Esempi di Amazon Comprehend che utilizzano la AWS CLI - AWS Command Line Interface

Esempi di Amazon Comprehend che utilizzano la AWS CLI

Negli esempi di codice seguenti viene mostrato come eseguire azioni e implementare scenari comuni utilizzando AWS Command Line Interface con Amazon Comprehend.

Le operazioni sono estratti di codice da programmi più grandi e devono essere eseguite nel contesto. Sebbene le operazioni mostrino come richiamare le singole funzioni del servizio, è possibile visualizzarle contestualizzate negli scenari correlati.

Ogni esempio include un link al codice sorgente completo, dove è possibile trovare le istruzioni su come configurare ed eseguire il codice nel contesto.

Argomenti

Operazioni

L’esempio di codice seguente mostra come utilizzare batch-detect-dominant-language.

AWS CLI

Come rilevare la lingua dominante di più testi di input

L’esempio batch-detect-dominant-language seguente analizza più testi di input e restituisce la lingua dominante di ciascuno di essi. Per ogni previsione viene inoltre restituito il punteggio di attendibilità del modello pre-addestrato.

aws comprehend batch-detect-dominant-language \ --text-list "Physics is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force."

Output:

{ "ResultList": [ { "Index": 0, "Languages": [ { "LanguageCode": "en", "Score": 0.9986501932144165 } ] } ], "ErrorList": [] }

Per ulteriori informazioni, consulta Dominant Language in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare batch-detect-entities.

AWS CLI

Come rilevare entità da più testi di input

L’esempio batch-detect-entities seguente analizza più testi di input e restituisce le entità denominate di ciascuno di essi. Per ogni previsione viene inoltre restituito il punteggio di attendibilità del modello pre-addestrato.

aws comprehend batch-detect-entities \ --language-code en \ --text-list "Dear Jane, Your AnyCompany Financial Services LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st." "Please send customer feedback to Sunshine Spa, 123 Main St, Anywhere or to Alice at AnySpa@example.com."

Output:

{ "ResultList": [ { "Index": 0, "Entities": [ { "Score": 0.9985517859458923, "Type": "PERSON", "Text": "Jane", "BeginOffset": 5, "EndOffset": 9 }, { "Score": 0.9767839312553406, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 16, "EndOffset": 50 }, { "Score": 0.9856694936752319, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 71, "EndOffset": 90 }, { "Score": 0.9652159810066223, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 116, "EndOffset": 119 }, { "Score": 0.9986667037010193, "Type": "DATE", "Text": "July 31st", "BeginOffset": 135, "EndOffset": 144 } ] }, { "Index": 1, "Entities": [ { "Score": 0.720084547996521, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 33, "EndOffset": 45 }, { "Score": 0.9865870475769043, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 47, "EndOffset": 58 }, { "Score": 0.5895616412162781, "Type": "LOCATION", "Text": "Anywhere", "BeginOffset": 60, "EndOffset": 68 }, { "Score": 0.6809214353561401, "Type": "PERSON", "Text": "Alice", "BeginOffset": 75, "EndOffset": 80 }, { "Score": 0.9979087114334106, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 84, "EndOffset": 99 } ] } ], "ErrorList": [] }

Per ulteriori informazioni, consulta Entities in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta BatchDetectEntities in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare batch-detect-key-phrases.

AWS CLI

Come rilevare le frasi chiave di più input di testo

L’esempio batch-detect-key-phrases seguente analizza più testi di input e restituisce le frasi nominali chiave di ciascuno di essi. Per ogni previsione viene inoltre restituito il punteggio di attendibilità del modello pre-addestrato.

aws comprehend batch-detect-key-phrases \ --language-code en \ --text-list "Hello Zhang Wei, I am John, writing to you about the trip for next Saturday." "Dear Jane, Your AnyCompany Financial Services LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st." "Please send customer feedback to Sunshine Spa, 123 Main St, Anywhere or to Alice at AnySpa@example.com."

Output:

{ "ResultList": [ { "Index": 0, "KeyPhrases": [ { "Score": 0.99700927734375, "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9929308891296387, "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9997230172157288, "Text": "the trip", "BeginOffset": 49, "EndOffset": 57 }, { "Score": 0.9999470114707947, "Text": "next Saturday", "BeginOffset": 62, "EndOffset": 75 } ] }, { "Index": 1, "KeyPhrases": [ { "Score": 0.8358274102210999, "Text": "Dear Jane", "BeginOffset": 0, "EndOffset": 9 }, { "Score": 0.989359974861145, "Text": "Your AnyCompany Financial Services", "BeginOffset": 11, "EndOffset": 45 }, { "Score": 0.8812323808670044, "Text": "LLC credit card account 1111-XXXX-1111-XXXX", "BeginOffset": 47, "EndOffset": 90 }, { "Score": 0.9999381899833679, "Text": "a minimum payment", "BeginOffset": 95, "EndOffset": 112 }, { "Score": 0.9997439980506897, "Text": ".53", "BeginOffset": 116, "EndOffset": 119 }, { "Score": 0.996875524520874, "Text": "July 31st", "BeginOffset": 135, "EndOffset": 144 } ] }, { "Index": 2, "KeyPhrases": [ { "Score": 0.9990295767784119, "Text": "customer feedback", "BeginOffset": 12, "EndOffset": 29 }, { "Score": 0.9994127750396729, "Text": "Sunshine Spa", "BeginOffset": 33, "EndOffset": 45 }, { "Score": 0.9892991185188293, "Text": "123 Main St", "BeginOffset": 47, "EndOffset": 58 }, { "Score": 0.9969810843467712, "Text": "Alice", "BeginOffset": 75, "EndOffset": 80 }, { "Score": 0.9703696370124817, "Text": "AnySpa@example.com", "BeginOffset": 84, "EndOffset": 99 } ] } ], "ErrorList": [] }

Per ulteriori informazioni, consulta Key Phrases in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare batch-detect-sentiment.

AWS CLI

Come rilevare il sentiment prevalente di più testi in input

L’esempio batch-detect-sentiment seguente analizza più testi di input e restituisce il sentiment prevalente (POSITIVE, NEUTRAL, MIXED o NEGATIVE di ciascuno di essi).

aws comprehend batch-detect-sentiment \ --text-list "That movie was very boring, I can't believe it was over four hours long." "It is a beautiful day for hiking today." "My meal was okay, I'm excited to try other restaurants." \ --language-code en

Output:

{ "ResultList": [ { "Index": 0, "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.00011316669406369328, "Negative": 0.9995445609092712, "Neutral": 0.00014722718333359808, "Mixed": 0.00019498742767609656 } }, { "Index": 1, "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9981263279914856, "Negative": 0.00015240783977787942, "Neutral": 0.0013876151060685515, "Mixed": 0.00033366199932061136 } }, { "Index": 2, "Sentiment": "MIXED", "SentimentScore": { "Positive": 0.15930435061454773, "Negative": 0.11471917480230331, "Neutral": 0.26897063851356506, "Mixed": 0.45700588822364807 } } ], "ErrorList": [] }

Per ulteriori informazioni, consulta Sentiment in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta BatchDetectSentiment in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare batch-detect-syntax.

AWS CLI

Come esaminare la sintassi e le parti del discorso delle parole in più testi di input

L’esempio batch-detect-syntax seguente analizza la sintassi di più testi di input e restituisce le diverse parti del discorso. Per ogni previsione viene inoltre restituito il punteggio di attendibilità del modello pre-addestrato.

aws comprehend batch-detect-syntax \ --text-list "It is a beautiful day." "Can you please pass the salt?" "Please pay the bill before the 31st." \ --language-code en

Output:

{ "ResultList": [ { "Index": 0, "SyntaxTokens": [ { "TokenId": 1, "Text": "It", "BeginOffset": 0, "EndOffset": 2, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999740719795227 } }, { "TokenId": 2, "Text": "is", "BeginOffset": 3, "EndOffset": 5, "PartOfSpeech": { "Tag": "VERB", "Score": 0.999937117099762 } }, { "TokenId": 3, "Text": "a", "BeginOffset": 6, "EndOffset": 7, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999926686286926 } }, { "TokenId": 4, "Text": "beautiful", "BeginOffset": 8, "EndOffset": 17, "PartOfSpeech": { "Tag": "ADJ", "Score": 0.9987891912460327 } }, { "TokenId": 5, "Text": "day", "BeginOffset": 18, "EndOffset": 21, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999778866767883 } }, { "TokenId": 6, "Text": ".", "BeginOffset": 21, "EndOffset": 22, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.9999974966049194 } } ] }, { "Index": 1, "SyntaxTokens": [ { "TokenId": 1, "Text": "Can", "BeginOffset": 0, "EndOffset": 3, "PartOfSpeech": { "Tag": "AUX", "Score": 0.9999770522117615 } }, { "TokenId": 2, "Text": "you", "BeginOffset": 4, "EndOffset": 7, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999986886978149 } }, { "TokenId": 3, "Text": "please", "BeginOffset": 8, "EndOffset": 14, "PartOfSpeech": { "Tag": "INTJ", "Score": 0.9681622385978699 } }, { "TokenId": 4, "Text": "pass", "BeginOffset": 15, "EndOffset": 19, "PartOfSpeech": { "Tag": "VERB", "Score": 0.9999874830245972 } }, { "TokenId": 5, "Text": "the", "BeginOffset": 20, "EndOffset": 23, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999827146530151 } }, { "TokenId": 6, "Text": "salt", "BeginOffset": 24, "EndOffset": 28, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9995040893554688 } }, { "TokenId": 7, "Text": "?", "BeginOffset": 28, "EndOffset": 29, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.999998152256012 } } ] }, { "Index": 2, "SyntaxTokens": [ { "TokenId": 1, "Text": "Please", "BeginOffset": 0, "EndOffset": 6, "PartOfSpeech": { "Tag": "INTJ", "Score": 0.9997857809066772 } }, { "TokenId": 2, "Text": "pay", "BeginOffset": 7, "EndOffset": 10, "PartOfSpeech": { "Tag": "VERB", "Score": 0.9999252557754517 } }, { "TokenId": 3, "Text": "the", "BeginOffset": 11, "EndOffset": 14, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999842643737793 } }, { "TokenId": 4, "Text": "bill", "BeginOffset": 15, "EndOffset": 19, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999588131904602 } }, { "TokenId": 5, "Text": "before", "BeginOffset": 20, "EndOffset": 26, "PartOfSpeech": { "Tag": "ADP", "Score": 0.9958304762840271 } }, { "TokenId": 6, "Text": "the", "BeginOffset": 27, "EndOffset": 30, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999947547912598 } }, { "TokenId": 7, "Text": "31st", "BeginOffset": 31, "EndOffset": 35, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9924124479293823 } }, { "TokenId": 8, "Text": ".", "BeginOffset": 35, "EndOffset": 36, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.9999955892562866 } } ] } ], "ErrorList": [] }

Per ulteriori informazioni, consulta Syntax Analysis in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta BatchDetectSyntax in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare batch-detect-targeted-sentiment.

AWS CLI

Come rilevare il sentiment e ogni entità denominata per più testi di input

L’esempio batch-detect-targeted-sentiment seguente analizza più testi di input e restituisce le entità denominate insieme al sentiment prevalente di ciascuno di essi. Per ogni previsione viene inoltre restituito il punteggio di attendibilità del modello pre-addestrato.

aws comprehend batch-detect-targeted-sentiment \ --language-code en \ --text-list "That movie was really boring, the original was way more entertaining" "The trail is extra beautiful today." "My meal was just okay."

