
Documentazione di riferimento a SQL

AWS Clean Rooms

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Clean Rooms Documentazione di riferimento a SQL

AWS Clean Rooms: Documentazione di riferimento a SQL

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

I marchi e l’immagine commerciale di Amazon non possono essere utilizzati in relazione a prodotti o
servizi che non siano di Amazon, in una qualsiasi modalità che possa causare confusione tra i clienti
o in una qualsiasi modalità che denigri o discrediti Amazon. Tutti gli altri marchi non di proprietà di
Amazon sono di proprietà dei rispettivi proprietari, che possono o meno essere affiliati, collegati o
sponsorizzati da Amazon.

AWS Clean Rooms Documentazione di riferimento a SQL

Table of Contents
Panoramica di ... 1

Convenzioni ... 1
Regole di denominazione .. 2

Nomi e colonne delle associazioni di tabelle configurate .. 2
Parole riservate ... 4

Supporto dei tipi di dati tramite il motore SQL ... 5
Tipi di dati numerici .. 6
Tipi di dati booleani .. 9
Tipi di dati data e ora ... 9
Tipi di dati dei caratteri ... 10
Tipi di dati strutturati ... 11

AWS Clean Rooms SQL Spark ... 14
Valori letterali ... 14

Operatore + (concatenamento) .. 15
Tipi di dati .. 16

Caratteri multibyte ... 18
Tipi numerici .. 18
Tipi di carattere ... 26
Tipi datetime ... 28
Tipo booleano ... 45
Tipo binario ... 49
Tipo annidato .. 49
Conversione e compatibilità dei tipi .. 51

Comandi SQL .. 56
TABELLA CACHE ... 57
Suggerimenti ... 59
SELECT .. 66

Funzioni SQL ... 114
Funzioni di aggregazione ... 115
Funzioni di array ... 138
Espressioni condizionali .. 148
Funzioni costruttore .. 161
Funzioni di formattazione del tipo di dati ... 165
Funzioni di data e ora .. 193

iii

AWS Clean Rooms Documentazione di riferimento a SQL

Funzioni di crittografia e decrittografia ... 223
Funzioni hash .. 227
Funzioni Hyperloglog .. 231
Funzioni JSON .. 238
Funzioni matematiche ... 242
Funzioni scalari ... 274
Funzioni stringa ... 275
Funzioni relative alla privacy .. 322
Funzioni finestra .. 328

Condizioni SQL .. 361
Operatori di confronto ... 362
Condizioni logiche ... 367
Condizioni di corrispondenza di modelli ... 371
Condizione di intervallo BETWEEN ... 376
Condizione Null ... 378
Condizione EXISTS .. 379
Condizione IN ... 380

Interrogazione di dati annidati .. 383
Navigazione ... 383
Annullamento di query ... 384
Semantica permissiva .. 386
Tipi di introspezione .. 387

Cronologia dei documenti .. 389
.. cccxcii

iv

AWS Clean Rooms Documentazione di riferimento a SQL

Panoramica di SQL in AWS Clean Rooms
Benvenuto in AWS Clean RoomsSQL Reference.

AWS Clean Roomsè basato sullo standard di settore Structured Query Language (SQL), un
linguaggio di interrogazione costituito da comandi e funzioni utilizzati per lavorare con database
e oggetti di database. SQL impone inoltre regole relative all'uso di tipi di dati, espressioni e valori
letterali.

Negli argomenti seguenti vengono fornite informazioni generali sulle convenzioni e le regole di
denominazione utilizzate in questo riferimento SQL.

Argomenti

• Convenzioni del riferimento SQL

• Regole di denominazione SQL

• Supporto dei tipi di dati tramite il motore SQL

Le sezioni seguenti forniscono informazioni sui valori letterali, i tipi di dati, i comandi SQL, i tipi di
funzioni SQL e le condizioni SQL in cui è possibile utilizzare. AWS Clean Rooms

• AWS Clean Rooms SQL Spark

Per ulteriori informazioni in meritoAWS Clean Rooms, consulta la Guida per l'AWS Clean
Roomsutente e l'AWS Clean RoomsAPI Reference.

Convenzioni del riferimento SQL
Questa sezione spiega le convenzioni utilizzate per scrivere la sintassi per le espressioni, i comandi e
le funzioni SQL.

Carattere Descrizione

CAPS Le parole in lettere maiuscole sono parole chiave.

[] Le parentesi indicano argomenti opzionali. Più
argomenti tra parentesi indicano che è possibile
scegliere qualsiasi numero degli argomenti. Inoltre, gli

Convenzioni 1

https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/apireference/Welcome.html

AWS Clean Rooms Documentazione di riferimento a SQL

Carattere Descrizione

argomenti tra parentesi su righe separate indicano che
il parser prevede che gli argomenti siano nell'ordine in
cui sono elencati nella sintassi.

{ } Le parentesi graffe indicano che è necessario scegliere
uno degli argomenti racchiusi nelle stesse.

| Le pipe indicano che è possibile scegliere tra gli
argomenti.

corsivo Le parole in corsivo indicano dei segnaposto. Devi
inserire il valore appropriato al posto della parola in
corsivo.

... I puntini di sospensione indicano che è possibile
ripetere l'elemento precedente.

' Le parole tra virgolette singole indicano che è
necessario digitare le virgolette.

Regole di denominazione SQL

Le seguenti sezioni spiegano le regole di denominazione SQL in. AWS Clean Rooms

Argomenti

• Nomi e colonne delle associazioni di tabelle configurate

• Parole riservate

Nomi e colonne delle associazioni di tabelle configurate

I membri che possono eseguire query utilizzano i nomi di associazione di tabelle configurati come
nomi di tabella nelle query. I nomi di associazione di tabelle configurati e le colonne di tabella
configurate possono essere alias nelle query.

Le seguenti regole di denominazione si applicano ai nomi di associazione di tabelle configurati, ai
nomi di colonne delle tabelle configurate e agli alias:

Regole di denominazione 2

AWS Clean Rooms Documentazione di riferimento a SQL

• Devono utilizzare solo caratteri alfanumerici, caratteri di sottolineatura (_) o trattino (-), ma non
possono iniziare o terminare con un trattino.

• (Solo regole di analisi personalizzate) Possono utilizzare il simbolo del dollaro ($) ma non uno
schema che segue una costante di stringa tra virgolette in dollari.

Una costante di stringa quotata in dollari è composta da:

• il simbolo del dollaro ($)

• un «tag» opzionale di zero o più caratteri

• un altro simbolo del dollaro

• sequenza arbitraria di caratteri che costituisce il contenuto della stringa

• il simbolo del dollaro ($)

• lo stesso tag con cui è iniziata la quotazione in dollari

• il simbolo del dollaro

Ad esempio: $$invalid$$

• Non possono contenere trattini consecutivi (-).

• Non possono iniziare con nessuno dei seguenti prefissi:

padb_, pg_, stcs_, stl_, stll_, stv_, svcs_, svl_, svv_, sys_, systable_

• Non possono contenere barre rovesciate (\), virgolette (') o spazi che non siano tra virgolette.

• Se iniziano con un carattere non alfabetico, devono essere racchiusi tra virgolette (» «).

• Se contengono un trattino (-), devono essere racchiusi tra virgolette doppie (» «).

• Devono avere una lunghezza compresa tra 1 e 127 caratteri.

• Le parole riservate devono essere racchiuse tra virgolette doppie (» «).

• I seguenti nomi di colonna sono riservati e non possono essere utilizzati in AWS Clean Rooms
(anche con virgolette):

• oid

• tableoid

• xmin

• cmin

• xmax

• cmax

• ctid
Nomi e colonne delle associazioni di tabelle configurate 3

AWS Clean Rooms Documentazione di riferimento a SQL

Parole riservate

Di seguito è riportato un elenco di parole riservate in AWS Clean Rooms.

AES128 DELTA32KDESC LEADING PRIMARY

AES256ALL DISTINCT LEFTLIKE RAW

ALLOWOVER
WRITEANALYSE

DO LIMIT READRATIO

ANALYZE DISABLE LOCALTIME RECOVERRE
FERENCES

AND ELSE LOCALTIMESTAMP REJECTLOG

ANY EMPTYASNU
LLENABLE

LUN RESORT

ARRAY ENCODE LUNS RESPECT

AS ENCRYPT LZO RESTORE

ASC ENCRYPTIONEND LZOP RIGHTSELECT

AUTHORIZATION EXCEPT MINUS SESSION_USER

AZ64 EXPLICITFALSE MOSTLY16 SIMILAR

BACKUPBETWEEN FOR MOSTLY32 SNAPSHOT

BINARY FOREIGN MOSTLY8NATURAL SOME

BLANKSASN
ULLBOTH

FREEZE NEW SYSDATESYSTEM

BYTEDICT FROM NOT TABLE

BZIP2CASE FULL NOTNULL TAG

CAST GLOBALDICT256 NULL TDES

Parole riservate 4

AWS Clean Rooms Documentazione di riferimento a SQL

CHECK GLOBALDIC
T64KGRANT

NULLSOFF TEXT255

COLLATE GROUP OFFLINEOFFSET TEXT32KTHEN

COLUMN GZIPHAVING OID TIMESTAMP

CONSTRAINT IDENTITY OLD TO

CREATE IGNOREILIKE ON TOPTRAILING

CREDENTIA
LSCROSS

IN ONLY TRUE

CURRENT_DATE INITIALLY OPEN TRUNCATEC
OLUMNSUNION

CURRENT_TIME INNER OR UNIQUE

CURRENT_T
IMESTAMP

INTERSECT ORDER UNNEST

CURRENT_USER INTERVAL OUTER USING

CURRENT_U
SER_IDDEFAULT

INTO OVERLAPS VERBOSE

DEFERRABLE IS PARALLELP
ARTITION

WALLETWHEN

DEFLATE ISNULL PERCENT WHERE

DEFRAG JOIN PERMISSIONS WITH

DELTA LANGUAGE PIVOTPLACING WITHOUT

Supporto dei tipi di dati tramite il motore SQL

AWS Clean Rooms supporta più motori e dialetti SQL. La comprensione dei sistemi di tipi di dati in
queste implementazioni è fondamentale per una collaborazione e un'analisi dei dati di successo.

Supporto dei tipi di dati tramite il motore SQL 5

AWS Clean Rooms Documentazione di riferimento a SQL

Le tabelle seguenti mostrano i tipi di dati equivalenti tra AWS Clean Rooms SQL, Snowflake SQL e
Spark SQL.

Tipi di dati numerici

I tipi numerici rappresentano vari tipi di numeri, da numeri interi precisi a valori approssimativi
in virgola mobile. La scelta del tipo numerico influisce sia sui requisiti di archiviazione che sulla
precisione computazionale. I tipi di numeri interi variano in base alla dimensione del byte, mentre i tipi
decimali e a virgola mobile offrono diverse opzioni di precisione e scala.

Tipo di dati AWS Clean Rooms
SQL

SQL a forma di
fiocco di neve

Spark SQL Description

Numero intero a 8
byte

BIGINT Non supportato BIGINT,
LUNGO

Numeri interi
con segno
da -9.223.37
2.036.854
.775.808 a
9.223.372
.036.854.
775.807.

Numero intero a 4
byte

INT Non supportato INT, INTEGER Numeri interi
con segno da
-2.147.483.648
a 2.147.483
.647

Numero intero a 2
byte

SMALLINT Non supportato SMALLINT,
BREVE

Numeri interi
con segno
da -32.768 a
32.767

Numero intero a 1
byte

Non supportato Non supportato TINYINT,
BYTE

Numeri interi
con segno da
-128 a 127

Tipi di dati numerici 6

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo di dati AWS Clean Rooms
SQL

SQL a forma di
fiocco di neve

Spark SQL Description

Flottante a doppia
precisione

DOPPIA, DOPPIA
PRECISIONE

FLOAT,,
FLOAT4
FLOAT8,
DOPPIA,
DOPPIA
PRECISIONE,
REALE

DOUBLE Numeri in
virgola mobile
a doppia
precisione da 8
byte

Flottante a
precisione singola

REALE,
GALLEGGIANTE

Non supportato FLOAT numeri in
virgola mobile
a precision
e singola a 4
byte

Tipi di dati numerici 7

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo di dati AWS Clean Rooms
SQL

SQL a forma di
fiocco di neve

Spark SQL Description

Decimale (precisio
ne fissa)

DECIMAL DECIMALE,
NUMERICO,
NUMERO

Note

Snowflake
assegna
automatic
amente
l'alias
dei tipi
numerici
esatti
di
larghezza
inferiore
(INT,
BIGINT,
SMALLINT,
ecc.) a
NUMBER.

DECIMALE,
NUMERICO,

numeri
decimali
con segno
a precisione
arbitraria

Decimale (con
precisione)

DECIMALE (p) NUMERO
DECIMALE
(p), NUMERO
(p)

DECIMALE (p) Numeri
decimali a
precisione
fissa

Decimale (con
scala)

DECIMAL(p,s) NUMERO
DECIMALE (p,
s), NUMERO
(p, s)

DECIMAL(p,s) Numeri
decimali a
precisione
fissa con scala

Tipi di dati numerici 8

AWS Clean Rooms Documentazione di riferimento a SQL

Tipi di dati booleani

I tipi booleani rappresentano valori logici semplici. true/false Questi tipi sono coerenti tra i motori SQL
e vengono comunemente utilizzati per flag, condizioni e operazioni logiche.

Tipo di dati AWS Clean Rooms
SQL

SQL a forma di
fiocco di neve

Spark SQL Description

Booleano BOOLEAN BOOLEAN BOOLEAN Rappresenta i
valori true/false

Tipi di dati data e ora

I tipi di data e ora gestiscono i dati temporali, con diversi livelli di precisione e consapevolezza del
fuso orario. Questi tipi supportano diversi formati per la memorizzazione di date, ore e timestamp, con
opzioni per includere o escludere le informazioni sul fuso orario.

Tipo di dati AWS Clean Rooms
SQL

SQL a forma di
fiocco di neve

Spark SQL Description

Data DATE DATE DATE Valori di data
(anno, mese,
giorno) senza
fuso orario

Orario TIME Non supportato Non supportato Ora del giorno
in UTC, senza
fuso orario

Ora con TZ TIMETZ Non supportato Non supportato Ora del giorno
in UTC, con
fuso orario

Time stamp TIMESTAMP TIMESTAMP
, TIMESTAMP
_NTZ

TIMESTAMP
_NTZ

Timestamp
senza fuso
orario

Tipi di dati booleani 9

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo di dati AWS Clean Rooms
SQL

SQL a forma di
fiocco di neve

Spark SQL Description

Note

NTZ
indica
«Nessun
fuso
orario»

Timestamp con TZ TIMESTAMPTZ TIMESTAMP
_LTZ

TIMESTAMP
, TIMESTAMP
_LTZ

Timestamp
con fuso orario
locale

Note

LTZ
indica
«Fuso
orario
locale»

Tipi di dati dei caratteri

I tipi di caratteri memorizzano dati testuali, offrendo opzioni a lunghezza fissa e a lunghezza variabile.
Questi tipi gestiscono stringhe di testo e dati binari, con specifiche di lunghezza opzionali per
controllare l'allocazione dello storage.

Tipo di dati AWS Clean Rooms
SQL

SQL a forma di
fiocco di neve

Spark SQL Description

Carattere a
lunghezza fissa

CHAR CHAR,
CHARACTER

CHAR,
CHARACTER

Stringa di
caratteri a

Tipi di dati dei caratteri 10

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo di dati AWS Clean Rooms
SQL

SQL a forma di
fiocco di neve

Spark SQL Description

lunghezza
fissa

Carattere a
lunghezza fissa
con lunghezza

CHAR(n) CHAR(n),
CHARACTER
(n)

CHAR(n),
CHARACTER
(n)

Stringa di
caratteri a
lunghezza
fissa con
lunghezza
specificata

Carattere a
lunghezza variabile

VARCHAR VARCHAR,
STRINGA,
TESTO

VARCHAR,
STRINGA

Stringa di
caratteri a
lunghezza
variabile

Carattere a
lunghezza variabile
con lunghezza

VARCHAR(n) VARCHAR (n),
STRINGA (n),
TESTO (n)

VARCHAR(n) Stringa di
caratteri a
lunghezza
variabile
con limite di
lunghezza

Binario VARBYTE BINARY,
VARBINARY

BINARY Sequenza
binaria di byte

Binario con
lunghezza

VARBYTE(n) Non supportato Non supportato Sequenza
binaria di byte
con limite di
lunghezza

Tipi di dati strutturati

I tipi strutturati consentono un'organizzazione complessa dei dati combinando più valori in singoli
campi. Questi includono array per raccolte ordinate, mappe per coppie chiave-valore e strutture per la
creazione di strutture di dati personalizzate con campi denominati.

Tipi di dati strutturati 11

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo di dati AWS Clean Rooms
SQL

SQL a forma di
fiocco di neve

Spark SQL Description

Array MATRICE <type> ARRAY (tipo) ARRAY <type> Sequenza
ordinata di
elementi dello
stesso tipo

Note

I tipi di
array
devono
contenere
elementi
dello
stesso
tipo

Eseguire la
mappatura

MAPPA<key,
value>

MAP (chiave,
valore)

MAPPA<key,
value>

Raccolta di
coppie chiave-
valore

Note

I tipi di
mappa
devono
contenere
elementi
dello
stesso
tipo

Tipi di dati strutturati 12

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo di dati AWS Clean Rooms
SQL

SQL a forma di
fiocco di neve

Spark SQL Description

Struct STRUTTURA<
field1: type1, field2:
type2>

OGGETTO
(campo1 tipo1,
campo2 tipo2)

STRUTTURA
< field1: type1,
field2: type2 >

Struttura
con campi
denominati di
tipi specificati

Note

La
sintassi
dei tipi
struttura
ti può
variare
leggermen
te tra le
implement
azioni

Fantastico SUPER Non supportato Non supportato Tipo flessibile
che supporta
tutti i tipi di
dati, compresi i
tipi complessi

Tipi di dati strutturati 13

AWS Clean Rooms Documentazione di riferimento a SQL

AWS Clean Rooms SQL Spark
AWS Clean Rooms Spark SQL applica regole riguardanti l'uso di tipi di dati, espressioni e valori
letterali.

Per ulteriori informazioni su AWS Clean Rooms Spark SQL, consulta la Guida per l'AWS Clean
Rooms utente e l'API Reference.AWS Clean Rooms

I seguenti argomenti forniscono informazioni sui valori letterali, i tipi di dati, i comandi, le funzioni e le
condizioni supportati in AWS Clean Rooms Spark SQL.

Argomenti

• Valori letterali

• Tipi di dati

• AWS Clean Rooms Comandi SQL Spark

• AWS Clean Rooms Funzioni Spark SQL

• AWS Clean Rooms Condizioni Spark SQL

Valori letterali

Un valore letterale o una costante è un valore di dati fisso, composto da una sequenza di caratteri o
da una costante numerica.

AWS Clean Rooms Spark SQL supporta diversi tipi di valori letterali, tra cui:

• Valori letterali per numeri interi, decimali e in virgola mobile.

• I caratteri letterali, noti anche come stringhe, stringhe di caratteri o costanti di caratteri, vengono
utilizzati per specificare il valore di una stringa di caratteri.

• Valori letterali di data, ora e timestamp, utilizzati con i tipi di dati datetime. Per ulteriori informazioni,
consulta Valori letterali di data, ora e timestamp.

• Valori letterali a intervalli. Per ulteriori informazioni, consulta Valori letterali di intervallo.

• Letterali booleani. Per ulteriori informazioni, consulta Letterali booleani.

• Valori letterali nulli, utilizzati per specificare un valore nullo.

• Solo TAB, CARRIAGE RETURN (CR) e LINE FEED (LF) Sono supportati i caratteri di controllo
Unicode della categoria generale Unicode (Cc).

Valori letterali 14

https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/apireference/Welcome.html
https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/apireference/Welcome.html

AWS Clean Rooms Documentazione di riferimento a SQL

AWS Clean Rooms Spark SQL non supporta riferimenti diretti alle stringhe letterali nella clausola
SELECT, ma possono essere utilizzati all'interno di funzioni come CAST.

Operatore + (concatenamento)

Concatena valori letterali numerici, stringhe letterali e/o valori letterali datetime e intervallari. Si
trovano su entrambi i lati del simbolo + e restituiscono tipi diversi in base agli input su entrambi i lati
del simbolo +.

Sintassi

numeric + string

date + time

date + timetz

L'ordine degli argomenti può essere invertito.

Argomenti

numeric literals

I valori letterali o le costanti che rappresentano numeri possono essere interi o in virgola mobile.

string literals

Stringhe, stringhe di caratteri o costanti di caratteri

date

A DATE colonna o un'espressione che si converte implicitamente in DATE.

time

A TIME colonna o un'espressione che si converte implicitamente in un TIME.

timetz

A TIMETZ colonna o un'espressione che si converte implicitamente in un TIMETZ.

Operatore + (concatenamento) 15

AWS Clean Rooms Documentazione di riferimento a SQL

Esempio

La seguente tabella di esempio TIME_TEST ha una colonna TIME_VAL (tipo TIME) con tre valori
inseriti.

select date '2000-01-02' + time_val as ts from time_test;

Tipi di dati

Ogni valore archiviato o recuperato da AWS Clean Rooms Spark SQL ha un tipo di dati con un set
fisso di proprietà associate. I tipi di dati vengono dichiarati al momento della creazione delle tabelle.
Un tipo di dati limita il set di valori che un argomento o una colonna può contenere.

La tabella seguente elenca i tipi di dati che puoi usare in AWS Clean Rooms Spark SQL.

Nome del tipo di dati Tipo di dati Alias Description

ARRAY the section called
“Tipo annidato”

Non applicabile Tipo di dati annidato
nell'array

BIGINT the section called “Tipi
numerici”

Non applicabile Intero a otto byte
firmato

BINARY the section called
“Tipo binario”

Non applicabile Valori della sequenza
di byte

BOOLEAN the section called
“Tipo booleano”

BOOL Booleano logico (true/
false)

BYTE the section called “Tipi
numerici”

Non applicabile Numeri interi con
segno a 1 byte, da
-128 a 127

CHAR the section called “Tipi
di carattere”

CHARACTER Stringa di caratteri a
lunghezza fissa

DATE the section called “Tipi
datetime”

Non applicabile Data di calendario
(anno, mese, giorno)

Tipi di dati 16

AWS Clean Rooms Documentazione di riferimento a SQL

Nome del tipo di dati Tipo di dati Alias Description

DECIMAL the section called “Tipi
numerici”

NUMERIC Numerico esatto di
precisione seleziona
bile

FLOAT the section called “Tipi
numerici”

FLOAT8, DOPPIA
PRECISIONE

Numero in virgola
mobile a precisione
doppia

INTEGER the section called “Tipi
numerici”

INT Intero a quattro byte
firmato

INTERVAL the section called “Tipi
datetime”

Non applicabile Durata temporale in
ordine giornaliero o in
ordine annuo

LONG the section called “Tipi
numerici”

Non applicabile numeri interi con
segno a 8 byte

MAP the section called
“Tipo annidato”

Non applicabile Tipo di dati annidato
sulla mappa

REAL the section called “Tipi
numerici”

FLOAT4 Numero in virgola
mobile a precisione
singola

SHORT the section called “Tipi
numerici”

Non applicabile Numeri interi con
segno a 2 byte.

SMALLINT the section called “Tipi
numerici”

Non applicabile Intero a due byte
firmato

STRUCT the section called
“Tipo annidato”

Non applicabile Struct: tipo di dati
annidato

TIMESTAMP_LTZ the section called “Tipi
datetime”

Non applicabile Ora del giorno con
fuso orario locale

Tipi di dati 17

AWS Clean Rooms Documentazione di riferimento a SQL

Nome del tipo di dati Tipo di dati Alias Description

TIMESTAMP_NTZ the section called “Tipi
datetime”

Non applicabile Ora del giorno senza
fuso orario

TINYINT the section called “Tipi
numerici”

Non applicabile numeri interi con
segno a 1 byte, da
-128 a 127

VARCHAR the section called “Tipi
di carattere”

CARATTERE
VARIABILE

Stringa di caratteri a
lunghezza variabile
con un limite definito
dall'utente

Note

I tipi di dati annidati ARRAY, STRUCT e MAP sono attualmente abilitati solo per la regola di
analisi personalizzata. Per ulteriori informazioni, consulta Tipo annidato.

Caratteri multibyte

Il tipo di dati VARCHAR supporta caratteri multibyte UTF-8 fino a un massimo di quattro byte.
I caratteri a cinque byte o più non sono supportati. Per calcolare la dimensione di una colonna
VARCHAR che contiene caratteri multibyte, moltiplica il numero di caratteri per il numero di byte per
carattere. Ad esempio, se una stringa ha quattro caratteri cinesi e ciascun carattere è lungo tre byte,
allora avrai bisogno di una colonna VARCHAR(12) per memorizzare la stringa.

Il tipo di dati VARCHAR non supporta i punti di codice UTF-8 non validi seguenti:

0xD800 – 0xDFFF (Sequenze di byte: ED A0 80 – ED BF BF)

Il tipo di dati CHAR non supporta caratteri multibyte.

Tipi numerici

I tipi di dati numerici comprendono numeri interi, decimali e in virgola mobile.

Argomenti

Caratteri multibyte 18

AWS Clean Rooms Documentazione di riferimento a SQL

• Tipi Integer

• Tipo DECIMAL o NUMERIC

• Tipi in virgola mobile

• Calcoli con valori numerici

Tipi Integer

Usa i seguenti tipi di dati per memorizzare numeri interi di vari intervalli. Non è possibile memorizzare
valori al di fuori dell'intervallo consentito per ogni tipo.

Name Storage Intervallo

SMALLINT 2 byte Da -32768 a +32767

SHORT 2 byte Da -32768 a +32767

INTEGER o INT 4 byte Da -2147483648 a
+2147483647

BIGINT 8 byte Da -92233720
36854775808
a 922337203
6854775807

LONG 8 byte Da -92233720
36854775808
a 922337203
6854775807

Tipo DECIMAL o NUMERIC

Usare il tipo di dati DECIMAL o NUMERIC per memorizzare i valori con una precisione definita
dall'utente. Le parole chiave DECIMAL e NUMERIC sono interscambiabili. In questo documento,
decimale è il termine preferito per questo tipo di dati. Il termine numerici è usato solitamente per
riferirsi a tipi di dati interi, decimali e in virgola mobile.

Tipi numerici 19

AWS Clean Rooms Documentazione di riferimento a SQL

Storage Intervallo

Variabile, fino a 128 bit per i tipi DECIMAL non
compressi.

Interi firmati da 128 bit con fino a 38 cifre di
precisione.

Definisci una colonna DECIMAL in una tabella specificando un e: precision scale

decimal(precision, scale)

precision

Il numero totale di cifre significative nell'intero valore: il numero di cifre su entrambi i lati del punto
decimale. Ad esempio, il numero 48.2891 ha una precisione di 6 e una scala di 4. La precisione
predefinita, se non specificata, è 18. La precisione massima è 38.

Se il numero di cifre a sinistra del punto decimale in un valore di input supera la precisione della
colonna meno la scala, il valore non può essere copiato nella colonna (o inserito o aggiornato).
Questa regola si applica a qualsiasi valore che non rientra nell'intervallo della definizione della
colonna. Ad esempio, gli intervalli di valori ammessi per una colonna numeric(5,2) è da
-999.99 a 999.99.

scale

Il numero di cifre decimale nella parte frazionaria del valore, alla destra del punto decimale. Gli
interi hanno una scala di zero. Nella specifica di una colonna, è necessario che il valore della
scala sia inferiore o uguale al valore della precisione. La scala predefinita, se non specificata, è 0.
La scala massima è 37.

Se la scala di un valore input caricato in una tabella è maggiore della scala della colonna, il
valore viene arrotondato alla scala specificata. Ad esempio, la colonna PRICEPAID nella tabella
SALES è una colonna DECIMAL(8,2). Se un valore DECIMAL(8,4) viene inserito nella colonna
PRICEPAID, il valore viene arrotondato alla scala di 2.

insert into sales
values (0, 8, 1, 1, 2000, 14, 5, 4323.8951, 11.00, null);

select pricepaid, salesid from sales where salesid=0;

Tipi numerici 20

AWS Clean Rooms Documentazione di riferimento a SQL

pricepaid | salesid
-----------+---------
4323.90 | 0
(1 row)

Tuttavia, i risultati di espliciti cast di valori selezionati dalle tabelle non sono arrotondati.

Note

Il valore positivo massimo che è possibile inserire in una colonna DECIMAL(19,0) è
9223372036854775807 (263 -1). Il valore negativo massimo è -9223372036854775807.
Ad esempio, il tentativo di inserire il valore 9999999999999999999 (19 nove) causerà
un errore dell'overflow. Indipendentemente dalla posizione del punto decimale, la stringa
più grande che AWS Clean Rooms può rappresentare come numero DECIMAL è
9223372036854775807. Ad esempio, il valore più grande che è possibile caricare in una
colonna DECIMAL(19,18) è 9.223372036854775807.
Queste regole sono dovute a quanto segue:

• I valori DECIMAL con 19 o meno cifre significative di precisione vengono memorizzati
internamente come numeri interi da 8 byte.

• I valori DECIMAL con una precisione compresa tra 20 e 38 cifre significative vengono
memorizzati come numeri interi da 16 byte.

Note sull'utilizzo di colonne NUMERIC o DECIMAL a 128 bit

Non assegnare in modo arbitrario la precisione massima alle colonne DECIMAL a meno che non sia
certo che l'applicazione richieda tale precisione. I valori a 128 bit usano il doppio dello spazio su disco
rispetto ai valori a 64 bit e possono quindi rallentare il tempo di esecuzione delle query.

Tipi in virgola mobile

Usa i tipi di dati REAL e DOUBLE PRECISION per memorizzare valori numerici con precisione
variabile. Questi tipi sono inesatti, il che significa che alcuni valori vengono memorizzati come
approssimazioni, così che la memorizzazione e la restituzione di un valore specifico possono risultare
in lievi discrepanze. Se hai bisogno di calcoli e storage precisi (come per importi monetari), usa il tipo
di dati DECIMAL.

Tipi numerici 21

AWS Clean Rooms Documentazione di riferimento a SQL

REAL rappresenta il formato a virgola mobile a precisione singola, secondo lo standard IEEE 754 per
l'aritmetica in virgola mobile. Ha una precisione di circa 6 cifre e un intervallo compreso tra 1E-37 e
1E+37. È inoltre possibile FLOAT4 specificare questo tipo di dati come.

DOUBLE PRECISION rappresenta il formato a virgola mobile a precisione doppia, secondo lo
standard IEEE 754 per l'aritmetica binaria a virgola mobile. Ha una precisione di circa 15 cifre e un
intervallo compreso tra 1E-307 e 1E+308. È inoltre possibile specificare questo tipo di dati come
FLOAT o FLOAT8.

Calcoli con valori numerici

NelAWS Clean Rooms, il calcolo si riferisce a operazioni matematiche binarie: addizione, sottrazione,
moltiplicazione e divisione. Questa sezione descrive i tipi restituiti previsti per queste operazioni,
nonché la formula specifica che viene applicata per determinare la precisione e la scala quando sono
coinvolti tipi di dati DECIMAL.

Quando valori numerici vengono calcolati durante l'elaborazione di query, potresti affrontare casi
in cui il calcolo è impossibile e la query restituisce un errore dell'overflow numerico. Potresti anche
riscontrare casi in cui la scala di valori calcolati varia o è imprevista. Per alcune operazioni, è
possibile usare il casting esplicito (promozione tipo) o i parametri di configurazione AWS Clean
Rooms per risolvere questi problemi.

Per informazioni sui risultati di calcoli simili con funzioni SQL, consultare AWS Clean Rooms Funzioni
Spark SQL.

Tipi restituiti per i calcoli

Dato il set di tipi di dati numerici supportati inAWS Clean Rooms, la tabella seguente mostra i tipi
di rendimento previsti per le operazioni di addizione, sottrazione, moltiplicazione e divisione. La
prima colonna sul lato sinistro della tabella rappresenta il primo operando nel calcolo e la riga in alto
rappresenta il secondo operando.

Operando 1 Operando 2 Tipo restituito

SMALLINT o SHORT SMALLINT o SHORT SMALLINT o SHORT

SMALLINT o SHORT INTEGER INTEGER

SMALLINT o SHORT BIGINT BIGINT

Tipi numerici 22

AWS Clean Rooms Documentazione di riferimento a SQL

Operando 1 Operando 2 Tipo restituito

SMALLINT o SHORT DECIMAL DECIMAL

SMALLINT o SHORT FLOAT4 FLOAT8

SMALLINT o SHORT FLOAT8 FLOAT8

INTEGER INTEGER INTEGER

INTEGER BIGINT o LONG BIGINT o LONG

INTEGER DECIMAL DECIMAL

INTEGER FLOAT4 FLOAT8

INTEGER FLOAT8 FLOAT8

BIGINT o LONG BIGINT o LONG BIGINT o LONG

BIGINT o LONG DECIMAL DECIMAL

BIGINT o LONG FLOAT4 FLOAT8

BIGINT o LONG FLOAT8 FLOAT8

DECIMAL DECIMAL DECIMAL

DECIMAL FLOAT4 FLOAT8

DECIMAL FLOAT8 FLOAT8

FLOAT4 FLOAT8 FLOAT8

FLOAT8 FLOAT8 FLOAT8

Precisione e scala di risultati DECIMAL calcolati

La tabella seguente riassume le regole per la scala e la precisione risultanti dal calcolo quando
operazioni matematiche restituiscono risultati DECIMAL. In questa tabella, p1 s1 rappresentano la
precisione e la scala del primo operando in un calcolo. p2e s2 rappresentano la precisione e la scala

Tipi numerici 23

AWS Clean Rooms Documentazione di riferimento a SQL

del secondo operando. (Indipendentemente da questi calcoli, la precisione del risultato massima è 38
e la scala del risultato massima è 38.)

Operation Scala e precisione del risultato

+ oppure - Dimensionare = max(s1,s2)

Precisione = max(p1-s1,p2-s2)+1+scale

* Dimensionare = s1+s2

Precisione = p1+p2+1

/ Dimensionare = max(4,s1+p2-s2+1)

Precisione = p1-s1+ s2+scale

Ad esempio, le colonne PRICEPAID e COMMISSION nella tabella SALES sono entrambe colonne
DECIMAL(8,2). Se dividi PRICEPAID per COMMISSION (o viceversa), la formula è applicata come
segue:

Precision = 8-2 + 2 + max(4,2+8-2+1)
= 6 + 2 + 9 = 17

Scale = max(4,2+8-2+1) = 9

Result = DECIMAL(17,9)

Il calcolo seguente è la regola generale per il calcolo della scala e della precisione risultanti per
le operazioni eseguite su valori DECIMAL con operatori impostati come UNION, INTERSECT ed
EXCEPT o funzioni come COALESCE e DECODE:

Scale = max(s1,s2)
Precision = min(max(p1-s1,p2-s2)+scale,19)

Ad esempio, una DEC1 tabella con una colonna DECIMAL (7,2) viene unita a una DEC2 tabella
con una colonna DECIMAL (15,3) per creare una tabella. DEC3 Lo schema di DEC3 mostra che la
colonna diventa una colonna NUMERIC (15,3).

Tipi numerici 24

AWS Clean Rooms Documentazione di riferimento a SQL

select * from dec1 union select * from dec2;

Nell'esempio sopra, la formula è applicata come segue:

Precision = min(max(7-2,15-3) + max(2,3), 19)
= 12 + 3 = 15

Scale = max(2,3) = 3

Result = DECIMAL(15,3)

Note sulle operazioni di divisione

Per le operazioni di divisione, le divide-by-zero condizioni restituiscono errori.

Il limite di scala di 100 è applicato dopo aver calcolato la precisione e la scala. Se la scala del
risultato calcolata è maggiore di 100, i risultati della divisione vengono scalati come segue:

• Precisione = precision - (scale - max_scale)

• Dimensionare = max_scale

Se la precisione calcolata supera la precisione massima (38), la precisione viene ridotta a 38 e la
scala diventa il risultato di: max(38 + scale - precision), min(4, 100))

Condizioni di overflow

L'overflow viene controllato per tutti i calcoli numerici. I dati DECIMAL con una precisione di 19 o
inferiore vengono memorizzati come interi a 64 bit. I dati DECIMAL con una precisione superiore a 19
vengono memorizzati come interi a 128 bit. La precisione massima per tutti i valori DECIMAL è 38 e
la scala massima è 37. Gli errori dell'overflow si verificano quando un valore supera questi limiti, che
si applicano agli insiemi dei risultati finali e intermedi:

• Il casting esplicito genera errori di overflow in fase di esecuzione quando valori di dati specifici non
corrispondono alla precisione o alla scala richieste specificate dalla funzione cast. Ad esempio,
non è possibile eseguire il cast di tutti i valori della colonna PRICEPAID nella tabella SALES (una
colonna DECIMAL (8,2)) e restituire un risultato DECIMAL (7,3):

select pricepaid::decimal(7,3) from sales;

Tipi numerici 25

AWS Clean Rooms Documentazione di riferimento a SQL

ERROR: Numeric data overflow (result precision)

Questo errore si verifica perché alcuni dei valori più grandi nella colonna PRICEPAID non possono
essere espressi.

• Le operazioni di moltiplicazione producono risultati in cui la scala del risultato è la somma della
scala di ciascun operando. Se entrambi gli operando hanno una scala di 4, ad esempio, la
scala del risultato è 8, lasciando solo 10 cifre per il lato sinistro del punto decimale. Pertanto, è
relativamente facile incorrere in condizioni di overflow quando si moltiplicano due grandi numeri
che possiedono entrambi una scala significativa.

Calcoli numerici con tipi INTEGER e DECIMAL

Quando uno degli operandi di un calcolo ha un tipo di dati INTEGER e l'altro operando è DECIMAL,
l'operando INTEGER viene implicitamente espresso come DECIMAL.

• SMALLINT o SHORT viene espresso come DECIMAL (5,0)

• INTEGER viene espresso come DECIMAL (10,0)

• BIGINT o LONG viene espresso come DECIMAL (19,0)

Ad esempio, se moltiplichi SALES.COMMISSION, una colonna DECIMAL(8,2), e SALES.QTYSOLD,
una colonna SMALLINT, per questo calcolo viene eseguito il cast come segue:

DECIMAL(8,2) * DECIMAL(5,0)

Tipi di carattere

I tipi di dati carattere comprendono CHAR (carattere) e VARCHAR (carattere variabile).

Argomenti

• CHAR o CHARACTER

• VARCHAR o CHARACTER VARYING

• Significato degli spazi finali

Tipi di carattere 26

AWS Clean Rooms Documentazione di riferimento a SQL

CHAR o CHARACTER

Usa una colonna CHAR o CHARACTER per memorizzare stringhe di lunghezza fissa. A queste
stringhe vengono aggiunti spazi, quindi una colonna CHAR(10) occupa 10 byte di storage.

char(10)

Una colonna CHAR senza una specificazione di lunghezza risulta in una colonna CHAR(1).

I tipi di dati CHAR e VARCHAR sono definiti in termini di byte, non caratteri. Una colonna CHAR può
contenere solo caratteri a byte singolo, quindi una colonna CHAR(10) può contenere una stringa con
una lunghezza massima di 10 byte.

Name Storage Intervallo (larghezza della colonna)

CHAR o CHARACTER Lunghezza della
stringa, compresi
spazi finali (se
presenti)

4096 byte

VARCHAR o CHARACTER VARYING

Usa una colonna VARCHAR o CHARACTER VARYING per memorizzare stringhe di lunghezza
variabile con un limite fisso. A queste stringhe non vengono aggiunti spazi vuoti, quindi una colonna
VARCHAR(120) consiste di un massimo di 120 caratteri a byte singolo, 60 caratteri a due byte, 40
caratteri a tre byte o 30 caratteri a quattro byte.

varchar(120)

I tipi di dati VARCHAR sono definiti in termini di byte, non di caratteri. Una VARCHAR può contenere
caratteri multibyte fino a un massimo di quattro byte per carattere. Ad esempio, una colonna
VARCHAR(12) può contenere 12 caratteri a byte singolo, 6 caratteri a due byte, 4 caratteri a tre byte
o 3 caratteri a quattro byte.

Name Storage Intervallo (larghezza della colonna)

VARCHAR o CHARACTER
VARYING

4 byte + byte
totali per

65.535 bytes (64K -1)

Tipi di carattere 27

AWS Clean Rooms Documentazione di riferimento a SQL

Name Storage Intervallo (larghezza della colonna)

carattere, dove
ogni carattere
può essere da 1
a 4 byte.

Significato degli spazi finali

Entrambi i tipi di dati CHAR e VARCHAR memorizzano stringhe fino a n byte di lunghezza. Un
tentativo di memorizzare una stringa più lunga in una colonna di questi tipi genera un errore. Tuttavia,
se i caratteri aggiuntivi sono tutti spazi (spazi vuoti), la stringa viene troncata alla lunghezza massima.
Se la stringa è più corta della lunghezza massima, ai valori CHAR vengono aggiunti spazi, ma i valori
VARCHAR memorizzano la stringa senza spazi.

Gli spazi inziali nei valori CHAR sono sempre privi di significato dal punto di vista semantico.
Vengono ignorati quando confronti due valori CHAR, non compresi nei calcoli LENGTH, e rimossi
quando converti un valore CHAR in un altro tipo di stringa.

Gli spazi finali nei valori VARCHAR e CHAR vengono trattati come insignificanti dal punto di vista
semantico quando i valori vengono confrontati.

I calcoli della lunghezza restituiscono la lunghezza delle stringhe di caratteri VARCHAR con spazi
finali compresi nella lunghezza. Gli spazi finali non vengono contati nella lunghezza per le stringhe di
caratteri a lunghezza fissa.

Tipi datetime

I tipi di dati Datetime includono DATE, TIME, TIMESTAMP_LTZ e TIMESTAMP_NTZ.

Argomenti

• DATE

• TIMESTAMP_LTZ

• TIMESTAMP_NTZ

• Esempi con tipi datetime

• Valori letterali di data, ora e timestamp

Tipi datetime 28

AWS Clean Rooms Documentazione di riferimento a SQL

• Valori letterali di intervallo

• Tipi di dati e valori letterali relativi agli intervalli

DATE

Utilizzare il tipo di dati DATE per memorizzare semplici date di calendario senza timestamp.

Name Storage Intervallo Risoluzione

DATE 4 byte Da 4.713 BC a 294.276 AD 1 giorno

TIMESTAMP_LTZ

Usa il tipo di dati TIMESTAMP_LTZ per memorizzare valori di timestamp completi che includono la
data, l'ora del giorno e il fuso orario locale.

TIMESTAMP rappresenta i valori che comprendono i valori dei campiyear,,,, emonth, day con il
fuso orario locale della sessione. hour minute second Il timestamp valore rappresenta un punto
temporale assoluto.

TIMESTAMP in Spark è un alias specificato dall'utente associato a una delle varianti
TIMESTAMP_LTZ e TIMESTAMP_NTZ. Puoi impostare il tipo di timestamp predefinito
come TIMESTAMP_LTZ (valore predefinito) o TIMESTAMP_NTZ tramite la configurazione.
spark.sql.timestampType

TIMESTAMP_NTZ

Usa il tipo di dati TIMESTAMP_NTZ per memorizzare valori di timestamp completi che includono la
data e l'ora del giorno, senza il fuso orario locale.

TIMESTAMP rappresenta i valori che comprendono i valori dei campi,,,, e. year month day hour
minute second Tutte le operazioni vengono eseguite senza tenere conto del fuso orario.

TIMESTAMP in Spark è un alias specificato dall'utente associato a una delle varianti
TIMESTAMP_LTZ e TIMESTAMP_NTZ. Puoi impostare il tipo di timestamp predefinito
come TIMESTAMP_LTZ (valore predefinito) o TIMESTAMP_NTZ tramite la configurazione.
spark.sql.timestampType

Tipi datetime 29

AWS Clean Rooms Documentazione di riferimento a SQL

Esempi con tipi datetime

Gli esempi seguenti mostrano come lavorare con i tipi di datetime supportati da. AWS Clean Rooms

Esempi di data

Nei seguenti esempi vengono inserite date con formati diversi e viene visualizzato il risultato.

select * from datetable order by 1;

start_date | end_date

2008-06-01 | 2008-12-31
2008-06-01 | 2008-12-31

Se si inserisce un valore timestamp in una colonna DATE, la parte dell'ora viene ignorata e viene
caricata solo la data.

Esempi di orari

Negli esempi seguenti vengono inseriti valori TIME e TIMETZ con formati diversi e viene visualizzato
il risultato.

select * from timetable order by 1;
start_time | end_time

 19:11:19 | 20:41:19+00
 19:11:19 | 20:41:19+00

Valori letterali di data, ora e timestamp

Di seguito sono riportate le regole per lavorare con i valori letterali di data, ora e timestamp supportati
da Spark SQL. AWS Clean Rooms

Date:

La tabella seguente mostra le date di input che sono esempi validi di valori di data letterali che è
possibile caricare nelle tabelle. AWS Clean Rooms Si assume che la modalità MDY DateStyle di
default sia in vigore. Questa modalità indica che il valore del mese precede il valore del giorno in
stringhe come 1999-01-08 e 01/02/00.

Tipi datetime 30

AWS Clean Rooms Documentazione di riferimento a SQL

Note

È necessario che un valore letterale data o timestamp quando viene caricato in una tabella
sia racchiuso tra virgolette.

Data di input Data completa

8 gennaio 1999 8 gennaio 1999

1999-01-08 8 gennaio 1999

1/8/1999 8 gennaio 1999

01/02/00 2 gennaio 2000

2000-Jan-31 31 gennaio 2000

Jan-31-2000 31 gennaio 2000

31-Jan-2000 31 gennaio 2000

20080215 15 febbraio 2008

080215 15 febbraio 2008

2008.366 31 dicembre 2008 (è necessario che la parte a
3 cifre della data sia compresa tra 001 e 366)

Volte

La tabella seguente mostra gli orari di input che sono esempi validi di valori temporali letterali che è
possibile caricare nelle AWS Clean Rooms tabelle.

Input di orari Descrizione (della parte dell'ora)

04:05:06.789 4:05 AM e 6.789 secondi

04:05:06 4:05 AM e 6 secondi

Tipi datetime 31

AWS Clean Rooms Documentazione di riferimento a SQL

Input di orari Descrizione (della parte dell'ora)

04:05 4:05 AM preciso

040506 4:05 AM e 6 secondi

04:05 AM 4:05 AM preciso; AM è facoltativo

04:05 PM 4:05 PM precise; è necessario che il valore
dell'ora sia < 12.

16:05 4:05 PM preciso

Valori datetime speciali

La tabella seguente mostra valori speciali che possono essere usati come valori letterali di data/ora
e come argomenti per le funzioni di data. Richiedono virgolette singole e vengono convertiti in valori
timestamp regolari durante l'elaborazione delle query.

Valore speciale Description

now Valuta all'ora di inizio della transazione attuale
e restituisce un timestamp con precisione di
microsecondi.

today Valuta alla data appropriata e restituisce un
timestamp con più zeri al posto dell'ora.

tomorrow Valuta alla data appropriata e restituisce un
timestamp con più zeri al posto dell'ora.

yesterday Valuta alla data appropriata e restituisce un
timestamp con più zeri al posto dell'ora.

Gli esempi seguenti mostrano come now e come utilizzare la funzione today DATE_ADD.

select date_add('today', 1);

Tipi datetime 32

AWS Clean Rooms Documentazione di riferimento a SQL

date_add

2009-11-17 00:00:00
(1 row)

select date_add('now', 1);

date_add

2009-11-17 10:45:32.021394
(1 row)

Valori letterali di intervallo

Di seguito sono riportate le regole per lavorare con i valori letterali a intervalli supportati da Spark
SQL. AWS Clean Rooms

Usa un valore letterale di intervallo per identificare periodi di tempo specifici, come 12 hours o 6
weeks. È possibile usare questi valori letterali di intervallo in condizioni e calcoli che comprendono
espressioni datetime.

Note

Non è possibile utilizzare il tipo di dati INTERVAL per le colonne nelle tabelle. AWS Clean
Rooms

Un intervallo viene espresso come una combinazione della parola chiave INTERVAL con una
quantità numerica e una parte di data supportata, ad esempio INTERVAL '7 days' o INTERVAL
'59 minutes'. È possibile collegare diverse quantità e unità per formare un intervallo più preciso;
ad esempio INTERVAL '7 days, 3 hours, 59 minutes'. Anche abbreviazioni e plurali
di ciascuna unità sono supportati; ad esempio: 5 s, 5 second e 5 seconds sono intervalli
equivalenti.

Se non si specifica una parte data, il valore di intervallo rappresenterà i secondi. È possibile
specificare il valore di quantità come una frazione (ad esempio: 0.5 days).

Esempi

Gli esempi seguenti mostrano una serie di calcoli con valori di intervallo diversi.

Tipi datetime 33

AWS Clean Rooms Documentazione di riferimento a SQL

L'esempio seguente aggiunge 1 secondo alla data specificata.

select caldate + interval '1 second' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 00:00:01
(1 row)

L'esempio seguente aggiunge 1 minuto alla data specificata.

select caldate + interval '1 minute' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 00:01:00
(1 row)

L'esempio seguente aggiunge 3 ore e 35 minuti alla data specificata.

select caldate + interval '3 hours, 35 minutes' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 03:35:00
(1 row)

L'esempio seguente aggiunge 52 settimane alla data specificata.

select caldate + interval '52 weeks' as dateplus from date
where caldate='12-31-2008';
dateplus

2009-12-30 00:00:00
(1 row)

L'esempio seguente aggiunge 1 settimana, 1 ora, 1 minuto e 1 secondo alla data specificata.

select caldate + interval '1w, 1h, 1m, 1s' as dateplus from date
where caldate='12-31-2008';
dateplus

Tipi datetime 34

AWS Clean Rooms Documentazione di riferimento a SQL

2009-01-07 01:01:01
(1 row)

L'esempio seguente aggiunge 12 ore (mezza giornata) alla data specificata.

select caldate + interval '0.5 days' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 12:00:00
(1 row)

L'esempio seguente sottrae 4 mesi dal 31 marzo 2023 e il risultato è il 30 novembre 2022. Il calcolo
considera il numero di giorni in un mese.

select date '2023-03-31' - interval '4 months';

?column?

2022-11-30 00:00:00

Tipi di dati e valori letterali relativi agli intervalli

Puoi utilizzare un tipo di dati di intervallo per memorizzare le durate di tempo in unità quali seconds,
minutes, hours, days, months e years. I tipi di dati e i valori letterali relativi agli intervalli
possono essere utilizzati nei calcoli data/ora, ad esempio aggiungendo intervalli a date e timestamp,
sommando gli intervalli e sottraendo un intervallo da una data o un timestamp. I valori letterali relativi
agli intervalli possono essere utilizzati come valori per intervallare le colonne dei tipi di dati in una
tabella.

Sintassi del tipo di dati di intervallo

Come specificare un tipo di dati di intervallo per memorizzare una durata di tempo in anni e mesi:

INTERVAL year_to_month_qualifier

Come specificare un tipo di dati di intervallo per memorizzare una durata in giorni, ore, minuti e
secondi:

INTERVAL day_to_second_qualifier [(fractional_precision)]

Tipi datetime 35

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi dell’intervallo letterale

Come specificare un intervallo letterale per definire una durata di tempo in anni e mesi:

INTERVAL quoted-string year_to_month_qualifier

Come specificare un intervallo letterale per definire una durata in giorni, ore, minuti e secondi:

INTERVAL quoted-string day_to_second_qualifier [(fractional_precision)]

Arguments (Argomenti)

quoted-string

Specifica un valore numerico positivo o negativo che indica una quantità e l’unità data/ora
come stringa di input. Se la stringa tra virgolette contiene solo un numero, AWS Clean Rooms
determina le unità da year_to_month_qualifier o day_to_second_qualifier. Ad esempio, '23'
MONTH rappresenta 1 year 11 months, '-2' DAY rappresenta -2 days 0 hours 0
minutes 0.0 seconds, '1-2' MONTH rappresenta 1 year 2 months e '13 day 1 hour
1 minute 1.123 seconds' SECOND rappresenta 13 days 1 hour 1 minute 1.123
seconds. Per ulteriori informazioni sui formati di output di un intervallo, consulta Stili di intervallo.

year_to_month_qualifier

Specifica l’intervallo di valori. Se utilizzate un qualificatore e create un intervallo con unità di tempo
più piccole del qualificatore, tronca e scarta le parti più piccole dell'intervallo. AWS Clean Rooms I
valori validi per year_to_month_qualifier sono:

• YEAR

• MONTH

• YEAR TO MONTH

day_to_second_qualifier

Specifica l’intervallo di valori. Se utilizzate un qualificatore e create un intervallo con unità di tempo
più piccole del qualificatore, tronca e scarta le parti più piccole dell'intervallo. AWS Clean Rooms I
valori validi per day_to_second_qualifier sono:

• DAY

• HOUR

• MINUTE

Tipi datetime 36

AWS Clean Rooms Documentazione di riferimento a SQL

• SECOND

• DAY TO HOUR

• DAY TO MINUTE

• DAY TO SECOND

• HOUR TO MINUTE

• HOUR TO SECOND

• MINUTE TO SECOND

L’output del valore letterale INTERVAL viene troncato in base al componente INTERVAL più
piccolo specificato. Ad esempio, quando si utilizza un qualificatore MINUTE, scarta le unità di
tempo più piccole di MINUTE. AWS Clean Rooms

select INTERVAL '1 day 1 hour 1 minute 1.123 seconds' MINUTE

Il valore risultante viene troncato in '1 day 01:01:00'.

fractional_precision

Parametro facoltativo che specifica il numero di cifre frazionarie consentite nell’intervallo.
L’argomento fractional_precision deve essere specificato solo se l’intervallo contiene SECOND.
Ad esempio, SECOND(3) crea un intervallo che prevede solo tre cifre frazionarie, ad esempio
1,234 secondi. Il numero massimo di cifre frazionarie è sei.

La configurazione della sessione interval_forbid_composite_literals determina se viene
restituito un errore quando viene specificato un intervallo con le parti YEAR TO MONTH e DAY TO
SECOND.

Aritmetica dell’intervallo

Puoi utilizzare i valori di intervallo con altri valori di data e ora per eseguire operazioni aritmetiche. Le
tabelle seguenti descrivono le operazioni disponibili e il tipo di dati risultante da ciascuna operazione.

Note

Le operazioni che possono produrre entrambi i risultati date e timestamp lo fanno in base
alla più piccola unità di tempo coinvolta nell’equazione. Ad esempio, quando aggiungi un
valore interval a un valore date, il risultato è un valore date, se si tratta di un intervallo
YEAR TO MONTH e un timestamp se si tratta di un intervallo DAY TO SECOND.

Tipi datetime 37

AWS Clean Rooms Documentazione di riferimento a SQL

Le operazioni in cui il primo operando è un valore interval producono i seguenti risultati per il
secondo operando specificato:

Operatore Data Time stamp Interval Numerico

- N/D N/D Interval N/D

+ Data Data/Timestamp Interval N/D

* N/D N/D N/D Interval

/ N/D N/D N/D Interval

Le operazioni in cui il primo operando è un date producono i seguenti risultati per il secondo
operando specificato:

Operatore Data Time stamp Interval Numerico

- Numerico Interval Data/Timestamp Data

+ N/D N/D N/D N/D

Le operazioni in cui il primo operando è un timestamp producono i seguenti risultati per il secondo
operando specificato:

Operatore Data Time stamp Interval Numerico

- Numerico Interval Time stamp Time stamp

+ N/D N/D N/D N/D

Stili di intervallo

• postgres: segue lo stile PostgreSQL. Questa è l’impostazione predefinita.

• postgres_verbose: segue lo stile verboso PostgreSQL.

• sql_standard: segue lo stile dei valori letterali dell’intervallo standard SQL.

Tipi datetime 38

AWS Clean Rooms Documentazione di riferimento a SQL

Il comando seguente imposta lo stile dell’intervallo su sql_standard.

SET IntervalStyle to 'sql_standard';

formato di output postgres

Di seguito è riportato il formato di output per lo stile di intervallo postgres. Ogni valore numerico può
essere negativo.

'<numeric> <unit> [, <numeric> <unit> ...]'

select INTERVAL '1-2' YEAR TO MONTH::text

varchar

1 year 2 mons

select INTERVAL '1 2:3:4.5678' DAY TO SECOND::text

varchar

1 day 02:03:04.5678

formato di output postgres_verbose

La sintassi di postgres_verbose è simile a quella di postgres, ma gli output di postgres_verbose
contengono anche l’unità di tempo.

'[@] <numeric> <unit> [, <numeric> <unit> ...] [direction]'

select INTERVAL '1-2' YEAR TO MONTH::text

varchar

@ 1 year 2 mons

select INTERVAL '1 2:3:4.5678' DAY TO SECOND::text

Tipi datetime 39

AWS Clean Rooms Documentazione di riferimento a SQL

varchar

@ 1 day 2 hours 3 mins 4.56 secs

formato di output sql_standard

I valori dell’intervallo da anno a mese sono formattati come segue. Se si specifica un segno negativo
prima dell’intervallo, si indica che l’intervallo è un valore negativo e si applica all’intero intervallo.

'[-]yy-mm'

I valori dell’intervallo da giorno a secondo sono formattati come segue.

'[-]dd hh:mm:ss.ffffff'

SELECT INTERVAL '1-2' YEAR TO MONTH::text

varchar

1-2

select INTERVAL '1 2:3:4.5678' DAY TO SECOND::text

varchar

1 2:03:04.5678

Esempi di tipi di dati relativi agli intervalli

Negli esempi seguenti viene illustrato come utilizzare i tipi di dati INTERVAL con le tabelle.

create table sample_intervals (y2m interval month, h2m interval hour to minute);
insert into sample_intervals values (interval '20' month, interval '2 days
 1:1:1.123456' day to second);
select y2m::text, h2m::text from sample_intervals;

 y2m | h2m
---------------+-----------------

Tipi datetime 40

AWS Clean Rooms Documentazione di riferimento a SQL

 1 year 8 mons | 2 days 01:01:00

update sample_intervals set y2m = interval '2' year where y2m = interval '1-8' year to
 month;
select * from sample_intervals;

 y2m | h2m
---------+-----------------
 2 years | 2 days 01:01:00

delete from sample_intervals where h2m = interval '2 1:1:0' day to second;
select * from sample_intervals;

 y2m | h2m
-----+-----

Esempi di valori letterali relativi agli intervalli

Gli esempi seguenti vengono eseguiti con lo stile di intervallo impostato su postgres.

L’esempio seguente mostra come creare un valore letterale di INTERVAL di 1 anno.

select INTERVAL '1' YEAR

intervaly2m

1 years 0 mons

Se si specifica un argomento quoted-string che supera il qualificatore, le unità di tempo rimanenti
vengono troncate dall’intervallo. Nell’esempio seguente, un intervallo di 13 mesi diventa 1 anno e 1
mese, ma il mese restante viene escluso a causa del qualificatore YEAR.

select INTERVAL '13 months' YEAR

intervaly2m

1 years 0 mons

Se utilizzi un qualificatore inferiore alla stringa di intervallo, vengono incluse le unità rimanenti.

Tipi datetime 41

AWS Clean Rooms Documentazione di riferimento a SQL

select INTERVAL '13 months' MONTH

intervaly2m

1 years 1 mons

Se si specifica una precisione nell’intervallo, il numero di cifre frazionarie viene troncato in base alla
precisione specificata.

select INTERVAL '1.234567' SECOND (3)

intervald2s

0 days 0 hours 0 mins 1.235 secs

Se non si specifica una precisione, AWS Clean Rooms utilizza la precisione massima di 6.

select INTERVAL '1.23456789' SECOND

intervald2s

0 days 0 hours 0 mins 1.234567 secs

L’esempio seguente dimostra come creare un intervallo di valori.

select INTERVAL '2:2' MINUTE TO SECOND

intervald2s

0 days 0 hours 2 mins 2.0 secs

I qualificatori determinano le unità che specificate. Ad esempio, anche se l'esempio seguente utilizza
la stessa stringa tra virgolette '2:2' dell'esempio precedente, AWS Clean Rooms riconosce che
utilizza unità di tempo diverse a causa del qualificatore.

select INTERVAL '2:2' HOUR TO MINUTE

intervald2s

0 days 2 hours 2 mins 0.0 secs

Tipi datetime 42

AWS Clean Rooms Documentazione di riferimento a SQL

Sono supportati anche le abbreviazioni e i plurali di ciascuna unità. Ad esempio, 5s, 5 second e 5
seconds sono intervalli equivalenti. Le unità supportate sono anni, mesi, ore, minuti e secondi.

select INTERVAL '5s' SECOND

intervald2s

0 days 0 hours 0 mins 5.0 secs

select INTERVAL '5 HOURS' HOUR

intervald2s

0 days 5 hours 0 mins 0.0 secs

select INTERVAL '5 h' HOUR

intervald2s

0 days 5 hours 0 mins 0.0 secs

Esempi di valori letterali relativi agli intervalli senza sintassi dei qualificatori

Note

Negli esempi seguenti viene illustrato l’utilizzo di un valore letterale relativo agli intervalli
senza un qualificatore YEAR TO MONTH o DAY TO SECOND. Per informazioni sull’utilizzo del
valore letterale relativo agli intervalli consigliato con un qualificatore, consulta Tipi di dati e
valori letterali relativi agli intervalli.

Usa un valore letterale di intervallo per identificare periodi di tempo specifici, come 12 hours o 6
months. È possibile usare questi valori letterali di intervallo in condizioni e calcoli che comprendono
espressioni datetime.

Un valore letterale relativo agli intervalli viene espresso come una combinazione della parola chiave
INTERVAL con una quantità numerica e una parte di data supportata, ad esempio INTERVAL '7
days' o INTERVAL '59 minutes'. È possibile collegare diverse quantità e unità per formare
un intervallo più preciso; ad esempio INTERVAL '7 days, 3 hours, 59 minutes'. Anche

Tipi datetime 43

AWS Clean Rooms Documentazione di riferimento a SQL

abbreviazioni e plurali di ciascuna unità sono supportati; ad esempio: 5 s, 5 second e 5 seconds
sono intervalli equivalenti.

Se non si specifica una parte data, il valore di intervallo rappresenterà i secondi. È possibile
specificare il valore di quantità come una frazione (ad esempio: 0.5 days).

Gli esempi seguenti mostrano una serie di calcoli con valori di intervallo diversi.

Quanto segue aggiunge 1 secondo alla data specificata.

select caldate + interval '1 second' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 00:00:01
(1 row)

Quanto segue aggiunge 1 minuto alla data specificata.

select caldate + interval '1 minute' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 00:01:00
(1 row)

Vengono aggiunte 3 ore e 35 minuti alla data specificata.

select caldate + interval '3 hours, 35 minutes' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 03:35:00
(1 row)

Quanto segue aggiunge 52 settimane alla data specificata.

select caldate + interval '52 weeks' as dateplus from date
where caldate='12-31-2008';
dateplus

2009-12-30 00:00:00

Tipi datetime 44

AWS Clean Rooms Documentazione di riferimento a SQL

(1 row)

Vengono aggiunti 1 settimana, 1 ora, 1 minuto e 1 secondo alla data specificata.

select caldate + interval '1w, 1h, 1m, 1s' as dateplus from date
where caldate='12-31-2008';
dateplus

2009-01-07 01:01:01
(1 row)

Di seguito vengono aggiunte 12 ore (mezza giornata) alla data specificata.

select caldate + interval '0.5 days' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 12:00:00
(1 row)

Vengono sottratti 4 mesi dal 15 febbraio 2023 e il risultato è il 15 ottobre 2022.

select date '2023-02-15' - interval '4 months';

?column?

2022-10-15 00:00:00

Vengono sottratti 4 mesi dal 31 marzo 2023 e il risultato è il 30 novembre 2022. Il calcolo considera il
numero di giorni in un mese.

select date '2023-03-31' - interval '4 months';

?column?

2022-11-30 00:00:00

Tipo booleano

Usa valori di dati BOOLEAN per memorizzare valori true e false in una colonna a byte singolo. La
tabella seguente descrive i tre possibili stati per un valore booleano e i valori letterali che risultano in

Tipo booleano 45

AWS Clean Rooms Documentazione di riferimento a SQL

quello stato. Indipendentemente dalla stringa di input, una colonna booleana memorizza e restituisce
"t" per true e "f" per false.

Stato Valori letterali
validi

Storage

True TRUE 't'
'true' 'y'
'yes' '1'

1 byte

False FALSE 'f'
'false' 'n'
'no' '0'

1 byte

Sconosciuto NULL 1 byte

È possibile utilizzare un confronto IS per controllare il valore Boolean solo come predicato nella
clausola WHERE. Non è possibile utilizzare un confronto IS con un valore Boolean nell'elenco
SELECT.

Esempi

È possibile utilizzare una colonna BOOLEAN per memorizzare uno stato «Attivo/Inattivo» per ogni
cliente in una tabella CUSTOMER.

select * from customer;
custid | active_flag
-------+--------------
 100 | t

In questo esempio, la seguente query seleziona gli utenti della tabella USERS che amano lo sport ma
non amano il teatro:

select firstname, lastname, likesports, liketheatre
from users
where likesports is true and liketheatre is false
order by userid limit 10;

firstname | lastname | likesports | liketheatre

Tipo booleano 46

AWS Clean Rooms Documentazione di riferimento a SQL

----------+------------+------------+-------------
Alejandro | Rosalez | t | f
Akua | Mansa | t | f
Arnav | Desai | t | f
Carlos | Salazar | t | f
Diego | Ramirez | t | f
Efua | Owusu | t | f
John | Stiles | t | f
Jorge | Souza | t | f
Kwaku | Mensah | t | f
Kwesi | Manu | t | f
(10 rows)

Il seguente esempio seleziona dalla tabella USERS gli utenti per i quali non si sa se gradiscono la
musica rock.

select firstname, lastname, likerock
from users
where likerock is unknown
order by userid limit 10;

firstname | lastname | likerock
----------+----------+----------
Alejandro | Rosalez |
Carlos | Salazar |
Diego | Ramirez |
John | Stiles |
Kwaku | Mensah |
Martha | Rivera |
Mateo | Jackson |
Paulo | Santos |
Richard | Roe |
Saanvi | Sarkar |
(10 rows)

L'esempio seguente restituisce un errore perché utilizza un confronto IS nell'elenco SELECT.

select firstname, lastname, likerock is true as "check"
from users
order by userid limit 10;

[Amazon](500310) Invalid operation: Not implemented

Tipo booleano 47

AWS Clean Rooms Documentazione di riferimento a SQL

L'esempio seguente riesce perché utilizza un confronto uguale (=) nell'elenco SELECT anziché il IS
confronto.

select firstname, lastname, likerock = true as "check"
from users
order by userid limit 10;

firstname | lastname | check
----------+-----------+------
Alejandro | Rosalez |
Carlos | Salazar |
Diego | Ramirez | true
John | Stiles |
Kwaku | Mensah | true
Martha | Rivera | true
Mateo | Jackson |
Paulo | Santos | false
Richard | Roe |
Saanvi | Sarkar |

Letterali booleani

Le seguenti regole servono per lavorare con i letterali booleani supportati da Spark SQL. AWS Clean
Rooms

Usa un valore letterale booleano per specificare un valore booleano, ad esempio o. TRUE FALSE

Sintassi

TRUE | FALSE

Esempio

L'esempio seguente mostra una colonna con un valore specificato di. TRUE

SELECT TRUE AS col;
+----+
| col|
+----+
|true|
+----+

Tipo booleano 48

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo binario

Usa il tipo di dati BINARY per archiviare e gestire dati binari a lunghezza fissa e non interpretati,
fornendo funzionalità di archiviazione e confronto efficienti per casi d'uso specifici.

Il tipo di dati BINARY memorizza un numero fisso di byte, indipendentemente dalla lunghezza
effettiva dei dati archiviati. La lunghezza massima è in genere di 255 byte.

BINARY viene utilizzato per archiviare dati binari non elaborati e non interpretati, come immagini,
documenti o altri tipi di file. I dati vengono memorizzati esattamente come vengono forniti, senza
alcuna codifica o interpretazione dei caratteri. I dati binari memorizzati nelle colonne BINARY
vengono confrontati e ordinati byte-by-byte in base ai valori binari effettivi, anziché a qualsiasi regola
di codifica o collazione dei caratteri.

La seguente query di esempio mostra la rappresentazione binaria della stringa. "abc" Ogni carattere
della stringa è rappresentato dal relativo codice ASCII in formato esadecimale: «a» è 0x61, «b» è
0x62 e «c» è 0x63. Quando combinati, questi valori esadecimali formano la rappresentazione binaria.
"616263"

SELECT 'abc'::binary;
binary

 616263

Tipo annidato

AWS Clean Roomssupporta le query che coinvolgono dati con tipi di dati annidati, in particolare i tipi
di colonne AWS Glue STRUCT, ARRAY e MAP. Solo la regola di analisi personalizzata supporta i tipi
di dati annidati.

In particolare, i tipi di dati annidati non sono conformi alla struttura rigida e tabulare del modello di dati
relazionali dei database SQL.

I tipi di dati annidati contengono tag che fanno riferimento a entità distinte all'interno dei dati. Possono
contenere valori complessi quali array, strutture nidificate e altre strutture complesse associate ai
formati di serializzazione, ad esempio JSON. I tipi di dati nidificati supportano fino a 1 MB di dati per
un singolo campo o oggetto del tipo di dati nidificati.

