用」を参照してください。

署名付きビーコンの作成 29

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/complexexample/BeaconConfig.cs

AWS データベース暗号化 SDK デベロッパーガイド

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = keyStore,
 KeySource = new BeaconKeySource
 {
 Single = new SingleKeyStore
 {
 KeyId = branchKeyId,
 CacheTTL = 6000
 }
 }
 }
};

署名付きパートは、ローカルまたはグローバルに定義されたリストで定義できます。可能な限り、
ビーコンバージョンのグローバルリストで署名付きパートを定義することをお勧めします。署名付き
パートをグローバルに定義することで、各パートを 1 回定義し、そのパートを複数の複合ビーコン
設定で再利用できます。署名付きパートを 1 回だけ使用する場合は、署名付きビーコン設定のロー
カルリストで定義できます。コンストラクタリストでは、ローカルパートとグローバルパートの両方
を参照できます。

署名付きパートリストをグローバルに定義する場合は、署名付きビーコンがビーコン設定のフィール
ドをアセンブルできるすべての方法を識別するコンストラクタパートのリストを指定する必要があり
ます。

Note

署名付きパートリストをグローバルに定義するには、 AWS Database Encryption SDK の
バージョン 3.2 以降を使用する必要があります。新しいパートをグローバルに定義する前
に、すべてのリーダーに新しいバージョンをデプロイします。
既存のビーコン設定を更新して、署名付きパートリストをグローバルに定義することはでき
ません。

署名付きビーコンの作成 30

AWS データベース暗号化 SDK デベロッパーガイド

ビーコン名

ビーコンをクエリする際に使用する名前。

署名付きビーコンの名前は、暗号化されていないフィールドと同じ名前にすることはできませ
ん。2 つのビーコンを同じ名前にすることはできません。

分割文字

署名付きビーコンを設定する部分を分離するために使用される文字。

分割文字は、署名付きビーコンの構築元となるフィールドのプレーンテキストの値に出現するこ
とはできません。

署名付きの部分のリスト

署名付きビーコンに含まれる署名付きフィールドを識別します。

各部分には、名前、ソース、プレフィックスが含まれている必要があります。ソースは、パート
が識別する SIGN_ONLYまたは SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTフィールドで
す。ソースは、フィールド名、またはネストされたフィールドの値を参照するインデックスであ
る必要があります。パーツ名がソースを識別する場合、ソースを省略すると、 AWS Database
Encryption SDK は自動的にその名前をソースとして使用します。可能な場合は常に、部分名とし
てソースを指定することをお勧めします。プレフィックスには任意の文字列を指定できますが、
一意である必要があります。署名付きビーコン内の 2 つの署名付きの部分に同じプレフィックス
を付けることはできません。複合ビーコンによって提供される部分と他の部分を区別する短い値
を使用することをお勧めします。

可能な限り、署名付きパートをグローバルに定義することをお勧めします。署名付きパートを 1
つの複合ビーコンでのみ使用する場合は、ローカルで定義することを検討してください。ローカ
ルに定義されたパートは、グローバルに定義されたパートと同じプレフィックスまたは名前を持
つことはできません。

Java

List<SignedPart> signedPartList = new ArrayList<>);
 SignedPart signedPartExample = SignedPart.builder()
 .name("signedFieldName")
 .prefix("S-")
 .build();
 signedPartList.add(signedPartExample);

署名付きビーコンの作成 31

AWS データベース暗号化 SDK デベロッパーガイド

C# / .NET

var signedPartsList = new List<SignedPart>
{
 new SignedPart { Name = "signedFieldName1", Prefix = "S-" },
 new SignedPart { Name = "signedFieldName2", Prefix = "SF-" }
};

コンストラクタリスト (オプション）

署名付きの部分を署名付きビーコンによってアセンブルするさまざまな方法を定義するコンスト
ラクターを識別します。

コンストラクタリストを指定しない場合、 AWS Database Encryption SDK は次のデフォルトの
コンストラクタを使用して署名付きビーコンをアセンブルします。

• すべての署名付きの部分 (署名付きの部分のリストに追加された順)

• すべての部分は必須です

コンストラクタ

各コンストラクターは、署名付きビーコンをアセンブルする 1 つの方法を定義するコンスト
ラクター部分の順序付きリストです。コンストラクター部分はリストに追加された順序で結合
され、各部分は指定された分割文字で区切られます。

各コンストラクター部分は、署名付きの部分に名前を付け、その部分がコンス
トラクター内で必須であるか、またはオプションであるかを定義します。例え
ば、Field1、Field1.Field2、および Field1.Field2.Field3 で署名付きビーコンをク
エリする場合は、Field2 および Field3 をオプションとしてマークし、コンストラクター
を 1 つ作成します。

各コンストラクターには、少なくとも 1 つの必須部分が必要です。クエリで BEGINS_WITH
演算子を使用できるように、各コンストラクターの最初の部分を必須にすることをお勧めしま
す。

コンストラクターは、必要な部分がすべてレコード内に存在する場合に成功します。新しいレ
コードを書き込む際に、署名付きビーコンはコンストラクターのリストを使用して、指定され
た値からビーコンをアセンブルできるかどうかを判断します。コンストラクターがコンストラ
クターのリストに追加された順序でビーコンのアセンブルを試み、成功した最初のコンストラ
クターを使用します。コンストラクターが成功しない場合、ビーコンはレコードに書き込まれ
ません。

署名付きビーコンの作成 32

AWS データベース暗号化 SDK デベロッパーガイド

すべてのリーダーとライターは、クエリの結果が確実に正しくなるようにコンストラクターの
同じ順序を指定する必要があります。

独自のコンストラクターのリストを指定するには、次の手順を使用します。

1. 署名付きの部分ごとにコンストラクター部分を作成し、その部分が必須かどうかを定義しま
す。

コンストラクターの部分の名前は、署名されたフィールドの名前である必要があります。

次の例は、1 つの署名付きフィールドのコンストラクターの部分を作成する方法を示してい
ます。

Java

ConstructorPart field1ConstructorPart = ConstructorPart.builder()
 .name("Field1")
 .required(true)
 .build();

C# / .NET

var field1ConstructorPart = new ConstructorPart { Name = "Field1", Required
 = true };

2. ステップ 1 で作成したコンストラクター部分を使用して、署名付きビーコンをアセンブルす
る可能な方法ごとにコンストラクターを作成します。

例えば、Field1.Field2.Field3 と Field4.Field2.Field3 をクエリする場合は、2
つのコンストラクターを作成する必要があります。Field1 と Field4 は、2 つの別個のコ
ンストラクターで定義されているため、両方とも必須にすることができます。

Java

// Create a list for Field1.Field2.Field3 queries
List<ConstructorPart> field123ConstructorPartList = new ArrayList<>();
field123ConstructorPartList.add(field1ConstructorPart);
field123ConstructorPartList.add(field2ConstructorPart);
field123ConstructorPartList.add(field3ConstructorPart);
Constructor field123Constructor = Constructor.builder()
 .parts(field123ConstructorPartList)
 .build();
// Create a list for Field4.Field2.Field1 queries

署名付きビーコンの作成 33

AWS データベース暗号化 SDK デベロッパーガイド

List<ConstructorPart> field421ConstructorPartList = new ArrayList<>();
field421ConstructorPartList.add(field4ConstructorPart);
field421ConstructorPartList.add(field2ConstructorPart);
field421ConstructorPartList.add(field1ConstructorPart);
Constructor field421Constructor = Constructor.builder()
 .parts(field421ConstructorPartList)
 .build();

C# / .NET

// Create a list for Field1.Field2.Field3 queries
 var field123ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field1ConstructorPart,
 field2ConstructorPart, field3ConstructorPart }
};
// Create a list for Field4.Field2.Field1 queries
var field421ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field4ConstructorPart,
 field2ConstructorPart, field1ConstructorPart }
};

3. ステップ 2 で作成したすべてのコンストラクターを含むコンストラクターのリストを作成し
ます。

Java

List<Constructor> constructorList = new ArrayList<>();
constructorList.add(field123Constructor)
constructorList.add(field421Constructor)

C# / .NET

var constructorList = new List<Constructor>
{
 field123Constructor,
 field421Constructor
};

4. 署名付きビーコンを作成する際に constructorList を指定します。

署名付きビーコンの作成 34

AWS データベース暗号化 SDK デベロッパーガイド

AWS Database Encryption SDK のキーストア
AWS Database Encryption SDK では、キーストアは、階層AWS KMS キーリングで使用される階
層データを保持する Amazon DynamoDB テーブルです。キーストアは、階層キーリングを使用して
暗号化オペレーションを実行するために AWS KMS に対して行う必要がある呼び出しの数を減らす
のに役立ちます。

キーストアは、階層キーリングがエンベロープ暗号化を実行し、データ暗号化キーを保護するために
使用するブランチキーを保持および管理します。キーストアには、アクティブなブランチキーと、
ブランチキーの以前のすべてのバージョンが保存されます。アクティブなブランチキーは、ブラン
チキーの最新バージョンです。階層キーリングは、暗号化リクエストごとに一意のデータ暗号化キー
を使用し、アクティブなブランチキーから派生した一意のラッピングキーを使用して各データ暗号化
キーを暗号化します。階層キーリングは、アクティブなブランチキーと、その導出ラッピングキーの
間に確立された階層に依拠します。

キーストアの用語と概念

キーストア

ブランチキーやビーコンキーなどの階層データを保持する DynamoDB テーブル。

ルートキー

キーストア内のブランチキーとビーコンキーを生成して保護する対称暗号化 KMS キー。

ブランチキー

エンベロープ暗号化用の一意のラッピングキーを取得するために再利用されるデータキー。1 つ
のキーストアに複数のブランチキーを作成できますが、各ブランチキーは一度に 1 つのアクティ
ブなブランチキーバージョンのみを持つことができます。アクティブなブランチキーは、ブラン
チキーの最新バージョンです。

ブランチキーは、kms:GenerateDataKeyWithoutPlaintext オペレーション AWS KMS keys を使用
して から派生します。

ラッピングキー

暗号化オペレーションで使用されるデータ暗号化キーを暗号化するために使用される一意のデー
タキー。

ラップキーはブランチキーから派生します。キー取得プロセスの詳細については、AWS KMS
「階層キーリングの技術的な詳細」を参照してください。

キーストアの用語と概念 35

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS データベース暗号化 SDK デベロッパーガイド

データ暗号化キー

暗号化オペレーションで使用されるデータキー。階層キーリングは、暗号化リクエストごとに一
意のデータ暗号化キーを使用します。

ビーコンキー

検索可能な暗号化用のビーコンを生成するために使用されるデータキー。詳細については、「検
索可能な暗号化」を参照してください。

最小特権のアクセス許可の実装

キーストアと AWS KMS 階層キーリングを使用する場合は、次のロールを定義して最小特権の原則
に従うことをお勧めします。

キーストア管理者

キーストア管理者は、キーストアと、キーストアが保持および保護するブランチキーを作成およ
び管理します。キーストア管理者は、キーストアとして機能する Amazon DynamoDB テーブル
への書き込み権限を持つ唯一のユーザーである必要があります。CreateKey や など、特権のあ
る管理者オペレーションにアクセスできるユーザーは、管理者のみですVersionKey。これらの
オペレーションは、キーストアアクションを静的に設定している場合にのみ実行できます。

CreateKey は、キーストアの許可リストに新しい KMS キー ARN を追加できる特権オペレー
ションです。この KMS キーは、新しいアクティブなブランチキーを作成できます。KMS キーが
ブランチキーストアに追加されると、削除できないため、このオペレーションへのアクセスを制
限することをお勧めします。

キーストアユーザー

ほとんどの場合、キーストアユーザーは、データの暗号化、復号、署名、検証を行うときに、
階層キーリングを介してのみキーストアを操作します。そのため、キーストアとして機能する
Amazon DynamoDB テーブルへの読み取りアクセス許可のみが必要です。キーストアユーザー
は、、、 GetActiveBranchKey GetBranchKeyVersionなどの暗号化オペレーションを可能
にする使用オペレーションにのみアクセスする必要がありますGetBeaconKey。使用するブラン
チキーを作成または管理するためのアクセス許可は必要ありません。

キーストアアクションが静的に設定されている場合、または検出用に設定されている場合、使用
オペレーションを実行できます。キーストアアクションが検出用に設定されている場合、管理者
オペレーション (CreateKey および VersionKey) を実行することはできません。

最小特権のアクセス許可の実装 36

AWS データベース暗号化 SDK デベロッパーガイド

ブランチキーストア管理者がブランチキーストアに複数の KMS キーを許可リストに登録した場
合は、階層キーリングが複数の KMS キーを使用できるように、キーストアユーザーが検出用に
キーストアアクションを設定することをお勧めします。

キーストアを作成する
ブランチキーを作成したり、AWS KMS 階層キーリングを使用する前に、キーストアを作成する必要
があります。これは、ブランチキーを管理および保護する Amazon DynamoDB テーブルです。

Important

ブランチキーを保持する DynamoDB テーブルを削除しないでください。このテーブルを削
除すると、階層キーリングを使用して暗号化されたデータを復号できなくなります。

パーティションキーとソートキーに次の必須文字列値を使用して、「Amazon DynamoDB デベロッ
パーガイド」の「テーブルの作成」の手順に従います。

パーティションキー ソートキー

ベーステーブル branch-key-id type

論理キーストア名

キーストアとして機能する DynamoDB テーブルに名前を付けるときは、キーストアアクションを設
定するときに指定する論理キーストア名を慎重に検討することが重要です。論理キーストア名はキー
ストアの識別子として機能し、最初のユーザーが最初に定義した後は変更できません。キーストアア
クションでは、常に同じ論理キーストア名を指定する必要があります。

DynamoDB テーブル名と論理キーストア名の間には one-to-one のマッピングが必要です。論理キー
ストア名は、DynamoDB の復元オペレーションを簡素化するために、テーブルに格納されているす
べてのデータに暗号的にバインドされます。論理キーストア名は DynamoDB テーブル名とは異な
る場合がありますが、論理キーストア名として DynamoDB テーブル名を指定することを強くお勧め
します。バックアップから DynamoDB テーブルを復元した後にテーブル名が変更された場合、論理
キーストア名を新しい DynamoDB テーブル名にマッピングして、階層キーリングが引き続きキース
トアにアクセスできるようにすることができます。

キーストアを作成する 37

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS データベース暗号化 SDK デベロッパーガイド

論理キーストア名に機密情報や機密情報を含めないでください。論理キーストア名は、 AWS KMS
CloudTrail イベントでプレーンテキストで として表示されますtablename。

次のステップ

1. the section called “キーストアアクションを設定する”

2. the section called “ブランチキーを作成する”

3. AWS KMS 階層キーリングを作成する

キーストアアクションを設定する

キーストアアクションは、ユーザーが実行できるオペレーションと、 AWS KMS その階層キーリン
グがキーストアに許可リストされている KMS キーをどのように使用するかを決定します。 AWS
Database Encryption SDK は、次のキーストアアクション設定をサポートしています。

静的

キーストアを静的に設定すると、キーストアは、キーストアアクションを設定す
るkmsConfigurationときに で指定した KMS キー ARN に関連付けられた KMS キーのみを使
用できます。ブランチキーの作成、バージョニング、または取得時に別の KMS キー ARN が発生
した場合、例外がスローされます。

でマルチリージョン KMS キーを指定できますがkmsConfiguration、リージョンを含むキーの
ARN 全体が KMS キーから派生したブランチキーに保持されます。別のリージョンでキーを指定
することはできません。値が一致するには、まったく同じマルチリージョンキーを指定する必要
があります。

キーストアアクションを静的に設定すると、使用オペレーション
(GetActiveBranchKey、、GetBeaconKey) と管理オペレーション (
GetBranchKeyVersionCreateKey および) を実行できますVersionKey。 CreateKeyは、
キーストア許可リストに新しい KMS キー ARN を追加できる特権オペレーションです。この
KMS キーは、新しいアクティブなブランチキーを作成できます。KMS キーがキーストアに追加
されると、削除できないため、このオペレーションへのアクセスを制限することをお勧めしま
す。

発見

検出用にキーストアアクションを設定すると、キーストアはキーストアに許可リストされている
任意の AWS KMS key ARN を使用できます。ただし、マルチリージョン KMS キーが検出され、

キーストアアクションを設定する 38

AWS データベース暗号化 SDK デベロッパーガイド

キーの ARN のリージョンが使用されている AWS KMS クライアントのリージョンと一致しない
場合、例外がスローされます。

検出用にキーストアを設定する場合、 CreateKeyや などの管理オペレーションを実行すること
はできませんVersionKey。暗号化、復号、署名、検証オペレーションを有効にする使用オペ
レーションのみを実行できます。詳細については、「the section called “最小特権のアクセス許可
の実装”」を参照してください。

キーストアアクションを設定する

キーストアアクションを設定する前に、次の前提条件が満たされていることを確認してください。

• 実行する必要があるオペレーションを決定します。詳細については、「the section called “最小特
権のアクセス許可の実装”」を参照してください。

• 論理キーストア名を選択する

DynamoDB テーブル名と論理キーストア名の間には one-to-one のマッピングが必要です。論理
キーストア名は、DynamoDB の復元オペレーションを簡素化するために、テーブルに保存されて
いるすべてのデータに暗号でバインドされます。最初のユーザーが最初に定義した後は変更できま
せん。キーストアアクションでは、常に同じ論理キーストア名を指定する必要があります。詳細に
ついては、「logical key store name」を参照してください。

静的設定

次の例では、キーストアアクションを静的に設定します。キーストアとして機能する DynamoDB
テーブルの名前、キーストアの論理名、対称暗号化 KMS キーを識別する KMS キー ARN を指定す
る必要があります。

Note

キーストアサービスを静的に設定するときは、指定した KMS キー ARN を慎重に検討して
ください。CreateKey オペレーションは、ブランチキーストアの許可リストに KMS キー
ARN を追加します。KMS キーがブランチキーストアに追加されると、削除することはでき
ません。

キーストアアクションを設定する 39

AWS データベース暗号化 SDK デベロッパーガイド

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())
 .ddbTableName(keyStoreName)
 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .kmsKeyArn(kmsKeyArn)
 .build())
 .build()).build();

C# / .NET

var kmsConfig = new KMSConfiguration { KmsKeyArn = kmsKeyArn };
 var keystoreConfig = new KeyStoreConfig
 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = kmsConfig,
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Rust

let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let key_store_config = KeyStoreConfig::builder()
 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
 .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)
 .kms_configuration(KmsConfiguration::KmsKeyArn(kms_key_arn.to_string()))
 .build()?;

let keystore = keystore_client::Client::from_conf(key_store_config)?;

キーストアアクションを設定する 40

AWS データベース暗号化 SDK デベロッパーガイド

検出設定

次の の例では、検出用のキーストアアクションを設定します。キーストアとして機能する
DynamoDB テーブルの名前と論理キーストア名を指定する必要があります。

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())
 .ddbTableName(keyStoreName)
 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .discovery(Discovery.builder().build())
 .build())
 .build()).build();

C# / .NET

var keystoreConfig = new KeyStoreConfig
 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = new KMSConfiguration {Discovery = new Discovery()},
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Rust

let key_store_config = KeyStoreConfig::builder()
 .kms_client(kms_client)
 .ddb_client(ddb_client)
 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)

 .kms_configuration(KmsConfiguration::Discovery(Discovery::builder().build()?))
 .build()?;

キーストアアクションを設定する 41

AWS データベース暗号化 SDK デベロッパーガイド

アクティブなブランチキーを作成する
ブランチキーは、 AWS KMS 階層キーリング AWS KMS key が呼び出しの数を減らすために使用
する から派生したデータキーです AWS KMS。アクティブなブランチキーは、ブランチキーの最新
バージョンです。階層キーリングは、暗号化リクエストごとに一意のデータキーを生成し、アクティ
ブなブランチキーから派生した一意のラッピングキーを使用して各データキーを暗号化します。

新しいアクティブなブランチキーを作成するには、キーストアアクションを静的に設定する必要があ
ります。 CreateKeyは、キーストアアクション設定で指定された KMS キー ARN をキーストア許
可リストに追加する特権オペレーションです。次に、KMS キーを使用して新しいアクティブなブラ
ンチキーを生成します。KMS キーがキーストアに追加されると、削除できないため、このオペレー
ションへのアクセスを制限することをお勧めします。

アプリケーションのコントロールプレーンの KeyStore Admin インターフェイスを介して
CreateKeyオペレーションを使用することをお勧めします。このアプローチは、キー管理のベスト
プラクティスと一致しています。

データプレーンにブランチキーを作成しないでください。この方法により、次のような結果になる可
能性があります。

• への不要な呼び出し AWS KMS

• 同時実行性の高い環境で AWS KMS の への複数の同時呼び出し

• バッキング DynamoDB テーブルへの複数の TransactWriteItems 呼び出し。

CreateKey オペレーションには、既存のブランチキーが上書きされないよう
に、TransactWriteItems呼び出しに条件チェックが含まれます。ただし、データプレーンでキー
を作成すると、リソースの非効率的な使用やパフォーマンスの問題が発生する可能性があります。

キーストアで 1 つの KMS キーを許可リストに登録することも、キーストアアクション設定で指定し
た KMS キー ARN を更新してCreateKey再度 を呼び出すことで、複数の KMS キーを許可リストに
登録することもできます。複数の KMS キーを許可リストに登録する場合、キーストアユーザーは、
アクセスできるキーストアで許可リストに登録された任意のキーを使用できるように、キーストアア
クションを検出用に設定する必要があります。詳細については、「the section called “キーストアア
クションを設定する”」を参照してください。

必要な アクセス許可

ブランチキーを作成するには、キーストアアクションで指定された KMS キーに対する
kms:GenerateDataKeyWithoutPlaintext および kms:ReEncrypt アクセス許可が必要です。

ブランチキーを作成する 42

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS データベース暗号化 SDK デベロッパーガイド

ブランチキーを作成する

次のオペレーションでは、キーストアアクション設定で指定した KMS キーを使用して新しいアク
ティブなブランチキーを作成し、キーストアとして機能する DynamoDB テーブルにアクティブなブ
ランチキーを追加します。

CreateKey を呼び出す際に、次のオプションの値を指定することを選択できます。

• branchKeyIdentifier: カスタム branch-key-id を定義します。

カスタム branch-key-id を作成するには、encryptionContext パラメータに追加の暗号化コ
ンテキストを含める必要もあります。

• encryptionContext: は、kms:GenerateDataKeyWithoutPlaintext 呼び出しに含まれる暗号化コ
ンテキストで追加の認証データ (AAD) を提供するシークレット以外のキーと値のペアのオプショ
ンセットを定義します。

この追加の暗号化コンテキストは aws-crypto-ec: プレフィックスとともに表示されます。

Java

final Map<String, String> additionalEncryptionContext =
 Collections.singletonMap("Additional Encryption Context for",
 "custom branch key id");

 final String BranchKey = keystore.CreateKey(
 CreateKeyInput.builder()
 .branchKeyIdentifier(custom-branch-key-id) //OPTIONAL
 .encryptionContext(additionalEncryptionContext) //OPTIONAL

 .build()).branchKeyIdentifier();

C# / .NET

var additionalEncryptionContext = new Dictionary<string, string>();
 additionalEncryptionContext.Add("Additional Encryption Context for", "custom
 branch key id");

 var branchKeyId = keystore.CreateKey(new CreateKeyInput
 {
 BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL
 EncryptionContext = additionalEncryptionContext // OPTIONAL

ブランチキーを作成する 43

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS データベース暗号化 SDK デベロッパーガイド

 });

Rust

let additional_encryption_context = HashMap::from([
 ("Additional Encryption Context for".to_string(), "custom branch key
 id".to_string())
]);

let branch_key_id = keystore.create_key()
 .branch_key_identifier("custom-branch-key-id") // OPTIONAL
 .encryption_context(additional_encryption_context) // OPTIONAL
 .send()
 .await?
 .branch_key_identifier
 .unwrap();

まず、CreateKey オペレーションにより次の値が生成されます。

• branch-key-id のバージョン 4 Universally Unique Identifier (UUID) (カスタム branch-key-id
を指定した場合を除く)。

• ブランチキーバージョンのバージョン 4 UUID

• ISO 8601 の日時形式の timestamp (協定世界時 (UTC))。

その後、CreateKey オペレーションは次のリクエストを使用して
kms:GenerateDataKeyWithoutPlaintext を呼び出します。

{
 "EncryptionContext": {
 "branch-key-id" : "branch-key-id",
 "type" : "type",
 "create-time" : "timestamp",
 "logical-key-store-name" : "the logical table name for your key store",
 "kms-arn" : the KMS key ARN,
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 },
 "KeyId": "the KMS key ARN you specified in your key store actions",
 "NumberOfBytes": "32"

ブランチキーを作成する 44

https://www.ietf.org/rfc/rfc4122.txt
https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS データベース暗号化 SDK デベロッパーガイド

 }

Note

検索可能な暗号化のためにデータベースを設定していない場合でも、CreateKey オペレー
ションはアクティブなブランチキーとビーコンキーを作成します。両方のキーはキーストア
に保存されます。詳細については、「検索可能な暗号化のための階層キーリングの使用」を
参照してください。

次に、CreateKey オペレーションは kms:ReEncrypt を呼び出し、暗号化コンテキストを更新して
ブランチキーのアクティブレコードを作成します。

最後に、CreateKey オペレーションは ddb:TransactWriteItems を呼び出して、ステップ 2 で作成し
たテーブルにブランチキーを永続化する新しい項目を書き込みます。項目には次の属性があります。

{
 "branch-key-id" : branch-key-id,
 "type" : "branch:ACTIVE",
 "enc" : the branch key returned by the GenerateDataKeyWithoutPlaintext call,
 "version": "branch:version:the branch key version UUID",
 "create-time" : "timestamp",
 "kms-arn" : "the KMS key ARN you specified in Step 1",
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 }

アクティブなブランチキーをローテーションする

各ブランチキーのために一度に存在できるアクティブなバージョンは 1 つだけです。通常、アク
ティブな各ブランチキーバージョンは、複数のリクエストを満たすために使用されます。ただし、
ユーザーがアクティブなブランチキーを再利用する範囲を制御し、アクティブなブランチキーをロー
テーションする頻度を決定します。

ブランチキーは、プレーンテキストデータキーの暗号化には使用されません。これらは、プレーン
テキストデータキーを暗号化する一意のラッピングキーを導出するために使用されます。ラッピン
グキー導出プロセスでは、28 バイトのランダム性を備えた一意の 32 バイトのラッピングキーが生
成されます。これは、暗号の摩耗が発生する前に、ブランチキーが 7 穣 9 秭、つまり 296 を超える

アクティブなブランチキーをローテーションする 45

https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html

AWS データベース暗号化 SDK デベロッパーガイド

一意のラッピングキーを導出できることを意味します。このように枯渇するリスクは極めて低いもの
の、ビジネスルールや契約、政府の規制により、アクティブなブランチキーのローテーションが必要
になる場合があります。

ブランチキーのアクティブなバージョンは、ローテーションされるまでアクティブなままとなりま
す。以前のバージョンのアクティブなブランチキーは、暗号化オペレーションの実行には使用され
ず、新しいラッピングキーの取得には使用できませんが、引き続きクエリを実行し、アクティブ中に
暗号化したデータキーを復号するためのラッピングキーを提供できます。

Warning

テスト環境でのブランチキーの削除は元に戻せません。削除されたブランチキーは復元でき
ません。テスト環境で同じ ID のブランチキーを削除して再作成すると、次の問題が発生す
る可能性があります。

• 以前のテスト実行のマテリアルはキャッシュに残る可能性があります

• 一部のテストホストまたはスレッドは、削除されたブランチキーを使用してデータを暗号
化する場合があります

• 削除されたブランチで暗号化されたデータは復号できません

統合テストで暗号化の失敗を防ぐには：

• 新しいブランチキーを作成する前に階層キーリングリファレンスをリセットする、または

• テストごとに一意のブランチキー IDs

必要なアクセス許可

ブランチキーをローテーションするには、キーストアアクションで指定された KMS キーに対する
kms:GenerateDataKeyWithoutPlaintext および kms:ReEncrypt アクセス許可が必要です。

アクティブなブランチキーをローテーションする

VersionKey オペレーションを使用して、アクティブなブランチキーをローテーションします。
アクティブなブランチキーをローテーションすると、以前のバージョンを置き換えるために新し
いブランチキーが作成されます。アクティブなブランチキーをローテーションしても、branch-
key-id は変わりません。VersionKey を呼び出す際に、現在アクティブなブランチキーを識別す
る branch-key-id を指定する必要があります。

アクティブなブランチキーをローテーションする 46

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS データベース暗号化 SDK デベロッパーガイド

Java

keystore.VersionKey(
 VersionKeyInput.builder()
 .branchKeyIdentifier("branch-key-id")
 .build()
);

C# / .NET

 keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});

Rust

keystore.version_key()
 .branch_key_identifier(branch_key_id)
 .send()
 .await?;

アクティブなブランチキーをローテーションする 47

AWS データベース暗号化 SDK デベロッパーガイド

キーリング

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

AWS Database Encryption SDK は、キーリングを使用してエンベロープ暗号化を実行します。デー
タキーの生成、暗号化、復号は、キーリングによって行われます。キーリングは、暗号化された各
レコードを保護する一意のデータキーのソースと、そのデータキーを暗号化するラッピングキーを決
定します。キーリングは暗号化時に指定し、復号時には同じキーリングか別のキーリングを指定しま
す。

各キーリングを個別に使用するか、キーリングを組み合わせてマルチキーリングにすることができま
す。ほとんどのキーリングではデータキーを生成、暗号化、および復号することができますが、特定
のオペレーションを 1 つのみ実行するキーリング (例: データキーのみを生成するキーリング) を作成
し、他のキーリングと組み合わせて使用することができます。

ラッピングキーを保護し、 (AWS Key Management ServiceAWS KMS) を暗号化しないままに AWS
KMS keys しない を使用するキーリングなど、安全な境界内で暗号化オペレーションを実行する
AWS KMS キーリングを使用することをお勧めします。また、ハードウェアセキュリティモジュール
(HSM) に保存されているラッピングキーや他のマスターキーサービスによって保護されているラッ
ピングキーを使用するキーリングを作成することもできます。

キーリングは、データキー、そして最終的にはデータを保護するラッピングキーを決定します。タ
スクに実用的で、最も安全なラッピングキーを使用してください。可能な場合は常に、ハードウェ
アセキュリティモジュール (HSM) またはキー管理インフラストラクチャ (AWS Key Management
Service (AWS KMS) の KMS キーや AWS CloudHSM の暗号化キーなど) によって保護されたラッピ
ングキーを使用してください。

AWS Database Encryption SDK には複数のキーリングとキーリング設定が用意されており、独自の
カスタムキーリングを作成できます。同じタイプまたは異なるタイプの 1 つ以上のキーリングを含
むマルチキーリングを作成することもできます。

トピック

• キーリングのしくみ

• AWS KMS キーリング

48

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS データベース暗号化 SDK デベロッパーガイド

• AWS KMS 階層キーリング

• AWS KMS ECDH キーリング

• Raw AES キーリング

• Raw RSA キーリング

• Raw ECDH キーリング

• マルチキーリング

キーリングのしくみ

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

データベース内のフィールドを暗号化して署名すると、 AWS Database Encryption SDK はキーリ
ングに暗号化マテリアルを要求します。キーリングは、プレーンテキストのデータキー、キーリン
グ内の各ラッピングキーによって暗号化されたデータキーのコピー、およびデータキーに関連付け
られた MAC キーを返します。 AWS Database Encryption SDK は、プレーンテキストキーを使用し
てデータを暗号化し、できるだけ早くプレーンテキストデータキーをメモリから削除します。その
後、 AWS Database Encryption SDK は、暗号化されたデータキーと、暗号化や署名の指示などの他
の情報を含むマテリアルの説明を追加します。 AWS Database Encryption SDK は MAC キーを使用
して、マテリアルの説明と、 ENCRYPT_AND_SIGNまたは とマークされたすべてのフィールドの正
規化に関するハッシュベースのメッセージ認証コード (HMACs) を計算しますSIGN_ONLY。

データを復号する際には、データの暗号化に使用したのと同じキーリングを使用することも、別の
キーリングを使用することもできます。データを復号するには、復号キーリングが暗号化キーリング
内の少なくとも 1 つのラッピングキーにアクセスできる必要があります。

AWS Database Encryption SDK は、暗号化されたデータキーをマテリアルの説明からキーリングに
渡し、キーリングにそのいずれかを復号するように要求します。キーリングは、ラッピングキーを使
用して暗号化されたデータキーのいずれかを復号し、プレーンテキストのデータキーを返します。
AWS Database Encryption SDK は、プレーンテキストデータキーを使用してデータを復号します。
キーリングのラッピングキーのいずれも暗号化されたデータキーを復号できない場合は、復号は失敗
します。

キーリングのしくみ 49

AWS データベース暗号化 SDK デベロッパーガイド

単一のキーリングを使用するか、同じタイプまたは異なるタイプのキーリングを組み合わせてマル
チキーリングにすることもできます。データを暗号化すると、マルチキーリングは、マルチキーリ
ングを構成するすべてのキーリング内のすべてのラッピングキーによって暗号化されたデータキーの
コピーと、そのデータキーに関連付けられた MAC キーを返します。データは、マルチキーリングの
ラッピングキーのいずれかを持つキーリングを使用して復号できます。

AWS KMS キーリング

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

AWS KMS キーリングは、対称暗号化または非対称 RSA AWS KMS keysを使用してデータキー
を生成、暗号化、復号します。 AWS Key Management Service （AWS KMS) は KMS キーを保護
し、FIPS 境界内で暗号化オペレーションを実行します。可能な限り、 AWS KMS キーリング、また
は同様のセキュリティプロパティを持つキーリングを使用することをお勧めします。

キーリングで対称マルチリージョン KMS AWS KMS キーを使用することもできます。マルチリー
ジョンを使用した詳細と例については AWS KMS keys、「」を参照してくださいマルチリージョ
ンの使用 AWS KMS keys。マルチリージョンキーの詳細については、「AWS Key Management
Service デベロッパーガイド」の「マルチリージョンキーを使用する」を参照してください。

AWS KMS キーリングには、次の 2 種類のラッピングキーを含めることができます。

• ジェネレーターキー: プレーンテキストのデータキーを生成し、暗号化します。データを暗号化す
るキーリングには、ジェネレーターキーが 1 つ必要です。

• 追加キー: ジェネレーターキーが生成したプレーンテキストのデータキーを暗号化します。 AWS
KMS キーリングには、0 個以上の追加キーを含めることができます。

レコードを暗号化するにはジェネレーターキーが必要です。 AWS KMS キーリングに AWS KMS
キーが 1 つしかない場合、そのキーはデータキーの生成と暗号化に使用されます。

すべてのキーリングと同様に、 AWS KMS キーリングは個別に使用することも、同じタイプまたは
異なるタイプの他のキーリングを持つマルチキーリングで使用することもできます。

トピック

• AWS KMS キーリングに必要なアクセス許可

AWS KMS キーリング 50

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS データベース暗号化 SDK デベロッパーガイド

• AWS KMS キーリング AWS KMS keys での の識別

• AWS KMS キーリングの作成

• マルチリージョンの使用 AWS KMS keys

• AWS KMS 検出キーリングの使用

• AWS KMS リージョン検出キーリングの使用

AWS KMS キーリングに必要なアクセス許可

AWS Database Encryption SDK は を必要とせず AWS アカウント 、 に依存しません AWS のサービ
ス。ただし、 AWS KMS キーリングを使用するには、 AWS アカウント と、キーリング AWS KMS
keys の に対する以下の最小限のアクセス許可が必要です。

• AWS KMS キーリングで暗号化するには、ジェネレーターキーに対する kms:GenerateDataKey ア
クセス許可が必要です。 AWS KMS キーリングのすべての追加キーに対する kms:Encrypt アクセ
ス許可が必要です。

• AWS KMS キーリングで復号するには、キー AWS KMS リング内の少なくとも 1 つのキーに対す
る kms:Decrypt アクセス許可が必要です。

• キーリングで構成されるマルチキーリングで暗号化するには、ジェネレータ AWS KMS ーキーリ
ングのジェネレーターキーに対する kms:GenerateDataKey アクセス許可が必要です。他のすべて
のキーリングの他のすべての AWS KMS キーに対する kms:Encrypt アクセス許可が必要です。

• 非対称 RSA AWS KMS キーリングで暗号化するには、キーリングの作成時に暗号化に使用するパ
ブリックキーマテリアルを指定する必要があるため、kms:GenerateDataKey または kms:Encrypt
は必要ありません。このキーリングで暗号化する場合、 AWS KMS 呼び出しは行われません。非
対称 RSA AWS KMS キーリングで復号するには、kms:Decrypt アクセス許可が必要です。

のアクセス許可の詳細については AWS KMS keys、「 AWS Key Management Service デベロッパー
ガイド」の「認証とアクセスコントロール」を参照してください。

AWS KMS キーリング AWS KMS keys での の識別

AWS KMS キーリングには、1 つ以上の を含めることができます AWS KMS keys。 AWS KMS キー
リングで を指定する AWS KMS key には、サポートされている AWS KMS キー識別子を使用しま
す。キーリング AWS KMS key 内の を識別するために使用できるキー識別子は、 オペレーショ
ンと言語の実装によって異なります。 AWS KMS keyのキー識別子の詳細については、AWS Key
Management Service デベロッパーガイドの「キー識別子」を参照してください。

AWS KMS キーリングに必要なアクセス許可 51

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS データベース暗号化 SDK デベロッパーガイド

ベストプラクティスとして、自らのタスクにとって実用的である最も具体的なキー識別子を使用しま
す。

• AWS KMS キーリングで暗号化するには、キー ID、キー ARN、エイリアス名、またはエイリアス
ARN を使用してデータを暗号化できます。

Note

暗号化キーリングで KMS キーのエイリアス名またはエイリアス ARN を指定すると、暗号
化オペレーションによって、現在エイリアスに関連付けられているキー ARN が、暗号化
されたデータキーのメタデータに保存されます。エイリアスは保存されません。エイリア
スの変更は、暗号化されたデータキーの復号に使用される KMS キーには影響しません。

• AWS KMS キーリングで復号するには、キー ARN を使用して を識別する必要があります AWS
KMS keys。詳細については、「ラッピングキーの選択」を参照してください。

• 暗号化および復号に使用するキーリングでは、キー ARN を使用して AWS KMS keysを指定する必
要があります。

復号時に、 AWS Database Encryption SDK は、暗号化されたデータ AWS KMS キーの 1 つを復号
AWS KMS key できる のキーリングを検索します。具体的には、 AWS Database Encryption SDK
は、マテリアルの説明内の暗号化されたデータキーごとに次のパターンを使用します。

• AWS Database Encryption SDK は、マテリアルの説明のメタデータからデータキーを暗号化 AWS
KMS key した のキー ARN を取得します。

• AWS Database Encryption SDK は、キー ARN AWS KMS key が一致する の復号キーリングを検
索します。

• キーリングで一致するキー ARN AWS KMS key を持つ が見つかった場合、 AWS Database
Encryption SDK は KMS キーを使用して暗号化されたデータキーを復号するように AWS KMS に
要求します。

• それ以外の場合は、暗号化された次のデータキーに進みます (ある場合)。

AWS KMS キーリングの作成

各 AWS KMS キーリングは、同じ AWS KMS key または異なる AWS アカウント および AWS KMS
keys の 1 つまたは複数の で設定できます AWS リージョン。 AWS KMS key は、対称暗号化キー
(SYMMETRIC_DEFAULT) または非対称 RSA KMS キーである必要があります。対称暗号化マルチ

AWS KMS キーリングの作成 52

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN

AWS データベース暗号化 SDK デベロッパーガイド

リージョン KMS キーを使用することもできます。マルチ AWS KMS キーリングでは、1 つ以上の
キーリングを使用できます。 ???

データを暗号化および復号する AWS KMS キーリングを作成することも、暗号化または復号専用の
AWS KMS キーリングを作成することもできます。 AWS KMS キーリングを作成してデータを暗号
化する場合は、ジェネレーターキーを指定する必要があります。ジェネレーターキー AWS KMS key
は、プレーンテキストのデータキーを生成して暗号化するために使用される です。データキーは数
学的には KMS キーとは無関係です。次に、必要に応じて、同じプレーンテキストのデータキーを暗
号化 AWS KMS keys する追加の を指定できます。このキーリングで保護された暗号化されたフィー
ルドを復号するには、使用する復号キーリングに、キーリングで AWS KMS keys 定義されている の
少なくとも 1 つが含まれているか、含まれていない必要があります AWS KMS keys。(AWS KMS
キーリングに がない AWS KMS keys は、 AWS KMS 検出キーリングと呼ばれます）。

暗号化キーリングまたはマルチキーリング内のすべてのラッピングキーは、データキーを暗号化で
きる必要があります。いずれかのラッピングキーが暗号化に失敗すると、暗号化メソッドは失敗しま
す。そのため、呼び出し元は、キーリング内のすべてのキーについて必要な許可を持っている必要が
あります。検出キーリングを使用して、単独またはマルチキーリングでデータを暗号化すると、暗号
化操作は失敗します。

次の例では、 CreateAwsKmsMrkMultiKeyringメソッドを使用して、対称暗号化 KMS AWS KMS
キーを持つ キーリングを作成します。CreateAwsKmsMrkMultiKeyring メソッドは自動的に
AWS KMS クライアントを作成し、キーリングが単一リージョンキーとマルチリージョンキーの両方
を正しく処理するようにします。これらの例では、キー ARNs を使用して KMS キーを識別します。
詳細については、「AWS KMS キーリング AWS KMS keys での の識別」を参照してください。

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyArn)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput

AWS KMS キーリングの作成 53

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS データベース暗号化 SDK デベロッパーガイド

{
 Generator = kmsKeyArn
};
var awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Rust

let provider_config = MaterialProvidersConfig::builder().build()?;
let mat_prov = client::Client::from_conf(provider_config)?;
let kms_keyring = mat_prov
 .create_aws_kms_mrk_multi_keyring()
 .generator(kms_key_id)
 .send()
 .await?;

次の例では、 CreateAwsKmsRsaKeyringメソッドを使用して、非対称 RSA KMS AWS KMS キー
を持つ キーリングを作成します。非対称 RSA AWS KMS キーリングを作成するには、次の値を指定
します。

• kmsClient: 新しい AWS KMS クライアントを作成する

• kmsKeyID: 非対称 RSA KMS キーを識別するキー ARN

• publicKey: 渡したキーのパブリックキーを表す UTF-8 エンコードされた PEM ファイルの
ByteBuffer UTF-8 kmsKeyID

• encryptionAlgorithm: 暗号化アルゴリズムは RSAES_OAEP_SHA_256または である必要があ
ります RSAES_OAEP_SHA_1

Java

 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
 CreateAwsKmsRsaKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .kmsKeyId(rsaKMSKeyArn)
 .publicKey(publicKey)
 .encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
 .build();

AWS KMS キーリングの作成 54

AWS データベース暗号化 SDK デベロッパーガイド

IKeyring awsKmsRsaKeyring =
 matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsRsaKeyringInput = new CreateAwsKmsRsaKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = rsaKMSKeyArn,
 PublicKey = publicKey,
 EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};
IKeyring awsKmsRsaKeyring =
 matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_rsa_keyring = mpl
 .create_aws_kms_rsa_keyring()
 .kms_key_id(rsa_kms_key_arn)
 .public_key(public_key)

 .encryption_algorithm(aws_sdk_kms::types::EncryptionAlgorithmSpec::RsaesOaepSha256)
 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
 .send()
 .await?;

マルチリージョンの使用 AWS KMS keys

AWS Database Encryption SDK では、マルチリージョンをラッピングキー AWS KMS keys として
使用できます。1 つの でマルチリージョンキーを使用して暗号化する場合 AWS リージョン、別の
で関連するマルチリージョンキーを使用して復号できます AWS リージョン。

マルチリージョン KMS キーは、同じキーマテリアルとキー ID AWS リージョン を持つ異なる AWS
KMS keys の のセットです。これらの関連キーは、さまざまなリージョンで同じキーであるかの
ように使用できます。マルチリージョンキーは、クロスリージョン呼び出しを行うことなく、1 つ

マルチリージョンの使用 AWS KMS keys 55

AWS データベース暗号化 SDK デベロッパーガイド

のリージョンで暗号化し、別のリージョンで復号する必要がある一般的なディザスタリカバリおよ
びバックアップシナリオをサポートします AWS KMS。マルチリージョンキーの詳細については、
「AWS Key Management Service デベロッパーガイド」の「マルチリージョンキーを使用する」を
参照してください。

マルチリージョンキーをサポートするために、 AWS Database Encryption SDK AWS KMS multi-
Region-awareキーリングが含まれています。CreateAwsKmsMrkMultiKeyring メソッドは、単一
リージョンキーとマルチリージョンキーの両方をサポートします。

• 単一リージョンキーの場合、マルチリージョン対応シンボルは、単一リージョン AWS KMS キー
リングのように動作します。データを暗号化した単一リージョンキーを使用してのみ、暗号化テキ
ストの復号が試されます。 AWS KMS キーリングの操作性を簡素化するために、対称暗号化 KMS
キーを使用するたびに CreateAwsKmsMrkMultiKeyringメソッドを使用することをお勧めしま
す。

• マルチリージョンキーの場合、マルチリージョン対応シンボルは、データを暗号化したのと同じマ
ルチリージョンキー、または指定したリージョン内の関連するマルチリージョンキーを使用して暗
号文の復号を試みます。

複数の KMS キーを使用するマルチリージョン対応キーリングでは、複数の単一リージョンキーとマ
ルチリージョンキーを指定できます。ただし、関連するマルチリージョンキーのセットごとに 1 つ
のキーしか指定できません。同じキー ID で複数のキー識別子を指定すると、コンストラクタの呼び
出しは失敗します。

次の例では、マルチリージョン KMS AWS KMS キーを使用して キーリングを作成します。この例で
は、ジェネレーターキーとしてマルチリージョンキーを指定し、子キーとして単一リージョンキーを
指定します。

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(multiRegionKeyArn)
 .kmsKeyIds(Collections.singletonList(kmsKeyArn))
 .build();
IKeyring awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

マルチリージョンの使用 AWS KMS keys 56

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS データベース暗号化 SDK デベロッパーガイド

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput
{
 Generator = multiRegionKeyArn,
 KmsKeyIds = new List<String> { kmsKeyArn }
};
var awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let aws_kms_mrk_multi_keyring = mpl
 .create_aws_kms_mrk_multi_keyring()
 .generator(multiRegion_key_arn)
 .kms_key_ids(vec![key_arn.to_string()])
 .send()
 .await?;

マルチリージョン AWS KMS キーリングを使用すると、Strict モードまたは Discover モードで暗号
文を復号できます。厳格モードで暗号文を復号するには、暗号文を復号するリージョン内の関連す
るマルチリージョンキーのキー ARN を使用してマルチリージョン対応シンボルをインスタンス化し
ます。別のリージョン (例: レコードが暗号化されたリージョン) で関連するマルチリージョンキー
のキー ARN を指定した場合、マルチリージョン対応シンボルは、その AWS KMS keyのクロスリー
ジョン呼び出しを実行します。

Strict モードで復号する場合、マルチリージョン対応シンボルにはキー ARN が必要です。関連する
マルチリージョンキーの各セットからキー ARN を 1 つだけ受け付けます。

AWS KMS マルチリージョンのキーを使用して、検出モードで復号することもできます。検出モード
で復号する場合は、 AWS KMS keysを指定しません。（単一リージョン AWS KMS の検出キーリン
グの詳細については、「」を参照してくださいAWS KMS 検出キーリングの使用。）

マルチリージョンキーで暗号化した場合、検出モードのマルチリージョン対応シンボルは、ローカ
ルリージョン内の関連するマルチリージョンキーを使用して復号しようとします。何も存在しない場

マルチリージョンの使用 AWS KMS keys 57

AWS データベース暗号化 SDK デベロッパーガイド

合、呼び出しは失敗します。検出モードでは、 AWS Database Encryption SDK は暗号化に使用され
るマルチリージョンキーのクロスリージョン呼び出しを試みません。

AWS KMS 検出キーリングの使用

復号するときは、 AWS Database Encryption SDK が使用できるラッピングキーを指定することがベ
ストプラクティスです。このベストプラクティスに従うには、ラ AWS KMS ッピングキーを AWS
KMS 指定したものに制限する復号キーリングを使用します。ただし、AWS KMS 検出キーリング、
つまりラッピングキーを指定しない AWS KMS キーリングを作成することもできます。

AWS Database Encryption SDK は、標準 AWS KMS の検出キーリングと AWS KMS マルチリージョ
ンキーの検出キーリングを提供します。 AWS Database Encryption SDK でのマルチリージョンキー
の使用については、「マルチリージョンの使用 AWS KMS keys」を参照してください。

ラッピングキーが指定されていないため、検出キーリングはデータを暗号化できません。検出キーリ
ングを使用して、単独またはマルチキーリングでデータを暗号化すると、暗号化操作は失敗します。

復号時に、検出キーリングを使用すると、 AWS Database Encryption SDK は、暗号化されたデータ
キーを所有またはアクセスできるユーザーに関係なく、暗号化されたデータキーを暗号化 AWS KMS
key した を使用して復号するように AWS KMS に要求できます AWS KMS key。呼び出しは、呼び
出し元にその AWS KMS keyに対する kms:Decrypt 許可がある場合にのみ成功します。

Important

復号マルチキーリングに AWS KMS 検出キーリングを含めると、検出キーリングは、マルチ
キーリングの他のキーリングで指定されたすべての KMS キー制限を上書きします。マルチ
キーリングは、最も制限の少ないキーリングのように動作します。検出キーリングを単独ま
たは複数のキーリングで使用してデータを暗号化すると、暗号化オペレーションは失敗しま
す

AWS Database Encryption SDK は、便利な AWS KMS 検出キーリングを提供します。ただし、次の
理由から、可能な限り制限されたキーリングを使用することをお勧めします。

• 真正性 – AWS KMS 検出キーリングは、呼び出し元 AWS KMS key が復 AWS KMS key 号に使用
するアクセス許可を持っている限り、マテリアルの説明でデータキーを暗号化するために使用され
た を使用できます。これは、呼び出し元 AWS KMS key が使用する ではない場合があります。例
えば、暗号化されたデータキーの 1 つが、誰でも使用できる安全性 AWS KMS key の低い で暗号
化されている可能性があります。

AWS KMS 検出キーリングの使用 58

AWS データベース暗号化 SDK デベロッパーガイド

• レイテンシーとパフォーマンス – AWS Database AWS KMS Encryption SDK は、他の AWS アカ
ウント およびリージョン AWS KMS keys の によって暗号化されたデータキーを含むすべての暗
号化されたデータキーを復号しようとし、呼び出し元 AWS KMS keys に復号に使用するアクセス
許可がないため、検出キーリングは他のキーリングよりもかなり遅くなる可能性があります。

検出キーリングを使用する場合は、検出フィルターを使用して、使用できる KMS キーを、指定され
た AWS アカウント および パーティション内のキーに制限することをお勧めします。アカウント ID
とパーティションの検索については、「」のAWS アカウント 「識別子と ARN 形式」を参照してく
ださいAWS 全般のリファレンス。

次のコード例では、 AWS Database Encryption SDK が使用できる KMS AWS KMS キーをawsパー
ティションと111122223333サンプルアカウントのキーに制限する検出フィルターを使用して、 検
出キーリングをインスタンス化します。

このコードを使用する前に、例の AWS アカウント とパーティションの値を AWS アカウント と
パーティションの有効な値に置き換えます。KMS キーが中国リージョンにある場合は、aws-cn の
パーティションの値を使用します。KMS キーが AWS GovCloud (US) Regionsにある場合は、aws-
us-gov のパーティションの値を使用します。他のすべての AWS リージョンについては、aws の
パーティションの値を使用します。

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

C# / .NET

// Create discovery filter
var discoveryFilter = new DiscoveryFilter
{

AWS KMS 検出キーリングの使用 59

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS データベース暗号化 SDK デベロッパーガイド

 Partition = "aws",
 AccountIds = 111122223333
};
// Create the discovery keyring
var createAwsKmsMrkDiscoveryMultiKeyringInput = new
 CreateAwsKmsMrkDiscoveryMultiKeyringInput
{
 DiscoveryFilter = discoveryFilter
};
var decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Rust

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .partition("aws")
 .account_ids(111122223333)
 .build()?;

// Create the discovery keyring
let decrypt_keyring = mpl
 .create_aws_kms_mrk_discovery_multi_keyring()
 .discovery_filter(discovery_filter)
 .send()
 .await?;

AWS KMS リージョン検出キーリングの使用

AWS KMS リージョンレベルの検出キーリングは、KMS キーの ARN を指定しないキーリングで
す。代わりに、 AWS Database Encryption SDK は、特に KMS キーのみを使用して復号化できます
AWS リージョン。

AWS KMS リージョン検出キーリングを使用して復号する場合、 AWS Database Encryption SDK
は、指定された の AWS KMS key で暗号化されたデータキーを復号します AWS リージョン。成功
するには、呼び出し元が、データキーを暗号化 AWS リージョン した指定された AWS KMS keys 内
の少なくとも 1 つの に対するkms:Decryptアクセス許可を持っている必要があります。

他の検出キーリングと同様、リージョンレベルの検出キーリングは暗号化には影響しません。暗号化
されたフィールドを復号する場合にのみ機能します。暗号化と復号に使用されるマルチキーリングで
リージョンレベルの検出キーリングを使用する場合、それは復号時にのみ有効です。マルチリージョ

AWS KMS リージョン検出キーリングの使用 60

AWS データベース暗号化 SDK デベロッパーガイド

ン検出キーリングを単独または複数のキーリングで使用してデータを暗号化すると、暗号化オペレー
ションは失敗します。

Important

復号マルチキーリングに AWS KMS リージョン検出キーリングを含めると、リージョン検
出キーリングは、マルチキーリングの他のキーリングで指定されたすべての KMS キー制限
を上書きします。マルチキーリングは、最も制限の少ないキーリングのように動作します。
AWS KMS 検出キーリングは、単独で使用する場合も、マルチキーリングで使用する場合
も、暗号化には影響しません。

AWS Database Encryption SDK のリージョン検出キーリングは、指定されたリージョンの KMS
キーでのみ復号を試みます。検出キーリングを使用する場合は、 AWS KMS クライアントでリー
ジョンを設定します。これらの AWS Database Encryption SDK の実装では、リージョンごとに
KMS キーをフィルタリングしませんが、指定されたリージョン外の KMS キーの復号リクエストは
失敗 AWS KMS します。

検出キーリングを使用する場合は、検出フィルターを使用して、復号に使用される KMS キーを、指
定された AWS アカウント および パーティション内のキーに制限することをお勧めします。

例えば、次のコードは、検出フィルターを使用して AWS KMS リージョン検出キーリングを作成し
ます。このキーリングは、 AWS Database Encryption SDK を、米国西部 (オレゴン) リージョン (us-
west-2) のアカウント 111122223333 の KMS キーに制限します。

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .regions("us-west-2")
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

AWS KMS リージョン検出キーリングの使用 61

AWS データベース暗号化 SDK デベロッパーガイド

C# / .NET

// Create discovery filter
var discoveryFilter = new DiscoveryFilter
{
 Partition = "aws",
 AccountIds = 111122223333
};
// Create the discovery keyring
var createAwsKmsMrkDiscoveryMultiKeyringInput = new
 CreateAwsKmsMrkDiscoveryMultiKeyringInput
{
 DiscoveryFilter = discoveryFilter,
 Regions = us-west-2
};
var decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Rust

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .partition("aws")
 .account_ids(111122223333)
 .build()?;

// Create the discovery keyring
let decrypt_keyring = mpl
 .create_aws_kms_mrk_discovery_multi_keyring()
 .discovery_filter(discovery_filter)
 .regions(us-west-2)
 .send()
 .await?;

AWS KMS 階層キーリング

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

AWS KMS 階層キーリング 62

AWS データベース暗号化 SDK デベロッパーガイド

Note

2023 年 7 月 24 日の時点では、デベロッパープレビュー中に作成されたブランチキーはサ
ポートされていません。デベロッパープレビュー中に作成したキーストアを引き続き使用す
るには、新しいブランチキーを作成します。

AWS KMS 階層キーリングを使用すると、レコードを暗号化または復号する AWS KMS たびに を呼
び出すことなく、対称暗号化 KMS キーで暗号化マテリアルを保護できます。これは、 への呼び出し
を最小限に抑える必要があるアプリケーションや AWS KMS、セキュリティ要件に違反することなく
一部の暗号化マテリアルを再利用できるアプリケーションに適しています。

階層キーリングは、Amazon DynamoDB テーブルに保持されている AWS KMS 保護されたブランチ
キーを使用し、暗号化および復号オペレーションで使用されるブランチキーマテリアルをローカル
にキャッシュすることで AWS KMS 、呼び出しの数を減らす暗号化マテリアルキャッシュソリュー
ションです。DynamoDB テーブルは、ブランチキーを管理および保護するキーストアとして機能し
ます。アクティブなブランチキーと、ブランチキーの以前のすべてのバージョンが格納されます。ア
クティブなブランチキーは、ブランチキーの最新バージョンです。階層キーリングは、暗号化リクエ
ストごとに一意のデータ暗号化キーを使用し、アクティブなブランチキーから派生した一意のラッピ
ングキーを使用して各データ暗号化キーを暗号化します。階層キーリングは、アクティブなブランチ
キーと、その導出ラッピングキーの間に確立された階層に依拠します。

階層キーリングは通常、複数のリクエストを満たすために各ブランチキーバージョンを使用します。
ただし、ユーザーがアクティブなブランチキーを再利用する範囲を制御し、アクティブなブランチ
キーをローテーションする頻度を決定します。ブランチキーのアクティブなバージョンは、ローテー
ションされるまでアクティブなままとなります。アクティブなブランチキーの以前のバージョンは暗
号化オペレーションの実行には使用されませんが、引き続きクエリを実行して復号オペレーションに
使用できます。

階層キーリングをインスタンス化すると、ローカルキャッシュが作成されます。ブランチキーマテ
リアルがローカルキャッシュ内に格納される最大時間 (ブランチキーマテリアルが期限切れになって
キャッシュから削除されるまでの時間) を定義するキャッシュ制限を指定します。階層キーリングは
1 回の AWS KMS 呼び出しを行い、 オペレーションで が初めてbranch-key-id指定されたときに
ブランチキーを復号し、ブランチキーマテリアルをアセンブルします。その後、ブランチキーマテリ
アルはローカルキャッシュに格納され、キャッシュ制限が期限切れになるまで、その branch-key-
id を指定するすべての暗号化および復号オペレーションのために再利用されます。ブランチキー
マテリアルをローカルキャッシュに保存すると、 AWS KMS 呼び出しが減ります。例えば、キャッ
シュ制限が 15 分である場合を考えてみましょう。そのキャッシュ制限内で 10,000 回の暗号化オペ

AWS KMS 階層キーリング 63

AWS データベース暗号化 SDK デベロッパーガイド

レーションを実行する場合、従来の AWS KMS キーリングは 10,000 回の暗号化オペレーションを
満たすために 10,000 回の AWS KMS 呼び出しを行う必要があります。アクティブな が 1 つある場
合branch-key-id、階層キーリングは 10,000 回の暗号化オペレーションを満たすために 1 回の
AWS KMS 呼び出しを行うだけで済みます。

ローカルキャッシュは、暗号化マテリアルと復号マテリアルを分離します。暗号化マテリアルはアク
ティブなブランチキーからアセンブルされ、キャッシュ制限が期限切れになるまですべての暗号化オ
ペレーションに再利用されます。復号マテリアルは、暗号化されたフィールドのメタデータで識別さ
れるブランチキー ID とバージョンからアセンブルされ、キャッシュ制限の有効期限が切れるまで、
ブランチキー ID とバージョンに関連するすべての復号オペレーションに再利用されます。ローカル
キャッシュは、同じブランチキーの複数のバージョンを一度に保存できます。ローカルキャッシュ
が を使用するように設定されている場合branch key ID supplier、一度に複数のアクティブなブラン
チキーからのブランチキーマテリアルを保存することもできます。

Note

AWS Database Encryption SDK の階層キーリングに関するすべての言及は、 AWS KMS 階
層キーリングを参照しています。

トピック

• 仕組み

• 前提条件

• 必要なアクセス許可

• キャッシュを選択する

• 階層キーリングを作成する

• 検索可能な暗号化のための階層キーリングの使用

仕組み

次のチュートリアルでは、階層キーリングが暗号化および復号マテリアルをアセンブルする方法と、
暗号化および復号オペレーションのためにキーリングが実行するさまざまな呼び出しについて説明し
ます。ラッピングキーの導出とプレーンテキストデータキーの暗号化プロセスの技術的な詳細につい
ては、「AWS KMS 階層キーリングの技術的な詳細」を参照してください。

暗号化および署名

仕組み 64

AWS データベース暗号化 SDK デベロッパーガイド

次のチュートリアルでは、階層キーリングが暗号化マテリアルをアセンブルし、一意のラッピング
キーを導出する方法について説明します。

1. 暗号化メソッドは、階層キーリングに暗号化マテリアルを要求します。キーリングはプレーンテ
キストのデータキーを生成し、ラッピングキーを生成するための有効なブランチキーマテリアル
がローカルキャッシュにあるかどうかを確認します。有効なブランチキーマテリアルがある場
合、キーリングはステップ 4 に進みます。

2. 有効なブランチキーマテリアルがない場合、階層キーリングはキーストアにアクティブなブラン
チキーをクエリします。

a. キーストアは AWS KMS を呼び出してアクティブなブランチキーを復号し、プレーンテキ
ストのアクティブなブランチキーを返します。アクティブなブランチキーを識別するデータ
は、 AWS KMSに対する復号呼び出しで追加認証データ (AAD) を提供するためにシリアル
化されます。

b. キーストアは、プレーンテキストのブランチキーと、ブランチキーのバージョンなど、それ
を識別するデータを返します。

3. 階層キーリングはブランチキーマテリアル (プレーンテキストブランチキーとブランチキーバー
ジョン) をアセンブルし、それらのコピーをローカルキャッシュに格納します。

4. 階層キーリングは、プレーンテキストブランチキーと 16 バイトのランダムソルトから一意の
ラッピングキーを導出します。プレーンテキストデータキーのコピーを暗号化するために、導出
されたラッピングキーを使用します。

暗号化メソッドは、暗号化マテリアルを使用してレコードを暗号化して署名します。 AWS
Database Encryption SDK でレコードがどのように暗号化および署名されるのかに関する詳細につい
ては、「暗号化して署名」を参照してください。

復号および検証

次のチュートリアルでは、階層キーリングが復号マテリアルをアセンブルし、暗号化されたデータ
キーを復号する方法について説明します。

1. 復号メソッドは、暗号化されたレコードのマテリアルの説明フィールドから暗号化されたデータ
キーを識別し、それを階層キーリングに渡します。

2. 階層キーリングは、ブランチキーのバージョン、16 バイトのソルト、およびデータキーの暗号
化方法を説明する他の情報を含む、暗号化されたデータキーを識別するデータを逆シリアル化し
ます。

仕組み 65

AWS データベース暗号化 SDK デベロッパーガイド

詳細については、「AWS KMS 階層キーリングの技術的な詳細」を参照してください。

3. 階層キーリングは、ステップ 2 で特定されたブランチキーのバージョンと一致する有効なブラ
ンチキーマテリアルがローカルキャッシュ内に存在するかどうかをチェックします。有効なブラ
ンチキーマテリアルがある場合、キーリングはステップ 6 に進みます。

4. 有効なブランチキーマテリアルがない場合、階層キーリングは、ステップ 2 で識別されたブラ
ンチキーバージョンに一致するブランチキーについてキーストアをクエリします。

a. キーストアは AWS KMS を呼び出してブランチキーを復号し、プレーンテキストのアク
ティブなブランチキーを返します。アクティブなブランチキーを識別するデータは、 AWS
KMSに対する復号呼び出しで追加認証データ (AAD) を提供するためにシリアル化されま
す。

b. キーストアは、プレーンテキストのブランチキーと、ブランチキーのバージョンなど、それ
を識別するデータを返します。

5. 階層キーリングはブランチキーマテリアル (プレーンテキストブランチキーとブランチキーバー
ジョン) をアセンブルし、それらのコピーをローカルキャッシュに格納します。

6. 階層キーリングは、アセンブルされたブランチキーマテリアルと、ステップ 2 で識別された 16
バイトのソルトを使用して、データキーを暗号化した一意のラッピングキーを複製します。

7. 階層キーリングは、複製されたラッピングキーを使用してデータキーを復号し、プレーンテキス
トのデータキーを返します。

復号メソッドは、復号マテリアルとプレーンテキストデータキーを使用し、レコードを復号して検
証します。 AWS Database Encryption SDK でレコードを復号化して検証する方法の詳細について
は、「復号化して検証する」を参照してください。

前提条件

階層キーリングを作成して使用する前に、次の前提条件が満たされていることを確認してください。

• ユーザーまたはキーストア管理者が、キーストアを作成し、少なくとも 1 つのアクティブなブラ
ンチキーを作成しました。

• キーストアアクションを設定しました。

前提条件 66

AWS データベース暗号化 SDK デベロッパーガイド

Note

キーストアアクションの設定方法によって、実行できるオペレーションと、階層キーリン
グで使用できる KMS キーが決まります。詳細については、「キーストアアクション」を
参照してください。

• キーストアとブランチキーにアクセスして使用するために必要なアクセス AWS KMS 許可があり
ます。詳細については、「the section called “必要なアクセス許可”」を参照してください。

• サポートされているキャッシュタイプを確認し、ニーズに最適なキャッシュタイプを設定しまし
た。詳細については、「the section called “キャッシュを選択する”」を参照してください

必要なアクセス許可

AWS Database Encryption SDK は を必要とせず AWS アカウント 、 に依存しません AWS のサービ
ス。ただし、階層キーリングを使用するには、 AWS アカウント と、キーストアの対称暗号化 AWS
KMS key（複数可) に対する以下の最小限のアクセス許可が必要です。

• 階層キーリングを使用してデータを暗号化および復号するには、kms:Decrypt が必要です。

• ブランチキーを作成してローテーションするには、kms:GenerateDataKeyWithoutPlaintext と
kms:ReEncrypt が必要です。

ブランチキーとキーストアへのアクセスの制御の詳細については、「」を参照してくださいthe
section called “最小特権のアクセス許可の実装”。

キャッシュを選択する

階層キーリングは、暗号化および復号オペレーションで使用されるブランチキーマテリアルをローカ
ルにキャッシュ AWS KMS することで、 への呼び出し回数を減らします。階層キーリングを作成す
る前に、使用するキャッシュのタイプを決定する必要があります。デフォルトのキャッシュを使用す
るか、ニーズに合わせてキャッシュをカスタマイズできます。

階層キーリングは、次のキャッシュタイプをサポートしています。

• the section called “デフォルトキャッシュ”

• the section called “MultiThreadedキャッシュ”

• the section called “StormTracking キャッシュ”

必要なアクセス許可 67

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS データベース暗号化 SDK デベロッパーガイド

• the section called “共有キャッシュ”

デフォルトキャッシュ

ほとんどのユーザーにとって、Default キャッシュはスレッド要件を満たします。Default キャッシュ
は、高度にマルチスレッド化されている環境をサポートするように設計されています。ブランチキー
マテリアルエントリの有効期限が切れると、デフォルトキャッシュは、ブランチキーマテリアルエ
ントリの有効期限が 10 秒前になることを 1 つのスレッドに通知 AWS KMS することで、複数のス
レッドが呼び出されるのを防ぎます。これにより、1 つのスレッドのみが にリクエストを送信 AWS
KMS してキャッシュを更新します。

デフォルトキャッシュと StormTracking キャッシュは同じスレッドモデルをサポートしますが、デ
フォルトキャッシュを使用するにはエントリ容量を指定するだけで済みます。より詳細なキャッシュ
のカスタマイズを行うには、 を使用しますthe section called “StormTracking キャッシュ”。

ローカルキャッシュに保存できるブランチキーマテリアルエントリの数をカスタマイズする場合を除
き、階層キーリングを作成するときにキャッシュタイプを指定する必要はありません。キャッシュタ
イプを指定しない場合、階層キーリングはデフォルトのキャッシュタイプを使用し、エントリ容量を
1000 に設定します。

デフォルトキャッシュをカスタマイズするには、次の値を指定します。

• エントリキャパシティ: ローカルキャッシュに格納できるブランチキーマテリアルのエントリの数
を制限します。

Java

.cache(CacheType.builder()
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())

C# / .NET

CacheType defaultCache = new CacheType
{
 Default = new DefaultCache{EntryCapacity = 100}
};

キャッシュを選択する 68

AWS データベース暗号化 SDK デベロッパーガイド

Rust

let cache: CacheType = CacheType::Default(
 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

MultiThreadedキャッシュ

MultiThreaded キャッシュは、マルチスレッド環境で安全に使用できますが、 AWS KMS または
Amazon DynamoDB 呼び出しを最小限に抑える機能はありません。その結果、ブランチキーマテリ
アルのエントリの期限が切れると、すべてのスレッドに同時に通知されます。これにより、キャッ
シュを更新するための複数の AWS KMS 呼び出しが発生する可能性があります。

MultiThreaded キャッシュを使用するには、次の値を指定します。

• エントリキャパシティ: ローカルキャッシュに格納できるブランチキーマテリアルのエントリの数
を制限します。

• エントリのプルーニングテールのサイズ: エントリキャパシティに達した場合にプルーニングする
エントリの数を定義します。

Java

.cache(CacheType.builder()
 .MultiThreaded(MultiThreadedCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)
 .build())

C# / .NET

CacheType multithreadedCache = new CacheType
{
 MultiThreaded = new MultiThreadedCache
 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1
 }

キャッシュを選択する 69

AWS データベース暗号化 SDK デベロッパーガイド

};

Rust

CacheType::MultiThreaded(
 MultiThreadedCache::builder()
 .entry_capacity(100)
 .entry_pruning_tail_size(1)
 .build()?)