Output:

{ "ResultList": [ { "Index": 0, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999009966850281, "GroupScore": 1.0, "Text": "movie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.13887299597263336, "Negative": 0.8057460188865662, "Neutral": 0.05525200068950653, "Mixed": 0.00012799999967683107 } }, "BeginOffset": 5, "EndOffset": 10 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9921110272407532, "GroupScore": 1.0, "Text": "original", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9999989867210388, "Negative": 9.999999974752427e-07, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 34, "EndOffset": 42 } ] } ] }, { "Index": 1, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.7545599937438965, "GroupScore": 1.0, "Text": "trail", "Type": "OTHER", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 1.0, "Negative": 0.0, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 4, "EndOffset": 9 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999960064888, "GroupScore": 1.0, "Text": "today", "Type": "DATE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 9.000000318337698e-06, "Negative": 1.9999999949504854e-06, "Neutral": 0.9999859929084778, "Mixed": 3.999999989900971e-06 } }, "BeginOffset": 29, "EndOffset": 34 } ] } ] }, { "Index": 2, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999880194664001, "GroupScore": 1.0, "Text": "My", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.0, "Negative": 0.0, "Neutral": 1.0, "Mixed": 0.0 } }, "BeginOffset": 0, "EndOffset": 2 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9995260238647461, "GroupScore": 1.0, "Text": "meal", "Type": "OTHER", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.04695599898695946, "Negative": 0.003226999891921878, "Neutral": 0.6091709733009338, "Mixed": 0.34064599871635437 } }, "BeginOffset": 3, "EndOffset": 7 } ] } ] } ], "ErrorList": [] }

Per ulteriori informazioni, consulta Targeted Sentiment in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare classify-document.

AWS CLI

Come classificare i documenti con un endpoint specifico del modello

L’esempio classify-document seguente classifica un documento con un endpoint di un modello personalizzato. Il modello in questo esempio è stato addestrato su un set di dati contenente messaggi SMS etichettati come spam o non spam oppure “ham” (legittimi).

aws comprehend classify-document \ --endpoint-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint \ --text "CONGRATULATIONS! TXT 1235550100 to win $5000"

Output:

{ "Classes": [ { "Name": "spam", "Score": 0.9998599290847778 }, { "Name": "ham", "Score": 0.00014001205272506922 } ] }

Per ulteriori informazioni, consulta Custom Classification in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta ClassifyDocument in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare contains-pii-entities.

AWS CLI

Come analizzare il testo di input per verificare la presenza di informazioni PII

L’esempio contains-pii-entities seguente analizza il testo di input per verificare la presenza di informazioni di identificazione personale (PII) e restituisce le etichette dei tipi di entità PII identificati, come nome, indirizzo, numero di conto corrente bancario o numero di telefono.

aws comprehend contains-pii-entities \ --language-code en \ --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. Customer feedback for Sunshine Spa, 100 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."

Output:

{ "Labels": [ { "Name": "NAME", "Score": 1.0 }, { "Name": "EMAIL", "Score": 1.0 }, { "Name": "BANK_ACCOUNT_NUMBER", "Score": 0.9995794296264648 }, { "Name": "BANK_ROUTING", "Score": 0.9173126816749573 }, { "Name": "CREDIT_DEBIT_NUMBER", "Score": 1.0 } }

Per ulteriori informazioni, consulta Personally Identifiable Information (PII) in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta ContainsPiiEntities in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare create-dataset.

AWS CLI

Come creare un set di dati del flywheel

L’esempio create-dataset seguente crea un set di dati per un flywheel. Questo set di dati verrà utilizzato come dati di addestramento aggiuntivi, come specificato dal tag --dataset-type.

aws comprehend create-dataset \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity \ --dataset-name example-dataset \ --dataset-type "TRAIN" \ --input-data-config file://inputConfig.json

Contenuto di file://inputConfig.json.

{ "DataFormat": "COMPREHEND_CSV", "DocumentClassifierInputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/training-data.csv" } }

Output:

{ "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset" }

Per ulteriori informazioni, consulta Flywheel Overview in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta CreateDataset in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare create-document-classifier.

AWS CLI

Come creare un classificatore di documenti per suddividere i documenti in categorie

L’esempio create-document-classifier seguente avvia il job di addestramento per un modello di classificazione di documenti. Il file dei dati di addestramento training.csv si trova nel tag --input-data-config. training.csv è un documento a due colonne in cui le etichette o le classificazioni sono fornite nella prima colonna e i documenti nella seconda colonna.

aws comprehend create-document-classifier \ --document-classifier-name example-classifier \ --data-access-arn arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE \ --input-data-config "S3Uri=s3://amzn-s3-demo-bucket/" \ --language-code en

Output:

{ "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier" }

Per ulteriori informazioni, consulta Custom Classification in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare create-endpoint.

AWS CLI

Come creare un endpoint per un modello personalizzato

L’esempio create-endpoint seguente crea un endpoint per l’inferenza sincrona per un modello personalizzato addestrato in precedenza.

aws comprehend create-endpoint \ --endpoint-name example-classifier-endpoint-1 \ --model-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier \ --desired-inference-units 1

Output:

{ "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint-1" }

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoints in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta CreateEndpoint in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare create-entity-recognizer.

AWS CLI

Come creare un riconoscitore di entità personalizzato

L’esempio create-entity-recognizer seguente avvia il job di addestramento per un modello di riconoscimento di entità personalizzato. In questo esempio, un file CSV contenente documenti di addestramento, raw_text.csv, e un elenco di entità CSV, entity_list.csv, vengono utilizzati per addestrare il modello. entity-list.csv contiene le seguenti colonne: testo e tipo.

aws comprehend create-entity-recognizer \ --recognizer-name example-entity-recognizer --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --input-data-config "EntityTypes=[{Type=DEVICE}],Documents={S3Uri=s3://amzn-s3-demo-bucket/trainingdata/raw_text.csv},EntityList={S3Uri=s3://amzn-s3-demo-bucket/trainingdata/entity_list.csv}" --language-code en

Output:

{ "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:example-entity-recognizer/entityrecognizer1" }

Per ulteriori informazioni, consulta Custom entity recognition in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare create-flywheel.

AWS CLI

Come creare un flywheel

L’esempio create-flywheel seguente crea un flywheel per orchestrare l’addestramento continuo di un modello di classificazione dei documenti o di riconoscimento delle entità. Il flywheel in questo esempio viene creato per gestire un modello addestrato esistente specificato dal tag --active-model-arn. Quando si crea il flywheel, sul tag --input-data-lake viene creato un data lake.

aws comprehend create-flywheel \ --flywheel-name example-flywheel \ --active-model-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-model/version/1 \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --data-lake-s3-uri "s3://amzn-s3-demo-bucket"

Output:

{ "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel" }

Per ulteriori informazioni, consulta Flywheel Overview in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta CreateFlywheel in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare delete-document-classifier.

AWS CLI

Come eliminare un classificatore di documenti personalizzato

L’esempio delete-document-classifier seguente elimina un modello di classificazione dei documenti personalizzato.

aws comprehend delete-document-classifier \ --document-classifier-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoints in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare delete-endpoint.

AWS CLI

Come eliminare un endpoint per un modello personalizzato

L’esempio delete-endpoint seguente elimina un endpoint specifico del modello. Per eliminare il modello, è necessario eliminare tutti gli endpoint.

aws comprehend delete-endpoint \ --endpoint-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint-1

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoints in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta DeleteEndpoint in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare delete-entity-recognizer.

AWS CLI

Come eliminare un modello di riconoscimento delle entità personalizzato

L’esempio delete-entity-recognizer seguente elimina un modello di riconoscimento delle entità personalizzato.

aws comprehend delete-entity-recognizer \ --entity-recognizer-arn arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/example-entity-recognizer-1

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoints in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare delete-flywheel.

AWS CLI

Come eliminare un flywheel

L’esempio delete-flywheel seguente mostra come eliminare un flywheel. Il data lake o il modello associato al flywheel non vengono eliminati.

aws comprehend delete-flywheel \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Flywheel Overview in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta DeleteFlywheel in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare delete-resource-policy.

AWS CLI

Come visualizzare una policy basata su risorse

L’esempio delete-resource-policy seguente elimina una policy basata su risorse da una risorsa Amazon Comprehend.

aws comprehend delete-resource-policy \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1/version/1

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Copying custom models between AWS accounts in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta DeleteResourcePolicy in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare describe-dataset.

AWS CLI

Come descrivere un set di dati del flywheel

L’esempio describe-dataset seguente ottiene le proprietà del set di dati di un flywheel.

aws comprehend describe-dataset \ --dataset-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset

Output:

{ "DatasetProperties": { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset", "DatasetName": "example-dataset", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/12345678A123456Z/datasets/example-dataset/20230616T203710Z/", "Status": "CREATING", "CreationTime": "2023-06-16T20:37:10.400000+00:00" } }

Per ulteriori informazioni, consulta Flywheel Overview in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta DescribeDataset in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare describe-document-classification-job.

AWS CLI

Come descrivere un processo di classificazione dei documenti

L’esempio describe-document-classification-job seguente ottiene le proprietà di un processo asincrono di classificazione dei documenti.

aws comprehend describe-document-classification-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "DocumentClassificationJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-classification-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "exampleclassificationjob", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:09:51.788000+00:00", "EndTime": "2023-06-14T17:15:58.582000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/mymodel/version/1", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-CLN-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }

Per ulteriori informazioni, consulta Custom Classification in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare describe-document-classifier.

AWS CLI

Come descrivere un classificatore di documenti

L’esempio describe-document-classifier seguente ottiene le proprietà di un modello di classificazione dei documenti personalizzato.

aws comprehend describe-document-classifier \ --document-classifier-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1

Output:

{ "DocumentClassifierProperties": { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-13T19:04:15.735000+00:00", "EndTime": "2023-06-13T19:42:31.752000+00:00", "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00", "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata" }, "OutputDataConfig": {}, "ClassifierMetadata": { "NumberOfLabels": 3, "NumberOfTrainedDocuments": 5016, "NumberOfTestDocuments": 557, "EvaluationMetrics": { "Accuracy": 0.9856, "Precision": 0.9919, "Recall": 0.9459, "F1Score": 0.9673, "MicroPrecision": 0.9856, "MicroRecall": 0.9856, "MicroF1Score": 0.9856, "HammingLoss": 0.0144 } }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "MULTI_CLASS" } }

Per ulteriori informazioni, consulta Creating and managing custom models in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare describe-dominant-language-detection-job.

AWS CLI

Come descrivere un processo di rilevamento della lingua dominante

L’esempio describe-dominant-language-detection-job seguente ottiene le proprietà di un processo di rilevamento della lingua dominante asincrono.

aws comprehend describe-dominant-language-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "DominantLanguageDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis1", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:10:38.037000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare describe-endpoint.

AWS CLI

Come descrivere un endpoint specifico

L’esempio describe-endpoint seguente ottiene le proprietà di un endpoint specifico del modello.

aws comprehend describe-endpoint \ --endpoint-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint

Output:

{ "EndpointProperties": { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint, "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" } }

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoints in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta DescribeEndpoint in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare describe-entities-detection-job.

AWS CLI

Come descrivere un processo di rilevamento delle entità

L’esempio describe-entities-detection-job seguente ottiene le proprietà di un processo di rilevamento delle entità asincrono.

aws comprehend describe-entities-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "EntitiesDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-entity-detector", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/thefolder/111122223333-NER-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::12345678012:role/service-role/AmazonComprehendServiceRole-example-role" } }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare describe-entity-recognizer.

AWS CLI

Come descrivere un riconoscitore di entità

L’esempio describe-entity-recognizer seguente ottiene le proprietà di un modello di riconoscimento delle entità personalizzato.

aws comprehend describe-entity-recognizer \ entity-recognizer-arn arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/business-recongizer-1/version/1

Output:

{ "EntityRecognizerProperties": { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/business-recongizer-1/version/1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T20:44:59.631000+00:00", "EndTime": "2023-06-14T20:59:19.532000+00:00", "TrainingStartTime": "2023-06-14T20:48:52.811000+00:00", "TrainingEndTime": "2023-06-14T20:58:11.473000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "BUSINESS" } ], "Documents": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/dataset/", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/entity.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 1814, "NumberOfTestDocuments": 486, "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "EntityTypes": [ { "Type": "BUSINESS", "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "NumberOfTrainMentions": 1520 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "VersionName": "1" } }

Per ulteriori informazioni, consulta Custom entity recognition in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare describe-events-detection-job.