Argomenti

• Tipo ARRAY

Tipo binario 49

AWS Clean Rooms Documentazione di riferimento a SQL

• Tipo MAP

• Tipo STRUCT

• Esempi di tipi di dati annidati

Tipo ARRAY

Usa il tipo ARRAY per rappresentare valori costituiti da una sequenza di elementi con il tipo di.
elementType

array(elementType, containsNull)

Utilizzato containsNull per indicare se gli elementi di un tipo ARRAY possono avere null valori.

Tipo MAP

Usa il tipo MAP per rappresentare i valori che comprendono un insieme di coppie chiave-valore.

map(keyType, valueType, valueContainsNull)

keyType: il tipo di dati delle chiavi

valueType: il tipo di dati dei valori

Le chiavi non possono avere null valori. valueContainsNullDa utilizzare per indicare se i valori
di un valore di tipo MAP possono avere null valori.

Tipo STRUCT

Usa il tipo STRUCT per rappresentare i valori con la struttura descritta da una sequenza di
StructFields (campi).

struct(name, dataType, nullable)

StructField(name, dataType, nullable): rappresenta un campo in un. StructType

dataType: il tipo di dati di un campo

name: il nome di un campo

Viene utilizzato nullable per indicare se i valori di questi campi possono avere null valori.

Tipo annidato 50

AWS Clean Rooms Documentazione di riferimento a SQL

Esempi di tipi di dati annidati

Per il struct<given:varchar, family:varchar> tipo, ci sono due nomi di attributo:given,
efamily, ciascuno corrispondente a un varchar valore.

Per il array<varchar> tipo, l'array viene specificato come elenco divarchar.

Il array<struct<shipdate:timestamp, price:double>> tipo si riferisce a un elenco di
elementi con struct<shipdate:timestamp, price:double> tipo.

Il tipo di map dati si comporta come un array distructs, in cui il nome dell'attributo per ogni
elemento dell'array è indicato da key e viene mappato a. value

Example

Ad esempio, il map<varchar(20), varchar(20)> tipo viene trattato
comearray<struct<key:varchar(20), value:varchar(20)>>, dove key e value fa
riferimento agli attributi della mappa nei dati sottostanti.

Per informazioni su come AWS Clean Rooms abilitare la navigazione in matrici e strutture,
vedereNavigazione.

Per informazioni su come AWS Clean Rooms abilitare l'iterazione sugli array navigando nell'array
utilizzando la clausola FROM di una query, vedere. Annullamento di query

Conversione e compatibilità dei tipi

I seguenti argomenti descrivono come funzionano le regole di conversione dei tipi e la compatibilità
dei tipi di dati in AWS Clean Rooms Spark SQL.

Argomenti

• Compatibilità

• Regole generali di conversione e compatibilità

• Tipi di conversione implicita

Compatibilità

La corrispondenza dei tipi di dati e la corrispondenza di valori letterali e costanti con tipi di dati
avviene durante diverse operazioni di database, comprese le seguenti:

• Operazioni DML (Data Manipulation Language) sulle tabelle

Conversione e compatibilità dei tipi 51

AWS Clean Rooms Documentazione di riferimento a SQL

• Query UNION, INTERSECT ed EXCEPT

• Espressioni CASE

• Valutazione di predicati, come LIKE e IN

• Valutazione di funzioni SQL che effettuano confronti o estrazioni di dati

• Confronti con operatori matematici

I risultati di queste operazioni dipendono dalle regole di conversione dei tipi e dalla compatibilità dei
tipi di dati. La compatibilità implica che non è sempre richiesta la one-to-one corrispondenza tra un
determinato valore e un determinato tipo di dati. Poiché alcuni tipi di dati sono compatibili, è possibile
una conversione implicita o una coercizione. Per ulteriori informazioni, consulta Tipi di conversione
implicita. Quando i tipi di dati non sono compatibili, a volte è possibile convertire un valore da un tipo
di dati a un altro usando una funzione di conversione esplicita.

Regole generali di conversione e compatibilità

Osserva le seguenti regole di conversione e compatibilità:

• In generale, i tipi di dati che rientrano nella stessa categoria (come diversi tipi di dati numerici) sono
compatibili ed è possibile convertirli in modo implicito.

Ad esempio, con la conversione implicita è possibile inserire un valore decimale in una colonna
intera. Il decimale viene arrotondato per produrre un numero intero. Altrimenti, è possibile estrarre
un valore numerico, come 2008, da una data e inserirlo nella colonna intera.

• I tipi di dati numerici applicano le condizioni di overflow che si verificano quando si tenta di inserire
valori. out-of-range Ad esempio, un valore decimale con una precisione di 5 non rientra in una
colonna decimale che è stata definita con una precisione di 4. Un numero intero o l'intera parte
di un decimale non viene mai troncato. Tuttavia, la parte frazionaria di un decimale può essere
arrotondata per eccesso o per difetto, a seconda dei casi. Tuttavia, i risultati di espliciti cast di valori
selezionati dalle tabelle non sono arrotondati.

• Sono compatibili diversi tipi di stringhe di caratteri. Le stringhe di colonna VARCHAR contenenti
dati a byte singolo e le stringhe di colonna CHAR sono comparabili e convertibili implicitamente.
Le stringhe VARCHAR che contengono dati multibyte non sono confrontabili. Inoltre, è possibile
convertire una stringa di caratteri in una data, ora, timestamp o valore numerico se la stringa è un
valore letterale appropriato. Tutti gli spazi iniziali o finali vengono ignorati. Per contro, è possibile
convertire un valore numero, timestamp o data in una stringa di caratteri a lunghezza variabile o
fissa.

Conversione e compatibilità dei tipi 52

AWS Clean Rooms Documentazione di riferimento a SQL

Note

È necessario che una stringa di caratteri per la quale si desidera eseguire il cast a un
tipo numerico contenga una rappresentazione in caratteri di un numero. Ad esempio,
è possibile eseguire il cast delle stringhe '1.0' o '5.9' dei valori decimali, ma non è
possibile eseguire il cast della stringa 'ABC' in alcun tipo numerico.

• Se si confrontano i valori DECIMAL con le stringhe di caratteri, AWS Clean Rooms tenta di
convertire la stringa di caratteri in un valore DECIMAL. Quando si confrontano tutti gli altri valori
numerici con stringhe di caratteri, i valori numerici vengono convertiti in stringhe di caratteri. Per
applicare la conversione opposta (ad esempio, convertire le stringhe di caratteri in numeri interi
o convertire i valori DECIMAL in stringhe di caratteri), usa una funzione esplicita, ad esempio,
Funzione CAST.

• Per convertire valori DECIMAL o NUMERIC a 64 bit in una precisione più elevata, è necessario
usare una funzione di conversione specifica come le funzioni CAST o CONVERT.

Tipi di conversione implicita

Ci sono due tipi di conversione implicita:

• Conversioni implicite nelle assegnazioni, come l'impostazione di valori nei comandi INSERT o
UPDATE

• Conversioni implicite nelle espressioni, ad esempio l'esecuzione di confronti nella clausola WHERE

La tabella seguente elenca i tipi di dati che possono essere convertiti implicitamente in assegnazioni
o espressioni. È anche possibile usare una funzione di conversione esplicita per eseguire queste
conversioni.

Dal tipo Al tipo

BOOLEAN

CHAR

BIGINT

DECIMAL (NUMERIC)

Conversione e compatibilità dei tipi 53

AWS Clean Rooms Documentazione di riferimento a SQL

Dal tipo Al tipo

DOPPIA PRECISIONE () FLOAT8

INTEGER

REALE (FLOAT4)

SMALLINT o SHORT

VARCHAR

CHAR VARCHAR

CHAR

VARCHAR

TIMESTAMP

DATE

TIMESTAMPTZ

BIGINT o LONG

CHAR

DOPPIA PRECISIONE () FLOAT8

INTERO (INT)

REALE () FLOAT4

SMALLINT o SHORT

DECIMAL (NUMERIC)

VARCHAR

BIGINT o LONG

CHAR

DOPPIA PRECISIONE () FLOAT8

DECIMAL (NUMERIC)

Conversione e compatibilità dei tipi 54

AWS Clean Rooms Documentazione di riferimento a SQL

Dal tipo Al tipo

INTERO (INT)

REALE () FLOAT4

SMALLINT o SHORT

VARCHAR

BIGINT o LONG

BOOLEAN

CHAR

DECIMAL (NUMERIC)

DOPPIA PRECISIONE () FLOAT8

REALE (FLOAT4)

SMALLINT o SHORT

INTERO (INT)

VARCHAR

BIGINT o LONG

CHAR

DECIMAL (NUMERIC)

INTERO (INT)

SMALLINT o SHORT

REALE () FLOAT4

VARCHAR

BIGINT o LONGSMALLINT

BOOLEAN

Conversione e compatibilità dei tipi 55

AWS Clean Rooms Documentazione di riferimento a SQL

Dal tipo Al tipo

CHAR

DECIMAL (NUMERIC)

DOPPIA PRECISIONE () FLOAT8

INTERO (INT)

REALE () FLOAT4

VARCHAR

VARCHARTIME

TIMETZ

Note

Le conversioni implicite tra DATE, TIME, TIMESTAMP_LTZ, TIMESTAMP_NTZ o stringhe di
caratteri utilizzano il fuso orario della sessione corrente.
Il tipo di dati VARBYTE non può essere convertito implicitamente in nessun altro tipo di dati.
Per ulteriori informazioni, consulta Funzione CAST.

AWS Clean Rooms Comandi SQL Spark

I seguenti comandi SQL sono supportati in AWS Clean Rooms Spark SQL:

Argomenti

• TABELLA CACHE

• Suggerimenti

• SELECT

Comandi SQL 56

AWS Clean Rooms Documentazione di riferimento a SQL

TABELLA CACHE

Il comando CACHE TABLE memorizza nella cache i dati di una tabella esistente o crea e memorizza
nella cache una nuova tabella contenente i risultati delle query.

Note

I dati memorizzati nella cache persistono per l'intera query.

La sintassi, gli argomenti e alcuni esempi provengono da Apache Spark SQL Reference.

Sintassi

Il comando CACHE TABLE supporta tre modelli di sintassi:

Con AS (senza parentesi): crea e memorizza nella cache una nuova tabella in base ai risultati della
query.

CACHE TABLE cache_table_identifier AS query;

Con AS e parentesi: funziona in modo simile alla prima sintassi ma utilizza le parentesi per
raggruppare in modo esplicito la query.

CACHE TABLE cache_table_identifier AS (query);

Senza AS: memorizza nella cache una tabella esistente, utilizzando l'istruzione SELECT per filtrare le
righe da memorizzare nella cache.

CACHE TABLE cache_table_identifier query;

Dove:

• Tutte le istruzioni devono terminare con un punto e virgola (;)

• queryè in genere un'istruzione SELECT

• Le parentesi attorno alla query sono opzionali con AS

• La parola chiave AS è facoltativa

TABELLA CACHE 57

https://spark.apache.org/docs/latest/api/sql/

AWS Clean Rooms Documentazione di riferimento a SQL

Parametri

cache_table_identifier

Il nome della tabella memorizzata nella cache. Può includere un qualificatore del nome del
database opzionale.

AS

Una parola chiave utilizzata per creare e memorizzare nella cache una nuova tabella dai risultati
delle query.

query

Un'istruzione SELECT o un'altra query che definisce i dati da memorizzare nella cache.

Esempi

Negli esempi seguenti, la tabella memorizzata nella cache persiste per l'intera query.
Dopo la memorizzazione nella cache, le query successive a cui fanno riferimento
cache_table_identifier verranno lette a partire dalla versione memorizzata nella cache
anziché essere ricalcolate o lette. sourceTable Ciò può migliorare le prestazioni delle query per i
dati a cui si accede di frequente.

Crea e memorizza nella cache una tabella filtrata dai risultati delle query

Il primo esempio dimostra come creare e memorizzare nella cache una nuova tabella dai risultati
delle query. Questo comando utilizza la AS parola chiave senza parentesi attorno all'istruzione.
SELECT Crea una nuova tabella denominata 'cache_table_identifier' contenente solo le righe
da '' dove lo stato è sourceTable '. active' Esegue la query, memorizza i risultati nella nuova
tabella e memorizza nella cache il contenuto della nuova tabella. Il 'sourceTable' originale rimane
invariato e le query successive devono fare riferimento a 'cache_table_identifier' per utilizzare
i dati memorizzati nella cache.

CACHE TABLE cache_table_identifier AS
 SELECT * FROM sourceTable
 WHERE status = 'active';

Memorizza i risultati delle query con istruzioni SELECT tra parentesi

Il secondo esempio dimostra come memorizzare nella cache i risultati di una query come
nuova tabella con un nome specificato (cache_table_identifier), utilizzando parentesi

TABELLA CACHE 58

AWS Clean Rooms Documentazione di riferimento a SQL

attorno all'istruzione. SELECT Questo comando crea una nuova tabella denominata
'cache_table_identifier' contenente solo le righe da '' dove lo stato è sourceTable '.
active' Esegue la query, archivia i risultati nella nuova tabella e memorizza nella cache il contenuto
della nuova tabella. Il 'sourceTable' originale rimane invariato. Le query successive devono fare
riferimento a 'cache_table_identifier' per utilizzare i dati memorizzati nella cache.

CACHE TABLE cache_table_identifier AS (
 SELECT * FROM sourceTable
 WHERE status = 'active'
);

Memorizza nella cache una tabella esistente con condizioni di filtro

Il terzo esempio dimostra come inserire nella cache una tabella esistente utilizzando una sintassi
diversa. Questa sintassi, che omette la parola chiave 'AS' e le parentesi, in genere memorizza nella
cache le righe specificate da una tabella esistente denominata '' cache_table_identifier
anziché creare una nuova tabella. L'SELECTistruzione funge da filtro per determinare quali righe
memorizzare nella cache.

Note

Il comportamento esatto di questa sintassi varia tra i sistemi di database. Verifica sempre la
sintassi corretta per il tuo servizio specifico AWS .

CACHE TABLE cache_table_identifier
SELECT * FROM sourceTable
WHERE status = 'active';

Suggerimenti

I suggerimenti per le analisi SQL forniscono direttive di ottimizzazione che guidano le strategie di
esecuzione delle query AWS Clean Rooms, consentendoti di migliorare le prestazioni delle query e
ridurre i costi di elaborazione. I suggerimenti suggeriscono come il motore di analisi Spark dovrebbe
generare il suo piano di esecuzione.

Sintassi

SELECT /*+ hint_name(parameters), hint_name(parameters) */ column_list

Suggerimenti 59

AWS Clean Rooms Documentazione di riferimento a SQL

FROM table_name;

I suggerimenti sono incorporati nelle query SQL utilizzando una sintassi in stile commento e devono
essere inseriti direttamente dopo la parola chiave SELECT.

Tipi di suggerimenti supportati

AWS Clean Rooms supporta due categorie di suggerimenti: suggerimenti per il join e suggerimenti
per il partizionamento.

Argomenti

• Join (suggerimenti)

• Suggerimenti per il partizionamento

Join (suggerimenti)

I suggerimenti di unione suggeriscono strategie di unione per l'esecuzione delle query. La sintassi, gli
argomenti e alcuni esempi provengono da Apache Spark SQL Reference per ulteriori informazioni

TRASMISSIONE

Suggerisce di AWS Clean Rooms utilizzare broadcast join. La pagina di accesso con il suggerimento
verrà trasmessa indipendentemente da autoBroadcastJoin Threshold. Se entrambe le parti del join
hanno i suggerimenti per la trasmissione, verrà trasmessa quella con le dimensioni inferiori (in base
alle statistiche).

Alias: BROADCASTJOIN, MAPJOIN

Parametri: identificatori di tabella (opzionali)

Esempi:

-- Broadcast a specific table
SELECT /*+ BROADCAST(students) */ e.name, s.course
FROM employees e JOIN students s ON e.id = s.id;

-- Broadcast multiple tables
SELECT /*+ BROADCASTJOIN(s, d) */ *
FROM employees e
JOIN students s ON e.id = s.id

Suggerimenti 60

https://spark.apache.org/docs/latest/sql-ref-syntax-qry-select-hints.html#join-hints

AWS Clean Rooms Documentazione di riferimento a SQL

JOIN departments d ON e.dept_id = d.id;

MERGE

Suggerisce l' AWS Clean Rooms uso di shuffle sort merge join.

Alias: SHUFFLE_MERGE, MERGEJOIN

Parametri: identificatori di tabella (opzionali)

Esempi:

-- Use merge join for a specific table
SELECT /*+ MERGE(employees) */ *
FROM employees e JOIN students s ON e.id = s.id;

-- Use merge join for multiple tables
SELECT /*+ MERGEJOIN(e, s, d) */ *
FROM employees e
JOIN students s ON e.id = s.id
JOIN departments d ON e.dept_id = d.id;

SHUFFLE_HASH

Suggerisce di utilizzare shuffle hash AWS Clean Rooms join. Se entrambe le parti hanno gli hash
hint shuffle, l'ottimizzatore di query sceglie il lato più piccolo (in base alle statistiche) come lato di
compilazione.

Parametri: identificatori di tabella (opzionali)

Esempi:

-- Use shuffle hash join
SELECT /*+ SHUFFLE_HASH(students) */ *
FROM employees e JOIN students s ON e.id = s.id;

SHUFFLE_REPLICATE_NL

Suggerisce di utilizzare il nested loop join. AWS Clean Rooms shuffle-and-replicate

Parametri: identificatori di tabella (opzionali)

Esempi:

Suggerimenti 61

AWS Clean Rooms Documentazione di riferimento a SQL

-- Use shuffle-replicate nested loop join
SELECT /*+ SHUFFLE_REPLICATE_NL(students) */ *
FROM employees e JOIN students s ON e.id = s.id;

Suggerimenti per la risoluzione dei problemi in Spark SQL

La tabella seguente mostra scenari comuni in cui i suggerimenti non vengono applicati in SparkSQL.
Per ulteriori informazioni, consulta the section called “Considerazioni e limitazioni”.

Caso d'uso Esempio di query

Riferimento alla tabella non
trovato

SELECT /*+ BROADCAST(fake_table) */ *
FROM employees e
INNER JOIN students s ON e.eid = s.sid;

Tabella che non partecipa
all'operazione di unione

SELECT /*+ BROADCAST(s) */ *
FROM students s
WHERE s.age > 25;

Riferimento alla tabella nella
sottoquery annidata

SELECT /*+ BROADCAST(s) */ *
FROM employees e
INNER JOIN (SELECT * FROM students s WHERE s.age > 20)
 sub
ON e.eid = sub.sid;

Nome della colonna anziché
riferimento alla tabella

SELECT /*+ BROADCAST(e.eid) */ *
FROM employees e
INNER JOIN students s ON e.eid = s.sid;

Suggerimento senza parametri
obbligatori

SELECT /*+ BROADCAST */ *
FROM employees e
INNER JOIN students s ON e.eid = s.sid;

Nome della tabella di base
anziché alias della tabella

SELECT /*+ BROADCAST(employees) */ *
FROM employees e
INNER JOIN students s ON e.eid = s.sid;

Suggerimenti 62

AWS Clean Rooms Documentazione di riferimento a SQL

Suggerimenti per il partizionamento

I suggerimenti per il partizionamento controllano la distribuzione dei dati tra i nodi esecutori. Quando
vengono specificati più suggerimenti di partizionamento, più nodi vengono inseriti nel piano logico,
ma il suggerimento più a sinistra viene selezionato dall'ottimizzatore.

COALESCE

Riduce il numero di partizioni al numero di partizioni specificato.

Parametri: Valore numerico (obbligatorio), deve essere un numero intero positivo compreso tra 1 e
2147483647

Esempi:

-- Reduce to 5 partitions
SELECT /*+ COALESCE(5) */ employee_id, salary
FROM employees;

RIPARTIZIONAMENTO

Ripartiziona i dati nel numero specificato di partizioni utilizzando le espressioni di partizionamento
specificate. Utilizza la distribuzione round-robin.

Parametri:

• Valore numerico (opzionale): numero di partizioni; deve essere un numero intero positivo compreso
tra 1 e 2147483647

• Identificatori di colonna (facoltativi): colonne in base alle quali partizionare; queste colonne devono
esistere nello schema di input.

• Se vengono specificati entrambi, il valore numerico deve essere al primo posto

Esempi:

-- Repartition to 10 partitions
SELECT /*+ REPARTITION(10) */ *
FROM employees;

-- Repartition by column

Suggerimenti 63

AWS Clean Rooms Documentazione di riferimento a SQL

SELECT /*+ REPARTITION(department) */ *
FROM employees;

-- Repartition to 8 partitions by department
SELECT /*+ REPARTITION(8, department) */ *
FROM employees;

-- Repartition by multiple columns
SELECT /*+ REPARTITION(8, department, location) */ *
FROM employees;

RIPARTIZIONE_PER_INTERVALLO

Ripartiziona i dati nel numero specificato di partizioni utilizzando il partizionamento a intervalli sulle
colonne specificate.

Parametri:

• Valore numerico (opzionale): numero di partizioni; deve essere un numero intero positivo compreso
tra 1 e 2147483647

• Identificatori di colonna (facoltativi): colonne in base alle quali partizionare; queste colonne devono
esistere nello schema di input.

• Se vengono specificati entrambi, il valore numerico deve essere al primo posto

Esempi:

SELECT /*+ REPARTITION_BY_RANGE(10) */ *
FROM employees;

-- Repartition by range on age column
SELECT /*+ REPARTITION_BY_RANGE(age) */ *
FROM employees;

-- Repartition to 5 partitions by range on age
SELECT /*+ REPARTITION_BY_RANGE(5, age) */ *
FROM employees;

-- Repartition by range on multiple columns
SELECT /*+ REPARTITION_BY_RANGE(5, age, salary) */ *
FROM employees;

Suggerimenti 64

AWS Clean Rooms Documentazione di riferimento a SQL

RIEQUILIBRARE

Riequilibra le partizioni di output dei risultati della query in modo che ogni partizione sia di dimensioni
ragionevoli (né troppo piccola né troppo grande). Si tratta di un'operazione che richiede il massimo
sforzo: se ci sono degli scostamenti, AWS Clean Rooms dividerà le partizioni inclinate per renderle
non troppo grandi. Questo suggerimento è utile quando è necessario scrivere il risultato di una query
su una tabella per evitare file troppo piccoli o troppo grandi.

Parametri:

• Valore numerico (opzionale): numero di partizioni; deve essere un numero intero positivo compreso
tra 1 e 2147483647

• Identificatori di colonna (facoltativi): le colonne devono apparire nell'elenco di output SELECT

• Se vengono specificati entrambi, il valore numerico deve essere al primo posto

Esempi:

-- Rebalance to 10 partitions
SELECT /*+ REBALANCE(10) */ employee_id, name
FROM employees;

-- Rebalance by specific columns in output
SELECT /*+ REBALANCE(employee_id, name) */ employee_id, name
FROM employees;

-- Rebalance to 8 partitions by specific columns
SELECT /*+ REBALANCE(8, employee_id, name) */ employee_id, name, department
FROM employees;

Combinazione di più suggerimenti

È possibile specificare più suggerimenti in una singola query separandoli con virgole:

-- Combine join and partitioning hints
SELECT /*+ BROADCAST(d), REPARTITION(8) */ e.name, d.dept_name
FROM employees e JOIN departments d ON e.dept_id = d.id;

-- Multiple join hints
SELECT /*+ BROADCAST(s), MERGE(d) */ *
FROM employees e

Suggerimenti 65

AWS Clean Rooms Documentazione di riferimento a SQL

JOIN students s ON e.id = s.id
JOIN departments d ON e.dept_id = d.id;

-- Hints within separate hint blocks within the same query
SELECT /*+ REPARTITION(100) */ /*+ COALESCE(500) */ /*+ REPARTITION_BY_RANGE(3, c) */ *
 FROM t;

Considerazioni e limitazioni

• I suggerimenti sono suggerimenti di ottimizzazione, non comandi. L'ottimizzatore delle query può
ignorare i suggerimenti basati su vincoli di risorse o condizioni di esecuzione.

• I suggerimenti sono incorporati direttamente nelle stringhe di query SQL per entrambi e.
CreateAnalysisTemplate StartProtectedQuery APIs

• I suggerimenti devono essere inseriti direttamente dopo la parola chiave SELECT.

• I parametri denominati non sono supportati con i suggerimenti e genereranno un'eccezione.

• I nomi delle colonne nei suggerimenti REPARTITION e REPARTITION_BY_RANGE devono
esistere nello schema di input.

• I nomi delle colonne nei suggerimenti REBALANCE devono apparire nell'elenco di output SELECT.

• I parametri numerici devono essere numeri interi positivi compresi tra 1 e 2147483647. Le notazioni
scientifiche come 1e1 non sono supportate

• I suggerimenti non sono supportati nelle query SQL sulla privacy differenziale.

• I suggerimenti per le query SQL non sono supportati nei job. PySpark Per fornire direttive per i
piani di esecuzione in un PySpark job, utilizza l'API Data Frame. Per ulteriori informazioni, consulta
la documentazione sull' DataFrame API Apache Spark.

SELECT

Il comando SELECT restituisce righe da tabelle e funzioni definite dall'utente.

I seguenti comandi, clausole e operatori di set SELECT SQL sono supportati in AWS Clean Rooms
Spark SQL:

Argomenti

• SELECT list

• Clausola WITH

SELECT 66

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.hint.html

AWS Clean Rooms Documentazione di riferimento a SQL

• Clausola FROM

• Clausola JOIN

• Clausola WHERE

• clausola VALUES

• Clausola GROUP BY

• Clausola HAVING

• Operatori su set

• Clausola ORDER BY

• Esempi di sottoquery

• Sottoquery correlate

La sintassi, gli argomenti e alcuni esempi provengono da Apache Spark SQL Reference.

SELECT list

I SELECT list nomi delle colonne, delle funzioni e delle espressioni che vuoi che la query restituisca.
L'elenco rappresenta l'output della query.

Sintassi

SELECT
[DISTINCT] | expression [AS column_alias] [, ...]

Parameters

DISTINCT

Opzione che elimina le righe duplicate dal set di risultati, in base ai valori corrispondenti in una o
più colonne.

expression

Espressione formata da una o più colonne presenti nelle tabelle a cui fa riferimento la query.
Un'espressione può contenere funzioni SQL. Esempio:

coalesce(dimension, 'stringifnull') AS column_alias

SELECT 67

https://spark.apache.org/docs/latest/api/sql/

AWS Clean Rooms Documentazione di riferimento a SQL

AS column_alias

Nome temporaneo per la colonna che viene utilizzata nel set di risultati finale. La AS parola chiave è
facoltativa. Esempio:

coalesce(dimension, 'stringifnull') AS dimensioncomplete

Se non specifichi un alias per un'espressione che non è un semplice nome di colonna, il set di risultati
applica un nome predefinito a quella colonna.

Note

L'alias viene riconosciuto subito dopo essere stato definito nell'elenco di destinazione. Non è
possibile utilizzare un alias in altre espressioni definite successivamente nello stesso elenco
di destinazione.

Clausola WITH

Una clausola WITH è una clausola facoltativa che precede l'elenco SELECT in una query. La
clausola WITH definisce uno o più common_table_expression. Ogni espressione comune di tabella
(CTE) definisce una tabella temporanea, che è simile a una definizione di vista. È possibile fare
riferimento a queste tabelle temporanee nella clausola FROM. Vengono utilizzati solo durante
l'esecuzione della query a cui appartengono. Ogni CTE nella clausola WITH specifica un nome di
tabella, un elenco facoltativo di nomi di colonna e un'espressione di query che restituisce una tabella
(un'istruzione SELECT).

Le sottoquery della clausola WITH sono un modo efficace per definire le tabelle che possono essere
utilizzate durante l'esecuzione di una singola query. In ogni caso, è possibile ottenere gli stessi
risultati utilizzando le sottoquery nel corpo principale dell'istruzione SELECT, ma le sottoquery della
clausola WITH potrebbero essere più semplici da scrivere e leggere. Ove possibile, le sottoquery
della clausola WITH che sono referenziate più volte sono ottimizzate come sottoespressioni comuni;
vale a dire, potrebbe essere possibile valutare una sottoquery WITH una volta e riutilizzarne i risultati.
Tieni presente che le sottoespressioni comuni non sono limitate a quelle definite nella clausola WITH.

Sintassi

[WITH common_table_expression [, common_table_expression , ...]]

SELECT 68

AWS Clean Rooms Documentazione di riferimento a SQL

dove common_table_expression può essere non ricorsivo. Di seguito è riportata la forma non
ricorsiva:

CTE_table_name AS (query)

Parameters

common_table_expression

Definisce una tabella temporanea a cui è possibile fare riferimento nella Clausola FROM e viene
utilizzato solo durante l'esecuzione della query a cui appartiene.

CTE_table_name

Nome univoco per una tabella temporanea che definisce i risultati di una sottoquery della clausola
WITH. Non puoi utilizzare nomi duplicati in una singola clausola WITH. A ogni sottoquery deve
essere assegnato un nome di tabella a cui è possibile fare riferimento nella Clausola FROM.

query

Qualsiasi query SELECT AWS Clean Rooms che supporti. Per informazioni, consulta SELECT.

Note per l'utilizzo

È possibile utilizzare una clausola WITH nella seguente istruzione SQL:

• SELECT, WITH, UNION, UNION ALL, INTERSECT, INTERSECT ALL, EXCEPT o EXCEPT ALL

Se la clausola FROM di una query che contiene una clausola WITH non fa riferimento a nessuna
delle tabelle definite dalla clausola WITH, la clausola WITH viene ignorata e la query viene eseguita
normalmente.

A una tabella definita da una sottoquery della clausola WITH è possibile fare riferimento solo
nell'ambito della query SELECT avviata dalla clausola WITH. Ad esempio, puoi fare riferimento a
una tabella di questo tipo nella clausola FROM di una sottoquery nell'elenco SELECT, nella clausola
WHERE o nella clausola HAVING. Non puoi utilizzare una clausola WITH in una sottoquery e fare
riferimento alla tabella nella clausola FROM della query principale o un'altra sottoquery. Questo
modello di query genera un messaggio di errore nel formato relation table_name doesn't
exist per la tabella della clausola WITH.

Non puoi specificare un'altra clausola WITH all'interno di una sottoquery della clausola WITH.

SELECT 69

AWS Clean Rooms Documentazione di riferimento a SQL

Non puoi creare riferimenti alle tabelle definite dalle sottoquery della clausola WITH. Ad esempio, la
seguente query restituisce un errore a causa del riferimento in avanti alla tabella W2 nella definizione
della tabella W1:

with w1 as (select * from w2), w2 as (select * from w1)
select * from sales;
ERROR: relation "w2" does not exist

Esempi

L'esempio seguente mostra il caso più semplice possibile di una query che contiene una clausola
WITH. La query WITH denominata VENUECOPY seleziona tutte le righe dalla tabella VENUE. La
query principale a sua volta seleziona tutte le righe da VENUECOPY. La tabella VENUECOPY esiste
solo per la durata di questa query.

with venuecopy as (select * from venue)
select * from venuecopy order by 1 limit 10;

 venueid | venuename | venuecity | venuestate | venueseats
---------+----------------------------+-----------------+------------+------------
1 | Toyota Park | Bridgeview | IL | 0
2 | Columbus Crew Stadium | Columbus | OH | 0
3 | RFK Stadium | Washington | DC | 0
4 | CommunityAmerica Ballpark | Kansas City | KS | 0
5 | Gillette Stadium | Foxborough | MA | 68756
6 | New York Giants Stadium | East Rutherford | NJ | 80242
7 | BMO Field | Toronto | ON | 0
8 | The Home Depot Center | Carson | CA | 0
9 | Dick's Sporting Goods Park | Commerce City | CO | 0
v 10 | Pizza Hut Park | Frisco | TX | 0
(10 rows)

L'esempio seguente mostra una clausola WITH che produce due tabelle, denominate
VENUE_SALES e TOP_VENUES. La seconda tabella della query WITH seleziona dalla prima. A
sua volta, la clausola WHERE del blocco di query principale contiene una sottoquery che vincola la
tabella TOP_VENUES.

with venue_sales as
(select venuename, venuecity, sum(pricepaid) as venuename_sales
from sales, venue, event

SELECT 70

AWS Clean Rooms Documentazione di riferimento a SQL

where venue.venueid=event.venueid and event.eventid=sales.eventid
group by venuename, venuecity),

top_venues as
(select venuename
from venue_sales
where venuename_sales > 800000)

select venuename, venuecity, venuestate,
sum(qtysold) as venue_qty,
sum(pricepaid) as venue_sales
from sales, venue, event
where venue.venueid=event.venueid and event.eventid=sales.eventid
and venuename in(select venuename from top_venues)
group by venuename, venuecity, venuestate
order by venuename;

 venuename | venuecity | venuestate | venue_qty | venue_sales
------------------------+---------------+------------+-----------+-------------
August Wilson Theatre | New York City | NY | 3187 | 1032156.00
Biltmore Theatre | New York City | NY | 2629 | 828981.00
Charles Playhouse | Boston | MA | 2502 | 857031.00
Ethel Barrymore Theatre | New York City | NY | 2828 | 891172.00
Eugene O'Neill Theatre | New York City | NY | 2488 | 828950.00
Greek Theatre | Los Angeles | CA | 2445 | 838918.00
Helen Hayes Theatre | New York City | NY | 2948 | 978765.00
Hilton Theatre | New York City | NY | 2999 | 885686.00
Imperial Theatre | New York City | NY | 2702 | 877993.00
Lunt-Fontanne Theatre | New York City | NY | 3326 | 1115182.00
Majestic Theatre | New York City | NY | 2549 | 894275.00
Nederlander Theatre | New York City | NY | 2934 | 936312.00
Pasadena Playhouse | Pasadena | CA | 2739 | 820435.00
Winter Garden Theatre | New York City | NY | 2838 | 939257.00
(14 rows)

I seguenti due esempi illustrano le regole per l'ambito dei riferimenti di tabella basati sulle sottoquery
della clausola WITH. La prima query viene eseguita, ma la seconda non riesce con un errore
previsto. La prima query contiene la sottoquery clausola WITH all'interno dell'elenco SELECT della
query principale. Alla tabella definita dalla clausola WITH (HOLIDAYS) si fa riferimento nella clausola
FROM della sottoquery nell'elenco SELECT:

select caldate, sum(pricepaid) as daysales,

SELECT 71

AWS Clean Rooms Documentazione di riferimento a SQL

(with holidays as (select * from date where holiday ='t')
select sum(pricepaid)
from sales join holidays on sales.dateid=holidays.dateid
where caldate='2008-12-25') as dec25sales
from sales join date on sales.dateid=date.dateid
where caldate in('2008-12-25','2008-12-31')
group by caldate
order by caldate;

caldate | daysales | dec25sales
-----------+----------+------------
2008-12-25 | 70402.00 | 70402.00
2008-12-31 | 12678.00 | 70402.00
(2 rows)

La seconda query non riesce perché tenta di fare riferimento alla tabella HOLIDAYS nella query
principale e nella sottoquery elenco SELECT. I riferimenti della query principale sono fuori ambito.

select caldate, sum(pricepaid) as daysales,
(with holidays as (select * from date where holiday ='t')
select sum(pricepaid)
from sales join holidays on sales.dateid=holidays.dateid
where caldate='2008-12-25') as dec25sales
from sales join holidays on sales.dateid=holidays.dateid
where caldate in('2008-12-25','2008-12-31')
group by caldate
order by caldate;

ERROR: relation "holidays" does not exist

Clausola FROM

La clausola FROM in una query elenca i riferimenti di tabella (tabelle, viste e sottoquery) da cui
vengono selezionati i dati. Se sono elencati più riferimenti tabella, è necessario unire le tabelle,
utilizzando la sintassi appropriata nella clausola FROM o nella clausola WHERE. Se non vengono
specificati criteri di join, il sistema elabora la query come cross-join (prodotto cartesiano).

Argomenti

• Sintassi

• Parameters

• Note per l'utilizzo

SELECT 72

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

FROM table_reference [, ...]

dove table_reference è una delle opzioni seguenti:

with_subquery_table_name | table_name | (subquery) [[AS] alias]
table_reference [NATURAL] join_type table_reference [USING (join_column [, ...])]
table_reference [INNER] join_type table_reference ON expr

Parameters

with_subquery_table_name

Tabella definita da una sottoquery nella Clausola WITH.

table_name

Nome di una tabella o vista.

alias

Nome alternativo temporaneo per una tabella o vista. L'alias è obbligatorio per una tabella
derivata da una sottoquery. In altri riferimenti di tabella, gli alias sono facoltativi. La AS parola
chiave è sempre facoltativa. Gli alias di tabella forniscono una comoda scelta rapida per
identificare le tabelle in altre parti di una query, come nella clausola WHERE.

Esempio:

select * from sales s, listing l
where s.listid=l.listid

Se si definisce un alias di tabella, è necessario utilizzare l'alias per fare riferimento a quella tabella
nella query.

Ad esempio, se la query èSELECT "tbl"."col" FROM "tbl" AS "t", la query fallirebbe
perché ora il nome della tabella viene sostanzialmente sovrascritto. Una query valida in questo
caso sarebbe. SELECT "t"."col" FROM "tbl" AS "t"

column_alias

Un'espressione semplice che restituisce un valore.

SELECT 73

AWS Clean Rooms Documentazione di riferimento a SQL

subquery

Espressione della query che restituisce una tabella. La tabella esiste solo per la durata della query
e in genere le viene assegnato un nome o un alias; tuttavia l'alias non è obbligatorio. Puoi anche
definire i nomi delle colonne per le tabelle che derivano da sottoquery. L'assegnazione degli alias
alle colonne è importante quando vuoi unire i risultati delle sottoquery ad altre tabelle e quando
vuoi selezionare o vincolare tali colonne altrove nella query.

Una sottoquery può contenere una clausola ORDER BY, ma questa potrebbe non avere alcun
effetto se non viene specificata una clausola LIMIT o OFFSET.

NATURAL

Definisce un join che utilizza automaticamente tutte le coppie di colonne con lo stesso nome
nelle due tabelle come colonne di unione. La condizione di join esplicita non è obbligatoria. Ad
esempio, se le tabelle CATEGORY ed EVENT hanno entrambe le colonne denominate CATID, un
join naturale di tali tabelle è un join sulle rispettive colonne CATID.

Note

Se viene specificato un join NATURAL ma non esistono coppie di colonne con nome
identico nelle tabelle da unire, la query viene impostata automaticamente su un cross-join.

join_type

Specifica uno dei seguenti tipi di join:

• [INNER] JOIN

• LEFT [OUTER] JOIN

• RIGHT [OUTER] JOIN

• FULL [OUTER] JOIN

• CROSS JOIN

I cross-join sono join non qualificati; restituiscono il prodotto cartesiano delle due tabelle.

I join inner e outer sono join qualificati. Sono qualificati in modo implicito (in join naturali) con la
sintassi ON o USING nella clausola FROM o con una condizione della clausola WHERE.

Un inner join restituisce solo le righe corrispondenti, in base alla condizione di join o all'elenco
delle colonne di join. Un outer join restituisce tutte le righe che l'inner join equivalente

SELECT 74

AWS Clean Rooms Documentazione di riferimento a SQL

restituirebbe, più le righe non corrispondenti dalla tabella "left", dalla tabella "right" o da entrambe
le tabelle. La tabella di sinistra è la tabella elencata per prima e la tabella di destra è la seconda
tabella nell'elenco. Le righe non corrispondenti contengono valori NULL per riempire gli spazi vuoti
nelle colonne di output.

ON join_condition

Tipo di specifica del join in cui le colonne di unione vengono dichiarate come una condizione che
segue la parola chiave ON. Ad esempio:

sales join listing
on sales.listid=listing.listid and sales.eventid=listing.eventid

USING (join_column [, ...])

Tipo di specifica del join in cui le colonne di unione vengono elencate tra parentesi. Se vengono
specificate più colonne di unione, queste sono delimitate da virgole. La parola chiave USING deve
precedere l'elenco. Ad esempio:

sales join listing
using (listid,eventid)

Note per l'utilizzo

Le colonne di unione devono avere tipi di dati comparabili.

Un join NATURAL o USING conserva solo una di ciascuna coppia di colonne di unione nel set di
risultati intermedi.

Un join con la sintassi ON mantiene entrambe le colonne di unione nel set di risultati intermedi.

consultare anche Clausola WITH.

Clausola JOIN

Una clausola SQL JOIN viene utilizzata per combinare i dati di due o più tabelle in base a campi
comuni. I risultati potrebbero cambiare o meno a seconda del metodo di join specificato. Gli outer
join sinistro e destro mantengono i valori da una delle tabelle unite quando non viene trovata alcuna
corrispondenza nell'altra tabella.

SELECT 75

AWS Clean Rooms Documentazione di riferimento a SQL

La combinazione del tipo JOIN e della condizione di join determina quali righe vengono incluse
nel set di risultati finale. Le clausole SELECT e WHERE controllano quindi quali colonne vengono
restituite e come vengono filtrate le righe. Comprendere i diversi tipi di JOIN e come utilizzarli in modo
efficace è un'abilità fondamentale in SQL, perché consente di combinare i dati di più tabelle in modo
flessibile e potente.

Sintassi

SELECT column1, column2, ..., columnn
FROM table1
join_type table2
ON table1.column = table2.column;

Parameters

SELEZIONA colonna1, colonna2,..., colonnaN

Le colonne da includere nel set di risultati. È possibile selezionare le colonne da una o entrambe
le tabelle coinvolte nel JOIN.

DALLA tabella 1

La prima tabella (a sinistra) dell'operazione JOIN.

[JOIN | INNER JOIN | LEFT [OUTER] JOIN | RIGHT [OUTER] JOIN | [OUTER] JOIN COMPLETO]
table2:

Il tipo di JOIN da eseguire. JOIN o INNER JOIN restituisce solo le righe con valori corrispondenti
in entrambe le tabelle.

LEFT [OUTER] JOIN restituisce tutte le righe della tabella di sinistra, con le righe corrispondenti
della tabella di destra.

RIGHT [OUTER] JOIN restituisce tutte le righe della tabella di destra, con le righe corrispondenti
della tabella di sinistra.

FULL [OUTER] JOIN restituisce tutte le righe di entrambe le tabelle, indipendentemente dal fatto
che esista una corrispondenza o meno.

CROSS JOIN crea un prodotto cartesiano delle righe delle due tabelle.

SELECT 76

AWS Clean Rooms Documentazione di riferimento a SQL

ON table1.column = table2.column

La condizione di unione, che specifica come vengono abbinate le righe nelle due tabelle. La
condizione di unione può essere basata su una o più colonne.

Condizione WHERE:

Una clausola facoltativa che può essere utilizzata per filtrare ulteriormente il set di risultati, in base
a una condizione specificata.

Esempio

Di seguito è riportato un esempio di join tra due tabelle con la clausola USING. In questo caso, le
colonne listid e eventid vengono utilizzate come colonne di join. I risultati sono limitati a cinque righe.

select listid, listing.sellerid, eventid, listing.dateid, numtickets
from listing join sales
using (listid, eventid)
order by 1
limit 5;

listid | sellerid | eventid | dateid | numtickets
-------+----------+---------+--------+-----------
1 | 36861 | 7872 | 1850 | 10
4 | 8117 | 4337 | 1970 | 8
5 | 1616 | 8647 | 1963 | 4
5 | 1616 | 8647 | 1963 | 4
6 | 47402 | 8240 | 2053 | 18

Tipi di join

INNER

Questo è il tipo di join predefinito. Restituisce le righe con valori corrispondenti in entrambi i riferimenti
alla tabella.

L'INNER JOIN è il tipo di join più comune utilizzato in SQL. È un modo efficace per combinare i dati di
più tabelle in base a una colonna o un set di colonne comune.

Sintassi:

SELECT column1, column2, ..., columnn

SELECT 77

AWS Clean Rooms Documentazione di riferimento a SQL

FROM table1
INNER JOIN table2
ON table1.column = table2.column;

La seguente query restituirà tutte le righe in cui è presente un valore customer_id corrispondente
tra le tabelle clienti e ordini. Il set di risultati conterrà le colonne customer_id, name, order_id e
order_date.

SELECT customers.customer_id, customers.name, orders.order_id, orders.order_date
FROM customers
INNER JOIN orders
ON customers.customer_id = orders.customer_id;

La seguente query è un inner join (senza la parola chiave JOIN) tra la tabella LISTING e la tabella
SALES, in cui il LISTID della tabella LISTING è compreso tra 1 e 5. Questa query corrisponde ai
valori della colonna LISTID nella tabella LISTING (la tabella di sinistra) e SALES (la tabella di destra).
I risultati mostrano che LISTID 1, 4 e 5 corrispondono ai criteri.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing, sales
where listing.listid = sales.listid
and listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

Di seguito è riportato un esempio di inner join con la clausola ON. In questo caso, le righe NULL non
vengono restituite.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from sales join listing
on sales.listid=listing.listid and sales.eventid=listing.eventid
where listing.listid between 1 and 5
group by 1
order by 1;

SELECT 78

AWS Clean Rooms Documentazione di riferimento a SQL

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

La seguente query è un inner join di due sottoquery della clausola FROM. La query trova il numero di
biglietti venduti e invenduti per diverse categorie di eventi (concerti e spettacoli). Queste sottoquery
della clausola FROM sono sottoquery table e possono restituire più colonne e righe.

select catgroup1, sold, unsold
from
(select catgroup, sum(qtysold) as sold
from category c, event e, sales s
where c.catid = e.catid and e.eventid = s.eventid
group by catgroup) as a(catgroup1, sold)
join
(select catgroup, sum(numtickets)-sum(qtysold) as unsold
from category c, event e, sales s, listing l
where c.catid = e.catid and e.eventid = s.eventid
and s.listid = l.listid
group by catgroup) as b(catgroup2, unsold)

on a.catgroup1 = b.catgroup2
order by 1;

catgroup1 | sold | unsold
----------+--------+--------
Concerts | 195444 |1067199
Shows | 149905 | 817736

SINISTRA [ESTERNO]

Restituisce tutti i valori dal riferimento alla tabella sinistra e i valori corrispondenti dal riferimento alla
tabella destra oppure aggiunge NULL se non c'è corrispondenza. Viene anche chiamato left outer
join.

Restituisce tutte le righe della tabella sinistra (prima) e le righe corrispondenti della tabella destra
(seconda). Se non c'è alcuna corrispondenza nella tabella di destra, il set di risultati conterrà valori
NULL per le colonne della tabella di destra. La parola chiave OUTER può essere omessa e il join può
essere scritto semplicemente come LEFT JOIN. L'opposto di un LEFT OUTER JOIN è un RIGHT

SELECT 79

AWS Clean Rooms Documentazione di riferimento a SQL

OUTER JOIN, che restituisce tutte le righe della tabella di destra e le righe corrispondenti della
tabella di sinistra.

Sintassi:

SELECT column1, column2, ..., columnn
FROM table1
LEFT [OUTER] JOIN table2
ON table1.column = table2.column;

La seguente query restituirà tutte le righe della tabella clienti, insieme alle righe corrispondenti della
tabella ordini. Se un cliente non ha ordini, il set di risultati includerà comunque le informazioni del
cliente, con valori NULL per le colonne order_id e order_date.

SELECT customers.customer_id, customers.name, orders.order_id, orders.order_date
FROM customers
LEFT OUTER JOIN orders
ON customers.customer_id = orders.customer_id;

La seguente query è un outer join. Gli outer join sinistro e destro mantengono i valori da una delle
tabelle unite quando non viene trovata alcuna corrispondenza nell'altra tabella. Le tabelle sinistra e
destra sono la prima e la seconda tabella elencate nella sintassi. I valori NULL vengono utilizzati per
riempire gli "spazi vuoti" nel set di risultati. Questa query corrisponde ai valori della colonna LISTID
nella tabella LISTING (la tabella di sinistra) e SALES (la tabella di destra). I risultati mostrano che
LISTIDs 2 e 3 non hanno portato ad alcuna vendita.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing left outer join sales on sales.listid = listing.listid
where listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 2 | NULL | NULL
 3 | NULL | NULL
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

SELECT 80

AWS Clean Rooms Documentazione di riferimento a SQL

DESTRA [ESTERNO]

Restituisce tutti i valori dal riferimento alla tabella destra e i valori corrispondenti dal riferimento alla
tabella sinistra oppure aggiunge NULL se non c'è corrispondenza. Viene anche chiamato right outer
join.

Restituisce tutte le righe della tabella destra (seconda) e le righe corrispondenti della tabella sinistra
(prima). Se non c'è alcuna corrispondenza nella tabella a sinistra, il set di risultati conterrà valori
NULL per le colonne della tabella di sinistra. La parola chiave OUTER può essere omessa e il join
può essere scritto semplicemente come RIGHT JOIN. L'opposto di un RIGHT OUTER JOIN è un
LEFT OUTER JOIN, che restituisce tutte le righe della tabella di sinistra e le righe corrispondenti della
tabella di destra.

Sintassi:

SELECT column1, column2, ..., columnn
FROM table1
RIGHT [OUTER] JOIN table2
ON table1.column = table2.column;

La seguente query restituirà tutte le righe della tabella clienti, insieme alle righe corrispondenti della
tabella ordini. Se un cliente non ha ordini, il set di risultati includerà comunque le informazioni del
cliente, con valori NULL per le colonne order_id e order_date.

SELECT orders.order_id, orders.order_date, customers.customer_id, customers.name
FROM orders
RIGHT OUTER JOIN customers
ON orders.customer_id = customers.customer_id;

La seguente query è un outer join. Questa query corrisponde ai valori della colonna LISTID nella
tabella LISTING (la tabella di sinistra) e SALES (la tabella di destra). I risultati mostrano che LISTIDs
1, 4 e 5 corrispondono ai criteri.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing right outer join sales on sales.listid = listing.listid
where listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm

SELECT 81

AWS Clean Rooms Documentazione di riferimento a SQL

-------+--------+--------
 1 | 728.00 | 109.20
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

COMPLETO [ESTERNO]

Restituisce tutti i valori di entrambe le relazioni, aggiungendo valori NULL sul lato che non
corrisponde. Viene anche chiamato join esterno completo.

Restituisce tutte le righe delle tabelle sinistra e destra, indipendentemente dal fatto che esista una
corrispondenza o meno. Se non c'è alcuna corrispondenza, il set di risultati conterrà valori NULL per
le colonne della tabella che non hanno una riga corrispondente. La parola chiave OUTER può essere
omessa e il join può essere scritto semplicemente come FULL JOIN. Il FULL OUTER JOIN è usato
meno comunemente rispetto al LEFT OUTER JOIN o al RIGHT OUTER JOIN, ma può essere utile in
alcuni scenari in cui è necessario visualizzare tutti i dati di entrambe le tabelle, anche se non ci sono
corrispondenze.

Sintassi:

SELECT column1, column2, ..., columnn
FROM table1
FULL [OUTER] JOIN table2
ON table1.column = table2.column;

La seguente query restituirà tutte le righe delle tabelle clienti e ordini. Se un cliente non ha ordini, il
set di risultati includerà comunque le informazioni del cliente, con valori NULL per le colonne order_id
e order_date. Se a un ordine non è associato alcun cliente, il set di risultati includerà quell'ordine, con
valori NULL per le colonne customer_id e name.

SELECT customers.customer_id, customers.name, orders.order_id, orders.order_date
FROM customers
FULL OUTER JOIN orders
ON customers.customer_id = orders.customer_id;

La seguente query è un fullr join. I full join mantengono i valori da una delle tabelle unite quando non
viene trovata alcuna corrispondenza nell'altra tabella. Le tabelle sinistra e destra sono la prima e la
seconda tabella elencate nella sintassi. I valori NULL vengono utilizzati per riempire gli "spazi vuoti"
nel set di risultati. Questa query corrisponde ai valori della colonna LISTID nella tabella LISTING (la

SELECT 82

AWS Clean Rooms Documentazione di riferimento a SQL

tabella di sinistra) e SALES (la tabella di destra). I risultati mostrano che LISTIDs 2 e 3 non hanno
portato ad alcuna vendita.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing full join sales on sales.listid = listing.listid
where listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 2 | NULL | NULL
 3 | NULL | NULL
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

La seguente query è un full join. Questa query corrisponde ai valori della colonna LISTID nella tabella
LISTING (la tabella di sinistra) e SALES (la tabella di destra). Nei risultati vengono visualizzate solo le
righe che non generano vendite (LISTIDs 2 e 3).

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing full join sales on sales.listid = listing.listid
where listing.listid between 1 and 5
and (listing.listid IS NULL or sales.listid IS NULL)
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 2 | NULL | NULL
 3 | NULL | NULL

[SINISTRA] SEMI

Restituisce i valori dal lato sinistro del riferimento alla tabella che corrisponde a quello destro. Viene
anche chiamato left semi join.

Restituisce solo le righe della tabella sinistra (prima) che hanno una riga corrispondente nella tabella
destra (seconda). Non restituisce alcuna colonna della tabella di destra, ma solo le colonne della
tabella di sinistra. Il LEFT SEMI JOIN è utile quando si desidera trovare le righe di una tabella che

SELECT 83

AWS Clean Rooms Documentazione di riferimento a SQL

hanno una corrispondenza in un'altra tabella, senza dover restituire alcun dato dalla seconda tabella.
Il LEFT SEMI JOIN è un'alternativa più efficiente all'utilizzo di una sottoquery con una clausola IN o
EXISTS.

Sintassi:

SELECT column1, column2, ..., columnn
FROM table1
LEFT SEMI JOIN table2
ON table1.column = table2.column;

La seguente query restituirà solo le colonne customer_id e name della tabella customers, per i clienti
che hanno almeno un ordine nella tabella ordini. Il set di risultati non includerà alcuna colonna della
tabella degli ordini.

SELECT customers.customer_id, customers.name
FROM customers
LEFT SEMI JOIN orders
ON customers.customer_id = orders.customer_id;

CROSS JOIN

Restituisce il prodotto cartesiano di due relazioni. Ciò significa che il set di risultati conterrà tutte le
possibili combinazioni di righe delle due tabelle, senza applicare alcuna condizione o filtro.

Il CROSS JOIN è utile quando è necessario generare tutte le possibili combinazioni di dati da due
tabelle, ad esempio nel caso di creazione di un report che mostri tutte le possibili combinazioni di
informazioni sui clienti e sui prodotti. Il CROSS JOIN è diverso dagli altri tipi di join (INNER JOIN,
LEFT JOIN, ecc.) perché non ha una condizione di join nella clausola ON. La condizione di unione
non è richiesta per un CROSS JOIN.

Sintassi:

SELECT column1, column2, ..., columnn
FROM table1
CROSS JOIN table2;

La seguente query restituirà un set di risultati che contiene tutte le possibili combinazioni di
customer_id, customer_name, product_id e product_name dalle tabelle clienti e prodotti. Se la tabella

SELECT 84

AWS Clean Rooms Documentazione di riferimento a SQL

clienti ha 10 righe e la tabella prodotti ha 20 righe, il set di risultati di CROSS JOIN conterrà 10 x 20 =
200 righe.

SELECT customers.customer_id, customers.name, products.product_id,
 products.product_name
FROM customers
CROSS JOIN products;

La seguente query è un cross join o un join cartesiano della tabella LISTING e della tabella SALES
con un predicato per limitare i risultati. Questa query corrisponde ai valori delle colonne LISTID nella
tabella SALES e nella tabella LISTING per LISTIDs 1, 2, 3, 4 e 5 in entrambe le tabelle. I risultati
mostrano che 20 righe soddisfano i criteri.

select sales.listid as sales_listid, listing.listid as listing_listid
from sales cross join listing
where sales.listid between 1 and 5
and listing.listid between 1 and 5
order by 1,2;

sales_listid | listing_listid
-------------+---------------
1 | 1
1 | 2
1 | 3
1 | 4
1 | 5
4 | 1
4 | 2
4 | 3
4 | 4
4 | 5
5 | 1
5 | 1
5 | 2
5 | 2
5 | 3
5 | 3
5 | 4
5 | 4
5 | 5
5 | 5

SELECT 85

AWS Clean Rooms Documentazione di riferimento a SQL

ANTI JOIN

Restituisce i valori del riferimento alla tabella sinistra che non corrispondono al riferimento alla tabella
destra. Viene anche chiamato antijoin sinistro.

L'ANTI JOIN è un'operazione utile quando si desidera trovare le righe di una tabella che non hanno
una corrispondenza in un'altra tabella.

Sintassi:

SELECT column1, column2, ..., columnn
FROM table1
LEFT ANTI JOIN table2
ON table1.column = table2.column;

La seguente query restituirà tutti i clienti che non hanno effettuato ordini.

SELECT customers.customer_id, customers.name
FROM customers
LEFT ANTI JOIN orders
ON customers.customer_id = orders.customer_id
WHERE orders.order_id IS NULL;

NATURAL

Speciifica che le righe delle due relazioni verranno associate implicitamente in termini di uguaglianza
per tutte le colonne con nomi corrispondenti.

Abbina automaticamente le colonne con lo stesso nome e tipo di dati tra le due tabelle. Non richiede
di specificare esplicitamente la condizione di unione nella clausola ON. Combina tutte le colonne
corrispondenti tra le due tabelle nel set di risultati.

NATURAL JOIN è una comoda abbreviazione quando le tabelle che stai unendo hanno colonne con
gli stessi nomi e tipi di dati. Tuttavia, in genere si consiglia di utilizzare il più esplicito INNER JOIN...
Sintassi ON per rendere le condizioni di unione più esplicite e facili da capire.

Sintassi:

SELECT column1, column2, ..., columnn
FROM table1
NATURAL JOIN table2;

SELECT 86

AWS Clean Rooms Documentazione di riferimento a SQL

L'esempio seguente è un'unione naturale tra due tabelle employees edepartments, con le
seguenti colonne:

• employeestabella: employee_idfirst_name,last_name, department_id

• departmentstavolo:department_id, department_name

La seguente query restituirà un set di risultati che include il nome, il cognome e il nome del reparto
per tutte le righe corrispondenti tra le due tabelle, in base alla department_id colonna.

SELECT e.first_name, e.last_name, d.department_name
FROM employees e
NATURAL JOIN departments d;

Di seguito è riportato un esempio di join naturale tra due tabelle. In questo caso, le colonne listid,
sellerid, eventid e dateid hanno nomi e tipi di dati identici in entrambe le tabelle e quindi vengono
utilizzate come colonne di join. I risultati sono limitati a cinque righe.

select listid, sellerid, eventid, dateid, numtickets
from listing natural join sales
order by 1
limit 5;

listid | sellerid | eventid | dateid | numtickets
-------+-----------+---------+--------+-----------
113 | 29704 | 4699 | 2075 | 22
115 | 39115 | 3513 | 2062 | 14
116 | 43314 | 8675 | 1910 | 28
118 | 6079 | 1611 | 1862 | 9
163 | 24880 | 8253 | 1888 | 14

Clausola WHERE

La clausola WHERE contiene le condizioni che possono unire tabelle o applicare predicati alle
colonne nelle tabelle. Le tabelle possono inner join utilizzando la sintassi appropriata nella clausola
WHERE o nella clausola FROM. I criteri degli outer join devono essere specificati nella clausola
FROM.

Sintassi

[WHERE condition]

SELECT 87

AWS Clean Rooms Documentazione di riferimento a SQL

condizione

Qualsiasi condizione di ricerca con un risultato booleano, ad esempio una condizione di join o un
predicato su una colonna della tabella. I seguenti esempi sono condizioni di join valide:

sales.listid=listing.listid
sales.listid<>listing.listid

I seguenti esempi sono condizioni valide sulle colonne delle tabelle:

catgroup like 'S%'
venueseats between 20000 and 50000
eventname in('Jersey Boys','Spamalot')
year=2008
length(catdesc)>25
date_part(month, caldate)=6

Le condizioni possono essere semplici o complesse; per le condizioni complesse, puoi utilizzare le
parentesi per isolare le unità logiche. Nell'esempio seguente, la condizione di join è racchiusa tra
parentesi.

where (category.catid=event.catid) and category.catid in(6,7,8)

Note per l'utilizzo

Puoi utilizzare gli alias nella clausola WHERE per fare riferimento alle espressioni di elenco
selezionate.

Non puoi limitare i risultati delle funzioni di aggregazione nella clausola WHERE; utilizza la clausola
HAVING per questo scopo.

Le colonne che sono limitate nella clausola WHERE devono derivare dai riferimenti di tabella nella
clausola FROM.

Esempio

La seguente query utilizza una combinazione di diverse restrizioni della clausola WHERE, inclusa
una condizione di join per le tabelle SALES ed EVENT, un predicato sulla colonna EVENTNAME e
due predicati sulla colonna STARTTIME.

select eventname, starttime, pricepaid/qtysold as costperticket, qtysold

SELECT 88

AWS Clean Rooms Documentazione di riferimento a SQL

from sales, event
where sales.eventid = event.eventid
and eventname='Hannah Montana'
and date_part(quarter, starttime) in(1,2)
and date_part(year, starttime) = 2008
order by 3 desc, 4, 2, 1 limit 10;

eventname | starttime | costperticket | qtysold
----------------+---------------------+-------------------+---------
Hannah Montana | 2008-06-07 14:00:00 | 1706.00000000 | 2
Hannah Montana | 2008-05-01 19:00:00 | 1658.00000000 | 2
Hannah Montana | 2008-06-07 14:00:00 | 1479.00000000 | 1
Hannah Montana | 2008-06-07 14:00:00 | 1479.00000000 | 3
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 | 1
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 | 2
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 | 4
Hannah Montana | 2008-05-01 19:00:00 | 497.00000000 | 1
Hannah Montana | 2008-05-01 19:00:00 | 497.00000000 | 2
Hannah Montana | 2008-05-01 19:00:00 | 497.00000000 | 4
(10 rows)

clausola VALUES

La clausola VALUES viene utilizzata per fornire un set di valori di riga direttamente nella query, senza
la necessità di fare riferimento a una tabella.

La clausola VALUES può essere utilizzata nei seguenti scenari:

• È possibile utilizzare la clausola VALUES in un'istruzione INSERT INTO per specificare i valori per
le nuove righe da inserire in una tabella.

• È possibile utilizzare la clausola VALUES da sola per creare un set di risultati temporaneo o una
tabella in linea, senza la necessità di fare riferimento a una tabella.

• È possibile combinare la clausola VALUES con altre clausole SQL, ad esempio WHERE, ORDER
BY o LIMIT, per filtrare, ordinare o limitare le righe del set di risultati.

Questa clausola è particolarmente utile quando è necessario inserire, interrogare o manipolare un
piccolo set di dati direttamente nell'istruzione SQL, senza la necessità di creare o fare riferimento a
una tabella permanente. Consente di definire i nomi delle colonne e i valori corrispondenti per ogni
riga, offrendovi la flessibilità necessaria per creare set di risultati temporanei o inserire dati all'istante,
senza il sovraccarico dovuto alla gestione di una tabella separata.

SELECT 89

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

VALUES (expression [, ...]) [table_alias]

Parameters

espressione

Un'espressione che specifica una combinazione di uno o più valori, operatori e funzioni SQL che
restituisce un valore.

table_alias

Un alias che specifica un nome temporaneo con un elenco di nomi di colonna opzionale.

Esempio

L'esempio seguente crea una tabella in linea, un set di risultati temporaneo simile a una tabella
con due colonne e. col1 col2 La singola riga del set di risultati contiene i valori "one" e1,
rispettivamente. La SELECT * FROM parte della query recupera semplicemente tutte le colonne e le
righe da questo set di risultati temporaneo. I nomi delle colonne (col1andcol2) vengono generati
automaticamente dal sistema di database, poiché la clausola VALUES non specifica esplicitamente i
nomi delle colonne.

SELECT * FROM VALUES ("one", 1);
+----+----+
|col1|col2|
+----+----+
| one| 1|
+----+----+

Se desideri definire nomi di colonna personalizzati, puoi farlo utilizzando una clausola AS dopo la
clausola VALUES, in questo modo:

SELECT * FROM (VALUES ("one", 1)) AS my_table (name, id);
+------+----+
| name | id |
+------+----+
| one | 1 |
+------+----+

SELECT 90

AWS Clean Rooms Documentazione di riferimento a SQL

Ciò creerebbe un set di risultati temporaneo con i nomi delle colonne name eid, invece del valore
predefinito col1 e. col2

Clausola GROUP BY

La clausola GROUP BY identifica le colonne di raggruppamento per la query. Le colonne di
raggruppamento devono essere dichiarate quando la query calcola gli aggregati con le funzioni
standard, ad esempio SUM, AVG e COUNT. Se nell'espressione SELECT è presente una funzione
di aggregazione, qualsiasi colonna dell'espressione SELECT che non si trova in una funzione
aggregata deve essere inclusa nella clausola GROUP BY.

Per ulteriori informazioni, consulta AWS Clean Rooms Funzioni Spark SQL.

Sintassi

GROUP BY group_by_clause [, ...]

group_by_clause := {
 expr |
 ROLLUP (expr [, ...]) |
 }

Parametri

expr

L'elenco di colonne o espressioni deve corrispondere all'elenco di espressioni non aggregate
dell'elenco di selezione della query. A titolo illustrativo, prendi in considerazione la query semplice
riportata di seguito.

select listid, eventid, sum(pricepaid) as revenue,
count(qtysold) as numtix
from sales
group by listid, eventid
order by 3, 4, 2, 1
limit 5;

listid | eventid | revenue | numtix
-------+---------+---------+--------
89397 | 47 | 20.00 | 1
106590 | 76 | 20.00 | 1

SELECT 91

AWS Clean Rooms Documentazione di riferimento a SQL

124683 | 393 | 20.00 | 1
103037 | 403 | 20.00 | 1
147685 | 429 | 20.00 | 1
(5 rows)

In questa query, l'elenco di selezione è composto da due espressioni di aggregazione. La prima
utilizza la funzione SUM e la seconda utilizza la funzione COUNT. Le restanti due colonne, LISTID
ed EVENTID, devono essere dichiarate come colonne di raggruppamento.

Le espressioni nella clausola GROUP BY possono anche fare riferimento all'elenco di selezione
usando numeri ordinali. A titolo illustrativo, l'esempio precedente potrebbe essere abbreviato
come segue.

select listid, eventid, sum(pricepaid) as revenue,
count(qtysold) as numtix
from sales
group by 1,2
order by 3, 4, 2, 1
limit 5;

listid | eventid | revenue | numtix
-------+---------+---------+--------
89397 | 47 | 20.00 | 1
106590 | 76 | 20.00 | 1
124683 | 393 | 20.00 | 1
103037 | 403 | 20.00 | 1
147685 | 429 | 20.00 | 1
(5 rows)

ROLLUP

È possibile utilizzare l'estensione di aggregazione ROLLUP per eseguire il lavoro di più operazioni
GROUP BY in un'unica istruzione. Per ulteriori informazioni sulle estensioni di aggregazione e
sulle funzioni correlate, consulta Estensioni di aggregazione.

Estensioni di aggregazione

AWS Clean Roomssupporta le estensioni di aggregazione per eseguire il lavoro di più operazioni
GROUP BY in un'unica istruzione.

SELECT 92

AWS Clean Rooms Documentazione di riferimento a SQL

GROUPING SETS

Calcola uno o più set di raggruppamento in una singola istruzione. Un set di raggruppamento è
l'insieme di una singola clausola GROUP BY, un set di 0 o più colonne in base al quale è possibile
raggruppare il set di risultati di una query. GROUP BY GROUPING SETS equivale all'esecuzione di
una query UNION ALL su un set di risultati raggruppato in colonne diverse. Ad esempio, GROUP BY
GROUP SETS((a), (b)) è equivalente a GROUP BY a UNION ALL GROUP BY b.

L'esempio seguente restituisce il costo dei prodotti nella tabella degli ordini raggruppati in base alle
categorie dei prodotti e al tipo di prodotti venduti.

SELECT category, product, sum(cost) as total
FROM orders
GROUP BY GROUPING SETS(category, product);

 category | product | total
----------------------+----------------------+-------
 computers | | 2100
 cellphones | | 1610
 | laptop | 2050
 | smartphone | 1610
 | mouse | 50

(5 rows)

ROLLUP

Presuppone una gerarchia in cui le colonne precedenti sono considerate le colonne padri delle
colonne successive. ROLLUP raggruppa i dati in base alle colonne fornite, restituendo righe di
subtotali aggiuntive che rappresentano i totali in tutti i livelli di colonne di raggruppamento, oltre alle
righe raggruppate. Ad esempio, puoi utilizzare GROUP BY ROLLUP((a), (b)) per restituire un set di
risultati raggruppato prima per a, poi per b supponendo che b sia una sottosezione di a. ROLLUP
restituisce anche una riga con l'intero set di risultati senza colonne di raggruppamento.

GROUP BY ROLLUP((a), (b)) è equivalente a GROUP BY GROUPING SETS((a,b), (a), ()).

L'esempio seguente restituisce il costo dei prodotti nella tabella degli ordini raggruppati prima per
categoria e poi per prodotto, con product come sezione della categoria.

SELECT category, product, sum(cost) as total

SELECT 93

AWS Clean Rooms Documentazione di riferimento a SQL

FROM orders
GROUP BY ROLLUP(category, product) ORDER BY 1,2;

 category | product | total
----------------------+----------------------+-------
 cellphones | smartphone | 1610
 cellphones | | 1610
 computers | laptop | 2050
 computers | mouse | 50
 computers | | 2100
 | | 3710
(6 rows)

CUBE

Raggruppa i dati in base alle colonne fornite, restituendo righe di subtotali aggiuntive che
rappresentano i totali in tutti i livelli di colonne di raggruppamento, oltre alle righe raggruppate. CUBE
restituisce le stesse righe di ROLLUP, ma aggiunge ulteriori righe di subtotali per ogni combinazione
di colonne di raggruppamento non previste da ROLLUP. Ad esempio, è possibile utilizzare GROUP
BY CUBE((a), (b)) per restituire un set di risultati raggruppato prima per a, poi per b, supponendo
che b sia una sottosezione di a, quindi solo per b. CUBE restituisce anche una riga con l'intero set di
risultati senza colonne di raggruppamento.