StormTracking キャッシュ

StormTracking キャッシュは、高度にマルチスレッド化されている環境をサポートするように設計さ
れています。ブランチキーマテリアルエントリの有効期限が切れると、StormTracking キャッシュ
は、ブランチキーマテリアルエントリの有効期限が切れることを 1 つのスレッドに通知 AWS KMS
することで、複数のスレッドが を呼び出すのを防ぎます。これにより、1 つのスレッドのみが にリ
クエストを送信 AWS KMS してキャッシュを更新します。

StormTracking キャッシュを使用するには、次の値を指定します。

• エントリキャパシティ: ローカルキャッシュに格納できるブランチキーマテリアルのエントリの数
を制限します。

デフォルト値: 1000 エントリ

• エントリのプルーニングテールのサイズ: 一度にプルーニングするブランチキーマテリアルのエン
トリの数を定義します。

デフォルトの値: 1 個のエントリ

• 猶予期間: 期限が切れる前にブランチキーマテリアルの更新を試行する秒数を定義します。

デフォルト値: 10 秒

• 猶予間隔: ブランチキーマテリアルの更新が試行される間隔の秒数を定義します。

デフォルト値: 1 秒

• ファンアウト: ブランチキーマテリアルの更新の同時試行が可能な回数を定義します。

デフォルトの値: 20 回の試行

キャッシュを選択する 70

AWS データベース暗号化 SDK デベロッパーガイド

• 処理中の Time To Live (TTL): ブランチキーマテリアルの更新の試行がタイムアウトするまでの秒
数を定義します。キャッシュが GetCacheEntry に応答して NoSuchEntry を返すたびに、同じ
キーが PutCache エントリを使用して書き込まれるまで、そのブランチキーは処理中であるとみ
なされます。

デフォルト値: 10 秒

• スリープ: fanOut を超えた場合にスレッドがスリープする秒数を定義します。

デフォルトの値: 20 ミリ秒

Java

.cache(CacheType.builder()
 .StormTracking(StormTrackingCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)
 .gracePeriod(10)
 .graceInterval(1)
 .fanOut(20)
 .inFlightTTL(10)
 .sleepMilli(20)
 .build())

C# / .NET

CacheType stormTrackingCache = new CacheType
{
 StormTracking = new StormTrackingCache
 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1,
 FanOut = 20,
 GraceInterval = 1,
 GracePeriod = 10,
 InFlightTTL = 10,
 SleepMilli = 20
 }
};

キャッシュを選択する 71

AWS データベース暗号化 SDK デベロッパーガイド

Rust

CacheType::StormTracking(
 StormTrackingCache::builder()
 .entry_capacity(100)
 .entry_pruning_tail_size(1)
 .grace_period(10)
 .grace_interval(1)
 .fan_out(20)
 .in_flight_ttl(10)
 .sleep_milli(20)
 .build()?)

共有キャッシュ

デフォルトでは、階層キーリングは、キーリングをインスタンス化するたびに新しいローカルキャッ
シュを作成します。ただし、共有キャッシュを使用すると、複数の階層キーリング間でキャッシュを
共有できるため、メモリを節約できます。インスタンス化する階層キーリングごとに新しい暗号化マ
テリアルキャッシュを作成するのではなく、共有キャッシュは 1 つのキャッシュのみをメモリに保
存します。このキャッシュは、それを参照するすべての階層キーリングで使用できます。共有キャッ
シュは、キーリング間での暗号化マテリアルの重複を回避することで、メモリ使用量を最適化するの
に役立ちます。代わりに、階層キーリングは同じ基盤となるキャッシュにアクセスできるため、全体
的なメモリフットプリントが削減されます。

共有キャッシュを作成する場合でも、キャッシュタイプを定義します。the section called
“StormTracking キャッシュ” キャッシュタイプとして the section called “デフォルトキャッ
シュ”、the section called “MultiThreadedキャッシュ”、または を指定するか、互換性のあるカスタム
キャッシュを置き換えることができます。

パーティション

複数の階層キーリングで 1 つの共有キャッシュを使用できます。共有キャッシュを使用して階層
キーリングを作成する場合、オプションのパーティション ID を定義できます。パーティション ID
は、キャッシュに書き込む階層キーリングを区別します。2 つの階層キーリングが同じパーティショ
ン ID、logical key store name、ブランチキー ID を参照している場合、2 つのキーリングはキャッ
シュ内で同じキャッシュエントリを共有します。同じ共有キャッシュで異なるパーティション IDs
を持つ 2 つの階層キーリングを作成すると、各キーリングは共有キャッシュ内の独自の指定された

キャッシュを選択する 72

AWS データベース暗号化 SDK デベロッパーガイド

パーティションからのみキャッシュエントリにアクセスします。パーティションは共有キャッシュ内
の論理的な分割として機能し、各階層キーリングが他のパーティションに保存されているデータを妨
害することなく、独自の指定されたパーティションで独立して動作できるようにします。

パーティション内のキャッシュエントリを再利用または共有する場合は、独自のパーティション ID
を定義する必要があります。パーティション ID を階層キーリングに渡すと、キーリングは、ブラン
チキーマテリアルを再度取得して再承認するのではなく、共有キャッシュに既に存在するキャッシュ
エントリを再利用できます。パーティション ID を指定しない場合、階層キーリングをインスタンス
化するたびに、一意のパーティション ID がキーリングに自動的に割り当てられます。

次の手順は、デフォルトのキャッシュタイプで共有キャッシュを作成し、階層キーリングに渡す方法
を示しています。

1. マテリアルプロバイダーライブラリ CryptographicMaterialsCache (MPL) を使用して
(CMC) を作成します。 https://github.com/aws/aws-cryptographic-material-providers-library

Java

// Instantiate the MPL
final MaterialProviders matProv =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

// Create a CacheType object for the Default cache
final CacheType cache =
 CacheType.builder()
 .Default(DefaultCache.builder().entryCapacity(100).build())
 .build();

// Create a CMC using the default cache
final CreateCryptographicMaterialsCacheInput cryptographicMaterialsCacheInput =
 CreateCryptographicMaterialsCacheInput.builder()
 .cache(cache)
 .build();

final ICryptographicMaterialsCache sharedCryptographicMaterialsCache =
 matProv.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

C# / .NET

// Instantiate the MPL

キャッシュを選択する 73

https://github.com/aws/aws-cryptographic-material-providers-library

AWS データベース暗号化 SDK デベロッパーガイド

var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create a CacheType object for the Default cache
var cache = new CacheType { Default = new DefaultCache{EntryCapacity = 100} };

// Create a CMC using the default cache
var cryptographicMaterialsCacheInput = new
 CreateCryptographicMaterialsCacheInput {Cache = cache};

var sharedCryptographicMaterialsCache =
 materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

Rust

// Instantiate the MPL
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create a CacheType object for the default cache
let cache: CacheType = CacheType::Default(
 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

// Create a CMC using the default cache
let shared_cryptographic_materials_cache: CryptographicMaterialsCacheRef = mpl.
 create_cryptographic_materials_cache()
 .cache(cache)
 .send()
 .await?;

2. 共有キャッシュの CacheType オブジェクトを作成します。

ステップ 1 でsharedCryptographicMaterialsCache作成した を新しい CacheType オブ
ジェクトに渡します。

Java

// Create a CacheType object for the sharedCryptographicMaterialsCache
final CacheType sharedCache =
 CacheType.builder()
 .Shared(sharedCryptographicMaterialsCache)

キャッシュを選択する 74

AWS データベース暗号化 SDK デベロッパーガイド

 .build();

C# / .NET

// Create a CacheType object for the sharedCryptographicMaterialsCache
var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache };

Rust

// Create a CacheType object for the shared_cryptographic_materials_cache
let shared_cache: CacheType =
 CacheType::Shared(shared_cryptographic_materials_cache);

3. ステップ 2 の sharedCache オブジェクトを階層キーリングに渡します。

共有キャッシュを使用して階層キーリングを作成する場合、オプションで を定
義partitionIDして、複数の階層キーリング間でキャッシュエントリを共有できます。パー
ティション ID を指定しない場合、階層キーリングはキーリングに一意のパーティション ID を
自動的に割り当てます。

Note

同じパーティション ID、、logical key store nameブランチキー ID を参照する 2 つ以上
のキーリングを作成すると、階層キーリングは共有キャッシュで同じキャッシュエント
リを共有します。複数のキーリングで同じキャッシュエントリを共有しない場合は、階
層キーリングごとに一意のパーティション ID を使用する必要があります。

次の例では、 と 600 秒のbranch key ID supplierキャッシュ制限を持つ階層キーリングを作成し
ます。次の階層キーリング設定で定義されている値の詳細については、「」を参照してくださ
いthe section called “階層キーリングを作成する”。

Java

// Create the Hierarchical keyring
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)

キャッシュを選択する 75

AWS データベース暗号化 SDK デベロッパーガイド

 .ttlSeconds(600)
 .cache(sharedCache)
 .partitionID(partitionID)
 .build();
final IKeyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

// Create the Hierarchical keyring
var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 Cache = sharedCache,
 TtlSeconds = 600,
 PartitionId = partitionID
};
var keyring =
 materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Rust

// Create the Hierarchical keyring
let keyring1 = mpl
 .create_aws_kms_hierarchical_keyring()
 .key_store(key_store1)
 .branch_key_id(branch_key_id.clone())
 // CryptographicMaterialsCacheRef is an Rc (Reference Counted), so if you
 clone it to
 // pass it to different Hierarchical Keyrings, it will still point to the
 same
 // underlying cache, and increment the reference count accordingly.
 .cache(shared_cache.clone())
 .ttl_seconds(600)
 .partition_id(partition_id.clone())
 .send()
 .await?;

キャッシュを選択する 76

AWS データベース暗号化 SDK デベロッパーガイド

階層キーリングを作成する

階層キーリングを作成するには、次の値を指定する必要があります。

• キーストア名

キーストアとして機能するために作成した DynamoDB テーブルの名前、またはキーストア管理
者。

•

キャッシュ制限 Time to Live (TTL)

ローカルキャッシュ内のブランチキーマテリアルエントリを使用できる時間 (期限切れになるま
での時間) (秒)。キャッシュ制限 TTL は、クライアントがブランチキーの使用を許可 AWS KMS
するために を呼び出す頻度を決定します。この値はゼロより大きくなければなりません。キャッ
シュ制限 TTL の有効期限が切れると、エントリは提供されず、ローカルキャッシュから削除され
ます。

• ブランチキーの識別子

キーストア内の 1 つのアクティブなブランチキーbranch-key-idを識別する を静的に設定する
か、ブランチキー ID サプライヤーを指定できます。

ブランチキー ID サプライヤーでは、暗号化コンテキストに保存されているフィール
ドを使用して、レコードの復号に必要なブランチキーを決定します。デフォルトで
は、パーティションキーとソートキーのみが暗号化コンテキストに含まれます。ただ
し、SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT暗号化アクションを使用して、暗号化コン
テキストに追加のフィールドを含めることができます。

各テナントに独自のブランチキーがあるマルチテナントデータベースには、ブランチキー ID サ
プライヤーを使用することを強くお勧めします。ブランチキー ID サプライヤーを使用してブラ
ンチキー IDs のわかりやすい名前を作成し、特定のテナントの正しいブランチキー ID を簡単に
認識できます。例えば、フレンドリ名を使用すると、ブランチキーを b3f61619-4d35-48ad-
a275-050f87e15122 の代わりに tenant1 として参照できます。

復号オペレーションの場合、単一の階層キーリングを静的に設定して復号を単一のテナンシーに制
限することも、ブランチキー ID サプライヤーを使用してレコードの復号を担当するテナンシーを
識別することもできます。

階層キーリングを作成する 77

AWS データベース暗号化 SDK デベロッパーガイド

• (オプション) キャッシュ

キャッシュタイプまたはローカルキャッシュに格納できるブランチキーマテリアルエントリの数を
カスタマイズする場合は、キーリングを初期化する際にキャッシュタイプとエントリキャパシティ
を指定します。

階層キーリングは、デフォルト、MultiThreaded、StormTracking、共有のキャッシュタイプをサ
ポートします。各キャッシュタイプを定義する方法の詳細と例については、「」を参照してくださ
いthe section called “キャッシュを選択する”。

キャッシュを指定しない場合、階層キーリングは、自動的に Default キャッシュタイプを使用し、
エントリキャパシティを 1,000 に設定します。

• （オプション) パーティション ID

を指定する場合はthe section called “共有キャッシュ”、オプションでパーティション ID を定義で
きます。パーティション ID は、キャッシュに書き込む階層キーリングを区別します。パーティ
ション内のキャッシュエントリを再利用または共有する場合は、独自のパーティション ID を定義
する必要があります。パーティション ID には任意の文字列を指定できます。パーティション ID
を指定しない場合、作成時に一意のパーティション ID がキーリングに自動的に割り当てられま
す。

詳細については、「Partitions」を参照してください。

Note

同じパーティション ID、、logical key store nameブランチキー ID を参照する 2 つ以上の
キーリングを作成すると、階層キーリングは共有キャッシュで同じキャッシュエントリを
共有します。複数のキーリングで同じキャッシュエントリを共有しない場合は、階層キー
リングごとに一意のパーティション ID を使用する必要があります。

• (オプション) 許可トークンのリスト

階層キーリング内の KMS キーへのアクセスを許可によって制御する場合は、キーリングを初期化
する際に必要なすべての許可トークンを指定する必要があります。

静的ブランチキー ID を使用して階層キーリングを作成する

次の例は、静的ブランチキー ID、、the section called “デフォルトキャッシュ”キャッシュ制限 TTL
が 600 秒の階層キーリングを作成する方法を示しています。

階層キーリングを作成する 78

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS データベース暗号化 SDK デベロッパーガイド

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(branchKeyStoreName)
 .branchKeyId(branch-key-id)
 .ttlSeconds(600)
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .branch_key_id(branch_key_id)
 .key_store(branch_key_store_name)
 .ttl_seconds(600)
 .send()
 .await?;

階層キーリングを作成する 79

AWS データベース暗号化 SDK デベロッパーガイド

ブランチキー ID サプライヤーを使用して階層キーリングを作成する

次の手順は、ブランチキー ID サプライヤーを使用して階層キーリングを作成する方法を示していま
す。

1. ブランチキー ID サプライヤーを作成する

次の例では、ステップ 1 で作成した 2 つのブランチキーのフレンドリ名を作成し、
CreateDynamoDbEncryptionBranchKeyIdSupplierを呼び出して AWS Database
Encryption SDK for DynamoDB クライアントでブランチキー ID サプライヤーを作成します。

Java

// Create friendly names for each branch-key-id
class ExampleBranchKeyIdSupplier implements IDynamoDbKeyBranchKeyIdSupplier {
 private static String branchKeyIdForTenant1;
 private static String branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {
 this.branchKeyIdForTenant1 = tenant1Id;
 this.branchKeyIdForTenant2 = tenant2Id;
 }
// Create the branch key ID supplier
final DynamoDbEncryption ddbEnc = DynamoDbEncryption.builder()
 .DynamoDbEncryptionConfig(DynamoDbEncryptionConfig.builder().build())
 .build();
final BranchKeyIdSupplier branchKeyIdSupplier =
 ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 CreateDynamoDbEncryptionBranchKeyIdSupplierInput.builder()
 .ddbKeyBranchKeyIdSupplier(new ExampleBranchKeyIdSupplier(branch-
key-ID-tenant1, branch-key-ID-tenant2))
 .build()).branchKeyIdSupplier();

C# / .NET

// Create friendly names for each branch-key-id
 class ExampleBranchKeyIdSupplier : DynamoDbKeyBranchKeyIdSupplierBase {
 private String _branchKeyIdForTenant1;
 private String _branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {
 this._branchKeyIdForTenant1 = tenant1Id;

階層キーリングを作成する 80

AWS データベース暗号化 SDK デベロッパーガイド

 this._branchKeyIdForTenant2 = tenant2Id;
 }
// Create the branch key ID supplier
var ddbEnc = new DynamoDbEncryption(new DynamoDbEncryptionConfig());
var branchKeyIdSupplier = ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 new CreateDynamoDbEncryptionBranchKeyIdSupplierInput
 {
 DdbKeyBranchKeyIdSupplier = new ExampleBranchKeyIdSupplier(branch-key-
ID-tenant1, branch-key-ID-tenant2)
 }).BranchKeyIdSupplier;

Rust

// Create friendly names for each branch_key_id
pub struct ExampleBranchKeyIdSupplier {
 branch_key_id_for_tenant1: String,
 branch_key_id_for_tenant2: String,
}

impl ExampleBranchKeyIdSupplier {
 pub fn new(tenant1_id: &str, tenant2_id: &str) -> Self {
 Self {
 branch_key_id_for_tenant1: tenant1_id.to_string(),
 branch_key_id_for_tenant2: tenant2_id.to_string(),
 }
 }
}

// Create the branch key ID supplier
let dbesdk_config = DynamoDbEncryptionConfig::builder().build()?;
let dbesdk = dbesdk_client::Client::from_conf(dbesdk_config)?;
let supplier = ExampleBranchKeyIdSupplier::new(tenant1_branch_key_id,
 tenant2_branch_key_id);

let branch_key_id_supplier = dbesdk
 .create_dynamo_db_encryption_branch_key_id_supplier()
 .ddb_key_branch_key_id_supplier(supplier)
 .send()
 .await?
 .branch_key_id_supplier
 .unwrap();

2. 階層キーリングを作成する

階層キーリングを作成する 81

AWS データベース暗号化 SDK デベロッパーガイド

次の例では、ステップ 1 で作成したブランチキー ID サプライヤー、600 秒のキャッシュ制限
TLL、最大キャッシュサイズ 1000 を使用して階層キーリングを初期化します。

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(CacheType.builder() //OPTIONAL
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600,
 Cache = new CacheType
 {
 Default = new DefaultCache { EntryCapacity = 100 }
 }
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

階層キーリングを作成する 82

AWS データベース暗号化 SDK デベロッパーガイド

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .branch_key_id_supplier(branch_key_id_supplier)
 .key_store(key_store)
 .ttl_seconds(600)
 .send()
 .await?;

検索可能な暗号化のための階層キーリングの使用

検索可能な暗号化を使用すると、データベース全体を復号することなく、暗号化されたレコードを
検索できます。これは、ビーコンを使用して暗号化されたフィールドのプレーンテキストの値にイン
デックスを付けることで実現されます。検索可能な暗号化を実装するには、階層キーリングを使用す
る必要があります。

キーストア CreateKey オペレーションは、ブランチキーとビーコンキーの両方を生成します。ブラ
ンチキーは、レコードの暗号化および復号オペレーションで使用されます。ビーコンキーは、ビーコ
ンを生成するために使用されます。

ブランチキーとビーコンキーは、キーストアサービスの作成時に指定した AWS KMS key ものと同
じ によって保護されます。CreateKey オペレーションが AWS KMS を呼び出してブランチキーを
生成すると、kms:GenerateDataKeyWithoutPlaintext をもう一度呼び出し、次のリクエストを使用し
てビーコンキーを生成します。

{
 "EncryptionContext": {
 "branch-key-id" : "branch-key-id",
 "type" : type,
 "create-time" : "timestamp",
 "logical-key-store-name" : "the logical table name for your key store",
 "kms-arn" : the KMS key ARN,
 "hierarchy-version" : 1
 },
 "KeyId": "the KMS key ARN",
 "NumberOfBytes": "32"
}

両方のキーを生成した後、CreateKey オペレーションは ddb:TransactWriteItems を呼び出して、ブ
ランチキーとビーコンキーを永続化する 2 つの新しい項目をブランチキーストアに書き込みます。

検索可能な暗号化のための階層キーリングの使用 83

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html

AWS データベース暗号化 SDK デベロッパーガイド

標準ビーコンを設定すると、 AWS Database Encryption SDK はキーストアにビーコンキーをクエ
リします。その後、HMAC ベースの extract-and-expand 鍵導出関数 (HKDF) を使用して、ビーコン
キーと標準ビーコンの名前を組み合わせ、特定のビーコンの HMAC キーを作成します。

ブランチキーとは異なり、キーストアには ごとに 1 つのビーコンbranch-key-idキーバージョン
しかありません。ビーコンキーがローテーションされることはありません。

ビーコンキーソースの定義

標準ビーコンおよび複合ビーコンのビーコンバージョンを定義する際には、ビーコンキーを識別し、
ビーコンキーマテリアルのキャッシュ制限 Time To Live (TTL) を定義する必要があります。ビーコ
ンキーマテリアルは、ブランチキーとは別のローカルキャッシュに格納されます。次のスニペット
は、シングルテナンシーデータベースの keySource を定義する方法を示しています。関連付けられ
ている branch-key-id によってビーコンキーを識別します。

Java

keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branch-key-id)
 .cacheTTL(6000)
 .build())
 .build())

C# / .NET

KeySource = new BeaconKeySource
{
 Single = new SingleKeyStore
 {
 KeyId = branch-key-id,
 CacheTTL = 6000
 }
}

Rust

 .key_source(BeaconKeySource::Single(
 SingleKeyStore::builder()
 // `keyId` references a beacon key.

検索可能な暗号化のための階層キーリングの使用 84

https://en.wikipedia.org/wiki/HKDF

AWS データベース暗号化 SDK デベロッパーガイド

 // For every branch key we create in the keystore,
 // we also create a beacon key.
 // This beacon key is not the same as the branch key,
 // but is created with the same ID as the branch key.
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .build()?,
))

マルチテナンシーデータベースでのビーコンソースの定義

マルチテナンシーデータベースがある場合は、keySource を設定する際に次の値を指定する必
要があります。

•

keyFieldName

特定のテナンシーについて生成されたビーコンに使用されるビーコンキーに関連付けられた
branch-key-id を格納するフィールドの名前を定義します。keyFieldName には任意の文
字列を指定できますが、データベース内の他のすべてのフィールドで一意である必要がありま
す。新しいレコードをデータベースに書き込むと、そのレコードについてのビーコンを生成す
るために使用されるビーコンキーを識別する branch-key-id がこのフィールドに格納され
ます。このフィールドをビーコンクエリに含めて、ビーコンの再計算に必要となる適切なビー
コンキーマテリアルを特定する必要があります。詳細については、「マルチテナンシーデータ
ベース内のビーコンのクエリ」を参照してください。

• cacheTTL

ローカルビーコンキャッシュ内のビーコンキーマテリアルエントリを使用できる時間 (期限切
れになるまでの時間) (秒)。この値はゼロより大きくなければなりません。キャッシュ制限 TTL
の期限が切れると、エントリはローカルキャッシュから削除されます。

• (オプション) キャッシュ

キャッシュタイプまたはローカルキャッシュに格納できるブランチキーマテリアルエントリの
数をカスタマイズする場合は、キーリングを初期化する際にキャッシュタイプとエントリキャ
パシティを指定します。

階層キーリングは、デフォルト、MultiThreaded、StormTracking、共有のキャッシュタイプを
サポートします。各キャッシュタイプを定義する方法の詳細と例については、「」を参照して
くださいthe section called “キャッシュを選択する”。

検索可能な暗号化のための階層キーリングの使用 85

AWS データベース暗号化 SDK デベロッパーガイド

キャッシュを指定しない場合、階層キーリングは、自動的に Default キャッシュタイプを使用
し、エントリキャパシティを 1,000 に設定します。

次の例では、ブランチキー ID サプライヤー、キャッシュ制限 TLL が 600 秒、エントリ容量が
1000 の階層キーリングを作成します。

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(branchKeyStoreName)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(CacheType.builder() //OPTIONAL
 .Default(DefaultCache.builder()
 .entryCapacity(1000)
 .build())
 .build();
final IKeyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600,
 Cache = new CacheType
 {
 Default = new DefaultCache { EntryCapacity = 1000 }
 }
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let provider_config = MaterialProvidersConfig::builder().build()?;

検索可能な暗号化のための階層キーリングの使用 86

AWS データベース暗号化 SDK デベロッパーガイド

 let mat_prov = client::Client::from_conf(provider_config)?;
 let kms_keyring = mat_prov
 .create_aws_kms_hierarchical_keyring()
 .branch_key_id(branch_key_id)
 .key_store(key_store)
 .ttl_seconds(600)
 .send()
 .await?;

AWS KMS ECDH キーリング

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

Important

AWS KMS ECDH キーリングは、 マテリアルプロバイダーライブラリのバージョン 1.5.0 以
降でのみ使用できます。

AWS KMS ECDH キーリングは、非対称キー契約AWS KMS keysを使用して、2 者間で共有対称
ラッピングキーを取得します。まず、キーリングは楕円曲線 Diffie-Hellman (ECDH) キーアグリー
メントアルゴリズムを使用して、送信者の KMS キーペアのプライベートキーと受信者のパブリッ
クキーから共有シークレットを取得します。次に、キーリングは共有シークレットを使用して、
データ暗号化キーを保護する共有ラッピングキーを取得します。 AWS Database Encryption SDK が
(KDF_CTR_HMAC_SHA384) を使用して共有ラッピングキーを取得するキー取得関数は、キー取得に
関する NIST の推奨事項に準拠しています。

キー取得関数は、64 バイトのキーマテリアルを返します。Database Encryption SDK AWS は、両者
が正しいキーマテリアルを使用するように、最初の 32 バイトをコミットメントキーとして使用し、
最後の 32 バイトを共有ラッピングキーとして使用します。復号時に、キーリングが暗号化されたレ
コードのマテリアル説明フィールドに保存されているのと同じコミットメントキーと共有ラッピング
キーを再現できない場合、オペレーションは失敗します。例えば、Alice のプライベートキーと Bob
のパブリックキーで設定されたキーリングを使用してレコードを暗号化すると、Bob のプライベー
トキーと Alice のパブリックキーで設定されたキーリングは、同じコミットメントキーと共有ラッピ

AWS KMS ECDH キーリング 87

https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS データベース暗号化 SDK デベロッパーガイド

ングキーを再現し、レコードを復号化できます。Bob のパブリックキーが KMS キーペアからではな
い場合、Bob は Raw ECDH キーリングを作成してレコードを復号できます。

AWS KMS ECDH キーリングは、AES-GCM を使用して対称キーでレコードを暗号化します。次
に、データキーは、AES-GCM を使用して派生した共有ラッピングキーでエンベロープ暗号化されま
す。各 AWS KMS ECDH キーリングには共有ラッピングキーを 1 つだけ含めることができますが、
複数の AWS KMS ECDH キーリングを単独で、または他のキーリングと共にマルチキーリングに含
めることができます。

トピック

• AWS KMS ECDH キーリングに必要なアクセス許可

• AWS KMS ECDH キーリングの作成

• AWS KMS ECDH 検出キーリングの作成

AWS KMS ECDH キーリングに必要なアクセス許可

AWS Database Encryption SDK は AWS アカウントを必要とせず、どの AWS サービスにも依存し
ません。ただし、 AWS KMS ECDH キーリングを使用するには、 AWS アカウントと、キーリング
AWS KMS keys の に対する以下の最小限のアクセス許可が必要です。アクセス許可は、使用する
キーアグリーメントスキーマによって異なります。

• KmsPrivateKeyToStaticPublicKey キーアグリーメントスキーマを使用してレコー
ドを暗号化および復号するには、送信者の非対称 KMS キーペアに kms:GetPublicKey と
kms:DeriveSharedSecret が必要です。キーリングをインスタンス化するときに送信者の DER
エンコードされたパブリックキーを直接指定する場合、送信者の非対称 KMS キーペアに対する
kms:DeriveSharedSecret アクセス許可のみが必要です。

• KmsPublicKeyDiscovery キーアグリーメントスキーマを使用してレコードを復号するには、指
定された非対称 KMS キーペアに対する kms:DeriveSharedSecret および kms:GetPublicKey アク
セス許可が必要です。

AWS KMS ECDH キーリングの作成

データを暗号化および復号する AWS KMS ECDH キーリングを作成するに
は、KmsPrivateKeyToStaticPublicKeyキーアグリーメントスキーマを使用
する必要があります。キーアグリーメントスキーマを使用して AWS KMS ECDH
KmsPrivateKeyToStaticPublicKey キーリングを初期化するには、次の値を指定します。

AWS KMS ECDH キーリングに必要なアクセス許可 88

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS データベース暗号化 SDK デベロッパーガイド

• 送信者の AWS KMS key ID

KeyUsage 値が の非対称 NIST 推奨楕円曲線 (ECC)KMS キーペアを特定する必要がありま
すKEY_AGREEMENT。送信者のプライベートキーは、共有シークレットを取得するために使用され
ます。

• （オプション) 送信者のパブリックキー

RFC 5280 で定義されているように、 SubjectPublicKeyInfo (SPKI) とも呼ばれる DER エン
コードされた X.509 パブリックキーである必要があります。 https://tools.ietf.org/html/rfc5280

AWS KMS GetPublicKey オペレーションは、非対称 KMS キーペアのパブリックキーを必要な
DER エンコード形式で返します。

キーリングが行う AWS KMS 呼び出しの数を減らすには、送信者のパブリックキーを直接指定で
きます。送信者のパブリックキーに値が指定されていない場合、キーリングは AWS KMS を呼び
出して送信者のパブリックキーを取得します。

• 受信者のパブリックキー

RFC 5280 で定義されているように、 (SubjectPublicKeyInfoSPKI) とも呼ばれる受信者の
DER エンコードされた X.509 パブリックキーを指定する必要があります。 https://tools.ietf.org/
html/rfc5280

AWS KMS GetPublicKey オペレーションは、非対称 KMS キーペアのパブリックキーを必要な
DER エンコード形式で返します。

• 曲線仕様

指定されたキーペアの楕円曲線仕様を識別します。送信者と受信者の両方のキーペアは、同じ曲線
仕様である必要があります。

有効な値: ECC_NIST_P256、ECC_NIS_P384、ECC_NIST_P512

• (オプション) 許可トークンのリスト

グラントを使用して AWS KMS ECDH キーリングの KMS キーへのアクセスを制御する場合は、
キーリングを初期化するときに必要なすべてのグラントトークンを提供する必要があります。

C# / .NET

次の例では、送信者の KMS キー、送信者のパブリックキー、受信者のパブリックキー
を使用して、 で AWS KMS ECDH キーリングを作成します。この例では、オプションの

AWS KMS ECDH キーリングの作成 89

https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS データベース暗号化 SDK デベロッパーガイド

senderPublicKeyパラメータを使用して、送信者のパブリックキーを指定します。送信者のパ
ブリックキーを指定しない場合、キーリングは AWS KMS を呼び出して送信者のパブリックキー
を取得します。送信者と受信者の両方のキーペアがECC_NIST_P256曲線上にあります。

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations
{
 KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput
 {
 SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 SenderPublicKey = BobPublicKey,
 RecipientPublicKey = AlicePublicKey
 }
};

var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = staticConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

次の例では、送信者の KMS キー、送信者のパブリックキー、受信者のパブリックキー
を使用して、 で AWS KMS ECDH キーリングを作成します。この例では、オプションの
senderPublicKeyパラメータを使用して、送信者のパブリックキーを指定します。送信者のパ
ブリックキーを指定しない場合、キーリングは AWS KMS を呼び出して送信者のパブリックキー
を取得します。送信者と受信者の両方のキーペアがECC_NIST_P256曲線上にあります。

// Retrieve public keys
// Must be DER-encoded X.509 public keys

AWS KMS ECDH キーリングの作成 90

AWS データベース暗号化 SDK デベロッパーガイド

ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab");
 ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

// Create the AWS KMS ECDH static keyring
 final CreateAwsKmsEcdhKeyringInput senderKeyringInput =
 CreateAwsKmsEcdhKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPrivateKeyToStaticPublicKey(
 KmsPrivateKeyToStaticPublicKeyInput.builder()
 .senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
 .senderPublicKey(BobPublicKey)
 .recipientPublicKey(AlicePublicKey)
 .build()).build()).build();

Rust

次の例では、送信者の KMS キー、送信者のパブリックキー、受信者のパブリックキー
を使用して、 で AWS KMS ECDH キーリングを作成します。この例では、オプションの
sender_public_keyパラメータを使用して、送信者のパブリックキーを指定します。送信者の
パブリックキーを指定しない場合、キーリングは AWS KMS を呼び出して送信者のパブリック
キーを取得します。

// Retrieve public keys
// Must be DER-encoded X.509 keys
let public_key_file_content_sender =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_SENDER))?;
let parsed_public_key_file_content_sender = parse(public_key_file_content_sender)?;
let public_key_sender_utf8_bytes = parsed_public_key_file_content_sender.contents();

let public_key_file_content_recipient =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content_recipient =
 parse(public_key_file_content_recipient)?;
let public_key_recipient_utf8_bytes =
 parsed_public_key_file_content_recipient.contents();

// Create KmsPrivateKeyToStaticPublicKeyInput

AWS KMS ECDH キーリングの作成 91

AWS データベース暗号化 SDK デベロッパーガイド

let kms_ecdh_static_configuration_input =
 KmsPrivateKeyToStaticPublicKeyInput::builder()
 .sender_kms_identifier(arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab)
 // Must be a UTF8 DER-encoded X.509 public key
 .sender_public_key(public_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let kms_ecdh_static_configuration =
 KmsEcdhStaticConfigurations::KmsPrivateKeyToStaticPublicKey(kms_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH keyring
let kms_ecdh_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client)
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_static_configuration)
 .send()
 .await?;

AWS KMS ECDH 検出キーリングの作成

復号するときは、 AWS Database Encryption SDK が使用できるキーを指定することがベストプラ
クティスです。このベストプラクティスに従うには、キーアグリーメントスキーマで AWS KMS
ECDH KmsPrivateKeyToStaticPublicKey キーリングを使用します。ただし、 AWS KMS
ECDH 検出キーリング、つまり、指定された KMS キーペアのパブリックキーが、暗号化されたレ
コードのマテリアル説明フィールドに保存されている受信者のパブリックキーと一致するレコードを
復号できる AWS KMS ECDH キーリングを作成することもできます。

Important

KmsPublicKeyDiscovery キーアグリーメントスキーマを使用してレコードを復号する場
合、所有者に関係なく、すべてのパブリックキーを受け入れます。

AWS KMS ECDH 検出キーリングの作成 92

AWS データベース暗号化 SDK デベロッパーガイド

キーアグリーメントスキーマを使用して AWS KMS ECDH KmsPublicKeyDiscovery キーリング
を初期化するには、次の値を指定します。

• 受信者の AWS KMS key ID

KeyUsage 値が の非対称 NIST 推奨楕円曲線 (ECC)KMS キーペアを特定する必要がありま
すKEY_AGREEMENT。

• 曲線仕様

受信者の KMS キーペアの楕円曲線仕様を識別します。

有効な値: ECC_NIST_P256、ECC_NIS_P384、ECC_NIST_P512

• (オプション) 許可トークンのリスト

グラントを使用して AWS KMS ECDH キーリングの KMS キーへのアクセスを制御する場合は、
キーリングを初期化するときに必要なすべてのグラントトークンを提供する必要があります。

C# / .NET

次の例では、ECC_NIST_P256曲線に KMS キーペアを持つ AWS KMS ECDH 検出キー
リングを作成します。指定された KMS キーペアに対して kms:GetPublicKey および
kms:DeriveSharedSecret アクセス許可が必要です。このキーリングは、指定された KMS キーペ
アのパブリックキーが、暗号化されたレコードのマテリアル説明フィールドに保存されている受
信者のパブリックキーと一致するレコードを復号できます。

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create the AWS KMS ECDH discovery keyring
var discoveryConfiguration = new KmsEcdhStaticConfigurations
{
 KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput
 {
 RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
 }

};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,

AWS KMS ECDH 検出キーリングの作成 93

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS データベース暗号化 SDK デベロッパーガイド

 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = discoveryConfiguration
};
var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

次の例では、ECC_NIST_P256曲線に KMS キーペアを持つ AWS KMS ECDH 検出キー
リングを作成します。指定された KMS キーペアに対して kms:GetPublicKey および
kms:DeriveSharedSecret アクセス許可が必要です。このキーリングは、指定された KMS キーペ
アのパブリックキーが、暗号化されたレコードのマテリアル説明フィールドに保存されている受
信者のパブリックキーと一致するレコードを復号できます。

// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput =
 CreateAwsKmsEcdhKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPublicKeyDiscovery(
 KmsPublicKeyDiscoveryInput.builder()
 .recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321").build()
).build())
 .build();

Rust

// Create KmsPublicKeyDiscoveryInput
let kms_ecdh_discovery_static_configuration_input =
 KmsPublicKeyDiscoveryInput::builder()
 .recipient_kms_identifier(ecc_recipient_key_arn)
 .build()?;

let kms_ecdh_discovery_static_configuration =
 KmsEcdhStaticConfigurations::KmsPublicKeyDiscovery(kms_ecdh_discovery_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

AWS KMS ECDH 検出キーリングの作成 94

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS データベース暗号化 SDK デベロッパーガイド

// Create AWS KMS ECDH discovery keyring
let kms_ecdh_discovery_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client.clone())
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_discovery_static_configuration)
 .send()
 .await?;

Raw AES キーリング

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

AWS Database Encryption SDK では、データキーを保護するラッピングキーとして指定した AES
対称キーを使用できます。キーマテリアルを生成、格納、保護する必要があります (ハードウェアセ
キュリティモジュール (HSM) またはキー管理システムで行うのが好ましいです)。ラッピングキーを
指定し、ローカルまたはオフラインでデータキーを暗号化する必要がある場合は、Raw AES キーリ
ングを使用します。

Raw AES キーリングは、AES-GCM アルゴリズムと、バイト配列として指定したラッピングキーを
使用することによってデータを暗号化します。各 Raw AES キーリングで指定できるラッピングキー
は 1 つだけですが、複数の Raw AES キーリングを単独で、または他のキーリングとともにマルチ
キーリングに含めることができます。

主要な名前空間と名前

キーリング内の AES キーを識別するために、Raw AES キーリングは、指定したキーの名前空間と
キー名を使用します。これらの値はシークレットではありません。Database AWS Encryption SDK
がレコードに追加するマテリアルの説明にプレーンテキストで表示されます。HSM またはキー管理
システムのキーの名前空間と、そのシステムで AES キーを識別するキー名を使用することをお勧め
します。

Raw AES キーリング 95

AWS データベース暗号化 SDK デベロッパーガイド

Note

キーの名前空間とキー名は、JceMasterKey の [プロバイダー ID] (または [プロバイダー])
フィールドと [キー ID] フィールドに相当します。

特定のフィールドを暗号化および復号するために異なるキーリングを構築する場合、名前空間と名前
の値が重要です。復号キーリング内のキーの名前空間とキー名が、暗号化キーリング内のキーの名前
空間とキー名の大文字と小文字の区別に正確に一致しない場合、キーマテリアルのバイトが同一で
あっても、復号キーリングは使用されません。

例えば、キーの名前空間 HSM_01 とキー名 AES_256_012 を使用して Raw AES キーリングを定義
するとします。その後、そのキーリングを使用して一部のデータを暗号化します。そのデータを復号
するには、同じキー名前空間、キー名、およびキーマテリアルを使用して Raw AES キーリングを作
成します。

次の例は、Raw AES キーリングの作成方法を示しています。AESWrappingKey 変数は、指定した
キーマテリアルを表します。

Java

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder()
 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

C# / .NET

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

// This example uses the key generator in Bouncy Castle to generate the key
 material.
// In production, use key material from a secure source.

Raw AES キーリング 96

AWS データベース暗号化 SDK デベロッパーガイド

var aesWrappingKey = new
 MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

// Create the keyring
var keyringInput = new CreateRawAesKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 WrappingKey = AESWrappingKey,
 WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
};

var matProv = new MaterialProviders(new MaterialProvidersConfig());
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name("AES_256_012")
 .key_namespace("HSM_01")
 .wrapping_key(aes_key_bytes)
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

Raw RSA キーリング

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

Raw RSA キーリングは、指定した RSA パブリックキーとプライベートキーを使用して、ローカル
メモリでデータキーの非対称の暗号化と復号を実行します。プライベートキーを生成、格納、保護す
る必要があります (ハードウェアセキュリティモジュール (HSM) またはキー管理システムで行うの
が好ましいです)。暗号化関数を使用して、RSA パブリックキーのデータキーを暗号化します。復号

Raw RSA キーリング 97

AWS データベース暗号化 SDK デベロッパーガイド

関数でプライベートキーを使用して、データキーを復号します。複数の RSA パディングモードから
選択できます。

暗号化と復号を行う Raw RSA キーリングには、非対称のパブリックキーとプライベートキーのペア
を含める必要があります。ただし、データの暗号化は、パブリックキーのみを持つ Raw RSA キー
リングを使用して行うことができます。また、データの復号は、プライベートキーのみを持つ Raw
RSA キーリングを使用して行うことができます。Raw RSA キーリングは、マルチキーリングに含め
ることができます。Raw RSA キーリングをパブリックキーおよびプライベートキーを使用して設定
する場合は、それらが同じキーペアの一部であることを確認してください。

Raw RSA キーリングは、RSA 非対称暗号化キーとともに使用する場合、 の JceMasterKey と同等
であり、相互運用 AWS Encryption SDK for Java されます。

Note

Raw RSA キーリングは、非対称 KMS キーをサポートしません。非対称 RSA KMS キーを使
用するには、AWS KMS キーリングを構築します。

名前空間と名前

キーリング内の RSA キーマテリアルを識別するために、Raw RSA キーリングは、指定したキー
の名前空間とキー名を使用します。これらの値はシークレットではありません。Database AWS
Encryption SDK がレコードに追加するマテリアルの説明にプレーンテキストで表示されます。HSM
またはキー管理システムで RSA キーペア (またはそのプライベートキー) を識別するキーの名前空間
とキー名を使用することをお勧めします。

Note

キーの名前空間とキー名は、JceMasterKey の [プロバイダー ID] (または [プロバイダー])
フィールドと [キー ID] フィールドに相当します。

特定のレコードを暗号化および復号するために異なるキーリングを構築する場合、名前空間と名前の
値が重要です。復号キーリング内のキーの名前空間とキー名が、暗号化キーリング内のキーの名前空
間とキー名の大文字と小文字の区別に正確に一致しない場合、そのキーが同じキーペアからのもので
あっても、復号キーリングは使用されません。

暗号化および復号キーリング内のキーマテリアルのキーの名前空間とキー名は、キーリングのキーペ
アに RSA パブリックキー、RSA プライベートキー、または両方のキーが含まれているかどうかにか

Raw RSA キーリング 98

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html

AWS データベース暗号化 SDK デベロッパーガイド

かわらず、同じである必要があります。例えば、キーの名前空間 HSM_01 とキー名 RSA_2048_06
を持つ RSA パブリックキーの Raw RSA キーリングを使用してデータを暗号化するとします。その
データを復号するには、プライベートキー (またはキーペア)、および同じキーの名前空間と名前を使
用して Raw RSA キーリングを構築します。

パディングモード

暗号化と復号に使用される Raw RSA キーリングのためにパディングモードを指定するか、またはそ
れを指定する言語実装の機能を使用する必要があります。

は、各言語の制約に従い、次のパディングモード AWS Encryption SDK をサポートしていま
す。OAEP パディングモード、特に SHA-256 を使用する OAEP および SHA-256 パディングを使用
する MGF1 をお勧めします。PKCS1 パディングモードは、下位互換性のためのみサポートされてい
ます。

• SHA-1 を使用する OAEP および SHA-1 パディングを使用する MGF1

• SHA-256 を使用する OAEP および SHA-256 パディングを使用する MGF1

• SHA-384 を使用する OAEP および SHA-384 パディングを使用する MGF1

• SHA-512 を使用する OAEP および SHA-512 パディングを使用する MGF1

• PKCS1 v1.5 パディング

次の Java の例は、RSA キーペアのパブリックキーとプライベートキーを使用し、SHA-256 を使用
する OAEP および SHA-256 パディングモードを使用する MGF1 を採用する Raw RSA キーリング
を作成する方法を示しています。RSAPublicKey および RSAPrivateKey 変数は、指定するキーマ
テリアルを表します。

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder()
 .keyName("RSA_2048_06")
 .keyNamespace("HSM_01")
 .paddingScheme(PaddingScheme.OAEP_SHA256_MGF1)
 .publicKey(RSAPublicKey)
 .privateKey(RSAPrivateKey)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Raw RSA キーリング 99

https://tools.ietf.org/html/rfc8017#section-7.1
https://tools.ietf.org/html/rfc8017#section-7.2

AWS データベース暗号化 SDK デベロッパーガイド

C# / .NET

var keyNamespace = "HSM_01";
var keyName = "RSA_2048_06";

// Get public and private keys from PEM files
var publicKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));
var privateKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));

// Create the keyring input
var keyringInput = new CreateRawRsaKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 PaddingScheme = PaddingScheme.OAEP_SHA512_MGF1,
 PublicKey = publicKey,
 PrivateKey = privateKey
};

// Create the keyring
var matProv = new MaterialProviders(new MaterialProvidersConfig());
var rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let raw_rsa_keyring = mpl
 .create_raw_rsa_keyring()
 .key_name("RSA_2048_06")
 .key_namespace("HSM_01")
 .padding_scheme(PaddingScheme::OaepSha256Mgf1)
 .public_key(RSA_public_key)
 .private_key(RSA_private_key)
 .send()
 .await?;

Raw RSA キーリング 100

AWS データベース暗号化 SDK デベロッパーガイド

Raw ECDH キーリング

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

Important

Raw ECDH キーリングは、マテリアルプロバイダーライブラリのバージョン 1.5.0 でのみ使
用できます。

Raw ECDH キーリングは、指定した楕円曲線のパブリックキーとプライベートキーのペアを使用
して、2 者間で共有ラッピングキーを取得します。まず、キーリングは、送信者のプライベート
キー、受信者のパブリックキー、楕円曲線 Diffie-Hellman (ECDH) キーアグリーメントアルゴリズ
ムを使用して共有シークレットを取得します。次に、キーリングは共有シークレットを使用して、
データ暗号化キーを保護する共有ラッピングキーを取得します。 AWS Database Encryption SDK が
(KDF_CTR_HMAC_SHA384) を使用して共有ラッピングキーを取得するキー取得関数は、キー取得に
関する NIST の推奨事項に準拠しています。

キー取得関数は、64 バイトのキーマテリアルを返します。Database Encryption SDK AWS は、両者
が正しいキーマテリアルを使用するように、最初の 32 バイトをコミットメントキーとして使用し、
最後の 32 バイトを共有ラッピングキーとして使用します。復号時に、キーリングが暗号化されたレ
コードのマテリアル説明フィールドに保存されているのと同じコミットメントキーと共有ラッピング
キーを再現できない場合、オペレーションは失敗します。例えば、Alice のプライベートキーと Bob
のパブリックキーで設定されたキーリングを使用してレコードを暗号化すると、Bob のプライベー
トキーと Alice のパブリックキーで設定されたキーリングは、同じコミットメントキーと共有ラッピ
ングキーを再現し、レコードを復号化できます。Bob のパブリックキーが AWS KMS key ペアから
のものである場合、Bob は AWS KMS ECDH キーリングを作成してレコードを復号できます。

Raw ECDH キーリングは、AES-GCM を使用して対称キーでレコードを暗号化します。次に、デー
タキーは、AES-GCM を使用して派生した共有ラッピングキーでエンベロープ暗号化されます。各
Raw ECDH キーリングには共有ラッピングキーを 1 つだけ含めることができますが、複数の Raw
ECDH キーリングを単独で、または他のキーリングと共にマルチキーリングに含めることができま
す。

Raw ECDH キーリング 101

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS データベース暗号化 SDK デベロッパーガイド

プライベートキーの生成、保存、保護は、できればハードウェアセキュリティモジュール (HSM) ま
たはキー管理システムで行う必要があります。送信者と受信者のキーペアは、ほぼ同じ楕円曲線上に
あります。 AWS Database Encryption SDK は、次の楕円曲線仕様をサポートしています。

• ECC_NIST_P256

• ECC_NIST_P384

• ECC_NIST_P512

Raw ECDH キーリングの作成

Raw ECDH キーリングは、RawPrivateKeyToStaticPublicKey、、
EphemeralPrivateKeyToStaticPublicKeyの 3 つのキーアグリーメントスキーマをサポートし
ていますPublicKeyDiscovery。選択したキーアグリーメントスキーマによって、実行できる暗号
化オペレーションとキーマテリアルの組み立て方法が決まります。

トピック

• RawPrivateKeyToStaticPublicKey

• EphemeralPrivateKeyToStaticPublicKey

• PublicKeyDiscovery

RawPrivateKeyToStaticPublicKey

RawPrivateKeyToStaticPublicKey キーアグリーメントスキーマを使用して、キーリングで送
信者のプライベートキーと受信者のパブリックキーを静的に設定します。このキーアグリーメントス
キーマは、レコードを暗号化および復号できます。

キーアグリーメントスキーマを使用して Raw ECDH RawPrivateKeyToStaticPublicKey キーリ
ングを初期化するには、次の値を指定します。

• 送信者のプライベートキー

RFC 5958 で定義されているように、送信者の PEM エンコードされたプライベートキー (PKCS
#8 PrivateKeyInfo 構造) を指定する必要があります。

• 受信者のパブリックキー

Raw ECDH キーリングの作成 102

https://tools.ietf.org/html/rfc5958#section-2

AWS データベース暗号化 SDK デベロッパーガイド

RFC 5280 で定義されているように、 (SubjectPublicKeyInfoSPKI) とも呼ばれる受信者の
DER エンコードされた X.509 パブリックキーを指定する必要があります。 https://tools.ietf.org/
html/rfc5280

非対称キーアグリーメント KMS キーペアのパブリックキー、または の外部で生成されたキーペア
のパブリックキーを指定できます AWS。

• 曲線仕様

指定されたキーペアの楕円曲線仕様を識別します。送信者と受信者の両方のキーペアは、同じ曲線
仕様である必要があります。

有効な値: ECC_NIST_P256、ECC_NIS_P384、ECC_NIST_P512

C# / .NET

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var BobPrivateKey = new MemoryStream(new byte[] { });
 var AlicePublicKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH static keyring
 var staticConfiguration = new RawEcdhStaticConfigurations()
 {
 RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput
 {
 SenderStaticPrivateKey = BobPrivateKey,
 RecipientPublicKey = AlicePublicKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = staticConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Raw ECDH キーリングの作成 103

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS データベース暗号化 SDK デベロッパーガイド

Java

次の Java の例では、RawPrivateKeyToStaticPublicKeyキーアグリーメントスキーマを使
用して、送信者のプライベートキーと受信者のパブリックキーを静的に設定します。両方のキー
ペアがECC_NIST_P256曲線上にあります。

private static void StaticRawKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair senderKeys = GetRawEccKey();
 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH static keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .RawPrivateKeyToStaticPublicKey(
 RawPrivateKeyToStaticPublicKeyInput.builder()
 // Must be a PEM-encoded private key

 .senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded()))
 // Must be a DER-encoded X.509 public key

 .recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded()))
 .build()
)
 .build()
).build();

 final IKeyring staticKeyring =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Raw ECDH キーリングの作成 104

AWS データベース暗号化 SDK デベロッパーガイド

Rust

次の Python の例では、raw_ecdh_static_configurationキーアグリーメントスキーマを使
用して、送信者のプライベートキーと受信者のパブリックキーを静的に設定します。両方のキー
ペアが同じ曲線上にある必要があります。

// Create keyring input
let raw_ecdh_static_configuration_input =
 RawPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .sender_static_private_key(private_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let raw_ecdh_static_configuration =
 RawEcdhStaticConfigurations::RawPrivateKeyToStaticPublicKey(raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH static keyring
let raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(raw_ecdh_static_configuration)
 .send()
 .await?;

EphemeralPrivateKeyToStaticPublicKey

キーアグリーメントスキーマで設定されたEphemeralPrivateKeyToStaticPublicKeyキーリン
グは、ローカルに新しいキーペアを作成し、暗号化呼び出しごとに一意の共有ラッピングキーを取得
します。

このキーアグリーメントスキーマはレコードのみを暗号化できま
す。EphemeralPrivateKeyToStaticPublicKey キーアグリーメントスキーマで暗号化されたレ
コードを復号するには、同じ受信者のパブリックキーで設定された検出キーアグリーメントスキー
マを使用する必要があります。復号するには、PublicKeyDiscoveryキーアグリーメントアルゴ
リズムで Raw ECDH キーリングを使用するか、受信者のパブリックキーが非対称キーアグリーメン

Raw ECDH キーリングの作成 105

AWS データベース暗号化 SDK デベロッパーガイド

ト KMS キーペアからのものである場合は、KmsPublicKeyDiscovery キーアグリーメントスキーマで
AWS KMS ECDH キーリングを使用できます。

キーアグリーメントスキーマを使用して Raw ECDH
EphemeralPrivateKeyToStaticPublicKey キーリングを初期化するには、次の値を指定しま
す。

• 受信者のパブリックキー

RFC 5280 で定義されているように、 (SubjectPublicKeyInfoSPKI) とも呼ばれる受信者の
DER エンコードされた X.509 パブリックキーを指定する必要があります。 https://tools.ietf.org/
html/rfc5280

非対称キーアグリーメント KMS キーペアのパブリックキー、または の外部で生成されたキーペア
のパブリックキーを指定できます AWS。

• 曲線仕様

指定されたパブリックキーの楕円曲線仕様を識別します。

暗号化時に、キーリングは指定された曲線に新しいキーペアを作成し、新しいプライベートキーと
指定されたパブリックキーを使用して共有ラッピングキーを取得します。

有効な値: ECC_NIST_P256、ECC_NIS_P384、ECC_NIST_P512

C# / .NET

次の例では、キーアグリーメントスキーマを使用して Raw ECDH
EphemeralPrivateKeyToStaticPublicKey キーリングを作成します。暗号化時に、キーリ
ングは指定されたECC_NIST_P256曲線上にローカルに新しいキーペアを作成します。

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePublicKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH ephemeral keyring
 var ephemeralConfiguration = new RawEcdhStaticConfigurations()
 {
 EphemeralPrivateKeyToStaticPublicKey = new
 EphemeralPrivateKeyToStaticPublicKeyInput
 {
 RecipientPublicKey = AlicePublicKey

Raw ECDH キーリングの作成 106

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS データベース暗号化 SDK デベロッパーガイド

 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = ephemeralConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

次の例では、キーアグリーメントスキーマを使用して Raw ECDH
EphemeralPrivateKeyToStaticPublicKey キーリングを作成します。暗号化時に、キーリ
ングは指定されたECC_NIST_P256曲線上にローカルに新しいキーペアを作成します。

private static void EphemeralRawEcdhKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 ByteBuffer recipientPublicKey = getPublicKeyBytes();

 // Create the Raw ECDH ephemeral keyring
 final CreateRawEcdhKeyringInput ephemeralInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .EphemeralPrivateKeyToStaticPublicKey(
 EphemeralPrivateKeyToStaticPublicKeyInput.builder()
 .recipientPublicKey(recipientPublicKey)
 .build()
)
 .build()
).build();

 final IKeyring ephemeralKeyring =
 materialProviders.CreateRawEcdhKeyring(ephemeralInput);
}

Raw ECDH キーリングの作成 107

AWS データベース暗号化 SDK デベロッパーガイド

Rust

次の例では、キーアグリーメントスキーマを使用して Raw ECDH
ephemeral_raw_ecdh_static_configuration キーリングを作成します。暗号化時に、
キーリングは指定された曲線上にローカルに新しいキーペアを作成します。

// Create EphemeralPrivateKeyToStaticPublicKeyInput
let ephemeral_raw_ecdh_static_configuration_input =
 EphemeralPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let ephemeral_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::EphemeralPrivateKeyToStaticPublicKey(ephemeral_raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH ephemeral private key keyring
let ephemeral_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(ephemeral_raw_ecdh_static_configuration)
 .send()
 .await?;

PublicKeyDiscovery

復号するときは、 AWS Database Encryption SDK が使用できるラッピングキーを指定することがベ
ストプラクティスです。このベストプラクティスに従うには、送信者のプライベートキーと受信者の
パブリックキーの両方を指定する ECDH キーリングを使用します。ただし、Raw ECDH 検出キーリ
ング、つまり、指定されたキーのパブリックキーが、暗号化されたレコードのマテリアル説明フィー
ルドに保存されている受信者のパブリックキーと一致するレコードを復号できる Raw ECDH キーリ
ングを作成することもできます。このキーアグリーメントスキーマはレコードのみを復号できます。

Raw ECDH キーリングの作成 108

AWS データベース暗号化 SDK デベロッパーガイド

Important

PublicKeyDiscovery キーアグリーメントスキーマを使用してレコードを復号する場合、
所有者に関係なく、すべてのパブリックキーを受け入れます。

キーアグリーメントスキーマを使用して Raw ECDH PublicKeyDiscovery キーリングを初期化す
るには、次の値を指定します。

• 受信者の静的プライベートキー

RFC 5958 で定義されているように、受信者の PEM エンコードされたプライベートキー (PKCS
#8 PrivateKeyInfo 構造) を指定する必要があります。

• 曲線仕様

指定されたプライベートキーの楕円曲線仕様を識別します。送信者と受信者の両方のキーペアは、
同じ曲線仕様である必要があります。

有効な値: ECC_NIST_P256、ECC_NIS_P384、ECC_NIST_P512

C# / .NET

次の例では、キーアグリーメントスキーマを使用して Raw ECDH PublicKeyDiscovery キー
リングを作成します。このキーリングは、指定されたプライベートキーのパブリックキーが、暗
号化されたレコードのマテリアル説明フィールドに保存されている受信者のパブリックキーと一
致するレコードを復号できます。

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePrivateKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH discovery keyring
 var discoveryConfiguration = new RawEcdhStaticConfigurations()
 {
 PublicKeyDiscovery = new PublicKeyDiscoveryInput
 {
 RecipientStaticPrivateKey = AlicePrivateKey
 }
 };

Raw ECDH キーリングの作成 109

https://tools.ietf.org/html/rfc5958#section-2

AWS データベース暗号化 SDK デベロッパーガイド

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = discoveryConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