AWS CLI

Come descrivere un processo di rilevamento degli eventi

L’esempio describe-events-detection-job seguente ottiene le proprietà di un processo di rilevamento degli eventi asincrono.

aws comprehend describe-events-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "EventsDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:events-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "events_job_1", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-12T18:45:56.054000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/EventsData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-EVENTS-123456abcdeb0e11022f22a11EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] } }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare describe-flywheel-iteration.

AWS CLI

Come descrivere un’iterazione del flywheel

L’esempio describe-flywheel-iteration seguente ottiene le proprietà dell’iterazione di un flywheel.

aws comprehend describe-flywheel-iteration \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel \ --flywheel-iteration-id 20232222AEXAMPLE

Output:

{ "FlywheelIterationProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity", "FlywheelIterationId": "20232222AEXAMPLE", "CreationTime": "2023-06-16T21:10:26.385000+00:00", "EndTime": "2023-06-16T23:33:16.827000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AveragePrecision": 0.8287636394041166, "AverageRecall": 0.7427084833645399, "AverageAccuracy": 0.8795394154118689 }, "TrainedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/Comprehend-Generated-v1-bb52d585", "TrainedModelMetrics": { "AverageF1Score": 0.9767700253081214, "AveragePrecision": 0.9767700253081214, "AverageRecall": 0.9767700253081214, "AverageAccuracy": 0.9858281665190434 }, "EvaluationManifestS3Prefix": "s3://amzn-s3-demo-destination-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/evaluation/20230616T211026Z/" } }

Per ulteriori informazioni, consulta Flywheel Overview in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare describe-flywheel.

AWS CLI

Come descrivere un flywheel

L’esempio describe-flywheel seguente ottiene le proprietà di un flywheel. In questo esempio, il modello associato al flywheel è un modello di classificazione personalizzato addestrato a classificare i documenti come spam o non spam oppure come “ham” (legittimi).

aws comprehend describe-flywheel \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel

Output:

{ "FlywheelProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-model/version/1", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TaskConfig": { "LanguageCode": "en", "DocumentClassificationConfig": { "Mode": "MULTI_CLASS", "Labels": [ "ham", "spam" ] } }, "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/example-flywheel/schemaVersion=1/20230616T200543Z/", "DataSecurityConfig": {}, "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-16T20:21:43.567000+00:00" } }

Per ulteriori informazioni, consulta Flywheel Overview in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta DescribeFlywheel in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare describe-key-phrases-detection-job.

AWS CLI

Come descrivere un processo di rilevamento di frasi chiave

L’esempio describe-key-phrases-detection-job seguente ottiene le proprietà di un processo di rilevamento asincrono delle frasi chiave.

aws comprehend describe-key-phrases-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "KeyPhrasesDetectionJobProperties": { "JobId": "69aa080c00fc68934a6a98f10EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/69aa080c00fc68934a6a98f10EXAMPLE", "JobName": "example-key-phrases-detection-job", "JobStatus": "COMPLETED", "SubmitTime": 1686606439.177, "EndTime": 1686606806.157, "InputDataConfig": { "S3Uri": "s3://dereksbucket1001/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://dereksbucket1002/testfolder/111122223333-KP-69aa080c00fc68934a6a98f10EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testrole" } }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare describe-pii-entities-detection-job.

AWS CLI

Come descrivere un processo di rilevamento di entità PII

L’esempio describe-pii-entities-detection-job seguente ottiene le proprietà di un processo di rilevamento asincrono delle entità pii.

aws comprehend describe-pii-entities-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "PiiEntitiesDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-pii-entities-job", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/thefolder/111122223333-NER-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::12345678012:role/service-role/AmazonComprehendServiceRole-example-role" } }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare describe-resource-policy.

AWS CLI

Come descrivere una policy delle risorse collegata a un modello

L’esempio describe-resource-policy seguente ottiene le proprietà di una policy basata su risorse collegata a un modello.

aws comprehend describe-resource-policy \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1

Output:

{ "ResourcePolicy": "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow\",\"Principal\":{\"AWS\":\"arn:aws:iam::444455556666:root\"},\"Action\":\"comprehend:ImportModel\",\"Resource\":\"*\"}]}", "CreationTime": "2023-06-19T18:44:26.028000+00:00", "LastModifiedTime": "2023-06-19T18:53:02.002000+00:00", "PolicyRevisionId": "baa675d069d07afaa2aa3106ae280f61" }

Per ulteriori informazioni, consulta Copying custom models between AWS accounts in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare describe-sentiment-detection-job.

AWS CLI

Come descrivere un processo di rilevamento del sentiment

L’esempio describe-sentiment-detection-job seguente ottiene le proprietà di un processo di rilevamento del sentiment asincrono.

aws comprehend describe-sentiment-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "SentimentDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "movie_review_analysis", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare describe-targeted-sentiment-detection-job.

AWS CLI

Come descrivere un processo di rilevamento del sentiment mirato

L’esempio describe-targeted-sentiment-detection-job seguente ottiene le proprietà di un processo di rilevamento del sentiment mirato asincrono.

aws comprehend describe-targeted-sentiment-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "TargetedSentimentDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "movie_review_analysis", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare describe-topics-detection-job.

AWS CLI

Come descrivere un processo di rilevamento di argomenti

L’esempio describe-topics-detection-job seguente ottiene le proprietà di un processo di rilevamento degli argomenti asincrono.

aws comprehend describe-topics-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "TopicsDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example_topics_detection", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:44:43.414000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-examplerole" } }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare detect-dominant-language.

AWS CLI

Come rilevare la lingua dominante del testo di input

Il comando detect-dominant-language seguente analizza il testo di input e identifica la lingua dominante. Viene inoltre restituito il punteggio di attendibilità del modello pre-addestrato.

aws comprehend detect-dominant-language \ --text "It is a beautiful day in Seattle."

Output:

{ "Languages": [ { "LanguageCode": "en", "Score": 0.9877256155014038 } ] }

Per ulteriori informazioni, consulta Dominant Language in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare detect-entities.

AWS CLI

Come rilevare le entità denominate nel testo di input

L’esempio detect-entities seguente analizza il testo di input e restituisce le entità denominate. Per ogni previsione viene inoltre restituito il punteggio di attendibilità del modello pre-addestrato.

aws comprehend detect-entities \ --language-code en \ --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."

Output:

{ "Entities": [ { "Score": 0.9994556307792664, "Type": "PERSON", "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9981022477149963, "Type": "PERSON", "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9986887574195862, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 33, "EndOffset": 67 }, { "Score": 0.9959119558334351, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9708039164543152, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9987268447875977, "Type": "DATE", "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9858865737915039, "Type": "OTHER", "Text": "XXXXXX1111", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9700471758842468, "Type": "OTHER", "Text": "XXXXX0000", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.9591118693351746, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 340, "EndOffset": 352 }, { "Score": 0.9797496795654297, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.994929313659668, "Type": "PERSON", "Text": "Alice", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9949769377708435, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 403, "EndOffset": 418 } ] }

Per ulteriori informazioni, consulta Entities in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta DetectEntities in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare detect-key-phrases.

AWS CLI

Come rilevare le frasi chiave nel testo di input

L’esempio detect-key-phrases seguente analizza il testo di input e identifica le frasi nominali chiave. Per ogni previsione viene inoltre restituito il punteggio di attendibilità del modello pre-addestrato.

aws comprehend detect-key-phrases \ --language-code en \ --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."

Output:

{ "KeyPhrases": [ { "Score": 0.8996376395225525, "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9992469549179077, "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.988385021686554, "Text": "Your AnyCompany Financial Services", "BeginOffset": 28, "EndOffset": 62 }, { "Score": 0.8740853071212769, "Text": "LLC credit card account 1111-XXXX-1111-XXXX", "BeginOffset": 64, "EndOffset": 107 }, { "Score": 0.9999437928199768, "Text": "a minimum payment", "BeginOffset": 112, "EndOffset": 129 }, { "Score": 0.9998900890350342, "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9979453086853027, "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9983011484146118, "Text": "your autopay settings", "BeginOffset": 172, "EndOffset": 193 }, { "Score": 0.9996572136878967, "Text": "your payment", "BeginOffset": 211, "EndOffset": 223 }, { "Score": 0.9995037317276001, "Text": "the due date", "BeginOffset": 227, "EndOffset": 239 }, { "Score": 0.9702621698379517, "Text": "your bank account number XXXXXX1111", "BeginOffset": 245, "EndOffset": 280 }, { "Score": 0.9179925918579102, "Text": "the routing number XXXXX0000.Customer feedback", "BeginOffset": 286, "EndOffset": 332 }, { "Score": 0.9978160858154297, "Text": "Sunshine Spa", "BeginOffset": 337, "EndOffset": 349 }, { "Score": 0.9706913232803345, "Text": "123 Main St", "BeginOffset": 351, "EndOffset": 362 }, { "Score": 0.9941995143890381, "Text": "comments", "BeginOffset": 379, "EndOffset": 387 }, { "Score": 0.9759287238121033, "Text": "Alice", "BeginOffset": 391, "EndOffset": 396 }, { "Score": 0.8376792669296265, "Text": "AnySpa@example.com", "BeginOffset": 400, "EndOffset": 415 } ] }

Per ulteriori informazioni, consulta Key Phrases in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta DetectKeyPhrases in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare detect-pii-entities.

AWS CLI

Come rilevare le entità pii nel testo di input

L’esempio detect-pii-entities seguente analizza il testo di input e identifica le entità che contengono informazioni di identificazione personale (PII). Per ogni previsione viene inoltre restituito il punteggio di attendibilità del modello pre-addestrato.

aws comprehend detect-pii-entities \ --language-code en \ --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."

Output:

{ "Entities": [ { "Score": 0.9998322129249573, "Type": "NAME", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9998878240585327, "Type": "NAME", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9994089603424072, "Type": "CREDIT_DEBIT_NUMBER", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9999760985374451, "Type": "DATE_TIME", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9999449253082275, "Type": "BANK_ACCOUNT_NUMBER", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9999847412109375, "Type": "BANK_ROUTING", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.999925434589386, "Type": "ADDRESS", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.9989161491394043, "Type": "NAME", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9994171857833862, "Type": "EMAIL", "BeginOffset": 403, "EndOffset": 418 } ] }

Per ulteriori informazioni, consulta Personally Identifiable Information (PII) in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta DetectPiiEntities in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare detect-sentiment.

AWS CLI

Come rilevare il sentiment di un testo di input

L’esempio detect-sentiment seguente analizza il testo di input e restituisce un’inferenza del sentiment prevalente (POSITIVE, NEUTRAL, MIXED o NEGATIVE).

aws comprehend detect-sentiment \ --language-code en \ --text "It is a beautiful day in Seattle"

Output:

{ "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9976957440376282, "Negative": 9.653854067437351e-05, "Neutral": 0.002169104292988777, "Mixed": 3.857641786453314e-05 } }

Per ulteriori informazioni, consulta Sentiment in Amazon Comprehend Developer Guide

  • Per informazioni dettagliate sull’API, consulta DetectSentiment in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare detect-syntax.

AWS CLI

Come rilevare le parti del discorso in un testo di input

L’esempio detect-syntax seguente analizza la sintassi del testo di input e restituisce le diverse parti del discorso. Per ogni previsione viene inoltre restituito il punteggio di attendibilità del modello pre-addestrato.

aws comprehend detect-syntax \ --language-code en \ --text "It is a beautiful day in Seattle."