GROUP BY CUBE((a), (b)) è equivalente a GROUP BY GROUPING SETS((a, b), (a), (b), ()).

L'esempio seguente restituisce il costo dei prodotti nella tabella degli ordini raggruppati prima per
categoria e poi per prodotto, con product come sezione della categoria. A differenza dell'esempio
precedente per ROLLUP, l'istruzione restituisce risultati per ogni combinazione di colonne di
raggruppamento.

SELECT category, product, sum(cost) as total
FROM orders
GROUP BY CUBE(category, product) ORDER BY 1,2;

 category | product | total
----------------------+----------------------+-------
 cellphones | smartphone | 1610
 cellphones | | 1610
 computers | laptop | 2050
 computers | mouse | 50
 computers | | 2100
 | laptop | 2050

SELECT 94

AWS Clean Rooms Documentazione di riferimento a SQL

 | mouse | 50
 | smartphone | 1610
 | | 3710
(9 rows)

Clausola HAVING

La clausola HAVING applica una condizione al set di risultati raggruppati intermedi restituiti da una
query.

Sintassi

[HAVING condition]

Ad esempio, puoi limitare i risultati di una funzione SUM:

having sum(pricepaid) >10000

La condizione HAVING viene applicata dopo che tutte le condizioni della clausola WHERE sono state
applicate e le operazioni GROUP BY sono state completate.

La condizione stessa assume lo stesso formato di qualsiasi condizione della clausola WHERE.

Note per l'utilizzo

• Qualsiasi colonna a cui viene fatto riferimento in una condizione della clausola HAVING deve
essere una colonna di raggruppamento o una colonna che fa riferimento al risultato di una funzione
di aggregazione.

• In una clausola HAVING, non è possibile specificare:

• Un numero ordinale che fa riferimento a una voce di elenco selezionata. Solo le clausole
GROUP BY e ORDER BY accettano numeri ordinali.

Esempi

La seguente query calcola le vendite totali dei biglietti per tutti gli eventi in base al nome, quindi
elimina gli eventi in cui le vendite totali erano inferiori a $800.000. La condizione HAVING viene
applicata ai risultati della funzione di aggregazione nell'elenco di selezione: sum(pricepaid).

select eventname, sum(pricepaid)
from sales join event on sales.eventid = event.eventid

SELECT 95

AWS Clean Rooms Documentazione di riferimento a SQL

group by 1
having sum(pricepaid) > 800000
order by 2 desc, 1;

eventname | sum
------------------+-----------
Mamma Mia! | 1135454.00
Spring Awakening | 972855.00
The Country Girl | 910563.00
Macbeth | 862580.00
Jersey Boys | 811877.00
Legally Blonde | 804583.00
(6 rows)

La seguente query calcola un set di risultati simile. In questo caso, tuttavia, la condizione HAVING
viene applicata a un'aggregazione che non è specificata nell'elenco di selezione: sum(qtysold). Gli
eventi che non hanno venduto più di 2.000 biglietti sono stati eliminati dal risultato finale.

select eventname, sum(pricepaid)
from sales join event on sales.eventid = event.eventid
group by 1
having sum(qtysold) >2000
order by 2 desc, 1;

eventname | sum
------------------+-----------
Mamma Mia! | 1135454.00
Spring Awakening | 972855.00
The Country Girl | 910563.00
Macbeth | 862580.00
Jersey Boys | 811877.00
Legally Blonde | 804583.00
Chicago | 790993.00
Spamalot | 714307.00
(8 rows)

Operatori su set

Gli operatori set vengono utilizzati per confrontare e unire i risultati di due espressioni di query
separate.

AWS Clean RoomsSpark SQL supporta i seguenti operatori di set elencati nella tabella seguente.

SELECT 96

AWS Clean Rooms Documentazione di riferimento a SQL

Imposta operatore

INTERSECT

INTERSECA TUTTO

EXCEPT

TRANNE TUTTI

UNION

UNION ALL

Ad esempio, se vuoi sapere quali utenti di un sito web sono sia acquirenti che venditori ma i loro nomi
utente sono memorizzati in colonne o tabelle separate, puoi trovare l'intersezione di questi due tipi di
utenti. Se vuoi sapere quali utenti del sito sono acquirenti ma non venditori, puoi utilizzare l'operatore
EXCEPT per trovare la difference tra i due elenchi di utenti. Se vuoi creare l'elenco di tutti gli utenti,
indipendentemente dal ruolo, puoi utilizzare l'operatore UNION.

Note

Le clausole ORDER BY, LIMIT, SELECT TOP e OFFSET non possono essere utilizzate
nelle espressioni di query unite dagli operatori di set UNION, UNION ALL, INTERSECT e
EXCEPT.

Argomenti

• Sintassi

• Parameters

• Ordine di valutazione degli operatori di definizione

• Note per l'utilizzo

• Query UNION di esempio

• Query UNION ALL di esempio

• Query INTERSECT di esempio

• Query EXCEPT di esempio

SELECT 97

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

subquery1
{ { UNION [ALL | DISTINCT] |
 INTERSECT [ALL | DISTINCT] |
 EXCEPT [ALL | DISTINCT] } subquery2 } [...] }

Parameters

subquery1, subquery2

Un'espressione di query che corrisponde, sotto forma di elenco di selezione, a una seconda
espressione di query che segue l'operatore UNION, UNION ALL, INTERSECT, INTERSECT ALL,
EXCEPT o EXCEPT ALL. Le due espressioni devono contenere lo stesso numero di colonne
di output con tipi di dati compatibili; in caso contrario, i due set di risultati non possono essere
confrontati e uniti. Le operazioni di set non consentono la conversione implicita tra diverse
categorie di tipi di dati. Per ulteriori informazioni, consulta Conversione e compatibilità dei tipi.

Puoi creare query contenenti un numero illimitato di espressioni di query e collegarle agli operatori
UNION, INTERSECT ed EXCEPT in qualsiasi combinazione. Ad esempio, la seguente struttura di
query è valida, assumendo che le tabelle T1, T2 e T3 contengano set di colonne compatibili:

select * from t1
union
select * from t2
except
select * from t3

UNIONE [TUTTI | DISTINTI]

Operazione di definizione che restituisce le righe da due espressioni di query, indipendentemente
dal fatto che le righe derivino da una o entrambe le espressioni.

INTERSECARE [TUTTI | DISTINTI]

Operazione di definizione che restituisce le righe che derivano da due espressioni di query. Le
righe che non vengono restituite da entrambe le espressioni vengono scartate.

TRANNE [TUTTI | DISTINTI]

Operazione di definizione che restituisce le righe che derivano da una delle due espressioni di
query. Per qualificarsi per il risultato, le righe devono esistere nella prima tabella dei risultati ma
non nella seconda.

SELECT 98

AWS Clean Rooms Documentazione di riferimento a SQL

EXCEPT ALL non rimuove i duplicati dalle righe dei risultati.

MINUS ed EXCEPT sono sinonimi esatti.

Ordine di valutazione degli operatori di definizione

Gli operatori di definizione UNION ed EXCEPT sono associativi a sinistra. Se non si specificano le
parentesi per influenzare l'ordine di precedenza, una combinazione di questi operatori di definizione
viene valutata da sinistra a destra. Ad esempio, nella seguente query, l'operazione UNION di T1 e T2
viene valutata per prima, quindi l'operazione EXCEPT viene eseguita sul risultato di UNION:

select * from t1
union
select * from t2
except
select * from t3

L'operatore INTERSECT ha la precedenza sugli operatori UNION ed EXCEPT quando una
combinazione di operatori viene utilizzata nella stessa query. Ad esempio, la seguente query valuta
l'intersezione di T2 e T3, quindi l'unione del risultato con T1:

select * from t1
union
select * from t2
intersect
select * from t3

Aggiungendo le parentesi, puoi applicare un diverso ordine di valutazione. Nel seguente caso, il
risultato dell'unione di T1 e T2 viene intersecato con T3 e la query produce probabilmente un risultato
diverso.

(select * from t1
union
select * from t2)
intersect
(select * from t3)

SELECT 99

AWS Clean Rooms Documentazione di riferimento a SQL

Note per l'utilizzo

• I nomi di colonna restituiti nel risultato di una query dell'operazione di definizione sono i nomi di
colonna (o alias) delle tabelle nella prima espressione di query. Poiché questi nomi di colonne
sono potenzialmente fuorvianti, in quanto i valori della colonna derivano da tabelle su entrambi i lati
dell'operatore di definizione, puoi fornire alias significativi per il set di risultati.

• Quando le query dell'operatore di definizione restituiscono risultati decimali, le colonne dei risultati
corrispondenti vengono elevate per restituire la stessa precisione e scala. Ad esempio, nella
seguente query, dove T1.REVENUE è una colonna DECIMAL (10,2) e T2.REVENUE è una
colonna DECIMAL (8,4), il risultato decimale viene elevato a DECIMAL (12,4):

select t1.revenue union select t2.revenue;

La scala è 4 perché è la scala massima delle due colonne. La precisione è 12 perché
T1.REVENUE richiede 8 cifre a sinistra del punto decimale (12 - 4 = 8). Questo tipo di elevazione
garantisce che tutti i valori di entrambi i lati dell'UNION si adattino al risultato. Per i valori a 64 bit, la
precisione massima del risultato è 19 e la scala del risultato massimo è 18. Per i valori a 128 bit, la
precisione massima del risultato è 38 e la scala del risultato massimo è 37.

Se il tipo di dati risultante supera i limiti AWS Clean Rooms di precisione e scala, la query
restituisce un errore.

• Per le operazioni di definizione, due righe vengono considerate identiche se, per ciascuna coppia
di colonne corrispondente, i due valori di dati sono uguali o entrambi NULL. Ad esempio, se le
tabelle T1 e T2 contengono entrambe una colonna e una riga e tale riga è NULL in entrambe le
tabelle, un'operazione INTERSECT su quelle tabelle restituisce tale riga.

Query UNION di esempio

Nella seguente query UNION, le righe nella tabella SALES vengono unite alle righe nella tabella
LISTING. Tre colonne compatibili sono selezionate da ciascuna tabella; in questo caso, le colonne
corrispondenti hanno gli stessi nomi e tipi di dati.

select listid, sellerid, eventid from listing
union select listid, sellerid, eventid from sales

listid | sellerid | eventid
--------+----------+---------

SELECT 100

AWS Clean Rooms Documentazione di riferimento a SQL

1 | 36861 | 7872
2 | 16002 | 4806
3 | 21461 | 4256
4 | 8117 | 4337
5 | 1616 | 8647

L'esempio seguente mostra come è possibile aggiungere un valore letterale all'output di una query
UNION in modo da poter vedere quale espressione di query ha prodotto ogni riga nel set di risultati.
La query identifica le righe dalla prima espressione di query come "B" (per gli acquirenti) e le righe
dalla seconda espressione di query come "S" (per i venditori).

La query identifica acquirenti e venditori per transazioni di biglietti che costano almeno $10.000.
L'unica differenza tra le due espressioni di query su entrambi i lati dell'operatore UNION è la colonna
di collegamento per la tabella SALES.

select listid, lastname, firstname, username,
pricepaid as price, 'S' as buyorsell
from sales, users
where sales.sellerid=users.userid
and pricepaid >=10000
union
select listid, lastname, firstname, username, pricepaid,
'B' as buyorsell
from sales, users
where sales.buyerid=users.userid
and pricepaid >=10000

listid | lastname | firstname | username | price | buyorsell
--------+----------+-----------+----------+-----------+-----------
209658 | Lamb | Colette | VOR15LYI | 10000.00 | B
209658 | West | Kato | ELU81XAA | 10000.00 | S
212395 | Greer | Harlan | GXO71KOC | 12624.00 | S
212395 | Perry | Cora | YWR73YNZ | 12624.00 | B
215156 | Banks | Patrick | ZNQ69CLT | 10000.00 | S
215156 | Hayden | Malachi | BBG56AKU | 10000.00 | B

L'esempio seguente utilizza un operatore UNION ALL perché le righe duplicate, se trovate, devono
essere conservate nel risultato. Per una serie specifica di eventi IDs, la query restituisce 0 o più righe
per ogni vendita associata a ciascun evento e 0 o 1 riga per ogni elenco di quell'evento. IDs Gli eventi
sono univoci per ogni riga delle tabelle LISTING ed EVENT, ma potrebbero esserci più vendite per la
stessa combinazione di evento e inserzione IDs nella tabella SALES.

SELECT 101

AWS Clean Rooms Documentazione di riferimento a SQL

La terza colonna nel set di risultati identifica l'origine della riga. Se proviene dalla tabella SALES, è
contrassegnata con "Yes" nella colonna SALESROW. SALESROW è un alias per SALES.LISTID. Se
la riga proviene dalla tabella LISTING, è contrassegnata con "No" nella colonna SALESROW.

In questo caso, il set di risultati è costituito da tre righe di vendita per l'elenco 500, evento 7787. In
altre parole, sono state eseguite tre diverse transazioni per l'elenco e la combinazione di eventi. Le
altre due inserzioni, 501 e 502, non hanno prodotto vendite, quindi l'unica riga generata dalla query
per questi elenchi IDs proviene dalla tabella LISTING (SALESROW = 'No').

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)
union all
select eventid, listid, 'No'
from listing
where listid in(500,501,502)

eventid | listid | salesrow
---------+--------+----------
7787 | 500 | No
7787 | 500 | Yes
7787 | 500 | Yes
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Se esegui la stessa query senza la parola chiave ALL, il risultato conserva solo una delle transazioni
di vendita.

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)
union
select eventid, listid, 'No'
from listing
where listid in(500,501,502)

eventid | listid | salesrow
---------+--------+----------
7787 | 500 | No
7787 | 500 | Yes
6473 | 501 | No

SELECT 102

AWS Clean Rooms Documentazione di riferimento a SQL

5108 | 502 | No

Query UNION ALL di esempio

L'esempio seguente utilizza un operatore UNION ALL perché le righe duplicate, se trovate, devono
essere conservate nel risultato. Per una serie specifica di eventi IDs, la query restituisce 0 o più righe
per ogni vendita associata a ciascun evento e 0 o 1 riga per ogni elenco di quell'evento. IDs Gli eventi
sono univoci per ogni riga delle tabelle LISTING ed EVENT, ma potrebbero esserci più vendite per la
stessa combinazione di evento e inserzione IDs nella tabella SALES.

La terza colonna nel set di risultati identifica l'origine della riga. Se proviene dalla tabella SALES, è
contrassegnata con "Yes" nella colonna SALESROW. SALESROW è un alias per SALES.LISTID. Se
la riga proviene dalla tabella LISTING, è contrassegnata con "No" nella colonna SALESROW.

In questo caso, il set di risultati è costituito da tre righe di vendita per l'elenco 500, evento 7787. In
altre parole, sono state eseguite tre diverse transazioni per l'elenco e la combinazione di eventi. Le
altre due inserzioni, 501 e 502, non hanno prodotto vendite, quindi l'unica riga generata dalla query
per questi elenchi IDs proviene dalla tabella LISTING (SALESROW = 'No').

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)
union all
select eventid, listid, 'No'
from listing
where listid in(500,501,502)

eventid | listid | salesrow
---------+--------+----------
7787 | 500 | No
7787 | 500 | Yes
7787 | 500 | Yes
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Se esegui la stessa query senza la parola chiave ALL, il risultato conserva solo una delle transazioni
di vendita.

select eventid, listid, 'Yes' as salesrow
from sales

SELECT 103

AWS Clean Rooms Documentazione di riferimento a SQL

where listid in(500,501,502)
union
select eventid, listid, 'No'
from listing
where listid in(500,501,502)
eventid | listid | salesrow
---------+--------+----------
7787 | 500 | No
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Query INTERSECT di esempio

Confronta il seguente esempio con il primo esempio di UNION. L'unica differenza tra i due esempi è
l'operatore di definizione che viene utilizzato, ma i risultati sono molto diversi. Solo una delle righe è
uguale:

235494 | 23875 | 8771

Questa è l'unica riga del risultato limitato di 5 righe trovata in entrambe le tabelle.

select listid, sellerid, eventid from listing
intersect
select listid, sellerid, eventid from sales

listid | sellerid | eventid
--------+----------+---------
235494 | 23875 | 8771
235482 | 1067 | 2667
235479 | 1589 | 7303
235476 | 15550 | 793
235475 | 22306 | 7848

La seguente query trova gli eventi (per i quali sono stati venduti i biglietti) che si sono verificati nelle
sedi di New York City e Los Angeles a marzo. La differenza tra le due espressioni di query è il vincolo
sulla colonna VENUECITY.

select distinct eventname from event, sales, venue
where event.eventid=sales.eventid and event.venueid=venue.venueid
and date_part(month,starttime)=3 and venuecity='Los Angeles'

SELECT 104

AWS Clean Rooms Documentazione di riferimento a SQL

intersect
select distinct eventname from event, sales, venue
where event.eventid=sales.eventid and event.venueid=venue.venueid
and date_part(month,starttime)=3 and venuecity='New York City';

eventname

A Streetcar Named Desire
Dirty Dancing
Electra
Running with Annalise
Hairspray
Mary Poppins
November
Oliver!
Return To Forever
Rhinoceros
South Pacific
The 39 Steps
The Bacchae
The Caucasian Chalk Circle
The Country Girl
Wicked
Woyzeck

Query EXCEPT di esempio

La tabella CATEGORY del database contiene le seguenti 11 righe:

 catid | catgroup | catname | catdesc
-------+----------+-----------+--
 1 | Sports | MLB | Major League Baseball
 2 | Sports | NHL | National Hockey League
 3 | Sports | NFL | National Football League
 4 | Sports | NBA | National Basketball Association
 5 | Sports | MLS | Major League Soccer
 6 | Shows | Musicals | Musical theatre
 7 | Shows | Plays | All non-musical theatre
 8 | Shows | Opera | All opera and light opera
 9 | Concerts | Pop | All rock and pop music concerts
 10 | Concerts | Jazz | All jazz singers and bands
 11 | Concerts | Classical | All symphony, concerto, and choir concerts
(11 rows)

SELECT 105

AWS Clean Rooms Documentazione di riferimento a SQL

Supponi che una tabella CATEGORY_STAGE (una tabella di gestione temporanea) contenga una
riga aggiuntiva:

 catid | catgroup | catname | catdesc
-------+----------+-----------+--
 1 | Sports | MLB | Major League Baseball
 2 | Sports | NHL | National Hockey League
 3 | Sports | NFL | National Football League
 4 | Sports | NBA | National Basketball Association
 5 | Sports | MLS | Major League Soccer
 6 | Shows | Musicals | Musical theatre
 7 | Shows | Plays | All non-musical theatre
 8 | Shows | Opera | All opera and light opera
 9 | Concerts | Pop | All rock and pop music concerts
 10 | Concerts | Jazz | All jazz singers and bands
 11 | Concerts | Classical | All symphony, concerto, and choir concerts
 12 | Concerts | Comedy | All stand up comedy performances
(12 rows)

Restituisce la differenza tra le due tabelle. In altre parole, restituisce le righe che si trovano nella
tabella CATEGORY_STAGE ma non nella tabella CATEGORY:

select * from category_stage
except
select * from category;

catid | catgroup | catname | catdesc
-------+----------+---------+----------------------------------
 12 | Concerts | Comedy | All stand up comedy performances
(1 row)

La seguente query equivalente utilizza il sinonimo MINUS.

select * from category_stage
minus
select * from category;

catid | catgroup | catname | catdesc
-------+----------+---------+----------------------------------
 12 | Concerts | Comedy | All stand up comedy performances
(1 row)

SELECT 106

AWS Clean Rooms Documentazione di riferimento a SQL

Se inverti l'ordine delle espressioni SELECT, la query non restituisce alcuna riga.

Clausola ORDER BY

La clausola ORDER BY ordina il set di risultati di una query.

Note

L'espressione ORDER BY più esterna deve contenere solo colonne presenti nell'elenco di
selezione.

Argomenti

• Sintassi

• Parameters

• Note per l'utilizzo

• Esempi di ORDER BY

Sintassi

[ORDER BY expression [ASC | DESC]]
[NULLS FIRST | NULLS LAST]
[LIMIT { count | ALL }]
[OFFSET start]

Parameters

espressione

Espressione che definisce il tipo di ordinamento del risultato della query. È costituita da una o più
colonne nell'elenco di selezione. I risultati vengono restituiti in base all'ordinamento binario UTF-8.
È anche possibile specificare:

• Numeri ordinali che rappresentano la posizione delle voci dell'elenco di selezione (o la
posizione delle colonne nella tabella se non esiste alcun elenco di selezione)

• Alias che definiscono le voci dell'elenco di selezione

SELECT 107

AWS Clean Rooms Documentazione di riferimento a SQL

Quando la clausola ORDER BY contiene più espressioni, il set di risultati viene ordinato in base
alla prima espressione, quindi la seconda espressione viene applicata alle righe che presentano
valori corrispondenti della prima espressione e così via.

ASC | DESC

Opzione che definisce l'ordinamento per l'espressione, come segue:

• ASC: crescente (ad esempio, dal più piccolo al più grande per i valori numerici e da 'A' a 'Z'
per le stringhe di caratteri). Se non viene specificata alcuna opzione, i dati vengono ordinati in
ordine crescente per impostazione predefinita.

• DESC: decrescente (ad esempio, dal più grande al più piccolo per i valori numerici e da 'Z' ad
'A' per le stringhe).

NULLS FIRST | NULLS LAST

Opzione che specifica se i valori NULL devono essere ordinati per primi, prima dei valori non null,
o per ultimi, dopo i valori non null. Per impostazione predefinita, i valori NULL vengono ordinati e
classificati per ultimi in ordine ASC e ordinati e classificati per primi in ordine DESC.

LIMIT number | ALL

Opzione che controlla il numero di righe ordinate restituite dalla query. Il numero LIMIT deve
essere un integer positivo; il valore massimo è 2147483647.

LIMIT 0 non restituisce righe. Puoi utilizzare questa sintassi a scopo di test: per verificare che una
query venga eseguita (senza visualizzare alcuna riga) o per restituire un elenco di colonne da una
tabella. Una clausola ORDER BY è ridondante se si utilizza LIMIT 0 per restituire un elenco di
colonne. L'impostazione predefinita è LIMIT ALL.

OFFSET start

Opzione che specifica di ignorare il numero di righe prima di start prima di iniziare a restituire
righe. Il numero OFFSET deve essere un integer intero positivo; il valore massimo è
2147483647. Se utilizzato con l'opzione LIMIT, le righe OFFSET vengono ignorate prima di
iniziare a contare le righe LIMIT restituite. Se non si utilizza l'opzione LIMIT, il numero di righe nel
set dei risultati viene ridotto del numero di righe che vengono ignorate. Le righe ignorate da una
clausola OFFSET devono ancora essere analizzate, quindi potrebbe essere inefficiente utilizzare
un valore OFFSET di grandi dimensioni.

SELECT 108

AWS Clean Rooms Documentazione di riferimento a SQL

Note per l'utilizzo

Nota il seguente comportamento previsto con le clausole ORDER BY:

• I valori NULL sono considerati "superiori" rispetto a tutti gli altri valori. Con l'ordine di ordinamento
crescente predefinito, i valori NULL vengono ordinati alla fine. Per modificare questo
comportamento, utilizza l'opzione NULLS FIRST.

• Quando una query non contiene una clausola ORDER BY, il sistema restituisce serie di risultati
senza ordine prevedibile delle righe. La stessa query eseguita due volte potrebbe restituire il set di
risultati in un ordine diverso.

• Le opzioni LIMIT e OFFSET possono essere utilizzate senza una clausola ORDER BY; tuttavia,
per restituire un insieme coerente di righe, utilizza queste opzioni insieme a ORDER BY.

• In qualsiasi sistema parallelo comeAWS Clean Rooms, quando ORDER BY non produce un
ordinamento univoco, l'ordine delle righe non è deterministico. Cioè, se l'espressione ORDER BY
produce valori duplicati, l'ordine di restituzione di tali righe potrebbe variare da un sistema all'altro o
da un'esecuzione all'altra. AWS Clean Rooms

• AWS Clean Roomsnon supporta stringhe letterali nelle clausole ORDER BY.

Esempi di ORDER BY

Restituisce tutte le 11 righe dalla tabella CATEGORY, ordinate in base alla seconda colonna
CATGROUP. Per i risultati con lo stesso valore CATGROUP, ordina i valori della colonna CATDESC
in base alla lunghezza della stringa di caratteri. Quindi ordina per colonne CATID e CATNAME.

select * from category order by 2, 1, 3;

catid | catgroup | catname | catdesc
-------+----------+-----------+--
10 | Concerts | Jazz | All jazz singers and bands
9 | Concerts | Pop | All rock and pop music concerts
11 | Concerts | Classical | All symphony, concerto, and choir conce
6 | Shows | Musicals | Musical theatre
7 | Shows | Plays | All non-musical theatre
8 | Shows | Opera | All opera and light opera
5 | Sports | MLS | Major League Soccer
1 | Sports | MLB | Major League Baseball
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association

SELECT 109

AWS Clean Rooms Documentazione di riferimento a SQL

(11 rows)

Restituisce le colonne selezionate dalla tabella SALES, ordinate in base ai valori QTYSOLD più alti.
Limita il risultato alle prime 10 righe:

select salesid, qtysold, pricepaid, commission, saletime from sales
order by qtysold, pricepaid, commission, salesid, saletime desc

salesid | qtysold | pricepaid | commission | saletime
---------+---------+-----------+------------+---------------------
15401 | 8 | 272.00 | 40.80 | 2008-03-18 06:54:56
61683 | 8 | 296.00 | 44.40 | 2008-11-26 04:00:23
90528 | 8 | 328.00 | 49.20 | 2008-06-11 02:38:09
74549 | 8 | 336.00 | 50.40 | 2008-01-19 12:01:21
130232 | 8 | 352.00 | 52.80 | 2008-05-02 05:52:31
55243 | 8 | 384.00 | 57.60 | 2008-07-12 02:19:53
16004 | 8 | 440.00 | 66.00 | 2008-11-04 07:22:31
489 | 8 | 496.00 | 74.40 | 2008-08-03 05:48:55
4197 | 8 | 512.00 | 76.80 | 2008-03-23 11:35:33
16929 | 8 | 568.00 | 85.20 | 2008-12-19 02:59:33

Restituisce un elenco di colonne e nessuna riga usando la sintassi LIMIT 0:

select * from venue limit 0;
venueid | venuename | venuecity | venuestate | venueseats
---------+-----------+-----------+------------+------------
(0 rows)

Esempi di sottoquery

Gli esempi seguenti mostrano diversi modi in cui le sottoquery si adattano alle query SELECT. Per un
altro esempio dell'uso delle sottoquery, consultare Esempio.

Sottoquery dell'elenco SELECT

L'esempio seguente contiene una sottoquery nell'elenco SELECT. Questa sottoquery è scalar:
restituisce solo una colonna e un valore, che viene ripetuto nel risultato per ogni riga restituita dalla
query esterna. La query confronta il valore Q1SALES che la sottoquery calcola con i valori di vendita
per due altri trimestri (2 e 3) nel 2008, come definito dalla query esterna.

select qtr, sum(pricepaid) as qtrsales,
(select sum(pricepaid)

SELECT 110

AWS Clean Rooms Documentazione di riferimento a SQL

from sales join date on sales.dateid=date.dateid
where qtr='1' and year=2008) as q1sales
from sales join date on sales.dateid=date.dateid
where qtr in('2','3') and year=2008
group by qtr
order by qtr;

qtr | qtrsales | q1sales
-------+-------------+-------------
2 | 30560050.00 | 24742065.00
3 | 31170237.00 | 24742065.00
(2 rows)

Sottoquery della clausola WHERE

L'esempio seguente contiene una sottoquery di tabella nella clausola WHERE. Questa sottoquery
produce più righe. In questo caso, le righe contengono solo una colonna, ma le sottoquery di tabella
possono contenere più colonne e righe, proprio come qualsiasi altra tabella.

La query trova i primi 10 venditori in termini di numero di biglietti venduti. L'elenco dei primi 10 è
limitato dalla sottoquery che rimuove gli utenti che vivono in città dove ci sono le sedi dei biglietti.
Questa query può essere scritta in diversi modi; ad esempio, la sottoquery potrebbe essere riscritta
come un join all'interno della query principale.

select firstname, lastname, city, max(qtysold) as maxsold
from users join sales on users.userid=sales.sellerid
where users.city not in(select venuecity from venue)
group by firstname, lastname, city
order by maxsold desc, city desc
limit 10;

firstname | lastname | city | maxsold
-----------+-----------+----------------+---------
Noah | Guerrero | Worcester | 8
Isadora | Moss | Winooski | 8
Kieran | Harrison | Westminster | 8
Heidi | Davis | Warwick | 8
Sara | Anthony | Waco | 8
Bree | Buck | Valdez | 8
Evangeline | Sampson | Trenton | 8
Kendall | Keith | Stillwater | 8
Bertha | Bishop | Stevens Point | 8
Patricia | Anderson | South Portland | 8

SELECT 111

AWS Clean Rooms Documentazione di riferimento a SQL

(10 rows)

Sottoquery della clausola WITH

Per informazioni, consulta Clausola WITH.

Sottoquery correlate

L'esempio seguente contiene una sottoquery correlata nella clausola WHERE; questo tipo di
sottoquery contiene una o più correlazioni tra le sue colonne e le colonne prodotte dalla query
esterna. In questo caso, la correlazione è where s.listid=l.listid. Per ogni riga prodotta dalla
query esterna, la sottoquery viene eseguita per qualificare o squalificare la riga.

select salesid, listid, sum(pricepaid) from sales s
where qtysold=
(select max(numtickets) from listing l
where s.listid=l.listid)
group by 1,2
order by 1,2
limit 5;

salesid | listid | sum
--------+--------+----------
 27 | 28 | 111.00
 81 | 103 | 181.00
 142 | 149 | 240.00
 146 | 152 | 231.00
 194 | 210 | 144.00
(5 rows)

Modelli di sottoquery correlate non supportate

Il pianificatore di query utilizza un metodo di riscrittura delle query denominato decorrelazione delle
sottoquery per ottimizzare diversi modelli di sottoquery correlate per l'esecuzione in un ambiente
MPP. Alcuni tipi di sottoquery correlate seguono schemi che non AWS Clean Rooms possono essere
decorrelate e che non supportano. Le query che contengono i seguenti riferimenti di correlazione
restituiscono errori:

• Riferimenti di correlazione che ignorano un blocco di query, noti anche come "riferimenti di
correlazione ignorati". Ad esempio, nella seguente query, il blocco contenente il riferimento di
correlazione e il blocco ignorato sono collegati da un predicato NOT EXISTS:

SELECT 112

AWS Clean Rooms Documentazione di riferimento a SQL

select event.eventname from event
where not exists
(select * from listing
where not exists
(select * from sales where event.eventid=sales.eventid));

Il blocco ignorato in questo caso è la sottoquery rispetto alla tabella LISTING. Il riferimento di
correlazione correla le tabelle EVENT e SALES.

• Riferimenti di correlazione di una sottoquery che fa parte di una clausola ON in una query esterna:

select * from category
left join event
on category.catid=event.catid and eventid =
(select max(eventid) from sales where sales.eventid=event.eventid);

La clausola ON contiene un riferimento di correlazione da SALES nella sottoquery a EVENT nella
query esterna.

• Riferimenti di correlazione sensibili a valori nulli a una tabella di sistema. AWS Clean Rooms
Esempio:

select attrelid
from my_locks sl, my_attribute
where sl.table_id=my_attribute.attrelid and 1 not in
(select 1 from my_opclass where sl.lock_owner = opcowner);

• Riferimenti di correlazione da una sottoquery contenente una funzione finestra.

select listid, qtysold
from sales s
where qtysold not in
(select sum(numtickets) over() from listing l where s.listid=l.listid);

• Riferimenti in una colonna GROUP BY ai risultati di una sottoquery correlata. Ad esempio:

select listing.listid,
(select count (sales.listid) from sales where sales.listid=listing.listid) as list
from listing
group by list, listing.listid;

SELECT 113

AWS Clean Rooms Documentazione di riferimento a SQL

• Riferimenti di correlazione da una sottoquery con una funzione di aggregazione e una clausola
GROUP BY, connessi alla query esterna da un predicato IN. Questa restrizione non si applica alle
funzioni di aggregazione MIN e MAX. Esempio:

select * from listing where listid in
(select sum(qtysold)
from sales
where numtickets>4
group by salesid);

AWS Clean Rooms Funzioni Spark SQL

AWS Clean Rooms Spark SQL supporta le seguenti funzioni SQL:

Argomenti

• Funzioni di aggregazione

• Funzioni di array

• Espressioni condizionali

• Funzioni costruttore

• Funzioni di formattazione del tipo di dati

• Funzioni di data e ora

• Funzioni di crittografia e decrittografia

• Funzioni hash

• Funzioni Hyperloglog

• Funzioni JSON

• Funzioni matematiche

• Funzioni scalari

• Funzioni stringa

• Funzioni relative alla privacy

• Funzioni finestra

Funzioni SQL 114

AWS Clean Rooms Documentazione di riferimento a SQL

Funzioni di aggregazione

Le funzioni aggregate in AWS Clean Rooms Spark SQL vengono utilizzate per eseguire calcoli o
operazioni su un gruppo di righe e restituire un singolo valore. Sono essenziali per le attività di analisi
e riepilogo dei dati.

AWS Clean Rooms Spark SQL supporta le seguenti funzioni di aggregazione:

Argomenti

• Funzione ANY_VALUE

• Funzione APPROX COUNT_DISTINCT

• Funzione APPROX PERCENTILE

• Funzione AVG

• Funzione BOOL_AND

• Funzione BOOL_OR

• Funzione CARDINALITY

• Funzione COLLECT_LIST

• Funzione COLLECT_SET

• COUNTe funzioni COUNT DISTINCT

• Funzione COUNT

• Funzione MAX

• Funzione MEDIAN

• Funzione MIN

• Funzione PERCENTILE

• Funzione SKEWNESS

• Funzioni STDDEV_SAMP e STDDEV_POP

• SUMe funzioni SUM DISTINCT

• Funzioni VAR_SAMP e VAR_POP

Funzione ANY_VALUE

La funzione ANY_VALUE restituisce qualsiasi valore dai valori dell'espressione di input in modo
non deterministico. Questa funzione può restituire NULL se l'espressione di input non determina la
restituzione di righe.

Funzioni di aggregazione 115

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

ANY_VALUE (expression[, isIgnoreNull])

Argomenti

expression

L'espressione o la colonna di destinazione su cui viene eseguita la funzione. L'espressione è uno
dei seguenti tipi di dati:

isIgnoreNull

Un valore booleano che determina se la funzione deve restituire solo valori non nulli.

Valori restituiti

Restituisce lo stesso tipo di dati come espressione.

Note per l'utilizzo

Se un'istruzione che specifica la funzione ANY_VALUE per una colonna include anche un riferimento
a una secondo colonna, la seconda colonna deve essere visualizzata in una clausola GROUP BY o
inclusa in una funzione di aggregazione.

Esempi

L'esempio seguente restituisce un'istanza di any dateid where the is. eventname Eagles

select any_value(dateid) as dateid, eventname from event where eventname ='Eagles'
 group by eventname;

Di seguito sono riportati i risultati.

dateid | eventname
-------+---------------
 1878 | Eagles

L'esempio seguente restituisce un'istanza di any dateid where the eventname is Eagles orCold
War Kids.

Funzioni di aggregazione 116

AWS Clean Rooms Documentazione di riferimento a SQL

select any_value(dateid) as dateid, eventname from event where eventname in('Eagles',
 'Cold War Kids') group by eventname;

Di seguito sono riportati i risultati.

dateid | eventname
-------+---------------
 1922 | Cold War Kids
 1878 | Eagles

Funzione APPROX COUNT_DISTINCT

APPROX COUNT_DISTINCT fornisce un modo efficiente per stimare il numero di valori univoci in
una colonna o in un set di dati.

Sintassi

approx_count_distinct(expr[, relativeSD])

Argomenti

expr

L'espressione o la colonna per cui si desidera stimare il numero di valori univoci.

Può essere una singola colonna, un'espressione complessa o una combinazione di colonne.

Relative D

Un parametro opzionale che specifica la deviazione standard relativa desiderata della stima.

È un valore compreso tra 0 e 1, che rappresenta l'errore relativo massimo accettabile della stima.
Un valore RelativeD inferiore darà come risultato una stima più accurata ma più lenta.

Se questo parametro non viene fornito, viene utilizzato un valore predefinito (in genere intorno a
0,05 o 5%).

Valori restituiti

Restituisce la cardinalità stimata in HyperLogLog ++. relativeSD definisce la deviazione standard
relativa massima consentita.

Funzioni di aggregazione 117

AWS Clean Rooms Documentazione di riferimento a SQL

Esempio

La seguente query stima il numero di valori univoci nella col1 colonna, con una deviazione standard
relativa dell'1% (0,01).

SELECT approx_count_distinct(col1, 0.01)

La seguente query stima che nella col1 colonna siano presenti 3 valori univoci (i valori 1, 2 e 3).

SELECT approx_count_distinct(col1) FROM VALUES (1), (1), (2), (2), (3) tab(col1)

Funzione APPROX PERCENTILE

APPROX PERCENTILE viene utilizzato per stimare il valore percentile di una determinata
espressione o colonna senza dover ordinare l'intero set di dati. Questa funzione è utile in scenari
in cui è necessario comprendere rapidamente la distribuzione di un set di dati di grandi dimensioni
o tenere traccia delle metriche basate sui percentili, senza il sovraccarico computazionale dovuto
all'esecuzione di un calcolo percentile esatto. Tuttavia, è importante comprendere i compromessi tra
velocità e precisione e scegliere la tolleranza di errore appropriata in base ai requisiti specifici del
caso d'uso.

Sintassi

APPROX_PERCENTILE(expr, percentile [, accuracy])

Argomenti

expr

L'espressione o la colonna per cui si desidera stimare il valore del percentile.

Può essere una singola colonna, un'espressione complessa o una combinazione di colonne.

percentile

Il valore percentile da stimare, espresso come valore compreso tra 0 e 1.

Ad esempio, 0,5 corrisponderebbe al 50° percentile (mediana).

precisione

Un parametro opzionale che specifica la precisione desiderata della stima del percentile. È un
valore compreso tra 0 e 1, che rappresenta l'errore relativo massimo accettabile della stima. Un

Funzioni di aggregazione 118

AWS Clean Rooms Documentazione di riferimento a SQL

accuracy valore inferiore darà come risultato una stima più precisa ma più lenta. Se questo
parametro non viene fornito, viene utilizzato un valore predefinito (in genere intorno allo 0,05 o al
5%).

Valori restituiti

Restituisce il percentile approssimativo della colonna numerica o dell'intervallo ANSI col, che è il
valore più piccolo tra i valori col ordinati (ordinati dal minimo al più grande) in modo che non più della
percentuale dei valori col sia inferiore o uguale a tale valore.

Il valore della percentuale deve essere compreso tra 0,0 e 1,0. Il parametro di precisione (predefinito:
10000) è un valore letterale numerico positivo che controlla la precisione dell'approssimazione a
scapito della memoria.

Un valore di precisione più elevato produce una migliore precisione, 1.0/accuracy è l'errore
relativo dell'approssimazione.

Quando la percentuale è una matrice, ogni valore della matrice percentuale deve essere compreso
tra 0,0 e 1,0. In questo caso, restituisce l'array percentile approssimativo della colonna col nella
matrice percentuale specificata.

Esempi

La seguente query stima il 95° percentile della response_time colonna, con un errore relativo
massimo dell'1% (0,01).

SELECT APPROX_PERCENTILE(response_time, 0.95, 0.01) AS p95_response_time
FROM my_table;

La seguente query stima i valori del 50°, 40° e 10° percentile della colonna della tabella. col tab

SELECT approx_percentile(col, array(0.5, 0.4, 0.1), 100) FROM VALUES (0), (1), (2),
 (10) AS tab(col)

La seguente query stima il 50° percentile (mediano) dei valori nella colonna col.

SELECT approx_percentile(col, 0.5, 100) FROM VALUES (0), (6), (7), (9), (10) AS
 tab(col)

Funzioni di aggregazione 119

AWS Clean Rooms Documentazione di riferimento a SQL

Funzione AVG

La AVG funzione restituisce la media (media aritmetica) dei valori delle espressioni di input. La AVG
funzione funziona con valori numerici e ignora i valori NULL.

Sintassi

AVG (column)

Argomenti

column

La colonna di destinazione su cui opera la funzione. La colonna è uno dei seguenti tipi di dati:

• SMALLINT

• INTEGER

• BIGINT

• DECIMAL

• DOUBLE

• FLOAT

Tipi di dati

I tipi di argomento supportati dalla AVG funzione sono SMALLINTINTEGER,BIGINT,DECIMAL,
eDOUBLE.

I tipi di ritorno supportati dalla AVG funzione sono:

• BIGINTper qualsiasi argomento di tipo intero

• DOUBLEper un argomento in virgola mobile

• Restituisce lo stesso tipo di dati dell'espressione per qualsiasi altro tipo di argomento

La precisione predefinita per il risultato di una AVG funzione con un DECIMAL argomento è 38. Il
ridimensionamento del risultato coincide con il ridimensionamento dell'argomento. Ad esempio, un
elemento AVG di una DEC(5,2) colonna restituisce un tipo di DEC(38,2) dati.

Funzioni di aggregazione 120

AWS Clean Rooms Documentazione di riferimento a SQL

Esempio

Trova la quantità media venduta per transazione dalla SALES tabella.

select avg(qtysold) from sales;

Funzione BOOL_AND

La funzione BOOL_AND opera su una singola colonna o espressione booleana o intera. Questa
funzione applica una logica simile alle funzioni BIT_AND e BIT_OR. Per questa funzione, il tipo
restituito è un valore booleano (true o false).

Se tutti i valori in un insieme sono veri, viene restituita la funzione BOOL_AND true (t). Se un valore
è falso, la funzione restituisce false (f).

Sintassi

BOOL_AND ([DISTINCT | ALL] expression)

Argomenti

expression

L'espressione o colonna di destinazione su cui viene eseguita la funzione. Questa espressione
deve avere un tipo di dati intero o BOOLEAN. Il tipo restituito della funzione è BOOLEAN.

DISTINCT | ALL

Con l'argomento DISTINCT, la funzione elimina tutti i valori duplicati per l'espressione specificata
prima di calcolare il risultato. Con l'argomento ALL, la funzione mantiene tutti i valori duplicati. ALL
è il valore predefinito.

Esempi

È possibile utilizzare le funzioni booleane rispetto alle espressioni booleane o alle espressioni intere.

Ad esempio, la seguente query restituisce i risultati dalla tabella USERS standard nel database
TICKIT, che ha diverse colonne booleane.

La funzione BOOL_AND restituisce false per tutte e cinque le righe. Non a tutti gli utenti in ciascuno
di questi stati piace lo sport.

Funzioni di aggregazione 121

AWS Clean Rooms Documentazione di riferimento a SQL

select state, bool_and(likesports) from users
group by state order by state limit 5;

state | bool_and
------+---------
AB | f
AK | f
AL | f
AZ | f
BC | f
(5 rows)

Funzione BOOL_OR

La funzione BOOL_OR opera su una singola colonna o espressione booleana o intera. Questa
funzione applica una logica simile alle funzioni BIT_AND e BIT_OR. Per questa funzione, il tipo
restituito è un valore booleano (true, false o NULL).

Se un valore in un insieme è true, la funzione BOOL_OR restituisce true (t). Se un valore in
un insieme è false, la funzione restituisce false (f). NULL può essere restituito se il valore è
sconosciuto.

Sintassi

BOOL_OR ([DISTINCT | ALL] expression)

Argomenti

expression

L'espressione o colonna di destinazione su cui viene eseguita la funzione. Questa espressione
deve avere un tipo di dati intero o BOOLEAN. Il tipo restituito della funzione è BOOLEAN.

DISTINCT | ALL

Con l'argomento DISTINCT, la funzione elimina tutti i valori duplicati per l'espressione specificata
prima di calcolare il risultato. Con l'argomento ALL, la funzione mantiene tutti i valori duplicati. ALL
è il valore predefinito.

Funzioni di aggregazione 122

AWS Clean Rooms Documentazione di riferimento a SQL

Esempi

È possibile utilizzare le funzioni booleane rispetto alle espressioni booleane o alle espressioni intere.
Ad esempio, la seguente query restituisce i risultati dalla tabella USERS standard nel database
TICKIT, che ha diverse colonne booleane.

La funzione BOOL_OR restituisce true per tutte e cinque le righe. Ad almeno un utente in ciascuno
di questi stati piace lo sport.

select state, bool_or(likesports) from users
group by state order by state limit 5;

state | bool_or
------+--------
AB | t
AK | t
AL | t
AZ | t
BC | t
(5 rows)

Il seguente esempio restituisce NULL.

SELECT BOOL_OR(NULL = '123')
 bool_or

NULL

Funzione CARDINALITY

La funzione CARDINALITY restituisce la dimensione di un'espressione ARRAY o MAP (expr).

Questa funzione è utile per trovare la dimensione o la lunghezza di un array.

Sintassi

cardinality(expr)

Funzioni di aggregazione 123

AWS Clean Rooms Documentazione di riferimento a SQL

Argomenti

expr

Un'espressione ARRAY o MAP.

Valori restituiti

Restituisce la dimensione di un array o di una mappa (INTEGER).

La funzione restituisce NULL un input nullo se sizeOfNull è impostata su false o enabled è
impostata su. true

Altrimenti, la funzione restituisce un -1 input nullo. Con le impostazioni predefinite, la funzione
restituisce un -1 input nullo.

Esempio

La seguente query calcola la cardinalità, o il numero di elementi, nell'array dato. L'array ('b', 'd',
'c', 'a') ha 4 elementi, quindi l'output di questa query sarebbe. 4

SELECT cardinality(array('b', 'd', 'c', 'a'));
 4

Funzione COLLECT_LIST

La funzione COLLECT_LIST raccoglie e restituisce un elenco di elementi non unici.

Questo tipo di funzione è utile quando si desidera raccogliere più valori da un insieme di righe in una
singola matrice o struttura di dati di elenco.

Note

La funzione non è deterministica perché l'ordine dei risultati raccolti dipende dall'ordine delle
righe, che può essere non deterministico dopo l'esecuzione di un'operazione di shuffle.

Sintassi

collect_list(expr)

Funzioni di aggregazione 124

AWS Clean Rooms Documentazione di riferimento a SQL

Argomenti

expr

Un'espressione di qualsiasi tipo.

Valori restituiti

Restituisce un ARRAY del tipo di argomento. L'ordine degli elementi nell'array non è deterministico.

I valori NULL sono esclusi.

Se viene specificato DISTINCT, la funzione raccoglie solo valori univoci ed è sinonimo di funzione
aggregata. collect_set

Esempio

La seguente query raccoglie tutti i valori dalla colonna col in un elenco. La VALUES clausola viene
utilizzata per creare una tabella in linea con tre righe, in cui ogni riga ha una singola colonna
con i valori 1, 2 e 1 rispettivamente. La collect_list() funzione viene quindi utilizzata per
aggregare tutti i valori della colonna col in un unico array. L'output di questa istruzione SQL sarebbe
l'array[1,2,1], che contiene tutti i valori della colonna col nell'ordine in cui sono apparsi nei dati di
input.

SELECT collect_list(col) FROM VALUES (1), (2), (1) AS tab(col);
 [1,2,1]

Funzione COLLECT_SET

La funzione COLLECT_SET raccoglie e restituisce un set di elementi unici.

Questa funzione è utile quando si desidera raccogliere tutti i valori distinti da un insieme di righe in
un'unica struttura di dati, senza includere duplicati.

Note

La funzione non è deterministica perché l'ordine dei risultati raccolti dipende dall'ordine delle
righe, che può essere non deterministico dopo l'esecuzione di un'operazione di shuffle.

Funzioni di aggregazione 125

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

collect_set(expr)

Argomenti

expr

Un'espressione di qualsiasi tipo tranne MAP.

Valori restituiti

Restituisce un ARRAY del tipo di argomento. L'ordine degli elementi nell'array non è deterministico.

I valori NULL sono esclusi.

Esempio

La seguente query raccoglie tutti i valori univoci dalla colonna col in un set. La VALUES clausola viene
utilizzata per creare una tabella in linea con tre righe, in cui ogni riga ha una singola colonna con i
valori 1, 2 e 1 rispettivamente. La collect_set() funzione viene quindi utilizzata per aggregare
tutti i valori univoci della colonna col in un unico set. L'output di questa istruzione SQL sarebbe il
set[1,2], che contiene i valori univoci della colonna col. Il valore duplicato di 1 viene incluso una
sola volta nel risultato.

SELECT collect_set(col) FROM VALUES (1), (2), (1) AS tab(col);
 [1,2]

COUNTe funzioni COUNT DISTINCT

La COUNT funzione conta le righe definite dall'espressione. La COUNT DISTINCT funzione calcola
il numero di valori distinti non NULL in una colonna o in un'espressione. Elimina tutti i valori duplicati
dall'espressione specificata prima di eseguire il conteggio.

Sintassi

COUNT (DISTINCT column)

Funzioni di aggregazione 126

AWS Clean Rooms Documentazione di riferimento a SQL

Argomenti

column

La colonna di destinazione su cui opera la funzione.

Tipi di dati

La COUNT funzione e la COUNT DISTINCT funzione supportano tutti i tipi di dati degli argomenti.

La COUNT DISTINCT funzione restituisceBIGINT.

Esempi

Conta tutti gli utenti dello stato della Florida.

select count (identifier) from users where state='FL';

Conta tutti i locali unici IDs visti dalla EVENT tabella.

select count (distinct venueid) as venues from event;

Funzione COUNT

La funzione COUNT conta le righe definite dall'espressione.

La funzione COUNT ha le seguenti variazioni.

• COUNT (*) conta tutte le righe nella tabella di destinazione indipendentemente dal fatto che
includano valori null o meno.

• COUNT (espressione) calcola il numero di righe con valori non NULL in una colonna o
espressione specifica.

• COUNT (DISTINCT espressione) calcola il numero di valori distinti non NULL in una colonna o
espressione.

Sintassi

COUNT(* | expression)

Funzioni di aggregazione 127

AWS Clean Rooms Documentazione di riferimento a SQL

COUNT ([DISTINCT | ALL] expression)

Argomenti

expression

L'espressione o colonna di destinazione su cui viene eseguita la funzione. La funzione COUNT
supporta tutti i tipi di dati degli argomenti.

DISTINCT | ALL

Con l'argomento DISTINCT, la funzione elimina tutti i valori duplicati dall'espressione specificata
prima di eseguire il conteggio. Con l'argomento ALL, la funzione mantiene tutti i valori duplicati
dall'espressione per il conteggio. ALL è il valore predefinito.

Tipo restituito

La funzione COUNT restituisce BIGINT.

Esempi

Calcolare tutti gli utenti provenienti dallo stato della Florida:

select count(*) from users where state='FL';

count

510

Calcolare tutti i nomi degli eventi dalla tabella EVENT:

select count(eventname) from event;

count

8798

Calcolare tutti i nomi degli eventi dalla tabella EVENT:

select count(all eventname) from event;

count

Funzioni di aggregazione 128

AWS Clean Rooms Documentazione di riferimento a SQL

8798

Conta tutti i luoghi unici presenti IDs nella tabella EVENT:

select count(distinct venueid) as venues from event;

venues

204

Contare il numero di volte in cui ciascun venditore ha elencato lotti di oltre quattro biglietti in vendita.
Raggruppare i risultati per ID venditore:

select count(*), sellerid from listing
where numtickets > 4
group by sellerid
order by 1 desc, 2;

count | sellerid
------+----------
12 | 6386
11 | 17304
11 | 20123
11 | 25428
...

Funzione MAX

La funzione MAX restituisce il valore massimo in un insieme di righe. È possibile utilizzare DISTINCT
oppure ALL ma non influenzano il risultato.

Sintassi

MAX ([DISTINCT | ALL] expression)

Argomenti

expression

L'espressione o colonna di destinazione su cui viene eseguita la funzione. L'espressione è
qualsiasi tipo di dato numerico.

Funzioni di aggregazione 129

AWS Clean Rooms Documentazione di riferimento a SQL

DISTINCT | ALL

Con l'argomento DISTINCT, la funzione elimina tutti i valori duplicati dall'espressione specificata
prima di calcolare il massimo. Con l'argomento ALL, la funzione mantiene tutti i valori duplicati
dall'espressione per calcolare il massimo. ALL è il valore predefinito.

Tipi di dati

Restituisce lo stesso tipo di dati come espressione.

Esempi

Trovare il prezzo più alto pagato da tutte le vendite:

select max(pricepaid) from sales;

max

12624.00
(1 row)

Trovare il prezzo più alto pagato per biglietto da tutte le vendite:

select max(pricepaid/qtysold) as max_ticket_price
from sales;

max_ticket_price

2500.00000000
(1 row)

Funzione MEDIAN

Sintassi

MEDIAN (median_expression)

Argomenti

median_expression

L'espressione o colonna di destinazione su cui viene eseguita la funzione.

Funzioni di aggregazione 130

AWS Clean Rooms Documentazione di riferimento a SQL

Funzione MIN

La funzione MIN restituisce il valore minimo in un insieme di righe. È possibile utilizzare DISTINCT
oppure ALL ma non influenzano il risultato.

Sintassi

MIN ([DISTINCT | ALL] expression)

Argomenti

expression

L'espressione o colonna di destinazione su cui viene eseguita la funzione. L'espressione è un tipo
di dati numerico qualsiasi.

DISTINCT | ALL

Con l'argomento DISTINCT, la funzione elimina tutti i valori duplicati dall'espressione specificata
prima di calcolare il minimo. Con l'argomento ALL, la funzione mantiene tutti i valori duplicati
dall'espressione per calcolare il minimo. ALL è il valore predefinito.

Tipi di dati

Restituisce lo stesso tipo di dati come espressione.

Esempi

Trovare il prezzo più basso pagato da tutte le vendite:

select min(pricepaid) from sales;

min

20.00
(1 row)

Trovare il prezzo più basso pagato per biglietto da tutte le vendite:

select min(pricepaid/qtysold)as min_ticket_price
from sales;

Funzioni di aggregazione 131

AWS Clean Rooms Documentazione di riferimento a SQL

min_ticket_price

20.00000000
(1 row)

Funzione PERCENTILE

La funzione PERCENTILE viene utilizzata per calcolare il valore percentile esatto ordinando prima i
valori nella col colonna e poi trovando il valore nel valore specificato. percentage

La funzione PERCENTILE è utile quando è necessario calcolare il valore percentile esatto e il costo
computazionale è accettabile per il caso d'uso. Fornisce risultati più accurati rispetto alla funzione
APPROX_PERCENTILE, ma può essere più lenta, specialmente per set di dati di grandi dimensioni.

Al contrario, la funzione APPROX_PERCENTILE è un'alternativa più efficiente in grado di fornire una
stima del valore del percentile con una tolleranza di errore specificata, il che la rende più adatta per
scenari in cui la velocità ha una priorità maggiore rispetto alla precisione assoluta.

Sintassi

percentile(col, percentage [, frequency])

Argomenti

col

L'espressione o la colonna per cui si desidera calcolare il valore del percentile.

percentuale

Il valore percentile da calcolare, espresso come valore compreso tra 0 e 1.

Ad esempio, 0,5 corrisponderebbe al 50° percentile (mediana).

frequenza

Un parametro opzionale che specifica la frequenza o il peso di ogni valore nella col colonna. Se
fornito, la funzione calcolerà il percentile in base alla frequenza di ciascun valore.

Valori restituiti

Restituisce il valore percentile esatto della colonna numerica o dell'intervallo ANSI col alla
percentuale specificata.

Funzioni di aggregazione 132

AWS Clean Rooms Documentazione di riferimento a SQL

Il valore della percentuale deve essere compreso tra 0,0 e 1,0.

Il valore della frequenza deve essere un integrale positivo

Esempio

La seguente query trova il valore maggiore o uguale al 30% dei valori nella col colonna. Poiché i
valori sono 0 e 10, il 30° percentile è 3,0, poiché è il valore maggiore o uguale al 30% dei dati.

SELECT percentile(col, 0.3) FROM VALUES (0), (10) AS tab(col);
 3.0

Funzione SKEWNESS

La funzione SKEWNESS restituisce il valore di asimmetria calcolato in base ai valori di un gruppo.

L'asimmetria è una misura statistica che descrive l'asimmetria o la mancanza di simmetria in un set di
dati. Fornisce informazioni sulla forma della distribuzione dei dati.

Questa funzione può essere utile per comprendere le proprietà statistiche di un set di dati e fornire
informazioni per ulteriori analisi o processi decisionali.

Sintassi

skewness(expr)

Argomenti

expr

Un'espressione che restituisce un valore numerico.

Valori restituiti

Restituisce DOUBLE.

Se viene specificato DISTINCT, la funzione opera solo su un set univoco di valori expr.

Esempi

La seguente query calcola l'asimmetria dei valori nella colonna. col In questo esempio, la VALUES
clausola viene utilizzata per creare una tabella in linea con quattro righe, in cui ogni riga ha una

Funzioni di aggregazione 133

AWS Clean Rooms Documentazione di riferimento a SQL

singola colonna col con i valori -10, -20, 100 e 1000. La skewness() funzione viene quindi
utilizzata per calcolare l'asimmetria dei valori nella colonna. col Il risultato, 1.1135657469022011,
rappresenta il grado e la direzione dell'asimmetria nei dati. Un valore di asimmetria positivo indica
che i dati sono inclinati verso destra, con la maggior parte dei valori concentrati sul lato sinistro della
distribuzione. Un valore di asimmetria negativo indica che i dati sono inclinati verso sinistra, con la
maggior parte dei valori concentrati sul lato destro della distribuzione.

SELECT skewness(col) FROM VALUES (-10), (-20), (100), (1000) AS tab(col);
 1.1135657469022011

La seguente query calcola l'asimmetria dei valori nella colonna col. Analogamente all'esempio
precedente, la VALUES clausola viene utilizzata per creare una tabella in linea con quattro righe,
in cui ogni riga ha una singola colonna col con i valori -1000, -100, 10 e 20. La skewness()
funzione viene quindi utilizzata per calcolare l'asimmetria dei valori nella colonna. col Il risultato,
-1.1135657469022011, rappresenta il grado e la direzione dell'asimmetria nei dati. In questo caso, il
valore di asimmetria negativo indica che i dati sono inclinati verso sinistra, con la maggior parte dei
valori concentrati sul lato destro della distribuzione.

SELECT skewness(col) FROM VALUES (-1000), (-100), (10), (20) AS tab(col);
 -1.1135657469022011

Funzioni STDDEV_SAMP e STDDEV_POP

Le funzioni STDDEV_SAMP e STDDEV_POP restituiscono la deviazione standard del campione
e della popolazione di un insieme di valori numerici (integer, numero decimale, numero in virgola
mobile). Il risultato della funzione STDDEV_SAMP è equivalente alla radice quadrata della varianza
campione dello stesso insieme di valori.

STDDEV_SAMP e STDDEV sono sinonimi della stessa funzione.

Sintassi

STDDEV_SAMP | STDDEV ([DISTINCT | ALL] expression) STDDEV_POP ([DISTINCT |
 ALL] expression)

L'espressione deve avere un tipo di dati numerico. Indipendentemente dal tipo di dati
dell'espressione, il tipo di restituzione di questa funzione è un numero a precisione doppia.

Funzioni di aggregazione 134

AWS Clean Rooms Documentazione di riferimento a SQL

Note

La deviazione standard viene calcolata utilizzando l'aritmetica del numero in virgola mobile,
che potrebbe causare una leggera imprecisione.

Note per l'utilizzo

Quando la deviazione standard del campione (STDDEV o STDDEV_SAMP) viene calcolata per
un'espressione che consiste in un singolo valore, il risultato della funzione è NULL non 0.

Esempi

La seguente query restituisce la media dei valori nella colonna VENUESEATS della tabella VENUE,
seguita dalla deviazione standard del campione e dalla deviazione standard della popolazione dello
stesso insieme di valori. VENUESEATS è una colonna INTEGER. Il ridimensionamento del risultato è
ridotto a 2 cifre.

select avg(venueseats),
cast(stddev_samp(venueseats) as dec(14,2)) stddevsamp,
cast(stddev_pop(venueseats) as dec(14,2)) stddevpop
from venue;

avg | stddevsamp | stddevpop
-------+------------+-----------
17503 | 27847.76 | 27773.20
(1 row)

La seguente query restituisce la deviazione standard del campione per la colonna COMMISSIONE
nella tabella SALES. COMMISSION è una colonna DECIMAL. Il ridimensionamento del risultato è
ridotto a 10 cifre.

select cast(stddev(commission) as dec(18,10))
from sales;

stddev

130.3912659086
(1 row)

Funzioni di aggregazione 135

AWS Clean Rooms Documentazione di riferimento a SQL

La seguente query assegna la deviazione standard del campione per la colonna COMMISSIONE
come un integer.

select cast(stddev(commission) as integer)
from sales;

stddev

130
(1 row)

La seguente query restituisce sia la deviazione standard del campione sia la radice quadrata della
varianza campionaria per la colonna COMMISSIONE. I risultati di questi calcoli sono gli stessi.

select
cast(stddev_samp(commission) as dec(18,10)) stddevsamp,
cast(sqrt(var_samp(commission)) as dec(18,10)) sqrtvarsamp
from sales;

stddevsamp | sqrtvarsamp
----------------+----------------
130.3912659086 | 130.3912659086
(1 row)

SUMe funzioni SUM DISTINCT

La SUM funzione restituisce la somma dei valori della colonna di input o dell'espressione. La SUM
funzione funziona con valori numerici e ignora i valori. NULL

La SUM DISTINCT funzione elimina tutti i valori duplicati dall'espressione specificata prima di
calcolare la somma.

Sintassi

SUM (DISTINCT column)

Argomenti

column

La colonna di destinazione su cui opera la funzione. La colonna contiene qualsiasi tipo di dato
numerico.

Funzioni di aggregazione 136

AWS Clean Rooms Documentazione di riferimento a SQL

Esempi

Trova la somma di tutte le commissioni pagate dalla SALES tabella.

select sum(commission) from sales

Trova la somma di tutte le commissioni distinte pagate dalla SALES tabella.

select sum (distinct (commission)) from sales

Funzioni VAR_SAMP e VAR_POP

Le funzioni VAR_SAMP e VAR_POP restituiscono la varianza del campione e della popolazione di
un insieme di valori numerici (integer, numero decimale, numero in virgola mobile). Il risultato della
funzione VAR_SAMP è equivalente alla deviazione standard del campione quadrato dello stesso
insieme di valori.

VAR_SAMP e VARIANCE sono sinonimi della stessa funzione.

Sintassi

VAR_SAMP | VARIANCE ([DISTINCT | ALL] expression)
VAR_POP ([DISTINCT | ALL] expression)

L'espressione deve avere un tipo di dati integer, numero decimale o numero in virgola mobile.
Indipendentemente dal tipo di dati dell'espressione, il tipo di restituzione di questa funzione è un
numero a precisione doppia.

Note

I risultati di queste funzioni potrebbero variare tra i cluster di data warehouse, a seconda della
configurazione del cluster in ciascun caso.

Note per l'utilizzo

Quando la varianza del campione (VARIANCE o VAR_SAMP) viene calcolata per un'espressione che
consiste in un singolo valore, il risultato della funzione è NULL non 0.

Funzioni di aggregazione 137

AWS Clean Rooms Documentazione di riferimento a SQL

Esempi

La seguente query restituisce l'esempio arrotondato e la varianza di popolazione della colonna
NUMTICKETS nella tabella LISTING.

select avg(numtickets),
round(var_samp(numtickets)) varsamp,
round(var_pop(numtickets)) varpop
from listing;

avg | varsamp | varpop
-----+---------+--------
10 | 54 | 54
(1 row)

La seguente query esegue gli stessi calcoli ma assegna i risultati ai valori decimali.

select avg(numtickets),
cast(var_samp(numtickets) as dec(10,4)) varsamp,
cast(var_pop(numtickets) as dec(10,4)) varpop
from listing;

avg | varsamp | varpop
-----+---------+---------
10 | 53.6291 | 53.6288
(1 row)

Funzioni di array

Questa sezione descrive le funzioni di array per SQL supportate in. AWS Clean Rooms

Argomenti

• Funzione ARRAY

• Funzione ARRAY_CONTAINS

• Funzione ARRAY_DISTINCT

• Funzione ARRAY_EXCEPT

• Funzione ARRAY_INTERSECT

• Funzione ARRAY_JOIN

Funzioni di array 138

AWS Clean Rooms Documentazione di riferimento a SQL

• Funzione ARRAY_REMOVE

• Funzione ARRAY_UNION

• Funzione EXPLODE

• Funzione FLATTEN

Funzione ARRAY

Crea un array con gli elementi dati.

Sintassi

ARRAY([expr1] [, expr2 [, ...]])

Argomento

expr1, expr2

Espressioni di qualsiasi tipo di dati ad eccezione dei tipi di data e ora. Non è necessario che gli
argomenti siano dello stesso tipo di dati.

Tipo restituito

La funzione array restituisce un ARRAY con gli elementi dell'espressione.

Esempio

L'esempio seguente mostra una matrice di valori numerici e una matrice di diversi tipi di dati.

--an array of numeric values
select array(1,50,null,100);
 array

 [1,50,null,100]
(1 row)

--an array of different data types
select array(1,'abc',true,3.14);
 array

 [1,"abc",true,3.14]

Funzioni di array 139

AWS Clean Rooms Documentazione di riferimento a SQL

(1 row)

Funzione ARRAY_CONTAINS

La funzione ARRAY_CONTAINS può essere utilizzata per eseguire controlli di appartenenza di
base sulle strutture di dati degli array. La funzione ARRAY_CONTAINS è utile quando è necessario
verificare se un valore specifico è presente all'interno di un array.

Sintassi

array_contains(array, value)

Argomenti

matrice

Un ARRAY da cercare.

value

Un'espressione con un tipo che condivide un tipo meno comune con gli elementi dell'array.

Tipo restituito

La funzione ARRAY_CONTAINS restituisce un valore BOOLEAN.

Se il valore è NULL, il risultato è NULL.

Se un elemento dell'array è NULL, il risultato è NULL se il valore non corrisponde a nessun altro
elemento.

Esempi

L'esempio seguente verifica se l'array [1, 2, 3] contiene il valore. 4 Poiché l'array[1, 2, 3] non
contiene il valore4, viene restituita la funzione array_contains. false

SELECT array_contains(array(1, 2, 3), 4)
false

L'esempio seguente verifica se l'array [1, 2, 3] contiene il valore. 2 Poiché l'array [1, 2, 3]
contiene il valore2, viene restituita la funzione array_contains. true

Funzioni di array 140

AWS Clean Rooms Documentazione di riferimento a SQL

SELECT array_contains(array(1, 2, 3), 2);
 true

Funzione ARRAY_DISTINCT

La funzione ARRAY_DISTINCT può essere utilizzata per rimuovere valori duplicati da un array. La
funzione ARRAY_DISTINCT è utile quando è necessario rimuovere i duplicati da un array e lavorare
solo con gli elementi unici. Ciò può essere utile in scenari in cui si desidera eseguire operazioni o
analisi su un set di dati senza l'interferenza di valori ripetuti.

Sintassi

array_distinct(array)

Argomenti

matrice

Un'espressione ARRAY.

Tipo restituito

La funzione ARRAY_DISTINCT restituisce un ARRAY che contiene solo gli elementi unici dell'array di
input.

Esempi

In questo esempio, l'array di input [1, 2, 3, null, 3] contiene un valore duplicato di. 3 La
array_distinct funzione rimuove questo valore duplicato 3 e restituisce un nuovo array con gli
elementi unici:. [1, 2, 3, null]

SELECT array_distinct(array(1, 2, 3, null, 3));
 [1,2,3,null]

In questo esempio, la matrice di input [1, 2, 2, 3, 3, 3] contiene valori duplicati di 2 e. 3 La
array_distinct funzione rimuove questi duplicati e restituisce un nuovo array con gli elementi
unici:. [1, 2, 3]

SELECT array_distinct(array(1, 2, 2, 3, 3, 3))

Funzioni di array 141

AWS Clean Rooms Documentazione di riferimento a SQL

 [1,2,3]

Funzione ARRAY_EXCEPT

La funzione ARRAY_EXCEPT accetta due array come argomenti e restituisce un nuovo array che
contiene solo gli elementi presenti nel primo array ma non nel secondo array.

ARRAY_EXCEPT è utile quando è necessario trovare gli elementi che sono unici per un array
rispetto a un altro. Questo può essere utile in scenari in cui è necessario eseguire operazioni simili a
set sugli array, come trovare la differenza tra due set di dati.

Sintassi

array_except(array1, array2)

Argomenti

matrice 1

Un ARRAY di qualsiasi tipo con elementi comparabili.

matrice 2

Un ARRAY di elementi che condividono un tipo meno comune con gli elementi di array1.

Tipo restituito

La funzione ARRAY_EXCEPT restituisce un ARRAY di tipo corrispondente a array1 senza duplicati.

Esempi

In questo esempio, il primo array [1, 2, 3] contiene gli elementi 1, 2 e 3. Il secondo array [2, 3,
4] contiene gli elementi 2, 3 e 4. La array_except funzione rimuove gli elementi 2 e 3 dal primo
array, poiché sono presenti anche nel secondo array. L'output risultante è l'array[1].

