
User Guide

EC2 Image Builder

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

EC2 Image Builder User Guide

EC2 Image Builder: User Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

EC2 Image Builder User Guide

Table of Contents

What is Image Builder? ... 1
Features of Image Builder .. 2
Supported operating systems .. 3
Supported image formats .. 4
Default quotas ... 4
AWS Regions and Endpoints .. 4
Concepts ... 4
Pricing ... 8
Related AWS services ... 8
How Image Builder works ... 8

AMI elements ... 9
Component management ... 10
Resources created ... 11
Distribution ... 12
Sharing Resources ... 12
Compliance ... 12

Semantic versioning .. 13
Get set up .. 14

Image Builder service-linked role ... 14
Configuration requirements ... 14
Container repository for container image pipelines ... 15
Dedicated host for macOS images ... 16
IAM prerequisites .. 16
Systems Manager Agent prerequisites .. 17

Image Builder tutorials ... 19
Build your first image ... 19
Create a custom component with input parameters .. 19
Use Systems Manager parameters with Image Builder .. 20
Pipeline wizard: Create AMI ... 20

Step 1: Specify pipeline details ... 20
Step 2: Choose recipe .. 21
Step 3: Define infrastructure configuration - optional ... 24
Step 4: Define distribution settings - optional ... 24
Step 5: Review ... 25

iii

EC2 Image Builder User Guide

Step 6: Clean up ... 25
Pipeline wizard: Create container image ... 27

Step 1: Specify pipeline details ... 27
Step 2: Choose recipe .. 28
Step 3: Define infrastructure configuration - optional ... 32
Step 4: Define distribution settings - optional ... 32
Step 5: Review ... 32
Step 6: Clean up ... 33

Custom component with parameters .. 35
Use parameters in your YAML component document ... 35
Set component parameters in an Image Builder recipe from the console 40

Use a base image parameter in your recipe ... 40
Step 1: Find or create a Parameter Store parameter .. 41
Step 2: Configure IAM permissions ... 42
Step 3: Create an Image Recipe that uses the parameter .. 43

Components ... 44
List and view components ... 46

List Image Builder components ... 46
List component build versions from the AWS CLI ... 49
Get component details from the AWS CLI .. 49
Get component policy details from the AWS CLI .. 50

Use AWS Marketplace components .. 50
Discover AWS Marketplace components .. 51
Subscribe to AWS Marketplace components ... 52
Use AWS Marketplace components in a recipe .. 53

Use managed components ... 53
Distributor package Windows application install ... 54
CIS hardening .. 59
STIG hardening components .. 59

Develop custom components .. 99
Create a YAML component document .. 99
Create custom components with Image Builder .. 103

AWSTOE component manager application .. 113
AWSTOE downloads ... 114
Supported Regions ... 116
Command reference ... 118

iv

EC2 Image Builder User Guide

Manual set up ... 124
Use the component document framework ... 137
Action modules ... 189
Configure input ... 298

Image resources ... 303
List images and build versions .. 303

List images ... 304
List images waiting for action ... 309
List image build versions .. 311

View image resource details .. 314
View image details in the Image Builder console .. 315
Get image policy details from the AWS CLI ... 322

Create custom images with Image Builder ... 322
Cancel image creation from the AWS CLI ... 325

Import and export VM images .. 325
Import a VM into Image Builder ... 326
Distribute VM disks from your image build from the AWS CLI ... 330

Import ISO disk images .. 331
Supported operating systems for ISO disk image import ... 331
Prerequisites .. 331
Import an ISO disk image into Image Builder .. 332

Manage security findings ... 336
Configure security scans ... 337
Manage security findings .. 339

Clean up Image Builder resources .. 341
Manage image lifecycle ... 342

Prerequisites .. 343
Create an IAM role for Image Builder lifecycle management .. 344
Create an IAM role for Image Builder cross-account lifecycle management 345

List lifecycle policies .. 347
View lifecycle policies ... 349

View lifecycle policy details in the Image Builder console .. 350
Create lifecycle policies .. 352

Create lifecycle policies (AMI image) .. 352
Create lifecycle policies (container image) .. 355

How lifecycle rules work .. 357

v

EC2 Image Builder User Guide

AMI lifecycle exclusion rules .. 359
View lifecycle management rule details .. 360

Configure custom images ... 361
Recipes .. 361

List and view image recipes ... 362
List and view container recipes ... 364
Create a new version of an image recipe .. 366
Create a new version of a container recipe .. 379
Clean up resources ... 388

Infrastructure configurations ... 388
List and view infrastructure configurations .. 390
Create an infrastructure configuration .. 391
Update an infrastructure configuration ... 395
AWS PrivateLink VPC endpoints ... 398

Distribution settings .. 403
List and view distribution configurations .. 405
Create and update AMI distribution ... 406
Create and update container image distribution ... 419
Set up cross-account AMI distribution ... 423
Specify an AMI launch template ... 431

Share resources .. 435
Resource owners .. 436

Prerequisites for sharing Image Builder resources .. 436
Resource consumers .. 437
Create a resource share .. 437

Option 1: Create a RAM resource share .. 437
Option 2: Apply a resource policy and promote to an existing resource share 438

Unshare a resource .. 440
Tag resources ... 442

Tag a resource from the AWS CLI .. 442
Untag a resource from the AWS CLI .. 443
List all of the tags for a specific resource from the AWS CLI ... 443

Delete resources .. 445
Console: Delete resources .. 445
Delete resources (AWS CLI) .. 447

Image workflows ... 449

vi

EC2 Image Builder User Guide

Workflow framework: Stages .. 449
Service access ... 450
Use managed workflows .. 450
List image workflows .. 451
Create an image workflow ... 454
Create a YAML workflow document .. 457

Structure of a YAML workflow document ... 457
Step actions ... 469
Dynamic variables ... 486
Conditional statements ... 491

Manage pipelines ... 496
List and view pipelines ... 497

List image pipelines from the AWS CLI ... 497
Get image pipeline details from the AWS CLI .. 497

Create and update pipelines (AMI) ... 497
Create AMI pipeline from the AWS CLI .. 498
Update pipeline from the console .. 500
Update pipeline from the AWS CLI .. 504

Create and update pipelines (container) ... 505
Create pipeline from the AWS CLI .. 506
Update pipeline from the console .. 508
Update pipeline from the AWS CLI .. 511

Configure pipeline workflows ... 513
Define test groups for test workflows ... 513
Set workflow parameters in an Image Builder pipeline from the console 514
Specify the IAM service role that Image Builder uses to run workflow actions 515

Run pipelines .. 515
Use cron expressions ... 516

Supported values for cron expressions in Image Builder ... 516
Examples of cron expressions in Image Builder ... 519
Rate expressions ... 521

Use EventBridge rules ... 521
EventBridge terms .. 522
View EventBridge rules for your Image Builder pipeline .. 523
Use EventBridge rules to schedule a pipeline build .. 524

Integrate products and services ... 526

vii

EC2 Image Builder User Guide

Amazon EventBridge ... 529
Event messages that Image Builder sends .. 530

Amazon Inspector .. 532
AWS Marketplace ... 533

AWS Marketplace subscriptions in Image Builder .. 534
Discover AWS Marketplace image products from the Image Builder console 535
Use an AWS Marketplace image product in Image Builder recipes .. 537

Amazon Simple Notification Service ... 538
Encrypted SNS Topics .. 538
SNS message format ... 540

Compliance products ... 545
Monitor events and logs ... 547

CloudTrail logs .. 547
Image Builder information in CloudTrail ... 547

CloudWatch Logs ... 548
Security in Image Builder ... 550

Data protection .. 551
Encryption and Key Management ... 552
Data storage .. 557
Inter-network Traffic Privacy .. 558

Identity and Access Management .. 558
Audience ... 558
Authenticating with identities ... 559
How Image Builder works with IAM policies and roles ... 559
Manage data perimeters ... 570
Identity-Based Policies .. 571
Resource-Based Policies .. 574
Managed policies .. 575
Service-linked roles .. 588
Troubleshooting .. 590

Compliance validation .. 592
Resilience ... 593
Infrastructure security ... 594
Patch management ... 594
Best practices .. 596

Required post-build clean up ... 597

viii

EC2 Image Builder User Guide

Override the Linux clean up script ... 608
Troubleshoot Image Builder ... 611

Troubleshoot pipeline builds ... 611
Troubleshooting scenarios ... 613

Document history .. 618

ix

EC2 Image Builder User Guide

What is Image Builder?

EC2 Image Builder is a fully managed AWS service that helps you to automate the creation,
management, and deployment of customized, secure, and up-to-date server images. You can use
the AWS Management Console, AWS Command Line Interface, or APIs to create custom images in
your AWS account.

You own the customized images that Image Builder creates in your account. You can configure
pipelines to automate updates and system patching for the images that you own. You can also run
a stand-alone command to create an image with the configuration resources that you've defined.

The Image Builder pipeline wizard can guide you through the steps to create a custom image, as
follows:

Step 1: Specify pipeline details

• Name your pipeline and add tags.

• Define metadata and vulnerability scan settings.

• Set up a schedule for your pipeline.

Step 2: Customize your image

You can select an existing recipe or create a new one.

• Choose a base image for your customizations.

• Add to or remove software from your base image.

• Customize settings and scripts with build components.

• Select test components to run.

Step 3: Define your workflow

An image workflow defines the sequence of steps that Image Builder performs during the build
and test stages of the image creation process. This is part of the overall Image Builder workflow
framework.

Step 1: Specify pipeline details 1

EC2 Image Builder User Guide

Step 4: Configure build infrastructure

• Select an IAM role to associate with the instance profile for instances that Image Builder
launches during the image creation process.

• Select one or more instance types that can be applied at launch.

• Select an Amazon Simple Notification Service (SNS) Topic to receive notifications from Image
Builder.

• Specify VPC, subnet, and security groups that apply for the image creation process.

• Select troubleshooting settings such as where Image Builder writes logs, and whether to
terminate the build instance on failure (default) or keep it running for further troubleshooting.

Step 5: Define image distribution

• Select AWS Regions where Image Builder distributes your Amazon Machine Image (AMI) or
container image.

• If your Image Builder pipeline creates an AMI, Image Builder also supports the following
configuration:

• Select a KMS key to use for encryption.

• Configure AMI sharing across AWS accounts and Organizations.

• Associate a License Manager self-managed license with your distributed image.

• Configure a launch template for your image.

Features of Image Builder

EC2 Image Builder provides the following features:

Increase productivity and reduce operations for building compliant and up-to-date images

Image Builder reduces the amount of work involved in creating and managing images at scale by
automating your build pipelines. You can automate your builds by providing your build execution
schedule preference. Automation reduces the operational cost of maintaining your software with
the latest operating system patches.

Increase service uptime

Step 4: Configure build infrastructure 2

EC2 Image Builder User Guide

Image Builder provides access to test components that you can use to test your images before
deployment. You can also create custom test components with AWS Task Orchestrator and
Executor (AWSTOE), and use those. Image Builder distributes your image only if all of the
configured tests have succeeded.

Raise the security bar for deployments

Image Builder allows you to create images that remove unnecessary exposure to component
security vulnerabilities. You can apply AWS security settings to create secure, out-of-the-box
images that meet industry and internal security criteria. Image Builder also provides collections of
settings for companies in regulated industries. You can use these settings to help you quickly and
easily build compliant images for STIG standards. For a complete list of STIG components available
through Image Builder, see Amazon managed STIG hardening components for Image Builder.

Centralized enforcement and lineage tracking

Using built-in integrations with AWS Organizations, Image Builder enables you to enforce policies
that restrict accounts to run instances only from approved AMIs.

Simplified sharing of resources across AWS accounts

EC2 Image Builder integrates with AWS Resource Access Manager (AWS RAM) to allow you to
share certain resources with any AWS account or through AWS Organizations. EC2 Image Builder
resources that can be shared are:

• Components

• Images

• Image recipes

• Container recipes

For more information, see Share Image Builder resources with AWS RAM.

Supported operating systems

Image Builder supports the following operating system versions:

Operating system/distribution Supported versions

Amazon Linux 2 and 2023

Supported operating systems 3

EC2 Image Builder User Guide

Operating system/distribution Supported versions

CentOS 7 and 8

CentOS Stream 8

macOS 12.x (Monterey), 13.x (Ventura), 14.x
(Sonoma), 15.x (Sequoia)

Red Hat Enterprise Linux (RHEL) 7, 8, 9, and 10

SUSE Linux Enterprise Server (SUSE) 12 and 15

Ubuntu 18.04 LTS, 20.04 LTS, 22.04 LTS, and 24.04
LTS

Windows Server 2012 R2, 2016, 2019, 2022, and 2025

Supported image formats

For your custom images that create an Amazon Machine Image (AMI), you can choose an existing
AMI as a starting point. For Docker container images, you can choose from public images hosted on
DockerHub, existing container images in Amazon ECR, or Amazon-managed container images as
your starting point.

Default quotas

To view the default quotas for Image Builder, see Image Builder Endpoints and Quotas.

AWS Regions and Endpoints

To view the service endpoints for Image Builder, see Image Builder Endpoints and Quotas.

Concepts

The following terms and concepts are central to your understanding and use of EC2 Image Builder.

AMI

Supported image formats 4

https://docs.aws.amazon.com/general/latest/gr/imagebuilder.html
https://docs.aws.amazon.com/general/latest/gr/imagebuilder.html

EC2 Image Builder User Guide

An Amazon Machine Image (AMI) is the basic unit of deployment in Amazon EC2, and is one of
the types of images you can create with Image Builder. An AMI is a pre-configured virtual machine
image that contains the operating system (OS) and preinstalled software to deploy EC2 instances.
For more information, see Amazon Machine Images (AMI).

Image pipeline

An image pipeline provides an automation framework for building secure AMIs and container
images on AWS. The Image Builder image pipeline is associated with an image recipe or container
recipe that defines the build, validation, and test phases for an image build lifecycle.

An image pipeline can be associated with an infrastructure configuration that defines where your
image is built. You can define attributes, such as instance type, subnets, security groups, logging,
and other infrastructure-related configurations. You can also associate your image pipeline with a
distribution configuration to define how you would like to deploy your image.

Managed image

A managed image is a resource in Image Builder that consists of an AMI or container image, plus
metadata, such as version and platform. The managed image is used by Image Builder pipelines
to determine which base image to use for the build. In this guide, managed images are sometimes
referred to as "images," however, an image is not the same as an AMI.

Image recipe

An Image Builder image recipe is a document that defines the base image and the components
that are applied to the base image to produce the desired configuration for the output AMI image.
You can use an image recipe to duplicate builds. Image Builder image recipes can be shared,
branched, and edited using the console wizard, the AWS CLI, or the API. You can use image recipes
with your version control software to maintain shareable, versioned image recipes.

Container recipe

An Image Builder container recipe is a document that defines the base image and the components
that are applied to the base image to produce the desired configuration for the output container
image. You can use a container recipe to duplicate builds. You can share, branch, and edit Image
Builder image recipes by using the console wizard, the AWS CLI, or the API. You can use container
recipes with your version control software to maintain shareable, versioned container recipes.

Base image

Concepts 5

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

EC2 Image Builder User Guide

The base image is the selected image and operating system used in your image or container recipe
document, along with the components. The base image and the component definitions combined
produce the desired configuration for the output image.

Components

A component defines the sequence of steps required to either customize an instance prior to image
creation (a build component), or to test an instance that was launched from the created image (a
test component).

A component is created from a declarative, plain-text YAML or JSON document that describes
the runtime configuration for building and validating, or testing an instance that is produced by
your pipeline. Components run on the instance using a component management application. The
component management application parses the documents and runs the desired steps.

After they are created, one or more components are grouped together using an image recipe or
container recipe to define the plan for building and testing a virtual machine or container image.
You can use public components that are owned and managed by AWS, or you can create your own.
For more information about components, see How Image Builder uses the AWS Task Orchestrator
and Executor application to manage components.

Component document

A declarative, plain-text YAML or JSON document that describes configuration for a customization
you can apply to your image. The document is used to create a build or test component.

Runtime stages

EC2 Image Builder has two runtime stages: build and test. Each runtime stage has one or more
phases with configuration defined by the component document.

Configuration phases

The following list shows the phases that run during the build and test stages:

Build stage:

Build phase

An image pipeline begins with the build phase of the build stage when it runs. The base image
is downloaded, and configuration that is specified for the build phase of the component is
applied to build and launch an instance.

Concepts 6

EC2 Image Builder User Guide

Validate phase

After Image Builder launches the instance and applies all of the build phase customizations, the
validation phase begins. During this phase, Image Builder ensures that all of the customizations
work as expected, based on the configuration that the component specifies for the validate
phase. If the instance validation succeeds, Image Builder stops the instance, creates an image,
and then continues to the test stage.

Test stage:

Test phase

During this phase, Image Builder launches an instance from the image that it created after the
validation phase completed successfully. Image Builder runs test components during this phase
to verify that the instance is healthy and functions as expected.

Container host test phase

After Image Builder runs the test phase for all of the components that you selected in the
container recipe, Image Builder runs this phase for container workflows. The container host
test phase can run additional tests that validate container management and custom runtime
configurations.

Workflow

Workflows define the sequence of steps that Image Builder performs when it creates a new image.
All images have build and test workflows. Containers have an additional workflow for distribution.

Workflow types

BUILD

Covers build stage configuration for every image created.

TEST

Covers test stage configuration for every image created.

DISTRIBUTION

Covers distribution workflow for container images.

Concepts 7

EC2 Image Builder User Guide

Pricing

There is no cost to use EC2 Image Builder to create custom AMI or container images. However,
standard pricing applies for other services that are used in the process. The following list includes
the usage of some AWS services that can incur costs when you create, build, store, and distribute
your custom AMI or container images, depending on your configuration.

• Launching an EC2 instance

• Storing logs on Amazon S3

• Validating images with Amazon Inspector

• Storing Amazon EBS Snapshots for your AMIs

• Storing container images in Amazon ECR

• Pushing and pulling container images into and out of Amazon ECR

• If Systems Manager Advanced Tier is turned on, and Amazon EC2 instances run with on-premises
activation, you might be charged for resources through Systems Manager

Related AWS services

EC2 Image Builder uses other AWS services to build images, depending on your Image Builder
recipe configuration. For more information about product and service integration for your custom
images, see Integrate products and services in Image Builder.

How EC2 Image Builder works

When you use the EC2 Image Builder console to create a custom image pipeline, the system guides
you through the following steps.

1. Specify pipeline details – Enter information about your pipeline, such as a name, description,
tags, and a schedule to run automated builds. You can choose manual builds, if you prefer.

2. Choose recipe – Choose between building an AMI, or building a container image. For both
types of output images, you enter a name and version for your recipe, select a base image, and
choose components to add for building and testing. You can also choose automatic versioning,
to ensure that you always use the latest available Operating System (OS) version for your base
image. Container recipes additionally define Dockerfiles, and the target Amazon ECR repository
for your output Docker container image.

Pricing 8

EC2 Image Builder User Guide

Note

Components are the building blocks that are consumed by an image recipe or a
container recipe. For example, packages for installation, security hardening steps, and
tests. The selected base image and components make up an image recipe.

3. Define infrastructure configuration – Image Builder launches EC2 instances in your account
to customize images and run validation tests. The Infrastructure configuration settings specify
infrastructure details for the instances that will run in your AWS account during the build
process.

4. Define distribution settings – Choose the AWS Regions to distribute your image to after the
build is complete and has passed all its tests. The pipeline automatically distributes your image
to the Region where it runs the build, and you can add image distribution for other Regions.

The images that you build from your custom base image are in your AWS account. You can
configure your image pipeline to produce updated and patched versions of your image by entering
a build schedule. When the build is complete, you can receive notification through Amazon Simple
Notification Service (SNS). In addition to producing a final image, the Image Builder console
wizard generates a recipe that can be used with existing version control systems and continuous
integration/continuous deployment (CI/CD) pipelines for repeatable automation. You can share
and create new versions of your recipe.

Section contents

• AMI elements

• Component management

• Resources created

• Distribution

• Sharing Resources

• Compliance

AMI elements

An Amazon Machine Image (AMI) is a preconfigured virtual machine (VM) image that contains the
OS and software to deploy EC2 instances.

AMI elements 9

https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/sns/latest/dg/welcome.html

EC2 Image Builder User Guide

An AMI includes the following elements:

• A template for the root volume of the VM. When you launch an Amazon EC2 VM, the root device
volume contains the image to boot the instance. When instance store is used, the root device
is an instance store volume created from a template in Amazon S3. For more information, see
Amazon EC2 Root Device Volume.

• When Amazon EBS is used, the root device is an EBS volume created from an EBS snapshot.

• Launch permissions that determine the AWS accounts that can launch VMs with the AMI.

• Block device mapping data that specifies the volumes to attach to the instance after launch.

• A unique resource identifier for each Region, for each account.

• Metadata payloads such as tags, and properties, such as Region, operating system, architecture,
root device type, provider, launch permissions, storage for the root device, and signing status.

• An AMI signature for Windows images to protect against unauthorized tampering. For more
information, see Instance Identity Documents.

Component management

EC2 Image Builder uses a component management application AWS Task Orchestrator and
Executor (AWSTOE) that helps you orchestrate complex workflows, modify system configurations,
and test your systems with YAML-based script components. Because AWSTOE is a standalone
application, it does not require any additional setup. It can run on any cloud infrastructure and on
premises. To get started using AWSTOE as a standalone application, see Manual set up to develop
custom components with AWSTOE.

Image Builder uses AWSTOE to perform all on-instance activities. These include building and
validating your image before taking a snapshot, and testing the snapshot to ensure that it
functions as expected before creating the final image. For more information about how Image
Builder uses AWSTOE to manage its components, see Use components to customize your Image
Builder image. For more information about creating components with AWSTOE, see How Image
Builder uses the AWS Task Orchestrator and Executor application to manage components.

Image testing

You can use AWSTOE test components to validate your image, and ensure that it functions as
expected, prior to creating the final image.

Component management 10

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/RootDeviceStorage.html
https://docs.aws.amazon.com/ebs/latest/userguide/ebs-snapshots.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/block-device-mapping-concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/resource-ids.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-identity-documents.html

EC2 Image Builder User Guide

Generally, each test component consists of a YAML document that contains a test script, a test
binary, and test metadata. The test script contains the orchestration commands to start the test
binary, which can be written in any language supported by the OS. Exit status codes indicate
the test outcome. Test metadata describes the test and its behavior; for example, the name,
description, paths to test binary, and expected duration.

Resources created

When you create a pipeline, no resources external to Image Builder are created, unless the
following is true:

• When an image is created through the pipeline schedule

• When you choose Run Pipeline from the Actions menu in the Image Builder console

• When you run either of these commands from the API or AWS CLI: StartImagePipelineExecution
or CreateImage

The following resources are created during the image build process:

AMI image pipelines

• EC2 instance (temporary)

• Systems Manager Inventory Association (through Systems Manager State Manager if
EnhancedImageMetadata is Enabled) on the EC2 instance

• Amazon EC2 AMI

• The Amazon EBS Snapshot associated with Amazon EC2 AMI

Container image pipelines

• Docker container running on an EC2 instance (temporary)

• Systems Manager Inventory Association (through Systems Manager State Manager)
EnhancedImageMetadata is Enabled) on the EC2 instance

• Docker container image

• Dockerfile

After the image has been created, all of the temporary resources are deleted.

Resources created 11

EC2 Image Builder User Guide

Distribution

EC2 Image Builder can distribute AMIs or container images to any AWS Region. The image is copied
to each Region that you specify in the account used to build the image.

For AMI output images, you can define AMI launch permissions to control which AWS accounts are
permitted to launch EC2 instances with the created AMI. For example, you can make the image
private, public, or share with specific accounts. If you both distribute the AMI to other Regions, and
define launch permissions for other accounts, the launch permissions are propagated to the AMIs in
all of the Regions in which the AMI is distributed.

You can also use your AWS Organizations account to enforce limitations on member accounts to
launch instances only with approved and compliant AMIs. For more information, see Managing the
AWS accounts in Your Organization.

To update your distribution settings using the Image Builder console, follow the steps to Create
a new image recipe version from the console, or Create a new container recipe version with the
console.

Sharing Resources

To share components, recipes, or images with other accounts or within AWS Organizations, see
Share Image Builder resources with AWS RAM.

Compliance

For Center for Internet Security (CIS) Benchmarks, EC2 Image Builder uses Amazon Inspector
to perform assessments for exposure, vulnerabilities, and deviations from best practices and
compliance standards. For example, Image Builder assesses unintended network accessibility,
unpatched CVEs, public internet connectivity, and remote root login activation. Amazon Inspector
is offered as a test component that you can choose to add to your image recipe. For more
information about Amazon Inspector, see the Amazon Inspector User Guide. For more information,
see Center for Internet Security (CIS) Benchmarks.

Image Builder provides STIG hardening components to help you more efficiently build compliant
images for baseline STIG standards. These STIG components scan for misconfigurations and run
a remediation script. There are no additional charges for using STIG-compliant components. For
a complete list of STIG components available through Image Builder, see Amazon managed STIG
hardening components for Image Builder.

Distribution 12

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_accounts.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_accounts.html
https://docs.aws.amazon.com/inspector/v1/userguide/inspector_introduction.html
https://docs.aws.amazon.com/inspector/latest/userguide/inspector_cis.html

EC2 Image Builder User Guide

Semantic versioning in Image Builder

Image Builder uses semantic versioning to organize resources and ensure that they have unique
IDs. The semantic version has four nodes:

<major>.<minor>.<patch>/<build>

You can assign values for the first three, and can filter on all of them.

Semantic versioning is included in each object's Amazon Resource Name (ARN), at the level that
applies to that object as follows:

1. Versionless ARNs and Name ARNs do not include specific values in any of the nodes. The nodes
are either left off entirely, or they are specified as wildcards, for example: x.x.x.

2. Version ARNs have only the first three nodes: <major>.<minor>.<patch>

3. Build version ARNs have all four nodes, and point to a specific build for a specific version of an
object.

Assignment: For the first three nodes you can assign any positive integer value, or zero, with an
upper limit of 2^30-1, or 1073741823 for each node. Image Builder automatically assigns the build
number to the fourth node.

Patterns: You can use any numeric pattern that adheres to the assignment requirements for the
nodes that you can assign. For example, you might choose a software version pattern, such as
1.0.0, or a date, such as 2021.01.01.

Selection: With semantic versioning, you have the flexibility to use wildcards (x) to specify the
most recent versions or nodes when selecting the base image or components for your recipe. When
you use a wildcard in any node, all nodes to the right of the first wildcard must also be wildcards.

For example, given the following recent versions: 2.2.4, 1.7.8, and 1.6.8, version selection using
wildcards produces the following results:

• x.x.x = 2.2.4

• 1.x.x = 1.7.8

• 1.6.x = 1.6.8

• x.2.x is not valid, and produces an error

• 1.x.8 is not valid, and produces an error

Semantic versioning 13

EC2 Image Builder User Guide

Get set up to build custom images with Image Builder

Before you build images with EC2 Image Builder, verify that you've met the following prerequisites
to create an image pipeline. Unless specifically stated otherwise, these prerequisites are required
for all types of pipelines.

Prerequisites

• Image Builder service-linked role

• Configuration requirements

• Container repository for container image pipelines

• Dedicated host for macOS images

• IAM prerequisites

• Systems Manager Agent prerequisites

After you've met the prerequisites, you can manage EC2 Image Builder from any of the following
interfaces.

• EC2 Image Builder console

• Image Builder commands in the AWS CLI

• EC2 Image Builder API Reference

• AWS SDKs and Tools

Image Builder service-linked role

EC2 Image Builder uses a service-linked role to grant permissions to other AWS services on your
behalf. You don't need to manually create a service-linked role. When you create your first Image
Builder resource in the AWS Management Console, the AWS CLI, or the AWS API, Image Builder
creates the service-linked role for you. For more information about the service-linked role that
Image Builder creates in your account, see Use IAM service-linked roles for Image Builder.

Configuration requirements

• Image Builder supports AWS PrivateLink. For more information about configuring VPC endpoints
for Image Builder, see Image Builder and AWS PrivateLink interface VPC endpoints.

Image Builder service-linked role 14

https://console.aws.amazon.com/imagebuilder/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/index.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/
https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-share-your-services.html

EC2 Image Builder User Guide

• The instances that Image Builder uses to build container images must have internet access to
download the AWS CLI from Amazon S3, and to download a base image from the Docker Hub
repository, if applicable. Image Builder uses the AWS CLI to get the Dockerfile from the container
recipe, where it is stored as data.

• The instances that Image Builder uses to build images and run tests must have access to the
Systems Manager service. Installation requirements depend on your operating system.

To see the installation requirements for your base image, choose the tab that matches your base
image operating system.

Linux

For Amazon EC2 Linux instances, Image Builder installs the Systems Manager Agent on the
build instance if it is not already present, and removes it before creating the image.

Windows

Image Builder does not install the Systems Manager Agent on Amazon EC2 Windows Server
build instances. If your base image did not come preinstalled with the Systems Manager
Agent, you must launch an instance from your source image, manually install Systems
Manager on the instance, and create a new base image from your instance.

To manually install the Systems Manager agent on your Amazon EC2 Windows Server
instance, see Manually install Systems Manager Agent on EC2 instances for Windows Server in
the AWS Systems Manager User Guide.

macOS

TBD - need something about the prerequisites

Container repository for container image pipelines

For container image pipelines, the recipe defines the configuration for the Docker images that
are produced and stored in the target container repository. You must create the target repository
before you create the container recipe for your Docker image.

Image Builder uses Amazon ECR as its target repository for container images. To create an Amazon
ECR repository, follow the steps described in Creating a repository in the Amazon Elastic Container
Registry User Guide.

Container repository for container image pipelines 15

https://docs.aws.amazon.com/systems-manager/latest/userguide/manually-install-ssm-agent-windows.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html

EC2 Image Builder User Guide

Dedicated host for macOS images

Amazon EC2 Mac instances require a Dedicated Host running on a metal instance type. Before
you create a custom macOS image, you must Allocate a Dedicated Host to your account. For more
information about Mac instances and a list of instance types that natively support the macOS
operating system, see Amazon EC2 Mac instances in the Amazon EC2 User Guide.

When you've created a Dedicated Host, you can configure settings in the infrastructure
configuration resource for your image. The infrastructure configuration includes placement
properties where you can specify the host, host placement group, or Availability Zone where the
instances that launch from your image should go.

IAM prerequisites

The IAM role that you associate with your instance profile must have permissions to run the build
and test components included in your image. The following IAM role policies must be attached to
the IAM role that is associated with the instance profile:

• EC2InstanceProfileForImageBuilder

• EC2InstanceProfileForImageBuilderECRContainerBuilds

• AmazonSSMManagedInstanceCore

If you configure logging, the instance profile specified in your infrastructure configuration must
have s3:PutObject permissions for the target bucket (arn:aws:s3:::BucketName/*). For
example:

{
"Version": "2012-10-17",
"Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::bucket-name/*"
 }
]
}

Dedicated host for macOS images 16

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-hosts-allocating.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-mac-instances.html

EC2 Image Builder User Guide

Attach policy

The following steps guide you through the process of attaching the IAM policies to an IAM role to
grant the preceding permissions.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Policies.

3. Filter the list of policies with EC2InstanceProfileForImageBuilder

4. Select the bullet next to the policy, and from the Policy actions dropdown list, select Attach.

5. Select the name of the IAM role to which to attach the policy.

6. Choose Attach policy.

7. Repeat steps 3-6 for the EC2InstanceProfileForImageBuilderECRContainerBuilds and
AmazonSSMManagedInstanceCore policies.

Note

If you want to copy an image created with Image Builder to another account, you must
create the EC2ImageBuilderDistributionCrossAccountRole role in all of the target
accounts, and attach the Ec2ImageBuilderCrossAccountDistributionAccess policy managed
policy to the role. For more information, see Share Image Builder resources with AWS RAM.

Systems Manager Agent prerequisites

EC2 Image Builder runs AWS Systems Manager (Systems Manager) Agent on the EC2 instances it
launches to build and test your image. Image Builder collects additional information about the
instance used during the build phase with Systems Manager Inventory. This information includes
the operating system (OS) name and version, as well as the list of packages and their respective
versions as reported by your operating system.

To opt out of collecting this information, select the method that matches your preferred
environment:

• Image Builder console – Deselect the Enable enhanced metadata collection check box.

• AWS CLI – Specify the --no-enhanced-image-metadata-enabled option

Systems Manager Agent prerequisites 17

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-inventory.html

EC2 Image Builder User Guide

• Image Builder API or SDKs – Set the enhancedImageMetadataEnabled parameter to false.

Image Builder uses RunCommand to send actions to your build and test instance as part of the
image build and test workflow. You can't opt out of the use of RunCommand to send actions to your
build and test instance.

Systems Manager Agent prerequisites 18

EC2 Image Builder User Guide

Learn how to create custom images with Image Builder
tutorials

There are many ways to build custom images and components with EC2 Image Builder. Tutorials
help you learn about key Image Builder concepts. Each tutorial presents a use case with steps
that you can follow for the first time. The instructions use defaults where possible to assist with
learning the overall process. After you use one of the tutorials, you can explore more ways to
customize your own images.

Build your first image

The following tutorials show you how to build your first image with the Image Builder console
wizard. At the end of the tutorial you'll have created the following set of Image Builder resources.
The final step in the tutorial is to clean up the resources you created.

• An image recipe for your Amazon Machine Image (AMI) or a container recipe for your container
image.

• An infrastructure configuration resource with default settings.

• A distribution settings resource with default settings that distributes the output to the source
Region (your account in the Region that you use to run the console wizard).

• An image pipeline that uses the listed resources to build your output image with the default
image build workflows.

• An output AMI or container image.

Console wizard tutorials

• Pipeline wizard: Create AMI

• Pipeline wizard: Create container image

Create a custom component with input parameters

The following tutorial shows you how to create a custom component that defines input
parameters, and then set the values from your Image Builder recipe.

Build your first image 19

EC2 Image Builder User Guide

Custom component with parameters

Use Systems Manager parameters with Image Builder

The following tutorial shows you how to create an AWS Systems Manager Parameter Store
parameter and use it in an image recipe.

Use a base image parameter in your recipe

You can also use Parameter Store parameters in AMI distribution settings to store your output
image ID, and in custom components. For more information, see Create and update AMI
distribution configurations for distributions, and Use Systems Manager Parameter Store
parameters for custom components.

Tutorial: Create an image pipeline with output AMI from the
Image Builder console wizard

This tutorial walks you through creating an automated pipeline to build and maintain a customized
EC2 Image Builder image using the Create image pipeline console wizard. To help you move
through the steps efficiently, default settings are used when they are available, and optional
sections are skipped.

Create image pipeline workflow

• Step 1: Specify pipeline details

• Step 2: Choose recipe

• Step 3: Define infrastructure configuration - optional

• Step 4: Define distribution settings - optional

• Step 5: Review

• Step 6: Clean up

Step 1: Specify pipeline details

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. To begin creating your pipeline, choose Create image pipeline.

3. In the General section, enter your Pipeline name (required).

Use Systems Manager parameters with Image Builder 20

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

Tip

Enhanced metadata collection is turned on by default. To ensure compatibility
between components and base images, keep it turned on.

4. In the Build schedule section, you can keep the defaults for the Schedule options. Note
that the Time zone shown for the default schedule is Universal Coordinated Time (UTC). For
more information about UTC time, and to find the offset for your time zone, see Time Zone
Abbreviations – Worldwide List.

For Dependency update settings, choose the Run pipeline at the scheduled time if there are
dependency updates option. This setting causes your pipeline to check for updates before
starting the build. If there are no updates, it skips the scheduled pipeline build.

Note

To ensure that your pipeline recognizes dependency updates and builds as expected,
you must use semantic versioning (x.x.x) for your base image and components. To learn
more about semantic versioning for Image Builder resources, see Semantic versioning
in Image Builder.

5. Choose Next to proceed to the next step.

Step 2: Choose recipe

1. Image Builder defaults to Use existing recipe in the Recipe section. For your first time
through, choose the Create new recipe option.

2. In the Image type section, choose the Amazon Machine Image (AMI) option to create an
image pipeline that will produce and distribute an AMI.

3. In the General section, enter the following required boxes:

• Name – your recipe name

• Version – your recipe version (use the format <major>.<minor>.<patch>, where major, minor,
and patch are integer values). New recipes generally start with 1.0.0.

Step 2: Choose recipe 21

https://www.timeanddate.com/time/zones/
https://www.timeanddate.com/time/zones/

EC2 Image Builder User Guide

4. In the Source image section, keep the default values for Select image, Image Operating
System (OS), and Image origin. This results in a list of Linux AMIs that are managed by
Amazon. For this tutorial, select the Amazon Linux 2 x86 image.

a. From the Image name dropdown, choose an image.

b. Keep the default for Auto-versioning options (Use latest available OS version).

Note

This setting ensures that your pipeline uses semantic versioning for the base
image, to detect dependency updates for automatically scheduled jobs. To
learn more about semantic versioning for Image Builder resources, see Semantic
versioning in Image Builder.

5. In the Instance configuration section, keep the default values for the Systems Manager
agent. This results in Image Builder keeping the Systems Manager agent after the build and
tests are complete, to include the Systems Manager agent in your new image.

Keep User data blank for this tutorial. You can use this area at other times to provide
commands, or a command script to run when you launch your build instance. However, it
replaces any commands that Image Builder might have added to ensure that Systems Manager
is installed. When you do use it, make sure that the Systems Manager agent is preinstalled on
your base image, or that you include the install in your user data.

6. In the Components section, you must choose at least one build component.

In the Build components panel, choose Add build components, and select Amazon managed
from the component owner filter list. This opens a selection panel on the right side of the
console interface where you can browse and filter the components that are available.

For this tutorial, choose a component that updates Linux with the latest security updates, as
follows:

a. Filter the results by entering the word update in the search bar that's located at the top
of the panel.

b. Select the check box for the update-linux build component.

c. Keep the default for Versioning options (Use latest version available).

Step 2: Choose recipe 22

EC2 Image Builder User Guide

Note

This setting ensures that your pipeline uses semantic versioning for the selected
component, to detect dependency updates for automatically scheduled jobs. To
learn more about semantic versioning for Image Builder resources, see Semantic
versioning in Image Builder.

d. Choose Add to recipe to add the component to your recipe. This closes the component
selection panel.

e. Back in the Build components panel, the component that you added is displayed.

7. Reorder components (optional)

If you've chosen more than one component to include in your image, you can use the drag-
and-drop action to rearrange them into the order in which they should run during the build
process.

Note

CIS hardening components don't follow the standard component ordering rules in
Image Builder recipes. The CIS hardening components always run last to ensure that
the benchmark tests run against your output image.

a. Repeat the prior steps to add the update-linux-kernel-5 component to your recipe.

b. The component you just added has an input parameter for the kernel version. To expand
settings for Versioning options or Input parameters, you can choose the arrow next to
the name of the setting. To expand all of the settings for all selected components, you
can toggle the Expand all switch off and on. For more information about using input
parameters in your components, and setting them in your recipes, see Tutorial: Create a
custom component with input parameters.

c. Choose one of the components, and drag it up or down to change the order in which the
components will run.

d. To remove the update-linux-kernel-5 component, choose X from the upper right
corner of the component box.

Step 2: Choose recipe 23

EC2 Image Builder User Guide

Repeat this step to remove any other components you might have added, leaving only the
update-linux component selected.

8. Choose Next to proceed to the next step.

Step 3: Define infrastructure configuration - optional

Image Builder launches EC2 instances in your account to customize images and run validation tests.
The Infrastructure configuration settings specify infrastructure details for the instances that will
run in your AWS account during the build process.

In the Infrastructure configuration section, the Configuration options default to Create
infrastructure configuration using service defaults. This creates an IAM
role and associated instance profile for the EC2 build and test instances that are used to
configure your image. For more information about infrastructure configuration settings, see
CreateInfrastructureConfiguration in the EC2 Image Builder API Reference.

For this tutorial, we are using the default settings.

Note

To specify a subnet to use for a private VPC, you can create your own custom infrastructure
configuration, or use settings that you have already created.

• Choose Next to proceed to the next step.

Step 4: Define distribution settings - optional

Distribution configurations include the output AMI name, specific Region settings for encryption,
launch permissions, and AWS accounts, organizations, and organizational units (OUs) that can
launch the output AMI, and license configurations.

In the Distribution settings section, the Configuration options default to Create
distribution settings using service defaults. This option will distribute the output
AMI to the current Region. For more information about configuring your distribution settings, see
Manage Image Builder distribution settings.

Step 3: Define infrastructure configuration - optional 24

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateInfrastructureConfiguration.html

EC2 Image Builder User Guide

For this tutorial, we are using the default settings.

• Choose Next to proceed to the next step.

Step 5: Review

The Review section displays all of the settings you have configured. To edit information in any
given section, choose the Edit button located in the top right corner of the step section. For
example, if you want to change your pipeline name, choose the Edit button in the top right corner
of the Step 1: Pipeline details section.

1. When you have reviewed your settings, choose Create pipeline to create your pipeline.

2. You can see success or failure messages at the top of the page, as your resources are created
for distribution settings, infrastructure configuration, your new recipe, and the pipeline. To see
details for a resource, including the resource identifier, choose View details.

3. After you have viewed the details for a resource, you can view details about other resources by
choosing the resource type from the navigation pane. For example, to see details for your new
pipeline, choose Image pipelines from the navigation pane. If your build was successful, your
new pipeline is displayed in the Image pipelines list.

Step 6: Clean up

Your Image Builder environment, just like your home, needs regular maintenance to help you find
what you need, and complete your tasks without wading through clutter. Make sure to regularly
clean up temporary resources that you created for testing. Otherwise, you might forget about
those resources, and then later, not remember what they were used for. By then, it might not be
clear if you can safely get rid of them.

Tip

To prevent dependency errors when you delete resources, make sure to delete your
resources in the following order:

1. Image pipeline

2. Image recipe

3. All remaining resources

Step 5: Review 25

EC2 Image Builder User Guide

To clean up the resources that you created for this tutorial, follow these steps:

Delete the pipeline

1. To see a list of the build pipelines created under your account, choose Image pipelines from
the navigation pane.

2. Select the check box next to Pipeline name to select the pipeline that you want to delete.

3. At the top of the Image pipelines panel, on the Actions menu, choose Delete.

4. To confirm the deletion, enter Delete in the box, and choose Delete.

Delete the recipe

1. To see a list of the recipes created under your account, choose Image recipes from the
navigation pane.

2. Select the check box next to Recipe name to select the recipe that you want to delete.

3. At the top of the Image recipes panel, on the Actions menu, choose Delete recipe.

4. To confirm the deletion, enter Delete in the box, and choose Delete.

Delete infrastructure configuration

1. To see a list of the infrastructure configurations created under your account, choose
Infrastructure configuration from the navigation pane.

2. Select the check box next to Configuration name to select the infrastructure configuration
that you want to delete.

3. At the top of the Infrastructure configurations panel, choose Delete.

4. To confirm the deletion, enter Delete in the box, and choose Delete.

Delete distribution settings

1. To see a list of the distribution settings created under your account, choose Distribution
settings from the navigation pane.

2. Select the check box next to Configuration name to select the distribution settings that you
created for this tutorial.

3. At the top of the Distribution settings panel, choose Delete.

4. To confirm the deletion, enter Delete in the box, and choose Delete.

Step 6: Clean up 26

EC2 Image Builder User Guide

Delete the image

Follow these steps to verify that you have deleted any image that was created from the tutorial
pipeline. This tutorial is not likely to create an image unless enough time has elapsed since you
created your pipeline that it runs, according to the build schedule.

1. To see a list of the images created under your account, choose Images from the navigation
pane.

2. Choose the image Version for the image that you want to remove. This opens the Image build
versions page.

3. Select the check box next to the Version for any image that you want to delete. You can select
more than one image version at a time.

4. At the top of the Image build versions panel, choose Delete version.

5. To confirm the deletion, enter Delete in the box, and choose Delete.

Tutorial: Create an image pipeline with output Docker
container image from the Image Builder console wizard

This tutorial walks you through creating an automated pipeline to build and maintain a customized
EC2 Image Builder Docker image using the Create image pipeline console wizard. To help you
move through the steps efficiently, default settings are used when they are available, and optional
sections are skipped.

Create image pipeline workflow

• Step 1: Specify pipeline details

• Step 2: Choose recipe

• Step 3: Define infrastructure configuration - optional

• Step 4: Define distribution settings - optional

• Step 5: Review

• Step 6: Clean up

Step 1: Specify pipeline details

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

Pipeline wizard: Create container image 27

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

2. To begin creating your pipeline, choose Create image pipeline.

3. In the General section, enter your Pipeline name (required).

4. In the Build schedule section, you can keep the defaults for the Schedule options. Note
that the Time zone shown for the default schedule is Universal Coordinated Time (UTC). For
more information about UTC time, and to find the offset for your time zone, see Time Zone
Abbreviations – Worldwide List.

For Dependency update settings, choose the Run pipeline at the scheduled time if there are
dependency updates option. This setting causes your pipeline to check for updates before
starting the build. If there are no updates, it skips the scheduled pipeline build.

Note

To ensure that your pipeline recognizes dependency updates and builds as expected,
you must use semantic versioning (x.x.x) for your base image and components. To learn
more about semantic versioning for Image Builder resources, see Semantic versioning
in Image Builder.

5. Choose Next to proceed to the next step.

Step 2: Choose recipe

1. Image Builder defaults to Use existing recipe in the Recipe section. For your first time
through, choose the Create new recipe option.

2. In the Image type section, choose the Docker image option to create a container pipeline that
will produce a Docker image and distribute it to Amazon ECR repositories in target Regions.

3. In the General section, enter the following required boxes:

• Name – your recipe name

• Version – your recipe version (use the format <major>.<minor>.<patch>, where major, minor,
and patch are integer values). New recipes generally start with 1.0.0.

4. In the Source image section, keep the default values for Select image, Image Operating
System (OS), and Image origin. This results in a list of Amazon Linux 2 container images,
managed by Amazon, for you to choose from for your base image.

a. From the Image name dropdown, choose an image.

Step 2: Choose recipe 28

https://www.timeanddate.com/time/zones/
https://www.timeanddate.com/time/zones/

EC2 Image Builder User Guide

b. Keep the default for Auto-versioning options (Use latest available OS version).

Note

This setting ensures that your pipeline uses semantic versioning for the base
image, to detect dependency updates for automatically scheduled jobs. To
learn more about semantic versioning for Image Builder resources, see Semantic
versioning in Image Builder.

5. In the Components section, you must choose at least one build component.

In the Build components – Amazon Linux panel, you can browse through the components
listed on the page. Use the pagination control in the upper right corner to navigate through
additional components that are available for your base image OS. You can also search for
specific components, or create your own build component using the Component manager.

For this tutorial, choose a component that updates Linux with the latest security updates, as
follows:

a. Filter the results by entering the word update in the search bar that's located at the top
of the panel.

b. Select the check box for the update-linux build component.

c. Scroll down, and in the upper right corner of the Selected components list, choose
Expand all .

d. Keep the default for Versioning options (Use latest available component version).

Note

This setting ensures that your pipeline uses semantic versioning for the selected
component, to detect dependency updates for automatically scheduled jobs. To
learn more about semantic versioning for Image Builder resources, see Semantic
versioning in Image Builder.

If you had selected a component that has input parameters, you would also see the
parameters in this area. Parameters are not covered in this tutorial. For more information

Step 2: Choose recipe 29

EC2 Image Builder User Guide

about using input parameters in your components, and setting them in your recipes, see
Tutorial: Create a custom component with input parameters.

Reorder components (optional)

If you have chosen more than one component to include in your image, you can use the drag-
and-drop action to rearrange them into the order in which they should run during the build
process.

Note

CIS hardening components don't follow the standard component ordering rules in
Image Builder recipes. The CIS hardening components always run last to ensure that
the benchmark tests run against your output image.

1. Scroll back up to the list of available components.

2. Select the check box for the update-linux-kernel-mainline build component (or any
other component of your choice).

3. Scroll down to the Selected components list, to see that there are at least two results.

4. Newly added components might not have their versioning expanded. To expand Versioning
options, you can either choose the arrow next to Versioning options, or you can toggle the
Expand all switch off and on to expand versioning for all of the selected components.

5. Choose one of the components, and drag it up or down to change the order in which the
components will run.

6. To remove the update-linux-kernel-mainline component, choose X from the upper
right corner of the component box.

7. Repeat the previous step to remove any other components you might have added, leaving
only the update-linux component selected.

6. In the Dockerfile template section, select the Use example option. In the Content panel,
notice the contextual variables where Image Builder places build information or scripts, based
on your container image recipe.

By default, Image Builder uses the following contextual variables in your Dockerfile.

Step 2: Choose recipe 30

EC2 Image Builder User Guide

parentImage (required)

At build time, this variable resolves to the base image for your recipe.

Example:

FROM
{{{ imagebuilder:parentImage }}}

environments (required if components are specified)

This variable will resolves to a script that runs components.

Example:

{{{ imagebuilder:environments }}}

components (optional)

Image Builder resolves build and test component scripts for the components that the
container recipe includes. This variable can be placed anywhere in the Dockerfile, after the
environments variable.

Example:

{{{ imagebuilder:components }}}

7. In the Target repository section, specify the name of the Amazon ECR repository that you
created as a prerequisite for this tutorial. This repository is used as the default setting for the
distribution configuration in the Region where the pipeline runs (Region 1).

Note

The target repository must exist in Amazon ECR for all target Regions prior to
distribution.

8. Choose Next to proceed to the next step.

Step 2: Choose recipe 31

EC2 Image Builder User Guide

Step 3: Define infrastructure configuration - optional

Image Builder launches EC2 instances in your account to customize images and run validation tests.
The Infrastructure configuration settings specify infrastructure details for the instances that will
run in your AWS account during the build process.

In the Infrastructure configuration section, the Configuration options default to Create
infrastructure configuration using service defaults. This creates an IAM role
and associated instance profile that are used by build instances to configure your container
images. You can also create your own custom infrastructure configuration, or use settings that
you have already created. For more information about infrastructure configuration settings, see
CreateInfrastructureConfiguration in the EC2 Image Builder API Reference.

For this tutorial, we are using the default settings.

• Choose Next to proceed to the next step.

Step 4: Define distribution settings - optional

Distribution settings consist of the target Regions, and the target Amazon ECR repository name.
Output Docker images are deployed to the named Amazon ECR repository in each Region.

In the Distribution settings section, the Configuration options default to Create
distribution settings using service defaults. This option will distribute the output
Docker image to the Amazon ECR repository specified in your container recipe for the Region
where your pipeline runs (Region 1). If you choose Create new distribution settings, you
can override the ECR repository for the current Region, and add more Regions for distribution.

For this tutorial, we are using the default settings.

• Choose Next to proceed to the next step.

Step 5: Review

The Review section displays all of the settings you have configured. To edit information in any
given section, choose the Edit button located in the top right corner of the step section. For
example, if you want to change your pipeline name, choose the Edit button in the top right corner
of the Step 1: Pipeline details section.

Step 3: Define infrastructure configuration - optional 32

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateInfrastructureConfiguration.html

EC2 Image Builder User Guide

1. When you have reviewed your settings, choose Create pipeline to create your pipeline.

2. You can see success or failure messages at the top of the page, as your resources are created
for distribution settings, infrastructure configuration, your new recipe, and the pipeline. To see
details for a resource, including the resource identifier, choose View details.

3. After you have viewed the details for a resource, you can view details about other resources by
choosing the resource type from the navigation pane. For example, to see details for your new
pipeline, choose Image pipelines from the navigation pane. If your build was successful, your
new pipeline is displayed in the Image pipelines list.

Step 6: Clean up

Your Image Builder environment, just like your home, needs regular maintenance to help you find
what you need, and complete your tasks without wading through clutter. Make sure to regularly
clean up temporary resources that you created for testing. Otherwise, you might forget about
those resources, and then later, not remember what they were used for. By then, it might not be
clear if you can safely get rid of them.

Tip

To prevent dependency errors when you delete resources, make sure to delete your
resources in the following order:

1. Image pipeline

2. Image recipe

3. All remaining resources

To clean up the resources that you created for this tutorial, follow these steps:

Delete the pipeline

1. To see a list of the build pipelines created under your account, choose Image pipelines from
the navigation pane.

2. Select the check box next to Pipeline name to select the pipeline that you want to delete.

3. At the top of the Image pipelines panel, on the Actions menu, choose Delete.

4. To confirm the deletion, enter Delete in the box, and choose Delete.

Step 6: Clean up 33

EC2 Image Builder User Guide

Delete the container recipe

1. To see a list of the container recipes created under your account, choose Container recipes
from the navigation pane.

2. Select the check box next to Recipe name to select the recipe that you want to delete.

3. At the top of the Container recipes panel, on the Actions menu, choose Delete recipe.

4. To confirm the deletion, enter Delete in the box, and choose Delete.

Delete infrastructure configuration

1. To see a list of the infrastructure configurations created under your account, choose
Infrastructure configuration from the navigation pane.

2. Select the check box next to Configuration name to select the infrastructure configuration
that you want to delete.

3. At the top of the Infrastructure configurations panel, choose Delete.

4. To confirm the deletion, enter Delete in the box, and choose Delete.

Delete distribution settings

1. To see a list of the distribution settings created under your account, choose Distribution
settings from the navigation pane.

2. Select the check box next to Configuration name to select the distribution settings that you
created for this tutorial.

3. At the top of the Distribution settings panel, choose Delete.

4. To confirm the deletion, enter Delete in the box, and choose Delete.

Delete the image

Follow these steps to verify that you have deleted any image that was created from the tutorial
pipeline. This tutorial is not likely to create an image unless enough time has elapsed since you
created your pipeline that it runs, according to the build schedule.

1. To see a list of the images created under your account, choose Images from the navigation
pane.

Step 6: Clean up 34

EC2 Image Builder User Guide

2. Choose the image Version for the image that you want to remove. This opens the Image build
versions page.

3. Select the check box next to the Version for any image that you want to delete. You can select
more than one image version at a time.

4. At the top of the Image build versions panel, choose Delete version.

5. To confirm the deletion, enter Delete in the box, and choose Delete.

Tutorial: Create a custom component with input parameters

You can manage Image Builder components, including creating and setting component
parameters, directly from the EC2 Image Builder console, from the AWS CLI, or from the Image
Builder API or SDKs. In this section, we'll cover creating and using parameters in your component,
and setting component parameters through the Image Builder console and AWS CLI commands at
runtime.

Important

Component parameters are plain text values, and are logged in AWS CloudTrail. We
recommend that you use AWS Secrets Manager or the AWS Systems Manager Parameter
Store to store your secrets. For more information about Secrets Manager, see What is
Secrets Manager? in the AWS Secrets Manager User Guide. For more information about AWS
Systems Manager Parameter Store, see AWS Systems Manager Parameter Store in the AWS
Systems Manager User Guide.

Use parameters in your YAML component document

To build a component, you must provide a YAML or JSON application component document. The
document contains the code that runs during the phases and steps that you define to provide
customization for your image. The recipe that references the component can set the parameters to
customize the values at runtime, with default values that take effect if the parameter is not set to a
specific value.

Create a component document with input parameters

This section shows you how to define and use input parameters in your YAML component
document.

Custom component with parameters 35

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

EC2 Image Builder User Guide

To create a YAML application component document that uses parameters and runs commands
in your Image Builder build or test instances, follow the steps that match your image operating
system:

Linux

Create a YAML component document

Use a file editing tool to create a component document file. Documentation examples use a file
named hello-world-test.yaml that includes the following content:

Document Start

name: "HelloWorldTestingDocument-Linux"
description: "Hello world document to demonstrate parameters."
schemaVersion: 1.0
parameters:
 - MyInputParameter:
 type: string
 default: "It's me!"
 description: This is an input parameter.
phases:
 - name: build
 steps:
 - name: HelloWorldStep
 action: ExecuteBash
 inputs:
 commands:
 - echo "Hello World! Build phase. My input parameter value is
 {{ MyInputParameter }}"

 - name: validate
 steps:
 - name: HelloWorldStep
 action: ExecuteBash
 inputs:
 commands:
 - echo "Hello World! Validate phase. My input parameter value is
 {{ MyInputParameter }}"

 - name: test
 steps:
 - name: HelloWorldStep

Use parameters in your YAML component document 36

EC2 Image Builder User Guide

 action: ExecuteBash
 inputs:
 commands:
 - echo "Hello World! Test phase. My input parameter value is
 {{ MyInputParameter }}"
Document End

Tip

Use a tool like this online YAML Validator, or a YAML lint extension in your code
environment to verify that your YAML is well-formed.

Windows

Create a YAML component document

Use a file editing tool to create a component document file. Documentation examples use a file
named hello-world-test.yaml that includes the following content:

Document Start

name: "HelloWorldTestingDocument-Windows"
description: "Hello world document to demonstrate parameters."
schemaVersion: 1.0
parameters:
 - MyInputParameter:
 type: string
 default: "It's me!"
 description: This is an input parameter.
phases:
 - name: build
 steps:
 - name: HelloWorldStep
 action: ExecutePowerShell
 inputs:
 commands:
 - Write-Host "Hello World! Build phase. My input parameter value is
 {{ MyInputParameter }}"

 - name: validate
 steps:

Use parameters in your YAML component document 37

https://jsonformatter.org/yaml-validator

EC2 Image Builder User Guide

 - name: HelloWorldStep
 action: ExecutePowerShell
 inputs:
 commands:
 - Write-Host "Hello World! Validate phase. My input parameter value is
 {{ MyInputParameter }}"

 - name: test
 steps:
 - name: HelloWorldStep
 action: ExecutePowerShell
 inputs:
 commands:
 - Write-Host "Hello World! Test phase. My input parameter value is
 {{ MyInputParameter }}"
Document End

Tip

Use a tool like this online YAML Validator, or a YAML lint extension in your code
environment to verify that your YAML is well-formed.

macOS

Create a YAML component document

Use a file editing tool to create a component document file. Documentation examples use a file
named hello-world-test.yaml that includes the following content:

Document Start

name: "HelloWorldTestingDocument-macOS"
description: "Hello world document to demonstrate parameters."
schemaVersion: 1.0
parameters:
 - MyInputParameter:
 type: string
 default: "It's me!"
 description: This is an input parameter.
phases:
 - name: build

Use parameters in your YAML component document 38

https://jsonformatter.org/yaml-validator

EC2 Image Builder User Guide

 steps:
 - name: HelloWorldStep
 action: ExecuteBash
 inputs:
 commands:
 - echo "Hello World! Build phase. My input parameter value is
 {{ MyInputParameter }}"

 - name: validate
 steps:
 - name: HelloWorldStep
 action: ExecuteBash
 inputs:
 commands:
 - echo "Hello World! Validate phase. My input parameter value is
 {{ MyInputParameter }}"

 - name: test
 steps:
 - name: HelloWorldStep
 action: ExecuteBash
 inputs:
 commands:
 - echo "Hello World! Test phase. My input parameter value is
 {{ MyInputParameter }}"
Document End

Tip

Use a tool like this online YAML Validator, or a YAML lint extension in your code
environment to verify that your YAML is well-formed.

For more information about the phases, steps, and syntax for AWSTOE application component
documents, see Use documents in AWSTOE. For more information about parameters and their
requirements, see the Parameters section of the Define and reference variables in AWSTOE page.

Create a component from the YAML component document

Whatever method you use to create an AWSTOE component, the YAML application component
document is always required as a baseline.

Use parameters in your YAML component document 39

https://jsonformatter.org/yaml-validator
https://docs.aws.amazon.com/imagebuilder/latest/userguide/toe-use-documents.html

EC2 Image Builder User Guide

• To create a component directly from your YAML document with the Image Builder console, see
Create a custom component from the console.

• To create a component from the command line with the Image Builder create-component
command, see Create a custom component from the AWS CLI. Replace the YAML document
name in those examples with the name of your Hello World YAML document (hello-world-
test.yaml).

Set component parameters in an Image Builder recipe from the console

Setting component parameters works the same for image recipes and container recipes. When you
create a new recipe, or a new version of a recipe, you choose which components to include from
the Build components and Test components lists. The component lists include components that
are applicable for the base operating system you chose for your image.

After you select a component, it is displayed in the Selected components section, directly under
the component lists. Configuration options are shown for each component that is selected. If your
component has input parameters defined, they are displayed as an expandable section called Input
parameters.

The following parameter settings are shown for each parameter that's defined for your component:

• Parameter name (not editable) – The name of the parameter.

• Description (not editable) – The parameter description

• Type (not editable) – The data type for the parameter value.

• Value – The value for the parameter. If you are using this component for the first time in this
recipe, and a default value was defined for the input parameter, the default value appears in
the Value box with greyed-out text. If no other value is entered, Image Builder uses the default
value.

Use a base image parameter in your recipe

When you create a recipe for image customizations, there are several ways to identify the base
image that you start with. If you specify the Amazon Machine Image (AMI) ID for your base image
and that base image is updated, its AMI ID might change and you would need to update your recipe
to match.

Set component parameters in an Image Builder recipe from the console 40

EC2 Image Builder User Guide

Instead of changing your recipe each time the base image ID changes, you can define an AWS
Systems Manager Parameter Store parameter (SSM parameter) to store the value of your base
image AMI ID, and then use the parameter to specify the base image in your recipe. For AWS
managed AMIs, you can use a public parameter for the latest version.

This tutorial walks you through the process of creating an AMI ID parameter and using it in an
image recipe. Image Builder steps in this tutorial are console-based.

Contents

• Step 1: Find or create a Parameter Store parameter

• Step 2: Configure IAM permissions

• Step 3: Create an Image Recipe that uses the parameter

Step 1: Find or create a Parameter Store parameter

The process for this step depends on the type of AMI that you specify for your base image. For AWS
managed AMIs, you can use a public parameter that refers to the current version. Some parameters
might not be available in all AWS Regions.

To begin, open the tab that corresponds to your AMI.

AWS managed AMI

If your base image is an AWS managed AMI, you can use public parameters to specify the AMI
ID, rather than creating your own parameter. To find the public parameter for your AMI, see
Discovering public parameters in the AWS Systems Manager User Guide.

Custom AMI

To create an AMI ID parameter, follow the instructions for Creating Parameter Store parameters
in Systems Manager with the console, AWS CLI, or PowerShell. Provide the following values to
ensure that the parameter value is an AMI ID.

Parameter tier: Standard

Type: String

Data type: Select aws:ec2:image. When you specify this type, the system validates the value
that's entered to ensure that it's an AMI ID.

Step 1: Find or create a Parameter Store parameter 41

https://docs.aws.amazon.com/systems-manager/latest/userguide/parameter-store-finding-public-parameters.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-su-create.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-su-create.html

EC2 Image Builder User Guide

Value: Enter a valid AMI ID (for example, ami-1234567890abcdef1).

Step 2: Configure IAM permissions

To use a Systems Manager Parameter Store parameter (SSM parameter), whether public or private,
you must specify the following Systems Manager Parameter Store actions in your Image Builder
execution role, with the parameter listed as a resource.

• ssm:GetParameter – This action allows you to use an SSM parameter to specify the base
image in your recipe.

• ssm:PutParameter – This action allows you to store the output AMI ID in an SSM parameter
during distribution. Policy definition looks the same, but this tutorial does not include the put
action in the example policy.

To use SSM parameters in a custom component, you must specify ssm:GetParameter in the
instance profile role instead. For more information, see Use Systems Manager Parameter Store
parameters.

When you create a pipeline or use the create-image command in the AWS CLI, you can only specify
one Image Builder execution role. If you have defined an Image Builder workflow execution role,
you would add the parameter permissions to that role. Otherwise, you would create a new custom
role that includes permissions that are required for SSM parameters.

1. Create a custom role (optional)

If you already have a custom role defined for Image Builder permissions, you can skip this step.

Follow the process for Creating a role to delegate permissions to an AWS service in the AWS
Identity and Access Management User Guide.

2. Add permissions to your custom role

To add the SSM parameter permissions to your custom role, follow the Update the permissions
policy for a role process in the AWS Identity and Access Management User Guide.

The following policy example shows the ssm:GetParameter action with a parameter that's
created in your account.

{

Step 2: Configure IAM permissions 42

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-role-permissions.html#id_roles_update-role-permissions-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-role-permissions.html#id_roles_update-role-permissions-policy

EC2 Image Builder User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ssm:GetParameter",
 "Resource": "arn:aws:ssm:*:111122223333:parameter/ImageBuilder-*"
 }
]
}

For more information about public parameter resources, see Calling AMI public parameters in the
AWS Systems Manager User Guide.

Step 3: Create an Image Recipe that uses the parameter

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Image recipes, then choose Create image recipe from the list page.

3. Fill out the Base image section, as follows:

a. Choose the Use custom AMI option. This displays additional fields where you can enter
the AMI ID or an SSM parameter that contains the AMI ID.

b. Choose the SSM parameter option.

c. In the SSM parameter field, enter the parameter name or Amazon Resource Name (ARN)
of the parameter that you created in Step 1. If you enter the name, it will not have the
prefix in the console.

4. Complete the remaining recipe configuration as needed.

Note

If you set the parent image through other interfaces, such as the AWS CLI, the parameter
name must have a prefix of ssm: (for example, ssm:/ImageBuilder-Tutorial/
BaseAMI.

Step 3: Create an Image Recipe that uses the parameter 43

https://docs.aws.amazon.com/systems-manager/latest/userguide/parameter-store-public-parameters-ami.html
https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

Use components to customize your Image Builder image

Image Builder uses the AWS Task Orchestrator and Executor (AWSTOE) component management
application to orchestrate complex workflows. Build and test components that work with the
AWSTOE application are based on YAML documents that define the scripts to customize or test
your image. For AMI images, Image Builder installs components and the AWSTOE component
management application on its Amazon EC2 build and test instances. For container images, the
components and AWSTOE component management application are installed inside of the running
container.

Image Builder uses AWSTOE to perform all on-instance activities. There is no additional setup
required to interact with AWSTOE when you run Image Builder commands or use the Image Builder
console.

Note

When a component that is managed by Amazon reaches the end of its support lifespan, it is
no longer maintained. About four weeks before this occurs, any accounts that are using the
component receive notification, and a list of the affected recipes in their account from their
AWS Health Dashboard. To learn more about AWS Health, see AWS Health User Guide.

Workflow stages for building a new image

The Image Builder workflow for building new images includes the following two distinct stages.

1. Build stage (pre-snapshot) – During the build stage, you make changes to the Amazon EC2 build
instance that's running your base image, to create the baseline for your new image. For example,
your recipe can include components that install an application or modify the operating system
firewall settings.

The following phases from your component document run during the build stage:

• build

• validate

After this stage completes successfully, Image Builder creates a snapshot or container image
that it uses for the test stage and beyond.

44

https://docs.aws.amazon.com/health/latest/ug/

EC2 Image Builder User Guide

2. Test stage (post-snapshot) – During the test stage, there are some differences between images
that create AMIs and container images. For AMI workflows, Image Builder launches an EC2
instance from the snapshot that it created as the final step of the build stage. Tests run on the
new instance to validate settings and ensure that the instance is functioning as expected. For
container workflows, the tests run on the same instance that was used for building.

The following phase from your component document runs for every component that is included
in the recipe during the image build test stage:

• test

This component phase applies to both Build and Test component types. After this stage
completes successfully, Image Builder can create and distribute your final image from the
snapshot or the container image.

Note

While the AWSTOE application framework allows you to define many phases in a
component document, Image Builder has strict rules about what phases it runs, and during
which stages it runs them. For a component to run during the image build stage, the
component document must define at least one of these phases: build or validate. For a
component to run during the image test stage, the component document must define the
test phase, and no other phases.
Since Image Builder runs the stages independently, chaining references in component
documents cannot cross stage boundaries. You cannot chain a value from a phase that
runs in the build stage to a phase that runs in the test stage. You can, however, define
input parameters to the intended target, and pass in values through the command line. For
more information about setting component parameters in your Image Builder recipes, see
Tutorial: Create a custom component with input parameters.

To assist with troubleshooting on your build or test instance AWSTOE creates a log folder that
contains the input document and log files to track what's happening each time a component
runs. If you configured an Amazon S3 bucket in your pipeline configuration, the logs are also
written there. For more information about YAML documents and log output, see Use the AWSTOE
component document framework for custom components.

45

EC2 Image Builder User Guide

Tip

When you have many components to keep track of, tagging helps you to identify a specific
component or version based on the tags you've assigned to it. For more information
about tagging your resources using Image Builder commands in the AWS CLI, see the Tag
resources section of this guide.

This section covers how to list, view, create, and import components, using the Image Builder
console or commands in the AWS CLI.

Topics

• List and view component details

• Use AWS Marketplace components to customize your image

• Use managed components to customize your Image Builder image

• Develop custom components for your Image Builder image

• How Image Builder uses the AWS Task Orchestrator and Executor application to manage
components

List and view component details

This section describes how you can find information and view details for the components that you
use in your EC2 Image Builder recipes.

Component details

• List Image Builder components

• List component build versions from the AWS CLI

• Get component details from the AWS CLI

• Get component policy details from the AWS CLI

List Image Builder components

You can use one of the following methods to list and filter Image Builder components.

List and view components 46

EC2 Image Builder User Guide

AWS Management Console

To display a list of components in the AWS Management Console, follow these steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Select Components from the navigation pane. By default, Image Builder shows a list of
components that your account owns.

3. You can optionally filter on component ownership. To see components that you don't own,
but have access to, expand the owner type dropdown list and select one of the values. The
owner type list is located in the search bar, next to the search text box. You can select from
the following values:

• AWS Marketplace – Components that are associated directly with an AWS Marketplace
product subscription.

• Quick start (Amazon managed) – Publicly available components that Amazon creates
and maintains.

• Owned by me – Components that you created. This is the default selection.

• Shared with me – Components that others created and shared with you from their
account.

• Third party managed – Components that a third party owns that you subscribed to in
AWS Marketplace.

AWS CLI

The following example shows how to use the list-components command to return a list of
Image Builder components that your account owns.

aws imagebuilder list-components

You can optionally filter on component ownership. The owner attribute defines who owns the
components that you want to list. By default, this request returns a list of components that your
account owns. To filter the results by component owner, specify one of the following values
with the --owner parameter when you run the list-components command.

Component owner values

• AWSMarketplace

List Image Builder components 47

https://console.aws.amazon.com/imagebuilder/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/list-components.html

EC2 Image Builder User Guide

• Amazon

• Self

• Shared

• ThirdParty

The following examples show the list-components command with the --owner parameter to
filter results.

aws imagebuilder list-components --owner Self
{
 "requestId": "012a3456-b789-01cd-e234-fa5678b9012b",
 "componentVersionList": [
 {
 "arn": "arn:aws:imagebuilder:us-west-2:123456789012:component/sample-
component01/1.0.0",
 "name": "sample-component01",
 "version": "1.0.0",
 "platform": "Linux",
 "type": "BUILD",
 "owner": "123456789012",
 "dateCreated": "2020-09-24T16:58:24.444Z"
 },
 {
 "arn": "arn:aws:imagebuilder:us-west-2:123456789012:component/sample-
component01/1.0.1",
 "name": "sample-component01",
 "version": "1.0.1",
 "platform": "Linux",
 "type": "BUILD",
 "owner": "123456789012",
 "dateCreated": "2021-07-10T03:38:46.091Z"
 }
]
}

aws imagebuilder list-components --owner Amazon

aws imagebuilder list-components --owner Shared

List Image Builder components 48

EC2 Image Builder User Guide

aws imagebuilder list-components --owner ThirdParty

List component build versions from the AWS CLI

The following example shows how to use the list-component-build-versions command to list
component build versions that have a specific semantic version. To learn more about semantic
versioning for Image Builder resources, see Semantic versioning in Image Builder.

aws imagebuilder list-component-build-versions --component-version-arn
 arn:aws:imagebuilder:us-west-2:123456789012:component/example-component/1.0.1
{
 "requestId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "componentSummaryList": [
 {
 "arn": "arn:aws:imagebuilder:us-west-2:123456789012:component/
examplecomponent/1.0.1/1",
 "name": "examplecomponent",
 "version": "1.0.1",
 "platform": "Linux",
 "type": "BUILD",
 "owner": "123456789012",
 "description": "An example component that builds, validates and tests an
 image",
 "changeDescription": "Updated version.",
 "dateCreated": "2020-02-19T18:53:45.940Z",
 "tags": {
 "KeyName": "KeyValue"
 }
 }
]
}

Get component details from the AWS CLI

The following example shows how to use the get-component command to get component details
when you specify the component's Amazon Resource Name (ARN).

aws imagebuilder get-component --component-build-version-arn arn:aws:imagebuilder:us-
west-2:123456789012:component/example-component/1.0.1/1

List component build versions from the AWS CLI 49

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/list-component-build-versions.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/get-component.html

EC2 Image Builder User Guide

 {
 "requestId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11112",
 "component": {
 "arn": "arn:aws:imagebuilder:us-west-2:123456789012:component/
examplecomponent/1.0.1/1",
 "name": "examplecomponent",
 "version": "1.0.1",
 "type": "BUILD",
 "platform": "Linux",
 "owner": "123456789012",
 "data": "name: HelloWorldTestingDocument\ndescription: This is hello world
 testing document... etc.\"\n",
 "encrypted": true,
 "dateCreated": "2020-09-24T16:58:24.444Z",
 "tags": {}
 }
}

Get component policy details from the AWS CLI

The following example shows how to use the get-component-policy command to get details of a
component policy when you specify the component's ARN.

aws imagebuilder get-component-policy --component-arn arn:aws:imagebuilder:us-
west-2:123456789012:component/example-component/1.0.1

Use AWS Marketplace components to customize your image

In addition to a large selection of images created by Independent Software Vendors (ISVs), the AWS
Marketplace offers components that you can use to customize your own Image Builder images.
You must subscribe to these AWS Marketplace components before you can use them in your image
recipe to build a new image.

When you specify an AWS Marketplace component in an image recipe, Image Builder validates the
subscription and performs dependency checks to ensure that you have the resources that you need
to use it. When validation succeeds, Image Builder creates secure downloads for the component
and its artifacts for use by image pipeline builds.

Get component policy details from the AWS CLI 50

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/get-component-policy.html

EC2 Image Builder User Guide

Discover AWS Marketplace components

You can discover AWS Marketplace software components to use in your recipes from the Discover
products page in the Image Builder console, as follows.

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. From the navigation pane, choose Discover products in the AWS Marketplace section.

3. Select the Components tab. This tab lists all of the AWS Marketplace products that use the
delivery option that includes associated components in AWS Marketplace.

4. To search for specific software products that include components, you can enter part of
the name in the search bar or filter by Status, Operating System, Publisher, or
Categories. The search bar also contains pagination controls for your results.

Results

Each AWS Marketplace product has its own detail panel that includes the following information.

The AWS Marketplace product name and logo

The software product name is linked to the product detail in AWS Marketplace. You can select
the link to learn more about the product in AWS Marketplace. Alternatively, you can view a
summary of subscription options and subscribe directly from the search results with the View
subscription options button if you've already done your research.

Version

This contains the primary version of the component.

Operating system

The operating system that the component is designed to run on.

Publisher

The publisher of the component. This is linked to the publisher detail page in AWS Marketplace.
The publisher detail page opens in a new tab in your browser.

Categories

One or more AWS Marketplace product categories that apply for the component.

Discover AWS Marketplace components 51

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

Status

Shows whether you are subscribed to this product. If you're not subscribed, you can choose
View subscription options to see a summary of the subscription options for the AWS
Marketplace product, and optionally subscribe directly from the Image Builder console.

Associated components

If the AWS Marketplace product has one or more versions that are included with your
subscription, they are shown in the Associated components section. The section is collapsed
initially, and displays a count of the associated components. You can expand the section to see
more details.

Note

The Center for Internet Security (CIS) component that's associated with their AWS
Marketplace image product is not shown in the Discover products results. If you subscribe
to their image product, the associated component is shown in the Subscriptions page, and
as a third-party component in the Create image recipe dialog. For more information about
the component, see CIS hardening components.

Subscribe to AWS Marketplace components

After you've found an AWS Marketplace product with components that you want to use in your
recipes, you can subscribe to it directly from the Image Builder console, as follows, or you can
subscribe from the AWS Marketplace console.

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. From the navigation pane, choose Discover products in the AWS Marketplace section.

3. Select the Components tab. This tab lists all of the AWS Marketplace products that use the
delivery option that includes associated components in AWS Marketplace.

4. To search for a specific AWS Marketplace product, enter part of the name in the search bar. If
you know the publisher, but not the exact product name or how to spell it, you can also filter
by Publisher to get a list of products that the publisher has available.

5. Select the product that you want to subscribe to from the results list, and choose View
subscription options. This shows a summary of subscription options for the AWS Marketplace
product.

Subscribe to AWS Marketplace components 52

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

6. Select Subscribe to subscribe to the product without leaving the Image Builder console. You
are notified that the subscription is being processed. After you're subscribed, the Status is
updated to Subscribed.

For more information about the AWS Marketplace products that you're currently subscribed to, see
the console steps described in AWS Marketplace subscriptions in Image Builder.

Use an AWS Marketplace component in an Image Builder image recipe

You can use AWS Marketplace components in your Image Builder image recipes the same way that
you use other types of components. For most of the components that are associated with an AWS
Marketplace image product, the ownership category is AWS Marketplace. For example, to use a
build component from an AWS Marketplace product that you've subscribed to, choose Add build
components, and select AWS Marketplace from the list. This opens a selection panel on the right
side of the console interface that lists AWS Marketplace components.

Note

If you're looking for the CIS hardening component, select Third party managed, from
the ownership list instead of AWS Marketplace.

For more information about how to select, arrange, and configure parameters for your
components, see Create a new version of an image recipe.

Use managed components to customize your Image Builder
image

Managed components are created by AWS, sometimes in partnership with a third-party
organization, such as the Center for Internet Security (CIS), for example. When you use managed
components in your image or container recipes, Amazon provides the latest component versions
that have patches and other updates applied. To get a list of components, or to get component
information, see List and view component details.

The following list of featured AWS managed components includes a component that's available for
you to use when you subscribe to CIS hardened AMIs through the AWS Marketplace.

Featured components

Use AWS Marketplace components in a recipe 53

EC2 Image Builder User Guide

• Distributor package managed component application install for Image Builder Windows images

• CIS hardening components

• Amazon managed STIG hardening components for Image Builder

Distributor package managed component application install for Image
Builder Windows images

AWS Systems Manager Distributor helps you package and publish software to AWS Systems
Manager managed nodes. You can package and publish your own software or use Distributor to
find and publish AWS-provided agent software packages. For more information about Systems
Manager Distributor, see AWS Systems Manager Distributor in the AWS Systems Manager User
Guide.

Managed components for Distributor

The following Image Builder managed components use AWS Systems Manager Distributor to install
application packages on Windows instances.

• The distributor-package-windows managed component uses AWS Systems Manager
Distributor to install application packages that you specify on your Windows image build
instance. To configure parameters when you include this component in your recipe, see Configure
distributor-package-windows as a standalone component.

• The aws-vss-components-windows component uses AWS Systems Manager Distributor
to install the AwsVssComponents package on your Windows image build instance. To
configure parameters when you include this component in your recipe, see Configure aws-vss-
components-windows as a standalone component.

For more information about how to use managed components in your Image Builder recipe, see
Create a new version of an image recipe for image recipes or Create a new version of a container
recipe for container recipes. For more information about the AwsVssComponents package, see
Create a VSS application-consistent snapshot in the Amazon EC2 User Guide.

Prerequisites

Before you use Image Builder components that rely on Systems Manager Distributor to install
application packages, you must ensure that the following prerequisites are met.

Distributor package Windows application install 54

https://docs.aws.amazon.com/systems-manager/latest/userguide/distributor.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/application-consistent-snapshots.html

EC2 Image Builder User Guide

• Image Builder components that use Systems Manager Distributor to install application
packages on your instance need permission to call the Systems Manager API. Before you use
the components in an Image Builder recipe, you must create the IAM policy and role that grant
permission. To configure permissions, see Configure Systems Manager Distributor permissions.

Note

Image Builder doesn't currently support Systems Manager Distributor packages that reboot
the instance. For example, the AWSNVMe, AWSPVDrivers, and AwsEnaNetworkDriver
Distributor packages reboot the instance, and so are not allowed.

Configure Systems Manager Distributor permissions

The distributor-package-windows component and other components that use it, such as
aws-vss-components-windows, require additional permission on the build instance to run. The
build instance must be able to call the Systems Manager API to begin a Distributor installation and
poll for the result.

Follow these procedures in the AWS Management Console to create a custom IAM policy and
role that grant permission for Image Builder components to install Systems Manager Distributor
packages from the build instance.

Step 1: Create a policy

Create an IAM policy for Distributor permissions.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies, and then choose Create policy.

3. On the Create policy page, choose the JSON tab, and then replace the default content with
the following JSON policy, substituting partition, Region, and account ID as necessary, or using
wildcards.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowDistributorSendCommand",

Distributor package Windows application install 55

https://console.aws.amazon.com/iam/

EC2 Image Builder User Guide

 "Effect": "Allow",
 "Action": [
 "ssm:SendCommand"
],
 "Resource": [
 "arn:${AWS::Partition}:ssm:${AWS::Region}::document/AWS-ConfigureAWSPackage",
 "arn:${AWS::Partition}:ec2:${AWS::Region}:${AWS::AccountId}:instance/*"
]
 },
 {
 "Sid": "AllowGetCommandInvocation",
 "Effect": "Allow",
 "Action": [
 "ssm:GetCommandInvocation"
],
 "Resource": [
 "*"
]
 }
]
}

4. Choose Review policy.

5. For Name, enter a name to identify the policy, such as InvokeDistributor or another name
that you prefer.

6. (Optional) For Description, enter a description of the role's purpose.

7. Choose Create policy.

Step 2: Create a role

Create an IAM role for Distributor permissions.

1. From the IAM console navigation pane, choose Roles, and then choose Create role.

2. Under Select type of trusted entity, choose AWS service.

3. Immediately under Choose the service that will use this role, choose EC2, and then choose
Next: Permissions.

4. Under Select your use case, choose EC2, and then choose Next: Permissions.

5. In the list of policies, select the check box next to AmazonSSMManagedInstanceCore. (Type
SSM in the search box if you need to narrow the list.)

Distributor package Windows application install 56

EC2 Image Builder User Guide

6. In this list of policies, choose the box next to EC2InstanceProfileForImageBuilder. (Type
ImageBuilder in the search box if you need to narrow the list.)

7. Choose Next: Tags.

8. (Optional) Add one or more tag key value pairs to organize, track, or control access for this
role, and then choose Next: Review.

9. For Role name, enter a name for the role, such as InvokeDistributor or another name that
you prefer.

10. (Optional) For Role description, replace the default text with a description of this role's
purpose.

11. Choose Create role. The system returns you to the Roles page.

Step 3: Attach the policy to the role

The final step to set up your Distributor permissions is to attach the IAM policy to the IAM role.

1. From the Roles page in the IAM console, choose the role that you just created. The role
Summary page opens.

2. Choose Attach policies.

3. Search for the policy that you created in the previous procedure and select the check box next
to the name.

4. Choose Attach policy.

Use this role in the Image Builder Infrastructure Configuration resource for any image that
includes components that use Systems Manager Distributor. For more information, see Create an
infrastructure configuration.

Configure distributor-package-windows as a standalone component

To use the distributor-package-windows component in a recipe, set the following
parameters that configure the package to install.

Note

Before you use the distributor-package-windows component in a recipe, you must
ensure that all of the Prerequisites are met.

Distributor package Windows application install 57

EC2 Image Builder User Guide

• Action (Required) – Specify whether to install or uninstall the package. Valid values include
Install and Uninstall. The value defaults to Install.

• PackageName (Required) – The name of the Distributor package to install or uninstall. For a list
of valid package names, see Find Distributor packages.

• PackageVersion (Optional) – The version of the Distributor package to install. PackageVersion
defaults to the recommended version.

• AdditionalArguments (Optional) – A JSON string that contains the additional parameters
to provide to your script to install, uninstall, or update a package. For more information, see
additionalArguments in the aws:configurePackage Inputs section of the Systems Manager
Command document plugin reference page.

Configure aws-vss-components-windows as a standalone component

When you use the aws-vss-components-windows component in a recipe, you can optionally set
the PackageVersion parameter to use a specific version of the AwsVssComponents package.
When you leave out this parameter, the component defaults to use the recommended version of
the AwsVssComponents package.

Note

Before you use the aws-vss-components-windows component in a recipe, you must
ensure that all of the Prerequisites are met.

Find Distributor packages

Amazon and third parties provide public packages that you can install with Systems Manager
Distributor.

To view available packages in the AWS Management Console, log into the AWS Systems Manager
console and choose Distributor from the navigation pane. The Distributor page shows all of the
packages that are available to you. For more information about listing available packages with the
AWS CLI, see View packages (command line) in the AWS Systems Manager User Guide.

You can also create your own private Systems Manager Distributor packages. For more information,
see Create a package in the AWS Systems Manager User Guide.

Distributor package Windows application install 58

https://docs.aws.amazon.com/systems-manager/latest/userguide/documents-command-ssm-plugin-reference.html#aws-configurepackage
https://console.aws.amazon.com/systems-manager/;
https://console.aws.amazon.com/systems-manager/;
https://docs.aws.amazon.com/systems-manager/latest/userguide/distributor-view-packages.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/distributor-working-with-packages-create.html

EC2 Image Builder User Guide

CIS hardening components

The Center for Internet Security (CIS) is a community-driven nonprofit organization. Their
cybersecurity experts work together to develop IT security guidelines that safeguard public and
private organizations against cyber threats. Their globally recognized set of best practices, known
as CIS Benchmarks, help IT organizations around the world to securely configure their systems. For
trending articles, blog posts, podcasts, webinars, and whitepapers, see CIS Insights on the Center
for Internet Security website.

CIS Benchmarks

CIS creates and maintains a set of configuration guidelines, known as the CIS Benchmarks, which
provide configuration best practices for specific technologies, including operating systems, cloud
platforms, applications, databases, and more. CIS Benchmarks are recognized as an industry
standard by organizations and standards such as PCI DSS, HIPAA, DoD Cloud Computing SRG,
FISMA, DFARS, and FEDRAMP. To learn more, see CIS Benchmarks on the Center for Internet
Security website.

CIS hardening components

When you subscribe to a CIS Hardened Image in AWS Marketplace, you also get access to the
associated hardening component that runs a script to enforce CIS Benchmarks Level 1 guidelines
for your configuration. The CIS organization owns and maintains CIS hardening components to
ensure that they reflect the latest guidelines.

Note

CIS hardening components don't follow the standard component ordering rules in
Image Builder recipes. The CIS hardening components always run last to ensure that the
benchmark tests run against your output image.

Amazon managed STIG hardening components for Image Builder

Security Technical Implementation Guides (STIGs) are the configuration hardening standards
created by the Defense Information Systems Agency (DISA) to secure information systems and
software. To make your systems compliant with STIG standards, you must install, configure, and
test a variety of security settings.

CIS hardening 59

https://www.cisecurity.org/insights
https://www.cisecurity.org/benchmark

EC2 Image Builder User Guide

Image Builder provides STIG hardening components to help you more efficiently build compliant
images for baseline STIG standards. These STIG components scan for misconfigurations and run a
remediation script. There are no additional charges for using STIG-compliant components.

Important

With few exceptions, STIG hardening components do not install third-party packages. If
third-party packages are already installed on the instance, and if there are related STIGs
that Image Builder supports for that package, the hardening component applies them.

This page lists all STIGs that Image Builder supports that are applied to the EC2 instances that
Image Builder launches when you build and test a new image. If you want to apply additional STIG
settings to your image, you can create a custom component to configure it. For more information
about custom components and how to create them, see Use components to customize your Image
Builder image.

When you create an image, the STIG hardening components log whether supported STIGs are
applied or skipped. We recommend that you review the Image Builder logs for your images that use
STIG hardening components. For more information about how to access and review Image Builder
logs, see Troubleshoot pipeline builds.

Compliance levels

• High (Category I)

The most severe risk. Includes any vulnerability that can result in loss of confidentiality,
availability, or integrity.

• Medium (Category II)

Includes any vulnerability that can result in loss of confidentiality, availability, or integrity, but
the risks can be mitigated.

• Low (Category III)

Any vulnerability that degrades measures to protect against loss of confidentiality, availability, or
integrity.

Topics

STIG hardening components 60

EC2 Image Builder User Guide

• Windows STIG hardening components

• STIG version history log for Windows

• Linux STIG hardening components

• STIG version history log for Linux

• SCAP compliance validator component

Windows STIG hardening components

AWSTOE Windows STIG hardening components are designed for standalone servers and apply
Local Group Policy. STIG-compliant hardening components install InstallRoot from the Department
of Defense (DoD) on Windows infrastructure to download, install, and update the DoD certificates.
They also remove unnecessary certificates to maintain STIG compliance. Currently, STIG baselines
are supported for the following versions of Windows Server: 2012 R2, 2016, 2019, and 2022.

This section lists current settings for each of the Windows STIG hardening components, followed
by a version history log.

STIG-Build-Windows-Low version 2025.1.x

The following list contains STIG settings that the hardening component applies to your
infrastructure. If a supported setting isn't applicable for your infrastructure, the hardening
component skips that setting, and moves on. For example, some STIG settings might not apply
to standalone servers. Organization-specific policies can also affect which settings the hardening
component applies, such as a requirement for administrators to review document settings.

For a complete list of Windows STIGs, see the STIGs Document Library. For information about how
to view the complete list, see STIG Viewing Tools.

• Windows Server 2022 STIG Version 2 Release 2

V-254335, V-254336, V-254337, V-254338, V-254351, V-254357, V-254363, and V-254481

• Windows Server 2019 STIG Version 3 Release 2

V-205691, V-205819, V-205858, V-205859, V-205860, V-205870, V-205871, and V-205923

• Windows Server 2016 STIG Version 2 Release 9

V-224916, V-224917, V-224918, V-224919, V-224931, V-224942, and V-225060

• Windows Server 2012 R2 MS STIG Version 3 Release 5

STIG hardening components 61

https://public.cyber.mil/stigs/downloads/?_dl_facet_stigs=windows
https://public.cyber.mil/stigs/srg-stig-tools/

EC2 Image Builder User Guide

V-225537, V-225536, V-225526, V-225525, V-225514, V-225511, V-225490, V-225489,
V-225488, V-225487, V-225485, V-225484, V-225483, V-225482, V-225481, V-225480,
V-225479, V-225476, V-225473, V-225468, V-225462, V-225460, V-225459, V-225412,
V-225394, V-225392, V-225376, V-225363, V-225362, V-225360, V-225359, V-225358,
V-225357, V-225355, V-225343, V-225342, V-225336, V-225335, V-225334, V-225333,
V-225332, V-225331, V-225330, V-225328, V-225327, V-225324, V-225319, V-225318, and
V-225250

• Microsoft .NET Framework 4.0 STIG Version 2 Release 2

No STIG settings are applied to the Microsoft .NET Framework for Category III vulnerabilities.

• Windows Firewall STIG Version 2 Release 2

V-241994, V-241995, V-241996, V-241999, V-242000, V-242001, V-242006, V-242007, and
V-242008

• Internet Explorer 11 STIG Version 2 Release 5

V-223016, V-223056, and V-223078

• Microsoft Edge STIG Version 2 Release 2 (Windows Server 2022 only)

V-235727, V-235731, V-235751, V-235752, and V-235765

STIG-Build-Windows-Medium version 2025.1.x

The following list contains STIG settings that the hardening component applies to your
infrastructure. If a supported setting isn't applicable for your infrastructure, the hardening
component skips that setting, and moves on. For example, some STIG settings might not apply
to standalone servers. Organization-specific policies can also affect which settings the hardening
component applies, such as a requirement for administrators to review document settings.

For a complete list of Windows STIGs, see the STIGs Document Library. For information about how
to view the complete list, see STIG Viewing Tools.

Note

The STIG-Build-Windows-Medium hardening components include all listed STIG settings
that AWSTOE applies for STIG-Build-Windows-Low hardening components, in addition to
the STIG settings that are listed specifically for Category II vulnerabilities.

