Sono disponibili altri esempi per SDK AWS nel repository GitHub della documentazione degli esempi per SDK AWS
Esempi per CloudWatch Logs con SDK per Python (Boto3)
Gli esempi di codice seguenti mostrano come eseguire operazioni e implementare scenari comuni utilizzando AWS SDK per Python (Boto3) con CloudWatch Logs.
Le azioni sono estratti di codice da programmi più grandi e devono essere eseguite nel contesto. Sebbene le operazioni mostrino come richiamare le singole funzioni del servizio, è possibile visualizzarle contestualizzate negli scenari correlati.
Scenari: esempi di codice che mostrano come eseguire un’attività specifica chiamando più funzioni all’interno dello stesso servizio o combinate con altri Servizi AWS.
Ogni esempio include un link al codice sorgente completo, in cui vengono fornite le istruzioni su come configurare ed eseguire il codice nel contesto.
Azioni
L’esempio di codice seguente mostra come utilizzare GetQueryResults.
- SDK per Python (Boto3)
-
Nota
Ulteriori informazioni su GitHub. Trova l’esempio completo e scopri di più sulla configurazione e l’esecuzione nel Repository di esempi di codice AWS
. def _wait_for_query_results(self, client, query_id): """ Waits for the query to complete and retrieves the results. :param query_id: The ID of the initiated query. :type query_id: str :return: A list containing the results of the query. :rtype: list """ while True: time.sleep(1) results = client.get_query_results(queryId=query_id) if results["status"] in [ "Complete", "Failed", "Cancelled", "Timeout", "Unknown", ]: return results.get("results", [])-
Per informazioni dettagliate sull’API, consulta GetQueryResults nella documentazione di riferimento dell’API AWS SDK per Python (Boto3).
-
L’esempio di codice seguente mostra come utilizzare StartLiveTail.
- SDK per Python (Boto3)
-
Includere i file richiesti.
import boto3 import time from datetime import datetimeAvvia la sessione Live Tail.
# Initialize the client client = boto3.client('logs') start_time = time.time() try: response = client.start_live_tail( logGroupIdentifiers=log_group_identifiers, logStreamNames=log_streams, logEventFilterPattern=filter_pattern ) event_stream = response['responseStream'] # Handle the events streamed back in the response for event in event_stream: # Set a timeout to close the stream. # This will end the Live Tail session. if (time.time() - start_time >= 10): event_stream.close() break # Handle when session is started if 'sessionStart' in event: session_start_event = event['sessionStart'] print(session_start_event) # Handle when log event is given in a session update elif 'sessionUpdate' in event: log_events = event['sessionUpdate']['sessionResults'] for log_event in log_events: print('[{date}] {log}'.format(date=datetime.fromtimestamp(log_event['timestamp']/1000),log=log_event['message'])) else: # On-stream exceptions are captured here raise RuntimeError(str(event)) except Exception as e: print(e)-
Per informazioni dettagliate sull’API, consulta StartLiveTail nella documentazione di riferimento dell’API AWS SDK per Python (Boto3).
-
L’esempio di codice seguente mostra come utilizzare StartQuery.
- SDK per Python (Boto3)
-
Nota
Ulteriori informazioni su GitHub. Trova l’esempio completo e scopri di più sulla configurazione e l’esecuzione nel Repository di esempi di codice AWS
. def perform_query(self, date_range): """ Performs the actual CloudWatch log query. :param date_range: A tuple representing the start and end datetime for the query. :type date_range: tuple :return: A list containing the query results. :rtype: list """ client = boto3.client("logs") try: try: start_time = round( self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[0]) ) end_time = round( self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[1]) ) response = client.start_query( logGroupName=self.log_group, startTime=start_time, endTime=end_time, queryString=self.query_string, limit=self.limit, ) query_id = response["queryId"] except client.exceptions.ResourceNotFoundException as e: raise DateOutOfBoundsError(f"Resource not found: {e}") while True: time.sleep(1) results = client.get_query_results(queryId=query_id) if results["status"] in [ "Complete", "Failed", "Cancelled", "Timeout", "Unknown", ]: return results.get("results", []) except DateOutOfBoundsError: return [] def _initiate_query(self, client, date_range, max_logs): """ Initiates the CloudWatch logs query. :param date_range: A tuple representing the start and end datetime for the query. :type date_range: tuple :param max_logs: The maximum number of logs to retrieve. :type max_logs: int :return: The query ID as a string. :rtype: str """ try: start_time = round( self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[0]) ) end_time = round( self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[1]) ) response = client.start_query( logGroupName=self.log_group, startTime=start_time, endTime=end_time, queryString=self.query_string, limit=max_logs, ) return response["queryId"] except client.exceptions.ResourceNotFoundException as e: raise DateOutOfBoundsError(f"Resource not found: {e}")-
Per informazioni dettagliate sull’API, consulta StartQuery nella documentazione di riferimento dell’API AWS SDK per Python (Boto3).