SELECT array_except(array(1, 2, 3), array(2, 3, 4))
 [1]

In questo esempio, il primo array [1, 2, 3] contiene gli elementi 1, 2 e 3. Il secondo array [1, 3,
5] contiene gli elementi 1, 3 e 5. La array_except funzione rimuove gli elementi 1 e 3 dal primo
array, poiché sono presenti anche nel secondo array. L'output risultante è l'array[2].

Funzioni di array 142

AWS Clean Rooms Documentazione di riferimento a SQL

SELECT array_except(array(1, 2, 3), array(1, 3, 5));
 [2]

Funzione ARRAY_INTERSECT

La funzione ARRAY_INTERSECT accetta due array come argomenti e restituisce un nuovo array
che contiene gli elementi presenti in entrambi gli array di input. Questa funzione è utile quando
è necessario trovare gli elementi comuni tra due array. Ciò può essere utile in scenari in cui è
necessario eseguire operazioni simili a set sugli array, ad esempio trovare l'intersezione tra due set di
dati.

Sintassi

array_intersect(array1, array2)

Argomenti

matrice 1

Un ARRAY di qualsiasi tipo con elementi comparabili.

matrice 2

Un ARRAY di elementi che condividono un tipo meno comune con gli elementi di array1.

Tipo restituito

La funzione ARRAY_INTERSECT restituisce un ARRAY di tipo corrispondente a array1 senza
duplicati ed elementi contenuti sia in array1 che in array2.

Esempi

In questo esempio, il primo array contiene gli elementi 1, 2 e 3. [1, 2, 3] Il secondo array [1, 3,
5] contiene gli elementi 1, 3 e 5. La funzione ARRAY_INTERSECT identifica gli elementi comuni tra i
due array, che sono 1 e 3. L'array [1, 3] di output risultante è.

SELECT array_intersect(array(1, 2, 3), array(1, 3, 5));
 [1,3]

Funzioni di array 143

AWS Clean Rooms Documentazione di riferimento a SQL

Funzione ARRAY_JOIN

La funzione ARRAY_JOIN accetta due argomenti: il primo argomento è l'array di input che verrà
unito. Il secondo argomento è la stringa separatrice che verrà utilizzata per concatenare gli elementi
dell'array. Questa funzione è utile quando è necessario convertire una matrice di stringhe (o qualsiasi
altro tipo di dati) in un'unica stringa concatenata. Ciò può essere utile negli scenari in cui si desidera
presentare una matrice di valori come una singola stringa formattata, ad esempio per scopi di
visualizzazione o per l'utilizzo in ulteriori elaborazioni.

Sintassi

array_join(array, delimiter[, nullReplacement])

Argomenti

matrice

Qualsiasi tipo di ARRAY, ma i relativi elementi vengono interpretati come stringhe.

delimiter

Una STRINGA utilizzata per separare gli elementi dell'array concatenati.

Sostituzione nulla

Una STRINGA usata per esprimere un valore NULL nel risultato.

Tipo restituito

La funzione ARRAY_JOIN restituisce una STRING in cui gli elementi dell'array sono separati da un
delimitatore e vengono sostituiti gli elementi nulli. nullReplacement Se nullReplacement viene
omesso, gli elementi vengono filtrati. null Se un argomento èNULL, il risultato è. NULL

Esempi

In questo esempio, la funzione ARRAY_JOIN prende l'array ['hello', 'world'] e unisce gli
elementi utilizzando il separatore ' ' (un carattere di spazio). L'output risultante è la stringa. 'hello
world'

SELECT array_join(array('hello', 'world'), ' ');
 hello world

Funzioni di array 144

AWS Clean Rooms Documentazione di riferimento a SQL

In questo esempio, la funzione ARRAY_JOIN prende l'array ['hello', null, 'world']
e unisce gli elementi utilizzando il separatore ' ' (un carattere di spazio). Il null valore viene
sostituito con la stringa ',' sostitutiva fornita (una virgola). L'output risultante è la stringa'hello ,
world'.

SELECT array_join(array('hello', null ,'world'), ' ', ',');
 hello , world

Funzione ARRAY_REMOVE

La funzione ARRAY_REMOVE accetta due argomenti: il primo argomento è l'array di input da cui
verranno rimossi gli elementi. Il secondo argomento è il valore che verrà rimosso dall'array. Questa
funzione è utile quando è necessario rimuovere elementi specifici da un array. Ciò può essere utile in
scenari in cui è necessario eseguire la pulizia o la preelaborazione dei dati su una matrice di valori.

Sintassi

array_remove(array, element)

Argomenti

matrice

Un ARRAY.

elemento

Un'espressione di un tipo che condivide un tipo meno comune con gli elementi dell'array.

Tipo restituito

La funzione ARRAY_REMOVE restituisce il tipo di risultato corrispondente al tipo dell'array. Se
l'elemento da rimuovere èNULL, il risultato è. NULL

Esempi

In questo esempio, la funzione ARRAY_REMOVE prende l'array [1, 2, 3, null, 3] e rimuove
tutte le occorrenze del valore 3. L'output risultante è l'array. [1, 2, null]

SELECT array_remove(array(1, 2, 3, null, 3), 3);

Funzioni di array 145

AWS Clean Rooms Documentazione di riferimento a SQL

 [1,2,null]

Funzione ARRAY_UNION

La funzione ARRAY_UNION accetta due array come argomenti e restituisce un nuovo array che
contiene gli elementi unici di entrambi gli array di input. Questa funzione è utile quando è necessario
combinare due array ed eliminare eventuali elementi duplicati. Ciò può essere utile in scenari in cui è
necessario eseguire operazioni simili a set sugli array, ad esempio trovare l'unione tra due set di dati.

Sintassi

array_union(array1, array2)

Argomenti

matrice 1

Un ARRAY.

matrice 2

Un ARRAY dello stesso tipo di array1.

Tipo restituito

La funzione ARRAY_UNION restituisce un ARRAY dello stesso tipo di array.

Esempio

In questo esempio, il primo array [1, 2, 3] contiene gli elementi 1, 2 e 3. Il secondo array [1, 3,
5] contiene gli elementi 1, 3 e 5. La funzione ARRAY_UNION combina gli elementi unici di entrambi
gli array, dando origine all'array di output. [1, 2, 3, 5] T

SELECT array_union(array(1, 2, 3), array(1, 3, 5));
 [1,2,3,5]

Funzione EXPLODE

La funzione EXPLODE viene utilizzata per trasformare una singola riga con una matrice o una
colonna di mappa in più righe, in cui ogni riga corrisponde a un singolo elemento dell'array o della
mappa.

Funzioni di array 146

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

explode(expr)

Argomenti

expr

Un'espressione di matrice o un'espressione cartografica.

Tipo restituito

La funzione EXPLODE restituisce un set di righe, in cui ogni riga rappresenta un singolo elemento
della matrice o della mappa di input.

Il tipo di dati delle righe di output dipende dal tipo di dati degli elementi nella matrice o nella mappa di
input.

Esempi

L'esempio seguente prende l'array a riga singola [10, 20] e lo trasforma in due righe separate,
ciascuna contenente uno degli elementi dell'array (10 e 20).

SELECT explode(array(10, 20));

Nel primo esempio, l'array di input è stato passato direttamente come argomento a. explode()
In questo esempio, l'array di input viene specificato utilizzando la => sintassi, in cui viene fornito
esplicitamente il nome della colonna (collection).

SELECT explode(array(10, 20));

Entrambi gli approcci sono validi e consentono di ottenere lo stesso risultato, ma la seconda sintassi
può essere più utile quando è necessario esplodere una colonna da un set di dati più grande, anziché
un semplice array letterale.

Funzione FLATTEN

La funzione FLATTEN viene utilizzata per «appiattire» una struttura a matrice annidata in una singola
matrice piatta.

Funzioni di array 147

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

flatten(arrayOfArrays)

Argomenti

arrayOfArrays

Una serie di array.

Tipo restituito

La funzione FLATTEN restituisce un array.

Esempio

In questo esempio, l'input è un array annidato con due array interni e l'output è un singolo array flat
contenente tutti gli elementi degli array interni. La funzione FLATTEN prende l'array annidato [[1,
2], [3, 4]] e combina tutti gli elementi in un unico array. [1, 2, 3, 4]

SELECT flatten(array(array(1, 2), array(3, 4)));
 [1,2,3,4]

Espressioni condizionali

In SQL, le espressioni condizionali vengono utilizzate per prendere decisioni in base a determinate
condizioni. Consentono di controllare il flusso delle istruzioni SQL e restituire valori diversi o eseguire
azioni diverse in base alla valutazione di una o più condizioni.

AWS Clean Rooms supporta le seguenti espressioni condizionali:

Argomenti

• Espressione condizionale CASE

• COALESCEespressione

• espressione MASSIMA e MINIMA

• Espressione IF

• espressione IS_NULL

Espressioni condizionali 148

AWS Clean Rooms Documentazione di riferimento a SQL

• espressione IS_NOT_NULL

• Funzioni NVL e COALESCE

• NVL2 funzione

• Funzione NULLIF

Espressione condizionale CASE

L'espressione CASE è un'espressione condizionale, simile alle if/then/else istruzioni presenti in altre
lingue. CASE è utilizzata per specificare un risultato quando ci sono condizioni multiple. Usa CASE
quando un'espressione SQL è valida, ad esempio in un comando SELECT.

Esistono due tipi di espressioni CASE: semplici e ricercate.

• Nelle espressioni CASE semplici, un'espressione viene confrontata con un valore. Quando viene
trovata una corrispondenza, viene applicata l'azione specificata nella clausola THEN. Se non viene
trovata una corrispondenza, viene applicata l'azione nella clausola ELSE.

• Nelle espressioni CASE cercate, ogni CASE viene valutata in base a un'espressione booleana
e l'istruzione CASE restituisce la prima CASE corrispondente. Se non vengono trovate
corrispondenze tra le clausole WHEN, viene restituita l'operazione nella clausola ELSE.

Sintassi

Semplice istruzione CASE usata per abbinare le condizioni:

CASE expression
 WHEN value THEN result
 [WHEN...]
 [ELSE result]
END

Istruzione CASE ricercata usata per valutare ogni condizione:

CASE
 WHEN condition THEN result
 [WHEN ...]
 [ELSE result]
END

Espressioni condizionali 149

AWS Clean Rooms Documentazione di riferimento a SQL

Argomenti

espressione

Un nome di colonna o qualsiasi espressione valida.

value

Valore con cui viene confrontata l'espressione, ad esempio una costante numerica o una stringa
di caratteri.

result

Il valore o espressione di destinazione che viene restituito quando viene valutata un'espressione o
una condizione booleana. I tipi di dati di tutte le espressioni dei risultati devono essere convertibili
in un singolo tipo di output.

condizione

Un'espressione booleana che restituisce true o false. Se la condizione è true, il valore
dell'espressione CASE è il risultato che segue la condizione e il resto dell'espressione CASE non
viene elaborato. Se la condizione è false, vengono valutate tutte le clausole WHEN successive.
Se nessun risultato della condizione WHEN è true, il valore dell'espressione CASE è il risultato
della clausola ELSE. Se la clausola ELSE viene omessa e nessuna condizione è true, il risultato è
null.

Esempi

Utilizzare una semplice espressione CASE per sostituire New York City con Big Apple in una
query sulla tabella VENUE. Sostituire tutti gli altri nomi di città con other.

select venuecity,
 case venuecity
 when 'New York City'
 then 'Big Apple' else 'other'
 end
from venue
order by venueid desc;

venuecity | case
-----------------+-----------
Los Angeles | other
New York City | Big Apple

Espressioni condizionali 150

AWS Clean Rooms Documentazione di riferimento a SQL

San Francisco | other
Baltimore | other
...

Utilizzare un'espressione CASE ricercata per assegnare numeri di gruppo in base al valore
PRICEPAID per le vendite di biglietti singoli:

select pricepaid,
 case when pricepaid <10000 then 'group 1'
 when pricepaid >10000 then 'group 2'
 else 'group 3'
 end
from sales
order by 1 desc;

pricepaid | case
----------+---------
12624 | group 2
10000 | group 3
10000 | group 3
9996 | group 1
9988 | group 1
...

COALESCEespressione

Un'COALESCEespressione restituisce il valore della prima espressione dell'elenco che non è
nulla. Se tutte le espressioni sono null, il risultato è null. Quando viene trovato un valore non null, le
espressioni rimanenti nell'elenco non vengono valutate.

Questo tipo di espressione è utile quando si desidera restituire un valore di backup per qualcosa
quando il valore preferito è mancante o null. Ad esempio, una query può restituire uno dei tre numeri
di telefono (cellulare, casa o lavoro, in tale ordine), a seconda di quale si trova prima nella tabella
(non null).

Sintassi

COALESCE (expression, expression, ...)

Esempi

Applica COALESCE l'espressione a due colonne.

Espressioni condizionali 151

AWS Clean Rooms Documentazione di riferimento a SQL

select coalesce(start_date, end_date)
from datetable
order by 1;

Il nome di colonna predefinito per un'espressione NVL è. COALESCE La seguente query restituisce
gli stessi risultati.

select coalesce(start_date, end_date) from datetable order by 1;

espressione MASSIMA e MINIMA

Restituisce il valore più grande o più piccolo da un elenco numeri di espressioni.

Sintassi

GREATEST (value [, ...])
LEAST (value [, ...])

Parametri

expression_list

Un elenco di espressioni separate da virgole, come ad esempio i nomi di colonne. Le espressioni
devono essere tutte convertibili in un tipo di dati comune. I valori NULL nell'elenco vengono
ignorati. Se tutte le espressioni vengono valutate su NULL, il risultato è NULL.

Valori restituiti

Restituisce il valore massimo (per GREATEST) o minimo (per LEAST) dell'elenco di espressioni
fornito.

Esempio

Nell'esempio seguente viene restituito il valore più alto in ordine alfabetico per firstname oppure
lastname.

select firstname, lastname, greatest(firstname,lastname) from users
where userid < 10
order by 3;

Espressioni condizionali 152

AWS Clean Rooms Documentazione di riferimento a SQL

 firstname | lastname | greatest
-----------+-----------+-----------
 Alejandro | Rosalez | Ratliff
 Carlos | Salazar | Carlos
 Jane | Doe | Doe
 John | Doe | Doe
 John | Stiles | John
 Shirley | Rodriguez | Rodriguez
 Terry | Whitlock | Terry
 Richard | Roe | Richard
 Xiulan | Wang | Wang
(9 rows)

Espressione IF

La funzione condizionale IF restituisce uno dei due valori in base a una condizione.

Questa funzione è un'istruzione di flusso di controllo comune utilizzata in SQL per prendere decisioni
e restituire valori diversi in base alla valutazione di una condizione. È utile per implementare una
semplice logica if-else all'interno di una query.

Sintassi

if(expr1, expr2, expr3)

Argomenti

espr (1)

La condizione o l'espressione che viene valutata. In caso affermativotrue, la funzione restituirà il
valore di expr2. Se expr1 èfalse, la funzione restituirà il valore di expr3.

espr (2)

L'espressione che viene valutata e restituita se expr1 è. true

expr 3

L'espressione che viene valutata e restituita se expr1 è. false

Valori restituiti

Se expr1 restituisce atrue, restituisce; in caso contrario restituisceexpr2. expr3

Espressioni condizionali 153

AWS Clean Rooms Documentazione di riferimento a SQL

Esempio

L'esempio seguente utilizza la if() funzione per restituire uno dei due valori in base a una
condizione. La condizione da valutare è1 < 2, ovverotrue, quindi 'a' viene restituito il primo
valore.

SELECT if(1 < 2, 'a', 'b');
 a]

espressione IS_NULL

L'espressione IS_NULL condizionale viene utilizzata per verificare se un valore è nullo.

Questa espressione è sinonimo di. IS NULL

Sintassi

is_null(expr)

Argomenti

expr

Un'espressione di qualsiasi tipo.

Valori restituiti

L'espressione IS_NULL condizionale restituisce un valore booleano. Se expr1 è NULL, restituisce,
altrimenti restituiscetrue. false

Esempi

L'esempio seguente verifica se il valore 1 è null e restituisce il risultato booleano true perché 1 è un
valore valido e non nullo.

SELECT is not null(1);
 true

L'esempio seguente seleziona la id colonna dalla squirrels tabella, ma solo per le righe in cui si
trova la colonna dell'età. null

Espressioni condizionali 154

AWS Clean Rooms Documentazione di riferimento a SQL

SELECT id FROM squirrels WHERE is_null(age)

espressione IS_NOT_NULL

L'espressione IS_NOT_NULL condizionale viene utilizzata per verificare se un valore non è nullo.

Questa espressione è sinonimo di. IS NOT NULL

Sintassi

is_not_null(expr)

Argomenti

expr

Un'espressione di qualsiasi tipo.

Valori restituiti

L'espressione IS_NOT_NULL condizionale restituisce un valore booleano. Se non expr1 è NULL,
restituisce, altrimenti restituiscetrue. false

Esempi

L'esempio seguente verifica se il valore non 1 è nullo e restituisce il risultato booleano true perché 1
è un valore valido e non nullo.

SELECT is not null(1);
 true

L'esempio seguente seleziona la id colonna dalla squirrels tabella, ma solo per le righe in cui non
è presente la colonna dell'età. null

SELECT id FROM squirrels WHERE is_not_null(age)

Funzioni NVL e COALESCE

Restituisce il valore della prima espressione che non è null in una serie di espressioni. Quando viene
trovato un valore non null, le restanti espressioni nell'elenco non vengono valutate.

Espressioni condizionali 155

AWS Clean Rooms Documentazione di riferimento a SQL

NVL è identica a COALESCE. Sono sinonimi. Questo argomento illustra la sintassi e contiene esempi
per entrambe.

Sintassi

NVL(expression, expression, ...)

La sintassi di COALESCE è la stessa:

COALESCE(expression, expression, ...)

Se tutte le espressioni sono null, il risultato è null.

Queste funzioni sono utili quando si desidera restituire un valore secondario quando manca un
valore primario o è null. Ad esempio, una query potrebbe restituire il primo dei tre numeri di telefono
disponibili: cellulare, casa o ufficio. L'ordine delle espressioni nella funzione determina l'ordine di
valutazione.

Argomenti

espressione

Un'espressione, come ad esempio un nome di colonna, da valutare per lo stato null.

Tipo restituito

AWS Clean Rooms determina il tipo di dati del valore restituito in base alle espressioni di input. Se i
tipi di dati delle espressioni di input non hanno un tipo comune, viene restituito un errore.

Esempi

Se l'elenco contiene espressioni intere, la funzione restituisce un numero intero.

SELECT COALESCE(NULL, 12, NULL);

coalesce

12

Questo esempio, che è uguale all'esempio precedente tranne per il fatto che utilizza NVL, restituisce
lo stesso risultato.

Espressioni condizionali 156

AWS Clean Rooms Documentazione di riferimento a SQL

SELECT NVL(NULL, 12, NULL);

coalesce

12

Nell'esempio seguente viene restituito un tipo di stringa.

SELECT COALESCE(NULL, 'AWS Clean Rooms', NULL);

coalesce

AWS Clean Rooms

L'esempio seguente genera un errore perché i tipi di dati variano nell'elenco delle espressioni. In
questo caso, nell'elenco sono presenti sia un tipo di stringa che un tipo numerico.

SELECT COALESCE(NULL, 'AWS Clean Rooms', 12);
ERROR: invalid input syntax for integer: "AWS Clean Rooms"

NVL2 funzione

Restituisce uno dei due valori in base al fatto che un'espressione specificata valuti in NULL o NOT
NULL.

Sintassi

NVL2 (expression, not_null_return_value, null_return_value)

Argomenti

espressione

Un'espressione, come ad esempio un nome di colonna, da valutare per lo stato null.

not_null_return_value

Il valore restituito se l' espressione valuta in NOT NULL. Il valore not_null_return_value deve avere
lo stesso tipo di dati dell' espressione o essere implicitamente convertibile in quel tipo di dati.

Espressioni condizionali 157

AWS Clean Rooms Documentazione di riferimento a SQL

null_return_value

Il valore restituito se l' espressione valuta in NULL. Il valore null_return_value deve avere lo stesso
tipo di dati dell' espressione o essere implicitamente convertibile in quel tipo di dati.

Tipo restituito

Il tipo di NVL2 restituzione è determinato come segue:

• Se not_null_return_value o null_return_value è null, viene restituito il tipo di dati dell'espressione not
null.

Se sia not_null_return_value sia null_return_value sono non null:

• Se sia not_null_return_value sia null_return_value hanno lo stesso tipo di dati, viene restituito quel
tipo di dati.

• Se not_null_return_value e null_return_value hanno tipi di dati numerici diversi, viene restituito il tipo
di dati numerico compatibile più piccolo.

• Se not_null_return_value e null_return_value hanno tipi di dati di datetime diversi, viene restituito un
tipo di dati numerici di timestamp.

• Se not_null_return_value e null_return_value hanno diversi tipi di dati di carattere, viene restituito il
tipo di dati di not_null_return_value.

• Se not_null_return_value e null_return_value hanno tipi di dati numerici e non numerici misti viene
restituito il tipo di dati di not_null_return_value.

Important

Negli ultimi due casi in cui viene restituito il tipo di dati di not_null_return_value,
null_return_value viene assegnato implicitamente a quel tipo di dati. Se i tipi di dati non sono
compatibili, la funzione ha esito negativo.

Note per l'utilizzo

Infatti NVL2, il valore restituito avrà il valore del parametro not_null_return_value o null_return_value,
a seconda di quale sia selezionato dalla funzione, ma avrà il tipo di dati not_null_return_value.

Espressioni condizionali 158

AWS Clean Rooms Documentazione di riferimento a SQL

Ad esempio, supponendo che la colonna 1 sia NULL, le seguenti query restituiranno lo stesso valore.
Tuttavia, il tipo di dati del valore restituito NVL2 DECODE sarà INTEGER e il tipo di dati del valore
restituito sarà VARCHAR.

select decode(column1, null, 1234, '2345');
select nvl2(column1, '2345', 1234);

Esempio

L'esempio seguente modifica alcuni dati di esempio, quindi valuta due campi per fornire informazioni
di contatto appropriate per gli utenti:

update users set email = null where firstname = 'Aphrodite' and lastname = 'Acevedo';

select (firstname + ' ' + lastname) as name,
nvl2(email, email, phone) AS contact_info
from users
where state = 'WA'
and lastname like 'A%'
order by lastname, firstname;

name contact_info
--------------------+---
Aphrodite Acevedo (555) 555-0100
Caldwell Acevedo Nunc.sollicitudin@example.ca
Quinn Adams vel@example.com
Kamal Aguilar quis@example.com
Samson Alexander hendrerit.neque@example.com
Hall Alford ac.mattis@example.com
Lane Allen et.netus@example.com
Xander Allison ac.facilisis.facilisis@example.com
Amaya Alvarado dui.nec.tempus@example.com
Vera Alvarez at.arcu.Vestibulum@example.com
Yetta Anthony enim.sit@example.com
Violet Arnold ad.litora@example.comm
August Ashley consectetuer.euismod@example.com
Karyn Austin ipsum.primis.in@example.com
Lucas Ayers at@example.com

Espressioni condizionali 159

AWS Clean Rooms Documentazione di riferimento a SQL

Funzione NULLIF

Confronta due argomenti e restituisce null se gli argomenti sono uguali. Se non sono uguali, viene
restituito il primo argomento.

Sintassi

L'espressione NULLIF confronta due argomenti e restituisce null se gli argomenti sono uguali. Se non
sono uguali, viene restituito il primo argomento. Questa espressione è l'inverso dell'espressione NVL
o COALESCE.

NULLIF (expression1, expression2)

Argomenti

expression1, expression2

Le colonne o le espressioni di destinazione che vengono confrontate. Il tipo di restituzione è
uguale al tipo della prima espressione.

Esempi

Nell'esempio seguente, la query restituisce la stringa first perché gli argomenti non sono uguali.

SELECT NULLIF('first', 'second');

case

first

Nell'esempio seguente, la query restituisce NULL perché gli argomenti della stringa letterale non sono
uguali.

SELECT NULLIF('first', 'first');

case

NULL

Nell'esempio seguente, la query restituisce 1 perché gli argomenti del numero intero non sono uguali.

Espressioni condizionali 160

AWS Clean Rooms Documentazione di riferimento a SQL

SELECT NULLIF(1, 2);

case

1

Nell'esempio seguente, la query restituisce NULL perché gli argomenti del numero intero sono uguali.

SELECT NULLIF(1, 1);

case

NULL

Nell'esempio seguente, la query restituisce null quando i valori LISTID e SALESID corrispondono:

select nullif(listid,salesid), salesid
from sales where salesid<10 order by 1, 2 desc;

listid | salesid
--------+---------
 4 | 2
 5 | 4
 5 | 3
 6 | 5
 10 | 9
 10 | 8
 10 | 7
 10 | 6
 | 1
(9 rows)

Funzioni costruttore

Una funzione di costruzione SQL è una funzione utilizzata per creare nuove strutture di dati, come
matrici o mappe.

Prendono alcuni valori di input e restituiscono un nuovo oggetto della struttura dati. Le funzioni di
costruzione in genere prendono il nome dal tipo di dati che creano, ad esempio ARRAY o MAP.

Funzioni costruttore 161

AWS Clean Rooms Documentazione di riferimento a SQL

Le funzioni di costruzione sono diverse dalle funzioni scalari o dalle funzioni aggregate, che operano
su dati esistenti e restituiscono un singolo valore. Le funzioni di costruzione vengono utilizzate per
creare nuove strutture di dati che possono quindi essere utilizzate per ulteriori elaborazioni o analisi
dei dati.

AWS Clean Rooms supporta le seguenti funzioni di costruzione:

Argomenti

• funzione di costruzione MAP

• funzione di costruzione NAMED_STRUCT

• funzione di costruzione STRUCT

funzione di costruzione MAP

La funzione di costruzione MAP crea una mappa con le coppie chiave/valore specificate.

Le funzioni di costruzione come MAP sono utili quando è necessario creare nuove strutture di dati
a livello di codice all'interno delle query SQL. Consentono di creare strutture di dati complesse che
possono essere utilizzate per ulteriori elaborazioni o analisi dei dati.

Sintassi

map(key0, value0, key1, value1, ...)

Argomenti

chiave 0

Un'espressione di qualsiasi tipo comparabile. Tutte le key0 devono condividere un tipo meno
comune.

valore 0

Un'espressione di qualsiasi tipo. Tutti i ValueN devono condividere un tipo meno comune.

Valori restituiti

La funzione MAP restituisce un MAP con tasti digitati come tipo meno comune di key0 e valori digitati
come tipo meno comune di value0.

Funzioni costruttore 162

AWS Clean Rooms Documentazione di riferimento a SQL

Esempi

L'esempio seguente crea una nuova mappa con due coppie chiave-valore: La chiave è associata al
valore. 1.0 '2' La chiave 3.0 è associata al valore. '4' La mappa risultante viene quindi restituita
come output dell'istruzione SQL.

SELECT map(1.0, '2', 3.0, '4');
 {1.0:"2",3.0:"4"}

funzione di costruzione NAMED_STRUCT

La funzione di costruzione NAMED_STRUCT crea una struttura con i nomi e i valori dei campi
specificati.

Le funzioni di costruzione come NAMED_STRUCT sono utili quando è necessario creare nuove
strutture di dati a livello di codice all'interno delle query SQL. Consentono di creare strutture di dati
complesse, come strutture o record, che possono essere utilizzate per ulteriori elaborazioni o analisi
dei dati.

Sintassi

named_struct(name1, val1, name2, val2, ...)

Argomenti

nome1

Un campo di denominazione letterale STRING 1.

val1

Un'espressione di qualsiasi tipo che specifica il valore per il campo 1.

Valori restituiti

La funzione NAMED_STRUCT restituisce una struttura con il campo 1 corrispondente al tipo di val1.

Esempi

L'esempio seguente crea una nuova struttura con tre campi denominati: Al campo "a" viene
assegnato il valore. 1 Al campo "b" viene assegnato il valore 2. Al campo "c" viene assegnato il
valore3. La struttura risultante viene quindi restituita come output dell'istruzione SQL.

Funzioni costruttore 163

AWS Clean Rooms Documentazione di riferimento a SQL

SELECT named_struct("a", 1, "b", 2, "c", 3);
 {"a":1,"b":2,"c":3}

funzione di costruzione STRUCT

La funzione di costruzione STRUCT crea una struttura con i valori di campo specificati.

Le funzioni di costruzione come STRUCT sono utili quando è necessario creare nuove strutture di
dati a livello di codice all'interno delle query SQL. Consentono di creare strutture di dati complesse,
come strutture o record, che possono essere utilizzate per ulteriori elaborazioni o analisi dei dati.

Sintassi

struct(col1, col2, col3, ...)

Argomenti

col1

Un nome di colonna o qualsiasi espressione valida.

Valori restituiti

La funzione STRUCT restituisce una struttura con field1 corrispondente al tipo di expr1.

Se gli argomenti sono denominati riferimenti, i nomi vengono utilizzati per denominare il campo.
Altrimenti, i campi sono denominati colN, dove N è la posizione del campo nella struttura.

Esempi

L'esempio seguente crea una nuova struttura con tre campi: Al primo campo viene assegnato il
valore 1. Al secondo campo viene assegnato il valore 2. Al terzo campo viene assegnato il valore
3. Per impostazione predefinita, i campi nella struttura risultante sono col1 denominati e col3 in
base alla loro posizione nell'elenco degli argomenti. col2 La struttura risultante viene quindi restituita
come output dell'istruzione SQL.

SELECT struct(1, 2, 3);
 {"col1":1,"col2":2,"col3":3}

Funzioni costruttore 164

AWS Clean Rooms Documentazione di riferimento a SQL

Funzioni di formattazione del tipo di dati

Utilizzando una funzione di formattazione dei tipi di dati, è possibile convertire i valori da un tipo di
dati a un altro. Per ognuna di queste funzioni, il primo argomento è sempre il valore da formattare e il
secondo argomento contiene il modello per il nuovo formato.

AWS Clean Rooms Spark SQL supporta diverse funzioni di formattazione dei tipi di dati.

Argomenti

• BASE64 funzione

• Funzione CAST

• Funzione DECODE

• Funzione ENCODE

• Funzione HEX

• Funzione STR_TO_MAP

• TO_CHAR

• Funzione TO_DATE

• TO_NUMBER

• UNBASE64 funzione

• Funzione UNHEX

• Stringhe di formato datetime

• Stringhe di formato numerico

BASE64 funzione

La BASE64 funzione converte un'espressione in una stringa base 64 utilizzando la codifica di
trasferimento RFC2 045 Base64 per MIME.

Sintassi

base64(expr)

Funzioni di formattazione del tipo di dati 165

https://datatracker.ietf.org/doc/html/rfc2045

AWS Clean Rooms Documentazione di riferimento a SQL

Arguments (Argomenti)

expr

Un'espressione BINARY o una STRINGA che la funzione interpreterà come BINARY.

Tipo restituito

STRING

Esempio

Per convertire l'input di stringa specificato nella sua rappresentazione codificata Base64. usa il
seguente esempio. Il risultato è la rappresentazione codificata in Base64 della stringa di input 'Spark
SQL', che è 'U3BHCMsGU1FM'.

SELECT base64('Spark SQL');
 U3BhcmsgU1FM

Funzione CAST

La funzione CAST converte un tipo di dati in un altro tipo di dati compatibile. Ad esempio, puoi
convertire una stringa in una data o un tipo numerico in una stringa. CAST esegue una conversione
in fase di runtime, il che significa che la conversione non modifica il tipo di dati di un valore in una
tabella di origine. Viene modificato solo nel contesto della query.

Alcuni tipi di dati richiedono una conversione esplicita in altri tipi di dati utilizzando la funzione CAST.
Altri tipi di dati possono essere convertiti implicitamente, come parte di un altro comando, senza
utilizzare CAST. Per informazioni, consulta Conversione e compatibilità dei tipi.

Sintassi

Utilizza i seguenti due formati di sintassi equivalenti per convertire espressioni da un tipo di dati a un
altro:

CAST (expression AS type)

Funzioni di formattazione del tipo di dati 166

AWS Clean Rooms Documentazione di riferimento a SQL

Arguments (Argomenti)

espressione

Un'espressione che valuta uno o più valori, ad esempio un nome di colonna o un letterale. La
conversione di valori null restituisce null. L'espressione non può contenere stringhe vuote o vuote.

tipo

Una delle opzioni supportateTipi di dati, ad eccezione dei tipi di dati BINARY e BINARY
VARIYING.

Tipo restituito

CAST restituisce il tipo di dati specificato dall'argomento tipo.

Note

AWS Clean Rooms restituisce un errore se si tenta di eseguire una conversione
problematica, ad esempio una conversione DECIMAL che perde precisione, come la
seguente:

select 123.456::decimal(2,1);

o una conversione INTEGER che provoca un eccesso:

select 12345678::smallint;

Esempi

Le seguenti due query sono equivalenti. Entrambi assegnano un valore decimale a un integer:

select cast(pricepaid as integer)
from sales where salesid=100;

pricepaid

162
(1 row)

Funzioni di formattazione del tipo di dati 167

AWS Clean Rooms Documentazione di riferimento a SQL

select pricepaid::integer
from sales where salesid=100;

pricepaid

162
(1 row)

La seguente query produce un risultato simile. Non richiede dati di esempio per l'esecuzione:

select cast(162.00 as integer) as pricepaid;

pricepaid

162
(1 row)

In questo esempio, i valori in una colonna timestamp vengono convertiti come date, il che comporta la
rimozione dell'ora da ogni risultato:

select cast(saletime as date), salesid
from sales order by salesid limit 10;

 saletime | salesid
-----------+---------
2008-02-18 | 1
2008-06-06 | 2
2008-06-06 | 3
2008-06-09 | 4
2008-08-31 | 5
2008-07-16 | 6
2008-06-26 | 7
2008-07-10 | 8
2008-07-22 | 9
2008-08-06 | 10

(10 rows)

Se non hai usato CAST come illustrato nell'esempio precedente, i risultati includono l'ora: 18-02-2008
02:36:48.

Funzioni di formattazione del tipo di dati 168

AWS Clean Rooms Documentazione di riferimento a SQL

La seguente query converte i dati di caratteri variabili in una data. Non richiede dati di esempio per
l'esecuzione.

select cast('2008-02-18 02:36:48' as date) as mysaletime;

mysaletime

2008-02-18
(1 row)

In questo esempio, il casting dei valori in una colonna di data viene eseguito come timestamps:

select cast(caldate as timestamp), dateid
from date order by dateid limit 10;

 caldate | dateid
--------------------+--------
2008-01-01 00:00:00 | 1827
2008-01-02 00:00:00 | 1828
2008-01-03 00:00:00 | 1829
2008-01-04 00:00:00 | 1830
2008-01-05 00:00:00 | 1831
2008-01-06 00:00:00 | 1832
2008-01-07 00:00:00 | 1833
2008-01-08 00:00:00 | 1834
2008-01-09 00:00:00 | 1835
2008-01-10 00:00:00 | 1836

(10 rows)

In un caso come nell'esempio precedente, è possibile ottenere un ulteriore controllo sulla
formattazione dell'output utilizzando. TO_CHAR

In questo esempio, un integer è assegnato come una stringa di caratteri:

select cast(2008 as char(4));

bpchar

2008

In questo esempio, un valore DECIMAL(6,3) viene assegnato come valore DECIMAL(4,1):

Funzioni di formattazione del tipo di dati 169

AWS Clean Rooms Documentazione di riferimento a SQL

select cast(109.652 as decimal(4,1));

numeric

109.7

Questo esempio mostra un'espressione più complessa. La colonna PRICEPAID (una colonna
DECIMAL(8,2)) nella tabella SALES viene convertita in una colonna DECIMAL(38,2) e i valori
vengono moltiplicati per 100000000000000000000:

select salesid, pricepaid::decimal(38,2)*100000000000000000000
as value from sales where salesid<10 order by salesid;

 salesid | value
---------+----------------------------
 1 | 72800000000000000000000.00
 2 | 7600000000000000000000.00
 3 | 35000000000000000000000.00
 4 | 17500000000000000000000.00
 5 | 15400000000000000000000.00
 6 | 39400000000000000000000.00
 7 | 78800000000000000000000.00
 8 | 19700000000000000000000.00
 9 | 59100000000000000000000.00

(9 rows)

Funzione DECODE

La funzione DECODE è la controparte della funzione ENCODE, utilizzata per convertire una stringa
in un formato binario utilizzando una codifica di caratteri specifica. La funzione DECODE prende i dati
binari e li riconverte in un formato di stringa leggibile utilizzando la codifica dei caratteri specificata.

Questa funzione è utile quando è necessario lavorare con dati binari archiviati in un database
e presentarli in un formato leggibile dall'uomo o quando è necessario convertire dati tra diverse
codifiche di caratteri.

Sintassi

decode(expr, charset)

Funzioni di formattazione del tipo di dati 170

AWS Clean Rooms Documentazione di riferimento a SQL

Arguments (Argomenti)

expr

Un'espressione BINARY codificata in un set di caratteri.

set di caratteri

Un'espressione STRING.

Codifiche dei set di caratteri supportate (senza distinzione tra maiuscole e minuscole):'US-
ASCII',,, 'ISO-8859-1''UTF-8', 'UTF-16BE' e. 'UTF-16LE' 'UTF-16'

Tipo restituito

La funzione DECODE restituisce una STRING.

Esempio

L'esempio seguente presenta una tabella chiamata messages con una colonna chiamata
message_text che memorizza i dati dei messaggi in un formato binario utilizzando la codifica
dei caratteri UTF-8. La funzione DECODE riconverte i dati binari in un formato di stringa leggibile.
L'output di questa query è il testo leggibile del messaggio memorizzato nella tabella dei messaggi,
con l'ID123, convertito dal formato binario in una stringa utilizzando la codifica. 'utf-8'

SELECT decode(message_text, 'utf-8') AS message
FROM messages
WHERE message_id = 123;

Funzione ENCODE

La funzione ENCODE viene utilizzata per convertire una stringa nella sua rappresentazione binaria
utilizzando una codifica di caratteri specificata.

Questa funzione è utile quando è necessario lavorare con dati binari o quando è necessario eseguire
conversioni tra diverse codifiche di caratteri. Ad esempio, è possibile utilizzare la funzione ENCODE
per archiviare dati in un database che richiede la memorizzazione binaria o quando è necessario
trasferire dati tra sistemi che utilizzano codifiche di caratteri diverse.

Sintassi

encode(str, charset)

Funzioni di formattazione del tipo di dati 171

AWS Clean Rooms Documentazione di riferimento a SQL

Arguments (Argomenti)

str

Un'espressione STRING da codificare.

set di caratteri

Un'espressione STRING che specifica la codifica.

Codifiche dei set di caratteri supportate (senza distinzione tra maiuscole e minuscole):'US-
ASCII',,,, e'ISO-8859-1'. 'UTF-8' 'UTF-16BE' 'UTF-16LE' 'UTF-16'

Tipo restituito

La funzione ENCODE restituisce un valore BINARY.

Esempio

L'esempio seguente converte la stringa 'abc' nella sua rappresentazione binaria utilizzando la
'utf-8' codifica, che in questo caso restituisce la stringa originale. Questo perché la 'utf-8'
codifica è una codifica di caratteri a larghezza variabile che può rappresentare l'intero set di caratteri
ASCII (che include le lettere 'a' e'c') utilizzando un solo byte per carattere. 'b' Pertanto, la
rappresentazione binaria dell''abc'utilizzo 'utf-8' è la stessa della stringa originale.

SELECT encode('abc', 'utf-8');
 abc

Funzione HEX

La funzione HEX converte un valore numerico (un intero o un numero a virgola mobile) nella
rappresentazione di stringa esadecimale corrispondente.

L'esadecimale è un sistema numerico che utilizza 16 simboli distinti (0-9 e A-F) per rappresentare
valori numerici. È comunemente usato nell'informatica e nella programmazione per rappresentare
dati binari in un formato più compatto e leggibile dall'uomo.

Sintassi

hex(expr)

Funzioni di formattazione del tipo di dati 172

AWS Clean Rooms Documentazione di riferimento a SQL

Arguments (Argomenti)

expr

Un'espressione BIGINT, BINARY o STRING.

Tipo restituito

HEX restituisce una STRING. La funzione restituisce la rappresentazione esadecimale
dell'argomento.

Esempio

L'esempio seguente prende come input il valore intero 17 e vi applica la funzione HEX (). L'output
è11, che è la rappresentazione esadecimale del valore di input. 17

SELECT hex(17);
 11

L'esempio seguente converte la stringa 'Spark_SQL' nella sua rappresentazione esadecimale.
L'output è537061726B2053514C, che è la rappresentazione esadecimale della stringa di input.
'Spark_SQL'

SELECT hex('Spark_SQL');
 537061726B2053514C

In questo esempio, la stringa 'Spark_SQL' viene convertita come segue:

• 'S' -> 53

• 'p' -> 70

• 'a' -> 61

• 'r' -> 72 '

• k' -> 6B

• '_' -> 20

• 'S' -> 53

• 'Q' -> 51

• 'L' -> 4C

Funzioni di formattazione del tipo di dati 173

AWS Clean Rooms Documentazione di riferimento a SQL

La concatenazione di questi valori esadecimali produce l'output finale ". 537061726B2053514C"

Funzione STR_TO_MAP

La funzione STR_TO_MAP è una funzione di conversione. string-to-map Converte una
rappresentazione in formato stringa di una mappa (o dizionario) in una vera struttura di dati
cartografici.

Questa funzione è utile quando è necessario lavorare con strutture di dati cartografiche in SQL, ma i
dati vengono inizialmente memorizzati come stringa. Convertendo la rappresentazione della stringa in
una mappa effettiva, è quindi possibile eseguire operazioni e manipolazioni sui dati della mappa.

Sintassi

str_to_map(text[, pairDelim[, keyValueDelim]])

Arguments (Argomenti)

testo

Un'espressione STRING che rappresenta la mappa.

PairDelim

Un valore letterale STRING opzionale che specifica come separare le voci. Il valore predefinito è
una virgola (). ','

keyValueDelim

Un valore letterale STRING opzionale che specifica come separare ogni coppia chiave-valore. Il
valore predefinito è due punti (). ':'

Tipo restituito

La funzione STR_TO_MAP restituisce una MAP di STRING sia per le chiavi che per i valori. Sia
PairDelim che vengono trattati come espressioni regolari keyValueDelim.

Esempio

L'esempio seguente prende la stringa di input e i due argomenti di delimitazione e converte la
rappresentazione della stringa in una vera struttura di dati della mappa. In questo esempio specifico,
la stringa di input 'a:1,b:2,c:3' rappresenta una mappa con le seguenti coppie chiave-valore:
'a' è la chiave e è il valore. '1' 'b'è la chiave ed '2' è il valore. 'c'è la chiave ed '3' è il valore.

Funzioni di formattazione del tipo di dati 174

AWS Clean Rooms Documentazione di riferimento a SQL

Il ',' delimitatore viene utilizzato per separare le coppie chiave-valore e il ':' delimitatore viene
utilizzato per separare la chiave e il valore all'interno di ciascuna coppia. L'output di questa query è:.
{"a":"1","b":"2","c":"3"} Questa è la struttura dei dati della mappa risultante, dove le chiavi
sono 'a' 'b''c', e, e i valori corrispondenti sono '1''2', e'3'.

SELECT str_to_map('a:1,b:2,c:3', ',', ':');
 {"a":"1","b":"2","c":"3"}

L'esempio seguente dimostra che la funzione STR_TO_MAP prevede che la stringa di input sia in
un formato specifico, con le coppie chiave-valore delimitate correttamente. Se la stringa di input
non corrisponde al formato previsto, la funzione tenterà comunque di creare una mappa, ma i valori
risultanti potrebbero non essere quelli previsti.

SELECT str_to_map('a');
 {"a":null}

TO_CHAR

TO_CHAR converte un timestamp o un'espressione numerica in un formato di dati carattere-stringa.

Sintassi

TO_CHAR (timestamp_expression | numeric_expression , 'format')

Arguments (Argomenti)

timestamp_expression

Un'espressione che restituisce un valore di tipo TIMESTAMP o TIMESTAMPTZ o un valore che
può essere implicitamente costretto in un timestamp.

numeric_expression

Un'espressione che restituisce un valore di tipo di dati numerici un valore che può essere
implicitamente costretto in un tipo numerico. Per ulteriori informazioni, consulta Tipi numerici.
TO_CHAR inserisce uno spazio a sinistra della stringa numerica.

Note

TO_CHAR non supporta valori DECIMALI a 128 bit.

Funzioni di formattazione del tipo di dati 175

AWS Clean Rooms Documentazione di riferimento a SQL

format

Il formato per il nuovo valore. Per i formati validi, consultare Stringhe di formato datetime e
Stringhe di formato numerico.

Tipo restituito

VARCHAR

Esempi

Nell'esempio seguente un timestamp viene convertito in un valore con la data e l'ora in un formato
con il nome del mese a nove caratteri, il nome del giorno della settimana e il numero del giorno del
mese.

select to_char(timestamp '2009-12-31 23:15:59', 'MONTH-DY-DD-YYYY HH12:MIPM');
to_char

DECEMBER -THU-31-2009 11:15PM

Nell'esempio seguente un timestamp viene convertito in un valore con il numero di giorno dell'anno.

select to_char(timestamp '2009-12-31 23:15:59', 'DDD');

to_char

365

Nell'esempio seguente un timestamp viene convertito in un numero di giorno ISO della settimana.

select to_char(timestamp '2022-05-16 23:15:59', 'ID');

to_char

1

L'esempio seguente estrae il nome del mese da un valore di data.

select to_char(date '2009-12-31', 'MONTH');

Funzioni di formattazione del tipo di dati 176

AWS Clean Rooms Documentazione di riferimento a SQL

to_char

DECEMBER

Nell'esempio seguente viene convertito ogni valore STARTTIME nella tabella EVENT in una stringa
composta da ore, minuti e secondi.

select to_char(starttime, 'HH12:MI:SS')
from event where eventid between 1 and 5
order by eventid;

to_char

02:30:00
08:00:00
02:30:00
02:30:00
07:00:00
(5 rows)

L'esempio seguente converte un intero valore timestamp in un formato diverso.

select starttime, to_char(starttime, 'MON-DD-YYYY HH12:MIPM')
from event where eventid=1;

 starttime | to_char
---------------------+---------------------
 2008-01-25 14:30:00 | JAN-25-2008 02:30PM
(1 row)

L'esempio seguente converte un letterale di timestamp in una stringa di caratteri.

select to_char(timestamp '2009-12-31 23:15:59','HH24:MI:SS');
to_char

23:15:59
(1 row)

L'esempio seguente converte un numero in una stringa di caratteri con il segno negativo alla fine.

select to_char(-125.8, '999D99S');

Funzioni di formattazione del tipo di dati 177

AWS Clean Rooms Documentazione di riferimento a SQL

to_char

125.80-
(1 row)

L'esempio seguente converte un numero in una stringa di caratteri con il simbolo di valuta.

select to_char(-125.88, '$S999D99');
to_char

$-125.88
(1 row)

L'esempio seguente converte un numero in una stringa di caratteri con parentesi angolari per i numeri
negativi.

select to_char(-125.88, '$999D99PR');
to_char

$<125.88>
(1 row)

L'esempio seguente converte un numero in una stringa di numeri romani.

select to_char(125, 'RN');
to_char

CXXV
(1 row)

L'esempio seguente mostra il giorno della settimana.

SELECT to_char(current_timestamp, 'FMDay, FMDD HH12:MI:SS');
 to_char

Wednesday, 31 09:34:26

L'esempio seguente visualizza il suffisso numerico ordinale per un numero.

SELECT to_char(482, '999th');
 to_char

Funzioni di formattazione del tipo di dati 178

AWS Clean Rooms Documentazione di riferimento a SQL

 482nd

L'esempio seguente sottrae la commissione dal prezzo pagato nella tabella delle vendite. La
differenza viene quindi arrotondata per eccesso e convertita in un numero romano, mostrato nella
colonna: to_char

select salesid, pricepaid, commission, (pricepaid - commission)
as difference, to_char(pricepaid - commission, 'rn') from sales
group by sales.pricepaid, sales.commission, salesid
order by salesid limit 10;

 salesid | pricepaid | commission | difference | to_char
---------+-----------+------------+------------+-----------------
 1 | 728.00 | 109.20 | 618.80 | dcxix
 2 | 76.00 | 11.40 | 64.60 | lxv
 3 | 350.00 | 52.50 | 297.50 | ccxcviii
 4 | 175.00 | 26.25 | 148.75 | cxlix
 5 | 154.00 | 23.10 | 130.90 | cxxxi
 6 | 394.00 | 59.10 | 334.90 | cccxxxv
 7 | 788.00 | 118.20 | 669.80 | dclxx
 8 | 197.00 | 29.55 | 167.45 | clxvii
 9 | 591.00 | 88.65 | 502.35 | dii
 10 | 65.00 | 9.75 | 55.25 | lv
(10 rows)

L'esempio seguente aggiunge il simbolo della valuta ai valori di differenza mostrati nella to_char
colonna:

select salesid, pricepaid, commission, (pricepaid - commission)
as difference, to_char(pricepaid - commission, 'l99999D99') from sales
group by sales.pricepaid, sales.commission, salesid
order by salesid limit 10;

salesid | pricepaid | commission | difference | to_char
--------+-----------+------------+------------+------------
 1 | 728.00 | 109.20 | 618.80 | $ 618.80
 2 | 76.00 | 11.40 | 64.60 | $ 64.60
 3 | 350.00 | 52.50 | 297.50 | $ 297.50
 4 | 175.00 | 26.25 | 148.75 | $ 148.75
 5 | 154.00 | 23.10 | 130.90 | $ 130.90
 6 | 394.00 | 59.10 | 334.90 | $ 334.90

Funzioni di formattazione del tipo di dati 179

AWS Clean Rooms Documentazione di riferimento a SQL

 7 | 788.00 | 118.20 | 669.80 | $ 669.80
 8 | 197.00 | 29.55 | 167.45 | $ 167.45
 9 | 591.00 | 88.65 | 502.35 | $ 502.35
 10 | 65.00 | 9.75 | 55.25 | $ 55.25
(10 rows)

L'esempio seguente elenca il secolo in cui è stata effettuata ciascuna vendita.

select salesid, saletime, to_char(saletime, 'cc') from sales
order by salesid limit 10;

 salesid | saletime | to_char
---------+---------------------+---------
 1 | 2008-02-18 02:36:48 | 21
 2 | 2008-06-06 05:00:16 | 21
 3 | 2008-06-06 08:26:17 | 21
 4 | 2008-06-09 08:38:52 | 21
 5 | 2008-08-31 09:17:02 | 21
 6 | 2008-07-16 11:59:24 | 21
 7 | 2008-06-26 12:56:06 | 21
 8 | 2008-07-10 02:12:36 | 21
 9 | 2008-07-22 02:23:17 | 21
 10 | 2008-08-06 02:51:55 | 21
(10 rows)

Nell'esempio seguente viene convertito ogni valore STARTTIME nella tabella EVENT in una stringa
composta da ore, minuti, secondi e fuso orario.

select to_char(starttime, 'HH12:MI:SS TZ')
from event where eventid between 1 and 5
order by eventid;

to_char

02:30:00 UTC
08:00:00 UTC
02:30:00 UTC
02:30:00 UTC
07:00:00 UTC
(5 rows)

(10 rows)

Funzioni di formattazione del tipo di dati 180

AWS Clean Rooms Documentazione di riferimento a SQL

L'esempio seguente mostra la formattazione per secondi, millisecondi e microsecondi.

select sysdate,
to_char(sysdate, 'HH24:MI:SS') as seconds,
to_char(sysdate, 'HH24:MI:SS.MS') as milliseconds,
to_char(sysdate, 'HH24:MI:SS:US') as microseconds;

timestamp | seconds | milliseconds | microseconds
--------------------+----------+--------------+----------------
2015-04-10 18:45:09 | 18:45:09 | 18:45:09.325 | 18:45:09:325143

Funzione TO_DATE

TO_DATE converte una data rappresentata con una stringa di caratteri in un tipo di dati DATE.

Sintassi

TO_DATE (date_str)

TO_DATE (date_str, format)

Arguments (Argomenti)

data_str

Una stringa di data o un tipo di dati che può essere inserito in una stringa di date.

format

Una stringa letterale che corrisponde ai modelli datetime di Spark. Per modelli datetime validi, vedi
Datetime Patterns for Formatting and Parsing.

Tipo restituito

TO_DATE restituisce una DATA, in base al valore formato.

Se la conversione in formato non riesce, viene restituito un errore.

Esempi

L'istruzione SQL seguente converte la data 02 Oct 2001 in un tipo di dati data.

Funzioni di formattazione del tipo di dati 181

https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html

AWS Clean Rooms Documentazione di riferimento a SQL

select to_date('02 Oct 2001', 'dd MMM yyyy');

to_date

2001-10-02
(1 row)

L'istruzione SQL seguente converte la stringa 20010631 in una data.

select to_date('20010631', 'yyyyMMdd');

L'istruzione SQL seguente converte la stringa 20010631 in una data:

to_date('20010631', 'YYYYMMDD', TRUE);

Il risultato è un valore nullo perché ci sono solo 30 giorni a giugno.

to_date

NULL

TO_NUMBER

TO_NUMBER converte una stringa in un valore numerico (decimale).

Sintassi

to_number(string, format)

Arguments (Argomenti)

stringa

Stringa da convertire. Il formato deve essere un valore letterale.

format

Il secondo argomento è una stringa di formato che indica come deve essere analizzata la stringa
di caratteri per creare il valore numerico. Ad esempio, il formato '99D999' specifica che la
stringa da convertire è composta da cinque cifre con il punto decimale nella terza posizione. Ad

Funzioni di formattazione del tipo di dati 182

AWS Clean Rooms Documentazione di riferimento a SQL

esempio, to_number('12.345','99D999') restituisce 12.345 come valore numerico. Per un
elenco di formati validi, consultare Stringhe di formato numerico.

Tipo restituito

TO_NUMBER restituisce un numero DECIMAL.

Se la conversione in formato non riesce, viene restituito un errore.

Esempi

L'esempio seguente converte la stringa 12,454.8- in un numero:

select to_number('12,454.8-', '99G999D9S');

to_number

-12454.8

L'esempio seguente converte la stringa $ 12,454.88 in un numero:

select to_number('$ 12,454.88', 'L 99G999D99');

to_number

12454.88

L'esempio seguente converte la stringa $ 2,012,454.88 in un numero:

select to_number('$ 2,012,454.88', 'L 9,999,999.99');

to_number

2012454.88

UNBASE64 funzione

La UNBASE64 funzione converte un argomento da una stringa in base 64 a un file binario.

La codifica Base64 viene comunemente utilizzata per rappresentare dati binari (come immagini,
file o informazioni crittografate) in un formato testuale sicuro per la trasmissione su vari canali di
comunicazione (come e-mail, parametri URL o archiviazione di database).

Funzioni di formattazione del tipo di dati 183

AWS Clean Rooms Documentazione di riferimento a SQL

La UNBASE64 funzione consente di invertire questo processo e ripristinare i dati binari originali.
Questo tipo di funzionalità può essere utile in scenari in cui è necessario lavorare con dati codificati in
formato Base64, ad esempio durante l'integrazione con sistemi esterni o APIs che utilizzano Base64
come meccanismo di trasferimento dei dati.

Sintassi

unbase64(expr)

Arguments (Argomenti)

expr

Un'espressione STRING in formato base64.

Tipo restituito

BINARY

Esempio

Nell'esempio seguente, la stringa con codifica Base64 'U3BhcmsgU1FM' viene riconvertita nella
stringa originale. 'Spark SQL'

SELECT unbase64('U3BhcmsgU1FM');
 Spark SQL

Funzione UNHEX

La funzione UNHEX riconverte una stringa esadecimale nella sua rappresentazione di stringa
originale.

Questa funzione può essere utile in scenari in cui è necessario lavorare con dati archiviati o trasmessi
in formato esadecimale e ripristinare la rappresentazione di stringa originale per un'ulteriore
elaborazione o visualizzazione.

La funzione UNHEX è la controparte della funzione HEX.

Sintassi

unhex(expr)

Funzioni di formattazione del tipo di dati 184

AWS Clean Rooms Documentazione di riferimento a SQL

Arguments (Argomenti)

expr

Un'espressione STRING di caratteri esadecimali.

Tipo restituito

UNHEX restituisce un valore BINARIO.

Se la lunghezza di expr è dispari, il primo carattere viene scartato e al risultato viene aggiunto un byte
nullo. Se expr contiene caratteri non esadecimali, il risultato è NULL.

Esempio

L'esempio seguente converte una stringa esadecimale nella sua rappresentazione di stringa originale
utilizzando insieme le funzioni UNHEX () e DECODE (). La prima parte della query utilizza la funzione
UNHEX () per convertire la stringa esadecimale '537061726B2053514C' nella sua rappresentazione
binaria. La seconda parte della query utilizza la funzione DECODE () per convertire i dati binari
ottenuti dalla funzione UNHEX () in una stringa, utilizzando la codifica dei caratteri 'UTF-8'. L'output
della query è la stringa originale 'Spark_SQL' che è stata convertita in formato esadecimale e poi
nuovamente in una stringa.

SELECT decode(unhex('537061726B2053514C'), 'UTF-8');
 Spark SQL

Stringhe di formato datetime

È possibile utilizzare i modelli datetime nei seguenti scenari comuni:

• Quando si lavora con fonti di dati CSV e JSON per analizzare e formattare il contenuto datetime

• Durante la conversione tra tipi di stringhe e tipi di data o timestamp utilizzando funzioni come:

• unix_timestamp

• date_format

• to_unix_timestamp

• da_unixtime

• to_date

• to_timestamp

Funzioni di formattazione del tipo di dati 185

AWS Clean Rooms Documentazione di riferimento a SQL

• da_utc_timestamp

• to_utc_timestamp

Utilizza lo schema di lettere nella tabella seguente per l'analisi e la formattazione di data e ora.

Parte di data o parte di ora Significato Esempi

a AM o PM del giorno, presentat
a come am-pm

PM

D Giorno dell'anno, presentato
come numero a 3 cifre

189

d Giorno del mese, presentato
come numero a 2 cifre

28

E Giorno della settimana,
presentato come testo

Il

Martedì

F Giorno della settimana
allineato nel mese, presentato
come numero a 1 cifra

3

G Indicatore dell'era, presentato
come testo

AD

Anno Domini

h Ora del mattino o del
pomeriggio, presentata come
numero a 2 cifre

12

H Ora del giorno, presentat
a come numero a due cifre
compreso tra 0 e 23

0

k Ora del giorno, presentat
a come numero a due cifre
compreso tra 1 e 24

1

Funzioni di formattazione del tipo di dati 186

AWS Clean Rooms Documentazione di riferimento a SQL

Parte di data o parte di ora Significato Esempi

K Ora del mattino o del
pomeriggio, presentata come
numero a due cifre compreso
tra 0 e 11

0

m Minuto dell'ora, presentato
come numero a due cifre

30

M/L Mese dell'anno, presentato
come mese

7

07

lug

luglio

O Scostamento di zona localizza
to rispetto all'UTC

GMT+8

GMT+ 8:00

UTC- 08:00

Q/q Trimestre dell'anno, presentat
o come numero (da 1 a 4) o
testo

3

03

Q3

3o trimestre

s Secondo del minuto, presentat
o come un numero a due cifre

55

S Frazione di secondo,
presentata come frazione

978

Funzioni di formattazione del tipo di dati 187

AWS Clean Rooms Documentazione di riferimento a SQL

Parte di data o parte di ora Significato Esempi

V Identificatore del fuso orario,
presentato come ID di fuso
orario

America/Los_Angeles

Z

08:30

x Scostamento di zona rispetto
a UTC (offset-X)

+0000

-08

-0830

- 08:30

-083015

- 08:30:15

X scostamento di zona rispetto
all'UTC; dove Z sta per zero

Z

-08

-0830

- 08:30

-083015

- 08:30:15

y Anno, presentato come anno 2020

20

z Nome del fuso orario,
presentato come testo

Orario standard Pacifico

PST

Funzioni di formattazione del tipo di dati 188

AWS Clean Rooms Documentazione di riferimento a SQL

Parte di data o parte di ora Significato Esempi

Z Scostamento di zona rispetto
a UTC (offset-Z)

+0000

-0800

- 08:00

' Escape per il testo, presentato
come delimitatore

N/D

'' Citazione singola, presentata
come un valore letterale

'

[Inizio della sezione opzionale N/D

] Fine della sezione opzionale N/D

Il numero di lettere dello schema determina il tipo di formato:

Formato del testo

• Usa 1-3 lettere per la forma abbreviata (ad esempio, «lun» per lunedì)

• Usa esattamente 4 lettere per il modulo completo (ad esempio, «lunedì»)

• Non utilizzare 5 o più lettere: ciò causerà un errore

Formato numerico (n)

• Il valore n rappresenta il numero massimo di lettere consentito

• Per modelli a lettera singola:

• L'output utilizza un numero minimo di cifre senza imbottitura

• Per modelli con più lettere:

• L'output è riempito con zeri in base alla larghezza del conteggio delle lettere

• Durante l'analisi, l'input deve contenere il numero esatto di cifre

Formato numero/testo

Funzioni di formattazione del tipo di dati 189

AWS Clean Rooms Documentazione di riferimento a SQL

• Per 3 o più lettere, segui le regole del formato del testo

• Per un numero inferiore di lettere, segui le regole del formato numerico

Formato delle frazioni

• Usa 1-9 caratteri «S» (ad esempio, SSSSSS)

• Per l'analisi:

• Accetta frazioni comprese tra 1 e il numero di caratteri S

• Per la formattazione:

• Tasto con zeri corrispondente al numero di caratteri S

• Supporta fino a 6 cifre per una precisione al microsecondo

• Può analizzare i nanosecondi ma tronca le cifre aggiuntive

Formato dell'anno

• Il conteggio delle lettere imposta la larghezza minima del campo per il riempimento

• Per due lettere:

• Stampa le ultime due cifre

• Analizza gli anni compresi tra il 2000 e il 2099

• Per meno di quattro lettere (tranne due):

• Mostra il segno solo per gli anni negativi

• Non utilizzare 7 o più lettere: ciò causerà un errore

Formato mensile

• Usa «M» per il modulo standard o «L» per il modulo autonomo

• Singola «M» o «L»:

• Mostra i numeri dei mesi da 1 a 12 senza imbottitura

• 'MM' o 'LL':

• Mostra i numeri dei mesi 01-12 con imbottitura

• 'MMM':

• Mostra il nome abbreviato del mese in formato standard

Funzioni di formattazione del tipo di dati 190

AWS Clean Rooms Documentazione di riferimento a SQL

• Deve far parte di uno schema di data completo

• 'LLL':

• Mostra il nome abbreviato del mese in forma autonoma

• Utilizzare per la formattazione solo per un mese

• 'MMMM':

• Mostra il nome completo del mese in formato standard

• Utilizza per date e timestamp

• 'LLLL':

• Mostra il nome completo del mese in forma autonoma

• Utilizza per la formattazione solo per un mese

Formati di fuso orario

• am-pm: usa solo 1 lettera

• ID zona (V): utilizza solo 2 lettere

• Nomi delle zone (z):

• 1-3 lettere: mostra il nome breve

• 4 lettere: mostra il nome completo

• Non utilizzare 5 o più lettere

Formati offset

• X e x:

• 1 lettera: indica l'ora (+01) o l'ora-minuto (+0130)

• 2 lettere: mostra le ore e i minuti senza i due punti (+0130)

• 3 lettere: mostra l'ora e i minuti con i due punti (+ 01:30)

• 4 lettere: mostra hour-minute-second senza due punti (+013015)

• 5 lettere: mostra hour-minute-second con i due punti (+ 01:30:15)

• X usa 'Z' per l'offset zero

• x usa '+00', '+0000' o '+ 00:00 'per l'offset zero

• O:

• 1 lettera: mostra il formato breve (GMT+8)

Funzioni di formattazione del tipo di dati 191

AWS Clean Rooms Documentazione di riferimento a SQL

• 4 lettere: mostra il modulo completo (GMT+ 08:00)

• Z:

• 1-3 lettere: mostra l'ora e il minuto senza i due punti (+0130)

• 4 lettere: mostra il modulo localizzato completo

• 5 lettere: mostra hour-minute-second con i due punti

Sezioni opzionali

• Usa le parentesi quadre [] per contrassegnare il contenuto opzionale

• Puoi annidare sezioni opzionali

• Tutti i dati validi vengono visualizzati nell'output

• L'input può omettere intere sezioni opzionali

Note

I simboli 'E', 'F', 'q' e 'Q' funzionano solo per la formattazione della data e dell'ora (come
date_format). Non usarli per l'analisi della data e dell'ora (come to_timestamp).

Stringhe di formato numerico

Le seguenti stringhe di formato numerico si applicano a funzioni come TO_NUMBER e TO_CHAR.

• Per esempi di formattazione di stringhe come numeri, consulta TO_NUMBER.

• Per esempi di formattazione di numeri come stringhe, consulta TO_CHAR.

Formato Description

9 Valore numerico con il numero di cifre specifica
to.

0 Valore numerico con zeri iniziali.

. (periodo), D Punto decimale.

Funzioni di formattazione del tipo di dati 192

AWS Clean Rooms Documentazione di riferimento a SQL

Formato Description

, (virgola) Separatore di migliaia.

CC Codice del secolo. Ad esempio, il 21° secolo
è iniziato il 01-01-2001 (supportato solo per
TO_CHAR).

FM Modalità di riempimento. Eliminare spazi vuoti e
zeri.

PR I valore negativo tra parentesi angolari.

S Segno ancorato a un numero.

L Simbolo di valuta nella posizione specificata.

G Separatore di gruppo.

MI Segno meno nella posizione specificata per
numeri inferiori a 0.

PL Segno più nella posizione specificata per
numeri superiori a 0.

SG Segno più o meno nella posizione specificata.

RN Numero romano compreso tra 1 e 3999
(supportato solo per TO_CHAR).

TH o th Suffisso del numero ordinale. Non converte
numeri frazionari o valori inferiori a zero.

Funzioni di data e ora

Le funzioni di data e ora consentono di eseguire un'ampia gamma di operazioni sui dati di data e ora,
ad esempio estrarre parti di una data, eseguire calcoli di date, formattare date e ore e lavorare con la
data e l'ora correnti. Queste funzioni sono essenziali per attività quali l'analisi dei dati, la creazione di
report e la manipolazione dei dati che coinvolgono dati temporali.

Funzioni di data e ora 193

AWS Clean Rooms Documentazione di riferimento a SQL

AWS Clean Rooms supporta le seguenti funzioni di data e ora:

Argomenti

• Funzione ADD_MONTHS

• Funzione CONVERT_TIMEZONE

• Funzione CURRENT_DATE

• Funzione CURRENT_TIMESTAMP

• Funzione DATE_ADD

• Funzione DATE_DIFF

• Funzione DATE_PART

• Funzione DATE_TRUNC

• Funzione DAY

• Funzione DAYOFMONTH

• Funzione DAYOFWEEK

• funzione DAYOFYEAR

• Funzione EXTRACT

• funzione FROM_UTC_TIMESTAMP

• Funzione HOUR

• Funzione MINUTE

• Funzione MONTH

• Funzione SECOND

• Funzione TIMESTAMP

• Funzione TO_TIMESTAMP

• funzione YEAR

• Parti di data per funzioni di data e timestamp

Funzione ADD_MONTHS

ADD_MONTHS aggiunge il numero di mesi specificato a un valore o espressione di data o
timestamp. La funzione DATE_ADD fornisce una funzionalità simile.

Funzioni di data e ora 194

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

ADD_MONTHS({date | timestamp}, integer)

Arguments (Argomenti)

date | timestamp

Un'espressione o una colonna data o timestamp che viene implicitamente convertita in una data o
un timestamp. Se la data è l'ultimo giorno del mese o se il mese risultante è più corto, la funzione
restituisce l'ultimo giorno del mese nel risultato. Per le altre date, il risultato contiene lo stesso
numero di giorni dell'espressione di data.

integer

Un integer positivo o negativo. Utilizza un numero negativo per sottrarre mesi dalle date.

Tipo restituito

TIMESTAMP

Esempio

La query seguente utilizza la funzione ADD_MONTHS in una funzione TRUNC. La funzione TRUNC
rimuove l'ora del giorno dal risultato di ADD_MONTHS. La funzione ADD_MONTHS aggiunge 12
mesi a ogni valore della colonna CALDATE.

select distinct trunc(add_months(caldate, 12)) as calplus12,
trunc(caldate) as cal
from date
order by 1 asc;

 calplus12 | cal
------------+------------
 2009-01-01 | 2008-01-01
 2009-01-02 | 2008-01-02
 2009-01-03 | 2008-01-03
...
(365 rows)

Gli esempi seguenti illustrano il comportamento quando la funzione ADD_MONTHS opera su date
con mesi che hanno un numero di giorni differente.

Funzioni di data e ora 195

AWS Clean Rooms Documentazione di riferimento a SQL

select add_months('2008-03-31',1);

add_months

2008-04-30 00:00:00
(1 row)

select add_months('2008-04-30',1);

add_months

2008-05-31 00:00:00
(1 row)

Funzione CONVERT_TIMEZONE

CONVERT_TIMEZONE converte un timestamp da un fuso orario a un altro. La funzione si regola
automaticamente in base all'ora legale.

Sintassi

CONVERT_TIMEZONE (['source_timezone',] 'target_timezone', 'timestamp')

Arguments (Argomenti)

source_timezone

(Facoltativo) Il fuso orario del timestamp corrente. Il valore predefinito è UTC.

target_timezone

Il fuso orario del nuovo timestamp.

timestamp

Una colonna timestamp o un'espressione che viene implicitamente convertita in un timestamp.