STIG hardening components 62

https://public.cyber.mil/stigs/downloads/?_dl_facet_stigs=windows
https://public.cyber.mil/stigs/srg-stig-tools/

EC2 Image Builder User Guide

• Windows Server 2022 STIG Version 2 Release 2

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities, plus:

V-254247, V-254265, V-254269, V-254270, V-254271, V-254272, V-254273, V-254274,
V-254276, V-254277, V-254278, V-254285, V-254286, V-254287, V-254288, V-254289,
V-254290, V-254291, V-254292, V-254300, V-254301, V-254302, V-254303, V-254304,
V-254305, V-254306, V-254307, V-254308, V-254309, V-254310, V-254311, V-254312,
V-254313, V-254314, V-254315, V-254316, V-254317, V-254318, V-254319, V-254320,
V-254321, V-254322, V-254323, V-254324, V-254325, V-254326, V-254327, V-254328,
V-254329, V-254330, V-254331, V-254332, V-254333, V-254334, V-254339, V-254341,
V-254342, V-254344, V-254345, V-254346, V-254347, V-254348, V-254349, V-254350,
V-254355, V-254356, V-254356, V-254358, V-254359, V-254360, V-254361, V-254362,
V-254364, V-254365, V-254366, V-254367, V-254368, V-254369, V-254370, V-254371,
V-254372, V-254373, V-254375, V-254376, V-254377, V-254379, V-254380, V-254382,
V-254383, V-254384, V-254431, V-254432, V-254433, V-254434, V-254435, V-254436,
V-254438, V-254439, V-254442, V-254443, V-254444, V-254445, V-254449, V-254450,
V-254451, V-254452, V-254453, V-254454, V-254455, V-254456, V-254459, V-254460,
V-254461, V-254462, V-254463, V-254464, V-254468, V-254470, V-254471, V-254472,
V-254473, V-254476, V-254477, V-254478, V-254479, V-254480, V-254482, V-254483,
V-254484, V-254485, V-254486, V-254487, V-254488, V-254489, V-254490, V-254493,
V-254494, V-254495, V-254497, V-254499, V-254501, V-254502, V-254503, V-254504,
V-254505, V-254507, V-254508, V-254509, V-254510, V-254511, and V-254512

• Windows Server 2019 STIG Version 3 Release 2

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities, plus:

V-205625, V-205626, V-205627, V-205629, V-205630, V-205633, V-205634, V-205635,
V-205636, V-205637, V-205638, V-205639, V-205643, V-205644, V-205648, V-205649,
V-205650, V-205651, V-205652, V-205655, V-205656, V-205659, V-205660, V-205662,
V-205671, V-205672, V-205673, V-205675, V-205676, V-205678, V-205679, V-205680,
V-205681, V-205682, V-205683, V-205684, V-205685, V-205686, V-205687, V-205688,
V-205689, V-205690, V-205692, V-205693, V-205694, V-205697, V-205698, V-205708,
V-205709, V-205712, V-205714, V-205716, V-205717, V-205718, V-205719, V-205720,
V-205722, V-205729, V-205730, V-205733, V-205747, V-205751, V-205752, V-205754,
V-205756, V-205758, V-205759, V-205760, V-205761, V-205762, V-205764, V-205765,

STIG hardening components 63

EC2 Image Builder User Guide

V-205766, V-205767, V-205768, V-205769, V-205770, V-205771, V-205772, V-205773,
V-205774, V-205775, V-205776, V-205777, V-205778, V-205779, V-205780, V-205781,
V-205782, V-205783, V-205784, V-205795, V-205796, V-205797, V-205798, V-205801,
V-205808, V-205809, V-205810, V-205811, V-205812, V-205813, V-205814, V-205815,
V-205816, V-205817, V-205821, V-205822, V-205823, V-205824, V-205825, V-205826,
V-205827, V-205828, V-205830, V-205832, V-205833, V-205834, V-205835, V-205836,
V-205837, V-205838, V-205839, V-205840, V-205841, V-205842, V-205861, V-205863,
V-205865, V-205866, V-205867, V-205868, V-205869, V-205872, V-205873, V-205874,
V-205911, V-205912, V-205915, V-205916, V-205917, V-205918, V-205920, V-205921,
V-205922, V-205924, V-205925, V-236001, and V-257503

• Windows Server 2016 STIG Version 2 Release 9

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities, plus:

V-224850, V-224852, V-224853, V-224854, V-224855, V-224856, V-224857, V-224858,
V-224859, V-224866, V-224867, V-224868, V-224869, V-224870, V-224871, V-224872,
V-224873, V-224881, V-224882, V-224883, V-224884, V-224885, V-224886, V-224887,
V-224888, V-224889, V-224890, V-224891, V-224892, V-224893, V-224894, V-224895,
V-224896, V-224897, V-224898, V-224899, V-224900, V-224901, V-224902, V-224903,
V-224904, V-224905, V-224906, V-224907, V-224908, V-224909, V-224910, V-224911,
V-224912, V-224913, V-224914, V-224915, V-224920, V-224922, V-224924, V-224925,
V-224926, V-224927, V-224928, V-224929, V-224930, V-224935, V-224936, V-224937,
V-224938, V-224939, V-224940, V-224941, V-224943, V-224944, V-224945, V-224946,
V-224947, V-224948, V-224949, V-224951, V-224952, V-224953, V-224955, V-224956,
V-224957, V-224959, V-224960, V-224962, V-224963, V-225010, V-225013, V-225014,
V-225015, V-225016, V-225017, V-225018, V-225019, V-225021, V-225022, V-225023,
V-225024, V-225028, V-225029, V-225030, V-225031, V-225032, V-225033, V-225034,
V-225035, V-225038, V-225039, V-225040, V-225041, V-225042, V-225043, V-225047,
V-225049, V-225050, V-225051, V-225052, V-225055, V-225056, V-225057, V-225058,
V-225059, V-225061, V-225062, V-225063, V-225064, V-225065, V-225066, V-225067,
V-225068, V-225069, V-225072, V-225073, V-225074, V-225076, V-225078, V-225080,
V-225081, V-225082, V-225083, V-225084, V-225086, V-225087, V-225088, V-225089,
V-225092, V-225093, V-236000, and V-257502

• Windows Server 2012 R2 MS STIG Version 3 Release 5

STIG hardening components 64

EC2 Image Builder User Guide

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities, plus:

V-225574, V-225573, V-225572, V-225571, V-225570, V-225569, V-225568, V-225567,
V-225566, V-225565, V-225564, V-225563, V-225562, V-225561, V-225560, V-225559,
V-225558, V-225557, V-225555, V-225554, V-225553, V-225551, V-225550, V-225549,
V-225548, V-225546, V-225545, V-225544, V-225543, V-225542, V-225541, V-225540,
V-225539, V-225538, V-225535, V-225534, V-225533, V-225532, V-225531, V-225530,
V-225529, V-225528, V-225527, V-225524, V-225523, V-225522, V-225521, V-225520,
V-225519, V-225518, V-225517, V-225516, V-225515, V-225513, V-225510, V-225509,
V-225508, V-225506, V-225504, V-225503, V-225502, V-225501, V-225500, V-225494,
V-225486, V-225478, V-225477, V-225475, V-225474, V-225472, V-225471, V-225470,
V-225469, V-225464, V-225463, V-225461, V-225458, V-225457, V-225456, V-225455,
V-225454, V-225453, V-225452, V-225448, V-225443, V-225442, V-225441, V-225415,
V-225414, V-225413, V-225411, V-225410, V-225409, V-225408, V-225407, V-225406,
V-225405, V-225404, V-225402, V-225401, V-225400, V-225398, V-225397, V-225395,
V-225393, V-225391, V-225389, V-225386, V-225385, V-225384, V-225383, V-225382,
V-225381, V-225380, V-225379, V-225378, V-225377, V-225375, V-225374, V-225373,
V-225372, V-225371, V-225370, V-225369, V-225368, V-225367, V-225356, V-225353,
V-225352, V-225351, V-225350, V-225349, V-225348, V-225347, V-225346, V-225345,
V-225344, V-225341, V-225340, V-225339, V-225338, V-225337, V-225329, V-225326,
V-225325, V-225317, V-225316, V-225315, V-225314, V-225305, V-225304, V-225303,
V-225302, V-225301, V-225300, V-225299, V-225298, V-225297, V-225296, V-225295,
V-225294, V-225293, V-225292, V-225291, V-225290, V-225289, V-225288, V-225287,
V-225286, V-225285, V-225284, V-225283, V-225282, V-225281, V-225280, V-225279,
V-225278, V-225277, V-225276, V-225275, V-225273, V-225272, V-225271, V-225270,
V-225269, V-225268, V-225267, V-225266, V-225265, V-225264, V-225263, V-225261,
V-225260, V-225259, and V-225239

• Microsoft .NET Framework 4.0 STIG Version 2 Release 2

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities, plus V-225238

• Windows Firewall STIG Version 2 Release 2

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities, plus:

STIG hardening components 65

EC2 Image Builder User Guide

V-241989, V-241990, V-241991, V-241993, V-241993, V-241998, V-241998, V-242003, and
V-242003

• Internet Explorer 11 STIG Version 2 Release 5

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities, plus:

V-223015, V-223017, V-223018, V-223019, V-223020, V-223021, V-223022, V-223023,
V-223024, V-223025, V-223026, V-223027, V-223028, V-223029, V-223030, V-223031,
V-223032, V-223033, V-223034, V-223035, V-223036, V-223037, V-223038, V-223039,
V-223040, V-223041, V-223042, V-223043, V-223044, V-223045, V-223046, V-223048,
V-223049, V-223050, V-223051, V-223052, V-223053, V-223054, V-223055, V-223057,
V-223058, V-223059, V-223060, V-223061, V-223062, V-223063, V-223064, V-223065,
V-223066, V-223067, V-223068, V-223069, V-223070, V-223071, V-223072, V-223073,
V-223074, V-223075, V-223076, V-223077, V-223079, V-223080, V-223081, V-223082,
V-223083, V-223084, V-223085, V-223086, V-223087, V-223088, V-223089, V-223090,
V-223091, V-223092, V-223093, V-223094, V-223095, V-223096, V-223097, V-223098,
V-223099, V-223100, V-223101, V-223102, V-223103, V-223104, V-223105, V-223106,
V-223107, V-223108, V-223109, V-223110, V-223111, V-223112, V-223113, V-223114,
V-223115, V-223116, V-223117, V-223118, V-223119, V-223120, V-223121, V-223122,
V-223123, V-223124, V-223125, V-223126, V-223127, V-223128, V-223129, V-223130,
V-223131, V-223132, V-223133, V-223134, V-223135, V-223136, V-223137, V-223138,
V-223139, V-223140, V-223141, V-223142, V-223143, V-223144, V-223145, V-223146,
V-223147, V-223148, V-223149, V-250540, and V-250541

• Microsoft Edge STIG Version 2 Release 2 (Windows Server 2022 only)

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities, plus:

V-235720, V-235721, V-235723, V-235724, V-235725, V-235726, V-235728, V-235729,
V-235730, V-235732, V-235733, V-235734, V-235735, V-235736, V-235737, V-235738,
V-235739, V-235740, V-235741, V-235742, V-235743, V-235744, V-235745, V-235746,
V-235747, V-235748, V-235749, V-235750, V-235754, V-235756, V-235760, V-235761,
V-235763, V-235764, V-235766, V-235767, V-235768, V-235769, V-235770, V-235771,
V-235772, V-235773, V-235774, and V-246736

• Microsoft Defender STIG Version 2 Release 4

STIG hardening components 66

EC2 Image Builder User Guide

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities, plus:

V-213427, V-213429, V-213430, V-213431, V-213432, V-213433, V-213434, V-213435,
V-213436, V-213437, V-213438, V-213439, V-213440, V-213441, V-213442, V-213443,
V-213444, V-213445, V-213446, V-213447, V-213448, V-213449, V-213450, V-213451,
V-213455, V-213464, V-213465, and V-213466

STIG-Build-Windows-High version 2025.1.x

The following list contains STIG settings that the hardening component applies to your
infrastructure. If a supported setting isn't applicable for your infrastructure, the hardening
component skips that setting, and moves on. For example, some STIG settings might not apply
to standalone servers. Organization-specific policies can also affect which settings the hardening
component applies, such as a requirement for administrators to review document settings.

For a complete list of Windows STIGs, see the STIGs Document Library. For information about how
to view the complete list, see STIG Viewing Tools.

Note

The STIG-Build-Windows-High hardening components include all listed STIG settings that
AWSTOE applies for STIG-Build-Windows-Low and STIG-Build-Windows-Medium hardening
components, in addition to the STIG settings that are listed specifically for Category I
vulnerabilities.

• Windows Server 2022 STIG Version 2 Release 2

Includes all supported STIG settings that the hardening component applies for Categories II and
III (Medium and Low) vulnerabilities, plus:

V-254293, V-254352, V-254353, V-254354, V-254374, V-254378, V-254381, V-254446,
V-254465, V-254466, V-254467, V-254469, V-254474, V-254475, and V-254500

• Windows Server 2019 STIG Version 3 Release 2

Includes all supported STIG settings that the hardening component applies for Categories II and
III (Medium and Low) vulnerabilities, plus:

STIG hardening components 67

https://public.cyber.mil/stigs/downloads/?_dl_facet_stigs=windows
https://public.cyber.mil/stigs/srg-stig-tools/

EC2 Image Builder User Guide

V-205653, V-205654, V-205711, V-205713, V-205724, V-205725, V-205757, V-205802,
V-205804, V-205805, V-205806, V-205849, V-205908, V-205913, V-205914, and V-205919

• Windows Server 2016 STIG Version 2 Release 9

Includes all supported STIG settings that the hardening component applies for Categories II and
III (Medium and Low) vulnerabilities, plus:

V-224874, V-224932, V-224933, V-224934, V-224954, V-224958, V-224961, V-225025,
V-225044, V-225045, V-225046, V-225048, V-225053, V-225054, and V-225079

• Windows Server 2012 R2 MS STIG Version 3 Release 5

Includes all supported STIG settings that the hardening component applies for Categories II and
III (Medium and Low) vulnerabilities, plus:

V-225556, V-225552, V-225547, V-225507, V-225505, V-225498, V-225497, V-225496,
V-225493, V-225492, V-225491, V-225449, V-225444, V-225399, V-225396, V-225390,
V-225366, V-225365, V-225364, V-225354, and V-225274

• Microsoft .NET Framework 4.0 STIG Version 2 Release 2

Includes all supported STIG settings that the hardening component applies for Categories II
and III (Medium and Low) vulnerabilities for the Microsoft .NET Framework. No additional STIG
settings apply for Category I vulnerabilities.

• Windows Firewall STIG Version 2 Release 2

Includes all supported STIG settings that the hardening component applies for Categories II and
III (Medium and Low) vulnerabilities, plus:

V-241992, V-241997, and V-242002

• Internet Explorer 11 STIG Version 2 Release 5

V-252910

• Microsoft Edge STIG Version 2 Release 2 (Windows Server 2022 only)

Includes all supported STIG settings that the hardening component applies for Categories II and
III (Medium and Low) vulnerabilities, plus:

V-235758 and V-235759

• Microsoft Defender STIG Version 2 Release 4

STIG hardening components 68

EC2 Image Builder User Guide

Includes all supported STIG settings that the hardening component applies for Categories II and
III (Medium and Low) vulnerabilities, plus:

V-213426, V-213426, V-213452, V-213452, V-213452, V-213453, V-213453, and V-213453

STIG version history log for Windows

This section logs Windows hardening component version history for the quarterly STIG updates. To
see the changes and published versions for a quarter, choose the title to expand the information.

2025 Q1 changes - 05/04/2025:

Updated STIGS for Internet Explorer 11 STIG Version 2 Release 5 for all STIG components for the
2025 first quarter release.

• STIG-Build-Windows-Low version 2025.1.x

• STIG-Build-Windows-Medium version 2025.1.x

• STIG-Build-Windows-High version 2025.1.x

2024 Q4 changes - 02/04/2025:

Updated STIG versions and applied STIGS for the 2024 Q4 release as follows:

STIG-Build-Windows-Low version 2024.4.0

• Windows Server 2022 STIG Version 2 Release 2

• Windows Server 2019 STIG Version 3 Release 2

• Windows Server 2016 STIG Version 2 Release 9

• Windows Server 2012 R2 MS STIG Version 3 Release 5

• Microsoft .NET Framework 4.0 STIG Version 2 Release 2

• Windows Firewall STIG Version 2 Release 2

• Internet Explorer 11 STIG Version 2 Release 5

• Microsoft Edge STIG Version 2 Release 2 (Windows Server 2022 only)

STIG-Build-Windows-Medium version 2024.4.0

• Windows Server 2022 STIG Version 2 Release 2

STIG hardening components 69

EC2 Image Builder User Guide

• Windows Server 2019 STIG Version 3 Release 2

• Windows Server 2016 STIG Version 2 Release 9

• Windows Server 2012 R2 MS STIG Version 3 Release 5

• Microsoft .NET Framework 4.0 STIG Version 2 Release 2

• Windows Firewall STIG Version 2 Release 2

• Internet Explorer 11 STIG Version 2 Release 5

• Microsoft Edge STIG Version 2 Release 2 (Windows Server 2022 only)

• Defender STIG Version 2 Release 4

STIG-Build-Windows-High version 2024.4.0

• Windows Server 2022 STIG Version 2 Release 2

• Windows Server 2019 STIG Version 3 Release 2

• Windows Server 2016 STIG Version 2 Release 9

• Windows Server 2012 R2 MS STIG Version 3 Release 5

• Microsoft .NET Framework 4.0 STIG Version 2 Release 2

• Windows Firewall STIG Version 2 Release 2

• Internet Explorer 11 STIG Version 2 Release 5

• Microsoft Edge STIG Version 2 Release 2 (Windows Server 2022 only)

• Defender STIG Version 2 Release 4

2024 Q3 changes - 10/04/2023 (no changes):

There were no changes for Windows component STIGS for the 2024 third quarter release.

2024 Q2 changes - 05/10/2024 (no changes):

There were no changes for Windows component STIGS for the 2024 second quarter release.

2024 Q1 changes - 02/06/2024 (no changes):

There were no changes for Windows component STIGS for the 2024 first quarter release.

2023 Q4 changes - 12/04/2023 (no changes):

There were no changes for Windows component STIGS for the 2023 fourth quarter release.

STIG hardening components 70

EC2 Image Builder User Guide

2023 Q3 changes - 10/04/2023 (no changes):

There were no changes for Windows component STIGS for the 2023 third quarter release.

2023 Q2 changes - 05/03/2023 (no changes):

There were no changes for Windows component STIGS for the 2023 second quarter release.

2023 Q1 changes - 03/27/2023 (no changes):

There were no changes for Windows component STIGS for the 2023 first quarter release.

2022 Q4 changes - 02/01/2023:

Updated STIG versions and applied STIGS for the 2022 Q4 release as follows:

STIG-Build-Windows-Low version 2022.4.x

• Windows Server 2022 STIG Version 1 Release 1

• Windows Server 2019 STIG Version 2 Release 5

• Windows Server 2016 STIG Version 2 Release 5

• Windows Server 2012 R2 MS STIG Version 3 Release 5

• Microsoft .NET Framework 4.0 STIG Version 2 Release 2

• Windows Firewall STIG Version 2 Release 1

• Internet Explorer 11 STIG Version 2 Release 3

• Microsoft Edge STIG Version 1 Release 6 (Windows Server 2022 only)

STIG-Build-Windows-Medium version 2022.4.x

• Windows Server 2022 STIG Version 1 Release 1

• Windows Server 2019 STIG Version 2 Release 5

• Windows Server 2016 STIG Version 2 Release 5

• Windows Server 2012 R2 MS STIG Version 3 Release 5

• Microsoft .NET Framework 4.0 STIG Version 2 Release 2

• Windows Firewall STIG Version 2 Release 1

• Internet Explorer 11 STIG Version 2 Release 3

STIG hardening components 71

EC2 Image Builder User Guide

• Microsoft Edge STIG Version 1 Release 6 (Windows Server 2022 only)

• Defender STIG Version 2 Release 4 (Windows Server 2022 only)

STIG-Build-Windows-High version 2022.4.x

• Windows Server 2022 STIG Version 1 Release 1

• Windows Server 2019 STIG Version 2 Release 5

• Windows Server 2016 STIG Version 2 Release 5

• Windows Server 2012 R2 MS STIG Version 3 Release 5

• Microsoft .NET Framework 4.0 STIG Version 2 Release 2

• Windows Firewall STIG Version 2 Release 1

• Internet Explorer 11 STIG Version 2 Release 3

• Microsoft Edge STIG Version 1 Release 6 (Windows Server 2022 only)

• Defender STIG Version 2 Release 4 (Windows Server 2022 only)

2022 Q3 changes - 09/30/2022 (no changes):

There were no changes for Windows component STIGS for the 2022 third quarter release.

2022 Q2 changes - 08/02/2022:

Updated STIG versions and applied STIGS for the 2022 Q2 release.

STIG-Build-Windows-Low version 1.5.x

• Windows Server 2019 STIG Version 2 Release 4

• Windows Server 2016 STIG Version 2 Release 4

• Windows Server 2012 R2 MS STIG Version 3 Release 3

• Microsoft .NET Framework 4.0 STIG Version 2 Release 1

• Windows Firewall STIG Version 2 Release 1

• Internet Explorer 11 STIG Version 1 Release 19

STIG-Build-Windows-Medium version 1.5.x

• Windows Server 2019 STIG Version 2 Release 4

STIG hardening components 72

EC2 Image Builder User Guide

• Windows Server 2016 STIG Version 2 Release 4

• Windows Server 2012 R2 MS STIG Version 3 Release 3

• Microsoft .NET Framework 4.0 STIG Version 2 Release 1

• Windows Firewall STIG Version 2 Release 1

• Internet Explorer 11 STIG Version 1 Release 19

STIG-Build-Windows-High version 1.5.x

• Windows Server 2019 STIG Version 2 Release 4

• Windows Server 2016 STIG Version 2 Release 4

• Windows Server 2012 R2 MS STIG Version 3 Release 3

• Microsoft .NET Framework 4.0 STIG Version 2 Release 1

• Windows Firewall STIG Version 2 Release 1

• Internet Explorer 11 STIG Version 1 Release 19

2022 Q1 changes - 08/02/2022 (no changes):

There were no changes for Windows component STIGS for the 2022 first quarter release.

2021 Q4 changes - 12/20/2021:

Updated STIG versions and applied STIGS for the 2021 fourth quarter release.

STIG-Build-Windows-Low version 1.5.x

• Windows Server 2019 STIG Version 2 Release 3

• Windows Server 2016 STIG Version 2 Release 3

• Windows Server 2012 R2 MS STIG Version 3 Release 3

• Microsoft .NET Framework 4.0 STIG Version 2 Release 1

• Windows Firewall STIG Version 2 Release 1

• Internet Explorer 11 STIG Version 1 Release 19

STIG-Build-Windows-Medium version 1.5.x

• Windows Server 2019 STIG Version 2 Release 3

STIG hardening components 73

EC2 Image Builder User Guide

• Windows Server 2016 STIG Version 2 Release 3

• Windows Server 2012 R2 MS STIG Version 3 Release 3

• Microsoft .NET Framework 4.0 STIG Version 2 Release 1

• Windows Firewall STIG Version 2 Release 1

• Internet Explorer 11 STIG Version 1 Release 19

STIG-Build-Windows-High version 1.5.x

• Windows Server 2019 STIG Version 2 Release 3

• Windows Server 2016 STIG Version 2 Release 3

• Windows Server 2012 R2 MS STIG Version 3 Release 3

• Microsoft .NET Framework 4.0 STIG Version 2 Release 1

• Windows Firewall STIG Version 2 Release 1

• Internet Explorer 11 STIG Version 1 Release 19

2021 Q3 changes - 09/30/2021:

Updated STIG versions and applied STIGS for the 2021 third quarter release.

STIG-Build-Windows-Low version 1.4.x

• Windows Server 2019 STIG Version 2 Release 2

• Windows Server 2016 STIG Version 2 Release 2

• Windows Server 2012 R2 MS STIG Version 3 Release 2

• Microsoft .NET Framework 4.0 STIG Version 2 Release 1

• Windows Firewall STIG Version 1 Release 7

• Internet Explorer 11 STIG Version 1 Release 19

STIG-Build-Windows-Medium version 1.4.x

• Windows Server 2019 STIG Version 2 Release 2

• Windows Server 2016 STIG Version 2 Release 2

• Windows Server 2012 R2 MS STIG Version 3 Release 2

STIG hardening components 74

EC2 Image Builder User Guide

• Microsoft .NET Framework 4.0 STIG Version 2 Release 1

• Windows Firewall STIG Version 1 Release 7

• Internet Explorer 11 STIG Version 1 Release 19

STIG-Build-Windows-High version 1.4.x

• Windows Server 2019 STIG Version 2 Release 2

• Windows Server 2016 STIG Version 2 Release 2

• Windows Server 2012 R2 MS STIG Version 3 Release 2

• Microsoft .NET Framework 4.0 STIG Version 2 Release 1

• Windows Firewall STIG Version 1 Release 7

• Internet Explorer 11 STIG Version 1 Release 19

Linux STIG hardening components

This section contains information about Linux STIG hardening components, followed by a
version history log. If the Linux distribution doesn’t have STIG settings of its own, the hardening
component applies RHEL settings.

The Linux components have optional input parameters that help you customize the following
behaviors for your Linux instance.

• InstallPackages (string) If the value is No, the component does not install any additional
software packages. If the value is Yes, the component installs additional software packages that
are required for maximum compliance. The default is No.

• SetDoDConsentBanner (string) If the value is No, the DoD consent banner is not shown when
you attach to an instance that has one of the STIG Linux components installed. If the value is
Yes, the DoD consent banner is shown before you log in when you attach to an instance that has
one of the STIG Linux components installed. You must acknowledge the banner before you can
log in. The default is No.

For an example of the consent banner, see the Disclaimer Department of Defense Privacy and
Consent Notice that appears when you access the DLA Document Services website.

The hardening component applies supported STIG settings to the infrastructure based on the Linux
distribution, as follows:

STIG hardening components 75

https://dso.dla.mil/
https://dso.dla.mil/

EC2 Image Builder User Guide

Red Hat Enterprise Linux (RHEL) 7 STIG settings

• RHEL 7

• CentOS 7

• Amazon Linux 2 (AL2)

RHEL 8 STIG settings

• RHEL 8

• CentOS 8

• Amazon Linux 2023 (AL 2023)

RHEL 9 STIG settings

• RHEL 9

• CentOS Stream 9

STIG-Build-Linux-Low version 2025.1.x

The following list contains STIG settings that the hardening component applies to your
infrastructure. If a supported setting isn't applicable for your infrastructure, the hardening
component skips that setting, and moves on. For example, some STIG settings might not apply
to standalone servers. Organization-specific policies can also affect which settings the hardening
component applies, such as a requirement for administrators to review document settings.

For a complete list, see the STIGs Document Library. For information about how to view the
complete list, see STIG Viewing Tools.

RHEL 7 STIG Version 3 Release 15

• RHEL 7/CentOS 7/AL2

V-204452, V-204576, and V-204605

RHEL 8 STIG Version 2 Release 2

• RHEL 8/CentOS 8/AL 2023

STIG hardening components 76

https://public.cyber.mil/stigs/downloads/?_dl_facet_stigs=operating-systems%2Cunix-linux
https://public.cyber.mil/stigs/srg-stig-tools/

EC2 Image Builder User Guide

V-230241, V-230281, V-244527, V-230269, V-230270, V-230285, V-230346, V-230381,
V-230395, V-230491, V-230468, V-230469, V-230485, V-230486, V-230494, V-230495,
V-230496, V-230497, V-230498, V-230499, and V-230253

RHEL 9 STIG Version 2 Release 3

• RHEL 9/CentOS Stream 9

V-257782, V-257824, V-258138, V-258037, V-257880, V-257795, V-257796, V-258173,
V-258069, V-258076, V-258067, V-257946, and V-257947

Ubuntu 18.04 STIG Version 2 Release 15

V-219163, V-219164, V-219165, V-219172, V-219173, V-219174, V-219175, V-219178,
V-219180, V-219210, V-219301, V-219327, V-219332, and V-219333

Ubuntu 20.04 STIG Version 2 Release 2

V-238203, V-238202, V-238234, V-238235, V-238237, V-238323, V-238373, V-238221,
V-238222, V-238223, V-238224, V-238226, V-238362, V-238357, and V-238308

Ubuntu 22.04 STIG Version 2 Release 3

V-260479, V-260480, V-260481, V-260521, V-260520, V-260476, V-260472,V-260549, V-260550,
V-260551, V-260552, V-260581, and V-260596

Ubuntu 24.04 STIG Version 1 Release 1

V-270645, V-270646, V-270664, V-270820, V-270677, V-270690, V-270706, V-270710,
V-270695, V-270749, V-270752, and V-270818

STIG-Build-Linux-Medium version 2025.1.x

The following list contains STIG settings that the hardening component applies to your
infrastructure. If a supported setting isn't applicable for your infrastructure, the hardening
component skips that setting, and moves on. For example, some STIG settings might not apply
to standalone servers. Organization-specific policies can also affect which settings the hardening
component applies, such as a requirement for administrators to review document settings.

STIG hardening components 77

EC2 Image Builder User Guide

For a complete list, see the STIGs Document Library. For information about how to view the
complete list, see STIG Viewing Tools.

Note

The STIG-Build-Linux-Medium hardening components include all listed STIG settings that
AWSTOE applies for STIG-Build-Linux-Low hardening components, in addition to the STIG
settings that are listed specifically for Category II vulnerabilities.

RHEL 7 STIG Version 3 Release 15

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities for this Linux distribution, plus:

• RHEL 7/CentOS 7/AL2

V-204405, V-204406, V-204407, V-204408, V-204409, V-204410, V-204411, V-204412,
V-204413, V-204414, V-204415, V-204416, V-204417, V-204418, V-204422, V-204423,
V-204426, V-204427, V-204431, V-204434, V-204435, V-204437, V-204449, V-204450,
V-204451, V-204457, V-204466, V-204490, V-204491, V-204503, V-204507, V-204508,
V-204510, V-204511, V-204512, V-204514, V-204515, V-204516, V-204517, V-204521,
V-204524, V-204531, V-204536, V-204537, V-204538, V-204539, V-204540, V-204541,
V-204542, V-204543, V-204544, V-204545, V-204546, V-204547, V-204548, V-204549,
V-204550, V-204551, V-204552, V-204553, V-204554, V-204555, V-204556, V-204557,
V-204558, V-204559, V-204560, V-204562, V-204563, V-204564, V-204565, V-204566,
V-204567, V-204568, V-204572, V-204578, V-204579, V-204584, V-204585, V-204587,
V-204588, V-204589, V-204590, V-204591, V-204592, V-204593, V-204595, V-204596,
V-204597, V-204598, V-204599, V-204600, V-204601, V-204602, V-204609, V-204610,
V-204611, V-204612, V-204613, V-204614, V-204615, V-204616, V-204617, V-204619,
V-204622, V-204625, V-204630, V-204631, V-204633, V-233307, V-237634, V-237635,
V-251703, V-255925, V-255927, V-255928, and V-256970

RHEL 8 STIG Version 2 Release 2

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities for this Linux distribution, plus:

• RHEL 8/CentOS 8/AL 2023

STIG hardening components 78

https://public.cyber.mil/stigs/downloads/?_dl_facet_stigs=operating-systems%2Cunix-linux
https://public.cyber.mil/stigs/srg-stig-tools/

EC2 Image Builder User Guide

V-230238, V-230239, V-230257, V-230258, V-230259, V-230262, V-230273, V-230275,
V-230316, V-230325, V-230366, V-230478, V-230488, V-230489, V-230505, V-230523,
V-230550, V-230559, V-230560, V-230561, V-237640, V-244547, V-256974, V-230525,
V-244544, V-230248, V-230249, V-230250, V-230245, V-230246, V-230247, V-230397,
V-230399, V-230400, V-230401, V-244543, V-230228, V-230298, V-230387, V-230482,
V-230231, V-230233, V-230324, V-230365, V-230370, V-230373, V-230378, V-230383,
V-230236, V-230314, V-230315, V-244523, V-257258, V-230266, V-230267, V-230268,
V-230280, V-230310, V-230311, V-230312, V-230502, V-230532, V-230535, V-230536,
V-230537, V-230538, V-230539, V-230540, V-230541, V-230542, V-230543, V-230544,
V-230545, V-230546, V-230547, V-230548, V-230549, V-244550, V-244551, V-244552,
V-244553, V-244554, V-250317, V-251718, V-230237, V-230313, V-230356, V-230357,
V-230358, V-230359, V-230360, V-230361, V-230362, V-230363, V-230368, V-230369,
V-230375, V-230376, V-230377, V-244524, V-244533, V-251713, V-251717, V-251714,
V-251715, V-251716, V-230332, V-230333, V-230335, V-230337, V-230339, V-230341,
V-230343, V-230345, V-230240, V-230282, V-250315, V-250316, V-230255, V-230277,
V-230278, V-230348, V-230353, V-230386, V-230390, V-230392, V-230394, V-230396,
V-230393, V-230398, V-230402, V-230403, V-230404, V-230405, V-230406, V-230407,
V-230408, V-230409, V-230410, V-230411, V-230412, V-230413, V-230418, V-230419,
V-230421, V-230422, V-230423, V-230424, V-230425, V-230426, V-230427, V-230428,
V-230429, V-230430, V-230431, V-230432, V-230433, V-230434, V-230435, V-230436,
V-230437, V-230438, V-230439, V-230444, V-230446, V-230447, V-230448, V-230449,
V-230455, V-230456, V-230462, V-230463, V-230464, V-230465, V-230466, V-230467,
V-230471, V-230472, V-230473, V-230474, V-230480, V-230483, V-244542, V-230503,
V-230507, V-244525, V-230244, V-230286, V-230287, V-230288, V-230290, V-230291,
V-230296, V-230330, V-230382, V-230526, V-230527, V-230555, V-230556, V-244526,
V-244528, V-237642, V-237643, and V-251711

RHEL 9 STIG Version 2 Release 3

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities for this Linux distribution, plus:

• RHEL 9/CentOS Stream 9

V-257981, V-257780, V-257825, V-257827, V-257828, V-257829, V-257830, V-257831,
V-257832, V-257833, V-257834, V-257836, V-257838, V-257839, V-257840, V-257841,
V-257842, V-257882, V-257883, V-257884, V-257885, V-257889, V-257890, V-257891,

STIG hardening components 79

EC2 Image Builder User Guide

V-257892, V-257893, V-257894, V-257895, V-257896, V-257897, V-257898, V-257899,
V-257900, V-257901, V-257902, V-257903, V-257904, V-257905, V-257906, V-257907,
V-257908, V-257909, V-257910, V-257911, V-257912, V-257913, V-257914, V-257915,
V-257918, V-257919, V-257920, V-257921, V-257922, V-257923, V-257928, V-257929,
V-257930, V-257934, V-257935, V-257943, V-257948, V-257954, V-257978, V-257980,
V-258035, V-258041, V-258046, V-258052, V-258063, V-258068, V-258081, V-258082,
V-258083, V-258089, V-258120, V-258124, V-258126, V-258140, V-258141, V-258151,
V-258234, V-257886, V-257916, V-257917, V-257952, V-257936, V-257939, V-257940,
V-258036, V-258038, V-257887, V-257924, V-257925, V-258145, V-258152, V-258153,
V-258154, V-258156, V-258157, V-258158, V-258159, V-258160, V-258161, V-258162,
V-258163, V-258164, V-258165, V-258166, V-258167, V-258168, V-258169, V-258170,
V-258171, V-258172, V-258176, V-258177, V-258178, V-258179, V-258180, V-258181,
V-258182, V-258183, V-258184, V-258185, V-258186, V-258187, V-258188, V-258189,
V-258190, V-258191, V-258192, V-258193, V-258194, V-258195, V-258196, V-258197,
V-258198, V-258199, V-258200, V-258201, V-258202, V-258203, V-258204, V-258205,
V-258206, V-258207, V-258208, V-258209, V-258210, V-258211, V-258212, V-258213,
V-258214, V-258215, V-258216, V-258217, V-258218, V-258219, V-258220, V-258221,
V-258222, V-258223, V-258224, V-258225, V-258226, V-258227, V-258228, V-258229,
V-257781, V-257783, V-257786, V-257797, V-257798, V-257799, V-257800, V-257801,
V-257802, V-257803, V-257809, V-257810, V-257811, V-257812, V-257813, V-257815,
V-257816, V-257942, V-257957, V-257958, V-257959, V-257960, V-257961, V-257962,
V-257963, V-257964, V-257965, V-257966, V-257967, V-257968, V-257969, V-257970,
V-257971, V-257972, V-257973, V-257974, V-257975, V-257976, V-257977, V-258077,
V-258128, V-258129, V-258043, V-258049, V-258071, V-258072, V-258073, V-258074,
V-258075, V-258104, V-258105, V-258107, V-258108, V-258109, V-258110, V-258111,
V-258117, V-258119, V-257979, V-257982, V-257983, V-257985, V-257987, V-257988,
V-257992, V-257993, V-257994, V-257995, V-257996, V-257997, V-257998, V-257999,
V-258000, V-258001, V-258002, V-258003, V-258004, V-258005, V-258006, V-258007,
V-258008, V-258009, V-258010, V-258011, V-258130, V-257814, V-258054, V-258055,
V-258056, V-258057, V-258060, V-258070, V-258080, V-258088, V-258091, V-258092,
V-258093, V-258095, V-258097, V-258098, V-258099, V-258100, V-258101, V-258102,
V-258103, V-258112, V-258113, V-258114, V-258115, V-258116, V-258118, V-258233,
V-257951, V-257953, V-258142, V-258144, V-258146, V-258147, V-258148, V-258150,
V-258064, V-258065, V-258066, V-258232, V-258237, V-258239, V-258240, V-257788,
V-257790, V-257791, V-257792, V-257793, V-257794, V-257817, V-258175, V-257804,
V-257805, V-257806, V-257807, V-257808, V-258034, V-258039, V-257888, V-257926,

STIG hardening components 80

EC2 Image Builder User Guide

V-257927, V-257933, V-258084, V-258085, V-257949, V-258040, V-257818, V-257849,
V-258122, V-258123, V-258133, V-257944, V-258028, V-258079, V-258125, and V-258137

Ubuntu 18.04 STIG Version 2 Release 15

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities for this Linux distribution, plus:

V-219149, V-219155, V-219156, V-219160, V-219166, V-219168, V-219176, V-219181,
V-219184, V-219186, V-219188, V-219189, V-219190, V-219191, V-219192, V-219193,
V-219194, V-219195, V-219196, V-219197, V-219198, V-219199, V-219200, V-219201,
V-219202, V-219203, V-219204, V-219205, V-219206, V-219207, V-219208, V-219209,
V-219213, V-219214, V-219215, V-219216, V-219217, V-219218, V-219219, V-219220,
V-219221, V-219222, V-219223, V-219224, V-219225, V-219226, V-219227, V-219228,
V-219229, V-219230, V-219231, V-219232, V-219233, V-219234, V-219235, V-219236,
V-219238, V-219239, V-219240, V-219241, V-219242, V-219243, V-219244, V-219250,
V-219254, V-219257, V-219263, V-219264, V-219265, V-219266, V-219267, V-219268,
V-219269, V-219270, V-219271, V-219272, V-219273, V-219274, V-219275, V-219276,
V-219277, V-219279, V-219281, V-219287, V-219291, V-219297, V-219298, V-219299,
V-219300, V-219303, V-219304, V-219306, V-219309, V-219310, V-219311, V-219312,
V-219315, V-219318, V-219319, V-219323, V-219326, V-219328, V-219330, V-219331,
V-219335, V-219336, V-219337, V-219338, V-219339, V-219342, V-219344, V-233779,
V-233780, and V-255906

Ubuntu 20.04 STIG Version 2 Release 2

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities for this Linux distribution, plus:

V-238200, V-238205, V-238207, V-238231, V-238329, V-238337, V-238339, V-238340,
V-238344, V-238345, V-238346, V-238347, V-238348, V-238349, V-238350, V-238351,
V-238352, V-238371, V-238376, V-238377, V-238378, V-238209, V-238325, V-238330,
V-238333, V-238369, V-238230, V-238338, V-238341, V-238342, V-238343, V-238324,
V-238353, V-238228, V-238225, V-238227, V-238299, V-238238, V-238239, V-238240,
V-238241, V-238242, V-238244, V-238245, V-238246, V-238247, V-238248, V-238249,
V-238250, V-238251, V-238252, V-238253, V-238254, V-238255, V-238256, V-238257,
V-238258, V-238264, V-238268, V-238271, V-238277, V-238278, V-238279, V-238280,
V-238281, V-238282, V-238283, V-238284, V-238285, V-238286, V-238287, V-238288,

STIG hardening components 81

EC2 Image Builder User Guide

V-238289, V-238290, V-238291, V-238292, V-238293, V-238294, V-238295, V-238297,
V-238300, V-238301, V-238302, V-238304, V-238309, V-238310, V-238315, V-238316,
V-238317, V-238318, V-238319, V-238320, V-251505, V-238360, V-238210, V-238211,
V-238212, V-238213, V-238220, V-255912, V-238355, V-238236, V-238303, V-238356,
V-238359, V-238370, V-238334, and V-238232

Ubuntu 22.04 STIG Version 2 Release 3

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities for this Linux distribution, plus:

V-260546, V-260473, V-260474, V-260478, V-260485, V-260486, V-260487, V-260488,
V-260489, V-260490, V-260495, V-260496, V-260497, V-260498, V-260499, V-260500,
V-260508, V-260513, V-260522, V-260540, V-260542, V-260543, V-260547, V-260554,
V-260572, V-260590, V-260475, V-260491, V-260510, V-260511, V-260492, V-260493,
V-260494, V-260507, V-260591, V-260594, V-260597, V-260598, V-260599, V-260600,
V-260601, V-260602, V-260603, V-260604, V-260605, V-260606, V-260607, V-260608,
V-260609, V-260610, V-260611, V-260612, V-260613, V-260614, V-260615, V-260616,
V-260617, V-260618, V-260619, V-260620, V-260621, V-260622, V-260623, V-260624,
V-260625, V-260626, V-260627, V-260628, V-260629, V-260630, V-260631, V-260632,
V-260633, V-260634, V-260635, V-260636, V-260637, V-260638, V-260639, V-260640,
V-260641, V-260642, V-260643, V-260644, V-260645, V-260646, V-260647, V-260648,
V-260649, V-260471, V-260514, V-260553, V-260573, V-260576, V-260574, V-260560,
V-260561, V-260562, V-260563, V-260564, V-260565, V-260566, V-260567, V-260569,
V-260527, V-260528, V-260530, V-260533, V-260534, V-260575, V-260505, V-260506,
V-260512, V-260582, V-260584, V-260585, V-260586, V-260477, V-260545, V-260555,
V-260556, V-260557, V-260509, V-260588, V-260589, V-260537, V-260538, and V-260535

Ubuntu 24.04 STIG Version 1 Release 1

Includes all supported STIG settings that the hardening component applies for Category III (Low)
vulnerabilities for this Linux distribution, plus:

V-270649, V-270651, V-270652, V-270653, V-270654, V-270656, V-270657, V-270659,
V-270660, V-270661, V-270662, V-270663, V-270669, V-270672, V-270673, V-270674,
V-270676, V-270678, V-270679, V-270680, V-270681, V-270683, V-270684, V-270685,
V-270686, V-270687, V-270688, V-270689, V-270692, V-270693, V-270696, V-270697,
V-270698, V-270699, V-270700, V-270701, V-270702, V-270703, V-270704, V-270705,
V-270709, V-270715, V-270716, V-270718, V-270720, V-270721, V-270722, V-270723,

STIG hardening components 82

EC2 Image Builder User Guide

V-270724, V-270725, V-270726, V-270727, V-270728, V-270729, V-270730, V-270731,
V-270732, V-270733, V-270737, V-270739, V-270740, V-270741, V-270742, V-270743,
V-270746, V-270750, V-270753, V-270755, V-270756, V-270757, V-270758, V-270759,
V-270760, V-270765, V-270766, V-270767, V-270768, V-270769, V-270770, V-270771,
V-270772, V-270773, V-270775, V-270776, V-270777, V-270778, V-270779, V-270780,
V-270781, V-270782, V-270783, V-270784, V-270785, V-270786, V-270787, V-270788,
V-270789, V-270790, V-270791, V-270792, V-270793, V-270794, V-270795, V-270796,
V-270797, V-270798, V-270799, V-270800, V-270801, V-270802, V-270803, V-270804,
V-270805, V-270806, V-270807, V-270808, V-270809, V-270810, V-270811, V-270812,
V-270813, V-270814, V-270815, V-270821, V-270822, V-270823, V-270824, V-270825,
V-270826, V-270827, V-270828, V-270829, V-270830, V-270831, and V-270832

STIG-Build-Linux-High version 2025.1.x

The following list contains STIG settings that the hardening component applies to your
infrastructure. If a supported setting isn't applicable for your infrastructure, the hardening
component skips that setting, and moves on. For example, some STIG settings might not apply
to standalone servers. Organization-specific policies can also affect which settings the hardening
component applies, such as a requirement for administrators to review document settings.

For a complete list, see the STIGs Document Library. For information about how to view the
complete list, see STIG Viewing Tools.

Note

The STIG-Build-Linux-High hardening components include all listed STIG settings that
AWSTOE applies for STIG-Build-Linux-Low and STIG-Build-Linux-Medium hardening
components, in addition to the listed STIG settings that apply specifically for Category I
vulnerabilities.

RHEL 7 STIG Version 3 Release 15

Includes all supported STIG settings that the hardening component applies for Categories II and III
(Medium and Low) vulnerabilities for this Linux distribution, plus:

• RHEL 7/CentOS 7/AL2

V-204424, V-204425, V-204442, V-204443, V-204447, V-204448, V-204455, V-204497,
V-204502, V-204594, V-204620, and V-204621

STIG hardening components 83

https://public.cyber.mil/stigs/downloads/?_dl_facet_stigs=operating-systems%2Cunix-linux
https://public.cyber.mil/stigs/srg-stig-tools/

EC2 Image Builder User Guide

RHEL 8 STIG Version 2 Release 2

Includes all supported STIG settings that the hardening component applies for Categories II and III
(Medium and Low) vulnerabilities for this Linux distribution, plus:

• RHEL 8/CentOS 8/AL 2023

V-230223, V-230265, V-230529, V-230531, V-230264, V-230487, V-230492, V-230533,
V-230558, and V-244540

RHEL 9 STIG Version 2 Release 3

Includes all supported STIG settings that the hardening component applies for Categories II and III
(Medium and Low) vulnerabilities for this Linux distribution, plus:

• RHEL 9/CentOS Stream 9

V-257820, V-257821, V-257826, V-257835, V-257955, V-257956, V-258059, V-258230,
V-258238, V-257784, V-257785, V-257984, V-257986, V-258078, V-258094, and V-258235

Ubuntu 18.04 STIG Version 2 Release 15

Includes all supported STIG settings that the hardening component applies for Categories II and III
(Medium and Low) vulnerabilities for this Linux distribution, plus:

V-219157, V-219158, V-219177, V-219212, V-219308, V-219314, V-219316, V-251507, and
V-264388

Ubuntu 20.04 STIG Version 2 Release 2

Includes all supported STIG settings that the hardening component applies for Categories II and III
(Medium and Low) vulnerabilities for this Linux distribution, plus:

V-238218, V-238219, V-238201, V-251504, V-238326, V-238327, and V-238380

Ubuntu 22.04 STIG Version 2 Release 3

Includes all supported STIG settings that the hardening component applies for Categories II and III
(Medium and Low) vulnerabilities for this Linux distribution, plus:

V-260482, V-260483, V-260523, V-260524, V-260469, V-260526, V-260529, V-260570,
V-260571, V-260579, and V-260539

STIG hardening components 84

EC2 Image Builder User Guide

Ubuntu 24.04 STIG Version 1 Release 1

Includes all supported STIG settings that the hardening component applies for Categories II and III
(Medium and Low) vulnerabilities for this Linux distribution, plus:

V-270647, V-270648, V-270665, V-270666, V-270708, V-270717, V-270711, V-270712,
V-270713, and V-270714

STIG version history log for Linux

This section logs Linux component version history. To see the changes and published versions for a
quarter, choose the title to expand the information.

2025 Q1 changes - 04/11/2025:

Updated the following STIG versions, applied STIGS for the 2025 first quarter release, and added
support for Ubuntu 24.04:

STIG-Build-Linux-Low version 2025.1.x

• RHEL 7 STIG Version 3 Release 15

• RHEL 8 STIG Version 2 Release 2

• RHEL 9 STIG Version 2 Release 3

• Ubuntu 18.04 STIG Version 2 Release 15

• Ubuntu 20.04 STIG Version 2 Release 2

• Ubuntu 22.04 STIG Version 2 Release 3

• Ubuntu 24.04 STIG Version 1 Release 1

STIG-Build-Linux-Medium version 2025.1.x

• RHEL 7 STIG Version 3 Release 15

• RHEL 8 STIG Version 2 Release 2

• RHEL 9 STIG Version 2 Release 3

• Ubuntu 18.04 STIG Version 2 Release 15

• Ubuntu 20.04 STIG Version 2 Release 2

• Ubuntu 22.04 STIG Version 2 Release 3

STIG hardening components 85

EC2 Image Builder User Guide

• Ubuntu 24.04 STIG Version 1 Release 1

STIG-Build-Linux-High version 2025.1.x

• RHEL 7 STIG Version 3 Release 15

• RHEL 8 STIG Version 2 Release 2

• RHEL 9 STIG Version 2 Release 3

• Ubuntu 18.04 STIG Version 2 Release 15

• Ubuntu 20.04 STIG Version 2 Release 2

• Ubuntu 22.04 STIG Version 2 Release 3

• Ubuntu 24.04 STIG Version 1 Release 1

2024 Q4 changes - 12/10/2024:

Updated the following STIG versions, applied STIGS for the 2024 fourth quarter release, and added
information about two new input parameters for the Linux components:

STIG-Build-Linux-Low version 2024.4.x

• RHEL 7 STIG Version 3 Release 15

• RHEL 8 STIG Version 2 Release 1

• RHEL 9 STIG Version 2 Release 2

• Ubuntu 18.04 STIG Version 2 Release 15

• Ubuntu 20.04 STIG Version 2 Release 1

• Ubuntu 22.04 STIG Version 2 Release 2

STIG-Build-Linux-Medium version 2024.4.x

• RHEL 7 STIG Version 3 Release 15

• RHEL 8 STIG Version 2 Release 1

• RHEL 9 STIG Version 2 Release 2

• Ubuntu 18.04 STIG Version 2 Release 15

• Ubuntu 20.04 STIG Version 2 Release 1

STIG hardening components 86

EC2 Image Builder User Guide

• Ubuntu 22.04 STIG Version 2 Release 2

STIG-Build-Linux-High version 2024.4.x

• RHEL 7 STIG Version 3 Release 15

• RHEL 8 STIG Version 2 Release 1

• RHEL 9 STIG Version 2 Release 2

• Ubuntu 18.04 STIG Version 2 Release 15

• Ubuntu 20.04 STIG Version 2 Release 1

• Ubuntu 22.04 STIG Version 2 Release 2

2024 Q3 changes - 10/04/2024 (no changes):

There were no changes for Linux component STIGS for the 2024 third quarter release.

2024 Q2 changes - 05/10/2024:

Updated STIG versions and applied STIGS for the 2024 second quarter release. Also added support
for RHEL 9, CentOS Stream 9, and Ubuntu 22.04, as follows:

STIG-Build-Linux-Low version 2024.2.x

• RHEL 7 STIG Version 3 Release 14

• RHEL 8 STIG Version 1 Release 14

• RHEL 9 STIG Version 1 Release 3

• Ubuntu 18.04 STIG Version 2 Release 14

• Ubuntu 20.04 STIG Version 1 Release 12

• Ubuntu 22.04 STIG Version 1 Release 1

STIG-Build-Linux-Medium version 2024.2.x

• RHEL 7 STIG Version 3 Release 14

• RHEL 8 STIG Version 1 Release 14

• RHEL 9 STIG Version 1 Release 3

• Ubuntu 18.04 STIG Version 2 Release 14

STIG hardening components 87

EC2 Image Builder User Guide

• Ubuntu 20.04 STIG Version 1 Release 12

• Ubuntu 22.04 STIG Version 1 Release 1

STIG-Build-Linux-High version 2024.2.x

• RHEL 7 STIG Version 3 Release 14

• RHEL 8 STIG Version 1 Release 14

• RHEL 9 STIG Version 1 Release 3

• Ubuntu 18.04 STIG Version 2 Release 14

• Ubuntu 20.04 STIG Version 1 Release 12

• Ubuntu 22.04 STIG Version 1 Release 1

2024 Q1 changes - 02/06/2024:

Updated STIG versions and applied STIGS for the 2024 first quarter release as follows:

STIG-Build-Linux-Low version 2024.1.x

• RHEL 7 STIG Version 3 Release 14

• RHEL 8 STIG Version 1 Release 13

• Ubuntu 18.04 STIG Version 2 Release 13

• Ubuntu 20.04 STIG Version 1 Release 11

STIG-Build-Linux-Medium version 2024.1.x

• RHEL 7 STIG Version 3 Release 14

• RHEL 8 STIG Version 1 Release 13

• Ubuntu 18.04 STIG Version 2 Release 13

• Ubuntu 20.04 STIG Version 1 Release 11

STIG-Build-Linux-High version 2024.1.x

• RHEL 7 STIG Version 3 Release 14

• RHEL 8 STIG Version 1 Release 13

STIG hardening components 88

EC2 Image Builder User Guide

• Ubuntu 18.04 STIG Version 2 Release 13

• Ubuntu 20.04 STIG Version 1 Release 11

2023 Q4 changes - 12/07/2023:

Updated STIG versions and applied STIGS for the 2023 fourth quarter release as follows:

STIG-Build-Linux-Low version 2023.4.x

• RHEL 7 STIG Version 3 Release 13

• RHEL 8 STIG Version 1 Release 12

• Ubuntu 18.04 STIG Version 2 Release 12

• Ubuntu 20.04 STIG Version 1 Release 10

STIG-Build-Linux-Medium version 2023.4.x

• RHEL 7 STIG Version 3 Release 13

• RHEL 8 STIG Version 1 Release 12

• Ubuntu 18.04 STIG Version 2 Release 12

• Ubuntu 20.04 STIG Version 1 Release 10

STIG-Build-Linux-High version 2023.4.x

• RHEL 7 STIG Version 3 Release 13

• RHEL 8 STIG Version 1 Release 12

• Ubuntu 18.04 STIG Version 2 Release 12

• Ubuntu 20.04 STIG Version 1 Release 10

2023 Q3 changes - 10/04/2023:

Updated STIG versions and applied STIGS for the 2023 third quarter release as follows:

STIG-Build-Linux-Low version 2023.3.x

• RHEL 7 STIG Version 3 Release 12

• RHEL 8 STIG Version 1 Release 11

STIG hardening components 89

EC2 Image Builder User Guide

• Ubuntu 18.04 STIG Version 2 Release 11

• Ubuntu 20.04 STIG Version 1 Release 9

STIG-Build-Linux-Medium version 2023.3.x

• RHEL 7 STIG Version 3 Release 12

• RHEL 8 STIG Version 1 Release 11

• Ubuntu 18.04 STIG Version 2 Release 11

• Ubuntu 20.04 STIG Version 1 Release 9

STIG-Build-Linux-High version 2023.3.x

• RHEL 7 STIG Version 3 Release 12

• RHEL 8 STIG Version 1 Release 11

• Ubuntu 18.04 STIG Version 2 Release 11

• Ubuntu 20.04 STIG Version 1 Release 9

2023 Q2 changes - 05/03/2023:

Updated STIG versions and applied STIGS for the 2023 second quarter release as follows:

STIG-Build-Linux-Low version 2023.2.x

• RHEL 7 STIG Version 3 Release 11

• RHEL 8 STIG Version 1 Release 10

• Ubuntu 18.04 STIG Version 2 Release 11

• Ubuntu 20.04 STIG Version 1 Release 8

STIG-Build-Linux-Medium version 2023.2.x

• RHEL 7 STIG Version 3 Release 11

• RHEL 8 STIG Version 1 Release 10

• Ubuntu 18.04 STIG Version 2 Release 11

• Ubuntu 20.04 STIG Version 1 Release 8

STIG hardening components 90

EC2 Image Builder User Guide

STIG-Build-Linux-High version 2023.2.x

• RHEL 7 STIG Version 3 Release 11

• RHEL 8 STIG Version 1 Release 10

• Ubuntu 18.04 STIG Version 2 Release 11

• Ubuntu 20.04 STIG Version 1 Release 8

2023 Q1 changes - 03/27/2023:

Updated STIG versions and applied STIGS for the 2023 first quarter release as follows:

STIG-Build-Linux-Low version 2023.1.x

• RHEL 7 STIG Version 3 Release 10

• RHEL 8 STIG Version 1 Release 9

• Ubuntu 18.04 STIG Version 2 Release 10

• Ubuntu 20.04 STIG Version 1 Release 7

STIG-Build-Linux-Medium version 2023.1.x

• RHEL 7 STIG Version 3 Release 10

• RHEL 8 STIG Version 1 Release 9

• Ubuntu 18.04 STIG Version 2 Release 10

• Ubuntu 20.04 STIG Version 1 Release 7

STIG-Build-Linux-High version 2023.1.x

• RHEL 7 STIG Version 3 Release 10

• RHEL 8 STIG Version 1 Release 9

• Ubuntu 18.04 STIG Version 2 Release 10

• Ubuntu 20.04 STIG Version 1 Release 7

2022 Q4 changes - 02/01/2023:

Updated STIG versions and applied STIGS for the 2022 fourth quarter release as follows:

STIG hardening components 91

EC2 Image Builder User Guide

STIG-Build-Linux-Low version 2022.4.x

• RHEL 7 STIG Version 3 Release 9

• RHEL 8 STIG Version 1 Release 8

• Ubuntu 18.04 STIG Version 2 Release 9

• Ubuntu 20.04 STIG Version 1 Release 6

STIG-Build-Linux-Medium version 2022.4.x

• RHEL 7 STIG Version 3 Release 9

• RHEL 8 STIG Version 1 Release 8

• Ubuntu 18.04 STIG Version 2 Release 9

• Ubuntu 20.04 STIG Version 1 Release 6

STIG-Build-Linux-High version 2022.4.x

• RHEL 7 STIG Version 3 Release 9

• RHEL 8 STIG Version 1 Release 8

• Ubuntu 18.04 STIG Version 2 Release 9

• Ubuntu 20.04 STIG Version 1 Release 6

2022 Q3 changes - 09/30/2022 (no changes):

There were no changes for Linux component STIGS for the 2022 third quarter release.

2022 Q2 changes - 08/02/2022:

Introduced Ubuntu support, updated STIG versions and applied STIGS for the 2022 second quarter
release as follows:

STIG-Build-Linux-Low version 2022.2.x

• RHEL 7 STIG Version 3 Release 7

• RHEL 8 STIG Version 1 Release 6

• Ubuntu 18.04 STIG Version 2 Release 6 (new)

STIG hardening components 92

EC2 Image Builder User Guide

• Ubuntu 20.04 STIG Version 1 Release 4 (new)

STIG-Build-Linux-Medium version 2022.2.x

• RHEL 7 STIG Version 3 Release 7

• RHEL 8 STIG Version 1 Release 6

• Ubuntu 18.04 STIG Version 2 Release 6 (new)

• Ubuntu 20.04 STIG Version 1 Release 4 (new)

STIG-Build-Linux-High version 2022.2.x

• RHEL 7 STIG Version 3 Release 7

• RHEL 8 STIG Version 1 Release 6

• Ubuntu 18.04 STIG Version 2 Release 6 (new)

• Ubuntu 20.04 STIG Version 1 Release 4 (new)

2022 Q1 changes - 04/26/2022:

Refactored to include better support for containers. Combined the previous AL2 script with RHEL 7.
Updated STIG versions and applied STIGS for the 2022 first quarter release as follows:

STIG-Build-Linux-Low version 3.6.x

• RHEL 7 STIG Version 3 Release 6

• RHEL 8 STIG Version 1 Release 5

STIG-Build-Linux-Medium version 3.6.x

• RHEL 7 STIG Version 3 Release 6

• RHEL 8 STIG Version 1 Release 5

STIG-Build-Linux-High version 3.6.x

• RHEL 7 STIG Version 3 Release 6

• RHEL 8 STIG Version 1 Release 5

STIG hardening components 93

EC2 Image Builder User Guide

2021 Q4 changes - 12/20/2021:

Updated STIG versions, and applied STIGS for the 2021 fourth quarter release as follows:

STIG-Build-Linux-Low version 3.5.x

• RHEL 7 STIG Version 3 Release 5

• RHEL 8 STIG Version 1 Release 4

STIG-Build-Linux-Medium version 3.5.x

• RHEL 7 STIG Version 3 Release 5

• RHEL 8 STIG Version 1 Release 4

STIG-Build-Linux-High version 3.5.x

• RHEL 7 STIG Version 3 Release 5

• RHEL 8 STIG Version 1 Release 4

2021 Q3 changes - 09/30/2021:

Updated STIG versions, and applied STIGS for the 2021 third quarter release as follows:

STIG-Build-Linux-Low version 3.4.x

• RHEL 7 STIG Version 3 Release 4

• RHEL 8 STIG Version 1 Release 3

STIG-Build-Linux-Medium version 3.4.x

• RHEL 7 STIG Version 3 Release 4

• RHEL 8 STIG Version 1 Release 3

STIG-Build-Linux-High version 3.4.x

• RHEL 7 STIG Version 3 Release 4

• RHEL 8 STIG Version 1 Release 3

STIG hardening components 94

EC2 Image Builder User Guide

SCAP compliance validator component

The Security Content Automation Protocol (SCAP) is a set of standards that IT professionals can
use to identify application security vulnerabilities for compliance. The SCAP Compliance Checker
(SCC) is a SCAP-validated scanning tool, released by the Naval Information Warfare Center (NIWC)
Atlantic. For more information, see Security Content Automation Protocol (SCAP) Compliance
Checker (SCC) on the NIWC Atlantic website.

The AWSTOE scap-compliance-checker-windows and scap-compliance-checker-linux
components download and install the SCC scanner on the pipeline build and test instances. When
the scanner runs, it performs authenticated configuration scans using DISA SCAP Benchmarks, and
provides a report that includes the following information. AWSTOE also writes the information to
your application logs.

• STIG settings that are applied to the instance.

• An overall compliance score for the instance.

We recommend that you run SCAP validation as the final step in your build process, to ensure that
you report accurate compliance validation results.

Note

You can review the reports with one of the STIG Viewing Tools. These tools are available
online via the DoD Cyber Exchange.

The following sections describe the benchmarks that the SCAP validation components include.

scap-compliance-checker-windows version 2024.03.0

The scap-compliance-checker-windows component runs on the EC2 instances that Image
Builder creates to build and test the image. AWSTOE logs both the report and the score that the
SCC application produces.

The component performs the following workflow steps:

1. Downloads and installs the SCC application.

2. Imports the compliance benchmarks.

3. Runs validation using the SCC application.

STIG hardening components 95

https://www.niwcatlantic.navy.mil/Technology/SCAP/
https://www.niwcatlantic.navy.mil/Technology/SCAP/
https://public.cyber.mil/stigs/srg-stig-tools/

EC2 Image Builder User Guide

4. Saves the compliance report and score locally on the build instance desktop.

5. Logs the compliance score from the local report to the AWSTOE application log files.

Note

AWSTOE currently supports SCAP compliance validation for Windows Server 2012 R2 MS,
2016, 2019, and 2022.

The SCAP compliance checker component for Windows includes the following benchmarks:

SCC Version: 5.10

2023 Q4 Benchmarks:

• U_MS_Defender_Antivirus_V2R5_STIG_SCAP_1-2_Benchmark

• U_MS_DotNet_Framework_4-0_V2R2_STIG_SCAP_1-2_Benchmark

• U_MS_IE11_V2R6_STIG_SCAP_1-2_Benchmark

• U_MS_Windows_2012_and_2012_R2_DC_V3R5_STIG_SCAP_1-2_Benchmark

• U_MS_Windows_2012_and_2012_R2_MS_V3R5_STIG_SCAP_1-2_Benchmark

• U_MS_Windows_Defender_Firewall_V2R3_STIG_SCAP_1-2_Benchmark

• U_MS_Windows_Server_2016_V2R7_STIG_SCAP_1-2_Benchmark

• U_MS_Windows_Server_2019_V3R2_STIG_SCAP_1-2_Benchmark

• U_MS_Windows_Server_2022_V2R2_STIG_SCAP_1-2_Benchmark

• U_CAN_Ubuntu_20-04_LTS_V1R10_STIG_SCAP_1-2_Benchmark

• U_RHEL_7_V3R15_STIG_SCAP_1-3_Benchmark

• U_RHEL_8_V1R13_STIG_SCAP_1-3_Benchmark

• U_RHEL_9_V2R1_STIG_SCAP_1-3_Benchmark

scap-compliance-checker-linux version 2021.04.0

The scap-compliance-checker-linux component runs on the EC2 instances that Image
Builder creates to build and test the image. AWSTOE logs both the report and the score that the
SCC application produces.

STIG hardening components 96

EC2 Image Builder User Guide

The component performs the following workflow steps:

1. Downloads and installs the SCC application.

2. Imports the compliance benchmarks.

3. Runs validation using the SCC application.

4. Saves the compliance report and score locally, in the following location on the build instance: /
opt/scc/SCCResults.

5. Logs the compliance score from the local report to the AWSTOE application log files.

Note

AWSTOE currently supports SCAP compliance validation for RHEL 7/8 and Ubuntu
18.04/20.04. The SCC application currently supports the x86 architecture for validation.

The SCAP compliance checker component for Linux includes the following benchmarks:

SCC Version: 5.10

2023 Q4 Benchmarks:

• U_CAN_Ubuntu_20-04_LTS_V1R10_STIG_SCAP_1-2_Benchmark

• U_RHEL_7_V3R15_STIG_SCAP_1-3_Benchmark

• U_RHEL_8_V1R13_STIG_SCAP_1-3_Benchmark

• U_RHEL_9_V2R1_STIG_SCAP_1-3_Benchmark

• U_MS_Defender_Antivirus_V2R5_STIG_SCAP_1-2_Benchmark

• U_MS_DotNet_Framework_4-0_V2R2_STIG_SCAP_1-2_Benchmark

• U_MS_IE11_V2R6_STIG_SCAP_1-2_Benchmark

• U_MS_Windows_2012_and_2012_R2_DC_V3R5_STIG_SCAP_1-2_Benchmark

• U_MS_Windows_2012_and_2012_R2_MS_V3R5_STIG_SCAP_1-2_Benchmark

• U_MS_Windows_Defender_Firewall_V2R3_STIG_SCAP_1-2_Benchmark

• U_MS_Windows_Server_2016_V2R7_STIG_SCAP_1-2_Benchmark

• U_MS_Windows_Server_2019_V3R2_STIG_SCAP_1-2_Benchmark

• U_MS_Windows_Server_2022_V2R2_STIG_SCAP_1-2_Benchmark

STIG hardening components 97

EC2 Image Builder User Guide

SCAP version history

The following table describes important changes to the SCAP environment and settings described
in this document.

Change Description Date

2025 Q1 SCAP
Updates

•
scap-compliance-checker-windows version 2024.03.0
(SCC Version: 5.10)

•
scap-compliance-checker-windows version 2025.01.0
(SCC Version: 5.10

April 11, 2025

2023 Q4 SCAP
Updates

•
scap-compliance-checker-windows version 2023.04.0
(SCC Version: 5.8)

•
scap-compliance-checker-windows version 2023.04.0
(SCC Version: 5.8)

December 20,
2021

2023 Q3 SCAP
Updates

•
scap-compliance-checker-windows version 2023.03.0
(SCC Version: 5.7.2)

•
scap-compliance-checker-linux version 2023.03.0 (SCC
Version: 5.7.2

November 13,
2023

Added SCAP
components

Introduced the following SCAP components:

•
Created scap-compliance-checker-linux version
2021.04.0 (SCC Version: 5.4.2)

•
Created scap-compliance-checker-linux version
2021.04.0 (SCC Version: 5.4.2)

December 20,
2021

STIG hardening components 98

EC2 Image Builder User Guide

Develop custom components for your Image Builder image

You can create your own components to customize your Image Builder images according to your
exact specifications. Use the following steps to develop custom components for your Image Builder
image or container recipes.

1. If you want to develop your component document and validate it locally, you can install the AWS
Task Orchestrator and Executor (AWSTOE) application and set it up on your local machine. For
more information, see Manual set up to develop custom components with AWSTOE.

2. Create a component document that uses the AWSTOE component document framework. For
more information about the document framework, see Use the AWSTOE component document
framework for custom components.

3. Specify your component document when you create a custom component. For more
information, see Create a custom component with Image Builder.

Topics

• Create a YAML component document for custom components in Image Builder

• Create a custom component with Image Builder

Create a YAML component document for custom components in Image
Builder

To build a component, you must provide a YAML or JSON application component document. The
document contains the code that runs during the phases and steps that you define to provide
customization for your image.

Some of the examples in this section create a build component that calls the UpdateOS action
module in the AWSTOE component management application. The module updates the operating
system. For more information about the UpdateOS action module, see UpdateOS.

The macOS operating system example uses the ExecuteBash action module to install and verify
the wget utility. The UpdateOS action module doesn't support macOS. For more information
about the ExecuteBash action module, see ExecuteBash. For more information about the phases,
steps, and syntax for AWSTOE application component documents, see Use documents in AWSTOE.

Develop custom components 99

https://docs.aws.amazon.com/imagebuilder/latest/userguide/toe-use-documents.html

EC2 Image Builder User Guide

Note

Image Builder determines the component type from the phases that are defined in the
component document as follows:

• Build – This is the default component type. Anything that is not classified as a test
component, is a build component. This type of component runs during the image Build
stage. If this build component has a test phase defined, that phase runs during the Test
stage.

• Test – To qualify as a test component, the component document must include only one
phase, named test. For tests that are related to build component configurations, we
recommend that you don't use a standalone test component. Rather, use the test phase
in the associated build component.

For more information about how Image Builder uses stages and phases to manage
component workflow in its build process, see Use components to customize your Image
Builder image.

To create a YAML application component document for a sample application, follow the steps on
the tab that matches your image operating system.

Linux

Create a YAML component file

Use a file editing tool to create your component document. Documentation examples use a file
named update-linux-os.yaml, with the following content:

Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: MIT-0
#
Permission is hereby granted, free of charge, to any person obtaining a copy of
 this
software and associated documentation files (the "Software"), to deal in the
 Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so.

Create a YAML component document 100

EC2 Image Builder User Guide

#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
name: update-linux-os
description: Updates Linux with the latest security updates.
schemaVersion: 1
phases:
 - name: build
 steps:
 - name: UpdateOS
 action: UpdateOS
Document End

Tip

Use a tool like this online YAML Validator, or a YAML lint extension in your code
environment to verify that your YAML is well-formed.

Windows

Create a YAML component file

Use a file editing tool to create your component document. Documentation examples use a file
named update-windows-os.yaml, with the following content:

Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: MIT-0
#
Permission is hereby granted, free of charge, to any person obtaining a copy of
 this
software and associated documentation files (the "Software"), to deal in the
 Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so.
#

Create a YAML component document 101

https://jsonformatter.org/yaml-validator

EC2 Image Builder User Guide

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
name: update-windows-os
description: Updates Windows with the latest security updates.
schemaVersion: 1.0
phases:
 - name: build
 steps:
 - name: UpdateOS
 action: UpdateOS
Document End

Tip

Use a tool like this online YAML Validator, or a YAML lint extension in your code
environment to verify that your YAML is well-formed.

macOS

Create a YAML component file

Use a file editing tool to create your component document. Documentation examples use a file
named wget-macos.yaml, with the following content:

name: WgetInstallDocument
description: This is wget installation document.
schemaVersion: 1.0

phases:
 - name: build
 steps:
 - name: WgetBuildStep
 action: ExecuteBash
 inputs:
 commands:
 - |

Create a YAML component document 102

https://jsonformatter.org/yaml-validator

EC2 Image Builder User Guide

 PATH=/usr/local/bin:$PATH
 sudo -u ec2-user brew install wget

 - name: validate
 steps:
 - name: WgetValidateStep
 action: ExecuteBash
 inputs:
 commands:
 - |
 function error_exit {
 echo $1
 echo "{\"failureMessage\":\"$2\"}"
 exit 1
 }

 type wget
 if [$? -ne 0]; then
 error_exit "$stderr" "Wget installation failed!"
 fi

 - name: test
 steps:
 - name: WgetTestStep
 action: ExecuteBash
 inputs:
 commands:
 - wget -h

Tip

Use a tool like this online YAML Validator, or a YAML lint extension in your code
environment to verify that your YAML is well-formed.

Create a custom component with Image Builder

After you've completed your component document, you can use it to create a custom component
that your Image Builder recipes can use. You can create a custom component from the Image
Builder console, from the API or SDKs, or from the command line. For more information about how

Create custom components with Image Builder 103

https://jsonformatter.org/yaml-validator

EC2 Image Builder User Guide

to create a custom component with input parameters and use it in your recipes, see Tutorial: Create
a custom component with input parameters.

The following sections show you how to create components from the console or from the AWS CLI.

Contents

• Create a custom component from the console

• Create a custom component from the AWS CLI

• Import a script to create a component from the AWS CLI

Create a custom component from the console

To create an AWSTOE application component from the Image Builder console, follow these steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Select Components from the navigation pane. Then select Create component.

3. On the Create component page, under Component details, enter the following:

a. Image Operating system (OS). Specify the operating system that the component is
compatible with.

b. Component category. From the dropdown, select the type of build or test component
that you are creating.

c. Component name. Enter a name for the component.

d. Component version. Enter the version number of the component.

e. Description. Provide an optional description to help you identify the component.

f. Change description. Provide an optional description to help you understand the changes
made to this version of the component.

4. In the Definition document section, the default option is Define document content. The
component document defines the actions that Image Builder performs on the build and test
instances to create your image.

In the Content box, enter your YAML component document content. To start with a Hello
World example for Linux, choose the Use example option. To learn more about how to create a
YAML component document, or to copy and paste the UpdateOS example from that page, see
Create a YAML component document for custom components in Image Builder.

5. After you enter the component details, select Create component.

Create custom components with Image Builder 104

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

Note

To see your new component when you create or update a recipe, apply the Owned
by me filter to the build or test component list. The filter is located at the top of the
component list, next to the search box.

6. To delete a component, from the Components page, select the check box next to the
component that you want to delete. From the Actions dropdown, select Delete component.

Update a component

To create a new component version, follow these steps:

1. Depending on where you start:

• From the Components list page – Select the check box next to the component name, then
select Create new version from the Actions menu.

• From the component detail page – Choose the Create new version button in the upper right
corner of the heading.

2. The component information is already populated with the current values when the Create
Component page displays. Follow the create a component steps to update the component.
This ensures that you enter a unique semantic version in the Component version. To learn
more about semantic versioning for Image Builder resources, see Semantic versioning in Image
Builder.

Create a custom component from the AWS CLI

In this section, you'll learn how to set up and use Image Builder commands in the AWS CLI to create
an AWSTOE application component, as follows.

• Upload your YAML component document to an S3 bucket that you can reference from the
command line.

• Create the AWSTOE application component with the create-component command.

• List component versions with the list-components command and a name filter to see what
versions already exist. You can use the output to determine what the next version should be for
updates.

Create custom components with Image Builder 105

EC2 Image Builder User Guide

To create an AWSTOE application component from an input YAML document, follow the steps that
match your image operating system platform.

Linux

Store your application component document in Amazon S3

You can use an S3 bucket as a repository for your AWSTOE application component source
document. To store your component document, follow these steps:

• Upload the document to Amazon S3

If your document is smaller than 64 KB, you can skip this step. Documents that are 64 KB or
larger in size must be stored in Amazon S3.

aws s3 cp update-linux-os.yaml s3://amzn-s3-demo-destination-bucket/my-
path/update-linux-os.yaml

Create a component from the YAML document

To streamline the create-component command that you use in the AWS CLI, create a JSON
file that contains all of the component parameters that you want to pass into the command.
Include the location of the update-linux-os.yaml document that you created earlier. The
uri key-value pair contains the file reference.

Note

The naming convention for the data values in the JSON file follows the pattern that
is specified for the Image Builder API operation request parameters. To review the API
command request parameters, see the CreateComponent command in the EC2 Image
Builder API Reference.
To provide the data values as command line parameters, refer to the parameter names
specified in the AWS CLI Command Reference.

1. Create a CLI input JSON file

Use a file editing tool to create a file named create-update-linux-os-
component.json. Include the following content:

Create custom components with Image Builder 106

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateComponent.html

EC2 Image Builder User Guide

{
 "name": "update-linux-os",
 "semanticVersion": "1.1.2",
 "description": "An example component that updates the Linux operating system",
 "changeDescription": "Initial version.",
 "platform": "Linux",
 "uri": "s3://amzn-s3-demo-destination-bucket/my-path/update-linux-os.yaml",
 "kmsKeyId": "arn:aws:kms:us-west-2:123456789012:key/98765432-
b123-456b-7f89-0123456f789c",
 "tags": {
 "MyTagKey-purpose": "security-updates"
 }
}

2. Create the component

Use the following command to create the component, referencing the file name for the
JSON file that you created in the prior step:

aws imagebuilder create-component --cli-input-json file://create-update-linux-
os-component.json

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use
the forward slash (/).

Windows

Store your application component document in Amazon S3

You can use an S3 bucket as a repository for your AWSTOE application component source
document. To store your component document, follow these steps:

Create custom components with Image Builder 107

EC2 Image Builder User Guide

• Upload the document to Amazon S3

If your document is smaller than 64 KB, you can skip this step. Documents that are 64 KB or
larger in size must be stored in Amazon S3.

aws s3 cp update-windows-os.yaml s3://amzn-s3-demo-destination-bucket/my-
path/update-windows-os.yaml

Create a component from the YAML document

To streamline the create-component command that you use in the AWS CLI, create a JSON
file that contains all of the component parameters that you want to pass into the command.
Include the location of the update-windows-os.yaml document that you created earlier. The
uri key-value pair contains the file reference.

Note

The naming convention for the data values in the JSON file follows the pattern that
is specified for the Image Builder API operation request parameters. To review the API
command request parameters, see the CreateComponent command in the EC2 Image
Builder API Reference.
To provide the data values as command line parameters, refer to the parameter names
specified in the AWS CLI Command Reference..

1. Create a CLI input JSON file

Use a file editing tool to create a file named create-update-windows-os-
component.json. Include the following content:

{
 "name": "update-windows-os",
 "semanticVersion": "1.1.2",
 "description": "An example component that updates the Windows operating
 system.",
 "changeDescription": "Initial version.",
 "platform": "Windows",
 "uri": "s3://amzn-s3-demo-destination-bucket/my-path/update-windows-os.yaml",

Create custom components with Image Builder 108

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateComponent.html

EC2 Image Builder User Guide

 "kmsKeyId": "arn:aws:kms:us-west-2:123456789012:key/98765432-
b123-456b-7f89-0123456f789c",
 "tags": {
 "MyTagKey-purpose": "security-updates"
 }
}

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use
the forward slash (/).

2. Create the component

Use the following command to create the component, referencing the file name for the
JSON file that you created in the prior step:

aws imagebuilder create-component --cli-input-json file://create-update-windows-
os-component.json

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use
the forward slash (/).

Create custom components with Image Builder 109

EC2 Image Builder User Guide

macOS

Store your application component document in Amazon S3

You can use an S3 bucket as a repository for your AWSTOE application component source
document. To store your component document, follow these steps:

• Upload the document to Amazon S3

If your document is smaller than 64 KB, you can skip this step. Documents that are 64 KB or
larger in size must be stored in Amazon S3.

aws s3 cp wget-macos.yaml s3://amzn-s3-demo-destination-bucket/my-path/wget-
macos.yaml

Create a component from the YAML document

To streamline the create-component command that you use in the AWS CLI, create a JSON
file that contains all of the component parameters that you want to pass into the command.
Include the location of the wget-macos.yaml document that you created earlier. The uri key-
value pair contains the file reference.

Note

The naming convention for the data values in the JSON file follows the pattern that
is specified for the Image Builder API operation request parameters. To review the API
command request parameters, see the CreateComponent command in the EC2 Image
Builder API Reference.
To provide the data values as command line parameters, refer to the parameter names
specified in the AWS CLI Command Reference.

1. Create a CLI input JSON file

Use a file editing tool to create a file named install-wget-macos-component.json.
Include the following content:

{
 "name": "install install-wget-macos-component",

Create custom components with Image Builder 110

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateComponent.html

EC2 Image Builder User Guide

 "semanticVersion": "1.1.2",
 "description": "An example component that installs and verifies the wget
 utility on macOS.",
 "changeDescription": "Initial version.",
 "platform": "macOS",
 "uri": "s3://amzn-s3-demo-destination-bucket/my-path/wget-macos.yaml",
 "kmsKeyId": "arn:aws:kms:us-west-2:123456789012:key/98765432-
b123-456b-7f89-0123456f789c",
 "tags": {
 "MyTagKey-purpose": "install-software"
 }
}

2. Create the component

Use the following command to create the component, referencing the file name for the
JSON file that you created in the prior step:

aws imagebuilder create-component --cli-input-json file://install-wget-macos-
component.json

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use
the forward slash (/).

AWSTOE component versioning for updates from the AWS CLI

AWSTOE component names and versions are embedded in the component's Amazon Resource
Name (ARN), after the component prefix. Each new version of a component has its own unique
ARN. The steps to create a new version are exactly the same as the steps to create a new
component, as long as the semantic version is unique for that component name. To learn more
about semantic versioning for Image Builder resources, see Semantic versioning in Image Builder.

Create custom components with Image Builder 111

EC2 Image Builder User Guide

To ensure that you assign the next logical version, first get a list of the existing versions for the
component that you want to change. Use the list-components command with the AWS CLI, and
filter on the name.

In this example, you filter on the name of the component that you created in the prior Linux
examples. To list the component that you created, use the value of the name parameter from the
JSON file that you used in the create-component command.

aws imagebuilder list-components --filters name="name",values="update-linux-os"
{
 "requestId": "123a4567-b890-123c-45d6-ef789ab0cd1e",
 "componentVersionList": [
 {
 "arn": "arn:aws:imagebuilder:us-west-2:1234560087789012:component/update-
linux-os/1.0.0",
 "name": "update-linux-os",
 "version": "1.0.0",
 "platform": "Linux",
 "type": "BUILD",
 "owner": "123456789012",
 "dateCreated": "2020-09-24T16:58:24.444Z"
 },
 {
 "arn": "arn:aws:imagebuilder:us-west-2:1234560087789012:component/update-
linux-os/1.0.1",
 "name": "update-linux-os",
 "version": "1.0.1",
 "platform": "Linux",
 "type": "BUILD",
 "owner": "123456789012",
 "dateCreated": "2021-07-10T03:38:46.091Z"
 }
]
}

Based on your results, you can determine what the next version should be.

Import a script to create a component from the AWS CLI

For some scenarios, it might be easier to start with a pre-existing script. For this scenario, you can
use the following example.

Create custom components with Image Builder 112

EC2 Image Builder User Guide

This example assumes that you have a file called import-component.json (as shown). Note that
the file directly references a PowerShell script called AdminConfig.ps1 that is already uploaded
to amzn-s3-demo-source-bucket. Currently, SHELL is supported for the component format.

{
"name": "MyImportedComponent",
"semanticVersion": "1.0.0",
"description": "An example of how to import a component",
"changeDescription": "First commit message.",
"format": "SHELL",
"platform": "Windows",
"type": "BUILD",
"uri": "s3://amzn-s3-demo-source-bucket/AdminConfig.ps1",
"kmsKeyId": "arn:aws:kms:us-west-2:123456789012:key/60763706-
b131-418b-8f85-3420912f020c"
}

To create the component from an imported script, run the following command.

aws imagebuilder import-component --cli-input-json file://import-component.json

Note

To avoid unexpected charges, make sure to clean up resources and pipelines that you
created from the examples in this guide. For more information about deleting resources in
Image Builder, see Delete outdated or unused Image Builder resources.

How Image Builder uses the AWS Task Orchestrator and
Executor application to manage components

EC2 Image Builder uses the AWS Task Orchestrator and Executor (AWSTOE) application to
orchestrate complex workflows, modify system configurations, and test your images without the
need for additional devops scripts or code. This application manages and runs components that
implement its declarative document schema.

AWSTOE is a standalone application that Image Builder installs on its build and test instances when
you create an image. You can also install it manually on EC2 instances to create your own custom
components. It doesn't require any additional setup, and can also run on premises.

AWSTOE component manager application 113

EC2 Image Builder User Guide

Contents

• AWSTOE downloads

• Supported Regions

• AWSTOE command reference

• Manual set up to develop custom components with AWSTOE

• Use the AWSTOE component document framework for custom components

• Action modules supported by AWSTOE component manager

• Configure input for the AWSTOE run command

AWSTOE downloads

To install AWSTOE, choose the download link for your architecture and platform. If you attach to a
VPC endpoint for your service (Image Builder, for example), it must have a custom endpoint policy
attached that includes access to the S3 bucket for AWSTOE downloads. Otherwise, your build and
test instances will not be able to download the bootstrap script (bootstrap.sh) and install the
AWSTOE application. For more information see Create a VPC endpoint policy for Image Builder.

Important

AWS is phasing out support for TLS versions 1.0 and 1.1. To access the S3 bucket for
AWSTOE downloads, your client software must use TLS version 1.2 or later. For more
information, see this AWS Security Blog post.

Architecture Platform Download link Example

386 AL 2 and 2023

RHEL 7, 8, and 9

Ubuntu 16.04, 18.04,
20.04, 22.04, and
24.04

CentOS 7 and 8

https://a
wstoe- <region>.s3.<region>.amazonaw
s.com/latest/
linux/386/awst
oe

https://awstoe-us
-east-1.s3.us-east
-1.amazonaws.com/
latest/linux/386/
awstoe

AWSTOE downloads 114

https://aws.amazon.com/blogs/security/tls-1-2-required-for-aws-endpoints/
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/386/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/386/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/386/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/386/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/386/awstoe

EC2 Image Builder User Guide

Architecture Platform Download link Example

SUSE 12 and 15

AMD64 AL 2 and 2023

RHEL 7, 8, and 9

Ubuntu 16.04, 18.04,
20.04, 22.04, and
24.04

CentOS 7 and 8

CentOS Stream 8

SUSE 12 and 15

https://a
wstoe- <region>.s3.<region>.amazonaw
s.com/latest/
linux/amd64/aw
stoe

https://awstoe-us
-east-1.s3.us-east
-1.amazonaws.com/
latest/linux/amd64/
awstoe

AMD64 macOS 10.14.x
(Mojave), 10.15.x
(Catalina), 11.x (Big
Sur), 12.x (Monterey)

https://a
wstoe- region.s3.region.amazonaw
s.com/latest/
darwin/amd64/a
wstoe

https://awstoe-us
-east-1.s3.us-east
-1.amazonaws.com/
latest/darwin/am
d64/awstoe

AMD64 Windows Server 2012
R2, 2016, 2019, and
2022

https://a
wstoe- <region>.s3.<region>.amazonaw
s.com/latest/
windows/amd64/
awstoe.exe

https://awstoe-us
-east-1.s3.us-east
-1.amazonaws.com/
latest/windows/a
md64/awstoe.exe

AWSTOE downloads 115

https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/amd64/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/amd64/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/amd64/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/amd64/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/amd64/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/darwin/amd64/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/darwin/amd64/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/darwin/amd64/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/darwin/amd64/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/darwin/amd64/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/windows/amd64/awstoe.exe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/windows/amd64/awstoe.exe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/windows/amd64/awstoe.exe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/windows/amd64/awstoe.exe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/windows/amd64/awstoe.exe

EC2 Image Builder User Guide

Architecture Platform Download link Example

ARM64 AL 2 and 2023

RHEL 7, 8, and 9

Ubuntu 16.04, 18.04,
20.04, 22.04, and
24.04

CentOS 7 and 8

CentOS Stream 8

SUSE 12 and 15

https://a
wstoe- <region>.s3.<region>.amazonaw
s.com/latest/
linux/arm64/aw
stoe

https://awstoe-us
-east-1.s3.us-east
-1.amazonaws.com/
latest/linux/arm64/
awstoe

Supported Regions

AWSTOE is supported as a standalone application in the following Regions.

AWS Region name AWS Region

US East (Ohio) us-east-2

US East (N. Virginia) us-east-1

AWS GovCloud (US-East) us-gov-east-1

AWS GovCloud (US-West) us-gov-west-1

US West (N. California) us-west-1

US West (Oregon) us-west-2

Africa (Cape Town) af-south-1

Asia Pacific (Hong Kong) ap-east-1

Asia Pacific (Osaka) ap-northeast-3

Supported Regions 116

https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/arm64/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/arm64/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/arm64/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/arm64/awstoe
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/arm64/awstoe

EC2 Image Builder User Guide

AWS Region name AWS Region

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Hyderabad) ap-south-2

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Jakarta) ap-southeast-3

Asia Pacific (Tokyo) ap-northeast-1

Canada (Central) ca-central-1

Europe (Frankfurt) eu-central-1

Europe (Zurich) eu-central-2

Europe (Stockholm) eu-north-1

Europe (Milan) eu-south-1

Europe (Spain) eu-south-2

Europe (Ireland) eu-west-1

Europe (London) eu-west-2

Europe (Paris) eu-west-3

Israel (Tel Aviv) il-central-1

Middle East (UAE) me-central-1

Middle East (Bahrain) me-south-1

South America (São Paulo) sa-east-1

Supported Regions 117

EC2 Image Builder User Guide

AWS Region name AWS Region

China (Beijing) cn-north-1

China (Ningxia) cn-northwest-1

AWSTOE command reference

AWSTOE is a command line component management application that runs on Amazon EC2
instances. When Image Builder launches an EC2 build or test instance, it installs AWSTOE on the
instance. Then it runs AWSTOE commands in the AWS CLI to install or validate the components
that are specified in the image or container recipe.

Note

Some AWSTOE action modules require elevated permissions to run on a Linux server.
To use elevated permissions, prefix the command syntax with sudo, or run the sudo su
command one time when you log in before running the commands linked below. For more
information about AWSTOE action modules, see Action modules supported by AWSTOE
component manager.

run

Use the run command to run the YAML document scripts for one or more component
documents.

validate

Run the validate command to validate the YAML document syntax for one or more component
documents.

awstoe run command

This command runs the YAML component document scripts in the order in which they are included
in the configuration file specified by the --config parameter, or the list of component documents
specified by the --documents parameter.

Command reference 118

EC2 Image Builder User Guide

Note

You must specify exactly one of the following parameters, never both:
--config
--documents

Syntax

awstoe run [--config <file path>] [--cw-ignore-failures <?>]
 [--cw-log-group <?>] [--cw-log-region us-west-2] [--cw-log-stream <?>]
 [--document-s3-bucket-owner <owner>] [--documents <file path,file path,...>]
 [--execution-id <?>] [--log-directory <file path>]
 [--log-s3-bucket-name <name>] [--log-s3-bucket-owner <owner>]
 [--log-s3-key-prefix <?>] [--parameters name1=value1,name2=value2...]
 [--phases <phase name>] [--state-directory <directory path>] [--version <?>]
 [--help] [--trace]

Parameters and options

Parameters

--config ./config-example.json

Short form: -c ./config-example.json

The configuration file (conditional). This parameter contains the file location for the JSON
file that contains configuration settings for the components this command is running. If you
specify run command settings in a configuration file, you must not specify the --documents
parameter. For more information about input configuration, see Configure input for the
AWSTOE run command.

Valid locations include:

• A local file path (./config-example.json)

• An S3 URI (s3://bucket/key)

--cw-ignore-failures

Short form: N/A

Ignore logging failures from the CloudWatch Logs.

Command reference 119

EC2 Image Builder User Guide

--cw-log-group

Short form: N/A

The LogGroup name for the CloudWatch Logs.

--cw-log-region

Short form: N/A

The AWS Region that applies to the CloudWatch Logs.

--cw-log-stream

Short form: N/A

The LogStream name for the CloudWatch Logs, that directs AWSTOE where to stream the
console.log file.

--document-s3-bucket-owner

Short form: N/A

The account ID of the bucket owner for S3 URI-based documents.

--documents ./doc-1.yaml,./doc-n.yaml

Short form: -d ./doc-1.yaml,./doc-n

The component documents (conditional). This parameter contains a comma-separated list of
file locations for the YAML component documents to run. If you specify YAML documents for
the run command using the --documents parameter, you must not specify the --config
parameter.

Valid locations include:

• local file paths (./component-doc-example.yaml).

• S3 URIs (s3://bucket/key).

• Image Builder component build version ARNs (arn:aws:imagebuilder:us-
west-2:123456789012:component/my-example-component/2021.12.02/1).

Note

There are no spaces between items in the list, only commas.

Command reference 120

EC2 Image Builder User Guide

--execution-id

Short form: -i

This is the unique ID that applies to the execution of the current run command. This ID is
included in output and log file names, to uniquely identify those files, and link them to the
current command execution. If this setting is left out, AWSTOE generates a GUID.

--log-directory

Short form: -l

The destination directory where AWSTOE stores all of the log files from this command
execution. By default, this directory is located inside of the following parent directory:
TOE_<DATETIME>_<EXECUTIONID>. If you do not specify the log directory, AWSTOE uses the
current working directory (.).

--log-s3-bucket-name

Short form: -b

If component logs are stored in Amazon S3 (recommended), AWSTOE uploads the component
application logs to the S3 bucket named in this parameter.

--log-s3-bucket-owner

Short form: N/A

If component logs are stored in Amazon S3 (recommended), this is the owner account ID for the
bucket where AWSTOE writes the log files.

--log-s3-key-prefix

Short form: -k

If component logs are stored in Amazon S3 (recommended), this is the S3 object key prefix for
the log location in the bucket.

--parameters name1=value1,name2=value2...

Short form: N/A

Parameters are mutable variables that are defined in the component document, with settings
that the calling application can provide at runtime.

Command reference 121

EC2 Image Builder User Guide

--phases

Short form: -p

A comma-separated list that specifies which phases to run from the YAML component
documents. If a component document includes additional phases, those will not run.

--state-directory

Short form: -s

The file path where state tracking files are stored.

--version

Short form: -v

Specifies the component application version.

Options

--help

Short form: -h

Displays a help manual for using the component management application options.

--trace

Short form: -t

Enables verbose logging to the console.

awstoe validate command

When you run this command, it validates the YAML document syntax for each of the component
documents specified by the --documents parameter.

Syntax

awstoe validate [--document-s3-bucket-owner <owner>]

Command reference 122

EC2 Image Builder User Guide

 --documents <file path,file path,...> [--help] [--trace]

Parameters and options

Parameters

--document-s3-bucket-owner

Short form: N/A

Source account ID of S3 URI-based documents provided.

--documents ./doc-1.yaml,./doc-n.yaml

Short form: -d ./doc-1.yaml,./doc-n

The component documents (required). This parameter contains a comma-separated list of file
locations for the YAML component documents to run. Valid locations include:

• local file paths (./component-doc-example.yaml)

• S3 URIs (s3://bucket/key)

• Image Builder component build version ARNs (arn:aws:imagebuilder:us-
west-2:123456789012:component/my-example-component/2021.12.02/1)

Note

There are no spaces between items in the list, only commas.

Options

--help

Short form: -h

Displays a help manual for using the component management application options.

--trace

Short form: -t

Enables verbose logging to the console.

Command reference 123

EC2 Image Builder User Guide

Manual set up to develop custom components with AWSTOE

The AWS Task Orchestrator and Executor (AWSTOE) application is a standalone application that
creates, validates, and runs commands within a component definition framework. AWS services can
use AWSTOE to orchestrate workflows, install software, modify system configurations, and test
image builds.

Follow these steps to manually install the AWSTOE application and use it as a stand-alone
application to develop custom components. Image Builder takes care of these steps for you, if
you use the Image Builder console or AWS CLI commands to create custom components. For more
information, see Create custom components with Image Builder.

Verify the signature of the AWSTOE installation download

This section describes the recommended process for verifying the validity of the installation
download for AWSTOE on Linux, macOS and Windows based operating systems.

Topics

• Verify the signature of the AWSTOE installation download on Linux or macOS

• Verify the signature of the AWSTOE installation download on Windows

Verify the signature of the AWSTOE installation download on Linux or macOS

This topic describes the recommended process for verifying the validity of the installation
download for the AWSTOE on Linux-based or macOS operating systems.

Whenever you download an application from the internet, we recommend that you authenticate
the identity of the software publisher. Also, check that the application is not altered or corrupted
since it was published. This protects you from installing a version of the application that contains a
virus or other malicious code.

If, after running the steps in this topic, you determine that the software for the AWSTOE
application is altered or corrupted, do not run the installation file. Instead, contact Support For
more information about your support options, see Support.

AWSTOE files for Linux-based and macOS operating systems are signed using GnuPG, an open
source implementation of the Pretty Good Privacy (OpenPGP) standard for secure digital
signatures. GnuPG (also known as GPG) provides authentication and integrity checking through a
digital signature. Amazon EC2 publishes a public key and signatures that you can use to verify the

Manual set up 124

https://aws.amazon.com/premiumsupport/

EC2 Image Builder User Guide

downloaded Amazon EC2 CLI tools. For more information about PGP and GnuPG (GPG), see http://
www.gnupg.org.