-
Scenari
L’esempio di codice seguente mostra come utilizzare CloudWatch Logs per eseguire query su più di 10.000 record.
- SDK per Python (Boto3)
-
Nota
Ulteriori informazioni su GitHub. Trova l’esempio completo e scopri di più sulla configurazione e l’esecuzione nel Repository di esempi di codice AWS
. Questo file invoca un modulo di esempio per la gestione delle query CloudWatch con più di 10.000 risultati.
import logging import os import sys import boto3 from botocore.config import Config from cloudwatch_query import CloudWatchQuery from date_utilities import DateUtilities # Configure logging at the module level. logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s", ) DEFAULT_QUERY_LOG_GROUP = "/workflows/cloudwatch-logs/large-query" class CloudWatchLogsQueryRunner: def __init__(self): """ Initializes the CloudWatchLogsQueryRunner class by setting up date utilities and creating a CloudWatch Logs client with retry configuration. """ self.date_utilities = DateUtilities() self.cloudwatch_logs_client = self.create_cloudwatch_logs_client() def create_cloudwatch_logs_client(self): """ Creates and returns a CloudWatch Logs client with a specified retry configuration. :return: A CloudWatch Logs client instance. :rtype: boto3.client """ try: return boto3.client("logs", config=Config(retries={"max_attempts": 10})) except Exception as e: logging.error(f"Failed to create CloudWatch Logs client: {e}") sys.exit(1) def fetch_environment_variables(self): """ Fetches and validates required environment variables for query start and end dates. Fetches the environment variable for log group, returning the default value if it does not exist. :return: Tuple of query start date and end date as integers and the log group. :rtype: tuple :raises SystemExit: If required environment variables are missing or invalid. """ try: query_start_date = int(os.environ["QUERY_START_DATE"]) query_end_date = int(os.environ["QUERY_END_DATE"]) except KeyError: logging.error( "Both QUERY_START_DATE and QUERY_END_DATE environment variables are required." ) sys.exit(1) except ValueError as e: logging.error(f"Error parsing date environment variables: {e}") sys.exit(1) try: log_group = os.environ["QUERY_LOG_GROUP"] except KeyError: logging.warning("No QUERY_LOG_GROUP environment variable, using default value") log_group = DEFAULT_QUERY_LOG_GROUP return query_start_date, query_end_date, log_group def convert_dates_to_iso8601(self, start_date, end_date): """ Converts UNIX timestamp dates to ISO 8601 format using DateUtilities. :param start_date: The start date in UNIX timestamp. :type start_date: int :param end_date: The end date in UNIX timestamp. :type end_date: int :return: Start and end dates in ISO 8601 format. :rtype: tuple """ start_date_iso8601 = self.date_utilities.convert_unix_timestamp_to_iso8601( start_date ) end_date_iso8601 = self.date_utilities.convert_unix_timestamp_to_iso8601( end_date ) return start_date_iso8601, end_date_iso8601 def execute_query( self, start_date_iso8601, end_date_iso8601, log_group="/workflows/cloudwatch-logs/large-query", query="fields @timestamp, @message | sort @timestamp asc" ): """ Creates a CloudWatchQuery instance and executes the query with provided date range. :param start_date_iso8601: The start date in ISO 8601 format. :type start_date_iso8601: str :param end_date_iso8601: The end date in ISO 8601 format. :type end_date_iso8601: str :param log_group: Log group to search: "/workflows/cloudwatch-logs/large-query" :type log_group: str :param query: Query string to pass to the CloudWatchQuery instance :type query: str """ cloudwatch_query = CloudWatchQuery( log_group=log_group, query_string=query ) cloudwatch_query.query_logs((start_date_iso8601, end_date_iso8601)) logging.info("Query executed successfully.") logging.info( f"Queries completed in {cloudwatch_query.query_duration} seconds. Total logs found: {len(cloudwatch_query.query_results)}" ) def