Tipo restituito

TIMESTAMP

Funzioni di data e ora 196

AWS Clean Rooms Documentazione di riferimento a SQL

Esempi

L'esempio seguente converte il valore di timestamp dal fuso orario UTC predefinito in PST.

select convert_timezone('PST', '2008-08-21 07:23:54');

 convert_timezone

2008-08-20 23:23:54

L'esempio seguente converte il valore di timestamp nella colonna LISTTIME dal fuso orario UTC
predefinito in PST. Anche se il timestamp rientra nel periodo dell'ora legale, viene convertito nell'ora
standard in quanto il fuso orario di destinazione è specificato come abbreviazione (PST).

select listtime, convert_timezone('PST', listtime) from listing
where listid = 16;

 listtime | convert_timezone
--------------------+-------------------
2008-08-24 09:36:12 2008-08-24 01:36:12

L'esempio seguente converte una colonna LISTTIME con timestamp dal fuso orario UTC predefinito
al fuso orario. US/Pacific Il fuso orario di destinazione utilizza un nome di fuso orario e il timestamp è
nel periodo dell'ora legale, di conseguenza la funzione restituisce l'ora legale.

select listtime, convert_timezone('US/Pacific', listtime) from listing
where listid = 16;

 listtime | convert_timezone
--------------------+---------------------
2008-08-24 09:36:12 | 2008-08-24 02:36:12

L'esempio seguente converte una stringa di timestamp da EST a PST:

select convert_timezone('EST', 'PST', '20080305 12:25:29');

 convert_timezone

2008-03-05 09:25:29

Funzioni di data e ora 197

AWS Clean Rooms Documentazione di riferimento a SQL

L'esempio seguente converte un timestamp all'ora standard degli Stati Uniti orientali in quanto il fuso
orario di destinazione utilizza un nome di fuso orario (America/New_York) e il timestamp si trova nel
periodo dell'ora standard.

select convert_timezone('America/New_York', '2013-02-01 08:00:00');

 convert_timezone

2013-02-01 03:00:00
(1 row)

L'esempio seguente converte il timestamp nell'ora legale dell'est degli Stati Uniti in quanto il fuso
orario target utilizza un nome di fuso orario (America/New_York) e il timestamp si trova nel periodo
dell'ora legale.

select convert_timezone('America/New_York', '2013-06-01 08:00:00');

 convert_timezone

2013-06-01 04:00:00
(1 row)

L'esempio seguente illustra l'utilizzo di offset.

SELECT CONVERT_TIMEZONE('GMT','NEWZONE +2','2014-05-17 12:00:00') as newzone_plus_2,
CONVERT_TIMEZONE('GMT','NEWZONE-2:15','2014-05-17 12:00:00') as newzone_minus_2_15,
CONVERT_TIMEZONE('GMT','America/Los_Angeles+2','2014-05-17 12:00:00') as la_plus_2,
CONVERT_TIMEZONE('GMT','GMT+2','2014-05-17 12:00:00') as gmt_plus_2;

 newzone_plus_2 | newzone_minus_2_15 | la_plus_2 | gmt_plus_2
---------------------+---------------------+---------------------+---------------------
2014-05-17 10:00:00 | 2014-05-17 14:15:00 | 2014-05-17 10:00:00 | 2014-05-17 10:00:00
(1 row)

Funzione CURRENT_DATE

CURRENT_DATE restituisce una data nel fuso orario della sessione corrente (UTC per impostazione
predefinita) nel formato predefinito:. YYYY-MM-DD

Funzioni di data e ora 198

AWS Clean Rooms Documentazione di riferimento a SQL

Note

CURRENT_DATE restituisce la data di inizio della transazione corrente e non dell'istruzione
corrente. Considera lo scenario quando avvii una transazione contenente più istruzioni alle
23:59 del giorno 01/10/08 e l'istruzione contenente CURRENT_DATE viene eseguita alle
00:00 del 02/10/08. CURRENT_DATE restituisce 10/01/08, non 10/02/08.

Sintassi

CURRENT_DATE

Tipo restituito

DATE

Esempio

L'esempio seguente restituisce la data corrente (nel punto in Regione AWS cui viene eseguita la
funzione).

select current_date;

 date

2008-10-01

Funzione CURRENT_TIMESTAMP

CURRENT_TIMESTAMP restituisce la data e l'ora correnti, incluse la data, l'ora e (facoltativamente) i
millisecondi o i microsecondi.

Questa funzione è utile quando è necessario ottenere la data e l'ora correnti, ad esempio per
registrare il timestamp di un evento, eseguire calcoli basati sul tempo o popolare le colonne. date/
time

Sintassi

current_timestamp()

Funzioni di data e ora 199

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo restituito

La funzione CURRENT_TIMESTAMP restituisce un valore DATE.

Esempio

L'esempio seguente restituisce la data e l'ora correnti nel momento in cui viene eseguita la query,
ovvero il 25 aprile 2020 alle 15:49:11.914 (3:49:11.914 PM).

SELECT current_timestamp();
 2020-04-25 15:49:11.914

L'esempio seguente recupera la data e l'ora correnti per ogni riga della tabella. squirrels

SELECT current_timestamp() FROM squirrels

Funzione DATE_ADD

Restituisce la data corrispondente a num_days dopo start_date.

Sintassi

date_add(start_date, num_days)

Arguments (Argomenti)

data_iniziale

Il valore della data di inizio.

num_days

Il numero di giorni da aggiungere (numero intero). Un numero positivo aggiunge giorni, un numero
negativo sottrae giorni.

Tipo restituito

DATE

Esempi

L'esempio seguente aggiunge un giorno a una data:

Funzioni di data e ora 200

AWS Clean Rooms Documentazione di riferimento a SQL

SELECT date_add('2016-07-30', 1);

Result:
2016-07-31

L'esempio seguente aggiunge più giorni.

SELECT date_add('2016-07-30', 5);

Result:
2016-08-04

Note per l'utilizzo

Questa documentazione riguarda la funzione DATE_ADD di Spark SQL, che fornisce un'interfaccia
più semplice per aggiungere giorni alle date rispetto ad altre varianti SQL. Per aggiungere altri
intervalli come mesi o anni, potrebbero essere necessarie funzioni diverse.

Funzione DATE_DIFF

DATE_DIFF restituisce la differenza tra le parti relative alla data di due espressioni di data o ora.

Sintassi

date_diff(endDate, startDate)

Arguments (Argomenti)

endDate

Un'espressione DATE.

startDate

Un'espressione DATE.

Tipo restituito

BIGINT

Funzioni di data e ora 201

AWS Clean Rooms Documentazione di riferimento a SQL

Esempi con una colonna DATE

Nell'esempio seguente viene rilevata la differenza in numero di settimane tra due valori di data
letterali.

select date_diff(week,'2009-01-01','2009-12-31') as numweeks;

numweeks

52
(1 row)

Nell'esempio seguente viene rilevata la differenza in ore tra due valori di data letterali. Quando non si
fornisce il valore dell'ora per una data, il valore predefinito è 00:00:00.

select date_diff(hour, '2023-01-01', '2023-01-03 05:04:03');

date_diff

53
(1 row)

Nell'esempio seguente viene rilevata la differenza in giorni tra due valori TIMESTAMETZ letterali.

Select date_diff(days, 'Jun 1,2008 09:59:59 EST', 'Jul 4,2008 09:59:59 EST')

date_diff

33

Nell'esempio seguente viene rilevata la differenza, in giorni, tra due date nella stessa riga di una
tabella.

select * from date_table;

start_date | end_date
-----------+-----------
2009-01-01 | 2009-03-23
2023-01-04 | 2024-05-04
(2 rows)

select date_diff(day, start_date, end_date) as duration from date_table;

Funzioni di data e ora 202

AWS Clean Rooms Documentazione di riferimento a SQL

duration

 81
 486
(2 rows)

Nel seguente esempio viene trovata la differenza, in numero di trimestri, tra un valore letterale nel
passato e la data odierna. Questo esempio presuppone che la data corrente è il 5 giugno 2008. È
possibile assegnare un nome completo o abbreviato alle parti di data. Il nome di colonna predefinito
per la funzione DATE_DIFF è DATE_DIFF.

select date_diff(qtr, '1998-07-01', current_date);

date_diff

40
(1 row)

In questo esempio viene eseguito il join delle tabelle SALES e LISTING per calcolare quanti giorni
dopo la pubblicazione sono stati venduti i biglietti per i risultati da 1000 a 1005. L'attesa più lunga per
la vendita di questi elenchi è di 15 giorni e quella più breve è inferiore a 1 giorno (0 giorni).

select priceperticket,
date_diff(day, listtime, saletime) as wait
from sales, listing where sales.listid = listing.listid
and sales.listid between 1000 and 1005
order by wait desc, priceperticket desc;

priceperticket | wait
---------------+------
 96.00 | 15
 123.00 | 11
 131.00 | 9
 123.00 | 6
 129.00 | 4
 96.00 | 4
 96.00 | 0
(7 rows)

Questo esempio calcola il numero medio di ore di attesa dei venditori per tutte le vendite di biglietti.

Funzioni di data e ora 203

AWS Clean Rooms Documentazione di riferimento a SQL

select avg(date_diff(hours, listtime, saletime)) as avgwait
from sales, listing
where sales.listid = listing.listid;

avgwait

465
(1 row)

Esempi con una colonna TIME

La tabella di esempio seguente TIME_TEST contiene una colonna TIME_VAL (tipo TIME) con tre
valori inseriti.

select time_val from time_test;

time_val

20:00:00
00:00:00.5550
00:58:00

Nell'esempio seguente viene rilevata la differenza di numero di ore tra la colonna TIME_VAL e un
valore letterale temporale.

select date_diff(hour, time_val, time '15:24:45') from time_test;

 date_diff

 -5
 15
 15

Nell'esempio seguente viene rilevata la differenza in numero di minuti tra due valori letterali temporali.

select date_diff(minute, time '20:00:00', time '21:00:00') as nummins;

nummins

60

Funzioni di data e ora 204

AWS Clean Rooms Documentazione di riferimento a SQL

Esempi con una colonna TIMETZ

La tabella di esempio seguente TIMETZ_TEST contiene una colonna TIMETZ_VAL (tipo TIMETZ)
con tre valori inseriti.

select timetz_val from timetz_test;

timetz_val

04:00:00+00
00:00:00.5550+00
05:58:00+00

Nell'esempio seguente vengono individuate le differenze nel numero di ore, tra un letterale TIMETZ e
timetz_val.

select date_diff(hours, timetz '20:00:00 PST', timetz_val) as numhours from
 timetz_test;

numhours

0
-4
1

Nell'esempio seguente viene rilevata la differenza in numero di ore tra due valori TIMETZ letterali.

select date_diff(hours, timetz '20:00:00 PST', timetz '00:58:00 EST') as numhours;

numhours

1

Funzione DATE_PART

DATE_PART estrae valori di parte di data da un'espressione. DATE_PART è un sinonimo della
funzione PGDATE_PART.

Sintassi

datepart(field, source)

Funzioni di data e ora 205

AWS Clean Rooms Documentazione di riferimento a SQL

Arguments (Argomenti)

campo

Quale parte del sorgente deve essere estratta e i valori di stringa supportati sono gli stessi dei
campi della funzione equivalente EXTRACT.

source (origine)

Una colonna DATE o INTERVAL da cui estrarre il campo.

Tipo restituito

Se il campo è 'SECOND', un valore DECIMALE (8, 6). In tutti gli altri casi, un numero INTERO.

Esempio

L'esempio seguente estrae il giorno dell'anno (DOY) da un valore di data. L'output mostra che il
giorno dell'anno per la data «2019-08-12" è. 224 Ciò significa che il 12 agosto 2019 è il 224° giorno
dell'anno 2019.

SELECT datepart('doy', DATE'2019-08-12');
 224

Funzione DATE_TRUNC

La funzione DATE_TRUNC tronca un'espressione di timestamp o letterale in base alla parte di data
specificata, ad esempio ora, settimana o mese.

Sintassi

date_trunc(format, datetime)

Arguments (Argomenti)

format

Il formato che rappresenta l'unità in cui troncare. I formati validi sono:

• «YEAR», «YYYY»: tronca alla prima data dell'anno in cui cade la ts, la parte temporale sarà
azzerata

Funzioni di data e ora 206

AWS Clean Rooms Documentazione di riferimento a SQL

• «QUARTER»: viene troncato alla prima data del trimestre in cui rientra la ts, la parte temporale
verrà azzerata

• «MONTH», «MM», «MON»: tronca alla prima data del mese in cui cade ts, la parte temporale
verrà azzerata

• «SETTIMANA»: viene troncata al lunedì della settimana in cui cade la ts, la parte temporale
verrà azzerata

• «DAY», «DD»: azzera la parte temporale

• «HOUR»: azzera il minuto e il secondo con la parte frazionaria

• «MINUTO»: azzera il secondo con la parte frazionaria

• «SECONDO»: azzera la seconda parte della frazione

• «MILLISECOND»: azzera i microsecondi

• «MICROSECOND»: tutto rimane

ts

Un valore datetime

Tipo restituito

Restituisce il timestamp ts troncato all'unità specificata dal modello di formato

Esempi

L'esempio seguente tronca un valore di data all'inizio dell'anno. L'output mostra che la data
«2015-03-05" è stata troncata a «2015-01-01", che è l'inizio dell'anno 2015.

SELECT date_trunc('YEAR', '2015-03-05');

 date_trunc

2015-01-01

Funzione DAY

La funzione DAY restituisce il giorno del mese della data/ora.

Le funzioni di estrazione della data sono utili quando è necessario lavorare con componenti specifici
di una data o di un timestamp, ad esempio quando si eseguono calcoli basati sulla data, si filtrano i
dati o si formattano i valori delle date.

Funzioni di data e ora 207

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

day(date)

Arguments (Argomenti)

data

Un'espressione DATE o TIMESTAMP.

Valori restituiti

La funzione DAY restituisce un valore INTEGER.

Esempi

L'esempio seguente estrae il giorno del mese (30) dalla data di input. '2009-07-30'

SELECT day('2009-07-30');
 30

L'esempio seguente estrae il giorno del mese dalla birthday colonna della squirrels tabella e
restituisce i risultati come output dell'istruzione SELECT. L'output di questa query sarà un elenco di
valori giornalieri, uno per ogni riga della squirrels tabella, che rappresentano il giorno del mese
per il compleanno di ogni scoiattolo.

SELECT day(birthday) FROM squirrels

Funzione DAYOFMONTH

La funzione DAYOFMONTH restituisce il giorno del mese di date/timestamp (un valore compreso tra
1 e 31, a seconda del mese e dell'anno).

La funzione DAYOFMONTH è simile alla funzione DAY, ma hanno nomi e comportamenti
leggermente diversi. La funzione DAY è più comunemente utilizzata, ma la funzione DAYOFMONTH
può essere utilizzata come alternativa. Questo tipo di query può essere utile quando è necessario
eseguire analisi o filtri basati sulla data su una tabella che contiene dati relativi a data o ora, ad
esempio per estrarre componenti specifici di una data per ulteriori elaborazioni o report.

Funzioni di data e ora 208

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

dayofmonth(date)

Arguments (Argomenti)

data

Un'espressione DATE o TIMESTAMP.

Valori restituiti

La funzione DAYOFMONTH restituisce un valore INTEGER.

Esempio

L'esempio seguente estrae il giorno del mese (30) dalla data di input. '2009-07-30'

SELECT dayofmonth('2009-07-30');
 30

L'esempio seguente applica la funzione DAYOFMONTH alla birthday colonna della tabella.
squirrels Per ogni riga della squirrels tabella, il giorno del mese dalla birthday colonna verrà
estratto e restituito come output dell'istruzione SELECT. L'output di questa query sarà un elenco di
valori giornalieri, uno per ogni riga della squirrels tabella, che rappresentano il giorno del mese
per il compleanno di ogni scoiattolo.

SELECT dayofmonth(birthday) FROM squirrels

Funzione DAYOFWEEK

La funzione DAYOFWEEK accetta una data o un timestamp come input e restituisce il giorno della
settimana come numero (1 per domenica, 2 per lunedì,..., 7 per sabato).

Questa funzione di estrazione della data è utile quando è necessario utilizzare componenti specifici di
una data o di un timestamp, ad esempio quando si eseguono calcoli basati sulla data, si filtrano i dati
o si formattano i valori delle date.

Funzioni di data e ora 209

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

dayofweek(date)

Arguments (Argomenti)

data

Un'espressione DATE o TIMESTAMP.

Valori restituiti

La funzione DAYOFWEEK restituisce un numero INTERO dove

1 = domenica

2 = lunedì

3 = martedì

4 = mercoledì

5 = giovedì

6 = venerdì

7 = sabato

Esempi

L'esempio seguente estrae il giorno della settimana da questa data, che è 5 (che rappresenta
giovedì).

SELECT dayofweek('2009-07-30');
 5

L'esempio seguente estrae il giorno della settimana dalla birthday colonna della squirrels
tabella e restituisce i risultati come output dell'istruzione SELECT. L'output di questa query sarà
un elenco di valori del giorno della settimana, uno per ogni riga della squirrels tabella, che
rappresentano il giorno della settimana per il compleanno di ogni scoiattolo.

Funzioni di data e ora 210

AWS Clean Rooms Documentazione di riferimento a SQL

SELECT dayofweek(birthday) FROM squirrels

funzione DAYOFYEAR

La funzione DAYOFYEAR è una funzione di estrazione della data che accetta una data o un
timestamp come input e restituisce il giorno dell'anno (un valore compreso tra 1 e 366, a seconda
dell'anno e se si tratta di un anno bisestile).

Questa funzione è utile quando è necessario lavorare con componenti specifici di una data o di un
timestamp, ad esempio quando si eseguono calcoli basati sulla data, si filtrano i dati o si formattano i
valori delle date.

Sintassi

dayofyear(date)

Arguments (Argomenti)

data

Un'espressione DATE o TIMESTAMP.

Valori restituiti

La funzione DAYOFYEAR restituisce un numero INTERO (compreso tra 1 e 366, a seconda dell'anno
e se si tratta di un anno bisestile).

Esempi

L'esempio seguente estrae il giorno dell'anno () dalla data di input. 100 '2016-04-09'

SELECT dayofyear('2016-04-09');
 100

L'esempio seguente estrae il giorno dell'anno dalla birthday colonna della squirrels tabella e
restituisce i risultati come output dell'istruzione SELECT.

SELECT dayofyear(birthday) FROM squirrels

Funzioni di data e ora 211

AWS Clean Rooms Documentazione di riferimento a SQL

Funzione EXTRACT

La funzione EXTRACT restituisce una parte di data o di ora da un valore TIMESTAMP,
TIMESTAMPTZ, TIME o TIMETZ. Gli esempi includono un giorno, mese, ora, minuto, secondo,
millisecondo o microsecondo da un timestamp.

Sintassi

EXTRACT(datepart FROM source)

Arguments (Argomenti)

datepart

Il sottocampo di una data o ora da estrarre, ad esempio un giorno, un mese, un anno, un'ora,
un minuto, un secondo, un millisecondo o un microsecondo. Per un elenco dei valori possibili,
consultare Parti di data per funzioni di data e timestamp.

source (origine)

Una colonna o un'espressione che restituisce un tipo di dati TIMESTAMP, TIMESTAMPTZ, TIME
o TIMETZ.

Tipo restituito

INTEGER se il valore di origine restituisce un tipo di dati TIMESTAMP, TIME o TIMETZ.

DOUBLE PRECISION se il valore di origine restituisce il tipo di dati TIMESTAMPTZ.

Esempi con TIME

La tabella di esempio seguente TIME_TEST ha una colonna TIME_VAL (tipo TIME) con tre valori
inseriti.

select time_val from time_test;

time_val

20:00:00
00:00:00.5550

Funzioni di data e ora 212

AWS Clean Rooms Documentazione di riferimento a SQL

00:58:00

Nell'esempio seguente vengono estratti i minuti da ogni timetz_val.

select extract(minute from time_val) as minutes from time_test;

minutes

 0
 0
 58

Nell'esempio seguente vengono estratte le ore da ogni time_val.

select extract(hour from time_val) as hours from time_test;

hours

 20
 0
 0

funzione FROM_UTC_TIMESTAMP

La funzione FROM_UTC_TIMESTAMP converte la data di input da UTC (Coordinated Universal
Time) al fuso orario specificato.

Questa funzione è utile quando è necessario convertire i valori di data e ora da UTC a un fuso orario
specifico. Questo può essere importante quando si lavora con dati che provengono da diverse parti
del mondo e devono essere presentati nell'ora locale appropriata.

Sintassi

from_utc_timestamp(timestamp, timezone

Arguments (Argomenti)

timestamp

Un'espressione TIMESTAMP con un timestamp UTC.

Funzioni di data e ora 213

AWS Clean Rooms Documentazione di riferimento a SQL

timezone

Un'espressione STRING che è un fuso orario valido in cui convertire la data o il timestamp di
input.

Valori restituiti

La funzione FROM_UTC_TIMESTAMP restituisce un TIMESTAMP.

Esempio

L'esempio seguente converte la data di input da UTC al fuso orario specificato ('Asia/Seoul'), che
in questo caso è 9 ore prima dell'UTC. L'output risultante è la data e l'ora nel fuso orario di Seoul, che
è. 2016-08-31 09:00:00

SELECT from_utc_timestamp('2016-08-31', 'Asia/Seoul');
 2016-08-31 09:00:00

Funzione HOUR

La funzione HOUR è una funzione di estrazione temporale che richiede un orario o un timestamp
come input e restituisce il componente orario (un valore compreso tra 0 e 23).

Questa funzione di estrazione temporale è utile quando è necessario lavorare con componenti
specifici di un orario o di un timestamp, ad esempio quando si eseguono calcoli basati sul tempo, si
filtrano i dati o si formattano i valori temporali.

Sintassi

hour(timestamp)

Arguments (Argomenti)

timestamp

UN'ESPRESSIONE TIMESTAMP.

Valori restituiti

La funzione HOUR restituisce un valore INTEGER.

Funzioni di data e ora 214

AWS Clean Rooms Documentazione di riferimento a SQL

Esempio

L'esempio seguente estrae il componente hour (12) dal timestamp di input. '2009-07-30
12:58:59'

SELECT hour('2009-07-30 12:58:59');
 12

Funzione MINUTE

La funzione MINUTE è una funzione di estrazione temporale che richiede un orario o un timestamp
come input e restituisce il componente dei minuti (un valore compreso tra 0 e 60).

Sintassi

minute(timestamp)

Arguments (Argomenti)

timestamp

Un'espressione TIMESTAMP o una STRING di un formato di timestamp valido.

Valori restituiti

La funzione MINUTE restituisce un valore INTEGER.

Esempio

L'esempio seguente estrae il componente minute (58) dal timestamp di input. '2009-07-30
12:58:59'

SELECT minute('2009-07-30 12:58:59');
 58

Funzione MONTH

La funzione MONTH è una funzione di estrazione temporale che richiede un orario o un timestamp
come input e restituisce il componente del mese (un valore compreso tra 0 e 12).

Funzioni di data e ora 215

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

month(date)

Arguments (Argomenti)

data

Un'espressione TIMESTAMP o una STRING di un formato di timestamp valido.

Valori restituiti

La funzione MONTH restituisce un valore INTEGER.

Esempio

L'esempio seguente estrae il componente month (7) dal timestamp di input. '2016-07-30'

SELECT month('2016-07-30');
 7

Funzione SECOND

La funzione SECOND è una funzione di estrazione temporale che richiede un orario o un timestamp
come input e restituisce il secondo componente (un valore compreso tra 0 e 60).

Sintassi

second(timestamp)

Arguments (Argomenti)

timestamp

Un'espressione TIMESTAMP.

Valori restituiti

La funzione SECOND restituisce un valore INTEGER.

Funzioni di data e ora 216

AWS Clean Rooms Documentazione di riferimento a SQL

Esempio

L'esempio seguente estrae il secondo componente (59) dal timestamp di input. '2009-07-30
12:58:59'

SELECT second('2009-07-30 12:58:59');
 59

Funzione TIMESTAMP

La funzione TIMESTAMP accetta un valore (in genere un numero) e lo converte in un tipo di dati
timestamp.

Questa funzione è utile quando è necessario convertire un valore numerico che rappresenta un'ora
o una data in un tipo di dati timestamp. Ciò può essere utile quando si lavora con dati archiviati in un
formato numerico, ad esempio timestamp Unix o epoch time.

Sintassi

timestamp(expr)

Arguments (Argomenti)

expr

Qualsiasi espressione che può essere trasmessa a TIMESTAMP.

Valori restituiti

La funzione TIMESTAMP restituisce un TIMESTAMP.

Esempio

L'esempio seguente converte un timestamp numerico Unix (1632416400) nel tipo di dati timestamp
corrispondente: 22 settembre 2021 alle 12:00:00 UTC.

SELECT timestamp(1632416400);
 2021-09-22 12:00:00 UTC

Funzioni di data e ora 217

AWS Clean Rooms Documentazione di riferimento a SQL

Funzione TO_TIMESTAMP

TO_TIMESTAMP converte una stringa TIMESTAMP in TIMESTAMPTZ.

Sintassi

to_timestamp (timestamp)

to_timestamp (timestamp, format)

Arguments (Argomenti)

timestamp

Una stringa di timestamp o un tipo di dati che può essere inserito in una stringa di timestamp.

format

Una stringa letterale che corrisponde ai modelli datetime di Spark. Per modelli datetime validi, vedi
Datetime Patterns for Formatting and Parsing.

Tipo restituito

TIMESTAMP

Esempi

L'esempio seguente dimostra l'utilizzo della funzione TO_TIMESTAMP per convertire una stringa
TIMESTAMP in un TIMESTAMP.

select current_timestamp() as timestamp, to_timestamp(current_timestamp(), 'YYYY-MM-DD
 HH24:MI:SS') as second;

timestamp | second
-------------------------- ----------------------
2021-04-05 19:27:53.281812 | 2021-04-05 19:27:53+00

È possibile passare a TO_TIMESTAMP parte di una data. Le parti rimanenti della data sono
impostate sui valori predefiniti. L'orario è incluso nell'output:

SELECT TO_TIMESTAMP('2017','YYYY');

Funzioni di data e ora 218

https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html

AWS Clean Rooms Documentazione di riferimento a SQL

to_timestamp

2017-01-01 00:00:00+00

La seguente istruzione SQL converte la stringa '2011-12-18 24:38:15 'in un TIMESTAMP. Il risultato è
un TIMESTAMP che cade il giorno successivo perché il numero di ore è superiore a 24 ore:

select to_timestamp('2011-12-18 24:38:15', 'YYYY-MM-DD HH24:MI:SS');

to_timestamp

2011-12-19 00:38:15+00

funzione YEAR

La funzione YEAR è una funzione di estrazione della data che accetta una data o un timestamp come
input e restituisce il componente dell'anno (un numero a quattro cifre).

Sintassi

year(date)

Arguments (Argomenti)

data

Un'espressione DATE o TIMESTAMP.

Valori restituiti

La funzione YEAR restituisce un valore INTEGER.

Esempio

L'esempio seguente estrae il componente year (2016) dalla data di input. '2016-07-30'

SELECT year('2016-07-30');
 2016

Funzioni di data e ora 219

AWS Clean Rooms Documentazione di riferimento a SQL

L'esempio seguente estrae il componente year dalla birthday colonna della squirrels tabella e
restituisce i risultati come output dell'istruzione SELECT. L'output di questa query sarà un elenco di
valori annuali, uno per ogni riga della squirrels tabella, che rappresentano l'anno di nascita di ogni
scoiattolo.

SELECT year(birthday) FROM squirrels

Parti di data per funzioni di data e timestamp

La tabella seguente identifica i nomi e le abbreviazioni di parti di data e parti di ora accettati come
argomenti per le seguenti funzioni:

• DATE_ADD

• DATE_DIFF

• DATE_PART

• EXTRACT

Parte data o parte ora Abbreviazioni

millennium, millennia mil, mils

century, centuries c, cent, cents

decade, decades dec, decs

epoch epoca (supportato da EXTRACT)

year, years y, yr, yrs

quarter, quarters qtr, qtrs

month, months mon, mons

week, weeks w

day of week dayofweek, dow, dw, weekday (supportate da DATE_PART e
Funzione EXTRACT)

Restituisce un intero compreso tra 0 e 6, a partire da domenica.

Funzioni di data e ora 220

AWS Clean Rooms Documentazione di riferimento a SQL

Parte data o parte ora Abbreviazioni

Note

La parte di data DOW si comporta in modo diverso
rispetto alla parte di data day of week (D) utilizzata
per stringhe in formato datetime. D si basa su numeri
interi 1-7, dove domenica è 1. Per ulteriori informazioni,
consulta Stringhe di formato datetime.

day of year dayofyear, doy, dy, yearday (supportato da EXTRACT)

day, days d

hour, hours h, hr, hrs

minute, minutes m, min, mins

second, seconds s, sec, secs

millisecond, milliseconds ms, msec, msecs, msecond, mseconds, millisec, millisecs,
millisecon

microsecond, microseconds microsec, microsecs, microsecond, usecond, useconds, us, usec,
usecs

timezone, timezone_hour,
timezone_minute

Supportato da EXTRACT solo per il timestamp con fuso orario
(TIMESTAMPTZ).

Variazioni nei risultati con secondi, millisecondi e microsecondi

Differenze minori nei risultati delle query si hanno quando funzioni di data differenti specificano
secondi, millisecondi o microsecondi come parti di data:

• La funzione EXTRACT restituisce interi solo per la parte di data specificata, ignorando parti di dati
di livello superiore e inferiore. Se la parte di data specificata è secondi, millisecondi e microsecondi
non sono inclusi nel risultato. Se la parte di data specificata è millisecondi, secondi e microsecondi
non sono inclusi nel risultato. Se la parte di data specificata è microsecondi, secondi e millisecondi
non sono inclusi nel risultato.

Funzioni di data e ora 221

AWS Clean Rooms Documentazione di riferimento a SQL

• La funzione DATE_PART restituisce la parte di secondi completa del timestamp,
indipendentemente dalla parte di data specificata, restituendo un valore decimale o un intero in
base alle necessità.

Note su CENTURY, EPOCH, DECADE e MIL

CENTURY o CENTURIES

AWS Clean Rooms interpreta un CENTURY in modo che inizi con l'anno ## #1 e finisca con
l'anno: ###0

select extract (century from timestamp '2000-12-16 12:21:13');
date_part

20
(1 row)

select extract (century from timestamp '2001-12-16 12:21:13');
date_part

21
(1 row)

EPOCA

L' AWS Clean Rooms implementazione di EPOCH è relativa al 1970-01-01 00:00:00.000
000 indipendentemente dal fuso orario in cui risiede il cluster. È possibile che sia necessario
compensare i risultati della differenza in ore a seconda del fuso orario in cui si trova il cluster.

DECADE o DECADES

AWS Clean Rooms interpreta DECADE o DECADES DATEPART in base al calendario comune.
Ad esempio, poiché il calendario comune inizia dall'anno 1, il primo decennio (decennio 1) va da
0001-01-01 a 0009-12-31 e il secondo decennio (decennio 2) va da 0010-01-01 a 0019-12-31. Ad
esempio, il decennio 201 va da 2000-01-01 a 2009-12-31:

select extract(decade from timestamp '1999-02-16 20:38:40');
date_part

200
(1 row)

Funzioni di data e ora 222

AWS Clean Rooms Documentazione di riferimento a SQL

select extract(decade from timestamp '2000-02-16 20:38:40');
date_part

201
(1 row)

select extract(decade from timestamp '2010-02-16 20:38:40');
date_part

202
(1 row)

MIL o MILS

AWS Clean Rooms interpreta un MIL in modo che inizi con il primo giorno dell'anno #001 e finisca
con l'ultimo giorno dell'anno: #000

select extract (mil from timestamp '2000-12-16 12:21:13');
date_part

2
(1 row)

select extract (mil from timestamp '2001-12-16 12:21:13');
date_part

3
(1 row)

Funzioni di crittografia e decrittografia

Le funzioni di crittografia e decrittografia aiutano gli sviluppatori SQL a proteggere i dati sensibili
dall'accesso non autorizzato o dall'uso improprio convertendoli tra un formato di testo semplice
leggibile e un formato di testo cifrato illeggibile.

AWS Clean Rooms Spark SQL supporta le seguenti funzioni di crittografia e decrittografia:

Argomenti

• Funzione AES_ENCRYPT

• Funzione AES_DECRYPT

Funzioni di crittografia e decrittografia 223

AWS Clean Rooms Documentazione di riferimento a SQL

Funzione AES_ENCRYPT

La funzione AES_ENCRYPT viene utilizzata per crittografare i dati utilizzando l'algoritmo Advanced
Encryption Standard (AES).

Sintassi

aes_encrypt(expr, key[, mode[, padding[, iv[, aad]]]])

Argomenti

expr

Il valore binario da crittografare.

key

La passphrase da utilizzare per crittografare i dati.

Sono supportate lunghezze di chiave di 16, 24 e 32 bit.

modalità

Speciifica quale modalità di cifratura a blocchi deve essere utilizzata per crittografare i messaggi.

Modalità valide: ECB (Electronic CodeBook), GCM (Galois/Counter Mode), CBC (Cipher-Block
Chaining).

imbottitura

Specifica come riempire i messaggi la cui lunghezza non è un multiplo della dimensione del
blocco.

Valori validi: PKCS, NONE, DEFAULT.

Il padding DEFAULT indica PKCS (Public Key Cryptography Standards) per ECB, NONE per
GCM e PKCS per CBC.

Le combinazioni supportate di (mode, padding) sono ('ECB', 'PKCS'), ('GCM', 'NONE') e ('CBC',
'PKCS').

iv

Vettore di inizializzazione opzionale (IV). Supportato solo per le modalità CBC e GCM.

Funzioni di crittografia e decrittografia 224

AWS Clean Rooms Documentazione di riferimento a SQL

Valori validi: 12 byte di lunghezza per GCM e 16 byte per CBC.

aad

Dati autenticati aggiuntivi opzionali (AAD). Supportato solo per la modalità GCM. Può
essere qualsiasi input in formato libero e deve essere fornito sia per la crittografia che per la
decrittografia.

Tipo restituito

La funzione AES_ENCRYPT restituisce un valore crittografato di expr utilizzando AES in una
determinata modalità con il padding specificato.

Esempi

L'esempio seguente mostra come utilizzare la funzione Spark SQL AES_ENCRYPT per crittografare
in modo sicuro una stringa di dati (in questo caso, la parola «Spark») utilizzando una chiave di
crittografia specificata. Il testo cifrato risultante viene quindi codificato in Base64 per semplificare
l'archiviazione o la trasmissione.

SELECT base64(aes_encrypt('Spark', 'abcdefghijklmnop'));
 4A5jOAh9FNGwoMeuJukfllrLdHEZxA2DyuSQAWz77dfn

L'esempio seguente mostra come utilizzare la funzione Spark SQL AES_ENCRYPT per crittografare
in modo sicuro una stringa di dati (in questo caso, la parola «Spark») utilizzando una chiave di
crittografia specificata. Il testo cifrato risultante viene quindi rappresentato in formato esadecimale,
che può essere utile per attività come l'archiviazione, la trasmissione o il debug dei dati.

SELECT hex(aes_encrypt('Spark', '0000111122223333'));
 83F16B2AA704794132802D248E6BFD4E380078182D1544813898AC97E709B28A94

L'esempio seguente mostra come utilizzare la funzione Spark SQL AES_ENCRYPT per crittografare
in modo sicuro una stringa di dati (in questo caso, «Spark SQL») utilizzando una chiave di crittografia,
una modalità di crittografia e una modalità di riempimento specificate. Il testo cifrato risultante viene
quindi codificato in Base64 per semplificare l'archiviazione o la trasmissione.

SELECT base64(aes_encrypt('Spark SQL', '1234567890abcdef', 'ECB', 'PKCS'));
 3lmwu+Mw0H3fi5NDvcu9lg==

Funzioni di crittografia e decrittografia 225

AWS Clean Rooms Documentazione di riferimento a SQL

Funzione AES_DECRYPT

La funzione AES_DECRYPT viene utilizzata per decrittografare i dati utilizzando l'algoritmo Advanced
Encryption Standard (AES).

Sintassi

aes_decrypt(expr, key[, mode[, padding[, aad]]])

Argomenti

expr

Il valore binario da decifrare.

key

La passphrase da utilizzare per decrittografare i dati.

La passphrase deve corrispondere alla chiave utilizzata originariamente per produrre il valore
crittografato ed essere lunga 16, 24 o 32 byte.

modalità

Speciifica quale modalità di cifratura a blocchi deve essere utilizzata per decrittografare i
messaggi.

Modalità valide: ECB, GCM, CBC.

imbottitura

Specifica come riempire i messaggi la cui lunghezza non è un multiplo della dimensione del
blocco.

Valori validi: PKCS, NONE, DEFAULT.

Il padding DEFAULT indica PKCS per ECB, NONE per GCM e PKCS per CBC.

- aad

Dati autenticati aggiuntivi opzionali (AAD). Supportato solo per la modalità GCM. Può
essere qualsiasi input in formato libero e deve essere fornito sia per la crittografia che per la
decrittografia.

Funzioni di crittografia e decrittografia 226

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo restituito

Restituisce un valore decrittografato di expr utilizzando AES in modalità con padding.

Esempi

L'esempio seguente mostra come utilizzare la funzione Spark SQL AES_ENCRYPT per crittografare
in modo sicuro una stringa di dati (in questo caso, la parola «Spark») utilizzando una chiave di
crittografia specificata. Il testo cifrato risultante viene quindi codificato in Base64 per semplificare
l'archiviazione o la trasmissione.

SELECT base64(aes_encrypt('Spark', 'abcdefghijklmnop'));
 4A5jOAh9FNGwoMeuJukfllrLdHEZxA2DyuSQAWz77dfn

L'esempio seguente dimostra come utilizzare la funzione Spark SQL AES_DECRYPT per
decrittografare dati precedentemente crittografati e codificati in Base64. Il processo di decrittografia
richiede la chiave e i parametri di crittografia corretti (modalità di crittografia e modalità padding) per
ripristinare correttamente i dati di testo in chiaro originali.

SELECT aes_decrypt(unbase64('3lmwu+Mw0H3fi5NDvcu9lg=='), '1234567890abcdef', 'ECB',
 'PKCS');
 Spark SQL

Funzioni hash

Una funzione hash è una funzione matematica che converte un valore di input numerico in un altro
valore.

AWS Clean Rooms Spark SQL supporta le seguenti funzioni hash:

Argomenti

• MD5 funzione

• Funzione SHA

• SHA1 funzione

• SHA2 funzione

• HASH64 funzione xx

Funzioni hash 227

AWS Clean Rooms Documentazione di riferimento a SQL

MD5 funzione

Utilizza la funzione hash MD5 crittografica per convertire una stringa di lunghezza variabile in una
stringa di 32 caratteri che è una rappresentazione testuale del valore esadecimale di un checksum a
128 bit.

Sintassi

MD5(string)

Argomenti

stringa

Una stringa di lunghezza variabile.

Tipo restituito

La MD5 funzione restituisce una stringa di 32 caratteri che è una rappresentazione testuale del valore
esadecimale di un checksum a 128 bit.

Esempi

L'esempio seguente mostra il valore a 128 bit per la stringa "AWS Clean Rooms":

select md5('AWS Clean Rooms');
md5

f7415e33f972c03abd4f3fed36748f7a
(1 row)

Funzione SHA

Sinonimo di funzione. SHA1

Consultare SHA1 funzione.

SHA1 funzione

La SHA1 funzione utilizza la funzione hash SHA1 crittografica per convertire una stringa di lunghezza
variabile in una stringa di 40 caratteri che è una rappresentazione testuale del valore esadecimale di
un checksum a 160 bit.

Funzioni hash 228

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

SHA1 è sinonimo di. Funzione SHA

SHA1(string)

Argomenti

stringa

Una stringa di lunghezza variabile.

Tipo restituito

La SHA1 funzione restituisce una stringa di 40 caratteri che è una rappresentazione testuale del
valore esadecimale di un checksum a 160 bit.

Esempio

L'esempio seguente restituisce il valore a 160 bit per la parola 'AWS Clean Rooms':

select sha1('AWS Clean Rooms');

SHA2 funzione

La SHA2 funzione utilizza la funzione hash SHA2 crittografica per convertire una stringa di lunghezza
variabile in una stringa di caratteri. La stringa di caratteri è una rappresentazione testuale del valore
esadecimale del checksum con il numero specificato di bit.

Sintassi

SHA2(string, bits)

Argomenti

stringa

Una stringa di lunghezza variabile.

integer

Numero di bit nelle funzioni hash. I valori validi sono 0 (uguale a 256), 224, 256, 384 e 512.

Funzioni hash 229

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo restituito

La SHA2 funzione restituisce una stringa di caratteri che è una rappresentazione testuale del valore
esadecimale del checksum o una stringa vuota se il numero di bit non è valido.

Esempio

L'esempio seguente restituisce il valore a 256 bit per la parola 'AWS Clean Rooms':

select sha2('AWS Clean Rooms', 256);

HASH64 funzione xx

La funzione xxhash64 restituisce un valore hash a 64 bit degli argomenti.

La funzione xxhash64 () è una funzione hash non crittografica progettata per essere veloce ed
efficiente. Viene spesso utilizzata nelle applicazioni di elaborazione e archiviazione dei dati, in
cui è necessario un identificatore univoco per un dato, ma non è necessario mantenere segreto il
contenuto esatto dei dati.

Nel contesto di una query SQL, la funzione xxhash64 () può essere utilizzata per vari scopi, ad
esempio:

• Generazione di un identificatore univoco per una riga in una tabella

• Partizionamento dei dati in base a un valore hash

• Implementazione di strategie personalizzate di indicizzazione o distribuzione dei dati

Il caso d'uso specifico dipenderebbe dai requisiti dell'applicazione e dai dati da elaborare.

Sintassi

xxhash64(expr1, expr2, ...)

Argomenti

espr (1)

Un'espressione di qualsiasi tipo.

Funzioni hash 230

AWS Clean Rooms Documentazione di riferimento a SQL

expr 2

Un'espressione di qualsiasi tipo.

Valori restituiti

Restituisce un valore hash a 64 bit degli argomenti (BIGINT). L'hash seed è 42.

Esempio

L'esempio seguente genera un valore hash a 64 bit (5602566077635097486) in base all'input fornito.
Il primo argomento è un valore di stringa, in questo caso la parola «Spark». Il secondo argomento è
un array contenente il valore intero singolo 123. Il terzo argomento è un valore intero che rappresenta
il seme della funzione hash.

SELECT xxhash64('Spark', array(123), 2);
 5602566077635097486

Funzioni Hyperloglog

Le funzioni HyperLogLog (HLL) di SQL forniscono un modo per stimare in modo efficiente il numero
di elementi unici (cardinalità) in un set di dati di grandi dimensioni, anche quando l'insieme effettivo di
elementi unici non è archiviato.

I principali vantaggi dell'utilizzo delle funzioni HLL sono:

• Efficienza della memoria: gli schizzi HLL richiedono molta meno memoria rispetto all'archiviazione
dell'intero set di elementi unici, il che li rende adatti a set di dati di grandi dimensioni.

• Calcolo distribuito: gli schizzi HLL possono essere combinati su più fonti di dati o nodi di
elaborazione, consentendo una stima efficiente e distribuita del conteggio.

• Risultati approssimativi: HLL fornisce una stima approssimativa del conteggio univoca, con un
compromesso regolabile tra precisione e utilizzo della memoria (tramite il parametro di precisione).

Queste funzioni sono particolarmente utili in scenari in cui è necessario stimare il numero di elementi
unici, ad esempio nelle applicazioni di analisi, data warehousing e elaborazione di flussi in tempo
reale.

AWS Clean Rooms supporta le seguenti funzioni HLL.

Funzioni Hyperloglog 231

AWS Clean Rooms Documentazione di riferimento a SQL

Argomenti

• funzione HLL_SKETCH_AGG

• Funzione HLL_SKETCH_ESTIMATE

• Funzione HLL_UNION

• Funzione HLL_UNION_AGG

funzione HLL_SKETCH_AGG

La funzione di aggregazione HLL_SKETCH_AGG crea uno sketch HLL dai valori nella colonna
specificata. Restituisce un tipo di dati HLLSKETCH che incapsula i valori delle espressioni di input.

La funzione di aggregazione HLL_SKETCH_AGG funziona con qualsiasi tipo di dati e ignora i valori
NULL.

Quando non ci sono righe in una tabella o tutte le righe sono NULL, lo schizzo risultante non ha
coppie indice-valore come {"version":1,"logm":15,"sparse":{"indices":[],"values":
[]}}.

Sintassi

HLL_SKETCH_AGG (aggregate_expression[, lgConfigK])

Argomento

aggregate_expression

Qualsiasi espressione di tipo INT, BIGINT, STRING o BINARY rispetto alla quale verrà eseguito
un conteggio univoco. Tutti i NULL valori vengono ignorati.

LGConfigK

Una costante INT opzionale compresa tra 4 e 21 inclusi con 12 di default. Il log-base-2 di K, dove
K è il numero di bucket o slot per lo schizzo.

Tipo restituito

La funzione HLL_SKETCH_AGG restituisce un buffer BINARY non NULL contenente lo sketch
calcolato poiché consuma e aggrega tutti i valori di input nel gruppo di aggregazione. HyperLogLog

Funzioni Hyperloglog 232

AWS Clean Rooms Documentazione di riferimento a SQL

Esempi

Gli esempi seguenti utilizzano l'algoritmo HyperLogLog (HLL) per stimare il numero distinto di valori
nella colonna. col La hll_sketch_agg(col, 12) funzione aggrega i valori nella colonna col,
creando uno schizzo HLL con una precisione di 12. La hll_sketch_estimate() funzione viene
quindi utilizzata per stimare il numero distinto di valori in base allo schizzo HLL generato. Il risultato
finale della query è 3, che rappresenta il conteggio distinto stimato di valori nella col colonna. In
questo caso, i valori distinti sono 1, 2 e 3.

SELECT hll_sketch_estimate(hll_sketch_agg(col, 12))
 FROM VALUES (1), (1), (2), (2), (3) tab(col);
 3

L'esempio seguente utilizza anche l'algoritmo HLL per stimare il numero distinto di valori nella col
colonna, ma non specifica un valore di precisione per lo sketch HLL. In questo caso, utilizza la
precisione predefinita di 14. La hll_sketch_agg(col) funzione prende i valori nella col colonna
e crea uno schizzo HyperLogLog (HLL), che è una struttura di dati compatta che può essere utilizzata
per stimare il numero distinto di elementi. La hll_sketch_estimate(hll_sketch_agg(col))
funzione utilizza lo schizzo HLL creato nel passaggio precedente e calcola una stima del numero
distinto di valori nella colonna. col Il risultato finale della query è 3, che rappresenta il numero
distinto stimato di valori nella colonna. col In questo caso, i valori distinti sono 1, 2 e 3.

SELECT hll_sketch_estimate(hll_sketch_agg(col))
FROM VALUES (1), (1), (2), (2), (3) tab(col);
3

Funzione HLL_SKETCH_ESTIMATE

La funzione HLL_SKETCH_ESTIMATE esegue uno schizzo HLL e stima il numero di elementi unici
rappresentati dallo schizzo. Utilizza l'algoritmo HyperLogLog (HLL) per contare un'approssimazione
probabilistica del numero di valori univoci in una determinata colonna, utilizzando una
rappresentazione binaria nota come buffer di sketch generata in precedenza dalla funzione
HLL_SKETCH_AGG e restituendo il risultato come un numero intero grande.

L'algoritmo di disegno HLL fornisce un modo efficiente per stimare il numero di elementi unici, anche
per set di dati di grandi dimensioni, senza dover memorizzare l'intero set di valori univoci.

Le hll_union_agg funzioni hll_union and possono anche combinare gli schizzi utilizzando e
unendo questi buffer come input.

Funzioni Hyperloglog 233

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

HLL_SKETCH_ESTIMATE (hllsketch_expression)

Argomento

hllsketch_expression

Un'BINARYespressione contenente uno schizzo generato da HLL_SKETCH_AGG

Tipo restituito

La funzione HLL_SKETCH_ESTIMATE restituisce un valore BIGINT che è il conteggio distinto
approssimativo rappresentato dallo schizzo di input.

Esempi

Gli esempi seguenti utilizzano l'algoritmo di disegno HyperLogLog (HLL) per stimare la cardinalità
(conteggio univoco) dei valori nella colonna. col La hll_sketch_agg(col, 12) funzione prende
la col colonna e crea uno schizzo HLL con una precisione di 12 bit. Lo sketch HLL è una struttura
di dati approssimativa in grado di stimare in modo efficiente il numero di elementi unici in un set.
La hll_sketch_estimate() funzione prende lo schizzo HLL creato da hll_sketch_agg e
stima la cardinalità (conteggio univoco) dei valori rappresentati dallo schizzo. FROM VALUES (1),
(1), (2), (2), (3) tab(col);Genera un set di dati di test con 5 righe, in cui la col colonna
contiene i valori 1, 1, 2, 2 e 3. Il risultato di questa query è il conteggio univoco stimato dei valori nella
col colonna, che è 3.

SELECT hll_sketch_estimate(hll_sketch_agg(col, 12))
 FROM VALUES (1), (1), (2), (2), (3) tab(col);
 3

La differenza tra l'esempio seguente e quello precedente è che il parametro di precisione (12 bit)
non è specificato nella chiamata di hll_sketch_agg funzione. In questo caso, viene utilizzata la
precisione predefinita di 14 bit, che può fornire una stima più accurata del conteggio unico rispetto
all'esempio precedente che utilizzava 12 bit di precisione.

SELECT hll_sketch_estimate(hll_sketch_agg(col))
FROM VALUES (1), (1), (2), (2), (3) tab(col);

Funzioni Hyperloglog 234

AWS Clean Rooms Documentazione di riferimento a SQL

3

Funzione HLL_UNION

La funzione HLL_UNION combina due schizzi HLL in un unico schizzo unificato. Utilizza l'algoritmo
HyperLogLog (HLL) per combinare due schizzi in un unico schizzo. Le query possono utilizzare i
buffer risultanti per calcolare conteggi univoci approssimativi sotto forma di numeri interi lunghi con la
funzione. hll_sketch_estimate

Sintassi

HLL_UNION ((expr1, expr2 [, allowDifferentLgConfigK]))

Argomento

Exprn

Un'BINARYespressione contenente uno schizzo generato da HLL_SKETCH_AGG.

allowDifferentLgConfigK

Un'espressione BOOLEAN opzionale che controlla se consentire l'unione di due schizzi con valori
LGConfigK diversi. Il valore predefinito è false.

Tipo restituito

La funzione HLL_UNION restituisce un buffer BINARY contenente lo HyperLogLog
schizzo calcolato come risultato della combinazione delle espressioni di input. Quando il
allowDifferentLgConfigK parametro ètrue, lo schizzo del risultato utilizza il più piccolo dei due
valori forniti. lgConfigK

Esempi

Gli esempi seguenti utilizzano l'algoritmo di disegno HyperLogLog (HLL) per stimare il conteggio
univoco dei valori su due colonne col1 e col2 in un set di dati.

La hll_sketch_agg(col1) funzione crea uno schizzo HLL per i valori univoci nella colonna. col1

La hll_sketch_agg(col2) funzione crea uno schizzo HLL per i valori univoci nella colonna col2.

Funzioni Hyperloglog 235

AWS Clean Rooms Documentazione di riferimento a SQL

La hll_union(...) funzione combina i due schizzi HLL creati nei passaggi 1 e 2 in un unico
schizzo HLL unificato.

La hll_sketch_estimate(...) funzione utilizza lo schizzo HLL combinato e stima il conteggio
univoco dei valori per entrambi e. col1 col2

La FROM VALUES clausola genera un set di dati di test con 5 righe, dove col1 contiene i valori 1, 1,
2, 2 e 3 e col2 contiene i valori 4, 4, 5, 5 e 6.

Il risultato di questa query è il conteggio unico stimato di valori per entrambi col1 ecol2, che è 6.
L'algoritmo di disegno HLL offre un modo efficiente per stimare il numero di elementi unici, anche
per set di dati di grandi dimensioni, senza dover memorizzare l'intero set di valori univoci. In questo
esempio, la hll_union funzione viene utilizzata per combinare gli schizzi HLL delle due colonne,
il che consente di stimare il conteggio univoco per l'intero set di dati, anziché solo per ogni colonna
singolarmente.

SELECT hll_sketch_estimate(
 hll_union(
 hll_sketch_agg(col1),
 hll_sketch_agg(col2)))
 FROM VALUES
 (1, 4),
 (1, 4),
 (2, 5),
 (2, 5),
 (3, 6) AS tab(col1, col2);
 6

La differenza tra l'esempio seguente e quello precedente è che il parametro di precisione (12 bit)
non è specificato nella chiamata alla funzione. hll_sketch_agg In questo caso, viene utilizzata la
precisione predefinita di 14 bit, che può fornire una stima più accurata del conteggio unico rispetto
all'esempio precedente che utilizzava 12 bit di precisione.

SELECT hll_sketch_estimate(
 hll_union(
 hll_sketch_agg(col1, 14),
 hll_sketch_agg(col2, 14)))
 FROM VALUES
 (1, 4),
 (1, 4),
 (2, 5),

Funzioni Hyperloglog 236

AWS Clean Rooms Documentazione di riferimento a SQL

 (2, 5),
 (3, 6) AS tab(col1, col2);

Funzione HLL_UNION_AGG

La funzione HLL_UNION_AGG combina più schizzi HLL in un unico schizzo unificato. Utilizza
l'algoritmo HyperLogLog (HLL) per combinare un gruppo di schizzi in uno solo. Le query
possono utilizzare i buffer risultanti per calcolare conteggi univoci approssimativi con la funzione.
hll_sketch_estimate

Sintassi

HLL_UNION_AGG (expr [, allowDifferentLgConfigK])

Argomento

expr

Un'BINARYespressione contenente uno schizzo generato da HLL_SKETCH_AGG.

allowDifferentLgConfigK

Un'espressione BOOLEAN opzionale che controlla se consentire l'unione di due schizzi con valori
LGConfigK diversi. Il valore predefinito è false.

Tipo restituito

La funzione HLL_UNION_AGG restituisce un buffer BINARY contenente lo HyperLogLog sketch
calcolato come risultato della combinazione delle espressioni di input dello stesso gruppo. Quando
il allowDifferentLgConfigK parametro è, lo schizzo del risultato utilizza il più true piccolo dei
due valori forniti. lgConfigK

Esempi

I seguenti esempi utilizzano l'algoritmo di sketch HyperLogLog (HLL) per stimare il conteggio univoco
dei valori su più schizzi HLL.

Il primo esempio stima il conteggio univoco dei valori in un set di dati.

SELECT hll_sketch_estimate(hll_union_agg(sketch, true))
 FROM (SELECT hll_sketch_agg(col) as sketch

Funzioni Hyperloglog 237

AWS Clean Rooms Documentazione di riferimento a SQL

 FROM VALUES (1) AS tab(col)
 UNION ALL
 SELECT hll_sketch_agg(col, 20) as sketch
 FROM VALUES (1) AS tab(col));
 1

L'interrogazione interna crea due sketch HLL:

• La prima istruzione SELECT crea uno schizzo a partire da un singolo valore di 1.

• La seconda istruzione SELECT crea uno schizzo a partire da un altro valore singolo di 1, ma con
una precisione di 20.

La query esterna utilizza la funzione HLL_UNION_AGG per combinare i due schizzi in un unico
schizzo. Quindi applica la funzione HLL_SKETCH_ESTIMATE a questo sketch combinato per stimare
il conteggio univoco dei valori.

Il risultato di questa query è il conteggio univoco stimato dei valori nella colonna, che è. col 1 Ciò
significa che i due valori di input pari a 1 sono considerati unici, anche se hanno lo stesso valore.

Il secondo esempio include un parametro di precisione diverso per la funzione HLL_UNION_AGG. In
questo caso, entrambi gli schizzi HLL vengono creati con una precisione di 14 bit, il che consente di
combinarli con successo utilizzando il parametro. hll_union_agg true

SELECT hll_sketch_estimate(hll_union_agg(sketch, true))
 FROM (SELECT hll_sketch_agg(col, 14) as sketch
 FROM VALUES (1) AS tab(col)
 UNION ALL
 SELECT hll_sketch_agg(col, 14) as sketch
 FROM VALUES (1) AS tab(col));
 1

Il risultato finale della query è il conteggio univoco stimato, che anche in questo caso è. 1 Ciò
significa che i due valori di input pari a 1 sono considerati unici, anche se hanno lo stesso valore.

Funzioni JSON

Quando è necessario memorizzare un insieme relativamente piccolo di coppie chiave-valore, è
possibile risparmiare spazio memorizzando i dati nel formato JSON. Poiché le stringhe JSON
possono essere memorizzate in una singola colonna, l'utilizzo di JSON potrebbe essere più efficiente
rispetto all'archiviazione dei dati in formato tabulare.

Funzioni JSON 238

AWS Clean Rooms Documentazione di riferimento a SQL

Example

Ad esempio, supponiamo di avere una tabella sparsa, in cui è necessario disporre di molte colonne
per rappresentare appieno tutti gli attributi possibili. Tuttavia, la maggior parte dei valori delle colonne
sono NULL per una determinata riga o colonna. Utilizzando JSON per l'archiviazione, potresti
essere in grado di archiviare i dati di una riga in coppie chiave-valore in una singola stringa JSON ed
eliminare le colonne della tabella scarsamente popolate.

Inoltre, è possibile modificare facilmente le stringhe JSON per memorizzare coppie chiavi:valore
aggiuntive senza dover aggiungere colonne a una tabella.

È consigliabile usare un JSON con parsimonia. JSON non è una buona scelta per archiviare set di
dati di grandi dimensioni perché, archiviando dati diversi in una singola colonna, JSON non utilizza
l'architettura dell'archivio di colonne. AWS Clean Rooms

JSON utilizza stringhe di testo con codifica UTF-8, pertanto le stringhe JSON possono essere
memorizzate come tipi di dati CHAR o VARCHAR. Utilizzare VARCHAR se le stringhe includono
caratteri multibyte.

Le stringhe JSON devono essere formattate in modo corretto con JSON, in base alle seguenti regole:

• Il JSON di livello radice può essere un oggetto JSON o un array JSON. Un oggetto JSON è un
insieme non ordinato di coppie di chiave:valore separate da virgole racchiuse da parentesi graffe.

Ad esempio, {"one":1, "two":2}

• Un array JSON è un insieme ordinato di valori separati da virgola racchiusi tra parentesi.

Un esempio è quanto segue: ["first", {"one":1}, "second", 3, null]

• Gli array JSON utilizzano un indice basato su zero; il primo elemento di un array è in posizione 0.
In una coppia chiave:valore JSON, la chiave è una stringa racchiusa tra virgolette doppie.

• Un valore JSON può essere uno dei seguenti:

• Oggetto JSON

• Array JSON

• Stringa tra virgolette doppie

• Numero (intero e a virgola mobile)

• Booleano

• Null

Funzioni JSON 239

AWS Clean Rooms Documentazione di riferimento a SQL

• Gli oggetti vuoti e gli array vuoti sono valori JSON validi.

• I campi JSON fanno distinzione tra maiuscole e minuscole.

• Lo spazio bianco tra gli elementi strutturali JSON (ad esempio { }, []) viene ignorato.

Argomenti

• Funzione GET_JSON_OBJECT

• Funzione TO_JSON

Funzione GET_JSON_OBJECT

La funzione GET_JSON_OBJECT estrae un oggetto json da. path

Sintassi

get_json_object(json_txt, path)

Argomenti

json_txt

Un'espressione STRING contenente JSON ben formato.

path

Un valore letterale STRING con un'espressione di percorso JSON ben formata.

Valori restituiti

Restituisce una STRING.

Viene restituito un valore NULL se l'oggetto non può essere trovato.

Esempio

L'esempio seguente estrae un valore da un oggetto JSON. Il primo argomento è una stringa JSON
che rappresenta un oggetto semplice con una singola coppia chiave-valore. Il secondo argomento è
un'espressione di percorso JSON. Il $ simbolo rappresenta la radice dell'oggetto JSON e la .a parte
specifica che vogliamo estrarre il valore associato alla chiave "»a. L'output della funzione è 'b', che è
il valore associato al tasto "a" nell'oggetto JSON di input.

Funzioni JSON 240

AWS Clean Rooms Documentazione di riferimento a SQL

SELECT get_json_object('{"a":"b"}', '$.a');
 b

Funzione TO_JSON

La funzione TO_JSON converte un'espressione di input in una rappresentazione di stringa JSON. La
funzione gestisce la conversione di diversi tipi di dati (come numeri, stringhe e valori booleani) nelle
rappresentazioni JSON corrispondenti.

La funzione TO_JSON è utile quando è necessario convertire dati strutturati (come righe di
database o oggetti JSON) in un formato più portatile e autodescrittivo come JSON. Ciò può essere
particolarmente utile quando è necessario interagire con altri sistemi o servizi che prevedono dati in
formato JSON.

Sintassi

to_json(expr[, options])

Argomenti

expr

L'espressione di input che desideri convertire in una stringa JSON. Può essere un valore, una
colonna o qualsiasi altra espressione SQL valida.

options

Un set opzionale di opzioni di configurazione che possono essere utilizzate per personalizzare il
processo di conversione JSON. Queste opzioni possono includere cose come la gestione di valori
nulli, la rappresentazione di valori numerici e il trattamento di caratteri speciali.

Valori restituiti

Restituisce una stringa JSON con un determinato valore di struttura

Esempi

L'esempio seguente converte una struttura denominata (un tipo di dati strutturati) in una stringa
JSON. Il primo argomento (named_struct('a', 1, 'b', 2) () è l'espressione di input che
viene passata alla to_json() funzione. Crea una struttura denominata con due campi: «a» con
un valore di 1 e «b» con un valore di 2. La funzione to_json () prende la struttura denominata come

Funzioni JSON 241

AWS Clean Rooms Documentazione di riferimento a SQL

argomento e la converte in una rappresentazione di stringa JSON. L'output è{"a":1,"b":2}, che è
una stringa JSON valida che rappresentava la struttura denominata.

SELECT to_json(named_struct('a', 1, 'b', 2));
 {"a":1,"b":2}

L'esempio seguente converte una struttura denominata che contiene un valore di timestamp
in una stringa JSON, con un formato timestamp personalizzato. Il primo argomento
(named_struct('time', to_timestamp('2015-08-26', 'yyyy-MM-dd'))) crea una
struttura denominata con un singolo campo 'time' che contiene il valore del timestamp. Il secondo
argomento (map('timestampFormat', 'dd/MM/yyyy')) crea una mappa (dizionario chiave-
valore) con una singola coppia chiave-valore, dove la chiave è 'timestampFormat' e il valore è
''. dd/MM/yyyy'. This map is used to specify the desired format for the timestamp value when
converting it to JSON. The to_json() function converts the named struct into a JSON string. The
second argument, the map, is used to customize the timestamp format to 'dd/MM/yyyy L'output è
{"time":"26/08/2015"} una stringa JSON con un singolo campo 'time' che contiene il valore del
timestamp nel formato '' desiderato. dd/MM/yyyy

SELECT to_json(named_struct('time', to_timestamp('2015-08-26', 'yyyy-MM-dd')),
 map('timestampFormat', 'dd/MM/yyyy'));
 {"time":"26/08/2015"}

Funzioni matematiche

Questa sezione descrive gli operatori e le funzioni matematiche supportati in AWS Clean Rooms
Spark SQL.

Argomenti

• Simboli degli operatori matematici

• Funzione ABS

• Funzione ACOS

• Funzione ASIN

• Funzione ATAN

• ATAN2 funzione

• Funzione CBRT

• Funzione CEILING (oppure CEIL)

Funzioni matematiche 242

AWS Clean Rooms Documentazione di riferimento a SQL

• Funzione COS

• Funzione COT

• Funzione DEGREES

• Funzione DIV

• Funzione EXP

• Funzione FLOOR

• Funzione LN

• Funzione LOG

• Funzione MOD

• Funzione PI

• Funzione POWER

• Funzioni RADIANS

• Funzione RAND

• Funzione RANDOM

• Funzione ROUND

• Funzione SIGN

• Funzione SIN

• Funzione SQRT

• Funzione TRUNC

Simboli degli operatori matematici

La tabella seguente elenca gli operatori matematici supportati.

Operatori supportati

Operatore Descrizione Esempio Risultato

+ addizione 2 + 3 5

- sottrazione 2 - 3 -1

* moltiplic
azione

2 * 3 6

Funzioni matematiche 243

AWS Clean Rooms Documentazione di riferimento a SQL

Operatore Descrizione Esempio Risultato

/ divisione 4 / 2 2

% modulo 5 % 4 1

^ potenza 2,0 ^ 3,0 8

Esempi

Calcola la commissione pagata più una commissione di gestione di 2,00 USD per una determinata
transazione:

select commission, (commission + 2.00) as comm
from sales where salesid=10000;

commission | comm
-----------+-------
28.05 | 30.05
(1 row)

Calcolare il 20 percento del prezzo di vendita per una determinata transazione:

select pricepaid, (pricepaid * .20) as twentypct
from sales where salesid=10000;

pricepaid | twentypct
----------+-----------
187.00 | 37.400
(1 row)

Vendite di biglietti previste in base a un modello di crescita continua. In questo esempio, la
sottoquery restituisce il numero di biglietti venduti nel 2008. Tale risultato viene moltiplicato in modo
esponenziale per un tasso di crescita continuo del 5 percento in 10 anni.

select (select sum(qtysold) from sales, date
where sales.dateid=date.dateid and year=2008)
^ ((5::float/100)*10) as qty10years;

qty10years

Funzioni matematiche 244

AWS Clean Rooms Documentazione di riferimento a SQL

587.664019657491
(1 row)

Trova il prezzo totale pagato e le commissioni per le vendite con un ID data maggiore o uguale a
2.000. Quindi sottrarre la commissione totale dal prezzo totale pagato.

select sum (pricepaid) as sum_price, dateid,
sum (commission) as sum_comm, (sum (pricepaid) - sum (commission)) as value
from sales where dateid >= 2000
group by dateid order by dateid limit 10;

 sum_price | dateid | sum_comm | value
-----------+--------+----------+-----------
 364445.00 | 2044 | 54666.75 | 309778.25
 349344.00 | 2112 | 52401.60 | 296942.40
 343756.00 | 2124 | 51563.40 | 292192.60
 378595.00 | 2116 | 56789.25 | 321805.75
 328725.00 | 2080 | 49308.75 | 279416.25
 349554.00 | 2028 | 52433.10 | 297120.90
 249207.00 | 2164 | 37381.05 | 211825.95
 285202.00 | 2064 | 42780.30 | 242421.70
 320945.00 | 2012 | 48141.75 | 272803.25
 321096.00 | 2016 | 48164.40 | 272931.60
(10 rows)

Funzione ABS

ABS calcola il valore assoluto di un numero, in cui quel numero può essere un valore letterale o
un'espressione che valuta un numero.

Sintassi

ABS (number)

Arguments (Argomenti)

numero

Numero o espressione che valuta un numero. Può essere SMALLINT, INTEGER, BIGINT,
DECIMAL o type. FLOAT4 FLOAT8

Funzioni matematiche 245

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo restituito

ABS Restituisce lo stesso tipo di dati del suo argomento.

Esempi

Calcolare il valore assoluto di -38:

select abs (-38);
abs

38
(1 row)

Calcolare il valore assoluto di (14-76):

select abs (14-76);
abs

62
(1 row)

Funzione ACOS

ACOS è una funzione trigonometrica che restituisce l'arco coseno di un numero. Il valore restituito è
in radianti ed è compreso tra 0 e PI.

Sintassi

ACOS(number)

Arguments (Argomenti)

numero

Il parametro di input è un numero DOUBLE PRECISION.

Tipo restituito

DOUBLE PRECISION

Funzioni matematiche 246

AWS Clean Rooms Documentazione di riferimento a SQL

Esempi

Per restituire l'arco coseno di -1, utilizza l'esempio seguente.

SELECT ACOS(-1);

+-------------------+
| acos |
+-------------------+
| 3.141592653589793 |
+-------------------+

Funzione ASIN

ASIN è una funzione trigonometrica che restituisce l'arco seno di un numero. Il valore restituito è in
radianti ed è compreso tra PI/2 e -PI/2.

Sintassi

ASIN(number)

Arguments (Argomenti)

numero

Il parametro di input è un numero DOUBLE PRECISION.

Tipo restituito

DOUBLE PRECISION

Esempi

Per restituire l'arco seno di 1, utilizza l'esempio seguente.

SELECT ASIN(1) AS halfpi;

+--------------------+
| halfpi |
+--------------------+
| 1.5707963267948966 |

Funzioni matematiche 247

AWS Clean Rooms Documentazione di riferimento a SQL

+--------------------+

Funzione ATAN

ATAN è una funzione trigonometrica che restituisce l'arco tangente di un numero. Il valore restituito è
in radianti ed è compreso tra -PI e PI.

Sintassi

ATAN(number)

Arguments (Argomenti)

numero

Il parametro di input è un numero DOUBLE PRECISION.

Tipo restituito

DOUBLE PRECISION

Esempi

Per restituire l'arco tangente di 1 e moltiplicarlo per 4, utilizza l'esempio seguente.

SELECT ATAN(1) * 4 AS pi;

+-------------------+
| pi |
+-------------------+
| 3.141592653589793 |
+-------------------+

ATAN2 funzione

ATAN2 è una funzione trigonometrica che restituisce l'arcotangente di un numero diviso per un altro
numero. Il valore restituito è in radianti ed è compreso tra PI/2 e -PI/2.