The first step is to establish trust with the software publisher. Download the public key of the
software publisher, check that the owner of the public key is who they claim to be, and then add
the public key to your keyring. Your keyring is a collection of known public keys. After you establish
the authenticity of the public key, you can use it to verify the signature of the application.

Topics

• Installing the GPG tools

• Authenticating and importing the public key

• Verify the signature of the package

Installing the GPG tools

If your operating system is Linux, Unix, or macOS, the GPG tools are likely already installed. To test
whether the tools are installed on your system, type gpg at a command prompt. If the GPG tools
are installed, you see a GPG command prompt. If the GPG tools are not installed, you see an error
message stating that the command cannot be found. You can install the GnuPG package from a
repository.

To install GPG tools, select the operating system that matches your instance.

Debian-based Linux

From a terminal, run the following command:

apt-get install gnupg

Red Hat–based Linux

From a terminal, run the following command:

yum install gnupg

macOS

From a terminal, run the following command:

brew install gnupg

Manual set up 125

https://www.gnupg.org/
https://www.gnupg.org/

EC2 Image Builder User Guide

Authenticating and importing the public key

The next step in the process is to authenticate the AWSTOE public key and add it as a trusted key in
your GPG keyring.

To authenticate and import the AWSTOE public key

1. Obtain a copy of our public GPG build key by doing one of the following:

• Download the key from

https://awstoe-<region>.s3.<region>.amazonaws.com/assets/awstoe.gpg. For example,
https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/assets/awstoe.gpg.

• Copy the key from the following text and paste it into a file called awstoe.gpg. Make sure
to include everything that follows:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2

mQENBF8UqwsBCACdiRF2bkZYaFSDPFC+LIkWLwFvtUCRwAHtD8KIwTJ6LVn3fHAU
GhuK0ZH9mRrqRT2bq/xJjGsnF9VqTj2AJqndGJdDjz75YCZYM+ocZ+r5HSJaeW9i
S5dykHj7Txti2zHe0G5+W0v7v5bPi2sPHsN7XWQ7+G2AMEPTz8PjxY//I0DvMQns
Sle3l9hz6wCClz1l9LbBzTyHfSm5ucTXvNe88XX5Gmt37OCDM7vfli0Ctv8WFoLN
6jbxuA/sV71yIkPm9IYp3+GvaKeT870+sn8/JOOKE/U4sJV1ppbqmuUzDfhrZUaw
8eW8IN9A1FTIuWiZED/5L83UZuQs1S7s2PjlABEBAAG0GkFXU1RPRSA8YXdzdG9l
QGFtYXpvbi5jb20+iQE5BBMBCAAjBQJfFKsLAhsDBwsJCAcDAgEGFQgCCQoLBBYC
AwECHgECF4AACgkQ3r3BVvWuvFJGiwf9EVmrBR77+Qe/DUeXZJYoaFr7If/fVDZl
6V3TC6p0J0Veme7uXleRUTFOjzbh+7e5sDX19HrnPquzCnzfMiqbp4lSoeUuNdOf
FcpuTCQH+M+sIEIgPno4PLl0Uj2uE1o++mxmonBl/Krk+hly8hB2L/9n/vW3L7BN
OMb1Ll9PmgGPbWipcT8KRdz4SUex9TXGYzjlWb3jU3uXetdaQY1M3kVKE1siRsRN
YYDtpcjmwbhjpu4xm19aFqNoAHCDctEsXJA/mkU3erwIRocPyjAZE2dnlkL9ZkFZ
z9DQkcIarbCnybDM5lemBbdhXJ6hezJE/b17VA0t1fY04MoEkn6oJg==
=oyze
-----END PGP PUBLIC KEY BLOCK-----

2. At a command prompt in the directory where you saved awstoe.gpg, use the following
command to import the AWSTOE public key into your keyring.

gpg --import awstoe.gpg

The command returns results that are similar to the following:

Manual set up 126

https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/assets/awstoe.gpg

EC2 Image Builder User Guide

gpg: key F5AEBC52: public key "AWSTOE <awstoe@amazon.com>" imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)

Make a note of the key value; you need it in the next step. In the preceding example, the key
value is F5AEBC52.

3. Verify the fingerprint by running the following command, replacing key-value with the value
from the preceding step:

gpg --fingerprint key-value

This command returns results similar to the following:

pub 2048R/F5AEBC52 2020-07-19
 Key fingerprint = F6DD E01C 869F D639 15E5 5742 DEBD C156 F5AE BC52
uid [unknown] AWSTOE <awstoe@amazon.com>

Additionally, the fingerprint string should be identical to F6DD E01C 869F D639 15E5
5742 DEBD C156 F5AE BC52, as shown in the preceding example. Compare the key
fingerprint that is returned to the one published on this page. They should match. If they don't
match, do not install the AWSTOE installation script, and contact Support.

Verify the signature of the package

After you install the GPG tools, authenticate and import the AWSTOE public key, and verify that the
public key is trusted, you are ready to verify the signature of the installation script.

To verify the installation script signature

1. At a command prompt, run the following command to download the application binary:

curl -O https://awstoe-<region>.s3.<region>.amazonaws.com/latest/
linux/<architecture>/awstoe

For example:

Manual set up 127

EC2 Image Builder User Guide

curl -O https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/amd64/
awstoe

Supported values for architecture can be amd64, 386, and arm64.

2. At a command prompt, run the following command to download the signature file for the
corresponding application binary from the same S3 key prefix path:

curl -O https://awstoe-<region>.s3.<region>.amazonaws.com/latest/
linux/<architecture>/awstoe.sig

For example:

curl -O https://awstoe-us-east-1.s3.us-east-1.amazonaws.com/latest/linux/amd64/
awstoe.sig

Supported values for architecture can be amd64, 386, and arm64.

3. Verify the signature by running the following command at a command prompt in the directory
where you saved awstoe.sig and the AWSTOE installation file. Both files must be present.

gpg --verify ./awstoe.sig ~/awstoe

The output should look something like the following:

gpg: Signature made Mon 20 Jul 2020 08:54:55 AM IST using RSA key ID F5AEBC52
gpg: Good signature from "AWSTOE awstoe@amazon.com" [unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: F6DD E01C 869F D639 15E5 5742 DEBD C156 F5AE BC52

If the output contains the phrase Good signature from "AWSTOE
<awstoe@amazon.com>", it means that the signature has successfully been verified, and you
can proceed to run the AWSTOE installation script.

If the output includes the phrase BAD signature, check whether you performed the
procedure correctly. If you continue to get this response, do not run the installation file that
you downloaded previously, and contact Support.

Manual set up 128

EC2 Image Builder User Guide

The following are details about the warnings that you might see:

• WARNING: This key is not certified with a trusted signature! There is no indication that the
signature belongs to the owner. Ideally, you would visit an AWS office and receive the key in
person. However, you would most likely download it from a website. In this case, the website is
an AWS website.

• gpg: no ultimately trusted keys found. This means that the specific key is not "ultimately
trusted" by you, or by other people that you trust.

For more information, see http://www.gnupg.org.

Verify the signature of the AWSTOE installation download on Windows

This topic describes the recommended process for verifying the validity of the installation file for
the AWS Task Orchestrator and Executor application on Windows-based operating systems.

Whenever you download an application from the internet, we recommend that you authenticate
the identity of the software publisher and check that the application is not altered or corrupted
since it was published. This protects you from installing a version of the application that contains a
virus or other malicious code.

If, after running the steps in this topic, you determine that the software for the AWSTOE
application is altered or corrupted, do not run the installation file. Instead, contact Support.

To verify the validity of the downloaded awstoe binary on Windows-based operating systems,
make sure that the thumbprint of its Amazon Services LLC signer certificate is equal to this value:

BA 81 25 EE AC 64 2E A9 F3 C5 93 CA 6D 3E B7 93 7D 68 75 74

Note

During the roll-out window for a new binary, your signer certificate might not match the
new thumbprint. If your signer certificate doesn't match, verify that the thumbprint value
is:
F8 83 11 EE F0 4A A2 91 E3 79 21 BA 6B FC AF F8 19 92 12 D7

To verify this value, perform the following procedure:

Manual set up 129

http://www.gnupg.org

EC2 Image Builder User Guide

1. Right-click the downloaded awstoe.exe, and open the Properties window.

2. Choose the Digital Signatures tab.

3. From the Signature List, choose Amazon Services LLC, and then choose Details.

4. Choose the General tab, if not already selected, and then choose View Certificate.

5. Choose the Details tab, and then choose All in the Show dropdown list, if not already selected.

6. Scroll down until you see the Thumbprint field and then choose Thumbprint. This displays the
entire thumbprint value in the lower window.

• If the thumbprint value in the lower window is identical to the following value:

BA 81 25 EE AC 64 2E A9 F3 C5 93 CA 6D 3E B7 93 7D 68 75 74

then your downloaded AWSTOE binary is authentic and can be safely installed.

• If the thumbprint value in the lower details window is not identical to the previous value, do
not run awstoe.exe.

Get started steps

• Step 1: Install AWSTOE

• Step 2: Set AWS credentials

• Step 3: Develop component documents locally

• Step 4: Validate AWSTOE components

• Step 5: Run AWSTOE components

Step 1: Install AWSTOE

To develop components locally, download and install the AWSTOE application.

1. Download the AWSTOE application

To install AWSTOE, choose the appropriate download link for your architecture and platform.
For the full list of application download links, see AWSTOE downloads

Manual set up 130

EC2 Image Builder User Guide

Important

AWS is phasing out support for TLS versions 1.0 and 1.1. To access the S3 bucket for
AWSTOE downloads, your client software must use TLS version 1.2 or later. For more
information, see this AWS Security Blog post.

2. Verify the signature

The steps for verifying your download depend on the server platform where you run the
AWSTOE application after you install it. To verify your download on a Linux server, see Verify
the signature on Linux or macOS. To verify your download on a Windows server, see Verify the
signature on Windows.

Note

AWSTOE is invoked directly from its download location. There is no need for a separate
install step. This also means that AWSTOE can make changes to the local environment.
To ensure that you isolate changes during component development, we recommend that
you use an EC2 instance to develop and test AWSTOE components.

Step 2: Set AWS credentials

AWSTOE requires AWS credentials to connect to other AWS services, such as Amazon S3 and
Amazon CloudWatch, when running tasks, such as:

• Downloading AWSTOE documents from a user-provided Amazon S3 path.

• Running S3Download or S3Upload action modules.

• Streaming logs to CloudWatch, when enabled.

If you are running AWSTOE on an EC2 instance, then running AWSTOE uses the same permissions
as the IAM role attached to the EC2 instance.

For more information about IAM roles for EC2, see IAM roles for Amazon EC2.

The following examples show how to set AWS credentials using the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY environment variables.

Manual set up 131

https://aws.amazon.com/blogs/security/tls-1-2-required-for-aws-endpoints/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

EC2 Image Builder User Guide

To set these variables on Linux, macOS, or Unix, use export.

export AWS_ACCESS_KEY_ID=your_access_key_id

export AWS_SECRET_ACCESS_KEY=your_secret_access_key

To set these variables on Windows using PowerShell, use $env.

$env:AWS_ACCESS_KEY_ID=your_access_key_id

$env:AWS_SECRET_ACCESS_KEY=your_secret_access_key

To set these variables on Windows using the command prompt, use set.

set AWS_ACCESS_KEY_ID=your_access_key_id

set AWS_SECRET_ACCESS_KEY=your_secret_access_key

Step 3: Develop component documents locally

Components are authored with plaintext YAML documents. For more information about document
syntax, see Use the AWSTOE component document framework for custom components.

The following are example Hello World component documents to help you get started.

Linux

Some of the Linux component examples in this guide refer to a component document file
named hello-world-linux.yml. You can use the following document to get started with
those examples.

name: Hello World
description: This is hello world testing document for Linux.
schemaVersion: 1.0
phases:
 - name: build
 steps:
 - name: HelloWorldStep
 action: ExecuteBash
 inputs:

Manual set up 132

EC2 Image Builder User Guide

 commands:
 - echo 'Hello World from the build phase.'
 - name: validate
 steps:
 - name: HelloWorldStep
 action: ExecuteBash
 inputs:
 commands:
 - echo 'Hello World from the validate phase.'
 - name: test
 steps:
 - name: HelloWorldStep
 action: ExecuteBash
 inputs:
 commands:
 - echo 'Hello World from the test phase.'

Windows

Some of the Windows component examples in this guide refer to a component document file
named hello-world-windows.yml. You can use the following document to get started with
those examples.

name: Hello World
description: This is Hello World testing document for Windows.
schemaVersion: 1.0
phases:
 - name: build
 steps:
 - name: HelloWorldStep
 action: ExecutePowerShell
 inputs:
 commands:
 - Write-Host 'Hello World from the build phase.'
 - name: validate
 steps:
 - name: HelloWorldStep
 action: ExecutePowerShell
 inputs:
 commands:
 - Write-Host 'Hello World from the validate phase.'
 - name: test
 steps:

Manual set up 133

EC2 Image Builder User Guide

 - name: HelloWorldStep
 action: ExecutePowerShell
 inputs:
 commands:
 - Write-Host 'Hello World from the test phase.'

macOS

Some of the macOS component examples in this guide refer to a component document file
named hello-world-macos.yml. You can use the following document to get started with
those examples.

name: Hello World
description: This is hello world testing document for macOS.
schemaVersion: 1.0
phases:
 - name: build
 steps:
 - name: HelloWorldStep
 action: ExecuteBash
 inputs:
 commands:
 - echo 'Hello World from the build phase.'
 - name: validate
 steps:
 - name: HelloWorldStep
 action: ExecuteBash
 inputs:
 commands:
 - echo 'Hello World from the validate phase.'
 - name: test
 steps:
 - name: HelloWorldStep
 action: ExecuteBash
 inputs:
 commands:
 - echo 'Hello World from the test phase.'

Manual set up 134

EC2 Image Builder User Guide

Step 4: Validate AWSTOE components

You can validate the syntax of AWSTOE components locally with the AWSTOE application. The
following examples show the AWSTOE application validate command to validate the syntax of a
component without running it.

Note

The AWSTOE application can validate only the component syntax for the current operating
system. For example, when running awstoe.exe on Windows, you cannot validate the
syntax for a Linux document that uses the ExecuteBash action module.

Linux or macOS

awstoe validate --documents /home/user/hello-world.yml

Windows

awstoe.exe validate --documents C:\Users\user\Documents\hello-world.yml

Step 5: Run AWSTOE components

The AWSTOE application can run one or more phases of specified documents using the --phases
command line argument. Supported values for --phases are build, validate, and test.
Multiple phase values can be entered as comma separated values.

When you provide a list of phases, the AWSTOE application sequentially runs the specified
phases of each document. For example, AWSTOE runs the build and validate phases of
document1.yaml, followed by the build and validate phases of document2.yaml.

To ensure that your logs are stored securely and retained for troubleshooting, we recommend
configuring log storage in Amazon S3. In Image Builder, the Amazon S3 location for publishing
logs is specified in the infrastructure configuration. For more information about infrastructure
configuration, see Manage Image Builder infrastructure configuration

If a list of phases is not provided, the AWSTOE application runs all phases in the order listed in the
YAML document.

Manual set up 135

EC2 Image Builder User Guide

To run specific phases in single or multiple documents, use the following commands.

Single phase

awstoe run --documents hello-world.yml --phases build

Multiple phases

awstoe run --documents hello-world.yml --phases build,test

Document run

Run all phases in a single document

awstoe run --documents documentName.yaml

Run all phases in multiple documents

awstoe run --documents documentName1.yaml,documentName2.yaml

Enter Amazon S3 information to upload AWSTOE logs from a user-defined local path
(recommended)

awstoe run --documents documentName.yaml --log-s3-bucket-name amzn-s3-demo-destination-
bucket --log-s3-key-prefix S3KeyPrefix --log-s3-bucket-owner S3BucketOwner --log-
directory local_path

Run all phases in a single document, and display all logs on the console

awstoe run --documents documentName.yaml --trace

Example command

awstoe run --documents s3://bucket/key/doc.yaml --phases build,validate

Run document with unique ID

awstoe run --documents documentName.yaml --execution-id user-provided-id --
phases build,test

Manual set up 136

EC2 Image Builder User Guide

Get help with AWSTOE

awstoe --help

Use the AWSTOE component document framework for custom
components

To build a component using the AWS Task Orchestrator and Executor (AWSTOE) component
framework, you must provide a YAML-based document that represents the phases and steps that
apply for the component you create. AWS services use your component when they create a new
Amazon Machine Image (AMI) or container image.

Topics

• Component document workflow

• Component logging

• Input and output chaining

• Document schema and definitions

• Document examples

• Use variables in your custom component document

• Use conditional constructs in AWSTOE

• Use comparison operators in AWSTOE component documents

• Use logical operators in AWSTOE component documents

• Use looping constructs in AWSTOE

Component document workflow

The AWSTOE component document uses phases and steps to group related tasks, and organize
those tasks into a logical workflow for the component.

Tip

The service that uses your component to build an image might implement rules about what
phases to use for their build process, and when those phases are allowed to run. This is
important to consider when you design your component.

Use the component document framework 137

EC2 Image Builder User Guide

Phases

Phases represent the progression of your workflow through the image build process. For example,
the Image Builder service uses build and validate phases during its build stage for the images it
produces. It uses the test and container-host-test phases during its test stage to ensure that
the image snapshot or container image produces the expected results before creating the final AMI
or distributing the container image.

When the component runs, the associated commands for each phase are applied in the order that
they appear in the component document.

Rules for phases

• Each phase name must be unique within a document.

• You can define many phases in your document.

• You must include at least one of the following phases in your document:

• build – for Image Builder, this phase is generally used during the build stage.

• validate – for Image Builder, this phase is generally used during the build stage.

• test – for Image Builder, this phase is generally used during the test stage.

• Phases always run in the order that they are defined in the document. The order in which they
are specified for AWSTOE commands in the AWS CLI has no effect.

Steps

Steps are individual units of work that define the workflow within each phase. Steps run in
sequential order. However, input or output for one step can also feed into a subsequent step as
input. This is called "chaining".

Rules for steps

• The step name must be unique for the phase.

• The step must use a supported action (action module) that returns an exit code.

For a complete list of supported action modules, how they work, input/output values, and
examples, see Action modules supported by AWSTOE component manager.

Use the component document framework 138

EC2 Image Builder User Guide

Component logging

AWSTOE creates a new log folder on the EC2 instances that are used for building and testing a
new image, each time your component runs. For container images, the log folder is stored in the
container.

To assist with troubleshooting if something goes wrong during the image creation process, the
input document and all of the output files AWSTOE creates while running the component are
stored in the log folder.

The log folder name is comprised of the following parts:

1. Log directory – when a service runs a AWSTOE component, it passes in the log directory, along
with other settings for the command. For the following examples, we show the log file format
that Image Builder uses.

• Linux and macOS: /var/lib/amazon/toe/

• Windows: $env:ProgramFiles\Amazon\TaskOrchestratorAndExecutor\

2. File prefix – This is a standard prefix used for all components: "TOE_".

3. Run time – This is a timestamp in YYYY-MM-DD_HH-MM-SS_UTC-0 format.

4. Execution ID – This is the GUID that is assigned when AWSTOE runs one or more components.

Example: /var/lib/amazon/
toe/TOE_2021-07-01_12-34-56_UTC-0_a1bcd2e3-45f6-789a-bcde-0fa1b2c3def4

AWSTOE stores the following core files in the log folder:

Input files

• document.yaml – The document that is used as input for the command. After the component
runs, this file is stored as an artifact.

Output files

• application.log – The application log contains timestamped debug level information from
AWSTOE about what's happening as the component is running.

• detailedoutput.json – This JSON file has detailed information about run status, inputs, outputs,
and failures for all documents, phases, and steps that apply for the component as it runs.

Use the component document framework 139

EC2 Image Builder User Guide

• console.log – The console log contains all of the standard out (stdout) and standard error
(stderr) information that AWSTOE writes to the console while the component is running.

• chaining.json – This JSON file represents optimizations that AWSTOE applied to resolve chaining
expressions.

Note

The log folder might also contain other temporary files that are not covered here.

Input and output chaining

The AWSTOE configuration management application provides a feature for chaining inputs and
outputs by writing references in the following formats:

{{ phase_name.step_name.inputs/outputs.variable }}

or

{{ phase_name.step_name.inputs/outputs[index].variable }}

The chaining feature allows you to recycle code and improve the maintainability of the document.

Rules for chaining

• Chaining expressions can be used only in the inputs section of each step.

• Statements with chaining expressions must be enclosed in quotes. For example:

• Invalid expression: echo {{ phase.step.inputs.variable }}

• Valid expression: "echo {{ phase.step.inputs.variable }}"

• Valid expression: 'echo {{ phase.step.inputs.variable }}'

• Chaining expressions can reference variables from other steps and phases in the same document.
However, the calling service might have rules that require chaining expressions to operate only
within the context of a single stage. For example, Image Builder does not support chaining from
the build stage to the test stage, as it runs each stage independently.

• Indexes in chaining expressions follow zero-based indexing. The index starts with zero (0) to
reference the first element.

Use the component document framework 140

EC2 Image Builder User Guide

Examples

To refer to the source variable in the second entry of the following example step, the chaining
pattern is {{ build.SampleS3Download.inputs[1].source }}.

phases:
 - name: 'build'
 steps:
 - name: SampleS3Download
 action: S3Download
 timeoutSeconds: 60
 onFailure: Abort
 maxAttempts: 3
 inputs:
 - source: 's3://sample-bucket/sample1.ps1'
 destination: 'C:\sample1.ps1'
 - source: 's3://sample-bucket/sample2.ps1'
 destination: 'C:\sample2.ps1'

To refer to the output variable (equal to "Hello") of the following example step, the chaining
pattern is {{ build.SamplePowerShellStep.outputs.stdout }}.

phases:
 - name: 'build'
 steps:
 - name: SamplePowerShellStep
 action: ExecutePowerShell
 timeoutSeconds: 120
 onFailure: Abort
 maxAttempts: 3
 inputs:
 commands:
 - 'Write-Host "Hello"'

Document schema and definitions

The following is the YAML schema for a document.

name: (optional)
description: (optional)
schemaVersion: "string"

Use the component document framework 141

EC2 Image Builder User Guide

phases:
 - name: "string"
 steps:
 - name: "string"
 action: "string"
 timeoutSeconds: integer
 onFailure: "Abort|Continue|Ignore"
 maxAttempts: integer
 inputs:

The schema definitions for a document are as follows.

Field Description Type Required

name Name of the
document.

String No

description Description of the
document.

String No

schemaVersion Schema version
of the document,
currently 1.0.

String Yes

phases A list of phases with
their steps.

List Yes

The schema definitions for a phase are as follows.

Field Description Type Required

name Name of the phase. String Yes

steps List of the steps in
the phase.

List Yes

The schema definitions for a step are as follows.

Use the component document framework 142

EC2 Image Builder User Guide

Field Description Type Required Default value

name User-defined
name for the
step.

String

action Keyword
pertaining to
the module that
runs the step.

String

timeoutSeconds Number of
seconds that the
step runs before
failing or retryin
g.

Also, supports
-1 value, which
indicates infinite
timeout. 0 and
other negative
values are not
allowed.

Integer No 7,200 sec (120
mins)

onFailure Specifies what
the step should
do in case of
failure. Valid
values are as
follows:

•
Abort – Fails
the step after
the maximum
number of
attempts,

String No Abort

Use the component document framework 143

EC2 Image Builder User Guide

Field Description Type Required Default value

and stops
running.
 Sets status
for phase and
document to
 Failed.

•
Continue
– Fails the
 step after
the maximum
number of
attempts, and
continues to
run remaining
steps. Sets
status for
phase and
 document to
Failed.

•
Ignore – Sets
the step to
IgnoredFa
ilure
after the the
maximum
number
 of failed
attempts, and
continues to
run remaining
steps. Sets
status for
phase and

Use the component document framework 144

EC2 Image Builder User Guide

Field Description Type Required Default value

document to
 SuccessWi
thIgnored
Failure .

maxAttempts Maximum
number of
attempts
allowed before
failing the step.

Integer No 1

inputs Contains
parameters
required by the
action module
to run the step.

Dict Yes

Document examples

The following examples show AWSTOE component documents that perform tasks for the target
operating system.

Linux

Example 1: Run a custom binary file

The following is an example document that downloads and runs a custom binary file on a Linux
instance.

name: LinuxBin
description: Download and run a custom Linux binary file.
schemaVersion: 1.0
phases:
 - name: build
 steps:
 - name: Download
 action: S3Download
 inputs:

Use the component document framework 145

EC2 Image Builder User Guide

 - source: s3://<replaceable>amzn-s3-demo-source-bucket</replaceable>/
<replaceable>myapplication</replaceable>
 destination: /tmp/<replaceable>myapplication</replaceable>
 - name: Enable
 action: ExecuteBash
 onFailure: Continue
 inputs:
 commands:
 - 'chmod u+x {{ build.Download.inputs[0].destination }}'
 - name: Install
 action: ExecuteBinary
 onFailure: Continue
 inputs:
 path: '{{ build.Download.inputs[0].destination }}'
 arguments:
 - '--install'
 - name: Delete
 action: DeleteFile
 inputs:
 - path: '{{ build.Download.inputs[0].destination }}'

Windows

Example 1: Install Windows updates

The following is an example document that installs all available Windows updates, runs a
configuration script, validates the changes before the AMI is created, and tests the changes
after the AMI is created.

name: RunConfig_UpdateWindows
description: 'This document will install all available Windows updates and run a
 config script. It will then validate the changes before an AMI is created. Then
 after AMI creation, it will test all the changes.'
schemaVersion: 1.0
phases:
 - name: build
 steps:
 - name: DownloadConfigScript
 action: S3Download
 timeoutSeconds: 60
 onFailure: Abort
 maxAttempts: 3
 inputs:

Use the component document framework 146

EC2 Image Builder User Guide

 - source: 's3://customer-bucket/config.ps1'
 destination: 'C:\config.ps1'

 - name: RunConfigScript
 action: ExecutePowerShell
 timeoutSeconds: 120
 onFailure: Abort
 maxAttempts: 3
 inputs:
 file: '{{build.DownloadConfigScript.inputs[0].destination}}'

 - name: Cleanup
 action: DeleteFile
 onFailure: Abort
 maxAttempts: 3
 inputs:
 - path: '{{build.DownloadConfigScript.inputs[0].destination}}'

 - name: RebootAfterConfigApplied
 action: Reboot
 inputs:
 delaySeconds: 60

 - name: InstallWindowsUpdates
 action: UpdateOS

 - name: validate
 steps:
 - name: DownloadTestConfigScript
 action: S3Download
 timeoutSeconds: 60
 onFailure: Abort
 maxAttempts: 3
 inputs:
 - source: 's3://customer-bucket/testConfig.ps1'
 destination: 'C:\testConfig.ps1'

 - name: ValidateConfigScript
 action: ExecutePowerShell
 timeoutSeconds: 120
 onFailure: Abort
 maxAttempts: 3
 inputs:
 file: '{{validate.DownloadTestConfigScript.inputs[0].destination}}'

Use the component document framework 147

EC2 Image Builder User Guide

 - name: Cleanup
 action: DeleteFile
 onFailure: Abort
 maxAttempts: 3
 inputs:
 - path: '{{validate.DownloadTestConfigScript.inputs[0].destination}}'

 - name: test
 steps:
 - name: DownloadTestConfigScript
 action: S3Download
 timeoutSeconds: 60
 onFailure: Abort
 maxAttempts: 3
 inputs:
 - source: 's3://customer-bucket/testConfig.ps1'
 destination: 'C:\testConfig.ps1'

 - name: ValidateConfigScript
 action: ExecutePowerShell
 timeoutSeconds: 120
 onFailure: Abort
 maxAttempts: 3
 inputs:
 file: '{{test.DownloadTestConfigScript.inputs[0].destination}}'

Example 2: Install the AWS CLI on a Windows instance

The following is an example document that installs the AWS CLI on a Windows instance, using
the setup file.

name: InstallCLISetUp
description: Install &CLI; using the setup file
schemaVersion: 1.0
phases:
 - name: build
 steps:
 - name: Download
 action: S3Download
 inputs:
 - source: s3://aws-cli/AWSCLISetup.exe
 destination: C:\Windows\temp\AWSCLISetup.exe

Use the component document framework 148

EC2 Image Builder User Guide

 - name: Install
 action: ExecuteBinary
 onFailure: Continue
 inputs:
 path: '{{ build.Download.inputs[0].destination }}'
 arguments:
 - '/install'
 - '/quiet'
 - '/norestart'
 - name: Delete
 action: DeleteFile
 inputs:
 - path: '{{ build.Download.inputs[0].destination }}'

Example 3: Install the AWS CLI with the MSI installer

The following is an example document that installs the AWS CLI with the MSI installer.

name: InstallCLIMSI
description: Install &CLI; using the MSI installer
schemaVersion: 1.0
phases:
 - name: build
 steps:
 - name: Download
 action: S3Download
 inputs:
 - source: s3://aws-cli/AWSCLI64PY3.msi
 destination: C:\Windows\temp\AWSCLI64PY3.msi
 - name: Install
 action: ExecuteBinary
 onFailure: Continue
 inputs:
 path: 'C:\Windows\System32\msiexec.exe'
 arguments:
 - '/i'
 - '{{ build.Download.inputs[0].destination }}'
 - '/quiet'
 - '/norestart'
 - name: Delete
 action: DeleteFile
 inputs:
 - path: '{{ build.Download.inputs[0].destination }}'

Use the component document framework 149

EC2 Image Builder User Guide

macOS

Example 1: Run a custom macOS binary file

The following is an example document that downloads and runs a custom binary file on a
macOS instance.

name: macOSBin
description: Download and run a binary file on macOS.
schemaVersion: 1.0
phases:
 - name: build
 steps:
 - name: Download
 action: S3Download
 inputs:
 - source: s3://<replaceable>amzn-s3-demo-source-bucket</replaceable>/
<replaceable>myapplication</replaceable>
 destination: /tmp/<replaceable>myapplication</replaceable>
 - name: Enable
 action: ExecuteBash
 onFailure: Continue
 inputs:
 commands:
 - 'chmod u+x {{ build.Download.inputs[0].destination }}'
 - name: Install
 action: ExecuteBinary
 onFailure: Continue
 inputs:
 path: '{{ build.Download.inputs[0].destination }}'
 arguments:
 - '--install'
 - name: Delete
 action: DeleteFile
 inputs:
 - path: '{{ build.Download.inputs[0].destination }}'

Use variables in your custom component document

Variables provide a way to label data with meaningful names that can be used throughout an
application. You can define custom variables with simple and readable formats for complex

Use the component document framework 150

EC2 Image Builder User Guide

workflows, and reference them in the YAML application component document for an AWSTOE
component.

This section provides information to help you define variables for your AWSTOE component in the
YAML application component document, including syntax, name constraints, and examples.

Constants

Constants are immutable variables that cannot be modified or overridden once defined. Constants
can be defined using values in the constants section of an AWSTOE document.

Rules for constant names

• The name must be between 3 and 128 characters in length.

• The name can only contain alphanumeric characters (a-z, A-Z, 0-9), dashes (-), or underscores (_).

• The name must be unique within the document.

• The name must be specified as a YAML string.

Syntax

constants:
 - <name>:
 type: <constant type>
 value: <constant value>

Key name Required Description

name Yes Name of the constant. Must
be unique for the document
(it must not be the same as
any other parameter names
or constants).

value Yes Value of the constant.

type Yes Type of the constant.
Supported type is string.

Use the component document framework 151

EC2 Image Builder User Guide

Reference constant values in a document

You can reference constants in step or loop inputs inside of your YAML document, as follows:

• Constant references are case-sensitive, and the name must match exactly.

• The name must be enclosed within double curly braces {{ MyConstant }}.

• Spaces are allowed within the curly braces, and are automatically trimmed. For example, all of
the following references are valid:

{{ MyConstant }}, {{ MyConstant}}, {{MyConstant }}, {{MyConstant}}

• The reference in the YAML document must be specified as a string (enclosed in single or double
quotes).

For example: - {{ MyConstant }} is not valid, as it is not identified as a string.

However, the following references are both valid: - '{{ MyConstant }}' and - "{{
MyConstant }}".

Examples

Constant referenced in step inputs

name: Download AWS CLI version 2
schemaVersion: 1.0
constants:
 - Source:
 type: string
 value: https://awscli.amazonaws.com/AWSCLIV2.msi
phases:
 - name: build
 steps:
 - name: Download
 action: WebDownload
 inputs:
 - source: '{{ Source }}'
 destination: 'C:\Windows\Temp\AWSCLIV2.msi'

Constant referenced in loop inputs

name: PingHosts

Use the component document framework 152

EC2 Image Builder User Guide

schemaVersion: 1.0
constants:
 - Hosts:
 type: string
 value: 127.0.0.1,amazon.com
phases:
 - name: build
 steps:
 - name: Ping
 action: ExecuteBash
 loop:
 forEach:
 list: '{{ Hosts }}'
 delimiter: ','
 inputs:
 commands:
 - ping -c 4 {{ loop.value }}

Parameters

Parameters are mutable variables, with settings that the calling application can provide at runtime.
You can define parameters in the Parameters section of the YAML document.

Rules for parameter names

• The name must be between 3 and 128 characters in length.

• The name can only contain alphanumeric characters (a-z, A-Z, 0-9), dashes (-), or underscores (_).

• The name must be unique within the document.

• The name must be specified as a YAML string.

Syntax

parameters:
 - <name>:
 type: <parameter type>
 default: <parameter value>
 description: <parameter description>

Use the component document framework 153

EC2 Image Builder User Guide

Key name Required Description

name Yes The name of the parameter
. Must be unique for the
document (it must not be the
same as any other parameter
names or constants).

type Yes The data type of the
parameter. Supported types
include: string.

default No The default value for the
parameter.

description No Describes the parameter.

Reference parameter values in a document

You can reference parameters in step or loop inputs inside of your YAML document, as follows:

• Parameter references are case-sensitive, and the name must match exactly.

• The name must be enclosed within double curly braces {{ MyParameter }}.

• Spaces are allowed within the curly braces, and are automatically trimmed. For example, all of
the following references are valid:

{{ MyParameter }}, {{ MyParameter}}, {{MyParameter }}, {{MyParameter}}

• The reference in the YAML document must be specified as a string (enclosed in single or double
quotes).

For example: - {{ MyParameter }} is not valid, as it is not identified as a string.

However, the following references are both valid: - '{{ MyParameter }}' and - "{{
MyParameter }}".

Examples

The following examples show how to use parameters in your YAML document:

Use the component document framework 154

EC2 Image Builder User Guide

• Refer to a parameter in step inputs:

name: Download AWS CLI version 2
schemaVersion: 1.0
parameters:
 - Source:
 type: string
 default: 'https://awscli.amazonaws.com/AWSCLIV2.msi'
 description: The AWS CLI installer source URL.
phases:
 - name: build
 steps:
 - name: Download
 action: WebDownload
 inputs:
 - source: '{{ Source }}'
 destination: 'C:\Windows\Temp\AWSCLIV2.msi'

• Refer to a parameter in loop inputs:

name: PingHosts
schemaVersion: 1.0
parameters:
 - Hosts:
 type: string
 default: 127.0.0.1,amazon.com
 description: A comma separated list of hosts to ping.
phases:
 - name: build
 steps:
 - name: Ping
 action: ExecuteBash
 loop:
 forEach:
 list: '{{ Hosts }}'
 delimiter: ','
 inputs:
 commands:
 - ping -c 4 {{ loop.value }}

Use the component document framework 155

EC2 Image Builder User Guide

Override parameters at runtime

You can use the --parameters option from the AWS CLI with a key-value pair to set a parameter
value at runtime.

• Specify the parameter key-value pair as the name and value, separated by an equals sign
(<name>=<value>).

• Multiple parameters must be separated by a comma.

• Parameter names that are not found in the YAML component document are ignored.

• The parameter name and value are both required.

Important

Component parameters are plain text values, and are logged in AWS CloudTrail. We
recommend that you use AWS Secrets Manager or the AWS Systems Manager Parameter
Store to store your secrets. For more information about Secrets Manager, see What is
Secrets Manager? in the AWS Secrets Manager User Guide. For more information about AWS
Systems Manager Parameter Store, see AWS Systems Manager Parameter Store in the AWS
Systems Manager User Guide.

Syntax

--parameters name1=value1,name2=value2...

CLI option Required Description

--parameters name=value,... No This option takes list of
key-value pairs, with the
parameter name as the key.

Examples

The following examples show how to use parameters in your YAML document:

• The parameter key-value pair specified in this --parameter option is not valid:

Use the component document framework 156

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

EC2 Image Builder User Guide

--parameters ntp-server=

• Set one parameter key-value pair with the --parameter option in the AWS CLI:

--parameters ntp-server=ntp-server-windows-qe.us-east1.amazon.com

• Set multiple parameter key-value pairs with the --parameter option in the AWS CLI:

--parameters ntp-server=ntp-server.amazon.com,http-url=https://internal-us-
east1.amazon.com

Use Systems Manager Parameter Store parameters

You can reference AWS Systems Manager Parameter Store parameters (SSM parameters) in your
component documents by prefixing variables with aws:ssm. For example,

{{ aws:ssm:/my/param }} resolves to the value of the SSM parameter /my/param.

This feature supports the following SSM parameter types:

• String – Maps to the AWSTOE string type.

• StringList – Maps to the AWSTOE stringList type.

• SecureString – Maps to the AWSTOE string type.

For more information about the Parameter Store see AWS Systems Manager Parameter Store in the
AWS Systems Manager User Guide.

You can also reference AWS Secrets Manager secrets using an SSM parameter SecureString. For
example: {{ aws:ssm:/aws/reference/secretsmanager/test/test-secret }}. For more
information, see Referencing AWS Secrets Manager secrets from Parameter Store parameters.

Important

Image Builder excludes SecureString parameter resolution from its logs. However,
you are also responsible for ensuring that sensitive information is not logged through
commands issued in the component document. For example, if you use the echo command
with a secure string, the command writes a plaintext value to the log.

Use the component document framework 157

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/integration-ps-secretsmanager.html

EC2 Image Builder User Guide

Required IAM permissions

To use Systems Manager parameters in your components, your instance role must have the
ssm:GetParameter permission for the parameter resource ARN. For example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ssm:GetParameter",
 "Resource": "arn:aws:ssm:*:111122223333:parameter/ImageBuilder-*"
 }
]
}

To access encrypted values, you'll also need the following permissions:

• Add kms:Decrypt for SecureString parameters or AWS Secrets Manager values that are
encrypted with a customer managed AWS KMS key.

• Add secretsmanager:GetSecretValue if you reference a Secrets Manager secret.

Reference an SSM parameter in a component document

The following example shows how to reference an Systems Manager Parameter Store parameter of
Systems Manager parameters in a component:

name: UseSSMParameterVariable
description: This is a sample component document that prints out the value of an SSM
 Parameter. Never do this for a SecureString parameter.
schemaVersion: 1.0

phases:
 - name: verify
 steps:
 - name: EchoParameterValue
 action: ExecuteBash
 inputs:
 commands:
 - echo "Log SSM parameter name: /my/test/param, value {{ aws:ssm:/my/test/
param }}."

Use the component document framework 158

EC2 Image Builder User Guide

Dynamic runtime variable resolution for SSM parameters

AWSTOE provides the following built-in function that you can use within variable references to
manipulate or transform values at runtime.

resolve function

The resolve function resolves a variable reference inside of another variable reference, allowing
for dynamic variable name referencing. This is useful when working with SSM parameters where
part of the parameter path may be variable and passed in as a document parameter.

The resolve function only supports dynamic resolution of the name portion of an SSM
parameter.

Syntax

The dynamic_variable in the following example represents the name of an SSM parameter, and
must be one of the following:

• An SSM parameter reference (for example, aws:ssm:/my/param)

• A component document parameter reference (for example, parameter-name)

{{ aws:ssm:resolve(dynamic_variable) }}

Example: Resolve an SSM parameter at runtime

The following example shows how to use the resolve function in a YAML component document:

name: SsmParameterTest
description: This component verifies an SSM parameter variable reference with the echo
 command.
schemaVersion: 1.0

parameters:
 - parameter-name:
 type: string
 description: "test"

phases:
 - name: validate
 steps:
 - name: PrintDynamicVariable

Use the component document framework 159

EC2 Image Builder User Guide

 action: ExecuteBash
 inputs:
 commands:
 - echo "{{ aws:ssm:resolve(parameter-name) }}"

Use conditional constructs in AWSTOE

Conditional constructs perform different actions in your component document based on whether
the specified conditional expression evaluates to true or false. You can use the if construct to
control the flow of execution in your component document.

if Construct

You can use the if construct to evaluate whether a step should run or not. By default, when the
if conditional expression evaluates to true, AWSTOE runs the step, and when the condition
evaluates to false, AWSTOE skips the step. If a step is skipped, it's treated as a successful step
when AWSTOE evaluates whether the phase and document ran successfully.

Note

An if statement is only evaluated one time, even if the step triggers a restart. If a step
restarts, it recognizes that the if statement has already been evaluated, and continues
where it left off.

Syntax

if:
 - <conditional expression>:
 [then: <step action>]
 [else: <step action>]

Key name Required Description

conditional expression Yes
The conditional expressio
n can contain exactly one
of the following types of
operators at the top level.

Use the component document framework 160

EC2 Image Builder User Guide

Key name Required Description

•
Comparison operator –
 For a list of comparison
operators, and informati
on about how they work
in AWSTOE component
documents, see Compariso
n operators.

•
Logical operator – Logica
l operators include and,
or, and not, and operate
on one or more compariso
n operators. For more
information about how
logical operators work
in AWSTOE component
documents, see Logical
operators.

If your expression must
satisfy multiple condition
s, use a logical operator to
specify your conditions.

then No
Defines the action to take if
the conditional expression
 evaluates to true.

else No
Defines the action to take if
the conditional expression
 evaluates to false.

Use the component document framework 161

EC2 Image Builder User Guide

Key name Required Description

step action Conditional
When you use then or else,
 you must specify one of the
following step actions:

•
Abort – AWSTOE marks
the step as failed.

•
Execute – AWSTOE runs
the step.

•
Skip – AWSTOE skips the
step.

Example 1: Install package

The following example steps from an AWSTOE component document use logical operators to test
a parameter value and run the appropriate package manager commands to install an application if
the package is unzipped.

 - name: InstallUnzipAptGet
 action: ExecuteBash
 if:
 and:
 - binaryExists: 'apt-get'
 - not:
 binaryExists: 'unzip'
 inputs:
 commands:
 - sudo apt-get update
 - sudo apt-get install -y unzip

 - name: InstallUnzipYum
 action: ExecuteBash
 if:
 and:
 - binaryExists: 'yum'
 - not:

Use the component document framework 162

EC2 Image Builder User Guide

 binaryExists: 'unzip'
 inputs:
 commands:
 - sudo yum install -y unzip

 - name: InstallUnzipZypper
 action: ExecuteBash
 if:
 and:
 - binaryExists: 'zypper'
 - not:
 binaryExists: 'unzip'
 inputs:
 commands:
 - sudo zypper refresh
 - sudo zypper install -y unzip

Example 2: Skip a step

The following example shows two ways to skip a step. One uses a logical operator, and one uses a
comparison operator with the Skip step action.

Creates a file if it does not exist using not
- name: CreateMyConfigFile-1
 action: ExecuteBash
 if:
 not:
 fileExists: '/etc/my_config'
 inputs:
 commands:
 - echo "Hello world" > '/etc/my_config'

Creates a file if it does not exist using then and else
- name: CreateMyConfigFile-2
 action: ExecuteBash
 if:
 fileExists: '/etc/my_config'
 then: Skip
 else: Execute
 inputs:
 commands:
 - echo "Hello world" > '/etc/my_config'

Use the component document framework 163

EC2 Image Builder User Guide

Use comparison operators in AWSTOE component documents

You can use the following comparison operators with the Assert action module and with
conditional expressions that use the if Construct. A comparison operator can operate on a single
value, for example stringIsEmpty, or it can compare a baseline value to a second value (variable
value) to determine whether the conditional expression evaluates to true or false.

If the comparison operates on two values, the second value can be a chaining variable.

When comparing values of a different type, the following value conversions can occur prior to the
comparison:

• For numeric comparisons, if the variable value is a string, AWSTOE converts the string to a
number prior to the evaluation. If the conversion is not possible, the comparison returns false.
For example, if the variable value is "1.0", the conversion works, but if the variable value is
"a10" the conversion fails.

• For string comparisons, if the variable value is a number, AWSTOE converts it to a string prior to
the evaluation.

Compare strings

The following comparison operators work with strings to compare values, to test for spaces or an
empty string, or to compare an input value to a regex pattern. String comparisons are not case
sensitive, and they don't trim spaces from the beginning or the end of the string inputs.

String comparison operators

• stringIsEmpty

• stringIsWhitespace

• stringEquals

• stringLessThan

• stringLessThanEquals

• stringGreaterThan

• stringGreaterThanEquals

• patternMatches

Use the component document framework 164

EC2 Image Builder User Guide

stringIsEmpty

The stringIsEmpty operator returns true if the specified string doesn't contain any
characters. For example:

Evaluates to true
stringIsEmpty: ""

Evaluates to false
stringIsEmpty: " "

Evaluates to false
stringIsEmpty: "Hello."

stringIsWhitespace

Tests if the string specified for stringIsWhitespace contains only spaces. For example:

Evaluates to true
stringIsWhitespace: " "

Evaluates to false
stringIsWhitespace: ""

Evaluates to false
stringIsWhitespace: " Hello?"

stringEquals

Tests if the string specified for stringEquals is an exact match for the string specified in the
value parameter. For example:

Evaluates to true
stringEquals: 'Testing, testing...'
value: 'Testing, testing...'

Evaluates to false
stringEquals: 'Testing, testing...'
value: 'Hello again.'

Evaluates to false
stringEquals: 'Testing, testing...'
value: 'TESTING, TESTING....'

Use the component document framework 165

EC2 Image Builder User Guide

Evaluates to false
stringEquals: 'Testing, testing...'
value: ' Testing, testing...'

Evaluates to false
stringEquals: 'Testing, testing...'
value: 'Testing, testing... '

stringLessThan

Tests if the string specified for stringLessThan is less than the string specified in the value
parameter. For example:

Evaluates to true
This comparison operator isn't case sensitive
stringlessThan: 'A'
value: 'a'

Evaluates to true - 'a' is less than 'b'
stringlessThan: 'b'
value: 'a'

Evaluates to true
Numeric strings compare as less than alphabetic strings
stringlessThan: 'a'
value: '0'

Evaluates to false
stringlessThan: '0'
value: 'a'

stringLessThanEquals

Tests if the string specified for stringLessThanEquals is less than or equal to the string
specified in the value parameter. For example:

Evaluates to true - 'a' is equal to 'a'
stringLessThanEquals: 'a'
value: 'a'

Evaluates to true - since the comparison isn't case sensitive, 'a' is equal to 'A'
stringLessThanEquals: 'A'

Use the component document framework 166

EC2 Image Builder User Guide

value: 'a'

Evaluates to true - 'a' is less than 'b'
stringLessThanEquals: 'b'
value: 'a'

Evaluates to true - '0' is less than 'a'
stringLessThanEquals: 'a'
value: '0'

Evaluates to false - 'a' is greater than '0'
stringLessThanEquals: '0'
value: 'a'

stringGreaterThan

Tests if the string specified for stringGreaterThan is greater than the string specified in the
value parameter. For example:

Evaluates to false - since the comparison isn't case sensitive, 'A' is equal to
 'a'
stringGreaterThan: 'a'
value: 'A'

Evaluates to true - 'b' is greater than 'a'
stringGreaterThan: 'a'
value: 'b'

Evaluates to true - 'a' is greater than '0'
stringGreaterThan: '0'
value: 'a'

Evaluates to false - '0' is less than 'a'
stringGreaterThan: 'a'
value: '0'

stringGreaterThanEquals

Tests if the string specified for stringGreaterThanEquals is greater than or equal to the
string specified in the value parameter. For example:

Evaluates to true - 'a' is equal to 'A'
stringGreaterThanEquals: 'A'

Use the component document framework 167

EC2 Image Builder User Guide

value: 'a'

Evaluates to true - 'b' is greater than 'a'
stringGreaterThanEquals: 'a'
value: 'b'

Evaluates to true - 'a' is greater than '0'
stringGreaterThanEquals: '0'
value: 'a'

Evaluates to false - '0' is less than 'a'
stringGreaterThanEquals: 'a'
value: '0'

patternMatches

Tests if the string specified in the value parameter matches the regex pattern specified for
patternMatches. The comparison uses to the Golang regexp package, which conforms to the
RE2 syntax. For more information about RE2 rules, see the google / re2 repository in GitHub.

The following example shows a pattern match that returns true:

patternMatches: '^[a-z]+$'
value: 'ThisIsValue'

Compare numbers

The following comparison operators work with numbers. The values provided for these operators
must be one of the following types, according to the YAML specification. Support for numeric
comparisons uses the golang big package comparison operator, for example: func (*Float) Cmp.

• Integer

• Float (based on float64, which supports numbers from -1.7e+308 to +1.7e+308)

• A string that matches the following regex pattern: ^[-+]?([0-9]+[.])?[0-9]+$

Number comparison operators

• numberEquals

• numberLessThan

Use the component document framework 168

https://pkg.go.dev/regexp
https://github.com/google/re2/wiki/Syntax
https://pkg.go.dev/math/big#Float.Cmp

EC2 Image Builder User Guide

• numberLessThanEquals

• numberGreaterThan

• numberGreaterThanEquals

numberEquals

Tests if the number specified for numberEquals is equal to the number specified in the value
parameter. All of the following example comparisons return true:

Values provided as a positive number
numberEquals: 1
value: 1

Comparison value provided as a string
numberEquals: '1'
value: 1

Value provided as a string
numberEquals: 1
value: '1'

Values provided as floats
numberEquals: 5.0
value: 5.0

Values provided as a negative number
numberEquals: -1
value: -1

numberLessThan

Tests if the number specified for numberLessThan is less than the number specified in the
value parameter. For example:

Evaluates to true
numberLessThan: 2
value: 1

Evaluates to true
numberLessThan: 2
value: 1.9

Use the component document framework 169

EC2 Image Builder User Guide

Evaluates to false
numberLessThan: 2
value: '2'

numberLessThanEquals

Tests if the number specified for numberLessThanEquals is less than or equal to the number
specified in the value parameter. For example:

Evaluates to true
numberLessThanEquals: 2
value: 1

Evaluates to true
numberLessThanEquals: 2
value: 1.9

Evaluates to true
numberLessThanEquals: 2
value: '2'

Evaluates to false
numberLessThanEquals: 2
value: 2.1

numberGreaterThan

Tests if the number specified for numberGreaterThan is greater than the number specified in
the value parameter. For example:

Evaluates to true
numberGreaterThan: 1
value: 2

Evaluates to true
numberGreaterThan: 1
value: 1.1

Evaluates to false
numberGreaterThan: 1
value: '1'

Use the component document framework 170

EC2 Image Builder User Guide

numberGreaterThanEquals

Tests if the number specified for numberGreaterThanEquals is greater than or equal to the
number specified in the value parameter. For example:

Evaluates to true
numberGreaterThanEquals: 1
value: 2

Evaluates to true
numberGreaterThanEquals: 1
value: 1.1

Evaluates to true
numberGreaterThanEquals: 1
value: '1'

Evaluates to false
numberGreaterThanEquals: 1
value: 0.8

Check files

The following comparison operators check the file hash or check if a file or folder exists.

File and folder operators

• binaryExists

• fileExists

• folderExists

• fileMD5Equals

• fileSHA1Equals

• fileSHA256Equals

• fileSHA512Equals

binaryExists

Tests whether an application is available in the current path. For example:

Use the component document framework 171

EC2 Image Builder User Guide

binaryExists: 'foo'

Note

On Linux and macOS systems, for an application named foo, this works the same as
the following bash command: type foo >/dev/null 2>&1, where $? == 0 indicates a
successful comparison.
On Windows systems, for an application named foo, this works the same as
the PowerShell command & C:\Windows\System32\where.exe /Q foo where
$LASTEXITCODE = 0 indicates a successful comparison.

fileExists

Tests whether a file exists at the specified path. You can provide an absolute or relative path. If
the location you specify exists and is a file, the comparison evaluates to true. For example:

fileExists: '/path/to/file'

Note

On Linux and macOS systems, this works the same as the following bash command: -d /
path/to/file, where $? == 0 indicates a successful comparison.
On Windows systems, this works the same as the PowerShell command Test-Path -Path
'C:\path\to\file' -PathType 'Leaf'.

folderExists

Tests whether a folder exists at the specified path. You can provide an absolute or relative path.
If the location you specify exists and is a folder, the comparison evaluates to true. For example:

folderExists: '/path/to/folder'

Note

On Linux and macOS systems, this works the same as the following bash command: -d /
path/to/folder, where $? == 0 indicates a successful comparison.

Use the component document framework 172

EC2 Image Builder User Guide

On Windows systems, this works the same as the PowerShell command Test-Path -Path
'C:\path\to\folder' -PathType 'Container'.

fileMD5Equals

Tests whether a file’s MD5 hash equals a specified value. For example:

fileMD5Equals: '<MD5Hash>'
path: '/path/to/file'

fileSHA1Equals

Tests whether a file’s SHA1 hash equals a specified value. For example:

fileSHA1Equals: '<SHA1Hash>'
path: '/path/to/file'

fileSHA256Equals

Tests whether a file’s SHA256 hash equals a specified value. For example:

fileSHA256Equals: '<SHA256Hash>'
path: '/path/to/file'

fileSHA512Equals

Tests whether a file’s SHA512 hash equals a specified value. For example:

fileSHA512Equals: '<SHA512Hash>'
path: '/path/to/file'

Use logical operators in AWSTOE component documents

You can use the following logical operators to add or modify conditional expressions in your
component document. AWSTOE evaluates conditional expressions in the order that the conditions
are specified. For more information about comparison operators for component documents, see
Use comparison operators in AWSTOE component documents.

Use the component document framework 173

EC2 Image Builder User Guide

and

With the and operator, you can evaluate two or more comparisons as a single expression. The
expression evaluates to true when all of the conditions in the list are true. Otherwise, the
expression evaluates to false.

Examples:

The following example performs two comparisons – a string and a number. Both comparisons
are true, so the expression evaluates to true.

and:
 - stringEquals: 'test_string'
 value: 'test_string'
 - numberEquals: 1
 value: 1

The following example also performs two comparisons. The first comparison is false, at which
point evaluation stops and the second comparison is skipped. The expression evaluates to
false.

and:
 - stringEquals: 'test_string'
 value: 'Hello world!'
 - numberEquals: 1
 value: 1

or

With the or operator, you can evaluate two or more comparisons as a single expression. The
expression evaluates to true when one of the specified comparisons is true. If none of the
specified comparisons evaluate to true, the expression evaluates to false.

Examples:

The following example performs two comparisons – a string and a number. The first comparison
is true, so the expression evaluates to true and the second comparison is skipped.

or:
 - stringEquals: 'test_string'

Use the component document framework 174

EC2 Image Builder User Guide

 value: 'test_string'
 - numberEquals: 1
 value: 3

The following example also performs two comparisons. The first comparison is false, and
evaluation continues. The second comparison is true, so the expression evaluates to true.

or:
 - stringEquals: 'test_string'
 value: 'Hello world!'
 - numberEquals: 1
 value: 1

In the final example, both comparisons are false, so the expression evaluates to false.

or:
 - stringEquals: 'test_string'
 value: 'Hello world!'
 - numberEquals: 1
 value: 3

not

With the not operator, you can negate a single comparison. The expression evaluates to true if
the comparison is false. If the comparison is true, then the expression evaluates to false.

Examples:

The following example performs a string comparison. The comparison is false, so the expression
evaluates to true.

not:
 - stringEquals: 'test_string'
 value: 'Hello world!'

The following example also performs a string comparison. The comparison is true, so the
expression evaluates to false.

not:
 - stringEquals: 'test_string'

Use the component document framework 175

EC2 Image Builder User Guide

 value: 'test_string'

Use looping constructs in AWSTOE

This section provides information to help you create looping constructs in the AWSTOE. Looping
constructs define a repeated sequence of instructions. You can use the following types of looping
constructs in AWSTOE:

• for constructs – Iterate over a bounded sequence of integers.

• forEach constructs

• forEach loop with input list – Iterates over a finite collection of strings.

• forEach loop with delimited list – Iterates over a finite collection of strings joined by a
delimiter.

Note

Looping constructs support only string data types.

Looping construct topics

• Reference iteration variables

• Types of looping constructs

• Step fields

• Step and iteration outputs

Reference iteration variables

To refer to the index and value of the current iteration variable, the reference expression
{{ loop.* }} must be used within the input body of a step that contains a looping construct.
This expression cannot be used to refer to the iteration variables of the looping construct of
another step.

The reference expression consists of the following members:

• {{ loop.index }} – The ordinal position of the current iteration, which is indexed at 0.

Use the component document framework 176

EC2 Image Builder User Guide

• {{ loop.value }} – The value associated with the current iteration variable.

Loop names

All looping constructs have an optional name field for identification. If a loop name is provided,
it can be used to refer to iteration variables in the input body of the step. To refer to the iteration
indices and values of a named loop, use {{ <loop_name>.* }} with {{ loop.* }} in the
input body of the step. This expression cannot be used to refer to the named looping construct of
another step.

The reference expression consists of the following members:

• {{ <loop_name>.index }} – The ordinal position of the current iteration of the named loop,
which is indexed at 0.

• {{ <loop_name>.value }} – The value associated with the current iteration variable of the
named loop.

Resolve reference expressions

The AWSTOE resolves reference expressions as follows:

• {{ <loop_name>.* }} – AWSTOE resolves this expression using the following logic:

• If the loop of the currently running step matches the <loop_name> value, then the reference
expression resolves to the looping construct of the currently running step.

• <loop_name> resolves to the named looping construct if it appears within the currently
running step.

• {{ loop.* }} – AWSTOE resolves the expression using the looping construct defined in the
currently running step.

If reference expressions are used within a step that does not contain a loop, then AWSTOE does not
resolve the expressions and they appear in the step with no replacement.

Note

Reference expressions must be enclosed in double quotes to be correctly interpreted by the
YAML compiler.

Use the component document framework 177

EC2 Image Builder User Guide

Types of looping constructs

This section provides information and examples about looping construct types that can be used in
the AWSTOE.

Looping construct types

• for loop

• forEach loop with input list

• forEach loop with delimited list

for loop

The for loop iterates on a range of integers specified within a boundary outlined by the start and
end of the variables. The iterating values are in the set [start, end] and includes boundary
values.

AWSTOE verifies the start, end, and updateBy values to ensure that the combination does not
result in an infinite loop.

for loop schema

 - name: "StepName"
 action: "ActionModule"
 loop:
 name: "string"
 for:
 start: int
 end: int
 updateBy: int
inputs:
 ...

for loop input

Field Description Type Required Default

name
Unique name
of the loop. It
must be unique

String No ""

Use the component document framework 178

EC2 Image Builder User Guide

Field Description Type Required Default

compared to
other loop
 names in the
same phase.

start
Starting value
of iteration.
Does not accept
chaining e
xpressions.

Integer Yes n/a

end Ending value
of iteration
. Does not
accept chaining
expressions.

Integer Yes n/a

updateBy Difference
by which an
iterating value
is updated
through ad
dition. It must
be a negative
or positive non-
zero value.
Does not
 accept chaining
expressions.

Integer Yes n/a

for loop input example

 - name: "CalculateFileUploadLatencies"
 action: "ExecutePowerShell"
 loop:
 for:

Use the component document framework 179

EC2 Image Builder User Guide

 start: 100000
 end: 1000000
 updateBy: 100000
 inputs:
 commands:
 - |
 $f = new-object System.IO.FileStream c:\temp\test{{ loop.index }}.txt,
 Create, ReadWrite
 $f.SetLength({{ loop.value }}MB)
 $f.Close()
 - c:\users\administrator\downloads\latencyTest.exe --file c:\temp
\test{{ loop.index }}.txt
 - AWS s3 cp c:\users\administrator\downloads\latencyMetrics.json s3://bucket/
latencyMetrics.json
 - |
 Remove-Item -Path c:\temp\test{{ loop.index }}.txt
 Remove-Item -Path c:\users\administrator\downloads\latencyMetrics.json

forEach loop with input list

The forEach loop iterates on an explicit list of values, which can be strings and chained
expressions.

forEach loop with input list schema

 - name: "StepName"
 action: "ActionModule"
 loop:
 name: "string"
 forEach:
 - "string"
 inputs:
 ...

forEach loop with input list input

Field Description Type Required Default

name
Unique name
of the loop. It
must be unique
compared to

String No ""

Use the component document framework 180

EC2 Image Builder User Guide

Field Description Type Required Default

other loop
 names in the
same phase.

List of strings of
forEach loop

List of strings
for iteration.
Accepts chained
expressions as
 strings in the
list. Chained
expressio
ns must be
enclosed by
 double quotes
for the YAML
compiler
to correctly
interpret them.

List of strings Yes n/a

forEach loop with input list example 1

 - name: "ExecuteCustomScripts"
 action: "ExecuteBash"
 loop:
 name: BatchExecLoop
 forEach:
 - /tmp/script1.sh
 - /tmp/script2.sh
 - /tmp/script3.sh
 inputs:
 commands:
 - echo "Count {{ BatchExecLoop.index }}"
 - sh "{{ loop.value }}"
 - |
 retVal=$?
 if [$retVal -ne 0]; then

Use the component document framework 181

EC2 Image Builder User Guide

 echo "Failed"
 else
 echo "Passed"
 fi

forEach loop with input list example 2

 - name: "RunMSIWithDifferentArgs"
 action: "ExecuteBinary"
 loop:
 name: MultiArgLoop
 forEach:
 - "ARG1=C:\Users ARG2=1"
 - "ARG1=C:\Users"
 - "ARG1=C:\Users ARG3=C:\Users\Administrator\Documents\f1.txt"
 inputs:
 commands:
 path: "c:\users\administrator\downloads\runner.exe"
 args:
 - "{{ MultiArgLoop.value }}"

forEach loop with input list example 3

 - name: "DownloadAllBinaries"
 action: "S3Download"
 loop:
 name: MultiArgLoop
 forEach:
 - "bin1.exe"
 - "bin10.exe"
 - "bin5.exe"
 inputs:
 - source: "s3://bucket/{{ loop.value }}"
 destination: "c:\temp\{{ loop.value }}"

forEach loop with delimited list

The loop iterates over a string containing values separated by a delimiter. To iterate over the
string’s constituents, AWSTOE uses the delimiter to split the string into an array suitable for
iteration.

forEach loop with delimited list schema

Use the component document framework 182

EC2 Image Builder User Guide

 - name: "StepName"
 action: "ActionModule"
 loop:
 name: "string"
 forEach:
 list: "string"
 delimiter: ".,;:\n\t -_"
 inputs:
 ...

forEach loop with delimited list input

Field Description Type Required Default

name
Unique name
given to the
loop. It should
be unique when
compared t
o other loop
names in the
same phase.

String No ""

list
A string that
is composed
of constituent
strings joined
by a common
delimiter
character. Also
accepts chained
expressions. In
 case of chained
expressions,
ensure that
those are
enclosed by
 double quotes
for correct

String
Yes n/a

Use the component document framework 183

EC2 Image Builder User Guide

Field Description Type Required Default

interpretation by
the YAML compi
ler.

Use the component document framework 184

EC2 Image Builder User Guide

Field Description Type Required Default

delimiter Character used
to separate out
strings within a
block. Default
is the comma
character. Only
one delimiter
character is
allowed from
 the given list:

•
Dot: "."

•
Comma: ","

•
Semicolon:
";"

•
Colon: ":"

•
New line:
"\n"

•
Tab: "\t"

•
Space: " "

•
Hyphen: "-"

•
Underscore:
"_"

String No Comma: ","

Use the component document framework 185

EC2 Image Builder User Guide

Field Description Type Required Default

Chaining
expressions
cannot be used.

Note

The value of list is treated as an immutable string. If the source of list is changed
during runtime, it will not be reflected during the run.

forEach loop with delimited list example 1

This example uses the following chaining expression pattern to refer to another step's output:
<phase_name>.<step_name>.[inputs | outputs].<var_name>.

 - name: "RunMSIs"
 action: "ExecuteBinary"
 loop:
 forEach:
 list: "{{ build.GetAllMSIPathsForInstallation.outputs.stdout }}"
 delimiter: "\n"
 inputs:
 commands:
 path: "{{ loop.value }}"

forEach loop with delimited list example 2

 - name: "UploadMetricFiles"
 action: "S3Upload"
 loop:
 forEach:
 list: "/tmp/m1.txt,/tmp/m2.txt,/tmp/m3.txt,..."
 inputs:
 commands:
 - source: "{{ loop.value }}"
 destination: "s3://bucket/key/{{ loop.value }}"

Use the component document framework 186

EC2 Image Builder User Guide

Step fields

Loops are part of a step. Any field related to the running of a step is not applied to individual
iterations. Step fields apply only at the step level, as follows:

• timeoutSeconds – All iterations of the loop must be run within the time period specified by
this field. If the loop run times out, then AWSTOE runs the retry policy of the step and resets
the timeout parameter for each new attempt. If the loop run exceeds the timeout value after
reaching the maximum number of retries, the failure message of the step states that the loop
run had timed out.

• onFailure – Failure handling is applied to the step as follows:

• If onFailure is set to Abort, AWSTOE exits the loop and retries the step according to the retry
policy. After the maximum number of retry attempts, AWSTOE marks the current step as
failed, and stops running the process.

AWSTOE sets the status code for the parent phase and document to Failed.

Note

No further steps run after the failed step.

• If onFailure is set to Continue, AWSTOE exits the loop and retries the step according to the
retry policy. After the maximum number of retry attempts, AWSTOE marks the current step as
failed, and continues on to run the next step.

AWSTOE sets the status code for the parent phase and document to Failed.

• If onFailure is set to Ignore, AWSTOE exits the loop and retries the step according to the
retry policy. After the maximum number of retry attempts, AWSTOE marks the current step as
IgnoredFailure, and continues on to run the next step.

AWSTOE sets the status code for the parent phase and document to
SuccessWithIgnoredFailure.

Note

This is still considered a successful run, but includes information to let you know that
one or more steps failed and were ignored.

• maxAttempts – For every retry, the entire step and all iterations are run from the beginning.

Use the component document framework 187

EC2 Image Builder User Guide

• status – The overall status of the running of a step.status does not represent the status of
individual iterations. The status of a step with loops is determined as follows:

• If a single iteration fails to run, the status of a step points to a failure.

• If all iterations succeed, the status of a step points to a success.

• startTime – The overall start time of the running of a step. Does not represent the start time of
individual iterations.

• endTime – The overall end time of the running of a step. Does not represent the end time of
individual iterations.

• failureMessage – Includes the iteration indices that failed in case of non-timeout errors. In case
of timeout errors, the message states that the loop run has failed. Individual error messages for
each iteration are not provided to minimize the size of failure messages.

Step and iteration outputs

Every iteration contains an output. At the end of a loop run, AWSTOE consolidates all successful
iteration outputs in detailedOutput.json. The consolidated outputs are a collation of values
that belong to the corresponding output keys as defined in the output schema of the action
module. The following example shows how the outputs are consolidated:

Output of ExecuteBash for Iteration 1

{
 "stdout":"Hello"
}

Output of ExecuteBash for Iteration 2

{
 "stdout":"World"
}

Output of ExecuteBash for Step

{
 "stdout":"Hello\nWorld"
}

Use the component document framework 188

EC2 Image Builder User Guide

For example, ExecuteBash, ExecutePowerShell, and ExecuteBinary are action modules
which return STDOUT as the action module output. STDOUT messages are joined with the new line
character to produce the overall output of the step in detailedOutput.json.

AWSTOE will not consolidate the outputs of unsuccessful iterations.

Action modules supported by AWSTOE component manager

Image building services, such as EC2 Image Builder, use AWSTOE action modules to help configure
the EC2 instances that are used for building and testing customized machine images. This section
describes the features of commonly used AWSTOE action modules, and how to configure them,
including examples.

Components are authored with plaintext YAML documents. For more information about document
syntax, see Use the AWSTOE component document framework for custom components.

Note

All action modules use the same account as the Systems Manager agent when they run,
which is root on Linux, and NT Authority\SYSTEM on Windows.

The following cross-reference categorizes action modules by the type of actions that they perform.

General execution

• Assert (Linux, Windows, macOS)

• ExecuteBash (Linux, macOS)

• ExecuteBinary (Linux, Windows, macOS)

• ExecuteDocument (Linux, Windows, macOS)

• ExecutePowerShell (Windows)

File download and upload

• S3Download (Linux, Windows, macOS)

Action modules 189

EC2 Image Builder User Guide

• S3Upload (Linux, Windows, macOS)

• WebDownload (Linux, Windows, macOS)

File system operations

• AppendFile (Linux, Windows, macOS)

• CopyFile (Linux, Windows, macOS)

• CopyFolder (Linux, Windows, macOS)

• CreateFile (Linux, Windows, macOS)

• CreateFolder (Linux, Windows, macOS)

• CreateSymlink (Linux, Windows, macOS)

• DeleteFile (Linux, Windows, macOS)

• DeleteFolder (Linux, Windows, macOS)

• ListFiles (Linux, Windows, macOS)

• MoveFile (Linux, Windows, macOS)

• MoveFolder (Linux, Windows, macOS)

• ReadFile (Linux, Windows, macOS)

• SetFileEncoding (Linux, Windows, macOS)

• SetFileOwner (Linux, Windows, macOS)

• SetFolderOwner (Linux, Windows, macOS)

• SetFilePermissions (Linux, Windows, macOS)

• SetFolderPermissions (Linux, Windows, macOS)

Software installation actions

• InstallMSI (Windows)

• UninstallMSI (Windows)

Action modules 190

EC2 Image Builder User Guide

System actions

• Reboot (Linux, Windows)

• SetRegistry (Windows)

• UpdateOS (Linux, Windows)

General execution modules

The following section contains details for action modules that run commands and control
execution workflow.

General execution action modules

• Assert (Linux, Windows, macOS)

• ExecuteBash (Linux, macOS)

• ExecuteBinary (Linux, Windows, macOS)

• ExecuteDocument (Linux, Windows, macOS)

• ExecutePowerShell (Windows)

Assert (Linux, Windows, macOS)

The Assert action module performs value comparisons using Comparison operators or Logical
operators as input. The result of the operator expression (true or false) indicates the overall success
or failure status for the step.

If the comparison or logical operator expression evaluates to true, the step is marked as Success.
Otherwise, the step is marked as Failed. If the step fails, the onFailure parameter decides the
outcome of the step.

Input

Key name Description Type Required

input Contains a single
comparison or logical
operator. Note,
logical operators
can contain more

This is variable,
depending on the
operator

Yes

Action modules 191

EC2 Image Builder User Guide

Key name Description Type Required

than one comparison
operator.

Input example: A simple comparison using the stringEquals comparison operator

This example evaluates to true.

- name: StringComparison
 action: Assert
 inputs:
 stringEquals: '2.1.1'
 value: '{{ validate.ApplicationVersion.outputs.stdout }}'

Input example: Regex comparisons using the patternMatches comparison operator

These examples all evaluate to true.

- name: Letters only
 action: Assert
 inputs:
 patternMatches: '^[a-zA-Z]+$'
 value: 'ThisIsOnlyLetters'

- name: Letters and spaces only
 action: Assert
 inputs:
 patternMatches: '^[a-zA-Z\s]+$'
 value: 'This text contains spaces'

- name: Numbers only
 action: Assert
 inputs:
 patternMatches: '^[0-9]+$'
 value: '1234567890'

Input example: Nested comparisons with logical operators and chained variables

Action modules 192

EC2 Image Builder User Guide

The following example demonstrates nested comparisons with logical operators that use
comparisons with chained variables. The Assert evaluates to true if either of the following are
true:

• The ApplicationVersion is greater than 2.0 and the CPUArchitecture equals arm64.

• The CPUArchitecture equals x86_64.

- name: NestedComparisons
 action: Assert
 inputs:
 or: # <- first level deep
 - and: # <- second level deep
 - numberGreaterThan: 2.0 # <- third level deep
 value: '{{ validate.ApplicationVersion.outputs.stdout }}'
 - stringEquals: 'arm64'
 value: '{{ validate.CPUArchitecture.outputs.stdout }}'
 - stringEquals: 'x86_64'
 value: '{{ validate.CPUArchitecture.outputs.stdout }}'

Output:

The output of an Assert is success or failure of the step.

ExecuteBash (Linux, macOS)

The ExecuteBash action module allows you to run bash scripts with inline shell code/commands.
This module supports Linux.

All of the commands and instructions that you specify in the commands block are converted into a
file (for example, input.sh) and run with the bash shell. The result of running the shell file is the
exit code of the step.

The ExecuteBash module handles system restarts if the script exits with an exit code of 194. When
initiated, the application performs one of the following actions:

• The application hands the exit code to the caller if it is run by the Systems Manager Agent. The
Systems Manager Agent handles the system reboot and runs the same step that initiated the
restart, as described in Rebooting Managed Instance from Scripts.

• The application saves the current executionstate, configures a restart trigger to rerun the
application, and restarts the system.

Action modules 193

https://docs.aws.amazon.com/systems-manager/latest/userguide/send-commands-reboot.html

EC2 Image Builder User Guide

After system restart, the application runs the same step that initiated the restart. If you require this
functionality, you must write idempotent scripts that can handle multiple invocations of the same
shell command.

Input

Key name Description Type Required

commands Contains a list of
instructions or
commands to run
as per bash syntax.
Multi-line YAML is
allowed.

List Yes

Input example: Before and after a reboot

name: ExitCode194Example
description: This shows how the exit code can be used to restart a system with
 ExecuteBash
schemaVersion: 1.0
phases:
 - name: build
 steps:
 - name: RestartTrigger
 action: ExecuteBash
 inputs:
 commands:
 - |
 REBOOT_INDICATOR=/var/tmp/reboot-indicator
 if [-f "${REBOOT_INDICATOR}"]; then
 echo 'The reboot file exists. Deleting it and exiting with success.'
 rm "${REBOOT_INDICATOR}"
 exit 0
 fi
 echo 'The reboot file does not exist. Creating it and triggering a
 restart.'
 touch "${REBOOT_INDICATOR}"
 exit 194

Action modules 194

EC2 Image Builder User Guide

Output

Field Description Type

stdout Standard output of command
execution.

string

If you start a reboot and return exit code 194 as part of the action module, the build will resume at
the same action module step that initiated the reboot. If you start a reboot without the exit code,
the build process may fail.

Output example: Before reboot (first time through document)

{
 “stdout”: “The reboot file does not exist. Creating it and triggering a restart."
}

Output example: After reboot, (second time through document)

{
 “stdout”: “The reboot file exists. Deleting it and exiting with success."
}

ExecuteBinary (Linux, Windows, macOS)

The ExecuteBinary action module allows you to run binary files with a list of command-line
arguments.

The ExecuteBinary module handles system restarts if the binary file exits with an exit code of 194
(Linux) or 3010 (Windows). When this happens, the application performs one of the following
actions:

• The application hands the exit code to the caller if it is run by the Systems Manager Agent. The
Systems Manager Agent handles restarting the system and runs the same step that initiated the
restart, as described in Rebooting Managed Instance from Scripts.

• The application saves the current executionstate, configures a restart trigger to rerun the
application, and restarts the system.

Action modules 195

https://docs.aws.amazon.com/systems-manager/latest/userguide/send-commands-reboot.html

EC2 Image Builder User Guide

After the system restarts, the application runs the same step that initiated the restart. If you
require this functionality, you must write idempotent scripts that can handle multiple invocations
of the same shell command.

Input

Key name Description Type Required

path The path to the
binary file for
execution.

String Yes

arguments Contains a list of
command-line
arguments to use
when running the
 binary.

String List No

Input example: install .NET

 - name: "InstallDotnet"
 action: ExecuteBinary
 inputs:
 path: C:\PathTo\dotnet_installer.exe
 arguments:
 - /qb
 - /norestart

Output

Field Description Type

stdout Standard output of command
execution.

string

Output example

{
 "stdout": "success"

Action modules 196

EC2 Image Builder User Guide

}

ExecuteDocument (Linux, Windows, macOS)

The ExecuteDocument action module adds support for nested component documents, running
multiple component documents from one document. AWSTOE validates the document that is
passed in the input parameter at run time.

Restrictions

• This action module runs one time, with no retries allowed, and no option to set timeout limits.
ExecuteDocument sets the following default values, and returns an error if you try to change
them.

• timeoutSeconds: -1

• maxAttempts: 1

Note

You can leave these values blank, and AWSTOE uses the default values.

• Document nesting is allowed, up to three levels deep, but no more than that. Three levels of
nesting translates to four document levels, as the top level isn't nested. In this scenario, the
lowest level document must not call any other documents.

• Cyclic execution of component documents is not allowed. Any document that calls itself
outside of a looping construct, or that calls another document higher up in the current chain
of execution, initiates a cycle that can result in an endless loop. When AWSTOE detects a cyclic
execution, it stops the execution and records the failure.

Action modules 197

EC2 Image Builder User Guide

If a component document tries to run itself, or to run any of the component documents that are
higher up in the current chain of execution, the execution fails.

Input

Action modules 198

EC2 Image Builder User Guide

Key name Description Type Required

document
Path of component
document. Valid
options include:

•
Local file paths

•
S3 URIs

•
EC2 Image Builder
component build
version ARNs

String Yes

document-s3-
bucket-owner The account ID of

the S3 bucket owner
for the S3 bucket
where component
 documents are
stored. (Recommen
ded if you are using
S3 URIs in your
component document.
)

String No

phases
Phases to run in
the component
document, expressed
as a comma-sep
arated list. If no
phases are specified,
then all phases run.

String No

parameters Parameter Map List No

Action modules 199

EC2 Image Builder User Guide

Key name Description Type Required

Input parameters
that are passed in
to the component
document at runtime
 as key value pairs.

Parameter map input

Key name Description Type Required

name
The name of the
input parameter
to pass to the
component
document that the
ExecuteDocument
action module is
running.

String Yes

value
The value of the
input parameter.

String Yes

Input examples

The following examples show variations of the inputs for your component document, depending
on your installation path.

Input example: Local document path

main.yaml
schemaVersion: 1.0

phases:
 - name: build
 steps:

Action modules 200

EC2 Image Builder User Guide

 - name: ExecuteNestedDocument
 action: ExecuteDocument
 inputs:
 document: Sample-1.yaml
 phases: build
 parameters:
 - name: parameter-1
 value: value-1
 - name: parameter-2
 value: value-2

Input example: S3 URI as a document path

main.yaml
schemaVersion: 1.0

phases:
 - name: build
 steps:
 - name: ExecuteNestedDocument
 action: ExecuteDocument
 inputs:
 document: s3://my-bucket/Sample-1.yaml
 document-s3-bucket-owner: 123456789012
 phases: build,validate
 parameters:
 - name: parameter-1
 value: value-1
 - name: parameter-2
 value: value-2

Input example: EC2 Image Builder component ARN as a document path

main.yaml
schemaVersion: 1.0

phases:
 - name: build
 steps:
 - name: ExecuteNestedDocument
 action: ExecuteDocument
 inputs:
 document: arn:aws:imagebuilder:us-west-2:aws:component/Sample-Test/1.0.0

Action modules 201

EC2 Image Builder User Guide

 phases: test
 parameters:
 - name: parameter-1
 value: value-1
 - name: parameter-2
 value: value-2

Using a ForEach loop to run documents

main.yaml
schemaVersion: 1.0

phases:
 - name: build
 steps:
 - name: ExecuteNestedDocument
 action: ExecuteDocument
 loop:
 name: 'myForEachLoop'
 forEach:
 - Sample-1.yaml
 - Sample-2.yaml
 inputs:
 document: "{{myForEachLoop.value}}"
 phases: test
 parameters:
 - name: parameter-1
 value: value-1
 - name: parameter-2
 value: value-2

Using a For loop to run documents

main.yaml
schemaVersion: 1.0

phases:
 - name: build
 steps:
 - name: ExecuteNestedDocument
 action: ExecuteDocument
 loop:
 name: 'myForLoop'

Action modules 202

EC2 Image Builder User Guide

 for:
 start: 1
 end: 2
 updateBy: 1
 inputs:
 document: "Sample-{{myForLoop.value}}.yaml"
 phases: test
 parameters:
 - name: parameter-1
 value: value-1
 - name: parameter-2
 value: value-2

Output

AWSTOE creates an output file called detailedoutput.json every time it runs. The file
contains details about every phase and step of every component document that is invoked while
it's running. For the ExecuteDocument action module, you can find a brief runtime summary
in the outputs field, and details about the phases, steps, and documents that it runs in the
detailedOutput.

{
 \"executedStepCount\":1,\"executionId\":\"97054e22-06cc-11ec-9b14-acde48001122\",
\"failedStepCount\":0,\"failureMessage\":\"\",\"ignoredFailedStepCount\":0,\"logUrl\":
\"\",\"status\":\"success\"
}",

Each component document's output summary object contains the following details, as shown here,
with sample values:

• executedStepCount":1

• "executionId":"12345a67-89bc-01de-2f34-abcd56789012"

• "failedStepCount":0

• "failureMessage":""

• "ignoredFailedStepCount":0

• "logUrl":""

• "status":"success"

Output example

Action modules 203

EC2 Image Builder User Guide

The following example shows output from the ExecuteDocument action module when a nested
execution occurs. In this example, the main.yaml component document successfully runs the
Sample-1.yaml component document.

{
 "executionId": "12345a67-89bc-01de-2f34-abcd56789012",
 "status": "success",
 "startTime": "2021-08-26T17:20:31-07:00",
 "endTime": "2021-08-26T17:20:31-07:00",
 "failureMessage": "",
 "documents": [
 {
 "name": "",
 "filePath": "main.yaml",
 "status": "success",
 "description": "",
 "startTime": "2021-08-26T17:20:31-07:00",
 "endTime": "2021-08-26T17:20:31-07:00",
 "failureMessage": "",
 "phases": [
 {
 "name": "build",
 "status": "success",
 "startTime": "2021-08-26T17:20:31-07:00",
 "endTime": "2021-08-26T17:20:31-07:00",
 "failureMessage": "",
 "steps": [
 {
 "name": "ExecuteNestedDocument",
 "status": "success",
 "failureMessage": "",
 "timeoutSeconds": -1,
 "onFailure": "Abort",
 "maxAttempts": 1,
 "action": "ExecuteDocument",
 "startTime": "2021-08-26T17:20:31-07:00",
 "endTime": "2021-08-26T17:20:31-07:00",
 "inputs": "[{\"document\":\"Sample-1.yaml\",\"document-s3-
bucket-owner\":\"\",\"phases\":\"\",\"parameters\":null}]",
 "outputs": "[{\"executedStepCount\":1,\"executionId\":
\"98765f43-21ed-09cb-8a76-fedc54321098\",\"failedStepCount\":0,\"failureMessage\":\"\",
\"ignoredFailedStepCount\":0,\"logUrl\":\"\",\"status\":\"success\"}]",
 "loop": null,

Action modules 204

EC2 Image Builder User Guide

 "detailedOutput": [
 {
 "executionId": "98765f43-21ed-09cb-8a76-
fedc54321098",
 "status": "success",
 "startTime": "2021-08-26T17:20:31-07:00",
 "endTime": "2021-08-26T17:20:31-07:00",
 "failureMessage": "",
 "documents": [
 {
 "name": "",
 "filePath": "Sample-1.yaml",
 "status": "success",
 "description": "",
 "startTime": "2021-08-26T17:20:31-07:00",
 "endTime": "2021-08-26T17:20:31-07:00",
 "failureMessage": "",
 "phases": [
 {
 "name": "build",
 "status": "success",
 "startTime":
 "2021-08-26T17:20:31-07:00",
 "endTime":
 "2021-08-26T17:20:31-07:00",
 "failureMessage": "",
 "steps": [
 {
 "name": "ExecuteBashStep",
 "status": "success",
 "failureMessage": "",
 "timeoutSeconds": 7200,
 "onFailure": "Abort",
 "maxAttempts": 1,
 "action": "ExecuteBash",
 "startTime":
 "2021-08-26T17:20:31-07:00",
 "endTime":
 "2021-08-26T17:20:31-07:00",
 "inputs": "[{\"commands\":
[\"echo \\\"Hello World!\\\"\"]}]",
 "outputs": "[{\"stdout\":
\"Hello World!\"}]",
 "loop": null,

Action modules 205

EC2 Image Builder User Guide

 "detailedOutput": null
 }]
 }]
 }]
 }]
 }]

 }]
 }]
}

ExecutePowerShell (Windows)

The ExecutePowerShell action module allows you to run PowerShell scripts with inline shell code/
commands. This module supports the Windows platform and Windows PowerShell.

All of the commands/instructions specified in the commands block are converted into a script file
(for example, input.ps1) and run using Windows PowerShell. The result of running the shell file is
the exit code.

The ExecutePowerShell module handles system restarts if the shell command exits with an exit
code of 3010. When initiated, the application performs one of the following actions:

• Hands the exit code to the caller if run by the Systems Manager Agent. The Systems Manager
Agent handles the system reboot and runs the same step that initiated the restart, as described
in Rebooting Managed Instance from Scripts.

• Saves the current executionstate, configures a restart trigger to rerun the application, and
reboots the system.

After system restart, the application runs the same step that initiated the restart. If you require this
functionality, you must write idempotent scripts that can handle multiple invocations of the same
shell command.

Input

Key name Description Type Required

commands Contains a list of
instructions or
commands to run

String List Yes. Must specify
commands or file,
not both.

Action modules 206

https://docs.aws.amazon.com/systems-manager/latest/userguide/send-commands-reboot.html

EC2 Image Builder User Guide

Key name Description Type Required

as per PowerShell
syntax. Multi-line
YAML is allowed.

file Contains the path to
a PowerShell script
file. PowerShell will
 run against this file
using the -file
command line argum
ent. The path must
point to a .ps1 file.

String Yes. Must specify
commands or file,
not both.

Input example: Before and after a reboot

name: ExitCode3010Example
description: This shows how the exit code can be used to restart a system with
 ExecutePowerShell
schemaVersion: 1.0
phases:
 - name: build
 steps:
 - name: RestartTrigger
 action: ExecutePowerShell
 inputs:
 commands:
 - |
 $rebootIndicator = Join-Path -Path $env:SystemDrive -ChildPath 'reboot-
indicator'
 if (Test-Path -Path $rebootIndicator) {
 Write-Host 'The reboot file exists. Deleting it and exiting with
 success.'
 Remove-Item -Path $rebootIndicator -Force | Out-Null
 [System.Environment]::Exit(0)
 }
 Write-Host 'The reboot file does not exist. Creating it and triggering a
 restart.'
 New-Item -Path $rebootIndicator -ItemType File | Out-Null

Action modules 207

EC2 Image Builder User Guide

 [System.Environment]::Exit(3010)

Output

Field Description Type

stdout Standard output of command
execution.

string

If you run a reboot and return exit code 3010 as part of the action module, the build will resume
at the same action module step that initiated the reboot. If you run a reboot without the exit code,
the build process may fail.

Output example: Before reboot (first time through document)

{
 “stdout”: “The reboot file does not exist. Creating it and triggering a restart."
}

Output example: After reboot, (second time through document)

{
 “stdout”: “The reboot file exists. Deleting it and exiting with success."
}

File download and upload modules

The following section contains details for action modules that upload or download files.

Download and upload action modules

• S3Download (Linux, Windows, macOS)

• S3Upload (Linux, Windows, macOS)

• WebDownload (Linux, Windows, macOS)

Action modules 208

EC2 Image Builder User Guide

S3Download (Linux, Windows, macOS)

With the S3Download action module, you can download an Amazon S3 object, or a set of objects,
to a local file or folder that you specify with the destination path. If any file already exists in the
specified location, and the overwrite flag is set to true, S3Download overwrites the file.

Your source location can point to a specific object in Amazon S3, or you can use a key prefix
with an asterisk wildcard (*) to download a set of objects that match the key prefix path. When
you specify a key prefix in your source location, the S3Download action module downloads
everything that matches the prefix (files and folders included). Make sure that the key prefix ends
with a forward-slash, followed by an asterisk (/*), so that you download everything that matches
the prefix. For example: s3://my-bucket/my-folder/*.

If the S3Download action for a specified key prefix fails during a download, the folder content is
not rolled back to its state prior to the failure. The destination folder remains as it was at the time
of the failure.

Supported use cases

The S3Download action module supports the following use cases:

• The Amazon S3 object is downloaded to a local folder, as specified in the download path.

• Amazon S3 objects (with a key prefix in the Amazon S3 file path) are downloaded to the
specified local folder, which recursively copies all Amazon S3 objects that match the key prefix to
the local folder.

IAM requirements

The IAM role that you associate with your instance profile must have permissions to run the
S3Download action module. The following IAM policies must be attached to the IAM role that is
associated with the instance profile:

• Single file: s3:GetObject against the bucket/object (for example,
arn:aws:s3:::BucketName/*).

• Multiple files: s3:ListBucket against the bucket/object (for example,
arn:aws:s3:::BucketName) and s3:GetObject against the bucket/object (for example,
arn:aws:s3:::BucketName/*).

Action modules 209

EC2 Image Builder User Guide

Input

Key Description Type Required Default

source The Amazon S3
bucket that is
the source for
your download.
 You can specify
a path to a
specific object,
or use a key
prefix, that ends
with a forward-
slash, followed
by an asterisk
wildcard (/*), to
download a set
of objects that
match the key
prefix.

String Yes N/A

destination The local path
where the
Amazon S3
objects are
 downloaded.
To download a
single file, you
must specify
the file name as
part of the path.
For example,

String Yes N/A

Action modules 210

EC2 Image Builder User Guide

Key Description Type Required Default

/myfolder/
package.zip .

expectedB
ucketOwner

Expected owner
account ID of
the bucket
provided in the
 source path.
We recommend
that you verify
the ownership
of the Amazon
S3 bucket
specified in the
source.

String No N/A

Action modules 211

EC2 Image Builder User Guide

Key Description Type Required Default

overwrite When set to
true, if a file of
the same name
already exists
 in the destinati
on folder for
the specified
local path, the
 download file
overwrites the
local file. When
set to false, the
existing file on
the local system
is protected
from being
 overwritten,
and the action
module fails
with a download
error.

For example,
Error:
S3Download:
File already
exists and
"overwrit
e"
property for
"destinat
ion" file
is set to

Boolean No true

Action modules 212

EC2 Image Builder User Guide

Key Description Type Required Default

false.
Cannot
download.

Note

For the following examples, the Windows folder path can be replaced with a Linux path. For
example, C:\myfolder\package.zip can be replaced with /myfolder/package.zip.

Input example: copy an Amazon S3 object to a local file

The following example shows how to copy an Amazon S3 object to a local file.

 - name: DownloadMyFile
 action: S3Download
 inputs:
 - source: s3://amzn-s3-demo-source-bucket/path/to/package.zip
 destination: C:\myfolder\package.zip
 expectedBucketOwner: 123456789022
 overwrite: false
 - source: s3://amzn-s3-demo-source-bucket/path/to/package.zip
 destination: C:\myfolder\package.zip
 expectedBucketOwner: 123456789022
 overwrite: true
 - source: s3://amzn-s3-demo-source-bucket/path/to/package.zip
 destination: C:\myfolder\package.zip
 expectedBucketOwner: 123456789022

Input example: copy all Amazon S3 objects in an Amazon S3 bucket with key prefix to a local
folder

The following example shows how to copy all Amazon S3 objects in an Amazon S3 bucket with the
key prefix to a local folder. Amazon S3 has no concept of a folder, therefore all objects that match
the key prefix are copied. The maximum number of objects that can be downloaded is 1000.

 - name: MyS3DownloadKeyprefix

Action modules 213

EC2 Image Builder User Guide

 action: S3Download
 maxAttempts: 3
 inputs:
 - source: s3://amzn-s3-demo-source-bucket/path/to/*
 destination: C:\myfolder\
 expectedBucketOwner: 123456789022
 overwrite: false
 - source: s3://amzn-s3-demo-source-bucket/path/to/*
 destination: C:\myfolder\
 expectedBucketOwner: 123456789022
 overwrite: true
 - source: s3://amzn-s3-demo-source-bucket/path/to/*
 destination: C:\myfolder\
 expectedBucketOwner: 123456789022

Output

None.

S3Upload (Linux, Windows, macOS)

With the S3Upload action module, you can upload a file from a source file or folder to an Amazon
S3 location. You can use a wildcard (*) in the path specified for your source location to upload all of
the files whose path matches the wildcard pattern.

If the recursive S3Upload action fails, any files that have already been uploaded will remain in the
destination Amazon S3 bucket.

Supported use cases

• Local file to Amazon S3 object.

• Local files in folder (with wildcard) to Amazon S3 key prefix.

• Copy local folder (must have recurse set to true) to Amazon S3 key prefix.

IAM requirements

The IAM role that you associate with your instance profile must have permissions to run the
S3Upload action module. The following IAM policy must be attached to the IAM role that is
associated with the instance profile. The policy must grant s3:PutObject permissions to the
target Amazon S3 bucket. For example, arn:aws:s3:::BucketName/*).

Action modules 214

EC2 Image Builder User Guide

Input

Key Description Type Required Default

source The local path
where source
files/folders
originate.
The source
supports an
asterisk wildcard
(*).

String Yes N/A

destination The path for
the destinati
on Amazon S3
bucket where
source files/
folders are
uploaded.

String Yes N/A

recurse When set to
true, performs
S3Upload
recursively.

String No false

expectedB
ucketOwner

The expected
owner account
ID for the
Amazon S3
bucket specified
 in the destinati
on path. We
recommend that
you verify the

String No N/A

Action modules 215

EC2 Image Builder User Guide

Key Description Type Required Default

 ownership of
the Amazon S3
bucket specified
in the destinati
on.

Input example: copy a local file to an Amazon S3 object

The following example shows how to copy a local file to an Amazon S3 object.

 - name: MyS3UploadFile
 action: S3Upload
 onFailure: Abort
 maxAttempts: 3
 inputs:
 - source: C:\myfolder\package.zip
 destination: s3://amzn-s3-demo-destination-bucket/path/to/package.zip
 expectedBucketOwner: 123456789022

Input example: copy all files in a local folder to an Amazon S3 bucket with key prefix

The following example shows how to copy all files in the local folder to an Amazon S3 bucket
with key prefix. This example does not copy sub-folders or their contents because recurse is not
specified, and it defaults to false.

 - name: MyS3UploadMultipleFiles
 action: S3Upload
 onFailure: Abort
 maxAttempts: 3
 inputs:
 - source: C:\myfolder*
 destination: s3://amzn-s3-demo-destination-bucket/path/to/
 expectedBucketOwner: 123456789022

Input example: copy all files and folders recursively from a local folder to an Amazon S3 bucket

The following example shows how to copy all files and folders recursively from a local folder to an
Amazon S3 bucket with key prefix.