Output:

{ "SyntaxTokens": [ { "TokenId": 1, "Text": "It", "BeginOffset": 0, "EndOffset": 2, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999740719795227 } }, { "TokenId": 2, "Text": "is", "BeginOffset": 3, "EndOffset": 5, "PartOfSpeech": { "Tag": "VERB", "Score": 0.999901294708252 } }, { "TokenId": 3, "Text": "a", "BeginOffset": 6, "EndOffset": 7, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999938607215881 } }, { "TokenId": 4, "Text": "beautiful", "BeginOffset": 8, "EndOffset": 17, "PartOfSpeech": { "Tag": "ADJ", "Score": 0.9987351894378662 } }, { "TokenId": 5, "Text": "day", "BeginOffset": 18, "EndOffset": 21, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999796748161316 } }, { "TokenId": 6, "Text": "in", "BeginOffset": 22, "EndOffset": 24, "PartOfSpeech": { "Tag": "ADP", "Score": 0.9998047947883606 } }, { "TokenId": 7, "Text": "Seattle", "BeginOffset": 25, "EndOffset": 32, "PartOfSpeech": { "Tag": "PROPN", "Score": 0.9940530061721802 } } ] }

Per ulteriori informazioni, consulta Syntax Analysis in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta DetectSyntax in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare detect-targeted-sentiment.

AWS CLI

Come rilevare il sentiment mirato delle entità denominate in un testo di input

L’esempio detect-targeted-sentiment seguente analizza il testo di input e restituisce le entità denominate insieme al sentiment mirato associato a ciascuna entità. Per ogni previsione viene inoltre restituito il punteggio di attendibilità del modello pre-addestrato.

aws comprehend detect-targeted-sentiment \ --language-code en \ --text "I do not enjoy January because it is too cold but August is the perfect temperature"

Output:

{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999979734420776, "GroupScore": 1.0, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.0, "Negative": 0.0, "Neutral": 1.0, "Mixed": 0.0 } }, "BeginOffset": 0, "EndOffset": 1 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9638869762420654, "GroupScore": 1.0, "Text": "January", "Type": "DATE", "MentionSentiment": { "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.0031610000878572464, "Negative": 0.9967250227928162, "Neutral": 0.00011100000119768083, "Mixed": 1.9999999949504854e-06 } }, "BeginOffset": 15, "EndOffset": 22 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { { "Score": 0.9664419889450073, "GroupScore": 1.0, "Text": "August", "Type": "DATE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9999549984931946, "Negative": 3.999999989900971e-06, "Neutral": 4.099999932805076e-05, "Mixed": 0.0 } }, "BeginOffset": 50, "EndOffset": 56 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9803199768066406, "GroupScore": 1.0, "Text": "temperature", "Type": "ATTRIBUTE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 1.0, "Negative": 0.0, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 77, "EndOffset": 88 } ] } ] }

Per ulteriori informazioni, consulta Targeted Sentiment in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare import-model.

AWS CLI

Come importare un modello

L’esempio import-model seguente importa un modello da un altro account AWS. Il modello di classificazione dei documenti nell’account 444455556666 dispone di una policy basata su risorse che consente all’account 111122223333 di importare il modello.

aws comprehend import-model \ --source-model-arn arn:aws:comprehend:us-west-2:444455556666:document-classifier/example-classifier

Output:

{ "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier" }

Per ulteriori informazioni, consulta Copying custom models between AWS accounts in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta ImportModel in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare list-datasets.

AWS CLI

Come elencare tutti i set di dati del flywheel

L’esempio list-datasets seguente elenca tutti i set di dati associati a un flywheel.

aws comprehend list-datasets \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity

Output:

{ "DatasetPropertiesList": [ { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset-1", "DatasetName": "example-dataset-1", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/datasets/example-dataset-1/20230616T203710Z/", "Status": "CREATING", "CreationTime": "2023-06-16T20:37:10.400000+00:00" }, { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset-2", "DatasetName": "example-dataset-2", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/datasets/example-dataset-2/20230616T200607Z/", "Description": "TRAIN Dataset created by Flywheel creation.", "Status": "COMPLETED", "NumberOfDocuments": 5572, "CreationTime": "2023-06-16T20:06:07.722000+00:00" } ] }

Per ulteriori informazioni, consulta Flywheel Overview in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta ListDatasets in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare list-document-classification-jobs.

AWS CLI

Come elencare tutti i processi di classificazione dei documenti

L’esempio list-document-classification-jobs seguente elenca tutti i processi di classificazione dei documenti.

aws comprehend list-document-classification-jobs

Output:

{ "DocumentClassificationJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classification-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "exampleclassificationjob", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:09:51.788000+00:00", "EndTime": "2023-06-14T17:15:58.582000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classifier/mymodel/version/12", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/1234567890101-CLN-e758dd56b824aa717ceab551f11749fb/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classification-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "exampleclassificationjob2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:22:39.829000+00:00", "EndTime": "2023-06-14T17:28:46.107000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classifier/mymodel/version/12", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/1234567890101-CLN-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

Per ulteriori informazioni, consulta Custom Classification in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare list-document-classifier-summaries.

AWS CLI

Come elencare i riepiloghi di tutti i classificatori di documenti creati

L’esempio list-document-classifier-summaries seguente crea tutti i riepiloghi del classificatore di documenti.

aws comprehend list-document-classifier-summaries

Output:

{ "DocumentClassifierSummariesList": [ { "DocumentClassifierName": "example-classifier-1", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-13T22:07:59.825000+00:00", "LatestVersionName": "1", "LatestVersionStatus": "TRAINED" }, { "DocumentClassifierName": "example-classifier-2", "NumberOfVersions": 2, "LatestVersionCreatedAt": "2023-06-13T21:54:59.589000+00:00", "LatestVersionName": "2", "LatestVersionStatus": "TRAINED" } ] }

Per ulteriori informazioni, consulta Creating and managing custom models in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare list-document-classifiers.

AWS CLI

Come elencare tutti i classificatori dei documenti

L’esempio list-document-classifiers seguente elenca tutti i modelli di classificazione dei documenti addestrati e in corso di addestramento.

aws comprehend list-document-classifiers

Output:

{ "DocumentClassifierPropertiesList": [ { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-13T19:04:15.735000+00:00", "EndTime": "2023-06-13T19:42:31.752000+00:00", "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00", "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata" }, "OutputDataConfig": {}, "ClassifierMetadata": { "NumberOfLabels": 3, "NumberOfTrainedDocuments": 5016, "NumberOfTestDocuments": 557, "EvaluationMetrics": { "Accuracy": 0.9856, "Precision": 0.9919, "Recall": 0.9459, "F1Score": 0.9673, "MicroPrecision": 0.9856, "MicroRecall": 0.9856, "MicroF1Score": 0.9856, "HammingLoss": 0.0144 } }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" }, { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "LanguageCode": "en", "Status": "TRAINING", "SubmitTime": "2023-06-13T21:20:28.690000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata" }, "OutputDataConfig": {}, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" } ] }

Per ulteriori informazioni, consulta Creating and managing custom models in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare list-dominant-language-detection-jobs.

AWS CLI

Come elencare tutti i processi di rilevamento della lingua dominante

L’esempio list-dominant-language-detection-jobs seguente elenca tutti i processi di rilevamento asincrono, in corso e completati, della lingua dominante.

aws comprehend list-dominant-language-detection-jobs

Output:

{ "DominantLanguageDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T18:10:38.037000+00:00", "EndTime": "2023-06-09T18:18:45.498000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis2", "JobStatus": "STOPPED", "SubmitTime": "2023-06-09T18:16:33.690000+00:00", "EndTime": "2023-06-09T18:24:40.608000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare list-endpoints.

AWS CLI

Come elencare tutti gli endpoint

L’esempio list-endpoints seguente elenca tutti gli endpoint attivi specifici del modello.

aws comprehend list-endpoints

Output:

{ "EndpointPropertiesList": [ { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/ExampleClassifierEndpoint", "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" }, { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/ExampleClassifierEndpoint2", "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" } ] }

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoints in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta ListEndpoints in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare list-entities-detection-jobs.

AWS CLI

Come elencare tutti i processi di rilevamento delle entità

L’esempio list-entities-detection-jobs seguente elenca tutti i processi di rilevamento delle entità asincroni.

aws comprehend list-entities-detection-jobs

Output:

{ "EntitiesDetectionJobPropertiesList": [ { "JobId": "468af39c28ab45b83eb0c4ab9EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/468af39c28ab45b83eb0c4ab9EXAMPLE", "JobName": "example-entities-detection", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T20:57:46.476000+00:00", "EndTime": "2023-06-08T21:05:53.718000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-NER-468af39c28ab45b83eb0c4ab9EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "809691caeaab0e71406f80a28EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/809691caeaab0e71406f80a28EXAMPLE", "JobName": "example-entities-detection-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-NER-809691caeaab0e71406f80a28EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "e00597c36b448b91d70dea165EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/e00597c36b448b91d70dea165EXAMPLE", "JobName": "example-entities-detection-3", "JobStatus": "STOPPED", "SubmitTime": "2023-06-08T22:19:28.528000+00:00", "EndTime": "2023-06-08T22:27:33.991000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-NER-e00597c36b448b91d70dea165EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

Per ulteriori informazioni, consulta Entities in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare list-entity-recognizer-summaries.

AWS CLI

Come elencare i riepiloghi di tutti i riconoscitori di entità creati

L’esempio list-entity-recognizer-summaries seguente elenca tutti i riepiloghi del riconoscitore delle entità.

aws comprehend list-entity-recognizer-summaries

Output:

{ "EntityRecognizerSummariesList": [ { "RecognizerName": "entity-recognizer-3", "NumberOfVersions": 2, "LatestVersionCreatedAt": "2023-06-15T23:15:07.621000+00:00", "LatestVersionName": "2", "LatestVersionStatus": "STOP_REQUESTED" }, { "RecognizerName": "entity-recognizer-2", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-14T22:55:27.805000+00:00", "LatestVersionName": "2" "LatestVersionStatus": "TRAINED" }, { "RecognizerName": "entity-recognizer-1", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-14T20:44:59.631000+00:00", "LatestVersionName": "1", "LatestVersionStatus": "TRAINED" } ] }

Per ulteriori informazioni, consulta Custom entity recognition in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare list-entity-recognizers.

AWS CLI

Come elencare tutti i riconoscitori di entità personalizzati

L’esempio list-entity-recognizers seguente elenca tutti i riconoscitori delle entità personalizzati creati.

aws comprehend list-entity-recognizers

Output:

{ "EntityRecognizerPropertiesList": [ { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/EntityRecognizer/version/1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T20:44:59.631000+00:00", "EndTime": "2023-06-14T20:59:19.532000+00:00", "TrainingStartTime": "2023-06-14T20:48:52.811000+00:00", "TrainingEndTime": "2023-06-14T20:58:11.473000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "BUSINESS" } ], "Documents": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/dataset/", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/entity.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 1814, "NumberOfTestDocuments": 486, "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "EntityTypes": [ { "Type": "BUSINESS", "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "NumberOfTrainMentions": 1520 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole", "VersionName": "1" }, { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/entityrecognizer3", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T22:57:51.056000+00:00", "EndTime": "2023-06-14T23:14:13.894000+00:00", "TrainingStartTime": "2023-06-14T23:01:33.984000+00:00", "TrainingEndTime": "2023-06-14T23:13:02.984000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "DEVICE" } ], "Documents": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/raw_txt.csv", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/entity_list.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 4616, "NumberOfTestDocuments": 3489, "EvaluationMetrics": { "Precision": 98.54227405247813, "Recall": 100.0, "F1Score": 99.26578560939794 }, "EntityTypes": [ { "Type": "DEVICE", "EvaluationMetrics": { "Precision": 98.54227405247813, "Recall": 100.0, "F1Score": 99.26578560939794 }, "NumberOfTrainMentions": 2764 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } ] }

Per ulteriori informazioni, consulta Custom entity recognition in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare list-events-detection-jobs.