Sintassi

ATAN2(number1, number2)

Funzioni matematiche 248

AWS Clean Rooms Documentazione di riferimento a SQL

Arguments (Argomenti)

number1

Un numero DOUBLE PRECISION.

number2

Un numero DOUBLE PRECISION.

Tipo restituito

DOUBLE PRECISION

Esempi

Per restituire l'arco tangente di 2/2 e moltiplicarlo per 4, utilizza l'esempio seguente.

SELECT ATAN2(2,2) * 4 AS PI;

+-------------------+
| pi |
+-------------------+
| 3.141592653589793 |
+-------------------+

Funzione CBRT

La funzione CBRT è una funzione matematica che calcola la radice cubica di un numero.

Sintassi

CBRT (number)

Argomento

CBRT prende un numero DOUBLE PRECISION come argomento.

Tipo restituito

La funzione CBRT restituisce un numero DOUBLE PRECISION.

Funzioni matematiche 249

AWS Clean Rooms Documentazione di riferimento a SQL

Esempi

Calcolare la radice cubica della commissione pagata per una determinata transazione:

select cbrt(commission) from sales where salesid=10000;

cbrt

3.03839539048843
(1 row)

Funzione CEILING (oppure CEIL)

La funzione CEILING o CEIL viene utilizzata per arrotondare un numero fino al numero intero
successivo. (L Funzione FLOOR arrotonda un numero fino al numero intero successivo.)

Sintassi

CEIL | CEILING(number)

Arguments (Argomenti)

numero

Il numero o l'espressione che restituisce un numero. Può essere SMALLINT, INTEGER, BIGINT,
DECIMAL o type. FLOAT4 FLOAT8

Tipo restituito

CEILING e CEIL restituiscono lo stesso tipo di dati come argomento.

Esempio

Calcolare il tetto della commissione pagata per una determinata transazione di vendita:

select ceiling(commission) from sales
where salesid=10000;

ceiling

29
(1 row)

Funzioni matematiche 250

AWS Clean Rooms Documentazione di riferimento a SQL

Funzione COS

COS è una funzione trigonometrica che restituisce il coseno di un numero. Il valore restituito è in
radianti ed è compreso tra -1 e 1, inclusi.

Sintassi

COS(double_precision)

Argomento

numero

Il parametro di input è un numero a precisione doppia.

Tipo restituito

La funzione COS restituisce un numero a precisione doppia.

Esempi

L'esempio seguente restituisce l'arco coseno di 0:

select cos(0);
cos

1
(1 row)

L'esempio seguente restituisce l'arco coseno di PI:

select cos(pi());
cos

-1
(1 row)

Funzione COT

COT è una funzione trigonometrica che restituisce la cotangente di un numero. Il parametro di input
deve essere diverso da zero.

Funzioni matematiche 251

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

COT(number)

Argomento

numero

Il parametro di input è un numero DOUBLE PRECISION.

Tipo restituito

DOUBLE PRECISION

Esempi

Per restituire la cotangente di 1, utilizza l'esempio seguente.

SELECT COT(1);

+--------------------+
| cot |
+--------------------+
| 0.6420926159343306 |
+--------------------+

Funzione DEGREES

Converte un angolo in radianti nel suo equivalente in gradi.

Sintassi

DEGREES(number)

Argomento

numero

Il parametro di input è un numero DOUBLE PRECISION.

Funzioni matematiche 252

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo restituito

DOUBLE PRECISION

Esempio

Per restituire l'equivalente in gradi di 0,5 radianti, utilizza l'esempio seguente.

SELECT DEGREES(.5);

+-------------------+
| degrees |
+-------------------+
| 28.64788975654116 |
+-------------------+

Per convertire i radianti PI in gradi, utilizza l'esempio seguente.

SELECT DEGREES(pi());

+---------+
| degrees |
+---------+
| 180 |
+---------+

Funzione DIV

L'operatore DIV restituisce la parte integrale della divisione del dividendo per divisore.

Sintassi

dividend div divisor

Arguments (Argomenti)

dividendo

Un'espressione che restituisce un valore numerico o un intervallo.

divisore

Un tipo di intervallo corrispondente if dividend è un intervallo, altrimenti un valore numerico.

Funzioni matematiche 253

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo restituito

BIGINT

Esempi

L'esempio seguente seleziona due colonne dalla tabella degli scoiattoli: la id colonna, che contiene
l'identificatore univoco per ogni scoiattolo, e una colonnaage div 2, che rappresenta la divisione
in numeri interi calculated della colonna dell'età per 2. Il age div 2 calcolo esegue la divisione
in numeri interi sulla age colonna, arrotondando efficacemente l'età al numero intero pari più vicino.
Ad esempio, se la age colonna contiene valori come 3, 5, 7 e 10, la age div 2 colonna conterrà
rispettivamente i valori 1, 2, 3 e 5.

SELECT id, age div 2 FROM squirrels

Questa query può essere utile in scenari in cui è necessario raggruppare o analizzare i dati in base
alle fasce di età e si desidera semplificare i valori di età arrotondandoli per difetto al numero intero
pari più vicino. L'output risultante fornirebbe la id e l'età divisa per 2 per ogni scoiattolo nella tabella.
squirrels

Funzione EXP

La funzione EXP implementa la funzione esponenziale di un'espressione numerica o la base del
logaritmo naturale, e, elevato alla potenza dell'espressione. La funzione EXP è l'inverso di Funzione
LN.

Sintassi

EXP (expression)

Argomento

espressione

L'espressione deve essere un tipo di dati numero INTEGER, DECIMAL, o DOUBLE PRECISION.

Tipo restituito

La funzione EXP restituisce un numero DOUBLE PRECISION.

Funzioni matematiche 254

AWS Clean Rooms Documentazione di riferimento a SQL

Esempio

Utilizzare la funzione EXP per prevedere le vendite di biglietti in base a un modello di crescita
continua. In questo esempio, la sottoquery restituisce il numero di biglietti venduti nel 2008. Questo
risultato è moltiplicato per il risultato della funzione EXP, che specifica un tasso di crescita continua
del 7% nel corso di 10 anni.

select (select sum(qtysold) from sales, date
where sales.dateid=date.dateid
and year=2008) * exp((7::float/100)*10) qty2018;

qty2018

695447.483772222
(1 row)

Funzione FLOOR

La funzione FLOOR arrotonda un numero fino al numero intero successivo.

Sintassi

FLOOR (number)

Argomento

numero

Il numero o l'espressione che restituisce un numero. Può essere SMALLINT, INTEGER, BIGINT,
DECIMAL o type. FLOAT4 FLOAT8

Tipo restituito

FLOOR restituisce lo stesso tipo di dati del suo argomento.

Esempio

L'esempio mostra il valore della commissione pagata per una determinata transazione di vendita
prima e dopo l'utilizzo della funzione FLOOR.

select commission from sales

Funzioni matematiche 255

AWS Clean Rooms Documentazione di riferimento a SQL

where salesid=10000;

floor

28.05
(1 row)

select floor(commission) from sales
where salesid=10000;

floor

28
(1 row)

Funzione LN

La funzione LN restituisce il logaritmo naturale del parametro di input.

Sintassi

LN(expression)

Argomento

espressione

L'espressione o colonna di destinazione su cui viene eseguita la funzione.

Note

Questa funzione restituisce un errore per alcuni tipi di dati se l'espressione fa riferimento
a una tabella AWS Clean Rooms creata dall'utente o a una tabella di sistema AWS Clean
Rooms STL o STV.

Le espressioni con i seguenti tipi di dati generano un errore se fanno riferimento a una tabella
creata dall'utente o di sistema.

• BOOLEAN

• CHAR

Funzioni matematiche 256

AWS Clean Rooms Documentazione di riferimento a SQL

• DATE

• DECIMAL o NUMERIC

• TIMESTAMP

• VARCHAR

Le espressioni con i seguenti tipi di dati vengono eseguite correttamente su tabelle create
dall'utente e su tabelle di sistema STL o STV:

• BIGINT

• DOUBLE PRECISION

• INTEGER

• REAL

• SMALLINT

Tipo restituito

La funzione LN restituisce lo stesso tipo dell'espressione.

Esempio

Nell'esempio seguente viene restituito il logaritmo naturale o il logaritmo di base e del numero
2,718281828:

select ln(2.718281828);
ln

0.9999999998311267
(1 row)

Si noti che la risposta è quasi uguale a 1.

Questo esempio restituisce il logaritmo naturale dei valori nella colonna USERID nella tabella
USERS:

select username, ln(userid) from users order by userid limit 10;

 username | ln
----------+-------------------
 JSG99FHE | 0

Funzioni matematiche 257

AWS Clean Rooms Documentazione di riferimento a SQL

 PGL08LJI | 0.693147180559945
 IFT66TXU | 1.09861228866811
 XDZ38RDD | 1.38629436111989
 AEB55QTM | 1.6094379124341
 NDQ15VBM | 1.79175946922805
 OWY35QYB | 1.94591014905531
 AZG78YIP | 2.07944154167984
 MSD36KVR | 2.19722457733622
 WKW41AIW | 2.30258509299405
(10 rows)

Funzione LOG

Restituisce il logaritmo di with. expr base

Sintassi

LOG(base, expr)

Argomento

expr

L'espressione deve avere un tipo di dati integer, numero decimale o numero in virgola mobile.

base

La base per il calcolo del logaritmo. Deve essere un numero positivo (diverso da 1) di tipo di dati a
doppia precisione.

Tipo restituito

La funzione LOG restituisce un numero a precisione doppia.

Esempio

Il seguente esempio restituisce il logaritmo di base 10 del numero 100:

select log(10, 100);

2
(1 row)

Funzioni matematiche 258

AWS Clean Rooms Documentazione di riferimento a SQL

Funzione MOD

Restituisce il resto di due numeri, altrimenti nota come operazione modulo. Per calcolare il risultato, il
primo parametro viene diviso per il secondo.

Sintassi

MOD(number1, number2)

Arguments (Argomenti)

number1

Il primo parametro di input è un numero INTEGER, SMALLINT, BIGINT, o DECIMAL. Se uno
dei parametri è di tipo DECIMAL, anche l'altro parametro deve essere di tipo DECIMAL. Se uno
dei parametri è un INTEGER, l'altro parametro può essere un INTEGER, SMALLINT, o BIGINT.
Entrambi i parametri possono essere anche SMALLINT o BIGINT, ma un parametro non può
essere un SMALLINT se l'altro è un BIGINT.

number2

Il secondo parametro di input è un numero INTEGER, SMALLINT, BIGINT, o DECIMAL. Le stesse
regole sui tipi di dati si applicano a number2 così come a number1.

Tipo restituito

I tipi di restituzione validi sono DECIMAL, INT, SMALLINT e BIGINT. Il tipo di restituzione della
funzione MOD è lo stesso tipo numerico dei parametri di input, se entrambi i parametri di input sono
dello stesso tipo. Se entrambi i parametri di input sono INTEGER, comunque, il tipo di restituzione
sarà anche un INTEGER.

Note per l'utilizzo

Puoi utilizzare % come operatore di modulo.

Esempi

L'esempio seguente restituisce il resto quando un numero viene diviso per un altro:

SELECT MOD(10, 4);

Funzioni matematiche 259

AWS Clean Rooms Documentazione di riferimento a SQL

 mod

 2

L'esempio seguente restituisce un risultato decimale:

SELECT MOD(10.5, 4);

 mod

 2.5

Puoi trasmettere i valori dei parametri:

SELECT MOD(CAST(16.4 as integer), 5);

 mod

 1

Controlla se il primo parametro è pari dividendolo per 2:

SELECT mod(5,2) = 0 as is_even;

 is_even

 false

Puoi utilizzare % come operatore di modulo:

SELECT 11 % 4 as remainder;

 remainder

 3

L'esempio seguente restituisce informazioni per le categorie dispari nella tabella CATEGORY:

select catid, catname
from category
where mod(catid,2)=1

Funzioni matematiche 260

AWS Clean Rooms Documentazione di riferimento a SQL

order by 1,2;

 catid | catname
-------+-----------
 1 | MLB
 3 | NFL
 5 | MLS
 7 | Plays
 9 | Pop
 11 | Classical

(6 rows)

Funzione PI

La funzione PI restituisce il valore di pi con 14 posizioni decimali.

Sintassi

PI()

Tipo restituito

DOUBLE PRECISION

Esempi

Per restituire il valore di pi, utilizza l'esempio seguente.

SELECT PI();

+-------------------+
| pi |
+-------------------+
| 3.141592653589793 |
+-------------------+

Funzione POWER

La funzione POWER è una funzione esponenziale che eleva un'espressione numerica alla potenza
di una seconda espressione numerica. Ad esempio, 2 alla terza è calcolato come POWER(2,3), con
risultato 8.

Funzioni matematiche 261

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

{POWER(expression1, expression2)

Arguments (Argomenti)

expression1

Espressione numerica da elevare. Deve essere un tipo di dati INTEGER, DECIMAL o FLOAT.

expression2

Potenza da elevare expression1. Deve essere un tipo di dati INTEGER, DECIMAL o FLOAT.

Tipo restituito

DOUBLE PRECISION

Esempio

SELECT (SELECT SUM(qtysold) FROM sales, date
WHERE sales.dateid=date.dateid
AND year=2008) * POW((1+7::FLOAT/100),10) qty2010;

+-------------------+
| qty2010 |
+-------------------+
| 679353.7540885945 |
+-------------------+

Funzioni RADIANS

La funzione RADIANS converte un angolo in gradi nel suo equivalente in radianti.

Sintassi

RADIANS(number)

Argomento

numero

Il parametro di input è un numero DOUBLE PRECISION.

Funzioni matematiche 262

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo restituito

DOUBLE PRECISION

Esempio

Per restituire l'equivalente in radianti di 180 gradi, utilizza l'esempio seguente.

SELECT RADIANS(180);

+-------------------+
| radians |
+-------------------+
| 3.141592653589793 |
+-------------------+

Funzione RAND

La funzione RAND genera un numero casuale a virgola mobile compreso tra 0 e 1. La funzione
RAND genera un nuovo numero casuale ogni volta che viene chiamata.

Sintassi

RAND()

Tipo restituito

RANDOM restituisce un valore DOUBLE.

Esempio

L'esempio seguente genera una colonna di numeri casuali a virgola mobile compresi tra 0 e 1 per
ogni riga della tabella. squirrels L'output risultante sarebbe una singola colonna contenente un
elenco di valori decimali casuali, con un valore per ogni riga della tabella degli scoiattoli.

SELECT rand() FROM squirrels

Questo tipo di query è utile quando è necessario generare numeri casuali, ad esempio per simulare
eventi casuali o per introdurre la casualità nell'analisi dei dati. Nel contesto della squirrels tabella,

Funzioni matematiche 263

AWS Clean Rooms Documentazione di riferimento a SQL

potrebbe essere utilizzata per assegnare valori casuali a ciascuno scoiattolo, che potrebbero quindi
essere utilizzati per ulteriori elaborazioni o analisi.

Funzione RANDOM

La funzione RANDOM genera un valore casuale compreso tra 0.0 (incluso) e 1.0 (escluso).

Sintassi

RANDOM()

Tipo restituito

RANDOM restituisce un numero DOUBLE PRECISION.

Esempi

1. Calcolare un valore casuale compreso tra 0 e 99. Se il numero casuale è da 0 a 1, questa query
produce un numero casuale compreso tra 0 e 100:

select cast (random() * 100 as int);

INTEGER

24
(1 row)

2. Recuperare un esempio casuale uniforme di 10 voci:

select *
from sales
order by random()
limit 10;

Ora recuperare un esempio casuale di 10 voci, ma sceglierle in proporzione al loro prezzo. Ad
esempio, una voce il cui prezzo è il doppio di un'altra ha il doppio delle probabilità di apparire nei
risultati della query:

select *
from sales
order by log(1 - random()) / pricepaid

Funzioni matematiche 264

AWS Clean Rooms Documentazione di riferimento a SQL

limit 10;

3. Questo esempio utilizza il comando SET per impostare un valore SEED in modo che RANDOM
generi una sequenza di numeri prevedibile.

Innanzitutto, restituisce tre interi RANDOM senza prima impostare il valore SEED:

select cast (random() * 100 as int);
INTEGER

6
(1 row)

select cast (random() * 100 as int);
INTEGER

68
(1 row)

select cast (random() * 100 as int);
INTEGER

56
(1 row)

Ora impostare il valore SEED su .25, e restituire altri tre numeri RANDOM:

set seed to .25;
select cast (random() * 100 as int);
INTEGER

21
(1 row)

select cast (random() * 100 as int);
INTEGER

79
(1 row)

select cast (random() * 100 as int);
INTEGER

Funzioni matematiche 265

AWS Clean Rooms Documentazione di riferimento a SQL

12
(1 row)

Infine, ripristinare il valore SEED su .25, e verificare che RANDOM restituisca gli stessi risultati
delle tre chiamate precedenti:

set seed to .25;
select cast (random() * 100 as int);
INTEGER

21
(1 row)

select cast (random() * 100 as int);
INTEGER

79
(1 row)

select cast (random() * 100 as int);
INTEGER

12
(1 row)

Funzione ROUND

La funzione ROUND arrotonda i numeri al integer o decimale più vicino.

La funzione ROUND può facoltativamente includere un secondo argomento: un integer per indicare
il numero di cifre decimali per l'arrotondamento, in entrambe le direzioni. Quando non si specifica il
secondo argomento, la funzione viene arrotondata al numero intero più vicino. Quando il secondo
argomento specificato è >n, la funzione viene arrotondata al numero più vicino con n cifre decimali di
precisione.

Sintassi

ROUND (number [, integer])

Funzioni matematiche 266

AWS Clean Rooms Documentazione di riferimento a SQL

Argomento

numero

Un numero o un'espressione che restituisce un numero. Può essere DECIMAL o type. FLOAT8
AWS Clean Rooms può convertire altri tipi di dati secondo le regole di conversione implicite.

integer (facoltativo)

Un intero che indica il numero di posizioni decimali per l'arrotondamento, in entrambe le direzioni.

Tipo restituito

ROUND restituisce lo stesso tipo di dati numerici degli argomenti di input.

Esempi

Arrotondare la commissione pagata per una determinata transazione al numero intero più vicino.

select commission, round(commission)
from sales where salesid=10000;

commission | round
-----------+-------
 28.05 | 28
(1 row)

Arrotondare la commissione pagata per una determinata transazione al primo posto decimale.

select commission, round(commission, 1)
from sales where salesid=10000;

commission | round
-----------+-------
 28.05 | 28.1
(1 row)

Per la stessa query, estendere la precisione nella direzione opposta.

select commission, round(commission, -1)
from sales where salesid=10000;

Funzioni matematiche 267

AWS Clean Rooms Documentazione di riferimento a SQL

commission | round
-----------+-------
 28.05 | 30
(1 row)

Funzione SIGN

La funzione SIGN restituisce il segno (positivo o negativo) di un numero. Il risultato della funzione
SIGN è un valore 1, -1 o 0 a indicare il segno dell'argomento.

Sintassi

SIGN (number)

Argomento

numero

Numero o espressione che valuta un numero. Può essere il DECIMALor FLOAT8 tipo. AWS
Clean Rooms può convertire altri tipi di dati secondo le regole di conversione implicite.

Tipo restituito

SIGN restituisce lo stesso tipo di dati numerici degli argomenti di input. Se l'input è DECIMAL, l'output
è DECIMAL(1,0).

Esempi

Per determinare il segno della commissione pagata per una determinata transazione dalla tabella
SALES, utilizza l'esempio seguente.

SELECT commission, SIGN(commission)
FROM sales WHERE salesid=10000;

+------------+------+
| commission | sign |
+------------+------+
| 28.05 | 1 |
+------------+------+

Funzioni matematiche 268

AWS Clean Rooms Documentazione di riferimento a SQL

Funzione SIN

SIN è una funzione trigonometrica che restituisce il seno di un numero. Il valore restituito è compreso
tra -1 e 1.

Sintassi

SIN(number)

Argomento

numero

Un numero DOUBLE PRECISION in radianti.

Tipo restituito

DOUBLE PRECISION

Esempio

Per restituire il seno di -PI, utilizza l'esempio seguente.

SELECT SIN(-PI());

+-------------------------+
| sin |
+-------------------------+
| -0.00000000000000012246 |
+-------------------------+

Funzione SQRT

La funzione SQRT restituisce la radice quadrata di un valore numerico. La radice quadrata è un
numero moltiplicato per sé stesso per ottenere il valore fornito.

Sintassi

SQRT (expression)

Funzioni matematiche 269

AWS Clean Rooms Documentazione di riferimento a SQL

Argomento

espressione

L'espressione deve avere un tipo di dati integer, numero decimale o numero in virgola mobile.
L'espressione può includere funzioni. Il sistema potrebbe eseguire conversioni di tipo implicito.

Tipo restituito

La funzione SQRT restituisce un numero DOUBLE PRECISION.

Esempi

L'esempio seguente restituisce la radice quadrata di un numero.

select sqrt(16);

sqrt

4

L'esempio seguente esegue una conversione di tipo implicito.

select sqrt('16');

sqrt

4

L'esempio seguente annida le funzioni per eseguire un'attività più complessa.

select sqrt(round(16.4));

sqrt

4

L'esempio seguente restituisce la lunghezza del raggio quando viene fornita l'area di un cerchio.
Calcola il raggio in pollici, ad esempio, quando viene fornita l'area in pollici quadrati. L'area
dell'esempio è 20.

Funzioni matematiche 270

AWS Clean Rooms Documentazione di riferimento a SQL

select sqrt(20/pi());

Ciò restituisce il valore 5,046265044040321.

L'esempio seguente restituisce la radice quadrata per i valori di COMMISSION dalla tabella SALES.
La colonna COMMISSION è una colonna DECIMAL. Questo esempio mostra come utilizzare la
funzione in una query con una logica condizionale più complessa.

select sqrt(commission)
from sales where salesid < 10 order by salesid;

sqrt

10.4498803820905
3.37638860322683
7.24568837309472
5.1234753829798
...

La seguente query restituisce la radice quadrata arrotondata per lo stesso insieme dei valori di
COMMISSION.

select salesid, commission, round(sqrt(commission))
from sales where salesid < 10 order by salesid;

salesid | commission | round
--------+------------+-------
 1 | 109.20 | 10
 2 | 11.40 | 3
 3 | 52.50 | 7
 4 | 26.25 | 5
...

Per ulteriori informazioni sui dati di esempio in AWS Clean Rooms, consulta Database di esempio.

Funzione TRUNC

La funzione TRUNC tronca i numeri all'intero o al decimale precedente.

La funzione TRUNC può facoltativamente includere un secondo argomento come un intero per
indicare il numero di cifre decimali per l'arrotondamento, in entrambe le direzioni. Quando non si

Funzioni matematiche 271

https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html

AWS Clean Rooms Documentazione di riferimento a SQL

specifica il secondo argomento, la funzione viene arrotondata al numero intero più vicino. Quando
viene specificato il secondo argomento >n, la funzione viene arrotondata al numero più vicino con n
cifre decimali di precisione. Questa funzione tronca anche un timestamp e restituisce una data.

Sintassi

TRUNC (number [, integer] |
timestamp)

Arguments (Argomenti)

numero

Un numero o un'espressione che restituisce un numero. Può essere il numero DECIMALE o
FLOAT8 il tipo. AWS Clean Rooms può convertire altri tipi di dati secondo le regole di conversione
implicite.

integer (facoltativo)

Un integer che indica il numero di posizioni decimali di precisione, in entrambe le direzioni. Se non
viene fornito un valore integer, il numero viene troncato come numero intero; se viene specificato
un valore integer, il numero viene troncato alla posizione decimale specificata.

timestamp

La funzione può anche restituire la data da un timestamp. Per restituire un valore di timestamp
con 00:00:00 come ora, eseguire il casting del risultato della funzione su TIMESTAMP.

Tipo restituito

TRUNC restituisce lo stesso tipo di dati del primo argomento di input. Per i timestamp, TRUNC
restituisce una data.

Esempi

Troncare la commissione pagata per una determinata transazione di vendita.

select commission, trunc(commission)
from sales where salesid=784;

commission | trunc
-----------+-------

Funzioni matematiche 272

AWS Clean Rooms Documentazione di riferimento a SQL

 111.15 | 111

(1 row)

Troncare lo stesso valore della commissione alla prima posizione decimale.

select commission, trunc(commission,1)
from sales where salesid=784;

commission | trunc
-----------+-------
 111.15 | 111.1

(1 row)

Troncare la commissione con un valore negativo per il secondo argomento; 111.15 è arrotondato
per difetto a 110.

select commission, trunc(commission,-1)
from sales where salesid=784;

commission | trunc
-----------+-------
 111.15 | 110
(1 row)

Restituisce la parte di data dal risultato della funzione SYSDATE (che restituisce un timestamp):

select sysdate;

timestamp

2011-07-21 10:32:38.248109
(1 row)

select trunc(sysdate);

trunc

2011-07-21
(1 row)

Funzioni matematiche 273

AWS Clean Rooms Documentazione di riferimento a SQL

Applica la funzione TRUNC a una colonna TIMESTAMP. Il tipo restituito è una data.

select trunc(starttime) from event
order by eventid limit 1;

trunc

2008-01-25
(1 row)

Funzioni scalari

Questa sezione descrive le funzioni scalari supportate in Spark SQL. AWS Clean Rooms Una
funzione scalare è una funzione che accetta uno o più valori come input e restituisce un singolo
valore come output. Le funzioni scalari operano su singole righe o elementi e producono un unico
risultato per ogni input.

Le funzioni scalari, come SIZE, sono diverse dagli altri tipi di funzioni SQL, come le funzioni
aggregate (count, sum, avg) e le funzioni di generazione di tabelle (explode, flatten). Questi altri tipi di
funzioni operano su più righe o generano più righe, mentre le funzioni scalari funzionano su singole
righe o elementi.

Argomenti

• Funzione SIZE

Funzione SIZE

La funzione SIZE accetta una matrice, una mappa o una stringa esistente come argomento e
restituisce un singolo valore che rappresenta la dimensione o la lunghezza di quella struttura di dati.
Non crea una nuova struttura di dati. Viene utilizzato per interrogare e analizzare le proprietà delle
strutture di dati esistenti, anziché per crearne di nuove.

Questa funzione è utile per determinare il numero di elementi in un array o la lunghezza di una
stringa. Può essere particolarmente utile quando si lavora con matrici e altre strutture di dati in SQL,
perché consente di ottenere informazioni sulla dimensione o sulla cardinalità dei dati.

Sintassi

size(expr)

Funzioni scalari 274

AWS Clean Rooms Documentazione di riferimento a SQL

Argomenti

expr

Un'espressione ARRAY, MAP o STRING.

Tipo restituito

La funzione SIZE restituisce un valore INTEGER.

Esempio

In questo esempio, la funzione SIZE viene applicata all'array ['b', 'd', 'c', 'a'] e restituisce
il valore4, che è il numero di elementi nell'array.

SELECT size(array('b', 'd', 'c', 'a'));
 4

In questo esempio, la funzione SIZE viene applicata alla mappa {'a': 1, 'b': 2} e restituisce il
valore2, che è il numero di coppie chiave-valore nella mappa.

SELECT size(map('a', 1, 'b', 2));
 2

In questo esempio, la funzione SIZE viene applicata alla stringa 'hello world' e restituisce il
valore11, che è il numero di caratteri nella stringa.

SELECT size('hello world');
11

Funzioni stringa

Le funzioni di stringa elaborano e manipolano stringhe di caratteri o espressioni che valutano le
stringhe di caratteri. Quando l'argomento stringa in queste funzioni è un valore letterale, deve essere
racchiuso tra virgolette singole. I tipi di dati supportati includono CHAR e VARCHAR.

La seguente sezione fornisce i nomi della funzione, la sintassi e le descrizioni per le funzioni
supportate. Tutti gli offset in stringhe sono basati su uno.

Funzioni stringa 275

AWS Clean Rooms Documentazione di riferimento a SQL

Argomenti

• || (Concatenamento) Operatore

• Funzione BTRIM

• Funzione CONCAT

• Funzione FORMAT_STRING

• Funzioni LEFT e RIGHT

• Funzione LENGTH

• Funzione LOWER

• Funzioni LPAD e RPAD

• Funzione LTRIM

• Funzione POSITION

• Funzione REGEXP_COUNT

• Funzione REGEXP_INSTR

• Funzione REGEXP_REPLACE

• Funzione REGEXP_SUBSTR

• Funzione REPEAT

• Funzione REPLACE

• Funzione REVERSE

• Funzione RTRIM

• Funzione SPLIT

• Funzione SPLIT_PART

• Funzione SUBSTRING

• Funzione TRANSLATE

• Funzione TRIM

• Funzione UPPER

• Funzione UUID

|| (Concatenamento) Operatore

Concatena due espressioni su entrambi i lati del simbolo || e restituisce l'espressione concatenata.

Funzioni stringa 276

AWS Clean Rooms Documentazione di riferimento a SQL

L'operatore di concatentazione è simile a. Funzione CONCAT

Note

Sia per la funzione CONCAT sia per l'operatore di concatenazione, se una o entrambe le
espressioni sono nulle, il risultato della concatenazione è nullo.

Sintassi

expression1 || expression2

Argomenti

expression1, expression2

Entrambi gli argomenti possono essere stringhe di caratteri o espressioni a lunghezza fissa o a
lunghezza variabile.

Tipo restituito

L'operatore || restituisce una stringa. Il tipo di stringa è lo stesso degli argomenti di input.

Esempio

L'esempio seguente concatena i campi FIRSTNAME e LASTNAME dalla tabella USERS:

select firstname || ' ' || lastname
from users
order by 1
limit 10;

concat

Aaron Banks
Aaron Booth
Aaron Browning
Aaron Burnett
Aaron Casey
Aaron Cash

Funzioni stringa 277

AWS Clean Rooms Documentazione di riferimento a SQL

Aaron Castro
Aaron Dickerson
Aaron Dixon
Aaron Dotson
(10 rows)

Per concatenare le colonne che potrebbero contenere valori null, utilizzare l'espressione Funzioni
NVL e COALESCE. Il seguente esempio utilizza NVL per restituire uno 0 ogni volta che si incontra
NULL.

select venuename || ' seats ' || nvl(venueseats, 0)
from venue where venuestate = 'NV' or venuestate = 'NC'
order by 1
limit 10;

seating

Ballys Hotel seats 0
Bank of America Stadium seats 73298
Bellagio Hotel seats 0
Caesars Palace seats 0
Harrahs Hotel seats 0
Hilton Hotel seats 0
Luxor Hotel seats 0
Mandalay Bay Hotel seats 0
Mirage Hotel seats 0
New York New York seats 0

Funzione BTRIM

La funzione BTRIM riduce una stringa rimuovendo spazi vuoti iniziali e finali o rimuovendo i caratteri
iniziali e finali che corrispondono a una stringa specificata facoltativa.

Sintassi

BTRIM(string [, trim_chars])

Argomenti

stringa

La stringa VARCHAR di input da ridurre.

Funzioni stringa 278

AWS Clean Rooms Documentazione di riferimento a SQL

trim_chars

La stringa VARCHAR contenente i caratteri da abbinare.

Tipo restituito

La funzione BTRIM restituisce una stringa VARCHAR.

Esempi

L'esempio seguente riduce gli spazi vuoti iniziali e finali dalla stringa ' abc ':

select ' abc ' as untrim, btrim(' abc ') as trim;

untrim | trim
----------+------
 abc | abc

L'esempio seguente rimuove le stringhe 'xyz' iniziali e finali dalla stringa 'xyzaxyzbxyzcxyz'.
Le occorrenze iniziali e finali di 'xyz' vengono rimosse, ma le occorrenze interne alla stringa non
vengono rimosse.

select 'xyzaxyzbxyzcxyz' as untrim,
btrim('xyzaxyzbxyzcxyz', 'xyz') as trim;

 untrim | trim
-----------------+-----------
 xyzaxyzbxyzcxyz | axyzbxyzc

L'esempio seguente rimuove le parti iniziale e finale dalla stringa 'setuphistorycassettes' che
corrispondono a uno qualsiasi dei caratteri nell'elenco 'tes' trim_chars. Qualsiasi carattere t, e o
s che si verifica prima di un altro carattere che non è nell'elenco trim_chars all'inizio o alla fine della
stringa di input viene rimosso.

SELECT btrim('setuphistorycassettes', 'tes');

 btrim

 uphistoryca

Funzioni stringa 279

AWS Clean Rooms Documentazione di riferimento a SQL

Funzione CONCAT

La funzione CONCAT concatena due espressioni e restituisce l'espressione risultante. Per
concatenare più di due espressioni, utilizzare le funzioni CONCAT nidificate. L'operatore di
concatenazione (||) tra due espressioni produce gli stessi risultati della funzione CONCAT.

Note

Sia per la funzione CONCAT sia per l'operatore di concatenazione, se una o entrambe le
espressioni sono nulle, il risultato della concatenazione è nullo.

Sintassi

CONCAT (expression1, expression2)

Argomenti

expression1, expression2

Entrambi gli argomenti possono essere una stringa di caratteri a lunghezza fissa, una stringa di
caratteri a lunghezza variabile, un'espressione binaria o un'espressione che valuta uno di questi
input.

Tipo restituito

CONCAT restituisce un'espressione. Il tipo di dati dell'espressione è lo stesso tipo degli argomenti di
input.

Se le espressioni di input sono di tipi diversi, AWS Clean Rooms prova a digitare implicitamente
genera una delle espressioni. Se non è possibile eseguire il cast di valori, viene restituito il valore
nullo.

Esempi

L'esempio seguente concatena due letterali di caratteri:

select concat('December 25, ', '2008');

Funzioni stringa 280

AWS Clean Rooms Documentazione di riferimento a SQL

concat

December 25, 2008
(1 row)

La seguente query, utilizzando l'operatore || invece di CONCAT, produce lo stesso risultato:

select 'December 25, '||'2008';

concat

December 25, 2008
(1 row)

Nell'esempio seguente vengono utilizzate due funzioni CONCAT per concatenare tre stringhe di
caratteri:

select concat('Thursday, ', concat('December 25, ', '2008'));

concat

Thursday, December 25, 2008
(1 row)

Per concatenare le colonne che potrebbero contenere valori null, utilizzare la Funzioni NVL e
COALESCE. Il seguente esempio utilizza NVL per restituire uno 0 ogni volta che si incontra NULL.

select concat(venuename, concat(' seats ', nvl(venueseats, 0))) as seating
from venue where venuestate = 'NV' or venuestate = 'NC'
order by 1
limit 5;

seating

Ballys Hotel seats 0
Bank of America Stadium seats 73298
Bellagio Hotel seats 0
Caesars Palace seats 0
Harrahs Hotel seats 0
(5 rows)

Funzioni stringa 281

AWS Clean Rooms Documentazione di riferimento a SQL

La query seguente concatena i valori CITY e STATE dalla tabella VENUE:

select concat(venuecity, venuestate)
from venue
where venueseats > 75000
order by venueseats;

concat

DenverCO
Kansas CityMO
East RutherfordNJ
LandoverMD
(4 rows)

La seguente query utilizza funzioni CONCAT nidificate. La query concatena i valori CITY e STATE
dalla tabella VENUE ma delimita la stringa risultante con una virgola e uno spazio:

select concat(concat(venuecity,', '),venuestate)
from venue
where venueseats > 75000
order by venueseats;

concat

Denver, CO
Kansas City, MO
East Rutherford, NJ
Landover, MD
(4 rows)

Funzione FORMAT_STRING

La funzione FORMAT_STRING crea una stringa formattata sostituendo i segnaposto in una stringa
modello con gli argomenti forniti. Restituisce una stringa formattata da stringhe di formato in stile
printf.

La funzione FORMAT_STRING funziona sostituendo i segnaposto nella stringa del modello con i
valori corrispondenti passati come argomenti. Questo tipo di formattazione delle stringhe può essere
utile quando è necessario creare dinamicamente stringhe che includono una combinazione di testo
statico e dati dinamici, ad esempio quando si generano messaggi di output, report o altri tipi di testo

Funzioni stringa 282

AWS Clean Rooms Documentazione di riferimento a SQL

informativo. La funzione FORMAT_STRING fornisce un modo conciso e leggibile per creare questi
tipi di stringhe formattate, semplificando la manutenzione e l'aggiornamento del codice che genera
l'output.

Sintassi

format_string(strfmt, obj, ...)

Argomenti

strfmt

Un'espressione STRING.

obj

Una STRINGA o un'espressione numerica.

Tipo restituito

FORMAT_STRING restituisce una STRING.

Esempio

L'esempio seguente contiene una stringa modello che contiene due segnaposto: %d per un valore
decimale (intero) e per un valore di stringa. %s Il %d segnaposto viene sostituito con il valore decimale
(intero) () e il segnaposto %s viene sostituito con il valore di stringa (100). "days" L'output è una
stringa modello con i segnaposto sostituiti dagli argomenti forniti:. "Hello World 100 days"

SELECT format_string("Hello World %d %s", 100, "days");
 Hello World 100 days

Funzioni LEFT e RIGHT

Queste funzioni restituiscono il numero specificato di caratteri più a sinistra o più a destra da una
stringa di caratteri.

Il numero si basa sul numero di caratteri, non di byte, pertanto i caratteri multibyte vengono contati
come caratteri singoli.

Funzioni stringa 283

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

LEFT (string, integer)

RIGHT (string, integer)

Argomenti

stringa

Qualsiasi stringa di caratteri o espressione che valuti una stringa di caratteri.

integer

Un integer positivo.

Tipo restituito

LEFT e RIGHT restituiscono una stringa VARCHAR.

Esempio

L'esempio seguente restituisce i 5 caratteri più a sinistra e i 5 caratteri più a destra dei nomi di eventi
con un valore compreso tra 1000 e 1005: IDs

select eventid, eventname,
left(eventname,5) as left_5,
right(eventname,5) as right_5
from event
where eventid between 1000 and 1005
order by 1;

eventid | eventname | left_5 | right_5
--------+----------------+--------+---------
 1000 | Gypsy | Gypsy | Gypsy
 1001 | Chicago | Chica | icago
 1002 | The King and I | The K | and I
 1003 | Pal Joey | Pal J | Joey
 1004 | Grease | Greas | rease
 1005 | Chicago | Chica | icago
(6 rows)

Funzioni stringa 284

AWS Clean Rooms Documentazione di riferimento a SQL

Funzione LENGTH

Funzione LOWER

Converte una stringa in minuscolo. LOWER supporta caratteri multibyte UTF-8, fino a un massimo di
quattro byte per carattere.

Sintassi

LOWER(string)

Argomento

stringa

Il parametro di input è una stringa VARCHAR (o qualsiasi altro tipo di dati, ad esempio CHAR, che
può essere convertito implicitamente in VARCHAR).

Tipo restituito

La funzione LOWER restituisce una stringa di caratteri che appartiene allo stesso tipo di dati della
stringa di input.

Esempi

L'esempio seguente converte il campo CATNAME in lettere minuscole:

select catname, lower(catname) from category order by 1,2;

 catname | lower
----------+-----------
Classical | classical
Jazz | jazz
MLB | mlb
MLS | mls
Musicals | musicals
NBA | nba
NFL | nfl
NHL | nhl
Opera | opera
Plays | plays
Pop | pop

Funzioni stringa 285

AWS Clean Rooms Documentazione di riferimento a SQL

(11 rows)

Funzioni LPAD e RPAD

Queste funzioni antepongono o aggiungono caratteri a una stringa, in base a una lunghezza
specificata.

Sintassi

LPAD (string1, length, [string2])

RPAD (string1, length, [string2])

Argomenti

string1

Una stringa di caratteri o un'espressione che valuta una stringa di caratteri, come il nome di una
colonna di caratteri.

length

Un integer che definisce la lunghezza del risultato della funzione. La lunghezza di una stringa
si basa sul numero di caratteri, non di byte, pertanto i caratteri multibyte vengono contati come
caratteri singoli. Se string1 è più lunga della lunghezza specificata, viene troncata (a destra). Se
lunghezza è un numero negativo, il risultato della funzione è una stringa vuota.

string2

Uno o più caratteri anteposti o aggiunti a string1. Questo argomento è facoltativo; se non è
specificato, gli spazi vengono usati.

Tipo restituito

Queste funzioni restituiscono un tipo di dati VARCHAR.

Esempi

Troncare un insieme specificato di nomi di eventi a 20 caratteri e anteporre ai nomi più brevi gli spazi:

select lpad(eventname,20) from event

Funzioni stringa 286

AWS Clean Rooms Documentazione di riferimento a SQL

where eventid between 1 and 5 order by 1;

 lpad

 Salome
 Il Trovatore
 Boris Godunov
 Gotterdammerung
La Cenerentola (Cind
(5 rows)

Troncare lo stesso insieme specificato di nomi di eventi a 20 caratteri ma aggiungere ai nomi più
brevi 0123456789.

select rpad(eventname,20,'0123456789') from event
where eventid between 1 and 5 order by 1;

 rpad

Boris Godunov0123456
Gotterdammerung01234
Il Trovatore01234567
La Cenerentola (Cind
Salome01234567890123
(5 rows)

Funzione LTRIM

Taglia i caratteri dall'inizio di una stringa. Rimuove la stringa più lunga contenente solo i caratteri
nell'elenco dei caratteri di taglio. Il taglio è completo quando un carattere di taglio non appare nella
stringa di input.

Sintassi

LTRIM(string [, trim_chars])

Argomenti

stringa

Una stringa, una colonna, un'espressione o una stringa letterale da tagliare.

Funzioni stringa 287

AWS Clean Rooms Documentazione di riferimento a SQL

trim_chars

Una colonna o un'espressione di stringhe o un valore letterale di stringa che rappresenta i
caratteri da tagliare dall'inizio della stringa. Se non specificato, viene utilizzato uno spazio come
carattere di taglio.

Tipo restituito

La funzione LTRIM restituisce una stringa di caratteri che appartiene allo stesso tipo di dati della
stringa di input (CHAR o VARCHAR).

Esempi

L'esempio seguente taglia l'anno dalla colonna listime. I caratteri di taglio nel valore letterale
di stringa '2008-' indicano i caratteri da tagliare da sinistra. Se si utilizzano i caratteri di taglio
'028-', si ottiene lo stesso risultato.

select listid, listtime, ltrim(listtime, '2008-')
from listing
order by 1, 2, 3
limit 10;

listid | listtime | ltrim
-------+---------------------+----------------
 1 | 2008-01-24 06:43:29 | 1-24 06:43:29
 2 | 2008-03-05 12:25:29 | 3-05 12:25:29
 3 | 2008-11-01 07:35:33 | 11-01 07:35:33
 4 | 2008-05-24 01:18:37 | 5-24 01:18:37
 5 | 2008-05-17 02:29:11 | 5-17 02:29:11
 6 | 2008-08-15 02:08:13 | 15 02:08:13
 7 | 2008-11-15 09:38:15 | 11-15 09:38:15
 8 | 2008-11-09 05:07:30 | 11-09 05:07:30
 9 | 2008-09-09 08:03:36 | 9-09 08:03:36
 10 | 2008-06-17 09:44:54 | 6-17 09:44:54

LTRIM rimuove tutti i caratteri in trim_chars se questi si trovano all'inizio di stringa. L'esempio
seguente riduce i caratteri "C", "D" e "G" quando si trovano all'inizio di VENUENAME che è una
colonna VARCHAR.

select venueid, venuename, ltrim(venuename, 'CDG')
from venue

Funzioni stringa 288

AWS Clean Rooms Documentazione di riferimento a SQL

where venuename like '%Park'
order by 2
limit 7;

venueid | venuename | btrim
--------+----------------------------+--------------------------
 121 | ATT Park | ATT Park
 109 | Citizens Bank Park | itizens Bank Park
 102 | Comerica Park | omerica Park
 9 | Dick's Sporting Goods Park | ick's Sporting Goods Park
 97 | Fenway Park | Fenway Park
 112 | Great American Ball Park | reat American Ball Park
 114 | Miller Park | Miller Park

L'esempio seguente utilizza il carattere di taglio 2 che viene recuperato dalla colonna venueid.

select ltrim('2008-01-24 06:43:29', venueid)
from venue where venueid=2;

ltrim

008-01-24 06:43:29

L'esempio seguente non taglia alcun carattere perché prima del carattere di taglio '0' è presente un
2.

select ltrim('2008-01-24 06:43:29', '0');

ltrim

2008-01-24 06:43:29

L'esempio seguente utilizza il carattere di taglio dello spazio predefinito e taglia i due spazi dall'inizio
della stringa.

select ltrim(' 2008-01-24 06:43:29');

ltrim

2008-01-24 06:43:29

Funzioni stringa 289

AWS Clean Rooms Documentazione di riferimento a SQL

Funzione POSITION

Restituisce la posizione della sottostringa specificata all'interno di una stringa.

Sintassi

POSITION(substring IN string)

Argomenti

sottostringa

La sottostringa da cercare all'interno della stringa.

stringa

La stringa o colonna da ricercare.

Tipo restituito

La funzione POSITION restituisce un integer corrispondente alla posizione della sottostringa (basata
su uno, non su zero). La posizione si basa sul numero di caratteri, non di byte, pertanto i caratteri
multibyte vengono contati come caratteri singoli.

Note per l'utilizzo

POSITION restituisce 0 se la sottostringa non si trova all'interno della stringa:

select position('dog' in 'fish');

position

 0
(1 row)

Esempi

L'esempio seguente mostra la posizione della stringa fish all'interno della parola dogfish:

select position('fish' in 'dogfish');

Funzioni stringa 290

AWS Clean Rooms Documentazione di riferimento a SQL

position

 4
(1 row)

L'esempio seguente restituisce il numero di transazioni di vendita con una COMMISSION superiore a
999,00 dalla tabella SALES:

select distinct position('.' in commission), count (position('.' in commission))
from sales where position('.' in commission) > 4 group by position('.' in commission)
order by 1,2;

position | count
---------+-------
 5 | 629
(1 row)

Funzione REGEXP_COUNT

Cerca una stringa per un modello di espressione regolare e restituisce un integer che indica il numero
di volte in cui il modello si verifica nella stringa. Se non viene trovata alcuna corrispondenza, la
funzione restituisce 0.

Sintassi

REGEXP_COUNT (source_string, pattern [, position [, parameters]])

Argomenti

source_string

Un'espressione di stringa, come ad esempio un nome di colonna, da cercare.

pattern

Un valore letterale di stringa che rappresenta un modello di espressione regolare.

posizione

Un integer positivo che indica la posizione all'interno di source_string per iniziare la ricerca. La
posizione si basa sul numero di caratteri, non di byte, pertanto i caratteri multibyte vengono contati

Funzioni stringa 291

AWS Clean Rooms Documentazione di riferimento a SQL

come caratteri singoli. Il valore di default è 1. Se posizione è inferiore a 1, la ricerca inizia con
il primo carattere di source_string. Se posizione è maggiore rispetto al numero di caratteri in
source_string, il risultato è 0.

parameters

Uno o più letterali di stringa che indicano come la funzione corrisponde al modello. Di seguito
sono riportati i valori possibili:

• c: eseguire una corrispondenza in base a maiuscole e minuscole. L'impostazione predefinita è
utilizzare la corrispondenza con distinzione tra maiuscole e minuscole.

• i: eseguire una corrispondenza senza distinzione tra maiuscole e minuscole.

• p: interpreta il modello con il dialetto Perl Compatible Regular Expression (PCRE).

Tipo restituito

Numero intero

Esempio

L'esempio seguente conta il numero di volte in cui si verifica una sequenza di tre lettere.

SELECT regexp_count('abcdefghijklmnopqrstuvwxyz', '[a-z]{3}');

 regexp_count

 8

L'esempio seguente conta il numero di volte in cui il nome di dominio di livello superiore è org oppure
edu.

SELECT email, regexp_count(email,'@[^.]*\\.(org|edu)')FROM users
ORDER BY userid LIMIT 4;

 email | regexp_count
---+--------------
 Etiam.laoreet.libero@sodalesMaurisblandit.edu | 1
 Suspendisse.tristique@nonnisiAenean.edu | 1
 amet.faucibus.ut@condimentumegetvolutpat.ca | 0
 sed@lacusUtnec.ca | 0

Funzioni stringa 292

AWS Clean Rooms Documentazione di riferimento a SQL

Nell'esempio seguente vengono conteggiate le ricorrenze della stringa FOX utilizzando una
corrispondenza senza distinzione tra maiuscole e minuscole.

SELECT regexp_count('the fox', 'FOX', 1, 'i');

 regexp_count

 1

Nell'esempio seguente viene utilizzato un modello scritto in dialetto PCRE per individuare le
parole contenenti almeno un numero e una lettera minuscola. Utilizza l'operatore ?=, che ha una
connotazione look-ahead specifica in PCRE. In questo esempio viene contato il numero di ricorrenze
di tali parole, con la corrispondenza tra maiuscole e minuscole.

SELECT regexp_count('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 'p');

 regexp_count

 2

Nell'esempio seguente viene utilizzato un modello scritto in dialetto PCRE per individuare le
parole contenenti almeno un numero e una lettera minuscola. Utilizza l'operatore ?=, che ha una
connotazione specifica in PCRE. In questo esempio viene contato il numero di ricorrenze di tali
parole, ma differisce dall'esempio precedente in quanto utilizza la corrispondenza senza distinzione
tra maiuscole e minuscole.

SELECT regexp_count('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 'ip');

 regexp_count

 3

Funzione REGEXP_INSTR

Cerca una stringa per un modello di espressione regolare e restituisce un integer che indica
la posizione iniziale o finale della sottostringa corrispondente. Se non viene trovata alcuna
corrispondenza, la funzione restituisce 0. REGEXP_INSTR è simile alla funzione POSITION, ma
consente di cercare una stringa per un modello di espressione regolare.

Funzioni stringa 293

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

REGEXP_INSTR (source_string, pattern [, position [, occurrence] [, option
 [, parameters]]]])

Argomenti

source_string

Un'espressione di stringa, come ad esempio un nome di colonna, da cercare.

pattern

Un valore letterale di stringa che rappresenta un modello di espressione regolare.

posizione

Un integer positivo che indica la posizione all'interno di source_string per iniziare la ricerca. La
posizione si basa sul numero di caratteri, non di byte, pertanto i caratteri multibyte vengono contati
come caratteri singoli. Il valore di default è 1. Se posizione è inferiore a 1, la ricerca inizia con
il primo carattere di source_string. Se posizione è maggiore rispetto al numero di caratteri in
source_string, il risultato è 0.

occorrenza

Un integer positivo che indica quale occorrenza del modello utilizzare. REGEXP_INSTR salta le
prime corrispondenze occorrenza -1. Il valore di default è 1. Se occorrenza è inferiore a 1 oppure
maggiore rispetto al numero di caratteri in source_string, la ricerca viene ignorata e il risultato è 0.

option

Un valore che indica se restituire la posizione del primo carattere della corrispondenza (0) o la
posizione del primo carattere dopo la fine della corrispondenza (1). Un valore diverso da zero
equivale a 1. Il valore predefinito è 0.

parameters

Uno o più letterali di stringa che indicano come la funzione corrisponde al modello. Di seguito
sono riportati i valori possibili:

• c: eseguire una corrispondenza in base a maiuscole e minuscole. L'impostazione predefinita è
utilizzare la corrispondenza con distinzione tra maiuscole e minuscole.

• i: eseguire una corrispondenza senza distinzione tra maiuscole e minuscole.

• e: estrarre una sottostringa usando una sottoespressione.

Funzioni stringa 294

AWS Clean Rooms Documentazione di riferimento a SQL

Se modello include una sottoespressione, REGEXP_INSTR corrisponde a una sottostringa
che utilizza la prima sottoespressione in modello. REGEXP_INSTR considera solo la prima
sottoespressione; le sottoespressioni aggiuntive vengono ignorate. Se il modello non ha una
sottoespressione, REGEXP_INSTR ignora il parametro "e".

• p: interpreta il modello con il dialetto Perl Compatible Regular Expression (PCRE).

Tipo restituito

Numero intero

Esempio

Nell'esempio seguente viene cercato il carattere @ che inizia un nome di dominio e restituisce la
posizione iniziale della prima corrispondenza.

SELECT email, regexp_instr(email, '@[^.]*')
FROM users
ORDER BY userid LIMIT 4;

 email | regexp_instr
---+--------------
 Etiam.laoreet.libero@example.com | 21
 Suspendisse.tristique@nonnisiAenean.edu | 22
 amet.faucibus.ut@condimentumegetvolutpat.ca | 17
 sed@lacusUtnec.ca | 4

Nell'esempio seguente vengono cercate le varianti della parola Center e viene restituita la posizione
iniziale della prima corrispondenza.

SELECT venuename, regexp_instr(venuename,'[cC]ent(er|re)$')
FROM venue
WHERE regexp_instr(venuename,'[cC]ent(er|re)$') > 0
ORDER BY venueid LIMIT 4;

 venuename | regexp_instr
-----------------------+--------------
 The Home Depot Center | 16
 Izod Center | 6
 Wachovia Center | 10
 Air Canada Centre | 12

Funzioni stringa 295

AWS Clean Rooms Documentazione di riferimento a SQL

Nell'esempio seguente viene trovata la posizione iniziale della prima ricorrenza della stringa FOX
utilizzando una logica di associazione senza distinzione tra maiuscole e minuscole.

SELECT regexp_instr('the fox', 'FOX', 1, 1, 0, 'i');

 regexp_instr

 5

Nell'esempio seguente viene utilizzato un modello scritto in dialetto PCRE per individuare le
parole contenenti almeno un numero e una lettera minuscola. Utilizza l'operatore ?=, che ha una
connotazione look-ahead specifica in PCRE. In questo esempio viene trovata la posizione iniziale
della seconda parola di questo tipo.

SELECT regexp_instr('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 0, 'p');

 regexp_instr

 21

Nell'esempio seguente viene utilizzato un modello scritto in dialetto PCRE per individuare le
parole contenenti almeno un numero e una lettera minuscola. Utilizza l'operatore ?=, che ha una
connotazione look-ahead specifica in PCRE. In questo esempio viene trovata la posizione iniziale
della seconda parola, ma differisce dall'esempio precedente in quanto utilizza la corrispondenza
senza distinzione tra maiuscole e minuscole.

SELECT regexp_instr('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 0, 'ip');

 regexp_instr

 15

Funzione REGEXP_REPLACE

Cerca una stringa per un modello di espressione regolare e sostituisce ogni occorrenza del modello
con la stringa specificata. REGEXP_REPLACE è simile a Funzione REPLACE, ma consente di
cercare una stringa per un modello di espressione regolare.

Funzioni stringa 296

AWS Clean Rooms Documentazione di riferimento a SQL

REGEXP_REPLACE è simile a Funzione TRANSLATE e a Funzione REPLACE, ad eccezione del
fatto che TRANSLATE esegue più sostituzioni a carattere singolo e REPLACE sostituisce un'intera
stringa con un'altra stringa, mentre REGEXP_REPLACE consente di cercare una stringa per un
modello di espressione regolare.

Sintassi

REGEXP_REPLACE (source_string, pattern [, replace_string [, position [, parameters
]]])

Argomenti

source_string

Un'espressione di stringa, come ad esempio un nome di colonna, da cercare.

pattern

Un valore letterale di stringa che rappresenta un modello di espressione regolare.

replace_string

Un'espressione di stringa, ad esempio un nome di colonna, che sostituirà ogni occorrenza del
modello. L'impostazione predefinita è una stringa vuota ("").

posizione

Un integer positivo che indica la posizione all'interno di source_string per iniziare la ricerca. La
posizione si basa sul numero di caratteri, non di byte, pertanto i caratteri multibyte vengono contati
come caratteri singoli. Il valore di default è 1. Se posizione è inferiore a 1, la ricerca inizia con
il primo carattere di source_string. Se posizione è maggiore rispetto al numero di caratteri in
source_string, il risultato è source_string.

parameters

Uno o più letterali di stringa che indicano come la funzione corrisponde al modello. Di seguito
sono riportati i valori possibili:

• c: eseguire una corrispondenza in base a maiuscole e minuscole. L'impostazione predefinita è
utilizzare la corrispondenza con distinzione tra maiuscole e minuscole.

• i: eseguire una corrispondenza senza distinzione tra maiuscole e minuscole.

• p: interpreta il modello con il dialetto Perl Compatible Regular Expression (PCRE).

Funzioni stringa 297

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo restituito

VARCHAR

Se modello oppure replace_string è NULL, il risultato è NULL.

Esempio

L'esempio seguente elimina @ e il nome di dominio dagli indirizzi email.

SELECT email, regexp_replace(email, '@.*\\.(org|gov|com|edu|ca)$')
FROM users
ORDER BY userid LIMIT 4;

 email | regexp_replace
---+----------------
 Etiam.laoreet.libero@sodalesMaurisblandit.edu | Etiam.laoreet.libero
 Suspendisse.tristique@nonnisiAenean.edu | Suspendisse.tristique
 amet.faucibus.ut@condimentumegetvolutpat.ca | amet.faucibus.ut
 sed@lacusUtnec.ca | sed

Nell'esempio seguente sono sostituiti i nomi di dominio degli indirizzi e-mail con questo valore:
internal.company.com.

SELECT email, regexp_replace(email, '@.*\\.[[:alpha:]]{2,3}',
'@internal.company.com') FROM users
ORDER BY userid LIMIT 4;

 email | regexp_replace

+--
 Etiam.laoreet.libero@sodalesMaurisblandit.edu |
 Etiam.laoreet.libero@internal.company.com
 Suspendisse.tristique@nonnisiAenean.edu |
 Suspendisse.tristique@internal.company.com
 amet.faucibus.ut@condimentumegetvolutpat.ca | amet.faucibus.ut@internal.company.com
 sed@lacusUtnec.ca | sed@internal.company.com

Nell'esempio seguente vengono sostituite tutte le ricorrenze della stringa FOX con il valore quick
brown fox utilizzando una corrispondenza senza distinzione tra maiuscole e minuscole.

SELECT regexp_replace('the fox', 'FOX', 'quick brown fox', 1, 'i');

Funzioni stringa 298

AWS Clean Rooms Documentazione di riferimento a SQL

 regexp_replace

 the quick brown fox

Nell'esempio seguente viene utilizzato un modello scritto in dialetto PCRE per individuare le
parole contenenti almeno un numero e una lettera minuscola. Utilizza l'operatore ?=, che ha una
connotazione look-ahead specifica in PCRE. In questo esempio viene sostituita ogni ricorrenza di tale
parola con il valore [hidden].

SELECT regexp_replace('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 '[hidden]', 1, 'p');

 regexp_replace

 [hidden] plain A1234 [hidden]

Nell'esempio seguente viene utilizzato un modello scritto in dialetto PCRE per individuare le
parole contenenti almeno un numero e una lettera minuscola. Utilizza l'operatore ?=, che ha una
connotazione look-ahead specifica in PCRE. In questo esempio viene sostituita ogni ricorrenza
di tale parola con il valore [hidden], ma differisce dall'esempio precedente in quanto utilizza la
corrispondenza senza distinzione tra maiuscole e minuscole.

SELECT regexp_replace('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 '[hidden]', 1, 'ip');

 regexp_replace

 [hidden] plain [hidden] [hidden]

Funzione REGEXP_SUBSTR

Restituisce i caratteri da una stringa cercando un modello di espressione regolare.
REGEXP_SUBSTR è simile alla funzione Funzione SUBSTRING ma consente di cercare una stringa
per un modello di espressione regolare. Se la funzione non riesce a far corrispondere l'espressione
regolare ad alcun carattere della stringa, restituisce una stringa vuota.

Sintassi

REGEXP_SUBSTR (source_string, pattern [, position [, occurrence [, parameters]]])

Funzioni stringa 299

AWS Clean Rooms Documentazione di riferimento a SQL

Argomenti

source_string

Un'espressione della stringa da ricercare.

pattern

Un valore letterale di stringa che rappresenta un modello di espressione regolare.

posizione

Un integer positivo che indica la posizione all'interno di source_string per iniziare la ricerca. La
posizione si basa sul numero di caratteri, non di byte, pertanto i caratteri multibyte vengono contati
come caratteri singoli. Il valore di default è 1. Se posizione è inferiore a 1, la ricerca inizia con
il primo carattere di source_string. Se posizione è maggiore rispetto al numero di caratteri in
source_string, il risultato è una stringa vuota ("").

occorrenza

Un integer positivo che indica quale occorrenza del modello utilizzare. REGEXP_SUBSTR salta le
prime corrispondenze occorrenza -1. Il valore di default è 1. Se occorrenza è inferiore a 1 oppure
maggiore rispetto al numero di caratteri in source_string, la ricerca viene ignorata e il risultato è
NULL.

parameters

Uno o più letterali di stringa che indicano come la funzione corrisponde al modello. Di seguito
sono riportati i valori possibili:

• c: eseguire una corrispondenza in base a maiuscole e minuscole. L'impostazione predefinita è
utilizzare la corrispondenza con distinzione tra maiuscole e minuscole.

• i: eseguire una corrispondenza senza distinzione tra maiuscole e minuscole.

• e: estrarre una sottostringa usando una sottoespressione.

Se modello include una sottoespressione, REGEXP_SUBSTR corrisponde a una sottostringa
che utilizza la prima sottoespressione in modello. Un'espressione secondaria è un'espressione
all'interno del modello racchiusa tra parentesi. Ad esempio, per il modello 'This is a (\\w
+)' corrisponde alla prima espressione con la stringa 'This is a ' seguita da una parola.
Invece di restituire un modello, REGEXP_SUBSTR con il parametro e restituisce solo la stringa
all'interno dell'espressione secondaria.

Funzioni stringa 300

AWS Clean Rooms Documentazione di riferimento a SQL

REGEXP_SUBSTR considera solo la prima sottoespressione; le sottoespressioni aggiuntive
vengono ignorate. Se il modello non ha una sottoespressione, REGEXP_SUBSTR ignora il
parametro "e".

• p: interpreta il modello con il dialetto Perl Compatible Regular Expression (PCRE).

Tipo restituito

VARCHAR

Esempio

L'esempio seguente restituisce la porzione di un indirizzo email tra il carattere @ e l'estensione del
dominio.

SELECT email, regexp_substr(email,'@[^.]*')
FROM users
ORDER BY userid LIMIT 4;

 email | regexp_substr
---+--------------------------
 Etiam.laoreet.libero@sodalesMaurisblandit.edu | @sodalesMaurisblandit
 Suspendisse.tristique@nonnisiAenean.edu | @nonnisiAenean
 amet.faucibus.ut@condimentumegetvolutpat.ca | @condimentumegetvolutpat
 sed@lacusUtnec.ca | @lacusUtnec

Nell'esempio seguente viene restituita la porzione dell'input corrispondente alla prima ricorrenza della
stringa FOX utilizzando una corrispondenza senza distinzione tra maiuscole e minuscole.

SELECT regexp_substr('the fox', 'FOX', 1, 1, 'i');

 regexp_substr

 fox

L'istruzione di esempio seguente restituisce la prima parte dell'input che inizia con lettere minuscole.
Dal punto di vista funzionale è identica alla medesima istruzione SELECT senza il parametro c.

SELECT regexp_substr('THE SECRET CODE IS THE LOWERCASE PART OF 1931abc0EZ.', '[a-z]+',
 1, 1, 'c');

Funzioni stringa 301

AWS Clean Rooms Documentazione di riferimento a SQL

 regexp_substr

 abc

Nell'esempio seguente viene utilizzato un modello scritto in dialetto PCRE per individuare le
parole contenenti almeno un numero e una lettera minuscola. Utilizza l'operatore ?=, che ha una
connotazione look-ahead specifica in PCRE. In questo esempio viene restituita la parte dell'input
corrispondente alla seconda parola di questo tipo.

SELECT regexp_substr('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 'p');

 regexp_substr

 a1234

Nell'esempio seguente viene utilizzato un modello scritto in dialetto PCRE per individuare le
parole contenenti almeno un numero e una lettera minuscola. Utilizza l'operatore ?=, che ha una
connotazione look-ahead specifica in PCRE. In questo esempio viene restituita la parte di input
corrispondente alla seconda parola, ma differisce dall'esempio precedente in quanto si utilizza la
corrispondenza senza distinzione tra maiuscole e minuscole.

SELECT regexp_substr('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 'ip');

 regexp_substr

 A1234

L'esempio seguente utilizza un'espressione secondaria per trovare la seconda stringa che
corrisponde al modello 'this is a (\\w+)' utilizzando la corrispondenza senza distinzione tra
maiuscole e minuscole. Restituisce l'espressione secondaria tra parentesi.

select regexp_substr(
 'This is a cat, this is a dog. This is a mouse.',
 'this is a (\\w+)', 1, 2, 'ie');

 regexp_substr

 dog

Funzioni stringa 302

AWS Clean Rooms Documentazione di riferimento a SQL

Funzione REPEAT

Ripete una stringa il numero specificato di volte. Se il parametro di input è numerico, REPEAT lo
considera come una stringa.

Sintassi

REPEAT(string, integer)

Argomenti

stringa

Il primo parametro di input è la stringa da ripetere.

integer

Il secondo parametro è un integer che indica il numero di volte in cui ripetere la stringa.

Tipo restituito

La funzione REPEAT restituisce una stringa.

Esempi

L'esempio seguente ripete il valore della colonna CATID nella tabella CATEGORY tre volte:

select catid, repeat(catid,3)
from category
order by 1,2;

 catid | repeat
-------+--------
 1 | 111
 2 | 222
 3 | 333
 4 | 444
 5 | 555
 6 | 666
 7 | 777
 8 | 888
 9 | 999
 10 | 101010
 11 | 111111

Funzioni stringa 303

AWS Clean Rooms Documentazione di riferimento a SQL

(11 rows)

Funzione REPLACE

Sostituisce tutte le occorrenze di un insieme di caratteri all'interno di una stringa esistente con altri
caratteri specificati.

REPLACE è simile a Funzione TRANSLATE e a Funzione REGEXP_REPLACE, ad eccezione del
fatto che TRANSLATE esegue più sostituzioni a carattere singolo e REGEXP_REPLACE consente di
cercare una stringa per un modello di espressione regolare, mentre REPLACE sostituisce un'intera
stringa con un'altra stringa.

Sintassi

REPLACE(string1, old_chars, new_chars)

Argomenti

stringa

La stringa CHAR o VARCHAR da cercare in ricerca

old_chars

La stringa CHAR o VARCHAR da sostituire.

new_chars

Nuova stringa CHAR o VARCHAR che sostituisce la old_string.

Tipo restituito

VARCHAR

Se old_chars oppure new_chars è NULL, il risultato è NULL.

Esempi

L'esempio seguente converte la stringa Shows in Theatre nel campo CATGROUP:

select catid, catgroup,
replace(catgroup, 'Shows', 'Theatre')
from category
order by 1,2,3;

Funzioni stringa 304

AWS Clean Rooms Documentazione di riferimento a SQL

 catid | catgroup | replace
-------+----------+----------
 1 | Sports | Sports
 2 | Sports | Sports
 3 | Sports | Sports
 4 | Sports | Sports
 5 | Sports | Sports
 6 | Shows | Theatre
 7 | Shows | Theatre
 8 | Shows | Theatre
 9 | Concerts | Concerts
 10 | Concerts | Concerts
 11 | Concerts | Concerts
(11 rows)

Funzione REVERSE

La funzione REVERSE funziona su una stringa e restituisce i caratteri in ordine inverso. Ad esempio,
reverse('abcde') restituisce edcba. Questa funzione funziona su tipi di dati numerici e di date,
così come su tipi di dati di carattere; tuttavia, nella maggior parte dei casi ha un valore pratico per le
stringhe di caratteri.

Sintassi

REVERSE (expression)

Argomento

espressione

Un'espressione con un carattere, una data, un timestamp o un tipo di dati numerici che
rappresenta la destinazione dell'inversione di caratteri. Tutte le espressioni sono implicitamente
convertite in stringhe di caratteri a lunghezza variabile. Gli spazi finali in stringhe di caratteri a
larghezza fissa vengono ignorati.

Tipo restituito

REVERSE restituisce una VARCHAR.

Funzioni stringa 305

AWS Clean Rooms Documentazione di riferimento a SQL

Esempi

Selezionare cinque nomi di città distinti e i corrispondenti nomi invertiti dalla tabella USERS:

select distinct city as cityname, reverse(cityname)
from users order by city limit 5;

cityname | reverse
---------+----------
Aberdeen | needrebA
Abilene | enelibA
Ada | adA
Agat | tagA
Agawam | mawagA
(5 rows)

Seleziona cinque vendite IDs e il corrispondente IDs cast invertito come stringhe di caratteri:

select salesid, reverse(salesid)::varchar
from sales order by salesid desc limit 5;

salesid | reverse
--------+---------
 172456 | 654271
 172455 | 554271
 172454 | 454271
 172453 | 354271
 172452 | 254271
(5 rows)

Funzione RTRIM

La funzione RTRIM riduce un insieme specificato di caratteri dalla fine di una stringa. Rimuove la
stringa più lunga contenente solo i caratteri nell'elenco dei caratteri di taglio. Il taglio è completo
quando un carattere di taglio non appare nella stringa di input.

Sintassi

RTRIM(string, trim_chars)

Funzioni stringa 306

AWS Clean Rooms Documentazione di riferimento a SQL

Argomenti

stringa

Una stringa, una colonna, un'espressione o una stringa letterale da tagliare.

trim_chars

Una colonna o un'espressione di stringa o un valore letterale di stringa che rappresenta i caratteri
da tagliare dall'inizio della stringa. Se non specificato, viene utilizzato uno spazio come carattere
di taglio.

Tipo restituito

Una stringa che è lo stesso tipo di dati dell'argomento stringa.