次の例では、キーアグリーメントスキーマを使用して Raw ECDH PublicKeyDiscovery キー
リングを作成します。このキーリングは、指定されたプライベートキーのパブリックキーが、暗
号化されたレコードのマテリアル説明フィールドに保存されている受信者のパブリックキーと一
致するレコードを復号できます。

private static void RawEcdhDiscovery() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH discovery keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .PublicKeyDiscovery(
 PublicKeyDiscoveryInput.builder()
 // Must be a PEM-encoded private key

 .recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded()))
 .build()
)
 .build()
).build();

 final IKeyring publicKeyDiscovery =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);

Raw ECDH キーリングの作成 110

AWS データベース暗号化 SDK デベロッパーガイド

}

Rust

次の例では、キーアグリーメントスキーマを使用して Raw ECDH
discovery_raw_ecdh_static_configurationキーリングを作成します。このキーリング
は、指定されたプライベートキーのパブリックキーが、メッセージ暗号文に保存されている受信
者のパブリックキーと一致するメッセージを復号できます。

// Create PublicKeyDiscoveryInput
let discovery_raw_ecdh_static_configuration_input =
 PublicKeyDiscoveryInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .recipient_static_private_key(private_key_recipient_utf8_bytes)
 .build()?;

let discovery_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::PublicKeyDiscovery(discovery_raw_ecdh_static_configuration_input);

// Create raw ECDH discovery private key keyring
let discovery_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(discovery_raw_ecdh_static_configuration)
 .send()
 .await?;

マルチキーリング

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

キーリングは組み合わせてマルチキーリングにすることができます。マルチキーリングは、種類に関
係なく、1 つ以上の個別のキーリングで構成されるキーリングです。一連のキーリングを複数使用し
た場合のように動作します。マルチキーリングを使用してデータを暗号化する場合は、そのキーリン
グに含まれる任意のラッピングキーを使用してそのデータを復号できます。

マルチキーリング 111

AWS データベース暗号化 SDK デベロッパーガイド

マルチキーリングを作成してデータを暗号化する場合は、いずれかのキーリングをジェネレーター
キーリングに指定します。他のすべてのキーリングは、子キーリングと呼ばれます。ジェネレーター
キーリングは、プレーンテキストのデータキーを生成して暗号化します。その後、すべての子キーリ
ングのすべてのラッピングキーによって、そのプレーンテキストデータキーが暗号化されます。マル
チキーリングは、プレーンテキストのキーと、マルチキーリングのラッピングキーごとに 1 つの暗
号化されたデータキーを返します。ジェネレーターキーリングが KMS キーリングの場合、キーリン
グのジェネレータ AWS KMS ーキーはプレーンテキストキーを生成して暗号化します。次に、 AWS
KMS キーリング AWS KMS keys のすべての追加キーと、マルチキーリングのすべての子キーリン
グのすべてのラッピングキーは、同じプレーンテキストキーを暗号化します。

復号時に、 AWS Database Encryption SDK はキーリングを使用して、暗号化されたデータキーの 1
つを復号しようとします。キーリングは、マルチキーリングで指定された順番で呼び出されます。暗
号化されたデータキーがキーリングの任意のキーによって復号されると、処理は停止されます。

マルチキーリングを作成するにはまず、子キーリングをインスタンス化します。この例では、 AWS
KMS キーリングと Raw AES キーリングを使用しますが、マルチキーリングでサポートされている
任意のキーリングを組み合わせることができます。

Java

// 1. Create the raw AES keyring.
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateRawAesKeyringInput createRawAesKeyringInput =
 CreateRawAesKeyringInput.builder()
 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// 2. Create the AWS KMS keyring.
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyArn)
 .build();
IKeyring awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

マルチキーリング 112

AWS データベース暗号化 SDK デベロッパーガイド

C# / .NET

// 1. Create the raw AES keyring.
var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createRawAesKeyringInput = new CreateRawAesKeyringInput
{
 KeyName = "keyName",
 KeyNamespace = "myNamespaces",
 WrappingKey = AESWrappingKey,
 WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
};
var rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// 2. Create the AWS KMS keyring.
// We create a MRK multi keyring, as this interface also supports
// single-region KMS keys,
// and creates the KMS client for us automatically.
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput
{
 Generator = keyArn
};
var awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Rust

// 1. Create the raw AES keyring
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name("AES_256_012")
 .key_namespace("HSM_01")
 .wrapping_key(aes_key_bytes)
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

// 2. Create the AWS KMS keyring

マルチキーリング 113

AWS データベース暗号化 SDK デベロッパーガイド

let aws_kms_mrk_multi_keyring = mpl
 .create_aws_kms_mrk_multi_keyring()
 .generator(key_arn)
 .send()
 .await?;

次に、マルチキーリングを作成し、ジェネレーターキーリングがある場合はそれを指定します。この
例では、キーリングがジェネレータ AWS KMS ーキーリング、AES キーリングが子キーリングであ
るマルチキーリングを作成します。

Java

Java コンCreateMultiKeyringInputストラクタを使用すると、ジェネレーターキーリングと
子キーリングを定義できます。結果 createMultiKeyringInput のオブジェクトは不変です。

final CreateMultiKeyringInput createMultiKeyringInput =
 CreateMultiKeyringInput.builder()
 .generator(awsKmsMrkMultiKeyring)
 .childKeyrings(Collections.singletonList(rawAesKeyring))
 .build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

C# / .NET

.NET CreateMultiKeyringInput コンストラクターでは、ジェネレータキーリングと子キー
リングを定義できます。結果 CreateMultiKeyringInput のオブジェクトは不変です。

var createMultiKeyringInput = new CreateMultiKeyringInput
{
 Generator = awsKmsMrkMultiKeyring,
 ChildKeyrings = new List<IKeyring> { rawAesKeyring }
};
var multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Rust

let multi_keyring = mpl
 .create_multi_keyring()
 .generator(aws_kms_mrk_multi_keyring)
 .child_keyrings(vec![raw_aes_keyring.clone()])
 .send()

マルチキーリング 114

AWS データベース暗号化 SDK デベロッパーガイド

 .await?;

これで、データの暗号化と復号にマルチキーリングを使用できます。

マルチキーリング 115

AWS データベース暗号化 SDK デベロッパーガイド

検索可能な暗号化

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

検索可能な暗号化を使用すると、データベース全体を復号することなく、暗号化されたレコードを
検索できます。これはビーコンを使用して実現されます。ビーコンは、フィールドに書き込まれるプ
レーンテキストの値と、実際にデータベースに格納される暗号化された値との間のマップを作成しま
す。 AWS Database Encryption SDK は、レコードに追加する新しいフィールドにビーコンを保存し
ます。使用するビーコンのタイプに応じて、暗号化されたデータに対して、完全一致検索や、よりカ
スタマイズされた複雑なクエリを実行できます。

Note

AWS Database Encryption SDK の検索可能な暗号化は、検索可能な対称暗号化など、学術研
究で定義された検索可能な対称暗号化とは異なります。

ビーコンは、フィールドのプレーンテキストの値と暗号化された値の間のマップを作成する、切り詰
められた Hash-Based Message Authentication Code (HMAC) タグです。検索可能な暗号化用に設定
された暗号化されたフィールドに新しい値を書き込むと、 AWS Database Encryption SDK はプレー
ンテキスト値で HMAC を計算します。この HMAC 出力は、そのフィールドのプレーンテキストの値
と 1 対 1 (1:1) で一致します。HMAC 出力は切り詰められ、複数の個別のプレーンテキストの値が、
切り詰められた同じ HMAC タグにマッピングされます。これらの誤検知により、不正ユーザーは、
プレーンテキストの値に関する特徴的な情報を識別しにくくなります。ビーコンをクエリすると、
AWS Database Encryption SDK はこれらの誤検知を自動的に除外し、クエリのプレーンテキスト結
果を返します。

各ビーコンについて生成される誤検知の平均数は、切り詰めた後に残っているビーコンの長さによっ
て決まります。実装に適切なビーコンの長さを決定する方法については、「ビーコンの長さの決定」
を参照してください。

116

https://dl.acm.org/doi/10.1145/1180405.1180417

AWS データベース暗号化 SDK デベロッパーガイド

Note

検索可能な暗号化は、データが入力されていない新しいデータベースで実装されるように設
計されています。既存のデータベースで設定されたビーコンは、データベースにアップロー
ドされた新しいレコードのみをマッピングします。ビーコンは既存のデータをマッピングで
きなくなります。

トピック

• ビーコンが適しているデータセット

• 検索可能な暗号化のシナリオ

ビーコンが適しているデータセット

ビーコンを使用して、暗号化されたデータをクエリすると、クライアント側の暗号化されたデータ
ベースに関連するパフォーマンスコストが削減されます。ビーコンを使用する場合、クエリの効率
性と、データの分布に関して明らかになる情報の量との間には、固有のトレードオフが存在します。
ビーコンはフィールドの暗号化状態を変更しません。 AWS Database Encryption SDK を使用して
フィールドを暗号化して署名すると、フィールドのプレーンテキストの値がデータベースに公開され
ることはありません。データベースには、フィールドのランダム化および暗号化された値が格納され
ます。

ビーコンは、計算元の暗号化されたフィールドと一緒に格納されます。これは、不正ユーザーが暗
号化されたフィールドのプレーンテキストの値を表示できない場合でも、ビーコンに対して統計分析
を実行してデータセットの分布の詳細を知ることができ、極端な場合には、ビーコンがマッピングす
るプレーンテキストの値を識別できる場合があることを意味します。ビーコンを設定する方法によっ
て、これらのリスクを軽減できます。特に、適切なビーコンの長さを選択することは、データセット
の機密性を維持するのに役立ちます。

セキュリティとパフォーマンス

• ビーコンが短いほど、セキュリティはより強くなります。

• ビーコンが長いほど、パフォーマンスはより高くなります。

ビーコンが適しているデータセット 117

AWS データベース暗号化 SDK デベロッパーガイド

検索可能な暗号化では、すべてのデータセットについて、必要なレベルのパフォーマンスとセキュリ
ティの両方を提供できない場合があります。ビーコンを設定する前に、脅威モデル、セキュリティ要
件、パフォーマンスのニーズを確認してください。

検索可能な暗号化がデータセットに適しているかどうかを判断する際には、データセットの一意性に
関する次の要件を考慮してください。

ディストリビューション

ビーコンによって維持されるセキュリティの強度は、データセットの分布によって異なります。
検索可能な暗号化用に暗号化されたフィールドを設定すると、 AWS Database Encryption SDK
はそのフィールドに書き込まれたプレーンテキスト値で HMAC を計算します。特定のフィール
ドについて計算されるすべてのビーコンは、テナンシーごとに個別のキーを使用するマルチテナ
ンシーデータベースを除き、同じキーを使用して計算されます。これは、同じプレーンテキスト
の値がフィールドに複数回書き込まれる場合、そのプレーンテキストの値のすべてについて同じ
HMAC タグが作成されることを意味します。

非常に一般的な値を含むフィールドからビーコンを構築しないようにしてください。例えば、イ
リノイ州のすべての居住者の住所を格納するデータベースを考えてみましょう。暗号化された
City フィールドからビーコンを構築する場合、シカゴに居住しているイリノイ州の母集団の割
合が大きいため、「シカゴ」について計算されたビーコンは過剰に出現します。不正ユーザーが
暗号化された値とビーコンの値を読み取ることしかできない場合でも、ビーコンがこの分布を保
持していれば、どのレコードにシカゴの居住者のデータが含まれているかを特定できる可能性が
あります。分布に関して明らかになる特徴的な情報の量を最小限にするには、ビーコンを十分に
切り詰める必要があります。この不均一な分布をわからなくするために必要な長さにビーコンを
設定すると、パフォーマンスに大きな悪影響が及び、アプリケーションのニーズを満たせない可
能性があります。

データセットの分布を注意深く分析して、ビーコンをどの程度切り詰める必要があるかを判断す
る必要があります。切り詰めた後に残るビーコンの長さは、分布に関して特定できる統計情報の
量に直接相関します。データセットに関して明らかになる特徴的な情報の量を十分かつ最小限に
抑えるために、ビーコンをより短くすることを選択する必要がある場合があります。

極端な場合には、不均一に分布したデータセットについて、パフォーマンスとセキュリティのバ
ランスを効果的に実現できるビーコンの長さを計算することができません。例えば、希少疾患の
医学的検査の結果を格納するフィールドからビーコンを構築しないでください。NEGATIVE の結
果はデータセット内で大幅に増えることが想定されるため、POSITIVE の結果は、それがどれだ
け稀であるかによって簡単に識別できます。フィールドで可能な値が 2 つしかない場合、分布を
わからなくするのは非常に困難です。分布をわからなくするのに十分な程度にまでビーコンを短

ビーコンが適しているデータセット 118

AWS データベース暗号化 SDK デベロッパーガイド

くすると、すべてのプレーンテキストの値が同じ HMAC タグにマッピングされます。ビーコンを
より長くすると、どのビーコンがプレーンテキストの POSITIVE の値にマッピングされているの
かが明らかになります。

相関関係

相関する値を持つフィールドから個別のビーコンを構築しないことを強くお勧めします。相関す
るフィールドから構築されたビーコンでは、各データセットの分布に関して、不正ユーザーに対
して明らかになる情報の量を十分かつ最小限に抑えるために、ビーコンをより短くする必要があ
ります。ビーコンをどの程度切り詰める必要があるかを判断するには、エントロピーや相関する
値の結合分布などのデータセットを注意深く分析する必要があります。結果として得られるビー
コンの長さがパフォーマンスのニーズを満たさない場合、ビーコンはデータセットに適していな
い可能性があります。

例えば、郵便番号は 1 つの都市にのみ関連付けられている可能性が高いため、City フィールド
と ZIPCode フィールドから 2 つの別個のビーコンを構築すべきではありません。通常、ビーコ
ンによって生成される誤検知により、不正ユーザーは、データセットに関する特徴的な情報を識
別しにくくなります。ただし、City および ZIPCode フィールド間の相関関係を知ることで、不
正ユーザーは、どの結果が誤検知であるかを簡単に特定し、異なる郵便番号を区別できます。

また、同じプレーンテキストの値を含むフィールドからビーコンを構築することも避けてくださ
い。例えば、mobilePhone および preferredPhone フィールドは同じ値を保持する可能性が
高いため、これらのフィールドからビーコンを構築すべきではありません。両方のフィールドか
ら異なるビーコンを構築すると、 AWS Database Encryption SDK は異なるキーで各フィールド
のビーコンを作成します。これにより、同じプレーンテキストの値について 2 つの異なる HMAC
タグが作成されます。2 つの異なるビーコンに同じ誤検知が発生する可能性は低く、不正ユー
ザーは異なる電話番号を区別できる可能性があります。

相関するフィールドがデータセットに含まれている場合や、分布が不均一である場合でも、ビーコン
をより短くすることで、データセットの機密性を維持するビーコンを構築できる場合があります。た
だし、ビーコンの長さは、データセット内のすべての一意の値が多数の誤検知を生成し、データセッ
トに関して明らかになる特徴的な情報の量を効果的かつ最小限に抑えることを保証するものではあり
ません。ビーコンの長さによって推定されるのは、生成される誤検知の平均数のみです。データセッ
トが不均一に分布しているほど、生成される誤検知の平均数を決定する際のビーコンの長さの有効性
は低くなります。

ビーコンを構築するフィールドの分布を慎重に検討し、セキュリティ要件を満たすためにビーコンの
長さをどの程度切り詰める必要があるのかを検討してください。この章の次のトピックは、ビーコン
が統一的に分布しており、相関データが含まれていないことを前提としています。

ビーコンが適しているデータセット 119

AWS データベース暗号化 SDK デベロッパーガイド

検索可能な暗号化のシナリオ

次の例は、検索可能な暗号化のシンプルなソリューションを示しています。アプリケーションでは、
この例で使用されているフィールド例は、ビーコンの分布および相関の一意性に関する推奨事項を満
たしていない可能性があります。この章の検索可能な暗号化の概念を読む際に、この例を参考として
使用できます。

会社の従業員データを追跡する Employees という名前のデータベースについて考えてみましょう。
データベース内の各レコードには、EmployeeID、LastName、FirstName、および Address と呼ば
れるフィールドが含まれています。Employees データベース内の各フィールドは、プライマリキー
EmployeeID によって識別されます。

データベース内のプレーンテキストレコードの例を次に示します。

{
 "EmployeeID": 101,
 "LastName": "Jones",
 "FirstName": "Mary",
 "Address": {
 "Street": "123 Main",
 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345
 }
}

暗号化アクションで LastName フィールドと FirstName フィールドを ENCRYPT_AND_SIGN と
マークした場合、これらのフィールドの値は、データベースにアップロードされる前にローカルで
暗号化されます。アップロードされる暗号化データは完全にランダム化されており、データベースは
このデータが保護されているとは認識しません。典型的なデータエントリを検出するだけです。つま
り、実際にデータベースに格納されるレコードは次のようになります。

{
 "PersonID": 101,
 "LastName": "1d76e94a2063578637d51371b363c9682bad926cbd",
 "FirstName": "21d6d54b0aaabc411e9f9b34b6d53aa4ef3b0a35",
 "Address": {
 "Street": "123 Main",
 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345

検索可能な暗号化のシナリオ 120

AWS データベース暗号化 SDK デベロッパーガイド

 }
}

LastName フィールド内の完全一致を検索するために、データベースをクエリする必要がある場合
は、LastName フィールドに書き込まれるプレーンテキストの値を、データベースに格納される暗
号化された値にマッピングするように、LastName という名前の標準ビーコンを設定します。

このビーコンは、LastName フィールド内のプレーンテキストの値から HMAC を計算します。
各 HMAC 出力は切り詰められるため、プレーンテキストの値と完全に一致しなくなります。例え
ば、Jones の完全なハッシュと切り詰められたハッシュは次のようになります。

完全なハッシュ

2aa4e9b404c68182562b6ec761fcca5306de527826a69468885e59dc36d0c3f824bdd44cab45526f70a2a18322000264f5451acf75f9f817e2b35099d408c833

切り詰められたハッシュ

b35099d408c833

標準ビーコンを設定した後、LastName フィールド上で一致検索を実行できます。例えば、Jones
を検索する場合は、LastName ビーコンを使用して次のクエリを実行します。

LastName = Jones

AWS Database Encryption SDK は、誤検出を自動的に除外し、クエリのプレーンテキストの結果を
返します。

ビーコン

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

ビーコンは、フィールドに書き込まれるプレーンテキストの値と、実際にデータベースに格納され
る暗号化された値の間のマップを作成する、切り詰められた Hash-Based Message Authentication
Code (HMAC) タグです。ビーコンはフィールドの暗号化状態を変更しません。ビーコンは、フィー
ルドのプレーンテキストの値について HMAC を計算し、それを暗号化された値と一緒に格納し
ます。この HMAC 出力は、そのフィールドのプレーンテキストの値と 1 対 1 (1:1) で一致しま

ビーコン 121

AWS データベース暗号化 SDK デベロッパーガイド

す。HMAC 出力は切り詰められ、複数の個別のプレーンテキストの値が、切り詰められた同じ
HMAC タグにマッピングされます。これらの誤検知により、不正ユーザーは、プレーンテキストの
値に関する特徴的な情報を識別しにくくなります。

ビーコンは、暗号化アクションSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTで
ENCRYPT_AND_SIGN、SIGN_ONLY、または とマークされたフィールドからのみ構築できます。
ビーコン自体は署名も暗号化もされません。DO_NOTHING とマークされているフィールドを使用し
てビーコンを構築することはできません。

設定するビーコンのタイプによって、実行できるクエリのタイプが決まります。検索可能な暗号化を
サポートするビーコンには 2 つのタイプがあります。標準ビーコンは、一致検索を実行します。複
合ビーコンは、リテラルプレーンテキスト文字列と標準ビーコンを組み合わせて、複雑なデータベー
スオペレーションを実行します。ビーコンを設定した後、暗号化されたフィールドを検索する前に、
各ビーコンについてセカンダリインデックスを設定する必要があります。詳細については、「ビーコ
ンを使用したセカンダリインデックスの設定」を参照してください。

トピック

• 標準ビーコン

• 複合ビーコン

標準ビーコン

標準ビーコンは、データベースで検索可能な暗号化を実装する最も簡単な方法です。単一の暗号化さ
れたフィールドまたは仮想フィールドについてのみ一致検索を実行できます。標準ビーコンの設定方
法については、「標準ビーコンの設定」を参照してください。

標準ビーコンが構築されるフィールドは、ビーコンソースと呼ばれます。これは、ビーコンがマッピ
ングする必要があるデータの場所を識別します。ビーコンソースは、暗号化されたフィールドまたは
仮想フィールドのいずれかです。各標準ビーコンのビーコンソースは一意である必要があります。同
じビーコンソースで 2 つのビーコンを設定することはできません。

標準ビーコンを使用して、暗号化されたフィールドまたは仮想フィールドの等価検索を実行できま
す。または、複合ビーコンを構築して、より複雑なデータベースオペレーションを実行することも
できます。標準ビーコンの整理と管理に役立つように、 AWS Database Encryption SDK には、標準
ビーコンの用途を定義する以下のオプションビーコンスタイルが用意されています。詳細について
は、「ビーコンスタイルの定義」を参照してください。

標準ビーコン 122

AWS データベース暗号化 SDK デベロッパーガイド

単一の暗号化されたフィールドに対して等価検索を実行する標準ビーコンを作成するこ
とも、仮想フィールドを作成して複数の ENCRYPT_AND_SIGN、、SIGN_ONLYおよび
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTフィールドの連結に対して等価検索を実行する標
準ビーコンを作成することもできます。

仮想フィールド

仮想フィールドは、1 つ以上のソースフィールドから構築された概念的なフィールドです。仮想
フィールドを作成しても、レコードに新しいフィールドは書き込まれません。仮想フィールド
は、データベースに明示的に格納されません。これは、フィールドの特定のセグメントを識別す
る方法、またはレコード内の複数のフィールドを連結して特定のクエリを実行する方法について
ビーコンに指示を与えるために、標準ビーコン設定で使用されます。仮想フィールドには少なく
とも 1 つの暗号化されたフィールドが必要です。

Note

次の例は、仮想フィールドを使用して実行できる変換とクエリのタイプを示しています。
アプリケーションでは、この例で使用されているフィールド例は、ビーコンの分布およ
び相関の一意性に関する推奨事項を満たしていない可能性があります。

例えば、FirstName および LastName フィールドの連結に対して一致検索を実行する場合は、
次のいずれかの仮想フィールドを作成することが考えられます。

• FirstName フィールドの最初の文字と、それに続く LastName フィールドから構
築される仮想 NameTag フィールド (すべて小文字)。この仮想フィールドを使用する
と、NameTag=mjones をクエリできます。

• LastName フィールドと、それに続く FirstName フィールドから構築される仮想
LastFirst フィールド。この仮想フィールドを使用すると、LastFirst=JonesMary をクエ
リできます。

または、暗号化されたフィールドの特定のセグメントに対して一致検索を実行する場合は、クエ
リを実行するセグメントを識別する仮想フィールドを作成します。

例えば、IP アドレスの最初の 3 つのセグメントを使用して暗号化された IPAddress フィールド
をクエリする場合は、次の仮想フィールドを作成します。

標準ビーコン 123

AWS データベース暗号化 SDK デベロッパーガイド

• Segments(‘.’, 0, 3) から構築された仮想 IPSegment フィールド。この仮想フィールド
を使用すると、IPSegment=192.0.2 をクエリできます。クエリは、「192.0.2」で始まる
IPAddress の値を持つすべてのレコードを返します。

仮想フィールドは一意である必要があります。2 つの仮想フィールドをまったく同じソース
フィールドから構築することはできません。

仮想フィールドとそれらを使用するビーコンの設定については、「仮想フィールドの作成」を参
照してください。

複合ビーコン

複合ビーコンは、クエリのパフォーマンスを改善するインデックスを作成し、より複雑なデータベー
スオペレーションを実行できるようにします。複合ビーコンを使用して、リテラルプレーンテキス
ト文字列と標準ビーコンを組み合わせて、単一のインデックスから 2 つの異なるレコードタイプを
クエリしたり、ソートキーを使用してフィールドの組み合わせをクエリしたりするなど、暗号化さ
れたレコードに対して複雑なクエリを実行できます。複合ビーコンソリューションの例については、
「ビーコンタイプを選択する」を参照してください。

複合ビーコンは、標準ビーコン、または標準ビーコンと署名付きフィールドの組み合わせから構築
できます。これらは部分のリストから構築されます。すべての複合ビーコンには、ビーコンに含ま
れる ENCRYPT_AND_SIGN フィールドを識別する暗号化された部分のリストが含まれている必要が
あります。すべての ENCRYPT_AND_SIGN フィールドは、標準ビーコンによって識別される必要が
あります。より複雑な複合ビーコンには、ビーコンに含まれるプレーンテキストSIGN_ONLYまた
はSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTフィールドを識別する署名付き部分のリスト、
および複合ビーコンがフィールドをアセンブルできるすべての可能な方法を識別するコンストラクタ
部分のリストが含まれる場合があります。

Note

AWS Database Encryption SDK は、プレーンテキス
トSIGN_ONLYとSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTフィールドから完全に
設定できる署名付きビーコンもサポートしています。署名付きビーコンは、署名されたが暗
号化されていないフィールドに対してインデックスを作成し、複雑なクエリを実行する複合
ビーコンの一種です。詳細については、「署名付きビーコンの作成」を参照してください。

複合ビーコンの設定については、「複合ビーコンの設定」を参照してください。

複合ビーコン 124

AWS データベース暗号化 SDK デベロッパーガイド

複合ビーコンを設定する方法によって、実行できるクエリのタイプが決まります。例えば、一部の暗
号化および署名付きの部分をオプションにして、クエリの柔軟性を高めることができます。複合ビー
コンが実行できるクエリのタイプの詳細については、「ビーコンのクエリ」を参照してください。

ビーコンの計画

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

ビーコンは、データが入力されていない新しいデータベースに実装されるように設計されています。
既存のデータベースで設定されたビーコンは、データベースに書き込まれる新しいレコードのみを
マッピングします。ビーコンはフィールドのプレーンテキストの値から計算されます。フィールドが
暗号化されると、ビーコンは既存のデータをマッピングできなくなります。ビーコンを持つ新しいレ
コードを書き込んだ後に、そのビーコンの設定を更新することはできません。ただし、レコードに追
加する新しいフィールドに新しいビーコンを追加できます。

検索可能な暗号化を実装するには、AWS KMS 階層キーリングを使用して、レコードを保護するため
に使用されるデータキーを生成、暗号化、および復号する必要があります。詳細については、「検索
可能な暗号化のための階層キーリングの使用」を参照してください。

検索可能な暗号化のためにビーコンを設定する前に、暗号化要件、データベースのアクセスパター
ン、および脅威モデルを確認して、データベースに最適なソリューションを決定する必要がありま
す。

設定するビーコンのタイプによって、実行できるクエリのタイプが決まります。標準ビーコン設定
で指定するビーコンの長さによって、特定のビーコンについて生成される誤検知の想定数が決まりま
す。ビーコンを設定する前に、実行する必要があるクエリのタイプを特定して計画することを強くお
勧めします。ビーコンを使用した後に設定を更新することはできません。

ビーコンを設定する前に、次のタスクを確認および完了することを強くお勧めします。

• ビーコンがデータセットに適しているかどうかを判断する

• ビーコンのタイプを選択する

• ビーコンの長さを選択する

• ビーコン名を選択する

ビーコンの計画 125

AWS データベース暗号化 SDK デベロッパーガイド

データベースのために検索可能な暗号化ソリューションを計画する際には、ビーコンの一意性に関す
る次の要件に留意してください。

• すべての標準ビーコンには固有のビーコンソースが必要です

同じ暗号化されたフィールドまたは仮想フィールドから複数の標準ビーコンを構築することはでき
ません。

ただし、単一の標準ビーコンを使用して複数の複合ビーコンを構築することはできます。

• 既存の標準ビーコンと重複するソースフィールドを含む仮想フィールドを作成しないようにしてく
ださい

別の標準ビーコンを作成するために使用されたソースフィールドを含む仮想フィールドから標準
ビーコンを構築すると、両方のビーコンのセキュリティが低下する可能性があります。

詳細については、「仮想フィールドのセキュリティに関する考慮事項」を参照してください。

マルチテナンシーデータベースに関する考慮事項

マルチテナンシーデータベースで設定されたビーコンをクエリするには、レコードを暗号化したテ
ナンシーに関連付けられた branch-key-id を格納するフィールドをクエリに含める必要がありま
す。このフィールドは、ビーコンキーソースを定義する際に定義します。クエリが成功するには、こ
のフィールドの値が、ビーコンの再計算に必要となる適切なビーコンキーマテリアルを識別する必要
があります。

ビーコンを設定する前に、クエリに branch-key-id をどのように含めるかを決定する必要があり
ます。クエリに branch-key-id を含めるさまざまな方法の詳細については、「マルチテナンシー
データベース内のビーコンのクエリ」を参照してください。

ビーコンのタイプの選択

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

マルチテナンシーデータベースに関する考慮事項 126

AWS データベース暗号化 SDK デベロッパーガイド

検索可能な暗号化では、暗号化されたフィールドのプレーンテキストの値をビーコンでマッピングす
ることで、暗号化されたレコードを検索できます。設定するビーコンのタイプによって、実行できる
クエリのタイプが決まります。

ビーコンを設定する前に、実行する必要があるクエリのタイプを特定して計画することを強くお勧め
します。ビーコンを設定した後、暗号化されたフィールドを検索する前に、各ビーコンについてセカ
ンダリインデックスを設定する必要があります。詳細については、「ビーコンを使用したセカンダリ
インデックスの設定」を参照してください。

ビーコンは、フィールドに書き込まれるプレーンテキストの値と、データベースに実際に格納される
暗号化された値との間のマップを作成します。2 つの標準ビーコンの値は、基になる同じプレーンテ
キストが含まれている場合でも比較できません。2 つの標準ビーコンは、同じプレーンテキストの値
について 2 つの異なる HMAC タグを生成します。その結果、標準ビーコンは次のクエリを実行でき
ません。

• beacon1 = beacon2

• beacon1 IN (beacon2)

• value IN (beacon1, beacon2, ...)

• CONTAINS(beacon1, beacon2)

上記のクエリは、複合ビーコンの署名付きの部分を比較する場合にのみ実行できます。ただ
し、CONTAINS 演算子は例外です。この演算子は、アセンブルされたビーコンに含まれる暗号化ま
たは署名されたフィールドの値全体を識別するために複合ビーコンで使用できます。署名付きの部
分を比較する場合、オプションで暗号化された部分のプレフィックスを含めることができますが、
フィールドの暗号化された値を含めることはできません。標準ビーコンおよび複合ビーコンが実行で
きるクエリのタイプの詳細については、「ビーコンのクエリ」を参照してください。

データベースのアクセスパターンを確認する際には、次の検索可能な暗号化ソリューションを検討し
てください。次の例では、暗号化およびクエリに関するさまざまな要件を満たすためにどのビーコン
を設定すべきかを定義します。

標準ビーコン

標準ビーコンは、一致検索のみを実行できます。標準ビーコンを使用して、次のクエリを実行できま
す。

ビーコンのタイプの選択 127

AWS データベース暗号化 SDK デベロッパーガイド

暗号化された単一フィールドをクエリする

暗号化されたフィールドについて特定の値を含むレコードを識別する場合は、標準ビーコンを作成し
ます。

例

次の例では、生産施設の検査データを追跡する UnitInspection という名
前のデータベースについて考えてみます。データベース内の各レコードに
は、work_id、inspection_date、inspector_id_last4、および unit と呼ばれるフィールド
が含まれています。完全なインスペクター ID は 0～99,999,999 の数値です。ただし、データセット
が統一的に分布するようにするために、inspector_id_last4 はインスペクターの ID の下 4 桁の
みを格納します。データベース内の各フィールドは、プライマリキー work_id によって識別されま
す。inspector_id_last4 および unit フィールドは、暗号化アクションで ENCRYPT_AND_SIGN
とマークされます。

UnitInspection データベース内のプレーンテキストエントリの例を次に示します。

{
 "work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
 "inspection_date": 2023-06-07,
 "inspector_id_last4": 8744,
 "unit": 229304973450
}

レコード内の暗号化された単一フィールドをクエリする

inspector_id_last4 フィールドを暗号化する必要があるが、完全一致検索のためにクエリす
る必要もある場合は、inspector_id_last4 フィールドから標準ビーコンを構築します。その
後、標準ビーコンを使用してセカンダリインデックスを作成します。このセカンダリインデック
スを使用して、暗号化された inspector_id_last4 フィールドをクエリできます。

標準ビーコンの設定については、「標準ビーコンの設定」を参照してください。

仮想フィールドをクエリする

仮想フィールドは、1 つ以上のソースフィールドから構築された概念的なフィールドです。暗号化さ
れたフィールドの特定のセグメントについて一致検索を実行する場合、または複数のフィールドの連
結に対して一致検索を実行する場合は、仮想フィールドから標準ビーコンを構築します。すべての仮

ビーコンのタイプの選択 128

AWS データベース暗号化 SDK デベロッパーガイド

想フィールドには、少なくとも 1 つの暗号化されたソースフィールドが含まれている必要がありま
す。

例

次の例では、Employees データベースの仮想フィールドを作成します。Employees データベース
内のプレーンテキストレコードの例を次に示します。

{
 "EmployeeID": 101,
 "SSN": 000-00-0000,
 "LastName": "Jones",
 "FirstName": "Mary",
 "Address": {
 "Street": "123 Main",
 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345
 }
}

暗号化されたフィールドのセグメントをクエリする

この例では、SSN フィールドは暗号化されています。

社会保障番号の下 4 桁を使用して SSN フィールドをクエリする場合は、クエリを実行するセグメ
ントを識別する仮想フィールドを作成します。

Suffix(4) から構築された仮想 Last4SSN フィールドを使用すると、Last4SSN=0000 をクエ
リできます。この仮想フィールドを使用して、標準ビーコンを構築します。その後、標準ビーコ
ンを使用してセカンダリインデックスを作成します。このセカンダリインデックスを使用して、
仮想フィールドをクエリできます。このクエリは、指定した下 4 桁で終わる SSN の値を持つすべ
てのレコードを返します。

複数のフィールドの連結をクエリする

Note

次の例は、仮想フィールドを使用して実行できる変換とクエリのタイプを示しています。
アプリケーションでは、この例で使用されているフィールド例は、ビーコンの分布およ
び相関の一意性に関する推奨事項を満たしていない可能性があります。

ビーコンのタイプの選択 129

AWS データベース暗号化 SDK デベロッパーガイド

FirstName と LastName フィールドの連結に対して一致検索を実行する場合は、FirstName
フィールドの最初の文字と、その後に続く LastName フィールドで構築される仮想 NameTag
フィールドを作成できます (すべて小文字)。この仮想フィールドを使用して、標準ビーコンを構
築します。その後、標準ビーコンを使用してセカンダリインデックスを作成します。このセカン
ダリインデックスを使用して、仮想フィールドの NameTag=mjones をクエリできます。

少なくとも 1 つのソースフィールドを暗号化する必要があります。FirstName
または LastName のいずれかを暗号化することも、両方を暗号化するこ
ともできます。プレーンテキストのソースフィールドは、暗号化アクショ
ンSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTで SIGN_ONLYまたは としてマークする必
要があります。

仮想フィールドとそれらを使用するビーコンの設定については、「仮想フィールドの作成」を参照し
てください。

複合ビーコン

複合ビーコンは、リテラルプレーンテキスト文字列と標準ビーコンからインデックスを作成し、複雑
なデータベースオペレーションを実行します。複号ビーコンを使用して、次のクエリを実行できま
す。

単一のインデックスで暗号化されたフィールドの組み合わせをクエリする

単一のインデックスで暗号化されたフィールドの組み合わせをクエリする必要がある場合は、暗号化
されたフィールドごとに構築された個々の標準ビーコンを組み合わせて単一のインデックスを形成す
る複合ビーコンを作成します。

複合ビーコンを設定した後、複合ビーコンをパーティションキーとして指定するセカンダリインデッ
クスを作成して完全一致クエリを実行したり、ソートキーを使用してより複雑なクエリを実行した
りできます。複合ビーコンをソートキーとして指定するセカンダリインデックスは、完全一致クエリ
や、よりカスタマイズされた複雑なクエリを実行できます。

例

次の例では、生産施設の検査データを追跡する UnitInspection という名
前のデータベースについて考えてみます。データベース内の各レコードに
は、work_id、inspection_date、inspector_id_last4、および unit と呼ばれるフィールド
が含まれています。完全なインスペクター ID は 0～99,999,999 の数値です。ただし、データセット
が統一的に分布するようにするために、inspector_id_last4 はインスペクターの ID の下 4 桁の

ビーコンのタイプの選択 130

AWS データベース暗号化 SDK デベロッパーガイド

みを格納します。データベース内の各フィールドは、プライマリキー work_id によって識別されま
す。inspector_id_last4 および unit フィールドは、暗号化アクションで ENCRYPT_AND_SIGN
とマークされます。

UnitInspection データベース内のプレーンテキストエントリの例を次に示します。

{
 "work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
 "inspection_date": 2023-06-07,
 "inspector_id_last4": 8744,
 "unit": 229304973450
}

暗号化されたフィールドの組み合わせに対して一致検索を実行する

inspector_id_last4.unit の完全一致検索のために UnitInspection データベースをクエ
リする場合は、まず inspector_id_last4 と unit のフィールドについての個別の標準ビーコ
ンを作成します。その後、2 つの標準ビーコンから複合ビーコンを作成します。

複合ビーコンを設定した後、複合ビーコンをパーティションキーとして指定す
るセカンダリインデックスを作成します。このセカンダリインデックスを使用し
て、inspector_id_last4.unit の完全一致検索のためにクエリを実行します。例えば、この
ビーコンをクエリして、インスペクターが特定のユニットについて実行した検査のリストを検索
できます。

暗号化されたフィールドの組み合わせに対して複雑なクエリを実行する

inspector_id_last4 と inspector_id_last4.unit のために UnitInspection データ
ベースをクエリする場合は、まず inspector_id_last4 と unit のフィールドについて個別の
標準ビーコンを作成します。その後、2 つの標準ビーコンから複合ビーコンを作成します。

複合ビーコンを設定した後、複合ビーコンをソートキーとして指定するセカンダリインデッ
クスを作成します。このセカンダリインデックスを使用して、特定のインスペクターで始
まるエントリや、特定のインスペクターによって検査された特定のユニット ID 範囲内のす
べてのユニットのリストを検索するために UnitInspection データベースをクエリできま
す。inspector_id_last4.unit についての完全一致検索を実行することもできます。

複合ビーコンの設定については、「複合ビーコンの設定」を参照してください。

ビーコンのタイプの選択 131

AWS データベース暗号化 SDK デベロッパーガイド

単一のインデックスで暗号化されたフィールドとプレーンテキストフィールドの組み合わせをクエリ
する

単一のインデックスで暗号化されたフィールドとプレーンテキストフィールドの組み合わせをク
エリする必要がある場合は、個々の標準ビーコンとプレーンテキストフィールドを組み合わせて単
一のインデックスを形成する複合ビーコンを作成します。複合ビーコンの構築に使用されるプレー
ンテキストフィールドは、暗号化アクションSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTで
SIGN_ONLYまたは とマークする必要があります。

複合ビーコンを設定した後、複合ビーコンをパーティションキーとして指定するセカンダリインデッ
クスを作成して完全一致クエリを実行したり、ソートキーを使用してより複雑なクエリを実行した
りできます。複合ビーコンをソートキーとして指定するセカンダリインデックスは、完全一致クエリ
や、よりカスタマイズされた複雑なクエリを実行できます。

例

次の例では、生産施設の検査データを追跡する UnitInspection という名
前のデータベースについて考えてみます。データベース内の各レコードに
は、work_id、inspection_date、inspector_id_last4、および unit と呼ばれるフィールド
が含まれています。完全なインスペクター ID は 0～99,999,999 の数値です。ただし、データセット
が統一的に分布するようにするために、inspector_id_last4 はインスペクターの ID の下 4 桁の
みを格納します。データベース内の各フィールドは、プライマリキー work_id によって識別されま
す。inspector_id_last4 および unit フィールドは、暗号化アクションで ENCRYPT_AND_SIGN
とマークされます。

UnitInspection データベース内のプレーンテキストエントリの例を次に示します。

{
 "work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
 "inspection_date": 2023-06-07,
 "inspector_id_last4": 8744,
 "unit": 229304973450
}

フィールドの組み合わせに対して一致検索を実行する

特定の日付に特定のインスペクターによって実施された検査について UnitInspection
データベースをクエリする場合は、まず inspector_id_last4 フィールドについての
標準ビーコンを作成します。inspector_id_last4 フィールドは、暗号化アクションで
ENCRYPT_AND_SIGN とマークされます。すべての暗号化された部分には独自の標準ビーコンが

ビーコンのタイプの選択 132

AWS データベース暗号化 SDK デベロッパーガイド

必要です。inspection_date フィールドは SIGN_ONLY とマークされており、標準ビーコンは
必要ありません。次に、inspection_date フィールドと inspector_id_last4 標準ビーコ
ンから複合ビーコンを作成します。

複合ビーコンを設定した後、複合ビーコンをパーティションキーとして指定するセカンダリイン
デックスを作成します。このセカンダリインデックスを使用して、特定のインスペクターおよび
検査日に完全に一致するレコードを検索するために、データベースをクエリします。例えば、ID
が 8744 で終わるインスペクターが特定の日に実施したすべての検査のリストを検索するため
に、データベースをクエリできます。

フィールドの組み合わせに対して複雑なクエリを実行する

inspection_date の範囲内で実施される検査を検索するため、または inspector_id_last4
もしくは inspector_id_last4.unit によって制約されている特定の inspection_date
に対して実施される検査を検索するためにデータベースをクエリする場合は、ま
ず、inspector_id_last4 および unit フィールドについての個別の標準ビーコンを作成しま
す。その後、プレーンテキスト inspection_date フィールドと 2 つの標準ビーコンから複合
ビーコンを作成します。

複合ビーコンを設定した後、複合ビーコンをソートキーとして指定するセカンダリインデックス
を作成します。このセカンダリインデックスを使用して、特定のインスペクターが特定の日付に
実施した検査を検索するためにクエリを実行します。例えば、同日に検査されたすべてのユニッ
トのリストを取得するために、データベースをクエリできます。または、指定された検査期間中
に特定のユニットに対して実行されたすべての検査のリストを取得するために、データベースを
クエリできます。

複合ビーコンの設定については、「複合ビーコンの設定」を参照してください。

ビーコンの長さの選択

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

検索可能な暗号化用に設定された暗号化されたフィールドに新しい値を書き込むと、 AWS
Database Encryption SDK はプレーンテキスト値で HMAC を計算します。この HMAC 出力は、その
フィールドのプレーンテキストの値と 1 対 1 (1:1) で一致します。HMAC 出力は切り詰められ、複数

ビーコンの長さの選択 133

AWS データベース暗号化 SDK デベロッパーガイド

の個別のプレーンテキストの値が、切り詰められた同じ HMAC タグにマッピングされます。これら
のコリジョン、つまり誤検知により、不正ユーザーは、プレーンテキストの値に関する特徴的な情報
を識別しにくくなります。

各ビーコンについて生成される誤検知の平均数は、切り詰めた後に残っているビーコンの長さによっ
て決まります。標準ビーコンを設定する場合、必要なのはビーコンの長さを定義することだけです。
複合ビーコンは、その構築元となる標準ビーコンのビーコン長を使用します。

ビーコンはフィールドの暗号化状態を変更しません。ただし、ビーコンを使用する場合、クエリの効
率性と、データの分布に関して明らかになる情報の量との間には、固有のトレードオフが存在しま
す。

検索可能な暗号化の目標は、ビーコンを使用して暗号化されたデータをクエリすることにより、クラ
イアント側の暗号化されたデータベースに関連するパフォーマンスコストを削減することです。ビー
コンは、計算元の暗号化されたフィールドと一緒に格納されます。これは、データセットの分布に関
する特徴的な情報を明らかにできることを意味します。極端な場合には、不正ユーザーが分布に関し
て明らかになった情報を分析し、それを使用してフィールドのプレーンテキストの値を特定できる可
能性があります。ビーコンの長さを適切に選択すると、これらのリスクを軽減し、分布の機密性を維
持するのに役立ちます。

脅威モデルを確認して、必要なセキュリティのレベルを決定します。例えば、データベースにアク
セスできるが、プレーンテキストデータにはアクセスすべきではないユーザーが増えるほど、データ
セットの分布の機密性を保護する必要が高まる可能性があります。機密性を高めるには、ビーコンは
より多くの誤検知を生成する必要があります。機密性が高まると、クエリのパフォーマンスが低下し
ます。

セキュリティとパフォーマンス

• ビーコンが過度に長い場合には、生成される誤検知が過度に少なくなるため、データセットの分布
に関する特徴的な情報が明らかになる可能性があります。

• ビーコンが過度に短い場合には、生成される誤検知が過度に多くなるため、データベースの広範な
スキャンが必要になり、これに伴ってクエリのパフォーマンスコストが増加します。

ソリューションのために適切なビーコンの長さを決定する際には、クエリのパフォーマンスに必要
以上に影響を及ぼすことなく、データのセキュリティを適切に維持できる長さを見つける必要があり
ます。ビーコンによって維持されるセキュリティの量は、データセットの分布と、ビーコンの構築元
となるフィールドの相関関係によって異なります。次のトピックは、ビーコンが統一的に分布してお
り、相関データが含まれていないことを前提としています。

ビーコンの長さの選択 134

AWS データベース暗号化 SDK デベロッパーガイド

トピック

• ビーコンの長さの計算

• 例

ビーコンの長さの計算

ビーコンの長さはビット単位で定義され、切り詰め後に保持される HMAC タグのビット数を指しま
す。推奨されるビーコンの長さは、データセットの分布、相関値の存在、セキュリティとパフォーマ
ンスに関する具体的な要件によって異なります。データセットが統一的に分布している場合は、実装
に最適なビーコンの長さを特定するために、次の方程式と手順を役立てることができます。これらの
方程式は、ビーコンが生成する誤検知の平均数を推定するだけであり、データセット内のすべての一
意の値が特定の数の誤検知を生成することを保証するものではありません。

Note

これらの方程式の有効性は、データセットの分布によって異なります。データセットが統一
的に分布していない場合は、「ビーコンが適しているデータセット」を参照してください。
一般に、データセットが統一的な分布から離れるほど、ビーコンを短くする必要がありま
す。

1.

母集団を推定する

母集団は、標準ビーコンの構築元となるフィールド内の一意の値の想定される数であり、フィー
ルドに格納される値の想定される合計数ではありません。例えば、従業員のミーティングの場所
を特定する暗号化された Room フィールドについて考えてみましょう。Room フィールドには合
計 100,000 の値が格納されることが想定されますが、従業員がミーティングのために予約でき
る部屋は 50 室しかありません。これは、Room フィールドに格納できる一意の値が 50 個しか
ないため、母集団が 50 であることを意味します。

Note

標準ビーコンの構築元が仮想フィールドである場合、ビーコンの長さを計算するために
使用される母集団は、仮想フィールドによって作成された一意の組み合わせの数です。

ビーコンの長さの選択 135

AWS データベース暗号化 SDK デベロッパーガイド

母集団を推定する際には、データセットの予測される増加を必ず考慮してください。ビーコンを
持つ新しいレコードを書き込んだ後に、そのビーコンの長さを更新することはできません。脅威
モデルと既存のデータベースソリューションを確認して、今後 5 年間にこのフィールドに格納
されることが想定される一意の値の数の見積もりを作成します。

母集団は正確である必要はありません。まず、現在のデータベース内の一意の値の数を特定する
か、または最初の 1 年間に格納されることが想定される一意の値の数を見積もります。次に、
以下の質問を使用して、今後 5 年間で予測される一意の値の増加を判断します。

• 一意の値が 10 倍になることが想定されますか?

• 一意の値が 100 倍になることが想定されますか?

• 一意の値が 1,000 倍になることが想定されますか?

一意の値が 50,000 個である場合と 60,000 個である場合の差は大きくなく、推奨されるビーコ
ンの長さは両方とも同じです。しかし、一意の値が 50,000 個である場合と 500,000 個である場
合、その差は、推奨されるビーコンの長さに大きく影響します。

郵便番号や姓などの一般的なデータタイプの出現頻度について、公開データを確認することを検
討してください。例えば、米国には 41,707 の郵便番号があります。使用する母集団は、独自の
データベースに比例する必要があります。データベース内の ZIPCode フィールドに米国全土の
データが含まれている場合は、ZIPCode フィールドに現在 41,707 個の一意の値がない場合で
も、母集団を 41,707 と定義することが考えられます。データベース内の ZIPCode フィールド
に 1 つの州のデータのみが含まれ、今後も 1 つの州のデータのみが含まれる場合は、母集団を
41,704 ではなく、その州の郵便番号の合計数として定義できます。

2. 想定されるコリジョン数の推奨範囲を計算する

特定のフィールドについての適切なビーコンの長さを決定するには、まず、想定されるコリジョ
ン数の適切な範囲を特定する必要があります。想定されるコリジョン数は、特定の HMAC タグ
にマッピングされる一意のプレーンテキストの値の平均想定数を表します。1 つの一意のプレー
ンテキストの値について想定される誤検知の数は、想定されるコリジョン数より 1 少ない数と
なります。

想定されるコリジョン数は 2 以上、かつ、母集団の平方根未満にすることをお勧めします。次
の方程式は、母集団に 16 個以上の一意の値がある場合にのみ機能します。

2 ≤ number of collisions < √(Population)

ビーコンの長さの選択 136

AWS データベース暗号化 SDK デベロッパーガイド

コリジョン数が 2 未満の場合、ビーコンが生成する誤検知が過度に少なくなります。想定され
るコリジョンの最小数として 2 が推奨されます。これは、平均して、フィールド内のすべての
一意の値が、他の 1 つの一意の値にマッピングされることによって、少なくとも 1 つの誤検知
を生成することを意味するためです。

3. ビーコンの長さの推奨範囲を計算する

想定されるコリジョンの最小数と想定されるコリジョンの最大数を特定したら、次の方程式を使
用して適切なビーコンの長さの範囲を特定します。

number of collisions = Population * 2-(beacon length)

まず、想定されるコリジョン数が 2 (想定されるコリジョンの推奨最小数) である場合のビーコ
ンの長さを求めます。

2 = Population * 2-(beacon length)

その後、想定コリジョン数が母集団の平方根 (想定されるコリジョンの推奨最大数) である場合
のビーコンの長さを求めます。

√(Population) = Population * 2-(beacon length)

この方程式によって生成される結果を切り捨ててビーコンの長さを算出します。例えば、方程式
を解くとビーコンの長さが 15.6 になる場合、その値を 16 ビットになるように切り上げるので
はなく、15 ビットになるように切り捨てることをお勧めします。

4. ビーコンの長さを選択する

これらの方程式は、フィールドのビーコンの長さの推奨範囲を特定するだけです。データセッ
トのセキュリティを維持するために、可能な場合は常に、ビーコンを短くすることをお勧めし
ます。ただし、実際に使用するビーコンの長さは、脅威モデルによって決まります。脅威モデル
を確認する際にパフォーマンス要件を考慮して、フィールドに最適なビーコンの長さを決定しま
す。

ビーコンを短くするとクエリのパフォーマンスが低下し、ビーコンを長くするとセキュリティが
低下します。一般的に、データセットが不均一に分布している場合、または相関フィールドから
個別のビーコンを構築する場合は、ビーコンをより短くして、データセットの分布に関して明ら
かになる情報の量を最小限に抑える必要があります。

ビーコンの長さの選択 137

AWS データベース暗号化 SDK デベロッパーガイド

脅威モデルを確認し、フィールドの分布に関して明らかになる特徴的な情報がセキュリティ全
体に脅威を与えるものではないと判断した場合は、計算した推奨範囲よりもビーコンを長くする
ことを選択することもできます。例えば、フィールドのビーコンの長さの推奨範囲を計算したと
ころ、9～16 ビットと算出されたとしても、パフォーマンスの低下を避けるために 24 ビットの
ビーコン長を使用することを選択できます。

ビーコンの長さは慎重に選択してください。ビーコンを持つ新しいレコードを書き込んだ後に、
そのビーコンの長さを更新することはできません。

例

暗号化アクションで unit フィールドを ENCRYPT_AND_SIGN としてマークしたデータベースを考
えてみましょう。unit フィールドの標準ビーコンを設定するには、unit フィールドについて想定
される誤検知の数とビーコンの長さを決定する必要があります。

1. 母集団を推定する

脅威モデルと現在のデータベースソリューションを確認した結果、unit フィールドには最終的
に 100,000 個の一意の値が存在することになると想定されます。

つまり、母集団 = 100,000 です。

2. 想定されるコリジョン数の推奨範囲を計算します。

この例では、想定されるコリジョン数は 2～316 です。

2 ≤ number of collisions < √(Population)

a. 2 ≤ number of collisions < √(100,000)

b. 2 ≤ number of collisions < 316

3. ビーコンの長さの推奨範囲を計算します。

この例では、ビーコンの長さは 9～16 ビットである必要があります。

number of collisions = Population * 2-(beacon length)

ビーコンの長さの選択 138

AWS データベース暗号化 SDK デベロッパーガイド

a. 想定されるコリジョンの最小数がステップ 2 で特定された数である場合のビーコンの長さ
を計算します。

2 = 100,000 * 2-(beacon length)

ビーコンの長さ = 15.6、または 15 ビット

b. 想定されるコリジョンの最大数がステップ 2 で特定された数である場合のビーコンの長さ
を計算します。

316 = 100,000 * 2-(beacon length)

ビーコンの長さ = 8.3、または 8 ビット

4. セキュリティとパフォーマンスの要件に適したビーコンの長さを決定します。

15 未満のビットごとに、パフォーマンスコストとセキュリティが 2 倍になります。

• 16 ビット

• 平均すると、それぞれの一意の値は他の 1.5 個のユニットにマッピングされます。

• セキュリティ: 切り詰められた同じ HMAC タグを持つ 2 つのレコードは、同じプレーンテ
キストの値を持つ可能性が 66% あります。

• パフォーマンス: クエリは、実際にリクエストした 10 件のレコードごとに 15 件のレコード
を取得します。

• 14 ビット

• 平均すると、それぞれの一意の値は他の 6.1 個のユニットにマッピングされます。

• セキュリティ: 切り詰められた同じ HMAC タグを持つ 2 つのレコードは、同じプレーンテ
キストの値を持つ可能性が 33% あります。

• パフォーマンス: クエリは、実際にリクエストした 10 件のレコードごとに 30 件のレコード
を取得します。

ビーコン名の選択

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

ビーコン名の選択 139

AWS データベース暗号化 SDK デベロッパーガイド

すべてのビーコンは、一意のビーコン名によって識別されます。ビーコンが設定されると、ビーコ
ン名は、暗号化されたフィールドをクエリする際に使用される名前となります。ビーコン名は、暗号
化されたフィールドまたは仮想フィールドと同じ名前にすることができますが、暗号化されていない
フィールドと同じ名前にすることはできません。2 つの異なるビーコンに同じビーコン名を付けるこ
とはできません。

ビーコンに名前を付けて設定する方法を示す例については、「ビーコンの設定」を参照してくださ
い。

標準ビーコンの命名

標準ビーコンに名前を付ける場合は、可能な場合は常に、ビーコン名をビーコンソースに解決するこ
とを強くお勧めします。これは、ビーコン名と、標準ビーコンの構築元となる暗号化されたフィール
ドまたは仮想フィールドの名前が同じであることを意味します。例えば、LastName という名前の
暗号化されたフィールドについての標準ビーコンを作成する場合、ビーコン名も LastName である
必要があります。

ビーコン名がビーコンソースと同じ場合、設定からビーコンソースを省略でき、 AWS Database
Encryption SDK は自動的にビーコン名をビーコンソースとして使用します。

ビーコンの設定

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

検索可能な暗号化をサポートするビーコンには 2 つのタイプがあります。標準ビーコンは、一致検
索を実行します。これらは、データベースで検索可能な暗号化を実装する最も簡単な方法です。複合
ビーコンは、リテラルプレーンテキスト文字列と標準ビーコンを組み合わせて、より複雑なクエリを
実行します。

ビーコンは、データが入力されていない新しいデータベースに実装されるように設計されています。
既存のデータベースで設定されたビーコンは、データベースに書き込まれる新しいレコードのみを
マッピングします。ビーコンはフィールドのプレーンテキストの値から計算されます。フィールドが
暗号化されると、ビーコンは既存のデータをマッピングできなくなります。ビーコンを持つ新しいレ

ビーコンの設定 140

AWS データベース暗号化 SDK デベロッパーガイド

コードを書き込んだ後に、そのビーコンの設定を更新することはできません。ただし、レコードに追
加する新しいフィールドに新しいビーコンを追加できます。

アクセスパターンを決定したら、データベース実装の 2 番目のステップとしてビーコンを設定する
必要があります。次に、すべてのビーコンを設定したら、AWS KMS 階層キーリングの作成、ビーコ
ンバージョンの定義、各ビーコンのセカンダリインデックスの設定、暗号化アクションの定義、デー
タベースと AWS Database Encryption SDK クライアントの設定を行う必要があります。詳細につい
ては、「ビーコンの使用」を参照してください。

ビーコンのバージョンをより簡単に定義できるように、標準ビーコンと複合ビーコンのリストを作成
することをお勧めします。作成した各ビーコンを、設定時にそれぞれの標準ビーコンリストまたは複
合ビーコンリストに追加します。

トピック

• 標準ビーコンの設定

• 複合ビーコンの設定

• 設定例

標準ビーコンの設定

標準ビーコンは、データベースで検索可能な暗号化を実装する最も簡単な方法です。単一の暗号化さ
れたフィールドまたは仮想フィールドについてのみ一致検索を実行できます。

設定構文の例

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beaconName")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C# / .NET

var standardBeaconList = new List<StandardBeacon>();
StandardBeacon exampleStandardBeacon = new StandardBeacon

標準ビーコンの設定 141

AWS データベース暗号化 SDK デベロッパーガイド

 {
 Name = "beaconName",
 Length = 10
 };
standardBeaconList.Add(exampleStandardBeacon);

Rust

let standard_beacon_list = vec![

 StandardBeacon::builder().name("beacon_name").length(beacon_length_in_bits).build()?,

標準ビーコンを設定するには、次の値を指定します。

ビーコン名

暗号化されたフィールドをクエリする際に使用する名前。

ビーコン名は、暗号化されたフィールドまたは仮想フィールドと同じ名前にすることができます
が、暗号化されていないフィールドと同じ名前にすることはできません。可能な場合は常に、標
準ビーコンの構築元となる暗号化されたフィールドまたは仮想フィールドの名前を使用すること
を強くお勧めします。2 つの異なるビーコンに同じビーコン名を付けることはできません。実装
に最適なビーコン名を決定する方法については、「ビーコン名の選択」を参照してください。

ビーコンの長さ

切り詰めた後に保持されるビーコンのハッシュ値のビット数。

ビーコンの長さによって、特定のビーコンによって生成される誤検知の平均数が決まります。実
装に適切なビーコンの長さを決定する方法の詳細とヘルプについては、「ビーコンの長さの決
定」を参照してください。

ビーコンソース (オプション)

標準ビーコンの構築元となるフィールド。

ビーコンソースは、フィールド名、またはネストされたフィールドの値を参照するインデックス
である必要があります。ビーコン名がビーコンソースと同じ場合、設定からビーコンソースを省
略でき、 AWS Database Encryption SDK は自動的にビーコン名をビーコンソースとして使用し
ます。

標準ビーコンの設定 142

AWS データベース暗号化 SDK デベロッパーガイド

仮想フィールドの作成

仮想フィールドを作成するには、仮想フィールドの名前とソースフィールドのリストを指定する必
要があります。ソースフィールドを仮想部分のリストに追加する順序によって、仮想フィールドを構
築するためにこれらのソースフィールドが連結される順序が決まります。次の例では、2 つのソース
フィールド全体を連結して、仮想フィールドを作成します。

Note

データベースに入力する前に、仮想フィールドが期待される結果を生成することを確認する
ことをお勧めします。詳細については、「ビーコン出力のテスト」を参照してください。

Java

完全なコード例を参照: VirtualBeaconSearchableEncryptionExample.java

List<VirtualPart> virtualPartList = new ArrayList<>();
 virtualPartList.add(sourceField1);
 virtualPartList.add(sourceField2);

VirtualField virtualFieldName = VirtualField.builder()
 .name("virtualFieldName")
 .parts(virtualPartList)
 .build();

List<VirtualField> virtualFieldList = new ArrayList<>();
 virtualFieldList.add(virtualFieldName);

C# / .NET

完全なコード例を参照: VirtualBeaconSearchableEncryptionExample.cs

var virtualPartList = new List<VirtualPart> { sourceField1, sourceField2 };

var virtualFieldName = new VirtualField
{
 Name = "virtualFieldName",
 Parts = virtualPartList
};

標準ビーコンの設定 143

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/VirtualBeaconSearchableEncryptionExample.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/VirtualBeaconSearchableEncryptionExample.cs

AWS データベース暗号化 SDK デベロッパーガイド

var virtualFieldList = new List<VirtualField> { virtualFieldName };

Rust

完全なコード例を参照: virtual_beacon_searchable_encryption.rs

let virtual_part_list = vec![source_field_one, source_field_two];

let state_and_has_test_result_field = VirtualField::builder()
 .name("virtual_field_name")
 .parts(virtual_part_list)
 .build()?;

let virtual_field_list = vec![virtual_field_name];

ソースフィールドの特定のセグメントを使用して仮想フィールドを作成するには、ソースフィールド
を仮想部分のリストに追加する前に、その変換を定義する必要があります。

仮想フィールドのセキュリティに関する考慮事項

ビーコンはフィールドの暗号化状態を変更しません。ただし、ビーコンを使用する場合、クエリの
効率性と、データの分布に関して明らかになる情報の量との間には、固有のトレードオフが存在しま
す。ビーコンを設定する方法によって、そのビーコンによって維持されるセキュリティのレベルが決
まります。

既存の標準ビーコンと重複するソースフィールドを含む仮想フィールドを作成しないようにしてくだ
さい。標準ビーコンを作成するために既に使用されているソースフィールドを含む仮想フィールドを
作成すると、両方のビーコンのセキュリティレベルが低下する可能性があります。セキュリティが低
下する程度は、追加のソースフィールドによって追加されるエントロピーのレベルによって異なりま
す。エントロピーのレベルは、追加のソースフィールド内の固有の値の分布と、追加のソースフィー
ルドが仮想フィールドの全体的なサイズに寄与するビット数によって決まります。

母集団とビーコンの長さを使用して、仮想フィールドのソースフィールドがデータセットのセキュリ
ティを維持するかどうかを判断できます。母集団は、フィールド内の一意の値の想定数です。母集団
は正確である必要はありません。フィールドの母集団の推定については、「母集団の推定」を参照し
てください。

仮想フィールドのセキュリティを確認する際には、次の例を考慮してください。

標準ビーコンの設定 144

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/virtual_beacon_searchable_encryption.rs

AWS データベース暗号化 SDK デベロッパーガイド

• Beacon1 は FieldA から構築されます。FieldA の母集団は、2 (Beacon1 の長さ) よりも大きいで
す。

• Beacon2 は VirtualField から構築されます。これは、FieldA、FieldB、FieldC、および
FieldD から構築されます。FieldB、FieldC、および FieldD を合わせると、母集団は 2N より
も大きくなります

次のステートメントが真の場合、Beacon2 は Beacon1 と Beacon2 の両方のセキュリティを維持し
ます。

N ≥ (Beacon1 length)/2

and

N ≥ (Beacon2 length)/2

ビーコンスタイルの定義

標準ビーコンを使用して、暗号化されたフィールドまたは仮想フィールドの等価検索を実行できま
す。または、複合ビーコンを構築して、より複雑なデータベースオペレーションを実行することも
できます。標準ビーコンの整理と管理に役立つように、 AWS Database Encryption SDK には、標準
ビーコンの用途を定義する以下のオプションビーコンスタイルが用意されています。

Note

ビーコンスタイルを定義するには、 AWS Database Encryption SDK のバージョン 3.2 以降
を使用する必要があります。ビーコン設定にビーコンスタイルを追加する前に、すべての
リーダーに新しいバージョンをデプロイします。

PartOnly

として定義された標準ビーコンは、複合ビーコンの暗号化された部分を定義するため
にPartOnlyのみ使用できます。PartOnly 標準ビーコンを直接クエリすることはできません。

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();

標準ビーコンの設定 145

AWS データベース暗号化 SDK デベロッパーガイド

StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beaconName")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .partOnly(PartOnly.builder().build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C#/.NET

new StandardBeacon
{
 Name = "beaconName",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 PartOnly = new PartOnly()
 }
}

Rust

StandardBeacon::builder()
 .name("beacon_name")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::PartOnly(PartOnly::builder().build()?))
 .build()?