AWS CLI

Come elencare tutti i processi di rilevamento degli eventi

L’esempio list-events-detection-jobs seguente elenca tutti i processi di rilevamento degli eventi asincroni.

aws comprehend list-events-detection-jobs

Output:

{ "EventsDetectionJobPropertiesList": [ { "JobId": "aa9593f9203e84f3ef032ce18EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1111222233333:events-detection-job/aa9593f9203e84f3ef032ce18EXAMPLE", "JobName": "events_job_1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-12T19:14:57.751000+00:00", "EndTime": "2023-06-12T19:21:04.962000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/1111222233333-EVENTS-aa9593f9203e84f3ef032ce18EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::1111222233333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] }, { "JobId": "4a990a2f7e82adfca6e171135EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1111222233333:events-detection-job/4a990a2f7e82adfca6e171135EXAMPLE", "JobName": "events_job_2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-12T19:55:43.702000+00:00", "EndTime": "2023-06-12T20:03:49.893000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/1111222233333-EVENTS-4a990a2f7e82adfca6e171135EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::1111222233333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] } ] }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare list-flywheel-iteration-history.

AWS CLI

Come elencare tutta la cronologia delle iterazioni del flywheel

L’esempio list-flywheel-iteration-history seguente elenca tutte le iterazioni di un flywheel.

aws comprehend list-flywheel-iteration-history --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel

Output:

{ "FlywheelIterationPropertiesList": [ { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "FlywheelIterationId": "20230619TEXAMPLE", "CreationTime": "2023-06-19T04:00:32.594000+00:00", "EndTime": "2023-06-19T04:00:49.248000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AverageF1Score": 0.9876464664646313, "AveragePrecision": 0.9800000253081214, "AverageRecall": 0.9445600253081214, "AverageAccuracy": 0.9997281665190434 }, "EvaluationManifestS3Prefix": "s3://amzn-s3-demo-bucket/example-flywheel/schemaVersion=1/20230619TEXAMPLE/evaluation/20230619TEXAMPLE/" }, { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-2", "FlywheelIterationId": "20230616TEXAMPLE", "CreationTime": "2023-06-16T21:10:26.385000+00:00", "EndTime": "2023-06-16T23:33:16.827000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/spamvshamclassify/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AverageF1Score": 0.9767700253081214, "AveragePrecision": 0.9767700253081214, "AverageRecall": 0.9767700253081214, "AverageAccuracy": 0.9858281665190434 }, "EvaluationManifestS3Prefix": "s3://amzn-s3-demo-bucket/example-flywheel-2/schemaVersion=1/20230616TEXAMPLE/evaluation/20230616TEXAMPLE/" } ] }

Per ulteriori informazioni, consulta Flywheel Overview in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare list-flywheels.

AWS CLI

Come elencare tutti i flywheel

L’esempio list-flywheels seguente elenca tutti i flywheel creati.

aws comprehend list-flywheels

Output:

{ "FlywheelSummaryList": [ { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier/version/1", "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/example-flywheel-1/schemaVersion=1/20230616T200543Z/", "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20230619T040032Z" }, { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-2", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2/version/1", "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/example-flywheel-2/schemaVersion=1/20220616T200543Z/", "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2022-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2022-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20220619T040032Z" } ] }

Per ulteriori informazioni, consulta Flywheel Overview in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta ListFlywheels in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare list-key-phrases-detection-jobs.

AWS CLI

Come elencare tutti processi di rilevamento delle frasi chiave

L’esempio list-key-phrases-detection-jobs seguente elenca tutti i processi di rilevamento asincrono, in corso e completati, delle frasi chiave.

aws comprehend list-key-phrases-detection-jobs

Output:

{ "KeyPhrasesDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "keyphrasesanalysis1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T22:31:43.767000+00:00", "EndTime": "2023-06-08T22:39:52.565000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-KP-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a33EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a33EXAMPLE", "JobName": "keyphrasesanalysis2", "JobStatus": "STOPPED", "SubmitTime": "2023-06-08T22:57:52.154000+00:00", "EndTime": "2023-06-08T23:05:48.385000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-KP-123456abcdeb0e11022f22a33EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a44EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a44EXAMPLE", "JobName": "keyphrasesanalysis3", "JobStatus": "FAILED", "Message": "NO_READ_ACCESS_TO_INPUT: The provided data access role does not have proper access to the input data.", "SubmitTime": "2023-06-09T16:47:04.029000+00:00", "EndTime": "2023-06-09T16:47:18.413000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-KP-123456abcdeb0e11022f22a44EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare list-pii-entities-detection-jobs.

AWS CLI

Come elencare tutti i processi di rilevamento delle entità pii

L’esempio list-pii-entities-detection-jobs seguente elenca tutti i processi di rilevamento asincrono, in corso e completati, delle pii.

aws comprehend list-pii-entities-detection-jobs

Output:

{ "PiiEntitiesDetectionJobPropertiesList": [ { "JobId": "6f9db0c42d0c810e814670ee4EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/6f9db0c42d0c810e814670ee4EXAMPLE", "JobName": "example-pii-detection-job", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T21:02:46.241000+00:00", "EndTime": "2023-06-09T21:12:52.602000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/111122223333-PII-6f9db0c42d0c810e814670ee4EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "ONLY_OFFSETS" }, { "JobId": "d927562638cfa739331a99b3cEXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/d927562638cfa739331a99b3cEXAMPLE", "JobName": "example-pii-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T21:20:58.211000+00:00", "EndTime": "2023-06-09T21:31:06.027000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-PII-d927562638cfa739331a99b3cEXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "ONLY_OFFSETS" } ] }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare list-sentiment-detection-jobs.

AWS CLI

Come elencare tutti i processi di rilevamento del sentiment

L’esempio list-sentiment-detection-jobs seguente elenca tutti i processi di rilevamento asincrono, in corso e completati, del sentiment.

aws comprehend list-sentiment-detection-jobs

Output:

{ "SentimentDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-sentiment-detection-job", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T22:42:20.545000+00:00", "EndTime": "2023-06-09T22:52:27.416000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "example-sentiment-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "EndTime": "2023-06-09T23:26:00.168000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData2", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare list-tags-for-resource.

AWS CLI

Come elencare i tag per le risorse

L’esempio list-tags-for-resource seguente elenca i tag per una risorsa Amazon Comprehend.

aws comprehend list-tags-for-resource \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1

Output:

{ "ResourceArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "Tags": [ { "Key": "Department", "Value": "Finance" }, { "Key": "location", "Value": "Seattle" } ] }

Per ulteriori informazioni, consulta Tagging your resources in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta ListTagsForResource in Riferimento ai comandi AWS CLI.

L’esempio di codice seguente mostra come utilizzare list-targeted-sentiment-detection-jobs.

AWS CLI

Come elencare tutti i processi di rilevamento del sentiment mirato

L’esempio list-targeted-sentiment-detection-jobs seguente elenca tutti i processi di rilevamento asincrono, in corso e completati, del sentiment mirato.

aws comprehend list-targeted-sentiment-detection-jobs

Output:

{ "TargetedSentimentDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-targeted-sentiment-detection-job", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T22:42:20.545000+00:00", "EndTime": "2023-06-09T22:52:27.416000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-IOrole" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "example-targeted-sentiment-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "EndTime": "2023-06-09T23:26:00.168000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData2", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare list-topics-detection-jobs.

AWS CLI

Come elencare tutti i processi di rilevamento degli argomenti

L’esempio list-topics-detection-jobs seguente elenca tutti i processi di rilevamento asincrono, in corso e completati, degli argomenti.

aws comprehend list-topics-detection-jobs

Output:

{ "TopicsDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName" "topic-analysis-1" "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:40:35.384000+00:00", "EndTime": "2023-06-09T18:46:41.936000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "topic-analysis-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T18:44:43.414000+00:00", "EndTime": "2023-06-09T18:50:50.872000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a1EXAMPLE3", "JobName": "topic-analysis-2", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:50:56.737000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE3/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare put-resource-policy.

AWS CLI

Come collegare una policy basata su risorse

L’esempio put-resource-policy seguente collega una policy basata su risorse a un modello per consentirne l’importazione da parte di un altro account AWS. La policy è collegata al modello nell’account 111122223333 e consente all’account 444455556666 l’importazione del modello.

aws comprehend put-resource-policy \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1 \ --resource-policy '{"Version":"2012-10-17", "Statement":[{"Effect":"Allow","Action":"comprehend:ImportModel","Resource":"*","Principal":{"AWS":["arn:aws:iam::444455556666:root"]}}]}'

Ouput:

{ "PolicyRevisionId": "aaa111d069d07afaa2aa3106aEXAMPLE" }

Per ulteriori informazioni, consulta Copying custom models between AWS accounts in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta PutResourcePolicy in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare start-document-classification-job.

AWS CLI

Come avviare un processo di classificazione dei documenti

L’esempio start-document-classification-job seguente avvia un processo di classificazione dei documenti con un modello personalizzato su tutti i file all’indirizzo specificato dal tag --input-data-config. In questo esempio, il bucket S3 di input contiene SampleSMStext1.txt, SampleSMStext2.txt e SampleSMStext3.txt. Il modello è stato precedentemente addestrato in base alla classificazione dei documenti dei messaggi SMS come spam e non spam oppure “ham” (legittimi). Al completamento del processo, output.tar.gz viene collocato nella posizione specificata dal tag --output-data-config. output.tar.gz contiene predictions.jsonl, che riporta la classificazione di ogni documento. L’output Json viene stampato su una riga per file, ma di seguito è formattato in modo da ottimizzarne la leggibilità.

aws comprehend start-document-classification-job \ --job-name exampleclassificationjob \ --input-data-config "S3Uri=s3://amzn-s3-demo-bucket-INPUT/jobdata/" \ --output-data-config "S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --document-classifier-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/mymodel/version/12

Contenuto di SampleSMStext1.txt.

"CONGRATULATIONS! TXT 2155550100 to win $5000"

Contenuto di SampleSMStext2.txt.

"Hi, when do you want me to pick you up from practice?"

Contenuto di SampleSMStext3.txt.

"Plz send bank account # to 2155550100 to claim prize!!"

Output:

{ "JobId": "e758dd56b824aa717ceab551fEXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-classification-job/e758dd56b824aa717ceab551fEXAMPLE", "JobStatus": "SUBMITTED" }

Contenuto di predictions.jsonl.

{"File": "SampleSMSText1.txt", "Line": "0", "Classes": [{"Name": "spam", "Score": 0.9999}, {"Name": "ham", "Score": 0.0001}]} {"File": "SampleSMStext2.txt", "Line": "0", "Classes": [{"Name": "ham", "Score": 0.9994}, {"Name": "spam", "Score": 0.0006}]} {"File": "SampleSMSText3.txt", "Line": "0", "Classes": [{"Name": "spam", "Score": 0.9999}, {"Name": "ham", "Score": 0.0001}]}

Per ulteriori informazioni, consulta Custom Classification in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare start-dominant-language-detection-job.

AWS CLI

Come avviare un processo asincrono di rilevamento della lingua

L’esempio start-dominant-language-detection-job seguente avvia un processo di rilevamento della lingua asincrono per tutti i file che si trovano all’indirizzo specificato dal tag --input-data-config. Il bucket S3 in questo esempio contiene Sampletext1.txt. Al completamento del processo, la cartella output viene collocata nella posizione specificata dal tag --output-data-config. La cartella contiene output.txt, che a sua volta contiene la lingua dominante di ogni file di testo e il punteggio di affidabilità del modello pre-addestrato per ogni previsione.

aws comprehend start-dominant-language-detection-job \ --job-name example_language_analysis_job \ --language-code en \ --input-data-config "S3Uri=s3://amzn-s3-demo-bucket/" \ --output-data-config "S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --language-code en

Contenuto di Sampletext1.txt:

"Physics is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force."

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

Contenuto di output.txt.