Esempio

L'esempio seguente riduce gli spazi vuoti iniziali e finali dalla stringa ' abc ':

select ' abc ' as untrim, rtrim(' abc ') as trim;

untrim | trim
----------+------
 abc | abc

L'esempio seguente rimuove le stringhe 'xyz' iniziali dalla stringa 'xyzaxyzbxyzcxyz'. Le
occorrenze finali di 'xyz' vengono rimosse, ma le occorrenze interne alla stringa non vengono
rimosse.

select 'xyzaxyzbxyzcxyz' as untrim,
rtrim('xyzaxyzbxyzcxyz', 'xyz') as trim;

 untrim | trim
-----------------+-----------
 xyzaxyzbxyzcxyz | xyzaxyzbxyzc

L'esempio seguente rimuove le parti finali dalla stringa 'setuphistorycassettes' che
corrispondono a uno qualsiasi dei caratteri nell'elenco 'tes' trim_chars. Qualsiasi carattere t, e o
s che si verifica prima di un altro carattere che non è nell'elenco trim_chars alla fine della stringa di
input viene rimosso.

Funzioni stringa 307

AWS Clean Rooms Documentazione di riferimento a SQL

SELECT rtrim('setuphistorycassettes', 'tes');

 rtrim

 setuphistoryca

L'esempio seguente riduce i caratteri "Parco"dalla fine di VENUENAME laddove presente:

select venueid, venuename, rtrim(venuename, 'Park')
from venue
order by 1, 2, 3
limit 10;

venueid | venuename | rtrim
--------+----------------------------+-------------------------
 1 | Toyota Park | Toyota
 2 | Columbus Crew Stadium | Columbus Crew Stadium
 3 | RFK Stadium | RFK Stadium
 4 | CommunityAmerica Ballpark | CommunityAmerica Ballp
 5 | Gillette Stadium | Gillette Stadium
 6 | New York Giants Stadium | New York Giants Stadium
 7 | BMO Field | BMO Field
 8 | The Home Depot Center | The Home Depot Cente
 9 | Dick's Sporting Goods Park | Dick's Sporting Goods
 10 | Pizza Hut Park | Pizza Hut

Si noti che RTRIM rimuove tutti i caratteri in P, a , r oppure k quando appaiono alla fine di un
VENUENAME.

Funzione SPLIT

La funzione SPLIT consente di estrarre sottostringhe da una stringa più grande e utilizzarle come
matrice. La funzione SPLIT è utile quando è necessario suddividere una stringa in singoli componenti
in base a un delimitatore o uno schema specifico.

Sintassi

split(str, regex, limit)

Funzioni stringa 308

AWS Clean Rooms Documentazione di riferimento a SQL

Argomenti

str

Un'espressione stringa da dividere.

regex

Una stringa che rappresenta un'espressione regolare. La stringa regex deve essere
un'espressione regolare Java.

limite

Un'espressione intera che controlla il numero di volte in cui viene applicata l'espressione regolare.

• limit > 0: la lunghezza dell'array risultante non sarà superiore al limite e l'ultima voce dell'array
risultante conterrà tutti gli input oltre l'ultima espressione regolare corrispondente.

• limit <= 0: l'espressione regolare verrà applicata il maggior numero di volte possibile e l'array
risultante può essere di qualsiasi dimensione.

Tipo restituito

<STRING>La funzione SPLIT restituisce un ARRAY.

Selimit > 0: la lunghezza dell'array risultante non sarà superiore al limite e l'ultima voce dell'array
risultante conterrà tutti gli input oltre l'ultima espressione regolare corrispondente.

Iflimit <= 0: regex verrà applicato il maggior numero di volte possibile e l'array risultante può
essere di qualsiasi dimensione.

Esempio

In questo esempio, la funzione SPLIT divide la stringa di input 'oneAtwoBthreeC' ovunque incontri
i caratteri 'A' o 'C' (come specificato dal modello di espressione regolare). 'B' '[ABC]' L'output
risultante è una matrice di quattro elementi:"one", "two""three", e una stringa vuota. ""

SELECT split('oneAtwoBthreeC', '[ABC]');
 ["one","two","three",""]

Funzione SPLIT_PART

Divide una stringa sul delimitatore specificato e restituisce la parte nella posizione specificata.

Funzioni stringa 309

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

SPLIT_PART(string, delimiter, position)

Argomenti

stringa

Una stringa, una colonna, un'espressione o una stringa letterale da dividere. La stringa può
essere CHAR o VARCHAR.

delimiter

La stringa del delimitatore che indica le sezioni della stringa di input.

Se delimiter è un letterale, racchiuderlo tra virgolette singole.

posizione

Posizione della porzione di stringa da restituire (contando da 1). Deve essere un integer superiore
a 0. Se posizione è maggiore del numero di porzioni di stringa, SPLIT_PART restituisce una
stringa vuota. Se il delimitatore non si trova nella stringa, il valore restituito contiene i contenuti
della parte specificata, che possono essere l'intera stringa o un valore vuoto.

Tipo restituito

Una stringa CHAR o VARCHAR, uguale al parametro di stringa.

Esempi

L'esempio seguente divide una stringa letterale in parti utilizzando il delimitatore $ e restituisce la
seconda parte.

select split_part('abcdefghi','$',2)

split_part

def

L'esempio seguente divide una stringa letterale in parti utilizzando il delimitatore $. Restituisce una
stringa vuota perché la parte 4 non viene trovata.

Funzioni stringa 310

AWS Clean Rooms Documentazione di riferimento a SQL

select split_part('abcdefghi','$',4)

split_part

L'esempio seguente divide una stringa letterale in parti utilizzando il delimitatore #. Restituisce l'intera
stringa, che è la prima parte, perché il delimitatore non è stato trovato.

select split_part('abcdefghi','#',1)

split_part

abcdefghi

L'esempio seguente divide il campo timestamp LISTTIME in componenti anno, mese e data.

select listtime, split_part(listtime,'-',1) as year,
split_part(listtime,'-',2) as month,
split_part(split_part(listtime,'-',3),' ',1) as day
from listing limit 5;

 listtime | year | month | day
---------------------+------+-------+------
 2008-03-05 12:25:29 | 2008 | 03 | 05
 2008-09-09 08:03:36 | 2008 | 09 | 09
 2008-09-26 05:43:12 | 2008 | 09 | 26
 2008-10-04 02:00:30 | 2008 | 10 | 04
 2008-01-06 08:33:11 | 2008 | 01 | 06

L'esempio seguente seleziona il campo timestamp LISTTIME e lo divide sul carattere '-' per
ottenere il mese (la seconda parte della stringa LISTTIME), quindi conta il numero di voci per ogni
mese:

select split_part(listtime,'-',2) as month, count(*)
from listing
group by split_part(listtime,'-',2)
order by 1, 2;

 month | count
-------+-------

Funzioni stringa 311

AWS Clean Rooms Documentazione di riferimento a SQL

 01 | 18543
 02 | 16620
 03 | 17594
 04 | 16822
 05 | 17618
 06 | 17158
 07 | 17626
 08 | 17881
 09 | 17378
 10 | 17756
 11 | 12912
 12 | 4589

Funzione SUBSTRING

Restituisce il sottoinsieme di una stringa basata su una posizione iniziale specificata.

Se l'input è una stringa di carattere, la posizione iniziale e il numero di caratteri estratti si basano sui
caratteri, non di byte, pertanto i caratteri multibyte vengono contati come caratteri singoli. Se l'input
è un'espressione binaria, la posizione iniziale e la sottostringa estratta sono basate su byte. Non è
possibile specificare una lunghezza negativa, ma è possibile specificare una posizione di partenza
negativa.

Sintassi

SUBSTRING(charactestring FROM start_position [FOR numbecharacters])

SUBSTRING(charactestring, start_position, numbecharacters)

SUBSTRING(binary_expression, start_byte, numbebytes)

SUBSTRING(binary_expression, start_byte)

Argomenti

stringa di caratteri

La stringa da cercare. I tipi di dati non carattere sono trattati come una stringa.

Funzioni stringa 312

AWS Clean Rooms Documentazione di riferimento a SQL

start_position

La posizione all'interno della stringa per iniziare l'estrazione, a partire da 1. La start_position si
basa sul numero di caratteri, non di byte, pertanto i caratteri multibyte vengono contati come
caratteri singoli. Questo numero può essere negativo.

caratteri numerici

Il numero di caratteri da estrarre (la lunghezza della sottostringa). Il numbecharacters si basa sul
numero di caratteri, non sui byte, in modo che i caratteri multibyte vengano contati come caratteri
singoli. Questo numero non può essere negativo.

start_byte

La posizione all'interno dell'espressione binaria per iniziare l'estrazione, a partire da 1. Questo
numero può essere negativo.

numero di byte

Il numero di byte da estrarre, ovvero, la lunghezza della sottostringa. Questo numero non può
essere negativo.

Tipo restituito

VARCHAR

Note di utilizzo per le stringhe di caratteri

L'esempio seguente restituisce una stringa di quattro caratteri che inizia con il sesto carattere.

select substring('caterpillar',6,4);
substring

pill
(1 row)

Se start_position + numbecharacters supera la lunghezza della stringa, SUBSTRING restituisce una
sottostringa a partire da start_position fino alla fine della stringa. Per esempio:

select substring('caterpillar',6,8);
substring

pillar

Funzioni stringa 313

AWS Clean Rooms Documentazione di riferimento a SQL

(1 row)

Se la start_position è negativa o pari a 0, la funzione SUBSTRING restituisce una
sottostringa che inizia dal primo carattere di stringa con una lunghezza di start_position +
numbecharacters -1. Ad esempio:

select substring('caterpillar',-2,6);
substring

cat
(1 row)

Se start_position + numbecharacters -1 è inferiore o pari a zero, SUBSTRING restituisce una
stringa vuota. Ad esempio:

select substring('caterpillar',-5,4);
substring

(1 row)

Esempi

L'esempio seguente restituisce il mese dalla stringa LISTTIME nella tabella LISTING:

select listid, listtime,
substring(listtime, 6, 2) as month
from listing
order by 1, 2, 3
limit 10;

 listid | listtime | month
--------+---------------------+-------
 1 | 2008-01-24 06:43:29 | 01
 2 | 2008-03-05 12:25:29 | 03
 3 | 2008-11-01 07:35:33 | 11
 4 | 2008-05-24 01:18:37 | 05
 5 | 2008-05-17 02:29:11 | 05
 6 | 2008-08-15 02:08:13 | 08
 7 | 2008-11-15 09:38:15 | 11
 8 | 2008-11-09 05:07:30 | 11

Funzioni stringa 314

AWS Clean Rooms Documentazione di riferimento a SQL

 9 | 2008-09-09 08:03:36 | 09
 10 | 2008-06-17 09:44:54 | 06
(10 rows)

L'esempio seguente è lo stesso di sopra, ma utilizza l'opzione FROM...FOR:

select listid, listtime,
substring(listtime from 6 for 2) as month
from listing
order by 1, 2, 3
limit 10;

 listid | listtime | month
--------+---------------------+-------
 1 | 2008-01-24 06:43:29 | 01
 2 | 2008-03-05 12:25:29 | 03
 3 | 2008-11-01 07:35:33 | 11
 4 | 2008-05-24 01:18:37 | 05
 5 | 2008-05-17 02:29:11 | 05
 6 | 2008-08-15 02:08:13 | 08
 7 | 2008-11-15 09:38:15 | 11
 8 | 2008-11-09 05:07:30 | 11
 9 | 2008-09-09 08:03:36 | 09
 10 | 2008-06-17 09:44:54 | 06
(10 rows)

Non è possibile utilizzare SUBSTRING per estrarre in modo prevedibile il prefisso di una stringa
che potrebbe contenere caratteri multibyte poiché è necessario specificare la lunghezza di una
stringa multibyte in base al numero di byte, non al numero di caratteri. Per estrarre il segmento
iniziale di una stringa in base alla lunghezza in byte, è possibile eseguire il CAST della stringa come
VARCHAR(byte_length) per troncare la stringa, laddove byte_length è la lunghezza necessaria.
L'esempio seguente estrae i primi 5 byte dalla stringa 'Fourscore and seven'.

select cast('Fourscore and seven' as varchar(5));

varchar

Fours

L'esempio seguente restituisce il nome Ana che appare dopo l'ultimo spazio nella stringa di
input Silva, Ana.

Funzioni stringa 315

AWS Clean Rooms Documentazione di riferimento a SQL

select reverse(substring(reverse('Silva, Ana'), 1, position(' ' IN reverse('Silva,
 Ana'))))

 reverse

 Ana

Funzione TRANSLATE

Per una data espressione, sostituisce tutte le occorrenze di caratteri specificati con sostituti
specificati. I caratteri esistenti sono mappati per i caratteri sostitutivi in base alla loro posizione negli
argomenti characters_to_replace e characters_to_substitute. Se vengono specificati più caratteri
nell'argomento characters_to_replace rispetto all'argomento characters_to_substitute, i caratteri extra
dall'argomento characters_to_replace vengono omessi nel valore di restituzione.

TRANSLATE è simile a Funzione REPLACE e a Funzione REGEXP_REPLACE, ad eccezione del
fatto che REPLACE sostituisce un'intera stringa con un'altra stringa e REGEXP_REPLACE consente
di cercare una stringa per un modello di espressione regolare, mentre TRANSLATE realizza più
sostituzioni a carattere singolo.

Se qualsiasi argomento è null, la restituzione è NULL.

Sintassi

TRANSLATE (expression, characters_to_replace, characters_to_substitute)

Argomenti

espressione

L'espressione da tradurre.

characters_to_replace

Una stringa contenente i caratteri da sostituire.

characters_to_substitute

Una stringa contenente i caratteri da sostituire.

Funzioni stringa 316

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo restituito

VARCHAR

Esempi

L'esempio seguente sostituisce diversi caratteri in una stringa:

select translate('mint tea', 'inea', 'osin');

translate

most tin

L'esempio seguente sostituisce il simbolo at (@) con un punto per tutti i valori in una colonna:

select email, translate(email, '@', '.') as obfuscated_email
from users limit 10;

email obfuscated_email

Etiam.laoreet.libero@sodalesMaurisblandit.edu
 Etiam.laoreet.libero.sodalesMaurisblandit.edu
amet.faucibus.ut@condimentumegetvolutpat.ca
 amet.faucibus.ut.condimentumegetvolutpat.ca
turpis@accumsanlaoreet.org turpis.accumsanlaoreet.org
ullamcorper.nisl@Cras.edu ullamcorper.nisl.Cras.edu
arcu.Curabitur@senectusetnetus.com arcu.Curabitur.senectusetnetus.com
ac@velit.ca ac.velit.ca
Aliquam.vulputate.ullamcorper@amalesuada.org
 Aliquam.vulputate.ullamcorper.amalesuada.org
vel.est@velitegestas.edu vel.est.velitegestas.edu
dolor.nonummy@ipsumdolorsit.ca dolor.nonummy.ipsumdolorsit.ca
et@Nunclaoreet.ca et.Nunclaoreet.ca

L'esempio seguente sostituisce gli spazi con caratteri di sottolineatura ed elimina i punti per tutti i
valori in una colonna:

select city, translate(city, ' .', '_') from users
where city like 'Sain%' or city like 'St%'
group by city
order by city;

Funzioni stringa 317

AWS Clean Rooms Documentazione di riferimento a SQL

city translate
--------------+------------------
Saint Albans Saint_Albans
Saint Cloud Saint_Cloud
Saint Joseph Saint_Joseph
Saint Louis Saint_Louis
Saint Paul Saint_Paul
St. George St_George
St. Marys St_Marys
St. Petersburg St_Petersburg
Stafford Stafford
Stamford Stamford
Stanton Stanton
Starkville Starkville
Statesboro Statesboro
Staunton Staunton
Steubenville Steubenville
Stevens Point Stevens_Point
Stillwater Stillwater
Stockton Stockton
Sturgis Sturgis

Funzione TRIM

Riduce una stringa rimuovendo spazi vuoti iniziali e finali o rimuovendo i caratteri iniziali e finali che
corrispondono a una stringa specificata facoltativa.

Sintassi

TRIM([BOTH] [trim_chars FROM] string

Argomenti

trim_chars

(Facoltativo) I caratteri da ridurre dalla stringa. Se questo parametro viene omesso, gli spazi vuoti
vengono ridotti.

stringa

La stringa da ridurre.

Funzioni stringa 318

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo restituito

La funzione TRIM restituisce una stringa VARCHAR o CHAR. Se si utilizza la funzione TRIM con
un comando SQL, converte implicitamente i risultati in VARCHAR. AWS Clean Rooms Se si utilizza
la funzione TRIM nell'elenco SELECT per una funzione SQL, AWS Clean Rooms non converte
implicitamente i risultati e potrebbe essere necessario eseguire una conversione esplicita per
evitare un errore di mancata corrispondenza del tipo di dati. Vedi la Funzione CAST funzione per
informazioni sulle conversioni esplicite.

Esempio

L'esempio seguente riduce gli spazi vuoti iniziali e finali dalla stringa ' abc ':

select ' abc ' as untrim, trim(' abc ') as trim;

untrim | trim
----------+------
 abc | abc

Nell'esempio seguente vengono rimosse le virgolette doppie che circondano la stringa "dog":

select trim('"' FROM '"dog"');

btrim

dog

TRIM rimuove tutti i caratteri in trim_chars se questi si trovano all'inizio di stringa. L'esempio seguente
riduce i caratteri "C", "D" e "G" quando si trovano all'inizio di VENUENAME che è una colonna
VARCHAR.

select venueid, venuename, trim(venuename, 'CDG')
from venue
where venuename like '%Park'
order by 2
limit 7;

venueid | venuename | btrim
--------+----------------------------+--------------------------
 121 | ATT Park | ATT Park
 109 | Citizens Bank Park | itizens Bank Park

Funzioni stringa 319

AWS Clean Rooms Documentazione di riferimento a SQL

 102 | Comerica Park | omerica Park
 9 | Dick's Sporting Goods Park | ick's Sporting Goods Park
 97 | Fenway Park | Fenway Park
 112 | Great American Ball Park | reat American Ball Park
 114 | Miller Park | Miller Park

Funzione UPPER

Converte una stringa in maiuscolo. UPPER supporta caratteri multibyte UTF-8, fino a un massimo di
quattro byte per carattere.

Sintassi

UPPER(string)

Argomenti

stringa

Il parametro di input è una stringa VARCHAR (o qualsiasi altro tipo di dati, ad esempio CHAR, che
può essere convertito implicitamente in VARCHAR).

Tipo restituito

La funzione UPPER restituisce una stringa di caratteri che appartiene allo stesso tipo di dati della
stringa di input.

Esempi

L'esempio seguente converte il campo CATNAME in lettere maiuscole:

select catname, upper(catname) from category order by 1,2;

 catname | upper
----------+-----------
Classical | CLASSICAL
Jazz | JAZZ
MLB | MLB
MLS | MLS
Musicals | MUSICALS

Funzioni stringa 320

AWS Clean Rooms Documentazione di riferimento a SQL

NBA | NBA
NFL | NFL
NHL | NHL
Opera | OPERA
Plays | PLAYS
Pop | POP
(11 rows)

Funzione UUID

La funzione UUID genera un identificatore univoco universale (UUID).

UUIDs sono identificatori univoci globali che vengono comunemente utilizzati per fornire identificatori
univoci per vari scopi, come:

• Identificazione dei record del database o di altre entità di dati.

• Generazione di nomi o chiavi univoci per file, directory o altre risorse.

• Monitoraggio e correlazione dei dati tra sistemi distribuiti.

• Fornitura di identificatori univoci per pacchetti di rete, componenti software o altre risorse digitali.

La funzione UUID genera un valore UUID unico con una probabilità molto elevata, anche su sistemi
distribuiti e per lunghi periodi di tempo. UUIDs vengono generalmente generati utilizzando una
combinazione del timestamp corrente, dell'indirizzo di rete del computer e di altri dati casuali o
pseudo-casuali, garantendo che è altamente improbabile che ogni UUID generato entri in conflitto
con altri UUID.

Nel contesto di una query SQL, la funzione UUID può essere utilizzata per generare identificatori
univoci per nuovi record da inserire in un database o per fornire chiavi univoche per il partizionamento
dei dati, l'indicizzazione o altri scopi in cui è richiesto un identificatore univoco.

Note

La funzione UUID non è deterministica.

Sintassi

uuid()

Funzioni stringa 321

AWS Clean Rooms Documentazione di riferimento a SQL

Argomenti

La funzione UUID non accetta argomenti.

Tipo restituito

UUID restituisce una stringa di identificazione univoca universale (UUID). Il valore viene restituito
come stringa UUID canonica di 36 caratteri.

Esempio

L'esempio seguente genera un identificatore univoco universale (UUID). L'output è una stringa di 36
caratteri che rappresenta un identificatore univoco universale.

SELECT uuid();
 46707d92-02f4-4817-8116-a4c3b23e6266

Funzioni relative alla privacy

AWS Clean Rooms fornisce funzioni per aiutarti a rispettare la conformità relativa alla privacy per le
seguenti specifiche.

• Global Privacy Platform (GPP): una specifica dell'Interactive Advertising Bureau (IAB) che
stabilisce un framework globale e standardizzato per la privacy e l'uso dei dati online. Per ulteriori
informazioni sulle specifiche tecniche del GPP, consulta la documentazione della Global Privacy
Platform su. GitHub

• Transparency and Consent Framework (TCF) — Un componente chiave del GPP, lanciato
nel 2020, che fornisce un quadro tecnico standardizzato per aiutare le aziende a rispettare le
normative sulla privacy come il Regolamento generale sulla protezione dei dati (GDPR) dell'UE.
Il TCF consente ai clienti di concedere o negare il consenso alla raccolta e al trattamento dei dati.
Per ulteriori informazioni sulle specifiche tecniche di TCF, consulta la documentazione TCF su.
GitHub

Argomenti

• funzione consent_gpp_v1_decode

• funzione consent_tcf_v2_decode

Funzioni relative alla privacy 322

https://github.com/InteractiveAdvertisingBureau/Global-Privacy-Platform
https://github.com/InteractiveAdvertisingBureau/Global-Privacy-Platform
https://github.com/InteractiveAdvertisingBureau/Global-Privacy-Platform
https://github.com/InteractiveAdvertisingBureau/GDPR-Transparency-and-Consent-Framework/tree/master/TCFv2
https://github.com/InteractiveAdvertisingBureau/GDPR-Transparency-and-Consent-Framework/tree/master/TCFv2

AWS Clean Rooms Documentazione di riferimento a SQL

funzione consent_gpp_v1_decode

La consent_gpp_v1_decode funzione viene utilizzata per decodificare i dati di consenso della
Global Privacy Platform (GPP) v1. Prende come input la stringa di consenso codificata e restituisce i
dati di consenso decodificati, che includono informazioni sulle preferenze di privacy e sulle scelte di
consenso dell'utente. Questa funzione è utile quando si lavora con dati che includono informazioni
sul consenso GPP v1, in quanto consente di accedere e analizzare i dati di consenso in un formato
strutturato.

Sintassi

consent_gpp_v1_decode(gpp_string)

Argomenti

gpp_string

La stringa di consenso GPP v1 codificata.

Valori restituiti

Il dizionario restituito include le seguenti coppie chiave-valore:

• version: La versione della specifica GPP utilizzata (attualmente 1).

• cmpId: L'ID della piattaforma di gestione del consenso (CMP) che ha codificato la stringa di
consenso.

• cmpVersion: la versione della CMP che ha codificato la stringa di consenso.

• consentScreen: L'ID della schermata nell'interfaccia utente CMP in cui l'utente ha fornito il
consenso.

• consentLanguage: Il codice della lingua delle informazioni sul consenso.

• vendorListVersion: la versione dell'elenco dei fornitori utilizzata.

• publisherCountryCode: il codice del paese dell'editore.

• purposeConsent: un elenco di numeri interi che rappresentano gli scopi per i quali l'utente ha
acconsentito.

• purposeLegitimateInterest: Un elenco di scopi IDs per i quali l'interesse legittimo dell'utente
è stato comunicato in modo trasparente.

Funzioni relative alla privacy 323

AWS Clean Rooms Documentazione di riferimento a SQL

• specialFeatureOptIns: Un elenco di numeri interi che rappresentano le funzioni speciali che
l'utente ha scelto.

• vendorConsent: un elenco di fornitori a IDs cui l'utente ha acconsentito.

• vendorLegitimateInterest: Un elenco di fornitori IDs per i quali l'interesse legittimo
dell'utente è stato comunicato in modo trasparente.

Esempio

L'esempio seguente utilizza un singolo argomento, che è la stringa di consenso codificata.
Restituisce un dizionario contenente i dati di consenso decodificati, comprese le informazioni sulle
preferenze di privacy dell'utente, le scelte di consenso e altri metadati.

SELECT * FROM consent_gpp_v1_decode('ABCDEFGHIJK');

La struttura di base dei dati di consenso restituiti include informazioni sulla versione della stringa di
consenso, i dettagli della CMP (Consent Management Platform), il consenso dell'utente e le scelte di
interesse legittimo per scopi e fornitori diversi e altri metadati.

{
 "version": 1,
 "cmpId": 12,
 "cmpVersion": 34,
 "consentScreen": 5,
 "consentLanguage": "en",
 "vendorListVersion": 89,
 "publisherCountryCode": "US",
 "purposeConsent": [1],
 "purposeLegitimateInterests": [1],
 "specialFeatureOptins": [1],
 "vendorConsent": [1],
 "vendorLegitimateInterests": [1]}
}

funzione consent_tcf_v2_decode

La consent_tcf_v2_decode funzione viene utilizzata per decodificare i dati di consenso di
Transparency and Consent Framework (TCF) v2. Prende come input la stringa di consenso codificata
e restituisce i dati di consenso decodificati, che includono informazioni sulle preferenze di privacy e

Funzioni relative alla privacy 324

AWS Clean Rooms Documentazione di riferimento a SQL

sulle scelte di consenso dell'utente. Questa funzione è utile quando si lavora con dati che includono
informazioni sul consenso TCF v2, in quanto consente di accedere e analizzare i dati di consenso in
un formato strutturato.

Sintassi

consent_tcf_v2_decode(tcf_string)

Argomenti

tcf_string

La stringa di consenso TCF v2 codificata.

Valori restituiti

La consent_tcf_v2_decode funzione restituisce un dizionario contenente i dati di consenso
decodificati da una stringa di consenso Transparency and Consent Framework (TCF) v2.

Il dizionario restituito include le seguenti coppie chiave-valore:

Segmento principale

• version: La versione della specifica TCF utilizzata (attualmente 2).

• created: La data e l'ora in cui è stata creata la stringa di consenso.

• lastUpdated: la data e l'ora dell'ultimo aggiornamento della stringa di consenso.

• cmpId: l'ID della piattaforma di gestione del consenso (CMP) che ha codificato la stringa di
consenso.

• cmpVersion: la versione della CMP che ha codificato la stringa di consenso.

• consentScreen: L'ID della schermata nell'interfaccia utente CMP in cui l'utente ha fornito il
consenso.

• consentLanguage: Il codice della lingua delle informazioni sul consenso.

• vendorListVersion: la versione dell'elenco dei fornitori utilizzata.

• tcfPolicyVersion: La versione della politica TCF su cui si basa la stringa di consenso.

• isServiceSpecific: Un valore booleano che indica se il consenso è specifico per un particolare
servizio o si applica a tutti i servizi.

Funzioni relative alla privacy 325

AWS Clean Rooms Documentazione di riferimento a SQL

• useNonStandardStacks: Un valore booleano che indica se vengono utilizzati pile non standard.

• specialFeatureOptIns: Un elenco di numeri interi che rappresentano le funzioni speciali che
l'utente ha scelto di utilizzare.

• purposeConsent: Un elenco di numeri interi che rappresentano gli scopi per i quali l'utente ha
acconsentito.

• purposesLITransparency: Un elenco di numeri interi che rappresentano gli scopi per i quali
l'utente ha garantito la trasparenza degli interessi legittimi.

• purposeOneTreatment: Un valore booleano che indica se l'utente ha richiesto lo «scopo unico
del trattamento» (ovvero, tutti gli scopi sono trattati allo stesso modo).

• publisherCountryCode: Il codice del paese dell'editore.

• vendorConsent: un elenco di fornitori a IDs cui l'utente ha acconsentito.

• vendorLegitimateInterest: Un elenco di fornitori IDs per i quali l'interesse legittimo
dell'utente è stato comunicato in modo trasparente.

• pubRestrictionEntry: Un elenco di restrizioni per gli editori. Questo campo contiene l'ID dello
scopo, il tipo di restrizione e l'elenco dei fornitori IDs soggetti a tale restrizione.

Segmento di fornitore divulgato

• disclosedVendors: un elenco di numeri interi che rappresentano i fornitori che sono stati resi
noti all'utente.

Segmento relativo agli scopi del publisher

• pubPurposesConsent: un elenco di numeri interi che rappresentano gli scopi specifici dell'editore
per i quali l'utente ha dato il consenso.

• pubPurposesLITransparency: Un elenco di numeri interi che rappresentano gli scopi specifici
dell'editore per i quali l'utente ha garantito la trasparenza degli interessi legittimi.

• customPurposesConsent: Un elenco di numeri interi che rappresentano gli scopi personalizzati
per i quali l'utente ha dato il consenso.

• customPurposesLITransparency: Un elenco di numeri interi che rappresentano gli scopi
personalizzati per i quali l'utente ha garantito la trasparenza degli interessi legittimi.

Questi dati di consenso dettagliati possono essere utilizzati per comprendere e rispettare le
preferenze di privacy dell'utente quando lavora con dati personali.

Funzioni relative alla privacy 326

AWS Clean Rooms Documentazione di riferimento a SQL

Esempio

L'esempio seguente utilizza un singolo argomento, che è la stringa di consenso codificata.
Restituisce un dizionario contenente i dati di consenso decodificati, comprese le informazioni sulle
preferenze di privacy dell'utente, le scelte di consenso e altri metadati.

from aws_clean_rooms.functions import consent_tcf_v2_decode

consent_string = "CO1234567890abcdef"
consent_data = consent_tcf_v2_decode(consent_string)

print(consent_data)

La struttura di base dei dati di consenso restituiti include informazioni sulla versione della stringa di
consenso, i dettagli della CMP (Consent Management Platform), il consenso dell'utente e le scelte di
interesse legittimo per scopi e fornitori diversi e altri metadati.

 /** core segment **/
 version: 2,
 created: "2023-10-01T12:00:00Z",
 lastUpdated: "2023-10-01T12:00:00Z",
 cmpId: 1234,
 cmpVersion: 5,
 consentScreen: 1,
 consentLanguage: "en",
 vendorListVersion: 2,
 tcfPolicyVersion: 2,
 isServiceSpecific: false,
 useNonStandardStacks: false,
 specialFeatureOptIns: [1, 2, 3],
 purposeConsent: [1, 2, 3],
 purposesLITransparency: [1, 2, 3],
 purposeOneTreatment: true,
 publisherCountryCode: "US",
 vendorConsent: [1, 2, 3],
 vendorLegitimateInterest: [1, 2, 3],
 pubRestrictionEntry: [
 { purpose: 1, restrictionType: 2, restrictionDescription: "Example
 restriction" },
],

Funzioni relative alla privacy 327

AWS Clean Rooms Documentazione di riferimento a SQL

 /** disclosed vendor segment **/
 disclosedVendors: [1, 2, 3],

 /** publisher purposes segment **/
 pubPurposesConsent: [1, 2, 3],
 pubPurposesLITransparency: [1, 2, 3],
 customPurposesConsent: [1, 2, 3],
 customPurposesLITransparency: [1, 2, 3],
};

Funzioni finestra

Le funzioni finestra ti consentono di creare query aziendali analitiche in modo più efficiente. Le
funzioni finestra operano su una partizione o "finestra" di un insieme di risultati e restituiscono un
valore per ogni riga in quella finestra. Tuttavia, le funzioni non finestra eseguono i calcoli in relazione
a ogni riga del set di risultati. A differenza delle funzioni di gruppo che aggregano le righe dei risultati,
le funzioni finestra mantengono tutte le righe nell'espressione della tabella.

I valori restituiti sono calcolati utilizzando i valori dai set di righe in quella finestra. Per ogni riga nella
tabella, la finestra definisce un set di righe che viene utilizzato per calcolare gli attributi aggiuntivi.
Una finestra viene definita utilizzando una specifica della finestra (la clausola OVER) e si basa su tre
concetti principali:

• Partizionamento della finestra, che forma gruppi di righe (clausola PARTITION)

• Ordinamento della finestra, che definisce un ordine o una sequenza di righe all'interno di ciascuna
partizione (clausola ORDER BY)

• Frame della finestra, che sono definiti in relazione a ciascuna riga per restringere ulteriormente
l'insieme di righe (specifica ROWS)

Le funzioni finestra sono l'ultimo insieme di operazioni eseguite in una query ad eccezione della
clausola ORDER BY finale. Tutti i join e tutte le clausole WHERE, GROUP BY e HAVING vengono
completati prima che le funzioni finestra vengano elaborate. Pertanto, le funzioni finestra possono
essere visualizzate solo nell'elenco di selezione o nella clausola ORDER BY. È possibile utilizzare
più funzioni finestra all'interno di una singola query con diverse clausole del frame. È inoltre possibile
utilizzare le funzioni finestra in altre espressioni scalari, come ad esempio CASE.

Riepilogo della sintassi della funzione finestra

Le funzioni della finestra seguono una sintassi standard, che è la seguente.

Funzioni finestra 328

AWS Clean Rooms Documentazione di riferimento a SQL

function (expression) OVER (
[PARTITION BY expr_list]
[ORDER BY order_list [frame_clause]])

Qui, function è una delle funzioni descritte in questa sezione.

L'expr_list è il seguente.

expression | column_name [, expr_list]

L'order_list è il seguente.

expression | column_name [ASC | DESC]
[NULLS FIRST | NULLS LAST]
[, order_list]

La frame_clause è la seguente.

ROWS
{ UNBOUNDED PRECEDING | unsigned_value PRECEDING | CURRENT ROW } |

{ BETWEEN
{ UNBOUNDED PRECEDING | unsigned_value { PRECEDING | FOLLOWING } | CURRENT ROW}
AND
{ UNBOUNDED FOLLOWING | unsigned_value { PRECEDING | FOLLOWING } | CURRENT ROW }}

Arguments (Argomenti)

funzione

La funzione finestra. Per informazioni dettagliate, vedere le descrizioni della singola funzione.

OVER

La clausola che definisce la specifica della finestra. La clausola OVER è obbligatoria per le
funzioni finestra e le contraddistingue da altre funzioni SQL.

PARTITION BY expr_list

(Facoltativo) La clausola PARTITION BY suddivide il set di risultati in partizioni in modo molto
simile alla clausola GROUP BY. Se è presente una clausola di partizione, la funzione viene
calcolata per le righe in ogni partizione. Se non viene specificata alcuna clausola di partizione,

Funzioni finestra 329

AWS Clean Rooms Documentazione di riferimento a SQL

una singola partizione contiene l'intera tabella e la funzione viene calcolata per quella tabella
completa.

Le funzioni di classificazione DENSE_RANK, NTILE, RANK e ROW_NUMBER richiedono un
confronto globale di tutte le righe nell'insieme di risultati. Quando viene utilizzata una clausola
PARTITION BY, l'ottimizzatore della query può eseguire ciascuna aggregazione in parallelo
distribuendo il carico di lavoro su più sezioni in base alle partizioni. Se la clausola PARTITION BY
non è presente, la fase di aggregazione deve essere eseguita in serie su una singola sezione, che
può avere un impatto negativo significativo sulle prestazioni, in particolare per i cluster di grandi
dimensioni.

AWS Clean Roomsnon supporta stringhe letterali nelle clausole PARTITION BY.

ORDER BY order_list

(Facoltativo) La funzione finestra viene applicata alle righe all'interno di ciascuna partizione
ordinata in base alla specifica dell'ordine in ORDER BY. Questa clausola ORDER BY è distinta
e completamente non correlata a una clausola ORDER BY in una frame_clause. La clausola
ORDER BY può essere utilizzata senza la clausola PARTITION BY.

Per le funzioni di classificazione, la clausola ORDER BY identifica le misure per i valori di
classificazione. Per le funzioni di aggregazione, le righe partizionate devono essere ordinate prima
che la funzione di aggregazione sia calcolata per ciascun frame. Per ulteriori informazioni sui tipi
di funzione finestra, consultare Funzioni finestra.

Gli identificatori o le espressioni di colonna che valutano gli identificatori di colonna sono
obbligatori nell'elenco degli ordini. Né le costanti né le espressioni costanti possono essere
utilizzate come sostituti dei nomi delle colonne.

I valori NULL vengono trattati come il proprio gruppo, ordinati e classificati in base all'opzione
NULLS FIRST o NULLS LAST. Per impostazione predefinita, i valori NULL vengono ordinati e
classificati per ultimi in ordine ASC e ordinati e classificati per primi in ordine DESC.

AWS Clean Roomsnon supporta stringhe letterali nelle clausole ORDER BY.

Se viene omessa la clausola ORDER BY, l'ordine delle righe non è deterministico.

Note

In qualsiasi sistema paralleloAWS Clean Rooms, ad esempio quando una clausola
ORDER BY non produce un ordinamento unico e totale dei dati, l'ordine delle righe non

Funzioni finestra 330

AWS Clean Rooms Documentazione di riferimento a SQL

è deterministico. In altre parole, se l'espressione ORDER BY produce valori duplicati
(un ordinamento parziale), l'ordine di restituzione di tali righe potrebbe variare da una
sequenza all'altra. AWS Clean Rooms A loro volta, le funzioni finestra potrebbero
restituire risultati inattesi o incoerenti. Per ulteriori informazioni, consulta Ordinamento
univoco dei dati per le funzioni finestra.

column_name

Nome di una colonna da partizionare o da ordinare.

ASC | DESC

Opzione che definisce l'ordinamento per l'espressione, come segue:

• ASC: crescente (ad esempio, dal più piccolo al più grande per i valori numerici e da 'A' a 'Z'
per le stringhe di caratteri). Se non viene specificata alcuna opzione, i dati vengono ordinati in
ordine crescente per impostazione predefinita.

• DESC: decrescente (ad esempio, dal più grande al più piccolo per i valori numerici e da 'Z' ad
'A' per le stringhe).

NULLS FIRST | NULLS LAST

Opzione che specifica se NULLS deve essere ordinato per primo, prima di valori non null, o per
ultimo, dopo valori non null. Per impostazione predefinita, i NULLS vengono ordinati e classificati
per ultimi in ordine ASC e ordinati e classificati per primi in ordine DESC.

frame_clause

Per le funzioni di aggregazione, la clausola frame perfeziona ulteriormente l'insieme di righe in
una finestra della funzione quando si utilizza ORDER BY. Fornisce la capacità di includere o
escludere set di righe all'interno del risultato ordinato. La clausola frame è composta dalla parola
chiave ROWS e dagli specificatori associati.

La clausola frame non si applica alle funzioni di classificazione. Inoltre, la clausola frame non
è richiesta quando non viene utilizzata alcuna clausola ORDER BY nella clausola OVER per
una funzione di aggregazione. Se una clausola ORDER BY viene utilizzata per una funzione di
aggregazione, è necessaria una clausola del frame esplicita.

Quando non viene specificata alcuna clausola ORDER BY, il frame implicito è illimitato:
equivalente a ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

Funzioni finestra 331

AWS Clean Rooms Documentazione di riferimento a SQL

ROWS

Questa clausola definisce il frame della finestra specificando una compensazione fisica dalla riga
corrente.

Questa clausola specifica le righe nella finestra o partizione corrente con cui deve essere
combinato il valore nella riga corrente. Usa argomenti che specificano la posizione della riga, che
può essere prima o dopo la riga corrente. Il punto di riferimento per tutti i frame della finestra è la
riga corrente. Ogni riga diventa a sua volta la riga corrente mentre il frame della finestra scorre in
avanti nella partizione.

Il frame può essere un semplice insieme di righe fino a includere la riga corrente:

{UNBOUNDED PRECEDING | offset PRECEDING | CURRENT ROW}

Oppure può essere un insieme di righe tra due limiti.

BETWEEN
{ UNBOUNDED PRECEDING | offset { PRECEDING | FOLLOWING } | CURRENT ROW }
AND
{ UNBOUNDED FOLLOWING | offset { PRECEDING | FOLLOWING } | CURRENT ROW }

UNBOUNDED PRECEDING indica che la finestra inizia nella prima riga della partizione;
offset PRECEDING indica che la finestra inizia un numero di righe equivalente al valore di
compensazione prima della riga corrente. UNBOUNDED PRECEDING è il valore predefinito.

CURRENT ROW indica che la finestra inizia o termina nella riga corrente.

UNBOUNDED FOLLOWING indica che la finestra termina nell'ultima riga della partizione;
offset FOLLOWING indica che la finestra termina un numero di righe equivalente al valore di
compensazione dopo la riga corrente.

offset identifica un numero fisico di righe prima o dopo la riga corrente. In questo caso, offset
deve essere una costante che valuta un valore numerico positivo. Ad esempio, 5 FOLLOWING
terminerà il frame 5 righe dopo la riga corrente.

Laddove BETWEEN non viene specificato, il frame è implicitamente limitato dalla riga corrente.
Ad esempio, ROWS 5 PRECEDING è uguale a ROWS BETWEEN 5 PRECEDING AND CURRENT
ROW. Inoltre, ROWS UNBOUNDED FOLLOWING è uguale a ROWS BETWEEN CURRENT ROW AND
UNBOUNDED FOLLOWING.

Funzioni finestra 332

AWS Clean Rooms Documentazione di riferimento a SQL

Note

Non è possibile specificare un frame in cui il limite iniziale è maggiore del limite finale. Ad
esempio, non è possibile specificare nessuno di questi frame:

between 5 following and 5 preceding
between current row and 2 preceding
between 3 following and current row

Ordinamento univoco dei dati per le funzioni finestra

Se una clausola ORDER BY per una funzione finestra non produce un ordinamento univoco e totale
dei dati, l'ordine delle righe è non deterministico. Se l'espressione ORDER BY produce valori duplicati
(un ordinamento parziale), l'ordine di restituzione di tali righe può variare in più esecuzioni. In questo
caso, le funzioni finestra possono restituire risultati inattesi o incoerenti.

Ad esempio, la seguente query restituisce risultati diversi su più esecuzioni. Si ottengono questi
risultati diversi perché order by dateid non genera un ordinamento univoco dei dati per la
funzione finestra SUM.

select dateid, pricepaid,
sum(pricepaid) over(order by dateid rows unbounded preceding) as sumpaid
from sales
group by dateid, pricepaid;

dateid | pricepaid | sumpaid
--------+-----------+-------------
1827 | 1730.00 | 1730.00
1827 | 708.00 | 2438.00
1827 | 234.00 | 2672.00
...

select dateid, pricepaid,
sum(pricepaid) over(order by dateid rows unbounded preceding) as sumpaid
from sales
group by dateid, pricepaid;

dateid | pricepaid | sumpaid
--------+-----------+-------------
1827 | 234.00 | 234.00

Funzioni finestra 333

AWS Clean Rooms Documentazione di riferimento a SQL

1827 | 472.00 | 706.00
1827 | 347.00 | 1053.00
...

In questo caso, l'aggiunta di una seconda colonna ORDER BY alla funzione finestra potrebbe
risolvere il problema.

select dateid, pricepaid,
sum(pricepaid) over(order by dateid, pricepaid rows unbounded preceding) as sumpaid
from sales
group by dateid, pricepaid;

dateid | pricepaid | sumpaid
--------+-----------+---------
1827 | 234.00 | 234.00
1827 | 337.00 | 571.00
1827 | 347.00 | 918.00
...

Funzioni supportate

AWS Clean RoomsSpark SQL supporta due tipi di funzioni delle finestre: aggregate e di
classificazione.

Queste sono le funzioni di aggregazione supportate:

• Funzione finestra CUME_DIST

• Funzione finestra DENSE_RANK

• Funzione FIRST window

• Funzione finestra FIRST_VALUE

• Funzione finestra LAG

• funzione LAST window

• Funzione finestra LAST_VALUE

• Funzione finestra LEAD

Queste sono le funzioni di classificazione supportate:

• Funzione finestra DENSE_RANK

Funzioni finestra 334

AWS Clean Rooms Documentazione di riferimento a SQL

• Funzione finestra PERCENT_RANK

• Funzione finestra RANK

• Funzione finestra ROW_NUMBER

Tabella di esempio per gli esempi della funzione finestra

Sono presenti esempi di funzione finestra specifici con la descrizione di ogni funzione. Alcuni esempi
utilizzano una tabella denominata WINSALES, che contiene 11 righe, come illustrato nella tabella
seguente.

SALESID DATEID SELLERID BUYERID QTÀ QTY_SHIPP
ED

30001 2/8/2003 3 B 10 10

10001 24/12/2003 1 C 10 10

10005 24/12/2003 1 A 30

40001 9/1/2004 4 A 40

10006 18/01/2004 1 C 10

20001 12/2/2004 2 B 20 20

40005 12/2/2004 4 A 10 10

20002 16/2/2004 2 C 20 20

30003 18/4/2004 3 B 15

30004 18/4/2004 3 B 20

30007 7/9/2004 3 C 30

Funzione finestra CUME_DIST

Calcola la distribuzione cumulativa di un valore all'interno di una finestra o partizione. Supponendo
l'ordinamento ascendente, la distribuzione cumulativa è determinata utilizzando questa formula:

Funzioni finestra 335

AWS Clean Rooms Documentazione di riferimento a SQL

count of rows with values <= x / count of rows in the window or partition

laddove x è uguale al valore nella riga corrente della colonna specificata nella clausola ORDER BY. Il
seguente insieme di dati dimostra l'uso di questa formula:

Row# Value Calculation CUME_DIST
1 2500 (1)/(5) 0.2
2 2600 (2)/(5) 0.4
3 2800 (3)/(5) 0.6
4 2900 (4)/(5) 0.8
5 3100 (5)/(5) 1.0

L'intervallo del valore di restituzione è compreso tra 0 e 1, con questi valori compresi.

Sintassi

CUME_DIST ()
OVER (
[PARTITION BY partition_expression]
[ORDER BY order_list]
)

Arguments (Argomenti)

OVER

Una clausola che specifica il partizionamento della finestra. La clausola OVER non può contenere
una specifica del frame della finestra.

PARTITION BY partition_expression

Opzionale. Un'espressione che imposta l'intervallo di registrazioni per ciascun gruppo nella
clausola OVER.

ORDER BY order_list

L'espressione su cui calcolare la distribuzione cumulativa. L'espressione deve avere o un tipo di
dati numerici o essere implicitamente convertibile in uno. Se ORDER BY viene omesso, il valore
di restituzione è 1 per tutte le righe.

Se ORDER BY non produce un ordinamento univoco, l'ordine delle righe è non deterministico. Per
ulteriori informazioni, consulta Ordinamento univoco dei dati per le funzioni finestra.

Funzioni finestra 336

AWS Clean Rooms Documentazione di riferimento a SQL

Tipo restituito

FLOAT8

Esempi

L'esempio seguente calcola la distribuzione cumulativa della quantità per ciascun venditore:

select sellerid, qty, cume_dist()
over (partition by sellerid order by qty)
from winsales;

sellerid qty cume_dist
--
1 10.00 0.33
1 10.64 0.67
1 30.37 1
3 10.04 0.25
3 15.15 0.5
3 20.75 0.75
3 30.55 1
2 20.09 0.5
2 20.12 1
4 10.12 0.5
4 40.23 1

Per una descrizione della tabella WINSALES, consultare Tabella di esempio per gli esempi della
funzione finestra.

Funzione finestra DENSE_RANK

La funzione finestra DENSE_RANK determina la classificazione di un valore in un gruppo di valori,
in base all'espressione ORDER BY nella clausola OVER. Se è presente la clausola PARTITION
BY facoltativa, le classificazioni vengono ripristinate per ciascun gruppo di righe. Righe con valori
uguali per i criteri di classificazione ricevono la stessa classificazione. La funzione DENSE_RANK
differisce da RANK per un aspetto: se due o più righe si legano, non c'è spazio nella sequenza dei
valori classificati. Ad esempio, se due righe sono classificate come 1, il livello successivo è 2.

È possibile avere funzioni di classificazione con diverse clausole PARTITION BY e ORDER BY nella
stessa query.

Funzioni finestra 337

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

DENSE_RANK () OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list]
)

Arguments (Argomenti)

()

La funzione non accetta argomenti, ma le parentesi vuote sono obbligatorie.

OVER

Le clausole finestra per la funzione DENSE_RANK.

PARTITION BY expr_list

Opzionale. Una o più espressioni che definiscono la finestra.

ORDER BY order_list

Opzionale. L'espressione su cui si basano i valori di classificazione. Se non viene specificato
nessun PARTITION BY, ORDER BY utilizza l'intera tabella. Se ORDER BY viene omesso, il
valore di restituzione è 1 per tutte le righe.

Se ORDER BY non produce un ordinamento univoco, l'ordine delle righe è non deterministico. Per
ulteriori informazioni, consulta Ordinamento univoco dei dati per le funzioni finestra.

Tipo restituito

INTEGER

Esempi

Nel seguente esempio viene ordinata la tabella in base alla quantità venduta (in ordine decrescente)
e viene assegnata una classificazione densa e una classificazione regolare a ciascuna riga. I risultati
vengono ordinati dopo aver applicato i risultati della funzione finestra.

select salesid, qty,

Funzioni finestra 338

AWS Clean Rooms Documentazione di riferimento a SQL

dense_rank() over(order by qty desc) as d_rnk,
rank() over(order by qty desc) as rnk
from winsales
order by 2,1;

salesid | qty | d_rnk | rnk
---------+-----+-------+-----
10001 | 10 | 5 | 8
10006 | 10 | 5 | 8
30001 | 10 | 5 | 8
40005 | 10 | 5 | 8
30003 | 15 | 4 | 7
20001 | 20 | 3 | 4
20002 | 20 | 3 | 4
30004 | 20 | 3 | 4
10005 | 30 | 2 | 2
30007 | 30 | 2 | 2
40001 | 40 | 1 | 1
(11 rows)

Notare la differenza nelle classificazioni assegnate allo stesso insieme di righe quando le funzioni
DENSE_RANK e RANK vengono utilizzate fianco a fianco nella stessa query. Per una descrizione
della tabella WINSALES, consultare Tabella di esempio per gli esempi della funzione finestra.

Nel seguente esempio la tabella viene partizionata per SELLERID, ciascuna partizione viene ordinata
in base alla quantità (in ordine decrescente) e viene assegnata una classificazione densa a ciascuna
riga. I risultati vengono ordinati dopo aver applicato i risultati della funzione finestra.

select salesid, sellerid, qty,
dense_rank() over(partition by sellerid order by qty desc) as d_rnk
from winsales
order by 2,3,1;

salesid | sellerid | qty | d_rnk
---------+----------+-----+-------
10001 | 1 | 10 | 2
10006 | 1 | 10 | 2
10005 | 1 | 30 | 1
20001 | 2 | 20 | 1
20002 | 2 | 20 | 1
30001 | 3 | 10 | 4
30003 | 3 | 15 | 3
30004 | 3 | 20 | 2

Funzioni finestra 339

AWS Clean Rooms Documentazione di riferimento a SQL

30007 | 3 | 30 | 1
40005 | 4 | 10 | 2
40001 | 4 | 40 | 1
(11 rows)

Per una descrizione della tabella WINSALES, consultare Tabella di esempio per gli esempi della
funzione finestra.

Funzione FIRST window

Dato un insieme ordinato di righe, FIRST restituisce il valore dell'espressione specificata rispetto alla
prima riga nella cornice della finestra.

Per informazioni sulla selezione dell'ultima riga nel frame, consulta funzione LAST window.

Sintassi

FIRST(expression)[IGNORE NULLS | RESPECT NULLS]
OVER (
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]
)

Arguments (Argomenti)

espressione

L'espressione o colonna di destinazione su cui viene eseguita la funzione.

IGNORE NULLS

Quando questa opzione viene utilizzata con FIRST, la funzione restituisce il primo valore nel
frame che non è NULL (o NULL se tutti i valori sono NULL).

RESPECT NULLS

Indica che AWS Clean Rooms deve includere valori nulli nella determinazione della riga da
utilizzare. RESPECT NULLS è supportato come impostazione predefinita se non si specifica
IGNORE NULLS.

OVER

Presenta le clausole finestra per la funzione.

Funzioni finestra 340

AWS Clean Rooms Documentazione di riferimento a SQL

PARTITION BY expr_list

Definisce la finestra per la funzione in termini di una o più espressioni.

ORDER BY order_list

Ordina le righe all'interno di ogni partizione. Se non viene specificata nessuna clausola
PARTITION BY, ORDER BY ordina l'intera tabella. Se si specifica una clausola ORDER BY, è
necessario anche specificare una frame_clause.

I risultati della funzione FIRST dipendono dall'ordine dei dati. I risultati sono non deterministici nei
seguenti casi:

• Quando non è specificata alcuna clausola ORDER BY e una partizione contiene due valori
diversi per un'espressione

• Quando l'espressione valuta valori diversi che corrispondono allo stesso valore nell'elenco
ORDER BY.

frame_clause

Se una clausola ORDER BY viene utilizzata per una funzione di aggregazione, è necessaria
una clausola del frame esplicita. La clausola frame raffina l'insieme di righe in una finestra della
funzione, includendo o escludendo insieme di righe nel risultato ordinato. La clausola frame è
composta dalla parola chiave ROWS e dagli specificatori associati. Per informazioni, consulta
Riepilogo della sintassi della funzione finestra.

Tipo restituito

Queste funzioni supportano espressioni che utilizzano tipi di AWS Clean Rooms dati primitivi. Il tipo
restituito è lo stesso del tipo di dati di expression.

Esempi

L'esempio seguente restituisce la capacità di posto per ciascuna posizione nella tabella VENUE,
con i risultati ordinati in base alla capacità (da alta a bassa). La funzione FIRST viene utilizzata per
selezionare il nome della sede che corrisponde alla prima fila del riquadro: in questo caso, la fila con
il maggior numero di posti. I risultati sono partizionati per stato, quindi quando il valore VENUESTATE
cambia, viene selezionato un nuovo primo valore. Il frame della finestra è illimitato, quindi lo stesso
primo valore è selezionato per ogni riga in ogni partizione.

Per la California, Qualcomm Stadium ha il più alto numero di posti (70561), quindi questo nome è il
primo valore per tutte le righe nella partizione CA.

Funzioni finestra 341

AWS Clean Rooms Documentazione di riferimento a SQL

select venuestate, venueseats, venuename,
first(venuename)
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)
order by venuestate;

venuestate | venueseats | venuename | first
-----------+------------+--------------------------------
+------------------------------
CA | 70561 | Qualcomm Stadium | Qualcomm Stadium
CA | 69843 | Monster Park | Qualcomm Stadium
CA | 63026 | McAfee Coliseum | Qualcomm Stadium
CA | 56000 | Dodger Stadium | Qualcomm Stadium
CA | 45050 | Angel Stadium of Anaheim | Qualcomm Stadium
CA | 42445 | PETCO Park | Qualcomm Stadium
CA | 41503 | AT&T Park | Qualcomm Stadium
CA | 22000 | Shoreline Amphitheatre | Qualcomm Stadium
CO | 76125 | INVESCO Field | INVESCO Field
CO | 50445 | Coors Field | INVESCO Field
DC | 41888 | Nationals Park | Nationals Park
FL | 74916 | Dolphin Stadium | Dolphin Stadium
FL | 73800 | Jacksonville Municipal Stadium | Dolphin Stadium
FL | 65647 | Raymond James Stadium | Dolphin Stadium
FL | 36048 | Tropicana Field | Dolphin Stadium
...

Funzione finestra FIRST_VALUE

Dato un insieme ordinato di righe, FIRST_VALUE restituisce il valore dell'espressione specificata
rispetto alla prima riga nel frame della finestra.

Per informazioni sulla selezione dell'ultima riga nel frame, consulta Funzione finestra LAST_VALUE.

Sintassi

FIRST_VALUE(expression)[IGNORE NULLS | RESPECT NULLS]
OVER (
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]
)

Funzioni finestra 342

AWS Clean Rooms Documentazione di riferimento a SQL

Arguments (Argomenti)

espressione

L'espressione o colonna di destinazione su cui viene eseguita la funzione.

IGNORE NULLS

Quando questa opzione viene utilizzata con FIRST_VALUE, la funzione restituisce il primo valore
nel frame che non è NULL (o NULL se tutti i valori sono NULL).

RESPECT NULLS

Indica che AWS Clean Rooms deve includere valori nulli nella determinazione della riga da
utilizzare. RESPECT NULLS è supportato come impostazione predefinita se non si specifica
IGNORE NULLS.

OVER

Presenta le clausole finestra per la funzione.

PARTITION BY expr_list

Definisce la finestra per la funzione in termini di una o più espressioni.

ORDER BY order_list

Ordina le righe all'interno di ogni partizione. Se non viene specificata nessuna clausola
PARTITION BY, ORDER BY ordina l'intera tabella. Se si specifica una clausola ORDER BY, è
necessario anche specificare una frame_clause.

I risultati della funzione FIRST_VALUE dipendono dall'ordinamento dei dati. I risultati sono non
deterministici nei seguenti casi:

• Quando non è specificata alcuna clausola ORDER BY e una partizione contiene due valori
diversi per un'espressione

• Quando l'espressione valuta valori diversi che corrispondono allo stesso valore nell'elenco
ORDER BY.

frame_clause

Se una clausola ORDER BY viene utilizzata per una funzione di aggregazione, è necessaria
una clausola del frame esplicita. La clausola frame raffina l'insieme di righe in una finestra della
funzione, includendo o escludendo insieme di righe nel risultato ordinato. La clausola frame è

Funzioni finestra 343

AWS Clean Rooms Documentazione di riferimento a SQL

composta dalla parola chiave ROWS e dagli specificatori associati. Per informazioni, consulta
Riepilogo della sintassi della funzione finestra.

Tipo restituito

Queste funzioni supportano espressioni che utilizzano tipi di AWS Clean Rooms dati primitivi. Il tipo
restituito è lo stesso del tipo di dati di expression.

Esempi

L'esempio seguente restituisce la capacità di posto per ciascuna posizione nella tabella VENUE, con
i risultati ordinati in base alla capacità (da alta a bassa). La funzione FIRST_VALUE viene utilizzata
per selezionare il nome del luogo corrispondente alla prima riga nel frame: in questo caso, la riga con
il numero più alto di posti. I risultati sono partizionati per stato, quindi quando il valore VENUESTATE
cambia, viene selezionato un nuovo primo valore. Il frame della finestra è illimitato, quindi lo stesso
primo valore è selezionato per ogni riga in ogni partizione.

Per la California, Qualcomm Stadium ha il più alto numero di posti (70561), quindi questo nome è il
primo valore per tutte le righe nella partizione CA.

select venuestate, venueseats, venuename,
first_value(venuename)
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)
order by venuestate;

venuestate | venueseats | venuename | first_value
-----------+------------+--------------------------------
+------------------------------
CA | 70561 | Qualcomm Stadium | Qualcomm Stadium
CA | 69843 | Monster Park | Qualcomm Stadium
CA | 63026 | McAfee Coliseum | Qualcomm Stadium
CA | 56000 | Dodger Stadium | Qualcomm Stadium
CA | 45050 | Angel Stadium of Anaheim | Qualcomm Stadium
CA | 42445 | PETCO Park | Qualcomm Stadium
CA | 41503 | AT&T Park | Qualcomm Stadium
CA | 22000 | Shoreline Amphitheatre | Qualcomm Stadium
CO | 76125 | INVESCO Field | INVESCO Field
CO | 50445 | Coors Field | INVESCO Field

Funzioni finestra 344

AWS Clean Rooms Documentazione di riferimento a SQL

DC | 41888 | Nationals Park | Nationals Park
FL | 74916 | Dolphin Stadium | Dolphin Stadium
FL | 73800 | Jacksonville Municipal Stadium | Dolphin Stadium
FL | 65647 | Raymond James Stadium | Dolphin Stadium
FL | 36048 | Tropicana Field | Dolphin Stadium
...

Funzione finestra LAG

La funzione finestra LAG restituisce i valori per una riga a una data compensazione sopra (prima) la
riga corrente nella partizione.

Sintassi

LAG (value_expr [, offset])
[IGNORE NULLS | RESPECT NULLS]
OVER ([PARTITION BY window_partition] ORDER BY window_ordering)

Arguments (Argomenti)

value_expr

L'espressione o colonna di destinazione su cui viene eseguita la funzione.

offset

Un parametro facoltativo che specifica il numero di righe prima della riga corrente per le quali
restituire i valori. La compensazione può essere un integer costante o un'espressione che valuta
un integer. Se non si specifica un offset, AWS Clean Rooms viene utilizzato 1 come valore
predefinito. Una compensazione di 0 indica la riga corrente.

IGNORE NULLS

Una specifica facoltativa che indica che i valori nulli AWS Clean Rooms devono essere ignorati
nella determinazione della riga da utilizzare. I valori null sono inclusi se IGNORE NULLS non è
elencato.

Note

È possibile utilizzare un'espressione NVL o COALESCE per sostituire i valori null con un
altro valore.

Funzioni finestra 345

AWS Clean Rooms Documentazione di riferimento a SQL

RESPECT NULLS

Indica che AWS Clean Rooms deve includere valori nulli nella determinazione della riga da
utilizzare. RESPECT NULLS è supportato come impostazione predefinita se non si specifica
IGNORE NULLS.

OVER

Specifica il partizionamento e l'ordinamento della finestra. La clausola OVER non può contenere
una specifica del frame della finestra.

PARTITION BY window_partition

Un argomento facoltativo che imposta l'intervallo di registrazioni per ciascun gruppo nella clausola
OVER.

ORDER BY window_ordering

Ordina le righe all'interno di ogni partizione.

La funzione della finestra LAG supporta espressioni che utilizzano qualsiasi tipo di AWS Clean
Rooms dati. Il tipo di restituzione è lo stesso del tipo di dati di value_expr.

Esempi

L'esempio seguente mostra la quantità di biglietti venduti all'acquirente con un ID acquirente
di 3 e il tempo in cui l'acquirente 3 ha acquistato i biglietti. Per confrontare ogni vendita con la
vendita precedente per l'acquirente 3, la query restituisce la quantità venduta per ogni vendita
precedente. Poiché non è stato effettuato alcun acquisto prima del 16/01/2008, il primo valore
venduto precedentemente è null:

select buyerid, saletime, qtysold,
lag(qtysold,1) over (order by buyerid, saletime) as prev_qtysold
from sales where buyerid = 3 order by buyerid, saletime;

buyerid | saletime | qtysold | prev_qtysold
---------+---------------------+---------+--------------
3 | 2008-01-16 01:06:09 | 1 |
3 | 2008-01-28 02:10:01 | 1 | 1
3 | 2008-03-12 10:39:53 | 1 | 1
3 | 2008-03-13 02:56:07 | 1 | 1
3 | 2008-03-29 08:21:39 | 2 | 1
3 | 2008-04-27 02:39:01 | 1 | 2

Funzioni finestra 346

AWS Clean Rooms Documentazione di riferimento a SQL

3 | 2008-08-16 07:04:37 | 2 | 1
3 | 2008-08-22 11:45:26 | 2 | 2
3 | 2008-09-12 09:11:25 | 1 | 2
3 | 2008-10-01 06:22:37 | 1 | 1
3 | 2008-10-20 01:55:51 | 2 | 1
3 | 2008-10-28 01:30:40 | 1 | 2
(12 rows)

funzione LAST window

Dato un insieme ordinato di righe, la funzione LAST restituisce il valore dell'espressione rispetto
all'ultima riga del frame.

Per informazioni sulla selezione della prima riga nel frame, consulta Funzione FIRST window.

Sintassi

LAST(expression)[IGNORE NULLS | RESPECT NULLS]
OVER (
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]
)

Arguments (Argomenti)

espressione

L'espressione o colonna di destinazione su cui viene eseguita la funzione.

IGNORE NULLS

La funzione restituisce l'ultimo valore nel frame che non è NULL (o NULL se tutti i valori sono
NULL).

RESPECT NULLS

Indica che AWS Clean Rooms deve includere valori nulli nella determinazione della riga da
utilizzare. RESPECT NULLS è supportato come impostazione predefinita se non si specifica
IGNORE NULLS.

OVER

Presenta le clausole finestra per la funzione.

Funzioni finestra 347

AWS Clean Rooms Documentazione di riferimento a SQL

PARTITION BY expr_list

Definisce la finestra per la funzione in termini di una o più espressioni.

ORDER BY order_list

Ordina le righe all'interno di ogni partizione. Se non viene specificata nessuna clausola
PARTITION BY, ORDER BY ordina l'intera tabella. Se si specifica una clausola ORDER BY, è
necessario anche specificare una frame_clause.

I risultati dipendono dall'ordinamento dei dati. I risultati sono non deterministici nei seguenti casi:

• Quando non è specificata alcuna clausola ORDER BY e una partizione contiene due valori
diversi per un'espressione

• Quando l'espressione valuta valori diversi che corrispondono allo stesso valore nell'elenco
ORDER BY.

frame_clause

Se una clausola ORDER BY viene utilizzata per una funzione di aggregazione, è necessaria
una clausola del frame esplicita. La clausola frame raffina l'insieme di righe in una finestra della
funzione, includendo o escludendo insieme di righe nel risultato ordinato. La clausola frame è
composta dalla parola chiave ROWS e dagli specificatori associati. Per informazioni, consulta
Riepilogo della sintassi della funzione finestra.

Tipo restituito

Queste funzioni supportano espressioni che utilizzano tipi di AWS Clean Rooms dati primitivi. Il tipo
restituito è lo stesso del tipo di dati di expression.

Esempi

L'esempio seguente restituisce la capacità di posto per ciascuna posizione nella tabella VENUE,
con i risultati ordinati in base alla capacità (da alta a bassa). La funzione LAST viene utilizzata per
selezionare il nome della sede che corrisponde all'ultima riga del riquadro: in questo caso, la fila con
il minor numero di posti. I risultati sono partizionati per stato, quindi quando il valore VENUESTATE
cambia, viene selezionato un nuovo ultimo valore. Il frame della finestra è illimitato, quindi lo stesso
ultimo valore è selezionato per ogni riga in ogni partizione.

Per la California, Shoreline Amphitheatre viene restituito per ogni riga nella partizione perché
ha il numero più basso di posti (22000).

Funzioni finestra 348

AWS Clean Rooms Documentazione di riferimento a SQL

select venuestate, venueseats, venuename,
last(venuename)
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)
order by venuestate;

venuestate | venueseats | venuename | last
-----------+------------+--------------------------------
+------------------------------
CA | 70561 | Qualcomm Stadium | Shoreline Amphitheatre
CA | 69843 | Monster Park | Shoreline Amphitheatre
CA | 63026 | McAfee Coliseum | Shoreline Amphitheatre
CA | 56000 | Dodger Stadium | Shoreline Amphitheatre
CA | 45050 | Angel Stadium of Anaheim | Shoreline Amphitheatre
CA | 42445 | PETCO Park | Shoreline Amphitheatre
CA | 41503 | AT&T Park | Shoreline Amphitheatre
CA | 22000 | Shoreline Amphitheatre | Shoreline Amphitheatre
CO | 76125 | INVESCO Field | Coors Field
CO | 50445 | Coors Field | Coors Field
DC | 41888 | Nationals Park | Nationals Park
FL | 74916 | Dolphin Stadium | Tropicana Field
FL | 73800 | Jacksonville Municipal Stadium | Tropicana Field
FL | 65647 | Raymond James Stadium | Tropicana Field
FL | 36048 | Tropicana Field | Tropicana Field
...

Funzione finestra LAST_VALUE

In un set di righe ordinato, la funzione LAST_VALUE restituisce il valore dell'espressione rispetto
all'ultima riga nel frame.

Per informazioni sulla selezione della prima riga nel frame, consulta Funzione finestra
FIRST_VALUE.

Sintassi

LAST_VALUE(expression)[IGNORE NULLS | RESPECT NULLS]
OVER (
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]

Funzioni finestra 349

AWS Clean Rooms Documentazione di riferimento a SQL

)

Arguments (Argomenti)

espressione

L'espressione o colonna di destinazione su cui viene eseguita la funzione.

IGNORE NULLS

La funzione restituisce l'ultimo valore nel frame che non è NULL (o NULL se tutti i valori sono
NULL).

RESPECT NULLS

Indica che AWS Clean Rooms deve includere valori nulli nella determinazione della riga da
utilizzare. RESPECT NULLS è supportato come impostazione predefinita se non si specifica
IGNORE NULLS.

OVER

Presenta le clausole finestra per la funzione.

PARTITION BY expr_list

Definisce la finestra per la funzione in termini di una o più espressioni.

ORDER BY order_list

Ordina le righe all'interno di ogni partizione. Se non viene specificata nessuna clausola
PARTITION BY, ORDER BY ordina l'intera tabella. Se si specifica una clausola ORDER BY, è
necessario anche specificare una frame_clause.

I risultati dipendono dall'ordinamento dei dati. I risultati sono non deterministici nei seguenti casi:

• Quando non è specificata alcuna clausola ORDER BY e una partizione contiene due valori
diversi per un'espressione

• Quando l'espressione valuta valori diversi che corrispondono allo stesso valore nell'elenco
ORDER BY.

frame_clause

Se una clausola ORDER BY viene utilizzata per una funzione di aggregazione, è necessaria
una clausola del frame esplicita. La clausola frame raffina l'insieme di righe in una finestra della

Funzioni finestra 350

AWS Clean Rooms Documentazione di riferimento a SQL

funzione, includendo o escludendo insieme di righe nel risultato ordinato. La clausola frame è
composta dalla parola chiave ROWS e dagli specificatori associati. Per informazioni, consulta
Riepilogo della sintassi della funzione finestra.