Action modules 216

EC2 Image Builder User Guide

 - name: MyS3UploadFolder
 action: S3Upload
 onFailure: Abort
 maxAttempts: 3
 inputs:
 - source: C:\myfolder*
 destination: s3://amzn-s3-demo-destination-bucket/path/to/
 recurse: true
 expectedBucketOwner: 123456789022

Output

None.

WebDownload (Linux, Windows, macOS)

The WebDownload action module allows you to download files and resources from a remote
location over the HTTP/HTTPS protocol (HTTPS is recommended). There are no limits on the
number or size of downloads. This module handles retry and exponential backoff logic.

Each download operation is allocated a maximum of 5 attempts to succeed according to user
inputs. These attempts differ from those specified in the maxAttempts field of document steps,
which are related to action module failures.

This action module implicitly handles redirects. All HTTP status codes, except for 200, result in an
error.

Input

Key name Description Type Required Default

source The valid HTTP/
HTTPS URL
(HTTPS is
recommend
ed), which
follows the RFC
3986 standard.
Chaining
expressions are
permitted.

String
Yes

N/A

Action modules 217

EC2 Image Builder User Guide

Key name Description Type Required Default

destination An absolute
or relative file
or folder path
on the local
system. Folder
paths must end
with /. If they
do not end with
 /, they will
be treated as
file paths. The
module creates
any required
file or folder
for successfu
l downloads
. Chaining
expressions are
permitted.

String Yes N/A

Action modules 218

EC2 Image Builder User Guide

Key name Description Type Required Default

overwrite When enabled,
overwrites any
existing files
on the local
system with
the downloaded
file or resource.
When not
enabled, any
existing files
on the local
system are not
overwritten,
and the action
module fails
with an error.
When overwrite
is enabled and
checksum and
 algorithm
are specified
, then the
action module
downloads the
file only if the
checksum and
the hash of any
pre-existing files
do not match.

Boolean No true

Action modules 219

EC2 Image Builder User Guide

Key name Description Type Required Default

checksum When you
specify the
checksum, it is
checked against
the hash of
 the downloade
d file that is
generated with
the supplied
algorithm. For
file verificat
ion to be
enabled, both
the checksum
and the algori
thm must
be provided.
Chaining
expressions are
permitted.

String No N/A

Action modules 220

EC2 Image Builder User Guide

Key name Description Type Required Default

algorithm The algorithm
used to calculate
the checksum.
The options are
 MD5, SHA1,
SHA256, and
SHA512. For
file verification
to be enabled,
 both the
checksum and
the algorithm
must be
provided.
Chaining e
xpressions are
permitted.

String No N/A

ignoreCer
tificateE
rrors

SSL certifica
te validation is
ignored when
enabled.

Boolean No false

Output

Key name Descripti
on

Type

destinati
on

Newline
character-
delimited
string that
specifies
the
destinati

String

Action modules 221

EC2 Image Builder User Guide

Key name Descripti
on

Type

on path
where the
downloade
d files or
resources
are stored.

Input example: download remote file to local destination

 - name: DownloadRemoteFile
 action: WebDownload
 maxAttempts: 3
 inputs:
 - source: https://testdomain/path/to/java14.zip
 destination: C:\testfolder\package.zip

Output:

{
 "destination": "C:\\testfolder\\package.zip"
}

Input example: download more than one remote file to more than one local destination

 - name: DownloadRemoteFiles
 action: WebDownload
 maxAttempts: 3
 inputs:
 - source: https://testdomain/path/to/java14.zip
 destination: /tmp/java14_renamed.zip
 - source: https://testdomain/path/to/java14.zip
 destination: /tmp/create_new_folder_and_add_java14_as_zip/

Output:

{

Action modules 222

EC2 Image Builder User Guide

 "destination": "/tmp/create_new_folder/java14_renamed.zip\n/tmp/
create_new_folder_and_add_java14_as_zip/java14.zip"
}

Input example: download one remote file without overwriting local destination, and download
another remote file with file verification

 - name: DownloadRemoteMultipleProperties
 action: WebDownload
 maxAttempts: 3
 inputs:
 - source: https://testdomain/path/to/java14.zip
 destination: C:\create_new_folder\java14_renamed.zip
 overwrite: false
 - source: https://testdomain/path/to/java14.zip
 destination: C:\create_new_folder_and_add_java14_as_zip\
 checksum: ac68bbf921d953d1cfab916cb6120864
 algorithm: MD5
 overwrite: true

Output:

{
 "destination": "C:\\create_new_folder\\java14_renamed.zip\nC:\
\create_new_folder_and_add_java14_as_zip\\java14.zip"
}

Input example: download remote file and ignore SSL certification validation

 - name: DownloadRemoteIgnoreValidation
 action: WebDownload
 maxAttempts: 3
 inputs:
 - source: https://www.bad-ssl.com/resource
 destination: /tmp/downloads/
 ignoreCertificateErrors: true

Output:

{
 "destination": "/tmp/downloads/resource"

Action modules 223

EC2 Image Builder User Guide

}

File system operations modules

The following section contains details for action modules that perform file system operations.

File system operation action modules

• AppendFile (Linux, Windows, macOS)

• CopyFile (Linux, Windows, macOS)

• CopyFolder (Linux, Windows, macOS)

• CreateFile (Linux, Windows, macOS)

• CreateFolder (Linux, Windows, macOS)

• CreateSymlink (Linux, Windows, macOS)

• DeleteFile (Linux, Windows, macOS)

• DeleteFolder (Linux, Windows, macOS)

• ListFiles (Linux, Windows, macOS)

• MoveFile (Linux, Windows, macOS)

• MoveFolder (Linux, Windows, macOS)

• ReadFile (Linux, Windows, macOS)

• SetFileEncoding (Linux, Windows, macOS)

• SetFileOwner (Linux, Windows, macOS)

• SetFolderOwner (Linux, Windows, macOS)

• SetFilePermissions (Linux, Windows, macOS)

• SetFolderPermissions (Linux, Windows, macOS)

AppendFile (Linux, Windows, macOS)

The AppendFile action module adds specified content to the preexisting content of a file.

If the file encoding value is different from the default encoding (utf-8) value, then you can
specify the file encoding value by using the encoding option. By default, utf-16 and utf-32 are
assumed to use little-endian encoding.

The action module returns an error when the following occurs:

Action modules 224

EC2 Image Builder User Guide

• The specified file does not exist at runtime.

• You don't have write permissions to modify the file content.

• The module encounters an error during the file operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

path The file
path.

String Yes N/A N/A Yes

content The
content
to be
appended
to the file.

String No Empty
string

N/A Yes

encoding The
encoding
standard.

String No utf8 utf8,
utf-8,
utf16,utf-16,
utf16-
LE,
 utf-16-
LE
utf16-BE,
utf-16-
BE ,
utf32,
 utf-32,
 utf32-
LE,utf-32-
LE ,
 utf32-
BE, and
utf-32-

Yes

Action modules 225

EC2 Image Builder User Guide

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

BE . The
value
of the
encoding
option
is case
insensitive.

Input example: append file without encoding (Linux)

 - name: AppendingFileWithOutEncodingLinux
 action: AppendFile
 inputs:
 - path: ./Sample.txt
 content: "The string to be appended to the file"

Input example: append file without encoding (Windows)

 - name: AppendingFileWithOutEncodingWindows
 action: AppendFile
 inputs:
 - path: C:\MyFolder\MyFile.txt
 content: "The string to be appended to the file"

Input example: append file with encoding (Linux)

 - name: AppendingFileWithEncodingLinux
 action: AppendFile
 inputs:
 - path: /FolderName/SampleFile.txt
 content: "The string to be appended to the file"
 encoding: UTF-32

Input example: append file with encoding (Windows)

Action modules 226

EC2 Image Builder User Guide

 - name: AppendingFileWithEncodingWindows
 action: AppendFile
 inputs:
 - path: C:\MyFolderName\SampleFile.txt
 content: "The string to be appended to the file"
 encoding: UTF-32

Input example: append file with empty string (Linux)

 - name: AppendingEmptyStringLinux
 action: AppendFile
 inputs:
 - path: /FolderName/SampleFile.txt

Input example: append file with empty string (Windows)

 - name: AppendingEmptyStringWindows
 action: AppendFile
 inputs:
 - path: C:\MyFolderName\SampleFile.txt

Output

None.

CopyFile (Linux, Windows, macOS)

The CopyFile action module copies files from the specified source to the specified destination. By
default, the module recursively creates the destination folder if it does not exist at runtime.

If a file with the specified name already exists in the specified folder, the action module, by default,
overwrites the existing file. You can override this default behavior by setting the overwrite option
to false. When the overwrite option is set to false, and there is already a file in the specified
location with the specified name, the action module will return an error. This option works the
same as the cp command in Linux, which overwrites by default.

The source file name can include a wildcard (*). Wildcard characters are accepted only after the last
file path separator (/ or \). If wildcard characters are included in the source file name, all of the
files that match the wildcard are copied to the destination folder. If you want to move more than
one file by using a wildcard character, the input to the destination option must end with a file
path separator (/ or \), which indicates that the destination input is a folder.

Action modules 227

EC2 Image Builder User Guide

If the destination file name is different from the source file name, you can specify the destination
file name using the destination option. If you do not specify a destination file name, the name
of the source file is used to create the destination file. Any text that follows the last file path
separator (/ or \) is treated as the file name. If you want to use the same file name as the source
file, then the input of the destination option must end with a file path separator (/ or \).

The action module returns an error when the following occurs:

• You do not have permission to create a file in the specified folder.

• The source files do not exist at runtime.

• There is already a folder with the specified file name and the overwrite option is set to false.

• The action module encounters an error while performing the operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

source The source
file path.

String Yes N/A N/A Yes

destinati
on

The
destination
file path.

String Yes N/A N/A Yes

overwrite When
set to
false, the
destinati
on files
will not be
replaced
when there
is already a
file in the
specified
location

Boolean No true N/A Yes

Action modules 228

EC2 Image Builder User Guide

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

with the
 specified
name.

Input example: copy a file (Linux)

 - name: CopyingAFileLinux
 action: CopyFile
 inputs:
 - source: /Sample/MyFolder/Sample.txt
 destination: /MyFolder/destinationFile.txt

Input example: copy a file (Windows)

 - name: CopyingAFileWindows
 action: CopyFile
 inputs:
 - source: C:\MyFolder\Sample.txt
 destination: C:\MyFolder\destinationFile.txt

Input example: copy a file using the source file name (Linux)

 - name: CopyingFileWithSourceFileNameLinux
 action: CopyFile
 inputs:
 - source: /Sample/MyFolder/Sample.txt
 destination: /MyFolder/

Input example: copy a file using the source file name (Windows)

 - name: CopyingFileWithSourceFileNameWindows
 action: CopyFile
 inputs:
 - source: C:\Sample\MyFolder\Sample.txt
 destination: C:\MyFolder\

Action modules 229

EC2 Image Builder User Guide

Input example: copy a file using the wildcard character (Linux)

 - name: CopyingFilesWithWildCardLinux
 action: CopyFile
 inputs:
 - source: /Sample/MyFolder/Sample*
 destination: /MyFolder/

Input example: copy a file using the wildcard character (Windows)

 - name: CopyingFilesWithWildCardWindows
 action: CopyFile
 inputs:
 - source: C:\Sample\MyFolder\Sample*
 destination: C:\MyFolder\

Input example: copy a file without overwriting (Linux)

 - name: CopyingFilesWithoutOverwriteLinux
 action: CopyFile
 inputs:
 - source: /Sample/MyFolder/Sample.txt
 destination: /MyFolder/destinationFile.txt
 overwrite: false

Input example: copy a file without overwriting (Windows)

 - name: CopyingFilesWithoutOverwriteWindows
 action: CopyFile
 inputs:
 - source: C:\Sample\MyFolder\Sample.txt
 destination: C:\MyFolder\destinationFile.txt
 overwrite: false

Output

None.

CopyFolder (Linux, Windows, macOS)

The CopyFolder action module copies a folder from the specified source to the specified
destination. The input for the source option is the folder to copy, and the input for the

Action modules 230

EC2 Image Builder User Guide

destination option is the folder where the contents of the source folder are copied. By default,
the module recursively creates the destination folder if it does not exist at runtime.

If a folder with the specified name already exists in the specified folder, the action module, by
default, overwrites the existing folder. You can override this default behavior by setting the
overwrite option to false. When the overwrite option is set to false, and there is already a folder
in the specified location with the specified name, the action module will return an error.

The source folder name can include a wildcard (*). Wildcard characters are accepted only after the
last file path separator (/ or \). If wildcard characters are included in the source folder name, all of
the folders that match the wildcard are copied to the destination folder. If you want to copy more
than one folder by using a wildcard character, the input to the destination option must end with
a file path separator (/ or \), which indicates that the destination input is a folder.

If the destination folder name is different from the source folder name, you can specify the
destination folder name using the destination option. If you do not specify a destination folder
name, the name of the source folder is used to create the destination folder. Any text that follows
the last file path separator (/ or \) is treated as the folder name. If you want to use the same folder
name as the source folder, then the input of the destination option must end with a file path
separator (/ or \).

The action module returns an error when the following occurs:

• You do not have permission to create a folder in the specified folder.

• The source folders do not exist at runtime.

• There is already a folder with the specified folder name and the overwrite option is set to
false.

• The action module encounters an error while performing the operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

source The source
folder
path.

String Yes N/A N/A Yes

Action modules 231

EC2 Image Builder User Guide

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

destinati
on

The
destinati
on folder
path.

String Yes N/A N/A Yes

overwrite When
set to
false, the
destinati
on folders
will not be
replaced
when there
is already
a folder
in the
specified
location
with the
 specified
name.

Boolean No true N/A Yes

Input example: copy a folder (Linux)

 - name: CopyingAFolderLinux
 action: CopyFolder
 inputs:
 - source: /Sample/MyFolder/SampleFolder
 destination: /MyFolder/destinationFolder

Input example: copy a folder (Windows)

 - name: CopyingAFolderWindows

Action modules 232

EC2 Image Builder User Guide

 action: CopyFolder
 inputs:
 - source: C:\Sample\MyFolder\SampleFolder
 destination: C:\MyFolder\destinationFolder

Input example: copy a folder using the source folder name (Linux)

 - name: CopyingFolderSourceFolderNameLinux
 action: CopyFolder
 inputs:
 - source: /Sample/MyFolder/SourceFolder
 destination: /MyFolder/

Input example: copy a folder using the source folder name (Windows)

 - name: CopyingFolderSourceFolderNameWindows
 action: CopyFolder
 inputs:
 - source: C:\Sample\MyFolder\SampleFolder
 destination: C:\MyFolder\

Input example: copy a folder using the wildcard character (Linux)

 - name: CopyingFoldersWithWildCardLinux
 action: CopyFolder
 inputs:
 - source: /Sample/MyFolder/Sample*
 destination: /MyFolder/

Input example: copy a folder using the wildcard character (Windows)

 - name: CopyingFoldersWithWildCardWindows
 action: CopyFolder
 inputs:
 - source: C:\Sample\MyFolder\Sample*
 destination: C:\MyFolder\

Input example: copy a folder without overwriting (Linux)

 - name: CopyingFoldersWithoutOverwriteLinux
 action: CopyFolder

Action modules 233

EC2 Image Builder User Guide

 inputs:
 - source: /Sample/MyFolder/SourceFolder
 destination: /MyFolder/destinationFolder
 overwrite: false

Input example: copy a folder without overwriting (Windows)

 - name: CopyingFoldersWithoutOverwrite
 action: CopyFolder
 inputs:
 - source: C:\Sample\MyFolder\SourceFolder
 destination: C:\MyFolder\destinationFolder
 overwrite: false

Output

None.

CreateFile (Linux, Windows, macOS)

The CreateFile action module creates a file in a specified location. By default, if required, the
module also recursively creates the parent folders.

If the file already exists in the specified folder, the action module, by default, truncates or
overwrites the existing file. You can override this default behavior by setting the overwrite option
to false. When the overwrite option is set to false, and there is already a file in the specified
location with the specified name, the action module will return an error.

If the file encoding value is different from the default encoding (utf-8) value, then you can
specify the file encoding value by using the encoding option. By default, utf-16 and utf-32 are
assumed to use little-endian encoding.

owner, group, and permissions are optional inputs. The input for permissions must be
a string value. Files are created with default values when not provided. These options are not
supported on Windows platforms. This action module validates and returns an error if the owner,
group, and permissions options are used on Windows platforms.

This action module can create a file the with permissions defined by the default umask value of the
operating system. You must set the umask value if you want to override the default value.

The action module returns an error when the following occurs:

Action modules 234

EC2 Image Builder User Guide

• You do not have permission to create a file or a folder in the specified parent folder.

• The action module encounters an error while performing the operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

path The file
path.

String Yes N/A N/A Yes

content The text
content of
the file.

String No N/A N/A Yes

encoding The
encoding
standard.

String No utf8 utf8,
utf-8,
utf16,utf-16,
utf16-
LE,
 utf-16-
LE
utf16-BE,
utf-16-
BE ,
utf32,
 utf-32,
 utf32-
LE,utf-32-
LE ,
 utf32-
BE, and
utf-32-
BE . The
value
of the

Yes

Action modules 235

EC2 Image Builder User Guide

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

encoding
option
is case
insensitive.

owner The user
name or
ID.

String No N/A N/A Not
supported
on
Windows.

group The group
name or
ID.

String No The
current
user.

N/A Not
supported
on
Windows.

permissio
ns

The file
permissio
ns.

String No 0666 N/A Not
supported
on
Windows.

Action modules 236

EC2 Image Builder User Guide

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

overwrite If the
name
of the
specified
file already
exists,
setting
this value
to false
prevents
the file
from being
truncated
or overwri
tten by
default.

Boolean No true N/A Yes

Input example: create a file without overwriting (Linux)

 - name: CreatingFileWithoutOverwriteLinux
 action: CreateFile
 inputs:
 - path: /home/UserName/Sample.txt
 content: The text content of the sample file.
 overwrite: false

Input example: create a file without overwriting (Windows)

 - name: CreatingFileWithoutOverwriteWindows
 action: CreateFile
 inputs:
 - path: C:\Temp\Sample.txt
 content: The text content of the sample file.

Action modules 237

EC2 Image Builder User Guide

 overwrite: false

Input example: create a file with file properties

 - name: CreatingFileWithFileProperties
 action: CreateFile
 inputs:
 - path: SampleFolder/Sample.txt
 content: The text content of the sample file.
 encoding: UTF-16
 owner: Ubuntu
 group: UbuntuGroup
 permissions: 0777
 - path: SampleFolder/SampleFile.txt
 permissions: 755
 - path: SampleFolder/TextFile.txt
 encoding: UTF-16
 owner: root
 group: rootUserGroup

Input example: create a file without file properties

 - name: CreatingFileWithoutFileProperties
 action: CreateFile
 inputs:
 - path: ./Sample.txt
 - path: Sample1.txt

Input example: create an empty file to skip a section in the Linux clean up script

 - name: CreateSkipCleanupfile
 action: CreateFile
 inputs:
 - path: <skip section file name>

For more information, see Override the Linux clean up script

Output

None.

Action modules 238

EC2 Image Builder User Guide

CreateFolder (Linux, Windows, macOS)

The CreateFolder action module creates a folder in a specified location. By default, if required, the
module also recursively creates the parent folders.

If the folder already exists in the specified folder, the action module, by default, truncates or
overwrites the existing folder. You can override this default behavior by setting the overwrite
option to false. When the overwrite option is set to false, and there is already a folder in the
specified location with the specified name, the action module will return an error.

owner, group, and permissions are optional inputs. The input for permissions must be a
string value. These options are not supported on Windows platforms. This action module validates
and returns an error if the owner, group, and permissions options are used on Windows
platforms.

This action module can create a folder the with permissions defined by the default umask value of
the operating system. You must set the umask value if you want to override the default value.

The action module returns an error when the following occurs:

• You do not have permission to create a folder in the specified location.

• The action module encounters an error while performing the operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

path The folder
path.

String Yes N/A N/A Yes

owner The user
name or
ID.

String No The
current
user.

N/A Not
supported
on
Windows.

group The group
name or
ID.

String No The group
of the

N/A Not
supported

Action modules 239

EC2 Image Builder User Guide

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

current
user.

on
Windows.

permissio
ns

The folder
permissio
ns.

String No 0777 N/A Not
supported
on
Windows.

overwrite If the
name
of the
specified
file already
exists,
setting
this value
to false
prevents
the file
from being
truncated
or overwri
tten by
default.

Boolean No true N/A Yes

Input example: create a folder (Linux)

 - name: CreatingFolderLinux
 action: CreateFolder
 inputs:
 - path: /Sample/MyFolder/

Input example: create a folder (Windows)

Action modules 240

EC2 Image Builder User Guide

 - name: CreatingFolderWindows
 action: CreateFolder
 inputs:
 - path: C:\MyFolder

Input example: create a folder specifying folder properties

 - name: CreatingFolderWithFolderProperties
 action: CreateFolder
 inputs:
 - path: /Sample/MyFolder/Sample/
 owner: SampleOwnerName
 group: SampleGroupName
 permissions: 0777
 - path: /Sample/MyFolder/SampleFoler/
 permissions: 777

Input example: create a folder that overwrites the existing folder, if there is one.

 - name: CreatingFolderWithOverwrite
 action: CreateFolder
 inputs:
 - path: /Sample/MyFolder/Sample/
 overwrite: true

Output

None.

CreateSymlink (Linux, Windows, macOS)

The CreateSymlink action module creates symbolic links, or files that contain a reference to
another file. This module is not supported on Windows platforms.

The input for the path and target options can be either an absolute or relative path. If the input
for the path option is a relative path, it is replaced with the absolute path when the link is created.

By default, when a link with the specified name already exists in the specified folder, the action
module returns an error. You can override this default behavior by setting the force option to
true. When the force option is set to true, the module will overwrite the existing link.

If a parent folder does not exist, the action module creates the folder recursively, by default.

Action modules 241

EC2 Image Builder User Guide

The action module returns an error when the following occurs:

• The target file does not exist at runtime.

• A nonsymbolic link file with the specified name already exists.

• The action module encounters an error while performing the operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

path The file
path.

String Yes N/A N/A Not
supported
on
Windows.

target The target
file path to
which the
symbolic
link points.

String Yes N/A N/A Not
supported
on
Windows.

force Forces the
creation
of a link
when a
link with
the same
name
 already
exists.

Boolean No false N/A Not
supported
on
Windows.

Input example: create symbolic link that forces the creation of a link

 - name: CreatingSymbolicLinkWithForce
 action: CreateSymlink

Action modules 242

EC2 Image Builder User Guide

 inputs:
 - path: /Folder2/Symboliclink.txt
 target: /Folder/Sample.txt
 force: true

Input example: create a symbolic link that does not force the creation of a link

 - name: CreatingSymbolicLinkWithOutForce
 action: CreateSymlink
 inputs:
 - path: Symboliclink.txt
 target: /Folder/Sample.txt

Output

None.

DeleteFile (Linux, Windows, macOS)

The DeleteFile action module deletes a file or files in a specified location.

The input of path should be a valid file path or a file path with a wild card character (*) in the
file name. When wildcard characters are specified in the file name, all of the files within the same
folder that match the wildcard will be deleted.

The action module returns an error when the following occurs:

• You do not have permission to perform delete operations.

• The action module encounters an error while performing the operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

path The file
path.

String Yes N/A N/A Yes

Input example: delete a single file (Linux)

Action modules 243

EC2 Image Builder User Guide

 - name: DeletingSingleFileLinux
 action: DeleteFile
 inputs:
 - path: /SampleFolder/MyFolder/Sample.txt

Input example: delete a single file (Windows)

 - name: DeletingSingleFileWindows
 action: DeleteFile
 inputs:
 - path: C:\SampleFolder\MyFolder\Sample.txt

Input example: delete a file that ends with "log" (Linux)

 - name: DeletingFileEndingWithLogLinux
 action: DeleteFile
 inputs:
 - path: /SampleFolder/MyFolder/*log

Input example: delete a file that ends with "log" (Windows)

 - name: DeletingFileEndingWithLogWindows
 action: DeleteFile
 inputs:
 - path: C:\SampleFolder\MyFolder*log

Input example: delete all files in a specified folder (Linux)

 - name: DeletingAllFilesInAFolderLinux
 action: DeleteFile
 inputs:
 - path: /SampleFolder/MyFolder/*

Input example: delete all files in a specified folder (Windows)

 - name: DeletingAllFilesInAFolderWindows
 action: DeleteFile
 inputs:
 - path: C:\SampleFolder\MyFolder*

Action modules 244

EC2 Image Builder User Guide

Output

None.

DeleteFolder (Linux, Windows, macOS)

The DeleteFolder action module deletes folders.

If the folder is not empty, you must set the force option to true to remove the folder and its
contents. If you do not set the force option to true, and the folder you are trying to delete is not
empty, the action module returns an error. The default value of the force option is false.

The action module returns an error when the following occurs:

• You do not have permission to perform delete operations.

• The action module encounters an error while performing the operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

path The folder
path.

String Yes N/A N/A Yes

force Removes
the folder
whether
or not the
folder is
empty.

Boolean No false N/A Yes

Input example: delete a folder that is not empty using the force option (Linux)

 - name: DeletingFolderWithForceOptionLinux
 action: DeleteFolder
 inputs:
 - path: /Sample/MyFolder/Sample/

Action modules 245

EC2 Image Builder User Guide

 force: true

Input example: delete a folder that is not empty using the force option (Windows)

 - name: DeletingFolderWithForceOptionWindows
 action: DeleteFolder
 inputs:
 - path: C:\Sample\MyFolder\Sample\
 force: true

Input example: delete a folder (Linux)

 - name: DeletingFolderWithOutForceLinux
 action: DeleteFolder
 inputs:
 - path: /Sample/MyFolder/Sample/

Input example: delete a folder (Windows)

 - name: DeletingFolderWithOutForce
 action: DeleteFolder
 inputs:
 - path: C:\Sample\MyFolder\Sample\

Output

None.

ListFiles (Linux, Windows, macOS)

The ListFiles action module lists the files in a specified folder. When the recursive option is set to
true, it lists the files in subfolders. This module does not list files in subfolders by default.

To list all of the files with names that match a specified pattern, use the fileNamePattern option
to provide the pattern. The fileNamePattern option accepts the wildcard (*) value. When the
fileNamePattern is provided, all of the files that match the specified file name format are
returned.

The action module returns an error when the following occurs:

• The specified folder does not exist at runtime.

Action modules 246

EC2 Image Builder User Guide

• You do not have permission to create a file or a folder in the specified parent folder.

• The action module encounters an error while performing the operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

path The folder
path.

String Yes N/A N/A Yes

fileNameP
attern

The
pattern
to match
to list all
files with
names that
match the
 pattern.

String No N/A N/A Yes

recursive Lists files
in the
folder
recursively.

Boolean No false N/A Yes

Input example: list files in specified folder (Linux)

 - name: ListingFilesInSampleFolderLinux
 action: ListFiles
 inputs:
 - path: /Sample/MyFolder/Sample

Input example: list files in specified folder (Windows)

 - name: ListingFilesInSampleFolderWindows
 action: ListFiles
 inputs:

Action modules 247

EC2 Image Builder User Guide

 - path: C:\Sample\MyFolder\Sample

Input example: list files that end with "log" (Linux)

 - name: ListingFilesWithEndingWithLogLinux
 action: ListFiles
 inputs:
 - path: /Sample/MyFolder/
 fileNamePattern: *log

Input example: list files that end with "log" (Windows)

 - name: ListingFilesWithEndingWithLogWindows
 action: ListFiles
 inputs:
 - path: C:\Sample\MyFolder\
 fileNamePattern: *log

Input example: list files recursively

 - name: ListingFilesRecursively
 action: ListFiles
 inputs:
 - path: /Sample/MyFolder/
 recursive: true

Output

Key name Descripti
on

Type

files The list of
files.

String

Output example

{
 "files": "/sample1.txt,/sample2.txt,/sample3.txt"
}

Action modules 248

EC2 Image Builder User Guide

MoveFile (Linux, Windows, macOS)

The MoveFile action module moves files from the specified source to the specified destination.

If the file already exists in the specified folder, the action module, by default, overwrites the
existing file. You can override this default behavior by setting the overwrite option to false.
When the overwrite option is set to false, and there is already a file in the specified location with
the specified name, the action module will return an error. This option works the same as the mv
command in Linux, which overwrites by default.

The source file name can include a wildcard (*). Wildcard characters are accepted only after the last
file path separator (/ or \). If wildcard characters are included in the source file name, all of the
files that match the wildcard are copied to the destination folder. If you want to move more than
one file by using a wildcard character, the input to the destination option must end with a file
path separator (/ or \), which indicates that the destination input is a folder.

If the destination file name is different from the source file name, you can specify the destination
file name using the destination option. If you do not specify a destination file name, the name
of the source file is used to create the destination file. Any text that follows the last file path
separator (/ or \) is treated as the file name. If you want to use the same file name as the source
file, then the input of the destination option must end with a file path separator (/ or \).

The action module returns an error when the following occurs:

• You do not have permission to create a file in the specified folder.

• The source files do not exist at runtime.

• There is already a folder with the specified file name and the overwrite option is set to false.

• The action module encounters an error while performing the operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

source The source
file path.

String Yes N/A N/A Yes

Action modules 249

EC2 Image Builder User Guide

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

destinati
on

The
destination
file path.

String Yes N/A N/A Yes

overwrite When
set to
false, the
destinati
on files
will not be
replaced
when there
is already a
file in the
specified
location
with the
 specified
name.

Boolean No true N/A Yes

Input example: move a file (Linux)

 - name: MovingAFileLinux
 action: MoveFile
 inputs:
 - source: /Sample/MyFolder/Sample.txt
 destination: /MyFolder/destinationFile.txt

Input example: move a file (Windows)

 - name: MovingAFileWindows
 action: MoveFile
 inputs:
 - source: C:\Sample\MyFolder\Sample.txt

Action modules 250

EC2 Image Builder User Guide

 destination: C:\MyFolder\destinationFile.txt

Input example: move a file using the source file name (Linux)

 - name: MovingFileWithSourceFileNameLinux
 action: MoveFile
 inputs:
 - source: /Sample/MyFolder/Sample.txt
 destination: /MyFolder/

Input example: move a file using the source file name (Windows)

 - name: MovingFileWithSourceFileNameWindows
 action: MoveFile
 inputs:
 - source: C:\Sample\MyFolder\Sample.txt
 destination: C:\MyFolder

Input example: move a file using a wildcard character (Linux)

 - name: MovingFilesWithWildCardLinux
 action: MoveFile
 inputs:
 - source: /Sample/MyFolder/Sample*
 destination: /MyFolder/

Input example: move a file using a wildcard character (Windows)

 - name: MovingFilesWithWildCardWindows
 action: MoveFile
 inputs:
 - source: C:\Sample\MyFolder\Sample*
 destination: C:\MyFolder

Input example: move a file without overwriting (Linux)

 - name: MovingFilesWithoutOverwriteLinux
 action: MoveFile
 inputs:
 - source: /Sample/MyFolder/Sample.txt

Action modules 251

EC2 Image Builder User Guide

 destination: /MyFolder/destinationFile.txt
 overwrite: false

Input example: move a file without overwriting (Windows)

 - name: MovingFilesWithoutOverwrite
 action: MoveFile
 inputs:
 - source: C:\Sample\MyFolder\Sample.txt
 destination: C:\MyFolder\destinationFile.txt
 overwrite: false

Output

None.

MoveFolder (Linux, Windows, macOS)

The MoveFolder action module moves folders from the specified source to the specified
destination. The input for the source option is the folder to move, and the input to the
destination option is the folder where the contents of the source folders are moved.

If the destination parent folder or the input to the destination option does not exist at runtime,
the default behavior of the module is to recursively create the folder at the specified destination.

If a folder with the same as the source folder already exists in the destination folder, the action
module, by default, overwrites the existing folder. You can override this default behavior by setting
the overwrite option to false. When the overwrite option is set to false, and there is already a
folder in the specified location with the specified name, the action module will return an error.

The source folder name can include a wildcard (*). Wildcard characters are accepted only after the
last file path separator (/ or \). If wildcard characters are included in the source folder name, all of
the folders that match the wildcard are copied to the destination folder. If you want to move more
than one folder by using a wildcard character, the input to the destination option must end with
a file path separator (/ or \), which indicates that the destination input is a folder.

If the destination folder name is different from the source folder name, you can specify the
destination folder name using the destination option. If you do not specify a destination folder
name, the name of the source folder is used to create the destination folder. Any text that follows
the last file path separator (/ or \) is treated as the folder name. If you want to use the same folder

Action modules 252

EC2 Image Builder User Guide

name as the source folder, then the input of the destination option must end with a file path
separator (/ or \).

The action module returns an error when the following occurs:

• You do not have permission to create a folder in the destination folder.

• The source folders do not exist at runtime.

• There is already a folder with the specified name and the overwrite option is set to false.

• The action module encounters an error while performing the operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

source The source
folder
path.

String Yes N/A N/A Yes

destinati
on

The
destinati
on folder
path.

String Yes N/A N/A Yes

overwrite When
set to
false, the
destinati
on folders
will not be
replaced
when there
is already
a folder
in the
specified
location

Boolean No true N/A Yes

Action modules 253

EC2 Image Builder User Guide

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

with the
 specified
name.

Input example: move a folder (Linux)

 - name: MovingAFolderLinux
 action: MoveFolder
 inputs:
 - source: /Sample/MyFolder/SourceFolder
 destination: /MyFolder/destinationFolder

Input example: move a folder (Windows)

 - name: MovingAFolderWindows
 action: MoveFolder
 inputs:
 - source: C:\Sample\MyFolder\SourceFolder
 destination: C:\MyFolder\destinationFolder

Input example: move a folder using the source folder name (Linux)

 - name: MovingFolderWithSourceFolderNameLinux
 action: MoveFolder
 inputs:
 - source: /Sample/MyFolder/SampleFolder
 destination: /MyFolder/

Input example: move a folder using the source folder name (Windows)

 - name: MovingFolderWithSourceFolderNameWindows
 action: MoveFolder
 inputs:
 - source: C:\Sample\MyFolder\SampleFolder
 destination: C:\MyFolder\

Action modules 254

EC2 Image Builder User Guide

Input example: move a folder using a wildcard character (Linux)

 - name: MovingFoldersWithWildCardLinux
 action: MoveFolder
 inputs:
 - source: /Sample/MyFolder/Sample*
 destination: /MyFolder/

Input example: move a folder using a wildcard character (Windows)

 - name: MovingFoldersWithWildCardWindows
 action: MoveFolder
 inputs:
 - source: C:\Sample\MyFolder\Sample*
 destination: C:\MyFolder\

Input example: move a folder without overwriting (Linux)

 - name: MovingFoldersWithoutOverwriteLinux
 action: MoveFolder
 inputs:
 - source: /Sample/MyFolder/SampleFolder
 destination: /MyFolder/destinationFolder
 overwrite: false

Input example: move a folder without overwriting (Windows)

 - name: MovingFoldersWithoutOverwriteWindows
 action: MoveFolder
 inputs:
 - source: C:\Sample\MyFolder\SampleFolder
 destination: C:\MyFolder\destinationFolder
 overwrite: false

Output

None.

ReadFile (Linux, Windows, macOS)

The ReadFile action module reads the content of a text file of type string. This module can be used
to read the content of a file for use in subsequent steps through chaining or for reading data to the

Action modules 255

EC2 Image Builder User Guide

console.log file. If the specified path is a symbolic link, this module returns the content of the
target file. This module only supports text files.

If the file encoding value is different from the default encoding (utf-8) value, then you can
specify the file encoding value by using the encoding option. By default, utf-16 and utf-32 are
assumed to use little-endian encoding.

By default, this module cannot print the file content to the console.log file. You can override
this setting by setting the printFileContent property to true.

This module can return only the content of a file. It cannot parse files, such as Excel or JSON files.

The action module returns an error when the following occurs:

• The file does not exist at runtime.

• The action module encounters an error while performing the operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

path The file
path.

String Yes N/A N/A Yes

encoding The
encoding
standard.

String No utf8 utf8,
utf-8,
utf16,utf-16,
utf16-
LE,
 utf-16-
LE
utf16-BE,
utf-16-
BE ,
utf32,
 utf-32,
 utf32-

Yes

Action modules 256

EC2 Image Builder User Guide

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

LE,utf-32-
LE ,
 utf32-
BE, and
utf-32-
BE . The
value
of the
encoding
option
is case
insensitive.

printFile
Content

Prints
the file
content
to the
console.l
og file.

Boolean No false N/A Yes.

Input example: read a file (Linux)

 - name: ReadingFileLinux
 action: ReadFile
 inputs:
 - path: /home/UserName/SampleFile.txt

Input example: read a file (Windows)

 - name: ReadingFileWindows
 action: ReadFile
 inputs:
 - path: C:\Windows\WindowsUpdate.log

Action modules 257

EC2 Image Builder User Guide

Input example: read a file and specify encoding standard

 - name: ReadingFileWithFileEncoding
 action: ReadFile
 inputs:
 - path: /FolderName/SampleFile.txt
 encoding: UTF-32

Input example: read a file and print to the console.log file

 - name: ReadingFileToConsole
 action: ReadFile
 inputs:
 - path: /home/UserName/SampleFile.txt
 printFileContent: true

Output

Field Description Type

content The file content. string

Output example

{
 "content" : "The file content"
}

SetFileEncoding (Linux, Windows, macOS)

The SetFileEncoding action module modifies the encoding property of an existing file. This
module can convert file encoding from utf-8 to a specified encoding standard. By default,
utf-16 and utf-32 are assumed to be little-endian encoding.

The action module returns an error when the following occurs:

• You do not have permission to perform the specified modification.

• The file does not exist at runtime.

• The action module encounters an error while performing the operation.

Action modules 258

EC2 Image Builder User Guide

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

path The file
path.

String Yes N/A N/A Yes

encoding The
encoding
standard.

String No utf8 utf8,
utf-8,
utf16,utf-16,
utf16-
LE,
 utf-16-
LE
utf16-BE,
utf-16-
BE ,
utf32,
 utf-32,
 utf32-
LE,utf-32-
LE ,
 utf32-
BE, and
utf-32-
BE . The
value
of the
encoding
option
is case
insensitive.

Yes

Input example: set file encoding property

Action modules 259

EC2 Image Builder User Guide

 - name: SettingFileEncodingProperty
 action: SetFileEncoding
 inputs:
 - path: /home/UserName/SampleFile.txt
 encoding: UTF-16

Output

None.

SetFileOwner (Linux, Windows, macOS)

The SetFileOwner action module modifies the owner andgroup owner properties of an existing
file. If the specified file is a symbolic link, the module modifies the owner property of the source
file. This module is not supported on Windows platforms.

This module accepts user and group names as inputs. If the group name is not provided, the
module assigns the group owner of the file to the group that the user belongs to.

The action module returns an error when the following occurs:

• You do not have permission to perform the specified modification.

• The specified user or group name does not exist at runtime.

• The file does not exist at runtime.

• The action module encounters an error while performing the operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

path The file
path.

String Yes N/A N/A Not
supported
on
Windows.

owner The user
name.

string Yes N/A N/A Not
supported

Action modules 260

EC2 Image Builder User Guide

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

on
Windows.

group The name
of the user
group.

String No The name
of the
group that
the user
belongs to.

N/A Not
supported
on
Windows.

Input example: set file owner property without specifying the name of the user group

 - name: SettingFileOwnerPropertyNoGroup
 action: SetFileOwner
 inputs:
 - path: /home/UserName/SampleText.txt
 owner: LinuxUser

Input example: set file owner property by specifying the owner and the user group

 - name: SettingFileOwnerProperty
 action: SetFileOwner
 inputs:
 - path: /home/UserName/SampleText.txt
 owner: LinuxUser
 group: LinuxUserGroup

Output

None.

SetFolderOwner (Linux, Windows, macOS)

The SetFolderOwner action module recursively modifies the owner andgroup owner properties
of an existing folder. By default, the module can modify ownership for all of the contents in a
folder. You can set the recursive option to false to override this behavior. This module is not
supported on Windows platforms.

Action modules 261

EC2 Image Builder User Guide

This module accepts user and group names as inputs. If the group name is not provided, the
module assigns the group owner of the file to the group that the user belongs to.

The action module returns an error when the following occurs:

• You do not have permission to perform the specified modification.

• The specified user or group name does not exist at runtime.

• The folder does not exist at runtime.

• The action module encounters an error while performing the operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

path The folder
path.

String Yes N/A N/A Not
supported
on
Windows.

owner The user
name.

string Yes N/A N/A Not
supported
on
Windows.

group The name
of the user
group.

String No The name
of the
group that
the user
belongs to.

N/A Not
supported
on
Windows.

recursive Overrides
the default
behavior
of
modifying
ownership

Boolean No true N/A Not
supported
on
Windows.

Action modules 262

EC2 Image Builder User Guide

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

for all
of the
contents
of a folder
when set
to false.

Input example: set folder owner property without specifying the name of the user group

 - name: SettingFolderPropertyWithOutGroup
 action: SetFolderOwner
 inputs:
 - path: /SampleFolder/
 owner: LinuxUser

Input example: set folder owner property without overriding the ownership of all of the
contents in a folder

 - name: SettingFolderPropertyWithOutRecursively
 action: SetFolderOwner
 inputs:
 - path: /SampleFolder/
 owner: LinuxUser
 recursive: false

Input example: set file ownership property by specifying the name of the user group

 - name: SettingFolderPropertyWithGroup
 action: SetFolderOwner
 inputs:
 - path: /SampleFolder/
 owner: LinuxUser
 group: LinuxUserGroup

Output

Action modules 263

EC2 Image Builder User Guide

None.

SetFilePermissions (Linux, Windows, macOS)

The SetFilePermissions action module modifies the permissions of an existing file. This module
is not supported on Windows platforms.

The input for permissions must be a string value.

This action module can create a file the with permissions defined by the default umask value of the
operating system. You must set the umask value if you want to override the default value.

The action module returns an error when the following occurs:

• You do not have permission to perform the specified modification.

• The file does not exist at runtime.

• The action module encounters an error while performing the operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

path The file
path.

String Yes N/A N/A Not
supported
on
Windows.

permissio
ns

The file
permissio
ns.

String Yes N/A N/A Not
supported
on
Windows.

Input example: modify file permissions

 - name: ModifyingFilePermissions
 action: SetFilePermissions
 inputs:

Action modules 264

EC2 Image Builder User Guide

 - path: /home/UserName/SampleFile.txt
 permissions: 766

Output

None.

SetFolderPermissions (Linux, Windows, macOS)

The SetFolderPermissions action module recursively modifies the permissions of an existing
folder and all of its subfiles and subfolders. By default, this module can modify permissions for all
of the contents of the specified folder. You can set the recursive option to false to override
this behavior. This module is not supported on Windows platforms.

The input for permissions must be a string value.

This action module can modify permissions according to the default umask value of the operating
system. You must set the umask value if you want to override the default value.

The action module returns an error when the following occurs:

• You do not have permission to perform the specified modification.

• The folder does not exist at runtime.

• The action module encounters an error while performing the operation.

Input

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

path The folder
path.

String Yes N/A N/A Not
supported
on
Windows.

permissio
ns

The folder
permissio
ns.

String Yes N/A N/A Not
supported
on
Windows.

Action modules 265

EC2 Image Builder User Guide

Key name Descripti
on

Type Required Default
value

Acceptabl
e values

Supported
on all
platforms

recursive Overrides
the default
behavior
of
modifying
permissio
ns for all
 of the
contents
of a folder
when set
to false.

Boolean No true N/A Not
supported
on
Windows.

Input example: set folder permissions

 - name: SettingFolderPermissions
 action: SetFolderPermissions
 inputs:
 - path: SampleFolder/
 permissions: 0777

Input example: set folder permissions without modifying permissions for all of the contents of
a folder

 - name: SettingFolderPermissionsNoRecursive
 action: SetFolderPermissions
 inputs:
 - path: /home/UserName/SampleFolder/
 permissions: 777
 recursive: false

Output

None.

Action modules 266

EC2 Image Builder User Guide

Software installation actions

The following section describes action modules that install or uninstall software.

IAM requirements

If your installation download path is an S3 URI, then the IAM role that you associate with
your instance profile must have permission to run the S3Download action module. To
grant the required permission, attach the S3:GetObject IAM policy to the IAM role that
is associated with your instance profile, and specify the path for your bucket. For example,
arn:aws:s3:::BucketName/*).

Complex MSI Inputs

If your input strings contain double quote characters ("), you must use one of the following
methods to ensure that they are interpreted correctly:

• You can use single quotes (') on the outside of your string, to contain it, and double quotes (")
inside of your string, as shown in the following example.

properties:
 COMPANYNAME: '"Acme ""Widgets"" and ""Gizmos."""'

In this case, if you need to use an apostrophe inside of your string, you must escape it. This
means using another single quote (') before the apostrophe.

• You can use double quotes (") on the outside of your string, to contain it. And you can escape any
double quotes inside of your string, using the backslash character (\), as shown in the following
example.

properties:
 COMPANYNAME: "\"Acme \"\"Widgets\"\" and \"\"Gizmos.\"\"\""

Both of these methods pass the value COMPANYNAME="Acme ""Widgets"" and ""Gizmos."""
to the msiexec command.

Software installation action modules

• InstallMSI (Windows)

• UninstallMSI (Windows)

Action modules 267

EC2 Image Builder User Guide

InstallMSI (Windows)

The InstallMSI action module installs a Windows application using an MSI file. You can specify
the MSI file using a local path, an S3 object URI, or a web URL. The reboot option configures the
reboot behavior of the system.

AWSTOE generates the msiexec command based on the input parameters for the action module.
Values for the path (MSI file location) and logFile (log file location) input parameters must be
enclosed in quotation marks (").

The following MSI exit codes are considered successful:

• 0 (Success)

• 1614 (ERROR_PRODUCT_UNINSTALLED)

• 1641 (Reboot Initiated)

• 3010 (Reboot Required)

Input

Key name Description Type Required Default
value

Acceptable
values

path
Specify the
MSI file
location
using one of
the following
:

•
The local
file path.
The path
can be
absolute or
relative

•

String Yes N/A N/A

Action modules 268

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

A valid S3
object URI.

•
A valid
web HTTP/
HTTPS URL
(HTTPS is
recommend
ed) that
follows the
RFC 3986
standard.

Chaining
expressions
are allowed.

Action modules 269

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

reboot
Configure
the system
reboot
behavior that
follows a
successful
run of the
action mo
dule.

Settings:

•
Force –
Initiates
a system
 reboot
after the
msiexec
command
 runs
successfu
lly.

•
Allow –
Initiates
a system
 reboot
if the
msiexec
command
returns
 an exit
code that

String No Allow Allow,
Force,
Skip

Action modules 270

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

indicates
a reboot is
required.

•
Skip –
Logs an
informati
onal
message
 to the
console.l
og file
indicatin
g that a
reboot was
skipped.
This option
prevents
a reboot,
even if the
msiexec
command
returns
 an exit
code that
indicates
a reboot is
required.

Action modules 271

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

logOption
s Specify the

options to
use for MSI
installation
logging.
 Specifie
d flags are
passed to the
MSI installer
, along with
 the /L
command
line
parameter
to enable
logging. If
no flags are
specified,
AWSTOE uses
the default
value.

For more
informati
on about
log options
for MSI, see
 Command
 Line Options
in the
Microsoft
Windows
Installer

String No *VX i,w,e,a,r
,u,c,m,o,
p,v,x,+,!
,*

Action modules 272

https://learn.microsoft.com/en-us/windows/win32/msi/command-line-options
https://learn.microsoft.com/en-us/windows/win32/msi/command-line-options

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

 product
documenta
tion.

logFile
An absolute
or relative
path to
the log file
location. If
the log file
path does
not exist, it
is created. If
 the log file
path is not
provided,
AWSTOE
does not
store the
MSI installat
ion log.

String No N/A N/A

Action modules 273

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

propertie
s MSI logging

property key-
value pairs ,
for example:
TARGETDIR
: "C:
\target
\loca
tion"

Note:
Modificat
ion of the
following
properties is
not allowed:

•
REBOOT="R
eallySupr
ess"

•
REINSTALL
MODE="ecm
us"

•
REINSTALL
="ALL"

Map[Strin
g]String

No N/A N/A

Action modules 274

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

ignoreAut
henticode
Signature
Errors

Flag to
ignore
authentic
ode signature
validation
errors for
the installer
 specified in
path. The
Get-Authe
nticodeSi
gnature
command
 is used to
validate
installers.

Settings:

•
true –
Validation
errors are
ignored
and the
 installer
runs.

•
false –
Validatio
n errors
are not
ignored.
The instal

Boolean No false true,
false

Action modules 275

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

ler runs
only when
validation
is successfu
l. This is
the defaul
t behavior.

Action modules 276

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

allowUnsi
gnedInsta
ller

Flag to allow
running the
unsigned
installer
specified in
the path. The
Get-Authe
nticodeSi
gnature
 command
is used to
validate
installers.

Settings:

•
true –
Ignores
the
NotSigned

 status
returned
by the
 Get-Authe
nticodeSi
gnature
command
 and
runs the
installer.

•
false –
Requires

Boolean No false true,
false

Action modules 277

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

the instal
ler to be
signed.
Unsigned
installers
 will not
run. This is
the default
behavior.

Examples

The following examples show variations of the input section for your component document,
depending on your installation path.

Input example: local document path installation

- name: local-path-install
 steps:
 - name: LocalPathInstaller
 action: InstallMSI
 inputs:
 path: C:\sample.msi
 logFile: C:\msilogs\local-path-install.log
 logOptions: '*VX'
 reboot: Allow
 properties:
 COMPANYNAME: '"Amazon Web Services"'
 ignoreAuthenticodeSignatureErrors: true
 allowUnsignedInstaller: true

Input example: Amazon S3 path installation

- name: s3-path-install
 steps:
 - name: S3PathInstaller
 action: InstallMSI

Action modules 278

EC2 Image Builder User Guide

 inputs:
 path: s3://<bucket-name>/sample.msi
 logFile: s3-path-install.log
 reboot: Force
 ignoreAuthenticodeSignatureErrors: false
 allowUnsignedInstaller: true

Input example: web path installation

- name: web-path-install
 steps:
 - name: WebPathInstaller
 action: InstallMSI
 inputs:
 path: https://<some-path>/sample.msi
 logFile: web-path-install.log
 reboot: Skip
 ignoreAuthenticodeSignatureErrors: true
 allowUnsignedInstaller: false

Output

The following is an example of the output from the InstallMSI action module.

{
 "logFile": "web-path-install.log",
 "msiExitCode": 0,
 "stdout": ""
}

UninstallMSI (Windows)

The UninstallMSI action module allows you to remove a Windows application using an MSI file.
You can specify the MSI file location using a local file path, an S3 object URI, or a web URL. The
reboot option configures the reboot behavior of the system.

AWSTOE generates the msiexec command based on the input parameters for the action module.
The MSI file location (path) and log file location (logFile) are explicitly enclosed in double
quotes (") while generating the msiexec command.

The following MSI exit codes are considered successful:

Action modules 279

EC2 Image Builder User Guide

• 0 (Success)

• 1605 (ERROR_UNKNOWN_PRODUCT)

• 1614 (ERROR_PRODUCT_UNINSTALLED)

• 1641 (Reboot Initiated)

• 3010 (Reboot Required)

Input

Key name Description Type Required Default
value

Acceptable
values

path
Specify the
MSI file
location
using one of
the following
:

•
The local
file path.
The path
can be
absolute or
relative.

•
A valid S3
object URI.

•
A valid
web HTTP/
HTTPS URL
(HTTPS is
recommend
ed) that
follows the

String Yes N/A N/A

Action modules 280

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

RFC 3986
standard.

Chaining
expressions
are allowed.

Action modules 281

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

reboot
Configures
the system
reboot
behavior
that follows
a successf
ul run of
the action
module.

Settings:

•
Force –
Initiates
a system
 reboot
after the
msiexec
command
 runs
successfu
lly.

•
Allow –
Initiates
a system
 reboot
if the
msiexec
command
returns
 an exit
code that

String No Allow Allow,
Force,
Skip

Action modules 282

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

indicates
a reboot is
required.

•
Skip –
Logs an
informati
onal
message
 to the
console.l
og file
indicatin
g that a
reboot was
skipped.
This option
prevents
a reboot,
even if the
msiexec
command
returns
 an exit
code that
indicates
a reboot is
required.

Action modules 283

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

logOption
s Specify the

options to
use for MSI
installation
logging.
 Specifie
d flags are
passed to the
MSI installer
, along with
 the /L
command
line
parameter
to enable
logging. If
no flags are
specified,
AWSTOE uses
the default
value.

For more
informati
on about
log options
for MSI, see
 Command
 Line Options
in the
Microsoft
Windows
Installer

String No *VX i,w,e,a,r
,u,c,m,o,
p,v,x,+,!
,*

Action modules 284

https://docs.microsoft.com/en-us/windows/win32/msi/command-line-options
https://docs.microsoft.com/en-us/windows/win32/msi/command-line-options

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

 product
documenta
tion.

logFile
An absolute
or relative
path to
the log file
location. If
the log file
path does
not exist, it
is created. If
 the log file
path is not
provided,
AWSTOE
does not
store the
MSI installat
ion log.

String No N/A N/A

Action modules 285

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

propertie
s MSI logging

property key-
value pairs ,
for example:
TARGETDIR
: "C:
\target
\loca
tion"

Note:
Modificat
ion of the
following
properties is
not allowed:

•
REBOOT="R
eallySupr
ess"

•
REINSTALL
MODE="ecm
us"

•
REINSTALL
="ALL"

Map[Strin
g]String

No N/A N/A

Action modules 286

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

ignoreAut
henticode
Signature
Errors

Flag to
ignore
authentic
ode signature
validation
errors for
the installer
 specified in
path. The
Get-Authe
nticodeSi
gnature
command
 is used to
validate
installers.

Settings:

•
true –
Validation
errors are
ignored
and the
 installer
runs.

•
false –
Validatio
n errors
are not
ignored.
The instal

Boolean No false true,
false

Action modules 287

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

ler runs
only when
validation
is successfu
l. This is
the defaul
t behavior.

Action modules 288

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

allowUnsi
gnedInsta
ller

Flag to allow
running the
unsigned
installer
specified in
the path. The
Get-Authe
nticodeSi
gnature
 command
is used to
validate
installers.

Settings:

•
true –
Ignores
the
NotSigned

 status
returned
by the
 Get-Authe
nticodeSi
gnature
command
 and
runs the
installer.

•
false –
Requires

Boolean No false true,
false

Action modules 289

EC2 Image Builder User Guide

Key name Description Type Required Default
value

Acceptable
values

the instal
ler to be
signed.
Unsigned
installers
 will not
run. This is
the default
behavior.

Examples

The following examples show variations of the input section for your component document,
depending on your installation path.

Input example: remove local document path installation

- name: local-path-uninstall
 steps:
 - name: LocalPathUninstaller
 action: UninstallMSI
 inputs:
 path: C:\sample.msi
 logFile: C:\msilogs\local-path-uninstall.log
 logOptions: '*VX'
 reboot: Allow
 properties:
 COMPANYNAME: '"Amazon Web Services"'
 ignoreAuthenticodeSignatureErrors: true
 allowUnsignedInstaller: true

Input example: remove Amazon S3 path installation

- name: s3-path-uninstall
 steps:
 - name: S3PathUninstaller
 action: UninstallMSI

Action modules 290

EC2 Image Builder User Guide

 inputs:
 path: s3://<bucket-name>/sample.msi
 logFile: s3-path-uninstall.log
 reboot: Force
 ignoreAuthenticodeSignatureErrors: false
 allowUnsignedInstaller: true

Input example: remove web path installation

- name: web-path-uninstall
 steps:
 - name: WebPathUninstaller
 action: UninstallMSI
 inputs:
 path: https://<some-path>/sample.msi
 logFile: web-path-uninstall.log
 reboot: Skip
 ignoreAuthenticodeSignatureErrors: true
 allowUnsignedInstaller: false

Output

The following is an example of the output from the UninstallMSI action module.

{
 "logFile": "web-path-uninstall.log",
 "msiExitCode": 0,
 "stdout": ""
}

System action modules

The following section describes action modules that perform system actions or update system
settings.

System action modules

• Reboot (Linux, Windows)

• SetRegistry (Windows)

• UpdateOS (Linux, Windows)

Action modules 291

EC2 Image Builder User Guide

Reboot (Linux, Windows)

The Reboot action module reboots the instance. It has a configurable option to delay the start of
the reboot. By default, delaySeconds is set to 0, which means that there is no delay. Step timeout
is not supported for the Reboot action module, as it does not apply when the instance is rebooted.

If the application is invoked by the Systems Manager Agent, it hands the exit code (3010 for
Windows, 194 for Linux) to the Systems Manager Agent. The Systems Manager Agent handles the
system reboot as described in Rebooting Managed Instance from Scripts.

If the application is invoked on the host as a standalone process, it saves the current execution
state, configures a post-reboot auto-run trigger to rerun the application after the reboot, and then
reboots the system.

Post-reboot auto-run trigger:

• Windows. AWSTOE creates a Windows Task Scheduler entry with a trigger that runs
automatically at SystemStartup

• Linux. AWSTOE adds a job in crontab that runs automatically after the system reboots.

@reboot /download/path/awstoe run --document s3://bucket/key/doc.yaml

This trigger is cleaned up when the application starts.

Retries

By default, the maximum number of retries is set to the Systems Manager
CommandRetryLimit. If the number of reboots exceeds the retry limit, the automation
fails. You can change the limit by editing the Systems Manager agent config file
(Mds.CommandRetryLimit). See Runtime Configuration in the Systems Manager agent
open source.

To use the Reboot action module, for steps that contain reboot exitcode (for example, 3010),
you must run the application binary as sudo user.

Action modules 292

https://docs.aws.amazon.com/systems-manager/latest/userguide/send-commands-reboot.html
https://github.com/aws/amazon-ssm-agent/blob/mainline/README.md#runtime-configuration

EC2 Image Builder User Guide

Input

Key name Description Type Required Default

delaySeco
nds

Delays a specific
amount of time
before initiating
a reboot.

Integer
No 0

Input example: reboot step

 - name: RebootStep
 action: Reboot
 onFailure: Abort
 maxAttempts: 2
 inputs:
 delaySeconds: 60

Output

None.

When the Reboot module completes, Image Builder continues to the next step in the build.

SetRegistry (Windows)

The SetRegistry action module accepts a list of inputs and allows you to set the value for the
specified registry key. If a registry key does not exist, it is created in the defined path. This feature
applies only to Windows.

Input

Key name Description Type Required

path Path of registry key. String Yes

name Name of registry key. String Yes

value Value of registry key. String/Number/Array Yes

Action modules 293

EC2 Image Builder User Guide

Key name Description Type Required

type Value type of registry
key.

String Yes

Supported path prefixes

• HKEY_CLASSES_ROOT / HKCR:

• HKEY_USERS / HKU:

• HKEY_LOCAL_MACHINE / HKLM:

• HKEY_CURRENT_CONFIG / HKCC:

• HKEY_CURRENT_USER / HKCU:

Supported types

• BINARY

• DWORD

• QWORD

• SZ

• EXPAND_SZ

• MULTI_SZ

Input example: set registry key values

 - name: SetRegistryKeyValues
 action: SetRegistry
 maxAttempts: 3
 inputs:
 - path: HKLM:\SOFTWARE\MySoftWare
 name: MyName
 value: FirstVersionSoftware
 type: SZ
 - path: HKEY_CURRENT_USER\Software\Test
 name: Version
 value: 1.1

Action modules 294

EC2 Image Builder User Guide

 type: DWORD

Output

None.

UpdateOS (Linux, Windows)

The UpdateOS action module adds support for installing Windows and Linux updates. It installs all
available updates by default. Alternatively, you can configure a list of one or more specific updates
for the action module to install. You can also specify updates to exclude from the installation.

If both "include" and "exclude" lists are provided, the resulting list of updates can include only
those listed in the "include" list that are not listed in the "exclude" list.

Note

UpdateOS doesn't support Amazon Linux 2023 (AL2023). We recommend that you update
your base AMI to the new version that comes with every release. For other alternatives, see
Control the updates received from major and minor releases in the Amazon Linux 2023 User
Guide.

• Windows. Updates are installed from the update source configured on the target machine.

• Linux. The application checks for the supported package manager in the Linux platform and
uses either yum or apt-get package manager. If neither are supported, an error is returned. You
should have sudo permissions to run the UpdateOS action module. If you do not have sudo
permissions an error.Input is returned.

Input

Key name Description Type Required

include
For Windows, you can
specify the following:

•
One or more
Microsoft

String List No

Action modules 295

https://docs.aws.amazon.com/linux/al2023/ug/deterministic-upgrades.html#controlling-release-updates

EC2 Image Builder User Guide

Key name Description Type Required

Knowledge Base
(KB) article IDs to
include in the list
of updates that
may be installed.
 Valid formats are
KB1234567 or
 1234567.

•
An update name
using a wildcard
value (*). Valid
formats are
 Security* or
 Security .

For Linux, you can
specify one or more
packages to be
included in the list of
updates for installat
ion.

Action modules 296

EC2 Image Builder User Guide

Key name Description Type Required

exclude
For Windows, you can
specify the following:

•
One or more
Microsoft
Knowledge Base
(KB) article IDs
 to include in the
list of updates to
be excluded from
 the installation.
Valid formats are
 KB1234567 or
 1234567.

•
An update name
using a wildcard
(*) value. Valid
formats are:
Security* or
 Security .

For Linux, you can
specify one or more
packages to be
excluded from the
list of updates for
installation.

String List No

Input example: add support for installing Linux updates

 - name: UpdateMyLinux

Action modules 297

EC2 Image Builder User Guide

 action: UpdateOS
 onFailure: Abort
 maxAttempts: 3
 inputs:
 exclude:
 - ec2-hibinit-agent

Input example: add support for installing Windows updates

 - name: UpdateWindowsOperatingSystem
 action: UpdateOS
 onFailure: Abort
 maxAttempts: 3
 inputs:
 include:
 - KB1234567
 - '*Security*'

Output

None.

Configure input for the AWSTOE run command

To streamline command line input for your AWSTOE run command, you can include settings for
command parameters and options in a JSON format input configuration file with a .json file
extension. AWSTOE can read your file from one of the following locations:

• A local file path (./config.json).

• An S3 bucket (s3://<bucket-path>/<bucket-name>/config.json).

When you enter the run command, you can specify the input configuration file using the --config
parameter. For example:

awstoe run --config <file-path>/config.json

Input configuration file

The input configuration JSON file includes key-value pairs for all of the settings that you can
provide directly through run command parameters and options. If you specify a setting in both

Configure input 298

EC2 Image Builder User Guide

the input configuration file and the run command, as a parameter or option, the following rules of
precedence apply:

Rules of precedence

1. A setting that is supplied directly to the run command in the AWS CLI, via a parameter or option,
overrides any value that is defined in the input configuration file for the same setting.

2. A setting in the input configuration file overrides a component default value.

3. If no other settings are passed into the component document, it can apply a default value, if one
exists.

There are two exceptions to this rule – documents and parameters. These settings work differently
in the input configuration and as command parameters. If you use the input configuration file, you
must not specify these parameters directly to the run command. Doing so will generate an error.

Component settings

The input configuration file contains the following settings. To streamline your file, you can leave
out any optional settings that aren't needed. All settings are optional unless otherwise noted.

• cwIgnoreFailures (Boolean) – Ignore logging failures from the CloudWatch Logs.

• cwLogGroup (String) – The LogGroup name for the CloudWatch Logs.

• cwLogRegion (String) – The AWS Region that applies to the CloudWatch Logs.

• cwLogStream (String) – The LogStream name for the CloudWatch Logs, that directs AWSTOE
where to stream the console.log file.

• documentS3BucketOwner (String) – The account ID of the bucket owner for S3 URI-based
documents.

• documents (array of objects, required) – An array of JSON objects representing the YAML
component documents that the AWSTOE run command is running. At least one component
document must be specified.

Each object consists of the following fields:

• path (String, required) – The file location of the YAML component document. This must be one
of the following:

• A local file path (./component-doc-example.yaml).

• An S3 URI (s3://bucket/key).

Configure input 299

EC2 Image Builder User Guide

• An Image Builder component build version ARN (arn:aws:imagebuilder:us-
west-2:123456789012:component/my-example-component/2021.12.02/1).

• parameters (array of objects) – An array of key-value pair objects, each representing a
component-specific parameter that the run command passes in when it runs the component
document. Parameters are optional for components. The component document may or may
not have parameters defined.

Each object consists of the following fields:

• name (String, required) – The name of the component parameter.

• value (String, required) – The value to pass in to the component document for the named
parameter.

To learn more about component parameters, see the Parameters section in the Use variables
in your custom component document page.

• executonId (String) – This is the unique ID that applies to the execution of the current run
command. This ID is included in output and log file names, to uniquely identify those files, and
link them to the current command execution. If this setting is left out, AWSTOE generates a
GUID.

• logDirectory (String) – The destination directory where AWSTOE stores all of the log files from
this command execution. By default, this directory is located inside of the following parent
directory: TOE_<DATETIME>_<EXECUTIONID>. If you do not specify the log directory, AWSTOE
uses the current working directory (.).

• logS3BucketName (String) – If component logs are stored in Amazon S3 (recommended),
AWSTOE uploads the component application logs to the S3 bucket named in this parameter.

• logS3BucketOwner (String) – If component logs are stored in Amazon S3 (recommended), this is
the owner account ID for the bucket where AWSTOE writes the log files.

• logS3KeyPrefix (String) – If component logs are stored in Amazon S3 (recommended), this is the
S3 object key prefix for the log location in the bucket.

• parameters (array of objects) – An array of key-value pair objects that represent parameters that
apply globally to all of the components that are included in the current run command execution.

• name (String, required) – The name of the global parameter.

• value (String, required) – The value to pass in to all of the component documents for the
named parameter.

Configure input 300

EC2 Image Builder User Guide

• phases (String) – A comma-separated list that specifies which phases to run from the YAML
component documents. If a component document includes additional phases, those will not run.

• stateDirectory (String) – The file path where state tracking files are stored.

• trace (Boolean) – Enables verbose logging to the console.

Examples

The following example shows an input configuration file that runs the build and test phases
for two component documents: sampledoc.yaml, and conversation-intro.yaml. Each
component document has a parameter that applies only to itself, and both use one shared
parameter. The project parameter applies to both component documents.

{
 "documents": [
 {
 "path": "<file path>/awstoe/sampledoc.yaml>",
 "parameters": [
 {
 "name": "dayofweek",
 "value": "Monday"
 }
]
 },
 {
 "path": "<file path>/awstoe/conversation-intro.yaml>",
 "parameters": [
 {
 "name": "greeting",
 "value": "Hello, HAL."
 }
]
 }
],
 "phases": "build,test",
 "parameters": [
 {
 "name": "project",
 "value": "examples"
 }
],
 "cwLogGroup": "<log_group_name>",

Configure input 301

EC2 Image Builder User Guide

 "cwLogStream": "<log_stream_name>",
 "documentS3BucketOwner": "<owner_aws_account_number>",
 "executionId": "<id_number>",
 "logDirectory": "<local_directory_path>",
 "logS3BucketName": "<bucket_name_for_log_files>",
 "logS3KeyPrefix": "<key_prefix_for_log_files>",
 "logS3BucketOwner": "<owner_aws_account_number>"
 }

Configure input 302

EC2 Image Builder User Guide

Image Builder output image resources

After you have created image resources for AMI or container images with Image Builder, you
can manage them using the Image Builder console, through the Image Builder API, or with
imagebuilder commands in the AWS CLI.

Tip

When you have multiple resources of the same type, tagging helps you to identify a specific
resource based on the tags you've assigned to it. For more information about tagging your
resources using Image Builder commands in the AWS CLI, see the Tag resources section of
this guide.

This section covers how to list, view, and create images. For information about image workflows
and how to manage them, see Manage build and test workflows for Image Builder images.

Contents

• List images and build versions

• View image resource details

• Create custom images with Image Builder

• Import and export virtual machine images with Image Builder

• Import verified Windows ISO disk images with Image Builder

• Manage security findings for Image Builder images

• Clean up Image Builder resources

List images and build versions

On the Images page in the Image Builder console, you can see lists of all of the Image Builder
image resources that you own, that are shared with you, and that you have access to. The list
results include some key details about those resources.

You can also see all of the images in your account that have pending workflow actions.

Contents

List images and build versions 303

EC2 Image Builder User Guide

• List images

• List images waiting for action

• List image build versions

List images

This section describes the different ways that you can list information about your images.

You can use one of the following methods to list Image Builder image resources that you have
access to. For the API action, see ListImages in the EC2 Image Builder API Reference. For the
associated SDK request, refer to the See Also link on the same page.

Contents

• List images in the console

• List images with AWS CLI commands

List images in the console

To open the Images list page in the console, follow these steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Images from the navigation pane.

The Images page in the console is divided into tabs, based on image ownership or workflow actions
that are pending. This section covers the first three tabs that show images that you own or have
access to.

Console tab: Owned by me

In the Owned by me tab, you can use the following filters to streamline the image list results.

• You can search for all or part of the name in the search bar.

• You can filter images based on their operating system platform (Windows, Linux, or macOS).

• You can filter images based on the type of output they produce (AMI or container image).

• You can use Filter source to find images that were imported from a virtual machine (VMIE), or
from an ISO disk image.

List images 304

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_ListImages.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_ListImages.html#API_ListImages_SeeAlso
https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

Following the filter controls, the Owned by me tab shows a list of Image Builder images that you
created, with the following details for the listed resources:

Name / Version

Image Builder image resource names start with the recipe name and version that they're built
from. Select the link to see all of the related image build versions.

Type

The type of output image that Image Builder creates for this image resource (an AMI or a
container image).

Platform

The operating system platform of the image resource, for example, "Linux", "Windows", or
"macOS".

Image source

The origin of the base image that Image Builder used to build this image resource. This is
primarily used to filter results for images that were imported from a virtual machine (VMIE).

Creation time

The date and time when Image Builder created the current version of the image resource.

ARN

The Amazon Resource Name (ARN) of the current version of the image resource.

Console tab: Shared with me

In the Shared with me tab, you can use the following filters to streamline the image list results.

• You can search for all or part of the name in the search bar.

• You can filter images based on their operating system platform (Windows, Linux, or macOS).

• You can filter images based on the type of output they produce (AMI or container image).

• You can use Filter source to find images that were imported from a virtual machine (VMIE), or
from an ISO disk image.

Following the filter controls, the Shared with me tab shows a list of Image Builder images that
were shared with you, with the following details for the listed resources:

List images 305

EC2 Image Builder User Guide

Image name

The name of the image resource that was shared with you. To use a shared image in a recipe,
you select the Select managed images option, and change the Image origin to Images shared
with me.

Type

The type of output image that Image Builder creates for this image resource (an AMI or a
container image).

Version

The version of the operating system platform for the image resource, usually a numeric field in
the following format: <major>.<minor>.<patch>.

Image source

The origin of the base image that Image Builder used to build this image resource, if applicable.
This is primarily used to filter results for images that were imported from a virtual machine
(VMIE).

Platform

The operating system platform of the image resource, for example, "Linux", "Windows", or
"macOS".

Creation time

The date and time when Image Builder created the version of the image resource that was
shared with you.

Owner

The owner of the shared image resource.

ARN

The Amazon Resource Name (ARN) of the image resource version that was shared with you.

Console tab: Managed by Amazon

In the Managed by Amazon tab, you can use the following filters to streamline the image list
results.

• You can search for all or part of the name in the search bar.

List images 306

EC2 Image Builder User Guide

• You can filter images based on their operating system platform (Windows, Linux, or macOS).

• You can filter images based on the type of output they produce (AMI or container image).

• You can use Filter source to find images that were imported from a virtual machine (VMIE), or
from an ISO disk image.

Following the filter controls, the Managed by Amazon tab shows a list of Amazon managed
Image Builder images that you can use as base images for your recipes. Image Builder displays the
following details for listed resources:

Image name

The name of the managed image. When you create a recipe, the default for your base image
is Quick start (Amazon managed). The images that are listed in this tab populate the Image
name list associated with the operating system platform you choose for your base image when
you create a recipe.

Type

The type of output image that Image Builder creates for this image resource (an AMI or a
container image).

Version

The version of the operating system platform for the image resource, usually a numeric field in
the following format: <major>.<minor>.<patch>.

Platform

The operating system platform of the image resource, for example, "Linux", "Windows", or
"macOS".

Creation time

The date and time when Image Builder created the version of the image resource that was
shared with you.

Owner

Amazon owns the managed images.

ARN

The Amazon Resource Name (ARN) of the image resource version that was shared with you.

List images 307

EC2 Image Builder User Guide

List images with AWS CLI commands

When you run the list-images command in the AWS CLI, you can get a list of images that you own
or have access to.

The following command example shows how to use the list-images command without filters to list
all of the Image Builder image resources that you own.

Example: list all images

aws imagebuilder list-images

Output:

{
 "requestId": "1abcd234-e567-8fa9-0123-4567b890cd12",
 "imageVersionList": [
 {
 "arn": "arn:aws:imagebuilder:us-west-2:123456789012:image/image-recipe-name/1.0.0",
 "name": "image-recipe-name",
 "type": "AMI",
 "version": "1.0.0",
 "platform": "Linux",
 "owner": "123456789012",
 "dateCreated": "2022-04-28T01:38:23.286Z"
 },
 {
 "arn": "arn:aws:imagebuilder:us-west-2:123456789012:image/image-recipe-win/1.0.1",
 "name": "image-recipe-win",
 "type": "AMI",
 "version": "1.0.1",
 "platform": "Windows",
 "owner": "123456789012",
 "dateCreated": "2022-04-28T01:38:23.286Z"
 },
 {
 "arn": "arn:aws:imagebuilder:us-west-2:123456789012:image/image-recipe-
macos/1.1.1",
 "name": "image-recipe-macos",
 "type": "AMI",
 "version": "1.1.1",
 "platform": "macOS",
 "owner": "123456789012",

List images 308

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/list-images.html

EC2 Image Builder User Guide

 "dateCreated": "2022-04-28T01:38:23.286Z"
 }
]
}

When you run the list-images command, you can apply filters to streamline the results, as the
following example shows. For more information about how to filter your results, see the list-images
command in the AWS CLI Command Reference.

Example: filter for Linux images

aws imagebuilder list-images --filters name="platform",values="Linux"

Output:

{
 "requestId": "1abcd234-e567-8fa9-0123-4567b890cd12",
 "imageVersionList": [
 {
 "arn": "arn:aws:imagebuilder:us-west-2:123456789012:image/image-recipe-name/1.0.0",
 "name": "image-recipe-name",
 "type": "AMI",
 "version": "1.0.0",
 "platform": "Linux",
 "owner": "123456789012",
 "dateCreated": "2022-04-28T01:38:23.286Z"
 }
]
}

List images waiting for action

When you use the WaitForAction step action in your image workflow, it pauses the workflow
until you send it a signal to resume processing or fail the workflow. You can use this step action
if you have an external process that needs to run before you continue. You can then use the
SendWorkflowStepAction to send a signal to the paused step to RESUME or STOP. You can also
stop or resume your workflow from the console.

The following tabs show how to get a list of all of the image resources in your account with
workflow steps that are currently paused to wait for a signal to resume or stop. The tabs cover
console steps and the AWS CLI command.

List images waiting for action 309

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/list-images.html

EC2 Image Builder User Guide

You can also use the API or an SDK to get a list of workflow steps that are waiting for action. For
the API action, see ListWaitingWorkflowSteps in the EC2 Image Builder API Reference. For the
associated SDK request, refer to the See Also link on the same page.

Console

To get to the Waiting for action tab in the console, follow these steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Images from the navigation pane. This opens the Images list page.

3. Select the Waiting for action tab from the list page.

4. (optional) To stop or resume a step, select the check box next to the name, and then choose
Stop step or Resume step. You can select more than one check box to perform the same
action for all selected steps.

Pending workflow step details

Workflow details for the pending step include the following:

• Image name – The name of the image resource that has the pending step. You can select the
name link to display the detail page for that image.

• Pending step name – The name of the workflow step that's waiting for action.

• Step execution Id – Uniquely identifies the runtime instance of the workflow step. You can
select the linked ID to display runtime details for the step.

• Step start – The timestamp when the runtime instance of the workflow step started.

• Workflow ARN – The Amazon Resource Name (ARN) of the workflow with the pending step.

• Actions – The step action that's in a wait state.

AWS CLI

When you run the list-waiting-workflow-steps command in the AWS CLI, you'll get a list of
all of the images in your account that have workflow steps that are waiting for action before
completing the image creation process.

The following command example shows how to use the list-waiting-workflow-steps command
to list all of the images in your account with workflow steps that are waiting for action.

List images waiting for action 310

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_ListWaitingWorkflowSteps.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_ListWaitingWorkflowSteps.html#API_ListWaitingWorkflowSteps_SeeAlso
https://console.aws.amazon.com/imagebuilder/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/list-waiting-workflow-steps.html

EC2 Image Builder User Guide

Example: list images in your account with waiting workflow steps

aws imagebuilder list-waiting-workflow-steps

Output:

The output for this example shows one image in the account with a step that's waiting for
action.

{
 "steps": [
 {
 "imageBuildVersionArn": "arn:aws:imagebuilder:us-
west-2:111122223333:image/example-image/1.0.0/8",
 "name": "WaitForAction",
 "workflowExecutionId": "wf-a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "stepExecutionId": "step-a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
 "workflowBuildVersionArn": "arn:aws:imagebuilder:us-
west-2:111122223333:workflow/test/wait-for-action/1.0.0/1",
 "startTime": "2023-11-21T23:21:23.609Z",
 "action": "WaitForAction"
 }
]
}

List image build versions

On the Image build versions page of the Image Builder console, you can see a list of build versions
and additional details for an image resource that you own. You can also use commands or actions
with the Image Builder API, SDKs, or AWS CLI to list image build versions.

You can use one of the following methods to list image build versions for image resources that you
own. For the API action, see ListImageBuildVersions in the EC2 Image Builder API Reference. For the
associated SDK request, refer to the See Also link on the same page.

Console

Version details

Details on the Image build versions page in the Image Builder console include the following:

List image build versions 311

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_ListImageBuildVersions.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_ListImageBuildVersions.html#API_ListImageBuildVersions_SeeAlso

EC2 Image Builder User Guide

• Version – The image resource build version. In the Image Builder console, the version links to
an image detail page.

• Type – The type of output that Image Builder distributed when it created this image resource
(an AMI or a container image).

• Date created – The date and time when Image Builder created the image build version.

• Image status – The current status of the image build version. Status can relate to the
image build or disposition. For example, during the build process, you might see a status
of Building or Distributing. For disposition of the image, you might see a status of
Deprecated or Deleted.

• Reason for failure – The reason for the image status. The Image Builder console only displays
the reason when the build fails (Image status equals Failed).

• Security findings – The aggregated image scan findings for the referenced image build
version.

• ARN – The Amazon Resource Name (ARN) for the referenced version of the image resource.

• Log stream – A link to the log stream detail for the referenced image build version.

List versions

To list image build versions in the Image Builder console, perform the following steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Images from the navigation pane. By default, the image list shows the current
version of each of the images that you own.

3. To see a list of all the versions for an image, choose the current version link. The link opens
the Image build versions page that lists all of the build versions for a specific image.

AWS CLI

When you run the list-image-build-versions command in the AWS CLI, you'll get a full list of
build versions for the specified image resource. You must own the image to run this command.

The following command example shows how to use the list-image-build-versions command to
list all of the build versions for the specified image.

Example: list build versions for a specific image

List image build versions 312

https://console.aws.amazon.com/imagebuilder/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/list-image-build-versions.html

EC2 Image Builder User Guide

aws imagebuilder list-image-build-versions --image-version-arn
 arn:aws:imagebuilder:us-west-2:123456789012:image/image-recipe-name/1.0.0

Output:

The output for this example includes two build versions for the specified image recipe.

{
 "requestId": "12f3e45d-67cb-8901-af23-45ed678c9b01",
 "imageSummaryList": [
 {
 "arn": "arn:aws:imagebuilder:us-west-2:123456789012:image/image-recipe-
name/1.0.0/2",
 "name": "image-recipe-name",
 "type": "AMI",
 "version": "1.0.0/2",
 "platform": "Linux",
 "osVersion": "Amazon Linux 2",
 "state": {
 "status": "AVAILABLE"
 },
 "owner": "123456789012",
 "dateCreated": "2023-03-10T01:04:40.609Z",
 "outputResources": {
 "amis": [
 {
 "region": "us-west-2",
 "image": "ami-012b3456789012c3d",
 "name": "image-recipe-name 2023-03-10T01-05-12.541Z",
 "description": "First verison of image-recipe-name",
 "accountId": "123456789012"
 }
]
 },
 "tags": {}
 },
 {
 "arn": "arn:aws:imagebuilder:us-west-2:123456789012:image/image-recipe-
name/1.0.0/1",
 "name": "image-recipe-name",
 "type": "AMI",
 "version": "1.0.0/1",
 "platform": "Linux",

List image build versions 313

EC2 Image Builder User Guide

 "osVersion": "Amazon Linux 2",
 "state": {
 "status": "AVAILABLE"
 },
 "owner": "123456789012",
 "dateCreated": "2023-03-10T00:07:16.384Z",
 "outputResources": {
 "amis": [
 {
 "region": "us-west-2",
 "image": "ami-0d1e23456789f0a12",
 "name": "image-recipe-name 2023-03-10T00-07-18.146132Z",
 "description": "First verison of image-recipe-name",
 "accountId": "123456789012"
 }
]
 },
 "tags": {}
 }
]
}

Note

Output from the list-image-build-versions command doesn't include security findings
or log streams at this time.

View image resource details

On the image details page in the Image Builder console, you can view details for a specific image
resource that you own. You can also use commands or actions with the Image Builder API, SDKs, or
AWS CLI to get image details.

For more information about resources that another AWS account shared with you through a AWS
Resource Access Manager (AWS RAM) resource share, see Access AWS resources shared with you in
the AWS RAM User Guide.

Contents

• View image details in the Image Builder console

View image resource details 314

https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html

EC2 Image Builder User Guide

• Get image policy details from the AWS CLI

View image details in the Image Builder console

The image detail page in the Image Builder console includes a summary section, with additional
information grouped into tabs. The page heading is the name and build version of the recipe that
created the image. If a tab doesn't apply to your image, the tab is inactive and doesn't display data.

Console detail sections and tabs

• Summary section

• Output resources tab

• Infrastructure configuration tab

• Distribution settings tab

• Workflow tab

• Security findings tab

• Tags tab

Summary section

The summary section spans the width of the page and includes the following details. These details
are always displayed.

Recipe

The recipe name and version that doesn't include the build version. For example, if the build
version is sample-linux-recipe | 1.0.1/2, the recipe is sample-linux-recipe |
1.0.1, and the build version is 2.

Date created

The date and time when Image Builder created the image build version.

Image status

The current status of the image build version. Status can relate to the image build or
disposition. For example, during the build process, you might see a status of Building or
Distributing. For disposition of the image, you might see a status of Deprecated or
Deleted.

View image details in the Image Builder console 315

EC2 Image Builder User Guide

Reason for failure

The reason for the image status. The Image Builder console only displays the reason when the
build fails (Image status equals Failed).

Output resources tab

The Output resources tab lists output and distribution details for the image resource that is
currently displayed. The information that Image Builder displays depends on the type of recipe that
the pipeline used to create the image, as follows.

Image recipe

• Region – The distribution Region for the output Amazon Machine Image (AMI) that is specified in
the Image column.

• Image – The ID of the AMI that Image Builder distributed to the destination. This ID is linked to
the Amazon Machine Images (AMIs) page in the Amazon EC2 console.

Note

Image Builder creates the AMI after it creates the output image resource, and before it
distributes the AMI to the destination.

• Name – The name of the AMI that Image Builder distributed to the destination.

• Description – The optional description from the image recipe that the pipeline used to create the
output image resource.

• Account – The AWS account that owns the currently displayed Image Builder image resource.

Container recipe

Image Builder displays the following details for output created from a container recipe.

• Region – The distribution Region for the container image that is specified in the Image URI
column.

• Image URI – The URI of the output container image that Image Builder distributed to the ECR
repository in the destination Region.

View image details in the Image Builder console 316

EC2 Image Builder User Guide

Note

Image Builder displays one row per destination. The output image always has at least
one entry for distribution to the account that created the image. Additional destinations
can include distributions across Regions, AWS accounts, or AWS Organizations. For more
information, see Manage Image Builder distribution settings.

Infrastructure configuration tab

The Infrastructure configuration tab displays the Amazon EC2 infrastructure settings that Image
Builder used to build and test the image that is currently displayed. Image Builder always displays
the name of the infrastructure configuration resource (Configuration name) and its Amazon
Resource Name (ARN). If your infrastructure configuration sets the values, additional infrastructure
details can include the following

• Instance types

• An instance profile

• Network infrastructure

• Security group settings

• An Amazon S3 location where Image Builder stores application logs

• An Amazon EC2 key pair for troubleshooting

• An Amazon SNS topic for event notifications

For more information, see Manage Image Builder infrastructure configuration.

Distribution settings tab

The Distribution settings tab displays settings that Image Builder used to distribute your output
images. Image Builder always displays the name of the distribution configuration resource
(Configuration name) and its Amazon Resource Name (ARN). Additional distribution details
depend on the type of recipe that the Image Builder pipeline used to create the image, as follows:

Image recipe

If your distribution configuration resource sets the values, additional distribution details can
include the following,:

View image details in the Image Builder console 317

EC2 Image Builder User Guide

• Region – The distribution Region for the output Amazon Machine Image (AMI).

• Output AMI name – The name of the AMI that Image Builder distributed to the destination.

• Encryption (KMS key) – If configured, the AWS KMS key that Image Builder uses to encrypt the
image for distribution to the target Region.

• Target accounts for distribution – If you configured cross-account distribution, this column
displays a comma-separated list of AWS accounts to share the output image with in the target
Region.

• Principals with shared permission – A comma-separated list of the AWS principals that have
permission to launch your image, for example, AWS accounts or groups, AWS Organizations or
organizational units (OUs).

Note

When you grant permission for other principals to launch your image, you still own the
image. AWS bills your account for all of the instances that Amazon EC2 launches from
your image.

• Target accounts for faster launch configuration – The AWS accounts where EC2 Fast Launch
distributes pre-provisioned snapshots for launch.

• Associated license configurations – The License Manager license configuration ARNs that are
associated with the AMI in the specified Region.

• Launch template configuration – Identifies an Amazon EC2 launch template to use for a specific
account.

• Set launch template default version – Sets the specified Amazon EC2 launch template as the
default launch template for the specified AWS account.

Container recipe

Container distributions always include the following details:

• Region – The distribution Region for the container image specified in the Image URI column.

• Image URI – The URI of the output container image that Image Builder distributed to the
Amazon ECR repository in the destination Region.

View image details in the Image Builder console 318

EC2 Image Builder User Guide

Note

Image Builder displays one row per destination. The output image always has at least
one entry for distribution to the account that created the image. Additional destinations
can include distributions across Regions, AWS accounts, or AWS Organizations. For more
information, see Manage Image Builder distribution settings.

Workflow tab

Workflows define the sequence of steps that Image Builder performs when it creates a new image.
All images have build and test workflows. Containers have an additional workflow for distribution.
The Workflow tab displays the applicable workflows that Image Builder ran for your image.

Filter workflow types

Image Builder initially displays the build or import workflow summary and workflow steps by
default. However, the Workflow filter shows all of the workflows that are in progress or completed
for your image. To view a different workflow, select from the list.

Image workflows that produce AMI output can have build, import, or test workflows. Container
workflows that produce container output can have build, test, or distribution workflows.

Note

If the workflow hasn't started yet, it doesn't appear in the list. For example, if your
image build that has both build and test workflows configured has just started, the build
workflow is the only workflow type that appears in the list. When the test workflow begins,
Image Builder adds it to the list.

Following the Workflow filter, the selected workflow shows a runtime summary that includes the
following details for every workflow type:

Workflow status

The current runtime status for this workflow. Values can include the following:

• Pending

• Skipped

View image details in the Image Builder console 319

EC2 Image Builder User Guide

• Running

• Completed

• Failed

• Rollback-in-progress

• Rollback-completed

Execution ID

A unique identifier that Image Builder assigns to keep track of runtime resources each time it
runs a workflow.

Start

The timestamp when the runtime instance of this workflow started.

End

The timestamp when this runtime instance of the workflow finished.

Total steps

The total number of steps in the workflow. This should equal the sum of the step counts for
steps that succeeded, were skipped, and failed.

Steps succeeded

A runtime count for the number of steps in the workflow that ran successfully.

Steps failed

A runtime count for the number of steps in the workflow that failed.

Steps skipped

A runtime count for the number of steps in the workflow that were skipped.

The details in the following list report the current status for all of the steps in this runtime instance
of the workflow. Image Builder displays the same details for all image types.

Step #

A number that represents the order in which Image Builder runs the workflow steps.

Step ID

A unique identifier for the workflow step, assigned at runtime.

View image details in the Image Builder console 320

EC2 Image Builder User Guide

Step status

The current runtime status of the specified workflow step.

Rollback status

The current rollback status if this runtime instance of the workflow failed.

Step name

The name of the specified workflow step.

Start

The timestamp when the specified step for this runtime instance of the workflow started.

End

The timestamp when the specified step for this runtime instance of the workflow finished.

Security findings tab

If you've activated scanning, the Security findings tab displays Common Vulnerabilities and
Exposures (CVE) findings. Amazon Inspector identified these findings on the test instance that
Image Builder launched to create your new image. To ensure that Image Builder captures findings
for your image, you must configure scanning as follows:

1. Activate Amazon Inspector scans for your account. For more information, see Getting started
with Amazon Inspector in the Amazon Inspector User Guide.

2. Activate security findings for the pipeline that creates this image. When you activate security
findings for your pipeline, Image Builder saves a snapshot of the findings before it terminates
the test instance. For more information, see Configure security scans for Image Builder images
in the AWS Management Console

The Security findings tab includes the following details for each vulnerability that Amazon
Inspector identified for your image.

Severity

The severity level of the CVE finding. Values are as follows:

• Untriaged

• Informational

View image details in the Image Builder console 321

https://docs.aws.amazon.com/inspector/v1/userguide/inspector_getting-started.html
https://docs.aws.amazon.com/inspector/v1/userguide/inspector_getting-started.html

EC2 Image Builder User Guide

• Low

• Medium

• High

• Critical

Finding ID

The unique identifier for the CVE finding that Amazon Inspector detected for your image when
it scanned the test instance. The ID is linked to the Security findings > By vulnerability page.
For more information, see Manage security findings for Image Builder images in the AWS
Management Console.

Source

The source of the vulnerability information for the CVE finding.

Age

The number of days since the finding was first observed for your image.

Inspector score

The score that Amazon Inspector assigned for the CVE finding.

Tags tab

The Tags tab displays any tags that you have defined for your image.

Get image policy details from the AWS CLI

The following example shows how to get the details of an image policy with its Amazon Resource
Name (ARN).

aws imagebuilder get-image-policy --image-arn arn:aws:imagebuilder:us-
west-2:123456789012:image/example-image/2019.12.02

Create custom images with Image Builder

There are several different ways that you can create a new Image Builder image. For example, you
can use one of the following methods to create an image with the AWS Management Console or
AWS CLI. You can also use the CreateImage API action or run a build pipeline to create the image.

Get image policy details from the AWS CLI 322

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateImage.html

EC2 Image Builder User Guide

For the SDK request associated with the API action, you can refer to the See Also link for that
command in the EC2 Image Builder API Reference.

AWS Management Console

To create a new image from an existing pipeline, you can manually run the pipeline, as follows.
You can also use the pipeline wizard to create a new image from scratch. See Pipeline wizard:
Create AMI or Pipeline wizard: Create container image, depending on the type of image you
want to create.

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Image pipelines from the navigation pane.

3. Select the check box next to the Pipeline name that you want to run.

4. To create the image, select Run pipeline from the Actions menu. This starts the pipeline.

You can also specify a schedule to run your pipeline, or use Amazon EventBridge to run your
pipeline based on rules that you configure.

AWS CLI

Before you run the create-image command in the AWS CLI, you must create the following
resources if they don't already exist:

Required resources

• Recipe – You must specify exactly one recipe for your image, as follows:

Image recipe

Specify the Amazon Resource Name (ARN) for your image recipe resource with the --
image-recipe-arn parameter.

Container recipe

Specify the ARN for your container recipe resource with the --container-recipe-arn
parameter.

• Infrastructure configuration – Specify the ARN for your infrastructure configuration resource
with the --infrastructure-configuration-arn parameter.

You can also specify any of the following resources that your image requires:

Create custom images with Image Builder 323

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateImage.html#API_CreateImage_SeeAlso
https://console.aws.amazon.com/imagebuilder/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-image.html

EC2 Image Builder User Guide

Optional resources and configuration

• Distribution configuration – By default, Image Builder distributes the output image resource
to your account in the Region where you run the create-image command. To provide
additional destinations or configuration for your distribution, specify the ARN for your
distribution configuration resource with the --distribution-configuration-arn
parameter.

• Image scanning – To configure snapshots for Amazon Inspector findings on your image
or container test instance, use the --image-scanning-configuration parameter. For
container images you also specify the ECR repository that Amazon Inspector uses for its
scans.

• Image tests – To suppress the Image Builder test stage, use the --image-tests-
configuration parameter. Alternatively, you can set a timeout for how long it can run.

• Image tags – Use the --tags parameter to add tags to your output image resource.

• Image workflows – If you don't specify any build or test workflows, Image Builder creates
your image with its default image workflow. To specify workflows that you've created, use the
--workflows parameter.

Note

If you specify image workflows, you must also provide the name or ARN of the IAM
role that Image Builder uses to run your workflow actions in the --execution-role
parameter.

The following example shows how to create an image with the create-image AWS CLI
command. For more information, see the AWS CLI Command Reference.

Example: Create a basic image with default distribution

aws imagebuilder create-image --image-recipe-arn arn:aws:imagebuilder:us-
west-2:123456789012:image-recipe/simple-recipe-linux/1.0.0 --infrastructure-
configuration-arn arn:aws:imagebuilder:us-west-2:123456789012:infrastructure-
configuration/simple-infra-config-linux

Output:

{

Create custom images with Image Builder 324

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-image.html

EC2 Image Builder User Guide

"requestId": "1abcd234-e567-8fa9-0123-4567b890cd12",
"imageVersionList": [
 {
 "arn": "arn:aws:imagebuilder:us-west-2:123456789012:image/simple-recipe-
linux/1.0.0",
 "name": "simple-recipe-linux",
 ...
 }
]
}

Cancel image creation from the AWS CLI

To cancel an in-progress image build, use the cancel-image-creation command, as follows:

aws imagebuilder cancel-image-creation --image-build-version-arn
 arn:aws:imagebuilder:us-west-2:123456789012:image/my-example-recipe/2019.12.03/1

Import and export virtual machine images with Image Builder

When you export a VM from its virtualization environment, that process creates a set of one or
more disk container files that act as snapshots of your VM’s environment, settings, and data. You
can use these files to import your VM, and use it as the base image for your image recipes. To
export, you can create VM disk files as output from your custom image build, and distribute the
files.

