Parametri e inferenza Pixtral Large (25.02) - Amazon Bedrock

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Parametri e inferenza Pixtral Large (25.02)

Pixtral Large 25.02 è un modello multimodale con 124 miliardi di parametri che combina una comprensione delle immagini all’avanguardia con potenti capacità di elaborazione del testo. AWS è il primo provider di servizi cloud a fornire Pixtral Large (25.02) come modello serverless completamente gestito. Questo modello offre prestazioni all’avanguardia nell’analisi dei documenti, nell’interpretazione dei grafici e nella comprensione delle immagini naturali, mantenendo al contempo le avanzate funzionalità di elaborazione del testo di Mistral Large 2.

Con una finestra contestuale da 128K, Pixtral Large 25.02 raggiunge le migliori prestazioni della categoria nei benchmark chiave, tra cui MathVista, DocVQA e VQAv2. Il modello offre un supporto multilingue completo in molte lingue ed è stato addestrato su oltre 80 linguaggi di programmazione. Le funzionalità chiave includono ragionamento matematico avanzato, chiamata di funzioni native, output JSON e solida aderenza al contesto per applicazioni RAG.

L’API di completamento della chat Mistral AI consente di creare applicazioni conversazionali. Puoi anche utilizzare l’API Converse di Amazon Bedrock con questo modello. Puoi utilizzare gli strumenti per effettuare chiamate di funzioni.

Suggerimento

Puoi utilizzare l’API di completamento della chat Mistral AI con le operazioni di inferenza di base (InvokeModel o InvokeModelWithResponseStream). Tuttavia, ti consigliamo di utilizzare l’API Converse per implementare i messaggi nell’applicazione. L’API Converse fornisce un set unificato di parametri che funzionano su tutti i modelli che supportano i messaggi. Per ulteriori informazioni, consulta Avvio di una conversazione con le operazioni dell’API Converse.

Il modello Mistral AI Pixtral Large è disponibile con la licenza Mistral Research. Per ulteriori informazioni sull’utilizzo dei modelli Mistral AI, consulta la Documentazione di Mistral AI.

Modelli supportati

Puoi utilizzare i seguenti modelli Mistral AI con gli esempi di codice in questa pagina.

  • Pixtral Large (25.02)

È necessario l'ID modello per il modello che desideri utilizzare. Per ottenere l’ID modello, consulta Modelli di fondazione supportati in Amazon Bedrock.

Esempi di richiesta e risposta

Request

Esempio di modello di invocazione Pixtral Large (25.02).

import boto3 import json import base64 input_image = "image.png" with open(input_image, "rb") as f: image = f.read() image_bytes = base64.b64encode(image).decode("utf-8") bedrock = boto3.client( service_name='bedrock-runtime', region_name="us-east-1") request_body = { "messages" : [ { "role" : "user", "content" : [ { "text": "Describe this picture:", "type": "text" }, { "type" : "image_url", "image_url" : { "url" : f"data:image/png;base64,{image_bytes}" } } ] } ], "max_tokens" : 10 } response = bedrock.invoke_model( modelId='us.mistral.pixtral-large-2502-v1:0', body=json.dumps(request_body) ) print(json.dumps(json.loads(response.get('body').read()), indent=4))
Converse

Esempio Pixtral Large (25.02) Converse.

import boto3 import json import base64 input_image = "image.png" with open(input_image, "rb") as f: image_bytes = f.read() bedrock = boto3.client( service_name='bedrock-runtime', region_name="us-east-1") messages =[ { "role" : "user", "content" : [ { "text": "Describe this picture:" }, { "image": { "format": "png", "source": { "bytes": image_bytes } } } ] } ] response = bedrock.converse( modelId='mistral.pixtral-large-2502-v1:0', messages=messages ) print(json.dumps(response.get('output'), indent=4))
invoke_model_with_response_stream

Esempio invoke_model_with_response_stream Pixtral Large (25.02).

import boto3 import json import base64 input_image = "image.png" with open(input_image, "rb") as f: image = f.read() image_bytes = base64.b64encode(image).decode("utf-8") bedrock = boto3.client( service_name='bedrock-runtime', region_name="us-east-1") request_body = { "messages" : [ { "role" : "user", "content" : [ { "text": "Describe this picture:", "type": "text" }, { "type" : "image_url", "image_url" : { "url" : f"data:image/png;base64,{image_bytes}" } } ] } ], "max_tokens" : 10 } response = bedrock.invoke_model_with_response_stream( modelId='us.mistral.pixtral-large-2502-v1:0', body=json.dumps(request_body) ) stream = response.get('body') if stream: for event in stream: chunk=event.get('chunk') if chunk: chunk_obj=json.loads(chunk.get('bytes').decode()) print(chunk_obj)
converse_stream

Esempio Pixtral Large (25.02) Converse.

