Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.
Genera un video
I seguenti esempi di codice mostrano come usare Amazon Nova Reel per generare un video da un prompt di testo.
- Python
-
- SDK per Python (Boto3)
-
Nota
C'è di più su. GitHub Trova l'esempio completo e scopri di più sulla configurazione e l'esecuzione nel Repository di esempi di codice AWS
. Usa Amazon Nova Reel per generare un video da un messaggio di testo.
""" This example demonstrates how to use Amazon Nova Reel to generate a video from a text prompt. It shows how to: - Set up the Amazon Bedrock runtime client - Configure a text-to-video request - Submit an asynchronous job for video generation - Poll for job completion status - Access the generated video from S3 """ import random import time import boto3 # Replace with your own S3 bucket to store the generated video # Format: s3://your-bucket-name OUTPUT_S3_URI = "s3://REPLACE-WITH-YOUR-S3-BUCKET-NAME" def start_text_to_video_generation_job(bedrock_runtime, prompt, output_s3_uri): """ Starts an asynchronous text-to-video generation job using Amazon Nova Reel. :param bedrock_runtime: The Bedrock runtime client :param prompt: The text description of the video to generate :param output_s3_uri: S3 URI where the generated video will be stored :return: The invocation ARN of the async job """ # Specify the model ID for text-to-video generation model_id = "amazon.nova-reel-v1:0" # Generate a random seed between 0 and 2,147,483,646 # This helps ensure unique video generation results seed = random.randint(0, 2147483646) # Configure the video generation request with additional parameters model_input = { "taskType": "TEXT_VIDEO", "textToVideoParams": {"text": prompt}, "videoGenerationConfig": { "fps": 24, "durationSeconds": 6, "dimension": "1280x720", "seed": seed, }, } # Specify the S3 location for the output video output_config = {"s3OutputDataConfig": {"s3Uri": output_s3_uri}} # Invoke the model asynchronously response = bedrock_runtime.start_async_invoke( modelId=model_id, modelInput=model_input, outputDataConfig=output_config ) invocation_arn = response["invocationArn"] return invocation_arn def query_job_status(bedrock_runtime, invocation_arn): """ Queries the status of an asynchronous video generation job. :param bedrock_runtime: The Bedrock runtime client :param invocation_arn: The ARN of the async invocation to check :return: The runtime response containing the job status and details """ return bedrock_runtime.get_async_invoke(invocationArn=invocation_arn) def main(): """ Main function that demonstrates the complete workflow for generating a video from a text prompt using Amazon Nova Reel. """ # Create a Bedrock Runtime client # Note: Credentials will be loaded from the environment or AWS CLI config bedrock_runtime = boto3.client("bedrock-runtime", region_name="us-east-1") # Configure the text prompt and output location prompt = "Closeup of a cute old steampunk robot. Camera zoom in." # Verify the S3 URI has been set to a valid bucket if "REPLACE-WITH-YOUR-S3-BUCKET-NAME" in OUTPUT_S3_URI: print("ERROR: You must replace the OUTPUT_S3_URI with your own S3 bucket URI") return print("Submitting video generation job...") invocation_arn = start_text_to_video_generation_job( bedrock_runtime, prompt, OUTPUT_S3_URI ) print(f"Job started with invocation ARN: {invocation_arn}") # Poll for job completion while True: print("\nPolling job status...") job = query_job_status(bedrock_runtime, invocation_arn) status = job["status"] if status == "Completed": bucket_uri = job["outputDataConfig"]["s3OutputDataConfig"]["s3Uri"] print(f"\nSuccess! The video is available at: {bucket_uri}/output.mp4") break elif status == "Failed": print( f"\nVideo generation failed: {job.get('failureMessage', 'Unknown error')}" ) break else: print("In progress. Waiting 15 seconds...") time.sleep(15) if __name__ == "__main__": main()
-
Per informazioni dettagliate sull'API, consulta i seguenti argomenti nella Documentazione di riferimento delle API SDK AWS per Python (Boto3).
-
- Swift
-
- SDK per Swift
-
Nota
C'è altro da fare. GitHub Trova l'esempio completo e scopri di più sulla configurazione e l'esecuzione nel Repository di esempi di codice AWS
. Usa Amazon Nova Reel per generare un video da un messaggio di testo.
// This example demonstrates how to use Amazon Nova Reel to generate a video from a text prompt. // It shows how to: // - Set up the Amazon Bedrock runtime client // - Configure a text-to-video request // - Submit an asynchronous job for video generation // - Poll for job completion status // - Access the generated video from S3 import AWSBedrockRuntime import Foundation import Smithy func startTextToVideoGenerationJob( bedrockRuntimeClient: BedrockRuntimeClient, prompt: String, outputS3Uri: String ) async throws -> String? { // Specify the model ID for text-to-video generation let modelId = "amazon.nova-reel-v1:0" // Configure the video generation request with additional parameters let modelInputSource: [String: Any] = [ "taskType": "TEXT_VIDEO", "textToVideoParams": [ "text": "\(prompt)" ], "videoGenerationConfig": [ "durationSeconds": 6, "fps": 24, "dimension": "1280x720", ], ] let modelInput = try Document.make(from: modelInputSource) let input = StartAsyncInvokeInput( modelId: modelId, modelInput: modelInput, outputDataConfig: .s3outputdataconfig( BedrockRuntimeClientTypes.AsyncInvokeS3OutputDataConfig( s3Uri: outputS3Uri ) ) ) // Invoke the model asynchronously let output = try await bedrockRuntimeClient.startAsyncInvoke(input: input) return output.invocationArn } func queryJobStatus( bedrockRuntimeClient: BedrockRuntimeClient, invocationArn: String? ) async throws -> GetAsyncInvokeOutput { try await bedrockRuntimeClient.getAsyncInvoke( input: GetAsyncInvokeInput(invocationArn: invocationArn)) } func main() async throws { // Create a Bedrock Runtime client let config = try await BedrockRuntimeClient.BedrockRuntimeClientConfiguration( region: "us-east-1" ) let client = BedrockRuntimeClient(config: config) // Specify the S3 location for the output video let bucket = "s3://REPLACE-WITH-YOUR-S3-BUCKET-NAM" print("Submitting video generation job...") let invocationArn = try await startTextToVideoGenerationJob( bedrockRuntimeClient: client, prompt: "A pomegranate juice in a railway station", outputS3Uri: bucket ) print("Job started with invocation ARN: \(String(describing:invocationArn))") // Poll for job completion var status: BedrockRuntimeClientTypes.AsyncInvokeStatus? var isReady = false var hasFailed = false while !isReady && !hasFailed { print("\nPolling job status...") status = try await queryJobStatus( bedrockRuntimeClient: client, invocationArn: invocationArn ).status switch status { case .completed: isReady = true print("Video is ready\nCheck S3 bucket: \(bucket)") case .failed: hasFailed = true print("Something went wrong") case .inProgress: print("Job is in progress...") try await Task.sleep(nanoseconds: 15 * 1_000_000_000) // 15 seconds default: isReady = true } } } do { try await main() } catch { print("An error occurred: \(error)") }
-
Per informazioni dettagliate sulle API, consulta i seguenti argomenti nella Documentazione di riferimento delle API SDK AWS per Swift.
-