{"File": "Sampletext1.txt", "Languages": [{"LanguageCode": "en", "Score": 0.9913753867149353}], "Line": 0}

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare start-entities-detection-job.

AWS CLI

Esempio 1: come avviare un processo di rilevamento delle entità standard utilizzando il modello pre-addestrato

L’esempio start-entities-detection-job seguente avvia un processo di rilevamento delle entità asincrono per tutti i file che si trovano all’indirizzo specificato dal tag --input-data-config. Il bucket S3 in questo esempio contiene Sampletext1.txt, Sampletext2.txt e Sampletext3.txt. Al completamento del processo, la cartella output viene collocata nella posizione specificata dal tag --output-data-config. La cartella contiene output.txt, che elenca tutte le entità denominate rilevate in ogni file di testo e il punteggio di affidabilità del modello pre-addestrato per ogni previsione. L’output Json viene stampato su una riga per file, ma di seguito è formattato in modo da ottimizzarne la leggibilità.

aws comprehend start-entities-detection-job \ --job-name entitiestest \ --language-code en \ --input-data-config "S3Uri=s3://amzn-s3-demo-bucket/" \ --output-data-config "S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --language-code en

Contenuto di Sampletext1.txt.

"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."

Contenuto di Sampletext2.txt.

"Dear Max, based on your autopay settings for your account example1.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "

Contenuto di Sampletext3.txt.

"Jane, please submit any customer feedback from this weekend to AnySpa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

Contenuto di output.txt con rientri di riga per una maggiore leggibilità:

{ "Entities": [ { "BeginOffset": 6, "EndOffset": 15, "Score": 0.9994006636420306, "Text": "Zhang Wei", "Type": "PERSON" }, { "BeginOffset": 22, "EndOffset": 26, "Score": 0.9976647915128143, "Text": "John", "Type": "PERSON" }, { "BeginOffset": 33, "EndOffset": 67, "Score": 0.9984608700836206, "Text": "AnyCompany Financial Services, LLC", "Type": "ORGANIZATION" }, { "BeginOffset": 88, "EndOffset": 107, "Score": 0.9868521019555556, "Text": "1111-XXXX-1111-XXXX", "Type": "OTHER" }, { "BeginOffset": 133, "EndOffset": 139, "Score": 0.998242565709204, "Text": "$24.53", "Type": "QUANTITY" }, { "BeginOffset": 155, "EndOffset": 164, "Score": 0.9993039263159287, "Text": "July 31st", "Type": "DATE" } ], "File": "SampleText1.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 5, "EndOffset": 8, "Score": 0.9866232147545232, "Text": "Max", "Type": "PERSON" }, { "BeginOffset": 156, "EndOffset": 166, "Score": 0.9797723450933329, "Text": "XXXXXX1111", "Type": "OTHER" }, { "BeginOffset": 191, "EndOffset": 200, "Score": 0.9247838572396843, "Text": "XXXXX0000", "Type": "OTHER" } ], "File": "SampleText2.txt", "Line": 0 } { "Entities": [ { "Score": 0.9990532994270325, "Type": "PERSON", "Text": "Jane", "BeginOffset": 0, "EndOffset": 4 }, { "Score": 0.9519651532173157, "Type": "DATE", "Text": "this weekend", "BeginOffset": 47, "EndOffset": 59 }, { "Score": 0.5566426515579224, "Type": "ORGANIZATION", "Text": "AnySpa", "BeginOffset": 63, "EndOffset": 69 }, { "Score": 0.8059805631637573, "Type": "LOCATION", "Text": "123 Main St, Anywhere", "BeginOffset": 71, "EndOffset": 92 }, { "Score": 0.998830258846283, "Type": "PERSON", "Text": "Alice", "BeginOffset": 114, "EndOffset": 119 }, { "Score": 0.997818112373352, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 123, "EndOffset": 138 } ], "File": "SampleText3.txt", "Line": 0 }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

Esempio 2: come avviare un processo personalizzato di rilevamento delle entità

L’esempio start-entities-detection-job seguente avvia un processo di rilevamento delle entità personalizzato asincrono per tutti i file che si trovano all’indirizzo specificato dal tag --input-data-config. Il bucket S3 in questo esempio contiene SampleFeedback1.txt, SampleFeedback2.txt e SampleFeedback3.txt. Il modello di riconoscimento delle entità è stato addestrato sulla base dei feedback dell’assistenza clienti per riconoscere i nomi dei dispositivi. Al completamento del processo, la cartella output viene collocata nella posizione specificata dal tag --output-data-config. La cartella contiene output.txt, che elenca tutte le entità denominate rilevate in ogni file di testo e il punteggio di affidabilità del modello pre-addestrato per ogni previsione. L’output Json viene stampato su una riga per file, ma di seguito è formattato in modo da ottimizzarne la leggibilità.

aws comprehend start-entities-detection-job \ --job-name customentitiestest \ --entity-recognizer-arn "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/entityrecognizer" \ --language-code en \ --input-data-config "S3Uri=s3://amzn-s3-demo-bucket/jobdata/" \ --output-data-config "S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/" \ --data-access-role-arn "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-IOrole"

Contenuto di SampleFeedback1.txt.

"I've been on the AnyPhone app have had issues for 24 hours when trying to pay bill. Cannot make payment. Sigh. | Oh man! Lets get that app up and running. DM me, and we can get to work!"

Contenuto di SampleFeedback2.txt.

"Hi, I have a discrepancy with my new bill. Could we get it sorted out? A rep added stuff I didnt sign up for when I did my AnyPhone 10 upgrade. | We can absolutely get this sorted!"

Contenuto di SampleFeedback3.txt.

"Is the by 1 get 1 free AnySmartPhone promo still going on? | Hi Christian! It ended yesterday, send us a DM if you have any questions and we can take a look at your options!"

Output:

{ "JobId": "019ea9edac758806850fa8a79ff83021", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/019ea9edac758806850fa8a79ff83021", "JobStatus": "SUBMITTED" }

Contenuto di output.txt con rientri di riga per una maggiore leggibilità:

{ "Entities": [ { "BeginOffset": 17, "EndOffset": 25, "Score": 0.9999728210205924, "Text": "AnyPhone", "Type": "DEVICE" } ], "File": "SampleFeedback1.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 123, "EndOffset": 133, "Score": 0.9999892116761524, "Text": "AnyPhone 10", "Type": "DEVICE" } ], "File": "SampleFeedback2.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 23, "EndOffset": 35, "Score": 0.9999971389852362, "Text": "AnySmartPhone", "Type": "DEVICE" } ], "File": "SampleFeedback3.txt", "Line": 0 }

Per ulteriori informazioni, consulta Custom entity recognition in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare start-events-detection-job.

AWS CLI

Come avviare un processo asincrono di rilevamento degli eventi

L’esempio start-events-detection-job seguente avvia un processo di rilevamento degli eventi asincrono per tutti i file che si trovano all’indirizzo specificato dal tag --input-data-config. I possibili tipi di eventi di destinazione includono BANKRUPCTY, EMPLOYMENT, CORPORATE_ACQUISITION, INVESTMENT_GENERAL, CORPORATE_MERGER, IPO, RIGHTS_ISSUE, SECONDARY_OFFERING, SHELF_OFFERING, TENDER_OFFERING e STOCK_SPLIT. Il bucket S3 in questo esempio contiene SampleText1.txt, SampleText2.txt e SampleText3.txt. Al completamento del processo, la cartella output viene collocata nella posizione specificata dal tag --output-data-config. La cartella contiene SampleText1.txt.out, SampleText2.txt.out e SampleText3.txt.out. L’output Json viene stampato su una riga per file, ma di seguito è formattato in modo da ottimizzarne la leggibilità.

aws comprehend start-events-detection-job \ --job-name events-detection-1 \ --input-data-config "S3Uri=s3://amzn-s3-demo-bucket/EventsData" \ --output-data-config "S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole \ --language-code en \ --target-event-types "BANKRUPTCY" "EMPLOYMENT" "CORPORATE_ACQUISITION" "CORPORATE_MERGER" "INVESTMENT_GENERAL"

Contenuto di SampleText1.txt.

"Company AnyCompany grew by increasing sales and through acquisitions. After purchasing competing firms in 2020, AnyBusiness, a part of the AnyBusinessGroup, gave Jane Does firm a going rate of one cent a gallon or forty-two cents a barrel."

Contenuto di SampleText2.txt.

"In 2021, AnyCompany officially purchased AnyBusiness for 100 billion dollars, surprising and exciting the shareholders."

Contenuto di SampleText3.txt.

"In 2022, AnyCompany stock crashed 50. Eventually later that year they filed for bankruptcy."

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:events-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

Contenuto di SampleText1.txt.out con rientri di riga per una maggiore leggibilità:

{ "Entities": [ { "Mentions": [ { "BeginOffset": 8, "EndOffset": 18, "Score": 0.99977, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 }, { "BeginOffset": 112, "EndOffset": 123, "Score": 0.999747, "Text": "AnyBusiness", "Type": "ORGANIZATION", "GroupScore": 0.979826 }, { "BeginOffset": 171, "EndOffset": 175, "Score": 0.999615, "Text": "firm", "Type": "ORGANIZATION", "GroupScore": 0.871647 } ] }, { "Mentions": [ { "BeginOffset": 97, "EndOffset": 102, "Score": 0.987687, "Text": "firms", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 103, "EndOffset": 110, "Score": 0.999458, "Text": "in 2020", "Type": "DATE", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 160, "EndOffset": 168, "Score": 0.999649, "Text": "John Doe", "Type": "PERSON", "GroupScore": 1 } ] } ], "Events": [ { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 0, "Role": "INVESTOR", "Score": 0.99977 } ], "Triggers": [ { "BeginOffset": 56, "EndOffset": 68, "Score": 0.999967, "Text": "acquisitions", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] }, { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 1, "Role": "INVESTEE", "Score": 0.987687 }, { "EntityIndex": 2, "Role": "DATE", "Score": 0.999458 }, { "EntityIndex": 3, "Role": "INVESTOR", "Score": 0.999649 } ], "Triggers": [ { "BeginOffset": 76, "EndOffset": 86, "Score": 0.999973, "Text": "purchasing", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] } ], "File": "SampleText1.txt", "Line": 0 }

Contenuto di SampleText2.txt.out.

{ "Entities": [ { "Mentions": [ { "BeginOffset": 0, "EndOffset": 7, "Score": 0.999473, "Text": "In 2021", "Type": "DATE", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 9, "EndOffset": 19, "Score": 0.999636, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 45, "EndOffset": 56, "Score": 0.999712, "Text": "AnyBusiness", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 61, "EndOffset": 80, "Score": 0.998886, "Text": "100 billion dollars", "Type": "MONETARY_VALUE", "GroupScore": 1 } ] } ], "Events": [ { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 3, "Role": "AMOUNT", "Score": 0.998886 }, { "EntityIndex": 2, "Role": "INVESTEE", "Score": 0.999712 }, { "EntityIndex": 0, "Role": "DATE", "Score": 0.999473 }, { "EntityIndex": 1, "Role": "INVESTOR", "Score": 0.999636 } ], "Triggers": [ { "BeginOffset": 31, "EndOffset": 40, "Score": 0.99995, "Text": "purchased", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] } ], "File": "SampleText2.txt", "Line": 0 }

Contenuto di SampleText3.txt.out.

{ "Entities": [ { "Mentions": [ { "BeginOffset": 9, "EndOffset": 19, "Score": 0.999774, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 }, { "BeginOffset": 66, "EndOffset": 70, "Score": 0.995717, "Text": "they", "Type": "ORGANIZATION", "GroupScore": 0.997626 } ] }, { "Mentions": [ { "BeginOffset": 50, "EndOffset": 65, "Score": 0.999656, "Text": "later that year", "Type": "DATE", "GroupScore": 1 } ] } ], "Events": [ { "Type": "BANKRUPTCY", "Arguments": [ { "EntityIndex": 1, "Role": "DATE", "Score": 0.999656 }, { "EntityIndex": 0, "Role": "FILER", "Score": 0.995717 } ], "Triggers": [ { "BeginOffset": 81, "EndOffset": 91, "Score": 0.999936, "Text": "bankruptcy", "Type": "BANKRUPTCY", "GroupScore": 1 } ] } ], "File": "SampleText3.txt", "Line": 0 }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare start-flywheel-iteration.