main(): """ Main function to start a recursive CloudWatch logs query. Fetches required environment variables, converts dates, and executes the query. """ logging.info("Starting a recursive CloudWatch logs query...") runner = CloudWatchLogsQueryRunner() query_start_date, query_end_date, log_group = runner.fetch_environment_variables() start_date_iso8601 = DateUtilities.convert_unix_timestamp_to_iso8601( query_start_date ) end_date_iso8601 = DateUtilities.convert_unix_timestamp_to_iso8601(query_end_date) runner.execute_query(start_date_iso8601, end_date_iso8601, log_group=log_group) if __name__ == "__main__": main()Questo modulo elabora le query CloudWatch che restituiscono più di 10.000 risultati.
import logging import time from datetime import datetime import threading import boto3 from date_utilities import DateUtilities DEFAULT_QUERY = "fields @timestamp, @message | sort @timestamp asc" DEFAULT_LOG_GROUP = "/workflows/cloudwatch-logs/large-query" class DateOutOfBoundsError(Exception): """Exception raised when the date range for a query is out of bounds.""" pass class CloudWatchQuery: """ A class to query AWS CloudWatch logs within a specified date range. :vartype date_range: tuple :ivar limit: Maximum number of log entries to return. :vartype limit: int :log_group str: Name of the log group to query :query_string str: query """ def __init__(self, log_group: str = DEFAULT_LOG_GROUP, query_string: str=DEFAULT_QUERY) -> None: self.lock = threading.Lock() self.log_group = log_group self.query_string = query_string self.query_results = [] self.query_duration = None self.datetime_format = "%Y-%m-%d %H:%M:%S.%f" self.date_utilities = DateUtilities() self.limit = 10000 def query_logs(self, date_range): """ Executes a CloudWatch logs query for a specified date range and calculates the execution time of the query. :return: A batch of logs retrieved from the CloudWatch logs query. :rtype: list """ start_time = datetime.now() start_date, end_date = self.date_utilities.normalize_date_range_format( date_range, from_format="unix_timestamp", to_format="datetime" ) logging.info( f"Original query:" f"\n START: {start_date}" f"\n END: {end_date}" f"\n LOG GROUP: {self.log_group}" ) self.recursive_query((start_date, end_date)) end_time = datetime.now() self.query_duration = (end_time - start_time).total_seconds() def recursive_query(self, date_range): """ Processes logs within a given date range, fetching batches of logs recursively if necessary. :param date_range: The date range to fetch logs for, specified as a tuple (start_timestamp, end_timestamp). :type date_range: tuple :return: None if the recursive fetching is continued or stops when the final batch of logs is processed. Although it doesn't explicitly return the query results, this method accumulates all fetched logs in the `self.query_results` attribute. :rtype: None """ batch_of_logs = self.perform_query(date_range) # Add the batch to the accumulated logs with self.lock: self.query_results.extend(batch_of_logs) if len(batch_of_logs) == self.limit: logging.info(f"Fetched {self.limit}, checking for more...") most_recent_log = self.find_most_recent_log(batch_of_logs) most_recent_log_timestamp = next( item["value"] for item in most_recent_log if item["field"] == "@timestamp" ) new_range = (most_recent_log_timestamp, date_range[1]) midpoint = self.date_utilities.find_middle_time(new_range) first_half_thread = threading.Thread( target=self.recursive_query, args=((most_recent_log_timestamp, midpoint),), ) second_half_thread = threading.Thread( target=self.recursive_query, args=((midpoint, date_range[1]),) ) first_half_thread.start() second_half_thread.start() first_half_thread.join() second_half_thread.join() def find_most_recent_log(self, logs): """ Search a list of log items and return most recent log entry. :param logs: A list of logs to analyze. :return: log :type :return List containing log item details """ most_recent_log = None most_recent_date = "1970-01-01 00:00:00.000" for log in logs: for item in log: if item["field"] == "@timestamp": logging.debug(f"Compared: {item['value']} to {most_recent_date}") if ( self.date_utilities.compare_dates( item["value"], most_recent_date ) == item["value"] ): logging.debug(f"New most recent: {item['value']}") most_recent_date = item["value"] most_recent_log = log logging.info(f"Most recent log date of batch: {most_recent_date}") return most_recent_log def perform_query(self, date_range): """ Performs the actual CloudWatch log query. :param date_range: A tuple representing the start and end datetime for the query. :type date_range: tuple :return: A list containing the query results. :rtype: list """ client = boto3.client("logs") try: try: start_time = round( self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[0]) ) end_time = round( self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[1]) ) response = client.start_query( logGroupName=self.log_group, startTime=start_time, endTime=end_time, queryString=self.query_string, limit=self.limit, ) query_id = response["queryId"] except client.exceptions.ResourceNotFoundException as e: raise DateOutOfBoundsError(f"Resource not found: {e}") while True: time.sleep(1) results = client.get_query_results(queryId=query_id) if results["status"] in [ "Complete", "Failed", "Cancelled", "Timeout", "Unknown", ]: return results.get("results", []) except DateOutOfBoundsError: return [] def _initiate_query(self, client, date_range, max_logs): """ Initiates the CloudWatch logs query. :param date_range: A tuple representing the start and end datetime for the query. :type date_range: tuple :param max_logs: The maximum number of logs to retrieve. :type max_logs: int :return: The query ID as a string. :rtype: str """ try: start_time = round( self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[0]) ) end_time = round( self.date_utilities.convert_iso8601_to_unix_timestamp(date_range[1]) ) response = client.start_query( logGroupName=self.log_group, startTime=start_time, endTime=end_time, queryString=self.query_string, limit=max_logs, ) return response["queryId"] except client.exceptions.ResourceNotFoundException as e: raise DateOutOfBoundsError(f"Resource not found: {e}") def _wait_for_query_results(self, client, query_id): """ Waits for the query to complete and retrieves the results. :param query_id: The ID of the initiated query. :type query_id: str :return: A list containing the results of the query. :rtype: list """ while True: time.sleep(1) results = client.get_query_results(queryId=query_id) if results["status"] in [ "Complete", "Failed", "Cancelled", "Timeout", "Unknown", ]: return results.get("results", [])-
Per informazioni dettagliate sull’API, consulta i seguenti argomenti nella documentazione di riferimento dell’API AWS SDK per Python (Boto3).
-
L’esempio di codice seguente mostra come creare una funzione AWS Lambda, invocata da un evento pianificato Amazon EventBridge.
- SDK per Python (Boto3)
-
Questo esempio illustra come registrare una funzione AWS Lambda come destinazione di un evento Amazon EventBridge pianificato. Il gestore Lambda scrive un messaggio descrittivo e i dati completi dell’evento su Amazon CloudWatch Logs per recuperarli in un secondo momento.
Distribuzione di una funzione Lambda.
Crea un evento pianificato EventBridge e rende la funzione Lambda la destinazione.
Concede l’autorizzazione affinché EventBridge invochi la funzione Lambda.
Stampa i dati più recenti da CloudWatch Logs per mostrare il risultato delle invocazioni pianificate.
Elimina tutte le risorse create durante la demo.
Questo esempio è visualizzabile in maniera ottimale su GitHub. Per il codice sorgente completo e le istruzioni su come configurare ed eseguire, consulta l’esempio completo su GitHub
. Servizi utilizzati in questo esempio
File di log CloudWatch
DynamoDB
EventBridge
Lambda
Amazon SNS