Shared

デフォルトでは、すべての標準ビーコンはビーコン計算用の一意の HMAC キーを生成します。そ
の結果、2 つの異なる標準ビーコンから暗号化されたフィールドに対して等価検索を実行するこ
とはできません。として定義された標準ビーコンSharedは、別の標準ビーコンの HMAC キーを
計算に使用します。

例えば、beacon1フィールドとbeacon2フィールドを比較する必要がある場合は、 の計
算beacon1に の HMAC キーを使用するSharedビーコンbeacon2として を定義します。

標準ビーコンの設定 146

AWS データベース暗号化 SDK デベロッパーガイド

Note

Shared ビーコンを設定する前に、セキュリティとパフォーマンスのニーズを考慮してく
ださい。 Shared ビーコンは、データセットの分布に関して識別できる統計情報の量を
増やす可能性があります。例えば、どの共有フィールドに同じプレーンテキスト値が含ま
れているかを明らかにすることができます。

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beacon2")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .shared(Shared.builder().other("beacon1").build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C#/.NET

new StandardBeacon
{
 Name = "beacon2",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 Shared = new Shared { Other = "beacon1" }
 }
}

Rust

StandardBeacon::builder()
 .name("beacon2")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::Shared(
 Shared::builder().other("beacon1").build()?,

標準ビーコンの設定 147

AWS データベース暗号化 SDK デベロッパーガイド

))
 .build()?

AsSet

デフォルトでは、フィールド値がセットの場合、 AWS Database Encryption SDK は
セットの単一の標準ビーコンを計算します。その結果、 が暗号化されたフィール
ドCONTAINS(a, :value)aであるクエリを実行することはできません。として定義された標
準ビーコンは、セットの各要素の個々の標準ビーコン値をAsSet計算し、ビーコン値をセット
として項目に保存します。これにより、 AWS Database Encryption SDK はクエリ を実行できま
すCONTAINS(a, :value)。

AsSet 標準ビーコンを定義するには、セット内の要素が同じ母集団のものである必要があり、す
べての要素が同じビーコンの長さを使用できます。ビーコン値の計算時に衝突が発生した場合、
ビーコンセットの要素数がプレーンテキストセットよりも少なくなる可能性があります。

Note

AsSet ビーコンを設定する前に、セキュリティとパフォーマンスのニーズを考慮してく
ださい。 AsSet ビーコンは、データセットの分布に関して識別できる統計情報の量を増
やす可能性があります。例えば、プレーンテキストセットのサイズが明らかになる場合が
あります。

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beaconName")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .asSet(AsSet.builder().build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

標準ビーコンの設定 148

AWS データベース暗号化 SDK デベロッパーガイド

C#/.NET

new StandardBeacon
{
 Name = "beaconName",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 AsSet = new AsSet()
 }
}

Rust

StandardBeacon::builder()
 .name("beacon_name")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::AsSet(AsSet::builder().build()?))
 .build()?

SharedSet

として定義された標準ビーコンは、 関数Sharedと AsSet関数SharedSetを組み合わせて、
セットとフィールドの暗号化された値に対して等価検索を実行できるようにします。これによ
り、 AWS Database Encryption SDK は、 CONTAINS(a, b) が暗号化されたセットであり、
aが暗号化されたフィールドbであるクエリを実行できます。

Note

Shared ビーコンを設定する前に、セキュリティとパフォーマンスのニーズを考慮してく
ださい。 SharedSet ビーコンは、データセットの分布に関して識別できる統計情報の量
を増やす可能性があります。例えば、プレーンテキストセットのサイズや、同じプレーン
テキスト値を含む共有フィールドが明らかになる場合があります。

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()

標準ビーコンの設定 149

AWS データベース暗号化 SDK デベロッパーガイド

 .name("beacon2")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .sharedSet(SharedSet.builder().other("beacon1").build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C#/.NET

new StandardBeacon
{
 Name = "beacon2",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 SharedSet = new SharedSet { Other = "beacon1" }
 }
}

Rust

StandardBeacon::builder()
 .name("beacon2")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::SharedSet(
 SharedSet::builder().other("beacon1").build()?,
))
 .build()?

複合ビーコンの設定

複合ビーコンは、リテラルプレーンテキスト文字列と標準ビーコンを組み合わせて、単
一のインデックスから 2 つの異なるレコードタイプをクエリしたり、ソートキーを使
用してフィールドの組み合わせをクエリしたりするなど、複雑なデータベースオペレー
ションを実行します。複合ビーコンは、ENCRYPT_AND_SIGN、SIGN_ONLY、および
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTフィールドから構築できます。複合ビーコンに含
まれる暗号化されたフィールドごとに標準ビーコンを作成する必要があります。

複合ビーコンの設定 150

AWS データベース暗号化 SDK デベロッパーガイド

Note

データベースに入力する前に、複合ビーコンが期待される結果を生成することを確認するこ
とをお勧めします。詳細については、「ビーコン出力のテスト」を参照してください。

設定構文の例

Java

複合ビーコン設定

次の の例では、複合ビーコン設定内で暗号化および署名されたパートリストをローカルに定義し
ます。

List<CompoundBeacon> compoundBeaconList = new ArrayList<>();
CompoundBeacon exampleCompoundBeacon = CompoundBeacon.builder()
 .name("compoundBeaconName")
 .split(".")
 .encrypted(encryptedPartList)
 .signed(signedPartList)
 .constructors(constructorList)
 .build();
compoundBeaconList.add(exampleCompoundBeacon);

ビーコンバージョン定義

次の例では、ビーコンバージョンで暗号化および署名されたパートリストをグローバルに定義し
ます。ビーコンバージョンの定義の詳細については、「ビーコンの使用」を参照してください。

 List<BeaconVersion> beaconVersions = new ArrayList<>();
beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .encryptedParts(encryptedPartList)
 .signedParts(signedPartList)
 .version(1) // MUST be 1
 .keyStore(keyStore)
 .keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()

複合ビーコンの設定 151

AWS データベース暗号化 SDK デベロッパーガイド

 .keyId(branchKeyId)
 .cacheTTL(6000)
 .build())
 .build())
 .build()
);

C# / .NET

完全なコードサンプル「BeaconConfig.csBeaconConfig.cs

複合ビーコン設定

次の の例では、複合ビーコン設定内で暗号化および署名されたパートリストをローカルに定義し
ます。

var compoundBeaconList = new List<CompoundBeacon>();
var exampleCompoundBeacon = new CompoundBeacon
 {
 Name = "compoundBeaconName",
 Split = ".",
 Encrypted = encryptedPartList,
 Signed = signedPartList,
 Constructors = constructorList
 };
compoundBeaconList.Add(exampleCompoundBeacon);

ビーコンバージョン定義

次の例では、ビーコンバージョンで暗号化および署名されたパートリストをグローバルに定義し
ます。ビーコンバージョンの定義の詳細については、「ビーコンの使用」を参照してください。

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 EncryptedParts = encryptedPartsList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = keyStore,
 KeySource = new BeaconKeySource

複合ビーコンの設定 152

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/complexexample/BeaconConfig.cs

AWS データベース暗号化 SDK デベロッパーガイド

 {
 Single = new SingleKeyStore
 {
 KeyId = branchKeyId,
 CacheTTL = 6000
 }
 }
 }
};

Rust

完全なコードサンプル「beacon_config.rs」を参照してください。

複合ビーコン設定

次の の例では、複合ビーコン設定内で暗号化および署名されたパートリストをローカルに定義し
ます。

let compound_beacon_list = vec![
 CompoundBeacon::builder()
 .name("compound_beacon_name")
 .split(".")
 .encrypted(encrypted_parts_list)
 .signed(signed_parts_list)
 .constructors(constructor_list)
 .build()?

ビーコンバージョン定義

次の例では、ビーコンバージョンで暗号化および署名されたパートリストをグローバルに定義し
ます。ビーコンバージョンの定義の詳細については、「ビーコンの使用」を参照してください。

let beacon_versions = BeaconVersion::builder()
 .standard_beacons(standard_beacon_list)
 .compound_beacons(compound_beacon_list)
 .encrypted_parts(encrypted_parts_list)
 .signed_parts(signed_parts_list)
 .version(1) // MUST be 1
 .key_store(key_store.clone())
 .key_source(BeaconKeySource::Single(
 SingleKeyStore::builder()
 .key_id(branch_key_id)

複合ビーコンの設定 153

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/complexexample/beacon_config.rs

AWS データベース暗号化 SDK デベロッパーガイド

 .cache_ttl(6000)
 .build()?,
))
 .build()?;
let beacon_versions = vec![beacon_versions];

暗号化されたパートと署名されたパートは、ローカルまたはグローバルに定義されたリストで定義で
きます。可能な限り、ビーコンバージョンのグローバルリストで暗号化および署名されたパートを定
義することをお勧めします。暗号化されたパートと署名されたパートをグローバルに定義すること
で、各パートを 1 回定義し、そのパートを複数の複合ビーコン設定で再利用できます。暗号化また
は署名されたパートを 1 回だけ使用する場合は、複合ビーコン設定のローカルリストで定義できま
す。コンストラクタリストでは、ローカルパートとグローバルパートの両方を参照できます。

暗号化および署名されたパートリストをグローバルに定義する場合は、複合ビーコンが複合ビーコン
設定のフィールドをアセンブルできるすべての可能な方法を識別するコンストラクタパートのリスト
を提供する必要があります。

Note

暗号化および署名されたパートリストをグローバルに定義するには、 AWS Database
Encryption SDK のバージョン 3.2 以降を使用する必要があります。新しいパートをグローバ
ルに定義する前に、すべてのリーダーに新しいバージョンをデプロイします。
既存のビーコン設定を更新して、暗号化および署名されたパートリストをグローバルに定義
することはできません。

複合ビーコンを設定するには、次の値を指定します。

ビーコン名

暗号化されたフィールドをクエリする際に使用する名前。

ビーコン名は、暗号化されたフィールドまたは仮想フィールドと同じ名前にすることができます
が、暗号化されていないフィールドと同じ名前にすることはできません。2 つのビーコンを同じ
名前にすることはできません。実装に最適なビーコン名を決定する方法については、「ビーコン
名の選択」を参照してください。

分割文字

複合ビーコンを設定する部分を分離するために使用される文字。

複合ビーコンの設定 154

AWS データベース暗号化 SDK デベロッパーガイド

分割文字は、複合ビーコンの構築元となるフィールドのプレーンテキストの値に出現することは
できません。

暗号化されたパートのリスト

複合ビーコンに含まれる ENCRYPT_AND_SIGN フィールドを識別します。

各部分には、名前とプレフィックスが含まれている必要があります。部分の名前は、暗号化され
たフィールドから構築された標準ビーコンの名前である必要があります。プレフィックスには任
意の文字列を指定できますが、一意である必要があります。暗号化された部分は、署名付きの部
分と同じプレフィックスを持つことはできません。複合ビーコンによって提供される部分と他の
部分を区別する短い値を使用することをお勧めします。

可能な限り、暗号化された部分をグローバルに定義することをお勧めします。1 つの複合ビーコ
ンでのみ使用する場合は、暗号化された部分をローカルで定義することを検討してください。
ローカルに定義された暗号化されたパートは、グローバルに定義された暗号化されたパートと同
じプレフィックスまたは名前を持つことはできません。

Java

List<EncryptedPart> encryptedPartList = new ArrayList<>);
EncryptedPart encryptedPartExample = EncryptedPart.builder()
 .name("standardBeaconName")
 .prefix("E-")
 .build();
encryptedPartList.add(encryptedPartExample);

C# / .NET

var encryptedPartList = new List<EncryptedPart>();
var encryptedPartExample = new EncryptedPart
 {
 Name = "compoundBeaconName",
 Prefix = "E-"
 };
encryptedPartList.Add(encryptedPartExample);

Rust

let encrypted_parts_list = vec![

複合ビーコンの設定 155

AWS データベース暗号化 SDK デベロッパーガイド

 EncryptedPart::builder()
 .name("standard_beacon_name")
 .prefix("E-")
 .build()?
];

署名付きパートリスト

複合ビーコンに含まれる署名付きフィールドを識別します。

Note

署名付きパートはオプションです。署名付き部分を参照しない複合ビーコンを設定できま
す。

各部分には、名前、ソース、プレフィックスが含まれている必要があります。ソースは、パート
が識別する SIGN_ONLYまたは SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTフィールドで
す。ソースは、フィールド名、またはネストされたフィールドの値を参照するインデックスであ
る必要があります。パーツ名がソースを識別する場合は、ソースを省略すると、 AWS Database
Encryption SDK は自動的にその名前をソースとして使用します。可能な場合は常に、部分名とし
てソースを指定することをお勧めします。プレフィックスには任意の文字列を指定できますが、
一意である必要があります。署名付きの部分は、暗号化された部分と同じプレフィックスを持つ
ことはできません。複合ビーコンによって提供される部分と他の部分を区別する短い値を使用す
ることをお勧めします。

可能な限り、署名付きパートをグローバルに定義することをお勧めします。1 つの複合ビーコン
でのみ使用する場合は、署名付き部分をローカルで定義することを検討してください。ローカル
に定義された署名付きパートは、グローバルに定義された署名付きパートと同じプレフィックス
または名前を持つことはできません。

Java

List<SignedPart> signedPartList = new ArrayList<>);
SignedPart signedPartExample = SignedPart.builder()
 .name("signedFieldName")
 .prefix("S-")
 .build();
signedPartList.add(signedPartExample);

複合ビーコンの設定 156

AWS データベース暗号化 SDK デベロッパーガイド

C# / .NET

var signedPartsList = new List<SignedPart>
{
 new SignedPart { Name = "signedFieldName1", Prefix = "S-" },
 new SignedPart { Name = "signedFieldName2", Prefix = "SF-" }
};

Rust

let signed_parts_list = vec![
 SignedPart::builder()
 .name("signed_field_name_1")
 .prefix("S-")
 .build()?,
 SignedPart::builder()
 .name("signed_field_name_2")
 .prefix("SF-")
 .build()?,
];

コンストラクタリスト

暗号化および署名付きの部分を複合ビーコンによってアセンブルするさまざまな方法を定義する
コンストラクターを識別します。コンストラクタリストでは、ローカルパートとグローバルパー
トの両方を参照できます。

グローバルに定義された暗号化および署名された部分から複合ビーコンを構築する場合は、コン
ストラクタリストを指定する必要があります。

複合ビーコンの構築にグローバルに定義された暗号化または署名された部分を使用しない場
合、コンストラクタリストはオプションです。コンストラクタリストを指定しない場合、 AWS
Database Encryption SDK は次のデフォルトのコンストラクタを使用して複合ビーコンをアセン
ブルします。

• すべての署名付きの部分 (署名付きの部分のリストに追加された順)

• 暗号化されたすべての部分 (暗号化された部分のリストに追加された順)

• すべての部分は必須です

複合ビーコンの設定 157

AWS データベース暗号化 SDK デベロッパーガイド

コンストラクタ

各コンストラクターは、複合ビーコンをアセンブルする 1 つの方法を定義するコンストラク
ター部分の順序付きリストです。コンストラクター部分はリストに追加された順序で結合さ
れ、各部分は指定された分割文字で区切られます。

各コンストラクター部分は、暗号化された部分または署名付きの部分に名前を付け、その
部分がコンストラクター内で必須であるか、またはオプションであるかを定義します。例え
ば、Field1、Field1.Field2、および Field1.Field2.Field3 で複合ビーコンをクエ
リする場合は、Field2 および Field3 をオプションとしてマークし、コンストラクターを 1
つ作成します。

各コンストラクターには、少なくとも 1 つの必須部分が必要です。クエリで BEGINS_WITH
演算子を使用できるように、各コンストラクターの最初の部分を必須にすることをお勧めしま
す。

コンストラクターは、必要な部分がすべてレコード内に存在する場合に成功します。新しい
レコードを書き込む際に、複合ビーコンはコンストラクターのリストを使用して、指定された
値からビーコンをアセンブルできるかどうかを判断します。コンストラクターがコンストラク
ターのリストに追加された順序でビーコンのアセンブルを試み、成功した最初のコンストラク
ターを使用します。コンストラクターが成功しない場合、ビーコンはレコードに書き込まれま
せん。

すべてのリーダーとライターは、クエリの結果が確実に正しくなるようにコンストラクターの
同じ順序を指定する必要があります。

独自のコンストラクターのリストを指定するには、次の手順を使用します。

1. 暗号化部分と署名付きの部分ごとにコンストラクター部分を作成し、その部分が必須かどう
かを定義します。

コンストラクター部分の名前は、標準ビーコンの名前、またはそれが表す署名されたフィー
ルドの名前である必要があります。

Java

ConstructorPart field1ConstructorPart = ConstructorPart.builder()
 .name("Field1")
 .required(true)
 .build();

複合ビーコンの設定 158

AWS データベース暗号化 SDK デベロッパーガイド

C# / .NET

var field1ConstructorPart = new ConstructorPart { Name = "Field1", Required
 = true };

Rust

let field_1_constructor_part = ConstructorPart::builder()
 .name("field_1")
 .required(true)
 .build()?;

2. ステップ 1 で作成したコンストラクター部分を使用して、複合ビーコンをアセンブルする可
能な方法ごとにコンストラクターを作成します。

例えば、Field1.Field2.Field3 と Field4.Field2.Field3 をクエリする場合は、2
つのコンストラクターを作成する必要があります。Field1 と Field4 は、2 つの別個のコ
ンストラクターで定義されているため、両方とも必須にすることができます。

Java

// Create a list for Field1.Field2.Field3 queries
List<ConstructorPart> field123ConstructorPartList = new ArrayList<>();
field123ConstructorPartList.add(field1ConstructorPart);
field123ConstructorPartList.add(field2ConstructorPart);
field123ConstructorPartList.add(field3ConstructorPart);
Constructor field123Constructor = Constructor.builder()
 .parts(field123ConstructorPartList)
 .build();
// Create a list for Field4.Field2.Field1 queries
List<ConstructorPart> field421ConstructorPartList = new ArrayList<>();
field421ConstructorPartList.add(field4ConstructorPart);
field421ConstructorPartList.add(field2ConstructorPart);
field421ConstructorPartList.add(field1ConstructorPart);
Constructor field421Constructor = Constructor.builder()
 .parts(field421ConstructorPartList)
 .build();

C# / .NET

// Create a list for Field1.Field2.Field3 queries

複合ビーコンの設定 159

AWS データベース暗号化 SDK デベロッパーガイド

 var field123ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field1ConstructorPart,
 field2ConstructorPart, field3ConstructorPart }
};
// Create a list for Field4.Field2.Field1 queries
var field421ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field4ConstructorPart,
 field2ConstructorPart, field1ConstructorPart }
};

Rust

// Create a list for field1.field2.field3 queries
let field1_field2_field3_constructor = Constructor::builder()
 .parts(vec![
 field1_constructor_part,
 field2_constroctor_part.clone(),
 field3_constructor_part,
])
 .build()?;

// Create a list for field4.field2.field1 queries
let field4_field2_field1_constructor = Constructor::builder()
 .parts(vec![
 field4_constructor_part,
 field2_constroctor_part.clone(),
 field1_constructor_part,
])
 .build()?;

3. ステップ 2 で作成したすべてのコンストラクターを含むコンストラクターのリストを作成し
ます。

Java

List<Constructor> constructorList = new ArrayList<>();
constructorList.add(field123Constructor)
constructorList.add(field421Constructor)

複合ビーコンの設定 160

AWS データベース暗号化 SDK デベロッパーガイド

C# / .NET

var constructorList = new List<Constructor>
{
 field123Constructor,
 field421Constructor
};

Rust

let constructor_list = vec![
 field1_field2_field3_constructor,
 field4_field2_field1_constructor,
];

4. 複合ビーコンを作成するconstructorListときに を指定します。

設定例

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

次の例は、標準ビーコンと複合ビーコンを設定する方法を示しています。次の設定は、ビーコンの長
さを指定しません。設定用に適切なビーコンの長さを決定する方法については、「ビーコンの長さを
選択する」を参照してください。

ビーコンを設定して使用する方法を示す完全なコード例については、GitHub の aws-database-
encryption-sdk-dynamodb リポジトリにある Java、.NET、Rust の検索可能な暗号化の例を参照して
ください。

トピック

• 標準ビーコン

• 複合ビーコン

設定例 161

https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/

AWS データベース暗号化 SDK デベロッパーガイド

標準ビーコン

完全一致を検索するために inspector_id_last4 フィールドをクエリする場合は、次の設定を使
用して標準ビーコンを作成します。

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("inspector_id_last4")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C# / .NET

var standardBeaconList = new List<StandardBeacon>>);
StandardBeacon exampleStandardBeacon = new StandardBeacon
 {
 Name = "inspector_id_last4",
 Length = 10
 };
standardBeaconList.Add(exampleStandardBeacon);

Rust

let last4_beacon = StandardBeacon::builder()
 .name("inspector_id_last4")
 .length(10)
 .build()?;

let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;

let standard_beacon_list = vec![last4_beacon, unit_beacon];

複合ビーコン

inspector_id_last4 および inspector_id_last4.unit で UnitInspection データベース
をクエリする場合は、次の設定で複合ビーコンを作成します。この複合ビーコンには暗号化された部
分のみが必要です。

設定例 162

AWS データベース暗号化 SDK デベロッパーガイド

Java

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
List<StandardBeacon> standardBeaconList = new ArrayList<>);
StandardBeacon inspectorBeacon = StandardBeacon.builder()
 .name("inspector_id_last4")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(inspectorBeacon);

StandardBeacon unitBeacon = StandardBeacon.builder()
 .name("unit")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(unitBeacon);

// 2. Define the encrypted parts.
List<EncryptedPart> encryptedPartList = new ArrayList<>);

// Each encrypted part needs a name and prefix
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
EncryptedPart encryptedPartInspector = EncryptedPart.builder()
 .name("inspector_id_last4")
 .prefix("I-")
 .build();
encryptedPartList.add(encryptedPartInspector);

EncryptedPart encryptedPartUnit = EncryptedPart.builder()
 .name("unit")
 .prefix("U-")
 .build();
encryptedPartList.add(encryptedPartUnit);

// 3. Create the compound beacon.
// This compound beacon only requires a name, split character,
// and list of encrypted parts
CompoundBeacon inspectorUnitBeacon = CompoundBeacon.builder()
 .name("inspectorUnitBeacon")
 .split(".")
 .sensitive(encryptedPartList)

設定例 163

AWS データベース暗号化 SDK デベロッパーガイド

 .build();

C# / .NET

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
StandardBeacon inspectorBeacon = new StandardBeacon
 {
 Name = "inspector_id_last4",
 Length = 10
 };
standardBeaconList.Add(inspectorBeacon);
StandardBeacon unitBeacon = new StandardBeacon
 {
 Name = "unit",
 Length = 30
 };
standardBeaconList.Add(unitBeacon);

// 2. Define the encrypted parts.
var last4EncryptedPart = new EncryptedPart

// Each encrypted part needs a name and prefix
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
var last4EncryptedPart = new EncryptedPart
 {
 Name = "inspector_id_last4",
 Prefix = "I-"
 };
encryptedPartList.Add(last4EncryptedPart);

var unitEncryptedPart = new EncryptedPart
 {
 Name = "unit",
 Prefix = "U-"
 };
encryptedPartList.Add(unitEncryptedPart);

// 3. Create the compound beacon.
// This compound beacon only requires a name, split character,
// and list of encrypted parts

設定例 164

AWS データベース暗号化 SDK デベロッパーガイド

var compoundBeaconList = new List<CompoundBeacon>>);
var inspectorCompoundBeacon = new CompoundBeacon
 {
 Name = "inspector_id_last4",
 Split = ".",
 Encrypted = encryptedPartList
 };
compoundBeaconList.Add(inspectorCompoundBeacon);

Rust

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
let last4_beacon = StandardBeacon::builder()
 .name("inspector_id_last4")
 .length(10)
 .build()?;

let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;

let standard_beacon_list = vec![last4_beacon, unit_beacon];

// 2. Define the encrypted parts.
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
let encrypted_parts_list = vec![
 EncryptedPart::builder()
 .name("inspector_id_last4")
 .prefix("I-")
 .build()?,
 EncryptedPart::builder().name("unit").prefix("U-").build()?,
];

// 3. Create the compound beacon
// This compound beacon only requires a name, split character,
// and list of encrypted parts
let compound_beacon_list = vec![CompoundBeacon::builder()
 .name("last4UnitCompound")
 .split(".")
 .encrypted(encrypted_parts_list)
 .build()?];

設定例 165

AWS データベース暗号化 SDK デベロッパーガイド

ビーコンの使用

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

ビーコンを使用すると、クエリ対象のデータベース全体を復号することなく、暗号化されたレコー
ドを検索できます。ビーコンは、データが入力されていない新しいデータベースに実装されるように
設計されています。既存のデータベースで設定されたビーコンは、データベースに書き込まれる新し
いレコードのみをマッピングします。ビーコンはフィールドのプレーンテキストの値から計算されま
す。フィールドが暗号化されると、ビーコンは既存のデータをマッピングできなくなります。ビーコ
ンを持つ新しいレコードを書き込んだ後に、そのビーコンの設定を更新することはできません。ただ
し、レコードに追加する新しいフィールドに新しいビーコンを追加できます。

ビーコンを設定した後、データベースにデータを入力し、ビーコンをクエリする前に、次のステップ
を完了する必要があります。

1. AWS KMS 階層キーリングを作成する

検索可能な暗号化を使用するには、AWS KMS 階層キーリングを使用して、レコードを保護する
ために使用されるデータキーを生成、暗号化、および復号する必要があります。

ビーコンを設定した後、階層キーリングの前提条件をアセンブルし、階層キーリングを作成しま
す。

階層キーリングが必要な理由の詳細については、「検索可能な暗号化のための階層キーリングの
使用」を参照してください。

2.

ビーコンのバージョンを定義する

keyStore、keySource、設定したすべての標準ビーコンのリスト、設定したすべての複合
ビーコンのリスト、暗号化されたパートのリスト、署名されたパートのリスト、ビーコンバー
ジョンを指定します。ビーコンのバージョンとして 1 を指定する必要があります。keySource
の定義に関するガイダンスについては、「ビーコンキーソースの定義」を参照してください。

ビーコンの使用 166

AWS データベース暗号化 SDK デベロッパーガイド

次の Java の例では、シングルテナンシーデータベースのビーコンバージョンを定義します。マ
ルチテナンシーデータベースのビーコンバージョンの定義については、「マルチテナンシーデー
タベースの検索可能な暗号化」を参照してください。

Java

 List<BeaconVersion> beaconVersions = new ArrayList<>();
beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .encryptedParts(encryptedPartsList)
 .signedParts(signedPartsList)
 .version(1) // MUST be 1
 .keyStore(keyStore)
 .keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branchKeyId)
 .cacheTTL(6000)
 .build())
 .build())
 .build()
);

C# / .NET

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 EncryptedParts = encryptedPartsList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = branchKeyStoreName,
 KeySource = new BeaconKeySource
 {
 Single = new SingleKeyStore
 {
 KeyId = branch-key-id,
 CacheTTL = 6000

ビーコンの使用 167

AWS データベース暗号化 SDK デベロッパーガイド

 }
 }
 }
};

Rust

let beacon_version = BeaconVersion::builder()
 .standard_beacons(standard_beacon_list)
 .compound_beacons(compound_beacon_list)
 .version(1) // MUST be 1
 .key_store(key_store.clone())
 .key_source(BeaconKeySource::Single(
 SingleKeyStore::builder()
 // `keyId` references a beacon key.
 // For every branch key we create in the keystore,
 // we also create a beacon key.
 // This beacon key is not the same as the branch key,
 // but is created with the same ID as the branch key.
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .build()?,
))
 .build()?;
let beacon_versions = vec![beacon_version];

3. セカンダリインデックスを設定する

ビーコンを設定した後、暗号化されたフィールドを検索する前に、各ビーコンを反映するセカン
ダリインデックスを設定する必要があります。詳細については、「ビーコンを使用したセカンダ
リインデックスの設定」を参照してください。

4. 暗号化アクションを定義する

標準ビーコンの構築に使用されるすべてのフィールドを ENCRYPT_AND_SIGN とマークする必
要があります。ビーコンの構築に使用される他のすべてのフィールドは、 SIGN_ONLYまたは と
マークする必要がありますSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

5. AWS Database Encryption SDK クライアントを設定する

DynamoDB テーブルのテーブル項目を保護する AWS Database Encryption SDK クライアント
を設定するには、DynamoDB 用の Java クライアント側の暗号化ライブラリ」を参照してくだ
さい。

ビーコンの使用 168

AWS データベース暗号化 SDK デベロッパーガイド

ビーコンのクエリ

設定するビーコンのタイプによって、実行できるクエリのタイプが決まります。標準ビーコンは、
フィルター式を使用して一致検索を実行します。複合ビーコンは、リテラルプレーンテキスト文字列
と標準ビーコンを組み合わせて、複雑なクエリを実行します。暗号化されたデータをクエリする際に
は、ビーコン名で検索します。

2 つの標準ビーコンの値は、基になる同じプレーンテキストが含まれている場合でも比較できませ
ん。2 つの標準ビーコンは、同じプレーンテキストの値について 2 つの異なる HMAC タグを生成し
ます。その結果、標準ビーコンは次のクエリを実行できません。

• beacon1 = beacon2

• beacon1 IN (beacon2)

• value IN (beacon1, beacon2, ...)

• CONTAINS(beacon1, beacon2)

複合ビーコンは次のクエリを実行できます。

• BEGINS_WITH(a)。ここで、a は、アセンブルされた複合ビーコンの先頭のフィールドの値全体
を反映します。BEGINS_WITH 演算子を使用して、特定の部分文字列で始まる値を識別することは
できません。ただし、BEGINS_WITH(S_) を使用することはできます。ここで、S_ は、アセンブ
ルされた複合ビーコンの先頭の部分のプレフィックスを反映します。

• CONTAINS(a)。ここで、a は、アセンブルされた複合ビーコンが含むフィールドの値全体を反映
します。CONTAINS 演算子を使用して、セット内の特定の部分文字列または値を含むレコードを
識別することはできません。

例えば、クエリ CONTAINS(path, "a" を実行することはできません。ここで、a は、セット内
の値を反映します。

• 複合ビーコンの署名付きの部分を比較できます。署名付きの部分を比較する場合、必要に応じ
て、暗号化部分のプレフィックスを 1 つ以上の署名付きの部分に付加できますが、暗号化された
フィールドの値をクエリに含めることはできません。

例えば、署名付きの部分を比較し、signedField1 = signedField2 または value IN
(signedField1, signedField2, ...) をクエリできます。

署名付きの部分と暗号化部分のプレフィックスを、signedField1.A_ = signedField2.B_
に対するクエリによって比較することもできます。

ビーコンのクエリ 169

AWS データベース暗号化 SDK デベロッパーガイド

• field BETWEEN a AND b。ここで、a と b は署名付きの部分です。必要に応じて、暗号化部分
のプレフィックスを 1 つ以上の署名付きの部分に付加できますが、暗号化されたフィールドの値
をクエリに含めることはできません。

複合ビーコンに対するクエリに含める各部分のプレフィックスを含める必要があります。
例えば、encryptedField および signedField の 2 つのフィールドから複合ビーコン
compoundBeacon を構築した場合、ビーコンをクエリする際に、これらの 2 つの部分について設定
されたプレフィックスを含める必要があります。

compoundBeacon = E_encryptedFieldValue.S_signedFieldValue

マルチテナンシーデータベースの検索可能な暗号化

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

データベースで検索可能な暗号化を実装するには、AWS KMS 階層キーリングを使用する必要があり
ます。 AWS KMS 階層キーリングは、レコードの保護に使用されるデータキーを生成、暗号化、復
号します。また、ビーコンを生成するために使用されるビーコンキーも作成します。マルチテナント
データベースで AWS KMS 階層キーリングを使用する場合、テナントごとに個別のブランチキーと
ビーコンキーがあります。マルチテナンシーデータベース内の暗号化されたデータをクエリするに
は、クエリしているビーコンを生成するために使用されたビーコンキーマテリアルを特定する必要
があります。詳細については、「the section called “検索可能な暗号化のための階層キーリングの使
用”」を参照してください。

マルチテナンシーデータベースのビーコンバージョンを定義する場合は、設定したすべての標準ビー
コンのリスト、設定したすべての複合ビーコンのリスト、ビーコンバージョン、および keySource
を指定します。ビーコンキーソースを MultiKeyStore として定義し、keyFieldName、ローカル
ビーコンキーキャッシュのキャッシュ Time To Live、およびローカルビーコンキーキャッシュの最
大キャッシュサイズを含める必要があります。

署名付きビーコンを設定した場合は、それらを compoundBeaconList に含める必要があります。
署名付きビーコンは、 SIGN_ONLYおよび SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTフィー
ルドに対してインデックスを作成し、複雑なクエリを実行する複合ビーコンの一種です。

マルチテナンシーデータベースの検索可能な暗号化 170

AWS データベース暗号化 SDK デベロッパーガイド

Java

List<BeaconVersion> beaconVersions = new ArrayList<>();
 beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .version(1) // MUST be 1
 .keyStore(branchKeyStoreName)
 .keySource(BeaconKeySource.builder()
 .multi(MultiKeyStore.builder()
 .keyFieldName(keyField)
 .cacheTTL(6000)
 .maxCacheSize(10)
 .build())
 .build())
 .build()
);

C# / .NET

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 EncryptedParts = encryptedPartsList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = branchKeyStoreName,
 KeySource = new BeaconKeySource
 {
 Multi = new MultiKeyStore
 {
 KeyId = branch-key-id,
 CacheTTL = 6000,
 MaxCacheSize = 10
 }
 }
 }
};

マルチテナンシーデータベースの検索可能な暗号化 171

AWS データベース暗号化 SDK デベロッパーガイド

Rust

let beacon_version = BeaconVersion::builder()
 .standard_beacons(standard_beacon_list)
 .compound_beacons(compound_beacon_list)
 .version(1) // MUST be 1
 .key_store(key_store.clone())
 .key_source(BeaconKeySource::Multi(
 MultiKeyStore::builder()
 // `keyId` references a beacon key.
 // For every branch key we create in the keystore,
 // we also create a beacon key.
 // This beacon key is not the same as the branch key,
 // but is created with the same ID as the branch key.
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .max_cache_size(10)
 .build()?,
))
 .build()?;
let beacon_versions = vec![beacon_version];

keyFieldName

keyFieldName は、特定のテナンシーについて生成されたビーコンに使用されるビーコンキーに
関連付けられた branch-key-id を格納するフィールドの名前を定義します。

新しいレコードをデータベースに書き込むと、そのレコードについてのビーコンを生成するため
に使用されるビーコンキーを識別する branch-key-id がこのフィールドに格納されます。

デフォルトでは、keyField はデータベースに明示的に格納されない概念的なフィールドです。
AWS Database Encryption SDK は、マテリアルの説明で暗号化されたデータキーbranch-key-
idから を識別し、複合ビーコンと署名付きビーコンで参照keyFieldできるように値を概念的に
保存します。マテリアルの説明は署名されているため、概念的な keyField は署名付きの部分と
みなされます。

暗号化アクションkeyFieldに を SIGN_ONLYまたは
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTフィールドとして含めて、 フィールドをデー
タベースに明示的に保存することもできます。これを実行するには、データベースにレコードを
書き込むたびに、branch-key-id を手動で keyField に含める必要があります。

マルチテナンシーデータベースの検索可能な暗号化 172

AWS データベース暗号化 SDK デベロッパーガイド

マルチテナンシーデータベース内のビーコンのクエリ

ビーコンをクエリするには、クエリに keyField を含めて、ビーコンの再計算に必要となる適切な
ビーコンキーマテリアルを識別する必要があります。レコードのビーコンを生成するために使用さ
れるビーコンキーに関連付けられた branch-key-id を指定する必要があります。ブランチキー ID
サプライヤーのテナンシーの branch-key-id を識別するフレンドリ名を指定することはできませ
ん。次の方法でクエリに keyField を含めることができます。

複合ビーコン

keyField をレコードに明示的に格納するかどうかにかかわらず、複合ビーコンに署名付きの部
分として keyField を直接含めることができます。keyField の署名付きの部分は必須である必
要があります。

例えば、encryptedField および signedField の 2 つのフィールドから複合ビーコン
compoundBeacon を構築する場合は、署名付きの部分として keyField も含める必要がありま
す。これにより、compoundBeacon に対して次のクエリを実行できるようになります。

compoundBeacon = E_encryptedFieldValue.S_signedFieldValue.K_branch-key-id

署名付きビーコン

AWS Database Encryption SDK は、標準ビーコンと複合ビーコンを使用して、検索可能な暗号化
ソリューションを提供します。これらのビーコンには、少なくとも 1 つの暗号化されたフィール
ドが含まれている必要があります。ただし、 AWS Database Encryption SDK は、プレーンテキ
ストSIGN_ONLYとSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTフィールドから完全に設定
できる署名付きビーコンもサポートしています。

署名付きビーコンは単一の部分から構築できます。keyField をレコードに明示的に格納するか
どうかにかかわらず、keyField から署名付きビーコンを構築し、それを使用して、keyField
署名付きビーコンに対するクエリと、他のビーコンの 1 つに対するクエリを組み合わせる複合ク
エリを作成できます。例えば、次のクエリを実行できます。

keyField = K_branch-key-id AND compoundBeacon =
 E_encryptedFieldValue.S_signedFieldValue

署名付きビーコンの設定については、「署名付きビーコンの作成」を参照してください

マルチテナンシーデータベース内のビーコンのクエリ 173

AWS データベース暗号化 SDK デベロッパーガイド

keyField に対する直接的なクエリの実行

暗号化アクションで keyField を指定し、そのフィールドをレコードに明示的に格納した場合
は、ビーコンに対するクエリと、keyField に対するクエリを組み合わせた複合クエリを作成で
きます。標準ビーコンをクエリする場合は、keyField に対して直接クエリを実行することを選
択できます。例えば、次のクエリを実行できます。

keyField = branch-key-id AND standardBeacon = S_standardBeaconValue

マルチテナンシーデータベース内のビーコンのクエリ 174

AWS データベース暗号化 SDK デベロッパーガイド

AWS Database Encryption SDK for DynamoDB

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

AWS Database Encryption SDK for DynamoDB は、Amazon DynamoDB 設計にクライアント側の
暗号化を含めることができるソフトウェアライブラリです。 AWS Database Encryption SDK for
DynamoDB は属性レベルの暗号化を提供し、暗号化する項目と、データの信頼性を保証する署名に
含める項目を指定できます。伝送中および保管時の機密データを暗号化することで、 AWSなどの
サードパーティーがお客様のプレーンテキストデータを使用することはできません。

Note

AWS Database Encryption SDK は PartiQL をサポートしていません。

DynamoDB では、テーブルは項目のコレクションです。各項目は、属性の集合です。各属性には名
前と値があります。 AWS Database Encryption SDK for DynamoDB は、属性の値を暗号化します。
次に、属性に対する署名を計算します。暗号化アクションでどの属性値を暗号化し、署名にどの属性
値を含めるかを指定します。

この章のトピックでは、暗号化されるフィールド、クライアントのインストールと設定に関するガイ
ダンス、使用開始に役立つ Java の例など、 AWS Database Encryption SDK for DynamoDB の概要
について説明します。

トピック

• クライアント側とサーバー側の暗号化

• どのフィールドが暗号化および署名されますか?

• DynamoDB での検索可能な暗号化

• データモデルの更新

• AWS Database Encryption SDK for DynamoDB で利用可能なプログラミング言語

• レガシー DynamoDB 暗号化クライアント

175

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.TablesItemsAttributes

AWS データベース暗号化 SDK デベロッパーガイド

クライアント側とサーバー側の暗号化

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

AWS Database Encryption SDK for DynamoDB は、クライアント側の暗号化をサポートして
います。この暗号化では、テーブルデータをデータベースに送信する前に暗号化します。ただ
し、DynamoDB では、ディスクに保管されているテーブルを透過的に暗号化するサーバー側の保管
時の暗号化機能を提供しており、ユーザーがテーブルにアクセスすると復号します。

選択するツールは、データの重要度と、アプリケーションのセキュリティ要件に応じて異なります。
AWS Database Encryption SDK for DynamoDB と保管時の暗号化の両方を使用できます。暗号化さ
れて署名された項目を DynamoDB に送信しても、保護されている項目は DynamoDB によって認識
されません。バイナリ属性値を含む従来のテーブル項目を検出します。

サーバー側の保管時の暗号化

DynamoDB では、保管時の暗号化がサポートされています。これは、テーブルがディスクに保持さ
れるときに DynamoDB がテーブルを透過的に暗号化し、ユーザーがテーブルデータにアクセスする
ときにテーブルを復号するサーバー側の暗号化機能です。

AWS SDK を使用して DynamoDB とやり取りする場合、デフォルトでは、データは HTTPS 接続を
介して転送中に暗号化され、DynamoDB エンドポイントで復号されてから、DynamoDB に保存され
る前に再暗号化されます。

• デフォルトでの暗号化。DynamoDB は、書き込まれる際に、すべてのテーブルを透過的に暗号化
および復号します。保管時の暗号化を有効または無効にするオプションはありません。

• DynamoDB は暗号化キーを作成および管理します。各テーブルの一意のキーは、AWS KMS key
で保護されるため、AWS Key Management Service (AWS KMS) が未暗号化のままになることはあ
りません。デフォルトでは、DynamoDB は DynamoDB サービス アカウントの AWS 所有のキー
を使用しますが、一部またはすべてのテーブルを保護するために、自分のアカウントの AWS マ
ネージドキー またはカスタマーマネージドキーを選択することもできます。

• テーブルデータはすべて、ディスク上で暗号化されます。暗号化されたテーブルがディスクに保存
されると、DynamoDB は、プライマリキーおよびローカルとグローバルのセカンダリインデック
スなど、すべてのテーブルデータを暗号化します。テーブルにソートキーが存在する場合、範囲の
境界線を示すソートキーの一部が、プレーンテキスト形式でテーブルメタデータに保存されます。

クライアント側とサーバー側の暗号化 176

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.SecondaryIndexes
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.SecondaryIndexes

AWS データベース暗号化 SDK デベロッパーガイド

• テーブルに関連するオブジェクトも暗号化されます。保管時の暗号化は、永続的なメディアに書き
込まれるたびに、DynamoDBストリーム、グローバルテーブル、バックアップを保護します。

• アクセスすると、項目は復号されます。テーブルがアクセスされるとき、DynamoDB は、ター
ゲット項目を含むテーブル部分を復号し、プレーンテキスト形式で項目を返します。

AWS Database Encryption SDK for DynamoDB

クライアント側の暗号化では、ソースから DynamoDB のストレージまで、伝送時および保管時の
データをエンドツーエンド保護します。プレーンテキストデータは、以下を含むサードパーティー
に公開されることはありません AWS。 AWS Database Encryption SDK for DynamoDB を新しい
DynamoDB テーブルで使用するか、既存の Amazon DynamoDB テーブルを最新バージョンの AWS
Database Encryption SDK for DynamoDB に移行できます。

• 転送時と保管時のデータは保護されます。以下を含め、いかなる第三者にも公開されることはあり
ません AWS。

• テーブル項目に署名できます。プライマリキー属性など、テーブル項目のすべてまたは一部の署名
を計算するように、 AWS Database Encryption SDK for DynamoDB に指示できます。この署名に
より、属性の追加や削除、属性値のスワップなど、項目全体への不正な変更を検出することができ
ます。

• キーリングを選択することで、データを保護する方法を決定します。キーリングは、データキー、
そして最終的にはデータを保護するラッピングキーを決定します。タスクに実用的で、最も安全な
ラッピングキーを使用してください。

• AWS Database Encryption SDK for DynamoDB はテーブル全体を暗号化しません。項目内でどの
属性を暗号化するかを選択します。 AWS Database Encryption SDK for DynamoDB は項目全体を
暗号化しません。属性名、プライマリキー (パーティションキーおよびソートキー) 属性の名前ま
たは値は暗号化されません。

AWS Encryption SDK

DynamoDB に保存するデータを暗号化する場合は、 AWS Database Encryption SDK for DynamoDB
をお勧めします。

AWS Encryption SDK は、クライアント側暗号化ライブラリで、汎用データの暗号化および復号に役
立ちます。任意のタイプのデータを保護することはできますが、データベースレコードなどの構造化
データは操作できません。 AWS Database Encryption SDK for DynamoDB とは異なり、 は項目レベ
ルの整合性チェックを行う AWS Encryption SDK ことはできません。また、属性を認識したり、プ
ライマリキーの暗号化を防止したりするロジックもありません。

クライアント側とサーバー側の暗号化 177

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BackupRestore.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/

AWS データベース暗号化 SDK デベロッパーガイド

を使用してテーブルの要素を AWS Encryption SDK 暗号化する場合は、 AWS Database Encryption
SDK for DynamoDB と互換性がないことに注意してください。1 つのライブラリで暗号化し、もう 1
つのライブラリを使用して復号することはできません。

どのフィールドが暗号化および署名されますか?

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

AWS Database Encryption SDK for DynamoDB は、特に Amazon DynamoDB アプリケーション用に
設計されたクライアント側の暗号化ライブラリです。Amazon DynamoDB は、項目のコレクション
であるテーブルにデータを格納します。各項目は、属性の集合です。各属性には名前と値がありま
す。 AWS Database Encryption SDK for DynamoDB は、属性の値を暗号化します。次に、属性に対
する署名を計算します。暗号化される属性値、および署名に含めるか指定できます。

暗号化は、属性値の機密保持を保護します。署名は、署名されたすべての属性とその相互の関係を保
全し、認証を提供します。これにより、属性の追加や削除、暗号化された値の別の値への置換など、
項目全体への不正な変更を検出することができます。

暗号化された項目では、テーブル名、すべての属性名、暗号化していない属性値、プライマリキー
(パーティションキーとソートキー) 属性の名前と値、属性タイプなど、一部のデータはプレーンテキ
ストで残ります。これらのフィールドに機密データを保存しないでください。

AWS Database Encryption SDK for DynamoDB の仕組みの詳細については、「」を参照してくださ
いAWS Database Encryption SDK の仕組み。

Note

AWS Database Encryption SDK for DynamoDB トピックの属性アクションに関するすべての
言及は、暗号化アクションに関するものです。

トピック

• 暗号化の属性値

• 項目の署名

どのフィールドが暗号化および署名されますか? 178

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.TablesItemsAttributes

AWS データベース暗号化 SDK デベロッパーガイド

暗号化の属性値

AWS Database Encryption SDK for DynamoDB は、指定した属性の値 (属性名またはタイプではあり
ません) を暗号化します。どの属性値が暗号化されているかを確認するには、属性アクションを使用
します。

たとえば、この項目には example および test 属性が含まれます。

'example': 'data',
'test': 'test-value',
...

example 属性を暗号化し、test 属性を暗号化しない場合、結果は次のようになります。暗号化さ
れた example 属性値は、文字列ではなくバイナリデータです。

'example': Binary(b"'b\x933\x9a+s\xf1\xd6a\xc5\xd5\x1aZ\xed\xd6\xce\xe9X\xf0T\xcb\x9fY
\x9f\xf3\xc9C\x83\r\xbb\\"),
'test': 'test-value'
...

各項目のプライマリキー属性 (パーティションキーおよびソートキー) を使用して DynamoDB はテー
ブル内の項目を検索するため、それらの属性はプレーンテキストのままである必要があります。署名
は必要ですが、暗号化の必要はありません。

AWS Database Encryption SDK for DynamoDB は、プライマリキー属性を識別し、その値が署名さ
れているが暗号化されていないことを確認します。また、プライマリキーを特定してそれを暗号化し
ようとすると、クライアントは例外をスローします。

クライアントは、項目に追加する新しい属性 (aws_dbe_head) にマテリアルの説明を格納します。
マテリアルの説明は、項目がどのように暗号化および署名されたかを説明するものです。クライアン
トは、この情報を使用して項目の検証と復号を行います。マテリアルの説明を格納するフィールドは
暗号化されません。

項目の署名

指定された属性値を暗号化した後、 AWS Database Encryption SDK for
DynamoDB は、マテリアルの説明、暗号化コンテキスト、および属性アクショ
ンSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTで ENCRYPT_AND_SIGN、、SIGN_ONLYま
たは とマークされた各フィールドの正規化を介して、ハッシュベースのメッセージ認証コード
(HMACs) とデジタル署名を計算します。ECDSA 署名はデフォルトで有効になっていますが、必須

暗号化の属性値 179

AWS データベース暗号化 SDK デベロッパーガイド

ではありません。クライアントは、項目に追加する新しい属性 (aws_dbe_foot) に HMAC と署名を
格納します。

DynamoDB での検索可能な暗号化
検索可能な暗号化のために Amazon DynamoDB テーブルを設定するには、AWS KMS 階層キーリン
グを使用して、項目を保護するために使用されるデータキーを生成、暗号化、および復号する必要が
あります。また、テーブル暗号化設定に SearchConfig を含める必要があります。

Note

DynamoDB 用の Java クライアント側の暗号化ライブラリを使用している場合は、低レベ
ルの AWS Database Encryption SDK for DynamoDB API を使用して、テーブル項目を暗号
化、署名、検証、復号する必要があります。DynamoDB Enhanced Client と下位レベルの
DynamoDBItemEncryptor は、検索可能な暗号化をサポートしていません。

トピック

• ビーコンを使用したセカンダリインデックスの設定

• ビーコン出力のテスト

ビーコンを使用したセカンダリインデックスの設定

ビーコンを設定した後、暗号化された属性を検索する前に、各ビーコンを反映するセカンダリイン
デックスを設定する必要があります。

標準ビーコンまたは複合ビーコンを設定すると、 AWS Database Encryption SDK はビーコン名に
aws_dbe_b_ プレフィックスを追加して、サーバーがビーコンを簡単に識別できるようにします。
例えば、複合ビーコンに compoundBeacon という名前を付けた場合、実際の完全なビーコン名は
aws_dbe_b_compoundBeacon です。標準ビーコンまたは複合ビーコンを含むセカンダリインデッ
クスを設定する場合は、ビーコン名を識別するときに aws_dbe_b_ プレフィックスを含める必要が
あります。

パーティションキーとソートキー

プライマリキーの値を暗号化することはできません。パーティションキーとソートキーは署名さ
れている必要があります。プライマリキーの値を標準ビーコンまたは複合ビーコンにすることは
できません。

DynamoDB での検索可能な暗号化 180

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html

AWS データベース暗号化 SDK デベロッパーガイド

属性を指定しない限りSIGN_ONLY、プライマリキーの値は である必要がありま
す。SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTパーティション属性とソート属性も であ
る必要がありますSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

プライマリキーの値を署名付きビーコンにすることができます。プライマリキーの値ごとに個別
の署名付きビーコンを設定した場合は、プライマリキーの値を識別する属性名を署名付きビーコ
ン名として指定する必要があります。ただし、 AWS Database Encryption SDK は署名付きビー
コンにaws_dbe_b_プレフィックスを追加しません。プライマリキーの値に個別の署名付きビー
コンを設定した場合でも、必要なのは、セカンダリインデックスを設定する際に、プライマリ
キーの値の属性名を指定することだけです。

ローカルセカンダリインデックス

ローカルセカンダリインデックスのソートキーはビーコンにすることができます。

ソートキーにビーコンを指定する場合、タイプは String である必要があります。ソートキーに標
準ビーコンまたは複合ビーコンを指定する場合は、ビーコン名を指定する際に aws_dbe_b_ プ
レフィックスを含める必要があります。署名付きビーコンを指定する場合は、プレフィックスな
しでビーコン名を指定します。

グローバルセカンダリインデックス

グローバルセカンダリインデックスのパーティションキーとソートキーは両方ともビーコンにす
ることができます。

パーティションキーまたはソートキーにビーコンを指定する場合、タイプは String である必要が
あります。ソートキーに標準ビーコンまたは複合ビーコンを指定する場合は、ビーコン名を指定
する際に aws_dbe_b_ プレフィックスを含める必要があります。署名付きビーコンを指定する
場合は、プレフィックスなしでビーコン名を指定します。

属性の射影

射影とは、テーブルからセカンダリインデックスにコピーされる属性のセットです。テーブルの
パーティションキーとソートキーは常にインデックスに射影されます。アプリケーションのクエ
リ要件をサポートするために、他の属性を射影できます。DynamoDB は、属性プロジェクション
のために、KEYS_ONLY、INCLUDE、ALL の 3 つの異なるオプションを提供します。

INCLUDE 属性プロジェクションを使用してビーコンを検索する場合は、ビーコンが構築される
すべての属性の名前と、aws_dbe_b_ プレフィックスを持つビーコン名を指定する必要がありま
す。例えば、field1、field2、および field3 から複合ビーコン compoundBeacon を設定し
た場合、プロジェクション内で、aws_dbe_b_compoundBeacon、field1、field2、field3
を指定する必要があります。

ビーコンを使用したセカンダリインデックスの設定 181

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html#GSI.Projections

AWS データベース暗号化 SDK デベロッパーガイド

グローバルセカンダリインデックスはプロジェクションで明示的に指定された属性のみを使用で
きますが、ローカルセカンダリインデックスは任意の属性を使用できます。

ビーコン出力のテスト

複合ビーコンを設定した場合、または仮想フィールドを使用してビーコンを構築した場合
は、DynamoDB テーブルに入力する前に、これらのビーコンが期待される出力を生成することを確
認することをお勧めします。

AWS Database Encryption SDK は、仮想フィールドと複合ビーコン出力のトラブルシューティング
に役立つ DynamoDbEncryptionTransformsサービスを提供します。

仮想フィールドのテスト

次のスニペットでは、テスト項目を作成し、DynamoDB テーブル暗号化設定を使用し
てDynamoDbEncryptionTransformsサービスを定義し、 ResolveAttributes を使用して仮想
フィールドが期待される出力を生成することを確認する方法を示します。

Java

完全なコードサンプルを参照: VirtualBeaconSearchableEncryptionExample.java

// Create test items
final PutItemRequest itemWithHasTestResultPutRequest = PutItemRequest.builder()
 .tableName(ddbTableName)
 .item(itemWithHasTestResult)
 .build();

final PutItemResponse itemWithHasTestResultPutResponse =
 ddb.putItem(itemWithHasTestResultPutRequest);

final PutItemRequest itemWithNoHasTestResultPutRequest = PutItemRequest.builder()
 .tableName(ddbTableName)
 .item(itemWithNoHasTestResult)
 .build();

final PutItemResponse itemWithNoHasTestResultPutResponse =
 ddb.putItem(itemWithNoHasTestResultPutRequest);

// Define the DynamoDbEncryptionTransforms service
final DynamoDbEncryptionTransforms trans = DynamoDbEncryptionTransforms.builder()
 .DynamoDbTablesEncryptionConfig(encryptionConfig).build();

ビーコン出力のテスト 182

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/VirtualBeaconSearchableEncryptionExample.java

AWS データベース暗号化 SDK デベロッパーガイド

// Verify configuration
final ResolveAttributesInput resolveInput = ResolveAttributesInput.builder()
 .TableName(ddbTableName)
 .Item(itemWithHasTestResult)
 .Version(1)
 .build();
final ResolveAttributesOutput resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that VirtualFields has the expected value
Map<String, String> vf = new HashMap<>();
vf.put("stateAndHasTestResult", "CAt");
assert resolveOutput.VirtualFields().equals(vf);

C# / .NET

完全なコードサンプル「VirtualBeaconSearchableEncryptionExample.cs」を参照してください。

 // Create item with hasTestResult=true
var itemWithHasTestResult = new Dictionary<String, AttributeValue>
{
 ["customer_id"] = new AttributeValue("ABC-123"),
 ["create_time"] = new AttributeValue { N = "1681495205" },
 ["state"] = new AttributeValue("CA"),
 ["hasTestResult"] = new AttributeValue { BOOL = true }
};

// Create item with hasTestResult=false
var itemWithNoHasTestResult = new Dictionary<String, AttributeValue>
{
 ["customer_id"] = new AttributeValue("DEF-456"),
 ["create_time"] = new AttributeValue { N = "1681495205" },
 ["state"] = new AttributeValue("CA"),
 ["hasTestResult"] = new AttributeValue { BOOL = false }
};

// Define the DynamoDbEncryptionTransforms service
var trans = new DynamoDbEncryptionTransforms(encryptionConfig);

// Verify configuration
var resolveInput = new ResolveAttributesInput
{
 TableName = ddbTableName,
 Item = itemWithHasTestResult,

ビーコン出力のテスト 183

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/VirtualBeaconSearchableEncryptionExample.cs

AWS データベース暗号化 SDK デベロッパーガイド

 Version = 1
};
var resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that VirtualFields has the expected value
Debug.Assert(resolveOutput.VirtualFields.Count == 1);
Debug.Assert(resolveOutput.VirtualFields["stateAndHasTestResult"] == "CAt");

Rust

完全なコードサンプル「virtual_beacon_searchable_encryption.rs」を参照してください。

// Create item with hasTestResult=true
let item_with_has_test_result = HashMap::from([
 (
 "customer_id".to_string(),
 AttributeValue::S("ABC-123".to_string()),
),
 (
 "create_time".to_string(),
 AttributeValue::N("1681495205".to_string()),
),
 ("state".to_string(), AttributeValue::S("CA".to_string())),
 ("hasTestResult".to_string(), AttributeValue::Bool(true)),
]);

// Create item with hasTestResult=false
let item_with_no_has_test_result = HashMap::from([
 (
 "customer_id".to_string(),
 AttributeValue::S("DEF-456".to_string()),
),
 (
 "create_time".to_string(),
 AttributeValue::N("1681495205".to_string()),
),
 ("state".to_string(), AttributeValue::S("CA".to_string())),
 ("hasTestResult".to_string(), AttributeValue::Bool(false)),
]);

// Define the transform service
let trans = transform_client::Client::from_conf(encryption_config.clone())?;

// Verify the configuration

ビーコン出力のテスト 184

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/virtual_beacon_searchable_encryption.rs

AWS データベース暗号化 SDK デベロッパーガイド

let resolve_output = trans
 .resolve_attributes()
 .table_name(ddb_table_name)
 .item(item_with_has_test_result.clone())
 .version(1)
 .send()
 .await?;

// Verify that VirtualFields has the expected value
let virtual_fields = resolve_output.virtual_fields.unwrap();
assert_eq!(virtual_fields.len(), 1);
assert_eq!(virtual_fields["stateAndHasTestResult"], "CAt");

複合ビーコンのテスト

次のスニペットでは、テスト項目を作成し、DynamoDB テーブル暗号化設定を使用し
てDynamoDbEncryptionTransformsサービスを定義し、 ResolveAttributes を使用して複合
ビーコンが期待される出力を生成することを確認する方法を示します。

Java

完全なコードサンプル「CompoundBeaconSearchableEncryptionExample.java」を参照してくだ
さい。

// Create an item with both attributes used in the compound beacon.
final HashMap<String, AttributeValue> item = new HashMap<>();
item.put("work_id", AttributeValue.builder().s("9ce39272-8068-4efd-a211-
cd162ad65d4c").build());
item.put("inspection_date", AttributeValue.builder().s("2023-06-13").build());
item.put("inspector_id_last4", AttributeValue.builder().s("5678").build());
item.put("unit", AttributeValue.builder().s("011899988199").build());

// Define the DynamoDbEncryptionTransforms service
final DynamoDbEncryptionTransforms trans = DynamoDbEncryptionTransforms.builder()
 .DynamoDbTablesEncryptionConfig(encryptionConfig).build();

// Verify configuration
final ResolveAttributesInput resolveInput = ResolveAttributesInput.builder()
 .TableName(ddbTableName)
 .Item(item)
 .Version(1)
 .build();

ビーコン出力のテスト 185

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/CompoundBeaconSearchableEncryptionExample.java

AWS データベース暗号化 SDK デベロッパーガイド

final ResolveAttributesOutput resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that CompoundBeacons has the expected value
Map<String, String> cbs = new HashMap<>();
cbs.put("last4UnitCompound", "L-5678.U-011899988199");
assert resolveOutput.CompoundBeacons().equals(cbs);
// Note : the compound beacon actually stored in the table is not
 "L-5678.U-011899988199"
// but rather something like "L-abc.U-123", as both parts are EncryptedParts
// and therefore the text is replaced by the associated beacon

C# / .NET

完全なコードサンプル「CompoundBeaconSearchableEncryptionExample.cs」を参照してくださ
い。

// Create an item with both attributes used in the compound beacon
var item = new Dictionary<String, AttributeValue>
{
 ["work_id"] = new AttributeValue("9ce39272-8068-4efd-a211-cd162ad65d4c"),
 ["inspection_date"] = new AttributeValue("2023-06-13"),
 ["inspector_id_last4"] = new AttributeValue("5678"),
 ["unit"] = new AttributeValue("011899988199")
};

// Define the DynamoDbEncryptionTransforms service
var trans = new DynamoDbEncryptionTransforms(encryptionConfig);

// Verify configuration
var resolveInput = new ResolveAttributesInput
{
 TableName = ddbTableName,
 Item = item,
 Version = 1
};
var resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that CompoundBeacons has the expected value
Debug.Assert(resolveOutput.CompoundBeacons.Count == 1);
Debug.Assert(resolveOutput.CompoundBeacons["last4UnitCompound"] ==
 "L-5678.U-011899988199");

ビーコン出力のテスト 186

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/CompoundBeaconSearchableEncryptionExample.cs

AWS データベース暗号化 SDK デベロッパーガイド

// Note : the compound beacon actually stored in the table is not
 "L-5678.U-011899988199"
// but rather something like "L-abc.U-123", as both parts are EncryptedParts
// and therefore the text is replaced by the associated beacon

Rust

完全なコードサンプルを参照: compound_beacon_searchable_encryption.rs

// Create an item with both attributes used in the compound beacon
let item = HashMap::from([
 (
 "work_id".to_string(),
 AttributeValue::S("9ce39272-8068-4efd-a211-cd162ad65d4c".to_string()),
),
 (
 "inspection_date".to_string(),
 AttributeValue::S("2023-06-13".to_string()),
),
 (
 "inspector_id_last4".to_string(),
 AttributeValue::S("5678".to_string()),
),
 (
 "unit".to_string(),
 AttributeValue::S("011899988199".to_string()),
),
]);

// Define the transforms service
let trans = transform_client::Client::from_conf(encryption_config.clone())?;

// Verify configuration
let resolve_output = trans
 .resolve_attributes()
 .table_name(ddb_table_name)
 .item(item.clone())
 .version(1)
 .send()
 .await?;

// Verify that CompoundBeacons has the expected value
Dlet compound_beacons = resolve_output.compound_beacons.unwrap();
assert_eq!(compound_beacons.len(), 1);

ビーコン出力のテスト 187

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/compound_beacon_searchable_encryption.rs

AWS データベース暗号化 SDK デベロッパーガイド

assert_eq!(
 compound_beacons["last4UnitCompound"],
 "L-5678.U-011899988199"
);
// but rather something like "L-abc.U-123", as both parts are EncryptedParts
// and therefore the text is replaced by the associated beacon