Image Builder supports the following file formats for your VM disk containers:

• Open Virtualization Archive (OVA)

• Virtual Machine Disk (VMDK)

• Virtual Hard Disk (VHD/VHDX)

• Raw

The import uses the disks to create an Amazon Machine Image (AMI) and an Image Builder image
resource, either of which can serve as the base image for your custom image recipe. The VM disks
must be stored in S3 buckets for the import. Alternatively, you can import from an existing EBS
snapshot.

Cancel image creation from the AWS CLI 325

EC2 Image Builder User Guide

In the Image Builder console, you can import the image directly, and then use the output image
or AMI in your recipes, or you can specify import parameters when you are creating your recipe or
recipe version. For more information about importing as part of your image recipe, see VM import
configuration.

Import a VM into Image Builder

Image Builder integrates with the Amazon EC2 VM Import/Export API to enable the import process
to run asynchronously in the background. Image Builder references the task ID from the VM import
to track its progress, and creates an Image Builder image resource as output. This allows you to
reference the Image Builder image resource in your recipes before the VM import finishes.

Console

To import a VM with the Image Builder console, follow these steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Images from the navigation pane.

3. To open the import dialog, choose Import image.

4. Enter the following General information:

• Specify a unique Name for your image.

• Specify a Version for the base image. Use the following format: major.minor.patch.

5. Choose the import type: VM import.

6. Provide details for each of the following sections on the Import image page. Then choose
Import image when you're done.

Base image operating system

1. Select the Image Operating System (OS) option that matches your VM OS platform.

2. Select the OS version that matches the version for your VM from the list.

VM import configuration

1. When you export your VM from its virtualization environment, that process creates a set of
one or more disk container files. These act as snapshots of your VM’s environment, settings,
and data. You can use these files to import your VM as the base image for your image

Import a VM into Image Builder 326

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

recipe. For more information about importing VMs in Image Builder, see Import and export
VM images.

To specify the location of your import source, follow these steps:

Import source

Specify the source for the first VM image disk container or snapshot to import in the Disk
container 1 section.

a. Source – This can be either an S3 bucket, or an EBS snapshot.

b. Select S3 location of disk – Enter the location in Amazon S3 where your disk images
are stored. To browse for the location, choose Browse S3.

c. To add a disk container, choose Add disk container.

2. IAM role

To associate an IAM role with your VM import configuration, select the role from the IAM
role dropdown list, or choose Create new role to create a new one. If you create a new role,
the IAM Roles console page opens in a separate tab.

3. Advanced settings – optional

The following settings are optional. With these settings, you can configure encryption,
licensing, tags, and more for the base image that the import creates.

Base image architecture

To specify the architecture of your VM import source, select a value from the Architecture
list.

Encryption

Import a VM into Image Builder 327

EC2 Image Builder User Guide

If your VM disk images are encrypted, you must provide a key to use for the import process.
To specify a KMS key for the import, select a value from the Encryption (KMS key) list. The
list contains KMS keys that your account has access to in the current Region.

License management

When you import a VM, the import process automatically detects the VM OS and applies
the appropriate license to the base image. Depending on your OS platform, the license
types are as follows:

• License included – An appropriate AWS license for your platform is applied to your base
image.

• Bring your own license (BYOL) – Retains the license from your VM, if applicable.

To attach license configurations created with AWS License Manager to your base image,
select from the License configuration name list. For more information about License
Manager, see Working with AWS License Manager

Note

• License configurations contain licensing rules based on the terms of your
enterprise agreements.

• Linux only supports BYOL licenses.

Tags (base image)

Tags use key-value pairs to assign searchable text to your Image Builder resource. To
specify tags for the imported base image, enter key-value pairs using the Key and Value
boxes.

To add a tag, choose Add tag. To remove a tag, choose Remove tag.

AWS CLI

To import a VM from disks into an AMI and create an Image Builder image resource that you can
reference right away, follow these steps from the AWS CLI:

Import a VM into Image Builder 328

EC2 Image Builder User Guide

1. Initiate a VM import, with the Amazon EC2 VM Import/Export import-image command
in the AWS CLI. Make note of the task ID that is returned in the command response. You'll
need it for the next step. For more information, see Importing a VM as an image using VM
Import/Export in the VM Import/Export User Guide.

2. Create a CLI input JSON file

To streamline the Image Builder import-vm-image command that is used in the AWS CLI,
we create a JSON file that contains all of the import configuration that we want to pass
into the command.

Note

The naming convention for the data values in the JSON file follows the pattern that
is specified for the Image Builder API operation request parameters. To review the
API operation request parameters, see the ImportVmImage operation in the EC2
Image Builder API Reference.
To provide the data values as command line parameters, refer to the parameter
names specified in the AWS CLI Command Reference. to the Image Builder import-
vm-image command as options.

Here is a summary of the parameters that we specify in this example:

• name (string, required) – The name for the Image Builder image resource to create as
output from the import.

• semanticVersion (string, required) – The semantic version for the output image that
specifies the version in the following format, with numeric values in each position to
indicate a specific version: <major>.<minor>.<patch>. For example, 1.0.0. To learn more
about semantic versioning for Image Builder resources, see Semantic versioning in Image
Builder.

• description (string) – The description of the image recipe.

• platform (string, required) – The operating system platform for the imported VM.

• vmImportTaskId (string, required) – The ImportTaskId (AWS CLI) from the Amazon
EC2 VM import process. Image Builder monitors the import process to pull in the AMI

Import a VM into Image Builder 329

https://docs.aws.amazon.com/vm-import/latest/userguide/vmimport-image-import.html
https://docs.aws.amazon.com/vm-import/latest/userguide/vmimport-image-import.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_ImportVmImage.html

EC2 Image Builder User Guide

that it creates and build an Image Builder image resource that can be used in recipes
right away.

• tags (string map) – Tags are key-value pairs that are attached to the import resources. Up
to 50 key-value pairs are allowed.

Save the file as import-vm-image.json, to use in the Image Builder import-vm-image
command.

{
 "name": "example-request",
 "semanticVersion": "1.0.0",
 "description": "vm-import-test",
 "platform": "Linux",
 "vmImportTaskId": "import-ami-01ab234567890cd1e",
 "tags": {
 "Usage": "VMIE"
 }
}

3. Import the image

Run the import-vm-image command, with the file that you created as input:

aws imagebuilder import-vm-image --cli-input-json file://import-vm-image.json

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use
the forward slash (/).

Distribute VM disks from your image build from the AWS CLI

You can set up distribution of supported VM disk format files to S3 buckets in target Regions as
part of your regular image build process, using Image Builder distribution configurations in the

Distribute VM disks from your image build from the AWS CLI 330

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/import-vm-image.html

EC2 Image Builder User Guide

AWS CLI. For more information, see Create distribution settings for output VM disks from the AWS
CLI.

Import verified Windows ISO disk images with Image Builder

A Windows operating system ISO file is a disk image file that contains the complete installation
package for a specific version of the Windows operating system. Microsoft provides official
Windows operating system ISO files for download, either directly from their website or through
authorized resellers. It's important to ensure that you obtain the ISO files from a trusted and
legitimate source to avoid potential malware or unauthorized versions.

EC2 Image Builder uses the build-image-from-iso import workflow to import the ISO disk
file and create a secondary volume from it. After configuration is complete, Image Builder takes a
snapshot of the volume it created from the import and uses it to create an Amazon Machine Image
(AMI).

Supported operating systems for ISO disk image import

Image Builder supports the following Windows operating system ISO disk images:

• Windows 11 Enterprise version 24H2

• Windows 11 Enterprise version 23H2

• Windows 11 Enterprise version 22H2

Image Builder does not support the following Windows operating system ISO disk images:

• Long-Term Servicing Channel (LTSC) images

• ISO disk images created from the Windows Media Creation Tool

• Evaluation images

Prerequisites to import an ISO disk image

To import an ISO disk image, you must first meet the following prerequisites:

• The operating system of the disk image must be one that Image Builder supports. For a list of
supported operating systems, see Supported operating systems for ISO disk image import.

• To ensure that you can import your ISO image, download it from the Microsoft 365 admin center.

Import ISO disk images 331

EC2 Image Builder User Guide

• Before you can run the import process, you must upload your ISO disk file to Amazon S3 in the
same AWS account and AWS Region where the import runs.

• The file extension is case sensitive for the import process, and must be .ISO. If your file
extension is lowercase, you can run one of the following commands to rename it:

Command

aws s3 cp s3://amzn-s3-demo-bucket/Win11_24H2_English.iso s3://amzn-s3-demo-
bucket/Win11_24H2_English.ISO

PowerShell

Copy-S3Object -BucketName amzn-s3-demo-bucket -Key Win11_24H2_English.iso -
DestinationKey Win11_24H2_English.ISO

• Microsoft licensing is not automatically included with the import. You must bring your own
license (BYOL). For more information about licensing for Microsoft software, see Licensing on the
Amazon Web Services and Microsoft Frequently Asked Questions page.

• The import process uses two separate IAM roles, as follows:

Execution role

This role grants permission for Image Builder to call AWS services on your behalf. You
can specify the AWSServiceRoleForImageBuilder service-linked role, which includes the
permissions needed for the execution role, or you can create your own role.

Instance profile role

This role grants permission for the actions that the service performs on the EC2 instance. You
can specify an instance profile role in your infrastructure configuration resource. Attach the
following managed policies to your instance profile role to ensure that you have all of the
permissions needed for the import process.

• EC2InstanceProfileForImageBuilder

• AmazonSSMManagedInstanceCore

For more information, see Manage Image Builder infrastructure configuration.

Import an ISO disk image into Image Builder

Before you start the import process, make sure that you've met all of the Prerequisites.

Import an ISO disk image into Image Builder 332

https://aws.amazon.com/windows/faq/#licensing-q
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/EC2InstanceProfileForImageBuilder.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSSMManagedInstanceCore.html

EC2 Image Builder User Guide

The import process additionally installs the following software and drivers on your image:

• EC2Launch v2

• AWS Systems Manager agent

• AWS NVMe driver

• AWS ENA network driver

• AWS PCI Serial Driver

• EC2 Windows utilities

Console

To import an ISO disk image with the Image Builder console, follow these steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Images from the navigation pane.

3. To open the import dialog, choose Import image.

4. Enter the following General information:

• Specify a unique Name for your image.

• Specify a Version for the base image. Use the following format: major.minor.patch.

5. Choose the import type: ISO import.

6. Enter the following ISO import configuration details. Then choose Import image when
you're done.

• S3 URI – Enter the location where your ISO disk file is stored. To browse for the file,
choose Browse S3.

• IAM role – To associate an IAM role with your import configuration, select the role from
the IAM role dropdown list, or choose Create new role to create a new one. If you create
a new role, the IAM Roles console page opens in a separate tab.

You can specify the AWSServiceRoleForImageBuilder service-linked role, or you can
specify your own custom role for service access.

7. You can optionally add tags to your Image Builder image resource. This does not add the
tags to your AMI.

Import an ISO disk image into Image Builder 333

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

8. The ISO infrastructure configuration defines settings for the instance that Image Builder
launches to host the import process. You can use an infrastructure configuration that
Image Builder creates, based on service defaults, or you can use an existing infrastructure
configuration. For more information, see Manage Image Builder infrastructure
configuration.

To create a new infrastructure configuration , choose Create infrastructure configuration.
This opens in a separate tab. When you're done creating the new resource, you can return
to the import configuration, and choose Use existing infrastructure configuration.

9. To start the import process, choose Import image.

After the import is complete, your image appears in the list of images that you own. For more
details, see List images.

AWS CLI

This example shows how to import an image from an ISO disk file and create an AMI from it
with the AWS CLI.

Here is a summary of the parameters that we specify in this example:

• name (string, required) – The name for the Image Builder image resource to create as output
from the import.

• semanticVersion (string, required) – The semantic version for the output image that specifies
the version in the following format, with numeric values in each position to indicate a specific
version: <major>.<minor>.<patch>. For example, 1.0.0. To learn more about semantic
versioning for Image Builder resources, see Semantic versioning in Image Builder.

• description (string) – The description of the image recipe.

• executionRole (string) – The name or Amazon Resource Name (ARN) for the IAM role
that grants Image Builder access to perform workflow actions to import an image from a
Microsoft ISO file. You can specify the AWSServiceRoleForImageBuilder service-linked role, or
you can specify your own custom role for service access.

• platform (string, required) – The operating system platform for the ISO disk image. Valid
values include Windows.

• osVersion (string, required) – The operating system version for the ISO disk image. Valid
values include Microsoft Windows 11.

Import an ISO disk image into Image Builder 334

EC2 Image Builder User Guide

• infrastructureConfigurationArn (string, required) – The Amazon Resource Name (ARN) of the
infrastructure configuration resource that's used for launching the EC2 instance on which the
ISO image is built.

• uri (string, required) – The URI of the ISO disk file that's stored in Amazon S3.

aws imagebuilder import-disk-image \
 --name "example-iso-disk-import" \
 --semantic-version "1.0.0" \
 --description "Import an ISO disk image" \
 --execution-role "AWSServiceRoleForImageBuilder" \
 --platform "Windows" \
 --os-version "Microsoft Windows 11" \
 --infrastructure-configuration-arn "arn:aws:imagebuilder:us-
east-1:111122223333:infrastructure-configuration/example-infrastructure-
configuration-123456789abc",
 --uri: "s3://amzn-s3-demo-source-bucket/examplefile.iso"

After the import is complete, your image appears in the list of images that you own. For more
details, see List images.

PowerShell

This example shows how to import an image from an ISO disk file and create an AMI from it
with PowerShell.

Here is a summary of the parameters that we specify in this example:

• name (string, required) – The name for the Image Builder image resource to create as output
from the import.

• semanticVersion (string, required) – The semantic version for the output image that specifies
the version in the following format, with numeric values in each position to indicate a specific
version: <major>.<minor>.<patch>. For example, 1.0.0. To learn more about semantic
versioning for Image Builder resources, see Semantic versioning in Image Builder.

• description (string) – The description of the image recipe.

• executionRole (string) – The name or Amazon Resource Name (ARN) for the IAM role
that grants Image Builder access to perform workflow actions to import an image from a
Microsoft ISO file. You can specify the AWSServiceRoleForImageBuilder service-linked role, or
you can specify your own custom role for service access.

Import an ISO disk image into Image Builder 335

EC2 Image Builder User Guide

• platform (string, required) – The operating system platform for the ISO disk image. Valid
values include Windows.

• osVersion (string, required) – The operating system version for the ISO disk image. Valid
values include Microsoft Windows 11.

• infrastructureConfigurationArn (string, required) – The Amazon Resource Name (ARN) of the
infrastructure configuration resource that's used for launching the EC2 instance on which the
ISO image is built.

• uri (string, required) – The URI of the ISO disk file that's stored in Amazon S3.

Import-EC2IBDiskImage `
 -Name "example-iso-disk-import" `
 -SemanticVersion "1.0.0" `
 -Description "Import an ISO disk image" `
 -ExecutionRole "AWSServiceRoleForImageBuilder" `
 -Platform "Windows" `
 -OsVersion "Microsoft Windows 11" `
 -InfrastructureConfigurationArn "arn:aws:imagebuilder:us-
east-1:111122223333:infrastructure-configuration/example-infrastructure-
configuration-123456789abc" `
 -Uri "s3://amzn-s3-demo-source-bucket/examplefile.ISO"

After the import is complete, your image appears in the list of images that you own. For more
details, see List images.

Manage security findings for Image Builder images

When you activate security scanning with Amazon Inspector, it continuously scans machine
images and running instances in your account for operating system and programming language
vulnerabilities. If activated, security scanning is automatic, and Image Builder can save a snapshot
of the findings from your test instance when you create a new image. Amazon Inspector is a paid
service.

When Amazon Inspector discovers vulnerabilities in your software or network settings, it takes the
following actions:

• Notifies you that there was a finding.

Manage security findings 336

EC2 Image Builder User Guide

• Rates the severity of the finding. The severity rating categorizes vulnerabilities to help you
prioritize your findings, and includes the following values:

• Untriaged

• Informational

• Low

• Medium

• High

• Critical

• Provides information about the finding, and links to additional resources for more detail.

• Offers remediation guidance to help you resolve the issues that generated the finding.

Configure security scans for Image Builder images in the AWS
Management Console

If you've activated Amazon Inspector for your account, Amazon Inspector automatically scans the
EC2 instances that Image Builder launches to build and test a new image. Those instances have
a short lifespan during the build and test process, and their findings would normally expire as
soon as those instances shut down. To help you investigate and remediate findings for your new
image, Image Builder can optionally save any findings that Amazon Inspector identified on your
test instance during the build process as a snapshot.

Step 1: Activate Amazon Inspector security scans for your account

To activate Amazon Inspector security scans for your account from the Image Builder console,
follow these steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Security scanning settings from the navigation pane. This opens the Security
scanning dialog box.

The dialog box displays the scanning status for your account. If Amazon Inspector is already
activated for your account, the status shows Enabled.

3. Follow steps 1 and 2 of the instructions to activate Amazon Inspector scanning.

Configure security scans 337

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

Note

Amazon Inspector incurs charges. For more information, see Amazon Inspector pricing.

If you've activated scanning for your pipeline, Image Builder takes a snapshot of the findings for
your build instance when you create a new image. This way, you can access the findings after Image
Builder terminates the build instance.

Step 2: Configure your pipeline to save snapshots for vulnerability findings

To configure vulnerability finding snapshots for your pipeline, perform the following steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Image pipelines from the navigation pane.

3. Pick one of the following methods to specify pipeline details:

Create a new pipeline

1. From the Image pipelines page, choose Create image pipeline. This opens the Specify
pipeline details page in the pipeline wizard.

Update an existing pipeline

1. From the Image pipelines page, choose the Pipeline name link for the pipeline that you
want to update. This opens the pipeline detail page.

Note

Alternatively, you can select the check box next to the name of the pipeline that you
want to update, and then choose View details.

2. From the pipeline details page, select Edit pipeline from the Action menu. This takes you to
the Edit pipeline page.

4. In the General section from the pipeline wizard or the Edit pipeline page, select the Enable
security scan check box.

Configure security scans 338

https://aws.amazon.com/inspector/pricing/
https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

Note

If you want to turn off the snapshots later, you can edit your pipeline to clear the
check box. This doesn't deactivate Amazon Inspector scanning for your account. To
deactivate Amazon Inspector scanning, see Deactivating Amazon Inspector in the
Amazon Inspector User Guide.

Manage security findings for Image Builder images in the AWS
Management Console

The Security findings list pages display high-level information about the findings for your
resources, with views based on several different filters that you can apply. Each view includes the
following options at the top to change your view:

• All security findings – This is the default view if you choose Security findings page from the
navigation pane in the Image Builder console.

• By vulnerability – This view shows a high-level list of all of the image resources in your account
that have findings. The Finding ID is linked to more detailed information about the finding. This
information appears on a panel that opens on the right side of the page. The panel includes the
following information:

• A detailed description of the finding.

• A Finding details tab. This tab includes a finding overview, affected packages, summary
remediation advice, vulnerability details, and related vulnerabilities. The Vulnerability ID links
to detailed vulnerability information in the National Vulnerability Database.

• A Score breakdown tab. This tab includes a side-by-side comparison of the CVSS and
Amazon Inspector scores so that you can see where Amazon Inspector has modified a score, if
applicable.

• By image pipeline – This view shows the number of findings for each image pipeline in your
account. Image Builder displays counts for medium severity and higher findings, plus a total for
all findings. All data in the list is linked, as follows:

• The Image pipeline name column links to the detail page for the specified image pipeline.

• The severity level column links open the All security findings view, filtered by the associated
image pipeline name and severity level.

Manage security findings 339

https://docs.aws.amazon.com/inspector/latest/user/deactivating-best-practices.html

EC2 Image Builder User Guide

You can also use search criteria to refine your results.

• By image – This view shows the number of findings for each image build in your account. Image
Builder displays counts for medium severity and higher findings, plus a total for all findings. All
data in the list is linked, as follows:

• The Image name column links to the image detail page for the specified image build. For more
information, see View image resource details.

• The severity level column links open the All security findings view, filtered by the associated
image build name and severity level.

You can also use search criteria to refine your results.

Image Builder shows the following details in the Findings list section of the default All security
findings view.

Severity

The severity level of the CVE finding. Values are as follows:

• Untriaged

• Informational

• Low

• Medium

• High

• Critical

Finding ID

The unique identifier for the CVE finding that Amazon Inspector detected for your image when
it scanned the build instance. The ID is linked to the Security findings > By vulnerability page.

Image ARN

The Amazon Resource Name (ARN) for the image with the finding specified in the Finding ID
column.

Pipeline

The pipeline that built the image specified in the Image ARN column.

Manage security findings 340

EC2 Image Builder User Guide

Description

A short description of the finding.

Inspector score

The score that Amazon Inspector assigned for the CVE finding.

Remediation

Links to details about the recommended course of action to remediate the finding.

Published date

The date and time when this vulnerability was first added to the vendor's database.

Clean up Image Builder resources

To avoid unexpected charges, make sure to clean up resources and pipelines that you created from
the examples in this guide. For more information about deleting resources in Image Builder, see
Delete outdated or unused Image Builder resources.

Clean up Image Builder resources 341

EC2 Image Builder User Guide

Manage lifecycle policies for Image Builder images

When you create custom images, it's important that you have a plan to retire those images
before they become obsolete. Image Builder pipelines can apply updates and security patches
automatically. However, each build creates a new version of the image and all of the associated
resources that it distributes. Earlier versions remain in your account until you manually delete
them, or create a script to perform the task.

With Image Builder lifecycle management policies, you can automate the process of deprecating,
disabling, and deleting outdated images and their associated resources. Associated resources
can include output images that you've distributed to other AWS accounts, organizations, and
organizational units (OUs) across AWS Regions. You define the rules for how and when to take each
step in the lifecycle process, and which steps to include in your policy.

Benefits of automated lifecycle management

Overall benefits of automated lifecycle management include the following:

• Simplifies lifecycle management for your custom images with an automated way to retire images
and associated resources.

• Helps to prevent compliance risks that come from using outdated images to launch new
instances.

• Keeps image inventories fresh by removing outdated images.

• Can reduce storage and data transfer costs by optionally removing associated resources for
images that are deleted.

Realize cost savings

There is no cost to use EC2 Image Builder to create custom AMI or container images. However,
standard pricing applies for other services that are used in the process. When you remove unused
or outdated images and their associated resources from your AWS account, you can realize time
and cost savings in the following ways:

• Reduce the time it takes to patch existing images when you're not also patching unused or
outdated images.

• For AMI image resources that you delete, you can choose to also remove distributed AMIs and
their associated snapshots. This approach can save on the cost of storing snapshots.

342

EC2 Image Builder User Guide

• For container image resources that you delete, you can choose to delete underlying resources.
This approach can save on Amazon ECR storage costs and data transfer rates for your Docker
images that are stored in ECR repositories.

Note

Image Builder can't evaluate the potential impact for all possible downstream
dependencies, such as Auto Scaling groups or launch templates. You must consider
downstream dependencies for your images when you configure policy actions.

Contents

• Lifecycle management prerequisites for Image Builder images

• List lifecycle management policies for Image Builder image resources

• View lifecycle policy details

• Create lifecycle policies

• How lifecycle management rules work for Image Builder image resources

Lifecycle management prerequisites for Image Builder images

Before you can define EC2 Image Builder lifecycle management policies and rules for your image
resources, you must meet the following prerequisites.

• Create an IAM role that grants permission for Image Builder to run lifecycle policies. To create
the role, see Create an IAM role for Image Builder lifecycle management.

• Create an IAM role in the destination account for associated resources that were distributed
across accounts. The role grants permission for Image Builder to perform lifecycle actions in the
destination account for associated resources. To create the role, see Create an IAM role for Image
Builder cross-account lifecycle management.

Note

This prerequisite doesn't apply if you've granted launch permissions for an output AMI.
With launch permissions, the account you shared with owns the instances that are
launched from the shared AMI, but all of the AMI resources remain in your account.

Prerequisites 343

EC2 Image Builder User Guide

• For container images, you must add the following tag to your ECR repositories to grant access
for Image Builder to run lifecycle actions on the container images stored in the repository:
LifecycleExecutionAccess: EC2 Image Builder.

Create an IAM role for Image Builder lifecycle management

To grant permission for Image Builder to run lifecycle policies, you must first create the IAM role
that it uses to perform lifecycle actions. Follow these steps to create the service role that grants
permission.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Roles from the navigation pane.

3. Choose Create role. This opens to the first step in the process Select trusted entity to create
your role.

4. Select the Custom trust policy option for the Trusted entity type.

5. Copy the following JSON trust policy and paste it into the Custom trust policy text area,
replacing the sample text. This trust policy allows Image Builder to assume the role that you
create to run lifecycle actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sts:AssumeRole"
],
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "imagebuilder.amazonaws.com"
]
 }
 }
]
}

6. Select the following managed policy from the list: EC2ImageBuilderLifecycleExecutionPolicy,
then choose Next. This opens the Name, review, and create page.

Create an IAM role for Image Builder lifecycle management 344

https://console.aws.amazon.com/iam/

EC2 Image Builder User Guide

Tip

Filter on image to streamline results.

7. Enter a Role name.

8. After you've reviewed your settings, choose Create role.

Create an IAM role for Image Builder cross-account lifecycle
management

To grant permission for Image Builder to perform lifecycle actions in destination accounts for
associated resources, you must first create the IAM role that it uses to perform lifecycle actions in
those accounts. You must create the role in the destination account.

Follow these steps to create the service role that grants permission in the destination account.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Roles from the navigation pane.

3. Choose Create role. This opens to the first step in the process Select trusted entity to create
your role.

4. Select the Custom trust policy option for the Trusted entity type.

5. Copy the following JSON trust policy and paste it into the Custom trust policy text area,
replacing the sample text. This trust policy allows Image Builder to assume the role that you
create to run lifecycle actions.

Note

When Image Builder uses this role in the destination account to act on associated
resources that were distributed across accounts, it's acting on behalf of the destination
account owner. The AWS account that you configure as the aws:SourceAccount in
the trust policy is the account where Image Builder distributed those resources.

{
 "Version": "2012-10-17",

Create an IAM role for Image Builder cross-account lifecycle management 345

https://console.aws.amazon.com/iam/

EC2 Image Builder User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "imagebuilder.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "444455556666"
 },
 "StringLike": {
 "aws:SourceArn": "arn:*:imagebuilder:*:*:image/*/*/*"
 }
 }
 }
]
}

6. Select the following managed policy from the list: EC2ImageBuilderLifecycleExecutionPolicy,
then choose Next. This opens the Name, review, and create page.

Tip

Filter on image to streamline results.

7. Enter Ec2ImageBuilderCrossAccountLifecycleAccess as the Role name.

Important

Ec2ImageBuilderCrossAccountLifecycleAccess must be the name of this role.

8. After you've reviewed your settings, choose Create role.

Create an IAM role for Image Builder cross-account lifecycle management 346

EC2 Image Builder User Guide

List lifecycle management policies for Image Builder image
resources

You can get a list of your image lifecycle management policies that includes key detail columns on
the Lifecycle policies list page in the AWS Management Console, or with commands or actions in
the Image Builder API, SDKs, or AWS CLI.

You can use one of the following methods to list Image Builder image lifecycle policy resources
in your AWS account. For the API action, see ListLifecyclePolicies in the EC2 Image Builder API
Reference. For the associated SDK request, refer to the See Also link on the same page.

AWS Management Console

The following details are shown in the console for your existing policies. You can select any
column to change the sort order for your results. The policy list is initially sorted by Policy
name. The column name for the current sort order is bold.

If you have more than one page of results, the paging arrows in the top right corner of the
panel become active. You can filter results by policy name, policy status, output image type and
image resource ARN with the search bar.

• Policy name – The name of the policy.

• Policy status – Whether the policy is active or inactive.

• Type – The type of output image that Image Builder distributes when you create a new image
version (AMI or container image).

• Last execution date – The last time the lifecycle policy ran.

• Date created – The timestamp from the creation of the lifecycle policy.

• ARN – The Amazon Resource Name (ARN) of the lifecycle policy resource.

To list lifecycle policies in the AWS Management Console, follow these steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Select Lifecycle policies from the navigation pane. This shows a list of image lifecycle
policies in your account.

Available actions

List lifecycle policies 347

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_ListLifecyclePolicies.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_ListLifecyclePolicies.html#API_ListLifecyclePolicies_SeeAlso
https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

You can also perform the following actions for your lifecycle policy from the Lifecycle policies
list page.

To create a new image lifecycle policy, choose Create lifecycle policy. For more information
about how to create a policy, see Create lifecycle policies.

For all of the following actions, you must select the policy first. To select a policy, you can select
the check box next to the Policy name.

• To turn the policy off or on, select Disable policy or Enable policy from the Actions menu.

• To change the policy, select Edit policy from the Actions menu.

• To delete a policy, select Delete policy from the Actions menu.

• To create a new policy that uses your selected policy for baseline settings, select Clone policy
from the Actions menu.

AWS CLI

The following command example shows how to use the AWS CLI to list image lifecycle policies
for a specific AWS Region. For more information about the parameters and options that you
can use with this command, see the list-lifecycle-policies command in the AWS CLI Command
Reference.

Example:

aws imagebuilder list-lifecycle-policies \
--region us-west-1

Output:

{
 "lifecyclePolicySummaryList": [
 {
 "arn": "arn:aws:imagebuilder:us-west-2:111122223333:lifecycle-policy/
sample-lifecycle-policy1",
 "name": "sample-lifecycle-policy1",
 "status": "DISABLED",
 "executionRole": "arn:aws:iam::111122223333:role/sample-lifecycle-role",
 "resourceType": "AMI_IMAGE",
 "dateCreated": "2023-11-07T14:57:01.603000-08:00",

List lifecycle policies 348

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/list-lifecycle-policies.html

EC2 Image Builder User Guide

 "tags": {}
 },
 {
 "arn": "arn:aws:imagebuilder:us-west-2:111122223333:lifecycle-policy/
sample-lifecycle-policy2",
 "name": "sample-lifecycle-policy2",
 "status": "ENABLED",
 "executionRole": "arn:aws:iam::111122223333:role/sample-lifecycle-role",
 "resourceType": "AMI_IMAGE",
 "dateCreated": "2023-09-06T10:43:21.436000-07:00",
 "dateLastRun": "2023-11-13T04:43:46.106000-08:00",
 "tags": {}
 },
 {
 "arn": "arn:aws:imagebuilder:us-west-2:111122223333:lifecycle-policy/
sample-lifecycle-policy3",
 "name": "sample-lifecycle-policy3",
 "status": "ENABLED",
 "executionRole": "arn:aws:iam::111122223333:role/sample-lifecycle-role",
 "resourceType": "AMI_IMAGE",
 "dateCreated": "2023-10-19T15:16:40.046000-07:00",
 "dateUpdated": "2023-10-21T20:07:15.958000-07:00",
 "dateLastRun": "2023-11-12T09:27:45.830000-08:00"
}]}

Note

To use your default AWS Region, run this command without the --region parameter.

View lifecycle policy details

The lifecycle policy detail page in the Image Builder console includes a summary section, with
additional information grouped into tabs. The page heading is the name of the policy.

On the lifecycle policy details page in the Image Builder console, you can view details for a specific
lifecycle policy. You can also use commands or actions with the Image Builder API, SDKs, or AWS
CLI to get policy details.

Contents

• View lifecycle policy details in the Image Builder console

View lifecycle policies 349

EC2 Image Builder User Guide

View lifecycle policy details in the Image Builder console

The image detail page in the Image Builder console includes a summary section, with additional
information grouped into tabs. The page heading is the name and build version of the recipe that
created the image.

Console detail sections and tabs

• Summary section

• Rules tab

• Scope tab

• RunLog tab

Summary section

The summary section spans the width of the page and includes the following details. These details
are always displayed.

Policy status

Whether the policy is active or inactive.

Type

The type of output image that Image Builder distributes when you create a new image version
(AMI or container image).

Date created

The timestamp from the creation of the lifecycle policy.

Date modified

The last time the lifecycle policy was updated.

Last run date

The last time the lifecycle policy ran.

IAM role

The IAM role that Image Builder uses to perform lifecycle actions.

View lifecycle policy details in the Image Builder console 350

EC2 Image Builder User Guide

ARN

The Amazon Resource Name (ARN) of the lifecycle policy resource.

Description

The description for the lifecycle policy, if entered.

Rules tab

The Rules tab displays the lifecycle rules that you configured for the policy you're viewing. The tab
includes the following details:

• Name – The name of the rule. These names are static, based on policy actions you can configure.

• Deprecation rule

• Disable rule

• Deletion rule

• Rule – A short description of the action that's configured for the rule.

• Rule conditions – Lists configuration for associated resource handling, exceptions to the rule,
and retention settings, if applicable.

For more information about rule configuration, see How lifecycle rules work.

Scope tab

The Scope tab displays the resource selection criteria that are configured for the policy you're
viewing. The tab includes the following details:

• Filter: type of filter – The filter type you used to define the scope. The filter type can be
one of the following:

• recipes – The recipes that were used to create the images that the lifecycle policy applies to.

• tags – A set of tags that Image Builder uses to select image resources that the lifecycle policy
applies to.

• A search bar – You can filter the list by Name to streamline results that display in the tab.

• Name – Each row contains a name or tag that you've configured for the filter criteria.

• Version – If you've configured a recipe filter, Image Builder displays the recipe version.

View lifecycle policy details in the Image Builder console 351

EC2 Image Builder User Guide

RunLog tab

Each time you run the policy for your configured resources, Image Builder saves runtime details.
Each row in the table represents a single runtime instance. The tab includes the following details:

• Execution ID – Identifies the lifecycle policy runtime instance.

• Execution status – Runtime status that reports if the policy action is currently running, ran
successfully, failed, or was canceled.

• Resource impacted – Indicates whether the runtime instance identified any image resources for
lifecycle actions.

• Start date – The timestamp when the runtime instance started.

• End date – The timestamp when the runtime instance ended.

Create lifecycle policies

When you create a new EC2 Image Builder lifecycle policy, the configuration depends on what
kind of image the policy is for. The API action to create a lifecycle policy for AMI image resources
and container image resources is the same (CreateLifecyclePolicy). However, the configuration for
the image resources and associated resources is different. This section shows you how to create
lifecycle management policies for both.

Note

Before you create a lifecycle policy, make sure that you've met all Prerequisites.

Create lifecycle management policies for Image Builder AMI image
resources

You can use one of the following methods to create an AMI image lifecycle policy with the AWS
Management Console or AWS CLI. You can also use the CreateLifecyclePolicy API action. For the
associated SDK request, you can refer to the See Also link for that command in the EC2 Image
Builder API Reference.

Create lifecycle policies 352

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateLifecyclePolicy.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateLifecyclePolicy.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateLifecyclePolicy.html#API_CreateLifecyclePolicy_SeeAlso

EC2 Image Builder User Guide

AWS Management Console

To create a lifecycle policy for AMI image resources in the AWS Management Console, follow
these steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Lifecycle policies from the navigation pane.

3. Choose Create lifecycle policy.

4. Configure policy settings described in the following procedures.

5. To create the lifecycle policy after you've configured settings, choose Create policy.

Configure General settings for your policy.

1. Select the AMI option from Policy type.

2. Enter the Policy name.

3. Optionally enter a Description for your lifecycle policy.

4. By default, Activate is turned on. The default setting activates the lifecycle policy and adds
it to the schedule right away. To create a policy that's initially deactivated, you can turn
Activate off.

5. Select the IAM role that you created for lifecycle policy permissions. If you haven't created
this role yet, see Prerequisites for more information.

Configure the Rule scope for your policy.

This section configures the resource selection for your lifecycle policy, based on the type of
filter that you use.

1. Filter type: Recipes – To apply lifecycle rules to image resources based on the recipe that
created them, select up to 50 recipe versions for the policy.

2. Filter type: Tags – To apply lifecycle rules to image resources based on resource tags, enter
a list of up to 50 key value pairs for the policy to match on.

Turn on one or more of the following Lifecycle rules to to apply to the resources that the
lifecycle policy selects. If a resource matches on more than one lifecycle rule when the policy
runs, Image Builder performs rule actions in the following order: 1) Deprecate, 2) Disable, 3)
Delete.

Create lifecycle policies (AMI image) 353

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

Deprecate rule

Sets the Image Builder image resource status to Deprecated. Image Builder pipelines still run
for deprecated images. You can optionally set the deprecation time for associated AMIs without
affecting your ability to launch new instances.

• Unit count – Specify the integer value for the period of time that must pass after an image
resource is created before it's marked as Deprecated.

• Unit – Select the time range to use. The range can be Days, Weeks, Months, or Years.

• Deprecate AMIs – Select the checkbox to mark associated Amazon EC2 AMIs with a
deprecation date. The AMIs remain available, and you can still launch new instances from
them.

Disable rule

Sets the Image Builder image resource status to Disabled. This prevents Image Builder
pipelines from running for this image. You can optionally disable the associated AMI to prevent
new instance launches.

• Unit count – Specify the integer value for the period of time that must pass after an image
resource is created before it's marked as Disabled.

• Unit – Select the time range to use. The range can be Days, Weeks, Months, or Years.

• Disable AMIs – Select the checkbox to disable associated Amazon EC2 AMIs. You can no
longer use the AMIs or launch new instances from them.

Delete rule

Deletes the image resources by age or by count. You define the threshold that meets your
needs. When an Image Builder image resource passes the threshold, it's removed. You can
optionally deregister associated AMIs or delete the snapshots for those AMIs. You can also
specify tags for resources that you want to retain past the threshold.

When you configure the Delete rule by age, Image Builder deletes the image resource after a
period of time that you configure. For example, delete image resources after 6 months. When
you configure by count, Image Builder retains the most recent number of images that you
specify, or as close to that number as possible, and deletes earlier versions.

Create lifecycle policies (AMI image) 354

EC2 Image Builder User Guide

• By age

• Unit count – Specify the integer value for the period of time that must pass after an image
resource is created before it's deleted.

• Unit – Select the time range to use. The range can be Days, Weeks, Months, or Years.

• Retain at least one image per recipe – Select the check box to keep the latest available
image resource for each recipe version that this rule affects.

By count

• Image count – Specify the integer value for the number of recent image resources to keep
for each recipe version.

• Deregister AMIs – Select the check box to deregister associated Amazon EC2 AMIs. You can
no longer use the AMIs or launch new instances from them.

• Retain images, AMIs, and snapshots with associated tags – Select the checkbox to enter
a list of tags for image resources that you want to keep. Tags apply to image resources and
Amazon EC2 AMIs. You can enter up to 50 key value pairs.

Tags (optional)

Add tags to your lifecycle policy.

AWS CLI

To create a new Image Builder lifecle policy, you can use the create-lifecycle-policy command
in the AWS CLI.

Create lifecycle management policies for Image Builder container
image resources

You can use one of the following methods to create a container image lifecycle policy with the
AWS Management Console or AWS CLI. You can also use the CreateLifecyclePolicy API action. For
the associated SDK request, you can refer to the See Also link for that command in the EC2 Image
Builder API Reference.

AWS Management Console

To create a lifecycle policy for container image resources in the AWS Management Console,
follow these steps:

Create lifecycle policies (container image) 355

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-lifecycle-policy.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateLifecyclePolicy.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateImage.html#API_CreateLifecyclePolicy_SeeAlso

EC2 Image Builder User Guide

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Lifecycle policies from the navigation pane.

3. Choose Create lifecycle policy.

4. Configure policy settings described in the following procedures.

5. To create the lifecycle policy after you've configured settings, choose Create policy.

Policy configuration: General settings

Configure General settings for your policy.

1. Select the AMI option from Policy type.

2. Enter the Policy name.

3. Optionally enter a Description for your lifecycle policy.

4. By default, Activate is turned on. The default setting activates the lifecycle policy and adds
it to the schedule right away. To create a policy that's initially deactivated, you can turn
Activate off.

5. Select the IAM role that you created for lifecycle policy permissions. If you haven't created
this role yet, see Prerequisites for more information.

Configure the Rule scope for your policy.

This section configures the resource selection for your lifecycle policy, based on the type of
filter that you use.

1. Filter type: Recipes – To apply lifecycle rules to image resources based on the recipe that
created them, select up to 50 recipe versions for the policy.

2. Filter type: Tags – To apply lifecycle rules to image resources based on resource tags, enter
a list of up to 50 key value pairs for the policy to match on.

Delete rule

For container images, this rule deletes the Image Builder container image resource. You can
optionally remove Docker images that were distributed to ECR repositories to prevent them
from being used to run new containers.

Create lifecycle policies (container image) 356

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

When you configure the Delete rule by age, Image Builder deletes the image resource after a
period of time that you configure. For example, delete image resources after 6 months. When
you configure by count, Image Builder retains the most recent number of images that you
specify, or as close to that number as possible, and deletes earlier versions.

• By age

• Unit count – Specify the integer value for the period of time that must pass after an image
resource is created before it's deleted.

• Unit – Select the time range to use. The range can be Days, Weeks, Months, or Years.

• Retain at least one image – Select the checkbox to keep only the latest available image
resource for each recipe version that this rule affects.

By count

• Image count – Specify the integer value for the number of recent image resources to keep
for each recipe version.

• Delete ECR container images – Select the check box to delete associated container images
stored in an ECR repository. You can no longer use the container image as a base to create
new images, or to run new containers.

• Retain images with associated tags – Select the checkbox to enter a list of tags for image
resources that you want to keep.

Tags (optional)

Add tags to your lifecycle policy.

AWS CLI

To create a new Image Builder lifecle policy, you can use the create-lifecycle-policy command
in the AWS CLI.

How lifecycle management rules work for Image Builder image
resources

Image lifecycle policies use the lifecycle rules that you define to implement your overall resource
management strategy. The rules that you define help ensure the freshness of your available images

How lifecycle rules work 357

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-lifecycle-policy.html

EC2 Image Builder User Guide

and minimize costs for underlying infrastructure such as snapshot storage for output AMIs, or ECR
repository storage and data transfer rates for container images.

You can configure the following types of rules for your policies.

Deprecate rule

Sets the Image Builder image resource status to Deprecated. Image Builder pipelines still run
for deprecated images. You can optionally set the deprecation time for associated AMIs without
affecting your ability to launch new instances.

When an AMI is deprecated, it's ignored by general searches. For example, if you run the
Amazon EC2 describe-images command in the AWS CLI, it would not return deprecated AMIs in
the result set. However, you can still find deprecated AMIs with their AMI ID.

This rule is not available for container images.

Disable rule

Sets the Image Builder image resource status to Disabled. This prevents Image Builder
pipelines from running for this image. You can optionally disable the associated AMI to prevent
new instance launches.

When an AMI is disabled, it becomes private and can't be used to launch new instances. If you
shared the AMI with any accounts, organizations, or organizational units, they lose access to
your AMI when it becomes private.

This rule is not available for container images.

Delete rule

Deletes the image resources by age or by count. You define the threshold that meets your
needs. When an Image Builder image resource passes the threshold, it's removed. You can
optionally deregister associated AMIs or delete the snapshots for those AMIs. You can also
specify tags for resources that you want to retain past the threshold.

For container images, this rule deletes the Image Builder container image resource. You can
optionally remove container images that were distributed to ECR repositories to prevent them
from being used to run new containers.

Contents

• AMI lifecycle exclusion rules

How lifecycle rules work 358

EC2 Image Builder User Guide

• View lifecycle management rule details for a policy

AMI lifecycle exclusion rules

The following exclusion rules define exceptions to the lifecycle rules for AMIs. AMIs that meet the
criteria specified by the exclusion rules are excluded from lifecycle actions. Exclusion rules are not
available in the AWS Management Console.

The following terms use API notation from the LifecyclePolicyDetailExclusionRules data
type.

Exclusion rules

amis

Contains the settings in LifecyclePolicyDetailExclusionRulesAmis shown in the list
that follows.

tagMap

You can provide a list of up to 50 tags that skip lifecycle actions for any type of resource.

The following terms use API notation from the LifecyclePolicyDetailExclusionRulesAmis
data type.

AMI exclusion rules

isPublic

Configures whether public AMIs are excluded from the lifecycle action.

lastLaunched

Specifies configuration details for Image Builder to exclude the most recent resources from
lifecycle actions.

regions

Configures AWS Regions that are excluded from the lifecycle action.

sharedAccounts

Specifies AWS accounts whose resources are excluded from the lifecycle action.

AMI lifecycle exclusion rules 359

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_LifecyclePolicyDetailExclusionRules.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_LifecyclePolicyDetailExclusionRulesAmis.html

EC2 Image Builder User Guide

tagMap

Lists tags that should be excluded from lifecycle actions for the AMIs that have them.

View lifecycle management rule details for a policy

Rules are defined within the lifecycle management policies that you create for your Image Builder
image resources. In the console, the lifecycle policy details page has a Rules tab that shows the
details of the rules that you configured for the policy.

To get policy details in the AWS CLI, you can run the get-lifecycle-policy command. The policy
details in the response contain a list of the actions (rules) that you defined for the policy, that
include all of your configured settings.

View lifecycle management rule details 360

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/get-lifecycle-policy.html

EC2 Image Builder User Guide

Configure custom images with Image Builder

Configuration resources are the building blocks that make up image pipelines, as well as
the images those pipelines produce. This chapter covers creating, maintaining, and sharing
Image Builder resources, including components, recipes, and images, along with infrastructure
configuration and distribution settings.

Note

To help you manage your Image Builder resources, you can assign your own metadata
to each resource in the form of tags. You use tags to categorize your AWS resources in
different ways; for example, by purpose, owner, or environment. This is useful when you
have many resources of the same type. You can more readily identify a specific resource
based on the tags you've assigned to it.
For more information about tagging your resources using Image Builder commands in the
AWS CLI, see the Tag resources section of this guide.

Contents

• Manage recipes in Image Builder

• Manage Image Builder infrastructure configuration

• Manage Image Builder distribution settings

Manage recipes in Image Builder

An EC2 Image Builder recipe defines the base image to use as your starting point to create a
new image, along with the set of components that you add to customize your image and verify
that everything works as expected. Image Builder provides automatic version choices for each
component. By default, you can apply up to 20 components to a recipe. This includes both build
and test components.

After you create a recipe, you can't modify or replace it. To update components after you create a
recipe, you must create a new recipe or recipe version. You can always apply tags to your existing
recipes. For more information about tagging your resources using Image Builder commands in the
AWS CLI, see the Tag resources section of this guide.

Recipes 361

EC2 Image Builder User Guide

Tip

You can use Amazon managed components in your recipes, or you can develop your own
custom components. For more information, see Develop custom components for your
Image Builder image. For image recipes that create output AMIs, you can also use AWS
Marketplace image products and components. For more information about integration with
AWS Marketplace products, see AWS Marketplace integration in Image Builder.

This section covers how to list, view, and create recipes.

Contents

• List and view image recipe details

• List and view container recipe details

• Create a new version of an image recipe

• Create a new version of a container recipe

• Clean up resources

List and view image recipe details

This section describes the various ways that you can find information and view details for your EC2
Image Builder image recipes.

Image recipe details

• List image recipes from the console

• List image recipes from the AWS CLI

• View image recipe details from the console

• Get image recipe details from the AWS CLI

• Get image recipe policy details from the AWS CLI

List image recipes from the console

To see a list of the image recipes created under your account in the Image Builder console, follow
these steps:

List and view image recipes 362

EC2 Image Builder User Guide

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Image recipes from the navigation pane. This shows a list of the image recipes that are
created under your account.

3. To view details or create a new recipe version, choose the Recipe name link. This opens the
detail view for the recipe.

Note

You can also select the check box next to the Recipe name, then choose View details.

List image recipes from the AWS CLI

The following example shows how to list all of your image recipes, using the AWS CLI.

aws imagebuilder list-image-recipes

View image recipe details from the console

To view details for a specific image recipe using the Image Builder console, select the image recipe
to review, using the steps described in List image recipes from the console.

On the recipe detail page, you can:

• Delete the recipe. For more information about deleting resources in Image Builder, see Delete
outdated or unused Image Builder resources.

• Create a new version.

• Create a pipeline from the recipe. After choosing Create pipeline from this recipe, you are taken
to the pipeline wizard. For more information about creating an Image Builder pipeline using the
pipeline wizard, see Tutorial: Create an image pipeline with output AMI from the Image Builder
console wizard

Note

When you create a pipeline from an existing recipe, the option to create a new recipe is
not available.

List and view image recipes 363

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

Get image recipe details from the AWS CLI

The following example shows how to use an imagebuilder CLI command to get the details of an
image recipe by specifying its Amazon Resource Name (ARN).

aws imagebuilder get-image-recipe --image-recipe-arn arn:aws:imagebuilder:us-
west-2:123456789012:image-recipe/my-example-recipe/2020.12.03

Get image recipe policy details from the AWS CLI

The following example shows how to use an imagebuilder CLI command to get the details of an
image recipe policy by specifying its ARN.

aws imagebuilder get-image-recipe-policy --image-recipe-arn arn:aws:imagebuilder:us-
west-2:123456789012:image-recipe/my-example-recipe/2020.12.03

List and view container recipe details

This section describes the ways that you can find information and view details for your EC2 Image
Builder container recipes.

Container recipe details

• List container recipes in the console

• List container recipes with the AWS CLI

• View container recipe details in the console

• Get container recipe details with the AWS CLI

• Get container recipe policy details with the AWS CLI

List container recipes in the console

To see a list of the container recipes that have been created under your account in the Image
Builder console, follow these steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Container recipes from the navigation pane. This shows a list of the container recipes
that are created under your account.

List and view container recipes 364

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

3. To view details or create a new recipe version, choose the Recipe name link. This opens the
detail view for the recipe.

Note

You can also select the check box next to the Recipe name, and then choose View
details.

List container recipes with the AWS CLI

The following example shows how to list all of your container recipes, using the AWS CLI.

aws imagebuilder list-container-recipes

View container recipe details in the console

To view details for a specific container recipe with the Image Builder console, select the container
recipe to review, and use the steps described in List container recipes in the console.

On the recipe detail page, you can do the following:

• Delete the recipe. For more information on how to delete resources in Image Builder, see Delete
outdated or unused Image Builder resources.

• Create a new version.

• Create a pipeline from the recipe. After ou choose Create pipeline from this recipe, you are
taken to the pipeline wizard. For more information on how to create an Image Builder pipeline
using the pipeline wizard, see Tutorial: Create an image pipeline with output AMI from the Image
Builder console wizard

Note

When you create a pipeline from an existing recipe, the option to create a new recipe isn't
available.

List and view container recipes 365

EC2 Image Builder User Guide

Get container recipe details with the AWS CLI

The following example shows how to use an imagebuilder CLI command to get the details of a
container recipe by specifying its ARN.

aws imagebuilder get-container-recipe --container-recipe-arn arn:aws:imagebuilder:us-
west-2:123456789012:container-recipe/my-example-recipe/2020.12.03

Get container recipe policy details with the AWS CLI

The following example shows how to use an imagebuilder CLI command to get the details of a
container recipe policy by specifying its ARN.

aws imagebuilder get-container-recipe-policy --container-recipe-arn
 arn:aws:imagebuilder:us-west-2:123456789012:container-recipe/my-example-
recipe/2020.12.03

Create a new version of an image recipe

This section describes how to create a new version of an image recipe.

Contents

• Create a new image recipe version from the console

• Create an image recipe with the AWS CLI

• Import a VM as your base image in the console

Create a new image recipe version from the console

When you create a new recipe version, it's virtually the same as creating a new recipe. The
difference is that certain details are pre-selected to match the base recipe, in most cases. The
following list describes the differences between creating a new recipe and creating a new version of
an existing recipe.

Base recipe details in the new version

• Name – Not editable.

• Version – Required. This base detail isn't pre-filled with the current version or any
kind of a sequence. Enter the version number that you want to create in the format
<major>.<minor>.<patch>. If the version already exists, you encounter an error.

Create a new version of an image recipe 366

EC2 Image Builder User Guide

• The Select image option – Pre-selected, but you can edit it. If you change your choice for the
source of your base image, you might lose other details that depend on the original option that
you chose.

To see details that are associated with your base image selection, choose the tab that matches
your selection.

Managed image

• Image Operating System (OS) – Not editable.

• Image name – Pre-selected, based on the combination of base image choices that you
made for the existing recipe. However, if you change the Select image option, you lose the
pre-selected Image name.

• Auto-versioning options – Does not match your base recipe. This image option defaults to
the Use selected OS version option.

Important

If you're using semantic versioning to kick off pipeline builds, make sure that you
change this value to Use latest available OS version. To learn more about semantic
versioning for Image Builder resources, see Semantic versioning in Image Builder.

AWS Marketplace image

• Subscriptions – This tab should be open, and the subscribed image from AWS Marketplace
should be pre-selected to match your base recipe. If you change the image that your recipe
uses as its base image, you might lose other details that depend on the original image that
you chose.

For more information about AWS Marketplace products, see Buying products in the AWS
Marketplace Buyer Guide.

Custom AMI

AMI source (Required) - Enter the AMI ID or an AWS Systems Manager (SSM) Parameter Store
parameter that contains an AMI ID to use as the base image. The SSM Agent must be pre-
installed in the selected AMI.

• AMI ID – This setting is not pre-filled with your original entry. Enter the AMI ID for your
base image. Example: ami-1234567890abcdef1.

Create a new version of an image recipe 367

https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-subscribing-to-products.html

EC2 Image Builder User Guide

• SSM parameter – Enter the name or ARN of the SSM Parameter Store parameter
that contains the AMI ID for your base image. Example: /ib/test/param or
arn:aws:ssm:us-east-1:111122223333:parameter/ib/test/param.

• Instance configuration – Settings are pre-selected, but you can edit them.

• Systems Manager agent – You can select or clear this check box to control installation of the
Systems Manager agent on the new image. The check box is cleared by default to include the
Systems Manager agent in your new image. To remove the Systems Manager agent from the
final image, select the check box so that the agent isn't included in your AMI.

• User data – You can use this area to provide commands, or a command script to run, when you
launch your build instance. However, this value replaces any commands that Image Builder
might have added to ensure that Systems Manager is installed. These commands include the
clean-up script that Image Builder normally runs for Linux images prior to creating the new
image.

When Image Builder launches an instance, user data scripts run during the cloud-init phase,
before component execution begins. This step is logged to the following file on the instance:
var/log/cloud-init.log.

Note

• If you enter user data, make sure that the Systems Manager agent is pre-installed on
your base image, or that you include the install in your user data.

• For Linux images, ensure that clean-up steps run by including a command to create
an empty file named perform_cleanup in your user data script. Image Builder
detects this file, and runs the clean-up script prior to creating the new image. For
more information and a sample script, see Security best practices for Image Builder.

• Working directory – Pre-selected, but you can edit it.

• Components – Components that are already included in the recipe are displayed in the Selected
components section at the end of each of the component lists (build and test). You can remove
or reorder the selected components to suit your needs.

CIS hardening components don't follow the standard component ordering rules in Image Builder
recipes. The CIS hardening components always run last to ensure that the benchmark tests run
against your output image.

Create a new version of an image recipe 368

EC2 Image Builder User Guide

Note

Build and test component lists display available components based on the component
owner type. To add a component, choose Add build components, and select the
ownership filter that applies. For example, to add a build component that's associated
with an AWS Marketplace product, select AWS Marketplace. This opens a selection
panel on the right side of the console interface that lists AWS Marketplace components.
For the CIS component, select Third party managed.

You can configure the following settings for your selected component:

• Versioning options – Pre-selected, but you can change them. We recommend that you choose
the Use latest available component version option to ensure that your image builds always
pick up the latest version of the component. If you need to use a specific component version
in your recipe, you can choose Specify component version, and enter the version in the
Component version box that appears.

• Input parameters – Displays input parameters that the component accepts. The Value is pre-
filled with the value from the prior version of the recipe. If you are using this component
for the first time in this recipe, and a default value was defined for the input parameter, the
default value appears in the Value box with greyed-out text. If no other value is entered,
Image Builder uses the default value.

If an input parameter is required, but doesn't have a default value defined in the component,
you must provide a value. Image Builder won't create the recipe version if there are any
required parameters that are missing and don't have a default value defined.

Important

Component parameters are plain text values, and are logged in AWS CloudTrail.
We recommend that you use AWS Secrets Manager or the AWS Systems Manager
Parameter Store to store your secrets. For more information about Secrets Manager,
see What is Secrets Manager? in the AWS Secrets Manager User Guide. For more
information about AWS Systems Manager Parameter Store, see AWS Systems Manager
Parameter Store in the AWS Systems Manager User Guide.

Create a new version of an image recipe 369

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

EC2 Image Builder User Guide

To expand settings for Versioning options or Input parameters, you can choose the arrow next
to the name of the setting. To expand all of the settings for all selected components, you can
toggle the Expand all switch off and on.

• Storage (volumes) – are pre-filled. The root volume Device name, Snapshot, and IOPS
selections, are not editable. However, you can change all of the remaining settings, such as the
Size. You can also add new volumes, and encrypt new or existing volumes.

To encrypt volumes for the images that Image Builder creates under your account in the source
Region (where the build runs), you must use the storage volume encryption in the image recipe.
Encryption that runs during the distribution phase of the build is only for images that are
distributed to other accounts or Regions.

Note

If you use encryption for your volumes, you must select the key for each volume
separately, even if the key is the same one that's used for the root volume.

To create a new image recipe version:

1. At the top of the recipe details page, choose Create new version. This takes you to the Create
image recipe page.

2. To create the new version, make your changes, and then choose Create recipe.

Your final image can contain up to four product codes from AWS Marketplace image products
and components. If your selected base image and components contain more than four product
codes, Image Builder returns an error when you try to create the recipe.

For more information on how to create an image recipe when you create an image pipeline, see
Step 2: Choose recipe in the Get started section of this guide.

Create an image recipe with the AWS CLI

To create an image recipe with the Image Builder create-image-recipe command in the AWS
CLI, follow these steps:

Prerequisites

Create a new version of an image recipe 370

EC2 Image Builder User Guide

Before you run the Image Builder commands in this section to create an image recipe from the
AWS CLI, you must create the components that the recipe uses. The image recipe example in the
following step refers to example components that are created in the Create a custom component
from the AWS CLI section of this guide.

After you create your components, or if you are using existing components, note the ARNs that you
want to include in the recipe.

1. Create a CLI input JSON file

You can provide all of the input for the create-image-recipe command with inline command
parameters. However, the resulting command can be quite long. To streamline the command,
you can instead provide a JSON file that contains all of the recipe settings.

Note

The naming convention for the data values in the JSON file follows the pattern that
is specified for the Image Builder API operation request parameters. To review the API
operation request parameters, see the CreateImageRecipe command in the EC2 Image
Builder API Reference.
To provide the data values as command line parameters, refer to the parameter names
specified in the AWS CLI Command Reference.

Here is a summary of the parameters that these examples specify:

• name (string, required) – The name of the image recipe.

• description (string) – The description of the image recipe.

• parentImage (string, required) – The image that the image recipe uses as a base for your
customized image. You can specify the parent image using one of the following options:

• AMI ID

• Image Builder image resource ARN

• AWS Systems Manager (SSM) Parameter Store parameter, prefixed by ssm:, followed by
the parameter name or ARN.

• AWS Marketplace product ID

Create a new version of an image recipe 371

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateImageRecipe.html

EC2 Image Builder User Guide

Note

The Linux and macOS examples use an Image Builder AMI, and the Windows
example uses an ARN.

• semanticVersion (string, required) – The semantic version of the image recipe, expressed
in the following format, with numeric values in each position to indicate a specific version:
<major>.<minor>.<patch>. For example a value might be 1.0.0. To learn more about
semantic versioning for Image Builder resources, see Semantic versioning in Image Builder.

• components (array, required) – Contains an array of ComponentConfiguration objects. At
least one build component must be specified:

Note

Image Builder installs components in the order that you specified them in the recipe.
However, CIS hardening components always run last to ensure that the benchmark
tests run against your output image.

• componentARN (string, required) – The component ARN.

Tip

To use one of the examples to create your own image recipe, you must replace
the example ARNs with the ARNs for the components that you are using for your
recipe.

• parameters (array of objects) – Contains an array of ComponentParameter objects. If an
input parameter is required, but doesn't have a default value defined in the component,
you must provide a value. Image Builder won't create the recipe version if there are any
required parameters that are missing and don't have a default value defined.

Important

Component parameters are plain text values, and are logged in AWS CloudTrail.
We recommend that you use AWS Secrets Manager or the AWS Systems Manager
Parameter Store to store your secrets. For more information about Secrets

Create a new version of an image recipe 372

EC2 Image Builder User Guide

Manager, see What is Secrets Manager? in the AWS Secrets Manager User Guide.
For more information about AWS Systems Manager Parameter Store, see AWS
Systems Manager Parameter Store in the AWS Systems Manager User Guide.

• name (string, required) – The name of the component parameter to set.

• value (array of strings, required) – Contains an array of strings to set the value for the
named component parameter. If there is a default value defined for the component, and
no other value is provided, AWSTOE uses the default value.

• additionalInstanceConfiguration (object) – Specify additional settings and launch scripts
for your build instances.

• systemsManagerAgent (object) – Contains settings for the Systems Manager agent on
your build instance.

• uninstallAfterBuild (Boolean) – Controls whether the Systems Manager agent is
removed from your final build image prior to creating the new AMI. If this option is set
to true, then the agent is removed from the final image. If the option is set to false,
then the agent is left in so that it is included in the new AMI. The default value is false.

Note

If the uninstallAfterBuild attribute isn't included in the JSON file, and the
following conditions are true, then Image Builder removes the Systems Manager
agent from the final image so that it isn't available in the AMI:

• The userDataOverride is empty or has been omitted from the JSON file.

• Image Builder automatically installed the Systems Manager agent on the build
instance for an operating system that didn't have the agent pre-installed on
the base image.

• userDataOverride (string) – Provide commands or a command script to run when you
launch your build instance.

Note

The user data is always base 64 encoded. For example, the following commands
are encoded as
IyEvYmluL2Jhc2gKbWtkaXIgLXAgL3Zhci9iYi8KdG91Y2ggL3Zhcg==:

Create a new version of an image recipe 373

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

EC2 Image Builder User Guide

#!/bin/bash
mkdir -p /var/bb/
touch /var

The Linux example uses this encoded value.

Linux

The base image (parentImage property) in the following example is an AMI. When you
use an AMI, you must have access to the AMI, and the AMI must be in the source Region
(the same Region where Image Builder runs the command). Save the file as create-
image-recipe.json, and use it in the create-image-recipe command.

{
"name": "BB Ubuntu Image recipe",
"description": "Hello World image recipe for Linux.",
"parentImage": "ami-1234567890abcdef1",
"semanticVersion": "1.0.0",
"components": [
 {
 "componentArn": "arn:aws:imagebuilder:us-west-2:111122223333:component/bb$"
 }
],
"additionalInstanceConfiguration": {
 "systemsManagerAgent": {
 "uninstallAfterBuild": true
 },
 "userDataOverride": "IyEvYmluL2Jhc2gKbWtkaXIgLXAgL3Zhci9iYi8KdG91Y2ggL3Zhcg=="
}
}

Windows

The following example refers to the latest version of the Windows Server 2016
English Full Base image. The ARN in this example references the latest image based
on the semantic version filters that you've specified: arn:aws:imagebuilder:us-
west-2:aws:image/windows-server-2016-english-full-base-x86/x.x.x.

Create a new version of an image recipe 374

EC2 Image Builder User Guide

{
"name": "MyBasicRecipe",
"description": "This example image recipe creates a Windows 2016 image.",
"parentImage": "arn:aws:imagebuilder:us-west-2:aws:image/windows-server-2016-
english-full-base-x86/x.x.x",
"semanticVersion": "1.0.0",
"components": [
 {
 "componentArn": "arn:aws:imagebuilder:us-west-2:111122223333:component/my-
example-component/2019.12.02/1"
 },
 {
 "componentArn": "arn:aws:imagebuilder:us-west-2:111122223333:component/my-
imported-component/1.0.0/1"
 }
]
}

Note

To learn more about semantic versioning for Image Builder resources, see Semantic
versioning in Image Builder.

macOS

The base image (parentImage property) in the following example is an AMI. When you
use an AMI, you must have access to the AMI, and the AMI must be in the source Region
(the same Region where Image Builder runs the command). Save the file as create-
image-recipe.json, and use it in the create-image-recipe command.

{
"name": "macOS Catalina Image recipe",
"description": "Hello World image recipe for macOS.",
"parentImage": "ami-1234567890abcdef1",
"semanticVersion": "1.0.0",
"components": [
 {
 "componentArn": "arn:aws:imagebuilder:us-
west-2:111122223333:component/catalina$"

Create a new version of an image recipe 375

EC2 Image Builder User Guide

 }
],
"additionalInstanceConfiguration": {
 "systemsManagerAgent": {
 "uninstallAfterBuild": true
 },
 "userDataOverride": "IyEvYmluL2Jhc2gKbWtkaXIgLXAgL3Zhci9iYi8KdG91Y2ggL3Zhcg=="
}
}

2. Create the recipe

Use the following command to create the recipe. Provide the name of the JSON file that you
created in the prior step in the --cli-input-json parameter:

aws imagebuilder create-image-recipe --cli-input-json file://create-image-
recipe.json

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use the
forward slash (/).

Your final image can contain up to four product codes from AWS Marketplace image products
and components. If your selected base image and components contain more than four product
codes, Image Builder returns an error when run the create-image-recipe command.

Import a VM as your base image in the console

In this section, we focus on how to import a virtual machine (VM) as the base image for your
image recipe. We don't cover other steps involved with creating a recipe or recipe version here. For
additional steps to create a new image recipe with the pipeline creation wizard in the Image Builder
console, see Pipeline wizard: Create AMI. For additional steps to create a new image recipe or recipe
version, see Create a new version of an image recipe.

Create a new version of an image recipe 376

EC2 Image Builder User Guide

To import a VM as the base image for your image recipe in the Image Builder console, follow these
steps, along with any other required steps, to create your recipe or recipe version.

1. In the Select image section for the base image, select the Import base image option.

2. Choose the Image Operating System (OS) and OS version as you normally would.

VM import configuration

When you export your VM from its virtualization environment, that process creates a set of one or
more disk container files that act as snapshots of your VM environment, settings, and data. You can
use these files to import your VM as the base image for your image recipe. For more information
about importing VMs in Image Builder, see Import and export VM images

To specify the location of your import source, follow these steps:

Import source

Specify the source for the first VM image disk container or snapshot to import in the Disk
container 1 section.

1. Source – This can be either an S3 bucket or an EBS snapshot.

2. Select S3 location of disk – Enter the location in Amazon S3 where your disk images are
stored. To browse for the location, choose Browse S3.

3. To add a disk container, choose Add disk container.

IAM role

To associate an IAM role with your VM import configuration, select the role from the IAM role
dropdown list, or choose Create new role to create a new one. If you create a new role, the IAM
Roles console page opens in a separate tab.

Advanced settings – optional

The following settings are optional. With these settings, you can configure encryption, licensing,
tags, and more for the base image that the import creates.

General

1. Specify a unique Name for the base image. If you do not enter a value, the base image inherits
the recipe name.

Create a new version of an image recipe 377

EC2 Image Builder User Guide

2. Specify a Version for the base image. Use the following format:
<major>.<minor>.<patch>. If you do not enter a value, the base image inherits the recipe
version.

3. You can also enter a Description for the base image.

Base image architecture

To specify the architecture of your VM import source, select a value from the Architecture list.

Encryption

If your VM disk images are encrypted, you must provide a key to use for the import process. To
specify an AWS KMS key for the import, select a value from the Encryption (KMS key) list. The list
contains KMS keys that your account has access to in the current Region.

License management

When you import a VM, the import process automatically detects the VM OS and applies the
appropriate license to the base image. Depending on your OS platform, the license types are as
follows:

• License included – An appropriate AWS license for your platform is applied to your base image.

• Bring your own license (BYOL) – Retains the license from your VM, if applicable.

To attach license configurations created with AWS License Manager to your base image, select from
the License configuration name list. For more information about License Manager, see Working
with AWS License Manager

Note

• License configurations contain licensing rules based on the terms of your enterprise
agreements.

• Linux only supports BYOL licenses.

Tags (base image)

Create a new version of an image recipe 378

EC2 Image Builder User Guide

Tags use key-value pairs to assign searchable text to your Image Builder resource. To specify tags
for the imported base image, enter key-value pairs with the Key and Value boxes.

To add a tag, choose Add tag. To remove a tag, choose Remove tag.

Create a new version of a container recipe

This section shows you how to create a new version of a container recipe.

Contents

• Create a new container recipe version with the console

• Create a container recipe with the AWS CLI

Create a new container recipe version with the console

Creating a new version of a container recipe is virtually the same as creating a new recipe. The
difference is that certain details are pre-selected to match the base recipe, in most cases. The
following list describes the differences between creating a new recipe and creating a new version of
an existing recipe.

Recipe details

• Name – not editable.

• Version – Required. This detail isn't pre-filled with the current version or any kind of a sequence.
Enter the version number that you want to create in the format major.minor.patch. If the version
already exists, you encounter an error.

Base image

• Select image option – Pre-selected, but editable. If you change your choice for the source of your
base image, you might lose other details that depend on the original option that you chose.

For Docker container images, you can choose from public images hosted on DockerHub, existing
container images in Amazon ECR, or Amazon-managed container images. To see details that are
associated with your base image selection, choose the tab that matches your selection.

Managed images

• Image Operating System (OS) – Not editable.

Create a new version of a container recipe 379

EC2 Image Builder User Guide

• Image name – Pre-selected, based on the combination of base image choices that you
made for the existing recipe. However, if you change the Select image option, you lose the
pre-selected Image name.

• Auto-versioning options – Does not match your base recipe. Auto-versioning options
defaults to the Use selected OS version option.

Important

If you're using semantic versioning to kick off pipeline builds, make sure that you
change this value to Use latest available OS version. To learn more about semantic
versioning for Image Builder resources, see Semantic versioning in Image Builder.

ECR image

• Image Operating System (OS) – Pre-selected, but editable.

• OS version – Pre-selected, but editable.

• ECR image ID – Pre-filled, but editable.

Docker Hub image

• Image Operating System (OS) – Not editable.

• OS version – Pre-selected, but editable.

• Docker image ID – Pre-filled, but editable.

Instance configuration

• AMI source (Required) – Identify a custom AMI to use as the base image for your container build
and test instance. This can be an AMI ID or an AWS Systems Manager (SSM) Parameter Store
parameter that contains an AMI ID.

• AMI ID – This setting is not pre-filled with your original entry. Enter the AMI ID for your base
image. Example: ami-1234567890abcdef1.

• SSM parameter – Enter the name or ARN of the SSM Parameter Store parameter that
contains the AMI ID for your base image. Example: /ib/test/param or arn:aws:ssm:us-
east-1:111122223333:parameter/ib/test/param.

• Storage (volumes)

Create a new version of a container recipe 380

EC2 Image Builder User Guide

EBS volume 1 (AMI root) – Pre-filled. You can't edit the root volume Device name, Snapshot, or
IOPS selections. However, you can change all of the remaining settings, such as the Size. You can
also add new volumes.

Note

If you specified a base AMI that was shared with you from another account, the
snapshots for any secondary volumes that are specified must also be shared with your
account.

Working directory

• Working directory path – Pre-filled, but editable.

Components

• Components – Components that are already included in the recipe are displayed in the Selected
components section at the end of each of the component lists (build and test). You can remove
or reorder the selected components to suit your needs.

CIS hardening components don't follow the standard component ordering rules in Image Builder
recipes. The CIS hardening components always run last to ensure that the benchmark tests run
against your output image.

Note

Build and test component lists display available components based on the component
owner type. To add a component, choose Add build components, and select the
ownership filter that applies. For example, to add a build component that's associated
with an AWS Marketplace product, select AWS Marketplace. This opens a selection
panel on the right side of the console interface that lists AWS Marketplace components.
For the CIS component, select Third party managed.

You can configure the following settings for your selected component:

Create a new version of a container recipe 381

EC2 Image Builder User Guide

• Versioning options – Pre-selected, but you can change them. We recommend that you choose
the Use latest available component version option to ensure that your image builds always
pick up the latest version of the component. If you need to use a specific component version
in your recipe, you can choose Specify component version, and enter the version in the
Component version box that appears.

• Input parameters – Displays input parameters that the component accepts. The Value is pre-
filled with the value from the prior version of the recipe. If you are using this component
for the first time in this recipe, and a default value was defined for the input parameter, the
default value appears in the Value box with greyed-out text. If no other value is entered,
Image Builder uses the default value.

If an input parameter is required, but doesn't have a default value defined in the component,
you must provide a value. Image Builder won't create the recipe version if there are any
required parameters that are missing and don't have a default value defined.

Important

Component parameters are plain text values, and are logged in AWS CloudTrail.
We recommend that you use AWS Secrets Manager or the AWS Systems Manager
Parameter Store to store your secrets. For more information about Secrets Manager,
see What is Secrets Manager? in the AWS Secrets Manager User Guide. For more
information about AWS Systems Manager Parameter Store, see AWS Systems Manager
Parameter Store in the AWS Systems Manager User Guide.

To expand settings for Versioning options or Input parameters, you can choose the arrow next
to the name of the setting. To expand all of the settings for all selected components, you can
toggle the Expand all switch off and on.

Dockerfile template

• Dockerfile template – Pre-filled, but editable. You can specify any of the following contextual
variables that Image Builder replaces with build information at runtime.

parentImage (required)

At build time, this variable resolves to the base image for your recipe.

Create a new version of a container recipe 382

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

EC2 Image Builder User Guide

Example:

FROM
{{{ imagebuilder:parentImage }}}

environments (required if components are specified)

This variable will resolves to a script that runs components.

Example:

{{{ imagebuilder:environments }}}

components (optional)

Image Builder resolves build and test component scripts for the components that the
container recipe includes. This variable can be placed anywhere in the Dockerfile, after the
environments variable.

Example:

{{{ imagebuilder:components }}}

Target repository

• Target repository name – The Amazon ECR repository where your output image is stored if there
is no other repository specified in your pipeline's distribution configuration for the Region where
the pipeline runs (Region 1).

To create a new container recipe version:

1. At the top of the container recipe details page, choose Create new version. You are taken to
the Create recipe page for container recipes.

2. To create the new version, make your changes, and then choose Create recipe.

For more information on how to create a container recipe when you create an image pipeline, see
Step 2: Choose recipe in the Get started section of this guide.

Create a new version of a container recipe 383

EC2 Image Builder User Guide

Create a container recipe with the AWS CLI

To create an Image Builder container recipe with the imagebuilder create-container-
recipe command in the AWS CLI, follow these steps:

Prerequisites

Before you run the Image Builder commands in this section to create a container recipe with the
AWS CLI, you must create the components that the recipe will use. The container recipe example
in the following step refers to example components that are created in the Create a custom
component from the AWS CLI section of this guide.

After you create your components, or if you are using existing components, note the ARNs that you
want to include in the recipe.

1. Create a CLI input JSON file

You can provide all of the input for the create-container-recipe command with inline
command parameters. However, the resulting command can be quite long. To streamline the
command, you can instead provide a JSON file that contains all of the container recipe settings

Note

The naming convention for the data values in the JSON file follows the pattern that
is specified for the Image Builder API operation request parameters. To review the API
operation request parameters, see the CreateContainerRecipe command in the EC2
Image Builder API Reference.
To provide the data values as command line parameters, refer to the parameter names
specified in the AWS CLI Command Reference.

Here is a summary of the parameters in this example:

• components (array of objects, required) – Contains an array of ComponentConfiguration
objects. At least one build component must be specified:

Create a new version of a container recipe 384

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateContainerRecipe.html

EC2 Image Builder User Guide

Note

Image Builder installs components in the order that you specified them in the recipe.
However, CIS hardening components always run last to ensure that the benchmark
tests run against your output image.

• componentARN (string, required) – The component ARN.

Tip

To use the example to create your own container recipe, replace the example
ARNs with the ARNs for the components that you are using for your recipe,. These
include the AWS Region, name, and the version number for each.

• parameters (array of objects) – Contains an array of ComponentParameter objects. If an
input parameter is required, but doesn't have a default value defined in the component,
you must provide a value. Image Builder won't create the recipe version if there are any
required parameters that are missing and don't have a default value defined.

Important

Component parameters are plain text values, and are logged in AWS CloudTrail.
We recommend that you use AWS Secrets Manager or the AWS Systems Manager
Parameter Store to store your secrets. For more information about Secrets
Manager, see What is Secrets Manager? in the AWS Secrets Manager User Guide.
For more information about AWS Systems Manager Parameter Store, see AWS
Systems Manager Parameter Store in the AWS Systems Manager User Guide.

• name (string, required) – The name of the component parameter to set.

• value (array of strings, required) – Contains an array of strings to set the value for the
named component parameter. If there is a default value defined for the component, and
no other value is provided, AWSTOE uses the default value.

• containerType (string, required) – The type of container to create. Valid values include
DOCKER.

Create a new version of a container recipe 385

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

EC2 Image Builder User Guide

• dockerfileTemplateData (string) – The Dockerfile template that is used to build your image,
expressed as an inline data blob.

• name (string, required) – The name of the container recipe.

• description (string) – The description of the container recipe.

• parentImage (string, required) – The Docker container image to use in the container recipe
as a baseline for your customized image.

• Public images hosted on DockerHub

• Existing container images in Amazon ECR

• Amazon-managed container images

• platformOverride (string) – Specifies the operating system platform when you use a custom
base image.

• semanticVersion (string, required) – The semantic version of the container recipe specified
in the following format, with numeric values in each position to indicate a specific version:
<major>.<minor>.<patch>. An example would be 1.0.0. To learn more about semantic
versioning for Image Builder resources, see Semantic versioning in Image Builder.

• tags (string map) – Tags that are attached to the container recipe.

• instanceConfiguration (object) – A group of options that can be used to configure an
instance for building and testing container images.

• image (string) – The base image for a container build and test instance. This can contain
an AMI ID or it can specify an AWS Systems Manager (SSM) Parameter Store parameter,
prefixed by ssm:, followed by the parameter name or ARN. If you use an SSM parameter,
the parameter value must contain an AMI ID. If you don't specify a base image, Image
Builder uses the appropriate Amazon ECS optimized AMI as a base image.

• blockDeviceMappings (array of objects) – Defines the block devices to attach for building
an instance from the Image Builder AMI specified in the image parameter.

• deviceName (string) – The device that these mappings apply to.

• ebs (object) – Used to manage Amazon EBS specific configuration for this mapping.

• deleteOnTermination (Boolean) – Used to configure delete on termination of the
associated device.

• encrypted (Boolean) – Used to configure device encryption.

• volumeSize (integer) – Used to override the device's volume size.

• volumeType (string) – Used to override the device's volume type.
Create a new version of a container recipe 386

EC2 Image Builder User Guide

• targetRepository (object, required) – The destination repository for the container image
if there is no other repository specified in your pipeline's distribution configuration for the
Region where the pipeline runs (Region 1).

• repositoryName (string, required) – The name of the container repository where the
output container image is stored. This name is prefixed by the repository location.

• service (string, required) – Specifies the service in which this image was registered.

• workingDirectory (string) – The working directory for use during build and test workflows.

{
 "components": [
 {
 "componentArn": "arn:aws:imagebuilder:us-west-2:111122223333:component/
helloworldal2/x.x.x"
 }
],
 "containerType": "DOCKER",
 "description": "My Linux Docker container image",
 "dockerfileTemplateData": "FROM
 {{{ imagebuilder:parentImage }}}\n{{{ imagebuilder:environments }}}\n{{{ imagebuilder:components }}}",
 "name": "amazonlinux-container-recipe",
 "parentImage": "amazonlinux:latest",
 "platformOverride": "Linux",
 "semanticVersion": "1.0.2",
 "tags": {
 "sometag" : "Tag detail"
 },
 "instanceConfiguration": {
 "image": "ami-1234567890abcdef1",
 "blockDeviceMappings": [
 {
 "deviceName": "/dev/xvda",
 "ebs": {
 "deleteOnTermination": true,
 "encrypted": false,
 "volumeSize": 8,
 "volumeType": "gp2"
 }
 }
]
 },

Create a new version of a container recipe 387

EC2 Image Builder User Guide

 "targetRepository": {
 "repositoryName": "myrepo",
 "service": "ECR"
 },
 "workingDirectory": "/tmp"
}

2. Create the recipe

Use the following command to create the recipe. Provide the name of the JSON file that you
created in the prior step in the --cli-input-json parameter:

aws imagebuilder create-container-recipe --cli-input-json file://create-container-
recipe.json

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use the
forward slash (/).

Clean up resources

To avoid unexpected charges, make sure to clean up resources and pipelines that you created from
the examples in this guide. For more information about deleting resources in Image Builder, see
Delete outdated or unused Image Builder resources.

Manage Image Builder infrastructure configuration

You can use infrastructure configurations to specify the Amazon EC2 infrastructure that Image
Builder uses to build and test your EC2 Image Builder image. Infrastructure settings include:

• Instance types for your build and test infrastructure. We recommend that you specify more than
one instance type because this allows Image Builder to launch an instance from a pool with
sufficient capacity. This can reduce your transient build failures.

Clean up resources 388

EC2 Image Builder User Guide

For Mac images, you might want to choose instance types that natively support the macOS
operating system. For more information, see Amazon EC2 Mac instances in the Amazon EC2 User
Guide.

• Instance placement settings where you can specify the host, host placement group, or
Availability Zone where the instances that launch from your image should go.

• An instance profile that provides your build and test instances with the permissions that are
required to perform customization activities. For example, if you have a component that retrieves
resources from Amazon S3, the instance profile requires permissions to access those files. The
instance profile also requires a minimal set of permissions for EC2 Image Builder to successfully
communicate with the instance. For more information, see Get set up to build custom images
with Image Builder.

• The VPC, subnet, and security groups for your pipeline's build and test instances.

• The Amazon S3 location where Image Builder stores application logs from your build and testing.
If you configure logging, the instance profile specified in your infrastructure configuration must
have s3:PutObject permissions for the target bucket (arn:aws:s3:::BucketName/*).

• An Amazon EC2 key pair that allows you to log on to your instance to troubleshoot if your build
fails and you set terminateInstanceOnFailure to false.

• An SNS topic where Image Builder sends event notifications. For more information about how
Image Builder integrates with Amazon SNS, see Amazon SNS integration in Image Builder.

Note

If your SNS topic is encrypted, the key that encrypts this topic must reside in the account
where the Image Builder service runs. Image Builder can't send notifications to SNS
topics that are encrypted with keys from other accounts.

You can create and manage infrastructure configurations using the Image Builder console, through
the Image Builder API, or with imagebuilder commands in the AWS CLI.

Contents

• List and view infrastructure configuration details

• Create an infrastructure configuration

• Update an infrastructure configuration

Infrastructure configurations 389

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-mac-instances.html

EC2 Image Builder User Guide

• Image Builder and AWS PrivateLink interface VPC endpoints

Tip

When you have multiple resources of the same type, tagging helps you to identify a specific
resource based on the tags you've assigned to it. For more information about tagging your
resources using Image Builder commands in the AWS CLI, see the Tag resources section of
this guide.

List and view infrastructure configuration details

This section describes the various ways that you can find information and view details for your EC2
Image Builder infrastructure configurations.

Infrastructure configuration details

• List infrastructure configurations from the AWS CLI

• Get infrastructure configuration details from the AWS CLI

List infrastructure configurations from the AWS CLI

The following example shows how to list of all of your infrastructure configurations, using the list-
infrastructure-configurations command in the AWS CLI.

aws imagebuilder list-infrastructure-configurations

Get infrastructure configuration details from the AWS CLI

The following example shows how use the get-infrastructure-configuration command in the AWS
CLI to get the details of an infrastructure configuration by specifying its Amazon Resource Name
(ARN).

aws imagebuilder get-infrastructure-configuration --infrastructure-configuration-arn
 arn:aws:imagebuilder:us-west-2:123456789012:infrastructure-configuration/my-example-
infrastructure-configuration

List and view infrastructure configurations 390

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/list-infrastructure-configurations.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/list-infrastructure-configurations.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/get-infrastructure-configuration.html

EC2 Image Builder User Guide

Create an infrastructure configuration

This section describes how you can use the Image Builder console or imagebuilder commands in
the AWS CLI to create an infrastructure configuration,

Console

To create an infrastructure configuration resource from the Image Builder console, follow these
steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. From the navigation pane, choose Infrastructure configuration.

3. Choose Create infrastructure configuration.

4. In the General section, enter the following required information:

• Enter the Name of your infrastructure configuration resource.

• Select an IAM role that you want to associate with the instance profile for component
permissions on your build and test instances. Image Builder uses these permissions
to download and run your components, upload logs to CloudWatch, and perform any
additional actions that the components in your recipe specify.

5. In the AWS infrastructure panel, you can configure remaining infrastructure settings that
are available. Enter the following required information:

• Instance type – You can specify one or more instance types to use for this build. The
service will pick one of these instance types based on availability.

Note

Mac instances run on .metal instance types on a Dedicated Host. Your instance
type must match one of the types that are defined for the host that it runs
on. For more information about Mac instances and a list of instance types that
natively support the macOS operating system, see Amazon EC2 Mac instances in
the Amazon EC2 User Guide.

• SNS topic (optional) – Select an SNS topic to receive notifications and alerts from EC2
Image Builder.

Create an infrastructure configuration 391

https://console.aws.amazon.com/imagebuilder/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-mac-instances.html

EC2 Image Builder User Guide

If you do not supply values for the following settings, they use service-specific defaults,
where applicable.

• VPC, subnet, and security groups – Image Builder uses your default VPC and subnet. For
more information about configuring VPC interface endpoints, see Image Builder and AWS
PrivateLink interface VPC endpoints.

• In the Troubleshooting settings section, you can configure the following values:

• By default, the Terminate instance on failure check box is selected. However, when
a build fails, you can log on to the EC2 instance to troubleshoot. If you want your
instance to continue to run after a build failure, clear the check box.

• Key pair – If your EC2 instance continues to run after a build failure, you can create a
key pair or use an existing key pair to log on to the instance and troubleshoot.

• Logs – You can specify an S3 bucket where Image Builder can write application logs to
help troubleshoot your build and tests. If you don't specify an S3 bucket, Image Builder
writes the application logs to the instance.

• In the Instance metadata settings section, you can configure the following values to
apply to the EC2 instances that Image Builder uses to build and test your image:

• Select the Metadata version to determine if EC2 requires a signed token header for
instance metadata retrieval requests.

• V1 and V2 (token optional) – Default value if you don't select anything.

• V2 (token required)

Note

We recommend that you configure all EC2 instances that Image Builder
launches from a pipeline build to use IMDSv2 so that instance metadata
retrieval requests require a signed token header.

• Metadata token response hop limit – The number of network hops that the metadata
token can travel. Minimum hops: 1, maximum hops: 64, with a default of one hop.

• In the Instance placement settings section, you can configure the following values to
apply to the EC2 instances that Image Builder uses to build and test your image:

• You can select the Availability Zone where Image Builder launches instances during
image creation.

Create an infrastructure configuration 392

EC2 Image Builder User Guide

• Optionally select Tenancy for the servers that run the instances that you launch. By
default, EC2 instances run on shared tenancy hardware. This means that multiple
AWS accounts might share the same physical hardware. An instance with dedicated
tenancy runs on single-tenant hardware. An instance with host tenancy runs on a
Dedicated Host.

Mac instances require a Dedicated Host that's created as a prerequisite before you
build a custom image. Select host for your macOS image. You can then select a target
host or host resource group to launch instances, but it's not required if your Dedicated
Host has auto-placement enabled. For more information, see Auto-placement in the
Amazon EC2 User Guide.

• Tenancy host ID – The ID of the Dedicated Host on which the instances run.

• Tenancy host resource group – The Amazon Resource Name (ARN) of the host
resource group in which to launch the instances.

6. In the Infrastructure tags section (optional), you can assign metadata tags to the Amazon
EC2 instance that Image Builder launches during the build process. Tags are entered as key
value pairs.

7. In the Tags section (optional), you can assign metadata tags to the infrastructure
configuration resource that Image Builder creates as output. Tags are entered as key value
pairs.

AWS CLI

The following procedure shows how to configure the infrastructure for your image with the
Image Builder create-infrastructure-configuration command in the AWS CLI. The command
in step 2 takes in the file that you create in step 1. For these examples, the file from step 1 is
called create-infrastructure-configuration.json.

1. Create a CLI input JSON file

The following examples show variations of the JSON file that you might create for
infrastructure configuration. Use a file editing tool to create a JSON file of your own.

Example 1: Configuration to retain an instance from a failed build

Create an infrastructure configuration 393

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-hosts-understanding.html#dedicated-hosts-auto-placement
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-infrastructure-configuration.html

EC2 Image Builder User Guide

This example specifies two instance types, m5.large and m5.xlarge. We recommend that
you specify more than one instance type because this allows Image Builder to launch an
instance from a pool with sufficient capacity. This can reduce your transient build failures.

The instanceProfileName specifies the instance profile that provides the instance with
the permissions that the profile requires to perform customization activities. For example,
if you have a component that retrieves resources from Amazon S3, the instance profile
requires permissions to access those files. The instance profile also requires a minimal set of
permissions for EC2 Image Builder to successfully communicate with the instance. For more
information, see Get set up to build custom images with Image Builder.

{
 "name": "ExampleInfraConfigDontTerminate",
 "description": "An example that will retain instances of failed builds",
 "instanceTypes": [
 "m5.large", "m5.xlarge"
],
 "instanceProfileName": "myIAMInstanceProfileName",
 "securityGroupIds": [
 "sg-12345678"
],
 "subnetId": "sub-12345678",
 "logging": {
 "s3Logs": {
 "s3BucketName": "my-logging-bucket",
 "s3KeyPrefix": "my-path"
 }
 },
 "keyPair": "myKeyPairName",
 "terminateInstanceOnFailure": false,
 "snsTopicArn": "arn:aws:sns:us-west-2:123456789012:MyTopic"
}

Example 2: macOS configuration with auto-placement

This example specifies instance types and placement for a Mac instance where the
Dedicated Host has auto-placement enabled.

{
 "name": "macOSInfraConfigAutoPlacement",

Create an infrastructure configuration 394

EC2 Image Builder User Guide

 "description": "An example infrastructure configuration for macOS.",
 "instanceProfileName": "EC2InstanceProfileForImageBuilder",
 "instanceTypes": ["mac1.metal, mac2.metal"],
 "terminateInstanceOnFailure": false,
 "placement": {
 "tenancy": "host"
 }
}

Example 3: macOS configuration with Host ID specified

This example specifies instance type and placement for a Mac instance that targets a
specific Dedicated Host.

{
 "name": "macOSInfraConfigHostPlacement",
 "description": "An example infrastructure configuration for macOS.",
 "instanceProfileName": "EC2InstanceProfileForImageBuilder",
 "instanceTypes": ["mac2-m1ultra.metal"],
 "terminateInstanceOnFailure": false,
 "placement": {
 "tenancy": "host",
 "hostId" : "h-1234567890abcdef0"
 }
}

2. Use the file you created as input when you run the following command.

aws imagebuilder create-infrastructure-configuration --cli-input-json
 file://create-infrastructure-configuration.json

Update an infrastructure configuration

This section covers how you can use the Image Builder console or imagebuilder commands in the
AWS CLI to update an infrastructure configuration resource. To track your resources, you can apply
tags as follows. Tags are entered as key value pairs.

• Resource tags assign metadata tags to the Amazon EC2 instance that Image Builder launches
during the build process.

Update an infrastructure configuration 395

EC2 Image Builder User Guide

• Tags assign metadata tags to the infrastructure configuration resource that Image Builder creates
as output.

Console

You can edit the following infrastructure configuration details from the Image Builder console:

• The Description for your infrastructure configuration.

• The IAM role to associate with the instance profile.

• AWS infrastructure, including the Instance type and an SNS topic for notifications.

• VPC, subnet, and security groups.

• Troubleshooting settings, including Terminate instance on failure, the Key pair for
connecting, and an optional S3 bucket location for instance logs.

To update an infrastructure configuration resource from the Image Builder console, follow these
steps:

Choose an existing Image Builder infrastructure configuration

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. To see a list of the infrastructure configuration resources under your account, choose
Infrastructure configuration from the navigation pane.

3. To view details or edit an infrastructure configuration, choose the Configuration name link.
This opens the detail view for the infrastructure configuration.

Note

You can also select the check box next to the Configuration name, then choose
View detail.

4. From the upper right corner of the Infrastructure details panel, choose Edit .

5. When you're ready to save updates you've made to your infrastructure configuration,
choose Save changes.

Update an infrastructure configuration 396

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

AWS CLI

The following example shows how to update the infrastructure configuration for your image
with the Image Builder update-infrastructure-configuration command in the AWS CLI.

1. Create a CLI input JSON file

This infrastructure configuration example uses the same settings as the create example,
except that we've updated the terminateInstanceOnFailure setting to false.
After we run the update-infrastructure-configuration command, pipelines that use this
infrastructure configuration terminate the build and test instances when the build fails.

Use a file editing tool to create a JSON file with keys shown in the following example,
plus values that are valid for your environment. This example uses a file named update-
infrastructure-configuration.json:

{
"infrastructureConfigurationArn": "arn:aws:imagebuilder:us-
west-2:123456789012:infrastructure-configuration/my-example-infrastructure-
configuration",
"description": "An example that will terminate instances of failed builds",
"instanceTypes": [
 "m5.large", "m5.2xlarge"
],
"instanceProfileName": "myIAMInstanceProfileName",
"securityGroupIds": [
 "sg-12345678"
],
"subnetId": "sub-12345678",
"logging": {
 "s3Logs": {
 "s3BucketName": "my-logging-bucket",
 "s3KeyPrefix": "my-path"
 }
},
"terminateInstanceOnFailure": true,
"snsTopicArn": "arn:aws:sns:us-west-2:123456789012:MyTopic"
}

Update an infrastructure configuration 397

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/update-infrastructure-configuration.html

EC2 Image Builder User Guide

2. Use the file you created as input when you run the following command.

aws imagebuilder update-infrastructure-configuration --cli-input-json
 file://update-infrastructure-configuration.json

Image Builder and AWS PrivateLink interface VPC endpoints

You can establish a private connection between your VPC and EC2 Image Builder by creating
an interface VPC endpoint. Interface endpoints are powered by AWS PrivateLink, a technology
that enables you to privately access Image Builder APIs without an internet gateway, NAT device,
VPN connection, or AWS Direct Connect connection. Instances in your VPC don't need public IP
addresses to communicate with Image Builder APIs. Traffic between your VPC and Image Builder
does not leave the Amazon network.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your
subnets. When you create a new image, you can specify the VPC subnet-id in your infrastructure
configuration.