AWS CLI

Come avviare un’iterazione del flywheel

L’esempio start-flywheel-iteration seguente avvia un’iterazione del flywheel. Questa operazione utilizza qualsiasi nuovo set di dati nel flywheel per addestrare una nuova versione del modello.

aws comprehend start-flywheel-iteration \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel

Output:

{ "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "FlywheelIterationId": "12345123TEXAMPLE" }

Per ulteriori informazioni, consulta Flywheel Overview in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare start-key-phrases-detection-job.

AWS CLI

Come avviare un processo di rilevamento delle frasi chiave

L’esempio start-key-phrases-detection-job seguente avvia un processo di rilevamento delle frasi chiave asincrono per tutti i file che si trovano all’indirizzo specificato dal tag --input-data-config. Il bucket S3 in questo esempio contiene Sampletext1.txt, Sampletext2.txt e Sampletext3.txt. Al completamento del processo, la cartella output viene collocata nella posizione specificata dal tag --output-data-config. La cartella contiene il file output.txt, che a sua volta contiene tutte le frasi chiave denominate rilevate in ogni file di testo e il punteggio di affidabilità del modello pre-addestrato per ogni previsione. L’output Json viene stampato su una riga per file, ma di seguito è formattato in modo da ottimizzarne la leggibilità.

aws comprehend start-key-phrases-detection-job \ --job-name keyphrasesanalysistest1 \ --language-code en \ --input-data-config "S3Uri=s3://amzn-s3-demo-bucket/" \ --output-data-config "S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/" \ --data-access-role-arn "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" \ --language-code en

Contenuto di Sampletext1.txt.

"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."

Contenuto di Sampletext2.txt.

"Dear Max, based on your autopay settings for your account Internet.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "

Contenuto di Sampletext3.txt.

"Jane, please submit any customer feedback from this weekend to Sunshine Spa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

Contenuto di output.txt con rientri di riga per una maggiore leggibilità:

{ "File": "SampleText1.txt", "KeyPhrases": [ { "BeginOffset": 6, "EndOffset": 15, "Score": 0.9748965572679326, "Text": "Zhang Wei" }, { "BeginOffset": 22, "EndOffset": 26, "Score": 0.9997344722354619, "Text": "John" }, { "BeginOffset": 28, "EndOffset": 62, "Score": 0.9843791074032948, "Text": "Your AnyCompany Financial Services" }, { "BeginOffset": 64, "EndOffset": 107, "Score": 0.8976122401721824, "Text": "LLC credit card account 1111-XXXX-1111-XXXX" }, { "BeginOffset": 112, "EndOffset": 129, "Score": 0.9999612982629748, "Text": "a minimum payment" }, { "BeginOffset": 133, "EndOffset": 139, "Score": 0.99975728947036, "Text": "$24.53" }, { "BeginOffset": 155, "EndOffset": 164, "Score": 0.9940866241449973, "Text": "July 31st" } ], "Line": 0 } { "File": "SampleText2.txt", "KeyPhrases": [ { "BeginOffset": 0, "EndOffset": 8, "Score": 0.9974021100118472, "Text": "Dear Max" }, { "BeginOffset": 19, "EndOffset": 40, "Score": 0.9961120519515884, "Text": "your autopay settings" }, { "BeginOffset": 45, "EndOffset": 78, "Score": 0.9980620070116009, "Text": "your account Internet.org account" }, { "BeginOffset": 97, "EndOffset": 109, "Score": 0.999919660140754, "Text": "your payment" }, { "BeginOffset": 113, "EndOffset": 125, "Score": 0.9998370719754205, "Text": "the due date" }, { "BeginOffset": 131, "EndOffset": 166, "Score": 0.9955068678502509, "Text": "your bank account number XXXXXX1111" }, { "BeginOffset": 172, "EndOffset": 200, "Score": 0.8653433315829526, "Text": "the routing number XXXXX0000" } ], "Line": 0 } { "File": "SampleText3.txt", "KeyPhrases": [ { "BeginOffset": 0, "EndOffset": 4, "Score": 0.9142947833681668, "Text": "Jane" }, { "BeginOffset": 20, "EndOffset": 41, "Score": 0.9984325676596763, "Text": "any customer feedback" }, { "BeginOffset": 47, "EndOffset": 59, "Score": 0.9998782448150636, "Text": "this weekend" }, { "BeginOffset": 63, "EndOffset": 75, "Score": 0.99866741830757, "Text": "Sunshine Spa" }, { "BeginOffset": 77, "EndOffset": 88, "Score": 0.9695803485466054, "Text": "123 Main St" }, { "BeginOffset": 108, "EndOffset": 116, "Score": 0.9997065928550928, "Text": "comments" }, { "BeginOffset": 120, "EndOffset": 125, "Score": 0.9993466833825161, "Text": "Alice" }, { "BeginOffset": 129, "EndOffset": 144, "Score": 0.9654563612885667, "Text": "AnySpa@example.com" } ], "Line": 0 }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare start-pii-entities-detection-job.

AWS CLI

Come avviare un processo asincrono di rilevamento delle PII

L’esempio start-pii-entities-detection-job seguente avvia un processo di rilevamento delle entità Informazioni di identificazione personale (PII) asincrono per tutti i file che si trovano all’indirizzo specificato dal tag --input-data-config. Il bucket S3 in questo esempio contiene Sampletext1.txt, Sampletext2.txt e Sampletext3.txt. Al completamento del processo, la cartella output viene collocata nella posizione specificata dal tag --output-data-config. La cartella contiene SampleText1.txt.out, SampleText2.txt.out e SampleText3.txt.out, che elencano le entità denominate all’interno di ogni file di testo. L’output Json viene stampato su una riga per file, ma di seguito è formattato in modo da ottimizzarne la leggibilità.

aws comprehend start-pii-entities-detection-job \ --job-name entities_test \ --language-code en \ --input-data-config "S3Uri=s3://amzn-s3-demo-bucket/" \ --output-data-config "S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --language-code en \ --mode ONLY_OFFSETS

Contenuto di Sampletext1.txt.

"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."

Contenuto di Sampletext2.txt.

"Dear Max, based on your autopay settings for your account Internet.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "

Contenuto di Sampletext3.txt.

"Jane, please submit any customer feedback from this weekend to Sunshine Spa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

Contenuto di SampleText1.txt.out con rientri di riga per una maggiore leggibilità:

{ "Entities": [ { "BeginOffset": 6, "EndOffset": 15, "Type": "NAME", "Score": 0.9998490510222595 }, { "BeginOffset": 22, "EndOffset": 26, "Type": "NAME", "Score": 0.9998937958019426 }, { "BeginOffset": 88, "EndOffset": 107, "Type": "CREDIT_DEBIT_NUMBER", "Score": 0.9554297245278491 }, { "BeginOffset": 155, "EndOffset": 164, "Type": "DATE_TIME", "Score": 0.9999720462925257 } ], "File": "SampleText1.txt", "Line": 0 }

Contenuto di SampleText2.txt.out con rientri di riga per una maggiore leggibilità:

{ "Entities": [ { "BeginOffset": 5, "EndOffset": 8, "Type": "NAME", "Score": 0.9994390774924007 }, { "BeginOffset": 58, "EndOffset": 70, "Type": "URL", "Score": 0.9999958276922101 }, { "BeginOffset": 156, "EndOffset": 166, "Type": "BANK_ACCOUNT_NUMBER", "Score": 0.9999721058045592 }, { "BeginOffset": 191, "EndOffset": 200, "Type": "BANK_ROUTING", "Score": 0.9998968945989909 } ], "File": "SampleText2.txt", "Line": 0 }

Contenuto di SampleText3.txt.out con rientri di riga per una maggiore leggibilità:

{ "Entities": [ { "BeginOffset": 0, "EndOffset": 4, "Type": "NAME", "Score": 0.999949934606805 }, { "BeginOffset": 77, "EndOffset": 88, "Type": "ADDRESS", "Score": 0.9999035300466904 }, { "BeginOffset": 120, "EndOffset": 125, "Type": "NAME", "Score": 0.9998203838716296 }, { "BeginOffset": 129, "EndOffset": 144, "Type": "EMAIL", "Score": 0.9998313473105228 } ], "File": "SampleText3.txt", "Line": 0 }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare start-sentiment-detection-job.

AWS CLI

Come avviare un processo asincrono di analisi del sentiment

L’esempio start-sentiment-detection-job seguente avvia un processo di rilevamento del sentiment asincrono per tutti i file che si trovano all’indirizzo specificato dal tag --input-data-config. Il bucket S3 in questo esempio contiene SampleMovieReview1.txt, SampleMovieReview2.txt e SampleMovieReview3.txt. Al completamento del processo, la cartella output viene collocata nella posizione specificata dal tag --output-data-config. La cartella contiene il file output.txt, che a sua volta contiene i sentiment prevalenti in ogni file di testo e il punteggio di affidabilità del modello pre-addestrato per ogni previsione. L’output Json viene stampato su una riga per file, ma di seguito è formattato in modo da ottimizzarne la leggibilità.

aws comprehend start-sentiment-detection-job \ --job-name example-sentiment-detection-job \ --language-code en \ --input-data-config "S3Uri=s3://amzn-s3-demo-bucket/MovieData" \ --output-data-config "S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role

Contenuto di SampleMovieReview1.txt.

"The film, AnyMovie2, is fairly predictable and just okay."

Contenuto di SampleMovieReview2.txt.

"AnyMovie2 is the essential sci-fi film that I grew up watching when I was a kid. I highly recommend this movie."

Contenuto di SampleMovieReview3.txt.

"Don't get fooled by the 'awards' for AnyMovie2. All parts of the film were poorly stolen from other modern directors."

Output:

{ "JobId": "0b5001e25f62ebb40631a9a1a7fde7b3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/0b5001e25f62ebb40631a9a1a7fde7b3", "JobStatus": "SUBMITTED" }

Contenuto di output.txt con rientri di riga per una maggiore leggibilità:

{ "File": "SampleMovieReview1.txt", "Line": 0, "Sentiment": "MIXED", "SentimentScore": { "Mixed": 0.6591159105300903, "Negative": 0.26492202281951904, "Neutral": 0.035430654883384705, "Positive": 0.04053137078881264 } } { "File": "SampleMovieReview2.txt", "Line": 0, "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.000008718466233403888, "Negative": 0.00006134175055194646, "Neutral": 0.0002941041602753103, "Positive": 0.9996358156204224 } } { "File": "SampleMovieReview3.txt", "Line": 0, "Sentiment": "NEGATIVE", "SentimentScore": { "Mixed": 0.004146667663007975, "Negative": 0.9645107984542847, "Neutral": 0.016559595242142677, "Positive": 0.014782938174903393 } } }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare start-targeted-sentiment-detection-job.

AWS CLI

Come avviare un processo asincrono di analisi del sentiment mirato

L’esempio start-targeted-sentiment-detection-job seguente avvia un processo di rilevamento del sentiment mirato asincrono per tutti i file che si trovano all’indirizzo specificato dal tag --input-data-config. Il bucket S3 in questo esempio contiene SampleMovieReview1.txt, SampleMovieReview2.txt e SampleMovieReview3.txt. Al completamento del processo, output.tar.gz viene collocato nella posizione specificata dal tag --output-data-configg. output.tar.gz contiene i file SampleMovieReview1.txt.out, SampleMovieReview2.txt.out e SampleMovieReview3.txt.out, ciascuno dei quali contiene tutte le entità denominate e i sentiment associati per un singolo file di testo di input.

aws comprehend start-targeted-sentiment-detection-job \ --job-name targeted_movie_review_analysis1 \ --language-code en \ --input-data-config "S3Uri=s3://amzn-s3-demo-bucket/MovieData" \ --output-data-config "S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role

Contenuto di SampleMovieReview1.txt.