データモデルの更新

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

AWS Database Encryption SDK for DynamoDB を設定するときは、属性アクションを指定します。
暗号化時に、 AWS Database Encryption SDK は 属性アクションを使用して、暗号化および署名する
属性、署名する属性 (暗号化ではない）、および無視する属性を識別します。また、許可された署名
なし属性を定義して、どの属性が署名から除外されるかをクライアントに明示的に伝えます。復号時
に、 AWS Database Encryption SDK は、定義した許可された署名なし属性を使用して、署名に含ま
れていない属性を識別します。属性アクションは暗号化された項目に保存されず、 AWS Database
Encryption SDK は属性アクションを自動的に更新しません。

属性アクションを慎重に選択します。不確かな場合は、暗号化と署名を使用し
ます。 AWS Database Encryption SDK を使用して項目を保護すると、既存の
ENCRYPT_AND_SIGN、SIGN_ONLY、または SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属
性を に変更することはできませんDO_NOTHING。ただし、次の変更は安全に行うことができます。

• 新しい ENCRYPT_AND_SIGN、SIGN_ONLY、および
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を追加する

• 既存の属性を削除する

• 既存のENCRYPT_AND_SIGN属性を SIGN_ONLYまたは に変更する
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

• 既存の SIGN_ONLYまたは SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を に変更する
ENCRYPT_AND_SIGN

• 新しい DO_NOTHING 属性を追加する

• 既存の SIGN_ONLY 属性を SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT に変更する

データモデルの更新 188

AWS データベース暗号化 SDK デベロッパーガイド

• 既存の SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を SIGN_ONLY に変更する

検索可能な暗号化に関する考慮事項

データモデルを更新する前に、属性から構築したビーコンに対して、その更新がどのような影響を及
ぼす可能性があるかを慎重に検討してください。ビーコンを持つ新しいレコードを書き込んだ後に、
そのビーコンの設定を更新することはできません。ビーコンを構築するために使用した属性に関連付
けられた属性アクションを更新することはできません。既存の属性とそれに関連付けられたビーコン
を削除すると、そのビーコンを使用して既存のレコードをクエリできなくなります。レコードに追加
する新しいフィールドについての新しいビーコンを作成することはできますが、既存のビーコンを更
新して新しいフィールドを含めることはできません。

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性に関する考慮事項

デフォルトでは、暗号化コンテキストに含まれる属性はパーティションキーとソートキーのみで
す。AWS KMS 階層キーリングのブランチキー ID サプライヤーが暗号化コンテキストからの復
号化に必要なブランチキーを識別SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTできるよう
に、追加のフィールドを として定義することを検討してください。詳細については、「ブランチ
キー ID サプライヤー」を参照してください。SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
属性を指定する場合、パーティション属性とソート属性も である必要がありま
すSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

Note

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 暗号化アクションを使用するには、
AWS Database Encryption SDK のバージョン 3.3 以降を使用する必要があります。デー
タモデルを更新して を含める前に、すべてのリーダーに新しいバージョンをデプロイしま
すSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

新しい ENCRYPT_AND_SIGN、SIGN_ONLY、および
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を追加する

新しい ENCRYPT_AND_SIGN、SIGN_ONLY、または
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を追加するには、属性アクションで新しい
属性を定義します。

新しい ENCRYPT_AND_SIGN、SIGN_ONLY、および SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
属性を追加する

189

AWS データベース暗号化 SDK デベロッパーガイド

既存のDO_NOTHING属性を削除して、、ENCRYPT_AND_SIGNSIGN_ONLY、または
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性として再度追加することはできません。

アノテーション付きデータクラスの使用

TableSchema を使用して属性アクションを定義した場合は、新しい属性をアノテーション付きデー
タクラスに追加します。新しい属性の属性アクションのアノテーションを指定しない場合、クライ
アントは、デフォルトで新しい属性を暗号化して署名します (属性がプライマリキーの一部である
場合を除きます)。新しい属性のみに署名する場合は、 @DynamoDBEncryptionSignOnlyまたは
@DynamoDBEncryptionSignAndIncludeInEncryptionContext注釈を使用して新しい属性を
追加する必要があります。

オブジェクトモデルの使用

属性アクションを手動で定義した場合は、オブジェクトモデルの属性アクションに新しい
属性を追加し、属性アクションSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTとして
ENCRYPT_AND_SIGN、SIGN_ONLY、または を指定します。

既存の属性を削除する

属性が必要なくなったと判断した場合は、その属性に対するデータの書き込みを停止することも、属
性アクションから正式に削除することもできます。属性に対する新しいデータの書き込みを停止して
も、その属性は引き続き属性アクションに表示されます。これは、将来再び属性の使用を開始する必
要がある場合に役立ちます。属性アクションから属性を正式に削除しても、データセットからは削除
されません。データセットには、その属性を含む項目が引き続き含まれます。

既存の ENCRYPT_AND_SIGN、、SIGN_ONLYSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT、
または DO_NOTHING 属性を正式に削除するには、属性アクションを更新します。

DO_NOTHING 属性を削除する場合でも、許可された署名なし属性からその属性を削除しないでくだ
さい。その属性に対して新しい値を書き込まなくなった場合でも、クライアントは、その属性を含む
既存の項目を読み取るために、その属性が署名されていないことを認識する必要があります。

アノテーション付きデータクラスの使用

TableSchema を使用して属性アクションを定義した場合は、アノテーション付きデータクラスから
その属性を削除します。

オブジェクトモデルの使用

属性アクションを手動で定義した場合は、オブジェクトモデルの属性アクションから属性を削除しま
す。

既存の属性を削除する 190

AWS データベース暗号化 SDK デベロッパーガイド

既存のENCRYPT_AND_SIGN属性を SIGN_ONLYまたは に変更する
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

既存のENCRYPT_AND_SIGN属性を SIGN_ONLYまたは に変更するに
はSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT、属性アクションを更新する必要があります。
更新をデプロイした後、クライアントは属性に書き込まれた既存の値を検証して復号できるようにな
りますが、実行するアクションは属性に対して書き込まれた新しい値に署名することだけです。

Note

既存のENCRYPT_AND_SIGN属性を SIGN_ONLYまたは に変更する前に、セキュリティ要件
を慎重に検討してくださいSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。機密データ
を保存できる属性はすべて暗号化する必要があります。

アノテーション付きデータクラスの使用

で属性アクションを定義した場合はTableSchema、既存の属性を更新し
て、注釈付きデータクラスに @DynamoDBEncryptionSignOnlyまたは
@DynamoDBEncryptionSignAndIncludeInEncryptionContext注釈を含めます。

オブジェクトモデルの使用

属性アクションを手動で定義した場合は、既存の属性に関連付けられた属性アクションを、オ
ブジェクトモデルSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTで から SIGN_ONLYまたは
ENCRYPT_AND_SIGN に更新します。

既存の SIGN_ONLYまたは
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を に変更する
ENCRYPT_AND_SIGN

既存の SIGN_ONLYまたは SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を に変更するに
はENCRYPT_AND_SIGN、属性アクションを更新する必要があります。更新をデプロイした後、クラ
イアントは属性に書き込まれた既存の値を検証できるようになり、属性に対して書き込まれた新しい
値を暗号化して署名します。

アノテーション付きデータクラスの使用

既存のENCRYPT_AND_SIGN属性を SIGN_ONLYまたは に変更する
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

191

AWS データベース暗号化 SDK デベロッパーガイド

で属性アクションを定義した場合はTableSchema、既存の属性から
@DynamoDBEncryptionSignOnlyまたは
@DynamoDBEncryptionSignAndIncludeInEncryptionContext注釈を削除します。

オブジェクトモデルの使用

属性アクションを手動で定義した場合は、オブジェクトモデルの属
性に関連付けられた属性アクションを から に、SIGN_ONLYまたは
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTENCRYPT_AND_SIGNに更新します。

新しい DO_NOTHING 属性を追加する

新しい DO_NOTHING 属性を追加する際のエラーのリスクを軽減するには、DO_NOTHING 属性に名前
を付ける際に個別のプレフィックスを指定し、そのプレフィックスを使用して許可された署名なし属
性を定義することをお勧めします。

注釈付きデータクラスから既存の ENCRYPT_AND_SIGN、SIGN_ONLY、または
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を削除してから、属性をDO_NOTHING属性
として再度追加することはできません。まったく新しい DO_NOTHING 属性のみを追加できます。

新しい DO_NOTHING 属性を追加するために実行するステップは、許可された署名なし属性をリスト
内で明示的に定義したか、またはプレフィックスを使用して定義したかによって異なります。

許可された署名なし属性プレフィックスの使用

TableSchema を使用して属性アクションを定義した場合は、@DynamoDBEncryptionDoNothing
アノテーションを使用して新しい DO_NOTHING 属性をアノテーション付きデータクラスに追加しま
す。属性アクションを手動で定義した場合は、新しい属性を含むように属性アクションを更新しま
す。必ず DO_NOTHING 属性アクションを使用して新しい属性を明示的に設定してください。新しい
属性の名前には、同じ個別のプレフィックスを含める必要があります。

許可された署名なし属性リストの使用

1. 許可された署名なし属性リストに新しい DO_NOTHING 属性を追加し、更新されたリストをデプ
ロイします。

2. ステップ 1 の変更をデプロイします。

このデータを読み取る必要があるすべてのホストに変更が反映されるまで、ステップ 3 に進む
ことはできません。

3. 新しい DO_NOTHING 属性を属性アクションに追加します。

新しい DO_NOTHING 属性を追加する 192

AWS データベース暗号化 SDK デベロッパーガイド

a. TableSchema を使用して属性アクションを定義した場合
は、@DynamoDBEncryptionDoNothing アノテーションを使用して新しい DO_NOTHING
属性をアノテーション付きデータクラスに追加します。

b. 属性アクションを手動で定義した場合は、新しい属性を含むように属性アクションを更新し
ます。必ず DO_NOTHING 属性アクションを使用して新しい属性を明示的に設定してくださ
い。

4. ステップ 3 の変更をデプロイします。

既存の SIGN_ONLY 属性を
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT に変更する

既存の SIGN_ONLY 属性を SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT に変更するには、属
性アクションを更新する必要があります。更新をデプロイした後、クライアントは 属性に書き込ま
れた既存の値を検証でき、 属性に書き込まれた新しい値に署名し続けます。属性に書き込まれた新
しい値は、暗号化コンテキストに含まれます。

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を指定する場合、パーティション属性と
ソート属性も である必要がありますSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

アノテーション付きデータクラスの使用

で属性アクションを定義した場合はTableSchema、属性に関連付けられ
た属性アクションを から @DynamoDBEncryptionSignOnlyに更新しま
す@DynamoDBEncryptionSignAndIncludeInEncryptionContext。

オブジェクトモデルの使用

属性アクションを手動で定義した場合は、オブジェクトモデル内で属性に関連付けられた属性アク
ションを SIGN_ONLY から SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT に更新します。

既存の SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を
SIGN_ONLY に変更する

既存の SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を SIGN_ONLY に変更するには、属
性アクションを更新する必要があります。更新をデプロイした後、クライアントは 属性に書き込ま
れた既存の値を検証でき、 属性に書き込まれた新しい値に署名し続けます。属性に書き込まれた新
しい値は、暗号化コンテキストに含まれません。

既存の SIGN_ONLY 属性を SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT に変更する 193

AWS データベース暗号化 SDK デベロッパーガイド

既存のSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT属性を に変更する前にSIGN_ONLY、更新
がブランチキー ID サプライヤーの機能にどのように影響するかを慎重に検討してください。

アノテーション付きデータクラスの使用

で属性アクションを定義した場合はTableSchema、属性に関連付けられた属性アクション
を から @DynamoDBEncryptionSignAndIncludeInEncryptionContextに更新しま
す@DynamoDBEncryptionSignOnly。

オブジェクトモデルの使用

属性アクションを手動で定義した場合は、オブジェクトモデル内で属性に関連付けられた属性アク
ションを SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT から SIGN_ONLY に更新します。

AWS Database Encryption SDK for DynamoDB で利用可能なプロ
グラミング言語

AWS Database Encryption SDK for DynamoDB は、次のプログラミング言語で使用できます。言語
固有のライブラリはさまざまですが、結果として得られる実装は相互運用ができます。ある言語実装
で暗号化し、別の言語実装で復号できます。相互運用性は、言語の制約を受ける可能性があります。
その場合の制約については、言語実装に関するトピックで説明します。

トピック

• Java

• .NET

• Rust

Java

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

このトピックでは、DynamoDB 用の Java クライアント側の暗号化ライブラリのバージョン 3.x をイ
ンストールして使用する方法について説明します。 AWS Database Encryption SDK for DynamoDB

プログラミング言語 194

AWS データベース暗号化 SDK デベロッパーガイド

を使用したプログラミングの詳細については、GitHub の aws-database-encryption-sdk-dynamodb
リポジトリにある Java の例を参照してください。

Note

次のトピックでは、DynamoDB 用の Java クライアント側の暗号化ライブラリのバージョン
3.x に焦点を当てます。
クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。 AWS Database Encryption SDK は、引き続きレガシー DynamoDB Encryption Client
バージョンをサポートします。

トピック

• 前提条件

• インストール

• DynamoDB 用の Java クライアント側の暗号化ライブラリの使用

• Java の例

• AWS Database Encryption SDK for DynamoDB を使用するように既存の DynamoDB テーブルを設
定する

• DynamoDB 用の Java クライアント側の暗号化ライブラリのバージョン 3.x に移行する

前提条件

DynamoDB 用の Java クライアント側の暗号化ライブラリのバージョン 3.x をインストールする前
に、次の前提条件を満たしていることを確認してください。

Java 開発環境

Java 8 以降が必要になります。Oracle のウェブサイトで Java SE のダウンロードに移動
し、Java SE Development Kit (JDK) をダウンロードして、インストールします。

Oracle JDK を使用する場合は、Java Cryptography Extension (JCE) 無制限強度の管轄ポリシー
ファイルをダウンロードして、インストールする必要があります。

Java 195

https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html

AWS データベース暗号化 SDK デベロッパーガイド

AWS SDK for Java 2.x

AWS Database Encryption SDK for DynamoDB には、 の DynamoDB 拡張クライアントモジュー
ルが必要です AWS SDK for Java 2.x。SDK 全体またはこのモジュールだけをインストールでき
ます。

のバージョンの更新については AWS SDK for Java、「 のバージョン 1.x から 2.x への移行 AWS
SDK for Java」を参照してください。

AWS SDK for Java は Apache Maven から入手できます。依存関係は、全体 AWS SDK for
Java、またはdynamodb-enhancedモジュールに対してのみ宣言できます。

Apache Maven AWS SDK for Java を使用して をインストールする

• 依存関係として AWS SDK for Java全体をインポートするには、pom.xml ファイルでそれを宣
言します。

• AWS SDK for Javaで Amazon DynamoDB モジュールのみの依存関係を作成するには、特
定のモジュールを指定する手順に従います。groupId を software.amazon.awssdk
に、artifactID を dynamodb-enhanced に設定します。

Note

AWS KMS キーリングまたは AWS KMS 階層キーリングを使用する場合は、
AWS KMS モジュールの依存関係も作成する必要があります。groupId を
software.amazon.awssdk に、artifactID を kms に設定します。

インストール

DynamoDB 用の Java クライアント側の暗号化ライブラリのバージョン 3.x は、次の方法でインス
トールできます。

Apache Maven の使用

Amazon DynamoDB Encryption Client for Java は、以下の依存定義を使用して、Apache Maven
を介して利用できます。

<dependency>
 <groupId>software.amazon.cryptography</groupId>

Java 196

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies
https://maven.apache.org/

AWS データベース暗号化 SDK デベロッパーガイド

 <artifactId>aws-database-encryption-sdk-dynamodb</artifactId>
 <version>version-number</version>
</dependency>

Gradle Kotlin の使用

Gradle プロジェクトの依存関係セクションに次を追加することで、Gradle を使用して Amazon
DynamoDB Encryption Client for Java に対する依存関係を宣言できます。

implementation("software.amazon.cryptography:aws-database-encryption-sdk-
dynamodb:version-number")

手動

DynamoDB 用の Java クライアント側の暗号化ライブラリをインストールするには、aws-
database-encryption-sdk-dynamodb GitHub リポジトリのクローンを作成するか、ダウンロード
します。

SDK をインストールしたら、このガイドのサンプルコードと、GitHub の aws-database-encryption-
sdk-dynamodb リポジトリにある Java の例を確認して開始します。

DynamoDB 用の Java クライアント側の暗号化ライブラリの使用

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

このトピックでは、DynamoDB 用の Java クライアント側の暗号化ライブラリのバージョン 3.x の関
数とヘルパークラスの一部について説明します。

DynamoDB 用の Java クライアント側の暗号化ライブラリを使用したプログラミングの詳細につい
ては、GitHub の aws-database-encryption-sdk-dynamodb リポジトリにある ???Java の例を参照し
てください。

トピック

• 項目エンクリプタ

• AWS Database Encryption SDK for DynamoDB の属性アクション

Java 197

https://gradle.org/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples

AWS データベース暗号化 SDK デベロッパーガイド

• AWS Database Encryption SDK for DynamoDB の暗号化設定

• AWS Database Encryption SDK を使用した項目の更新

• 署名付きセットの復号化

項目エンクリプタ

その中核となる AWS Database Encryption SDK for DynamoDB は項目エンクリプタで
す。DynamoDB 用の Java クライアント側の暗号化ライブラリのバージョン 3.x を使用して、次の方
法で DynamoDB テーブル項目の暗号化、署名、検証、および復号を行うことができます。

DynamoDB Enhanced Client

DynamoDB PutItem リクエストを使用してクライアント側で項目を自動的に暗号化して署名す
るように、DynamoDbEncryptionInterceptor で DynamoDB Enhanced Client を設定できま
す。DynamoDB Enhanced Client を使用すると、アノテーション付きデータクラスを使用して属
性アクションを定義できます。可能な場合は常に、DynamoDB Enhanced Client を使用すること
をお勧めします。

DynamoDB Enhanced Client は、検索可能な暗号化をサポートしていません。

Note

AWS Database Encryption SDK は、ネストされた属性の注釈をサポートしていません。

下位レベルの DynamoDB API

DynamoDB PutItem リクエストを使用してクライアント側で項目を自動的に暗号化して署名す
るように、DynamoDbEncryptionInterceptor で下位レベルの DynamoDB API を設定できま
す。

検索可能な暗号化を使用するには、下位レベルの DynamoDB API を使用する必要があります。

下位レベルの DynamoDbItemEncryptor

下位レベルの DynamoDbItemEncryptor は、DynamoDB を呼び出すことなく、テーブル項
目を直接暗号化して署名するか、または復号して検証します。DynamoDB の PutItem または
GetItem リクエストは実行しません。例えば、下位レベルの DynamoDbItemEncryptor を使
用して、既に取得した DynamoDB 項目を直接復号して検証できます。

Java 198

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html

AWS データベース暗号化 SDK デベロッパーガイド

下位レベルの DynamoDbItemEncryptor は、検索可能な暗号化をサポートしていません。

AWS Database Encryption SDK for DynamoDB の属性アクション

属性アクションは、暗号化および署名される属性値、署名のみされる属性値、暗号化コンテキストに
署名および含まれる属性値、および無視される属性値を決定します。

Note

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 暗号化アクションを使用するには、
AWS Database Encryption SDK のバージョン 3.3 以降を使用する必要があります。デー
タモデルを更新して を含める前に、すべてのリーダーに新しいバージョンをデプロイしま
すSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

下位レベルの DynamoDB API または下位レベルの DynamoDbItemEncryptor を使用する場合
は、属性アクションを手動で定義する必要があります。DynamoDB Enhanced Client を使用する
場合は、属性アクションを手動で定義するか、またはアノテーション付きデータクラスを使用し
て、TableSchema を生成できます。設定プロセスを簡素化するには、アノテーション付きデータク
ラスを使用することをお勧めします。アノテーション付きデータクラスを使用する場合、オブジェク
トを 1 回だけモデル化する必要があります。

Note

属性アクションを定義した後、どの属性を署名から除外するかを定義する必要があります。
将来、新しい署名なし属性を簡単に追加できるように、署名なし属性を識別するための個別
のプレフィックス (「:」など) を選択することをお勧めします。DynamoDB スキーマと属性
アクションを定義するときに DO_NOTHING とマークされたすべての属性の属性名にこのプ
レフィックスを含めます。

アノテーション付きデータクラスを使用する

アノテーション付きデータクラスを使用して、DynamoDB Enhanced Client および
DynamoDbEncryptionInterceptor で属性アクションを指定します。 AWS Database Encryption
SDK for DynamoDB は、標準の DynamoDB 属性の注釈を使用して、属性を保護する方法を決定する
属性のタイプを定義します。デフォルトでは、プライマリキーを除く属性がすべて暗号化されます。
これらの属性は署名されますが、暗号化はされません。

Java 199

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/enhanced/dynamodb/mapper/annotations/package-summary.html

AWS データベース暗号化 SDK デベロッパーガイド

Note

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 暗号化アクションを使用するには、
AWS Database Encryption SDK のバージョン 3.3 以降を使用する必要があります。デー
タモデルを更新して を含める前に、すべてのリーダーに新しいバージョンをデプロイしま
すSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

DynamoDB 拡張クライアント注釈の詳細については、GitHub の aws-database-encryption-sdk-
dynamodb リポジトリの SimpleClass.java を参照してください。

デフォルトでは、プライマリキー属性は署名されてはいるが、暗号化されておらず (SIGN_ONLY)、
他のすべての属性は暗号化されて署名されています (ENCRYPT_AND_SIGN)。属性を とし
て定義する場合SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT、パーティション属性と
ソート属性も である必要がありますSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。
例外を指定するには、DynamoDB 用の Java クライアント側の暗号化ライブラリ
で定義されている暗号化アノテーションを使用します。例えば、特定の属性を署名
のみにしたい場合は、@DynamoDbEncryptionSignOnly アノテーションを使用
します。特定の属性に署名して暗号化コンテキストに含める場合は、 を使用しま
す@DynamoDbEncryptionSignAndIncludeInEncryptionContext。特定の属性が署名も暗号
化もされないようにしたい場合 (DO_NOTHING) は、@DynamoDbEncryptionDoNothing アノテー
ションを使用します。

Note

AWS Database Encryption SDK は、ネストされた属性の注釈をサポートしていません。

次の例は、、ENCRYPT_AND_SIGN、SIGN_ONLYおよび DO_NOTHING属性アクションを
定義するために使用される注釈を示しています。の定義に使用される注釈の例について
はSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT、「SimpleClass4.java」を参照してくださ
い。

@DynamoDbBean
public class SimpleClass {

 private String partitionKey;
 private int sortKey;
 private String attribute1;

Java 200

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS データベース暗号化 SDK デベロッパーガイド

 private String attribute2;
 private String attribute3;

 @DynamoDbPartitionKey
 @DynamoDbAttribute(value = "partition_key")
 public String getPartitionKey() {
 return this.partitionKey;
 }

 public void setPartitionKey(String partitionKey) {
 this.partitionKey = partitionKey;
 }

 @DynamoDbSortKey
 @DynamoDbAttribute(value = "sort_key")
 public int getSortKey() {
 return this.sortKey;
 }

 public void setSortKey(int sortKey) {
 this.sortKey = sortKey;
 }

 public String getAttribute1() {
 return this.attribute1;
 }

 public void setAttribute1(String attribute1) {
 this.attribute1 = attribute1;
 }

 @DynamoDbEncryptionSignOnly
 public String getAttribute2() {
 return this.attribute2;
 }

 public void setAttribute2(String attribute2) {
 this.attribute2 = attribute2;
 }

 @DynamoDbEncryptionDoNothing
 public String getAttribute3() {
 return this.attribute3;
 }

Java 201

AWS データベース暗号化 SDK デベロッパーガイド

 @DynamoDbAttribute(value = ":attribute3")
 public void setAttribute3(String attribute3) {
 this.attribute3 = attribute3;
 }

}

次のスニペットに示すように、アノテーション付きデータクラスを使用して TableSchema を作成
します。

final TableSchema<SimpleClass> tableSchema = TableSchema.fromBean(SimpleClass.class);

属性アクションを手動で定義する

属性アクションを手動で指定するには、名前と値のペアが属性名と指定されたアクションを表す
Map オブジェクトを作成します。

属性を暗号化して署名するように ENCRYPT_AND_SIGN を指定します。属性に署名するが暗号化は
しないように SIGN_ONLY を指定します。SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT を指
定して属性に署名し、暗号化コンテキストに含めます。属性に署名することなく、その属性を暗号化
することはできません。属性を無視するように DO_NOTHING を指定します。

パーティション属性とソート属性は、 SIGN_ONLYまたは のいずれかである必要があ
りますSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。属性を として定義する場
合SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT、パーティション属性とソート属性も である
必要がありますSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

Note

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 暗号化アクションを使用するには、
AWS Database Encryption SDK のバージョン 3.3 以降を使用する必要があります。デー
タモデルを更新して を含める前に、すべてのリーダーに新しいバージョンをデプロイしま
すSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be signed
attributeActionsOnEncrypt.put("partition_key",
 CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);

Java 202

AWS データベース暗号化 SDK デベロッパーガイド

// The sort attribute must be signed
attributeActionsOnEncrypt.put("sort_key",
 CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
attributeActionsOnEncrypt.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute3",
 CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
attributeActionsOnEncrypt.put(":attribute4", CryptoAction.DO_NOTHING);

AWS Database Encryption SDK for DynamoDB の暗号化設定

AWS Database Encryption SDK を使用する場合は、DynamoDB テーブルの暗号化設定を明示的に定
義する必要があります。暗号化設定に必要な値は、属性アクションを手動で定義したか、またはアノ
テーション付きデータクラスを使用して定義したかによって異なります。

次のスニペットは、DynamoDB Enhanced Client、TableSchema、および個別のプレフィックスに
よって定義された、許可された署名なし属性を使用して、DynamoDB テーブルの暗号化設定を定義
します。

final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .schemaOnEncrypt(tableSchema)
 // Optional: only required if you use beacons
 .search(SearchConfig.builder()
 .writeVersion(1) // MUST be 1
 .versions(beaconVersions)
 .build())
 .build());

論理テーブル名

DynamoDB テーブルの論理テーブル名。

論理テーブル名は、DynamoDB の復元オペレーションを簡素化するために、テーブルに格
納されているすべてのデータに暗号的にバインドされます。最初に暗号化設定を定義する際
に、DynamoDB テーブル名を論理テーブル名として指定することを強くお勧めします。常に同
じ論理テーブル名を指定する必要があります。復号を成功させるには、論理テーブル名が、暗号

Java 203

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html

AWS データベース暗号化 SDK デベロッパーガイド

化の際に指定された名前と一致する必要があります。DynamoDB テーブルをバックアップから復
元した後に DynamoDB テーブル名が変更された場合でも、論理テーブル名を使用することで、
復号オペレーションで引き続きテーブルが確実に認識されます。

許可された署名なし属性

属性アクションで DO_NOTHING とマークされた属性。

許可された署名なし属性は、どの属性が署名から除外されるかをクライアントに伝えます。クラ
イアントは、他のすべての属性が署名に含まれていると想定します。その後、レコードを復号す
る際に、クライアントは、ユーザーが指定する、許可された署名なし属性の中からどの属性を検
証する必要があり、どの属性を無視する必要があるかを決定します。許可された署名なし属性か
ら属性を削除することはできません。

すべての DO_NOTHING 属性をリストする配列を作成することで、許可された署名なし属性を明
示的に定義できます。また、DO_NOTHING 属性に名前を付ける際に個別のプレフィックスを指定
し、そのプレフィックスを使用してどの属性が署名されていないかをクライアントに伝えること
もできます。将来新しい DO_NOTHING 属性を追加するプロセスが簡素化されるため、個別のプ
レフィックスを指定することを強くお勧めします。詳細については、「データモデルの更新」を
参照してください。

すべての DO_NOTHING 属性のためにプレフィックスを指定しない場合は、クライア
ントが復号時に署名されていないことを想定するすべての属性を明示的にリストする
allowedUnsignedAttributes 配列を設定できます。どうしても必要な場合にのみ、許可され
た署名なし属性を明示的に定義する必要があります。

検索設定 (オプション）

SearchConfig はビーコンのバージョンを定義します。

検索可能な暗号化または署名付きビーコンを使用するには、SearchConfig を指定する必要があ
ります。

アルゴリズムスイート (オプション）

algorithmSuiteId は、 AWS Database Encryption SDK が使用するアルゴリズムスイートを
定義します。

代替アルゴリズムスイートを明示的に指定しない限り、 AWS Database Encryption SDK はデ
フォルトのアルゴリズムスイートを使用します。デフォルトのアルゴリズムスイートは、キー
の導出、デジタル署名、およびキーコミットメントを備えた AES-GCM アルゴリズムを使用し
ます。デフォルトのアルゴリズムスイートはほとんどのアプリケーションに適している可能性

Java 204

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS データベース暗号化 SDK デベロッパーガイド

がありますが、代替アルゴリズムスイートを選択できます。例えば、一部の信頼モデルは、デジ
タル署名を含まないアルゴリズムスイートによって満たされます。 AWS Database Encryption
SDK がサポートするアルゴリズムスイートの詳細については、「」を参照してくださいAWS
Database Encryption SDK でサポートされているアルゴリズムスイート。

ECDSA デジタル署名のない AES-GCM アルゴリズムスイートを選択するには、テーブル暗号化
設定に次のスニペットを含めます。

.algorithmSuiteId(
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384)

AWS Database Encryption SDK を使用した項目の更新

AWS Database Encryption SDK は、暗号化または署名された項目に対して ddb:UpdateItem をサ
ポートしていません。暗号化または署名された項目を更新するには、ddb:PutItem を使用する必要が
あります。PutItem リクエストで既存の項目と同じプライマリキーを指定すると、新しい項目が既
存の項目に完全に置き換わります。CLOBBER を使用して、項目を更新した後、保存する際にすべ
ての属性をクリアして置き換えることもできます。

署名付きセットの復号化

AWS Database Encryption SDK のバージョン 3.0.0 および 3.1.0 では、セットタイプ属性を として
定義するとSIGN_ONLY、セットの値は指定された順序で正規化されます。DynamoDB はセットの順
序を保持しません。その結果、セットを含む項目の署名の検証が失敗する可能性があります。セット
の値が AWS Database Encryption SDK に提供された順序とは異なる順序で返されると、セット属性
に同じ値が含まれている場合でも、署名の検証は失敗します。

Note

AWS Database Encryption SDK のバージョン 3.1.1 以降では、すべてのセットタイプ属性の
値が正規化されるため、値は DynamoDB に書き込まれたのと同じ順序で読み取られます。

署名の検証が失敗すると、復号オペレーションは失敗して以下のエラーメッセージを返します。

software.amazon.cryptography.dbencryptionsdk.structuredencryption.model.StructuredEncrypti
onException: 受信者タグが一致しませんでした。

Java 205

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapperConfig.SaveBehavior.html#CLOBBER
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.SetTypes

AWS データベース暗号化 SDK デベロッパーガイド

上記のエラーメッセージが表示され、復号化しようとしているアイテムにバージョン 3.0.0 ま
たは 3.1.0 を使用して署名されたセットが含まれていると思われる場合、セットを正常に検証
する方法の詳細として GitHub の aws-database-encryption-sdk-dynamodb-java リポジトリの
DecryptWithPermute ディレクトリを参照してください。

Java の例

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

次の例は、DynamoDB 用の Java クライアント側の暗号化ライブラリを使用して、アプリケー
ション内のテーブル項目を保護する方法を示しています。その他の例 (および独自の例を提供)
は、GitHub の aws-database-encryption-sdk-dynamodb リポジトリにある Java の例で確認できま
す。

次の例は、データが入力されていない新しい Amazon DynamoDB テーブルで DynamoDB 用の Java
クライアント側の暗号化ライブラリを設定する方法を示しています。既存の Amazon DynamoDB
テーブルをクライアント側の暗号化のために設定する場合は、「既存のテーブルにバージョン 3.x を
追加する」を参照してください。

トピック

• DynamoDB 拡張クライアントの使用

• 下位レベルの DynamoDB API の使用

• 下位レベルの DynamoDbItemEncryptor の使用

DynamoDB 拡張クライアントの使用

次の例は、AWS KMS キーリングで DynamoDB Enhanced Client と
DynamoDbEncryptionInterceptor を使用して、DynamoDB API 呼び出しの一部として
DynamoDB テーブルの項目を暗号化する方法を示しています。

DynamoDB 拡張クライアントではサポートされている任意のキーリングを使用できますが、可能な
限りいずれかの AWS KMS キーリングを使用することをお勧めします。

Java 206

https://github.com/aws/aws-database-encryption-sdk-dynamodb-java/tree/v3.1.1/DecryptWithPermute
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples

AWS データベース暗号化 SDK デベロッパーガイド

Note

DynamoDB Enhanced Client は、検索可能な暗号化をサポートしていません。
検索可能な暗号化を使用するには、下位レベルの DynamoDB API とともに
DynamoDbEncryptionInterceptor を使用します。

完全なコードサンプルを参照してください: EnhancedPutGetExample.java

ステップ 1: AWS KMS キーリングを作成する

次の例ではCreateAwsKmsMrkMultiKeyring、 を使用して、対称暗号化 KMS AWS KMS キー
を持つ キーリングを作成します。CreateAwsKmsMrkMultiKeyring メソッドにより、キーリ
ングは、単一リージョンのキーとマルチリージョンのキーの両方を確実に正しく処理します。

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

ステップ 2: アノテーション付きデータクラスからテーブルスキーマを作成する

次の例では、アノテーション付きデータクラスを使用して、TableSchema を作成します。

この例では、アノテーション付きのデータクラスと属性アクションが SimpleClass.java を使用し
て定義されていることを前提としています。属性アクションにアノテーションを付ける方法のガ
イダンスについては、「アノテーション付きデータクラスを使用する」を参照してください。

Note

AWS Database Encryption SDK は、ネストされた属性の注釈をサポートしていません。

final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

Java 207

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/EnhancedPutGetExample.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html

AWS データベース暗号化 SDK デベロッパーガイド

ステップ 3: 署名から除外する属性を定義する

次の例では、すべての DO_NOTHING 属性が個別のプレフィックス「:」を共有し、そのプレ
フィックスを使用して、許可される署名なし属性を定義すると想定しています。クライアント
は、「:」というプレフィックスが付いた属性名は署名から除外されると想定します。詳細につ
いては、「Allowed unsigned attributes」を参照してください。

final String unsignedAttrPrefix = ":";

ステップ 4: 暗号化設定を作成する

次の例では、DynamoDB テーブルの暗号化設定を表す tableConfigs マップを定義します。

この例では、DynamoDB テーブル名を論理テーブル名として指定します。最初に暗号化設定を定
義する際に、DynamoDB テーブル名を論理テーブル名として指定することを強くお勧めします。
詳細については、「AWS Database Encryption SDK for DynamoDB の暗号化設定」を参照してく
ださい。

Note

検索可能な暗号化または署名付きビーコンを使用するには、暗号化設定に
SearchConfig も含める必要があります。

final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .schemaOnEncrypt(tableSchema)
 .build());

ステップ 5: DynamoDbEncryptionInterceptor を作成する

次の例では、ステップ 4 の tableConfigs を使用して新しい
DynamoDbEncryptionInterceptor を作成します。

final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(

Java 208

AWS データベース暗号化 SDK デベロッパーガイド

 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

ステップ 6: 新しい AWS SDK DynamoDB クライアントを作成する

次の例では、ステップ 5 interceptorの を使用して新しい AWS SDK DynamoDB クライアン
トを作成します。

final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

ステップ 7: DynamoDB Enhanced Client を作成し、テーブルを作成する

次の例では、ステップ 6 で作成した AWS SDK DynamoDB クライアントを使用して DynamoDB
Enhanced Client を作成し、アノテーション付きデータクラスを使用してテーブルを作成しま
す。

final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);

ステップ 8: テーブル項目を暗号化して署名する

次の例では、DynamoDB Enhanced Client を使用して項目を DynamoDB テーブルに配置しま
す。項目は、DynamoDB に送信される前に、クライアント側で暗号化および署名されます。

final SimpleClass item = new SimpleClass();
item.setPartitionKey("EnhancedPutGetExample");
item.setSortKey(0);
item.setAttribute1("encrypt and sign me!");
item.setAttribute2("sign me!");
item.setAttribute3("ignore me!");

table.putItem(item);

Java 209

AWS データベース暗号化 SDK デベロッパーガイド

下位レベルの DynamoDB API の使用

次の例は、AWS KMS キーリングとともに下位レベルの DynamoDB API を使用し、DynamoDB
PutItem リクエストを使用してクライアント側で項目を自動的に暗号化して署名する方法を示して
います。

サポートされている任意のキーリングを使用できますが、可能な限りいずれかの AWS KMS キーリ
ングを使用することをお勧めします。

完全なコードサンプルを参照してください: BasicPutGetExample.java

ステップ 1: AWS KMS キーリングを作成する

次の例ではCreateAwsKmsMrkMultiKeyring、 を使用して、対称暗号化 KMS AWS KMS キー
を持つ キーリングを作成します。CreateAwsKmsMrkMultiKeyring メソッドにより、キーリ
ングは、単一リージョンのキーとマルチリージョンのキーの両方を確実に正しく処理します。

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

ステップ 2: 属性アクションを設定する

次の例では、テーブル項目のサンプル属性アクションを表す attributeActionsOnEncrypt
マップを定義します。

Note

次の例では、属性を として定義していませ
んSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
属性を指定する場合、パーティション属性とソート属性も である必要がありま
すSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be SIGN_ONLY

Java 210

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/BasicPutGetExample.java

AWS データベース暗号化 SDK デベロッパーガイド

attributeActionsOnEncrypt.put("partition_key", CryptoAction.SIGN_ONLY);
// The sort attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("sort_key", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put(":attribute3", CryptoAction.DO_NOTHING);

ステップ 3: 署名から除外する属性を定義する

次の例では、すべての DO_NOTHING 属性が個別のプレフィックス「:」を共有し、そのプレ
フィックスを使用して、許可される署名なし属性を定義すると想定しています。クライアント
は、「:」というプレフィックスが付いた属性名は署名から除外されると想定します。詳細につ
いては、「Allowed unsigned attributes」を参照してください。

final String unsignedAttrPrefix = ":";

ステップ 4: DynamoDB テーブルの暗号化設定を定義する

次の例では、この DynamoDB テーブルの暗号化設定を表す tableConfigs マップを定義しま
す。

この例では、DynamoDB テーブル名を論理テーブル名として指定します。最初に暗号化設定を定
義する際に、DynamoDB テーブル名を論理テーブル名として指定することを強くお勧めします。
詳細については、「AWS Database Encryption SDK for DynamoDB の暗号化設定」を参照してく
ださい。

Note

検索可能な暗号化または署名付きビーコンを使用するには、暗号化設定に
SearchConfig も含める必要があります。

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .attributeActionsOnEncrypt(attributeActionsOnEncrypt)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .build();

Java 211

AWS データベース暗号化 SDK デベロッパーガイド

tableConfigs.put(ddbTableName, config);

ステップ 5: DynamoDbEncryptionInterceptor を作成する

次の例では、ステップ 4 の tableConfigs を使用して DynamoDbEncryptionInterceptor
を作成します。

DynamoDbEncryptionInterceptor interceptor = DynamoDbEncryptionInterceptor.builder()
 .config(DynamoDbTablesEncryptionConfig.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build())
 .build();

ステップ 6: 新しい AWS SDK DynamoDB クライアントを作成する

次の例では、ステップ 5 interceptorの を使用して新しい AWS SDK DynamoDB クライアン
トを作成します。

final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

ステップ 7: DynamoDB テーブル項目を暗号化して署名する

次の例では、サンプルテーブル項目を表す item マップを定義し、その項目を DynamoDB テー
ブルに配置します。項目は、DynamoDB に送信される前に、クライアント側で暗号化および署名
されます。

final HashMap<String, AttributeValue> item = new HashMap<>();
item.put("partition_key", AttributeValue.builder().s("BasicPutGetExample").build());
item.put("sort_key", AttributeValue.builder().n("0").build());
item.put("attribute1", AttributeValue.builder().s("encrypt and sign me!").build());
item.put("attribute2", AttributeValue.builder().s("sign me!").build());
item.put(":attribute3", AttributeValue.builder().s("ignore me!").build());

final PutItemRequest putRequest = PutItemRequest.builder()
 .tableName(ddbTableName)
 .item(item)
 .build();

Java 212

AWS データベース暗号化 SDK デベロッパーガイド

final PutItemResponse putResponse = ddb.putItem(putRequest);

下位レベルの DynamoDbItemEncryptor の使用

次の例は、下位レベルの DynamoDbItemEncryptor を AWS KMS キーリングとともに使用して、
テーブル項目を直接暗号化して署名する方法を示しています。DynamoDbItemEncryptor は項目を
DynamoDB テーブルに配置しません。

DynamoDB 拡張クライアントではサポートされている任意のキーリングを使用できますが、可能な
限りいずれかの AWS KMS キーリングを使用することをお勧めします。

Note

下位レベルの DynamoDbItemEncryptor は、検索可能な暗号化をサポートしてい
ません。検索可能な暗号化を使用するには、下位レベルの DynamoDB API とともに
DynamoDbEncryptionInterceptor を使用します。

完全なコードサンプルを参照してください: ItemEncryptDecryptExample.java

ステップ 1: AWS KMS キーリングを作成する

次の例ではCreateAwsKmsMrkMultiKeyring、 を使用して、対称暗号化 KMS AWS KMS キー
を持つ キーリングを作成します。CreateAwsKmsMrkMultiKeyring メソッドにより、キーリ
ングは、単一リージョンのキーとマルチリージョンのキーの両方を確実に正しく処理します。

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

ステップ 2: 属性アクションを設定する

次の例では、テーブル項目のサンプル属性アクションを表す attributeActionsOnEncrypt
マップを定義します。

Java 213

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/itemencryptor/ItemEncryptDecryptExample.java

AWS データベース暗号化 SDK デベロッパーガイド

Note

次の例では、属性を として定義していませ
んSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
属性を指定する場合、パーティション属性とソート属性も である必要がありま
すSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("partition_key", CryptoAction.SIGN_ONLY);
// The sort attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("sort_key", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put(":attribute3", CryptoAction.DO_NOTHING);

ステップ 3: 署名から除外する属性を定義する

次の例では、すべての DO_NOTHING 属性が個別のプレフィックス「:」を共有し、そのプレ
フィックスを使用して、許可される署名なし属性を定義すると想定しています。クライアント
は、「:」というプレフィックスが付いた属性名は署名から除外されると想定します。詳細につ
いては、「Allowed unsigned attributes」を参照してください。

final String unsignedAttrPrefix = ":";

ステップ 4: DynamoDbItemEncryptor 設定を定義する

次の例では、DynamoDbItemEncryptor の設定を定義します。

この例では、DynamoDB テーブル名を論理テーブル名として指定します。最初に暗号化設定を定
義する際に、DynamoDB テーブル名を論理テーブル名として指定することを強くお勧めします。
詳細については、「AWS Database Encryption SDK for DynamoDB の暗号化設定」を参照してく
ださい。

final DynamoDbItemEncryptorConfig config = DynamoDbItemEncryptorConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .attributeActionsOnEncrypt(attributeActionsOnEncrypt)

Java 214

AWS データベース暗号化 SDK デベロッパーガイド

 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .build();

ステップ 5: DynamoDbItemEncryptor を作成する

次の例では、ステップ 4 の config を使用して新しい DynamoDbItemEncryptor を作成しま
す。

final DynamoDbItemEncryptor itemEncryptor = DynamoDbItemEncryptor.builder()
 .DynamoDbItemEncryptorConfig(config)
 .build();

ステップ 6: テーブル項目を直接暗号化して署名する

次の例では、DynamoDbItemEncryptor を使用して項目を直接暗号化し、署名しま
す。DynamoDbItemEncryptor は項目を DynamoDB テーブルに配置しません。

final Map<String, AttributeValue> originalItem = new HashMap<>();
originalItem.put("partition_key",
 AttributeValue.builder().s("ItemEncryptDecryptExample").build());
originalItem.put("sort_key", AttributeValue.builder().n("0").build());
originalItem.put("attribute1", AttributeValue.builder().s("encrypt and sign
 me!").build());
originalItem.put("attribute2", AttributeValue.builder().s("sign me!").build());
originalItem.put(":attribute3", AttributeValue.builder().s("ignore me!").build());

final Map<String, AttributeValue> encryptedItem = itemEncryptor.EncryptItem(
 EncryptItemInput.builder()
 .plaintextItem(originalItem)
 .build()
).encryptedItem();

AWS Database Encryption SDK for DynamoDB を使用するように既存の DynamoDB
テーブルを設定する

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

Java 215

AWS データベース暗号化 SDK デベロッパーガイド

DynamoDB 用の Java クライアント側の暗号化ライブラリのバージョン 3.x を使用すると、既存の
Amazon DynamoDB テーブルをクライアント側の暗号化用に設定できます。このトピックでは、
データが入力されている既存の DynamoDB テーブルにバージョン 3.x を追加するために必要な 3 つ
のステップについてのガイダンスを提供します。

前提条件

DynamoDB 用の Java クライアント側の暗号化ライブラリのバージョン 3.x では、 AWS SDK for
Java 2.x で提供される DynamoDB Enhanced Client が必要です。それでも DynamoDBMapper を使
用する場合は、DynamoDB 拡張クライアント AWS SDK for Java 2.x を使用するには に移行する必
要があります。

AWS SDK for Javaのバージョン 1.x から 2.x に移行する手順に従います。

その後、DynamoDB Enhanced Client API の使用を開始するための手順に従います。

DynamoDB 用の Java クライアント側の暗号化ライブラリを使用するようにテーブルを設定する前
に、アノテーション付きデータクラスを使用して TableSchema を生成し、拡張クライアントを作
成する必要があります。

ステップ 1: 暗号化された項目の読み取りと書き込みの準備をする

Database Encryption SDK AWS クライアントが暗号化された項目を読み書きできるように準備する
には、次のステップを実行します。次の変更をデプロイした後も、クライアントは引き続きプレーン
テキスト項目の読み取りと書き込みを行います。テーブルに書き込まれる新しい項目の暗号化や署名
は行いませんが、暗号化された項目が表示されるとすぐに復号できます。これらの変更により、クラ
イアントが新しい項目の暗号化を開始するための準備が整います。次のステップに進む前に、次の変
更を各リーダーにデプロイする必要があります。

1. 属性アクションを定義する

アノテーション付きデータクラスを更新して、どの属性値を暗号化して署名するか、どの属性値
を署名のみにするか、どの属性値を無視するかを定義する属性アクションを含めます。

DynamoDB 拡張クライアント注釈の詳細については、GitHub の aws-database-encryption-sdk-
dynamodb リポジトリの SimpleClass.java を参照してください。

デフォルトでは、プライマリキー属性は署名されてはいるが、暗号化されておらず
(SIGN_ONLY)、他のすべての属性は暗号化されて署名されています (ENCRYPT_AND_SIGN)。
例外を指定するには、DynamoDB 用の Java クライアント側の暗号化ライブラ

Java 216

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java

AWS データベース暗号化 SDK デベロッパーガイド

リで定義されている暗号化アノテーションを使用します。例えば、特定の属性
を署名のみにしたい場合は、@DynamoDbEncryptionSignOnly アノテーショ
ンを使用します。特定の属性に署名して暗号化コンテキストに含める場合は、
@DynamoDbEncryptionSignAndIncludeInEncryptionContext注釈を使用
します。特定の属性が署名も暗号化もされないようにしたい場合 (DO_NOTHING)
は、@DynamoDbEncryptionDoNothing アノテーションを使用します。

Note

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を指定す
る場合、パーティション属性とソート属性も である必要がありま
すSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。の定義に使用される注釈の例につ
いてはSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT、「SimpleClass4.java」を参
照してください。

アノテーションの例については、「アノテーション付きデータクラスを使用する」を参照してく
ださい。

2. 署名から除外する属性を定義する

次の例では、すべての DO_NOTHING 属性が個別のプレフィックス「:」を共有し、そのプレ
フィックスを使用して、許可される署名なし属性を定義すると想定しています。クライアント
は、「:」というプレフィックスが付いた属性名は署名から除外されると想定します。詳細につ
いては、「Allowed unsigned attributes」を参照してください。

final String unsignedAttrPrefix = ":";

3. キーリングを作成します。

次の例では AWS KMS キーリングを作成します。 AWS KMS キーリングは、対称暗号化または
非対称 RSA AWS KMS keys を使用して、データキーを生成、暗号化、復号します。

この例では、CreateMrkMultiKeyring を使用して、対称暗号化 KMS キーで AWS KMS キー
リングを作成します。CreateAwsKmsMrkMultiKeyring メソッドにより、キーリングは、単一
リージョンのキーとマルチリージョンのキーの両方を確実に正しく処理します。

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())

Java 217

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS データベース暗号化 SDK デベロッパーガイド

 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

4. DynamoDB テーブルの暗号化設定を定義する

次の例では、この DynamoDB テーブルの暗号化設定を表す tableConfigs マップを定義しま
す。

この例では、DynamoDB テーブル名を論理テーブル名として指定します。最初に暗号化設定を定
義する際に、DynamoDB テーブル名を論理テーブル名として指定することを強くお勧めします。
詳細については、「AWS Database Encryption SDK for DynamoDB の暗号化設定」を参照してく
ださい。

プレーンテキストのオーバーライドとして
FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT を指定する必要があります。このポリ
シーは、プレーンテキスト項目の読み取りと書き込みを継続し、暗号化された項目を読み取り、
クライアントが暗号化された項目を書き込むための準備を整えます。

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .schemaOnEncrypt(tableSchema)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)

 .plaintextOverride(PlaintextOverride.FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT)
 .build();
tableConfigs.put(ddbTableName, config);

5. DynamoDbEncryptionInterceptor の作成

次の例では、ステップ 3 の tableConfigs を使用して DynamoDbEncryptionInterceptor
を作成します。

DynamoDbEncryptionInterceptor interceptor = DynamoDbEncryptionInterceptor.builder()

Java 218

AWS データベース暗号化 SDK デベロッパーガイド

 .config(DynamoDbTablesEncryptionConfig.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build())
 .build();

ステップ 2: 暗号化および署名された項目を書き込む

DynamoDbEncryptionInterceptor 設定内のプレーンテキストポリシーを更新して、クライアン
トが暗号化および署名された項目を書き込むことを許可します。次の変更をデプロイすると、クライ
アントはステップ 1 で設定した属性アクションに基づいて新しい項目を暗号化して署名します。ク
ライアントは、プレーンテキストの項目と暗号化および署名された項目を読み取ることができるよう
になります。

ステップ 3 に進む前に、テーブル内の既存のすべてのプレーンテキスト項目を暗号化して署名する
必要があります。既存のプレーンテキスト項目を迅速に暗号化するために実行できる単一のメトリ
クスやクエリはありません。システムにとって最も合理的なプロセスを使用してください。例えば、
定義した属性アクションと暗号化設定を使用して、時間をかけてテーブルをスキャンし、項目を書き
換える非同期プロセスを使用できます。テーブル内のプレーンテキスト項目を識別するには、 AWS
Database Encryption SDK が暗号化および署名されたときに項目に追加する aws_dbe_headおよび
aws_dbe_foot 属性を含まないすべての項目をスキャンすることをお勧めします。

次の の例では、ステップ 1 のテーブル暗号化設定を更新します。プレーンテキストのオーバーラ
イドを FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT を使用して更新する必要がありま
す。このポリシーはプレーンテキスト項目を引き続き読み取りますが、暗号化された項目の読み取り
と書き込みも行います。更新された DynamoDbEncryptionInterceptorを使用して新しい を作成
しますtableConfigs。

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .schemaOnEncrypt(tableSchema)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)

 .plaintextOverride(PlaintextOverride.FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT)
 .build();
tableConfigs.put(ddbTableName, config);

Java 219

AWS データベース暗号化 SDK デベロッパーガイド

ステップ 3: 暗号化および署名された項目のみを読み取る

すべての項目を暗号化して署名した後、DynamoDbEncryptionInterceptor 設定内のプレーンテ
キストオーバーライドを更新して、暗号化および署名された項目の読み取りと書き込みのみをクライ
アントに許可します。次の変更をデプロイすると、クライアントはステップ 1 で設定した属性アク
ションに基づいて新しい項目を暗号化して署名します。クライアントは、暗号化および署名された項
目のみを読み取ることができます。

次の の例では、ステップ 2 のテーブル暗号化設定を更新しま
す。FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT を使用してプレーンテキスト
オーバーライドを更新することも、設定からプレーンテキストポリシーを削除することもでき
ます。クライアントは、デフォルトでは、暗号化および署名された項目の読み取りと書き込みの
みを行います。更新された DynamoDbEncryptionInterceptorを使用して新しい を作成しま
すtableConfigs。

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .schemaOnEncrypt(tableSchema)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 // Optional: you can also remove the plaintext policy from your configuration

 .plaintextOverride(PlaintextOverride.FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT)
 .build();
tableConfigs.put(ddbTableName, config);

DynamoDB 用の Java クライアント側の暗号化ライブラリのバージョン 3.x に移行す
る

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

DynamoDB 用の Java クライアント側の暗号化ライブラリのバージョン 3.x は、2.x コードベースを
大幅に書き直したものです。これには、新しい構造化データ形式、マルチテナンシーのサポートの

Java 220

AWS データベース暗号化 SDK デベロッパーガイド

改善、シームレスなスキーマの変更、検索可能な暗号化のサポートなど、多くの更新が含まれていま
す。このトピックでは、コードをバージョン 3.x に移行する方法について説明します。

バージョン 1.x から 2.x への移行

バージョン 3.x に移行する前に、バージョン 2.x に移行してください。バージョン 2.x では、
最新プロバイダーの符号が MostRecentProvider から CachingMostRecentProvider に
変更されました。現在、符号が MostRecentProvider である DynamoDB 用の Java クライ
アント側の暗号化ライブラリのバージョン 1.x を使用している場合は、コード内の符号名を
CachingMostRecentProvider に更新する必要があります。詳細については、「最新のプロバイ
ダーに更新する」を参照してください。

バージョン 2.x から 3.x への移行

次の手順では、DynamoDB 用の Java クライアント側の暗号化ライブラリのコードをバージョン 2.x
からバージョン 3.x に移行する方法について説明します。

ステップ 1. 新しい形式で項目を読み取る準備をする

Database Encryption SDK AWS クライアントが新しい形式の項目を読み取る準備をするには、次の
手順を実行します。次の変更をデプロイした後、クライアントは引き続きバージョン 2.x と同じよう
に動作します。クライアントは引き続きバージョン 2.x 形式で項目の読み取りと書き込みを行います
が、これらの変更により、クライアントが新しい形式で項目を読み取る準備が整います。

をバージョン 2.x AWS SDK for Java に更新する

DynamoDB 用の Java クライアント側の暗号化ライブラリのバージョン 3.x では、DynamoDB
Enhanced Client が必要です。DynamoDB Enhanced Client は、以前のバージョンで使用され
ていた DynamoDBMapper を置き換えます。拡張クライアントを使用するには、 AWS SDK for
Java 2.xを使用する必要があります。

AWS SDK for Javaのバージョン 1.x から 2.x に移行する手順に従います。

必要な AWS SDK for Java 2.x モジュールの詳細については、「」を参照してください前提条
件。

従来のバージョンによって暗号化された項目を読み取るようにクライアントを設定する

次の手順では、以下のコード例で示されているステップの概要を説明します。

1. キーリングを作成します。

Java 221

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html

AWS データベース暗号化 SDK デベロッパーガイド

キーリングと暗号マテリアルマネージャーは、DynamoDB 用の Java クライアント側の暗号
化ライブラリの以前のバージョンで使用されていた暗号マテリアルプロバイダーを置き換え
ます。

Important

キーリングの作成時に指定するラッピングキーは、バージョン 2.x で暗号マテリアル
プロバイダーで使用したのと同じラッピングキーである必要があります。

2. アノテーション付きクラスに基づいてテーブルスキーマを作成します。

このステップでは、新しい形式で項目の書き込みを開始するときに使用される属性アクショ
ンを定義します。

新しい DynamoDB Enhanced Client の使用に関するガイダンスについては、「AWS SDK for
Java デベロッパーガイド」の「TableSchema を生成する」を参照してください。

次の例では、新しい属性アクションのアノテーションを使用して、アノテーション付きクラ
スをバージョン 2.x から更新したことを前提としています。属性アクションにアノテーショ
ンを付ける方法のガイダンスについては、「アノテーション付きデータクラスを使用する」
を参照してください。

Note

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を指定す
る場合、パーティション属性とソート属性も である必要がありま
すSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。の定義に使用され
る注釈の例についてはSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT、
「SimpleClass4.java」を参照してください。

3. どの属性を署名から除外するかを定義します。

4. バージョン 2.x のモデル化されたクラスで設定された属性アクションの明示的なマッピング
を設定します。

このステップでは、古い形式で項目を書き込むために使用される属性アクションを定義しま
す。

5. DynamoDB 用の Java クライアント側の暗号化ライブラリのバージョン 2.x で使用した
DynamoDBEncryptor を設定します。

Java 222

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS データベース暗号化 SDK デベロッパーガイド

6. 従来の動作を設定します。

7. DynamoDbEncryptionInterceptor を作成します。

8. 新しい AWS SDK DynamoDB クライアントを作成します。

9. DynamoDBEnhancedClient を作成し、モデル化されたクラスを含むテーブルを作成しま
す。

DynamoDB Enhanced Client の詳細については、「拡張クライアントを作成する」を参照し
てください。

public class MigrationExampleStep1 {

 public static void MigrationStep1(String kmsKeyId, String ddbTableName, int
 sortReadValue) {
 // 1. Create a Keyring.
 // This example creates an AWS KMS Keyring that specifies the
 // same kmsKeyId previously used in the version 2.x configuration.
 // It uses the 'CreateMrkMultiKeyring' method to create the
 // keyring, so that the keyring can correctly handle both single
 // region and Multi-Region KMS Keys.
 // Note that this example uses the AWS SDK for Java v2 KMS client.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
 final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

 // 2. Create a Table Schema over your annotated class.
 // For guidance on using the new attribute actions
 // annotations, see SimpleClass.java in the
 // aws-database-encryption-sdk-dynamodb GitHub repository.
 // All primary key attributes must be signed but not encrypted
 // and by default all non-primary key attributes
 // are encrypted and signed (ENCRYPT_AND_SIGN).
 // If you want a particular non-primary key attribute to be signed but
 // not encrypted, use the 'DynamoDbEncryptionSignOnly' annotation.
 // If you want a particular attribute to be neither signed nor encrypted
 // (DO_NOTHING), use the 'DynamoDbEncryptionDoNothing' annotation.