Note

Each service that you access from within a VPC has its own interface endpoint, with its own
endpoint policy. Image Builder downloads the AWSTOE component manager application
and accesses managed resources from S3 buckets to create custom images. To grant access
to those buckets, you must update the S3 endpoint policy to allow it. For more information,
see Custom policies for S3 bucket access.

For more information about VPC endpoints, see Interface VPC endpoints (AWS PrivateLink) in the
Amazon VPC User Guide.

Considerations for Image Builder VPC endpoints

Before you set up an interface VPC endpoint for Image Builder, ensure that you review Interface
endpoint properties and limitations in the Amazon VPC User Guide.

Image Builder supports making calls to all of its API actions from your VPC.

AWS PrivateLink VPC endpoints 398

https://aws.amazon.com/privatelink/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#vpce-interface-limitations

EC2 Image Builder User Guide

Create an interface VPC endpoint for Image Builder

To create a VPC endpoint for the Image Builder service, you can use either the Amazon VPC console
or the AWS Command Line Interface (AWS CLI). For more information, see Creating an interface
endpoint in the Amazon VPC User Guide.

Create a VPC endpoint for Image Builder using the following service name:

• com.amazonaws.region.imagebuilder

If you enable private DNS for the endpoint, you can make API requests to Image Builder using its
default DNS name for the Region, for example: imagebuilder.us-east-1.amazonaws.com.
To look up the endpoint that applies to your target Region, see EC2 Image Builder endpoints and
quotas in the Amazon Web Services General Reference.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

Create a VPC endpoint policy for Image Builder

You can attach an endpoint policy to your VPC endpoint that controls access to Image Builder. The
policy specifies the following information:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

If you are using Amazon-managed components in your recipe, the VPC endpoint for Image Builder
must allow access to the following serviced-owned component library:

arn:aws:imagebuilder:region:aws:component/*

Important

When a non-default policy is applied to an interface VPC endpoint for EC2 Image Builder,
certain failed API requests, such as those failing from RequestLimitExceeded, might not
be logged to AWS CloudTrail or Amazon CloudWatch.

AWS PrivateLink VPC endpoints 399

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint
https://docs.aws.amazon.com/general/latest/gr/imagebuilder.html#imagebuilder_region
https://docs.aws.amazon.com/general/latest/gr/imagebuilder.html#imagebuilder_region
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#access-service-though-endpoint

EC2 Image Builder User Guide

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Custom policies for S3 bucket access

Image Builder uses a publicly available S3 bucket to store and access managed resources, such
as components. It also downloads the AWSTOE component management application from a
separate S3 bucket. If you use a VPC endpoint for Amazon S3 in your environment, you’ll need
to ensure that your S3 VPC endpoint policy allows Image Builder to access the following S3
buckets. The bucket names are unique per AWS Region (region) and the application environment
(environment). Image Builder and AWSTOE support the following application environments:
prod, preprod, and beta.

• The AWSTOE component manager bucket:

s3://ec2imagebuilder-toe-region-environment

Example: s3://ec2imagebuilder-toe-us-west-2-prod/*

• The Image Builder managed resources bucket:

s3://ec2imagebuilder-managed-resources-region-environment/components

Example: s3://ec2imagebuilder-managed-resources-us-west-2-prod/components/*

VPC endpoint policy examples

This section includes examples of custom VPC endpoint policies.

General VPC endpoint policy for Image Builder actions

The following example endpoint policy for Image Builder denies permission to delete Image
Builder images and components. The example policy also grants permission to perform all other
EC2 Image Builder actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "imagebuilder:*",
 "Effect": "Allow",

AWS PrivateLink VPC endpoints 400

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

EC2 Image Builder User Guide

 "Resource": "*"
 },
 {
 "Action": [
 "imagebuilder: DeleteImage"
],
 "Effect": "Deny",
 "Resource": "*",
 },
 {
 "Action": [
 "imagebuilder: DeleteComponent"
],
 "Effect": "Deny",
 "Resource": "*",
 }]
}

Restrict access by organization, allow managed component access

The following example endpoint policy shows how to restrict access to identities and resources
that belong to your organization and provide access to the Amazon-managed Image Builder
components. Replace region, principal-org-id, and resource-org-id with your
organization's values.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowRequestsByOrgsIdentitiesToOrgsResources",
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalOrgID": "principal-org-id",
 "aws:ResourceOrgID": "resource-org-id"
 }
 }
 },

AWS PrivateLink VPC endpoints 401

EC2 Image Builder User Guide

 {
 "Sid": "AllowAccessToEC2ImageBuilderComponents",
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "imagebuilder:GetComponent"
],
 "Resource": [
 "arn:aws:imagebuilder:region:aws:component/*"
]
 }
]
}

VPC endpoint policy for Amazon S3 bucket access

The following S3 endpoint policy example shows how to provide access to the S3 buckets that
Image Builder uses to build custom images. Replace region and environment with your
organization's values. Add any other required permissions to the policy based on your application
requirements.

Note

For Linux images, if you don't specify user data in your image recipe, Image Builder adds a
script to download and install the Systems Manager agent on the build and test instances
for your image. To download the agent, Image Builder accesses the S3 bucket for your build
Region.
To ensure that Image Builder can bootstrap the build and test instances, add the following
additional resource to your S3 endpoint policy:
"arn:aws:s3:::amazon-ssm-region/*"

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowImageBuilderAccessToAppAndComponentBuckets",
 "Effect": "Allow",
 "Principal": {

AWS PrivateLink VPC endpoints 402

EC2 Image Builder User Guide

 "AWS": "*"
 },
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::ec2imagebuilder-toe-region-environment/*",
 "arn:aws:s3:::ec2imagebuilder-managed-resources-region-environment/components/
*"
]
 }
]
}

Manage Image Builder distribution settings

Before you configure distribution settings for your output images, we recommend that you verify
availability for any underlying infrastructure or other requirements for instances that are launched
from your output image in the distribution target Regions. For example, not all Regions support
EC2 Mac Dedicated Hosts, which are required to launch instances from a macOS image. For more
information about instance types and pricing for Dedicated Hosts, see Amazon EC2 Dedicated
Hosts Pricing.

After you create distribution settings with Image Builder, you can manage them using the
Image Builder console, the Image Builder API, or imagebuilder commands in the AWS CLI. With
distribution settings, you can perform the following actions:

AMI distribution

• Specify the name and description of your output AMI.

• Authorize other AWS accounts, organizations, and OUs to launch the AMI from the owner's
account. The owner account is billed for charges that are associated with the AMI.

Note

To make an AMI public, set the launch permission authorized accounts to all. For
information and examples, see ModifyImageAttribute in the Amazon EC2 API Reference.

• Create a copy of the output AMI for each of the specified target accounts, organizations, and OUs
in the destination Region. The target accounts, organizations, and OUs own their AMI copies, and

Distribution settings 403

https://aws.amazon.com/ec2/dedicated-hosts/pricing/
https://aws.amazon.com/ec2/dedicated-hosts/pricing/
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_ModifyImageAttribute.html

EC2 Image Builder User Guide

are billed for any associated charges. For more information about distributing your AMI to AWS
Organizations and OUs, see Share an AMI with organizations or OUs.

• Copy the AMI to the owner's account in other AWS Regions.

• Export VM image disks to Amazon Simple Storage Service (Amazon S3). For more information,
see Create distribution settings for output VM disks from the AWS CLI.

Container image distribution

• Specify the ECR repository where Image Builder stores the output image in the distribution
Region.

You can use your distribution settings in the following ways to deliver images to target Regions,
accounts, AWS Organizations and organizational units (OUs) one time, or with every pipeline build:

• To automatically deliver updated images to specified Regions, accounts, Organizations, and OUs,
use distribution settings with an Image Builder pipeline that runs on a schedule.

• To create a new image and deliver it to the specified Regions, accounts, Organizations, and OUs,
use distribution settings with an Image Builder pipeline that you run one time from the Image
Builder console, using Run pipeline from the Actions menu.

• To create a new image and deliver it to the specified Regions, accounts, Organizations, and OUs,
use distribution settings with the following API action or Image Builder command in the AWS
CLI:

• The CreateImage action in the Image Builder API.

• The create-image command in the AWS CLI.

• To export virtual machine (VM) image disks to S3 buckets in target Regions as part of your
regular image build process.

Tip

When you have multiple resources of the same type, tagging helps you to identify a specific
resource based on the tags you've assigned to it. For more information about tagging your
resources using Image Builder commands in the AWS CLI, see the Tag resources section of
this guide.

Distribution settings 404

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/share-amis-with-organizations-and-OUs.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateImage.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-image.html

EC2 Image Builder User Guide

Contents

• List and view distribution configuration detail

• Create and update AMI distribution configurations

• Create and update distribution settings for container images

• Set up cross-account AMI distribution with Image Builder

• Configure AMI distribution with an EC2 launch template

List and view distribution configuration detail

This section describes the various ways that you can find information and view details for your EC2
Image Builder distribution configuration.

Distribution configuration detail

• List distribution configurations from the console

• View distribution configuration details from the console

• List distributions from the AWS CLI

• Get distribution configuration detail from the AWS CLI

List distribution configurations from the console

To see a list of the distribution configurations created under your account in the Image Builder
console, follow these steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Distribution settings from the navigation pane. This shows a list of the distribution
configurations that are created under your account.

3. To view details or create new distribution configuration, choose the Configuration name link.
This opens the detail view for the distribution settings.

Note

You can also select the check box next to the Configuration name, then choose View
details.

List and view distribution configurations 405

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

View distribution configuration details from the console

To view details for a specific distribution configuration using the Image Builder console, select
the configuration to review, using the steps described in List distribution configurations from the
console.

On the distribution detail page, you can:

• Delete the distribution configuration. For more information about deleting resources in Image
Builder, see Delete outdated or unused Image Builder resources.

• Edit distribution details.

List distributions from the AWS CLI

The following example shows how to use the list-distribution-configurations command in the
AWS CLI to list all of your distributions.

aws imagebuilder list-distribution-configurations

Get distribution configuration detail from the AWS CLI

The following example shows how to use the get-distribution-configuration command in the
AWS CLI to get the details of a distribution configuration by specifying its Amazon Resource Name
(ARN).

aws imagebuilder get-distribution-configuration --distribution-configuration-arn
 arn:aws:imagebuilder:us-west-2:123456789012:distribution-configuration/my-example-
distribution-configuration

Create and update AMI distribution configurations

This section covers creating and updating distribution configurations for an Image Builder AMI.

Contents

• Prerequisites for SSM output parameters

• Create an AMI distribution configuration

• Update an AMI distribution configuration

Create and update AMI distribution 406

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/list-distribution-configurations.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/get-distribution-configuration.html

EC2 Image Builder User Guide

• Create distribution settings to enable EC2 Fast Launch for output AMIs

• Create distribution settings for output VM disks from the AWS CLI

Prerequisites for SSM output parameters

Before you create a new AMI distribution configuration that sets an AWS Systems Manager
Parameter Store parameter (SSM parameter), ensure that you've met the following prerequisites.

Execution role

When you create a pipeline or use the create-image command in the AWS CLI, you can only
specify one Image Builder execution role. If you have defined an Image Builder workflow
execution role, you would add any additional feature permissions to that role. Otherwise, you
would create a new custom role that includes the required permissions.

• To store the output AMI ID in an SSM parameter during distribution, you must specify the
ssm:PutParameter action in your Image Builder execution role, with the parameter listed as
a resource.

• When you set the parameter data type to AWS EC2 Image to signal Systems Manager to
validate the parameter value as an AMI ID, you must also add the ec2:DescribeImages
action.

Create an AMI distribution configuration

Distribution configurations include the output AMI name, specific Region settings for encryption,
launch permissions, and AWS accounts, organizations, and organizational units (OUs) that can
launch the output AMI, and license configurations.

A distribution configuration allows you to specify the name and description of your output AMI,
authorize other AWS accounts to launch the AMI, copy the AMI to other accounts, and replicate the
AMI to other AWS Regions. It also allows you to export the AMI to Amazon Simple Storage Service
(Amazon S3), or configure EC2 Fast Launch for output Windows AMIs. To make an AMI public, set
the launch permission authorized accounts to all. See the examples for making an AMI public at
EC2 ModifyImageAttribute.

Console

Follow these steps to create a new AMI distribution configuration in the AWS Management
Console:

Create and update AMI distribution 407

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_ModifyImageAttribute.html

EC2 Image Builder User Guide

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Distribution settings from the navigation pane. This shows a list of the distribution
configurations that are created under your account.

3. Choose Create distribution settings near the top of the Distribution settings panel.

4. In the Image type section, choose the Amazon Machine Image (AMI) output type.

5. In the General section, enter a Name for your distribution configuration, and optional
description.

6. In the Region settings section, enter the following details for each Region where you are
distributing your AMI:

a. The AMI is distributed to the current Region (Region 1), by default. Region 1 is the
source for the distribution. Some settings for Region 1 are not open for editing. For
any Regions that you add, you can choose a Region from the Region dropdown list.

The Kms key identifies the AWS KMS key that's used to encrypt the EBS volumes for
your image in the target Region. It's important to note that this doesn't apply for the
original AMI that the build creates under your account in the source Region (Region 1).
Encryption that runs during the distribution phase of the build is only for images that
are distributed to other accounts or Regions.

To encrypt the EBS volumes for the AMI that's created in the source Region for your
account, you must set the KMS key in the image recipe block device mapping (Storage
(volumes) in the console).

Image Builder copies the AMI to the Target accounts that you specify for the Region.

Prerequisite

To copy an image across accounts, you must create the
EC2ImageBuilderDistributionCrossAccountRole
role in all of the distribution target accounts, and attach the
Ec2ImageBuilderCrossAccountDistributionAccess policy managed policy to the
role.

The Output AMI name is optional. If you provide a name, the final output AMI name
includes an appended timestamp of when the AMI is built. If you do not specify a

Create and update AMI distribution 408

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

name, Image Builder appends the build timestamp to the recipe name. This ensures
unique AMI names for each build.

i. With AMI sharing, you can grant access for specified AWS Principals to launch
instances from your AMI. If you expand the AMI sharing section, you can enter the
following details:

• Launch permissions – Select Private if you want to keep your AMI private, and
allow access for specific AWS Principals to launch an instance from your private
AMI. Select Public if you want to make your AMI public. Any AWS Principal can
launch an instance from your public AMI.

• Principals – You can grant access for the following types of AWS Principals to
launch instances:

• AWS account – Grant access to a specific AWS account

• Organizational unit (OU) – Grant access to an OU, and all of its child entities.
Child entities include OUs and AWS accounts.

• Organization – Grant access to your AWS Organizations, and all of its child
entities. Child entities include OUs and AWS accounts.

First, select the Principal type. Then enter the ID for the AWS Principal to
which you want to grant access in the box to the right of the drop-down list.
You can enter multiple IDs of different types.

ii. You can expand the License configuration section to attach license configurations
created with AWS License Manager to your Image Builder images. License
configurations contain licensing rules based on the terms of your enterprise
agreements. Image Builder automatically includes license configurations that were
associated with your base AMI.

iii. You can expand the Launch template configuration section to specify an EC2
launch template to use for launching instances from the AMI you create.

If you are using an EC2 launch template, you can instruct Image Builder to create a
new version of your launch template that includes the latest AMI ID after the build
completes. To update the launch template, configure the settings as follows:

• Launch template name – Select the name of the launch template that you want
Image Builder to update.

Create and update AMI distribution 409

EC2 Image Builder User Guide

• Set the default version – Select this check box to update the launch template
default version to the new version.

To add another launch template configuration, choose Add launch template
configuration. You can have up to five launch template configurations per Region.

iv. You can expand the SSM parameter configurations section to configure an SSM
parameter that will store the output AMI ID for the image that's distributed to the
destination Region. You can optionally specify a distribution account in the Region.

Parameter name – Enter the name for your parameter. For example /output/
image/param.

Data type – Keep the default value (AWS EC2 Image). This tells Systems Manager
to validate the parameter value to ensure that it's a valid AMI ID.

b. To add distribution settings for another Region, choose Add Region.

7. Choose Create settings when you are done.

AWS CLI

The following example shows how to use the create-distribution-configuration command to
create a new distribution configuration for your AMI, using the AWS CLI.

1. Create a CLI input JSON file

Use a file-editing tool to create a JSON file with keys shown in one of the following
examples, and values that are valid for your environment. These examples define which
AWS accounts, AWS Organizations or organizational units (OUs) have permission to
launch the AMI you distribute to the specified Regions. Name the file create-ami-
distribution-configuration.json, for use in the next step:

Example 1: Distribute to AWS accounts

This example distributes an AMI to two Regions, and specifies AWS accounts that have
launch permissions in each Region.

{
 "name": "MyExampleAccountDistribution",

Create and update AMI distribution 410

EC2 Image Builder User Guide

 "description": "Copies AMI to eu-west-1, and specifies accounts that can launch
 instances in each Region.",
 "distributions": [
 {
 "region": "us-west-2",
 "amiDistributionConfiguration": {
 "name": "Name {{imagebuilder:buildDate}}",
 "description": "An example image name with parameter references",
 "amiTags": {
 "KeyName": "Some Value"
 },
 "launchPermission": {
 "userIds": [
 "987654321012"
]
 }
 }
 },
 {
 "region": "eu-west-1",
 "amiDistributionConfiguration": {
 "name": "My {{imagebuilder:buildVersion}} image {{imagebuilder:buildDate}}",
 "amiTags": {
 "KeyName": "Some value"
 },
 "launchPermission": {
 "userIds": [
 "100000000001"
]
 }
 }
 }
]
}

Example 2: Distribute to Organizations and OUs

This example distributes an AMI to the source Region, and specifies organization and OU
launch permissions.

{
 "name": "MyExampleAWSOrganizationDistribution",
 "description": "Shares AMI with the Organization and OU",

Create and update AMI distribution 411

EC2 Image Builder User Guide

 "distributions": [
 {
 "region": "us-west-2",
 "amiDistributionConfiguration": {
 "name": "Name {{ imagebuilder:buildDate }}",
 "launchPermission": {
 "organizationArns": [
 "arn:aws:organizations::123456789012:organization/o-myorganization123"
],
 "organizationalUnitArns": [
 "arn:aws:organizations::123456789012:ou/o-123example/ou-1234-
myorganizationalunit"
]
 }
 }
 }
]
}

Example 3: Store the output AMI ID in an SSM parameter

This example stores the output AMI ID in an AWS Systems Manager Parameter Store
parameter in the distribution Region.

{
 "name": "SSMParameterOutputAMI",
 "description": "Updates an SSM parameter with the output AMI ID for the
 distribution.",
 "distributions": [
 {
 "region": "us-west-2",
 "amiDistributionConfiguration": {
 "name": "Name {{ imagebuilder:buildDate }}"
 },
 "ssmParameterConfigurations": [
 {
 "amiAccountId": "111122223333",
 "parameterName": "/output/image/param",
 "dataType": "aws:ec2:image"
 }
]
 }
]

Create and update AMI distribution 412

EC2 Image Builder User Guide

}

2. Run the following command, using the file you created as input.

aws imagebuilder create-distribution-configuration --cli-input-json
 file://create-ami-distribution-configuration.json

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use
the forward slash (/).

For more detailed information, see create-distribution-configuration in the AWS CLI
Command Reference.

Update an AMI distribution configuration

You can change your AMI distribution configuration. However, the changes you make do not apply
to any resources that Image Builder has already distributed. For example, if you have distributed an
AMI to a Region that you later remove from your distribution, the AMI that was already distributed
remains in that Region until you remove it manually.

AWS Management Console

Follow these steps to an AMI distribution configuration in the AWS Management Console:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Distribution settings from the navigation pane. This shows a list of the distribution
configurations that are created under your account.

3. To view details or update a distribution configuration, choose the Configuration name link.
This opens the detail view for the distribution settings.

Create and update AMI distribution 413

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-distribution-configuration.html
https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

Note

You can also select the check box next to the Configuration name, then choose
View details.

4. To edit distribution configuration, choose Edit from the upper right corner of the
Distribution details section. Some fields are locked, such as the Name of the distribution
configuration, and the default Region that is displayed as Region 1. For more information
about the distribution configuration settings, see Create an AMI distribution configuration.

5. Choose Save changes when you are done.

AWS CLI

The following example shows how to use the update-distribution-configuration command to
update distribution settings for your AMI, using the AWS CLI.

1. Create a CLI input JSON file

Use a file-editing tool to create a JSON file with the keys shown in the following example,
and values that are valid for your environment. This example uses a file named update-
ami-distribution-configuration.json.

{
 "distributionConfigurationArn": "arn:aws:imagebuilder:us-
west-2:123456789012:distribution-configuration/update-ami-distribution-
configuration.json",
 "description": "Copies AMI to eu-west-2, and specifies accounts that can launch
 instances in each Region.",
 "distributions": [
 {
 "region": "us-west-2",
 "amiDistributionConfiguration": {
 "name": "Name {{imagebuilder:buildDate}}",
 "description": "An example image name with parameter references",
 "launchPermissions": {
 "userIds": [
 "987654321012"
]
 }

Create and update AMI distribution 414

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/update-distribution-configuration.html

EC2 Image Builder User Guide

 }
 },
 {
 "region": "eu-west-2",
 "amiDistributionConfiguration": {
 "name": "My {{imagebuilder:buildVersion}} image {{imagebuilder:buildDate}}",
 "tags": {
 "KeyName": "Some value"
 },
 "launchPermissions": {
 "userIds": [
 "100000000001"
]
 }
 }
 }
]
}

2. Run the following command, using the file you created as input.

aws imagebuilder update-distribution-configuration --cli-input-json
 file://update-ami-distribution-configuration.json

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use
the forward slash (/).

For more detailed information, see update-distribution-configuration in the AWS CLI
Command Reference. To update tags for your distribution configuration resource, see the
Tag resources section.

Create and update AMI distribution 415

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/update-distribution-configuration.html

EC2 Image Builder User Guide

Create distribution settings to enable EC2 Fast Launch for output AMIs

The following example shows how to use the create-distribution-configuration command to
create distribution settings that have EC2 Fast Launch configured for your AMI, from the AWS CLI.

Note

Image Builder doesn't support cross-account distribution for AMIs with EC2 Fast Launch
pre-enabled. EC2 Fast Launch must be enabled from the destination account.

1. Create a CLI input JSON file

Use a file editing tool to create a JSON file with keys as shown in the following example, plus
values that are valid for your environment.

This example launches instances for all of its target resources simultaneously, because the
maximum number of parallel launches is greater than the target resource count. This file is
named ami-dist-config-win-fast-launch.json in the command example shown in the
next step.

{
"name": "WinFastLaunchDistribution",
"description": "An example of Windows AMI EC2 Fast Launch settings in the
 distribution configuration.",
"distributions": [
 {
 "region": "us-west-2",
 "amiDistributionConfiguration": {
 "name": "Name {{imagebuilder:buildDate}}",
 "description": "Includes Windows AMI EC2 Fast Launch settings.",
 "amiTags": {
 "KeyName": "Some Value"
 }
 },
 "fastLaunchConfigurations": [{
 "enabled": true,
 "snapshotConfiguration": {
 "targetResourceCount": 5
 },
 "maxParallelLaunches": 6,
 "launchTemplate": {

Create and update AMI distribution 416

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-distribution-configuration.html

EC2 Image Builder User Guide

 "launchTemplateId": "lt-0ab1234c56d789012",
 "launchTemplateVersion": "1"
 }
 }],
 "launchTemplateConfigurations": [{
 "launchTemplateId": "lt-0ab1234c56d789012",
 "setDefaultVersion": true
 }]
 }]
}

Note

You can specify the launchTemplateName instead of the launchTemplateId in the
launchTemplate section, but you can't specify both the name and Id.

2. Run the following command, using the file you created as input.

aws imagebuilder create-distribution-configuration --cli-input-json file://ami-
dist-config-win-fast-launch.json

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use the
forward slash (/).

For more detailed information, see create-distribution-configuration in the AWS CLI
Command Reference.

Create distribution settings for output VM disks from the AWS CLI

The following example shows how to use the create-distribution-configuration command to
create distribution settings that will export VM image disks to Amazon S3 with every image build.

Create and update AMI distribution 417

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-distribution-configuration.html

EC2 Image Builder User Guide

1. Create a CLI input JSON file

You can streamline the create-distribution-configuration command that you use in the AWS
CLI. To do this, create a JSON file that contains all of the export configuration that you want to
pass into the command.

Note

The naming convention for the data values in the JSON file follows the pattern that
is specified for the Image Builder API operation request parameters. To review the API
operation request parameters, see the CreateDistributionConfiguration command in
the EC2 Image Builder API Reference.
To provide the data values as command line parameters, refer to the parameter names
specified in the AWS CLI Command Reference. to the create-distribution-configuration
command as options.

Here is a summary of the parameters that we specify in the s3ExportConfiguration JSON
object for this example:

• roleName (string, required) – The name of the role that grants VM Import/Export permission
to export images to your S3 bucket.

• diskImageFormat (string, required) – Export the updated disk image to one of the following
supported formats:

• Virtual Hard Disk (VHD) – Compatible with Citrix Xen and Microsoft Hyper-V
virtualization products.

• Stream-optimized ESX Virtual Machine Disk (VMDK) – Compatible with VMware ESX and
VMware vSphere versions 4, 5, and 6.

• Raw – Raw format.

• s3Bucket (string, required) – The S3 bucket in which to store the output disk images for your
VM.

Save the file as export-vm-disks.json. Use the file name in the create-distribution-
configuration command.

{

Create and update AMI distribution 418

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateDistributionConfiguration.html

EC2 Image Builder User Guide

 "name": "example-distribution-configuration-with-vm-export",
 "description": "example",
 "distributions": [
 {
 "region": "us-west-2",
 "amiDistributionConfiguration": {
 "description": "example-with-vm-export"

 },
 "s3ExportConfiguration": {
 "roleName": "vmimport",
 "diskImageFormat": "RAW",
 "s3Bucket": "vm-bucket-export"
 }
 }],
 "clientToken": "abc123def4567ab"
}

2. Run the following command, using the file you created as input.

aws imagebuilder create-distribution-configuration --cli-input-json file://export-
vm-disks.json

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use the
forward slash (/).

For more detailed information, see create-distribution-configuration in the AWS CLI
Command Reference.

Create and update distribution settings for container images

This section covers creating and updating distribution settings for Image Builder container images.

Create and update container image distribution 419

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-distribution-configuration.html

EC2 Image Builder User Guide

Contents

• Create distribution settings for Image Builder container images from the AWS CLI

• Update distribution settings for your container image from the AWS CLI

Create distribution settings for Image Builder container images from the AWS CLI

A distribution configuration enables you to specify the name and description of your output
container image and replicate the container image to other AWS Regions. You can also apply
separate tags to the distribution configuration resource and to the container images within each
Region.

1. Create a CLI input JSON file

Use your favorite file-editing tool to create a JSON file with the keys shown in the following
example, plus values that are valid for your environment. This example uses a file named
create-container-distribution-configuration.json:

{
 "name": "distribution-configuration-name",
 "description": "Distributes container image to Amazon ECR repository in two
 regions.",
 "distributions": [
 {
 "region": "us-west-2",
 "containerDistributionConfiguration": {
 "description": "My test image.",
 "targetRepository": {
 "service": "ECR",
 "repositoryName": "testrepo"
 },
 "containerTags": ["west2", "image1"]
 }
 },
 {
 "region": "us-east-1",
 "containerDistributionConfiguration": {
 "description": "My test image.",
 "targetRepository": {
 "service": "ECR",
 "repositoryName": "testrepo"
 },

Create and update container image distribution 420

EC2 Image Builder User Guide

 "containerTags": ["east1", "imagedist"]
 }
 }
],
 "tags": {
 "DistributionConfigurationTestTagKey1":
 "DistributionConfigurationTestTagValue1",
 "DistributionConfigurationTestTagKey2":
 "DistributionConfigurationTestTagValue2"
 }
}

2. Run the following command, using the file you created as input.

aws imagebuilder create-distribution-configuration --cli-input-json file://create-
container-distribution-configuration.json

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use the
forward slash (/).

For more detailed information, see create-distribution-configuration in the AWS CLI
Command Reference.

Update distribution settings for your container image from the AWS CLI

The following example shows how to use the update-distribution-configuration command to
update distribution settings for your container image, using the AWS CLI. You can also update tags
for the container images within each Region.

Create and update container image distribution 421

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-distribution-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/update-distribution-configuration.html

EC2 Image Builder User Guide

1. Create a CLI input JSON file

Use your favorite file-editing tool to create a JSON file with keys shown in the following
example, plus values that are valid for your environment. This example uses a file named
update-container-distribution-configuration.json:

{
 "distributionConfigurationArn": "arn:aws:imagebuilder:us-
west-2:123456789012:distribution-configuration/update-container-distribution-
configuration.json",
 "description": "Distributes container image to Amazon ECR repository in two
 regions.",
 "distributions": [
 {
 "region": "us-west-2",
 "containerDistributionConfiguration": {
 "description": "My test image.",
 "targetRepository": {
 "service": "ECR",
 "repositoryName": "testrepo"
 },
 "containerTags": ["west2", "image1"]
 }
 },
 {
 "region": "us-east-2",
 "containerDistributionConfiguration": {
 "description": "My test image.",
 "targetRepository": {
 "service": "ECR",
 "repositoryName": "testrepo"
 },
 "containerTags": ["east2", "imagedist"]
 }
 }
]
}

2. Run the following command, using the file you created as input:

aws imagebuilder update-distribution-configuration --cli-input-json file://update-
container-distribution-configuration.json

Create and update container image distribution 422

EC2 Image Builder User Guide

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use the
forward slash (/).

For more detailed information, see update-distribution-configuration in the AWS CLI
Command Reference. To update tags for your distribution configuration resource, see the Tag
resources section.

Set up cross-account AMI distribution with Image Builder

This section describes how you can configure distribution settings to deliver an Image Builder AMI
to other accounts that you specify.

The destination account can then launch or modify the AMI, as needed.

Note

AWS CLI command examples in this section assume that you have previously created
image recipe and infrastructure configuration JSON files. To create the JSON file for an
image recipe, see Create an image recipe with the AWS CLI. To create the JSON file for an
infrastructure configuration, see Create an infrastructure configuration.

Prerequisites for cross-account AMI distribution

To ensure that target accounts can successfully launch instances from your Image Builder image,
you must configure the appropriate permissions for all destination accounts in all Regions.

If you encrypt your AMI using AWS Key Management Service (AWS KMS), you must configure an
AWS KMS key for your account that is used to encrypt the new image.

Set up cross-account AMI distribution 423

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/update-distribution-configuration.html

EC2 Image Builder User Guide

When Image Builder performs cross-account distribution for encrypted AMIs, the image in the
source account is decrypted and pushed to the target Region, where it is re-encrypted using the
designated key for that Region. Because Image Builder acts on behalf of the target account, and
uses an IAM role that you create in the destination Region, that account must have access to keys in
both the source and destination Regions.

Encryption keys

The following prerequisites are required if your image is encrypted using AWS KMS. IAM
prerequisites are covered in the next section.

Source account requirements

• Create a KMS key in your account in all Regions where you build and distribute your AMI. You can
also use an existing key.

• Update the key policy for all of those keys to allow destination accounts to use your key.

Destination account requirements

• Add an inline policy to EC2ImageBuilderDistributionCrossAccountRole that allows the
role to perform the required actions to distribute an encrypted AMI. For IAM configuration steps,
see the IAM policies prerequisites section.

For more information about cross-account access using AWS KMS, see Allowing users in other
accounts to use a KMS key in the AWS Key Management Service Developer Guide.

Specify your encryption key in the image recipe, as follows:

• If you are using the Image Builder console, choose your encryption key from the Encryption
(KMS alias) dropdown list in the Storage (volumes) section of your recipe.

• If you are using the CreateImageRecipe API action, or the create-image-recipe command in the
AWS CLI, configure your key in the ebs section under blockDeviceMappings in your JSON
input.

The following JSON snippet shows encryption settings for an image recipe. In addition to
providing your encryption key, you must also set the encrypted flag to true.

{
 ...

Set up cross-account AMI distribution 424

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying-external-accounts.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying-external-accounts.html

EC2 Image Builder User Guide

 "blockDeviceMappings": [
 {
 "deviceName": "Example root volume",
 "ebs": {
 "deleteOnTermination": true,
 "encrypted": true,
 "iops": 100,
 "kmsKeyId": "image-owner-key-id",
 ...
 },
 ...
 }],
 ...
}

IAM policies

To configure cross-account distribution permissions in AWS Identity and Access Management (IAM),
follow these steps:

1. To use Image Builder AMIs that are distributed across accounts, the
destination account owner must create a new IAM role in their account called
EC2ImageBuilderDistributionCrossAccountRole.

2. They must attach the Ec2ImageBuilderCrossAccountDistributionAccess policy to the role to
enable cross-account distribution. For more information about managed policies, see Managed
Policies and Inline Policies in the AWS Identity and Access Management User Guide.

3. Verify that the source account ID is added to the trust policy attached to the IAM role of the
destination account. The following example shows a trust policy in the destination account
that specifies the account ID from the source account.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::444455556666:root"
 },
 "Action": "sts:AssumeRole"
 }]
}

Set up cross-account AMI distribution 425

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

EC2 Image Builder User Guide

For more information about trust policies, see Resource-Based Policies in the AWS Identity and
Access Management User Guide.

4. If the AMI you distribute is encrypted, the destination account owner must add the following
inline policy to the EC2ImageBuilderDistributionCrossAccountRole in their account
so that they can use your KMS keys. The Principal section contains their account number.
This enables Image Builder to act on their behalf when it uses AWS KMS to encrypt and
decrypt the AMI with the appropriate keys for each Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowRoleToPerformKMSOperationsOnBehalfOfTheDestinationAccount",
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey",
 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:RevokeGrant"
],
 "Resource": "*"
 }
]
}

For more information about inline policies, see Inline Policies in the AWS Identity and Access
Management User Guide.

5. If you are using launchTemplateConfigurations to specify an Amazon
EC2 launch template, you must also add the following policy to your
EC2ImageBuilderDistributionCrossAccountRole in each destination account.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Set up cross-account AMI distribution 426

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_resource-based
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#inline-policies

EC2 Image Builder User Guide

 "Effect": "Allow",
 "Action": [
 "ec2:CreateLaunchTemplateVersion",
 "ec2:ModifyLaunchTemplate"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/CreatedBy": "EC2 Image Builder"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeLaunchTemplates"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Resource": "arn:aws:ec2:*:*:launch-template/*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/CreatedBy": "EC2 Image Builder"
 }
 }
 }
]
}

6. If you use an AWS Systems Manager Parameter Store parameter to store the AMI ID of the
output AMI for the distribution account and Region, you must add the following policy to your
EC2ImageBuilderDistributionCrossAccountRole in each destination account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Set up cross-account AMI distribution 427

EC2 Image Builder User Guide

 "Action": [
 "ssm:PutParameter"
],
 "Resource": "arn:aws:ssm:*:111122223333:parameter/ImageBuilder-*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeImages"
],
 "Resource": "*"
 }
]
}

Limits for cross-account distribution

There are some limitations when distributing Image Builder images across accounts:

• The destination account is limited to 50 concurrent AMI copies for each destination Region.

• If you want to copy a paravirtual (PV) virtualization AMI to another Region, the destination
Region must support PV virtualization AMIs. For more information, see Linux AMI virtualization
types.

• You cannot create an unencrypted copy of an encrypted snapshot. If you don't specify an AWS
Key Management Service (AWS KMS) customer managed key for the KmsKeyId parameter,
Image Builder uses the default key for Amazon Elastic Block Store (Amazon EBS). For more
information, see Amazon EBS Encryption in the Amazon Elastic Compute Cloud User Guide.

For more information, see CreateDistributionConfiguration in the EC2 Image Builder API Reference.

Configure cross-account distribution for an Image Builder AMI from the console

This section describes how to create and configure distribution settings for cross-account
distribution of your Image Builder AMIs using the AWS Management Console. Configuring cross-
account distribution requires specific IAM permissions. You must complete the Prerequisites for
cross-account AMI distribution for this section before you continue.

To create distribution settings in the Image Builder console, follow these steps:

Set up cross-account AMI distribution 428

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/virtualization_types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/virtualization_types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateDistributionConfiguration.html

EC2 Image Builder User Guide

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Distribution settings from the navigation pane. This shows a list of the distribution
settings that are created under your account.

3. At the top of the Distribution settings page, choose Create distribution settings. This takes
you to the Create distribution settings page.

4. In the Image type section, choose Amazon Machine Image (AMI) as the Output type. This is
the default setting.

5. In the General section, enter the Name of the distribution settings resource that you want to
create (required).

6. In the Region settings section, enter a 12-digit account ID that you want to distribute your
AMI to in Target accounts for the selected Region, and press Enter. This checks for the correct
formatting, and then displays the account ID that you entered below the box. Repeat the
process to add more accounts.

To remove an account that you entered, choose the X displayed to the right of the account ID.

Enter the Output AMI name for each Region.

7. Continue specifying any additional settings that you require, and choose Create settings to
create your new distribution settings resource.

Configure cross-account distribution for an Image Builder AMI from the AWS CLI

This section describes how to configure a distribution settings file and use the create-image
command in the AWS CLI to build and distribute an Image Builder AMI across accounts.

Configuring cross-account distribution requires specific IAM permissions. You must complete the
Prerequisites for cross-account AMI distribution for this section before you run the create-image
command.

1. Configure a distribution settings file

Before you use the create-image command in the AWS CLI to create an Image Builder AMI that
is distributed to another account, you must create a DistributionConfiguration JSON
structure that specifies the target account IDs in the AmiDistributionConfiguration
settings. You must specify at least one AmiDistributionConfiguration in the source
Region.

Set up cross-account AMI distribution 429

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

The following sample file, named create-distribution-configuration.json, shows
configuration for cross-account image distribution in the source Region.

{
 "name": "cross-account-distribution-example",
 "description": "Cross Account Distribution Configuration Example",
 "distributions": [
 {
 "amiDistributionConfiguration": {
 "targetAccountIds": ["123456789012", "987654321098"],
 "name": "Name {{ imagebuilder:buildDate }}",
 "description": "ImageCopy Ami Copy Configuration"
 },
 "region": "us-west-2"
 }
]
}

2. Create the distribution settings

To create an Image Builder distribution settings resource using the create-distribution-
configuration command in the AWS CLI, provide the following parameters in the command:

• Enter the name of the distribution in the --name parameter.

• Attach the distribution configuration JSON file you created in the --cli-input-json
parameter.

aws imagebuilder create-distribution-configuration --name my distribution name --
cli-input-json file://create-distribution-configuration.json

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use the
forward slash (/).

Set up cross-account AMI distribution 430

https://docs.aws.amazon.com/cli/latest/reference/imagebuilder/create-distribution-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/imagebuilder/create-distribution-configuration.html

EC2 Image Builder User Guide

You can also provide JSON directly in the command, using the --distributions parameter.

Configure AMI distribution with an EC2 launch template

To help ensure a consistent launch experience for your Image Builder AMI in target accounts and
Regions, you can specify an Amazon EC2 launch template in your distribution settings, using
launchTemplateConfigurations. When launchTemplateConfigurations are present
during the distribution process, Image Builder creates a new version of the launch template that
includes all of the original settings from the template, and the new AMI ID from the build. For more
information about launching an EC2 instance using a launch template, see one of the following
links, depending on your target operating system.

• Launch a Linux instance from a launch template

• Launch a Windows instance from a launch template

Note

When you include a launch template to enable Windows Fast Launch in your image, the
launch template must include the following tag so that Image Builder can enable Windows
Fast Launch on your behalf.
CreatedBy: EC2 Image Builder

Add an EC2 launch template to AMI distribution settings from the console

To provide a launch template with your output AMI, follow these steps in the console:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Distribution settings from the navigation pane. This shows a list of the distribution
settings that are created under your account.

3. At the top of the Distribution settings page, choose Create distribution settings. This opens
the Create distribution settings page.

4. In the Image type section, choose the Amazon Machine Image (AMI) Output type. This is the
default setting.

5. In the General section, enter the Name of the distribution settings resource that you want to
create (required).

Specify an AMI launch template 431

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-templates.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-templates.html
https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

6. In the Region settings section, select the name of an EC2 launch template from the list. If
there are no launch templates in your account, choose Create new launch template, which
opens the Launch Templates in the EC2 Dashboard.

Select the Set the default version check box to update the launch template default version to
the new version that Image Builder creates with your output AMI.

To add another launch template to the selected Region, choose Add launch template
configuration.

To remove a launch template, choose Remove.

7. Continue specifying any additional settings that you require, and choose Create settings to
create your new distribution settings resource.

Add an EC2 launch template to AMI distribution settings from the AWS CLI

This section describes how to configure a distribution settings file with a launch template, and use
the create-image command in the AWS CLI to build and distribute an Image Builder AMI and a new
version of the launch template that uses it.

1. Configure a distribution settings file

Before you can create an Image Builder AMI with a launch template, using the AWS
CLI, you must create a distribution configuration JSON structure that specifies
the launchTemplateConfigurations settings. You must specify at least one
launchTemplateConfigurations entry in the source Region.

The following sample file, named create-distribution-config-launch-
template.json, shows a few possible scenarios for launch template configuration in the
source Region.

{
 "name": "NewDistributionConfiguration",
 "description": "This is just a test",
 "distributions": [
 {
 "region": "us-west-2",
 "amiDistributionConfiguration": {
 "name": "test-{{imagebuilder:buildDate}}-
{{imagebuilder:buildVersion}}",

Specify an AMI launch template 432

EC2 Image Builder User Guide

 "description": "description"
 },
 "launchTemplateConfigurations": [
 {
 "launchTemplateId": "lt-0a1bcde2fgh34567",
 "accountId": "935302948087",
 "setDefaultVersion": true
 },
 {
 "launchTemplateId": "lt-0aaa1bcde2ff3456"
 },
 {
 "launchTemplateId": "lt-12345678901234567",
 "accountId": "123456789012"
 }
]
 }
],
 "clientToken": "clientToken1"
}

2. Create the distribution settings

To create an Image Builder distribution settings resource using the create-distribution-
configuration command in the AWS CLI, provide the following parameters in the command:

• Enter the name of the distribution in the --name parameter.

• Attach the distribution configuration JSON file you created in the --cli-input-json
parameter.

aws imagebuilder create-distribution-configuration --name my distribution name--
cli-input-json file://create-distribution-config-launch-template.json

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows

Specify an AMI launch template 433

https://docs.aws.amazon.com/cli/latest/reference/imagebuilder/create-distribution-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/imagebuilder/create-distribution-configuration.html

EC2 Image Builder User Guide

uses the backslash (\) to refer to the directory path, while Linux and macOS use the
forward slash (/).

You can also provide JSON directly in the command, using the --distributions parameter.

Specify an AMI launch template 434

EC2 Image Builder User Guide

Share Image Builder resources with AWS RAM

EC2 Image Builder integrates with AWS Resource Access Manager (AWS RAM) so that you can
share the following types of Image Builder resources with any AWS account or through AWS
Organizations.

• Components

• Images

• Recipes

To share resources through AWS RAM, you must create a resource share. A resource share specifies
the resources to share and the consumers with whom to share them. Consumers can be individual
AWS accounts, organizational units, or an entire organization in AWS Organizations. The following
list includes the types of accounts and organizations that you can share with.

• Specific AWS accounts inside or outside of its organization in AWS Organizations.

• An organizational unit (OU) inside of its organization in AWS Organizations.

• Its entire organization in AWS Organizations.

• AWS Organizations or OUs outside of its organization.

In this model, the AWS account that owns the resource (owner) shares it with other AWS accounts
or through AWS Organizations (consumers) within the same Region. When a shared resource is
updated, consumers get those updates automatically.

Note

Shared components, images, and image recipes count toward the corresponding resource
limits of the owner only. The resource limits of the consumers are not affected by the
resources that are shared with them.

Topics

• Resource owners

• Resource consumers

• Create an AWS RAM resource share for your Image Builder resources

435

EC2 Image Builder User Guide

• Unshare an Image Builder resource from AWS RAM

Resource owners

Image Builder resources can only be shared in the AWS Region where they are created. When you
share these resources, they will not replicate across Regions.

To get a list of the Image Builder resources that you own and can share, specify the ownership filter
in the console or when you run the command in the AWS CLI.

• List Image Builder components

• List images

• List and view image recipe details

• List and view container recipe details

For more information about AWS RAM, see the AWS RAM User Guide.

Prerequisites for sharing Image Builder resources

To share an Image Builder resource, such as a component, image, or recipe:

• Your AWS account must own the Image Builder resource that you want to share. You cannot
share resources that have been shared with you.

• The AWS Key Management Service (AWS KMS) key associated with encrypted resources must be
explicitly shared with the target accounts, organizations, or OUs.

• In order to share your Image Builder resources with AWS Organizations and OUs using AWS RAM,
you must enable sharing. For more information, see Enable Sharing with AWS Organizations in
the AWS RAM User Guide.

• If you distribute an image encrypted with AWS KMS across accounts in different Regions, you
must create a KMS key and alias in each target Region. Additionally, the people who will be
launching instances in those Regions will need access to the KMS key specified via the Key Policy.

The following resources that Image Builder creates from your pipeline build are not considered
Image Builder resources – rather, they are external resources that Image Builder distributes in your
account, and to the AWS Regions, accounts, and organizations or organizational units (OUs) that
you specify in your distribution configuration.

Resource owners 436

https://docs.aws.amazon.com/ram/latest/userguide/what-is.html
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-sharing.html

EC2 Image Builder User Guide

• Amazon Machine Images (AMIs)

• Container images that reside in Amazon ECR

For more information about distribution settings for your AMI, see Create and update AMI
distribution configurations. For more information about distribution settings for your container
image in Amazon ECR, see Create and update distribution settings for container images.

For more information about sharing your AMI with AWS Organizations and OUs, see Share an AMI
with organizations or OUs.

Resource consumers

Consumers can use a shared resource, but cannot modify it in any way. When they create Image
Builder recipes, they can specify a shared image as the base image, and they can add shared
components. They can also specify a shared recipe when they create an Image Builder image
pipeline, or when they use the create-image command in the AWS CLI.

If you belong to an organization in AWS Organizations, and sharing within your organization is
enabled, consumers in your organization are automatically granted access to the shared resource.
Otherwise, consumers receive an invitation to join the resource share and are granted access to the
shared resource after accepting the invitation.

Create an AWS RAM resource share for your Image Builder
resources

To share an Image Builder component, image, or recipe, you must add it to an AWS Resource Access
Manager resource share. The resource share specifies the resources to share and the consumers
with whom they are shared.

The following options are available for sharing your resources.

Option 1: Create a RAM resource share

When you create a RAM resource share, you can share a component, image, or recipe that you own
in a single step. Use one of the following methods to create your resource share:

• Console

Resource consumers 437

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/share-amis-with-organizations-and-OUs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/share-amis-with-organizations-and-OUs.html

EC2 Image Builder User Guide

To create your resource share using the AWS RAM console, see Share AWS resources owned by
you in the AWS RAM User Guide.

• AWS CLI

To create your resource share using the AWS RAM command line interface, run the create-
resource-share command in the AWS CLI.

Option 2: Apply a resource policy and promote to an existing resource
share

The second option for sharing your resources involves two steps, running commands in the AWS
CLI for both. The first step uses Image Builder commands in the AWS CLI to apply resource-based
policies to the shared resource. The second step promotes the resource to a RAM resource share
using the promote-resource-share-created-from-policy AWS RAM command in the AWS CLI to
ensure that the resource is visible to all principals with whom you've shared it.

1. Apply the resource policy

To successfully apply the resource policy, you must ensure that the account with which you are
sharing has permission to access any underlying resources.

Choose the tab that matches your resource type for the applicable command.

Image

You can apply a resource policy to an image, to allow others to use it as the base image in
their recipes.

Run the put-image-policy Image Builder command in the AWS CLI, to identify the AWS
principals to share the image with.

aws imagebuilder put-image-policy --image-arn arn:aws:imagebuilder:us-
west-2:123456789012:image/my-example-image/2019.12.03/1 --policy
 '{ "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal":
 { "AWS": ["123456789012"] }, "Action": ["imagebuilder:GetImage",
 "imagebuilder:ListImages"], "Resource": ["arn:aws:imagebuilder:us-
west-2:123456789012:image/my-example-image/2019.12.03/1"] }] }'

Option 2: Apply a resource policy and promote to an existing resource share 438

https://docs.aws.amazon.com/ram/latest/userguide/working-with-sharing.html#working-with-sharing-create
https://docs.aws.amazon.com/ram/latest/userguide/working-with-sharing.html#working-with-sharing-create
https://docs.aws.amazon.com/cli/latest/reference/ram/create-resource-share.html
https://docs.aws.amazon.com/cli/latest/reference/ram/create-resource-share.html
https://docs.aws.amazon.com/cli/latest/reference/ram/promote-resource-share-created-from-policy.html
https://docs.aws.amazon.com/cli/latest/reference//imagebuilder/put-image-policy.html

EC2 Image Builder User Guide

Component

You can apply a resource policy to a build or test component to enable cross-account
sharing. This command gives other accounts permission to use your component in their
recipes. To successfully apply the resource policy, you must ensure that the account with
which you are sharing has permission to access any resources referenced by the shared
component, such as files hosted on private repositories.

Run the put-component-policy Image Builder command in the AWS CLI, to identify the
AWS principals to share the component with.

aws imagebuilder put-component-policy --component-arn arn:aws:imagebuilder:us-
west-2:123456789012:component/my-example-component/2019.12.03/1 --policy
 '{ "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal":
 { "AWS": ["123456789012"] }, "Action": ["imagebuilder:GetComponent",
 "imagebuilder:ListComponents"], "Resource": ["arn:aws:imagebuilder:us-
west-2:123456789012:component/my-example-component/2019.12.03/1"] }] }'

Image recipe

You can apply a resource policy to an image recipe to enable cross-account sharing. This
command gives other accounts permission to use your recipe to create images in their
accounts. To successfully apply the resource policy, you must ensure that the account with
which you are sharing has permission to access any resources that the recipe references,
such as the base image, or selected components.

Run the put-image-recipe-policy Image Builder command in the AWS CLI, to identify the
AWS principals to share the image with.

aws imagebuilder put-image-recipe-policy --image-recipe-arn
 arn:aws:imagebuilder:us-west-2:123456789012:image-recipe/my-example-
image-recipe/2019.12.03 --policy '{ "Version": "2012-10-17", "Statement":
 [{ "Effect": "Allow", "Principal": { "AWS": ["123456789012"] }, "Action":
 ["imagebuilder:GetImageRecipe", "imagebuilder:ListImageRecipes"], "Resource":
 ["arn:aws:imagebuilder:us-west-2:123456789012:image-recipe/my-example-image-
recipe/2019.12.03"] }] }'

Option 2: Apply a resource policy and promote to an existing resource share 439

https://docs.aws.amazon.com/cli/latest/reference//imagebuilder/put-component-policy.html
https://docs.aws.amazon.com/cli/latest/reference//imagebuilder/put-image-recipe-policy.html

EC2 Image Builder User Guide

Container recipe

You can apply a resource policy to a container recipe to enable cross-account sharing. This
command gives other accounts permission to use your recipe to create images in their
accounts. To successfully apply the resource policy, you must ensure that the account with
which you are sharing has permission to access any resources that the recipe references,
such as the base image, or selected components.

Run the put-container-recipe-policy Image Builder command in the AWS CLI, to identify
the AWS principals to share the image with.

aws imagebuilder put-container-recipe-policy --container-recipe-arn
 arn:aws:imagebuilder:us-west-2:123456789012:container-recipe/my-example-
container-recipe/2021.12.03 --policy '{ "Version": "2012-10-17", "Statement":
 [{ "Effect": "Allow", "Principal": { "AWS": ["123456789012"] }, "Action":
 ["imagebuilder:GetContainerRecipe", "imagebuilder:ListContainerRecipes"],
 "Resource": ["arn:aws:imagebuilder:us-west-2:123456789012:container-recipe/my-
example-container-recipe/2021.12.03"] }] }'

Note

To set the correct policies for sharing and unsharing a resource, the resource owner
must have imagebuilder:put* permissions.

2. Promote as a RAM resource share

To ensure that the resource is visible to all principals with whom you've shared it, run the
promote-resource-share-created-from-policy AWS RAM command in the AWS CLI.

Unshare an Image Builder resource from AWS RAM

To unshare an Image Builder resource that you own, such as a shared component, image, or recipe,
you must remove it from the AWS Resource Access Manager resource share. You can do this using
the AWS RAM console or the AWS CLI.

Unshare a resource 440

https://docs.aws.amazon.com/cli/latest/reference//imagebuilder/put-container-recipe-policy.html
https://docs.aws.amazon.com/cli/latest/reference/ram/promote-resource-share-created-from-policy.html

EC2 Image Builder User Guide

Note

Owners cannot delete a shared resource until it is no longer shared. An owner cannot
unshare these resources until none of the consumers depend on them.

To unshare a shared component, image, or recipe that you own using the AWS Resource Access
Manager console

See Updating a Resource Share in the AWS RAM User Guide.

To unshare a shared component, image, or recipe that you own using the AWS CLI

Use the disassociate-resource-share command to stop sharing the resource.

Unshare a resource 441

https://docs.aws.amazon.com/ram/latest/userguide/working-with-sharing.html#working-with-sharing-update
https://docs.aws.amazon.com/cli/latest/reference/ram/disassociate-resource-share.html

EC2 Image Builder User Guide

Tag Image Builder output resources

Tagging your resources can be useful for filtering and tracking resource costs, or other categories.
You can also control access based on tags. For more information about tag-based authorization,
see Authorization based on Image Builder tags

Image Builder supports the following dynamic tags:

• - {{imagebuilder:buildDate}}

Resolves to the build date/time at build time.

• - {{imagebuilder:buildVersion}}

Resolves to a build version, which is a number that is located at the end of an Image
Builder Amazon Resource Name (ARN.) For example, "arn:aws:imagebuilder:us-
west-2:123456789012:component/myexample-component/2019.12.02/1" shows the
build version as 1.

To help you keep track of Amazon Machine Images (AMIs) that you've distributed, Image Builder
automatically adds the following tags to your output AMIs.

• "CreatedBy":"EC2 Image Builder"

• "Ec2ImageBuilderArn":"arn:aws:imagebuilder:us-
west-2:123456789012:image/simple-recipe-linux/1.0.0/10". This tag contains the
ARN of the Image Builder image resource that was used to create the AMI.

Contents

• Tag a resource from the AWS CLI

• Untag a resource from the AWS CLI

• List all of the tags for a specific resource from the AWS CLI

Tag a resource from the AWS CLI

The following example shows how to use an imagebuilder CLI command to to add and tag a
resource in EC2 Image Builder. You must provide the resourceArn and the tags to apply to it.

Tag a resource from the AWS CLI 442

EC2 Image Builder User Guide

The example tag-resource.json contents are as follows:

{
 "resourceArn": "arn:aws:imagebuilder:us-west-2:123456789012:image-pipeline/my-
example-pipeline",
 "tags": {
 "KeyName": "KeyValue"
 }
}

Run the following command, which references the preceding tag-resource.json file.

aws imagebuilder tag-resource --cli-input-json file://tag-resource.json

Untag a resource from the AWS CLI

The following example shows how to use an imagebuilder CLI command to remove a tag from a
resource. You must provide the resourceArn and the keys to remove the tag.

The example untag-resource.json contents are as follows:

{
 "resourceArn": "arn:aws:imagebuilder:us-west-2:123456789012:image-pipeline/my-
example-pipeline",
 "tagKeys": [
 "KeyName"
]
}

Run the following command, which references the preceding untag-resource.json file.

aws imagebuilder untag-resource --cli-input-json file://untag-resource.json

List all of the tags for a specific resource from the AWS CLI

The following example shows how to use an imagebuilder CLI command to list all the tags for a
specific resource.

Untag a resource from the AWS CLI 443

EC2 Image Builder User Guide

aws imagebuilder list-tags-for-resource --resource-arn arn:aws:imagebuilder:us-
west-2:123456789012:image-pipeline/my-example-pipeline

List all of the tags for a specific resource from the AWS CLI 444

EC2 Image Builder User Guide

Delete outdated or unused Image Builder resources

Your Image Builder environment, just like your home, needs regular maintenance to help you find
what you need, and complete your tasks without wading through clutter. Make sure to regularly
clean up temporary resources that you created for testing. Otherwise, you might forget about
those resources, and then later, not remember what they were used for. By then, it might not be
clear if you can safely get rid of them.

Deleting resources does not delete any Amazon EC2 AMIs or Amazon ECR container images that are
created during the image build process. You must clean those up separately, using the appropriate
Amazon EC2 or Amazon ECR console actions, or API or AWS CLI commands.

Tip

To prevent dependency errors when you delete resources, make sure to delete your
resources in the following order:

1. Image pipeline

2. Image recipe

3. All remaining resources

Delete resources from the AWS Management Console

To delete an image pipeline and its resources, follow these steps:

Delete the pipeline

1. To see a list of the build pipelines created under your account, choose Image pipelines from
the navigation pane.

2. Select the check box next to Pipeline name to select the pipeline that you want to delete.

3. At the top of the Image pipelines panel, on the Actions menu, choose Delete.

4. To confirm the deletion, enter Delete in the box, and choose Delete.

Console: Delete resources 445

EC2 Image Builder User Guide

Delete the recipe

1. To see a list of the recipes created under your account, choose Image recipes from the
navigation pane.

2. Select the check box next to Recipe name to select the recipe that you want to delete.

3. At the top of the Image recipes panel, on the Actions menu, choose Delete recipe.

4. To confirm the deletion, enter Delete in the box, and choose Delete.

Delete infrastructure configuration

1. To see a list of the infrastructure configurations created under your account, choose
Infrastructure configuration from the navigation pane.

2. Select the check box next to Configuration name to select the infrastructure configuration
that you want to delete.

3. At the top of the Infrastructure configurations panel, choose Delete.

4. To confirm the deletion, enter Delete in the box, and choose Delete.

Delete distribution settings

1. To see a list of the distribution settings created under your account, choose Distribution
settings from the navigation pane.

2. Select the check box next to Configuration name to select the distribution settings that you
created for this tutorial.

3. At the top of the Distribution settings panel, choose Delete.

4. To confirm the deletion, enter Delete in the box, and choose Delete.

Delete an image

1. To see a list of the images created under your account, choose Images from the navigation
pane.

2. Choose the image Version for the image that you want to remove. This opens the Image build
versions page.

3. Select the check box next to the Version for any image that you want to delete. You can select
more than one image version at a time.

Console: Delete resources 446

EC2 Image Builder User Guide

4. At the top of the Image build versions panel, choose Delete version.

5. To confirm the deletion, enter Delete in the box, and choose Delete.

Delete an image pipeline from the AWS CLI

The following examples show how to delete Image Builder resources using the AWS CLI. As
mentioned previously, resources must be deleted in the following order to avoid dependency
errors:

1. Image pipeline

2. Image recipe

3. All remaining resources

Delete image pipeline from the AWS CLI

The following example shows how to delete an image pipeline by specifying its ARN.

aws imagebuilder delete-image-pipeline --image-pipeline-arn arn:aws:imagebuilder:us-
west-2:123456789012:image-pipeline/my-example-pipeline

Delete image recipe from the AWS CLI

The following example shows how to delete an image recipe by specifying its ARN.

aws imagebuilder delete-image-recipe --image-recipe-arn arn:aws:imagebuilder:us-
west-2:123456789012:image-recipe/my-example-recipe/2019.12.03

Delete an infrastructure configuration

The following example shows how to delete an infrastructure configuration resource by specifying
its ARN.

aws imagebuilder delete-infrastructure-configuration --infrastructure-configuration-arn
 arn:aws:imagebuilder:us-west-2:123456789012:infrastructure-configuration/my-example-
infrastructure-configuration

Delete distribution settings

Delete resources (AWS CLI) 447

EC2 Image Builder User Guide

The following example shows how to delete a distribution settings resource by specifying its ARN.

aws imagebuilder delete-distribution-configuration --distribution-configuration-arn
 arn:aws:imagebuilder:us-west-2:123456789012:distribution-configuration/my-example-
distribution-configuration

Delete an image

The following example shows how to delete an image build version by specifying its ARN.

aws imagebuilder delete-image --image-build-version-arn arn:aws:imagebuilder:us-
west-2:123456789012:image/my-example-image/2019.12.02/1

Delete a component

The following example shows how to use an imagebuilder CLI command to delete a component
build version by specifying its ARN.

aws imagebuilder delete-component --component-build-version-arn
 arn:aws:imagebuilder:us-west-2:123456789012:component/my-example-
component/2019.12.02/1

Important

Make sure there are no recipes that reference the component build version in any way
before you delete it. Failing to do so could cause pipeline failures.

Delete resources (AWS CLI) 448

EC2 Image Builder User Guide

Manage build and test workflows for Image Builder
images

An image workflow defines the sequence of steps that EC2 Image Builder performs during the
build and test stages of the image creation process. This is part of the overall Image Builder
workflow framework.

Image workflow benefits

• With image workflows, you have more flexibility, visibility, and control over the image creation
process.

• You can add customized workflow steps when you define your workflow document, or you can
choose to use the Image Builder default workflow.

• You can exclude workflow steps that are included in default image workflows.

• You can create test-only workflows that skip the build process entirely. You can do the same to
create build-only workflows.

Note

You can't modify an existing workflow, but you can clone it or create a new version.

Workflow topics

• Workflow framework: Stages

• Service access

• Use managed workflows for your images

• List image workflows

• Create an image workflow

• Create a YAML workflow document

Workflow framework: Stages

To customize image workflows, it's important to understand the workflow stages that make up the
image creation workflow framework.

Workflow framework: Stages 449

EC2 Image Builder User Guide

The image creation workflow framework includes the following distinct stages.

1. Build stage (pre-snapshot) – During the build stage, you make changes to the Amazon EC2 build
instance that's running your base image, to create the baseline for your new image. For example,
your recipe can include components that install an application or modify the operating system
firewall settings.

After this stage completes successfully, Image Builder creates a snapshot or container image
that it uses for the test stage and beyond.

2. Test stage (post-snapshot) – During the test stage, there are some differences between images
that create AMIs and container images. For AMI workflows, Image Builder launches an EC2
instance from the snapshot that it created as the final step of the build stage. Tests run on the
new instance to validate settings and ensure that the instance is functioning as expected. For
container workflows, the tests run on the same instance that was used for building.

The workflow framework also includes a distribution stage. However, Image Builder handles the
workflows for that stage.

Service access

To run image workflows, Image Builder needs permission to perform workflow actions. You can
specify the AWSServiceRoleForImageBuilder service-linked role, or you can specify your own
custom role for service access, as follows.

• Console – In the pipeline wizard Step 3 Define image creation process, select the service-linked
role or your own custom role from the IAM role list in the Service access panel.

• Image Builder API – In the CreateImage action request, specify the service-linked role or your
own custom role as the value for the executionRole parameter.

To learn more about how to create a service role, see Creating a role to delegate permissions to an
AWS service in the AWS Identity and Access Management User Guide.

Use managed workflows for your images

Managed workflows are created and maintained by AWS. When you use managed workflows in
your image pipelines or for one-off image creation, you can select the Amazon Resource Name

Service access 450

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateImage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

EC2 Image Builder User Guide

(ARN) of the managed workflow that you want to use. Amazon provides the latest versions that
have patches and other updates applied. To get a list of managed workflows, see List image
workflows, and filter on Owner = Amazon (console).

List image workflows

On the Image workflows list page in the Image Builder console, you can get a list of the image
workflow resources that you own or have access to, along with some key details about these
resources. You can also use commands or actions with the Image Builder API, SDKs, or AWS CLI to
list image workflows in your account.

You can use one of the following methods to list image workflow resources that you own or have
access to. For the API action, see ListWorkflows in the EC2 Image Builder API Reference. For the
associated SDK request, refer to the See Also link on the same page.

You can filter on the following details to streamline the list of results. For example, if you filter on
Owner = Amazon in the console, the list displays only AWS managed workflows.

• Workflow

• Version

• Type

• Owner

Console

Workflow details

Details on the Image workflows list page in the Image Builder console include the following:

• Workflow – The name of the most recent version of the image workflow resource. In the
Image Builder console, the Workflow column links to the workflow detail page.

• Version – The most recent version of the image workflow resource.

• Type – The workflow type: BUILD or TEST.

• Owner – The owner of the workflow resource.

• Creation time – The date and time when Image Builder created the most recent version of
the image workflow resource.

List image workflows 451

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_ListWorkflows.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_ListWorkflows.html#API_ListWorkflows_SeeAlso

EC2 Image Builder User Guide

• ARN – The Amazon Resource Name (ARN) of the current version of the image workflow
resource.

List image workflows

To list image workflow resources in the Image Builder console, perform the following steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Image workflows from the navigation pane.

Filter results

On the Image workflows list page, you can search for specific image workflows to filter your
results. The following filters are available for image workflows:

Workflow

You can enter all or part of a workflow name to streamline results. The default is to show all
workflows in the list.

Version

You can enter all or part of a version number to streamline results. The default is to show all
versions in the list.

Type

You can filter by the workflow type or view all types. The default is to show all workflow types
in the list.

• BUILD

• TEST

Owner

When you select the owner filter from the search bar, Image Builder shows a list of the owners
for the image workflows in your account. You can select an owner from the list to streamline
results. The default is to show all owners in the list.

• AWS account – The account that owns the workflow resource.

List image workflows 452

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

• Amazon – Workflow resources that Amazon owns and manages.

AWS CLI

When you run the list-workflows command in the AWS CLI, you can get a list of image
workflows that you own or have access to.

The following command example shows how to use the list-workflows command without
filters to list all of the Image Builder image workflow resources that you own or have access to.

Example: list all image workflows

aws imagebuilder list-workflows

Output:

{
 "workflowVersionList": [
 {
 "name": "example-test-workflow",
 "dateCreated": "2023-11-21T22:53:14.347Z",
 "version": "1.0.0",
 "owner": "111122223333",
 "type": "TEST",
 "arn": "arn:aws:imagebuilder:us-west-2:111122223333:workflow/test/example-test-
workflow/1.0.0"
 },
 {
 "name": "example-build-workflow",
 "dateCreated": "2023-11-20T12:26:10.425Z",
 "version": "1.0.0",
 "owner": "111122223333",
 "type": "BUILD",
 "arn": "arn:aws:imagebuilder:us-west-2:111122223333:workflow/build/example-
build-workflow/1.0.0"
 }
]
}

When you run the list-workflows command, you can apply filters to streamline the results, as
the following example shows. For more information about how to filter your results, see the
list-workflows command in the AWS CLI Command Reference.

List image workflows 453

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/list-workflows.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/list-workflows.html

EC2 Image Builder User Guide

Example: filter for build workflows

aws imagebuilder list-workflows --filters name="type",values="BUILD"

Output:

{
 "workflowVersionList": [
 {
 "name": "example-build-workflow",
 "dateCreated": "2023-11-20T12:26:10.425Z",
 "version": "1.0.0",
 "owner": "111122223333",
 "type": "BUILD",
 "arn": "arn:aws:imagebuilder:us-west-2:111122223333:workflow/build/example-
build-workflow/1.0.0"
 }
]
}

Create an image workflow

When you create an image workflow, you have more control over your image creation process. You
can specify what workflow runs when Image Builder builds your image, and what workflows run
when it tests the image. You can also specify a customer managed key to encrypt your workflow
resources. To learn more about encryption for your workflow resources, see Encryption and key
management in Image Builder.

For image creation, you can specify one build stage workflow, and one or more test stage
workflows. You can even skip the build or test stage entirely, depending on your needs. You
configure the actions that your workflow takes in the YAML definition document that your
workflow uses. For more information about syntax for your YAML document, see Create a YAML
workflow document.

For steps to create a new build or test workflow select the tab that matches the environment you'll
use.

AWS Management Console

You can use the following process to create a new workflow in the Image Builder console.

Create an image workflow 454

EC2 Image Builder User Guide

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. Choose Image workflows from the navigation pane. This displays a list of image workflows
that your account owns or has access to.

Note

You'll always see the Amazon managed workflow resources that Image Builder uses
for its default workflows in your list. To view details for those workflows, you can
select the Workflow link.

3. To create a new workflow, choose Create image workflow. This displays the Create image
workflow page.

4. Configure the details for your new workflow. To create a build workflow, select the Build
option near the top of the form. To create a test workflow, select the Test option near the
top of the form. Image Builder populates the Templates list based on this option. All other
steps are the same for build and test workflows.

General

The general section includes settings that apply to your workflow resource, such as name
and description. The general settings include the following:

• Image workflow name (required) – The name for your image workflow. The name
must be unique in your account. The name can be up to 128 characters in length. Valid
characters include letters, numbers, spaces, -, and _.

• Version (required) – The semantic version for the workflow resource to create
(major.minor.patch).

• Description (optional) – Optionally add a description for your workflow.

• KMS key (optional) – You can encrypt your workflow resources with an customer
managed key. For more information, see Encrypt image workflows with a customer
managed key.

Definition document

The YAML workflow document contains all of the configuration for your workflow.

Create an image workflow 455

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

Get started

• To start with an Image Builder default template as a baseline for your workflow, select
the Start from templates option. This option is selected by default. After you choose
what template to use from the Templates list, this copies the default configuration from
the template you selected into the Content for your new workflow document, where you
can make changes.

• To define your workflow document from scratch, select the Start from scratch option.
This populates the Content with a short outline of some important parts of the
document format to help you get started.

The Content panel includes a status bar at the bottom that shows warnings or errors
for your YAML document. For more information about how to create a YAML workflow
document, see Create a YAML workflow document.

5. When you've completed your workflow, or if you want to save progress and come back to it
later, choose Create workflow.

AWS CLI

Before you run the create-workflow command in the AWS CLI, you must create the YAML
document that contains all of the configuration for your workflow. For more information, see
Create a YAML workflow document.

The following example shows how to create a build workflow with the create-workflow AWS
CLI command. The --data parameter refers to a YAML document that contains the build
configuration for the workflow you create.

Example: Create workflow

aws imagebuilder create-workflow --name example-build-workflow --semantic-
version 1.0.0 --type BUILD --data file://example-build-workflow.yml

Output:

{
"workflowBuildVersionArn": "arn:aws:imagebuilder:us-west-2:111122223333:workflow/
build/example-build-workflow/1.0.0/1",

Create an image workflow 456

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-workflow.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-workflow.html

EC2 Image Builder User Guide

"clientToken": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222"
}

The following example shows how to create a test workflow with the create-workflow AWS
CLI command. The --data parameter refers to a YAML document that contains the build
configuration for the workflow you create.

Example: Create test workflow

aws imagebuilder create-workflow --name example-test-workflow --semantic-
version 1.0.0 --type TEST --data file://example-test-workflow.yml

Output:

{
"workflowBuildVersionArn": "arn:aws:imagebuilder:us-west-2:111122223333:workflow/
test/example-test-workflow/1.0.0/1",
"clientToken": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222"
}

Create a YAML workflow document

The YAML format definition document configures input, output, and workflow steps for the build
and test stages of the image build process. You can start from templates that include standardized
steps, or you can start from scratch to define your own workflow. Whether you use a template or
start from scratch, you can customize the workflow to fit your needs.

Structure of a YAML workflow document

The YAML workflow document that Image Builder uses to perform image build and test actions is
structured as follows.

• Workflow document identification

• Workflow document input parameters

• Workflow document steps

• Workflow document outputs

Create a YAML workflow document 457

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-workflow.html

EC2 Image Builder User Guide

Workflow document identification

Uniquely identifies the workflow. This section can include the following attributes.

Field Description Type Required

name The name of the
workflow document.

String No

description The document
description.

String No

schemaVersion The document
schema version,
currently 1.0.

String Yes

Example

name: sample-test-image
description: Workflow for a sample image, with extra configuration options exposed
 through workflow parameters.
schemaVersion: 1.0

Workflow document input parameters

This part of the workflow document defines input parameters that the caller can specify. If you
don't have any parameters, you can leave this section out. If you do specify parameters, each
parameter can include the following attributes.

Field Description Type Required Constraints

name The name of the
parameter.

String Yes

Structure of a YAML workflow document 458

EC2 Image Builder User Guide

Field Description Type Required Constraints

description The parameter
description.

String No

default The default
value of the
parameter,
if no value is
provided. If you
 don't include a
default value in
the parameter
definition, the
parameter value
is required at
runtime.

Matches the
parameter data
type.

No

type The data type of
the parameter
. If you don't
include the
data type in
the parameter
definition, the
parameter type
defaults to a
 string value
required at
runtime.

String Yes The data type of
the parameter
must be one of
the following:

•
string

•
integer

•
boolean

•
stringList

Example

Specify the parameter in the workflow document.

Structure of a YAML workflow document 459

EC2 Image Builder User Guide

parameters:
 - name: waitForActionAtEnd
 type: boolean
 default: true
 description: "Wait for an external action at the end of the workflow"

Use the parameter value in the workflow document.

$.parameters.waitForActionAtEnd

Workflow document steps

Specifies up to 15 step actions for the workflow. Steps run in the order that they're defined within
the workflow document. In case of failure, a rollback runs in reverse order, starting with the step
that failed, and working backward through prior steps.

Each step can refer to the output of any prior step actions. This is known as chaining, or referencing.
To refer to output from a prior step action, you can use a JSONPath selector. For example:

$.stepOutputs.step-name.output-name

For more information, see Use dynamic variables in your workflow document.

Note

Even though the step itself doesn't have an output attribute, any output from a step action
is included in stepOutput for the step.

Each step can include the following attributes.

Field Description Type Required Default
value

Constraints

action The workflow
action that

String Yes Must be a
supported
step action

Structure of a YAML workflow document 460

EC2 Image Builder User Guide

Field Description Type Required Default
value

Constraints

this step
performs.

for Image
Builder
workflow
documents.

Structure of a YAML workflow document 461

EC2 Image Builder User Guide

Field Description Type Required Default
value

Constraints

if, followed
by a set of
conditional
statements
that modify
 the if
operator.

Conditional
statement
s add flow
of control
decision
points to the
body of your
workflow
steps.

Dict No Image
Builder
supports the
following
conditional
statements
as modifiers
to the if
operator:

•
Branching
condition
s and
modifiers
: if, and,
 or, not.
 Branching
condition
s are
specified
on a
line by
themselve
s.

•
Compariso
n
operators:
booleanEq
uals ,
numberEqu
als ,

Structure of a YAML workflow document 462

EC2 Image Builder User Guide

Field Description Type Required Default
value

Constraints

numberGre
aterThan ,
numberGre
aterThanE
quals ,
numberLes
sThan ,
numberLes
sThanEqua
ls ,
stringEqu
als .

description The step
description.

String No Empty
strings are
not allowed.
If included,
length must
be 1-1024
characters.

Structure of a YAML workflow document 463

EC2 Image Builder User Guide

Field Description Type Required Default
value

Constraints

inputs Contains
parameters
that the step
action needs
to run. You
can specify
 key values as
static values,
or with a
JSONPath
variable that
resolves to
 the correct
data type.

Dict Yes

name The name of
the step. This
name must
be unique
within the
 workflow
document.

String Yes Length must
be between
3-128
characters.

Can include
alphanume
ric character
s and _. No
spaces.

Structure of a YAML workflow document 464

EC2 Image Builder User Guide

Field Description Type Required Default
value

Constraints

onFailure Configures
the action to
take if the
step fails, as
follows.

Behavior

•
Abort
– Fails
the step,
fails the
workflow,
and doesn'
t run any
remaining
steps after
the step
that failed.
If rollback
 is enabled,
the
rollback
begins
with the
step that
failed, and
continues
 until all
steps that
allow it

String No Abort Abort |
Continue

Structure of a YAML workflow document 465

EC2 Image Builder User Guide

Field Description Type Required Default
value

Constraints

are rolled
back.

•
Continue
– Fails the
step, but
continues
to run
remaining
steps
after the
step that
failed. In
this case,
there is no
rollback.

rollbackE
nabled

Configures
whether the
step will be
rolled back
if a failure
 occurs.
You can
use a static
Boolean
value or a
dynamic
JSONPath
 variable that
resolves to
a Boolean
value.

Boolean No true true | false
| or a
JSONPath
 variable that
resolves to
true or false.

Structure of a YAML workflow document 466

EC2 Image Builder User Guide

Field Description Type Required Default
value

Constraints

timeoutSe
conds

The
maximum
time, in
seconds, that
the step runs
before failing
and retrying
, if retries
apply.

Integer No Depends on
the default
defined for
the step
action, if
applicable.

Between
1-86400
seconds
(24 hrs
maximum)

Example

steps:
 - name: LaunchTestInstance
 action: LaunchInstance
 onFailure: Abort
 inputs:
 waitFor: "ssmAgent"

 - name: ApplyTestComponents
 action: ExecuteComponents
 onFailure: Abort
 inputs:
 instanceId.$: "$.stepOutputs.LaunchTestInstance.instanceId"

 - name: TerminateTestInstance
 action: TerminateInstance
 onFailure: Continue
 inputs:
 instanceId.$: "$.stepOutputs.LaunchTestInstance.instanceId"

 - name: WaitForActionAtEnd
 action: WaitForAction
 if:
 booleanEquals: true

Structure of a YAML workflow document 467

EC2 Image Builder User Guide

 value: "$.parameters.waitForActionAtEnd"

Workflow document outputs

Defines outputs for the workflow. Each output is a key value pair that specificies the name of the
output and the value. You can use outputs to export data at runtime that subsequent workflows
can use. This section is optional.

Each output that you define includes the following attributes.

Field Description Type Required

name The name of the
output. The name
must be unique
across the workflow
s that you include in
your pipeline.

String Yes

value The value for the
output. The value of
the string can be a
 dyanmic variable,
such as an output file
from a step action.
 For more informati
on, see Use dynamic
variables in your
workflow document.

String Yes

Example

Create an output image ID for the workflow document with step output from the
createProdImage step.

outputs:

Structure of a YAML workflow document 468

EC2 Image Builder User Guide

 - name: 'outputImageId'
 value: '$.stepOutputs.createProdImage.imageId'

Refer to the workflow output in the next workflow.

$.workflowOutputs.outputImageId

Supported step actions for your workflow document

This section includes details for the step actions that Image Builder supports.

Terms used in this section

AMI

Amazon Machine Image

ARN

Amazon Resource Name

Supported actions

• BootstrapInstanceForContainer

• CollectImageMetadata

• CollectImageScanFindings

• CreateImage

• ExecuteComponents

• LaunchInstance

• RunCommand

• RunSysPrep

• SanitizeInstance

• TerminateInstance

• WaitForAction

Step actions 469

EC2 Image Builder User Guide

BootstrapInstanceForContainer

This step action runs a service script to bootstrap the instance with minimum requirements to run
container workflows. Image Builder uses the sendCommand in the Systems Manager API to run
this script. For more information, see AWS Systems Manager Run Command.

Note

The bootstrap script installs the AWS CLI and Docker packages that are prerequisites for
Image Builder to successfully build Docker containers. If you don't include this step action,
the image build could fail.

Default Timeout: 60 minutes

Rollback: There is no rollback for this step action.

Inputs: The following table includes supported inputs for this step action.

Input name Description Type Required Default Constraints

instanceId The ID of the
instance to
bootstrap.

String Yes This must be
the output
instance ID
from the
workflow
step that
launched
the instance
for this
workflow.

Outputs: The following table includes outputs for this step action.

Output name Description Type

runCommandId The ID of the Systems
Manager sendCommand that

String

Step actions 470

https://docs.aws.amazon.com/systems-manager/latest/userguide/execute-remote-commands.html

EC2 Image Builder User Guide

Output name Description Type

ran the bootstrap script on
the instance.

status The status returned from
the Systems Manager
sendCommand.

String

output Output returned from
the Systems Manager
sendCommand.

String

Example

Specify the step action in the workflow document.

- name: ContainerBootstrapStep
 action: BootstrapInstanceForContainer
 onFailure: Abort
 inputs:
 instanceId.$: $.stepOutputs.LaunchStep.instanceId

Use the output of the step action value in the workflow document.

$.stepOutputs.ContainerBootstrapStep.status

CollectImageMetadata

This step action is only valid for build workflows.

EC2 Image Builder runs AWS Systems Manager (Systems Manager) Agent on the EC2 instances it
launches to build and test your image. Image Builder collects additional information about the
instance used during the build phase with Systems Manager Inventory. This information includes
the operating system (OS) name and version, as well as the list of packages and their respective
versions as reported by your operating system.

Step actions 471

https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-inventory.html

EC2 Image Builder User Guide

Note

This step action only works for images that create AMIs.

Default Timeout: 30 minutes

Rollback: Image Builder rolls back any Systems Manager resources that were created during this
step.

Inputs: The following table includes supported inputs for this step action.

Input name Description Type Required Default Constraints

instanceId The build
instance to
apply the
metadata
settings to.

String Yes This must be
the output
instance ID
from the
workflow
step that
launched
the build
instance
for this
workflow.

Outputs: The following table includes outputs for this step action.

Output name Description Type

osVersion The operating system name
and version collected from
the build instance.

String

associationId The Systems Manager
association ID used for
inventory collection.

String

Step actions 472

EC2 Image Builder User Guide

Example

Specify the step action in the workflow document.

- name: CollectMetadataStep
 action: CollectImageMetadata
 onFailure: Abort
 inputs:
 instanceId: $.stepOutputs.LaunchStep.instanceId

Use output from the step action in the workflow document.

$.stepOutputs.CollectMetadataStep.osVersion

CollectImageScanFindings

If Amazon Inspector is enabled for your account and image scanning is enabled for your pipeline,
this step action collects image scan findings reported by Amazon Inspector for your test instance.
This step action is not available for build workflows.

Default Timeout: 120 minutes

Rollback: There is no rollback for this step action.

Inputs: The following table includes supported inputs for this step action.

Input name Description Type Required Default Constraints

instanceId The ID for
the instance
that scanning
ran on.

String Yes This must be
the output
instance ID
from the
workflow
step that
launched
the instance
for this
workflow.

Step actions 473

EC2 Image Builder User Guide

Outputs: The following table includes outputs for this step action.

Output name Description Type

runCommandId The ID of the Systems
Manager sendCommand
that ran the script to collect
findings.

String

status The status returned from
the Systems Manager
sendCommand.

String

output Output returned from
the Systems Manager
sendCommand.

String

Example

Specify the step action in the workflow document.

- name: CollectFindingsStep
 action: CollectImageScanFindings
 onFailure: Abort
 inputs:
 instanceId.$: $.stepOutputs.LaunchStep.instanceId

Use the output of the step action value in the workflow document.

$.stepOutputs.CollectFindingsStep.status

CreateImage

This step action creates an image from a running instance with the Amazon EC2 CreateImage API.
During the creation process, the step action waits as necessary to verify that the resources have
reached the correct state before it continues.

Default Timeout: 720 minutes

Step actions 474

EC2 Image Builder User Guide

Rollback: There is no rollback for this step action.

Inputs: The following table includes supported inputs for this step action.

Input name Description Type Required Default Constraints

instanceId The instance
to create the
new image
from.

String Yes The instance
for the
provided
instance ID
must be in
a running
state when
this step
starts.

Outputs: The following table includes outputs for this step action.

Output name Description Type

imageId The AMI ID of the image
that's created.

String

Example

Specify the step action in the workflow document.

- name: CreateImageFromInstance
 action: CreateImage
 onFailure: Abort
 inputs:
 instanceId.$: "i-1234567890abcdef0"

Use the output of the step action value in the workflow document.

$.stepOutputs.CreateImageFromInstance.imageId

Step actions 475

EC2 Image Builder User Guide

ExecuteComponents

This step action runs components that are specified in the recipe for the current image being
built. Build workflows run build components on the build instance. Test workflows only run test
components on the test instance.

Image Builder uses the sendCommand in the Systems Manager API to run components. For more
information, see AWS Systems Manager Run Command.

Default Timeout: 720 minutes

Rollback: There is no rollback for this step action.

Inputs: The following table includes supported inputs for this step action.

Input name Description Type Required Default Constraints

instanceId The ID for
the instance
that the
component
s should run
on.

String Yes This must be
the output
instance ID
from the
workflow
step that
launched
the instance
for this
workflow.

Outputs: The following table includes outputs for this step action.

Output name Description Type

runCommandId The ID of the Systems
Manager sendCommand that
ran the components on the
instance.

String

Step actions 476

https://docs.aws.amazon.com/systems-manager/latest/userguide/execute-remote-commands.html

EC2 Image Builder User Guide

Output name Description Type

status The status returned from
the Systems Manager
sendCommand.

String

output Output returned from
the Systems Manager
sendCommand.

String

Example

Specify the step action in the workflow document.

- name: ExecComponentsStep
 action: ExecuteComponents
 onFailure: Abort
 inputs:
 instanceId: $.stepOutputs.LaunchStep.instanceId

Use output from the step action in the workflow document.

$.stepOutputs.ExecComponentsStep.status

LaunchInstance

This step action launches an instance in your AWS account and waits until the Systems Manager
agent is running on the instance before moving on to the next step. The launch action uses settings
from your recipe and infrastructure configuration resources that are associated with your image.
For example, the instance type to launch comes from the infrastructure configuration. The output
is the instance ID of the instance that it launched.

The waitFor input configures the condition that satisfies the step completion requirement.

Default Timeout: 60 minutes

Rollback: For build instances, rollback performs the action that you've configured in your
infrastructure configuration resource. By default, build instances are terminated if image creation

Step actions 477

EC2 Image Builder User Guide

fails. However, there is a setting in the infrastructure configuration to keep the build instance for
troubleshooting.

Inputs: The following table includes supported inputs for this step action.

Input name Description Type Required Default Constraints

imageIdOv
erride

The image
to use for
launching
the instance

String No Build stage:
Image recipe
base image

Test stage:
Output AMI
from the
build stage

Must be a
valid AMI ID

instanceT
ypesOverride

Image
Builder tries
each instance
type in the
list until it
finds one
that launches
successfully

List of String No Instance
types
specified in
your Infrastru
cture
Configura
tion

Must be valid
instance
types

waitFor The
condition
to wait
for before
completing
the workflow
step and
moving on to
the next step

String Yes Image
Builder
supports
ssmAgent.

Outputs: The following table includes outputs for this step action.

Step actions 478

EC2 Image Builder User Guide

Output name Description Type

instanceId The instance ID of the
instance that launched.

String

Example

Specify the step action in the workflow document.

- name: LaunchStep
 action: LaunchInstance
 onFailure: Abort
 inputs:
 waitFor: ssmAgent

Use output from the step action in the workflow document.

$.stepOutputs.LaunchStep.instanceId

RunCommand

This step action runs a command document for your workflow. Image Builder uses the
sendCommand in the Systems Manager API to run it for you. For more information, see AWS
Systems Manager Run Command.

Default Timeout: 12 hours

Rollback: There is no rollback for this step action.

Inputs: The following table includes supported inputs for this step action.

Input name Description Type Required Default Constraints

instanceId The ID of
the instance
to run the
command
document
on.

String Yes This must be
the output
instance ID
from the
workflow
step that

Step actions 479

https://docs.aws.amazon.com/systems-manager/latest/userguide/run-command.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/run-command.html

EC2 Image Builder User Guide

Input name Description Type Required Default Constraints

launched
the instance
for this
workflow.

documentN
ame

The name of
the Systems
Manager
command
document to
run.

String Yes

parameters A list of
key value
pairs for any
parameter
s that the
command
document
requires.

dictionar
y<string,
list<string>>

Conditional

documentV
ersion

The
command
document
version to
run.

String No $DEFAULT

Outputs: The following table includes outputs for this step action.

Output name Description Type

runCommandId The ID of the Systems
Manager sendCommand that
ran the command document
on the instance.

String

Step actions 480

EC2 Image Builder User Guide

Output name Description Type

status The status returned from
the Systems Manager
sendCommand.

String

output Output returned from
the Systems Manager
sendCommand.

List of strings

Example

Specify the step action in the workflow document.

- name: RunCommandDoc
 action: RunCommand
 onFailure: Abort
 inputs:
 documentName: SampleDocument
 parameters:
 osPlatform:
 - "linux"
 instanceId.$: $.stepOutputs.LaunchStep.instanceId

Use the output of the step action value in the workflow document.

$.stepOutputs.RunCommandDoc.status

RunSysPrep

This step action uses the sendCommand in the Systems Manager API to run the AWSEC2-
RunSysprep document for Windows instances before the build instance shuts down for the
snapshot. These actions follow AWS best practices for hardening and cleaning the image.

Default Timeout: 60 minutes

Rollback: There is no rollback for this step action.

Inputs: The following table includes supported inputs for this step action.

Step actions 481

https://aws.amazon.com/articles/public-ami-publishing-hardening-and-clean-up-requirements/

EC2 Image Builder User Guide

Input name Description Type Required Default Constraints

instanceId The ID of
the instance
to run the
AWSEC2-Ru
nSysprep
document
on.

String Yes This must be
the output
instance ID
from the
workflow
step that
launched
the instance
for this
workflow.

Outputs: The following table includes outputs for this step action.

Output name Description Type

runCommandId The ID of the Systems
Manager sendCommand
that ran the AWSEC2-Ru
nSysprep document on the
instance.

String

status The status returned from
the Systems Manager
sendCommand.

String

output Output returned from
the Systems Manager
sendCommand.

String

Example

Specify the step action in the workflow document.

- name: RunSysprep

Step actions 482

EC2 Image Builder User Guide

 action: RunSysPrep
 onFailure: Abort
 inputs:
 instanceId.$: $.stepOutputs.LaunchStep.instanceId

Use the output of the step action value in the workflow document.

$.stepOutputs.RunSysprep.status

SanitizeInstance

This step action runs the recommended sanitize script for Linux instances before the build instance
shuts down for the snapshot. The sanitize script helps ensure that the final image follows security
best practices, and that build artifacts or settings that should not carry over to your snapshot are
removed. For more information about the script, see Required post-build clean up. This step action
does not apply to container images.

Image Builder uses the sendCommand in the Systems Manager API to run this script. For more
information, see AWS Systems Manager Run Command.

Default Timeout: 60 minutes

Rollback: There is no rollback for this step action.

Inputs: The following table includes supported inputs for this step action.

Input name Description Type Required Default Constraints

instanceId The ID of the
instance to
sanitize.

String Yes This must be
the output
instance ID
from the
workflow
step that
launched
the instance
for this
workflow.

Step actions 483

https://docs.aws.amazon.com/systems-manager/latest/userguide/execute-remote-commands.html

EC2 Image Builder User Guide

Outputs: The following table includes outputs for this step action.

Output name Description Type

runCommandId The ID of the Systems
Manager sendCommand that
ran the sanitize script on the
instance.

String

status The status returned from
the Systems Manager
sendCommand.

String

output Output returned from
the Systems Manager
sendCommand.

String

Example

Specify the step action in the workflow document.

- name: SanitizeStep
 action: SanitizeInstance
 onFailure: Abort
 inputs:
 instanceId: $.stepOutputs.LaunchStep.instanceId

Use the output of the step action value in the workflow document.

$.stepOutputs.SanitizeStep.status

TerminateInstance

This step action terminate the instance with the instance id that's passed in as input.

Default Timeout: 30 minutes

Rollback: There is no rollback for this step action.

Inputs: The following table includes supported inputs for this step action.

Step actions 484

EC2 Image Builder User Guide

Input name Description Type Required Default Constraints

instanceId The ID of the
instance to
terminate.

String Yes

Outputs: There are no outputs for this step action.

Example

Specify the step action in the workflow document.

- name: TerminateInstance
 action: TerminateInstance
 onFailure: Continue
 inputs:
 instanceId.$: i-1234567890abcdef0

WaitForAction

This step action pauses the running workflow and waits to receive an external action from the
Image Builder SendWorkflowStepAction API action. This step publishes an EventBridge event
to your default EventBridge event bus with detail type EC2 Image Builder Workflow Step
Waiting. The step can also send an SNS notification if you provide an SNS Topic ARN.

Default Timeout: 3 days

Rollback: There is no rollback for this step action.

Inputs: The following table includes supported inputs for this step action.

Input name Description Type Required Default Constraints

snsTopicArn An optional
SNS topic
ARN to send
a notificat
ion to when

String No

Step actions 485

EC2 Image Builder User Guide

Input name Description Type Required Default Constraints

the workflow
step is
pending.

Outputs: The following table includes outputs for this step action.

Output name Description Type

action The action that the
SendWorkflowStepAction A
PI action returns.

String (RESUME or STOP)

reason The reason for the returned
action.

String

Example

Specify the step action in the workflow document.

- name: SendEventAndWait
 action: WaitForAction
 onFailure: Abort
 inputs:
 snsTopicArn: arn:aws:sns:us-west-2:111122223333:ExampleTopic

Use the output of the step action value in the workflow document.

$.stepOutputs.SendEventAndWait.reason

Use dynamic variables in your workflow document

You can use dynamic variables in your workflow documents to represent values that vary at
runtime for your image creation process. Dynamic variable values are represented as JSONPath
selectors with structural nodes that uniquely identify the target variable.

JSONPath dynamic workflow variable structure

Dynamic variables 486

EC2 Image Builder User Guide

$.<document structure>.[<step name>.]<variable name>

The first node after the root ($) refers to the workflow document structure, such as stepOutputs,
or in the case of Image Builder system variables, imageBuilder. The following list contains
supported JSONPath workflow document structure nodes.

Document structure nodes

• parameters - The workflow parameters

• stepOutputs - Outputs from a step in the same workflow doc

• workflowOutputs - Outputs from a workflow doc that already ran

• imagebuilder - Image Builder system variables

The parameters and stepOutputs document structure nodes include an optional node for the
step name. This helps ensure unique variable names across all of the steps.

The final node in the JSONPath is the name of the target variable, such as instanceId.

Each step can refer to the output of any prior step actions with these JSONPath dynamic variables.
This is also known as chaining, or referencing. To refer to output from a prior step action, you might
use the following dynamic variable.

$.stepOutputs.step-name.output-name

When an input parameter refers to a dynamic variable, the chaining indicator (.$) must be
attached to the end of the parameter name, as shown in the following example.

Example

 - name: ApplyTestComponents
 action: ExecuteComponents
 onFailure: Abort
 inputs:
 instanceId.$: "$.stepOutputs.LaunchTestInstance.instanceId"

Use Image Builder system variables

Image Builder provides the following system variables that you can use in your workflow
document:

Dynamic variables 487

EC2 Image Builder User Guide

Variable name Description Type Example value

cloudWatchLogGroup The name of the
CloudWatch Logs
group for output
logs.

Format: /aws/
imagebuilder/
<recipe-name>

String /aws/imag
ebuilder/
sampleIma

geRecipe

cloudWatchLogStrea
m

The name of the
CloudWatch Logs
stream for output
logs.