"The film, AnyMovie, is fairly predictable and just okay."

Contenuto di SampleMovieReview2.txt.

"AnyMovie is the essential sci-fi film that I grew up watching when I was a kid. I highly recommend this movie."

Contenuto di SampleMovieReview3.txt.

"Don't get fooled by the 'awards' for AnyMovie. All parts of the film were poorly stolen from other modern directors."

Output:

{ "JobId": "0b5001e25f62ebb40631a9a1a7fde7b3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/0b5001e25f62ebb40631a9a1a7fde7b3", "JobStatus": "SUBMITTED" }

Contenuto di SampleMovieReview1.txt.out con rientri di riga per una maggiore leggibilità:

{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 4, "EndOffset": 8, "Score": 0.994972, "GroupScore": 1, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 10, "EndOffset": 18, "Score": 0.631368, "GroupScore": 1, "Text": "AnyMovie", "Type": "ORGANIZATION", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.001729, "Negative": 0.000001, "Neutral": 0.000318, "Positive": 0.997952 } } } ] } ], "File": "SampleMovieReview1.txt", "Line": 0 }

Contenuto di SampleMovieReview2.txt.out con rientri di riga per una maggiore leggibilità:

{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 0, "EndOffset": 8, "Score": 0.854024, "GroupScore": 1, "Text": "AnyMovie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0.000007, "Positive": 0.999993 } } }, { "BeginOffset": 104, "EndOffset": 109, "Score": 0.999129, "GroupScore": 0.502937, "Text": "movie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0, "Positive": 1 } } }, { "BeginOffset": 33, "EndOffset": 37, "Score": 0.999823, "GroupScore": 0.999252, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0.000001, "Positive": 0.999999 } } } ] }, { "DescriptiveMentionIndex": [ 0, 1, 2 ], "Mentions": [ { "BeginOffset": 43, "EndOffset": 44, "Score": 0.999997, "GroupScore": 1, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } }, { "BeginOffset": 80, "EndOffset": 81, "Score": 0.999996, "GroupScore": 0.52523, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } }, { "BeginOffset": 67, "EndOffset": 68, "Score": 0.999994, "GroupScore": 0.999499, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 75, "EndOffset": 78, "Score": 0.999978, "GroupScore": 1, "Text": "kid", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] } ], "File": "SampleMovieReview2.txt", "Line": 0 }

Contenuto di SampleMovieReview3.txt.out con rientri di riga per una maggiore leggibilità:

{ "Entities": [ { "DescriptiveMentionIndex": [ 1 ], "Mentions": [ { "BeginOffset": 64, "EndOffset": 68, "Score": 0.992953, "GroupScore": 0.999814, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0.000004, "Negative": 0.010425, "Neutral": 0.989543, "Positive": 0.000027 } } }, { "BeginOffset": 37, "EndOffset": 45, "Score": 0.999782, "GroupScore": 1, "Text": "AnyMovie", "Type": "ORGANIZATION", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.000095, "Negative": 0.039847, "Neutral": 0.000673, "Positive": 0.959384 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 47, "EndOffset": 50, "Score": 0.999991, "GroupScore": 1, "Text": "All", "Type": "QUANTITY", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0.000001, "Negative": 0.000001, "Neutral": 0.999998, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 106, "EndOffset": 115, "Score": 0.542083, "GroupScore": 1, "Text": "directors", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] } ], "File": "SampleMovieReview3.txt", "Line": 0 }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare start-topics-detection-job.

AWS CLI

Come avviare un processo di analisi del rilevamento degli argomenti

L’esempio start-topics-detection-job seguente avvia un processo di rilevamento degli argomenti asincrono per tutti i file che si trovano all’indirizzo specificato dal tag --input-data-config. Al completamento del processo, la cartella output viene collocata nella posizione specificata dal tag --ouput-data-config. output contiene topic-terms.csv e doc-topics.csv. Il primo file di output (topic-terms.csv) è un elenco di argomenti nella raccolta. Per ogni argomento, per impostazione predefinita l’elenco include i termini principali per argomento in base al loro peso. Il secondo file (doc-topics.csv) elenca i documenti associati a un argomento e la proporzione del documento interessato dall’argomento.

aws comprehend start-topics-detection-job \ --job-name example_topics_detection_job \ --language-code en \ --input-data-config "S3Uri=s3://amzn-s3-demo-bucket/" \ --output-data-config "S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --language-code en

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

Per ulteriori informazioni, consulta Topic Modeling in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare stop-dominant-language-detection-job.

AWS CLI

Come arrestare un processo asincrono di rilevamento della lingua dominante

L’esempio stop-dominant-language-detection-job seguente arresta un processo di rilevamento asincrono della lingua dominante in corso. Se lo stato corrente del processo è IN_PROGRESS, il processo viene contrassegnato per la terminazione e viene impostato lo STOP_REQUESTED. Se il processo viene completato prima di poter essere arrestato, viene messo in stato COMPLETED.

aws comprehend stop-dominant-language-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare stop-entities-detection-job.

AWS CLI

Come arrestare un processo asincrono di rilevamento delle entità

L’esempio stop-entities-detection-job seguente arresta un processo di rilevamento asincrono delle entità in corso. Se lo stato corrente del processo è IN_PROGRESS, il processo viene contrassegnato per la terminazione e viene impostato lo STOP_REQUESTED. Se il processo viene completato prima di poter essere arrestato, viene messo in stato COMPLETED.

aws comprehend stop-entities-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare stop-events-detection-job.

AWS CLI

Come arrestare un processo asincrono di rilevamento degli eventi

L’esempio stop-events-detection-job seguente arresta un processo di rilevamento asincrono degli eventi in corso. Se lo stato corrente del processo è IN_PROGRESS, il processo viene contrassegnato per la terminazione e viene impostato lo STOP_REQUESTED. Se il processo viene completato prima di poter essere arrestato, viene messo in stato COMPLETED.

aws comprehend stop-events-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare stop-key-phrases-detection-job.

AWS CLI

Come arrestare un processo asincrono di rilevamento delle frasi chiave

L’esempio stop-key-phrases-detection-job seguente arresta un processo di rilevamento asincrono delle frasi chiave in corso. Se lo stato corrente del processo è IN_PROGRESS, il processo viene contrassegnato per la terminazione e viene impostato lo STOP_REQUESTED. Se il processo viene completato prima di poter essere arrestato, viene messo in stato COMPLETED.

aws comprehend stop-key-phrases-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare stop-pii-entities-detection-job.

AWS CLI

Come arrestare un processo asincrono di rilevamento delle entità pii

L’esempio stop-pii-entities-detection-job seguente arresta un processo di rilevamento asincrono delle entità pii in corso. Se lo stato corrente del processo è IN_PROGRESS, il processo viene contrassegnato per la terminazione e viene impostato lo STOP_REQUESTED. Se il processo viene completato prima di poter essere arrestato, viene messo in stato COMPLETED.

aws comprehend stop-pii-entities-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare stop-sentiment-detection-job.

AWS CLI

Come arrestare un processo asincrono di rilevamento del sentiment

L’esempio stop-sentiment-detection-job seguente arresta un processo di rilevamento asincrono del sentiment in corso. Se lo stato corrente del processo è IN_PROGRESS, il processo viene contrassegnato per la terminazione e viene impostato lo STOP_REQUESTED. Se il processo viene completato prima di poter essere arrestato, viene messo in stato COMPLETED.

aws comprehend stop-sentiment-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare stop-targeted-sentiment-detection-job.

AWS CLI

Come arrestare un processo asincrono di rilevamento del sentiment mirato

L’esempio stop-targeted-sentiment-detection-job seguente arresta un processo di rilevamento asincrono del sentiment mirato in corso. Se lo stato corrente del processo è IN_PROGRESS, il processo viene contrassegnato per la terminazione e viene impostato lo STOP_REQUESTED. Se il processo viene completato prima di poter essere arrestato, viene messo in stato COMPLETED.

aws comprehend stop-targeted-sentiment-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

Per ulteriori informazioni, consulta Async analysis for Amazon Comprehend insights in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare stop-training-document-classifier.

AWS CLI

Come arrestare l’addestramento di un modello di classificazione dei documenti

L’esempio stop-training-document-classifier seguente arresta l’addestramento di un modello di classificazione di documenti ancora in corso.

aws comprehend stop-training-document-classifier --document-classifier-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Creating and managing custom models in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare stop-training-entity-recognizer.

AWS CLI

Come arrestare l’addestramento di un modello di riconoscimento delle entità

L’esempio stop-training-entity-recognizer seguente arresta l’addestramento di un modello di riconoscimento delle entità ancora in corso.

aws comprehend stop-training-entity-recognizer --entity-recognizer-arn "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/examplerecognizer1"

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Creating and managing custom models in Amazon Comprehend Developer Guide.

L’esempio di codice seguente mostra come utilizzare tag-resource.

AWS CLI

Esempio 1: come aggiungere un tag a una risorsa

L’esempio tag-resource seguente aggiunge un singolo tag a una risorsa Amazon Comprehend.

aws comprehend tag-resource \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1 \ --tags Key=Location,Value=Seattle

Questo comando non ha output.

Per ulteriori informazioni, consulta Tagging your resources in Amazon Comprehend Developer Guide.

Esempio 2: come aggiungere più tag a una risorsa

L’esempio tag-resource seguente aggiunge più tag a una risorsa Amazon Comprehend.

aws comprehend tag-resource \ --resource-arn "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1" \ --tags Key=location,Value=Seattle Key=Department,Value=Finance

Questo comando non ha output.

Per ulteriori informazioni, consulta Tagging your resources in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta TagResource in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare untag-resource.

AWS CLI

Esempio 1: come rimuovere un singolo tag da una risorsa

L’esempio untag-resource seguente rimuove un singolo tag da una risorsa Amazon Comprehend.

aws comprehend untag-resource \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1 --tag-keys Location

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Tagging your resources in Amazon Comprehend Developer Guide.

Esempio 2: come rimuovere più tag da una risorsa

L’esempio untag-resource seguente rimuove più tag da una risorsa Amazon Comprehend.

aws comprehend untag-resource \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1 --tag-keys Location Department

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Tagging your resources in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta UntagResource in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare update-endpoint.

AWS CLI

Esempio 1: come aggiornare le unità di inferenza di un endpoint

L’esempio update-endpoint seguente aggiorna le informazioni su un endpoint. In questo esempio, viene aumentato il numero di unità di inferenza.

aws comprehend update-endpoint \ --endpoint-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint --desired-inference-units 2

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoints in Amazon Comprehend Developer Guide.

Esempio 2: come aggiornare il modello attivo di un endpoint

L’esempio update-endpoint seguente aggiorna le informazioni su un endpoint. In questo esempio, il modello attivo viene modificato.

aws comprehend update-endpoint \ --endpoint-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint --active-model-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-new

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoints in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta UpdateEndpoint in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare update-flywheel.

AWS CLI

Come aggiornare la configurazione di un flywheel

L’esempio update-flywheel seguente aggiorna una configurazione del flywheel. In questo esempio, il modello attivo per il flywheel viene aggiornato.

aws comprehend update-flywheel \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1 \ --active-model-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/new-example-classifier-model

Output:

{ "FlywheelProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/new-example-classifier-model", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TaskConfig": { "LanguageCode": "en", "DocumentClassificationConfig": { "Mode": "MULTI_CLASS" } }, "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/", "DataSecurityConfig": {}, "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20230619T040032Z" } }

Per ulteriori informazioni, consulta Flywheel Overview in Amazon Comprehend Developer Guide.

  • Per informazioni dettagliate sull’API, consulta UpdateFlywheel in AWS CLI Command Reference.