Java 223

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS データベース暗号化 SDK デベロッパーガイド

 final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

 // 3. Define which attributes the client should expect to be excluded
 // from the signature when reading items.
 // This value represents all unsigned attributes across the entire
 // dataset.
 final List<String> allowedUnsignedAttributes = Arrays.asList("attribute3");

 // 4. Configure an explicit map of the attribute actions configured
 // in your version 2.x modeled class.
 final Map<String, CryptoAction> legacyActions = new HashMap<>();
 legacyActions.put("partition_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("sort_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
 legacyActions.put("attribute2", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute3", CryptoAction.DO_NOTHING);

 // 5. Configure the DynamoDBEncryptor that you used in version 2.x.
 final AWSKMS kmsClient = AWSKMSClientBuilder.defaultClient();
 final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kmsClient,
 kmsKeyId);
 final DynamoDBEncryptor oldEncryptor = DynamoDBEncryptor.getInstance(cmp);

 // 6. Configure the legacy behavior.
 // Input the DynamoDBEncryptor and attribute actions created in
 // the previous steps. For Legacy Policy, use
 // 'FORCE_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT'. This policy continues to
 read
 // and write items using the old format, but will be able to read
 // items written in the new format as soon as they appear.
 final LegacyOverride legacyOverride = LegacyOverride
 .builder()
 .encryptor(oldEncryptor)
 .policy(LegacyPolicy.FORCE_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT)
 .attributeActionsOnEncrypt(legacyActions)
 .build();

 // 7. Create a DynamoDbEncryptionInterceptor with the above configuration.
 final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
 tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)

Java 224

AWS データベース暗号化 SDK デベロッパーガイド

 .keyring(kmsKeyring)
 .allowedUnsignedAttributes(allowedUnsignedAttributes)
 .schemaOnEncrypt(tableSchema)
 .legacyOverride(legacyOverride)
 .build());
 final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

 // 8. Create a new AWS SDK DynamoDb client using the
 // interceptor from Step 7.
 final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

 // 9. Create the DynamoDbEnhancedClient using the AWS SDK DynamoDb client
 // created in Step 8, and create a table with your modeled class.
 final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
 final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);
 }
}

ステップ 2. 新しい形式で項目を書き込む

ステップ 1 からすべてのリーダーに変更をデプロイしたら、次のステップを実行して、新しい形式
で項目を書き込むように AWS Database Encryption SDK クライアントを設定します。次の変更をデ
プロイした後、クライアントは引き続き古い形式で項目を読み取り、新しい形式で項目の書き込みと
読み取りを開始します。

次の手順では、以下のコード例で示されているステップの概要を説明します。

1. ステップ 1 と同様に、キーリング、テーブルスキーマ、従来の属性アクショ
ン、allowedUnsignedAttributes、および DynamoDBEncryptor の設定を続行します。

2. 新しい形式を使用して新しい項目のみを書き込むように、従来の動作を更新します。

Java 225

AWS データベース暗号化 SDK デベロッパーガイド

3. DynamoDbEncryptionInterceptor の作成

4. 新しい AWS SDK DynamoDB クライアントを作成します。

5. DynamoDBEnhancedClient を作成し、モデル化されたクラスを含むテーブルを作成します。

DynamoDB Enhanced Client の詳細については、「拡張クライアントを作成する」を参照してく
ださい。

public class MigrationExampleStep2 {

 public static void MigrationStep2(String kmsKeyId, String ddbTableName, int
 sortReadValue) {
 // 1. Continue to configure your keyring, table schema, legacy
 // attribute actions, allowedUnsignedAttributes, and
 // DynamoDBEncryptor as you did in Step 1.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
 final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

 final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

 final List<String> allowedUnsignedAttributes = Arrays.asList("attribute3");

 final Map<String, CryptoAction> legacyActions = new HashMap<>();
 legacyActions.put("partition_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("sort_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
 legacyActions.put("attribute2", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute3", CryptoAction.DO_NOTHING);

 final AWSKMS kmsClient = AWSKMSClientBuilder.defaultClient();
 final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kmsClient,
 kmsKeyId);
 final DynamoDBEncryptor oldEncryptor = DynamoDBEncryptor.getInstance(cmp);

 // 2. Update your legacy behavior to only write new items using the new

Java 226

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS データベース暗号化 SDK デベロッパーガイド

 // format.
 // For Legacy Policy, use 'FORBID_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT'. This
 policy
 // continues to read items in both formats, but will only write items
 // using the new format.
 final LegacyOverride legacyOverride = LegacyOverride
 .builder()
 .encryptor(oldEncryptor)
 .policy(LegacyPolicy.FORBID_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT)
 .attributeActionsOnEncrypt(legacyActions)
 .build();

 // 3. Create a DynamoDbEncryptionInterceptor with the above configuration.
 final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
 tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributes(allowedUnsignedAttributes)
 .schemaOnEncrypt(tableSchema)
 .legacyOverride(legacyOverride)
 .build());
 final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

 // 4. Create a new AWS SDK DynamoDb client using the
 // interceptor from Step 3.
 final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

 // 5. Create the DynamoDbEnhancedClient using the AWS SDK DynamoDb Client
 created
 // in Step 4, and create a table with your modeled class.
 final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)

Java 227

AWS データベース暗号化 SDK デベロッパーガイド

 .build();
 final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);
 }
}

ステップ 2 の変更をデプロイした後、ステップ 3 に進む前に、テーブル内のすべての古い項目を新
しい形式で再暗号化する必要があります。既存の項目を迅速に暗号化するために実行できる単一のメ
トリクスやクエリはありません。システムにとって最も合理的なプロセスを使用してください。例え
ば、定義した新しい属性アクションと暗号化設定を使用して、時間をかけてテーブルをスキャンし、
項目を書き換える非同期プロセスを使用できます。

ステップ 3. 新しい形式でのみ項目を読み書きする

テーブル内のすべての項目を新しい形式で再暗号化した後、設定から従来の動作を削除できます。新
しい形式でのみ項目を読み書きするようにクライアントを設定するには、次のステップを実行しま
す。

次の手順では、以下のコード例で示されているステップの概要を説明します。

1. ステップ 1 と同様に、キーリング、テーブルスキーマ、allowedUnsignedAttributes の設
定を続行します。従来の属性アクションと DynamoDBEncryptor を設定から削除します。

2. DynamoDbEncryptionInterceptor を作成します。

3. 新しい AWS SDK DynamoDB クライアントを作成します。

4. DynamoDBEnhancedClient を作成し、モデル化されたクラスを含むテーブルを作成します。

DynamoDB Enhanced Client の詳細については、「拡張クライアントを作成する」を参照してく
ださい。

public class MigrationExampleStep3 {

 public static void MigrationStep3(String kmsKeyId, String ddbTableName, int
 sortReadValue) {
 // 1. Continue to configure your keyring, table schema,
 // and allowedUnsignedAttributes as you did in Step 1.
 // Do not include the configurations for the DynamoDBEncryptor or
 // the legacy attribute actions.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

Java 228

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS データベース暗号化 SDK デベロッパーガイド

 final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
 final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

 final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

 final List<String> allowedUnsignedAttributes = Arrays.asList("attribute3");

 // 3. Create a DynamoDbEncryptionInterceptor with the above configuration.
 // Do not configure any legacy behavior.
 final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
 tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributes(allowedUnsignedAttributes)
 .schemaOnEncrypt(tableSchema)
 .build());
 final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

 // 4. Create a new AWS SDK DynamoDb client using the
 // interceptor from Step 3.
 final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

 // 5. Create the DynamoDbEnhancedClient using the AWS SDK Client
 // created in Step 4, and create a table with your modeled class.
 final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();

Java 229

AWS データベース暗号化 SDK デベロッパーガイド

 final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);
 }
}

.NET

このトピックでは、DynamoDB 用の .NET クライアント側の暗号化ライブラリのバージョン
3.x をインストールして使用する方法について説明します。 AWS Database Encryption SDK for
DynamoDB を使用したプログラミングの詳細については、GitHub の aws-database-encryption-sdk-
dynamodb リポジトリの .NET の例を参照してください。

DynamoDB 用の .NET クライアント側の暗号化ライブラリは、C# やその他の .NET プログラミング
言語でアプリケーションを記述している開発者を対象としています。Windows、macOS、Linux で
サポートされています。

AWS Database Encryption SDK for DynamoDB のすべてのプログラミング言語実装は相互運用可能
です。ただし、 SDK for .NET では、リストデータ型またはマップデータ型の空の値はサポートされ
ていません。つまり、DynamoDB 用の Java クライアント側の暗号化ライブラリを使用して、リス
トまたはマップデータ型の空の値を含む項目を書き込む場合、DynamoDB 用の .NET クライアント
側の暗号化ライブラリを使用してその項目を復号化して読み取ることはできません。

トピック

• DynamoDB 用の .NET クライアント側の暗号化ライブラリのインストール

• .NET を使用したデバッグ

• DynamoDB 用の .NET クライアント側の暗号化ライブラリの使用

• .NET の例

• AWS Database Encryption SDK for DynamoDB を使用するように既存の DynamoDB テーブルを設
定する

DynamoDB 用の .NET クライアント側の暗号化ライブラリのインストール

DynamoDB 用の .NET クライアント側の暗号化ライブラリは、NuGet の
AWS.Cryptography.DbEncryptionSDK.DynamoDb パッケージとして利用できます。ライブラリのイ
ンストールと構築の詳細については、aws-database-encryption-sdk-dynamodb リポジトリの .NET
README.md ファイルを参照してください。DynamoDB 用の .NET クライアント側の暗号化ライブ
ラリには、 AWS Key Management Service （AWS KMS) キーを使用していない場合 SDK for .NET
でも が必要です。は NuGet SDK for .NET パッケージと共にインストールされます。

.NET 230

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/
https://www.nuget.org/packages/AWS.Cryptography.DbEncryptionSDK.DynamoDb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/DynamoDbEncryption/runtimes/net/README.md
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/DynamoDbEncryption/runtimes/net/README.md

AWS データベース暗号化 SDK デベロッパーガイド

DynamoDB 用の .NET クライアント側の暗号化ライブラリのバージョン 3.x は、.NET 6.0 およ
び .NET Framework net48 以降をサポートしています。

.NET を使用したデバッグ

DynamoDB 用の .NET クライアント側の暗号化ライブラリはログを生成しません。DynamoDB
の .NET クライアント側の暗号化ライブラリの例外は例外メッセージを生成しますが、スタックト
レースは生成されません。

デバッグしやすいように、 SDK for .NETへのログ記録を必ず有効にしてください。からのログとエ
ラーメッセージ SDK for .NET は、 で発生するエラーを、DynamoDB 用の .NET クライアント側の
暗号化ライブラリのエラー SDK for .NET と区別するのに役立ちます。 SDK for .NET ログ記録の詳
細については、 AWS SDK for .NET デベロッパーガイドのAWSLogging」を参照してください。(こ
のトピックを確認するには、[.NET Framework コンテンツを開く] セクションを展開してください)。

DynamoDB 用の .NET クライアント側の暗号化ライブラリの使用

このトピックでは、DynamoDB 用の .NET クライアント側の暗号化ライブラリのバージョン 3.x の
関数とヘルパークラスについて説明します。

DynamoDB 用の .NET クライアント側の暗号化ライブラリを使用したプログラミングの詳細につい
ては、GitHub の aws-database-encryption-sdk-dynamodb リポジトリにある .NET の例を参照してく
ださい。

トピック

• 項目エンクリプタ

• AWS Database Encryption SDK for DynamoDB の属性アクション

• AWS Database Encryption SDK for DynamoDB の暗号化設定

• AWS Database Encryption SDK を使用した項目の更新

項目エンクリプタ

その中核となる AWS Database Encryption SDK for DynamoDB は項目エンクリプタで
す。DynamoDB 用の .NET クライアント側の暗号化ライブラリのバージョン 3.x を使用し
て、DynamoDB テーブル項目を次の方法で暗号化、署名、検証、復号できます。

.NET 231

https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-config-other.html#config-setting-awslogging
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/

AWS データベース暗号化 SDK デベロッパーガイド

DynamoDB API 用の低レベルの AWS Database Encryption SDK

テーブル暗号化設定を使用して、DynamoDB PutItemリクエストでクライアント側で項目を自
動的に暗号化して署名する DynamoDB クライアントを構築できます。このクライアントを直接
使用することも、ドキュメントモデルまたはオブジェクト永続性モデルを構築することもできま
す。

検索可能な暗号化を使用するには、低レベルの AWS Database Encryption SDK for DynamoDB
API を使用する必要があります。

下位レベルの DynamoDbItemEncryptor

下位レベルの DynamoDbItemEncryptor は、DynamoDB を呼び出すことなく、テーブル項
目を直接暗号化して署名するか、または復号して検証します。DynamoDB の PutItem または
GetItem リクエストは実行しません。例えば、下位レベルの DynamoDbItemEncryptor を使
用して、既に取得した DynamoDB 項目を直接復号して検証できます。下位レベルの を使用する
場合はDynamoDbItemEncryptor、DynamoDB との通信用に SDK for .NET が提供する低レベ
ルのプログラミングモデルを使用することをお勧めします。

下位レベルの DynamoDbItemEncryptor は、検索可能な暗号化をサポートしていません。

AWS Database Encryption SDK for DynamoDB の属性アクション

属性アクションは、暗号化および署名される属性値、署名のみされる属性値、署名されて暗号化コン
テキストに含まれる属性値、および無視される属性値を決定します。

.NET クライアントで属性アクションを指定するには、オブジェクトモデルを使用して属性アクショ
ンを手動で定義します。名前と値のペアが属性名と指定されたアクションを表すDictionaryオブ
ジェクトを作成して、属性アクションを指定します。

属性を暗号化して署名するように ENCRYPT_AND_SIGN を指定します。属性に署名するが暗号化は
しないように SIGN_ONLY を指定します。SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT を指
定して属性に署名し、暗号化コンテキストに含めます。属性に署名することなく、その属性を暗号化
することはできません。属性を無視するように DO_NOTHING を指定します。

パーティション属性とソート属性は、 SIGN_ONLYまたは のいずれかである必要があ
りますSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。属性を として定義する場
合SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT、パーティション属性とソート属性も である
必要がありますSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

.NET 232

https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-document
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-object-persistence
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-low-level
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-low-level

AWS データベース暗号化 SDK デベロッパーガイド

Note

属性アクションを定義した後、どの属性を署名から除外するかを定義する必要があります。
将来、新しい署名なし属性を簡単に追加できるように、署名なし属性を識別するための個別
のプレフィックス (「:」など) を選択することをお勧めします。DynamoDB スキーマと属性
アクションを定義するときに DO_NOTHING とマークされたすべての属性の属性名にこのプ
レフィックスを含めます。

次のオブジェクトモデルはENCRYPT_AND_SIGN、.NET クライアントで
SIGN_ONLY、SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT、、および DO_NOTHING 属
性アクションを指定する方法を示しています。この例では、プレフィックス:「」を使用し
てDO_NOTHING属性を識別します。

Note

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 暗号化アクションを使用するには、
AWS Database Encryption SDK のバージョン 3.3 以降を使用する必要があります。デー
タモデルを更新して を含める前に、すべてのリーダーに新しいバージョンをデプロイしま
すSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, // The
 partition attribute must be signed
 ["sort_key"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, // The sort
 attribute must be signed
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 ["attribute3"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT,
 [":attribute4"] = CryptoAction.DO_NOTHING
};

AWS Database Encryption SDK for DynamoDB の暗号化設定

AWS Database Encryption SDK を使用する場合は、DynamoDB テーブルの暗号化設定を明示的に定
義する必要があります。暗号化設定に必要な値は、属性アクションを手動で定義したか、またはアノ
テーション付きデータクラスを使用して定義したかによって異なります。

.NET 233

AWS データベース暗号化 SDK デベロッパーガイド

次のスニペットでは、低レベルの AWS Database Encryption SDK for DynamoDB API と、個別のプ
レフィックスで定義された許可された署名なし属性を使用して、DynamoDB テーブルの暗号化設定
を定義します。

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 // Optional: SearchConfig only required if you use beacons
 Search = new SearchConfig
 {
 WriteVersion = 1, // MUST be 1
 Versions = beaconVersions
 }
};
tableConfigs.Add(ddbTableName, config);

論理テーブル名

DynamoDB テーブルの論理テーブル名。

論理テーブル名は、DynamoDB の復元オペレーションを簡素化するために、テーブルに格
納されているすべてのデータに暗号的にバインドされます。最初に暗号化設定を定義する際
に、DynamoDB テーブル名を論理テーブル名として指定することを強くお勧めします。常に同
じ論理テーブル名を指定する必要があります。復号を成功させるには、論理テーブル名が、暗号
化の際に指定された名前と一致する必要があります。DynamoDB テーブルをバックアップから復
元した後に DynamoDB テーブル名が変更された場合でも、論理テーブル名を使用することで、
復号オペレーションで引き続きテーブルが確実に認識されます。

許可された署名なし属性

属性アクションで DO_NOTHING とマークされた属性。

許可された署名なし属性は、どの属性が署名から除外されるかをクライアントに伝えます。クラ
イアントは、他のすべての属性が署名に含まれていると想定します。その後、レコードを復号す
る際に、クライアントは、ユーザーが指定する、許可された署名なし属性の中からどの属性を検

.NET 234

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS データベース暗号化 SDK デベロッパーガイド

証する必要があり、どの属性を無視する必要があるかを決定します。許可された署名なし属性か
ら属性を削除することはできません。

すべての DO_NOTHING 属性をリストする配列を作成することで、許可された署名なし属性を明
示的に定義できます。また、DO_NOTHING 属性に名前を付ける際に個別のプレフィックスを指定
し、そのプレフィックスを使用してどの属性が署名されていないかをクライアントに伝えること
もできます。将来新しい DO_NOTHING 属性を追加するプロセスが簡素化されるため、個別のプ
レフィックスを指定することを強くお勧めします。詳細については、「データモデルの更新」を
参照してください。

すべての DO_NOTHING 属性のためにプレフィックスを指定しない場合は、クライア
ントが復号時に署名されていないことを想定するすべての属性を明示的にリストする
allowedUnsignedAttributes 配列を設定できます。どうしても必要な場合にのみ、許可され
た署名なし属性を明示的に定義する必要があります。

検索設定 (オプション）

SearchConfig はビーコンのバージョンを定義します。

検索可能な暗号化または署名付きビーコンを使用するには、SearchConfig を指定する必要があ
ります。

アルゴリズムスイート (オプション）

algorithmSuiteId は、 AWS Database Encryption SDK が使用するアルゴリズムスイートを
定義します。

代替アルゴリズムスイートを明示的に指定しない限り、 AWS Database Encryption SDK はデ
フォルトのアルゴリズムスイートを使用します。デフォルトのアルゴリズムスイートは、キー
の導出、デジタル署名、およびキーコミットメントを備えた AES-GCM アルゴリズムを使用し
ます。デフォルトのアルゴリズムスイートはほとんどのアプリケーションに適している可能性
がありますが、代替アルゴリズムスイートを選択できます。例えば、一部の信頼モデルは、デジ
タル署名を含まないアルゴリズムスイートによって満たされます。 AWS Database Encryption
SDK がサポートするアルゴリズムスイートの詳細については、「」を参照してくださいAWS
Database Encryption SDK でサポートされているアルゴリズムスイート。

ECDSA デジタル署名を使用しない AES-GCM アルゴリズムスイートを選択するには、テーブル
暗号化設定に次のスニペットを含めます。

AlgorithmSuiteId =
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384

.NET 235

AWS データベース暗号化 SDK デベロッパーガイド

AWS Database Encryption SDK を使用した項目の更新

AWS Database Encryption SDK は、暗号化または署名された属性を含む項目に対して
ddb:UpdateItem をサポートしていません。暗号化または署名された属性を更新するに
は、ddb:PutItem を使用する必要があります。PutItem リクエストで既存の項目と同じプライマリ
キーを指定すると、新しい項目が既存の項目に完全に置き換わります。CLOBBER を使用して、項
目を更新した後、保存する際にすべての属性をクリアして置き換えることもできます。

.NET の例

次の例は、DynamoDB 用の .NET クライアント側の暗号化ライブラリを使用して、アプリケー
ションのテーブル項目を保護する方法を示しています。その他の例 (および独自の例) について
は、GitHub の aws-database-encryption-sdk-dynamodb リポジトリにある .NET の例を参照してくだ
さい。

次の例は、DynamoDB 用の .NET クライアント側の暗号化ライブラリを、入力されていない新しい
Amazon DynamoDB テーブルに設定する方法を示しています。既存の Amazon DynamoDB テーブ
ルをクライアント側の暗号化のために設定する場合は、「既存のテーブルにバージョン 3.x を追加す
る」を参照してください。

トピック

• 低レベルの AWS Database Encryption SDK for DynamoDB API の使用

• 下位レベルの使用 DynamoDbItemEncryptor

低レベルの AWS Database Encryption SDK for DynamoDB API の使用

次の例は、 AWS KMS キーリングで低レベルの AWS Database Encryption SDK for DynamoDB API
を使用して、DynamoDB PutItemリクエストでクライアント側で項目を自動的に暗号化して署名す
る方法を示しています。

サポートされている任意のキーリングを使用できますが、可能な限りいずれかの AWS KMS キーリ
ングを使用することをお勧めします。

完全なコードサンプルを参照: BasicPutGetExample.cs

ステップ 1: AWS KMS キーリングを作成する

次の例ではCreateAwsKmsMrkMultiKeyring、 を使用して、対称暗号化 KMS AWS KMS キー
を持つ キーリングを作成します。CreateAwsKmsMrkMultiKeyring メソッドにより、キーリ
ングは、単一リージョンのキーとマルチリージョンのキーの両方を確実に正しく処理します。

.NET 236

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapperConfig.SaveBehavior.html#CLOBBER
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/net/src
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/BasicPutGetExample.cs

AWS データベース暗号化 SDK デベロッパーガイド

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

ステップ 2: 属性アクションを設定する

次の例では、テーブル項目の属性アクションの例を表す attributeActionsOnEncrypt ディ
クショナリを定義します。

Note

次の例では、属性を として定義していませ
んSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
属性を指定する場合、パーティション属性とソート属性も である必要がありま
すSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
 SIGN_ONLY
 ["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 [":attribute3"] = CryptoAction.DO_NOTHING
};

ステップ 3: 署名から除外する属性を定義する

次の例では、すべての DO_NOTHING 属性が個別のプレフィックス「:」を共有し、そのプレ
フィックスを使用して、許可される署名なし属性を定義すると想定しています。クライアント
は、「:」というプレフィックスが付いた属性名は署名から除外されると想定します。詳細につ
いては、「Allowed unsigned attributes」を参照してください。

const String unsignAttrPrefix = ":";

ステップ 4: DynamoDB テーブルの暗号化設定を定義する

次の例では、この DynamoDB テーブルの暗号化設定を表す tableConfigs マップを定義しま
す。

.NET 237

AWS データベース暗号化 SDK デベロッパーガイド

この例では、DynamoDB テーブル名を論理テーブル名として指定します。最初に暗号化設定を定
義する際に、DynamoDB テーブル名を論理テーブル名として指定することを強くお勧めします。
詳細については、「AWS Database Encryption SDK for DynamoDB の暗号化設定」を参照してく
ださい。

Note

検索可能な暗号化または署名付きビーコンを使用するには、暗号化設定に
SearchConfig も含める必要があります。

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix
};
tableConfigs.Add(ddbTableName, config);

ステップ 5: 新しい AWS SDK DynamoDB クライアントを作成する

次の例では、ステップ 4 TableEncryptionConfigsの を使用して新しい AWS SDK
DynamoDB クライアントを作成します。

var ddb = new Client.DynamoDbClient(
 new DynamoDbTablesEncryptionConfig { TableEncryptionConfigs = tableConfigs });

ステップ 6: DynamoDB テーブル項目を暗号化して署名する

次の例では、サンプルテーブル項目を表す item ディクショナリを定義し、その項目を
DynamoDB テーブルに配置します。項目は、DynamoDB に送信される前に、クライアント側で
暗号化および署名されます。

var item = new Dictionary<String, AttributeValue>
{

.NET 238

AWS データベース暗号化 SDK デベロッパーガイド

 ["partition_key"] = new AttributeValue("BasicPutGetExample"),
 ["sort_key"] = new AttributeValue { N = "0" },
 ["attribute1"] = new AttributeValue("encrypt and sign me!"),
 ["attribute2"] = new AttributeValue("sign me!"),
 [":attribute3"] = new AttributeValue("ignore me!")
};

PutItemRequest putRequest = new PutItemRequest
{
 TableName = ddbTableName,
 Item = item
};

PutItemResponse putResponse = await ddb.PutItemAsync(putRequest);

下位レベルの使用 DynamoDbItemEncryptor

次の例は、下位レベルの DynamoDbItemEncryptor を AWS KMS キーリングとともに使用して、
テーブル項目を直接暗号化して署名する方法を示しています。DynamoDbItemEncryptor は項目を
DynamoDB テーブルに配置しません。

DynamoDB 拡張クライアントではサポートされている任意のキーリングを使用できますが、可能な
限りいずれかの AWS KMS キーリングを使用することをお勧めします。

Note

下位レベルの DynamoDbItemEncryptor は、検索可能な暗号化をサポートしていませ
ん。検索可能な暗号化を使用するには、低レベルの AWS Database Encryption SDK for
DynamoDB API を使用します。

完全なコードサンプル「ItemEncryptDecryptExample.cs」を参照してください。

ステップ 1: AWS KMS キーリングを作成する

次の例ではCreateAwsKmsMrkMultiKeyring、 を使用して、対称暗号化 KMS AWS KMS キー
を持つ キーリングを作成します。CreateAwsKmsMrkMultiKeyring メソッドにより、キーリ
ングは、単一リージョンのキーとマルチリージョンのキーの両方を確実に正しく処理します。

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };

.NET 239

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/itemencryptor/ItemEncryptDecryptExample.cs

AWS データベース暗号化 SDK デベロッパーガイド

var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

ステップ 2: 属性アクションを設定する

次の例では、テーブル項目の属性アクションの例を表す attributeActionsOnEncrypt ディ
クショナリを定義します。

Note

次の例では、属性を として定義していませ
んSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
属性を指定する場合、パーティション属性とソート属性も である必要がありま
すSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

var attributeActionsOnEncrypt = new Dictionary<String, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
 SIGN_ONLY
 ["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 [":attribute3"] = CryptoAction.DO_NOTHING
};

ステップ 3: 署名から除外する属性を定義する

次の例では、すべての DO_NOTHING 属性が個別のプレフィックス「:」を共有し、そのプレ
フィックスを使用して、許可される署名なし属性を定義すると想定しています。クライアント
は、「:」というプレフィックスが付いた属性名は署名から除外されると想定します。詳細につ
いては、「Allowed unsigned attributes」を参照してください。

String unsignAttrPrefix = ":";

ステップ 4: DynamoDbItemEncryptor 設定を定義する

次の例では、DynamoDbItemEncryptor の設定を定義します。

この例では、DynamoDB テーブル名を論理テーブル名として指定します。最初に暗号化設定を定
義する際に、DynamoDB テーブル名を論理テーブル名として指定することを強くお勧めします。

.NET 240

AWS データベース暗号化 SDK デベロッパーガイド

詳細については、「AWS Database Encryption SDK for DynamoDB の暗号化設定」を参照してく
ださい。

var config = new DynamoDbItemEncryptorConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix
};

ステップ 5: DynamoDbItemEncryptor を作成する

次の例では、ステップ 4 の config を使用して新しい DynamoDbItemEncryptor を作成しま
す。

var itemEncryptor = new DynamoDbItemEncryptor(config);

ステップ 6: テーブル項目を直接暗号化して署名する

次の例では、DynamoDbItemEncryptor を使用して項目を直接暗号化し、署名しま
す。DynamoDbItemEncryptor は項目を DynamoDB テーブルに配置しません。

var originalItem = new Dictionary<String, AttributeValue>
{
 ["partition_key"] = new AttributeValue("ItemEncryptDecryptExample"),
 ["sort_key"] = new AttributeValue { N = "0" },
 ["attribute1"] = new AttributeValue("encrypt and sign me!"),
 ["attribute2"] = new AttributeValue("sign me!"),
 [":attribute3"] = new AttributeValue("ignore me!")
};

var encryptedItem = itemEncryptor.EncryptItem(
 new EncryptItemInput { PlaintextItem = originalItem }
).EncryptedItem;

.NET 241

AWS データベース暗号化 SDK デベロッパーガイド

AWS Database Encryption SDK for DynamoDB を使用するように既存の DynamoDB
テーブルを設定する

DynamoDB 用の .NET クライアント側の暗号化ライブラリのバージョン 3.x では、クライアント側
の暗号化用に既存の Amazon DynamoDB テーブルを設定できます。このトピックでは、データが入
力されている既存の DynamoDB テーブルにバージョン 3.x を追加するために必要な 3 つのステップ
についてのガイダンスを提供します。

ステップ 1: 暗号化された項目の読み取りと書き込みの準備をする

Database Encryption SDK AWS クライアントが暗号化された項目を読み書きできるように準備する
には、次のステップを実行します。次の変更をデプロイした後も、クライアントは引き続きプレーン
テキスト項目の読み取りと書き込みを行います。テーブルに書き込まれる新しい項目の暗号化や署名
は行いませんが、暗号化された項目が表示されるとすぐに復号できます。これらの変更により、クラ
イアントが新しい項目の暗号化を開始するための準備が整います。次のステップに進む前に、次の変
更を各リーダーにデプロイする必要があります。

1. 属性アクションを定義する

オブジェクトモデルを作成して、暗号化および署名される属性値、署名のみされる属性値、およ
び無視される属性値を定義します。

デフォルトでは、プライマリキー属性は署名されてはいるが、暗号化されておらず
(SIGN_ONLY)、他のすべての属性は暗号化されて署名されています (ENCRYPT_AND_SIGN)。

属性を暗号化して署名するように ENCRYPT_AND_SIGN を指定します。属
性に署名するが暗号化はしないように SIGN_ONLY を指定します。署名と属
性SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTを指定し、暗号化コンテキストに含めま
す。属性に署名することなく、その属性を暗号化することはできません。属性を無視するように
DO_NOTHING を指定します。詳細については、「AWS Database Encryption SDK for DynamoDB
の属性アクション」を参照してください。

Note

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を指定す
る場合、パーティション属性とソート属性も である必要がありま
すSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>

.NET 242

AWS データベース暗号化 SDK デベロッパーガイド

{
 ["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
 SIGN_ONLY
 ["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 [":attribute3"] = CryptoAction.DO_NOTHING
};

2. 署名から除外する属性を定義する

次の例では、すべての DO_NOTHING 属性が個別のプレフィックス「:」を共有し、そのプレ
フィックスを使用して、許可される署名なし属性を定義すると想定しています。クライアント
は、「:」というプレフィックスが付いた属性名は署名から除外されると想定します。詳細につ
いては、「Allowed unsigned attributes」を参照してください。

const String unsignAttrPrefix = ":";

3. キーリングを作成します。

次の例では AWS KMS キーリングを作成します。 AWS KMS キーリングは、対称暗号化または
非対称 RSA AWS KMS keys を使用して、データキーを生成、暗号化、復号します。

この例では、CreateMrkMultiKeyring を使用して、対称暗号化 KMS キーで AWS KMS キー
リングを作成します。CreateAwsKmsMrkMultiKeyring メソッドにより、キーリングは、単一
リージョンのキーとマルチリージョンのキーの両方を確実に正しく処理します。

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

4. DynamoDB テーブルの暗号化設定を定義する

次の例では、この DynamoDB テーブルの暗号化設定を表す tableConfigs マップを定義しま
す。

この例では、DynamoDB テーブル名を論理テーブル名として指定します。最初に暗号化設定を定
義する際に、DynamoDB テーブル名を論理テーブル名として指定することを強くお勧めします。

プレーンテキストのオーバーライドとして
FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT を指定する必要があります。このポリ

.NET 243

AWS データベース暗号化 SDK デベロッパーガイド

シーは、プレーンテキスト項目の読み取りと書き込みを継続し、暗号化された項目を読み取り、
クライアントが暗号化された項目を書き込むための準備を整えます。

テーブル暗号化設定に含まれる値の詳細については、「」を参照してくださいAWS Database
Encryption SDK for DynamoDB の暗号化設定。

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 PlaintextOverride = FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT
};
tableConfigs.Add(ddbTableName, config);

5. 新しい AWS SDK DynamoDB クライアントを作成する

次の例では、ステップ 4 TableEncryptionConfigsの を使用して新しい AWS SDK
DynamoDB クライアントを作成します。

var ddb = new Client.DynamoDbClient(
 new DynamoDbTablesEncryptionConfig { TableEncryptionConfigs = tableConfigs });

ステップ 2: 暗号化および署名された項目を書き込む

テーブル暗号化設定のプレーンテキストポリシーを更新して、クライアントが暗号化および署名され
た項目を書き込むことを許可します。次の変更をデプロイすると、クライアントはステップ 1 で設
定した属性アクションに基づいて新しい項目を暗号化して署名します。クライアントは、プレーンテ
キストの項目と暗号化および署名された項目を読み取ることができるようになります。

ステップ 3 に進む前に、テーブル内の既存のすべてのプレーンテキスト項目を暗号化して署名する
必要があります。既存のプレーンテキスト項目を迅速に暗号化するために実行できる単一のメトリ
クスやクエリはありません。システムにとって最も合理的なプロセスを使用してください。例えば、
定義した属性アクションと暗号化設定を使用して、時間をかけてテーブルをスキャンし、項目を書き
換える非同期プロセスを使用できます。テーブル内のプレーンテキスト項目を識別するには、 AWS

.NET 244

AWS データベース暗号化 SDK デベロッパーガイド

Database Encryption SDK が暗号化および署名されたときに項目に追加する aws_dbe_headおよび
aws_dbe_foot 属性を含まないすべての項目をスキャンすることをお勧めします。

次の の例では、ステップ 1 のテーブル暗号化設定を更新します。プレーンテキストのオーバーラ
イドを FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT を使用して更新する必要がありま
す。このポリシーはプレーンテキスト項目を引き続き読み取りますが、暗号化された項目の読み取り
と書き込みも行います。更新された を使用して、新しい AWS SDK DynamoDB クライアントを作成
しますTableEncryptionConfigs。

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 PlaintextOverride = FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT
};
tableConfigs.Add(ddbTableName, config);

ステップ 3: 暗号化および署名された項目のみを読み取る

すべての項目を暗号化して署名したら、テーブル暗号化設定のプレーンテキストの上書きを更新し
て、クライアントが暗号化および署名された項目を読み書きできるようにします。次の変更をデプロ
イすると、クライアントはステップ 1 で設定した属性アクションに基づいて新しい項目を暗号化し
て署名します。クライアントは、暗号化および署名された項目のみを読み取ることができます。

次の の例では、ステップ 2 のテーブル暗号化設定を更新しま
す。FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT を使用してプレーンテキスト
オーバーライドを更新することも、設定からプレーンテキストポリシーを削除することもでき
ます。クライアントは、デフォルトでは、暗号化および署名された項目の読み取りと書き込みの
みを行います。更新された を使用して、新しい AWS SDK DynamoDB クライアントを作成しま
すTableEncryptionConfigs。

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig

.NET 245

AWS データベース暗号化 SDK デベロッパーガイド

{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 // Optional: you can also remove the plaintext policy from your configuration
 PlaintextOverride = FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT
};
tableConfigs.Add(ddbTableName, config);

Rust

このトピックでは、DynamoDB 用の Rust クライアント側の暗号化ライブラリのバージョン 1.x をイ
ンストールして使用する方法について説明します。 AWS Database Encryption SDK for DynamoDB
を使用したプログラミングの詳細については、GitHub の aws-database-encryption-sdk-dynamodb
リポジトリにある Rust の例を参照してください。

AWS Database Encryption SDK for DynamoDB のすべてのプログラミング言語実装は相互運用可能
です。

トピック

• 前提条件

• インストール

• DynamoDB 用の Rust クライアント側の暗号化ライブラリの使用

前提条件

DynamoDB 用の Rust クライアント側の暗号化ライブラリをインストールする前に、次の前提条件が
あることを確認してください。

Rust と Cargo をインストールする

rustup を使用して Rust の現在の安定版リリースをインストールします。

rustup のダウンロードとインストールの詳細については、「Cargo Book」の「インストール手
順」を参照してください。

Rust 246

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/
https://rustup.rs/
https://www.rust-lang.org/
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://doc.rust-lang.org/cargo/getting-started/installation.html

AWS データベース暗号化 SDK デベロッパーガイド

インストール

DynamoDB 用の Rust クライアント側の暗号化ライブラリは、Crates.io で aws-db-esdk クレートと
して利用できます。ライブラリのインストールと構築の詳細については、aws-database-encryption-
sdk-dynamodb GitHub リポジトリの README.md ファイルを参照してください。

手動

DynamoDB 用の Rust クライアント側の暗号化ライブラリをインストールするには、aws-
database-encryption-sdk-dynamodb GitHub リポジトリのクローンを作成するか、ダウンロード
します。

最新バージョンをインストールするには

プロジェクトディレクトリで次の Cargo コマンドを実行します。

cargo add aws-db-esdk

または、Cargo.toml に次の行を追加します。

aws-db-esdk = "<version>"

DynamoDB 用の Rust クライアント側の暗号化ライブラリの使用

このトピックでは、DynamoDB 用の Rust クライアント側の暗号化ライブラリのバージョン 1.x の関
数とヘルパークラスについて説明します。

DynamoDB 用の Rust クライアント側の暗号化ライブラリを使用したプログラミングの詳細について
は、GitHub の aws-database-encryption-sdk-dynamodb リポジトリにある Rust の例を参照してくだ
さい。

トピック

• 項目エンクリプタ

• AWS Database Encryption SDK for DynamoDB の属性アクション

• AWS Database Encryption SDK for DynamoDB の暗号化設定

• AWS Database Encryption SDK を使用した項目の更新

Rust 247

https://crates.io/crates/aws-db-esdk
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/

AWS データベース暗号化 SDK デベロッパーガイド

項目エンクリプタ

その中核となる AWS Database Encryption SDK for DynamoDB は項目エンクリプタで
す。DynamoDB 用の Rust クライアント側の暗号化ライブラリのバージョン 1.x を使用して、次の方
法で DynamoDB テーブル項目を暗号化、署名、検証、復号化できます。

DynamoDB API 用の低レベルの AWS Database Encryption SDK

テーブル暗号化設定を使用して、DynamoDB PutItemリクエストでクライアント側で項目を自
動的に暗号化して署名する DynamoDB クライアントを構築できます。

検索可能な暗号化を使用するには、低レベルの AWS Database Encryption SDK for DynamoDB
API を使用する必要があります。

DynamoDB API 用の低レベルの AWS Database Encryption SDK の使用方法を示す例について
は、GitHub の aws-database-encryption-sdk-dynamodb リポジトリの basic_get_put_example.rs
を参照してください。

下位レベルの DynamoDbItemEncryptor

下位レベルの DynamoDbItemEncryptor は、DynamoDB を呼び出すことなく、テーブル項
目を直接暗号化して署名するか、または復号して検証します。DynamoDB の PutItem または
GetItem リクエストは実行しません。例えば、下位レベルの DynamoDbItemEncryptor を使
用して、既に取得した DynamoDB 項目を直接復号して検証できます。

下位レベルの DynamoDbItemEncryptor は、検索可能な暗号化をサポートしていません。

下位レベルの の使用方法を示す例についてはDynamoDbItemEncryptor、GitHub の aws-
database-encryption-sdk-dynamodb リポジトリの item_encrypt_decrypt.rs を参照してください。

AWS Database Encryption SDK for DynamoDB の属性アクション

属性アクションは、暗号化および署名される属性値、署名のみされる属性値、署名されて暗号化コン
テキストに含まれる属性値、および無視される属性値を決定します。

Rust クライアントで属性アクションを指定するには、オブジェクトモデルを使用して属性アクショ
ンを手動で定義します。名前と値のペアが属性名と指定されたアクションを表すHashMapオブジェ
クトを作成して、属性アクションを指定します。

属性を暗号化して署名するように ENCRYPT_AND_SIGN を指定します。属性に署名するが暗号化は
しないように SIGN_ONLY を指定します。SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT を指

Rust 248

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/basic_get_put_example.rs
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/itemencryptor/item_encrypt_decrypt.rs

AWS データベース暗号化 SDK デベロッパーガイド

定して属性に署名し、暗号化コンテキストに含めます。属性に署名することなく、その属性を暗号化
することはできません。属性を無視するように DO_NOTHING を指定します。

パーティション属性とソート属性は、 SIGN_ONLYまたは のいずれかである必要があ
りますSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。属性を として定義する場
合SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT、パーティション属性とソート属性も である
必要がありますSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT。

Note

属性アクションを定義した後、どの属性を署名から除外するかを定義する必要があります。
将来、新しい署名なし属性を簡単に追加できるように、署名なし属性を識別するための個別
のプレフィックス (「:」など) を選択することをお勧めします。DynamoDB スキーマと属性
アクションを定義するときに DO_NOTHING とマークされたすべての属性の属性名にこのプ
レフィックスを含めます。

次のオブジェクトモデルはENCRYPT_AND_SIGN、Rust クライアントで
SIGN_ONLY、SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT、、および DO_NOTHING 属
性アクションを指定する方法を示しています。この例では、プレフィックス:「」を使用し
てDO_NOTHING属性を識別します。

let attribute_actions_on_encrypt = HashMap::from([
 ("partition_key".to_string(), CryptoAction::SignOnly),
 ("sort_key".to_string(), CryptoAction::SignOnly),
 ("attribute1".to_string(), CryptoAction::EncryptAndSign),
 ("attribute2".to_string(), CryptoAction::SignOnly),
 (":attribute3".to_string(), CryptoAction::DoNothing),
]);

AWS Database Encryption SDK for DynamoDB の暗号化設定

AWS Database Encryption SDK を使用する場合は、DynamoDB テーブルの暗号化設定を明示的に定
義する必要があります。暗号化設定に必要な値は、属性アクションを手動で定義したか、またはアノ
テーション付きデータクラスを使用して定義したかによって異なります。

次のスニペットでは、低レベルの AWS Database Encryption SDK for DynamoDB API と、個別のプ
レフィックスで定義された許可された署名なし属性を使用して、DynamoDB テーブルの暗号化設定
を定義します。

Rust 249

AWS データベース暗号化 SDK デベロッパーガイド

let table_config = DynamoDbTableEncryptionConfig::builder()
 .logical_table_name(ddb_table_name)
 .partition_key_name("partition_key")
 .sort_key_name("sort_key")
 .attribute_actions_on_encrypt(attribute_actions_on_encrypt)
 .keyring(kms_keyring)
 .allowed_unsigned_attribute_prefix(UNSIGNED_ATTR_PREFIX)
 // Specifying an algorithm suite is optional
 .algorithm_suite_id(
 DbeAlgorithmSuiteId::AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)
 .build()?;

let table_configs = DynamoDbTablesEncryptionConfig::builder()
 .table_encryption_configs(HashMap::from([(ddb_table_name.to_string(),
 table_config)]))
 .build()?;

論理テーブル名

DynamoDB テーブルの論理テーブル名。

論理テーブル名は、DynamoDB の復元オペレーションを簡素化するために、テーブルに格
納されているすべてのデータに暗号的にバインドされます。最初に暗号化設定を定義する際
に、DynamoDB テーブル名を論理テーブル名として指定することを強くお勧めします。常に同
じ論理テーブル名を指定する必要があります。復号を成功させるには、論理テーブル名が、暗号
化の際に指定された名前と一致する必要があります。DynamoDB テーブルをバックアップから復
元した後に DynamoDB テーブル名が変更された場合でも、論理テーブル名を使用することで、
復号オペレーションで引き続きテーブルが確実に認識されます。

許可された署名なし属性

属性アクションで DO_NOTHING とマークされた属性。

許可された署名なし属性は、どの属性が署名から除外されるかをクライアントに伝えます。クラ
イアントは、他のすべての属性が署名に含まれていると想定します。その後、レコードを復号す
る際に、クライアントは、ユーザーが指定する、許可された署名なし属性の中からどの属性を検
証する必要があり、どの属性を無視する必要があるかを決定します。許可された署名なし属性か
ら属性を削除することはできません。

すべての DO_NOTHING 属性をリストする配列を作成することで、許可された署名なし属性を明
示的に定義できます。また、DO_NOTHING 属性に名前を付ける際に個別のプレフィックスを指定

Rust 250

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS データベース暗号化 SDK デベロッパーガイド

し、そのプレフィックスを使用してどの属性が署名されていないかをクライアントに伝えること
もできます。将来新しい DO_NOTHING 属性を追加するプロセスが簡素化されるため、個別のプ
レフィックスを指定することを強くお勧めします。詳細については、「データモデルの更新」を
参照してください。

すべての DO_NOTHING 属性のためにプレフィックスを指定しない場合は、クライア
ントが復号時に署名されていないことを想定するすべての属性を明示的にリストする
allowedUnsignedAttributes 配列を設定できます。どうしても必要な場合にのみ、許可され
た署名なし属性を明示的に定義する必要があります。

検索設定 (オプション）

SearchConfig はビーコンのバージョンを定義します。

検索可能な暗号化または署名付きビーコンを使用するには、SearchConfig を指定する必要があ
ります。

アルゴリズムスイート (オプション）

algorithmSuiteId は、 AWS Database Encryption SDK が使用するアルゴリズムスイートを
定義します。

代替アルゴリズムスイートを明示的に指定しない限り、 AWS Database Encryption SDK はデ
フォルトのアルゴリズムスイートを使用します。デフォルトのアルゴリズムスイートは、キー
の導出、デジタル署名、およびキーコミットメントを備えた AES-GCM アルゴリズムを使用し
ます。デフォルトのアルゴリズムスイートはほとんどのアプリケーションに適している可能性
がありますが、代替アルゴリズムスイートを選択できます。例えば、一部の信頼モデルは、デジ
タル署名を含まないアルゴリズムスイートによって満たされます。 AWS Database Encryption
SDK がサポートするアルゴリズムスイートの詳細については、「」を参照してくださいAWS
Database Encryption SDK でサポートされているアルゴリズムスイート。

ECDSA デジタル署名のない AES-GCM アルゴリズムスイートを選択するには、テーブル暗号化
設定に次のスニペットを含めます。

.algorithm_suite_id(
 DbeAlgorithmSuiteId::AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)

Rust 251

AWS データベース暗号化 SDK デベロッパーガイド

AWS Database Encryption SDK を使用した項目の更新

AWS Database Encryption SDK は、暗号化または署名された属性を含む項目に対して
ddb:UpdateItem をサポートしていません。暗号化または署名された属性を更新するに
は、ddb:PutItem を使用する必要があります。PutItem リクエストで既存の項目と同じプライマリ
キーを指定すると、新しい項目が既存の項目に完全に置き換わります。

レガシー DynamoDB 暗号化クライアント

2023 年 6 月 9 日、クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に
変更されました。 AWS Database Encryption SDK は、引き続きレガシー DynamoDB 暗号化クライ
アントバージョンをサポートします。名前の変更によって変更されたクライアント側の暗号化ライブ
ラリのさまざまな部分の詳細については、「Amazon DynamoDB Encryption Client の名前の変更」
を参照してください。

DynamoDB 用の Java クライアント側の暗号化ライブラリの最新バージョンに移行するには、
「バージョン 3.x に移行する」を参照してください。

トピック

• AWS Database Encryption SDK for DynamoDB バージョンのサポート

• DynamoDB 暗号化クライアントの仕組み

• Amazon DynamoDB Encryption Client の概念

• 暗号マテリアルプロバイダー

• Amazon DynamoDB Encryption Client で利用可能なプログラミング言語

• データモデルの変更

• DynamoDB 暗号化クライアントアプリケーションの問題のトラブルシューティング

AWS Database Encryption SDK for DynamoDB バージョンのサポート

「レガシー」の章のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x お
よび DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載されていま
す。

次の表には、Amazon DynamoDB でクライアント側の暗号化をサポートする言語とバージョンがリ
ストされています。

レガシー 252

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

AWS データベース暗号化 SDK デベロッパーガイド

プログラム言語 バージョン SDK メジャーバージョンのラ
イフサイクルフェーズ

Java バージョン 1.x サポート終了フェーズ、2022
年 7 月発効

Java バージョン 2.x 一般提供 (GA)

Java バージョン 3.x 一般提供 (GA)

Python バージョン 1.x サポート終了フェーズ、2022
年 7 月発効

Python バージョン 2.x サポート終了フェーズ、2022
年 7 月発効

Python バージョン 3.x 一般提供 (GA)

DynamoDB 暗号化クライアントの仕組み

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され
ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

DynamoDB 暗号化クライアントは、DynamoDB に保存されているデータを保護するように特別に設
計されています。ライブラリには、拡張が可能でまた変更なしで使用できる安全な実装が含まれてい
ます。また、ほとんどの要素は抽象要素で表されるため、互換性のあるカスタムコンポーネントを作
成して使用できます。

テーブル項目の暗号化と署名

DynamoDB 暗号化クライアントの中核には、テーブル項目を暗号化、署名、検証、復号する項目エ
ンクリプタがあります。テーブル項目に関する情報と、暗号化して署名する項目に関する指示が取り

仕組み 253

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS データベース暗号化 SDK デベロッパーガイド

込まれます。選択して設定した暗号化マテリアルプロバイダーから、暗号化マテリアルとその使用方
法に関する指示が取得されます。

次の図は、このプロセスの高レベルのビューを示しています。

テーブル項目を暗号化して署名するには、DynamoDB 暗号化クライアントに次のものが必要です。

• テーブルについての情報。お客様が提供する DynamoDB 暗号化コンテキストからテーブルに関す
る情報を取得します。一部のヘルパーは、DynamoDB から必要な情報を取得し、DynamoDB 暗号
化コンテキストを作成します。

Note

DynamoDB 暗号化クライアントの DynamoDB 暗号化コンテキストは、 AWS Key
Management Service （AWS KMS) および の暗号化コンテキストとは関係ありません
AWS Encryption SDK。 DynamoDB

• 暗号化して署名する属性。この情報は、指定した属性アクションから取得されます。

仕組み 254

AWS データベース暗号化 SDK デベロッパーガイド

• 暗号化および署名キーを含む、暗号化マテリアル。これらは、お客様が選択して設定する暗号化マ
テリアルプロバイダー (CMP) から取得されます。

• 項目の暗号化と署名の手順。CMP は、暗号化および署名アルゴリズムを含む、暗号化マテリアル
を使用するための指示を実際のマテリアル説明に追加します。

項目エンクリプタは、これらの要素のすべてを使用して項目を暗号化して署名します。項目エンクリ
プタは、暗号化と署名の指示 (実際のマテリアル説明) を含むマテリアル説明属性と、その署名を含
む属性を項目に追加します。項目エンクリプタと直接やり取りすることができます。また、項目エン
クリプタとやり取りするヘルパー機能を使用して、安全なデフォルトの動作を実装することもできま
す。

結果は、暗号化された署名済みデータを含む DynamoDB 項目です。

テーブル項目の検証と復号

これらのコンポーネントは、次の図に示すように、項目を検証および復号するために一緒に機能しま
す。

仕組み 255

AWS データベース暗号化 SDK デベロッパーガイド

項目を検証し、復号するためには、DynamoDB 暗号化クライアントには、次のように、同じコン
ポーネント、同じ設定のコンポーネント、または項目を復号するために特に設計されたコンポーネン
トが必要です。

• DynamoDB 暗号化コンテキストからのテーブルに関する情報。

• 検証および復号する属性。これらは属性アクションから取得されます。

• 選択し、設定した暗号化マテリアルプロバイダー (CMP) からの検証キーおよび復号キーを含む復
号マテリアル。

暗号化された項目には、暗号化に使用された CMP のレコードは含まれません。同じ CMP、同じ
設定の CMP、または項目を復号するように設計された CMP 指定する必要があります。

• 暗号化アルゴリズムと署名アルゴリズムを含む、項目の暗号化と項目の署名に関する情報。クライ
アントは、項目のマテリアル説明属性からこれらを取得します。

項目エンクリプタは、これらの要素のすべてを使用して項目の検証と復号を行います。また、マテリ
アル記述と署名属性も削除されます。結果はプレーンテキスト DynamoDB 項目です。

Amazon DynamoDB Encryption Client の概念

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され
ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

このトピックでは、Amazon DynamoDB Encryption Client で使用されている概念と用語について説
明します。

DynamoDB 暗号化クライアントのコンポーネントがやり取りする方法については、DynamoDB 暗号
化クライアントの仕組み を参照してください。

トピック

• 暗号化マテリアルプロバイダー (CMP)

• 項目エンクリプタ

概念 256

AWS データベース暗号化 SDK デベロッパーガイド

• 属性アクション

• マテリアル記述

• DynamoDB 暗号化コンテキスト

• プロバイダーストア

暗号化マテリアルプロバイダー (CMP)

DynamoDB 暗号化クライアントの実装時に、最初のタスクの 1 つとして、暗号化マテリアルプロバ
イダー (CMP) (暗号化マテリアルプロバイダーとも呼ばれる) の選択があります。残りの実装の多く
は、この選択によって決まります。

暗号化マテリアルプロバイダー (CMP) は項目エンクリプタが、テーブル項目を暗号化し署名するの
に使用する暗号化マテリアルを収集、アセンブルし、返します。CMP は、使用する暗号化アルゴリ
ズムと、暗号化キーと署名キーを生成して保護する方法を決定します。

CMP は項目エンクリプタとやり取りします。項目エンクリプタは、暗号化または復号マテリアルを
CMP に要求し、CMP はそれを項目エンクリプタに返します。次に、項目エンクリプタは、暗号化マ
テリアルを使用して、項目の暗号化、署名、検証、および復号を行います。

CMP は、クライアントの設定時に指定します。互換性のあるカスタム CMP を作成するか、ライブ
ラリ内の多くの CMP のいずれかを使用できます。ほとんどの CMP は、複数のプログラミング言語
で使用できます。

項目エンクリプタ

項目エンクリプタは、DynamoDB 暗号化クライアントの暗号化オペレーションを実行する低レベル
のコンポーネントです。項目エンクリプタは、暗号化マテリアルプロバイダー (CMP) に暗号化マテ
リアルをリクエストし、CMP より返るマテリアルを使用して、テーブル項目を暗号化して署名する
か、検証して復号します。

項目エンクリプタと直接やり取りするか、ライブラリにあるヘルパーを使用することができま
す。例えば、Java 用 DynamoDB 暗号化クライアントには、DynamoDBMapper で使用できる
AttributeEncryptor ヘルパークラスが含まれています。DynamoDBEncryptor 項目エン
クリプタとは直接やり取りしません。Python ライブラリには、項目エンクリプタとやり取りす
る、EncryptedTable、EncryptedClient、および EncryptedResource ヘルパークラスが含
まれています。

概念 257

AWS データベース暗号化 SDK デベロッパーガイド

属性アクション

属性アクションは、項目の各属性に対して実行するアクションを項目エンクリプタに指示します。

属性アクションの値は、次のいずれかの値になります。

• 暗号化と署名 –属性値を暗号化します。項目の署名に属性 (名前と値) を含めます。

• 署名のみ - 項目署名に属性を含めます。

• 何もしない - 属性に対して暗号化と署名のいずれも行いません。

機密データを保存できるすべての属性は、暗号化と署名を使用します。プライマリキー属性 (パー
ティションキーとソートキー) は、署名のみを使用します。マテリアル説明属性および署名属性は、
署名も暗号化もされていません。これらの属性の属性アクションを指定する必要はありません。

属性アクションを慎重に選択します。不確かな場合は、暗号化と署名を使用します。DynamoDB 暗
号化クライアントを使用してテーブル項目を保護した後は、署名検証エラーのリスクを冒すことな
く、属性のアクションを変更することはできません。詳細については、「データモデルの変更」を参
照してください。

Warning

プライマリキー属性を暗号化しないでください。DynamoDB でテーブル全体のスキャンを実
行せずに項目を見つけられるように、プレーンテキストの状態を維持する必要があります。

DynamoDB 暗号化コンテキストがプライマリキー属性を識別する場合、それらを暗号化しようとす
るとクライアントはエラーをスローします。

属性アクションの指定に使用する手法は、プログラミング言語ごとに異なります。また、使用するヘ
ルパークラスに固有の場合もあります。

詳細については、使用しているプログラミング言語のドキュメントを参照してください。

• Python

• Java

概念 258

AWS データベース暗号化 SDK デベロッパーガイド

マテリアル記述

暗号化されたテーブル項目のマテリアル説明は、暗号化アルゴリズムなどの情報で構成されます。こ
の情報は、テーブル項目が暗号化および署名される仕組みに関するものです。暗号化マテリアルプロ
バイダー (CMP) は、暗号化し、署名するための暗号化マテリアルをアセンブルするときに、マテリ
アル説明を記録します。後で、項目を検証および復号するために暗号化されたマテリアルをアセンブ
ルする必要がある場合は、そのマテリアル記述をガイドとして使用します。

DynamoDB 暗号化クライアントでは、マテリアル記述は 3 つの関連する要素について参照します。

リクエストされたマテリアル説明

暗号化マテリアルプロバイダー (CMP) によっては、暗号化アルゴリズムなどの高度なオプション
を指定できます。選択肢を示すために、テーブル項目を暗号化するリクエストの DynamoDB 暗
号化コンテキストのマテリアル説明プロパティに名前と値のペアを追加します。この要素は、リ
クエストされたマテリアル説明と呼ばれます。リクエストされたマテリアル記述の有効値は、選
択した CMP によって定義されます。

Note

マテリアル記述は安全なデフォルト値を上書きできるため、やむを得ない理由がない限
り、リクエストされたマテリアル記述を省略することをお奨めします。

実際のマテリアル記述

暗号化マテリアルプロバイダー (CMP) が返すマテリアル説明は、実際のマテリアル説明と呼ばれ
ます。CMP が暗号化マテリアルを構築したときに使用した実際の値について説明します。また、
通常、リクエストされたマテリアル記述で構成され、ある場合は追加と変更を含みます。

マテリアル記述属性

クライアントは、実際のマテリアル説明を暗号化項目のマテリアル説明属性に保存します。この
マテリアル記述属性名は、amzn-ddb-map-desc で、その値は実際のマテリアル記述です。クラ
イアントは、マテリアル記述属性の値を使用して、項目の検証および復号を行います。

概念 259

AWS データベース暗号化 SDK デベロッパーガイド

DynamoDB 暗号化コンテキスト

DynamoDB 暗号化コンテキストは、テーブルと項目に関する情報を暗号化マテリアルプロバイダー
(CMP) に提供します。高度な実装では、DynamoDB 暗号化コンテキストに、リクエストされたマテ
リアルの説明を含めることができます。

テーブル項目を暗号化すると、DynamoDB 暗号化コンテキストが暗号化された属性値に暗号でバイ
ンドされます。復号時に、DynamoDB 暗号化コンテキストが暗号化に使用された DynamoDB 暗号
化コンテキストに対して大文字と小文字を区別して完全に一致しない場合、復号オペレーションは
失敗します。項目エンクリプタと直接やり取りする場合は、暗号化メソッドまたは復号メソッドを
呼び出すときに DynamoDB 暗号化コンテキストを提供する必要があります。ほとんどのヘルパー
は、DynamoDB 暗号化コンテキストを作成します。

Note

DynamoDB 暗号化クライアントの DynamoDB 暗号化コンテキストは、 AWS Key
Management Service （AWS KMS) および の暗号化コンテキストとは関係ありません AWS
Encryption SDK。 DynamoDB

DynamoDB 暗号化のコンテキストによって次のフィールドを含めることができます。すべての
フィールドと値はオプションです。

• テーブル名

• パーティションキー名

• ソートキー名

• 属性名と値のペア

• リクエストされたマテリアル説明

プロバイダーストア

プロバイダーストアは、暗号化マテリアルプロバイダー (CMP) を返すコンポーネントです。プロバ
イダーストアは、CMP を作成するか、別のプロバイダーストアなどの別のソースから CMP を取得
できます。プロバイダーストアは、作成した CMP のバージョンを、保存されたそれぞれの CMP が
リクエスタのマテリアル名とバージョン番号によって識別される永続的ストレージに保存します。

DynamoDB 暗号化クライアントの最新プロバイダーはプロバイダーストアから CMP を取得します
が、プロバイダーストアを使用して任意のコンポーネントに CMP を提供できます。各最新のプロバ

概念 260

AWS データベース暗号化 SDK デベロッパーガイド

イダーは 1 つのプロバイダーストアに関連付けられていますが、プロバイダーストアは複数のホス
ト間で多くのリクエスタに CMP を提供できます。

プロバイダーストアは、オンデマンドで新しいバージョンの CMP を作成し、新しいバージョンと既
存のバージョンを返します。また、指定されたマテリアル名の最新バージョン番号も返されます。こ
れにより、リクエスタは、プロバイダーストアからリクエストできる新しいバージョンの CMP がリ
リースされるタイミングを把握することができます。

DynamoDB 暗号化クライアントには MetaStore が含まれています。これは、DynamoDB に保管
され、内部 DynamoDB 暗号化クライアントを使用して暗号化されたキーを使用してラップされた
CMP を作成するプロバイダーストアです。

詳細はこちら:

• プロバイダーストア: Java、Python

• MetaStore: Java、Python

暗号マテリアルプロバイダー

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され
ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

DynamoDB 暗号化クライアントを使用する場合に最も重要となる決定事項の 1 つは、暗号化マテリ
アルプロバイダー (CMP) の選択です。CMP は、暗号化マテリアルをアセンブルして、項目エンクリ
プタに返します。また、暗号化キーと署名キーの生成方法、新しいキーマテリアルが項目ごとに生成
されるか、または再利用されるか、使用する暗号化アルゴリズムおよび署名アルゴリズムも指定され
ます。

DynamoDB 暗号化クライアントライブラリに含まれている実装から CMP を選択するか、互換性の
あるカスタム CMP を構築できます。また、CMP の選択も、使用するプログラミング言語によって
異なります。

暗号マテリアルプロバイダー 261

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/store/ProviderStore.html
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/src/dynamodb_encryption_sdk/material_providers/store/__init__.py
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/store/MetaStore.html
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/materials_providers/metastore.html#module-dynamodb_encryption_sdk.material_providers.store.meta

AWS データベース暗号化 SDK デベロッパーガイド

このトピックでは、一般的な CMP について説明するとともに、アプリケーションに最適な CMP を
選択するのに役立ついくつかのアドバイスを提供します。

Direct KMS マテリアルプロバイダー

Direct KMS マテリアルプロバイダーは、AWS KMS key によってテーブル項目を保護しているた
め、AWS Key Management Service (AWS KMS) は必ず暗号化されます。アプリケーションで、
暗号化マテリアルを生成または管理する必要はありません。を使用して項目ごとに一意の暗号化
キーと署名キー AWS KMS key を生成するため、このプロバイダーは項目を暗号化または復号す
る AWS KMS たびに を呼び出します。

を使用し AWS KMS 、トランザクションごとに 1 回の AWS KMS 呼び出しがアプリケーション
にとって実用的である場合、このプロバイダーが適しています。

詳細については、「Direct KMS マテリアルプロバイダー」を参照してください。

ラップされたマテリアルプロバイダー (ラップされた CMP)

ラップされたマテリアルプロバイダー (ラップされた CMP) では、DynamoDB 暗号化クライアン
トの外部で、ラッピングおよび署名キーを生成および管理することができます。

ラップされた CMP は、項目ごとに一意の暗号化キーを生成します。次に、生成したラップキー
(またはアンラップキー) および署名キーを使用します。したがって、ラップキーおよび署名キー
の生成方法と、それらが各項目に一意か、または再利用されたものかを判断します。ラップされ
た CMP は、 を使用せず、暗号化マテリアルを安全に管理 AWS KMS できるアプリケーション用
の Direct KMS プロバイダーに代わる安全な手段です。

詳細については、「ラップされたマテリアルプロバイダー」を参照してください。

最新プロバイダー

最新プロバイダーは、プロバイダーストアで機能するように設計された暗号化マテリアルプロバ
イダー (CMP) です。プロバイダーストアから CMP を取得し、CMP から返る暗号化マテリアル
を取得します。最新プロバイダーでは通常、各 CMP を使用して暗号化マテリアルの複数の要求
を満たしますが、プロバイダーストアの機能を使用して、マテリアルの再利用範囲を制御した
り、CMP の回転頻度を判断したりできるほか、最新プロバイダーを変更せずに使用される CMP
のタイプを変更することもできます。

最新プロバイダーは互換性のあるプロバイダーストアで使用できます。DynamoDB 暗号化クラ
イアントには、ラップされた CMP を返すプロバイダーストアである MetaStore が含まれていま
す。

暗号マテリアルプロバイダー 262

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS データベース暗号化 SDK デベロッパーガイド

最新プロバイダーは、その暗号ソースへの呼び出しを最小限に抑える必要のあるアプリケーショ
ンや、セキュリティ要件に違反せずに一部の暗号化マテリアルを再利用できるアプリケーション
に適しています。たとえば、項目の暗号化または復号 AWS KMS を行うたびに を呼び出すこと
なく、 AWS Key Management Service (AWS KMS) AWS KMS keyの で暗号化マテリアルを保護
できます。

詳細については、「最新プロバイダー」を参照してください。

静的マテリアルプロバイダー

静的マテリアルプロバイダーは、検証や概念実証のデモンストレーション、および従来の互換性
を目的として設計されています。項目ごとに一意の暗号化マテリアルが生成されることはありま
せん。指定した暗号化キーと署名キーが返ります。これらのキーは、テーブル項目の暗号化、復
号、および署名に直接使用されます。

Note

Java ライブラリ内の非対称静的プロバイダーは静的プロバイダーではありません。これ
は、ラップされた CMP の代替コンストラクタを指定するだけです。本稼働環境での使用
は安全ですが、できるだけラップされた CMP を直接使用する必要があります。

トピック

• Direct KMS マテリアルプロバイダー

• ラップされたマテリアルプロバイダー

• 最新プロバイダー

• 静的マテリアルプロバイダー

Direct KMS マテリアルプロバイダー

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され
ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

暗号マテリアルプロバイダー 263

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/AsymmetricStaticProvider.html

AWS データベース暗号化 SDK デベロッパーガイド

Direct KMS マテリアルプロバイダー (Direct KMS プロバイダー) は、AWS KMS key によってテーブ
ル項目を保護しているため、AWS Key Management Service (AWS KMS) は必ず暗号化されます。こ
の暗号化マテリアルプロバイダーより、テーブル項目ごとに一意の暗号化キーと署名キーが返りま
す。これを行うには、項目を暗号化または復号する AWS KMS たびに を呼び出します。

DynamoDB 項目を高頻度かつ大規模に処理している場合、1 AWS KMS requests-per-second数の制
限を超えると、処理が遅延する可能性があります。制限を超過する必要がある場合は、AWS サポー
ト センターでケースを作成してください。また、最新プロバイダーなど、キーの再利用が制限され
た暗号化マテリアルプロバイダーの使用を検討することもできます。

Direct KMS プロバイダーを使用するには、発信者に AWS アカウント、 で GenerateDataKey および
Decrypt オペレーションを呼び出すための AWS KMS key、少なくとも 1 つの、および アクセス許可
が必要です AWS KMS key。 AWS KMS key は対称暗号化キーである必要があります。DynamoDB
暗号化クライアントは非対称暗号化をサポートしていません。DynamoDB グローバルテーブルを使
用している場合、AWS KMS マルチリージョンキーを指定することもできます。詳細については、
「使用方法」を参照してください。

Note

Direct KMS プロバイダーを使用すると、プライマリキー属性の名前と値は、関連する AWS
KMS オペレーションのAWS KMS 暗号化コンテキストと AWS CloudTrail ログにプレーンテ
キストで表示されます。ただし、DynamoDB 暗号化クライアントが、暗号化された属性値を
プレーンテキストで公開することはありません。

Direct KMS プロバイダーは、DynamoDB 暗号化クライアントがサポートしている複数の暗号化マテ
リアルプロバイダー (CMP) の 1 つです。他の CMP の詳細については、「暗号マテリアルプロバイ
ダー」を参照してください。

サンプルコードについては、以下を参照してください。

• Java: AwsKmsEncryptedItem

• Python: aws-kms-encrypted-table、aws-kms-encrypted-item

トピック

• 使用方法

• 仕組み

暗号マテリアルプロバイダー 264

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home
https://console.aws.amazon.com/support/home
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_table.py
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_item.py

AWS データベース暗号化 SDK デベロッパーガイド

使用方法

Direct KMS プロバイダーを作成するには、キー ID パラメータを使用して、アカウントに対称暗号
化 KMS キーを指定します。キー ID パラメータの値は、キー ID、キー ARN、エイリアス名、また
は AWS KMS keyのエイリアス ARN にすることができます。キー ID の詳細については、AWS Key
Management Service デベロッパーガイドの「キー識別子」を参照してください。

Direct KMS プロバイダーでは、対称暗号化 KMS キーが必要です。非対称 KMS キーを使用す
ることはできません。ただし、マルチリージョン KMS キー、インポートされたキーマテリア
ルを含む KMS キー、またはカスタムキーストア内の KMS キーを使用できます。KMS キーに
kms:GenerateDataKey アクセス許可と kms:Decrypt アクセス許可がある必要があります。そのた
め、 マネージドまたは AWS 所有の KMS キーではなく、カスタマー AWS マネージドキーを使用す
る必要があります。

DynamoDB Encryption Client for Python は、キー ID パラメータ値にリージョンが含まれている場
合、そのリージョン AWS KMS から呼び出すリージョンを決定します。それ以外の場合は、 AWS
KMS クライアントでリージョンを指定するか、 で設定したリージョンを使用します AWS SDK for
Python (Boto3)。Python でのリージョンの選択については、 AWS SDK for Python (Boto3) API リ
ファレンスの「設定」を参照してください。