String 1.0.0/1

collectImageMetada
ta

The setting that
directs Image Builder
whether to collect
instance metadata.

Boolean true | false

collectImageScanFi
ndings

The current value
of the setting that
enables Image
Builder to collect
 image scan findings.

Boolean true | false

imageBuildNumber The build version
number of the image.

Integer 1

imageId The AMI id of the
base image.

String ami-12345
67890abcdef1

Dynamic variables 488

EC2 Image Builder User Guide

Variable name Description Type Example value

imageName The name of the
image.

String sampleImage

imageType The image output
type.

String AMI | Docker

imageVersionNumber The version number
of the image.

String 1.0.0

instanceProfileName The name of the
instance profile role
that Image Builder
uses to launch build
and test instances.

String SampleIma
geBuilder
InstanceP
rofileRole

platform The operating system
platform of the
image that's built.

String Linux | Windows |
MacOS

s3Logs A JSON object that
contains configura
tion for the S3 logs
that Image Builder
writes.

JSON object {'s3Logs': {'s3Bucke
tName': 'sample-bu
cket ', 's3KeyPrefix':
'ib-logs'}}

securityGroups The security group
IDs that apply
to build and test
instances.

List [String] [sg-12345
67890abcd
ef1, sg-111122
22333344445]

Dynamic variables 489

EC2 Image Builder User Guide

Variable name Description Type Example value

sourceImageARN The Amazon
Resource Name (ARN)
of the Image Builder
image resource that
the workflow uses
for build and test
stages.

String arn:aws:imagebuild
er:us-east-1

:111122223
333 :image/sampleIma
ge /1.0.0/1

subnetId The ID of the subnet
to launch the build
and test instances
into.

String subnet-12
34567890a
bcdef1

terminateInstanceO
nFailure

The current value
of the setting that
directs Image Builder
to terminate the
instance on failure or
keep it for troublesh
ooting.

Boolean true | false

workflowPhase The current stage
that's running for the
workflow execution.

String Build | Test

workingDirectory The path to the
working directory.

String /tmp

Dynamic variables 490

EC2 Image Builder User Guide

Use conditional statements in your workflow steps

Conditional statements begin with the if statement document attribute. The ultimate purpose of
the if statement is to determine whether to run the step action or to skip it. If the if statement
resolves to true, then the step action runs. If it resolves to false, Image Builder skips the step
action and records a step status of SKIPPED in the log.

The if statement supports branching statements (and, or) and conditional modifiers (not). It also
supports the following comparison operators that perform value comparisons (equal, less than,
greater than) based on the data types it compares (string or number).

Supported comparison operators

• booleanEquals

• numberEquals

• numberGreaterThan

• numberGreaterThanEquals

• numberLessThan

• numberLessThanEquals

• stringEquals

Rules for branching statements and conditional modifiers

The following rules apply for branching statements (and, or) and conditional modifiers (not).

• Branching statements and conditional modifiers must appear on a line by themselves.

• Branching statements and conditional modifiers must follow level rules.

• There can only be one statement at the parent level.

• Each child branch or modifier starts a new level.

For more information about levels, see Nested levels in conditional statements.

• Each branching statement must have at least one child conditional statement, but no more than
ten.

• Conditional modifiers operate on only one child conditional statement.

Conditional statements 491

EC2 Image Builder User Guide

Nested levels in conditional statements

Conditional statements operate at several levels in a section of their own. For example, the if
statement attribute appears at the same level in your workflow document as the step name and
action. This is the base of the conditional statement.

You can specify up to four levels of conditional statements, but only one statement can appear at
the parent level. All other branching statements, conditional modifiers, or conditional operators are
indented from there, one indent per level.

The following outline shows the maximum number of nested levels for a conditional statement.

base:
 parent:
 - child (level 2)
 - child (level 3)
 child (level 4)

if attribute

The if attribute specifies the conditional statement as a document attribute. This is level zero.

Parent level

This is the first level of nesting for conditional statements. There can be only one statement at
this level. If you don't need branching or modifiers, this can be a conditional operator with no
child statements. This level doesn't use dash notation, except for conditional operators.

Child levels

Levels two through four are considered child levels. Child statements can include branching
statements, conditional modifiers, or conditional operators.

Example: Nested levels

The following example shows the maximum number of levels in a conditional statement.

if:
 and: #first level
 - stringEquals: 'my_string' #second level
 value: 'my_string'
 - and: #also second level

Conditional statements 492

EC2 Image Builder User Guide

 - numberEquals: '1' #third level
 value: 1
 - not: #also third level
 stringEquals: 'second_string' #fourth level
 value: "diff_string"

Nesting rules

• Each branch or modifier at the child level starts a new level.

• Each level is indented.

• There can be a maximum of four levels, including one statement, modifier, or operator at the
parent level, and up to three additional levels.

Conditional statement examples

This group of examples show various aspects of conditional statements.

Branching: and

The and branching statement operates on a list of expressions that are children of the branch, all
of which must evaluate to true. Image Builder evaluates the expressions in the order that they
appear in the list. If any expression evaluates to false, then processing stops and the branch is
considered false.

The following example evaluates to true, because both expressions evaluate to true.

if:
 and:
 - stringEquals: 'test_string'
 value: 'test_string'
 - numberEquals: 1
 value: 1

Branching: or

The or branching statement operates on a list of expressions that are children of the branch, at
least one of which must evaluate to true. Image Builder evaluates the expressions in the order
that they appear in the list. If any expression evaluates to true, then processing stops and the
branch is considered true.

Conditional statements 493

EC2 Image Builder User Guide

The following example evaluates to true, even though the first expression is false.

if:
 or:
 - stringEquals: 'test_string'
 value: 'test_string_not_equal'
 - numberEquals: 1
 value: 1

Conditional modifier: not

The not conditional modifier negates the conditional statements that are children of the branch.

The following example evaluates to true when the not modifier negates the stringEquals
conditional statement.

if:
 not:
 - stringEquals: 'test_string'
 value: 'test_string_not_equal'

Conditional statement: booleanEquals

The booleanEquals comparison operator compares Boolean values and returns true if the
Boolean values exact match.

The following example determines if collectImageScanFindings is enabled.

if:
 - booleanEquals: true
 value: '$.imagebuilder.collectImageScanFindings'

Conditional statement: stringEquals

The stringEquals comparison operator compares two strings and returns true if the strings
are an exact match. If either value isn't a string, Image Builder converts it to a string before it
compares.

The following example compares the platform system variable to determine if the workflow is
running on a Linux platform.

Conditional statements 494

EC2 Image Builder User Guide

if:
 - stringEquals: 'Linux'
 value: '$.imagebuilder.Platform'

Conditional statement: numberEquals

The numberEquals comparison operator compares two numbers and returns true if the numbers
are equal. The numbers to compare must be one of the following formats.

• Integer

• Float

• A string that matches the following regex pattern: ^-?[0-9]+(\.)?[0-9]+$.

The following example comparisons all evaluate to true.

if:
 # Value provider as a number
 numberEquals: 1
 value: '1'

 # Comparison value provided as a string
 numberEquals: '1'
 value: 1

 # Value provided as a string
 numberEquals: 1
 value: '1'

 # Floats are supported
 numberEquals: 5.0
 value: 5.0

 # Negative values are supported
 numberEquals: -1
 value: -1

Conditional statements 495

EC2 Image Builder User Guide

Manage custom image creation in Image Builder through
a repeatable pipeline process

Image Builder image pipelines provide an automation framework for creating and maintaining
custom AMIs and container images. Pipelines deliver the following functionality:

• Assemble the base image, components for building and testing, infrastructure configuration, and
distribution settings.

• Facilitate scheduling for automated maintenance processes using the Schedule builder in the
console wizard, or entering cron expressions for recurring updates to your images.

• Enable change detection for the base image and components, to automatically skip scheduled
builds when there are no changes.

• Enable rule-based automation through Amazon EventBridge.

Note

For more information about using the EventBridge API to view or change rules, see the
Amazon EventBridge API Reference. For more information about using EventBridge
events commands in the AWS CLI to view or change rules, see events in the AWS CLI
Command Reference.

Contents

• List and view pipeline details

• Create and update AMI image pipelines

• Create and update container image pipelines

• Configure image pipeline workflows in Image Builder

• Run your image pipeline

• Use cron expressions in Image Builder

• Use EventBridge rules with Image Builder pipelines

496

https://docs.aws.amazon.com/eventbridge/latest/APIReference/
https://docs.aws.amazon.com/cli/latest/reference/events/

EC2 Image Builder User Guide

List and view pipeline details

This section describes the various ways that you can find information and view details for your EC2
Image Builder image pipelines.

Pipeline details

• List image pipelines from the AWS CLI

• Get image pipeline details from the AWS CLI

List image pipelines from the AWS CLI

The following example shows how to use the list-image-pipelines command in the AWS CLI to list
all of your image pipelines.

aws imagebuilder list-image-pipelines

Get image pipeline details from the AWS CLI

The following example shows how to use the get-image-pipeline command in the AWS CLI to get
the details about an image pipeline through its ARN.

aws imagebuilder get-image-pipeline --image-pipeline-arn arn:aws:imagebuilder:us-
west-2:123456789012:image-pipeline/my-example-pipeline

Create and update AMI image pipelines

You can set up, configure, and manage AMI image pipelines from the Image Builder console,
through the Image Builder API, or with imagebuilder commands in the AWS CLI. You can use the
Create image pipeline console wizard to guide you through the following steps:

• Specify pipeline details such as name, description, and resource tags.

• Select an AMI image recipe that includes a base image from quick-start Amazon managed
images, images that you created or that were shared with you, or images that you subscribe to
through the AWS Marketplace. The recipe also includes components that perform the following
tasks on the EC2 instances that Image Builder uses to build your image:

List and view pipelines 497

EC2 Image Builder User Guide

• Add and remove software

• Customize settings and scripts

• Run selected tests

• Specify workflows to configure image build and test steps that your pipeline runs.

• Define infrastructure configuration for your pipeline with default settings or settings that you
configure yourself. Configuration includes the instance type and key pair to use for your image,
security and network settings, log storage and troubleshooting settings, and SNS notifications.

This is an optional step. Image Builder uses default settings for your infrastructure configuration
if you don't define the configuration yourself.

• Define distribution settings to deliver your images to destination AWS Regions and accounts. You
can specify a KMS key for encryption, configure AMI sharing or license configuration, or configure
a launch template for the AMIs you distribute.

This is an optional step. If you don't define the configuration yourself, Image Builder uses default
naming for your output AMI, and distributes the AMI to the source Region. The source Region is
the Region where you run the pipeline.

For more information and a step-by-step tutorial about using the Create image pipeline console
wizard with default values where provided, see Tutorial: Create an image pipeline with output AMI
from the Image Builder console wizard.

Contents

• Create an AMI image pipeline from the AWS CLI

• Update AMI image pipelines from the console

• Update AMI image pipelines from the AWS CLI

Create an AMI image pipeline from the AWS CLI

You can create an AMI image pipeline with a JSON file that contains configuration details as input
to the create-image-pipeline command in the AWS CLI.

How often your pipeline builds a new image to incorporate any pending updates from your base
image and components depends on the schedule that you have configured. A schedule has the
following attributes:

Create AMI pipeline from the AWS CLI 498

EC2 Image Builder User Guide

• scheduleExpression – Sets the schedule for when your pipeline runs to evaluate the
pipelineExecutionStartCondition and determine if it should start a build. The schedule
is configured with cron expressions. For more information on how to format a cron expression in
Image Builder, see Use cron expressions in Image Builder.

• pipelineExecutionStartCondition – Determines if your pipeline should start the build.
Valid values include:

• EXPRESSION_MATCH_ONLY – your pipeline will build a new image every time the cron
expression matches the current time.

• EXPRESSION_MATCH_AND_DEPENDENCY_UPDATES_AVAILABLE – your pipeline will not start
a new image build unless there are pending changes to your base image or components.

When you run the create-image-pipeline command in the AWS CLI, many of the configuration
resources are optional. However, some of the resources have conditional requirements, depending
on what type of image the pipeline creates. The following resources are required for AMI image
pipelines:

• Image recipe ARN

• Infrastructure configuration ARN

1. Create a CLI input JSON file

Use your favorite file editing tool to create a JSON file with the following keys, plus values
that are valid for your environment. This example uses a file named create-image-
pipeline.json:

{
 "name": "MyWindows2019Pipeline",
 "description": "Builds Windows 2019 Images",
 "enhancedImageMetadataEnabled": true,
 "imageRecipeArn": "arn:aws:imagebuilder:us-west-2:123456789012:image-recipe/my-
example-recipe/2020.12.03",
 "infrastructureConfigurationArn": "arn:aws:imagebuilder:us-
west-2:123456789012:infrastructure-configuration/my-example-infrastructure-
configuration",
 "distributionConfigurationArn": "arn:aws:imagebuilder:us-
west-2:123456789012:distribution-configuration/my-example-distribution-
configuration",
 "imageTestsConfiguration": {

Create AMI pipeline from the AWS CLI 499

EC2 Image Builder User Guide

 "imageTestsEnabled": true,
 "timeoutMinutes": 60
 },
 "schedule": {
 "scheduleExpression": "cron(0 0 * * SUN *)",
 "pipelineExecutionStartCondition":
 "EXPRESSION_MATCH_AND_DEPENDENCY_UPDATES_AVAILABLE"
 },
 "status": "ENABLED"
}

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use the
forward slash (/).

2. Run the following command, using the file that you created as input.

aws imagebuilder create-image-pipeline --cli-input-json file://create-image-
pipeline.json

Update AMI image pipelines from the console

After you have created an Image Builder image pipeline for your AMI image, you can make changes
to the infrastructure configuration and distribution settings from the Image Builder console.

To update an image pipeline with a new image recipe, you must use the AWS CLI. For more
information, see Update AMI image pipelines from the AWS CLI in this guide.

Choose an existing Image Builder pipeline

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. To see a list of the image pipelines created under your account, choose Image pipelines from
the navigation pane.

Update pipeline from the console 500

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

Note

The list of image pipelines includes an indicator for the type of output image that is
created by the pipeline – AMI or Docker.

3. To view details or edit a pipeline, choose the Pipeline name link. This opens the detail view for
the pipeline.

Note

You can also select the check box next to the Pipeline name, then choose View detail.

Pipeline details

The pipeline details page includes the following sections:

Summary

The section at the top of the page summarizes key details for the pipeline that are visible with any
of the detail tabs open. The details displayed in this section are editable only on their respective
detail tabs.

Detail tabs

• Output images – Shows output images that the pipeline has produced.

• Image recipe – Shows recipe details. After you create a recipe, you cannot edit it. You must
create a new version of the recipe from the Image recipes page in the Image Builder console, or
by using Image Builder commands in the AWS CLI. For more information, see Manage recipes in
Image Builder.

• Infrastructure configuration – Shows editable information for configuring your build pipeline
infrastructure.

• Distribution settings – Shows editable information for AMI distribution.

• EventBridge rules – For the selected Event Bus, shows EventBridge rules that target the current
pipeline. Includes Create event bus and Create rule actions that link to the EventBridge console.
For more information about this tab, see Use EventBridge rules.

Update pipeline from the console 501

EC2 Image Builder User Guide

Edit infrastructure configuration for your pipeline

Infrastructure configuration includes the following details that you can edit after creating the
pipeline:

• The Description for your infrastructure configuration.

• The IAM role to associate with the instance profile.

• AWS infrastructure, including the Instance type and an SNS topic for notifications.

• VPC, subnet, and security groups.

• Troubleshooting settings, including Terminate instance on failure, the Key pair for connecting,
and an optional S3 bucket location for instance logs.

To edit infrastructure configuration from the pipeline details page, follow these steps:

1. Choose the Infrastructure configuration tab.

2. Choose Edit from the upper right corner of the Configuration details panel.

3. When you are ready to save updates you've made to your infrastructure configuration, choose
Save changes.

Edit distribution settings for your pipeline

Distribution settings include the following details that you can edit after creating the pipeline:

• The Description for your distribution configuration.

• Region settings for the Regions where you distribute your image. Region 1 defaults to the
Region where you created the pipeline. You can add Regions for distribution with the Add
Region button, and you can remove all Regions except Region 1.

Region settings include:

• Target Region

• The Output AMI name

• Launch permissions, and accounts to share them with

• Associated licenses (Associate license configurations)

Update pipeline from the console 502

EC2 Image Builder User Guide

Note

License Manager settings will not replicate across AWS Regions that must be enabled
in your account, for example, between the ap-east-1 (Hong Kong) and the me-
south-1 (Bahrain) Regions.

To edit your distribution settings from the pipeline details page, follow these steps:

1. Choose the Distribution settings tab.

2. Choose Edit from the upper right corner of the Distribution details panel.

3. When you are ready to save your updates, choose Save changes.

Edit the build schedule for your pipeline

The Edit pipeline page includes the following details that you can edit after creating the pipeline:

• The Description for your pipeline.

• Enhanced metadata collection. This is turned on by default. To turn it off, clear the Enable
enhanced metadata collection check box.

• The Build schedule for your pipeline. You can change your Schedule options and all of the
settings here.

To edit your pipeline from the pipeline details page, follow these steps:

1. In the upper right corner of the pipeline details page, choose Actions, and then Edit pipeline.

2. When you are ready to save your updates, choose Save changes.

Note

For more information about scheduling your build using cron expressions, see Use cron
expressions in Image Builder.

Update pipeline from the console 503

EC2 Image Builder User Guide

Update AMI image pipelines from the AWS CLI

You can update an AMI image pipeline using a JSON file as input to the update-image-pipeline
command in the AWS CLI. To configure the JSON file, you must have Amazon Resource Names
(ARNs) to reference the following existing resources:

• Image pipeline to update

• Image recipe

• Infrastructure configuration

• Distribution settings

You can update an AMI image pipeline with the update-image-pipeline command in the AWS CLI
as follows:

Note

UpdateImagePipeline does not support selective updates for the pipeline. You must specify
all of the required properties in the update request, not just the properties that have
changed.

1. Create a CLI input JSON file

Use your favorite file editing tool to create a JSON file with the following keys, plus values that
are valid for your environment. This example uses a file named create-component.json:

 {
 "imagePipelineArn": "arn:aws:imagebuilder:us-west-2:123456789012:image-
pipeline/my-example-pipeline",
 "imageRecipeArn": "arn:aws:imagebuilder:us-west-2:123456789012:image-recipe/my-
example-recipe/2019.12.08",
 "infrastructureConfigurationArn": "arn:aws:imagebuilder:us-
west-2:123456789012:infrastructure-configuration/my-example-infrastructure-
configuration",
 "distributionConfigurationArn": "arn:aws:imagebuilder:us-
west-2:123456789012:distribution-configuration/my-example-distribution-
configuration",
 "imageTestsConfiguration": {
 "imageTestsEnabled": true,

Update pipeline from the AWS CLI 504

EC2 Image Builder User Guide

 "timeoutMinutes": 120
 },
 "schedule": {
 "scheduleExpression": "cron(0 0 * * MON *)",
 "pipelineExecutionStartCondition":
 "EXPRESSION_MATCH_AND_DEPENDENCY_UPDATES_AVAILABLE"
 },
 "status": "DISABLED"
}

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use the
forward slash (/).

2. Run the following command, using the file you created as input.

aws imagebuilder update-image-pipeline --cli-input-json file://update-image-
pipeline.json

Create and update container image pipelines

You can set up, configure, and manage container image pipelines using the Image Builder console,
through the Image Builder API, or with imagebuilder commands in the AWS CLI. The Create image
pipeline console wizard provides starting artifacts, and guides you through steps to:

• Select a base image from quick-start managed images, Amazon ECR, or Docker Hub repositories

• Add and remove software

• Customize settings and scripts

• Run selected tests

• Create a Dockerfile using pre-configured build-time variables.

• Distribute images to AWS Regions

Create and update pipelines (container) 505

EC2 Image Builder User Guide

For more information and a step-by-step tutorial about using the Create image pipeline console
wizard, see Tutorial: Create an image pipeline with output Docker container image from the Image
Builder console wizard.

Contents

• Create a container image pipeline from the AWS CLI

• Update a container image pipeline from the console

• Update container image pipelines from the AWS CLI

Create a container image pipeline from the AWS CLI

You can create a container image pipeline using a JSON file as input to the create-image-pipeline
command in the AWS CLI.

How often your pipeline builds a new image to incorporate any pending updates from your base
image and components depends on the schedule that you have configured. A schedule has the
following attributes:

• scheduleExpression – Sets the schedule for when your pipeline runs to evaluate the
pipelineExecutionStartCondition and determine if it should start a build. The schedule
is configured with cron expressions. For more information on how to format a cron expression in
Image Builder, see Use cron expressions in Image Builder.

• pipelineExecutionStartCondition – Determines if your pipeline should start the build.
Valid values include:

• EXPRESSION_MATCH_ONLY – your pipeline will build a new image every time the cron
expression matches the current time.

• EXPRESSION_MATCH_AND_DEPENDENCY_UPDATES_AVAILABLE – your pipeline will not start
a new image build unless there are pending changes to your base image or components.

When you run the create-image-pipeline command in the AWS CLI, many of the configuration
resources are optional. However, some of the resources have conditional requirements, depending
on what type of image the pipeline creates. The following resources are required for container
image pipelines:

• Container recipe ARN

• Infrastructure configuration ARN

Create pipeline from the AWS CLI 506

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-image-pipeline.html

EC2 Image Builder User Guide

If you do not include a distribution configuration resource when you run the create-image-
pipeline command, the output image is stored in the ECR repository that you specify as the target
repository in your container recipe in the Region where you run the command. If you include a
distribution configuration resource for your pipeline, the target repository that you have specified
for the first Region in the distribution is used.

1. Create a CLI input JSON file

Use your favorite file editing tool to create a JSON file with the following keys, plus values
that are valid for your environment. This example uses a file named create-image-
pipeline.json:

{
 "name": "MyWindows2019Pipeline",
 "description": "Builds Windows 2019 Images",
 "enhancedImageMetadataEnabled": true,
 "containerRecipeArn": "arn:aws:imagebuilder:us-west-2:123456789012:container-
recipe/my-example-recipe/2020.12.03",
 "infrastructureConfigurationArn": "arn:aws:imagebuilder:us-
west-2:123456789012:infrastructure-configuration/my-example-infrastructure-
configuration",
 "distributionConfigurationArn": "arn:aws:imagebuilder:us-
west-2:123456789012:distribution-configuration/my-example-distribution-
configuration",
 "imageTestsConfiguration": {
 "imageTestsEnabled": true,
 "timeoutMinutes": 60
 },
 "schedule": {
 "scheduleExpression": "cron(0 0 * * SUN *)",
 "pipelineExecutionStartCondition":
 "EXPRESSION_MATCH_AND_DEPENDENCY_UPDATES_AVAILABLE"
 },
 "status": "ENABLED"
}

Note

• You must include the file:// notation at the beginning of the JSON file path.

Create pipeline from the AWS CLI 507

EC2 Image Builder User Guide

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use the
forward slash (/).

2. Run the following command, using the file you created as input.

aws imagebuilder create-image-pipeline --cli-input-json file://create-image-
pipeline.json

Update a container image pipeline from the console

After you have created an Image Builder container image pipeline for your Docker image, you can
make changes to the infrastructure configuration and distribution settings from the Image Builder
console.

To update a container image pipeline with a new container recipe, you must use the AWS CLI. For
more information, see Update container image pipelines from the AWS CLI in this guide.

Choose an existing Image Builder Docker image pipeline

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. To see a list of the image pipelines created under your account, choose Image pipelines from
the navigation pane.

Note

The list of image pipelines includes an indicator for the type of output image that is
created by the pipeline – AMI or Docker.

3. To view details or edit a pipeline, choose the Pipeline name link. This opens the detail view for
the pipeline.

Note

You can also select the check box next to the Pipeline name, then choose View detail.

Update pipeline from the console 508

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

Pipeline details

The EC2 Image Builder pipeline details page includes the following sections:

Summary

The section at the top of the page summarizes key details for the pipeline that are visible with any
of the detail tabs open. The details displayed in this section are editable only on their respective
detail tabs.

Detail tabs

• Output images – Shows output images that the pipeline has produced.

• Container recipe – Shows recipe details. After you create a recipe, you cannot edit it. You must
create a new version of the recipe from the Container recipes page. For more information, see
Create a new version of a container recipe.

• Infrastructure configuration – Shows editable information for configuring your build pipeline
infrastructure.

• Distribution settings – Shows editable information for Docker image distribution.

• EventBridge rules – For the selected Event Bus, shows EventBridge rules that target the current
pipeline. Includes Create event bus and Create rule actions that link to the EventBridge console.
For more information about this tab, see Use EventBridge rules.

Edit infrastructure configuration for your pipeline

Infrastructure configuration includes the following details that you can edit after creating the
pipeline:

• The Description for your infrastruction configuration.

• The IAM role to associate with the instance profile.

• AWS infrastructure, including the Instance type and an SNS topic for notifications.

• VPC, subnet, and security groups.

• Troubleshooting settings, including Terminate instance on failure, the Key pair for connecting,
and an optional S3 bucket location for instance logs.

To edit infrastructure configuration from the pipeline details page, follow these steps:

Update pipeline from the console 509

EC2 Image Builder User Guide

1. Choose the Infrastructure configuration tab.

2. Choose Edit from the upper right corner of the Configuration details panel.

3. When you are ready to save updates you've made to your infrastructure configuration, choose
Save changes.

Edit distribution settings for your pipeline

Distribution settings include the following details that you can edit after creating the pipeline:

• The Description for your distribution settings.

• Region settings for the Regions where you distribute your image. Region 1 defaults to the
Region where you created the pipeline. You can add Regions for distribution with the Add
Region button, and you can remove all Regions except Region 1.

Region settings include:

• Target Region

• The Service defaults to "ECR", and is not editable.

• Repository name – the name of your target repository (not including the Amazon ECR
location). For example, the repository name with the location would look like the following
pattern:

<account-id>.dkr.ecr.<region>.amazonaws.com/<repository-name>

Note

If you change the Repository name, only the images created after the name change
will be added under the new name. Any prior images that your pipeline created remain
in their original repository.

To edit your distribution settings from the pipeline details page, follow these steps:

1. Choose the Distribution settings tab.

2. Choose Edit from the upper right corner of the Distribution details panel.

3. When you are ready to save updates you've made to your distribution settings, choose Save
changes.

Update pipeline from the console 510

EC2 Image Builder User Guide

Edit the build schedule for your pipeline

The Edit pipeline page includes the following details that you can edit after creating the pipeline:

• The Description for your pipeline.

• Enhanced metadata collection. This is turned on by default. To turn it off, clear the Enable
enhanced metadata collection check box.

• The Build schedule for your pipeline. You can change your Schedule options and all of the
settings in this section.

To edit your pipeline from the pipeline details page, follow these steps:

1. In the upper right corner of the pipeline details page, choose Actions, and then Edit pipeline.

2. When you are ready to save your updates, choose Save changes.

Note

For more information about scheduling your build using cron expressions, see Use cron
expressions in Image Builder.

Update container image pipelines from the AWS CLI

You can update a container image pipeline using a JSON file as input to the update-image-
pipeline command in the AWS CLI. To configure the JSON file, you must have Amazon Resource
Names (ARNs) to reference the following existing resources:

• Image pipeline to update

• Container recipe

• Infrastructure configuration

• Distribution settings (if included in the current pipeline)

Note

If the distribution settings resource is included, then the ECR repository that's specified as
the target repository in the distribution settings for the Region where the command runs

Update pipeline from the AWS CLI 511

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/update-image-pipeline.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/update-image-pipeline.html

EC2 Image Builder User Guide

(Region 1) takes precedence over the target repository that's specified in the container
recipe.

Follow these steps to update a container image pipeline using the update-image-pipeline
command in the AWS CLI:

Note

UpdateImagePipeline does not support selective updates for the pipeline. You must specify
all of the required properties in the update request, not just the properties that have
changed.

1. Create a CLI input JSON file

Use your favorite file editing tool to create a JSON file with the following keys, plus values that
are valid for your environment. This example uses a file named create-component.json:

{
 "imagePipelineArn": "arn:aws:imagebuilder:us-west-2:123456789012:image-
pipeline/my-example-pipeline",
 "containerRecipeArn": "arn:aws:imagebuilder:us-west-2:123456789012:container-
recipe/my-example-recipe/2020.12.08",
 "infrastructureConfigurationArn": "arn:aws:imagebuilder:us-
west-2:123456789012:infrastructure-configuration/my-example-infrastructure-
configuration",
 "distributionConfigurationArn": "arn:aws:imagebuilder:us-
west-2:123456789012:distribution-configuration/my-example-distribution-
configuration",
 "imageTestsConfiguration": {
 "imageTestsEnabled": true,
 "timeoutMinutes": 120
 },
 "schedule": {
 "scheduleExpression": "cron(0 0 * * MON *)",
 "pipelineExecutionStartCondition":
 "EXPRESSION_MATCH_AND_DEPENDENCY_UPDATES_AVAILABLE"
 },
 "status": "DISABLED"
}

Update pipeline from the AWS CLI 512

EC2 Image Builder User Guide

Note

• You must include the file:// notation at the beginning of the JSON file path.

• The path for the JSON file should follow the appropriate convention for the base
operating system where you are running the command. For example, Windows
uses the backslash (\) to refer to the directory path, while Linux and macOS use the
forward slash (/).

2. Run the following command, using the file you created as input.

aws imagebuilder update-image-pipeline --cli-input-json file://update-image-
pipeline.json

Configure image pipeline workflows in Image Builder

With image workflows, you can customize the workflows that your pipeline runs to build and test
images according to your needs. The workflows that you define run within the context of the Image
Builder workflow framework. For more information about the stages that make up the workflow
framework, see Manage build and test workflows for Image Builder images.

Build workflow

Build workflows run during the Build stage of the workflow framework. You can specify only
one build workflow for your pipeline. Or you can skip the build entirely to configure a test-only
pipeline.

Test workflow

Test workflows run during the Test stage of the workflow framework. You can specify up
to ten test workflows for your pipeline. You can also skip tests entirely if you only want your
pipeline to build.

Define test groups for test workflows

Test workflows are defined within test groups. You can run up to ten test workflows for your
pipeline. You decide whether to run the test workflows in a specific order or to run as many

Configure pipeline workflows 513

EC2 Image Builder User Guide

as possible at the same time. How they run depends on how you define your test groups. The
following scenarios demonstrate several ways that you can define your test workflows.

Note

If you use the console to create workflows, we recommend that you take time to plan how
you want to run your test workflows before you define your test groups. In the console, you
can add or remove test workflows and groups, but you can’t reorder them.

Scenario 1: Run one test workflow at a time

To run all of your test workflows one at a time, you can configure up to ten test groups, each with
a single test workflow in it. Test groups run one at a time, in the order that you add them to your
pipeline. This is one way to ensure that your test workflows run one at a time in a specific order.

Scenario 2: Run multiple test workflows at the same time

If the order doesn't matter, and you want to run as many test workflows as possible at the same
time, you can configure a single test group and put the maximum number of test workflows
in it. Image Builder starts up to five test workflows at the same time, and starts additional test
workflows as others complete. If your goal is to run your test workflows as fast as possible, this is
one way to do it.

Scenario 3: Mix and match

If you have a mixed scenario, with some test workflows that can run at the same time and some
that should run one at a time, you can configure your test groups to accomplish this goal. The only
limit to how you configure your test groups is the maximum number of test workflows that can run
for your pipeline

Set workflow parameters in an Image Builder pipeline from the console

Workflow parameters function the same way for build workflows and test workflows. When
you create or update a pipeline, you select build and test workflows that you want to include.
If you defined parameters in the workflow document for a workflow that you selected, Image
Builder displays them in the Parameters panel. The panel is hidden for workflows that don't have
parameters defined.

Each parameter displays the following attributes that your workflow document defined:

Set workflow parameters in an Image Builder pipeline from the console 514

EC2 Image Builder User Guide

• Name (not editable) – The name of the parameter.

• Type (not editable) – The data type for the parameter value.

• Value – The value for the parameter. You can edit the parameter value to set it for your pipeline.

Specify the IAM service role that Image Builder uses to run workflow
actions

To run image workflows, Image Builder needs permission to perform workflow actions. You can
specify the AWSServiceRoleForImageBuilder service-linked role, or you can specify your own
custom role for service access, as follows.

• Console – In the pipeline wizard Step 3 Define image creation process, select the service-linked
role or your own custom role from the IAM role list in the Service access panel.

• Image Builder API – In the CreateImage action request, specify the service-linked role or your
own custom role as the value for the executionRole parameter.

To learn more about how to create a service role, see Creating a role to delegate permissions to an
AWS service in the AWS Identity and Access Management User Guide.

Run your image pipeline

If you chose the manual schedule option for your pipeline, it will only run when you manually kick
off the build. If you chose one of the automatic scheduling options, you can also run it manually,
in between regularly scheduled runs. For example, if you have a pipeline that normally runs once
a month, but you need to incorporate an update to one of your components two weeks after the
prior run, you can choose to run your pipeline manually.

Console

To run your pipeline from the pipeline details page in the Image Builder console, choose Run
pipeline from the Actions menu at the top of the page. A status message appears at the top of
the page to notify you that your pipeline has started, or if there is an error.

1. In the upper left corner of the pipeline details page, choose Run pipeline, from the Actions
menu.

Specify the IAM service role that Image Builder uses to run workflow actions 515

https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateImage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

EC2 Image Builder User Guide

2. You can see the current status of your pipeline on the Output images tab, in the Status
column.

AWS CLI

The following example shows how to use the start-image-pipeline-execution command in the
AWS CLI to start an image pipeline manually. When you run this command, the pipeline builds
and distributes a new image.

aws imagebuilder start-image-pipeline-execution --image-pipeline-arn
 arn:aws:imagebuilder:us-west-2:111122223333:image-pipeline/my-example-pipeline

To see what resources are created when the build pipeline runs, see Resources created.

Use cron expressions in Image Builder

Use cron expressions for EC2 Image Builder to set up a time window to refresh your image with
updates that apply to your pipeline's base image and components. The time window for your
pipeline refresh starts with the time you set in the cron expression. You can set the time in your
cron expression down to the minute. Your pipeline build can run on or after the start time.

It can sometimes take a few seconds, or up to a minute for your build to start running.

Note

Cron expressions use the Universal Coordinated Time (UTC) time zone by default, or you
can specify the time zone. For more information about UTC time, and to find the offset for
your time zone, see Time Zone Abbreviations – Worldwide List.

Supported values for cron expressions in Image Builder

EC2 Image Builder uses a cron format that consists of six required fields. Each one is separated
from the others by a space in between, with no leading or trailing spaces:

<Minute> <Hour> <Day> <Month> <Day of the week> <Year>

The following table shows supported values for required cron entries.

Use cron expressions 516

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/start-image-pipeline-execution.html
https://www.timeanddate.com/time/zones/

EC2 Image Builder User Guide

Supported values for cron expressions

Field Values Wildcards

Minute 0-59 , - * /

Hour 0-23 , - * /

Day 1-31 , - * ? / L W

Month 1-12 or jan-dec , - * /

Day of the week 1-7 or sun-sat , - * ? L #

Year 1970-2199 , - * /

Wildcards

The following table describes how Image Builder uses wildcards for cron expressions. Keep in mind
that it can take up to a minute after the time you specify for the build to start.

Supported wildcards for cron expressions

Wildcard Description

, The , (comma) wildcard includes additional
values. In the Month field, jan,feb,mar
includes January, February, and March.

- The - (dash) wildcard specifies ranges. In the
day of the month field, 1-15 includes days 1
through 15 of the specified month.

* The * (asterisk) wildcard includes all valid
values for the field.

? The ? (question mark) wildcard specifies that
the field value depends on another setting. In
the case of the Day and Day-of-week fields,
when one is specified or includes all possible

Supported values for cron expressions in Image Builder 517

EC2 Image Builder User Guide

Wildcard Description

values (*), the other must be a ?. You cannot
specify both. For example, if you enter a 7 in
the Day field (run the build on the seventh day
of the month), the Day-of-week position must
contain a ?.

/ The / (forward slash) wildcard specifies
increments. For example, if you want your
build to run every other day, enter */2 in the
day field.

L The L wildcard in either of the day fields,
specifies the last day: 28-31 for the day of the
month, depending on what the month is, or
Sunday, for the day of the week.

W The W wildcard in the Day-of-month field
specifies a weekday. In the Day-of-month
field, if you enter a number prior to the W, that
means you want to target the weekday that is
closest to that day. For instance, if you specify
3W, you want your build to run on the weekday
closest to the third day of the month.

The # (hash) is allowed only for the day of the
week field, and must be followed by a number
between 1 and 5. The number specifies which
weeks in a given month apply for the build
to run. For example, if you want your build to
run on the second Friday of each month, use
fri#2 for the day of the week field.

Restrictions

• You can't specify the Day-of-month and Day-of-week fields in the same cron expression. If you
specify a value or * in one of these fields, you must use a ? in the other.

Supported values for cron expressions in Image Builder 518

EC2 Image Builder User Guide

• Cron expressions that lead to rates faster than one minute are not supported.

Examples of cron expressions in Image Builder

Cron expressions are entered differently for the Image Builder console, than they are for the API or
CLI. To see examples, choose the tab that applies to you.

Image Builder console

The following examples show cron expressions that you can enter into the console for your
build schedule. UTC time is specified using a 24-hour clock.

Run daily at 10:00 AM (UTC)

0 10 * * ? *

Run daily at 12:15 PM (UTC)

15 12 * * ? *

Run daily at midnight (UTC)

0 0 * * ? *

Run at 10:00 AM (UTC) every weekday morning

0 10 ? * 2-6 *

Run at 6 PM (UTC) every weekday evening

0 18 ? * mon-fri *

Run at 8:00 AM (UTC) on the first day of every month

0 8 1 * ? *

Run on the second Tuesday of every month at 10:30 PM (UTC)

30 22 ? * tue#2 *

Examples of cron expressions in Image Builder 519

EC2 Image Builder User Guide

Tip

If you don't want your pipeline job to extend into the next day while it's running, make
sure that you factor in time for your build when you specify the start time.

API/CLI

The following examples show cron expressions that you can enter for your build schedule using
CLI commands or API requests. Only the cron expression is shown.

Run daily at 10:00 AM (UTC)

cron(0 10 * * ? *)

Run daily at 12:15 PM (UTC)

cron(15 12 * * ? *)

Run daily at midnight (UTC)

cron(0 0 * * ? *)

Run at 10:00 AM (UTC) every weekday morning

cron(0 10 ? * 2-6 *)

Run at 6:00 PM (UTC) every weekday evening

cron(0 18 ? * mon-fri *)

Run at 8:00 AM (UTC) on the first day of every month

cron(0 8 1 * ? *)

Run on the second Tuesday of every month at 10:30 PM (UTC)

cron(30 22 ? * tue#2 *)

Tip

If you don't want your pipeline job to extend into the next day while it's running, make
sure that you factor in time for your build when you specify the start time.

Examples of cron expressions in Image Builder 520

EC2 Image Builder User Guide

Rate expressions in Image Builder

A rate expression starts when you create the scheduled event rule, and then runs on its defined
schedule.

Rate expressions have two required fields. Fields are separated by white space.

Syntax

rate(value unit)

value

A positive number.

unit

The unit of time. Different units are required for values of 1, such as minute, and values over 1,
such as minutes.

Valid values: minute | minutes | hour | hours | day | days

Restrictions

If the value is equal to 1, then the unit must be singular. Similarly, for values greater than 1, the
unit must be plural. For example, rate(1 hours) and rate(5 hour) are not valid, but rate(1
hour) and rate(5 hours) are valid.

Use EventBridge rules with Image Builder pipelines

Events from a wide range of AWS and partner services are streamed to Amazon EventBridge event
buses in near real-time. You can also generate custom events, and send events from your own
applications to EventBridge. The event buses use rules to determine where to route event data.

Image Builder pipelines are available as EventBridge rule targets, which means that you can run
an Image Builder pipeline based on rules that you create to respond to events on the bus, or on a
schedule.

For a summary of system generated events that Image Builder sends to EventBridge, see Event
messages that Image Builder sends.

Rate expressions 521

EC2 Image Builder User Guide

Note

Event buses are specific to a Region. The rule and the target must be in the same Region.

Contents

• EventBridge terms

• View EventBridge rules for your Image Builder pipeline

• Use EventBridge rules to schedule a pipeline build

EventBridge terms

This section contains a summary of terms to help you understand how EventBridge integrates with
your Image Builder pipelines.

Event

Describes a change in an environment that might affect one or more application resources. The
environment can be an AWS environment, a SaaS partner service or application, or one of your
applications or services. You can also set up scheduled events on a timeline.

Event bus

A pipeline that receives event data from applications and services.

Source

The service or application that sent the event to the event bus.

Target

A resource or endpoint that EventBridge invokes when it matches a rule, delivering data from
the event to the target.

Rule

A rule matches incoming events and sends them to targets for processing. A single rule can
send an event to multiple targets, which can then run in parallel. Rules are based either on an
event pattern or a schedule.

EventBridge terms 522

EC2 Image Builder User Guide

Pattern

An event pattern defines the event structure and the fields that a rule matches in order to
initiate the target action.

Schedule

Schedule rules perform an action on a schedule, such as running an Image Builder pipeline to
refresh an image on a quarterly basis. There are two types of schedule expressions:

• Cron expressions – Match specific scheduling criteria using the cron syntax that can outline
simple criteria; for example, running weekly on a specific day. You can also establish more
complex criteria, such as running quarterly on the fifth day of the month, between 2 AM and
4 AM.

• Rate expressions – Specify a regular interval when the target is invoked, such as every 12
hours.

View EventBridge rules for your Image Builder pipeline

The EventBridge rules tab in the Image Builder Image pipelines detail page displays EventBridge
event buses that your account has access to, and the rules for the selected event bus that apply
to the current pipeline. This tab also links directly to the EventBridge console for creating new
resources.

Actions that link to the EventBridge console

• Create event bus

• Create rule

To learn more about EventBridge, see the following topics in the Amazon EventBridge User Guide.

• What is Amazon EventBridge

• Amazon EventBridge event buses

• Amazon EventBridge events

• Amazon EventBridge rules

View EventBridge rules for your Image Builder pipeline 523

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-bus.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-rules.html

EC2 Image Builder User Guide

Use EventBridge rules to schedule a pipeline build

For this example, we create a new schedule rule for the default event bus, using a rate expression.
The rule in this example generates an event on the event bus every 90 days. The event initiates a
pipeline build to refresh the image.

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. To see a list of the image pipelines created under your account, choose Image pipelines from
the navigation pane.

Note

The list of image pipelines includes an indicator for the type of output image that is
created by the pipeline – AMI or Docker.

3. To view details or edit a pipeline, choose the Pipeline name link. This opens the detail view for
the pipeline.

Note

You can also select the check box next to the Pipeline name, then choose View detail.

4. Open the EventBridge rules tab.

5. Keep the default event bus that is pre-selected in the Event Bus panel.

6. Choose Create rule. This takes you to the Create rule page in the Amazon EventBridge
console.

7. Enter a name and description for the rule. The rule name must be unique within the event bus
for the selected Region.

8. In the Define pattern panel, choose the Schedule option. This expands the panel, with the
Fixed rate every option selected.

9. Enter 90 in the first box, and select Days from the drop-down list.

10. Perform the following actions in the Select targets panel:

a. Select EC2 Image Builder from the Target drop-down list.

b. To apply the rule to an Image Builder pipeline, select the target pipeline from the Image
Pipeline drop-down list.

Use EventBridge rules to schedule a pipeline build 524

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

c. EventBridge needs permission to initiate a build for the selected pipeline. For this
example, keep the default option to Create a new role for this specific resource.

d. Choose Add target.

11. Choose Create

Note

To learn more about settings for rate expression rules that are not covered in this example,
see Rate expressions in the Amazon EventBridge User Guide.

Use EventBridge rules to schedule a pipeline build 525

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html#eb-rate-expressions

EC2 Image Builder User Guide

Integrate products and services in Image Builder

EC2 Image Builder integrates with AWS Marketplace and other AWS services and applications to
help you create robust, secure custom machine images.

Products

Image Builder recipes can incorporate image products from AWS Marketplace and Image Builder
managed components to provide specialized build and test functionality, as follows.

• AWS Marketplace image products – Use an image product from AWS Marketplace as the base
image in your recipe to meet organizational standards, such as CIS Hardening. When you create
a recipe from the Image Builder console, you can choose from your existing subscriptions, or
search for a specific product from AWS Marketplace. When you create a recipe from the Image
Builder API, CLI, or SDK, you can specify an image product Amazon Resource Name (ARN) to use
as your base image.

• Image Builder components – Components that you specify in your recipes can perform build
and test actions, for example, to install software or perform compliance validation. Some image
products that you subscribe to from AWS Marketplace might include a companion component
that you can use in your recipes. The CIS Hardened images include a matching AWSTOE
component that you can use in your recipe to enforce CIS Benchmarks Level 1 guidelines for your
configuration.

Note

For more information about compliance-related products, see Compliance products for
your Image Builder images.

Services

Image Builder integrates with the following AWS services to provide detailed event metrics,
logging, and monitoring. This information helps you track your activity, troubleshoot image build
issues, and create automations based on event notifications.

• AWS Organizations – AWS Organizations allows you to apply Service Control Policies (SCP) on
accounts in your organization. You can create, manage, enable, and disable individual policies.

526

EC2 Image Builder User Guide

Similar to all other AWS artifacts and services, Image Builder honors the policies defined in AWS
Organizations. AWS provides template SCPs for common scenarios, such as enforcing constraints
on member accounts to launch instances with only approved AMIs.

• AWS CloudTrail – Monitor Image Builder events that are sent to CloudTrail. For more
information about CloudTrail integration with Image Builder, see Log Image Builder API calls
using CloudTrail.

To learn more about CloudTrail, including how to turn it on and find your log files, see the AWS
CloudTrail User Guide.

• Amazon CloudWatch Logs – Monitor, store, and access your Image Builder log files with
CloudWatch. Optionally, you can save your logs to an S3 bucket. To learn more about
CloudWatch integration with Image Builder, see Monitor Image Builder logs with Amazon
CloudWatch Logs.

For more information about CloudWatch Logs, see What is Amazon CloudWatch Logs? in the
Amazon CloudWatch Logs User Guide.

• Amazon Elastic Container Registry (Amazon ECR) – Amazon ECR is a managed AWS container
image registry service that is secure, scalable, and reliable. Container images that you create with
Image Builder are stored in Amazon ECR in your source Region (where your build runs), and in
any Regions where you distribute the container image. For more information about Amazon ECR,
see the Amazon Elastic Container Registry User Guide.

• Amazon EventBridge – Connect to a stream of real-time event data from Image Builder activities
in your account. For more information about EventBridge, see What Is Amazon EventBridge? in
the Amazon EventBridge User Guide.

• Amazon Inspector – Discover vulnerabilities in your software and network settings with
automatic scans for the EC2 test instance that Image Builder launches create a new image. Image
Builder saves findings for your output image resource so that you can investigate and remediate
after your test instance terminates. For more information about scans and pricing, see What is
Amazon Inspector? in the Amazon Inspector User Guide.

Amazon Inspector can also scan your ECR repositories if you configure enhanced scanning. For
more information, see Scanning Amazon ECR container images in the Amazon Inspector User
Guide.

527

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/inspector/v1/userguide/inspector_introduction.html
https://docs.aws.amazon.com/inspector/v1/userguide/inspector_introduction.html
https://docs.aws.amazon.com/inspector/latest/user/scanning-ecr.html

EC2 Image Builder User Guide

Note

Amazon Inspector is a paid feature.

• AWS License Manager – You can attach a License Manager self-managed license to an output
AMI during the distribution process. The license that you specify for the destination Region
must already exist in that Region. For more information about self-managed licenses, see Self-
managed licenses in License Manager.

• AWS Marketplace – See a list of your current AWS Marketplace product subscriptions, and
search for image products directly from Image Builder. You can also use an image product that
you’ve subscribed to as the base image for an Image Builder recipe. For more information about
managing AWS Marketplace subscriptions, see Buying products in the AWS Marketplace Buyer
Guide.

• AWS Resource Access Manager (AWS RAM) – With AWS RAM, you can share resources with any
AWS account or through AWS Organizations. If you have multiple AWS accounts, you can create
resources centrally and use AWS RAM to share those resources with other accounts. EC2 Image
Builder allows sharing for the following resources: components, images, and image recipes.
For more information about AWS RAM, see the AWS Resource Access Manager User Guide. For
information about sharing Image Builder resources, see Share Image Builder resources with AWS
RAM.

• Amazon Simple Notification Service (Amazon SNS) – If configured, publish detailed messages
about your image status to an SNS topic that you subscribe to. For more information about
Amazon SNS, see What is Amazon SNS? in the Amazon Simple Notification Service Developer
Guide.

Product and service integration topics

• Amazon EventBridge integration in Image Builder

• Amazon Inspector integration in Image Builder

• AWS Marketplace integration in Image Builder

• Amazon SNS integration in Image Builder

• Compliance products for your Image Builder images

528

https://docs.aws.amazon.com/license-manager/latest/userguide/license-configurations.html
https://docs.aws.amazon.com/license-manager/latest/userguide/license-configurations.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-subscribing-to-products.html
https://docs.aws.amazon.com/ram/latest/userguide/what-is.html
https://docs.aws.amazon.com/sns/latest/dg/welcome.html

EC2 Image Builder User Guide

Amazon EventBridge integration in Image Builder

Amazon EventBridge is a serverless event bus service that you can use to connect your Image
Builder application with related data from other AWS services. In EventBridge, a rule matches
incoming events and sends them to targets for processing. A single rule can send an event to
multiple targets, and these events then run in parallel.

With EventBridge, you can automate your AWS services and respond automatically to system
events such as application availability issues or resource changes. Events from AWS services are
delivered to EventBridge in near real time. You can set up rules that react to incoming events
to initiate actions. For example, sending an event to a Lambda function when the status of an
EC2 instance changes from pending to running. These are called patterns. To create a rule based
on an event pattern, see Creating Amazon EventBridge rules that react to events in the Amazon
EventBridge User Guide.

Actions that can be automatically initiated include the following:

• Invoke an AWS Lambda function

• Invoke Amazon EC2 Run Command

• Relay the event to Amazon Kinesis Data Streams

• Activate an AWS Step Functions state machine

• Notify an Amazon SNS topic or an Amazon SQS queue

You can also set up scheduling rules for the default event bus to perform an action at regular
intervals, such as running an Image Builder pipeline to refresh an image on a quarterly basis. There
are two types of schedule expressions:

• cron expressions – The following example of a cron expression schedules a task to run every day
at noon UTC+0:

cron(0 12 * * ? *)

For more information about using cron expressions with EventBridge, see Cron expressions in the
Amazon EventBridge User Guide.

• rate expressions – The following example of a rate expression schedules a task to run every 12
hours:

rate(12 hour)

Amazon EventBridge 529

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html#eb-cron-expressions

EC2 Image Builder User Guide

For more information about using rate expressions with EventBridge, see Rate expressions in the
Amazon EventBridge User Guide.

For more information about how EventBridge rules integrate with Image Builder image pipelines,
see Use EventBridge rules with Image Builder pipelines.

Event messages that Image Builder sends

Image Builder sends event messages to EventBridge when there are significant changes in status
for Image Builder resources. For example, when there's a state change for an image. The following
examples show typical JSON event messages that Image Builder might send.

EC2 Image Builder Image State Change

Image Builder sends this event when the state changes for an image resource during image
creation. For example, when the image status changes from one state to another, as follows:

• From building to testing

• From testing to distribution

• From testing to failed

• From integrating to available

{
 "version": "0",
 "id": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "detail-type": "EC2 Image Builder Image State Change",
 "source": "aws.imagebuilder",
 "account": "111122223333",
 "time": "2024-01-18T17:50:56Z",
 "region": "us-west-2",
 "resources": ["arn:aws:imagebuilder:us-west-2:111122223333:image/
cmkencryptedworkflowtest-a1b2c3d4-5678-90ab-cdef-EXAMPLE22222/1.0.0/1"],
 "detail": {
 "previous-state": {
 "status": "TESTING"
 },
 "state": {
 "status": "AVAILABLE"
 }
 }

Event messages that Image Builder sends 530

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html#eb-rate-expressions

EC2 Image Builder User Guide

}

EC2 Image Builder CVE Detected

If you have CVE detection enabled for your image, Image Builder sends a message with the
results whenever an image scan completes.

{
 "version": "0",
 "id": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "detail-type": "EC2 Image Builder CVE Detected",
 "source": "aws.imagebuilder",
 "account": "111122223333",
 "time": "2023-03-01T16:59:09Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:imagebuilder:us-east-1:111122223333:image/test-image/1.0.0/1",
 "arn:aws:imagebuilder:us-east-1:111122223333:image-pipeline/test-pipeline"
],
 "detail": {
 "resource-id": "i-1234567890abcdef0",
 "finding-severity-counts": {
 "all": 0,
 "critical": 0,
 "high": 0,
 "medium": 0
 }
 }
}

EC2 Image Builder Workflow Step Waiting

Image Builder sends a message when a WaitForAction workflow step pauses to wait for an
asynchronous action to complete.

{
 "version": "0",
 "id": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "detail-type": "EC2 Image Builder Workflow Step Waiting",
 "source": "aws.imagebuilder",
 "account": "111122223333",
 "time": "2024-01-18T16:54:44Z",

Event messages that Image Builder sends 531

EC2 Image Builder User Guide

 "region": "us-west-2",
 "resources": ["arn:aws:imagebuilder:us-west-2:111122223333:image/
workflowstepwaitforactionwithvalidsnstopictest-a1b2c3d4-5678-90ab-cdef-
EXAMPLE22222/1.0.0/1", "arn:aws:imagebuilder:us-west-2:111122223333:workflow/build/
build-workflow-a1b2c3d4-5678-90ab-cdef-EXAMPLE33333/1.0.0/1"],
 "detail": {
 "workflow-execution-id": "wf-a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
 "workflow-step-execution-id": "step-a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "workflow-step-name": "TestAutoSNSStop"
 }
}

Amazon Inspector integration in Image Builder

When you activate security scanning with Amazon Inspector, it continuously scans machine
images and running instances in your account for operating system and programming language
vulnerabilities. If activated, security scanning is automatic, and Image Builder can save a snapshot
of the findings from your test instance when you create a new image. Amazon Inspector is a paid
service.

When Amazon Inspector discovers vulnerabilities in your software or network settings, it takes the
following actions:

• Notifies you that there was a finding.

• Rates the severity of the finding. The severity rating categorizes vulnerabilities to help you
prioritize your findings, and includes the following values:

• Untriaged

• Informational

• Low

• Medium

• High

• Critical

• Provides information about the finding, and links to additional resources for more detail.

• Offers remediation guidance to help you resolve the issues that generated the finding.

Configure security scans

Amazon Inspector 532

EC2 Image Builder User Guide

If you've activated Amazon Inspector for your account, Amazon Inspector automatically scans the
EC2 instances that Image Builder launches to build and test a new image. Those instances have
a short lifespan during the build and test process, and their findings would normally expire as
soon as those instances shut down. To help you investigate and remediate findings for your new
image, Image Builder can optionally save any findings that Amazon Inspector identified on your
test instance during the build process as a snapshot.

To configure security scans for your pipeline, see Configure security scans for Image Builder images
in the AWS Management Console.

Review security findings

In the Image Builder console, you can view security findings for all of your Image Builder resources
in one place. You can see all findings on the Security findings page in the Security Overview
section, or you can group your findings by vulnerability, by image pipeline, or by image. The
console defaults to display all security findings. The summary panel for the All security findings
option shows the number of findings that you have for each severity level. For more information,
see Manage security findings for Image Builder images in the AWS Management Console.

To learn more about Amazon Inspector vulnerability findings, see Understanding findings in
Amazon Inspector in the Amazon Inspector User Guide.

AWS Marketplace integration in Image Builder

AWS Marketplace is a curated digital catalog where you can find and subscribe to third-party
software, data, and services that help you build solutions to fit your business needs. AWS
Marketplace brings authenticated buyers and registered sellers together with software listings
from popular categories such as security, networking, storage, machine learning, and more.

An AWS Marketplace seller can be an independent software vendor (ISV), a reseller, or an individual
who has something to offer that works with AWS products and services. When the seller submits a
product in AWS Marketplace, they define the price of the product, and the terms and conditions of
use. Buyers agree to the pricing, terms, and conditions set for the offer. To learn more about AWS
Marketplace, see What is AWS Marketplace?

AWS Marketplace integration features

Image Builder integrates with AWS Marketplace to provide the following capabilities directly from
the Image Builder console:

AWS Marketplace 533

https://docs.aws.amazon.com/inspector/latest/user/findings-understanding.html
https://docs.aws.amazon.com/inspector/latest/user/findings-understanding.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/what-is-marketplace.html

EC2 Image Builder User Guide

• Search for image products that are available in AWS Marketplace.

• Search for AWS Marketplace image products that deliver components.

• See a list of your current AWS Marketplace product subscriptions.

• Use an AWS Marketplace image product that you've subscribed to as the base image for an
Image Builder recipe.

• Use AWS Marketplace components that you've subscribed to in an Image Builder recipe.

Image Builder integrates with AWS Marketplace to show image products and components that
you've subscribed to. You can also search for AWS Marketplace image products and components
from the Discover products page without leaving the Image Builder console.

The output AMI that Image Builder creates includes the product codes from AWS Marketplace
image products and components. You can have up to four product codes for your final customized
image.

AWS Marketplace subscriptions in Image Builder

The Subscriptions page in the AWS Marketplace section of the Image Builder console shows you a
list of the AWS Marketplace products that you're currently subscribed to. Each subscribed product
shows the following details:

• The product name. This is linked to the product detail page in AWS Marketplace. The product
detail page for your subscribed product opens in a new tab in your browser.

• The Publisher. This is linked to the publisher detail page in AWS Marketplace. The publisher
detail page opens in a new tab in your browser.

• The Version that you subscribed to.

• If there are any Associated components included with your subscribed product, Image Builder
displays a link to the component detail.

At the top of the page, you can search for a specific product by name, or you can page through
your results with the pagination controls. To use a subscribed image product in a new recipe, select
a subscribed product and choose Create new recipe. Image Builder pre-selects the first product in
your list by default.

AWS Marketplace subscriptions in Image Builder 534

EC2 Image Builder User Guide

Note

If you're looking for a product that you just subscribed to, and you don't see it in the list,
use the refresh button at the top of the tab to refresh your results. It might take a few
minutes for a new subscription to appear in the list.

Discover AWS Marketplace image products from the Image Builder
console

This section focuses on AWS Marketplace image products to use as a base image in your recipe. For
products that include associated software components, you can filter on the product owner in the
console and in the API, SDK, and CLI. For more information, see List Image Builder components. For
more information about finding, subscribing to, and using AWS Marketplace components, see Use
AWS Marketplace components to customize your image.

Discover products

To find an AWS Marketplace image product from the Image Builder console, follow these steps:

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. From the navigation pane, choose Discover products in the AWS Marketplace section.

3. You can search for image products in the Image products tab on the Discover products page.

Image Builder pre-filters products from AWS Marketplace to focus on machine images that
you can use in your Image Builder recipes. For more information about AWS Marketplace
integration with Image Builder, choose the tab that matches what you want to see.

This tab contains two panels. On the left, the Refine results panel helps you filter your results
to find the products that you want to subscribe to. On the right, the Search products panel
shows the products that meet your filter criteria, and also gives you the option to search by
product name.

Refine results

The following list shows just a few of the filters that you can apply to your product search:

• Select one or more product categories, such as infrastructure software or machine learning.

Discover AWS Marketplace image products from the Image Builder console 535

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

• Choose the operating systems for your image product or choose all products for a specific
operating system platform, for example All Linux/Unix.

• Choose one or more publishers to display their available products. Select the Show All link
to display all of the publishers that have products that fit the filters that you've applied.

Note

Publisher names are not in alphabetical order. If you're looking for a specific
publisher, like Center for Internet Security, you can enter part of the name
in the search box at the top of the All publishers dialog. You should spell out the
name, as an abbreviation, such as CIS might not produce the results that you're
looking for.
You can also browse the publisher names page by page.

Filter choices are dynamic. Each choice that you make affects your options for all of the other
categories. There are thousands of products available in AWS Marketplace, so the more you
can filter, the more likely you are to find what you want.

Search products

To find a specific product by name, you can enter part of the name in the search bar at the top
of this panel. Each product result includes the following details:

• The product name and logo. Both of these are linked to the product detail page in AWS
Marketplace. The detail page opens in a new tab in your browser. From there, you can
subscribe to the image product if you want to use it in an Image Builder recipe. For more
information, see Buying products in the AWS Marketplace Buyer Guide.

If you subscribe to the image product in AWS Marketplace, switch back to the Image Builder
tab in your browser, and refresh your list of subscribed image products to see it.

Note

It might take a few minutes before your new subscription is available.

• The publisher name. This is linked to the publisher detail page in AWS Marketplace. The
publisher detail page opens in a new tab in your browser.

Discover AWS Marketplace image products from the Image Builder console 536

https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-subscribing-to-products.html

EC2 Image Builder User Guide

• The product version.

• The product star rating, and direct links to the review section of the product detail page in
AWS Marketplace. The detail page opens in a new tab in your browser.

• The first few lines of the product description.

Directly below the search bar, you can see how many results your search produced and what
subset of those results is currently displayed. You can use additional controls on the right side
of the panel to adjust your settings for the number of products to display at one time, and the
sort order to apply to your results. You can also use the pagination control to page through
your results.

Use an AWS Marketplace image product in Image Builder recipes

Open the Create recipe page and select an AWS Marketplace image product to use as your base
image, as follows.

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder/.

2. From the navigation pane, choose Image recipes in the AWS Marketplace section. This shows
you a list of image recipes that you've created.

3. Choose Create image recipe. This opens the Create recipe page.

4. Enter your recipe Name and Version in the Recipe details section as usual.

5. In the Base image section, choose the AWS Marketplace images option. This shows you a list
of the AWS Marketplace image products that you’ve subscribed to in the Subscriptions tab.
You can choose your base image from the list.

You can also search for other image products that are available in AWS Marketplace directly
from the AWS Marketplace tab. Choose Add products, or open the AWS Marketplace tab
directly. For more information about how to set filters and search in the AWS Marketplace, see
Discover AWS Marketplace image products from the Image Builder console.

6. Enter remaining details as usual. If any or your product subscriptions include build
components, you can select them from the Build components list. Select AWS Marketplace
from the component owner type list to see them, or select Third party managed for the
CIS component.

7. Choose Create recipe.

Use an AWS Marketplace image product in Image Builder recipes 537

https://console.aws.amazon.com/imagebuilder/

EC2 Image Builder User Guide

Your final image can contain up to four product codes from AWS Marketplace image products
and components. If your selected base image and components contain more than four product
codes, Image Builder returns an error when you try to create the recipe.

Amazon SNS integration in Image Builder

Amazon Simple Notification Service (Amazon SNS) is a managed service that provides
asynchronous message delivery from publishers to subscribers (also known as producers and
consumers).

You can specify an SNS topic in your infrastructure configuration. When you create an image or
run a pipeline, Image Builder can publish detailed messages about your image status to this topic.
When the image status reaches one of the following states, Image Builder publishes a message:

• AVAILABLE

• FAILED

For an example SNS message from Image Builder, see SNS message format. If you want to create
a new SNS topic, see Getting started with Amazon SNS in the Amazon Simple Notification Service
Developer Guide.

Encrypted SNS Topics

If your SNS topic is encrypted, you must grant permission in the AWS KMS key policy for the Image
Builder service role to perform the following actions:

• kms:Decrypt

• kms:GenerateDataKey

Note

If your SNS topic is encrypted, the key that encrypts this topic must reside in the account
where the Image Builder service runs. Image Builder can't send notifications to SNS topics
that are encrypted with keys from other accounts.

Amazon Simple Notification Service 538

https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html

EC2 Image Builder User Guide

Example KMS key policy addition

The following example shows the additional section that you add to the KMS key policy. Use the
Amazon Resource Name (ARN) for the IAM service-linked role that Image Builder created under
your account when you first created an Image Builder image. To learn more about the Image
Builder service-linked role, see Use IAM service-linked roles for Image Builder.

{
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:role/aws-service-role/
imagebuilder.amazonaws.com/AWSServiceRoleForImageBuilder"
 },
 "Action": [
 "kms:GenerateDataKey*",
 "kms:Decrypt"
],
 "Resource": "*"
 }]
}

You can use one of the following methods to get the ARN.

AWS Management Console

To get the ARN for the service-linked role that Image Builder created under your account from
the AWS Management Console, follow these steps:

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. Search for ImageBuilder, and choose the following Role name from the results:
AWSServiceRoleForImageBuilder. This displays the role detail page.

4. To copy the ARN to your clipboard, choose the icon next to the ARN name.

AWS CLI

To get the ARN for the service-linked role that Image Builder created under your account from
the AWS CLI, use the IAM get-role command, as follows.

Encrypted SNS Topics 539

https://console.aws.amazon.com/iam/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-role.html

EC2 Image Builder User Guide

aws iam get-role --role-name AWSServiceRoleForImageBuilder

Partial sample output:

{
 "Role": {
 "Path": "/aws-service-role/imagebuilder.amazonaws.com/",
 "RoleName": "AWSServiceRoleForImageBuilder",
 ...
 "Arn": "arn:aws:iam::123456789012:role/aws-service-role/
imagebuilder.amazonaws.com/AWSServiceRoleForImageBuilder",
 ...
}

SNS message format

After Image Builder publishes a message to your Amazon SNS topic, other services that subscribe
to the topic can filter on the message format and determine if it meets criteria for further
action. For example, a success message might initiate a task to update an AWS Systems Manager
parameter store, or to launch an external compliance testing workflow for the output AMI.

The following example shows the JSON payload for a typical message that Image Builder publishes
when a pipeline build runs to completion, and creates a Linux image.

{
 "versionlessArn": "arn:aws:imagebuilder:us-west-1:123456789012:image/example-linux-
image",
 "semver": 1237940039285380274899124227,
 "arn": "arn:aws:imagebuilder:us-west-1:123456789012:image/example-linux-
image/1.0.0/3",
 "name": "example-linux-image",
 "version": "1.0.0",
 "type": "AMI",
 "buildVersion": 3,
 "state": {
 "status": "AVAILABLE"
 },
 "platform": "Linux",
 "imageRecipe": {
 "arn": "arn:aws:imagebuilder:us-west-1:123456789012:image-recipe/example-linux-
image/1.0.0",

SNS message format 540

EC2 Image Builder User Guide

 "name": "amjule-barebones-linux",
 "version": "1.0.0",
 "components": [
 {
 "componentArn": "arn:aws:imagebuilder:us-west-1:123456789012:component/update-
linux/1.0.2/1"
 }
],
 "platform": "Linux",
 "parentImage": "arn:aws:imagebuilder:us-west-1:987654321098:image/amazon-linux-2-
x86/2022.6.14/1",
 "blockDeviceMappings": [
 {
 "deviceName": "/dev/xvda",
 "ebs": {
 "encrypted": false,
 "deleteOnTermination": true,
 "volumeSize": 8,
 "volumeType": "gp2"
 }
 }
],
 "dateCreated": "Feb 24, 2021 12:31:54 AM",
 "tags": {
 "internalId": "1a234567-8901-2345-bcd6-ef7890123456",
 "resourceArn": "arn:aws:imagebuilder:us-west-1:123456789012:image-recipe/example-
linux-image/1.0.0"
 },
 "workingDirectory": "/tmp",
 "accountId": "462045008730"
 },
 "sourcePipelineArn": "arn:aws:imagebuilder:us-west-1:123456789012:image-pipeline/
example-linux-pipeline",
 "infrastructureConfiguration": {
 "arn": "arn:aws:imagebuilder:us-west-1:123456789012:infrastructure-configuration/
example-linux-infra-config-uswest1",
 "name": "example-linux-infra-config-uswest1",
 "instanceProfileName": "example-linux-ib-baseline-admin",
 "tags": {
 "internalId": "234abc56-d789-0123-a4e5-6b789d012c34",
 "resourceArn": "arn:aws:imagebuilder:us-west-1:123456789012:infrastructure-
configuration/example-linux-infra-config-uswest1"
 },
 "logging": {

SNS message format 541

EC2 Image Builder User Guide

 "s3Logs": {
 "s3BucketName": "amzn-s3-demo-bucket"
 }
 },
 "keyPair": "example-linux-key-pair-uswest1",
 "terminateInstanceOnFailure": true,
 "snsTopicArn": "arn:aws:sns:us-west-1:123456789012:example-linux-ibnotices-
uswest1",
 "dateCreated": "Feb 24, 2021 12:31:55 AM",
 "accountId": "123456789012"
 },
 "imageTestsConfigurationDocument": {
 "imageTestsEnabled": true,
 "timeoutMinutes": 720
 },
 "distributionConfiguration": {
 "arn": "arn:aws:imagebuilder:us-west-1:123456789012:distribution-configuration/
example-linux-distribution",
 "name": "example-linux-distribution",
 "dateCreated": "Feb 24, 2021 12:31:56 AM",
 "distributions": [
 {
 "region": "us-west-1",
 "amiDistributionConfiguration": {}
 }
],
 "tags": {
 "internalId": "345abc67-8910-12d3-4ef5-67a8b90c12de",
 "resourceArn": "arn:aws:imagebuilder:us-west-1:123456789012:distribution-
configuration/example-linux-distribution"
 },
 "accountId": "123456789012"
 },
 "dateCreated": "Jul 28, 2022 1:13:45 AM",
 "outputResources": {
 "amis": [
 {
 "region": "us-west-1",
 "image": "ami-01a23bc4def5a6789",
 "name": "example-linux-image 2022-07-28T01-14-17.416Z",
 "accountId": "123456789012"
 }
]
 },

SNS message format 542

EC2 Image Builder User Guide

 "buildExecutionId": "ab0cd12e-34fa-5678-b901-2c3456d789e0",
 "testExecutionId": "6a7b8901-cdef-234a-56b7-8cd89ef01234",
 "distributionJobId": "1f234567-8abc-9d0e-1234-fa56b7c890de",
 "integrationJobId": "432109b8-afe7-6dc5-4321-0ba98f7654e3",
 "accountId": "123456789012",
 "osVersion": "Amazon Linux 2",
 "enhancedImageMetadataEnabled": true,
 "buildType": "USER_INITIATED",
 "tags": {
 "internalId": "901e234f-a567-89bc-0123-d4e567f89a01",
 "resourceArn": "arn:aws:imagebuilder:us-west-1:123456789012:image/example-linux-
image/1.0.0/3"
 }
}

The following example shows the JSON payload for a typical message that Image Builder publishes
for a pipeline build failure for a Linux image.

{
 "versionlessArn": "arn:aws:imagebuilder:us-west-2:123456789012:image/my-example-
image",
 "semver": 1237940039285380274899124231,
 "arn": "arn:aws:imagebuilder:us-west-2:123456789012:image/my-example-image/1.0.0/7",
 "name": "My Example Image",
 "version": "1.0.0",
 "type": "AMI",
 "buildVersion": 7,
 "state": {
 "status": "FAILED",
 "reason": "Image Failure reason."
 },
 "platform": "Linux",
 "imageRecipe": {
 "arn": "arn:aws:imagebuilder:us-west-2:123456789012:image-recipe/my-example-
image/1.0.0",
 "name": "My Example Image",
 "version": "1.0.0",
 "description": "Testing Image recipe",
 "components": [
 {
 "componentArn": "arn:aws:imagebuilder:us-west-2:123456789012:component/my-
example-image-component/1.0.0/1"
 }

SNS message format 543

EC2 Image Builder User Guide

],
 "platform": "Linux",
 "parentImage": "ami-0cd12345db678d90f",
 "dateCreated": "Jun 21, 2022 11:36:14 PM",
 "tags": {
 "internalId": "1a234567-8901-2345-bcd6-ef7890123456",
 "resourceArn": "arn:aws:imagebuilder:us-west-2:123456789012:image-recipe/my-
example-image/1.0.0"
 },
 "accountId": "123456789012"
 },
 "sourcePipelineArn": "arn:aws:imagebuilder:us-west-2:123456789012:image-pipeline/my-
example-image-pipeline",
 "infrastructureConfiguration": {
 "arn": "arn:aws:imagebuilder:us-west-2:123456789012:infrastructure-configuration/
my-example-infra-config",
 "name": "SNS topic Infra config",
 "description": "An example that will retain instances of failed builds",
 "instanceTypes": [
 "t2.micro"
],
 "instanceProfileName": "EC2InstanceProfileForImageBuilder",
 "tags": {
 "internalId": "234abc56-d789-0123-a4e5-6b789d012c34",
 "resourceArn": "arn:aws:imagebuilder:us-west-2:123456789012:infrastructure-
configuration/my-example-infra-config"
 },
 "terminateInstanceOnFailure": true,
 "snsTopicArn": "arn:aws:sns:us-west-2:123456789012:example-pipeline-notification-
topic",
 "dateCreated": "Jul 5, 2022 7:31:53 PM",
 "accountId": "123456789012"
 },
 "imageTestsConfigurationDocument": {
 "imageTestsEnabled": true,
 "timeoutMinutes": 720
 },
 "distributionConfiguration": {
 "arn": "arn:aws:imagebuilder:us-west-2:123456789012:distribution-configuration/my-
example-distribution-config",
 "name": "New distribution config",
 "dateCreated": "Dec 3, 2021 9:24:22 PM",
 "distributions": [
 {

SNS message format 544

EC2 Image Builder User Guide

 "region": "us-west-2",
 "amiDistributionConfiguration": {},
 "fastLaunchConfigurations": [
 {
 "enabled": true,
 "snapshotConfiguration": {
 "targetResourceCount": 2
 },
 "maxParallelLaunches": 2,
 "launchTemplate": {
 "launchTemplateId": "lt-01234567890"
 },
 "accountId": "123456789012"
 }
]
 }
],
 "tags": {
 "internalId": "1fecd23a-4f56-7f89-01e2-345678abbe90",
 "resourceArn": "arn:aws:imagebuilder:us-west-2:123456789012:distribution-
configuration/my-example-distribution-config"
 },
 "accountId": "123456789012"
 },
 "dateCreated": "Jul 5, 2022 7:40:15 PM",
 "outputResources": {
 "amis": []
 },
 "accountId": "123456789012",
 "enhancedImageMetadataEnabled": true,
 "buildType": "SCHEDULED",
 "tags": {
 "internalId": "456c78b9-0e12-3f45-afb6-7e89b0f1a23b",
 "resourceArn": "arn:aws:imagebuilder:us-west-2:123456789012:image/my-example-
image/1.0.0/7"
 }
}

Compliance products for your Image Builder images

With constantly evolving security standards, it can be a challenge to maintain compliance
and safeguard your organization from cyber threats. To help ensure that your custom images

Compliance products 545

EC2 Image Builder User Guide

are compliant, and stay that way through automatic updates when publishers release new
versions, Image Builder integrates with AWS Marketplace compliance products and Image Builder
components.

Image Builder integrates with the following compliance products:

• Center for Internet Security (CIS) Benchmarks hardening

You can use CIS Hardened Images and the related CIS hardening components to build custom
images that comply with the latest CIS Benchmarks Level 1 guidelines. CIS Hardened Images are
available in AWS Marketplace. To learn more about how to set up and use CIS Hardened Images
and hardening components, see the Quick Start Guides in the CIS website support portal.

Note

When you subscribe to a CIS Hardened Image, you also get access to the associated
build component that runs a script to enforce CIS Benchmark Level 1 guidelines for your
configuration. For more information, see CIS hardening components.

• Security Technical Implementation Guides (STIG)

For STIG compliance, use can use Amazon-managed AWS Task Orchestrator and Executor
(AWSTOE) STIG components in your Image Builder recipes. STIG components scan your build
instance for misconfigurations and run a remediation script to correct issues that they find. We
can't guarantee STIG compliance for the images that you build with Image Builder. You must
work with your organization's compliance team to verify that your final image is compliant. For
a complete list of AWSTOE STIG components that you can use in your Image Builder recipes, see
Amazon managed STIG hardening components for Image Builder.

Compliance products 546

https://cisecurity.atlassian.net/servicedesk/customer/portal/15/article/2671771774

EC2 Image Builder User Guide

Monitor events and logs in Image Builder

To maintain the reliability, availability, and performance of your EC2 Image Builder pipelines, it's
important to monitor events and logs. Events and logs help you see the big picture and dive down
into the details when an API call fails. Image Builder integrate with services that can send alerts
and kick off automated responses when events match the criteria that you've configured.

The following topics describe monitoring techniques you can use through services that integrate
with Image Builder.

Monitor events and logs

• Log Image Builder API calls using CloudTrail

• Monitor Image Builder logs with Amazon CloudWatch Logs

Log Image Builder API calls using CloudTrail

EC2 Image Builder is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in Image Builder. CloudTrail captures all API calls for
Image Builder as events. The calls captured include calls from the Image Builder console and
code calls to the Image Builder API operations. If you create a trail, you can enable continuous
delivery of CloudTrail events to an Amazon S3 bucket, including events for Image Builder. If you
don't configure a trail, you can still view the most recent events in the CloudTrail console in Event
history. Using the information collected by CloudTrail, you can determine the request that was
made to Image Builder, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Image Builder information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Image Builder, that activity is recorded in a CloudTrail event along with other AWS service events
in Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing events with CloudTrail Event history.

For an ongoing record of events in your AWS account, including events for Image Builder, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when

CloudTrail logs 547

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

EC2 Image Builder User Guide

you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All Image Builder actions are logged by CloudTrail and are documented in the EC2
Image Builder API Reference. For example, calls to the CreateImagePipeline,
UpdateInfrastructureConfiguration, and StartImagePipelineExecution actions
generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

Monitor Image Builder logs with Amazon CloudWatch Logs

CloudWatch Logs support is turned on by default. Logs are retained on the instance during the
build process, and streamed to CloudWatch Logs. The instance logs are removed from the instance
before image creation.

Build logs are streamed to following the Image Builder CloudWatch Logs group and stream:

LogGroup:

/aws/imagebuilder/ImageName

CloudWatch Logs 548

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

EC2 Image Builder User Guide

LogStream (x.x.x/x):

ImageVersion/ImageBuildVersion

You can opt out of CloudWatch Logs streaming by removing the following permissions associated
with the instance profile.

"Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/imagebuilder/*"
 }
]

For advanced troubleshooting, you can run predefined commands and scripts using AWS Systems
Manager Run Command. For more information, see Troubleshoot Image Builder issues.

CloudWatch Logs 549

https://docs.aws.amazon.com/systems-manager/latest/userguide/run-command.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/run-command.html

EC2 Image Builder User Guide

Security in Image Builder

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to EC2 Image Builder,
see AWS services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Image Builder. The following topics show you how to configure Image Builder to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your Image Builder resources.

Topics

• Data protection and the AWS shared responsibility model in Image Builder

• Identity and Access Management integration for Image Builder

• Compliance validation resources for Image Builder

• Data redundancy and resilience in Image Builder

• Infrastructure security in Image Builder

• Patch Management for Image Builder images

• Security best practices for Image Builder

550

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

EC2 Image Builder User Guide

Data protection and the AWS shared responsibility model in
Image Builder

The AWS shared responsibility model applies to data protection in EC2 Image Builder. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Image Builder or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Data protection 551

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

EC2 Image Builder User Guide

Encryption and key management in Image Builder

Image Builder encrypts data in transit and at rest by default with a service-owned KMS key, except
for the following:

• Custom components – Image Builder encrypts custom components with your default KMS key,
or a service-owned KMS key.

• Image workflows – Image Builder can encrypt your image workflows with a customer managed
key if you specify the key during workflow creation. Image Builder handles encryption and
decryption with your key to run the workflows that you've configured for your images.

You can manage your own keys through AWS KMS. However, you don't have permission to manage
the Image Builder KMS key owned by Image Builder. For more information about managing your
KMS keys with AWS Key Management Service, see Getting Started in the AWS Key Management
Service Developer Guide.

Encryption context

To provide an additional integrity and authenticity check on your encrypted data, you have
the option of including an encryption context when you encrypt the data. When a resource is
encrypted with an encryption context, AWS KMS cryptographically binds the context to the
ciphertext. The resource can only be decrypted if the requester provides an exact, case-sensitive
match for the context.

The policy examples in this section use an encryption context that resembles the Amazon Resource
Name (ARN) of an Image Builder workflow resource.

Encrypt image workflows with a customer managed key

To add a layer of protection, you can encrypt your Image Builder workflow resources with your
own customer managed key. If you use your customer managed key to encrypt the Image Builder
workflows that you create, you must grant access in the key policy for Image Builder to use your
key when it encrypts and decrypts workflow resources. You can revoke access at any time. However,
Image Builder will not have access to any workflows that are already encrypted if you revoke access
to the key.

The process to grant Image Builder access to use your customer managed key has two steps, as
follows:

Step 1: Add key policy permissions for Image Builder workflows

Encryption and Key Management 552

https://docs.aws.amazon.com/kms/latest/developerguide/getting-started.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context

EC2 Image Builder User Guide

To enable Image Builder to encrypt and decrypt workflow resources when it creates or uses those
workflows, you must specify permissions in the KMS key policy.

This example key policy grants access for Image Builder pipelines to encrypt workflow resources
during the creation process, and decrypt workflow resources to use them. The policy also grants
access for key administrators. The encryption context and resource specification use a wildcard to
cover all Regions where you have workflow resources.

As a prerequisite for using image workflows, you created an IAM workflow execution role that
grants permission for Image Builder to run workflow actions. The principal for the first statement
shown in the key policy example here must specify your IAM workflow execution role.

For more information about customer managed keys, see Managing access to customer managed
keys in the AWS Key Management Service Developer Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow access to build images with encrypted workflow",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/YourImageBuilderExecutionRole"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "kms:EncryptionContext:aws:imagebuilder:arn":
 "arn:aws:imagebuilder:*:111122223333:workflow/*"
 }
 }
 },
 {
 "Sid": "Allow access for key administrators",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": [

Encryption and Key Management 553

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

EC2 Image Builder User Guide

 "kms:*"
],
 "Resource": "arn:aws:kms:*:111122223333:key/"
 }
]
}

Step 2: Grant key access to your workflow execution role

The IAM role that Image Builder assumes to run your workflows needs permission to use your
customer managed key. Without access to your key, Image Builder won't be able to encrypt or
decrypt your workflow resources with it.

Edit the policy for your workflow execution role to add the following policy statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow access to the workflow key",
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "arn:aws:kms:us-west-2:111122223333:key/key_ID",
 "Condition": {
 "StringLike": {
 "kms:EncryptionContext:aws:imagebuilder:arn":
 "arn:aws:imagebuilder:*:111122223333:workflow/*"
 }
 }
 }
]
}

AWS CloudTrail events for image workflows

The following examples show typical AWS CloudTrail entries for encrypting and decrypting image
workflows that are stored with a customer managed key.

Example: GenerateDataKey

Encryption and Key Management 554

EC2 Image Builder User Guide

This example shows what a CloudTrail event might look like when Image Builder invokes the AWS
KMS GenerateDataKey API action from the Image Builder CreateWorkflow API action. Image
Builder must encrypt a new workflow before it creates the workflow resource.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "PRINCIPALID1234567890:workflow-role-name",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/workflow-role-name",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "PRINCIPALID1234567890",
 "arn": "arn:aws:iam::111122223333:role/Admin",
 "accountId": "111122223333",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2023-11-21T20:29:31Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "imagebuilder.amazonaws.com"
 },
 "eventTime": "2023-11-21T20:31:03Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "imagebuilder.amazonaws.com",
 "userAgent": "imagebuilder.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {
 "aws:imagebuilder:arn": "arn:aws:imagebuilder:us-west-2:111122223333:workflow/build/
sample-encrypted-workflow/1.0.0/*",
 "aws-crypto-public-key": "key value"
 },
 "keyId": "arn:aws:kms:us-west-2:111122223333:alias/ExampleKMSKey",
 "numberOfBytes": 32
 },

Encryption and Key Management 555

EC2 Image Builder User Guide

 "responseElements": null,
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:111122223333:key/a1b2c3d4-5678-90ab-cdef-EXAMPLEzzzzz"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Example: Decrypt

This example shows what a CloudTrail event might look like when Image Builder invokes the AWS
KMS Decrypt API action from the Image Builder GetWorkflow API action. Image Builder pipelines
need to decrypt a workflow resource before they can use it.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "PRINCIPALID1234567890:workflow-role-name",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/workflow-role-name",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "PRINCIPALID1234567890",
 "arn": "arn:aws:iam::111122223333:role/Admin",
 "accountId": "111122223333",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2023-11-21T20:29:31Z",
 "mfaAuthenticated": "false"

Encryption and Key Management 556

EC2 Image Builder User Guide

 }
 },
 "invokedBy": "imagebuilder.amazonaws.com"
 },
 "eventTime": "2023-11-21T20:34:25Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "imagebuilder.amazonaws.com",
 "userAgent": "imagebuilder.amazonaws.com",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-west-2:111122223333:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLEzzzzz",
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "encryptionContext": {
 "aws:imagebuilder:arn": "arn:aws:imagebuilder:us-west-2:111122223333:workflow/build/
sample-encrypted-workflow/1.0.0/*",
 "aws-crypto-public-key": "ABC123def4567890abc12345678/90dE/F123abcDEF+4567890abc123D
+ef1=="
 }
 },
 "responseElements": null,
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEbbbbb",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:111122223333:key/a1b2c3d4-5678-90ab-cdef-EXAMPLEzzzzz"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Data storage in Image Builder

Image Builder doesn't store any of your logs in the service. All logs are saved on your Amazon EC2
instance that is used to build the image, or in your Systems Manager automation logs.

Data storage 557

EC2 Image Builder User Guide

Inter-network Traffic Privacy in Image Builder

Connections are secured between Image Builder and on-premises locations, between AZs within an
AWS Region, and between AWS Regions through HTTPS. There are no direct connections between
accounts.

Identity and Access Management integration for Image Builder

Topics

• Audience

• Authenticating with identities

• How Image Builder works with IAM policies and roles

• Manage data perimeters for S3 bucket download access in Image Builder

• Image Builder identity-based policies

• Image Builder resource-based policies

• Use AWS managed policies for EC2 Image Builder

• Use IAM service-linked roles for Image Builder

• Troubleshoot IAM issues in Image Builder

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Image Builder.

Service user – If you use the Image Builder service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more Image Builder features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
Image Builder, see Troubleshoot IAM issues in Image Builder.

Service administrator – If you're in charge of Image Builder resources at your company, you
probably have full access to Image Builder. It's your job to determine which Image Builder features
and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
Image Builder, see How Image Builder works with IAM policies and roles.

Inter-network Traffic Privacy 558

EC2 Image Builder User Guide

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to Image Builder. To view example Image Builder identity-
based policies that you can use in IAM, see Image Builder identity-based policies.

Authenticating with identities

For detailed information about how to provide authentication for people and processes in your
AWS account, see Identities in the IAM User Guide.

How Image Builder works with IAM policies and roles

Before you use IAM to manage access to Image Builder, learn what IAM features are available to use
with Image Builder.

To get a high-level view of how Image Builder and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for Image Builder

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Image Builder

To view examples of Image Builder identity-based policies, see Image Builder identity-based
policies.

Resource-based policies within Image Builder

Supports resource-based policies: Yes

Authenticating with identities 559

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

EC2 Image Builder User Guide

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Image Builder

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Image Builder actions, see Actions defined by EC2 Image Builder in the Service
Authorization Reference.

Policy actions in Image Builder use the following prefix before the action:

imagebuilder

How Image Builder works with IAM policies and roles 560

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonec2imagebuilder.html#amazonec2imagebuilder-actions-as-permissions

EC2 Image Builder User Guide

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "imagebuilder:action1",
 "imagebuilder:action2"
]

To view examples of Image Builder identity-based policies, see Image Builder identity-based
policies.

Policy resources for Image Builder

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Image Builder resource types and their ARNs, see Resources defined by EC2 Image
Builder in the Service Authorization Reference. To learn with which actions you can specify the ARN
of each resource, see Actions defined by EC2 Image Builder.

To view examples of Image Builder identity-based policies, see Image Builder identity-based
policies.

Policy condition keys for Image Builder

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How Image Builder works with IAM policies and roles 561

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonec2imagebuilder.html#amazonec2imagebuilder-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonec2imagebuilder.html#amazonec2imagebuilder-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonec2imagebuilder.html#amazonec2imagebuilder-actions-as-permissions

EC2 Image Builder User Guide

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of Image Builder condition keys, see Condition keys for EC2 Image Builder in the
Service Authorization Reference. To learn with which actions and resources you can use a condition
key, see Actions defined by EC2 Image Builder.

To view examples of Image Builder identity-based policies, see Image Builder identity-based
policies.

ACLs in Image Builder

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Image Builder

Supports ABAC (tags in policies): Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

How Image Builder works with IAM policies and roles 562

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonec2imagebuilder.html#amazonec2imagebuilder-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonec2imagebuilder.html#amazonec2imagebuilder-actions-as-permissions

EC2 Image Builder User Guide

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

Using temporary credentials with Image Builder

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switch from a user to an IAM role
(console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for Image Builder

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a

How Image Builder works with IAM policies and roles 563

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

EC2 Image Builder User Guide

different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Image Builder

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Image Builder functionality. Edit
service roles only when Image Builder provides guidance to do so.

Service-linked roles for Image Builder

Supports service-linked roles: Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about the Image Builder service-linked role, see Use IAM service-linked roles for Image
Builder.

Image Builder identity-based policies

With IAM identity-based policies, you can specify allowed or denied actions and resources, and also
the conditions under which actions are allowed or denied. Image Builder supports specific actions,
resources, and condition keys. For information about all of the elements that you use in a JSON
policy, see Actions, Resources, and Condition Keys for Amazon EC2 Image Builder in the IAM User
Guide.

How Image Builder works with IAM policies and roles 564

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonec2imagebuilder.html

EC2 Image Builder User Guide

Actions

Policy actions in Image Builder use the following prefix before the action: imagebuilder:. Policy
statements must include either an Action or NotAction element. Image Builder defines its own
set of actions that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": [
 "imagebuilder:action1",
 "imagebuilder:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word List, include the following action:

"Action": "imagebuilder:List*"

To see a list of Image Builder actions, see Actions, Resources, and Condition Keys for AWS services
in the IAM User Guide.

Managing access using policies

For detailed information about how to manage access in AWS by creating policies and attaching
them to IAM identities or AWS resources, see Policies and Permissions in the IAM User Guide.

The IAM role that you associate with your instance profile must have permissions to run the build
and test components included in your image. The following IAM role policies must be attached to
the IAM role that is associated with the instance profile:

• EC2InstanceProfileForImageBuilder

• EC2InstanceProfileForImageBuilderECRContainerBuilds

• AmazonSSMManagedInstanceCore

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How Image Builder works with IAM policies and roles 565

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

EC2 Image Builder User Guide

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

The ARN is made up of multiple nodes that help identify the resource and ensure that the name is
unique. The last nodes in the name include several variations in formatting for the resource type,
name, and ID. When Image Builder creates a resource it uses the following format:

arn:aws:imagebuilder:region:owner:resource-type/resource-name/version/
build-version

Note

The build version is not always included in the resource ARN. However, some API
operations, such as GetComponent, need the build version to uniquely identify a resource
to retrieve.

For the resources that Image Builder uses in its recipes, such as the base image or components, the
owner node can be one of the following:

• The account number of the resource owner

• For Amazon managed resources: aws

• For AWS Marketplace resources: aws-marketplace

The following example shows the ARN for a managed component to install the Amazon
CloudWatch agent on Linux:

arn:aws:imagebuilder:us-east-1:aws:component/amazon-cloudwatch-agent-linux/1.0.1/1

This example shows the ARN for a fictitious managed component from the AWS Marketplace:

How Image Builder works with IAM policies and roles 566

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_GetComponent.html

EC2 Image Builder User Guide

arn:aws:imagebuilder:us-east-1:aws-marketplace:component/example-linux-software-
component/1.0.1

For more information about getting a list of components, including the use of an ownership filter,
see List Image Builder components.

Example ARNs

The following are some examples of resource ARNs that you might specify in an IAM policy:

• Instance ARN

"Resource": "arn:aws:imagebuilder:us-
east-1:111122223333:instance/i-1234567890abcdef0"

• Wildcard (*) example to specify all instances for a given account

"Resource": "arn:aws:imagebuilder:us-east-1:111122223333:instance/*"

• Wildcard (*) example to specify all versions of a managed image workflow

"Resource": "arn:aws:imagebuilder:us-east-1:aws:workflow/build/build-image/*"

• Managed image ARN

"Resource": "arn:aws:imagebuilder:us-east-1:aws:image/amazon-linux-2-
arm64/2024.12.17/1"

• Wildcard (*) example to specify all versions of a managed image

"Resource": "arn:aws:imagebuilder:us-east-1:aws:image/amazon-linux-2-arm64/x.x.x"

Many EC2 Image Builder API actions involve multiple resources. To specify multiple resources in a
single statement, separate the ARNs with commas.

"Resource": [
 "resource1",
 "resource2"
]

How Image Builder works with IAM policies and roles 567

EC2 Image Builder User Guide

Condition keys

Image Builder provides service-specific condition keys and supports using some global condition
keys. To see all AWS global condition keys, see AWS Global Condition Context Keys in the IAM User
Guide. The following service-specific condition keys are provided.

imagebuilder:CreatedResourceTagKeys

Works with string operators.

Use this key to filter access by the presence of tag keys in the request. This allows you to manage
the resources that Image Builder creates.

Availability – This key is available to only the CreateInfrastrucutreConfiguration and
UpdateInfrastructureConfiguration APIs.

imagebuilder:CreatedResourceTag/<key>

Works with string operators.

Use this key to filter access by the tag key-value pairs that are attached to the resource that Image
Builder created. This allows you to manage Image Builder resources through defined tags.

Availability – This key is available to only the CreateInfrastrucutreConfiguration and
UpdateInfrastructureConfiguration APIs.

imagebuilder:LifecyclePolicyResourceType

Works with string operators.

Use this key to filter access by the Lifecycle resource type specified in the request.

The value for this key can be either AMI_IMAGE or CONTAINER_IMAGE.

Availability – This key is available to only the CreateLifecyclePolicy and
UpdateLifecyclePolicy APIs.

imagebuilder:Ec2MetadataHttpTokens

Works with string operators.

Use this key to filter access by the EC2 Instance Metadata HTTP Token Requirement specified in the
request.

How Image Builder works with IAM policies and roles 568

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_String
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_String
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_String
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_String

EC2 Image Builder User Guide

This value for this key can be either optional or required.

Availability – This key is available to only the CreateInfrastrucutreConfiguration and
UpdateInfrastructureConfiguration APIs.

imagebuilder:StatusTopicArn

Works with string operators.

Use this key to filter access by the SNS Topic ARN in the request to which terminal state
notifications will be published.

Availability – This key is available to only the CreateInfrastrucutreConfiguration and
UpdateInfrastructureConfiguration APIs.