Tipo restituito

Queste funzioni supportano espressioni che utilizzano tipi di AWS Clean Rooms dati primitivi. Il tipo
restituito è lo stesso del tipo di dati di expression.

Esempi

L'esempio seguente restituisce la capacità di posto per ciascuna posizione nella tabella VENUE, con
i risultati ordinati in base alla capacità (da alta a bassa). La funzione LAST_VALUE viene utilizzata
per selezionare il nome del luogo corrispondente all'ultima riga nel frame: in questo caso, la riga con il
numero più basso di posti. I risultati sono partizionati per stato, quindi quando il valore VENUESTATE
cambia, viene selezionato un nuovo ultimo valore. Il frame della finestra è illimitato, quindi lo stesso
ultimo valore è selezionato per ogni riga in ogni partizione.

Per la California, Shoreline Amphitheatre viene restituito per ogni riga nella partizione perché
ha il numero più basso di posti (22000).

select venuestate, venueseats, venuename,
last_value(venuename)
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)
order by venuestate;

venuestate | venueseats | venuename | last_value
-----------+------------+--------------------------------
+------------------------------
CA | 70561 | Qualcomm Stadium | Shoreline Amphitheatre
CA | 69843 | Monster Park | Shoreline Amphitheatre
CA | 63026 | McAfee Coliseum | Shoreline Amphitheatre
CA | 56000 | Dodger Stadium | Shoreline Amphitheatre
CA | 45050 | Angel Stadium of Anaheim | Shoreline Amphitheatre
CA | 42445 | PETCO Park | Shoreline Amphitheatre
CA | 41503 | AT&T Park | Shoreline Amphitheatre
CA | 22000 | Shoreline Amphitheatre | Shoreline Amphitheatre
CO | 76125 | INVESCO Field | Coors Field

Funzioni finestra 351

AWS Clean Rooms Documentazione di riferimento a SQL

CO | 50445 | Coors Field | Coors Field
DC | 41888 | Nationals Park | Nationals Park
FL | 74916 | Dolphin Stadium | Tropicana Field
FL | 73800 | Jacksonville Municipal Stadium | Tropicana Field
FL | 65647 | Raymond James Stadium | Tropicana Field
FL | 36048 | Tropicana Field | Tropicana Field
...

Funzione finestra LEAD

La funzione finestra LEAD restituisce i valori per una riga a una data compensazione sotto (dopo) la
riga corrente nella partizione.

Sintassi

LEAD (value_expr [, offset])
[IGNORE NULLS | RESPECT NULLS]
OVER ([PARTITION BY window_partition] ORDER BY window_ordering)

Arguments (Argomenti)

value_expr

L'espressione o colonna di destinazione su cui viene eseguita la funzione.

offset

Un parametro facoltativo che specifica il numero di righe sotto la riga corrente per le quali
restituire i valori. La compensazione può essere un integer costante o un'espressione che valuta
un integer. Se non si specifica un offset, AWS Clean Rooms viene utilizzato 1 come valore
predefinito. Una compensazione di 0 indica la riga corrente.

IGNORE NULLS

Una specifica facoltativa che indica che i valori nulli AWS Clean Rooms devono essere ignorati
nella determinazione della riga da utilizzare. I valori null sono inclusi se IGNORE NULLS non è
elencato.

Note

È possibile utilizzare un'espressione NVL o COALESCE per sostituire i valori null con un
altro valore.

Funzioni finestra 352

AWS Clean Rooms Documentazione di riferimento a SQL

RESPECT NULLS

Indica che AWS Clean Rooms deve includere valori nulli nella determinazione della riga da
utilizzare. RESPECT NULLS è supportato come impostazione predefinita se non si specifica
IGNORE NULLS.

OVER

Specifica il partizionamento e l'ordinamento della finestra. La clausola OVER non può contenere
una specifica del frame della finestra.

PARTITION BY window_partition

Un argomento facoltativo che imposta l'intervallo di registrazioni per ciascun gruppo nella clausola
OVER.

ORDER BY window_ordering

Ordina le righe all'interno di ogni partizione.

La funzione della finestra LEAD supporta espressioni che utilizzano qualsiasi tipo di AWS Clean
Rooms dati. Il tipo di restituzione è lo stesso del tipo di dati di value_expr.

Esempi

L'esempio seguente fornisce la commissione per gli eventi nella tabella SALES per cui i biglietti sono
stati venduti il 1° gennaio 2008 e il 2 gennaio 2008 e la commissione pagata per le vendite dei biglietti
per la vendita successiva.

select eventid, commission, saletime,
lead(commission, 1) over (order by saletime) as next_comm
from sales where saletime between '2008-01-01 00:00:00' and '2008-01-02 12:59:59'
order by saletime;

eventid | commission | saletime | next_comm
---------+------------+---------------------+-----------
6213 | 52.05 | 2008-01-01 01:00:19 | 106.20
7003 | 106.20 | 2008-01-01 02:30:52 | 103.20
8762 | 103.20 | 2008-01-01 03:50:02 | 70.80
1150 | 70.80 | 2008-01-01 06:06:57 | 50.55
1749 | 50.55 | 2008-01-01 07:05:02 | 125.40
8649 | 125.40 | 2008-01-01 07:26:20 | 35.10
2903 | 35.10 | 2008-01-01 09:41:06 | 259.50

Funzioni finestra 353

AWS Clean Rooms Documentazione di riferimento a SQL

6605 | 259.50 | 2008-01-01 12:50:55 | 628.80
6870 | 628.80 | 2008-01-01 12:59:34 | 74.10
6977 | 74.10 | 2008-01-02 01:11:16 | 13.50
4650 | 13.50 | 2008-01-02 01:40:59 | 26.55
4515 | 26.55 | 2008-01-02 01:52:35 | 22.80
5465 | 22.80 | 2008-01-02 02:28:01 | 45.60
5465 | 45.60 | 2008-01-02 02:28:02 | 53.10
7003 | 53.10 | 2008-01-02 02:31:12 | 70.35
4124 | 70.35 | 2008-01-02 03:12:50 | 36.15
1673 | 36.15 | 2008-01-02 03:15:00 | 1300.80
...
(39 rows)

Funzione finestra PERCENT_RANK

Calcola la classificazione percentuale di una data riga. La classificazione percentuale è determinata
utilizzando questa formula:

(x - 1) / (the number of rows in the window or partition - 1)

laddove x è la classificazione della riga corrente. Il seguente insieme di dati dimostra l'uso di questa
formula:

Row# Value Rank Calculation PERCENT_RANK
1 15 1 (1-1)/(7-1) 0.0000
2 20 2 (2-1)/(7-1) 0.1666
3 20 2 (2-1)/(7-1) 0.1666
4 20 2 (2-1)/(7-1) 0.1666
5 30 5 (5-1)/(7-1) 0.6666
6 30 5 (5-1)/(7-1) 0.6666
7 40 7 (7-1)/(7-1) 1.0000

L'intervallo del valore di restituzione è compreso tra 0 e 1, con questi valori compresi. La prima riga in
qualsiasi insieme ha un PERCENT_RANK di 0.

Sintassi

PERCENT_RANK ()
OVER (
[PARTITION BY partition_expression]
[ORDER BY order_list]
)

Funzioni finestra 354

AWS Clean Rooms Documentazione di riferimento a SQL

Arguments (Argomenti)

()

La funzione non accetta argomenti, ma le parentesi vuote sono obbligatorie.

OVER

Una clausola che specifica il partizionamento della finestra. La clausola OVER non può contenere
una specifica del frame della finestra.

PARTITION BY partition_expression

Opzionale. Un'espressione che imposta l'intervallo di registrazioni per ciascun gruppo nella
clausola OVER.

ORDER BY order_list

Opzionale. L'espressione su cui calcolare la classificazione percentuale. L'espressione deve
avere o un tipo di dati numerici o essere implicitamente convertibile in uno. Se ORDER BY viene
omesso, il valore di restituzione è 0 per tutte le righe.

Se ORDER BY non produce un ordinamento univoco, l'ordine delle righe non è deterministico. Per
ulteriori informazioni, consulta Ordinamento univoco dei dati per le funzioni finestra.

Tipo restituito

FLOAT8

Esempi

L'esempio seguente calcola la classificazione in percentuale delle quantità di vendita per ciascun
venditore:

select sellerid, qty, percent_rank()
over (partition by sellerid order by qty)
from winsales;

sellerid qty percent_rank
--
1 10.00 0.0
1 10.64 0.5
1 30.37 1.0
3 10.04 0.0

Funzioni finestra 355

AWS Clean Rooms Documentazione di riferimento a SQL

3 15.15 0.33
3 20.75 0.67
3 30.55 1.0
2 20.09 0.0
2 20.12 1.0
4 10.12 0.0
4 40.23 1.0

Per una descrizione della tabella WINSALES, consultare Tabella di esempio per gli esempi della
funzione finestra.

Funzione finestra RANK

La funzione finestra RANK determina la classificazione di un valore in un gruppo di valori, in
base all'espressione ORDER BY nella clausola OVER. Se è presente la clausola PARTITION BY
facoltativa, le classificazioni vengono ripristinate per ciascun gruppo di righe. Le righe con valori
uguali per i criteri di classificazione ricevono lo stesso rango. AWS Clean Roomsaggiunge il numero
di righe legate alla classifica pareggiata per calcolare la classifica successiva e quindi i ranghi
potrebbero non essere numeri consecutivi. Ad esempio, se due righe sono classificate come 1, il
livello successivo è 3.

RANK è diverso dalla Funzione finestra DENSE_RANK per un aspetto: Per DENSE_RANK, se due
o più righe si legano, non c'è spazio nella sequenza dei valori classificati. Ad esempio, se due righe
sono classificate come 1, il livello successivo è 2.

È possibile avere funzioni di classificazione con diverse clausole PARTITION BY e ORDER BY nella
stessa query.

Sintassi

RANK () OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list]
)

Arguments (Argomenti)

()

La funzione non accetta argomenti, ma le parentesi vuote sono obbligatorie.

Funzioni finestra 356

AWS Clean Rooms Documentazione di riferimento a SQL

OVER

Le clausole finestra per la funzione RANK.

PARTITION BY expr_list

Opzionale. Una o più espressioni che definiscono la finestra.

ORDER BY order_list

Opzionale. Definisce le colonne su cui si basano i valori di classificazione. Se non viene
specificato nessun PARTITION BY, ORDER BY utilizza l'intera tabella. Se ORDER BY viene
omesso, il valore di restituzione è 1 per tutte le righe.

Se ORDER BY non produce un ordinamento univoco, l'ordine delle righe non è deterministico. Per
ulteriori informazioni, consulta Ordinamento univoco dei dati per le funzioni finestra.

Tipo restituito

INTEGER

Esempi

Nel seguente esempio la tabella viene ordinata in base alla quantità venduta (in ordine crescente
per impostazione predefinita) e viene assegnata una classificazione a ciascuna riga. Un valore di
classificazione pari a 1 è il valore di classificazione più alto. I risultati vengono ordinati dopo aver
applicato i risultati della funzione finestra:

select salesid, qty,
rank() over (order by qty) as rnk
from winsales
order by 2,1;

salesid | qty | rnk
--------+-----+-----
10001 | 10 | 1
10006 | 10 | 1
30001 | 10 | 1
40005 | 10 | 1
30003 | 15 | 5
20001 | 20 | 6
20002 | 20 | 6
30004 | 20 | 6

Funzioni finestra 357

AWS Clean Rooms Documentazione di riferimento a SQL

10005 | 30 | 9
30007 | 30 | 9
40001 | 40 | 11
(11 rows)

Si noti che la clausola ORDER BY esterna in questo esempio include le colonne 2 e 1 per garantire
che vengano AWS Clean Rooms restituiti risultati ordinati in modo coerente ogni volta che viene
eseguita questa query. Ad esempio, le righe con vendite IDs 10001 e 10006 hanno valori QTY e RNK
identici. Ordinare il risultato finale impostato in base alla colonna 1 assicura che la riga 10001 cada
sempre prima di 10006. Per una descrizione della tabella WINSALES, consultare Tabella di esempio
per gli esempi della funzione finestra.

Nel seguente esempio, l'ordinamento è invertito per la funzione finestra (order by qty desc). Ora
il valore di classificazione più alto si applica al valore QTY più alto.

select salesid, qty,
rank() over (order by qty desc) as rank
from winsales
order by 2,1;

 salesid | qty | rank
---------+-----+-----
 10001 | 10 | 8
 10006 | 10 | 8
 30001 | 10 | 8
 40005 | 10 | 8
 30003 | 15 | 7
 20001 | 20 | 4
 20002 | 20 | 4
 30004 | 20 | 4
 10005 | 30 | 2
 30007 | 30 | 2
 40001 | 40 | 1
(11 rows)

Per una descrizione della tabella WINSALES, consultare Tabella di esempio per gli esempi della
funzione finestra.

Nel seguente esempio la tabella viene partizionata per SELLERID, ciascuna partizione viene ordinata
in base alla quantità (in ordine decrescente) e viene assegnata una classificazione a ciascuna riga. I
risultati vengono ordinati dopo aver applicato i risultati della funzione finestra.

Funzioni finestra 358

AWS Clean Rooms Documentazione di riferimento a SQL

select salesid, sellerid, qty, rank() over
(partition by sellerid
order by qty desc) as rank
from winsales
order by 2,3,1;

salesid | sellerid | qty | rank
--------+----------+-----+-----
 10001 | 1 | 10 | 2
 10006 | 1 | 10 | 2
 10005 | 1 | 30 | 1
 20001 | 2 | 20 | 1
 20002 | 2 | 20 | 1
 30001 | 3 | 10 | 4
 30003 | 3 | 15 | 3
 30004 | 3 | 20 | 2
 30007 | 3 | 30 | 1
 40005 | 4 | 10 | 2
 40001 | 4 | 40 | 1
(11 rows)

Funzione finestra ROW_NUMBER

Determina il numero ordinale di una riga corrente in un gruppo di righe, contando da 1, in base
all'espressione ORDER BY nella clausola OVER. Se è presente la clausola PARTITION BY
facoltativa, i numeri ordinali vengono ripristinati per ciascun gruppo di righe. Le righe con valori uguali
per le espressioni ORDER BY ricevono i numeri di riga diversi in modo non deterministico.

Sintassi

ROW_NUMBER () OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list]
)

Arguments (Argomenti)

()

La funzione non accetta argomenti, ma le parentesi vuote sono obbligatorie.

Funzioni finestra 359

AWS Clean Rooms Documentazione di riferimento a SQL

OVER

Le clausole finestra per la funzione ROW_NUMBER.

PARTITION BY expr_list

Opzionale. Una o più espressioni che definiscono la funzione ROW_NUMBER.

ORDER BY order_list

Opzionale. L'espressione che definisce le colonne su cui si basano i numeri di riga. Se non viene
specificato nessun PARTITION BY, ORDER BY utilizza l'intera tabella.

Se ORDER BY non produce un ordinamento univoco o viene omesso, l'ordine delle righe non è
deterministico. Per ulteriori informazioni, consulta Ordinamento univoco dei dati per le funzioni
finestra.

Tipo restituito

BIGINT

Esempi

L'esempio seguente esegue la partizione della tabella in SELLERID e ordina ciascuna partizione in
base a QTY (in ordine crescente), quindi assegna un numero di riga a ogni riga. I risultati vengono
ordinati dopo aver applicato i risultati della funzione finestra.

select salesid, sellerid, qty,
row_number() over
(partition by sellerid
 order by qty asc) as row
from winsales
order by 2,4;

 salesid | sellerid | qty | row
---------+----------+-----+-----
 10006 | 1 | 10 | 1
 10001 | 1 | 10 | 2
 10005 | 1 | 30 | 3
 20001 | 2 | 20 | 1
 20002 | 2 | 20 | 2
 30001 | 3 | 10 | 1
 30003 | 3 | 15 | 2
 30004 | 3 | 20 | 3

Funzioni finestra 360

AWS Clean Rooms Documentazione di riferimento a SQL

 30007 | 3 | 30 | 4
 40005 | 4 | 10 | 1
 40001 | 4 | 40 | 2
(11 rows)

Per una descrizione della tabella WINSALES, consultare Tabella di esempio per gli esempi della
funzione finestra.

AWS Clean Rooms Condizioni Spark SQL
Le condizioni sono dichiarazioni di una o più espressioni e operatori logici che restituiscono vero,
falso o sconosciuto. A volte le condizioni vengono anche chiamate predicati.

Sintassi

comparison_condition
| logical_condition
| range_condition
| pattern_matching_condition
| null_condition
| EXISTS_condition
| IN_condition

Note

Tutte le corrispondenze tra modelli LIKE e i confronti di stringhe fanno distinzione tra
maiuscole e minuscole. Ad esempio, "A" e "a" non corrispondono. Tuttavia, è possibile
effettuare una corrispondenza tra modelli che non distingue tra maiuscole e minuscole
usando il predicato ILIKE.

Le seguenti condizioni SQL sono supportate in AWS Clean Rooms Spark SQL.

Argomenti

• Operatori di confronto

• Condizioni logiche

• Condizioni di corrispondenza di modelli

• Condizione di intervallo BETWEEN

• Condizione Null

Condizioni SQL 361

AWS Clean Rooms Documentazione di riferimento a SQL

• Condizione EXISTS

• Condizione IN

Operatori di confronto

Le condizioni di confronto esprimono le relazioni logiche tra due valori. Tutte le condizioni di confronto
sono operatori binari con un tipo restituito booleano.

AWS Clean Rooms Spark SQL supporta gli operatori di confronto descritti nella tabella seguente.

Operatore Sintassi Descrizione

! !expression L'NOToperatore logico.
Utilizzato per negare
un'espressione booleana,
ossia restituisce l'opposto del
valore dell'espressione.

Il! L'operatore può anche
essere combinato con altri
operatori logici, come AND e
OR, per creare espressioni
booleane più complesse.

< a < b L'operatore less than
comparison. Utilizzato per
confrontare due valori e
determinare se il valore a
sinistra è inferiore a quello a
destra.

> a > b L'operatore maggiore di
confronto. Utilizzato per
confrontare due valori e
determinare se il valore a
sinistra è maggiore del valore
a destra.

Operatori di confronto 362

AWS Clean Rooms Documentazione di riferimento a SQL

Operatore Sintassi Descrizione

<= a <= b L'operatore di confronto
minore o uguale. Utilizzato
per confrontare due valori e
restituisce true se il valore
a sinistra è minore o uguale
al valore a destra e in false
altro modo.

>= a >= b L'operatore di confronto
maggiore o uguale a. Utilizzat
o per confrontare due valori
e determinare se il valore a
sinistra è maggiore o uguale al
valore a destra.

= a = b L'operatore di confronto delle
uguaglianze, che confronta
due valori e restituisce true
se sono uguali e in false
altro modo.

<> o != a <> b o a != b L'operatore di confronto non
uguale a, che confronta due
valori e restituisce true se
non sono uguali e false in
altro modo.

Operatori di confronto 363

AWS Clean Rooms Documentazione di riferimento a SQL

Operatore Sintassi Descrizione

== a == b L'operatore di confronto delle
uguaglianze standard, che
confronta due valori e restituis
ce true se sono uguali e
false in altro modo.

Note

L'operatore ==
fa distinzione tra
maiuscole e minuscole
quando si confrontano
i valori delle stringhe.
Se è necessario
eseguire un confronto
senza distinzione tra
maiuscole e minuscole
, è possibile utilizzare
funzioni come UPPER
() o LOWER () per
convertire i valori
nello stesso formato
maiuscolo/minuscolo
prima del confronto.

Esempi

Di seguito sono elencati alcuni semplici esempi di condizioni di confronto:

a = 5
a < b
min(x) >= 5
qtysold = any (select qtysold from sales where dateid = 1882

Operatori di confronto 364

AWS Clean Rooms Documentazione di riferimento a SQL

La seguente query restituisce i valori id per tutti gli scoiattoli che attualmente non stanno cercando
cibo.

SELECT id FROM squirrels
WHERE !is_foraging

La seguente query restituisce le sedi con più di 10.000 posti nella tabella VENUE:

select venueid, venuename, venueseats from venue
where venueseats > 10000
order by venueseats desc;

venueid | venuename | venueseats
---------+--------------------------------+------------
83 | FedExField | 91704
 6 | New York Giants Stadium | 80242
79 | Arrowhead Stadium | 79451
78 | INVESCO Field | 76125
69 | Dolphin Stadium | 74916
67 | Ralph Wilson Stadium | 73967
76 | Jacksonville Municipal Stadium | 73800
89 | Bank of America Stadium | 73298
72 | Cleveland Browns Stadium | 73200
86 | Lambeau Field | 72922
...
(57 rows)

Questo esempio seleziona dalla tabella USERS gli utenti (USERID) ai quali piace la musica rock:

select userid from users where likerock = 't' order by 1 limit 5;

userid

3
5
6
13
16
(5 rows)

Questo esempio seleziona dalla tabella USERS gli utenti (USERID) per i quali si sa se gli piace la
musica rock:

Operatori di confronto 365

AWS Clean Rooms Documentazione di riferimento a SQL

select firstname, lastname, likerock
from users
where likerock is unknown
order by userid limit 10;

firstname | lastname | likerock
----------+----------+----------
Rafael | Taylor |
Vladimir | Humphrey |
Barry | Roy |
Tamekah | Juarez |
Mufutau | Watkins |
Naida | Calderon |
Anika | Huff |
Bruce | Beck |
Mallory | Farrell |
Scarlett | Mayer |
(10 rows

Esempi con una colonna TIME

La tabella di esempio seguente TIME_TEST ha una colonna TIME_VAL (tipo TIME) con tre valori
inseriti.

select time_val from time_test;

time_val

20:00:00
00:00:00.5550
00:58:00

Nell'esempio seguente vengono estratte le ore da ogni timetz_val.

select time_val from time_test where time_val < '3:00';
 time_val

 00:00:00.5550
 00:58:00

L'esempio seguente confronta due valori letterali temporali.

Operatori di confronto 366

AWS Clean Rooms Documentazione di riferimento a SQL

select time '18:25:33.123456' = time '18:25:33.123456';
 ?column?

 t

Esempi con una colonna TIMETZ

La tabella di esempio seguente TIMETZ_TEST ha una colonna TIMETZ_VAL (tipo TIMETZ) con tre
valori inseriti.

select timetz_val from timetz_test;

timetz_val

04:00:00+00
00:00:00.5550+00
05:58:00+00

Nell'esempio seguente vengono selezionati solo i valori TIMETZ inferiori a 3:00:00 UTC. Il
confronto viene effettuato dopo aver convertito il valore in UTC.

select timetz_val from timetz_test where timetz_val < '3:00:00 UTC';

 timetz_val

 00:00:00.5550+00

L'esempio seguente confronta due valori letterali TIMETZ. Il fuso orario viene ignorato per il
confronto.

select time '18:25:33.123456 PST' < time '19:25:33.123456 EST';

 ?column?

 t

Condizioni logiche

Le condizioni logiche combinano il risultato di due condizioni per produrre un singolo risultato. Tutte le
condizioni logiche sono operatori binari con un tipo restituito booleano.

Condizioni logiche 367

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

expression
{ AND | OR }
expression
NOT expression

Le condizioni logiche usano una logica booleana a tre valori in cui il valore null rappresenta una
relazione sconosciuta. Nella tabella riportata di seguito sono descritti i risultati delle condizioni
logiche, dove E1 ed E2 rappresentano espressioni:

E1 E2 E1 ed E2 E1 o E2 NO E2

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE TRUE

TRUE UNKNOWN UNKNOWN TRUE UNKNOWN

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

FALSE UNKNOWN FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN TRUE

UNKNOWN FALSE FALSE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN

L'operatore NOT viene valutato prima di AND e l'operatore AND viene valutato prima dell'operatore
OR. Eventuali parentesi utilizzate potrebbero sostituire questo ordine di valutazione predefinito.

Esempi

L'esempio seguente restituisce USERID e USERNAME dalla tabella USERS se agli utenti piacciono
sia Las Vegas sia gli sport:

select userid, username from users

Condizioni logiche 368

AWS Clean Rooms Documentazione di riferimento a SQL

where likevegas = 1 and likesports = 1
order by userid;

userid | username
--------+----------
1 | JSG99FHE
67 | TWU10MZT
87 | DUF19VXU
92 | HYP36WEQ
109 | FPL38HZK
120 | DMJ24GUZ
123 | QZR22XGQ
130 | ZQC82ALK
133 | LBN45WCH
144 | UCX04JKN
165 | TEY68OEB
169 | AYQ83HGO
184 | TVX65AZX
...
(2128 rows)

L'esempio successivo restituisce USERID e USERNAME dalla tabella USERS se agli utenti
piacciono Las Vegas o gli sport o entrambi. Questa query restituisce tutti gli output dell'esempio
precedente più gli utenti a cui piacciono solo Las Vegas o gli sport.

select userid, username from users
where likevegas = 1 or likesports = 1
order by userid;

userid | username
--------+----------
1 | JSG99FHE
2 | PGL08LJI
3 | IFT66TXU
5 | AEB55QTM
6 | NDQ15VBM
9 | MSD36KVR
10 | WKW41AIW
13 | QTF33MCG
15 | OWU78MTR
16 | ZMG93CDD
22 | RHT62AGI
27 | KOY02CVE

Condizioni logiche 369

AWS Clean Rooms Documentazione di riferimento a SQL

29 | HUH27PKK
...
(18968 rows)

La query seguente usa le parentesi intorno alla condizione OR per trovare i luoghi a New York o in
California in cui è stato rappresentato Macbeth:

select distinct venuename, venuecity
from venue join event on venue.venueid=event.venueid
where (venuestate = 'NY' or venuestate = 'CA') and eventname='Macbeth'
order by 2,1;

venuename | venuecity
--+---------------
Geffen Playhouse | Los Angeles
Greek Theatre | Los Angeles
Royce Hall | Los Angeles
American Airlines Theatre | New York City
August Wilson Theatre | New York City
Belasco Theatre | New York City
Bernard B. Jacobs Theatre | New York City
...

La rimozione delle parentesi in questo esempio modifica la logica e i risultati della query.

L'esempio seguente utilizza l'operatore NOT:

select * from category
where not catid=1
order by 1;

catid | catgroup | catname | catdesc
-------+----------+-----------+--
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association
5 | Sports | MLS | Major League Soccer
...

L'esempio seguente utilizza una condizione NOT seguita da una condizione AND:

select * from category

Condizioni logiche 370

AWS Clean Rooms Documentazione di riferimento a SQL

where (not catid=1) and catgroup='Sports'
order by catid;

catid | catgroup | catname | catdesc
-------+----------+---------+---------------------------------
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association
5 | Sports | MLS | Major League Soccer
(4 rows)

Condizioni di corrispondenza di modelli

Un operatore di corrispondenza dei modelli cerca in una stringa uno schema specificato
nell'espressione condizionale e restituisce true o false a seconda che trovi o meno una
corrispondenza. AWS Clean Rooms Spark SQL utilizza i seguenti metodi per la corrispondenza dei
modelli:

• Espressioni LIKE

L'operatore LIKE confronta un'espressione di stringa, come il nome di colonna, con un modello
che usa i caratteri jolly % (percentuale) e _ (sottolineatura). La corrispondenza di modello LIKE
copre sempre l'intera stringa. LIKE esegue una corrispondenza con distinzione tra maiuscole e
minuscole.

Argomenti

• LIKE

• RLIKE

LIKE

L'operatore LIKE confronta un'espressione di stringa, come il nome di colonna, con un modello che
usa i caratteri jolly % (percentuale) e _ (sottolineatura). La corrispondenza di modello LIKE copre
sempre l'intera stringa. Per trovare la corrispondenza con una sequenza in qualsiasi parte di una
stringa, è necessario che il modello inizi e termini con un segno di percentuale.

LIKE distingue tra maiuscole e minuscole.

Condizioni di corrispondenza di modelli 371

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

expression [NOT] LIKE | pattern [ESCAPE 'escape_char']

Argomenti

espressione

Un'espressione di caratteri UTF-8 valida, come un nome di colonna.

LIKE

LIKE esegue una corrispondenza di modello che fa distinzione tra maiuscole e minuscole. Per
eseguire una corrispondenza di modello che non fa distinzione tra maiuscole e minuscole per
caratteri multibyte, utilizzare la funzione LOWER sull'espressione e modello con una condizione
LIKE.

A differenza dei predicati di confronto, come = e <>, i predicati LIKE non ignorano implicitamente
gli spazi finali. Per ignorare gli spazi finali, utilizzare RTRIM o trasmettere in modo esplicito una
colonna CHAR a VARCHAR.

L'~~operatore è equivalente a LIKE. Inoltre l'!~~operatore è equivalente a NOT LIKE.

pattern

Un'espressione di caratteri UTF-8 valida con il modello da associare.

escape_char

Un'espressione di caratteri che eseguirà l'escape dei metacaratteri nel modello. Per impostazione
predefinita sono due barre rovesciate ("\\").

Se il modello non contiene metacaratteri, allora il modello rappresenta solo la stringa stessa; in
questo caso LIKE agisce come l'operatore di uguaglianza.

Entrambe le espressioni di caratteri possono essere tipi di dati CHAR o VARCHAR. Se differiscono,
AWS Clean Rooms converte il modello al tipo di dati dell'espressione.

LIKE supporta i seguenti metacaratteri di corrispondenza di modelli:

Operatore Descrizione

% Abbina qualsiasi sequenza di zero o più caratteri.

Condizioni di corrispondenza di modelli 372

AWS Clean Rooms Documentazione di riferimento a SQL

Operatore Descrizione

_ Abbina qualsiasi carattere singolo.

Esempi

La tabella seguente mostra esempi di corrispondenza di modelli usando LIKE:

Expression Valori restituiti

'abc' LIKE 'abc' True

'abc' LIKE 'a%' True

'abc' LIKE '_B_' False

'abc' LIKE 'c%' False

L'esempio seguente trova tutte le città il cui nome inizia per "E":

select distinct city from users
where city like 'E%' order by city;
city

East Hartford
East Lansing
East Rutherford
East St. Louis
Easthampton
Easton
Eatontown
Eau Claire
...

L'esempio seguente trova tutti gli utenti il cui cognome contiene "ten":

select distinct lastname from users
where lastname like '%ten%' order by lastname;
lastname

Condizioni di corrispondenza di modelli 373

AWS Clean Rooms Documentazione di riferimento a SQL

Christensen
Wooten
...

L'esempio seguente trova le città il cui terzo e quarto carattere sono «ea» . :

select distinct city from users where city like '__EA%' order by city;
city

Brea
Clearwater
Great Falls
Ocean City
Olean
Wheaton
(6 rows)

Nell'esempio seguente viene usata la stringa con caratteri escape predefinita (\\) per ricercare
stringhe che contengono "start_" (il testo start seguito da una sottolineatura _):

select tablename, "column" from my_table_def

where "column" like '%start_%'
limit 5;

 tablename | column
-------------------+---------------
 my_s3client | start_time
 my_tr_conflict | xact_start_ts
 my_undone | undo_start_ts
 my_unload_log | start_time
 my_vacuum_detail | start_row
(5 rows)

L'esempio seguente specifica "^" come carattere di escape, quindi usa il carattere di escape per
ricercare stringhe che contengono "start_" (il testo start seguito da una sottolineatura _):

select tablename, "column" from my_table_def

where "column" like '%start^_%' escape '^'

Condizioni di corrispondenza di modelli 374

AWS Clean Rooms Documentazione di riferimento a SQL

limit 5;

 tablename | column
-------------------+---------------
 my_s3client | start_time
 my_tr_conflict | xact_start_ts
 my_undone | undo_start_ts
 my_unload_log | start_time
 my_vacuum_detail | start_row
(5 rows)

RLIKE

L'operatore RLIKE consente di verificare se una stringa corrisponde a un modello di espressione
regolare specificato.

Restituisce true se str corrisponde regexp o false meno.

Sintassi

rlike(str, regexp)

Argomenti

str

Un'espressione di tipo stringa

regexp

Un'espressione stringa. La stringa regex deve essere un'espressione regolare Java.

I valori letterali delle stringhe (inclusi i modelli regex) non sono inclusi nel nostro parser SQL. Ad
esempio, per corrispondere a «\ abc», un'espressione regolare per regexp può essere «^\ abc$».

Esempi

L'esempio seguente imposta il valore del parametro di configurazione su.
spark.sql.parser.escapedStringLiterals true Questo parametro è specifico del motore
SQL Spark. Il spark.sql.parser.escapedStringLiterals parametro in Spark SQL controlla
il modo in cui il parser SQL gestisce le stringhe letterali con escape. Se impostato sutrue, il parser
interpreterà i caratteri della barra rovesciata (\) all'interno delle stringhe letterali come caratteri di

Condizioni di corrispondenza di modelli 375

AWS Clean Rooms Documentazione di riferimento a SQL

escape, consentendoti di includere caratteri speciali come nuove righe, tabulazioni e virgolette nei
valori delle stringhe.

SET spark.sql.parser.escapedStringLiterals=true;
spark.sql.parser.escapedStringLiterals true

Ad esempio, conspark.sql.parser.escapedStringLiterals=true, è possibile utilizzare la
seguente stringa letterale nella query SQL:

SELECT 'Hello, world!\n'

Il carattere di nuova riga \n verrebbe interpretato come un carattere letterale di nuova riga nell'output.

L'esempio seguente esegue una corrispondenza del modello di espressione regolare. Il primo
argomento viene passato all'operatore RLIKE. È una stringa che rappresenta il percorso di un file,
in cui il nome utente effettivo viene sostituito dal pattern '****'. Il secondo argomento è il modello
di espressione regolare usato per la corrispondenza. L'output (true) indica che la prima stringa
('%SystemDrive%\Users****') corrisponde all'espressione regolare pattern ('%SystemDrive%
\\Users.*').

SELECT rlike('%SystemDrive%\Users\John', '%SystemDrive%\Users.*');
true

Condizione di intervallo BETWEEN

Una condizione BETWEEN testa le espressioni per l'inclusione in un intervallo di valori, usando le
parole chiave BETWEEN e AND.

Sintassi

expression [NOT] BETWEEN expression AND expression

Le espressioni possono essere numeriche, di caratteri o datetime, ma è necessario che siano
compatibili. L'intervallo è inclusivo.

Esempi

Il primo esempio conta quante transazioni hanno registrato vendite di 2, 3 o 4 biglietti:

Condizione di intervallo BETWEEN 376

AWS Clean Rooms Documentazione di riferimento a SQL

select count(*) from sales
where qtysold between 2 and 4;

count

104021
(1 row)

La condizione di intervallo comprende i valori di inizio e di fine.

select min(dateid), max(dateid) from sales
where dateid between 1900 and 1910;

min | max
-----+-----
1900 | 1910

È necessario che la prima espressione in una condizione di intervallo sia il valore minore e la
seconda espressione il valore maggiore. L'esempio seguente restituirà sempre zero righe a causa dei
valori delle espressioni:

select count(*) from sales
where qtysold between 4 and 2;

count

0
(1 row)

Tuttavia, l'applicazione del modificatore NOT invertirà la logica e produrrà un conto di tutte le righe:

select count(*) from sales
where qtysold not between 4 and 2;

count

172456
(1 row)

La query seguente restituisce un elenco di sedi con 20.000-50.000 posti a sedere:

Condizione di intervallo BETWEEN 377

AWS Clean Rooms Documentazione di riferimento a SQL

select venueid, venuename, venueseats from venue
where venueseats between 20000 and 50000
order by venueseats desc;

venueid | venuename | venueseats
---------+-------------------------------+------------
116 | Busch Stadium | 49660
106 | Rangers BallPark in Arlington | 49115
96 | Oriole Park at Camden Yards | 48876
...
(22 rows)

L'esempio seguente mostra l'utilizzo di BETWEEN per i valori di data:

select salesid, qtysold, pricepaid, commission, saletime
from sales
where eventid between 1000 and 2000
 and saletime between '2008-01-01' and '2008-01-03'
order by saletime asc;

salesid | qtysold | pricepaid | commission | saletime
--------+---------+-----------+------------+---------------
 65082 | 4 | 472 | 70.8 | 1/1/2008 06:06
 110917 | 1 | 337 | 50.55 | 1/1/2008 07:05
 112103 | 1 | 241 | 36.15 | 1/2/2008 03:15
 137882 | 3 | 1473 | 220.95 | 1/2/2008 05:18
 40331 | 2 | 58 | 8.7 | 1/2/2008 05:57
 110918 | 3 | 1011 | 151.65 | 1/2/2008 07:17
 96274 | 1 | 104 | 15.6 | 1/2/2008 07:18
 150499 | 3 | 135 | 20.25 | 1/2/2008 07:20
 68413 | 2 | 158 | 23.7 | 1/2/2008 08:12

È importante notare che, sebbene l'intervallo di BETWEEN sia inclusivo, le date hanno un valore di
ora predefinito di 00:00:00. L'unica riga valida del 3 gennaio per la query di esempio sarebbe una riga
con saletime 1/3/2008 00:00:00.

Condizione Null

Il NULL test di condizione per valori nulli, quando un valore è mancante o sconosciuto.

Condizione Null 378

AWS Clean Rooms Documentazione di riferimento a SQL

Sintassi

expression IS [NOT] NULL

Argomenti

espressione

Qualsiasi espressione come una colonna.

IS NULL

È true quando il valore dell'espressione è null e false quando ha un valore.

IS NOT NULL

È false quando il valore dell'espressione è null e true quando ha un valore.

Esempio

Questo esempio indica quante volte la tabella SALES contiene un valore null nel campo QTYSOLD:

select count(*) from sales
where qtysold is null;
count

0
(1 row)

Condizione EXISTS

Le condizioni EXISTS testano l'esistenza di righe in una subquery e restituiscono true se una
subquery restituisce almeno una riga. Se viene specificato NOT, la condizione restituisce true se una
subquery restituisce nessuna riga.

Sintassi

[NOT] EXISTS (table_subquery)

Condizione EXISTS 379

AWS Clean Rooms Documentazione di riferimento a SQL

Argomenti

EXISTS

È true se table_subquery restituisce almeno una riga.

NOT EXISTS

È true se table_subquery restituisce nessuna riga.

table_subquery

Una subquery che viene valutata una tabella con una o più colonne e una o più righe.

Esempio

Questo esempio restituisce tutti gli identificatori di data, una volta ciascuno, per ogni data che ha
registrato una vendita di qualsiasi tipo:

select dateid from date
where exists (
select 1 from sales
where date.dateid = sales.dateid
)
order by dateid;

dateid

1827
1828
1829
...

Condizione IN

Un record IN condition verifica l'appartenenza di un valore a un set di valori o a una sottoquery.

Sintassi

expression [NOT] IN (expr_list | table_subquery)

Condizione IN 380

AWS Clean Rooms Documentazione di riferimento a SQL

Argomenti

espressione

Un'espressione datetime, di caratteri o numerica che viene valutata rispetto a expr_list o
table_subquery e deve essere compatibile con il tipo di dati di quell'elenco o subquery.

expr_list

Una o più espressioni delimitate da virgola o uno o più set di espressioni delimitate da virgola
racchiusi tra parentesi.

table_subquery

Una subquery che viene valutata una tabella con una o più righe ma che è limitata a una sola
colonna nel suo elenco di selezione.

IN | NOT IN

IN restituisce true se l'espressione è un membro della query o dell'elenco di espressioni. NOT IN
restituisce true se l'espressione non è un membro. IN e NOT IN restituiscono NULL e nessuna
riga nei casi seguenti: se l'espressione genera un valore null; se non ci sono valori expr_list o
table_subquery corrispondenti e almeno una di queste righe di confronto restituisce un valore null.

Esempi

Le condizioni seguenti sono true solo per quei valori elencati:

qtysold in (2, 4, 5)
date.day in ('Mon', 'Tues')
date.month not in ('Oct', 'Nov', 'Dec')

Ottimizzazione per grandi elenchi IN

Per ottimizzare l'esecuzione delle query, un elenco IN che comprende più di 10 valori viene
internamente valutato come un array scalare. Gli elenchi IN con meno di 10 valori vengono valutati
come una serie di predicati OR. Questa ottimizzazione è supportata per i tipi di dati SMALLINT,
INTEGER, BIGINT, REAL, DOUBLE PRECISION, BOOLEAN, CHAR, VARCHAR, DATE,
TIMESTAMP e TIMESTAMPTZ.

Guarda l'output di EXPLAIN per la query per vedere l'effetto di questa ottimizzazione. Ad esempio:

Condizione IN 381

AWS Clean Rooms Documentazione di riferimento a SQL

explain select * from sales
QUERY PLAN
--
XN Seq Scan on sales (cost=0.00..6035.96 rows=86228 width=53)
Filter: (salesid = ANY ('{1,2,3,4,5,6,7,8,9,10,11}'::integer[]))
(2 rows)

Condizione IN 382

AWS Clean Rooms Documentazione di riferimento a SQL

Interrogazione di dati annidati
AWS Clean Rooms offre un accesso compatibile con SQL ai dati relazionali e annidati.

AWS Clean Rooms utilizza la notazione punteggiata e l'array subscript per la navigazione dei
percorsi quando si accede ai dati annidati. Inoltre, abilita il FROM elementi di clausola da iterare sugli
array e utilizzare per operazioni di disaggregazione. I seguenti argomenti forniscono le descrizioni
dei diversi modelli di interrogazione che combinano l'uso del tipo di array/struct/map dati con la
navigazione tra percorsi e array, l'unnesting e i join.

Argomenti

• Navigazione

• Annullamento di query

• Semantica permissiva

• Tipi di introspezione

Navigazione

AWS Clean Rooms consente la navigazione in matrici e strutture utilizzando rispettivamente la
notazione [...] tra parentesi e punti. Inoltre, è possibile combinare la navigazione in strutture
utilizzando la notazione a punti e gli array utilizzando la notazione con parentesi.

Example

Ad esempio, la seguente query di esempio presuppone che la colonna di dati dell'c_ordersarray sia
una matrice con una struttura e un attributo è denominato. o_orderkey

SELECT cust.c_orders[0].o_orderkey FROM customer_orders_lineitem AS cust;

È possibile utilizzare le notazioni con punti e parentesi in tutti i tipi di query, ad esempio filtraggio,
join e aggregazione. È possibile utilizzare queste notazioni in una query in cui ci sono normalmente
riferimenti di colonna.

Example

Nell'esempio seguente viene utilizzata un'istruzione SELECT che filtra i risultati.

Navigazione 383

AWS Clean Rooms Documentazione di riferimento a SQL

SELECT count(*) FROM customer_orders_lineitem WHERE c_orders[0].o_orderkey IS NOT NULL;

Example

Nell'esempio seguente viene utilizzata la navigazione con parentesi e punti nelle clausole GROUP
BY e ORDER BY.

SELECT c_orders[0].o_orderdate,
 c_orders[0].o_orderstatus,
 count(*)
FROM customer_orders_lineitem
WHERE c_orders[0].o_orderkey IS NOT NULL
GROUP BY c_orders[0].o_orderstatus,
 c_orders[0].o_orderdate
ORDER BY c_orders[0].o_orderdate;

Annullamento di query

Per annullare le interrogazioni, AWS Clean Rooms abilita l'iterazione sugli array. Lo fa navigando
nell'array utilizzando la clausola FROM di una query.

Example

Utilizzando l'esempio precedente, nell'esempio seguente vengono eseguite interazioni sui valori
dell'attributo per c_orders.

SELECT o FROM customer_orders_lineitem c, c.c_orders o;

La sintassi di annullamento nidificazione è un'estensione della clausola FROM. In SQL standard, la
clausola FROM x (AS) y significa che in y vengono eseguite iterazioni su ogni tupla in relazione
x. In questo caso, x si riferisce a una relazione e y si riferisce a un alias per relazione x. Allo stesso
modo, la sintassi di unnesting che utilizza l'elemento della clausola FROM x (AS) y significa che y
esegue un'iterazione su ogni valore nell'espressione dell'array. x In questo caso, x è un'espressione
di matrice ed y è un alias per. x

Per la navigazione regolare, con l'operando sinistro si può anche utilizzare la notazione con punti e
parentesi.

Annullamento di query 384

AWS Clean Rooms Documentazione di riferimento a SQL

Example

Nell'esempio precedente:

• customer_orders_lineitem cè l'iterazione sulla tabella di customer_order_lineitem
base

• c.c_orders oè l'iterazione su c.c_orders array

Per eseguire iterazioni sull'attributo o_lineitems, che è un array all'interno di un array, si
aggiungono più clausole.

SELECT o, l FROM customer_orders_lineitem c, c.c_orders o, o.o_lineitems l;

AWS Clean Rooms supporta anche un indice di matrice quando si esegue l'iterazione sull'array
utilizzando il AT parola chiave. La clausola esegue un'x AS y AT ziterazione sull'array x e genera il
campoz, che è l'indice dell'array.

Example

Nell'esempio seguente viene illustrato il funzionamento di un indice di array:

SELECT c_name,
 orders.o_orderkey AS orderkey,
 index AS orderkey_index
FROM customer_orders_lineitem c, c.c_orders AS orders AT index
ORDER BY orderkey_index;
c_name | orderkey | orderkey_index
-------------------+----------+----------------
Customer#000008251 | 3020007 | 0
Customer#000009452 | 4043971 | 0 (2 rows)

Example

Nell'esempio seguente sono eseguite iterazioni su un array scalare.

CREATE TABLE bar AS SELECT json_parse('{"scalar_array": [1, 2.3, 45000000]}') AS data;

SELECT index, element FROM bar AS b, b.data.scalar_array AS element AT index;

Annullamento di query 385

AWS Clean Rooms Documentazione di riferimento a SQL

 index | element
-------+----------
 0 | 1
1 | 2.3
2 | 45000000
(3 rows)

Example

Nell'esempio seguente viene eseguita un'iterazione su un array di più livelli. L'esempio utilizza
più clausole unnest per eseguire l'iterazione negli array più interni. Il f.multi_level_array
AS l'array ripete. multi_level_array L'array AS elemento è l'iterazione sugli array all'interno.
multi_level_array

CREATE TABLE foo AS SELECT json_parse('[[1.1, 1.2], [2.1, 2.2], [3.1, 3.2]]') AS
 multi_level_array;

SELECT array, element FROM foo AS f, f.multi_level_array AS array, array AS element;

 array | element
-----------+---------
 [1.1,1.2] | 1.1
 [1.1,1.2] | 1.2
 [2.1,2.2] | 2.1
 [2.1,2.2] | 2.2
 [3.1,3.2] | 3.1
 [3.1,3.2] | 3.2
(6 rows)

Semantica permissiva

Per impostazione predefinita, le operazioni di navigazione sui valori di dati annidati restituiscono null
anziché restituire un errore quando la navigazione non è valida. La navigazione tra oggetti non è
valida se il valore dei dati nidificati non è un oggetto o se il valore dei dati nidificati è un oggetto ma
non contiene il nome dell'attributo utilizzato nella query.

Example

Ad esempio, la seguente query accede a un nome di attributo non valido nella colonna di dati
nidificati: c_orders

Semantica permissiva 386

AWS Clean Rooms Documentazione di riferimento a SQL

SELECT c.c_orders.something FROM customer_orders_lineitem c;

La navigazione tra matrici restituisce null se il valore dei dati annidati non è un array o l'indice
dell'array non è compreso nei limiti.

Example

La seguente query restituisce null perché c_orders[1][1] è fuori dai limiti.

SELECT c.c_orders[1][1] FROM customer_orders_lineitem c;

Tipi di introspezione

Le colonne con tipi di dati annidati supportano funzioni di ispezione che restituiscono il tipo e altri tipi
di informazioni relative al valore. AWS Clean Rooms supporta le seguenti funzioni booleane per le
colonne di dati annidate:

• DECIMAL_PRECISION

• DECIMAL_SCALE

• IS_ARRAY

• IS_BIGINT

• IS_CHAR

• IS_DECIMAL

• IS_FLOAT

• IS_INTEGER

• IS_OBJECT

• IS_SCALARE

• IS_SMALLINT

• IS_VARCHAR

• JSON_TYPEOF

Tutte queste funzioni restituiscono false se il valore di input è null. IS_SCALAR, IS_OBJECT e
IS_ARRAY si escludono a vicenda e coprono tutti i valori possibili ad eccezione di null. Per dedurre

Tipi di introspezione 387

AWS Clean Rooms Documentazione di riferimento a SQL

i tipi corrispondenti ai dati, AWS Clean Rooms utilizza la funzione JSON_TYPEOF che restituisce il
tipo (il livello più alto del) valore dei dati annidati, come mostrato nell'esempio seguente:

SELECT JSON_TYPEOF(r_nations) FROM region_nations;
 json_typeof

array
(1 row)

SELECT JSON_TYPEOF(r_nations[0].n_nationkey) FROM region_nations;
 json_typeof

 number

Tipi di introspezione 388

AWS Clean Rooms Documentazione di riferimento a SQL

Cronologia dei documenti per AWS Clean Rooms SQL
Reference
La tabella seguente descrive le versioni della documentazione per AWS Clean Rooms SQL
Reference.

Per ricevere notifiche sugli aggiornamenti della documentazione, puoi sottoscrivere il feed RSS. Per
iscriverti agli aggiornamenti RSS, abilita un plug-in RSS nel browser in uso.

Modifica Descrizione Data

Spark SQL supporta Hints AWS Clean Rooms Spark
SQL supporta i suggerimenti
di interrogazione per ottimizza
re le prestazioni delle query e
ridurre i costi di elaborazione.

20 gennaio 2026

Spark SQL supporta CACHE
TABLE

AWS Clean Rooms Spark
SQL supporta il comando
CACHE TABLE, che consente
ai clienti di memorizzare nella
cache le tabelle esistenti
o di creare e memorizzare
nella cache nuove tabelle
dai risultati delle query per
migliorare le prestazioni delle
query.

22 ottobre 2025

Spark SQL supporta le
funzioni FIRST e LAST
Window

AWS Clean Rooms Spark
SQL supporta le seguenti
funzioni Window: FIRST e
LAST.

12 giugno 2025

Aggiornamenti della
documentazione della
funzione Spark SQL

Aggiornamento della sola
documentazione per rifletter
e accuratamente le funzioni
Spark SQL supportate. È stata

20 maggio 2025

389

https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-hints-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-cache-table.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-cache-table.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/Window_functions.html#Window_function_supported
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/Window_functions.html#Window_function_supported
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/Window_functions.html#Window_function_supported
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html

AWS Clean Rooms Documentazione di riferimento a SQL

rimossa la documentazione
per 25 funzioni non supportat
e, tra cui <=> operator,
SIMILAR TO, LISTAGG e
ARRAY_INSERT. Nomi delle
funzioni corretti da DATEADD
a DATE_ADD, DATEDIFF
a DATE_DIFF, ISNULL a
IS_NULL e ISNOTNULL
a IS_NOT_NULL. È stato
corretto un errore di battitura
negli esempi DATE_PART.

AWS Clean Rooms Spark
SQL

I clienti possono ora eseguire
query utilizzando alcune
condizioni, funzioni, comandi
e convenzioni SQL supportat
i dal motore di analisi SQL
Spark.

29 ottobre 2024

Comandi SQL e funzioni SQL:
aggiornamento

Sono stati aggiunti esempi
per la clausola JOIN,
l'operatore di set EXCEPT,
l'espressione condizion
ale CASE e le seguenti
funzioni: ANY_VALUE, NVL e
COALESCE, NULLIF, CAST,
CONVERT, CONVERT_T
IMEZONE, EXTRACT, MOD,
SIGN, CONCAT, FIRST_VAL
UE e LAST_VALUE.

28 febbraio 2024

390

https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html

AWS Clean Rooms Documentazione di riferimento a SQL

Funzioni SQL: aggiornamento AWS Clean Rooms ora
supporta le seguenti funzioni
SQL: Array, SUPER e
VARBYTE. Sono ora supportat
e le seguenti funzioni
matematiche: ACOS, ASIN,
ATAN, COT, DEXP ATAN2,
PI, POW, RADIANS e SIN.
Sono ora supportate le
seguenti funzioni JSON:
CAN_JSON_PARSE,
JSON_PARSE e JSON_SERI
ALIZE.

6 ottobre 2023

Supporto per tipi di dati
annidati

AWS Clean Rooms ora
supporta i tipi di dati annidati.

30 agosto 2023

Regole di denominazione
SQL: aggiornamento

Modifica solo della documenta
zione per chiarire i nomi delle
colonne riservate.

16 agosto 2023

Disponibilità generale AWS Clean Rooms SQL
Reference è ora disponibile a
livello generale.

31 luglio 2023

391

https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-functions-topic.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/nested-data-type.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/nested-data-type.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-ref-naming.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-ref-naming.html

AWS Clean Rooms Documentazione di riferimento a SQL

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una
traduzione e la versione originale in Inglese, quest'ultima prevarrà.

cccxcii

	AWS Clean Rooms
	Table of Contents
	Panoramica di SQL in AWS Clean Rooms
	Convenzioni del riferimento SQL
	Regole di denominazione SQL
	Nomi e colonne delle associazioni di tabelle configurate
	Parole riservate

	Supporto dei tipi di dati tramite il motore SQL
	Tipi di dati numerici
	Tipi di dati booleani
	Tipi di dati data e ora
	Tipi di dati dei caratteri
	Tipi di dati strutturati

	AWS Clean Rooms SQL Spark
	Valori letterali
	Operatore + (concatenamento)
	Sintassi
	Argomenti
	Esempio

	Tipi di dati
	Caratteri multibyte
	Tipi numerici
	Tipi Integer
	Tipo DECIMAL o NUMERIC
	Note sull'utilizzo di colonne NUMERIC o DECIMAL a 128 bit

	Tipi in virgola mobile
	Calcoli con valori numerici
	Tipi restituiti per i calcoli
	Precisione e scala di risultati DECIMAL calcolati
	Note sulle operazioni di divisione
	Condizioni di overflow
	Calcoli numerici con tipi INTEGER e DECIMAL

	Tipi di carattere
	CHAR o CHARACTER
	VARCHAR o CHARACTER VARYING
	Significato degli spazi finali

	Tipi datetime
	DATE
	TIMESTAMP_LTZ
	TIMESTAMP_NTZ
	Esempi con tipi datetime
	Esempi di data
	Esempi di orari

	Valori letterali di data, ora e timestamp
	Date:
	Volte
	Valori datetime speciali

	Valori letterali di intervallo
	Esempi

	Tipi di dati e valori letterali relativi agli intervalli
	Sintassi del tipo di dati di intervallo
	Sintassi dell’intervallo letterale
	Arguments (Argomenti)
	Aritmetica dell’intervallo
	Stili di intervallo
	Esempi di tipi di dati relativi agli intervalli
	Esempi di valori letterali relativi agli intervalli
	Esempi di valori letterali relativi agli intervalli senza sintassi dei qualificatori

	Tipo booleano
	Esempi
	Letterali booleani
	Sintassi
	Esempio

	Tipo binario
	Tipo annidato
	Tipo ARRAY
	Tipo MAP
	Tipo STRUCT
	Esempi di tipi di dati annidati

	Conversione e compatibilità dei tipi
	Compatibilità
	Regole generali di conversione e compatibilità
	Tipi di conversione implicita

	AWS Clean Rooms Comandi SQL Spark
	TABELLA CACHE
	Sintassi
	Parametri
	Esempi
	Crea e memorizza nella cache una tabella filtrata dai risultati delle query
	Memorizza i risultati delle query con istruzioni SELECT tra parentesi
	Memorizza nella cache una tabella esistente con condizioni di filtro

	Suggerimenti
	Sintassi
	Tipi di suggerimenti supportati
	Join (suggerimenti)
	TRASMISSIONE
	MERGE
	SHUFFLE_HASH
	SHUFFLE_REPLICATE_NL
	Suggerimenti per la risoluzione dei problemi in Spark SQL

	Suggerimenti per il partizionamento
	COALESCE
	RIPARTIZIONAMENTO
	RIPARTIZIONE_PER_INTERVALLO
	RIEQUILIBRARE

	Combinazione di più suggerimenti
	Considerazioni e limitazioni

	SELECT
	SELECT list
	Sintassi
	Parameters

	Clausola WITH
	Sintassi
	Parameters
	Note per l'utilizzo
	Esempi

	Clausola FROM
	Sintassi
	Parameters
	Note per l'utilizzo

	Clausola JOIN
	Sintassi
	Parameters
	Esempio
	Tipi di join
	INNER
	SINISTRA [ESTERNO]
	DESTRA [ESTERNO]
	COMPLETO [ESTERNO]
	[SINISTRA] SEMI
	CROSS JOIN
	ANTI JOIN
	NATURAL

	Clausola WHERE
	Sintassi
	condizione
	Note per l'utilizzo
	Esempio

	clausola VALUES
	Sintassi
	Parameters
	Esempio

	Clausola GROUP BY
	Sintassi
	Parametri
	Estensioni di aggregazione
	GROUPING SETS
	ROLLUP
	CUBE

	Clausola HAVING
	Sintassi
	Note per l'utilizzo
	Esempi

	Operatori su set
	Sintassi
	Parameters
	Ordine di valutazione degli operatori di definizione
	Note per l'utilizzo
	Query UNION di esempio
	Query UNION ALL di esempio
	Query INTERSECT di esempio
	Query EXCEPT di esempio

	Clausola ORDER BY
	Sintassi
	Parameters
	Note per l'utilizzo
	Esempi di ORDER BY

	Esempi di sottoquery
	Sottoquery dell'elenco SELECT
	Sottoquery della clausola WHERE
	Sottoquery della clausola WITH

	Sottoquery correlate
	Modelli di sottoquery correlate non supportate

	AWS Clean Rooms Funzioni Spark SQL
	Funzioni di aggregazione
	Funzione ANY_VALUE
	Sintassi
	Argomenti
	Valori restituiti
	Note per l'utilizzo
	Esempi

	Funzione APPROX COUNT_DISTINCT
	Sintassi
	Argomenti
	Valori restituiti
	Esempio

	Funzione APPROX PERCENTILE
	Sintassi
	Argomenti
	Valori restituiti
	Esempi

	Funzione AVG
	Sintassi
	Argomenti
	Tipi di dati
	Esempio

	Funzione BOOL_AND
	Sintassi
	Argomenti
	Esempi

	Funzione BOOL_OR
	Sintassi
	Argomenti
	Esempi

	Funzione CARDINALITY
	Sintassi
	Argomenti
	Valori restituiti
	Esempio

	Funzione COLLECT_LIST
	Sintassi
	Argomenti
	Valori restituiti
	Esempio

	Funzione COLLECT_SET
	Sintassi
	Argomenti
	Valori restituiti
	Esempio

	COUNTe funzioni COUNT DISTINCT
	Sintassi
	Argomenti
	Tipi di dati
	Esempi

	Funzione COUNT
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione MAX
	Sintassi
	Argomenti
	Tipi di dati
	Esempi

	Funzione MEDIAN
	Sintassi
	Argomenti

	Funzione MIN
	Sintassi
	Argomenti
	Tipi di dati
	Esempi

	Funzione PERCENTILE
	Sintassi
	Argomenti
	Valori restituiti
	Esempio

	Funzione SKEWNESS
	Sintassi
	Argomenti
	Valori restituiti
	Esempi

	Funzioni STDDEV_SAMP e STDDEV_POP
	Sintassi
	Note per l'utilizzo
	Esempi

	SUMe funzioni SUM DISTINCT
	Sintassi
	Argomenti
	Esempi

	Funzioni VAR_SAMP e VAR_POP
	Sintassi
	Note per l'utilizzo
	Esempi

	Funzioni di array
	Funzione ARRAY
	Sintassi
	Argomento
	Tipo restituito
	Esempio

	Funzione ARRAY_CONTAINS
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione ARRAY_DISTINCT
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione ARRAY_EXCEPT
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione ARRAY_INTERSECT
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione ARRAY_JOIN
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione ARRAY_REMOVE
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione ARRAY_UNION
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	Funzione EXPLODE
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione FLATTEN
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	Espressioni condizionali
	Espressione condizionale CASE
	Sintassi
	Argomenti
	Esempi

	COALESCEespressione
	Sintassi
	Esempi

	espressione MASSIMA e MINIMA
	Sintassi
	Parametri
	Valori restituiti
	Esempio

	Espressione IF
	Sintassi
	Argomenti
	Valori restituiti
	Esempio

	espressione IS_NULL
	Sintassi
	Argomenti
	Valori restituiti
	Esempi

	espressione IS_NOT_NULL
	Sintassi
	Argomenti
	Valori restituiti
	Esempi

	Funzioni NVL e COALESCE
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	NVL2 funzione
	Sintassi
	Argomenti
	Tipo restituito
	Note per l'utilizzo
	Esempio

	Funzione NULLIF
	Sintassi
	Argomenti
	Esempi

	Funzioni costruttore
	funzione di costruzione MAP
	Sintassi
	Argomenti
	Valori restituiti
	Esempi

	funzione di costruzione NAMED_STRUCT
	Sintassi
	Argomenti
	Valori restituiti
	Esempi

	funzione di costruzione STRUCT
	Sintassi
	Argomenti
	Valori restituiti
	Esempi

	Funzioni di formattazione del tipo di dati
	BASE64 funzione
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempio

	Funzione CAST
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione DECODE
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempio

	Funzione ENCODE
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempio

	Funzione HEX
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempio

	Funzione STR_TO_MAP
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempio

	TO_CHAR
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione TO_DATE
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	TO_NUMBER
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	UNBASE64 funzione
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempio

	Funzione UNHEX
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempio

	Stringhe di formato datetime
	Stringhe di formato numerico

	Funzioni di data e ora
	Funzione ADD_MONTHS
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempio

	Funzione CONVERT_TIMEZONE
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione CURRENT_DATE
	Sintassi
	Tipo restituito
	Esempio

	Funzione CURRENT_TIMESTAMP
	Sintassi
	Tipo restituito
	Esempio

	Funzione DATE_ADD
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi
	Note per l'utilizzo

	Funzione DATE_DIFF
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi con una colonna DATE
	Esempi con una colonna TIME
	Esempi con una colonna TIMETZ

	Funzione DATE_PART
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempio

	Funzione DATE_TRUNC
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione DAY
	Sintassi
	Arguments (Argomenti)
	Valori restituiti
	Esempi

	Funzione DAYOFMONTH
	Sintassi
	Arguments (Argomenti)
	Valori restituiti
	Esempio

	Funzione DAYOFWEEK
	Sintassi
	Arguments (Argomenti)
	Valori restituiti
	Esempi

	funzione DAYOFYEAR
	Sintassi
	Arguments (Argomenti)
	Valori restituiti
	Esempi

	Funzione EXTRACT
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi con TIME

	funzione FROM_UTC_TIMESTAMP
	Sintassi
	Arguments (Argomenti)
	Valori restituiti
	Esempio

	Funzione HOUR
	Sintassi
	Arguments (Argomenti)
	Valori restituiti
	Esempio

	Funzione MINUTE
	Sintassi
	Arguments (Argomenti)
	Valori restituiti
	Esempio

	Funzione MONTH
	Sintassi
	Arguments (Argomenti)
	Valori restituiti
	Esempio

	Funzione SECOND
	Sintassi
	Arguments (Argomenti)
	Valori restituiti
	Esempio

	Funzione TIMESTAMP
	Sintassi
	Arguments (Argomenti)
	Valori restituiti
	Esempio

	Funzione TO_TIMESTAMP
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	funzione YEAR
	Sintassi
	Arguments (Argomenti)
	Valori restituiti
	Esempio

	Parti di data per funzioni di data e timestamp
	Variazioni nei risultati con secondi, millisecondi e microsecondi
	Note su CENTURY, EPOCH, DECADE e MIL

	Funzioni di crittografia e decrittografia
	Funzione AES_ENCRYPT
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione AES_DECRYPT
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzioni hash
	MD5 funzione
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione SHA
	SHA1 funzione
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	SHA2 funzione
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	HASH64 funzione xx
	Sintassi
	Argomenti
	Valori restituiti
	Esempio

	Funzioni Hyperloglog
	funzione HLL_SKETCH_AGG
	Sintassi
	Argomento
	Tipo restituito
	Esempi

	Funzione HLL_SKETCH_ESTIMATE
	Sintassi
	Argomento
	Tipo restituito
	Esempi

	Funzione HLL_UNION
	Sintassi
	Argomento
	Tipo restituito
	Esempi

	Funzione HLL_UNION_AGG
	Sintassi
	Argomento
	Tipo restituito
	Esempi

	Funzioni JSON
	Funzione GET_JSON_OBJECT
	Sintassi
	Argomenti
	Valori restituiti
	Esempio

	Funzione TO_JSON
	Sintassi
	Argomenti
	Valori restituiti
	Esempi

	Funzioni matematiche
	Simboli degli operatori matematici
	Operatori supportati
	Esempi

	Funzione ABS
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione ACOS
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione ASIN
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione ATAN
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	ATAN2 funzione
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione CBRT
	Sintassi
	Argomento
	Tipo restituito
	Esempi

	Funzione CEILING (oppure CEIL)
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempio

	Funzione COS
	Sintassi
	Argomento
	Tipo restituito
	Esempi

	Funzione COT
	Sintassi
	Argomento
	Tipo restituito
	Esempi

	Funzione DEGREES
	Sintassi
	Argomento
	Tipo restituito
	Esempio

	Funzione DIV
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione EXP
	Sintassi
	Argomento
	Tipo restituito
	Esempio

	Funzione FLOOR
	Sintassi
	Argomento
	Tipo restituito
	Esempio

	Funzione LN
	Sintassi
	Argomento
	Tipo restituito
	Esempio

	Funzione LOG
	Sintassi
	Argomento
	Tipo restituito
	Esempio

	Funzione MOD
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Note per l'utilizzo
	Esempi

	Funzione PI
	Sintassi
	Tipo restituito
	Esempi

	Funzione POWER
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempio

	Funzioni RADIANS
	Sintassi
	Argomento
	Tipo restituito
	Esempio

	Funzione RAND
	Sintassi
	Tipo restituito
	Esempio

	Funzione RANDOM
	Sintassi
	Tipo restituito
	Esempi

	Funzione ROUND
	Sintassi
	Argomento
	Tipo restituito
	Esempi

	Funzione SIGN
	Sintassi
	Argomento
	Tipo restituito
	Esempi

	Funzione SIN
	Sintassi
	Argomento
	Tipo restituito
	Esempio

	Funzione SQRT
	Sintassi
	Argomento
	Tipo restituito
	Esempi

	Funzione TRUNC
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzioni scalari
	Funzione SIZE
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	Funzioni stringa
	|| (Concatenamento) Operatore
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	Funzione BTRIM
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione CONCAT
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione FORMAT_STRING
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	Funzioni LEFT e RIGHT
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	Funzione LENGTH
	Funzione LOWER
	Sintassi
	Argomento
	Tipo restituito
	Esempi

	Funzioni LPAD e RPAD
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione LTRIM
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione POSITION
	Sintassi
	Argomenti
	Tipo restituito
	Note per l'utilizzo
	Esempi

	Funzione REGEXP_COUNT
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	Funzione REGEXP_INSTR
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	Funzione REGEXP_REPLACE
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	Funzione REGEXP_SUBSTR
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	Funzione REPEAT
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione REPLACE
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione REVERSE
	Sintassi
	Argomento
	Tipo restituito
	Esempi

	Funzione RTRIM
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	Funzione SPLIT
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	Funzione SPLIT_PART
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione SUBSTRING
	Sintassi
	Argomenti
	Tipo restituito
	Note di utilizzo per le stringhe di caratteri
	Esempi

	Funzione TRANSLATE
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione TRIM
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	Funzione UPPER
	Sintassi
	Argomenti
	Tipo restituito
	Esempi

	Funzione UUID
	Sintassi
	Argomenti
	Tipo restituito
	Esempio

	Funzioni relative alla privacy
	funzione consent_gpp_v1_decode
	Sintassi
	Argomenti
	Valori restituiti
	Esempio

	funzione consent_tcf_v2_decode
	Sintassi
	Argomenti
	Valori restituiti
	Esempio

	Funzioni finestra
	Riepilogo della sintassi della funzione finestra
	Arguments (Argomenti)

	Ordinamento univoco dei dati per le funzioni finestra
	Funzioni supportate
	Tabella di esempio per gli esempi della funzione finestra
	Funzione finestra CUME_DIST
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione finestra DENSE_RANK
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione FIRST window
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione finestra FIRST_VALUE
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione finestra LAG
	Sintassi
	Arguments (Argomenti)
	Esempi

	funzione LAST window
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione finestra LAST_VALUE
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione finestra LEAD
	Sintassi
	Arguments (Argomenti)
	Esempi

	Funzione finestra PERCENT_RANK
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione finestra RANK
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	Funzione finestra ROW_NUMBER
	Sintassi
	Arguments (Argomenti)
	Tipo restituito
	Esempi

	AWS Clean Rooms Condizioni Spark SQL
	Operatori di confronto
	Esempi
	Esempi con una colonna TIME
	Esempi con una colonna TIMETZ

	Condizioni logiche
	Sintassi
	Esempi

	Condizioni di corrispondenza di modelli
	LIKE
	Sintassi
	Argomenti
	Esempi

	RLIKE
	Sintassi
	Argomenti
	Esempi

	Condizione di intervallo BETWEEN
	Sintassi
	Esempi

	Condizione Null
	Sintassi
	Argomenti
	Esempio

	Condizione EXISTS
	Sintassi
	Argomenti
	Esempio

	Condizione IN
	Sintassi
	Argomenti
	Esempi
	Ottimizzazione per grandi elenchi IN

	Interrogazione di dati annidati
	Navigazione
	Annullamento di query
	Semantica permissiva
	Tipi di introspezione

	Cronologia dei documenti per AWS Clean Rooms SQL Reference
	