import boto3 import json import base64 input_image = "image.png" with open(input_image, "rb") as f: image_bytes = f.read() bedrock = boto3.client( service_name='bedrock-runtime', region_name="us-east-1") messages =[ { "role" : "user", "content" : [ { "text": "Describe this picture:" }, { "image": { "format": "png", "source": { "bytes": image_bytes } } } ] } ] response = bedrock.converse_stream( modelId='mistral.pixtral-large-2502-v1:0', messages=messages ) stream = response.get('stream') if stream: for event in stream: if 'messageStart' in event: print(f"\nRole: {event['messageStart']['role']}") if 'contentBlockDelta' in event: print(event['contentBlockDelta']['delta']['text'], end="") if 'messageStop' in event: print(f"\nStop reason: {event['messageStop']['stopReason']}") if 'metadata' in event: metadata = event['metadata'] if 'usage' in metadata: print("\nToken usage ... ") print(f"Input tokens: {metadata['usage']['inputTokens']}") print( f":Output tokens: {metadata['usage']['outputTokens']}") print(f":Total tokens: {metadata['usage']['totalTokens']}") if 'metrics' in event['metadata']: print( f"Latency: {metadata['metrics']['latencyMs']} milliseconds")
JSON Output

Esempio di output JSON Pixtral Large (25.02).

import boto3 import json bedrock = session.client('bedrock-runtime', 'us-west-2') mistral_params = { "body": json.dumps({ "messages": [{"role": "user", "content": "What is the best French meal? Return the name and the ingredients in short JSON object."}] }), "modelId":"us.mistral.pixtral-large-2502-v1:0", } response = bedrock.invoke_model(**mistral_params) body = response.get('body').read().decode('utf-8') print(json.loads(body))
Tooling

Esempio di strumenti Pixtral Large (25.02).

data = { 'transaction_id': ['T1001', 'T1002', 'T1003', 'T1004', 'T1005'], 'customer_id': ['C001', 'C002', 'C003', 'C002', 'C001'], 'payment_amount': [125.50, 89.99, 120.00, 54.30, 210.20], 'payment_date': ['2021-10-05', '2021-10-06', '2021-10-07', '2021-10-05', '2021-10-08'], 'payment_status': ['Paid', 'Unpaid', 'Paid', 'Paid', 'Pending'] } # Create DataFrame df = pd.DataFrame(data) def retrieve_payment_status(df: data, transaction_id: str) -> str: if transaction_id in df.transaction_id.values: return json.dumps({'status': df[df.transaction_id == transaction_id].payment_status.item()}) return json.dumps({'error': 'transaction id not found.'}) def retrieve_payment_date(df: data, transaction_id: str) -> str: if transaction_id in df.transaction_id.values: return json.dumps({'date': df[df.transaction_id == transaction_id].payment_date.item()}) return json.dumps({'error': 'transaction id not found.'}) tools = [ { "type": "function", "function": { "name": "retrieve_payment_status", "description": "Get payment status of a transaction", "parameters": { "type": "object", "properties": { "transaction_id": { "type": "string", "description": "The transaction id.", } }, "required": ["transaction_id"], }, }, }, { "type": "function", "function": { "name": "retrieve_payment_date", "description": "Get payment date of a transaction", "parameters": { "type": "object", "properties": { "transaction_id": { "type": "string", "description": "The transaction id.", } }, "required": ["transaction_id"], }, }, } ] names_to_functions = { 'retrieve_payment_status': functools.partial(retrieve_payment_status, df=df), 'retrieve_payment_date': functools.partial(retrieve_payment_date, df=df) } test_tool_input = "What's the status of my transaction T1001?" message = [{"role": "user", "content": test_tool_input}] def invoke_bedrock_mistral_tool(): mistral_params = { "body": json.dumps({ "messages": message, "tools": tools }), "modelId":"us.mistral.pixtral-large-2502-v1:0", } response = bedrock.invoke_model(**mistral_params) body = response.get('body').read().decode('utf-8') body = json.loads(body) choices = body.get("choices") message.append(choices[0].get("message")) tool_call = choices[0].get("message").get("tool_calls")[0] function_name = tool_call.get("function").get("name") function_params = json.loads(tool_call.get("function").get("arguments")) print("\nfunction_name: ", function_name, "\nfunction_params: ", function_params) function_result = names_to_functions[function_name](**function_params) message.append({"role": "tool", "content": function_result, "tool_call_id":tool_call.get("id")}) new_mistral_params = { "body": json.dumps({ "messages": message, "tools": tools }), "modelId":"us.mistral.pixtral-large-2502-v1:0", } response = bedrock.invoke_model(**new_mistral_params) body = response.get('body').read().decode('utf-8') body = json.loads(body) print(body) invoke_bedrock_mistral_tool()