Examples

To view examples of Image Builder identity-based policies, see Image Builder identity-based
policies.

Image Builder resource-based policies

Resource-based policies specify what actions a specified principal can perform on the Image
Builder resource and under what conditions. Image Builder supports resource-based permissions
policies for components, images, and image recipes. Resource-based policies let you grant usage
permission to other accounts on a per-resource basis. You can also use a resource-based policy to
allow an AWS service to access your components, images, and image recipes.

For information about how to attach a resource-based policy to a component, image, or image
recipe, see Share Image Builder resources with AWS RAM.

Note

When you update a resource policy using Image Builder, the update will appear in the RAM
console.

Authorization based on Image Builder tags

You can attach tags to Image Builder resources or pass tags in a request to Image Builder.
To control access based on tags, you provide tag information in the condition element of a

How Image Builder works with IAM policies and roles 569

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_String
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

EC2 Image Builder User Guide

policy using the imagebuilder:ResourceTag/key-name, aws:RequestTag/key-name, or
aws:TagKeys condition keys. For more information about tagging Image Builder resources, see
Tag a resource from the AWS CLI.

Image Builder IAM roles

An IAM role is an entity within your AWS account that has specific permissions.

Using temporary credentials with Image Builder

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a
cross-account role. You obtain temporary security credentials by calling AWS STS API operations
such as AssumeRole or GetFederationToken.

Service-linked roles

Service-linked roles allow AWS services to access resources in other services to complete an action
on your behalf. Service-linked roles appear in your IAM account and are owned by the service. A
user with administrative access can view but not edit the permissions for service-linked roles.

Image Builder supports service-linked roles. For information about creating or managing Image
Builder service-linked roles, see Use IAM service-linked roles for Image Builder.

Service roles

This feature allows a service to assume a service role on your behalf. This role allows the service to
access resources in other services to complete an action on your behalf. Service roles appear in your
IAM account and are owned by the account. This means that an user with administrative access
can change the permissions for this role. However, doing so might break the functionality of the
service.

Manage data perimeters for S3 bucket download access in Image
Builder

EC2 Image Builder maintains two classes of AWS service-owned S3 buckets that contain
downloadable resources needed to run Image Builder workloads in your account. If you use data
perimeters to control access to Amazon S3 in your environment, you might need to explicitly allow
access to these buckets. You can use the bucket ARN or bucket URL to allowlist these buckets,
depending on how you control access to Amazon S3.

Manage data perimeters 570

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role

EC2 Image Builder User Guide

Component management bootstrapping scripts (Required)

This S3 bucket contains bootstrapping scripts to set up the AWSTOE application on the EC2
instances that are used to create images. Image Builder requires access to download the scripts
to support build and testing for new images.

• S3 bucket ARN: arn:<AWS partition>:s3:::ec2imagebuilder-managed-
resources-<AWS Region>-prod

• S3 bucket URL: https://ec2imagebuilder-managed-resources-<AWS
Region>.s3.<AWS Region>.<AWS partition-specific domain name>

Managed components

This S3 bucket contains package payloads for Amazon managed components. Image Builder
requires access to download any managed components that are configured in your recipes.

• S3 bucket ARN: arn:<AWS partition>:s3:::ec2imagebuilder-toe-<AWS Region>-
prod

• S3 bucket URL: https://ec2imagebuilder-toe-<AWS Region>.s3.<AWS
Region>.<AWS partition-specific domain name>

Image Builder identity-based policies

Topics

• Identity-based policy best practices

• Using the Image Builder console

Identity-based policy best practices

Identity-based policies determine whether someone can create, access, or delete Image Builder
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

Identity-Based Policies 571

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

EC2 Image Builder User Guide

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Image Builder console

To access the EC2 Image Builder console, you must have a minimum set of permissions. These
permissions allow you to list and view details about the Image Builder resources in your AWS
account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (IAM users or roles) with that
policy.

To ensure that your IAM entities can use the Image Builder console, you must attach one of the
following AWS managed policies to them:

• AWSImageBuilderReadOnlyAccess policy

• AWSImageBuilderFullAccess policy

Identity-Based Policies 572

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

EC2 Image Builder User Guide

For more information about Image Builder managed policies, see Use AWS managed policies for
EC2 Image Builder.

Important

The AWSImageBuilderFullAccess policy is required to create the Image Builder service-
linked role. When you attach this policy to an IAM entity, you must also attach the
following custom policy and include the resources you want to use that do not have
imagebuilder in the resource name:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": "sns topic arn"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetInstanceProfile"
],
 "Resource": "instance profile role arn"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "instance profile role arn",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "ec2.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"

Identity-Based Policies 573

EC2 Image Builder User Guide

],
 "Resource": "bucket arn"
 }
]
}

You don't need to allow minimum console permissions for users that are making calls to only the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that you're trying to perform.

Image Builder resource-based policies

For information about how to create a component, see Use components to customize your Image
Builder image.

Restricting Image Builder component access to specific IP addresses

The following example grants permissions to any user to perform any Image Builder operations on
components. However, the request must originate from the range of IP addresses specified in the
condition.

The condition in this statement identifies the 54.240.143.* range of allowed Internet Protocol
version 4 (IPv4) IP addresses, with one exception: 54.240.143.188.

The Condition block uses the IpAddress and NotIpAddress conditions and the
aws:SourceIp condition key, which is an AWS-wide condition key. For more information about
these condition keys, see Specifying Conditions in a Policy. Theaws:sourceIp IPv4 values use the
standard CIDR notation. For more information, see IP Address Condition Operators in the IAM User
Guide.

{
 "Version": "2012-10-17",
 "Id": "IBPolicyId1",
 "Statement": [
 {
 "Sid": "IPAllow",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "imagebuilder.GetComponent:*",
 "Resource": "arn:aws:imagebuilder:::examplecomponent/*",
 "Condition": {
 "IpAddress": {"aws:SourceIp": "54.240.143.0/24"},

Resource-Based Policies 574

https://docs.aws.amazon.com/AmazonS3/latest/userguide/amazon-s3-policy-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_IPAddress

EC2 Image Builder User Guide

 "NotIpAddress": {"aws:SourceIp": "54.240.143.188/32"}
 }
 }
]
}

Use AWS managed policies for EC2 Image Builder

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWSImageBuilderFullAccess policy

The AWSImageBuilderFullAccess policy grants full access to Image Builder resources for the
role it's attached to, allowing the role to list, describe, create, update, and delete Image Builder
resources. The policy also grants targeted permissions to related AWS services that are needed,
for example, to verify resources, or to display current resources for the account in the AWS
Management Console.

Permissions details

This policy includes the following permissions:

• Image Builder – Administrative access is granted, so that the role can list, describe, create,
update, and delete Image Builder resources.

• Amazon EC2 – Access is granted for Amazon EC2 Describe actions that are needed to verify
resource existence or get lists of resources belonging to the account.

Managed policies 575

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

EC2 Image Builder User Guide

• IAM – Access is granted to get and use instance profiles whose name contains "imagebuilder",
to verify the existence of the Image Builder service-linked role via the iam:GetRole API action,
and to create the Image Builder service-linked role.

• License Manager – Access is granted to list license configurations or licenses for a resource.

• Amazon S3 – Access is granted to list buckets belonging to the account, and also Image Builder
buckets with "imagebuilder" in their names.

• Amazon SNS – Write permissions are granted to Amazon SNS to verify topic ownership for topics
containing "imagebuilder".

To view the permissions for this policy, see AWSImageBuilderFullAccess in the AWS Managed Policy
Reference.

AWSImageBuilderReadOnlyAccess policy

The AWSImageBuilderReadOnlyAccess policy provides read-only access to all Image Builder
resources. Permissions are granted to verify that the Image Builder service-linked role exists via the
iam:GetRole API action.

Permissions details

This policy includes the following permissions:

• Image Builder – Access is granted for read-only access to Image Builder resources.

• IAM – Access is granted to verify the existence of the Image Builder service-linked role via the
iam:GetRole API action.

To view the permissions for this policy, see AWSImageBuilderReadOnlyAccess in the AWS Managed
Policy Reference.

AWSServiceRoleForImageBuilder policy

The AWSServiceRoleForImageBuilder policy allows Image Builder to call AWS services on your
behalf.

Permissions details

This policy is attached to the Image Builder service-linked role when the role is created through
Systems Manager. For more information about the Image Builder service-linked role, see Use IAM
service-linked roles for Image Builder.

Managed policies 576

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSImageBuilderFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSImageBuilderReadOnlyAccess.html

EC2 Image Builder User Guide

The policy includes the following permissions:

• CloudWatch Logs – Access is granted to create and upload CloudWatch Logs to any log group
whose name starts with /aws/imagebuilder/.

• Amazon EC2 – Access is granted for Image Builder to create, take snapshots of and register
images (AMIs) that it creates and launch EC2 instances in your account. Image Builder uses
related snapshots, volumes, network interfaces, subnets, security groups, license configuration
and key pairs as required, as long as the image, instance, and volumes that are being created or
used are tagged with CreatedBy: EC2 Image Builder or CreatedBy: EC2 Fast Launch.

Image Builder can get information about Amazon EC2 images, instance attributes, instance
status, the instance types that are available to your account, launch templates, subnets, hosts,
and tags on your Amazon EC2 resources.

Image Builder can update image settings to enable or disable faster launching of Windows
instances in your account, where the image is tagged with CreatedBy: EC2 Image Builder.

Additionally, Image Builder can start, stop, and terminate instances that are running in your
account, share Amazon EBS snapshots, create and update images and launch templates, de-
register existing images, add tags, and replicate images across accounts that you have granted
permissions to via the Ec2ImageBuilderCrossAccountDistributionAccess policy. Image Builder
tagging is required for all of these actions, as described previously.

• Amazon ECR – Access is granted for Image Builder to create a repository if needed for container
image vulnerability scans, and tag the resources it creates to limit the scope of its operations.
Access is also granted for Image Builder to delete the container images that it created for the
scans after it takes snapshots of the vulnerabilities.

• EventBridge – Access is granted for Image Builder to create and manage EventBridge rules.

• IAM – Access is granted for Image Builder to pass any role in your account to Amazon EC2, and to
VM Import/Export.

• Amazon Inspector – Access is granted for Image Builder to determine when Amazon Inspector
completes build instance scans, and to collect findings for images that are configured to allow it.

• AWS KMS – Access is granted for Amazon EBS to encrypt, decrypt, or re-encrypt Amazon EBS
volumes. This is crucial to ensure that encrypted volumes work when Image Builder builds an
image.

• License Manager – Access is granted for Image Builder to update License Manager specifications
via license-manager:UpdateLicenseSpecificationsForResource.

Managed policies 577

EC2 Image Builder User Guide

• Amazon SNS – Write permissions are granted for any Amazon SNS topic in your account.

• Systems Manager – Access is granted for Image Builder to list Systems Manager commands and
their invocations, inventory entries , describe instance information and automation execution
statuses, describe hosts for instance placement support, and get command invocation details.
Image Builder can also send automation signals, and stop automation executions for any
resource in your account.

Image Builder is able to issue run command invocations to any instance that is
tagged "CreatedBy": "EC2 Image Builder" for the following script files: AWS-
RunPowerShellScript, AWS-RunShellScript, or AWSEC2-RunSysprep. Image Builder
is able to start an Systems Manager automation execution in your account for automation
documents where the name starts with ImageBuilder.

Image Builder is also able to create or delete State Manager associations for any instance in
your account, as long as the association document is AWS-GatherSoftwareInventory, and to
create the Systems Manager service-linked role in your account.

• AWS STS – Access is granted for Image Builder to assume roles named
EC2ImageBuilderDistributionCrossAccountRole from your account to any account where the
Trust policy on the role permits it. This is used for cross-account image distribution.

To view the permissions for this policy, see AWSServiceRoleForImageBuilder in the AWS Managed
Policy Reference.

Ec2ImageBuilderCrossAccountDistributionAccess policy

The Ec2ImageBuilderCrossAccountDistributionAccess policy grants permissions for Image Builder
to distribute images across accounts in target Regions. Additionally, Image Builder can describe,
copy, and apply tags to any Amazon EC2 image in the account. The policy also grants the ability to
modify AMI permissions via the ec2:ModifyImageAttribute API action.

Permissions details

This policy includes the following permissions:

• Amazon EC2 – Access is granted for Amazon EC2 to describe, copy, and modify attributes for an
image, and to create tags for any Amazon EC2 images in the account.

Managed policies 578

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSServiceRoleForImageBuilder.html

EC2 Image Builder User Guide

To view the permissions for this policy, see Ec2ImageBuilderCrossAccountDistributionAccess in the
AWS Managed Policy Reference.

EC2ImageBuilderLifecycleExecutionPolicy policy

The EC2ImageBuilderLifecycleExecutionPolicy policy grants permissions for Image Builder
to perform actions such as deprecate, disable, or delete Image Builder image resources and
their underlying resources (AMIs, snapshots) to support automated rules for image lifecycle
management tasks.

Permissions details

This policy includes the following permissions:

• Amazon EC2 – Access is granted for Amazon EC2 to perform the following actions for Amazon
Machine Images (AMIs) in the account that are tagged with CreatedBy: EC2 Image Builder.

• Enable and disable an AMI.

• Enable and disable image deprecation.

• Describe and deregister an AMI.

• Describe and modify AMI image attributes.

• Delete volume snapshots that are associated with the AMI.

• Retrieve tags for a resource.

• Add or remove tags from an AMI for deprecation.

• Amazon ECR – Access is granted for Amazon ECR to perform the following batch actions on ECR
repositories with the LifecycleExecutionAccess: EC2 Image Builder tag. Batch actions
support automated container image lifecycle rules.

• ecr:BatchGetImage

• ecr:BatchDeleteImage

Access is granted at the repository level for ECR repositories that are tagged with
LifecycleExecutionAccess: EC2 Image Builder.

• AWS Resource groups – Access is granted for Image Builder to get resources based on tags.

• EC2 Image Builder – Access is granted for Image Builder to delete Image Builder image
resources.

Managed policies 579

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/Ec2ImageBuilderCrossAccountDistributionAccess.html

EC2 Image Builder User Guide

To view the permissions for this policy, see EC2ImageBuilderLifecycleExecutionPolicy in the AWS
Managed Policy Reference.

EC2InstanceProfileForImageBuilder policy

The EC2InstanceProfileForImageBuilder policy grants the minimum permissions required for an
EC2 instance to work with Image Builder. This does not include permissions required to use the
Systems Manager Agent.

Permissions details

This policy includes the following permissions:

• CloudWatch Logs – Access is granted to create and upload CloudWatch Logs to any log group
whose name starts with /aws/imagebuilder/.

• Amazon EC2 – Access is granted to describe volumes and snapshots, to create snapshots of
volume or snapshot resources that Image Builder created, and to create tags for Image Builder
resources.

• Image Builder – Access is granted to get any Image Builder or AWS Marketplace component.

• AWS KMS – Access is granted to decrypt an Image Builder component, if it was encrypted via
AWS KMS.

• Amazon S3 – Access is granted to get objects stored in an Amazon S3 bucket whose name starts
with ec2imagebuilder-, or resources that have an ISO file extension.

To view the permissions for this policy, see EC2InstanceProfileForImageBuilder in the AWS Managed
Policy Reference.

EC2InstanceProfileForImageBuilderECRContainerBuilds policy

The EC2InstanceProfileForImageBuilderECRContainerBuilds policy grants the minimum
permissions required for an EC2 instance when working with Image Builder to build Docker images
and then register and store the images in an Amazon ECR container repository. This does not
include permissions required to use the Systems Manager Agent.

Permissions details

This policy includes the following permissions:

Managed policies 580

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/EC2ImageBuilderLifecycleExecutionPolicy.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/EC2InstanceProfileForImageBuilder.html

EC2 Image Builder User Guide

• CloudWatch Logs – Access is granted to create and upload CloudWatch Logs to any log group
whose name starts with /aws/imagebuilder/.

• Amazon ECR – Access is granted for Amazon ECR to get, register, and store a container image,
and to get an authorization token.

• Image Builder – Access is granted to get an Image Builder component or container recipe.

• AWS KMS – Access is granted to decrypt an Image Builder component or container recipe, if it
was encrypted via AWS KMS.

• Amazon S3 – Access is granted to get objects stored in an Amazon S3 bucket whose name starts
with ec2imagebuilder-.

To view the permissions for this policy, see EC2InstanceProfileForImageBuilderECRContainerBuilds
in the AWS Managed Policy Reference.

Image Builder updates to AWS managed policies

This section provides information about updates to AWS managed policies for Image Builder
since this service began tracking these changes. For automatic alerts about changes to this page,
subscribe to the RSS feed on the Image Builder document history page.

Change Description Date

AWSServiceRoleForI
mageBuilder – Update to an
existing policy

Image Builder made the
following changes to the
service role to support the
import of Microsoft client OS
ISO files as the base image.

•
Added ec2:RegisterImage
to allow Image Builder
to create a snapshot and
 create and register an AMI
whose baseline operating
system was imported from
verified ISO disk files.

December 30, 2024

Managed policies 581

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/EC2InstanceProfileForImageBuilderECRContainerBuilds.html

EC2 Image Builder User Guide

Change Description Date

EC2InstanceProfileForImageB
uilder – Update to an existing
policy

Image Builder made the
following changes to the
instance profile policy to
support image creation from
disk image files.

•
Added the following ec2
actions: DescribeVolumes
and DescribeSnapshots
on all resources to retrieve
details. Also added the
 following actions for
resources that were created
by Image Builder: CreateS
napshot for volume and
snapshot resources, and
CreateTags. Added s3:GetO
bject for resources with an
"ISO" file extension.

December 30, 2024

EC2InstanceProfileForImageB
uilder – Updated policy

Image Builder updated the
EC2InstanceProfile
ForImageBuilder policy
to allow Image Builder to get
AWS Marketplace component
s.

December 2, 2024

EC2ImageBuilderLifecycleExe
cutionPolicy – New policy

Image Builder added the new
EC2ImageBuilderLif
ecycleExecutionPol
icy policy that contains
permissions for image
lifecycle management.

November 17, 2023

Managed policies 582

EC2 Image Builder User Guide

Change Description Date

AWSServiceRoleForI
mageBuilder – Update to an
existing policy

Image Builder made the
following changes to the
service role to provide
instance placement support.

•
Added ec2:DescribeHosts
enables Image Builder
to poll the hostId to
determine when it's in a
valid state to launch an
instance.

•
Added ssm:GetCo
mmandInvocation, API
action to improve the
method that Image Builder
uses to get details of the
command invocation.

October 19, 2023

Managed policies 583

EC2 Image Builder User Guide

Change Description Date

AWSServiceRoleForI
mageBuilder – Update to an
existing policy

Image Builder made the
following changes to the
service role to provide
instance placement support.

•
Added ec2:DescribeHosts
enable Image Builder
to poll the hostId to
determine when it's in a
valid state to launch an
instance.

•
Added ssm:GetCo
mmandInvocation, API
action to improve the
method that Image Builder
uses to get details of the
command invocation.

September 28, 2023

Managed policies 584

EC2 Image Builder User Guide

Change Description Date

AWSServiceRoleForI
mageBuilder – Update to an
existing policy

Image Builder made the
following changes to the
service role to allow Image
Builder workflows to collect
vulnerability findings for both
AMI and ECR container image
builds. The new permissions
support the CVE detection
and reporting feature.

•
Added inspector2:ListCov
erage and inspector
2:ListFindings to allow
Image Builder to determine
 when Amazon Inspector
completes test instance
scans, and to collect
findings for images that
are configured to allow it.

•
Added ecr:CreateReposito
ry, with a requirement
for Image Builder to
tag the repository with
CreatedBy: EC2 Image
Builder (tag-on-create).
Also added ecr:TagRe
source (required for tag-
on-create) with the same
CreatedBy tag constrain
t, and an additional
 constraint that requires the
repository name to start
with image-builder-

March 30, 2023

Managed policies 585

EC2 Image Builder User Guide

Change Description Date

*. The name constraint
prevents the escalation
of privileges and prevents
changes to repositories
that Image Builder didn't
create.

•
Added ecr:BatchDeleteIma
ge for ECR repositories
tagged with CreatedBy
: EC2 Image
Builder. This permissio
n requires the repository
name to start with image-
builder-* .

•
Added event permissio
ns for Image Builder to
create and manage Amazon
EventBridge managed rules
that include ImageBuil
der-* in the name.

AWSServiceRoleForI
mageBuilder – Update to an
existing policy

Image Builder made the
following changes to the
service role:

•
Added License Manager
licenses as a resource for
the ec2:RunInstance call
to allow customers to use
base image AMIs that are
associated with a license
configuration.

March 22, 2022

Managed policies 586

EC2 Image Builder User Guide

Change Description Date

AWSServiceRoleForI
mageBuilder – Update to an
existing policy

Image Builder made the
following changes to the
service role:

•
Added permissions for
EC2 EnableFastLaunch
API action, to enable and
disable faster launching for
Windows instances.

•
Tightened scope more for
ec2:CreateTags action and
resource tag conditions.

February 21, 2022

AWSServiceRoleForI
mageBuilder – Update to an
existing policy

Image Builder made the
following changes to the
service role:

•
Added permissions to call
the VMIE service to import
a VM and create a base AMI
from it.

•
Tightened scope for
ec2:CreateTags action and
resource tag conditions.

November 20, 2021

AWSServiceRoleForI
mageBuilder – Update to an
existing policy

Image Builder added new
permissions to fix issues
where more than one
inventory association causes
the image build to get stuck.

August 11, 2021

Managed policies 587

EC2 Image Builder User Guide

Change Description Date

AWSImageBuilderFullAccess
– Update to an existing policy

Image Builder made the
following changes to the full
access role:

•
Added permissions to allow
ec2:DescribeInstan
ceTypeOffereings .

•
Added permissions to call
ec2:DescribeInstan
ceTypeOffereings to
enable the Image Builder
 console to accurately
reflect the instance types
that are available in the
account.

April 13, 2021

Image Builder started
tracking changes

Image Builder started
tracking changes for its AWS
managed policies.

April 02, 2021

Use IAM service-linked roles for Image Builder

EC2 Image Builder uses AWS Identity and Access Management (IAM) service-linked roles. A service-
linked role is a unique type of IAM role that is linked directly to Image Builder. Service-linked roles
are predefined by Image Builder and include all of the permissions that the service requires to call
other AWS services on your behalf.

A service-linked role makes setting up Image Builder more efficient, because you don’t have to
add the necessary permissions manually. Image Builder defines the permissions of its service-
linked roles, and unless defined otherwise, only Image Builder can assume its roles. The defined
permissions include the trust policy and the permissions policy. The permissions policy cannot be
attached to any other IAM entity.

Service-linked roles 588

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

EC2 Image Builder User Guide

For information about other services that support service-linked roles, see AWS services That Work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Image Builder

Image Builder uses the AWSServiceRoleForImageBuilder service-linked role to allow EC2
Image Builder to access AWS resources on your behalf. The service-linked role trusts the
imagebuilder.amazonaws.com service to assume the role.

You don't need to manually create this service-linked role. When you create your first Image
Builder image in the AWS Management Console, the AWS CLI, or the AWS API, Image Builder
creates the service-linked role for you.

The following actions create a new image:

• Run the pipeline wizard in the Image Builder console to create a custom image.

• Use one of the following API actions, or its corresponding AWS CLI command:

• The CreateImage API action (create-image in the AWS CLI).

• The ImportVmImage API action (import-vm-image in the AWS CLI).

• The StartImagePipelineExecution API action (start-image-pipeline-execution in the AWS
CLI).

Important

If the service-linked role is deleted from your account, you can use the same process to
create it again. When you create your first EC2 Image Builder resource, Image Builder
creates the service-linked role for you again.

To see permissions for the AWSServiceRoleForImageBuilder, see the
AWSServiceRoleForImageBuilder policy page. To learn more about configuring permissions for a
service-linked role, see Service-Linked Role Permissions in the IAM User Guide.

Service-linked roles 589

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_CreateImage.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/create-image.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_ImportVmImage.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/import-vm-image.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_StartImagePipelineExecution.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/imagebuilder/start-image-pipeline-execution.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

EC2 Image Builder User Guide

Removing an Image Builder service-linked role from your account

You can use the IAM console, the AWS CLI, or the AWS API to manually remove the service-linked
role for Image Builder from your account. However, before you do this, you must ensure that there
are no Image Builder resources enabled that refer to it.

Note

If the Image Builder service is using the role when you try to delete the resources, the
deletion might fail. If that happens, wait for a few minutes and try the operation again.

Clean up Image Builder resources used by the AWSServiceRoleForImageBuilder role

1. Verify that no pipeline builds are running before you start. To cancel a running build, use the
cancel-image-creation command from the AWS CLI.

aws imagebuilder cancel-image-creation --image-build-version-
arn arn:aws:imagebuilder:us-east-1:123456789012:image-pipeline/sample-pipeline

2. Change all pipeline schedules to use a manual build process, or delete them if you won't be
using them again. For more information about deleting resources, see Delete outdated or
unused Image Builder resources.

Delete the service-linked role using IAM

You can use the IAM console, the AWS CLI, or the AWS API to delete the
AWSServiceRoleForImageBuilder role from your account. For more information, see Deleting
a Service-Linked Role in the IAM User Guide.

Supported Regions for Image Builder service-linked roles

Image Builder supports using service-linked roles in all of the AWS Regions where the service is
available. For the list of supported AWS Regions, see AWS Regions and Endpoints.

Troubleshoot IAM issues in Image Builder

Topics

• I am not authorized to perform an action in Image Builder

Troubleshooting 590

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role

EC2 Image Builder User Guide

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Image Builder resources

I am not authorized to perform an action in Image Builder

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
imagebuilder:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 imagebuilder:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the imagebuilder:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Image Builder.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Image Builder. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

Troubleshooting 591

EC2 Image Builder User Guide

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Image Builder
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Image Builder supports these features, see How Image Builder works with IAM
policies and roles.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Compliance validation resources for Image Builder

EC2 Image Builder is not in scope of any AWS compliance programs.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using Image Builder is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

Compliance validation 592

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

EC2 Image Builder User Guide

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

You can incorporate compliance products from AWS Marketplace or components from AWS Task
Orchestrator and Executor (AWSTOE) into your Image Builder images to help ensure that your
images are compliant. For more information, see Compliance products for your Image Builder
images.

Data redundancy and resilience in Image Builder

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

The EC2 Image Builder service allows you to distribute images built in one Region with other
Regions, giving them multi-Region resiliency for AMIs. There is no mechanism to "back up" image
pipelines, recipes, or components. You can store the recipe and component documents outside of
the Image Builder service, such as in an Amazon S3 bucket.

The EC2 Image Builder cannot be configured for High Availability (HA). You can distribute images
to multiple Regions to make the images more highly available.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Resilience 593

https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://aws.amazon.com/about-aws/global-infrastructure/

EC2 Image Builder User Guide

Infrastructure security in Image Builder

The AWS global network provides security capabilities and controls network access for services like
EC2 Image Builder. For more information about the infrastructure security that AWS provides for its
services, see the Infrastructure Security section in the Introduction to AWS Security whitepaper.

To send requests through the AWS global network for Image Builder API actions, your client
software must comply with the following security guidelines:

• To send requests for Image Builder API actions, client software must use a supported version of
Transport Layer Security (TLS).

Note

AWS is phasing out support for TLS versions 1.0 and 1.1. We strongly recommend that
you update your client software to use TLS version 1.2 or later so that you can still
connect. For more information, see this AWS Security Blog post.

• Client software must support cipher suites with perfect forward secrecy (PFS), such as Ephemeral
Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most current systems,
such as Java 7 and later, support these modes.

• You must sign your API requests with an access key ID and a secret access key that is associated
with an AWS Identity and Access Management (IAM) principal. Or you can use the AWS Security
Token Service (AWS STS) to generate temporary security credentials for your requests.

Additionally, the EC2 instances that Image Builder uses to build and test images must have access
to AWS Systems Manager.

Patch Management for Image Builder images

AWS provides updated managed AMIs each month that have the latest updates and security
patches applied for the following operating systems. You can use these AMIs as the base image for
your customizations. For more information, see Supported operating systems.

• Linux distributions including Amazon Linux 2, AL2023, Red Hat Enterprise Linux (RHEL), CentOS,
Ubuntu, SUSE Linux Enterprise Server

• Windows Server 2016 and later

Infrastructure security 594

https://docs.aws.amazon.com/whitepapers/latest/introduction-aws-security/infrastructure-security.html
https://aws.amazon.com/blogs/security/tls-1-2-required-for-aws-endpoints/
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html

EC2 Image Builder User Guide

• macOS 10.14.x and later

After you create a custom image, you are responsible for Amazon EC2 system patching, per
the shared responsibility model. If the EC2 instances in your application workload can be easily
replaced, then it might be most efficient to update the base AMI and redeploy all compute nodes
based on this image.

Note

For macOS patching, we recommend that you create a new version of your recipe that
uses the latest managed AMI for the base image, and then build an updated custom image
from the recipe and your other image build resources. If your Mac instances are not easily
replaced, see the Update the operating system and software on Mac instances page in the
Amazon EC2 User Guide for more information.

The following are two ways you can keep your Image Builder AMIs up to date.

• AWS-provided patching components – EC2 Image Builder provides the following build
components that install all pending operating system updates:

• update-linux

• update-windows

These components use the UpdateOS action module. For more information, see UpdateOS. The
components can be added to your image build pipelines by selecting them from the list of AWS-
provided components.

• Custom build components with patching operations – To selectively install or update patches
on operating systems of supported AMIs, you can author an Image Builder component to
install the required patches. A custom component can install patches using shell scripts (Bash
or PowerShell), or it can use the UpdateOS action module to specify patches for installation
or exclusion. For more information, see Action modules supported by AWSTOE component
manager.

Component that uses the UpdateOS action module (Linux and Windows only. The UpdateOS
action module is not supported for macOS.)

schemaVersion: 1.0

Patch management 595

https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/mac-instance-updates.html

EC2 Image Builder User Guide

phases:
 - name: build
 steps:
 - name: UpdateOS
 action: UpdateOS

Component that uses Bash to install yum updates

schemaVersion: 1.0
phases:
 - name: build
 steps:
 - name: InstallYumUpdates
 action: ExecuteBash
 inputs:
 commands:
 - sudo yum update -y

Security best practices for Image Builder

EC2 Image Builder provides a number of security features to consider as you develop and
implement your own security policies. The following best practices are general guidelines and don’t
represent a complete security solution. Because these best practices might not be appropriate or
sufficient for your environment, treat them as helpful considerations rather than prescriptions.

• Do not use overly-permissive security groups in Image Builder recipes.

• Do not share images with accounts that you do not trust.

• Do not make images public that have private or sensitive data.

• Apply all available Windows or Linux security patches during image builds.

• Periodically apply managed AMI updates to your macOS recipes and create new images to launch
instances that have the latest security patches.

We strongly recommend that you test your images to validate the security posture and applicable
security compliance levels. Solutions such as Amazon Inspector can help validate the security and
compliance posture of images.

IMDSv2 for Image Builder pipelines

Best practices 596

https://aws.amazon.com/inspector/

EC2 Image Builder User Guide

When your Image Builder pipeline runs, it sends HTTP requests to launch EC2 instances that Image
Builder uses to build and test your image. To configure the version of IMDS that your pipeline
uses for the launch requests, set the httpTokens parameter in your Image Builder infrastructure
configuration instance metadata settings.

Note

We recommend that you configure all EC2 instances that Image Builder launches from a
pipeline build to use IMDSv2 so that instance metadata retrieval requests require a signed
token header.

For more information about Image Builder infrastructure configuration, see Manage Image Builder
infrastructure configuration. For more information about EC2 instance metadata options for Linux
images, see Configure the instance metadata options in the Amazon EC2 User Guide. For Windows
images, see Configure the instance metadata options in the Amazon EC2 User Guide.

Required post-build clean up

After Image Builder completes all of the build steps for your custom image, Image Builder prepares
the build instance for testing and image creation. Before shutting down the build instance to create
the snapshot, Image Builder performs the following clean up to ensure the security of your image:

Linux

The Image Builder pipeline runs a clean up script to help ensure that the final image follows
security best practices, and to remove any build artifacts or settings that should not carry over
to your snapshot. However, you can skip sections of the script, or override the user data entirely.
Therefore, the images produced by Image Builder pipelines are not necessarily compliant with
any specific regulatory criteria.

When the pipeline completes its build and test stages, Image Builder automatically runs the
following clean-up script just before it creates the output image.

Important

If you override User data in your recipe, the script doesn't run. In that case, make
sure that you include a command in your user data that creates an empty file named

Required post-build clean up 597

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-options.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-options.html

EC2 Image Builder User Guide

perform_cleanup. Image Builder detects this file and runs the clean-up script prior to
creating the new image.

#!/bin/bash
if [[! -f {{workingDirectory}}/perform_cleanup]]; then
 echo "Skipping cleanup"
 exit 0
else
 sudo rm -f {{workingDirectory}}/perform_cleanup
fi

function cleanup() {
 FILES=("$@")
 for FILE in "${FILES[@]}"; do
 if [[-f "$FILE"]]; then
 echo "Deleting $FILE";
 sudo shred -zuf $FILE;
 fi;
 if [[-f $FILE]]; then
 echo "Failed to delete '$FILE'. Failing."
 exit 1
 fi;
 done
};

Clean up for cloud-init files
CLOUD_INIT_FILES=(
 "/etc/sudoers.d/90-cloud-init-users"
 "/etc/locale.conf"
 "/var/log/cloud-init.log"
 "/var/log/cloud-init-output.log"
)
if [[-f {{workingDirectory}}/skip_cleanup_cloudinit_files]]; then
 echo "Skipping cleanup of cloud init files"
else
 echo "Cleaning up cloud init files"
 cleanup "${CLOUD_INIT_FILES[@]}"
 if [[$(sudo find /var/lib/cloud -type f | sudo wc -l) -gt 0]]; then
 echo "Deleting files within /var/lib/cloud/*"
 sudo find /var/lib/cloud -type f -exec shred -zuf {} \;
 fi;

Required post-build clean up 598

EC2 Image Builder User Guide

 if [[$(sudo ls /var/lib/cloud | sudo wc -l) -gt 0]]; then
 echo "Deleting /var/lib/cloud/*"
 sudo rm -rf /var/lib/cloud/* || true
 fi;
fi;

Clean up for temporary instance files
INSTANCE_FILES=(
 "/etc/.updated"
 "/etc/aliases.db"
 "/etc/hostname"
 "/var/lib/misc/postfix.aliasesdb-stamp"
 "/var/lib/postfix/master.lock"
 "/var/spool/postfix/pid/master.pid"
 "/var/.updated"
 "/var/cache/yum/x86_64/2/.gpgkeyschecked.yum"
)
if [[-f {{workingDirectory}}/skip_cleanup_instance_files]]; then
 echo "Skipping cleanup of instance files"
else
 echo "Cleaning up instance files"
 cleanup "${INSTANCE_FILES[@]}"
fi;

Clean up for ssh files
SSH_FILES=(
 "/etc/ssh/ssh_host_rsa_key"
 "/etc/ssh/ssh_host_rsa_key.pub"
 "/etc/ssh/ssh_host_ecdsa_key"
 "/etc/ssh/ssh_host_ecdsa_key.pub"
 "/etc/ssh/ssh_host_ed25519_key"
 "/etc/ssh/ssh_host_ed25519_key.pub"
 "/root/.ssh/authorized_keys"
)
if [[-f {{workingDirectory}}/skip_cleanup_ssh_files]]; then
 echo "Skipping cleanup of ssh files"
else
 echo "Cleaning up ssh files"
 cleanup "${SSH_FILES[@]}"
 USERS=$(ls /home/)
 for user in $USERS; do

Required post-build clean up 599

EC2 Image Builder User Guide

 echo Deleting /home/"$user"/.ssh/authorized_keys;
 sudo find /home/"$user"/.ssh/authorized_keys -type f -exec shred -zuf {} \;
 done
 for user in $USERS; do
 if [[-f /home/"$user"/.ssh/authorized_keys]]; then
 echo Failed to delete /home/"$user"/.ssh/authorized_keys;
 exit 1
 fi;
 done;
fi;

Clean up for instance log files
INSTANCE_LOG_FILES=(
 "/var/log/audit/audit.log"
 "/var/log/boot.log"
 "/var/log/dmesg"
 "/var/log/cron"
)
if [[-f {{workingDirectory}}/skip_cleanup_instance_log_files]]; then
 echo "Skipping cleanup of instance log files"
else
 echo "Cleaning up instance log files"
 cleanup "${INSTANCE_LOG_FILES[@]}"
fi;

Clean up for TOE files
if [[-f {{workingDirectory}}/skip_cleanup_toe_files]]; then
 echo "Skipping cleanup of TOE files"
else
 echo "Cleaning TOE files"
 if [[$(sudo find {{workingDirectory}}/TOE_* -type f | sudo wc -l) -gt 0]];
 then
 echo "Deleting files within {{workingDirectory}}/TOE_*"
 sudo find {{workingDirectory}}/TOE_* -type f -exec shred -zuf {} \;
 fi
 if [[$(sudo find {{workingDirectory}}/TOE_* -type f | sudo wc -l) -gt 0]];
 then
 echo "Failed to delete {{workingDirectory}}/TOE_*"
 exit 1
 fi
 if [[$(sudo find {{workingDirectory}}/TOE_* -type d | sudo wc -l) -gt 0]];
 then
 echo "Deleting {{workingDirectory}}/TOE_*"

Required post-build clean up 600

EC2 Image Builder User Guide

 sudo rm -rf {{workingDirectory}}/TOE_*
 fi
 if [[$(sudo find {{workingDirectory}}/TOE_* -type d | sudo wc -l) -gt 0]];
 then
 echo "Failed to delete {{workingDirectory}}/TOE_*"
 exit 1
 fi
fi

Clean up for ssm log files
if [[-f {{workingDirectory}}/skip_cleanup_ssm_log_files]]; then
 echo "Skipping cleanup of ssm log files"
else
 echo "Cleaning up ssm log files"
 if [[$(sudo find /var/log/amazon/ssm -type f | sudo wc -l) -gt 0]]; then
 echo "Deleting files within /var/log/amazon/ssm/*"
 sudo find /var/log/amazon/ssm -type f -exec shred -zuf {} \;
 fi
 if [[$(sudo find /var/log/amazon/ssm -type f | sudo wc -l) -gt 0]]; then
 echo "Failed to delete /var/log/amazon/ssm"
 exit 1
 fi
 if [[-d "/var/log/amazon/ssm"]]; then
 echo "Deleting /var/log/amazon/ssm/*"
 sudo rm -rf /var/log/amazon/ssm
 fi
 if [[-d "/var/log/amazon/ssm"]]; then
 echo "Failed to delete /var/log/amazon/ssm"
 exit 1
 fi
fi

if [[$(sudo find /var/log/sa/sa* -type f | sudo wc -l) -gt 0]]; then
 echo "Deleting /var/log/sa/sa*"
 sudo shred -zuf /var/log/sa/sa*
fi
if [[$(sudo find /var/log/sa/sa* -type f | sudo wc -l) -gt 0]]; then
 echo "Failed to delete /var/log/sa/sa*"
 exit 1
fi

if [[$(sudo find /var/lib/dhclient/dhclient*.lease -type f | sudo wc -l) -gt
 0]]; then

Required post-build clean up 601

EC2 Image Builder User Guide

 echo "Deleting /var/lib/dhclient/dhclient*.lease"
 sudo shred -zuf /var/lib/dhclient/dhclient*.lease
fi
if [[$(sudo find /var/lib/dhclient/dhclient*.lease -type f | sudo wc -l) -gt
 0]]; then
 echo "Failed to delete /var/lib/dhclient/dhclient*.lease"
 exit 1
fi

if [[$(sudo find /var/tmp -type f | sudo wc -l) -gt 0]]; then
 echo "Deleting files within /var/tmp/*"
 sudo find /var/tmp -type f -exec shred -zuf {} \;
fi
if [[$(sudo find /var/tmp -type f | sudo wc -l) -gt 0]]; then
 echo "Failed to delete /var/tmp"
 exit 1
fi
if [[$(sudo ls /var/tmp | sudo wc -l) -gt 0]]; then
 echo "Deleting /var/tmp/*"
 sudo rm -rf /var/tmp/*
fi

Shredding is not guaranteed to work well on rolling logs

if [[-f "/var/lib/rsyslog/imjournal.state"]]; then
 echo "Deleting /var/lib/rsyslog/imjournal.state"
 sudo shred -zuf /var/lib/rsyslog/imjournal.state
 sudo rm -f /var/lib/rsyslog/imjournal.state
fi

if [[$(sudo ls /var/log/journal/ | sudo wc -l) -gt 0]]; then
 echo "Deleting /var/log/journal/*"
 sudo find /var/log/journal/ -type f -exec shred -zuf {} \;
 sudo rm -rf /var/log/journal/*
fi

sudo touch /etc/machine-id

Windows

After the Image Builder pipeline customizes Windows images, it runs the Microsoft Sysprep
utility. These actions follow AWS best practices for hardening and cleaning the image.

Required post-build clean up 602

https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/sysprep--generalize--a-windows-installation?view=windows-11
https://aws.amazon.com/articles/public-ami-publishing-hardening-and-clean-up-requirements/

EC2 Image Builder User Guide

macOS

The Image Builder pipeline runs a clean up script to help ensure that the final image follows
security best practices, and to remove any build artifacts or settings that should not carry over
to your snapshot. However, you can skip sections of the script, or override the user data entirely.
Therefore, the images produced by Image Builder pipelines are not necessarily compliant with
any specific regulatory criteria.

When the pipeline completes its build and test stages, Image Builder automatically runs the
following clean-up script just before it creates the output image.

Important

If you override User data in your recipe, the script doesn't run. In that case, make
sure that you include a command in your user data that creates an empty file named
perform_cleanup. Image Builder detects this file and runs the clean-up script prior to
creating the new image.

#!/bin/bash
if [[! -f {{workingDirectory}}/perform_cleanup]]; then
 echo "Skipping cleanup"
 exit 0
else
 sudo rm -f {{workingDirectory}}/perform_cleanup
fi

function cleanup() {
 FILES=("$@")
 for FILE in "${FILES[@]}"; do
 if [[-f "$FILE"]]; then
 echo "Deleting $FILE";
 sudo rm -f $FILE;
 fi;
 if [[-f $FILE]]; then
 echo "Failed to delete '$FILE'. Failing."
 exit 1
 fi;
 done
};

Required post-build clean up 603

EC2 Image Builder User Guide

Clean up for cloud-init files
CLOUD_INIT_FILES=(
 "/etc/sudoers.d/90-cloud-init-users"
 "/etc/locale.conf"
 "/var/log/cloud-init.log"
 "/var/log/cloud-init-output.log"
)
if [[-f {{workingDirectory}}/skip_cleanup_cloudinit_files]]; then
 echo "Skipping cleanup of cloud init files"
else
 echo "Cleaning up cloud init files"
 cleanup "${CLOUD_INIT_FILES[@]}"
 if [[$(sudo find /var/lib/cloud -type f | sudo wc -l) -gt 0]]; then
 echo "Deleting files within /var/lib/cloud/*"
 sudo find /var/lib/cloud -type f -exec rm -f {} \;
 fi;

 if [[$(sudo ls /var/lib/cloud | sudo wc -l) -gt 0]]; then
 echo "Deleting /var/lib/cloud/*"
 sudo rm -rf /var/lib/cloud/* || true
 fi;
fi;

Clean up for temporary instance files
INSTANCE_FILES=(
 "/etc/.updated"
 "/etc/aliases.db"
 "/etc/hostname"
 "/var/lib/misc/postfix.aliasesdb-stamp"
 "/var/lib/postfix/master.lock"
 "/var/spool/postfix/pid/master.pid"
 "/var/.updated"
 "/var/cache/yum/x86_64/2/.gpgkeyschecked.yum"
)
if [[-f {{workingDirectory}}/skip_cleanup_instance_files]]; then
 echo "Skipping cleanup of instance files"
else
 echo "Cleaning up instance files"
 cleanup "${INSTANCE_FILES[@]}"
fi;

Clean up for ssh files

Required post-build clean up 604

EC2 Image Builder User Guide

SSH_FILES=(
 "/etc/ssh/ssh_host_rsa_key"
 "/etc/ssh/ssh_host_rsa_key.pub"
 "/etc/ssh/ssh_host_ecdsa_key"
 "/etc/ssh/ssh_host_ecdsa_key.pub"
 "/etc/ssh/ssh_host_ed25519_key"
 "/etc/ssh/ssh_host_ed25519_key.pub"
 "/root/.ssh/authorized_keys"
)
if [[-f {{workingDirectory}}/skip_cleanup_ssh_files]]; then
 echo "Skipping cleanup of ssh files"
else
 echo "Cleaning up ssh files"
 cleanup "${SSH_FILES[@]}"
 USERS=$(ls /home/)
 for user in $USERS; do
 echo Deleting /home/"$user"/.ssh/authorized_keys;
 sudo find /home/"$user"/.ssh/authorized_keys -type f -exec rm -f {} \;
 done
 for user in $USERS; do
 if [[-f /home/"$user"/.ssh/authorized_keys]]; then
 echo Failed to delete /home/"$user"/.ssh/authorized_keys;
 exit 1
 fi;
 done;
fi;

Clean up for instance log files
INSTANCE_LOG_FILES=(
 "/var/log/audit/audit.log"
 "/var/log/boot.log"
 "/var/log/dmesg"
 "/var/log/cron"
 "/var/log/amazon/ec2/ec2-macos-init.log"
 "/var/log/amazon/ec2/ena-ethernet.log"
 "/var/log/amazon/ec2/system-monitoring.log"
)
if [[-f {{workingDirectory}}/skip_cleanup_instance_log_files]]; then
 echo "Skipping cleanup of instance log files"
else
 echo "Cleaning up instance log files"
 cleanup "${INSTANCE_LOG_FILES[@]}"
fi;

Required post-build clean up 605

EC2 Image Builder User Guide

Clean up for TOE files
if [[-f {{workingDirectory}}/skip_cleanup_toe_files]]; then
 echo "Skipping cleanup of TOE files"
else
 echo "Cleaning TOE files"
 if [[$(sudo find {{workingDirectory}}/TOE_* -type f | sudo wc -l) -gt 0]]; then
 echo "Deleting files within {{workingDirectory}}/TOE_*"
 sudo find {{workingDirectory}}/TOE_* -type f -exec rm -f {} \;
 fi
 if [[$(sudo find {{workingDirectory}}/TOE_* -type f | sudo wc -l) -gt 0]]; then
 echo "Failed to delete {{workingDirectory}}/TOE_*"
 exit 1
 fi
 if [[$(sudo find {{workingDirectory}}/TOE_* -type d | sudo wc -l) -gt 0]]; then
 echo "Deleting {{workingDirectory}}/TOE_*"
 sudo rm -rf {{workingDirectory}}/TOE_*
 fi
 if [[$(sudo find {{workingDirectory}}/TOE_* -type d | sudo wc -l) -gt 0]]; then
 echo "Failed to delete {{workingDirectory}}/TOE_*"
 exit 1
 fi
fi

Clean up for ssm log files
if [[-f {{workingDirectory}}/skip_cleanup_ssm_log_files]]; then
 echo "Skipping cleanup of ssm log files"
else
 echo "Cleaning up ssm log files"
 if [[$(sudo find /var/log/amazon/ssm -type f | sudo wc -l) -gt 0]]; then
 echo "Deleting files within /var/log/amazon/ssm/*"
 sudo find /var/log/amazon/ssm -type f -exec rm -f {} \;
 fi
 if [[$(sudo find /var/log/amazon/ssm -type f | sudo wc -l) -gt 0]]; then
 echo "Failed to delete /var/log/amazon/ssm"
 exit 1
 fi
 if [[-d "/var/log/amazon/ssm"]]; then
 echo "Deleting /var/log/amazon/ssm/*"
 sudo rm -rf /var/log/amazon/ssm
 fi
 if [[-d "/var/log/amazon/ssm"]]; then
 echo "Failed to delete /var/log/amazon/ssm"
 exit 1

Required post-build clean up 606

EC2 Image Builder User Guide

 fi
fi

if [[$(sudo find /var/log/sa/sa* -type f | sudo wc -l) -gt 0]]; then
 echo "Deleting /var/log/sa/sa*"
 sudo rm -f /var/log/sa/sa*
fi
if [[$(sudo find /var/log/sa/sa* -type f | sudo wc -l) -gt 0]]; then
 echo "Failed to delete /var/log/sa/sa*"
 exit 1
fi

if [[$(sudo find /var/lib/dhclient/dhclient*.lease -type f | sudo wc -l) -gt
 0]]; then
 echo "Deleting /var/lib/dhclient/dhclient*.lease"
 sudo rm -f /var/lib/dhclient/dhclient*.lease
fi
if [[$(sudo find /var/lib/dhclient/dhclient*.lease -type f | sudo wc -l) -gt
 0]]; then
 echo "Failed to delete /var/lib/dhclient/dhclient*.lease"
 exit 1
fi

if [[$(sudo find /var/tmp -type f | sudo wc -l) -gt 0]]; then
 echo "Deleting files within /var/tmp/*"
 sudo find /var/tmp -type f -exec rm -f {} \;
fi
if [[$(sudo find /var/tmp -type f | sudo wc -l) -gt 0]]; then
 echo "Failed to delete /var/tmp"
 exit 1
fi
if [[$(sudo ls /var/tmp | sudo wc -l) -gt 0]]; then
 echo "Deleting /var/tmp/*"
 sudo rm -rf /var/tmp/*
fi

Shredding is not guaranteed to work well on rolling logs

if [[-f "/var/lib/rsyslog/imjournal.state"]]; then
 echo "Deleting /var/lib/rsyslog/imjournal.state"
 sudo rm -f /var/lib/rsyslog/imjournal.state
 sudo rm -f /var/lib/rsyslog/imjournal.state
fi

Required post-build clean up 607

EC2 Image Builder User Guide

if [[$(sudo ls /var/log/journal/ | sudo wc -l) -gt 0]]; then
 echo "Deleting /var/log/journal/*"
 sudo find /var/log/journal/ -type f -exec rm -f {} \;
 sudo rm -rf /var/log/journal/*
fi

sudo touch /etc/machine-id

Override the Linux clean up script

Image Builder creates images that are secure by default and follow our security best practices.
However, some more advanced use-cases might require you to skip one or more sections of the
built-in clean up script. If you do need to skip some of the clean up, we strongly recommend that
you test your output AMI to ensure the security of your image.

Important

Skipping sections in the clean up script can result in sensitive information, such as
owner account details or SSH keys being included in the final image, and in any instance
launched from that image. You might also experience problems with launching in different
Availability Zones, Regions, or accounts.

The following table outlines the sections of the clean up script, the files that are deleted in that
section, and the file names that you can use to flag a section that Image Builder should skip. To
skip a specific section of the clean up script, you can use the CreateFile component action module
or a command in your user data (if overriding) to create an empty file with the name specified in
the Skip section file name column.

Note

The files that you create to skip a section of the clean up script should not include a file
extension. For example, if you want to skip the CLOUD_INIT_FILES section of the script,
but you create a file named skip_cleanup_cloudinit_files.txt, Image Builder will
not recognize the skip file.

Override the Linux clean up script 608

EC2 Image Builder User Guide

Input

Clean up section Files removed Skip section file name

CLOUD_INIT_FILES /etc/sudoers.d/90-
cloud-init-users

/etc/locale.conf

/var/log/cloud-ini
t.log

/var/log/cloud-init-
output.log

skip_cleanup_cloud
init_files

INSTANCE_FILES /etc/.updated

/etc/aliases.db

/etc/hostname

/var/lib/misc/post
fix.aliasesdb-stamp

/var/lib/postfix/m
aster.lock

/var/spool/postfix/
pid/master.pid

/var/.updated

/var/cache/yum/x86
_64/2/.gpgkeyschec
ked.yum

skip_cleanup_insta
nce_files

SSH_FILES /etc/ssh/ssh_host_
rsa_key

/etc/ssh/ssh_host_
rsa_key.pub

skip_cleanup_ssh_f
iles

Override the Linux clean up script 609

EC2 Image Builder User Guide

Clean up section Files removed Skip section file name

/etc/ssh/ssh_host_
ecdsa_key

/etc/ssh/ssh_host_
ecdsa_key.pub

/etc/ssh/ssh_host_
ed25519_key

/etc/ssh/ssh_host_
ed25519_key.pub

/root/.ssh/authori
zed_keys

/home/<all users>/.s
sh/authorized_keys;

INSTANCE_LOG_FILES /var/log/audit/aud
it.log

/var/log/boot.log

/var/log/dmesg

/var/log/cron

skip_cleanup_insta
nce_log_files

TOE_FILES {{workingDirectory
}}/TOE_*

skip_cleanup_toe_f
iles

SSM_LOG_FILES /var/log/amazon/ssm/
*

skip_cleanup_ssm_l
og_files

Override the Linux clean up script 610

EC2 Image Builder User Guide

Troubleshoot Image Builder issues

EC2 Image Builder integrates with AWS services for monitoring and troubleshooting to help you
troubleshoot image build issues. Image Builder tracks and displays the progress for each step in the
image building process. Additionally, Image Builder can export logs to an Amazon S3 location that
you provide.

For advanced troubleshooting, you can run predefined commands and scripts using AWS Systems
Manager Run Command.

Contents

• Troubleshoot pipeline builds

• Troubleshooting scenarios

Troubleshoot pipeline builds

If an Image Builder pipeline build fails, Image Builder returns an error message that describes the
failure. Image Builder also returns a workflow execution ID in the failure message, such as the
one in the following example output:

Workflow Execution ID: wf-12345abc-6789-0123-abc4-567890123abc failed with reason: …

Image Builder arranges and directs image build actions through a series of steps that are defined
for the runtime stages in its standard image creation process. The build and test stages of the
process each have an associated workflow. When Image Builder runs a workflow to build or test a
new image, it generates a workflow metadata resource that keeps track of runtime details.

Container images have an additional workflow that runs during distribution.

Research details for runtime instance failures for your workflow

To troubleshoot a runtime failure for your workflow, you can call the GetWorkflowExecution and
ListWorkflowStepExecutions API actions with your workflow execution ID.

Review workflow runtime logs

• Amazon CloudWatch Logs

Troubleshoot pipeline builds 611

https://docs.aws.amazon.com/systems-manager/latest/userguide/run-command.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/run-command.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_GetWorkflowExecution.html
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_GetWorkflowExecution.html

EC2 Image Builder User Guide

Image Builder publishes detailed workflow execution logs to the following Image Builder
CloudWatch Logs group and stream:

LogGroup:

/aws/imagebuilder/ImageName

LogStream (x.x.x/x):

ImageVersion/ImageBuildVersion

With CloudWatch Logs, you can search log data with filter patterns. For more information, see
Search log data using filter patterns in the Amazon CloudWatch Logs User Guide.

• AWS CloudTrail

All build activity is also logged in CloudTrail if it's activated in your account. You can filter
CloudTrail events by the source imagebuilder.amazonaws.com. Alternatively, you can search
for the Amazon EC2 instance ID that is returned in the execution log to see more details about
the pipeline execution.

• Amazon Simple Storage Service (S3)

If you've specified an S3 bucket name and key prefix in your infrastructure configuration, the
workflow step runtime log path follows this pattern:

S3://S3BucketName/KeyPrefix/ImageName/ImageVersion/ImageBuildVersion/
WorkflowExecutionId/StepName

The logs that you send to your S3 bucket show the steps and error messages for activity on the
EC2 instance during the image build process. The logs include log outputs from the component
manager, the definitions of the components that were run, and the detailed output (in JSON) of
all of the steps taken on the instance. If you encounter an issue, you should review these files,
starting with application.log, to diagnose the cause of the problem on the instance.

By default, Image Builder shuts down the Amazon EC2 build or test instance that is running when
the pipeline fails. You can change the instance settings for the infrastructure configuration resource
that your pipeline uses, to retain your build or test instance for troubleshooting.

Troubleshoot pipeline builds 612

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SearchDataFilterPattern.html

EC2 Image Builder User Guide

To change the instance settings in the console, you must clear the Terminate instance on failure
check box located in the Troubleshooting settings section of your infrastructure configuration
resource.

You can also change the instance settings with the update-infrastructure-configuration command
in the AWS CLI. Set the terminateInstanceOnFailure value to false in the JSON file that
the command references with the --cli-input-json parameter. For details, see Update an
infrastructure configuration.

Troubleshooting scenarios

This section lists the following detailed troubleshooting scenarios:

• Access denied – status code 403

• Build times out while verifying the Systems Manager Agent availability on the build instance

• Windows secondary disk is offline at launch

• Build fails with CIS hardened base image

• AssertInventoryCollection fails (Systems Manager Automation)

To see the details of a scenario, choose the scenario title to expand it. You can have multiple titles
expanded at the same time.

Access denied – status code 403

Description

The pipeline build fails with "AccessDenied: Access Denied status code: 403".

Cause

Possible causes include:

• The instance profile does not have the required permissions to access APIs or component
resources.

• The instance profile role is missing permissions that are required for logging to Amazon S3. Most
commonly, this occurs when the instance profile role does not have PutObject permissions for
your S3 buckets.

Troubleshooting scenarios 613

EC2 Image Builder User Guide

Solution

Depending on the cause, this issue can be resolved as follows:

• Instance profile is missing managed policies – Add the missing policies to your instance profile
role. Then run the pipeline again.

• Instance profile is missing write permissions for S3 bucket – Add a policy to your instance
profile role that grants PutObject permissions to write to your S3 bucket. Then run the pipeline
again.

Build times out while verifying the Systems Manager Agent availability on the
build instance

Description

The pipeline build fails with "status = 'TimedOut'" and "failure message = 'Step timed out while
step is verifying the Systems Manager Agent availability on the target instance(s)'".

Cause

Possible causes include:

• The instance that was launched to perform the build operations and to run components was not
able to access the Systems Manager endpoint.

• The instance profile does not have the required permissions.

Solution

Depending on the possible cause, this issue can be resolved as follows:

• Access issue, private subnet – If you are building in a private subnet, make sure that you have
set up PrivateLink endpoints for Systems Manager, Image Builder, and, if you want logging,
Amazon S3/CloudWatch. For more information about setting up PrivateLink endpoints, see
Access AWS services through AWS PrivateLink.

• Missing permissions – Add the following managed policies to your IAM service-linked role for
Image Builder:

• EC2InstanceProfileForImageBuilder

• EC2InstanceProfileForImageBuilderECRContainerBuilds

Troubleshooting scenarios 614

https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-access-aws-services.html

EC2 Image Builder User Guide

• AmazonSSMManagedInstanceCore

For more information about the Image Builder service-linked role, see Use IAM service-linked
roles for Image Builder.

Windows secondary disk is offline at launch

Description

When the instance type used to build an Image Builder Windows AMI does not match the instance
type that is used to launch from the AMI, an issue can occur where non-root volumes are offline
at launch. This primarily happens when the build instance is using a newer architecture than the
launch instance.

The following example demonstrates what happens when an Image Builder AMI is built on an EC2
Nitro instance type and launched on an EC2 Xen instance:

Build instance type: m5.large (Nitro)

Launch instance type: t2.medium (Xen)

PS C:\Users\Administrator> get-disk
Number Friendly Name Serial Number Health Status Operational Status Total
 Size Partition Style
------ ------------- ------------- ------------- ------------------
 ---------- ---------------
0 AWS PVDISK vol0abc12d34e567f8a9 Healthy Online 30
 GB MBR
1 AWS PVDISK vol1bcd23e45f678a9b0 Healthy Offline 8
 GB MBR

Cause

Because of Windows default settings, newly discovered disks are not automatically brought online
and formatted. When the instance type is changed on EC2, Windows treats this as new disks being
discovered. This is because of the underlying driver change.

Solution

We recommend that you use the same system of instance types when building your Windows AMI
that you intend to launch from. Do not include instance types that are built on different systems

Troubleshooting scenarios 615

EC2 Image Builder User Guide

in your infrastructure configuration. If any of the instance types you specify use the Nitro system,
then they should all use the Nitro system.

For more information about instances that are built on the Nitro system, see Instances built on the
Nitro System in the Amazon EC2 User Guide.

Build fails with CIS hardened base image

Description

You are using a CIS hardened base image and the build fails.

Cause

When the /tmp directory is classified as noexec, it can cause Image Builder to fail.

Solution

Choose a different location for your working directory in the workingDirectory field of the
image recipe. For more information, see the ImageRecipe data type description.

AssertInventoryCollection fails (Systems Manager Automation)

Description

Systems Manager Automation shows a failure in the AssertInventoryCollection automation
step.

Cause

You or your organization might have created a Systems Manager State Manager association that
collects inventory information for EC2 instances. If enhanced image metadata collection is enabled
for your Image Builder pipeline (this is the default), Image Builder attempts to create a new
inventory association for the build instance. However, Systems Manager does not allow multiple
inventory associations for managed instances, and prevents a new association if one already exists.
This causes the operation to fail, and results in a failed pipeline build.

Solution

To resolve this issue, turn off enhanced image metadata collection, using one of the following
methods:

Troubleshooting scenarios 616

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances
https://docs.aws.amazon.com/imagebuilder/latest/APIReference/API_ImageRecipe.html

EC2 Image Builder User Guide

• Update your image pipeline in the console, to clear the Enable enhanced metadata collection
check box. Save your changes and run a pipeline build.

For more information about updating your AMI image pipeline using the EC2 Image Builder
console, see Update AMI image pipelines from the console. For more information about updating
your container image pipeline using the EC2 Image Builder console, see Update a container
image pipeline from the console.

• You can also update your image pipeline with the update-image-pipeline command in the AWS
CLI. To do this, include the EnhancedImageMetadataEnabled property in your JSON file, set
to false. The following example shows the property set to false.

{
 "name": "MyWindows2019Pipeline",
 "description": "Builds Windows 2019 Images",
 "enhancedImageMetadataEnabled": false,
 "imageRecipeArn": "arn:aws:imagebuilder:us-west-2:123456789012:image-recipe/my-
example-recipe/2020.12.03",
 "infrastructureConfigurationArn": "arn:aws:imagebuilder:us-
west-2:123456789012:infrastructure-configuration/my-example-infrastructure-
configuration",
 "distributionConfigurationArn": "arn:aws:imagebuilder:us-
west-2:123456789012:distribution-configuration/my-example-distribution-
configuration",
 "imageTestsConfiguration": {
 "imageTestsEnabled": true,
 "timeoutMinutes": 60
 },
 "schedule": {
 "scheduleExpression": "cron(0 0 * * SUN *)",
 "pipelineExecutionStartCondition":
 "EXPRESSION_MATCH_AND_DEPENDENCY_UPDATES_AVAILABLE"
 },
 "status": "ENABLED"
}

To prevent this from happening for new pipelines, clear the Enable enhanced metadata collection
check box when you create a new pipeline using the EC2 Image Builder console, or set the value
of the EnhancedImageMetadataEnabled property in your JSON file to false when you create
your pipeline using the AWS CLI.

Troubleshooting scenarios 617

EC2 Image Builder User Guide

Documentation history of changes to the Image Builder
user guide

The following table describes important changes to the documentation by date. For notification
about updates to this documentation, you can subscribe to an RSS feed.

• API version: 2025-04-30

Change Description Date

STIG Q1 2025 updates Updated Windows STIG
versions and applied STIGS
and SCAP component
versions for 2025 first quarter
release.

May 5, 2025

Feature release: Support SSM
Parameters

Image Builder now supports
the use of AWS Systems
Manager(SSM) Parameter
Store Parameters in recipes
and during image distribution.

April 30, 2025

STIG Q4 updates Updated Windows STIG
versions and applied STIGS
for 2024 fourth quarter rel
ease.

February 4, 2025

IAM policy update: service
role policy

Updated the service-linked
role policy to support image
creation from imported offici
al Microsoft client OS ISO
files. For more information,
see the AWSServiceRoleForI
mageBuilder policy.

December 30, 2024

618

https://docs.aws.amazon.com/imagebuilder/latest/userguide/security-iam-awsmanpol.html#sec-iam-manpol-AWSServiceRoleForImageBuilder
https://docs.aws.amazon.com/imagebuilder/latest/userguide/security-iam-awsmanpol.html#sec-iam-manpol-AWSServiceRoleForImageBuilder

EC2 Image Builder User Guide

IAM policy update: instance
profile policy

Updated the instance profile
role policy to support image
creation from disk image files.
For more information, see the
EC2InstanceProfileForImageB
uilder policy.

December 30, 2024

Feature release: ISO to AMI Image Builder can now
create an image from official
ISO disk files for Microsoft
Windows 11 and later client
operating systems.

December 30, 2024

STIG Q4 updates Updated Linux STIG versions
and applied STIGS for 2024
fourth quarter release. Add
ed information about two
new input parameters for the
Linux components.

December 10, 2024

IAM policy update: instance
profile policy

Updated the instance profile
policy to grant access to get
AWS Marketplace component
s. For more information,
see the EC2InstanceProfile
ForImageBuilder policy.

December 2, 2024

Feature release: AWS
Marketplace components

Added support for AWS
Marketplace software
components.

December 2, 2024

Feature release: macOS
support

Added support for macOS
images.

October 22, 2024

Document support for
logical operators in AWS Task
Orchestrator and Executor

Use logical operators to
add or modify condition
al expressions in your
component document.

August 16, 2024

619

https://docs.aws.amazon.com/imagebuilder/latest/userguide/security-iam-awsmanpol.html#sec-iam-manpol-EC2InstanceProfileForImageBuilder
https://docs.aws.amazon.com/imagebuilder/latest/userguide/security-iam-awsmanpol.html#sec-iam-manpol-EC2InstanceProfileForImageBuilder
https://docs.aws.amazon.com/imagebuilder/latest/userguide/security-iam-awsmanpol.html#sec-iam-manpol-EC2InstanceProfileForImageBuilder
https://docs.aws.amazon.com/imagebuilder/latest/userguide/security-iam-awsmanpol.html#sec-iam-manpol-EC2InstanceProfileForImageBuilder

EC2 Image Builder User Guide

Document support for
conditional constructs in
AWS Task Orchestrator and
Executor

Use conditional construct
s like the "if" statement to
direct the flow of control for
component actions in your
component document.

August 16, 2024

Document support for
comparison operators in
AWS Task Orchestrator and
Executor

Use comparison operators
to compare values in your
component document.

August 16, 2024

Added Assert action module Added documentation for the
ExecuteDocument action
module under General
execution .

August 14, 2024

Operating system support Added support for RHEL 9
and Ubuntu 24.04 LTS.

August 2, 2024

Document update: Reorganize
content

Reorganized documentation
to improve presentation and
navigation.

June 21, 2024

STIG Q2 updates Updated Linux STIG versions
and applied STIGS for 2024
second quarter release. Added
support for RHEL 9, CentOS
Stream 9, and Ubuntu 22.04.
There were no changes to
Windows versions.

May 10, 2024

STIG Q1 updates Updated Linux STIG versions
and applied STIGS for 2024
first quarter release. There
were no changes to Windows
versions.

February 23, 2024

620

EC2 Image Builder User Guide

STIG Q1 updates Updated Linux STIG versions
and applied STIGS for 2024
first quarter release. There
were no changes to Windows
versions.

February 23, 2024

Feature release: Image
workflow management

With image workflows, you
have more flexibility, visibilit
y, and control over the image
creation process. You can
customize build and test steps
for your workflows, or you
can use the Image Builder
default workflow.

December 12, 2023

STIG Q4 updates Updated Linux STIG versions
and applied STIGS for 2023
fourth quarter release. There
were no changes to Windows
versions. Also updated Linux
and Windows SCAP for new
component, software, and
benchmark numbers.

December 7, 2023

Feature release: Image
lifecycle management

With image lifecycle
management policies and
rules, you can define your
resource management
strategy to ensure that
outdated images and their
associated resources go
through a process of tagging
and removal.

November 17, 2023

621

EC2 Image Builder User Guide

IAM policy update: service
role

Updated the service-linked
role policy for instance
placement support. For
more information, see
the AWSServiceRoleForI
mageBuilder policy.

October 19, 2023

STIG Q3 updates Updated STIG versions and
applied STIGS for 2023 third
quarter release. Additionally
updated messaging to clarify
that third-party packages are
not automatically installed,
with very few exceptions. All
skipped STIGs are logged.

October 5, 2023

New STIG Versions Updated STIG versions and
applied STIGS for 2023
second quarter release.

May 3, 2023

New STIG Versions Updated STIG versions and
applied STIGS for 2023
first quarter release. Added
support for AL2023.

April 14, 2023

Update supported Regions for
AWSTOE

Added AWSTOE support for
the following AWS Regions:
Asia Pacific (Hyderabad),
Asia Pacific (Jakarta), Europe
(Zurich), Europe (Spain), and
Middle East (UAE).

April 13, 2023

622

https://docs.aws.amazon.com/imagebuilder/latest/userguide/security-iam-awsmanpol.html#sec-iam-manpol-AWSServiceRoleForImageBuilder
https://docs.aws.amazon.com/imagebuilder/latest/userguide/security-iam-awsmanpol.html#sec-iam-manpol-AWSServiceRoleForImageBuilder

EC2 Image Builder User Guide

AWSTOE application
download updates

Updated the signature for
the AWSTOE installation
download on Windows.
Also updated TLS note that
application downloads from
S3 buckets now require TLS
version 1.2 or later.

March 31, 2023

Feature release: Enhanced
build workflows

Added runtime details
for image builds in the
new workflow tab in the
image build version details.
Improved information for
troubleshooting builds.

March 30, 2023

Feature release: CVE
detection and reporting

For accounts that have
activated Amazon Inspector
scans, Image Builder can
capture the common
vulnerability and exposures
(CVE) findings from Amazon
Inspector during the test
stage of the build process
for new images, including
container images stored in
Amazon ECR. Image Builder
creates a snapshot of the
findings to support detail
analysis. Image Builder
also reports on findings
counts that can be filtered
by account, by pipeline, or by
image, with the ability to drill
down on details.

March 30, 2023

Added version history Added version history to the
Windows and Linux sections.

February 17, 2023

623

EC2 Image Builder User Guide

New STIG Versions Updated STIG versions and
applied STIGS for 2022 fourth
quarter release.

February 1, 2023

Feature release: AWS
Marketplace integration and
CIS hardening

Added AWS Marketplace
integration to easily find
and use a subscribed image
as the baseline for a new
custom image, including CIS
Hardened Images and a new
CIS Hardening component
from the Center for Internet
Security.

January 13, 2023

CIS hardening components Added CIS hardening
components that are owned
and maintained by CIS.

January 13, 2023

New STIG Versions Introduced Ubuntu support,
updated STIG versions, and
applied STIGS for 2022
second quarter release.

July 20, 2022

Document update: Navigatio
n for Create YAML component
document page

Moved the Create YAML
component document
content to its own page,
and updated other pages to
reference it.

June 7, 2022

New STIG Versions Updated STIG versions and
applied STIGS for 2022 first
quarter release.

April 25, 2022

Added ExecuteDocument
action module

Added documentation for the
ExecuteDocument action
module under General
execution .

March 28, 2022

624

EC2 Image Builder User Guide

Feature release: Support for
faster launching Windows
AMI

Added distribution configura
tion settings to support faster
launching for Windows AMIs.

February 21, 2022

Maintenance release: Update
AWSTOE binary thumbprint

Updated binary thumbprint
for AWSTOE signer certificate.

February 18, 2022

Feature release: Configure
input for AWSTOE

Added support for using a
JSON configuration file as
input for the AWSTOE run
command.

February 3, 2022

New STIG Versions Updated STIG versions and
applied STIGS for 2021 fourth
quarter release. Also add
ed a section for new SCAP
Compliance Checker (SCC)
components.

December 22, 2021

Feature release: VM Import/
Export (VMIE) integration

Added support for VM import
via all channels (console, API/
CLI, etc.), and for VM export
via API/CLI. VM export is not
currently available from the
Image Builder console.

December 20, 2021

Feature release: AMI sharing
for AWS Organizations and
OUs

Updated distribution
configuration to add support
for sharing output AMIs with
AWS Organizations and OUs.

November 24, 2021

Document update: Update
component stages and phases

Expanded content for
component stages in Image
Builder, and how those intera
ct with AWSTOE component
phases.

September 22, 2021

625

EC2 Image Builder User Guide

Document update: Add
CloudTrail integration content

Added monitoring summary
and CloudTrail integration
content.

September 17, 2021

New STIG Versions Updated STIG versions and
applied STIGS for 2021 third
quarter release.

September 10, 2021

Feature release: Amazon
EventBridge integration

Added EventBridge support
that enables you to connect
Image Builder with events
from related AWS services,
and initiate events based on
rules defined in EventBridge.

August 18, 2021

Document update: Reorder
AWSTOE pages

Rearranged AWSTOE pages
for clarity.

August 11, 2021

Feature release: Parameter
ized components and
additional instance configura
tion

Added support for specifyin
g parameters to customize
components for recipes.
Expanded configuration of
the EC2 instances that are
used for building and testing
images, including the ability
to specify commands to run
on launch, and more control
over installation and removal
of the Systems Manager
agent.

July 7, 2021

New STIG versions Updated STIG versions and
applied STIGS for 2021
second quarter release.

June 30, 2021

Enhancement: Tagging
enhancements

Improved messaging around
resource tagging.

June 25, 2021

626

EC2 Image Builder User Guide

Feature release: Launch
template integration

Added support for using
Amazon EC2 launch
templates for AMI distribution
in the Distribution settings.

April 7, 2021

Feature release: Container
build enhancements

Added support for configuri
ng block device mappings
and specifying AMIs to use as
the base image for container
builds.

April 7, 2021

New STIG versions Updated STIG versions and
applied STIGS.

March 5, 2021

Update cron expressions Image Builder cron processin
g is updated to increase cron
expression granularity to the
minute, and use a standard
cron scheduling engine.
Examples are updated with
the new format.

February 8, 2021

Feature release: Container
support

Added support for creating
Docker container images
using Image Builder, with
registration and storage
of the resulting images on
Amazon Elastic Container
Registry (Amazon ECR).
Content has been rearrange
d to reflect new functiona
lity and accomodate future
growth.

December 17, 2020

627

EC2 Image Builder User Guide

Restructured cron documenta
tion

This page now highlight
s more information about
how cron works with Image
Builder pipeline builds, and
includes details about UTC
time. Wildcards that are not
allowed for specific fields
have been removed. Examples
now include expression
samples for both console and
CLI.

November 13, 2020

Console version 2.0: updated
pipeline editing

Content changes in getting
started and create pipeline
tutorials, plus the manage
image pipelines page, to
incorporate new console
features and flow.

November 13, 2020

New STIG versions Updated STIG versions and
applied STIGS. Note - list
format changed to show
STIGs that are applied by
default.

October 15, 2020

Support for looping construct
s in AWSTOE

Create looping constructs to
define a repeated sequence
of instructions in the AWSTOE
application.

July 29, 2020

Support for local developme
nt of AWSTOE components

Develop and test image
components locally with the
AWSTOE application.

July 28, 2020

Encrypted AMIs EC2 Image Builder adds
support for encrypted AMI
distribution.

July 1, 2020

628

EC2 Image Builder User Guide

AutoScaling deprecation Deprecation of the use
of AutoScaling to launch
instances.

June 15, 2020

Support for connectivity
through AWS PrivateLink

You can establish a private
connection between your
VPC and EC2 Image Builder
by creating an interface VPC
endpoint. Interface endpoints
are powered by AWS PrivateLi
nk, a technology that enables
you to privately access Image
Builder APIs without an
internet gateway, NAT device,
VPN connection, or AWS
Direct Connect connection.
Instances in your VPC don't
need public IP addresses to
communicate with Image
Builder APIs. Traffic between
your VPC and Image Builder
does not leave the Amazon
network.

June 10, 2020

New STIG versions Updated STIG versions and
applied STIGS.

January 23, 2020

Troubleshooting Added general troublesh
ooting scenarios.

January 22, 2020

STIG Components You can create STIG-comp
liant images with AWSTOE
STIG components.

January 22, 2020

629

	EC2 Image Builder
	Table of Contents
	What is Image Builder?
	Step 1: Specify pipeline details
	Step 2: Customize your image
	Step 3: Define your workflow
	Step 4: Configure build infrastructure
	Step 5: Define image distribution
	Features of Image Builder
	Supported operating systems
	Supported image formats
	Default quotas
	AWS Regions and Endpoints
	Concepts
	Pricing
	Related AWS services
	How EC2 Image Builder works
	AMI elements
	Component management
	Image testing

	Resources created
	Distribution
	Sharing Resources
	Compliance

	Semantic versioning in Image Builder

	Get set up to build custom images with Image Builder
	Image Builder service-linked role
	Configuration requirements
	Container repository for container image pipelines
	Dedicated host for macOS images
	IAM prerequisites
	Systems Manager Agent prerequisites

	Learn how to create custom images with Image Builder tutorials
	Build your first image
	Create a custom component with input parameters
	Use Systems Manager parameters with Image Builder
	Tutorial: Create an image pipeline with output AMI from the Image Builder console wizard
	Step 1: Specify pipeline details
	Step 2: Choose recipe
	Step 3: Define infrastructure configuration - optional
	Step 4: Define distribution settings - optional
	Step 5: Review
	Step 6: Clean up

	Tutorial: Create an image pipeline with output Docker container image from the Image Builder console wizard
	Step 1: Specify pipeline details
	Step 2: Choose recipe
	Step 3: Define infrastructure configuration - optional
	Step 4: Define distribution settings - optional
	Step 5: Review
	Step 6: Clean up

	Tutorial: Create a custom component with input parameters
	Use parameters in your YAML component document
	Set component parameters in an Image Builder recipe from the console

	Use a base image parameter in your recipe
	Step 1: Find or create a Parameter Store parameter
	Step 2: Configure IAM permissions
	Step 3: Create an Image Recipe that uses the parameter

	Use components to customize your Image Builder image
	List and view component details
	List Image Builder components
	List component build versions from the AWS CLI
	Get component details from the AWS CLI
	Get component policy details from the AWS CLI

	Use AWS Marketplace components to customize your image
	Discover AWS Marketplace components
	Results

	Subscribe to AWS Marketplace components
	Use an AWS Marketplace component in an Image Builder image recipe

	Use managed components to customize your Image Builder image
	Distributor package managed component application install for Image Builder Windows images
	Prerequisites
	Configure Systems Manager Distributor permissions
	Configure distributor-package-windows as a standalone component
	Configure aws-vss-components-windows as a standalone component
	Find Distributor packages

	CIS hardening components
	Amazon managed STIG hardening components for Image Builder
	Windows STIG hardening components
	STIG-Build-Windows-Low version 2025.1.x
	STIG-Build-Windows-Medium version 2025.1.x
	STIG-Build-Windows-High version 2025.1.x

	STIG version history log for Windows
	2025 Q1 changes - 05/04/2025:
	2024 Q4 changes - 02/04/2025:
	2024 Q3 changes - 10/04/2023 (no changes):
	2024 Q2 changes - 05/10/2024 (no changes):
	2024 Q1 changes - 02/06/2024 (no changes):
	2023 Q4 changes - 12/04/2023 (no changes):
	2023 Q3 changes - 10/04/2023 (no changes):
	2023 Q2 changes - 05/03/2023 (no changes):
	2023 Q1 changes - 03/27/2023 (no changes):
	2022 Q4 changes - 02/01/2023:
	2022 Q3 changes - 09/30/2022 (no changes):
	2022 Q2 changes - 08/02/2022:
	2022 Q1 changes - 08/02/2022 (no changes):
	2021 Q4 changes - 12/20/2021:
	2021 Q3 changes - 09/30/2021:

	Linux STIG hardening components
	STIG-Build-Linux-Low version 2025.1.x
	STIG-Build-Linux-Medium version 2025.1.x
	STIG-Build-Linux-High version 2025.1.x

	STIG version history log for Linux
	2025 Q1 changes - 04/11/2025:
	2024 Q4 changes - 12/10/2024:
	2024 Q3 changes - 10/04/2024 (no changes):
	2024 Q2 changes - 05/10/2024:
	2024 Q1 changes - 02/06/2024:
	2023 Q4 changes - 12/07/2023:
	2023 Q3 changes - 10/04/2023:
	2023 Q2 changes - 05/03/2023:
	2023 Q1 changes - 03/27/2023:
	2022 Q4 changes - 02/01/2023:
	2022 Q3 changes - 09/30/2022 (no changes):
	2022 Q2 changes - 08/02/2022:
	2022 Q1 changes - 04/26/2022:
	2021 Q4 changes - 12/20/2021:
	2021 Q3 changes - 09/30/2021:

	SCAP compliance validator component
	scap-compliance-checker-windows version 2024.03.0
	scap-compliance-checker-linux version 2021.04.0
	SCAP version history

	Develop custom components for your Image Builder image
	Create a YAML component document for custom components in Image Builder
	Create a custom component with Image Builder
	Create a custom component from the console
	Create a custom component from the AWS CLI
	AWSTOE component versioning for updates from the AWS CLI

	Import a script to create a component from the AWS CLI

	How Image Builder uses the AWS Task Orchestrator and Executor application to manage components
	AWSTOE downloads
	Supported Regions
	AWSTOE command reference
	awstoe run command
	Syntax
	Parameters and options

	awstoe validate command
	Syntax
	Parameters and options

	Manual set up to develop custom components with AWSTOE
	Verify the signature of the AWSTOE installation download
	Verify the signature of the AWSTOE installation download on Linux or macOS
	Installing the GPG tools
	Authenticating and importing the public key
	Verify the signature of the package

	Verify the signature of the AWSTOE installation download on Windows

	Step 1: Install AWSTOE
	Step 2: Set AWS credentials
	Step 3: Develop component documents locally
	Step 4: Validate AWSTOE components
	Step 5: Run AWSTOE components

	Use the AWSTOE component document framework for custom components
	Component document workflow
	Component logging
	Input and output chaining
	Document schema and definitions
	Document examples
	Use variables in your custom component document
	Constants
	Parameters
	Syntax
	Reference parameter values in a document
	Override parameters at runtime
	Syntax

	Use Systems Manager Parameter Store parameters
	Required IAM permissions
	Reference an SSM parameter in a component document
	Dynamic runtime variable resolution for SSM parameters
	resolve function
	Syntax
	Example: Resolve an SSM parameter at runtime

	Use conditional constructs in AWSTOE
	if Construct
	Syntax

	Use comparison operators in AWSTOE component documents
	Compare strings
	Compare numbers
	Check files

	Use logical operators in AWSTOE component documents
	Use looping constructs in AWSTOE
	Reference iteration variables
	Loop names
	Resolve reference expressions

	Types of looping constructs
	for loop
	forEach loop with input list
	forEach loop with delimited list

	Step fields
	Step and iteration outputs

	Action modules supported by AWSTOE component manager
	General execution modules
	Assert (Linux, Windows, macOS)
	ExecuteBash (Linux, macOS)
	ExecuteBinary (Linux, Windows, macOS)
	ExecuteDocument (Linux, Windows, macOS)
	ExecutePowerShell (Windows)

	File download and upload modules
	S3Download (Linux, Windows, macOS)
	S3Upload (Linux, Windows, macOS)
	WebDownload (Linux, Windows, macOS)

	File system operations modules
	AppendFile (Linux, Windows, macOS)
	CopyFile (Linux, Windows, macOS)
	CopyFolder (Linux, Windows, macOS)
	CreateFile (Linux, Windows, macOS)
	CreateFolder (Linux, Windows, macOS)
	CreateSymlink (Linux, Windows, macOS)
	DeleteFile (Linux, Windows, macOS)
	DeleteFolder (Linux, Windows, macOS)
	ListFiles (Linux, Windows, macOS)
	MoveFile (Linux, Windows, macOS)
	MoveFolder (Linux, Windows, macOS)
	ReadFile (Linux, Windows, macOS)
	SetFileEncoding (Linux, Windows, macOS)
	SetFileOwner (Linux, Windows, macOS)
	SetFolderOwner (Linux, Windows, macOS)
	SetFilePermissions (Linux, Windows, macOS)
	SetFolderPermissions (Linux, Windows, macOS)

	Software installation actions
	InstallMSI (Windows)
	UninstallMSI (Windows)

	System action modules
	Reboot (Linux, Windows)
	SetRegistry (Windows)
	UpdateOS (Linux, Windows)

	Configure input for the AWSTOE run command

	Image Builder output image resources
	List images and build versions
	List images
	List images in the console
	Console tab: Owned by me
	Console tab: Shared with me
	Console tab: Managed by Amazon

	List images with AWS CLI commands

	List images waiting for action
	List image build versions

	View image resource details
	View image details in the Image Builder console
	Summary section
	Output resources tab
	Infrastructure configuration tab
	Distribution settings tab
	Workflow tab
	Security findings tab
	Tags tab

	Get image policy details from the AWS CLI

	Create custom images with Image Builder
	Cancel image creation from the AWS CLI

	Import and export virtual machine images with Image Builder
	Import a VM into Image Builder
	Distribute VM disks from your image build from the AWS CLI

	Import verified Windows ISO disk images with Image Builder
	Supported operating systems for ISO disk image import
	Prerequisites to import an ISO disk image
	Import an ISO disk image into Image Builder

	Manage security findings for Image Builder images
	Configure security scans for Image Builder images in the AWS Management Console
	Manage security findings for Image Builder images in the AWS Management Console

	Clean up Image Builder resources

	Manage lifecycle policies for Image Builder images
	Lifecycle management prerequisites for Image Builder images
	Create an IAM role for Image Builder lifecycle management
	Create an IAM role for Image Builder cross-account lifecycle management

	List lifecycle management policies for Image Builder image resources
	View lifecycle policy details
	View lifecycle policy details in the Image Builder console
	Summary section
	Rules tab
	Scope tab
	RunLog tab

	Create lifecycle policies
	Create lifecycle management policies for Image Builder AMI image resources
	Create lifecycle management policies for Image Builder container image resources

	How lifecycle management rules work for Image Builder image resources
	AMI lifecycle exclusion rules
	View lifecycle management rule details for a policy

	Configure custom images with Image Builder
	Manage recipes in Image Builder
	List and view image recipe details
	List image recipes from the console
	List image recipes from the AWS CLI
	View image recipe details from the console
	Get image recipe details from the AWS CLI
	Get image recipe policy details from the AWS CLI

	List and view container recipe details
	List container recipes in the console
	List container recipes with the AWS CLI
	View container recipe details in the console
	Get container recipe details with the AWS CLI
	Get container recipe policy details with the AWS CLI

	Create a new version of an image recipe
	Create a new image recipe version from the console
	Create an image recipe with the AWS CLI
	Import a VM as your base image in the console
	VM import configuration
	Advanced settings – optional

	Create a new version of a container recipe
	Create a new container recipe version with the console
	Create a container recipe with the AWS CLI

	Clean up resources

	Manage Image Builder infrastructure configuration
	List and view infrastructure configuration details
	List infrastructure configurations from the AWS CLI
	Get infrastructure configuration details from the AWS CLI

	Create an infrastructure configuration
	Update an infrastructure configuration
	Image Builder and AWS PrivateLink interface VPC endpoints
	Considerations for Image Builder VPC endpoints
	Create an interface VPC endpoint for Image Builder
	Create a VPC endpoint policy for Image Builder
	Custom policies for S3 bucket access
	VPC endpoint policy examples

	Manage Image Builder distribution settings
	List and view distribution configuration detail
	List distribution configurations from the console
	View distribution configuration details from the console
	List distributions from the AWS CLI
	Get distribution configuration detail from the AWS CLI

	Create and update AMI distribution configurations
	Prerequisites for SSM output parameters
	Create an AMI distribution configuration
	Update an AMI distribution configuration
	Create distribution settings to enable EC2 Fast Launch for output AMIs
	Create distribution settings for output VM disks from the AWS CLI

	Create and update distribution settings for container images
	Create distribution settings for Image Builder container images from the AWS CLI
	Update distribution settings for your container image from the AWS CLI

	Set up cross-account AMI distribution with Image Builder
	Prerequisites for cross-account AMI distribution
	Encryption keys
	IAM policies

	Limits for cross-account distribution
	Configure cross-account distribution for an Image Builder AMI from the console
	Configure cross-account distribution for an Image Builder AMI from the AWS CLI

	Configure AMI distribution with an EC2 launch template
	Add an EC2 launch template to AMI distribution settings from the console
	Add an EC2 launch template to AMI distribution settings from the AWS CLI

	Share Image Builder resources with AWS RAM
	Resource owners
	Prerequisites for sharing Image Builder resources

	Resource consumers
	Create an AWS RAM resource share for your Image Builder resources
	Option 1: Create a RAM resource share
	Option 2: Apply a resource policy and promote to an existing resource share

	Unshare an Image Builder resource from AWS RAM

	Tag Image Builder output resources
	Tag a resource from the AWS CLI
	Untag a resource from the AWS CLI
	List all of the tags for a specific resource from the AWS CLI

	Delete outdated or unused Image Builder resources
	Delete resources from the AWS Management Console
	Delete an image pipeline from the AWS CLI

	Manage build and test workflows for Image Builder images
	Workflow framework: Stages
	Service access
	Use managed workflows for your images
	List image workflows
	Create an image workflow
	Create a YAML workflow document
	Structure of a YAML workflow document
	Workflow document identification
	Workflow document input parameters
	Workflow document steps
	Workflow document outputs

	Supported step actions for your workflow document
	BootstrapInstanceForContainer
	CollectImageMetadata
	CollectImageScanFindings
	CreateImage
	ExecuteComponents
	LaunchInstance
	RunCommand
	RunSysPrep
	SanitizeInstance
	TerminateInstance
	WaitForAction

	Use dynamic variables in your workflow document
	Use Image Builder system variables

	Use conditional statements in your workflow steps
	Nested levels in conditional statements
	Conditional statement examples

	Manage custom image creation in Image Builder through a repeatable pipeline process
	List and view pipeline details
	List image pipelines from the AWS CLI
	Get image pipeline details from the AWS CLI

	Create and update AMI image pipelines
	Create an AMI image pipeline from the AWS CLI
	Update AMI image pipelines from the console
	Pipeline details
	Edit infrastructure configuration for your pipeline
	Edit distribution settings for your pipeline
	Edit the build schedule for your pipeline

	Update AMI image pipelines from the AWS CLI

	Create and update container image pipelines
	Create a container image pipeline from the AWS CLI
	Update a container image pipeline from the console
	Pipeline details
	Edit infrastructure configuration for your pipeline
	Edit distribution settings for your pipeline
	Edit the build schedule for your pipeline

	Update container image pipelines from the AWS CLI

	Configure image pipeline workflows in Image Builder
	Define test groups for test workflows
	Set workflow parameters in an Image Builder pipeline from the console
	Specify the IAM service role that Image Builder uses to run workflow actions

	Run your image pipeline
	Use cron expressions in Image Builder
	Supported values for cron expressions in Image Builder
	Examples of cron expressions in Image Builder
	Rate expressions in Image Builder

	Use EventBridge rules with Image Builder pipelines
	EventBridge terms
	View EventBridge rules for your Image Builder pipeline
	Use EventBridge rules to schedule a pipeline build

	Integrate products and services in Image Builder
	Amazon EventBridge integration in Image Builder
	Event messages that Image Builder sends

	Amazon Inspector integration in Image Builder
	AWS Marketplace integration in Image Builder
	AWS Marketplace subscriptions in Image Builder
	Discover AWS Marketplace image products from the Image Builder console
	Use an AWS Marketplace image product in Image Builder recipes

	Amazon SNS integration in Image Builder
	Encrypted SNS Topics
	SNS message format

	Compliance products for your Image Builder images

	Monitor events and logs in Image Builder
	Log Image Builder API calls using CloudTrail
	Image Builder information in CloudTrail

	Monitor Image Builder logs with Amazon CloudWatch Logs

	Security in Image Builder
	Data protection and the AWS shared responsibility model in Image Builder
	Encryption and key management in Image Builder
	Encrypt image workflows with a customer managed key
	AWS CloudTrail events for image workflows

	Data storage in Image Builder
	Inter-network Traffic Privacy in Image Builder

	Identity and Access Management integration for Image Builder
	Audience
	Authenticating with identities
	How Image Builder works with IAM policies and roles
	Identity-based policies for Image Builder
	Identity-based policy examples for Image Builder

	Resource-based policies within Image Builder
	Policy actions for Image Builder
	Policy resources for Image Builder
	Policy condition keys for Image Builder
	ACLs in Image Builder
	ABAC with Image Builder
	Using temporary credentials with Image Builder
	Cross-service principal permissions for Image Builder
	Service roles for Image Builder
	Service-linked roles for Image Builder
	Image Builder identity-based policies
	Actions
	Managing access using policies
	Resources
	Condition keys
	imagebuilder:CreatedResourceTagKeys
	imagebuilder:CreatedResourceTag/<key>
	imagebuilder:LifecyclePolicyResourceType
	imagebuilder:Ec2MetadataHttpTokens
	imagebuilder:StatusTopicArn

	Examples

	Image Builder resource-based policies
	Authorization based on Image Builder tags
	Image Builder IAM roles
	Using temporary credentials with Image Builder
	Service-linked roles
	Service roles

	Manage data perimeters for S3 bucket download access in Image Builder
	Image Builder identity-based policies
	Identity-based policy best practices
	Using the Image Builder console

	Image Builder resource-based policies
	Restricting Image Builder component access to specific IP addresses

	Use AWS managed policies for EC2 Image Builder
	AWSImageBuilderFullAccess policy
	Permissions details

	AWSImageBuilderReadOnlyAccess policy
	Permissions details

	AWSServiceRoleForImageBuilder policy
	Permissions details

	Ec2ImageBuilderCrossAccountDistributionAccess policy
	Permissions details

	EC2ImageBuilderLifecycleExecutionPolicy policy
	Permissions details

	EC2InstanceProfileForImageBuilder policy
	Permissions details

	EC2InstanceProfileForImageBuilderECRContainerBuilds policy
	Permissions details

	Image Builder updates to AWS managed policies

	Use IAM service-linked roles for Image Builder
	Service-linked role permissions for Image Builder
	Removing an Image Builder service-linked role from your account
	Supported Regions for Image Builder service-linked roles

	Troubleshoot IAM issues in Image Builder
	I am not authorized to perform an action in Image Builder
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Image Builder resources

	Compliance validation resources for Image Builder
	Data redundancy and resilience in Image Builder
	Infrastructure security in Image Builder
	Patch Management for Image Builder images
	Security best practices for Image Builder
	Required post-build clean up
	Override the Linux clean up script

	Troubleshoot Image Builder issues
	Troubleshoot pipeline builds
	Troubleshooting scenarios
	Access denied – status code 403
	Description
	Cause
	Solution

	Build times out while verifying the Systems Manager Agent availability on the build instance
	Description
	Cause
	Solution

	Windows secondary disk is offline at launch
	Description
	Cause
	Solution

	Build fails with CIS hardened base image
	Description
	Cause
	Solution

	AssertInventoryCollection fails (Systems Manager Automation)
	Description
	Cause
	Solution

	Documentation history of changes to the Image Builder user guide