Java 用 DynamoDB 暗号化クライアントは、指定したクライアントにリージョンが含まれている
場合、クライアントのリージョン AWS KMS AWS KMS から呼び出すリージョンを決定します。
リージョンが含まれていない場合、 AWS SDK for Javaで設定されたリージョンが使用されます。
でのリージョンの選択については AWS SDK for Java、「 AWS SDK for Java デベロッパーガイド」
のAWS リージョン 「選択」を参照してください。

Java

// Replace the example key ARN and Region with valid values for your application
final String keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
final String region = 'us-west-2'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

暗号マテリアルプロバイダー 265

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html

AWS データベース暗号化 SDK デベロッパーガイド

Python

次の例では、キー ARN を使用して AWS KMS keyを指定しています。キー識別子に が含まれて
いない場合 AWS リージョン、DynamoDB 暗号化クライアントは、設定された Botocore セッ
ションがある場合、または Boto のデフォルトからリージョンを取得します。

Replace the example key ID with a valid value
kms_key = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key)

Amazon DynamoDB グローバルテーブルを使用している場合は、 AWS KMS マルチリージョンキー
でデータを暗号化することをお勧めします。マルチリージョンキーは異なる AWS KMS keys にあ
り AWS リージョン 、同じキー ID とキーマテリアルを持つため、同じ意味で使用できます。詳細に
ついては、AWS Key Management Service デベロッパーガイドの「マルチリージョンキーを使用す
る」を参照してください。

Note

グローバルテーブルのバージョン 2017.11.29 を使用している場合は、予約されたレプリ
ケーションフィールドが暗号化または署名されないように属性アクションを設定する必要が
あります。詳細については、「古いバージョンのグローバルテーブルの問題」を参照してく
ださい。

DynamoDB 暗号化クライアントでマルチリージョンキーを使用するには、マルチリージョンキーを
作成し、アプリケーションを実行するリージョンにレプリケートします。次に、DynamoDB 暗号化
クライアントが AWS KMSを呼び出すリージョンでマルチリージョンキーを使用するように Direct
KMS プロバイダーを設定します。

次の例では、マルチリージョンキーを使用して、米国東部 (バージニア北部) (us-east-1) リージョ
ンのデータを暗号化し、米国西部 (オレゴン) (us-west-2) リージョンのデータを復号するように
DynamoDB 暗号化クライアントを設定します。

Java

この例では、DynamoDB 暗号化クライアントは、 AWS KMS クライアントのリージョン AWS
KMS から を呼び出すためのリージョンを取得します。keyArn 値は、同じリージョンのマルチ
リージョンキーを識別します。

暗号マテリアルプロバイダー 266

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V1.html

AWS データベース暗号化 SDK デベロッパーガイド

// Encrypt in us-east-1

// Replace the example key ARN and Region with valid values for your application
final String usEastKey = 'arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
final String region = 'us-east-1'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, usEastKey);

// Decrypt in us-west-2

// Replace the example key ARN and Region with valid values for your application
final String usWestKey = 'arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
final String region = 'us-west-2'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, usWestKey);

Python

この例では、DynamoDB 暗号化クライアントは、キー ARN のリージョン AWS KMS から を呼
び出すためのリージョンを取得します。

Encrypt in us-east-1

Replace the example key ID with a valid value
us_east_key = 'arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=us_east_key)

Decrypt in us-west-2

Replace the example key ID with a valid value
us_west_key = 'arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=us_west_key)

暗号マテリアルプロバイダー 267

AWS データベース暗号化 SDK デベロッパーガイド

仕組み

以下の図に示されているように、Direct KMS プロバイダーは、指定した AWS KMS key で保護され
ている暗号化キーおよび署名キーを返します。

• 暗号化マテリアルを生成するために、Direct KMS プロバイダーは、指定した を使用して各項
目に一意のデータキーを生成する AWS KMS ように に要求 AWS KMS key します。これによ
り、データキーのプレーンテキストコピーから項目の暗号化キーと署名キーが導出され、暗号化
データキーと一緒に返ります。このデータキーは、項目のマテリアル記述属性に保存されます。

項目エンクリプタでは、この暗号化キーおよび署名キーを使用します。また、メモリから可能な限
り早くそれらを削除します。導出されたデータキーの暗号化されたコピーのみ、暗号化された項目
に保存されます。

• 復号マテリアルを生成するために、Direct KMS プロバイダーは暗号化されたデータキーを復号
AWS KMS するように に要求します。これにより、プレーンテキストデータキーより検証キーお
よび署名キーが導出され、項目エンクリプタに返されます。

項目エンクリプタは項目を検証し、検証が成功すると、暗号化された値が復号されます。次に、可
能な限り早く、メモリよりキーが削除されます。

暗号マテリアルプロバイダー 268

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys

AWS データベース暗号化 SDK デベロッパーガイド

暗号化マテリアルを取得する

このセクションでは、項目エンクリプタより暗号化マテリアルのリクエストを受け取るときの Direct
KMS プロバイダーの入力、出力、処理の詳細について説明します。

入力 (アプリケーションから)

• のキー ID AWS KMS key。

入力 (項目エンクリプタから)

• DynamoDB 暗号化コンテキスト

出力 (項目エンクリプタへ)

• 暗号化キー (プレーンテキスト)

• 署名キー

• 実際のマテリアル説明で、これらの値は、クライアントより項目に追加されるマテリアル説明属性
に保存されます。

• amzn-ddb-env-key: によって暗号化された Base64-encodedされたデータキー AWS KMS key

• amzn-ddb-env-alg: 暗号化アルゴリズム。デフォルトは AES/256

• amzn-ddb-sig-alg: 署名アルゴリズム。デフォルトは HmacSHA256/256

• amzn-ddb-wrap-alg: kms

Processing

1. Direct KMS プロバイダー AWS KMS は、指定された を使用して項目の一意のデータキー
AWS KMS key を生成するリクエストを送信します。 https://docs.aws.amazon.com/kms/latest/
APIReference/API_GenerateDataKey.htmlこのオペレーションによって、プレーンテキストキー
と、 AWS KMS keyで暗号化されたコピーが返ります。これは、初期のキーマテリアルと呼ばれ
ます。

このリクエストの AWS KMS 暗号化テキストには、次のプレーンテキスト形式の値が含まれて
います。これらのシークレットではない値は、暗号化されたオブジェクトに暗号的にバインドさ
れているため、復号時には同じ暗号化コンテキストが必要です。これらの値を使用して、 AWS
CloudTrail ログ AWS KMS で への呼び出しを識別できます。

• amzn-ddb-env-alg - 暗号化アルゴリズム。デフォルトは AES/256

暗号マテリアルプロバイダー 269

https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://en.wikipedia.org/wiki/HMAC
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/kms/latest/developerguide/monitoring-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/monitoring-overview.html

AWS データベース暗号化 SDK デベロッパーガイド

• amzn-ddb-sig-alg - 署名アルゴリズム。デフォルトは HmacSHA256/256

• (オプション) aws-kms-table – #####

• (オプション) ########## – ########## (バイナリ値は Base64 エンコード形式)

• (オプション) ###### – ###### (バイナリ値は Base64 エンコード形式)

Direct KMS プロバイダーは、項目の DynamoDB AWS KMS 暗号化コンテキストから暗号化コン
テキストの値を取得します。 DynamoDB DynamoDB 暗号化コンテキストにテーブル名などの
値が含まれていない場合、その名前と値のペアは AWS KMS 暗号化コンテキストから省略されま
す。

2. Direct KMS プロバイダーは、対称暗号化キーおよび署名キーをデータキーから導出します。デ
フォルトでは、セキュアハッシュアルゴリズム (SHA) 256 および RFC5869 HMAC ベースのキー
導出関数を使用して、256 ビット AES 対称暗号化キーおよび 256 ビット HMAC-SHA-256 署名
キーを導出します。

3. Direct KMS プロバイダーは、項目エンクリプタに出力を返します。

4. 項目エンクリプタは、暗号化キーを使用して、指定された属性を暗号化し、署名キーを使用して
署名します。この際、実際のマテリアル記述で指定されたアルゴリズムを使用します。可能な限
り早く、メモリよりプレーンテキストキーが削除されます。

復号マテリアルを取得する

このセクションでは、項目エンクリプタより復号マテリアルのリクエストを受け取るときの Direct
KMS プロバイダーの入力、出力、処理の詳細について説明します。

入力 (アプリケーションから)

• のキー ID AWS KMS key。

キー ID の値は、キー ID、キー ARN、エイリアス名、または AWS KMS keyのエイリアス ARN に
することができます。キー ID に含まれていない値 (リージョンなど) はすべて、AWS 名前付きプ
ロファイルで入手できる必要があります。キー ARN により、 AWS KMS で必要なすべての値が提
供されます。

入力 (項目エンクリプタから)

• DynamoDB 暗号化コンテキストのコピー (マテリアル説明属性の内容を含む)。

暗号マテリアルプロバイダー 270

https://en.wikipedia.org/wiki/SHA-2
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles

AWS データベース暗号化 SDK デベロッパーガイド

出力 (項目エンクリプタへ)

• 暗号化キー (プレーンテキスト)

• 署名キー

Processing

1. Direct KMS プロバイダーは、暗号化された項目のマテリアル記述属性から暗号化されたデータ
キーを取得します。

2. 指定された AWS KMS key を使用して暗号化されたデータキーを復号 AWS KMS するように に要
求します。オペレーションでプレーンテキストのキーが返ります。

このリクエストでは、データキーの生成および暗号化に使用したのと同じ AWS KMS 暗号化コン
テキストを使用する必要があります。

• aws-kms-table – #####

• ########## – ########## (バイナリ値は Base64 エンコード形式)

• (オプション) ###### – ###### (バイナリ値は Base64 エンコード形式)

• amzn-ddb-env-alg - 暗号化アルゴリズム。デフォルトは AES/256

• amzn-ddb-sig-alg - 署名アルゴリズム。デフォルトは HmacSHA256/256

3. Direct KMS プロバイダーでは、セキュアハッシュアルゴリズム (SHA) 256 および RFC5869
HMAC ベースのキー導出関数を使用して、データキーから 256 ビット AES 対称暗号化キーおよ
び 256 ビット HMAC-SHA-256 署名キーを導出します。

4. Direct KMS プロバイダーは、項目エンクリプタに出力を返します。

5. 項目エンクリプタは、署名キーを使用して項目を検証します。成功すると、暗号化された属性値
は対称暗号化キーを使用して復号されます。これらのオペレーションでは、実際のマテリアル記
述で指定された暗号化アルゴリズムおよび署名アルゴリズムが使用されます。項目エンクリプタ
によって、可能な限り早く、メモリよりプレーンテキストキーが削除されます。

ラップされたマテリアルプロバイダー

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され

暗号マテリアルプロバイダー 271

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://en.wikipedia.org/wiki/SHA-2
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

AWS データベース暗号化 SDK デベロッパーガイド

ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

ラップされたマテリアルプロバイダー (ラップされた CMP) では、DynamoDB 暗号化クライアント
を使用して任意のソースからラッピングおよび署名キーを使用できます。ラップされた CMP はどの
AWS サービスにも依存しません。ただし、クライアントの外部にあるラップキーと署名キーを生成
して管理する必要があります。これには、項目を検証および復号するための正しいキーを提供するこ
とが含まれます。

ラップされた CMP は、項目ごとに固有の項目暗号化キーを生成します。項目暗号化キーを指定した
ラップキーでラップし、ラップされた項目暗号化キーを項目のマテリアル説明属性に保存します。
ラップキーと署名キーを指定するため、ラップキーと署名キーの生成方法と、それらが各項目に固有
のものか再利用されたものかを判断します。

ラップされた CMP は、安全な実装であり、暗号化マテリアルを管理できるアプリケーションに適し
ています。

ラップされた CMP は、DynamoDB 暗号化クライアントがサポートしている複数の暗号化マテリ
アルプロバイダー (CMP) の 1 つです。他の CMP の詳細については、「暗号マテリアルプロバイ
ダー」を参照してください。

サンプルコードについては、以下を参照してください。

• Java: AsymmetricEncryptedItem

• Python: wrapped-rsa-encrypted-table、wrapped-symmetric-encrypted-table

トピック

• 使用方法

• 仕組み

使用方法

ラップされた CMP を作成するには、ラップキー (暗号化に必要)、ラップ解除キー (復号に必要)、お
よび署名キーを指定します。項目を暗号化および復号するときには、キーを指定する必要がありま
す。

暗号マテリアルプロバイダー 272

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AsymmetricEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/wrapped_rsa_encrypted_table.py
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/wrapped_symmetric_encrypted_table.py

AWS データベース暗号化 SDK デベロッパーガイド

ラップキー、ラップ解除キー、および署名キーは、対称キーまたは非対称キーペアにすることができ
ます。

Java

// This example uses asymmetric wrapping and signing key pairs
final KeyPair wrappingKeys = ...
final KeyPair signingKeys = ...

final WrappedMaterialsProvider cmp =
 new WrappedMaterialsProvider(wrappingKeys.getPublic(),
 wrappingKeys.getPrivate(),
 signingKeys);

Python

This example uses symmetric wrapping and signing keys
wrapping_key = ...
signing_key = ...

wrapped_cmp = WrappedCryptographicMaterialsProvider(
 wrapping_key=wrapping_key,
 unwrapping_key=wrapping_key,
 signing_key=signing_key
)

仕組み

ラップされた CMP は、すべての項目に新しい項目暗号化キーを生成します。次の図に示すように、
ラップキー、ラップ解除キー、および署名キーを使用します。

暗号マテリアルプロバイダー 273

AWS データベース暗号化 SDK デベロッパーガイド

暗号化マテリアルを取得する

このセクションでは、暗号化マテリアルのリクエストを受け取る際のラップされたマテリアルプロバ
イダー (ラップされた CMP) の入力、出力、処理の詳細について説明します。

入力 (アプリケーションから)

• ラップされたキー: Advanced Encryption Standard (AES) 対称キー、または RSA パブリック
キー。属性値が暗号化されている場合は必須です。それ以外の場合はオプションであり、無視され
ます。

• ラップ解除キー: オプションで無視されます。

• 署名キー

入力 (項目エンクリプタから)

• DynamoDB 暗号化コンテキスト

出力 (項目エンクリプタへ):

• プレーンテキスト項目暗号化キー

• 署名キー (変更されません)

• 実際のマテリアル説明: これらの値は、クライアントが項目に追加するマテリアル説明属性に保存
されます。

• amzn-ddb-env-key: Base64 でエンコードされたラップされた項目暗号化キー

• amzn-ddb-env-alg: 項目を暗号化するために使用される暗号化アルゴリズム。デフォルトは
AES-256-CBC です。

暗号マテリアルプロバイダー 274

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

AWS データベース暗号化 SDK デベロッパーガイド

• amzn-ddb-wrap-alg: ラップされた CMP が項目暗号化キーをラップするために使用したラッ
プアルゴリズム。ラッピングキーが AES キーの場合、RFC 3394 で定義されているように、
キーは埋め込みなしの AES-Keywrap を使用してラップされます。ラップキーが RSA キーの場
合、キーは MGF1 パディング付き RSA OAEP を使用して暗号化されます。

Processing

項目を暗号化する際は、ラップキーと署名キーで渡します。ラップ解除キーは、オプションで無視さ
れます。

1. ラップされた CMP は、テーブル項目に固有の対称項目暗号化キーを生成します。

2. 項目暗号化キーをラップするために指定したラップキーを使用します。次に、可能な限り早く、
メモリより削除されます。

3. これは、プレーンテキスト項目暗号化キー、指定した署名キー、実際のマテリアル説明 (ラップさ
れた項目暗号化キー、暗号化およびラップアルゴリズムを含む) を返します。

4. 項目エンクリプタは、プレーンテキスト暗号化キーを使用して項目を暗号化します。項目に署名
するために指定した署名キーを使用します。次に、可能な限り早く、メモリよりプレーンテキス
トキーが削除されます。ラップされた暗号化キー (amzn-ddb-env-key) を含む、実際のマテリ
アル記述のフィールドを項目のマテリアル記述属性にコピーします。

復号マテリアルを取得する

このセクションでは、復号マテリアルのリクエストを受け取る際のラップされたマテリアルプロバイ
ダー (ラップされた CMP) の入力、出力、処理の詳細について説明します。

入力 (アプリケーションから)

• ラップキー: オプションで無視されます。

• ラップ解除キー: 同じ Advanced Encryption Standard (AES) 対称キーまたは RSA 暗号化に使用さ
れた RSA パブリックキーに対応するプライベートキー。属性値が暗号化されている場合は必須で
す。それ以外の場合はオプションであり、無視されます。

• 署名キー

入力 (項目エンクリプタから)

• DynamoDB 暗号化コンテキストのコピー (マテリアル説明属性の内容を含む)。

暗号マテリアルプロバイダー 275

https://tools.ietf.org/html/rfc3394.html
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

AWS データベース暗号化 SDK デベロッパーガイド

出力 (項目エンクリプタへ)

• プレーンテキスト項目暗号化キー

• 署名キー (変更されません)

Processing

項目を復号する際は、ラップ解除キーと署名キーで渡します。ラップキーは、オプションで無視され
ます。

1. ラップされた CMP は、項目のマテリアル記述属性からラップされた項目暗号化キーを取得しま
す。

2. 項目暗号化キーをラップ解除するためにラップ解除キーとアルゴリズムを使用します。

3. それは、項目エンクリプタにプレーンテキスト項目暗号化キー、署名キー、および暗号化および
署名アルゴリズムを返します。

4. 項目エンクリプタは、署名キーを使用して項目を検証します。成功すると、項目暗号化キーを使
用して項目を復号します。次に、可能な限り早く、メモリよりプレーンテキストキーが削除され
ます。

最新プロバイダー

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され
ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

最新プロバイダーは、プロバイダーストアで機能するように設計された暗号化マテリアルプロバイ
ダー (CMP) です。プロバイダーストアから CMP を取得し、CMP から返る暗号化マテリアルを取得
します。これは、通常、各 CMP を使用して複数の暗号化マテリアルをリクエストします。ただし、
プロバイダーストアの機能を使用して、マテリアルが再利用される範囲を制御し、CMP のローテー
ション頻度を決定し、最新プロバイダーを変更せずに使用する CMP のタイプを変更することもでき
ます。

暗号マテリアルプロバイダー 276

AWS データベース暗号化 SDK デベロッパーガイド

Note

最新プロバイダーの MostRecentProvider 記号に関連付けられたコードは、プロセスの有
効期間の間、暗号化マテリアルをメモリに保存する場合があります。これにより、呼び出し
元は、使用する権限がなくなったキーを使用できるようになる可能性があります。
MostRecentProvider 記号は、DynamoDB 暗号化クライアントのサポートされてい
る古いバージョンでは廃止されており、バージョン 2.0.0 から除去されています。これ
は、CachingMostRecentProvider 記号に置き換えられています。詳細については、「最
新プロバイダーの更新」を参照してください。

最新プロバイダーは、プロバイダーストアとその暗号ソースへの呼び出しを最小限に抑える必要のあ
るアプリケーションや、セキュリティ要件に違反せずに一部の暗号化マテリアルを再利用できるアプ
リケーションに適しています。例えば、項目の暗号化または復号 AWS KMS を行うたびに を呼び出
すことなく、 AWS Key Management Service (AWS KMS) AWS KMS keyの で暗号化マテリアルを
保護できます。

選択したプロバイダーストアによって、最新プロバイダーが使用する CMP のタイプと、新しい
CMP を取得する頻度が決まります。設計したカスタムプロバイダーストアを含む、最新プロバイ
ダーと互換性のある任意のプロバイダーストアを使用できます。

DynamoDB 暗号化クライアントには、ラップされたマテリアルプロバイダー (ラップされた CMP)
を作成して返す MetaStore が含まれています。MetaStore は、生成したラップされた CMP の複数の
バージョンを内部の DynamoDB テーブルに保存し、DynamoDB 暗号化クライアントの内部インス
タンスによるクライアント側の暗号化でそれらを保護します。

任意のタイプの内部 CMP を使用するように MetaStore を設定して、 によって保護された暗号化マ
テリアルを生成する Direct KMS プロバイダー AWS KMS key、指定したラッピングキーと署名キー
を使用するラップされた CMP、または設計した互換性のあるカスタム CMP など、テーブル内のマ
テリアルを保護できます。

サンプルコードについては、以下を参照してください。

• Java: MostRecentEncryptedItem

• Python: most_recent_provider_encrypted_table

トピック

• 使用方法

暗号マテリアルプロバイダー 277

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/MostRecentEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/most_recent_provider_encrypted_table.py

AWS データベース暗号化 SDK デベロッパーガイド

• 仕組み

• 最新プロバイダーの更新

使用方法

最新プロバイダーを作成するには、プロバイダーストアを作成して構成した後、プロバイダーストア
を使用する最新プロバイダーを作成する必要があります。

次の例は、MetaStore を使用し、Direct KMS プロバイダーから暗号化マテリアルを含む内部
DynamoDB テーブルのバージョンを保護する最新プロバイダーを作成する方法を示しています。以
下の例では、CachingMostRecentProvider 記号を使用します。

それぞれの最新プロバイダーには、MetaStore テーブル内の CMP、有効期限 (TTL) 設定、および
キャッシュが保持できるエントリの数を決定するキャッシュサイズ設定を特定する名前が付けられ
ています。これらの例では、キャッシュサイズを 1000 エントリに設定し、TTL を 60 秒に設定しま
す。

Java

// Set the name for MetaStore's internal table
final String keyTableName = 'metaStoreTable'

// Set the Region and AWS KMS key
final String region = 'us-west-2'
final String keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

// Set the TTL and cache size
final long ttlInMillis = 60000;
final long cacheSize = 1000;

// Name that identifies the MetaStore's CMPs in the provider store
final String materialName = 'testMRP'

// Create an internal DynamoDB client for the MetaStore
final AmazonDynamoDB ddb =
 AmazonDynamoDBClientBuilder.standard().withRegion(region).build();

// Create an internal Direct KMS Provider for the MetaStore
final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider kmsProv = new DirectKmsMaterialProvider(kms,
 keyArn);

暗号マテリアルプロバイダー 278

AWS データベース暗号化 SDK デベロッパーガイド

// Create an item encryptor for the MetaStore,
// including the Direct KMS Provider
final DynamoDBEncryptor keyEncryptor = DynamoDBEncryptor.getInstance(kmsProv);

// Create the MetaStore
final MetaStore metaStore = new MetaStore(ddb, keyTableName, keyEncryptor);

//Create the Most Recent Provider
final CachingMostRecentProvider cmp = new CachingMostRecentProvider(metaStore,
 materialName, ttlInMillis, cacheSize);

Python

Designate an AWS KMS key
kms_key_id = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

Set the name for MetaStore's internal table
meta_table_name = 'metaStoreTable'

Name that identifies the MetaStore's CMPs in the provider store
material_name = 'testMRP'

Create an internal DynamoDB table resource for the MetaStore
meta_table = boto3.resource('dynamodb').Table(meta_table_name)

Create an internal Direct KMS Provider for the MetaStore
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

Create the MetaStore with the Direct KMS Provider
meta_store = MetaStore(
 table=meta_table,
 materials_provider=kms_cmp
)

Create a Most Recent Provider using the MetaStore
Sets the TTL (in seconds) and cache size (# entries)
most_recent_cmp = MostRecentProvider(
 provider_store=meta_store,
 material_name=material_name,
 version_ttl=60.0,
 cache_size=1000

暗号マテリアルプロバイダー 279

AWS データベース暗号化 SDK デベロッパーガイド

)

仕組み

最新プロバイダーがプロバイダーストアから CMP を取得します。次に、CMP を使用して、暗号化
マテリアルを生成し、それを項目エンクリプタに返します。

最新プロバイダーについて

最新プロバイダーは、プロバイダーストアから暗号化マテリアルプロバイダー (CMP) を取得しま
す。次に、CMP を使用して、それが返す暗号化マテリアルを生成します。各最新プロバイダーは 1
つのプロバイダーストアに関連付けられていますが、プロバイダーストアは複数のホスト間で複数の
プロバイダーに CMP を提供できます。

最新プロバイダーは、任意のプロバイダーストアから互換性のある CMP を使用できます。暗号化ま
たは復号マテリアルを CMP に要求し、項目エンクリプタに出力を返します。暗号化オペレーション
は実行されません。

最新プロバイダーは、そのプロバイダーストアから CMP を要求するために、使用する既存の CMP
のマテリアル名とバージョンを提供します。暗号化マテリアルでは、最新プロバイダーは常に最大
(「最新の」) バージョンをリクエストします。復号マテリアルの場合、次の図に示すように、暗号化
マテリアルの作成に使用された CMP のバージョンをリクエストします。

最新プロバイダーは、プロバイダーストアが返す CMP のバージョンをメモリ内のローカル最小使用
(LRU) キャッシュに保存します。キャッシュにより、最新プロバイダーは、すべての項目のプロバイ

暗号マテリアルプロバイダー 280

AWS データベース暗号化 SDK デベロッパーガイド

ダーストアを呼び出さずに必要な CMP を取得できます。必要に応じてキャッシュをクリアすること
ができます。

最新プロバイダーは、アプリケーションの特性に基づいて調整できる設定可能な有効期限 (TTL) 値を
使用します。

MetaStore について

互換性のあるカスタムプロバイダーストアなどの任意のプロバイダーストアで最新プロバイダーを使
用できます。DynamoDB 暗号化クライアントには、設定してカスタマイズできる安全な実装である
MetaStore が含まれています。

MetaStore は、CMP で必要なラッピングキー、ラップ解除キー、および署名キーで構成され
た、ラップされた CMP を作成して返すプロバイダーストアです。ラップされた CMP は常にすべて
の項目に対して一意の項目暗号化キーを生成するため、MetaStore は最新プロバイダーにとって安全
なオプションです。項目暗号化キーと署名キーを保護するラップキーのみが再利用されます。

次の図は、MetaStore のコンポーネントと、最新プロバイダーとのやり取りの方法を示しています。

MetaStore はラップされた CMP を生成し、内部 DynamoDB テーブルに (暗号化された形式で) 保存
します。パーティションキーは、最新プロバイダーマテリアルの名前であり、ソートキーはそのバー

暗号マテリアルプロバイダー 281

AWS データベース暗号化 SDK デベロッパーガイド

ジョン番号です。テーブル内のマテリアルは、項目エンクリプタや内部暗号化マテリアルプロバイ
ダー (CMP) など、内部 DynamoDB 暗号化クライアントによって保護されています。

MetaStore では、Direct KMS プロバイダー、提供する暗号化マテリアルを使用したラップされ
た CMP、または互換性のあるカスタム CMP など、あらゆるタイプの内部 CMP を使うことがで
きます。MetaStore の内部 CMP が Direct KMS プロバイダーの場合、再利用可能なラッピングお
よび署名キーは、AWS Key Management Service (AWS KMS) 内の AWS KMS key で保護されま
す。MetaStore は、内部テーブルに新しい CMP バージョンを追加するか、内部テーブルから CMP
バージョンを取得する AWS KMS たびに を呼び出します。

有効期限 (TTL) の値を設定する

作成した最新プロバイダーごとに有効期限 (TTL) の値を設定できます。一般に、アプリケーションで
実用的な最も低い TTL 値を使用します。

TTL 値の使用は、最新プロバイダーの CachingMostRecentProvider 記号で変更されます。

Note

最新プロバイダーの MostRecentProvider 記号は、DynamoDB 暗号化クライアントのサ
ポートされている古いバージョンでは廃止されており、バージョン 2.0.0 から除去されてい
ます。これは、CachingMostRecentProvider 記号に置き換えられています。可能な限
り早急にコードを更新することをお勧めします。詳細については、「最新プロバイダーの更
新」を参照してください。

CachingMostRecentProvider

CachingMostRecentProvider は、以下の 2 つの異なる方法で TTL 値を使用します。

• TTL により、最新プロバイダーがプロバイダーストアで新しいバージョンの CMP をチェック
する頻度を決定します。新しいバージョンが利用可能な場合、最新プロバイダーはその CMP
を置き換え、暗号化マテリアルを更新します。それ以外の場合、現在の CMP と暗号化マテリ
アルを引き続き使用します。

• TTL により、キャッシュ内の CMP を使用できる期間を決定します。キャッシュされた CMP
を暗号化に使用する前に、最新プロバイダーはキャッシュ内の時間を評価します。CMP キャッ
シュ時間が TTL を超えると、CMP はキャッシュから削除され、最新プロバイダーはプロバイ
ダストアから新しい最新バージョン CMP を取得します。

暗号マテリアルプロバイダー 282

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS データベース暗号化 SDK デベロッパーガイド

MostRecentProvider

MostRecentProvider では、TTL により、最新プロバイダーがプロバイダーストアで新しい
バージョンの CMP をチェックする頻度が決定されます。新しいバージョンが利用可能な場合、
最新プロバイダーはその CMP を置き換え、暗号化マテリアルを更新します。それ以外の場合、
現在の CMP と暗号化マテリアルを引き続き使用します。

TTL では、新しい CMP バージョンが作成される頻度は決定されません。新しい CMP バージョンを
作成するには、暗号化マテリアルをローテーションします。

理想的な TTL 値は、アプリケーションとそのレイテンシー、および可用性の目標によって異なり
ます。TTL を低くすると、暗号化マテリアルがメモリに格納される時間が短縮され、セキュリティ
プロファイルが向上します。また、TTL が低いほど、重要な情報がより頻繁に更新されます。例え
ば、内部 CMP が Direct KMS プロバイダーである場合、呼び出し元が AWS KMS keyを使用する権
限をまだ持っているかを、より頻繁に検証します。

ただし、TTL が低すぎると、プロバイダーストアへの頻繁な呼び出しによってコストが増加し、プ
ロバイダーストアがアプリケーションや、サービスアカウントを共有する他のアプリケーションから
のリクエストをスロットリングする可能性があります。また、暗号化マテリアルをローテーションす
る速度で TTL を調整することでメリットが得られる場合があります。

テスト中に、お使いのアプリケーションと、セキュリティおよびパフォーマンス標準に適した設定が
見つかるまで、さまざまなワークロードで TTL とキャッシュサイズを変更します。

暗号化マテリアルの回転

最新プロバイダーで暗号化マテリアルが必要な場合、最新プロバイダーは必ず、認識している最新
バージョンの CMP を使用します。新しいバージョンをチェックする頻度は、最新プロバイダーを構
成するときに設定した有効期限 (TTL) 値によって決定されます。

TTL が期限切れになると、最新プロバイダーはプロバイダーストアで新しいバージョンの CMP を
チェックします。新しいバージョンを使用できる場合、最新プロバイダーはそれを取得し、キャッ
シュ内の CMP を置き換えます。プロバイダーストアに新しいバージョンがあることが検出されるま
で、この CMP とその暗号化マテリアルが使用されます。

最新プロバイダーの新しいバージョンの CMP を作成するようにプロバイダーストアに指示するに
は、プロバイダーストアの新規プロバイダーの作成オペレーション作を、最新プロバイダーのマテ
リアル名で呼び出します。プロバイダーストアは新しい CMP を作成し、暗号化されたコピーをより
大きなバージョン番号で内部ストレージに保存します。(CMP を返しますが、破棄することもできま

暗号マテリアルプロバイダー 283

AWS データベース暗号化 SDK デベロッパーガイド

す。) その結果、次に最新プロバイダーがプロバイダーストアにその CMP の最大バージョン番号を
問い合わせるときに、最新プロバイダーは新しいより大きなバージョン番号を取得し、それをストア
に対する後続のリクエストで使用して、CMP の新しいバージョンが作成されたかどうかを確認しま
す。

時間、処理された項目または属性の数、またはアプリケーションに合ったその他のメトリクスに基づ
いて、新しいプロバイダー作成コールをスケジュールできます。

暗号化マテリアルを取得する

最新プロバイダーは、この図に示す次のプロセスを使用して、項目エンクリプタに返す暗号化マテリ
アルを取得します。出力は、プロバイダーストアが返す CMP のタイプによって異なります。最新プ
ロバイダーは、DynamoDB 暗号化クライアントに含まれる MetaStore などの互換性のある任意のプ
ロバイダーストアを使用できます。

CachingMostRecentProvider記号を使用して最新プロバイダーを作成するときに、プロバイダー
ストア、最新プロバイダーの名前、および有効期限 (TTL) 値を指定します。オプションで、キャッ

暗号マテリアルプロバイダー 284

AWS データベース暗号化 SDK デベロッパーガイド

シュ内に存在できる暗号化マテリアルの最大数を決定するキャッシュサイズを指定することもできま
す。

項目エンクリプタが最新プロバイダーに暗号化マテリアルを要求すると、最新プロバイダーは、その
CMP の最新バージョンのキャッシュの検索を開始します。

• キャッシュ内で最新バージョンの CMP を検出し、CMP が TTL 値を超過していない場合、最新プ
ロバイダーは CMP を使用して暗号化マテリアルを生成します。次に、暗号化マテリアルを項目エ
ンクリプタに返します。このオペレーションでは、プロバイダーストアへの呼び出しは必要ありま
せん。

• CMP の最新バージョンがキャッシュ内に存在しない場合、またはキャッシュ内に存在していても
TTL 値を超過している場合、最新プロバイダーはそのプロバイダーストアから CMP をリクエスト
します。リクエストには、最新プロバイダーのマテリアル名と、既知の最大のバージョン番号が含
まれています。

1. プロバイダーストアは、永続的ストレージから CMP を返します。プロバイダーストアが
MetaStore の場合、最新プロバイダーのマテリアル名をパーティションキーとして使用し、
バージョン番号をソートキーとして使用して、内部の DynamoDB テーブルから暗号化済みの
ラップされた CMP を取得します。MetaStore は、内部項目エンクリプタと内部 CMP を使用し
て、ラップされた CMP を復号します。次に、プレーンテキスト CMP を最新プロバイダーに返
します。内部 CMP が Direct KMS Provider の場合、このステップには AWS Key Management
Service (AWS KMS) コールが含まれます。

2. CMP は、amzn-ddb-meta-idフィールドを実際のマテリアル説明に追加します。その値は、
内部テーブルの CMP のマテリアル名とバージョンです。プロバイダーストアは CMP を最新プ
ロバイダーに返します。

3. 最新プロバイダーは CMP をメモリにキャッシュします。

4. 最新プロバイダーは CMP を使用して暗号化マテリアルを生成します。次に、暗号化マテリアル
を項目エンクリプタに返します。

復号マテリアルを取得する

項目エンクリプタが最新プロバイダーに復号マテリアルを要求すると、最新プロバイダーは以下のプ
ロセスを使用して、それらを取得し返します。

1. 最新プロバイダーは、項目を暗号化するために使用された暗号化マテリアルのバージョン番号を
プロバイダーストアに問い合わせます。項目のマテリアル説明属性から実際のマテリアル説明を
渡します。

暗号マテリアルプロバイダー 285

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS データベース暗号化 SDK デベロッパーガイド

2. プロバイダーストアは、実際のマテリアル説明の amzn-ddb-meta-id フィールドから暗号化
CMP バージョン番号を取得し、最新プロバイダーに返します。

3. 最新プロバイダーは、項目の暗号化と署名に使用された CMP のバージョンをキャッシュ内で検索
します。

• CMP の一致するバージョンがキャッシュにあり、かつ、CMP が有効期限 (TTL) 値を超過してい
ないことがわかった場合、最新プロバイダーは CMP を使用して復号マテリアルを生成します。次
に、復号マテリアルを項目エンクリプタに返します。このオペレーションでは、プロバイダースト
アまたは他の CMP への呼び出しは必要ありません。

• CMP の一致するバージョンがキャッシュ内に存在しない場合、またはキャッシュされた AWS
KMS key が TTL 値を超過している場合、最新プロバイダーはそのプロバイダーストアから CMP
をリクエストします。リクエストには、マテリアル名および暗号化 CMP バージョン番号が送信さ
れます。

1. プロバイダーストアは、最新プロバイダー名をパーティションキーとして使用し、バージョン
番号をソートキーとして使用して、CMP の永続的ストレージを検索します。

• 名前とバージョン番号が永続的ストレージにない場合、プロバイダーストアは例外をスロー
します。CMP を生成するためにプロバイダーストアを使用した場合、意図的に削除されてい
ない限り、CMP は永続的ストレージに保存する必要があります。

• 一致する名前とバージョン番号を持つ CMP がプロバイダーストアの永続的ストレージにある
場合、プロバイダーストアは指定された CMP を最新プロバイダーに返します。

プロバイダーストアが MetaStore の場合、その DynamoDB テーブルから暗号化済みの CMP
を取得します。次に、内部 CMP の暗号化マテリアルを使用して、CMP を最新プロバイダー
に返す前に暗号化された CMP を復号します。内部 CMP が Direct KMS Provider の場合、こ
のステップには AWS Key Management Service (AWS KMS) コールが含まれます。

2. 最新プロバイダーは CMP をメモリにキャッシュします。

3. 最新プロバイダーは CMP を使用して復号マテリアルを生成します。次に、復号マテリアルを項
目エンクリプタに返します。

最新プロバイダーの更新

最新プロバイダーの記号が MostRecentProvider から CachingMostRecentProvider に変更さ
れています。

暗号マテリアルプロバイダー 286

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS データベース暗号化 SDK デベロッパーガイド

Note

最新プロバイダーを表す MostRecentProvider 記号は、両方の言語実装で、Java 用
DynamoDB 暗号化クライアントバージョン 1.15、および Python 用 DynamoDB 暗号化クラ
イアントバージョン 1.3 では廃止され、DynamoDB 暗号化クライアントバージョン 2.0.0 で
は除去されています。代わりに、CachingMostRecentProvider を使用してください。

CachingMostRecentProvider では、以下の変更が実装されます。

• CachingMostRecentProvider は、メモリ内の時間が、設定された有効期限 (TTL) 値を超過す
ると、メモリから暗号化マテリアルを定期的に除去します。

MostRecentProvider は、プロセスの有効期間の間、メモリに暗号化マテリアルを保存する場
合があります。その結果、最新プロバイダーは認可の変更を認識しない可能性があります。暗号化
キーを使用するための呼び出し元のアクセス許可が取り消された後に、暗号化キーを使用する場合
があります。

この新しいバージョンにアップデートできない場合、キャッシュで clear() メソッドを定期的に
呼び出すことで同様の効果を得られます。このメソッドは、キャッシュの内容を手動でフラッシュ
し、最新プロバイダーが新しい CMP と新しい暗号化マテリアルを要求するように求めます。

• また、CachingMostRecentProvider にキャッシュサイズの設定を含めて、キャッシュに対す
るより詳細な制御を行うこともできます。

CachingMostRecentProvider を更新するには、コード内の記号名を変更する必要があります。
その他の点ではすべて、CachingMostRecentProvider には MostRecentProvider との完全な
下位互換性があります。テーブル項目を再暗号化する必要はありません。

ただし、CachingMostRecentProvider による、基盤となる主要インフラストラクチャへの呼び
出しが増えます。有効期限 (TTL) の各間隔で、プロバイダーストアが少なくとも 1 回呼び出されま
す。多数のアクティブな CMP を持つアプリケーション（頻繁なローテーションによる）、または大
規模なフリートを持つアプリケーションは、この変更の影響を受ける可能性が最も高くなります。

更新されたコードをリリースする前に、徹底的にテストして、呼び出しの頻度が高いほどアプ
リケーションが損なわれたり、 AWS Key Management Service プロバイダーが依存するサービ
ス (AWS KMS) や Amazon DynamoDB などによってスロットリングが発生したりしないことを
確認します。パフォーマンスの問題を軽減するために、確認したパフォーマンス特性に基づい

暗号マテリアルプロバイダー 287

AWS データベース暗号化 SDK デベロッパーガイド

て、CachingMostRecentProvider のキャッシュサイズや有効期限 (TTL) を調整してください。
ガイダンスについては、「有効期限 (TTL) の値を設定する」を参照してください。

静的マテリアルプロバイダー

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され
ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

静的マテリアルプロバイダー (静的 CMP) は、テスト、概念実証デモ、および従来の互換性を目的と
した、非常にシンプルな暗号化マテリアルプロバイダー (CMP) です。

静的 CMP を使用してテーブル項目を暗号化するには、Advanced Encryption Standard (AES) 対称暗
号化キーと署名キーまたはキーペアを指定します。暗号化された項目を復号するために同じキーを指
定する必要があります。静的 CMP は暗号化オペレーションを実行しません。代わりに、項目エンク
リプタに指定した暗号化キーをそのまま渡します。項目エンクリプタは、暗号化キーの直下の項目を
暗号化します。次に、署名キーを直接使用して署名します。

静的 CMP は一意の暗号化マテリアルを生成しないため、処理するすべてのテーブル項目は同じ暗号
化キーで暗号化され、同じ署名キーで署名されます。同じキーを使用して多数の項目の属性値を暗号
化するか、同じキーまたはキーペアを使用してすべての項目に署名すると、キーの暗号化の制限を超
える危険性があります。

Note

Java ライブラリ内の非対称静的プロバイダーは静的プロバイダーではありません。これ
は、ラップされた CMP の代替コンストラクタを指定するだけです。本稼働環境での使用は
安全ですが、できるだけラップされた CMP を直接使用する必要があります。

静的 CMP は、DynamoDB 暗号化クライアントがサポートしている複数の暗号化マテリアルプロバ
イダー (CMP) の 1 つです。他の CMP の詳細については、「暗号マテリアルプロバイダー」を参照
してください。

暗号マテリアルプロバイダー 288

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/AsymmetricStaticProvider.html

AWS データベース暗号化 SDK デベロッパーガイド

サンプルコードについては、以下を参照してください。

• Java: SymmetricEncryptedItem

トピック

• 使用方法

• 仕組み

使用方法

静的なプロバイダーを作成するには、暗号化キーやキーペアおよび署名キーやキーペアを指定しま
す。テーブル項目を暗号化および復号するには、キーマテリアルを指定する必要があります。

Java

// To encrypt
SecretKey cek = ...; // Encryption key
SecretKey macKey = ...; // Signing key
EncryptionMaterialsProvider provider = new SymmetricStaticProvider(cek, macKey);

// To decrypt
SecretKey cek = ...; // Encryption key
SecretKey macKey = ...; // Verification key
EncryptionMaterialsProvider provider = new SymmetricStaticProvider(cek, macKey);

Python

You can provide encryption materials, decryption materials, or both
encrypt_keys = EncryptionMaterials(
 encryption_key = ...,
 signing_key = ...
)

decrypt_keys = DecryptionMaterials(
 decryption_key = ...,
 verification_key = ...
)

static_cmp = StaticCryptographicMaterialsProvider(
 encryption_materials=encrypt_keys

暗号マテリアルプロバイダー 289

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/SymmetricEncryptedItem.java

AWS データベース暗号化 SDK デベロッパーガイド

 decryption_materials=decrypt_keys
)

仕組み

静的プロバイダーは、指定した暗号化キーと署名キーを項目エンクリプタに渡します。ここで、これ
らのアイテムは、テーブル項目の暗号化と署名に直接使用されます。各項目に異なるキーを指定しな
い限り、すべての項目で同じキーが使用されます。

暗号化マテリアルを取得する

このセクションでは、暗号化マテリアルのリクエストを受け取る際の静的マテリアルプロバイダー
(静的 CMP) の入力、出力、処理の詳細について説明します。

入力 (アプリケーションから)

• 暗号化キー - これは、Advanced Encryption Standard (AES) キーなどの対称キーである必要があり
ます。

• 署名キー - これは、対称キーまたは非対称キーペアです。

入力 (項目エンクリプタから)

• DynamoDB 暗号化コンテキスト

出力 (項目エンクリプタへ)

• 入力として渡される暗号化キー。

• 入力として渡される署名キー。

• 実際のマテリアル説明: リクエストされたマテリアル説明。存在する場合は、変更されません。

暗号マテリアルプロバイダー 290

https://tools.ietf.org/html/rfc3394.html

AWS データベース暗号化 SDK デベロッパーガイド

復号マテリアルを取得する

このセクションでは、復号マテリアルのリクエストを受け取る際の静的マテリアルプロバイダー (静
的 CMP) の入力、出力、処理の詳細について説明します。

暗号化マテリアルの取得と、復号マテリアルの取得のための異なるメソッドが含まれていますが、動
作は同じです。

入力 (アプリケーションから)

• 暗号化キー - これは、Advanced Encryption Standard (AES) キーなどの対称キーである必要があり
ます。

• 署名キー - これは、対称キーまたは非対称キーペアです。

入力 (項目エンクリプタから)

• DynamoDB 暗号化コンテキスト (使用しません)

出力 (項目エンクリプタへ)

• 入力として渡される暗号化キー。

• 入力として渡される署名キー。

Amazon DynamoDB Encryption Client で利用可能なプログラミング言語

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され
ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

Amazon DynamoDB Encryption Client では、以下のプログラミング言語を使用できます。言語固有
のライブラリはさまざまですが、結果として得られる実装は相互運用ができます。たとえば、Java
クライアントで項目を暗号化 (および署名) し、Python クライアントで項目を復号することができま
す。

プログラミング言語 291

https://tools.ietf.org/html/rfc3394.html

AWS データベース暗号化 SDK デベロッパーガイド

詳細については、該当するトピックを参照してください。

トピック

• Amazon DynamoDB Encryption Client for Java

• Python 用 DynamoDB 暗号化クライアント

Amazon DynamoDB Encryption Client for Java

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され
ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

このトピックでは、Amazon DynamoDB Encryption Client for Java をインストールして使用する方
法について説明します。DynamoDB 暗号化クライアントを使用したプログラミングの詳細について
は、Java の例、GitHub の aws-dynamodb-encryption-java リポジトリにある例、および DynamoDB
暗号化クライアント用の Javadoc を参照してください。

Note

DynamoDB Encryption Client for Java のバージョン 1.x.x は、2022 年 7 月にサポート終了
フェーズに入ります。可能な限り早急に新しいバージョンにアップグレードしてください。

トピック

• 前提条件

• インストール

• Java 用 Amazon DynamoDB 暗号化クライアントの使用方法

• Java 用 DynamoDB 暗号化クライアントのサンプルコード

プログラミング言語 292

https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/

AWS データベース暗号化 SDK デベロッパーガイド

前提条件

Amazon DynamoDB Encryption Client for Java をインストールする前に、以下の前提条件が満たされ
ていることを確認してください。

Java 開発環境

Java 8 以降が必要になります。Oracle のウェブサイトで Java SE のダウンロードに移動
し、Java SE Development Kit (JDK) をダウンロードして、インストールします。

Oracle JDK を使用する場合は、Java Cryptography Extension (JCE) 無制限強度の管轄ポリシー
ファイルをダウンロードして、インストールする必要があります。

AWS SDK for Java

DynamoDB 暗号化クライアントには、アプリケーションが DynamoDB とやり取りしない場合
AWS SDK for Java でも、 の DynamoDB モジュールが必要です。SDK 全体またはこのモジュー
ルだけをインストールできます。Maven を使用している場合は、aws-java-sdk-dynamodb を
pom.xml ファイルに追加します。

のインストールと設定の詳細については AWS SDK for Java、「」を参照してくださいAWS SDK
for Java。

インストール

Amazon DynamoDB Encryption Client for Java は、以下の方法でインストールできます。

手動

Amazon DynamoDB Encryption Client for Java をインストールするには、aws-dynamodb-
encryption-java GitHub リポジトリをクローンまたはダウンロードしてください。

Apache Maven の使用

Amazon DynamoDB Encryption Client for Java は、以下の依存定義を使用して、Apache Maven
を介して利用できます。

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-dynamodb-encryption-java</artifactId>
 <version>version-number</version>
</dependency>

プログラミング言語 293

https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/getting-started.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/getting-started.html
https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/
https://maven.apache.org/

AWS データベース暗号化 SDK デベロッパーガイド

SDK をインストールしたら、このガイドと GitHub の DynamoDB 暗号化クライアント Javadoc のサ
ンプルコードを確認して開始します。

Java 用 Amazon DynamoDB 暗号化クライアントの使用方法

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され
ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

このトピックでは、Java での Amazon DynamoDB 暗号化クライアントの機能の一部について説明し
ます。他のプログラミング言語には実装されていない機能も含まれます。

DynamoDB 暗号化クライアントを使用したプログラミングの詳細については、Java の例、GitHub
の aws-dynamodb-encryption-java repository にある例、および DynamoDB 暗号化クライ
アント用の Javadoc を参照してください。

トピック

• 項目エンクリプタ: AttributeEncryptor および DynamoDBEncryptor

• 保存動作の設定

• Java の属性アクション

• テーブル名の上書き

項目エンクリプタ: AttributeEncryptor および DynamoDBEncryptor

Java の DynamoDB 暗号化クライアントには、下位レベルの DynamoDBEncryptor および
AttributeEncryptor という 2 つの項目エンクリプタがあります。

AttributeEncryptor は、DynamoDB 暗号化クライアントの で DynamoDBMapper AWS
SDK for Java DynamoDB Encryptor を使用するのに役立つヘルパークラスです。 DynamoDB
DynamoDBMapper で AttributeEncryptor を使用すると、項目の保存時に項目が透過的に暗号
化および署名されます。また、項目のロード時に項目が透過的に検証および復号されます。

プログラミング言語 294

https://aws.github.io/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html

AWS データベース暗号化 SDK デベロッパーガイド

保存動作の設定

AttributeEncryptor および DynamoDBMapper を使用して、署名のみが行われた属性または暗
号化および署名された属性を持つテーブル項目を追加またはレプリケートできます。これらのタスク
では、次の例に示すように、PUT 保存動作を使用するよう設定することをお勧めします。そのよう
に設定しない場合、データを復号できないことがあります。

DynamoDBMapperConfig mapperConfig =
 DynamoDBMapperConfig.builder().withSaveBehavior(SaveBehavior.PUT).build();
DynamoDBMapper mapper = new DynamoDBMapper(ddb, mapperConfig, new
 AttributeEncryptor(encryptor));

テーブルの項目でモデル化された属性のみを更新するデフォルトの保存動作を使用する場合、モデル
化されていない属性は署名に含まれず、テーブルの書き込みによって変更されません。その結果、モ
デル化されていない属性が含まれていないため、その後のすべての属性の読み取りでは、署名は検証
されません。

また、CLOBBER 保存動作を使用することもできます。この動作は、オプティミスティックロックを
無効にしてテーブルの項目を上書きするという点を除いて、PUT 保存動作と同じです。

署名エラーを防ぐために、AttributeEncryptor が CLOBBER または PUT の保存動作で設定され
ていない DynamoDBMapper とともに使用される場合、DynamoDB Encryption Client はランタイム
例外をスローします。

サンプル内で使用されているこのコードを確認するには、DynamoDBMapper の使用 と、GitHub の
aws-dynamodb-encryption-java リポジトリにある AwsKmsEncryptedObject.java の例を参照
してください。

Java の属性アクション

属性アクションでは、暗号化されて署名された属性値、署名のみされた属性値、無視される属
性値を指定します。属性アクションの指定に使用するメソッドは、DynamoDBMapper および
AttributeEncryptor、または下位レベルの DynamoDBEncryptor の使用有無によって異なりま
す。

Important

属性アクションを使用してテーブル項目を暗号化した後、データモデルから属性を追加また
は削除すると、署名の検証エラーが発生し、データの復号ができなくなることがあります。
詳細な説明については、「データモデルの変更」を参照してください。

プログラミング言語 295

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedObject.java
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html

AWS データベース暗号化 SDK デベロッパーガイド

DynamoDBMapper の属性アクション

DynamoDBMapper および AttributeEncryptor を使用する場合は、注釈を使用して属性アク
ションを指定します。DynamoDB 暗号化クライアントは標準の DynamoDB 属性の注釈を使用し
て、属性を保護する方法を決定する属性のタイプを定義します。デフォルトでは、プライマリキーを
除く属性がすべて暗号化されます。これらの属性は署名されますが、暗号化はされません。

Note

@DynamoDBVersionAttribute 注釈を使用して属性値を暗号化できます。ただし、署名する
ことはできます (署名する必要があります)。それ以外の場合、その値を使用する条件によっ
て、意図しない結果をもたらす場合があります。

// Attributes are encrypted and signed
@DynamoDBAttribute(attributeName="Description")

// Partition keys are signed but not encrypted
@DynamoDBHashKey(attributeName="Title")

// Sort keys are signed but not encrypted
@DynamoDBRangeKey(attributeName="Author")

例外を指定するには、Java 用 Amazon DynamoDB 暗号化クライアントに定義されている暗号化注釈
を使用します。クラスレベルで指定した場合は、クラスのデフォルト値になります。

// Sign only
@DoNotEncrypt

// Do nothing; not encrypted or signed
@DoNotTouch

たとえば、これらの注釈で署名するが、PublicationYear 属性を暗号化しない場合は、ISBN 属性
値を暗号化または署名しないでください。

// Sign only (override the default)
@DoNotEncrypt
@DynamoDBAttribute(attributeName="PublicationYear")

// Do nothing (override the default)

プログラミング言語 296

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Annotations.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.OptimisticLocking.html

AWS データベース暗号化 SDK デベロッパーガイド

@DoNotTouch
@DynamoDBAttribute(attributeName="ISBN")

DynamoDBEncryptor の属性アクション

DynamoDBEncryptor を使用する際に属性アクションを直接指定するには、名前と値のペアで属性名
と指定されたアクションを表している HashMap オブジェクトを作成します。

属性アクションの有効な値は、列挙型の EncryptionFlags で定義されています。ENCRYPT と
SIGN を一緒に使用したり、SIGN を単独で使用したりできます。また、両方除外することもできま
す。ただし、ENCRYPT を単独で使用すると、DynamoDB 暗号化クライアントはエラーをスローしま
す。未署名の属性を暗号化することはできません。

ENCRYPT
SIGN

Warning

プライマリキー属性を暗号化しないでください。DynamoDB でテーブル全体のスキャンを実
行せずに項目を見つけられるように、プレーンテキストの状態を維持する必要があります。

暗号化コンテキストでプライマリキーを指定し、いずれかのプライマリキー属性の属性アクションで
ENCRYPT を指定した場合、DynamoDB 暗号化クライアントは例外をスローします。

たとえば、次の Java コードは、record 項目内のすべての属性を暗号化および署名する actions
HashMap を作成します。例外は、署名されているが暗号化されていないパーティションキー属性と
ソートキー属性、および署名または暗号化されていない test 属性です。

final EnumSet<EncryptionFlags> signOnly = EnumSet.of(EncryptionFlags.SIGN);
final EnumSet<EncryptionFlags> encryptAndSign = EnumSet.of(EncryptionFlags.ENCRYPT,
 EncryptionFlags.SIGN);
final Map<String, Set<EncryptionFlags>> actions = new HashMap<>();

for (final String attributeName : record.keySet()) {
 switch (attributeName) {
 case partitionKeyName: // no break; falls through to next case
 case sortKeyName:
 // Partition and sort keys must not be encrypted, but should be signed
 actions.put(attributeName, signOnly);

プログラミング言語 297

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html

AWS データベース暗号化 SDK デベロッパーガイド

 break;
 case "test":
 // Don't encrypt or sign
 break;
 default:
 // Encrypt and sign everything else
 actions.put(attributeName, encryptAndSign);
 break;
 }
}

その後、DynamoDBEncryptor の encryptRecord メソッドを呼び出すときに、attributeFlags
パラメータの値としてマップを指定します。たとえば、この encryptRecord の呼び出しで
は、actions マップが使用されます。

// Encrypt the plaintext record
final Map<String, AttributeValue> encrypted_record = encryptor.encryptRecord(record,
 actions, encryptionContext);

テーブル名の上書き

DynamoDB 暗号化クライアントでは、DynamoDB テーブルの名前は、暗号化メソッドおよび復号
メソッドに渡される DynamoDB 暗号化コンテキストの要素です。テーブル項目を暗号化または署
名すると、テーブル名を含む DynamoDB 暗号化コンテキストが暗号化テキストに暗号でバインドさ
れます。復号メソッドに渡される DynamoDB 暗号化コンテキストが、暗号化メソッドに渡された
DynamoDB 暗号化コンテキストと一致しない場合、復号オペレーションは失敗します。

テーブルをバックアップする場合や、ポイントインタイムリカバリを実行する場合など、テーブルの
名前が変更されることがあります。これらの項目の署名を復号または検証する際、元のテーブル名を
含む、項目の暗号化と署名に使用されたのと同じ DynamoDB 暗号化コンテキストを渡す必要があり
ます。現在のテーブル名は必要ありません。

DynamoDBEncryptor を使用する場合、DynamoDB 暗号化コンテキストを手動で組み立
てます。ただし、DynamoDBMapper を使用している場合は、AttributeEncryptor に
よって現在のテーブル名を含む DynamoDB 暗号化コンテキストが作成されます。異なる
テーブル名で暗号化コンテキストを作成するよう AttributeEncryptor に指示するに
は、EncryptionContextOverrideOperator を使用します。

たとえば、次のコードは、暗号化マテリアルプロバイダー (CMP) と
DynamoDBEncryptor のインスタンスを作成します。次に、DynamoDBEncryptor の

プログラミング言語 298

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html#encryptRecord-java.util.Map-java.util.Map-com.amazonaws.services.dynamodbv2.datamodeling.encryption.EncryptionContext-
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/PointInTimeRecovery.html

AWS データベース暗号化 SDK デベロッパーガイド

setEncryptionContextOverrideOperator メソッドを呼び出します。これは、1 つの
テーブル名を上書きする overrideEncryptionContextTableName 演算子を使用しま
す。このように設定すると、AttributeEncryptor によって oldTableName の代わりに
newTableName を含む DynamoDB 暗号化コンテキストが作成されます。完全な例について
は、EncryptionContextOverridesWithDynamoDBMapper.java を参照してください。

final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);
final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp);

encryptor.setEncryptionContextOverrideOperator(EncryptionContextOperators.overrideEncryptionContextTableName(
 oldTableName, newTableName));

項目を復号および検証する DynamoDBMapper の load メソッドを呼び出す際、元のテーブル名を指
定します。

mapper.load(itemClass, DynamoDBMapperConfig.builder()

 .withTableNameOverride(DynamoDBMapperConfig.TableNameOverride.withTableNameReplacement(oldTableName))
 .build());

また、複数のテーブル名を上書きする overrideEncryptionContextTableNameUsingMap 演算
子を使用することもできます。

テーブル名の上書き演算子は通常、データの復号と署名の検証に使用されます。ただし、それらの演
算子を使用して、暗号化および署名時に DynamoDB 暗号化コンテキスト内のテーブル名を別の値に
設定することができます。

DynamoDBEncryptor を使用している場合は、テーブル名の上書き演算子を使用しないでくださ
い。代わりに、元のテーブル名で暗号化コンテキストを作成し、復号メソッドに送信します。

Java 用 DynamoDB 暗号化クライアントのサンプルコード

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され
ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

プログラミング言語 299

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/EncryptionContextOverridesWithDynamoDBMapper.java

AWS データベース暗号化 SDK デベロッパーガイド

以下の例では、Java 用 DynamoDB 暗号化クライアントを使用して、アプリケーションの
DynamoDB テーブル項目を保護する方法について説明します。GitHub の aws-dynamodb-
encryption-java リポジトリの examples ディレクトリに、その他の例 (および独自の使用に役立つ例)
があります。

トピック

• DynamoDBEncryptor の使用

• DynamoDBMapper の使用

DynamoDBEncryptor の使用

この例は、下位レベルの DynamoDBEncryptor を Direct KMS プロバイダーで使用する方法を示し
ています。Direct KMS プロバイダーは、指定した AWS KMS key in AWS Key Management Service
（AWS KMS) で暗号化マテリアルを生成して保護します。

互換性のある暗号化マテリアルプロバイダー (CMP) を DynamoDBEncryptor で使用できます。ま
た、Direct KMS プロバイダーを DynamoDBMapper および AttributeEncryptor で使用できます。

完全なコードサンプルの参照: AwsKmsEncryptedItem.java

ステップ 1: Direct KMS プロバイダーを作成する

指定されたリージョンで AWS KMS クライアントのインスタンスを作成します。次に、クライア
ントインスタンスを使用して、任意の AWS KMS keyで Direct KMS プロバイダーのインスタンス
を作成します。

この例では、Amazon リソースネーム (ARN) を使用して を識別しますが AWS KMS key、任意の
有効なキー識別子を使用できます。

final String keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
final String region = "us-west-2";

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

ステップ 2: 項目を作成する

この例では、サンプルテーブル項目を表す record HashMap を定義します。

final String partitionKeyName = "partition_attribute";

プログラミング言語 300

https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedItem.java
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS データベース暗号化 SDK デベロッパーガイド

final String sortKeyName = "sort_attribute";

final Map<String, AttributeValue> record = new HashMap<>();
record.put(partitionKeyName, new AttributeValue().withS("value1"));
record.put(sortKeyName, new AttributeValue().withN("55"));
record.put("example", new AttributeValue().withS("data"));
record.put("numbers", new AttributeValue().withN("99"));
record.put("binary", new AttributeValue().withB(ByteBuffer.wrap(new byte[]{0x00,
 0x01, 0x02})));
record.put("test", new AttributeValue().withS("test-value"));

ステップ 3: DynamoDBEncryptor を作成する

Direct KMS プロバイダーを使用して DynamoDBEncryptor のインスタンスを作成します。

final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp);

ステップ 4: DynamoDB 暗号化コンテキストを作成する

DynamoDB 暗号化コンテキストには、テーブル構造に関する情報と、暗号化および署名の方法が
含まれます。DynamoDBMapper を使用する場合は、AttributeEncryptor で暗号化テキスト
が作成されます。

final String tableName = "testTable";

final EncryptionContext encryptionContext = new EncryptionContext.Builder()
 .withTableName(tableName)
 .withHashKeyName(partitionKeyName)
 .withRangeKeyName(sortKeyName)
 .build();

ステップ 5: 属性アクションオブジェクトを作成する

属性アクションでは、暗号化されて署名された項目の属性値、署名のみされた項目の属性値、暗
号化も署名もされていない項目の属性値を指定します。

Java で属性アクションを指定するには、属性名と EncryptionFlags 値のペアの HashMap を
作成します。

たとえば、以下の Java コードでは、actions 項目のすべての属性を暗号化して署名する
record HashMap を作成します。ただし、署名済みだが暗号化されていないパーティションキー
およびソートキー属性、暗号化されていない未署名の test 属性は除きます。

プログラミング言語 301

AWS データベース暗号化 SDK デベロッパーガイド

final EnumSet<EncryptionFlags> signOnly = EnumSet.of(EncryptionFlags.SIGN);
final EnumSet<EncryptionFlags> encryptAndSign = EnumSet.of(EncryptionFlags.ENCRYPT,
 EncryptionFlags.SIGN);
final Map<String, Set<EncryptionFlags>> actions = new HashMap<>();

for (final String attributeName : record.keySet()) {
 switch (attributeName) {
 case partitionKeyName: // fall through to the next case
 case sortKeyName:
 // Partition and sort keys must not be encrypted, but should be signed
 actions.put(attributeName, signOnly);
 break;
 case "test":
 // Neither encrypted nor signed
 break;
 default:
 // Encrypt and sign all other attributes
 actions.put(attributeName, encryptAndSign);
 break;
 }
}

ステップ 6: 項目を暗号化および署名する

テーブル項目を暗号化して署名するには、encryptRecord のインスタンスで
DynamoDBEncryptor メソッドを呼び出します。テーブル項目 (record)、属性アクション
(actions)、暗号化テキスト (encryptionContext) を指定します。

final Map<String, AttributeValue> encrypted_record = encryptor.encryptRecord(record,
 actions, encryptionContext);

ステップ 7: DynamoDB テーブルに項目を入力する

最後に、暗号化された署名済みの項目を DynamoDB テーブルに入力します。

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();
ddb.putItem(tableName, encrypted_record);

プログラミング言語 302

AWS データベース暗号化 SDK デベロッパーガイド

DynamoDBMapper の使用

以下の例は、DynamoDB マッパーヘルパークラスを Direct KMS プロバイダーで使用する方法を示
しています。Direct KMS プロバイダーは、指定した AWS Key Management Service (AWS KMS) の
AWS KMS key で暗号化マテリアルを生成して、保護します。

互換性のある暗号化マテリアルプロバイダー (CMP) を DynamoDBMapper で使用できます。ま
た、Direct KMS プロバイダーを下位レベルの DynamoDBEncryptor で使用できます。

完全なコードサンプルの参照: AwsKmsEncryptedObject.java

ステップ 1: Direct KMS プロバイダーを作成する

指定されたリージョンで AWS KMS クライアントのインスタンスを作成します。次に、クライア
ントインスタンスを使用して、任意の AWS KMS keyで Direct KMS プロバイダーのインスタンス
を作成します。

この例では、Amazon リソースネーム (ARN) を使用して を識別しますが AWS KMS key、任意の
有効なキー識別子を使用できます。

final String keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
final String region = "us-west-2";

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

ステップ 2: DynamoDB エンクリプタと DynamoDBMapper を作成する

前のステップで作成した Direct KMS プロバイダーを使用して、DynamoDB エンクリプタのイン
スタンスを作成します。DynamoDB マッパーを使用するには、下位レベルの DynamoDB エンク
リプタをインスタンス化する必要があります。

次に、DynamoDB データベースのインスタンスとマッパー設定を作成し、それらを使用して
DynamoDB マッパーのインスタンスを作成します。

Important

DynamoDBMapper を使用して、署名された (または暗号化されて署名された) 項目を追
加または編集するときは、以下の例に示されているように、PUT のような保存動作を使

プログラミング言語 303

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedObject.java
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS データベース暗号化 SDK デベロッパーガイド

用するように設定して、すべての属性が含まれるようにします。そのように設定しない場
合、データを復号できないことがあります。

final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp)
final AmazonDynamoDB ddb =
 AmazonDynamoDBClientBuilder.standard().withRegion(region).build();

DynamoDBMapperConfig mapperConfig =
 DynamoDBMapperConfig.builder().withSaveBehavior(SaveBehavior.PUT).build();
DynamoDBMapper mapper = new DynamoDBMapper(ddb, mapperConfig, new
 AttributeEncryptor(encryptor));

ステップ 3: DynamoDB テーブルを定義する

次に、DynamoDB テーブルを定義します。注釈を使用して、属性アクションを指定します。この
例では、DynamoDB テーブルとして ExampleTable を作成し、テーブル項目を表す DataPoJo
クラスを作成します。

このサンプルテーブルでは、プライマリキーの属性は署名されますが、暗号化されません。こ
れは、@DynamoDBHashKey という注釈が付いた partition_attribute に適用されます。ま
た、@DynamoDBRangeKey という注釈が付いた sort_attribute に適用されます。

@DynamoDBAttribute という注釈が付いた属性 (some numbers など) は暗号化されて署名さ
れます。例外は、DynamoDB 暗号化クライアントで定義された @DoNotEncrypt (署名のみ) ま
たは @DoNotTouch (暗号化も署名もなし) 暗号化注釈を使用する属性です。たとえば、leave
me 属性には @DoNotTouch 注釈が付いているため、暗号化も署名もされません。

@DynamoDBTable(tableName = "ExampleTable")
public static final class DataPoJo {
 private String partitionAttribute;
 private int sortAttribute;
 private String example;
 private long someNumbers;
 private byte[] someBinary;
 private String leaveMe;

 @DynamoDBHashKey(attributeName = "partition_attribute")
 public String getPartitionAttribute() {
 return partitionAttribute;
 }

プログラミング言語 304

AWS データベース暗号化 SDK デベロッパーガイド

 public void setPartitionAttribute(String partitionAttribute) {
 this.partitionAttribute = partitionAttribute;
 }

 @DynamoDBRangeKey(attributeName = "sort_attribute")
 public int getSortAttribute() {
 return sortAttribute;
 }

 public void setSortAttribute(int sortAttribute) {
 this.sortAttribute = sortAttribute;
 }

 @DynamoDBAttribute(attributeName = "example")
 public String getExample() {
 return example;
 }

 public void setExample(String example) {
 this.example = example;
 }

 @DynamoDBAttribute(attributeName = "some numbers")
 public long getSomeNumbers() {
 return someNumbers;
 }

 public void setSomeNumbers(long someNumbers) {
 this.someNumbers = someNumbers;
 }

 @DynamoDBAttribute(attributeName = "and some binary")
 public byte[] getSomeBinary() {
 return someBinary;
 }

 public void setSomeBinary(byte[] someBinary) {
 this.someBinary = someBinary;
 }

 @DynamoDBAttribute(attributeName = "leave me")
 @DoNotTouch
 public String getLeaveMe() {

プログラミング言語 305

AWS データベース暗号化 SDK デベロッパーガイド

 return leaveMe;
 }

 public void setLeaveMe(String leaveMe) {
 this.leaveMe = leaveMe;
 }

 @Override
 public String toString() {
 return "DataPoJo [partitionAttribute=" + partitionAttribute + ", sortAttribute="
 + sortAttribute + ", example=" + example + ", someNumbers=" + someNumbers
 + ", someBinary=" + Arrays.toString(someBinary) + ", leaveMe=" + leaveMe +
 "]";
 }
}

ステップ 4: テーブル項目を暗号化して保存する

これで、テーブル項目を作成し、DynamoDB マッパーを使用して項目を保存すると、項目はテー
ブルに追加される前に自動的に暗号化されて署名されます。

この例では、record というテーブル項目を定義しています。この項目がテーブルに保存され
る前に、DataPoJo クラスの注釈に基づいて、その属性は暗号化されて署名されます。この場
合、PartitionAttribute、SortAttribute、LeaveMe を除くすべての属性が暗号化されて
署名されます。PartitionAttribute と SortAttributes は署名のみされます。LeaveMe
属性は暗号化または署名されていません。

record 項目を暗号化して署名し、ExampleTable に追加するには、DynamoDBMapper クラス
の save メソッドを呼び出します。DynamoDB マッパーは PUT 保存動作を使用するように設定
されているため、項目は更新されず、代わりに同じプライマリキーを使用する項目に置き換えら
れます。これにより、確実に署名が一致するようになり、その項目をテーブルからの取得時に復
号化できます。

DataPoJo record = new DataPoJo();
record.setPartitionAttribute("is this");
record.setSortAttribute(55);
record.setExample("data");
record.setSomeNumbers(99);
record.setSomeBinary(new byte[]{0x00, 0x01, 0x02});
record.setLeaveMe("alone");

mapper.save(record);

プログラミング言語 306

AWS データベース暗号化 SDK デベロッパーガイド

Python 用 DynamoDB 暗号化クライアント

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され
ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

このトピックでは、Python 用 DynamoDB 暗号化クライアントをインストールして使用する方法に
ついて説明します。このコードは、GitHub の aws-dynamodb-encryption-python リポジトリにあり、
開始するのに役立つ完全でテスト済みのサンプルコードが含まれています。

Note

DynamoDB Encryption Client for Python のバージョン 1.x.x および 2.x.x は、2022 年 7 月
にサポート終了フェーズに入ります。可能な限り早急に新しいバージョンにアップグレード
してください。

トピック

• 前提条件

• インストール

• Python 用 Amazon DynamoDB 暗号化クライアントの使用方法

• Python 用 DynamoDB 暗号化クライアントのサンプルコード

前提条件

Amazon DynamoDB Encryption Client for Python をインストールする前に、以下の前提条件が満たさ
れていることを確認してください。

Python のサポートされているバージョン

Amazon DynamoDB Encryption Client for Python バージョン 3.3.0 以降では、Python 3.8 以降が
必要です。Python をダウンロードするには、「Python のダウンロード」を参照してください。

プログラミング言語 307

https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples
https://www.python.org/downloads/

AWS データベース暗号化 SDK デベロッパーガイド

Amazon DynamoDB Encryption Client for Python の以前のバージョンでは Python 2.7 および
Python 3.4 以降がサポートされていますが、最新バージョンの DynamoDB 暗号化クライアント
を使用することをお勧めします。

Python 用 pip インストールツール

Python 3.6 以降には pip が含まれていますが、アップグレードすることもできます。pip のアッ
プグレードまたはインストールの詳細については、pip ドキュメント内のインストールを参照し
てください。

インストール

以下の例に示すように、pip を使用して Amazon DynamoDB Encryption Client for Python をインス
トールします。

最新バージョンをインストールするには

pip install dynamodb-encryption-sdk

pip を使用してパッケージをインストールおよびアップグレードする方法の詳細については、「パッ
ケージのインストール」を参照してください。

DynamoDB 暗号化クライアントでは、すべてのプラットフォームで cryptography ライブラリが必要
です。pip のすべてのバージョンでは、Windows に cryptography ライブラリがインストールされて
構築されます。pip 8.1 以降では、Linux に cryptography がインストールされて構築されます。以前
のバージョンの pip を使用していて、Linux 環境に暗号ライブラリを構築するために必要なツールが
ない場合は、それらをインストールする必要があります。詳細については、「Building cryptography
on Linux」を参照してください。

DynamoDB 暗号化クライアントの最新開発バージョンは、GitHub の aws-dynamodb-encryption-
python リポジトリから取得できます。

DynamoDB 暗号化クライアントをインストールしたら、このガイドの Python コードの例を見なが
ら開始します。

プログラミング言語 308

https://pip.pypa.io/en/latest/installation/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/installation/#building-cryptography-on-linux
https://cryptography.io/en/latest/installation/#building-cryptography-on-linux
https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/

AWS データベース暗号化 SDK デベロッパーガイド

Python 用 Amazon DynamoDB 暗号化クライアントの使用方法

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され
ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

このトピックでは、Python 用 Amazon DynamoDB 暗号化クライアントの機能の一部について説明し
ます。他のプログラミング言語には実装されていない機能も含まれます。これらの機能は、最も安全
な方法で DynamoDB 暗号化クライアントを簡単に使用できるように設計されています。通常とは異
なるユースケースを除き、この方法を使用することをお勧めします。

DynamoDB 暗号化クライアントを使用したプログラミングの詳細については、このガイドの Python
の例、GitHub の aws-dynamodb-encryption-python リポジトリにある例、および DynamoDB 暗号化
クライアント用の Python ドキュメントを参照してください。

トピック

• クライアントのヘルパークラス

• TableInfo クラス

• Python の属性アクション

クライアントのヘルパークラス

Python 用 DynamoDB 暗号化クライアントには、DynamoDB の Boto 3 クラスをミラーリングする複
数のクライアントヘルパークラスが含まれています。これらのヘルパークラスでは、次のように、暗
号化の追加、既存の DynamoDB アプリケーションへの署名、一般的な問題の回避を簡単に行うこと
ができます。

• 項目のプライマリキーを暗号化できないように、プライマリキーの上書きアクションを
AttributeActions オブジェクトを追加するか、AttributeActions オブジェクトを使用してプ
ライマリキーを暗号化するようにクライアントに明示的に指示している場合は例外をスローし
ます。AttributeActions オブジェクトのデフォルトアクションが DO_NOTHING の場合、ク
ライアントのヘルパークラスではプライマリキーのアクションが使用されます。それ以外の場合
は、SIGN_ONLY を使用します。

プログラミング言語 309

https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/

AWS データベース暗号化 SDK デベロッパーガイド

• TableInfo オブジェクトを作成し、DynamoDB への呼び出しに基づいて DynamoDB 暗号化コンテ
キストにデータを入力します。これにより、DynamoDB 暗号化コンテキストの精度が確保され、
クライアントはプライマリキーを識別できるようになります。

• DynamoDB テーブルが読み書きされるときにテーブル項目を透過的に暗号化および復号するメ
ソッド (put_item や get_item など) をサポートしています。ただし、update_item メソッド
はサポートされていません。

クライアントのヘルパークラスを使用します。低レベルの項目エンクリプタを使用して直接やり取り
する必要はありません。項目エンクリプタで高度オプションを設定する必要がある場合を除き、これ
らのクラスを使用します。

クライアントのヘルパークラスには、以下のものが含まれます。

• EncryptedTable: 1 つのテーブルを同時に処理するために DynamoDB でテーブルリソースを使用
するアプリケーション用。

• EncryptedResource: バッチ処理用に DynamoDB でサービスリソースクラスを使用するアプリケー
ション用。

• EncryptedClient: DynamoDB で低レベルクライアントを使用するアプリケーション用。

クライアントのヘルパークラスを使用するには、ターゲットテーブルの DynamoDB DescribeTable
オペレーションを呼び出すアクセス許可が発信者に必要です。

TableInfo クラス

TableInfo クラスは、DynamoDB テーブルを表すヘルパークラスです。プライマリキーとセカンダリ
インデックスのフィールドを使用します。これにより、テーブルに関する正確なリアルタイム情報を
簡単に取得できます。

クライアントのヘルパークラスを使用している場合は、TableInfo オブジェクトが作成、使用され
ます。それ以外の場合、オブジェクトを明示的に作成できます。例については、項目エンクリプタを
使用するを参照してください。

TableInfo オブジェクトで refresh_indexed_attributes メソッドを呼び出すと、DynamoDB
DescribeTable オペレーションを呼び出して、オブジェクトのプロパティ値が入力されま
す。テーブルのクエリは、ハードコーディングのインデックス名よりも信頼性がはるかに高
まります。TableInfo クラスには、DynamoDB 暗号化コンテキストに必要な値を提供する
encryption_context_values プロパティも含まれます。

プログラミング言語 310

https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/table.html#module-dynamodb_encryption_sdk.encrypted.table
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#table
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/resource.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#service-resource
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/client.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#client
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/tools/structures.html#dynamodb_encryption_sdk.structures.TableInfo
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS データベース暗号化 SDK デベロッパーガイド

refresh_indexed_attributes メソッドを使用するには、ターゲットテーブルの DynamoDB
DescribeTable オペレーションを呼び出すアクセス許可が発信者に必要です。

Python の属性アクション

属性アクションは、項目の各属性に対して実行するアクションを項目エンクリプタに指示します。
属性アクションを Python で指定するには、デフォルトアクションで AttributeActions オブジェ
クトと、特定の属性の例外を作成します。有効な値は、列挙型の CryptoAction で定義されていま
す。

Important

属性アクションを使用してテーブル項目を暗号化した後、データモデルから属性を追加また
は削除すると、署名の検証エラーが発生し、データの復号ができなくなることがあります。
詳細な説明については、「データモデルの変更」を参照してください。

DO_NOTHING = 0
SIGN_ONLY = 1
ENCRYPT_AND_SIGN = 2

たとえば、この AttributeActions オブジェクトは、すべての属性のデフォルトとして
ENCRYPT_AND_SIGN を確立し、ISBN 属性および PublicationYear 属性の例外を指定します。

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={
 'ISBN': CryptoAction.DO_NOTHING,
 'PublicationYear': CryptoAction.SIGN_ONLY
 }
)

クライアントのヘルパークラスを使用している場合は、プライマリキー属性の属性アクションを指定
する必要はありません。クライアントのヘルパークラスを使用して、プライマリキーを暗号化するこ
とはできません。

クライアントのヘルパークラスを使用しておらず、デフォルトアクションが ENCRYPT_AND_SIGN
の場合は、プライマリキーのアクションを指定する必要があります。プライマリキーに推奨されてい
るアクションは SIGN_ONLY です。簡単に行うには、set_index_keys メソッドを使用します。こ

プログラミング言語 311

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS データベース暗号化 SDK デベロッパーガイド

のメソッドでは、プライマリキーに SIGN_ONLY、デフォルトアクションの場合には DO_NOTHING
が使用されます。

Warning

プライマリキー属性を暗号化しないでください。DynamoDB でテーブル全体のスキャンを実
行せずに項目を見つけられるように、プレーンテキストの状態を維持する必要があります。

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
)
actions.set_index_keys(*table_info.protected_index_keys())

Python 用 DynamoDB 暗号化クライアントのサンプルコード

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され
ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

以下の例では、Python 用 DynamoDB 暗号化クライアントを使用して、アプリケーションの
DynamoDB データを保護する方法について説明します。GitHub の aws-dynamodb-encryption-
python リポジトリの examples ディレクトリに、その他の例 (および独自の使用に役立つ例) があり
ます。

トピック

• EncryptedTable クライアントヘルパークラスを使用する

• 項目エンクリプタを使用する

EncryptedTable クライアントヘルパークラスを使用する

以下の例は、EncryptedTable クライアントヘルパークラスで Direct KMS プロバイダーを使用す
る方法を示しています。この例では、次の 項目エンクリプタを使用する の例と同じ暗号化マテリア

プログラミング言語 312

https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples

AWS データベース暗号化 SDK デベロッパーガイド

ルプロバイダーを使用しています。ただし、低レベルの項目エンクリプタと直接やり取りするのでは
なく、EncryptedTable クラスを使用します。

これらの例を比較することで、クライアントのヘルパークラスが行う作業を確認できます。この処理
では、DynamoDB 暗号化コンテキストを作成します。また、プライマリキー属性が常に署名されて
いるが暗号化されていないことを確認します。暗号化コンテキストを作成し、プライマリキーを検出
するには、クライアントのヘルパークラスで DynamoDB DescribeTable オペレーションを呼び出し
ます。このコードを実行するには、このオペレーションを呼び出すアクセス許可が必要です。

完全なコードサンプルの参照: aws_kms_encrypted_table.py

ステップ 1: テーブルを作成する

開始するには、テーブル名を指定して、標準の DynamoDB テーブルのインスタンスを作成しま
す。

table_name='test-table'
table = boto3.resource('dynamodb').Table(table_name)

ステップ 2: 暗号化マテリアルプロバイダーを作成する

選択した暗号化マテリアルプロバイダー (CMP) のインスタンスを作成します。

この例では、Direct KMS プロバイダーを使用していますが、互換性のある CMP を使用すること
もできます。Direct KMS プロバイダーを作成するには、AWS KMS key を指定します。この例で
は、 の Amazon リソースネーム (ARN) を使用しますが AWS KMS key、任意の有効なキー識別
子を使用できます。

kms_key_id='arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

ステップ 3: 属性アクションオブジェクトを作成する

属性アクションは、項目の各属性に対して実行するアクションを項目エンクリプタに指示しま
す。この例の AttributeActions オブジェクトは、無視される test 属性を除くすべての項目
を暗号化し、署名します。

クライアントのヘルパークラスを使用する場合は、プライマリキー属性の属性アクションを指定
しないでください。EncryptedTable クラスでは、プライマリキー属性に署名しますが、暗号
化しません。

プログラミング言語 313

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_table.py
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS データベース暗号化 SDK デベロッパーガイド

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={'test': CryptoAction.DO_NOTHING}
)

ステップ 4: 暗号化されたテーブルを作成する

標準テーブル、Direct KMS プロバイダー、属性アクションを使用して、暗号化されたテーブルを
作成します。このステップで設定を完了します。

encrypted_table = EncryptedTable(
 table=table,
 materials_provider=kms_cmp,
 attribute_actions=actions
)

ステップ 5: テーブルにプレーンテキスト項目を入力する

encrypted_table で put_item メソッドを呼び出すと、テーブル項目は透過的に暗号化され
て署名された後、DynamoDB テーブルに追加されます。

まず、テーブル項目を定義します。

plaintext_item = {
 'partition_attribute': 'value1',
 'sort_attribute': 55
 'example': 'data',
 'numbers': 99,
 'binary': Binary(b'\x00\x01\x02'),
 'test': 'test-value'
}

次に、テーブルにデータを入力します。

encrypted_table.put_item(Item=plaintext_item)

DynamoDB テーブルから暗号化形式で項目を取得するには、table オブジェクトに対して
get_item メソッドを呼び出します。復号された項目を取得するには、get_item オブジェクトの
encrypted_table メソッドを呼び出します。

プログラミング言語 314

AWS データベース暗号化 SDK デベロッパーガイド

項目エンクリプタを使用する

この例は、テーブル項目を暗号化するときに、項目エンクリプタと自動的にやり取りするクライアン
トヘルパークラスを使用する代わりに、DynamoDB 暗号化クライアントで項目エンクリプタと直接
やり取りする方法を示しています。

この方法を使用するときは、DynamoDB 暗号化コンテキストと設定オブジェクト (CryptoConfig)
を手動で作成します。また、1 つの呼び出しで項目を暗号化し、別の呼び出しで DynamoDB テーブ
ルにその項目を入力します。これにより、put_item 呼び出しのカスタマイズや、DynamoDB 暗号
化クライアントを使用した構造化データの暗号化および署名を行うことができます。このデータが
DynamoDB に送信されることはありません。

この例では、Direct KMS プロバイダーを使用していますが、互換性のある CMP を使用することも
できます。

完全なコードサンプルの参照: aws_kms_encrypted_item.py

ステップ 1: テーブルを作成する

開始するには、テーブル名を指定して、標準の DynamoDB テーブルリソースのインスタンスを
作成します。

table_name='test-table'
table = boto3.resource('dynamodb').Table(table_name)

ステップ 2: 暗号化マテリアルプロバイダーを作成する

選択した暗号化マテリアルプロバイダー (CMP) のインスタンスを作成します。

この例では、Direct KMS プロバイダーを使用していますが、互換性のある CMP を使用すること
もできます。Direct KMS プロバイダーを作成するには、AWS KMS key を指定します。この例で
は、 の Amazon リソースネーム (ARN) を使用しますが AWS KMS key、任意の有効なキー識別
子を使用できます。

kms_key_id='arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

ステップ 3: TableInfo ヘルパークラスを使用する

DynamoDB からテーブルに関する情報を取得するには、TableInfo ヘルパークラスのインスタン
スを作成します。項目エンクリプタで直接操作する場合は、TableInfo インスタンスを作成し

プログラミング言語 315

https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_item.py
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS データベース暗号化 SDK デベロッパーガイド

てそのメソッドを呼び出す必要があります。クライアントのヘルパークラスを使用してこの操作
を行うことができます。

TableInfo の refresh_indexed_attributes メソッドでは、DescribeTable DynamoDB
オペレーションを使用して、テーブルに関するリアルタイムで正確な情報を取得します。この
情報には、プライマリキーと、ローカルおよびグローバルセカンダリインデックスが含まれま
す。DescribeTable を呼び出すアクセス許可が発信者に必要です。

table_info = TableInfo(name=table_name)
table_info.refresh_indexed_attributes(table.meta.client)

ステップ 4: DynamoDB 暗号化コンテキストを作成する

DynamoDB 暗号化コンテキストには、テーブル構造に関する情報と、暗号化および署名の方法が
含まれます。この例では、項目エンクリプタとやり取りするため、DynamoDB 暗号化コンテキス
トを明示的に作成します。クライアントのヘルパークラスでは、DynamoDB 暗号化コンテキスト
が作成されます。

パーティションキーおよびソートキーを取得するには、TableInfo ヘルパークラスのプロパティを
使用できます。

index_key = {
 'partition_attribute': 'value1',
 'sort_attribute': 55
}

encryption_context = EncryptionContext(
 table_name=table_name,
 partition_key_name=table_info.primary_index.partition,
 sort_key_name=table_info.primary_index.sort,
 attributes=dict_to_ddb(index_key)
)

ステップ 5: 属性アクションオブジェクトを作成する

属性アクションは、項目の各属性に対して実行するアクションを項目エンクリプタに指示しま
す。この例の AttributeActions オブジェクトは、署名されているが暗号されていないプライ
マリキー属性と、無視される test 属性を除き、すべての項目を暗号化し、署名します。

項目エンクリプタを使用して直接やり取りし、デフォルトアクションが ENCRYPT_AND_SIGN の
場合、プライマリキーの代替アクションを指定する必要があります。set_index_keys メソッ

プログラミング言語 316

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS データベース暗号化 SDK デベロッパーガイド

ドを使用できます。このメソッドでは、プライマリキーに SIGN_ONLY、デフォルトアクション
の場合には DO_NOTHING が使用されます。

プライマリキーを指定するために、この例では、TableInfo オブジェクトのインデックスキーを
使用します。これは、DynamoDB への呼び出しによって指定されます。この技術は、ハードコー
ディングのプライマリキー名より安全です。

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={'test': CryptoAction.DO_NOTHING}
)
actions.set_index_keys(*table_info.protected_index_keys())

ステップ 6: 項目の設定を作成する

DynamoDB 暗号化クライアントを設定するには、テーブル項目の CryptoConfig 設定で先ほど作
成したオブジェクトを使用します。クライアントのヘルパークラスでは、CryptoConfig が作成さ
れます。

crypto_config = CryptoConfig(
 materials_provider=kms_cmp,
 encryption_context=encryption_context,
 attribute_actions=actions
)

ステップ 7: 項目を暗号化する

このステップでは、項目を暗号化および署名しますが、DynamoDB テーブルには入力されませ
ん。

クライアントのヘルパークラスを使用するときに、項目は透過的に暗号化されて署名され、その
後、ヘルパークラスの put_item メソッドを呼び出すときに、DynamoDB テーブルに追加され
ます。項目エンクリプタを直接使用する場合、暗号化および入力アクションは独立しています。

まず、プレーンテキスト項目を作成します。

plaintext_item = {
 'partition_attribute': 'value1',
 'sort_key': 55,
 'example': 'data',
 'numbers': 99,
 'binary': Binary(b'\x00\x01\x02'),

プログラミング言語 317

https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/config.html

AWS データベース暗号化 SDK デベロッパーガイド

 'test': 'test-value'
}

次に、その項目を暗号化して署名します。encrypt_python_item メソッドで
は、CryptoConfig 設定オブジェクトが必要です。

encrypted_item = encrypt_python_item(plaintext_item, crypto_config)

ステップ 8: テーブルに項目を入力する

このステップでは、暗号化された署名済みの項目を DynamoDB テーブルに入力します。

table.put_item(Item=encrypted_item)

暗号化された項目を表示するには、元の get_item オブジェクトの table メソッドを呼び出
します。encrypted_table オブジェクトではありません。これにより、検証および復号せず
に、DynamoDB テーブルより項目を取得することができます。

encrypted_item = table.get_item(Key=partition_key)['Item']

次の画像は、暗号化された署名済みのテーブル項目の例の一部を示します。

暗号化された属性値は、バイナリデータです。プライマリキー属性の名前および値
(partition_attribute および sort_attribute) と、test 属性は、プレーンテキスト形式の
ままです。また、この出力は、署名を含む属性 (*amzn-ddb-map-sig*) とマテリアル説明属性
(*amzn-ddb-map-desc*) を示します。

プログラミング言語 318

AWS データベース暗号化 SDK デベロッパーガイド

データモデルの変更

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され
ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

項目を暗号化または復号するたびに、暗号化して署名する属性、署名する (ただし、暗号化はしない)
属性、および無視する属性を DynamoDB 暗号化クライアントに伝達する属性アクションを指定する
必要があります。属性アクションは、暗号化された項目に保存されないため、DynamoDB 暗号化ク
ライアントは属性アクションを自動的に処理しません。

Important

DynamoDB Encryption Client は、既存の暗号化されていない DynamoDB テーブルデータの
暗号化をサポートしていません。

データモデルを変更するたびに、つまり、テーブル項目から属性を追加または削除すると、エラー
が発生する危険性があります。指定した属性アクションが、項目のすべての属性で構成されていない
場合、その項目は、意図した方法で暗号化および署名されない場合があります。さらに重要な点とし
て、項目の復号時に指定する属性アクションが、項目の暗号化時に指定した属性アクションと異なる
場合は、署名検証が失敗する場合があります。

たとえば、項目の暗号化に使用する属性アクションで、test 属性に署名するよう指示した場合、そ
の項目の署名には test 属性が含まれます。項目の復号に使用する属性アクションが、test 属性で
構成されていない場合、クライアントは test 属性を含まない署名の検証を試みるため、検証は失敗
します。

これは、DynamoDB 暗号化クライアントがすべてのアプリケーションの項目に対して同じ署名を計
算する必要があるため、複数のアプリケーションが同じ DynamoDB 項目の読み取りおよび書き込み
を行う場合に特に問題になります。また、属性アクションの変更がすべてのホストに反映される必
要があるため、分散アプリケーションでも問題になります。DynamoDB テーブルが 1 つのプロセス

データモデルの変更 319

AWS データベース暗号化 SDK デベロッパーガイド

で 1 つのホストによってアクセスされる場合でも、ベストプラクティスプロセスを確立すると、プ
ロジェクトが複雑になった場合にエラーを防ぐことができます。

テーブル項目を読み取ることができない署名検証エラーを回避するには、次のガイダンスを使用しま
す。

• 属性の追加 — 新しい属性によって属性アクションが変更される場合は、項目に新しい属性を含め
る前に属性アクションの変更を完全にデプロイします。

• 属性の削除 - 項目で属性の使用を中止する場合は、属性アクションを変更しないでください。

• アクションの変更 - 属性アクション設定を使用してテーブル項目を暗号化した後は、テーブル内の
すべての項目を再暗号化しなければ、デフォルトのアクションまたは既存の属性のアクションを安
全に変更することはできません。

署名検証エラーは解決が非常に困難な場合があるため、最善の方法は、それらのエラーを回避するこ
とです。

トピック

• 属性の追加

• 属性の削除

属性の追加

テーブル項目に新しい属性を追加する場合、属性アクションの変更が必要になることがあります。
署名検証エラーを回避するために、この変更を 2 ステージのプロセスで実装することをお勧めしま
す。第 2 ステージを開始する前に、第 1 ステージが完了していることを確認します。

1. テーブルの読み取りまたは書き込みを行うすべてのアプリケーションで属性アクションを変更し
ます。これらの変更をデプロイして、更新がすべての送信先ホストに反映されていることを確認
します。

2. テーブル項目の新しい属性に値を書き込みます。

この 2 ステージのアプローチでは、すべてのアプリケーションおよびホストに同じ属性アクション
が設定され、新しい属性が見つかる前に同じ署名が計算されます。これは、属性のアクションが何も
しない (暗号化または署名しない) 場合でも重要です。その理由は、一部の暗号化では暗号化と署名
がデフォルトであるためです。

データモデルの変更 320

AWS データベース暗号化 SDK デベロッパーガイド

次の例は、このプロセスの第 1 ステージのコードを示しています。新しい項目属性 link が追加さ
れます。これには、別のテーブル項目へのリンクが保存されます。このリンクはプレーンテキストの
ままにする必要があるため、この例では署名のみアクションを割り当てます。この変更を完全にデプ
ロイし、すべてのアプリケーションおよびホストに新しい属性アクションがあることを確認したら、
テーブル項目で link 属性の使用を開始します。

Java DynamoDB Mapper

DynamoDB Mapper と AttributeEncryptor を使用すると、デフォルトでは、プライマリ
キーを除く属性がすべて暗号化されます。これらの属性は署名されますが、暗号化はされませ
ん。署名のみアクションを指定するには、@DoNotEncrypt 注釈を使用します。

この例では、新しい link 属性に @DoNotEncrypt 注釈を使用します。

@DynamoDBTable(tableName = "ExampleTable")
public static final class DataPoJo {
 private String partitionAttribute;
 private int sortAttribute;
 private String link;

 @DynamoDBHashKey(attributeName = "partition_attribute")
 public String getPartitionAttribute() {
 return partitionAttribute;
 }

 public void setPartitionAttribute(String partitionAttribute) {
 this.partitionAttribute = partitionAttribute;
 }

 @DynamoDBRangeKey(attributeName = "sort_attribute")
 public int getSortAttribute() {
 return sortAttribute;
 }

 public void setSortAttribute(int sortAttribute) {
 this.sortAttribute = sortAttribute;
 }

 @DynamoDBAttribute(attributeName = "link")
 @DoNotEncrypt
 public String getLink() {
 return link;
 }

データモデルの変更 321

AWS データベース暗号化 SDK デベロッパーガイド

 public void setLink(String link) {
 this.link = link;
 }

 @Override
 public String toString() {
 return "DataPoJo [partitionAttribute=" + partitionAttribute + ",
 sortAttribute=" + sortAttribute + ",
 link=" + link + "]";
 }
}

Java DynamoDB encryptor

下位レベルの DynamoDB エンクリプタでは、属性ごとにアクションを設定する必要がありま
す。この例では、switch 文を使用します。デフォルトは encryptAndSign で、パーティション
キー、ソートキー、および新しい link 属性に例外が指定されています。この例では、リンク属
性コードが使用前に完全にデプロイされていない場合、リンク属性の暗号化および署名を行うア
プリケーションや、リンク属性の署名のみを行うアプリケーションがあります。

for (final String attributeName : record.keySet()) {
 switch (attributeName) {
 case partitionKeyName:
 // fall through to the next case
 case sortKeyName:
 // partition and sort keys must be signed, but not encrypted
 actions.put(attributeName, signOnly);
 break;
 case "link":
 // only signed
 actions.put(attributeName, signOnly);
 break;
 default:
 // Encrypt and sign all other attributes
 actions.put(attributeName, encryptAndSign);
 break;
 }
}

データモデルの変更 322

AWS データベース暗号化 SDK デベロッパーガイド

Python

Python 用の DynamoDB 暗号化クライアントでは、すべての属性にデフォルトのアクションを指
定してから、例外を指定できます。

Python クライアントのヘルパークラスを使用している場合は、プライマリキー属性の属性アク
ションを指定する必要はありません。クライアントのヘルパークラスを使用して、プライマリ
キーを暗号化することはできません。ただし、クライアントのヘルパークラスを使用していない
場合は、パーティションキーとソートキーに SIGN_ONLY アクションを設定する必要がありま
す。パーティションキーまたはソートキーを誤って暗号化した場合、完全なテーブルスキャンを
行わないとデータを復元できません。

この例では、SIGN_ONLY アクションを取得する新しい link 属性の例外を指定します。

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={
 'example': CryptoAction.DO_NOTHING,
 'link': CryptoAction.SIGN_ONLY
 }
)

属性の削除

DynamoDB 暗号化クライアントで暗号化された項目で属性が不要になった場合は、その属性の使用
を停止できます。ただし、その属性のアクションを削除または変更しないでください。その削除また
は変更を行ってから、その属性を持つ項目が見つかった場合、その項目に対して計算された署名は元
の署名と一致せず、署名の検証は失敗します。

コードから属性のすべてのトレースを削除したいと思うかもしれませんが、項目を削除するのではな
く、項目が使用されなくなったというコメントを追加してください。完全なテーブルスキャンを実行
して属性のすべてのインスタンスを削除しても、その属性を持つ暗号化された項目は、設定のどこか
でキャッシュされるか、または処理中になる可能性があります。

データモデルの変更 323

AWS データベース暗号化 SDK デベロッパーガイド

DynamoDB 暗号化クライアントアプリケーションの問題のトラブルシュー
ティング

Note

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されま
した。次のトピックには、DynamoDB Encryption Client for Java のバージョン 1.x～2.x およ
び DynamoDB Encryption Client for Python のバージョン 1.x～3.x に関する情報が記載され
ています。詳細については、「AWS Database Encryption SDK for DynamoDB バージョンの
サポート」を参照してください。

このセクションでは、DynamoDB 暗号化クライアントを使用する際に直面する可能性のある問題を
示すとともに、その問題の解決方法を提案します。

DynamoDB 暗号化クライアントに関するフィードバックを提供するには、aws-dynamodb-
encryption-java または aws-dynamodb-encryption-python GitHub リポジトリに問題を提出します。

このドキュメントに関するフィードバックを提供するには、任意のページのフィードバックリンクを
使用します。

トピック

• アクセスが拒否されました

• 署名の検証失敗

• 古いバージョンのグローバルテーブルの問題

• 最新プロバイダーのパフォーマンスが悪い

アクセスが拒否されました

問題: アプリケーションから必要なリソースにアクセスできない。

提案: 必要なアクセス許可について説明します。アプリケーションが実行されているセキュリティコ
ンテキストにこのアクセス許可を追加します。

詳細

トラブルシューティング 324

https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-python/

AWS データベース暗号化 SDK デベロッパーガイド

DynamoDB 暗号化クライアントライブラリを使用するアプリケーションを実行するには、そのコン
ポーネントを使用するためのアクセス許可が呼び出し元に必要です。それ以外の場合、必要な要素へ
の発信者のアクセスは拒否されます。

• DynamoDB 暗号化クライアントは、Amazon Web Services (AWS) アカウントを必要とせず、どの
AWS サービスにも依存しません。ただし、アプリケーションで を使用している場合は AWS アカ
ウント AWS、アカウントを使用するアクセス許可を持つ および ユーザーが必要です。

• DynamoDB 暗号化クライアントには Amazon DynamoDB は必要ありません。ただし、クラ
イアントを使用するアプリケーションで DynamoDB テーブルを作成する、テーブルに項目を
入力する、またはテーブルから項目を取得する場合、呼び出し元には、 AWS アカウントで
必要な DynamoDB オペレーションを使用するためのアクセス許可が必要です。詳細について
は、Amazon DynamoDB デベロッパーガイドのアクセスコントロールのトピックを参照してくだ
さい。

• アプリケーションが、Python 用 DynamoDB 暗号化クライアントでクライアントヘルパークラ
スを使用する場合、呼び出し元には、DynamoDB DescribeTable オペレーションを呼び出すため
のアクセス許可が必要です。

• DynamoDB 暗号化クライアントは AWS Key Management Service () を必要としませんAWS
KMS。ただし、アプリケーションで Direct KMS マテリアルプロバイダーを使用している場合、ま
たは が使用するプロバイダーストアで最新プロバイダーを使用している場合 AWS KMS、呼び出
し元には、 AWS KMS GenerateDataKey および Decrypt オペレーションを使用するアクセス許可
が必要です。

署名の検証失敗

問題: 署名検証に失敗したため、項目を復号できない。また、項目は、意図したように暗号化および
署名されていない場合があります。

提案: 指定した属性アクションが、項目内のすべての属性で構成されていることを確認してくださ
い。項目を復号する場合は、項目の暗号化に使用するアクションと一致する属性アクションを指定し
ます。

詳細

指定する属性アクションによって、DynamoDB 暗号化クライアントに、暗号化して署名する属性、
署名する (ただし、暗号化はしない) 属性、および無視する属性が伝達されます。

指定した属性アクションが、項目のすべての属性で構成されていない場合、その項目は、意図した方
法で暗号化および署名されない場合があります。項目の復号時に指定する属性アクションが、項目の

トラブルシューティング 325

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/access-control-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS データベース暗号化 SDK デベロッパーガイド

暗号化時に指定した属性アクションと異なる場合は、署名検証が失敗する場合があります。これは、
分散アプリケーション固有の問題で、新しい属性アクションがすべてのホストに反映されていない可
能性があります。

署名の検証エラーは解決が困難です。それらのエラーを防ぐために、データモデルの変更時に追加の
対策を講じてください。詳細については、「データモデルの変更」を参照してください。

古いバージョンのグローバルテーブルの問題

問題: 署名の検証が失敗するため、古いバージョンの Amazon DynamoDB グローバルテーブルの項
目を復号できません。

推奨: 予約されたレプリケーションフィールドが暗号化または署名されないように属性アクションを
設定します。

詳細

DynamoDB グローバルテーブルを使用して DynamoDB Encryption Client を使用できます。マルチ
リージョン KMS キーを持つグローバルテーブルを使用し、グローバルテーブルがレプリケートされ
るすべての AWS リージョン に KMS キーをレプリケートすることをお勧めします。

グローバルテーブルのバージョン 2019.11.21 以降、特別な設定を行うことなく、DynamoDB
Encryption Client でグローバルテーブルを使用できるようになりました。ただし、グローバルテーブ
ルのバージョン 2017.11.29 を使用する場合は、予約されたレプリケーションフィールドが暗号化ま
たは署名されていないことを確認する必要があります。

グローバルテーブルのバージョン 2017.11.29 を使用している場合は、次の属性の属性アクションを
Java で DO_NOTHING または Python で @DoNotTouch に設定する必要があります。

• aws:rep:deleting

• aws:rep:updatetime

• aws:rep:updateregion

他のバージョンのグローバルテーブルを使用している場合は、アクションは必要ありません。

最新プロバイダーのパフォーマンスが悪い

問題: 特に DynamoDB 暗号化クライアントの新しいバージョンに更新すると、アプリケーションの
応答性が低下します。

トラブルシューティング 326

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V2.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V1.html

AWS データベース暗号化 SDK デベロッパーガイド

提案: 有効期限 (TTL) 値とキャッシュサイズを調整します。

詳細

最新のプロバイダーは、暗号化マテリアルの再利用を制限できるようにすることで、DynamoDB 暗
号化クライアントを使用するアプリケーションのパフォーマンスを向上させるように設計されていま
す。アプリケーションの最新プロバイダーを設定するときは、パフォーマンスの向上と、キャッシュ
と再利用によって生じるセキュリティ上の問題とのバランスを取る必要があります。

DynamoDB 暗号化クライアントの新しいバージョンでは、有効期限 (TTL) の値によって、キャッ
シュされた暗号化マテリアルプロバイダー (CMP) の使用期間が決定されます。TTL により、最新プ
ロバイダーが新しいバージョンの CMP をチェックする頻度も決定されます。

TTL が長すぎると、アプリケーションがビジネスルールやセキュリティ基準に違反する可能性があ
ります。TTL が短すぎると、プロバイダーストアへの頻繁な呼び出しによって、プロバイダースト
アがアプリケーションや、サービスアカウントを共有する他のアプリケーションからのリクエスト
を抑制する可能性があります。この問題を解決するには、レイテンシーと可用性の目標を満たし、セ
キュリティ基準に準拠する値に TTL とキャッシュサイズを調整します。詳細については、「有効期
限 (TTL) の値を設定する」を参照してください。

トラブルシューティング 327

AWS データベース暗号化 SDK デベロッパーガイド

Amazon DynamoDB Encryption Client の名前の変更

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

2023 年 6 月 9 日、クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に
変更されました。 AWS Database Encryption SDK は Amazon DynamoDB と互換性があります。従
来の DynamoDB Encryption Client によって暗号化された項目を復号して読み取ることができます。
従来の DynamoDB Encryption Client のバージョンの詳細については、「AWS Database Encryption
SDK for DynamoDB バージョンのサポート」を参照してください。

AWS Database Encryption SDK は、DynamoDB 用の Java クライアント側の暗号化ライブラリの
バージョン 3.x を提供します。これは、Java 用 DynamoDB 暗号化クライアントの大幅な書き換えで
す。これには、新しい構造化データ形式、マルチテナンシーのサポートの改善、シームレスなスキー
マの変更、検索可能な暗号化のサポートなど、多くの更新が含まれています。

AWS Database Encryption SDK で導入された新機能の詳細については、以下のトピックを参照して
ください。

検索可能な暗号化

データベース全体を復号せずに、暗号化されたレコードを検索できるデータベースを設計できま
す。脅威モデルとクエリ要件に応じて、検索可能な暗号化を使用して、暗号化されたレコードに
対して完全一致検索やよりカスタマイズされた複雑なクエリを実行できます。

キーリング

AWS Database Encryption SDK は、キーリングを使用してエンベロープ暗号化を実行します。
キーリングは、レコードを保護するデータキーを生成、暗号化、復号します。 AWS Database
Encryption SDK は、対称暗号化または非対称 RSA を使用してデータ AWS KMS キーAWS KMS
keysを保護するキーリングと、レコードを暗号化または復号する AWS KMS たびに を呼び出す
ことなく、対称暗号化 KMS キーで暗号化マテリアルを保護できるようにする AWS KMS 階層
キーリングをサポートしています。Raw AES キーリングおよび Raw RSA キーリングを使用して
独自のキーマテリアルを指定することもできます。

328

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS データベース暗号化 SDK デベロッパーガイド

シームレスなスキーマ変更

AWS Database Encryption SDK を設定するときは、暗号化および署名するフィールド、署名する
フィールド (暗号化しない）、無視するフィールドをクライアントに伝える暗号化アクションを
提供します。 AWS Database Encryption SDK を使用してレコードを保護した後でも、データモ
デルを変更できます。暗号化されたフィールドの追加や削除などの暗号化アクションを単一のデ
プロイで更新できます。

クライアント側の暗号化のために既存の DynamoDB テーブルを設定する

DynamoDB Encryption Client のレガシーバージョンは、データが入力されていない新しいテーブ
ルに実装されるように設計されています。Database AWS Encryption SDK for DynamoDB を使用
すると、既存の Amazon DynamoDB テーブルを DynamoDB 用の Java クライアント側の暗号化
ライブラリのバージョン 3.x に移行できます。

329

AWS データベース暗号化 SDK デベロッパーガイド

参照資料

クライアント側の暗号化ライブラリの名前が AWS Database Encryption SDK に変更されまし
た。このデベロッパーガイドでは、引き続き DynamoDB Encryption Client に関する情報を提供し
ます。

以下のトピックでは、 AWS Database Encryption SDK の技術的な詳細について説明します。

マテリアルの説明の形式
マテリアルの説明は、暗号化されたレコードのヘッダーとして機能します。 AWS Database
Encryption SDK を使用してフィールドを暗号化して署名すると、エンクリプタは暗号化マテリア
ルをアセンブルするときにマテリアルの説明を記録し、エンクリプタがレコードに追加する新しい
フィールド (aws_dbe_head) にマテリアルの説明を保存します。マテリアルの説明は、暗号化され
たデータキーと、レコードがどのように暗号化および署名されたかに関する情報を含む、ポータブル
な形式のデータ構造です。次の表には、マテリアルの説明を構成する値が記載されています。バイト
は示されている順に追加されます。

値 長さ (バイト)

Version 1

Signatures Enabled 1

Record ID 32

Encrypt Legend 変数

Encryption Context Length 2

??? 可変

Encrypted Data Key Count 1

Encrypted Data Keys 可変

Record Commitment 1

マテリアルの説明の形式 330

AWS データベース暗号化 SDK デベロッパーガイド

バージョン

aws_dbe_head フィールドの形式のバージョン。

署名が有効

このレコードで ECDSA デジタル署名が有効になっているかどうかをエンコードします。

バイト値 意味

0x01 ECDSA デジタル署名が有効 (デフォルト）

0x00 ECDSA デジタル署名が無効

レコード ID

レコードを識別するランダムに生成された 256 ビットの値。レコード ID:

• 暗号化されたレコードを一意に識別します。

• マテリアルの説明を暗号化されたレコードにバインドします。

暗号化の凡例

どの認証済みフィールドが暗号化されたのかを示すシリアル化された説明。[暗号化の凡例] は、
復号メソッドがどのフィールドの復号を試行するかを決定するために使用されます。

バイト値 意味

0x65 ENCRYPT_AND_SIGN

0x73 SIGN_ONLY

[暗号化の凡例] は次のようにシリアル化されます。

1. 辞書順 (正規パスを表すバイトシーケンスの順番)。

2. 各フィールドに、上記で指定したバイト値の 1 つを順番に付加して、そのフィールドを暗号化
するかどうかを示します。

暗号化コンテキストの長さ

暗号化コンテキストの長さ。これは 16 ビットの符号なし整数として解釈される 2 バイトの値で
す。最大長は 65,535 バイトです。

マテリアルの説明の形式 331

AWS データベース暗号化 SDK デベロッパーガイド

暗号化コンテキスト

任意のシークレットではない追加認証データを含む名前と値のペアのセット。

ECDSA デジタル署名が有効になっている場合、暗号化コンテキストにはキーと値のペア が含
まれます{"aws-crypto-footer-ecdsa-key": Qtxt}。 Qtxtは、SEC 1 バージョン 2.0 に
従ってQ圧縮された楕円曲線ポイントを表し、次に base64 でエンコードされます。

暗号化されたデータキーの数

暗号化されたデータキーの数。これは、暗号化されたデータキーの数を指定する 8 ビットの符号
なし整数として解釈される 1 バイトの値です。各レコード内の暗号化されたデータキーの最大数
は 255 です。

暗号化されたデータキー

暗号化されたデータキーのシーケンス。シーケンスの長さは暗号化されたデータキーの数とそれ
ぞれの長さによって決まります。シーケンスには、少なくとも 1 つの暗号化されたデータキーが
含まれています。

以下の表では、暗号化された各データキーを形成するフィールドについて説明します。バイトは
示されている順に追加されます。

暗号化されたデータキーの構造

フィールド 長さ (バイト)

Key Provider ID Length 2

Key Provider ID 変数。　 前の 2 バイト (キープロバイダー ID
の長さ) で指定された値と同じです。

Key Provider Information Length 2

Key Provider Information 変数。　 前の 2 バイト (キープロバイダー情
報の長さ) で指定された値と同じです。

Encrypted Data Key Length 2

Encrypted Data Key 変数。　 前の 2 バイト (暗号化されたデータ
キーの長さ) で指定された値と同じです。

マテリアルの説明の形式 332

https://www.secg.org/sec1-v2.pdf

AWS データベース暗号化 SDK デベロッパーガイド

キープロバイダー ID の長さ

キープロバイダー ID の長さ。これは、キープロバイダー ID を含むバイト数を指定する 16
ビットの符号なし整数として解釈される 2 バイトの値です。

キープロバイダー ID

キープロバイダー ID。これは、暗号化されたデータキーのプロバイダーを示すために使用さ
れ、拡張することを目的としています。

キープロバイダー情報の長さ

キープロバイダー情報の長さ。これは、キープロバイダー情報を含むバイト数を指定する 16
ビットの符号なし整数として解釈される 2 バイトの値です。

キープロバイダー情報

キープロバイダー情報 これはキープロバイダーによって決定されます。

AWS KMS キーリングを使用している場合、この値には の Amazon リソースネーム (ARN) が
含まれます AWS KMS key。

暗号化されたデータキーの長さ

暗号化されたデータキーの長さ。これは、暗号化されたデータキーを含むバイト数を指定する
16 ビットの符号なし整数として解釈される 2 バイトの値です。

暗号化されたデータキー

暗号化されたデータキー これは、キープロバイダーによって暗号化されたデータキーです。

コミットメントを記録する

コミットキーを使用して、前述のすべてのマテリアル説明バイトに対して計算された個別の 256
ビットのハッシュベースのメッセージ認証コード (HMAC) ハッシュ。

AWS KMS 階層キーリングの技術的な詳細

AWS KMS 階層キーリングは、一意のデータキーを使用して各フィールドを暗号化し、アクティブ
なブランチキーから導出した一意のラッピングキーを使用して各データキーを暗号化します。HMAC
SHA-256 の擬似ランダム関数を使用したカウンターモードで鍵導出を使用して、次の入力で 32 バイ
トのラッピングキーを導出します。

• 16 バイトのランダムソルト

AWS KMS 階層キーリングの技術的な詳細 333

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf

AWS データベース暗号化 SDK デベロッパーガイド

• アクティブなブランチキー

• キープロバイダー識別子「aws-kms-hierarchy」の UTF-8 でエンコードされた値

階層キーリングは、導出されたラッピングキーと、16 バイトの認証タグと次の入力を含む AES-
GCM-256 を使用して、プレーンテキストデータキーのコピーを暗号化します。

• 導出されたラッピングキーは AES-GCM 暗号キーとして使用されます

• データキーは AES-GCM メッセージとして使用されます

• 12 バイトのランダム初期化ベクトル (IV) が AES-GCM IV として使用されます

• 次のシリアル化された値を含む追加認証データ (AAD)。

値 長さ (バイト) 次のように解釈されます

「aws-kms-hierarchy」 17 UTF-8 でエンコード済み

ブランチキーの識別子 変数 UTF-8 でエンコード済み

ブランチキーのバージョン 16 UTF-8 でエンコード済み

暗号化コンテキスト 変数 UTF-8 でエンコードされた
key-value ペア

AWS KMS 階層キーリングの技術的な詳細 334

https://en.wikipedia.org/wiki/UTF-8

AWS データベース暗号化 SDK デベロッパーガイド

AWS Database Encryption SDK デベロッパーガイドのド
キュメント履歴

以下の表は、このドキュメントの大きな変更点をまとめたものです。主要な変更に加えて、その内容
の説明と例を改善し、ユーザーから寄せられるフィードバックにも応える目的で、このドキュメント
は頻繁に更新されます。重要な変更についての通知を受け取るには、RSS フィードをサブスクライ
ブします。

変更 説明 日付

新機能 AWS KMS ECDH キーリン
グと Raw ECDH キーリングの
ドキュメントを追加しまし
た。

2024 年 6 月 17 日

一般提供 (GA) DynamoDB 用の .NET クライ
アント側の暗号化ライブラリ
のサポートを紹介します。

2024 年 1 月 17 日

一般提供 (GA) DynamoDB 用の Java クラ
イアント側の暗号化ライブラ
リのバージョン 3.x の GA リ
リースのドキュメントを更新
しました。

Warning

デベロッパープレビ
ューリリース中に作成
されたブランチキーは
サポートされなくなり
ました。

2023 年 7 月 24 日

DynamoDB Encryption Client
のブランドの変更

クライアント側の暗号化
ライブラリの名前が AWS

2023 年 6 月 9 日

335

https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-net.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-java.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html

AWS データベース暗号化 SDK デベロッパーガイド

Database Encryption SDK に
変更されました。

プレビューリリース DynamoDB 用の Java クラ
イアント側の暗号化ライブラ
リのバージョン 3.x のドキュ
メントを追加および更新しま
した。これには、新しい構造
化データ形式、マルチテナン
シーサポートの改善、シーム
レスなスキーマ変更、および
検索可能な暗号化サポートが
含まれます。

2023 年 6 月 9 日

ドキュメントの変更 カスタマーマスターキー
(CMK) という AWS Key
Management Service 用語を
AWS KMS keyおよび KMS
キーに置き換えます。

2021 年 8 月 30 日

新機能 AWS Key Management
Service （AWS KMS) マルチ
リージョンキーのサポート
を追加しました。マルチリー
ジョンキーは AWS KMS AWS
リージョン 、同じキー ID と
キーマテリアルを持つため、
同じ意味で使用できる異なる
のキーです。

2021 年 6 月 8 日

新しい例 Java で DynamoDBMapper を
使用する例を追加しました。

2018 年 9 月 6 日

Python サポート Java に加えて Python のサ
ポートを追加しました。

2018 年 5 月 2 日

初回リリース このドキュメントの初回リ
リース。

2018 年 5 月 2 日

336

https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/direct-kms-provider.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/direct-kms-provider.html#provider-kms-how-to-use
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/java-examples.html#java-example-dynamodb-mapper
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/python.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/

AWS データベース暗号化 SDK デベロッパーガイド

翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛
盾がある場合、英語版が優先します。

cccxxxvii

	AWS データベース暗号化 SDK
	Table of Contents
	AWS Database Encryption SDK とは
	オープンソースリポジトリで開発
	サポートとメンテナンス
	フィードバックを送る
	AWS Database Encryption SDK の概念
	エンベロープ暗号化
	データキー
	ラッピングキー
	キーリング
	暗号化アクション
	マテリアル記述
	暗号化コンテキスト
	暗号化マテリアルマネージャー
	対称暗号化と非対称暗号化
	キーコミットメント
	デジタル署名

	AWS Database Encryption SDK の仕組み
	暗号化および署名
	復号および検証

	AWS Database Encryption SDK でサポートされているアルゴリズムスイート
	デフォルトのアルゴリズムスイート
	ECDSA デジタル署名を使用しない AES-GCM

	での AWS Database Encryption SDK の使用 AWS KMS
	AWS Database Encryption SDK の設定
	プログラミング言語の選択
	ラッピングキーの選択
	検出フィルターの作成
	マルチテナンシーデータベースの使用
	署名付きビーコンの作成

	AWS Database Encryption SDK のキーストア
	キーストアの用語と概念
	最小特権のアクセス許可の実装
	キーストアを作成する
	キーストアアクションを設定する
	キーストアアクションを設定する
	静的設定
	検出設定

	アクティブなブランチキーを作成する
	アクティブなブランチキーをローテーションする

	キーリング
	キーリングのしくみ
	AWS KMS キーリング
	AWS KMS キーリングに必要なアクセス許可
	AWS KMS キーリング AWS KMS keys での の識別
	AWS KMS キーリングの作成
	マルチリージョンの使用 AWS KMS keys
	AWS KMS 検出キーリングの使用
	AWS KMS リージョン検出キーリングの使用

	AWS KMS 階層キーリング
	仕組み
	前提条件
	必要なアクセス許可
	キャッシュを選択する
	デフォルトキャッシュ
	MultiThreadedキャッシュ
	StormTracking キャッシュ
	共有キャッシュ

	階層キーリングを作成する
	静的ブランチキー ID を使用して階層キーリングを作成する
	ブランチキー ID サプライヤーを使用して階層キーリングを作成する

	検索可能な暗号化のための階層キーリングの使用
	ビーコンキーソースの定義

	AWS KMS ECDH キーリング
	AWS KMS ECDH キーリングに必要なアクセス許可
	AWS KMS ECDH キーリングの作成
	AWS KMS ECDH 検出キーリングの作成

	Raw AES キーリング
	Raw RSA キーリング
	Raw ECDH キーリング
	Raw ECDH キーリングの作成
	RawPrivateKeyToStaticPublicKey
	EphemeralPrivateKeyToStaticPublicKey
	PublicKeyDiscovery

	マルチキーリング

	検索可能な暗号化
	ビーコンが適しているデータセット
	検索可能な暗号化のシナリオ
	ビーコン
	標準ビーコン
	複合ビーコン

	ビーコンの計画
	マルチテナンシーデータベースに関する考慮事項
	ビーコンのタイプの選択
	標準ビーコン
	暗号化された単一フィールドをクエリする
	例

	仮想フィールドをクエリする
	例

	複合ビーコン
	単一のインデックスで暗号化されたフィールドの組み合わせをクエリする
	例

	単一のインデックスで暗号化されたフィールドとプレーンテキストフィールドの組み合わせをクエリする
	例

	ビーコンの長さの選択
	ビーコンの長さの計算
	例

	ビーコン名の選択

	ビーコンの設定
	標準ビーコンの設定
	設定構文の例
	仮想フィールドの作成
	仮想フィールドのセキュリティに関する考慮事項

	ビーコンスタイルの定義

	複合ビーコンの設定
	設定構文の例

	設定例
	標準ビーコン
	複合ビーコン

	ビーコンの使用
	ビーコンのクエリ

	マルチテナンシーデータベースの検索可能な暗号化
	マルチテナンシーデータベース内のビーコンのクエリ

	AWS Database Encryption SDK for DynamoDB
	クライアント側とサーバー側の暗号化
	どのフィールドが暗号化および署名されますか?
	暗号化の属性値
	項目の署名

	DynamoDB での検索可能な暗号化
	ビーコンを使用したセカンダリインデックスの設定
	ビーコン出力のテスト
	仮想フィールドのテスト
	複合ビーコンのテスト

	データモデルの更新
	新しい ENCRYPT_AND_SIGN、SIGN_ONLY、および SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を追加する
	既存の属性を削除する
	既存のENCRYPT_AND_SIGN属性を SIGN_ONLYまたは に変更する SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
	既存の SIGN_ONLYまたは SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を に変更する ENCRYPT_AND_SIGN
	新しい DO_NOTHING 属性を追加する
	既存の SIGN_ONLY 属性を SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT に変更する
	既存の SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 属性を SIGN_ONLY に変更する

	AWS Database Encryption SDK for DynamoDB で利用可能なプログラミング言語
	Java
	前提条件
	インストール
	DynamoDB 用の Java クライアント側の暗号化ライブラリの使用
	項目エンクリプタ
	AWS Database Encryption SDK for DynamoDB の属性アクション
	アノテーション付きデータクラスを使用する
	属性アクションを手動で定義する

	AWS Database Encryption SDK for DynamoDB の暗号化設定
	AWS Database Encryption SDK を使用した項目の更新
	署名付きセットの復号化

	Java の例
	DynamoDB 拡張クライアントの使用
	下位レベルの DynamoDB API の使用
	下位レベルの DynamoDbItemEncryptor の使用

	AWS Database Encryption SDK for DynamoDB を使用するように既存の DynamoDB テーブルを設定する
	ステップ 1: 暗号化された項目の読み取りと書き込みの準備をする
	ステップ 2: 暗号化および署名された項目を書き込む
	ステップ 3: 暗号化および署名された項目のみを読み取る

	DynamoDB 用の Java クライアント側の暗号化ライブラリのバージョン 3.x に移行する
	バージョン 1.x から 2.x への移行
	バージョン 2.x から 3.x への移行
	ステップ 1. 新しい形式で項目を読み取る準備をする
	ステップ 2. 新しい形式で項目を書き込む
	ステップ 3. 新しい形式でのみ項目を読み書きする

	.NET
	DynamoDB 用の .NET クライアント側の暗号化ライブラリのインストール
	.NET を使用したデバッグ
	DynamoDB 用の .NET クライアント側の暗号化ライブラリの使用
	項目エンクリプタ
	AWS Database Encryption SDK for DynamoDB の属性アクション
	AWS Database Encryption SDK for DynamoDB の暗号化設定
	AWS Database Encryption SDK を使用した項目の更新

	.NET の例
	低レベルの AWS Database Encryption SDK for DynamoDB API の使用
	下位レベルの使用 DynamoDbItemEncryptor

	AWS Database Encryption SDK for DynamoDB を使用するように既存の DynamoDB テーブルを設定する
	ステップ 1: 暗号化された項目の読み取りと書き込みの準備をする
	ステップ 2: 暗号化および署名された項目を書き込む
	ステップ 3: 暗号化および署名された項目のみを読み取る

	Rust
	前提条件
	インストール
	DynamoDB 用の Rust クライアント側の暗号化ライブラリの使用
	項目エンクリプタ
	AWS Database Encryption SDK for DynamoDB の属性アクション
	AWS Database Encryption SDK for DynamoDB の暗号化設定
	AWS Database Encryption SDK を使用した項目の更新

	レガシー DynamoDB 暗号化クライアント
	AWS Database Encryption SDK for DynamoDB バージョンのサポート
	DynamoDB 暗号化クライアントの仕組み
	Amazon DynamoDB Encryption Client の概念
	暗号化マテリアルプロバイダー (CMP)
	項目エンクリプタ
	属性アクション
	マテリアル記述
	DynamoDB 暗号化コンテキスト
	プロバイダーストア

	暗号マテリアルプロバイダー
	Direct KMS マテリアルプロバイダー
	使用方法
	仕組み
	暗号化マテリアルを取得する
	復号マテリアルを取得する

	ラップされたマテリアルプロバイダー
	使用方法
	仕組み
	暗号化マテリアルを取得する
	復号マテリアルを取得する

	最新プロバイダー
	使用方法
	仕組み
	最新プロバイダーについて
	MetaStore について
	有効期限 (TTL) の値を設定する
	暗号化マテリアルの回転
	暗号化マテリアルを取得する
	復号マテリアルを取得する

	最新プロバイダーの更新

	静的マテリアルプロバイダー
	使用方法
	仕組み
	暗号化マテリアルを取得する
	復号マテリアルを取得する

	Amazon DynamoDB Encryption Client で利用可能なプログラミング言語
	Amazon DynamoDB Encryption Client for Java
	前提条件
	インストール
	Java 用 Amazon DynamoDB 暗号化クライアントの使用方法
	項目エンクリプタ: AttributeEncryptor および DynamoDBEncryptor
	保存動作の設定
	Java の属性アクション
	DynamoDBMapper の属性アクション
	DynamoDBEncryptor の属性アクション

	テーブル名の上書き

	Java 用 DynamoDB 暗号化クライアントのサンプルコード
	DynamoDBEncryptor の使用
	DynamoDBMapper の使用

	Python 用 DynamoDB 暗号化クライアント
	前提条件
	インストール
	Python 用 Amazon DynamoDB 暗号化クライアントの使用方法
	クライアントのヘルパークラス
	TableInfo クラス
	Python の属性アクション

	Python 用 DynamoDB 暗号化クライアントのサンプルコード
	EncryptedTable クライアントヘルパークラスを使用する
	項目エンクリプタを使用する

	データモデルの変更
	属性の追加
	属性の削除

	DynamoDB 暗号化クライアントアプリケーションの問題のトラブルシューティング
	アクセスが拒否されました
	署名の検証失敗
	古いバージョンのグローバルテーブルの問題
	最新プロバイダーのパフォーマンスが悪い

	Amazon DynamoDB Encryption Client の名前の変更
	参照資料
	マテリアルの説明の形式
	AWS KMS 階層キーリングの技術的な詳細

	AWS Database Encryption SDK デベロッパーガイドのドキュメント履歴
	

